diff options
Diffstat (limited to 'src/share')
-rw-r--r-- | src/share/algebra/browse.daase | 3336 | ||||
-rw-r--r-- | src/share/algebra/category.daase | 6260 | ||||
-rw-r--r-- | src/share/algebra/compress.daase | 1332 | ||||
-rw-r--r-- | src/share/algebra/interp.daase | 10490 | ||||
-rw-r--r-- | src/share/algebra/operation.daase | 32630 |
5 files changed, 27039 insertions, 27009 deletions
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase index 74f7b2bb..b917abaf 100644 --- a/src/share/algebra/browse.daase +++ b/src/share/algebra/browse.daase @@ -1,12 +1,12 @@ -(2284136 . 3452830385) +(2285583 . 3453332749) (-18 A S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) NIL NIL (-19 S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) -((-4411 . T) (-4410 . T)) +((-4418 . T) (-4417 . T)) NIL (-20 S) ((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}"))) @@ -38,7 +38,7 @@ NIL NIL (-27) ((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) +((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) NIL (-28 S R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) @@ -46,7 +46,7 @@ NIL NIL (-29 R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4407 . T) (-4405 . T) (-4404 . T) ((-4412 "*") . T) (-4403 . T) (-4408 . T) (-4402 . T)) +((-4414 . T) (-4412 . T) (-4411 . T) ((-4419 "*") . T) (-4410 . T) (-4415 . T) (-4409 . T)) NIL (-30) ((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,{}x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,{}x,{}y,{}a..b,{}c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b,{} c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,{}x,{}y,{}xMin..xMax,{}yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted."))) @@ -56,14 +56,14 @@ NIL ((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression \\spad{`d'}.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression."))) NIL NIL -(-32 R -2266) +(-32 R -2341) ((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p,{} n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p,{} x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564))))) +((|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566))))) (-33 S) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL -((|HasAttribute| |#1| (QUOTE -4410))) +((|HasAttribute| |#1| (QUOTE -4417))) (-34) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL @@ -74,7 +74,7 @@ NIL NIL (-36 |Key| |Entry|) ((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,{}u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}."))) -((-4410 . T) (-4411 . T)) +((-4417 . T) (-4418 . T)) NIL (-37 S R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline"))) @@ -82,20 +82,20 @@ NIL NIL (-38 R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline"))) -((-4404 . T) (-4405 . T) (-4407 . T)) +((-4411 . T) (-4412 . T) (-4414 . T)) NIL (-39 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{} [a1,{}...,{}an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an."))) NIL NIL -(-40 -2266 UP UPUP -1380) +(-40 -2341 UP UPUP -2579) ((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}"))) -((-4403 |has| (-407 |#2|) (-363)) (-4408 |has| (-407 |#2|) (-363)) (-4402 |has| (-407 |#2|) (-363)) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) -((|HasCategory| (-407 |#2|) (QUOTE (-145))) (|HasCategory| (-407 |#2|) (QUOTE (-147))) (|HasCategory| (-407 |#2|) (QUOTE (-349))) (-2682 (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (QUOTE (-349)))) (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (QUOTE (-368))) (-2682 (-12 (|HasCategory| (-407 |#2|) (QUOTE (-233))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (|HasCategory| (-407 |#2|) (QUOTE (-349)))) (-2682 (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| (-407 |#2|) (QUOTE (-349))))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -637) (QUOTE (-564)))) (-2682 (|HasCategory| (-407 |#2|) (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368))) (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (-12 (|HasCategory| (-407 |#2|) (QUOTE (-233))) (|HasCategory| (-407 |#2|) (QUOTE (-363))))) -(-41 R -2266) +((-4410 |has| (-409 |#2|) (-365)) (-4415 |has| (-409 |#2|) (-365)) (-4409 |has| (-409 |#2|) (-365)) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((|HasCategory| (-409 |#2|) (QUOTE (-145))) (|HasCategory| (-409 |#2|) (QUOTE (-147))) (|HasCategory| (-409 |#2|) (QUOTE (-351))) (-2809 (|HasCategory| (-409 |#2|) (QUOTE (-365))) (|HasCategory| (-409 |#2|) (QUOTE (-351)))) (|HasCategory| (-409 |#2|) (QUOTE (-365))) (|HasCategory| (-409 |#2|) (QUOTE (-370))) (-2809 (-12 (|HasCategory| (-409 |#2|) (QUOTE (-233))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))) (|HasCategory| (-409 |#2|) (QUOTE (-351)))) (-2809 (-12 (|HasCategory| (-409 |#2|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))) (-12 (|HasCategory| (-409 |#2|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-409 |#2|) (QUOTE (-351))))) (|HasCategory| (-409 |#2|) (LIST (QUOTE -639) (QUOTE (-566)))) (-2809 (|HasCategory| (-409 |#2|) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))) (|HasCategory| (-409 |#2|) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-409 |#2|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370))) (-12 (|HasCategory| (-409 |#2|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))) (-12 (|HasCategory| (-409 |#2|) (QUOTE (-233))) (|HasCategory| (-409 |#2|) (QUOTE (-365))))) +(-41 R -2341) ((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,{}f,{}n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f,{} a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -430) (|devaluate| |#1|))))) +((-12 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -432) (|devaluate| |#1|))))) (-42 OV E P) ((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}."))) NIL @@ -103,34 +103,34 @@ NIL (-43 R A) ((|constructor| (NIL "AlgebraPackage assembles a variety of useful functions for general algebras.")) (|basis| (((|Vector| |#2|) (|Vector| |#2|)) "\\spad{basis(va)} selects a basis from the elements of \\spad{va}.")) (|radicalOfLeftTraceForm| (((|List| |#2|)) "\\spad{radicalOfLeftTraceForm()} returns basis for null space of \\spad{leftTraceMatrix()},{} if the algebra is associative,{} alternative or a Jordan algebra,{} then this space equals the radical (maximal nil ideal) of the algebra.")) (|basisOfCentroid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfCentroid()} returns a basis of the centroid,{} \\spadignore{i.e.} the endomorphism ring of \\spad{A} considered as \\spad{(A,{}A)}-bimodule.")) (|basisOfRightNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfRightNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as left module. Note: right nucloid coincides with right nucleus if \\spad{A} has a unit.")) (|basisOfLeftNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfLeftNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as right module. Note: left nucloid coincides with left nucleus if \\spad{A} has a unit.")) (|basisOfCenter| (((|List| |#2|)) "\\spad{basisOfCenter()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{commutator(x,{}a) = 0} and \\spad{associator(x,{}a,{}b) = associator(a,{}x,{}b) = associator(a,{}b,{}x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfNucleus| (((|List| |#2|)) "\\spad{basisOfNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{associator(x,{}a,{}b) = associator(a,{}x,{}b) = associator(a,{}b,{}x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfMiddleNucleus| (((|List| |#2|)) "\\spad{basisOfMiddleNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,{}x,{}b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightNucleus| (((|List| |#2|)) "\\spad{basisOfRightNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,{}b,{}x)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfLeftNucleus| (((|List| |#2|)) "\\spad{basisOfLeftNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(x,{}a,{}b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfRightAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = a*x}.")) (|basisOfLeftAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfLeftAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = x*a}.")) (|basisOfCommutingElements| (((|List| |#2|)) "\\spad{basisOfCommutingElements()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = commutator(x,{}a)} for all \\spad{a} in \\spad{A}.")) (|biRank| (((|NonNegativeInteger|) |#2|) "\\spad{biRank(x)} determines the number of linearly independent elements in \\spad{x},{} \\spad{x*bi},{} \\spad{bi*x},{} \\spad{bi*x*bj},{} \\spad{i,{}j=1,{}...,{}n},{} where \\spad{b=[b1,{}...,{}bn]} is a basis. Note: if \\spad{A} has a unit,{} then \\spadfunFrom{doubleRank}{AlgebraPackage},{} \\spadfunFrom{weakBiRank}{AlgebraPackage} and \\spadfunFrom{biRank}{AlgebraPackage} coincide.")) (|weakBiRank| (((|NonNegativeInteger|) |#2|) "\\spad{weakBiRank(x)} determines the number of linearly independent elements in the \\spad{bi*x*bj},{} \\spad{i,{}j=1,{}...,{}n},{} where \\spad{b=[b1,{}...,{}bn]} is a basis.")) (|doubleRank| (((|NonNegativeInteger|) |#2|) "\\spad{doubleRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,{}...,{}bn]} is a basis.")) (|rightRank| (((|NonNegativeInteger|) |#2|) "\\spad{rightRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{bn*x},{} where \\spad{b=[b1,{}...,{}bn]} is a basis.")) (|leftRank| (((|NonNegativeInteger|) |#2|) "\\spad{leftRank(x)} determines the number of linearly independent elements in \\spad{x*b1},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,{}...,{}bn]} is a basis."))) NIL -((|HasCategory| |#1| (QUOTE (-307)))) +((|HasCategory| |#1| (QUOTE (-308)))) (-44 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,{}..,{}an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{ai} * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra."))) -((-4407 |has| |#1| (-556)) (-4405 . T) (-4404 . T)) -((|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) +((-4414 |has| |#1| (-558)) (-4412 . T) (-4411 . T)) +((|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-45 |Key| |Entry|) ((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data."))) -((-4410 . T) (-4411 . T)) -((-2682 (-12 (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (QUOTE (-848))) (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1914) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2683) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (QUOTE (-1097))) (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1914) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2683) (|devaluate| |#2|))))))) (-2682 (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (QUOTE (-848))) (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (QUOTE (-1097))) (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-2682 (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (QUOTE (-848))) (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (QUOTE (-1097))) (|HasCategory| |#2| (QUOTE (-1097)))) (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| (-564) (QUOTE (-848))) (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (QUOTE (-1097))) (-2682 (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-860))))) (-2682 (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (QUOTE (-1097))) (|HasCategory| |#2| (QUOTE (-1097)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (LIST (QUOTE -611) (QUOTE (-860)))) (-12 (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (QUOTE (-1097))) (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1914) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2683) (|devaluate| |#2|))))))) +((-4417 . T) (-4418 . T)) +((-2809 (-12 (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (QUOTE (-850))) (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1928) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2806) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1928) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2806) (|devaluate| |#2|))))))) (-2809 (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (QUOTE (-850))) (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-2809 (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (QUOTE (-850))) (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-1099)))) (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (QUOTE (-1099))) (-2809 (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (-2809 (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-1099)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1928) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2806) (|devaluate| |#2|))))))) (-46 S R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363)))) +((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365)))) (-47 R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) -(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4404 . T) (-4405 . T) (-4407 . T)) +(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-558)) (-4411 . T) (-4412 . T) (-4414 . T)) NIL (-48) ((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) -((|HasCategory| $ (QUOTE (-1047))) (|HasCategory| $ (LIST (QUOTE -1036) (QUOTE (-564))))) +((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((|HasCategory| $ (QUOTE (-1049))) (|HasCategory| $ (LIST (QUOTE -1038) (QUOTE (-566))))) (-49) ((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function \\spad{`f'}.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(f)} returns the list of parameters bound by \\spad{`f'}."))) NIL NIL (-50 R |lVar|) ((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,{}...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,{}u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}."))) -((-4407 . T)) +((-4414 . T)) NIL (-51 S) ((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}."))) @@ -144,7 +144,7 @@ NIL ((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p,{} f,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}."))) NIL NIL -(-54 |Base| R -2266) +(-54 |Base| R -2341) ((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,{}ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,{}...,{}rn],{} expr,{} n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,{}...,{}rn],{} expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression."))) NIL NIL @@ -158,7 +158,7 @@ NIL NIL (-57 R |Row| |Col|) ((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}a)} assign \\spad{a(i,{}j)} to \\spad{f(a(i,{}j))} for all \\spad{i,{} j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,{}a,{}b,{}r)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} when both \\spad{a(i,{}j)} and \\spad{b(i,{}j)} exist; else \\spad{c(i,{}j) = f(r,{} b(i,{}j))} when \\spad{a(i,{}j)} does not exist; else \\spad{c(i,{}j) = f(a(i,{}j),{}r)} when \\spad{b(i,{}j)} does not exist; otherwise \\spad{c(i,{}j) = f(r,{}r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i,{} j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = f(a(i,{}j))} for all \\spad{i,{} j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,{}j,{}v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,{}i,{}v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,{}r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,{}n,{}r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays"))) -((-4410 . T) (-4411 . T)) +((-4417 . T) (-4418 . T)) NIL (-58 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}."))) @@ -166,65 +166,65 @@ NIL NIL (-59 S) ((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,{}s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}"))) -((-4411 . T) (-4410 . T)) -((-2682 (-12 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-2682 (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-2682 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-1097)))) (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| (-564) (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860)))) (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) +((-4418 . T) (-4417 . T)) +((-2809 (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2809 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-60 R) ((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}."))) -((-4410 . T) (-4411 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1097))) (-2682 (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) -(-61 -2493) +((-4417 . T) (-4418 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) +(-61 -2598) ((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-62 -2493) +(-62 -2598) ((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}."))) NIL NIL -(-63 -2493) +(-63 -2598) ((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-64 -2493) +(-64 -2598) ((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-65 -2493) +(-65 -2598) ((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}"))) NIL NIL -(-66 -2493) +(-66 -2598) ((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-67 -2493) +(-67 -2598) ((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-68 -2493) +(-68 -2598) ((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-69 -2493) +(-69 -2598) ((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}."))) NIL NIL -(-70 -2493) +(-70 -2598) ((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}"))) NIL NIL -(-71 -2493) +(-71 -2598) ((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-72 -2493) +(-72 -2598) ((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}."))) NIL NIL -(-73 -2493) +(-73 -2598) ((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}"))) NIL NIL -(-74 -2493) +(-74 -2598) ((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL @@ -236,66 +236,66 @@ NIL ((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-77 -2493) +(-77 -2598) ((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-78 -2493) +(-78 -2598) ((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-79 -2493) +(-79 -2598) ((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-80 -2493) +(-80 -2598) ((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-81 -2493) +(-81 -2598) ((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}"))) NIL NIL -(-82 -2493) +(-82 -2598) ((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-83 -2493) +(-83 -2598) ((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-84 -2493) +(-84 -2598) ((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-85 -2493) +(-85 -2598) ((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-86 -2493) +(-86 -2598) ((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-87 -2493) +(-87 -2598) ((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-88 -2493) +(-88 -2598) ((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}"))) NIL NIL -(-89 -2493) +(-89 -2598) ((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL (-90 R L) ((|constructor| (NIL "\\spadtype{AssociatedEquations} provides functions to compute the associated equations needed for factoring operators")) (|associatedEquations| (((|Record| (|:| |minor| (|List| (|PositiveInteger|))) (|:| |eq| |#2|) (|:| |minors| (|List| (|List| (|PositiveInteger|)))) (|:| |ops| (|List| |#2|))) |#2| (|PositiveInteger|)) "\\spad{associatedEquations(op,{} m)} returns \\spad{[w,{} eq,{} lw,{} lop]} such that \\spad{eq(w) = 0} where \\spad{w} is the given minor,{} and \\spad{lw_i = lop_i(w)} for all the other minors.")) (|uncouplingMatrices| (((|Vector| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{uncouplingMatrices(M)} returns \\spad{[A_1,{}...,{}A_n]} such that if \\spad{y = [y_1,{}...,{}y_n]} is a solution of \\spad{y' = M y},{} then \\spad{[\\$y_j',{}y_j'',{}...,{}y_j^{(n)}\\$] = \\$A_j y\\$} for all \\spad{j}\\spad{'s}.")) (|associatedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| (|List| (|PositiveInteger|))))) |#2| (|PositiveInteger|)) "\\spad{associatedSystem(op,{} m)} returns \\spad{[M,{}w]} such that the \\spad{m}-th associated equation system to \\spad{L} is \\spad{w' = M w}."))) NIL -((|HasCategory| |#1| (QUOTE (-363)))) +((|HasCategory| |#1| (QUOTE (-365)))) (-91 S) ((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,{}y,{}...,{}z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4410 . T) (-4411 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1097))) (-2682 (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) +((-4417 . T) (-4418 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (-92 S) ((|constructor| (NIL "This is the category of Spad abstract syntax trees."))) NIL @@ -318,15 +318,15 @@ NIL NIL (-97) ((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\"."))) -((-4410 . T)) +((-4417 . T)) NIL (-98) ((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,{}b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements."))) -((-4410 . T) ((-4412 "*") . T) (-4411 . T) (-4407 . T) (-4405 . T) (-4404 . T) (-4403 . T) (-4408 . T) (-4402 . T) (-4401 . T) (-4400 . T) (-4399 . T) (-4398 . T) (-4406 . T) (-4409 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4397 . T)) +((-4417 . T) ((-4419 "*") . T) (-4418 . T) (-4414 . T) (-4412 . T) (-4411 . T) (-4410 . T) (-4415 . T) (-4409 . T) (-4408 . T) (-4407 . T) (-4406 . T) (-4405 . T) (-4413 . T) (-4416 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4404 . T)) NIL (-99 R) ((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,{}n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f,{} g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}."))) -((-4407 . T)) +((-4414 . T)) NIL (-100 R UP) ((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a,{} [b1,{}...,{}bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,{}...,{}bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a,{} b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{\\spad{pi}} is balanced with respect to \\spad{b}."))) @@ -342,15 +342,15 @@ NIL NIL (-103 S) ((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,{}pl,{}f)} and \\spad{mapDown!(l,{}pr,{}f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}t1,{}f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t,{} ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n,{} s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}."))) -((-4410 . T) (-4411 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1097))) (-2682 (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) +((-4417 . T) (-4418 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (-104 R UP M |Row| |Col|) ((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,{}q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,{}q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,{}q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}."))) NIL -((|HasAttribute| |#1| (QUOTE (-4412 "*")))) +((|HasAttribute| |#1| (QUOTE (-4419 "*")))) (-105) ((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table"))) -((-4410 . T)) +((-4417 . T)) NIL (-106 A S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) @@ -358,23 +358,23 @@ NIL NIL (-107 S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) -((-4411 . T)) +((-4418 . T)) NIL (-108) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion."))) -((-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) -((|HasCategory| (-564) (QUOTE (-907))) (|HasCategory| (-564) (LIST (QUOTE -1036) (QUOTE (-1173)))) (|HasCategory| (-564) (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-147))) (|HasCategory| (-564) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-564) (QUOTE (-1020))) (|HasCategory| (-564) (QUOTE (-818))) (-2682 (|HasCategory| (-564) (QUOTE (-818))) (|HasCategory| (-564) (QUOTE (-848)))) (|HasCategory| (-564) (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-1148))) (|HasCategory| (-564) (LIST (QUOTE -884) (QUOTE (-379)))) (|HasCategory| (-564) (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| (-564) (QUOTE (-233))) (|HasCategory| (-564) (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| (-564) (LIST (QUOTE -514) (QUOTE (-1173)) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -309) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -286) (QUOTE (-564)) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-307))) (|HasCategory| (-564) (QUOTE (-545))) (|HasCategory| (-564) (QUOTE (-848))) (|HasCategory| (-564) (LIST (QUOTE -637) (QUOTE (-564)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-907)))) (-2682 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-907)))) (|HasCategory| (-564) (QUOTE (-145))))) +((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((|HasCategory| (-566) (QUOTE (-909))) (|HasCategory| (-566) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| (-566) (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-147))) (|HasCategory| (-566) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-566) (QUOTE (-1022))) (|HasCategory| (-566) (QUOTE (-820))) (-2809 (|HasCategory| (-566) (QUOTE (-820))) (|HasCategory| (-566) (QUOTE (-850)))) (|HasCategory| (-566) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| (-566) (QUOTE (-1150))) (|HasCategory| (-566) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| (-566) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| (-566) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| (-566) (QUOTE (-233))) (|HasCategory| (-566) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-566) (LIST (QUOTE -516) (QUOTE (-1175)) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -310) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -287) (QUOTE (-566)) (QUOTE (-566)))) (|HasCategory| (-566) (QUOTE (-308))) (|HasCategory| (-566) (QUOTE (-547))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| (-566) (LIST (QUOTE -639) (QUOTE (-566)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-909)))) (|HasCategory| (-566) (QUOTE (-145))))) (-109) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Identifier|) (|List| (|Property|))) "\\spad{binding(n,{}props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Identifier|) $) "\\spad{name(b)} returns the name of binding \\spad{b}"))) NIL NIL (-110) ((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,{}b)} creates bits with \\spad{n} values of \\spad{b}"))) -((-4411 . T) (-4410 . T)) -((-12 (|HasCategory| (-112) (QUOTE (-1097))) (|HasCategory| (-112) (LIST (QUOTE -309) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-112) (QUOTE (-848))) (|HasCategory| (-564) (QUOTE (-848))) (|HasCategory| (-112) (QUOTE (-1097))) (|HasCategory| (-112) (LIST (QUOTE -611) (QUOTE (-860))))) +((-4418 . T) (-4417 . T)) +((-12 (|HasCategory| (-112) (QUOTE (-1099))) (|HasCategory| (-112) (LIST (QUOTE -310) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-112) (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| (-112) (QUOTE (-1099))) (|HasCategory| (-112) (LIST (QUOTE -613) (QUOTE (-862))))) (-111 R S) ((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}"))) -((-4405 . T) (-4404 . T)) +((-4412 . T) (-4411 . T)) NIL (-112) ((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (($ $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}."))) @@ -388,22 +388,22 @@ NIL ((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op,{} l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|Identifier|) (|None|)) "\\spad{setProperty(op,{} p,{} v)} attaches property \\spad{p} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|) (|None|)) "\\spad{setProperty(op,{} s,{} v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Maybe| (|None|)) $ (|Identifier|)) "\\spad{property(op,{} p)} returns the value of property \\spad{p} if it is attached to \\spad{op},{} otherwise \\spad{nothing}.") (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op,{} s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|Identifier|)) "\\spad{deleteProperty!(op,{} p)} unattaches property \\spad{p} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|)) "\\spad{deleteProperty!(op,{} s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|Identifier|)) "\\spad{assert(op,{} p)} attaches property \\spad{p} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|Identifier|)) "\\spad{has?(op,{}p)} tests if property \\spad{s} is attached to \\spad{op}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op,{} foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to InputForm as \\spad{f(a1,{}...,{}an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to OutputForm as \\spad{f(a1,{}...,{}an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op,{} foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op,{} foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op,{} n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|operator| (($ (|Symbol|) (|Arity|)) "\\spad{operator(f,{} a)} makes \\spad{f} into an operator of arity \\spad{a}.") (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f,{} n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}."))) NIL NIL -(-115 -2266 UP) +(-115 -2341 UP) ((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots."))) NIL NIL (-116 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) +((-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) NIL (-117 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) -((|HasCategory| (-116 |#1|) (QUOTE (-907))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1036) (QUOTE (-1173)))) (|HasCategory| (-116 |#1|) (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-147))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-116 |#1|) (QUOTE (-1020))) (|HasCategory| (-116 |#1|) (QUOTE (-818))) (-2682 (|HasCategory| (-116 |#1|) (QUOTE (-818))) (|HasCategory| (-116 |#1|) (QUOTE (-848)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| (-116 |#1|) (QUOTE (-1148))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -884) (QUOTE (-379)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| (-116 |#1|) (QUOTE (-233))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -514) (QUOTE (-1173)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -309) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -286) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-307))) (|HasCategory| (-116 |#1|) (QUOTE (-545))) (|HasCategory| (-116 |#1|) (QUOTE (-848))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-907)))) (-2682 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-907)))) (|HasCategory| (-116 |#1|) (QUOTE (-145))))) +((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((|HasCategory| (-116 |#1|) (QUOTE (-909))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| (-116 |#1|) (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-147))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-116 |#1|) (QUOTE (-1022))) (|HasCategory| (-116 |#1|) (QUOTE (-820))) (-2809 (|HasCategory| (-116 |#1|) (QUOTE (-820))) (|HasCategory| (-116 |#1|) (QUOTE (-850)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| (-116 |#1|) (QUOTE (-1150))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| (-116 |#1|) (QUOTE (-233))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -516) (QUOTE (-1175)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -310) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -287) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-308))) (|HasCategory| (-116 |#1|) (QUOTE (-547))) (|HasCategory| (-116 |#1|) (QUOTE (-850))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-909)))) (|HasCategory| (-116 |#1|) (QUOTE (-145))))) (-118 A S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL -((|HasAttribute| |#1| (QUOTE -4411))) +((|HasAttribute| |#1| (QUOTE -4418))) (-119 S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL @@ -414,15 +414,15 @@ NIL NIL (-121 S) ((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,{}b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,{}b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented"))) -((-4410 . T) (-4411 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1097))) (-2682 (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) +((-4417 . T) (-4418 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (-122 S) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}."))) NIL NIL (-123) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}."))) -((-4411 . T) (-4410 . T)) +((-4418 . T) (-4417 . T)) NIL (-124 A S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) @@ -430,20 +430,20 @@ NIL NIL (-125 S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) -((-4410 . T) (-4411 . T)) +((-4417 . T) (-4418 . T)) NIL (-126 S) ((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes."))) -((-4410 . T) (-4411 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1097))) (-2682 (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) +((-4417 . T) (-4418 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (-127 S) ((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,{}v,{}r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty."))) -((-4410 . T) (-4411 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1097))) (-2682 (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) +((-4417 . T) (-4418 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (-128) ((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity \\spad{`n'}. The array can then store up to \\spad{`n'} bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|finiteAggregate| ((|attribute|) "A ByteBuffer object is a finite aggregate")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,{}n)} sets the number of active bytes in the `buf'. Error if \\spad{`n'} is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0."))) -((-4411 . T) (-4410 . T)) -((-2682 (-12 (|HasCategory| (-129) (QUOTE (-848))) (|HasCategory| (-129) (LIST (QUOTE -309) (QUOTE (-129))))) (-12 (|HasCategory| (-129) (QUOTE (-1097))) (|HasCategory| (-129) (LIST (QUOTE -309) (QUOTE (-129)))))) (-2682 (-12 (|HasCategory| (-129) (QUOTE (-1097))) (|HasCategory| (-129) (LIST (QUOTE -309) (QUOTE (-129))))) (|HasCategory| (-129) (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| (-129) (LIST (QUOTE -612) (QUOTE (-536)))) (-2682 (|HasCategory| (-129) (QUOTE (-848))) (|HasCategory| (-129) (QUOTE (-1097)))) (|HasCategory| (-129) (QUOTE (-848))) (|HasCategory| (-564) (QUOTE (-848))) (|HasCategory| (-129) (QUOTE (-1097))) (|HasCategory| (-129) (LIST (QUOTE -611) (QUOTE (-860)))) (-12 (|HasCategory| (-129) (QUOTE (-1097))) (|HasCategory| (-129) (LIST (QUOTE -309) (QUOTE (-129)))))) +((-4418 . T) (-4417 . T)) +((-2809 (-12 (|HasCategory| (-129) (QUOTE (-850))) (|HasCategory| (-129) (LIST (QUOTE -310) (QUOTE (-129))))) (-12 (|HasCategory| (-129) (QUOTE (-1099))) (|HasCategory| (-129) (LIST (QUOTE -310) (QUOTE (-129)))))) (-2809 (-12 (|HasCategory| (-129) (QUOTE (-1099))) (|HasCategory| (-129) (LIST (QUOTE -310) (QUOTE (-129))))) (|HasCategory| (-129) (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-129) (LIST (QUOTE -614) (QUOTE (-538)))) (-2809 (|HasCategory| (-129) (QUOTE (-850))) (|HasCategory| (-129) (QUOTE (-1099)))) (|HasCategory| (-129) (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| (-129) (QUOTE (-1099))) (|HasCategory| (-129) (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| (-129) (QUOTE (-1099))) (|HasCategory| (-129) (LIST (QUOTE -310) (QUOTE (-129)))))) (-129) ((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,{}y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256."))) NIL @@ -466,13 +466,13 @@ NIL NIL (-134) ((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0,{} 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,{}1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative."))) -(((-4412 "*") . T)) +(((-4419 "*") . T)) NIL -(-135 |minix| -2162 S T$) +(-135 |minix| -2216 S T$) ((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,{}ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,{}ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}."))) NIL NIL -(-136 |minix| -2162 R) +(-136 |minix| -2216 R) ((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,{}...idim) = +1/0/-1} if \\spad{i1,{}...,{}idim} is an even/is nota /is an odd permutation of \\spad{minix,{}...,{}minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,{}j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,{}[i1,{}...,{}idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t,{} [4,{}1,{}2,{}3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}i,{}j,{}k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,{}i,{}j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,{}2,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(i,{}k,{}j,{}l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}j,{}k,{}i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,{}i,{}j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,{}1,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j) = sum(h=1..dim,{}t(h,{}i,{}h,{}j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,{}i,{}s,{}j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,{}2,{}t,{}1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = sum(h=1..dim,{}s(i,{}h,{}j)*t(h,{}k,{}l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,{}rank t,{} s,{} 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N,{} t[i1,{}..,{}iN,{}k]*s[k,{}j1,{}..,{}jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,{}t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,{}t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = s(i,{}j)*t(k,{}l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,{}[i1,{}...,{}iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k,{}l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,{}i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,{}...,{}t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,{}...,{}r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor."))) NIL NIL @@ -494,8 +494,8 @@ NIL NIL (-141) ((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}."))) -((-4410 . T) (-4400 . T) (-4411 . T)) -((-2682 (-12 (|HasCategory| (-144) (QUOTE (-368))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1097))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-144) (QUOTE (-368))) (|HasCategory| (-144) (QUOTE (-848))) (|HasCategory| (-144) (QUOTE (-1097))) (|HasCategory| (-144) (LIST (QUOTE -611) (QUOTE (-860)))) (-12 (|HasCategory| (-144) (QUOTE (-1097))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) +((-4417 . T) (-4407 . T) (-4418 . T)) +((-2809 (-12 (|HasCategory| (-144) (QUOTE (-370))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1099))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-144) (QUOTE (-370))) (|HasCategory| (-144) (QUOTE (-850))) (|HasCategory| (-144) (QUOTE (-1099))) (|HasCategory| (-144) (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| (-144) (QUOTE (-1099))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) (-142 R Q A) ((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL @@ -510,7 +510,7 @@ NIL NIL (-145) ((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring."))) -((-4407 . T)) +((-4414 . T)) NIL (-146 R) ((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,{}r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}."))) @@ -518,9 +518,9 @@ NIL NIL (-147) ((|constructor| (NIL "Rings of Characteristic Zero."))) -((-4407 . T)) +((-4414 . T)) NIL -(-148 -2266 UP UPUP) +(-148 -2341 UP UPUP) ((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,{}y),{} p(x,{}y))} returns \\spad{[g(z,{}t),{} q(z,{}t),{} c1(z),{} c2(z),{} n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,{}y) = g(z,{}t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z,{} t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,{}y),{} f(x),{} g(x))} returns \\spad{p(f(x),{} y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p,{} q)} returns an integer a such that a is neither a pole of \\spad{p(x,{}y)} nor a branch point of \\spad{q(x,{}y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g,{} n)} returns \\spad{[m,{} c,{} P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x,{} y))} returns \\spad{[c(x),{} n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,{}y))} returns \\spad{[c(x),{} q(x,{}z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x,{} z) = 0}."))) NIL NIL @@ -531,14 +531,14 @@ NIL (-150 A S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-1097))) (|HasAttribute| |#1| (QUOTE -4410))) +((|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasAttribute| |#1| (QUOTE -4417))) (-151 S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL NIL (-152 |n| K Q) ((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,{}[i1,{}i2,{}...,{}iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,{}[i1,{}i2,{}...,{}iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element."))) -((-4405 . T) (-4404 . T) (-4407 . T)) +((-4412 . T) (-4411 . T) (-4414 . T)) NIL (-153) ((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,{}xMin,{}xMax,{}yMin,{}yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function."))) @@ -560,7 +560,7 @@ NIL ((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}."))) NIL NIL -(-158 R -2266) +(-158 R -2341) ((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n),{} n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n),{} n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n),{} n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n),{} n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f,{} x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n,{} r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n,{} r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator."))) NIL NIL @@ -591,10 +591,10 @@ NIL (-165 S R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) NIL -((|HasCategory| |#2| (QUOTE (-907))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-1000))) (|HasCategory| |#2| (QUOTE (-1197))) (|HasCategory| |#2| (QUOTE (-1057))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4406)) (|HasAttribute| |#2| (QUOTE -4409)) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-556)))) +((|HasCategory| |#2| (QUOTE (-909))) (|HasCategory| |#2| (QUOTE (-547))) (|HasCategory| |#2| (QUOTE (-1002))) (|HasCategory| |#2| (QUOTE (-1199))) (|HasCategory| |#2| (QUOTE (-1059))) (|HasCategory| |#2| (QUOTE (-1022))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4413)) (|HasAttribute| |#2| (QUOTE -4416)) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-558)))) (-166 R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) -((-4403 -2682 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-907)))) (-4408 |has| |#1| (-363)) (-4402 |has| |#1| (-363)) (-4406 |has| |#1| (-6 -4406)) (-4409 |has| |#1| (-6 -4409)) (-3571 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) +((-4410 -2809 (|has| |#1| (-558)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909)))) (-4415 |has| |#1| (-365)) (-4409 |has| |#1| (-365)) (-4413 |has| |#1| (-6 -4413)) (-4416 |has| |#1| (-6 -4416)) (-3657 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) NIL (-167 RR PR) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients."))) @@ -606,8 +606,8 @@ NIL NIL (-169 R) ((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}."))) -((-4403 -2682 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-907)))) (-4408 |has| |#1| (-363)) (-4402 |has| |#1| (-363)) (-4406 |has| |#1| (-6 -4406)) (-4409 |has| |#1| (-6 -4409)) (-3571 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) -((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-349))) (-2682 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368))) (-2682 (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1173)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-233))) (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-1173))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-826)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-1020)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-1197)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -884) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -884) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (-2682 (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564)))) (-2682 (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-907)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-907))))) (-2682 (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-907)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-907)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-907))))) (-2682 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (QUOTE (-1000))) (|HasCategory| |#1| (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-1197))) (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-2682 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-556)))) (-2682 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -884) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1173)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-826))) (|HasCategory| |#1| (QUOTE (-1057))) (-12 (|HasCategory| |#1| (QUOTE (-1057))) (|HasCategory| |#1| (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-907))) (-2682 (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-907)))) (|HasCategory| |#1| (QUOTE (-363)))) (-2682 (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-907)))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-233))) (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-907)))) (|HasAttribute| |#1| (QUOTE -4406)) (|HasAttribute| |#1| (QUOTE -4409)) (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-1173))))) (-2682 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-907)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2682 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-907)))) (|HasCategory| |#1| (QUOTE (-349))))) +((-4410 -2809 (|has| |#1| (-558)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909)))) (-4415 |has| |#1| (-365)) (-4409 |has| |#1| (-365)) (-4413 |has| |#1| (-6 -4413)) (-4416 |has| |#1| (-6 -4416)) (-3657 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-351))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-351)))) (|HasCategory| |#1| (QUOTE (-233))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-828)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-1022)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-1199)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-909))))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-909)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-909)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-909))))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (QUOTE (-1002))) (|HasCategory| |#1| (QUOTE (-1199)))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (QUOTE (-1022))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2809 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-558)))) (-2809 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351)))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-828))) (|HasCategory| |#1| (QUOTE (-1059))) (-12 (|HasCategory| |#1| (QUOTE (-1059))) (|HasCategory| |#1| (QUOTE (-1199)))) (|HasCategory| |#1| (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-909))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-365)))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-233))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasAttribute| |#1| (QUOTE -4413)) (|HasAttribute| |#1| (QUOTE -4416)) (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175))))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-351))))) (-170 R S CS) ((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern"))) NIL @@ -618,7 +618,7 @@ NIL NIL (-172) ((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative."))) -(((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) +(((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) NIL (-173) ((|constructor| (NIL "This category is the root of the I/O conduits.")) (|close!| (($ $) "\\spad{close!(c)} closes the conduit \\spad{c},{} changing its state to one that is invalid for future read or write operations."))) @@ -626,7 +626,7 @@ NIL NIL (-174 R) ((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0,{} x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialQuotients(x) = [b0,{}b1,{}b2,{}b3,{}...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialDenominators(x) = [b1,{}b2,{}b3,{}...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialNumerators(x) = [a1,{}a2,{}a3,{}...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,{}b)} constructs a continued fraction in the following way: if \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,{}a,{}b)} constructs a continued fraction in the following way: if \\spad{a = [a1,{}a2,{}...]} and \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}."))) -(((-4412 "*") . T) (-4403 . T) (-4408 . T) (-4402 . T) (-4404 . T) (-4405 . T) (-4407 . T)) +(((-4419 "*") . T) (-4410 . T) (-4415 . T) (-4409 . T) (-4411 . T) (-4412 . T) (-4414 . T)) NIL (-175) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(c,{}n)} returns the first binding associated with \\spad{`n'}. Otherwise `nothing.")) (|push| (($ (|Binding|) $) "\\spad{push(c,{}b)} augments the contour with binding \\spad{`b'}.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}."))) @@ -643,7 +643,7 @@ NIL (-178 R S CS) ((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr,{} pat,{} res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL -((|HasCategory| (-950 |#2|) (LIST (QUOTE -884) (|devaluate| |#1|)))) +((|HasCategory| (-952 |#2|) (LIST (QUOTE -886) (|devaluate| |#1|)))) (-179 R) ((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,{}r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,{}lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,{}lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)\\spad{*lm}(2)*...\\spad{*lm}(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,{}l)} \\undocumented{}"))) NIL @@ -680,7 +680,7 @@ NIL ((|constructor| (NIL "This domain provides implementations for constructors.")) (|findConstructor| (((|Maybe| $) (|Identifier|)) "\\spad{findConstructor(s)} attempts to find a constructor named \\spad{s}. If successful,{} returns that constructor; otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-188 R -2266) +(-188 R -2341) ((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL @@ -788,23 +788,23 @@ NIL ((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,{}start,{}end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,{}s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,{}q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,{}s)} returns an element of \\spad{x} indexed by \\spad{s}"))) NIL NIL -(-215 -2266 UP UPUP R) +(-215 -2341 UP UPUP R) ((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f,{} ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use."))) NIL NIL -(-216 -2266 FP) +(-216 -2341 FP) ((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,{}k,{}v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,{}k,{}v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,{}k,{}v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,{}sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}."))) NIL NIL (-217) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion."))) -((-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) -((|HasCategory| (-564) (QUOTE (-907))) (|HasCategory| (-564) (LIST (QUOTE -1036) (QUOTE (-1173)))) (|HasCategory| (-564) (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-147))) (|HasCategory| (-564) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-564) (QUOTE (-1020))) (|HasCategory| (-564) (QUOTE (-818))) (-2682 (|HasCategory| (-564) (QUOTE (-818))) (|HasCategory| (-564) (QUOTE (-848)))) (|HasCategory| (-564) (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-1148))) (|HasCategory| (-564) (LIST (QUOTE -884) (QUOTE (-379)))) (|HasCategory| (-564) (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| (-564) (QUOTE (-233))) (|HasCategory| (-564) (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| (-564) (LIST (QUOTE -514) (QUOTE (-1173)) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -309) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -286) (QUOTE (-564)) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-307))) (|HasCategory| (-564) (QUOTE (-545))) (|HasCategory| (-564) (QUOTE (-848))) (|HasCategory| (-564) (LIST (QUOTE -637) (QUOTE (-564)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-907)))) (-2682 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-907)))) (|HasCategory| (-564) (QUOTE (-145))))) +((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((|HasCategory| (-566) (QUOTE (-909))) (|HasCategory| (-566) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| (-566) (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-147))) (|HasCategory| (-566) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-566) (QUOTE (-1022))) (|HasCategory| (-566) (QUOTE (-820))) (-2809 (|HasCategory| (-566) (QUOTE (-820))) (|HasCategory| (-566) (QUOTE (-850)))) (|HasCategory| (-566) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| (-566) (QUOTE (-1150))) (|HasCategory| (-566) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| (-566) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| (-566) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| (-566) (QUOTE (-233))) (|HasCategory| (-566) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-566) (LIST (QUOTE -516) (QUOTE (-1175)) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -310) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -287) (QUOTE (-566)) (QUOTE (-566)))) (|HasCategory| (-566) (QUOTE (-308))) (|HasCategory| (-566) (QUOTE (-547))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| (-566) (LIST (QUOTE -639) (QUOTE (-566)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-909)))) (|HasCategory| (-566) (QUOTE (-145))))) (-218) ((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition \\spad{`d'}.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition \\spad{`d'}. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any."))) NIL NIL -(-219 R -2266) +(-219 R -2341) ((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f,{} x,{} a,{} b,{} ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL @@ -818,19 +818,19 @@ NIL NIL (-222 S) ((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}."))) -((-4410 . T) (-4411 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1097))) (-2682 (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) +((-4417 . T) (-4418 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (-223 |CoefRing| |listIndVar|) ((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,{}df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,{}u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}."))) -((-4407 . T)) +((-4414 . T)) NIL -(-224 R -2266) +(-224 R -2341) ((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} x,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x,{} g,{} a,{} b,{} eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval."))) NIL NIL (-225) ((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-3560 . T) (-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) +((-3649 . T) (-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) NIL (-226) ((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}"))) @@ -838,23 +838,23 @@ NIL NIL (-227 R) ((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,{}Y,{}Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,{}sy,{}sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}"))) -((-4410 . T) (-4411 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1097))) (-2682 (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-556))) (|HasAttribute| |#1| (QUOTE (-4412 "*"))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) +((-4417 . T) (-4418 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-558))) (|HasAttribute| |#1| (QUOTE (-4419 "*"))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (-228 A S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) NIL NIL (-229 S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) -((-4411 . T)) +((-4418 . T)) NIL (-230 S R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#2| (QUOTE (-233)))) +((|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-233)))) (-231 R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}."))) -((-4407 . T)) +((-4414 . T)) NIL (-232 S) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified."))) @@ -862,36 +862,36 @@ NIL NIL (-233) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified."))) -((-4407 . T)) +((-4414 . T)) NIL (-234 A S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) NIL -((|HasAttribute| |#1| (QUOTE -4410))) +((|HasAttribute| |#1| (QUOTE -4417))) (-235 S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) -((-4411 . T)) +((-4418 . T)) NIL (-236) ((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation"))) NIL NIL -(-237 S -2162 R) +(-237 S -2216 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) NIL -((|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-791))) (|HasCategory| |#3| (QUOTE (-846))) (|HasAttribute| |#3| (QUOTE -4407)) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (QUOTE (-724))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1047))) (|HasCategory| |#3| (QUOTE (-1097)))) -(-238 -2162 R) +((|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (QUOTE (-848))) (|HasAttribute| |#3| (QUOTE -4414)) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (QUOTE (-726))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (QUOTE (-1099)))) +(-238 -2216 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) -((-4404 |has| |#2| (-1047)) (-4405 |has| |#2| (-1047)) (-4407 |has| |#2| (-6 -4407)) ((-4412 "*") |has| |#2| (-172)) (-4410 . T)) +((-4411 |has| |#2| (-1049)) (-4412 |has| |#2| (-1049)) (-4414 |has| |#2| (-6 -4414)) ((-4419 "*") |has| |#2| (-172)) (-4417 . T)) NIL -(-239 -2162 A B) +(-239 -2216 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-240 -2162 R) +(-240 -2216 R) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation."))) -((-4404 |has| |#2| (-1047)) (-4405 |has| |#2| (-1047)) (-4407 |has| |#2| (-6 -4407)) ((-4412 "*") |has| |#2| (-172)) (-4410 . T)) -((-2682 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-724))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-791))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))))) (-2682 (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1097)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1047)))) (-12 (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173))))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#2| (QUOTE (-363))) (-2682 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1047)))) (-2682 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363)))) (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-791))) (-2682 (|HasCategory| |#2| (QUOTE (-791))) (|HasCategory| |#2| (QUOTE (-846)))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-724))) (-2682 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1047)))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))) (-2682 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1047)))) (-2682 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1047)))) (-2682 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1047)))) (-2682 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1047)))) (|HasCategory| |#2| (QUOTE (-233))) (-2682 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-724))) (|HasCategory| |#2| (QUOTE (-791))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (QUOTE (-1097)))) (|HasCategory| |#2| (QUOTE (-1097))) (-2682 (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-368)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-724)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-791)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-846)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1047)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1097))))) (-2682 (-12 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-724))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-791))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1047))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564)))))) (-2682 (-12 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-724))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-791))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564)))))) (|HasCategory| (-564) (QUOTE (-848))) (-12 (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1047)))) (-12 (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173))))) (-2682 (|HasCategory| |#2| (QUOTE (-1047))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564)))))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1097)))) (|HasAttribute| |#2| (QUOTE -4407)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-860)))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))))) +((-4411 |has| |#2| (-1049)) (-4412 |has| |#2| (-1049)) (-4414 |has| |#2| (-6 -4414)) ((-4419 "*") |has| |#2| (-172)) (-4417 . T)) +((-2809 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))))) (-2809 (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1099)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1049)))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#2| (QUOTE (-365))) (-2809 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2809 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365)))) (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-793))) (-2809 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-848)))) (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-726))) (-2809 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1049)))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (-2809 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2809 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2809 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2809 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1049)))) (|HasCategory| |#2| (QUOTE (-233))) (-2809 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-365)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-370)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-726)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-793)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-848)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1049)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1099))))) (-2809 (-12 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1049))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-2809 (-12 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))))) (|HasCategory| (-566) (QUOTE (-850))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1049)))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175))))) (-2809 (|HasCategory| |#2| (QUOTE (-1049))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1099)))) (|HasAttribute| |#2| (QUOTE -4414)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))))) (-241) ((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,{}i,{}s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,{}i,{}s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,{}s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type."))) NIL @@ -902,7 +902,7 @@ NIL NIL (-243) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) -((-4403 . T) (-4404 . T) (-4405 . T) (-4407 . T)) +((-4410 . T) (-4411 . T) (-4412 . T) (-4414 . T)) NIL (-244 S) ((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,{}v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,{}v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty."))) @@ -910,4187 +910,4195 @@ NIL NIL (-245 S) ((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}"))) -((-4411 . T) (-4410 . T)) -((-2682 (-12 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-2682 (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-2682 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-1097)))) (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| (-564) (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860)))) (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) +((-4418 . T) (-4417 . T)) +((-2809 (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2809 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-246 M) ((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,{}a,{}p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}"))) NIL NIL (-247 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4412 "*") |has| |#2| (-172)) (-4403 |has| |#2| (-556)) (-4408 |has| |#2| (-6 -4408)) (-4405 . T) (-4404 . T) (-4407 . T)) -((|HasCategory| |#2| (QUOTE (-907))) (-2682 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-907)))) (-2682 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-907)))) (-2682 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-907)))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (-2682 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-556)))) (-12 (|HasCategory| (-862 |#1|) (LIST (QUOTE -884) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -884) (QUOTE (-379))))) (-12 (|HasCategory| (-862 |#1|) (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -884) (QUOTE (-564))))) (-12 (|HasCategory| (-862 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379)))))) (-12 (|HasCategory| (-862 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564)))))) (-12 (|HasCategory| (-862 |#1|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564)))) (-2682 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4408)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-907)))) (-2682 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-907)))) (|HasCategory| |#2| (QUOTE (-145))))) +(((-4419 "*") |has| |#2| (-172)) (-4410 |has| |#2| (-558)) (-4415 |has| |#2| (-6 -4415)) (-4412 . T) (-4411 . T) (-4414 . T)) +((|HasCategory| |#2| (QUOTE (-909))) (-2809 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-909)))) (-2809 (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-909)))) (-2809 (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-172))) (-2809 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-558)))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2809 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4415)) (|HasCategory| |#2| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#2| (QUOTE (-145))))) (-248) ((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall|)) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall|) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object \\spad{`d'}."))) NIL NIL (-249) -((|constructor| (NIL "This domain provides representations for domains constructors."))) +((|constructor| (NIL "This domain provides representations for domains constructors.")) (|functorData| (((|FunctorData|) $) "\\spad{functorData x} returns the functor data associated with the domain constructor \\spad{x}."))) +NIL NIL +(-250) +((|constructor| (NIL "Represntation of domain templates resulting from compiling a domain constructor")) (|elt| (((|Syntax|) $ (|NonNegativeInteger|)) "\\spad{x.i} yields the entry at slot \\spad{i} in \\spad{x}.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# x} returns the length of the domain template \\spad{x}."))) NIL -(-250 |n| R M S) +NIL +(-251 |n| R M S) ((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view."))) -((-4407 -2682 (-2317 (|has| |#4| (-1047)) (|has| |#4| (-233))) (-2317 (|has| |#4| (-1047)) (|has| |#4| (-898 (-1173)))) (|has| |#4| (-6 -4407)) (-2317 (|has| |#4| (-1047)) (|has| |#4| (-637 (-564))))) (-4404 |has| |#4| (-1047)) (-4405 |has| |#4| (-1047)) ((-4412 "*") |has| |#4| (-172)) (-4410 . T)) -((-2682 (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-724))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-791))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-846))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1047))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1097))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -898) (QUOTE (-1173)))))) (|HasCategory| |#4| (QUOTE (-363))) (-2682 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (QUOTE (-1047)))) (-2682 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-363)))) (|HasCategory| |#4| (QUOTE (-1047))) (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-791))) (-2682 (|HasCategory| |#4| (QUOTE (-791))) (|HasCategory| |#4| (QUOTE (-846)))) (|HasCategory| |#4| (QUOTE (-846))) (|HasCategory| |#4| (QUOTE (-724))) (-2682 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-1047)))) (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#4| (LIST (QUOTE -898) (QUOTE (-1173)))) (-2682 (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#4| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1047)))) (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1097))) (-2682 (-12 (|HasCategory| |#4| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (LIST (QUOTE -898) (QUOTE (-1173))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-172)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-233)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-363)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-368)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-724)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-791)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-846)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-1047)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-1097))))) (-2682 (-12 (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#4| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#4| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-724))) (|HasCategory| |#4| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-791))) (|HasCategory| |#4| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-846))) (|HasCategory| |#4| (LIST (QUOTE -1036) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-1047))) (-12 (|HasCategory| |#4| (QUOTE (-1097))) (|HasCategory| |#4| (LIST (QUOTE -1036) (QUOTE (-564)))))) (-2682 (-12 (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#4| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#4| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-724))) (|HasCategory| |#4| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-791))) (|HasCategory| |#4| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-846))) (|HasCategory| |#4| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-1047))) (|HasCategory| |#4| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-1097))) (|HasCategory| |#4| (LIST (QUOTE -1036) (QUOTE (-564)))))) (|HasCategory| (-564) (QUOTE (-848))) (-12 (|HasCategory| |#4| (QUOTE (-1047))) (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-1047))) (|HasCategory| |#4| (LIST (QUOTE -898) (QUOTE (-1173))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1047)))) (-2682 (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1047)))) (|HasCategory| |#4| (QUOTE (-724))) (-12 (|HasCategory| |#4| (QUOTE (-1047))) (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-1047))) (|HasCategory| |#4| (LIST (QUOTE -898) (QUOTE (-1173)))))) (-12 (|HasCategory| |#4| (QUOTE (-1097))) (|HasCategory| |#4| (LIST (QUOTE -1036) (QUOTE (-564))))) (-2682 (|HasCategory| |#4| (QUOTE (-1047))) (-12 (|HasCategory| |#4| (QUOTE (-1097))) (|HasCategory| |#4| (LIST (QUOTE -1036) (QUOTE (-564)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-1097)))) (-2682 (|HasAttribute| |#4| (QUOTE -4407)) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1047)))) (-12 (|HasCategory| |#4| (QUOTE (-1047))) (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-1047))) (|HasCategory| |#4| (LIST (QUOTE -898) (QUOTE (-1173)))))) (|HasCategory| |#4| (QUOTE (-131))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-860)))) (-12 (|HasCategory| |#4| (QUOTE (-1097))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|))))) -(-251 |n| R S) +((-4414 -2809 (-2402 (|has| |#4| (-1049)) (|has| |#4| (-233))) (-2402 (|has| |#4| (-1049)) (|has| |#4| (-900 (-1175)))) (|has| |#4| (-6 -4414)) (-2402 (|has| |#4| (-1049)) (|has| |#4| (-639 (-566))))) (-4411 |has| |#4| (-1049)) (-4412 |has| |#4| (-1049)) ((-4419 "*") |has| |#4| (-172)) (-4417 . T)) +((-2809 (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-726))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-793))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-848))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1049))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1099))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -900) (QUOTE (-1175)))))) (|HasCategory| |#4| (QUOTE (-365))) (-2809 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (QUOTE (-1049)))) (-2809 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-365)))) (|HasCategory| |#4| (QUOTE (-1049))) (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-793))) (-2809 (|HasCategory| |#4| (QUOTE (-793))) (|HasCategory| |#4| (QUOTE (-848)))) (|HasCategory| |#4| (QUOTE (-848))) (|HasCategory| |#4| (QUOTE (-726))) (-2809 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-1049)))) (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#4| (LIST (QUOTE -900) (QUOTE (-1175)))) (-2809 (|HasCategory| |#4| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#4| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1049)))) (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (QUOTE (-172)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (QUOTE (-233)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (QUOTE (-365)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (QUOTE (-370)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (QUOTE (-726)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (QUOTE (-793)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (QUOTE (-848)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (QUOTE (-1049)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (QUOTE (-1099))))) (-2809 (-12 (|HasCategory| |#4| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-726))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-793))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-848))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#4| (QUOTE (-1049))) (-12 (|HasCategory| |#4| (QUOTE (-1099))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-2809 (-12 (|HasCategory| |#4| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-726))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-793))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-848))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-1049))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-1099))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566)))))) (|HasCategory| (-566) (QUOTE (-850))) (-12 (|HasCategory| |#4| (QUOTE (-1049))) (|HasCategory| |#4| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-1049))) (|HasCategory| |#4| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1049)))) (-2809 (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1049)))) (|HasCategory| |#4| (QUOTE (-726))) (-12 (|HasCategory| |#4| (QUOTE (-1049))) (|HasCategory| |#4| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-1049))) (|HasCategory| |#4| (LIST (QUOTE -900) (QUOTE (-1175)))))) (-12 (|HasCategory| |#4| (QUOTE (-1099))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-2809 (|HasCategory| |#4| (QUOTE (-1049))) (-12 (|HasCategory| |#4| (QUOTE (-1099))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (QUOTE (-1099)))) (-2809 (|HasAttribute| |#4| (QUOTE -4414)) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1049)))) (-12 (|HasCategory| |#4| (QUOTE (-1049))) (|HasCategory| |#4| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-1049))) (|HasCategory| |#4| (LIST (QUOTE -900) (QUOTE (-1175)))))) (|HasCategory| |#4| (QUOTE (-131))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#4| (QUOTE (-1099))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|))))) +(-252 |n| R S) ((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view."))) -((-4407 -2682 (-2317 (|has| |#3| (-1047)) (|has| |#3| (-233))) (-2317 (|has| |#3| (-1047)) (|has| |#3| (-898 (-1173)))) (|has| |#3| (-6 -4407)) (-2317 (|has| |#3| (-1047)) (|has| |#3| (-637 (-564))))) (-4404 |has| |#3| (-1047)) (-4405 |has| |#3| (-1047)) ((-4412 "*") |has| |#3| (-172)) (-4410 . T)) -((-2682 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-724))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-791))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-846))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1047))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1097))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -898) (QUOTE (-1173)))))) (|HasCategory| |#3| (QUOTE (-363))) (-2682 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1047)))) (-2682 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363)))) (|HasCategory| |#3| (QUOTE (-1047))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-791))) (-2682 (|HasCategory| |#3| (QUOTE (-791))) (|HasCategory| |#3| (QUOTE (-846)))) (|HasCategory| |#3| (QUOTE (-846))) (|HasCategory| |#3| (QUOTE (-724))) (-2682 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-1047)))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -898) (QUOTE (-1173)))) (-2682 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1047)))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1097))) (-2682 (-12 (|HasCategory| |#3| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (LIST (QUOTE -898) (QUOTE (-1173))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-172)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-233)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-363)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-368)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-724)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-791)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-846)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1047)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1097))))) (-2682 (-12 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-724))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-791))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-846))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1047))) (-12 (|HasCategory| |#3| (QUOTE (-1097))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564)))))) (-2682 (-12 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-724))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-791))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-846))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1047))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1097))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564)))))) (|HasCategory| (-564) (QUOTE (-848))) (-12 (|HasCategory| |#3| (QUOTE (-1047))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1047))) (|HasCategory| |#3| (LIST (QUOTE -898) (QUOTE (-1173))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1047)))) (-2682 (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1047)))) (|HasCategory| |#3| (QUOTE (-724))) (-12 (|HasCategory| |#3| (QUOTE (-1047))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1047))) (|HasCategory| |#3| (LIST (QUOTE -898) (QUOTE (-1173)))))) (-12 (|HasCategory| |#3| (QUOTE (-1097))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-2682 (|HasCategory| |#3| (QUOTE (-1047))) (-12 (|HasCategory| |#3| (QUOTE (-1097))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1097)))) (-2682 (|HasAttribute| |#3| (QUOTE -4407)) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1047)))) (-12 (|HasCategory| |#3| (QUOTE (-1047))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1047))) (|HasCategory| |#3| (LIST (QUOTE -898) (QUOTE (-1173)))))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -611) (QUOTE (-860)))) (-12 (|HasCategory| |#3| (QUOTE (-1097))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))))) -(-252 A R S V E) +((-4414 -2809 (-2402 (|has| |#3| (-1049)) (|has| |#3| (-233))) (-2402 (|has| |#3| (-1049)) (|has| |#3| (-900 (-1175)))) (|has| |#3| (-6 -4414)) (-2402 (|has| |#3| (-1049)) (|has| |#3| (-639 (-566))))) (-4411 |has| |#3| (-1049)) (-4412 |has| |#3| (-1049)) ((-4419 "*") |has| |#3| (-172)) (-4417 . T)) +((-2809 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-726))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-848))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))))) (|HasCategory| |#3| (QUOTE (-365))) (-2809 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1049)))) (-2809 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365)))) (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-793))) (-2809 (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (QUOTE (-848)))) (|HasCategory| |#3| (QUOTE (-848))) (|HasCategory| |#3| (QUOTE (-726))) (-2809 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-1049)))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (-2809 (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1049)))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-172)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-233)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-365)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-370)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-726)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-793)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-848)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-1049)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-1099))))) (-2809 (-12 (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-726))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-848))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-1049))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-2809 (-12 (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-726))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-848))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566)))))) (|HasCategory| (-566) (QUOTE (-850))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1049)))) (-2809 (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1049)))) (|HasCategory| |#3| (QUOTE (-726))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-2809 (|HasCategory| |#3| (QUOTE (-1049))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-1099)))) (-2809 (|HasAttribute| |#3| (QUOTE -4414)) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1049)))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))))) +(-253 A R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) NIL ((|HasCategory| |#2| (QUOTE (-233)))) -(-253 R S V E) +(-254 R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) -(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4408 |has| |#1| (-6 -4408)) (-4405 . T) (-4404 . T) (-4407 . T)) +(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-558)) (-4415 |has| |#1| (-6 -4415)) (-4412 . T) (-4411 . T) (-4414 . T)) NIL -(-254 S) +(-255 S) ((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}."))) -((-4410 . T) (-4411 . T)) +((-4417 . T) (-4418 . T)) NIL -(-255) +(-256) ((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g),{}a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) NIL NIL -(-256 R |Ex|) +(-257 R |Ex|) ((|constructor| (NIL "TopLevelDrawFunctionsForAlgebraicCurves provides top level functions for drawing non-singular algebraic curves.")) (|draw| (((|TwoDimensionalViewport|) (|Equation| |#2|) (|Symbol|) (|Symbol|) (|List| (|DrawOption|))) "\\spad{draw(f(x,{}y) = g(x,{}y),{}x,{}y,{}l)} draws the graph of a polynomial equation. The list \\spad{l} of draw options must specify a region in the plane in which the curve is to sketched."))) NIL NIL -(-257) +(-258) ((|setClipValue| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{setClipValue(x)} sets to \\spad{x} the maximum value to plot when drawing complex functions. Returns \\spad{x}.")) (|setImagSteps| (((|Integer|) (|Integer|)) "\\spad{setImagSteps(i)} sets to \\spad{i} the number of steps to use in the imaginary direction when drawing complex functions. Returns \\spad{i}.")) (|setRealSteps| (((|Integer|) (|Integer|)) "\\spad{setRealSteps(i)} sets to \\spad{i} the number of steps to use in the real direction when drawing complex functions. Returns \\spad{i}.")) (|drawComplexVectorField| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{drawComplexVectorField(f,{}rRange,{}iRange)} draws a complex vector field using arrows on the \\spad{x--y} plane. These vector fields should be viewed from the top by pressing the \"XY\" translate button on the 3-\\spad{d} viewport control panel.\\newline Sample call: \\indented{3}{\\spad{f z == sin z}} \\indented{3}{\\spad{drawComplexVectorField(f,{} -2..2,{} -2..2)}} Parameter descriptions: \\indented{2}{\\spad{f} : the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of the imaginary values} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction.")) (|drawComplex| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Boolean|)) "\\spad{drawComplex(f,{}rRange,{}iRange,{}arrows?)} draws a complex function as a height field. It uses the complex norm as the height and the complex argument as the color. It will optionally draw arrows on the surface indicating the direction of the complex value.\\newline Sample call: \\indented{2}{\\spad{f z == exp(1/z)}} \\indented{2}{\\spad{drawComplex(f,{} 0.3..3,{} 0..2*\\%\\spad{pi},{} false)}} Parameter descriptions: \\indented{2}{\\spad{f:}\\space{2}the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of imaginary values} \\indented{2}{\\spad{arrows?} : a flag indicating whether to draw the phase arrows for \\spad{f}} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction."))) NIL NIL -(-258 R) +(-259 R) ((|constructor| (NIL "Hack for the draw interface. DrawNumericHack provides a \"coercion\" from something of the form \\spad{x = a..b} where \\spad{a} and \\spad{b} are formal expressions to a binding of the form \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}. This \"coercion\" fails if \\spad{a} and \\spad{b} contains symbolic variables,{} but is meant for expressions involving \\%\\spad{pi}.")) (|coerce| (((|SegmentBinding| (|Float|)) (|SegmentBinding| (|Expression| |#1|))) "\\spad{coerce(x = a..b)} returns \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}."))) NIL NIL -(-259 |Ex|) +(-260 |Ex|) ((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),{}x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),{}x = a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) NIL NIL -(-260) +(-261) ((|constructor| (NIL "TopLevelDrawFunctionsForPoints provides top level functions for drawing curves and surfaces described by sets of points.")) (|draw| (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,{}ly,{}lz,{}l)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,{}ly,{}lz)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the \\axiom{\\spad{lx} \\spad{X} \\spad{ly}}.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|))) (|List| (|DrawOption|))) "\\spad{draw(lp,{}l)} plots the curve constructed from the list of points \\spad{lp}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|)))) "\\spad{draw(lp)} plots the curve constructed from the list of points \\spad{lp}.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,{}ly,{}l)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,{}ly)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}."))) NIL NIL -(-261) +(-262) ((|constructor| (NIL "This package \\undocumented{}")) (|units| (((|List| (|Float|)) (|List| (|DrawOption|)) (|List| (|Float|))) "\\spad{units(l,{}u)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{unit}. If the option does not exist the value,{} \\spad{u} is returned.")) (|coord| (((|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{coord}. If the option does not exist the value,{} \\spad{p} is returned.")) (|tubeRadius| (((|Float|) (|List| (|DrawOption|)) (|Float|)) "\\spad{tubeRadius(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubeRadius}. If the option does not exist the value,{} \\spad{n} is returned.")) (|tubePoints| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{tubePoints(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubePoints}. If the option does not exist the value,{} \\spad{n} is returned.")) (|space| (((|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{space(l)} takes a list of draw options,{} \\spad{l},{} and checks to see if it contains the option \\spad{space}. If the the option doesn\\spad{'t} exist,{} then an empty space is returned.")) (|var2Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var2Steps(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var2Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|var1Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var1Steps(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var1Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|ranges| (((|List| (|Segment| (|Float|))) (|List| (|DrawOption|)) (|List| (|Segment| (|Float|)))) "\\spad{ranges(l,{}r)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{ranges}. If the option does not exist the value,{} \\spad{r} is returned.")) (|curveColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{curveColorPalette(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{curveColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|pointColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{pointColorPalette(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{pointColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|toScale| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{toScale(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{toScale}. If the option does not exist the value,{} \\spad{b} is returned.")) (|style| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{style(l,{}s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{style}. If the option does not exist the value,{} \\spad{s} is returned.")) (|title| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{title(l,{}s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{title}. If the option does not exist the value,{} \\spad{s} is returned.")) (|viewpoint| (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(l,{}ls)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{viewpoint}. IF the option does not exist,{} the value \\spad{ls} is returned.")) (|clipBoolean| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{clipBoolean(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{clipBoolean}. If the option does not exist the value,{} \\spad{b} is returned.")) (|adaptive| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{adaptive(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{adaptive}. If the option does not exist the value,{} \\spad{b} is returned."))) NIL NIL -(-262 S) +(-263 S) ((|constructor| (NIL "This package \\undocumented{}")) (|option| (((|Union| |#1| "failed") (|List| (|DrawOption|)) (|Symbol|)) "\\spad{option(l,{}s)} determines whether the indicated drawing option,{} \\spad{s},{} is contained in the list of drawing options,{} \\spad{l},{} which is defined by the draw command."))) NIL NIL -(-263) +(-264) ((|constructor| (NIL "DrawOption allows the user to specify defaults for the creation and rendering of plots.")) (|option?| (((|Boolean|) (|List| $) (|Symbol|)) "\\spad{option?()} is not to be used at the top level; option? internally returns \\spad{true} for drawing options which are indicated in a draw command,{} or \\spad{false} for those which are not.")) (|option| (((|Union| (|Any|) "failed") (|List| $) (|Symbol|)) "\\spad{option()} is not to be used at the top level; option determines internally which drawing options are indicated in a draw command.")) (|unit| (($ (|List| (|Float|))) "\\spad{unit(lf)} will mark off the units according to the indicated list \\spad{lf}. This option is expressed in the form \\spad{unit == [f1,{}f2]}.")) (|coord| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(p)} specifies a change of coordinates of point \\spad{p}. This option is expressed in the form \\spad{coord == p}.")) (|tubePoints| (($ (|PositiveInteger|)) "\\spad{tubePoints(n)} specifies the number of points,{} \\spad{n},{} defining the circle which creates the tube around a 3D curve,{} the default is 6. This option is expressed in the form \\spad{tubePoints == n}.")) (|var2Steps| (($ (|PositiveInteger|)) "\\spad{var2Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the second range variable. This option is expressed in the form \\spad{var2Steps == n}.")) (|var1Steps| (($ (|PositiveInteger|)) "\\spad{var1Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the first range variable. This option is expressed in the form \\spad{var1Steps == n}.")) (|space| (($ (|ThreeSpace| (|DoubleFloat|))) "\\spad{space specifies} the space into which we will draw. If none is given then a new space is created.")) (|ranges| (($ (|List| (|Segment| (|Float|)))) "\\spad{ranges(l)} provides a list of user-specified ranges \\spad{l}. This option is expressed in the form \\spad{ranges == l}.")) (|range| (($ (|List| (|Segment| (|Fraction| (|Integer|))))) "\\spad{range([i])} provides a user-specified range \\spad{i}. This option is expressed in the form \\spad{range == [i]}.") (($ (|List| (|Segment| (|Float|)))) "\\spad{range([l])} provides a user-specified range \\spad{l}. This option is expressed in the form \\spad{range == [l]}.")) (|tubeRadius| (($ (|Float|)) "\\spad{tubeRadius(r)} specifies a radius,{} \\spad{r},{} for a tube plot around a 3D curve; is expressed in the form \\spad{tubeRadius == 4}.")) (|colorFunction| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(x,{}y,{}z))} specifies the color for three dimensional plots as a function of \\spad{x},{} \\spad{y},{} and \\spad{z} coordinates. This option is expressed in the form \\spad{colorFunction == f(x,{}y,{}z)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(u,{}v))} specifies the color for three dimensional plots as a function based upon the two parametric variables. This option is expressed in the form \\spad{colorFunction == f(u,{}v)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(z))} specifies the color based upon the \\spad{z}-component of three dimensional plots. This option is expressed in the form \\spad{colorFunction == f(z)}.")) (|curveColor| (($ (|Palette|)) "\\spad{curveColor(p)} specifies a color index for 2D graph curves from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{curveColor ==p}.") (($ (|Float|)) "\\spad{curveColor(v)} specifies a color,{} \\spad{v},{} for 2D graph curves. This option is expressed in the form \\spad{curveColor == v}.")) (|pointColor| (($ (|Palette|)) "\\spad{pointColor(p)} specifies a color index for 2D graph points from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{pointColor == p}.") (($ (|Float|)) "\\spad{pointColor(v)} specifies a color,{} \\spad{v},{} for 2D graph points. This option is expressed in the form \\spad{pointColor == v}.")) (|coordinates| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coordinates(p)} specifies a change of coordinate systems of point \\spad{p}. This option is expressed in the form \\spad{coordinates == p}.")) (|toScale| (($ (|Boolean|)) "\\spad{toScale(b)} specifies whether or not a plot is to be drawn to scale; if \\spad{b} is \\spad{true} it is drawn to scale,{} if \\spad{b} is \\spad{false} it is not. This option is expressed in the form \\spad{toScale == b}.")) (|style| (($ (|String|)) "\\spad{style(s)} specifies the drawing style in which the graph will be plotted by the indicated string \\spad{s}. This option is expressed in the form \\spad{style == s}.")) (|title| (($ (|String|)) "\\spad{title(s)} specifies a title for a plot by the indicated string \\spad{s}. This option is expressed in the form \\spad{title == s}.")) (|viewpoint| (($ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(vp)} creates a viewpoint data structure corresponding to the list of values. The values are interpreted as [theta,{} phi,{} scale,{} scaleX,{} scaleY,{} scaleZ,{} deltaX,{} deltaY]. This option is expressed in the form \\spad{viewpoint == ls}.")) (|clip| (($ (|List| (|Segment| (|Float|)))) "\\spad{clip([l])} provides ranges for user-defined clipping as specified in the list \\spad{l}. This option is expressed in the form \\spad{clip == [l]}.") (($ (|Boolean|)) "\\spad{clip(b)} turns 2D clipping on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{clip == b}.")) (|adaptive| (($ (|Boolean|)) "\\spad{adaptive(b)} turns adaptive 2D plotting on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{adaptive == b}."))) NIL NIL -(-264 R S V) +(-265 R S V) ((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline"))) -(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4408 |has| |#1| (-6 -4408)) (-4405 . T) (-4404 . T) (-4407 . T)) -((|HasCategory| |#1| (QUOTE (-907))) (-2682 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-907)))) (-2682 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-907)))) (-2682 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-907)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2682 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -884) (QUOTE (-379)))) (|HasCategory| |#3| (LIST (QUOTE -884) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -884) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (|HasCategory| |#3| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| |#3| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#3| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564)))) (-2682 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4408)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-907)))) (-2682 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-907)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-265 A S) +(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-558)) (-4415 |has| |#1| (-6 -4415)) (-4412 . T) (-4411 . T) (-4414 . T)) +((|HasCategory| |#1| (QUOTE (-909))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#3| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#3| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#3| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#3| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4415)) (|HasCategory| |#1| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-266 A S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL NIL -(-266 S) +(-267 S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#1| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#1| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL NIL -(-267) +(-268) ((|optAttributes| (((|List| (|String|)) (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{optAttributes(o)} is a function for supplying a list of attributes of an optimization problem.")) (|expenseOfEvaluation| (((|Float|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{expenseOfEvaluation(o)} returns the intensity value of the cost of evaluating the input set of functions. This is in terms of the number of ``operational units\\spad{''}. It returns a value in the range [0,{}1].")) (|changeNameToObjf| (((|Result|) (|Symbol|) (|Result|)) "\\spad{changeNameToObjf(s,{}r)} changes the name of item \\axiom{\\spad{s}} in \\axiom{\\spad{r}} to objf.")) (|varList| (((|List| (|Symbol|)) (|Expression| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{varList(e,{}n)} returns a list of \\axiom{\\spad{n}} indexed variables with name as in \\axiom{\\spad{e}}.")) (|variables| (((|List| (|Symbol|)) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{variables(args)} returns the list of variables in \\axiom{\\spad{args}.\\spad{lfn}}")) (|quadratic?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{quadratic?(e)} tests if \\axiom{\\spad{e}} is a quadratic function.")) (|nonLinearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{nonLinearPart(l)} returns the list of non-linear functions of \\axiom{\\spad{l}}.")) (|linearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linearPart(l)} returns the list of linear functions of \\axiom{\\spad{l}}.")) (|linearMatrix| (((|Matrix| (|DoubleFloat|)) (|List| (|Expression| (|DoubleFloat|))) (|NonNegativeInteger|)) "\\spad{linearMatrix(l,{}n)} returns a matrix of coefficients of the linear functions in \\axiom{\\spad{l}}. If \\spad{l} is empty,{} the matrix has at least one row.")) (|linear?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{linear?(e)} tests if \\axiom{\\spad{e}} is a linear function.") (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linear?(l)} returns \\spad{true} if all the bounds \\spad{l} are either linear or simple.")) (|simpleBounds?| (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{simpleBounds?(l)} returns \\spad{true} if the list of expressions \\spad{l} are simple.")) (|splitLinear| (((|Expression| (|DoubleFloat|)) (|Expression| (|DoubleFloat|))) "\\spad{splitLinear(f)} splits the linear part from an expression which it returns.")) (|sumOfSquares| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{sumOfSquares(f)} returns either an expression for which the square is the original function of \"failed\".")) (|sortConstraints| (((|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|))))) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{sortConstraints(args)} uses a simple bubblesort on the list of constraints using the degree of the expression on which to sort. Of course,{} it must match the bounds to the constraints.")) (|finiteBound| (((|List| (|DoubleFloat|)) (|List| (|OrderedCompletion| (|DoubleFloat|))) (|DoubleFloat|)) "\\spad{finiteBound(l,{}b)} repaces all instances of an infinite entry in \\axiom{\\spad{l}} by a finite entry \\axiom{\\spad{b}} or \\axiom{\\spad{-b}}."))) NIL NIL -(-268) +(-269) ((|constructor| (NIL "\\axiomType{e04dgfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04DGF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04DGF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-269) +(-270) ((|constructor| (NIL "\\axiomType{e04fdfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04FDF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04FDF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-270) +(-271) ((|constructor| (NIL "\\axiomType{e04gcfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04GCF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04GCF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-271) +(-272) ((|constructor| (NIL "\\axiomType{e04jafAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04JAF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04JAF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-272) +(-273) ((|constructor| (NIL "\\axiomType{e04mbfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04MBF,{} an optimization routine for Linear functions. The function \\axiomFun{measure} measures the usefulness of the routine E04MBF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-273) +(-274) ((|constructor| (NIL "\\axiomType{e04nafAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04NAF,{} an optimization routine for Quadratic functions. The function \\axiomFun{measure} measures the usefulness of the routine E04NAF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-274) +(-275) ((|constructor| (NIL "\\axiomType{e04ucfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04UCF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04UCF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-275) +(-276) ((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1."))) NIL NIL -(-276 R -2266) +(-277 R -2341) ((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,{}l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{\\spad{pi}()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}"))) NIL NIL -(-277 R -2266) +(-278 R -2341) ((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,{}a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f,{} k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,{}...,{}kn],{}f,{}x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,{}x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f,{} x)} returns \\spad{[g,{} [k1,{}...,{}kn],{} [h1,{}...,{}hn]]} such that \\spad{g = normalize(f,{} x)} and each \\spad{\\spad{ki}} was rewritten as \\spad{\\spad{hi}} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f,{} x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels."))) NIL NIL -(-278 |Coef| UTS ULS) +(-279 |Coef| UTS ULS) ((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of Laurent series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of Laurent series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of Laurent series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of Laurent series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of Laurent series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of Laurent series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of Laurent series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of Laurent series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of Laurent series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of Laurent series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of Laurent series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of Laurent series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of Laurent series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of Laurent series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of Laurent series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of Laurent series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of Laurent series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of Laurent series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of Laurent series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of Laurent series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of Laurent series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of Laurent series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of Laurent series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of Laurent series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of Laurent series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of Laurent series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{s ** r} raises a Laurent series \\spad{s} to a rational power \\spad{r}"))) NIL -((|HasCategory| |#1| (QUOTE (-363)))) -(-279 |Coef| ULS UPXS EFULS) +((|HasCategory| |#1| (QUOTE (-365)))) +(-280 |Coef| ULS UPXS EFULS) ((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of a Puiseux series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of a Puiseux series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of a Puiseux series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of a Puiseux series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of a Puiseux series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of a Puiseux series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of a Puiseux series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of a Puiseux series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of a Puiseux series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of a Puiseux series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of a Puiseux series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of a Puiseux series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of a Puiseux series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of a Puiseux series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of a Puiseux series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of a Puiseux series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of a Puiseux series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of a Puiseux series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of a Puiseux series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of a Puiseux series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of a Puiseux series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of a Puiseux series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{z ** r} raises a Puiseaux series \\spad{z} to a rational power \\spad{r}"))) NIL -((|HasCategory| |#1| (QUOTE (-363)))) -(-280) +((|HasCategory| |#1| (QUOTE (-365)))) +(-281) ((|constructor| (NIL "This domains an expresion as elaborated by the interpreter. See Also:")) (|getOperands| (((|Union| (|List| $) "failed") $) "\\spad{getOperands(e)} returns the list of operands in `e',{} assuming it is a call form.")) (|getOperator| (((|Union| (|Identifier|) "failed") $) "\\spad{getOperator(e)} retrieves the operator being invoked in `e',{} when `e' is an expression.")) (|callForm?| (((|Boolean|) $) "\\spad{callForm?(e)} is \\spad{true} when `e' is a call expression.")) (|getIdentifier| (((|Union| (|Identifier|) "failed") $) "\\spad{getIdentifier(e)} retrieves the name of the variable `e'.")) (|variable?| (((|Boolean|) $) "\\spad{variable?(e)} returns \\spad{true} if `e' is a variable.")) (|getConstant| (((|Union| (|SExpression|) "failed") $) "\\spad{getConstant(e)} retrieves the constant value of `e'e.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(e)} returns \\spad{true} if `e' is a constant.")) (|type| (((|ConstructorCall|) $) "\\spad{type(e)} returns the type of the expression as computed by the interpreter."))) NIL NIL -(-281 A S) +(-282 A S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) NIL -((|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-1097)))) -(-282 S) +((|HasCategory| |#2| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-1099)))) +(-283 S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) -((-4411 . T)) +((-4418 . T)) NIL -(-283 S) +(-284 S) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) NIL NIL -(-284) +(-285) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) NIL NIL -(-285 |Coef| UTS) +(-286 |Coef| UTS) ((|constructor| (NIL "The elliptic functions \\spad{sn},{} \\spad{sc} and \\spad{dn} are expanded as Taylor series.")) (|sncndn| (((|List| (|Stream| |#1|)) (|Stream| |#1|) |#1|) "\\spad{sncndn(s,{}c)} is used internally.")) (|dn| ((|#2| |#2| |#1|) "\\spad{dn(x,{}k)} expands the elliptic function \\spad{dn} as a Taylor \\indented{1}{series.}")) (|cn| ((|#2| |#2| |#1|) "\\spad{cn(x,{}k)} expands the elliptic function \\spad{cn} as a Taylor \\indented{1}{series.}")) (|sn| ((|#2| |#2| |#1|) "\\spad{sn(x,{}k)} expands the elliptic function \\spad{sn} as a Taylor \\indented{1}{series.}"))) NIL NIL -(-286 S |Index|) +(-287 S |Index|) ((|constructor| (NIL "An eltable over domains \\spad{D} and \\spad{I} is a structure which can be viewed as a function from \\spad{D} to \\spad{I}. Examples of eltable structures range from data structures,{} \\spadignore{e.g.} those of type \\spadtype{List},{} to algebraic structures,{} \\spadignore{e.g.} \\spadtype{Polynomial}.")) (|elt| ((|#2| $ |#1|) "\\spad{elt(u,{}i)} (also written: \\spad{u} . \\spad{i}) returns the element of \\spad{u} indexed by \\spad{i}. Error: if \\spad{i} is not an index of \\spad{u}."))) NIL NIL -(-287 S |Dom| |Im|) +(-288 S |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL -((|HasAttribute| |#1| (QUOTE -4411))) -(-288 |Dom| |Im|) +((|HasAttribute| |#1| (QUOTE -4418))) +(-289 |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL NIL -(-289 S R |Mod| -3452 -2774 |exactQuo|) +(-290 S R |Mod| -3772 -1330 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|elt| ((|#2| $ |#2|) "\\spad{elt(x,{}r)} or \\spad{x}.\\spad{r} \\undocumented")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented"))) -((-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) +((-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) NIL -(-290) +(-291) ((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero."))) -((-4403 . T) (-4404 . T) (-4405 . T) (-4407 . T)) +((-4410 . T) (-4411 . T) (-4412 . T) (-4414 . T)) NIL -(-291) +(-292) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 19,{} 2008. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|interactiveEnv| (($) "the current interactive environment in effect.")) (|currentEnv| (($) "the current normal environment in effect.")) (|setProperties!| (($ (|Identifier|) (|List| (|Property|)) $) "setBinding!(\\spad{n},{}props,{}\\spad{e}) set the list of properties of \\spad{`n'} to `props' in `e'.")) (|getProperties| (((|List| (|Property|)) (|Identifier|) $) "getBinding(\\spad{n},{}\\spad{e}) returns the list of properties of \\spad{`n'} in \\spad{e}.")) (|setProperty!| (($ (|Identifier|) (|Identifier|) (|SExpression|) $) "\\spad{setProperty!(n,{}p,{}v,{}e)} binds the property `(\\spad{p},{}\\spad{v})' to \\spad{`n'} in the topmost scope of `e'.")) (|getProperty| (((|Maybe| (|SExpression|)) (|Identifier|) (|Identifier|) $) "\\spad{getProperty(n,{}p,{}e)} returns the value of property with name \\spad{`p'} for the symbol \\spad{`n'} in environment `e'. Otherwise,{} `nothing.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment"))) NIL NIL -(-292 R) +(-293 R) ((|constructor| (NIL "This is a package for the exact computation of eigenvalues and eigenvectors. This package can be made to work for matrices with coefficients which are rational functions over a ring where we can factor polynomials. Rational eigenvalues are always explicitly computed while the non-rational ones are expressed in terms of their minimal polynomial.")) (|eigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvectors(m)} returns the eigenvalues and eigenvectors for the matrix \\spad{m}. The rational eigenvalues and the correspondent eigenvectors are explicitely computed,{} while the non rational ones are given via their minimal polynomial and the corresponding eigenvectors are expressed in terms of a \"generic\" root of such a polynomial.")) (|generalizedEigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |geneigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvectors(m)} returns the generalized eigenvectors of the matrix \\spad{m}.")) (|generalizedEigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvector(eigen,{}m)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{eigen},{} as returned by the function eigenvectors.") (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generalizedEigenvector(alpha,{}m,{}k,{}g)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{alpha}. The integers \\spad{k} and \\spad{g} are respectively the algebraic and the geometric multiplicity of tye eigenvalue \\spad{alpha}. \\spad{alpha} can be either rational or not. In the seconda case apha is the minimal polynomial of the eigenvalue.")) (|eigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvector(eigval,{}m)} returns the eigenvectors belonging to the eigenvalue \\spad{eigval} for the matrix \\spad{m}.")) (|eigenvalues| (((|List| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvalues(m)} returns the eigenvalues of the matrix \\spad{m} which are expressible as rational functions over the rational numbers.")) (|characteristicPolynomial| (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{characteristicPolynomial(m)} returns the characteristicPolynomial of the matrix \\spad{m} using a new generated symbol symbol as the main variable.") (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}var)} returns the characteristicPolynomial of the matrix \\spad{m} using the symbol \\spad{var} as the main variable."))) NIL NIL -(-293 S R) +(-294 S R) ((|constructor| (NIL "This package provides operations for mapping the sides of equations.")) (|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) "\\spad{map(f,{}eq)} returns an equation where \\spad{f} is applied to the sides of \\spad{eq}"))) NIL NIL -(-294 S) +(-295 S) ((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,{}eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn,{} [x1=v1,{} ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn,{} x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,{}b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation."))) -((-4407 -2682 (|has| |#1| (-1047)) (|has| |#1| (-473))) (-4404 |has| |#1| (-1047)) (-4405 |has| |#1| (-1047))) -((|HasCategory| |#1| (QUOTE (-363))) (-2682 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1047)))) (-2682 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1047))) (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-1173)))) (-2682 (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#1| (QUOTE (-1047)))) (-2682 (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1047)))) (-2682 (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1047)))) (-2682 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-1047)))) (-2682 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-724)))) (|HasCategory| |#1| (QUOTE (-473))) (-2682 (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-724))) (|HasCategory| |#1| (QUOTE (-1047))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-1097)))) (-2682 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-724))) (|HasCategory| |#1| (QUOTE (-1109)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1173)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-302))) (-2682 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-473)))) (-2682 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-724)))) (-2682 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-1047)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-724)))) -(-295 |Key| |Entry|) +((-4414 -2809 (|has| |#1| (-1049)) (|has| |#1| (-475))) (-4411 |has| |#1| (-1049)) (-4412 |has| |#1| (-1049))) +((|HasCategory| |#1| (QUOTE (-365))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1049)))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-1049)))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1049)))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1049)))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-1049)))) (-2809 (|HasCategory| |#1| (QUOTE (-475))) (|HasCategory| |#1| (QUOTE (-726)))) (|HasCategory| |#1| (QUOTE (-475))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-475))) (|HasCategory| |#1| (QUOTE (-726))) (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-1099)))) (-2809 (|HasCategory| |#1| (QUOTE (-475))) (|HasCategory| |#1| (QUOTE (-726))) (|HasCategory| |#1| (QUOTE (-1111)))) (|HasCategory| |#1| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-303))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-475)))) (-2809 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-726)))) (-2809 (|HasCategory| |#1| (QUOTE (-475))) (|HasCategory| |#1| (QUOTE (-1049)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-726)))) +(-296 |Key| |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure."))) -((-4410 . T) (-4411 . T)) -((-12 (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (QUOTE (-1097))) (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1914) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2683) (|devaluate| |#2|)))))) (-2682 (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (QUOTE (-1097))) (|HasCategory| |#2| (QUOTE (-1097)))) (-2682 (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (QUOTE (-1097))) (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (QUOTE (-1097))) (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-1097))) (-2682 (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (LIST (QUOTE -611) (QUOTE (-860))))) -(-296) +((-4417 . T) (-4418 . T)) +((-12 (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1928) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2806) (|devaluate| |#2|)))))) (-2809 (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-1099)))) (-2809 (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-1099))) (-2809 (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (LIST (QUOTE -613) (QUOTE (-862))))) +(-297) ((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",{}\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,{}lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,{}msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates."))) NIL NIL -(-297 -2266 S) +(-298 -2341 S) ((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f,{} p,{} k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}."))) NIL NIL -(-298 E -2266) +(-299 E -2341) ((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f,{} k)} returns \\spad{g = op(f(a1),{}...,{}f(an))} where \\spad{k = op(a1,{}...,{}an)}."))) NIL NIL -(-299 A B) +(-300 A B) ((|constructor| (NIL "ExpertSystemContinuityPackage1 exports a function to check range inclusion")) (|in?| (((|Boolean|) (|DoubleFloat|)) "\\spad{in?(p)} tests whether point \\spad{p} is internal to the range [\\spad{A..B}]"))) NIL NIL -(-300) +(-301) ((|constructor| (NIL "ExpertSystemContinuityPackage is a package of functions for the use of domains belonging to the category \\axiomType{NumericalIntegration}.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|polynomialZeros| (((|List| (|DoubleFloat|)) (|Polynomial| (|Fraction| (|Integer|))) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{polynomialZeros(fn,{}var,{}range)} calculates the real zeros of the polynomial which are contained in the given interval. It returns a list of points (\\axiomType{Doublefloat}) for which the univariate polynomial \\spad{fn} is zero.")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(v,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{v} will most likely produce an error. This includes those points which evaluate to 0/0.") (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(e,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error. This includes those points which evaluate to 0/0.")) (|zerosOf| (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{zerosOf(e,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error.")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,{}var,{}range)} returns a list of possible problem points by looking at the zeros of the denominator of the function \\spad{f} if it can be retracted to \\axiomType{Polynomial(DoubleFloat)}.")) (|functionIsFracPolynomial?| (((|Boolean|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsFracPolynomial?(args)} tests whether the function can be retracted to \\axiomType{Fraction(Polynomial(DoubleFloat))}")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{u}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{u}}"))) NIL NIL -(-301 S) +(-302 S) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-1047)))) -(-302) +((|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-1049)))) +(-303) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL NIL -(-303 R1) +(-304 R1) ((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage1} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|neglist| (((|List| |#1|) (|List| |#1|)) "\\spad{neglist(l)} returns only the negative elements of the list \\spad{l}"))) NIL NIL -(-304 R1 R2) +(-305 R1 R2) ((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage2} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|map| (((|Matrix| |#2|) (|Mapping| |#2| |#1|) (|Matrix| |#1|)) "\\spad{map(f,{}m)} applies a mapping f:R1 \\spad{->} \\spad{R2} onto a matrix \\spad{m} in \\spad{R1} returning a matrix in \\spad{R2}"))) NIL NIL -(-305) +(-306) ((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage} contains some useful functions for use by the computational agents of numerical solvers.")) (|mat| (((|Matrix| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{mat(a,{}n)} constructs a one-dimensional matrix of a.")) (|fi2df| (((|DoubleFloat|) (|Fraction| (|Integer|))) "\\spad{fi2df(f)} coerces a \\axiomType{Fraction Integer} to \\axiomType{DoubleFloat}")) (|df2ef| (((|Expression| (|Float|)) (|DoubleFloat|)) "\\spad{df2ef(a)} coerces a \\axiomType{DoubleFloat} to \\axiomType{Expression Float}")) (|pdf2df| (((|DoubleFloat|) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2df(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{DoubleFloat}. It is an error if \\axiom{\\spad{p}} is not retractable to DoubleFloat.")) (|pdf2ef| (((|Expression| (|Float|)) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2ef(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{Expression Float}")) (|iflist2Result| (((|Result|) (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))) "\\spad{iflist2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|att2Result| (((|Result|) (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) "\\spad{att2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|measure2Result| (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|)))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}") (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}")) (|outputMeasure| (((|String|) (|Float|)) "\\spad{outputMeasure(n)} rounds \\spad{n} to 3 decimal places and outputs it as a string")) (|concat| (((|Result|) (|List| (|Result|))) "\\spad{concat(l)} concatenates a list of aggregates of type \\axiomType{Result}") (((|Result|) (|Result|) (|Result|)) "\\spad{concat(a,{}b)} adds two aggregates of type \\axiomType{Result}.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\spad{u}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\spad{u}")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a \\axiomType{Stream DoubleFloat} to \\axiomType{String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List String}")) (|f2st| (((|String|) (|Float|)) "\\spad{f2st(n)} coerces a \\axiomType{Float} to \\axiomType{String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|in?| (((|Boolean|) (|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{in?(p,{}range)} tests whether point \\spad{p} is internal to the \\spad{range} \\spad{range}")) (|vedf2vef| (((|Vector| (|Expression| (|Float|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{vedf2vef(v)} maps \\axiomType{Vector Expression DoubleFloat} to \\axiomType{Vector Expression Float}")) (|edf2ef| (((|Expression| (|Float|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2ef(e)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Expression Float}")) (|ldf2vmf| (((|Vector| (|MachineFloat|)) (|List| (|DoubleFloat|))) "\\spad{ldf2vmf(l)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List MachineFloat}")) (|df2mf| (((|MachineFloat|) (|DoubleFloat|)) "\\spad{df2mf(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{MachineFloat}")) (|dflist| (((|List| (|DoubleFloat|)) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{dflist(l)} returns a list of \\axiomType{DoubleFloat} equivalents of list \\spad{l}")) (|dfRange| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{dfRange(r)} converts a range including \\inputbitmap{\\htbmdir{}/plusminus.bitmap} \\infty to \\axiomType{DoubleFloat} equavalents.")) (|edf2efi| (((|Expression| (|Fraction| (|Integer|))) (|Expression| (|DoubleFloat|))) "\\spad{edf2efi(e)} coerces \\axiomType{Expression DoubleFloat} into \\axiomType{Expression Fraction Integer}")) (|numberOfOperations| (((|Record| (|:| |additions| (|Integer|)) (|:| |multiplications| (|Integer|)) (|:| |exponentiations| (|Integer|)) (|:| |functionCalls| (|Integer|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{numberOfOperations(ode)} counts additions,{} multiplications,{} exponentiations and function calls in the input set of expressions.")) (|expenseOfEvaluation| (((|Float|) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{expenseOfEvaluation(o)} gives an approximation of the cost of evaluating a list of expressions in terms of the number of basic operations. < 0.3 inexpensive ; 0.5 neutral ; > 0.7 very expensive 400 `operation units' \\spad{->} 0.75 200 `operation units' \\spad{->} 0.5 83 `operation units' \\spad{->} 0.25 \\spad{**} = 4 units ,{} function calls = 10 units.")) (|isQuotient| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{isQuotient(expr)} returns the quotient part of the input expression or \\spad{\"failed\"} if the expression is not of that form.")) (|edf2df| (((|DoubleFloat|) (|Expression| (|DoubleFloat|))) "\\spad{edf2df(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{DoubleFloat} It is an error if \\spad{n} is not coercible to DoubleFloat")) (|edf2fi| (((|Fraction| (|Integer|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2fi(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Fraction Integer} It is an error if \\spad{n} is not coercible to Fraction Integer")) (|df2fi| (((|Fraction| (|Integer|)) (|DoubleFloat|)) "\\spad{df2fi(n)} is a function to convert a \\axiomType{DoubleFloat} to a \\axiomType{Fraction Integer}")) (|convert| (((|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{convert(l)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|socf2socdf| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{socf2socdf(a)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|ocf2ocdf| (((|OrderedCompletion| (|DoubleFloat|)) (|OrderedCompletion| (|Float|))) "\\spad{ocf2ocdf(a)} is a function to convert an \\axiomType{OrderedCompletion Float} to an \\axiomType{OrderedCompletion DoubleFloat}")) (|ef2edf| (((|Expression| (|DoubleFloat|)) (|Expression| (|Float|))) "\\spad{ef2edf(f)} is a function to convert an \\axiomType{Expression Float} to an \\axiomType{Expression DoubleFloat}")) (|f2df| (((|DoubleFloat|) (|Float|)) "\\spad{f2df(f)} is a function to convert a \\axiomType{Float} to a \\axiomType{DoubleFloat}"))) NIL NIL -(-306 S) +(-307 S) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) NIL NIL -(-307) +(-308) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) -((-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) +((-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) NIL -(-308 S R) +(-309 S R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-309 R) +(-310 R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-310 -2266) +(-311 -2341) ((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,{}s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}"))) NIL NIL -(-311) +(-312) ((|constructor| (NIL "This domain represents exit expressions.")) (|level| (((|Integer|) $) "\\spad{level(e)} returns the nesting exit level of `e'")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the exit expression of `e'."))) NIL NIL -(-312) +(-313) ((|constructor| (NIL "A function which does not return directly to its caller should have Exit as its return type. \\blankline Note: It is convenient to have a formal \\spad{coerce} into each type from type Exit. This allows,{} for example,{} errors to be raised in one half of a type-balanced \\spad{if}."))) NIL NIL -(-313 R FE |var| |cen|) +(-314 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,{}f(var))}."))) -((-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) -((|HasCategory| (-1248 |#1| |#2| |#3| |#4|) (QUOTE (-907))) (|HasCategory| (-1248 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1036) (QUOTE (-1173)))) (|HasCategory| (-1248 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1248 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1248 |#1| |#2| |#3| |#4|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-1248 |#1| |#2| |#3| |#4|) (QUOTE (-1020))) (|HasCategory| (-1248 |#1| |#2| |#3| |#4|) (QUOTE (-818))) (-2682 (|HasCategory| (-1248 |#1| |#2| |#3| |#4|) (QUOTE (-818))) (|HasCategory| (-1248 |#1| |#2| |#3| |#4|) (QUOTE (-848)))) (|HasCategory| (-1248 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| (-1248 |#1| |#2| |#3| |#4|) (QUOTE (-1148))) (|HasCategory| (-1248 |#1| |#2| |#3| |#4|) (LIST (QUOTE -884) (QUOTE (-379)))) (|HasCategory| (-1248 |#1| |#2| |#3| |#4|) (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| (-1248 |#1| |#2| |#3| |#4|) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (|HasCategory| (-1248 |#1| |#2| |#3| |#4|) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| (-1248 |#1| |#2| |#3| |#4|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| (-1248 |#1| |#2| |#3| |#4|) (QUOTE (-233))) (|HasCategory| (-1248 |#1| |#2| |#3| |#4|) (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| (-1248 |#1| |#2| |#3| |#4|) (LIST (QUOTE -514) (QUOTE (-1173)) (LIST (QUOTE -1248) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1248 |#1| |#2| |#3| |#4|) (LIST (QUOTE -309) (LIST (QUOTE -1248) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1248 |#1| |#2| |#3| |#4|) (LIST (QUOTE -286) (LIST (QUOTE -1248) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1248) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1248 |#1| |#2| |#3| |#4|) (QUOTE (-307))) (|HasCategory| (-1248 |#1| |#2| |#3| |#4|) (QUOTE (-545))) (|HasCategory| (-1248 |#1| |#2| |#3| |#4|) (QUOTE (-848))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3| |#4|) (QUOTE (-907))) (|HasCategory| $ (QUOTE (-145)))) (-2682 (|HasCategory| (-1248 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3| |#4|) (QUOTE (-907))) (|HasCategory| $ (QUOTE (-145)))))) -(-314 R S) +((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-909))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-1022))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-820))) (-2809 (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-820))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-850)))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-1150))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-233))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (LIST (QUOTE -516) (QUOTE (-1175)) (LIST (QUOTE -1250) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (LIST (QUOTE -310) (LIST (QUOTE -1250) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (LIST (QUOTE -287) (LIST (QUOTE -1250) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1250) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-308))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-547))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-850))) (-12 (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-909))) (|HasCategory| $ (QUOTE (-145)))) (-2809 (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (-12 (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-909))) (|HasCategory| $ (QUOTE (-145)))))) +(-315 R S) ((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f,{} e)} applies \\spad{f} to all the constants appearing in \\spad{e}."))) NIL NIL -(-315 R FE) +(-316 R FE) ((|constructor| (NIL "This package provides functions to convert functional expressions to power series.")) (|series| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{series(f,{}x = a,{}n)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a); terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{series(f,{}x = a)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a).") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{series(f,{}n)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{series(f)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{series(x)} returns \\spad{x} viewed as a series.")) (|puiseux| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{puiseux(f,{}x = a,{}n)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{puiseux(f,{}x = a)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{puiseux(f,{}n)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{puiseux(f)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{puiseux(x)} returns \\spad{x} viewed as a Puiseux series.")) (|laurent| (((|Any|) |#2| (|Equation| |#2|) (|Integer|)) "\\spad{laurent(f,{}x = a,{}n)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{laurent(f,{}x = a)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Integer|)) "\\spad{laurent(f,{}n)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{laurent(f)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{laurent(x)} returns \\spad{x} viewed as a Laurent series.")) (|taylor| (((|Any|) |#2| (|Equation| |#2|) (|NonNegativeInteger|)) "\\spad{taylor(f,{}x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{taylor(f,{}x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|NonNegativeInteger|)) "\\spad{taylor(f,{}n)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{taylor(f)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{taylor(x)} returns \\spad{x} viewed as a Taylor series."))) NIL NIL -(-316 R) +(-317 R) ((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations."))) -((-4407 -2682 (-2317 (|has| |#1| (-1047)) (|has| |#1| (-637 (-564)))) (-12 (|has| |#1| (-556)) (-2682 (-2317 (|has| |#1| (-1047)) (|has| |#1| (-637 (-564)))) (|has| |#1| (-1047)) (|has| |#1| (-473)))) (|has| |#1| (-1047)) (|has| |#1| (-473))) (-4405 |has| |#1| (-172)) (-4404 |has| |#1| (-172)) ((-4412 "*") |has| |#1| (-556)) (-4403 |has| |#1| (-556)) (-4408 |has| |#1| (-556)) (-4402 |has| |#1| (-556))) -((-2682 (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564)))))) (|HasCategory| |#1| (QUOTE (-556))) (-2682 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-1047)))) (|HasCategory| |#1| (QUOTE (-21))) (-2682 (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-1047))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (-2682 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-1109)))) (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-2682 (|HasCategory| |#1| (QUOTE (-1047))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -884) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564))))) (-2682 (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-1047)))) (-2682 (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-1047)))) (-2682 (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-1047)))) (-12 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556)))) (-2682 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (QUOTE (-1047))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564))))) (-2682 (-12 (|HasCategory| |#1| (QUOTE (-1047))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-1109)))) (-2682 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1047))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))))) (-2682 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1047))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-1109)))) (-2682 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1047))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))))) (-2682 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-1047)))) (-2682 (-12 (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| $ (QUOTE (-1047))) (|HasCategory| $ (LIST (QUOTE -1036) (QUOTE (-564))))) -(-317 R -2266) +((-4414 -2809 (-2402 (|has| |#1| (-1049)) (|has| |#1| (-639 (-566)))) (-12 (|has| |#1| (-558)) (-2809 (-2402 (|has| |#1| (-1049)) (|has| |#1| (-639 (-566)))) (|has| |#1| (-1049)) (|has| |#1| (-475)))) (|has| |#1| (-1049)) (|has| |#1| (-475))) (-4412 |has| |#1| (-172)) (-4411 |has| |#1| (-172)) ((-4419 "*") |has| |#1| (-558)) (-4410 |has| |#1| (-558)) (-4415 |has| |#1| (-558)) (-4409 |has| |#1| (-558))) +((-2809 (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))))) (|HasCategory| |#1| (QUOTE (-558))) (-2809 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-1049)))) (|HasCategory| |#1| (QUOTE (-21))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (-2809 (|HasCategory| |#1| (QUOTE (-475))) (|HasCategory| |#1| (QUOTE (-1111)))) (|HasCategory| |#1| (QUOTE (-475))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2809 (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566))))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-1049)))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-1049)))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-1049)))) (-12 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558)))) (-2809 (|HasCategory| |#1| (QUOTE (-475))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566))))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-1111)))) (-2809 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))))) (-2809 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-1111)))) (-2809 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))))) (-2809 (|HasCategory| |#1| (QUOTE (-475))) (|HasCategory| |#1| (QUOTE (-1049)))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| $ (QUOTE (-1049))) (|HasCategory| $ (LIST (QUOTE -1038) (QUOTE (-566))))) +(-318 R -2341) ((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} [b0,{}...,{}bn])} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} [b0,{}...,{}b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} y a = b)} is equivalent to \\spad{seriesSolve(eq=0,{} y,{} x=a,{} y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{} y,{} x = a,{} b)} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{}y,{} x=a,{} b)} is equivalent to \\spad{seriesSolve(eq,{} y,{} x=a,{} y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{}[y1 a = b1,{}...,{} yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{}[y1,{}...,{}yn],{}x = a,{}[y1 a = b1,{}...,{}yn a = bn])} returns a taylor series solution of \\spad{[eq1,{}...,{}eqn]} around \\spad{x = a} with initial conditions \\spad{\\spad{yi}(a) = \\spad{bi}}. Note: eqi must be of the form \\spad{\\spad{fi}(x,{} y1 x,{} y2 x,{}...,{} yn x) y1'(x) + \\spad{gi}(x,{} y1 x,{} y2 x,{}...,{} yn x) = h(x,{} y1 x,{} y2 x,{}...,{} yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{}[b0,{}...,{}b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x,{} y x,{} y'(x),{}...,{} y(n-1)(x)) y(n)(x) + g(x,{}y x,{}y'(x),{}...,{}y(n-1)(x)) = h(x,{}y x,{} y'(x),{}...,{} y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{} y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x,{} y x) y'(x) + g(x,{} y x) = h(x,{} y x)}."))) NIL NIL -(-318) +(-319) ((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tubePlot| (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|String|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n,{}s)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. The tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|) (|String|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n,{}s)} puts a tube of radius \\spad{r(t)} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n)} puts a tube of radius \\spad{r}(\\spad{t}) with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. The tube is considered to be open.")) (|constantToUnaryFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|DoubleFloat|)) "\\spad{constantToUnaryFunction(s)} is a local function which takes the value of \\spad{s},{} which may be a function of a constant,{} and returns a function which always returns the value \\spadtype{DoubleFloat} \\spad{s}."))) NIL NIL -(-319 FE |var| |cen|) +(-320 FE |var| |cen|) ((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms."))) -(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4408 |has| |#1| (-363)) (-4402 |has| |#1| (-363)) (-4404 . T) (-4405 . T) (-4407 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2682 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-564)) (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-363))) (-2682 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-2682 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasSignature| |#1| (LIST (QUOTE -2390) (LIST (|devaluate| |#1|) (QUOTE (-1173)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (-2682 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-957))) (|HasCategory| |#1| (QUOTE (-1197))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -3703) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1173))))) (|HasSignature| |#1| (LIST (QUOTE -2397) (LIST (LIST (QUOTE -642) (QUOTE (-1173))) (|devaluate| |#1|))))))) -(-320 M) +(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-558)) (-4415 |has| |#1| (-365)) (-4409 |has| |#1| (-365)) (-4411 . T) (-4412 . T) (-4414 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|)))) (|HasCategory| (-409 (-566)) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-365))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasSignature| |#1| (LIST (QUOTE -2479) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -2390) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -2485) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|))))))) +(-321 M) ((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,{}b1),{}...,{}(am,{}bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f,{} n)} returns \\spad{(p,{} r,{} [r1,{}...,{}rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}."))) NIL NIL -(-321 E OV R P) +(-322 E OV R P) ((|constructor| (NIL "This package provides utilities used by the factorizers which operate on polynomials represented as univariate polynomials with multivariate coefficients.")) (|ran| ((|#3| (|Integer|)) "\\spad{ran(k)} computes a random integer between \\spad{-k} and \\spad{k} as a member of \\spad{R}.")) (|normalDeriv| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|Integer|)) "\\spad{normalDeriv(poly,{}i)} computes the \\spad{i}th derivative of \\spad{poly} divided by i!.")) (|raisePolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|)) "\\spad{raisePolynomial(rpoly)} converts \\spad{rpoly} from a univariate polynomial over \\spad{r} to be a univariate polynomial with polynomial coefficients.")) (|lowerPolynomial| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{lowerPolynomial(upoly)} converts \\spad{upoly} to be a univariate polynomial over \\spad{R}. An error if the coefficients contain variables.")) (|variables| (((|List| |#2|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{variables(upoly)} returns the list of variables for the coefficients of \\spad{upoly}.")) (|degree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|)) "\\spad{degree(upoly,{} lvar)} returns a list containing the maximum degree for each variable in lvar.")) (|completeEval| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|)) "\\spad{completeEval(upoly,{} lvar,{} lval)} evaluates the polynomial \\spad{upoly} with each variable in \\spad{lvar} replaced by the corresponding value in lval. Substitutions are done for all variables in \\spad{upoly} producing a univariate polynomial over \\spad{R}."))) NIL NIL -(-322 S) +(-323 S) ((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative."))) -((-4405 . T) (-4404 . T)) -((|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| (-564) (QUOTE (-790)))) -(-323 S E) +((-4412 . T) (-4411 . T)) +((|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-792)))) +(-324 S E) ((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an,{} f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,{}[max(\\spad{ei},{} \\spad{fi}) \\spad{ci}])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,{}...,{}an}} and \\spad{{b1,{}...,{}bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f,{} e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s,{} e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x,{} n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}."))) NIL NIL -(-324 S) +(-325 S) ((|constructor| (NIL "The free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The operation is commutative."))) NIL -((|HasCategory| (-769) (QUOTE (-790)))) -(-325 S R E) +((|HasCategory| (-771) (QUOTE (-792)))) +(-326 S R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) NIL -((|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172)))) -(-326 R E) +((|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-172)))) +(-327 R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) -(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4404 . T) (-4405 . T) (-4407 . T)) +(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-558)) (-4411 . T) (-4412 . T) (-4414 . T)) NIL -(-327 S) +(-328 S) ((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets."))) -((-4411 . T) (-4410 . T)) -((-2682 (-12 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-2682 (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-2682 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-1097)))) (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| (-564) (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860)))) (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) -(-328 S -2266) +((-4418 . T) (-4417 . T)) +((-2809 (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2809 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) +(-329 S -2341) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) NIL -((|HasCategory| |#2| (QUOTE (-368)))) -(-329 -2266) +((|HasCategory| |#2| (QUOTE (-370)))) +(-330 -2341) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) -((-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) +((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) NIL -(-330) +(-331) ((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,{}contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,{}e,{}f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,{}e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,{}c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,{}c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,{}n,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10."))) NIL NIL -(-331 E) +(-332 E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: 12 June 1992 Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the argument of a given sin/cos expressions")) (|sin?| (((|Boolean|) $) "\\spad{sin?(x)} returns \\spad{true} if term is a sin,{} otherwise \\spad{false}")) (|cos| (($ |#1|) "\\spad{cos(x)} makes a cos kernel for use in Fourier series")) (|sin| (($ |#1|) "\\spad{sin(x)} makes a sin kernel for use in Fourier series"))) NIL NIL -(-332) +(-333) ((|constructor| (NIL "\\spadtype{FortranCodePackage1} provides some utilities for producing useful objects in FortranCode domain. The Package may be used with the FortranCode domain and its \\spad{printCode} or possibly via an outputAsFortran. (The package provides items of use in connection with ASPs in the AXIOM-NAG link and,{} where appropriate,{} naming accords with that in IRENA.) The easy-to-use functions use Fortran loop variables I1,{} I2,{} and it is users' responsibility to check that this is sensible. The advanced functions use SegmentBinding to allow users control over Fortran loop variable names.")) (|identitySquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{identitySquareMatrix(s,{}p)} \\undocumented{}")) (|zeroSquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroSquareMatrix(s,{}p)} \\undocumented{}")) (|zeroMatrix| (((|FortranCode|) (|Symbol|) (|SegmentBinding| (|Polynomial| (|Integer|))) (|SegmentBinding| (|Polynomial| (|Integer|)))) "\\spad{zeroMatrix(s,{}b,{}d)} in this version gives the user control over names of Fortran variables used in loops.") (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|)) (|Polynomial| (|Integer|))) "\\spad{zeroMatrix(s,{}p,{}q)} uses loop variables in the Fortran,{} I1 and I2")) (|zeroVector| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroVector(s,{}p)} \\undocumented{}"))) NIL NIL -(-333 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) +(-334) +((|constructor| (NIL "Represntation of data needed to instantiate a domain constructor.")) (|lookupFunction| (((|Identifier|) $) "\\spad{lookupFunction x} returns the name of the lookup function associated with the functor data \\spad{x}.")) (|categories| (((|PrimitiveArray| (|ConstructorCall|)) $) "\\spad{categories x} returns the list of categories forms each domain object obtained from the domain data \\spad{x} belongs to.")) (|encodingDirectory| (((|PrimitiveArray| (|NonNegativeInteger|)) $) "\\spad{encodintDirectory x} returns the directory of domain-wide entity description.")) (|attributeData| (((|List| (|Pair| (|Syntax|) (|NonNegativeInteger|))) $) "\\spad{attributeData x} returns the list of attribute-predicate bit vector index pair associated with the functor data \\spad{x}.")) (|domainTemplate| (((|DomainTemplate|) $) "\\spad{domainTemplate x} returns the domain template vector associated with the functor data \\spad{x}."))) +NIL +NIL +(-335 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}d)} \\undocumented{}"))) NIL NIL -(-334 S -2266 UP UPUP R) +(-336 S -2341 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-335 -2266 UP UPUP R) +(-337 -2341 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-336 -2266 UP UPUP R) +(-338 -2341 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}."))) NIL NIL -(-337 S R) +(-339 S R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1173)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|)))) -(-338 R) +((|HasCategory| |#2| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|)))) +(-340 R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL NIL -(-339 |basicSymbols| |subscriptedSymbols| R) +(-341 |basicSymbols| |subscriptedSymbols| R) ((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{\\spad{pi}(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}"))) -((-4404 . T) (-4405 . T) (-4407 . T)) -((|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-379)))) (|HasCategory| $ (QUOTE (-1047))) (|HasCategory| $ (LIST (QUOTE -1036) (QUOTE (-564))))) -(-340 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) +((-4411 . T) (-4412 . T) (-4414 . T)) +((|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-381)))) (|HasCategory| $ (QUOTE (-1049))) (|HasCategory| $ (LIST (QUOTE -1038) (QUOTE (-566))))) +(-342 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{} p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}."))) NIL NIL -(-341 S -2266 UP UPUP) +(-343 S -2341 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) NIL -((|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-363)))) -(-342 -2266 UP UPUP) +((|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-365)))) +(-344 -2341 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) -((-4403 |has| (-407 |#2|) (-363)) (-4408 |has| (-407 |#2|) (-363)) (-4402 |has| (-407 |#2|) (-363)) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) +((-4410 |has| (-409 |#2|) (-365)) (-4415 |has| (-409 |#2|) (-365)) (-4409 |has| (-409 |#2|) (-365)) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) NIL -(-343 |p| |extdeg|) +(-345 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) -((-2682 (|HasCategory| (-908 |#1|) (QUOTE (-145))) (|HasCategory| (-908 |#1|) (QUOTE (-368)))) (|HasCategory| (-908 |#1|) (QUOTE (-147))) (|HasCategory| (-908 |#1|) (QUOTE (-368))) (|HasCategory| (-908 |#1|) (QUOTE (-145)))) -(-344 GF |defpol|) +((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((-2809 (|HasCategory| (-910 |#1|) (QUOTE (-145))) (|HasCategory| (-910 |#1|) (QUOTE (-370)))) (|HasCategory| (-910 |#1|) (QUOTE (-147))) (|HasCategory| (-910 |#1|) (QUOTE (-370))) (|HasCategory| (-910 |#1|) (QUOTE (-145)))) +(-346 GF |defpol|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly."))) -((-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) -((-2682 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145)))) -(-345 GF |extdeg|) +((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((-2809 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145)))) +(-347 GF |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) -((-2682 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145)))) -(-346 GF) +((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((-2809 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145)))) +(-348 GF) ((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}."))) NIL NIL -(-347 F1 GF F2) +(-349 F1 GF F2) ((|constructor| (NIL "FiniteFieldHomomorphisms(\\spad{F1},{}\\spad{GF},{}\\spad{F2}) exports coercion functions of elements between the fields {\\em F1} and {\\em F2},{} which both must be finite simple algebraic extensions of the finite ground field {\\em GF}.")) (|coerce| ((|#1| |#3|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F2} in {\\em F1},{} where {\\em coerce} is a field homomorphism between the fields extensions {\\em F2} and {\\em F1} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F2} doesn\\spad{'t} divide the extension degree of {\\em F1}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.") ((|#3| |#1|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F1} in {\\em F2}. Thus {\\em coerce} is a field homomorphism between the fields extensions {\\em F1} and {\\em F2} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F1} doesn\\spad{'t} divide the extension degree of {\\em F2}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse."))) NIL NIL -(-348 S) +(-350 S) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) NIL NIL -(-349) +(-351) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) -((-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) +((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) NIL -(-350 R UP -2266) +(-352 R UP -2341) ((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL -(-351 |p| |extdeg|) +(-353 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) -((-2682 (|HasCategory| (-908 |#1|) (QUOTE (-145))) (|HasCategory| (-908 |#1|) (QUOTE (-368)))) (|HasCategory| (-908 |#1|) (QUOTE (-147))) (|HasCategory| (-908 |#1|) (QUOTE (-368))) (|HasCategory| (-908 |#1|) (QUOTE (-145)))) -(-352 GF |uni|) +((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((-2809 (|HasCategory| (-910 |#1|) (QUOTE (-145))) (|HasCategory| (-910 |#1|) (QUOTE (-370)))) (|HasCategory| (-910 |#1|) (QUOTE (-147))) (|HasCategory| (-910 |#1|) (QUOTE (-370))) (|HasCategory| (-910 |#1|) (QUOTE (-145)))) +(-354 GF |uni|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) -((-2682 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145)))) -(-353 GF |extdeg|) +((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((-2809 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145)))) +(-355 GF |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) -((-2682 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145)))) -(-354 |p| |n|) +((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((-2809 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145)))) +(-356 |p| |n|) ((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}."))) -((-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) -((-2682 (|HasCategory| (-908 |#1|) (QUOTE (-145))) (|HasCategory| (-908 |#1|) (QUOTE (-368)))) (|HasCategory| (-908 |#1|) (QUOTE (-147))) (|HasCategory| (-908 |#1|) (QUOTE (-368))) (|HasCategory| (-908 |#1|) (QUOTE (-145)))) -(-355 GF |defpol|) +((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((-2809 (|HasCategory| (-910 |#1|) (QUOTE (-145))) (|HasCategory| (-910 |#1|) (QUOTE (-370)))) (|HasCategory| (-910 |#1|) (QUOTE (-147))) (|HasCategory| (-910 |#1|) (QUOTE (-370))) (|HasCategory| (-910 |#1|) (QUOTE (-145)))) +(-357 GF |defpol|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible."))) -((-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) -((-2682 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145)))) -(-356 -2266 GF) +((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((-2809 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145)))) +(-358 -2341 GF) ((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-357 GF) +(-359 GF) ((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,{}x**q,{}x**(q**2),{}...,{}x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,{}n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive."))) NIL NIL -(-358 -2266 FP FPP) +(-360 -2341 FP FPP) ((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL -(-359 GF |n|) +(-361 GF |n|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}."))) -((-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) -((-2682 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145)))) -(-360 R |ls|) +((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((-2809 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145)))) +(-362 R |ls|) ((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}."))) NIL NIL -(-361 S) +(-363 S) ((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) -((-4407 . T)) +((-4414 . T)) NIL -(-362 S) +(-364 S) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) NIL NIL -(-363) +(-365) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) -((-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) +((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) NIL -(-364 |Name| S) +(-366 |Name| S) ((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,{}s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,{}mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,{}\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,{}mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input."))) NIL NIL -(-365 S) +(-367 S) ((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result."))) NIL NIL -(-366 S R) +(-368 S R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#2|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#2| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#2| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#2| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#2| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#2| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#2| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) NIL -((|HasCategory| |#2| (QUOTE (-556)))) -(-367 R) +((|HasCategory| |#2| (QUOTE (-558)))) +(-369 R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) -((-4407 |has| |#1| (-556)) (-4405 . T) (-4404 . T)) +((-4414 |has| |#1| (-558)) (-4412 . T) (-4411 . T)) NIL -(-368) +(-370) ((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set."))) NIL NIL -(-369 S R UP) +(-371 S R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#3| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#3| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{traceMatrix([v1,{}..,{}vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#2| (|Vector| $)) "\\spad{discriminant([v1,{}..,{}vn])} returns \\spad{determinant(traceMatrix([v1,{}..,{}vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,{}..,{}an],{}[v1,{}..,{}vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm],{} basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,{}basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#2| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#2| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{regularRepresentation(a,{}basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) NIL -((|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-363)))) -(-370 R UP) +((|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-365)))) +(-372 R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,{}..,{}vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,{}..,{}vn])} returns \\spad{determinant(traceMatrix([v1,{}..,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}..,{}an],{}[v1,{}..,{}vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm],{} basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,{}basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) -((-4404 . T) (-4405 . T) (-4407 . T)) +((-4411 . T) (-4412 . T) (-4414 . T)) NIL -(-371 S A R B) +(-373 S A R B) ((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain."))) NIL NIL -(-372 A S) +(-374 A S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4411)) (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-1097)))) -(-373 S) +((|HasAttribute| |#1| (QUOTE -4418)) (|HasCategory| |#2| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-1099)))) +(-375 S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) -((-4410 . T)) +((-4417 . T)) NIL -(-374 |VarSet| R) +(-376 |VarSet| R) ((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4405 . T) (-4404 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4412 . T) (-4411 . T)) NIL -(-375 S V) +(-377 S V) ((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm."))) NIL NIL -(-376 S R) +(-378 S R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) -(-377 R) +((|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) +(-379 R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) -((-4407 . T)) +((-4414 . T)) NIL -(-378 |Par|) +(-380 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf,{} lv,{} eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf,{} eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,{}eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,{}eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}."))) NIL NIL -(-379) +(-381) ((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,{}exponent,{}\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,{}e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{\\spad{pi}},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,{}n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,{}y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4393 . T) (-4401 . T) (-3560 . T) (-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) +((-4400 . T) (-4408 . T) (-3649 . T) (-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) NIL -(-380 |Par|) +(-382 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf,{} eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,{}lv,{}eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,{}eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,{}eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,{}eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,{}eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}."))) NIL NIL -(-381 R S) +(-383 R S) ((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}"))) -((-4405 . T) (-4404 . T)) +((-4412 . T) (-4411 . T)) ((|HasCategory| |#1| (QUOTE (-172)))) -(-382 R |Basis|) +(-384 R |Basis|) ((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis,{} c: R)} such that \\spad{x} equals \\spad{reduce(+,{} map(x +-> monom(x.k,{} x.c),{} lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,{}r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,{}b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}."))) -((-4405 . T) (-4404 . T)) +((-4412 . T) (-4411 . T)) NIL -(-383) +(-385) ((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) NIL NIL -(-384) +(-386) ((|constructor| (NIL "\\axiomType{FortranMatrixFunctionCategory} provides support for producing Functions and Subroutines representing matrices of expressions.")) (|retractIfCan| (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) NIL NIL -(-385 R S) +(-387 R S) ((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored."))) -((-4405 . T) (-4404 . T)) +((-4412 . T) (-4411 . T)) ((|HasCategory| |#1| (QUOTE (-172)))) -(-386 S) +(-388 S) ((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x,{} y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l,{} r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) NIL -((|HasCategory| |#1| (QUOTE (-848)))) -(-387) +((|HasCategory| |#1| (QUOTE (-850)))) +(-389) ((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link."))) -((-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) +((-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) NIL -(-388) +(-390) ((|constructor| (NIL "This domain provides an interface to names in the file system."))) NIL NIL -(-389) +(-391) ((|constructor| (NIL "This category provides an interface to names in the file system.")) (|new| (($ (|String|) (|String|) (|String|)) "\\spad{new(d,{}pref,{}e)} constructs the name of a new writable file with \\spad{d} as its directory,{} \\spad{pref} as a prefix of its name and \\spad{e} as its extension. When \\spad{d} or \\spad{t} is the empty string,{} a default is used. An error occurs if a new file cannot be written in the given directory.")) (|writable?| (((|Boolean|) $) "\\spad{writable?(f)} tests if the named file be opened for writing. The named file need not already exist.")) (|readable?| (((|Boolean|) $) "\\spad{readable?(f)} tests if the named file exist and can it be opened for reading.")) (|exists?| (((|Boolean|) $) "\\spad{exists?(f)} tests if the file exists in the file system.")) (|extension| (((|String|) $) "\\spad{extension(f)} returns the type part of the file name.")) (|name| (((|String|) $) "\\spad{name(f)} returns the name part of the file name.")) (|directory| (((|String|) $) "\\spad{directory(f)} returns the directory part of the file name.")) (|filename| (($ (|String|) (|String|) (|String|)) "\\spad{filename(d,{}n,{}e)} creates a file name with \\spad{d} as its directory,{} \\spad{n} as its name and \\spad{e} as its extension. This is a portable way to create file names. When \\spad{d} or \\spad{t} is the empty string,{} a default is used."))) NIL NIL -(-390 |n| |class| R) +(-392 |n| |class| R) ((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra"))) -((-4405 . T) (-4404 . T)) +((-4412 . T) (-4411 . T)) NIL -(-391) +(-393) ((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack"))) NIL NIL -(-392 -2266 UP UPUP R) +(-394 -2341 UP UPUP R) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented"))) NIL NIL -(-393 S) +(-395 S) ((|constructor| (NIL "\\spadtype{ScriptFormulaFormat1} provides a utility coercion for changing to SCRIPT formula format anything that has a coercion to the standard output format.")) (|coerce| (((|ScriptFormulaFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from an expression \\spad{s} of domain \\spad{S} to SCRIPT formula format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to SCRIPT formula format."))) NIL NIL -(-394) +(-396) ((|constructor| (NIL "\\spadtype{ScriptFormulaFormat} provides a coercion from \\spadtype{OutputForm} to IBM SCRIPT/VS Mathematical Formula Format. The basic SCRIPT formula format object consists of three parts: a prologue,{} a formula part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{formula} and \\spadfun{epilogue} extract these parts,{} respectively. The central parts of the expression go into the formula part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \":df.\" and \":edf.\" so that the formula section will be printed in display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a formatted object \\spad{t} to \\spad{strings}.")) (|setFormula!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setFormula!(t,{}strings)} sets the formula section of a formatted object \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a formatted object \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a formatted object \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setFormula!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|formula| (((|List| (|String|)) $) "\\spad{formula(t)} extracts the formula section of a formatted object \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a formatted object \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to SCRIPT formula format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers."))) NIL NIL -(-395) +(-397) ((|constructor| (NIL "\\axiomType{FortranProgramCategory} provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram."))) NIL NIL -(-396) +(-398) ((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) NIL NIL -(-397) +(-399) ((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}t,{}lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,{}l,{}ll,{}lv,{}t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}ll,{}lv)} \\undocumented{}"))) NIL NIL -(-398 -2493 |returnType| -2095 |symbols|) +(-400 -2598 |returnType| -3417 |symbols|) ((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}"))) NIL NIL -(-399 -2266 UP) +(-401 -2341 UP) ((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p,{} [[j,{} Dj,{} Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,{}Dj,{}Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}"))) NIL NIL -(-400 R) +(-402 R) ((|constructor| (NIL "A set \\spad{S} is PatternMatchable over \\spad{R} if \\spad{S} can lift the pattern-matching functions of \\spad{S} over the integers and float to itself (necessary for matching in towers)."))) NIL NIL -(-401 S) +(-403 S) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) NIL NIL -(-402) +(-404) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) -((-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) +((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) NIL -(-403 S) +(-405 S) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) NIL -((|HasAttribute| |#1| (QUOTE -4393)) (|HasAttribute| |#1| (QUOTE -4401))) -(-404) +((|HasAttribute| |#1| (QUOTE -4400)) (|HasAttribute| |#1| (QUOTE -4408))) +(-406) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) -((-3560 . T) (-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) +((-3649 . T) (-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) NIL -(-405 R S) +(-407 R S) ((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,{}u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type."))) NIL NIL -(-406 A B) +(-408 A B) ((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of the fraction \\spad{frac}."))) NIL NIL -(-407 S) +(-409 S) ((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical."))) -((-4397 -12 (|has| |#1| (-6 -4408)) (|has| |#1| (-452)) (|has| |#1| (-6 -4397))) (-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) -((|HasCategory| |#1| (QUOTE (-907))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-1173)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-2682 (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-826)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-818))) (-2682 (|HasCategory| |#1| (QUOTE (-818))) (|HasCategory| |#1| (QUOTE (-848)))) (-2682 (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-826)))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-1148))) (|HasCategory| |#1| (LIST (QUOTE -884) (QUOTE (-379)))) (-2682 (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-826)))) (|HasCategory| |#1| (LIST (QUOTE -884) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (-2682 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-826))))) (-2682 (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-826))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1173)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-826)))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-545))) (-12 (|HasAttribute| |#1| (QUOTE -4408)) (|HasAttribute| |#1| (QUOTE -4397)) (|HasCategory| |#1| (QUOTE (-452)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-907)))) (-2682 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-907)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-408 S R UP) +((-4404 -12 (|has| |#1| (-6 -4415)) (|has| |#1| (-454)) (|has| |#1| (-6 -4404))) (-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((|HasCategory| |#1| (QUOTE (-909))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-828)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#1| (QUOTE (-1022))) (|HasCategory| |#1| (QUOTE (-820))) (-2809 (|HasCategory| |#1| (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-850)))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-828)))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-1150))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381)))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-828)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-828))))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (-12 (|HasCategory| |#1| (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-828))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-828)))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-547))) (-12 (|HasAttribute| |#1| (QUOTE -4415)) (|HasAttribute| |#1| (QUOTE -4404)) (|HasCategory| |#1| (QUOTE (-454)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-410 S R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL NIL -(-409 R UP) +(-411 R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4404 . T) (-4405 . T) (-4407 . T)) +((-4411 . T) (-4412 . T) (-4414 . T)) NIL -(-410 A S) +(-412 A S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) -(-411 S) +((|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) +(-413 S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL NIL -(-412 R1 F1 U1 A1 R2 F2 U2 A2) +(-414 R1 F1 U1 A1 R2 F2 U2 A2) ((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}i)} \\undocumented{}"))) NIL NIL -(-413 R -2266 UP A) +(-415 R -2341 UP A) ((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,{}x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,{}...,{}fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} returns the vector \\spad{[f1,{}...,{}fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,{}...,{}fn])} returns the ideal \\spad{(f1,{}...,{}fn)}."))) -((-4407 . T)) +((-4414 . T)) NIL -(-414 R -2266 UP A |ibasis|) +(-416 R -2341 UP A |ibasis|) ((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,{}...,{}fn])} = the module generated by \\spad{(f1,{}...,{}fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}."))) NIL -((|HasCategory| |#4| (LIST (QUOTE -1036) (|devaluate| |#2|)))) -(-415 AR R AS S) +((|HasCategory| |#4| (LIST (QUOTE -1038) (|devaluate| |#2|)))) +(-417 AR R AS S) ((|constructor| (NIL "FramedNonAssociativeAlgebraFunctions2 implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}."))) NIL NIL -(-416 S R) +(-418 S R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#2|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#2|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#2|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#2|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#2|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#2| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL -((|HasCategory| |#2| (QUOTE (-363)))) -(-417 R) +((|HasCategory| |#2| (QUOTE (-365)))) +(-419 R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#1| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4407 |has| |#1| (-556)) (-4405 . T) (-4404 . T)) +((-4414 |has| |#1| (-558)) (-4412 . T) (-4411 . T)) NIL -(-418 R) +(-420 R) ((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,{}exponent,{}flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,{}n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,{}n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,{}n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,{}exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,{}listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) -((-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) -((|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1173)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -309) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -286) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-1216))) (-2682 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-1216)))) (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1173)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-452)))) -(-419 R) +((-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((|HasCategory| |#1| (LIST (QUOTE -516) (QUOTE (-1175)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -310) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -287) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-1218))) (-2809 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-1218)))) (|HasCategory| |#1| (QUOTE (-1022))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-454)))) +(-421 R) ((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,{}v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,{}fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,{}2)} then \\spad{refine(u,{}factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,{}2) * primeFactor(5,{}2)}."))) NIL NIL -(-420 R FE |x| |cen|) +(-422 R FE |x| |cen|) ((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,{}posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed."))) NIL NIL -(-421 R A S B) +(-423 R A S B) ((|constructor| (NIL "This package allows a mapping \\spad{R} \\spad{->} \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}."))) NIL NIL -(-422 R FE |Expon| UPS TRAN |x|) +(-424 R FE |Expon| UPS TRAN |x|) ((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x}. The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series"))) NIL NIL -(-423 S A R B) +(-425 S A R B) ((|constructor| (NIL "FiniteSetAggregateFunctions2 provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad {[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain."))) NIL NIL -(-424 A S) +(-426 A S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) NIL -((|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-368)))) -(-425 S) +((|HasCategory| |#2| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-370)))) +(-427 S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) -((-4410 . T) (-4400 . T) (-4411 . T)) +((-4417 . T) (-4407 . T) (-4418 . T)) NIL -(-426 R -2266) +(-428 R -2341) ((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable."))) NIL NIL -(-427 R E) +(-429 R E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,{}r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,{}r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series"))) -((-4397 -12 (|has| |#1| (-6 -4397)) (|has| |#2| (-6 -4397))) (-4404 . T) (-4405 . T) (-4407 . T)) -((-12 (|HasAttribute| |#1| (QUOTE -4397)) (|HasAttribute| |#2| (QUOTE -4397)))) -(-428 R -2266) +((-4404 -12 (|has| |#1| (-6 -4404)) (|has| |#2| (-6 -4404))) (-4411 . T) (-4412 . T) (-4414 . T)) +((-12 (|HasAttribute| |#1| (QUOTE -4404)) (|HasAttribute| |#2| (QUOTE -4404)))) +(-430 R -2341) ((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable."))) NIL NIL -(-429 S R) +(-431 S R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-473))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) -(-430 R) +((|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-475))) (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) +(-432 R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) -((-4407 -2682 (|has| |#1| (-1047)) (|has| |#1| (-473))) (-4405 |has| |#1| (-172)) (-4404 |has| |#1| (-172)) ((-4412 "*") |has| |#1| (-556)) (-4403 |has| |#1| (-556)) (-4408 |has| |#1| (-556)) (-4402 |has| |#1| (-556))) +((-4414 -2809 (|has| |#1| (-1049)) (|has| |#1| (-475))) (-4412 |has| |#1| (-172)) (-4411 |has| |#1| (-172)) ((-4419 "*") |has| |#1| (-558)) (-4410 |has| |#1| (-558)) (-4415 |has| |#1| (-558)) (-4409 |has| |#1| (-558))) NIL -(-431 R -2266) +(-433 R -2341) ((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,{}y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,{}y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,{}y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,{}y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,{}y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,{}y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,{}x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator."))) NIL NIL -(-432 R -2266) +(-434 R -2341) ((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1,{} a2)} returns \\spad{[a,{} q1,{} q2,{} q]} such that \\spad{k(a1,{} a2) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,{}...,{}an])} returns \\spad{[a,{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}."))) NIL ((|HasCategory| |#2| (QUOTE (-27)))) -(-433 R -2266) +(-435 R -2341) ((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,{}k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented"))) NIL NIL -(-434) +(-436) ((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\""))) NIL NIL -(-435 R -2266 UP) +(-437 R -2341 UP) ((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-48))))) -(-436) +((|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-48))))) +(-438) ((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,{}fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}."))) NIL NIL -(-437) +(-439) ((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type"))) NIL NIL -(-438 |f|) +(-440 |f|) ((|constructor| (NIL "This domain implements named functions")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-439) +(-441) ((|constructor| (NIL "This is the datatype for exported function descriptor. A function descriptor consists of: (1) a signature; (2) a predicate; and (3) a slot into the scope object.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of function described by \\spad{x}."))) NIL NIL -(-440) +(-442) ((|constructor| (NIL "\\axiomType{FortranVectorCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Vector} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Vector| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) NIL NIL -(-441) +(-443) ((|constructor| (NIL "\\axiomType{FortranVectorFunctionCategory} is the catagory of arguments to NAG Library routines which return the values of vectors of functions.")) (|retractIfCan| (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) NIL NIL -(-442 UP) +(-444 UP) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,{}sqf,{}pd,{}r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,{}sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r,{}sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,{}p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object."))) NIL NIL -(-443 R UP -2266) +(-445 R UP -2341) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,{}p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,{}n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}."))) NIL NIL -(-444 R UP) +(-446 R UP) ((|constructor| (NIL "\\spadtype{GaloisGroupPolynomialUtilities} provides useful functions for univariate polynomials which should be added to \\spadtype{UnivariatePolynomialCategory} or to \\spadtype{Factored} (July 1994).")) (|factorsOfDegree| (((|List| |#2|) (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorsOfDegree(d,{}f)} returns the factors of degree \\spad{d} of the factored polynomial \\spad{f}.")) (|factorOfDegree| ((|#2| (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorOfDegree(d,{}f)} returns a factor of degree \\spad{d} of the factored polynomial \\spad{f}. Such a factor shall exist.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|Factored| |#2|)) "\\spad{degreePartition(f)} returns the degree partition (\\spadignore{i.e.} the multiset of the degrees of the irreducible factors) of the polynomial \\spad{f}.")) (|shiftRoots| ((|#2| |#2| |#1|) "\\spad{shiftRoots(p,{}c)} returns the polynomial which has for roots \\spad{c} added to the roots of \\spad{p}.")) (|scaleRoots| ((|#2| |#2| |#1|) "\\spad{scaleRoots(p,{}c)} returns the polynomial which has \\spad{c} times the roots of \\spad{p}.")) (|reverse| ((|#2| |#2|) "\\spad{reverse(p)} returns the reverse polynomial of \\spad{p}.")) (|unvectorise| ((|#2| (|Vector| |#1|)) "\\spad{unvectorise(v)} returns the polynomial which has for coefficients the entries of \\spad{v} in the increasing order.")) (|monic?| (((|Boolean|) |#2|) "\\spad{monic?(p)} tests if \\spad{p} is monic (\\spadignore{i.e.} leading coefficient equal to 1)."))) NIL NIL -(-445 R) +(-447 R) ((|constructor| (NIL "\\spadtype{GaloisGroupUtilities} provides several useful functions.")) (|safetyMargin| (((|NonNegativeInteger|)) "\\spad{safetyMargin()} returns the number of low weight digits we do not trust in the floating point representation (used by \\spadfun{safeCeiling}).") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{safetyMargin(n)} sets to \\spad{n} the number of low weight digits we do not trust in the floating point representation and returns the previous value (for use by \\spadfun{safeCeiling}).")) (|safeFloor| (((|Integer|) |#1|) "\\spad{safeFloor(x)} returns the integer which is lower or equal to the largest integer which has the same floating point number representation.")) (|safeCeiling| (((|Integer|) |#1|) "\\spad{safeCeiling(x)} returns the integer which is greater than any integer with the same floating point number representation.")) (|fillPascalTriangle| (((|Void|)) "\\spad{fillPascalTriangle()} fills the stored table.")) (|sizePascalTriangle| (((|NonNegativeInteger|)) "\\spad{sizePascalTriangle()} returns the number of entries currently stored in the table.")) (|rangePascalTriangle| (((|NonNegativeInteger|)) "\\spad{rangePascalTriangle()} returns the maximal number of lines stored.") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rangePascalTriangle(n)} sets the maximal number of lines which are stored and returns the previous value.")) (|pascalTriangle| ((|#1| (|NonNegativeInteger|) (|Integer|)) "\\spad{pascalTriangle(n,{}r)} returns the binomial coefficient \\spad{C(n,{}r)=n!/(r! (n-r)!)} and stores it in a table to prevent recomputation."))) NIL -((|HasCategory| |#1| (QUOTE (-404)))) -(-446) +((|HasCategory| |#1| (QUOTE (-406)))) +(-448) ((|constructor| (NIL "Package for the factorization of complex or gaussian integers.")) (|prime?| (((|Boolean|) (|Complex| (|Integer|))) "\\spad{prime?(\\spad{zi})} tests if the complex integer \\spad{zi} is prime.")) (|sumSquares| (((|List| (|Integer|)) (|Integer|)) "\\spad{sumSquares(p)} construct \\spad{a} and \\spad{b} such that \\spad{a**2+b**2} is equal to the integer prime \\spad{p},{} and otherwise returns an error. It will succeed if the prime number \\spad{p} is 2 or congruent to 1 mod 4.")) (|factor| (((|Factored| (|Complex| (|Integer|))) (|Complex| (|Integer|))) "\\spad{factor(\\spad{zi})} produces the complete factorization of the complex integer \\spad{zi}."))) NIL NIL -(-447 |Dom| |Expon| |VarSet| |Dpol|) +(-449 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{EuclideanGroebnerBasisPackage} computes groebner bases for polynomial ideals over euclidean domains. The basic computation provides a distinguished set of generators for these ideals. This basis allows an easy test for membership: the operation \\spadfun{euclideanNormalForm} returns zero on ideal members. The string \"info\" and \"redcrit\" can be given as additional args to provide incremental information during the computation. If \"info\" is given,{} \\indented{1}{a computational summary is given for each \\spad{s}-polynomial. If \"redcrit\"} is given,{} the reduced critical pairs are printed. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|euclideanGroebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{euclideanGroebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. If the second argument is \\spad{\"info\"},{} a summary is given of the critical pairs. If the third argument is \"redcrit\",{} critical pairs are printed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{euclideanGroebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}. During computation,{} additional information is printed out if infoflag is given as either \"info\" (for summary information) or \"redcrit\" (for reduced critical pairs)") (((|List| |#4|) (|List| |#4|)) "\\spad{euclideanGroebner(lp)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}.")) (|euclideanNormalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{euclideanNormalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class."))) NIL NIL -(-448 |Dom| |Expon| |VarSet| |Dpol|) +(-450 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{GroebnerFactorizationPackage} provides the function groebnerFactor\" which uses the factorization routines of \\Language{} to factor each polynomial under consideration while doing the groebner basis algorithm. Then it writes the ideal as an intersection of ideals determined by the irreducible factors. Note that the whole ring may occur as well as other redundancies. We also use the fact,{} that from the second factor on we can assume that the preceding factors are not equal to 0 and we divide all polynomials under considerations by the elements of this list of \"nonZeroRestrictions\". The result is a list of groebner bases,{} whose union of solutions of the corresponding systems of equations is the solution of the system of equation corresponding to the input list. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|groebnerFactorize| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys,{} info)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys,{} nonZeroRestrictions,{} info)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys,{} nonZeroRestrictions)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.")) (|factorGroebnerBasis| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{factorGroebnerBasis(basis,{}info)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{factorGroebnerBasis(basis)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}."))) NIL NIL -(-449 |Dom| |Expon| |VarSet| |Dpol|) +(-451 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Keywords: Description This package provides low level tools for Groebner basis computations")) (|virtualDegree| (((|NonNegativeInteger|) |#4|) "\\spad{virtualDegree }\\undocumented")) (|makeCrit| (((|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)) |#4| (|NonNegativeInteger|)) "\\spad{makeCrit }\\undocumented")) (|critpOrder| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critpOrder }\\undocumented")) (|prinb| (((|Void|) (|Integer|)) "\\spad{prinb }\\undocumented")) (|prinpolINFO| (((|Void|) (|List| |#4|)) "\\spad{prinpolINFO }\\undocumented")) (|fprindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{fprindINFO }\\undocumented")) (|prindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|)) "\\spad{prindINFO }\\undocumented")) (|prinshINFO| (((|Void|) |#4|) "\\spad{prinshINFO }\\undocumented")) (|lepol| (((|Integer|) |#4|) "\\spad{lepol }\\undocumented")) (|minGbasis| (((|List| |#4|) (|List| |#4|)) "\\spad{minGbasis }\\undocumented")) (|updatD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{updatD }\\undocumented")) (|sPol| ((|#4| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{sPol }\\undocumented")) (|updatF| (((|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|))) |#4| (|NonNegativeInteger|) (|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)))) "\\spad{updatF }\\undocumented")) (|hMonic| ((|#4| |#4|) "\\spad{hMonic }\\undocumented")) (|redPo| (((|Record| (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (|List| |#4|)) "\\spad{redPo }\\undocumented")) (|critMonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMonD1 }\\undocumented")) (|critMTonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMTonD1 }\\undocumented")) (|critBonD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critBonD }\\undocumented")) (|critB| (((|Boolean|) |#2| |#2| |#2| |#2|) "\\spad{critB }\\undocumented")) (|critM| (((|Boolean|) |#2| |#2|) "\\spad{critM }\\undocumented")) (|critT| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critT }\\undocumented")) (|gbasis| (((|List| |#4|) (|List| |#4|) (|Integer|) (|Integer|)) "\\spad{gbasis }\\undocumented")) (|redPol| ((|#4| |#4| (|List| |#4|)) "\\spad{redPol }\\undocumented")) (|credPol| ((|#4| |#4| (|List| |#4|)) "\\spad{credPol }\\undocumented"))) NIL NIL -(-450 |Dom| |Expon| |VarSet| |Dpol|) +(-452 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp},{} displaying both a summary of the critical pairs considered (\\spad{\"info\"}) and the result of reducing each critical pair (\"redcrit\"). If the second or third arguments have any other string value,{} the indicated information is suppressed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. Argument infoflag is used to get information on the computation. If infoflag is \"info\",{} then summary information is displayed for each \\spad{s}-polynomial generated. If infoflag is \"redcrit\",{} the reduced critical pairs are displayed. If infoflag is any other string,{} no information is printed during computation.") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}."))) NIL -((|HasCategory| |#1| (QUOTE (-363)))) -(-451 S) +((|HasCategory| |#1| (QUOTE (-365)))) +(-453 S) ((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) NIL NIL -(-452) +(-454) ((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) -((-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) +((-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) NIL -(-453 R |n| |ls| |gamma|) +(-455 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,{}b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,{}b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,{}ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,{}v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed"))) -((-4407 |has| (-407 (-950 |#1|)) (-556)) (-4405 . T) (-4404 . T)) -((|HasCategory| (-407 (-950 |#1|)) (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| (-407 (-950 |#1|)) (QUOTE (-556)))) -(-454 |vl| R E) +((-4414 |has| (-409 (-952 |#1|)) (-558)) (-4412 . T) (-4411 . T)) +((|HasCategory| (-409 (-952 |#1|)) (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| (-409 (-952 |#1|)) (QUOTE (-558)))) +(-456 |vl| R E) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4412 "*") |has| |#2| (-172)) (-4403 |has| |#2| (-556)) (-4408 |has| |#2| (-6 -4408)) (-4405 . T) (-4404 . T) (-4407 . T)) -((|HasCategory| |#2| (QUOTE (-907))) (-2682 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-907)))) (-2682 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-907)))) (-2682 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-907)))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (-2682 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-556)))) (-12 (|HasCategory| (-862 |#1|) (LIST (QUOTE -884) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -884) (QUOTE (-379))))) (-12 (|HasCategory| (-862 |#1|) (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -884) (QUOTE (-564))))) (-12 (|HasCategory| (-862 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379)))))) (-12 (|HasCategory| (-862 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564)))))) (-12 (|HasCategory| (-862 |#1|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564)))) (-2682 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4408)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-907)))) (-2682 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-907)))) (|HasCategory| |#2| (QUOTE (-145))))) -(-455 R BP) +(((-4419 "*") |has| |#2| (-172)) (-4410 |has| |#2| (-558)) (-4415 |has| |#2| (-6 -4415)) (-4412 . T) (-4411 . T) (-4414 . T)) +((|HasCategory| |#2| (QUOTE (-909))) (-2809 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-909)))) (-2809 (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-909)))) (-2809 (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-172))) (-2809 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-558)))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2809 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4415)) (|HasCategory| |#2| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#2| (QUOTE (-145))))) +(-457 R BP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,{}lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,{}table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,{}prime,{}lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,{}lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,{}prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional."))) NIL NIL -(-456 OV E S R P) +(-458 OV E S R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| |#5|) |#5|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-457 E OV R P) +(-459 E OV R P) ((|constructor| (NIL "This package provides operations for \\spad{GCD} computations on polynomials")) (|randomR| ((|#3|) "\\spad{randomR()} should be local but conditional")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{GCD} of \\spad{p} and \\spad{q}"))) NIL NIL -(-458 R) +(-460 R) ((|constructor| (NIL "\\indented{1}{Description} This package provides operations for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" the finite \"berlekamp's\" factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{factor(p)} returns the factorisation of \\spad{p}"))) NIL NIL -(-459 R FE) +(-461 R FE) ((|constructor| (NIL "\\spadtype{GenerateUnivariatePowerSeries} provides functions that create power series from explicit formulas for their \\spad{n}th coefficient.")) (|series| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(a(n),{}n,{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{series(a(n),{}n,{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(n +-> a(n),{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(a(n),{}n,{}x=a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{series(a(n),{}n,{}x=a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(n +-> a(n),{}x = a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{series(a(n),{}n,{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{series(n +-> a(n),{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.")) (|puiseux| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(a(n),{}n,{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{puiseux(a(n),{}n,{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(n +-> a(n),{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{puiseux(n +-> a(n),{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.")) (|laurent| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(a(n),{}n,{}x=a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{laurent(a(n),{}n,{}x=a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(n +-> a(n),{}x = a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{laurent(n +-> a(n),{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.")) (|taylor| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(a(n),{}n,{}x = a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n)*(x-a)**n)}; \\spad{taylor(a(n),{}n,{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..,{}a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(n +-> a(n),{}x = a,{}n0..)} returns \\spad{sum(n=n0..,{}a(n)*(x-a)**n)}; \\spad{taylor(n +-> a(n),{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..,{}a(n)*(x-a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{taylor(a(n),{}n,{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{taylor(n +-> a(n),{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}."))) NIL NIL -(-460 RP TP) +(-462 RP TP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni} General Hensel Lifting Used for Factorization of bivariate polynomials over a finite field.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(u,{}pol)} computes the symmetric reduction of \\spad{u} mod \\spad{pol}")) (|completeHensel| (((|List| |#2|) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{completeHensel(pol,{}lfact,{}prime,{}bound)} lifts \\spad{lfact},{} the factorization mod \\spad{prime} of \\spad{pol},{} to the factorization mod prime**k>bound. Factors are recombined on the way.")) (|HenselLift| (((|Record| (|:| |plist| (|List| |#2|)) (|:| |modulo| |#1|)) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{HenselLift(pol,{}lfacts,{}prime,{}bound)} lifts \\spad{lfacts},{} that are the factors of \\spad{pol} mod \\spad{prime},{} to factors of \\spad{pol} mod prime**k > \\spad{bound}. No recombining is done ."))) NIL NIL -(-461 |vl| R IS E |ff| P) +(-463 |vl| R IS E |ff| P) ((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,{}e,{}x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,{}i,{}e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,{}x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented"))) -((-4405 . T) (-4404 . T)) +((-4412 . T) (-4411 . T)) NIL -(-462 E V R P Q) +(-464 E V R P Q) ((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b,{} n,{} new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}."))) NIL NIL -(-463 R E |VarSet| P) +(-465 R E |VarSet| P) ((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}."))) -((-4411 . T) (-4410 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1097))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#4| (QUOTE (-1097))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-860))))) -(-464 S R E) +((-4418 . T) (-4417 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1099))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#4| (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#4| (LIST (QUOTE -613) (QUOTE (-862))))) +(-466 S R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,{}b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,{}b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,{}b) = product(a1,{}b) + product(a2,{}b)}} \\indented{2}{\\spad{product(a,{}b1+b2) = product(a,{}b1) + product(a,{}b2)}} \\indented{2}{\\spad{product(r*a,{}b) = product(a,{}r*b) = r*product(a,{}b)}} \\indented{2}{\\spad{product(a,{}product(b,{}c)) = product(product(a,{}b),{}c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) NIL NIL -(-465 R E) +(-467 R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,{}b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,{}b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,{}b) = product(a1,{}b) + product(a2,{}b)}} \\indented{2}{\\spad{product(a,{}b1+b2) = product(a,{}b1) + product(a,{}b2)}} \\indented{2}{\\spad{product(r*a,{}b) = product(a,{}r*b) = r*product(a,{}b)}} \\indented{2}{\\spad{product(a,{}product(b,{}c)) = product(product(a,{}b),{}c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) NIL NIL -(-466) +(-468) ((|constructor| (NIL "GrayCode provides a function for efficiently running through all subsets of a finite set,{} only changing one element by another one.")) (|firstSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{firstSubsetGray(n)} creates the first vector {\\em ww} to start a loop using {\\em nextSubsetGray(ww,{}n)}")) (|nextSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{nextSubsetGray(ww,{}n)} returns a vector {\\em vv} whose components have the following meanings:\\begin{items} \\item {\\em vv.1}: a vector of length \\spad{n} whose entries are 0 or 1. This \\indented{3}{can be interpreted as a code for a subset of the set 1,{}...,{}\\spad{n};} \\indented{3}{{\\em vv.1} differs from {\\em ww.1} by exactly one entry;} \\item {\\em vv.2.1} is the number of the entry of {\\em vv.1} which \\indented{3}{will be changed next time;} \\item {\\em vv.2.1 = n+1} means that {\\em vv.1} is the last subset; \\indented{3}{trying to compute nextSubsetGray(\\spad{vv}) if {\\em vv.2.1 = n+1}} \\indented{3}{will produce an error!} \\end{items} The other components of {\\em vv.2} are needed to compute nextSubsetGray efficiently. Note: this is an implementation of [Williamson,{} Topic II,{} 3.54,{} \\spad{p}. 112] for the special case {\\em r1 = r2 = ... = rn = 2}; Note: nextSubsetGray produces a side-effect,{} \\spadignore{i.e.} {\\em nextSubsetGray(vv)} and {\\em vv := nextSubsetGray(vv)} will have the same effect."))) NIL NIL -(-467) +(-469) ((|constructor| (NIL "TwoDimensionalPlotSettings sets global flags and constants for 2-dimensional plotting.")) (|screenResolution| (((|Integer|) (|Integer|)) "\\spad{screenResolution(n)} sets the screen resolution to \\spad{n}.") (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution \\spad{n}.")) (|minPoints| (((|Integer|) (|Integer|)) "\\spad{minPoints()} sets the minimum number of points in a plot.") (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot.")) (|maxPoints| (((|Integer|) (|Integer|)) "\\spad{maxPoints()} sets the maximum number of points in a plot.") (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot.")) (|adaptive| (((|Boolean|) (|Boolean|)) "\\spad{adaptive(true)} turns adaptive plotting on; \\spad{adaptive(false)} turns adaptive plotting off.") (((|Boolean|)) "\\spad{adaptive()} determines whether plotting will be done adaptively.")) (|drawToScale| (((|Boolean|) (|Boolean|)) "\\spad{drawToScale(true)} causes plots to be drawn to scale. \\spad{drawToScale(false)} causes plots to be drawn so that they fill up the viewport window. The default setting is \\spad{false}.") (((|Boolean|)) "\\spad{drawToScale()} determines whether or not plots are to be drawn to scale.")) (|clipPointsDefault| (((|Boolean|) (|Boolean|)) "\\spad{clipPointsDefault(true)} turns on automatic clipping; \\spad{clipPointsDefault(false)} turns off automatic clipping. The default setting is \\spad{true}.") (((|Boolean|)) "\\spad{clipPointsDefault()} determines whether or not automatic clipping is to be done."))) NIL NIL -(-468) +(-470) ((|constructor| (NIL "TwoDimensionalGraph creates virtual two dimensional graphs (to be displayed on TwoDimensionalViewports).")) (|putColorInfo| (((|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|))) "\\spad{putColorInfo(llp,{}lpal)} takes a list of list of points,{} \\spad{llp},{} and returns the points with their hue and shade components set according to the list of palette colors,{} \\spad{lpal}.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(\\spad{gi})} returns the indicated graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage} as output of the domain \\spadtype{OutputForm}.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{coerce(llp)} component(\\spad{gi},{}\\spad{pt}) creates and returns a graph of the domain \\spadtype{GraphImage} which is composed of the list of list of points given by \\spad{llp},{} and whose point colors,{} line colors and point sizes are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.")) (|point| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|)) "\\spad{point(\\spad{gi},{}pt,{}pal)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to be the palette color \\spad{pal},{} and whose line color and point size are determined by the default functions \\spadfun{lineColorDefault} and \\spadfun{pointSizeDefault}.")) (|appendPoint| (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{appendPoint(\\spad{gi},{}pt)} appends the point \\spad{pt} to the end of the list of points component for the graph,{} \\spad{\\spad{gi}},{} which is of the domain \\spadtype{GraphImage}.")) (|component| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(\\spad{gi},{}pt,{}pal1,{}pal2,{}ps)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to the palette color \\spad{pal1},{} line color is set to the palette color \\spad{pal2},{} and point size is set to the positive integer \\spad{ps}.") (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{component(\\spad{gi},{}pt)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color,{} line color and point size are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}.") (((|Void|) $ (|List| (|Point| (|DoubleFloat|))) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(\\spad{gi},{}lp,{}pal1,{}pal2,{}p)} sets the components of the graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to the values given. The point list for \\spad{\\spad{gi}} is set to the list \\spad{lp},{} the color of the points in \\spad{lp} is set to the palette color \\spad{pal1},{} the color of the lines which connect the points \\spad{lp} is set to the palette color \\spad{pal2},{} and the size of the points in \\spad{lp} is given by the integer \\spad{p}.")) (|units| (((|List| (|Float|)) $ (|List| (|Float|))) "\\spad{units(\\spad{gi},{}lu)} modifies the list of unit increments for the \\spad{x} and \\spad{y} axes of the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to be that of the list of unit increments,{} \\spad{lu},{} and returns the new list of units for \\spad{\\spad{gi}}.") (((|List| (|Float|)) $) "\\spad{units(\\spad{gi})} returns the list of unit increments for the \\spad{x} and \\spad{y} axes of the indicated graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|ranges| (((|List| (|Segment| (|Float|))) $ (|List| (|Segment| (|Float|)))) "\\spad{ranges(\\spad{gi},{}lr)} modifies the list of ranges for the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to be that of the list of range segments,{} \\spad{lr},{} and returns the new range list for \\spad{\\spad{gi}}.") (((|List| (|Segment| (|Float|))) $) "\\spad{ranges(\\spad{gi})} returns the list of ranges of the point components from the indicated graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|key| (((|Integer|) $) "\\spad{key(\\spad{gi})} returns the process ID of the given graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|pointLists| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{pointLists(\\spad{gi})} returns the list of lists of points which compose the given graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|makeGraphImage| (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|)) (|List| (|DrawOption|))) "\\spad{makeGraphImage(llp,{}lpal1,{}lpal2,{}lp,{}lopt)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points,{} and \\spad{lopt} is the list of draw command options. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|))) "\\spad{makeGraphImage(llp,{}lpal1,{}lpal2,{}lp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{makeGraphImage(llp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} with default point size and default point and line colours. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ $) "\\spad{makeGraphImage(\\spad{gi})} takes the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} and sends it\\spad{'s} data to the viewport manager where it waits to be included in a two-dimensional viewport window. \\spad{\\spad{gi}} cannot be an empty graph,{} and it\\spad{'s} elements must have been created using the \\spadfun{point} or \\spadfun{component} functions,{} not by a previous \\spadfun{makeGraphImage}.")) (|graphImage| (($) "\\spad{graphImage()} returns an empty graph with 0 point lists of the domain \\spadtype{GraphImage}. A graph image contains the graph data component of a two dimensional viewport."))) NIL NIL -(-469 S R E) +(-471 S R E) ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#2|) "\\spad{g*r} is right module multiplication.") (($ |#2| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#3| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-470 R E) +(-472 R E) ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-471 |lv| -2266 R) +(-473 |lv| -2341 R) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,{}lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,{}lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,{}lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}."))) NIL NIL -(-472 S) +(-474 S) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,{}q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,{}q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) NIL NIL -(-473) +(-475) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,{}q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,{}q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) -((-4407 . T)) +((-4414 . T)) NIL -(-474 |Coef| |var| |cen|) +(-476 |Coef| |var| |cen|) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4408 |has| |#1| (-363)) (-4402 |has| |#1| (-363)) (-4404 . T) (-4405 . T) (-4407 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2682 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-564)) (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-363))) (-2682 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-2682 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasSignature| |#1| (LIST (QUOTE -2390) (LIST (|devaluate| |#1|) (QUOTE (-1173)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (-2682 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-957))) (|HasCategory| |#1| (QUOTE (-1197))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -3703) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1173))))) (|HasSignature| |#1| (LIST (QUOTE -2397) (LIST (LIST (QUOTE -642) (QUOTE (-1173))) (|devaluate| |#1|))))))) -(-475 |Key| |Entry| |Tbl| |dent|) +(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-558)) (-4415 |has| |#1| (-365)) (-4409 |has| |#1| (-365)) (-4411 . T) (-4412 . T) (-4414 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|)))) (|HasCategory| (-409 (-566)) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-365))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasSignature| |#1| (LIST (QUOTE -2479) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -2390) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -2485) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|))))))) +(-477 |Key| |Entry| |Tbl| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4411 . T)) -((-12 (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (QUOTE (-1097))) (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1914) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2683) (|devaluate| |#2|)))))) (-2682 (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (QUOTE (-1097))) (|HasCategory| |#2| (QUOTE (-1097)))) (-2682 (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (QUOTE (-1097))) (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-848))) (-2682 (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (QUOTE (-1097)))) -(-476 R E V P) +((-4418 . T)) +((-12 (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1928) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2806) (|devaluate| |#2|)))))) (-2809 (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-1099)))) (-2809 (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-850))) (-2809 (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (QUOTE (-1099)))) +(-478 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}"))) -((-4411 . T) (-4410 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1097))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#4| (QUOTE (-1097))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-860))))) -(-477) +((-4418 . T) (-4417 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1099))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#4| (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -613) (QUOTE (-862))))) +(-479) ((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{\\spad{pi}()} returns the symbolic \\%\\spad{pi}."))) -((-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) +((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) NIL -(-478) +(-480) ((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the has expression `e'."))) NIL NIL -(-479 |Key| |Entry| |hashfn|) +(-481 |Key| |Entry| |hashfn|) ((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained."))) -((-4410 . T) (-4411 . T)) -((-12 (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (QUOTE (-1097))) (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1914) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2683) (|devaluate| |#2|)))))) (-2682 (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (QUOTE (-1097))) (|HasCategory| |#2| (QUOTE (-1097)))) (-2682 (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (QUOTE (-1097))) (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (QUOTE (-1097))) (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-1097))) (-2682 (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (LIST (QUOTE -611) (QUOTE (-860))))) -(-480) +((-4417 . T) (-4418 . T)) +((-12 (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1928) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2806) (|devaluate| |#2|)))))) (-2809 (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-1099)))) (-2809 (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-1099))) (-2809 (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (LIST (QUOTE -613) (QUOTE (-862))))) +(-482) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens,{} maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens,{} leftCandidate,{} rightCandidate,{} left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,{}wt,{}rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,{}n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2"))) NIL NIL -(-481 |vl| R) +(-483 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4412 "*") |has| |#2| (-172)) (-4403 |has| |#2| (-556)) (-4408 |has| |#2| (-6 -4408)) (-4405 . T) (-4404 . T) (-4407 . T)) -((|HasCategory| |#2| (QUOTE (-907))) (-2682 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-907)))) (-2682 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-907)))) (-2682 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-907)))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (-2682 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-556)))) (-12 (|HasCategory| (-862 |#1|) (LIST (QUOTE -884) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -884) (QUOTE (-379))))) (-12 (|HasCategory| (-862 |#1|) (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -884) (QUOTE (-564))))) (-12 (|HasCategory| (-862 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379)))))) (-12 (|HasCategory| (-862 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564)))))) (-12 (|HasCategory| (-862 |#1|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564)))) (-2682 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4408)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-907)))) (-2682 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-907)))) (|HasCategory| |#2| (QUOTE (-145))))) -(-482 -2162 S) +(((-4419 "*") |has| |#2| (-172)) (-4410 |has| |#2| (-558)) (-4415 |has| |#2| (-6 -4415)) (-4412 . T) (-4411 . T) (-4414 . T)) +((|HasCategory| |#2| (QUOTE (-909))) (-2809 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-909)))) (-2809 (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-909)))) (-2809 (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-172))) (-2809 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-558)))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2809 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4415)) (|HasCategory| |#2| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#2| (QUOTE (-145))))) +(-484 -2216 S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4404 |has| |#2| (-1047)) (-4405 |has| |#2| (-1047)) (-4407 |has| |#2| (-6 -4407)) ((-4412 "*") |has| |#2| (-172)) (-4410 . T)) -((-2682 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-724))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-791))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))))) (-2682 (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1097)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1047)))) (-12 (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173))))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#2| (QUOTE (-363))) (-2682 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1047)))) (-2682 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363)))) (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-791))) (-2682 (|HasCategory| |#2| (QUOTE (-791))) (|HasCategory| |#2| (QUOTE (-846)))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-724))) (-2682 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1047)))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))) (-2682 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1047)))) (-2682 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1047)))) (-2682 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1047)))) (-2682 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1047)))) (|HasCategory| |#2| (QUOTE (-233))) (-2682 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-724))) (|HasCategory| |#2| (QUOTE (-791))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (QUOTE (-1097)))) (|HasCategory| |#2| (QUOTE (-1097))) (-2682 (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-368)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-724)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-791)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-846)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1047)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1097))))) (-2682 (-12 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-724))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-791))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1047))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564)))))) (-2682 (-12 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-724))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-791))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564)))))) (|HasCategory| (-564) (QUOTE (-848))) (-12 (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1047)))) (-12 (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173))))) (-2682 (|HasCategory| |#2| (QUOTE (-1047))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564)))))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1097)))) (|HasAttribute| |#2| (QUOTE -4407)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-860)))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))))) -(-483) +((-4411 |has| |#2| (-1049)) (-4412 |has| |#2| (-1049)) (-4414 |has| |#2| (-6 -4414)) ((-4419 "*") |has| |#2| (-172)) (-4417 . T)) +((-2809 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))))) (-2809 (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1099)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1049)))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#2| (QUOTE (-365))) (-2809 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2809 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365)))) (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-793))) (-2809 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-848)))) (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-726))) (-2809 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1049)))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (-2809 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2809 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2809 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2809 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1049)))) (|HasCategory| |#2| (QUOTE (-233))) (-2809 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-365)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-370)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-726)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-793)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-848)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1049)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1099))))) (-2809 (-12 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1049))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-2809 (-12 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))))) (|HasCategory| (-566) (QUOTE (-850))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1049)))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175))))) (-2809 (|HasCategory| |#2| (QUOTE (-1049))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1099)))) (|HasAttribute| |#2| (QUOTE -4414)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))))) +(-485) ((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|Identifier|))) "\\spad{headAst(f,{}[x1,{}..,{}xn])} constructs a function definition header."))) NIL NIL -(-484 S) +(-486 S) ((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}."))) -((-4410 . T) (-4411 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1097))) (-2682 (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) -(-485 -2266 UP UPUP R) +((-4417 . T) (-4418 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) +(-487 -2341 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree."))) NIL NIL -(-486 BP) +(-488 BP) ((|constructor| (NIL "This package provides the functions for the heuristic integer \\spad{gcd}. Geddes\\spad{'s} algorithm,{}for univariate polynomials with integer coefficients")) (|lintgcd| (((|Integer|) (|List| (|Integer|))) "\\spad{lintgcd([a1,{}..,{}ak])} = \\spad{gcd} of a list of integers")) (|content| (((|List| (|Integer|)) (|List| |#1|)) "\\spad{content([f1,{}..,{}fk])} = content of a list of univariate polynonials")) (|gcdcofactprim| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofactprim([f1,{}..fk])} = \\spad{gcd} and cofactors of \\spad{k} primitive polynomials.")) (|gcdcofact| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofact([f1,{}..fk])} = \\spad{gcd} and cofactors of \\spad{k} univariate polynomials.")) (|gcdprim| ((|#1| (|List| |#1|)) "\\spad{gcdprim([f1,{}..,{}fk])} = \\spad{gcd} of \\spad{k} PRIMITIVE univariate polynomials")) (|gcd| ((|#1| (|List| |#1|)) "\\spad{gcd([f1,{}..,{}fk])} = \\spad{gcd} of the polynomials \\spad{fi}."))) NIL NIL -(-487) +(-489) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion."))) -((-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) -((|HasCategory| (-564) (QUOTE (-907))) (|HasCategory| (-564) (LIST (QUOTE -1036) (QUOTE (-1173)))) (|HasCategory| (-564) (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-147))) (|HasCategory| (-564) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-564) (QUOTE (-1020))) (|HasCategory| (-564) (QUOTE (-818))) (-2682 (|HasCategory| (-564) (QUOTE (-818))) (|HasCategory| (-564) (QUOTE (-848)))) (|HasCategory| (-564) (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-1148))) (|HasCategory| (-564) (LIST (QUOTE -884) (QUOTE (-379)))) (|HasCategory| (-564) (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| (-564) (QUOTE (-233))) (|HasCategory| (-564) (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| (-564) (LIST (QUOTE -514) (QUOTE (-1173)) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -309) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -286) (QUOTE (-564)) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-307))) (|HasCategory| (-564) (QUOTE (-545))) (|HasCategory| (-564) (QUOTE (-848))) (|HasCategory| (-564) (LIST (QUOTE -637) (QUOTE (-564)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-907)))) (-2682 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-907)))) (|HasCategory| (-564) (QUOTE (-145))))) -(-488 A S) +((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((|HasCategory| (-566) (QUOTE (-909))) (|HasCategory| (-566) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| (-566) (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-147))) (|HasCategory| (-566) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-566) (QUOTE (-1022))) (|HasCategory| (-566) (QUOTE (-820))) (-2809 (|HasCategory| (-566) (QUOTE (-820))) (|HasCategory| (-566) (QUOTE (-850)))) (|HasCategory| (-566) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| (-566) (QUOTE (-1150))) (|HasCategory| (-566) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| (-566) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| (-566) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| (-566) (QUOTE (-233))) (|HasCategory| (-566) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-566) (LIST (QUOTE -516) (QUOTE (-1175)) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -310) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -287) (QUOTE (-566)) (QUOTE (-566)))) (|HasCategory| (-566) (QUOTE (-308))) (|HasCategory| (-566) (QUOTE (-547))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| (-566) (LIST (QUOTE -639) (QUOTE (-566)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-909)))) (|HasCategory| (-566) (QUOTE (-145))))) +(-490 A S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4410)) (|HasAttribute| |#1| (QUOTE -4411)) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-860))))) -(-489 S) +((|HasAttribute| |#1| (QUOTE -4417)) (|HasAttribute| |#1| (QUOTE -4418)) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) +(-491 S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL NIL -(-490 S) +(-492 S) ((|constructor| (NIL "A is homotopic to \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain \\spad{B},{} and nay element of domain \\spad{B} can be automatically converted into an A."))) NIL NIL -(-491) +(-493) ((|constructor| (NIL "This domain represents hostnames on computer network.")) (|host| (($ (|String|)) "\\spad{host(n)} constructs a Hostname from the name \\spad{`n'}."))) NIL NIL -(-492 S) +(-494 S) ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-493) +(-495) ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-494 -2266 UP |AlExt| |AlPol|) +(-496 -2341 UP |AlExt| |AlPol|) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p,{} f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP."))) NIL NIL -(-495) +(-497) ((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,{}y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) -((|HasCategory| $ (QUOTE (-1047))) (|HasCategory| $ (LIST (QUOTE -1036) (QUOTE (-564))))) -(-496 S |mn|) +((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((|HasCategory| $ (QUOTE (-1049))) (|HasCategory| $ (LIST (QUOTE -1038) (QUOTE (-566))))) +(-498 S |mn|) ((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type."))) -((-4411 . T) (-4410 . T)) -((-2682 (-12 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-2682 (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-2682 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-1097)))) (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| (-564) (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860)))) (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) -(-497 R |mnRow| |mnCol|) +((-4418 . T) (-4417 . T)) +((-2809 (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2809 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) +(-499 R |mnRow| |mnCol|) ((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa."))) -((-4410 . T) (-4411 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1097))) (-2682 (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) -(-498 K R UP) +((-4417 . T) (-4418 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) +(-500 K R UP) ((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,{}lr,{}n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,{}q,{}n)} returns the list \\spad{[bas,{}bas^Frob,{}bas^(Frob^2),{}...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,{}n,{}m,{}j)} \\undocumented"))) NIL NIL -(-499 R UP -2266) +(-501 R UP -2341) ((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,{}m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{\\spad{mi}} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn} and \\spad{\\spad{mi}} is a record \\spad{[basis,{}basisDen,{}basisInv]}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then a basis \\spad{v1,{}...,{}vn} for \\spad{\\spad{mi}} is given by \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1,{} m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,{}m2,{}d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,{}m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,{}n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,{}matrixOut,{}prime,{}n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,{}sing,{}n)} is \\spad{gcd(sing,{}g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL -(-500 |mn|) +(-502 |mn|) ((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}."))) -((-4411 . T) (-4410 . T)) -((-12 (|HasCategory| (-112) (QUOTE (-1097))) (|HasCategory| (-112) (LIST (QUOTE -309) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-112) (QUOTE (-848))) (|HasCategory| (-564) (QUOTE (-848))) (|HasCategory| (-112) (QUOTE (-1097))) (|HasCategory| (-112) (LIST (QUOTE -611) (QUOTE (-860))))) -(-501 K R UP L) +((-4418 . T) (-4417 . T)) +((-12 (|HasCategory| (-112) (QUOTE (-1099))) (|HasCategory| (-112) (LIST (QUOTE -310) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-112) (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| (-112) (QUOTE (-1099))) (|HasCategory| (-112) (LIST (QUOTE -613) (QUOTE (-862))))) +(-503 K R UP L) ((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,{}p(x,{}y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,{}y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,{}mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}."))) NIL NIL -(-502) +(-504) ((|constructor| (NIL "\\indented{1}{This domain implements a container of information} about the AXIOM library")) (|coerce| (($ (|String|)) "\\spad{coerce(s)} converts \\axiom{\\spad{s}} into an \\axiom{IndexCard}. Warning: if \\axiom{\\spad{s}} is not of the right format then an error will occur when using it.")) (|fullDisplay| (((|Void|) $) "\\spad{fullDisplay(ic)} prints all of the information contained in \\axiom{\\spad{ic}}.")) (|display| (((|Void|) $) "\\spad{display(ic)} prints a summary of the information contained in \\axiom{\\spad{ic}}.")) (|elt| (((|String|) $ (|Symbol|)) "\\spad{elt(ic,{}s)} selects a particular field from \\axiom{\\spad{ic}}. Valid fields are \\axiom{name,{} nargs,{} exposed,{} type,{} abbreviation,{} kind,{} origin,{} params,{} condition,{} doc}."))) NIL NIL -(-503 R Q A B) +(-505 R Q A B) ((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL NIL -(-504 -2266 |Expon| |VarSet| |DPoly|) +(-506 -2341 |Expon| |VarSet| |DPoly|) ((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,{}f,{}lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,{}f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,{}lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,{}listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,{}listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,{}f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,{}J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,{}J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,{}lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,{}I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,{}J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,{}I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -612) (QUOTE (-1173))))) -(-505 |vl| |nv|) +((|HasCategory| |#3| (LIST (QUOTE -614) (QUOTE (-1175))))) +(-507 |vl| |nv|) ((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,{}lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime."))) NIL NIL -(-506) +(-508) ((|constructor| (NIL "This domain represents identifer AST. This domain differs from Symbol in that it does not support any form of scripting. A value of this domain is a plain old identifier. \\blankline")) (|gensym| (($) "\\spad{gensym()} returns a new identifier,{} different from any other identifier in the running system"))) NIL NIL -(-507 A S) +(-509 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian groups over an abelian group \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL NIL -(-508 A S) +(-510 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian monoids over an abelian monoid \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support. Only non-zero terms are stored."))) NIL NIL -(-509 A S) +(-511 A S) ((|constructor| (NIL "This category represents the direct product of some set with respect to an ordered indexing set.")) (|reductum| (($ $) "\\spad{reductum(z)} returns a new element created by removing the leading coefficient/support pair from the element \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingSupport| ((|#2| $) "\\spad{leadingSupport(z)} returns the index of leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(z)} returns the coefficient of the leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(a,{}s)} constructs a direct product element with the \\spad{s} component set to \\spad{a}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}z)} returns the new element created by applying the function \\spad{f} to each component of the direct product element \\spad{z}."))) NIL NIL -(-510 A S) +(-512 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored."))) NIL NIL -(-511 A S) +(-513 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL NIL -(-512 A S) +(-514 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of objects over a set \\spad{A}} of generators indexed by an ordered set \\spad{S}. All items have finite support."))) NIL NIL -(-513 S A B) +(-515 S A B) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#2|) (|List| |#3|)) "\\spad{eval(f,{} [x1,{}...,{}xn],{} [v1,{}...,{}vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#2| |#3|) "\\spad{eval(f,{} x,{} v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-514 A B) +(-516 A B) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#1|) (|List| |#2|)) "\\spad{eval(f,{} [x1,{}...,{}xn],{} [v1,{}...,{}vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#1| |#2|) "\\spad{eval(f,{} x,{} v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-515 S E |un|) +(-517 S E |un|) ((|constructor| (NIL "Internal implementation of a free abelian monoid."))) NIL -((|HasCategory| |#2| (QUOTE (-790)))) -(-516 S |mn|) +((|HasCategory| |#2| (QUOTE (-792)))) +(-518 S |mn|) ((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,{}n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}"))) -((-4411 . T) (-4410 . T)) -((-2682 (-12 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-2682 (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-2682 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-1097)))) (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| (-564) (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860)))) (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) -(-517) +((-4418 . T) (-4417 . T)) +((-2809 (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2809 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) +(-519) ((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'."))) NIL NIL -(-518 |p| |n|) +(-520 |p| |n|) ((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}."))) -((-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) -((-2682 (|HasCategory| (-581 |#1|) (QUOTE (-145))) (|HasCategory| (-581 |#1|) (QUOTE (-368)))) (|HasCategory| (-581 |#1|) (QUOTE (-147))) (|HasCategory| (-581 |#1|) (QUOTE (-368))) (|HasCategory| (-581 |#1|) (QUOTE (-145)))) -(-519 R |mnRow| |mnCol| |Row| |Col|) +((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((-2809 (|HasCategory| (-583 |#1|) (QUOTE (-145))) (|HasCategory| (-583 |#1|) (QUOTE (-370)))) (|HasCategory| (-583 |#1|) (QUOTE (-147))) (|HasCategory| (-583 |#1|) (QUOTE (-370))) (|HasCategory| (-583 |#1|) (QUOTE (-145)))) +(-521 R |mnRow| |mnCol| |Row| |Col|) ((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}."))) -((-4410 . T) (-4411 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1097))) (-2682 (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) -(-520 S |mn|) +((-4417 . T) (-4418 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) +(-522 S |mn|) ((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,{}mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists."))) -((-4411 . T) (-4410 . T)) -((-2682 (-12 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-2682 (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-2682 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-1097)))) (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| (-564) (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860)))) (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) -(-521 R |Row| |Col| M) +((-4418 . T) (-4417 . T)) +((-2809 (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2809 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) +(-523 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}."))) NIL -((|HasAttribute| |#3| (QUOTE -4411))) -(-522 R |Row| |Col| M QF |Row2| |Col2| M2) +((|HasAttribute| |#3| (QUOTE -4418))) +(-524 R |Row| |Col| M QF |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field."))) NIL -((|HasAttribute| |#7| (QUOTE -4411))) -(-523 R |mnRow| |mnCol|) +((|HasAttribute| |#7| (QUOTE -4418))) +(-525 R |mnRow| |mnCol|) ((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa."))) -((-4410 . T) (-4411 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1097))) (-2682 (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-556))) (|HasAttribute| |#1| (QUOTE (-4412 "*"))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) -(-524) +((-4417 . T) (-4418 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-558))) (|HasAttribute| |#1| (QUOTE (-4419 "*"))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) +(-526) ((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'."))) NIL NIL -(-525) +(-527) ((|constructor| (NIL "This domain represents the `in' iterator syntax.")) (|sequence| (((|SpadAst|) $) "\\spad{sequence(i)} returns the sequence expression being iterated over by `i'.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the `in' iterator 'i'"))) NIL NIL -(-526 S) +(-528 S) ((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,{}b)} reads byte sequences from conduit \\spad{`c'} into the byte buffer \\spad{`b'}. The actual number of bytes written is returned,{} and the length of \\spad{`b'} is set to that amount.")) (|readUInt32!| (((|Maybe| (|UInt32|)) $) "\\spad{readUInt32!(cond)} attempts to read a UInt32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt32!| (((|Maybe| (|Int32|)) $) "\\spad{readInt32!(cond)} attempts to read an Int32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt16!| (((|Maybe| (|UInt16|)) $) "\\spad{readUInt16!(cond)} attempts to read a UInt16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt16!| (((|Maybe| (|Int16|)) $) "\\spad{readInt16!(cond)} attempts to read an Int16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt8!| (((|Maybe| (|UInt8|)) $) "\\spad{readUInt8!(cond)} attempts to read a UInt8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt8!| (((|Maybe| (|Int8|)) $) "\\spad{readInt8!(cond)} attempts to read an Int8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readByte!| (((|Maybe| (|Byte|)) $) "\\spad{readByte!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise \\spad{nothing}."))) NIL NIL -(-527) +(-529) ((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,{}b)} reads byte sequences from conduit \\spad{`c'} into the byte buffer \\spad{`b'}. The actual number of bytes written is returned,{} and the length of \\spad{`b'} is set to that amount.")) (|readUInt32!| (((|Maybe| (|UInt32|)) $) "\\spad{readUInt32!(cond)} attempts to read a UInt32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt32!| (((|Maybe| (|Int32|)) $) "\\spad{readInt32!(cond)} attempts to read an Int32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt16!| (((|Maybe| (|UInt16|)) $) "\\spad{readUInt16!(cond)} attempts to read a UInt16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt16!| (((|Maybe| (|Int16|)) $) "\\spad{readInt16!(cond)} attempts to read an Int16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt8!| (((|Maybe| (|UInt8|)) $) "\\spad{readUInt8!(cond)} attempts to read a UInt8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt8!| (((|Maybe| (|Int8|)) $) "\\spad{readInt8!(cond)} attempts to read an Int8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readByte!| (((|Maybe| (|Byte|)) $) "\\spad{readByte!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise \\spad{nothing}."))) NIL NIL -(-528 GF) +(-530 GF) ((|constructor| (NIL "InnerNormalBasisFieldFunctions(\\spad{GF}) (unexposed): This package has functions used by every normal basis finite field extension domain.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{minimalPolynomial(x)} \\undocumented{} See \\axiomFunFrom{minimalPolynomial}{FiniteAlgebraicExtensionField}")) (|normalElement| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{normalElement(n)} \\undocumented{} See \\axiomFunFrom{normalElement}{FiniteAlgebraicExtensionField}")) (|basis| (((|Vector| (|Vector| |#1|)) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{} See \\axiomFunFrom{basis}{FiniteAlgebraicExtensionField}")) (|normal?| (((|Boolean|) (|Vector| |#1|)) "\\spad{normal?(x)} \\undocumented{} See \\axiomFunFrom{normal?}{FiniteAlgebraicExtensionField}")) (|lookup| (((|PositiveInteger|) (|Vector| |#1|)) "\\spad{lookup(x)} \\undocumented{} See \\axiomFunFrom{lookup}{Finite}")) (|inv| (((|Vector| |#1|) (|Vector| |#1|)) "\\spad{inv x} \\undocumented{} See \\axiomFunFrom{inv}{DivisionRing}")) (|trace| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{trace(x,{}n)} \\undocumented{} See \\axiomFunFrom{trace}{FiniteAlgebraicExtensionField}")) (|norm| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{norm(x,{}n)} \\undocumented{} See \\axiomFunFrom{norm}{FiniteAlgebraicExtensionField}")) (/ (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x/y} \\undocumented{} See \\axiomFunFrom{/}{Field}")) (* (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x*y} \\undocumented{} See \\axiomFunFrom{*}{SemiGroup}")) (** (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{x**n} \\undocumented{} See \\axiomFunFrom{\\spad{**}}{DivisionRing}")) (|qPot| (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{qPot(v,{}e)} computes \\spad{v**(q**e)},{} interpreting \\spad{v} as an element of normal basis field,{} \\spad{q} the size of the ground field. This is done by a cyclic \\spad{e}-shift of the vector \\spad{v}.")) (|expPot| (((|Vector| |#1|) (|Vector| |#1|) (|SingleInteger|) (|SingleInteger|)) "\\spad{expPot(v,{}e,{}d)} returns the sum from \\spad{i = 0} to \\spad{e - 1} of \\spad{v**(q**i*d)},{} interpreting \\spad{v} as an element of a normal basis field and where \\spad{q} is the size of the ground field. Note: for a description of the algorithm,{} see \\spad{T}.Itoh and \\spad{S}.Tsujii,{} \"A fast algorithm for computing multiplicative inverses in \\spad{GF}(2^m) using normal bases\",{} Information and Computation 78,{} \\spad{pp}.171-177,{} 1988.")) (|repSq| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|)) "\\spad{repSq(v,{}e)} computes \\spad{v**e} by repeated squaring,{} interpreting \\spad{v} as an element of a normal basis field.")) (|dAndcExp| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|) (|SingleInteger|)) "\\spad{dAndcExp(v,{}n,{}k)} computes \\spad{v**e} interpreting \\spad{v} as an element of normal basis field. A divide and conquer algorithm similar to the one from \\spad{D}.\\spad{R}.Stinson,{} \"Some observations on parallel Algorithms for fast exponentiation in \\spad{GF}(2^n)\",{} Siam \\spad{J}. Computation,{} Vol.19,{} No.4,{} \\spad{pp}.711-717,{} August 1990 is used. Argument \\spad{k} is a parameter of this algorithm.")) (|xn| (((|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|)) "\\spad{xn(n)} returns the polynomial \\spad{x**n-1}.")) (|pol| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{pol(v)} turns the vector \\spad{[v0,{}...,{}vn]} into the polynomial \\spad{v0+v1*x+ ... + vn*x**n}.")) (|index| (((|Vector| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{index(n,{}m)} is a index function for vectors of length \\spad{n} over the ground field.")) (|random| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{random(n)} creates a vector over the ground field with random entries.")) (|setFieldInfo| (((|Void|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) |#1|) "\\spad{setFieldInfo(m,{}p)} initializes the field arithmetic,{} where \\spad{m} is the multiplication table and \\spad{p} is the respective normal element of the ground field \\spad{GF}."))) NIL NIL -(-529) +(-531) ((|constructor| (NIL "This domain provides representation for binary files open for input operations. `Binary' here means that the conduits do not interpret their contents.")) (|position!| (((|SingleInteger|) $ (|SingleInteger|)) "position(\\spad{f},{}\\spad{p}) sets the current byte-position to `i'.")) (|position| (((|SingleInteger|) $) "\\spad{position(f)} returns the current byte-position in the file \\spad{`f'}.")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(ifile)} holds if `ifile' is in open state.")) (|eof?| (((|Boolean|) $) "\\spad{eof?(ifile)} holds when the last read reached end of file.")) (|inputBinaryFile| (($ (|String|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by \\spad{`f'} as a binary file."))) NIL NIL -(-530 R) +(-532 R) ((|constructor| (NIL "This package provides operations to create incrementing functions.")) (|incrementBy| (((|Mapping| |#1| |#1|) |#1|) "\\spad{incrementBy(n)} produces a function which adds \\spad{n} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment(\\spad{n})} then \\spad{f x} is \\spad{x+n}.")) (|increment| (((|Mapping| |#1| |#1|)) "\\spad{increment()} produces a function which adds \\spad{1} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment()} then \\spad{f x} is \\spad{x+1}."))) NIL NIL -(-531 |Varset|) +(-533 |Varset|) ((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables"))) NIL NIL -(-532 K -2266 |Par|) +(-534 K -2341 |Par|) ((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,{}eps,{}factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol,{} eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}"))) NIL NIL -(-533) +(-535) NIL NIL NIL -(-534) +(-536) ((|constructor| (NIL "Default infinity signatures for the interpreter; Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|minusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{minusInfinity()} returns minusInfinity.")) (|plusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{plusInfinity()} returns plusIinfinity.")) (|infinity| (((|OnePointCompletion| (|Integer|))) "\\spad{infinity()} returns infinity."))) NIL NIL -(-535 R) +(-537 R) ((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter,{} and transforms the result into an object of type \\spad{R}.")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to \\spad{f}\\$\\spad{R}."))) NIL NIL -(-536) +(-538) ((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f,{} [t1,{}...,{}tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,{}...,{}tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}\\spad{'s} are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|parseString| (($ (|String|)) "parseString is the inverse of unparse. It parses a string to InputForm.")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) ((|One|) (($) "\\spad{1} returns the input form corresponding to 1.")) ((|Zero|) (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code,{} [x1,{}...,{}xn])} returns the input form corresponding to \\spad{(x1,{}...,{}xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code,{} [x1,{}...,{}xn],{} f)} returns the input form corresponding to \\spad{f(x1,{}...,{}xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op,{} [a1,{}...,{}an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter."))) NIL NIL -(-537 |Coef| UTS) +(-539 |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-538 K -2266 |Par|) +(-540 K -2341 |Par|) ((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,{}lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,{}lden,{}lvar,{}eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,{}eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,{}eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}."))) NIL NIL -(-539 R BP |pMod| |nextMod|) +(-541 R BP |pMod| |nextMod|) ((|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(f,{}p)} reduces the coefficients of the polynomial \\spad{f} modulo the prime \\spad{p}.")) (|modularGcd| ((|#2| (|List| |#2|)) "\\spad{modularGcd(listf)} computes the \\spad{gcd} of the list of polynomials \\spad{listf} by modular methods.")) (|modularGcdPrimitive| ((|#2| (|List| |#2|)) "\\spad{modularGcdPrimitive(f1,{}f2)} computes the \\spad{gcd} of the two polynomials \\spad{f1} and \\spad{f2} by modular methods."))) NIL NIL -(-540 OV E R P) +(-542 OV E R P) ((|constructor| (NIL "\\indented{2}{This is an inner package for factoring multivariate polynomials} over various coefficient domains in characteristic 0. The univariate factor operation is passed as a parameter. Multivariate hensel lifting is used to lift the univariate factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,{}ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}. \\spad{p} is represented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,{}ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}."))) NIL NIL -(-541 K UP |Coef| UTS) +(-543 K UP |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an arbitrary finite field.")) (|generalInfiniteProduct| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#4| |#4|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#4| |#4|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#4| |#4|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-542 |Coef| UTS) +(-544 |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over a field of prime order.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-543 R UP) +(-545 R UP) ((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) "failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}r,{}f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}r,{}i,{}f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}i,{}f)} \\undocumented"))) NIL NIL -(-544 S) +(-546 S) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a<b>1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) NIL NIL -(-545) +(-547) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a<b>1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) -((-4408 . T) (-4409 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) +((-4415 . T) (-4416 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) NIL -(-546) +(-548) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 16 bits."))) NIL NIL -(-547) +(-549) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 32 bits."))) NIL NIL -(-548) +(-550) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 64 bits."))) NIL NIL -(-549) +(-551) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 8 bits."))) NIL NIL -(-550 |Key| |Entry| |addDom|) +(-552 |Key| |Entry| |addDom|) ((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}."))) -((-4410 . T) (-4411 . T)) -((-12 (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (QUOTE (-1097))) (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1914) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2683) (|devaluate| |#2|)))))) (-2682 (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (QUOTE (-1097))) (|HasCategory| |#2| (QUOTE (-1097)))) (-2682 (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (QUOTE (-1097))) (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (QUOTE (-1097))) (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-1097))) (-2682 (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (LIST (QUOTE -611) (QUOTE (-860))))) -(-551 R -2266) +((-4417 . T) (-4418 . T)) +((-12 (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1928) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2806) (|devaluate| |#2|)))))) (-2809 (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-1099)))) (-2809 (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-1099))) (-2809 (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (LIST (QUOTE -613) (QUOTE (-862))))) +(-553 R -2341) ((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f,{} x,{} y,{} d)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}."))) NIL NIL -(-552 R0 -2266 UP UPUP R) +(-554 R0 -2341 UP UPUP R) ((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f,{} d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}."))) NIL NIL -(-553) +(-555) ((|constructor| (NIL "This package provides functions to lookup bits in integers")) (|bitTruth| (((|Boolean|) (|Integer|) (|Integer|)) "\\spad{bitTruth(n,{}m)} returns \\spad{true} if coefficient of 2**m in abs(\\spad{n}) is 1")) (|bitCoef| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{bitCoef(n,{}m)} returns the coefficient of 2**m in abs(\\spad{n})")) (|bitLength| (((|Integer|) (|Integer|)) "\\spad{bitLength(n)} returns the number of bits to represent abs(\\spad{n})"))) NIL NIL -(-554 R) +(-556 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,{}f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,{}sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,{}sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise."))) -((-3560 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) +((-3649 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) NIL -(-555 S) +(-557 S) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) NIL NIL -(-556) +(-558) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) -((-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) +((-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) NIL -(-557 R -2266) +(-559 R -2341) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,{}x,{}k,{}[k1,{}...,{}kn])} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f,{} x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f,{} x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,{}x,{}[g1,{}...,{}gn])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} and \\spad{d(h+sum(\\spad{ci} log(\\spad{gi})))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f,{} x,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise."))) NIL NIL -(-558 I) +(-560 I) ((|constructor| (NIL "\\indented{1}{This Package contains basic methods for integer factorization.} The factor operation employs trial division up to 10,{}000. It then tests to see if \\spad{n} is a perfect power before using Pollards rho method. Because Pollards method may fail,{} the result of factor may contain composite factors. We should also employ Lenstra\\spad{'s} eliptic curve method.")) (|PollardSmallFactor| (((|Union| |#1| "failed") |#1|) "\\spad{PollardSmallFactor(n)} returns a factor of \\spad{n} or \"failed\" if no one is found")) (|BasicMethod| (((|Factored| |#1|) |#1|) "\\spad{BasicMethod(n)} returns the factorization of integer \\spad{n} by trial division")) (|squareFree| (((|Factored| |#1|) |#1|) "\\spad{squareFree(n)} returns the square free factorization of integer \\spad{n}")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(n)} returns the full factorization of integer \\spad{n}"))) NIL NIL -(-559) +(-561) ((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions."))) NIL NIL -(-560 R -2266 L) +(-562 R -2341 L) ((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x,{} y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,{}g,{}x,{}y,{}z,{}t,{}c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op,{} g,{} x,{} y,{} d,{} p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,{}k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,{}k,{}f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,{}k,{}k,{}p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} t,{} c)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} d,{} p)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} z,{} t,{} c)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} d,{} p)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f,{} x,{} y,{} g,{} z,{} t,{} c)} returns functions \\spad{[h,{} d]} such that \\spad{dh/dx = f(x,{}y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f,{} x,{} y,{} g,{} d,{} p)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f,{} x,{} y,{} z,{} t,{} c)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f,{} x,{} y,{} d,{} p)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -654) (|devaluate| |#2|)))) -(-561) +((|HasCategory| |#3| (LIST (QUOTE -656) (|devaluate| |#2|)))) +(-563) ((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,{}k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,{}p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,{}p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,{}b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,{}b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,{}k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,{}1/2)},{} where \\spad{E(n,{}x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,{}m1,{}x2,{}m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,{}0)},{} where \\spad{B(n,{}x)} is the \\spad{n}th Bernoulli polynomial."))) NIL NIL -(-562 -2266 UP UPUP R) +(-564 -2341 UP UPUP R) ((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} ')} returns \\spad{[g,{}h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles."))) NIL NIL -(-563 -2266 UP) +(-565 -2341 UP) ((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} D)} returns \\spad{[g,{} h,{} s,{} p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}."))) NIL NIL -(-564) +(-566) ((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}."))) -((-4392 . T) (-4398 . T) (-4402 . T) (-4397 . T) (-4408 . T) (-4409 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) +((-4399 . T) (-4405 . T) (-4409 . T) (-4404 . T) (-4415 . T) (-4416 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) NIL -(-565) +(-567) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp,{} x = a..b,{} numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp,{} x = a..b,{} \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel,{} routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp,{} a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsabs,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} a..b,{} epsrel,{} routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}."))) NIL NIL -(-566 R -2266 L) +(-568 R -2341 L) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op,{} g,{} kx,{} y,{} x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp,{} f,{} g,{} x,{} y,{} foo)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a,{} b,{} x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f,{} x,{} y,{} [u1,{}...,{}un])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f,{} x,{} y,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f,{} x,{} y)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -654) (|devaluate| |#2|)))) -(-567 R -2266) +((|HasCategory| |#3| (LIST (QUOTE -656) (|devaluate| |#2|)))) +(-569 R -2341) ((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f,{} x)} returns \\spad{[c,{} g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}."))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-1136)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-627))))) -(-568 -2266 UP) +((-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-1138)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-629))))) +(-570 -2341 UP) ((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(\\spad{ci} log(\\spad{gi})))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}."))) NIL NIL -(-569 S) +(-571 S) ((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer."))) NIL NIL -(-570 -2266) +(-572 -2341) ((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f,{} x,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f,{} x,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{} [[\\spad{ci},{}\\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(\\spad{ci} log(\\spad{gi})))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f,{} x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns \\spad{g} such that \\spad{dg/dx = f}."))) NIL NIL -(-571 R) +(-573 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals."))) -((-3560 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) +((-3649 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) NIL -(-572) +(-574) ((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL -(-573 R -2266) +(-575 R -2341) ((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f,{} x,{} int,{} pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f,{} x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f,{} x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,{}...,{}fn],{}x)} returns the set-theoretic union of \\spad{(varselect(f1,{}x),{}...,{}varselect(fn,{}x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1,{} l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k,{} [k1,{}...,{}kn],{} x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,{}...,{}kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,{}...,{}kn],{} x)} returns the \\spad{ki} which involve \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-284))) (|HasCategory| |#2| (QUOTE (-627))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-1173))))) (-12 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-284)))) (|HasCategory| |#1| (QUOTE (-556)))) -(-574 -2266 UP) +((-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-285))) (|HasCategory| |#2| (QUOTE (-629))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-1175))))) (-12 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-285)))) (|HasCategory| |#1| (QUOTE (-558)))) +(-576 -2341 UP) ((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p,{} ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f,{} ')} returns \\spad{[ir,{} s,{} p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p,{} foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p,{} ',{} t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f,{} ',{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[\\spad{ci} * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f,{} ',{} g)} returns \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}."))) NIL NIL -(-575 R -2266) +(-577 R -2341) ((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f,{} s,{} t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form."))) NIL NIL -(-576) +(-578) ((|constructor| (NIL "This category describes byte stream conduits supporting both input and output operations."))) NIL NIL -(-577) +(-579) ((|constructor| (NIL "\\indented{2}{This domain provides representation for binary files open} \\indented{2}{for input and output operations.} See Also: InputBinaryFile,{} OutputBinaryFile")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(f)} holds if \\spad{`f'} is in open state.")) (|inputOutputBinaryFile| (($ (|String|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file designated by \\spad{`f'} as a binary file."))) NIL NIL -(-578) +(-580) ((|constructor| (NIL "This domain provides constants to describe directions of IO conduits (file,{} etc) mode of operations.")) (|bothWays| (($) "`bothWays' indicates that an IO conduit is for both input and output.")) (|output| (($) "`output' indicates that an IO conduit is for output")) (|input| (($) "`input' indicates that an IO conduit is for input."))) NIL NIL -(-579) +(-581) ((|constructor| (NIL "This domain provides representation for ARPA Internet IP4 addresses.")) (|resolve| (((|Maybe| $) (|Hostname|)) "\\spad{resolve(h)} returns the IP4 address of host \\spad{`h'}.")) (|bytes| (((|DataArray| 4 (|Byte|)) $) "\\spad{bytes(x)} returns the bytes of the numeric address \\spad{`x'}.")) (|ip4Address| (($ (|String|)) "\\spad{ip4Address(a)} builds a numeric address out of the ASCII form `a'."))) NIL NIL -(-580 |p| |unBalanced?|) +(-582 |p| |unBalanced?|) ((|constructor| (NIL "This domain implements \\spad{Zp},{} the \\spad{p}-adic completion of the integers. This is an internal domain."))) -((-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) +((-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) NIL -(-581 |p|) +(-583 |p|) ((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check."))) -((-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) -((|HasCategory| $ (QUOTE (-147))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-368)))) -(-582) +((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((|HasCategory| $ (QUOTE (-147))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-370)))) +(-584) ((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor."))) NIL NIL -(-583 R -2266) +(-585 R -2341) ((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL NIL -(-584 E -2266) +(-586 E -2341) ((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,{}ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,{}ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,{}ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,{}ire)} \\undocumented"))) NIL NIL -(-585 -2266) +(-587 -2341) ((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,{}x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,{}D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,{}l,{}ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}."))) -((-4405 . T) (-4404 . T)) -((|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-1173))))) -(-586 I) +((-4412 . T) (-4411 . T)) +((|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-1175))))) +(-588 I) ((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,{}r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,{}r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,{}r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,{}r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise"))) NIL NIL -(-587 GF) +(-589 GF) ((|constructor| (NIL "This package exports the function generateIrredPoly that computes a monic irreducible polynomial of degree \\spad{n} over a finite field.")) (|generateIrredPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{generateIrredPoly(n)} generates an irreducible univariate polynomial of the given degree \\spad{n} over the finite field."))) NIL NIL -(-588 R) +(-590 R) ((|constructor| (NIL "\\indented{2}{This package allows a sum of logs over the roots of a polynomial} \\indented{2}{to be expressed as explicit logarithms and arc tangents,{} provided} \\indented{2}{that the indexing polynomial can be factored into quadratics.} Date Created: 21 August 1988 Date Last Updated: 4 October 1993")) (|complexIntegrate| (((|Expression| |#1|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|integrate| (((|Union| (|Expression| |#1|) (|List| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable..")) (|complexExpand| (((|Expression| |#1|) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| (|Expression| |#1|)) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL ((|HasCategory| |#1| (QUOTE (-147)))) -(-589) +(-591) ((|constructor| (NIL "IrrRepSymNatPackage contains functions for computing the ordinary irreducible representations of symmetric groups on \\spad{n} letters {\\em {1,{}2,{}...,{}n}} in Young\\spad{'s} natural form and their dimensions. These representations can be labelled by number partitions of \\spad{n},{} \\spadignore{i.e.} a weakly decreasing sequence of integers summing up to \\spad{n},{} \\spadignore{e.g.} {\\em [3,{}3,{}3,{}1]} labels an irreducible representation for \\spad{n} equals 10. Note: whenever a \\spadtype{List Integer} appears in a signature,{} a partition required.")) (|irreducibleRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|)) (|List| (|Permutation| (|Integer|)))) "\\spad{irreducibleRepresentation(lambda,{}listOfPerm)} is the list of the irreducible representations corresponding to {\\em lambda} in Young\\spad{'s} natural form for the list of permutations given by {\\em listOfPerm}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{irreducibleRepresentation(lambda)} is the list of the two irreducible representations corresponding to the partition {\\em lambda} in Young\\spad{'s} natural form for the following two generators of the symmetric group,{} whose elements permute {\\em {1,{}2,{}...,{}n}},{} namely {\\em (1 2)} (2-cycle) and {\\em (1 2 ... n)} (\\spad{n}-cycle).") (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|Permutation| (|Integer|))) "\\spad{irreducibleRepresentation(lambda,{}\\spad{pi})} is the irreducible representation corresponding to partition {\\em lambda} in Young\\spad{'s} natural form of the permutation {\\em \\spad{pi}} in the symmetric group,{} whose elements permute {\\em {1,{}2,{}...,{}n}}.")) (|dimensionOfIrreducibleRepresentation| (((|NonNegativeInteger|) (|List| (|Integer|))) "\\spad{dimensionOfIrreducibleRepresentation(lambda)} is the dimension of the ordinary irreducible representation of the symmetric group corresponding to {\\em lambda}. Note: the Robinson-Thrall hook formula is implemented."))) NIL NIL -(-590 R E V P TS) +(-592 R E V P TS) ((|constructor| (NIL "\\indented{1}{An internal package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a square-free} \\indented{1}{triangular set.} \\indented{1}{The main operation is \\axiomOpFrom{rur}{InternalRationalUnivariateRepresentationPackage}.} \\indented{1}{It is based on the {\\em generic} algorithm description in [1]. \\newline References:} [1] \\spad{D}. LAZARD \"Solving Zero-dimensional Algebraic Systems\" \\indented{4}{Journal of Symbolic Computation,{} 1992,{} 13,{} 117-131}")) (|checkRur| (((|Boolean|) |#5| (|List| |#5|)) "\\spad{checkRur(ts,{}lus)} returns \\spad{true} if \\spad{lus} is a rational univariate representation of \\spad{ts}.")) (|rur| (((|List| |#5|) |#5| (|Boolean|)) "\\spad{rur(ts,{}univ?)} returns a rational univariate representation of \\spad{ts}. This assumes that the lowest polynomial in \\spad{ts} is a variable \\spad{v} which does not occur in the other polynomials of \\spad{ts}. This variable will be used to define the simple algebraic extension over which these other polynomials will be rewritten as univariate polynomials with degree one. If \\spad{univ?} is \\spad{true} then these polynomials will have a constant initial."))) NIL NIL -(-591) +(-593) ((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the is expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the is expression `e'."))) NIL NIL -(-592 |mn|) +(-594 |mn|) ((|constructor| (NIL "This domain implements low-level strings")) (|hash| (((|Integer|) $) "\\spad{hash(x)} provides a hashing function for strings"))) -((-4411 . T) (-4410 . T)) -((-2682 (-12 (|HasCategory| (-144) (QUOTE (-848))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1097))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (-2682 (|HasCategory| (-144) (LIST (QUOTE -611) (QUOTE (-860)))) (-12 (|HasCategory| (-144) (QUOTE (-1097))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -612) (QUOTE (-536)))) (-2682 (|HasCategory| (-144) (QUOTE (-848))) (|HasCategory| (-144) (QUOTE (-1097)))) (|HasCategory| (-144) (QUOTE (-848))) (|HasCategory| (-564) (QUOTE (-848))) (|HasCategory| (-144) (QUOTE (-1097))) (|HasCategory| (-144) (LIST (QUOTE -611) (QUOTE (-860)))) (-12 (|HasCategory| (-144) (QUOTE (-1097))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) -(-593 E V R P) +((-4418 . T) (-4417 . T)) +((-2809 (-12 (|HasCategory| (-144) (QUOTE (-850))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1099))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) (-2809 (|HasCategory| (-144) (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| (-144) (QUOTE (-1099))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -614) (QUOTE (-538)))) (-2809 (|HasCategory| (-144) (QUOTE (-850))) (|HasCategory| (-144) (QUOTE (-1099)))) (|HasCategory| (-144) (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| (-144) (QUOTE (-1099))) (|HasCategory| (-144) (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| (-144) (QUOTE (-1099))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) +(-595 E V R P) ((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n),{} n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n),{} n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}."))) NIL NIL -(-594 |Coef|) +(-596 |Coef|) ((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,{}r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,{}r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,{}refer,{}var,{}cen,{}r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,{}g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,{}g,{}taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,{}f)} returns the series \\spad{sum(fn(n) * an * x^n,{}n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,{}n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,{}str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) -(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4404 . T) (-4405 . T) (-4407 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (-2682 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|)))) (|HasCategory| (-564) (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -2390) (LIST (|devaluate| |#1|) (QUOTE (-1173)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564)))))) -(-595 |Coef|) +(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-558)) (-4411 . T) (-4412 . T) (-4414 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|)))) (|HasCategory| (-566) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -2479) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566)))))) +(-597 |Coef|) ((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.") (($ $ |#1|) "\\spad{x*c} returns the product of \\spad{c} and the series \\spad{x}.") (($ |#1| $) "\\spad{c*x} returns the product of \\spad{c} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,{}n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}"))) -((-4405 |has| |#1| (-556)) (-4404 |has| |#1| (-556)) ((-4412 "*") |has| |#1| (-556)) (-4403 |has| |#1| (-556)) (-4407 . T)) -((|HasCategory| |#1| (QUOTE (-556)))) -(-596 A B) +((-4412 |has| |#1| (-558)) (-4411 |has| |#1| (-558)) ((-4419 "*") |has| |#1| (-558)) (-4410 |has| |#1| (-558)) (-4414 . T)) +((|HasCategory| |#1| (QUOTE (-558)))) +(-598 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[f(x0),{}f(x1),{}f(x2),{}..]}."))) NIL NIL -(-597 A B C) +(-599 A B C) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented"))) NIL NIL -(-598 R -2266 FG) +(-600 R -2341 FG) ((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f,{} [k1,{}...,{}kn],{} [x1,{}...,{}xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{\\spad{xi}'s} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{\\spad{ki}'s},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain."))) NIL NIL -(-599 S) +(-601 S) ((|constructor| (NIL "\\indented{1}{This package implements 'infinite tuples' for the interpreter.} The representation is a stream.")) (|construct| (((|Stream| |#1|) $) "\\spad{construct(t)} converts an infinite tuple to a stream.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}s)} returns \\spad{[s,{}f(s),{}f(f(s)),{}...]}.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}t)} returns \\spad{[x for x in t | p(x)]}.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}t)} returns \\spad{[x for x in t while not p(x)]}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}t)} returns \\spad{[x for x in t while p(x)]}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}t)} replaces the tuple \\spad{t} by \\spad{[f(x) for x in t]}."))) NIL NIL -(-600 R |mn|) +(-602 R |mn|) ((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index."))) -((-4411 . T) (-4410 . T)) -((-2682 (-12 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-2682 (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-2682 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-1097)))) (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| (-564) (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-724))) (|HasCategory| |#1| (QUOTE (-1047))) (-12 (|HasCategory| |#1| (QUOTE (-1000))) (|HasCategory| |#1| (QUOTE (-1047)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860)))) (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) -(-601 S |Index| |Entry|) +((-4418 . T) (-4417 . T)) +((-2809 (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2809 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-726))) (|HasCategory| |#1| (QUOTE (-1049))) (-12 (|HasCategory| |#1| (QUOTE (-1002))) (|HasCategory| |#1| (QUOTE (-1049)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) +(-603 S |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL -((|HasAttribute| |#1| (QUOTE -4411)) (|HasCategory| |#2| (QUOTE (-848))) (|HasAttribute| |#1| (QUOTE -4410)) (|HasCategory| |#3| (QUOTE (-1097)))) -(-602 |Index| |Entry|) +((|HasAttribute| |#1| (QUOTE -4418)) (|HasCategory| |#2| (QUOTE (-850))) (|HasAttribute| |#1| (QUOTE -4417)) (|HasCategory| |#3| (QUOTE (-1099)))) +(-604 |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL NIL -(-603) +(-605) ((|constructor| (NIL "\\indented{1}{This domain defines the datatype for the Java} Virtual Machine byte codes."))) NIL NIL -(-604) +(-606) ((|constructor| (NIL "This domain represents the join of categories ASTs.")) (|categories| (((|List| (|TypeAst|)) $) "catehories(\\spad{x}) returns the types in the join \\spad{`x'}.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::JoinAst construct the AST for a join of the types `ts'."))) NIL NIL -(-605 R A) +(-607 R A) ((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,{}b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A)."))) -((-4407 -2682 (-2317 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))) (-4405 . T) (-4404 . T)) -((-2682 (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (-2682 (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|)))) -(-606 |Entry|) +((-4414 -2809 (-2402 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))) (-4412 . T) (-4411 . T)) +((-2809 (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -419) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -419) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -419) (|devaluate| |#1|)))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#2| (LIST (QUOTE -419) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|)))) +(-608 |Entry|) ((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space."))) -((-4410 . T) (-4411 . T)) -((-12 (|HasCategory| (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (QUOTE (-1097))) (|HasCategory| (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1914) (QUOTE (-1155))) (LIST (QUOTE |:|) (QUOTE -2683) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| (-1155) (QUOTE (-848))) (|HasCategory| (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (LIST (QUOTE -611) (QUOTE (-860))))) -(-607 S |Key| |Entry|) +((-4417 . T) (-4418 . T)) +((-12 (|HasCategory| (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1928) (QUOTE (-1157))) (LIST (QUOTE |:|) (QUOTE -2806) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| (-1157) (QUOTE (-850))) (|HasCategory| (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (LIST (QUOTE -613) (QUOTE (-862))))) +(-609 S |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}."))) NIL NIL -(-608 |Key| |Entry|) +(-610 |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}."))) -((-4411 . T)) +((-4418 . T)) NIL -(-609 R S) +(-611 R S) ((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented"))) NIL NIL -(-610 S) +(-612 S) ((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,{}...,{}an),{} s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,{}...,{}an),{} f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op,{} [a1,{}...,{}an],{} m)} returns the kernel \\spad{op(a1,{}...,{}an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,{}...,{}an))} returns \\spad{[a1,{}...,{}an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,{}...,{}an))} returns the operator op.")) (|name| (((|Symbol|) $) "\\spad{name(op(a1,{}...,{}an))} returns the name of op."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564)))))) -(-611 S) +((|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) +(-613 S) ((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-612 S) +(-614 S) ((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-613 -2266 UP) +(-615 -2341 UP) ((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2,{}ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions."))) NIL NIL -(-614 S) +(-616 S) ((|constructor| (NIL "A is coercible from \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain A.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} transforms \\spad{`s'} into an element of `\\%'."))) NIL NIL -(-615) +(-617) ((|constructor| (NIL "This domain implements Kleene\\spad{'s} 3-valued propositional logic.")) (|case| (((|Boolean|) $ (|[\|\|]| |true|)) "\\spad{s case true} holds if the value of \\spad{`x'} is `true'.") (((|Boolean|) $ (|[\|\|]| |unknown|)) "\\spad{x case unknown} holds if the value of \\spad{`x'} is `unknown'") (((|Boolean|) $ (|[\|\|]| |false|)) "\\spad{x case false} holds if the value of \\spad{`x'} is `false'")) (|unknown| (($) "the indefinite `unknown'"))) NIL NIL -(-616 S) +(-618 S) ((|constructor| (NIL "A is convertible from \\spad{B} iff any element of domain \\spad{B} can be explicitly converted into an element of domain A.")) (|convert| (($ |#1|) "\\spad{convert(s)} transforms \\spad{`s'} into an element of `\\%'."))) NIL NIL -(-617 S R) +(-619 S R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#2|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) NIL NIL -(-618 R) +(-620 R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) -((-4407 . T)) +((-4414 . T)) NIL -(-619 A R S) +(-621 A R S) ((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4404 . T) (-4405 . T) (-4407 . T)) -((|HasCategory| |#1| (QUOTE (-846)))) -(-620 R -2266) +((-4411 . T) (-4412 . T) (-4414 . T)) +((|HasCategory| |#1| (QUOTE (-848)))) +(-622 R -2341) ((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f,{} t,{} s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t),{} t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f,{} t,{} s)} if it cannot compute the transform."))) NIL NIL -(-621 R UP) +(-623 R UP) ((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,{}n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,{}n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented"))) -((-4405 . T) (-4404 . T) ((-4412 "*") . T) (-4403 . T) (-4407 . T)) -((|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564))))) -(-622 R E V P TS ST) +((-4412 . T) (-4411 . T) ((-4419 "*") . T) (-4410 . T) (-4414 . T)) +((|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566))))) +(-624 R E V P TS ST) ((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional."))) NIL NIL -(-623 OV E Z P) +(-625 OV E Z P) ((|constructor| (NIL "Package for leading coefficient determination in the lifting step. Package working for every \\spad{R} euclidean with property \\spad{\"F\"}.")) (|distFact| (((|Union| (|Record| (|:| |polfac| (|List| |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (|List| (|SparseUnivariatePolynomial| |#3|)))) "failed") |#3| (|List| (|SparseUnivariatePolynomial| |#3|)) (|Record| (|:| |contp| |#3|) (|:| |factors| (|List| (|Record| (|:| |irr| |#4|) (|:| |pow| (|Integer|)))))) (|List| |#3|) (|List| |#1|) (|List| |#3|)) "\\spad{distFact(contm,{}unilist,{}plead,{}vl,{}lvar,{}lval)},{} where \\spad{contm} is the content of the evaluated polynomial,{} \\spad{unilist} is the list of factors of the evaluated polynomial,{} \\spad{plead} is the complete factorization of the leading coefficient,{} \\spad{vl} is the list of factors of the leading coefficient evaluated,{} \\spad{lvar} is the list of variables,{} \\spad{lval} is the list of values,{} returns a record giving the list of leading coefficients to impose on the univariate factors,{}")) (|polCase| (((|Boolean|) |#3| (|NonNegativeInteger|) (|List| |#3|)) "\\spad{polCase(contprod,{} numFacts,{} evallcs)},{} where \\spad{contprod} is the product of the content of the leading coefficient of the polynomial to be factored with the content of the evaluated polynomial,{} \\spad{numFacts} is the number of factors of the leadingCoefficient,{} and evallcs is the list of the evaluated factors of the leadingCoefficient,{} returns \\spad{true} if the factors of the leading Coefficient can be distributed with this valuation."))) NIL NIL -(-624) +(-626) ((|constructor| (NIL "This domain represents assignment expressions.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the assignment expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the assignment expression `e'."))) NIL NIL -(-625 |VarSet| R |Order|) +(-627 |VarSet| R |Order|) ((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(\\spad{lv})} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}."))) -((-4407 . T)) +((-4414 . T)) NIL -(-626 R |ls|) +(-628 R |ls|) ((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}."))) NIL NIL -(-627) +(-629) ((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%\\spad{pi})} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{\\spad{li}(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{\\spad{Ci}(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{\\spad{Si}(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{\\spad{Ei}(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}."))) NIL NIL -(-628 R -2266) +(-630 R -2341) ((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,{}x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,{}x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{\\spad{li}(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{\\spad{Ci}(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{\\spad{Si}(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{\\spad{Ei}(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian"))) NIL NIL -(-629 |lv| -2266) +(-631 |lv| -2341) ((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented"))) NIL NIL -(-630) +(-632) ((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|elt| (((|Any|) $ (|Symbol|)) "\\spad{elt(lib,{}k)} or \\spad{lib}.\\spad{k} extracts the value corresponding to the key \\spad{k} from the library \\spad{lib}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file."))) -((-4411 . T)) -((-12 (|HasCategory| (-2 (|:| -1914 (-1155)) (|:| -2683 (-52))) (QUOTE (-1097))) (|HasCategory| (-2 (|:| -1914 (-1155)) (|:| -2683 (-52))) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1914) (QUOTE (-1155))) (LIST (QUOTE |:|) (QUOTE -2683) (QUOTE (-52))))))) (-2682 (|HasCategory| (-2 (|:| -1914 (-1155)) (|:| -2683 (-52))) (QUOTE (-1097))) (|HasCategory| (-52) (QUOTE (-1097)))) (-2682 (|HasCategory| (-2 (|:| -1914 (-1155)) (|:| -2683 (-52))) (QUOTE (-1097))) (|HasCategory| (-2 (|:| -1914 (-1155)) (|:| -2683 (-52))) (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| (-52) (QUOTE (-1097))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| (-2 (|:| -1914 (-1155)) (|:| -2683 (-52))) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| (-52) (QUOTE (-1097))) (|HasCategory| (-52) (LIST (QUOTE -309) (QUOTE (-52))))) (|HasCategory| (-1155) (QUOTE (-848))) (-2682 (|HasCategory| (-2 (|:| -1914 (-1155)) (|:| -2683 (-52))) (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| (-52) (QUOTE (-1097))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| (-2 (|:| -1914 (-1155)) (|:| -2683 (-52))) (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| (-2 (|:| -1914 (-1155)) (|:| -2683 (-52))) (QUOTE (-1097)))) -(-631 S R) +((-4418 . T)) +((-12 (|HasCategory| (-2 (|:| -1928 (-1157)) (|:| -2806 (-52))) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -1928 (-1157)) (|:| -2806 (-52))) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1928) (QUOTE (-1157))) (LIST (QUOTE |:|) (QUOTE -2806) (QUOTE (-52))))))) (-2809 (|HasCategory| (-2 (|:| -1928 (-1157)) (|:| -2806 (-52))) (QUOTE (-1099))) (|HasCategory| (-52) (QUOTE (-1099)))) (-2809 (|HasCategory| (-2 (|:| -1928 (-1157)) (|:| -2806 (-52))) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -1928 (-1157)) (|:| -2806 (-52))) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-52) (QUOTE (-1099))) (|HasCategory| (-52) (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-2 (|:| -1928 (-1157)) (|:| -2806 (-52))) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| (-52) (QUOTE (-1099))) (|HasCategory| (-52) (LIST (QUOTE -310) (QUOTE (-52))))) (|HasCategory| (-1157) (QUOTE (-850))) (-2809 (|HasCategory| (-2 (|:| -1928 (-1157)) (|:| -2806 (-52))) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-52) (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-52) (QUOTE (-1099))) (|HasCategory| (-52) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -1928 (-1157)) (|:| -2806 (-52))) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -1928 (-1157)) (|:| -2806 (-52))) (QUOTE (-1099)))) +(-633 S R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) NIL -((|HasCategory| |#2| (QUOTE (-363)))) -(-632 R) +((|HasCategory| |#2| (QUOTE (-365)))) +(-634 R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4405 . T) (-4404 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4412 . T) (-4411 . T)) NIL -(-633 R A) +(-635 R A) ((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,{}b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) -((-4407 -2682 (-2317 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))) (-4405 . T) (-4404 . T)) -((-2682 (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (-2682 (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|)))) -(-634 R FE) +((-4414 -2809 (-2402 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))) (-4412 . T) (-4411 . T)) +((-2809 (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -419) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -419) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -419) (|devaluate| |#1|)))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#2| (LIST (QUOTE -419) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|)))) +(-636 R FE) ((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit \\spad{lim(x -> a,{}f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),{}x=a,{}\"left\")} computes the left hand real limit \\spad{lim(x -> a-,{}f(x))}; \\spad{limit(f(x),{}x=a,{}\"right\")} computes the right hand real limit \\spad{lim(x -> a+,{}f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),{}x = a)} computes the real limit \\spad{lim(x -> a,{}f(x))}."))) NIL NIL -(-635 R) +(-637 R) ((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),{}x,{}a,{}\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}."))) NIL NIL -(-636 S R) +(-638 S R) ((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise."))) NIL -((-2307 (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-363)))) -(-637 R) +((-2387 (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-365)))) +(-639 R) ((|constructor| (NIL "An extension ring with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A,{} v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}."))) -((-4407 . T)) +((-4414 . T)) NIL -(-638 R) +(-640 R) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{R}-linear set if it is stable by dilation} \\indented{2}{by elements in the ring \\spad{R}.\\space{2}This category differs from} \\indented{2}{\\spad{Module} in that no other assumption (such as addition)} \\indented{2}{is made about the underlying set.} See Also: LeftLinearSet,{} RightLinearSet."))) NIL NIL -(-639 A B) +(-641 A B) ((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} a,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la,{} lb,{} a,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la,{} lb,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la,{} lb,{} a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la,{} lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}."))) NIL NIL -(-640 A B) +(-642 A B) ((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,{}u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,{}[1,{}2,{}3]) = [1,{}4,{}9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,{}[1,{}2,{}3],{}0) = fn(3,{}fn(2,{}fn(1,{}0)))} and \\spad{reduce(*,{}[2,{}3],{}1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,{}[1,{}2],{}0) = [fn(2,{}fn(1,{}0)),{}fn(1,{}0)]} and \\spad{scan(*,{}[2,{}3],{}1) = [2 * 1,{} 3 * (2 * 1)]}."))) NIL NIL -(-641 A B C) +(-643 A B C) ((|constructor| (NIL "\\spadtype{ListFunctions3} implements utility functions that operate on three kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,{}list1,{} u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,{}[1,{}2,{}3],{}[4,{}5,{}6]) = [1/4,{}2/4,{}1/2]}. The computation terminates when the end of either list is reached. That is,{} the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}."))) NIL NIL -(-642 S) +(-644 S) ((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,{}u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,{}u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,{}u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,{}u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,{}u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list."))) -((-4411 . T) (-4410 . T)) -((-2682 (-12 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-2682 (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-2682 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-1097)))) (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-826))) (|HasCategory| (-564) (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860)))) (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) -(-643 T$) +((-4418 . T) (-4417 . T)) +((-2809 (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2809 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-828))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) +(-645 T$) ((|constructor| (NIL "This domain represents AST for Spad literals."))) NIL NIL -(-644 R) +(-646 R) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{R}-left linear set if it is stable by left-dilation} \\indented{2}{by elements in the ring \\spad{R}.\\space{2}This category differs from} \\indented{2}{\\spad{LeftModule} in that no other assumption (such as addition)} \\indented{2}{is made about the underlying set.} See Also: RightLinearSet.")) (* (($ |#1| $) "\\spad{r*x} is the left-dilation of \\spad{x} by \\spad{r}.")) (|zero?| (((|Boolean|) $) "\\spad{zero? x} holds is \\spad{x} is the origin.")) ((|Zero|) (($) "\\spad{0} represents the origin of the linear set"))) NIL NIL -(-645 S) +(-647 S) ((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,{}y,{}d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries."))) -((-4410 . T) (-4411 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1097))) (-2682 (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) -(-646 R) +((-4417 . T) (-4418 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) +(-648 R) ((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline"))) NIL NIL -(-647 S E |un|) +(-649 S E |un|) ((|constructor| (NIL "This internal package represents monoid (abelian or not,{} with or without inverses) as lists and provides some common operations to the various flavors of monoids.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|commutativeEquality| (((|Boolean|) $ $) "\\spad{commutativeEquality(x,{}y)} returns \\spad{true} if \\spad{x} and \\spad{y} are equal assuming commutativity")) (|plus| (($ $ $) "\\spad{plus(x,{} y)} returns \\spad{x + y} where \\spad{+} is the monoid operation,{} which is assumed commutative.") (($ |#1| |#2| $) "\\spad{plus(s,{} e,{} x)} returns \\spad{e * s + x} where \\spad{+} is the monoid operation,{} which is assumed commutative.")) (|leftMult| (($ |#1| $) "\\spad{leftMult(s,{} a)} returns \\spad{s * a} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|rightMult| (($ $ |#1|) "\\spad{rightMult(a,{} s)} returns \\spad{a * s} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|makeUnit| (($) "\\spad{makeUnit()} returns the unit element of the monomial.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(l)} returns the number of monomials forming \\spad{l}.")) (|reverse!| (($ $) "\\spad{reverse!(l)} reverses the list of monomials forming \\spad{l},{} destroying the element \\spad{l}.")) (|reverse| (($ $) "\\spad{reverse(l)} reverses the list of monomials forming \\spad{l}. This has some effect if the monoid is non-abelian,{} \\spadignore{i.e.} \\spad{reverse(a1\\^e1 ... an\\^en) = an\\^en ... a1\\^e1} which is different.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(l,{} n)} returns the factor of the n^th monomial of \\spad{l}.")) (|nthExpon| ((|#2| $ (|Integer|)) "\\spad{nthExpon(l,{} n)} returns the exponent of the n^th monomial of \\spad{l}.")) (|makeMulti| (($ (|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|)))) "\\spad{makeMulti(l)} returns the element whose list of monomials is \\spad{l}.")) (|makeTerm| (($ |#1| |#2|) "\\spad{makeTerm(s,{} e)} returns the monomial \\spad{s} exponentiated by \\spad{e} (\\spadignore{e.g.} s^e or \\spad{e} * \\spad{s}).")) (|listOfMonoms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{listOfMonoms(l)} returns the list of the monomials forming \\spad{l}.")) (|outputForm| (((|OutputForm|) $ (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Integer|)) "\\spad{outputForm(l,{} fop,{} fexp,{} unit)} converts the monoid element represented by \\spad{l} to an \\spadtype{OutputForm}. Argument unit is the output form for the \\spadignore{unit} of the monoid (\\spadignore{e.g.} 0 or 1),{} \\spad{fop(a,{} b)} is the output form for the monoid operation applied to \\spad{a} and \\spad{b} (\\spadignore{e.g.} \\spad{a + b},{} \\spad{a * b},{} \\spad{ab}),{} and \\spad{fexp(a,{} n)} is the output form for the exponentiation operation applied to \\spad{a} and \\spad{n} (\\spadignore{e.g.} \\spad{n a},{} \\spad{n * a},{} \\spad{a ** n},{} \\spad{a\\^n})."))) NIL NIL -(-648 A S) +(-650 A S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL -((|HasAttribute| |#1| (QUOTE -4411))) -(-649 S) +((|HasAttribute| |#1| (QUOTE -4418))) +(-651 S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL NIL -(-650 R -2266 L) +(-652 R -2341 L) ((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op,{} g,{} x,{} a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{op y = g,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op,{} g,{} x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable."))) NIL NIL -(-651 A) +(-653 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4404 . T) (-4405 . T) (-4407 . T)) -((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-363)))) -(-652 A M) +((-4411 . T) (-4412 . T) (-4414 . T)) +((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-365)))) +(-654 A M) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}"))) -((-4404 . T) (-4405 . T) (-4407 . T)) -((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-363)))) -(-653 S A) +((-4411 . T) (-4412 . T) (-4414 . T)) +((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-365)))) +(-655 S A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) NIL -((|HasCategory| |#2| (QUOTE (-363)))) -(-654 A) +((|HasCategory| |#2| (QUOTE (-365)))) +(-656 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) -((-4404 . T) (-4405 . T) (-4407 . T)) +((-4411 . T) (-4412 . T) (-4414 . T)) NIL -(-655 -2266 UP) +(-657 -2341 UP) ((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a,{} zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-656 A -1611) +(-658 A -2215) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4404 . T) (-4405 . T) (-4407 . T)) -((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-363)))) -(-657 A L) +((-4411 . T) (-4412 . T) (-4414 . T)) +((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-365)))) +(-659 A L) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,{}n,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use."))) NIL NIL -(-658 S) +(-660 S) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-659) +(-661) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-660 M R S) +(-662 M R S) ((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4405 . T) (-4404 . T)) -((|HasCategory| |#1| (QUOTE (-789)))) -(-661 R) +((-4412 . T) (-4411 . T)) +((|HasCategory| |#1| (QUOTE (-791)))) +(-663 R) ((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such exists."))) NIL NIL -(-662 |VarSet| R) +(-664 |VarSet| R) ((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4405 . T) (-4404 . T)) -((|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-172)))) -(-663 A S) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4412 . T) (-4411 . T)) +((|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-172)))) +(-665 A S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) NIL NIL -(-664 S) +(-666 S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) -((-4411 . T) (-4410 . T)) +((-4418 . T) (-4417 . T)) NIL -(-665 -2266) +(-667 -2341) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-666 -2266 |Row| |Col| M) +(-668 -2341 |Row| |Col| M) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-667 R E OV P) +(-669 R E OV P) ((|constructor| (NIL "this package finds the solutions of linear systems presented as a list of polynomials.")) (|linSolve| (((|Record| (|:| |particular| (|Union| (|Vector| (|Fraction| |#4|)) "failed")) (|:| |basis| (|List| (|Vector| (|Fraction| |#4|))))) (|List| |#4|) (|List| |#3|)) "\\spad{linSolve(lp,{}lvar)} finds the solutions of the linear system of polynomials \\spad{lp} = 0 with respect to the list of symbols \\spad{lvar}."))) NIL NIL -(-668 |n| R) +(-670 |n| R) ((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,{}R) b - b *\\$SQMATRIX(n,{}R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication."))) -((-4407 . T) (-4410 . T) (-4404 . T) (-4405 . T)) -((|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE (-4412 "*"))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564)))) (-2682 (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-556))) (-2682 (|HasAttribute| |#2| (QUOTE (-4412 "*"))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-860)))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-172)))) -(-669) +((-4414 . T) (-4417 . T) (-4411 . T) (-4412 . T)) +((|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE (-4419 "*"))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2809 (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-558))) (-2809 (|HasAttribute| |#2| (QUOTE (-4419 "*"))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-172)))) +(-671) ((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'."))) NIL NIL -(-670 |VarSet|) +(-672 |VarSet|) ((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} \\spad{<=} \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.\\spad{fr}).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(\\spad{vl},{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList1(\\spad{vl},{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry."))) NIL NIL -(-671 A S) +(-673 A S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,{}n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#2| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,{}st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,{}st) = [x for x in st | not f(x)]}."))) NIL NIL -(-672 S) +(-674 S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,{}n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,{}st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,{}st) = [x for x in st | not f(x)]}."))) NIL NIL -(-673 R) +(-675 R) ((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,{}x,{}y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,{}i,{}j,{}k,{}s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,{}i,{}j,{}k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,{}y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,{}j,{}k)} create a matrix with all zero terms"))) NIL -((-2682 (-12 (|HasCategory| |#1| (QUOTE (-1047))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1097))) (-2682 (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#1| (QUOTE (-1047))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860)))) (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) -(-674) +((-2809 (-12 (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) +(-676) ((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition \\spad{`m'}.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition \\spad{`m'}. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any."))) NIL NIL -(-675 |VarSet|) +(-677 |VarSet|) ((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(\\spad{x})} return \\axiom{\\spad{x}} without the first entry or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns the reversed word of \\axiom{\\spad{x}}. That is \\axiom{\\spad{x}} itself if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true} and \\axiom{mirror(\\spad{z}) * mirror(\\spad{y})} if \\axiom{\\spad{x}} is \\axiom{\\spad{y*z}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}. \\spad{N}.\\spad{B}. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|first| ((|#1| $) "\\axiom{first(\\spad{x})} returns the first entry of the tree \\axiom{\\spad{x}}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}} by removing parentheses.")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[\\spad{x},{}\\spad{y}]}."))) NIL NIL -(-676 A) +(-678 A) ((|constructor| (NIL "various Currying operations.")) (|recur| ((|#1| (|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|NonNegativeInteger|) |#1|) "\\spad{recur(n,{}g,{}x)} is \\spad{g(n,{}g(n-1,{}..g(1,{}x)..))}.")) (|iter| ((|#1| (|Mapping| |#1| |#1|) (|NonNegativeInteger|) |#1|) "\\spad{iter(f,{}n,{}x)} applies \\spad{f n} times to \\spad{x}."))) NIL NIL -(-677 A C) +(-679 A C) ((|constructor| (NIL "various Currying operations.")) (|arg2| ((|#2| |#1| |#2|) "\\spad{arg2(a,{}c)} selects its second argument.")) (|arg1| ((|#1| |#1| |#2|) "\\spad{arg1(a,{}c)} selects its first argument."))) NIL NIL -(-678 A B C) +(-680 A B C) ((|constructor| (NIL "various Currying operations.")) (|comp| ((|#3| (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{comp(f,{}g,{}x)} is \\spad{f(g x)}."))) NIL NIL -(-679) +(-681) ((|constructor| (NIL "This domain represents a mapping type AST. A mapping AST \\indented{2}{is a syntactic description of a function type,{} \\spadignore{e.g.} its result} \\indented{2}{type and the list of its argument types.}")) (|target| (((|TypeAst|) $) "\\spad{target(s)} returns the result type AST for \\spad{`s'}.")) (|source| (((|List| (|TypeAst|)) $) "\\spad{source(s)} returns the parameter type AST list of \\spad{`s'}.")) (|mappingAst| (($ (|List| (|TypeAst|)) (|TypeAst|)) "\\spad{mappingAst(s,{}t)} builds the mapping AST \\spad{s} \\spad{->} \\spad{t}")) (|coerce| (($ (|Signature|)) "sig::MappingAst builds a MappingAst from the Signature `sig'."))) NIL NIL -(-680 A) +(-682 A) ((|constructor| (NIL "various Currying operations.")) (|recur| (((|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|Mapping| |#1| (|NonNegativeInteger|) |#1|)) "\\spad{recur(g)} is the function \\spad{h} such that \\indented{1}{\\spad{h(n,{}x)= g(n,{}g(n-1,{}..g(1,{}x)..))}.}")) (** (((|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{f**n} is the function which is the \\spad{n}-fold application \\indented{1}{of \\spad{f}.}")) (|id| ((|#1| |#1|) "\\spad{id x} is \\spad{x}.")) (|fixedPoint| (((|List| |#1|) (|Mapping| (|List| |#1|) (|List| |#1|)) (|Integer|)) "\\spad{fixedPoint(f,{}n)} is the fixed point of function \\indented{1}{\\spad{f} which is assumed to transform a list of length} \\indented{1}{\\spad{n}.}") ((|#1| (|Mapping| |#1| |#1|)) "\\spad{fixedPoint f} is the fixed point of function \\spad{f}. \\indented{1}{\\spadignore{i.e.} such that \\spad{fixedPoint f = f(fixedPoint f)}.}")) (|coerce| (((|Mapping| |#1|) |#1|) "\\spad{coerce A} changes its argument into a \\indented{1}{nullary function.}")) (|nullary| (((|Mapping| |#1|) |#1|) "\\spad{nullary A} changes its argument into a \\indented{1}{nullary function.}"))) NIL NIL -(-681 A C) +(-683 A C) ((|constructor| (NIL "various Currying operations.")) (|diag| (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1| |#1|)) "\\spad{diag(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a = f(a,{}a)}.}")) (|constant| (((|Mapping| |#2| |#1|) (|Mapping| |#2|)) "\\spad{vu(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a= f ()}.}")) (|curry| (((|Mapping| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{cu(f,{}a)} is the function \\spad{g} \\indented{1}{such that \\spad{g ()= f a}.}")) (|const| (((|Mapping| |#2| |#1|) |#2|) "\\spad{const c} is a function which produces \\spad{c} when \\indented{1}{applied to its argument.}"))) NIL NIL -(-682 A B C) +(-684 A B C) ((|constructor| (NIL "various Currying operations.")) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) "\\spad{f*g} is the function \\spad{h} \\indented{1}{such that \\spad{h x= f(g x)}.}")) (|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) "\\spad{twist(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f(b,{}a)}.}")) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) "\\spad{constantLeft(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f b}.}")) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) "\\spad{constantRight(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f a}.}")) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) "\\spad{curryLeft(f,{}a)} is the function \\spad{g} \\indented{1}{such that \\spad{g b = f(a,{}b)}.}")) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) "\\spad{curryRight(f,{}b)} is the function \\spad{g} such that \\indented{1}{\\spad{g a = f(a,{}b)}.}"))) NIL NIL -(-683 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +(-685 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-684 S R |Row| |Col|) +(-686 S R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) NIL -((|HasAttribute| |#2| (QUOTE (-4412 "*"))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-556)))) -(-685 R |Row| |Col|) +((|HasAttribute| |#2| (QUOTE (-4419 "*"))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-558)))) +(-687 R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) -((-4410 . T) (-4411 . T)) +((-4417 . T) (-4418 . T)) NIL -(-686 R |Row| |Col| M) +(-688 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,{}a,{}i,{}j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,{}a,{}i,{}j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,{}i,{}j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square."))) NIL -((|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-556)))) -(-687 R) +((|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-558)))) +(-689 R) ((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) -((-4410 . T) (-4411 . T)) -((-2682 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1097))) (-2682 (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-556))) (|HasAttribute| |#1| (QUOTE (-4412 "*"))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860)))) (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) -(-688 R) +((-4417 . T) (-4418 . T)) +((-2809 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-558))) (|HasAttribute| |#1| (QUOTE (-4419 "*"))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) +(-690 R) ((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,{}b,{}c,{}m,{}n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,{}a,{}b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,{}a,{}r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,{}r,{}a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,{}a,{}b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,{}a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,{}a,{}b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,{}a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions."))) NIL NIL -(-689 T$) +(-691 T$) ((|constructor| (NIL "This domain implements the notion of optional value,{} where a computation may fail to produce expected value.")) (|nothing| (($) "\\spad{nothing} represents failure or absence of value.")) (|autoCoerce| ((|#1| $) "\\spad{autoCoerce} is a courtesy coercion function used by the compiler in case it knows that \\spad{`x'} really is a \\spadtype{T}.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} holds if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")) (|just| (($ |#1|) "\\spad{just x} injects the value \\spad{`x'} into \\%."))) NIL NIL -(-690 S -2266 FLAF FLAS) +(-692 S -2341 FLAF FLAS) ((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,{}xlist,{}kl,{}ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,{}xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,{}xlist,{}k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,{}xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,{}xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,{}xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,{}xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}."))) NIL NIL -(-691 R Q) +(-693 R Q) ((|constructor| (NIL "MatrixCommonDenominator provides functions to compute the common denominator of a matrix of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| (|Matrix| |#1|)) (|:| |den| |#1|)) (|Matrix| |#2|)) "\\spad{splitDenominator(q)} returns \\spad{[p,{} d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|clearDenominator| (((|Matrix| |#1|) (|Matrix| |#2|)) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|commonDenominator| ((|#1| (|Matrix| |#2|)) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the elements of \\spad{q}."))) NIL NIL -(-692) +(-694) ((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex"))) -((-4403 . T) (-4408 |has| (-697) (-363)) (-4402 |has| (-697) (-363)) (-3571 . T) (-4409 |has| (-697) (-6 -4409)) (-4406 |has| (-697) (-6 -4406)) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) -((|HasCategory| (-697) (QUOTE (-147))) (|HasCategory| (-697) (QUOTE (-145))) (|HasCategory| (-697) (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-697) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| (-697) (QUOTE (-368))) (|HasCategory| (-697) (QUOTE (-363))) (-2682 (|HasCategory| (-697) (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-697) (QUOTE (-363)))) (|HasCategory| (-697) (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| (-697) (QUOTE (-233))) (-2682 (|HasCategory| (-697) (QUOTE (-363))) (|HasCategory| (-697) (QUOTE (-349)))) (|HasCategory| (-697) (QUOTE (-349))) (|HasCategory| (-697) (LIST (QUOTE -286) (QUOTE (-697)) (QUOTE (-697)))) (|HasCategory| (-697) (LIST (QUOTE -309) (QUOTE (-697)))) (|HasCategory| (-697) (LIST (QUOTE -514) (QUOTE (-1173)) (QUOTE (-697)))) (|HasCategory| (-697) (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| (-697) (LIST (QUOTE -884) (QUOTE (-379)))) (|HasCategory| (-697) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| (-697) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (-2682 (|HasCategory| (-697) (QUOTE (-307))) (|HasCategory| (-697) (QUOTE (-363))) (|HasCategory| (-697) (QUOTE (-349)))) (|HasCategory| (-697) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-697) (QUOTE (-1020))) (|HasCategory| (-697) (QUOTE (-1197))) (-12 (|HasCategory| (-697) (QUOTE (-1000))) (|HasCategory| (-697) (QUOTE (-1197)))) (-2682 (-12 (|HasCategory| (-697) (QUOTE (-307))) (|HasCategory| (-697) (QUOTE (-907)))) (|HasCategory| (-697) (QUOTE (-363))) (-12 (|HasCategory| (-697) (QUOTE (-349))) (|HasCategory| (-697) (QUOTE (-907))))) (-2682 (-12 (|HasCategory| (-697) (QUOTE (-307))) (|HasCategory| (-697) (QUOTE (-907)))) (-12 (|HasCategory| (-697) (QUOTE (-363))) (|HasCategory| (-697) (QUOTE (-907)))) (-12 (|HasCategory| (-697) (QUOTE (-349))) (|HasCategory| (-697) (QUOTE (-907))))) (|HasCategory| (-697) (QUOTE (-545))) (-12 (|HasCategory| (-697) (QUOTE (-1057))) (|HasCategory| (-697) (QUOTE (-1197)))) (|HasCategory| (-697) (QUOTE (-1057))) (|HasCategory| (-697) (QUOTE (-307))) (|HasCategory| (-697) (QUOTE (-907))) (-2682 (-12 (|HasCategory| (-697) (QUOTE (-307))) (|HasCategory| (-697) (QUOTE (-907)))) (|HasCategory| (-697) (QUOTE (-363)))) (-2682 (-12 (|HasCategory| (-697) (QUOTE (-307))) (|HasCategory| (-697) (QUOTE (-907)))) (|HasCategory| (-697) (QUOTE (-556)))) (-12 (|HasCategory| (-697) (QUOTE (-233))) (|HasCategory| (-697) (QUOTE (-363)))) (-12 (|HasCategory| (-697) (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| (-697) (QUOTE (-363)))) (|HasCategory| (-697) (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| (-697) (QUOTE (-556))) (|HasAttribute| (-697) (QUOTE -4409)) (|HasAttribute| (-697) (QUOTE -4406)) (-12 (|HasCategory| (-697) (QUOTE (-307))) (|HasCategory| (-697) (QUOTE (-907)))) (-2682 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-697) (QUOTE (-307))) (|HasCategory| (-697) (QUOTE (-907)))) (|HasCategory| (-697) (QUOTE (-145)))) (-2682 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-697) (QUOTE (-307))) (|HasCategory| (-697) (QUOTE (-907)))) (|HasCategory| (-697) (QUOTE (-349))))) -(-693 S) +((-4410 . T) (-4415 |has| (-699) (-365)) (-4409 |has| (-699) (-365)) (-3657 . T) (-4416 |has| (-699) (-6 -4416)) (-4413 |has| (-699) (-6 -4413)) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((|HasCategory| (-699) (QUOTE (-147))) (|HasCategory| (-699) (QUOTE (-145))) (|HasCategory| (-699) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-699) (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| (-699) (QUOTE (-370))) (|HasCategory| (-699) (QUOTE (-365))) (-2809 (|HasCategory| (-699) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-699) (QUOTE (-365)))) (|HasCategory| (-699) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-699) (QUOTE (-233))) (-2809 (|HasCategory| (-699) (QUOTE (-365))) (|HasCategory| (-699) (QUOTE (-351)))) (|HasCategory| (-699) (QUOTE (-351))) (|HasCategory| (-699) (LIST (QUOTE -287) (QUOTE (-699)) (QUOTE (-699)))) (|HasCategory| (-699) (LIST (QUOTE -310) (QUOTE (-699)))) (|HasCategory| (-699) (LIST (QUOTE -516) (QUOTE (-1175)) (QUOTE (-699)))) (|HasCategory| (-699) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| (-699) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| (-699) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| (-699) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (-2809 (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-365))) (|HasCategory| (-699) (QUOTE (-351)))) (|HasCategory| (-699) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-699) (QUOTE (-1022))) (|HasCategory| (-699) (QUOTE (-1199))) (-12 (|HasCategory| (-699) (QUOTE (-1002))) (|HasCategory| (-699) (QUOTE (-1199)))) (-2809 (-12 (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-909)))) (|HasCategory| (-699) (QUOTE (-365))) (-12 (|HasCategory| (-699) (QUOTE (-351))) (|HasCategory| (-699) (QUOTE (-909))))) (-2809 (-12 (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-909)))) (-12 (|HasCategory| (-699) (QUOTE (-365))) (|HasCategory| (-699) (QUOTE (-909)))) (-12 (|HasCategory| (-699) (QUOTE (-351))) (|HasCategory| (-699) (QUOTE (-909))))) (|HasCategory| (-699) (QUOTE (-547))) (-12 (|HasCategory| (-699) (QUOTE (-1059))) (|HasCategory| (-699) (QUOTE (-1199)))) (|HasCategory| (-699) (QUOTE (-1059))) (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-909))) (-2809 (-12 (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-909)))) (|HasCategory| (-699) (QUOTE (-365)))) (-2809 (-12 (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-909)))) (|HasCategory| (-699) (QUOTE (-558)))) (-12 (|HasCategory| (-699) (QUOTE (-233))) (|HasCategory| (-699) (QUOTE (-365)))) (-12 (|HasCategory| (-699) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-699) (QUOTE (-365)))) (|HasCategory| (-699) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| (-699) (QUOTE (-558))) (|HasAttribute| (-699) (QUOTE -4416)) (|HasAttribute| (-699) (QUOTE -4413)) (-12 (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-909)))) (|HasCategory| (-699) (QUOTE (-145)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-909)))) (|HasCategory| (-699) (QUOTE (-351))))) +(-695 S) ((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,{}d,{}n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}."))) -((-4411 . T)) +((-4418 . T)) NIL -(-694 U) +(-696 U) ((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,{}n,{}g,{}p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl,{} p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,{}p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,{}p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,{}p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,{}f2,{}p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}."))) NIL NIL -(-695) +(-697) ((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,{}b,{}c,{}d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,{}t,{}u,{}f,{}s1,{}l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,{}g,{}s1,{}s2,{}l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,{}f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}g,{}h,{}j,{}s1,{}s2,{}l)} \\undocumented"))) NIL NIL -(-696 OV E -2266 PG) +(-698 OV E -2341 PG) ((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field."))) NIL NIL -(-697) +(-699) ((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,{}man,{}base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}"))) -((-3560 . T) (-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) +((-3649 . T) (-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) NIL -(-698 R) +(-700 R) ((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m,{} d,{} p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,{}p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m,{} d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus."))) NIL NIL -(-699) +(-701) ((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}"))) -((-4409 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) +((-4416 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) NIL -(-700 S D1 D2 I) +(-702 S D1 D2 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,{}x,{}y)} returns a function \\spad{f: (D1,{} D2) -> I} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1,{} D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function"))) NIL NIL -(-701 S) +(-703 S) ((|constructor| (NIL "MakeFloatCompiledFunction transforms top-level objects into compiled Lisp functions whose arguments are Lisp floats. This by-passes the \\Language{} compiler and interpreter,{} thereby gaining several orders of magnitude.")) (|makeFloatFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|) (|Symbol|)) "\\spad{makeFloatFunction(expr,{} x,{} y)} returns a Lisp function \\spad{f: (\\axiomType{DoubleFloat},{} \\axiomType{DoubleFloat}) -> \\axiomType{DoubleFloat}} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(\\axiomType{DoubleFloat},{} \\axiomType{DoubleFloat})}.") (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|)) "\\spad{makeFloatFunction(expr,{} x)} returns a Lisp function \\spad{f: \\axiomType{DoubleFloat} -> \\axiomType{DoubleFloat}} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\axiomType{DoubleFloat}."))) NIL NIL -(-702 S) +(-704 S) ((|constructor| (NIL "transforms top-level objects into interpreter functions.")) (|function| (((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))) "\\spad{function(e,{} foo,{} [x1,{}...,{}xn])} creates a function \\spad{foo(x1,{}...,{}xn) == e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|)) "\\spad{function(e,{} foo,{} x,{} y)} creates a function \\spad{foo(x,{} y) = e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|)) "\\spad{function(e,{} foo,{} x)} creates a function \\spad{foo(x) == e}.") (((|Symbol|) |#1| (|Symbol|)) "\\spad{function(e,{} foo)} creates a function \\spad{foo() == e}."))) NIL NIL -(-703 S T$) +(-705 S T$) ((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,{}b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}."))) NIL NIL -(-704 S -2711 I) +(-706 S -2834 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr,{} x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function"))) NIL NIL -(-705 E OV R P) +(-707 E OV R P) ((|constructor| (NIL "This package provides the functions for the multivariate \"lifting\",{} using an algorithm of Paul Wang. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|lifting1| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|List| |#4|) (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#4|)))) (|List| (|NonNegativeInteger|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{lifting1(u,{}lv,{}lu,{}lr,{}lp,{}lt,{}ln,{}t,{}r)} \\undocumented")) (|lifting| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#3|)) (|List| |#3|) (|List| |#4|) (|List| (|NonNegativeInteger|)) |#3|) "\\spad{lifting(u,{}lv,{}lu,{}lr,{}lp,{}ln,{}r)} \\undocumented")) (|corrPoly| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|) (|List| (|NonNegativeInteger|)) (|List| (|SparseUnivariatePolynomial| |#4|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{corrPoly(u,{}lv,{}lr,{}ln,{}lu,{}t,{}r)} \\undocumented"))) NIL NIL -(-706 R) +(-708 R) ((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,{}1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i,{} i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) -((-4404 . T) (-4405 . T) (-4407 . T)) +((-4411 . T) (-4412 . T) (-4414 . T)) NIL -(-707 R1 UP1 UPUP1 R2 UP2 UPUP2) +(-709 R1 UP1 UPUP1 R2 UP2 UPUP2) ((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f,{} p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}."))) NIL NIL -(-708) +(-710) ((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format."))) NIL NIL -(-709 R |Mod| -3452 -2774 |exactQuo|) +(-711 R |Mod| -3772 -1330 |exactQuo|) ((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) +((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) NIL -(-710 R |Rep|) +(-712 R |Rep|) ((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented"))) -(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4406 |has| |#1| (-363)) (-4408 |has| |#1| (-6 -4408)) (-4405 . T) (-4404 . T) (-4407 . T)) -((|HasCategory| |#1| (QUOTE (-907))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2682 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1079) (LIST (QUOTE -884) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -884) (QUOTE (-379))))) (-12 (|HasCategory| (-1079) (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -884) (QUOTE (-564))))) (-12 (|HasCategory| (-1079) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379)))))) (-12 (|HasCategory| (-1079) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564)))))) (-12 (|HasCategory| (-1079) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564)))) (-2682 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (-2682 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-907)))) (-2682 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-907)))) (-2682 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-907)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1148))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4408)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-907)))) (-2682 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-907)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-711 IS E |ff|) +(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-558)) (-4413 |has| |#1| (-365)) (-4415 |has| |#1| (-6 -4415)) (-4412 . T) (-4411 . T) (-4414 . T)) +((|HasCategory| |#1| (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1150))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4415)) (|HasCategory| |#1| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-713 IS E |ff|) ((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,{}e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented"))) NIL NIL -(-712 R M) +(-714 R M) ((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,{}f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f,{} u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1,{} op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}."))) -((-4405 |has| |#1| (-172)) (-4404 |has| |#1| (-172)) (-4407 . T)) +((-4412 |has| |#1| (-172)) (-4411 |has| |#1| (-172)) (-4414 . T)) ((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147)))) -(-713 R |Mod| -3452 -2774 |exactQuo|) +(-715 R |Mod| -3772 -1330 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4407 . T)) +((-4414 . T)) NIL -(-714 S R) +(-716 S R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) NIL NIL -(-715 R) +(-717 R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) -((-4405 . T) (-4404 . T)) +((-4412 . T) (-4411 . T)) NIL -(-716 -2266) +(-718 -2341) ((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,{}1],{}[1,{}0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,{}h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,{}0],{}[0,{}1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,{}h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,{}k],{}[0,{}1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,{}b,{}c,{}d)} returns \\spad{matrix [[a,{}b],{}[c,{}d]]}."))) -((-4407 . T)) +((-4414 . T)) NIL -(-717 S) +(-719 S) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-718) +(-720) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-719 S) +(-721 S) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-720) +(-722) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-721 S R UP) +(-723 S R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) NIL -((|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-368)))) -(-722 R UP) +((|HasCategory| |#2| (QUOTE (-351))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-370)))) +(-724 R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) -((-4403 |has| |#1| (-363)) (-4408 |has| |#1| (-363)) (-4402 |has| |#1| (-363)) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) +((-4410 |has| |#1| (-365)) (-4415 |has| |#1| (-365)) (-4409 |has| |#1| (-365)) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) NIL -(-723 S) +(-725 S) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-724) +(-726) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-725 -2266 UP) +(-727 -2341 UP) ((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f,{} D)} returns \\spad{[p,{}n,{}s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f,{} D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p,{} D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m,{} s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p,{} D)} returns \\spad{[n,{}s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use."))) NIL NIL -(-726 |VarSet| E1 E2 R S PR PS) +(-728 |VarSet| E1 E2 R S PR PS) ((|constructor| (NIL "\\indented{1}{Utilities for MPolyCat} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 28 March 1990 (\\spad{PG})")) (|reshape| ((|#7| (|List| |#5|) |#6|) "\\spad{reshape(l,{}p)} \\undocumented")) (|map| ((|#7| (|Mapping| |#5| |#4|) |#6|) "\\spad{map(f,{}p)} \\undocumented"))) NIL NIL -(-727 |Vars1| |Vars2| E1 E2 R PR1 PR2) +(-729 |Vars1| |Vars2| E1 E2 R PR1 PR2) ((|constructor| (NIL "This package \\undocumented")) (|map| ((|#7| (|Mapping| |#2| |#1|) |#6|) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-728 E OV R PPR) +(-730 E OV R PPR) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are polynomials over some ring \\spad{R} over which we can factor. It is used internally by packages such as the solve package which need to work with polynomials in a specific set of variables with coefficients which are polynomials in all the other variables.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors a polynomial with polynomial coefficients.")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-729 |vl| R) +(-731 |vl| R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute."))) -(((-4412 "*") |has| |#2| (-172)) (-4403 |has| |#2| (-556)) (-4408 |has| |#2| (-6 -4408)) (-4405 . T) (-4404 . T) (-4407 . T)) -((|HasCategory| |#2| (QUOTE (-907))) (-2682 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-907)))) (-2682 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-907)))) (-2682 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-907)))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (-2682 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-556)))) (-12 (|HasCategory| (-862 |#1|) (LIST (QUOTE -884) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -884) (QUOTE (-379))))) (-12 (|HasCategory| (-862 |#1|) (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -884) (QUOTE (-564))))) (-12 (|HasCategory| (-862 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379)))))) (-12 (|HasCategory| (-862 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564)))))) (-12 (|HasCategory| (-862 |#1|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564)))) (-2682 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4408)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-907)))) (-2682 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-907)))) (|HasCategory| |#2| (QUOTE (-145))))) -(-730 E OV R PRF) +(((-4419 "*") |has| |#2| (-172)) (-4410 |has| |#2| (-558)) (-4415 |has| |#2| (-6 -4415)) (-4412 . T) (-4411 . T) (-4414 . T)) +((|HasCategory| |#2| (QUOTE (-909))) (-2809 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-909)))) (-2809 (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-909)))) (-2809 (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-172))) (-2809 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-558)))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2809 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4415)) (|HasCategory| |#2| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#2| (QUOTE (-145))))) +(-732 E OV R PRF) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,{}var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,{}var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,{}var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-731 E OV R P) +(-733 E OV R P) ((|constructor| (NIL "\\indented{1}{MRationalFactorize contains the factor function for multivariate} polynomials over the quotient field of a ring \\spad{R} such that the package MultivariateFactorize can factor multivariate polynomials over \\spad{R}.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} with coefficients which are fractions of elements of \\spad{R}."))) NIL NIL -(-732 R S M) +(-734 R S M) ((|constructor| (NIL "MonoidRingFunctions2 implements functions between two monoid rings defined with the same monoid over different rings.")) (|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) "\\spad{map(f,{}u)} maps \\spad{f} onto the coefficients \\spad{f} the element \\spad{u} of the monoid ring to create an element of a monoid ring with the same monoid \\spad{b}."))) NIL NIL -(-733 R M) +(-735 R M) ((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,{}m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}m)} creates a scalar multiple of the basis element \\spad{m}."))) -((-4405 |has| |#1| (-172)) (-4404 |has| |#1| (-172)) (-4407 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-848)))) -(-734 S) +((-4412 |has| |#1| (-172)) (-4411 |has| |#1| (-172)) (-4414 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-850)))) +(-736 S) ((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements."))) -((-4400 . T) (-4411 . T)) +((-4407 . T) (-4418 . T)) NIL -(-735 S) +(-737 S) ((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,{}ms,{}number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,{}ms,{}number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,{}ms,{}number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,{}ms,{}number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}."))) -((-4410 . T) (-4400 . T) (-4411 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) -(-736) +((-4417 . T) (-4407 . T) (-4418 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) +(-738) ((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned."))) NIL NIL -(-737 S) +(-739 S) ((|constructor| (NIL "This package exports tools for merging lists")) (|mergeDifference| (((|List| |#1|) (|List| |#1|) (|List| |#1|)) "\\spad{mergeDifference(l1,{}l2)} returns a list of elements in \\spad{l1} not present in \\spad{l2}. Assumes lists are ordered and all \\spad{x} in \\spad{l2} are also in \\spad{l1}."))) NIL NIL -(-738 |Coef| |Var|) +(-740 |Coef| |Var|) ((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,{}x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,{}x,{}n)} returns \\spad{min(n,{}order(f,{}x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,{}x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,{}x,{}n)} returns the coefficient of \\spad{x^n} in \\spad{f}."))) -(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4405 . T) (-4404 . T) (-4407 . T)) +(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-558)) (-4412 . T) (-4411 . T) (-4414 . T)) NIL -(-739 OV E R P) +(-741 OV E R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain"))) NIL NIL -(-740 E OV R P) +(-742 E OV R P) ((|constructor| (NIL "Author : \\spad{P}.Gianni This package provides the functions for the computation of the square free decomposition of a multivariate polynomial. It uses the package GenExEuclid for the resolution of the equation \\spad{Af + Bg = h} and its generalization to \\spad{n} polynomials over an integral domain and the package \\spad{MultivariateLifting} for the \"multivariate\" lifting.")) (|normDeriv2| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{normDeriv2 should} be local")) (|myDegree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|NonNegativeInteger|)) "\\spad{myDegree should} be local")) (|lift| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) |#4| (|List| |#2|) (|List| (|NonNegativeInteger|)) (|List| |#3|)) "\\spad{lift should} be local")) (|check| (((|Boolean|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|)))) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{check should} be local")) (|coefChoose| ((|#4| (|Integer|) (|Factored| |#4|)) "\\spad{coefChoose should} be local")) (|intChoose| (((|Record| (|:| |upol| (|SparseUnivariatePolynomial| |#3|)) (|:| |Lval| (|List| |#3|)) (|:| |Lfact| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) (|:| |ctpol| |#3|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{intChoose should} be local")) (|nsqfree| (((|Record| (|:| |unitPart| |#4|) (|:| |suPart| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#4|)) (|:| |exponent| (|Integer|)))))) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{nsqfree should} be local")) (|consnewpol| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#4|)) (|:| |polval| (|SparseUnivariatePolynomial| |#3|))) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{consnewpol should} be local")) (|univcase| (((|Factored| |#4|) |#4| |#2|) "\\spad{univcase should} be local")) (|compdegd| (((|Integer|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{compdegd should} be local")) (|squareFreePrim| (((|Factored| |#4|) |#4|) "\\spad{squareFreePrim(p)} compute the square free decomposition of a primitive multivariate polynomial \\spad{p}.")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p} presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p}."))) NIL NIL -(-741 S R) +(-743 S R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) NIL NIL -(-742 R) +(-744 R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) -((-4405 . T) (-4404 . T)) +((-4412 . T) (-4411 . T)) NIL -(-743) +(-745) ((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,{}n,{}scale,{}ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,{}n,{}scale,{}ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}."))) NIL NIL -(-744) +(-746) ((|constructor| (NIL "This package uses the NAG Library to calculate real zeros of continuous real functions of one or more variables. (Complex equations must be expressed in terms of the equivalent larger system of real equations.) See \\downlink{Manual Page}{manpageXXc05}.")) (|c05pbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp35| FCN)))) "\\spad{c05pbf(n,{}ldfjac,{}lwa,{}x,{}xtol,{}ifail,{}fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. The user must provide the Jacobian. See \\downlink{Manual Page}{manpageXXc05pbf}.")) (|c05nbf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp6| FCN)))) "\\spad{c05nbf(n,{}lwa,{}x,{}xtol,{}ifail,{}fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. See \\downlink{Manual Page}{manpageXXc05nbf}.")) (|c05adf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{c05adf(a,{}b,{}eps,{}eta,{}ifail,{}f)} locates a zero of a continuous function in a given interval by a combination of the methods of linear interpolation,{} extrapolation and bisection. See \\downlink{Manual Page}{manpageXXc05adf}."))) NIL NIL -(-745) +(-747) ((|constructor| (NIL "This package uses the NAG Library to calculate the discrete Fourier transform of a sequence of real or complex data values,{} and applies it to calculate convolutions and correlations. See \\downlink{Manual Page}{manpageXXc06}.")) (|c06gsf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gsf(m,{}n,{}x,{}ifail)} takes \\spad{m} Hermitian sequences,{} each containing \\spad{n} data values,{} and forms the real and imaginary parts of the \\spad{m} corresponding complex sequences. See \\downlink{Manual Page}{manpageXXc06gsf}.")) (|c06gqf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gqf(m,{}n,{}x,{}ifail)} forms the complex conjugates,{} each containing \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gqf}.")) (|c06gcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gcf(n,{}y,{}ifail)} forms the complex conjugate of a sequence of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gcf}.")) (|c06gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gbf(n,{}x,{}ifail)} forms the complex conjugate of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gbf}.")) (|c06fuf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fuf(m,{}n,{}init,{}x,{}y,{}trigm,{}trign,{}ifail)} computes the two-dimensional discrete Fourier transform of a bivariate sequence of complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fuf}.")) (|c06frf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06frf(m,{}n,{}init,{}x,{}y,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06frf}.")) (|c06fqf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fqf(m,{}n,{}init,{}x,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} Hermitian sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fqf}.")) (|c06fpf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fpf(m,{}n,{}init,{}x,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} real data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fpf}.")) (|c06ekf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ekf(job,{}n,{}x,{}y,{}ifail)} calculates the circular convolution of two real vectors of period \\spad{n}. No extra workspace is required. See \\downlink{Manual Page}{manpageXXc06ekf}.")) (|c06ecf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ecf(n,{}x,{}y,{}ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ecf}.")) (|c06ebf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ebf(n,{}x,{}ifail)} calculates the discrete Fourier transform of a Hermitian sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ebf}.")) (|c06eaf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06eaf(n,{}x,{}ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} real data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06eaf}."))) NIL NIL -(-746) +(-748) ((|constructor| (NIL "This package uses the NAG Library to calculate the numerical value of definite integrals in one or more dimensions and to evaluate weights and abscissae of integration rules. See \\downlink{Manual Page}{manpageXXd01}.")) (|d01gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01gbf(ndim,{}a,{}b,{}maxcls,{}eps,{}lenwrk,{}mincls,{}wrkstr,{}ifail,{}functn)} returns an approximation to the integral of a function over a hyper-rectangular region,{} using a Monte Carlo method. An approximate relative error estimate is also returned. This routine is suitable for low accuracy work. See \\downlink{Manual Page}{manpageXXd01gbf}.")) (|d01gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|)) "\\spad{d01gaf(x,{}y,{}n,{}ifail)} integrates a function which is specified numerically at four or more points,{} over the whole of its specified range,{} using third-order finite-difference formulae with error estimates,{} according to a method due to Gill and Miller. See \\downlink{Manual Page}{manpageXXd01gaf}.")) (|d01fcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01fcf(ndim,{}a,{}b,{}maxpts,{}eps,{}lenwrk,{}minpts,{}ifail,{}functn)} attempts to evaluate a multi-dimensional integral (up to 15 dimensions),{} with constant and finite limits,{} to a specified relative accuracy,{} using an adaptive subdivision strategy. See \\downlink{Manual Page}{manpageXXd01fcf}.")) (|d01bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{d01bbf(a,{}b,{}itype,{}n,{}gtype,{}ifail)} returns the weight appropriate to a Gaussian quadrature. The formulae provided are Gauss-Legendre,{} Gauss-Rational,{} Gauss- Laguerre and Gauss-Hermite. See \\downlink{Manual Page}{manpageXXd01bbf}.")) (|d01asf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01asf(a,{}omega,{}key,{}epsabs,{}limlst,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}infty): See \\downlink{Manual Page}{manpageXXd01asf}.")) (|d01aqf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01aqf(a,{}b,{}c,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the Hilbert transform of a function \\spad{g}(\\spad{x}) over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01aqf}.")) (|d01apf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01apf(a,{}b,{}alfa,{}beta,{}key,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} is an adaptive integrator which calculates an approximation to the integral of a function \\spad{g}(\\spad{x})\\spad{w}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01apf}.")) (|d01anf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01anf(a,{}b,{}omega,{}key,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01anf}.")) (|d01amf| (((|Result|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01amf(bound,{}inf,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over an infinite or semi-infinite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01amf}.")) (|d01alf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01alf(a,{}b,{}npts,{}points,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is a general purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01alf}.")) (|d01akf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01akf(a,{}b,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is an adaptive integrator,{} especially suited to oscillating,{} non-singular integrands,{} which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01akf}.")) (|d01ajf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01ajf(a,{}b,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is a general-purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01ajf}."))) NIL NIL -(-747) +(-749) ((|constructor| (NIL "This package uses the NAG Library to calculate the numerical solution of ordinary differential equations. There are two main types of problem,{} those in which all boundary conditions are specified at one point (initial-value problems),{} and those in which the boundary conditions are distributed between two or more points (boundary- value problems and eigenvalue problems). Routines are available for initial-value problems,{} two-point boundary-value problems and Sturm-Liouville eigenvalue problems. See \\downlink{Manual Page}{manpageXXd02}.")) (|d02raf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp41| FCN JACOBF JACEPS))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp42| G JACOBG JACGEP)))) "\\spad{d02raf(n,{}mnp,{}numbeg,{}nummix,{}tol,{}init,{}iy,{}ijac,{}lwork,{}liwork,{}np,{}x,{}y,{}deleps,{}ifail,{}fcn,{}g)} solves the two-point boundary-value problem with general boundary conditions for a system of ordinary differential equations,{} using a deferred correction technique and Newton iteration. See \\downlink{Manual Page}{manpageXXd02raf}.")) (|d02kef| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL))) (|FileName|) (|FileName|)) "\\spad{d02kef(xpoint,{}m,{}k,{}tol,{}maxfun,{}match,{}elam,{}delam,{}hmax,{}maxit,{}ifail,{}coeffn,{}bdyval,{}monit,{}report)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. Files \\spad{monit} and \\spad{report} will be used to define the subroutines for the MONIT and REPORT arguments. See \\downlink{Manual Page}{manpageXXd02gbf}.") (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL)))) "\\spad{d02kef(xpoint,{}m,{}k,{}tol,{}maxfun,{}match,{}elam,{}delam,{}hmax,{}maxit,{}ifail,{}coeffn,{}bdyval)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. ASP domains Asp12 and Asp33 are used to supply default subroutines for the MONIT and REPORT arguments via their \\axiomOp{outputAsFortran} operation.")) (|d02gbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp77| FCNF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp78| FCNG)))) "\\spad{d02gbf(a,{}b,{}n,{}tol,{}mnp,{}lw,{}liw,{}c,{}d,{}gam,{}x,{}np,{}ifail,{}fcnf,{}fcng)} solves a general linear two-point boundary value problem for a system of ordinary differential equations using a deferred correction technique. See \\downlink{Manual Page}{manpageXXd02gbf}.")) (|d02gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02gaf(u,{}v,{}n,{}a,{}b,{}tol,{}mnp,{}lw,{}liw,{}x,{}np,{}ifail,{}fcn)} solves the two-point boundary-value problem with assigned boundary values for a system of ordinary differential equations,{} using a deferred correction technique and a Newton iteration. See \\downlink{Manual Page}{manpageXXd02gaf}.")) (|d02ejf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp31| PEDERV))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02ejf(xend,{}m,{}n,{}relabs,{}iw,{}x,{}y,{}tol,{}ifail,{}g,{}fcn,{}pederv,{}output)} integrates a stiff system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a variable-order,{} variable-step method implementing the Backward Differentiation Formulae (\\spad{BDF}),{} until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02ejf}.")) (|d02cjf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|String|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02cjf(xend,{}m,{}n,{}tol,{}relabs,{}x,{}y,{}ifail,{}g,{}fcn,{}output)} integrates a system of first-order ordinary differential equations over a range with suitable initial conditions,{} using a variable-order,{} variable-step Adams method until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02cjf}.")) (|d02bhf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02bhf(xend,{}n,{}irelab,{}hmax,{}x,{}y,{}tol,{}ifail,{}g,{}fcn)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} until a user-specified function of the solution is zero. See \\downlink{Manual Page}{manpageXXd02bhf}.")) (|d02bbf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02bbf(xend,{}m,{}n,{}irelab,{}x,{}y,{}tol,{}ifail,{}fcn,{}output)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} and returns the solution at points specified by the user. See \\downlink{Manual Page}{manpageXXd02bbf}."))) NIL NIL -(-748) +(-750) ((|constructor| (NIL "This package uses the NAG Library to solve partial differential equations. See \\downlink{Manual Page}{manpageXXd03}.")) (|d03faf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|ThreeDimensionalMatrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03faf(xs,{}xf,{}l,{}lbdcnd,{}bdxs,{}bdxf,{}ys,{}yf,{}m,{}mbdcnd,{}bdys,{}bdyf,{}zs,{}zf,{}n,{}nbdcnd,{}bdzs,{}bdzf,{}lambda,{}ldimf,{}mdimf,{}lwrk,{}f,{}ifail)} solves the Helmholtz equation in Cartesian co-ordinates in three dimensions using the standard seven-point finite difference approximation. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXd03faf}.")) (|d03eef| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp73| PDEF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp74| BNDY)))) "\\spad{d03eef(xmin,{}xmax,{}ymin,{}ymax,{}ngx,{}ngy,{}lda,{}scheme,{}ifail,{}pdef,{}bndy)} discretizes a second order elliptic partial differential equation (PDE) on a rectangular region. See \\downlink{Manual Page}{manpageXXd03eef}.")) (|d03edf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03edf(ngx,{}ngy,{}lda,{}maxit,{}acc,{}iout,{}a,{}rhs,{}ub,{}ifail)} solves seven-diagonal systems of linear equations which arise from the discretization of an elliptic partial differential equation on a rectangular region. This routine uses a multigrid technique. See \\downlink{Manual Page}{manpageXXd03edf}."))) NIL NIL -(-749) +(-751) ((|constructor| (NIL "This package uses the NAG Library to calculate the interpolation of a function of one or two variables. When provided with the value of the function (and possibly one or more of its lowest-order derivatives) at each of a number of values of the variable(\\spad{s}),{} the routines provide either an interpolating function or an interpolated value. For some of the interpolating functions,{} there are supporting routines to evaluate,{} differentiate or integrate them. See \\downlink{Manual Page}{manpageXXe01}.")) (|e01sff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sff(m,{}x,{}y,{}f,{}rnw,{}fnodes,{}px,{}py,{}ifail)} evaluates at a given point the two-dimensional interpolating function computed by E01SEF. See \\downlink{Manual Page}{manpageXXe01sff}.")) (|e01sef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sef(m,{}x,{}y,{}f,{}nw,{}nq,{}rnw,{}rnq,{}ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using a modified Shepard method. See \\downlink{Manual Page}{manpageXXe01sef}.")) (|e01sbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sbf(m,{}x,{}y,{}f,{}triang,{}grads,{}px,{}py,{}ifail)} evaluates at a given point the two-dimensional interpolant function computed by E01SAF. See \\downlink{Manual Page}{manpageXXe01sbf}.")) (|e01saf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01saf(m,{}x,{}y,{}f,{}ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using the method of Renka and Cline. See \\downlink{Manual Page}{manpageXXe01saf}.")) (|e01daf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01daf(mx,{}my,{}x,{}y,{}f,{}ifail)} computes a bicubic spline interpolating surface through a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. See \\downlink{Manual Page}{manpageXXe01daf}.")) (|e01bhf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01bhf(n,{}x,{}f,{}d,{}a,{}b,{}ifail)} evaluates the definite integral of a piecewise cubic Hermite interpolant over the interval [a,{}\\spad{b}]. See \\downlink{Manual Page}{manpageXXe01bhf}.")) (|e01bgf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bgf(n,{}x,{}f,{}d,{}m,{}px,{}ifail)} evaluates a piecewise cubic Hermite interpolant and its first derivative at a set of points. See \\downlink{Manual Page}{manpageXXe01bgf}.")) (|e01bff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bff(n,{}x,{}f,{}d,{}m,{}px,{}ifail)} evaluates a piecewise cubic Hermite interpolant at a set of points. See \\downlink{Manual Page}{manpageXXe01bff}.")) (|e01bef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bef(n,{}x,{}f,{}ifail)} computes a monotonicity-preserving piecewise cubic Hermite interpolant to a set of data points. See \\downlink{Manual Page}{manpageXXe01bef}.")) (|e01baf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e01baf(m,{}x,{}y,{}lck,{}lwrk,{}ifail)} determines a cubic spline to a given set of data. See \\downlink{Manual Page}{manpageXXe01baf}."))) NIL NIL -(-750) +(-752) ((|constructor| (NIL "This package uses the NAG Library to find a function which approximates a set of data points. Typically the data contain random errors,{} as of experimental measurement,{} which need to be smoothed out. To seek an approximation to the data,{} it is first necessary to specify for the approximating function a mathematical form (a polynomial,{} for example) which contains a number of unspecified coefficients: the appropriate fitting routine then derives for the coefficients the values which provide the best fit of that particular form. The package deals mainly with curve and surface fitting (\\spadignore{i.e.} fitting with functions of one and of two variables) when a polynomial or a cubic spline is used as the fitting function,{} since these cover the most common needs. However,{} fitting with other functions and/or more variables can be undertaken by means of general linear or nonlinear routines (some of which are contained in other packages) depending on whether the coefficients in the function occur linearly or nonlinearly. Cases where a graph rather than a set of data points is given can be treated simply by first reading a suitable set of points from the graph. The package also contains routines for evaluating,{} differentiating and integrating polynomial and spline curves and surfaces,{} once the numerical values of their coefficients have been determined. See \\downlink{Manual Page}{manpageXXe02}.")) (|e02zaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02zaf(px,{}py,{}lamda,{}mu,{}m,{}x,{}y,{}npoint,{}nadres,{}ifail)} sorts two-dimensional data into rectangular panels. See \\downlink{Manual Page}{manpageXXe02zaf}.")) (|e02gaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02gaf(m,{}la,{}nplus2,{}toler,{}a,{}b,{}ifail)} calculates an \\spad{l} solution to an over-determined system of \\indented{22}{1} linear equations. See \\downlink{Manual Page}{manpageXXe02gaf}.")) (|e02dff| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02dff(mx,{}my,{}px,{}py,{}x,{}y,{}lamda,{}mu,{}c,{}lwrk,{}liwrk,{}ifail)} calculates values of a bicubic spline representation. The spline is evaluated at all points on a rectangular grid. See \\downlink{Manual Page}{manpageXXe02dff}.")) (|e02def| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02def(m,{}px,{}py,{}x,{}y,{}lamda,{}mu,{}c,{}ifail)} calculates values of a bicubic spline representation. See \\downlink{Manual Page}{manpageXXe02def}.")) (|e02ddf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02ddf(start,{}m,{}x,{}y,{}f,{}w,{}s,{}nxest,{}nyest,{}lwrk,{}liwrk,{}nx,{}lamda,{}ny,{}mu,{}wrk,{}ifail)} computes a bicubic spline approximation to a set of scattered data are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02ddf}.")) (|e02dcf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{e02dcf(start,{}mx,{}x,{}my,{}y,{}f,{}s,{}nxest,{}nyest,{}lwrk,{}liwrk,{}nx,{}lamda,{}ny,{}mu,{}wrk,{}iwrk,{}ifail)} computes a bicubic spline approximation to a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. The knots of the spline are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02dcf}.")) (|e02daf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02daf(m,{}px,{}py,{}x,{}y,{}f,{}w,{}mu,{}point,{}npoint,{}nc,{}nws,{}eps,{}lamda,{}ifail)} forms a minimal,{} weighted least-squares bicubic spline surface fit with prescribed knots to a given set of data points. See \\downlink{Manual Page}{manpageXXe02daf}.")) (|e02bef| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|))) "\\spad{e02bef(start,{}m,{}x,{}y,{}w,{}s,{}nest,{}lwrk,{}n,{}lamda,{}ifail,{}wrk,{}iwrk)} computes a cubic spline approximation to an arbitrary set of data points. The knot are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02bef}.")) (|e02bdf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02bdf(ncap7,{}lamda,{}c,{}ifail)} computes the definite integral from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bdf}.")) (|e02bcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|)) "\\spad{e02bcf(ncap7,{}lamda,{}c,{}x,{}left,{}ifail)} evaluates a cubic spline and its first three derivatives from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bcf}.")) (|e02bbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02bbf(ncap7,{}lamda,{}c,{}x,{}ifail)} evaluates a cubic spline representation. See \\downlink{Manual Page}{manpageXXe02bbf}.")) (|e02baf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02baf(m,{}ncap7,{}x,{}y,{}w,{}lamda,{}ifail)} computes a weighted least-squares approximation to an arbitrary set of data points by a cubic splines prescribed by the user. Cubic spline can also be carried out. See \\downlink{Manual Page}{manpageXXe02baf}.")) (|e02akf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|)) "\\spad{e02akf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}x,{}ifail)} evaluates a polynomial from its Chebyshev-series representation,{} allowing an arbitrary index increment for accessing the array of coefficients. See \\downlink{Manual Page}{manpageXXe02akf}.")) (|e02ajf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ajf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}qatm1,{}iaint1,{}laint,{}ifail)} determines the coefficients in the Chebyshev-series representation of the indefinite integral of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ajf}.")) (|e02ahf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ahf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}iadif1,{}ladif,{}ifail)} determines the coefficients in the Chebyshev-series representation of the derivative of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ahf}.")) (|e02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02agf(m,{}kplus1,{}nrows,{}xmin,{}xmax,{}x,{}y,{}w,{}mf,{}xf,{}yf,{}lyf,{}ip,{}lwrk,{}liwrk,{}ifail)} computes constrained weighted least-squares polynomial approximations in Chebyshev-series form to an arbitrary set of data points. The values of the approximations and any number of their derivatives can be specified at selected points. See \\downlink{Manual Page}{manpageXXe02agf}.")) (|e02aef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02aef(nplus1,{}a,{}xcap,{}ifail)} evaluates a polynomial from its Chebyshev-series representation. See \\downlink{Manual Page}{manpageXXe02aef}.")) (|e02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02adf(m,{}kplus1,{}nrows,{}x,{}y,{}w,{}ifail)} computes weighted least-squares polynomial approximations to an arbitrary set of data points. See \\downlink{Manual Page}{manpageXXe02adf}."))) NIL NIL -(-751) +(-753) ((|constructor| (NIL "This package uses the NAG Library to perform optimization. An optimization problem involves minimizing a function (called the objective function) of several variables,{} possibly subject to restrictions on the values of the variables defined by a set of constraint functions. The routines in the NAG Foundation Library are concerned with function minimization only,{} since the problem of maximizing a given function can be transformed into a minimization problem simply by multiplying the function by \\spad{-1}. See \\downlink{Manual Page}{manpageXXe04}.")) (|e04ycf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04ycf(job,{}m,{}n,{}fsumsq,{}s,{}lv,{}v,{}ifail)} returns estimates of elements of the variance matrix of the estimated regression coefficients for a nonlinear least squares problem. The estimates are derived from the Jacobian of the function \\spad{f}(\\spad{x}) at the solution. See \\downlink{Manual Page}{manpageXXe04ycf}.")) (|e04ucf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Boolean|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp55| CONFUN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04ucf(n,{}nclin,{}ncnln,{}nrowa,{}nrowj,{}nrowr,{}a,{}bl,{}bu,{}liwork,{}lwork,{}sta,{}cra,{}der,{}fea,{}fun,{}hes,{}infb,{}infs,{}linf,{}lint,{}list,{}maji,{}majp,{}mini,{}minp,{}mon,{}nonf,{}opt,{}ste,{}stao,{}stac,{}stoo,{}stoc,{}ve,{}istate,{}cjac,{}clamda,{}r,{}x,{}ifail,{}confun,{}objfun)} is designed to minimize an arbitrary smooth function subject to constraints on the variables,{} linear constraints. (E04UCF may be used for unconstrained,{} bound-constrained and linearly constrained optimization.) The user must provide subroutines that define the objective and constraint functions and as many of their first partial derivatives as possible. Unspecified derivatives are approximated by finite differences. All matrices are treated as dense,{} and hence E04UCF is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04ucf}.")) (|e04naf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Boolean|) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp20| QPHESS)))) "\\spad{e04naf(itmax,{}msglvl,{}n,{}nclin,{}nctotl,{}nrowa,{}nrowh,{}ncolh,{}bigbnd,{}a,{}bl,{}bu,{}cvec,{}featol,{}hess,{}cold,{}lpp,{}orthog,{}liwork,{}lwork,{}x,{}istate,{}ifail,{}qphess)} is a comprehensive programming (\\spad{QP}) or linear programming (\\spad{LP}) problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04naf}.")) (|e04mbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04mbf(itmax,{}msglvl,{}n,{}nclin,{}nctotl,{}nrowa,{}a,{}bl,{}bu,{}cvec,{}linobj,{}liwork,{}lwork,{}x,{}ifail)} is an easy-to-use routine for solving linear programming problems,{} or for finding a feasible point for such problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04mbf}.")) (|e04jaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp24| FUNCT1)))) "\\spad{e04jaf(n,{}ibound,{}liw,{}lw,{}bl,{}bu,{}x,{}ifail,{}funct1)} is an easy-to-use quasi-Newton algorithm for finding a minimum of a function \\spad{F}(\\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ),{} subject to fixed upper and \\indented{25}{1\\space{2}2\\space{6}\\spad{n}} lower bounds of the independent variables \\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ,{} using \\indented{43}{1\\space{2}2\\space{6}\\spad{n}} function values only. See \\downlink{Manual Page}{manpageXXe04jaf}.")) (|e04gcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp19| LSFUN2)))) "\\spad{e04gcf(m,{}n,{}liw,{}lw,{}x,{}ifail,{}lsfun2)} is an easy-to-use quasi-Newton algorithm for finding an unconstrained minimum of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). First derivatives are required. See \\downlink{Manual Page}{manpageXXe04gcf}.")) (|e04fdf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp50| LSFUN1)))) "\\spad{e04fdf(m,{}n,{}liw,{}lw,{}x,{}ifail,{}lsfun1)} is an easy-to-use algorithm for finding an unconstrained minimum of a sum of squares of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). No derivatives are required. See \\downlink{Manual Page}{manpageXXe04fdf}.")) (|e04dgf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04dgf(n,{}es,{}fu,{}it,{}lin,{}list,{}ma,{}op,{}pr,{}sta,{}sto,{}ve,{}x,{}ifail,{}objfun)} minimizes an unconstrained nonlinear function of several variables using a pre-conditioned,{} limited memory quasi-Newton conjugate gradient method. First derivatives are required. The routine is intended for use on large scale problems. See \\downlink{Manual Page}{manpageXXe04dgf}."))) NIL NIL -(-752) +(-754) ((|constructor| (NIL "This package uses the NAG Library to provide facilities for matrix factorizations and associated transformations. See \\downlink{Manual Page}{manpageXXf01}.")) (|f01ref| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01ref(wheret,{}m,{}n,{}ncolq,{}lda,{}theta,{}a,{}ifail)} returns the first \\spad{ncolq} columns of the complex \\spad{m} by \\spad{m} unitary matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01ref}.")) (|f01rdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rdf(trans,{}wheret,{}m,{}n,{}a,{}lda,{}theta,{}ncolb,{}ldb,{}b,{}ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01rdf}.")) (|f01rcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rcf(m,{}n,{}lda,{}a,{}ifail)} finds the \\spad{QR} factorization of the complex \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01rcf}.")) (|f01qef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qef(wheret,{}m,{}n,{}ncolq,{}lda,{}zeta,{}a,{}ifail)} returns the first \\spad{ncolq} columns of the real \\spad{m} by \\spad{m} orthogonal matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01qef}.")) (|f01qdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qdf(trans,{}wheret,{}m,{}n,{}a,{}lda,{}zeta,{}ncolb,{}ldb,{}b,{}ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01qdf}.")) (|f01qcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qcf(m,{}n,{}lda,{}a,{}ifail)} finds the \\spad{QR} factorization of the real \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01qcf}.")) (|f01mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01mcf(n,{}avals,{}lal,{}nrow,{}ifail)} computes the Cholesky factorization of a real symmetric positive-definite variable-bandwidth matrix. See \\downlink{Manual Page}{manpageXXf01mcf}.")) (|f01maf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{f01maf(n,{}nz,{}licn,{}lirn,{}abort,{}avals,{}irn,{}icn,{}droptl,{}densw,{}ifail)} computes an incomplete Cholesky factorization of a real sparse symmetric positive-definite matrix A. See \\downlink{Manual Page}{manpageXXf01maf}.")) (|f01bsf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Boolean|) (|DoubleFloat|) (|Boolean|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01bsf(n,{}nz,{}licn,{}ivect,{}jvect,{}icn,{}ikeep,{}grow,{}eta,{}abort,{}idisp,{}avals,{}ifail)} factorizes a real sparse matrix using the pivotal sequence previously obtained by F01BRF when a matrix of the same sparsity pattern was factorized. See \\downlink{Manual Page}{manpageXXf01bsf}.")) (|f01brf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Boolean|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01brf(n,{}nz,{}licn,{}lirn,{}pivot,{}lblock,{}grow,{}abort,{}a,{}irn,{}icn,{}ifail)} factorizes a real sparse matrix. The routine either forms the LU factorization of a permutation of the entire matrix,{} or,{} optionally,{} first permutes the matrix to block lower triangular form and then only factorizes the diagonal blocks. See \\downlink{Manual Page}{manpageXXf01brf}."))) NIL NIL -(-753) +(-755) ((|constructor| (NIL "This package uses the NAG Library to compute \\begin{items} \\item eigenvalues and eigenvectors of a matrix \\item eigenvalues and eigenvectors of generalized matrix eigenvalue problems \\item singular values and singular vectors of a matrix. \\end{items} See \\downlink{Manual Page}{manpageXXf02}.")) (|f02xef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f02xef(m,{}n,{}lda,{}ncolb,{}ldb,{}wantq,{}ldq,{}wantp,{}ldph,{}a,{}b,{}ifail)} returns all,{} or part,{} of the singular value decomposition of a general complex matrix. See \\downlink{Manual Page}{manpageXXf02xef}.")) (|f02wef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02wef(m,{}n,{}lda,{}ncolb,{}ldb,{}wantq,{}ldq,{}wantp,{}ldpt,{}a,{}b,{}ifail)} returns all,{} or part,{} of the singular value decomposition of a general real matrix. See \\downlink{Manual Page}{manpageXXf02wef}.")) (|f02fjf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE))) (|FileName|)) "\\spad{f02fjf(n,{}k,{}tol,{}novecs,{}nrx,{}lwork,{}lrwork,{}liwork,{}m,{}noits,{}x,{}ifail,{}dot,{}image,{}monit)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.") (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE)))) "\\spad{f02fjf(n,{}k,{}tol,{}novecs,{}nrx,{}lwork,{}lrwork,{}liwork,{}m,{}noits,{}x,{}ifail,{}dot,{}image)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.")) (|f02bjf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bjf(n,{}ia,{}ib,{}eps1,{}matv,{}iv,{}a,{}b,{}ifail)} calculates all the eigenvalues and,{} if required,{} all the eigenvectors of the generalized eigenproblem Ax=(lambda)\\spad{Bx} where A and \\spad{B} are real,{} square matrices,{} using the \\spad{QZ} algorithm. See \\downlink{Manual Page}{manpageXXf02bjf}.")) (|f02bbf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bbf(ia,{}n,{}alb,{}ub,{}m,{}iv,{}a,{}ifail)} calculates selected eigenvalues of a real symmetric matrix by reduction to tridiagonal form,{} bisection and inverse iteration,{} where the selected eigenvalues lie within a given interval. See \\downlink{Manual Page}{manpageXXf02bbf}.")) (|f02axf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02axf(ar,{}iar,{}\\spad{ai},{}iai,{}n,{}ivr,{}ivi,{}ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02axf}.")) (|f02awf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02awf(iar,{}iai,{}n,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02awf}.")) (|f02akf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02akf(iar,{}iai,{}n,{}ivr,{}ivi,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalues of a complex matrix. See \\downlink{Manual Page}{manpageXXf02akf}.")) (|f02ajf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02ajf(iar,{}iai,{}n,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02ajf}.")) (|f02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02agf(ia,{}n,{}ivr,{}ivi,{}a,{}ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02agf}.")) (|f02aff| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aff(ia,{}n,{}a,{}ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02aff}.")) (|f02aef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aef(ia,{}ib,{}n,{}iv,{}a,{}b,{}ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf02aef}.")) (|f02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02adf(ia,{}ib,{}n,{}a,{}b,{}ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive- definite matrix. See \\downlink{Manual Page}{manpageXXf02adf}.")) (|f02abf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02abf(a,{}ia,{}n,{}iv,{}ifail)} calculates all the eigenvalues of a real symmetric matrix. See \\downlink{Manual Page}{manpageXXf02abf}.")) (|f02aaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aaf(ia,{}n,{}a,{}ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02aaf}."))) NIL NIL -(-754) +(-756) ((|constructor| (NIL "This package uses the NAG Library to solve the matrix equation \\axiom{AX=B},{} where \\axiom{\\spad{B}} may be a single vector or a matrix of multiple right-hand sides. The matrix \\axiom{A} may be real,{} complex,{} symmetric,{} Hermitian positive- definite,{} or sparse. It may also be rectangular,{} in which case a least-squares solution is obtained. See \\downlink{Manual Page}{manpageXXf04}.")) (|f04qaf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp30| APROD)))) "\\spad{f04qaf(m,{}n,{}damp,{}atol,{}btol,{}conlim,{}itnlim,{}msglvl,{}lrwork,{}liwork,{}b,{}ifail,{}aprod)} solves sparse unsymmetric equations,{} sparse linear least- squares problems and sparse damped linear least-squares problems,{} using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04qaf}.")) (|f04mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04mcf(n,{}al,{}lal,{}d,{}nrow,{}ir,{}b,{}nrb,{}iselct,{}nrx,{}ifail)} computes the approximate solution of a system of real linear equations with multiple right-hand sides,{} AX=B,{} where A is a symmetric positive-definite variable-bandwidth matrix,{} which has previously been factorized by F01MCF. Related systems may also be solved. See \\downlink{Manual Page}{manpageXXf04mcf}.")) (|f04mbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| APROD))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp34| MSOLVE)))) "\\spad{f04mbf(n,{}b,{}precon,{}shift,{}itnlim,{}msglvl,{}lrwork,{}liwork,{}rtol,{}ifail,{}aprod,{}msolve)} solves a system of real sparse symmetric linear equations using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04mbf}.")) (|f04maf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f04maf(n,{}nz,{}avals,{}licn,{}irn,{}lirn,{}icn,{}wkeep,{}ikeep,{}inform,{}b,{}acc,{}noits,{}ifail)} \\spad{e} a sparse symmetric positive-definite system of linear equations,{} Ax=b,{} using a pre-conditioned conjugate gradient method,{} where A has been factorized by F01MAF. See \\downlink{Manual Page}{manpageXXf04maf}.")) (|f04jgf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04jgf(m,{}n,{}nra,{}tol,{}lwork,{}a,{}b,{}ifail)} finds the solution of a linear least-squares problem,{} Ax=b ,{} where A is a real \\spad{m} by \\spad{n} (m>=n) matrix and \\spad{b} is an \\spad{m} element vector. If the matrix of observations is not of full rank,{} then the minimal least-squares solution is returned. See \\downlink{Manual Page}{manpageXXf04jgf}.")) (|f04faf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04faf(job,{}n,{}d,{}e,{}b,{}ifail)} calculates the approximate solution of a set of real symmetric positive-definite tridiagonal linear equations. See \\downlink{Manual Page}{manpageXXf04faf}.")) (|f04axf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|))) "\\spad{f04axf(n,{}a,{}licn,{}icn,{}ikeep,{}mtype,{}idisp,{}rhs)} calculates the approximate solution of a set of real sparse linear equations with a single right-hand side,{} Ax=b or \\indented{1}{\\spad{T}} A \\spad{x=b},{} where A has been factorized by F01BRF or F01BSF. See \\downlink{Manual Page}{manpageXXf04axf}.")) (|f04atf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04atf(a,{}ia,{}b,{}n,{}iaa,{}ifail)} calculates the accurate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting,{} and iterative refinement. See \\downlink{Manual Page}{manpageXXf04atf}.")) (|f04asf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04asf(ia,{}b,{}n,{}a,{}ifail)} calculates the accurate solution of a set of real symmetric positive-definite linear equations with a single right- hand side,{} Ax=b,{} using a Cholesky factorization and iterative refinement. See \\downlink{Manual Page}{manpageXXf04asf}.")) (|f04arf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04arf(ia,{}b,{}n,{}a,{}ifail)} calculates the approximate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04arf}.")) (|f04adf| (((|Result|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f04adf(ia,{}b,{}ib,{}n,{}m,{}ic,{}a,{}ifail)} calculates the approximate solution of a set of complex linear equations with multiple right-hand sides,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04adf}."))) NIL NIL -(-755) +(-757) ((|constructor| (NIL "This package uses the NAG Library to compute matrix factorizations,{} and to solve systems of linear equations following the matrix factorizations. See \\downlink{Manual Page}{manpageXXf07}.")) (|f07fef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fef(uplo,{}n,{}nrhs,{}a,{}lda,{}ldb,{}b)} (DPOTRS) solves a real symmetric positive-definite system of linear equations with multiple right-hand sides,{} AX=B,{} where A has been factorized by F07FDF (DPOTRF). See \\downlink{Manual Page}{manpageXXf07fef}.")) (|f07fdf| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fdf(uplo,{}n,{}lda,{}a)} (DPOTRF) computes the Cholesky factorization of a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf07fdf}.")) (|f07aef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07aef(trans,{}n,{}nrhs,{}a,{}lda,{}ipiv,{}ldb,{}b)} (DGETRS) solves a real system of linear equations with \\indented{36}{\\spad{T}} multiple right-hand sides,{} AX=B or A \\spad{X=B},{} where A has been factorized by F07ADF (DGETRF). See \\downlink{Manual Page}{manpageXXf07aef}.")) (|f07adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07adf(m,{}n,{}lda,{}a)} (DGETRF) computes the LU factorization of a real \\spad{m} by \\spad{n} matrix. See \\downlink{Manual Page}{manpageXXf07adf}."))) NIL NIL -(-756) +(-758) ((|constructor| (NIL "This package uses the NAG Library to compute some commonly occurring physical and mathematical functions. See \\downlink{Manual Page}{manpageXXs}.")) (|s21bdf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bdf(x,{}y,{}z,{}r,{}ifail)} returns a value of the symmetrised elliptic integral of the third kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bdf}.")) (|s21bcf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bcf(x,{}y,{}z,{}ifail)} returns a value of the symmetrised elliptic integral of the second kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bcf}.")) (|s21bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bbf(x,{}y,{}z,{}ifail)} returns a value of the symmetrised elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bbf}.")) (|s21baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21baf(x,{}y,{}ifail)} returns a value of an elementary integral,{} which occurs as a degenerate case of an elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21baf}.")) (|s20adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20adf(x,{}ifail)} returns a value for the Fresnel Integral \\spad{C}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20adf}.")) (|s20acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20acf(x,{}ifail)} returns a value for the Fresnel Integral \\spad{S}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20acf}.")) (|s19adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19adf(x,{}ifail)} returns a value for the Kelvin function kei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19adf}.")) (|s19acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19acf(x,{}ifail)} returns a value for the Kelvin function ker(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs19acf}.")) (|s19abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19abf(x,{}ifail)} returns a value for the Kelvin function bei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19abf}.")) (|s19aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19aaf(x,{}ifail)} returns a value for the Kelvin function ber(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19aaf}.")) (|s18def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18def(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{I}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18def}.")) (|s18dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18dcf(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{K}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18dcf}.")) (|s18aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aff(x,{}ifail)} returns a value for the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18aff}.")) (|s18aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aef(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18aef}.")) (|s18adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18adf(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18adf}.")) (|s18acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18acf(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18acf}.")) (|s17dlf| (((|Result|) (|Integer|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dlf(m,{}fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Hankel functions \\indented{2}{(1)\\space{11}(2)} \\indented{1}{\\spad{H}\\space{6}(\\spad{z}) or \\spad{H}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}\\space{8}(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dlf}.")) (|s17dhf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dhf(deriv,{}z,{}scale,{}ifail)} returns the value of the Airy function \\spad{Bi}(\\spad{z}) or its derivative Bi'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dhf}.")) (|s17dgf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dgf(deriv,{}z,{}scale,{}ifail)} returns the value of the Airy function \\spad{Ai}(\\spad{z}) or its derivative Ai'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dgf}.")) (|s17def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17def(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{J}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17def}.")) (|s17dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dcf(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{Y}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dcf}.")) (|s17akf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17akf(x,{}ifail)} returns a value for the derivative of the Airy function \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17akf}.")) (|s17ajf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ajf(x,{}ifail)} returns a value of the derivative of the Airy function \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ajf}.")) (|s17ahf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ahf(x,{}ifail)} returns a value of the Airy function,{} \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ahf}.")) (|s17agf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17agf(x,{}ifail)} returns a value for the Airy function,{} \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17agf}.")) (|s17aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aff(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17aff}.")) (|s17aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aef(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17aef}.")) (|s17adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17adf(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17adf}.")) (|s17acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17acf(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17acf}.")) (|s15aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15aef(x,{}ifail)} returns the value of the error function erf(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15aef}.")) (|s15adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15adf(x,{}ifail)} returns the value of the complementary error function,{} erfc(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15adf}.")) (|s14baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s14baf(a,{}x,{}tol,{}ifail)} computes values for the incomplete gamma functions \\spad{P}(a,{}\\spad{x}) and \\spad{Q}(a,{}\\spad{x}). See \\downlink{Manual Page}{manpageXXs14baf}.")) (|s14abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14abf(x,{}ifail)} returns a value for the log,{} \\spad{ln}(Gamma(\\spad{x})),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14abf}.")) (|s14aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14aaf(x,{}ifail)} returns the value of the Gamma function (Gamma)(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14aaf}.")) (|s13adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13adf(x,{}ifail)} returns the value of the sine integral See \\downlink{Manual Page}{manpageXXs13adf}.")) (|s13acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13acf(x,{}ifail)} returns the value of the cosine integral See \\downlink{Manual Page}{manpageXXs13acf}.")) (|s13aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13aaf(x,{}ifail)} returns the value of the exponential integral \\indented{1}{\\spad{E} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs13aaf}.")) (|s01eaf| (((|Result|) (|Complex| (|DoubleFloat|)) (|Integer|)) "\\spad{s01eaf(z,{}ifail)} S01EAF evaluates the exponential function exp(\\spad{z}) ,{} for complex \\spad{z}. See \\downlink{Manual Page}{manpageXXs01eaf}."))) NIL NIL -(-757) +(-759) ((|constructor| (NIL "Support functions for the NAG Library Link functions")) (|restorePrecision| (((|Void|)) "\\spad{restorePrecision()} \\undocumented{}")) (|checkPrecision| (((|Boolean|)) "\\spad{checkPrecision()} \\undocumented{}")) (|dimensionsOf| (((|SExpression|) (|Symbol|) (|Matrix| (|Integer|))) "\\spad{dimensionsOf(s,{}m)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|Matrix| (|DoubleFloat|))) "\\spad{dimensionsOf(s,{}m)} \\undocumented{}")) (|aspFilename| (((|String|) (|String|)) "\\spad{aspFilename(\"f\")} returns a String consisting of \\spad{\"f\"} suffixed with \\indented{1}{an extension identifying the current AXIOM session.}")) (|fortranLinkerArgs| (((|String|)) "\\spad{fortranLinkerArgs()} returns the current linker arguments")) (|fortranCompilerName| (((|String|)) "\\spad{fortranCompilerName()} returns the name of the currently selected \\indented{1}{Fortran compiler}"))) NIL NIL -(-758 S) +(-760 S) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,{}b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,{}b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,{}b,{}c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-759) +(-761) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,{}b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,{}b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,{}b,{}c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-760 S) +(-762 S) ((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-761) +(-763) ((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-762 |Par|) +(-764 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,{}eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable."))) NIL NIL -(-763 -2266) +(-765 -2341) ((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction."))) NIL NIL -(-764 P -2266) +(-766 P -2341) ((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}."))) NIL NIL -(-765 T$) +(-767 T$) NIL NIL NIL -(-766 UP -2266) +(-768 UP -2341) ((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}."))) NIL NIL -(-767) +(-769) ((|retract| (((|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-768 R) +(-770 R) ((|constructor| (NIL "NonLinearSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving. The solutions are given in the algebraic closure of \\spad{R} whenever possible.")) (|solve| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solve(lp)} finds the solution in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solve(lp,{}lv)} finds the solutions in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")) (|solveInField| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solveInField(lp)} finds the solution of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solveInField(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-769) +(-771) ((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,{}b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder."))) -(((-4412 "*") . T)) +(((-4419 "*") . T)) NIL -(-770 R -2266) +(-772 R -2341) ((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,{}y),{} N(x,{}y),{} y,{} x)} returns \\spad{F(x,{}y)} such that \\spad{F(x,{}y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,{}y) dx + N(x,{}y) dy = 0},{} or \"failed\" if no first-integral can be found."))) NIL NIL -(-771 S) +(-773 S) ((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}."))) NIL NIL -(-772) +(-774) ((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code)."))) NIL NIL -(-773 R |PolR| E |PolE|) +(-775 R |PolR| E |PolE|) ((|constructor| (NIL "This package implements the norm of a polynomial with coefficients in a monogenic algebra (using resultants)")) (|norm| ((|#2| |#4|) "\\spad{norm q} returns the norm of \\spad{q},{} \\spadignore{i.e.} the product of all the conjugates of \\spad{q}."))) NIL NIL -(-774 R E V P TS) +(-776 R E V P TS) ((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}."))) NIL NIL -(-775 -2266 |ExtF| |SUEx| |ExtP| |n|) +(-777 -2341 |ExtF| |SUEx| |ExtP| |n|) ((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented"))) NIL NIL -(-776 BP E OV R P) +(-778 BP E OV R P) ((|constructor| (NIL "Package for the determination of the coefficients in the lifting process. Used by \\spadtype{MultivariateLifting}. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|listexp| (((|List| (|NonNegativeInteger|)) |#1|) "\\spad{listexp }\\undocumented")) (|npcoef| (((|Record| (|:| |deter| (|List| (|SparseUnivariatePolynomial| |#5|))) (|:| |dterm| (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (|List| |#1|)) (|:| |nlead| (|List| |#5|))) (|SparseUnivariatePolynomial| |#5|) (|List| |#1|) (|List| |#5|)) "\\spad{npcoef }\\undocumented"))) NIL NIL -(-777 |Par|) +(-779 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the Rational Numbers. The results are expressed as floating numbers or as rational numbers depending on the type of the parameter Par.")) (|realEigenvectors| (((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#1|))))) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvectors(m,{}eps)} returns a list of records each one containing a real eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} as floats or rational numbers depending on the type of \\spad{eps} .")) (|realEigenvalues| (((|List| |#1|) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as floats or rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with variable \\spad{x}. Fraction \\spad{P} \\spad{RN}.") (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|)))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with a new symbol as variable."))) NIL NIL -(-778 R |VarSet|) +(-780 R |VarSet|) ((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor."))) -(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4408 |has| |#1| (-6 -4408)) (-4405 . T) (-4404 . T) (-4407 . T)) -((|HasCategory| |#1| (QUOTE (-907))) (-2682 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-907)))) (-2682 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-907)))) (-2682 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-907)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2682 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -884) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -884) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -884) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564)))) (-2682 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1173))))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1173)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1173))))) (-2682 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1173)))) (-2307 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1173)))))) (-2682 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1173)))) (-2307 (|HasCategory| |#1| (QUOTE (-545)))) (-2307 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1173)))) (-2307 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-564))))) (-2307 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1173)))) (-2307 (|HasCategory| |#1| (LIST (QUOTE -990) (QUOTE (-564))))))) (|HasAttribute| |#1| (QUOTE -4408)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-907)))) (-2682 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-907)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-779 R S) +(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-558)) (-4415 |has| |#1| (-6 -4415)) (-4412 . T) (-4411 . T) (-4414 . T)) +((|HasCategory| |#1| (QUOTE (-909))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-1175))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-1175))))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-1175)))) (-2387 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-1175)))))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-1175)))) (-2387 (|HasCategory| |#1| (QUOTE (-547)))) (-2387 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-1175)))) (-2387 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-566))))) (-2387 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-1175)))) (-2387 (|HasCategory| |#1| (LIST (QUOTE -992) (QUOTE (-566))))))) (|HasAttribute| |#1| (QUOTE -4415)) (|HasCategory| |#1| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-781 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-780 R) +(-782 R) ((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) -(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4406 |has| |#1| (-363)) (-4408 |has| |#1| (-6 -4408)) (-4405 . T) (-4404 . T) (-4407 . T)) -((|HasCategory| |#1| (QUOTE (-907))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2682 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1079) (LIST (QUOTE -884) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -884) (QUOTE (-379))))) (-12 (|HasCategory| (-1079) (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -884) (QUOTE (-564))))) (-12 (|HasCategory| (-1079) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379)))))) (-12 (|HasCategory| (-1079) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564)))))) (-12 (|HasCategory| (-1079) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564)))) (-2682 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (-2682 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-907)))) (-2682 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-907)))) (-2682 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-907)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1148))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4408)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-907)))) (-2682 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-907)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-781 R) +(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-558)) (-4413 |has| |#1| (-365)) (-4415 |has| |#1| (-6 -4415)) (-4412 . T) (-4411 . T) (-4414 . T)) +((|HasCategory| |#1| (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1150))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4415)) (|HasCategory| |#1| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-783 R) ((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,{}r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,{}r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,{}r)} \\undocumented"))) NIL -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) -(-782 R E V P) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) +(-784 R E V P) ((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,{}v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,{}v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,{}mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}"))) -((-4411 . T) (-4410 . T)) +((-4418 . T) (-4417 . T)) NIL -(-783 S) +(-785 S) ((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-1047))) (|HasCategory| |#1| (QUOTE (-172)))) -(-784) +((-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (QUOTE (-172)))) +(-786) ((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}."))) NIL NIL -(-785) +(-787) ((|numericalIntegration| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,{}hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,{}hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-786) +(-788) ((|constructor| (NIL "This package is a suite of functions for the numerical integration of an ordinary differential equation of \\spad{n} variables: \\blankline \\indented{8}{\\center{dy/dx = \\spad{f}(\\spad{y},{}\\spad{x})\\space{5}\\spad{y} is an \\spad{n}-vector}} \\blankline \\par All the routines are based on a 4-th order Runge-Kutta kernel. These routines generally have as arguments: \\spad{n},{} the number of dependent variables; \\spad{x1},{} the initial point; \\spad{h},{} the step size; \\spad{y},{} a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h}; \\spad{derivs},{} a function which computes the right hand side of the ordinary differential equation: \\spad{derivs(dydx,{}y,{}x)} computes \\spad{dydx},{} a vector which contains the derivative information. \\blankline \\par In order of increasing complexity:\\begin{items} \\blankline \\item \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} advances the solution vector to \\spad{x1 + h} and return the values in \\spad{y}. \\blankline \\item \\spad{rk4(y,{}n,{}x1,{}h,{}derivs,{}t1,{}t2,{}t3,{}t4)} is the same as \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. \\blankline \\item Starting with \\spad{y} at \\spad{x1},{} \\spad{rk4f(y,{}n,{}x1,{}x2,{}ns,{}derivs)} uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. Argument \\spad{x2},{} is the final point,{} and \\spad{ns},{} the number of steps to take. \\blankline \\item \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} takes a 5-th order Runge-Kutta step with monitoring of local truncation to ensure accuracy and adjust stepsize. The function takes two half steps and one full step and scales the difference in solutions at the final point. If the error is within \\spad{eps},{} the step is taken and the result is returned. If the error is not within \\spad{eps},{} the stepsize if decreased and the procedure is tried again until the desired accuracy is reached. Upon input,{} an trial step size must be given and upon return,{} an estimate of the next step size to use is returned as well as the step size which produced the desired accuracy. The scaled error is computed as \\center{\\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}} and this is compared against \\spad{eps}. If this is greater than \\spad{eps},{} the step size is reduced accordingly to \\center{\\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}} If the error criterion is satisfied,{} then we check if the step size was too fine and return a more efficient one. If \\spad{error > \\spad{eps} * (6.0E-04)} then the next step size should be \\center{\\spad{hnext = 0.9 * hdid * (error/\\spad{eps})\\spad{**}(-1/5)}} Otherwise \\spad{hnext = 4.0 * hdid} is returned. A more detailed discussion of this and related topics can be found in the book \"Numerical Recipies\" by \\spad{W}.Press,{} \\spad{B}.\\spad{P}. Flannery,{} \\spad{S}.A. Teukolsky,{} \\spad{W}.\\spad{T}. Vetterling published by Cambridge University Press. Argument \\spad{step} is a record of 3 floating point numbers \\spad{(try ,{} did ,{} next)},{} \\spad{eps} is the required accuracy,{} \\spad{yscal} is the scaling vector for the difference in solutions. On input,{} \\spad{step.try} should be the guess at a step size to achieve the accuracy. On output,{} \\spad{step.did} contains the step size which achieved the accuracy and \\spad{step.next} is the next step size to use. \\blankline \\item \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs,{}t1,{}t2,{}t3,{}t4,{}t5,{}t6,{}t7)} is the same as \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} except that the user must provide the 7 scratch arrays \\spad{t1-t7} of size \\spad{n}. \\blankline \\item \\spad{rk4a(y,{}n,{}x1,{}x2,{}eps,{}h,{}ns,{}derivs)} is a driver program which uses \\spad{rk4qc} to integrate \\spad{n} ordinary differential equations starting at \\spad{x1} to \\spad{x2},{} keeping the local truncation error to within \\spad{eps} by changing the local step size. The scaling vector is defined as \\center{\\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}} where \\spad{y(i)} is the solution at location \\spad{x},{} \\spad{dydx} is the ordinary differential equation\\spad{'s} right hand side,{} \\spad{h} is the current step size and \\spad{tiny} is 10 times the smallest positive number representable. The user must supply an estimate for a trial step size and the maximum number of calls to \\spad{rk4qc} to use. Argument \\spad{x2} is the final point,{} \\spad{eps} is local truncation,{} \\spad{ns} is the maximum number of call to \\spad{rk4qc} to use. \\end{items}")) (|rk4f| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4f(y,{}n,{}x1,{}x2,{}ns,{}derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Starting with \\spad{y} at \\spad{x1},{} this function uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4qc| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs,{}t1,{}t2,{}t3,{}t4,{}t5,{}t6,{}t7)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4a| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4a(y,{}n,{}x1,{}x2,{}eps,{}h,{}ns,{}derivs)} is a driver function for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4(y,{}n,{}x1,{}h,{}derivs,{}t1,{}t2,{}t3,{}t4)} is the same as \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Argument \\spad{y} is a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h},{} \\spad{n} is the number of dependent variables,{} \\spad{x1} is the initial point,{} \\spad{h} is the step size,{} and \\spad{derivs} is a function which computes the right hand side of the ordinary differential equation. For details,{} see \\spadtype{NumericalOrdinaryDifferentialEquations}."))) NIL NIL -(-787) +(-789) ((|constructor| (NIL "This suite of routines performs numerical quadrature using algorithms derived from the basic trapezoidal rule. Because the error term of this rule contains only even powers of the step size (for open and closed versions),{} fast convergence can be obtained if the integrand is sufficiently smooth. \\blankline Each routine returns a Record of type TrapAns,{} which contains\\indent{3} \\newline value (\\spadtype{Float}):\\tab{20} estimate of the integral \\newline error (\\spadtype{Float}):\\tab{20} estimate of the error in the computation \\newline totalpts (\\spadtype{Integer}):\\tab{20} total number of function evaluations \\newline success (\\spadtype{Boolean}):\\tab{20} if the integral was computed within the user specified error criterion \\indent{0}\\indent{0} To produce this estimate,{} each routine generates an internal sequence of sub-estimates,{} denoted by {\\em S(i)},{} depending on the routine,{} to which the various convergence criteria are applied. The user must supply a relative accuracy,{} \\spad{eps_r},{} and an absolute accuracy,{} \\spad{eps_a}. Convergence is obtained when either \\center{\\spad{ABS(S(i) - S(i-1)) < eps_r * ABS(S(i-1))}} \\center{or \\spad{ABS(S(i) - S(i-1)) < eps_a}} are \\spad{true} statements. \\blankline The routines come in three families and three flavors: \\newline\\tab{3} closed:\\tab{20}romberg,{}\\tab{30}simpson,{}\\tab{42}trapezoidal \\newline\\tab{3} open: \\tab{20}rombergo,{}\\tab{30}simpsono,{}\\tab{42}trapezoidalo \\newline\\tab{3} adaptive closed:\\tab{20}aromberg,{}\\tab{30}asimpson,{}\\tab{42}atrapezoidal \\par The {\\em S(i)} for the trapezoidal family is the value of the integral using an equally spaced absicca trapezoidal rule for that level of refinement. \\par The {\\em S(i)} for the simpson family is the value of the integral using an equally spaced absicca simpson rule for that level of refinement. \\par The {\\em S(i)} for the romberg family is the estimate of the integral using an equally spaced absicca romberg method. For the \\spad{i}\\spad{-}th level,{} this is an appropriate combination of all the previous trapezodial estimates so that the error term starts with the \\spad{2*(i+1)} power only. \\par The three families come in a closed version,{} where the formulas include the endpoints,{} an open version where the formulas do not include the endpoints and an adaptive version,{} where the user is required to input the number of subintervals over which the appropriate closed family integrator will apply with the usual convergence parmeters for each subinterval. This is useful where a large number of points are needed only in a small fraction of the entire domain. \\par Each routine takes as arguments: \\newline \\spad{f}\\tab{10} integrand \\newline a\\tab{10} starting point \\newline \\spad{b}\\tab{10} ending point \\newline \\spad{eps_r}\\tab{10} relative error \\newline \\spad{eps_a}\\tab{10} absolute error \\newline \\spad{nmin} \\tab{10} refinement level when to start checking for convergence (> 1) \\newline \\spad{nmax} \\tab{10} maximum level of refinement \\par The adaptive routines take as an additional parameter \\newline \\spad{nint}\\tab{10} the number of independent intervals to apply a closed \\indented{1}{family integrator of the same name.} \\par Notes: \\newline Closed family level \\spad{i} uses \\spad{1 + 2**i} points. \\newline Open family level \\spad{i} uses \\spad{1 + 3**i} points.")) (|trapezoidalo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidalo(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the trapezoidal method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpsono| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpsono(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|rombergo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{rombergo(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the romberg method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|trapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidal(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the trapezoidal method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpson(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|romberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{romberg(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the romberg method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|atrapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{atrapezoidal(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive trapezoidal method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|asimpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{asimpson(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive simpson method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|aromberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{aromberg(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive romberg method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details."))) NIL NIL -(-788 |Curve|) +(-790 |Curve|) ((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tube| (((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)) "\\spad{tube(c,{}r,{}n)} creates a tube of radius \\spad{r} around the curve \\spad{c}."))) NIL NIL -(-789) +(-791) ((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering."))) NIL NIL -(-790) +(-792) ((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering."))) NIL NIL -(-791) +(-793) ((|constructor| (NIL "This domain is an OrderedAbelianMonoid with a \\spadfun{sup} operation added. The purpose of the \\spadfun{sup} operator in this domain is to act as a supremum with respect to the partial order imposed by \\spadop{-},{} rather than with respect to the total \\spad{>} order (since that is \"max\"). \\blankline")) (|sup| (($ $ $) "\\spad{sup(x,{}y)} returns the least element from which both \\spad{x} and \\spad{y} can be subtracted."))) NIL NIL -(-792) +(-794) ((|constructor| (NIL "Ordered sets which are also abelian semigroups,{} such that the addition preserves the ordering. \\indented{2}{\\spad{ x < y => x+z < y+z}}"))) NIL NIL -(-793) +(-795) ((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering."))) NIL NIL -(-794 S R) +(-796 S R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) NIL -((|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-1057))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-368)))) -(-795 R) +((|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-547))) (|HasCategory| |#2| (QUOTE (-1059))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-370)))) +(-797 R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) -((-4404 . T) (-4405 . T) (-4407 . T)) +((-4411 . T) (-4412 . T) (-4414 . T)) NIL -(-796 -2682 R OS S) +(-798 -2809 R OS S) ((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}."))) NIL NIL -(-797 R) +(-799 R) ((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,{}qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}."))) -((-4404 . T) (-4405 . T) (-4407 . T)) -((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1173)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (-2682 (|HasCategory| (-997 |#1|) (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564)))))) (-2682 (|HasCategory| (-997 |#1|) (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-1057))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-997 |#1|) (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-997 |#1|) (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564))))) -(-798) +((-4411 . T) (-4412 . T) (-4414 . T)) +((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (-2809 (|HasCategory| (-999 |#1|) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2809 (|HasCategory| (-999 |#1|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-1059))) (|HasCategory| |#1| (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-999 |#1|) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-999 |#1|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566))))) +(-800) ((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-799 R -2266 L) +(-801 R -2341 L) ((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op,{} g,{} x)} returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{\\spad{yi}}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}."))) NIL NIL -(-800 R -2266) +(-802 R -2341) ((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m,{} x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m,{} v,{} x)} returns \\spad{[v_p,{} [v_1,{}...,{}v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable."))) NIL NIL -(-801) +(-803) ((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions."))) NIL NIL -(-802 R -2266) +(-804 R -2341) ((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f,{} x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f,{} x)} returns the integral of \\spad{f} with respect to \\spad{x}."))) NIL NIL -(-803) +(-805) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}epsabs,{}epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,{}R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine."))) NIL NIL -(-804 -2266 UP UPUP R) +(-806 -2341 UP UPUP R) ((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation."))) NIL NIL -(-805 -2266 UP L LQ) +(-807 -2341 UP L LQ) ((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op,{} [g1,{}...,{}gm])} returns \\spad{op0,{} [h1,{}...,{}hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op,{} [g1,{}...,{}gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op,{} g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution."))) NIL NIL -(-806) +(-808) ((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-807 -2266 UP L LQ) +(-809 -2341 UP L LQ) ((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} zeros,{} ezfactor)} returns \\spad{[[f1,{} L1],{} [f2,{} L2],{} ... ,{} [fk,{} Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z=0}. \\spad{zeros(C(x),{}H(x,{}y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,{}P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{} Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op,{} ric)} returns \\spad{[[a1,{} L1],{} [a2,{} L2],{} ... ,{} [ak,{} Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1,{} p1],{} [m2,{} p2],{} ... ,{} [mk,{} pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}."))) NIL NIL -(-808 -2266 UP) +(-810 -2341 UP) ((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation."))) NIL NIL -(-809 -2266 L UP A LO) +(-811 -2341 L UP A LO) ((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op,{} g)} returns \\spad{[m,{} v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,{}...,{}z_m) . (b_1,{}...,{}b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}."))) NIL NIL -(-810 -2266 UP) +(-812 -2341 UP) ((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{}Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{\\spad{Li} z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} ezfactor)} returns \\spad{[[f1,{}L1],{} [f2,{}L2],{}...,{} [fk,{}Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-811 -2266 LO) +(-813 -2341 LO) ((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m,{} v)} returns \\spad{[m_0,{} v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,{}v)} returns \\spad{A,{}[[C_1,{}g_1,{}L_1,{}h_1],{}...,{}[C_k,{}g_k,{}L_k,{}h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}."))) NIL NIL -(-812 -2266 LODO) +(-814 -2341 LODO) ((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op,{} g,{} [f1,{}...,{}fm],{} I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op,{} g,{} [f1,{}...,{}fm])} returns \\spad{[u1,{}...,{}um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,{}...,{}fn],{} q,{} D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,{}...,{}fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}."))) NIL NIL -(-813 -2162 S |f|) +(-815 -2216 S |f|) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4404 |has| |#2| (-1047)) (-4405 |has| |#2| (-1047)) (-4407 |has| |#2| (-6 -4407)) ((-4412 "*") |has| |#2| (-172)) (-4410 . T)) -((-2682 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-724))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-791))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))))) (-2682 (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1097)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1047)))) (-12 (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173))))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#2| (QUOTE (-363))) (-2682 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1047)))) (-2682 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363)))) (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-791))) (-2682 (|HasCategory| |#2| (QUOTE (-791))) (|HasCategory| |#2| (QUOTE (-846)))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-724))) (-2682 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1047)))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))) (-2682 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1047)))) (-2682 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1047)))) (-2682 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1047)))) (-2682 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1047)))) (|HasCategory| |#2| (QUOTE (-233))) (-2682 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-724))) (|HasCategory| |#2| (QUOTE (-791))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (QUOTE (-1097)))) (|HasCategory| |#2| (QUOTE (-1097))) (-2682 (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-368)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-724)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-791)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-846)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1047)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1097))))) (-2682 (-12 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-724))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-791))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1047))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564)))))) (-2682 (-12 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-724))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-791))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564)))))) (|HasCategory| (-564) (QUOTE (-848))) (-12 (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1047)))) (-12 (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173))))) (-2682 (|HasCategory| |#2| (QUOTE (-1047))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564)))))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1097)))) (|HasAttribute| |#2| (QUOTE -4407)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-860)))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))))) -(-814 R) +((-4411 |has| |#2| (-1049)) (-4412 |has| |#2| (-1049)) (-4414 |has| |#2| (-6 -4414)) ((-4419 "*") |has| |#2| (-172)) (-4417 . T)) +((-2809 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))))) (-2809 (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1099)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1049)))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#2| (QUOTE (-365))) (-2809 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2809 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365)))) (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-793))) (-2809 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-848)))) (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-726))) (-2809 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1049)))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (-2809 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2809 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2809 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2809 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1049)))) (|HasCategory| |#2| (QUOTE (-233))) (-2809 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-365)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-370)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-726)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-793)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-848)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1049)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1099))))) (-2809 (-12 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1049))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-2809 (-12 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))))) (|HasCategory| (-566) (QUOTE (-850))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1049)))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175))))) (-2809 (|HasCategory| |#2| (QUOTE (-1049))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1099)))) (|HasAttribute| |#2| (QUOTE -4414)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))))) +(-816 R) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline"))) -(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4408 |has| |#1| (-6 -4408)) (-4405 . T) (-4404 . T) (-4407 . T)) -((|HasCategory| |#1| (QUOTE (-907))) (-2682 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-907)))) (-2682 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-907)))) (-2682 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-907)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2682 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-816 (-1173)) (LIST (QUOTE -884) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -884) (QUOTE (-379))))) (-12 (|HasCategory| (-816 (-1173)) (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -884) (QUOTE (-564))))) (-12 (|HasCategory| (-816 (-1173)) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379)))))) (-12 (|HasCategory| (-816 (-1173)) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564)))))) (-12 (|HasCategory| (-816 (-1173)) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564)))) (-2682 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4408)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-907)))) (-2682 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-907)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-815 |Kernels| R |var|) +(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-558)) (-4415 |has| |#1| (-6 -4415)) (-4412 . T) (-4411 . T) (-4414 . T)) +((|HasCategory| |#1| (QUOTE (-909))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-818 (-1175)) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| (-818 (-1175)) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| (-818 (-1175)) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| (-818 (-1175)) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| (-818 (-1175)) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4415)) (|HasCategory| |#1| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-817 |Kernels| R |var|) ((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable."))) -(((-4412 "*") |has| |#2| (-363)) (-4403 |has| |#2| (-363)) (-4408 |has| |#2| (-363)) (-4402 |has| |#2| (-363)) (-4407 . T) (-4405 . T) (-4404 . T)) -((|HasCategory| |#2| (QUOTE (-363)))) -(-816 S) +(((-4419 "*") |has| |#2| (-365)) (-4410 |has| |#2| (-365)) (-4415 |has| |#2| (-365)) (-4409 |has| |#2| (-365)) (-4414 . T) (-4412 . T) (-4411 . T)) +((|HasCategory| |#2| (QUOTE (-365)))) +(-818 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u}))."))) NIL NIL -(-817 S) +(-819 S) ((|constructor| (NIL "\\indented{3}{The free monoid on a set \\spad{S} is the monoid of finite products of} the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The multiplication is not commutative. For two elements \\spad{x} and \\spad{y} the relation \\spad{x < y} holds if either \\spad{length(x) < length(y)} holds or if these lengths are equal and if \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\spad{S}. This domain inherits implementation from \\spadtype{FreeMonoid}.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables of \\spad{x}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the length of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the \\spad{n-th} monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the \\spad{n-th} monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m} and \\spad{y = m * r} hold and such that \\spad{l} and \\spad{r} have no overlap,{} that is \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|div| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{x div y} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} that is \\spad{[l,{} r]} such that \\spad{x = l * y * r}. \"failed\" is returned iff \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ |#1|) "\\spad{rquo(x,{} s)} returns the exact right quotient of \\spad{x} by \\spad{s}.") (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} that is \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ |#1|) "\\spad{lquo(x,{} s)} returns the exact left quotient of \\spad{x} by \\spad{s}.") (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} \\indented{1}{by \\spad{y} that is \\spad{q} such that \\spad{x = y * q},{}} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} that is the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} that is the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (|lexico| (((|Boolean|) $ $) "\\spad{lexico(x,{}y)} returns \\spad{true} iff \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering induced by \\spad{S}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns the reversed word of \\spad{x}.")) (|rest| (($ $) "\\spad{rest(x)} returns \\spad{x} except the first letter.")) (|first| ((|#1| $) "\\spad{first(x)} returns the first letter of \\spad{x}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) NIL NIL -(-818) +(-820) ((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline"))) -((-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) +((-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) NIL -(-819) +(-821) ((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}"))) NIL NIL -(-820) +(-822) ((|constructor| (NIL "\\spadtype{OpenMathDevice} provides support for reading and writing openMath objects to files,{} strings etc. It also provides access to low-level operations from within the interpreter.")) (|OMgetType| (((|Symbol|) $) "\\spad{OMgetType(dev)} returns the type of the next object on \\axiom{\\spad{dev}}.")) (|OMgetSymbol| (((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $) "\\spad{OMgetSymbol(dev)} reads a symbol from \\axiom{\\spad{dev}}.")) (|OMgetString| (((|String|) $) "\\spad{OMgetString(dev)} reads a string from \\axiom{\\spad{dev}}.")) (|OMgetVariable| (((|Symbol|) $) "\\spad{OMgetVariable(dev)} reads a variable from \\axiom{\\spad{dev}}.")) (|OMgetFloat| (((|DoubleFloat|) $) "\\spad{OMgetFloat(dev)} reads a float from \\axiom{\\spad{dev}}.")) (|OMgetInteger| (((|Integer|) $) "\\spad{OMgetInteger(dev)} reads an integer from \\axiom{\\spad{dev}}.")) (|OMgetEndObject| (((|Void|) $) "\\spad{OMgetEndObject(dev)} reads an end object token from \\axiom{\\spad{dev}}.")) (|OMgetEndError| (((|Void|) $) "\\spad{OMgetEndError(dev)} reads an end error token from \\axiom{\\spad{dev}}.")) (|OMgetEndBVar| (((|Void|) $) "\\spad{OMgetEndBVar(dev)} reads an end bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetEndBind| (((|Void|) $) "\\spad{OMgetEndBind(dev)} reads an end binder token from \\axiom{\\spad{dev}}.")) (|OMgetEndAttr| (((|Void|) $) "\\spad{OMgetEndAttr(dev)} reads an end attribute token from \\axiom{\\spad{dev}}.")) (|OMgetEndAtp| (((|Void|) $) "\\spad{OMgetEndAtp(dev)} reads an end attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetEndApp| (((|Void|) $) "\\spad{OMgetEndApp(dev)} reads an end application token from \\axiom{\\spad{dev}}.")) (|OMgetObject| (((|Void|) $) "\\spad{OMgetObject(dev)} reads a begin object token from \\axiom{\\spad{dev}}.")) (|OMgetError| (((|Void|) $) "\\spad{OMgetError(dev)} reads a begin error token from \\axiom{\\spad{dev}}.")) (|OMgetBVar| (((|Void|) $) "\\spad{OMgetBVar(dev)} reads a begin bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetBind| (((|Void|) $) "\\spad{OMgetBind(dev)} reads a begin binder token from \\axiom{\\spad{dev}}.")) (|OMgetAttr| (((|Void|) $) "\\spad{OMgetAttr(dev)} reads a begin attribute token from \\axiom{\\spad{dev}}.")) (|OMgetAtp| (((|Void|) $) "\\spad{OMgetAtp(dev)} reads a begin attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetApp| (((|Void|) $) "\\spad{OMgetApp(dev)} reads a begin application token from \\axiom{\\spad{dev}}.")) (|OMputSymbol| (((|Void|) $ (|String|) (|String|)) "\\spad{OMputSymbol(dev,{}cd,{}s)} writes the symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}} to \\axiom{\\spad{dev}}.")) (|OMputString| (((|Void|) $ (|String|)) "\\spad{OMputString(dev,{}i)} writes the string \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputVariable| (((|Void|) $ (|Symbol|)) "\\spad{OMputVariable(dev,{}i)} writes the variable \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputFloat| (((|Void|) $ (|DoubleFloat|)) "\\spad{OMputFloat(dev,{}i)} writes the float \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputInteger| (((|Void|) $ (|Integer|)) "\\spad{OMputInteger(dev,{}i)} writes the integer \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputEndObject| (((|Void|) $) "\\spad{OMputEndObject(dev)} writes an end object token to \\axiom{\\spad{dev}}.")) (|OMputEndError| (((|Void|) $) "\\spad{OMputEndError(dev)} writes an end error token to \\axiom{\\spad{dev}}.")) (|OMputEndBVar| (((|Void|) $) "\\spad{OMputEndBVar(dev)} writes an end bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputEndBind| (((|Void|) $) "\\spad{OMputEndBind(dev)} writes an end binder token to \\axiom{\\spad{dev}}.")) (|OMputEndAttr| (((|Void|) $) "\\spad{OMputEndAttr(dev)} writes an end attribute token to \\axiom{\\spad{dev}}.")) (|OMputEndAtp| (((|Void|) $) "\\spad{OMputEndAtp(dev)} writes an end attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputEndApp| (((|Void|) $) "\\spad{OMputEndApp(dev)} writes an end application token to \\axiom{\\spad{dev}}.")) (|OMputObject| (((|Void|) $) "\\spad{OMputObject(dev)} writes a begin object token to \\axiom{\\spad{dev}}.")) (|OMputError| (((|Void|) $) "\\spad{OMputError(dev)} writes a begin error token to \\axiom{\\spad{dev}}.")) (|OMputBVar| (((|Void|) $) "\\spad{OMputBVar(dev)} writes a begin bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputBind| (((|Void|) $) "\\spad{OMputBind(dev)} writes a begin binder token to \\axiom{\\spad{dev}}.")) (|OMputAttr| (((|Void|) $) "\\spad{OMputAttr(dev)} writes a begin attribute token to \\axiom{\\spad{dev}}.")) (|OMputAtp| (((|Void|) $) "\\spad{OMputAtp(dev)} writes a begin attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputApp| (((|Void|) $) "\\spad{OMputApp(dev)} writes a begin application token to \\axiom{\\spad{dev}}.")) (|OMsetEncoding| (((|Void|) $ (|OpenMathEncoding|)) "\\spad{OMsetEncoding(dev,{}enc)} sets the encoding used for reading or writing OpenMath objects to or from \\axiom{\\spad{dev}} to \\axiom{\\spad{enc}}.")) (|OMclose| (((|Void|) $) "\\spad{OMclose(dev)} closes \\axiom{\\spad{dev}},{} flushing output if necessary.")) (|OMopenString| (($ (|String|) (|OpenMathEncoding|)) "\\spad{OMopenString(s,{}mode)} opens the string \\axiom{\\spad{s}} for reading or writing OpenMath objects in encoding \\axiom{enc}.")) (|OMopenFile| (($ (|String|) (|String|) (|OpenMathEncoding|)) "\\spad{OMopenFile(f,{}mode,{}enc)} opens file \\axiom{\\spad{f}} for reading or writing OpenMath objects (depending on \\axiom{\\spad{mode}} which can be \\spad{\"r\"},{} \\spad{\"w\"} or \"a\" for read,{} write and append respectively),{} in the encoding \\axiom{\\spad{enc}}."))) NIL NIL -(-821) +(-823) ((|constructor| (NIL "\\spadtype{OpenMathEncoding} is the set of valid OpenMath encodings.")) (|OMencodingBinary| (($) "\\spad{OMencodingBinary()} is the constant for the OpenMath binary encoding.")) (|OMencodingSGML| (($) "\\spad{OMencodingSGML()} is the constant for the deprecated OpenMath SGML encoding.")) (|OMencodingXML| (($) "\\spad{OMencodingXML()} is the constant for the OpenMath \\spad{XML} encoding.")) (|OMencodingUnknown| (($) "\\spad{OMencodingUnknown()} is the constant for unknown encoding types. If this is used on an input device,{} the encoding will be autodetected. It is invalid to use it on an output device."))) NIL NIL -(-822) +(-824) ((|constructor| (NIL "\\spadtype{OpenMathErrorKind} represents different kinds of OpenMath errors: specifically parse errors,{} unknown \\spad{CD} or symbol errors,{} and read errors.")) (|OMReadError?| (((|Boolean|) $) "\\spad{OMReadError?(u)} tests whether \\spad{u} is an OpenMath read error.")) (|OMUnknownSymbol?| (((|Boolean|) $) "\\spad{OMUnknownSymbol?(u)} tests whether \\spad{u} is an OpenMath unknown symbol error.")) (|OMUnknownCD?| (((|Boolean|) $) "\\spad{OMUnknownCD?(u)} tests whether \\spad{u} is an OpenMath unknown \\spad{CD} error.")) (|OMParseError?| (((|Boolean|) $) "\\spad{OMParseError?(u)} tests whether \\spad{u} is an OpenMath parsing error.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(u)} creates an OpenMath error object of an appropriate type if \\axiom{\\spad{u}} is one of \\axiom{OMParseError},{} \\axiom{OMReadError},{} \\axiom{OMUnknownCD} or \\axiom{OMUnknownSymbol},{} otherwise it raises a runtime error."))) NIL NIL -(-823) +(-825) ((|constructor| (NIL "\\spadtype{OpenMathError} is the domain of OpenMath errors.")) (|omError| (($ (|OpenMathErrorKind|) (|List| (|Symbol|))) "\\spad{omError(k,{}l)} creates an instance of OpenMathError.")) (|errorInfo| (((|List| (|Symbol|)) $) "\\spad{errorInfo(u)} returns information about the error \\spad{u}.")) (|errorKind| (((|OpenMathErrorKind|) $) "\\spad{errorKind(u)} returns the type of error which \\spad{u} represents."))) NIL NIL -(-824 R) +(-826 R) ((|constructor| (NIL "\\spadtype{ExpressionToOpenMath} provides support for converting objects of type \\spadtype{Expression} into OpenMath."))) NIL NIL -(-825 P R) +(-827 P R) ((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}."))) -((-4404 . T) (-4405 . T) (-4407 . T)) +((-4411 . T) (-4412 . T) (-4414 . T)) ((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-233)))) -(-826) +(-828) ((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev,{} u,{} true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev,{} u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u,{} true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object."))) NIL NIL -(-827) +(-829) ((|constructor| (NIL "\\spadtype{OpenMathPackage} provides some simple utilities to make reading OpenMath objects easier.")) (|OMunhandledSymbol| (((|Exit|) (|String|) (|String|)) "\\spad{OMunhandledSymbol(s,{}cd)} raises an error if AXIOM reads a symbol which it is unable to handle. Note that this is different from an unexpected symbol.")) (|OMsupportsSymbol?| (((|Boolean|) (|String|) (|String|)) "\\spad{OMsupportsSymbol?(s,{}cd)} returns \\spad{true} if AXIOM supports symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMsupportsCD?| (((|Boolean|) (|String|)) "\\spad{OMsupportsCD?(cd)} returns \\spad{true} if AXIOM supports \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMlistSymbols| (((|List| (|String|)) (|String|)) "\\spad{OMlistSymbols(cd)} lists all the symbols in \\axiom{\\spad{cd}}.")) (|OMlistCDs| (((|List| (|String|))) "\\spad{OMlistCDs()} lists all the \\spad{CDs} supported by AXIOM.")) (|OMreadStr| (((|Any|) (|String|)) "\\spad{OMreadStr(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMreadFile| (((|Any|) (|String|)) "\\spad{OMreadFile(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMread| (((|Any|) (|OpenMathDevice|)) "\\spad{OMread(dev)} reads an OpenMath object from \\axiom{\\spad{dev}} and passes it to AXIOM."))) NIL NIL -(-828 S) +(-830 S) ((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}."))) -((-4410 . T) (-4400 . T) (-4411 . T)) +((-4417 . T) (-4407 . T) (-4418 . T)) NIL -(-829) +(-831) ((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,{}timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,{}u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object."))) NIL NIL -(-830 R S) +(-832 R S) ((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f,{} r,{} i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f,{} r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity."))) NIL NIL -(-831 R) +(-833 R) ((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) -((-4407 |has| |#1| (-846))) -((|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-21))) (-2682 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-846)))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (-2682 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-545)))) -(-832 A S) +((-4414 |has| |#1| (-848))) +((|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-21))) (-2809 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (-2809 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-547)))) +(-834 A S) ((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#2|) "\\spad{is?(op,{}n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of \\spad{op}."))) NIL NIL -(-833 S) +(-835 S) ((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#1|) "\\spad{is?(op,{}n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#1| $) "\\spad{name(op)} returns the externam name of \\spad{op}."))) NIL NIL -(-834 R) +(-836 R) ((|constructor| (NIL "Algebra of ADDITIVE operators over a ring."))) -((-4405 |has| |#1| (-172)) (-4404 |has| |#1| (-172)) (-4407 . T)) +((-4412 |has| |#1| (-172)) (-4411 |has| |#1| (-172)) (-4414 . T)) ((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147)))) -(-835) +(-837) ((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages)."))) NIL NIL -(-836) +(-838) ((|constructor| (NIL "This the datatype for an operator-signature pair.")) (|construct| (($ (|Identifier|) (|Signature|)) "\\spad{construct(op,{}sig)} construct a signature-operator with operator name `op',{} and signature `sig'.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of \\spad{`x'}."))) NIL NIL -(-837) +(-839) ((|numericalOptimization| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-838) +(-840) ((|goodnessOfFit| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{goodnessOfFit(lf,{}start)} is a top level ANNA function to check to goodness of fit of a least squares model \\spadignore{i.e.} the minimization of a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation. goodnessOfFit(\\spad{lf},{}\\spad{start}) is a top level function to iterate over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then checks the goodness of fit of the least squares model.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{goodnessOfFit(prob)} is a top level ANNA function to check to goodness of fit of a least squares model as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation.")) (|optimize| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{optimize(lf,{}start)} is a top level ANNA function to minimize a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints \\spadignore{i.e.} a least-squares problem. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|))) "\\spad{optimize(f,{}start)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,{}start,{}lower,{}upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with simple constraints. The bounds on the variables are defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|Expression| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,{}start,{}lower,{}cons,{}upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with the given constraints. \\blankline These constraints may be simple constraints on the variables in which case \\axiom{\\spad{cons}} would be an empty list and the bounds on those variables defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}},{} or a mixture of simple,{} linear and non-linear constraints,{} where \\axiom{\\spad{cons}} contains the linear and non-linear constraints and the bounds on these are added to \\axiom{\\spad{upper}} and \\axiom{\\spad{lower}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{optimize(prob)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{optimize(prob,{}routines)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} listed in \\axiom{\\spad{routines}} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information."))) NIL NIL -(-839) +(-841) ((|retract| (((|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|)))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-840 R S) +(-842 R S) ((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f,{} r,{} p,{} m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f,{} r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity."))) NIL NIL -(-841 R) +(-843 R) ((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity."))) -((-4407 |has| |#1| (-846))) -((|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-21))) (-2682 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-846)))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (-2682 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-545)))) -(-842) +((-4414 |has| |#1| (-848))) +((|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-21))) (-2809 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (-2809 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-547)))) +(-844) ((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%."))) NIL NIL -(-843 -2162 S) +(-845 -2216 S) ((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering."))) NIL NIL -(-844) +(-846) ((|constructor| (NIL "Ordered sets which are also monoids,{} such that multiplication preserves the ordering. \\blankline"))) NIL NIL -(-845 S) +(-847 S) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) NIL NIL -(-846) +(-848) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) -((-4407 . T)) +((-4414 . T)) NIL -(-847 S) +(-849 S) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,{}y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,{}y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set."))) NIL NIL -(-848) +(-850) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,{}y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,{}y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set."))) NIL NIL -(-849 S R) +(-851 S R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) NIL -((|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172)))) -(-850 R) +((|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-172)))) +(-852 R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) -((-4404 . T) (-4405 . T) (-4407 . T)) +((-4411 . T) (-4412 . T) (-4414 . T)) NIL -(-851 R C) +(-853 R C) ((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p,{} c,{} m,{} sigma,{} delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p,{} q,{} sigma,{} delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use."))) NIL -((|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) -(-852 R |sigma| -1617) +((|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) +(-854 R |sigma| -3454) ((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{} x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable."))) -((-4404 . T) (-4405 . T) (-4407 . T)) -((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-363)))) -(-853 |x| R |sigma| -1617) +((-4411 . T) (-4412 . T) (-4414 . T)) +((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-365)))) +(-855 |x| R |sigma| -3454) ((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}."))) -((-4404 . T) (-4405 . T) (-4407 . T)) -((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-363)))) -(-854 R) +((-4411 . T) (-4412 . T) (-4414 . T)) +((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-365)))) +(-856 R) ((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,{}x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n,{} n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,{}n,{}x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,{}x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!,{} n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,{}x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) -(-855) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) +(-857) ((|constructor| (NIL "Semigroups with compatible ordering."))) NIL NIL -(-856) +(-858) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}"))) NIL NIL -(-857 S) +(-859 S) ((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,{}b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,{}b)} attempts to write the unsigned 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,{}b)} attempts to write the 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,{}b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-858) +(-860) ((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,{}b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,{}b)} attempts to write the unsigned 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,{}b)} attempts to write the 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,{}b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-859) +(-861) ((|constructor| (NIL "This domain provides representation for binary files open for output operations. `Binary' here means that the conduits do not interpret their contents.")) (|isOpen?| (((|Boolean|) $) "open?(ifile) holds if `ifile' is in open state.")) (|outputBinaryFile| (($ (|String|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file."))) NIL NIL -(-860) +(-862) ((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,{}y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,{}g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,{}f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,{}n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,{}n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,{}[sub1,{}super1,{}sub2,{}super2,{}...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f,{} [sub,{} super,{} presuper,{} presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,{}n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,{}n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,{}n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,{}n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,{}m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{}n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,{}g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,{}g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,{}g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,{}g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,{}n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,{}g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,{}f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,{}l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op,{} a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op,{} a,{} b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,{}l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,{}l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,{}g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,{}g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,{}n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,{}n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,{}n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,{}m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}."))) NIL NIL -(-861) +(-863) ((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,{}x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}."))) NIL NIL -(-862 |VariableList|) +(-864 |VariableList|) ((|constructor| (NIL "This domain implements ordered variables")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} returns a member of the variable set or failed"))) NIL NIL -(-863) +(-865) ((|constructor| (NIL "This domain represents set of overloaded operators (in fact operator descriptors).")) (|members| (((|List| (|FunctionDescriptor|)) $) "\\spad{members(x)} returns the list of operator descriptors,{} \\spadignore{e.g.} signature and implementation slots,{} of the overload set \\spad{x}.")) (|name| (((|Identifier|) $) "\\spad{name(x)} returns the name of the overload set \\spad{x}."))) NIL NIL -(-864 R |vl| |wl| |wtlevel|) +(-866 R |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)"))) -((-4405 |has| |#1| (-172)) (-4404 |has| |#1| (-172)) (-4407 . T)) -((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363)))) -(-865 R PS UP) +((-4412 |has| |#1| (-172)) (-4411 |has| |#1| (-172)) (-4414 . T)) +((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365)))) +(-867 R PS UP) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,{}dd,{}ns,{}ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-866 R |x| |pt|) +(-868 R |x| |pt|) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Trager,{}Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|pade| (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,{}dd,{}s)} computes the quotient of polynomials (if it exists) with numerator degree at most \\spad{nd} and denominator degree at most \\spad{dd} which matches the series \\spad{s} to order \\spad{nd + dd}.") (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-867 |p|) +(-869 |p|) ((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,{}a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,{}a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}."))) -((-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) +((-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) NIL -(-868 |p|) +(-870 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) +((-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) NIL -(-869 |p|) +(-871 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) -((|HasCategory| (-868 |#1|) (QUOTE (-907))) (|HasCategory| (-868 |#1|) (LIST (QUOTE -1036) (QUOTE (-1173)))) (|HasCategory| (-868 |#1|) (QUOTE (-145))) (|HasCategory| (-868 |#1|) (QUOTE (-147))) (|HasCategory| (-868 |#1|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-868 |#1|) (QUOTE (-1020))) (|HasCategory| (-868 |#1|) (QUOTE (-818))) (-2682 (|HasCategory| (-868 |#1|) (QUOTE (-818))) (|HasCategory| (-868 |#1|) (QUOTE (-848)))) (|HasCategory| (-868 |#1|) (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| (-868 |#1|) (QUOTE (-1148))) (|HasCategory| (-868 |#1|) (LIST (QUOTE -884) (QUOTE (-379)))) (|HasCategory| (-868 |#1|) (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| (-868 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (|HasCategory| (-868 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| (-868 |#1|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| (-868 |#1|) (QUOTE (-233))) (|HasCategory| (-868 |#1|) (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| (-868 |#1|) (LIST (QUOTE -514) (QUOTE (-1173)) (LIST (QUOTE -868) (|devaluate| |#1|)))) (|HasCategory| (-868 |#1|) (LIST (QUOTE -309) (LIST (QUOTE -868) (|devaluate| |#1|)))) (|HasCategory| (-868 |#1|) (LIST (QUOTE -286) (LIST (QUOTE -868) (|devaluate| |#1|)) (LIST (QUOTE -868) (|devaluate| |#1|)))) (|HasCategory| (-868 |#1|) (QUOTE (-307))) (|HasCategory| (-868 |#1|) (QUOTE (-545))) (|HasCategory| (-868 |#1|) (QUOTE (-848))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-868 |#1|) (QUOTE (-907)))) (-2682 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-868 |#1|) (QUOTE (-907)))) (|HasCategory| (-868 |#1|) (QUOTE (-145))))) -(-870 |p| PADIC) +((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((|HasCategory| (-870 |#1|) (QUOTE (-909))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| (-870 |#1|) (QUOTE (-145))) (|HasCategory| (-870 |#1|) (QUOTE (-147))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-870 |#1|) (QUOTE (-1022))) (|HasCategory| (-870 |#1|) (QUOTE (-820))) (-2809 (|HasCategory| (-870 |#1|) (QUOTE (-820))) (|HasCategory| (-870 |#1|) (QUOTE (-850)))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| (-870 |#1|) (QUOTE (-1150))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| (-870 |#1|) (QUOTE (-233))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -516) (QUOTE (-1175)) (LIST (QUOTE -870) (|devaluate| |#1|)))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -310) (LIST (QUOTE -870) (|devaluate| |#1|)))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -287) (LIST (QUOTE -870) (|devaluate| |#1|)) (LIST (QUOTE -870) (|devaluate| |#1|)))) (|HasCategory| (-870 |#1|) (QUOTE (-308))) (|HasCategory| (-870 |#1|) (QUOTE (-547))) (|HasCategory| (-870 |#1|) (QUOTE (-850))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-870 |#1|) (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-870 |#1|) (QUOTE (-909)))) (|HasCategory| (-870 |#1|) (QUOTE (-145))))) +(-872 |p| PADIC) ((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}."))) -((-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) -((|HasCategory| |#2| (QUOTE (-907))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-1173)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-818))) (-2682 (|HasCategory| |#2| (QUOTE (-818))) (|HasCategory| |#2| (QUOTE (-848)))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-1148))) (|HasCategory| |#2| (LIST (QUOTE -884) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1173)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-848))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-907)))) (-2682 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-907)))) (|HasCategory| |#2| (QUOTE (-145))))) -(-871 S T$) +((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((|HasCategory| |#2| (QUOTE (-909))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-1022))) (|HasCategory| |#2| (QUOTE (-820))) (-2809 (|HasCategory| |#2| (QUOTE (-820))) (|HasCategory| |#2| (QUOTE (-850)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-1150))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-547))) (|HasCategory| |#2| (QUOTE (-850))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#2| (QUOTE (-145))))) +(-873 S T$) ((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,{}t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#2| (QUOTE (-1097)))) (-2682 (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#2| (QUOTE (-1097)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-860)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-860)))))) -(-872) +((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-1099)))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-1099)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))))) +(-874) ((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value."))) NIL NIL -(-873) +(-875) ((|constructor| (NIL "This package provides a coerce from polynomials over algebraic numbers to \\spadtype{Expression AlgebraicNumber}.")) (|coerce| (((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|)))) "\\spad{coerce(rf)} converts \\spad{rf},{} a fraction of polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.") (((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|))) "\\spad{coerce(p)} converts the polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}."))) NIL NIL -(-874 CF1 CF2) +(-876 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-875 |ComponentFunction|) +(-877 |ComponentFunction|) ((|constructor| (NIL "ParametricPlaneCurve is used for plotting parametric plane curves in the affine plane.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,{}i)} returns a coordinate function for \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component \\spad{i} of the plane curve is.")) (|curve| (($ |#1| |#1|) "\\spad{curve(c1,{}c2)} creates a plane curve from 2 component functions \\spad{c1} and \\spad{c2}."))) NIL NIL -(-876 CF1 CF2) +(-878 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-877 |ComponentFunction|) +(-879 |ComponentFunction|) ((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,{}i)} returns a coordinate function of \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,{}c2,{}c3)} creates a space curve from 3 component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-878) +(-880) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad script parser.} Related Constructors: Syntax. See Also: Syntax.")) (|getSyntaxFormsFromFile| (((|List| (|Syntax|)) (|String|)) "\\spad{getSyntaxFormsFromFile(f)} parses the source file \\spad{f} (supposedly containing Spad scripts) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that source location information is not part of result."))) NIL NIL -(-879 CF1 CF2) +(-881 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-880 |ComponentFunction|) +(-882 |ComponentFunction|) ((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,{}i)} returns a coordinate function of \\spad{s} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,{}c2,{}c3)} creates a surface from 3 parametric component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-881) +(-883) ((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,{}2,{}3,{}...,{}n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,{}l1,{}l2,{}..,{}ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0\\spad{'s},{}\\spad{l1} 1\\spad{'s},{}\\spad{l2} 2\\spad{'s},{}...,{}\\spad{ln} \\spad{n}\\spad{'s}.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,{}l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,{}2,{}4],{}[2,{}3,{}5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}\\spad{'s},{} and 4 \\spad{5}\\spad{'s}.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,{}st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,{}l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|Integer|))) (|Stream| (|List| (|Integer|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|Integer|)) (|List| (|Integer|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}.")) (|partitions| (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{partitions(p,{}l)} is the stream of all \\indented{1}{partitions whose number of} \\indented{1}{parts and largest part are no greater than \\spad{p} and \\spad{l}.}") (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{partitions(n)} is the stream of all partitions of \\spad{n}.") (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|) (|Integer|)) "\\spad{partitions(p,{}l,{}n)} is the stream of partitions \\indented{1}{of \\spad{n} whose number of parts is no greater than \\spad{p}} \\indented{1}{and whose largest part is no greater than \\spad{l}.}"))) NIL NIL -(-882 R) +(-884 R) ((|constructor| (NIL "An object \\spad{S} is Patternable over an object \\spad{R} if \\spad{S} can lift the conversions from \\spad{R} into \\spadtype{Pattern(Integer)} and \\spadtype{Pattern(Float)} to itself."))) NIL NIL -(-883 R S L) +(-885 R S L) ((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match,{} or a pair of PatternMatchResult,{} one for atoms (elements of the list),{} and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,{}r2)} makes the combined result [\\spad{r1},{}\\spad{r2}].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-884 S) +(-886 S) ((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S}.")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially,{} res is just the result of \\spadfun{new} which is an empty list of matches."))) NIL NIL -(-885 |Base| |Subject| |Pat|) +(-887 |Base| |Subject| |Pat|) ((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,{}...,{}en],{} pat)} matches the pattern pat on the list of expressions \\spad{[e1,{}...,{}en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,{}...,{}en],{} pat)} tests if the list of expressions \\spad{[e1,{}...,{}en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr,{} pat)} tests if the expression \\spad{expr} matches the pattern pat."))) NIL -((-12 (-2307 (|HasCategory| |#2| (QUOTE (-1047)))) (-2307 (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-1173)))))) (-12 (|HasCategory| |#2| (QUOTE (-1047))) (-2307 (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-1173)))))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-1173))))) -(-886 R A B) +((-12 (-2387 (|HasCategory| |#2| (QUOTE (-1049)))) (-2387 (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-1175)))))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (-2387 (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-1175)))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-1175))))) +(-888 R A B) ((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f,{} [(v1,{}a1),{}...,{}(vn,{}an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))]."))) NIL NIL -(-887 R S) +(-889 R S) ((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r,{} p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,{}e1],{}...,{}[vn,{}en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var,{} expr,{} r,{} val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var,{} r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a,{} b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-888 R -2711) +(-890 R -2834) ((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,{}...,{}vn],{} p)} returns \\spad{f(v1,{}...,{}vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v,{} p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p,{} [a1,{}...,{}an],{} f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p,{} [f1,{}...,{}fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p,{} f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned."))) NIL NIL -(-889 R S) +(-891 R S) ((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f,{} p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}."))) NIL NIL -(-890 R) +(-892 R) ((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a,{} b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,{}...,{}an],{} f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,{}...,{}an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x,{} [a1,{}...,{}an],{} f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x,{} c?,{} o?,{} m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p,{} [p1,{}...,{}pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p,{} [p1,{}...,{}pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,{}...,{}pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the pattern \\spad{[a1,{}...,{}an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{} [a1,{}...,{}an])} returns \\spad{op(a1,{}...,{}an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a,{} b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = [a1,{}...,{}an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a,{} b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q,{} n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op,{} [a1,{}...,{}an]]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p,{} op)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0"))) NIL NIL -(-891 |VarSet|) +(-893 |VarSet|) ((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2,{} .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1,{} l2,{} .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) ((|One|) (($) "\\spad{1} returns the empty list."))) NIL NIL -(-892 UP R) +(-894 UP R) ((|constructor| (NIL "This package \\undocumented")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,{}q)} \\undocumented"))) NIL NIL -(-893) +(-895) ((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-894 UP -2266) +(-896 UP -2341) ((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,{}n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,{}q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,{}m,{}n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented"))) NIL NIL -(-895) +(-897) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|)) "\\spad{solve(xmin,{}ymin,{}xmax,{}ymax,{}ngx,{}ngy,{}pde,{}bounds,{}st)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}) and the boundary values (\\axiom{\\spad{bounds}}). A default value for tolerance is used. There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|) (|DoubleFloat|)) "\\spad{solve(xmin,{}ymin,{}xmax,{}ymax,{}ngx,{}ngy,{}pde,{}bounds,{}st,{}tol)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}),{} the boundary values (\\axiom{\\spad{bounds}}) and a tolerance requirement (\\axiom{\\spad{tol}}). There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{solve(PDEProblem,{}routines)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the \\spad{routines} contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|)) "\\spad{solve(PDEProblem)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}"))) NIL NIL -(-896) +(-898) ((|retract| (((|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-897 A S) +(-899 A S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#2|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#2|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) NIL NIL -(-898 S) +(-900 S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) -((-4407 . T)) +((-4414 . T)) NIL -(-899 S) +(-901 S) ((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|ptree| (($ $ $) "\\spad{ptree(x,{}y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1097))) (-2682 (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) -(-900 |n| R) +((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) +(-902 |n| R) ((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}"))) NIL NIL -(-901 S) +(-903 S) ((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p,{} el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|elt| ((|#1| $ |#1|) "\\spad{elt(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|eval| ((|#1| $ |#1|) "\\spad{eval(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur."))) -((-4407 . T)) +((-4414 . T)) NIL -(-902 S) +(-904 S) ((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,{}m,{}n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,{}0,{}1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,{}gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,{}ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,{}els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,{}el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,{}20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,{}i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,{}i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}."))) NIL NIL -(-903 S) +(-905 S) ((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,{}...,{}n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation."))) -((-4407 . T)) -((-2682 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-848)))) -(-904 R E |VarSet| S) +((-4414 . T)) +((-2809 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-850)))) +(-906 R E |VarSet| S) ((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,{}p,{}v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-905 R S) +(-907 R S) ((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-906 S) +(-908 S) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) NIL ((|HasCategory| |#1| (QUOTE (-145)))) -(-907) +(-909) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) -((-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) +((-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) NIL -(-908 |p|) +(-910 |p|) ((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime."))) -((-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) -((|HasCategory| $ (QUOTE (-147))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-368)))) -(-909 R0 -2266 UP UPUP R) +((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((|HasCategory| $ (QUOTE (-147))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-370)))) +(-911 R0 -2341 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-910 UP UPUP R) +(-912 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-911 UP UPUP) +(-913 UP UPUP) ((|constructor| (NIL "\\indented{1}{Utilities for PFOQ and PFO} Author: Manuel Bronstein Date Created: 25 Aug 1988 Date Last Updated: 11 Jul 1990")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime n} returns the smallest prime not dividing \\spad{n}"))) NIL NIL -(-912 R) +(-914 R) ((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,{}denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,{}x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,{}n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction."))) -((-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) +((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) NIL -(-913 R) +(-915 R) ((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num,{} facdenom,{} var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf,{} var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var."))) NIL NIL -(-914 E OV R P) +(-916 E OV R P) ((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the \\spad{gcd} of the list of primitive polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,{}q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,{}q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,{}q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,{}q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}."))) NIL NIL -(-915) +(-917) ((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,{}...,{}nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(\\spad{li})} constructs the janko group acting on the 100 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(\\spad{li})} constructs the mathieu group acting on the 24 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(\\spad{li})} constructs the mathieu group acting on the 23 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(\\spad{li})} constructs the mathieu group acting on the 22 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(\\spad{li})} constructs the mathieu group acting on the 12 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed Error: if {\\em \\spad{li}} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(\\spad{li})} constructs the mathieu group acting on the 11 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. error,{} if {\\em \\spad{li}} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,{}...,{}ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,{}...,{}ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,{}...,{}nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em \\spad{ni}}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(\\spad{li})} constructs the alternating group acting on the integers in the list {\\em \\spad{li}},{} generators are in general the {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)} with {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,{}2)} with {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(\\spad{li})} constructs the symmetric group acting on the integers in the list {\\em \\spad{li}},{} generators are the cycle given by {\\em \\spad{li}} and the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,{}...,{}n)} and the 2-cycle {\\em (1,{}2)}."))) NIL NIL -(-916 -2266) +(-918 -2341) ((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}."))) NIL NIL -(-917 R) +(-919 R) ((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R})."))) NIL NIL -(-918) +(-920) ((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,{}...,{}fn],{}h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,{}...,{}fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,{}...,{}fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}"))) -((-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) +((-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) NIL -(-919) +(-921) ((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}."))) -(((-4412 "*") . T)) +(((-4419 "*") . T)) NIL -(-920 -2266 P) +(-922 -2341 P) ((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,{}l2)} \\undocumented"))) NIL NIL -(-921 |xx| -2266) +(-923 |xx| -2341) ((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,{}lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,{}lf,{}lg)} \\undocumented"))) NIL NIL -(-922 R |Var| |Expon| GR) +(-924 R |Var| |Expon| GR) ((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,{}c,{} w,{} p,{} r,{} rm,{} m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,{}g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,{}k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,{}sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,{}k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,{}g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,{}r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g,{} l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{~=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c,{} w,{} r,{} s,{} m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,{}s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}k,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}"))) NIL NIL -(-923 S) +(-925 S) ((|constructor| (NIL "PlotFunctions1 provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,{}theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}theta,{}seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}t,{}seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,{}x,{}seg)} plots the graph of \\spad{y = f(x)} on a interval"))) NIL NIL -(-924) +(-926) ((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s,{}t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,{}f2,{}f3,{}f4,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}."))) NIL NIL -(-925) +(-927) ((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,{}2*\\%\\spad{pi}]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,{}b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b,{}c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b,{}c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}."))) NIL NIL -(-926) +(-928) ((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented"))) NIL NIL -(-927 R -2266) +(-929 R -2341) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|Identifier|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol."))) NIL NIL -(-928) +(-930) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|Identifier|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}."))) NIL NIL -(-929 S A B) +(-931 S A B) ((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B)."))) NIL NIL -(-930 S R -2266) +(-932 S R -2341) ((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-931 I) +(-933 I) ((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n,{} pat,{} res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-932 S E) +(-934 S E) ((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,{}...,{}en),{} pat,{} res)} matches the pattern \\spad{pat} to \\spad{f(e1,{}...,{}en)}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-933 S R L) +(-935 S R L) ((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l,{} pat,{} res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-934 S E V R P) +(-936 S E V R P) ((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p,{} pat,{} res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p,{} pat,{} res,{} vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -884) (|devaluate| |#1|)))) -(-935 R -2266 -2711) +((|HasCategory| |#3| (LIST (QUOTE -886) (|devaluate| |#1|)))) +(-937 R -2341 -2834) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol."))) NIL NIL -(-936 -2711) +(-938 -2834) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}."))) NIL NIL -(-937 S R Q) +(-939 S R Q) ((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b,{} pat,{} res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-938 S) +(-940 S) ((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion)."))) NIL NIL -(-939 S R P) +(-941 S R P) ((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj,{} lpat,{} res,{} match)} matches the product of patterns \\spad{reduce(*,{}lpat)} to the product of subjects \\spad{reduce(*,{}lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj,{} lpat,{} op,{} res,{} match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}."))) NIL NIL -(-940) +(-942) ((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n,{} n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!,{} n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,{}[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,{}x)} computed by solving the differential equation \\spad{differentiate(E(n,{}x),{}x) = n E(n-1,{}x)} where \\spad{E(0,{}x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,{}1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n,{} n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n,{} n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,{}x)} computed by solving the differential equation \\spad{differentiate(B(n,{}x),{}x) = n B(n-1,{}x)} where \\spad{B(0,{}x) = 1} and initial condition comes from \\spad{B(n) = B(n,{}0)}."))) NIL NIL -(-941 R) +(-943 R) ((|constructor| (NIL "This domain implements points in coordinate space"))) -((-4411 . T) (-4410 . T)) -((-2682 (-12 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-2682 (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-2682 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-1097)))) (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| (-564) (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-724))) (|HasCategory| |#1| (QUOTE (-1047))) (-12 (|HasCategory| |#1| (QUOTE (-1000))) (|HasCategory| |#1| (QUOTE (-1047)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860)))) (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) -(-942 |lv| R) +((-4418 . T) (-4417 . T)) +((-2809 (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2809 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-726))) (|HasCategory| |#1| (QUOTE (-1049))) (-12 (|HasCategory| |#1| (QUOTE (-1002))) (|HasCategory| |#1| (QUOTE (-1049)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) +(-944 |lv| R) ((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}."))) NIL NIL -(-943 |TheField| |ThePols|) +(-945 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}\\spad{sn})} is the number of sign variations in the list of non null numbers [s1::l]\\spad{@sn},{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}\\spad{p'})}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term"))) NIL -((|HasCategory| |#1| (QUOTE (-846)))) -(-944 R S) +((|HasCategory| |#1| (QUOTE (-848)))) +(-946 R S) ((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f,{} p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}."))) NIL NIL -(-945 |x| R) +(-947 |x| R) ((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p,{} x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,{}Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}."))) NIL NIL -(-946 S R E |VarSet|) +(-948 S R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) NIL -((|HasCategory| |#2| (QUOTE (-907))) (|HasAttribute| |#2| (QUOTE -4408)) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -884) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -884) (QUOTE (-379)))) (|HasCategory| |#4| (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| |#4| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (|HasCategory| |#4| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| |#4| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) -(-947 R E |VarSet|) +((|HasCategory| |#2| (QUOTE (-909))) (|HasAttribute| |#2| (QUOTE -4415)) (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#4| (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#4| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#4| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#4| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) +(-949 R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) -(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4408 |has| |#1| (-6 -4408)) (-4405 . T) (-4404 . T) (-4407 . T)) +(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-558)) (-4415 |has| |#1| (-6 -4415)) (-4412 . T) (-4411 . T) (-4414 . T)) NIL -(-948 E V R P -2266) +(-950 E V R P -2341) ((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f,{} x,{} p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-949 E |Vars| R P S) +(-951 E |Vars| R P S) ((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap,{} coefmap,{} p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}"))) NIL NIL -(-950 R) +(-952 R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,{}x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}."))) -(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4408 |has| |#1| (-6 -4408)) (-4405 . T) (-4404 . T) (-4407 . T)) -((|HasCategory| |#1| (QUOTE (-907))) (-2682 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-907)))) (-2682 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-907)))) (-2682 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-907)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2682 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1173) (LIST (QUOTE -884) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -884) (QUOTE (-379))))) (-12 (|HasCategory| (-1173) (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -884) (QUOTE (-564))))) (-12 (|HasCategory| (-1173) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379)))))) (-12 (|HasCategory| (-1173) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564)))))) (-12 (|HasCategory| (-1173) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564)))) (-2682 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4408)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-907)))) (-2682 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-907)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-951 E V R P -2266) +(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-558)) (-4415 |has| |#1| (-6 -4415)) (-4412 . T) (-4411 . T) (-4414 . T)) +((|HasCategory| |#1| (QUOTE (-909))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-1175) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| (-1175) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| (-1175) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| (-1175) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| (-1175) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4415)) (|HasCategory| |#1| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-953 E V R P -2341) ((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,{}n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented"))) NIL -((|HasCategory| |#3| (QUOTE (-452)))) -(-952) +((|HasCategory| |#3| (QUOTE (-454)))) +(-954) ((|constructor| (NIL "This domain represents network port numbers (notable \\spad{TCP} and UDP).")) (|port| (($ (|SingleInteger|)) "\\spad{port(n)} constructs a PortNumber from the integer \\spad{`n'}."))) NIL NIL -(-953) +(-955) ((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-954 R L) +(-956 R L) ((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op,{} m)} returns the matrix A such that \\spad{A w = (W',{}W'',{}...,{}W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L),{} m}."))) NIL NIL -(-955 A B) +(-957 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}."))) NIL NIL -(-956 S) +(-958 S) ((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed"))) -((-4411 . T) (-4410 . T)) -((-2682 (-12 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-2682 (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-2682 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-1097)))) (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| (-564) (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860)))) (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) -(-957) +((-4418 . T) (-4417 . T)) +((-2809 (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2809 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) +(-959) ((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f,{} x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f,{} x)} returns the formal integral of \\spad{f} \\spad{dx}."))) NIL NIL -(-958 -2266) +(-960 -2341) ((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an],{} a)} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an])} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1,{} a1,{} p2,{} a2)} returns \\spad{[c1,{} c2,{} q]} such that \\spad{k(a1,{} a2) = k(a)} where \\spad{a = c1 a1 + c2 a2,{} and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}."))) NIL NIL -(-959 I) +(-961 I) ((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin\\spad{'s} probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,{}b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin\\spad{'s} probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for n<10**20. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime"))) NIL NIL -(-960) +(-962) ((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter."))) NIL NIL -(-961 R E) +(-963 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4408 |has| |#1| (-6 -4408)) (-4404 . T) (-4405 . T) (-4407 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (-2682 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-2682 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-131)))) (|HasAttribute| |#1| (QUOTE -4408))) -(-962 A B) +(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-558)) (-4415 |has| |#1| (-6 -4415)) (-4411 . T) (-4412 . T) (-4414 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-454))) (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-131)))) (|HasAttribute| |#1| (QUOTE -4415))) +(-964 A B) ((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,{}b)} \\undocumented"))) -((-4407 -12 (|has| |#2| (-473)) (|has| |#1| (-473)))) -((-2682 (-12 (|HasCategory| |#1| (QUOTE (-791))) (|HasCategory| |#2| (QUOTE (-791)))) (-12 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-848))))) (-12 (|HasCategory| |#1| (QUOTE (-791))) (|HasCategory| |#2| (QUOTE (-791)))) (-2682 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-791))) (|HasCategory| |#2| (QUOTE (-791))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-2682 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-791))) (|HasCategory| |#2| (QUOTE (-791))))) (-12 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#2| (QUOTE (-473)))) (-2682 (-12 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#2| (QUOTE (-473)))) (-12 (|HasCategory| |#1| (QUOTE (-724))) (|HasCategory| |#2| (QUOTE (-724))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-368)))) (-2682 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#2| (QUOTE (-473)))) (-12 (|HasCategory| |#1| (QUOTE (-724))) (|HasCategory| |#2| (QUOTE (-724)))) (-12 (|HasCategory| |#1| (QUOTE (-791))) (|HasCategory| |#2| (QUOTE (-791))))) (-12 (|HasCategory| |#1| (QUOTE (-724))) (|HasCategory| |#2| (QUOTE (-724)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-848))))) -(-963) +((-4414 -12 (|has| |#2| (-475)) (|has| |#1| (-475)))) +((-2809 (-12 (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-793)))) (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-850))))) (-12 (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-793)))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-793))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-793))))) (-12 (|HasCategory| |#1| (QUOTE (-475))) (|HasCategory| |#2| (QUOTE (-475)))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-475))) (|HasCategory| |#2| (QUOTE (-475)))) (-12 (|HasCategory| |#1| (QUOTE (-726))) (|HasCategory| |#2| (QUOTE (-726))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-370)))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-475))) (|HasCategory| |#2| (QUOTE (-475)))) (-12 (|HasCategory| |#1| (QUOTE (-726))) (|HasCategory| |#2| (QUOTE (-726)))) (-12 (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-793))))) (-12 (|HasCategory| |#1| (QUOTE (-726))) (|HasCategory| |#2| (QUOTE (-726)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-850))))) +(-965) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Identifier|) (|SExpression|)) "\\spad{property(n,{}val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Identifier|) $) "\\spad{name(p)} returns the name of property \\spad{p}"))) NIL NIL -(-964 T$) +(-966 T$) ((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|isEquiv| (((|Maybe| (|Pair| $ $)) $) "\\spad{isEquiv f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,{}\\%)} holds if the formula \\spad{f} is an equivalence formula.")) (|isImplies| (((|Maybe| (|Pair| $ $)) $) "\\spad{isImplies f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,{}\\%)} holds if the formula \\spad{f} is an implication formula.")) (|isOr| (((|Maybe| (|Pair| $ $)) $) "\\spad{isOr f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,{}\\%)} holds if the formula \\spad{f} is a disjunction formula.")) (|isAnd| (((|Maybe| (|Pair| $ $)) $) "\\spad{isAnd f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,{}\\%)} holds if the formula \\spad{f} is a conjunction formula.")) (|isNot| (((|Maybe| $) $) "\\spad{isNot f} returns a value \\spad{v} such that \\spad{v case \\%} holds if the formula \\spad{f} is a negation.")) (|isTerm| (((|Maybe| |#1|) $) "\\spad{isTerm f} returns a value \\spad{v} such that \\spad{v case T} holds if the formula \\spad{f} is a term."))) NIL NIL -(-965) +(-967) ((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,{}q)} returns the logical equivalence of \\spad{`p'},{} \\spad{`q'}.")) (|implies| (($ $ $) "\\spad{implies(p,{}q)} returns the logical implication of \\spad{`q'} by \\spad{`p'}.")) (|or| (($ $ $) "\\spad{p or q} returns the logical disjunction of \\spad{`p'},{} \\spad{`q'}.")) (|and| (($ $ $) "\\spad{p and q} returns the logical conjunction of \\spad{`p'},{} \\spad{`q'}.")) (|not| (($ $) "\\spad{not p} returns the logical negation of \\spad{`p'}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant."))) NIL NIL -(-966 S) +(-968 S) ((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,{}q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,{}q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}."))) -((-4410 . T) (-4411 . T)) +((-4417 . T) (-4418 . T)) NIL -(-967 R |polR|) +(-969 R |polR|) ((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}"))) NIL -((|HasCategory| |#1| (QUOTE (-452)))) -(-968) +((|HasCategory| |#1| (QUOTE (-454)))) +(-970) ((|constructor| (NIL "This domain represents `pretend' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-969) +(-971) ((|constructor| (NIL "\\indented{1}{Partition is an OrderedCancellationAbelianMonoid which is used} as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|Integer|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{powers(\\spad{li})} returns a list of 2-element lists. For each 2-element list,{} the first element is an entry of \\spad{li} and the second element is the multiplicity with which the first element occurs in \\spad{li}. There is a 2-element list for each value occurring in \\spad{l}.")) (|partition| (($ (|List| (|Integer|))) "\\spad{partition(\\spad{li})} converts a list of integers \\spad{li} to a partition"))) NIL NIL -(-970 S |Coef| |Expon| |Var|) +(-972 S |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}."))) NIL NIL -(-971 |Coef| |Expon| |Var|) +(-973 |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}."))) -(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4404 . T) (-4405 . T) (-4407 . T)) +(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-558)) (-4411 . T) (-4412 . T) (-4414 . T)) NIL -(-972) +(-974) ((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-973 S R E |VarSet| P) +(-975 S R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) NIL -((|HasCategory| |#2| (QUOTE (-556)))) -(-974 R E |VarSet| P) +((|HasCategory| |#2| (QUOTE (-558)))) +(-976 R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) -((-4410 . T)) +((-4417 . T)) NIL -(-975 R E V P) +(-977 R E V P) ((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-307)))) (|HasCategory| |#1| (QUOTE (-452)))) -(-976 K) +((-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-308)))) (|HasCategory| |#1| (QUOTE (-454)))) +(-978 K) ((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m,{} v)} returns \\spad{[[C_1,{} g_1],{}...,{}[C_k,{} g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,{}...,{}C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M,{} A,{} sig,{} der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M,{} sig,{} der)} returns \\spad{[R,{} A,{} A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation."))) NIL NIL -(-977 |VarSet| E RC P) +(-979 |VarSet| E RC P) ((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary \\spad{gcd} domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime."))) NIL NIL -(-978 R) +(-980 R) ((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,{}l,{}r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}."))) -((-4411 . T) (-4410 . T)) +((-4418 . T) (-4417 . T)) NIL -(-979 R1 R2) +(-981 R1 R2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,{}p)} \\undocumented"))) NIL NIL -(-980 R) +(-982 R) ((|constructor| (NIL "This package \\undocumented")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system."))) NIL NIL -(-981 K) +(-983 K) ((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns \\spad{csc}(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,{}n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise."))) NIL NIL -(-982 R E OV PPR) +(-984 R E OV PPR) ((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,{}p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,{}v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,{}v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-983 K R UP -2266) +(-985 K R UP -2341) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,{}y]/(f(x,{}y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,{}y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}."))) NIL NIL -(-984 |vl| |nv|) +(-986 |vl| |nv|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals"))) NIL NIL -(-985 R |Var| |Expon| |Dpoly|) +(-987 R |Var| |Expon| |Dpoly|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) "\\spad{setStatus(s,{}t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) "failed") $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,{}q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{~=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-307))))) -(-986 R E V P TS) +((-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-308))))) +(-988 R E V P TS) ((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-987) +(-989) ((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,{}\"a\")} creates a new equation."))) NIL NIL -(-988 A B R S) +(-990 A B R S) ((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}."))) NIL NIL -(-989 A S) +(-991 A S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) NIL -((|HasCategory| |#2| (QUOTE (-907))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-1173)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-818))) (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-1148)))) -(-990 S) +((|HasCategory| |#2| (QUOTE (-909))) (|HasCategory| |#2| (QUOTE (-547))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-1022))) (|HasCategory| |#2| (QUOTE (-820))) (|HasCategory| |#2| (QUOTE (-850))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-1150)))) +(-992 S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) -((-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) +((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) NIL -(-991 |n| K) +(-993 |n| K) ((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|elt| ((|#2| $ (|DirectProduct| |#1| |#2|)) "\\spad{elt(qf,{}v)} evaluates the quadratic form \\spad{qf} on the vector \\spad{v},{} producing a scalar.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}."))) NIL NIL -(-992) +(-994) ((|constructor| (NIL "This domain represents the syntax of a quasiquote \\indented{2}{expression.}")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the syntax for the expression being quoted."))) NIL NIL -(-993 S) +(-995 S) ((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,{}q)} inserts \\spad{x} into the queue \\spad{q} at the back end."))) -((-4410 . T) (-4411 . T)) +((-4417 . T) (-4418 . T)) NIL -(-994 S R) +(-996 S R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) NIL -((|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-1057))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-290)))) -(-995 R) +((|HasCategory| |#2| (QUOTE (-547))) (|HasCategory| |#2| (QUOTE (-1059))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-291)))) +(-997 R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) -((-4403 |has| |#1| (-290)) (-4404 . T) (-4405 . T) (-4407 . T)) +((-4410 |has| |#1| (-291)) (-4411 . T) (-4412 . T) (-4414 . T)) NIL -(-996 QR R QS S) +(-998 QR R QS S) ((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}."))) NIL NIL -(-997 R) +(-999 R) ((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}"))) -((-4403 |has| |#1| (-290)) (-4404 . T) (-4405 . T) (-4407 . T)) -((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363))) (-2682 (|HasCategory| |#1| (QUOTE (-290))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-290))) (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1173)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-1173)))) (-2682 (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-1057))) (|HasCategory| |#1| (QUOTE (-545)))) -(-998 S) +((-4410 |has| |#1| (-291)) (-4411 . T) (-4412 . T) (-4414 . T)) +((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-365))) (-2809 (|HasCategory| |#1| (QUOTE (-291))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-291))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-1059))) (|HasCategory| |#1| (QUOTE (-547)))) +(-1000 S) ((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,{}y,{}...,{}z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) -((-4410 . T) (-4411 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1097))) (-2682 (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) -(-999 S) +((-4417 . T) (-4418 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) +(-1001 S) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-1000) +(-1002) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-1001 -2266 UP UPUP |radicnd| |n|) +(-1003 -2341 UP UPUP |radicnd| |n|) ((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x})."))) -((-4403 |has| (-407 |#2|) (-363)) (-4408 |has| (-407 |#2|) (-363)) (-4402 |has| (-407 |#2|) (-363)) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) -((|HasCategory| (-407 |#2|) (QUOTE (-145))) (|HasCategory| (-407 |#2|) (QUOTE (-147))) (|HasCategory| (-407 |#2|) (QUOTE (-349))) (-2682 (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (QUOTE (-349)))) (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (QUOTE (-368))) (-2682 (-12 (|HasCategory| (-407 |#2|) (QUOTE (-233))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (|HasCategory| (-407 |#2|) (QUOTE (-349)))) (-2682 (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| (-407 |#2|) (QUOTE (-349))))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -637) (QUOTE (-564)))) (-2682 (|HasCategory| (-407 |#2|) (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368))) (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (-12 (|HasCategory| (-407 |#2|) (QUOTE (-233))) (|HasCategory| (-407 |#2|) (QUOTE (-363))))) -(-1002 |bb|) +((-4410 |has| (-409 |#2|) (-365)) (-4415 |has| (-409 |#2|) (-365)) (-4409 |has| (-409 |#2|) (-365)) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((|HasCategory| (-409 |#2|) (QUOTE (-145))) (|HasCategory| (-409 |#2|) (QUOTE (-147))) (|HasCategory| (-409 |#2|) (QUOTE (-351))) (-2809 (|HasCategory| (-409 |#2|) (QUOTE (-365))) (|HasCategory| (-409 |#2|) (QUOTE (-351)))) (|HasCategory| (-409 |#2|) (QUOTE (-365))) (|HasCategory| (-409 |#2|) (QUOTE (-370))) (-2809 (-12 (|HasCategory| (-409 |#2|) (QUOTE (-233))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))) (|HasCategory| (-409 |#2|) (QUOTE (-351)))) (-2809 (-12 (|HasCategory| (-409 |#2|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))) (-12 (|HasCategory| (-409 |#2|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-409 |#2|) (QUOTE (-351))))) (|HasCategory| (-409 |#2|) (LIST (QUOTE -639) (QUOTE (-566)))) (-2809 (|HasCategory| (-409 |#2|) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))) (|HasCategory| (-409 |#2|) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-409 |#2|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370))) (-12 (|HasCategory| (-409 |#2|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))) (-12 (|HasCategory| (-409 |#2|) (QUOTE (-233))) (|HasCategory| (-409 |#2|) (QUOTE (-365))))) +(-1004 |bb|) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,{}cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],{}[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,{}3,{}4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,{}1,{}4,{}2,{}8,{}5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,{}0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion."))) -((-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) -((|HasCategory| (-564) (QUOTE (-907))) (|HasCategory| (-564) (LIST (QUOTE -1036) (QUOTE (-1173)))) (|HasCategory| (-564) (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-147))) (|HasCategory| (-564) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-564) (QUOTE (-1020))) (|HasCategory| (-564) (QUOTE (-818))) (-2682 (|HasCategory| (-564) (QUOTE (-818))) (|HasCategory| (-564) (QUOTE (-848)))) (|HasCategory| (-564) (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-1148))) (|HasCategory| (-564) (LIST (QUOTE -884) (QUOTE (-379)))) (|HasCategory| (-564) (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| (-564) (QUOTE (-233))) (|HasCategory| (-564) (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| (-564) (LIST (QUOTE -514) (QUOTE (-1173)) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -309) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -286) (QUOTE (-564)) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-307))) (|HasCategory| (-564) (QUOTE (-545))) (|HasCategory| (-564) (QUOTE (-848))) (|HasCategory| (-564) (LIST (QUOTE -637) (QUOTE (-564)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-907)))) (-2682 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-907)))) (|HasCategory| (-564) (QUOTE (-145))))) -(-1003) +((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((|HasCategory| (-566) (QUOTE (-909))) (|HasCategory| (-566) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| (-566) (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-147))) (|HasCategory| (-566) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-566) (QUOTE (-1022))) (|HasCategory| (-566) (QUOTE (-820))) (-2809 (|HasCategory| (-566) (QUOTE (-820))) (|HasCategory| (-566) (QUOTE (-850)))) (|HasCategory| (-566) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| (-566) (QUOTE (-1150))) (|HasCategory| (-566) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| (-566) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| (-566) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| (-566) (QUOTE (-233))) (|HasCategory| (-566) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-566) (LIST (QUOTE -516) (QUOTE (-1175)) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -310) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -287) (QUOTE (-566)) (QUOTE (-566)))) (|HasCategory| (-566) (QUOTE (-308))) (|HasCategory| (-566) (QUOTE (-547))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| (-566) (LIST (QUOTE -639) (QUOTE (-566)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-909)))) (|HasCategory| (-566) (QUOTE (-145))))) +(-1005) ((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,{}b)} converts \\spad{x} to a radix expansion in base \\spad{b}."))) NIL NIL -(-1004) +(-1006) ((|constructor| (NIL "Random number generators \\indented{2}{All random numbers used in the system should originate from} \\indented{2}{the same generator.\\space{2}This package is intended to be the source.}")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n}.")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n}.") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size()."))) NIL NIL -(-1005 RP) +(-1007 RP) ((|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers."))) NIL NIL -(-1006 S) +(-1008 S) ((|constructor| (NIL "rational number testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number,{} \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number."))) NIL NIL -(-1007 A S) +(-1009 A S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL -((|HasAttribute| |#1| (QUOTE -4411)) (|HasCategory| |#2| (QUOTE (-1097)))) -(-1008 S) +((|HasAttribute| |#1| (QUOTE -4418)) (|HasCategory| |#2| (QUOTE (-1099)))) +(-1010 S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL NIL -(-1009 S) +(-1011 S) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) NIL NIL -(-1010) +(-1012) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) -((-4403 . T) (-4408 . T) (-4402 . T) (-4405 . T) (-4404 . T) ((-4412 "*") . T) (-4407 . T)) +((-4410 . T) (-4415 . T) (-4409 . T) (-4412 . T) (-4411 . T) ((-4419 "*") . T) (-4414 . T)) NIL -(-1011 R -2266) +(-1013 R -2341) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n,{} f,{} g,{} x,{} lim,{} ext)} returns \\spad{[y,{} h,{} b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function."))) NIL NIL -(-1012 R -2266) +(-1014 R -2341) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n,{} f,{} g_1,{} g_2,{} x,{}lim,{}ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,{}dy2/dx) + ((0,{} - n df/dx),{}(n df/dx,{}0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function."))) NIL NIL -(-1013 -2266 UP) +(-1015 -2341 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a,{} B,{} C,{} n,{} D)} returns either: 1. \\spad{[Q,{} b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1,{} C1,{} m,{} \\alpha,{} \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f,{} g)} returns a \\spad{[y,{} b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,{}g,{}D)} returns \\spad{[A,{} B,{} C,{} T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use."))) NIL NIL -(-1014 -2266 UP) +(-1016 -2341 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f,{} g1,{} g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,{}g1,{}g2,{}D)} returns \\spad{[A,{} B,{} H,{} C1,{} C2,{} T]} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} has a solution if and only if \\spad{y1 = Q1 / T,{} y2 = Q2 / T},{} where \\spad{B,{}C1,{}C2,{}Q1,{}Q2} have no normal poles and satisfy A \\spad{(Q1',{} Q2') + ((H,{} -B),{} (B,{} H)) (Q1,{}Q2) = (C1,{}C2)} \\spad{D} is the derivation to use."))) NIL NIL -(-1015 S) +(-1017 S) ((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,{}u,{}n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-1016 F1 UP UPUP R F2) +(-1018 F1 UP UPUP R F2) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,{}u,{}g)} \\undocumented"))) NIL NIL -(-1017) +(-1019) ((|constructor| (NIL "This domain represents list reduction syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} return the list of expressions being redcued.")) (|operator| (((|SpadAst|) $) "\\spad{operator(e)} returns the magma operation being applied."))) NIL NIL -(-1018 |Pol|) +(-1020 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-1019 |Pol|) +(-1021 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-1020) +(-1022) ((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats."))) NIL NIL -(-1021) +(-1023) ((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,{}lv,{}eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,{}eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,{}eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}."))) NIL NIL -(-1022 |TheField|) +(-1024 |TheField|) ((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number"))) -((-4403 . T) (-4408 . T) (-4402 . T) (-4405 . T) (-4404 . T) ((-4412 "*") . T) (-4407 . T)) -((-2682 (|HasCategory| (-407 (-564)) (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| (-407 (-564)) (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-407 (-564)) (LIST (QUOTE -1036) (QUOTE (-564))))) -(-1023 -2266 L) +((-4410 . T) (-4415 . T) (-4409 . T) (-4412 . T) (-4411 . T) ((-4419 "*") . T) (-4414 . T)) +((-2809 (|HasCategory| (-409 (-566)) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| (-409 (-566)) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-409 (-566)) (LIST (QUOTE -1038) (QUOTE (-566))))) +(-1025 -2341 L) ((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op,{} [f1,{}...,{}fk])} returns \\spad{[op1,{}[g1,{}...,{}gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{\\spad{fi}} must satisfy \\spad{op \\spad{fi} = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op,{} s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}."))) NIL NIL -(-1024 S) +(-1026 S) ((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(n,{}m)} same as \\spad{setelt(n,{}m)}.")) (|deref| ((|#1| $) "\\spad{deref(n)} is equivalent to \\spad{elt(n)}.")) (|setelt| ((|#1| $ |#1|) "\\spad{setelt(n,{}m)} changes the value of the object \\spad{n} to \\spad{m}.")) (|elt| ((|#1| $) "\\spad{elt(n)} returns the object \\spad{n}.")) (|ref| (($ |#1|) "\\spad{ref(n)} creates a pointer (reference) to the object \\spad{n}."))) NIL -((|HasCategory| |#1| (QUOTE (-1097)))) -(-1025 R E V P) +((|HasCategory| |#1| (QUOTE (-1099)))) +(-1027 R E V P) ((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4411 . T) (-4410 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1097))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#4| (QUOTE (-1097))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-860))))) -(-1026 R) +((-4418 . T) (-4417 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1099))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#4| (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -613) (QUOTE (-862))))) +(-1028 R) ((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,{}4,{}3,{}2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,{}2,{}...,{}n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} (Kronecker delta) for the permutations {\\em pi1,{}...,{}pik} of {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) if the permutation {\\em \\spad{pi}} is in list notation and permutes {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) for a permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...ak])} calculates the list of Kronecker products of each matrix {\\em \\spad{ai}} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...,{}ak],{}[b1,{}...,{}bk])} calculates the list of Kronecker products of the matrices {\\em \\spad{ai}} and {\\em \\spad{bi}} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,{}b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,{}n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,{}j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,{}n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product."))) NIL -((|HasAttribute| |#1| (QUOTE (-4412 "*")))) -(-1027 R) +((|HasAttribute| |#1| (QUOTE (-4419 "*")))) +(-1029 R) ((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,{}n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,{}...,{}0,{}1,{}*,{}...,{}*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG,{} numberOfTries)} calls {\\em meatAxe(aG,{}true,{}numberOfTries,{}7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG,{} randomElements)} calls {\\em meatAxe(aG,{}false,{}6,{}7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,{}true,{}25,{}7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,{}false,{}25,{}7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,{}randomElements,{}numberOfTries,{} maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,{}submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG,{} vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG,{} numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}numberOfTries)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,{}aG1)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}randomelements,{}numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,{}v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,{}v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,{}x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-307)))) -(-1028 S) +((-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-308)))) +(-1030 S) ((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i,{} r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}"))) NIL NIL -(-1029) +(-1031) ((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,{}m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals."))) NIL NIL -(-1030 S) +(-1032 S) ((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r,{} i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}"))) NIL NIL -(-1031 S) +(-1033 S) ((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used."))) NIL NIL -(-1032 -2266 |Expon| |VarSet| |FPol| |LFPol|) +(-1034 -2341 |Expon| |VarSet| |FPol| |LFPol|) ((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring"))) -(((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) +(((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) NIL -(-1033) +(-1035) ((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}"))) -((-4410 . T) (-4411 . T)) -((-12 (|HasCategory| (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (QUOTE (-1097))) (|HasCategory| (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1914) (QUOTE (-1173))) (LIST (QUOTE |:|) (QUOTE -2683) (QUOTE (-52))))))) (-2682 (|HasCategory| (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (QUOTE (-1097))) (|HasCategory| (-52) (QUOTE (-1097)))) (-2682 (|HasCategory| (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (QUOTE (-1097))) (|HasCategory| (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| (-52) (QUOTE (-1097))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| (-52) (QUOTE (-1097))) (|HasCategory| (-52) (LIST (QUOTE -309) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (QUOTE (-1097))) (|HasCategory| (-1173) (QUOTE (-848))) (|HasCategory| (-52) (QUOTE (-1097))) (-2682 (|HasCategory| (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (LIST (QUOTE -611) (QUOTE (-860))))) -(-1034) +((-4417 . T) (-4418 . T)) +((-12 (|HasCategory| (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1928) (QUOTE (-1175))) (LIST (QUOTE |:|) (QUOTE -2806) (QUOTE (-52))))))) (-2809 (|HasCategory| (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (QUOTE (-1099))) (|HasCategory| (-52) (QUOTE (-1099)))) (-2809 (|HasCategory| (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-52) (QUOTE (-1099))) (|HasCategory| (-52) (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| (-52) (QUOTE (-1099))) (|HasCategory| (-52) (LIST (QUOTE -310) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (QUOTE (-1099))) (|HasCategory| (-1175) (QUOTE (-850))) (|HasCategory| (-52) (QUOTE (-1099))) (-2809 (|HasCategory| (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-52) (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-52) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (LIST (QUOTE -613) (QUOTE (-862))))) +(-1036) ((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'."))) NIL NIL -(-1035 A S) +(-1037 A S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}."))) NIL NIL -(-1036 S) +(-1038 S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}."))) NIL NIL -(-1037 Q R) +(-1039 Q R) ((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible."))) NIL NIL -(-1038) +(-1040) ((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,{}m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,{}m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,{}g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,{}g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented"))) NIL NIL -(-1039 UP) +(-1041 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1040 R) +(-1042 R) ((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}."))) NIL NIL -(-1041 R) +(-1043 R) ((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f,{} [v1 = g1,{}...,{}vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} [v1,{}...,{}vn],{} [g1,{}...,{}gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f,{} v,{} g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-1042 T$) +(-1044 T$) ((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color models.")) (|componentUpperBound| ((|#1|) "componentUpperBound is an upper bound for all component values.")) (|blue| ((|#1| $) "\\spad{blue(c)} returns the `blue' component of \\spad{`c'}.")) (|green| ((|#1| $) "\\spad{green(c)} returns the `green' component of \\spad{`c'}.")) (|red| ((|#1| $) "\\spad{red(c)} returns the `red' component of \\spad{`c'}."))) NIL NIL -(-1043 T$) +(-1045 T$) ((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color spaces.")) (|whitePoint| (($) "whitePoint is the contant indicating the white point of this color space."))) NIL NIL -(-1044 R |ls|) +(-1046 R |ls|) ((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?,{}info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}."))) -((-4411 . T) (-4410 . T)) -((-12 (|HasCategory| (-778 |#1| (-862 |#2|)) (QUOTE (-1097))) (|HasCategory| (-778 |#1| (-862 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -778) (|devaluate| |#1|) (LIST (QUOTE -862) (|devaluate| |#2|)))))) (|HasCategory| (-778 |#1| (-862 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-778 |#1| (-862 |#2|)) (QUOTE (-1097))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| (-862 |#2|) (QUOTE (-368))) (|HasCategory| (-778 |#1| (-862 |#2|)) (LIST (QUOTE -611) (QUOTE (-860))))) -(-1045) +((-4418 . T) (-4417 . T)) +((-12 (|HasCategory| (-780 |#1| (-864 |#2|)) (QUOTE (-1099))) (|HasCategory| (-780 |#1| (-864 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -780) (|devaluate| |#1|) (LIST (QUOTE -864) (|devaluate| |#2|)))))) (|HasCategory| (-780 |#1| (-864 |#2|)) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-780 |#1| (-864 |#2|)) (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| (-864 |#2|) (QUOTE (-370))) (|HasCategory| (-780 |#1| (-864 |#2|)) (LIST (QUOTE -613) (QUOTE (-862))))) +(-1047) ((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,{}j,{}k,{}l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,{}f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-1046 S) +(-1048 S) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) NIL NIL -(-1047) +(-1049) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) -((-4407 . T)) +((-4414 . T)) NIL -(-1048 |xx| -2266) +(-1050 |xx| -2341) ((|constructor| (NIL "This package exports rational interpolation algorithms"))) NIL NIL -(-1049 R) +(-1051 R) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{R}-right linear set if it is stable by right-dilation} \\indented{2}{by elements in the ring \\spad{R}.\\space{2}This category differs from} \\indented{2}{\\spad{RightModule} in that no other assumption (such as addition)} \\indented{2}{is made about the underlying set.} See Also: LeftLinearSet.")) (* (($ $ |#1|) "\\spad{r*x} is the left-dilation of \\spad{x} by \\spad{r}.")) (|zero?| (((|Boolean|) $) "\\spad{zero? x} holds is \\spad{x} is the origin.")) ((|Zero|) (($) "\\spad{0} represents the origin of the linear set"))) NIL NIL -(-1050 S |m| |n| R |Row| |Col|) +(-1052 S |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) NIL -((|HasCategory| |#4| (QUOTE (-307))) (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (QUOTE (-556))) (|HasCategory| |#4| (QUOTE (-172)))) -(-1051 |m| |n| R |Row| |Col|) +((|HasCategory| |#4| (QUOTE (-308))) (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (QUOTE (-558))) (|HasCategory| |#4| (QUOTE (-172)))) +(-1053 |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) -((-4410 . T) (-4405 . T) (-4404 . T)) +((-4417 . T) (-4412 . T) (-4411 . T)) NIL -(-1052 |m| |n| R) +(-1054 |m| |n| R) ((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}."))) -((-4410 . T) (-4405 . T) (-4404 . T)) -((|HasCategory| |#3| (QUOTE (-172))) (-2682 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1097))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -612) (QUOTE (-536)))) (-2682 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363)))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1097))) (|HasCategory| |#3| (QUOTE (-307))) (|HasCategory| |#3| (QUOTE (-556))) (-12 (|HasCategory| |#3| (QUOTE (-1097))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -611) (QUOTE (-860))))) -(-1053 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +((-4417 . T) (-4412 . T) (-4411 . T)) +((|HasCategory| |#3| (QUOTE (-172))) (-2809 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -614) (QUOTE (-538)))) (-2809 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365)))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (QUOTE (-558))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -613) (QUOTE (-862))))) +(-1055 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-1054 R) +(-1056 R) ((|constructor| (NIL "The category of right modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the \\spad{rng}. \\blankline"))) NIL NIL -(-1055) +(-1057) ((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline"))) NIL NIL -(-1056 S) +(-1058 S) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) NIL NIL -(-1057) +(-1059) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) -((-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) +((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) NIL -(-1058 |TheField| |ThePolDom|) +(-1060 |TheField| |ThePolDom|) ((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval"))) NIL NIL -(-1059) +(-1061) ((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-4398 . T) (-4402 . T) (-4397 . T) (-4408 . T) (-4409 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) +((-4405 . T) (-4409 . T) (-4404 . T) (-4415 . T) (-4416 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) NIL -(-1060) +(-1062) ((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,{}routineName,{}ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,{}s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,{}s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,{}s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,{}s,{}newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,{}s,{}newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,{}y)} merges two tables \\spad{x} and \\spad{y}"))) -((-4410 . T) (-4411 . T)) -((-12 (|HasCategory| (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (QUOTE (-1097))) (|HasCategory| (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1914) (QUOTE (-1173))) (LIST (QUOTE |:|) (QUOTE -2683) (QUOTE (-52))))))) (-2682 (|HasCategory| (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (QUOTE (-1097))) (|HasCategory| (-52) (QUOTE (-1097)))) (-2682 (|HasCategory| (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (QUOTE (-1097))) (|HasCategory| (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| (-52) (QUOTE (-1097))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| (-52) (QUOTE (-1097))) (|HasCategory| (-52) (LIST (QUOTE -309) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (QUOTE (-1097))) (|HasCategory| (-1173) (QUOTE (-848))) (|HasCategory| (-52) (QUOTE (-1097))) (-2682 (|HasCategory| (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (LIST (QUOTE -611) (QUOTE (-860))))) -(-1061 S R E V) +((-4417 . T) (-4418 . T)) +((-12 (|HasCategory| (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1928) (QUOTE (-1175))) (LIST (QUOTE |:|) (QUOTE -2806) (QUOTE (-52))))))) (-2809 (|HasCategory| (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (QUOTE (-1099))) (|HasCategory| (-52) (QUOTE (-1099)))) (-2809 (|HasCategory| (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-52) (QUOTE (-1099))) (|HasCategory| (-52) (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| (-52) (QUOTE (-1099))) (|HasCategory| (-52) (LIST (QUOTE -310) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (QUOTE (-1099))) (|HasCategory| (-1175) (QUOTE (-850))) (|HasCategory| (-52) (QUOTE (-1099))) (-2809 (|HasCategory| (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-52) (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-52) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (LIST (QUOTE -613) (QUOTE (-862))))) +(-1063 S R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) NIL -((|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -990) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (LIST (QUOTE -612) (QUOTE (-1173))))) -(-1062 R E V) +((|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-547))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -992) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (LIST (QUOTE -614) (QUOTE (-1175))))) +(-1064 R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) -(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4408 |has| |#1| (-6 -4408)) (-4405 . T) (-4404 . T) (-4407 . T)) +(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-558)) (-4415 |has| |#1| (-6 -4415)) (-4412 . T) (-4411 . T) (-4414 . T)) NIL -(-1063) +(-1065) ((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'."))) NIL NIL -(-1064 S |TheField| |ThePols|) +(-1066 S |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-1065 |TheField| |ThePols|) +(-1067 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-1066 R E V P TS) +(-1068 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}). The same way it does not care about the way univariate polynomial \\spad{gcd} (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these \\spad{gcd} need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1067 S R E V P) +(-1069 S R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#5| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) NIL NIL -(-1068 R E V P) +(-1070 R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#4| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) -((-4411 . T) (-4410 . T)) +((-4418 . T) (-4417 . T)) NIL -(-1069 R E V P TS) +(-1071 R E V P TS) ((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1070) +(-1072) ((|constructor| (NIL "This domain represents `restrict' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-1071) +(-1073) ((|constructor| (NIL "This is the datatype of OpenAxiom runtime values. It exists solely for internal purposes.")) (|eq| (((|Boolean|) $ $) "\\spad{eq(x,{}y)} holds if both values \\spad{x} and \\spad{y} resides at the same address in memory."))) NIL NIL -(-1072 |f|) +(-1074 |f|) ((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-1073 |Base| R -2266) +(-1075 |Base| R -2341) ((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r,{} [a1,{}...,{}an],{} f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,{}...,{}an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f,{} g,{} [f1,{}...,{}fn])} creates the rewrite rule \\spad{f == eval(eval(g,{} g is f),{} [f1,{}...,{}fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f,{} g)} creates the rewrite rule: \\spad{f == eval(g,{} g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}."))) NIL NIL -(-1074 |Base| R -2266) +(-1076 |Base| R -2341) ((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,{}...,{}rn])} creates the rule set \\spad{{r1,{}...,{}rn}}."))) NIL NIL -(-1075 R |ls|) +(-1077 R |ls|) ((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,{}univ?,{}check?)} returns the same as \\spad{rur(lp,{}true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,{}true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,{}univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,{}univ?)} returns a list of items \\spad{[u,{}lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,{}lc]} in \\spad{rur(lp,{}univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor."))) NIL NIL -(-1076 UP SAE UPA) +(-1078 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1077 R UP M) +(-1079 R UP M) ((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself."))) -((-4403 |has| |#1| (-363)) (-4408 |has| |#1| (-363)) (-4402 |has| |#1| (-363)) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) -((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-349))) (-2682 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368))) (-2682 (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-349)))) (-2682 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-1173))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-1173)))))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (-2682 (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-1173))))) (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363))))) -(-1078 UP SAE UPA) +((-4410 |has| |#1| (-365)) (-4415 |has| |#1| (-365)) (-4409 |has| |#1| (-365)) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-351))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-351)))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365))))) +(-1080 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1079) +(-1081) ((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable"))) NIL NIL -(-1080) +(-1082) ((|constructor| (NIL "This is the category of Spad syntax objects."))) NIL NIL -(-1081 S) +(-1083 S) ((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x,{} f)} enters \\spad{x} in the cache,{} calling \\spad{f(x,{} y)} to determine whether \\spad{x < y (f(x,{}y) < 0),{} x = y (f(x,{}y) = 0)},{} or \\spad{x > y (f(x,{}y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x,{} f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache."))) NIL NIL -(-1082) +(-1084) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Scope' is a sequence of contours.")) (|currentCategoryFrame| (($) "\\spad{currentCategoryFrame()} returns the category frame currently in effect.")) (|currentScope| (($) "\\spad{currentScope()} returns the scope currently in effect")) (|pushNewContour| (($ (|Binding|) $) "\\spad{pushNewContour(b,{}s)} pushs a new contour with sole binding \\spad{`b'}.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(n,{}s)} returns the first binding of \\spad{`n'} in \\spad{`s'}; otherwise `nothing'.")) (|contours| (((|List| (|Contour|)) $) "\\spad{contours(s)} returns the list of contours in scope \\spad{s}.")) (|empty| (($) "\\spad{empty()} returns an empty scope."))) NIL NIL -(-1083 R) +(-1085 R) ((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,{}mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,{}mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}"))) NIL NIL -(-1084 R) +(-1086 R) ((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline"))) -(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4408 |has| |#1| (-6 -4408)) (-4405 . T) (-4404 . T) (-4407 . T)) -((|HasCategory| |#1| (QUOTE (-907))) (-2682 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-907)))) (-2682 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-907)))) (-2682 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-907)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2682 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1085 (-1173)) (LIST (QUOTE -884) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -884) (QUOTE (-379))))) (-12 (|HasCategory| (-1085 (-1173)) (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -884) (QUOTE (-564))))) (-12 (|HasCategory| (-1085 (-1173)) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379)))))) (-12 (|HasCategory| (-1085 (-1173)) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564)))))) (-12 (|HasCategory| (-1085 (-1173)) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564)))) (-2682 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4408)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-907)))) (-2682 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-907)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-1085 S) +(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-558)) (-4415 |has| |#1| (-6 -4415)) (-4412 . T) (-4411 . T) (-4414 . T)) +((|HasCategory| |#1| (QUOTE (-909))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-1087 (-1175)) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| (-1087 (-1175)) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| (-1087 (-1175)) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| (-1087 (-1175)) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| (-1087 (-1175)) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4415)) (|HasCategory| |#1| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-1087 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u}))."))) NIL NIL -(-1086 R S) +(-1088 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l),{} f(l+k),{}...,{} f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}l..h)} returns a new segment \\spad{f(l)..f(h)}."))) NIL -((|HasCategory| |#1| (QUOTE (-846)))) -(-1087) +((|HasCategory| |#1| (QUOTE (-848)))) +(-1089) ((|constructor| (NIL "This domain represents segement expressions.")) (|bounds| (((|List| (|SpadAst|)) $) "\\spad{bounds(s)} returns the bounds of the segment \\spad{`s'}. If \\spad{`s'} designates an infinite interval,{} then the returns list a singleton list."))) NIL NIL -(-1088 R S) +(-1090 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,{}v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}."))) NIL NIL -(-1089 S) +(-1091 S) ((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions.")) (|segment| (((|Segment| |#1|) $) "\\spad{segment(segb)} returns the segment from the right hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{segment(segb)} returns \\spad{a..b}.")) (|variable| (((|Symbol|) $) "\\spad{variable(segb)} returns the variable from the left hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{variable(segb)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) (|Segment| |#1|)) "\\spad{equation(v,{}a..b)} creates a segment binding value with variable \\spad{v} and segment \\spad{a..b}. Note that the interpreter parses \\spad{v=a..b} to this form."))) NIL -((|HasCategory| |#1| (QUOTE (-1097)))) -(-1090 S) +((|HasCategory| |#1| (QUOTE (-1099)))) +(-1092 S) ((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,{}j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{\\spad{hi}(s)} returns the second endpoint of \\spad{s}. Note: \\spad{\\spad{hi}(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints."))) NIL NIL -(-1091 S) +(-1093 S) ((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}."))) NIL -((|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1097)))) -(-1092 S L) +((|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-1099)))) +(-1094 S L) ((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l),{} f(l+k),{} ...,{} f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l,{} l+k,{} ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,{}3,{}5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l,{} l+k,{} ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4,{} 7..9] = [1,{}2,{}3,{}4,{}7,{}8,{}9]}."))) NIL NIL -(-1093) +(-1095) ((|constructor| (NIL "This domain represents a block of expressions.")) (|last| (((|SpadAst|) $) "\\spad{last(e)} returns the last instruction in `e'.")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions in the sequence of instruction `e'."))) NIL NIL -(-1094 A S) +(-1096 A S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) NIL NIL -(-1095 S) +(-1097 S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) -((-4400 . T)) +((-4407 . T)) NIL -(-1096 S) +(-1098 S) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|before?| (((|Boolean|) $ $) "spad{before?(\\spad{x},{}\\spad{y})} holds if \\spad{x} comes before \\spad{y} in the internal total ordering used by OpenAxiom.")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1097) +(-1099) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|before?| (((|Boolean|) $ $) "spad{before?(\\spad{x},{}\\spad{y})} holds if \\spad{x} comes before \\spad{y} in the internal total ordering used by OpenAxiom.")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1098 |m| |n|) +(-1100 |m| |n|) ((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,{}k,{}p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p,{} s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,{}...,{}a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ "failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,{}k,{}p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ "failed") $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,{}k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more."))) NIL NIL -(-1099 S) +(-1101 S) ((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,{}b,{}c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,{}m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{union(s,{}t)},{} \\spad{intersect(s,{}t)},{} \\spad{minus(s,{}t)},{} \\spad{symmetricDifference(s,{}t)} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{member(x,{}t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,{}t)} and \\spad{remove(x,{}t)} is \\spad{O(n)}}"))) -((-4410 . T) (-4400 . T) (-4411 . T)) -((-2682 (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860)))) (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) -(-1100 |Str| |Sym| |Int| |Flt| |Expr|) +((-4417 . T) (-4407 . T) (-4418 . T)) +((-2809 (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) +(-1102 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,{}...,{}an),{} [i1,{}...,{}im])} returns \\spad{(a_i1,{}...,{}a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,{}...,{}an),{} i)} returns \\spad{\\spad{ai}}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,{}...,{}an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,{}...,{}an))} returns \\spad{(a2,{}...,{}an)}.")) (|car| (($ $) "\\spad{car((a1,{}...,{}an))} returns a1.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,{}...,{}an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s,{} t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp."))) NIL NIL -(-1101) +(-1103) ((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values."))) NIL NIL -(-1102 |Str| |Sym| |Int| |Flt| |Expr|) +(-1104 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types."))) NIL NIL -(-1103 R FS) +(-1105 R FS) ((|constructor| (NIL "\\axiomType{SimpleFortranProgram(\\spad{f},{}type)} provides a simple model of some FORTRAN subprograms,{} making it possible to coerce objects of various domains into a FORTRAN subprogram called \\axiom{\\spad{f}}. These can then be translated into legal FORTRAN code.")) (|fortran| (($ (|Symbol|) (|FortranScalarType|) |#2|) "\\spad{fortran(fname,{}ftype,{}body)} builds an object of type \\axiomType{FortranProgramCategory}. The three arguments specify the name,{} the type and the \\spad{body} of the program."))) NIL NIL -(-1104 R E V P TS) +(-1106 R E V P TS) ((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(\\spad{ts},{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1105 R E V P TS) +(-1107 R E V P TS) ((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1106 R E V P) +(-1108 R E V P) ((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,{}mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) -((-4411 . T) (-4410 . T)) +((-4418 . T) (-4417 . T)) NIL -(-1107) +(-1109) ((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,{}0,{}0] < [0,{}3,{}0] < [0,{}0,{}3] < [2,{}1,{}0] < [2,{}0,{}1] < [0,{}2,{}1] < [1,{}2,{}0] < [1,{}0,{}2] < [0,{}1,{}2] < [1,{}1,{}1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,{}0,{}3] < [0,{}1,{}2] < [0,{}2,{}1] < [0,{}3,{}0] < [1,{}0,{}2] < [1,{}1,{}1] < [1,{}2,{}0] < [2,{}0,{}1] < [2,{}1,{}0] < [3,{}0,{}0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,{}m,{}k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,{}1,{}...,{}(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,{}...,{}(m-1)} into {\\em 0,{}...,{}(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,{}m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,{}3)} is 10,{} since {\\em [0,{}0,{}3],{} [0,{}1,{}2],{} [0,{}2,{}1],{} [0,{}3,{}0],{} [1,{}0,{}2],{} [1,{}1,{}1],{} [1,{}2,{}0],{} [2,{}0,{}1],{} [2,{}1,{}0],{} [3,{}0,{}0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,{}lattP,{}constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,{}beta,{}C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,{}1,{}0)}. Also,{} {\\em new(1,{}1,{}0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,{}gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,{}...,{}n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,{}...,{}n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,{}beta,{}C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em \\spad{pi}} in the corresponding double coset. Note: the resulting permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,{}beta,{}\\spad{pi})}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em \\spad{pi}} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha,{} beta,{} \\spad{pi}}. Note: The permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em \\spad{pi}} is the lexicographical smallest permutation in the coset). For details see James/Kerber."))) NIL NIL -(-1108 S) +(-1110 S) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1109) +(-1111) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1110 |dimtot| |dim1| S) +(-1112 |dimtot| |dim1| S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4404 |has| |#3| (-1047)) (-4405 |has| |#3| (-1047)) (-4407 |has| |#3| (-6 -4407)) ((-4412 "*") |has| |#3| (-172)) (-4410 . T)) -((-2682 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-724))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-791))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-846))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1047))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1097))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -898) (QUOTE (-1173)))))) (-2682 (-12 (|HasCategory| |#3| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1097)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1047)))) (-12 (|HasCategory| |#3| (QUOTE (-1047))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1047))) (|HasCategory| |#3| (LIST (QUOTE -898) (QUOTE (-1173))))) (-12 (|HasCategory| |#3| (QUOTE (-1097))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1097))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (|HasCategory| |#3| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#3| (QUOTE (-363))) (-2682 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1047)))) (-2682 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363)))) (|HasCategory| |#3| (QUOTE (-1047))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-791))) (-2682 (|HasCategory| |#3| (QUOTE (-791))) (|HasCategory| |#3| (QUOTE (-846)))) (|HasCategory| |#3| (QUOTE (-846))) (|HasCategory| |#3| (QUOTE (-724))) (-2682 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-1047)))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -898) (QUOTE (-1173)))) (-2682 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1047)))) (-2682 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1047)))) (-2682 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1047)))) (-2682 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1047)))) (|HasCategory| |#3| (QUOTE (-233))) (-2682 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (QUOTE (-724))) (|HasCategory| |#3| (QUOTE (-791))) (|HasCategory| |#3| (QUOTE (-846))) (|HasCategory| |#3| (QUOTE (-1047))) (|HasCategory| |#3| (QUOTE (-1097)))) (|HasCategory| |#3| (QUOTE (-1097))) (-2682 (-12 (|HasCategory| |#3| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (LIST (QUOTE -898) (QUOTE (-1173))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-131)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-172)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-233)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-363)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-368)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-724)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-791)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-846)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1047)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1097))))) (-2682 (-12 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-724))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-791))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-846))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1047))) (-12 (|HasCategory| |#3| (QUOTE (-1097))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564)))))) (-2682 (-12 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-724))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-791))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-846))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1047))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1097))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564)))))) (|HasCategory| (-564) (QUOTE (-848))) (-12 (|HasCategory| |#3| (QUOTE (-1047))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1047)))) (-12 (|HasCategory| |#3| (QUOTE (-1047))) (|HasCategory| |#3| (LIST (QUOTE -898) (QUOTE (-1173))))) (-2682 (|HasCategory| |#3| (QUOTE (-1047))) (-12 (|HasCategory| |#3| (QUOTE (-1097))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564)))))) (-12 (|HasCategory| |#3| (QUOTE (-1097))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1097)))) (|HasAttribute| |#3| (QUOTE -4407)) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -611) (QUOTE (-860)))) (-12 (|HasCategory| |#3| (QUOTE (-1097))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))))) -(-1111 R |x|) +((-4411 |has| |#3| (-1049)) (-4412 |has| |#3| (-1049)) (-4414 |has| |#3| (-6 -4414)) ((-4419 "*") |has| |#3| (-172)) (-4417 . T)) +((-2809 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-726))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-848))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))))) (-2809 (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-1099)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1049)))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#3| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#3| (QUOTE (-365))) (-2809 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1049)))) (-2809 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365)))) (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-793))) (-2809 (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (QUOTE (-848)))) (|HasCategory| |#3| (QUOTE (-848))) (|HasCategory| |#3| (QUOTE (-726))) (-2809 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-1049)))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (-2809 (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1049)))) (-2809 (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1049)))) (-2809 (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1049)))) (-2809 (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1049)))) (|HasCategory| |#3| (QUOTE (-233))) (-2809 (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (QUOTE (-726))) (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (QUOTE (-848))) (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (QUOTE (-1099)))) (|HasCategory| |#3| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-131)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-172)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-233)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-365)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-370)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-726)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-793)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-848)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-1049)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-1099))))) (-2809 (-12 (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-726))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-848))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-1049))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-2809 (-12 (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-726))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-848))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566)))))) (|HasCategory| (-566) (QUOTE (-850))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1049)))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175))))) (-2809 (|HasCategory| |#3| (QUOTE (-1049))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-1099)))) (|HasAttribute| |#3| (QUOTE -4414)) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))))) +(-1113 R |x|) ((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,{}p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,{}p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,{}p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}"))) NIL -((|HasCategory| |#1| (QUOTE (-452)))) -(-1112) +((|HasCategory| |#1| (QUOTE (-454)))) +(-1114) ((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for \\spad{`s'}.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature \\spad{`s'}.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,{}s,{}t)} builds the signature AST \\spad{n:} \\spad{s} \\spad{->} \\spad{t}"))) NIL NIL -(-1113 R -2266) +(-1115 R -2341) ((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1114 R) +(-1116 R) ((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1115) +(-1117) ((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of \\spad{`s'}.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature \\spad{`s'}.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,{}t)} constructs a Signature object with parameter types indicaded by \\spad{`s'},{} and return type indicated by \\spad{`t'}."))) NIL NIL -(-1116) +(-1118) ((|constructor| (NIL "\\indented{1}{Package to allow simplify to be called on AlgebraicNumbers} by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}"))) NIL NIL -(-1117) +(-1119) ((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,{}m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|not| (($ $) "\\spad{not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality."))) -((-4398 . T) (-4402 . T) (-4397 . T) (-4408 . T) (-4409 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) +((-4405 . T) (-4409 . T) (-4404 . T) (-4415 . T) (-4416 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) NIL -(-1118 S) +(-1120 S) ((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,{}s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}."))) -((-4410 . T) (-4411 . T)) +((-4417 . T) (-4418 . T)) NIL -(-1119 S |ndim| R |Row| |Col|) +(-1121 S |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) NIL -((|HasCategory| |#3| (QUOTE (-363))) (|HasAttribute| |#3| (QUOTE (-4412 "*"))) (|HasCategory| |#3| (QUOTE (-172)))) -(-1120 |ndim| R |Row| |Col|) +((|HasCategory| |#3| (QUOTE (-365))) (|HasAttribute| |#3| (QUOTE (-4419 "*"))) (|HasCategory| |#3| (QUOTE (-172)))) +(-1122 |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) -((-4410 . T) (-4404 . T) (-4405 . T) (-4407 . T)) +((-4417 . T) (-4411 . T) (-4412 . T) (-4414 . T)) NIL -(-1121 R |Row| |Col| M) +(-1123 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,{}B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}."))) NIL NIL -(-1122 R |VarSet|) +(-1124 R |VarSet|) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute."))) -(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4408 |has| |#1| (-6 -4408)) (-4405 . T) (-4404 . T) (-4407 . T)) -((|HasCategory| |#1| (QUOTE (-907))) (-2682 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-907)))) (-2682 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-907)))) (-2682 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-907)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2682 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -884) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -884) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -884) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564)))) (-2682 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4408)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-907)))) (-2682 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-907)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-1123 |Coef| |Var| SMP) +(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-558)) (-4415 |has| |#1| (-6 -4415)) (-4412 . T) (-4411 . T) (-4414 . T)) +((|HasCategory| |#1| (QUOTE (-909))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4415)) (|HasCategory| |#1| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-1125 |Coef| |Var| SMP) ((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,{}b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}."))) -(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4405 . T) (-4404 . T) (-4407 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-2682 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-363)))) -(-1124 R E V P) +(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-558)) (-4412 . T) (-4411 . T) (-4414 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-365)))) +(-1126 R E V P) ((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}"))) -((-4411 . T) (-4410 . T)) +((-4418 . T) (-4417 . T)) NIL -(-1125 UP -2266) +(-1127 UP -2341) ((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,{}g,{}h,{}i,{}k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,{}g,{}h,{}j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,{}g,{}h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,{}g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,{}g,{}h,{}i,{}j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,{}g,{}h,{}i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,{}g,{}h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,{}g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,{}f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented"))) NIL NIL -(-1126 R) +(-1128 R) ((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,{}x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,{}x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,{}lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,{}x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,{}lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,{}lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,{}x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,{}x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function."))) NIL NIL -(-1127 R) +(-1129 R) ((|constructor| (NIL "This package finds the function func3 where func1 and func2 \\indented{1}{are given and\\space{2}func1 = func3(func2) .\\space{2}If there is no solution then} \\indented{1}{function func1 will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect,{} var,{} n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1,{} func2,{} newvar)} returns a function func3 where \\spad{func1} = func3(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned."))) NIL NIL -(-1128 R) +(-1130 R) ((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs,{} lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,{}x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,{}x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq."))) NIL NIL -(-1129 S A) +(-1131 S A) ((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,{}f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,{}f)} \\undocumented"))) NIL -((|HasCategory| |#1| (QUOTE (-848)))) -(-1130 R) +((|HasCategory| |#1| (QUOTE (-850)))) +(-1132 R) ((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them."))) NIL NIL -(-1131 R) +(-1133 R) ((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],{}[p1],{}...,{}[pn]],{} close1,{} close2)} creates a surface defined over a list of curves,{} \\spad{p0} through \\spad{pn},{} which are lists of points; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); close2 set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],{}[p1],{}...,{}[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through \\spad{pn},{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,{}[ [[r10]...,{}[r1m]],{} [[r20]...,{}[r2m]],{}...,{} [[rn0]...,{}[rnm]] ],{} close1,{} close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if close2 is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,{}[[p0],{}[p1],{}...,{}[pn]],{} close1,{} close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and close2 indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument close2 equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,{}[ [[r10]...,{}[r1m]],{} [[r20]...,{}[r2m]],{}...,{} [[rn0]...,{}[rnm]] ],{} [props],{} prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,{}[[p0],{}[p1],{}...,{}[pn]],{}[props],{}prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,{}p1,{}...,{}pn])} creates a polygon defined by a list of points,{} \\spad{p0} through \\spad{pn},{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,{}[[r0],{}[r1],{}...,{}[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,{}R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,{}[p0,{}p1,{}...,{}pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,{}R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,{}[[lr0],{}[lr1],{}...,{}[lrn],{}[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,{}R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,{}[p0,{}p1,{}...,{}pn,{}p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,{}p1,{}p2,{}...,{}pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,{}[[p0],{}[p1],{}...,{}[pn]])} adds a space curve which is a list of points \\spad{p0} through \\spad{pn} defined by lists of elements from the domain \\spad{PointDomain(m,{}R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,{}[p0,{}p1,{}...,{}pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,{}i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,{}[x,{}y,{}z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,{}p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,{}i,{}p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,{}[p0,{}p1,{}...,{}pn])} adds a list of points from \\spad{p0} through \\spad{pn} to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,{}s2,{}...,{}sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,{}s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,{}s2,{}...,{}sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1132) +(-1134) ((|constructor| (NIL "This domain represents a kind of base domain \\indented{2}{for Spad syntax domain.\\space{2}It merely exists as a kind of} \\indented{2}{of abstract base in object-oriented programming language.} \\indented{2}{However,{} this is not an abstract class.}"))) NIL NIL -(-1133) +(-1135) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad algebra parser.} Related Constructors: Syntax. See Also: Syntax.")) (|parse| (((|List| (|Syntax|)) (|String|)) "\\spad{parse(f)} parses the source file \\spad{f} (supposedly containing Spad algebras) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that this function has the side effect of executing any system command contained in the file \\spad{f},{} even if it might not be meaningful."))) NIL NIL -(-1134) +(-1136) ((|constructor| (NIL "This category describes the exported \\indented{2}{signatures of the SpadAst domain.}")) (|autoCoerce| (((|Integer|) $) "\\spad{autoCoerce(s)} returns the Integer view of \\spad{`s'}. Left at the discretion of the compiler.") (((|String|) $) "\\spad{autoCoerce(s)} returns the String view of \\spad{`s'}. Left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} returns the Identifier view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IsAst|) $) "\\spad{autoCoerce(s)} returns the IsAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|HasAst|) $) "\\spad{autoCoerce(s)} returns the HasAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CaseAst|) $) "\\spad{autoCoerce(s)} returns the CaseAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ColonAst|) $) "\\spad{autoCoerce(s)} returns the ColoonAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SuchThatAst|) $) "\\spad{autoCoerce(s)} returns the SuchThatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|LetAst|) $) "\\spad{autoCoerce(s)} returns the LetAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SequenceAst|) $) "\\spad{autoCoerce(s)} returns the SequenceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SegmentAst|) $) "\\spad{autoCoerce(s)} returns the SegmentAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RestrictAst|) $) "\\spad{autoCoerce(s)} returns the RestrictAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|PretendAst|) $) "\\spad{autoCoerce(s)} returns the PretendAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CoerceAst|) $) "\\spad{autoCoerce(s)} returns the CoerceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ReturnAst|) $) "\\spad{autoCoerce(s)} returns the ReturnAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ExitAst|) $) "\\spad{autoCoerce(s)} returns the ExitAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ConstructAst|) $) "\\spad{autoCoerce(s)} returns the ConstructAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CollectAst|) $) "\\spad{autoCoerce(s)} returns the CollectAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|InAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhileAst|) $) "\\spad{autoCoerce(s)} returns the WhileAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RepeatAst|) $) "\\spad{autoCoerce(s)} returns the RepeatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IfAst|) $) "\\spad{autoCoerce(s)} returns the IfAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MappingAst|) $) "\\spad{autoCoerce(s)} returns the MappingAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|AttributeAst|) $) "\\spad{autoCoerce(s)} returns the AttributeAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SignatureAst|) $) "\\spad{autoCoerce(s)} returns the SignatureAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CapsuleAst|) $) "\\spad{autoCoerce(s)} returns the CapsuleAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CategoryAst|) $) "\\spad{autoCoerce(s)} returns the CategoryAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhereAst|) $) "\\spad{autoCoerce(s)} returns the WhereAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MacroAst|) $) "\\spad{autoCoerce(s)} returns the MacroAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|DefinitionAst|) $) "\\spad{autoCoerce(s)} returns the DefinitionAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ImportAst|) $) "\\spad{autoCoerce(s)} returns the ImportAst view of \\spad{`s'}. Left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{s case Integer} holds if \\spad{`s'} represents an integer literal.") (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{s case String} holds if \\spad{`s'} represents a string literal.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{s case Identifier} holds if \\spad{`s'} represents an identifier.") (((|Boolean|) $ (|[\|\|]| (|IsAst|))) "\\spad{s case IsAst} holds if \\spad{`s'} represents an is-expression.") (((|Boolean|) $ (|[\|\|]| (|HasAst|))) "\\spad{s case HasAst} holds if \\spad{`s'} represents a has-expression.") (((|Boolean|) $ (|[\|\|]| (|CaseAst|))) "\\spad{s case CaseAst} holds if \\spad{`s'} represents a case-expression.") (((|Boolean|) $ (|[\|\|]| (|ColonAst|))) "\\spad{s case ColonAst} holds if \\spad{`s'} represents a colon-expression.") (((|Boolean|) $ (|[\|\|]| (|SuchThatAst|))) "\\spad{s case SuchThatAst} holds if \\spad{`s'} represents a qualified-expression.") (((|Boolean|) $ (|[\|\|]| (|LetAst|))) "\\spad{s case LetAst} holds if \\spad{`s'} represents an assignment-expression.") (((|Boolean|) $ (|[\|\|]| (|SequenceAst|))) "\\spad{s case SequenceAst} holds if \\spad{`s'} represents a sequence-of-statements.") (((|Boolean|) $ (|[\|\|]| (|SegmentAst|))) "\\spad{s case SegmentAst} holds if \\spad{`s'} represents a segment-expression.") (((|Boolean|) $ (|[\|\|]| (|RestrictAst|))) "\\spad{s case RestrictAst} holds if \\spad{`s'} represents a restrict-expression.") (((|Boolean|) $ (|[\|\|]| (|PretendAst|))) "\\spad{s case PretendAst} holds if \\spad{`s'} represents a pretend-expression.") (((|Boolean|) $ (|[\|\|]| (|CoerceAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a coerce-expression.") (((|Boolean|) $ (|[\|\|]| (|ReturnAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a return-statement.") (((|Boolean|) $ (|[\|\|]| (|ExitAst|))) "\\spad{s case ExitAst} holds if \\spad{`s'} represents an exit-expression.") (((|Boolean|) $ (|[\|\|]| (|ConstructAst|))) "\\spad{s case ConstructAst} holds if \\spad{`s'} represents a list-expression.") (((|Boolean|) $ (|[\|\|]| (|CollectAst|))) "\\spad{s case CollectAst} holds if \\spad{`s'} represents a list-comprehension.") (((|Boolean|) $ (|[\|\|]| (|InAst|))) "\\spad{s case InAst} holds if \\spad{`s'} represents a in-iterator") (((|Boolean|) $ (|[\|\|]| (|WhileAst|))) "\\spad{s case WhileAst} holds if \\spad{`s'} represents a while-iterator") (((|Boolean|) $ (|[\|\|]| (|RepeatAst|))) "\\spad{s case RepeatAst} holds if \\spad{`s'} represents an repeat-loop.") (((|Boolean|) $ (|[\|\|]| (|IfAst|))) "\\spad{s case IfAst} holds if \\spad{`s'} represents an if-statement.") (((|Boolean|) $ (|[\|\|]| (|MappingAst|))) "\\spad{s case MappingAst} holds if \\spad{`s'} represents a mapping type.") (((|Boolean|) $ (|[\|\|]| (|AttributeAst|))) "\\spad{s case AttributeAst} holds if \\spad{`s'} represents an attribute.") (((|Boolean|) $ (|[\|\|]| (|SignatureAst|))) "\\spad{s case SignatureAst} holds if \\spad{`s'} represents a signature export.") (((|Boolean|) $ (|[\|\|]| (|CapsuleAst|))) "\\spad{s case CapsuleAst} holds if \\spad{`s'} represents a domain capsule.") (((|Boolean|) $ (|[\|\|]| (|CategoryAst|))) "\\spad{s case CategoryAst} holds if \\spad{`s'} represents an unnamed category.") (((|Boolean|) $ (|[\|\|]| (|WhereAst|))) "\\spad{s case WhereAst} holds if \\spad{`s'} represents an expression with local definitions.") (((|Boolean|) $ (|[\|\|]| (|MacroAst|))) "\\spad{s case MacroAst} holds if \\spad{`s'} represents a macro definition.") (((|Boolean|) $ (|[\|\|]| (|DefinitionAst|))) "\\spad{s case DefinitionAst} holds if \\spad{`s'} represents a definition.") (((|Boolean|) $ (|[\|\|]| (|ImportAst|))) "\\spad{s case ImportAst} holds if \\spad{`s'} represents an `import' statement."))) NIL NIL -(-1135) +(-1137) ((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,{}o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}."))) NIL NIL -(-1136) +(-1138) ((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,{}z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,{}z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,{}z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,{}z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,{}x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,{}x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,{}x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}."))) NIL NIL -(-1137 V C) +(-1139 V C) ((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}o2)} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}o1,{}o2)} returns \\spad{true} iff \\axiom{o1(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}\\spad{lt})} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in \\spad{lt}]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(\\spad{lvt})} returns the same as \\axiom{[construct(\\spad{vt}.val,{}\\spad{vt}.tower) for \\spad{vt} in \\spad{lvt}]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(\\spad{vt})} returns the same as \\axiom{construct(\\spad{vt}.val,{}\\spad{vt}.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}"))) NIL NIL -(-1138 V C) +(-1140 V C) ((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned."))) -((-4410 . T) (-4411 . T)) -((-12 (|HasCategory| (-1137 |#1| |#2|) (LIST (QUOTE -309) (LIST (QUOTE -1137) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1137 |#1| |#2|) (QUOTE (-1097)))) (|HasCategory| (-1137 |#1| |#2|) (QUOTE (-1097))) (-2682 (|HasCategory| (-1137 |#1| |#2|) (LIST (QUOTE -611) (QUOTE (-860)))) (-12 (|HasCategory| (-1137 |#1| |#2|) (LIST (QUOTE -309) (LIST (QUOTE -1137) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1137 |#1| |#2|) (QUOTE (-1097))))) (|HasCategory| (-1137 |#1| |#2|) (LIST (QUOTE -611) (QUOTE (-860))))) -(-1139 |ndim| R) +((-4417 . T) (-4418 . T)) +((-12 (|HasCategory| (-1139 |#1| |#2|) (LIST (QUOTE -310) (LIST (QUOTE -1139) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1139 |#1| |#2|) (QUOTE (-1099)))) (|HasCategory| (-1139 |#1| |#2|) (QUOTE (-1099))) (-2809 (|HasCategory| (-1139 |#1| |#2|) (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| (-1139 |#1| |#2|) (LIST (QUOTE -310) (LIST (QUOTE -1139) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1139 |#1| |#2|) (QUOTE (-1099))))) (|HasCategory| (-1139 |#1| |#2|) (LIST (QUOTE -613) (QUOTE (-862))))) +(-1141 |ndim| R) ((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}."))) -((-4407 . T) (-4399 |has| |#2| (-6 (-4412 "*"))) (-4410 . T) (-4404 . T) (-4405 . T)) -((|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE (-4412 "*"))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564)))) (-2682 (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (QUOTE (-363))) (-2682 (|HasAttribute| |#2| (QUOTE (-4412 "*"))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-860)))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-172)))) -(-1140 S) +((-4414 . T) (-4406 |has| |#2| (-6 (-4419 "*"))) (-4417 . T) (-4411 . T) (-4412 . T)) +((|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE (-4419 "*"))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2809 (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-365))) (-2809 (|HasAttribute| |#2| (QUOTE (-4419 "*"))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-172)))) +(-1142 S) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) NIL NIL -(-1141) +(-1143) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) -((-4411 . T) (-4410 . T)) +((-4418 . T) (-4417 . T)) NIL -(-1142 R E V P TS) +(-1144 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,{}E,{}V,{}P,{}TS)} and \\spad{RSETGCD(R,{}E,{}V,{}P,{}TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1143 R E V P) +(-1145 R E V P) ((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4411 . T) (-4410 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1097))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#4| (QUOTE (-1097))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-860))))) -(-1144 S) +((-4418 . T) (-4417 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1099))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#4| (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -613) (QUOTE (-862))))) +(-1146 S) ((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,{}y,{}...,{}z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4410 . T) (-4411 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1097))) (-2682 (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) -(-1145 A S) +((-4417 . T) (-4418 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) +(-1147 A S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1146 S) +(-1148 S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1147 |Key| |Ent| |dent|) +(-1149 |Key| |Ent| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4411 . T)) -((-12 (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (QUOTE (-1097))) (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1914) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2683) (|devaluate| |#2|)))))) (-2682 (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (QUOTE (-1097))) (|HasCategory| |#2| (QUOTE (-1097)))) (-2682 (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (QUOTE (-1097))) (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-848))) (-2682 (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (QUOTE (-1097)))) -(-1148) +((-4418 . T)) +((-12 (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1928) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2806) (|devaluate| |#2|)))))) (-2809 (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-1099)))) (-2809 (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-850))) (-2809 (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (QUOTE (-1099)))) +(-1150) ((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping."))) NIL NIL -(-1149 |Coef|) +(-1151 |Coef|) ((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-1150 S) +(-1152 S) ((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,{}u)}."))) NIL NIL -(-1151 A B) +(-1153 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,{}f,{}u)},{} where \\spad{u} is a finite stream \\spad{[x0,{}x1,{}...,{}xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,{}b),{} r1 = f(x1,{}r0),{}...,{} r(n) = f(xn,{}r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,{}h,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[y0,{}y1,{}y2,{}...]},{} where \\spad{y0 = h(x0,{}b)},{} \\spad{y1 = h(x1,{}y0)},{}\\spad{...} \\spad{yn = h(xn,{}y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,{}s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}...]) = [f(x0),{}f(x1),{}f(x2),{}..]}."))) NIL NIL -(-1152 A B C) +(-1154 A B C) ((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}st1,{}st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}..],{}[y0,{}y1,{}y2,{}..]) = [f(x0,{}y0),{}f(x1,{}y1),{}..]}."))) NIL NIL -(-1153 S) +(-1155 S) ((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n-1)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,{}x) = [x,{}f(x),{}f(f(x)),{}...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),{}f(),{}f(),{}...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,{}n,{}y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,{}st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,{}s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,{}s) = concat(a,{}s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,{}st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,{}s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) -((-4411 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1097))) (-2682 (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-564) (QUOTE (-848))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) -(-1154) +((-4418 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) +(-1156) ((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string"))) -((-4411 . T) (-4410 . T)) +((-4418 . T) (-4417 . T)) NIL -(-1155) +(-1157) NIL -((-4411 . T) (-4410 . T)) -((-2682 (-12 (|HasCategory| (-144) (QUOTE (-848))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1097))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-144) (QUOTE (-848))) (|HasCategory| (-564) (QUOTE (-848))) (|HasCategory| (-144) (QUOTE (-1097))) (|HasCategory| (-144) (LIST (QUOTE -611) (QUOTE (-860)))) (-12 (|HasCategory| (-144) (QUOTE (-1097))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) -(-1156 |Entry|) +((-4418 . T) (-4417 . T)) +((-2809 (-12 (|HasCategory| (-144) (QUOTE (-850))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1099))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-144) (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| (-144) (QUOTE (-1099))) (|HasCategory| (-144) (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| (-144) (QUOTE (-1099))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) +(-1158 |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used."))) -((-4410 . T) (-4411 . T)) -((-12 (|HasCategory| (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (QUOTE (-1097))) (|HasCategory| (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1914) (QUOTE (-1155))) (LIST (QUOTE |:|) (QUOTE -2683) (|devaluate| |#1|)))))) (-2682 (|HasCategory| (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (QUOTE (-1097))) (|HasCategory| |#1| (QUOTE (-1097)))) (-2682 (|HasCategory| (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (QUOTE (-1097))) (|HasCategory| (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (QUOTE (-1097))) (|HasCategory| (-1155) (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-1097))) (-2682 (|HasCategory| (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (LIST (QUOTE -611) (QUOTE (-860))))) -(-1157 A) +((-4417 . T) (-4418 . T)) +((-12 (|HasCategory| (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1928) (QUOTE (-1157))) (LIST (QUOTE |:|) (QUOTE -2806) (|devaluate| |#1|)))))) (-2809 (|HasCategory| (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-1099)))) (-2809 (|HasCategory| (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (QUOTE (-1099))) (|HasCategory| (-1157) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (-2809 (|HasCategory| (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (LIST (QUOTE -613) (QUOTE (-862))))) +(-1159 A) ((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,{}f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,{}r,{}g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0/b0,{}a1/b1,{}..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,{}f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,{}0>,{}b<0,{}1>,{}...],{}[b<1,{}0>,{}b<1,{}1>,{}.],{}...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,{}j=0 to infinity,{}b<i,{}j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,{}f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,{}a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,{}[a0,{}a1,{}a2,{}...]) = [a,{}a0,{}a1/2,{}a2/3,{}...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,{}b,{}st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,{}b,{}st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),{}n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),{}n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),{}n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,{}0>,{}a<0,{}1>,{}..],{}[a<1,{}0>,{}a<1,{}1>,{}..],{}[a<2,{}0>,{}a<2,{}1>,{}..],{}..]} and \\spad{addiag(x) = [b<0,{}b<1>,{}...],{} then b<k> = sum(i+j=k,{}a<i,{}j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient 1.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,{}b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,{}r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,{}[a0,{}a1,{}a2,{}..])} returns \\spad{[f(0)*a0,{}f(1)*a1,{}f(2)*a2,{}..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,{}a1,{}a2,{}...])} returns \\spad{[a1,{}2 a2,{}3 a3,{}...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0*b0,{}a1*b1,{}..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,{}n+2,{}n+4,{}...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,{}n+1,{}n+2,{}...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,{}coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,{}b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,{}a1,{}...] * r = [a0 * r,{}a1 * r,{}...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,{}a1,{}...] = [r * a0,{}r * a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,{}a1,{}...] * [b0,{}b1,{}...] = [c0,{}c1,{}...]} where \\spad{ck = sum(i + j = k,{}\\spad{ai} * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,{}a1,{}...] = [- a0,{}- a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] - [b0,{}b1,{}..] = [a0 - b0,{}a1 - b1,{}..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] + [b0,{}b1,{}..] = [a0 + b0,{}a1 + b1,{}..]}"))) NIL -((|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) -(-1158 |Coef|) +((|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) +(-1160 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1159 |Coef|) +(-1161 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1160 R UP) +(-1162 R UP) ((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p,{} q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p,{} q)} returns \\spad{[p0,{}...,{}pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p,{} q)}."))) NIL -((|HasCategory| |#1| (QUOTE (-307)))) -(-1161 |n| R) +((|HasCategory| |#1| (QUOTE (-308)))) +(-1163 |n| R) ((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,{}\\spad{li})} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,{}\\spad{li},{}p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,{}\\spad{li},{}b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,{}ind,{}p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,{}\\spad{li},{}i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,{}\\spad{li},{}p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,{}s2,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,{}p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,{}\\spad{li},{}i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,{}s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,{}n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented"))) NIL NIL -(-1162 S1 S2) +(-1164 S1 S2) ((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} makes a form \\spad{s:t}"))) NIL NIL -(-1163) +(-1165) ((|constructor| (NIL "This domain represents the filter iterator syntax.")) (|predicate| (((|SpadAst|) $) "\\spad{predicate(e)} returns the syntax object for the predicate in the filter iterator syntax `e'."))) NIL NIL -(-1164 |Coef| |var| |cen|) +(-1166 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4412 "*") -2682 (-2317 (|has| |#1| (-363)) (|has| (-1171 |#1| |#2| |#3|) (-818))) (|has| |#1| (-172)) (-2317 (|has| |#1| (-363)) (|has| (-1171 |#1| |#2| |#3|) (-907)))) (-4403 -2682 (-2317 (|has| |#1| (-363)) (|has| (-1171 |#1| |#2| |#3|) (-818))) (|has| |#1| (-556)) (-2317 (|has| |#1| (-363)) (|has| (-1171 |#1| |#2| |#3|) (-907)))) (-4408 |has| |#1| (-363)) (-4402 |has| |#1| (-363)) (-4404 . T) (-4405 . T) (-4407 . T)) -((-2682 (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-818))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-907))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-1148))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1171) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1171) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (LIST (QUOTE -309) (LIST (QUOTE -1171) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (LIST (QUOTE -514) (QUOTE (-1173)) (LIST (QUOTE -1171) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (LIST (QUOTE -884) (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (LIST (QUOTE -1036) (QUOTE (-1173)))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2682 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-2682 (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2682 (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2682 (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|)))))) (-2682 (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|))))) (|HasCategory| (-564) (QUOTE (-1109))) (-2682 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-907))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (LIST (QUOTE -1036) (QUOTE (-1173)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-363)))) (-2682 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-818))) (|HasCategory| |#1| (QUOTE (-363)))) (-2682 (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-818))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-363))))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-1148))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1171) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1171) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (LIST (QUOTE -309) (LIST (QUOTE -1171) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (LIST (QUOTE -514) (QUOTE (-1173)) (LIST (QUOTE -1171) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (LIST (QUOTE -884) (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -2390) (LIST (|devaluate| |#1|) (QUOTE (-1173)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (-2682 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-957))) (|HasCategory| |#1| (QUOTE (-1197))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -3703) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1173))))) (|HasSignature| |#1| (LIST (QUOTE -2397) (LIST (LIST (QUOTE -642) (QUOTE (-1173))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-907))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-2682 (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-818))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-907))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-556)))) (-2682 (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-2682 (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-818))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-907))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-907))) (|HasCategory| |#1| (QUOTE (-363)))) (-2682 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-907))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-1165 R -2266) +(((-4419 "*") -2809 (-2402 (|has| |#1| (-365)) (|has| (-1173 |#1| |#2| |#3|) (-820))) (|has| |#1| (-172)) (-2402 (|has| |#1| (-365)) (|has| (-1173 |#1| |#2| |#3|) (-909)))) (-4410 -2809 (-2402 (|has| |#1| (-365)) (|has| (-1173 |#1| |#2| |#3|) (-820))) (|has| |#1| (-558)) (-2402 (|has| |#1| (-365)) (|has| (-1173 |#1| |#2| |#3|) (-909)))) (-4415 |has| |#1| (-365)) (-4409 |has| |#1| (-365)) (-4411 . T) (-4412 . T) (-4414 . T)) +((-2809 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-1022))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-1150))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -516) (QUOTE (-1175)) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-2809 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2809 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2809 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|)))))) (-2809 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|))))) (|HasCategory| (-566) (QUOTE (-1111))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-1022))) (|HasCategory| |#1| (QUOTE (-365)))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-2809 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-365))))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-1150))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -516) (QUOTE (-1175)) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -2479) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -2390) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -2485) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-2809 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-558)))) (-2809 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2809 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-1167 R -2341) ((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n),{} n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n})."))) NIL NIL -(-1166 R) +(-1168 R) ((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}."))) NIL NIL -(-1167 R S) +(-1169 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1168 E OV R P) +(-1170 E OV R P) ((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}."))) NIL NIL -(-1169 R) +(-1171 R) ((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{}var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable."))) -(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4406 |has| |#1| (-363)) (-4408 |has| |#1| (-6 -4408)) (-4405 . T) (-4404 . T) (-4407 . T)) -((|HasCategory| |#1| (QUOTE (-907))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2682 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1079) (LIST (QUOTE -884) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -884) (QUOTE (-379))))) (-12 (|HasCategory| (-1079) (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -884) (QUOTE (-564))))) (-12 (|HasCategory| (-1079) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379)))))) (-12 (|HasCategory| (-1079) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564)))))) (-12 (|HasCategory| (-1079) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564)))) (-2682 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (-2682 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-907)))) (-2682 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-907)))) (-2682 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-907)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1148))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4408)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-907)))) (-2682 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-907)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-1170 |Coef| |var| |cen|) +(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-558)) (-4413 |has| |#1| (-365)) (-4415 |has| |#1| (-6 -4415)) (-4412 . T) (-4411 . T) (-4414 . T)) +((|HasCategory| |#1| (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1150))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4415)) (|HasCategory| |#1| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-1172 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}."))) -(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4408 |has| |#1| (-363)) (-4402 |has| |#1| (-363)) (-4404 . T) (-4405 . T) (-4407 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2682 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-564)) (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-363))) (-2682 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-2682 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasSignature| |#1| (LIST (QUOTE -2390) (LIST (|devaluate| |#1|) (QUOTE (-1173)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (-2682 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-957))) (|HasCategory| |#1| (QUOTE (-1197))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -3703) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1173))))) (|HasSignature| |#1| (LIST (QUOTE -2397) (LIST (LIST (QUOTE -642) (QUOTE (-1173))) (|devaluate| |#1|))))))) -(-1171 |Coef| |var| |cen|) +(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-558)) (-4415 |has| |#1| (-365)) (-4409 |has| |#1| (-365)) (-4411 . T) (-4412 . T) (-4414 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|)))) (|HasCategory| (-409 (-566)) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-365))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasSignature| |#1| (LIST (QUOTE -2479) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -2390) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -2485) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|))))))) +(-1173 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4404 . T) (-4405 . T) (-4407 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (-2682 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-769)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-769)) (|devaluate| |#1|)))) (|HasCategory| (-769) (QUOTE (-1109))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-769))))) (|HasSignature| |#1| (LIST (QUOTE -2390) (LIST (|devaluate| |#1|) (QUOTE (-1173)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-769))))) (|HasCategory| |#1| (QUOTE (-363))) (-2682 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-957))) (|HasCategory| |#1| (QUOTE (-1197))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -3703) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1173))))) (|HasSignature| |#1| (LIST (QUOTE -2397) (LIST (LIST (QUOTE -642) (QUOTE (-1173))) (|devaluate| |#1|))))))) -(-1172) +(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-558)) (-4411 . T) (-4412 . T) (-4414 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-771)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-771)) (|devaluate| |#1|)))) (|HasCategory| (-771) (QUOTE (-1111))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-771))))) (|HasSignature| |#1| (LIST (QUOTE -2479) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-771))))) (|HasCategory| |#1| (QUOTE (-365))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -2390) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -2485) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|))))))) +(-1174) ((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}"))) NIL NIL -(-1173) +(-1175) ((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,{}[a1,{}...,{}an])} or \\spad{s}([a1,{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,{}...,{}an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s,{} [a1,{}...,{}an])} returns \\spad{s} arg-scripted by \\spad{[a1,{}...,{}an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s,{} [a1,{}...,{}an])} returns \\spad{s} superscripted by \\spad{[a1,{}...,{}an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s,{} [a1,{}...,{}an])} returns \\spad{s} subscripted by \\spad{[a1,{}...,{}an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s,{} [a,{}b,{}c,{}d,{}e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s,{} [a,{}b,{}c,{}d,{}e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s,{} [a,{}b,{}c])} is equivalent to \\spad{script(s,{}[a,{}b,{}c,{}[],{}[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%."))) NIL NIL -(-1174 R) +(-1176 R) ((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r,{} n)} returns the vector of the elementary symmetric functions in \\spad{[r,{}r,{}...,{}r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,{}...,{}rn])} returns the vector of the elementary symmetric functions in the \\spad{\\spad{ri}'s}: \\spad{[r1 + ... + rn,{} r1 r2 + ... + r(n-1) rn,{} ...,{} r1 r2 ... rn]}."))) NIL NIL -(-1175 R) +(-1177 R) ((|constructor| (NIL "This domain implements symmetric polynomial"))) -(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4408 |has| |#1| (-6 -4408)) (-4404 . T) (-4405 . T) (-4407 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (-2682 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-2682 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| (-969) (QUOTE (-131))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasAttribute| |#1| (QUOTE -4408))) -(-1176) +(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-558)) (-4415 |has| |#1| (-6 -4415)) (-4411 . T) (-4412 . T) (-4414 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-454))) (-12 (|HasCategory| (-971) (QUOTE (-131))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasAttribute| |#1| (QUOTE -4415))) +(-1178) ((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,{}tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,{}tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,{}tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,{}tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,{}t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,{}t,{}tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,{}l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,{}l,{}tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,{}t,{}asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,{}t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table."))) NIL NIL -(-1177) +(-1179) ((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,{}tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,{}tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,{}t,{}tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,{}t,{}tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}"))) NIL NIL -(-1178) +(-1180) ((|constructor| (NIL "\\indented{1}{This domain provides a simple domain,{} general enough for} \\indented{2}{building complete representation of Spad programs as objects} \\indented{2}{of a term algebra built from ground terms of type integers,{} foats,{}} \\indented{2}{identifiers,{} and strings.} \\indented{2}{This domain differs from InputForm in that it represents} \\indented{2}{any entity in a Spad program,{} not just expressions.\\space{2}Furthermore,{}} \\indented{2}{while InputForm may contain atoms like vectors and other Lisp} \\indented{2}{objects,{} the Syntax domain is supposed to contain only that} \\indented{2}{initial algebra build from the primitives listed above.} Related Constructors: \\indented{2}{Integer,{} DoubleFloat,{} Identifier,{} String,{} SExpression.} See Also: SExpression,{} InputForm. The equality supported by this domain is structural.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} if \\spad{`x'} really is a String") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} is \\spad{true} if \\spad{`x'} really is an Identifier") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} if \\spad{`x'} really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} if \\spad{`x'} really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when \\spad{`x'} is not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in \\spad{`x'}.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Identifier|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax \\spad{`x'}. The value returned is itself a syntax if \\spad{`x'} really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when \\spad{`s'} is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op,{} [a1,{} ...,{} an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).") (($ (|Identifier|) (|List| $)) "\\spad{buildSyntax(op,{} [a1,{} ...,{} an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} forcibly extracts an identifier from the Syntax domain \\spad{`s'}; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax \\spad{`s'}.") (((|Identifier|) $) "\\spad{coerce(s)} extracts an identifier from the syntax \\spad{`s'}.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax \\spad{`s'}.") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax \\spad{`s'}")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to Syntax. Note,{} when \\spad{`s'} is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cells ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax."))) NIL NIL -(-1179 N) +(-1181 N) ((|constructor| (NIL "This domain implements sized (signed) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of this type."))) NIL NIL -(-1180 N) +(-1182 N) ((|constructor| (NIL "This domain implements sized (unsigned) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,{}y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}."))) NIL NIL -(-1181 R) +(-1183 R) ((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,{}lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,{}v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,{}v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,{}lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-1182) +(-1184) ((|constructor| (NIL "The package \\spadtype{System} provides information about the runtime system and its characteristics.")) (|loadNativeModule| (((|Void|) (|String|)) "\\spad{loadNativeModule(path)} loads the native modile designated by \\spadvar{\\spad{path}}.")) (|nativeModuleExtension| (((|String|)) "\\spad{nativeModuleExtension} is a string representation of a filename extension for native modules.")) (|hostByteOrder| (((|ByteOrder|)) "\\sapd{hostByteOrder}")) (|hostPlatform| (((|String|)) "\\spad{hostPlatform} is a string `triplet' description of the platform hosting the running OpenAxiom system.")) (|rootDirectory| (((|String|)) "\\spad{rootDirectory()} returns the pathname of the root directory for the running OpenAxiom system."))) NIL NIL -(-1183 S) +(-1185 S) ((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,{}b,{}c,{}d,{}e)} is an auxiliary function for \\spad{mr}")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{ListFunctions3}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{tab1}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation bat1 is the inverse of tab1.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,{}llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,{}pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,{}pr,{}r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record"))) NIL NIL -(-1184 S) +(-1186 S) ((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau."))) NIL NIL -(-1185 |Key| |Entry|) +(-1187 |Key| |Entry|) ((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}"))) -((-4410 . T) (-4411 . T)) -((-12 (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (QUOTE (-1097))) (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1914) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2683) (|devaluate| |#2|)))))) (-2682 (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (QUOTE (-1097))) (|HasCategory| |#2| (QUOTE (-1097)))) (-2682 (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (QUOTE (-1097))) (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (QUOTE (-1097))) (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-1097))) (-2682 (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (LIST (QUOTE -611) (QUOTE (-860))))) -(-1186 R) +((-4417 . T) (-4418 . T)) +((-12 (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1928) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2806) (|devaluate| |#2|)))))) (-2809 (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-1099)))) (-2809 (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-1099))) (-2809 (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (LIST (QUOTE -613) (QUOTE (-862))))) +(-1188 R) ((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a,{} n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a,{} n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,{}...,{}an])} returns \\spad{f(a1,{}...,{}an)} such that if \\spad{\\spad{ai} = tan(\\spad{ui})} then \\spad{f(a1,{}...,{}an) = tan(u1 + ... + un)}."))) NIL NIL -(-1187 S |Key| |Entry|) +(-1189 S |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) NIL NIL -(-1188 |Key| |Entry|) +(-1190 |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) -((-4411 . T)) +((-4418 . T)) NIL -(-1189 |Key| |Entry|) +(-1191 |Key| |Entry|) ((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key \\spad{->} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table."))) NIL NIL -(-1190) +(-1192) ((|constructor| (NIL "This package provides functions for template manipulation")) (|stripCommentsAndBlanks| (((|String|) (|String|)) "\\spad{stripCommentsAndBlanks(s)} treats \\spad{s} as a piece of AXIOM input,{} and removes comments,{} and leading and trailing blanks.")) (|interpretString| (((|Any|) (|String|)) "\\spad{interpretString(s)} treats a string as a piece of AXIOM input,{} by parsing and interpreting it."))) NIL NIL -(-1191 S) +(-1193 S) ((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format."))) NIL NIL -(-1192) +(-1194) ((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,{}strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,{}step,{}type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers."))) NIL NIL -(-1193) +(-1195) ((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,{}\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,{}s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned."))) NIL NIL -(-1194 R) +(-1196 R) ((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented"))) NIL NIL -(-1195) +(-1197) ((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1196 S) +(-1198 S) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the constant \\spad{pi}."))) NIL NIL -(-1197) +(-1199) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the constant \\spad{pi}."))) NIL NIL -(-1198 S) +(-1200 S) ((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1,{} t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,{}ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) -((-4411 . T) (-4410 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1097))) (-2682 (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) -(-1199 S) +((-4418 . T) (-4417 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) +(-1201 S) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1200) +(-1202) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1201 R -2266) +(-1203 R -2341) ((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL -(-1202 R |Row| |Col| M) +(-1204 R |Row| |Col| M) ((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}."))) NIL NIL -(-1203 R -2266) +(-1205 R -2341) ((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}"))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -890) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -884) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -890) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -884) (|devaluate| |#1|))))) -(-1204 S R E V P) +((-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -886) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -886) (|devaluate| |#1|))))) +(-1206 S R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#5|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) NIL -((|HasCategory| |#4| (QUOTE (-368)))) -(-1205 R E V P) +((|HasCategory| |#4| (QUOTE (-370)))) +(-1207 R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) -((-4411 . T) (-4410 . T)) +((-4418 . T) (-4417 . T)) NIL -(-1206 |Coef|) +(-1208 |Coef|) ((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}."))) -(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4405 . T) (-4404 . T) (-4407 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-2682 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-363)))) -(-1207 |Curve|) +(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-558)) (-4412 . T) (-4411 . T) (-4414 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-365)))) +(-1209 |Curve|) ((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,{}ll,{}b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,{}b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}."))) NIL NIL -(-1208) +(-1210) ((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,{}n,{}b,{}r,{}lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,{}sin(n - 1) a],{}...,{}[cos 2 a,{}sin 2 a],{}[cos a,{}sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,{}q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,{}x2,{}x3,{}c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point."))) NIL NIL -(-1209 S) +(-1211 S) ((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,{}n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based"))) NIL -((|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) -(-1210 -2266) +((|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) +(-1212 -2341) ((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,{}n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}."))) NIL NIL -(-1211) +(-1213) ((|constructor| (NIL "This domain represents a type AST."))) NIL NIL -(-1212) +(-1214) ((|constructor| (NIL "The fundamental Type."))) NIL NIL -(-1213 S) +(-1215 S) ((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l,{} fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by \\spad{fn}.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a,{} b,{} fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a,{} b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,{}...,{}bm],{}[a1,{}...,{}an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < \\spad{ai}}\\space{2}for \\spad{c} not among the \\spad{ai}\\spad{'s} and \\spad{bj}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,{}d)} if neither is among the \\spad{ai}\\spad{'s},{}\\spad{bj}\\spad{'s}.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < \\spad{ai}\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b,{} c)} if neither is among the \\spad{ai}\\spad{'s}.}"))) NIL -((|HasCategory| |#1| (QUOTE (-848)))) -(-1214) +((|HasCategory| |#1| (QUOTE (-850)))) +(-1216) ((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,{}...,{}an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}."))) NIL NIL -(-1215 S) +(-1217 S) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) NIL NIL -(-1216) +(-1218) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) -((-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) +((-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) NIL -(-1217) +(-1219) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 16 bits."))) NIL NIL -(-1218) +(-1220) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 32 bits."))) NIL NIL -(-1219) +(-1221) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 64 bits."))) NIL NIL -(-1220) +(-1222) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 8 bits."))) NIL NIL -(-1221 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(-1223 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}."))) NIL NIL -(-1222 |Coef|) +(-1224 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,{}k1,{}k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,{}k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = n0..infinity,{}a[n] * x**n)) = sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4408 |has| |#1| (-363)) (-4402 |has| |#1| (-363)) (-4404 . T) (-4405 . T) (-4407 . T)) +(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-558)) (-4415 |has| |#1| (-365)) (-4409 |has| |#1| (-365)) (-4411 . T) (-4412 . T) (-4414 . T)) NIL -(-1223 S |Coef| UTS) +(-1225 S |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}."))) NIL -((|HasCategory| |#2| (QUOTE (-363)))) -(-1224 |Coef| UTS) +((|HasCategory| |#2| (QUOTE (-365)))) +(-1226 |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}."))) -(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4408 |has| |#1| (-363)) (-4402 |has| |#1| (-363)) (-4404 . T) (-4405 . T) (-4407 . T)) +(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-558)) (-4415 |has| |#1| (-365)) (-4409 |has| |#1| (-365)) (-4411 . T) (-4412 . T) (-4414 . T)) NIL -(-1225 |Coef| UTS) +(-1227 |Coef| UTS) ((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}."))) -(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4408 |has| |#1| (-363)) (-4402 |has| |#1| (-363)) (-4404 . T) (-4405 . T) (-4407 . T)) -((-2682 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1173)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-818)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-848)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-907)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1020)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1148)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-1173)))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2682 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-2682 (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-145))))) (-2682 (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-147))))) (-2682 (-12 (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))))) (-2682 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|))))) (|HasCategory| (-564) (QUOTE (-1109))) (-2682 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-907)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-1173))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1020)))) (-2682 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-818)))) (-2682 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-818)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-848))))) (-2682 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1173)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-818)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-848)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-907)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1020)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1148)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -884) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -884) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-1173)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1148)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1173)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -884) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -884) (QUOTE (-379))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -2390) (LIST (|devaluate| |#1|) (QUOTE (-1173)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (-2682 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-957))) (|HasCategory| |#1| (QUOTE (-1197))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -3703) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1173))))) (|HasSignature| |#1| (LIST (QUOTE -2397) (LIST (LIST (QUOTE -642) (QUOTE (-1173))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-848)))) (|HasCategory| |#2| (QUOTE (-907))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-545)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-307)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-907)))) (-2682 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-907)))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-145)))))) -(-1226 |Coef| |var| |cen|) +(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-558)) (-4415 |has| |#1| (-365)) (-4409 |has| |#1| (-365)) (-4411 . T) (-4412 . T) (-4414 . T)) +((-2809 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-820)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-850)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-909)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1022)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1150)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-1175)))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-2809 (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-145))))) (-2809 (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-147))))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|))))) (|HasCategory| (-566) (QUOTE (-1111))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-909)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-1175))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1022)))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-820)))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-820)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-850))))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-820)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-850)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-909)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1022)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1150)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-1175)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1150)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -2479) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -2390) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -2485) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-850)))) (|HasCategory| |#2| (QUOTE (-909))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-547)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-308)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-145)))))) +(-1228 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4412 "*") -2682 (-2317 (|has| |#1| (-363)) (|has| (-1254 |#1| |#2| |#3|) (-818))) (|has| |#1| (-172)) (-2317 (|has| |#1| (-363)) (|has| (-1254 |#1| |#2| |#3|) (-907)))) (-4403 -2682 (-2317 (|has| |#1| (-363)) (|has| (-1254 |#1| |#2| |#3|) (-818))) (|has| |#1| (-556)) (-2317 (|has| |#1| (-363)) (|has| (-1254 |#1| |#2| |#3|) (-907)))) (-4408 |has| |#1| (-363)) (-4402 |has| |#1| (-363)) (-4404 . T) (-4405 . T) (-4407 . T)) -((-2682 (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (QUOTE (-818))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (QUOTE (-907))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (QUOTE (-1148))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1254) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1254) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (LIST (QUOTE -309) (LIST (QUOTE -1254) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (LIST (QUOTE -514) (QUOTE (-1173)) (LIST (QUOTE -1254) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (LIST (QUOTE -884) (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (LIST (QUOTE -1036) (QUOTE (-1173)))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2682 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-2682 (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2682 (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2682 (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|)))))) (-2682 (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|))))) (|HasCategory| (-564) (QUOTE (-1109))) (-2682 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (QUOTE (-907))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (LIST (QUOTE -1036) (QUOTE (-1173)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-363)))) (-2682 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (QUOTE (-818))) (|HasCategory| |#1| (QUOTE (-363)))) (-2682 (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (QUOTE (-818))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-363))))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (QUOTE (-1148))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1254) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1254) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (LIST (QUOTE -309) (LIST (QUOTE -1254) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (LIST (QUOTE -514) (QUOTE (-1173)) (LIST (QUOTE -1254) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (LIST (QUOTE -884) (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -2390) (LIST (|devaluate| |#1|) (QUOTE (-1173)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (-2682 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-957))) (|HasCategory| |#1| (QUOTE (-1197))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -3703) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1173))))) (|HasSignature| |#1| (LIST (QUOTE -2397) (LIST (LIST (QUOTE -642) (QUOTE (-1173))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| (-1254 |#1| |#2| |#3|) (QUOTE (-907))) (|HasCategory| (-1254 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-2682 (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (QUOTE (-818))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (QUOTE (-907))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-556)))) (-2682 (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-2682 (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (QUOTE (-818))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (QUOTE (-907))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1254 |#1| |#2| |#3|) (QUOTE (-907))) (|HasCategory| |#1| (QUOTE (-363)))) (-2682 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1254 |#1| |#2| |#3|) (QUOTE (-907))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-1227 ZP) +(((-4419 "*") -2809 (-2402 (|has| |#1| (-365)) (|has| (-1256 |#1| |#2| |#3|) (-820))) (|has| |#1| (-172)) (-2402 (|has| |#1| (-365)) (|has| (-1256 |#1| |#2| |#3|) (-909)))) (-4410 -2809 (-2402 (|has| |#1| (-365)) (|has| (-1256 |#1| |#2| |#3|) (-820))) (|has| |#1| (-558)) (-2402 (|has| |#1| (-365)) (|has| (-1256 |#1| |#2| |#3|) (-909)))) (-4415 |has| |#1| (-365)) (-4409 |has| |#1| (-365)) (-4411 . T) (-4412 . T) (-4414 . T)) +((-2809 (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-1022))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-1150))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1256) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1256) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1256) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -516) (QUOTE (-1175)) (LIST (QUOTE -1256) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-2809 (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2809 (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2809 (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|)))))) (-2809 (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|))))) (|HasCategory| (-566) (QUOTE (-1111))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-1022))) (|HasCategory| |#1| (QUOTE (-365)))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-2809 (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-365))))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-1150))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1256) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1256) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1256) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -516) (QUOTE (-1175)) (LIST (QUOTE -1256) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -2479) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -2390) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -2485) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-2809 (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-558)))) (-2809 (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2809 (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-1229 ZP) ((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,{}flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}"))) NIL NIL -(-1228 R S) +(-1230 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}."))) NIL -((|HasCategory| |#1| (QUOTE (-846)))) -(-1229 S) +((|HasCategory| |#1| (QUOTE (-848)))) +(-1231 S) ((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound."))) NIL -((|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1097)))) -(-1230 |x| R |y| S) +((|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-1099)))) +(-1232 |x| R |y| S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1231 R Q UP) +(-1233 R Q UP) ((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a \\spad{gcd} domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p,{} d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}."))) NIL NIL -(-1232 R UP) +(-1234 R UP) ((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} \\spad{fn} ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} \\spad{fn}).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,{}h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,{}d,{}c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,{}d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate."))) NIL NIL -(-1233 R UP) +(-1235 R UP) ((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,{}g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded."))) NIL NIL -(-1234 R U) +(-1236 R U) ((|constructor| (NIL "This package implements Karatsuba\\spad{'s} trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,{}b,{}l,{}k)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,{}b)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,{}b)} returns \\spad{a*b} without using Karatsuba\\spad{'s} trick at all."))) NIL NIL -(-1235 |x| R) +(-1237 |x| R) ((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-4412 "*") |has| |#2| (-172)) (-4403 |has| |#2| (-556)) (-4406 |has| |#2| (-363)) (-4408 |has| |#2| (-6 -4408)) (-4405 . T) (-4404 . T) (-4407 . T)) -((|HasCategory| |#2| (QUOTE (-907))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (-2682 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-556)))) (-12 (|HasCategory| (-1079) (LIST (QUOTE -884) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -884) (QUOTE (-379))))) (-12 (|HasCategory| (-1079) (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -884) (QUOTE (-564))))) (-12 (|HasCategory| (-1079) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379)))))) (-12 (|HasCategory| (-1079) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564)))))) (-12 (|HasCategory| (-1079) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564)))) (-2682 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (-2682 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-907)))) (-2682 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-907)))) (-2682 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-907)))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1148))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE -4408)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-907)))) (-2682 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-907)))) (|HasCategory| |#2| (QUOTE (-145))))) -(-1236 R PR S PS) +(((-4419 "*") |has| |#2| (-172)) (-4410 |has| |#2| (-558)) (-4413 |has| |#2| (-365)) (-4415 |has| |#2| (-6 -4415)) (-4412 . T) (-4411 . T) (-4414 . T)) +((|HasCategory| |#2| (QUOTE (-909))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-172))) (-2809 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-558)))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2809 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (-2809 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-909)))) (-2809 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-909)))) (-2809 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1150))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE -4415)) (|HasCategory| |#2| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#2| (QUOTE (-145))))) +(-1238 R PR S PS) ((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero."))) NIL NIL -(-1237 S R) +(-1239 S R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1148)))) -(-1238 R) +((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1150)))) +(-1240 R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) -(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4406 |has| |#1| (-363)) (-4408 |has| |#1| (-6 -4408)) (-4405 . T) (-4404 . T) (-4407 . T)) +(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-558)) (-4413 |has| |#1| (-365)) (-4415 |has| |#1| (-6 -4415)) (-4412 . T) (-4411 . T) (-4414 . T)) NIL -(-1239 S |Coef| |Expon|) +(-1241 S |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#2| $ |#3|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1109))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -2390) (LIST (|devaluate| |#2|) (QUOTE (-1173)))))) -(-1240 |Coef| |Expon|) +((|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1111))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -2479) (LIST (|devaluate| |#2|) (QUOTE (-1175)))))) +(-1242 |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#1| $ |#2|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) -(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4404 . T) (-4405 . T) (-4407 . T)) +(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-558)) (-4411 . T) (-4412 . T) (-4414 . T)) NIL -(-1241 RC P) +(-1243 RC P) ((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,{}q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}."))) NIL NIL -(-1242 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(-1244 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}."))) NIL NIL -(-1243 |Coef|) +(-1245 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,{}r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,{}st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms."))) -(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4408 |has| |#1| (-363)) (-4402 |has| |#1| (-363)) (-4404 . T) (-4405 . T) (-4407 . T)) +(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-558)) (-4415 |has| |#1| (-365)) (-4409 |has| |#1| (-365)) (-4411 . T) (-4412 . T) (-4414 . T)) NIL -(-1244 S |Coef| ULS) +(-1246 S |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}."))) NIL NIL -(-1245 |Coef| ULS) +(-1247 |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}."))) -(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4408 |has| |#1| (-363)) (-4402 |has| |#1| (-363)) (-4404 . T) (-4405 . T) (-4407 . T)) +(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-558)) (-4415 |has| |#1| (-365)) (-4409 |has| |#1| (-365)) (-4411 . T) (-4412 . T) (-4414 . T)) NIL -(-1246 |Coef| ULS) +(-1248 |Coef| ULS) ((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}."))) -(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4408 |has| |#1| (-363)) (-4402 |has| |#1| (-363)) (-4404 . T) (-4405 . T) (-4407 . T)) -((|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2682 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-564)) (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-363))) (-2682 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-2682 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasSignature| |#1| (LIST (QUOTE -2390) (LIST (|devaluate| |#1|) (QUOTE (-1173)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (-2682 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-957))) (|HasCategory| |#1| (QUOTE (-1197))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -3703) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1173))))) (|HasSignature| |#1| (LIST (QUOTE -2397) (LIST (LIST (QUOTE -642) (QUOTE (-1173))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) -(-1247 |Coef| |var| |cen|) +(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-558)) (-4415 |has| |#1| (-365)) (-4409 |has| |#1| (-365)) (-4411 . T) (-4412 . T) (-4414 . T)) +((|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|)))) (|HasCategory| (-409 (-566)) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-365))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasSignature| |#1| (LIST (QUOTE -2479) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -2390) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -2485) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) +(-1249 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}."))) -(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4408 |has| |#1| (-363)) (-4402 |has| |#1| (-363)) (-4404 . T) (-4405 . T) (-4407 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2682 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-564)) (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-363))) (-2682 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-2682 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasSignature| |#1| (LIST (QUOTE -2390) (LIST (|devaluate| |#1|) (QUOTE (-1173)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (-2682 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-957))) (|HasCategory| |#1| (QUOTE (-1197))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -3703) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1173))))) (|HasSignature| |#1| (LIST (QUOTE -2397) (LIST (LIST (QUOTE -642) (QUOTE (-1173))) (|devaluate| |#1|))))))) -(-1248 R FE |var| |cen|) +(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-558)) (-4415 |has| |#1| (-365)) (-4409 |has| |#1| (-365)) (-4411 . T) (-4412 . T) (-4414 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|)))) (|HasCategory| (-409 (-566)) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-365))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasSignature| |#1| (LIST (QUOTE -2479) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -2390) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -2485) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|))))))) +(-1250 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,{}f(var))}."))) -(((-4412 "*") |has| (-1247 |#2| |#3| |#4|) (-172)) (-4403 |has| (-1247 |#2| |#3| |#4|) (-556)) (-4404 . T) (-4405 . T) (-4407 . T)) -((|HasCategory| (-1247 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-1247 |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1247 |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1247 |#2| |#3| |#4|) (QUOTE (-172))) (-2682 (|HasCategory| (-1247 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-1247 |#2| |#3| |#4|) (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| (-1247 |#2| |#3| |#4|) (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-1247 |#2| |#3| |#4|) (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| (-1247 |#2| |#3| |#4|) (QUOTE (-363))) (|HasCategory| (-1247 |#2| |#3| |#4|) (QUOTE (-452))) (|HasCategory| (-1247 |#2| |#3| |#4|) (QUOTE (-556)))) -(-1249 A S) +(((-4419 "*") |has| (-1249 |#2| |#3| |#4|) (-172)) (-4410 |has| (-1249 |#2| |#3| |#4|) (-558)) (-4411 . T) (-4412 . T) (-4414 . T)) +((|HasCategory| (-1249 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-1249 |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1249 |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1249 |#2| |#3| |#4|) (QUOTE (-172))) (-2809 (|HasCategory| (-1249 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-1249 |#2| |#3| |#4|) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| (-1249 |#2| |#3| |#4|) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-1249 |#2| |#3| |#4|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| (-1249 |#2| |#3| |#4|) (QUOTE (-365))) (|HasCategory| (-1249 |#2| |#3| |#4|) (QUOTE (-454))) (|HasCategory| (-1249 |#2| |#3| |#4|) (QUOTE (-558)))) +(-1251 A S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL -((|HasAttribute| |#1| (QUOTE -4411))) -(-1250 S) +((|HasAttribute| |#1| (QUOTE -4418))) +(-1252 S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL NIL -(-1251 |Coef1| |Coef2| UTS1 UTS2) +(-1253 |Coef1| |Coef2| UTS1 UTS2) ((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}"))) NIL NIL -(-1252 S |Coef|) +(-1254 S |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-957))) (|HasCategory| |#2| (QUOTE (-1197))) (|HasSignature| |#2| (LIST (QUOTE -2397) (LIST (LIST (QUOTE -642) (QUOTE (-1173))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -3703) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1173))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363)))) -(-1253 |Coef|) +((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-959))) (|HasCategory| |#2| (QUOTE (-1199))) (|HasSignature| |#2| (LIST (QUOTE -2485) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -2390) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1175))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-365)))) +(-1255 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4404 . T) (-4405 . T) (-4407 . T)) +(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-558)) (-4411 . T) (-4412 . T) (-4414 . T)) NIL -(-1254 |Coef| |var| |cen|) +(-1256 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,{}b,{}f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,{}b,{}f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,{}f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4404 . T) (-4405 . T) (-4407 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (-2682 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-769)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-769)) (|devaluate| |#1|)))) (|HasCategory| (-769) (QUOTE (-1109))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-769))))) (|HasSignature| |#1| (LIST (QUOTE -2390) (LIST (|devaluate| |#1|) (QUOTE (-1173)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-769))))) (|HasCategory| |#1| (QUOTE (-363))) (-2682 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-957))) (|HasCategory| |#1| (QUOTE (-1197))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -3703) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1173))))) (|HasSignature| |#1| (LIST (QUOTE -2397) (LIST (LIST (QUOTE -642) (QUOTE (-1173))) (|devaluate| |#1|))))))) -(-1255 |Coef| UTS) +(((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-558)) (-4411 . T) (-4412 . T) (-4414 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-771)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-771)) (|devaluate| |#1|)))) (|HasCategory| (-771) (QUOTE (-1111))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-771))))) (|HasSignature| |#1| (LIST (QUOTE -2479) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-771))))) (|HasCategory| |#1| (QUOTE (-365))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -2390) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -2485) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|))))))) +(-1257 |Coef| UTS) ((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,{}f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,{}y[1],{}y[2],{}...,{}y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,{}cl)} is the solution to \\spad{y<n>=f(y,{}y',{}..,{}y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,{}c0,{}c1)} is the solution to \\spad{y'' = f(y,{}y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,{}c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,{}g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user."))) NIL NIL -(-1256 -2266 UP L UTS) +(-1258 -2341 UP L UTS) ((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s,{} n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series."))) NIL -((|HasCategory| |#1| (QUOTE (-556)))) -(-1257) +((|HasCategory| |#1| (QUOTE (-558)))) +(-1259) ((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators."))) NIL NIL -(-1258 |sym|) +(-1260 |sym|) ((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol"))) NIL NIL -(-1259 S R) +(-1261 S R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) NIL -((|HasCategory| |#2| (QUOTE (-1000))) (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (QUOTE (-724))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) -(-1260 R) +((|HasCategory| |#2| (QUOTE (-1002))) (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) +(-1262 R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) -((-4411 . T) (-4410 . T)) +((-4418 . T) (-4417 . T)) NIL -(-1261 A B) +(-1263 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-1262 R) +(-1264 R) ((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector."))) -((-4411 . T) (-4410 . T)) -((-2682 (-12 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-2682 (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-2682 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-1097)))) (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| (-564) (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-724))) (|HasCategory| |#1| (QUOTE (-1047))) (-12 (|HasCategory| |#1| (QUOTE (-1000))) (|HasCategory| |#1| (QUOTE (-1047)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860)))) (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) -(-1263) +((-4418 . T) (-4417 . T)) +((-2809 (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2809 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-726))) (|HasCategory| |#1| (QUOTE (-1049))) (-12 (|HasCategory| |#1| (QUOTE (-1002))) (|HasCategory| |#1| (QUOTE (-1049)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) +(-1265) ((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,{}gr,{}n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,{}n,{}s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,{}n,{}dx,{}dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,{}n,{}sx,{}sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,{}n,{}s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,{}n,{}s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,{}n,{}s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,{}n,{}c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,{}n,{}s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,{}n,{}c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,{}n,{}s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,{}n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,{}\\spad{gi},{}n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{\\spad{gi}} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{\\spad{gi}} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,{}num,{}sX,{}sY,{}dX,{}dY,{}pts,{}lns,{}box,{}axes,{}axesC,{}un,{}unC,{}cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(\\spad{gi},{}lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc."))) NIL NIL -(-1264) +(-1266) ((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,{}c1,{}c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,{}i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,{}x,{}y,{}z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,{}s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,{}s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,{}s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,{}h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,{}d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,{}s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,{}dx,{}dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,{}sx,{}sy,{}sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,{}s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,{}s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,{}s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,{}s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,{}s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}rotx,{}roty,{}rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,{}viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,{}ind,{}pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,{}sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,{}lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,{}s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians."))) NIL NIL -(-1265) +(-1267) ((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,{}h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,{}y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport."))) NIL NIL -(-1266) +(-1268) ((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(\\spad{gi})} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}."))) NIL NIL -(-1267) +(-1269) ((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|void| (($) "\\spad{void()} produces a void object."))) NIL NIL -(-1268 A S) +(-1270 A S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) NIL NIL -(-1269 S) +(-1271 S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) -((-4405 . T) (-4404 . T)) +((-4412 . T) (-4411 . T)) NIL -(-1270 R) +(-1272 R) ((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,{}s,{}st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,{}ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,{}s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally."))) NIL NIL -(-1271 K R UP -2266) +(-1273 K R UP -2341) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}."))) NIL NIL -(-1272) +(-1274) ((|constructor| (NIL "This domain represents the syntax of a `where' expression.")) (|qualifier| (((|SpadAst|) $) "\\spad{qualifier(e)} returns the qualifier of the expression `e'.")) (|mainExpression| (((|SpadAst|) $) "\\spad{mainExpression(e)} returns the main expression of the `where' expression `e'."))) NIL NIL -(-1273) +(-1275) ((|constructor| (NIL "This domain represents the `while' iterator syntax.")) (|condition| (((|SpadAst|) $) "\\spad{condition(i)} returns the condition of the while iterator `i'."))) NIL NIL -(-1274 R |VarSet| E P |vl| |wl| |wtlevel|) +(-1276 R |VarSet| E P |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)"))) -((-4405 |has| |#1| (-172)) (-4404 |has| |#1| (-172)) (-4407 . T)) -((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363)))) -(-1275 R E V P) +((-4412 |has| |#1| (-172)) (-4411 |has| |#1| (-172)) (-4414 . T)) +((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365)))) +(-1277 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}."))) -((-4411 . T) (-4410 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1097))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#4| (QUOTE (-1097))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-860))))) -(-1276 R) +((-4418 . T) (-4417 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1099))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#4| (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -613) (QUOTE (-862))))) +(-1278 R) ((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})"))) -((-4404 . T) (-4405 . T) (-4407 . T)) +((-4411 . T) (-4412 . T) (-4414 . T)) NIL -(-1277 |vl| R) +(-1279 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute."))) -((-4407 . T) (-4403 |has| |#2| (-6 -4403)) (-4405 . T) (-4404 . T)) -((|HasCategory| |#2| (QUOTE (-172))) (|HasAttribute| |#2| (QUOTE -4403))) -(-1278 R |VarSet| XPOLY) +((-4414 . T) (-4410 |has| |#2| (-6 -4410)) (-4412 . T) (-4411 . T)) +((|HasCategory| |#2| (QUOTE (-172))) (|HasAttribute| |#2| (QUOTE -4410))) +(-1280 R |VarSet| XPOLY) ((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}."))) NIL NIL -(-1279 |vl| R) +(-1281 |vl| R) ((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,{}n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,{}y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,{}r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,{}y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,{}w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,{}v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,{}y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,{}w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,{}v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,{}y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,{}w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}."))) -((-4403 |has| |#2| (-6 -4403)) (-4405 . T) (-4404 . T) (-4407 . T)) +((-4410 |has| |#2| (-6 -4410)) (-4412 . T) (-4411 . T) (-4414 . T)) NIL -(-1280 S -2266) +(-1282 S -2341) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) NIL -((|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147)))) -(-1281 -2266) +((|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147)))) +(-1283 -2341) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) -((-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) +((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) NIL -(-1282 |VarSet| R) +(-1284 |VarSet| R) ((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}."))) -((-4403 |has| |#2| (-6 -4403)) (-4405 . T) (-4404 . T) (-4407 . T)) -((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -715) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasAttribute| |#2| (QUOTE -4403))) -(-1283 |vl| R) +((-4410 |has| |#2| (-6 -4410)) (-4412 . T) (-4411 . T) (-4414 . T)) +((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -717) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasAttribute| |#2| (QUOTE -4410))) +(-1285 |vl| R) ((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,{}n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}."))) -((-4403 |has| |#2| (-6 -4403)) (-4405 . T) (-4404 . T) (-4407 . T)) +((-4410 |has| |#2| (-6 -4410)) (-4412 . T) (-4411 . T) (-4414 . T)) NIL -(-1284 R) +(-1286 R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute."))) -((-4403 |has| |#1| (-6 -4403)) (-4405 . T) (-4404 . T) (-4407 . T)) -((|HasCategory| |#1| (QUOTE (-172))) (|HasAttribute| |#1| (QUOTE -4403))) -(-1285 R E) +((-4410 |has| |#1| (-6 -4410)) (-4412 . T) (-4411 . T) (-4414 . T)) +((|HasCategory| |#1| (QUOTE (-172))) (|HasAttribute| |#1| (QUOTE -4410))) +(-1287 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,{}e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}."))) -((-4407 . T) (-4408 |has| |#1| (-6 -4408)) (-4403 |has| |#1| (-6 -4403)) (-4405 . T) (-4404 . T)) -((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4407)) (|HasAttribute| |#1| (QUOTE -4408)) (|HasAttribute| |#1| (QUOTE -4403))) -(-1286 |VarSet| R) +((-4414 . T) (-4415 |has| |#1| (-6 -4415)) (-4410 |has| |#1| (-6 -4410)) (-4412 . T) (-4411 . T)) +((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4414)) (|HasAttribute| |#1| (QUOTE -4415)) (|HasAttribute| |#1| (QUOTE -4410))) +(-1288 |VarSet| R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form."))) -((-4403 |has| |#2| (-6 -4403)) (-4405 . T) (-4404 . T) (-4407 . T)) -((|HasCategory| |#2| (QUOTE (-172))) (|HasAttribute| |#2| (QUOTE -4403))) -(-1287 A) +((-4410 |has| |#2| (-6 -4410)) (-4412 . T) (-4411 . T) (-4414 . T)) +((|HasCategory| |#2| (QUOTE (-172))) (|HasAttribute| |#2| (QUOTE -4410))) +(-1289 A) ((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,{}n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}."))) NIL NIL -(-1288 R |ls| |ls2|) +(-1290 R |ls| |ls2|) ((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,{}s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,{}false,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,{}info?,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,{}info?,{}lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,{}info?,{}lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,{}false,{}false,{}false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,{}info?)} returns the same as \\spad{realSolve(ts,{}info?,{}false,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,{}info?,{}check?)} returns the same as \\spad{realSolve(ts,{}info?,{}check?,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,{}info?,{}check?,{}lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,{}info?,{}check?,{}lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,{}false,{}false,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?)} returns the same as \\spad{univariateSolve(lp,{}info?,{}false,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?,{}check?)} returns the same as \\spad{univariateSolve(lp,{}info?,{}check?,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?,{}check?,{}lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,{}false,{}false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,{}info?)} returns the same as \\spad{triangSolve(lp,{}false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,{}info?,{}lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}."))) NIL NIL -(-1289 R) +(-1291 R) ((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}\\spad{'s} exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over the integers,{} \\spad{false} otherwise."))) NIL NIL -(-1290 |p|) +(-1292 |p|) ((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}."))) -(((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T)) +(((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) NIL NIL NIL @@ -5108,4 +5116,4 @@ NIL NIL NIL NIL -((-3 NIL 2284116 2284121 2284126 2284131) (-2 NIL 2284096 2284101 2284106 2284111) (-1 NIL 2284076 2284081 2284086 2284091) (0 NIL 2284056 2284061 2284066 2284071) (-1290 "ZMOD.spad" 2283865 2283878 2283994 2284051) (-1289 "ZLINDEP.spad" 2282909 2282920 2283855 2283860) (-1288 "ZDSOLVE.spad" 2272758 2272780 2282899 2282904) (-1287 "YSTREAM.spad" 2272251 2272262 2272748 2272753) (-1286 "XRPOLY.spad" 2271471 2271491 2272107 2272176) (-1285 "XPR.spad" 2269262 2269275 2271189 2271288) (-1284 "XPOLY.spad" 2268817 2268828 2269118 2269187) (-1283 "XPOLYC.spad" 2268134 2268150 2268743 2268812) (-1282 "XPBWPOLY.spad" 2266571 2266591 2267914 2267983) (-1281 "XF.spad" 2265032 2265047 2266473 2266566) (-1280 "XF.spad" 2263473 2263490 2264916 2264921) (-1279 "XFALG.spad" 2260497 2260513 2263399 2263468) (-1278 "XEXPPKG.spad" 2259748 2259774 2260487 2260492) (-1277 "XDPOLY.spad" 2259362 2259378 2259604 2259673) (-1276 "XALG.spad" 2259022 2259033 2259318 2259357) (-1275 "WUTSET.spad" 2254861 2254878 2258668 2258695) (-1274 "WP.spad" 2254060 2254104 2254719 2254786) (-1273 "WHILEAST.spad" 2253858 2253867 2254050 2254055) (-1272 "WHEREAST.spad" 2253529 2253538 2253848 2253853) (-1271 "WFFINTBS.spad" 2251092 2251114 2253519 2253524) (-1270 "WEIER.spad" 2249306 2249317 2251082 2251087) (-1269 "VSPACE.spad" 2248979 2248990 2249274 2249301) (-1268 "VSPACE.spad" 2248672 2248685 2248969 2248974) (-1267 "VOID.spad" 2248349 2248358 2248662 2248667) (-1266 "VIEW.spad" 2245971 2245980 2248339 2248344) (-1265 "VIEWDEF.spad" 2241168 2241177 2245961 2245966) (-1264 "VIEW3D.spad" 2225003 2225012 2241158 2241163) (-1263 "VIEW2D.spad" 2212740 2212749 2224993 2224998) (-1262 "VECTOR.spad" 2211414 2211425 2211665 2211692) (-1261 "VECTOR2.spad" 2210041 2210054 2211404 2211409) (-1260 "VECTCAT.spad" 2207941 2207952 2210009 2210036) (-1259 "VECTCAT.spad" 2205648 2205661 2207718 2207723) (-1258 "VARIABLE.spad" 2205428 2205443 2205638 2205643) (-1257 "UTYPE.spad" 2205072 2205081 2205418 2205423) (-1256 "UTSODETL.spad" 2204365 2204389 2205028 2205033) (-1255 "UTSODE.spad" 2202553 2202573 2204355 2204360) (-1254 "UTS.spad" 2197342 2197370 2201020 2201117) (-1253 "UTSCAT.spad" 2194793 2194809 2197240 2197337) (-1252 "UTSCAT.spad" 2191888 2191906 2194337 2194342) (-1251 "UTS2.spad" 2191481 2191516 2191878 2191883) (-1250 "URAGG.spad" 2186113 2186124 2191471 2191476) (-1249 "URAGG.spad" 2180709 2180722 2186069 2186074) (-1248 "UPXSSING.spad" 2178352 2178378 2179790 2179923) (-1247 "UPXS.spad" 2175500 2175528 2176484 2176633) (-1246 "UPXSCONS.spad" 2173257 2173277 2173632 2173781) (-1245 "UPXSCCA.spad" 2171822 2171842 2173103 2173252) (-1244 "UPXSCCA.spad" 2170529 2170551 2171812 2171817) (-1243 "UPXSCAT.spad" 2169110 2169126 2170375 2170524) (-1242 "UPXS2.spad" 2168651 2168704 2169100 2169105) (-1241 "UPSQFREE.spad" 2167063 2167077 2168641 2168646) (-1240 "UPSCAT.spad" 2164656 2164680 2166961 2167058) (-1239 "UPSCAT.spad" 2161955 2161981 2164262 2164267) (-1238 "UPOLYC.spad" 2156933 2156944 2161797 2161950) (-1237 "UPOLYC.spad" 2151803 2151816 2156669 2156674) (-1236 "UPOLYC2.spad" 2151272 2151291 2151793 2151798) (-1235 "UP.spad" 2148465 2148480 2148858 2149011) (-1234 "UPMP.spad" 2147355 2147368 2148455 2148460) (-1233 "UPDIVP.spad" 2146918 2146932 2147345 2147350) (-1232 "UPDECOMP.spad" 2145155 2145169 2146908 2146913) (-1231 "UPCDEN.spad" 2144362 2144378 2145145 2145150) (-1230 "UP2.spad" 2143724 2143745 2144352 2144357) (-1229 "UNISEG.spad" 2143077 2143088 2143643 2143648) (-1228 "UNISEG2.spad" 2142570 2142583 2143033 2143038) (-1227 "UNIFACT.spad" 2141671 2141683 2142560 2142565) (-1226 "ULS.spad" 2132223 2132251 2133316 2133745) (-1225 "ULSCONS.spad" 2124617 2124637 2124989 2125138) (-1224 "ULSCCAT.spad" 2122346 2122366 2124463 2124612) (-1223 "ULSCCAT.spad" 2120183 2120205 2122302 2122307) (-1222 "ULSCAT.spad" 2118399 2118415 2120029 2120178) (-1221 "ULS2.spad" 2117911 2117964 2118389 2118394) (-1220 "UINT8.spad" 2117788 2117797 2117901 2117906) (-1219 "UINT64.spad" 2117664 2117673 2117778 2117783) (-1218 "UINT32.spad" 2117540 2117549 2117654 2117659) (-1217 "UINT16.spad" 2117416 2117425 2117530 2117535) (-1216 "UFD.spad" 2116481 2116490 2117342 2117411) (-1215 "UFD.spad" 2115608 2115619 2116471 2116476) (-1214 "UDVO.spad" 2114455 2114464 2115598 2115603) (-1213 "UDPO.spad" 2111882 2111893 2114411 2114416) (-1212 "TYPE.spad" 2111814 2111823 2111872 2111877) (-1211 "TYPEAST.spad" 2111733 2111742 2111804 2111809) (-1210 "TWOFACT.spad" 2110383 2110398 2111723 2111728) (-1209 "TUPLE.spad" 2109867 2109878 2110282 2110287) (-1208 "TUBETOOL.spad" 2106704 2106713 2109857 2109862) (-1207 "TUBE.spad" 2105345 2105362 2106694 2106699) (-1206 "TS.spad" 2103934 2103950 2104910 2105007) (-1205 "TSETCAT.spad" 2091061 2091078 2103902 2103929) (-1204 "TSETCAT.spad" 2078174 2078193 2091017 2091022) (-1203 "TRMANIP.spad" 2072540 2072557 2077880 2077885) (-1202 "TRIMAT.spad" 2071499 2071524 2072530 2072535) (-1201 "TRIGMNIP.spad" 2070016 2070033 2071489 2071494) (-1200 "TRIGCAT.spad" 2069528 2069537 2070006 2070011) (-1199 "TRIGCAT.spad" 2069038 2069049 2069518 2069523) (-1198 "TREE.spad" 2067609 2067620 2068645 2068672) (-1197 "TRANFUN.spad" 2067440 2067449 2067599 2067604) (-1196 "TRANFUN.spad" 2067269 2067280 2067430 2067435) (-1195 "TOPSP.spad" 2066943 2066952 2067259 2067264) (-1194 "TOOLSIGN.spad" 2066606 2066617 2066933 2066938) (-1193 "TEXTFILE.spad" 2065163 2065172 2066596 2066601) (-1192 "TEX.spad" 2062295 2062304 2065153 2065158) (-1191 "TEX1.spad" 2061851 2061862 2062285 2062290) (-1190 "TEMUTL.spad" 2061406 2061415 2061841 2061846) (-1189 "TBCMPPK.spad" 2059499 2059522 2061396 2061401) (-1188 "TBAGG.spad" 2058535 2058558 2059479 2059494) (-1187 "TBAGG.spad" 2057579 2057604 2058525 2058530) (-1186 "TANEXP.spad" 2056955 2056966 2057569 2057574) (-1185 "TABLE.spad" 2055366 2055389 2055636 2055663) (-1184 "TABLEAU.spad" 2054847 2054858 2055356 2055361) (-1183 "TABLBUMP.spad" 2051630 2051641 2054837 2054842) (-1182 "SYSTEM.spad" 2050858 2050867 2051620 2051625) (-1181 "SYSSOLP.spad" 2048331 2048342 2050848 2050853) (-1180 "SYSNNI.spad" 2047511 2047522 2048321 2048326) (-1179 "SYSINT.spad" 2046915 2046926 2047501 2047506) (-1178 "SYNTAX.spad" 2043109 2043118 2046905 2046910) (-1177 "SYMTAB.spad" 2041165 2041174 2043099 2043104) (-1176 "SYMS.spad" 2037150 2037159 2041155 2041160) (-1175 "SYMPOLY.spad" 2036157 2036168 2036239 2036366) (-1174 "SYMFUNC.spad" 2035632 2035643 2036147 2036152) (-1173 "SYMBOL.spad" 2033059 2033068 2035622 2035627) (-1172 "SWITCH.spad" 2029816 2029825 2033049 2033054) (-1171 "SUTS.spad" 2026715 2026743 2028283 2028380) (-1170 "SUPXS.spad" 2023850 2023878 2024847 2024996) (-1169 "SUP.spad" 2020655 2020666 2021436 2021589) (-1168 "SUPFRACF.spad" 2019760 2019778 2020645 2020650) (-1167 "SUP2.spad" 2019150 2019163 2019750 2019755) (-1166 "SUMRF.spad" 2018116 2018127 2019140 2019145) (-1165 "SUMFS.spad" 2017749 2017766 2018106 2018111) (-1164 "SULS.spad" 2008288 2008316 2009394 2009823) (-1163 "SUCHTAST.spad" 2008057 2008066 2008278 2008283) (-1162 "SUCH.spad" 2007737 2007752 2008047 2008052) (-1161 "SUBSPACE.spad" 1999744 1999759 2007727 2007732) (-1160 "SUBRESP.spad" 1998904 1998918 1999700 1999705) (-1159 "STTF.spad" 1995003 1995019 1998894 1998899) (-1158 "STTFNC.spad" 1991471 1991487 1994993 1994998) (-1157 "STTAYLOR.spad" 1983869 1983880 1991352 1991357) (-1156 "STRTBL.spad" 1982374 1982391 1982523 1982550) (-1155 "STRING.spad" 1981783 1981792 1981797 1981824) (-1154 "STRICAT.spad" 1981571 1981580 1981751 1981778) (-1153 "STREAM.spad" 1978429 1978440 1981096 1981111) (-1152 "STREAM3.spad" 1977974 1977989 1978419 1978424) (-1151 "STREAM2.spad" 1977042 1977055 1977964 1977969) (-1150 "STREAM1.spad" 1976746 1976757 1977032 1977037) (-1149 "STINPROD.spad" 1975652 1975668 1976736 1976741) (-1148 "STEP.spad" 1974853 1974862 1975642 1975647) (-1147 "STBL.spad" 1973379 1973407 1973546 1973561) (-1146 "STAGG.spad" 1972454 1972465 1973369 1973374) (-1145 "STAGG.spad" 1971527 1971540 1972444 1972449) (-1144 "STACK.spad" 1970878 1970889 1971134 1971161) (-1143 "SREGSET.spad" 1968582 1968599 1970524 1970551) (-1142 "SRDCMPK.spad" 1967127 1967147 1968572 1968577) (-1141 "SRAGG.spad" 1962224 1962233 1967095 1967122) (-1140 "SRAGG.spad" 1957341 1957352 1962214 1962219) (-1139 "SQMATRIX.spad" 1954957 1954975 1955873 1955960) (-1138 "SPLTREE.spad" 1949509 1949522 1954393 1954420) (-1137 "SPLNODE.spad" 1946097 1946110 1949499 1949504) (-1136 "SPFCAT.spad" 1944874 1944883 1946087 1946092) (-1135 "SPECOUT.spad" 1943424 1943433 1944864 1944869) (-1134 "SPADXPT.spad" 1935563 1935572 1943414 1943419) (-1133 "spad-parser.spad" 1935028 1935037 1935553 1935558) (-1132 "SPADAST.spad" 1934729 1934738 1935018 1935023) (-1131 "SPACEC.spad" 1918742 1918753 1934719 1934724) (-1130 "SPACE3.spad" 1918518 1918529 1918732 1918737) (-1129 "SORTPAK.spad" 1918063 1918076 1918474 1918479) (-1128 "SOLVETRA.spad" 1915820 1915831 1918053 1918058) (-1127 "SOLVESER.spad" 1914340 1914351 1915810 1915815) (-1126 "SOLVERAD.spad" 1910350 1910361 1914330 1914335) (-1125 "SOLVEFOR.spad" 1908770 1908788 1910340 1910345) (-1124 "SNTSCAT.spad" 1908370 1908387 1908738 1908765) (-1123 "SMTS.spad" 1906630 1906656 1907935 1908032) (-1122 "SMP.spad" 1904105 1904125 1904495 1904622) (-1121 "SMITH.spad" 1902948 1902973 1904095 1904100) (-1120 "SMATCAT.spad" 1901058 1901088 1902892 1902943) (-1119 "SMATCAT.spad" 1899100 1899132 1900936 1900941) (-1118 "SKAGG.spad" 1898061 1898072 1899068 1899095) (-1117 "SINT.spad" 1896887 1896896 1897927 1898056) (-1116 "SIMPAN.spad" 1896615 1896624 1896877 1896882) (-1115 "SIG.spad" 1895943 1895952 1896605 1896610) (-1114 "SIGNRF.spad" 1895051 1895062 1895933 1895938) (-1113 "SIGNEF.spad" 1894320 1894337 1895041 1895046) (-1112 "SIGAST.spad" 1893701 1893710 1894310 1894315) (-1111 "SHP.spad" 1891619 1891634 1893657 1893662) (-1110 "SHDP.spad" 1881330 1881357 1881839 1881970) (-1109 "SGROUP.spad" 1880938 1880947 1881320 1881325) (-1108 "SGROUP.spad" 1880544 1880555 1880928 1880933) (-1107 "SGCF.spad" 1873425 1873434 1880534 1880539) (-1106 "SFRTCAT.spad" 1872353 1872370 1873393 1873420) (-1105 "SFRGCD.spad" 1871416 1871436 1872343 1872348) (-1104 "SFQCMPK.spad" 1866053 1866073 1871406 1871411) (-1103 "SFORT.spad" 1865488 1865502 1866043 1866048) (-1102 "SEXOF.spad" 1865331 1865371 1865478 1865483) (-1101 "SEX.spad" 1865223 1865232 1865321 1865326) (-1100 "SEXCAT.spad" 1862774 1862814 1865213 1865218) (-1099 "SET.spad" 1861074 1861085 1862195 1862234) (-1098 "SETMN.spad" 1859508 1859525 1861064 1861069) (-1097 "SETCAT.spad" 1858830 1858839 1859498 1859503) (-1096 "SETCAT.spad" 1858150 1858161 1858820 1858825) (-1095 "SETAGG.spad" 1854671 1854682 1858130 1858145) (-1094 "SETAGG.spad" 1851200 1851213 1854661 1854666) (-1093 "SEQAST.spad" 1850903 1850912 1851190 1851195) (-1092 "SEGXCAT.spad" 1850025 1850038 1850893 1850898) (-1091 "SEG.spad" 1849838 1849849 1849944 1849949) (-1090 "SEGCAT.spad" 1848745 1848756 1849828 1849833) (-1089 "SEGBIND.spad" 1847817 1847828 1848700 1848705) (-1088 "SEGBIND2.spad" 1847513 1847526 1847807 1847812) (-1087 "SEGAST.spad" 1847227 1847236 1847503 1847508) (-1086 "SEG2.spad" 1846652 1846665 1847183 1847188) (-1085 "SDVAR.spad" 1845928 1845939 1846642 1846647) (-1084 "SDPOL.spad" 1843354 1843365 1843645 1843772) (-1083 "SCPKG.spad" 1841433 1841444 1843344 1843349) (-1082 "SCOPE.spad" 1840582 1840591 1841423 1841428) (-1081 "SCACHE.spad" 1839264 1839275 1840572 1840577) (-1080 "SASTCAT.spad" 1839173 1839182 1839254 1839259) (-1079 "SAOS.spad" 1839045 1839054 1839163 1839168) (-1078 "SAERFFC.spad" 1838758 1838778 1839035 1839040) (-1077 "SAE.spad" 1836933 1836949 1837544 1837679) (-1076 "SAEFACT.spad" 1836634 1836654 1836923 1836928) (-1075 "RURPK.spad" 1834275 1834291 1836624 1836629) (-1074 "RULESET.spad" 1833716 1833740 1834265 1834270) (-1073 "RULE.spad" 1831920 1831944 1833706 1833711) (-1072 "RULECOLD.spad" 1831772 1831785 1831910 1831915) (-1071 "RTVALUE.spad" 1831505 1831514 1831762 1831767) (-1070 "RSTRCAST.spad" 1831222 1831231 1831495 1831500) (-1069 "RSETGCD.spad" 1827600 1827620 1831212 1831217) (-1068 "RSETCAT.spad" 1817384 1817401 1827568 1827595) (-1067 "RSETCAT.spad" 1807188 1807207 1817374 1817379) (-1066 "RSDCMPK.spad" 1805640 1805660 1807178 1807183) (-1065 "RRCC.spad" 1804024 1804054 1805630 1805635) (-1064 "RRCC.spad" 1802406 1802438 1804014 1804019) (-1063 "RPTAST.spad" 1802108 1802117 1802396 1802401) (-1062 "RPOLCAT.spad" 1781468 1781483 1801976 1802103) (-1061 "RPOLCAT.spad" 1760542 1760559 1781052 1781057) (-1060 "ROUTINE.spad" 1756405 1756414 1759189 1759216) (-1059 "ROMAN.spad" 1755733 1755742 1756271 1756400) (-1058 "ROIRC.spad" 1754813 1754845 1755723 1755728) (-1057 "RNS.spad" 1753716 1753725 1754715 1754808) (-1056 "RNS.spad" 1752705 1752716 1753706 1753711) (-1055 "RNG.spad" 1752440 1752449 1752695 1752700) (-1054 "RMODULE.spad" 1752205 1752216 1752430 1752435) (-1053 "RMCAT2.spad" 1751613 1751670 1752195 1752200) (-1052 "RMATRIX.spad" 1750437 1750456 1750780 1750819) (-1051 "RMATCAT.spad" 1745970 1746001 1750393 1750432) (-1050 "RMATCAT.spad" 1741393 1741426 1745818 1745823) (-1049 "RLINSET.spad" 1740787 1740798 1741383 1741388) (-1048 "RINTERP.spad" 1740675 1740695 1740777 1740782) (-1047 "RING.spad" 1740145 1740154 1740655 1740670) (-1046 "RING.spad" 1739623 1739634 1740135 1740140) (-1045 "RIDIST.spad" 1739007 1739016 1739613 1739618) (-1044 "RGCHAIN.spad" 1737586 1737602 1738492 1738519) (-1043 "RGBCSPC.spad" 1737367 1737379 1737576 1737581) (-1042 "RGBCMDL.spad" 1736897 1736909 1737357 1737362) (-1041 "RF.spad" 1734511 1734522 1736887 1736892) (-1040 "RFFACTOR.spad" 1733973 1733984 1734501 1734506) (-1039 "RFFACT.spad" 1733708 1733720 1733963 1733968) (-1038 "RFDIST.spad" 1732696 1732705 1733698 1733703) (-1037 "RETSOL.spad" 1732113 1732126 1732686 1732691) (-1036 "RETRACT.spad" 1731541 1731552 1732103 1732108) (-1035 "RETRACT.spad" 1730967 1730980 1731531 1731536) (-1034 "RETAST.spad" 1730779 1730788 1730957 1730962) (-1033 "RESULT.spad" 1728839 1728848 1729426 1729453) (-1032 "RESRING.spad" 1728186 1728233 1728777 1728834) (-1031 "RESLATC.spad" 1727510 1727521 1728176 1728181) (-1030 "REPSQ.spad" 1727239 1727250 1727500 1727505) (-1029 "REP.spad" 1724791 1724800 1727229 1727234) (-1028 "REPDB.spad" 1724496 1724507 1724781 1724786) (-1027 "REP2.spad" 1714068 1714079 1724338 1724343) (-1026 "REP1.spad" 1708058 1708069 1714018 1714023) (-1025 "REGSET.spad" 1705855 1705872 1707704 1707731) (-1024 "REF.spad" 1705184 1705195 1705810 1705815) (-1023 "REDORDER.spad" 1704360 1704377 1705174 1705179) (-1022 "RECLOS.spad" 1703143 1703163 1703847 1703940) (-1021 "REALSOLV.spad" 1702275 1702284 1703133 1703138) (-1020 "REAL.spad" 1702147 1702156 1702265 1702270) (-1019 "REAL0Q.spad" 1699429 1699444 1702137 1702142) (-1018 "REAL0.spad" 1696257 1696272 1699419 1699424) (-1017 "RDUCEAST.spad" 1695978 1695987 1696247 1696252) (-1016 "RDIV.spad" 1695629 1695654 1695968 1695973) (-1015 "RDIST.spad" 1695192 1695203 1695619 1695624) (-1014 "RDETRS.spad" 1693988 1694006 1695182 1695187) (-1013 "RDETR.spad" 1692095 1692113 1693978 1693983) (-1012 "RDEEFS.spad" 1691168 1691185 1692085 1692090) (-1011 "RDEEF.spad" 1690164 1690181 1691158 1691163) (-1010 "RCFIELD.spad" 1687350 1687359 1690066 1690159) (-1009 "RCFIELD.spad" 1684622 1684633 1687340 1687345) (-1008 "RCAGG.spad" 1682534 1682545 1684612 1684617) (-1007 "RCAGG.spad" 1680373 1680386 1682453 1682458) (-1006 "RATRET.spad" 1679733 1679744 1680363 1680368) (-1005 "RATFACT.spad" 1679425 1679437 1679723 1679728) (-1004 "RANDSRC.spad" 1678744 1678753 1679415 1679420) (-1003 "RADUTIL.spad" 1678498 1678507 1678734 1678739) (-1002 "RADIX.spad" 1675399 1675413 1676965 1677058) (-1001 "RADFF.spad" 1673812 1673849 1673931 1674087) (-1000 "RADCAT.spad" 1673405 1673414 1673802 1673807) (-999 "RADCAT.spad" 1672997 1673007 1673395 1673400) (-998 "QUEUE.spad" 1672340 1672350 1672604 1672631) (-997 "QUAT.spad" 1670922 1670932 1671264 1671329) (-996 "QUATCT2.spad" 1670541 1670559 1670912 1670917) (-995 "QUATCAT.spad" 1668706 1668716 1670471 1670536) (-994 "QUATCAT.spad" 1666622 1666634 1668389 1668394) (-993 "QUAGG.spad" 1665448 1665458 1666590 1666617) (-992 "QQUTAST.spad" 1665217 1665225 1665438 1665443) (-991 "QFORM.spad" 1664680 1664694 1665207 1665212) (-990 "QFCAT.spad" 1663383 1663393 1664582 1664675) (-989 "QFCAT.spad" 1661677 1661689 1662878 1662883) (-988 "QFCAT2.spad" 1661368 1661384 1661667 1661672) (-987 "QEQUAT.spad" 1660925 1660933 1661358 1661363) (-986 "QCMPACK.spad" 1655672 1655691 1660915 1660920) (-985 "QALGSET.spad" 1651747 1651779 1655586 1655591) (-984 "QALGSET2.spad" 1649743 1649761 1651737 1651742) (-983 "PWFFINTB.spad" 1647053 1647074 1649733 1649738) (-982 "PUSHVAR.spad" 1646382 1646401 1647043 1647048) (-981 "PTRANFN.spad" 1642508 1642518 1646372 1646377) (-980 "PTPACK.spad" 1639596 1639606 1642498 1642503) (-979 "PTFUNC2.spad" 1639417 1639431 1639586 1639591) (-978 "PTCAT.spad" 1638666 1638676 1639385 1639412) (-977 "PSQFR.spad" 1637973 1637997 1638656 1638661) (-976 "PSEUDLIN.spad" 1636831 1636841 1637963 1637968) (-975 "PSETPK.spad" 1622264 1622280 1636709 1636714) (-974 "PSETCAT.spad" 1616184 1616207 1622244 1622259) (-973 "PSETCAT.spad" 1610078 1610103 1616140 1616145) (-972 "PSCURVE.spad" 1609061 1609069 1610068 1610073) (-971 "PSCAT.spad" 1607828 1607857 1608959 1609056) (-970 "PSCAT.spad" 1606685 1606716 1607818 1607823) (-969 "PRTITION.spad" 1605630 1605638 1606675 1606680) (-968 "PRTDAST.spad" 1605349 1605357 1605620 1605625) (-967 "PRS.spad" 1594911 1594928 1605305 1605310) (-966 "PRQAGG.spad" 1594342 1594352 1594879 1594906) (-965 "PROPLOG.spad" 1593637 1593645 1594332 1594337) (-964 "PROPFRML.spad" 1592445 1592456 1593627 1593632) (-963 "PROPERTY.spad" 1591931 1591939 1592435 1592440) (-962 "PRODUCT.spad" 1589611 1589623 1589897 1589952) (-961 "PR.spad" 1587997 1588009 1588702 1588829) (-960 "PRINT.spad" 1587749 1587757 1587987 1587992) (-959 "PRIMES.spad" 1586000 1586010 1587739 1587744) (-958 "PRIMELT.spad" 1583981 1583995 1585990 1585995) (-957 "PRIMCAT.spad" 1583604 1583612 1583971 1583976) (-956 "PRIMARR.spad" 1582609 1582619 1582787 1582814) (-955 "PRIMARR2.spad" 1581332 1581344 1582599 1582604) (-954 "PREASSOC.spad" 1580704 1580716 1581322 1581327) (-953 "PPCURVE.spad" 1579841 1579849 1580694 1580699) (-952 "PORTNUM.spad" 1579616 1579624 1579831 1579836) (-951 "POLYROOT.spad" 1578445 1578467 1579572 1579577) (-950 "POLY.spad" 1575778 1575788 1576295 1576422) (-949 "POLYLIFT.spad" 1575039 1575062 1575768 1575773) (-948 "POLYCATQ.spad" 1573141 1573163 1575029 1575034) (-947 "POLYCAT.spad" 1566547 1566568 1573009 1573136) (-946 "POLYCAT.spad" 1559291 1559314 1565755 1565760) (-945 "POLY2UP.spad" 1558739 1558753 1559281 1559286) (-944 "POLY2.spad" 1558334 1558346 1558729 1558734) (-943 "POLUTIL.spad" 1557275 1557304 1558290 1558295) (-942 "POLTOPOL.spad" 1556023 1556038 1557265 1557270) (-941 "POINT.spad" 1554861 1554871 1554948 1554975) (-940 "PNTHEORY.spad" 1551527 1551535 1554851 1554856) (-939 "PMTOOLS.spad" 1550284 1550298 1551517 1551522) (-938 "PMSYM.spad" 1549829 1549839 1550274 1550279) (-937 "PMQFCAT.spad" 1549416 1549430 1549819 1549824) (-936 "PMPRED.spad" 1548885 1548899 1549406 1549411) (-935 "PMPREDFS.spad" 1548329 1548351 1548875 1548880) (-934 "PMPLCAT.spad" 1547399 1547417 1548261 1548266) (-933 "PMLSAGG.spad" 1546980 1546994 1547389 1547394) (-932 "PMKERNEL.spad" 1546547 1546559 1546970 1546975) (-931 "PMINS.spad" 1546123 1546133 1546537 1546542) (-930 "PMFS.spad" 1545696 1545714 1546113 1546118) (-929 "PMDOWN.spad" 1544982 1544996 1545686 1545691) (-928 "PMASS.spad" 1543990 1543998 1544972 1544977) (-927 "PMASSFS.spad" 1542955 1542971 1543980 1543985) (-926 "PLOTTOOL.spad" 1542735 1542743 1542945 1542950) (-925 "PLOT.spad" 1537566 1537574 1542725 1542730) (-924 "PLOT3D.spad" 1533986 1533994 1537556 1537561) (-923 "PLOT1.spad" 1533127 1533137 1533976 1533981) (-922 "PLEQN.spad" 1520343 1520370 1533117 1533122) (-921 "PINTERP.spad" 1519959 1519978 1520333 1520338) (-920 "PINTERPA.spad" 1519741 1519757 1519949 1519954) (-919 "PI.spad" 1519348 1519356 1519715 1519736) (-918 "PID.spad" 1518304 1518312 1519274 1519343) (-917 "PICOERCE.spad" 1517961 1517971 1518294 1518299) (-916 "PGROEB.spad" 1516558 1516572 1517951 1517956) (-915 "PGE.spad" 1507811 1507819 1516548 1516553) (-914 "PGCD.spad" 1506693 1506710 1507801 1507806) (-913 "PFRPAC.spad" 1505836 1505846 1506683 1506688) (-912 "PFR.spad" 1502493 1502503 1505738 1505831) (-911 "PFOTOOLS.spad" 1501751 1501767 1502483 1502488) (-910 "PFOQ.spad" 1501121 1501139 1501741 1501746) (-909 "PFO.spad" 1500540 1500567 1501111 1501116) (-908 "PF.spad" 1500114 1500126 1500345 1500438) (-907 "PFECAT.spad" 1497780 1497788 1500040 1500109) (-906 "PFECAT.spad" 1495474 1495484 1497736 1497741) (-905 "PFBRU.spad" 1493344 1493356 1495464 1495469) (-904 "PFBR.spad" 1490882 1490905 1493334 1493339) (-903 "PERM.spad" 1486563 1486573 1490712 1490727) (-902 "PERMGRP.spad" 1481299 1481309 1486553 1486558) (-901 "PERMCAT.spad" 1479851 1479861 1481279 1481294) (-900 "PERMAN.spad" 1478383 1478397 1479841 1479846) (-899 "PENDTREE.spad" 1477722 1477732 1478012 1478017) (-898 "PDRING.spad" 1476213 1476223 1477702 1477717) (-897 "PDRING.spad" 1474712 1474724 1476203 1476208) (-896 "PDEPROB.spad" 1473727 1473735 1474702 1474707) (-895 "PDEPACK.spad" 1467729 1467737 1473717 1473722) (-894 "PDECOMP.spad" 1467191 1467208 1467719 1467724) (-893 "PDECAT.spad" 1465545 1465553 1467181 1467186) (-892 "PCOMP.spad" 1465396 1465409 1465535 1465540) (-891 "PBWLB.spad" 1463978 1463995 1465386 1465391) (-890 "PATTERN.spad" 1458409 1458419 1463968 1463973) (-889 "PATTERN2.spad" 1458145 1458157 1458399 1458404) (-888 "PATTERN1.spad" 1456447 1456463 1458135 1458140) (-887 "PATRES.spad" 1453994 1454006 1456437 1456442) (-886 "PATRES2.spad" 1453656 1453670 1453984 1453989) (-885 "PATMATCH.spad" 1451813 1451844 1453364 1453369) (-884 "PATMAB.spad" 1451238 1451248 1451803 1451808) (-883 "PATLRES.spad" 1450322 1450336 1451228 1451233) (-882 "PATAB.spad" 1450086 1450096 1450312 1450317) (-881 "PARTPERM.spad" 1447448 1447456 1450076 1450081) (-880 "PARSURF.spad" 1446876 1446904 1447438 1447443) (-879 "PARSU2.spad" 1446671 1446687 1446866 1446871) (-878 "script-parser.spad" 1446191 1446199 1446661 1446666) (-877 "PARSCURV.spad" 1445619 1445647 1446181 1446186) (-876 "PARSC2.spad" 1445408 1445424 1445609 1445614) (-875 "PARPCURV.spad" 1444866 1444894 1445398 1445403) (-874 "PARPC2.spad" 1444655 1444671 1444856 1444861) (-873 "PAN2EXPR.spad" 1444067 1444075 1444645 1444650) (-872 "PALETTE.spad" 1443037 1443045 1444057 1444062) (-871 "PAIR.spad" 1442020 1442033 1442625 1442630) (-870 "PADICRC.spad" 1439350 1439368 1440525 1440618) (-869 "PADICRAT.spad" 1437365 1437377 1437586 1437679) (-868 "PADIC.spad" 1437060 1437072 1437291 1437360) (-867 "PADICCT.spad" 1435601 1435613 1436986 1437055) (-866 "PADEPAC.spad" 1434280 1434299 1435591 1435596) (-865 "PADE.spad" 1433020 1433036 1434270 1434275) (-864 "OWP.spad" 1432260 1432290 1432878 1432945) (-863 "OVERSET.spad" 1431833 1431841 1432250 1432255) (-862 "OVAR.spad" 1431614 1431637 1431823 1431828) (-861 "OUT.spad" 1430698 1430706 1431604 1431609) (-860 "OUTFORM.spad" 1419994 1420002 1430688 1430693) (-859 "OUTBFILE.spad" 1419412 1419420 1419984 1419989) (-858 "OUTBCON.spad" 1418410 1418418 1419402 1419407) (-857 "OUTBCON.spad" 1417406 1417416 1418400 1418405) (-856 "OSI.spad" 1416881 1416889 1417396 1417401) (-855 "OSGROUP.spad" 1416799 1416807 1416871 1416876) (-854 "ORTHPOL.spad" 1415260 1415270 1416716 1416721) (-853 "OREUP.spad" 1414713 1414741 1414940 1414979) (-852 "ORESUP.spad" 1414012 1414036 1414393 1414432) (-851 "OREPCTO.spad" 1411831 1411843 1413932 1413937) (-850 "OREPCAT.spad" 1405888 1405898 1411787 1411826) (-849 "OREPCAT.spad" 1399835 1399847 1405736 1405741) (-848 "ORDSET.spad" 1399001 1399009 1399825 1399830) (-847 "ORDSET.spad" 1398165 1398175 1398991 1398996) (-846 "ORDRING.spad" 1397555 1397563 1398145 1398160) (-845 "ORDRING.spad" 1396953 1396963 1397545 1397550) (-844 "ORDMON.spad" 1396808 1396816 1396943 1396948) (-843 "ORDFUNS.spad" 1395934 1395950 1396798 1396803) (-842 "ORDFIN.spad" 1395754 1395762 1395924 1395929) (-841 "ORDCOMP.spad" 1394219 1394229 1395301 1395330) (-840 "ORDCOMP2.spad" 1393504 1393516 1394209 1394214) (-839 "OPTPROB.spad" 1392142 1392150 1393494 1393499) (-838 "OPTPACK.spad" 1384527 1384535 1392132 1392137) (-837 "OPTCAT.spad" 1382202 1382210 1384517 1384522) (-836 "OPSIG.spad" 1381854 1381862 1382192 1382197) (-835 "OPQUERY.spad" 1381403 1381411 1381844 1381849) (-834 "OP.spad" 1381145 1381155 1381225 1381292) (-833 "OPERCAT.spad" 1380609 1380619 1381135 1381140) (-832 "OPERCAT.spad" 1380071 1380083 1380599 1380604) (-831 "ONECOMP.spad" 1378816 1378826 1379618 1379647) (-830 "ONECOMP2.spad" 1378234 1378246 1378806 1378811) (-829 "OMSERVER.spad" 1377236 1377244 1378224 1378229) (-828 "OMSAGG.spad" 1377024 1377034 1377192 1377231) (-827 "OMPKG.spad" 1375636 1375644 1377014 1377019) (-826 "OM.spad" 1374601 1374609 1375626 1375631) (-825 "OMLO.spad" 1374026 1374038 1374487 1374526) (-824 "OMEXPR.spad" 1373860 1373870 1374016 1374021) (-823 "OMERR.spad" 1373403 1373411 1373850 1373855) (-822 "OMERRK.spad" 1372437 1372445 1373393 1373398) (-821 "OMENC.spad" 1371781 1371789 1372427 1372432) (-820 "OMDEV.spad" 1366070 1366078 1371771 1371776) (-819 "OMCONN.spad" 1365479 1365487 1366060 1366065) (-818 "OINTDOM.spad" 1365242 1365250 1365405 1365474) (-817 "OFMONOID.spad" 1361429 1361439 1365232 1365237) (-816 "ODVAR.spad" 1360690 1360700 1361419 1361424) (-815 "ODR.spad" 1360334 1360360 1360502 1360651) (-814 "ODPOL.spad" 1357716 1357726 1358056 1358183) (-813 "ODP.spad" 1347563 1347583 1347936 1348067) (-812 "ODETOOLS.spad" 1346146 1346165 1347553 1347558) (-811 "ODESYS.spad" 1343796 1343813 1346136 1346141) (-810 "ODERTRIC.spad" 1339737 1339754 1343753 1343758) (-809 "ODERED.spad" 1339124 1339148 1339727 1339732) (-808 "ODERAT.spad" 1336675 1336692 1339114 1339119) (-807 "ODEPRRIC.spad" 1333566 1333588 1336665 1336670) (-806 "ODEPROB.spad" 1332823 1332831 1333556 1333561) (-805 "ODEPRIM.spad" 1330097 1330119 1332813 1332818) (-804 "ODEPAL.spad" 1329473 1329497 1330087 1330092) (-803 "ODEPACK.spad" 1316075 1316083 1329463 1329468) (-802 "ODEINT.spad" 1315506 1315522 1316065 1316070) (-801 "ODEIFTBL.spad" 1312901 1312909 1315496 1315501) (-800 "ODEEF.spad" 1308268 1308284 1312891 1312896) (-799 "ODECONST.spad" 1307787 1307805 1308258 1308263) (-798 "ODECAT.spad" 1306383 1306391 1307777 1307782) (-797 "OCT.spad" 1304521 1304531 1305237 1305276) (-796 "OCTCT2.spad" 1304165 1304186 1304511 1304516) (-795 "OC.spad" 1301939 1301949 1304121 1304160) (-794 "OC.spad" 1299438 1299450 1301622 1301627) (-793 "OCAMON.spad" 1299286 1299294 1299428 1299433) (-792 "OASGP.spad" 1299101 1299109 1299276 1299281) (-791 "OAMONS.spad" 1298621 1298629 1299091 1299096) (-790 "OAMON.spad" 1298482 1298490 1298611 1298616) (-789 "OAGROUP.spad" 1298344 1298352 1298472 1298477) (-788 "NUMTUBE.spad" 1297931 1297947 1298334 1298339) (-787 "NUMQUAD.spad" 1285793 1285801 1297921 1297926) (-786 "NUMODE.spad" 1276929 1276937 1285783 1285788) (-785 "NUMINT.spad" 1274487 1274495 1276919 1276924) (-784 "NUMFMT.spad" 1273327 1273335 1274477 1274482) (-783 "NUMERIC.spad" 1265399 1265409 1273132 1273137) (-782 "NTSCAT.spad" 1263901 1263917 1265367 1265394) (-781 "NTPOLFN.spad" 1263446 1263456 1263818 1263823) (-780 "NSUP.spad" 1256492 1256502 1261032 1261185) (-779 "NSUP2.spad" 1255884 1255896 1256482 1256487) (-778 "NSMP.spad" 1252115 1252134 1252423 1252550) (-777 "NREP.spad" 1250487 1250501 1252105 1252110) (-776 "NPCOEF.spad" 1249733 1249753 1250477 1250482) (-775 "NORMRETR.spad" 1249331 1249370 1249723 1249728) (-774 "NORMPK.spad" 1247233 1247252 1249321 1249326) (-773 "NORMMA.spad" 1246921 1246947 1247223 1247228) (-772 "NONE.spad" 1246662 1246670 1246911 1246916) (-771 "NONE1.spad" 1246338 1246348 1246652 1246657) (-770 "NODE1.spad" 1245807 1245823 1246328 1246333) (-769 "NNI.spad" 1244694 1244702 1245781 1245802) (-768 "NLINSOL.spad" 1243316 1243326 1244684 1244689) (-767 "NIPROB.spad" 1241857 1241865 1243306 1243311) (-766 "NFINTBAS.spad" 1239317 1239334 1241847 1241852) (-765 "NETCLT.spad" 1239291 1239302 1239307 1239312) (-764 "NCODIV.spad" 1237489 1237505 1239281 1239286) (-763 "NCNTFRAC.spad" 1237131 1237145 1237479 1237484) (-762 "NCEP.spad" 1235291 1235305 1237121 1237126) (-761 "NASRING.spad" 1234887 1234895 1235281 1235286) (-760 "NASRING.spad" 1234481 1234491 1234877 1234882) (-759 "NARNG.spad" 1233825 1233833 1234471 1234476) (-758 "NARNG.spad" 1233167 1233177 1233815 1233820) (-757 "NAGSP.spad" 1232240 1232248 1233157 1233162) (-756 "NAGS.spad" 1221765 1221773 1232230 1232235) (-755 "NAGF07.spad" 1220158 1220166 1221755 1221760) (-754 "NAGF04.spad" 1214390 1214398 1220148 1220153) (-753 "NAGF02.spad" 1208199 1208207 1214380 1214385) (-752 "NAGF01.spad" 1203802 1203810 1208189 1208194) (-751 "NAGE04.spad" 1197262 1197270 1203792 1203797) (-750 "NAGE02.spad" 1187604 1187612 1197252 1197257) (-749 "NAGE01.spad" 1183488 1183496 1187594 1187599) (-748 "NAGD03.spad" 1181408 1181416 1183478 1183483) (-747 "NAGD02.spad" 1173939 1173947 1181398 1181403) (-746 "NAGD01.spad" 1168052 1168060 1173929 1173934) (-745 "NAGC06.spad" 1163839 1163847 1168042 1168047) (-744 "NAGC05.spad" 1162308 1162316 1163829 1163834) (-743 "NAGC02.spad" 1161563 1161571 1162298 1162303) (-742 "NAALG.spad" 1161098 1161108 1161531 1161558) (-741 "NAALG.spad" 1160653 1160665 1161088 1161093) (-740 "MULTSQFR.spad" 1157611 1157628 1160643 1160648) (-739 "MULTFACT.spad" 1156994 1157011 1157601 1157606) (-738 "MTSCAT.spad" 1155028 1155049 1156892 1156989) (-737 "MTHING.spad" 1154685 1154695 1155018 1155023) (-736 "MSYSCMD.spad" 1154119 1154127 1154675 1154680) (-735 "MSET.spad" 1152061 1152071 1153825 1153864) (-734 "MSETAGG.spad" 1151906 1151916 1152029 1152056) (-733 "MRING.spad" 1148877 1148889 1151614 1151681) (-732 "MRF2.spad" 1148445 1148459 1148867 1148872) (-731 "MRATFAC.spad" 1147991 1148008 1148435 1148440) (-730 "MPRFF.spad" 1146021 1146040 1147981 1147986) (-729 "MPOLY.spad" 1143492 1143507 1143851 1143978) (-728 "MPCPF.spad" 1142756 1142775 1143482 1143487) (-727 "MPC3.spad" 1142571 1142611 1142746 1142751) (-726 "MPC2.spad" 1142213 1142246 1142561 1142566) (-725 "MONOTOOL.spad" 1140548 1140565 1142203 1142208) (-724 "MONOID.spad" 1139867 1139875 1140538 1140543) (-723 "MONOID.spad" 1139184 1139194 1139857 1139862) (-722 "MONOGEN.spad" 1137930 1137943 1139044 1139179) (-721 "MONOGEN.spad" 1136698 1136713 1137814 1137819) (-720 "MONADWU.spad" 1134712 1134720 1136688 1136693) (-719 "MONADWU.spad" 1132724 1132734 1134702 1134707) (-718 "MONAD.spad" 1131868 1131876 1132714 1132719) (-717 "MONAD.spad" 1131010 1131020 1131858 1131863) (-716 "MOEBIUS.spad" 1129696 1129710 1130990 1131005) (-715 "MODULE.spad" 1129566 1129576 1129664 1129691) (-714 "MODULE.spad" 1129456 1129468 1129556 1129561) (-713 "MODRING.spad" 1128787 1128826 1129436 1129451) (-712 "MODOP.spad" 1127446 1127458 1128609 1128676) (-711 "MODMONOM.spad" 1127175 1127193 1127436 1127441) (-710 "MODMON.spad" 1123970 1123986 1124689 1124842) (-709 "MODFIELD.spad" 1123328 1123367 1123872 1123965) (-708 "MMLFORM.spad" 1122188 1122196 1123318 1123323) (-707 "MMAP.spad" 1121928 1121962 1122178 1122183) (-706 "MLO.spad" 1120355 1120365 1121884 1121923) (-705 "MLIFT.spad" 1118927 1118944 1120345 1120350) (-704 "MKUCFUNC.spad" 1118460 1118478 1118917 1118922) (-703 "MKRECORD.spad" 1118062 1118075 1118450 1118455) (-702 "MKFUNC.spad" 1117443 1117453 1118052 1118057) (-701 "MKFLCFN.spad" 1116399 1116409 1117433 1117438) (-700 "MKBCFUNC.spad" 1115884 1115902 1116389 1116394) (-699 "MINT.spad" 1115323 1115331 1115786 1115879) (-698 "MHROWRED.spad" 1113824 1113834 1115313 1115318) (-697 "MFLOAT.spad" 1112340 1112348 1113714 1113819) (-696 "MFINFACT.spad" 1111740 1111762 1112330 1112335) (-695 "MESH.spad" 1109472 1109480 1111730 1111735) (-694 "MDDFACT.spad" 1107665 1107675 1109462 1109467) (-693 "MDAGG.spad" 1106952 1106962 1107645 1107660) (-692 "MCMPLX.spad" 1102963 1102971 1103577 1103778) (-691 "MCDEN.spad" 1102171 1102183 1102953 1102958) (-690 "MCALCFN.spad" 1099273 1099299 1102161 1102166) (-689 "MAYBE.spad" 1098557 1098568 1099263 1099268) (-688 "MATSTOR.spad" 1095833 1095843 1098547 1098552) (-687 "MATRIX.spad" 1094537 1094547 1095021 1095048) (-686 "MATLIN.spad" 1091863 1091887 1094421 1094426) (-685 "MATCAT.spad" 1083448 1083470 1091831 1091858) (-684 "MATCAT.spad" 1074905 1074929 1083290 1083295) (-683 "MATCAT2.spad" 1074173 1074221 1074895 1074900) (-682 "MAPPKG3.spad" 1073072 1073086 1074163 1074168) (-681 "MAPPKG2.spad" 1072406 1072418 1073062 1073067) (-680 "MAPPKG1.spad" 1071224 1071234 1072396 1072401) (-679 "MAPPAST.spad" 1070537 1070545 1071214 1071219) (-678 "MAPHACK3.spad" 1070345 1070359 1070527 1070532) (-677 "MAPHACK2.spad" 1070110 1070122 1070335 1070340) (-676 "MAPHACK1.spad" 1069740 1069750 1070100 1070105) (-675 "MAGMA.spad" 1067530 1067547 1069730 1069735) (-674 "MACROAST.spad" 1067109 1067117 1067520 1067525) (-673 "M3D.spad" 1064805 1064815 1066487 1066492) (-672 "LZSTAGG.spad" 1062033 1062043 1064795 1064800) (-671 "LZSTAGG.spad" 1059259 1059271 1062023 1062028) (-670 "LWORD.spad" 1055964 1055981 1059249 1059254) (-669 "LSTAST.spad" 1055748 1055756 1055954 1055959) (-668 "LSQM.spad" 1053974 1053988 1054372 1054423) (-667 "LSPP.spad" 1053507 1053524 1053964 1053969) (-666 "LSMP.spad" 1052347 1052375 1053497 1053502) (-665 "LSMP1.spad" 1050151 1050165 1052337 1052342) (-664 "LSAGG.spad" 1049820 1049830 1050119 1050146) (-663 "LSAGG.spad" 1049509 1049521 1049810 1049815) (-662 "LPOLY.spad" 1048463 1048482 1049365 1049434) (-661 "LPEFRAC.spad" 1047720 1047730 1048453 1048458) (-660 "LO.spad" 1047121 1047135 1047654 1047681) (-659 "LOGIC.spad" 1046723 1046731 1047111 1047116) (-658 "LOGIC.spad" 1046323 1046333 1046713 1046718) (-657 "LODOOPS.spad" 1045241 1045253 1046313 1046318) (-656 "LODO.spad" 1044625 1044641 1044921 1044960) (-655 "LODOF.spad" 1043669 1043686 1044582 1044587) (-654 "LODOCAT.spad" 1042327 1042337 1043625 1043664) (-653 "LODOCAT.spad" 1040983 1040995 1042283 1042288) (-652 "LODO2.spad" 1040256 1040268 1040663 1040702) (-651 "LODO1.spad" 1039656 1039666 1039936 1039975) (-650 "LODEEF.spad" 1038428 1038446 1039646 1039651) (-649 "LNAGG.spad" 1034230 1034240 1038418 1038423) (-648 "LNAGG.spad" 1029996 1030008 1034186 1034191) (-647 "LMOPS.spad" 1026732 1026749 1029986 1029991) (-646 "LMODULE.spad" 1026500 1026510 1026722 1026727) (-645 "LMDICT.spad" 1025783 1025793 1026051 1026078) (-644 "LLINSET.spad" 1025180 1025190 1025773 1025778) (-643 "LITERAL.spad" 1025086 1025097 1025170 1025175) (-642 "LIST.spad" 1022804 1022814 1024233 1024260) (-641 "LIST3.spad" 1022095 1022109 1022794 1022799) (-640 "LIST2.spad" 1020735 1020747 1022085 1022090) (-639 "LIST2MAP.spad" 1017612 1017624 1020725 1020730) (-638 "LINSET.spad" 1017234 1017244 1017602 1017607) (-637 "LINEXP.spad" 1016666 1016676 1017214 1017229) (-636 "LINDEP.spad" 1015443 1015455 1016578 1016583) (-635 "LIMITRF.spad" 1013357 1013367 1015433 1015438) (-634 "LIMITPS.spad" 1012240 1012253 1013347 1013352) (-633 "LIE.spad" 1010254 1010266 1011530 1011675) (-632 "LIECAT.spad" 1009730 1009740 1010180 1010249) (-631 "LIECAT.spad" 1009234 1009246 1009686 1009691) (-630 "LIB.spad" 1007282 1007290 1007893 1007908) (-629 "LGROBP.spad" 1004635 1004654 1007272 1007277) (-628 "LF.spad" 1003554 1003570 1004625 1004630) (-627 "LFCAT.spad" 1002573 1002581 1003544 1003549) (-626 "LEXTRIPK.spad" 998076 998091 1002563 1002568) (-625 "LEXP.spad" 996079 996106 998056 998071) (-624 "LETAST.spad" 995778 995786 996069 996074) (-623 "LEADCDET.spad" 994162 994179 995768 995773) (-622 "LAZM3PK.spad" 992866 992888 994152 994157) (-621 "LAUPOL.spad" 991555 991568 992459 992528) (-620 "LAPLACE.spad" 991128 991144 991545 991550) (-619 "LA.spad" 990568 990582 991050 991089) (-618 "LALG.spad" 990344 990354 990548 990563) (-617 "LALG.spad" 990128 990140 990334 990339) (-616 "KVTFROM.spad" 989863 989873 990118 990123) (-615 "KTVLOGIC.spad" 989375 989383 989853 989858) (-614 "KRCFROM.spad" 989113 989123 989365 989370) (-613 "KOVACIC.spad" 987826 987843 989103 989108) (-612 "KONVERT.spad" 987548 987558 987816 987821) (-611 "KOERCE.spad" 987285 987295 987538 987543) (-610 "KERNEL.spad" 985820 985830 987069 987074) (-609 "KERNEL2.spad" 985523 985535 985810 985815) (-608 "KDAGG.spad" 984626 984648 985503 985518) (-607 "KDAGG.spad" 983737 983761 984616 984621) (-606 "KAFILE.spad" 982700 982716 982935 982962) (-605 "JORDAN.spad" 980527 980539 981990 982135) (-604 "JOINAST.spad" 980221 980229 980517 980522) (-603 "JAVACODE.spad" 980087 980095 980211 980216) (-602 "IXAGG.spad" 978210 978234 980077 980082) (-601 "IXAGG.spad" 976188 976214 978057 978062) (-600 "IVECTOR.spad" 974958 974973 975113 975140) (-599 "ITUPLE.spad" 974103 974113 974948 974953) (-598 "ITRIGMNP.spad" 972914 972933 974093 974098) (-597 "ITFUN3.spad" 972408 972422 972904 972909) (-596 "ITFUN2.spad" 972138 972150 972398 972403) (-595 "ITAYLOR.spad" 969930 969945 971974 972099) (-594 "ISUPS.spad" 962341 962356 968904 969001) (-593 "ISUMP.spad" 961838 961854 962331 962336) (-592 "ISTRING.spad" 960841 960854 961007 961034) (-591 "ISAST.spad" 960560 960568 960831 960836) (-590 "IRURPK.spad" 959273 959292 960550 960555) (-589 "IRSN.spad" 957233 957241 959263 959268) (-588 "IRRF2F.spad" 955708 955718 957189 957194) (-587 "IRREDFFX.spad" 955309 955320 955698 955703) (-586 "IROOT.spad" 953640 953650 955299 955304) (-585 "IR.spad" 951429 951443 953495 953522) (-584 "IR2.spad" 950449 950465 951419 951424) (-583 "IR2F.spad" 949649 949665 950439 950444) (-582 "IPRNTPK.spad" 949409 949417 949639 949644) (-581 "IPF.spad" 948974 948986 949214 949307) (-580 "IPADIC.spad" 948735 948761 948900 948969) (-579 "IP4ADDR.spad" 948292 948300 948725 948730) (-578 "IOMODE.spad" 947913 947921 948282 948287) (-577 "IOBFILE.spad" 947274 947282 947903 947908) (-576 "IOBCON.spad" 947139 947147 947264 947269) (-575 "INVLAPLA.spad" 946784 946800 947129 947134) (-574 "INTTR.spad" 940030 940047 946774 946779) (-573 "INTTOOLS.spad" 937741 937757 939604 939609) (-572 "INTSLPE.spad" 937047 937055 937731 937736) (-571 "INTRVL.spad" 936613 936623 936961 937042) (-570 "INTRF.spad" 934977 934991 936603 936608) (-569 "INTRET.spad" 934409 934419 934967 934972) (-568 "INTRAT.spad" 933084 933101 934399 934404) (-567 "INTPM.spad" 931447 931463 932727 932732) (-566 "INTPAF.spad" 929215 929233 931379 931384) (-565 "INTPACK.spad" 919525 919533 929205 929210) (-564 "INT.spad" 918886 918894 919379 919520) (-563 "INTHERTR.spad" 918152 918169 918876 918881) (-562 "INTHERAL.spad" 917818 917842 918142 918147) (-561 "INTHEORY.spad" 914231 914239 917808 917813) (-560 "INTG0.spad" 907694 907712 914163 914168) (-559 "INTFTBL.spad" 901723 901731 907684 907689) (-558 "INTFACT.spad" 900782 900792 901713 901718) (-557 "INTEF.spad" 899097 899113 900772 900777) (-556 "INTDOM.spad" 897712 897720 899023 899092) (-555 "INTDOM.spad" 896389 896399 897702 897707) (-554 "INTCAT.spad" 894642 894652 896303 896384) (-553 "INTBIT.spad" 894145 894153 894632 894637) (-552 "INTALG.spad" 893327 893354 894135 894140) (-551 "INTAF.spad" 892819 892835 893317 893322) (-550 "INTABL.spad" 891337 891368 891500 891527) (-549 "INT8.spad" 891217 891225 891327 891332) (-548 "INT64.spad" 891096 891104 891207 891212) (-547 "INT32.spad" 890975 890983 891086 891091) (-546 "INT16.spad" 890854 890862 890965 890970) (-545 "INS.spad" 888321 888329 890756 890849) (-544 "INS.spad" 885874 885884 888311 888316) (-543 "INPSIGN.spad" 885308 885321 885864 885869) (-542 "INPRODPF.spad" 884374 884393 885298 885303) (-541 "INPRODFF.spad" 883432 883456 884364 884369) (-540 "INNMFACT.spad" 882403 882420 883422 883427) (-539 "INMODGCD.spad" 881887 881917 882393 882398) (-538 "INFSP.spad" 880172 880194 881877 881882) (-537 "INFPROD0.spad" 879222 879241 880162 880167) (-536 "INFORM.spad" 876383 876391 879212 879217) (-535 "INFORM1.spad" 876008 876018 876373 876378) (-534 "INFINITY.spad" 875560 875568 875998 876003) (-533 "INETCLTS.spad" 875537 875545 875550 875555) (-532 "INEP.spad" 874069 874091 875527 875532) (-531 "INDE.spad" 873798 873815 874059 874064) (-530 "INCRMAPS.spad" 873219 873229 873788 873793) (-529 "INBFILE.spad" 872291 872299 873209 873214) (-528 "INBFF.spad" 868061 868072 872281 872286) (-527 "INBCON.spad" 866349 866357 868051 868056) (-526 "INBCON.spad" 864635 864645 866339 866344) (-525 "INAST.spad" 864296 864304 864625 864630) (-524 "IMPTAST.spad" 864004 864012 864286 864291) (-523 "IMATRIX.spad" 862949 862975 863461 863488) (-522 "IMATQF.spad" 862043 862087 862905 862910) (-521 "IMATLIN.spad" 860648 860672 861999 862004) (-520 "ILIST.spad" 859304 859319 859831 859858) (-519 "IIARRAY2.spad" 858692 858730 858911 858938) (-518 "IFF.spad" 858102 858118 858373 858466) (-517 "IFAST.spad" 857716 857724 858092 858097) (-516 "IFARRAY.spad" 855203 855218 856899 856926) (-515 "IFAMON.spad" 855065 855082 855159 855164) (-514 "IEVALAB.spad" 854454 854466 855055 855060) (-513 "IEVALAB.spad" 853841 853855 854444 854449) (-512 "IDPO.spad" 853639 853651 853831 853836) (-511 "IDPOAMS.spad" 853395 853407 853629 853634) (-510 "IDPOAM.spad" 853115 853127 853385 853390) (-509 "IDPC.spad" 852049 852061 853105 853110) (-508 "IDPAM.spad" 851794 851806 852039 852044) (-507 "IDPAG.spad" 851541 851553 851784 851789) (-506 "IDENT.spad" 851191 851199 851531 851536) (-505 "IDECOMP.spad" 848428 848446 851181 851186) (-504 "IDEAL.spad" 843351 843390 848363 848368) (-503 "ICDEN.spad" 842502 842518 843341 843346) (-502 "ICARD.spad" 841691 841699 842492 842497) (-501 "IBPTOOLS.spad" 840284 840301 841681 841686) (-500 "IBITS.spad" 839483 839496 839920 839947) (-499 "IBATOOL.spad" 836358 836377 839473 839478) (-498 "IBACHIN.spad" 834845 834860 836348 836353) (-497 "IARRAY2.spad" 833833 833859 834452 834479) (-496 "IARRAY1.spad" 832878 832893 833016 833043) (-495 "IAN.spad" 831091 831099 832694 832787) (-494 "IALGFACT.spad" 830692 830725 831081 831086) (-493 "HYPCAT.spad" 830116 830124 830682 830687) (-492 "HYPCAT.spad" 829538 829548 830106 830111) (-491 "HOSTNAME.spad" 829346 829354 829528 829533) (-490 "HOMOTOP.spad" 829089 829099 829336 829341) (-489 "HOAGG.spad" 826357 826367 829079 829084) (-488 "HOAGG.spad" 823400 823412 826124 826129) (-487 "HEXADEC.spad" 821502 821510 821867 821960) (-486 "HEUGCD.spad" 820517 820528 821492 821497) (-485 "HELLFDIV.spad" 820107 820131 820507 820512) (-484 "HEAP.spad" 819499 819509 819714 819741) (-483 "HEADAST.spad" 819030 819038 819489 819494) (-482 "HDP.spad" 808873 808889 809250 809381) (-481 "HDMP.spad" 806085 806100 806703 806830) (-480 "HB.spad" 804322 804330 806075 806080) (-479 "HASHTBL.spad" 802792 802823 803003 803030) (-478 "HASAST.spad" 802508 802516 802782 802787) (-477 "HACKPI.spad" 801991 801999 802410 802503) (-476 "GTSET.spad" 800930 800946 801637 801664) (-475 "GSTBL.spad" 799449 799484 799623 799638) (-474 "GSERIES.spad" 796616 796643 797581 797730) (-473 "GROUP.spad" 795885 795893 796596 796611) (-472 "GROUP.spad" 795162 795172 795875 795880) (-471 "GROEBSOL.spad" 793650 793671 795152 795157) (-470 "GRMOD.spad" 792221 792233 793640 793645) (-469 "GRMOD.spad" 790790 790804 792211 792216) (-468 "GRIMAGE.spad" 783395 783403 790780 790785) (-467 "GRDEF.spad" 781774 781782 783385 783390) (-466 "GRAY.spad" 780233 780241 781764 781769) (-465 "GRALG.spad" 779280 779292 780223 780228) (-464 "GRALG.spad" 778325 778339 779270 779275) (-463 "GPOLSET.spad" 777779 777802 778007 778034) (-462 "GOSPER.spad" 777044 777062 777769 777774) (-461 "GMODPOL.spad" 776182 776209 777012 777039) (-460 "GHENSEL.spad" 775251 775265 776172 776177) (-459 "GENUPS.spad" 771352 771365 775241 775246) (-458 "GENUFACT.spad" 770929 770939 771342 771347) (-457 "GENPGCD.spad" 770513 770530 770919 770924) (-456 "GENMFACT.spad" 769965 769984 770503 770508) (-455 "GENEEZ.spad" 767904 767917 769955 769960) (-454 "GDMP.spad" 764958 764975 765734 765861) (-453 "GCNAALG.spad" 758853 758880 764752 764819) (-452 "GCDDOM.spad" 758025 758033 758779 758848) (-451 "GCDDOM.spad" 757259 757269 758015 758020) (-450 "GB.spad" 754777 754815 757215 757220) (-449 "GBINTERN.spad" 750797 750835 754767 754772) (-448 "GBF.spad" 746554 746592 750787 750792) (-447 "GBEUCLID.spad" 744428 744466 746544 746549) (-446 "GAUSSFAC.spad" 743725 743733 744418 744423) (-445 "GALUTIL.spad" 742047 742057 743681 743686) (-444 "GALPOLYU.spad" 740493 740506 742037 742042) (-443 "GALFACTU.spad" 738658 738677 740483 740488) (-442 "GALFACT.spad" 728791 728802 738648 738653) (-441 "FVFUN.spad" 725814 725822 728781 728786) (-440 "FVC.spad" 724866 724874 725804 725809) (-439 "FUNDESC.spad" 724544 724552 724856 724861) (-438 "FUNCTION.spad" 724393 724405 724534 724539) (-437 "FT.spad" 722686 722694 724383 724388) (-436 "FTEM.spad" 721849 721857 722676 722681) (-435 "FSUPFACT.spad" 720749 720768 721785 721790) (-434 "FST.spad" 718835 718843 720739 720744) (-433 "FSRED.spad" 718313 718329 718825 718830) (-432 "FSPRMELT.spad" 717137 717153 718270 718275) (-431 "FSPECF.spad" 715214 715230 717127 717132) (-430 "FS.spad" 709276 709286 714989 715209) (-429 "FS.spad" 703116 703128 708831 708836) (-428 "FSINT.spad" 702774 702790 703106 703111) (-427 "FSERIES.spad" 701961 701973 702594 702693) (-426 "FSCINT.spad" 701274 701290 701951 701956) (-425 "FSAGG.spad" 700391 700401 701230 701269) (-424 "FSAGG.spad" 699470 699482 700311 700316) (-423 "FSAGG2.spad" 698169 698185 699460 699465) (-422 "FS2UPS.spad" 692652 692686 698159 698164) (-421 "FS2.spad" 692297 692313 692642 692647) (-420 "FS2EXPXP.spad" 691420 691443 692287 692292) (-419 "FRUTIL.spad" 690362 690372 691410 691415) (-418 "FR.spad" 684056 684066 689386 689455) (-417 "FRNAALG.spad" 679143 679153 683998 684051) (-416 "FRNAALG.spad" 674242 674254 679099 679104) (-415 "FRNAAF2.spad" 673696 673714 674232 674237) (-414 "FRMOD.spad" 673090 673120 673627 673632) (-413 "FRIDEAL.spad" 672285 672306 673070 673085) (-412 "FRIDEAL2.spad" 671887 671919 672275 672280) (-411 "FRETRCT.spad" 671398 671408 671877 671882) (-410 "FRETRCT.spad" 670775 670787 671256 671261) (-409 "FRAMALG.spad" 669103 669116 670731 670770) (-408 "FRAMALG.spad" 667463 667478 669093 669098) (-407 "FRAC.spad" 664562 664572 664965 665138) (-406 "FRAC2.spad" 664165 664177 664552 664557) (-405 "FR2.spad" 663499 663511 664155 664160) (-404 "FPS.spad" 660308 660316 663389 663494) (-403 "FPS.spad" 657145 657155 660228 660233) (-402 "FPC.spad" 656187 656195 657047 657140) (-401 "FPC.spad" 655315 655325 656177 656182) (-400 "FPATMAB.spad" 655077 655087 655305 655310) (-399 "FPARFRAC.spad" 653550 653567 655067 655072) (-398 "FORTRAN.spad" 652056 652099 653540 653545) (-397 "FORT.spad" 650985 650993 652046 652051) (-396 "FORTFN.spad" 648155 648163 650975 650980) (-395 "FORTCAT.spad" 647839 647847 648145 648150) (-394 "FORMULA.spad" 645303 645311 647829 647834) (-393 "FORMULA1.spad" 644782 644792 645293 645298) (-392 "FORDER.spad" 644473 644497 644772 644777) (-391 "FOP.spad" 643674 643682 644463 644468) (-390 "FNLA.spad" 643098 643120 643642 643669) (-389 "FNCAT.spad" 641685 641693 643088 643093) (-388 "FNAME.spad" 641577 641585 641675 641680) (-387 "FMTC.spad" 641375 641383 641503 641572) (-386 "FMONOID.spad" 638430 638440 641331 641336) (-385 "FM.spad" 638125 638137 638364 638391) (-384 "FMFUN.spad" 635155 635163 638115 638120) (-383 "FMC.spad" 634207 634215 635145 635150) (-382 "FMCAT.spad" 631861 631879 634175 634202) (-381 "FM1.spad" 631218 631230 631795 631822) (-380 "FLOATRP.spad" 628939 628953 631208 631213) (-379 "FLOAT.spad" 622227 622235 628805 628934) (-378 "FLOATCP.spad" 619644 619658 622217 622222) (-377 "FLINEXP.spad" 619356 619366 619624 619639) (-376 "FLINEXP.spad" 619022 619034 619292 619297) (-375 "FLASORT.spad" 618342 618354 619012 619017) (-374 "FLALG.spad" 615988 616007 618268 618337) (-373 "FLAGG.spad" 613006 613016 615968 615983) (-372 "FLAGG.spad" 609925 609937 612889 612894) (-371 "FLAGG2.spad" 608606 608622 609915 609920) (-370 "FINRALG.spad" 606635 606648 608562 608601) (-369 "FINRALG.spad" 604590 604605 606519 606524) (-368 "FINITE.spad" 603742 603750 604580 604585) (-367 "FINAALG.spad" 592723 592733 603684 603737) (-366 "FINAALG.spad" 581716 581728 592679 592684) (-365 "FILE.spad" 581299 581309 581706 581711) (-364 "FILECAT.spad" 579817 579834 581289 581294) (-363 "FIELD.spad" 579223 579231 579719 579812) (-362 "FIELD.spad" 578715 578725 579213 579218) (-361 "FGROUP.spad" 577324 577334 578695 578710) (-360 "FGLMICPK.spad" 576111 576126 577314 577319) (-359 "FFX.spad" 575486 575501 575827 575920) (-358 "FFSLPE.spad" 574975 574996 575476 575481) (-357 "FFPOLY.spad" 566227 566238 574965 574970) (-356 "FFPOLY2.spad" 565287 565304 566217 566222) (-355 "FFP.spad" 564684 564704 565003 565096) (-354 "FF.spad" 564132 564148 564365 564458) (-353 "FFNBX.spad" 562644 562664 563848 563941) (-352 "FFNBP.spad" 561157 561174 562360 562453) (-351 "FFNB.spad" 559622 559643 560838 560931) (-350 "FFINTBAS.spad" 557036 557055 559612 559617) (-349 "FFIELDC.spad" 554611 554619 556938 557031) (-348 "FFIELDC.spad" 552272 552282 554601 554606) (-347 "FFHOM.spad" 551020 551037 552262 552267) (-346 "FFF.spad" 548455 548466 551010 551015) (-345 "FFCGX.spad" 547302 547322 548171 548264) (-344 "FFCGP.spad" 546191 546211 547018 547111) (-343 "FFCG.spad" 544983 545004 545872 545965) (-342 "FFCAT.spad" 538010 538032 544822 544978) (-341 "FFCAT.spad" 531116 531140 537930 537935) (-340 "FFCAT2.spad" 530861 530901 531106 531111) (-339 "FEXPR.spad" 522570 522616 530617 530656) (-338 "FEVALAB.spad" 522276 522286 522560 522565) (-337 "FEVALAB.spad" 521767 521779 522053 522058) (-336 "FDIV.spad" 521209 521233 521757 521762) (-335 "FDIVCAT.spad" 519251 519275 521199 521204) (-334 "FDIVCAT.spad" 517291 517317 519241 519246) (-333 "FDIV2.spad" 516945 516985 517281 517286) (-332 "FCPAK1.spad" 515498 515506 516935 516940) (-331 "FCOMP.spad" 514877 514887 515488 515493) (-330 "FC.spad" 504792 504800 514867 514872) (-329 "FAXF.spad" 497727 497741 504694 504787) (-328 "FAXF.spad" 490714 490730 497683 497688) (-327 "FARRAY.spad" 488860 488870 489897 489924) (-326 "FAMR.spad" 486980 486992 488758 488855) (-325 "FAMR.spad" 485084 485098 486864 486869) (-324 "FAMONOID.spad" 484734 484744 485038 485043) (-323 "FAMONC.spad" 482956 482968 484724 484729) (-322 "FAGROUP.spad" 482562 482572 482852 482879) (-321 "FACUTIL.spad" 480758 480775 482552 482557) (-320 "FACTFUNC.spad" 479934 479944 480748 480753) (-319 "EXPUPXS.spad" 476767 476790 478066 478215) (-318 "EXPRTUBE.spad" 473995 474003 476757 476762) (-317 "EXPRODE.spad" 470867 470883 473985 473990) (-316 "EXPR.spad" 466142 466152 466856 467263) (-315 "EXPR2UPS.spad" 462234 462247 466132 466137) (-314 "EXPR2.spad" 461937 461949 462224 462229) (-313 "EXPEXPAN.spad" 458875 458900 459509 459602) (-312 "EXIT.spad" 458546 458554 458865 458870) (-311 "EXITAST.spad" 458282 458290 458536 458541) (-310 "EVALCYC.spad" 457740 457754 458272 458277) (-309 "EVALAB.spad" 457304 457314 457730 457735) (-308 "EVALAB.spad" 456866 456878 457294 457299) (-307 "EUCDOM.spad" 454408 454416 456792 456861) (-306 "EUCDOM.spad" 452012 452022 454398 454403) (-305 "ESTOOLS.spad" 443852 443860 452002 452007) (-304 "ESTOOLS2.spad" 443453 443467 443842 443847) (-303 "ESTOOLS1.spad" 443138 443149 443443 443448) (-302 "ES.spad" 435685 435693 443128 443133) (-301 "ES.spad" 428138 428148 435583 435588) (-300 "ESCONT.spad" 424911 424919 428128 428133) (-299 "ESCONT1.spad" 424660 424672 424901 424906) (-298 "ES2.spad" 424155 424171 424650 424655) (-297 "ES1.spad" 423721 423737 424145 424150) (-296 "ERROR.spad" 421042 421050 423711 423716) (-295 "EQTBL.spad" 419514 419536 419723 419750) (-294 "EQ.spad" 414307 414317 417106 417218) (-293 "EQ2.spad" 414023 414035 414297 414302) (-292 "EP.spad" 410337 410347 414013 414018) (-291 "ENV.spad" 408989 408997 410327 410332) (-290 "ENTIRER.spad" 408657 408665 408933 408984) (-289 "EMR.spad" 407858 407899 408583 408652) (-288 "ELTAGG.spad" 406098 406117 407848 407853) (-287 "ELTAGG.spad" 404302 404323 406054 406059) (-286 "ELTAB.spad" 403749 403767 404292 404297) (-285 "ELFUTS.spad" 403128 403147 403739 403744) (-284 "ELEMFUN.spad" 402817 402825 403118 403123) (-283 "ELEMFUN.spad" 402504 402514 402807 402812) (-282 "ELAGG.spad" 400447 400457 402484 402499) (-281 "ELAGG.spad" 398327 398339 400366 400371) (-280 "ELABEXPR.spad" 397250 397258 398317 398322) (-279 "EFUPXS.spad" 394026 394056 397206 397211) (-278 "EFULS.spad" 390862 390885 393982 393987) (-277 "EFSTRUC.spad" 388817 388833 390852 390857) (-276 "EF.spad" 383583 383599 388807 388812) (-275 "EAB.spad" 381859 381867 383573 383578) (-274 "E04UCFA.spad" 381395 381403 381849 381854) (-273 "E04NAFA.spad" 380972 380980 381385 381390) (-272 "E04MBFA.spad" 380552 380560 380962 380967) (-271 "E04JAFA.spad" 380088 380096 380542 380547) (-270 "E04GCFA.spad" 379624 379632 380078 380083) (-269 "E04FDFA.spad" 379160 379168 379614 379619) (-268 "E04DGFA.spad" 378696 378704 379150 379155) (-267 "E04AGNT.spad" 374538 374546 378686 378691) (-266 "DVARCAT.spad" 371223 371233 374528 374533) (-265 "DVARCAT.spad" 367906 367918 371213 371218) (-264 "DSMP.spad" 365373 365387 365678 365805) (-263 "DROPT.spad" 359318 359326 365363 365368) (-262 "DROPT1.spad" 358981 358991 359308 359313) (-261 "DROPT0.spad" 353808 353816 358971 358976) (-260 "DRAWPT.spad" 351963 351971 353798 353803) (-259 "DRAW.spad" 344563 344576 351953 351958) (-258 "DRAWHACK.spad" 343871 343881 344553 344558) (-257 "DRAWCX.spad" 341313 341321 343861 343866) (-256 "DRAWCURV.spad" 340850 340865 341303 341308) (-255 "DRAWCFUN.spad" 330022 330030 340840 340845) (-254 "DQAGG.spad" 328190 328200 329990 330017) (-253 "DPOLCAT.spad" 323531 323547 328058 328185) (-252 "DPOLCAT.spad" 318958 318976 323487 323492) (-251 "DPMO.spad" 311184 311200 311322 311623) (-250 "DPMM.spad" 303423 303441 303548 303849) (-249 "DOMCTOR.spad" 303315 303323 303413 303418) (-248 "DOMAIN.spad" 302446 302454 303305 303310) (-247 "DMP.spad" 299704 299719 300276 300403) (-246 "DLP.spad" 299052 299062 299694 299699) (-245 "DLIST.spad" 297631 297641 298235 298262) (-244 "DLAGG.spad" 296042 296052 297621 297626) (-243 "DIVRING.spad" 295584 295592 295986 296037) (-242 "DIVRING.spad" 295170 295180 295574 295579) (-241 "DISPLAY.spad" 293350 293358 295160 295165) (-240 "DIRPROD.spad" 282930 282946 283570 283701) (-239 "DIRPROD2.spad" 281738 281756 282920 282925) (-238 "DIRPCAT.spad" 280680 280696 281602 281733) (-237 "DIRPCAT.spad" 279351 279369 280275 280280) (-236 "DIOSP.spad" 278176 278184 279341 279346) (-235 "DIOPS.spad" 277160 277170 278156 278171) (-234 "DIOPS.spad" 276118 276130 277116 277121) (-233 "DIFRING.spad" 275410 275418 276098 276113) (-232 "DIFRING.spad" 274710 274720 275400 275405) (-231 "DIFEXT.spad" 273869 273879 274690 274705) (-230 "DIFEXT.spad" 272945 272957 273768 273773) (-229 "DIAGG.spad" 272575 272585 272925 272940) (-228 "DIAGG.spad" 272213 272225 272565 272570) (-227 "DHMATRIX.spad" 270517 270527 271670 271697) (-226 "DFSFUN.spad" 263925 263933 270507 270512) (-225 "DFLOAT.spad" 260646 260654 263815 263920) (-224 "DFINTTLS.spad" 258855 258871 260636 260641) (-223 "DERHAM.spad" 256765 256797 258835 258850) (-222 "DEQUEUE.spad" 256083 256093 256372 256399) (-221 "DEGRED.spad" 255698 255712 256073 256078) (-220 "DEFINTRF.spad" 253223 253233 255688 255693) (-219 "DEFINTEF.spad" 251719 251735 253213 253218) (-218 "DEFAST.spad" 251087 251095 251709 251714) (-217 "DECIMAL.spad" 249193 249201 249554 249647) (-216 "DDFACT.spad" 246992 247009 249183 249188) (-215 "DBLRESP.spad" 246590 246614 246982 246987) (-214 "DBASE.spad" 245244 245254 246580 246585) (-213 "DATAARY.spad" 244706 244719 245234 245239) (-212 "D03FAFA.spad" 244534 244542 244696 244701) (-211 "D03EEFA.spad" 244354 244362 244524 244529) (-210 "D03AGNT.spad" 243434 243442 244344 244349) (-209 "D02EJFA.spad" 242896 242904 243424 243429) (-208 "D02CJFA.spad" 242374 242382 242886 242891) (-207 "D02BHFA.spad" 241864 241872 242364 242369) (-206 "D02BBFA.spad" 241354 241362 241854 241859) (-205 "D02AGNT.spad" 236158 236166 241344 241349) (-204 "D01WGTS.spad" 234477 234485 236148 236153) (-203 "D01TRNS.spad" 234454 234462 234467 234472) (-202 "D01GBFA.spad" 233976 233984 234444 234449) (-201 "D01FCFA.spad" 233498 233506 233966 233971) (-200 "D01ASFA.spad" 232966 232974 233488 233493) (-199 "D01AQFA.spad" 232412 232420 232956 232961) (-198 "D01APFA.spad" 231836 231844 232402 232407) (-197 "D01ANFA.spad" 231330 231338 231826 231831) (-196 "D01AMFA.spad" 230840 230848 231320 231325) (-195 "D01ALFA.spad" 230380 230388 230830 230835) (-194 "D01AKFA.spad" 229906 229914 230370 230375) (-193 "D01AJFA.spad" 229429 229437 229896 229901) (-192 "D01AGNT.spad" 225488 225496 229419 229424) (-191 "CYCLOTOM.spad" 224994 225002 225478 225483) (-190 "CYCLES.spad" 221826 221834 224984 224989) (-189 "CVMP.spad" 221243 221253 221816 221821) (-188 "CTRIGMNP.spad" 219733 219749 221233 221238) (-187 "CTOR.spad" 219424 219432 219723 219728) (-186 "CTORKIND.spad" 219027 219035 219414 219419) (-185 "CTORCAT.spad" 218276 218284 219017 219022) (-184 "CTORCAT.spad" 217523 217533 218266 218271) (-183 "CTORCALL.spad" 217103 217111 217513 217518) (-182 "CSTTOOLS.spad" 216346 216359 217093 217098) (-181 "CRFP.spad" 210050 210063 216336 216341) (-180 "CRCEAST.spad" 209770 209778 210040 210045) (-179 "CRAPACK.spad" 208813 208823 209760 209765) (-178 "CPMATCH.spad" 208313 208328 208738 208743) (-177 "CPIMA.spad" 208018 208037 208303 208308) (-176 "COORDSYS.spad" 202911 202921 208008 208013) (-175 "CONTOUR.spad" 202318 202326 202901 202906) (-174 "CONTFRAC.spad" 197930 197940 202220 202313) (-173 "CONDUIT.spad" 197688 197696 197920 197925) (-172 "COMRING.spad" 197362 197370 197626 197683) (-171 "COMPPROP.spad" 196876 196884 197352 197357) (-170 "COMPLPAT.spad" 196643 196658 196866 196871) (-169 "COMPLEX.spad" 190780 190790 191024 191285) (-168 "COMPLEX2.spad" 190493 190505 190770 190775) (-167 "COMPFACT.spad" 190095 190109 190483 190488) (-166 "COMPCAT.spad" 188163 188173 189829 190090) (-165 "COMPCAT.spad" 185959 185971 187627 187632) (-164 "COMMUPC.spad" 185705 185723 185949 185954) (-163 "COMMONOP.spad" 185238 185246 185695 185700) (-162 "COMM.spad" 185047 185055 185228 185233) (-161 "COMMAAST.spad" 184810 184818 185037 185042) (-160 "COMBOPC.spad" 183715 183723 184800 184805) (-159 "COMBINAT.spad" 182460 182470 183705 183710) (-158 "COMBF.spad" 179828 179844 182450 182455) (-157 "COLOR.spad" 178665 178673 179818 179823) (-156 "COLONAST.spad" 178331 178339 178655 178660) (-155 "CMPLXRT.spad" 178040 178057 178321 178326) (-154 "CLLCTAST.spad" 177702 177710 178030 178035) (-153 "CLIP.spad" 173794 173802 177692 177697) (-152 "CLIF.spad" 172433 172449 173750 173789) (-151 "CLAGG.spad" 168918 168928 172423 172428) (-150 "CLAGG.spad" 165274 165286 168781 168786) (-149 "CINTSLPE.spad" 164599 164612 165264 165269) (-148 "CHVAR.spad" 162677 162699 164589 164594) (-147 "CHARZ.spad" 162592 162600 162657 162672) (-146 "CHARPOL.spad" 162100 162110 162582 162587) (-145 "CHARNZ.spad" 161853 161861 162080 162095) (-144 "CHAR.spad" 159721 159729 161843 161848) (-143 "CFCAT.spad" 159037 159045 159711 159716) (-142 "CDEN.spad" 158195 158209 159027 159032) (-141 "CCLASS.spad" 156344 156352 157606 157645) (-140 "CATEGORY.spad" 155434 155442 156334 156339) (-139 "CATCTOR.spad" 155325 155333 155424 155429) (-138 "CATAST.spad" 154943 154951 155315 155320) (-137 "CASEAST.spad" 154657 154665 154933 154938) (-136 "CARTEN.spad" 149760 149784 154647 154652) (-135 "CARTEN2.spad" 149146 149173 149750 149755) (-134 "CARD.spad" 146435 146443 149120 149141) (-133 "CAPSLAST.spad" 146209 146217 146425 146430) (-132 "CACHSET.spad" 145831 145839 146199 146204) (-131 "CABMON.spad" 145384 145392 145821 145826) (-130 "BYTEORD.spad" 145059 145067 145374 145379) (-129 "BYTE.spad" 144484 144492 145049 145054) (-128 "BYTEBUF.spad" 142341 142349 143653 143680) (-127 "BTREE.spad" 141410 141420 141948 141975) (-126 "BTOURN.spad" 140413 140423 141017 141044) (-125 "BTCAT.spad" 139801 139811 140381 140408) (-124 "BTCAT.spad" 139209 139221 139791 139796) (-123 "BTAGG.spad" 138331 138339 139177 139204) (-122 "BTAGG.spad" 137473 137483 138321 138326) (-121 "BSTREE.spad" 136208 136218 137080 137107) (-120 "BRILL.spad" 134403 134414 136198 136203) (-119 "BRAGG.spad" 133327 133337 134393 134398) (-118 "BRAGG.spad" 132215 132227 133283 133288) (-117 "BPADICRT.spad" 130196 130208 130451 130544) (-116 "BPADIC.spad" 129860 129872 130122 130191) (-115 "BOUNDZRO.spad" 129516 129533 129850 129855) (-114 "BOP.spad" 124640 124648 129506 129511) (-113 "BOP1.spad" 122060 122070 124630 124635) (-112 "BOOLEAN.spad" 121492 121500 122050 122055) (-111 "BMODULE.spad" 121204 121216 121460 121487) (-110 "BITS.spad" 120623 120631 120840 120867) (-109 "BINDING.spad" 120034 120042 120613 120618) (-108 "BINARY.spad" 118145 118153 118501 118594) (-107 "BGAGG.spad" 117342 117352 118125 118140) (-106 "BGAGG.spad" 116547 116559 117332 117337) (-105 "BFUNCT.spad" 116111 116119 116527 116542) (-104 "BEZOUT.spad" 115245 115272 116061 116066) (-103 "BBTREE.spad" 112064 112074 114852 114879) (-102 "BASTYPE.spad" 111736 111744 112054 112059) (-101 "BASTYPE.spad" 111406 111416 111726 111731) (-100 "BALFACT.spad" 110845 110858 111396 111401) (-99 "AUTOMOR.spad" 110292 110301 110825 110840) (-98 "ATTREG.spad" 107011 107018 110044 110287) (-97 "ATTRBUT.spad" 103034 103041 106991 107006) (-96 "ATTRAST.spad" 102751 102758 103024 103029) (-95 "ATRIG.spad" 102221 102228 102741 102746) (-94 "ATRIG.spad" 101689 101698 102211 102216) (-93 "ASTCAT.spad" 101593 101600 101679 101684) (-92 "ASTCAT.spad" 101495 101504 101583 101588) (-91 "ASTACK.spad" 100828 100837 101102 101129) (-90 "ASSOCEQ.spad" 99628 99639 100784 100789) (-89 "ASP9.spad" 98709 98722 99618 99623) (-88 "ASP8.spad" 97752 97765 98699 98704) (-87 "ASP80.spad" 97074 97087 97742 97747) (-86 "ASP7.spad" 96234 96247 97064 97069) (-85 "ASP78.spad" 95685 95698 96224 96229) (-84 "ASP77.spad" 95054 95067 95675 95680) (-83 "ASP74.spad" 94146 94159 95044 95049) (-82 "ASP73.spad" 93417 93430 94136 94141) (-81 "ASP6.spad" 92284 92297 93407 93412) (-80 "ASP55.spad" 90793 90806 92274 92279) (-79 "ASP50.spad" 88610 88623 90783 90788) (-78 "ASP4.spad" 87905 87918 88600 88605) (-77 "ASP49.spad" 86904 86917 87895 87900) (-76 "ASP42.spad" 85311 85350 86894 86899) (-75 "ASP41.spad" 83890 83929 85301 85306) (-74 "ASP35.spad" 82878 82891 83880 83885) (-73 "ASP34.spad" 82179 82192 82868 82873) (-72 "ASP33.spad" 81739 81752 82169 82174) (-71 "ASP31.spad" 80879 80892 81729 81734) (-70 "ASP30.spad" 79771 79784 80869 80874) (-69 "ASP29.spad" 79237 79250 79761 79766) (-68 "ASP28.spad" 70510 70523 79227 79232) (-67 "ASP27.spad" 69407 69420 70500 70505) (-66 "ASP24.spad" 68494 68507 69397 69402) (-65 "ASP20.spad" 67958 67971 68484 68489) (-64 "ASP1.spad" 67339 67352 67948 67953) (-63 "ASP19.spad" 62025 62038 67329 67334) (-62 "ASP12.spad" 61439 61452 62015 62020) (-61 "ASP10.spad" 60710 60723 61429 61434) (-60 "ARRAY2.spad" 60070 60079 60317 60344) (-59 "ARRAY1.spad" 58905 58914 59253 59280) (-58 "ARRAY12.spad" 57574 57585 58895 58900) (-57 "ARR2CAT.spad" 53236 53257 57542 57569) (-56 "ARR2CAT.spad" 48918 48941 53226 53231) (-55 "ARITY.spad" 48290 48297 48908 48913) (-54 "APPRULE.spad" 47534 47556 48280 48285) (-53 "APPLYORE.spad" 47149 47162 47524 47529) (-52 "ANY.spad" 45491 45498 47139 47144) (-51 "ANY1.spad" 44562 44571 45481 45486) (-50 "ANTISYM.spad" 43001 43017 44542 44557) (-49 "ANON.spad" 42694 42701 42991 42996) (-48 "AN.spad" 40995 41002 42510 42603) (-47 "AMR.spad" 39174 39185 40893 40990) (-46 "AMR.spad" 37190 37203 38911 38916) (-45 "ALIST.spad" 34602 34623 34952 34979) (-44 "ALGSC.spad" 33725 33751 34474 34527) (-43 "ALGPKG.spad" 29434 29445 33681 33686) (-42 "ALGMFACT.spad" 28623 28637 29424 29429) (-41 "ALGMANIP.spad" 26079 26094 28456 28461) (-40 "ALGFF.spad" 24394 24421 24611 24767) (-39 "ALGFACT.spad" 23515 23525 24384 24389) (-38 "ALGEBRA.spad" 23348 23357 23471 23510) (-37 "ALGEBRA.spad" 23213 23224 23338 23343) (-36 "ALAGG.spad" 22723 22744 23181 23208) (-35 "AHYP.spad" 22104 22111 22713 22718) (-34 "AGG.spad" 20413 20420 22094 22099) (-33 "AGG.spad" 18686 18695 20369 20374) (-32 "AF.spad" 17111 17126 18621 18626) (-31 "ADDAST.spad" 16789 16796 17101 17106) (-30 "ACPLOT.spad" 15360 15367 16779 16784) (-29 "ACFS.spad" 13111 13120 15262 15355) (-28 "ACFS.spad" 10948 10959 13101 13106) (-27 "ACF.spad" 7550 7557 10850 10943) (-26 "ACF.spad" 4238 4247 7540 7545) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file +((-3 NIL 2285563 2285568 2285573 2285578) (-2 NIL 2285543 2285548 2285553 2285558) (-1 NIL 2285523 2285528 2285533 2285538) (0 NIL 2285503 2285508 2285513 2285518) (-1292 "ZMOD.spad" 2285312 2285325 2285441 2285498) (-1291 "ZLINDEP.spad" 2284356 2284367 2285302 2285307) (-1290 "ZDSOLVE.spad" 2274205 2274227 2284346 2284351) (-1289 "YSTREAM.spad" 2273698 2273709 2274195 2274200) (-1288 "XRPOLY.spad" 2272918 2272938 2273554 2273623) (-1287 "XPR.spad" 2270709 2270722 2272636 2272735) (-1286 "XPOLY.spad" 2270264 2270275 2270565 2270634) (-1285 "XPOLYC.spad" 2269581 2269597 2270190 2270259) (-1284 "XPBWPOLY.spad" 2268018 2268038 2269361 2269430) (-1283 "XF.spad" 2266479 2266494 2267920 2268013) (-1282 "XF.spad" 2264920 2264937 2266363 2266368) (-1281 "XFALG.spad" 2261944 2261960 2264846 2264915) (-1280 "XEXPPKG.spad" 2261195 2261221 2261934 2261939) (-1279 "XDPOLY.spad" 2260809 2260825 2261051 2261120) (-1278 "XALG.spad" 2260469 2260480 2260765 2260804) (-1277 "WUTSET.spad" 2256308 2256325 2260115 2260142) (-1276 "WP.spad" 2255507 2255551 2256166 2256233) (-1275 "WHILEAST.spad" 2255305 2255314 2255497 2255502) (-1274 "WHEREAST.spad" 2254976 2254985 2255295 2255300) (-1273 "WFFINTBS.spad" 2252539 2252561 2254966 2254971) (-1272 "WEIER.spad" 2250753 2250764 2252529 2252534) (-1271 "VSPACE.spad" 2250426 2250437 2250721 2250748) (-1270 "VSPACE.spad" 2250119 2250132 2250416 2250421) (-1269 "VOID.spad" 2249796 2249805 2250109 2250114) (-1268 "VIEW.spad" 2247418 2247427 2249786 2249791) (-1267 "VIEWDEF.spad" 2242615 2242624 2247408 2247413) (-1266 "VIEW3D.spad" 2226450 2226459 2242605 2242610) (-1265 "VIEW2D.spad" 2214187 2214196 2226440 2226445) (-1264 "VECTOR.spad" 2212861 2212872 2213112 2213139) (-1263 "VECTOR2.spad" 2211488 2211501 2212851 2212856) (-1262 "VECTCAT.spad" 2209388 2209399 2211456 2211483) (-1261 "VECTCAT.spad" 2207095 2207108 2209165 2209170) (-1260 "VARIABLE.spad" 2206875 2206890 2207085 2207090) (-1259 "UTYPE.spad" 2206519 2206528 2206865 2206870) (-1258 "UTSODETL.spad" 2205812 2205836 2206475 2206480) (-1257 "UTSODE.spad" 2204000 2204020 2205802 2205807) (-1256 "UTS.spad" 2198789 2198817 2202467 2202564) (-1255 "UTSCAT.spad" 2196240 2196256 2198687 2198784) (-1254 "UTSCAT.spad" 2193335 2193353 2195784 2195789) (-1253 "UTS2.spad" 2192928 2192963 2193325 2193330) (-1252 "URAGG.spad" 2187560 2187571 2192918 2192923) (-1251 "URAGG.spad" 2182156 2182169 2187516 2187521) (-1250 "UPXSSING.spad" 2179799 2179825 2181237 2181370) (-1249 "UPXS.spad" 2176947 2176975 2177931 2178080) (-1248 "UPXSCONS.spad" 2174704 2174724 2175079 2175228) (-1247 "UPXSCCA.spad" 2173269 2173289 2174550 2174699) (-1246 "UPXSCCA.spad" 2171976 2171998 2173259 2173264) (-1245 "UPXSCAT.spad" 2170557 2170573 2171822 2171971) (-1244 "UPXS2.spad" 2170098 2170151 2170547 2170552) (-1243 "UPSQFREE.spad" 2168510 2168524 2170088 2170093) (-1242 "UPSCAT.spad" 2166103 2166127 2168408 2168505) (-1241 "UPSCAT.spad" 2163402 2163428 2165709 2165714) (-1240 "UPOLYC.spad" 2158380 2158391 2163244 2163397) (-1239 "UPOLYC.spad" 2153250 2153263 2158116 2158121) (-1238 "UPOLYC2.spad" 2152719 2152738 2153240 2153245) (-1237 "UP.spad" 2149912 2149927 2150305 2150458) (-1236 "UPMP.spad" 2148802 2148815 2149902 2149907) (-1235 "UPDIVP.spad" 2148365 2148379 2148792 2148797) (-1234 "UPDECOMP.spad" 2146602 2146616 2148355 2148360) (-1233 "UPCDEN.spad" 2145809 2145825 2146592 2146597) (-1232 "UP2.spad" 2145171 2145192 2145799 2145804) (-1231 "UNISEG.spad" 2144524 2144535 2145090 2145095) (-1230 "UNISEG2.spad" 2144017 2144030 2144480 2144485) (-1229 "UNIFACT.spad" 2143118 2143130 2144007 2144012) (-1228 "ULS.spad" 2133670 2133698 2134763 2135192) (-1227 "ULSCONS.spad" 2126064 2126084 2126436 2126585) (-1226 "ULSCCAT.spad" 2123793 2123813 2125910 2126059) (-1225 "ULSCCAT.spad" 2121630 2121652 2123749 2123754) (-1224 "ULSCAT.spad" 2119846 2119862 2121476 2121625) (-1223 "ULS2.spad" 2119358 2119411 2119836 2119841) (-1222 "UINT8.spad" 2119235 2119244 2119348 2119353) (-1221 "UINT64.spad" 2119111 2119120 2119225 2119230) (-1220 "UINT32.spad" 2118987 2118996 2119101 2119106) (-1219 "UINT16.spad" 2118863 2118872 2118977 2118982) (-1218 "UFD.spad" 2117928 2117937 2118789 2118858) (-1217 "UFD.spad" 2117055 2117066 2117918 2117923) (-1216 "UDVO.spad" 2115902 2115911 2117045 2117050) (-1215 "UDPO.spad" 2113329 2113340 2115858 2115863) (-1214 "TYPE.spad" 2113261 2113270 2113319 2113324) (-1213 "TYPEAST.spad" 2113180 2113189 2113251 2113256) (-1212 "TWOFACT.spad" 2111830 2111845 2113170 2113175) (-1211 "TUPLE.spad" 2111314 2111325 2111729 2111734) (-1210 "TUBETOOL.spad" 2108151 2108160 2111304 2111309) (-1209 "TUBE.spad" 2106792 2106809 2108141 2108146) (-1208 "TS.spad" 2105381 2105397 2106357 2106454) (-1207 "TSETCAT.spad" 2092508 2092525 2105349 2105376) (-1206 "TSETCAT.spad" 2079621 2079640 2092464 2092469) (-1205 "TRMANIP.spad" 2073987 2074004 2079327 2079332) (-1204 "TRIMAT.spad" 2072946 2072971 2073977 2073982) (-1203 "TRIGMNIP.spad" 2071463 2071480 2072936 2072941) (-1202 "TRIGCAT.spad" 2070975 2070984 2071453 2071458) (-1201 "TRIGCAT.spad" 2070485 2070496 2070965 2070970) (-1200 "TREE.spad" 2069056 2069067 2070092 2070119) (-1199 "TRANFUN.spad" 2068887 2068896 2069046 2069051) (-1198 "TRANFUN.spad" 2068716 2068727 2068877 2068882) (-1197 "TOPSP.spad" 2068390 2068399 2068706 2068711) (-1196 "TOOLSIGN.spad" 2068053 2068064 2068380 2068385) (-1195 "TEXTFILE.spad" 2066610 2066619 2068043 2068048) (-1194 "TEX.spad" 2063742 2063751 2066600 2066605) (-1193 "TEX1.spad" 2063298 2063309 2063732 2063737) (-1192 "TEMUTL.spad" 2062853 2062862 2063288 2063293) (-1191 "TBCMPPK.spad" 2060946 2060969 2062843 2062848) (-1190 "TBAGG.spad" 2059982 2060005 2060926 2060941) (-1189 "TBAGG.spad" 2059026 2059051 2059972 2059977) (-1188 "TANEXP.spad" 2058402 2058413 2059016 2059021) (-1187 "TABLE.spad" 2056813 2056836 2057083 2057110) (-1186 "TABLEAU.spad" 2056294 2056305 2056803 2056808) (-1185 "TABLBUMP.spad" 2053077 2053088 2056284 2056289) (-1184 "SYSTEM.spad" 2052305 2052314 2053067 2053072) (-1183 "SYSSOLP.spad" 2049778 2049789 2052295 2052300) (-1182 "SYSNNI.spad" 2048958 2048969 2049768 2049773) (-1181 "SYSINT.spad" 2048362 2048373 2048948 2048953) (-1180 "SYNTAX.spad" 2044556 2044565 2048352 2048357) (-1179 "SYMTAB.spad" 2042612 2042621 2044546 2044551) (-1178 "SYMS.spad" 2038597 2038606 2042602 2042607) (-1177 "SYMPOLY.spad" 2037604 2037615 2037686 2037813) (-1176 "SYMFUNC.spad" 2037079 2037090 2037594 2037599) (-1175 "SYMBOL.spad" 2034506 2034515 2037069 2037074) (-1174 "SWITCH.spad" 2031263 2031272 2034496 2034501) (-1173 "SUTS.spad" 2028162 2028190 2029730 2029827) (-1172 "SUPXS.spad" 2025297 2025325 2026294 2026443) (-1171 "SUP.spad" 2022102 2022113 2022883 2023036) (-1170 "SUPFRACF.spad" 2021207 2021225 2022092 2022097) (-1169 "SUP2.spad" 2020597 2020610 2021197 2021202) (-1168 "SUMRF.spad" 2019563 2019574 2020587 2020592) (-1167 "SUMFS.spad" 2019196 2019213 2019553 2019558) (-1166 "SULS.spad" 2009735 2009763 2010841 2011270) (-1165 "SUCHTAST.spad" 2009504 2009513 2009725 2009730) (-1164 "SUCH.spad" 2009184 2009199 2009494 2009499) (-1163 "SUBSPACE.spad" 2001191 2001206 2009174 2009179) (-1162 "SUBRESP.spad" 2000351 2000365 2001147 2001152) (-1161 "STTF.spad" 1996450 1996466 2000341 2000346) (-1160 "STTFNC.spad" 1992918 1992934 1996440 1996445) (-1159 "STTAYLOR.spad" 1985316 1985327 1992799 1992804) (-1158 "STRTBL.spad" 1983821 1983838 1983970 1983997) (-1157 "STRING.spad" 1983230 1983239 1983244 1983271) (-1156 "STRICAT.spad" 1983018 1983027 1983198 1983225) (-1155 "STREAM.spad" 1979876 1979887 1982543 1982558) (-1154 "STREAM3.spad" 1979421 1979436 1979866 1979871) (-1153 "STREAM2.spad" 1978489 1978502 1979411 1979416) (-1152 "STREAM1.spad" 1978193 1978204 1978479 1978484) (-1151 "STINPROD.spad" 1977099 1977115 1978183 1978188) (-1150 "STEP.spad" 1976300 1976309 1977089 1977094) (-1149 "STBL.spad" 1974826 1974854 1974993 1975008) (-1148 "STAGG.spad" 1973901 1973912 1974816 1974821) (-1147 "STAGG.spad" 1972974 1972987 1973891 1973896) (-1146 "STACK.spad" 1972325 1972336 1972581 1972608) (-1145 "SREGSET.spad" 1970029 1970046 1971971 1971998) (-1144 "SRDCMPK.spad" 1968574 1968594 1970019 1970024) (-1143 "SRAGG.spad" 1963671 1963680 1968542 1968569) (-1142 "SRAGG.spad" 1958788 1958799 1963661 1963666) (-1141 "SQMATRIX.spad" 1956404 1956422 1957320 1957407) (-1140 "SPLTREE.spad" 1950956 1950969 1955840 1955867) (-1139 "SPLNODE.spad" 1947544 1947557 1950946 1950951) (-1138 "SPFCAT.spad" 1946321 1946330 1947534 1947539) (-1137 "SPECOUT.spad" 1944871 1944880 1946311 1946316) (-1136 "SPADXPT.spad" 1937010 1937019 1944861 1944866) (-1135 "spad-parser.spad" 1936475 1936484 1937000 1937005) (-1134 "SPADAST.spad" 1936176 1936185 1936465 1936470) (-1133 "SPACEC.spad" 1920189 1920200 1936166 1936171) (-1132 "SPACE3.spad" 1919965 1919976 1920179 1920184) (-1131 "SORTPAK.spad" 1919510 1919523 1919921 1919926) (-1130 "SOLVETRA.spad" 1917267 1917278 1919500 1919505) (-1129 "SOLVESER.spad" 1915787 1915798 1917257 1917262) (-1128 "SOLVERAD.spad" 1911797 1911808 1915777 1915782) (-1127 "SOLVEFOR.spad" 1910217 1910235 1911787 1911792) (-1126 "SNTSCAT.spad" 1909817 1909834 1910185 1910212) (-1125 "SMTS.spad" 1908077 1908103 1909382 1909479) (-1124 "SMP.spad" 1905552 1905572 1905942 1906069) (-1123 "SMITH.spad" 1904395 1904420 1905542 1905547) (-1122 "SMATCAT.spad" 1902505 1902535 1904339 1904390) (-1121 "SMATCAT.spad" 1900547 1900579 1902383 1902388) (-1120 "SKAGG.spad" 1899508 1899519 1900515 1900542) (-1119 "SINT.spad" 1898334 1898343 1899374 1899503) (-1118 "SIMPAN.spad" 1898062 1898071 1898324 1898329) (-1117 "SIG.spad" 1897390 1897399 1898052 1898057) (-1116 "SIGNRF.spad" 1896498 1896509 1897380 1897385) (-1115 "SIGNEF.spad" 1895767 1895784 1896488 1896493) (-1114 "SIGAST.spad" 1895148 1895157 1895757 1895762) (-1113 "SHP.spad" 1893066 1893081 1895104 1895109) (-1112 "SHDP.spad" 1882777 1882804 1883286 1883417) (-1111 "SGROUP.spad" 1882385 1882394 1882767 1882772) (-1110 "SGROUP.spad" 1881991 1882002 1882375 1882380) (-1109 "SGCF.spad" 1874872 1874881 1881981 1881986) (-1108 "SFRTCAT.spad" 1873800 1873817 1874840 1874867) (-1107 "SFRGCD.spad" 1872863 1872883 1873790 1873795) (-1106 "SFQCMPK.spad" 1867500 1867520 1872853 1872858) (-1105 "SFORT.spad" 1866935 1866949 1867490 1867495) (-1104 "SEXOF.spad" 1866778 1866818 1866925 1866930) (-1103 "SEX.spad" 1866670 1866679 1866768 1866773) (-1102 "SEXCAT.spad" 1864221 1864261 1866660 1866665) (-1101 "SET.spad" 1862521 1862532 1863642 1863681) (-1100 "SETMN.spad" 1860955 1860972 1862511 1862516) (-1099 "SETCAT.spad" 1860277 1860286 1860945 1860950) (-1098 "SETCAT.spad" 1859597 1859608 1860267 1860272) (-1097 "SETAGG.spad" 1856118 1856129 1859577 1859592) (-1096 "SETAGG.spad" 1852647 1852660 1856108 1856113) (-1095 "SEQAST.spad" 1852350 1852359 1852637 1852642) (-1094 "SEGXCAT.spad" 1851472 1851485 1852340 1852345) (-1093 "SEG.spad" 1851285 1851296 1851391 1851396) (-1092 "SEGCAT.spad" 1850192 1850203 1851275 1851280) (-1091 "SEGBIND.spad" 1849264 1849275 1850147 1850152) (-1090 "SEGBIND2.spad" 1848960 1848973 1849254 1849259) (-1089 "SEGAST.spad" 1848674 1848683 1848950 1848955) (-1088 "SEG2.spad" 1848099 1848112 1848630 1848635) (-1087 "SDVAR.spad" 1847375 1847386 1848089 1848094) (-1086 "SDPOL.spad" 1844801 1844812 1845092 1845219) (-1085 "SCPKG.spad" 1842880 1842891 1844791 1844796) (-1084 "SCOPE.spad" 1842029 1842038 1842870 1842875) (-1083 "SCACHE.spad" 1840711 1840722 1842019 1842024) (-1082 "SASTCAT.spad" 1840620 1840629 1840701 1840706) (-1081 "SAOS.spad" 1840492 1840501 1840610 1840615) (-1080 "SAERFFC.spad" 1840205 1840225 1840482 1840487) (-1079 "SAE.spad" 1838380 1838396 1838991 1839126) (-1078 "SAEFACT.spad" 1838081 1838101 1838370 1838375) (-1077 "RURPK.spad" 1835722 1835738 1838071 1838076) (-1076 "RULESET.spad" 1835163 1835187 1835712 1835717) (-1075 "RULE.spad" 1833367 1833391 1835153 1835158) (-1074 "RULECOLD.spad" 1833219 1833232 1833357 1833362) (-1073 "RTVALUE.spad" 1832952 1832961 1833209 1833214) (-1072 "RSTRCAST.spad" 1832669 1832678 1832942 1832947) (-1071 "RSETGCD.spad" 1829047 1829067 1832659 1832664) (-1070 "RSETCAT.spad" 1818831 1818848 1829015 1829042) (-1069 "RSETCAT.spad" 1808635 1808654 1818821 1818826) (-1068 "RSDCMPK.spad" 1807087 1807107 1808625 1808630) (-1067 "RRCC.spad" 1805471 1805501 1807077 1807082) (-1066 "RRCC.spad" 1803853 1803885 1805461 1805466) (-1065 "RPTAST.spad" 1803555 1803564 1803843 1803848) (-1064 "RPOLCAT.spad" 1782915 1782930 1803423 1803550) (-1063 "RPOLCAT.spad" 1761989 1762006 1782499 1782504) (-1062 "ROUTINE.spad" 1757852 1757861 1760636 1760663) (-1061 "ROMAN.spad" 1757180 1757189 1757718 1757847) (-1060 "ROIRC.spad" 1756260 1756292 1757170 1757175) (-1059 "RNS.spad" 1755163 1755172 1756162 1756255) (-1058 "RNS.spad" 1754152 1754163 1755153 1755158) (-1057 "RNG.spad" 1753887 1753896 1754142 1754147) (-1056 "RMODULE.spad" 1753652 1753663 1753877 1753882) (-1055 "RMCAT2.spad" 1753060 1753117 1753642 1753647) (-1054 "RMATRIX.spad" 1751884 1751903 1752227 1752266) (-1053 "RMATCAT.spad" 1747417 1747448 1751840 1751879) (-1052 "RMATCAT.spad" 1742840 1742873 1747265 1747270) (-1051 "RLINSET.spad" 1742234 1742245 1742830 1742835) (-1050 "RINTERP.spad" 1742122 1742142 1742224 1742229) (-1049 "RING.spad" 1741592 1741601 1742102 1742117) (-1048 "RING.spad" 1741070 1741081 1741582 1741587) (-1047 "RIDIST.spad" 1740454 1740463 1741060 1741065) (-1046 "RGCHAIN.spad" 1739033 1739049 1739939 1739966) (-1045 "RGBCSPC.spad" 1738814 1738826 1739023 1739028) (-1044 "RGBCMDL.spad" 1738344 1738356 1738804 1738809) (-1043 "RF.spad" 1735958 1735969 1738334 1738339) (-1042 "RFFACTOR.spad" 1735420 1735431 1735948 1735953) (-1041 "RFFACT.spad" 1735155 1735167 1735410 1735415) (-1040 "RFDIST.spad" 1734143 1734152 1735145 1735150) (-1039 "RETSOL.spad" 1733560 1733573 1734133 1734138) (-1038 "RETRACT.spad" 1732988 1732999 1733550 1733555) (-1037 "RETRACT.spad" 1732414 1732427 1732978 1732983) (-1036 "RETAST.spad" 1732226 1732235 1732404 1732409) (-1035 "RESULT.spad" 1730286 1730295 1730873 1730900) (-1034 "RESRING.spad" 1729633 1729680 1730224 1730281) (-1033 "RESLATC.spad" 1728957 1728968 1729623 1729628) (-1032 "REPSQ.spad" 1728686 1728697 1728947 1728952) (-1031 "REP.spad" 1726238 1726247 1728676 1728681) (-1030 "REPDB.spad" 1725943 1725954 1726228 1726233) (-1029 "REP2.spad" 1715515 1715526 1725785 1725790) (-1028 "REP1.spad" 1709505 1709516 1715465 1715470) (-1027 "REGSET.spad" 1707302 1707319 1709151 1709178) (-1026 "REF.spad" 1706631 1706642 1707257 1707262) (-1025 "REDORDER.spad" 1705807 1705824 1706621 1706626) (-1024 "RECLOS.spad" 1704590 1704610 1705294 1705387) (-1023 "REALSOLV.spad" 1703722 1703731 1704580 1704585) (-1022 "REAL.spad" 1703594 1703603 1703712 1703717) (-1021 "REAL0Q.spad" 1700876 1700891 1703584 1703589) (-1020 "REAL0.spad" 1697704 1697719 1700866 1700871) (-1019 "RDUCEAST.spad" 1697425 1697434 1697694 1697699) (-1018 "RDIV.spad" 1697076 1697101 1697415 1697420) (-1017 "RDIST.spad" 1696639 1696650 1697066 1697071) (-1016 "RDETRS.spad" 1695435 1695453 1696629 1696634) (-1015 "RDETR.spad" 1693542 1693560 1695425 1695430) (-1014 "RDEEFS.spad" 1692615 1692632 1693532 1693537) (-1013 "RDEEF.spad" 1691611 1691628 1692605 1692610) (-1012 "RCFIELD.spad" 1688797 1688806 1691513 1691606) (-1011 "RCFIELD.spad" 1686069 1686080 1688787 1688792) (-1010 "RCAGG.spad" 1683981 1683992 1686059 1686064) (-1009 "RCAGG.spad" 1681820 1681833 1683900 1683905) (-1008 "RATRET.spad" 1681180 1681191 1681810 1681815) (-1007 "RATFACT.spad" 1680872 1680884 1681170 1681175) (-1006 "RANDSRC.spad" 1680191 1680200 1680862 1680867) (-1005 "RADUTIL.spad" 1679945 1679954 1680181 1680186) (-1004 "RADIX.spad" 1676846 1676860 1678412 1678505) (-1003 "RADFF.spad" 1675259 1675296 1675378 1675534) (-1002 "RADCAT.spad" 1674852 1674861 1675249 1675254) (-1001 "RADCAT.spad" 1674443 1674454 1674842 1674847) (-1000 "QUEUE.spad" 1673785 1673796 1674050 1674077) (-999 "QUAT.spad" 1672367 1672377 1672709 1672774) (-998 "QUATCT2.spad" 1671986 1672004 1672357 1672362) (-997 "QUATCAT.spad" 1670151 1670161 1671916 1671981) (-996 "QUATCAT.spad" 1668067 1668079 1669834 1669839) (-995 "QUAGG.spad" 1666893 1666903 1668035 1668062) (-994 "QQUTAST.spad" 1666662 1666670 1666883 1666888) (-993 "QFORM.spad" 1666125 1666139 1666652 1666657) (-992 "QFCAT.spad" 1664828 1664838 1666027 1666120) (-991 "QFCAT.spad" 1663122 1663134 1664323 1664328) (-990 "QFCAT2.spad" 1662813 1662829 1663112 1663117) (-989 "QEQUAT.spad" 1662370 1662378 1662803 1662808) (-988 "QCMPACK.spad" 1657117 1657136 1662360 1662365) (-987 "QALGSET.spad" 1653192 1653224 1657031 1657036) (-986 "QALGSET2.spad" 1651188 1651206 1653182 1653187) (-985 "PWFFINTB.spad" 1648498 1648519 1651178 1651183) (-984 "PUSHVAR.spad" 1647827 1647846 1648488 1648493) (-983 "PTRANFN.spad" 1643953 1643963 1647817 1647822) (-982 "PTPACK.spad" 1641041 1641051 1643943 1643948) (-981 "PTFUNC2.spad" 1640862 1640876 1641031 1641036) (-980 "PTCAT.spad" 1640111 1640121 1640830 1640857) (-979 "PSQFR.spad" 1639418 1639442 1640101 1640106) (-978 "PSEUDLIN.spad" 1638276 1638286 1639408 1639413) (-977 "PSETPK.spad" 1623709 1623725 1638154 1638159) (-976 "PSETCAT.spad" 1617629 1617652 1623689 1623704) (-975 "PSETCAT.spad" 1611523 1611548 1617585 1617590) (-974 "PSCURVE.spad" 1610506 1610514 1611513 1611518) (-973 "PSCAT.spad" 1609273 1609302 1610404 1610501) (-972 "PSCAT.spad" 1608130 1608161 1609263 1609268) (-971 "PRTITION.spad" 1607075 1607083 1608120 1608125) (-970 "PRTDAST.spad" 1606794 1606802 1607065 1607070) (-969 "PRS.spad" 1596356 1596373 1606750 1606755) (-968 "PRQAGG.spad" 1595787 1595797 1596324 1596351) (-967 "PROPLOG.spad" 1595082 1595090 1595777 1595782) (-966 "PROPFRML.spad" 1593890 1593901 1595072 1595077) (-965 "PROPERTY.spad" 1593376 1593384 1593880 1593885) (-964 "PRODUCT.spad" 1591056 1591068 1591342 1591397) (-963 "PR.spad" 1589442 1589454 1590147 1590274) (-962 "PRINT.spad" 1589194 1589202 1589432 1589437) (-961 "PRIMES.spad" 1587445 1587455 1589184 1589189) (-960 "PRIMELT.spad" 1585426 1585440 1587435 1587440) (-959 "PRIMCAT.spad" 1585049 1585057 1585416 1585421) (-958 "PRIMARR.spad" 1584054 1584064 1584232 1584259) (-957 "PRIMARR2.spad" 1582777 1582789 1584044 1584049) (-956 "PREASSOC.spad" 1582149 1582161 1582767 1582772) (-955 "PPCURVE.spad" 1581286 1581294 1582139 1582144) (-954 "PORTNUM.spad" 1581061 1581069 1581276 1581281) (-953 "POLYROOT.spad" 1579890 1579912 1581017 1581022) (-952 "POLY.spad" 1577223 1577233 1577740 1577867) (-951 "POLYLIFT.spad" 1576484 1576507 1577213 1577218) (-950 "POLYCATQ.spad" 1574586 1574608 1576474 1576479) (-949 "POLYCAT.spad" 1567992 1568013 1574454 1574581) (-948 "POLYCAT.spad" 1560736 1560759 1567200 1567205) (-947 "POLY2UP.spad" 1560184 1560198 1560726 1560731) (-946 "POLY2.spad" 1559779 1559791 1560174 1560179) (-945 "POLUTIL.spad" 1558720 1558749 1559735 1559740) (-944 "POLTOPOL.spad" 1557468 1557483 1558710 1558715) (-943 "POINT.spad" 1556306 1556316 1556393 1556420) (-942 "PNTHEORY.spad" 1552972 1552980 1556296 1556301) (-941 "PMTOOLS.spad" 1551729 1551743 1552962 1552967) (-940 "PMSYM.spad" 1551274 1551284 1551719 1551724) (-939 "PMQFCAT.spad" 1550861 1550875 1551264 1551269) (-938 "PMPRED.spad" 1550330 1550344 1550851 1550856) (-937 "PMPREDFS.spad" 1549774 1549796 1550320 1550325) (-936 "PMPLCAT.spad" 1548844 1548862 1549706 1549711) (-935 "PMLSAGG.spad" 1548425 1548439 1548834 1548839) (-934 "PMKERNEL.spad" 1547992 1548004 1548415 1548420) (-933 "PMINS.spad" 1547568 1547578 1547982 1547987) (-932 "PMFS.spad" 1547141 1547159 1547558 1547563) (-931 "PMDOWN.spad" 1546427 1546441 1547131 1547136) (-930 "PMASS.spad" 1545435 1545443 1546417 1546422) (-929 "PMASSFS.spad" 1544400 1544416 1545425 1545430) (-928 "PLOTTOOL.spad" 1544180 1544188 1544390 1544395) (-927 "PLOT.spad" 1539011 1539019 1544170 1544175) (-926 "PLOT3D.spad" 1535431 1535439 1539001 1539006) (-925 "PLOT1.spad" 1534572 1534582 1535421 1535426) (-924 "PLEQN.spad" 1521788 1521815 1534562 1534567) (-923 "PINTERP.spad" 1521404 1521423 1521778 1521783) (-922 "PINTERPA.spad" 1521186 1521202 1521394 1521399) (-921 "PI.spad" 1520793 1520801 1521160 1521181) (-920 "PID.spad" 1519749 1519757 1520719 1520788) (-919 "PICOERCE.spad" 1519406 1519416 1519739 1519744) (-918 "PGROEB.spad" 1518003 1518017 1519396 1519401) (-917 "PGE.spad" 1509256 1509264 1517993 1517998) (-916 "PGCD.spad" 1508138 1508155 1509246 1509251) (-915 "PFRPAC.spad" 1507281 1507291 1508128 1508133) (-914 "PFR.spad" 1503938 1503948 1507183 1507276) (-913 "PFOTOOLS.spad" 1503196 1503212 1503928 1503933) (-912 "PFOQ.spad" 1502566 1502584 1503186 1503191) (-911 "PFO.spad" 1501985 1502012 1502556 1502561) (-910 "PF.spad" 1501559 1501571 1501790 1501883) (-909 "PFECAT.spad" 1499225 1499233 1501485 1501554) (-908 "PFECAT.spad" 1496919 1496929 1499181 1499186) (-907 "PFBRU.spad" 1494789 1494801 1496909 1496914) (-906 "PFBR.spad" 1492327 1492350 1494779 1494784) (-905 "PERM.spad" 1488008 1488018 1492157 1492172) (-904 "PERMGRP.spad" 1482744 1482754 1487998 1488003) (-903 "PERMCAT.spad" 1481296 1481306 1482724 1482739) (-902 "PERMAN.spad" 1479828 1479842 1481286 1481291) (-901 "PENDTREE.spad" 1479167 1479177 1479457 1479462) (-900 "PDRING.spad" 1477658 1477668 1479147 1479162) (-899 "PDRING.spad" 1476157 1476169 1477648 1477653) (-898 "PDEPROB.spad" 1475172 1475180 1476147 1476152) (-897 "PDEPACK.spad" 1469174 1469182 1475162 1475167) (-896 "PDECOMP.spad" 1468636 1468653 1469164 1469169) (-895 "PDECAT.spad" 1466990 1466998 1468626 1468631) (-894 "PCOMP.spad" 1466841 1466854 1466980 1466985) (-893 "PBWLB.spad" 1465423 1465440 1466831 1466836) (-892 "PATTERN.spad" 1459854 1459864 1465413 1465418) (-891 "PATTERN2.spad" 1459590 1459602 1459844 1459849) (-890 "PATTERN1.spad" 1457892 1457908 1459580 1459585) (-889 "PATRES.spad" 1455439 1455451 1457882 1457887) (-888 "PATRES2.spad" 1455101 1455115 1455429 1455434) (-887 "PATMATCH.spad" 1453258 1453289 1454809 1454814) (-886 "PATMAB.spad" 1452683 1452693 1453248 1453253) (-885 "PATLRES.spad" 1451767 1451781 1452673 1452678) (-884 "PATAB.spad" 1451531 1451541 1451757 1451762) (-883 "PARTPERM.spad" 1448893 1448901 1451521 1451526) (-882 "PARSURF.spad" 1448321 1448349 1448883 1448888) (-881 "PARSU2.spad" 1448116 1448132 1448311 1448316) (-880 "script-parser.spad" 1447636 1447644 1448106 1448111) (-879 "PARSCURV.spad" 1447064 1447092 1447626 1447631) (-878 "PARSC2.spad" 1446853 1446869 1447054 1447059) (-877 "PARPCURV.spad" 1446311 1446339 1446843 1446848) (-876 "PARPC2.spad" 1446100 1446116 1446301 1446306) (-875 "PAN2EXPR.spad" 1445512 1445520 1446090 1446095) (-874 "PALETTE.spad" 1444482 1444490 1445502 1445507) (-873 "PAIR.spad" 1443465 1443478 1444070 1444075) (-872 "PADICRC.spad" 1440795 1440813 1441970 1442063) (-871 "PADICRAT.spad" 1438810 1438822 1439031 1439124) (-870 "PADIC.spad" 1438505 1438517 1438736 1438805) (-869 "PADICCT.spad" 1437046 1437058 1438431 1438500) (-868 "PADEPAC.spad" 1435725 1435744 1437036 1437041) (-867 "PADE.spad" 1434465 1434481 1435715 1435720) (-866 "OWP.spad" 1433705 1433735 1434323 1434390) (-865 "OVERSET.spad" 1433278 1433286 1433695 1433700) (-864 "OVAR.spad" 1433059 1433082 1433268 1433273) (-863 "OUT.spad" 1432143 1432151 1433049 1433054) (-862 "OUTFORM.spad" 1421439 1421447 1432133 1432138) (-861 "OUTBFILE.spad" 1420857 1420865 1421429 1421434) (-860 "OUTBCON.spad" 1419855 1419863 1420847 1420852) (-859 "OUTBCON.spad" 1418851 1418861 1419845 1419850) (-858 "OSI.spad" 1418326 1418334 1418841 1418846) (-857 "OSGROUP.spad" 1418244 1418252 1418316 1418321) (-856 "ORTHPOL.spad" 1416705 1416715 1418161 1418166) (-855 "OREUP.spad" 1416158 1416186 1416385 1416424) (-854 "ORESUP.spad" 1415457 1415481 1415838 1415877) (-853 "OREPCTO.spad" 1413276 1413288 1415377 1415382) (-852 "OREPCAT.spad" 1407333 1407343 1413232 1413271) (-851 "OREPCAT.spad" 1401280 1401292 1407181 1407186) (-850 "ORDSET.spad" 1400446 1400454 1401270 1401275) (-849 "ORDSET.spad" 1399610 1399620 1400436 1400441) (-848 "ORDRING.spad" 1399000 1399008 1399590 1399605) (-847 "ORDRING.spad" 1398398 1398408 1398990 1398995) (-846 "ORDMON.spad" 1398253 1398261 1398388 1398393) (-845 "ORDFUNS.spad" 1397379 1397395 1398243 1398248) (-844 "ORDFIN.spad" 1397199 1397207 1397369 1397374) (-843 "ORDCOMP.spad" 1395664 1395674 1396746 1396775) (-842 "ORDCOMP2.spad" 1394949 1394961 1395654 1395659) (-841 "OPTPROB.spad" 1393587 1393595 1394939 1394944) (-840 "OPTPACK.spad" 1385972 1385980 1393577 1393582) (-839 "OPTCAT.spad" 1383647 1383655 1385962 1385967) (-838 "OPSIG.spad" 1383299 1383307 1383637 1383642) (-837 "OPQUERY.spad" 1382848 1382856 1383289 1383294) (-836 "OP.spad" 1382590 1382600 1382670 1382737) (-835 "OPERCAT.spad" 1382054 1382064 1382580 1382585) (-834 "OPERCAT.spad" 1381516 1381528 1382044 1382049) (-833 "ONECOMP.spad" 1380261 1380271 1381063 1381092) (-832 "ONECOMP2.spad" 1379679 1379691 1380251 1380256) (-831 "OMSERVER.spad" 1378681 1378689 1379669 1379674) (-830 "OMSAGG.spad" 1378469 1378479 1378637 1378676) (-829 "OMPKG.spad" 1377081 1377089 1378459 1378464) (-828 "OM.spad" 1376046 1376054 1377071 1377076) (-827 "OMLO.spad" 1375471 1375483 1375932 1375971) (-826 "OMEXPR.spad" 1375305 1375315 1375461 1375466) (-825 "OMERR.spad" 1374848 1374856 1375295 1375300) (-824 "OMERRK.spad" 1373882 1373890 1374838 1374843) (-823 "OMENC.spad" 1373226 1373234 1373872 1373877) (-822 "OMDEV.spad" 1367515 1367523 1373216 1373221) (-821 "OMCONN.spad" 1366924 1366932 1367505 1367510) (-820 "OINTDOM.spad" 1366687 1366695 1366850 1366919) (-819 "OFMONOID.spad" 1362874 1362884 1366677 1366682) (-818 "ODVAR.spad" 1362135 1362145 1362864 1362869) (-817 "ODR.spad" 1361779 1361805 1361947 1362096) (-816 "ODPOL.spad" 1359161 1359171 1359501 1359628) (-815 "ODP.spad" 1349008 1349028 1349381 1349512) (-814 "ODETOOLS.spad" 1347591 1347610 1348998 1349003) (-813 "ODESYS.spad" 1345241 1345258 1347581 1347586) (-812 "ODERTRIC.spad" 1341182 1341199 1345198 1345203) (-811 "ODERED.spad" 1340569 1340593 1341172 1341177) (-810 "ODERAT.spad" 1338120 1338137 1340559 1340564) (-809 "ODEPRRIC.spad" 1335011 1335033 1338110 1338115) (-808 "ODEPROB.spad" 1334268 1334276 1335001 1335006) (-807 "ODEPRIM.spad" 1331542 1331564 1334258 1334263) (-806 "ODEPAL.spad" 1330918 1330942 1331532 1331537) (-805 "ODEPACK.spad" 1317520 1317528 1330908 1330913) (-804 "ODEINT.spad" 1316951 1316967 1317510 1317515) (-803 "ODEIFTBL.spad" 1314346 1314354 1316941 1316946) (-802 "ODEEF.spad" 1309713 1309729 1314336 1314341) (-801 "ODECONST.spad" 1309232 1309250 1309703 1309708) (-800 "ODECAT.spad" 1307828 1307836 1309222 1309227) (-799 "OCT.spad" 1305966 1305976 1306682 1306721) (-798 "OCTCT2.spad" 1305610 1305631 1305956 1305961) (-797 "OC.spad" 1303384 1303394 1305566 1305605) (-796 "OC.spad" 1300883 1300895 1303067 1303072) (-795 "OCAMON.spad" 1300731 1300739 1300873 1300878) (-794 "OASGP.spad" 1300546 1300554 1300721 1300726) (-793 "OAMONS.spad" 1300066 1300074 1300536 1300541) (-792 "OAMON.spad" 1299927 1299935 1300056 1300061) (-791 "OAGROUP.spad" 1299789 1299797 1299917 1299922) (-790 "NUMTUBE.spad" 1299376 1299392 1299779 1299784) (-789 "NUMQUAD.spad" 1287238 1287246 1299366 1299371) (-788 "NUMODE.spad" 1278374 1278382 1287228 1287233) (-787 "NUMINT.spad" 1275932 1275940 1278364 1278369) (-786 "NUMFMT.spad" 1274772 1274780 1275922 1275927) (-785 "NUMERIC.spad" 1266844 1266854 1274577 1274582) (-784 "NTSCAT.spad" 1265346 1265362 1266812 1266839) (-783 "NTPOLFN.spad" 1264891 1264901 1265263 1265268) (-782 "NSUP.spad" 1257937 1257947 1262477 1262630) (-781 "NSUP2.spad" 1257329 1257341 1257927 1257932) (-780 "NSMP.spad" 1253560 1253579 1253868 1253995) (-779 "NREP.spad" 1251932 1251946 1253550 1253555) (-778 "NPCOEF.spad" 1251178 1251198 1251922 1251927) (-777 "NORMRETR.spad" 1250776 1250815 1251168 1251173) (-776 "NORMPK.spad" 1248678 1248697 1250766 1250771) (-775 "NORMMA.spad" 1248366 1248392 1248668 1248673) (-774 "NONE.spad" 1248107 1248115 1248356 1248361) (-773 "NONE1.spad" 1247783 1247793 1248097 1248102) (-772 "NODE1.spad" 1247252 1247268 1247773 1247778) (-771 "NNI.spad" 1246139 1246147 1247226 1247247) (-770 "NLINSOL.spad" 1244761 1244771 1246129 1246134) (-769 "NIPROB.spad" 1243302 1243310 1244751 1244756) (-768 "NFINTBAS.spad" 1240762 1240779 1243292 1243297) (-767 "NETCLT.spad" 1240736 1240747 1240752 1240757) (-766 "NCODIV.spad" 1238934 1238950 1240726 1240731) (-765 "NCNTFRAC.spad" 1238576 1238590 1238924 1238929) (-764 "NCEP.spad" 1236736 1236750 1238566 1238571) (-763 "NASRING.spad" 1236332 1236340 1236726 1236731) (-762 "NASRING.spad" 1235926 1235936 1236322 1236327) (-761 "NARNG.spad" 1235270 1235278 1235916 1235921) (-760 "NARNG.spad" 1234612 1234622 1235260 1235265) (-759 "NAGSP.spad" 1233685 1233693 1234602 1234607) (-758 "NAGS.spad" 1223210 1223218 1233675 1233680) (-757 "NAGF07.spad" 1221603 1221611 1223200 1223205) (-756 "NAGF04.spad" 1215835 1215843 1221593 1221598) (-755 "NAGF02.spad" 1209644 1209652 1215825 1215830) (-754 "NAGF01.spad" 1205247 1205255 1209634 1209639) (-753 "NAGE04.spad" 1198707 1198715 1205237 1205242) (-752 "NAGE02.spad" 1189049 1189057 1198697 1198702) (-751 "NAGE01.spad" 1184933 1184941 1189039 1189044) (-750 "NAGD03.spad" 1182853 1182861 1184923 1184928) (-749 "NAGD02.spad" 1175384 1175392 1182843 1182848) (-748 "NAGD01.spad" 1169497 1169505 1175374 1175379) (-747 "NAGC06.spad" 1165284 1165292 1169487 1169492) (-746 "NAGC05.spad" 1163753 1163761 1165274 1165279) (-745 "NAGC02.spad" 1163008 1163016 1163743 1163748) (-744 "NAALG.spad" 1162543 1162553 1162976 1163003) (-743 "NAALG.spad" 1162098 1162110 1162533 1162538) (-742 "MULTSQFR.spad" 1159056 1159073 1162088 1162093) (-741 "MULTFACT.spad" 1158439 1158456 1159046 1159051) (-740 "MTSCAT.spad" 1156473 1156494 1158337 1158434) (-739 "MTHING.spad" 1156130 1156140 1156463 1156468) (-738 "MSYSCMD.spad" 1155564 1155572 1156120 1156125) (-737 "MSET.spad" 1153506 1153516 1155270 1155309) (-736 "MSETAGG.spad" 1153351 1153361 1153474 1153501) (-735 "MRING.spad" 1150322 1150334 1153059 1153126) (-734 "MRF2.spad" 1149890 1149904 1150312 1150317) (-733 "MRATFAC.spad" 1149436 1149453 1149880 1149885) (-732 "MPRFF.spad" 1147466 1147485 1149426 1149431) (-731 "MPOLY.spad" 1144937 1144952 1145296 1145423) (-730 "MPCPF.spad" 1144201 1144220 1144927 1144932) (-729 "MPC3.spad" 1144016 1144056 1144191 1144196) (-728 "MPC2.spad" 1143658 1143691 1144006 1144011) (-727 "MONOTOOL.spad" 1141993 1142010 1143648 1143653) (-726 "MONOID.spad" 1141312 1141320 1141983 1141988) (-725 "MONOID.spad" 1140629 1140639 1141302 1141307) (-724 "MONOGEN.spad" 1139375 1139388 1140489 1140624) (-723 "MONOGEN.spad" 1138143 1138158 1139259 1139264) (-722 "MONADWU.spad" 1136157 1136165 1138133 1138138) (-721 "MONADWU.spad" 1134169 1134179 1136147 1136152) (-720 "MONAD.spad" 1133313 1133321 1134159 1134164) (-719 "MONAD.spad" 1132455 1132465 1133303 1133308) (-718 "MOEBIUS.spad" 1131141 1131155 1132435 1132450) (-717 "MODULE.spad" 1131011 1131021 1131109 1131136) (-716 "MODULE.spad" 1130901 1130913 1131001 1131006) (-715 "MODRING.spad" 1130232 1130271 1130881 1130896) (-714 "MODOP.spad" 1128891 1128903 1130054 1130121) (-713 "MODMONOM.spad" 1128620 1128638 1128881 1128886) (-712 "MODMON.spad" 1125415 1125431 1126134 1126287) (-711 "MODFIELD.spad" 1124773 1124812 1125317 1125410) (-710 "MMLFORM.spad" 1123633 1123641 1124763 1124768) (-709 "MMAP.spad" 1123373 1123407 1123623 1123628) (-708 "MLO.spad" 1121800 1121810 1123329 1123368) (-707 "MLIFT.spad" 1120372 1120389 1121790 1121795) (-706 "MKUCFUNC.spad" 1119905 1119923 1120362 1120367) (-705 "MKRECORD.spad" 1119507 1119520 1119895 1119900) (-704 "MKFUNC.spad" 1118888 1118898 1119497 1119502) (-703 "MKFLCFN.spad" 1117844 1117854 1118878 1118883) (-702 "MKBCFUNC.spad" 1117329 1117347 1117834 1117839) (-701 "MINT.spad" 1116768 1116776 1117231 1117324) (-700 "MHROWRED.spad" 1115269 1115279 1116758 1116763) (-699 "MFLOAT.spad" 1113785 1113793 1115159 1115264) (-698 "MFINFACT.spad" 1113185 1113207 1113775 1113780) (-697 "MESH.spad" 1110917 1110925 1113175 1113180) (-696 "MDDFACT.spad" 1109110 1109120 1110907 1110912) (-695 "MDAGG.spad" 1108397 1108407 1109090 1109105) (-694 "MCMPLX.spad" 1104408 1104416 1105022 1105223) (-693 "MCDEN.spad" 1103616 1103628 1104398 1104403) (-692 "MCALCFN.spad" 1100718 1100744 1103606 1103611) (-691 "MAYBE.spad" 1100002 1100013 1100708 1100713) (-690 "MATSTOR.spad" 1097278 1097288 1099992 1099997) (-689 "MATRIX.spad" 1095982 1095992 1096466 1096493) (-688 "MATLIN.spad" 1093308 1093332 1095866 1095871) (-687 "MATCAT.spad" 1084893 1084915 1093276 1093303) (-686 "MATCAT.spad" 1076350 1076374 1084735 1084740) (-685 "MATCAT2.spad" 1075618 1075666 1076340 1076345) (-684 "MAPPKG3.spad" 1074517 1074531 1075608 1075613) (-683 "MAPPKG2.spad" 1073851 1073863 1074507 1074512) (-682 "MAPPKG1.spad" 1072669 1072679 1073841 1073846) (-681 "MAPPAST.spad" 1071982 1071990 1072659 1072664) (-680 "MAPHACK3.spad" 1071790 1071804 1071972 1071977) (-679 "MAPHACK2.spad" 1071555 1071567 1071780 1071785) (-678 "MAPHACK1.spad" 1071185 1071195 1071545 1071550) (-677 "MAGMA.spad" 1068975 1068992 1071175 1071180) (-676 "MACROAST.spad" 1068554 1068562 1068965 1068970) (-675 "M3D.spad" 1066250 1066260 1067932 1067937) (-674 "LZSTAGG.spad" 1063478 1063488 1066240 1066245) (-673 "LZSTAGG.spad" 1060704 1060716 1063468 1063473) (-672 "LWORD.spad" 1057409 1057426 1060694 1060699) (-671 "LSTAST.spad" 1057193 1057201 1057399 1057404) (-670 "LSQM.spad" 1055419 1055433 1055817 1055868) (-669 "LSPP.spad" 1054952 1054969 1055409 1055414) (-668 "LSMP.spad" 1053792 1053820 1054942 1054947) (-667 "LSMP1.spad" 1051596 1051610 1053782 1053787) (-666 "LSAGG.spad" 1051265 1051275 1051564 1051591) (-665 "LSAGG.spad" 1050954 1050966 1051255 1051260) (-664 "LPOLY.spad" 1049908 1049927 1050810 1050879) (-663 "LPEFRAC.spad" 1049165 1049175 1049898 1049903) (-662 "LO.spad" 1048566 1048580 1049099 1049126) (-661 "LOGIC.spad" 1048168 1048176 1048556 1048561) (-660 "LOGIC.spad" 1047768 1047778 1048158 1048163) (-659 "LODOOPS.spad" 1046686 1046698 1047758 1047763) (-658 "LODO.spad" 1046070 1046086 1046366 1046405) (-657 "LODOF.spad" 1045114 1045131 1046027 1046032) (-656 "LODOCAT.spad" 1043772 1043782 1045070 1045109) (-655 "LODOCAT.spad" 1042428 1042440 1043728 1043733) (-654 "LODO2.spad" 1041701 1041713 1042108 1042147) (-653 "LODO1.spad" 1041101 1041111 1041381 1041420) (-652 "LODEEF.spad" 1039873 1039891 1041091 1041096) (-651 "LNAGG.spad" 1035675 1035685 1039863 1039868) (-650 "LNAGG.spad" 1031441 1031453 1035631 1035636) (-649 "LMOPS.spad" 1028177 1028194 1031431 1031436) (-648 "LMODULE.spad" 1027945 1027955 1028167 1028172) (-647 "LMDICT.spad" 1027228 1027238 1027496 1027523) (-646 "LLINSET.spad" 1026625 1026635 1027218 1027223) (-645 "LITERAL.spad" 1026531 1026542 1026615 1026620) (-644 "LIST.spad" 1024249 1024259 1025678 1025705) (-643 "LIST3.spad" 1023540 1023554 1024239 1024244) (-642 "LIST2.spad" 1022180 1022192 1023530 1023535) (-641 "LIST2MAP.spad" 1019057 1019069 1022170 1022175) (-640 "LINSET.spad" 1018679 1018689 1019047 1019052) (-639 "LINEXP.spad" 1018111 1018121 1018659 1018674) (-638 "LINDEP.spad" 1016888 1016900 1018023 1018028) (-637 "LIMITRF.spad" 1014802 1014812 1016878 1016883) (-636 "LIMITPS.spad" 1013685 1013698 1014792 1014797) (-635 "LIE.spad" 1011699 1011711 1012975 1013120) (-634 "LIECAT.spad" 1011175 1011185 1011625 1011694) (-633 "LIECAT.spad" 1010679 1010691 1011131 1011136) (-632 "LIB.spad" 1008727 1008735 1009338 1009353) (-631 "LGROBP.spad" 1006080 1006099 1008717 1008722) (-630 "LF.spad" 1004999 1005015 1006070 1006075) (-629 "LFCAT.spad" 1004018 1004026 1004989 1004994) (-628 "LEXTRIPK.spad" 999521 999536 1004008 1004013) (-627 "LEXP.spad" 997524 997551 999501 999516) (-626 "LETAST.spad" 997223 997231 997514 997519) (-625 "LEADCDET.spad" 995607 995624 997213 997218) (-624 "LAZM3PK.spad" 994311 994333 995597 995602) (-623 "LAUPOL.spad" 993000 993013 993904 993973) (-622 "LAPLACE.spad" 992573 992589 992990 992995) (-621 "LA.spad" 992013 992027 992495 992534) (-620 "LALG.spad" 991789 991799 991993 992008) (-619 "LALG.spad" 991573 991585 991779 991784) (-618 "KVTFROM.spad" 991308 991318 991563 991568) (-617 "KTVLOGIC.spad" 990820 990828 991298 991303) (-616 "KRCFROM.spad" 990558 990568 990810 990815) (-615 "KOVACIC.spad" 989271 989288 990548 990553) (-614 "KONVERT.spad" 988993 989003 989261 989266) (-613 "KOERCE.spad" 988730 988740 988983 988988) (-612 "KERNEL.spad" 987265 987275 988514 988519) (-611 "KERNEL2.spad" 986968 986980 987255 987260) (-610 "KDAGG.spad" 986071 986093 986948 986963) (-609 "KDAGG.spad" 985182 985206 986061 986066) (-608 "KAFILE.spad" 984145 984161 984380 984407) (-607 "JORDAN.spad" 981972 981984 983435 983580) (-606 "JOINAST.spad" 981666 981674 981962 981967) (-605 "JAVACODE.spad" 981532 981540 981656 981661) (-604 "IXAGG.spad" 979655 979679 981522 981527) (-603 "IXAGG.spad" 977633 977659 979502 979507) (-602 "IVECTOR.spad" 976403 976418 976558 976585) (-601 "ITUPLE.spad" 975548 975558 976393 976398) (-600 "ITRIGMNP.spad" 974359 974378 975538 975543) (-599 "ITFUN3.spad" 973853 973867 974349 974354) (-598 "ITFUN2.spad" 973583 973595 973843 973848) (-597 "ITAYLOR.spad" 971375 971390 973419 973544) (-596 "ISUPS.spad" 963786 963801 970349 970446) (-595 "ISUMP.spad" 963283 963299 963776 963781) (-594 "ISTRING.spad" 962286 962299 962452 962479) (-593 "ISAST.spad" 962005 962013 962276 962281) (-592 "IRURPK.spad" 960718 960737 961995 962000) (-591 "IRSN.spad" 958678 958686 960708 960713) (-590 "IRRF2F.spad" 957153 957163 958634 958639) (-589 "IRREDFFX.spad" 956754 956765 957143 957148) (-588 "IROOT.spad" 955085 955095 956744 956749) (-587 "IR.spad" 952874 952888 954940 954967) (-586 "IR2.spad" 951894 951910 952864 952869) (-585 "IR2F.spad" 951094 951110 951884 951889) (-584 "IPRNTPK.spad" 950854 950862 951084 951089) (-583 "IPF.spad" 950419 950431 950659 950752) (-582 "IPADIC.spad" 950180 950206 950345 950414) (-581 "IP4ADDR.spad" 949737 949745 950170 950175) (-580 "IOMODE.spad" 949358 949366 949727 949732) (-579 "IOBFILE.spad" 948719 948727 949348 949353) (-578 "IOBCON.spad" 948584 948592 948709 948714) (-577 "INVLAPLA.spad" 948229 948245 948574 948579) (-576 "INTTR.spad" 941475 941492 948219 948224) (-575 "INTTOOLS.spad" 939186 939202 941049 941054) (-574 "INTSLPE.spad" 938492 938500 939176 939181) (-573 "INTRVL.spad" 938058 938068 938406 938487) (-572 "INTRF.spad" 936422 936436 938048 938053) (-571 "INTRET.spad" 935854 935864 936412 936417) (-570 "INTRAT.spad" 934529 934546 935844 935849) (-569 "INTPM.spad" 932892 932908 934172 934177) (-568 "INTPAF.spad" 930660 930678 932824 932829) (-567 "INTPACK.spad" 920970 920978 930650 930655) (-566 "INT.spad" 920331 920339 920824 920965) (-565 "INTHERTR.spad" 919597 919614 920321 920326) (-564 "INTHERAL.spad" 919263 919287 919587 919592) (-563 "INTHEORY.spad" 915676 915684 919253 919258) (-562 "INTG0.spad" 909139 909157 915608 915613) (-561 "INTFTBL.spad" 903168 903176 909129 909134) (-560 "INTFACT.spad" 902227 902237 903158 903163) (-559 "INTEF.spad" 900542 900558 902217 902222) (-558 "INTDOM.spad" 899157 899165 900468 900537) (-557 "INTDOM.spad" 897834 897844 899147 899152) (-556 "INTCAT.spad" 896087 896097 897748 897829) (-555 "INTBIT.spad" 895590 895598 896077 896082) (-554 "INTALG.spad" 894772 894799 895580 895585) (-553 "INTAF.spad" 894264 894280 894762 894767) (-552 "INTABL.spad" 892782 892813 892945 892972) (-551 "INT8.spad" 892662 892670 892772 892777) (-550 "INT64.spad" 892541 892549 892652 892657) (-549 "INT32.spad" 892420 892428 892531 892536) (-548 "INT16.spad" 892299 892307 892410 892415) (-547 "INS.spad" 889766 889774 892201 892294) (-546 "INS.spad" 887319 887329 889756 889761) (-545 "INPSIGN.spad" 886753 886766 887309 887314) (-544 "INPRODPF.spad" 885819 885838 886743 886748) (-543 "INPRODFF.spad" 884877 884901 885809 885814) (-542 "INNMFACT.spad" 883848 883865 884867 884872) (-541 "INMODGCD.spad" 883332 883362 883838 883843) (-540 "INFSP.spad" 881617 881639 883322 883327) (-539 "INFPROD0.spad" 880667 880686 881607 881612) (-538 "INFORM.spad" 877828 877836 880657 880662) (-537 "INFORM1.spad" 877453 877463 877818 877823) (-536 "INFINITY.spad" 877005 877013 877443 877448) (-535 "INETCLTS.spad" 876982 876990 876995 877000) (-534 "INEP.spad" 875514 875536 876972 876977) (-533 "INDE.spad" 875243 875260 875504 875509) (-532 "INCRMAPS.spad" 874664 874674 875233 875238) (-531 "INBFILE.spad" 873736 873744 874654 874659) (-530 "INBFF.spad" 869506 869517 873726 873731) (-529 "INBCON.spad" 867794 867802 869496 869501) (-528 "INBCON.spad" 866080 866090 867784 867789) (-527 "INAST.spad" 865741 865749 866070 866075) (-526 "IMPTAST.spad" 865449 865457 865731 865736) (-525 "IMATRIX.spad" 864394 864420 864906 864933) (-524 "IMATQF.spad" 863488 863532 864350 864355) (-523 "IMATLIN.spad" 862093 862117 863444 863449) (-522 "ILIST.spad" 860749 860764 861276 861303) (-521 "IIARRAY2.spad" 860137 860175 860356 860383) (-520 "IFF.spad" 859547 859563 859818 859911) (-519 "IFAST.spad" 859161 859169 859537 859542) (-518 "IFARRAY.spad" 856648 856663 858344 858371) (-517 "IFAMON.spad" 856510 856527 856604 856609) (-516 "IEVALAB.spad" 855899 855911 856500 856505) (-515 "IEVALAB.spad" 855286 855300 855889 855894) (-514 "IDPO.spad" 855084 855096 855276 855281) (-513 "IDPOAMS.spad" 854840 854852 855074 855079) (-512 "IDPOAM.spad" 854560 854572 854830 854835) (-511 "IDPC.spad" 853494 853506 854550 854555) (-510 "IDPAM.spad" 853239 853251 853484 853489) (-509 "IDPAG.spad" 852986 852998 853229 853234) (-508 "IDENT.spad" 852636 852644 852976 852981) (-507 "IDECOMP.spad" 849873 849891 852626 852631) (-506 "IDEAL.spad" 844796 844835 849808 849813) (-505 "ICDEN.spad" 843947 843963 844786 844791) (-504 "ICARD.spad" 843136 843144 843937 843942) (-503 "IBPTOOLS.spad" 841729 841746 843126 843131) (-502 "IBITS.spad" 840928 840941 841365 841392) (-501 "IBATOOL.spad" 837803 837822 840918 840923) (-500 "IBACHIN.spad" 836290 836305 837793 837798) (-499 "IARRAY2.spad" 835278 835304 835897 835924) (-498 "IARRAY1.spad" 834323 834338 834461 834488) (-497 "IAN.spad" 832536 832544 834139 834232) (-496 "IALGFACT.spad" 832137 832170 832526 832531) (-495 "HYPCAT.spad" 831561 831569 832127 832132) (-494 "HYPCAT.spad" 830983 830993 831551 831556) (-493 "HOSTNAME.spad" 830791 830799 830973 830978) (-492 "HOMOTOP.spad" 830534 830544 830781 830786) (-491 "HOAGG.spad" 827802 827812 830524 830529) (-490 "HOAGG.spad" 824845 824857 827569 827574) (-489 "HEXADEC.spad" 822947 822955 823312 823405) (-488 "HEUGCD.spad" 821962 821973 822937 822942) (-487 "HELLFDIV.spad" 821552 821576 821952 821957) (-486 "HEAP.spad" 820944 820954 821159 821186) (-485 "HEADAST.spad" 820475 820483 820934 820939) (-484 "HDP.spad" 810318 810334 810695 810826) (-483 "HDMP.spad" 807530 807545 808148 808275) (-482 "HB.spad" 805767 805775 807520 807525) (-481 "HASHTBL.spad" 804237 804268 804448 804475) (-480 "HASAST.spad" 803953 803961 804227 804232) (-479 "HACKPI.spad" 803436 803444 803855 803948) (-478 "GTSET.spad" 802375 802391 803082 803109) (-477 "GSTBL.spad" 800894 800929 801068 801083) (-476 "GSERIES.spad" 798061 798088 799026 799175) (-475 "GROUP.spad" 797330 797338 798041 798056) (-474 "GROUP.spad" 796607 796617 797320 797325) (-473 "GROEBSOL.spad" 795095 795116 796597 796602) (-472 "GRMOD.spad" 793666 793678 795085 795090) (-471 "GRMOD.spad" 792235 792249 793656 793661) (-470 "GRIMAGE.spad" 784840 784848 792225 792230) (-469 "GRDEF.spad" 783219 783227 784830 784835) (-468 "GRAY.spad" 781678 781686 783209 783214) (-467 "GRALG.spad" 780725 780737 781668 781673) (-466 "GRALG.spad" 779770 779784 780715 780720) (-465 "GPOLSET.spad" 779224 779247 779452 779479) (-464 "GOSPER.spad" 778489 778507 779214 779219) (-463 "GMODPOL.spad" 777627 777654 778457 778484) (-462 "GHENSEL.spad" 776696 776710 777617 777622) (-461 "GENUPS.spad" 772797 772810 776686 776691) (-460 "GENUFACT.spad" 772374 772384 772787 772792) (-459 "GENPGCD.spad" 771958 771975 772364 772369) (-458 "GENMFACT.spad" 771410 771429 771948 771953) (-457 "GENEEZ.spad" 769349 769362 771400 771405) (-456 "GDMP.spad" 766403 766420 767179 767306) (-455 "GCNAALG.spad" 760298 760325 766197 766264) (-454 "GCDDOM.spad" 759470 759478 760224 760293) (-453 "GCDDOM.spad" 758704 758714 759460 759465) (-452 "GB.spad" 756222 756260 758660 758665) (-451 "GBINTERN.spad" 752242 752280 756212 756217) (-450 "GBF.spad" 747999 748037 752232 752237) (-449 "GBEUCLID.spad" 745873 745911 747989 747994) (-448 "GAUSSFAC.spad" 745170 745178 745863 745868) (-447 "GALUTIL.spad" 743492 743502 745126 745131) (-446 "GALPOLYU.spad" 741938 741951 743482 743487) (-445 "GALFACTU.spad" 740103 740122 741928 741933) (-444 "GALFACT.spad" 730236 730247 740093 740098) (-443 "FVFUN.spad" 727259 727267 730226 730231) (-442 "FVC.spad" 726311 726319 727249 727254) (-441 "FUNDESC.spad" 725989 725997 726301 726306) (-440 "FUNCTION.spad" 725838 725850 725979 725984) (-439 "FT.spad" 724131 724139 725828 725833) (-438 "FTEM.spad" 723294 723302 724121 724126) (-437 "FSUPFACT.spad" 722194 722213 723230 723235) (-436 "FST.spad" 720280 720288 722184 722189) (-435 "FSRED.spad" 719758 719774 720270 720275) (-434 "FSPRMELT.spad" 718582 718598 719715 719720) (-433 "FSPECF.spad" 716659 716675 718572 718577) (-432 "FS.spad" 710721 710731 716434 716654) (-431 "FS.spad" 704561 704573 710276 710281) (-430 "FSINT.spad" 704219 704235 704551 704556) (-429 "FSERIES.spad" 703406 703418 704039 704138) (-428 "FSCINT.spad" 702719 702735 703396 703401) (-427 "FSAGG.spad" 701836 701846 702675 702714) (-426 "FSAGG.spad" 700915 700927 701756 701761) (-425 "FSAGG2.spad" 699614 699630 700905 700910) (-424 "FS2UPS.spad" 694097 694131 699604 699609) (-423 "FS2.spad" 693742 693758 694087 694092) (-422 "FS2EXPXP.spad" 692865 692888 693732 693737) (-421 "FRUTIL.spad" 691807 691817 692855 692860) (-420 "FR.spad" 685501 685511 690831 690900) (-419 "FRNAALG.spad" 680588 680598 685443 685496) (-418 "FRNAALG.spad" 675687 675699 680544 680549) (-417 "FRNAAF2.spad" 675141 675159 675677 675682) (-416 "FRMOD.spad" 674535 674565 675072 675077) (-415 "FRIDEAL.spad" 673730 673751 674515 674530) (-414 "FRIDEAL2.spad" 673332 673364 673720 673725) (-413 "FRETRCT.spad" 672843 672853 673322 673327) (-412 "FRETRCT.spad" 672220 672232 672701 672706) (-411 "FRAMALG.spad" 670548 670561 672176 672215) (-410 "FRAMALG.spad" 668908 668923 670538 670543) (-409 "FRAC.spad" 666007 666017 666410 666583) (-408 "FRAC2.spad" 665610 665622 665997 666002) (-407 "FR2.spad" 664944 664956 665600 665605) (-406 "FPS.spad" 661753 661761 664834 664939) (-405 "FPS.spad" 658590 658600 661673 661678) (-404 "FPC.spad" 657632 657640 658492 658585) (-403 "FPC.spad" 656760 656770 657622 657627) (-402 "FPATMAB.spad" 656522 656532 656750 656755) (-401 "FPARFRAC.spad" 654995 655012 656512 656517) (-400 "FORTRAN.spad" 653501 653544 654985 654990) (-399 "FORT.spad" 652430 652438 653491 653496) (-398 "FORTFN.spad" 649600 649608 652420 652425) (-397 "FORTCAT.spad" 649284 649292 649590 649595) (-396 "FORMULA.spad" 646748 646756 649274 649279) (-395 "FORMULA1.spad" 646227 646237 646738 646743) (-394 "FORDER.spad" 645918 645942 646217 646222) (-393 "FOP.spad" 645119 645127 645908 645913) (-392 "FNLA.spad" 644543 644565 645087 645114) (-391 "FNCAT.spad" 643130 643138 644533 644538) (-390 "FNAME.spad" 643022 643030 643120 643125) (-389 "FMTC.spad" 642820 642828 642948 643017) (-388 "FMONOID.spad" 639875 639885 642776 642781) (-387 "FM.spad" 639570 639582 639809 639836) (-386 "FMFUN.spad" 636600 636608 639560 639565) (-385 "FMC.spad" 635652 635660 636590 636595) (-384 "FMCAT.spad" 633306 633324 635620 635647) (-383 "FM1.spad" 632663 632675 633240 633267) (-382 "FLOATRP.spad" 630384 630398 632653 632658) (-381 "FLOAT.spad" 623672 623680 630250 630379) (-380 "FLOATCP.spad" 621089 621103 623662 623667) (-379 "FLINEXP.spad" 620801 620811 621069 621084) (-378 "FLINEXP.spad" 620467 620479 620737 620742) (-377 "FLASORT.spad" 619787 619799 620457 620462) (-376 "FLALG.spad" 617433 617452 619713 619782) (-375 "FLAGG.spad" 614451 614461 617413 617428) (-374 "FLAGG.spad" 611370 611382 614334 614339) (-373 "FLAGG2.spad" 610051 610067 611360 611365) (-372 "FINRALG.spad" 608080 608093 610007 610046) (-371 "FINRALG.spad" 606035 606050 607964 607969) (-370 "FINITE.spad" 605187 605195 606025 606030) (-369 "FINAALG.spad" 594168 594178 605129 605182) (-368 "FINAALG.spad" 583161 583173 594124 594129) (-367 "FILE.spad" 582744 582754 583151 583156) (-366 "FILECAT.spad" 581262 581279 582734 582739) (-365 "FIELD.spad" 580668 580676 581164 581257) (-364 "FIELD.spad" 580160 580170 580658 580663) (-363 "FGROUP.spad" 578769 578779 580140 580155) (-362 "FGLMICPK.spad" 577556 577571 578759 578764) (-361 "FFX.spad" 576931 576946 577272 577365) (-360 "FFSLPE.spad" 576420 576441 576921 576926) (-359 "FFPOLY.spad" 567672 567683 576410 576415) (-358 "FFPOLY2.spad" 566732 566749 567662 567667) (-357 "FFP.spad" 566129 566149 566448 566541) (-356 "FF.spad" 565577 565593 565810 565903) (-355 "FFNBX.spad" 564089 564109 565293 565386) (-354 "FFNBP.spad" 562602 562619 563805 563898) (-353 "FFNB.spad" 561067 561088 562283 562376) (-352 "FFINTBAS.spad" 558481 558500 561057 561062) (-351 "FFIELDC.spad" 556056 556064 558383 558476) (-350 "FFIELDC.spad" 553717 553727 556046 556051) (-349 "FFHOM.spad" 552465 552482 553707 553712) (-348 "FFF.spad" 549900 549911 552455 552460) (-347 "FFCGX.spad" 548747 548767 549616 549709) (-346 "FFCGP.spad" 547636 547656 548463 548556) (-345 "FFCG.spad" 546428 546449 547317 547410) (-344 "FFCAT.spad" 539455 539477 546267 546423) (-343 "FFCAT.spad" 532561 532585 539375 539380) (-342 "FFCAT2.spad" 532306 532346 532551 532556) (-341 "FEXPR.spad" 524015 524061 532062 532101) (-340 "FEVALAB.spad" 523721 523731 524005 524010) (-339 "FEVALAB.spad" 523212 523224 523498 523503) (-338 "FDIV.spad" 522654 522678 523202 523207) (-337 "FDIVCAT.spad" 520696 520720 522644 522649) (-336 "FDIVCAT.spad" 518736 518762 520686 520691) (-335 "FDIV2.spad" 518390 518430 518726 518731) (-334 "FCTRDATA.spad" 517422 517430 518380 518385) (-333 "FCPAK1.spad" 515975 515983 517412 517417) (-332 "FCOMP.spad" 515354 515364 515965 515970) (-331 "FC.spad" 505269 505277 515344 515349) (-330 "FAXF.spad" 498204 498218 505171 505264) (-329 "FAXF.spad" 491191 491207 498160 498165) (-328 "FARRAY.spad" 489337 489347 490374 490401) (-327 "FAMR.spad" 487457 487469 489235 489332) (-326 "FAMR.spad" 485561 485575 487341 487346) (-325 "FAMONOID.spad" 485211 485221 485515 485520) (-324 "FAMONC.spad" 483433 483445 485201 485206) (-323 "FAGROUP.spad" 483039 483049 483329 483356) (-322 "FACUTIL.spad" 481235 481252 483029 483034) (-321 "FACTFUNC.spad" 480411 480421 481225 481230) (-320 "EXPUPXS.spad" 477244 477267 478543 478692) (-319 "EXPRTUBE.spad" 474472 474480 477234 477239) (-318 "EXPRODE.spad" 471344 471360 474462 474467) (-317 "EXPR.spad" 466619 466629 467333 467740) (-316 "EXPR2UPS.spad" 462711 462724 466609 466614) (-315 "EXPR2.spad" 462414 462426 462701 462706) (-314 "EXPEXPAN.spad" 459352 459377 459986 460079) (-313 "EXIT.spad" 459023 459031 459342 459347) (-312 "EXITAST.spad" 458759 458767 459013 459018) (-311 "EVALCYC.spad" 458217 458231 458749 458754) (-310 "EVALAB.spad" 457781 457791 458207 458212) (-309 "EVALAB.spad" 457343 457355 457771 457776) (-308 "EUCDOM.spad" 454885 454893 457269 457338) (-307 "EUCDOM.spad" 452489 452499 454875 454880) (-306 "ESTOOLS.spad" 444329 444337 452479 452484) (-305 "ESTOOLS2.spad" 443930 443944 444319 444324) (-304 "ESTOOLS1.spad" 443615 443626 443920 443925) (-303 "ES.spad" 436162 436170 443605 443610) (-302 "ES.spad" 428615 428625 436060 436065) (-301 "ESCONT.spad" 425388 425396 428605 428610) (-300 "ESCONT1.spad" 425137 425149 425378 425383) (-299 "ES2.spad" 424632 424648 425127 425132) (-298 "ES1.spad" 424198 424214 424622 424627) (-297 "ERROR.spad" 421519 421527 424188 424193) (-296 "EQTBL.spad" 419991 420013 420200 420227) (-295 "EQ.spad" 414784 414794 417583 417695) (-294 "EQ2.spad" 414500 414512 414774 414779) (-293 "EP.spad" 410814 410824 414490 414495) (-292 "ENV.spad" 409466 409474 410804 410809) (-291 "ENTIRER.spad" 409134 409142 409410 409461) (-290 "EMR.spad" 408335 408376 409060 409129) (-289 "ELTAGG.spad" 406575 406594 408325 408330) (-288 "ELTAGG.spad" 404779 404800 406531 406536) (-287 "ELTAB.spad" 404226 404244 404769 404774) (-286 "ELFUTS.spad" 403605 403624 404216 404221) (-285 "ELEMFUN.spad" 403294 403302 403595 403600) (-284 "ELEMFUN.spad" 402981 402991 403284 403289) (-283 "ELAGG.spad" 400924 400934 402961 402976) (-282 "ELAGG.spad" 398804 398816 400843 400848) (-281 "ELABEXPR.spad" 397727 397735 398794 398799) (-280 "EFUPXS.spad" 394503 394533 397683 397688) (-279 "EFULS.spad" 391339 391362 394459 394464) (-278 "EFSTRUC.spad" 389294 389310 391329 391334) (-277 "EF.spad" 384060 384076 389284 389289) (-276 "EAB.spad" 382336 382344 384050 384055) (-275 "E04UCFA.spad" 381872 381880 382326 382331) (-274 "E04NAFA.spad" 381449 381457 381862 381867) (-273 "E04MBFA.spad" 381029 381037 381439 381444) (-272 "E04JAFA.spad" 380565 380573 381019 381024) (-271 "E04GCFA.spad" 380101 380109 380555 380560) (-270 "E04FDFA.spad" 379637 379645 380091 380096) (-269 "E04DGFA.spad" 379173 379181 379627 379632) (-268 "E04AGNT.spad" 375015 375023 379163 379168) (-267 "DVARCAT.spad" 371700 371710 375005 375010) (-266 "DVARCAT.spad" 368383 368395 371690 371695) (-265 "DSMP.spad" 365850 365864 366155 366282) (-264 "DROPT.spad" 359795 359803 365840 365845) (-263 "DROPT1.spad" 359458 359468 359785 359790) (-262 "DROPT0.spad" 354285 354293 359448 359453) (-261 "DRAWPT.spad" 352440 352448 354275 354280) (-260 "DRAW.spad" 345040 345053 352430 352435) (-259 "DRAWHACK.spad" 344348 344358 345030 345035) (-258 "DRAWCX.spad" 341790 341798 344338 344343) (-257 "DRAWCURV.spad" 341327 341342 341780 341785) (-256 "DRAWCFUN.spad" 330499 330507 341317 341322) (-255 "DQAGG.spad" 328667 328677 330467 330494) (-254 "DPOLCAT.spad" 324008 324024 328535 328662) (-253 "DPOLCAT.spad" 319435 319453 323964 323969) (-252 "DPMO.spad" 311661 311677 311799 312100) (-251 "DPMM.spad" 303900 303918 304025 304326) (-250 "DOMTMPLT.spad" 303560 303568 303890 303895) (-249 "DOMCTOR.spad" 303315 303323 303550 303555) (-248 "DOMAIN.spad" 302446 302454 303305 303310) (-247 "DMP.spad" 299704 299719 300276 300403) (-246 "DLP.spad" 299052 299062 299694 299699) (-245 "DLIST.spad" 297631 297641 298235 298262) (-244 "DLAGG.spad" 296042 296052 297621 297626) (-243 "DIVRING.spad" 295584 295592 295986 296037) (-242 "DIVRING.spad" 295170 295180 295574 295579) (-241 "DISPLAY.spad" 293350 293358 295160 295165) (-240 "DIRPROD.spad" 282930 282946 283570 283701) (-239 "DIRPROD2.spad" 281738 281756 282920 282925) (-238 "DIRPCAT.spad" 280680 280696 281602 281733) (-237 "DIRPCAT.spad" 279351 279369 280275 280280) (-236 "DIOSP.spad" 278176 278184 279341 279346) (-235 "DIOPS.spad" 277160 277170 278156 278171) (-234 "DIOPS.spad" 276118 276130 277116 277121) (-233 "DIFRING.spad" 275410 275418 276098 276113) (-232 "DIFRING.spad" 274710 274720 275400 275405) (-231 "DIFEXT.spad" 273869 273879 274690 274705) (-230 "DIFEXT.spad" 272945 272957 273768 273773) (-229 "DIAGG.spad" 272575 272585 272925 272940) (-228 "DIAGG.spad" 272213 272225 272565 272570) (-227 "DHMATRIX.spad" 270517 270527 271670 271697) (-226 "DFSFUN.spad" 263925 263933 270507 270512) (-225 "DFLOAT.spad" 260646 260654 263815 263920) (-224 "DFINTTLS.spad" 258855 258871 260636 260641) (-223 "DERHAM.spad" 256765 256797 258835 258850) (-222 "DEQUEUE.spad" 256083 256093 256372 256399) (-221 "DEGRED.spad" 255698 255712 256073 256078) (-220 "DEFINTRF.spad" 253223 253233 255688 255693) (-219 "DEFINTEF.spad" 251719 251735 253213 253218) (-218 "DEFAST.spad" 251087 251095 251709 251714) (-217 "DECIMAL.spad" 249193 249201 249554 249647) (-216 "DDFACT.spad" 246992 247009 249183 249188) (-215 "DBLRESP.spad" 246590 246614 246982 246987) (-214 "DBASE.spad" 245244 245254 246580 246585) (-213 "DATAARY.spad" 244706 244719 245234 245239) (-212 "D03FAFA.spad" 244534 244542 244696 244701) (-211 "D03EEFA.spad" 244354 244362 244524 244529) (-210 "D03AGNT.spad" 243434 243442 244344 244349) (-209 "D02EJFA.spad" 242896 242904 243424 243429) (-208 "D02CJFA.spad" 242374 242382 242886 242891) (-207 "D02BHFA.spad" 241864 241872 242364 242369) (-206 "D02BBFA.spad" 241354 241362 241854 241859) (-205 "D02AGNT.spad" 236158 236166 241344 241349) (-204 "D01WGTS.spad" 234477 234485 236148 236153) (-203 "D01TRNS.spad" 234454 234462 234467 234472) (-202 "D01GBFA.spad" 233976 233984 234444 234449) (-201 "D01FCFA.spad" 233498 233506 233966 233971) (-200 "D01ASFA.spad" 232966 232974 233488 233493) (-199 "D01AQFA.spad" 232412 232420 232956 232961) (-198 "D01APFA.spad" 231836 231844 232402 232407) (-197 "D01ANFA.spad" 231330 231338 231826 231831) (-196 "D01AMFA.spad" 230840 230848 231320 231325) (-195 "D01ALFA.spad" 230380 230388 230830 230835) (-194 "D01AKFA.spad" 229906 229914 230370 230375) (-193 "D01AJFA.spad" 229429 229437 229896 229901) (-192 "D01AGNT.spad" 225488 225496 229419 229424) (-191 "CYCLOTOM.spad" 224994 225002 225478 225483) (-190 "CYCLES.spad" 221826 221834 224984 224989) (-189 "CVMP.spad" 221243 221253 221816 221821) (-188 "CTRIGMNP.spad" 219733 219749 221233 221238) (-187 "CTOR.spad" 219424 219432 219723 219728) (-186 "CTORKIND.spad" 219027 219035 219414 219419) (-185 "CTORCAT.spad" 218276 218284 219017 219022) (-184 "CTORCAT.spad" 217523 217533 218266 218271) (-183 "CTORCALL.spad" 217103 217111 217513 217518) (-182 "CSTTOOLS.spad" 216346 216359 217093 217098) (-181 "CRFP.spad" 210050 210063 216336 216341) (-180 "CRCEAST.spad" 209770 209778 210040 210045) (-179 "CRAPACK.spad" 208813 208823 209760 209765) (-178 "CPMATCH.spad" 208313 208328 208738 208743) (-177 "CPIMA.spad" 208018 208037 208303 208308) (-176 "COORDSYS.spad" 202911 202921 208008 208013) (-175 "CONTOUR.spad" 202318 202326 202901 202906) (-174 "CONTFRAC.spad" 197930 197940 202220 202313) (-173 "CONDUIT.spad" 197688 197696 197920 197925) (-172 "COMRING.spad" 197362 197370 197626 197683) (-171 "COMPPROP.spad" 196876 196884 197352 197357) (-170 "COMPLPAT.spad" 196643 196658 196866 196871) (-169 "COMPLEX.spad" 190780 190790 191024 191285) (-168 "COMPLEX2.spad" 190493 190505 190770 190775) (-167 "COMPFACT.spad" 190095 190109 190483 190488) (-166 "COMPCAT.spad" 188163 188173 189829 190090) (-165 "COMPCAT.spad" 185959 185971 187627 187632) (-164 "COMMUPC.spad" 185705 185723 185949 185954) (-163 "COMMONOP.spad" 185238 185246 185695 185700) (-162 "COMM.spad" 185047 185055 185228 185233) (-161 "COMMAAST.spad" 184810 184818 185037 185042) (-160 "COMBOPC.spad" 183715 183723 184800 184805) (-159 "COMBINAT.spad" 182460 182470 183705 183710) (-158 "COMBF.spad" 179828 179844 182450 182455) (-157 "COLOR.spad" 178665 178673 179818 179823) (-156 "COLONAST.spad" 178331 178339 178655 178660) (-155 "CMPLXRT.spad" 178040 178057 178321 178326) (-154 "CLLCTAST.spad" 177702 177710 178030 178035) (-153 "CLIP.spad" 173794 173802 177692 177697) (-152 "CLIF.spad" 172433 172449 173750 173789) (-151 "CLAGG.spad" 168918 168928 172423 172428) (-150 "CLAGG.spad" 165274 165286 168781 168786) (-149 "CINTSLPE.spad" 164599 164612 165264 165269) (-148 "CHVAR.spad" 162677 162699 164589 164594) (-147 "CHARZ.spad" 162592 162600 162657 162672) (-146 "CHARPOL.spad" 162100 162110 162582 162587) (-145 "CHARNZ.spad" 161853 161861 162080 162095) (-144 "CHAR.spad" 159721 159729 161843 161848) (-143 "CFCAT.spad" 159037 159045 159711 159716) (-142 "CDEN.spad" 158195 158209 159027 159032) (-141 "CCLASS.spad" 156344 156352 157606 157645) (-140 "CATEGORY.spad" 155434 155442 156334 156339) (-139 "CATCTOR.spad" 155325 155333 155424 155429) (-138 "CATAST.spad" 154943 154951 155315 155320) (-137 "CASEAST.spad" 154657 154665 154933 154938) (-136 "CARTEN.spad" 149760 149784 154647 154652) (-135 "CARTEN2.spad" 149146 149173 149750 149755) (-134 "CARD.spad" 146435 146443 149120 149141) (-133 "CAPSLAST.spad" 146209 146217 146425 146430) (-132 "CACHSET.spad" 145831 145839 146199 146204) (-131 "CABMON.spad" 145384 145392 145821 145826) (-130 "BYTEORD.spad" 145059 145067 145374 145379) (-129 "BYTE.spad" 144484 144492 145049 145054) (-128 "BYTEBUF.spad" 142341 142349 143653 143680) (-127 "BTREE.spad" 141410 141420 141948 141975) (-126 "BTOURN.spad" 140413 140423 141017 141044) (-125 "BTCAT.spad" 139801 139811 140381 140408) (-124 "BTCAT.spad" 139209 139221 139791 139796) (-123 "BTAGG.spad" 138331 138339 139177 139204) (-122 "BTAGG.spad" 137473 137483 138321 138326) (-121 "BSTREE.spad" 136208 136218 137080 137107) (-120 "BRILL.spad" 134403 134414 136198 136203) (-119 "BRAGG.spad" 133327 133337 134393 134398) (-118 "BRAGG.spad" 132215 132227 133283 133288) (-117 "BPADICRT.spad" 130196 130208 130451 130544) (-116 "BPADIC.spad" 129860 129872 130122 130191) (-115 "BOUNDZRO.spad" 129516 129533 129850 129855) (-114 "BOP.spad" 124640 124648 129506 129511) (-113 "BOP1.spad" 122060 122070 124630 124635) (-112 "BOOLEAN.spad" 121492 121500 122050 122055) (-111 "BMODULE.spad" 121204 121216 121460 121487) (-110 "BITS.spad" 120623 120631 120840 120867) (-109 "BINDING.spad" 120034 120042 120613 120618) (-108 "BINARY.spad" 118145 118153 118501 118594) (-107 "BGAGG.spad" 117342 117352 118125 118140) (-106 "BGAGG.spad" 116547 116559 117332 117337) (-105 "BFUNCT.spad" 116111 116119 116527 116542) (-104 "BEZOUT.spad" 115245 115272 116061 116066) (-103 "BBTREE.spad" 112064 112074 114852 114879) (-102 "BASTYPE.spad" 111736 111744 112054 112059) (-101 "BASTYPE.spad" 111406 111416 111726 111731) (-100 "BALFACT.spad" 110845 110858 111396 111401) (-99 "AUTOMOR.spad" 110292 110301 110825 110840) (-98 "ATTREG.spad" 107011 107018 110044 110287) (-97 "ATTRBUT.spad" 103034 103041 106991 107006) (-96 "ATTRAST.spad" 102751 102758 103024 103029) (-95 "ATRIG.spad" 102221 102228 102741 102746) (-94 "ATRIG.spad" 101689 101698 102211 102216) (-93 "ASTCAT.spad" 101593 101600 101679 101684) (-92 "ASTCAT.spad" 101495 101504 101583 101588) (-91 "ASTACK.spad" 100828 100837 101102 101129) (-90 "ASSOCEQ.spad" 99628 99639 100784 100789) (-89 "ASP9.spad" 98709 98722 99618 99623) (-88 "ASP8.spad" 97752 97765 98699 98704) (-87 "ASP80.spad" 97074 97087 97742 97747) (-86 "ASP7.spad" 96234 96247 97064 97069) (-85 "ASP78.spad" 95685 95698 96224 96229) (-84 "ASP77.spad" 95054 95067 95675 95680) (-83 "ASP74.spad" 94146 94159 95044 95049) (-82 "ASP73.spad" 93417 93430 94136 94141) (-81 "ASP6.spad" 92284 92297 93407 93412) (-80 "ASP55.spad" 90793 90806 92274 92279) (-79 "ASP50.spad" 88610 88623 90783 90788) (-78 "ASP4.spad" 87905 87918 88600 88605) (-77 "ASP49.spad" 86904 86917 87895 87900) (-76 "ASP42.spad" 85311 85350 86894 86899) (-75 "ASP41.spad" 83890 83929 85301 85306) (-74 "ASP35.spad" 82878 82891 83880 83885) (-73 "ASP34.spad" 82179 82192 82868 82873) (-72 "ASP33.spad" 81739 81752 82169 82174) (-71 "ASP31.spad" 80879 80892 81729 81734) (-70 "ASP30.spad" 79771 79784 80869 80874) (-69 "ASP29.spad" 79237 79250 79761 79766) (-68 "ASP28.spad" 70510 70523 79227 79232) (-67 "ASP27.spad" 69407 69420 70500 70505) (-66 "ASP24.spad" 68494 68507 69397 69402) (-65 "ASP20.spad" 67958 67971 68484 68489) (-64 "ASP1.spad" 67339 67352 67948 67953) (-63 "ASP19.spad" 62025 62038 67329 67334) (-62 "ASP12.spad" 61439 61452 62015 62020) (-61 "ASP10.spad" 60710 60723 61429 61434) (-60 "ARRAY2.spad" 60070 60079 60317 60344) (-59 "ARRAY1.spad" 58905 58914 59253 59280) (-58 "ARRAY12.spad" 57574 57585 58895 58900) (-57 "ARR2CAT.spad" 53236 53257 57542 57569) (-56 "ARR2CAT.spad" 48918 48941 53226 53231) (-55 "ARITY.spad" 48290 48297 48908 48913) (-54 "APPRULE.spad" 47534 47556 48280 48285) (-53 "APPLYORE.spad" 47149 47162 47524 47529) (-52 "ANY.spad" 45491 45498 47139 47144) (-51 "ANY1.spad" 44562 44571 45481 45486) (-50 "ANTISYM.spad" 43001 43017 44542 44557) (-49 "ANON.spad" 42694 42701 42991 42996) (-48 "AN.spad" 40995 41002 42510 42603) (-47 "AMR.spad" 39174 39185 40893 40990) (-46 "AMR.spad" 37190 37203 38911 38916) (-45 "ALIST.spad" 34602 34623 34952 34979) (-44 "ALGSC.spad" 33725 33751 34474 34527) (-43 "ALGPKG.spad" 29434 29445 33681 33686) (-42 "ALGMFACT.spad" 28623 28637 29424 29429) (-41 "ALGMANIP.spad" 26079 26094 28456 28461) (-40 "ALGFF.spad" 24394 24421 24611 24767) (-39 "ALGFACT.spad" 23515 23525 24384 24389) (-38 "ALGEBRA.spad" 23348 23357 23471 23510) (-37 "ALGEBRA.spad" 23213 23224 23338 23343) (-36 "ALAGG.spad" 22723 22744 23181 23208) (-35 "AHYP.spad" 22104 22111 22713 22718) (-34 "AGG.spad" 20413 20420 22094 22099) (-33 "AGG.spad" 18686 18695 20369 20374) (-32 "AF.spad" 17111 17126 18621 18626) (-31 "ADDAST.spad" 16789 16796 17101 17106) (-30 "ACPLOT.spad" 15360 15367 16779 16784) (-29 "ACFS.spad" 13111 13120 15262 15355) (-28 "ACFS.spad" 10948 10959 13101 13106) (-27 "ACF.spad" 7550 7557 10850 10943) (-26 "ACF.spad" 4238 4247 7540 7545) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase index e3b0ca27..98c5cb84 100644 --- a/src/share/algebra/category.daase +++ b/src/share/algebra/category.daase @@ -1,1104 +1,1105 @@ -(187993 . 3452830392) -(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))) ((#0=(-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) #0#) |has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))))) -((((-564)) . T) (($) -2682 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-556))) (((-407 (-564))) -2682 (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-1036 (-407 (-564))))) ((|#1|) . T)) +(188029 . 3453332756) +(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) ((#0=(-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) #0#) |has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))))) +((((-566)) . T) (($) -2809 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-558))) (((-409 (-566))) -2809 (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-1038 (-409 (-566))))) ((|#1|) . T)) (((|#2| |#2|) . T)) -((((-564)) . T)) -((($ $) -2682 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907))) ((|#2| |#2|) . T) ((#0=(-407 (-564)) #0#) |has| |#2| (-38 (-407 (-564))))) +((((-566)) . T)) +((($ $) -2809 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) ((|#2| |#2|) . T) ((#0=(-409 (-566)) #0#) |has| |#2| (-38 (-409 (-566))))) ((($) . T)) (((|#1|) . T)) -((($) . T) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) +((($) . T) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) (((|#2|) . T)) -((($) -2682 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907))) ((|#2|) . T) (((-407 (-564))) |has| |#2| (-38 (-407 (-564))))) -(|has| |#1| (-907)) -((((-860)) . T)) -((((-860)) . T)) -((((-860)) . T)) -((($) . T) (((-407 (-564))) . T)) +((($) -2809 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) ((|#2|) . T) (((-409 (-566))) |has| |#2| (-38 (-409 (-566))))) +(|has| |#1| (-909)) +((((-862)) . T)) +((((-862)) . T)) +((((-862)) . T)) +((($) . T) (((-409 (-566))) . T)) ((($) . T)) ((($) . T)) (((|#2| |#2|) . T)) ((((-144)) . T)) -((((-536)) . T) (((-1155)) . T) (((-225)) . T) (((-379)) . T) (((-890 (-379))) . T)) -(((|#1|) . T)) -((((-225)) . T) (((-860)) . T)) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) -(((|#1|) . T)) -(-2682 (|has| |#1| (-21)) (|has| |#1| (-846))) -((($ $) . T) ((#0=(-407 (-564)) #0#) -2682 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1| |#1|) . T)) -(-2682 (|has| |#1| (-818)) (|has| |#1| (-848))) -((((-407 (-564))) |has| |#1| (-1036 (-407 (-564)))) (((-564)) |has| |#1| (-1036 (-564))) ((|#1|) . T)) -((((-860)) . T)) -((((-860)) . T)) -(-2682 (|has| |#1| (-363)) (|has| |#1| (-556))) -(|has| |#1| (-846)) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) -((((-316 |#1|)) . T) (((-564)) . T) (($) . T)) +((((-538)) . T) (((-1157)) . T) (((-225)) . T) (((-381)) . T) (((-892 (-381))) . T)) +(((|#1|) . T)) +((((-225)) . T) (((-862)) . T)) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) +(((|#1|) . T)) +(-2809 (|has| |#1| (-21)) (|has| |#1| (-848))) +((($ $) . T) ((#0=(-409 (-566)) #0#) -2809 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1| |#1|) . T)) +(-2809 (|has| |#1| (-820)) (|has| |#1| (-850))) +((((-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) (((-566)) |has| |#1| (-1038 (-566))) ((|#1|) . T)) +((((-862)) . T)) +((((-862)) . T)) +(-2809 (|has| |#1| (-365)) (|has| |#1| (-558))) +(|has| |#1| (-848)) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) +((((-317 |#1|)) . T) (((-566)) . T) (($) . T)) (((|#1| |#2| |#3|) . T)) -((((-564)) . T) (((-868 |#1|)) . T) (($) . T) (((-407 (-564))) . T)) -((($) . T) (((-407 (-564))) -2682 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T)) -((((-407 (-564))) . T) (((-697)) . T) (($) . T)) -((((-860)) . T)) -((((-1178)) . T)) -((((-1178)) . T)) +((((-566)) . T) (((-870 |#1|)) . T) (($) . T) (((-409 (-566))) . T)) +((($) . T) (((-409 (-566))) -2809 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) +((((-409 (-566))) . T) (((-699)) . T) (($) . T)) +((((-862)) . T)) +((((-1180)) . T)) +((((-1180)) . T)) (((|#4|) . T)) -((((-407 (-564))) . T) (((-697)) . T) (($) . T)) -((((-860)) . T)) -((((-860)) |has| |#1| (-1097))) -((((-860)) . T) (((-1178)) . T)) +((((-409 (-566))) . T) (((-699)) . T) (($) . T)) +((((-862)) . T)) +((((-862)) |has| |#1| (-1099))) +((((-862)) . T) (((-1180)) . T)) (((|#1|) . T) ((|#2|) . T)) -((((-1178)) . T)) -(((|#1|) . T) (((-564)) |has| |#1| (-1036 (-564))) (((-407 (-564))) |has| |#1| (-1036 (-407 (-564))))) -(-2682 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907))) -(-2682 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) -(((|#2| (-482 (-2158 |#1|) (-769))) . T)) -(((|#1| (-531 (-1173))) . T)) -(((#0=(-868 |#1|) #0#) . T) ((#1=(-407 (-564)) #1#) . T) (($ $) . T)) -((((-1155)) . T) (((-956 (-129))) . T) (((-860)) . T)) -((((-860)) . T)) -((((-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) . T)) -(|has| |#4| (-368)) -(|has| |#3| (-368)) -(((|#1|) . T)) -((((-1173)) . T)) -((((-506)) . T)) -((((-868 |#1|)) . T) (((-407 (-564))) . T) (($) . T)) -((((-860)) . T)) -((((-860)) . T)) +((((-1180)) . T)) +(((|#1|) . T) (((-566)) |has| |#1| (-1038 (-566))) (((-409 (-566))) |has| |#1| (-1038 (-409 (-566))))) +(-2809 (|has| |#2| (-172)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) +(-2809 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) +(((|#2| (-484 (-3002 |#1|) (-771))) . T)) +(((|#1| (-533 (-1175))) . T)) +(((#0=(-870 |#1|) #0#) . T) ((#1=(-409 (-566)) #1#) . T) (($ $) . T)) +((((-1157)) . T) (((-958 (-129))) . T) (((-862)) . T)) +((((-862)) . T)) +((((-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) . T)) +(|has| |#4| (-370)) +(|has| |#3| (-370)) +(((|#1|) . T)) +((((-1175)) . T)) +((((-508)) . T)) +((((-870 |#1|)) . T) (((-409 (-566))) . T) (($) . T)) +((((-862)) . T)) +((((-862)) . T)) (((|#1| |#2|) . T)) ((($) . T)) (|has| |#1| (-145)) (|has| |#1| (-147)) -(|has| |#1| (-556)) -((((-564)) . T) (((-407 (-564))) -2682 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1036 (-407 (-564))))) ((|#2|) . T) (($) -2682 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907))) (((-862 |#1|)) . T)) -(-2682 (|has| |#1| (-363)) (|has| |#1| (-556))) -(-2682 (|has| |#1| (-363)) (|has| |#1| (-556))) -((((-2 (|:| -2065 |#1|) (|:| -2817 |#2|))) . T)) -((($) . T)) -((((-564)) . T) (((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1036 (-407 (-564))))) ((|#1|) . T) (($) -2682 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) (((-1173)) . T)) -((((-860)) -2682 (|has| |#1| (-611 (-860))) (|has| |#1| (-848)) (|has| |#1| (-1097)))) -((((-536)) |has| |#1| (-612 (-536)))) -((((-1173)) . T)) -((((-564)) . T) (($) . T)) -((((-581 |#1|)) . T) (((-407 (-564))) . T) (((-564)) . T) (($) . T)) -((($) . T) (((-564)) . T) (((-407 (-564))) . T)) -((($) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T)) -((($) . T)) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) -(((|#1|) . T) (((-564)) . T) (($) . T)) -((((-860)) . T)) -((((-860)) . T)) -(((|#1|) . T)) -((((-407 (-564))) . T) (($) . T)) -((((-860)) . T)) -((((-860)) . T)) +(|has| |#1| (-558)) +((((-566)) . T) (((-409 (-566))) -2809 (|has| |#2| (-38 (-409 (-566)))) (|has| |#2| (-1038 (-409 (-566))))) ((|#2|) . T) (($) -2809 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) (((-864 |#1|)) . T)) +(-2809 (|has| |#1| (-365)) (|has| |#1| (-558))) +(-2809 (|has| |#1| (-365)) (|has| |#1| (-558))) +((((-2 (|:| -2104 |#1|) (|:| -3631 |#2|))) . T)) +((($) . T)) +((((-566)) . T) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566))))) ((|#1|) . T) (($) -2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) (((-1175)) . T)) +((((-862)) -2809 (|has| |#1| (-613 (-862))) (|has| |#1| (-850)) (|has| |#1| (-1099)))) +((((-538)) |has| |#1| (-614 (-538)))) +((((-1175)) . T)) +((((-566)) . T) (($) . T)) +((((-583 |#1|)) . T) (((-409 (-566))) . T) (((-566)) . T) (($) . T)) +((($) . T) (((-566)) . T) (((-409 (-566))) . T)) +((($) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) . T)) +((($) . T)) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) +(((|#1|) . T) (((-566)) . T) (($) . T)) +((((-862)) . T)) +((((-862)) . T)) +(((|#1|) . T)) +((((-409 (-566))) . T) (($) . T)) +((((-862)) . T)) +((((-862)) . T)) (((|#1| |#2|) . T)) -((((-860)) . T)) +((((-862)) . T)) (((|#1|) . T)) -(((#0=(-407 (-564)) #0#) |has| |#2| (-38 (-407 (-564)))) ((|#2| |#2|) . T) (($ $) -2682 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907)))) +(((#0=(-409 (-566)) #0#) |has| |#2| (-38 (-409 (-566)))) ((|#2| |#2|) . T) (($ $) -2809 (|has| |#2| (-172)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) (((|#1|) . T)) -((((-116 |#1|)) . T) (($) . T) (((-407 (-564))) . T)) -((((-860)) . T)) -((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -2682 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907)))) -((($) -2682 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -(((|#1|) . T) (((-407 (-564))) . T) (($) . T)) -((((-116 |#1|)) . T) (((-407 (-564))) . T) (($) . T)) -(((|#1|) . T) (((-407 (-564))) . T) (($) . T)) -(((|#1|) . T) (((-407 (-564))) . T) (($) . T)) -((((-407 (-564))) . T) (($) . T) (((-564)) . T)) -((($) . T) (((-564)) . T) (((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T)) -(((|#2|) . T) (((-564)) . T) ((|#6|) . T)) -((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T) (($) -2682 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907)))) +((((-116 |#1|)) . T) (($) . T) (((-409 (-566))) . T)) +((((-862)) . T)) +((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) |has| |#2| (-172)) (($) -2809 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) +((($) -2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +(((|#1|) . T) (((-409 (-566))) . T) (($) . T)) +((((-116 |#1|)) . T) (((-409 (-566))) . T) (($) . T)) +(((|#1|) . T) (((-409 (-566))) . T) (($) . T)) +(((|#1|) . T) (((-409 (-566))) . T) (($) . T)) +((((-409 (-566))) . T) (($) . T) (((-566)) . T)) +((($) . T) (((-566)) . T) (((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) . T)) +(((|#2|) . T) (((-566)) . T) ((|#6|) . T)) +((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) . T) (($) -2809 (|has| |#2| (-172)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) ((($) . T)) (((|#2|) . T)) ((($) . T)) -(((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) (((-564)) . T) (($) . T)) -((((-564)) . T) (($) . T) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -(((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))) ((|#1| |#1|) . T) (($ $) -2682 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907)))) -((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T) (($) -2682 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907)))) +(((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) (((-566)) . T) (($) . T)) +((((-566)) . T) (($) . T) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +(((#0=(-409 (-566)) #0#) |has| |#1| (-38 (-409 (-566)))) ((|#1| |#1|) . T) (($ $) -2809 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909)))) +((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) . T) (($) -2809 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909)))) ((($ $) . T)) ((($) . T)) -((((-564)) . T) (($) . T) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -((((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-1254 |#1| |#2| |#3|)) |has| |#1| (-363)) (($) . T) ((|#1|) . T)) +((((-566)) . T) (($) . T) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (((-1256 |#1| |#2| |#3|)) |has| |#1| (-365)) (($) . T) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-368)) +(|has| |#1| (-370)) (((|#1|) . T)) -(((|#1|) . T) (((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) . T)) -(((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) (($) . T)) -(-2682 (|has| |#1| (-848)) (|has| |#1| (-1097))) +(((|#1|) . T) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) . T)) +(((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) (($) . T)) +(-2809 (|has| |#1| (-850)) (|has| |#1| (-1099))) (((|#1|) . T)) -((((-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) . T)) -((((-564)) . T)) -((((-860)) . T)) +((((-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) . T)) +((((-566)) . T)) +((((-862)) . T)) (((|#1| |#2|) . T)) -(-2682 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-898 (-1173))) (|has| |#1| (-1047))) -(-2682 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-898 (-1173))) (|has| |#1| (-1047))) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) -(((|#1|) . T) (((-564)) . T) (($) . T)) -(|has| |#1| (-556)) +(-2809 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-900 (-1175))) (|has| |#1| (-1049))) +(-2809 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-900 (-1175))) (|has| |#1| (-1049))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) +(((|#1|) . T) (((-566)) . T) (($) . T)) +(|has| |#1| (-558)) (((|#1| |#1|) . T)) -((((-407 |#2|)) . T) (((-407 (-564))) . T) (($) . T)) -(-2682 (|has| |#1| (-21)) (|has| |#1| (-846))) -((($ $) . T) ((#0=(-407 (-564)) #0#) . T)) -(-2682 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) -(-2682 (|has| |#1| (-848)) (|has| |#1| (-1097))) -(|has| |#1| (-1097)) -(-2682 (|has| |#1| (-848)) (|has| |#1| (-1097))) -(|has| |#1| (-1097)) -(-2682 (|has| |#1| (-848)) (|has| |#1| (-1097))) -(|has| |#1| (-846)) -((($) . T) (((-407 (-564))) . T)) -((((-860)) . T)) -(((|#1|) . T)) -((((-407 (-564))) . T) (($) . T)) -((((-564) (-129)) . T)) -((($) . T) (((-407 (-564))) . T)) +((((-409 |#2|)) . T) (((-409 (-566))) . T) (($) . T)) +(-2809 (|has| |#1| (-21)) (|has| |#1| (-848))) +((($ $) . T) ((#0=(-409 (-566)) #0#) . T)) +(-2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) +(-2809 (|has| |#1| (-850)) (|has| |#1| (-1099))) +(|has| |#1| (-1099)) +(-2809 (|has| |#1| (-850)) (|has| |#1| (-1099))) +(|has| |#1| (-1099)) +(-2809 (|has| |#1| (-850)) (|has| |#1| (-1099))) +(|has| |#1| (-848)) +((($) . T) (((-409 (-566))) . T)) +((((-862)) . T)) +(((|#1|) . T)) +((((-409 (-566))) . T) (($) . T)) +((((-566) (-129)) . T)) +((($) . T) (((-409 (-566))) . T)) ((((-129)) . T)) -(-2682 (|has| |#4| (-791)) (|has| |#4| (-846))) -(-2682 (|has| |#4| (-791)) (|has| |#4| (-846))) -(-2682 (|has| |#3| (-791)) (|has| |#3| (-846))) -(-2682 (|has| |#3| (-791)) (|has| |#3| (-846))) +(-2809 (|has| |#4| (-793)) (|has| |#4| (-848))) +(-2809 (|has| |#4| (-793)) (|has| |#4| (-848))) +(-2809 (|has| |#3| (-793)) (|has| |#3| (-848))) +(-2809 (|has| |#3| (-793)) (|has| |#3| (-848))) (((|#1| |#2|) . T)) -(-2682 (|has| |#1| (-363)) (|has| |#1| (-349))) -((((-1178)) . T)) -(((|#2| |#2|) -12 (|has| |#1| (-363)) (|has| |#2| (-309 |#2|))) (((-1173) |#2|) -12 (|has| |#1| (-363)) (|has| |#2| (-514 (-1173) |#2|)))) +(-2809 (|has| |#1| (-365)) (|has| |#1| (-351))) +((((-1180)) . T)) +(((|#2| |#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-310 |#2|))) (((-1175) |#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-516 (-1175) |#2|)))) (((|#1| |#2|) . T)) -(|has| |#1| (-1097)) -(|has| |#1| (-1097)) -((((-564)) . T) (((-407 (-564))) . T)) -(((|#1| (-1173) (-1085 (-1173)) (-531 (-1085 (-1173)))) . T)) -((((-564) |#1|) . T)) -((((-564)) . T)) -((((-564)) . T)) -((((-908 |#1|)) . T)) -(((|#1| (-531 |#2|)) . T)) -((((-564)) . T)) -((((-564)) . T)) -(((|#1|) . T)) -(-2682 (|has| |#2| (-172)) (|has| |#2| (-724)) (|has| |#2| (-846)) (|has| |#2| (-1047))) -(((|#1| (-769)) . T)) -(|has| |#2| (-791)) -(-2682 (|has| |#2| (-791)) (|has| |#2| (-846))) -(|has| |#2| (-846)) +(|has| |#1| (-1099)) +(|has| |#1| (-1099)) +((((-566)) . T) (((-409 (-566))) . T)) +(((|#1| (-1175) (-1087 (-1175)) (-533 (-1087 (-1175)))) . T)) +((((-566) |#1|) . T)) +((((-566)) . T)) +((((-566)) . T)) +((((-910 |#1|)) . T)) +(((|#1| (-533 |#2|)) . T)) +((((-566)) . T)) +((((-566)) . T)) +(((|#1|) . T)) +(-2809 (|has| |#2| (-172)) (|has| |#2| (-726)) (|has| |#2| (-848)) (|has| |#2| (-1049))) +(((|#1| (-771)) . T)) +(|has| |#2| (-793)) +(-2809 (|has| |#2| (-793)) (|has| |#2| (-848))) +(|has| |#2| (-848)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) -((((-1155) |#1|) . T)) -((((-564) (-129)) . T)) +((((-1157) |#1|) . T)) +((((-566) (-129)) . T)) (((|#1|) . T)) -((((-860)) -2682 (|has| |#1| (-611 (-860))) (|has| |#1| (-1097)))) -(((|#3| (-769)) . T)) +((((-862)) -2809 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099)))) +(((|#3| (-771)) . T)) (|has| |#1| (-147)) (|has| |#1| (-145)) -((($) . T) (((-407 (-564))) . T)) +((($) . T) (((-409 (-566))) . T)) ((($) . T)) ((($) . T)) -(-2682 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) -(-2682 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) -((((-407 (-564))) . T) (($) . T)) +(-2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) +(-2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) +((((-409 (-566))) . T) (($) . T)) ((($) . T)) ((($) . T)) -(|has| |#1| (-1097)) -((((-407 (-564))) . T) (((-564)) . T)) -((((-564)) . T) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-1036 (-407 (-564))))) -((((-564)) . T) (((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1036 (-407 (-564))))) ((|#1|) . T) (($) -2682 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#2|) . T)) -((((-1173) |#2|) |has| |#2| (-514 (-1173) |#2|)) ((|#2| |#2|) |has| |#2| (-309 |#2|))) -((((-407 (-564))) . T) (((-564)) . T)) -((((-564)) . T) (($) -2682 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) (((-1079)) . T) ((|#1|) . T) (((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1036 (-407 (-564)))))) +(|has| |#1| (-1099)) +((((-409 (-566))) . T) (((-566)) . T)) +((((-566)) . T) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-1038 (-409 (-566))))) +((((-566)) . T) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566))))) ((|#1|) . T) (($) -2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#2|) . T)) +((((-1175) |#2|) |has| |#2| (-516 (-1175) |#2|)) ((|#2| |#2|) |has| |#2| (-310 |#2|))) +((((-409 (-566))) . T) (((-566)) . T)) +((((-566)) . T) (($) -2809 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) (((-1081)) . T) ((|#1|) . T) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566)))))) (((|#1|) . T) (($) . T)) -((((-564)) . T)) -((((-564)) . T)) -((($) -2682 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172))) -((((-564)) . T)) -((((-564)) . T)) -((((-407 (-564))) . T) (($) . T)) -(((#0=(-697) (-1169 #0#)) . T)) -((((-407 (-564))) . T) (((-564)) . T) (($) . T)) -(((|#1|) . T) (((-407 (-564))) . T) (($) . T)) -(((|#1|) . T)) -(|has| |#2| (-363)) -((((-564) |#1|) . T)) -((($) . T) (((-564)) . T) (((-407 (-564))) . T)) -(((|#1|) . T)) -((($) . T) (((-564)) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T)) +((((-566)) . T)) +((((-566)) . T)) +((($) -2809 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) +((((-566)) . T)) +((((-566)) . T)) +((((-409 (-566))) . T) (($) . T)) +(((#0=(-699) (-1171 #0#)) . T)) +((((-409 (-566))) . T) (((-566)) . T) (($) . T)) +(((|#1|) . T) (((-409 (-566))) . T) (($) . T)) +(((|#1|) . T)) +(|has| |#2| (-365)) +((((-566) |#1|) . T)) +((($) . T) (((-566)) . T) (((-409 (-566))) . T)) +(((|#1|) . T)) +((($) . T) (((-566)) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) . T)) (((|#1| |#2|) . T)) -((((-860)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) -((((-1155) |#1|) . T)) +((((-862)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) +((((-1157) |#1|) . T)) (((|#3| |#3|) . T)) -((((-860)) . T)) -((((-860)) . T)) +((((-862)) . T)) +((((-862)) . T)) (((|#1| |#1|) . T)) -(((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))) ((|#1| |#1|) . T) (($ $) -2682 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907)))) -((($ $) -2682 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564))))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T) (($) -2682 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907)))) -((($) -2682 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -((($) -2682 (|has| |#2| (-172)) (|has| |#2| (-846)) (|has| |#2| (-1047))) ((|#2|) -2682 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1047)))) -((((-860)) . T)) -((((-860)) . T)) -((((-860)) . T)) -((((-860)) . T)) -((((-860)) . T)) -((((-564) |#1|) . T)) -((((-860)) . T)) -((((-169 (-225))) |has| |#1| (-1020)) (((-169 (-379))) |has| |#1| (-1020)) (((-536)) |has| |#1| (-612 (-536))) (((-1169 |#1|)) . T) (((-890 (-564))) |has| |#1| (-612 (-890 (-564)))) (((-890 (-379))) |has| |#1| (-612 (-890 (-379))))) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) -(((|#1|) . T)) -(-2682 (|has| |#1| (-21)) (|has| |#1| (-846))) -(-2682 (|has| |#1| (-21)) (|has| |#1| (-846))) -((((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2682 (|has| |#1| (-363)) (|has| |#1| (-556))) ((|#2|) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172))) -(((|#1|) |has| |#1| (-172)) (((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2682 (|has| |#1| (-363)) (|has| |#1| (-556)))) -(|has| |#1| (-363)) -((((-860)) . T)) +(((#0=(-409 (-566)) #0#) |has| |#1| (-38 (-409 (-566)))) ((|#1| |#1|) . T) (($ $) -2809 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909)))) +((($ $) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1| |#1|) . T) ((#0=(-409 (-566)) #0#) |has| |#1| (-38 (-409 (-566))))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) . T) (($) -2809 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909)))) +((($) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((($) -2809 (|has| |#2| (-172)) (|has| |#2| (-848)) (|has| |#2| (-1049))) ((|#2|) -2809 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1049)))) +((((-862)) . T)) +((((-862)) . T)) +((((-862)) . T)) +((((-862)) . T)) +((((-862)) . T)) +((((-566) |#1|) . T)) +((((-862)) . T)) +((((-169 (-225))) |has| |#1| (-1022)) (((-169 (-381))) |has| |#1| (-1022)) (((-538)) |has| |#1| (-614 (-538))) (((-1171 |#1|)) . T) (((-892 (-566))) |has| |#1| (-614 (-892 (-566)))) (((-892 (-381))) |has| |#1| (-614 (-892 (-381))))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) +(((|#1|) . T)) +(-2809 (|has| |#1| (-21)) (|has| |#1| (-848))) +(-2809 (|has| |#1| (-21)) (|has| |#1| (-848))) +((((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2809 (|has| |#1| (-365)) (|has| |#1| (-558))) ((|#2|) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-172)) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2809 (|has| |#1| (-365)) (|has| |#1| (-558)))) +(|has| |#1| (-365)) +((((-862)) . T)) ((($) . T)) ((($) . T)) ((((-129)) . T)) -(-12 (|has| |#4| (-233)) (|has| |#4| (-1047))) -(-12 (|has| |#3| (-233)) (|has| |#3| (-1047))) -(-2682 (|has| |#4| (-172)) (|has| |#4| (-846)) (|has| |#4| (-1047))) -(-2682 (|has| |#3| (-172)) (|has| |#3| (-846)) (|has| |#3| (-1047))) -((((-860)) . T) (((-1178)) . T)) -((((-860)) . T) (((-1178)) . T)) -((((-1178)) . T)) -((((-1178)) . T)) -((((-860)) . T)) -(((|#1|) . T)) -((((-407 (-564))) |has| |#1| (-1036 (-407 (-564)))) (((-564)) |has| |#1| (-1036 (-564))) ((|#1|) . T)) -(((|#1|) . T) (((-564)) |has| |#1| (-637 (-564)))) -(((|#2|) . T) (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) . T)) -(((|#1|) . T) (((-2 (|:| -1914 (-1155)) (|:| -2683 |#1|))) . T)) -(|has| |#1| (-556)) -((((-564)) -2682 (|has| |#4| (-172)) (|has| |#4| (-846)) (-12 (|has| |#4| (-1036 (-564))) (|has| |#4| (-1097))) (|has| |#4| (-1047))) ((|#4|) -2682 (|has| |#4| (-172)) (|has| |#4| (-1097))) (((-407 (-564))) -12 (|has| |#4| (-1036 (-407 (-564)))) (|has| |#4| (-1097)))) -((((-564)) -2682 (|has| |#3| (-172)) (|has| |#3| (-846)) (-12 (|has| |#3| (-1036 (-564))) (|has| |#3| (-1097))) (|has| |#3| (-1047))) ((|#3|) -2682 (|has| |#3| (-172)) (|has| |#3| (-1097))) (((-407 (-564))) -12 (|has| |#3| (-1036 (-407 (-564)))) (|has| |#3| (-1097)))) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) -(|has| |#1| (-556)) -(-2682 (|has| |#1| (-848)) (|has| |#1| (-1097))) -(((|#1|) . T)) -(|has| |#1| (-556)) -(|has| |#1| (-556)) -(|has| |#1| (-556)) -((((-697)) . T)) -(((|#1|) . T)) -(-12 (|has| |#1| (-1000)) (|has| |#1| (-1197))) -((((-407 |#2|)) . T) (((-407 (-564))) . T) (($) . T)) -(((|#2|) . T) (($) . T) (((-407 (-564))) . T)) -((((-407 |#2|)) . T) (((-407 (-564))) . T) (($) . T)) -(-12 (|has| |#1| (-1097)) (|has| |#2| (-1097))) -((($) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T)) -((((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-1171 |#1| |#2| |#3|)) |has| |#1| (-363)) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) . T)) -(((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) (($) . T)) -(((|#4| |#4|) -2682 (|has| |#4| (-172)) (|has| |#4| (-363)) (|has| |#4| (-1047))) (($ $) |has| |#4| (-172))) -(((|#3| |#3|) -2682 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1047))) (($ $) |has| |#3| (-172))) -(((|#2|) . T)) -(((|#1|) . T)) -((((-536)) |has| |#2| (-612 (-536))) (((-890 (-379))) |has| |#2| (-612 (-890 (-379)))) (((-890 (-564))) |has| |#2| (-612 (-890 (-564))))) -((((-860)) . T)) +(-12 (|has| |#4| (-233)) (|has| |#4| (-1049))) +(-12 (|has| |#3| (-233)) (|has| |#3| (-1049))) +(-2809 (|has| |#4| (-172)) (|has| |#4| (-848)) (|has| |#4| (-1049))) +(-2809 (|has| |#3| (-172)) (|has| |#3| (-848)) (|has| |#3| (-1049))) +((((-862)) . T) (((-1180)) . T)) +((((-862)) . T) (((-1180)) . T)) +((((-1180)) . T)) +((((-1180)) . T)) +((((-862)) . T)) +(((|#1|) . T)) +((((-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) (((-566)) |has| |#1| (-1038 (-566))) ((|#1|) . T)) +(((|#1|) . T) (((-566)) |has| |#1| (-639 (-566)))) +(((|#2|) . T) (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) . T)) +(((|#1|) . T) (((-2 (|:| -1928 (-1157)) (|:| -2806 |#1|))) . T)) +(|has| |#1| (-558)) +((((-566)) -2809 (|has| |#4| (-172)) (|has| |#4| (-848)) (-12 (|has| |#4| (-1038 (-566))) (|has| |#4| (-1099))) (|has| |#4| (-1049))) ((|#4|) -2809 (|has| |#4| (-172)) (|has| |#4| (-1099))) (((-409 (-566))) -12 (|has| |#4| (-1038 (-409 (-566)))) (|has| |#4| (-1099)))) +((((-566)) -2809 (|has| |#3| (-172)) (|has| |#3| (-848)) (-12 (|has| |#3| (-1038 (-566))) (|has| |#3| (-1099))) (|has| |#3| (-1049))) ((|#3|) -2809 (|has| |#3| (-172)) (|has| |#3| (-1099))) (((-409 (-566))) -12 (|has| |#3| (-1038 (-409 (-566)))) (|has| |#3| (-1099)))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) +(|has| |#1| (-558)) +(-2809 (|has| |#1| (-850)) (|has| |#1| (-1099))) +(((|#1|) . T)) +(|has| |#1| (-558)) +(|has| |#1| (-558)) +(|has| |#1| (-558)) +((((-699)) . T)) +(((|#1|) . T)) +(-12 (|has| |#1| (-1002)) (|has| |#1| (-1199))) +((((-409 |#2|)) . T) (((-409 (-566))) . T) (($) . T)) +(((|#2|) . T) (($) . T) (((-409 (-566))) . T)) +((((-409 |#2|)) . T) (((-409 (-566))) . T) (($) . T)) +(-12 (|has| |#1| (-1099)) (|has| |#2| (-1099))) +((($) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) . T)) +((((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (((-1173 |#1| |#2| |#3|)) |has| |#1| (-365)) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) . T)) +(((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) (($) . T)) +(((|#4| |#4|) -2809 (|has| |#4| (-172)) (|has| |#4| (-365)) (|has| |#4| (-1049))) (($ $) |has| |#4| (-172))) +(((|#3| |#3|) -2809 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1049))) (($ $) |has| |#3| (-172))) +(((|#2|) . T)) +(((|#1|) . T)) +((((-538)) |has| |#2| (-614 (-538))) (((-892 (-381))) |has| |#2| (-614 (-892 (-381)))) (((-892 (-566))) |has| |#2| (-614 (-892 (-566))))) +((((-862)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-2 (|:| -2065 |#1|) (|:| -2817 |#2|))) . T) (((-860)) . T)) -((((-536)) |has| |#1| (-612 (-536))) (((-890 (-379))) |has| |#1| (-612 (-890 (-379)))) (((-890 (-564))) |has| |#1| (-612 (-890 (-564))))) -(((|#4|) -2682 (|has| |#4| (-172)) (|has| |#4| (-363)) (|has| |#4| (-1047))) (($) |has| |#4| (-172))) -(((|#3|) -2682 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1047))) (($) |has| |#3| (-172))) -((((-2 (|:| -2065 |#1|) (|:| -2817 |#2|))) . T)) -((((-860)) . T)) -((((-860)) . T)) -((((-536)) . T) (((-564)) . T) (((-890 (-564))) . T) (((-379)) . T) (((-225)) . T)) -((((-642 |#1|)) . T)) -(((|#1|) . T) (((-564)) |has| |#1| (-1036 (-564))) (((-407 (-564))) |has| |#1| (-1036 (-407 (-564))))) -((($) . T) (((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T)) -((((-407 $) (-407 $)) |has| |#2| (-556)) (($ $) . T) ((|#2| |#2|) . T)) -((((-2 (|:| -1914 (-1155)) (|:| -2683 (-52)))) . T)) -(((|#1|) . T)) -(|has| |#2| (-907)) -((((-1155) (-52)) . T)) -((((-564)) |has| #0=(-407 |#2|) (-637 (-564))) ((#0#) . T)) -((((-536)) . T) (((-225)) . T) (((-379)) . T) (((-890 (-379))) . T)) -((((-860)) . T)) -(-2682 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-898 (-1173))) (|has| |#1| (-1047))) +((((-2 (|:| -2104 |#1|) (|:| -3631 |#2|))) . T) (((-862)) . T)) +((((-538)) |has| |#1| (-614 (-538))) (((-892 (-381))) |has| |#1| (-614 (-892 (-381)))) (((-892 (-566))) |has| |#1| (-614 (-892 (-566))))) +(((|#4|) -2809 (|has| |#4| (-172)) (|has| |#4| (-365)) (|has| |#4| (-1049))) (($) |has| |#4| (-172))) +(((|#3|) -2809 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1049))) (($) |has| |#3| (-172))) +((((-2 (|:| -2104 |#1|) (|:| -3631 |#2|))) . T)) +((((-862)) . T)) +((((-862)) . T)) +((((-538)) . T) (((-566)) . T) (((-892 (-566))) . T) (((-381)) . T) (((-225)) . T)) +((((-644 |#1|)) . T)) +(((|#1|) . T) (((-566)) |has| |#1| (-1038 (-566))) (((-409 (-566))) |has| |#1| (-1038 (-409 (-566))))) +((($) . T) (((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) . T)) +((((-409 $) (-409 $)) |has| |#2| (-558)) (($ $) . T) ((|#2| |#2|) . T)) +((((-2 (|:| -1928 (-1157)) (|:| -2806 (-52)))) . T)) +(((|#1|) . T)) +(|has| |#2| (-909)) +((((-1157) (-52)) . T)) +((((-566)) |has| #0=(-409 |#2|) (-639 (-566))) ((#0#) . T)) +((((-538)) . T) (((-225)) . T) (((-381)) . T) (((-892 (-381))) . T)) +((((-862)) . T)) +(-2809 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-900 (-1175))) (|has| |#1| (-1049))) (((|#1|) |has| |#1| (-172))) -(((|#1| $) |has| |#1| (-286 |#1| |#1|))) -((((-860)) . T)) -((((-860)) . T)) -((((-407 (-564))) . T) (($) . T)) -((((-407 (-564))) . T) (($) . T)) -((((-860)) . T)) -(|has| |#1| (-848)) -(((|#2|) . T) (((-564)) . T) (((-817 |#1|)) . T)) -((((-908 |#1|)) . T) (((-407 (-564))) . T) (($) . T)) -(|has| |#1| (-1097)) -((((-908 |#1|)) . T) (($) . T) (((-407 (-564))) . T)) -(((|#1|) . T)) -((((-860)) -2682 (|has| |#1| (-611 (-860))) (|has| |#1| (-848)) (|has| |#1| (-1097)))) -((((-536)) |has| |#1| (-612 (-536)))) -((((-860)) . T) (((-1178)) . T)) -((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -2682 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907)))) -((((-1178)) . T)) -((($) -2682 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -((($) -2682 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) +(((|#1| $) |has| |#1| (-287 |#1| |#1|))) +((((-862)) . T)) +((((-862)) . T)) +((((-409 (-566))) . T) (($) . T)) +((((-409 (-566))) . T) (($) . T)) +((((-862)) . T)) +(|has| |#1| (-850)) +(((|#2|) . T) (((-566)) . T) (((-819 |#1|)) . T)) +((((-910 |#1|)) . T) (((-409 (-566))) . T) (($) . T)) +(|has| |#1| (-1099)) +((((-910 |#1|)) . T) (($) . T) (((-409 (-566))) . T)) +(((|#1|) . T)) +((((-862)) -2809 (|has| |#1| (-613 (-862))) (|has| |#1| (-850)) (|has| |#1| (-1099)))) +((((-538)) |has| |#1| (-614 (-538)))) +((((-862)) . T) (((-1180)) . T)) +((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) |has| |#2| (-172)) (($) -2809 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) +((((-1180)) . T)) +((($) -2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((($) -2809 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) (|has| |#1| (-233)) -((($) -2682 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -(((|#1| (-531 (-816 (-1173)))) . T)) -(((|#1| (-969)) . T)) -((((-564)) . T) ((|#2|) . T)) -(((#0=(-868 |#1|) $) |has| #0# (-286 #0# #0#))) -((((-564) |#4|) . T)) -((((-564) |#3|) . T)) +((($) -2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +(((|#1| (-533 (-818 (-1175)))) . T)) +(((|#1| (-971)) . T)) +((((-566)) . T) ((|#2|) . T)) +(((#0=(-870 |#1|) $) |has| #0# (-287 #0# #0#))) +((((-566) |#4|) . T)) +((((-566) |#3|) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) -(|has| |#1| (-1148)) -((((-2 (|:| -1914 (-1155)) (|:| -2683 |#1|))) . T)) -(|has| (-1248 |#1| |#2| |#3| |#4|) (-145)) -(|has| (-1248 |#1| |#2| |#3| |#4|) (-147)) +(|has| |#1| (-1150)) +((((-2 (|:| -1928 (-1157)) (|:| -2806 |#1|))) . T)) +(|has| (-1250 |#1| |#2| |#3| |#4|) (-145)) +(|has| (-1250 |#1| |#2| |#3| |#4|) (-147)) (|has| |#1| (-145)) (|has| |#1| (-147)) (((|#1|) |has| |#1| (-172))) -((((-1173)) -12 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) -(|has| |#1| (-1097)) -((((-1155) |#1|) . T)) +((((-1175)) -12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) +(|has| |#1| (-1099)) +((((-1157) |#1|) . T)) (((|#2|) . T)) (((|#1|) . T)) -(((|#2|) . T) (((-564)) |has| |#2| (-637 (-564)))) -((((-1122 |#1| (-1173))) . T) (((-564)) . T) (((-816 (-1173))) . T) (($) -2682 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) . T) (((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1036 (-407 (-564))))) (((-1173)) . T)) -(|has| |#2| (-368)) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) +(((|#2|) . T) (((-566)) |has| |#2| (-639 (-566)))) +((((-1124 |#1| (-1175))) . T) (((-566)) . T) (((-818 (-1175))) . T) (($) -2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566))))) (((-1175)) . T)) +(|has| |#2| (-370)) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) ((($) . T) ((|#1|) . T)) -(((|#2|) |has| |#2| (-1047))) -((((-860)) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))) ((#0=(-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) #0#) |has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))))) +(((|#2|) |has| |#2| (-1049))) +((((-862)) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) ((#0=(-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) #0#) |has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))))) (((|#1|) . T)) -((((-1262 (-339 (-2401) (-2401 (QUOTE X)) (-697)))) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((#0=(-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) #0#) |has| (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (-309 (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|))))) -((((-860)) . T)) -((((-564) |#1|) . T)) -((((-536)) -12 (|has| |#1| (-612 (-536))) (|has| |#2| (-612 (-536)))) (((-890 (-379))) -12 (|has| |#1| (-612 (-890 (-379)))) (|has| |#2| (-612 (-890 (-379))))) (((-890 (-564))) -12 (|has| |#1| (-612 (-890 (-564)))) (|has| |#2| (-612 (-890 (-564)))))) +((((-1264 (-341 (-2489) (-2489 (QUOTE X)) (-699)))) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((#0=(-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) #0#) |has| (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (-310 (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|))))) +((((-862)) . T)) +((((-566) |#1|) . T)) +((((-538)) -12 (|has| |#1| (-614 (-538))) (|has| |#2| (-614 (-538)))) (((-892 (-381))) -12 (|has| |#1| (-614 (-892 (-381)))) (|has| |#2| (-614 (-892 (-381))))) (((-892 (-566))) -12 (|has| |#1| (-614 (-892 (-566)))) (|has| |#2| (-614 (-892 (-566)))))) ((($) . T)) -((((-860)) . T)) -((($ $) -2682 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564))))) -((((-860)) . T)) +((((-862)) . T)) +((($ $) -2809 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1| |#1|) . T) ((#0=(-409 (-566)) #0#) |has| |#1| (-38 (-409 (-566))))) +((((-862)) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((($) -2682 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -((((-860)) . T)) -((((-860)) . T)) -(|has| (-1247 |#2| |#3| |#4|) (-147)) -(|has| (-1247 |#2| |#3| |#4|) (-145)) -(((|#2|) |has| |#2| (-1097)) (((-564)) -12 (|has| |#2| (-1036 (-564))) (|has| |#2| (-1097))) (((-407 (-564))) -12 (|has| |#2| (-1036 (-407 (-564)))) (|has| |#2| (-1097)))) +((($) -2809 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((((-862)) . T)) +((((-862)) . T)) +(|has| (-1249 |#2| |#3| |#4|) (-147)) +(|has| (-1249 |#2| |#3| |#4|) (-145)) +(((|#2|) |has| |#2| (-1099)) (((-566)) -12 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099))) (((-409 (-566))) -12 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099)))) (((|#1|) . T)) -(|has| |#1| (-1097)) -((((-860)) . T)) +(|has| |#1| (-1099)) +((((-862)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-2682 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-898 (-1173))) (|has| |#1| (-1047))) +(-2809 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-900 (-1175))) (|has| |#1| (-1049))) (((|#1|) . T)) -((((-564) |#1|) . T)) +((((-566) |#1|) . T)) (((|#2|) |has| |#2| (-172))) (((|#1|) |has| |#1| (-172))) (((|#1|) . T)) -(-2682 (|has| |#1| (-21)) (|has| |#1| (-846))) -((((-860)) |has| |#1| (-1097))) -(-2682 (|has| |#1| (-473)) (|has| |#1| (-724)) (|has| |#1| (-898 (-1173))) (|has| |#1| (-1047)) (|has| |#1| (-1109))) -(-2682 (|has| |#1| (-363)) (|has| |#1| (-349))) -((((-908 |#1|)) . T)) -((((-407 |#2|) |#3|) . T)) -(|has| |#1| (-15 * (|#1| (-564) |#1|))) -((((-407 (-564))) . T) (($) . T)) +(-2809 (|has| |#1| (-21)) (|has| |#1| (-848))) +((((-862)) |has| |#1| (-1099))) +(-2809 (|has| |#1| (-475)) (|has| |#1| (-726)) (|has| |#1| (-900 (-1175))) (|has| |#1| (-1049)) (|has| |#1| (-1111))) +(-2809 (|has| |#1| (-365)) (|has| |#1| (-351))) +((((-910 |#1|)) . T)) +((((-409 |#2|) |#3|) . T)) +(|has| |#1| (-15 * (|#1| (-566) |#1|))) +((((-409 (-566))) . T) (($) . T)) (((|#1|) . T)) (((|#1|) . T) (($) . T)) -((((-407 (-564))) . T) (($) . T)) -((((-860)) . T)) -((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556))) -(|has| |#1| (-363)) -(-2682 (-12 (|has| (-1254 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|)))) -(|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) -(|has| |#1| (-363)) -(|has| |#1| (-15 * (|#1| (-769) |#1|))) -((((-564)) . T)) -((((-564)) . T)) -((((-1139 |#2| (-407 (-950 |#1|)))) . T) (((-407 (-950 |#1|))) . T)) +((((-409 (-566))) . T) (($) . T)) +((((-862)) . T)) +((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-558))) +(|has| |#1| (-365)) +(-2809 (-12 (|has| (-1256 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|)))) +(|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) +(|has| |#1| (-365)) +(|has| |#1| (-15 * (|#1| (-771) |#1|))) +((((-566)) . T)) +((((-566)) . T)) +((((-1141 |#2| (-409 (-952 |#1|)))) . T) (((-409 (-952 |#1|))) . T)) ((($) . T)) (((|#1|) |has| |#1| (-172)) (($) . T)) -(((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) (($) . T)) -(((|#1|) . T)) -((((-564) |#1|) . T)) -((((-860)) . T)) -(((|#2|) . T)) -(-2682 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907))) -((((-564)) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556))) -((($) |has| |#1| (-556)) (((-564)) . T)) -(-2682 (|has| |#2| (-791)) (|has| |#2| (-846))) -(-2682 (|has| |#2| (-791)) (|has| |#2| (-846))) -((((-1254 |#1| |#2| |#3|)) . T) (((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2682 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-564)) . T) ((|#1|) |has| |#1| (-172))) -((((-1258 |#2|)) . T) (((-1254 |#1| |#2| |#3|)) . T) (((-1226 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-564)) . T) (($) -2682 (|has| |#1| (-363)) (|has| |#1| (-556)))) -((($) |has| |#1| (-556)) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) (((-564)) . T)) -(((|#1|) . T)) -((((-1173)) -12 (|has| |#3| (-898 (-1173))) (|has| |#3| (-1047)))) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) -(-12 (|has| |#1| (-363)) (|has| |#2| (-818))) -(-2682 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-556))) -(((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))) ((|#1| |#1|) . T) (($ $) -2682 (|has| |#1| (-172)) (|has| |#1| (-556)))) -((($ $) |has| |#1| (-556))) -(((#0=(-697) (-1169 #0#)) . T)) -((((-581 |#1|)) . T) (((-407 (-564))) . T) (($) . T)) -((((-407 (-564))) . T) (($) . T)) -((((-860)) . T) (((-1262 |#4|)) . T)) -((((-860)) . T) (((-1262 |#3|)) . T)) -((((-581 |#1|)) . T) (($) . T) (((-407 (-564))) . T)) -((($) . T) (((-407 (-564))) . T)) -((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T) (($) -2682 (|has| |#1| (-172)) (|has| |#1| (-556)))) -((($) |has| |#1| (-556))) -((((-860)) . T)) -((($) . T) (((-564)) . T) (((-407 (-564))) . T)) -((($) . T)) -((($ $) -2682 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((#0=(-407 (-564)) #0#) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((#1=(-1254 |#1| |#2| |#3|) #1#) |has| |#1| (-363)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -2682 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((#0=(-407 (-564)) #0#) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363)))) -((($) -2682 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-1254 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) . T)) -(((|#1|) . T) (($) -2682 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363)))) -(((|#3|) |has| |#3| (-1047))) -((($) -2682 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -((($ $) -2682 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564))))) -(|has| |#1| (-1097)) -(((|#2| (-817 |#1|)) . T)) -((($) . T) (((-564)) . T) (((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T)) -((((-564)) . T) (($) . T) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -(((|#1|) . T) (((-407 (-564))) . T) (((-564)) . T) (($) . T)) -(((|#1|) . T) (((-407 (-564))) . T) (((-564)) . T) (($) . T)) -(((|#1|) . T) (((-407 (-564))) . T) (((-564)) . T) (($) . T)) -((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -2682 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907)))) +(((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) (($) . T)) +(((|#1|) . T)) +((((-566) |#1|) . T)) +((((-862)) . T)) +(((|#2|) . T)) +(-2809 (|has| |#2| (-365)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) +((((-566)) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-558))) +((($) |has| |#1| (-558)) (((-566)) . T)) +(-2809 (|has| |#2| (-793)) (|has| |#2| (-848))) +(-2809 (|has| |#2| (-793)) (|has| |#2| (-848))) +((((-1256 |#1| |#2| |#3|)) . T) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2809 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-566)) . T) ((|#1|) |has| |#1| (-172))) +((((-1260 |#2|)) . T) (((-1256 |#1| |#2| |#3|)) . T) (((-1228 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (((-566)) . T) (($) -2809 (|has| |#1| (-365)) (|has| |#1| (-558)))) +((($) |has| |#1| (-558)) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) (((-566)) . T)) +(((|#1|) . T)) +((((-1175)) -12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) +(-12 (|has| |#1| (-365)) (|has| |#2| (-820))) +(-2809 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-558))) +(((#0=(-409 (-566)) #0#) |has| |#1| (-38 (-409 (-566)))) ((|#1| |#1|) . T) (($ $) -2809 (|has| |#1| (-172)) (|has| |#1| (-558)))) +((($ $) |has| |#1| (-558))) +(((#0=(-699) (-1171 #0#)) . T)) +((((-583 |#1|)) . T) (((-409 (-566))) . T) (($) . T)) +((((-409 (-566))) . T) (($) . T)) +((((-862)) . T) (((-1264 |#4|)) . T)) +((((-862)) . T) (((-1264 |#3|)) . T)) +((((-583 |#1|)) . T) (($) . T) (((-409 (-566))) . T)) +((($) . T) (((-409 (-566))) . T)) +((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) . T) (($) -2809 (|has| |#1| (-172)) (|has| |#1| (-558)))) +((($) |has| |#1| (-558))) +((((-862)) . T)) +((($) . T) (((-566)) . T) (((-409 (-566))) . T)) +((($) . T)) +((($ $) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) ((#0=(-409 (-566)) #0#) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((#1=(-1256 |#1| |#2| |#3|) #1#) |has| |#1| (-365)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) ((#0=(-409 (-566)) #0#) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365)))) +((($) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (((-1256 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) . T)) +(((|#1|) . T) (($) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365)))) +(((|#3|) |has| |#3| (-1049))) +((($) -2809 (|has| |#1| (-172)) (|has| |#1| (-558))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((($ $) -2809 (|has| |#1| (-172)) (|has| |#1| (-558))) ((|#1| |#1|) . T) ((#0=(-409 (-566)) #0#) |has| |#1| (-38 (-409 (-566))))) +(|has| |#1| (-1099)) +(((|#2| (-819 |#1|)) . T)) +((($) . T) (((-566)) . T) (((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) . T)) +((((-566)) . T) (($) . T) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +(((|#1|) . T) (((-409 (-566))) . T) (((-566)) . T) (($) . T)) +(((|#1|) . T) (((-409 (-566))) . T) (((-566)) . T) (($) . T)) +(((|#1|) . T) (((-409 (-566))) . T) (((-566)) . T) (($) . T)) +((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) |has| |#2| (-172)) (($) -2809 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) (((|#2|) . T) ((|#6|) . T)) -(|has| |#1| (-363)) -((((-564)) . T) ((|#2|) . T)) -((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T) (($) -2682 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907)))) +(|has| |#1| (-365)) +((((-566)) . T) ((|#2|) . T)) +((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) . T) (($) -2809 (|has| |#2| (-172)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) (((|#2|) . T) ((|#6|) . T)) -((($) -2682 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -((($) -2682 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -((($) -2682 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -((($) -2682 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -(((|#1|) . T)) -((($) -2682 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -((((-407 $) (-407 $)) |has| |#1| (-556)) (($ $) . T) ((|#1| |#1|) . T)) -((($) -2682 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -(((#0=(-1079) |#2|) . T) ((#0# $) . T) (($ $) . T)) -((((-860)) . T)) -((((-908 |#1|)) . T)) +((($) -2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((($) -2809 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((($) -2809 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((($) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +(((|#1|) . T)) +((($) -2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((((-409 $) (-409 $)) |has| |#1| (-558)) (($ $) . T) ((|#1| |#1|) . T)) +((($) -2809 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +(((#0=(-1081) |#2|) . T) ((#0# $) . T) (($ $) . T)) +((((-862)) . T)) +((((-910 |#1|)) . T)) ((((-144)) . T)) ((((-144)) . T)) -(((|#3|) |has| |#3| (-1097)) (((-564)) -12 (|has| |#3| (-1036 (-564))) (|has| |#3| (-1097))) (((-407 (-564))) -12 (|has| |#3| (-1036 (-407 (-564)))) (|has| |#3| (-1097)))) -((((-860)) . T)) -((((-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) . T)) +(((|#3|) |has| |#3| (-1099)) (((-566)) -12 (|has| |#3| (-1038 (-566))) (|has| |#3| (-1099))) (((-409 (-566))) -12 (|has| |#3| (-1038 (-409 (-566)))) (|has| |#3| (-1099)))) +((((-862)) . T)) +((((-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) . T)) (((|#1|) . T)) -((((-860)) -2682 (|has| |#1| (-611 (-860))) (|has| |#1| (-848)) (|has| |#1| (-1097)))) -((((-536)) |has| |#1| (-612 (-536)))) +((((-862)) -2809 (|has| |#1| (-613 (-862))) (|has| |#1| (-850)) (|has| |#1| (-1099)))) +((((-538)) |has| |#1| (-614 (-538)))) (((|#1|) |has| |#1| (-172))) -((((-2 (|:| -1914 (-1173)) (|:| -2683 (-52)))) . T)) -(|has| |#1| (-363)) -((((-1178)) . T)) -(((|#1|) . T)) -(-2682 (|has| |#1| (-21)) (|has| |#1| (-846))) -((((-1173) |#1|) |has| |#1| (-514 (-1173) |#1|)) ((|#1| |#1|) |has| |#1| (-309 |#1|))) -(|has| |#2| (-818)) -(|has| |#1| (-38 (-407 (-564)))) -(|has| |#1| (-846)) -(-2682 (|has| |#1| (-848)) (|has| |#1| (-1097))) -((((-860)) . T)) -((((-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) . T)) -((((-536)) |has| |#1| (-612 (-536)))) +((((-2 (|:| -1928 (-1175)) (|:| -2806 (-52)))) . T)) +(|has| |#1| (-365)) +((((-1180)) . T)) +(((|#1|) . T)) +(-2809 (|has| |#1| (-21)) (|has| |#1| (-848))) +((((-1175) |#1|) |has| |#1| (-516 (-1175) |#1|)) ((|#1| |#1|) |has| |#1| (-310 |#1|))) +(|has| |#2| (-820)) +(|has| |#1| (-38 (-409 (-566)))) +(|has| |#1| (-848)) +(-2809 (|has| |#1| (-850)) (|has| |#1| (-1099))) +((((-862)) . T)) +((((-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) . T)) +((((-538)) |has| |#1| (-614 (-538)))) (((|#1| |#2|) . T)) -((((-1173)) -12 (|has| |#1| (-363)) (|has| |#1| (-898 (-1173))))) -((((-1155) |#1|) . T)) -(((|#1| |#2| |#3| (-531 |#3|)) . T)) -((((-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) . T)) -(|has| |#1| (-368)) -(|has| |#1| (-368)) -(|has| |#1| (-368)) -((((-860)) . T)) -((((-407 (-564))) . T)) -(((|#1|) . T)) -(-2682 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907))) -((((-407 (-564))) . T)) -(|has| |#1| (-368)) -(-2682 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) -((((-564)) . T)) -((((-564)) . T)) -(((|#1|) . T) (((-564)) . T)) -(-2682 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907))) -((((-860)) . T)) -((((-860)) . T)) -(((|#1|) . T) (((-407 (-564))) . T) (((-564)) . T) (($) . T)) -((((-564)) . T) (($) . T) (((-407 (-564))) . T)) -(-12 (|has| |#2| (-233)) (|has| |#2| (-1047))) -((((-1173) #0=(-868 |#1|)) |has| #0# (-514 (-1173) #0#)) ((#0# #0#) |has| #0# (-309 #0#))) -(((|#1|) . T)) -((((-564) |#4|) . T)) -((((-564) |#3|) . T)) -(((|#1|) . T) (((-564)) |has| |#1| (-637 (-564)))) -(-2682 (|has| |#2| (-172)) (|has| |#2| (-846)) (|has| |#2| (-1047))) -((((-1248 |#1| |#2| |#3| |#4|)) . T)) -((((-407 (-564))) . T) (((-564)) . T)) -((((-860)) -2682 (|has| |#1| (-611 (-860))) (|has| |#1| (-1097)))) +((((-1175)) -12 (|has| |#1| (-365)) (|has| |#1| (-900 (-1175))))) +((((-1157) |#1|) . T)) +(((|#1| |#2| |#3| (-533 |#3|)) . T)) +((((-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) . T)) +(|has| |#1| (-370)) +(|has| |#1| (-370)) +(|has| |#1| (-370)) +((((-862)) . T)) +((((-409 (-566))) . T)) +(((|#1|) . T)) +(-2809 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) +((((-409 (-566))) . T)) +(|has| |#1| (-370)) +(-2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) +((((-566)) . T)) +((((-566)) . T)) +(((|#1|) . T) (((-566)) . T)) +(-2809 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) +((((-862)) . T)) +((((-862)) . T)) +(((|#1|) . T) (((-409 (-566))) . T) (((-566)) . T) (($) . T)) +((((-566)) . T) (($) . T) (((-409 (-566))) . T)) +(-12 (|has| |#2| (-233)) (|has| |#2| (-1049))) +((((-1175) #0=(-870 |#1|)) |has| #0# (-516 (-1175) #0#)) ((#0# #0#) |has| #0# (-310 #0#))) +(((|#1|) . T)) +((((-566) |#4|) . T)) +((((-566) |#3|) . T)) +(((|#1|) . T) (((-566)) |has| |#1| (-639 (-566)))) +(-2809 (|has| |#2| (-172)) (|has| |#2| (-848)) (|has| |#2| (-1049))) +((((-1250 |#1| |#2| |#3| |#4|)) . T)) +((((-409 (-566))) . T) (((-566)) . T)) +((((-862)) -2809 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099)))) (((|#1| |#1|) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (((|#1|) . T)) (((|#1|) . T)) -((($) . T) (((-564)) . T) (((-407 (-564))) . T)) -((((-564)) . T)) -((((-564)) . T)) -((($) . T) (((-564)) . T) (((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) . T)) -((($) . T) (((-564)) . T) (((-407 (-564))) . T)) -((((-564)) -2682 (|has| |#2| (-172)) (|has| |#2| (-846)) (-12 (|has| |#2| (-1036 (-564))) (|has| |#2| (-1097))) (|has| |#2| (-1047))) ((|#2|) -2682 (|has| |#2| (-172)) (|has| |#2| (-1097))) (((-407 (-564))) -12 (|has| |#2| (-1036 (-407 (-564)))) (|has| |#2| (-1097)))) +((($) . T) (((-566)) . T) (((-409 (-566))) . T)) +((((-566)) . T)) +((((-566)) . T)) +((($) . T) (((-566)) . T) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#1|) . T)) +((($) . T) (((-566)) . T) (((-409 (-566))) . T)) +((((-566)) -2809 (|has| |#2| (-172)) (|has| |#2| (-848)) (-12 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099))) (|has| |#2| (-1049))) ((|#2|) -2809 (|has| |#2| (-172)) (|has| |#2| (-1099))) (((-409 (-566))) -12 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099)))) (((|#1|) . T)) (((|#1|) . T)) -((((-407 (-564))) . T) (($) . T)) +((((-409 (-566))) . T) (($) . T)) (((|#1|) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-407 (-564)) #0#) . T)) -((($) . T) (((-407 (-564))) . T)) -(((#0=(-564) #0#) . T) ((#1=(-407 (-564)) #1#) . T) (($ $) . T)) -(((|#1|) . T) (((-564)) |has| |#1| (-1036 (-564))) (((-407 (-564))) |has| |#1| (-1036 (-407 (-564))))) -(((|#1|) . T) (($) . T) (((-407 (-564))) . T)) -((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556))) -(((|#1|) |has| |#1| (-556))) -((((-564) |#4|) . T)) -((((-564) |#3|) . T)) -((((-860)) . T)) -((((-564)) . T) (((-407 (-564))) . T) (($) . T)) -((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T) (($) -2682 (|has| |#1| (-172)) (|has| |#1| (-556)))) -((((-860)) . T)) -((((-564) |#1|) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-409 (-566)) #0#) . T)) +((($) . T) (((-409 (-566))) . T)) +(((#0=(-566) #0#) . T) ((#1=(-409 (-566)) #1#) . T) (($ $) . T)) +(((|#1|) . T) (((-566)) |has| |#1| (-1038 (-566))) (((-409 (-566))) |has| |#1| (-1038 (-409 (-566))))) +(((|#1|) . T) (($) . T) (((-409 (-566))) . T)) +((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-558))) +(((|#1|) |has| |#1| (-558))) +((((-566) |#4|) . T)) +((((-566) |#3|) . T)) +((((-862)) . T)) +((((-566)) . T) (((-409 (-566))) . T) (($) . T)) +((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) . T) (($) -2809 (|has| |#1| (-172)) (|has| |#1| (-558)))) +((((-862)) . T)) +((((-566) |#1|) . T)) (((|#1|) . T)) -((($ $) . T) ((#0=(-862 |#1|) $) . T) ((#0# |#2|) . T)) +((($ $) . T) ((#0=(-864 |#1|) $) . T) ((#0# |#2|) . T)) ((($) . T)) -((($ $) . T) ((#0=(-1173) $) . T) ((#0# |#1|) . T)) +((($ $) . T) ((#0=(-1175) $) . T) ((#0# |#1|) . T)) (((|#2|) |has| |#2| (-172))) -((($) -2682 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907))) ((|#2|) |has| |#2| (-172)) (((-407 (-564))) |has| |#2| (-38 (-407 (-564))))) -(((|#2| |#2|) -2682 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1047))) (($ $) |has| |#2| (-172))) +((($) -2809 (|has| |#2| (-365)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) ((|#2|) |has| |#2| (-172)) (((-409 (-566))) |has| |#2| (-38 (-409 (-566))))) +(((|#2| |#2|) -2809 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1049))) (($ $) |has| |#2| (-172))) ((((-144)) . T)) (((|#1|) . T)) -(-12 (|has| |#1| (-368)) (|has| |#2| (-368))) -((((-860)) . T)) -(((|#2|) -2682 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1047))) (($) |has| |#2| (-172))) +(-12 (|has| |#1| (-370)) (|has| |#2| (-370))) +((((-862)) . T)) +(((|#2|) -2809 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1049))) (($) |has| |#2| (-172))) (((|#1|) . T)) -((((-860)) . T)) -(|has| |#1| (-1097)) +((((-862)) . T)) +(|has| |#1| (-1099)) (|has| $ (-147)) -((((-1178)) . T)) -((((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#2|) |has| |#1| (-363)) (((-564)) . T) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-564)) . T) (($) . T)) -((((-564) |#1|) . T)) -((($) -2682 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-556))) (((-407 (-564))) -2682 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T)) -((((-1173)) -12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) -(|has| |#1| (-363)) -(-2682 (-12 (|has| (-1171 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|)))) -(|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) -(|has| |#1| (-363)) -(|has| |#1| (-15 * (|#1| (-769) |#1|))) -(((|#1|) . T)) -(-2682 (|has| |#1| (-848)) (|has| |#1| (-1097))) -((((-860)) . T)) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) -(-2682 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907))) -(((|#2| (-531 (-862 |#1|))) . T)) -((((-860)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) -(((|#1|) . T)) -(-2682 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) -(-2682 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) -(-2682 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) -((((-581 |#1|)) . T)) -((($) . T)) -((((-564)) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556))) +((((-1180)) . T)) +((((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#2|) |has| |#1| (-365)) (((-566)) . T) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (((-566)) . T) (($) . T)) +((((-566) |#1|) . T)) +((($) -2809 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-558))) (((-409 (-566))) -2809 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) +((((-1175)) -12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) +(|has| |#1| (-365)) +(-2809 (-12 (|has| (-1173 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|)))) +(|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) +(|has| |#1| (-365)) +(|has| |#1| (-15 * (|#1| (-771) |#1|))) +(((|#1|) . T)) +(-2809 (|has| |#1| (-850)) (|has| |#1| (-1099))) +((((-862)) . T)) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) +(-2809 (|has| |#2| (-172)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) +(((|#2| (-533 (-864 |#1|))) . T)) +((((-862)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) +(((|#1|) . T)) +(-2809 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) +(-2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) +(-2809 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) +((((-583 |#1|)) . T)) +((($) . T)) +((((-566)) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-558))) (((|#1|) . T) (($) . T)) -((((-564)) |has| |#1| (-637 (-564))) ((|#1|) . T)) -((((-1171 |#1| |#2| |#3|)) . T) (((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2682 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-564)) . T) ((|#1|) |has| |#1| (-172))) -((((-1258 |#2|)) . T) (((-1171 |#1| |#2| |#3|)) . T) (((-1164 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-564)) . T) (($) -2682 (|has| |#1| (-363)) (|has| |#1| (-556)))) +((((-566)) |has| |#1| (-639 (-566))) ((|#1|) . T)) +((((-1173 |#1| |#2| |#3|)) . T) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2809 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-566)) . T) ((|#1|) |has| |#1| (-172))) +((((-1260 |#2|)) . T) (((-1173 |#1| |#2| |#3|)) . T) (((-1166 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (((-566)) . T) (($) -2809 (|has| |#1| (-365)) (|has| |#1| (-558)))) (((|#4|) . T)) (((|#3|) . T)) -((((-868 |#1|)) . T) (($) . T) (((-407 (-564))) . T)) -((($) |has| |#1| (-556)) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) (((-564)) . T)) -((((-1173)) -12 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) -(((|#1|) . T)) -((((-860)) . T)) -((((-860)) . T)) -((((-564)) . T) (((-407 (-564))) -2682 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1036 (-407 (-564))))) ((|#2|) . T) (($) -2682 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907))) (((-862 |#1|)) . T)) -((((-564) |#2|) . T)) -((((-860)) . T)) -((($) . T) (((-564)) . T) ((|#2|) . T) (((-407 (-564))) . T)) -((((-860)) . T)) -((((-860)) . T)) +((((-870 |#1|)) . T) (($) . T) (((-409 (-566))) . T)) +((($) |has| |#1| (-558)) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) (((-566)) . T)) +((((-1175)) -12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) +(((|#1|) . T)) +((((-862)) . T)) +((((-862)) . T)) +((((-566)) . T) (((-409 (-566))) -2809 (|has| |#2| (-38 (-409 (-566)))) (|has| |#2| (-1038 (-409 (-566))))) ((|#2|) . T) (($) -2809 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) (((-864 |#1|)) . T)) +((((-566) |#2|) . T)) +((((-862)) . T)) +((($) . T) (((-566)) . T) ((|#2|) . T) (((-409 (-566))) . T)) +((((-862)) . T)) +((((-862)) . T)) (((|#1| |#2| |#3| |#4| |#5|) . T)) -(((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))) ((|#1| |#1|) . T) (($ $) -2682 (|has| |#1| (-172)) (|has| |#1| (-556)))) -((($ $) -2682 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((#0=(-407 (-564)) #0#) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((#1=(-1171 |#1| |#2| |#3|) #1#) |has| |#1| (-363)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -2682 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((#0=(-407 (-564)) #0#) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363)))) -((($ $) -2682 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564))))) -((((-860)) . T)) -(((|#2|) |has| |#2| (-1047))) -(|has| |#1| (-1097)) -((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T) (($) -2682 (|has| |#1| (-172)) (|has| |#1| (-556)))) -((($) -2682 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-1171 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) . T)) -(((|#1|) . T) (($) -2682 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363)))) -((($) -2682 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) +(((#0=(-409 (-566)) #0#) |has| |#1| (-38 (-409 (-566)))) ((|#1| |#1|) . T) (($ $) -2809 (|has| |#1| (-172)) (|has| |#1| (-558)))) +((($ $) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) ((#0=(-409 (-566)) #0#) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((#1=(-1173 |#1| |#2| |#3|) #1#) |has| |#1| (-365)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) ((#0=(-409 (-566)) #0#) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365)))) +((($ $) -2809 (|has| |#1| (-172)) (|has| |#1| (-558))) ((|#1| |#1|) . T) ((#0=(-409 (-566)) #0#) |has| |#1| (-38 (-409 (-566))))) +((((-862)) . T)) +(((|#2|) |has| |#2| (-1049))) +(|has| |#1| (-1099)) +((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) . T) (($) -2809 (|has| |#1| (-172)) (|has| |#1| (-558)))) +((($) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (((-1173 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) . T)) +(((|#1|) . T) (($) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365)))) +((($) -2809 (|has| |#1| (-172)) (|has| |#1| (-558))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) (((|#1|) |has| |#1| (-172)) (($) . T)) (((|#1|) . T)) -(((#0=(-407 (-564)) #0#) |has| |#2| (-38 (-407 (-564)))) ((|#2| |#2|) . T) (($ $) -2682 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907)))) -((((-860)) . T)) -((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -2682 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907)))) +(((#0=(-409 (-566)) #0#) |has| |#2| (-38 (-409 (-566)))) ((|#2| |#2|) . T) (($ $) -2809 (|has| |#2| (-172)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) +((((-862)) . T)) +((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) |has| |#2| (-172)) (($) -2809 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) ((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T)) -((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) -2682 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907)))) -(((#0=(-1079) |#1|) . T) ((#0# $) . T) (($ $) . T)) -((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T) (($) -2682 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907)))) -((($) . T)) -(((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) (($) . T)) -(-2682 (|has| |#1| (-848)) (|has| |#1| (-1097))) -(((|#1|) . T)) -(((|#2|) |has| |#2| (-1097)) (((-564)) -12 (|has| |#2| (-1036 (-564))) (|has| |#2| (-1097))) (((-407 (-564))) -12 (|has| |#2| (-1036 (-407 (-564)))) (|has| |#2| (-1097)))) -(((|#2|) |has| |#1| (-363))) -((((-564) |#1|) . T)) -((((-1178)) . T)) -((((-1178)) . T)) -((((-1178)) . T)) -((((-1178)) . T)) -((((-1178)) . T)) -(((|#1|) |has| |#1| (-172)) (($) . T) (((-564)) . T)) -((((-1178)) . T)) -((((-860)) . T)) -((((-407 |#2|) |#3|) . T)) -(((|#1| (-407 (-564))) . T)) -((((-407 (-564))) . T) (($) . T)) -((((-407 (-564))) . T) (($) . T)) -(|has| |#1| (-38 (-407 (-564)))) -(|has| |#1| (-38 (-407 (-564)))) -(|has| |#1| (-38 (-407 (-564)))) -((((-860)) . T) (((-1178)) . T)) +((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) |has| |#1| (-172)) (($) -2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909)))) +(((#0=(-1081) |#1|) . T) ((#0# $) . T) (($ $) . T)) +((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) . T) (($) -2809 (|has| |#2| (-172)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) +((($) . T)) +(((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) (($) . T)) +(-2809 (|has| |#1| (-850)) (|has| |#1| (-1099))) +(((|#1|) . T)) +(((|#2|) |has| |#2| (-1099)) (((-566)) -12 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099))) (((-409 (-566))) -12 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099)))) +(((|#2|) |has| |#1| (-365))) +((((-566) |#1|) . T)) +((((-1180)) . T)) +((((-1180)) . T)) +((((-1180)) . T)) +((((-1180)) . T)) +((((-1180)) . T)) +(((|#1|) |has| |#1| (-172)) (($) . T) (((-566)) . T)) +((((-1180)) . T)) +((((-862)) . T)) +((((-409 |#2|) |#3|) . T)) +(((|#1| (-409 (-566))) . T)) +((((-409 (-566))) . T) (($) . T)) +((((-409 (-566))) . T) (($) . T)) +(|has| |#1| (-38 (-409 (-566)))) +(|has| |#1| (-38 (-409 (-566)))) +(|has| |#1| (-38 (-409 (-566)))) +((((-862)) . T) (((-1180)) . T)) (|has| |#1| (-145)) (|has| |#1| (-147)) -((((-1178)) . T)) -((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -2682 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907)))) -((($) -2682 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -((((-407 (-564))) . T) (($) . T)) -((((-407 (-564))) . T) (($) . T)) -((((-407 (-564))) . T) (($) . T)) -(((|#2| |#3| (-862 |#1|)) . T)) -((((-1173)) |has| |#2| (-898 (-1173)))) -(((|#1|) . T)) -(((|#1| (-531 |#2|) |#2|) . T)) -(((|#1| (-769) (-1079)) . T)) -((((-407 (-564))) |has| |#2| (-363)) (($) . T)) -(((|#1| (-531 (-1085 (-1173))) (-1085 (-1173))) . T)) -(-2682 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) -(-2682 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) -(((|#2|) . T)) -(((|#1|) . T)) -(((|#2|) . T)) -((((-997 |#1|)) . T) (((-564)) . T) ((|#1|) . T) (((-407 (-564))) -2682 (|has| (-997 |#1|) (-1036 (-407 (-564)))) (|has| |#1| (-1036 (-407 (-564)))))) -(-2682 (|has| |#2| (-172)) (|has| |#2| (-724)) (|has| |#2| (-846)) (|has| |#2| (-1047))) -(|has| |#2| (-791)) -(-2682 (|has| |#2| (-791)) (|has| |#2| (-846))) -(|has| |#1| (-368)) -(|has| |#1| (-368)) -(|has| |#1| (-368)) -(|has| |#2| (-846)) -((((-891 |#1|)) . T) (((-817 |#1|)) . T)) -((((-817 (-1173))) . T)) -(((|#1|) . T)) -(((|#2|) . T)) -(((|#2|) . T)) -((((-860)) . T)) -((((-860)) . T)) -((((-642 (-564))) . T)) -((((-642 (-564))) . T) (((-860)) . T)) -((((-407 (-564))) . T) (((-860)) . T)) -((((-536)) . T) (((-890 (-564))) . T) (((-379)) . T) (((-225)) . T)) +((((-1180)) . T)) +((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) |has| |#2| (-172)) (($) -2809 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) +((($) -2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((((-409 (-566))) . T) (($) . T)) +((((-409 (-566))) . T) (($) . T)) +((((-409 (-566))) . T) (($) . T)) +(((|#2| |#3| (-864 |#1|)) . T)) +((((-1175)) |has| |#2| (-900 (-1175)))) +(((|#1|) . T)) +(((|#1| (-533 |#2|) |#2|) . T)) +(((|#1| (-771) (-1081)) . T)) +((((-409 (-566))) |has| |#2| (-365)) (($) . T)) +(((|#1| (-533 (-1087 (-1175))) (-1087 (-1175))) . T)) +(-2809 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) +(-2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) +(((|#2|) . T)) +(((|#1|) . T)) +(((|#2|) . T)) +((((-999 |#1|)) . T) (((-566)) . T) ((|#1|) . T) (((-409 (-566))) -2809 (|has| (-999 |#1|) (-1038 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566)))))) +(-2809 (|has| |#2| (-172)) (|has| |#2| (-726)) (|has| |#2| (-848)) (|has| |#2| (-1049))) +(|has| |#2| (-793)) +(-2809 (|has| |#2| (-793)) (|has| |#2| (-848))) +(|has| |#1| (-370)) +(|has| |#1| (-370)) +(|has| |#1| (-370)) +(|has| |#2| (-848)) +((((-893 |#1|)) . T) (((-819 |#1|)) . T)) +((((-819 (-1175))) . T)) +(((|#1|) . T)) +(((|#2|) . T)) +(((|#2|) . T)) +((((-862)) . T)) +((((-862)) . T)) +((((-644 (-566))) . T)) +((((-644 (-566))) . T) (((-862)) . T)) +((((-409 (-566))) . T) (((-862)) . T)) +((((-538)) . T) (((-892 (-566))) . T) (((-381)) . T) (((-225)) . T)) (|has| |#1| (-233)) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) ((($ $) . T)) (((|#1| |#1|) . T)) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) -((((-1254 |#1| |#2| |#3|) $) -12 (|has| (-1254 |#1| |#2| |#3|) (-286 (-1254 |#1| |#2| |#3|) (-1254 |#1| |#2| |#3|))) (|has| |#1| (-363))) (($ $) . T)) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) +((((-1256 |#1| |#2| |#3|) $) -12 (|has| (-1256 |#1| |#2| |#3|) (-287 (-1256 |#1| |#2| |#3|) (-1256 |#1| |#2| |#3|))) (|has| |#1| (-365))) (($ $) . T)) ((($ $) . T)) ((($ $) . T)) (((|#1|) . T)) -((((-1137 |#1| |#2|)) |has| (-1137 |#1| |#2|) (-309 (-1137 |#1| |#2|)))) -(((|#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) -(((|#3| |#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1097)))) -(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))) (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) |has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))))) -(((|#2|) . T) (((-564)) |has| |#2| (-1036 (-564))) (((-407 (-564))) |has| |#2| (-1036 (-407 (-564))))) +((((-1139 |#1| |#2|)) |has| (-1139 |#1| |#2|) (-310 (-1139 |#1| |#2|)))) +(((|#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) +(((|#3| |#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099)))) +(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) |has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))))) +(((|#2|) . T) (((-566)) |has| |#2| (-1038 (-566))) (((-409 (-566))) |has| |#2| (-1038 (-409 (-566))))) (((|#1|) . T)) (((|#1| |#2|) . T)) ((($) . T)) ((($) . T)) (((|#2|) . T)) (((|#3|) . T)) -(-2682 (|has| |#1| (-848)) (|has| |#1| (-1097))) -(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))) (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) |has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))))) +(-2809 (|has| |#1| (-850)) (|has| |#1| (-1099))) +(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) |has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))))) (((|#2|) . T)) -((((-860)) -2682 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-611 (-860))) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-724)) (|has| |#2| (-791)) (|has| |#2| (-846)) (|has| |#2| (-1047)) (|has| |#2| (-1097))) (((-1262 |#2|)) . T)) -((((-407 (-564))) |has| |#1| (-1036 (-407 (-564)))) ((|#1|) . T) (((-564)) . T) (($) . T)) +((((-862)) -2809 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-613 (-862))) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-726)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049)) (|has| |#2| (-1099))) (((-1264 |#2|)) . T)) +((((-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) ((|#1|) . T) (((-566)) . T) (($) . T)) (((|#1|) |has| |#1| (-172))) -((((-564)) . T)) -((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) -2682 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907)))) -((($) -2682 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -((((-564) (-144)) . T)) -((($) -2682 (|has| |#2| (-172)) (|has| |#2| (-846)) (|has| |#2| (-1047))) ((|#2|) -2682 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1047)))) -((((-564)) . T)) -(((|#1|) . T) ((|#2|) . T) (((-564)) . T)) -((($) |has| |#1| (-556)) ((|#1|) . T) (((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1036 (-407 (-564))))) (((-564)) . T)) -(-2682 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1047))) -(((|#1|) . T)) -(-2682 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1047))) -((($) . T) (((-564)) . T) ((|#2|) . T)) -(((|#1|) |has| |#1| (-172)) (($) . T) (((-564)) . T)) -(((|#2|) |has| |#1| (-363))) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) +((((-566)) . T)) +((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) |has| |#1| (-172)) (($) -2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909)))) +((($) -2809 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((((-566) (-144)) . T)) +((($) -2809 (|has| |#2| (-172)) (|has| |#2| (-848)) (|has| |#2| (-1049))) ((|#2|) -2809 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1049)))) +((((-566)) . T)) +(((|#1|) . T) ((|#2|) . T) (((-566)) . T)) +((($) |has| |#1| (-558)) ((|#1|) . T) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566))))) (((-566)) . T)) +(-2809 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-558)) (|has| |#1| (-1049))) +(((|#1|) . T)) +(-2809 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-558)) (|has| |#1| (-1049))) +((($) . T) (((-566)) . T) ((|#2|) . T)) +(((|#1|) |has| |#1| (-172)) (($) . T) (((-566)) . T)) +(((|#2|) |has| |#1| (-365))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (((|#1| |#1|) . T) (($ $) . T)) -((($) -2682 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172))) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) -((((-1178)) . T)) -((((-407 (-564))) . T) (((-564)) . T) (($) . T)) -(((|#1| (-531 #0=(-1173)) #0#) . T)) +((($) -2809 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) +((((-1180)) . T)) +((((-409 (-566))) . T) (((-566)) . T) (($) . T)) +(((|#1| (-533 #0=(-1175)) #0#) . T)) (((|#1|) . T) (($) . T)) -((((-564)) . T)) +((((-566)) . T)) (|has| |#4| (-172)) (|has| |#3| (-172)) -(((#0=(-407 (-950 |#1|)) #0#) . T)) -(-2682 (|has| |#1| (-848)) (|has| |#1| (-1097))) -(|has| |#1| (-1097)) -(-2682 (|has| |#1| (-848)) (|has| |#1| (-1097))) -(|has| |#1| (-1097)) -((((-860)) -2682 (|has| |#1| (-611 (-860))) (|has| |#1| (-848)) (|has| |#1| (-1097)))) -((((-536)) |has| |#1| (-612 (-536)))) -(-2682 (|has| |#1| (-848)) (|has| |#1| (-1097))) -((((-860)) . T) (((-1178)) . T)) -((((-1178)) . T)) +(((#0=(-409 (-952 |#1|)) #0#) . T)) +(-2809 (|has| |#1| (-850)) (|has| |#1| (-1099))) +(|has| |#1| (-1099)) +(-2809 (|has| |#1| (-850)) (|has| |#1| (-1099))) +(|has| |#1| (-1099)) +((((-862)) -2809 (|has| |#1| (-613 (-862))) (|has| |#1| (-850)) (|has| |#1| (-1099)))) +((((-538)) |has| |#1| (-614 (-538)))) +(-2809 (|has| |#1| (-850)) (|has| |#1| (-1099))) +((((-862)) . T) (((-1180)) . T)) +((((-1180)) . T)) (((|#1| |#1|) |has| |#1| (-172))) -((($ $) -2682 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564))))) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) +((($ $) -2809 (|has| |#1| (-172)) (|has| |#1| (-558))) ((|#1| |#1|) . T) ((#0=(-409 (-566)) #0#) |has| |#1| (-38 (-409 (-566))))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (((|#1|) . T)) -((((-407 (-950 |#1|))) . T)) -(((|#1|) . T) (((-564)) . T) (($) . T)) +((((-409 (-952 |#1|))) . T)) +(((|#1|) . T) (((-566)) . T) (($) . T)) (((|#1|) |has| |#1| (-172))) -((($) -2682 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -(-2682 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) -((((-860)) . T)) -((((-1248 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) |has| |#1| (-1047)) (((-564)) -12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1047)))) +((($) -2809 (|has| |#1| (-172)) (|has| |#1| (-558))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +(-2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) +((((-862)) . T)) +((((-862)) . T)) +((((-1250 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) |has| |#1| (-1049)) (((-566)) -12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049)))) (((|#1| |#2|) . T)) -(-2682 (|has| |#3| (-172)) (|has| |#3| (-724)) (|has| |#3| (-846)) (|has| |#3| (-1047))) -(|has| |#3| (-791)) -(-2682 (|has| |#3| (-791)) (|has| |#3| (-846))) -(|has| |#3| (-846)) -((((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2682 (|has| |#1| (-363)) (|has| |#1| (-556))) ((|#2|) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172))) -(((|#1|) |has| |#1| (-172)) (((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2682 (|has| |#1| (-363)) (|has| |#1| (-556)))) -(((|#2|) . T)) -((((-860)) . T)) -((((-860)) . T)) -((((-860)) . T)) -((((-860)) . T)) -(((|#1| (-1153 |#1|)) |has| |#1| (-846))) -((((-564) |#2|) . T)) -(|has| |#1| (-1097)) -(((|#1|) . T)) -(-12 (|has| |#1| (-363)) (|has| |#2| (-1148))) -((((-407 (-564))) . T) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) -((($) . T) (((-407 (-564))) . T)) -(|has| |#1| (-1097)) -(((|#2|) . T)) -((((-536)) |has| |#2| (-612 (-536))) (((-890 (-379))) |has| |#2| (-612 (-890 (-379)))) (((-890 (-564))) |has| |#2| (-612 (-890 (-564))))) -(((|#4|) -2682 (|has| |#4| (-172)) (|has| |#4| (-363)))) -(((|#3|) -2682 (|has| |#3| (-172)) (|has| |#3| (-363)))) -((((-860)) . T)) -(((|#1|) . T)) -(-2682 (|has| |#2| (-452)) (|has| |#2| (-907))) -((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -2682 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907)))) -((($) -2682 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -(((|#1|) . T) (((-407 (-564))) . T) (($) . T)) -(((|#1|) . T) (((-407 (-564))) . T) (($) . T)) -(((|#1|) . T) (((-407 (-564))) . T) (($) . T)) -(-2682 (|has| |#1| (-452)) (|has| |#1| (-907))) -((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T) (($) -2682 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907)))) -((($) -2682 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -(((|#1|) . T) (($) . T) (((-407 (-564))) . T)) -(((|#1|) . T) (($) . T) (((-407 (-564))) . T)) -(((|#1|) . T) (($) . T) (((-407 (-564))) . T)) -(((|#2|) . T)) -(-2682 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-907))) -(((|#2|) . T)) -((($ $) . T) ((#0=(-1173) $) |has| |#1| (-233)) ((#0# |#1|) |has| |#1| (-233)) ((#1=(-816 (-1173)) |#1|) . T) ((#1# $) . T)) -(-2682 (|has| |#1| (-452)) (|has| |#1| (-907))) -((((-564) |#2|) . T)) -((((-860)) . T)) -((((-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) . T)) -((((-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) . T)) -((((-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) . T)) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) -((($) -2682 (|has| |#3| (-172)) (|has| |#3| (-846)) (|has| |#3| (-1047))) ((|#3|) -2682 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1047)))) -((((-564) |#1|) . T)) -(|has| (-407 |#2|) (-147)) -(|has| (-407 |#2|) (-145)) -(((|#2|) -12 (|has| |#1| (-363)) (|has| |#2| (-309 |#2|)))) -(|has| |#1| (-38 (-407 (-564)))) -(((|#1|) . T)) -(((|#2|) . T) (($) . T) (((-407 (-564))) . T)) -((((-860)) . T)) -(|has| |#1| (-556)) -(|has| |#1| (-556)) -(|has| |#1| (-38 (-407 (-564)))) -(|has| |#1| (-38 (-407 (-564)))) -((((-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) . T)) -((((-860)) . T)) -((((-2 (|:| -1914 (-1155)) (|:| -2683 |#1|))) . T)) -(|has| |#1| (-38 (-407 (-564)))) -((((-388) (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|))) . T)) -(|has| |#1| (-38 (-407 (-564)))) -(|has| |#2| (-1148)) -(-2682 (|has| |#1| (-363)) (|has| |#1| (-556))) -(-2682 (|has| |#1| (-363)) (|has| |#1| (-556))) -((((-860)) . T) (((-1178)) . T)) -((((-860)) . T) (((-1178)) . T)) -((((-860)) . T) (((-1178)) . T)) -((((-1178)) . T)) -((((-1178)) . T)) -((((-1178)) . T)) -((((-860)) . T) (((-1178)) . T)) -((((-1178)) . T)) -((((-1211)) . T) (((-860)) . T) (((-1178)) . T)) +(-2809 (|has| |#3| (-172)) (|has| |#3| (-726)) (|has| |#3| (-848)) (|has| |#3| (-1049))) +(|has| |#3| (-793)) +(-2809 (|has| |#3| (-793)) (|has| |#3| (-848))) +(|has| |#3| (-848)) +((((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2809 (|has| |#1| (-365)) (|has| |#1| (-558))) ((|#2|) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-172)) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2809 (|has| |#1| (-365)) (|has| |#1| (-558)))) +(((|#2|) . T)) +((((-862)) . T)) +((((-862)) . T)) +((((-862)) . T)) +((((-862)) . T)) +(((|#1| (-1155 |#1|)) |has| |#1| (-848))) +((((-566) |#2|) . T)) +(|has| |#1| (-1099)) +(((|#1|) . T)) +(-12 (|has| |#1| (-365)) (|has| |#2| (-1150))) +((((-409 (-566))) . T) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) +((($) . T) (((-409 (-566))) . T)) +(|has| |#1| (-1099)) +(((|#2|) . T)) +((((-538)) |has| |#2| (-614 (-538))) (((-892 (-381))) |has| |#2| (-614 (-892 (-381)))) (((-892 (-566))) |has| |#2| (-614 (-892 (-566))))) +(((|#4|) -2809 (|has| |#4| (-172)) (|has| |#4| (-365)))) +(((|#3|) -2809 (|has| |#3| (-172)) (|has| |#3| (-365)))) +((((-862)) . T)) +(((|#1|) . T)) +(-2809 (|has| |#2| (-454)) (|has| |#2| (-909))) +((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) |has| |#2| (-172)) (($) -2809 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) +((($) -2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +(((|#1|) . T) (((-409 (-566))) . T) (($) . T)) +(((|#1|) . T) (((-409 (-566))) . T) (($) . T)) +(((|#1|) . T) (((-409 (-566))) . T) (($) . T)) +(-2809 (|has| |#1| (-454)) (|has| |#1| (-909))) +((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) . T) (($) -2809 (|has| |#2| (-172)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) +((($) -2809 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +(((|#1|) . T) (($) . T) (((-409 (-566))) . T)) +(((|#1|) . T) (($) . T) (((-409 (-566))) . T)) +(((|#1|) . T) (($) . T) (((-409 (-566))) . T)) +(((|#2|) . T)) +(-2809 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-909))) +(((|#2|) . T)) +((($ $) . T) ((#0=(-1175) $) |has| |#1| (-233)) ((#0# |#1|) |has| |#1| (-233)) ((#1=(-818 (-1175)) |#1|) . T) ((#1# $) . T)) +(-2809 (|has| |#1| (-454)) (|has| |#1| (-909))) +((((-566) |#2|) . T)) +((((-862)) . T)) +((((-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) . T)) +((((-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) . T)) +((((-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) . T)) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) +((($) -2809 (|has| |#3| (-172)) (|has| |#3| (-848)) (|has| |#3| (-1049))) ((|#3|) -2809 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1049)))) +((((-566) |#1|) . T)) +(|has| (-409 |#2|) (-147)) +(|has| (-409 |#2|) (-145)) +(((|#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-310 |#2|)))) +(|has| |#1| (-38 (-409 (-566)))) +(((|#1|) . T)) +(((|#2|) . T) (($) . T) (((-409 (-566))) . T)) +((((-862)) . T)) +(|has| |#1| (-558)) +(|has| |#1| (-558)) +(|has| |#1| (-38 (-409 (-566)))) +(|has| |#1| (-38 (-409 (-566)))) +((((-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) . T)) +((((-862)) . T)) +((((-2 (|:| -1928 (-1157)) (|:| -2806 |#1|))) . T)) +(|has| |#1| (-38 (-409 (-566)))) +((((-390) (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|))) . T)) +(|has| |#1| (-38 (-409 (-566)))) +(|has| |#2| (-1150)) +(-2809 (|has| |#1| (-365)) (|has| |#1| (-558))) +(-2809 (|has| |#1| (-365)) (|has| |#1| (-558))) +((((-862)) . T) (((-1180)) . T)) +((((-862)) . T) (((-1180)) . T)) +((((-862)) . T) (((-1180)) . T)) +((((-1180)) . T)) +((((-1180)) . T)) +((((-1180)) . T)) +((((-862)) . T) (((-1180)) . T)) +((((-1180)) . T)) +((((-1213)) . T) (((-862)) . T) (((-1180)) . T)) ((((-116 |#1|)) . T)) -((((-1178)) . T)) -((((-860)) . T) (((-1178)) . T)) -((((-1178)) . T)) -(((|#1|) . T)) -((((-388) (-1155)) . T)) -(|has| |#1| (-556)) -((((-564) |#1|) . T)) -(-2682 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) -((((-564)) . T) (($) . T) (((-407 (-564))) . T)) -((((-564)) . T) (($) . T) (((-407 (-564))) . T)) -(((|#2|) . T)) -((((-860)) . T)) -((((-817 |#1|)) . T)) +((((-1180)) . T)) +((((-862)) . T) (((-1180)) . T)) +((((-1180)) . T)) +(((|#1|) . T)) +((((-390) (-1157)) . T)) +(|has| |#1| (-558)) +((((-566) |#1|) . T)) +(-2809 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) +((((-566)) . T) (($) . T) (((-409 (-566))) . T)) +((((-566)) . T) (($) . T) (((-409 (-566))) . T)) +(((|#2|) . T)) +((((-862)) . T)) +((((-819 |#1|)) . T)) (((|#2|) |has| |#2| (-172))) -((((-1173) (-52)) . T)) +((((-1175) (-52)) . T)) (((|#1|) . T)) -(|has| |#1| (-38 (-407 (-564)))) -(|has| |#1| (-38 (-407 (-564)))) -(|has| |#1| (-556)) +(|has| |#1| (-38 (-409 (-566)))) +(|has| |#1| (-38 (-409 (-566)))) +(|has| |#1| (-558)) (((|#1|) |has| |#1| (-172))) -((((-642 |#1|)) . T)) -((((-860)) . T)) -((((-536)) |has| |#1| (-612 (-536)))) -(-2682 (|has| |#1| (-848)) (|has| |#1| (-1097))) -(((|#2|) |has| |#2| (-309 |#2|))) -(((#0=(-564) #0#) . T) ((#1=(-407 (-564)) #1#) . T) (($ $) . T)) -(((|#1|) . T)) -(((|#1| (-1169 |#1|)) . T)) +((((-644 |#1|)) . T)) +((((-862)) . T)) +((((-538)) |has| |#1| (-614 (-538)))) +(-2809 (|has| |#1| (-850)) (|has| |#1| (-1099))) +(((|#2|) |has| |#2| (-310 |#2|))) +(((#0=(-566) #0#) . T) ((#1=(-409 (-566)) #1#) . T) (($ $) . T)) +(((|#1|) . T)) +(((|#1| (-1171 |#1|)) . T)) (|has| $ (-147)) (((|#2|) . T)) -(((#0=(-564) #0#) . T) ((#1=(-407 (-564)) #1#) . T) (($ $) . T)) -((($) . T) (((-564)) . T) (((-407 (-564))) . T)) -(|has| |#2| (-368)) -(-2682 (|has| |#1| (-848)) (|has| |#1| (-1097))) -(((|#1|) . T) (((-407 (-564))) . T) (($) . T)) -(((|#1|) . T) (((-407 (-564))) . T) (($) . T)) -(((|#1|) . T) (((-407 (-564))) . T) (($) . T)) -((((-564)) . T) (((-407 (-564))) . T) (($) . T)) -((($) -2682 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172))) +(((#0=(-566) #0#) . T) ((#1=(-409 (-566)) #1#) . T) (($ $) . T)) +((($) . T) (((-566)) . T) (((-409 (-566))) . T)) +(|has| |#2| (-370)) +(-2809 (|has| |#1| (-850)) (|has| |#1| (-1099))) +(((|#1|) . T) (((-409 (-566))) . T) (($) . T)) +(((|#1|) . T) (((-409 (-566))) . T) (($) . T)) +(((|#1|) . T) (((-409 (-566))) . T) (($) . T)) +((((-566)) . T) (((-409 (-566))) . T) (($) . T)) +((($) -2809 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) (((|#1| |#2|) . T)) -((((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2682 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((|#1|) . T)) -((((-564)) . T) (((-407 (-564))) . T) (($) . T)) +((((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) ((|#1|) . T)) +((((-566)) . T) (((-409 (-566))) . T) (($) . T)) (((|#1| |#2|) . T)) -((((-860)) . T)) -((((-860)) . T)) -((((-860)) . T)) -((((-860)) . T)) -((((-536)) |has| |#1| (-612 (-536)))) -((((-860)) -2682 (|has| |#1| (-611 (-860))) (|has| |#1| (-1097)))) -((($) . T) (((-407 (-564))) -2682 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T)) -((((-860)) . T)) -((((-1171 |#1| |#2| |#3|) $) -12 (|has| (-1171 |#1| |#2| |#3|) (-286 (-1171 |#1| |#2| |#3|) (-1171 |#1| |#2| |#3|))) (|has| |#1| (-363))) (($ $) . T)) +((((-862)) . T)) +((((-862)) . T)) +((((-862)) . T)) +((((-862)) . T)) +((((-538)) |has| |#1| (-614 (-538)))) +((((-862)) -2809 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099)))) +((($) . T) (((-409 (-566))) -2809 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) +((((-862)) . T)) +((((-1173 |#1| |#2| |#3|) $) -12 (|has| (-1173 |#1| |#2| |#3|) (-287 (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|))) (|has| |#1| (-365))) (($ $) . T)) ((($ $) . T)) ((($ $) . T)) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) -(((#0=(-1254 |#1| |#2| |#3|) #0#) -12 (|has| (-1254 |#1| |#2| |#3|) (-309 (-1254 |#1| |#2| |#3|))) (|has| |#1| (-363))) (((-1173) #0#) -12 (|has| (-1254 |#1| |#2| |#3|) (-514 (-1173) (-1254 |#1| |#2| |#3|))) (|has| |#1| (-363)))) -(-12 (|has| |#1| (-1097)) (|has| |#2| (-1097))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) +(((#0=(-1256 |#1| |#2| |#3|) #0#) -12 (|has| (-1256 |#1| |#2| |#3|) (-310 (-1256 |#1| |#2| |#3|))) (|has| |#1| (-365))) (((-1175) #0#) -12 (|has| (-1256 |#1| |#2| |#3|) (-516 (-1175) (-1256 |#1| |#2| |#3|))) (|has| |#1| (-365)))) +(-12 (|has| |#1| (-1099)) (|has| |#2| (-1099))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-564)) . T) (($) . T)) -((($) -2682 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -((($) . T) (((-564)) . T) ((|#2|) . T)) -((((-564)) . T) (($) . T) ((|#2|) . T) (((-407 (-564))) |has| |#2| (-38 (-407 (-564))))) -((((-407 (-564))) . T) (((-564)) . T)) -((((-564) (-144)) . T)) +((((-566)) . T) (($) . T)) +((($) -2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((($) . T) (((-566)) . T) ((|#2|) . T)) +((((-566)) . T) (($) . T) ((|#2|) . T) (((-409 (-566))) |has| |#2| (-38 (-409 (-566))))) +((((-409 (-566))) . T) (((-566)) . T)) +((((-566) (-144)) . T)) ((((-144)) . T)) (((|#1|) . T)) -(-2682 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1047))) +(-2809 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-558)) (|has| |#1| (-1049))) ((((-112)) . T)) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) ((((-112)) . T)) (((|#1|) . T)) -((((-536)) |has| |#1| (-612 (-536))) (((-225)) . #0=(|has| |#1| (-1020))) (((-379)) . #0#)) -((((-860)) . T)) -((((-1178)) . T)) -(|has| |#1| (-818)) -(-2682 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) -((($) -2682 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#2|) |has| |#1| (-363)) ((|#1|) . T)) -((((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2682 (|has| |#1| (-363)) (|has| |#1| (-556))) ((|#2|) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172))) -(((|#1|) . T) (($) -2682 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363)))) -(((|#1|) |has| |#1| (-172)) (((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2682 (|has| |#1| (-363)) (|has| |#1| (-556)))) -(-2682 (|has| |#1| (-172)) (|has| |#1| (-556))) -(|has| |#1| (-556)) -(|has| |#1| (-848)) -((($) . T) (((-564)) . T) (((-407 (-564))) -2682 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T)) -((((-407 (-564))) |has| |#1| (-1036 (-407 (-564)))) ((|#1|) . T) (((-564)) . T)) -(|has| |#1| (-907)) -(((|#1|) . T)) -(|has| |#1| (-1097)) -((((-860)) . T)) -(-2682 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) -(-2682 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) -(-2682 (|has| |#1| (-172)) (|has| |#1| (-556))) -((((-860)) . T)) -((((-860)) . T)) -((((-860)) . T)) -(((|#1| (-1262 |#1|) (-1262 |#1|)) . T)) -((((-564) (-144)) . T)) -((($) . T)) -(-2682 (|has| |#4| (-172)) (|has| |#4| (-846)) (|has| |#4| (-1047))) -(-2682 (|has| |#3| (-172)) (|has| |#3| (-846)) (|has| |#3| (-1047))) -((((-1178)) . T) (((-860)) . T)) -((((-1178)) . T)) -((((-860)) . T)) -(|has| |#1| (-1097)) -(((|#1| (-969)) . T)) +((((-538)) |has| |#1| (-614 (-538))) (((-225)) . #0=(|has| |#1| (-1022))) (((-381)) . #0#)) +((((-862)) . T)) +((((-1180)) . T)) +(|has| |#1| (-820)) +(-2809 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) +((($) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#2|) |has| |#1| (-365)) ((|#1|) . T)) +((((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2809 (|has| |#1| (-365)) (|has| |#1| (-558))) ((|#2|) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) +(((|#1|) . T) (($) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365)))) +(((|#1|) |has| |#1| (-172)) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2809 (|has| |#1| (-365)) (|has| |#1| (-558)))) +(-2809 (|has| |#1| (-172)) (|has| |#1| (-558))) +(|has| |#1| (-558)) +(|has| |#1| (-850)) +((($) . T) (((-566)) . T) (((-409 (-566))) -2809 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) +((((-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) ((|#1|) . T) (((-566)) . T)) +(|has| |#1| (-909)) +(((|#1|) . T)) +(|has| |#1| (-1099)) +((((-862)) . T)) +(-2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) +(-2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) +(-2809 (|has| |#1| (-172)) (|has| |#1| (-558))) +((((-862)) . T)) +((((-862)) . T)) +((((-862)) . T)) +(((|#1| (-1264 |#1|) (-1264 |#1|)) . T)) +((((-566) (-144)) . T)) +((($) . T)) +(-2809 (|has| |#4| (-172)) (|has| |#4| (-848)) (|has| |#4| (-1049))) +(-2809 (|has| |#3| (-172)) (|has| |#3| (-848)) (|has| |#3| (-1049))) +((((-1180)) . T) (((-862)) . T)) +((((-1180)) . T)) +((((-862)) . T)) +(|has| |#1| (-1099)) +(((|#1| (-971)) . T)) (((|#1| |#1|) . T)) ((($) . T)) -(-2682 (|has| |#2| (-791)) (|has| |#2| (-846))) -(-2682 (|has| |#2| (-791)) (|has| |#2| (-846))) -(-12 (|has| |#1| (-473)) (|has| |#2| (-473))) -(-2682 (|has| |#2| (-172)) (|has| |#2| (-724)) (|has| |#2| (-846)) (|has| |#2| (-1047))) -((($) . T) (((-564)) . T) (((-868 |#1|)) . T) (((-407 (-564))) . T)) +(-2809 (|has| |#2| (-793)) (|has| |#2| (-848))) +(-2809 (|has| |#2| (-793)) (|has| |#2| (-848))) +(-12 (|has| |#1| (-475)) (|has| |#2| (-475))) +(-2809 (|has| |#2| (-172)) (|has| |#2| (-726)) (|has| |#2| (-848)) (|has| |#2| (-1049))) +((($) . T) (((-566)) . T) (((-870 |#1|)) . T) (((-409 (-566))) . T)) (((|#1|) . T)) -(|has| |#2| (-791)) -(-2682 (|has| |#2| (-791)) (|has| |#2| (-846))) +(|has| |#2| (-793)) +(-2809 (|has| |#2| (-793)) (|has| |#2| (-848))) (((|#1| |#2|) . T)) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) -(|has| |#2| (-846)) -(-12 (|has| |#1| (-791)) (|has| |#2| (-791))) -(-12 (|has| |#1| (-791)) (|has| |#2| (-791))) -(-2682 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-724)) (|has| |#2| (-724)))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) +(|has| |#2| (-848)) +(-12 (|has| |#1| (-793)) (|has| |#2| (-793))) +(-12 (|has| |#1| (-793)) (|has| |#2| (-793))) +(-2809 (-12 (|has| |#1| (-475)) (|has| |#2| (-475))) (-12 (|has| |#1| (-726)) (|has| |#2| (-726)))) (((|#1| |#2|) . T)) -(((|#1|) |has| |#1| (-172)) ((|#4|) . T) (((-564)) . T)) +(((|#1|) |has| |#1| (-172)) ((|#4|) . T) (((-566)) . T)) (((|#2|) |has| |#2| (-172))) (((|#1|) |has| |#1| (-172))) -((((-860)) . T)) -(|has| |#1| (-349)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-407 (-564))) . T) (($) . T)) -(((|#2|) . T) (($) . T) (((-407 (-564))) . T)) -((($) . T) (((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) . T)) -(|has| |#1| (-826)) -((((-407 (-564))) |has| |#1| (-1036 (-407 (-564)))) (((-564)) |has| |#1| (-1036 (-564))) ((|#1|) . T)) -(|has| |#1| (-1097)) -(((|#1| $) |has| |#1| (-286 |#1| |#1|))) -((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556))) -((($) |has| |#1| (-556))) -(((|#2|) . T) (((-407 (-564))) . T) (($) . T)) -(((|#4|) |has| |#4| (-1097))) -(((|#3|) |has| |#3| (-1097))) -(|has| |#3| (-368)) -((($) |has| |#1| (-556)) ((|#1|) . T) (((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1036 (-407 (-564))))) (((-564)) . T)) -((((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2682 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-1254 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172))) -((((-860)) . T)) -((((-860)) . T)) +((((-862)) . T)) +(|has| |#1| (-351)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-409 (-566))) . T) (($) . T)) +(((|#2|) . T) (($) . T) (((-409 (-566))) . T)) +((($) . T) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#1|) . T)) +(|has| |#1| (-828)) +((((-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) (((-566)) |has| |#1| (-1038 (-566))) ((|#1|) . T)) +(|has| |#1| (-1099)) +(((|#1| $) |has| |#1| (-287 |#1| |#1|))) +((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-558))) +((($) |has| |#1| (-558))) +(((|#2|) . T) (((-409 (-566))) . T) (($) . T)) +(((|#4|) |has| |#4| (-1099))) +(((|#3|) |has| |#3| (-1099))) +(|has| |#3| (-370)) +((($) |has| |#1| (-558)) ((|#1|) . T) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566))))) (((-566)) . T)) +((((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2809 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-1256 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) +((((-862)) . T)) +((((-862)) . T)) (((|#2|) . T)) (((|#1| |#2|) . T)) -(((|#1|) |has| |#1| (-172)) (((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2682 (|has| |#1| (-363)) (|has| |#1| (-556)))) -((($) |has| |#1| (-556)) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) +(((|#1|) |has| |#1| (-172)) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2809 (|has| |#1| (-365)) (|has| |#1| (-558)))) +((($) |has| |#1| (-558)) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) (((|#1| |#1|) |has| |#1| (-172))) -(|has| |#2| (-363)) +(|has| |#2| (-365)) (((|#1|) . T)) (((|#1|) |has| |#1| (-172))) -((((-407 (-564))) . T) (((-564)) . T)) -((($) . T) (((-564)) . T) (((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T)) -((($ $) -2682 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564))))) -((($) . T) (((-564)) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T)) -((($) . T) (((-564)) . T)) -((($) -2682 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) +((((-409 (-566))) . T) (((-566)) . T)) +((($) . T) (((-566)) . T) (((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) . T)) +((($ $) -2809 (|has| |#1| (-172)) (|has| |#1| (-558))) ((|#1| |#1|) . T) ((#0=(-409 (-566)) #0#) |has| |#1| (-38 (-409 (-566))))) +((($) . T) (((-566)) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) . T)) +((($) . T) (((-566)) . T)) +((($) -2809 (|has| |#1| (-172)) (|has| |#1| (-558))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) ((((-144)) . T)) (((|#1|) . T)) -((($) -2682 (|has| |#2| (-172)) (|has| |#2| (-846)) (|has| |#2| (-1047))) ((|#2|) -2682 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1047)))) +((($) -2809 (|has| |#2| (-172)) (|has| |#2| (-848)) (|has| |#2| (-1049))) ((|#2|) -2809 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1049)))) ((((-144)) . T)) ((((-144)) . T)) -((((-407 (-564))) . #0=(|has| |#2| (-363))) (($) . #0#) ((|#2|) . T) (((-564)) . T)) +((((-409 (-566))) . #0=(|has| |#2| (-365))) (($) . #0#) ((|#2|) . T) (((-566)) . T)) (((|#1| |#2| |#3|) . T)) -(-2682 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1047))) +(-2809 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-558)) (|has| |#1| (-1049))) (((|#1|) |has| |#1| (-172))) (|has| $ (-147)) (|has| $ (-147)) -((((-1178)) . T)) +((((-1180)) . T)) (((|#1|) |has| |#1| (-172))) -(|has| |#1| (-1097)) -((((-860)) . T)) -(|has| |#1| (-38 (-407 (-564)))) -(|has| |#1| (-38 (-407 (-564)))) -(-2682 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-473)) (|has| |#1| (-556)) (|has| |#1| (-1047)) (|has| |#1| (-1109))) -((($ $) |has| |#1| (-286 $ $)) ((|#1| $) |has| |#1| (-286 |#1| |#1|))) -(((|#1| (-407 (-564))) . T)) -(((|#1|) . T)) -((((-407 (-564))) . T) (((-564)) . T) (($) . T)) -((((-1173)) . T)) -(|has| |#1| (-556)) -(-2682 (|has| |#1| (-363)) (|has| |#1| (-556))) -(-2682 (|has| |#1| (-363)) (|has| |#1| (-556))) -(|has| |#1| (-556)) -(|has| |#1| (-38 (-407 (-564)))) -(|has| |#1| (-38 (-407 (-564)))) -((((-860)) . T)) +(|has| |#1| (-1099)) +((((-862)) . T)) +(|has| |#1| (-38 (-409 (-566)))) +(|has| |#1| (-38 (-409 (-566)))) +(-2809 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-475)) (|has| |#1| (-558)) (|has| |#1| (-1049)) (|has| |#1| (-1111))) +((($ $) |has| |#1| (-287 $ $)) ((|#1| $) |has| |#1| (-287 |#1| |#1|))) +(((|#1| (-409 (-566))) . T)) +(((|#1|) . T)) +((((-409 (-566))) . T) (((-566)) . T) (($) . T)) +((((-1175)) . T)) +(|has| |#1| (-558)) +(-2809 (|has| |#1| (-365)) (|has| |#1| (-558))) +(-2809 (|has| |#1| (-365)) (|has| |#1| (-558))) +(|has| |#1| (-558)) +(|has| |#1| (-38 (-409 (-566)))) +(|has| |#1| (-38 (-409 (-566)))) +((((-862)) . T)) (|has| |#2| (-145)) (|has| |#2| (-147)) (((|#2|) . T) (($) . T)) (|has| |#1| (-147)) (|has| |#1| (-145)) -(|has| |#4| (-846)) -(((|#2| (-240 (-2158 |#1|) (-769)) (-862 |#1|)) . T)) -(|has| |#3| (-846)) -(((|#1| (-531 |#3|) |#3|) . T)) +(|has| |#4| (-848)) +(((|#2| (-240 (-3002 |#1|) (-771)) (-864 |#1|)) . T)) +(|has| |#3| (-848)) +(((|#1| (-533 |#3|) |#3|) . T)) (|has| |#1| (-147)) (|has| |#1| (-145)) -(((#0=(-407 (-564)) #0#) |has| |#2| (-363)) (($ $) . T)) -((((-868 |#1|)) . T)) +(((#0=(-409 (-566)) #0#) |has| |#2| (-365)) (($ $) . T)) +((((-870 |#1|)) . T)) (|has| |#1| (-147)) -(|has| |#1| (-368)) -(|has| |#1| (-368)) -(|has| |#1| (-368)) -((((-860)) . T)) +(|has| |#1| (-370)) +(|has| |#1| (-370)) +(|has| |#1| (-370)) +((((-862)) . T)) (|has| |#1| (-145)) -((((-407 (-564))) |has| |#2| (-363)) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) -(-2682 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907))) -(-2682 (|has| |#1| (-349)) (|has| |#1| (-368))) -((((-1139 |#2| |#1|)) . T) ((|#1|) . T)) +((((-409 (-566))) |has| |#2| (-365)) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) +(-2809 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) +(-2809 (|has| |#1| (-351)) (|has| |#1| (-370))) +((((-1141 |#2| |#1|)) . T) ((|#1|) . T)) (|has| |#2| (-172)) (((|#1| |#2|) . T)) -(-12 (|has| |#2| (-233)) (|has| |#2| (-1047))) -(((|#2|) . T) (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) . T)) -(-2682 (|has| |#3| (-791)) (|has| |#3| (-846))) -(-2682 (|has| |#3| (-791)) (|has| |#3| (-846))) -((((-860)) . T)) +(-12 (|has| |#2| (-233)) (|has| |#2| (-1049))) +(((|#2|) . T) (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) . T)) +(-2809 (|has| |#3| (-793)) (|has| |#3| (-848))) +(-2809 (|has| |#3| (-793)) (|has| |#3| (-848))) +((((-862)) . T)) (((|#1|) . T)) (((|#2|) . T) (($) . T)) -((((-697)) . T)) -(-2682 (|has| |#2| (-172)) (|has| |#2| (-846)) (|has| |#2| (-1047))) -(|has| |#1| (-556)) +((((-699)) . T)) +(-2809 (|has| |#2| (-172)) (|has| |#2| (-848)) (|has| |#2| (-1049))) +(|has| |#1| (-558)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) @@ -1106,371 +1107,371 @@ (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-1173) (-52)) . T)) +((((-1175) (-52)) . T)) (((|#1|) . T) (($) . T)) -((((-1002 10)) . T) (((-407 (-564))) . T) (((-860)) . T)) -((((-536)) . T) (((-890 (-564))) . T) (((-379)) . T) (((-225)) . T)) -(((|#1|) . T)) -((((-1002 16)) . T) (((-407 (-564))) . T) (((-860)) . T)) -((((-536)) . T) (((-890 (-564))) . T) (((-379)) . T) (((-225)) . T)) -(((|#1| (-564)) . T)) -((((-860)) . T)) -((((-860)) . T)) +((((-1004 10)) . T) (((-409 (-566))) . T) (((-862)) . T)) +((((-538)) . T) (((-892 (-566))) . T) (((-381)) . T) (((-225)) . T)) +(((|#1|) . T)) +((((-1004 16)) . T) (((-409 (-566))) . T) (((-862)) . T)) +((((-538)) . T) (((-892 (-566))) . T) (((-381)) . T) (((-225)) . T)) +(((|#1| (-566)) . T)) +((((-862)) . T)) +((((-862)) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(((|#1| (-407 (-564))) . T)) -(((|#3|) . T) (((-610 $)) . T)) +(((|#1| (-409 (-566))) . T)) +(((|#3|) . T) (((-612 $)) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) . T)) +((((-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) -((((-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) . T)) -((((-564)) -2682 (|has| |#2| (-172)) (|has| |#2| (-846)) (-12 (|has| |#2| (-1036 (-564))) (|has| |#2| (-1097))) (|has| |#2| (-1047))) ((|#2|) -2682 (|has| |#2| (-172)) (|has| |#2| (-1097))) (((-407 (-564))) -12 (|has| |#2| (-1036 (-407 (-564)))) (|has| |#2| (-1097)))) -(((|#1|) . T) (((-407 (-564))) . T) (($) . T)) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) +((((-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) . T)) +((((-566)) -2809 (|has| |#2| (-172)) (|has| |#2| (-848)) (-12 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099))) (|has| |#2| (-1049))) ((|#2|) -2809 (|has| |#2| (-172)) (|has| |#2| (-1099))) (((-409 (-566))) -12 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099)))) +(((|#1|) . T) (((-409 (-566))) . T) (($) . T)) ((($ $) . T) ((|#2| $) . T)) -((((-564)) . T) (($) . T) (((-407 (-564))) . T)) -(((#0=(-1171 |#1| |#2| |#3|) #0#) -12 (|has| (-1171 |#1| |#2| |#3|) (-309 (-1171 |#1| |#2| |#3|))) (|has| |#1| (-363))) (((-1173) #0#) -12 (|has| (-1171 |#1| |#2| |#3|) (-514 (-1173) (-1171 |#1| |#2| |#3|))) (|has| |#1| (-363)))) -((((-860)) . T)) -((((-860)) . T)) +((((-566)) . T) (($) . T) (((-409 (-566))) . T)) +(((#0=(-1173 |#1| |#2| |#3|) #0#) -12 (|has| (-1173 |#1| |#2| |#3|) (-310 (-1173 |#1| |#2| |#3|))) (|has| |#1| (-365))) (((-1175) #0#) -12 (|has| (-1173 |#1| |#2| |#3|) (-516 (-1175) (-1173 |#1| |#2| |#3|))) (|has| |#1| (-365)))) +((((-862)) . T)) +((((-862)) . T)) (((|#1| |#1|) . T)) -(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))) (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) |has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))))) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) (((-2 (|:| -1914 (-1155)) (|:| -2683 |#1|))) |has| (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (-309 (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|))))) -((((-860)) . T)) +(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) |has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) (((-2 (|:| -1928 (-1157)) (|:| -2806 |#1|))) |has| (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (-310 (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|))))) +((((-862)) . T)) (((|#1|) . T)) (((|#3| |#3|) . T)) (((|#1|) . T)) ((($) . T) ((|#2|) . T)) -((((-1173) (-52)) . T)) +((((-1175) (-52)) . T)) (((|#3|) . T)) -((($ $) . T) ((#0=(-862 |#1|) $) . T) ((#0# |#2|) . T)) -(|has| |#1| (-826)) -((($) . T) (((-564)) . T) ((|#1|) . T)) -((($) . T) (((-564)) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T)) -((((-564)) . T) (($) . T) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -(|has| |#1| (-1097)) -(((|#2| |#2|) -2682 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1047))) (($ $) |has| |#2| (-172))) -(((|#2|) -2682 (|has| |#2| (-172)) (|has| |#2| (-363)))) -((((-564) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) . T) ((|#1| |#2|) . T)) -(((|#2|) -2682 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1047))) (($) |has| |#2| (-172))) -((((-564)) . T)) -((((-1178)) . T)) -((((-769)) . T)) +((($ $) . T) ((#0=(-864 |#1|) $) . T) ((#0# |#2|) . T)) +(|has| |#1| (-828)) +((($) . T) (((-566)) . T) ((|#1|) . T)) +((($) . T) (((-566)) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) . T)) +((((-566)) . T) (($) . T) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +(|has| |#1| (-1099)) +(((|#2| |#2|) -2809 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1049))) (($ $) |has| |#2| (-172))) +(((|#2|) -2809 (|has| |#2| (-172)) (|has| |#2| (-365)))) +((((-566) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) . T) ((|#1| |#2|) . T)) +(((|#2|) -2809 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1049))) (($) |has| |#2| (-172))) +((((-566)) . T)) +((((-1180)) . T)) +((((-771)) . T)) (((|#2|) |has| |#2| (-172))) (((|#1|) |has| |#1| (-172))) -(|has| |#1| (-556)) -((((-564)) . T)) +(|has| |#1| (-558)) +((((-566)) . T)) (((|#2|) . T)) -((((-860)) . T)) -(((|#1| (-407 (-564)) (-1079)) . T)) +((((-862)) . T)) +(((|#1| (-409 (-566)) (-1081)) . T)) (((|#1|) |has| |#1| (-172))) (((|#1|) . T)) -(|has| |#1| (-556)) -((((-564)) . T)) +(|has| |#1| (-558)) +((((-566)) . T)) ((((-116 |#1|)) . T)) (((|#1|) . T)) -((((-407 (-564))) . T) (($) . T)) -(-2682 (|has| |#1| (-172)) (|has| |#1| (-556))) -(-2682 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) -((($) . T) (((-407 (-564))) . T)) -(-2682 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) -(-2682 (|has| |#1| (-172)) (|has| |#1| (-556))) +((((-409 (-566))) . T) (($) . T)) +(-2809 (|has| |#1| (-172)) (|has| |#1| (-558))) +(-2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) +((($) . T) (((-409 (-566))) . T)) +(-2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) +(-2809 (|has| |#1| (-172)) (|has| |#1| (-558))) (|has| |#1| (-145)) (|has| |#1| (-147)) -((((-564)) . T)) -((((-564)) . T)) -((((-890 (-564))) . T) (((-890 (-379))) . T) (((-536)) . T) (((-1173)) . T)) -((((-860)) . T)) -(-2682 (|has| |#1| (-848)) (|has| |#1| (-1097))) -((((-860)) . T) (((-1178)) . T)) -((((-1178)) . T)) +((((-566)) . T)) +((((-566)) . T)) +((((-892 (-566))) . T) (((-892 (-381))) . T) (((-538)) . T) (((-1175)) . T)) +((((-862)) . T)) +(-2809 (|has| |#1| (-850)) (|has| |#1| (-1099))) +((((-862)) . T) (((-1180)) . T)) +((((-1180)) . T)) ((($) . T)) (((|#1|) . T)) -((((-860)) . T)) -(-2682 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907))) +((((-862)) . T)) +(-2809 (|has| |#2| (-172)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) (((|#1|) . T) (($) . T)) (((|#2|) |has| |#2| (-172))) -((($) -2682 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907))) ((|#2|) |has| |#2| (-172)) (((-407 (-564))) |has| |#2| (-38 (-407 (-564))))) -((((-868 |#1|)) . T)) -(-2682 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-724)) (|has| |#2| (-791)) (|has| |#2| (-846)) (|has| |#2| (-1047)) (|has| |#2| (-1097))) -(-12 (|has| |#3| (-233)) (|has| |#3| (-1047))) -(|has| |#2| (-1148)) -(((#0=(-52)) . T) (((-2 (|:| -1914 (-1173)) (|:| -2683 #0#))) . T)) +((($) -2809 (|has| |#2| (-365)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) ((|#2|) |has| |#2| (-172)) (((-409 (-566))) |has| |#2| (-38 (-409 (-566))))) +((((-870 |#1|)) . T)) +(-2809 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-726)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049)) (|has| |#2| (-1099))) +(-12 (|has| |#3| (-233)) (|has| |#3| (-1049))) +(|has| |#2| (-1150)) +(((#0=(-52)) . T) (((-2 (|:| -1928 (-1175)) (|:| -2806 #0#))) . T)) (((|#1| |#2|) . T)) -(-2682 (|has| |#3| (-172)) (|has| |#3| (-846)) (|has| |#3| (-1047))) -(((|#1| (-564) (-1079)) . T)) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) -(((|#1| (-407 (-564)) (-1079)) . T)) -((($) -2682 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-556))) (((-407 (-564))) -2682 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T)) -((((-564) |#2|) . T)) +(-2809 (|has| |#3| (-172)) (|has| |#3| (-848)) (|has| |#3| (-1049))) +(((|#1| (-566) (-1081)) . T)) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) +(((|#1| (-409 (-566)) (-1081)) . T)) +((($) -2809 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-558))) (((-409 (-566))) -2809 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) +((((-566) |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -(|has| |#2| (-368)) -(-12 (|has| |#1| (-368)) (|has| |#2| (-368))) -((((-860)) . T)) -((((-1173) |#1|) |has| |#1| (-514 (-1173) |#1|)) ((|#1| |#1|) |has| |#1| (-309 |#1|))) -(-2682 (|has| |#1| (-145)) (|has| |#1| (-368))) -(-2682 (|has| |#1| (-145)) (|has| |#1| (-368))) -(-2682 (|has| |#1| (-145)) (|has| |#1| (-368))) -(((|#1|) . T)) -((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556))) -((((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2682 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-1171 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172))) -(((|#1|) |has| |#1| (-172)) (((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2682 (|has| |#1| (-363)) (|has| |#1| (-556)))) -((($) |has| |#1| (-556)) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) +(|has| |#2| (-370)) +(-12 (|has| |#1| (-370)) (|has| |#2| (-370))) +((((-862)) . T)) +((((-1175) |#1|) |has| |#1| (-516 (-1175) |#1|)) ((|#1| |#1|) |has| |#1| (-310 |#1|))) +(-2809 (|has| |#1| (-145)) (|has| |#1| (-370))) +(-2809 (|has| |#1| (-145)) (|has| |#1| (-370))) +(-2809 (|has| |#1| (-145)) (|has| |#1| (-370))) +(((|#1|) . T)) +((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-558))) +((((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2809 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-1173 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-172)) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2809 (|has| |#1| (-365)) (|has| |#1| (-558)))) +((($) |has| |#1| (-558)) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) (((|#4|) . T)) -(|has| |#1| (-349)) -((((-564)) -2682 (|has| |#3| (-172)) (|has| |#3| (-846)) (-12 (|has| |#3| (-1036 (-564))) (|has| |#3| (-1097))) (|has| |#3| (-1047))) ((|#3|) -2682 (|has| |#3| (-172)) (|has| |#3| (-1097))) (((-407 (-564))) -12 (|has| |#3| (-1036 (-407 (-564)))) (|has| |#3| (-1097)))) -(((|#1|) . T)) -(((|#4|) . T) (((-860)) . T)) -(((|#3|) . T) ((|#2|) . T) (($) -2682 (|has| |#4| (-172)) (|has| |#4| (-846)) (|has| |#4| (-1047))) (((-564)) . T) ((|#4|) -2682 (|has| |#4| (-172)) (|has| |#4| (-363)) (|has| |#4| (-1047)))) -(((|#2|) . T) (($) -2682 (|has| |#3| (-172)) (|has| |#3| (-846)) (|has| |#3| (-1047))) (((-564)) . T) ((|#3|) -2682 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1047)))) -(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))) ((#0=(-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) #0#) |has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))))) -(|has| |#1| (-556)) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) -((((-860)) . T)) +(|has| |#1| (-351)) +((((-566)) -2809 (|has| |#3| (-172)) (|has| |#3| (-848)) (-12 (|has| |#3| (-1038 (-566))) (|has| |#3| (-1099))) (|has| |#3| (-1049))) ((|#3|) -2809 (|has| |#3| (-172)) (|has| |#3| (-1099))) (((-409 (-566))) -12 (|has| |#3| (-1038 (-409 (-566)))) (|has| |#3| (-1099)))) +(((|#1|) . T)) +(((|#4|) . T) (((-862)) . T)) +(((|#3|) . T) ((|#2|) . T) (($) -2809 (|has| |#4| (-172)) (|has| |#4| (-848)) (|has| |#4| (-1049))) (((-566)) . T) ((|#4|) -2809 (|has| |#4| (-172)) (|has| |#4| (-365)) (|has| |#4| (-1049)))) +(((|#2|) . T) (($) -2809 (|has| |#3| (-172)) (|has| |#3| (-848)) (|has| |#3| (-1049))) (((-566)) . T) ((|#3|) -2809 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1049)))) +(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) ((#0=(-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) #0#) |has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))))) +(|has| |#1| (-558)) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) +((((-862)) . T)) (((|#1| |#2|) . T)) -(-2682 (|has| |#2| (-452)) (|has| |#2| (-907))) -(-2682 (|has| |#1| (-848)) (|has| |#1| (-1097))) -(-2682 (|has| |#1| (-452)) (|has| |#1| (-907))) -((((-407 (-564))) . T) (((-564)) . T)) -((((-564)) . T)) -((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -2682 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907)))) -((($) . T)) -((((-860)) . T)) -(((|#1|) . T)) -((((-868 |#1|)) . T) (($) . T) (((-407 (-564))) . T)) -((((-860)) . T)) -(((|#3| |#3|) -2682 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1047))) (($ $) |has| |#3| (-172))) -(|has| |#1| (-1020)) -((((-860)) . T)) -(((|#3|) -2682 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1047))) (($) |has| |#3| (-172))) -((((-564) (-112)) . T)) -((((-1178)) . T)) -(((|#1|) |has| |#1| (-309 |#1|))) -((((-1178)) . T)) -(|has| |#1| (-368)) -(|has| |#1| (-368)) -(|has| |#1| (-368)) -((((-1173) $) |has| |#1| (-514 (-1173) $)) (($ $) |has| |#1| (-309 $)) ((|#1| |#1|) |has| |#1| (-309 |#1|)) (((-1173) |#1|) |has| |#1| (-514 (-1173) |#1|))) -((((-1173)) |has| |#1| (-898 (-1173)))) -(-2682 (-12 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349))) +(-2809 (|has| |#2| (-454)) (|has| |#2| (-909))) +(-2809 (|has| |#1| (-850)) (|has| |#1| (-1099))) +(-2809 (|has| |#1| (-454)) (|has| |#1| (-909))) +((((-409 (-566))) . T) (((-566)) . T)) +((((-566)) . T)) +((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) |has| |#2| (-172)) (($) -2809 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) +((($) . T)) +((((-862)) . T)) +(((|#1|) . T)) +((((-870 |#1|)) . T) (($) . T) (((-409 (-566))) . T)) +((((-862)) . T)) +(((|#3| |#3|) -2809 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1049))) (($ $) |has| |#3| (-172))) +(|has| |#1| (-1022)) +((((-862)) . T)) +(((|#3|) -2809 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1049))) (($) |has| |#3| (-172))) +((((-566) (-112)) . T)) +((((-1180)) . T)) +(((|#1|) |has| |#1| (-310 |#1|))) +((((-1180)) . T)) +(|has| |#1| (-370)) +(|has| |#1| (-370)) +(|has| |#1| (-370)) +((((-1175) $) |has| |#1| (-516 (-1175) $)) (($ $) |has| |#1| (-310 $)) ((|#1| |#1|) |has| |#1| (-310 |#1|)) (((-1175) |#1|) |has| |#1| (-516 (-1175) |#1|))) +((((-1175)) |has| |#1| (-900 (-1175)))) +(-2809 (-12 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351))) (((|#1| |#4|) . T)) (((|#1| |#3|) . T)) -((((-388) |#1|) . T)) -(-2682 (|has| |#1| (-363)) (|has| |#1| (-349))) -(|has| |#1| (-1097)) -(((|#2|) . T) (((-860)) . T)) -((((-860)) . T)) -(((|#2|) . T)) -((((-908 |#1|)) . T)) -((((-860)) . T) (((-1178)) . T)) -((((-1178)) . T)) -((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -2682 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907)))) -((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) -2682 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907)))) +((((-390) |#1|) . T)) +(-2809 (|has| |#1| (-365)) (|has| |#1| (-351))) +(|has| |#1| (-1099)) +(((|#2|) . T) (((-862)) . T)) +((((-862)) . T)) +(((|#2|) . T)) +((((-910 |#1|)) . T)) +((((-862)) . T) (((-1180)) . T)) +((((-1180)) . T)) +((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) |has| |#2| (-172)) (($) -2809 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) +((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) |has| |#1| (-172)) (($) -2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909)))) (((|#1| |#2|) . T)) ((($) . T)) -((((-564)) . T) (($) . T) (((-407 (-564))) . T)) -(((|#1|) . T) (((-407 (-564))) . T) (($) . T) (((-564)) . T)) -(((|#1|) . T) (((-407 (-564))) . T) (($) . T) (((-564)) . T)) -(((|#1|) . T) (((-407 (-564))) . T) (($) . T) (((-564)) . T)) +((((-566)) . T) (($) . T) (((-409 (-566))) . T)) +(((|#1|) . T) (((-409 (-566))) . T) (($) . T) (((-566)) . T)) +(((|#1|) . T) (((-409 (-566))) . T) (($) . T) (((-566)) . T)) +(((|#1|) . T) (((-409 (-566))) . T) (($) . T) (((-566)) . T)) (((|#1| |#1|) . T)) -(((#0=(-868 |#1|)) |has| #0# (-309 #0#))) -((((-564)) . T) (($) -2682 (|has| |#1| (-363)) (|has| |#1| (-349))) (((-407 (-564))) -2682 (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-1036 (-407 (-564))))) ((|#1|) . T)) +(((#0=(-870 |#1|)) |has| #0# (-310 #0#))) +((((-566)) . T) (($) -2809 (|has| |#1| (-365)) (|has| |#1| (-351))) (((-409 (-566))) -2809 (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-1038 (-409 (-566))))) ((|#1|) . T)) (((|#1| |#2|) . T)) -(-2682 (|has| |#2| (-791)) (|has| |#2| (-846))) -(-2682 (|has| |#2| (-791)) (|has| |#2| (-846))) -(((|#1|) . T)) -(-12 (|has| |#1| (-791)) (|has| |#2| (-791))) -(-12 (|has| |#1| (-791)) (|has| |#2| (-791))) -(-2682 (|has| |#2| (-172)) (|has| |#2| (-846)) (|has| |#2| (-1047))) -((($) . T) (((-564)) . T) ((|#2|) . T)) -(((|#2|) . T) (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) . T)) +(-2809 (|has| |#2| (-793)) (|has| |#2| (-848))) +(-2809 (|has| |#2| (-793)) (|has| |#2| (-848))) +(((|#1|) . T)) +(-12 (|has| |#1| (-793)) (|has| |#2| (-793))) +(-12 (|has| |#1| (-793)) (|has| |#2| (-793))) +(-2809 (|has| |#2| (-172)) (|has| |#2| (-848)) (|has| |#2| (-1049))) +((($) . T) (((-566)) . T) ((|#2|) . T)) +(((|#2|) . T) (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) . T)) (((|#2|) . T) (($) . T)) -(|has| |#1| (-1197)) -(((#0=(-564) #0#) . T) ((#1=(-407 (-564)) #1#) . T) (($ $) . T)) -((((-407 (-564))) . T) (($) . T)) -(((|#4|) |has| |#4| (-1047))) -(((|#3|) |has| |#3| (-1047))) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-407 (-564)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-407 (-564)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-407 (-564)) #0#) . T)) -(|has| |#1| (-363)) -((((-564)) . T) (((-407 (-564))) . T) (($) . T)) -((($ $) . T) ((#0=(-407 (-564)) #0#) -2682 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1| |#1|) . T)) -((((-860)) -2682 (|has| |#1| (-611 (-860))) (|has| |#1| (-1097)))) -(((|#1|) . T) (($) . T) (((-407 (-564))) . T)) -((((-860)) . T)) -((((-860)) . T)) -(((|#1|) . T) (($) . T) (((-407 (-564))) . T)) -(((|#1|) . T) (($) . T) (((-407 (-564))) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-564) |#3|) . T)) -((((-860)) . T)) -((((-536)) |has| |#3| (-612 (-536)))) -((((-687 |#3|)) . T) (((-860)) . T)) +(|has| |#1| (-1199)) +(((#0=(-566) #0#) . T) ((#1=(-409 (-566)) #1#) . T) (($ $) . T)) +((((-409 (-566))) . T) (($) . T)) +(((|#4|) |has| |#4| (-1049))) +(((|#3|) |has| |#3| (-1049))) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-409 (-566)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-409 (-566)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-409 (-566)) #0#) . T)) +(|has| |#1| (-365)) +((((-566)) . T) (((-409 (-566))) . T) (($) . T)) +((($ $) . T) ((#0=(-409 (-566)) #0#) -2809 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1| |#1|) . T)) +((((-862)) -2809 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099)))) +(((|#1|) . T) (($) . T) (((-409 (-566))) . T)) +((((-862)) . T)) +((((-862)) . T)) +(((|#1|) . T) (($) . T) (((-409 (-566))) . T)) +(((|#1|) . T) (($) . T) (((-409 (-566))) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-566) |#3|) . T)) +((((-862)) . T)) +((((-538)) |has| |#3| (-614 (-538)))) +((((-689 |#3|)) . T) (((-862)) . T)) (((|#1| |#2|) . T)) -(|has| |#1| (-846)) -(|has| |#1| (-846)) -((($) . T) (((-407 (-564))) -2682 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T)) -(-2682 (|has| |#1| (-172)) (|has| |#1| (-556))) +(|has| |#1| (-848)) +(|has| |#1| (-848)) +((($) . T) (((-409 (-566))) -2809 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) +(-2809 (|has| |#1| (-172)) (|has| |#1| (-558))) ((($) . T)) -(((#0=(-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) #0#) |has| (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-309 (-2 (|:| -1914 (-1173)) (|:| -2683 (-52)))))) +(((#0=(-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) #0#) |has| (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-310 (-2 (|:| -1928 (-1175)) (|:| -2806 (-52)))))) ((($) . T)) ((($) . T)) -(((|#2|) |has| |#2| (-1097))) -((((-860)) -2682 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-611 (-860))) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-724)) (|has| |#2| (-791)) (|has| |#2| (-846)) (|has| |#2| (-1047)) (|has| |#2| (-1097))) (((-1262 |#2|)) . T)) +(((|#2|) |has| |#2| (-1099))) +((((-862)) -2809 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-613 (-862))) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-726)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049)) (|has| |#2| (-1099))) (((-1264 |#2|)) . T)) ((($) . T)) -((((-564)) . T) (($) . T) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -((((-1155) (-52)) . T)) +((((-566)) . T) (($) . T) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((((-1157) (-52)) . T)) (((|#2|) |has| |#2| (-172))) -((($) -2682 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907))) ((|#2|) |has| |#2| (-172)) (((-407 (-564))) |has| |#2| (-38 (-407 (-564))))) -((((-860)) . T)) -(((|#2|) . T)) -((($) -2682 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907))) ((|#2|) . T) (((-407 (-564))) |has| |#2| (-38 (-407 (-564))))) -((((-564)) |has| #0=(-407 |#2|) (-637 (-564))) ((#0#) . T)) -((($) . T) (((-564)) . T)) -((((-564) (-144)) . T)) -((((-564) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) . T) ((|#1| |#2|) . T)) -((((-407 (-564))) . T) (($) . T)) -(((|#1|) . T)) -((((-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) . T)) -((((-860)) . T)) -((((-908 |#1|)) . T)) -(|has| |#1| (-363)) -(|has| |#1| (-363)) -(|has| |#1| (-363)) -(|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) -(|has| |#1| (-846)) -((($) -2682 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-556))) (((-407 (-564))) -2682 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T)) -(|has| |#1| (-363)) +((($) -2809 (|has| |#2| (-365)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) ((|#2|) |has| |#2| (-172)) (((-409 (-566))) |has| |#2| (-38 (-409 (-566))))) +((((-862)) . T)) +(((|#2|) . T)) +((($) -2809 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) ((|#2|) . T) (((-409 (-566))) |has| |#2| (-38 (-409 (-566))))) +((((-566)) |has| #0=(-409 |#2|) (-639 (-566))) ((#0#) . T)) +((($) . T) (((-566)) . T)) +((((-566) (-144)) . T)) +((((-566) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) . T) ((|#1| |#2|) . T)) +((((-409 (-566))) . T) (($) . T)) +(((|#1|) . T)) +((((-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) . T)) +((((-862)) . T)) +((((-910 |#1|)) . T)) +(|has| |#1| (-365)) +(|has| |#1| (-365)) +(|has| |#1| (-365)) +(|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) +(|has| |#1| (-848)) +((($) -2809 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-558))) (((-409 (-566))) -2809 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) +(|has| |#1| (-365)) (((|#1|) . T) (($) . T)) -(|has| |#1| (-846)) -((($) . T) (((-407 (-564))) -2682 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T)) -((((-1173)) |has| |#1| (-898 (-1173)))) -(|has| |#1| (-846)) -((((-506)) . T)) -(((|#1| (-1173)) . T)) -(((|#1| (-1262 |#1|) (-1262 |#1|)) . T)) -((((-860)) . T) (((-1178)) . T)) +(|has| |#1| (-848)) +((($) . T) (((-409 (-566))) -2809 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) +((((-1175)) |has| |#1| (-900 (-1175)))) +(|has| |#1| (-848)) +((((-508)) . T)) +(((|#1| (-1175)) . T)) +(((|#1| (-1264 |#1|) (-1264 |#1|)) . T)) +((((-862)) . T) (((-1180)) . T)) (((|#1| |#2|) . T)) ((($ $) . T)) -((((-1178)) . T)) -(|has| |#1| (-1097)) -(((|#1| (-1173) (-816 (-1173)) (-531 (-816 (-1173)))) . T)) -((((-407 (-950 |#1|))) . T)) -((((-536)) . T)) -((((-860)) . T)) +((((-1180)) . T)) +(|has| |#1| (-1099)) +(((|#1| (-1175) (-818 (-1175)) (-533 (-818 (-1175)))) . T)) +((((-409 (-952 |#1|))) . T)) +((((-538)) . T)) +((((-862)) . T)) ((($) . T)) (((|#2|) . T) (($) . T)) -((((-564) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) . T) ((|#1| |#2|) . T)) +((((-566) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) . T) ((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-172))) -((($) |has| |#1| (-556)) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) +((($) |has| |#1| (-558)) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (((|#3|) . T)) (((|#1|) |has| |#1| (-172))) -((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) -2682 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907)))) -((($) -2682 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -((($) -2682 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-564)) . T) (((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-536)) |has| |#1| (-612 (-536))) (((-890 (-379))) |has| |#1| (-612 (-890 (-379)))) (((-890 (-564))) |has| |#1| (-612 (-890 (-564))))) -((((-860)) . T)) -((((-868 |#1|)) . T) (($) . T) (((-407 (-564))) . T)) -(((|#2|) . T) (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) . T)) -((((-506)) . T)) -(|has| |#2| (-846)) -((((-506)) . T)) -(-12 (|has| |#2| (-233)) (|has| |#2| (-1047))) -(|has| |#1| (-556)) -((((-868 |#1|)) . T) (((-407 (-564))) . T) (($) . T)) -((((-1155) |#1|) . T)) -(|has| |#1| (-1148)) -(-2682 (|has| |#2| (-172)) (|has| |#2| (-846)) (|has| |#2| (-1047))) -((((-956 |#1|)) . T)) -(((#0=(-407 (-564)) #0#) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($ $) -2682 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((|#1| |#1|) . T)) -((((-407 (-564))) |has| |#1| (-1036 (-564))) (((-564)) |has| |#1| (-1036 (-564))) (((-1173)) |has| |#1| (-1036 (-1173))) ((|#1|) . T)) -((((-564) |#2|) . T)) -((((-407 (-564))) |has| |#1| (-1036 (-407 (-564)))) (((-564)) |has| |#1| (-1036 (-564))) ((|#1|) . T)) -((($) . T) (((-564)) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T)) -((((-564)) |has| |#1| (-884 (-564))) (((-379)) |has| |#1| (-884 (-379)))) -((((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2682 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((|#1|) . T)) -(((|#1|) . T)) -((($) . T) (((-564)) . T)) -((((-642 |#4|)) . T) (((-860)) . T)) -((((-536)) |has| |#4| (-612 (-536)))) -((((-536)) |has| |#4| (-612 (-536)))) -((((-860)) . T) (((-642 |#4|)) . T)) -((($) |has| |#1| (-846))) -((((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-1254 |#1| |#2| |#3|)) |has| |#1| (-363)) (((-564)) . T) (($) . T) ((|#1|) . T)) -((((-564)) -2682 (|has| |#2| (-172)) (|has| |#2| (-846)) (-12 (|has| |#2| (-1036 (-564))) (|has| |#2| (-1097))) (|has| |#2| (-1047))) ((|#2|) -2682 (|has| |#2| (-172)) (|has| |#2| (-1097))) (((-407 (-564))) -12 (|has| |#2| (-1036 (-407 (-564)))) (|has| |#2| (-1097)))) -(((|#1|) . T)) -(((|#1|) . T) (((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-564)) . T) (($) . T)) -((((-642 |#4|)) . T) (((-860)) . T)) -((((-536)) |has| |#4| (-612 (-536)))) -(((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) (((-564)) . T) (($) . T)) -(((|#1|) . T)) -((((-1173)) |has| (-407 |#2|) (-898 (-1173)))) -(((|#2|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))) ((#0=(-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) #0#) |has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))))) -((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -2682 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907)))) -((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T) (($) -2682 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907)))) -((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) -2682 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907)))) -((($) . T)) -((($) . T)) -((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T) (($) -2682 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907)))) -((($) . T)) -((($) . T)) -(((|#2|) . T)) -((((-860)) -2682 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-611 (-860))) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-368)) (|has| |#3| (-724)) (|has| |#3| (-791)) (|has| |#3| (-846)) (|has| |#3| (-1047)) (|has| |#3| (-1097))) (((-1262 |#3|)) . T)) -((((-564) |#2|) . T)) -(-2682 (|has| |#1| (-848)) (|has| |#1| (-1097))) -(((|#2| |#2|) -2682 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1047))) (($ $) |has| |#2| (-172))) -(((|#2|) . T) (((-564)) . T)) -((((-860)) . T)) -((((-860)) . T)) -((((-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) . T) ((|#2|) . T)) -((((-860)) . T)) -((((-860)) . T)) -((((-1155) (-1173) (-564) (-225) (-860)) . T)) -((((-860)) . T)) -((((-860)) . T)) -((((-860)) . T)) -((((-860)) . T)) -((((-860)) . T)) -((((-860)) . T)) -((((-860)) . T)) -((((-860)) . T)) -((((-860)) . T)) -((((-860)) . T)) -((((-860)) . T)) -(|has| |#1| (-38 (-407 (-564)))) -(|has| |#1| (-38 (-407 (-564)))) -((((-860)) . T)) -((((-564) (-112)) . T)) -(((|#1|) . T)) -((((-860)) . T)) +((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) |has| |#1| (-172)) (($) -2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909)))) +((($) -2809 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((($) -2809 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-566)) . T) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-538)) |has| |#1| (-614 (-538))) (((-892 (-381))) |has| |#1| (-614 (-892 (-381)))) (((-892 (-566))) |has| |#1| (-614 (-892 (-566))))) +((((-862)) . T)) +((((-870 |#1|)) . T) (($) . T) (((-409 (-566))) . T)) +(((|#2|) . T) (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) . T)) +((((-508)) . T)) +(|has| |#2| (-848)) +((((-508)) . T)) +(-12 (|has| |#2| (-233)) (|has| |#2| (-1049))) +(|has| |#1| (-558)) +((((-870 |#1|)) . T) (((-409 (-566))) . T) (($) . T)) +((((-1157) |#1|) . T)) +(|has| |#1| (-1150)) +(-2809 (|has| |#2| (-172)) (|has| |#2| (-848)) (|has| |#2| (-1049))) +((((-958 |#1|)) . T)) +(((#0=(-409 (-566)) #0#) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($ $) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) ((|#1| |#1|) . T)) +((((-409 (-566))) |has| |#1| (-1038 (-566))) (((-566)) |has| |#1| (-1038 (-566))) (((-1175)) |has| |#1| (-1038 (-1175))) ((|#1|) . T)) +((((-566) |#2|) . T)) +((((-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) (((-566)) |has| |#1| (-1038 (-566))) ((|#1|) . T)) +((($) . T) (((-566)) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) . T)) +((((-566)) |has| |#1| (-886 (-566))) (((-381)) |has| |#1| (-886 (-381)))) +((((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) ((|#1|) . T)) +(((|#1|) . T)) +((($) . T) (((-566)) . T)) +((((-644 |#4|)) . T) (((-862)) . T)) +((((-538)) |has| |#4| (-614 (-538)))) +((((-538)) |has| |#4| (-614 (-538)))) +((((-862)) . T) (((-644 |#4|)) . T)) +((($) |has| |#1| (-848))) +((((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (((-1256 |#1| |#2| |#3|)) |has| |#1| (-365)) (((-566)) . T) (($) . T) ((|#1|) . T)) +((((-566)) -2809 (|has| |#2| (-172)) (|has| |#2| (-848)) (-12 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099))) (|has| |#2| (-1049))) ((|#2|) -2809 (|has| |#2| (-172)) (|has| |#2| (-1099))) (((-409 (-566))) -12 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099)))) +(((|#1|) . T)) +(((|#1|) . T) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (((-566)) . T) (($) . T)) +((((-644 |#4|)) . T) (((-862)) . T)) +((((-538)) |has| |#4| (-614 (-538)))) +(((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) (((-566)) . T) (($) . T)) +(((|#1|) . T)) +((((-1175)) |has| (-409 |#2|) (-900 (-1175)))) +(((|#2|) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) ((#0=(-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) #0#) |has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))))) +((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) |has| |#2| (-172)) (($) -2809 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) +((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) . T) (($) -2809 (|has| |#2| (-172)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) +((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) |has| |#1| (-172)) (($) -2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909)))) +((($) . T)) +((($) . T)) +((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) . T) (($) -2809 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909)))) +((($) . T)) +((($) . T)) +(((|#2|) . T)) +((((-862)) -2809 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-613 (-862))) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-370)) (|has| |#3| (-726)) (|has| |#3| (-793)) (|has| |#3| (-848)) (|has| |#3| (-1049)) (|has| |#3| (-1099))) (((-1264 |#3|)) . T)) +((((-566) |#2|) . T)) +(-2809 (|has| |#1| (-850)) (|has| |#1| (-1099))) +(((|#2| |#2|) -2809 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1049))) (($ $) |has| |#2| (-172))) +(((|#2|) . T) (((-566)) . T)) +((((-862)) . T)) +((((-862)) . T)) +((((-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) . T) ((|#2|) . T)) +((((-862)) . T)) +((((-862)) . T)) +((((-1157) (-1175) (-566) (-225) (-862)) . T)) +((((-862)) . T)) +((((-862)) . T)) +((((-862)) . T)) +((((-862)) . T)) +((((-862)) . T)) +((((-862)) . T)) +((((-862)) . T)) +((((-862)) . T)) +((((-862)) . T)) +((((-862)) . T)) +((((-862)) . T)) +(|has| |#1| (-38 (-409 (-566)))) +(|has| |#1| (-38 (-409 (-566)))) +((((-862)) . T)) +((((-566) (-112)) . T)) +(((|#1|) . T)) +((((-862)) . T)) ((((-112)) . T)) ((((-112)) . T)) -((((-860)) . T)) -((((-860)) . T)) +((((-862)) . T)) +((((-862)) . T)) ((((-112)) . T)) -((((-860)) . T)) -((((-860)) . T)) -((((-860)) . T)) -((((-860)) . T)) -((((-860)) . T)) -(|has| |#1| (-38 (-407 (-564)))) -(|has| |#1| (-38 (-407 (-564)))) -((((-407 (-564))) . T) (($) . T)) -((((-860)) . T)) -((((-536)) |has| |#1| (-612 (-536)))) -((((-860)) -2682 (|has| |#1| (-611 (-860))) (|has| |#1| (-1097)))) -((($) . T) (((-407 (-564))) . T)) -(((|#2|) -2682 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1047))) (($) |has| |#2| (-172))) +((((-862)) . T)) +((((-862)) . T)) +((((-862)) . T)) +((((-862)) . T)) +((((-862)) . T)) +(|has| |#1| (-38 (-409 (-566)))) +(|has| |#1| (-38 (-409 (-566)))) +((((-409 (-566))) . T) (($) . T)) +((((-862)) . T)) +((((-538)) |has| |#1| (-614 (-538)))) +((((-862)) -2809 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099)))) +((($) . T) (((-409 (-566))) . T)) +(((|#2|) -2809 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1049))) (($) |has| |#2| (-172))) (|has| $ (-147)) -((((-407 |#2|)) . T)) -((((-407 (-564))) |has| #0=(-407 |#2|) (-1036 (-407 (-564)))) (((-564)) |has| #0# (-1036 (-564))) ((#0#) . T)) +((((-409 |#2|)) . T)) +((((-409 (-566))) |has| #0=(-409 |#2|) (-1038 (-409 (-566)))) (((-566)) |has| #0# (-1038 (-566))) ((#0#) . T)) (((|#2| |#2|) . T)) (((|#4|) |has| |#4| (-172))) (|has| |#2| (-145)) @@ -1478,206 +1479,206 @@ (((|#3|) |has| |#3| (-172))) (|has| |#1| (-147)) (|has| |#1| (-145)) -(-2682 (|has| |#1| (-145)) (|has| |#1| (-368))) +(-2809 (|has| |#1| (-145)) (|has| |#1| (-370))) (|has| |#1| (-147)) -(-2682 (|has| |#1| (-145)) (|has| |#1| (-368))) +(-2809 (|has| |#1| (-145)) (|has| |#1| (-370))) (|has| |#1| (-147)) -(-2682 (|has| |#1| (-145)) (|has| |#1| (-368))) +(-2809 (|has| |#1| (-145)) (|has| |#1| (-370))) (|has| |#1| (-147)) (((|#1|) . T)) (|has| |#2| (-233)) (((|#2|) . T)) -((((-860)) . T) (((-1178)) . T)) -((((-1178)) . T)) -((((-1173) (-52)) . T)) -((((-860)) . T)) -((((-860)) . T) (((-1178)) . T)) -((((-1178)) . T)) +((((-862)) . T) (((-1180)) . T)) +((((-1180)) . T)) +((((-1175) (-52)) . T)) +((((-862)) . T)) +((((-862)) . T) (((-1180)) . T)) +((((-1180)) . T)) (((|#1| |#1|) . T)) -((((-1173)) |has| |#2| (-898 (-1173)))) +((((-1175)) |has| |#2| (-900 (-1175)))) ((((-129)) . T)) -((((-891 |#1|)) . T) ((|#2|) . T) (((-564)) . T) (((-817 |#1|)) . T)) -((((-564) (-112)) . T)) -(|has| |#1| (-556)) +((((-893 |#1|)) . T) ((|#2|) . T) (((-566)) . T) (((-819 |#1|)) . T)) +((((-566) (-112)) . T)) +(|has| |#1| (-558)) (((|#2|) . T)) (((|#2|) . T)) -(((|#1|) . T) (((-564)) . T) (((-817 (-1173))) . T)) +(((|#1|) . T) (((-566)) . T) (((-819 (-1175))) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-38 (-407 (-564)))) -(|has| |#1| (-38 (-407 (-564)))) +(|has| |#1| (-38 (-409 (-566)))) +(|has| |#1| (-38 (-409 (-566)))) (((|#3|) . T)) -(|has| |#1| (-38 (-407 (-564)))) -((((-564)) . T) ((|#2|) . T) (((-407 (-564))) |has| |#2| (-1036 (-407 (-564))))) -(((|#1|) . T)) -((((-1002 2)) . T) (((-407 (-564))) . T) (((-860)) . T)) -((((-536)) . T) (((-890 (-564))) . T) (((-379)) . T) (((-225)) . T)) -((((-860)) . T)) -((((-860)) . T)) -((((-860)) . T)) -((((-997 |#1|)) . T) ((|#1|) . T)) -((((-860)) . T)) -((((-860)) . T)) -((((-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) . T)) -((((-407 (-564))) . T) (((-407 |#1|)) . T) ((|#1|) . T) (($) . T)) -(((|#1| (-1169 |#1|)) . T)) -((((-564)) . T) (($) . T) (((-407 (-564))) . T)) +(|has| |#1| (-38 (-409 (-566)))) +((((-566)) . T) ((|#2|) . T) (((-409 (-566))) |has| |#2| (-1038 (-409 (-566))))) +(((|#1|) . T)) +((((-1004 2)) . T) (((-409 (-566))) . T) (((-862)) . T)) +((((-538)) . T) (((-892 (-566))) . T) (((-381)) . T) (((-225)) . T)) +((((-862)) . T)) +((((-862)) . T)) +((((-862)) . T)) +((((-999 |#1|)) . T) ((|#1|) . T)) +((((-862)) . T)) +((((-862)) . T)) +((((-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) . T)) +((((-409 (-566))) . T) (((-409 |#1|)) . T) ((|#1|) . T) (($) . T)) +(((|#1| (-1171 |#1|)) . T)) +((((-566)) . T) (($) . T) (((-409 (-566))) . T)) (((|#3|) . T) (($) . T)) -(|has| |#1| (-848)) -(((|#1|) . T) (((-564)) . T) (($) . T)) -(((|#2|) . T)) -((((-564)) . T) (($) . T) (((-407 (-564))) . T)) -((((-2 (|:| -1914 (-1155)) (|:| -2683 |#1|))) . T)) -((((-860)) -2682 (|has| |#1| (-611 (-860))) (|has| |#1| (-1097)))) -((((-564) |#2|) . T)) -(((|#1|) . T) (((-407 (-564))) . T) (((-564)) . T) (($) . T)) -((($) . T) (((-564)) . T) (((-407 (-564))) . T)) -(((|#2|) . T)) -((((-564) |#3|) . T)) -(((|#2|) . T)) -((((-860)) . T)) -(((|#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) -(((|#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1097)))) -(|has| |#1| (-38 (-407 (-564)))) -(|has| |#1| (-38 (-407 (-564)))) -((((-1254 |#1| |#2| |#3|)) |has| |#1| (-363))) -(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))) ((#0=(-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) #0#) |has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))))) +(|has| |#1| (-850)) +(((|#1|) . T) (((-566)) . T) (($) . T)) +(((|#2|) . T)) +((((-566)) . T) (($) . T) (((-409 (-566))) . T)) +((((-2 (|:| -1928 (-1157)) (|:| -2806 |#1|))) . T)) +((((-862)) -2809 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099)))) +((((-566) |#2|) . T)) +(((|#1|) . T) (((-409 (-566))) . T) (((-566)) . T) (($) . T)) +((($) . T) (((-566)) . T) (((-409 (-566))) . T)) +(((|#2|) . T)) +((((-566) |#3|) . T)) +(((|#2|) . T)) +((((-862)) . T)) +(((|#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) +(((|#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099)))) +(|has| |#1| (-38 (-409 (-566)))) +(|has| |#1| (-38 (-409 (-566)))) +((((-1256 |#1| |#2| |#3|)) |has| |#1| (-365))) +(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) ((#0=(-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) #0#) |has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))))) (((|#2| |#2|) . T)) -(|has| |#1| (-1097)) -(|has| |#1| (-38 (-407 (-564)))) -(|has| |#2| (-363)) -(((|#2|) . T) (((-564)) |has| |#2| (-1036 (-564))) (((-407 (-564))) |has| |#2| (-1036 (-407 (-564))))) -(|has| |#1| (-38 (-407 (-564)))) -(|has| |#1| (-38 (-407 (-564)))) +(|has| |#1| (-1099)) +(|has| |#1| (-38 (-409 (-566)))) +(|has| |#2| (-365)) +(((|#2|) . T) (((-566)) |has| |#2| (-1038 (-566))) (((-409 (-566))) |has| |#2| (-1038 (-409 (-566))))) +(|has| |#1| (-38 (-409 (-566)))) +(|has| |#1| (-38 (-409 (-566)))) (((|#2|) . T)) (((|#2|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-172))) -((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) -2682 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907)))) -((($) -2682 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -((((-1155) (-52)) . T)) +((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) |has| |#1| (-172)) (($) -2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909)))) +((($) -2809 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((((-1157) (-52)) . T)) (((|#1|) . T)) -((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T) (($) -2682 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907)))) -((($) -2682 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) +((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) . T) (($) -2809 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909)))) +((($) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) (((|#2|) |has| |#2| (-172))) -((($) -2682 (|has| |#2| (-172)) (|has| |#2| (-846)) (|has| |#2| (-1047))) (((-564)) -2682 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-846)) (|has| |#2| (-1047))) ((|#2|) -2682 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1047)))) -((((-564) |#3|) . T)) -((((-564) (-144)) . T)) +((($) -2809 (|has| |#2| (-172)) (|has| |#2| (-848)) (|has| |#2| (-1049))) (((-566)) -2809 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-848)) (|has| |#2| (-1049))) ((|#2|) -2809 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1049)))) +((((-566) |#3|) . T)) +((((-566) (-144)) . T)) ((((-144)) . T)) -((((-860)) . T)) -((((-1178)) . T)) +((((-862)) . T)) +((((-1180)) . T)) ((((-112)) . T)) (|has| |#1| (-147)) (((|#1|) . T)) (|has| |#1| (-145)) ((($) . T)) -(|has| |#1| (-556)) +(|has| |#1| (-558)) ((($) . T)) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (((|#1|) . T)) -(((|#2|) . T) (((-564)) |has| |#2| (-637 (-564)))) +(((|#2|) . T) (((-566)) |has| |#2| (-639 (-566)))) ((((-144)) . T)) -((((-860)) . T)) -((((-564)) |has| |#1| (-637 (-564))) ((|#1|) . T)) -((((-564)) |has| |#1| (-637 (-564))) ((|#1|) . T)) -((((-564)) |has| |#1| (-637 (-564))) ((|#1|) . T)) -((((-1155) (-52)) . T)) +((((-862)) . T)) +((((-566)) |has| |#1| (-639 (-566))) ((|#1|) . T)) +((((-566)) |has| |#1| (-639 (-566))) ((|#1|) . T)) +((((-566)) |has| |#1| (-639 (-566))) ((|#1|) . T)) +((((-1157) (-52)) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (((|#1| |#2|) . T)) -((((-564) (-144)) . T)) -(((#0=(-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) #0#) |has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) -((($) -2682 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -(|has| |#1| (-848)) -(((|#2| (-769) (-1079)) . T)) +((((-566) (-144)) . T)) +(((#0=(-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) #0#) |has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) +((($) -2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +(|has| |#1| (-850)) +(((|#2| (-771) (-1081)) . T)) (((|#1| |#2|) . T)) -(-2682 (|has| |#1| (-172)) (|has| |#1| (-556))) -(|has| |#1| (-789)) +(-2809 (|has| |#1| (-172)) (|has| |#1| (-558))) +(|has| |#1| (-791)) (((|#1|) |has| |#1| (-172))) (((|#4|) . T)) (((|#4|) . T)) (((|#1| |#2|) . T)) -(-2682 (|has| |#1| (-147)) (-12 (|has| |#1| (-363)) (|has| |#2| (-147)))) -(-2682 (|has| |#1| (-145)) (-12 (|has| |#1| (-363)) (|has| |#2| (-145)))) +(-2809 (|has| |#1| (-147)) (-12 (|has| |#1| (-365)) (|has| |#2| (-147)))) +(-2809 (|has| |#1| (-145)) (-12 (|has| |#1| (-365)) (|has| |#2| (-145)))) (((|#4|) . T)) (|has| |#1| (-145)) -((((-1155) |#1|) . T)) +((((-1157) |#1|) . T)) (|has| |#1| (-147)) (((|#1|) . T)) -((((-564)) . T)) -((((-860)) . T)) +((((-566)) . T)) +((((-862)) . T)) (((|#1| |#2|) . T)) -((((-860)) . T)) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) +((((-862)) . T)) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (((|#3|) . T)) -((((-1254 |#1| |#2| |#3|)) |has| |#1| (-363))) -((($) . T) (((-564)) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T)) -((((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-1171 |#1| |#2| |#3|)) |has| |#1| (-363)) (((-564)) . T) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-564)) . T) (($) . T)) -((((-860)) . T)) -(-2682 (|has| |#1| (-848)) (|has| |#1| (-1097))) -(((|#1|) . T)) -(((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) (((-564)) . T) (($) . T)) -((((-860)) -2682 (|has| |#1| (-611 (-860))) (|has| |#1| (-1097)))) -((((-860)) -2682 (|has| |#1| (-611 (-860))) (|has| |#1| (-1097))) (((-956 |#1|)) . T)) -(|has| |#1| (-846)) -(|has| |#1| (-846)) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) -((((-956 |#1|)) . T)) -(((|#4|) -2682 (|has| |#4| (-172)) (|has| |#4| (-363)))) -(((|#3|) -2682 (|has| |#3| (-172)) (|has| |#3| (-363)))) -(|has| |#2| (-363)) +((((-1256 |#1| |#2| |#3|)) |has| |#1| (-365))) +((($) . T) (((-566)) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) . T)) +((((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (((-1173 |#1| |#2| |#3|)) |has| |#1| (-365)) (((-566)) . T) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (((-566)) . T) (($) . T)) +((((-862)) . T)) +(-2809 (|has| |#1| (-850)) (|has| |#1| (-1099))) +(((|#1|) . T)) +(((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) (((-566)) . T) (($) . T)) +((((-862)) -2809 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099)))) +((((-862)) -2809 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099))) (((-958 |#1|)) . T)) +(|has| |#1| (-848)) +(|has| |#1| (-848)) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) +((((-958 |#1|)) . T)) +(((|#4|) -2809 (|has| |#4| (-172)) (|has| |#4| (-365)))) +(((|#3|) -2809 (|has| |#3| (-172)) (|has| |#3| (-365)))) +(|has| |#2| (-365)) (((|#1|) |has| |#1| (-172))) -(((|#4|) -2682 (|has| |#4| (-172)) (|has| |#4| (-363)) (|has| |#4| (-1047))) (($) |has| |#4| (-172))) -(((|#3|) -2682 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1047))) (($) |has| |#3| (-172))) -(((|#2|) |has| |#2| (-1047))) -((((-1155) |#1|) . T)) -(((|#3| |#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1097)))) -(((|#2| (-891 |#1|)) . T)) -((($) . T)) -((($) . T) (((-564)) . T) (((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T)) -((((-388) (-1155)) . T)) -((($) |has| |#1| (-556)) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -((((-860)) -2682 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-611 (-860))) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-724)) (|has| |#2| (-791)) (|has| |#2| (-846)) (|has| |#2| (-1047)) (|has| |#2| (-1097))) (((-1262 |#2|)) . T)) -(((#0=(-52)) . T) (((-2 (|:| -1914 (-1155)) (|:| -2683 #0#))) . T)) -(((|#1|) . T)) -((((-860)) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) +(((|#4|) -2809 (|has| |#4| (-172)) (|has| |#4| (-365)) (|has| |#4| (-1049))) (($) |has| |#4| (-172))) +(((|#3|) -2809 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1049))) (($) |has| |#3| (-172))) +(((|#2|) |has| |#2| (-1049))) +((((-1157) |#1|) . T)) +(((|#3| |#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099)))) +(((|#2| (-893 |#1|)) . T)) +((($) . T)) +((($) . T) (((-566)) . T) (((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) . T)) +((((-390) (-1157)) . T)) +((($) |has| |#1| (-558)) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((((-862)) -2809 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-613 (-862))) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-726)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049)) (|has| |#2| (-1099))) (((-1264 |#2|)) . T)) +(((#0=(-52)) . T) (((-2 (|:| -1928 (-1157)) (|:| -2806 #0#))) . T)) +(((|#1|) . T)) +((((-862)) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) ((((-144)) . T)) (|has| |#2| (-145)) -((((-564)) . T)) +((((-566)) . T)) (|has| |#2| (-147)) -(|has| |#1| (-473)) -(-2682 (|has| |#1| (-473)) (|has| |#1| (-724)) (|has| |#1| (-898 (-1173))) (|has| |#1| (-1047))) -(|has| |#1| (-363)) -((((-860)) . T)) -(|has| |#1| (-38 (-407 (-564)))) -((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556))) -((($) |has| |#1| (-556))) -((((-1178)) . T)) -(|has| |#1| (-846)) -(|has| |#1| (-846)) -((((-860)) . T)) -(((|#2|) . T)) -((((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2682 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-1254 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172))) -(((|#1|) |has| |#1| (-172)) (((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2682 (|has| |#1| (-363)) (|has| |#1| (-556)))) -((($) |has| |#1| (-556)) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -(((|#2|) . T) (((-564)) . T) (((-817 |#1|)) . T)) +(|has| |#1| (-475)) +(-2809 (|has| |#1| (-475)) (|has| |#1| (-726)) (|has| |#1| (-900 (-1175))) (|has| |#1| (-1049))) +(|has| |#1| (-365)) +((((-862)) . T)) +(|has| |#1| (-38 (-409 (-566)))) +((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-558))) +((($) |has| |#1| (-558))) +((((-1180)) . T)) +(|has| |#1| (-848)) +(|has| |#1| (-848)) +((((-862)) . T)) +(((|#2|) . T)) +((((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2809 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-1256 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-172)) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2809 (|has| |#1| (-365)) (|has| |#1| (-558)))) +((($) |has| |#1| (-558)) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +(((|#2|) . T) (((-566)) . T) (((-819 |#1|)) . T)) (((|#1| |#2|) . T)) -((((-1173)) |has| |#1| (-898 (-1173)))) -((((-908 |#1|)) . T) (((-407 (-564))) . T) (($) . T)) -((((-860)) . T)) -((((-860)) . T)) -(|has| |#1| (-1097)) -(((|#2| (-482 (-2158 |#1|) (-769)) (-862 |#1|)) . T)) -((((-407 (-564))) . #0=(|has| |#2| (-363))) (($) . #0#)) -(((|#1| (-531 (-1173)) (-1173)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-860)) . T)) -((((-860)) . T)) +((((-1175)) |has| |#1| (-900 (-1175)))) +((((-910 |#1|)) . T) (((-409 (-566))) . T) (($) . T)) +((((-862)) . T)) +((((-862)) . T)) +(|has| |#1| (-1099)) +(((|#2| (-484 (-3002 |#1|) (-771)) (-864 |#1|)) . T)) +((((-409 (-566))) . #0=(|has| |#2| (-365))) (($) . #0#)) +(((|#1| (-533 (-1175)) (-1175)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-862)) . T)) +((((-862)) . T)) (((|#3|) . T)) (((|#3|) . T)) (((|#1|) . T)) @@ -1692,2225 +1693,2226 @@ (((|#2|) |has| |#2| (-172))) (((|#1|) . T)) (((|#2|) . T)) -(((|#1|) . T) (((-2 (|:| -1914 (-1155)) (|:| -2683 |#1|))) . T)) -((((-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) . T)) +(((|#1|) . T) (((-2 (|:| -1928 (-1157)) (|:| -2806 |#1|))) . T)) +((((-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) . T)) (((|#2|) . T)) -((((-2 (|:| -1914 (-1173)) (|:| -2683 (-52)))) . T)) -((((-1171 |#1| |#2| |#3|)) |has| |#1| (-363))) -((((-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) . T)) -((((-1173) (-52)) . T)) +((((-2 (|:| -1928 (-1175)) (|:| -2806 (-52)))) . T)) +((((-1173 |#1| |#2| |#3|)) |has| |#1| (-365))) +((((-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) . T)) +((((-1175) (-52)) . T)) ((($ $) . T)) -(((|#1| (-564)) . T)) -((((-908 |#1|)) . T)) -(((|#1|) -2682 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-1047))) (($) -2682 (|has| |#1| (-898 (-1173))) (|has| |#1| (-1047)))) -(((|#1|) . T) (((-564)) |has| |#1| (-1036 (-564))) (((-407 (-564))) |has| |#1| (-1036 (-407 (-564))))) +(((|#1| (-566)) . T)) +((((-910 |#1|)) . T)) +(((|#1|) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-1049))) (($) -2809 (|has| |#1| (-900 (-1175))) (|has| |#1| (-1049)))) +(((|#1|) . T) (((-566)) |has| |#1| (-1038 (-566))) (((-409 (-566))) |has| |#1| (-1038 (-409 (-566))))) +(|has| |#1| (-850)) +(|has| |#1| (-850)) +((((-566) |#2|) . T)) +((($) . T) (((-566)) . T) ((|#1|) . T)) +((((-862)) . T)) +((((-566)) . T)) +(|has| |#1| (-850)) +((((-689 |#2|)) . T) (((-862)) . T)) +((((-1256 |#1| |#2| |#3|)) -12 (|has| (-1256 |#1| |#2| |#3|) (-310 (-1256 |#1| |#2| |#3|))) (|has| |#1| (-365)))) +((((-409 (-566))) . T) (((-566)) . T) (($) . T)) +(((|#1| |#2|) . T)) +((((-409 (-952 |#1|))) . T)) +(((|#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) +(((|#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) +(((|#1|) |has| |#1| (-172))) +(((|#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) +(((|#3|) -2809 (|has| |#3| (-172)) (|has| |#3| (-365)))) +((($) -2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +(-2809 (|has| |#2| (-365)) (|has| |#2| (-454)) (|has| |#2| (-909))) +((($) -2809 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((($ $) . T) ((#0=(-409 (-566)) #0#) . T)) +((((-566) |#2|) . T)) +(((|#2|) -2809 (|has| |#2| (-172)) (|has| |#2| (-365)))) +(|has| |#1| (-351)) +(((|#3| |#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099)))) +(((|#2|) . T) (((-566)) . T)) +((($) . T) (((-409 (-566))) . T)) +((((-566) (-112)) . T)) +(|has| |#1| (-820)) +(|has| |#1| (-820)) +(((|#1|) . T)) +(-2809 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351))) (|has| |#1| (-848)) (|has| |#1| (-848)) -((((-564) |#2|) . T)) -((($) . T) (((-564)) . T) ((|#1|) . T)) -((((-860)) . T)) -((((-564)) . T)) (|has| |#1| (-848)) -((((-687 |#2|)) . T) (((-860)) . T)) -((((-1254 |#1| |#2| |#3|)) -12 (|has| (-1254 |#1| |#2| |#3|) (-309 (-1254 |#1| |#2| |#3|))) (|has| |#1| (-363)))) -((((-407 (-564))) . T) (((-564)) . T) (($) . T)) -(((|#1| |#2|) . T)) -((((-407 (-950 |#1|))) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) -(((|#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) -(((|#1|) |has| |#1| (-172))) -(((|#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) -(((|#3|) -2682 (|has| |#3| (-172)) (|has| |#3| (-363)))) -((($) -2682 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -(-2682 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-907))) -((($) -2682 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -((($ $) . T) ((#0=(-407 (-564)) #0#) . T)) -((((-564) |#2|) . T)) -(((|#2|) -2682 (|has| |#2| (-172)) (|has| |#2| (-363)))) -(|has| |#1| (-349)) -(((|#3| |#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1097)))) -(((|#2|) . T) (((-564)) . T)) -((($) . T) (((-407 (-564))) . T)) -((((-564) (-112)) . T)) -(|has| |#1| (-818)) -(|has| |#1| (-818)) -(((|#1|) . T)) -(-2682 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349))) -(|has| |#1| (-846)) -(|has| |#1| (-846)) -(|has| |#1| (-846)) -(((|#1|) . T) (((-407 (-564))) . T) (($) . T)) -(((|#1|) . T) (((-564)) . T) (($) . T)) -((((-564)) . T) (($) . T) (((-407 (-564))) . T)) -(|has| |#1| (-38 (-407 (-564)))) -(|has| |#1| (-38 (-407 (-564)))) -(-2682 (|has| |#1| (-363)) (|has| |#1| (-349))) -(|has| |#1| (-38 (-407 (-564)))) -(|has| |#1| (-38 (-407 (-564)))) -((((-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) . T)) -((((-1173)) |has| |#1| (-898 (-1173))) (((-1079)) . T)) -(((|#1|) . T)) -(|has| |#1| (-846)) -(((#0=(-2 (|:| -1914 (-1155)) (|:| -2683 (-52))) #0#) |has| (-2 (|:| -1914 (-1155)) (|:| -2683 (-52))) (-309 (-2 (|:| -1914 (-1155)) (|:| -2683 (-52)))))) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) -(|has| |#1| (-1097)) -((((-860)) . T) (((-1178)) . T)) -((((-1178)) . T)) +(((|#1|) . T) (((-409 (-566))) . T) (($) . T)) +(((|#1|) . T) (((-566)) . T) (($) . T)) +((((-566)) . T) (($) . T) (((-409 (-566))) . T)) +(|has| |#1| (-38 (-409 (-566)))) +(|has| |#1| (-38 (-409 (-566)))) +(-2809 (|has| |#1| (-365)) (|has| |#1| (-351))) +(|has| |#1| (-38 (-409 (-566)))) +(|has| |#1| (-38 (-409 (-566)))) +((((-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) . T)) +((((-1175)) |has| |#1| (-900 (-1175))) (((-1081)) . T)) +(((|#1|) . T)) +(|has| |#1| (-848)) +(((#0=(-2 (|:| -1928 (-1157)) (|:| -2806 (-52))) #0#) |has| (-2 (|:| -1928 (-1157)) (|:| -2806 (-52))) (-310 (-2 (|:| -1928 (-1157)) (|:| -2806 (-52)))))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) +(|has| |#1| (-1099)) +((((-862)) . T) (((-1180)) . T)) +((((-1180)) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) (((|#1|) . T)) -((((-1139 |#2| (-407 (-950 |#1|)))) . T) (((-407 (-950 |#1|))) . T) (((-564)) . T)) +((((-1141 |#2| (-409 (-952 |#1|)))) . T) (((-409 (-952 |#1|))) . T) (((-566)) . T)) (((|#1| |#2| |#3| (-240 |#2| |#3|) (-240 |#1| |#3|)) . T)) (((|#1|) . T)) (((|#3| |#3|) . T)) -((($) . T) (((-564)) . T)) -(((|#1|) |has| |#1| (-172)) (($) . T) (((-564)) . T)) -(((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) (((-564)) . T) (($) . T)) +((($) . T) (((-566)) . T)) +(((|#1|) |has| |#1| (-172)) (($) . T) (((-566)) . T)) +(((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) (((-566)) . T) (($) . T)) (((|#2|) . T)) (((|#1|) . T)) -(((|#1| (-531 |#2|) |#2|) . T)) -((((-860)) . T)) -((((-144)) . T) (((-860)) . T)) -(((|#1| (-769) (-1079)) . T)) +(((|#1| (-533 |#2|) |#2|) . T)) +((((-862)) . T)) +((((-144)) . T) (((-862)) . T)) +(((|#1| (-771) (-1081)) . T)) (((|#3|) . T)) ((((-144)) . T)) -((((-407 (-564))) |has| |#1| (-1036 (-407 (-564)))) (((-564)) -2682 (|has| |#1| (-846)) (|has| |#1| (-1036 (-564)))) ((|#1|) . T)) +((((-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) (((-566)) -2809 (|has| |#1| (-848)) (|has| |#1| (-1038 (-566)))) ((|#1|) . T)) (((|#1|) . T)) ((((-144)) . T)) (((|#2|) |has| |#2| (-172))) -(-2682 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-724)) (|has| |#2| (-791)) (|has| |#2| (-846)) (|has| |#2| (-1047)) (|has| |#2| (-1097))) +(-2809 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-726)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049)) (|has| |#2| (-1099))) (((|#1|) . T)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#3| (-172)) -(((|#4|) |has| |#4| (-363))) -(((|#3|) |has| |#3| (-363))) -(((|#1|) . T)) -(((|#2|) |has| |#1| (-363))) -((((-860)) . T)) -(((|#2|) . T)) -(((|#1| (-1169 |#1|)) . T)) -((((-1079)) . T) ((|#1|) . T) (((-564)) |has| |#1| (-1036 (-564))) (((-407 (-564))) |has| |#1| (-1036 (-407 (-564))))) -((($) . T) ((|#1|) . T) (((-407 (-564))) . T)) -((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556))) -((($) |has| |#1| (-556))) -(((|#2|) . T)) -((((-1171 |#1| |#2| |#3|)) |has| |#1| (-363))) -((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T) (($) -2682 (|has| |#1| (-172)) (|has| |#1| (-556)))) -((($) |has| |#1| (-556))) -((($) |has| |#1| (-846))) -((((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2682 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-1254 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172))) -(|has| |#1| (-907)) -((((-1173)) . T)) -((((-860)) . T)) -((($) -2682 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-1254 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) . T)) -(((|#1|) . T) (($) -2682 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363)))) -(((|#1|) |has| |#1| (-172)) (((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2682 (|has| |#1| (-363)) (|has| |#1| (-556)))) -((($) |has| |#1| (-556)) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -((($) -2682 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) +(((|#4|) |has| |#4| (-365))) +(((|#3|) |has| |#3| (-365))) +(((|#1|) . T)) +(((|#2|) |has| |#1| (-365))) +((((-862)) . T)) +(((|#2|) . T)) +(((|#1| (-1171 |#1|)) . T)) +((((-1081)) . T) ((|#1|) . T) (((-566)) |has| |#1| (-1038 (-566))) (((-409 (-566))) |has| |#1| (-1038 (-409 (-566))))) +((($) . T) ((|#1|) . T) (((-409 (-566))) . T)) +((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-558))) +((($) |has| |#1| (-558))) +(((|#2|) . T)) +((((-1173 |#1| |#2| |#3|)) |has| |#1| (-365))) +((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) . T) (($) -2809 (|has| |#1| (-172)) (|has| |#1| (-558)))) +((($) |has| |#1| (-558))) +((($) |has| |#1| (-848))) +((((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2809 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-1256 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) +(|has| |#1| (-909)) +((((-1175)) . T)) +((((-862)) . T)) +((($) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (((-1256 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) . T)) +(((|#1|) . T) (($) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365)))) +(((|#1|) |has| |#1| (-172)) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2809 (|has| |#1| (-365)) (|has| |#1| (-558)))) +((($) |has| |#1| (-558)) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((($) -2809 (|has| |#1| (-172)) (|has| |#1| (-558))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (((|#1|) . T)) (((|#1| |#2|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((#0=(-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) #0#) |has| (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (-309 (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|))))) -(-2682 (|has| |#2| (-452)) (|has| |#2| (-907))) -(-2682 (|has| |#1| (-452)) (|has| |#1| (-907))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((#0=(-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) #0#) |has| (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (-310 (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|))))) +(-2809 (|has| |#2| (-454)) (|has| |#2| (-909))) +(-2809 (|has| |#1| (-454)) (|has| |#1| (-909))) (((|#1|) . T) (($) . T)) -(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) +(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#3|) -2682 (|has| |#3| (-172)) (|has| |#3| (-363)))) -(|has| |#1| (-848)) -(|has| |#1| (-556)) -((((-581 |#1|)) . T)) +(((|#3|) -2809 (|has| |#3| (-172)) (|has| |#3| (-365)))) +(|has| |#1| (-850)) +(|has| |#1| (-558)) +((((-583 |#1|)) . T)) ((($) . T)) (((|#2|) . T)) -(-2682 (-12 (|has| |#1| (-363)) (|has| |#2| (-818))) (-12 (|has| |#1| (-363)) (|has| |#2| (-848)))) -(-2682 (|has| |#1| (-363)) (|has| |#1| (-556))) -((((-908 |#1|)) . T)) -(((|#1| (-496 |#1| |#3|) (-496 |#1| |#2|)) . T)) +(-2809 (-12 (|has| |#1| (-365)) (|has| |#2| (-820))) (-12 (|has| |#1| (-365)) (|has| |#2| (-850)))) +(-2809 (|has| |#1| (-365)) (|has| |#1| (-558))) +((((-910 |#1|)) . T)) +(((|#1| (-498 |#1| |#3|) (-498 |#1| |#2|)) . T)) (((|#1| |#4| |#5|) . T)) -(((|#1| (-769)) . T)) -((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556))) -((((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2682 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-1171 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172))) -(((|#1|) |has| |#1| (-172)) (((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2682 (|has| |#1| (-363)) (|has| |#1| (-556)))) -((($) |has| |#1| (-556)) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -((((-2 (|:| -1914 (-1173)) (|:| -2683 (-52)))) . T)) -((((-407 |#2|)) . T) (((-407 (-564))) . T) (($) . T)) -((((-670 |#1|)) . T)) +(((|#1| (-771)) . T)) +((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-558))) +((((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2809 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-1173 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-172)) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2809 (|has| |#1| (-365)) (|has| |#1| (-558)))) +((($) |has| |#1| (-558)) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((((-2 (|:| -1928 (-1175)) (|:| -2806 (-52)))) . T)) +((((-409 |#2|)) . T) (((-409 (-566))) . T) (($) . T)) +((((-672 |#1|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-860)) . T) (((-1178)) . T)) -((((-536)) . T)) -((((-860)) . T)) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) -((((-860)) . T)) -((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -2682 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907)))) -((((-1178)) . T)) -((((-407 (-564))) . T) (($) . T) (((-407 |#1|)) . T) ((|#1|) . T) (((-564)) . T)) -(((|#3|) . T) (((-564)) . T) (((-610 $)) . T)) -((((-860)) . T)) -((((-860)) . T)) -((((-860)) . T)) -(((|#2|) . T)) -(-2682 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-368)) (|has| |#3| (-724)) (|has| |#3| (-791)) (|has| |#3| (-846)) (|has| |#3| (-1047)) (|has| |#3| (-1097))) -(-2682 (|has| |#2| (-172)) (|has| |#2| (-846)) (|has| |#2| (-1047))) -((((-407 (-564))) |has| |#1| (-1036 (-407 (-564)))) (((-564)) |has| |#1| (-1036 (-564))) ((|#1|) . T)) -(|has| |#1| (-1197)) -(|has| |#1| (-1197)) -(-2682 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-724)) (|has| |#2| (-791)) (|has| |#2| (-846)) (|has| |#2| (-1047)) (|has| |#2| (-1097))) -(|has| |#1| (-1197)) -(|has| |#1| (-1197)) -((((-564)) . T) (($) . T) (((-407 (-564))) . T)) -((($ $) . T) ((#0=(-407 (-564)) #0#) . T) ((#1=(-407 |#1|) #1#) . T) ((|#1| |#1|) . T)) -((($) . T) (((-564)) . T) (((-407 (-564))) . T)) -((($) . T) (((-407 (-564))) . T) (((-407 |#1|)) . T) ((|#1|) . T)) +((((-862)) . T) (((-1180)) . T)) +((((-538)) . T)) +((((-862)) . T)) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) +((((-862)) . T)) +((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) |has| |#2| (-172)) (($) -2809 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) +((((-1180)) . T)) +((((-409 (-566))) . T) (($) . T) (((-409 |#1|)) . T) ((|#1|) . T) (((-566)) . T)) +(((|#3|) . T) (((-566)) . T) (((-612 $)) . T)) +((((-862)) . T)) +((((-862)) . T)) +((((-862)) . T)) +(((|#2|) . T)) +(-2809 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-370)) (|has| |#3| (-726)) (|has| |#3| (-793)) (|has| |#3| (-848)) (|has| |#3| (-1049)) (|has| |#3| (-1099))) +(-2809 (|has| |#2| (-172)) (|has| |#2| (-848)) (|has| |#2| (-1049))) +((((-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) (((-566)) |has| |#1| (-1038 (-566))) ((|#1|) . T)) +(|has| |#1| (-1199)) +(|has| |#1| (-1199)) +(-2809 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-726)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049)) (|has| |#2| (-1099))) +(|has| |#1| (-1199)) +(|has| |#1| (-1199)) +((((-566)) . T) (($) . T) (((-409 (-566))) . T)) +((($ $) . T) ((#0=(-409 (-566)) #0#) . T) ((#1=(-409 |#1|) #1#) . T) ((|#1| |#1|) . T)) +((($) . T) (((-566)) . T) (((-409 (-566))) . T)) +((($) . T) (((-409 (-566))) . T) (((-409 |#1|)) . T) ((|#1|) . T)) (((|#3| |#3|) . T)) -(((|#1|) . T) (((-407 (-564))) . T) (($) . T)) +(((|#1|) . T) (((-409 (-566))) . T) (($) . T)) (((|#3|) . T)) -(((|#1|) . T) (((-407 (-564))) . T) (($) . T)) -(((|#1|) . T) (((-407 (-564))) . T) (($) . T)) +(((|#1|) . T) (((-409 (-566))) . T) (($) . T)) +(((|#1|) . T) (((-409 (-566))) . T) (($) . T)) (((|#1|) . T)) (((|#1|) . T)) -((($) . T) (((-564)) . T) (((-407 (-564))) . T)) -((((-1155) (-52)) . T)) -(|has| |#1| (-1097)) +((($) . T) (((-566)) . T) (((-409 (-566))) . T)) +((((-1157) (-52)) . T)) +(|has| |#1| (-1099)) (((|#1|) |has| |#1| (-172)) (($) . T)) -(-2682 (|has| |#2| (-818)) (|has| |#2| (-848))) -(((|#1|) . T) (($) . T) (((-407 (-564))) . T)) -(((|#1|) . T) (((-407 (-564))) . T) (($) . T)) -(((|#1|) . T)) -((((-564)) . T) (($) . T) (((-407 (-564))) . T)) -((((-564)) . T) (((-407 (-564))) . T) (($) . T)) -((($) -2682 (|has| |#1| (-363)) (|has| |#1| (-349))) (((-407 (-564))) -2682 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T)) -((((-564)) . T) (($) . T)) -((((-769)) . T)) -(-2682 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907))) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) -((((-860)) . T)) -((($) . T) (((-564)) . T)) -((($) . T)) -(|has| |#2| (-907)) -(|has| |#1| (-363)) -(((|#2|) |has| |#2| (-1097))) -(-2682 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) -(-2682 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) -(-2682 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) -((((-536)) . T) (((-407 (-1169 (-564)))) . T) (((-225)) . T) (((-379)) . T)) -((((-379)) . T) (((-225)) . T) (((-860)) . T)) -(|has| |#1| (-907)) -(|has| |#1| (-907)) -(|has| |#1| (-907)) -(-2682 (|has| |#1| (-452)) (|has| |#1| (-907))) -((($) . T)) -(-2682 (|has| |#1| (-848)) (|has| |#1| (-1097))) +(-2809 (|has| |#2| (-820)) (|has| |#2| (-850))) +(((|#1|) . T) (($) . T) (((-409 (-566))) . T)) +(((|#1|) . T) (((-409 (-566))) . T) (($) . T)) +(((|#1|) . T)) +((((-566)) . T) (($) . T) (((-409 (-566))) . T)) +((((-566)) . T) (((-409 (-566))) . T) (($) . T)) +((($) -2809 (|has| |#1| (-365)) (|has| |#1| (-351))) (((-409 (-566))) -2809 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) +((((-566)) . T) (($) . T)) +((((-771)) . T)) +(-2809 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) +((((-862)) . T)) +((($) . T) (((-566)) . T)) +((($) . T)) +(|has| |#2| (-909)) +(|has| |#1| (-365)) +(((|#2|) |has| |#2| (-1099))) +(-2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) +(-2809 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) +(-2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) +((((-538)) . T) (((-409 (-1171 (-566)))) . T) (((-225)) . T) (((-381)) . T)) +((((-381)) . T) (((-225)) . T) (((-862)) . T)) +(|has| |#1| (-909)) +(|has| |#1| (-909)) +(|has| |#1| (-909)) +(-2809 (|has| |#1| (-454)) (|has| |#1| (-909))) +((($) . T)) +(-2809 (|has| |#1| (-850)) (|has| |#1| (-1099))) ((($) . T) ((|#2|) . T)) -(((|#2|) -2682 (|has| |#2| (-172)) (|has| |#2| (-363)))) -((((-1171 |#1| |#2| |#3|)) -12 (|has| (-1171 |#1| |#2| |#3|) (-309 (-1171 |#1| |#2| |#3|))) (|has| |#1| (-363)))) -(-2682 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-907))) -(((|#1|) . T)) -(((|#2|) -2682 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1047))) (($) |has| |#2| (-172))) -(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) -((((-860)) . T)) -((((-860)) . T)) +(((|#2|) -2809 (|has| |#2| (-172)) (|has| |#2| (-365)))) +((((-1173 |#1| |#2| |#3|)) -12 (|has| (-1173 |#1| |#2| |#3|) (-310 (-1173 |#1| |#2| |#3|))) (|has| |#1| (-365)))) +(-2809 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-909))) +(((|#1|) . T)) +(((|#2|) -2809 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1049))) (($) |has| |#2| (-172))) +(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) +((((-862)) . T)) +((((-862)) . T)) ((($ $) . T)) -((((-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) . T)) +((((-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) . T)) ((($ $) . T)) -((((-564) (-112)) . T)) +((((-566) (-112)) . T)) ((($) . T)) (((|#1|) . T)) -((((-564)) . T)) +((((-566)) . T)) ((((-112)) . T)) -(-2682 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) -(|has| |#1| (-38 (-407 (-564)))) -(((|#1| (-564)) . T)) +(-2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) +(|has| |#1| (-38 (-409 (-566)))) +(((|#1| (-566)) . T)) ((($) . T)) -(((|#2|) . T) (((-564)) |has| |#2| (-637 (-564)))) -((((-564)) |has| |#1| (-637 (-564))) ((|#1|) . T)) +(((|#2|) . T) (((-566)) |has| |#2| (-639 (-566)))) +((((-566)) |has| |#1| (-639 (-566))) ((|#1|) . T)) (((|#1|) . T)) -((((-564)) . T)) +((((-566)) . T)) (((|#1| |#2|) . T)) -((((-1173)) |has| |#1| (-1047))) -(|has| |#1| (-38 (-407 (-564)))) -(|has| |#1| (-38 (-407 (-564)))) -(|has| |#1| (-38 (-407 (-564)))) +((((-1175)) |has| |#1| (-1049))) +(|has| |#1| (-38 (-409 (-566)))) +(|has| |#1| (-38 (-409 (-566)))) +(|has| |#1| (-38 (-409 (-566)))) (((|#1|) . T)) -((((-860)) . T)) -(((|#1| (-564)) . T)) -(((|#1| (-1254 |#1| |#2| |#3|)) . T)) +((((-862)) . T)) +(((|#1| (-566)) . T)) +(((|#1| (-1256 |#1| |#2| |#3|)) . T)) (((|#1|) . T)) -(((|#1| (-407 (-564))) . T)) -(((|#1| (-1226 |#1| |#2| |#3|)) . T)) -(((|#1| (-769)) . T)) +(((|#1| (-409 (-566))) . T)) +(((|#1| (-1228 |#1| |#2| |#3|)) . T)) +(((|#1| (-771)) . T)) (((|#1|) . T)) -((((-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) . T)) -((((-860)) . T)) -(|has| |#1| (-1097)) -((((-1155) |#1|) . T)) +((((-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) . T)) +((((-862)) . T)) +(|has| |#1| (-1099)) +((((-1157) |#1|) . T)) ((($) . T)) (|has| |#2| (-147)) (|has| |#2| (-145)) -(((|#1| (-531 (-816 (-1173))) (-816 (-1173))) . T)) -((((-860)) . T)) -((((-1248 |#1| |#2| |#3| |#4|)) . T)) -((((-1248 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) |has| |#1| (-1047))) -((((-564) (-112)) . T)) -((((-860)) |has| |#1| (-1097))) -(((|#1|) . T) (((-564)) . T) (($) . T)) +(((|#1| (-533 (-818 (-1175))) (-818 (-1175))) . T)) +((((-862)) . T)) +((((-1250 |#1| |#2| |#3| |#4|)) . T)) +((((-1250 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) |has| |#1| (-1049))) +((((-566) (-112)) . T)) +((((-862)) |has| |#1| (-1099))) +(((|#1|) . T) (((-566)) . T) (($) . T)) (|has| |#2| (-172)) -((((-564)) . T)) -(|has| |#2| (-846)) +((((-566)) . T)) +(|has| |#2| (-848)) (((|#1|) . T)) -((((-564)) . T)) -((((-860)) . T)) -(-2682 (|has| |#1| (-145)) (|has| |#1| (-349))) -((((-860)) . T)) +((((-566)) . T)) +((((-862)) . T)) +(-2809 (|has| |#1| (-145)) (|has| |#1| (-351))) +((((-862)) . T)) (|has| |#1| (-147)) (((|#3|) . T)) -(-2682 (|has| |#3| (-172)) (|has| |#3| (-846)) (|has| |#3| (-1047))) -((((-860)) . T)) -((((-1247 |#2| |#3| |#4|)) . T) (((-1248 |#1| |#2| |#3| |#4|)) . T)) -((((-860)) . T)) -((((-48)) -12 (|has| |#1| (-556)) (|has| |#1| (-1036 (-564)))) (((-610 $)) . T) ((|#1|) . T) (((-564)) |has| |#1| (-1036 (-564))) (((-407 (-564))) -2682 (-12 (|has| |#1| (-556)) (|has| |#1| (-1036 (-564)))) (|has| |#1| (-1036 (-407 (-564))))) (((-407 (-950 |#1|))) |has| |#1| (-556)) (((-950 |#1|)) |has| |#1| (-1047)) (((-1173)) . T)) +(-2809 (|has| |#3| (-172)) (|has| |#3| (-848)) (|has| |#3| (-1049))) +((((-862)) . T)) +((((-1249 |#2| |#3| |#4|)) . T) (((-1250 |#1| |#2| |#3| |#4|)) . T)) +((((-862)) . T)) +((((-48)) -12 (|has| |#1| (-558)) (|has| |#1| (-1038 (-566)))) (((-612 $)) . T) ((|#1|) . T) (((-566)) |has| |#1| (-1038 (-566))) (((-409 (-566))) -2809 (-12 (|has| |#1| (-558)) (|has| |#1| (-1038 (-566)))) (|has| |#1| (-1038 (-409 (-566))))) (((-409 (-952 |#1|))) |has| |#1| (-558)) (((-952 |#1|)) |has| |#1| (-1049)) (((-1175)) . T)) (((|#1|) . T) (($) . T)) -(((|#1| (-769)) . T)) -((($) -2682 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172))) -(((|#1|) |has| |#1| (-309 |#1|))) -((((-1248 |#1| |#2| |#3| |#4|)) . T)) -((((-564)) |has| |#1| (-884 (-564))) (((-379)) |has| |#1| (-884 (-379)))) -(((|#1|) . T)) -(|has| |#1| (-556)) -((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556))) -(((|#1|) . T)) -((((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2682 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-1171 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172))) -(((|#1|) |has| |#1| (-172)) (((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2682 (|has| |#1| (-363)) (|has| |#1| (-556)))) -((($) |has| |#1| (-556)) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T) (($) -2682 (|has| |#1| (-172)) (|has| |#1| (-556)))) -((($) -2682 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-1171 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) . T)) -(((|#1|) . T) (($) -2682 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363)))) -((($) -2682 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))) (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) |has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))))) +(((|#1| (-771)) . T)) +((($) -2809 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-310 |#1|))) +((((-1250 |#1| |#2| |#3| |#4|)) . T)) +((((-566)) |has| |#1| (-886 (-566))) (((-381)) |has| |#1| (-886 (-381)))) +(((|#1|) . T)) +(|has| |#1| (-558)) +((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-558))) +(((|#1|) . T)) +((((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2809 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-1173 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-172)) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2809 (|has| |#1| (-365)) (|has| |#1| (-558)))) +((($) |has| |#1| (-558)) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) . T) (($) -2809 (|has| |#1| (-172)) (|has| |#1| (-558)))) +((($) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (((-1173 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) . T)) +(((|#1|) . T) (($) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365)))) +((($) -2809 (|has| |#1| (-172)) (|has| |#1| (-558))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) |has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))))) (((|#1|) |has| |#1| (-172))) -((((-860)) . T)) -((($) |has| |#1| (-556)) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) -(((|#1|) |has| |#1| (-172)) (($) . T) (((-564)) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) -(((|#1|) . T)) -((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -2682 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907)))) -((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T) (($) -2682 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907)))) -(((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) (((-564)) . T) (($) . T)) -(((|#3|) |has| |#3| (-1097))) -((((-908 |#1|)) . T) (((-407 (-564))) . T) (($) . T) (((-564)) . T)) -(((|#2|) -2682 (|has| |#2| (-172)) (|has| |#2| (-363)))) -((((-1247 |#2| |#3| |#4|)) . T)) +((((-862)) . T)) +((($) |has| |#1| (-558)) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) +(((|#1|) |has| |#1| (-172)) (($) . T) (((-566)) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) +(((|#1|) . T)) +((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) |has| |#2| (-172)) (($) -2809 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) +((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) . T) (($) -2809 (|has| |#2| (-172)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) +(((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) (((-566)) . T) (($) . T)) +(((|#3|) |has| |#3| (-1099))) +((((-910 |#1|)) . T) (((-409 (-566))) . T) (($) . T) (((-566)) . T)) +(((|#2|) -2809 (|has| |#2| (-172)) (|has| |#2| (-365)))) +((((-1249 |#2| |#3| |#4|)) . T)) ((((-112)) . T)) -(|has| |#1| (-818)) -(|has| |#1| (-818)) -(((|#1| (-564) (-1079)) . T)) -((($) |has| |#1| (-309 $)) ((|#1|) |has| |#1| (-309 |#1|))) -(|has| |#1| (-846)) -(|has| |#1| (-846)) -(((|#1| (-564) (-1079)) . T)) -(-2682 (|has| |#1| (-898 (-1173))) (|has| |#1| (-1047))) -((((-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) . T)) -(((|#1| (-407 (-564)) (-1079)) . T)) -(((|#1| (-769) (-1079)) . T)) +(|has| |#1| (-820)) +(|has| |#1| (-820)) +(((|#1| (-566) (-1081)) . T)) +((($) |has| |#1| (-310 $)) ((|#1|) |has| |#1| (-310 |#1|))) (|has| |#1| (-848)) -(((#0=(-908 |#1|) #0#) . T) (($ $) . T) ((#1=(-407 (-564)) #1#) . T)) +(|has| |#1| (-848)) +(((|#1| (-566) (-1081)) . T)) +(-2809 (|has| |#1| (-900 (-1175))) (|has| |#1| (-1049))) +((((-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) . T)) +(((|#1| (-409 (-566)) (-1081)) . T)) +(((|#1| (-771) (-1081)) . T)) +(|has| |#1| (-850)) +(((#0=(-910 |#1|) #0#) . T) (($ $) . T) ((#1=(-409 (-566)) #1#) . T)) (|has| |#2| (-145)) (|has| |#2| (-147)) (((|#2|) . T)) (|has| |#1| (-145)) (|has| |#1| (-147)) -(|has| |#1| (-1097)) -((((-908 |#1|)) . T) (($) . T) (((-407 (-564))) . T)) -(|has| |#1| (-1097)) -((((-407 (-564))) |has| |#2| (-363)) (($) . T) (((-564)) . T)) -((((-564)) -2682 (|has| |#1| (-898 (-1173))) (|has| |#1| (-1047)))) -(((|#1|) . T)) -(|has| |#1| (-1097)) -((((-564)) -12 (|has| |#1| (-363)) (|has| |#2| (-637 (-564)))) ((|#2|) |has| |#1| (-363))) -(-2682 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-724)) (|has| |#2| (-791)) (|has| |#2| (-846)) (|has| |#2| (-1047)) (|has| |#2| (-1097))) -((((-687 (-339 (-2401) (-2401 (QUOTE X) (QUOTE HESS)) (-697)))) . T)) +(|has| |#1| (-1099)) +((((-910 |#1|)) . T) (($) . T) (((-409 (-566))) . T)) +(|has| |#1| (-1099)) +((((-409 (-566))) |has| |#2| (-365)) (($) . T) (((-566)) . T)) +((((-566)) -2809 (|has| |#1| (-900 (-1175))) (|has| |#1| (-1049)))) +(((|#1|) . T)) +(|has| |#1| (-1099)) +((((-566)) -12 (|has| |#1| (-365)) (|has| |#2| (-639 (-566)))) ((|#2|) |has| |#1| (-365))) +(-2809 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-726)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049)) (|has| |#2| (-1099))) +((((-689 (-341 (-2489) (-2489 (QUOTE X) (QUOTE HESS)) (-699)))) . T)) (((|#2|) |has| |#2| (-172))) (((|#1|) |has| |#1| (-172))) -((((-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) . T)) -((((-2 (|:| -1914 (-1155)) (|:| -2683 |#1|))) . T)) -((((-860)) . T)) -(|has| |#3| (-846)) -((((-860)) . T)) -((((-1247 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) . T)) -((((-860)) . T)) -(((|#1| |#1|) -2682 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-1047)))) -(((|#1|) . T)) -((((-564)) . T)) -((((-564)) . T)) -(((|#1|) -2682 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-1047)))) -(((|#2|) |has| |#2| (-363))) -(((|#1|) . T)) -((($) . T) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-363))) -(|has| |#1| (-848)) -(((|#1|) . T)) -((((-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) . T)) -(((|#1|) . T) (((-564)) . T)) -(((|#2|) . T)) -((((-564)) . T) ((|#3|) . T)) -((((-2 (|:| -1914 (-1173)) (|:| -2683 (-52)))) |has| (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-309 (-2 (|:| -1914 (-1173)) (|:| -2683 (-52)))))) -(-2682 (|has| |#1| (-452)) (|has| |#1| (-907))) -(((|#2|) . T) (((-564)) |has| |#2| (-637 (-564)))) -((((-860)) . T)) -((((-860)) . T)) -((($) -2682 (|has| |#2| (-172)) (|has| |#2| (-846)) (|has| |#2| (-1047))) (((-564)) -2682 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-846)) (|has| |#2| (-1047))) ((|#2|) -2682 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1047)))) -((((-536)) . T) (((-564)) . T) (((-890 (-564))) . T) (((-379)) . T) (((-225)) . T)) -((((-860)) . T)) -(|has| |#1| (-38 (-407 (-564)))) -((((-564)) . T) (($) . T) (((-407 (-564))) . T)) -((((-564)) . T) (($) . T) (((-407 (-564))) . T)) +((((-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) . T)) +((((-2 (|:| -1928 (-1157)) (|:| -2806 |#1|))) . T)) +((((-862)) . T)) +(|has| |#3| (-848)) +((((-862)) . T)) +((((-1249 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) . T)) +((((-862)) . T)) +(((|#1| |#1|) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-1049)))) +(((|#1|) . T)) +((((-566)) . T)) +((((-566)) . T)) +(((|#1|) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-1049)))) +(((|#2|) |has| |#2| (-365))) +(((|#1|) . T)) +((($) . T) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-365))) +(|has| |#1| (-850)) +(((|#1|) . T)) +((((-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) . T)) +(((|#1|) . T) (((-566)) . T)) +(((|#2|) . T)) +((((-566)) . T) ((|#3|) . T)) +((((-2 (|:| -1928 (-1175)) (|:| -2806 (-52)))) |has| (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-310 (-2 (|:| -1928 (-1175)) (|:| -2806 (-52)))))) +(-2809 (|has| |#1| (-454)) (|has| |#1| (-909))) +(((|#2|) . T) (((-566)) |has| |#2| (-639 (-566)))) +((((-862)) . T)) +((((-862)) . T)) +((($) -2809 (|has| |#2| (-172)) (|has| |#2| (-848)) (|has| |#2| (-1049))) (((-566)) -2809 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-848)) (|has| |#2| (-1049))) ((|#2|) -2809 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1049)))) +((((-538)) . T) (((-566)) . T) (((-892 (-566))) . T) (((-381)) . T) (((-225)) . T)) +((((-862)) . T)) +(|has| |#1| (-38 (-409 (-566)))) +((((-566)) . T) (($) . T) (((-409 (-566))) . T)) +((((-566)) . T) (($) . T) (((-409 (-566))) . T)) (|has| |#1| (-233)) (((|#1|) . T) (($) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T)) -(|has| |#1| (-846)) -(((|#1| (-564)) . T)) +(|has| |#1| (-848)) +(((|#1| (-566)) . T)) (((|#1| |#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -(((|#1| (-1171 |#1| |#2| |#3|)) . T)) +(((|#1| (-1173 |#1| |#2| |#3|)) . T)) (((|#1|) . T)) -(((|#1| (-407 (-564))) . T)) -(((|#1| (-1164 |#1| |#2| |#3|)) . T)) +(((|#1| (-409 (-566))) . T)) +(((|#1| (-1166 |#1| |#2| |#3|)) . T)) (((|#1| |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) . T)) -(((|#1| (-769)) . T)) +(((|#1| (-771)) . T)) (((|#1|) . T)) -((((-407 (-950 |#1|))) . T)) +((((-409 (-952 |#1|))) . T)) (((|#1|) . T)) (((|#1|) . T)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-147)) -((((-407 (-950 |#1|))) . T)) +((((-409 (-952 |#1|))) . T)) (((|#1|) |has| |#1| (-172))) (|has| |#1| (-145)) -((($) |has| |#1| (-556)) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) +((($) |has| |#1| (-558)) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) (((|#1|) |has| |#1| (-172))) -((($) -2682 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -((((-564)) . T) ((|#1|) . T) (($) . T) (((-407 (-564))) . T) (((-1173)) |has| |#1| (-1036 (-1173)))) +((($) -2809 (|has| |#1| (-172)) (|has| |#1| (-558))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((((-566)) . T) ((|#1|) . T) (($) . T) (((-409 (-566))) . T) (((-1175)) |has| |#1| (-1038 (-1175)))) (((|#1| |#2|) . T)) -((((-407 (-564))) |has| |#1| (-1036 (-407 (-564)))) (((-564)) -2682 (|has| |#1| (-846)) (|has| |#1| (-1036 (-564)))) ((|#1|) . T)) +((((-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) (((-566)) -2809 (|has| |#1| (-848)) (|has| |#1| (-1038 (-566)))) ((|#1|) . T)) ((((-144)) . T)) -(|has| |#1| (-38 (-407 (-564)))) -(|has| |#1| (-38 (-407 (-564)))) -(((|#1|) . T)) -(-2682 (|has| |#2| (-172)) (|has| |#2| (-846)) (|has| |#2| (-1047))) -(((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) . T) (($ $) . T)) -(((|#2|) . T) ((|#1|) . T) (((-564)) . T)) -((((-860)) . T)) -(((|#1|) . T) (((-407 (-564))) . T) (($) . T)) -((($) . T) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -((((-860)) -2682 (|has| |#1| (-611 (-860))) (|has| |#1| (-1097)))) -(|has| |#1| (-363)) -(|has| |#1| (-363)) -(|has| (-407 |#2|) (-233)) -((((-642 |#1|)) . T)) -(|has| |#1| (-907)) -(((|#2|) |has| |#2| (-1047))) -(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))) (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) |has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))))) -(|has| |#1| (-363)) +(|has| |#1| (-38 (-409 (-566)))) +(|has| |#1| (-38 (-409 (-566)))) +(((|#1|) . T)) +(-2809 (|has| |#2| (-172)) (|has| |#2| (-848)) (|has| |#2| (-1049))) +(((|#1| |#1|) . T) ((#0=(-409 (-566)) #0#) . T) (($ $) . T)) +(((|#2|) . T) ((|#1|) . T) (((-566)) . T)) +((((-862)) . T)) +(((|#1|) . T) (((-409 (-566))) . T) (($) . T)) +((($) . T) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((((-862)) -2809 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099)))) +(|has| |#1| (-365)) +(|has| |#1| (-365)) +(|has| (-409 |#2|) (-233)) +((((-644 |#1|)) . T)) +(|has| |#1| (-909)) +(((|#2|) |has| |#2| (-1049))) +(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) |has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))))) +(|has| |#1| (-365)) (((|#1|) |has| |#1| (-172))) (((|#1| |#1|) . T)) -((((-868 |#1|)) . T)) -((((-860)) . T)) +((((-870 |#1|)) . T)) +((((-862)) . T)) (((|#1|) . T)) -(((|#2|) |has| |#2| (-1097))) +(((|#2|) |has| |#2| (-1099))) (((|#1|) . T)) -((((-407 |#2|)) . T) (((-407 (-564))) . T) (($) . T) (((-564)) . T)) -((((-642 $)) . T) (((-1155)) . T) (((-1173)) . T) (((-564)) . T) (((-225)) . T) (((-860)) . T)) -((($) -2682 (|has| |#3| (-172)) (|has| |#3| (-846)) (|has| |#3| (-1047))) (((-564)) -2682 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-846)) (|has| |#3| (-1047))) ((|#3|) -2682 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1047)))) -((((-407 (-564))) . T) (((-564)) . T) (((-610 $)) . T)) +((((-409 |#2|)) . T) (((-409 (-566))) . T) (($) . T) (((-566)) . T)) +((((-644 $)) . T) (((-1157)) . T) (((-1175)) . T) (((-566)) . T) (((-225)) . T) (((-862)) . T)) +((($) -2809 (|has| |#3| (-172)) (|has| |#3| (-848)) (|has| |#3| (-1049))) (((-566)) -2809 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-848)) (|has| |#3| (-1049))) ((|#3|) -2809 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1049)))) +((((-409 (-566))) . T) (((-566)) . T) (((-612 $)) . T)) (((|#1|) . T)) -((((-860)) . T)) +((((-862)) . T)) ((($) . T)) -(((|#1| (-531 |#2|) |#2|) . T)) -((((-860)) . T)) -(((|#1| (-564) (-1079)) . T)) -(((|#1| (-407 (-564)) (-1079)) . T)) -((((-908 |#1|)) . T)) -((((-860)) . T)) +(((|#1| (-533 |#2|) |#2|) . T)) +((((-862)) . T)) +(((|#1| (-566) (-1081)) . T)) +(((|#1| (-409 (-566)) (-1081)) . T)) +((((-910 |#1|)) . T)) +((((-862)) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(((|#1| (-769) (-1079)) . T)) -(((#0=(-407 |#2|) #0#) . T) ((#1=(-407 (-564)) #1#) . T) (($ $) . T)) -(((|#1|) . T) (((-564)) -2682 (|has| (-407 (-564)) (-1036 (-564))) (|has| |#1| (-1036 (-564)))) (((-407 (-564))) . T)) -(((|#1| (-600 |#1| |#3|) (-600 |#1| |#2|)) . T)) +(((|#1| (-771) (-1081)) . T)) +(((#0=(-409 |#2|) #0#) . T) ((#1=(-409 (-566)) #1#) . T) (($ $) . T)) +(((|#1|) . T) (((-566)) -2809 (|has| (-409 (-566)) (-1038 (-566))) (|has| |#1| (-1038 (-566)))) (((-409 (-566))) . T)) +(((|#1| (-602 |#1| |#3|) (-602 |#1| |#2|)) . T)) (((|#1|) |has| |#1| (-172))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-407 |#2|)) . T) (((-407 (-564))) . T) (($) . T)) +((((-409 |#2|)) . T) (((-409 (-566))) . T) (($) . T)) (|has| |#2| (-233)) -(((|#2| (-531 (-862 |#1|)) (-862 |#1|)) . T)) -((((-860)) . T)) -((($) |has| |#1| (-556)) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -((((-860)) . T)) +(((|#2| (-533 (-864 |#1|)) (-864 |#1|)) . T)) +((((-862)) . T)) +((($) |has| |#1| (-558)) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((((-862)) . T)) (((|#1| |#3|) . T)) -((((-860)) . T)) -(((|#1|) |has| |#1| (-172)) (((-950 |#1|)) . T) (((-564)) . T)) +((((-862)) . T)) +(((|#1|) |has| |#1| (-172)) (((-952 |#1|)) . T) (((-566)) . T)) (((|#1|) |has| |#1| (-172))) -((((-697)) . T)) -((((-697)) . T)) +((((-699)) . T)) +((((-699)) . T)) (((|#2|) |has| |#2| (-172))) -(|has| |#2| (-846)) -((((-564)) . T) ((|#2|) . T) (((-407 (-564))) |has| |#2| (-1036 (-407 (-564))))) -((((-112)) |has| |#1| (-1097)) (((-860)) -2682 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-473)) (|has| |#1| (-724)) (|has| |#1| (-898 (-1173))) (|has| |#1| (-1047)) (|has| |#1| (-1109)) (|has| |#1| (-1097)))) +(|has| |#2| (-848)) +((((-566)) . T) ((|#2|) . T) (((-409 (-566))) |has| |#2| (-1038 (-409 (-566))))) +((((-112)) |has| |#1| (-1099)) (((-862)) -2809 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-475)) (|has| |#1| (-726)) (|has| |#1| (-900 (-1175))) (|has| |#1| (-1049)) (|has| |#1| (-1111)) (|has| |#1| (-1099)))) (((|#1|) . T) (($) . T)) (((|#1| |#2|) . T)) -((($) . T) (((-564)) . T) (((-407 (-564))) . T)) -((((-564)) . T) (($) . T) (((-407 (-564))) . T)) -((((-2 (|:| -1914 (-1155)) (|:| -2683 (-52)))) . T)) -(((|#1|) . T) (((-407 (-564))) . T) (((-564)) . T) (($) . T)) -(((|#1|) . T) (((-407 (-564))) . T) (((-564)) . T) (($) . T)) -(((|#1|) . T) (((-407 (-564))) . T) (((-564)) . T) (($) . T)) -((((-564)) . T) (($) . T) (((-407 (-564))) . T)) -((((-564)) . T) (((-407 (-564))) . T) (($) . T)) -((((-860)) . T)) -((((-564)) . T) (((-407 (-564))) . T) (($) . T)) -((((-860)) . T)) -((((-697)) . T) (((-407 (-564))) . T) (((-564)) . T)) +((($) . T) (((-566)) . T) (((-409 (-566))) . T)) +((((-566)) . T) (($) . T) (((-409 (-566))) . T)) +((((-2 (|:| -1928 (-1157)) (|:| -2806 (-52)))) . T)) +(((|#1|) . T) (((-409 (-566))) . T) (((-566)) . T) (($) . T)) +(((|#1|) . T) (((-409 (-566))) . T) (((-566)) . T) (($) . T)) +(((|#1|) . T) (((-409 (-566))) . T) (((-566)) . T) (($) . T)) +((((-566)) . T) (($) . T) (((-409 (-566))) . T)) +((((-566)) . T) (((-409 (-566))) . T) (($) . T)) +((((-862)) . T)) +((((-566)) . T) (((-409 (-566))) . T) (($) . T)) +((((-862)) . T)) +((((-699)) . T) (((-409 (-566))) . T) (((-566)) . T)) (((|#1| |#1|) |has| |#1| (-172))) (((|#2|) . T)) -((($) . T) (((-564)) . T) (((-407 (-564))) -2682 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T)) -((((-564) |#1|) . T)) -(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))) (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) |has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))))) -((((-379)) . T)) -((((-697)) . T)) -((((-407 (-564))) . #0=(|has| |#2| (-363))) (($) . #0#)) +((($) . T) (((-566)) . T) (((-409 (-566))) -2809 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) +((((-566) |#1|) . T)) +(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) |has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))))) +((((-381)) . T)) +((((-699)) . T)) +((((-409 (-566))) . #0=(|has| |#2| (-365))) (($) . #0#)) (((|#1|) |has| |#1| (-172))) -((((-407 (-950 |#1|))) . T)) +((((-409 (-952 |#1|))) . T)) (((|#2| |#2|) . T)) -(-2682 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907))) -(-2682 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) -(((|#1|) . T)) -(((|#2|) . T)) -(((|#3|) |has| |#3| (-1047))) -(|has| |#2| (-907)) -(|has| |#1| (-907)) -(|has| |#1| (-363)) -((((-1173)) |has| |#2| (-898 (-1173)))) -((((-860)) . T)) -((((-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) . T)) -((((-407 (-564))) . T) (($) . T)) -(|has| |#1| (-473)) -(|has| |#1| (-368)) -(|has| |#1| (-368)) -(|has| |#1| (-368)) -(|has| |#1| (-363)) -(-2682 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-473)) (|has| |#1| (-556)) (|has| |#1| (-1047)) (|has| |#1| (-1109))) -(|has| |#1| (-38 (-407 (-564)))) +(-2809 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) +(-2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) +(((|#1|) . T)) +(((|#2|) . T)) +(((|#3|) |has| |#3| (-1049))) +(|has| |#2| (-909)) +(|has| |#1| (-909)) +(|has| |#1| (-365)) +((((-1175)) |has| |#2| (-900 (-1175)))) +((((-862)) . T)) +((((-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) . T)) +((((-409 (-566))) . T) (($) . T)) +(|has| |#1| (-475)) +(|has| |#1| (-370)) +(|has| |#1| (-370)) +(|has| |#1| (-370)) +(|has| |#1| (-365)) +(-2809 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-475)) (|has| |#1| (-558)) (|has| |#1| (-1049)) (|has| |#1| (-1111))) +(|has| |#1| (-38 (-409 (-566)))) ((((-116 |#1|)) . T)) ((((-116 |#1|)) . T)) -(|has| |#1| (-349)) +(|has| |#1| (-351)) ((((-144)) . T)) -(|has| |#1| (-38 (-407 (-564)))) -((($) . T)) -(|has| |#1| (-38 (-407 (-564)))) -(|has| |#1| (-38 (-407 (-564)))) -(((|#2|) . T) (((-860)) . T)) -(((|#2|) . T) (((-860)) . T)) -(|has| |#1| (-38 (-407 (-564)))) -(|has| |#1| (-38 (-407 (-564)))) -(|has| |#1| (-38 (-407 (-564)))) -(|has| |#1| (-38 (-407 (-564)))) -(|has| |#1| (-38 (-407 (-564)))) -(|has| |#1| (-38 (-407 (-564)))) -(|has| |#1| (-38 (-407 (-564)))) -(|has| |#1| (-38 (-407 (-564)))) -(|has| |#1| (-848)) -((((-2 (|:| -1914 (-1155)) (|:| -2683 |#1|))) . T)) +(|has| |#1| (-38 (-409 (-566)))) +((($) . T)) +(|has| |#1| (-38 (-409 (-566)))) +(|has| |#1| (-38 (-409 (-566)))) +(((|#2|) . T) (((-862)) . T)) +(((|#2|) . T) (((-862)) . T)) +(|has| |#1| (-38 (-409 (-566)))) +(|has| |#1| (-38 (-409 (-566)))) +(|has| |#1| (-38 (-409 (-566)))) +(|has| |#1| (-38 (-409 (-566)))) +(|has| |#1| (-38 (-409 (-566)))) +(|has| |#1| (-38 (-409 (-566)))) +(|has| |#1| (-38 (-409 (-566)))) +(|has| |#1| (-38 (-409 (-566)))) +(|has| |#1| (-850)) +((((-2 (|:| -1928 (-1157)) (|:| -2806 |#1|))) . T)) (((|#1| |#2|) . T)) -((($) . T) (((-564)) . T)) +((($) . T) (((-566)) . T)) (|has| |#1| (-147)) (|has| |#1| (-145)) -((((-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) |has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) ((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) +((((-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) |has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) ((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (((|#2|) . T)) (((|#3|) . T)) ((((-116 |#1|)) . T)) -(|has| |#1| (-368)) -(|has| |#1| (-848)) -(((|#2|) . T) (((-407 (-564))) |has| |#1| (-1036 (-407 (-564)))) (((-564)) |has| |#1| (-1036 (-564))) ((|#1|) . T)) +(|has| |#1| (-370)) +(|has| |#1| (-850)) +(((|#2|) . T) (((-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) (((-566)) |has| |#1| (-1038 (-566))) ((|#1|) . T)) ((((-116 |#1|)) . T)) (((|#1|) |has| |#1| (-172))) (((|#2|) |has| |#2| (-172))) (((|#1|) . T)) (((|#1|) . T)) -((((-564)) . T)) -(|has| |#1| (-363)) -(|has| |#1| (-363)) -((((-860)) . T)) -((((-860)) . T)) -((((-536)) |has| |#1| (-612 (-536))) (((-890 (-564))) |has| |#1| (-612 (-890 (-564)))) (((-890 (-379))) |has| |#1| (-612 (-890 (-379)))) (((-379)) . #0=(|has| |#1| (-1020))) (((-225)) . #0#)) -(((|#1|) |has| |#1| (-363))) -((((-860)) . T)) -((((-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) . T)) -((($ $) . T) (((-610 $) $) . T)) -(-2682 (|has| |#1| (-363)) (|has| |#1| (-556))) -((($) . T) (((-1248 |#1| |#2| |#3| |#4|)) . T) (((-407 (-564))) . T)) -((($) -2682 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1047))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-556))) -((($) . T) (((-564)) . T) (((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) . T)) -(|has| |#1| (-363)) -(|has| |#1| (-363)) -(|has| |#1| (-363)) -((((-379)) . T) (((-564)) . T) (((-407 (-564))) . T)) -((((-642 (-778 |#1| (-862 |#2|)))) . T) (((-860)) . T)) -((((-536)) |has| (-778 |#1| (-862 |#2|)) (-612 (-536)))) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) -((((-379)) . T)) +((((-566)) . T)) +(|has| |#1| (-365)) +(|has| |#1| (-365)) +((((-862)) . T)) +((((-862)) . T)) +((((-538)) |has| |#1| (-614 (-538))) (((-892 (-566))) |has| |#1| (-614 (-892 (-566)))) (((-892 (-381))) |has| |#1| (-614 (-892 (-381)))) (((-381)) . #0=(|has| |#1| (-1022))) (((-225)) . #0#)) +(((|#1|) |has| |#1| (-365))) +((((-862)) . T)) +((((-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) . T)) +((($ $) . T) (((-612 $) $) . T)) +(-2809 (|has| |#1| (-365)) (|has| |#1| (-558))) +((($) . T) (((-1250 |#1| |#2| |#3| |#4|)) . T) (((-409 (-566))) . T)) +((($) -2809 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-558)) (|has| |#1| (-1049))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-558))) +((($) . T) (((-566)) . T) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#1|) . T)) +(|has| |#1| (-365)) +(|has| |#1| (-365)) +(|has| |#1| (-365)) +((((-381)) . T) (((-566)) . T) (((-409 (-566))) . T)) +((((-644 (-780 |#1| (-864 |#2|)))) . T) (((-862)) . T)) +((((-538)) |has| (-780 |#1| (-864 |#2|)) (-614 (-538)))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) +((((-381)) . T)) (((|#1|) |has| |#1| (-172))) -(((|#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1097)))) +(((|#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099)))) (((|#1|) |has| |#1| (-172))) -((((-860)) . T)) -(-2682 (|has| |#2| (-452)) (|has| |#2| (-907))) -(((|#1|) . T)) -((($) |has| |#1| (-556)) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -((($) -2682 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -((((-860)) -2682 (|has| |#1| (-611 (-860))) (|has| |#1| (-1097)))) -((((-536)) |has| |#1| (-612 (-536)))) -(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) -((((-769)) . T)) -(|has| |#1| (-1097)) -((($) -2682 (|has| |#2| (-172)) (|has| |#2| (-846)) (|has| |#2| (-1047))) (((-564)) -2682 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-846)) (|has| |#2| (-1047))) ((|#2|) -2682 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1047)))) -((((-860)) . T)) -((((-1173)) . T) (((-860)) . T)) -((((-564)) -12 (|has| |#1| (-21)) (|has| |#2| (-21)))) -((((-407 (-564))) . T) (((-564)) . T) (((-610 $)) . T)) +((((-862)) . T)) +(-2809 (|has| |#2| (-454)) (|has| |#2| (-909))) +(((|#1|) . T)) +((($) |has| |#1| (-558)) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((($) -2809 (|has| |#1| (-172)) (|has| |#1| (-558))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((((-862)) -2809 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099)))) +((((-538)) |has| |#1| (-614 (-538)))) +(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) +((((-771)) . T)) +(|has| |#1| (-1099)) +((($) -2809 (|has| |#2| (-172)) (|has| |#2| (-848)) (|has| |#2| (-1049))) (((-566)) -2809 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-848)) (|has| |#2| (-1049))) ((|#2|) -2809 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1049)))) +((((-862)) . T)) +((((-1175)) . T) (((-862)) . T)) +((((-566)) -12 (|has| |#1| (-21)) (|has| |#2| (-21)))) +((((-409 (-566))) . T) (((-566)) . T) (((-612 $)) . T)) (|has| |#1| (-145)) (|has| |#1| (-147)) -((((-564)) . T)) -(-2682 (|has| |#1| (-363)) (|has| |#1| (-556))) -(-2682 (|has| |#1| (-363)) (|has| |#1| (-556))) -(((#0=(-1247 |#2| |#3| |#4|)) . T) (((-407 (-564))) |has| #0# (-38 (-407 (-564)))) (($) . T)) -((((-564)) . T)) -(|has| |#1| (-363)) -(-2682 (-12 (|has| (-1254 |#1| |#2| |#3|) (-147)) (|has| |#1| (-363))) (|has| |#1| (-147))) -(-2682 (-12 (|has| (-1254 |#1| |#2| |#3|) (-145)) (|has| |#1| (-363))) (|has| |#1| (-145))) -(|has| |#1| (-363)) +((((-566)) . T)) +(-2809 (|has| |#1| (-365)) (|has| |#1| (-558))) +(-2809 (|has| |#1| (-365)) (|has| |#1| (-558))) +(((#0=(-1249 |#2| |#3| |#4|)) . T) (((-409 (-566))) |has| #0# (-38 (-409 (-566)))) (($) . T)) +((((-566)) . T)) +(|has| |#1| (-365)) +(-2809 (-12 (|has| (-1256 |#1| |#2| |#3|) (-147)) (|has| |#1| (-365))) (|has| |#1| (-147))) +(-2809 (-12 (|has| (-1256 |#1| |#2| |#3|) (-145)) (|has| |#1| (-365))) (|has| |#1| (-145))) +(|has| |#1| (-365)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-233)) -(|has| |#1| (-363)) +(|has| |#1| (-365)) (((|#3|) . T)) -((((-860)) . T)) -((((-860)) . T)) -((((-564)) |has| |#2| (-637 (-564))) ((|#2|) . T)) -(((|#2|) . T) (($) . T) (((-564)) . T)) -(((|#2|) . T)) -((((-407 (-564))) . #0=(|has| |#2| (-363))) (($) . #0#)) -((((-407 (-564))) |has| |#2| (-363)) (($) . T)) -(|has| |#1| (-1097)) -((((-1139 |#2| |#1|)) . T) ((|#1|) . T) (((-564)) . T)) +((((-862)) . T)) +((((-862)) . T)) +((((-566)) |has| |#2| (-639 (-566))) ((|#2|) . T)) +(((|#2|) . T) (($) . T) (((-566)) . T)) +(((|#2|) . T)) +((((-409 (-566))) . #0=(|has| |#2| (-365))) (($) . #0#)) +((((-409 (-566))) |has| |#2| (-365)) (($) . T)) +(|has| |#1| (-1099)) +((((-1141 |#2| |#1|)) . T) ((|#1|) . T) (((-566)) . T)) (((|#1| |#2|) . T)) -((((-564)) . T) ((|#1|) . T) (((-407 (-564))) -2682 (|has| |#1| (-363)) (|has| |#1| (-1036 (-407 (-564)))))) -(((|#1|) . T) (((-564)) |has| |#1| (-637 (-564)))) +((((-566)) . T) ((|#1|) . T) (((-409 (-566))) -2809 (|has| |#1| (-365)) (|has| |#1| (-1038 (-409 (-566)))))) +(((|#1|) . T) (((-566)) |has| |#1| (-639 (-566)))) (((|#3|) |has| |#3| (-172))) -(((|#2|) . T) (($) . T) (((-564)) . T)) -(((|#1|) . T) (($) . T) (((-564)) . T)) -(-2682 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-724)) (|has| |#2| (-791)) (|has| |#2| (-846)) (|has| |#2| (-1047)) (|has| |#2| (-1097))) -((((-860)) . T)) -((((-564)) . T)) -(((|#1| $) |has| |#1| (-286 |#1| |#1|))) -((((-407 (-564))) . T) (($) . T) (((-407 |#1|)) . T) ((|#1|) . T)) -((((-950 |#1|)) . T) (((-860)) . T)) +(((|#2|) . T) (($) . T) (((-566)) . T)) +(((|#1|) . T) (($) . T) (((-566)) . T)) +(-2809 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-726)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049)) (|has| |#2| (-1099))) +((((-862)) . T)) +((((-566)) . T)) +(((|#1| $) |has| |#1| (-287 |#1| |#1|))) +((((-409 (-566))) . T) (($) . T) (((-409 |#1|)) . T) ((|#1|) . T)) +((((-952 |#1|)) . T) (((-862)) . T)) (((|#3|) . T)) -(((|#1| |#1|) . T) (($ $) -2682 (|has| |#1| (-290)) (|has| |#1| (-363))) ((#0=(-407 (-564)) #0#) |has| |#1| (-363))) -((((-2 (|:| -1914 (-1173)) (|:| -2683 (-52)))) . T)) -((((-950 |#1|)) . T)) -((($) . T)) -((((-564) |#1|) . T)) -((((-1173)) |has| (-407 |#2|) (-898 (-1173)))) -(((|#1|) . T) (($) -2682 (|has| |#1| (-290)) (|has| |#1| (-363))) (((-407 (-564))) |has| |#1| (-363))) -((((-536)) |has| |#2| (-612 (-536)))) -((((-687 |#2|)) . T) (((-860)) . T)) -(((|#1|) . T)) -(((|#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) -(((|#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) -((((-868 |#1|)) . T)) +(((|#1| |#1|) . T) (($ $) -2809 (|has| |#1| (-291)) (|has| |#1| (-365))) ((#0=(-409 (-566)) #0#) |has| |#1| (-365))) +((((-2 (|:| -1928 (-1175)) (|:| -2806 (-52)))) . T)) +((((-952 |#1|)) . T)) +((($) . T)) +((((-566) |#1|) . T)) +((((-1175)) |has| (-409 |#2|) (-900 (-1175)))) +(((|#1|) . T) (($) -2809 (|has| |#1| (-291)) (|has| |#1| (-365))) (((-409 (-566))) |has| |#1| (-365))) +((((-538)) |has| |#2| (-614 (-538)))) +((((-689 |#2|)) . T) (((-862)) . T)) +(((|#1|) . T)) +(((|#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) +(((|#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) +((((-870 |#1|)) . T)) (((|#1|) |has| |#1| (-172))) -(-2682 (|has| |#4| (-791)) (|has| |#4| (-846))) -(-2682 (|has| |#3| (-791)) (|has| |#3| (-846))) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) -((((-860)) . T)) -((((-860)) . T)) -(((|#1|) . T)) -((($) . T) (((-564)) . T) ((|#2|) . T)) -(((|#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) -(((|#3|) -2682 (|has| |#3| (-172)) (|has| |#3| (-363)))) -(((|#2|) |has| |#2| (-1047))) +(-2809 (|has| |#4| (-793)) (|has| |#4| (-848))) +(-2809 (|has| |#3| (-793)) (|has| |#3| (-848))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) +((((-862)) . T)) +((((-862)) . T)) +(((|#1|) . T)) +((($) . T) (((-566)) . T) ((|#2|) . T)) +(((|#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) +(((|#3|) -2809 (|has| |#3| (-172)) (|has| |#3| (-365)))) +(((|#2|) |has| |#2| (-1049))) (((|#3|) . T)) (((|#1|) . T)) -((((-407 |#2|)) . T)) -(((|#2|) -2682 (|has| |#2| (-172)) (|has| |#2| (-363)))) -(((|#1|) . T)) -(((|#2|) -2682 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1047))) (($) |has| |#2| (-172))) -(((|#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1097)))) -((((-564) |#1|) . T)) -(((|#1|) . T)) -((($) . T)) -((((-564)) . T) (($) . T) (((-407 (-564))) . T)) -((((-407 (-564))) . T) (($) . T)) -((((-407 (-564))) . T) (($) . T)) -((((-407 (-564))) . T) (($) . T)) -(-2682 (|has| |#1| (-452)) (|has| |#1| (-1216))) -((($) . T)) -((((-407 (-564))) |has| #0=(-407 |#2|) (-1036 (-407 (-564)))) (((-564)) |has| #0# (-1036 (-564))) ((#0#) . T)) -(((|#2|) . T) (((-564)) |has| |#2| (-637 (-564)))) -(((|#1| (-769)) . T)) +((((-409 |#2|)) . T)) +(((|#2|) -2809 (|has| |#2| (-172)) (|has| |#2| (-365)))) +(((|#1|) . T)) +(((|#2|) -2809 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1049))) (($) |has| |#2| (-172))) +(((|#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099)))) +((((-566) |#1|) . T)) +(((|#1|) . T)) +((($) . T)) +((((-566)) . T) (($) . T) (((-409 (-566))) . T)) +((((-409 (-566))) . T) (($) . T)) +((((-409 (-566))) . T) (($) . T)) +((((-409 (-566))) . T) (($) . T)) +(-2809 (|has| |#1| (-454)) (|has| |#1| (-1218))) +((($) . T)) +((((-409 (-566))) |has| #0=(-409 |#2|) (-1038 (-409 (-566)))) (((-566)) |has| #0# (-1038 (-566))) ((#0#) . T)) +(((|#2|) . T) (((-566)) |has| |#2| (-639 (-566)))) +(((|#1| (-771)) . T)) +(|has| |#1| (-850)) +(((|#1|) . T) (((-566)) |has| |#1| (-639 (-566)))) +((($) -2809 (|has| |#1| (-365)) (|has| |#1| (-351))) (((-409 (-566))) -2809 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) +((((-566)) . T)) +(|has| |#1| (-38 (-409 (-566)))) +((((-2 (|:| -1928 (-1157)) (|:| -2806 (-52)))) |has| (-2 (|:| -1928 (-1157)) (|:| -2806 (-52))) (-310 (-2 (|:| -1928 (-1157)) (|:| -2806 (-52)))))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (|has| |#1| (-848)) -(((|#1|) . T) (((-564)) |has| |#1| (-637 (-564)))) -((($) -2682 (|has| |#1| (-363)) (|has| |#1| (-349))) (((-407 (-564))) -2682 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T)) -((((-564)) . T)) -(|has| |#1| (-38 (-407 (-564)))) -((((-2 (|:| -1914 (-1155)) (|:| -2683 (-52)))) |has| (-2 (|:| -1914 (-1155)) (|:| -2683 (-52))) (-309 (-2 (|:| -1914 (-1155)) (|:| -2683 (-52)))))) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) -(|has| |#1| (-846)) -(|has| |#1| (-38 (-407 (-564)))) -(|has| |#1| (-38 (-407 (-564)))) -(|has| |#1| (-38 (-407 (-564)))) -(|has| |#1| (-38 (-407 (-564)))) -(|has| |#1| (-368)) -(|has| |#1| (-368)) -(|has| |#1| (-368)) -(|has| |#1| (-38 (-407 (-564)))) -(|has| |#1| (-38 (-407 (-564)))) -(|has| |#1| (-38 (-407 (-564)))) -(|has| |#1| (-38 (-407 (-564)))) -(|has| |#1| (-38 (-407 (-564)))) -(|has| |#1| (-38 (-407 (-564)))) -(|has| |#1| (-38 (-407 (-564)))) -(|has| |#1| (-349)) -(|has| |#1| (-38 (-407 (-564)))) -(|has| |#1| (-38 (-407 (-564)))) -(|has| |#1| (-38 (-407 (-564)))) -(|has| |#1| (-38 (-407 (-564)))) -((((-1155)) . T) (((-506)) . T) (((-225)) . T) (((-564)) . T)) -((((-860)) . T)) -(((|#2|) . T) (((-564)) . T) (($) -2682 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) (((-1079)) . T) ((|#1|) . T) (((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1036 (-407 (-564)))))) +(|has| |#1| (-38 (-409 (-566)))) +(|has| |#1| (-38 (-409 (-566)))) +(|has| |#1| (-38 (-409 (-566)))) +(|has| |#1| (-38 (-409 (-566)))) +(|has| |#1| (-370)) +(|has| |#1| (-370)) +(|has| |#1| (-370)) +(|has| |#1| (-38 (-409 (-566)))) +(|has| |#1| (-38 (-409 (-566)))) +(|has| |#1| (-38 (-409 (-566)))) +(|has| |#1| (-38 (-409 (-566)))) +(|has| |#1| (-38 (-409 (-566)))) +(|has| |#1| (-38 (-409 (-566)))) +(|has| |#1| (-38 (-409 (-566)))) +(|has| |#1| (-351)) +(|has| |#1| (-38 (-409 (-566)))) +(|has| |#1| (-38 (-409 (-566)))) +(|has| |#1| (-38 (-409 (-566)))) +(|has| |#1| (-38 (-409 (-566)))) +((((-1157)) . T) (((-508)) . T) (((-225)) . T) (((-566)) . T)) +((((-862)) . T)) +(((|#2|) . T) (((-566)) . T) (($) -2809 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) (((-1081)) . T) ((|#1|) . T) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566)))))) (((|#1| |#2|) . T)) ((((-144)) . T)) -((((-778 |#1| (-862 |#2|))) . T)) -((((-860)) -2682 (|has| |#1| (-611 (-860))) (|has| |#1| (-1097)))) -(|has| |#1| (-1197)) -((((-860)) . T)) +((((-780 |#1| (-864 |#2|))) . T)) +((((-862)) -2809 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099)))) +(|has| |#1| (-1199)) +((((-862)) . T)) (((|#1|) . T)) -(-2682 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-368)) (|has| |#3| (-724)) (|has| |#3| (-791)) (|has| |#3| (-846)) (|has| |#3| (-1047)) (|has| |#3| (-1097))) -((((-1173) |#1|) |has| |#1| (-514 (-1173) |#1|))) +(-2809 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-370)) (|has| |#3| (-726)) (|has| |#3| (-793)) (|has| |#3| (-848)) (|has| |#3| (-1049)) (|has| |#3| (-1099))) +((((-1175) |#1|) |has| |#1| (-516 (-1175) |#1|))) (((|#2|) . T)) -((($ $) -2682 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564))))) -((((-908 |#1|)) . T)) +((($ $) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1| |#1|) . T) ((#0=(-409 (-566)) #0#) |has| |#1| (-38 (-409 (-566))))) +((((-910 |#1|)) . T)) ((($) . T)) -((((-407 (-950 |#1|))) . T)) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) -((($) -2682 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -((((-536)) |has| |#4| (-612 (-536)))) -((((-860)) . T) (((-642 |#4|)) . T)) -((((-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) . T)) +((((-409 (-952 |#1|))) . T)) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) +((($) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((((-538)) |has| |#4| (-614 (-538)))) +((((-862)) . T) (((-644 |#4|)) . T)) +((((-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) . T)) (((|#1|) . T)) -(|has| |#1| (-846)) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) (((-2 (|:| -1914 (-1155)) (|:| -2683 |#1|))) |has| (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (-309 (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|))))) -(|has| |#1| (-1097)) -(|has| |#1| (-363)) +(|has| |#1| (-848)) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) (((-2 (|:| -1928 (-1157)) (|:| -2806 |#1|))) |has| (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (-310 (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|))))) +(|has| |#1| (-1099)) +(|has| |#1| (-365)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#3|) -2682 (|has| |#3| (-172)) (|has| |#3| (-363)))) -((((-670 |#1|)) . T)) -(((|#3|) -2682 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1047))) (($) |has| |#3| (-172))) -((($) . T) (((-407 (-564))) . T)) -((($) -2682 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172))) +(((|#3|) -2809 (|has| |#3| (-172)) (|has| |#3| (-365)))) +((((-672 |#1|)) . T)) +(((|#3|) -2809 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1049))) (($) |has| |#3| (-172))) +((($) . T) (((-409 (-566))) . T)) +((($) -2809 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) (|has| |#1| (-145)) (|has| |#1| (-147)) -(-2682 (-12 (|has| (-1171 |#1| |#2| |#3|) (-147)) (|has| |#1| (-363))) (|has| |#1| (-147))) -(-2682 (-12 (|has| (-1171 |#1| |#2| |#3|) (-145)) (|has| |#1| (-363))) (|has| |#1| (-145))) +(-2809 (-12 (|has| (-1173 |#1| |#2| |#3|) (-147)) (|has| |#1| (-365))) (|has| |#1| (-147))) +(-2809 (-12 (|has| (-1173 |#1| |#2| |#3|) (-145)) (|has| |#1| (-365))) (|has| |#1| (-145))) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-147)) (|has| |#1| (-145)) -((((-860)) -2682 (|has| |#1| (-611 (-860))) (|has| |#1| (-1097)))) -((((-1254 |#1| |#2| |#3|)) |has| |#1| (-363))) -(|has| |#1| (-846)) +((((-862)) -2809 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099)))) +((((-1256 |#1| |#2| |#3|)) |has| |#1| (-365))) +(|has| |#1| (-848)) (((|#1| |#2|) . T)) -(((|#1|) . T) (((-564)) |has| |#1| (-637 (-564)))) -((((-564)) |has| |#1| (-637 (-564))) ((|#1|) . T)) -((((-908 |#1|)) . T) (((-407 (-564))) . T) (($) . T)) -(|has| |#1| (-1097)) -(((|#1|) . T) (($) . T) (((-407 (-564))) . T) (((-564)) . T)) -((((-407 (-564))) |has| |#1| (-1036 (-407 (-564)))) ((|#1|) . T) (((-564)) . T)) +(((|#1|) . T) (((-566)) |has| |#1| (-639 (-566)))) +((((-566)) |has| |#1| (-639 (-566))) ((|#1|) . T)) +((((-910 |#1|)) . T) (((-409 (-566))) . T) (($) . T)) +(|has| |#1| (-1099)) +(((|#1|) . T) (($) . T) (((-409 (-566))) . T) (((-566)) . T)) +((((-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) ((|#1|) . T) (((-566)) . T)) (|has| |#2| (-145)) (|has| |#2| (-147)) -((((-908 |#1|)) . T) (((-407 (-564))) . T) (($) . T)) -(|has| |#1| (-1097)) +((((-910 |#1|)) . T) (((-409 (-566))) . T) (($) . T)) +(|has| |#1| (-1099)) (((|#2|) |has| |#2| (-172))) -((((-564)) . T) ((|#1|) . T)) -(((|#2|) . T) (($) . T) (((-564)) . T)) +((((-566)) . T) ((|#1|) . T)) +(((|#2|) . T) (($) . T) (((-566)) . T)) (((|#2|) . T)) (((|#1| |#1|) . T)) -(((|#3|) |has| |#3| (-363))) -((((-407 |#2|)) . T)) -((((-860)) . T)) -(((|#1|) . T)) -((((-860)) . T)) -((((-860)) . T)) -((((-536)) |has| |#1| (-612 (-536)))) -((((-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) . T)) -((((-564)) . T) (($) . T) (((-407 (-564))) . T)) -((((-1173) |#1|) |has| |#1| (-514 (-1173) |#1|)) ((|#1| |#1|) |has| |#1| (-309 |#1|))) -(((|#1|) -2682 (|has| |#1| (-172)) (|has| |#1| (-363)))) -(((|#1|) . T) (((-407 (-564))) . T) (($) . T)) -((((-564)) . T) (((-407 (-564))) . T) (($) . T)) -(((|#1|) . T) (((-407 (-564))) . T) (($) . T)) -((((-316 |#1|)) . T)) -(((|#1|) . T) (((-407 (-564))) . T) (($) . T)) -(((|#1|) . T) (($) . T) (((-407 (-564))) . T)) -(((|#1|) . T) (($) . T) (((-407 (-564))) . T)) -(((|#1|) . T) (($) . T) (((-407 (-564))) . T)) -(((|#2|) |has| |#2| (-363))) -((($) -2682 (|has| |#1| (-363)) (|has| |#1| (-349))) (((-407 (-564))) -2682 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T)) -(((|#2|) . T)) -((((-407 (-564))) . T) (((-697)) . T) (($) . T)) -((($) . T) (((-407 (-564))) -2682 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) -(((#0=(-778 |#1| (-862 |#2|)) #0#) |has| (-778 |#1| (-862 |#2|)) (-309 (-778 |#1| (-862 |#2|))))) -((((-564)) . T) (($) . T)) -((((-862 |#1|)) . T)) +(((|#3|) |has| |#3| (-365))) +((((-409 |#2|)) . T)) +((((-862)) . T)) +(((|#1|) . T)) +((((-862)) . T)) +((((-862)) . T)) +((((-538)) |has| |#1| (-614 (-538)))) +((((-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) . T)) +((((-566)) . T) (($) . T) (((-409 (-566))) . T)) +((((-1175) |#1|) |has| |#1| (-516 (-1175) |#1|)) ((|#1| |#1|) |has| |#1| (-310 |#1|))) +(((|#1|) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)))) +(((|#1|) . T) (((-409 (-566))) . T) (($) . T)) +((((-566)) . T) (((-409 (-566))) . T) (($) . T)) +(((|#1|) . T) (((-409 (-566))) . T) (($) . T)) +((((-317 |#1|)) . T)) +(((|#1|) . T) (((-409 (-566))) . T) (($) . T)) +(((|#1|) . T) (($) . T) (((-409 (-566))) . T)) +(((|#1|) . T) (($) . T) (((-409 (-566))) . T)) +(((|#1|) . T) (($) . T) (((-409 (-566))) . T)) +(((|#2|) |has| |#2| (-365))) +((($) -2809 (|has| |#1| (-365)) (|has| |#1| (-351))) (((-409 (-566))) -2809 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) +(((|#2|) . T)) +((((-409 (-566))) . T) (((-699)) . T) (($) . T)) +((($) . T) (((-409 (-566))) -2809 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) +(((#0=(-780 |#1| (-864 |#2|)) #0#) |has| (-780 |#1| (-864 |#2|)) (-310 (-780 |#1| (-864 |#2|))))) +((((-566)) . T) (($) . T)) +((((-864 |#1|)) . T)) (((|#2|) |has| |#2| (-172))) (((|#1|) |has| |#1| (-172))) (((|#2|) . T)) -((((-1173)) |has| |#1| (-898 (-1173))) (((-1079)) . T)) -((((-1173)) |has| |#1| (-898 (-1173))) (((-1085 (-1173))) . T)) -(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) -((((-407 (-564))) . T) (((-564)) . T) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) -(|has| |#1| (-38 (-407 (-564)))) -(((|#4|) |has| |#4| (-1047)) (((-564)) -12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1047)))) -(((|#3|) |has| |#3| (-1047)) (((-564)) -12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1047)))) +((((-1175)) |has| |#1| (-900 (-1175))) (((-1081)) . T)) +((((-1175)) |has| |#1| (-900 (-1175))) (((-1087 (-1175))) . T)) +(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) +((((-409 (-566))) . T) (((-566)) . T) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) +(|has| |#1| (-38 (-409 (-566)))) +(((|#4|) |has| |#4| (-1049)) (((-566)) -12 (|has| |#4| (-639 (-566))) (|has| |#4| (-1049)))) +(((|#3|) |has| |#3| (-1049)) (((-566)) -12 (|has| |#3| (-639 (-566))) (|has| |#3| (-1049)))) (|has| |#1| (-145)) (|has| |#1| (-147)) ((($ $) . T)) -(-2682 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-473)) (|has| |#1| (-724)) (|has| |#1| (-898 (-1173))) (|has| |#1| (-1047)) (|has| |#1| (-1109)) (|has| |#1| (-1097))) -(|has| |#1| (-556)) +(-2809 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-475)) (|has| |#1| (-726)) (|has| |#1| (-900 (-1175))) (|has| |#1| (-1049)) (|has| |#1| (-1111)) (|has| |#1| (-1099))) +(|has| |#1| (-558)) (((|#2|) . T)) -((((-564)) . T)) -((((-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) . T)) +((((-566)) . T)) +((((-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) . T)) (((|#1|) . T)) -(-2682 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1047))) +(-2809 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-558)) (|has| |#1| (-1049))) (((|#1| (-59 |#1|) (-59 |#1|)) . T)) -((((-581 |#1|)) . T)) +((((-583 |#1|)) . T)) ((($) . T)) (((|#1|) . T)) (((|#1|) . T)) ((($) . T)) (((|#1|) . T)) -((((-860)) . T)) -(((|#2|) |has| |#2| (-6 (-4412 "*")))) +((((-862)) . T)) +(((|#2|) |has| |#2| (-6 (-4419 "*")))) (((|#1|) . T)) (((|#1|) . T)) ((($) . T)) (((|#3|) . T)) ((($) . T)) -(((|#2|) . T) (((-564)) . T) (($) . T)) +(((|#2|) . T) (((-566)) . T) (($) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#3|) . T) (((-564)) . T)) -((((-1247 |#2| |#3| |#4|)) . T) (((-564)) . T) (((-1248 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-407 (-564))) . T)) -((((-48)) -12 (|has| |#1| (-556)) (|has| |#1| (-1036 (-564)))) (((-564)) -2682 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1036 (-564))) (|has| |#1| (-1047))) ((|#1|) . T) (((-610 $)) . T) (($) |has| |#1| (-556)) (((-407 (-564))) -2682 (|has| |#1| (-556)) (|has| |#1| (-1036 (-407 (-564))))) (((-407 (-950 |#1|))) |has| |#1| (-556)) (((-950 |#1|)) |has| |#1| (-1047)) (((-1173)) . T)) -((((-407 (-564))) |has| |#2| (-1036 (-407 (-564)))) (((-564)) |has| |#2| (-1036 (-564))) ((|#2|) . T) (((-862 |#1|)) . T)) -((($) . T) (((-116 |#1|)) . T) (((-407 (-564))) . T)) -((((-1122 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-564)) |has| |#1| (-1036 (-564))) (((-407 (-564))) |has| |#1| (-1036 (-407 (-564))))) -((((-1169 |#1|)) . T) (((-1079)) . T) ((|#1|) . T) (((-564)) |has| |#1| (-1036 (-564))) (((-407 (-564))) |has| |#1| (-1036 (-407 (-564))))) -((((-1122 |#1| (-1173))) . T) (((-1085 (-1173))) . T) ((|#1|) . T) (((-564)) |has| |#1| (-1036 (-564))) (((-407 (-564))) |has| |#1| (-1036 (-407 (-564)))) (((-1173)) . T)) -(|has| |#1| (-1097)) +(((|#3|) . T) (((-566)) . T)) +((((-1249 |#2| |#3| |#4|)) . T) (((-566)) . T) (((-1250 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-409 (-566))) . T)) +((((-48)) -12 (|has| |#1| (-558)) (|has| |#1| (-1038 (-566)))) (((-566)) -2809 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-558)) (|has| |#1| (-1038 (-566))) (|has| |#1| (-1049))) ((|#1|) . T) (((-612 $)) . T) (($) |has| |#1| (-558)) (((-409 (-566))) -2809 (|has| |#1| (-558)) (|has| |#1| (-1038 (-409 (-566))))) (((-409 (-952 |#1|))) |has| |#1| (-558)) (((-952 |#1|)) |has| |#1| (-1049)) (((-1175)) . T)) +((((-409 (-566))) |has| |#2| (-1038 (-409 (-566)))) (((-566)) |has| |#2| (-1038 (-566))) ((|#2|) . T) (((-864 |#1|)) . T)) +((($) . T) (((-116 |#1|)) . T) (((-409 (-566))) . T)) +((((-1124 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-566)) |has| |#1| (-1038 (-566))) (((-409 (-566))) |has| |#1| (-1038 (-409 (-566))))) +((((-1171 |#1|)) . T) (((-1081)) . T) ((|#1|) . T) (((-566)) |has| |#1| (-1038 (-566))) (((-409 (-566))) |has| |#1| (-1038 (-409 (-566))))) +((((-1124 |#1| (-1175))) . T) (((-1087 (-1175))) . T) ((|#1|) . T) (((-566)) |has| |#1| (-1038 (-566))) (((-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) (((-1175)) . T)) +(|has| |#1| (-1099)) ((($) . T)) -(|has| |#1| (-1097)) -((((-564)) -12 (|has| |#1| (-884 (-564))) (|has| |#2| (-884 (-564)))) (((-379)) -12 (|has| |#1| (-884 (-379))) (|has| |#2| (-884 (-379))))) +(|has| |#1| (-1099)) +((((-566)) -12 (|has| |#1| (-886 (-566))) (|has| |#2| (-886 (-566)))) (((-381)) -12 (|has| |#1| (-886 (-381))) (|has| |#2| (-886 (-381))))) (((|#1| |#2|) . T)) -((((-1173) |#1|) . T)) +((((-1175) |#1|) . T)) (((|#4|) . T)) -(-2682 (|has| |#1| (-363)) (|has| |#1| (-349))) -((((-1173) (-52)) . T)) -((((-1247 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) . T)) -((((-407 (-564))) |has| |#1| (-1036 (-407 (-564)))) (((-564)) |has| |#1| (-1036 (-564))) ((|#1|) . T)) -((((-860)) . T)) -(-2682 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-724)) (|has| |#2| (-791)) (|has| |#2| (-846)) (|has| |#2| (-1047)) (|has| |#2| (-1097))) -(((#0=(-1248 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-407 (-564)) #1#) . T) (($ $) . T)) -(((|#1| |#1|) |has| |#1| (-172)) ((#0=(-407 (-564)) #0#) |has| |#1| (-556)) (($ $) |has| |#1| (-556))) -((($) -2682 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172))) -(((|#1|) . T) (($) . T) (((-407 (-564))) . T)) -(((|#1| $) |has| |#1| (-286 |#1| |#1|))) -((((-1248 |#1| |#2| |#3| |#4|)) . T) (((-407 (-564))) . T) (($) . T)) -(((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-556)) (($) |has| |#1| (-556))) -((((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2682 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((|#1|) . T)) -(|has| |#1| (-363)) -((($) |has| |#1| (-846)) (((-564)) -2682 (|has| |#1| (-21)) (|has| |#1| (-846)))) +(-2809 (|has| |#1| (-365)) (|has| |#1| (-351))) +((((-1175) (-52)) . T)) +((((-1249 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) . T)) +((((-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) (((-566)) |has| |#1| (-1038 (-566))) ((|#1|) . T)) +((((-862)) . T)) +(-2809 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-726)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049)) (|has| |#2| (-1099))) +(((#0=(-1250 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-409 (-566)) #1#) . T) (($ $) . T)) +(((|#1| |#1|) |has| |#1| (-172)) ((#0=(-409 (-566)) #0#) |has| |#1| (-558)) (($ $) |has| |#1| (-558))) +((($) -2809 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) +(((|#1|) . T) (($) . T) (((-409 (-566))) . T)) +(((|#1| $) |has| |#1| (-287 |#1| |#1|))) +((((-1250 |#1| |#2| |#3| |#4|)) . T) (((-409 (-566))) . T) (($) . T)) +(((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-558)) (($) |has| |#1| (-558))) +((((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) ((|#1|) . T)) +(|has| |#1| (-365)) +((($) |has| |#1| (-848)) (((-566)) -2809 (|has| |#1| (-21)) (|has| |#1| (-848)))) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-147)) (|has| |#1| (-145)) -((((-407 (-564))) . T) (($) . T)) -(((|#3|) |has| |#3| (-363))) -(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) -((((-1173)) . T)) -((($) . T) (((-1247 |#2| |#3| |#4|)) . T) (((-407 (-564))) |has| (-1247 |#2| |#3| |#4|) (-38 (-407 (-564)))) (((-564)) . T)) +((((-409 (-566))) . T) (($) . T)) +(((|#3|) |has| |#3| (-365))) +(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) +((((-1175)) . T)) +((($) . T) (((-1249 |#2| |#3| |#4|)) . T) (((-409 (-566))) |has| (-1249 |#2| |#3| |#4|) (-38 (-409 (-566)))) (((-566)) . T)) (((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) +(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (((|#2| |#3|) . T)) -(-2682 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907))) -(((|#1| (-531 |#2|)) . T)) -(((|#1| (-769)) . T)) -(((|#1| (-531 (-1085 (-1173)))) . T)) +(-2809 (|has| |#2| (-365)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) +(((|#1| (-533 |#2|)) . T)) +(((|#1| (-771)) . T)) +(((|#1| (-533 (-1087 (-1175)))) . T)) (((|#1|) |has| |#1| (-172))) (((|#1|) . T)) -(|has| |#2| (-907)) -(-2682 (|has| |#2| (-791)) (|has| |#2| (-846))) -((((-860)) . T)) -(((|#2|) -2682 (|has| |#2| (-172)) (|has| |#2| (-363)))) -(((|#2|) -2682 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1047))) (($) |has| |#2| (-172))) -((($ $) . T) ((#0=(-1247 |#2| |#3| |#4|) #0#) . T) ((#1=(-407 (-564)) #1#) |has| #0# (-38 (-407 (-564))))) -((((-908 |#1|)) . T)) -(-12 (|has| |#1| (-363)) (|has| |#2| (-818))) -((($) . T) (((-407 (-564))) . T)) -((((-860)) . T)) -((($) . T)) -((($) . T)) -(-2682 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-556))) -(|has| |#1| (-363)) -(|has| |#1| (-363)) +(|has| |#2| (-909)) +(-2809 (|has| |#2| (-793)) (|has| |#2| (-848))) +((((-862)) . T)) +(((|#2|) -2809 (|has| |#2| (-172)) (|has| |#2| (-365)))) +(((|#2|) -2809 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1049))) (($) |has| |#2| (-172))) +((($ $) . T) ((#0=(-1249 |#2| |#3| |#4|) #0#) . T) ((#1=(-409 (-566)) #1#) |has| #0# (-38 (-409 (-566))))) +((((-910 |#1|)) . T)) +(-12 (|has| |#1| (-365)) (|has| |#2| (-820))) +((($) . T) (((-409 (-566))) . T)) +((((-862)) . T)) +((($) . T)) +((($) . T)) +(-2809 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-558))) +(|has| |#1| (-365)) +(|has| |#1| (-365)) (((|#1| |#2|) . T)) -((($) . T) ((#0=(-1247 |#2| |#3| |#4|)) . T) (((-407 (-564))) |has| #0# (-38 (-407 (-564))))) -((((-1171 |#1| |#2| |#3|)) |has| |#1| (-363))) -(-2682 (-12 (|has| |#1| (-307)) (|has| |#1| (-907))) (|has| |#1| (-363)) (|has| |#1| (-349))) -(-2682 (|has| |#1| (-898 (-1173))) (|has| |#1| (-1047))) -((((-564)) |has| |#1| (-637 (-564))) ((|#1|) . T)) +((($) . T) ((#0=(-1249 |#2| |#3| |#4|)) . T) (((-409 (-566))) |has| #0# (-38 (-409 (-566))))) +((((-1173 |#1| |#2| |#3|)) |has| |#1| (-365))) +(-2809 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-365)) (|has| |#1| (-351))) +(-2809 (|has| |#1| (-900 (-1175))) (|has| |#1| (-1049))) +((((-566)) |has| |#1| (-639 (-566))) ((|#1|) . T)) (((|#1| |#2|) . T)) -((((-860)) . T)) -((((-860)) . T)) +((((-862)) . T)) +((((-862)) . T)) ((((-112)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#2|) . T)) -((((-407 |#2|)) . T) (((-407 (-564))) . T) (($) . T)) +((((-409 |#2|)) . T) (((-409 (-566))) . T) (($) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(((|#1| (-531 (-862 |#2|)) (-862 |#2|) (-778 |#1| (-862 |#2|))) . T)) +(((|#1| (-533 (-864 |#2|)) (-864 |#2|) (-780 |#1| (-864 |#2|))) . T)) (((|#2|) . T)) -(|has| |#2| (-363)) -(|has| |#1| (-848)) +(|has| |#2| (-365)) +(|has| |#1| (-850)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-564)) . T)) +((((-566)) . T)) (((|#1|) . T)) -((((-860)) . T)) +((((-862)) . T)) (((|#2|) |has| |#2| (-172))) -(|has| |#1| (-1097)) +(|has| |#1| (-1099)) (((|#1|) |has| |#1| (-172))) (((|#2|) . T)) (((|#1|) . T)) (((|#4|) . T)) (((|#4|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) -((((-407 (-564))) . T) (((-407 |#1|)) . T) ((|#1|) . T) (((-564)) . T) (($) . T)) -(((|#3|) . T) (((-564)) . T) (($) . T)) -((((-407 $) (-407 $)) |has| |#1| (-556)) (($ $) . T) ((|#1| |#1|) . T)) -(|has| |#2| (-818)) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) +((((-409 (-566))) . T) (((-409 |#1|)) . T) ((|#1|) . T) (((-566)) . T) (($) . T)) +(((|#3|) . T) (((-566)) . T) (($) . T)) +((((-409 $) (-409 $)) |has| |#1| (-558)) (($ $) . T) ((|#1| |#1|) . T)) +(|has| |#2| (-820)) (((|#4|) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) -((((-860)) . T)) -(((|#1| (-531 (-1173))) . T)) +((((-862)) . T)) +(((|#1| (-533 (-1175))) . T)) (((|#1|) |has| |#1| (-172))) -((((-860)) . T)) +((((-862)) . T)) (((|#2|) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) +(((|#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (((|#2|) . T)) -(((|#2|) -2682 (|has| |#2| (-6 (-4412 "*"))) (|has| |#2| (-172)))) -(-2682 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907))) -(-2682 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) -(|has| |#2| (-907)) -(|has| |#1| (-907)) +(((|#2|) -2809 (|has| |#2| (-6 (-4419 "*"))) (|has| |#2| (-172)))) +(-2809 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) +(-2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) +(|has| |#2| (-909)) +(|has| |#1| (-909)) (((|#2|) |has| |#2| (-172))) -((((-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) . T)) -((((-1254 |#1| |#2| |#3|)) |has| |#1| (-363))) -((((-860)) . T)) -((((-860)) . T)) -((((-536)) . T) (((-564)) . T) (((-890 (-564))) . T) (((-379)) . T) (((-225)) . T)) +((((-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) . T)) +((((-1256 |#1| |#2| |#3|)) |has| |#1| (-365))) +((((-862)) . T)) +((((-862)) . T)) +((((-538)) . T) (((-566)) . T) (((-892 (-566))) . T) (((-381)) . T) (((-225)) . T)) (((|#1| |#2|) . T)) -((($) . T) (((-564)) . T)) -((((-2 (|:| -1914 (-1155)) (|:| -2683 (-52)))) . T)) +((($) . T) (((-566)) . T)) +((((-2 (|:| -1928 (-1157)) (|:| -2806 (-52)))) . T)) (((|#1|) . T)) -((((-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) . T)) -((((-860)) . T)) +((((-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) . T)) +((((-862)) . T)) (((|#1| |#2|) . T)) -((($) . T) (((-564)) . T)) -(((|#1| (-407 (-564))) . T)) +((($) . T) (((-566)) . T)) +(((|#1| (-409 (-566))) . T)) (((|#1|) . T)) -(-2682 (|has| |#1| (-290)) (|has| |#1| (-363))) +(-2809 (|has| |#1| (-291)) (|has| |#1| (-365))) ((((-144)) . T)) -((((-407 |#2|)) . T) (((-407 (-564))) . T) (($) . T)) -(|has| |#1| (-846)) -((((-860)) . T)) -((((-860)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) +((((-409 |#2|)) . T) (((-409 (-566))) . T) (($) . T)) +(|has| |#1| (-848)) +((((-862)) . T)) +((((-862)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (((|#1| |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-407 (-564))) . T) (($) . T)) -((((-860)) . T)) -((((-860)) . T)) -((((-187)) . T) (((-860)) . T)) -((((-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) . T)) +((((-409 (-566))) . T) (($) . T)) +((((-862)) . T)) +((((-862)) . T)) +((((-187)) . T) (((-862)) . T)) +((((-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) . T)) (((|#2| |#2|) . T) ((|#1| |#1|) . T)) -((((-860)) . T)) -((((-860)) . T)) -((((-536)) |has| |#1| (-612 (-536))) (((-890 (-564))) |has| |#1| (-612 (-890 (-564)))) (((-890 (-379))) |has| |#1| (-612 (-890 (-379))))) -((((-1173) (-52)) . T)) -(((|#2|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-642 (-144))) . T) (((-1155)) . T)) -((((-860)) . T)) -((((-1155)) . T)) -((((-1173) |#1|) |has| |#1| (-514 (-1173) |#1|)) ((|#1| |#1|) |has| |#1| (-309 |#1|))) -((((-2 (|:| -1914 (-1155)) (|:| -2683 |#1|))) . T)) +((((-862)) . T)) +((((-862)) . T)) +((((-538)) |has| |#1| (-614 (-538))) (((-892 (-566))) |has| |#1| (-614 (-892 (-566)))) (((-892 (-381))) |has| |#1| (-614 (-892 (-381))))) +((((-1175) (-52)) . T)) +(((|#2|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-644 (-144))) . T) (((-1157)) . T)) +((((-862)) . T)) +((((-1157)) . T)) +((((-1175) |#1|) |has| |#1| (-516 (-1175) |#1|)) ((|#1| |#1|) |has| |#1| (-310 |#1|))) +((((-2 (|:| -1928 (-1157)) (|:| -2806 |#1|))) . T)) +(|has| |#1| (-850)) +((((-862)) . T)) +((((-538)) |has| |#1| (-614 (-538)))) +((((-862)) . T)) +(((|#2|) |has| |#2| (-365))) +((((-862)) . T)) +((((-538)) |has| |#4| (-614 (-538)))) +((((-862)) . T) (((-644 |#4|)) . T)) +(((|#2|) . T)) +((((-910 |#1|)) . T) (((-409 (-566))) . T) (($) . T)) +((($) . T) (((-566)) . T) (((-409 (-566))) . T) (((-612 $)) . T)) +(-2809 (|has| |#4| (-172)) (|has| |#4| (-726)) (|has| |#4| (-848)) (|has| |#4| (-1049))) +(-2809 (|has| |#3| (-172)) (|has| |#3| (-726)) (|has| |#3| (-848)) (|has| |#3| (-1049))) +((((-1175) (-52)) . T)) +(-2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) +(-2809 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(-2809 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049))) +(-2809 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-848)) (|has| |#2| (-1049))) +(|has| |#1| (-909)) +((((-910 |#1|)) . T) (((-409 (-566))) . T) (($) . T) (((-566)) . T)) +(|has| |#1| (-909)) +(((|#1|) . T) (((-566)) . T) (((-409 (-566))) . T) (($) . T)) +(((|#2|) . T)) +(((|#1|) . T)) +((((-862)) . T)) +((((-566)) . T)) +(((#0=(-409 (-566)) #0#) . T) (($ $) . T)) +((((-409 (-566))) . T) (($) . T)) +(((|#1| (-409 (-566)) (-1081)) . T)) +(|has| |#1| (-1099)) +(|has| |#1| (-558)) +(|has| |#1| (-38 (-409 (-566)))) +(|has| |#1| (-38 (-409 (-566)))) +(|has| |#1| (-38 (-409 (-566)))) +(-2809 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) +(|has| |#1| (-820)) +(((#0=(-910 |#1|) #0#) . T) (($ $) . T) ((#1=(-409 (-566)) #1#) . T)) +((((-409 |#2|)) . T)) (|has| |#1| (-848)) -((((-860)) . T)) -((((-536)) |has| |#1| (-612 (-536)))) -((((-860)) . T)) -(((|#2|) |has| |#2| (-363))) -((((-860)) . T)) -((((-536)) |has| |#4| (-612 (-536)))) -((((-860)) . T) (((-642 |#4|)) . T)) -(((|#2|) . T)) -((((-908 |#1|)) . T) (((-407 (-564))) . T) (($) . T)) -((($) . T) (((-564)) . T) (((-407 (-564))) . T) (((-610 $)) . T)) -(-2682 (|has| |#4| (-172)) (|has| |#4| (-724)) (|has| |#4| (-846)) (|has| |#4| (-1047))) -(-2682 (|has| |#3| (-172)) (|has| |#3| (-724)) (|has| |#3| (-846)) (|has| |#3| (-1047))) -((((-1173) (-52)) . T)) -(-2682 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) -(-2682 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(-2682 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-791)) (|has| |#2| (-846)) (|has| |#2| (-1047))) -(-2682 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-846)) (|has| |#2| (-1047))) -(|has| |#1| (-907)) -((((-908 |#1|)) . T) (((-407 (-564))) . T) (($) . T) (((-564)) . T)) -(|has| |#1| (-907)) -(((|#1|) . T) (((-564)) . T) (((-407 (-564))) . T) (($) . T)) -(((|#2|) . T)) -(((|#1|) . T)) -((((-860)) . T)) -((((-564)) . T)) -(((#0=(-407 (-564)) #0#) . T) (($ $) . T)) -((((-407 (-564))) . T) (($) . T)) -(((|#1| (-407 (-564)) (-1079)) . T)) -(|has| |#1| (-1097)) -(|has| |#1| (-556)) -(|has| |#1| (-38 (-407 (-564)))) -(|has| |#1| (-38 (-407 (-564)))) -(|has| |#1| (-38 (-407 (-564)))) -(-2682 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) -(|has| |#1| (-818)) -(((#0=(-908 |#1|) #0#) . T) (($ $) . T) ((#1=(-407 (-564)) #1#) . T)) -((((-407 |#2|)) . T)) -(|has| |#1| (-846)) -((((-1198 |#1|)) . T) (((-860)) -2682 (|has| |#1| (-611 (-860))) (|has| |#1| (-1097)))) -(((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) . T) ((#1=(-564) #1#) . T) (($ $) . T)) -((((-908 |#1|)) . T) (($) . T) (((-407 (-564))) . T)) -(((|#2|) |has| |#2| (-1047)) (((-564)) -12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1047)))) -((((-908 |#1|)) . T) (((-407 (-564))) . T) (((-564)) . T) (($) . T)) -(((|#1|) . T) (((-407 (-564))) . T) (((-564)) . T) (($) . T)) +((((-1200 |#1|)) . T) (((-862)) -2809 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099)))) +(((|#1| |#1|) . T) ((#0=(-409 (-566)) #0#) . T) ((#1=(-566) #1#) . T) (($ $) . T)) +((((-910 |#1|)) . T) (($) . T) (((-409 (-566))) . T)) +(((|#2|) |has| |#2| (-1049)) (((-566)) -12 (|has| |#2| (-639 (-566))) (|has| |#2| (-1049)))) +((((-910 |#1|)) . T) (((-409 (-566))) . T) (((-566)) . T) (($) . T)) +(((|#1|) . T) (((-409 (-566))) . T) (((-566)) . T) (($) . T)) (((|#1| |#2| |#3| |#4|) . T)) (|has| |#1| (-147)) (|has| |#1| (-145)) (((|#2|) . T)) -((((-860)) . T)) -((((-407 (-564))) . T) (((-697)) . T) (($) . T) (((-564)) . T)) +((((-862)) . T)) +((((-409 (-566))) . T) (((-699)) . T) (($) . T) (((-566)) . T)) (((|#1|) |has| |#1| (-172))) (((|#2|) |has| |#2| (-172))) (((|#1|) . T)) (((|#2|) . T)) -(-2682 (|has| |#1| (-145)) (|has| |#1| (-368))) -(-2682 (|has| |#1| (-145)) (|has| |#1| (-368))) -(-2682 (|has| |#1| (-145)) (|has| |#1| (-368))) -((((-2 (|:| -1914 (-1173)) (|:| -2683 (-52)))) . T)) -(((#0=(-52)) . T) (((-2 (|:| -1914 (-1173)) (|:| -2683 #0#))) . T)) -(|has| |#1| (-349)) -((((-564)) . T)) -((((-860)) . T)) -(((|#1|) . T)) -(((#0=(-1248 |#1| |#2| |#3| |#4|) $) |has| #0# (-286 #0# #0#))) -(|has| |#1| (-363)) -(((|#1|) -2682 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-1047))) (($) -2682 (|has| |#1| (-898 (-1173))) (|has| |#1| (-1047))) (((-564)) -2682 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-898 (-1173))) (|has| |#1| (-1047)))) -(((#0=(-1079) |#1|) . T) ((#0# $) . T) (($ $) . T)) -(-2682 (|has| |#1| (-363)) (|has| |#1| (-349))) -(((#0=(-407 (-564)) #0#) . T) ((#1=(-697) #1#) . T) (($ $) . T)) -((((-316 |#1|)) . T) (($) . T)) -(((|#1|) . T) (((-407 (-564))) |has| |#1| (-363))) -((((-860)) . T)) -(|has| |#1| (-1097)) -(((|#1|) . T)) -(((|#1|) -2682 (|has| |#2| (-367 |#1|)) (|has| |#2| (-417 |#1|)))) -(((|#1|) -2682 (|has| |#2| (-367 |#1|)) (|has| |#2| (-417 |#1|)))) -(((|#2|) . T)) -((((-407 (-564))) . T) (((-697)) . T) (($) . T)) -((((-579)) . T)) +(-2809 (|has| |#1| (-145)) (|has| |#1| (-370))) +(-2809 (|has| |#1| (-145)) (|has| |#1| (-370))) +(-2809 (|has| |#1| (-145)) (|has| |#1| (-370))) +((((-2 (|:| -1928 (-1175)) (|:| -2806 (-52)))) . T)) +(((#0=(-52)) . T) (((-2 (|:| -1928 (-1175)) (|:| -2806 #0#))) . T)) +(|has| |#1| (-351)) +((((-566)) . T)) +((((-862)) . T)) +(((|#1|) . T)) +(((#0=(-1250 |#1| |#2| |#3| |#4|) $) |has| #0# (-287 #0# #0#))) +(|has| |#1| (-365)) +(((|#1|) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-1049))) (($) -2809 (|has| |#1| (-900 (-1175))) (|has| |#1| (-1049))) (((-566)) -2809 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-900 (-1175))) (|has| |#1| (-1049)))) +(((#0=(-1081) |#1|) . T) ((#0# $) . T) (($ $) . T)) +(-2809 (|has| |#1| (-365)) (|has| |#1| (-351))) +(((#0=(-409 (-566)) #0#) . T) ((#1=(-699) #1#) . T) (($ $) . T)) +((((-317 |#1|)) . T) (($) . T)) +(((|#1|) . T) (((-409 (-566))) |has| |#1| (-365))) +((((-862)) . T)) +(|has| |#1| (-1099)) +(((|#1|) . T)) +(((|#1|) -2809 (|has| |#2| (-369 |#1|)) (|has| |#2| (-419 |#1|)))) +(((|#1|) -2809 (|has| |#2| (-369 |#1|)) (|has| |#2| (-419 |#1|)))) +(((|#2|) . T)) +((((-409 (-566))) . T) (((-699)) . T) (($) . T)) +((((-581)) . T)) (((|#3| |#3|) . T)) (|has| |#2| (-233)) -((((-862 |#1|)) . T)) -((((-1173)) |has| |#1| (-898 (-1173))) ((|#3|) . T)) -((((-642 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T)) -(-12 (|has| |#1| (-363)) (|has| |#2| (-1020))) -((((-407 (-564))) . T) (($) . T)) -((((-1171 |#1| |#2| |#3|)) |has| |#1| (-363))) -((($) . T) (((-407 (-564))) . T)) -((((-860)) . T)) -(|has| |#1| (-363)) -(|has| |#1| (-363)) -((((-407 (-564))) . T) (($) . T) (((-407 |#1|)) . T) ((|#1|) . T)) -((((-564)) . T) (((-116 |#1|)) . T) (($) . T) (((-407 (-564))) . T)) -((((-564)) . T)) +((((-864 |#1|)) . T)) +((((-1175)) |has| |#1| (-900 (-1175))) ((|#3|) . T)) +((((-644 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T)) +(-12 (|has| |#1| (-365)) (|has| |#2| (-1022))) +((((-409 (-566))) . T) (($) . T)) +((((-1173 |#1| |#2| |#3|)) |has| |#1| (-365))) +((($) . T) (((-409 (-566))) . T)) +((((-862)) . T)) +(|has| |#1| (-365)) +(|has| |#1| (-365)) +((((-409 (-566))) . T) (($) . T) (((-409 |#1|)) . T) ((|#1|) . T)) +((((-566)) . T) (((-116 |#1|)) . T) (($) . T) (((-409 (-566))) . T)) +((((-566)) . T)) (((|#3|) . T)) -(|has| |#1| (-1097)) +(|has| |#1| (-1099)) (((|#2|) . T)) (((|#1|) . T)) -((((-564)) . T)) -(((|#2|) . T) (((-407 (-564))) |has| |#1| (-1036 (-407 (-564)))) ((|#1|) . T) (($) . T) (((-564)) . T)) -(-2682 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) -(((|#2|) . T) (((-564)) |has| |#2| (-637 (-564)))) +((((-566)) . T)) +(((|#2|) . T) (((-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) ((|#1|) . T) (($) . T) (((-566)) . T)) +(-2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) +(((|#2|) . T) (((-566)) |has| |#2| (-639 (-566)))) (((|#1| |#2|) . T)) ((($) . T)) -((((-581 |#1|)) . T) (((-407 (-564))) . T) (($) . T)) -((($) . T) (((-407 (-564))) . T)) +((((-583 |#1|)) . T) (((-409 (-566))) . T) (($) . T)) +((($) . T) (((-409 (-566))) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T) (($) . T)) -(((|#1|) . T) (((-564)) . T)) -(((|#1|) . T) (((-564)) . T)) -(((|#1| (-1262 |#1|) (-1262 |#1|)) . T)) +(((|#1|) . T) (((-566)) . T)) +(((|#1|) . T) (((-566)) . T)) +(((|#1| (-1264 |#1|) (-1264 |#1|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#2|) . T)) -((((-860)) . T)) -((((-860)) . T)) +((((-862)) . T)) +((((-862)) . T)) (((|#2|) . T)) (((|#3|) . T)) -(((#0=(-116 |#1|) #0#) . T) ((#1=(-407 (-564)) #1#) . T) (($ $) . T)) -((((-407 (-564))) |has| |#2| (-1036 (-407 (-564)))) (((-564)) |has| |#2| (-1036 (-564))) ((|#2|) . T) (((-862 |#1|)) . T)) -((((-1122 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-564)) |has| |#1| (-1036 (-564))) (((-407 (-564))) |has| |#1| (-1036 (-407 (-564)))) ((|#2|) . T)) +(((#0=(-116 |#1|) #0#) . T) ((#1=(-409 (-566)) #1#) . T) (($ $) . T)) +((((-409 (-566))) |has| |#2| (-1038 (-409 (-566)))) (((-566)) |has| |#2| (-1038 (-566))) ((|#2|) . T) (((-864 |#1|)) . T)) +((((-1124 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-566)) |has| |#1| (-1038 (-566))) (((-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) ((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#3|) . T)) ((($ $) . T)) -((((-670 |#1|)) . T)) -((($) . T) (((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T)) -((((-116 |#1|)) . T) (((-407 (-564))) . T) (($) . T)) -((((-564)) -12 (|has| |#1| (-884 (-564))) (|has| |#3| (-884 (-564)))) (((-379)) -12 (|has| |#1| (-884 (-379))) (|has| |#3| (-884 (-379))))) +((((-672 |#1|)) . T)) +((($) . T) (((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) . T)) +((((-116 |#1|)) . T) (((-409 (-566))) . T) (($) . T)) +((((-566)) -12 (|has| |#1| (-886 (-566))) (|has| |#3| (-886 (-566)))) (((-381)) -12 (|has| |#1| (-886 (-381))) (|has| |#3| (-886 (-381))))) (((|#2|) . T) ((|#6|) . T)) -(((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) (($) . T)) +(((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) (($) . T)) ((((-144)) . T)) ((($) . T)) -((($) . T) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -((((-379)) . T) (((-407 (-564))) . T) (($) . T) (((-564)) . T)) -((($) . T) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) +((($) . T) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((((-381)) . T) (((-409 (-566))) . T) (($) . T) (((-566)) . T)) +((($) . T) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) (((|#1|) . T)) -(|has| |#2| (-907)) -(|has| |#1| (-907)) -(|has| |#1| (-907)) +(|has| |#2| (-909)) +(|has| |#1| (-909)) +(|has| |#1| (-909)) (((|#4|) . T)) -(|has| |#2| (-1020)) +(|has| |#2| (-1022)) ((($) . T)) -(|has| |#1| (-907)) -((((-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) . T)) +(|has| |#1| (-909)) +((((-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) . T)) ((($) . T)) (((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T) (($) . T)) ((($) . T)) -(|has| |#1| (-363)) -((((-908 |#1|)) . T)) -((($) . T) (((-564)) . T) ((|#1|) . T) (((-407 (-564))) . T)) -((($) -2682 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -((($) |has| |#1| (-846)) (((-564)) -2682 (|has| |#1| (-21)) (|has| |#1| (-846)))) -((($ $) . T) ((#0=(-407 (-564)) #0#) . T)) -(-2682 (|has| |#1| (-368)) (|has| |#1| (-848))) -(((|#1|) . T)) -((((-769)) . T)) -((((-860)) . T)) -((((-1173)) -12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) -((((-407 |#2|) |#3|) . T)) -((($) . T) (((-407 (-564))) . T)) -((($) . T) (((-564)) . T) (((-407 (-564))) . T) (((-610 $)) . T)) -((((-564)) . T) (($) . T)) -((((-564)) . T) (($) . T)) -((((-769) |#1|) . T)) -(((|#2| (-240 (-2158 |#1|) (-769))) . T)) -(((|#1| (-531 |#3|)) . T)) -((((-407 (-564))) . T)) -(-2682 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) -((((-1155)) . T) (((-860)) . T)) -(((#0=(-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) #0#) |has| (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-309 (-2 (|:| -1914 (-1173)) (|:| -2683 (-52)))))) -((((-1155)) . T)) -(|has| |#1| (-907)) -(|has| |#2| (-363)) -(((|#1|) . T) (($) . T) (((-564)) . T)) -(-2682 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-791)) (|has| |#2| (-846)) (|has| |#2| (-1047))) -((((-169 (-379))) . T) (((-225)) . T) (((-379)) . T)) -((((-860)) . T)) -(((|#1|) . T)) -((((-379)) . T) (((-564)) . T)) -(((#0=(-407 (-564)) #0#) . T) (($ $) . T)) +(|has| |#1| (-365)) +((((-910 |#1|)) . T)) +((($) . T) (((-566)) . T) ((|#1|) . T) (((-409 (-566))) . T)) +((($) -2809 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((($) |has| |#1| (-848)) (((-566)) -2809 (|has| |#1| (-21)) (|has| |#1| (-848)))) +((($ $) . T) ((#0=(-409 (-566)) #0#) . T)) +(-2809 (|has| |#1| (-370)) (|has| |#1| (-850))) +(((|#1|) . T)) +((((-771)) . T)) +((((-862)) . T)) +((((-1175)) -12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) +((((-409 |#2|) |#3|) . T)) +((($) . T) (((-409 (-566))) . T)) +((($) . T) (((-566)) . T) (((-409 (-566))) . T) (((-612 $)) . T)) +((((-566)) . T) (($) . T)) +((((-566)) . T) (($) . T)) +((((-771) |#1|) . T)) +(((|#2| (-240 (-3002 |#1|) (-771))) . T)) +(((|#1| (-533 |#3|)) . T)) +((((-409 (-566))) . T)) +(-2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) +((((-1157)) . T) (((-862)) . T)) +(((#0=(-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) #0#) |has| (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-310 (-2 (|:| -1928 (-1175)) (|:| -2806 (-52)))))) +((((-1157)) . T)) +(|has| |#1| (-909)) +(|has| |#2| (-365)) +(((|#1|) . T) (($) . T) (((-566)) . T)) +(-2809 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049))) +((((-169 (-381))) . T) (((-225)) . T) (((-381)) . T)) +((((-862)) . T)) +(((|#1|) . T)) +((((-381)) . T) (((-566)) . T)) +(((#0=(-409 (-566)) #0#) . T) (($ $) . T)) ((($ $) . T)) ((($ $) . T)) (((|#1| |#1|) . T)) -((((-860)) . T)) -(|has| |#1| (-556)) -((((-407 (-564))) . T) (($) . T)) -((($) . T)) -((($) . T)) -(|has| |#1| (-38 (-407 (-564)))) -(|has| |#1| (-38 (-407 (-564)))) -(|has| |#1| (-38 (-407 (-564)))) -(-2682 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349))) -(|has| |#1| (-38 (-407 (-564)))) -(-12 (|has| |#1| (-545)) (|has| |#1| (-826))) -((((-860)) . T)) -((((-1173)) -2682 (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173)))) (-12 (|has| |#1| (-363)) (|has| |#2| (-898 (-1173)))))) -(|has| |#1| (-363)) -((((-1173)) -12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) -(|has| |#1| (-363)) -((((-407 (-564))) . T) (($) . T)) -((((-407 |#2|)) . T) (((-407 (-564))) . T) (((-564)) . T) (($) . T)) -((($) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T)) -((((-564) |#1|) . T)) -(((|#1|) . T)) -(((|#2|) |has| |#1| (-363))) -(((|#2|) |has| |#1| (-363))) -((((-564)) . T) (($) . T)) -((((-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) . T)) +((((-862)) . T)) +(|has| |#1| (-558)) +((((-409 (-566))) . T) (($) . T)) +((($) . T)) +((($) . T)) +(|has| |#1| (-38 (-409 (-566)))) +(|has| |#1| (-38 (-409 (-566)))) +(|has| |#1| (-38 (-409 (-566)))) +(-2809 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351))) +(|has| |#1| (-38 (-409 (-566)))) +(-12 (|has| |#1| (-547)) (|has| |#1| (-828))) +((((-862)) . T)) +((((-1175)) -2809 (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))) (-12 (|has| |#1| (-365)) (|has| |#2| (-900 (-1175)))))) +(|has| |#1| (-365)) +((((-1175)) -12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) +(|has| |#1| (-365)) +((((-409 (-566))) . T) (($) . T)) +((((-409 |#2|)) . T) (((-409 (-566))) . T) (((-566)) . T) (($) . T)) +((($) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) . T)) +((((-566) |#1|) . T)) +(((|#1|) . T)) +(((|#2|) |has| |#1| (-365))) +(((|#2|) |has| |#1| (-365))) +((((-566)) . T) (($) . T)) +((((-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-172))) (((|#1|) . T)) -(((|#2|) . T) (((-1173)) -12 (|has| |#1| (-363)) (|has| |#2| (-1036 (-1173)))) (((-564)) -12 (|has| |#1| (-363)) (|has| |#2| (-1036 (-564)))) (((-407 (-564))) -12 (|has| |#1| (-363)) (|has| |#2| (-1036 (-564))))) +(((|#2|) . T) (((-1175)) -12 (|has| |#1| (-365)) (|has| |#2| (-1038 (-1175)))) (((-566)) -12 (|has| |#1| (-365)) (|has| |#2| (-1038 (-566)))) (((-409 (-566))) -12 (|has| |#1| (-365)) (|has| |#2| (-1038 (-566))))) (((|#2|) . T)) -((((-1173) #0=(-1248 |#1| |#2| |#3| |#4|)) |has| #0# (-514 (-1173) #0#)) ((#0# #0#) |has| #0# (-309 #0#))) -((((-407 (-564))) . T) (($) . T) (((-407 |#1|)) . T) ((|#1|) . T)) -((((-610 $) $) . T) (($ $) . T)) -((((-169 (-225))) . T) (((-169 (-379))) . T) (((-1169 (-697))) . T) (((-890 (-379))) . T)) +((((-1175) #0=(-1250 |#1| |#2| |#3| |#4|)) |has| #0# (-516 (-1175) #0#)) ((#0# #0#) |has| #0# (-310 #0#))) +((((-409 (-566))) . T) (($) . T) (((-409 |#1|)) . T) ((|#1|) . T)) +((((-612 $) $) . T) (($ $) . T)) +((((-169 (-225))) . T) (((-169 (-381))) . T) (((-1171 (-699))) . T) (((-892 (-381))) . T)) (((|#3|) . T)) -(|has| |#1| (-556)) -(|has| (-407 |#2|) (-233)) -(((|#1| (-407 (-564))) . T)) -((($) . T) (((-407 (-564))) . T) (((-407 |#1|)) . T) ((|#1|) . T)) +(|has| |#1| (-558)) +(|has| (-409 |#2|) (-233)) +(((|#1| (-409 (-566))) . T)) +((($) . T) (((-409 (-566))) . T) (((-409 |#1|)) . T) ((|#1|) . T)) (((|#3|) . T)) -(|has| |#1| (-556)) -((((-860)) . T)) +(|has| |#1| (-558)) +((((-862)) . T)) ((($ $) . T)) ((($) . T)) -((((-860)) . T)) -((((-1173)) |has| |#2| (-898 (-1173)))) -((((-407 (-564))) . T) (($) . T)) -(((|#1|) |has| |#1| (-172)) (($) . T) (((-564)) . T)) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) -((((-860)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) -(((|#2|) |has| |#1| (-363))) -((((-379)) -12 (|has| |#1| (-363)) (|has| |#2| (-884 (-379)))) (((-564)) -12 (|has| |#1| (-363)) (|has| |#2| (-884 (-564))))) -(|has| |#1| (-363)) -(-2682 (|has| |#1| (-363)) (|has| |#1| (-556))) -(|has| |#1| (-363)) -(((|#1|) . T)) -((($) . T) (((-564)) . T) ((|#2|) . T)) -(-2682 (|has| |#1| (-363)) (|has| |#1| (-556))) -(|has| |#1| (-363)) +((((-862)) . T)) +((((-1175)) |has| |#2| (-900 (-1175)))) +((((-409 (-566))) . T) (($) . T)) +(((|#1|) |has| |#1| (-172)) (($) . T) (((-566)) . T)) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) +((((-862)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) +(((|#2|) |has| |#1| (-365))) +((((-381)) -12 (|has| |#1| (-365)) (|has| |#2| (-886 (-381)))) (((-566)) -12 (|has| |#1| (-365)) (|has| |#2| (-886 (-566))))) +(|has| |#1| (-365)) +(-2809 (|has| |#1| (-365)) (|has| |#1| (-558))) +(|has| |#1| (-365)) +(((|#1|) . T)) +((($) . T) (((-566)) . T) ((|#2|) . T)) +(-2809 (|has| |#1| (-365)) (|has| |#1| (-558))) +(|has| |#1| (-365)) (((|#3|) . T)) -((((-1155)) . T) (((-506)) . T) (((-225)) . T) (((-564)) . T)) +((((-1157)) . T) (((-508)) . T) (((-225)) . T) (((-566)) . T)) (((|#1|) . T)) -(|has| |#1| (-556)) -(((|#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) -((((-407 |#2|)) . T) (((-407 (-564))) . T) (($) . T) (((-564)) . T)) -(-2682 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-791)) (|has| |#2| (-846)) (|has| |#2| (-1047))) +(|has| |#1| (-558)) +(((|#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) +((((-409 |#2|)) . T) (((-409 (-566))) . T) (($) . T) (((-566)) . T)) +(-2809 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049))) (((|#2|) . T)) (((|#2|) . T)) -(-2682 (|has| |#2| (-172)) (|has| |#2| (-724)) (|has| |#2| (-846)) (|has| |#2| (-1047))) -((((-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) . T)) -((((-2 (|:| -1914 (-1155)) (|:| -2683 |#1|))) . T)) -((((-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) . T)) -(|has| |#1| (-38 (-407 (-564)))) +(-2809 (|has| |#2| (-172)) (|has| |#2| (-726)) (|has| |#2| (-848)) (|has| |#2| (-1049))) +((((-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) . T)) +((((-2 (|:| -1928 (-1157)) (|:| -2806 |#1|))) . T)) +((((-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) . T)) +(|has| |#1| (-38 (-409 (-566)))) (((|#1| |#2|) . T)) -(|has| |#1| (-38 (-407 (-564)))) -(-2682 (|has| |#1| (-145)) (|has| |#1| (-368))) +(|has| |#1| (-38 (-409 (-566)))) +(-2809 (|has| |#1| (-145)) (|has| |#1| (-370))) ((($) . T)) -((((-1155) |#1|) . T)) +((((-1157) |#1|) . T)) (|has| |#1| (-147)) -(-2682 (|has| |#1| (-145)) (|has| |#1| (-368))) +(-2809 (|has| |#1| (-145)) (|has| |#1| (-370))) (|has| |#1| (-147)) -(-2682 (|has| |#1| (-145)) (|has| |#1| (-368))) +(-2809 (|has| |#1| (-145)) (|has| |#1| (-370))) ((($) . T)) (|has| |#1| (-147)) -((((-581 |#1|)) . T)) +((((-583 |#1|)) . T)) ((($) . T)) -(|has| |#1| (-556)) -(|has| |#1| (-38 (-407 (-564)))) -(|has| |#1| (-38 (-407 (-564)))) +(|has| |#1| (-558)) +(|has| |#1| (-38 (-409 (-566)))) +(|has| |#1| (-38 (-409 (-566)))) ((($) . T)) ((($) . T)) -((((-407 |#2|)) . T)) -((((-407 (-564))) |has| |#2| (-1036 (-564))) (((-564)) |has| |#2| (-1036 (-564))) (((-1173)) |has| |#2| (-1036 (-1173))) ((|#2|) . T)) -(((#0=(-407 |#2|) #0#) . T) ((#1=(-407 (-564)) #1#) . T) (($ $) . T)) +((((-409 |#2|)) . T)) +((((-409 (-566))) |has| |#2| (-1038 (-566))) (((-566)) |has| |#2| (-1038 (-566))) (((-1175)) |has| |#2| (-1038 (-1175))) ((|#2|) . T)) +(((#0=(-409 |#2|) #0#) . T) ((#1=(-409 (-566)) #1#) . T) (($ $) . T)) (((|#1|) . T)) -(-2682 (|has| |#1| (-145)) (|has| |#1| (-349))) +(-2809 (|has| |#1| (-145)) (|has| |#1| (-351))) (|has| |#1| (-147)) -((((-860)) . T)) +((((-862)) . T)) ((($) . T)) -((((-1137 |#1| |#2|)) . T)) -(((|#1| (-564)) . T)) -(((|#1| (-407 (-564))) . T)) -((((-564)) |has| |#2| (-884 (-564))) (((-379)) |has| |#2| (-884 (-379)))) +((((-1139 |#1| |#2|)) . T)) +(((|#1| (-566)) . T)) +(((|#1| (-409 (-566))) . T)) +((((-566)) |has| |#2| (-886 (-566))) (((-381)) |has| |#2| (-886 (-381)))) (((|#2|) . T)) -((((-407 |#2|)) . T) (((-407 (-564))) . T) (($) . T)) +((((-409 |#2|)) . T) (((-409 (-566))) . T) (($) . T)) ((((-112)) . T)) (((|#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) . T)) (((|#2|) . T)) -((((-860)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) -((((-1173) (-52)) . T)) -((((-407 |#2|)) . T)) -((((-860)) . T)) -(((|#1|) . T)) -(|has| |#1| (-1097)) -(|has| |#1| (-789)) -(|has| |#1| (-789)) -((((-860)) . T)) -((((-908 |#1|)) . T) (((-407 (-564))) . T) (($) . T) (((-564)) . T)) -((((-536)) |has| |#1| (-612 (-536)))) -((((-860)) -2682 (|has| |#1| (-611 (-860))) (|has| |#1| (-848)) (|has| |#1| (-1097)))) +((((-862)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) +((((-1175) (-52)) . T)) +((((-409 |#2|)) . T)) +((((-862)) . T)) +(((|#1|) . T)) +(|has| |#1| (-1099)) +(|has| |#1| (-791)) +(|has| |#1| (-791)) +((((-862)) . T)) +((((-910 |#1|)) . T) (((-409 (-566))) . T) (($) . T) (((-566)) . T)) +((((-538)) |has| |#1| (-614 (-538)))) +((((-862)) -2809 (|has| |#1| (-613 (-862))) (|has| |#1| (-850)) (|has| |#1| (-1099)))) ((((-114)) . T) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-225)) . T) (((-379)) . T) (((-890 (-379))) . T)) -((((-860)) . T)) -((((-1248 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-407 (-564))) . T)) -(((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556)) (((-407 (-564))) |has| |#1| (-556))) -((((-860)) . T)) -((((-860)) . T)) +((((-225)) . T) (((-381)) . T) (((-892 (-381))) . T)) +((((-862)) . T)) +((((-1250 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-409 (-566))) . T)) +(((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-558)) (((-409 (-566))) |has| |#1| (-558))) +((((-862)) . T)) +((((-862)) . T)) (((|#2|) . T)) -((((-860)) . T)) -(((#0=(-908 |#1|) #0#) . T) (($ $) . T) ((#1=(-407 (-564)) #1#) . T)) +((((-862)) . T)) +(((#0=(-910 |#1|) #0#) . T) (($ $) . T) ((#1=(-409 (-566)) #1#) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-908 |#1|)) . T) (($) . T) (((-407 (-564))) . T)) -(|has| |#1| (-363)) -((((-860)) . T)) +((((-910 |#1|)) . T) (($) . T) (((-409 (-566))) . T)) +(|has| |#1| (-365)) +((((-862)) . T)) (((|#2|) . T)) -((((-564)) . T)) -((((-860)) . T)) -((((-564)) . T)) -(-2682 (|has| |#2| (-791)) (|has| |#2| (-846))) -((((-169 (-379))) . T) (((-225)) . T) (((-379)) . T)) -((((-860)) . T)) -((((-860)) . T)) -((((-1155)) . T) (((-536)) . T) (((-564)) . T) (((-890 (-564))) . T) (((-379)) . T) (((-225)) . T)) -((((-860)) . T)) +((((-566)) . T)) +((((-862)) . T)) +((((-566)) . T)) +(-2809 (|has| |#2| (-793)) (|has| |#2| (-848))) +((((-169 (-381))) . T) (((-225)) . T) (((-381)) . T)) +((((-862)) . T)) +((((-862)) . T)) +((((-1157)) . T) (((-538)) . T) (((-566)) . T) (((-892 (-566))) . T) (((-381)) . T) (((-225)) . T)) +((((-862)) . T)) (|has| |#1| (-147)) (|has| |#1| (-145)) -((($) . T) ((#0=(-1247 |#2| |#3| |#4|)) |has| #0# (-172)) (((-407 (-564))) |has| #0# (-38 (-407 (-564))))) -(((|#1|) . T) (($) . T) (((-407 (-564))) . T)) -(|has| |#1| (-363)) -(|has| |#1| (-363)) -((((-860)) -2682 (|has| |#1| (-611 (-860))) (|has| |#1| (-1097)))) -((((-860)) -2682 (|has| |#1| (-611 (-860))) (|has| |#1| (-1097)))) -(-2682 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-473)) (|has| |#1| (-724)) (|has| |#1| (-898 (-1173))) (|has| |#1| (-1047)) (|has| |#1| (-1109)) (|has| |#1| (-1097))) -(|has| |#1| (-1148)) -((((-908 |#1|)) . T) (((-407 (-564))) . T) (($) . T)) -((((-908 |#1|)) . T) (($) . T) (((-407 (-564))) . T)) -((((-564) |#1|) . T)) -(((|#1|) . T)) -(((#0=(-116 |#1|) $) |has| #0# (-286 #0# #0#))) +((($) . T) ((#0=(-1249 |#2| |#3| |#4|)) |has| #0# (-172)) (((-409 (-566))) |has| #0# (-38 (-409 (-566))))) +(((|#1|) . T) (($) . T) (((-409 (-566))) . T)) +(|has| |#1| (-365)) +(|has| |#1| (-365)) +((((-862)) -2809 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099)))) +((((-862)) -2809 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099)))) +(-2809 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-475)) (|has| |#1| (-726)) (|has| |#1| (-900 (-1175))) (|has| |#1| (-1049)) (|has| |#1| (-1111)) (|has| |#1| (-1099))) +(|has| |#1| (-1150)) +((((-910 |#1|)) . T) (((-409 (-566))) . T) (($) . T)) +((((-910 |#1|)) . T) (($) . T) (((-409 (-566))) . T)) +((((-566) |#1|) . T)) +(((|#1|) . T)) +(((#0=(-116 |#1|) $) |has| #0# (-287 #0# #0#))) (((|#1|) |has| |#1| (-172))) -((((-316 |#1|)) . T) (((-564)) . T)) +((((-317 |#1|)) . T) (((-566)) . T)) (((|#1|) . T)) -((((-860)) . T)) +((((-862)) . T)) ((((-114)) . T) ((|#1|) . T)) -((((-860)) . T)) +((((-862)) . T)) (((|#1| |#2|) . T)) -(((|#1|) |has| |#1| (-309 |#1|))) -((((-564) |#1|) . T)) -((((-1173) |#1|) . T)) -(((|#1|) -2682 (|has| |#1| (-172)) (|has| |#1| (-363)))) +(((|#1|) |has| |#1| (-310 |#1|))) +((((-566) |#1|) . T)) +((((-1175) |#1|) . T)) +(((|#1|) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)))) (((|#1|) . T)) -(((|#1|) -2682 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-1047)))) -((((-564)) . T) (((-407 (-564))) . T)) +(((|#1|) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-1049)))) +((((-566)) . T) (((-409 (-566))) . T)) (((|#1|) . T)) -(|has| |#1| (-556)) -((($) . T) (((-564)) . T) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-363))) -((((-407 |#2|)) . T) (((-407 (-564))) . T) (($) . T)) -(-2682 (|has| |#1| (-363)) (|has| |#1| (-556))) -((((-379)) . T)) +(|has| |#1| (-558)) +((($) . T) (((-566)) . T) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-365))) +((((-409 |#2|)) . T) (((-409 (-566))) . T) (($) . T)) +(-2809 (|has| |#1| (-365)) (|has| |#1| (-558))) +((((-381)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-363)) -(-2682 (|has| |#1| (-363)) (|has| |#1| (-556))) -(|has| |#1| (-363)) -(|has| |#1| (-556)) -(|has| |#1| (-1097)) -((((-778 |#1| (-862 |#2|))) |has| (-778 |#1| (-862 |#2|)) (-309 (-778 |#1| (-862 |#2|))))) -(-2682 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907))) +(|has| |#1| (-365)) +(-2809 (|has| |#1| (-365)) (|has| |#1| (-558))) +(|has| |#1| (-365)) +(|has| |#1| (-558)) +(|has| |#1| (-1099)) +((((-780 |#1| (-864 |#2|))) |has| (-780 |#1| (-864 |#2|)) (-310 (-780 |#1| (-864 |#2|))))) +(-2809 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) (((|#1|) . T)) (((|#2| |#3|) . T)) (((|#1|) . T)) -(|has| |#2| (-907)) -(((|#1| (-531 |#2|)) . T)) -(((|#1| (-769)) . T)) +(|has| |#2| (-909)) +(((|#1| (-533 |#2|)) . T)) +(((|#1| (-771)) . T)) (|has| |#1| (-233)) -(((|#1| (-531 (-1085 (-1173)))) . T)) -(|has| |#2| (-363)) -((((-581 |#1|)) . T) (((-407 (-564))) . T) (($) . T) (((-564)) . T)) -((((-564)) . T) (((-407 (-564))) . T) (($) . T)) -((((-2 (|:| -1914 (-1155)) (|:| -2683 (-52)))) . T)) +(((|#1| (-533 (-1087 (-1175)))) . T)) +(|has| |#2| (-365)) +((((-583 |#1|)) . T) (((-409 (-566))) . T) (($) . T) (((-566)) . T)) +((((-566)) . T) (((-409 (-566))) . T) (($) . T)) +((((-2 (|:| -1928 (-1157)) (|:| -2806 (-52)))) . T)) (((|#1|) . T)) -(((|#1|) . T) (((-564)) . T)) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) -((((-860)) . T)) -((((-860)) . T)) -(-2682 (|has| |#3| (-791)) (|has| |#3| (-846))) -((((-860)) . T)) -((((-1117)) . T) (((-860)) . T)) -((((-536)) . T) (((-860)) . T)) +(((|#1|) . T) (((-566)) . T)) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) +((((-862)) . T)) +((((-862)) . T)) +(-2809 (|has| |#3| (-793)) (|has| |#3| (-848))) +((((-862)) . T)) +((((-1119)) . T) (((-862)) . T)) +((((-538)) . T) (((-862)) . T)) (((|#1|) . T)) -((($ $) . T) (((-610 $) $) . T)) +((($ $) . T) (((-612 $) $) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-564)) . T)) +((((-566)) . T)) (((|#3|) . T)) -((((-860)) . T)) -(-2682 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349))) -((((-564)) . T) (((-407 (-564))) -2682 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1036 (-407 (-564))))) ((|#2|) . T) (($) -2682 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907))) (((-862 |#1|)) . T)) -((((-1122 |#1| |#2|)) . T) ((|#2|) . T) (($) -2682 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) . T) (((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1036 (-407 (-564))))) (((-564)) . T)) -((((-1169 |#1|)) . T) (((-564)) . T) (($) -2682 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) (((-1079)) . T) ((|#1|) . T) (((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1036 (-407 (-564)))))) -(-2682 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1047))) -((((-1122 |#1| (-1173))) . T) (((-564)) . T) (((-1085 (-1173))) . T) (($) -2682 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) . T) (((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1036 (-407 (-564))))) (((-1173)) . T)) -(((#0=(-581 |#1|) #0#) . T) (($ $) . T) ((#1=(-407 (-564)) #1#) . T)) -((($ $) . T) ((#0=(-407 (-564)) #0#) . T)) +((((-862)) . T)) +(-2809 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351))) +((((-566)) . T) (((-409 (-566))) -2809 (|has| |#2| (-38 (-409 (-566)))) (|has| |#2| (-1038 (-409 (-566))))) ((|#2|) . T) (($) -2809 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) (((-864 |#1|)) . T)) +((((-1124 |#1| |#2|)) . T) ((|#2|) . T) (($) -2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566))))) (((-566)) . T)) +((((-1171 |#1|)) . T) (((-566)) . T) (($) -2809 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) (((-1081)) . T) ((|#1|) . T) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566)))))) +(-2809 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-558)) (|has| |#1| (-1049))) +((((-1124 |#1| (-1175))) . T) (((-566)) . T) (((-1087 (-1175))) . T) (($) -2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566))))) (((-1175)) . T)) +(((#0=(-583 |#1|) #0#) . T) (($ $) . T) ((#1=(-409 (-566)) #1#) . T)) +((($ $) . T) ((#0=(-409 (-566)) #0#) . T)) (((|#1|) |has| |#1| (-172))) -(((|#1| (-1262 |#1|) (-1262 |#1|)) . T)) -((((-581 |#1|)) . T) (($) . T) (((-407 (-564))) . T)) -((($) . T) (((-407 (-564))) . T)) +(((|#1| (-1264 |#1|) (-1264 |#1|)) . T)) +((((-583 |#1|)) . T) (($) . T) (((-409 (-566))) . T)) +((($) . T) (((-409 (-566))) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((($) . T) (((-407 (-564))) . T)) -(((|#2|) |has| |#2| (-6 (-4412 "*")))) +((($) . T) (((-409 (-566))) . T)) +(((|#2|) |has| |#2| (-6 (-4419 "*")))) (((|#1|) . T)) -((((-407 (-564))) |has| |#1| (-1036 (-407 (-564)))) ((|#1|) . T) (((-564)) . T)) +((((-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) ((|#1|) . T) (((-566)) . T)) (((|#1|) . T)) -((((-860)) . T)) -((((-294 |#3|)) . T)) -(((#0=(-407 (-564)) #0#) |has| |#2| (-38 (-407 (-564)))) ((|#2| |#2|) . T) (($ $) -2682 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907)))) +((((-862)) . T)) +((((-295 |#3|)) . T)) +(((#0=(-409 (-566)) #0#) |has| |#2| (-38 (-409 (-566)))) ((|#2| |#2|) . T) (($ $) -2809 (|has| |#2| (-172)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) (((|#2| |#2|) . T) ((|#6| |#6|) . T)) (((|#1|) . T)) -((($) . T) (((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T)) -((($) . T) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -(((|#1|) . T) (((-407 (-564))) . T) (($) . T)) -(((|#1|) . T) (((-407 (-564))) . T) (($) . T)) -(((|#1|) . T) (((-407 (-564))) . T) (($) . T)) -((($ $) -2682 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564))))) -((($ $) -2682 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564))))) +((($) . T) (((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) . T)) +((($) . T) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +(((|#1|) . T) (((-409 (-566))) . T) (($) . T)) +(((|#1|) . T) (((-409 (-566))) . T) (($) . T)) +(((|#1|) . T) (((-409 (-566))) . T) (($) . T)) +((($ $) -2809 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1| |#1|) . T) ((#0=(-409 (-566)) #0#) |has| |#1| (-38 (-409 (-566))))) +((($ $) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1| |#1|) . T) ((#0=(-409 (-566)) #0#) |has| |#1| (-38 (-409 (-566))))) (((|#2|) . T)) -((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T) (($) -2682 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907)))) +((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) . T) (($) -2809 (|has| |#2| (-172)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) (((|#2|) . T) ((|#6|) . T)) -((($ $) -2682 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564))))) -((((-860)) . T)) -((($) -2682 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -((($) -2682 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -(|has| |#2| (-907)) -(|has| |#1| (-907)) -((($) -2682 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -((((-860)) . T)) +((($ $) -2809 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1| |#1|) . T) ((#0=(-409 (-566)) #0#) |has| |#1| (-38 (-409 (-566))))) +((((-862)) . T)) +((($) -2809 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((($) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +(|has| |#2| (-909)) +(|has| |#1| (-909)) +((($) -2809 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((((-862)) . T)) (((|#1|) . T)) -((((-2 (|:| -1914 (-1155)) (|:| -2683 |#1|))) . T)) +((((-2 (|:| -1928 (-1157)) (|:| -2806 |#1|))) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1097)) +(|has| |#1| (-1099)) (((|#1|) . T)) -(((|#1|) . T) (($) . T) (((-407 (-564))) . T)) -((((-1173)) . T) ((|#1|) . T)) -((((-860)) . T)) -(((|#1|) . T) (((-407 (-564))) . T) (($) . T)) -((((-860)) . T)) -((((-564)) . T) (($) . T) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) -(((#0=(-407 (-564)) #0#) . T)) -((((-407 (-564))) . T)) +(((|#1|) . T) (($) . T) (((-409 (-566))) . T)) +((((-1175)) . T) ((|#1|) . T)) +((((-862)) . T)) +(((|#1|) . T) (((-409 (-566))) . T) (($) . T)) +((((-862)) . T)) +((((-566)) . T) (($) . T) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) +(((#0=(-409 (-566)) #0#) . T)) +((((-409 (-566))) . T)) (((|#1|) |has| |#1| (-172))) -(-2682 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-791)) (|has| |#2| (-846)) (|has| |#2| (-1047))) -(((|#1|) . T)) -(((|#1|) . T)) -(-2682 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-846)) (|has| |#2| (-1047))) -(((|#1|) . T)) -((((-407 (-564))) . T) (((-564)) . T) (($) . T)) -((((-536)) . T)) -((((-860)) . T)) -((((-564)) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556))) -((((-1173)) |has| |#2| (-898 (-1173))) (((-1079)) . T)) -((((-1247 |#2| |#3| |#4|)) . T)) -((((-908 |#1|)) . T)) -((($) . T) (((-407 (-564))) . T)) -(-12 (|has| |#1| (-363)) (|has| |#2| (-818))) -(-12 (|has| |#1| (-363)) (|has| |#2| (-818))) -((((-860)) . T)) -(|has| |#1| (-1216)) -(((|#2|) . T)) -((($ $) . T) ((#0=(-407 (-564)) #0#) . T)) -((((-1173)) |has| |#1| (-898 (-1173)))) -((((-908 |#1|)) . T) (((-407 (-564))) . T) (($) . T)) -((($) . T) (((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) . T)) -(((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))) ((|#1| |#1|) . T) (($ $) -2682 (|has| |#1| (-172)) (|has| |#1| (-556)))) -((((-407 |#2|)) . T) (((-407 (-564))) . T) (($) . T)) -((($) . T) (((-407 (-564))) . T)) -(((|#1|) . T) (((-407 (-564))) . T) (((-564)) . T) (($) . T)) -(((|#2|) |has| |#2| (-1047)) (((-564)) -12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1047)))) -((((-407 |#2|)) . T) (((-407 (-564))) . T) (($) . T)) -((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T) (($) -2682 (|has| |#1| (-172)) (|has| |#1| (-556)))) -(|has| |#1| (-556)) -(((|#1|) |has| |#1| (-363))) -((((-564)) . T)) -(|has| |#1| (-789)) -(|has| |#1| (-789)) -((((-1173) #0=(-116 |#1|)) |has| #0# (-514 (-1173) #0#)) ((#0# #0#) |has| #0# (-309 #0#))) -(((|#2|) . T) (((-564)) |has| |#2| (-1036 (-564))) (((-407 (-564))) |has| |#2| (-1036 (-407 (-564))))) -((((-1079)) . T) ((|#2|) . T) (((-564)) |has| |#2| (-1036 (-564))) (((-407 (-564))) |has| |#2| (-1036 (-407 (-564))))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T) (((-564)) . T) (($) . T)) -((((-564) (-769)) . T) ((|#3| (-769)) . T)) +(-2809 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049))) +(((|#1|) . T)) +(((|#1|) . T)) +(-2809 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-848)) (|has| |#2| (-1049))) +(((|#1|) . T)) +((((-409 (-566))) . T) (((-566)) . T) (($) . T)) +((((-538)) . T)) +((((-862)) . T)) +((((-566)) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-558))) +((((-1175)) |has| |#2| (-900 (-1175))) (((-1081)) . T)) +((((-862)) . T)) +((((-1249 |#2| |#3| |#4|)) . T)) +((((-910 |#1|)) . T)) +((($) . T) (((-409 (-566))) . T)) +(-12 (|has| |#1| (-365)) (|has| |#2| (-820))) +(-12 (|has| |#1| (-365)) (|has| |#2| (-820))) +((((-862)) . T)) +(|has| |#1| (-1218)) +(((|#2|) . T)) +((($ $) . T) ((#0=(-409 (-566)) #0#) . T)) +((((-1175)) |has| |#1| (-900 (-1175)))) +((((-910 |#1|)) . T) (((-409 (-566))) . T) (($) . T)) +((($) . T) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#1|) . T)) +(((#0=(-409 (-566)) #0#) |has| |#1| (-38 (-409 (-566)))) ((|#1| |#1|) . T) (($ $) -2809 (|has| |#1| (-172)) (|has| |#1| (-558)))) +((((-409 |#2|)) . T) (((-409 (-566))) . T) (($) . T)) +((($) . T) (((-409 (-566))) . T)) +(((|#1|) . T) (((-409 (-566))) . T) (((-566)) . T) (($) . T)) +(((|#2|) |has| |#2| (-1049)) (((-566)) -12 (|has| |#2| (-639 (-566))) (|has| |#2| (-1049)))) +((((-409 |#2|)) . T) (((-409 (-566))) . T) (($) . T)) +((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) . T) (($) -2809 (|has| |#1| (-172)) (|has| |#1| (-558)))) +(|has| |#1| (-558)) +(((|#1|) |has| |#1| (-365))) +((((-566)) . T)) +(|has| |#1| (-791)) +(|has| |#1| (-791)) +((((-1175) #0=(-116 |#1|)) |has| #0# (-516 (-1175) #0#)) ((#0# #0#) |has| #0# (-310 #0#))) +(((|#2|) . T) (((-566)) |has| |#2| (-1038 (-566))) (((-409 (-566))) |has| |#2| (-1038 (-409 (-566))))) +((((-1081)) . T) ((|#2|) . T) (((-566)) |has| |#2| (-1038 (-566))) (((-409 (-566))) |has| |#2| (-1038 (-409 (-566))))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T) (((-566)) . T) (($) . T)) +((((-566) (-771)) . T) ((|#3| (-771)) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) -((((-860)) . T)) -(|has| |#2| (-818)) -(|has| |#2| (-818)) -((((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#2|) |has| |#1| (-363)) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) -(((|#1|) . T) (((-564)) |has| |#1| (-1036 (-564))) (((-407 (-564))) |has| |#1| (-1036 (-407 (-564))))) -((((-564)) |has| |#1| (-884 (-564))) (((-379)) |has| |#1| (-884 (-379)))) -(((|#1|) . T)) -((((-868 |#1|)) . T)) -((((-868 |#1|)) . T)) -(-12 (|has| |#1| (-363)) (|has| |#2| (-907))) -((((-407 (-564))) . T) (((-697)) . T) (($) . T)) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) +((((-862)) . T)) +(|has| |#2| (-820)) +(|has| |#2| (-820)) +((((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#2|) |has| |#1| (-365)) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) +(((|#1|) . T) (((-566)) |has| |#1| (-1038 (-566))) (((-409 (-566))) |has| |#1| (-1038 (-409 (-566))))) +((((-566)) |has| |#1| (-886 (-566))) (((-381)) |has| |#1| (-886 (-381)))) +(((|#1|) . T)) +((((-870 |#1|)) . T)) +((((-870 |#1|)) . T)) +(-12 (|has| |#1| (-365)) (|has| |#2| (-909))) +((((-409 (-566))) . T) (((-699)) . T) (($) . T)) (((|#1|) |has| |#1| (-172))) -(|has| |#1| (-363)) -(|has| |#1| (-363)) +(|has| |#1| (-365)) +(|has| |#1| (-365)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-172))) -(((|#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) -(((|#2|) -2682 (|has| |#2| (-6 (-4412 "*"))) (|has| |#2| (-172)))) +(((|#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) +(((|#2|) -2809 (|has| |#2| (-6 (-4419 "*"))) (|has| |#2| (-172)))) (((|#2|) . T)) -(|has| |#1| (-363)) +(|has| |#1| (-365)) (((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-862 |#1|)) . T)) +((((-864 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#2| (-769)) . T)) -((((-1173)) . T)) -((((-868 |#1|)) . T)) -(-2682 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-791)) (|has| |#3| (-846)) (|has| |#3| (-1047))) -(-2682 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-846)) (|has| |#3| (-1047))) -((((-860)) . T)) +(((|#2| (-771)) . T)) +((((-1175)) . T)) +((((-870 |#1|)) . T)) +(-2809 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-793)) (|has| |#3| (-848)) (|has| |#3| (-1049))) +(-2809 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-848)) (|has| |#3| (-1049))) +((((-862)) . T)) (((|#1|) . T)) -(-2682 (|has| |#2| (-791)) (|has| |#2| (-846))) -(-2682 (-12 (|has| |#1| (-791)) (|has| |#2| (-791))) (-12 (|has| |#1| (-848)) (|has| |#2| (-848)))) -((((-868 |#1|)) . T)) +(-2809 (|has| |#2| (-793)) (|has| |#2| (-848))) +(-2809 (-12 (|has| |#1| (-793)) (|has| |#2| (-793))) (-12 (|has| |#1| (-850)) (|has| |#2| (-850)))) +((((-870 |#1|)) . T)) (((|#1|) . T)) -(|has| |#1| (-368)) -(|has| |#1| (-368)) -(|has| |#1| (-368)) -((($ $) . T) (((-610 $) $) . T)) +(|has| |#1| (-370)) +(|has| |#1| (-370)) +(|has| |#1| (-370)) +((($ $) . T) (((-612 $) $) . T)) ((($) . T)) -((((-860)) . T)) -((((-564)) . T)) +((((-862)) . T)) +((((-566)) . T)) (((|#2|) . T)) -((((-860)) . T)) -((($) . T) (((-564)) . T)) -(((|#1|) . T) (((-407 (-564))) |has| |#1| (-363))) -((((-860)) . T)) +((((-862)) . T)) +((($) . T) (((-566)) . T)) +(((|#1|) . T) (((-409 (-566))) |has| |#1| (-365))) +((((-862)) . T)) (((|#1|) . T)) -((((-860)) . T)) -((($) . T) ((|#2|) . T) (((-407 (-564))) . T)) -(|has| |#1| (-1097)) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) +((((-862)) . T)) +((($) . T) ((|#2|) . T) (((-409 (-566))) . T)) +(|has| |#1| (-1099)) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-860)) . T)) -(|has| |#2| (-907)) -((((-2 (|:| -1914 (-1173)) (|:| -2683 (-52)))) . T)) -((((-536)) |has| |#2| (-612 (-536))) (((-890 (-379))) |has| |#2| (-612 (-890 (-379)))) (((-890 (-564))) |has| |#2| (-612 (-890 (-564))))) -((((-860)) . T)) -((((-860)) . T)) -(((|#3|) |has| |#3| (-1047)) (((-564)) -12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1047)))) -((((-1122 |#1| |#2|)) . T) (((-950 |#1|)) |has| |#2| (-612 (-1173))) (((-860)) . T)) -((((-950 |#1|)) |has| |#2| (-612 (-1173))) (((-1155)) -12 (|has| |#1| (-1036 (-564))) (|has| |#2| (-612 (-1173)))) (((-890 (-564))) -12 (|has| |#1| (-612 (-890 (-564)))) (|has| |#2| (-612 (-890 (-564))))) (((-890 (-379))) -12 (|has| |#1| (-612 (-890 (-379)))) (|has| |#2| (-612 (-890 (-379))))) (((-536)) -12 (|has| |#1| (-612 (-536))) (|has| |#2| (-612 (-536))))) -((((-1169 |#1|)) . T) (((-860)) . T)) -((((-860)) . T)) -((((-407 (-564))) |has| |#2| (-1036 (-407 (-564)))) (((-564)) |has| |#2| (-1036 (-564))) ((|#2|) . T) (((-862 |#1|)) . T)) -((((-116 |#1|)) . T) (($) . T) (((-407 (-564))) . T)) -((((-407 (-564))) |has| |#1| (-1036 (-407 (-564)))) (((-564)) |has| |#1| (-1036 (-564))) ((|#1|) . T) (((-1173)) . T)) -((((-860)) . T)) -((((-564)) . T)) +((((-862)) . T)) +(|has| |#2| (-909)) +((((-2 (|:| -1928 (-1175)) (|:| -2806 (-52)))) . T)) +((((-538)) |has| |#2| (-614 (-538))) (((-892 (-381))) |has| |#2| (-614 (-892 (-381)))) (((-892 (-566))) |has| |#2| (-614 (-892 (-566))))) +((((-862)) . T)) +((((-862)) . T)) +(((|#3|) |has| |#3| (-1049)) (((-566)) -12 (|has| |#3| (-639 (-566))) (|has| |#3| (-1049)))) +((((-1124 |#1| |#2|)) . T) (((-952 |#1|)) |has| |#2| (-614 (-1175))) (((-862)) . T)) +((((-952 |#1|)) |has| |#2| (-614 (-1175))) (((-1157)) -12 (|has| |#1| (-1038 (-566))) (|has| |#2| (-614 (-1175)))) (((-892 (-566))) -12 (|has| |#1| (-614 (-892 (-566)))) (|has| |#2| (-614 (-892 (-566))))) (((-892 (-381))) -12 (|has| |#1| (-614 (-892 (-381)))) (|has| |#2| (-614 (-892 (-381))))) (((-538)) -12 (|has| |#1| (-614 (-538))) (|has| |#2| (-614 (-538))))) +((((-1171 |#1|)) . T) (((-862)) . T)) +((((-862)) . T)) +((((-409 (-566))) |has| |#2| (-1038 (-409 (-566)))) (((-566)) |has| |#2| (-1038 (-566))) ((|#2|) . T) (((-864 |#1|)) . T)) +((((-116 |#1|)) . T) (($) . T) (((-409 (-566))) . T)) +((((-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) (((-566)) |has| |#1| (-1038 (-566))) ((|#1|) . T) (((-1175)) . T)) +((((-862)) . T)) +((((-566)) . T)) (((|#1|) . T)) ((($) . T)) -((((-379)) |has| |#1| (-884 (-379))) (((-564)) |has| |#1| (-884 (-564)))) -((((-564)) . T)) +((((-381)) |has| |#1| (-886 (-381))) (((-566)) |has| |#1| (-886 (-566)))) +((((-566)) . T)) (((|#1|) . T)) -((((-860)) . T)) +((((-862)) . T)) (((|#1|) . T)) -((((-860)) . T)) -((((-1178)) . T)) -((((-1178)) . T)) -((((-1178)) . T)) -((((-642 |#1|)) . T)) -((($) . T) (((-564)) . T) (((-1248 |#1| |#2| |#3| |#4|)) . T) (((-407 (-564))) . T)) -((((-564)) -2682 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1047))) (($) -2682 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1047))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-556))) -((((-1178)) . T)) -((((-1178)) . T)) -((((-564)) . T) (((-407 (-564))) . T)) -((((-1178)) . T)) +((((-862)) . T)) +((((-1180)) . T)) +((((-1180)) . T)) +((((-1180)) . T)) +((((-644 |#1|)) . T)) +((($) . T) (((-566)) . T) (((-1250 |#1| |#2| |#3| |#4|)) . T) (((-409 (-566))) . T)) +((((-566)) -2809 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-558)) (|has| |#1| (-1049))) (($) -2809 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-558)) (|has| |#1| (-1049))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-558))) +((((-1180)) . T)) +((((-1180)) . T)) +((((-566)) . T) (((-409 (-566))) . T)) +((((-1180)) . T)) (((|#1|) |has| |#1| (-172)) (($) . T)) -(((|#1|) |has| |#1| (-309 |#1|))) -((((-379)) . T)) -((((-860)) . T)) +(((|#1|) |has| |#1| (-310 |#1|))) +((((-381)) . T)) +((((-862)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-860)) . T)) -((((-407 (-564))) . T) (($) . T)) -((((-407 |#2|) |#3|) . T)) +((((-862)) . T)) +((((-409 (-566))) . T) (($) . T)) +((((-409 |#2|) |#3|) . T)) (((|#1|) . T)) -(|has| |#1| (-1097)) -(((|#2| (-482 (-2158 |#1|) (-769))) . T)) -((((-564) |#1|) . T)) -((((-1155)) . T) (((-860)) . T)) +(|has| |#1| (-1099)) +(((|#2| (-484 (-3002 |#1|) (-771))) . T)) +((((-566) |#1|) . T)) +((((-1157)) . T) (((-862)) . T)) (((|#2| |#2|) . T)) -(((|#1| (-531 (-1173))) . T)) -(-2682 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-791)) (|has| |#2| (-846)) (|has| |#2| (-1047))) -((((-564)) . T)) +(((|#1| (-533 (-1175))) . T)) +(-2809 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049))) +((((-566)) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-1173)) |has| |#1| (-898 (-1173))) (((-1079)) . T)) -(((|#1|) . T) (((-564)) |has| |#1| (-637 (-564)))) -(|has| |#1| (-556)) -(((#0=(-1247 |#2| |#3| |#4|)) . T) (((-407 (-564))) |has| #0# (-38 (-407 (-564)))) (((-564)) . T) (($) . T)) -((($) . T) (((-407 (-564))) . T)) +((((-1175)) |has| |#1| (-900 (-1175))) (((-1081)) . T)) +(((|#1|) . T) (((-566)) |has| |#1| (-639 (-566)))) +(|has| |#1| (-558)) +(((#0=(-1249 |#2| |#3| |#4|)) . T) (((-409 (-566))) |has| #0# (-38 (-409 (-566)))) (((-566)) . T) (($) . T)) +((($) . T) (((-409 (-566))) . T)) ((($) . T)) ((($) . T)) -(-2682 (|has| |#1| (-848)) (|has| |#1| (-1097))) +(-2809 (|has| |#1| (-850)) (|has| |#1| (-1099))) (((|#1|) . T)) -((($) -2682 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -((((-860)) . T)) +((($) -2809 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((((-862)) . T)) ((((-144)) . T)) -(((|#1|) . T) (((-407 (-564))) . T)) +(((|#1|) . T) (((-409 (-566))) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-860)) . T)) +((((-862)) . T)) (((|#1|) . T)) -(|has| |#1| (-1148)) -(((|#1| (-531 (-862 |#2|)) (-862 |#2|) (-778 |#1| (-862 |#2|))) . T)) +(|has| |#1| (-1150)) +(((|#1| (-533 (-864 |#2|)) (-864 |#2|) (-780 |#1| (-864 |#2|))) . T)) (((|#1|) . T)) -((((-407 $) (-407 $)) |has| |#1| (-556)) (($ $) . T) ((|#1| |#1|) . T)) -(((|#1|) . T) (((-564)) |has| |#1| (-1036 (-564))) (((-407 (-564))) |has| |#1| (-1036 (-407 (-564))))) -((((-860)) . T)) -((((-407 (-564))) |has| |#1| (-1036 (-407 (-564)))) (((-564)) |has| |#1| (-1036 (-564))) ((|#1|) . T) ((|#2|) . T)) -((((-1079)) . T) ((|#1|) . T) (((-564)) |has| |#1| (-1036 (-564))) (((-407 (-564))) |has| |#1| (-1036 (-407 (-564))))) -((((-379)) -12 (|has| |#1| (-884 (-379))) (|has| |#2| (-884 (-379)))) (((-564)) -12 (|has| |#1| (-884 (-564))) (|has| |#2| (-884 (-564))))) -((((-1248 |#1| |#2| |#3| |#4|)) . T)) -((((-564) |#1|) . T)) +((((-409 $) (-409 $)) |has| |#1| (-558)) (($ $) . T) ((|#1| |#1|) . T)) +(((|#1|) . T) (((-566)) |has| |#1| (-1038 (-566))) (((-409 (-566))) |has| |#1| (-1038 (-409 (-566))))) +((((-862)) . T)) +((((-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) (((-566)) |has| |#1| (-1038 (-566))) ((|#1|) . T) ((|#2|) . T)) +((((-1081)) . T) ((|#1|) . T) (((-566)) |has| |#1| (-1038 (-566))) (((-409 (-566))) |has| |#1| (-1038 (-409 (-566))))) +((((-381)) -12 (|has| |#1| (-886 (-381))) (|has| |#2| (-886 (-381)))) (((-566)) -12 (|has| |#1| (-886 (-566))) (|has| |#2| (-886 (-566))))) +((((-1250 |#1| |#2| |#3| |#4|)) . T)) +((((-566) |#1|) . T)) (((|#1| |#1|) . T)) ((($) . T) ((|#2|) . T)) (((|#1|) |has| |#1| (-172)) (($) . T)) ((($) . T)) -((((-697)) . T)) -((((-778 |#1| (-862 |#2|))) . T)) -((((-564)) . T) (($) . T)) -((($) . T)) -(((|#1|) . T) (((-407 (-564))) |has| |#1| (-363))) -((((-407 (-564))) . T) (($) . T)) -(|has| |#1| (-1097)) -(|has| |#1| (-1097)) -(|has| |#2| (-363)) -(((|#1|) . T) (($) -2682 (|has| |#1| (-290)) (|has| |#1| (-363))) (((-407 (-564))) |has| |#1| (-363))) -(|has| |#1| (-363)) -(|has| |#1| (-363)) -(|has| |#1| (-38 (-407 (-564)))) -((((-564)) . T)) -((((-1173)) -12 (|has| |#4| (-898 (-1173))) (|has| |#4| (-1047)))) -((((-1173)) -12 (|has| |#3| (-898 (-1173))) (|has| |#3| (-1047)))) +((((-699)) . T)) +((((-780 |#1| (-864 |#2|))) . T)) +((((-566)) . T) (($) . T)) +((($) . T)) +(((|#1|) . T) (((-409 (-566))) |has| |#1| (-365))) +((((-409 (-566))) . T) (($) . T)) +(|has| |#1| (-1099)) +(|has| |#1| (-1099)) +(|has| |#2| (-365)) +(((|#1|) . T) (($) -2809 (|has| |#1| (-291)) (|has| |#1| (-365))) (((-409 (-566))) |has| |#1| (-365))) +(|has| |#1| (-365)) +(|has| |#1| (-365)) +(|has| |#1| (-38 (-409 (-566)))) +((((-566)) . T)) +((((-1175)) -12 (|has| |#4| (-900 (-1175))) (|has| |#4| (-1049)))) +((((-1175)) -12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (((|#1|) . T)) (|has| |#1| (-233)) -(((|#2| (-240 (-2158 |#1|) (-769))) . T)) -(((|#1| (-531 |#3|)) . T)) -(|has| |#1| (-368)) -(|has| |#1| (-368)) -(|has| |#1| (-368)) +(((|#2| (-240 (-3002 |#1|) (-771))) . T)) +(((|#1| (-533 |#3|)) . T)) +(|has| |#1| (-370)) +(|has| |#1| (-370)) +(|has| |#1| (-370)) (((|#1|) . T) (($) . T)) -(((|#1| (-531 |#2|)) . T)) -(-2682 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-791)) (|has| |#2| (-846)) (|has| |#2| (-1047))) -(((|#1| (-769)) . T)) -(|has| |#1| (-556)) -(-2682 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-791)) (|has| |#2| (-846)) (|has| |#2| (-1047))) -(-2682 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-846)) (|has| |#2| (-1047))) +(((|#1| (-533 |#2|)) . T)) +(-2809 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049))) +(((|#1| (-771)) . T)) +(|has| |#1| (-558)) +(-2809 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049))) +(-2809 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-848)) (|has| |#2| (-1049))) (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) -((((-860)) . T)) -((((-564)) . T) (((-407 (-564))) . T) (($) . T)) -(-2682 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-791)) (|has| |#2| (-791)))) -(-2682 (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-791)) (|has| |#3| (-846)) (|has| |#3| (-1047))) -(-2682 (|has| |#2| (-172)) (|has| |#2| (-724)) (|has| |#2| (-846)) (|has| |#2| (-1047))) +((((-862)) . T)) +((((-566)) . T) (((-409 (-566))) . T) (($) . T)) +(-2809 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-793)) (|has| |#2| (-793)))) +(-2809 (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-793)) (|has| |#3| (-848)) (|has| |#3| (-1049))) +(-2809 (|has| |#2| (-172)) (|has| |#2| (-726)) (|has| |#2| (-848)) (|has| |#2| (-1049))) (((|#1|) |has| |#1| (-172))) -(((|#4|) |has| |#4| (-1047))) -(((|#3|) |has| |#3| (-1047))) -(-12 (|has| |#1| (-363)) (|has| |#2| (-818))) -(-12 (|has| |#1| (-363)) (|has| |#2| (-818))) -((((-564)) . T) (((-407 (-564))) -2682 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1036 (-407 (-564))))) ((|#2|) . T) (($) -2682 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907))) (((-862 |#1|)) . T)) -((((-1122 |#1| |#2|)) . T) (((-564)) . T) ((|#3|) . T) (($) -2682 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) . T) (((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1036 (-407 (-564))))) ((|#2|) . T)) -((((-860)) -2682 (|has| |#1| (-611 (-860))) (|has| |#1| (-848)) (|has| |#1| (-1097)))) -((((-536)) |has| |#1| (-612 (-536)))) -(((|#1|) . T) (((-407 (-564))) . T) (($) . T) (((-564)) . T)) -(((|#1|) . T) (((-407 (-564))) . T) (($) . T) (((-564)) . T)) -(((|#1|) . T) (((-407 (-564))) . T) (($) . T) (((-564)) . T)) -((((-1178)) . T)) -((((-670 |#1|)) . T)) -((((-407 |#2|)) . T) (((-407 (-564))) . T) (($) . T)) -((($ $) . T) ((#0=(-407 (-564)) #0#) . T)) -((((-860)) . T)) -((((-642 $)) . T) (((-1155)) . T) (((-1173)) . T) (((-564)) . T) (((-225)) . T) (((-860)) . T)) -((($) . T) (((-407 (-564))) . T)) -(((|#1|) . T)) -(((|#4|) |has| |#4| (-1097)) (((-564)) -12 (|has| |#4| (-1036 (-564))) (|has| |#4| (-1097))) (((-407 (-564))) -12 (|has| |#4| (-1036 (-407 (-564)))) (|has| |#4| (-1097)))) -(((|#3|) |has| |#3| (-1097)) (((-564)) -12 (|has| |#3| (-1036 (-564))) (|has| |#3| (-1097))) (((-407 (-564))) -12 (|has| |#3| (-1036 (-407 (-564)))) (|has| |#3| (-1097)))) -(|has| |#2| (-363)) -(((|#2|) |has| |#2| (-1047)) (((-564)) -12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1047)))) -(((|#1|) . T)) -(|has| |#2| (-363)) -(((#0=(-407 (-564)) #0#) |has| |#2| (-38 (-407 (-564)))) ((|#2| |#2|) . T) (($ $) -2682 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907)))) -((($ $) -2682 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564))))) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-407 (-564)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-407 (-564)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-407 (-564)) #0#) . T)) +(((|#4|) |has| |#4| (-1049))) +(((|#3|) |has| |#3| (-1049))) +(-12 (|has| |#1| (-365)) (|has| |#2| (-820))) +(-12 (|has| |#1| (-365)) (|has| |#2| (-820))) +((((-566)) . T) (((-409 (-566))) -2809 (|has| |#2| (-38 (-409 (-566)))) (|has| |#2| (-1038 (-409 (-566))))) ((|#2|) . T) (($) -2809 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) (((-864 |#1|)) . T)) +((((-1124 |#1| |#2|)) . T) (((-566)) . T) ((|#3|) . T) (($) -2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566))))) ((|#2|) . T)) +((((-862)) -2809 (|has| |#1| (-613 (-862))) (|has| |#1| (-850)) (|has| |#1| (-1099)))) +((((-538)) |has| |#1| (-614 (-538)))) +(((|#1|) . T) (((-409 (-566))) . T) (($) . T) (((-566)) . T)) +(((|#1|) . T) (((-409 (-566))) . T) (($) . T) (((-566)) . T)) +(((|#1|) . T) (((-409 (-566))) . T) (($) . T) (((-566)) . T)) +((((-1180)) . T)) +((((-672 |#1|)) . T)) +((((-409 |#2|)) . T) (((-409 (-566))) . T) (($) . T)) +((($ $) . T) ((#0=(-409 (-566)) #0#) . T)) +((((-862)) . T)) +((((-644 $)) . T) (((-1157)) . T) (((-1175)) . T) (((-566)) . T) (((-225)) . T) (((-862)) . T)) +((($) . T) (((-409 (-566))) . T)) +(((|#1|) . T)) +(((|#4|) |has| |#4| (-1099)) (((-566)) -12 (|has| |#4| (-1038 (-566))) (|has| |#4| (-1099))) (((-409 (-566))) -12 (|has| |#4| (-1038 (-409 (-566)))) (|has| |#4| (-1099)))) +(((|#3|) |has| |#3| (-1099)) (((-566)) -12 (|has| |#3| (-1038 (-566))) (|has| |#3| (-1099))) (((-409 (-566))) -12 (|has| |#3| (-1038 (-409 (-566)))) (|has| |#3| (-1099)))) +(|has| |#2| (-365)) +(((|#2|) |has| |#2| (-1049)) (((-566)) -12 (|has| |#2| (-639 (-566))) (|has| |#2| (-1049)))) +(((|#1|) . T)) +(|has| |#2| (-365)) +(((#0=(-409 (-566)) #0#) |has| |#2| (-38 (-409 (-566)))) ((|#2| |#2|) . T) (($ $) -2809 (|has| |#2| (-172)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) +((($ $) -2809 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1| |#1|) . T) ((#0=(-409 (-566)) #0#) |has| |#1| (-38 (-409 (-566))))) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-409 (-566)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-409 (-566)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-409 (-566)) #0#) . T)) (((|#2| |#2|) . T)) -((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T) (($) -2682 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907)))) -((($) -2682 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -(((|#1|) . T) (($) . T) (((-407 (-564))) . T)) -(((|#1|) . T) (($) . T) (((-407 (-564))) . T)) -(((|#1|) . T) (($) . T) (((-407 (-564))) . T)) -(((|#2|) . T)) -((((-860)) |has| |#1| (-1097))) -((($) . T)) -((((-1248 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#2| (-818)) -(|has| |#2| (-818)) -((($) -2682 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -(|has| |#1| (-363)) -(|has| |#1| (-363)) -(|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) -(|has| |#1| (-363)) -((($) -2682 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -(((|#1|) |has| |#2| (-417 |#1|))) -(((|#1|) |has| |#2| (-417 |#1|))) -((((-1155)) . T)) -((((-908 |#1|)) . T) (((-407 (-564))) . T) (($) . T)) -((((-860)) . T) (((-1178)) . T)) -((((-860)) . T) (((-1178)) . T)) -((((-860)) . T) (((-1178)) . T)) -((((-642 |#1|)) . T) (((-860)) -2682 (|has| |#1| (-611 (-860))) (|has| |#1| (-848)) (|has| |#1| (-1097)))) -((((-1178)) . T)) -((((-1178)) . T)) -((((-1178)) . T)) -((((-642 |#1|)) . T)) -((((-536)) |has| |#1| (-612 (-536)))) -((((-860)) . T) (((-1178)) . T)) -((((-1178)) . T)) -((((-860)) . T)) -((((-860)) . T) (((-1178)) . T)) -((((-1211)) . T) (((-860)) . T) (((-1178)) . T)) -((((-1178)) . T)) -((((-1178)) . T)) -((((-2 (|:| -1914 (-1173)) (|:| -2683 (-52)))) |has| (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-309 (-2 (|:| -1914 (-1173)) (|:| -2683 (-52)))))) -(-2682 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907))) -((((-564) |#1|) . T)) -((((-564) |#1|) . T)) -((((-564) |#1|) . T)) -(-2682 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) -((((-564) |#1|) . T)) -(((|#1|) . T)) -(-2682 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) -(-2682 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) -((($) -2682 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-564)) . T) (((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172))) -((((-1173)) |has| |#1| (-898 (-1173))) (((-816 (-1173))) . T)) -(-2682 (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-791)) (|has| |#3| (-846)) (|has| |#3| (-1047))) -((((-817 |#1|)) . T)) +((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) . T) (($) -2809 (|has| |#2| (-172)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) +((($) -2809 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +(((|#1|) . T) (($) . T) (((-409 (-566))) . T)) +(((|#1|) . T) (($) . T) (((-409 (-566))) . T)) +(((|#1|) . T) (($) . T) (((-409 (-566))) . T)) +(((|#2|) . T)) +((((-862)) |has| |#1| (-1099))) +((($) . T)) +((((-1250 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#2| (-820)) +(|has| |#2| (-820)) +((($) -2809 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +(|has| |#1| (-365)) +(|has| |#1| (-365)) +(|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) +(|has| |#1| (-365)) +((($) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +(((|#1|) |has| |#2| (-419 |#1|))) +(((|#1|) |has| |#2| (-419 |#1|))) +((((-1157)) . T)) +((((-910 |#1|)) . T) (((-409 (-566))) . T) (($) . T)) +((((-862)) . T) (((-1180)) . T)) +((((-862)) . T) (((-1180)) . T)) +((((-862)) . T) (((-1180)) . T)) +((((-644 |#1|)) . T) (((-862)) -2809 (|has| |#1| (-613 (-862))) (|has| |#1| (-850)) (|has| |#1| (-1099)))) +((((-1180)) . T)) +((((-1180)) . T)) +((((-1180)) . T)) +((((-644 |#1|)) . T)) +((((-538)) |has| |#1| (-614 (-538)))) +((((-862)) . T) (((-1180)) . T)) +((((-1180)) . T)) +((((-862)) . T)) +((((-862)) . T) (((-1180)) . T)) +((((-1213)) . T) (((-862)) . T) (((-1180)) . T)) +((((-1180)) . T)) +((((-1180)) . T)) +((((-2 (|:| -1928 (-1175)) (|:| -2806 (-52)))) |has| (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-310 (-2 (|:| -1928 (-1175)) (|:| -2806 (-52)))))) +(-2809 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) +((((-566) |#1|) . T)) +((((-566) |#1|) . T)) +((((-566) |#1|) . T)) +(-2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) +((((-566) |#1|) . T)) +(((|#1|) . T)) +(-2809 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) +(-2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) +((($) -2809 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-566)) . T) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) +((((-1175)) |has| |#1| (-900 (-1175))) (((-818 (-1175))) . T)) +(-2809 (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-793)) (|has| |#3| (-848)) (|has| |#3| (-1049))) +((((-819 |#1|)) . T)) (((|#1| |#2|) . T)) -((((-860)) . T)) -(-2682 (|has| |#3| (-172)) (|has| |#3| (-724)) (|has| |#3| (-846)) (|has| |#3| (-1047))) +((((-862)) . T)) +(-2809 (|has| |#3| (-172)) (|has| |#3| (-726)) (|has| |#3| (-848)) (|has| |#3| (-1049))) (((|#1| |#2|) . T)) -((($) . T) (((-564)) . T) (((-407 (-564))) . T)) -(|has| |#1| (-38 (-407 (-564)))) -((((-860)) . T)) -((((-1248 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-407 (-564))) . T)) -(((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556)) (((-407 (-564))) |has| |#1| (-556))) -(((|#2|) . T) (((-564)) |has| |#2| (-637 (-564)))) -(|has| |#1| (-363)) -(-2682 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (-12 (|has| |#1| (-363)) (|has| |#2| (-233)))) -(|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) -(|has| |#1| (-363)) -(((|#1|) . T)) -(((#0=(-407 (-564)) #0#) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($ $) -2682 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((|#1| |#1|) . T)) -((((-564) |#1|) . T)) -((((-316 |#1|)) . T)) -((((-908 |#1|)) . T) (((-407 (-564))) . T) (((-564)) . T) (($) . T)) -(((#0=(-697) (-1169 #0#)) . T)) -((((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2682 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((|#1|) . T)) -(((|#1|) . T) (($) . T) (((-564)) . T) (((-407 (-564))) . T)) +((($) . T) (((-566)) . T) (((-409 (-566))) . T)) +(|has| |#1| (-38 (-409 (-566)))) +((((-862)) . T)) +((((-1250 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-409 (-566))) . T)) +(((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-558)) (((-409 (-566))) |has| |#1| (-558))) +(((|#2|) . T) (((-566)) |has| |#2| (-639 (-566)))) +(|has| |#1| (-365)) +(-2809 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (-12 (|has| |#1| (-365)) (|has| |#2| (-233)))) +(|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) +(|has| |#1| (-365)) +(((|#1|) . T)) +(((#0=(-409 (-566)) #0#) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($ $) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) ((|#1| |#1|) . T)) +((((-566) |#1|) . T)) +((((-317 |#1|)) . T)) +((((-910 |#1|)) . T) (((-409 (-566))) . T) (((-566)) . T) (($) . T)) +(((#0=(-699) (-1171 #0#)) . T)) +((((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) ((|#1|) . T)) +(((|#1|) . T) (($) . T) (((-566)) . T) (((-409 (-566))) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(|has| |#1| (-846)) -(((|#2|) . T) (((-1173)) -12 (|has| |#1| (-363)) (|has| |#2| (-1036 (-1173)))) (((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2682 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-564)) . T) ((|#1|) |has| |#1| (-172))) -(((|#2|) . T) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-564)) . T) (($) -2682 (|has| |#1| (-363)) (|has| |#1| (-556)))) -((($ $) . T) ((#0=(-862 |#1|) $) . T) ((#0# |#2|) . T)) -((((-1122 |#1| (-1173))) . T) (((-816 (-1173))) . T) ((|#1|) . T) (((-564)) |has| |#1| (-1036 (-564))) (((-407 (-564))) |has| |#1| (-1036 (-407 (-564)))) (((-1173)) . T)) +(|has| |#1| (-848)) +(((|#2|) . T) (((-1175)) -12 (|has| |#1| (-365)) (|has| |#2| (-1038 (-1175)))) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2809 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-566)) . T) ((|#1|) |has| |#1| (-172))) +(((|#2|) . T) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (((-566)) . T) (($) -2809 (|has| |#1| (-365)) (|has| |#1| (-558)))) +((($ $) . T) ((#0=(-864 |#1|) $) . T) ((#0# |#2|) . T)) +((((-1124 |#1| (-1175))) . T) (((-818 (-1175))) . T) ((|#1|) . T) (((-566)) |has| |#1| (-1038 (-566))) (((-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) (((-1175)) . T)) ((($) . T)) (((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T)) -(((#0=(-1079) |#1|) . T) ((#0# $) . T) (($ $) . T)) -((($ $) . T) ((#0=(-1173) $) |has| |#1| (-233)) ((#0# |#1|) |has| |#1| (-233)) ((#1=(-1085 (-1173)) |#1|) . T) ((#1# $) . T)) +(((#0=(-1081) |#1|) . T) ((#0# $) . T) (($ $) . T)) +((($ $) . T) ((#0=(-1175) $) |has| |#1| (-233)) ((#0# |#1|) |has| |#1| (-233)) ((#1=(-1087 (-1175)) |#1|) . T) ((#1# $) . T)) ((($) . T) ((|#2|) . T)) -((($) . T) ((|#2|) . T) (((-407 (-564))) |has| |#2| (-38 (-407 (-564))))) -(|has| |#2| (-907)) -((($) . T) ((#0=(-1247 |#2| |#3| |#4|)) |has| #0# (-172)) (((-407 (-564))) |has| #0# (-38 (-407 (-564))))) +((($) . T) ((|#2|) . T) (((-409 (-566))) |has| |#2| (-38 (-409 (-566))))) +(|has| |#2| (-909)) +((($) . T) ((#0=(-1249 |#2| |#3| |#4|)) |has| #0# (-172)) (((-409 (-566))) |has| #0# (-38 (-409 (-566))))) (((|#1|) |has| |#1| (-172))) -((((-564) |#1|) . T)) +((((-566) |#1|) . T)) (((|#1|) . T)) -((((-1178)) . T)) -(((#0=(-1248 |#1| |#2| |#3| |#4|)) |has| #0# (-309 #0#))) +((((-1180)) . T)) +(((#0=(-1250 |#1| |#2| |#3| |#4|)) |has| #0# (-310 #0#))) ((($) . T)) (((|#1|) . T)) -((($ $) -2682 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((#0=(-407 (-564)) #0#) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#2| |#2|) |has| |#1| (-363)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -2682 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((#0=(-407 (-564)) #0#) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363)))) +((($ $) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) ((#0=(-409 (-566)) #0#) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#2| |#2|) |has| |#1| (-365)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) ((#0=(-409 (-566)) #0#) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365)))) (|has| |#2| (-233)) (|has| $ (-147)) -((((-860)) . T)) -((($) . T) (((-407 (-564))) -2682 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T)) -((((-860)) . T)) -(|has| |#1| (-846)) +((((-862)) . T)) +((($) . T) (((-409 (-566))) -2809 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) +((((-862)) . T)) +(|has| |#1| (-848)) ((((-129)) . T)) -((((-1173)) -12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173))))) -((((-407 (-564))) . T) (((-697)) . T) (($) . T) (((-564)) . T)) +((((-1175)) -12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175))))) +((((-409 (-566))) . T) (((-699)) . T) (($) . T) (((-566)) . T)) (((|#1|) . T)) ((((-129)) . T)) -((((-407 |#2|) |#3|) . T)) -((((-860)) . T)) -(((|#2| (-670 |#1|)) . T)) -(-12 (|has| |#1| (-307)) (|has| |#1| (-907))) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) +((((-409 |#2|) |#3|) . T)) +((((-862)) . T)) +(-12 (|has| |#1| (-308)) (|has| |#1| (-909))) +(((|#2| (-672 |#1|)) . T)) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (((|#4|) . T)) -(|has| |#1| (-556)) -((($) -2682 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#2|) |has| |#1| (-363)) ((|#1|) . T)) -((((-1173)) -2682 (-12 (|has| (-1254 |#1| |#2| |#3|) (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173)))))) -(((|#1|) . T) (($) -2682 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363)))) -((((-1173)) -12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) -((((-1173)) -12 (|has| |#1| (-15 * (|#1| (-769) |#1|))) (|has| |#1| (-898 (-1173))))) -(((|#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) -((((-564) |#1|) . T)) -(-2682 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907))) -(((|#1|) . T)) -(((|#1| (-531 (-816 (-1173)))) . T)) -(-2682 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) -(-2682 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) -((((-564)) . T) ((|#2|) . T) (($) . T) (((-407 (-564))) . T) (((-1173)) |has| |#2| (-1036 (-1173)))) -(((|#1|) . T)) -(-2682 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) -(((|#1|) . T)) -(-2682 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-791)) (|has| |#2| (-846)) (|has| |#2| (-1047))) -(-2682 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-791)) (|has| |#2| (-791)))) -((((-1254 |#1| |#2| |#3|)) |has| |#1| (-363))) -((($) . T) (((-868 |#1|)) . T) (((-407 (-564))) . T)) -((((-1254 |#1| |#2| |#3|)) |has| |#1| (-363))) -(|has| |#1| (-556)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-407 |#2|)) . T)) -(-2682 (|has| |#1| (-363)) (|has| |#1| (-349))) -((((-860)) -2682 (|has| |#1| (-611 (-860))) (|has| |#1| (-848)) (|has| |#1| (-1097)))) -((((-536)) |has| |#1| (-612 (-536)))) -((((-860)) -2682 (|has| |#1| (-611 (-860))) (|has| |#1| (-1097)))) -((((-860)) -2682 (|has| |#1| (-611 (-860))) (|has| |#1| (-848)) (|has| |#1| (-1097)))) -((((-536)) |has| |#1| (-612 (-536)))) -((((-860)) -2682 (|has| |#1| (-611 (-860))) (|has| |#1| (-848)) (|has| |#1| (-1097)))) -((((-536)) |has| |#1| (-612 (-536)))) -((((-860)) -2682 (|has| |#1| (-611 (-860))) (|has| |#1| (-1097)))) -(((|#1|) . T)) -(((|#2| |#2|) . T) ((#0=(-407 (-564)) #0#) . T) (($ $) . T)) -((((-564)) . T)) -(((|#2|) . T) (((-407 (-564))) . T) (($) . T)) -((((-860)) . T)) -((($) . T)) -((((-581 |#1|)) . T) (((-407 (-564))) . T) (($) . T)) -((((-860)) . T)) -((((-407 (-564))) . T) (($) . T)) -((((-564) |#1|) . T)) -((($) . T)) -((((-860)) . T)) -((($ $) . T) (((-1173) $) . T)) -((((-536)) |has| |#2| (-612 (-536))) (((-890 (-379))) |has| |#2| (-612 (-890 (-379)))) (((-890 (-564))) |has| |#2| (-612 (-890 (-564))))) -((((-860)) . T)) -((((-860)) . T)) -((((-890 (-564))) -12 (|has| |#1| (-612 (-890 (-564)))) (|has| |#3| (-612 (-890 (-564))))) (((-890 (-379))) -12 (|has| |#1| (-612 (-890 (-379)))) (|has| |#3| (-612 (-890 (-379))))) (((-536)) -12 (|has| |#1| (-612 (-536))) (|has| |#3| (-612 (-536))))) -((((-860)) . T)) -((((-860)) . T)) -((((-860)) . T)) -(((|#1|) . T) (((-860)) . T) (((-1178)) . T)) -((((-860)) . T)) -((((-1178)) . T)) -((((-114)) . T) ((|#1|) . T) (((-564)) . T)) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) -(((|#1| (-531 (-862 |#2|)) (-862 |#2|) (-778 |#1| (-862 |#2|))) . T)) +(|has| |#1| (-558)) +((($) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#2|) |has| |#1| (-365)) ((|#1|) . T)) +((((-1175)) -2809 (-12 (|has| (-1256 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) +(((|#1|) . T) (($) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365)))) +((((-1175)) -12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) +((((-1175)) -12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) +(((|#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) +((((-566) |#1|) . T)) +(-2809 (|has| |#2| (-172)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) +(((|#1|) . T)) +(((|#1| (-533 (-818 (-1175)))) . T)) +(-2809 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) +(-2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) +((((-566)) . T) ((|#2|) . T) (($) . T) (((-409 (-566))) . T) (((-1175)) |has| |#2| (-1038 (-1175)))) +(((|#1|) . T)) +(-2809 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) +(((|#1|) . T)) +(-2809 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049))) +(-2809 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-793)) (|has| |#2| (-793)))) +((((-1256 |#1| |#2| |#3|)) |has| |#1| (-365))) +((($) . T) (((-870 |#1|)) . T) (((-409 (-566))) . T)) +((((-1256 |#1| |#2| |#3|)) |has| |#1| (-365))) +(|has| |#1| (-558)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-409 |#2|)) . T)) +(-2809 (|has| |#1| (-365)) (|has| |#1| (-351))) +((((-862)) -2809 (|has| |#1| (-613 (-862))) (|has| |#1| (-850)) (|has| |#1| (-1099)))) +((((-538)) |has| |#1| (-614 (-538)))) +((((-862)) -2809 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099)))) +((((-862)) -2809 (|has| |#1| (-613 (-862))) (|has| |#1| (-850)) (|has| |#1| (-1099)))) +((((-538)) |has| |#1| (-614 (-538)))) +((((-862)) -2809 (|has| |#1| (-613 (-862))) (|has| |#1| (-850)) (|has| |#1| (-1099)))) +((((-538)) |has| |#1| (-614 (-538)))) +((((-862)) -2809 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099)))) +(((|#1|) . T)) +(((|#2| |#2|) . T) ((#0=(-409 (-566)) #0#) . T) (($ $) . T)) +((((-566)) . T)) +(((|#2|) . T) (((-409 (-566))) . T) (($) . T)) +((((-862)) . T)) +((($) . T)) +((((-583 |#1|)) . T) (((-409 (-566))) . T) (($) . T)) +((((-862)) . T)) +((((-409 (-566))) . T) (($) . T)) +((((-566) |#1|) . T)) +((($) . T)) +((((-862)) . T)) +((($ $) . T) (((-1175) $) . T)) +((((-538)) |has| |#2| (-614 (-538))) (((-892 (-381))) |has| |#2| (-614 (-892 (-381)))) (((-892 (-566))) |has| |#2| (-614 (-892 (-566))))) +((((-862)) . T)) +((((-862)) . T)) +((((-892 (-566))) -12 (|has| |#1| (-614 (-892 (-566)))) (|has| |#3| (-614 (-892 (-566))))) (((-892 (-381))) -12 (|has| |#1| (-614 (-892 (-381)))) (|has| |#3| (-614 (-892 (-381))))) (((-538)) -12 (|has| |#1| (-614 (-538))) (|has| |#3| (-614 (-538))))) +((((-862)) . T)) +((((-862)) . T)) +((((-862)) . T)) +(((|#1|) . T) (((-862)) . T) (((-1180)) . T)) +((((-862)) . T)) +((((-1180)) . T)) +((((-114)) . T) ((|#1|) . T) (((-566)) . T)) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) +(((|#1| (-533 (-864 |#2|)) (-864 |#2|) (-780 |#1| (-864 |#2|))) . T)) (((|#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) . T)) ((((-129)) . T)) -((($) . T) (((-564)) . T) (((-116 |#1|)) . T) (((-407 (-564))) . T)) -((((-860)) . T)) -((((-1254 |#1| |#2| |#3|)) . T)) -((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -2682 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907)))) +((($) . T) (((-566)) . T) (((-116 |#1|)) . T) (((-409 (-566))) . T)) +((((-862)) . T)) +((((-1256 |#1| |#2| |#3|)) . T)) +((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) |has| |#2| (-172)) (($) -2809 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) (((|#2|) . T) ((|#6|) . T)) -((($) . T) (((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T)) -((($) . T) (((-564)) . T)) -((($) -2682 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -((((-1101)) . T)) -((((-860)) . T)) -((($) -2682 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -((($) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T)) +((($) . T) (((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) . T)) +((($) . T) (((-566)) . T)) +((($) -2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((((-1103)) . T)) +((((-862)) . T)) +((($) -2809 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((($) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) . T)) ((($) . T)) -((($) -2682 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -((((-1254 |#1| |#2| |#3|)) |has| |#1| (-363))) -(|has| |#1| (-363)) -((((-1254 |#1| |#2| |#3|)) . T) (((-1226 |#1| |#2| |#3|)) . T)) -((((-1173)) . T) (((-860)) . T)) -(|has| |#2| (-907)) +((($) -2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((((-1256 |#1| |#2| |#3|)) |has| |#1| (-365))) +(|has| |#1| (-365)) +((((-1256 |#1| |#2| |#3|)) . T) (((-1228 |#1| |#2| |#3|)) . T)) +((((-1175)) . T) (((-862)) . T)) +(|has| |#2| (-909)) (((|#1|) . T)) -(|has| |#1| (-907)) +(|has| |#1| (-909)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) |has| |#1| (-172))) -((((-697)) . T)) -((((-860)) -2682 (|has| |#1| (-611 (-860))) (|has| |#1| (-1097)))) -((((-1178)) . T)) +((((-699)) . T)) +((((-862)) -2809 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099)))) +((((-1180)) . T)) (((|#1|) |has| |#1| (-172))) -((((-1178)) . T)) -((((-1248 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-407 (-564))) . T)) -(((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556)) (((-407 (-564))) |has| |#1| (-556))) -((((-1178)) . T)) -((((-1248 |#1| |#2| |#3| |#4|)) . T) (((-407 (-564))) . T) (($) . T)) -(((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-556)) (($) |has| |#1| (-556))) -((((-407 (-564))) . T) (($) . T)) -(((|#1| (-564)) . T)) +((((-1180)) . T)) +((((-1250 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-409 (-566))) . T)) +(((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-558)) (((-409 (-566))) |has| |#1| (-558))) +((((-1180)) . T)) +((((-1250 |#1| |#2| |#3| |#4|)) . T) (((-409 (-566))) . T) (($) . T)) +(((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-558)) (($) |has| |#1| (-558))) +((((-409 (-566))) . T) (($) . T)) +(((|#1| (-566)) . T)) (((|#1|) |has| |#1| (-172))) -((((-407 (-564))) . T) (((-564)) . T) (($) . T)) -((((-1178)) . T)) -((((-1178)) . T)) -((((-1178)) . T)) -((((-1178)) . T)) -(-2682 (|has| |#1| (-363)) (|has| |#1| (-349))) -(-2682 (|has| |#1| (-363)) (|has| |#1| (-349))) -((((-1178)) . T)) -((((-1178)) . T)) -(|has| |#1| (-363)) -(|has| |#1| (-363)) -(-2682 (|has| |#1| (-172)) (|has| |#1| (-556))) -(((|#1| (-564)) . T)) -(((|#1| (-407 (-564))) . T)) -(((|#1| (-769)) . T)) -((((-407 (-564))) . T)) -(((|#1| (-531 |#2|) |#2|) . T)) -((((-564) |#1|) . T)) -((((-564) |#1|) . T)) -(|has| |#1| (-1097)) -((((-564) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-890 (-379))) . T) (((-890 (-564))) . T) (((-1173)) . T) (((-536)) . T)) -(((|#1|) . T)) -((((-860)) . T)) -(-2682 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-791)) (|has| |#2| (-846)) (|has| |#2| (-1047))) -(-2682 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-791)) (|has| |#2| (-791)))) -((((-564)) . T)) -((((-564)) . T)) -((((-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) . T)) +((((-409 (-566))) . T) (((-566)) . T) (($) . T)) +((((-1180)) . T)) +((((-1180)) . T)) +((((-1180)) . T)) +((((-1180)) . T)) +(-2809 (|has| |#1| (-365)) (|has| |#1| (-351))) +(-2809 (|has| |#1| (-365)) (|has| |#1| (-351))) +((((-1180)) . T)) +((((-1180)) . T)) +(|has| |#1| (-365)) +(|has| |#1| (-365)) +(-2809 (|has| |#1| (-172)) (|has| |#1| (-558))) +(((|#1| (-566)) . T)) +(((|#1| (-409 (-566))) . T)) +(((|#1| (-771)) . T)) +((((-409 (-566))) . T)) +(((|#1| (-533 |#2|) |#2|) . T)) +((((-566) |#1|) . T)) +((((-566) |#1|) . T)) +(|has| |#1| (-1099)) +((((-566) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-892 (-381))) . T) (((-892 (-566))) . T) (((-1175)) . T) (((-538)) . T)) +(((|#1|) . T)) +((((-862)) . T)) +(-2809 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049))) +(-2809 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-793)) (|has| |#2| (-793)))) +((((-566)) . T)) +((((-566)) . T)) +((((-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(-2682 (|has| |#2| (-172)) (|has| |#2| (-724)) (|has| |#2| (-846)) (|has| |#2| (-1047))) -((((-1173)) -12 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) -(-2682 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-724)) (|has| |#2| (-724)))) +(-2809 (|has| |#2| (-172)) (|has| |#2| (-726)) (|has| |#2| (-848)) (|has| |#2| (-1049))) +((((-1175)) -12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) +(-2809 (-12 (|has| |#1| (-475)) (|has| |#2| (-475))) (-12 (|has| |#1| (-726)) (|has| |#2| (-726)))) (|has| |#1| (-145)) (|has| |#1| (-147)) -(|has| |#1| (-363)) +(|has| |#1| (-365)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((($) . T) ((#0=(-1247 |#2| |#3| |#4|)) |has| #0# (-172)) (((-407 (-564))) |has| #0# (-38 (-407 (-564))))) +((($) . T) ((#0=(-1249 |#2| |#3| |#4|)) |has| #0# (-172)) (((-409 (-566))) |has| #0# (-38 (-409 (-566))))) (|has| |#1| (-233)) -((($) . T) (((-564)) . T) (((-407 (-564))) . T)) -((($) . T) (((-564)) . T)) -((($) . T) (((-564)) . T)) -((($) . T) ((#0=(-1247 |#2| |#3| |#4|)) . T) (((-407 (-564))) |has| #0# (-38 (-407 (-564))))) -((((-860)) . T)) -(((|#1| (-769) (-1079)) . T)) -((((-564) |#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) -((((-564) |#1|) . T)) -((((-564) |#1|) . T)) +((($) . T) (((-566)) . T) (((-409 (-566))) . T)) +((($) . T) (((-566)) . T)) +((($) . T) (((-566)) . T)) +((($) . T) ((#0=(-1249 |#2| |#3| |#4|)) . T) (((-409 (-566))) |has| #0# (-38 (-409 (-566))))) +((((-862)) . T)) +(((|#1| (-771) (-1081)) . T)) +((((-566) |#1|) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) +((((-566) |#1|) . T)) +((((-566) |#1|) . T)) ((((-116 |#1|)) . T)) -((((-407 (-564))) . T) (((-564)) . T)) -(((|#2|) |has| |#2| (-1047))) -((((-407 (-564))) . T) (($) . T)) -(((|#2|) . T)) -((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556))) -((((-564)) . T)) -((((-564)) . T)) -((((-1155) (-1173) (-564) (-225) (-860)) . T)) +((((-409 (-566))) . T) (((-566)) . T)) +(((|#2|) |has| |#2| (-1049))) +((((-409 (-566))) . T) (($) . T)) +(((|#2|) . T)) +((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-558))) +((((-566)) . T)) +((((-566)) . T)) +((((-1157) (-1175) (-566) (-225) (-862)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) -((((-564)) . T) ((|#2|) |has| |#2| (-172))) -((((-114)) . T) ((|#1|) . T) (((-564)) . T)) -(-2682 (|has| |#1| (-349)) (|has| |#1| (-368))) +((((-566)) . T) ((|#2|) |has| |#2| (-172))) +((((-114)) . T) ((|#1|) . T) (((-566)) . T)) +(-2809 (|has| |#1| (-351)) (|has| |#1| (-370))) (((|#1| |#2|) . T)) ((((-225)) . T)) -((((-407 (-564))) . T) (($) . T) (((-564)) . T)) -((((-860)) . T)) +((((-409 (-566))) . T) (($) . T) (((-566)) . T)) +((((-862)) . T)) ((($) . T) ((|#1|) . T)) -((($) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T)) -((($) . T) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) -(((|#2|) |has| |#2| (-1097)) (((-564)) -12 (|has| |#2| (-1036 (-564))) (|has| |#2| (-1097))) (((-407 (-564))) -12 (|has| |#2| (-1036 (-407 (-564)))) (|has| |#2| (-1097)))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-536)) |has| |#1| (-612 (-536)))) -((((-860)) -2682 (|has| |#1| (-611 (-860))) (|has| |#1| (-848)) (|has| |#1| (-1097)))) -((($) . T) (((-407 (-564))) . T)) -(|has| |#1| (-907)) -(|has| |#1| (-907)) -((((-225)) -12 (|has| |#1| (-363)) (|has| |#2| (-1020))) (((-379)) -12 (|has| |#1| (-363)) (|has| |#2| (-1020))) (((-890 (-379))) -12 (|has| |#1| (-363)) (|has| |#2| (-612 (-890 (-379))))) (((-890 (-564))) -12 (|has| |#1| (-363)) (|has| |#2| (-612 (-890 (-564))))) (((-536)) -12 (|has| |#1| (-363)) (|has| |#2| (-612 (-536))))) -((((-860)) . T)) -((((-860)) . T)) +((($) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) . T)) +((($) . T) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +(((|#2|) |has| |#2| (-1099)) (((-566)) -12 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099))) (((-409 (-566))) -12 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099)))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-538)) |has| |#1| (-614 (-538)))) +((((-862)) -2809 (|has| |#1| (-613 (-862))) (|has| |#1| (-850)) (|has| |#1| (-1099)))) +((($) . T) (((-409 (-566))) . T)) +(|has| |#1| (-909)) +(|has| |#1| (-909)) +((((-225)) -12 (|has| |#1| (-365)) (|has| |#2| (-1022))) (((-381)) -12 (|has| |#1| (-365)) (|has| |#2| (-1022))) (((-892 (-381))) -12 (|has| |#1| (-365)) (|has| |#2| (-614 (-892 (-381))))) (((-892 (-566))) -12 (|has| |#1| (-365)) (|has| |#2| (-614 (-892 (-566))))) (((-538)) -12 (|has| |#1| (-365)) (|has| |#2| (-614 (-538))))) +((((-862)) . T)) +((((-862)) . T)) (((|#2| |#2|) . T)) (((|#1| |#1|) |has| |#1| (-172))) -(((|#1|) . T) (((-564)) . T)) -((((-1178)) . T)) -(-2682 (|has| |#1| (-363)) (|has| |#1| (-556))) -(-2682 (|has| |#1| (-21)) (|has| |#1| (-846))) +(((|#1|) . T) (((-566)) . T)) +((((-1180)) . T)) +(-2809 (|has| |#1| (-365)) (|has| |#1| (-558))) +(-2809 (|has| |#1| (-21)) (|has| |#1| (-848))) (((|#2|) . T)) -(-2682 (|has| |#1| (-21)) (|has| |#1| (-846))) +(-2809 (|has| |#1| (-21)) (|has| |#1| (-848))) (((|#1|) |has| |#1| (-172))) (((|#1|) . T)) (((|#1|) . T)) -((((-860)) -2682 (-12 (|has| |#1| (-611 (-860))) (|has| |#2| (-611 (-860)))) (-12 (|has| |#1| (-1097)) (|has| |#2| (-1097))))) -((((-407 |#2|) |#3|) . T)) -((((-407 (-564))) . T) (($) . T)) -(|has| |#1| (-38 (-407 (-564)))) -(|has| |#1| (-363)) -((($ $) . T) ((#0=(-407 (-564)) #0#) . T)) -((($) . T) (((-564)) . T)) -(|has| (-407 |#2|) (-147)) -(|has| (-407 |#2|) (-145)) -((($) . T)) -((((-697)) . T)) -(((|#1|) . T) (((-407 (-564))) . T) (((-564)) . T) (($) . T)) -(((#0=(-564) #0#) . T)) -((($) . T) (((-407 (-564))) . T)) -(-2682 (|has| |#4| (-172)) (|has| |#4| (-724)) (|has| |#4| (-846)) (|has| |#4| (-1047))) -(-2682 (|has| |#3| (-172)) (|has| |#3| (-724)) (|has| |#3| (-846)) (|has| |#3| (-1047))) -((((-860)) . T) (((-1178)) . T)) -(|has| |#4| (-791)) -(-2682 (|has| |#4| (-791)) (|has| |#4| (-846))) -(|has| |#4| (-846)) -(|has| |#3| (-791)) -((((-1178)) . T)) -(-2682 (|has| |#3| (-791)) (|has| |#3| (-846))) -(|has| |#3| (-846)) -((((-564)) . T)) -(((|#2|) . T)) -((((-1173)) -2682 (-12 (|has| (-1171 |#1| |#2| |#3|) (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173)))))) -((((-1173)) -12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) -((((-1173)) -12 (|has| |#1| (-15 * (|#1| (-769) |#1|))) (|has| |#1| (-898 (-1173))))) +((((-862)) -2809 (-12 (|has| |#1| (-613 (-862))) (|has| |#2| (-613 (-862)))) (-12 (|has| |#1| (-1099)) (|has| |#2| (-1099))))) +((((-409 |#2|) |#3|) . T)) +((((-409 (-566))) . T) (($) . T)) +(|has| |#1| (-38 (-409 (-566)))) +(|has| |#1| (-365)) +((($ $) . T) ((#0=(-409 (-566)) #0#) . T)) +((($) . T) (((-566)) . T)) +(|has| (-409 |#2|) (-147)) +(|has| (-409 |#2|) (-145)) +((($) . T)) +((((-699)) . T)) +(((|#1|) . T) (((-409 (-566))) . T) (((-566)) . T) (($) . T)) +(((#0=(-566) #0#) . T)) +((($) . T) (((-409 (-566))) . T)) +(-2809 (|has| |#4| (-172)) (|has| |#4| (-726)) (|has| |#4| (-848)) (|has| |#4| (-1049))) +(-2809 (|has| |#3| (-172)) (|has| |#3| (-726)) (|has| |#3| (-848)) (|has| |#3| (-1049))) +((((-862)) . T) (((-1180)) . T)) +(|has| |#4| (-793)) +(-2809 (|has| |#4| (-793)) (|has| |#4| (-848))) +(|has| |#4| (-848)) +(|has| |#3| (-793)) +((((-1180)) . T)) +(-2809 (|has| |#3| (-793)) (|has| |#3| (-848))) +(|has| |#3| (-848)) +((((-566)) . T)) +(((|#2|) . T)) +((((-1175)) -2809 (-12 (|has| (-1173 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) +((((-1175)) -12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) +((((-1175)) -12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (((|#1| |#1|) . T) (($ $) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T)) -((((-862 |#1|)) . T)) -((((-1171 |#1| |#2| |#3|)) |has| |#1| (-363))) -((((-1137 |#1| |#2|)) . T)) -((((-1171 |#1| |#2| |#3|)) |has| |#1| (-363))) -(((|#2|) . T) (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) . T)) -((((-2 (|:| -1914 (-1173)) (|:| -2683 (-52)))) . T)) -((($) . T)) -(|has| |#1| (-1020)) -(((|#2|) . T) (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) . T)) -((((-860)) . T)) -((((-536)) |has| |#2| (-612 (-536))) (((-890 (-564))) |has| |#2| (-612 (-890 (-564)))) (((-890 (-379))) |has| |#2| (-612 (-890 (-379)))) (((-379)) . #0=(|has| |#2| (-1020))) (((-225)) . #0#)) -((((-294 |#3|)) . T)) -((((-1173) (-52)) . T)) -(((|#1|) . T)) -(|has| |#1| (-38 (-407 (-564)))) -(|has| |#1| (-38 (-407 (-564)))) -((((-860)) . T)) -(((|#2|) . T)) -((((-860)) . T)) +((((-864 |#1|)) . T)) +((((-1173 |#1| |#2| |#3|)) |has| |#1| (-365))) +((((-1139 |#1| |#2|)) . T)) +((((-1173 |#1| |#2| |#3|)) |has| |#1| (-365))) +(((|#2|) . T) (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) . T)) +((((-2 (|:| -1928 (-1175)) (|:| -2806 (-52)))) . T)) +((($) . T)) +(|has| |#1| (-1022)) +(((|#2|) . T) (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) . T)) +((((-862)) . T)) +((((-538)) |has| |#2| (-614 (-538))) (((-892 (-566))) |has| |#2| (-614 (-892 (-566)))) (((-892 (-381))) |has| |#2| (-614 (-892 (-381)))) (((-381)) . #0=(|has| |#2| (-1022))) (((-225)) . #0#)) +((((-295 |#3|)) . T)) +((((-1175) (-52)) . T)) +(((|#1|) . T)) +(|has| |#1| (-38 (-409 (-566)))) +(|has| |#1| (-38 (-409 (-566)))) +((((-862)) . T)) +(((|#2|) . T)) +((((-862)) . T)) ((($ $) . T)) -((((-407 |#2|)) . T) (((-407 (-564))) . T) (((-564)) . T) (($) . T)) -((((-407 (-564))) . T) (((-697)) . T) (($) . T)) -((((-1171 |#1| |#2| |#3|)) . T)) -((((-1171 |#1| |#2| |#3|)) . T) (((-1164 |#1| |#2| |#3|)) . T)) -((((-860)) . T)) -((((-860)) -2682 (|has| |#1| (-611 (-860))) (|has| |#1| (-1097)))) -((((-564) |#1|) . T)) -((((-1171 |#1| |#2| |#3|)) |has| |#1| (-363))) +((((-409 |#2|)) . T) (((-409 (-566))) . T) (((-566)) . T) (($) . T)) +((((-409 (-566))) . T) (((-699)) . T) (($) . T)) +((((-1173 |#1| |#2| |#3|)) . T)) +((((-1173 |#1| |#2| |#3|)) . T) (((-1166 |#1| |#2| |#3|)) . T)) +((((-862)) . T)) +((((-862)) -2809 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099)))) +((((-566) |#1|) . T)) +((((-1173 |#1| |#2| |#3|)) |has| |#1| (-365))) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) (((|#2|) . T)) -(|has| |#2| (-363)) -(((|#3|) . T) ((|#2|) . T) (($) -2682 (|has| |#4| (-172)) (|has| |#4| (-846)) (|has| |#4| (-1047))) ((|#4|) -2682 (|has| |#4| (-172)) (|has| |#4| (-363)) (|has| |#4| (-1047)))) -(((|#2|) . T) (($) -2682 (|has| |#3| (-172)) (|has| |#3| (-846)) (|has| |#3| (-1047))) ((|#3|) -2682 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1047)))) +(|has| |#2| (-365)) +(((|#3|) . T) ((|#2|) . T) (($) -2809 (|has| |#4| (-172)) (|has| |#4| (-848)) (|has| |#4| (-1049))) ((|#4|) -2809 (|has| |#4| (-172)) (|has| |#4| (-365)) (|has| |#4| (-1049)))) +(((|#2|) . T) (($) -2809 (|has| |#3| (-172)) (|has| |#3| (-848)) (|has| |#3| (-1049))) ((|#3|) -2809 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1049)))) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-363)) +(|has| |#1| (-365)) ((((-116 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-407 (-564))) |has| |#2| (-1036 (-407 (-564)))) (((-564)) |has| |#2| (-1036 (-564))) ((|#2|) . T) (((-862 |#1|)) . T)) -((((-1173)) . T) ((|#1|) . T)) -((((-860)) . T)) -((((-860)) . T)) -((((-860)) . T)) -((((-187)) . T) (((-860)) . T)) -((((-860)) . T)) +((((-409 (-566))) |has| |#2| (-1038 (-409 (-566)))) (((-566)) |has| |#2| (-1038 (-566))) ((|#2|) . T) (((-864 |#1|)) . T)) +((((-1175)) . T) ((|#1|) . T)) +((((-862)) . T)) +((((-862)) . T)) +((((-862)) . T)) +((((-187)) . T) (((-862)) . T)) +((((-862)) . T)) (((|#1|) . T)) -((((-860)) -2682 (|has| |#1| (-611 (-860))) (|has| |#1| (-1097)))) -((((-129)) . T) (((-860)) . T)) -((((-564) |#1|) . T)) +((((-862)) -2809 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099)))) +((((-129)) . T) (((-862)) . T)) +((((-566) |#1|) . T)) ((((-129)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#2| $) -12 (|has| |#1| (-363)) (|has| |#2| (-286 |#2| |#2|))) (($ $) . T)) +(((|#2| $) -12 (|has| |#1| (-365)) (|has| |#2| (-287 |#2| |#2|))) (($ $) . T)) ((($ $) . T)) -(-2682 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-907))) -(-2682 (|has| |#1| (-848)) (|has| |#1| (-1097))) -((((-860)) . T)) -((((-860)) . T)) -((((-860)) . T)) -(((|#1| (-531 |#2|)) . T)) -((((-2 (|:| -1914 (-1173)) (|:| -2683 (-52)))) . T)) -((((-564) (-129)) . T)) -(((|#1| (-564)) . T)) -(((|#1| (-407 (-564))) . T)) -(((|#1| (-769)) . T)) -((((-908 |#1|)) . T) (((-407 (-564))) . T) (((-564)) . T) (($) . T)) -((((-860)) . T) (((-1178)) . T)) -((((-860)) . T) (((-1178)) . T)) -((((-1178)) . T)) -((((-860)) . T) (((-1178)) . T)) -((((-1178)) . T)) -((((-116 |#1|)) . T) (($) . T) (((-407 (-564))) . T)) -((((-1178)) . T)) -((((-860)) . T) (((-1178)) . T)) -((((-860)) . T) (((-1178)) . T)) -(-2682 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907))) -(-2682 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) -((($) . T)) -(((|#2| (-531 (-862 |#1|))) . T)) -((((-1178)) . T)) -((((-1178)) . T)) -((((-564) |#1|) . T)) -((((-860)) . T) (((-1178)) . T)) -((((-1178)) . T)) -(((|#2|) . T)) -((((-860)) . T) (((-1178)) . T)) -((((-1178)) . T)) -((((-860)) . T) (((-1178)) . T)) -((((-1178)) . T)) -((((-860)) . T) (((-1178)) . T)) -((((-1178)) . T)) -((((-860)) -2682 (|has| |#1| (-611 (-860))) (|has| |#1| (-1097)))) -(((|#1|) . T)) -(((|#2| (-769)) . T)) +(-2809 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-909))) +(-2809 (|has| |#1| (-850)) (|has| |#1| (-1099))) +((((-862)) . T)) +((((-862)) . T)) +((((-862)) . T)) +(((|#1| (-533 |#2|)) . T)) +((((-2 (|:| -1928 (-1175)) (|:| -2806 (-52)))) . T)) +((((-566) (-129)) . T)) +(((|#1| (-566)) . T)) +(((|#1| (-409 (-566))) . T)) +(((|#1| (-771)) . T)) +((((-910 |#1|)) . T) (((-409 (-566))) . T) (((-566)) . T) (($) . T)) +((((-862)) . T) (((-1180)) . T)) +((((-862)) . T) (((-1180)) . T)) +((((-1180)) . T)) +((((-862)) . T) (((-1180)) . T)) +((((-1180)) . T)) +((((-116 |#1|)) . T) (($) . T) (((-409 (-566))) . T)) +((((-1180)) . T)) +((((-862)) . T) (((-1180)) . T)) +((((-862)) . T) (((-1180)) . T)) +(-2809 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) +(-2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) +((($) . T)) +(((|#2| (-533 (-864 |#1|))) . T)) +((((-1180)) . T)) +((((-1180)) . T)) +((((-566) |#1|) . T)) +((((-862)) . T) (((-1180)) . T)) +((((-1180)) . T)) +(((|#2|) . T)) +((((-862)) . T) (((-1180)) . T)) +((((-1180)) . T)) +((((-862)) . T) (((-1180)) . T)) +((((-1180)) . T)) +((((-862)) . T) (((-1180)) . T)) +((((-1180)) . T)) +((((-862)) -2809 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099)))) +(((|#1|) . T)) +(((|#2| (-771)) . T)) (((|#1| |#2|) . T)) -((((-1155) |#1|) . T)) -((((-407 |#2|)) . T)) -((((-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) . T)) -(|has| |#1| (-556)) -(|has| |#1| (-556)) +((((-1157) |#1|) . T)) +((((-409 |#2|)) . T)) +((((-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) . T)) +(|has| |#1| (-558)) +(|has| |#1| (-558)) ((($) . T) ((|#2|) . T)) -((($) . T) (((-407 (-564))) . T)) -((((-407 (-564))) . T) (($) . T)) +((($) . T) (((-409 (-566))) . T)) +((((-409 (-566))) . T) (($) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-564)) . T) (($) . T)) -(((|#2| $) |has| |#2| (-286 |#2| |#2|))) -(((|#1| (-642 |#1|)) |has| |#1| (-846))) -(-2682 (|has| |#1| (-233)) (|has| |#1| (-349))) -(-2682 (|has| |#1| (-363)) (|has| |#1| (-349))) -((((-1258 |#1|)) . T) (((-564)) . T) ((|#2|) . T) (((-407 (-564))) |has| |#2| (-1036 (-407 (-564))))) -(|has| |#1| (-1097)) -(((|#1|) . T)) -((((-1258 |#1|)) . T) (((-564)) . T) (($) -2682 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907))) (((-1079)) . T) ((|#2|) . T) (((-407 (-564))) -2682 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1036 (-407 (-564)))))) -((((-407 (-564))) . T) (($) . T)) -((((-997 |#1|)) . T) ((|#1|) . T) (((-564)) -2682 (|has| (-997 |#1|) (-1036 (-564))) (|has| |#1| (-1036 (-564)))) (((-407 (-564))) -2682 (|has| (-997 |#1|) (-1036 (-407 (-564)))) (|has| |#1| (-1036 (-407 (-564)))))) -((((-908 |#1|)) . T) (((-407 (-564))) . T) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) -((((-1173)) |has| |#1| (-898 (-1173)))) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) -((((-908 |#1|)) . T) (($) . T) (((-407 (-564))) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) -(((|#1| (-600 |#1| |#3|) (-600 |#1| |#2|)) . T)) -(((|#1|) . T) (((-407 (-564))) . T) (((-564)) . T) (($) . T)) -(((|#1|) . T)) -(((|#1|) . T) (((-407 (-564))) . T) (((-564)) . T) (($) . T)) +((((-566)) . T) (($) . T)) +(((|#2| $) |has| |#2| (-287 |#2| |#2|))) +(((|#1| (-644 |#1|)) |has| |#1| (-848))) +(-2809 (|has| |#1| (-233)) (|has| |#1| (-351))) +(-2809 (|has| |#1| (-365)) (|has| |#1| (-351))) +((((-1260 |#1|)) . T) (((-566)) . T) ((|#2|) . T) (((-409 (-566))) |has| |#2| (-1038 (-409 (-566))))) +(|has| |#1| (-1099)) +(((|#1|) . T)) +((((-1260 |#1|)) . T) (((-566)) . T) (($) -2809 (|has| |#2| (-365)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) (((-1081)) . T) ((|#2|) . T) (((-409 (-566))) -2809 (|has| |#2| (-38 (-409 (-566)))) (|has| |#2| (-1038 (-409 (-566)))))) +((((-409 (-566))) . T) (($) . T)) +((((-999 |#1|)) . T) ((|#1|) . T) (((-566)) -2809 (|has| (-999 |#1|) (-1038 (-566))) (|has| |#1| (-1038 (-566)))) (((-409 (-566))) -2809 (|has| (-999 |#1|) (-1038 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566)))))) +((((-910 |#1|)) . T) (((-409 (-566))) . T) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) +((((-1175)) |has| |#1| (-900 (-1175)))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) +((((-910 |#1|)) . T) (($) . T) (((-409 (-566))) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) +(((|#1| (-602 |#1| |#3|) (-602 |#1| |#2|)) . T)) +(((|#1|) . T) (((-409 (-566))) . T) (((-566)) . T) (($) . T)) +(((|#1|) . T)) +(((|#1|) . T) (((-409 (-566))) . T) (((-566)) . T) (($) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(((#0=(-1137 |#1| |#2|) #0#) |has| (-1137 |#1| |#2|) (-309 (-1137 |#1| |#2|)))) +(((#0=(-1139 |#1| |#2|) #0#) |has| (-1139 |#1| |#2|) (-310 (-1139 |#1| |#2|)))) (((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))) ((#0=(-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) #0#) |has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))))) -(((#0=(-116 |#1|)) |has| #0# (-309 #0#))) +(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) ((#0=(-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) #0#) |has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))))) +(((#0=(-116 |#1|)) |has| #0# (-310 #0#))) ((($ $) . T)) -(-2682 (|has| |#1| (-848)) (|has| |#1| (-1097))) -((($ $) . T) ((#0=(-862 |#1|) $) . T) ((#0# |#2|) . T)) +(-2809 (|has| |#1| (-850)) (|has| |#1| (-1099))) +((($ $) . T) ((#0=(-864 |#1|) $) . T) ((#0# |#2|) . T)) ((($ $) . T) ((|#2| $) |has| |#1| (-233)) ((|#2| |#1|) |has| |#1| (-233)) ((|#3| |#1|) . T) ((|#3| $) . T)) -(((-478 . -1097) T) ((-264 . -514) 187884) ((-247 . -514) 187827) ((-245 . -1097) 187777) ((-571 . -111) 187762) ((-531 . -23) T) ((-137 . -1097) T) ((-133 . -1097) T) ((-117 . -309) 187719) ((-138 . -1097) T) ((-479 . -514) 187511) ((-675 . -614) 187495) ((-692 . -102) T) ((-1138 . -514) 187414) ((-390 . -131) T) ((-1275 . -974) 187383) ((-1022 . -1049) 187320) ((-31 . -93) T) ((-600 . -489) 187304) ((-1022 . -638) 187241) ((-619 . -131) T) ((-817 . -844) T) ((-523 . -57) 187191) ((-519 . -514) 187124) ((-354 . -1049) 187069) ((-59 . -514) 187002) ((-516 . -514) 186935) ((-418 . -898) 186894) ((-169 . -1047) T) ((-497 . -514) 186827) ((-496 . -514) 186760) ((-354 . -638) 186705) ((-797 . -1036) 186488) ((-697 . -38) 186453) ((-1235 . -614) 186201) ((-343 . -349) T) ((-1091 . -1090) 186185) ((-1091 . -1097) 186163) ((-853 . -614) 186060) ((-169 . -243) 186011) ((-169 . -233) 185962) ((-1091 . -1092) 185920) ((-870 . -286) 185878) ((-225 . -793) T) ((-225 . -790) T) ((-692 . -284) NIL) ((-571 . -614) 185850) ((-1147 . -1188) 185829) ((-407 . -990) 185813) ((-48 . -1049) 185778) ((-699 . -21) T) ((-699 . -25) T) ((-48 . -638) 185743) ((-1277 . -646) 185717) ((-316 . -160) 185696) ((-316 . -143) 185675) ((-1147 . -107) 185625) ((-116 . -21) T) ((-40 . -231) 185602) ((-134 . -25) T) ((-116 . -25) T) ((-606 . -288) 185578) ((-475 . -288) 185557) ((-1235 . -326) 185534) ((-1235 . -1047) T) ((-853 . -1047) T) ((-797 . -338) 185518) ((-139 . -185) T) ((-117 . -1148) NIL) ((-91 . -611) 185450) ((-477 . -131) T) ((-1235 . -233) T) ((-1093 . -490) 185431) ((-1093 . -611) 185397) ((-1087 . -490) 185378) ((-1087 . -611) 185344) ((-592 . -1212) T) ((-1070 . -490) 185325) ((-571 . -1047) T) ((-1070 . -611) 185291) ((-660 . -715) 185275) ((-1063 . -490) 185256) ((-1063 . -611) 185222) ((-956 . -288) 185199) ((-60 . -34) T) ((-1059 . -793) T) ((-1059 . -790) T) ((-1034 . -490) 185180) ((-1017 . -490) 185161) ((-814 . -724) T) ((-729 . -47) 185126) ((-621 . -38) 185113) ((-355 . -290) T) ((-352 . -290) T) ((-344 . -290) T) ((-264 . -290) 185044) ((-247 . -290) 184975) ((-1034 . -611) 184941) ((-1022 . -102) T) ((-1017 . -611) 184907) ((-624 . -490) 184888) ((-413 . -724) T) ((-117 . -38) 184833) ((-483 . -490) 184814) ((-624 . -611) 184780) ((-413 . -473) T) ((-218 . -490) 184761) ((-483 . -611) 184727) ((-354 . -102) T) ((-218 . -611) 184693) ((-1206 . -1055) T) ((-343 . -644) 184623) ((-709 . -1055) T) ((-1171 . -47) 184600) ((-1170 . -47) 184570) ((-1164 . -47) 184547) ((-128 . -288) 184522) ((-1033 . -151) 184468) ((-908 . -290) T) ((-1123 . -47) 184440) ((-692 . -309) NIL) ((-515 . -611) 184422) ((-510 . -611) 184404) ((-508 . -611) 184386) ((-327 . -1097) 184336) ((-710 . -452) 184267) ((-48 . -102) T) ((-1246 . -286) 184252) ((-1225 . -286) 184172) ((-642 . -664) 184156) ((-642 . -649) 184140) ((-339 . -21) T) ((-339 . -25) T) ((-40 . -349) NIL) ((-174 . -21) T) ((-174 . -25) T) ((-642 . -373) 184124) ((-603 . -490) 184106) ((-600 . -286) 184083) ((-603 . -611) 184050) ((-388 . -102) T) ((-1117 . -143) T) ((-126 . -611) 183982) ((-872 . -1097) T) ((-656 . -411) 183966) ((-712 . -611) 183948) ((-249 . -611) 183915) ((-187 . -611) 183897) ((-162 . -611) 183879) ((-157 . -611) 183861) ((-1277 . -724) T) ((-1099 . -34) T) ((-869 . -793) NIL) ((-869 . -790) NIL) ((-856 . -848) T) ((-729 . -884) NIL) ((-1286 . -131) T) ((-381 . -131) T) ((-890 . -614) 183829) ((-902 . -102) T) ((-729 . -1036) 183705) ((-531 . -131) T) ((-1084 . -411) 183689) ((-998 . -489) 183673) ((-117 . -400) 183650) ((-1164 . -1212) 183629) ((-780 . -411) 183613) ((-778 . -411) 183597) ((-941 . -34) T) ((-692 . -1148) NIL) ((-251 . -646) 183432) ((-250 . -646) 183254) ((-815 . -918) 183233) ((-454 . -411) 183217) ((-600 . -19) 183201) ((-1143 . -1205) 183170) ((-1164 . -884) NIL) ((-1164 . -882) 183122) ((-600 . -602) 183099) ((-1198 . -611) 183031) ((-1172 . -611) 183013) ((-62 . -395) T) ((-1170 . -1036) 182948) ((-1164 . -1036) 182914) ((-692 . -38) 182864) ((-40 . -644) 182794) ((-474 . -286) 182779) ((-1218 . -611) 182761) ((-729 . -377) 182745) ((-836 . -611) 182727) ((-656 . -1055) T) ((-1246 . -1000) 182693) ((-1225 . -1000) 182659) ((-1085 . -614) 182643) ((-1060 . -1188) 182618) ((-1073 . -614) 182595) ((-870 . -612) 182402) ((-870 . -611) 182384) ((-1185 . -489) 182321) ((-418 . -1020) 182299) ((-48 . -309) 182286) ((-1060 . -107) 182232) ((-479 . -489) 182169) ((-520 . -1212) T) ((-1164 . -338) 182121) ((-1138 . -489) 182092) ((-1164 . -377) 182044) ((-1084 . -1055) T) ((-437 . -102) T) ((-183 . -1097) T) ((-251 . -34) T) ((-250 . -34) T) ((-780 . -1055) T) ((-778 . -1055) T) ((-729 . -898) 182021) ((-454 . -1055) T) ((-59 . -489) 182005) ((-1032 . -1054) 181979) ((-519 . -489) 181963) ((-516 . -489) 181947) ((-497 . -489) 181931) ((-496 . -489) 181915) ((-245 . -514) 181848) ((-1032 . -111) 181815) ((-1171 . -898) 181728) ((-1170 . -898) 181634) ((-1164 . -898) 181467) ((-1123 . -898) 181451) ((-668 . -1109) T) ((-354 . -1148) T) ((-643 . -93) T) ((-322 . -1054) 181433) ((-251 . -789) 181412) ((-251 . -792) 181363) ((-31 . -490) 181344) ((-251 . -791) 181323) ((-250 . -789) 181302) ((-250 . -792) 181253) ((-250 . -791) 181232) ((-31 . -611) 181198) ((-50 . -1055) T) ((-251 . -724) 181108) ((-250 . -724) 181018) ((-1206 . -1097) T) ((-668 . -23) T) ((-581 . -1055) T) ((-518 . -1055) T) ((-379 . -1054) 180983) ((-322 . -111) 180958) ((-73 . -383) T) ((-73 . -395) T) ((-1022 . -38) 180895) ((-692 . -400) 180877) ((-99 . -102) T) ((-709 . -1097) T) ((-1290 . -1049) 180864) ((-1001 . -145) 180836) ((-1001 . -147) 180808) ((-868 . -644) 180780) ((-379 . -111) 180736) ((-319 . -1216) 180715) ((-474 . -1000) 180681) ((-354 . -38) 180646) ((-40 . -370) 180618) ((-871 . -611) 180490) ((-127 . -125) 180474) ((-121 . -125) 180458) ((-834 . -1054) 180428) ((-831 . -21) 180380) ((-825 . -1054) 180364) ((-831 . -25) 180316) ((-319 . -556) 180267) ((-517 . -614) 180248) ((-564 . -826) T) ((-240 . -1212) T) ((-1032 . -614) 180217) ((-834 . -111) 180182) ((-825 . -111) 180161) ((-1246 . -611) 180143) ((-1225 . -611) 180125) ((-1225 . -612) 179796) ((-1169 . -907) 179775) ((-1122 . -907) 179754) ((-48 . -38) 179719) ((-1284 . -1109) T) ((-600 . -611) 179631) ((-600 . -612) 179592) ((-1282 . -1109) T) ((-361 . -614) 179576) ((-322 . -614) 179560) ((-240 . -1036) 179387) ((-1169 . -646) 179312) ((-1122 . -646) 179237) ((-852 . -646) 179211) ((-716 . -611) 179193) ((-546 . -368) T) ((-1284 . -23) T) ((-1282 . -23) T) ((-491 . -1097) T) ((-379 . -614) 179143) ((-379 . -616) 179125) ((-1032 . -1047) T) ((-863 . -102) T) ((-1185 . -286) 179104) ((-169 . -368) 179055) ((-1002 . -1212) T) ((-834 . -614) 179009) ((-825 . -614) 178964) ((-44 . -23) T) ((-479 . -286) 178943) ((-585 . -1097) T) ((-1143 . -1106) 178912) ((-1101 . -1100) 178864) ((-390 . -21) T) ((-390 . -25) T) ((-152 . -1109) T) ((-1290 . -102) T) ((-1002 . -882) 178846) ((-1002 . -884) 178828) ((-1206 . -715) 178725) ((-621 . -231) 178709) ((-619 . -21) T) ((-289 . -556) T) ((-619 . -25) T) ((-1192 . -1097) T) ((-709 . -715) 178674) ((-240 . -377) 178643) ((-1002 . -1036) 178603) ((-379 . -1047) T) ((-223 . -1055) T) ((-117 . -231) 178580) ((-59 . -286) 178557) ((-152 . -23) T) ((-516 . -286) 178534) ((-327 . -514) 178467) ((-496 . -286) 178444) ((-379 . -243) T) ((-379 . -233) T) ((-834 . -1047) T) ((-825 . -1047) T) ((-710 . -947) 178413) ((-699 . -848) T) ((-474 . -611) 178395) ((-1248 . -1049) 178300) ((-580 . -644) 178272) ((-564 . -644) 178244) ((-495 . -644) 178194) ((-825 . -233) 178173) ((-134 . -848) T) ((-1248 . -638) 178065) ((-656 . -1097) T) ((-1185 . -602) 178044) ((-550 . -1188) 178023) ((-336 . -1097) T) ((-319 . -363) 178002) ((-407 . -147) 177981) ((-407 . -145) 177960) ((-962 . -1109) 177859) ((-240 . -898) 177791) ((-813 . -1109) 177701) ((-652 . -850) 177685) ((-479 . -602) 177664) ((-550 . -107) 177614) ((-1002 . -377) 177596) ((-1002 . -338) 177578) ((-97 . -1097) T) ((-962 . -23) 177389) ((-477 . -21) T) ((-477 . -25) T) ((-813 . -23) 177259) ((-1173 . -611) 177241) ((-59 . -19) 177225) ((-1173 . -612) 177147) ((-1169 . -724) T) ((-1122 . -724) T) ((-516 . -19) 177131) ((-496 . -19) 177115) ((-59 . -602) 177092) ((-1084 . -1097) T) ((-899 . -102) 177070) ((-852 . -724) T) ((-780 . -1097) T) ((-516 . -602) 177047) ((-496 . -602) 177024) ((-778 . -1097) T) ((-778 . -1062) 176991) ((-461 . -1097) T) ((-454 . -1097) T) ((-585 . -715) 176966) ((-647 . -1097) T) ((-1254 . -47) 176943) ((-1248 . -102) T) ((-1247 . -47) 176913) ((-1226 . -47) 176890) ((-1206 . -172) 176841) ((-1170 . -307) 176820) ((-1164 . -307) 176799) ((-1093 . -614) 176780) ((-1087 . -614) 176761) ((-1077 . -556) 176712) ((-1002 . -898) NIL) ((-1077 . -1216) 176663) ((-668 . -131) T) ((-625 . -1109) T) ((-1070 . -614) 176644) ((-1063 . -614) 176625) ((-1034 . -614) 176606) ((-1017 . -614) 176587) ((-697 . -644) 176537) ((-275 . -1097) T) ((-85 . -441) T) ((-85 . -395) T) ((-712 . -1054) 176507) ((-709 . -172) T) ((-50 . -1097) T) ((-594 . -47) 176484) ((-225 . -646) 176449) ((-581 . -1097) T) ((-518 . -1097) T) ((-487 . -818) T) ((-487 . -918) T) ((-359 . -1216) T) ((-353 . -1216) T) ((-345 . -1216) T) ((-319 . -1109) T) ((-316 . -1049) 176359) ((-313 . -1049) 176288) ((-108 . -1216) T) ((-624 . -614) 176269) ((-359 . -556) T) ((-217 . -918) T) ((-217 . -818) T) ((-316 . -638) 176179) ((-313 . -638) 176108) ((-353 . -556) T) ((-345 . -556) T) ((-483 . -614) 176089) ((-108 . -556) T) ((-656 . -715) 176059) ((-1164 . -1020) NIL) ((-218 . -614) 176040) ((-319 . -23) T) ((-67 . -1212) T) ((-998 . -611) 175972) ((-692 . -231) 175954) ((-712 . -111) 175919) ((-642 . -34) T) ((-245 . -489) 175903) ((-1099 . -1095) 175887) ((-171 . -1097) T) ((-950 . -907) 175866) ((-1290 . -1148) T) ((-1286 . -21) T) ((-515 . -614) 175850) ((-1286 . -25) T) ((-1284 . -131) T) ((-1282 . -131) T) ((-481 . -907) 175829) ((-1275 . -102) T) ((-1258 . -611) 175795) ((-1247 . -1036) 175730) ((-1226 . -1212) 175709) ((-1226 . -884) NIL) ((-1226 . -882) 175661) ((-1084 . -715) 175510) ((-1059 . -646) 175497) ((-950 . -646) 175422) ((-780 . -715) 175251) ((-536 . -611) 175233) ((-536 . -612) 175214) ((-778 . -715) 175063) ((-1074 . -102) T) ((-381 . -25) T) ((-621 . -644) 175035) ((-381 . -21) T) ((-481 . -646) 174960) ((-461 . -715) 174931) ((-454 . -715) 174780) ((-985 . -102) T) ((-1226 . -1036) 174746) ((-1185 . -612) NIL) ((-1185 . -611) 174728) ((-735 . -102) T) ((-117 . -644) 174658) ((-603 . -614) 174640) ((-1139 . -1120) 174585) ((-1044 . -1205) 174514) ((-531 . -25) T) ((-899 . -309) 174452) ((-712 . -614) 174406) ((-679 . -93) T) ((-643 . -490) 174387) ((-141 . -102) T) ((-44 . -131) T) ((-674 . -93) T) ((-662 . -611) 174369) ((-343 . -1055) T) ((-289 . -1109) T) ((-643 . -611) 174322) ((-478 . -93) T) ((-355 . -611) 174304) ((-352 . -611) 174286) ((-344 . -611) 174268) ((-264 . -612) 174016) ((-264 . -611) 173998) ((-247 . -611) 173980) ((-247 . -612) 173841) ((-133 . -93) T) ((-138 . -93) T) ((-137 . -93) T) ((-1206 . -514) 173808) ((-1138 . -611) 173790) ((-1117 . -638) 173777) ((-817 . -855) T) ((-817 . -724) T) ((-600 . -288) 173754) ((-581 . -715) 173719) ((-479 . -612) NIL) ((-479 . -611) 173701) ((-518 . -715) 173646) ((-316 . -102) T) ((-313 . -102) T) ((-289 . -23) T) ((-152 . -131) T) ((-1117 . -1049) 173633) ((-908 . -611) 173615) ((-386 . -724) T) ((-870 . -1054) 173567) ((-908 . -612) 173549) ((-870 . -111) 173487) ((-712 . -1047) T) ((-710 . -1238) 173471) ((-692 . -349) NIL) ((-136 . -102) T) ((-114 . -102) T) ((-139 . -102) T) ((-519 . -611) 173403) ((-379 . -793) T) ((-223 . -1097) T) ((-379 . -790) T) ((-225 . -792) T) ((-225 . -789) T) ((-59 . -612) 173364) ((-59 . -611) 173276) ((-225 . -724) T) ((-516 . -612) 173237) ((-516 . -611) 173149) ((-497 . -611) 173081) ((-496 . -612) 173042) ((-496 . -611) 172954) ((-1077 . -363) 172905) ((-40 . -411) 172882) ((-77 . -1212) T) ((-869 . -907) NIL) ((-359 . -329) 172866) ((-359 . -363) T) ((-353 . -329) 172850) ((-353 . -363) T) ((-345 . -329) 172834) ((-345 . -363) T) ((-316 . -284) 172813) ((-108 . -363) T) ((-70 . -1212) T) ((-1226 . -338) 172765) ((-869 . -646) 172710) ((-1226 . -377) 172662) ((-962 . -131) 172517) ((-813 . -131) 172387) ((-956 . -649) 172371) ((-1084 . -172) 172282) ((-956 . -373) 172266) ((-1059 . -792) T) ((-1059 . -789) T) ((-870 . -614) 172164) ((-780 . -172) 172055) ((-778 . -172) 171966) ((-814 . -47) 171928) ((-1059 . -724) T) ((-327 . -489) 171912) ((-950 . -724) T) ((-454 . -172) 171823) ((-245 . -286) 171800) ((-1275 . -309) 171738) ((-1254 . -898) 171651) ((-1247 . -898) 171557) ((-481 . -724) T) ((-1246 . -1054) 171392) ((-1226 . -898) 171225) ((-1225 . -1054) 171033) ((-1206 . -290) 171012) ((-1182 . -1212) T) ((-1180 . -368) T) ((-1179 . -368) T) ((-1143 . -151) 170996) ((-1117 . -102) T) ((-1115 . -1097) T) ((-1077 . -23) T) ((-1077 . -1109) T) ((-1072 . -102) T) ((-925 . -953) T) ((-735 . -309) 170934) ((-75 . -1212) T) ((-30 . -953) T) ((-169 . -907) 170887) ((-662 . -382) 170859) ((-112 . -842) T) ((-1 . -611) 170841) ((-1001 . -409) 170813) ((-128 . -649) 170795) ((-50 . -618) 170779) ((-692 . -644) 170714) ((-594 . -898) 170627) ((-438 . -102) T) ((-128 . -373) 170609) ((-141 . -309) NIL) ((-870 . -1047) T) ((-831 . -848) 170588) ((-81 . -1212) T) ((-709 . -290) T) ((-40 . -1055) T) ((-581 . -172) T) ((-518 . -172) T) ((-511 . -611) 170570) ((-169 . -646) 170480) ((-507 . -611) 170462) ((-351 . -147) 170444) ((-351 . -145) T) ((-359 . -1109) T) ((-353 . -1109) T) ((-345 . -1109) T) ((-1002 . -307) T) ((-912 . -307) T) ((-870 . -243) T) ((-108 . -1109) T) ((-870 . -233) 170423) ((-1246 . -111) 170244) ((-1225 . -111) 170033) ((-245 . -1250) 170017) ((-564 . -846) T) ((-359 . -23) T) ((-354 . -349) T) ((-316 . -309) 170004) ((-313 . -309) 169945) ((-353 . -23) T) ((-319 . -131) T) ((-345 . -23) T) ((-1002 . -1020) T) ((-31 . -614) 169926) ((-108 . -23) T) ((-652 . -1049) 169910) ((-245 . -602) 169887) ((-652 . -638) 169857) ((-1248 . -38) 169749) ((-1235 . -907) 169728) ((-112 . -1097) T) ((-1033 . -102) T) ((-1235 . -646) 169653) ((-869 . -792) NIL) ((-853 . -646) 169627) ((-869 . -789) NIL) ((-814 . -884) NIL) ((-869 . -724) T) ((-1084 . -514) 169500) ((-780 . -514) 169447) ((-778 . -514) 169399) ((-571 . -646) 169386) ((-814 . -1036) 169214) ((-454 . -514) 169157) ((-388 . -389) T) ((-1246 . -614) 168970) ((-1225 . -614) 168718) ((-60 . -1212) T) ((-619 . -848) 168697) ((-500 . -659) T) ((-1143 . -974) 168666) ((-1022 . -644) 168603) ((-1001 . -452) T) ((-697 . -846) T) ((-510 . -790) T) ((-474 . -1054) 168438) ((-343 . -1097) T) ((-313 . -1148) NIL) ((-289 . -131) T) ((-394 . -1097) T) ((-868 . -1055) T) ((-692 . -370) 168405) ((-354 . -644) 168335) ((-223 . -618) 168312) ((-327 . -286) 168289) ((-474 . -111) 168110) ((-1246 . -1047) T) ((-1225 . -1047) T) ((-814 . -377) 168094) ((-169 . -724) T) ((-652 . -102) T) ((-1246 . -243) 168073) ((-1246 . -233) 168025) ((-1225 . -233) 167930) ((-1225 . -243) 167909) ((-1001 . -402) NIL) ((-668 . -637) 167857) ((-316 . -38) 167767) ((-313 . -38) 167696) ((-69 . -611) 167678) ((-319 . -493) 167644) ((-48 . -644) 167594) ((-1185 . -288) 167573) ((-1220 . -848) T) ((-1110 . -1109) 167483) ((-83 . -1212) T) ((-61 . -611) 167465) ((-479 . -288) 167444) ((-1277 . -1036) 167421) ((-1161 . -1097) T) ((-1110 . -23) 167291) ((-814 . -898) 167227) ((-1235 . -724) T) ((-1099 . -1212) T) ((-474 . -614) 167053) ((-1084 . -290) 166984) ((-964 . -1097) T) ((-891 . -102) T) ((-780 . -290) 166895) ((-327 . -19) 166879) ((-59 . -288) 166856) ((-778 . -290) 166787) ((-853 . -724) T) ((-117 . -846) NIL) ((-516 . -288) 166764) ((-327 . -602) 166741) ((-496 . -288) 166718) ((-454 . -290) 166649) ((-1033 . -309) 166500) ((-679 . -490) 166481) ((-571 . -724) T) ((-674 . -490) 166462) ((-679 . -611) 166412) ((-674 . -611) 166378) ((-660 . -611) 166360) ((-478 . -490) 166341) ((-478 . -611) 166307) ((-245 . -612) 166268) ((-245 . -490) 166245) ((-138 . -490) 166226) ((-137 . -490) 166207) ((-133 . -490) 166188) ((-245 . -611) 166080) ((-213 . -102) T) ((-138 . -611) 166046) ((-137 . -611) 166012) ((-133 . -611) 165978) ((-1144 . -34) T) ((-941 . -1212) T) ((-343 . -715) 165923) ((-668 . -25) T) ((-668 . -21) T) ((-1173 . -614) 165904) ((-474 . -1047) T) ((-633 . -417) 165869) ((-605 . -417) 165834) ((-1117 . -1148) T) ((-710 . -1049) 165657) ((-581 . -290) T) ((-518 . -290) T) ((-1247 . -307) 165636) ((-474 . -233) 165588) ((-474 . -243) 165567) ((-1226 . -307) 165546) ((-710 . -638) 165375) ((-1226 . -1020) NIL) ((-1077 . -131) T) ((-870 . -793) 165354) ((-144 . -102) T) ((-40 . -1097) T) ((-870 . -790) 165333) ((-642 . -1008) 165317) ((-580 . -1055) T) ((-564 . -1055) T) ((-495 . -1055) T) ((-407 . -452) T) ((-359 . -131) T) ((-316 . -400) 165301) ((-313 . -400) 165262) ((-353 . -131) T) ((-345 . -131) T) ((-1178 . -1097) T) ((-1117 . -38) 165249) ((-1091 . -611) 165216) ((-108 . -131) T) ((-952 . -1097) T) ((-919 . -1097) T) ((-769 . -1097) T) ((-670 . -1097) T) ((-699 . -147) T) ((-116 . -147) T) ((-1284 . -21) T) ((-1284 . -25) T) ((-1282 . -21) T) ((-1282 . -25) T) ((-662 . -1054) 165200) ((-531 . -848) T) ((-500 . -848) T) ((-355 . -1054) 165152) ((-352 . -1054) 165104) ((-344 . -1054) 165056) ((-251 . -1212) T) ((-250 . -1212) T) ((-264 . -1054) 164899) ((-247 . -1054) 164742) ((-662 . -111) 164721) ((-547 . -842) T) ((-355 . -111) 164659) ((-352 . -111) 164597) ((-344 . -111) 164535) ((-264 . -111) 164364) ((-247 . -111) 164193) ((-815 . -1216) 164172) ((-621 . -411) 164156) ((-44 . -21) T) ((-44 . -25) T) ((-813 . -637) 164062) ((-815 . -556) 164041) ((-251 . -1036) 163868) ((-250 . -1036) 163695) ((-126 . -119) 163679) ((-908 . -1054) 163644) ((-710 . -102) T) ((-697 . -1055) T) ((-536 . -616) 163547) ((-343 . -172) T) ((-88 . -611) 163529) ((-152 . -21) T) ((-152 . -25) T) ((-908 . -111) 163485) ((-40 . -715) 163430) ((-868 . -1097) T) ((-662 . -614) 163407) ((-643 . -614) 163388) ((-355 . -614) 163325) ((-352 . -614) 163262) ((-547 . -1097) T) ((-344 . -614) 163199) ((-327 . -612) 163160) ((-327 . -611) 163072) ((-264 . -614) 162825) ((-247 . -614) 162610) ((-1225 . -790) 162563) ((-1225 . -793) 162516) ((-251 . -377) 162485) ((-250 . -377) 162454) ((-652 . -38) 162424) ((-606 . -34) T) ((-482 . -1109) 162334) ((-475 . -34) T) ((-1110 . -131) 162204) ((-962 . -25) 162015) ((-908 . -614) 161965) ((-872 . -611) 161947) ((-962 . -21) 161902) ((-813 . -21) 161812) ((-813 . -25) 161663) ((-1218 . -368) T) ((-621 . -1055) T) ((-1175 . -556) 161642) ((-1169 . -47) 161619) ((-355 . -1047) T) ((-352 . -1047) T) ((-482 . -23) 161489) ((-344 . -1047) T) ((-264 . -1047) T) ((-247 . -1047) T) ((-1122 . -47) 161461) ((-117 . -1055) T) ((-1032 . -646) 161435) ((-956 . -34) T) ((-355 . -233) 161414) ((-355 . -243) T) ((-352 . -233) 161393) ((-352 . -243) T) ((-344 . -233) 161372) ((-344 . -243) T) ((-264 . -326) 161344) ((-247 . -326) 161301) ((-264 . -233) 161280) ((-1153 . -151) 161264) ((-251 . -898) 161196) ((-250 . -898) 161128) ((-1079 . -848) T) ((-414 . -1109) T) ((-1052 . -23) T) ((-908 . -1047) T) ((-322 . -646) 161110) ((-1022 . -846) T) ((-1206 . -1000) 161076) ((-1170 . -918) 161055) ((-1164 . -918) 161034) ((-1164 . -818) NIL) ((-997 . -1049) 160930) ((-908 . -243) T) ((-815 . -363) 160909) ((-385 . -23) T) ((-127 . -1097) 160887) ((-121 . -1097) 160865) ((-908 . -233) T) ((-128 . -34) T) ((-379 . -646) 160830) ((-997 . -638) 160778) ((-868 . -715) 160765) ((-1290 . -644) 160737) ((-1044 . -151) 160702) ((-40 . -172) T) ((-692 . -411) 160684) ((-710 . -309) 160671) ((-834 . -646) 160631) ((-825 . -646) 160605) ((-319 . -25) T) ((-319 . -21) T) ((-656 . -286) 160584) ((-580 . -1097) T) ((-564 . -1097) T) ((-495 . -1097) T) ((-245 . -288) 160561) ((-313 . -231) 160522) ((-1169 . -884) NIL) ((-55 . -1097) T) ((-1122 . -884) 160381) ((-129 . -848) T) ((-1169 . -1036) 160261) ((-1122 . -1036) 160144) ((-183 . -611) 160126) ((-852 . -1036) 160022) ((-780 . -286) 159949) ((-815 . -1109) T) ((-1032 . -724) T) ((-600 . -649) 159933) ((-1044 . -974) 159862) ((-997 . -102) T) ((-815 . -23) T) ((-710 . -1148) 159840) ((-692 . -1055) T) ((-600 . -373) 159824) ((-351 . -452) T) ((-343 . -290) T) ((-1263 . -1097) T) ((-248 . -1097) T) ((-399 . -102) T) ((-289 . -21) T) ((-289 . -25) T) ((-361 . -724) T) ((-708 . -1097) T) ((-697 . -1097) T) ((-361 . -473) T) ((-1206 . -611) 159806) ((-1169 . -377) 159790) ((-1122 . -377) 159774) ((-1022 . -411) 159736) ((-141 . -229) 159718) ((-379 . -792) T) ((-379 . -789) T) ((-868 . -172) T) ((-379 . -724) T) ((-709 . -611) 159700) ((-710 . -38) 159529) ((-1262 . -1260) 159513) ((-351 . -402) T) ((-1262 . -1097) 159463) ((-580 . -715) 159450) ((-564 . -715) 159437) ((-495 . -715) 159402) ((-1248 . -644) 159292) ((-316 . -627) 159271) ((-834 . -724) T) ((-825 . -724) T) ((-642 . -1212) T) ((-1077 . -637) 159219) ((-1169 . -898) 159162) ((-1122 . -898) 159146) ((-660 . -1054) 159130) ((-108 . -637) 159112) ((-482 . -131) 158982) ((-1175 . -1109) T) ((-950 . -47) 158951) ((-621 . -1097) T) ((-660 . -111) 158930) ((-491 . -611) 158896) ((-327 . -288) 158873) ((-481 . -47) 158830) ((-1175 . -23) T) ((-117 . -1097) T) ((-103 . -102) 158808) ((-1274 . -1109) T) ((-548 . -848) T) ((-1052 . -131) T) ((-1022 . -1055) T) ((-817 . -1036) 158792) ((-1001 . -722) 158764) ((-1274 . -23) T) ((-697 . -715) 158729) ((-585 . -611) 158711) ((-386 . -1036) 158695) ((-354 . -1055) T) ((-385 . -131) T) ((-324 . -1036) 158679) ((-1192 . -611) 158661) ((-1117 . -826) T) ((-225 . -884) 158643) ((-1002 . -918) T) ((-91 . -34) T) ((-1002 . -818) T) ((-912 . -918) T) ((-1102 . -1097) T) ((-1077 . -21) T) ((-487 . -1216) T) ((-1077 . -25) T) ((-997 . -309) 158608) ((-712 . -646) 158568) ((-217 . -1216) T) ((-679 . -614) 158549) ((-225 . -1036) 158509) ((-40 . -290) T) ((-674 . -614) 158490) ((-487 . -556) T) ((-478 . -614) 158471) ((-316 . -644) 158155) ((-313 . -644) 158069) ((-359 . -25) T) ((-359 . -21) T) ((-353 . -25) T) ((-217 . -556) T) ((-353 . -21) T) ((-345 . -25) T) ((-345 . -21) T) ((-245 . -614) 158046) ((-138 . -614) 158027) ((-137 . -614) 158008) ((-133 . -614) 157989) ((-108 . -25) T) ((-108 . -21) T) ((-48 . -1055) T) ((-580 . -172) T) ((-564 . -172) T) ((-495 . -172) T) ((-656 . -611) 157971) ((-735 . -734) 157955) ((-336 . -611) 157937) ((-68 . -383) T) ((-68 . -395) T) ((-1099 . -107) 157921) ((-1059 . -884) 157903) ((-950 . -884) 157828) ((-651 . -1109) T) ((-621 . -715) 157815) ((-481 . -884) NIL) ((-1143 . -102) T) ((-1091 . -616) 157799) ((-1059 . -1036) 157781) ((-97 . -611) 157763) ((-477 . -147) T) ((-950 . -1036) 157643) ((-117 . -715) 157588) ((-651 . -23) T) ((-481 . -1036) 157464) ((-1084 . -612) NIL) ((-1084 . -611) 157446) ((-780 . -612) NIL) ((-780 . -611) 157407) ((-778 . -612) 157041) ((-778 . -611) 156955) ((-1110 . -637) 156861) ((-461 . -611) 156843) ((-454 . -611) 156825) ((-454 . -612) 156686) ((-1033 . -229) 156632) ((-870 . -907) 156611) ((-126 . -34) T) ((-815 . -131) T) ((-647 . -611) 156593) ((-578 . -102) T) ((-355 . -1281) 156577) ((-352 . -1281) 156561) ((-344 . -1281) 156545) ((-127 . -514) 156478) ((-121 . -514) 156411) ((-511 . -790) T) ((-511 . -793) T) ((-510 . -792) T) ((-103 . -309) 156349) ((-222 . -102) 156327) ((-697 . -172) T) ((-692 . -1097) T) ((-870 . -646) 156279) ((-65 . -384) T) ((-275 . -611) 156261) ((-65 . -395) T) ((-950 . -377) 156245) ((-868 . -290) T) ((-50 . -611) 156227) ((-997 . -38) 156175) ((-1117 . -644) 156147) ((-581 . -611) 156129) ((-481 . -377) 156113) ((-581 . -612) 156095) ((-518 . -611) 156077) ((-908 . -1281) 156064) ((-869 . -1212) T) ((-699 . -452) T) ((-495 . -514) 156030) ((-487 . -363) T) ((-355 . -368) 156009) ((-352 . -368) 155988) ((-344 . -368) 155967) ((-712 . -724) T) ((-217 . -363) T) ((-116 . -452) T) ((-1285 . -1276) 155951) ((-869 . -882) 155928) ((-869 . -884) NIL) ((-962 . -848) 155827) ((-813 . -848) 155778) ((-1219 . -102) T) ((-652 . -654) 155762) ((-1198 . -34) T) ((-171 . -611) 155744) ((-1110 . -21) 155654) ((-1110 . -25) 155505) ((-869 . -1036) 155482) ((-950 . -898) 155463) ((-1235 . -47) 155440) ((-908 . -368) T) ((-59 . -649) 155424) ((-516 . -649) 155408) ((-481 . -898) 155385) ((-71 . -441) T) ((-71 . -395) T) ((-496 . -649) 155369) ((-59 . -373) 155353) ((-621 . -172) T) ((-516 . -373) 155337) ((-496 . -373) 155321) ((-825 . -706) 155305) ((-1169 . -307) 155284) ((-1175 . -131) T) ((-1139 . -1049) 155268) ((-117 . -172) T) ((-1139 . -638) 155200) ((-1143 . -309) 155138) ((-169 . -1212) T) ((-1274 . -131) T) ((-864 . -1049) 155108) ((-633 . -742) 155092) ((-605 . -742) 155076) ((-1247 . -918) 155055) ((-1226 . -918) 155034) ((-1226 . -818) NIL) ((-864 . -638) 155004) ((-692 . -715) 154954) ((-1225 . -907) 154907) ((-1022 . -1097) T) ((-869 . -377) 154884) ((-869 . -338) 154861) ((-903 . -1109) T) ((-169 . -882) 154845) ((-169 . -884) 154770) ((-487 . -1109) T) ((-354 . -1097) T) ((-217 . -1109) T) ((-76 . -441) T) ((-76 . -395) T) ((-169 . -1036) 154666) ((-319 . -848) T) ((-1262 . -514) 154599) ((-1246 . -646) 154496) ((-1225 . -646) 154366) ((-870 . -792) 154345) ((-870 . -789) 154324) ((-870 . -724) T) ((-487 . -23) T) ((-223 . -611) 154306) ((-174 . -452) T) ((-222 . -309) 154244) ((-86 . -441) T) ((-86 . -395) T) ((-217 . -23) T) ((-1286 . -1279) 154223) ((-675 . -1036) 154207) ((-580 . -290) T) ((-564 . -290) T) ((-495 . -290) T) ((-136 . -470) 154162) ((-652 . -644) 154121) ((-48 . -1097) T) ((-710 . -231) 154105) ((-869 . -898) NIL) ((-1235 . -884) NIL) ((-887 . -102) T) ((-883 . -102) T) ((-388 . -1097) T) ((-169 . -377) 154089) ((-169 . -338) 154073) ((-1235 . -1036) 153953) ((-853 . -1036) 153849) ((-1139 . -102) T) ((-651 . -131) T) ((-117 . -514) 153757) ((-660 . -790) 153736) ((-660 . -793) 153715) ((-571 . -1036) 153697) ((-294 . -1269) 153667) ((-864 . -102) T) ((-961 . -556) 153646) ((-1206 . -1054) 153529) ((-1001 . -1049) 153474) ((-482 . -637) 153380) ((-902 . -1097) T) ((-1022 . -715) 153317) ((-709 . -1054) 153282) ((-1001 . -638) 153227) ((-615 . -102) T) ((-600 . -34) T) ((-1144 . -1212) T) ((-1206 . -111) 153096) ((-474 . -646) 152993) ((-354 . -715) 152938) ((-169 . -898) 152897) ((-697 . -290) T) ((-692 . -172) T) ((-709 . -111) 152853) ((-1290 . -1055) T) ((-1235 . -377) 152837) ((-418 . -1216) 152815) ((-1115 . -611) 152797) ((-313 . -846) NIL) ((-418 . -556) T) ((-225 . -307) T) ((-1225 . -789) 152750) ((-1225 . -792) 152703) ((-1246 . -724) T) ((-1225 . -724) T) ((-48 . -715) 152668) ((-225 . -1020) T) ((-351 . -1269) 152645) ((-1248 . -411) 152611) ((-716 . -724) T) ((-1235 . -898) 152554) ((-1206 . -614) 152436) ((-112 . -611) 152418) ((-112 . -612) 152400) ((-716 . -473) T) ((-709 . -614) 152350) ((-1285 . -1049) 152334) ((-482 . -21) 152244) ((-127 . -489) 152228) ((-121 . -489) 152212) ((-482 . -25) 152063) ((-1285 . -638) 152033) ((-621 . -290) T) ((-585 . -1054) 152008) ((-437 . -1097) T) ((-1059 . -307) T) ((-117 . -290) T) ((-1101 . -102) T) ((-1001 . -102) T) ((-585 . -111) 151976) ((-1139 . -309) 151914) ((-1206 . -1047) T) ((-1059 . -1020) T) ((-66 . -1212) T) ((-1052 . -25) T) ((-1052 . -21) T) ((-709 . -1047) T) ((-385 . -21) T) ((-385 . -25) T) ((-692 . -514) NIL) ((-1022 . -172) T) ((-709 . -243) T) ((-1059 . -545) T) ((-710 . -644) 151824) ((-506 . -102) T) ((-502 . -102) T) ((-354 . -172) T) ((-343 . -611) 151806) ((-407 . -1049) 151758) ((-394 . -611) 151740) ((-1117 . -846) T) ((-474 . -724) T) ((-890 . -1036) 151708) ((-407 . -638) 151660) ((-108 . -848) T) ((-656 . -1054) 151644) ((-487 . -131) T) ((-1248 . -1055) T) ((-217 . -131) T) ((-1153 . -102) 151622) ((-99 . -1097) T) ((-245 . -664) 151606) ((-245 . -649) 151590) ((-656 . -111) 151569) ((-585 . -614) 151553) ((-316 . -411) 151537) ((-245 . -373) 151521) ((-1156 . -235) 151468) ((-997 . -231) 151452) ((-74 . -1212) T) ((-48 . -172) T) ((-699 . -387) T) ((-699 . -143) T) ((-1285 . -102) T) ((-1192 . -614) 151434) ((-1084 . -1054) 151277) ((-264 . -907) 151256) ((-247 . -907) 151235) ((-780 . -1054) 151058) ((-778 . -1054) 150901) ((-606 . -1212) T) ((-1161 . -611) 150883) ((-1084 . -111) 150712) ((-1044 . -102) T) ((-475 . -1212) T) ((-461 . -1054) 150683) ((-454 . -1054) 150526) ((-662 . -646) 150510) ((-869 . -307) T) ((-780 . -111) 150319) ((-778 . -111) 150148) ((-355 . -646) 150100) ((-352 . -646) 150052) ((-344 . -646) 150004) ((-264 . -646) 149929) ((-247 . -646) 149854) ((-1155 . -848) T) ((-1085 . -1036) 149838) ((-461 . -111) 149799) ((-454 . -111) 149628) ((-1073 . -1036) 149605) ((-998 . -34) T) ((-964 . -611) 149587) ((-956 . -1212) T) ((-126 . -1008) 149571) ((-961 . -1109) T) ((-869 . -1020) NIL) ((-733 . -1109) T) ((-713 . -1109) T) ((-656 . -614) 149489) ((-1262 . -489) 149473) ((-1139 . -38) 149433) ((-961 . -23) T) ((-908 . -646) 149398) ((-863 . -1097) T) ((-841 . -102) T) ((-815 . -21) T) ((-633 . -1049) 149382) ((-605 . -1049) 149366) ((-815 . -25) T) ((-733 . -23) T) ((-713 . -23) T) ((-633 . -638) 149350) ((-110 . -659) T) ((-605 . -638) 149334) ((-581 . -1054) 149299) ((-518 . -1054) 149244) ((-227 . -57) 149202) ((-453 . -23) T) ((-407 . -102) T) ((-263 . -102) T) ((-692 . -290) T) ((-864 . -38) 149172) ((-581 . -111) 149128) ((-518 . -111) 149057) ((-1084 . -614) 148793) ((-418 . -1109) T) ((-316 . -1055) 148683) ((-313 . -1055) T) ((-128 . -1212) T) ((-780 . -614) 148431) ((-778 . -614) 148197) ((-656 . -1047) T) ((-1290 . -1097) T) ((-454 . -614) 147982) ((-169 . -307) 147913) ((-418 . -23) T) ((-40 . -611) 147895) ((-40 . -612) 147879) ((-108 . -990) 147861) ((-116 . -867) 147845) ((-647 . -614) 147829) ((-48 . -514) 147795) ((-1198 . -1008) 147779) ((-1178 . -611) 147746) ((-1185 . -34) T) ((-952 . -611) 147712) ((-919 . -611) 147694) ((-1110 . -848) 147645) ((-769 . -611) 147627) ((-670 . -611) 147609) ((-1153 . -309) 147547) ((-479 . -34) T) ((-1089 . -1212) T) ((-477 . -452) T) ((-1138 . -34) T) ((-1084 . -1047) T) ((-50 . -614) 147516) ((-780 . -1047) T) ((-778 . -1047) T) ((-645 . -235) 147500) ((-630 . -235) 147446) ((-581 . -614) 147396) ((-518 . -614) 147326) ((-1235 . -307) 147305) ((-1084 . -326) 147266) ((-454 . -1047) T) ((-1175 . -21) T) ((-1084 . -233) 147245) ((-780 . -326) 147222) ((-780 . -233) T) ((-778 . -326) 147194) ((-729 . -1216) 147173) ((-327 . -649) 147157) ((-1175 . -25) T) ((-59 . -34) T) ((-519 . -34) T) ((-516 . -34) T) ((-454 . -326) 147136) ((-327 . -373) 147120) ((-497 . -34) T) ((-496 . -34) T) ((-1001 . -1148) NIL) ((-729 . -556) 147051) ((-633 . -102) T) ((-605 . -102) T) ((-355 . -724) T) ((-352 . -724) T) ((-344 . -724) T) ((-264 . -724) T) ((-247 . -724) T) ((-1044 . -309) 146959) ((-899 . -1097) 146937) ((-50 . -1047) T) ((-1274 . -21) T) ((-1274 . -25) T) ((-1171 . -556) 146916) ((-1170 . -1216) 146895) ((-1170 . -556) 146846) ((-581 . -1047) T) ((-518 . -1047) T) ((-1164 . -1216) 146825) ((-361 . -1036) 146809) ((-322 . -1036) 146793) ((-1022 . -290) T) ((-379 . -884) 146775) ((-1164 . -556) 146726) ((-1001 . -38) 146671) ((-997 . -644) 146594) ((-797 . -1109) T) ((-908 . -724) T) ((-581 . -243) T) ((-581 . -233) T) ((-518 . -233) T) ((-518 . -243) T) ((-1123 . -556) 146573) ((-354 . -290) T) ((-645 . -693) 146557) ((-379 . -1036) 146517) ((-294 . -1049) 146438) ((-1117 . -1055) T) ((-103 . -125) 146422) ((-294 . -638) 146364) ((-797 . -23) T) ((-1284 . -1279) 146340) ((-1262 . -286) 146317) ((-407 . -309) 146282) ((-1282 . -1279) 146261) ((-1248 . -1097) T) ((-868 . -611) 146243) ((-834 . -1036) 146212) ((-203 . -785) T) ((-202 . -785) T) ((-201 . -785) T) ((-200 . -785) T) ((-199 . -785) T) ((-198 . -785) T) ((-197 . -785) T) ((-196 . -785) T) ((-195 . -785) T) ((-194 . -785) T) ((-547 . -611) 146194) ((-495 . -1000) T) ((-274 . -837) T) ((-273 . -837) T) ((-272 . -837) T) ((-271 . -837) T) ((-48 . -290) T) ((-270 . -837) T) ((-269 . -837) T) ((-268 . -837) T) ((-193 . -785) T) ((-610 . -848) T) ((-652 . -411) 146178) ((-223 . -614) 146140) ((-110 . -848) T) ((-651 . -21) T) ((-651 . -25) T) ((-1285 . -38) 146110) ((-117 . -286) 146061) ((-1262 . -19) 146045) ((-1262 . -602) 146022) ((-1275 . -1097) T) ((-351 . -1049) 145967) ((-1074 . -1097) T) ((-985 . -1097) T) ((-961 . -131) T) ((-735 . -1097) T) ((-351 . -638) 145912) ((-733 . -131) T) ((-713 . -131) T) ((-511 . -791) T) ((-511 . -792) T) ((-453 . -131) T) ((-407 . -1148) 145890) ((-223 . -1047) T) ((-294 . -102) 145672) ((-141 . -1097) T) ((-697 . -1000) T) ((-91 . -1212) T) ((-127 . -611) 145604) ((-121 . -611) 145536) ((-1290 . -172) T) ((-1170 . -363) 145515) ((-1164 . -363) 145494) ((-316 . -1097) T) ((-418 . -131) T) ((-313 . -1097) T) ((-407 . -38) 145446) ((-1130 . -102) T) ((-1248 . -715) 145338) ((-652 . -1055) T) ((-1132 . -1257) T) ((-319 . -145) 145317) ((-319 . -147) 145296) ((-136 . -1097) T) ((-139 . -1097) T) ((-114 . -1097) T) ((-856 . -102) T) ((-580 . -611) 145278) ((-564 . -612) 145177) ((-564 . -611) 145159) ((-495 . -611) 145141) ((-495 . -612) 145086) ((-485 . -23) T) ((-482 . -848) 145037) ((-487 . -637) 145019) ((-963 . -611) 145001) ((-217 . -637) 144983) ((-225 . -404) T) ((-660 . -646) 144967) ((-55 . -611) 144949) ((-1169 . -918) 144928) ((-729 . -1109) T) ((-351 . -102) T) ((-1211 . -1080) T) ((-1117 . -842) T) ((-816 . -848) T) ((-729 . -23) T) ((-343 . -1054) 144873) ((-1155 . -1154) T) ((-1144 . -107) 144857) ((-1171 . -1109) T) ((-1170 . -1109) T) ((-515 . -1036) 144841) ((-1164 . -1109) T) ((-1123 . -1109) T) ((-343 . -111) 144770) ((-1002 . -1216) T) ((-126 . -1212) T) ((-912 . -1216) T) ((-692 . -286) NIL) ((-1263 . -611) 144752) ((-1171 . -23) T) ((-1170 . -23) T) ((-1164 . -23) T) ((-1002 . -556) T) ((-1139 . -231) 144736) ((-912 . -556) T) ((-1123 . -23) T) ((-248 . -611) 144718) ((-1072 . -1097) T) ((-797 . -131) T) ((-708 . -611) 144700) ((-316 . -715) 144610) ((-313 . -715) 144539) ((-697 . -611) 144521) ((-697 . -612) 144466) ((-407 . -400) 144450) ((-438 . -1097) T) ((-487 . -25) T) ((-487 . -21) T) ((-1117 . -1097) T) ((-217 . -25) T) ((-217 . -21) T) ((-710 . -411) 144434) ((-712 . -1036) 144403) ((-1262 . -611) 144315) ((-1262 . -612) 144276) ((-1248 . -172) T) ((-245 . -34) T) ((-343 . -614) 144206) ((-394 . -614) 144188) ((-924 . -972) T) ((-1198 . -1212) T) ((-660 . -789) 144167) ((-660 . -792) 144146) ((-398 . -395) T) ((-523 . -102) 144124) ((-1033 . -1097) T) ((-222 . -993) 144108) ((-504 . -102) T) ((-621 . -611) 144090) ((-45 . -848) NIL) ((-621 . -612) 144067) ((-1033 . -608) 144042) ((-899 . -514) 143975) ((-343 . -1047) T) ((-117 . -612) NIL) ((-117 . -611) 143957) ((-870 . -1212) T) ((-668 . -417) 143941) ((-668 . -1120) 143886) ((-500 . -151) 143868) ((-343 . -233) T) ((-343 . -243) T) ((-40 . -1054) 143813) ((-870 . -882) 143797) ((-870 . -884) 143722) ((-710 . -1055) T) ((-692 . -1000) NIL) ((-1246 . -47) 143692) ((-1225 . -47) 143669) ((-1138 . -1008) 143640) ((-3 . |UnionCategory|) T) ((-1117 . -715) 143627) ((-1102 . -611) 143609) ((-1077 . -147) 143588) ((-1077 . -145) 143539) ((-964 . -614) 143523) ((-225 . -918) T) ((-40 . -111) 143452) ((-870 . -1036) 143316) ((-1002 . -363) T) ((-1001 . -231) 143293) ((-699 . -1049) 143280) ((-912 . -363) T) ((-699 . -638) 143267) ((-319 . -1200) 143233) ((-379 . -307) T) ((-319 . -1197) 143199) ((-316 . -172) 143178) ((-313 . -172) T) ((-581 . -1281) 143165) ((-518 . -1281) 143142) ((-359 . -147) 143121) ((-116 . -1049) 143108) ((-359 . -145) 143059) ((-353 . -147) 143038) ((-353 . -145) 142989) ((-345 . -147) 142968) ((-606 . -1188) 142944) ((-116 . -638) 142931) ((-345 . -145) 142882) ((-319 . -35) 142848) ((-475 . -1188) 142827) ((0 . |EnumerationCategory|) T) ((-319 . -95) 142793) ((-379 . -1020) T) ((-108 . -147) T) ((-108 . -145) NIL) ((-45 . -235) 142743) ((-652 . -1097) T) ((-606 . -107) 142690) ((-485 . -131) T) ((-475 . -107) 142640) ((-240 . -1109) 142550) ((-870 . -377) 142534) ((-870 . -338) 142518) ((-240 . -23) 142388) ((-40 . -614) 142318) ((-1059 . -918) T) ((-1059 . -818) T) ((-581 . -368) T) ((-518 . -368) T) ((-1275 . -514) 142251) ((-1254 . -556) 142230) ((-351 . -1148) T) ((-327 . -34) T) ((-44 . -417) 142214) ((-1178 . -614) 142150) ((-871 . -1212) T) ((-390 . -742) 142134) ((-1247 . -1216) 142113) ((-1247 . -556) 142064) ((-1139 . -644) 142023) ((-729 . -131) T) ((-670 . -614) 142007) ((-1226 . -1216) 141986) ((-1226 . -556) 141937) ((-1225 . -1212) 141916) ((-1225 . -884) 141789) ((-1225 . -882) 141759) ((-1171 . -131) T) ((-311 . -1080) T) ((-1170 . -131) T) ((-735 . -514) 141692) ((-1164 . -131) T) ((-1123 . -131) T) ((-891 . -1097) T) ((-144 . -842) T) ((-1022 . -1000) T) ((-689 . -611) 141674) ((-1002 . -23) T) ((-523 . -309) 141612) ((-1002 . -1109) T) ((-141 . -514) NIL) ((-864 . -644) 141557) ((-1001 . -349) NIL) ((-969 . -23) T) ((-912 . -1109) T) ((-351 . -38) 141522) ((-912 . -23) T) ((-870 . -898) 141481) ((-82 . -611) 141463) ((-40 . -1047) T) ((-868 . -1054) 141450) ((-868 . -111) 141435) ((-699 . -102) T) ((-692 . -611) 141417) ((-600 . -1212) T) ((-595 . -556) 141396) ((-427 . -1109) T) ((-339 . -1049) 141380) ((-213 . -1097) T) ((-174 . -1049) 141312) ((-474 . -47) 141282) ((-134 . -102) T) ((-40 . -233) 141254) ((-40 . -243) T) ((-116 . -102) T) ((-594 . -556) 141233) ((-339 . -638) 141217) ((-692 . -612) 141125) ((-316 . -514) 141091) ((-174 . -638) 141023) ((-313 . -514) 140915) ((-1246 . -1036) 140899) ((-1225 . -1036) 140685) ((-997 . -411) 140669) ((-427 . -23) T) ((-1117 . -172) T) ((-1248 . -290) T) ((-652 . -715) 140639) ((-144 . -1097) T) ((-48 . -1000) T) ((-407 . -231) 140623) ((-295 . -235) 140573) ((-869 . -918) T) ((-869 . -818) NIL) ((-868 . -614) 140545) ((-862 . -848) T) ((-1225 . -338) 140515) ((-1225 . -377) 140485) ((-222 . -1118) 140469) ((-1262 . -288) 140446) ((-1206 . -646) 140371) ((-1001 . -644) 140301) ((-961 . -21) T) ((-961 . -25) T) ((-733 . -21) T) ((-733 . -25) T) ((-713 . -21) T) ((-713 . -25) T) ((-709 . -646) 140266) ((-453 . -21) T) ((-453 . -25) T) ((-339 . -102) T) ((-174 . -102) T) ((-997 . -1055) T) ((-868 . -1047) T) ((-772 . -102) T) ((-1247 . -363) 140245) ((-1246 . -898) 140151) ((-1226 . -363) 140130) ((-1225 . -898) 139981) ((-1022 . -611) 139963) ((-407 . -826) 139916) ((-1171 . -493) 139882) ((-169 . -918) 139813) ((-1170 . -493) 139779) ((-1164 . -493) 139745) ((-710 . -1097) T) ((-1123 . -493) 139711) ((-580 . -1054) 139698) ((-564 . -1054) 139685) ((-495 . -1054) 139650) ((-316 . -290) 139629) ((-313 . -290) T) ((-354 . -611) 139611) ((-418 . -25) T) ((-418 . -21) T) ((-99 . -286) 139590) ((-580 . -111) 139575) ((-564 . -111) 139560) ((-495 . -111) 139516) ((-1173 . -884) 139483) ((-899 . -489) 139467) ((-48 . -611) 139449) ((-48 . -612) 139394) ((-240 . -131) 139264) ((-1285 . -644) 139223) ((-1235 . -918) 139202) ((-814 . -1216) 139181) ((-388 . -490) 139162) ((-1033 . -514) 139006) ((-388 . -611) 138972) ((-814 . -556) 138903) ((-585 . -646) 138878) ((-264 . -47) 138850) ((-247 . -47) 138807) ((-531 . -509) 138784) ((-580 . -614) 138756) ((-564 . -614) 138728) ((-495 . -614) 138661) ((-1071 . -1212) T) ((-998 . -1212) T) ((-1254 . -23) T) ((-697 . -1054) 138626) ((-1254 . -1109) T) ((-1247 . -1109) T) ((-1247 . -23) T) ((-1226 . -1109) T) ((-1226 . -23) T) ((-1001 . -370) 138598) ((-112 . -368) T) ((-474 . -898) 138504) ((-1206 . -724) T) ((-902 . -611) 138486) ((-55 . -614) 138468) ((-91 . -107) 138452) ((-1117 . -290) T) ((-903 . -848) 138403) ((-699 . -1148) T) ((-697 . -111) 138359) ((-841 . -644) 138276) ((-595 . -1109) T) ((-594 . -1109) T) ((-710 . -715) 138105) ((-709 . -724) T) ((-1002 . -131) T) ((-969 . -131) T) ((-487 . -848) T) ((-912 . -131) T) ((-797 . -25) T) ((-797 . -21) T) ((-217 . -848) T) ((-407 . -644) 138042) ((-580 . -1047) T) ((-564 . -1047) T) ((-495 . -1047) T) ((-595 . -23) T) ((-343 . -1281) 138019) ((-319 . -452) 137998) ((-339 . -309) 137985) ((-594 . -23) T) ((-427 . -131) T) ((-656 . -646) 137959) ((-245 . -1008) 137943) ((-870 . -307) T) ((-1286 . -1276) 137927) ((-769 . -790) T) ((-769 . -793) T) ((-699 . -38) 137914) ((-564 . -233) T) ((-495 . -243) T) ((-495 . -233) T) ((-1147 . -235) 137864) ((-1084 . -907) 137843) ((-116 . -38) 137830) ((-209 . -798) T) ((-208 . -798) T) ((-207 . -798) T) ((-206 . -798) T) ((-870 . -1020) 137808) ((-1275 . -489) 137792) ((-780 . -907) 137771) ((-778 . -907) 137750) ((-1185 . -1212) T) ((-454 . -907) 137729) ((-735 . -489) 137713) ((-1084 . -646) 137638) ((-697 . -614) 137573) ((-780 . -646) 137498) ((-621 . -1054) 137485) ((-479 . -1212) T) ((-343 . -368) T) ((-141 . -489) 137467) ((-778 . -646) 137392) ((-1138 . -1212) T) ((-549 . -848) T) ((-461 . -646) 137363) ((-264 . -884) 137222) ((-247 . -884) NIL) ((-117 . -1054) 137167) ((-454 . -646) 137092) ((-662 . -1036) 137069) ((-621 . -111) 137054) ((-390 . -1049) 137038) ((-355 . -1036) 137022) ((-352 . -1036) 137006) ((-344 . -1036) 136990) ((-264 . -1036) 136834) ((-247 . -1036) 136710) ((-117 . -111) 136639) ((-59 . -1212) T) ((-390 . -638) 136623) ((-619 . -1049) 136607) ((-519 . -1212) T) ((-516 . -1212) T) ((-497 . -1212) T) ((-496 . -1212) T) ((-437 . -611) 136589) ((-434 . -611) 136571) ((-619 . -638) 136555) ((-3 . -102) T) ((-1025 . -1205) 136524) ((-831 . -102) T) ((-687 . -57) 136482) ((-697 . -1047) T) ((-633 . -644) 136451) ((-605 . -644) 136420) ((-50 . -646) 136394) ((-289 . -452) T) ((-476 . -1205) 136363) ((0 . -102) T) ((-581 . -646) 136328) ((-518 . -646) 136273) ((-49 . -102) T) ((-908 . -1036) 136260) ((-697 . -243) T) ((-1077 . -409) 136239) ((-729 . -637) 136187) ((-997 . -1097) T) ((-710 . -172) 136078) ((-621 . -614) 135973) ((-487 . -990) 135955) ((-264 . -377) 135939) ((-247 . -377) 135923) ((-399 . -1097) T) ((-1024 . -102) 135901) ((-339 . -38) 135885) ((-217 . -990) 135867) ((-117 . -614) 135797) ((-174 . -38) 135729) ((-1246 . -307) 135708) ((-1225 . -307) 135687) ((-656 . -724) T) ((-99 . -611) 135669) ((-477 . -1049) 135634) ((-1164 . -637) 135586) ((-477 . -638) 135551) ((-485 . -25) T) ((-485 . -21) T) ((-1225 . -1020) 135503) ((-621 . -1047) T) ((-379 . -404) T) ((-390 . -102) T) ((-1102 . -616) 135418) ((-264 . -898) 135364) ((-247 . -898) 135341) ((-117 . -1047) T) ((-814 . -1109) T) ((-1084 . -724) T) ((-621 . -233) 135320) ((-619 . -102) T) ((-780 . -724) T) ((-778 . -724) T) ((-413 . -1109) T) ((-117 . -243) T) ((-40 . -368) NIL) ((-117 . -233) NIL) ((-1217 . -848) T) ((-454 . -724) T) ((-814 . -23) T) ((-729 . -25) T) ((-729 . -21) T) ((-1074 . -286) 135299) ((-78 . -396) T) ((-78 . -395) T) ((-533 . -765) 135281) ((-692 . -1054) 135231) ((-1254 . -131) T) ((-1247 . -131) T) ((-1226 . -131) T) ((-1171 . -25) T) ((-1139 . -411) 135215) ((-633 . -367) 135147) ((-605 . -367) 135079) ((-1153 . -1146) 135063) ((-103 . -1097) 135041) ((-1171 . -21) T) ((-1170 . -21) T) ((-863 . -611) 135023) ((-997 . -715) 134971) ((-223 . -646) 134938) ((-692 . -111) 134872) ((-50 . -724) T) ((-1170 . -25) T) ((-351 . -349) T) ((-1164 . -21) T) ((-1077 . -452) 134823) ((-1164 . -25) T) ((-710 . -514) 134770) ((-581 . -724) T) ((-518 . -724) T) ((-1123 . -21) T) ((-1123 . -25) T) ((-595 . -131) T) ((-294 . -644) 134505) ((-594 . -131) T) ((-359 . -452) T) ((-353 . -452) T) ((-345 . -452) T) ((-474 . -307) 134484) ((-1220 . -102) T) ((-313 . -286) 134419) ((-108 . -452) T) ((-79 . -441) T) ((-79 . -395) T) ((-477 . -102) T) ((-689 . -614) 134403) ((-1290 . -611) 134385) ((-1290 . -612) 134367) ((-1077 . -402) 134346) ((-1033 . -489) 134277) ((-564 . -793) T) ((-564 . -790) T) ((-1060 . -235) 134223) ((-359 . -402) 134174) ((-353 . -402) 134125) ((-345 . -402) 134076) ((-1277 . -1109) T) ((-1286 . -1049) 134060) ((-381 . -1049) 134044) ((-1286 . -638) 134014) ((-381 . -638) 133984) ((-692 . -614) 133919) ((-1277 . -23) T) ((-1264 . -102) T) ((-175 . -611) 133901) ((-1139 . -1055) T) ((-547 . -368) T) ((-668 . -742) 133885) ((-1175 . -145) 133864) ((-1175 . -147) 133843) ((-1143 . -1097) T) ((-1143 . -1068) 133812) ((-69 . -1212) T) ((-1022 . -1054) 133749) ((-351 . -644) 133679) ((-864 . -1055) T) ((-240 . -637) 133585) ((-692 . -1047) T) ((-354 . -1054) 133530) ((-61 . -1212) T) ((-1022 . -111) 133446) ((-899 . -611) 133357) ((-692 . -243) T) ((-692 . -233) NIL) ((-841 . -846) 133336) ((-697 . -793) T) ((-697 . -790) T) ((-1001 . -411) 133313) ((-354 . -111) 133242) ((-379 . -918) T) ((-407 . -846) 133221) ((-710 . -290) 133132) ((-223 . -724) T) ((-1254 . -493) 133098) ((-1247 . -493) 133064) ((-1226 . -493) 133030) ((-578 . -1097) T) ((-316 . -1000) 133009) ((-222 . -1097) 132987) ((-1219 . -842) T) ((-319 . -971) 132949) ((-105 . -102) T) ((-48 . -1054) 132914) ((-1286 . -102) T) ((-381 . -102) T) ((-48 . -111) 132870) ((-1002 . -637) 132852) ((-1248 . -611) 132834) ((-531 . -102) T) ((-500 . -102) T) ((-1130 . -1131) 132818) ((-152 . -1269) 132802) ((-245 . -1212) T) ((-1211 . -102) T) ((-1022 . -614) 132739) ((-1169 . -1216) 132718) ((-354 . -614) 132648) ((-1122 . -1216) 132627) ((-240 . -21) 132537) ((-240 . -25) 132388) ((-127 . -119) 132372) ((-121 . -119) 132356) ((-44 . -742) 132340) ((-1169 . -556) 132251) ((-1122 . -556) 132182) ((-1219 . -1097) T) ((-1033 . -286) 132157) ((-1163 . -1080) T) ((-992 . -1080) T) ((-814 . -131) T) ((-117 . -793) NIL) ((-117 . -790) NIL) ((-355 . -307) T) ((-352 . -307) T) ((-344 . -307) T) ((-251 . -1109) 132067) ((-250 . -1109) 131977) ((-1022 . -1047) T) ((-1001 . -1055) T) ((-48 . -614) 131910) ((-343 . -646) 131855) ((-619 . -38) 131839) ((-1275 . -611) 131801) ((-1275 . -612) 131762) ((-1074 . -611) 131744) ((-1022 . -243) T) ((-354 . -1047) T) ((-813 . -1269) 131714) ((-251 . -23) T) ((-250 . -23) T) ((-985 . -611) 131696) ((-735 . -612) 131657) ((-735 . -611) 131639) ((-797 . -848) 131618) ((-1156 . -151) 131565) ((-997 . -514) 131477) ((-354 . -233) T) ((-354 . -243) T) ((-388 . -614) 131458) ((-1002 . -25) T) ((-141 . -611) 131440) ((-141 . -612) 131399) ((-908 . -307) T) ((-1002 . -21) T) ((-969 . -25) T) ((-912 . -21) T) ((-912 . -25) T) ((-427 . -21) T) ((-427 . -25) T) ((-841 . -411) 131383) ((-48 . -1047) T) ((-1284 . -1276) 131367) ((-1282 . -1276) 131351) ((-1033 . -602) 131326) ((-316 . -612) 131187) ((-316 . -611) 131169) ((-313 . -612) NIL) ((-313 . -611) 131151) ((-48 . -243) T) ((-48 . -233) T) ((-652 . -286) 131112) ((-550 . -235) 131062) ((-139 . -611) 131029) ((-136 . -611) 131011) ((-114 . -611) 130993) ((-477 . -38) 130958) ((-1286 . -1283) 130937) ((-1277 . -131) T) ((-1285 . -1055) T) ((-1079 . -102) T) ((-88 . -1212) T) ((-500 . -309) NIL) ((-998 . -107) 130921) ((-887 . -1097) T) ((-883 . -1097) T) ((-1262 . -649) 130905) ((-1262 . -373) 130889) ((-327 . -1212) T) ((-592 . -848) T) ((-1139 . -1097) T) ((-1139 . -1051) 130829) ((-103 . -514) 130762) ((-925 . -611) 130744) ((-343 . -724) T) ((-30 . -611) 130726) ((-864 . -1097) T) ((-841 . -1055) 130705) ((-40 . -646) 130650) ((-225 . -1216) T) ((-407 . -1055) T) ((-1155 . -151) 130632) ((-997 . -290) 130583) ((-615 . -1097) T) ((-225 . -556) T) ((-319 . -1243) 130567) ((-319 . -1240) 130537) ((-699 . -644) 130509) ((-1185 . -1188) 130488) ((-1072 . -611) 130470) ((-1185 . -107) 130420) ((-645 . -151) 130404) ((-630 . -151) 130350) ((-116 . -644) 130322) ((-479 . -1188) 130301) ((-487 . -147) T) ((-487 . -145) NIL) ((-1117 . -612) 130216) ((-438 . -611) 130198) ((-217 . -147) T) ((-217 . -145) NIL) ((-1117 . -611) 130180) ((-129 . -102) T) ((-52 . -102) T) ((-1226 . -637) 130132) ((-479 . -107) 130082) ((-991 . -23) T) ((-1286 . -38) 130052) ((-1169 . -1109) T) ((-1122 . -1109) T) ((-1059 . -1216) T) ((-311 . -102) T) ((-852 . -1109) T) ((-950 . -1216) 130031) ((-481 . -1216) 130010) ((-1059 . -556) T) ((-950 . -556) 129941) ((-1169 . -23) T) ((-1122 . -23) T) ((-852 . -23) T) ((-481 . -556) 129872) ((-1139 . -715) 129804) ((-668 . -1049) 129788) ((-1143 . -514) 129721) ((-668 . -638) 129705) ((-1033 . -612) NIL) ((-1033 . -611) 129687) ((-96 . -1080) T) ((-864 . -715) 129657) ((-1206 . -47) 129626) ((-251 . -131) T) ((-250 . -131) T) ((-1101 . -1097) T) ((-1001 . -1097) T) ((-62 . -611) 129608) ((-1164 . -848) NIL) ((-1022 . -790) T) ((-1022 . -793) T) ((-1290 . -1054) 129595) ((-1290 . -111) 129580) ((-1254 . -25) T) ((-1254 . -21) T) ((-868 . -646) 129567) ((-1247 . -21) T) ((-1247 . -25) T) ((-1226 . -21) T) ((-1226 . -25) T) ((-1025 . -151) 129551) ((-870 . -818) 129530) ((-870 . -918) T) ((-710 . -286) 129457) ((-595 . -21) T) ((-339 . -644) 129416) ((-595 . -25) T) ((-594 . -21) T) ((-174 . -644) 129333) ((-40 . -724) T) ((-222 . -514) 129266) ((-594 . -25) T) ((-476 . -151) 129250) ((-463 . -151) 129234) ((-919 . -792) T) ((-919 . -724) T) ((-769 . -791) T) ((-769 . -792) T) ((-506 . -1097) T) ((-502 . -1097) T) ((-769 . -724) T) ((-225 . -363) T) ((-1284 . -1049) 129218) ((-1282 . -1049) 129202) ((-1284 . -638) 129172) ((-1153 . -1097) 129150) ((-869 . -1216) T) ((-1282 . -638) 129120) ((-652 . -611) 129102) ((-869 . -556) T) ((-692 . -368) NIL) ((-44 . -1049) 129086) ((-1290 . -614) 129068) ((-1285 . -1097) T) ((-668 . -102) T) ((-359 . -1269) 129052) ((-353 . -1269) 129036) ((-44 . -638) 129020) ((-345 . -1269) 129004) ((-548 . -102) T) ((-520 . -848) 128983) ((-1044 . -1097) T) ((-815 . -452) 128962) ((-152 . -1049) 128946) ((-1044 . -1068) 128875) ((-1025 . -974) 128844) ((-817 . -1109) T) ((-1001 . -715) 128789) ((-152 . -638) 128773) ((-386 . -1109) T) ((-476 . -974) 128742) ((-463 . -974) 128711) ((-110 . -151) 128693) ((-73 . -611) 128675) ((-891 . -611) 128657) ((-1077 . -722) 128636) ((-1290 . -1047) T) ((-814 . -637) 128584) ((-294 . -1055) 128526) ((-169 . -1216) 128431) ((-225 . -1109) T) ((-324 . -23) T) ((-1164 . -990) 128383) ((-841 . -1097) T) ((-1248 . -1054) 128288) ((-1123 . -738) 128267) ((-1246 . -918) 128246) ((-1225 . -918) 128225) ((-868 . -724) T) ((-169 . -556) 128136) ((-580 . -646) 128123) ((-564 . -646) 128110) ((-407 . -1097) T) ((-263 . -1097) T) ((-213 . -611) 128092) ((-495 . -646) 128057) ((-225 . -23) T) ((-1225 . -818) 128010) ((-1284 . -102) T) ((-354 . -1281) 127987) ((-1282 . -102) T) ((-1248 . -111) 127879) ((-813 . -1049) 127776) ((-813 . -638) 127718) ((-144 . -611) 127700) ((-991 . -131) T) ((-44 . -102) T) ((-240 . -848) 127651) ((-1235 . -1216) 127630) ((-103 . -489) 127614) ((-1285 . -715) 127584) ((-1084 . -47) 127545) ((-1059 . -1109) T) ((-950 . -1109) T) ((-127 . -34) T) ((-121 . -34) T) ((-780 . -47) 127522) ((-778 . -47) 127494) ((-1235 . -556) 127405) ((-354 . -368) T) ((-481 . -1109) T) ((-1169 . -131) T) ((-1122 . -131) T) ((-454 . -47) 127384) ((-869 . -363) T) ((-852 . -131) T) ((-152 . -102) T) ((-1059 . -23) T) ((-950 . -23) T) ((-571 . -556) T) ((-814 . -25) T) ((-814 . -21) T) ((-1139 . -514) 127317) ((-591 . -1080) T) ((-585 . -1036) 127301) ((-1248 . -614) 127175) ((-481 . -23) T) ((-351 . -1055) T) ((-1206 . -898) 127156) ((-668 . -309) 127094) ((-1110 . -1269) 127064) ((-697 . -646) 127029) ((-1001 . -172) T) ((-961 . -145) 127008) ((-633 . -1097) T) ((-605 . -1097) T) ((-961 . -147) 126987) ((-1002 . -848) T) ((-733 . -147) 126966) ((-733 . -145) 126945) ((-969 . -848) T) ((-831 . -644) 126862) ((-474 . -918) 126841) ((-319 . -1049) 126676) ((-316 . -1054) 126586) ((-313 . -1054) 126515) ((-997 . -286) 126473) ((-407 . -715) 126425) ((-319 . -638) 126266) ((-699 . -846) T) ((-1248 . -1047) T) ((-316 . -111) 126162) ((-313 . -111) 126075) ((-962 . -102) T) ((-813 . -102) 125865) ((-710 . -612) NIL) ((-710 . -611) 125847) ((-656 . -1036) 125743) ((-1248 . -326) 125687) ((-1033 . -288) 125662) ((-580 . -724) T) ((-564 . -792) T) ((-169 . -363) 125613) ((-564 . -789) T) ((-564 . -724) T) ((-495 . -724) T) ((-1143 . -489) 125597) ((-1084 . -884) NIL) ((-869 . -1109) T) ((-117 . -907) NIL) ((-1284 . -1283) 125573) ((-1282 . -1283) 125552) ((-780 . -884) NIL) ((-778 . -884) 125411) ((-1277 . -25) T) ((-1277 . -21) T) ((-1209 . -102) 125389) ((-1103 . -395) T) ((-621 . -646) 125376) ((-454 . -884) NIL) ((-673 . -102) 125354) ((-1084 . -1036) 125181) ((-869 . -23) T) ((-780 . -1036) 125040) ((-778 . -1036) 124897) ((-117 . -646) 124842) ((-454 . -1036) 124718) ((-316 . -614) 124282) ((-313 . -614) 124165) ((-390 . -644) 124134) ((-647 . -1036) 124118) ((-625 . -102) T) ((-222 . -489) 124102) ((-1262 . -34) T) ((-619 . -644) 124061) ((-289 . -1049) 124048) ((-136 . -614) 124032) ((-289 . -638) 124019) ((-633 . -715) 124003) ((-605 . -715) 123987) ((-668 . -38) 123947) ((-319 . -102) T) ((-85 . -611) 123929) ((-50 . -1036) 123913) ((-1117 . -1054) 123900) ((-1084 . -377) 123884) ((-780 . -377) 123868) ((-697 . -724) T) ((-697 . -792) T) ((-697 . -789) T) ((-581 . -1036) 123855) ((-518 . -1036) 123832) ((-60 . -57) 123794) ((-324 . -131) T) ((-316 . -1047) 123684) ((-313 . -1047) T) ((-169 . -1109) T) ((-778 . -377) 123668) ((-45 . -151) 123618) ((-1002 . -990) 123600) ((-454 . -377) 123584) ((-407 . -172) T) ((-316 . -243) 123563) ((-313 . -243) T) ((-313 . -233) NIL) ((-294 . -1097) 123345) ((-225 . -131) T) ((-1117 . -111) 123330) ((-169 . -23) T) ((-797 . -147) 123309) ((-797 . -145) 123288) ((-251 . -637) 123194) ((-250 . -637) 123100) ((-319 . -284) 123066) ((-1153 . -514) 122999) ((-477 . -644) 122949) ((-1130 . -1097) T) ((-225 . -1057) T) ((-813 . -309) 122887) ((-1084 . -898) 122822) ((-780 . -898) 122765) ((-778 . -898) 122749) ((-1284 . -38) 122719) ((-1282 . -38) 122689) ((-1235 . -1109) T) ((-853 . -1109) T) ((-454 . -898) 122666) ((-856 . -1097) T) ((-1235 . -23) T) ((-1117 . -614) 122638) ((-571 . -1109) T) ((-853 . -23) T) ((-621 . -724) T) ((-355 . -918) T) ((-352 . -918) T) ((-289 . -102) T) ((-344 . -918) T) ((-1059 . -131) T) ((-968 . -1080) T) ((-950 . -131) T) ((-117 . -792) NIL) ((-117 . -789) NIL) ((-117 . -724) T) ((-692 . -907) NIL) ((-1044 . -514) 122539) ((-481 . -131) T) ((-571 . -23) T) ((-673 . -309) 122477) ((-633 . -759) T) ((-605 . -759) T) ((-1226 . -848) NIL) ((-1077 . -1049) 122387) ((-1001 . -290) T) ((-692 . -646) 122337) ((-251 . -21) T) ((-351 . -1097) T) ((-251 . -25) T) ((-250 . -21) T) ((-250 . -25) T) ((-152 . -38) 122321) ((-2 . -102) T) ((-908 . -918) T) ((-1077 . -638) 122189) ((-482 . -1269) 122159) ((-1117 . -1047) T) ((-709 . -307) T) ((-359 . -1049) 122111) ((-353 . -1049) 122063) ((-345 . -1049) 122015) ((-359 . -638) 121967) ((-223 . -1036) 121944) ((-353 . -638) 121896) ((-108 . -1049) 121846) ((-345 . -638) 121798) ((-294 . -715) 121740) ((-699 . -1055) T) ((-487 . -452) T) ((-407 . -514) 121652) ((-108 . -638) 121602) ((-217 . -452) T) ((-1117 . -233) T) ((-295 . -151) 121552) ((-997 . -612) 121513) ((-997 . -611) 121495) ((-987 . -611) 121477) ((-116 . -1055) T) ((-652 . -1054) 121461) ((-225 . -493) T) ((-399 . -611) 121443) ((-399 . -612) 121420) ((-1052 . -1269) 121390) ((-652 . -111) 121369) ((-1139 . -489) 121353) ((-1286 . -644) 121312) ((-381 . -644) 121281) ((-813 . -38) 121251) ((-63 . -441) T) ((-63 . -395) T) ((-1156 . -102) T) ((-869 . -131) T) ((-484 . -102) 121229) ((-1290 . -368) T) ((-1077 . -102) T) ((-1058 . -102) T) ((-351 . -715) 121174) ((-729 . -147) 121153) ((-729 . -145) 121132) ((-652 . -614) 121050) ((-1022 . -646) 120987) ((-523 . -1097) 120965) ((-359 . -102) T) ((-353 . -102) T) ((-345 . -102) T) ((-108 . -102) T) ((-504 . -1097) T) ((-354 . -646) 120910) ((-1169 . -637) 120858) ((-1122 . -637) 120806) ((-385 . -509) 120785) ((-831 . -846) 120764) ((-379 . -1216) T) ((-692 . -724) T) ((-339 . -1055) T) ((-1226 . -990) 120716) ((-174 . -1055) T) ((-103 . -611) 120648) ((-1171 . -145) 120627) ((-1171 . -147) 120606) ((-379 . -556) T) ((-1170 . -147) 120585) ((-1170 . -145) 120564) ((-1164 . -145) 120471) ((-407 . -290) T) ((-1164 . -147) 120378) ((-1123 . -147) 120357) ((-1123 . -145) 120336) ((-319 . -38) 120177) ((-169 . -131) T) ((-313 . -793) NIL) ((-313 . -790) NIL) ((-652 . -1047) T) ((-48 . -646) 120142) ((-1110 . -1049) 120039) ((-891 . -614) 120016) ((-1110 . -638) 119958) ((-1163 . -102) T) ((-992 . -102) T) ((-991 . -21) T) ((-127 . -1008) 119942) ((-121 . -1008) 119926) ((-991 . -25) T) ((-899 . -119) 119910) ((-1155 . -102) T) ((-1235 . -131) T) ((-1169 . -25) T) ((-1169 . -21) T) ((-853 . -131) T) ((-1122 . -25) T) ((-1122 . -21) T) ((-852 . -25) T) ((-852 . -21) T) ((-780 . -307) 119889) ((-645 . -102) 119867) ((-630 . -102) T) ((-1156 . -309) 119662) ((-571 . -131) T) ((-619 . -846) 119641) ((-1153 . -489) 119625) ((-1147 . -151) 119575) ((-1143 . -611) 119537) ((-1143 . -612) 119498) ((-1022 . -789) T) ((-1022 . -792) T) ((-1022 . -724) T) ((-710 . -1054) 119321) ((-484 . -309) 119259) ((-453 . -417) 119229) ((-351 . -172) T) ((-289 . -38) 119216) ((-274 . -102) T) ((-273 . -102) T) ((-272 . -102) T) ((-271 . -102) T) ((-270 . -102) T) ((-269 . -102) T) ((-343 . -1036) 119193) ((-268 . -102) T) ((-212 . -102) T) ((-211 . -102) T) ((-209 . -102) T) ((-208 . -102) T) ((-207 . -102) T) ((-206 . -102) T) ((-203 . -102) T) ((-202 . -102) T) ((-201 . -102) T) ((-200 . -102) T) ((-199 . -102) T) ((-198 . -102) T) ((-197 . -102) T) ((-196 . -102) T) ((-195 . -102) T) ((-194 . -102) T) ((-193 . -102) T) ((-354 . -724) T) ((-710 . -111) 119002) ((-668 . -231) 118986) ((-581 . -307) T) ((-518 . -307) T) ((-294 . -514) 118935) ((-108 . -309) NIL) ((-72 . -395) T) ((-1110 . -102) 118725) ((-831 . -411) 118709) ((-1117 . -793) T) ((-1117 . -790) T) ((-699 . -1097) T) ((-578 . -611) 118691) ((-379 . -363) T) ((-169 . -493) 118669) ((-222 . -611) 118601) ((-134 . -1097) T) ((-116 . -1097) T) ((-48 . -724) T) ((-1044 . -489) 118566) ((-141 . -425) 118548) ((-141 . -368) T) ((-1025 . -102) T) ((-512 . -509) 118527) ((-710 . -614) 118283) ((-476 . -102) T) ((-463 . -102) T) ((-1032 . -1109) T) ((-1219 . -611) 118265) ((-1178 . -1036) 118201) ((-1171 . -35) 118167) ((-1171 . -95) 118133) ((-1171 . -1200) 118099) ((-1171 . -1197) 118065) ((-1155 . -309) NIL) ((-89 . -396) T) ((-89 . -395) T) ((-1077 . -1148) 118044) ((-1170 . -1197) 118010) ((-1170 . -1200) 117976) ((-1032 . -23) T) ((-1170 . -95) 117942) ((-571 . -493) T) ((-1170 . -35) 117908) ((-1164 . -1197) 117874) ((-1164 . -1200) 117840) ((-1164 . -95) 117806) ((-361 . -1109) T) ((-359 . -1148) 117785) ((-353 . -1148) 117764) ((-345 . -1148) 117743) ((-1164 . -35) 117709) ((-1123 . -35) 117675) ((-1123 . -95) 117641) ((-108 . -1148) T) ((-1123 . -1200) 117607) ((-831 . -1055) 117586) ((-645 . -309) 117524) ((-630 . -309) 117375) ((-1123 . -1197) 117341) ((-710 . -1047) T) ((-1059 . -637) 117323) ((-1077 . -38) 117191) ((-950 . -637) 117139) ((-1002 . -147) T) ((-1002 . -145) NIL) ((-379 . -1109) T) ((-324 . -25) T) ((-322 . -23) T) ((-941 . -848) 117118) ((-710 . -326) 117095) ((-481 . -637) 117043) ((-40 . -1036) 116931) ((-710 . -233) T) ((-699 . -715) 116918) ((-339 . -1097) T) ((-174 . -1097) T) ((-331 . -848) T) ((-418 . -452) 116868) ((-379 . -23) T) ((-359 . -38) 116833) ((-353 . -38) 116798) ((-345 . -38) 116763) ((-80 . -441) T) ((-80 . -395) T) ((-225 . -25) T) ((-225 . -21) T) ((-834 . -1109) T) ((-108 . -38) 116713) ((-825 . -1109) T) ((-772 . -1097) T) ((-116 . -715) 116700) ((-670 . -1036) 116684) ((-610 . -102) T) ((-834 . -23) T) ((-825 . -23) T) ((-1153 . -286) 116661) ((-1110 . -309) 116599) ((-482 . -1049) 116496) ((-1099 . -235) 116480) ((-64 . -396) T) ((-64 . -395) T) ((-110 . -102) T) ((-482 . -638) 116422) ((-40 . -377) 116399) ((-96 . -102) T) ((-651 . -850) 116383) ((-1132 . -1080) T) ((-1059 . -21) T) ((-1059 . -25) T) ((-1052 . -1049) 116367) ((-813 . -231) 116336) ((-950 . -25) T) ((-950 . -21) T) ((-1052 . -638) 116278) ((-619 . -1055) T) ((-1117 . -368) T) ((-1025 . -309) 116216) ((-668 . -644) 116175) ((-481 . -25) T) ((-481 . -21) T) ((-385 . -1049) 116159) ((-887 . -611) 116141) ((-883 . -611) 116123) ((-523 . -514) 116056) ((-251 . -848) 116007) ((-250 . -848) 115958) ((-385 . -638) 115928) ((-869 . -637) 115905) ((-476 . -309) 115843) ((-463 . -309) 115781) ((-351 . -290) T) ((-1153 . -1250) 115765) ((-1139 . -611) 115727) ((-1139 . -612) 115688) ((-1137 . -102) T) ((-997 . -1054) 115584) ((-40 . -898) 115536) ((-1153 . -602) 115513) ((-1290 . -646) 115500) ((-864 . -490) 115477) ((-1060 . -151) 115423) ((-870 . -1216) T) ((-997 . -111) 115305) ((-339 . -715) 115289) ((-864 . -611) 115251) ((-174 . -715) 115183) ((-407 . -286) 115141) ((-870 . -556) T) ((-108 . -400) 115123) ((-84 . -384) T) ((-84 . -395) T) ((-699 . -172) T) ((-615 . -611) 115105) ((-99 . -724) T) ((-482 . -102) 114895) ((-99 . -473) T) ((-116 . -172) T) ((-1284 . -644) 114854) ((-1282 . -644) 114813) ((-1110 . -38) 114783) ((-169 . -637) 114731) ((-1052 . -102) T) ((-997 . -614) 114621) ((-869 . -25) T) ((-813 . -238) 114600) ((-869 . -21) T) ((-816 . -102) T) ((-44 . -644) 114543) ((-414 . -102) T) ((-385 . -102) T) ((-110 . -309) NIL) ((-227 . -102) 114521) ((-127 . -1212) T) ((-121 . -1212) T) ((-815 . -1049) 114472) ((-815 . -638) 114414) ((-1032 . -131) T) ((-668 . -367) 114398) ((-152 . -644) 114357) ((-997 . -1047) T) ((-1235 . -637) 114305) ((-1101 . -611) 114287) ((-1001 . -611) 114269) ((-515 . -23) T) ((-510 . -23) T) ((-343 . -307) T) ((-508 . -23) T) ((-322 . -131) T) ((-3 . -1097) T) ((-1001 . -612) 114253) ((-997 . -243) 114232) ((-997 . -233) 114211) ((-1290 . -724) T) ((-1254 . -145) 114190) ((-831 . -1097) T) ((-1254 . -147) 114169) ((-1247 . -147) 114148) ((-1247 . -145) 114127) ((-1246 . -1216) 114106) ((-1226 . -145) 114013) ((-1226 . -147) 113920) ((-1225 . -1216) 113899) ((-379 . -131) T) ((-564 . -884) 113881) ((0 . -1097) T) ((-174 . -172) T) ((-169 . -21) T) ((-169 . -25) T) ((-49 . -1097) T) ((-1248 . -646) 113786) ((-1246 . -556) 113737) ((-712 . -1109) T) ((-1225 . -556) 113688) ((-564 . -1036) 113670) ((-594 . -147) 113649) ((-594 . -145) 113628) ((-495 . -1036) 113571) ((-1132 . -1134) T) ((-87 . -384) T) ((-87 . -395) T) ((-870 . -363) T) ((-834 . -131) T) ((-825 . -131) T) ((-962 . -644) 113515) ((-712 . -23) T) ((-506 . -611) 113481) ((-502 . -611) 113463) ((-813 . -644) 113213) ((-1286 . -1055) T) ((-379 . -1057) T) ((-1024 . -1097) 113191) ((-55 . -1036) 113173) ((-899 . -34) T) ((-482 . -309) 113111) ((-591 . -102) T) ((-1153 . -612) 113072) ((-1153 . -611) 113004) ((-1175 . -1049) 112887) ((-45 . -102) T) ((-815 . -102) T) ((-1175 . -638) 112784) ((-1235 . -25) T) ((-1235 . -21) T) ((-853 . -25) T) ((-44 . -367) 112768) ((-853 . -21) T) ((-729 . -452) 112719) ((-1285 . -611) 112701) ((-1274 . -1049) 112671) ((-1052 . -309) 112609) ((-669 . -1080) T) ((-604 . -1080) T) ((-390 . -1097) T) ((-571 . -25) T) ((-571 . -21) T) ((-180 . -1080) T) ((-161 . -1080) T) ((-156 . -1080) T) ((-154 . -1080) T) ((-1274 . -638) 112579) ((-619 . -1097) T) ((-697 . -884) 112561) ((-1262 . -1212) T) ((-227 . -309) 112499) ((-144 . -368) T) ((-1044 . -612) 112441) ((-1044 . -611) 112384) ((-313 . -907) NIL) ((-1220 . -842) T) ((-697 . -1036) 112329) ((-709 . -918) T) ((-474 . -1216) 112308) ((-1170 . -452) 112287) ((-1164 . -452) 112266) ((-330 . -102) T) ((-870 . -1109) T) ((-319 . -644) 112148) ((-316 . -646) 111969) ((-313 . -646) 111898) ((-474 . -556) 111849) ((-339 . -514) 111815) ((-550 . -151) 111765) ((-40 . -307) T) ((-841 . -611) 111747) ((-699 . -290) T) ((-870 . -23) T) ((-379 . -493) T) ((-1077 . -231) 111717) ((-512 . -102) T) ((-407 . -612) 111524) ((-407 . -611) 111506) ((-263 . -611) 111488) ((-116 . -290) T) ((-1248 . -724) T) ((-1246 . -363) 111467) ((-1225 . -363) 111446) ((-1275 . -34) T) ((-1220 . -1097) T) ((-117 . -1212) T) ((-108 . -231) 111428) ((-1175 . -102) T) ((-477 . -1097) T) ((-523 . -489) 111412) ((-735 . -34) T) ((-651 . -1049) 111396) ((-482 . -38) 111366) ((-651 . -638) 111336) ((-141 . -34) T) ((-117 . -882) 111313) ((-117 . -884) NIL) ((-621 . -1036) 111196) ((-642 . -848) 111175) ((-1274 . -102) T) ((-295 . -102) T) ((-710 . -368) 111154) ((-117 . -1036) 111131) ((-390 . -715) 111115) ((-619 . -715) 111099) ((-45 . -309) 110903) ((-814 . -145) 110882) ((-814 . -147) 110861) ((-289 . -644) 110833) ((-1285 . -382) 110812) ((-817 . -848) T) ((-1264 . -1097) T) ((-1156 . -229) 110759) ((-386 . -848) 110738) ((-1254 . -1200) 110704) ((-1254 . -1197) 110670) ((-1247 . -1197) 110636) ((-515 . -131) T) ((-1247 . -1200) 110602) ((-1226 . -1197) 110568) ((-1226 . -1200) 110534) ((-1254 . -35) 110500) ((-1254 . -95) 110466) ((-633 . -611) 110435) ((-605 . -611) 110404) ((-225 . -848) T) ((-1247 . -95) 110370) ((-1247 . -35) 110336) ((-1246 . -1109) T) ((-1117 . -646) 110323) ((-1226 . -95) 110289) ((-1225 . -1109) T) ((-592 . -151) 110271) ((-1077 . -349) 110250) ((-174 . -290) T) ((-117 . -377) 110227) ((-117 . -338) 110204) ((-1226 . -35) 110170) ((-868 . -307) T) ((-313 . -792) NIL) ((-313 . -789) NIL) ((-316 . -724) 110019) ((-313 . -724) T) ((-474 . -363) 109998) ((-359 . -349) 109977) ((-353 . -349) 109956) ((-345 . -349) 109935) ((-316 . -473) 109914) ((-1246 . -23) T) ((-1225 . -23) T) ((-716 . -1109) T) ((-712 . -131) T) ((-651 . -102) T) ((-477 . -715) 109879) ((-45 . -282) 109829) ((-105 . -1097) T) ((-68 . -611) 109811) ((-968 . -102) T) ((-862 . -102) T) ((-621 . -898) 109770) ((-1286 . -1097) T) ((-381 . -1097) T) ((-82 . -1212) T) ((-1211 . -1097) T) ((-1059 . -848) T) ((-117 . -898) NIL) ((-780 . -918) 109749) ((-711 . -848) T) ((-531 . -1097) T) ((-500 . -1097) T) ((-355 . -1216) T) ((-352 . -1216) T) ((-344 . -1216) T) ((-264 . -1216) 109728) ((-247 . -1216) 109707) ((-533 . -858) T) ((-1110 . -231) 109676) ((-1155 . -826) T) ((-1139 . -1054) 109660) ((-390 . -759) T) ((-692 . -1212) T) ((-689 . -1036) 109644) ((-355 . -556) T) ((-352 . -556) T) ((-344 . -556) T) ((-264 . -556) 109575) ((-247 . -556) 109506) ((-525 . -1080) T) ((-1139 . -111) 109485) ((-453 . -742) 109455) ((-864 . -1054) 109425) ((-815 . -38) 109367) ((-692 . -882) 109349) ((-692 . -884) 109331) ((-295 . -309) 109135) ((-908 . -1216) T) ((-1153 . -288) 109112) ((-1077 . -644) 109007) ((-668 . -411) 108991) ((-864 . -111) 108956) ((-1002 . -452) T) ((-692 . -1036) 108901) ((-908 . -556) T) ((-533 . -611) 108883) ((-581 . -918) T) ((-487 . -1049) 108833) ((-474 . -1109) T) ((-518 . -918) T) ((-912 . -452) T) ((-65 . -611) 108815) ((-217 . -1049) 108765) ((-487 . -638) 108715) ((-359 . -644) 108652) ((-353 . -644) 108589) ((-345 . -644) 108526) ((-630 . -229) 108472) ((-217 . -638) 108422) ((-108 . -644) 108372) ((-474 . -23) T) ((-1117 . -792) T) ((-870 . -131) T) ((-1117 . -789) T) ((-1277 . -1279) 108351) ((-1117 . -724) T) ((-652 . -646) 108325) ((-294 . -611) 108066) ((-1139 . -614) 107984) ((-1033 . -34) T) ((-813 . -846) 107963) ((-580 . -307) T) ((-564 . -307) T) ((-495 . -307) T) ((-1286 . -715) 107933) ((-692 . -377) 107915) ((-692 . -338) 107897) ((-477 . -172) T) ((-381 . -715) 107867) ((-864 . -614) 107802) ((-869 . -848) NIL) ((-564 . -1020) T) ((-495 . -1020) T) ((-1130 . -611) 107784) ((-1110 . -238) 107763) ((-214 . -102) T) ((-1147 . -102) T) ((-71 . -611) 107745) ((-1139 . -1047) T) ((-1175 . -38) 107642) ((-856 . -611) 107624) ((-564 . -545) T) ((-668 . -1055) T) ((-729 . -947) 107577) ((-1139 . -233) 107556) ((-1079 . -1097) T) ((-1032 . -25) T) ((-1032 . -21) T) ((-1001 . -1054) 107501) ((-903 . -102) T) ((-864 . -1047) T) ((-692 . -898) NIL) ((-355 . -329) 107485) ((-355 . -363) T) ((-352 . -329) 107469) ((-352 . -363) T) ((-344 . -329) 107453) ((-344 . -363) T) ((-487 . -102) T) ((-1274 . -38) 107423) ((-546 . -848) T) ((-523 . -685) 107373) ((-217 . -102) T) ((-1022 . -1036) 107253) ((-1001 . -111) 107182) ((-1171 . -971) 107151) ((-520 . -151) 107135) ((-1077 . -370) 107114) ((-351 . -611) 107096) ((-322 . -21) T) ((-354 . -1036) 107073) ((-322 . -25) T) ((-1170 . -971) 107035) ((-1164 . -971) 107004) ((-76 . -611) 106986) ((-1123 . -971) 106953) ((-697 . -307) T) ((-129 . -842) T) ((-908 . -363) T) ((-379 . -25) T) ((-379 . -21) T) ((-908 . -329) 106940) ((-86 . -611) 106922) ((-697 . -1020) T) ((-675 . -848) T) ((-1246 . -131) T) ((-1225 . -131) T) ((-899 . -1008) 106906) ((-834 . -21) T) ((-48 . -1036) 106849) ((-834 . -25) T) ((-825 . -25) T) ((-825 . -21) T) ((-1110 . -644) 106599) ((-1284 . -1055) T) ((-549 . -102) T) ((-1282 . -1055) T) ((-652 . -724) T) ((-1101 . -616) 106502) ((-1001 . -614) 106432) ((-1285 . -1054) 106416) ((-813 . -411) 106385) ((-103 . -119) 106369) ((-129 . -1097) T) ((-52 . -1097) T) ((-924 . -611) 106351) ((-869 . -990) 106328) ((-821 . -102) T) ((-1285 . -111) 106307) ((-651 . -38) 106277) ((-571 . -848) T) ((-355 . -1109) T) ((-352 . -1109) T) ((-344 . -1109) T) ((-264 . -1109) T) ((-247 . -1109) T) ((-621 . -307) 106256) ((-1147 . -309) 106060) ((-662 . -23) T) ((-524 . -1080) T) ((-311 . -1097) T) ((-482 . -231) 106029) ((-152 . -1055) T) ((-355 . -23) T) ((-352 . -23) T) ((-344 . -23) T) ((-117 . -307) T) ((-264 . -23) T) ((-247 . -23) T) ((-1001 . -1047) T) ((-710 . -907) 106008) ((-1153 . -614) 105985) ((-1001 . -233) 105957) ((-1001 . -243) T) ((-117 . -1020) NIL) ((-908 . -1109) T) ((-1247 . -452) 105936) ((-1226 . -452) 105915) ((-523 . -611) 105847) ((-710 . -646) 105772) ((-407 . -1054) 105724) ((-504 . -611) 105706) ((-908 . -23) T) ((-487 . -309) NIL) ((-1285 . -614) 105662) ((-474 . -131) T) ((-217 . -309) NIL) ((-407 . -111) 105600) ((-813 . -1055) 105530) ((-735 . -1095) 105514) ((-1246 . -493) 105480) ((-1225 . -493) 105446) ((-548 . -842) T) ((-141 . -1095) 105428) ((-477 . -290) T) ((-1285 . -1047) T) ((-1217 . -102) T) ((-1060 . -102) T) ((-841 . -614) 105296) ((-500 . -514) NIL) ((-482 . -238) 105275) ((-407 . -614) 105173) ((-961 . -1049) 105056) ((-733 . -1049) 105026) ((-961 . -638) 104923) ((-1169 . -145) 104902) ((-733 . -638) 104872) ((-453 . -1049) 104842) ((-1169 . -147) 104821) ((-1122 . -147) 104800) ((-1122 . -145) 104779) ((-633 . -1054) 104763) ((-605 . -1054) 104747) ((-453 . -638) 104717) ((-1171 . -1253) 104701) ((-1171 . -1240) 104678) ((-668 . -1097) T) ((-668 . -1051) 104618) ((-1170 . -1245) 104579) ((-548 . -1097) T) ((-487 . -1148) T) ((-1170 . -1240) 104549) ((-1170 . -1243) 104533) ((-1164 . -1224) 104494) ((-217 . -1148) T) ((-343 . -918) T) ((-816 . -266) 104478) ((-633 . -111) 104457) ((-605 . -111) 104436) ((-1164 . -1240) 104413) ((-841 . -1047) 104392) ((-1164 . -1222) 104376) ((-515 . -25) T) ((-495 . -302) T) ((-511 . -23) T) ((-510 . -25) T) ((-508 . -25) T) ((-507 . -23) T) ((-418 . -1049) 104350) ((-407 . -1047) T) ((-319 . -1055) T) ((-692 . -307) T) ((-418 . -638) 104324) ((-108 . -846) T) ((-710 . -724) T) ((-407 . -243) T) ((-407 . -233) 104303) ((-487 . -38) 104253) ((-217 . -38) 104203) ((-474 . -493) 104169) ((-1219 . -368) T) ((-1155 . -1141) T) ((-1098 . -102) T) ((-699 . -611) 104151) ((-699 . -612) 104066) ((-712 . -21) T) ((-712 . -25) T) ((-1132 . -102) T) ((-482 . -644) 103816) ((-134 . -611) 103798) ((-116 . -611) 103780) ((-157 . -25) T) ((-1284 . -1097) T) ((-870 . -637) 103728) ((-1282 . -1097) T) ((-961 . -102) T) ((-733 . -102) T) ((-713 . -102) T) ((-453 . -102) T) ((-814 . -452) 103679) ((-44 . -1097) T) ((-1085 . -848) T) ((-1060 . -309) 103530) ((-662 . -131) T) ((-1052 . -644) 103499) ((-668 . -715) 103483) ((-289 . -1055) T) ((-355 . -131) T) ((-352 . -131) T) ((-344 . -131) T) ((-264 . -131) T) ((-247 . -131) T) ((-385 . -644) 103452) ((-418 . -102) T) ((-152 . -1097) T) ((-45 . -229) 103402) ((-797 . -1049) 103386) ((-956 . -848) 103365) ((-997 . -646) 103303) ((-797 . -638) 103287) ((-240 . -1269) 103257) ((-1022 . -307) T) ((-294 . -1054) 103178) ((-908 . -131) T) ((-40 . -918) T) ((-487 . -400) 103160) ((-354 . -307) T) ((-217 . -400) 103142) ((-1077 . -411) 103126) ((-294 . -111) 103042) ((-1180 . -848) T) ((-1179 . -848) T) ((-870 . -25) T) ((-870 . -21) T) ((-339 . -611) 103024) ((-1248 . -47) 102968) ((-225 . -147) T) ((-174 . -611) 102950) ((-1110 . -846) 102929) ((-772 . -611) 102911) ((-128 . -848) T) ((-606 . -235) 102858) ((-475 . -235) 102808) ((-1284 . -715) 102778) ((-48 . -307) T) ((-1282 . -715) 102748) ((-65 . -614) 102677) ((-962 . -1097) T) ((-813 . -1097) 102467) ((-312 . -102) T) ((-899 . -1212) T) ((-48 . -1020) T) ((-1225 . -637) 102375) ((-687 . -102) 102353) ((-44 . -715) 102337) ((-550 . -102) T) ((-294 . -614) 102268) ((-67 . -383) T) ((-67 . -395) T) ((-660 . -23) T) ((-815 . -644) 102204) ((-668 . -759) T) ((-1209 . -1097) 102182) ((-351 . -1054) 102127) ((-673 . -1097) 102105) ((-1059 . -147) T) ((-950 . -147) 102084) ((-950 . -145) 102063) ((-797 . -102) T) ((-152 . -715) 102047) ((-481 . -147) 102026) ((-481 . -145) 102005) ((-351 . -111) 101934) ((-1077 . -1055) T) ((-322 . -848) 101913) ((-1254 . -971) 101882) ((-625 . -1097) T) ((-1247 . -971) 101844) ((-511 . -131) T) ((-507 . -131) T) ((-295 . -229) 101794) ((-359 . -1055) T) ((-353 . -1055) T) ((-345 . -1055) T) ((-294 . -1047) 101736) ((-1226 . -971) 101705) ((-379 . -848) T) ((-108 . -1055) T) ((-997 . -724) T) ((-868 . -918) T) ((-841 . -793) 101684) ((-841 . -790) 101663) ((-418 . -309) 101602) ((-468 . -102) T) ((-594 . -971) 101571) ((-319 . -1097) T) ((-407 . -793) 101550) ((-407 . -790) 101529) ((-500 . -489) 101511) ((-1248 . -1036) 101477) ((-1246 . -21) T) ((-1246 . -25) T) ((-1225 . -21) T) ((-1225 . -25) T) ((-813 . -715) 101419) ((-351 . -614) 101349) ((-697 . -404) T) ((-1275 . -1212) T) ((-604 . -102) T) ((-1110 . -411) 101318) ((-1001 . -368) NIL) ((-669 . -102) T) ((-180 . -102) T) ((-161 . -102) T) ((-156 . -102) T) ((-154 . -102) T) ((-103 . -34) T) ((-1175 . -644) 101228) ((-735 . -1212) T) ((-729 . -1049) 101071) ((-44 . -759) T) ((-729 . -638) 100920) ((-592 . -102) T) ((-77 . -396) T) ((-77 . -395) T) ((-651 . -654) 100904) ((-141 . -1212) T) ((-869 . -147) T) ((-869 . -145) NIL) ((-1211 . -93) T) ((-351 . -1047) T) ((-70 . -383) T) ((-70 . -395) T) ((-1162 . -102) T) ((-668 . -514) 100837) ((-1274 . -644) 100782) ((-687 . -309) 100720) ((-961 . -38) 100617) ((-1177 . -611) 100599) ((-733 . -38) 100569) ((-550 . -309) 100373) ((-1171 . -1049) 100256) ((-316 . -1212) T) ((-351 . -233) T) ((-351 . -243) T) ((-313 . -1212) T) ((-289 . -1097) T) ((-1170 . -1049) 100091) ((-1164 . -1049) 99881) ((-1123 . -1049) 99764) ((-1171 . -638) 99661) ((-1170 . -638) 99502) ((-709 . -1216) T) ((-1164 . -638) 99298) ((-1153 . -649) 99282) ((-1123 . -638) 99179) ((-1206 . -556) 99158) ((-709 . -556) T) ((-316 . -882) 99142) ((-316 . -884) 99067) ((-313 . -882) 99028) ((-313 . -884) NIL) ((-797 . -309) 98993) ((-319 . -715) 98834) ((-324 . -323) 98811) ((-485 . -102) T) ((-474 . -25) T) ((-474 . -21) T) ((-418 . -38) 98785) ((-316 . -1036) 98448) ((-225 . -1197) T) ((-225 . -1200) T) ((-3 . -611) 98430) ((-313 . -1036) 98360) ((-2 . -1097) T) ((-2 . |RecordCategory|) T) ((-831 . -611) 98342) ((-1110 . -1055) 98272) ((-580 . -918) T) ((-564 . -818) T) ((-564 . -918) T) ((-495 . -918) T) ((-136 . -1036) 98256) ((-225 . -95) T) ((-169 . -147) 98235) ((-75 . -441) T) ((0 . -611) 98217) ((-75 . -395) T) ((-169 . -145) 98168) ((-225 . -35) T) ((-49 . -611) 98150) ((-477 . -1055) T) ((-487 . -231) 98132) ((-484 . -966) 98116) ((-482 . -846) 98095) ((-217 . -231) 98077) ((-81 . -441) T) ((-81 . -395) T) ((-1143 . -34) T) ((-813 . -172) 98056) ((-729 . -102) T) ((-651 . -644) 98015) ((-1024 . -611) 97982) ((-500 . -286) 97957) ((-316 . -377) 97926) ((-313 . -377) 97887) ((-313 . -338) 97848) ((-1082 . -611) 97830) ((-814 . -947) 97777) ((-660 . -131) T) ((-1235 . -145) 97756) ((-1235 . -147) 97735) ((-1171 . -102) T) ((-1170 . -102) T) ((-1164 . -102) T) ((-1156 . -1097) T) ((-1123 . -102) T) ((-222 . -34) T) ((-289 . -715) 97722) ((-1156 . -608) 97698) ((-592 . -309) NIL) ((-484 . -1097) 97676) ((-390 . -611) 97658) ((-510 . -848) T) ((-1147 . -229) 97608) ((-1254 . -1253) 97592) ((-1254 . -1240) 97569) ((-1247 . -1245) 97530) ((-1247 . -1240) 97500) ((-1247 . -1243) 97484) ((-1226 . -1224) 97445) ((-1226 . -1240) 97422) ((-619 . -611) 97404) ((-1226 . -1222) 97388) ((-697 . -918) T) ((-1171 . -284) 97354) ((-1170 . -284) 97320) ((-1164 . -284) 97286) ((-1077 . -1097) T) ((-1058 . -1097) T) ((-48 . -302) T) ((-316 . -898) 97252) ((-313 . -898) NIL) ((-1058 . -1065) 97231) ((-1117 . -884) 97213) ((-797 . -38) 97197) ((-264 . -637) 97145) ((-247 . -637) 97093) ((-699 . -1054) 97080) ((-594 . -1240) 97057) ((-1123 . -284) 97023) ((-319 . -172) 96954) ((-359 . -1097) T) ((-353 . -1097) T) ((-345 . -1097) T) ((-500 . -19) 96936) ((-1117 . -1036) 96918) ((-1099 . -151) 96902) ((-108 . -1097) T) ((-116 . -1054) 96889) ((-709 . -363) T) ((-500 . -602) 96864) ((-699 . -111) 96849) ((-436 . -102) T) ((-45 . -1146) 96799) ((-116 . -111) 96784) ((-633 . -718) T) ((-605 . -718) T) ((-1264 . -611) 96766) ((-1220 . -611) 96748) ((-1218 . -848) T) ((-813 . -514) 96681) ((-1033 . -1212) T) ((-240 . -1049) 96578) ((-1206 . -1109) T) ((-1206 . -23) T) ((-941 . -151) 96562) ((-1169 . -452) 96493) ((-1164 . -309) 96378) ((-240 . -638) 96320) ((-1163 . -1097) T) ((-1155 . -1097) T) ((-1139 . -646) 96294) ((-525 . -102) T) ((-520 . -102) 96244) ((-1123 . -309) 96231) ((-1122 . -452) 96182) ((-1084 . -1216) 96161) ((-780 . -1216) 96140) ((-778 . -1216) 96119) ((-62 . -1212) T) ((-477 . -611) 96071) ((-477 . -612) 95993) ((-1084 . -556) 95924) ((-992 . -1097) T) ((-780 . -556) 95835) ((-778 . -556) 95766) ((-482 . -411) 95735) ((-621 . -918) 95714) ((-454 . -1216) 95693) ((-729 . -309) 95680) ((-699 . -614) 95652) ((-398 . -611) 95634) ((-673 . -514) 95567) ((-662 . -25) T) ((-662 . -21) T) ((-454 . -556) 95498) ((-355 . -25) T) ((-355 . -21) T) ((-117 . -918) T) ((-117 . -818) NIL) ((-352 . -25) T) ((-352 . -21) T) ((-344 . -25) T) ((-344 . -21) T) ((-264 . -25) T) ((-264 . -21) T) ((-247 . -25) T) ((-247 . -21) T) ((-83 . -384) T) ((-83 . -395) T) ((-134 . -614) 95480) ((-116 . -614) 95452) ((-1077 . -715) 95320) ((-1002 . -1049) 95270) ((-1002 . -638) 95220) ((-941 . -978) 95204) ((-912 . -638) 95156) ((-912 . -1049) 95108) ((-908 . -21) T) ((-908 . -25) T) ((-870 . -848) 95059) ((-864 . -646) 95019) ((-709 . -1109) T) ((-709 . -23) T) ((-289 . -172) T) ((-699 . -1047) T) ((-311 . -93) T) ((-699 . -233) T) ((-645 . -1097) 94997) ((-630 . -608) 94972) ((-630 . -1097) T) ((-581 . -1216) T) ((-581 . -556) T) ((-518 . -1216) T) ((-518 . -556) T) ((-487 . -644) 94922) ((-427 . -1049) 94906) ((-427 . -638) 94890) ((-359 . -715) 94842) ((-353 . -715) 94794) ((-339 . -1054) 94778) ((-345 . -715) 94730) ((-339 . -111) 94709) ((-174 . -1054) 94641) ((-217 . -644) 94591) ((-174 . -111) 94502) ((-108 . -715) 94452) ((-274 . -1097) T) ((-273 . -1097) T) ((-272 . -1097) T) ((-271 . -1097) T) ((-270 . -1097) T) ((-269 . -1097) T) ((-268 . -1097) T) ((-212 . -1097) T) ((-211 . -1097) T) ((-169 . -1200) 94430) ((-169 . -1197) 94408) ((-209 . -1097) T) ((-208 . -1097) T) ((-116 . -1047) T) ((-207 . -1097) T) ((-206 . -1097) T) ((-203 . -1097) T) ((-202 . -1097) T) ((-201 . -1097) T) ((-200 . -1097) T) ((-199 . -1097) T) ((-198 . -1097) T) ((-197 . -1097) T) ((-196 . -1097) T) ((-195 . -1097) T) ((-194 . -1097) T) ((-193 . -1097) T) ((-240 . -102) 94198) ((-169 . -35) 94176) ((-169 . -95) 94154) ((-652 . -1036) 94050) ((-482 . -1055) 93980) ((-1110 . -1097) 93770) ((-1139 . -34) T) ((-668 . -489) 93754) ((-73 . -1212) T) ((-105 . -611) 93736) ((-1286 . -611) 93718) ((-381 . -611) 93700) ((-339 . -614) 93652) ((-174 . -614) 93569) ((-1211 . -490) 93550) ((-729 . -38) 93399) ((-571 . -1200) T) ((-571 . -1197) T) ((-531 . -611) 93381) ((-520 . -309) 93319) ((-500 . -611) 93301) ((-500 . -612) 93283) ((-1211 . -611) 93249) ((-1164 . -1148) NIL) ((-1025 . -1068) 93218) ((-1025 . -1097) T) ((-1002 . -102) T) ((-969 . -102) T) ((-912 . -102) T) ((-891 . -1036) 93195) ((-1139 . -724) T) ((-1001 . -646) 93140) ((-476 . -1097) T) ((-463 . -1097) T) ((-585 . -23) T) ((-571 . -35) T) ((-571 . -95) T) ((-427 . -102) T) ((-1060 . -229) 93086) ((-1171 . -38) 92983) ((-864 . -724) T) ((-692 . -918) T) ((-511 . -25) T) ((-507 . -21) T) ((-507 . -25) T) ((-1170 . -38) 92824) ((-339 . -1047) T) ((-1164 . -38) 92620) ((-1077 . -172) T) ((-174 . -1047) T) ((-1123 . -38) 92517) ((-710 . -47) 92494) ((-359 . -172) T) ((-353 . -172) T) ((-519 . -57) 92468) ((-497 . -57) 92418) ((-351 . -1281) 92395) ((-225 . -452) T) ((-319 . -290) 92346) ((-345 . -172) T) ((-174 . -243) T) ((-1225 . -848) 92245) ((-108 . -172) T) ((-870 . -990) 92229) ((-656 . -1109) T) ((-581 . -363) T) ((-581 . -329) 92216) ((-518 . -329) 92193) ((-518 . -363) T) ((-316 . -307) 92172) ((-313 . -307) T) ((-600 . -848) 92151) ((-1110 . -715) 92093) ((-520 . -282) 92077) ((-656 . -23) T) ((-418 . -231) 92061) ((-313 . -1020) NIL) ((-336 . -23) T) ((-103 . -1008) 92045) ((-45 . -36) 92024) ((-610 . -1097) T) ((-351 . -368) T) ((-524 . -102) T) ((-495 . -27) T) ((-240 . -309) 91962) ((-1084 . -1109) T) ((-1285 . -646) 91936) ((-780 . -1109) T) ((-778 . -1109) T) ((-454 . -1109) T) ((-1059 . -452) T) ((-950 . -452) 91887) ((-1112 . -1080) T) ((-110 . -1097) T) ((-1084 . -23) T) ((-815 . -1055) T) ((-780 . -23) T) ((-778 . -23) T) ((-481 . -452) 91838) ((-1156 . -514) 91621) ((-381 . -382) 91600) ((-1175 . -411) 91584) ((-461 . -23) T) ((-454 . -23) T) ((-96 . -1097) T) ((-484 . -514) 91517) ((-1254 . -1049) 91400) ((-1254 . -638) 91297) ((-1247 . -638) 91138) ((-1247 . -1049) 90973) ((-289 . -290) T) ((-1226 . -1049) 90763) ((-1079 . -611) 90745) ((-1079 . -612) 90726) ((-407 . -907) 90705) ((-1226 . -638) 90501) ((-50 . -1109) T) ((-1206 . -131) T) ((-1022 . -918) T) ((-1001 . -724) T) ((-841 . -646) 90474) ((-710 . -884) NIL) ((-595 . -1049) 90447) ((-581 . -1109) T) ((-518 . -1109) T) ((-594 . -1049) 90330) ((-1164 . -400) 90282) ((-1002 . -309) NIL) ((-813 . -489) 90266) ((-595 . -638) 90239) ((-354 . -918) T) ((-594 . -638) 90136) ((-1153 . -34) T) ((-407 . -646) 90088) ((-50 . -23) T) ((-709 . -131) T) ((-710 . -1036) 89968) ((-581 . -23) T) ((-108 . -514) NIL) ((-518 . -23) T) ((-169 . -409) 89939) ((-1137 . -1097) T) ((-1277 . -1276) 89923) ((-699 . -793) T) ((-699 . -790) T) ((-1117 . -307) T) ((-379 . -147) T) ((-280 . -611) 89905) ((-1225 . -990) 89875) ((-48 . -918) T) ((-673 . -489) 89859) ((-251 . -1269) 89829) ((-250 . -1269) 89799) ((-1173 . -848) T) ((-1110 . -172) 89778) ((-1117 . -1020) T) ((-1044 . -34) T) ((-834 . -147) 89757) ((-834 . -145) 89736) ((-735 . -107) 89720) ((-610 . -132) T) ((-482 . -1097) 89510) ((-1175 . -1055) T) ((-869 . -452) T) ((-85 . -1212) T) ((-240 . -38) 89480) ((-141 . -107) 89462) ((-710 . -377) 89446) ((-831 . -614) 89314) ((-1285 . -724) T) ((-1274 . -1055) T) ((-1117 . -545) T) ((-579 . -102) T) ((-129 . -490) 89296) ((-1254 . -102) T) ((-390 . -1054) 89280) ((-1247 . -102) T) ((-1169 . -947) 89249) ((-129 . -611) 89216) ((-52 . -611) 89198) ((-1122 . -947) 89165) ((-651 . -411) 89149) ((-1226 . -102) T) ((-1155 . -514) NIL) ((-619 . -1054) 89133) ((-660 . -25) T) ((-660 . -21) T) ((-961 . -644) 89043) ((-733 . -644) 88988) ((-713 . -644) 88960) ((-390 . -111) 88939) ((-222 . -254) 88923) ((-1052 . -1051) 88863) ((-1052 . -1097) T) ((-1002 . -1148) T) ((-816 . -1097) T) ((-453 . -644) 88778) ((-343 . -1216) T) ((-633 . -646) 88762) ((-619 . -111) 88741) ((-605 . -646) 88725) ((-595 . -102) T) ((-311 . -490) 88706) ((-585 . -131) T) ((-594 . -102) T) ((-414 . -1097) T) ((-385 . -1097) T) ((-311 . -611) 88672) ((-227 . -1097) 88650) ((-645 . -514) 88583) ((-630 . -514) 88427) ((-831 . -1047) 88406) ((-642 . -151) 88390) ((-343 . -556) T) ((-710 . -898) 88333) ((-550 . -229) 88283) ((-1254 . -284) 88249) ((-1247 . -284) 88215) ((-1077 . -290) 88166) ((-487 . -846) T) ((-223 . -1109) T) ((-1226 . -284) 88132) ((-1206 . -493) 88098) ((-1002 . -38) 88048) ((-217 . -846) T) ((-418 . -644) 88007) ((-912 . -38) 87959) ((-841 . -792) 87938) ((-841 . -789) 87917) ((-841 . -724) 87896) ((-359 . -290) T) ((-353 . -290) T) ((-345 . -290) T) ((-169 . -452) 87827) ((-427 . -38) 87811) ((-108 . -290) T) ((-223 . -23) T) ((-407 . -792) 87790) ((-407 . -789) 87769) ((-407 . -724) T) ((-500 . -288) 87744) ((-477 . -1054) 87709) ((-656 . -131) T) ((-619 . -614) 87678) ((-1110 . -514) 87611) ((-336 . -131) T) ((-169 . -402) 87590) ((-482 . -715) 87532) ((-813 . -286) 87509) ((-477 . -111) 87465) ((-651 . -1055) T) ((-814 . -1049) 87308) ((-1273 . -1080) T) ((-1235 . -452) 87239) ((-814 . -638) 87088) ((-1272 . -1080) T) ((-1084 . -131) T) ((-1052 . -715) 87030) ((-780 . -131) T) ((-778 . -131) T) ((-571 . -452) T) ((-1025 . -514) 86963) ((-619 . -1047) T) ((-591 . -1097) T) ((-533 . -173) T) ((-461 . -131) T) ((-454 . -131) T) ((-45 . -1097) T) ((-385 . -715) 86933) ((-815 . -1097) T) ((-476 . -514) 86866) ((-463 . -514) 86799) ((-453 . -367) 86769) ((-45 . -608) 86748) ((-316 . -302) T) ((-477 . -614) 86698) ((-1226 . -309) 86583) ((-668 . -611) 86545) ((-59 . -848) 86524) ((-1002 . -400) 86506) ((-548 . -611) 86488) ((-797 . -644) 86447) ((-813 . -602) 86424) ((-516 . -848) 86403) ((-496 . -848) 86382) ((-40 . -1216) T) ((-997 . -1036) 86278) ((-50 . -131) T) ((-581 . -131) T) ((-518 . -131) T) ((-294 . -646) 86138) ((-343 . -329) 86115) ((-343 . -363) T) ((-322 . -323) 86092) ((-319 . -286) 86077) ((-40 . -556) T) ((-379 . -1197) T) ((-379 . -1200) T) ((-1033 . -1188) 86052) ((-1185 . -235) 86002) ((-1164 . -231) 85954) ((-330 . -1097) T) ((-379 . -95) T) ((-379 . -35) T) ((-1033 . -107) 85900) ((-477 . -1047) T) ((-1286 . -1054) 85884) ((-479 . -235) 85834) ((-1156 . -489) 85768) ((-1277 . -1049) 85752) ((-381 . -1054) 85736) ((-1277 . -638) 85706) ((-477 . -243) T) ((-814 . -102) T) ((-712 . -147) 85685) ((-712 . -145) 85664) ((-484 . -489) 85648) ((-485 . -335) 85617) ((-1286 . -111) 85596) ((-512 . -1097) T) ((-482 . -172) 85575) ((-997 . -377) 85559) ((-413 . -102) T) ((-381 . -111) 85538) ((-997 . -338) 85522) ((-279 . -981) 85506) ((-278 . -981) 85490) ((-1284 . -611) 85472) ((-1282 . -611) 85454) ((-110 . -514) NIL) ((-1169 . -1238) 85438) ((-852 . -850) 85422) ((-1175 . -1097) T) ((-103 . -1212) T) ((-950 . -947) 85383) ((-815 . -715) 85325) ((-1226 . -1148) NIL) ((-481 . -947) 85270) ((-1059 . -143) T) ((-60 . -102) 85248) ((-44 . -611) 85230) ((-78 . -611) 85212) ((-351 . -646) 85157) ((-1274 . -1097) T) ((-511 . -848) T) ((-343 . -1109) T) ((-295 . -1097) T) ((-997 . -898) 85116) ((-295 . -608) 85095) ((-1286 . -614) 85044) ((-1254 . -38) 84941) ((-1247 . -38) 84782) ((-1226 . -38) 84578) ((-487 . -1055) T) ((-381 . -614) 84562) ((-217 . -1055) T) ((-343 . -23) T) ((-152 . -611) 84544) ((-831 . -793) 84523) ((-831 . -790) 84502) ((-1211 . -614) 84483) ((-595 . -38) 84456) ((-594 . -38) 84353) ((-868 . -556) T) ((-223 . -131) T) ((-319 . -1000) 84319) ((-79 . -611) 84301) ((-710 . -307) 84280) ((-294 . -724) 84182) ((-822 . -102) T) ((-862 . -842) T) ((-294 . -473) 84161) ((-1277 . -102) T) ((-40 . -363) T) ((-870 . -147) 84140) ((-485 . -644) 84122) ((-870 . -145) 84101) ((-1155 . -489) 84083) ((-1286 . -1047) T) ((-482 . -514) 84016) ((-1143 . -1212) T) ((-962 . -611) 83998) ((-645 . -489) 83982) ((-630 . -489) 83913) ((-813 . -611) 83644) ((-48 . -27) T) ((-1175 . -715) 83541) ((-651 . -1097) T) ((-859 . -858) T) ((-436 . -364) 83515) ((-729 . -644) 83425) ((-1099 . -102) T) ((-968 . -1097) T) ((-862 . -1097) T) ((-814 . -309) 83412) ((-533 . -527) T) ((-533 . -576) T) ((-1282 . -382) 83384) ((-1052 . -514) 83317) ((-1156 . -286) 83293) ((-240 . -231) 83262) ((-251 . -1049) 83159) ((-250 . -1049) 83056) ((-1274 . -715) 83026) ((-1163 . -93) T) ((-992 . -93) T) ((-815 . -172) 83005) ((-251 . -638) 82947) ((-250 . -638) 82889) ((-1209 . -490) 82866) ((-227 . -514) 82799) ((-619 . -793) 82778) ((-619 . -790) 82757) ((-1209 . -611) 82669) ((-222 . -1212) T) ((-673 . -611) 82601) ((-1171 . -644) 82511) ((-1153 . -1008) 82495) ((-941 . -102) 82445) ((-351 . -724) T) ((-859 . -611) 82427) ((-1170 . -644) 82309) ((-1164 . -644) 82146) ((-1123 . -644) 82056) ((-1226 . -400) 82008) ((-1110 . -489) 81992) ((-60 . -309) 81930) ((-331 . -102) T) ((-1206 . -21) T) ((-1206 . -25) T) ((-40 . -1109) T) ((-709 . -21) T) ((-625 . -611) 81912) ((-515 . -323) 81891) ((-709 . -25) T) ((-439 . -102) T) ((-108 . -286) NIL) ((-919 . -1109) T) ((-40 . -23) T) ((-769 . -1109) T) ((-564 . -1216) T) ((-495 . -1216) T) ((-319 . -611) 81873) ((-1002 . -231) 81855) ((-169 . -166) 81839) ((-580 . -556) T) ((-564 . -556) T) ((-495 . -556) T) ((-769 . -23) T) ((-1246 . -147) 81818) ((-1156 . -602) 81794) ((-1246 . -145) 81773) ((-1025 . -489) 81757) ((-1225 . -145) 81682) ((-1225 . -147) 81607) ((-1277 . -1283) 81586) ((-476 . -489) 81570) ((-463 . -489) 81554) ((-523 . -34) T) ((-651 . -715) 81524) ((-112 . -965) T) ((-660 . -848) 81503) ((-1175 . -172) 81454) ((-365 . -102) T) ((-240 . -238) 81433) ((-251 . -102) T) ((-250 . -102) T) ((-1235 . -947) 81402) ((-245 . -848) 81381) ((-814 . -38) 81230) ((-45 . -514) 81022) ((-1155 . -286) 80997) ((-214 . -1097) T) ((-1147 . -1097) T) ((-1147 . -608) 80976) ((-585 . -25) T) ((-585 . -21) T) ((-1099 . -309) 80914) ((-961 . -411) 80898) ((-697 . -1216) T) ((-630 . -286) 80873) ((-1084 . -637) 80821) ((-780 . -637) 80769) ((-778 . -637) 80717) ((-343 . -131) T) ((-289 . -611) 80699) ((-903 . -1097) T) ((-697 . -556) T) ((-129 . -614) 80681) ((-868 . -1109) T) ((-454 . -637) 80629) ((-903 . -901) 80613) ((-379 . -452) T) ((-487 . -1097) T) ((-941 . -309) 80551) ((-699 . -646) 80538) ((-549 . -842) T) ((-217 . -1097) T) ((-316 . -918) 80517) ((-313 . -918) T) ((-313 . -818) NIL) ((-390 . -718) T) ((-868 . -23) T) ((-116 . -646) 80504) ((-474 . -145) 80483) ((-418 . -411) 80467) ((-474 . -147) 80446) ((-110 . -489) 80428) ((-311 . -614) 80409) ((-2 . -611) 80391) ((-186 . -102) T) ((-1155 . -19) 80373) ((-1155 . -602) 80348) ((-656 . -21) T) ((-656 . -25) T) ((-592 . -1141) T) ((-1110 . -286) 80325) ((-336 . -25) T) ((-336 . -21) T) ((-240 . -644) 80075) ((-495 . -363) T) ((-1277 . -38) 80045) ((-1169 . -1049) 79868) ((-1139 . -1212) T) ((-1122 . -1049) 79711) ((-852 . -1049) 79695) ((-630 . -602) 79670) ((-1169 . -638) 79499) ((-1122 . -638) 79348) ((-852 . -638) 79318) ((-1284 . -1054) 79302) ((-1282 . -1054) 79286) ((-549 . -1097) T) ((-1084 . -25) T) ((-1084 . -21) T) ((-531 . -790) T) ((-531 . -793) T) ((-117 . -1216) T) ((-961 . -1055) T) ((-621 . -556) T) ((-780 . -25) T) ((-780 . -21) T) ((-778 . -21) T) ((-778 . -25) T) ((-733 . -1055) T) ((-713 . -1055) T) ((-668 . -1054) 79270) ((-517 . -1080) T) ((-461 . -25) T) ((-117 . -556) T) ((-461 . -21) T) ((-454 . -25) T) ((-454 . -21) T) ((-1246 . -1197) 79236) ((-1246 . -1200) 79202) ((-1139 . -1036) 79098) ((-815 . -290) 79077) ((-1246 . -95) 79043) ((-821 . -1097) T) ((-1229 . -102) 79021) ((-964 . -965) T) ((-668 . -111) 79000) ((-295 . -514) 78792) ((-1226 . -231) 78744) ((-1225 . -1197) 78710) ((-1225 . -1200) 78676) ((-251 . -309) 78614) ((-250 . -309) 78552) ((-1220 . -368) T) ((-1156 . -612) NIL) ((-1156 . -611) 78534) ((-1217 . -842) T) ((-1139 . -377) 78518) ((-1117 . -818) T) ((-96 . -93) T) ((-1117 . -918) T) ((-1110 . -602) 78495) ((-1077 . -612) 78479) ((-1002 . -644) 78429) ((-912 . -644) 78366) ((-813 . -288) 78343) ((-484 . -611) 78275) ((-606 . -151) 78222) ((-487 . -715) 78172) ((-418 . -1055) T) ((-482 . -489) 78156) ((-427 . -644) 78115) ((-327 . -848) 78094) ((-339 . -646) 78068) ((-50 . -21) T) ((-50 . -25) T) ((-217 . -715) 78018) ((-169 . -722) 77989) ((-174 . -646) 77921) ((-581 . -21) T) ((-581 . -25) T) ((-518 . -25) T) ((-518 . -21) T) ((-475 . -151) 77871) ((-1077 . -611) 77853) ((-1058 . -611) 77835) ((-991 . -102) T) ((-860 . -102) T) ((-797 . -411) 77799) ((-40 . -131) T) ((-697 . -363) T) ((-699 . -724) T) ((-699 . -792) T) ((-699 . -789) T) ((-212 . -893) T) ((-580 . -1109) T) ((-564 . -1109) T) ((-495 . -1109) T) ((-359 . -611) 77781) ((-353 . -611) 77763) ((-345 . -611) 77745) ((-66 . -396) T) ((-66 . -395) T) ((-108 . -612) 77675) ((-108 . -611) 77617) ((-211 . -893) T) ((-956 . -151) 77601) ((-769 . -131) T) ((-668 . -614) 77519) ((-134 . -724) T) ((-116 . -724) T) ((-1246 . -35) 77485) ((-1052 . -489) 77469) ((-580 . -23) T) ((-564 . -23) T) ((-495 . -23) T) ((-1225 . -95) 77435) ((-1225 . -35) 77401) ((-1169 . -102) T) ((-1122 . -102) T) ((-852 . -102) T) ((-227 . -489) 77385) ((-1284 . -111) 77364) ((-1282 . -111) 77343) ((-44 . -1054) 77327) ((-1284 . -614) 77273) ((-1235 . -1238) 77257) ((-853 . -850) 77241) ((-1284 . -1047) T) ((-1175 . -290) 77220) ((-110 . -286) 77195) ((-1282 . -614) 77124) ((-128 . -151) 77106) ((-1139 . -898) 77065) ((-44 . -111) 77044) ((-1217 . -1097) T) ((-1178 . -1257) T) ((-1163 . -490) 77025) ((-1163 . -611) 76991) ((-668 . -1047) T) ((-1155 . -612) NIL) ((-1155 . -611) 76973) ((-1060 . -608) 76948) ((-1060 . -1097) T) ((-992 . -490) 76929) ((-74 . -441) T) ((-74 . -395) T) ((-992 . -611) 76895) ((-152 . -1054) 76879) ((-668 . -233) 76858) ((-571 . -554) 76842) ((-355 . -147) 76821) ((-355 . -145) 76772) ((-352 . -147) 76751) ((-352 . -145) 76702) ((-344 . -147) 76681) ((-344 . -145) 76632) ((-264 . -145) 76611) ((-264 . -147) 76590) ((-251 . -38) 76560) ((-247 . -147) 76539) ((-117 . -363) T) ((-247 . -145) 76518) ((-250 . -38) 76488) ((-152 . -111) 76467) ((-1001 . -1036) 76355) ((-1164 . -846) NIL) ((-692 . -1216) T) ((-797 . -1055) T) ((-697 . -1109) T) ((-1282 . -1047) T) ((-1153 . -1212) T) ((-1001 . -377) 76332) ((-908 . -145) T) ((-908 . -147) 76314) ((-868 . -131) T) ((-813 . -1054) 76211) ((-697 . -23) T) ((-692 . -556) T) ((-225 . -1049) 76176) ((-645 . -611) 76108) ((-645 . -612) 76069) ((-630 . -612) NIL) ((-630 . -611) 76051) ((-487 . -172) T) ((-225 . -638) 76016) ((-223 . -21) T) ((-217 . -172) T) ((-223 . -25) T) ((-474 . -1200) 75982) ((-474 . -1197) 75948) ((-274 . -611) 75930) ((-273 . -611) 75912) ((-272 . -611) 75894) ((-271 . -611) 75876) ((-270 . -611) 75858) ((-500 . -649) 75840) ((-269 . -611) 75822) ((-339 . -724) T) ((-268 . -611) 75804) ((-110 . -19) 75786) ((-174 . -724) T) ((-500 . -373) 75768) ((-212 . -611) 75750) ((-520 . -1146) 75734) ((-500 . -123) T) ((-110 . -602) 75709) ((-211 . -611) 75691) ((-474 . -35) 75657) ((-474 . -95) 75623) ((-209 . -611) 75605) ((-208 . -611) 75587) ((-207 . -611) 75569) ((-206 . -611) 75551) ((-203 . -611) 75533) ((-202 . -611) 75515) ((-201 . -611) 75497) ((-200 . -611) 75479) ((-199 . -611) 75461) ((-198 . -611) 75443) ((-197 . -611) 75425) ((-536 . -1100) 75377) ((-196 . -611) 75359) ((-195 . -611) 75341) ((-45 . -489) 75278) ((-194 . -611) 75260) ((-193 . -611) 75242) ((-152 . -614) 75211) ((-1112 . -102) T) ((-813 . -111) 75101) ((-642 . -102) 75051) ((-482 . -286) 75028) ((-1110 . -611) 74759) ((-1098 . -1097) T) ((-1044 . -1212) T) ((-1285 . -1036) 74743) ((-1059 . -1049) 74730) ((-1169 . -309) 74717) ((-950 . -1049) 74560) ((-1132 . -1097) T) ((-1122 . -309) 74547) ((-621 . -1109) T) ((-1059 . -638) 74534) ((-1093 . -1080) T) ((-950 . -638) 74383) ((-1087 . -1080) T) ((-481 . -1049) 74226) ((-1070 . -1080) T) ((-1063 . -1080) T) ((-1034 . -1080) T) ((-1017 . -1080) T) ((-117 . -1109) T) ((-481 . -638) 74075) ((-817 . -102) T) ((-624 . -1080) T) ((-621 . -23) T) ((-1147 . -514) 73867) ((-483 . -1080) T) ((-386 . -102) T) ((-324 . -102) T) ((-218 . -1080) T) ((-961 . -1097) T) ((-152 . -1047) T) ((-729 . -411) 73851) ((-117 . -23) T) ((-1001 . -898) 73803) ((-733 . -1097) T) ((-713 . -1097) T) ((-453 . -1097) T) ((-407 . -1212) T) ((-316 . -430) 73787) ((-591 . -93) T) ((-1254 . -644) 73697) ((-1025 . -612) 73658) ((-1022 . -1216) T) ((-225 . -102) T) ((-1025 . -611) 73620) ((-1247 . -644) 73502) ((-814 . -231) 73486) ((-813 . -614) 73216) ((-1226 . -644) 73053) ((-1022 . -556) T) ((-831 . -646) 73026) ((-354 . -1216) T) ((-476 . -611) 72988) ((-476 . -612) 72949) ((-463 . -612) 72910) ((-463 . -611) 72872) ((-595 . -644) 72844) ((-407 . -882) 72828) ((-319 . -1054) 72663) ((-407 . -884) 72588) ((-594 . -644) 72498) ((-841 . -1036) 72394) ((-487 . -514) NIL) ((-482 . -602) 72371) ((-354 . -556) T) ((-217 . -514) NIL) ((-870 . -452) T) ((-418 . -1097) T) ((-407 . -1036) 72235) ((-319 . -111) 72056) ((-692 . -363) T) ((-225 . -284) T) ((-1209 . -614) 72033) ((-48 . -1216) T) ((-813 . -1047) 71963) ((-1169 . -1148) 71941) ((-580 . -131) T) ((-564 . -131) T) ((-495 . -131) T) ((-1156 . -288) 71917) ((-48 . -556) T) ((-1059 . -102) T) ((-950 . -102) T) ((-869 . -1049) 71862) ((-316 . -27) 71841) ((-813 . -233) 71793) ((-249 . -833) 71775) ((-240 . -846) 71754) ((-187 . -833) 71736) ((-711 . -102) T) ((-295 . -489) 71673) ((-869 . -638) 71618) ((-481 . -102) T) ((-729 . -1055) T) ((-610 . -611) 71600) ((-610 . -612) 71461) ((-407 . -377) 71445) ((-407 . -338) 71429) ((-319 . -614) 71255) ((-1169 . -38) 71084) ((-1122 . -38) 70933) ((-852 . -38) 70903) ((-390 . -646) 70887) ((-642 . -309) 70825) ((-961 . -715) 70722) ((-733 . -715) 70692) ((-222 . -107) 70676) ((-45 . -286) 70601) ((-619 . -646) 70575) ((-312 . -1097) T) ((-289 . -1054) 70562) ((-110 . -611) 70544) ((-110 . -612) 70526) ((-453 . -715) 70496) ((-814 . -253) 70435) ((-687 . -1097) 70413) ((-550 . -1097) T) ((-1171 . -1055) T) ((-1170 . -1055) T) ((-96 . -490) 70394) ((-1164 . -1055) T) ((-289 . -111) 70379) ((-1123 . -1055) T) ((-550 . -608) 70358) ((-96 . -611) 70324) ((-1002 . -846) T) ((-227 . -685) 70282) ((-692 . -1109) T) ((-1206 . -738) 70258) ((-1022 . -363) T) ((-836 . -833) 70240) ((-831 . -792) 70219) ((-407 . -898) 70178) ((-319 . -1047) T) ((-343 . -25) T) ((-343 . -21) T) ((-169 . -1049) 70088) ((-68 . -1212) T) ((-831 . -789) 70067) ((-418 . -715) 70041) ((-797 . -1097) T) ((-710 . -918) 70020) ((-697 . -131) T) ((-169 . -638) 69848) ((-692 . -23) T) ((-487 . -290) T) ((-831 . -724) 69827) ((-319 . -233) 69779) ((-319 . -243) 69758) ((-217 . -290) T) ((-129 . -368) T) ((-1246 . -452) 69737) ((-1225 . -452) 69716) ((-354 . -329) 69693) ((-354 . -363) T) ((-1137 . -611) 69675) ((-45 . -1250) 69625) ((-869 . -102) T) ((-642 . -282) 69609) ((-697 . -1057) T) ((-1273 . -102) T) ((-1272 . -102) T) ((-477 . -646) 69574) ((-468 . -1097) T) ((-45 . -602) 69499) ((-1155 . -288) 69474) ((-289 . -614) 69446) ((-40 . -637) 69385) ((-1235 . -1049) 69208) ((-853 . -1049) 69192) ((-48 . -363) T) ((-1103 . -611) 69174) ((-1235 . -638) 69003) ((-853 . -638) 68973) ((-630 . -288) 68948) ((-814 . -644) 68858) ((-571 . -1049) 68845) ((-482 . -611) 68576) ((-240 . -411) 68545) ((-950 . -309) 68532) ((-571 . -638) 68519) ((-65 . -1212) T) ((-1060 . -514) 68363) ((-669 . -1097) T) ((-621 . -131) T) ((-481 . -309) 68350) ((-604 . -1097) T) ((-546 . -102) T) ((-117 . -131) T) ((-289 . -1047) T) ((-180 . -1097) T) ((-161 . -1097) T) ((-156 . -1097) T) ((-154 . -1097) T) ((-453 . -759) T) ((-31 . -1080) T) ((-961 . -172) 68301) ((-968 . -93) T) ((-1077 . -1054) 68211) ((-619 . -792) 68190) ((-592 . -1097) T) ((-619 . -789) 68169) ((-619 . -724) T) ((-295 . -286) 68148) ((-294 . -1212) T) ((-1052 . -611) 68110) ((-1052 . -612) 68071) ((-1022 . -1109) T) ((-169 . -102) T) ((-275 . -848) T) ((-1162 . -1097) T) ((-816 . -611) 68053) ((-1110 . -288) 68030) ((-1099 . -229) 68014) ((-1001 . -307) T) ((-797 . -715) 67998) ((-359 . -1054) 67950) ((-354 . -1109) T) ((-353 . -1054) 67902) ((-414 . -611) 67884) ((-385 . -611) 67866) ((-345 . -1054) 67818) ((-227 . -611) 67750) ((-1077 . -111) 67646) ((-1022 . -23) T) ((-108 . -1054) 67596) ((-896 . -102) T) ((-839 . -102) T) ((-806 . -102) T) ((-767 . -102) T) ((-675 . -102) T) ((-474 . -452) 67575) ((-418 . -172) T) ((-359 . -111) 67513) ((-353 . -111) 67451) ((-345 . -111) 67389) ((-251 . -231) 67358) ((-250 . -231) 67327) ((-354 . -23) T) ((-71 . -1212) T) ((-225 . -38) 67292) ((-108 . -111) 67226) ((-40 . -25) T) ((-40 . -21) T) ((-668 . -718) T) ((-169 . -284) 67204) ((-48 . -1109) T) ((-919 . -25) T) ((-769 . -25) T) ((-1286 . -646) 67178) ((-1147 . -489) 67115) ((-485 . -1097) T) ((-1277 . -644) 67074) ((-1235 . -102) T) ((-1059 . -1148) T) ((-853 . -102) T) ((-240 . -1055) 67004) ((-962 . -790) 66957) ((-962 . -793) 66910) ((-381 . -646) 66894) ((-48 . -23) T) ((-813 . -793) 66845) ((-813 . -790) 66796) ((-548 . -368) T) ((-295 . -602) 66775) ((-477 . -724) T) ((-571 . -102) T) ((-1077 . -614) 66593) ((-249 . -185) T) ((-187 . -185) T) ((-869 . -309) 66550) ((-651 . -286) 66529) ((-112 . -659) T) ((-359 . -614) 66466) ((-353 . -614) 66403) ((-345 . -614) 66340) ((-76 . -1212) T) ((-108 . -614) 66290) ((-1059 . -38) 66277) ((-662 . -374) 66256) ((-950 . -38) 66105) ((-729 . -1097) T) ((-481 . -38) 65954) ((-86 . -1212) T) ((-591 . -490) 65935) ((-571 . -284) T) ((-1226 . -846) NIL) ((-591 . -611) 65901) ((-1171 . -1097) T) ((-1170 . -1097) T) ((-1077 . -1047) T) ((-351 . -1036) 65878) ((-815 . -490) 65862) ((-1002 . -1055) T) ((-45 . -611) 65844) ((-45 . -612) NIL) ((-912 . -1055) T) ((-815 . -611) 65813) ((-1164 . -1097) T) ((-1144 . -102) 65791) ((-1077 . -243) 65742) ((-427 . -1055) T) ((-359 . -1047) T) ((-365 . -364) 65719) ((-353 . -1047) T) ((-345 . -1047) T) ((-251 . -238) 65698) ((-250 . -238) 65677) ((-1077 . -233) 65602) ((-1123 . -1097) T) ((-294 . -898) 65561) ((-108 . -1047) T) ((-692 . -131) T) ((-418 . -514) 65403) ((-359 . -233) 65382) ((-359 . -243) T) ((-44 . -718) T) ((-353 . -233) 65361) ((-353 . -243) T) ((-345 . -233) 65340) ((-345 . -243) T) ((-1163 . -614) 65321) ((-169 . -309) 65286) ((-108 . -243) T) ((-108 . -233) T) ((-992 . -614) 65267) ((-319 . -790) T) ((-868 . -21) T) ((-868 . -25) T) ((-407 . -307) T) ((-500 . -34) T) ((-110 . -288) 65242) ((-1110 . -1054) 65139) ((-869 . -1148) NIL) ((-330 . -611) 65121) ((-407 . -1020) 65099) ((-1110 . -111) 64989) ((-689 . -1257) T) ((-436 . -1097) T) ((-1286 . -724) T) ((-63 . -611) 64971) ((-869 . -38) 64916) ((-523 . -1212) T) ((-600 . -151) 64900) ((-512 . -611) 64882) ((-1235 . -309) 64869) ((-729 . -715) 64718) ((-531 . -791) T) ((-531 . -792) T) ((-564 . -637) 64700) ((-495 . -637) 64660) ((-355 . -452) T) ((-352 . -452) T) ((-344 . -452) T) ((-264 . -452) 64611) ((-525 . -1097) T) ((-520 . -1097) 64561) ((-247 . -452) 64512) ((-1147 . -286) 64491) ((-1175 . -611) 64473) ((-687 . -514) 64406) ((-961 . -290) 64385) ((-550 . -514) 64177) ((-251 . -644) 63997) ((-250 . -644) 63804) ((-1274 . -611) 63773) ((-1169 . -231) 63757) ((-1110 . -614) 63487) ((-169 . -1148) 63466) ((-1274 . -490) 63450) ((-1171 . -715) 63347) ((-1170 . -715) 63188) ((-890 . -102) T) ((-1164 . -715) 62984) ((-1123 . -715) 62881) ((-1153 . -672) 62865) ((-355 . -402) 62816) ((-352 . -402) 62767) ((-344 . -402) 62718) ((-1022 . -131) T) ((-797 . -514) 62630) ((-295 . -612) NIL) ((-295 . -611) 62612) ((-908 . -452) T) ((-962 . -368) 62565) ((-813 . -368) 62544) ((-510 . -509) 62523) ((-508 . -509) 62502) ((-487 . -286) NIL) ((-482 . -288) 62479) ((-418 . -290) T) ((-354 . -131) T) ((-217 . -286) NIL) ((-692 . -493) NIL) ((-99 . -1109) T) ((-169 . -38) 62307) ((-1246 . -971) 62269) ((-1144 . -309) 62207) ((-1225 . -971) 62176) ((-908 . -402) T) ((-1110 . -1047) 62106) ((-1248 . -556) T) ((-1147 . -602) 62085) ((-112 . -848) T) ((-1060 . -489) 62016) ((-580 . -21) T) ((-580 . -25) T) ((-564 . -21) T) ((-564 . -25) T) ((-495 . -25) T) ((-495 . -21) T) ((-1235 . -1148) 61994) ((-1110 . -233) 61946) ((-48 . -131) T) ((-1193 . -102) T) ((-240 . -1097) 61736) ((-869 . -400) 61713) ((-1085 . -102) T) ((-1073 . -102) T) ((-606 . -102) T) ((-475 . -102) T) ((-1235 . -38) 61542) ((-853 . -38) 61512) ((-1032 . -1049) 61486) ((-729 . -172) 61397) ((-651 . -611) 61379) ((-643 . -1080) T) ((-1032 . -638) 61363) ((-571 . -38) 61350) ((-968 . -490) 61331) ((-968 . -611) 61297) ((-956 . -102) 61247) ((-862 . -611) 61229) ((-862 . -612) 61151) ((-592 . -514) NIL) ((-1254 . -1055) T) ((-1247 . -1055) T) ((-322 . -1049) 61133) ((-1226 . -1055) T) ((-322 . -638) 61115) ((-1290 . -1109) T) ((-1206 . -147) 61094) ((-1206 . -145) 61073) ((-1180 . -102) T) ((-1179 . -102) T) ((-595 . -1055) T) ((-594 . -1055) T) ((-1171 . -172) 61024) ((-1170 . -172) 60955) ((-379 . -1049) 60920) ((-1164 . -172) 60851) ((-1123 . -172) 60802) ((-1002 . -1097) T) ((-969 . -1097) T) ((-912 . -1097) T) ((-379 . -638) 60767) ((-797 . -795) 60751) ((-697 . -25) T) ((-697 . -21) T) ((-117 . -637) 60728) ((-699 . -884) 60710) ((-427 . -1097) T) ((-316 . -1216) 60689) ((-313 . -1216) T) ((-169 . -400) 60673) ((-834 . -1049) 60643) ((-474 . -971) 60605) ((-130 . -102) T) ((-128 . -102) T) ((-72 . -611) 60587) ((-825 . -1049) 60571) ((-108 . -793) T) ((-108 . -790) T) ((-699 . -1036) 60553) ((-316 . -556) 60532) ((-313 . -556) T) ((-834 . -638) 60502) ((-825 . -638) 60472) ((-1290 . -23) T) ((-134 . -1036) 60454) ((-96 . -614) 60435) ((-991 . -644) 60417) ((-482 . -1054) 60314) ((-45 . -288) 60239) ((-240 . -715) 60181) ((-517 . -102) T) ((-482 . -111) 60071) ((-1089 . -102) 60049) ((-1032 . -102) T) ((-1169 . -644) 59959) ((-1122 . -644) 59869) ((-852 . -644) 59828) ((-642 . -826) 59807) ((-729 . -514) 59750) ((-1052 . -1054) 59734) ((-1132 . -93) T) ((-1060 . -286) 59709) ((-621 . -21) T) ((-621 . -25) T) ((-524 . -1097) T) ((-668 . -646) 59683) ((-361 . -102) T) ((-322 . -102) T) ((-385 . -1054) 59667) ((-1052 . -111) 59646) ((-814 . -411) 59630) ((-117 . -25) T) ((-89 . -611) 59612) ((-117 . -21) T) ((-606 . -309) 59407) ((-475 . -309) 59211) ((-1147 . -612) NIL) ((-385 . -111) 59190) ((-379 . -102) T) ((-214 . -611) 59172) ((-1147 . -611) 59154) ((-1164 . -514) 58923) ((-1002 . -715) 58873) ((-1123 . -514) 58843) ((-912 . -715) 58795) ((-482 . -614) 58525) ((-351 . -307) T) ((-1185 . -151) 58475) ((-956 . -309) 58413) ((-834 . -102) T) ((-427 . -715) 58397) ((-225 . -826) T) ((-825 . -102) T) ((-823 . -102) T) ((-479 . -151) 58347) ((-1246 . -1245) 58326) ((-1117 . -1216) T) ((-339 . -1036) 58293) ((-1246 . -1240) 58263) ((-1246 . -1243) 58247) ((-1225 . -1224) 58226) ((-80 . -611) 58208) ((-903 . -611) 58190) ((-1225 . -1240) 58167) ((-1117 . -556) T) ((-919 . -848) T) ((-769 . -848) T) ((-670 . -848) T) ((-487 . -612) 58097) ((-487 . -611) 58038) ((-379 . -284) T) ((-1225 . -1222) 58022) ((-1248 . -1109) T) ((-217 . -612) 57952) ((-217 . -611) 57893) ((-1284 . -646) 57867) ((-1060 . -602) 57842) ((-816 . -614) 57826) ((-59 . -151) 57810) ((-516 . -151) 57794) ((-496 . -151) 57778) ((-359 . -1281) 57762) ((-353 . -1281) 57746) ((-345 . -1281) 57730) ((-316 . -363) 57709) ((-313 . -363) T) ((-482 . -1047) 57639) ((-692 . -637) 57621) ((-1282 . -646) 57595) ((-128 . -309) NIL) ((-1248 . -23) T) ((-687 . -489) 57579) ((-64 . -611) 57561) ((-1110 . -793) 57512) ((-1110 . -790) 57463) ((-550 . -489) 57400) ((-668 . -34) T) ((-482 . -233) 57352) ((-295 . -288) 57331) ((-240 . -172) 57310) ((-814 . -1055) T) ((-44 . -646) 57268) ((-1077 . -368) 57219) ((-729 . -290) 57150) ((-520 . -514) 57083) ((-815 . -1054) 57034) ((-1084 . -145) 57013) ((-549 . -611) 56995) ((-359 . -368) 56974) ((-353 . -368) 56953) ((-345 . -368) 56932) ((-1084 . -147) 56911) ((-869 . -231) 56888) ((-815 . -111) 56830) ((-780 . -145) 56809) ((-780 . -147) 56788) ((-264 . -947) 56755) ((-251 . -846) 56734) ((-247 . -947) 56679) ((-250 . -846) 56658) ((-778 . -145) 56637) ((-778 . -147) 56616) ((-152 . -646) 56590) ((-579 . -1097) T) ((-454 . -147) 56569) ((-454 . -145) 56548) ((-668 . -724) T) ((-821 . -611) 56530) ((-1254 . -1097) T) ((-1247 . -1097) T) ((-1226 . -1097) T) ((-1206 . -1200) 56496) ((-1206 . -1197) 56462) ((-1171 . -290) 56441) ((-1170 . -290) 56392) ((-1164 . -290) 56343) ((-1123 . -290) 56322) ((-339 . -898) 56303) ((-1002 . -172) T) ((-912 . -172) T) ((-692 . -21) T) ((-692 . -25) T) ((-225 . -644) 56253) ((-595 . -1097) T) ((-594 . -1097) T) ((-474 . -1243) 56237) ((-474 . -1240) 56207) ((-418 . -286) 56135) ((-547 . -848) T) ((-316 . -1109) 55984) ((-313 . -1109) T) ((-1206 . -35) 55950) ((-1206 . -95) 55916) ((-84 . -611) 55898) ((-91 . -102) 55876) ((-1290 . -131) T) ((-712 . -1049) 55846) ((-591 . -614) 55827) ((-581 . -145) T) ((-581 . -147) 55809) ((-518 . -147) 55791) ((-518 . -145) T) ((-712 . -638) 55761) ((-316 . -23) 55613) ((-40 . -342) 55587) ((-313 . -23) T) ((-815 . -614) 55501) ((-1155 . -649) 55483) ((-1277 . -1055) T) ((-1155 . -373) 55465) ((-813 . -646) 55313) ((-1093 . -102) T) ((-1087 . -102) T) ((-1070 . -102) T) ((-169 . -231) 55297) ((-1063 . -102) T) ((-1034 . -102) T) ((-1017 . -102) T) ((-592 . -489) 55279) ((-624 . -102) T) ((-240 . -514) 55212) ((-483 . -102) T) ((-1284 . -724) T) ((-1282 . -724) T) ((-218 . -102) T) ((-1175 . -1054) 55095) ((-1059 . -644) 55067) ((-950 . -644) 54977) ((-1175 . -111) 54846) ((-481 . -644) 54756) ((-859 . -173) T) ((-815 . -1047) T) ((-679 . -1080) T) ((-674 . -1080) T) ((-515 . -102) T) ((-510 . -102) T) ((-48 . -637) 54716) ((-508 . -102) T) ((-478 . -1080) T) ((-1274 . -1054) 54686) ((-138 . -1080) T) ((-137 . -1080) T) ((-133 . -1080) T) ((-1032 . -38) 54670) ((-815 . -233) T) ((-815 . -243) 54649) ((-1274 . -111) 54614) ((-1254 . -715) 54511) ((-1247 . -715) 54352) ((-550 . -286) 54331) ((-1235 . -231) 54315) ((-1217 . -611) 54297) ((-604 . -93) T) ((-1060 . -612) NIL) ((-1060 . -611) 54279) ((-669 . -93) T) ((-180 . -93) T) ((-161 . -93) T) ((-156 . -93) T) ((-154 . -93) T) ((-1226 . -715) 54075) ((-1001 . -918) T) ((-152 . -724) T) ((-1175 . -614) 53928) ((-1110 . -368) 53907) ((-1022 . -25) T) ((-1002 . -514) NIL) ((-251 . -411) 53876) ((-250 . -411) 53845) ((-1022 . -21) T) ((-870 . -1049) 53797) ((-595 . -715) 53770) ((-594 . -715) 53667) ((-797 . -286) 53625) ((-126 . -102) 53603) ((-831 . -1036) 53499) ((-169 . -826) 53478) ((-319 . -646) 53375) ((-813 . -34) T) ((-712 . -102) T) ((-1117 . -1109) T) ((-1024 . -1212) T) ((-870 . -638) 53327) ((-379 . -38) 53292) ((-354 . -25) T) ((-354 . -21) T) ((-187 . -102) T) ((-162 . -102) T) ((-249 . -102) T) ((-157 . -102) T) ((-355 . -1269) 53276) ((-352 . -1269) 53260) ((-344 . -1269) 53244) ((-169 . -349) 53223) ((-564 . -848) T) ((-1117 . -23) T) ((-87 . -611) 53205) ((-699 . -307) T) ((-834 . -38) 53175) ((-825 . -38) 53145) ((-1274 . -614) 53087) ((-1248 . -131) T) ((-1147 . -288) 53066) ((-962 . -724) 52965) ((-962 . -791) 52918) ((-962 . -792) 52871) ((-813 . -789) 52850) ((-116 . -307) T) ((-91 . -309) 52788) ((-673 . -34) T) ((-550 . -602) 52767) ((-48 . -25) T) ((-48 . -21) T) ((-813 . -792) 52718) ((-813 . -791) 52697) ((-699 . -1020) T) ((-651 . -1054) 52681) ((-869 . -644) 52611) ((-813 . -724) 52521) ((-962 . -473) 52474) ((-482 . -793) 52425) ((-482 . -790) 52376) ((-908 . -1269) 52363) ((-1175 . -1047) T) ((-651 . -111) 52342) ((-1175 . -326) 52319) ((-1198 . -102) 52297) ((-1098 . -611) 52279) ((-699 . -545) T) ((-814 . -1097) T) ((-1274 . -1047) T) ((-1132 . -490) 52260) ((-1218 . -102) T) ((-413 . -1097) T) ((-1132 . -611) 52226) ((-251 . -1055) 52156) ((-250 . -1055) 52086) ((-836 . -102) T) ((-289 . -646) 52073) ((-592 . -286) 52048) ((-687 . -685) 52006) ((-961 . -611) 51988) ((-870 . -102) T) ((-733 . -611) 51970) ((-713 . -611) 51952) ((-1254 . -172) 51903) ((-1247 . -172) 51834) ((-1226 . -172) 51765) ((-697 . -848) T) ((-1002 . -290) T) ((-453 . -611) 51747) ((-625 . -724) T) ((-60 . -1097) 51725) ((-245 . -151) 51709) ((-912 . -290) T) ((-1022 . -1010) T) ((-625 . -473) T) ((-710 . -1216) 51688) ((-651 . -614) 51606) ((-169 . -644) 51501) ((-1262 . -848) 51480) ((-595 . -172) 51459) ((-594 . -172) 51410) ((-1246 . -638) 51251) ((-1246 . -1049) 51086) ((-1225 . -638) 50900) ((-1225 . -1049) 50708) ((-710 . -556) 50619) ((-407 . -918) T) ((-407 . -818) 50598) ((-319 . -792) T) ((-968 . -614) 50579) ((-319 . -724) T) ((-418 . -611) 50561) ((-418 . -612) 50468) ((-642 . -1146) 50452) ((-110 . -649) 50434) ((-174 . -307) T) ((-126 . -309) 50372) ((-110 . -373) 50354) ((-398 . -1212) T) ((-316 . -131) 50225) ((-313 . -131) T) ((-69 . -395) T) ((-110 . -123) T) ((-520 . -489) 50209) ((-652 . -1109) T) ((-592 . -19) 50191) ((-61 . -441) T) ((-61 . -395) T) ((-822 . -1097) T) ((-592 . -602) 50166) ((-477 . -1036) 50126) ((-651 . -1047) T) ((-652 . -23) T) ((-1277 . -1097) T) ((-31 . -102) T) ((-1235 . -644) 50036) ((-853 . -644) 49995) ((-814 . -715) 49844) ((-577 . -858) T) ((-571 . -644) 49816) ((-117 . -848) NIL) ((-1169 . -411) 49800) ((-1122 . -411) 49784) ((-852 . -411) 49768) ((-871 . -102) 49719) ((-1246 . -102) T) ((-1226 . -514) 49488) ((-1225 . -102) T) ((-1198 . -309) 49426) ((-1171 . -286) 49411) ((-1170 . -286) 49396) ((-525 . -93) T) ((-1164 . -286) 49244) ((-312 . -611) 49226) ((-1099 . -1097) T) ((-1077 . -646) 49136) ((-709 . -452) T) ((-687 . -611) 49068) ((-289 . -724) T) ((-108 . -907) NIL) ((-687 . -612) 49029) ((-599 . -611) 49011) ((-577 . -611) 48993) ((-550 . -612) NIL) ((-550 . -611) 48975) ((-529 . -611) 48957) ((-511 . -509) 48936) ((-487 . -1054) 48886) ((-474 . -1049) 48721) ((-507 . -509) 48700) ((-474 . -638) 48541) ((-217 . -1054) 48491) ((-359 . -646) 48443) ((-353 . -646) 48395) ((-225 . -846) T) ((-345 . -646) 48347) ((-600 . -102) 48297) ((-482 . -368) 48276) ((-108 . -646) 48226) ((-487 . -111) 48160) ((-240 . -489) 48144) ((-343 . -147) 48126) ((-343 . -145) T) ((-169 . -370) 48097) ((-941 . -1260) 48081) ((-217 . -111) 48015) ((-870 . -309) 47980) ((-941 . -1097) 47930) ((-797 . -612) 47891) ((-797 . -611) 47873) ((-716 . -102) T) ((-331 . -1097) T) ((-214 . -614) 47850) ((-1117 . -131) T) ((-712 . -38) 47820) ((-316 . -493) 47799) ((-500 . -1212) T) ((-1246 . -284) 47765) ((-1225 . -284) 47731) ((-327 . -151) 47715) ((-439 . -1097) T) ((-1060 . -288) 47690) ((-1277 . -715) 47660) ((-1156 . -34) T) ((-1286 . -1036) 47637) ((-468 . -611) 47619) ((-484 . -34) T) ((-381 . -1036) 47603) ((-1169 . -1055) T) ((-1122 . -1055) T) ((-852 . -1055) T) ((-1059 . -846) T) ((-487 . -614) 47553) ((-217 . -614) 47503) ((-814 . -172) 47414) ((-520 . -286) 47391) ((-1254 . -290) 47370) ((-1193 . -364) 47344) ((-1085 . -266) 47328) ((-669 . -490) 47309) ((-669 . -611) 47275) ((-604 . -490) 47256) ((-117 . -990) 47233) ((-604 . -611) 47183) ((-474 . -102) T) ((-180 . -490) 47164) ((-180 . -611) 47130) ((-161 . -490) 47111) ((-156 . -490) 47092) ((-154 . -490) 47073) ((-161 . -611) 47039) ((-156 . -611) 47005) ((-365 . -1097) T) ((-251 . -1097) T) ((-250 . -1097) T) ((-154 . -611) 46971) ((-1247 . -290) 46922) ((-1226 . -290) 46873) ((-870 . -1148) 46851) ((-1171 . -1000) 46817) ((-606 . -364) 46757) ((-1170 . -1000) 46723) ((-606 . -229) 46670) ((-692 . -848) T) ((-592 . -611) 46652) ((-592 . -612) NIL) ((-475 . -229) 46602) ((-487 . -1047) T) ((-1164 . -1000) 46568) ((-88 . -440) T) ((-88 . -395) T) ((-217 . -1047) T) ((-1123 . -1000) 46534) ((-1077 . -724) T) ((-710 . -1109) T) ((-595 . -290) 46513) ((-594 . -290) 46492) ((-487 . -243) T) ((-487 . -233) T) ((-217 . -243) T) ((-217 . -233) T) ((-1162 . -611) 46474) ((-870 . -38) 46426) ((-359 . -724) T) ((-353 . -724) T) ((-345 . -724) T) ((-108 . -792) T) ((-108 . -789) T) ((-710 . -23) T) ((-108 . -724) T) ((-520 . -1250) 46410) ((-1290 . -25) T) ((-474 . -284) 46376) ((-1290 . -21) T) ((-1225 . -309) 46315) ((-1173 . -102) T) ((-40 . -145) 46287) ((-40 . -147) 46259) ((-520 . -602) 46236) ((-1110 . -646) 46084) ((-600 . -309) 46022) ((-45 . -649) 45972) ((-45 . -664) 45922) ((-45 . -373) 45872) ((-1155 . -34) T) ((-869 . -846) NIL) ((-652 . -131) T) ((-485 . -611) 45854) ((-240 . -286) 45831) ((-186 . -1097) T) ((-1084 . -452) 45782) ((-814 . -514) 45656) ((-662 . -1049) 45640) ((-645 . -34) T) ((-630 . -34) T) ((-780 . -452) 45571) ((-662 . -638) 45555) ((-355 . -1049) 45507) ((-352 . -1049) 45459) ((-344 . -1049) 45411) ((-264 . -1049) 45254) ((-247 . -1049) 45097) ((-778 . -452) 45048) ((-355 . -638) 45000) ((-352 . -638) 44952) ((-344 . -638) 44904) ((-264 . -638) 44753) ((-247 . -638) 44602) ((-454 . -452) 44553) ((-950 . -411) 44537) ((-729 . -611) 44519) ((-251 . -715) 44461) ((-250 . -715) 44403) ((-729 . -612) 44264) ((-481 . -411) 44248) ((-339 . -302) T) ((-524 . -93) T) ((-351 . -918) T) ((-998 . -102) 44226) ((-908 . -1049) 44191) ((-1022 . -848) T) ((-60 . -514) 44124) ((-908 . -638) 44089) ((-1225 . -1148) 44041) ((-1002 . -286) NIL) ((-225 . -1055) T) ((-379 . -826) T) ((-1110 . -34) T) ((-581 . -452) T) ((-518 . -452) T) ((-1229 . -1090) 44025) ((-1229 . -1097) 44003) ((-240 . -602) 43980) ((-1229 . -1092) 43937) ((-1171 . -611) 43919) ((-1170 . -611) 43901) ((-1164 . -611) 43883) ((-1164 . -612) NIL) ((-1123 . -611) 43865) ((-870 . -400) 43849) ((-536 . -102) T) ((-1246 . -38) 43690) ((-1225 . -38) 43504) ((-868 . -147) T) ((-581 . -402) T) ((-518 . -402) T) ((-1258 . -102) T) ((-1248 . -21) T) ((-1248 . -25) T) ((-1110 . -789) 43483) ((-1110 . -792) 43434) ((-1110 . -791) 43413) ((-991 . -1097) T) ((-1025 . -34) T) ((-860 . -1097) T) ((-1110 . -724) 43323) ((-662 . -102) T) ((-643 . -102) T) ((-550 . -288) 43302) ((-1185 . -102) T) ((-476 . -34) T) ((-463 . -34) T) ((-355 . -102) T) ((-352 . -102) T) ((-344 . -102) T) ((-264 . -102) T) ((-247 . -102) T) ((-477 . -307) T) ((-1059 . -1055) T) ((-950 . -1055) T) ((-316 . -637) 43208) ((-313 . -637) 43169) ((-481 . -1055) T) ((-479 . -102) T) ((-436 . -611) 43151) ((-1169 . -1097) T) ((-1122 . -1097) T) ((-852 . -1097) T) ((-1138 . -102) T) ((-814 . -290) 43082) ((-961 . -1054) 42965) ((-477 . -1020) T) ((-733 . -1054) 42935) ((-1032 . -644) 42894) ((-453 . -1054) 42864) ((-1144 . -1118) 42848) ((-1099 . -514) 42781) ((-961 . -111) 42650) ((-908 . -102) T) ((-733 . -111) 42615) ((-525 . -490) 42596) ((-525 . -611) 42562) ((-59 . -102) 42512) ((-520 . -612) 42473) ((-520 . -611) 42385) ((-519 . -102) 42363) ((-516 . -102) 42313) ((-497 . -102) 42291) ((-496 . -102) 42241) ((-453 . -111) 42204) ((-251 . -172) 42183) ((-250 . -172) 42162) ((-322 . -644) 42144) ((-418 . -1054) 42118) ((-1206 . -971) 42080) ((-997 . -1109) T) ((-379 . -644) 42030) ((-1132 . -614) 42011) ((-941 . -514) 41944) ((-487 . -793) T) ((-474 . -38) 41785) ((-418 . -111) 41752) ((-487 . -790) T) ((-998 . -309) 41690) ((-217 . -793) T) ((-217 . -790) T) ((-997 . -23) T) ((-710 . -131) T) ((-1225 . -400) 41660) ((-834 . -644) 41605) ((-825 . -644) 41564) ((-316 . -25) 41416) ((-169 . -411) 41400) ((-316 . -21) 41271) ((-313 . -25) T) ((-313 . -21) T) ((-862 . -368) T) ((-961 . -614) 41124) ((-110 . -34) T) ((-733 . -614) 41080) ((-713 . -614) 41062) ((-482 . -646) 40910) ((-869 . -1055) T) ((-592 . -288) 40885) ((-580 . -147) T) ((-564 . -147) T) ((-495 . -147) T) ((-1169 . -715) 40714) ((-1122 . -715) 40563) ((-1117 . -637) 40545) ((-852 . -715) 40515) ((-668 . -1212) T) ((-1 . -102) T) ((-418 . -614) 40423) ((-240 . -611) 40154) ((-1112 . -1097) T) ((-1235 . -411) 40138) ((-1185 . -309) 39942) ((-961 . -1047) T) ((-733 . -1047) T) ((-713 . -1047) T) ((-642 . -1097) 39892) ((-1052 . -646) 39876) ((-853 . -411) 39860) ((-511 . -102) T) ((-507 . -102) T) ((-264 . -309) 39847) ((-247 . -309) 39834) ((-961 . -326) 39813) ((-385 . -646) 39797) ((-668 . -1036) 39693) ((-479 . -309) 39497) ((-251 . -514) 39430) ((-250 . -514) 39363) ((-1138 . -309) 39289) ((-817 . -1097) T) ((-797 . -1054) 39273) ((-1254 . -286) 39258) ((-1247 . -286) 39243) ((-1226 . -286) 39091) ((-386 . -1097) T) ((-324 . -1097) T) ((-418 . -1047) T) ((-169 . -1055) T) ((-59 . -309) 39029) ((-797 . -111) 39008) ((-594 . -286) 38993) ((-519 . -309) 38931) ((-516 . -309) 38869) ((-497 . -309) 38807) ((-496 . -309) 38745) ((-418 . -233) 38724) ((-482 . -34) T) ((-1002 . -612) 38654) ((-225 . -1097) T) ((-1002 . -611) 38614) ((-969 . -611) 38574) ((-969 . -612) 38549) ((-912 . -611) 38531) ((-697 . -147) T) ((-699 . -918) T) ((-699 . -818) T) ((-427 . -611) 38513) ((-1117 . -21) T) ((-1117 . -25) T) ((-668 . -377) 38497) ((-116 . -918) T) ((-870 . -231) 38481) ((-78 . -1212) T) ((-126 . -125) 38465) ((-1052 . -34) T) ((-1284 . -1036) 38439) ((-1282 . -1036) 38396) ((-1235 . -1055) T) ((-853 . -1055) T) ((-482 . -789) 38375) ((-355 . -1148) 38354) ((-352 . -1148) 38333) ((-344 . -1148) 38312) ((-482 . -792) 38263) ((-482 . -791) 38242) ((-227 . -34) T) ((-482 . -724) 38152) ((-797 . -614) 38000) ((-660 . -1049) 37984) ((-60 . -489) 37968) ((-571 . -1055) T) ((-660 . -638) 37952) ((-1169 . -172) 37843) ((-1122 . -172) 37754) ((-1059 . -1097) T) ((-1084 . -947) 37699) ((-950 . -1097) T) ((-815 . -646) 37650) ((-780 . -947) 37619) ((-711 . -1097) T) ((-778 . -947) 37586) ((-516 . -282) 37570) ((-668 . -898) 37529) ((-481 . -1097) T) ((-454 . -947) 37496) ((-79 . -1212) T) ((-355 . -38) 37461) ((-352 . -38) 37426) ((-344 . -38) 37391) ((-264 . -38) 37240) ((-247 . -38) 37089) ((-908 . -1148) T) ((-524 . -490) 37070) ((-621 . -147) 37049) ((-621 . -145) 37028) ((-524 . -611) 36994) ((-117 . -147) T) ((-117 . -145) NIL) ((-414 . -724) T) ((-797 . -1047) T) ((-343 . -452) T) ((-1254 . -1000) 36960) ((-1247 . -1000) 36926) ((-1226 . -1000) 36892) ((-908 . -38) 36857) ((-225 . -715) 36822) ((-319 . -47) 36792) ((-40 . -409) 36764) ((-140 . -611) 36746) ((-997 . -131) T) ((-813 . -1212) T) ((-174 . -918) T) ((-549 . -368) T) ((-604 . -614) 36727) ((-343 . -402) T) ((-712 . -644) 36672) ((-669 . -614) 36653) ((-180 . -614) 36634) ((-161 . -614) 36615) ((-156 . -614) 36596) ((-154 . -614) 36577) ((-520 . -288) 36554) ((-1225 . -231) 36524) ((-813 . -1036) 36351) ((-45 . -34) T) ((-679 . -102) T) ((-674 . -102) T) ((-660 . -102) T) ((-652 . -21) T) ((-652 . -25) T) ((-1099 . -489) 36335) ((-673 . -1212) T) ((-478 . -102) T) ((-245 . -102) 36285) ((-546 . -842) T) ((-137 . -102) T) ((-133 . -102) T) ((-138 . -102) T) ((-869 . -1097) T) ((-1175 . -646) 36210) ((-1059 . -715) 36197) ((-729 . -1054) 36040) ((-1169 . -514) 35987) ((-950 . -715) 35836) ((-1122 . -514) 35788) ((-1273 . -1097) T) ((-1272 . -1097) T) ((-481 . -715) 35637) ((-67 . -611) 35619) ((-729 . -111) 35448) ((-941 . -489) 35432) ((-1274 . -646) 35392) ((-815 . -724) T) ((-1171 . -1054) 35275) ((-1170 . -1054) 35110) ((-1164 . -1054) 34900) ((-1123 . -1054) 34783) ((-1001 . -1216) T) ((-1091 . -102) 34761) ((-813 . -377) 34730) ((-579 . -611) 34712) ((-546 . -1097) T) ((-1001 . -556) T) ((-1171 . -111) 34581) ((-1170 . -111) 34402) ((-1164 . -111) 34171) ((-1123 . -111) 34040) ((-1102 . -1100) 34004) ((-379 . -846) T) ((-1254 . -611) 33986) ((-1247 . -611) 33968) ((-870 . -644) 33905) ((-1226 . -611) 33887) ((-1226 . -612) NIL) ((-240 . -288) 33864) ((-40 . -452) T) ((-225 . -172) T) ((-169 . -1097) T) ((-729 . -614) 33649) ((-692 . -147) T) ((-692 . -145) NIL) ((-595 . -611) 33631) ((-594 . -611) 33613) ((-896 . -1097) T) ((-839 . -1097) T) ((-806 . -1097) T) ((-767 . -1097) T) ((-656 . -850) 33597) ((-675 . -1097) T) ((-813 . -898) 33529) ((-1217 . -368) T) ((-40 . -402) NIL) ((-1171 . -614) 33411) ((-1117 . -659) T) ((-869 . -715) 33356) ((-251 . -489) 33340) ((-250 . -489) 33324) ((-1170 . -614) 33067) ((-1164 . -614) 32862) ((-710 . -637) 32810) ((-651 . -646) 32784) ((-1123 . -614) 32666) ((-295 . -34) T) ((-729 . -1047) T) ((-581 . -1269) 32653) ((-518 . -1269) 32630) ((-1235 . -1097) T) ((-1169 . -290) 32541) ((-1122 . -290) 32472) ((-1059 . -172) T) ((-853 . -1097) T) ((-950 . -172) 32383) ((-780 . -1238) 32367) ((-642 . -514) 32300) ((-77 . -611) 32282) ((-729 . -326) 32247) ((-1175 . -724) T) ((-571 . -1097) T) ((-481 . -172) 32158) ((-245 . -309) 32096) ((-1139 . -1109) T) ((-70 . -611) 32078) ((-1274 . -724) T) ((-1171 . -1047) T) ((-1170 . -1047) T) ((-327 . -102) 32028) ((-1164 . -1047) T) ((-1139 . -23) T) ((-1123 . -1047) T) ((-91 . -1118) 32012) ((-864 . -1109) T) ((-1171 . -233) 31971) ((-1170 . -243) 31950) ((-1170 . -233) 31902) ((-1164 . -233) 31789) ((-1164 . -243) 31768) ((-319 . -898) 31674) ((-864 . -23) T) ((-169 . -715) 31502) ((-407 . -1216) T) ((-1098 . -368) T) ((-1001 . -363) T) ((-868 . -452) T) ((-1022 . -147) T) ((-941 . -286) 31479) ((-313 . -848) NIL) ((-1246 . -644) 31361) ((-872 . -102) T) ((-1225 . -644) 31216) ((-710 . -25) T) ((-407 . -556) T) ((-710 . -21) T) ((-525 . -614) 31197) ((-354 . -147) 31179) ((-354 . -145) T) ((-1144 . -1097) 31157) ((-453 . -718) T) ((-75 . -611) 31139) ((-114 . -848) T) ((-245 . -282) 31123) ((-240 . -1054) 31020) ((-81 . -611) 31002) ((-733 . -368) 30955) ((-1173 . -826) T) ((-735 . -235) 30939) ((-1156 . -1212) T) ((-141 . -235) 30921) ((-240 . -111) 30811) ((-1235 . -715) 30640) ((-48 . -147) T) ((-869 . -172) T) ((-853 . -715) 30610) ((-484 . -1212) T) ((-950 . -514) 30557) ((-651 . -724) T) ((-571 . -715) 30544) ((-1032 . -1055) T) ((-481 . -514) 30487) ((-941 . -19) 30471) ((-941 . -602) 30448) ((-814 . -612) NIL) ((-814 . -611) 30430) ((-1206 . -1049) 30313) ((-1002 . -1054) 30263) ((-413 . -611) 30245) ((-251 . -286) 30222) ((-250 . -286) 30199) ((-487 . -907) NIL) ((-316 . -29) 30169) ((-108 . -1212) T) ((-1001 . -1109) T) ((-217 . -907) NIL) ((-1206 . -638) 30066) ((-912 . -1054) 30018) ((-1077 . -1036) 29914) ((-1002 . -111) 29848) ((-709 . -1049) 29813) ((-1001 . -23) T) ((-912 . -111) 29751) ((-735 . -693) 29735) ((-709 . -638) 29700) ((-264 . -231) 29684) ((-427 . -1054) 29668) ((-379 . -1055) T) ((-240 . -614) 29398) ((-692 . -1200) NIL) ((-487 . -646) 29348) ((-474 . -644) 29230) ((-108 . -882) 29212) ((-108 . -884) 29194) ((-692 . -1197) NIL) ((-217 . -646) 29144) ((-359 . -1036) 29128) ((-353 . -1036) 29112) ((-327 . -309) 29050) ((-345 . -1036) 29034) ((-225 . -290) T) ((-427 . -111) 29013) ((-60 . -611) 28945) ((-169 . -172) T) ((-1117 . -848) T) ((-108 . -1036) 28905) ((-890 . -1097) T) ((-834 . -1055) T) ((-825 . -1055) T) ((-692 . -35) NIL) ((-692 . -95) NIL) ((-313 . -990) 28866) ((-183 . -102) T) ((-580 . -452) T) ((-564 . -452) T) ((-495 . -452) T) ((-407 . -363) T) ((-240 . -1047) 28796) ((-1147 . -34) T) ((-477 . -918) T) ((-997 . -637) 28744) ((-251 . -602) 28721) ((-250 . -602) 28698) ((-1077 . -377) 28682) ((-869 . -514) 28590) ((-240 . -233) 28542) ((-1155 . -1212) T) ((-1002 . -614) 28492) ((-912 . -614) 28429) ((-822 . -611) 28411) ((-1285 . -1109) T) ((-1277 . -611) 28393) ((-1235 . -172) 28284) ((-427 . -614) 28253) ((-108 . -377) 28235) ((-108 . -338) 28217) ((-1059 . -290) T) ((-950 . -290) 28148) ((-797 . -368) 28127) ((-645 . -1212) T) ((-630 . -1212) T) ((-585 . -1049) 28102) ((-481 . -290) 28033) ((-571 . -172) T) ((-327 . -282) 28017) ((-1285 . -23) T) ((-1206 . -102) T) ((-1193 . -1097) T) ((-1085 . -1097) T) ((-1073 . -1097) T) ((-585 . -638) 27992) ((-83 . -611) 27974) ((-1180 . -842) T) ((-1179 . -842) T) ((-709 . -102) T) ((-355 . -349) 27953) ((-606 . -1097) T) ((-352 . -349) 27932) ((-344 . -349) 27911) ((-475 . -1097) T) ((-1185 . -229) 27861) ((-264 . -253) 27823) ((-1139 . -131) T) ((-606 . -608) 27799) ((-1077 . -898) 27732) ((-1002 . -1047) T) ((-912 . -1047) T) ((-475 . -608) 27711) ((-1164 . -790) NIL) ((-1164 . -793) NIL) ((-1099 . -612) 27672) ((-479 . -229) 27622) ((-1099 . -611) 27604) ((-1002 . -243) T) ((-1002 . -233) T) ((-427 . -1047) T) ((-956 . -1097) 27554) ((-912 . -243) T) ((-864 . -131) T) ((-697 . -452) T) ((-841 . -1109) 27533) ((-108 . -898) NIL) ((-1206 . -284) 27499) ((-870 . -846) 27478) ((-1110 . -1212) T) ((-903 . -724) T) ((-169 . -514) 27390) ((-997 . -25) T) ((-903 . -473) T) ((-407 . -1109) T) ((-487 . -792) T) ((-487 . -789) T) ((-908 . -349) T) ((-487 . -724) T) ((-217 . -792) T) ((-217 . -789) T) ((-997 . -21) T) ((-217 . -724) T) ((-841 . -23) 27342) ((-656 . -1049) 27326) ((-1180 . -1097) T) ((-524 . -614) 27307) ((-1179 . -1097) T) ((-319 . -307) 27286) ((-1033 . -235) 27232) ((-656 . -638) 27202) ((-407 . -23) T) ((-941 . -612) 27163) ((-941 . -611) 27075) ((-642 . -489) 27059) ((-45 . -1008) 27009) ((-615 . -965) T) ((-491 . -102) T) ((-331 . -611) 26991) ((-1110 . -1036) 26818) ((-592 . -649) 26800) ((-130 . -1097) T) ((-128 . -1097) T) ((-592 . -373) 26782) ((-343 . -1269) 26759) ((-439 . -611) 26741) ((-1235 . -514) 26688) ((-1084 . -1049) 26531) ((-1025 . -1212) T) ((-869 . -290) T) ((-1169 . -286) 26458) ((-1084 . -638) 26307) ((-998 . -993) 26291) ((-780 . -1049) 26114) ((-778 . -1049) 25957) ((-780 . -638) 25786) ((-778 . -638) 25635) ((-476 . -1212) T) ((-463 . -1212) T) ((-585 . -102) T) ((-461 . -1049) 25606) ((-454 . -1049) 25449) ((-662 . -644) 25418) ((-621 . -452) 25397) ((-461 . -638) 25368) ((-454 . -638) 25217) ((-355 . -644) 25154) ((-352 . -644) 25091) ((-344 . -644) 25028) ((-264 . -644) 24938) ((-247 . -644) 24848) ((-1277 . -382) 24820) ((-517 . -1097) T) ((-117 . -452) T) ((-1192 . -102) T) ((-1089 . -1097) 24798) ((-1032 . -1097) T) ((-1112 . -93) T) ((-891 . -848) T) ((-1254 . -111) 24667) ((-351 . -1216) T) ((-1254 . -1054) 24550) ((-1110 . -377) 24519) ((-1247 . -1054) 24354) ((-1226 . -1054) 24144) ((-1247 . -111) 23965) ((-1226 . -111) 23734) ((-1206 . -309) 23721) ((-1001 . -131) T) ((-908 . -644) 23671) ((-365 . -611) 23653) ((-351 . -556) T) ((-289 . -307) T) ((-595 . -1054) 23626) ((-594 . -1054) 23509) ((-581 . -1049) 23474) ((-518 . -1049) 23419) ((-361 . -1097) T) ((-322 . -1097) T) ((-251 . -611) 23380) ((-250 . -611) 23341) ((-581 . -638) 23306) ((-518 . -638) 23251) ((-692 . -409) 23218) ((-633 . -23) T) ((-605 . -23) T) ((-656 . -102) T) ((-595 . -111) 23189) ((-594 . -111) 23058) ((-379 . -1097) T) ((-336 . -102) T) ((-169 . -290) 22969) ((-1225 . -846) 22922) ((-712 . -1055) T) ((-1144 . -514) 22855) ((-1110 . -898) 22787) ((-834 . -1097) T) ((-825 . -1097) T) ((-823 . -1097) T) ((-97 . -102) T) ((-144 . -848) T) ((-610 . -882) 22771) ((-110 . -1212) T) ((-1084 . -102) T) ((-1060 . -34) T) ((-780 . -102) T) ((-778 . -102) T) ((-1254 . -614) 22653) ((-1247 . -614) 22396) ((-461 . -102) T) ((-454 . -102) T) ((-1226 . -614) 22191) ((-240 . -793) 22142) ((-240 . -790) 22093) ((-647 . -102) T) ((-595 . -614) 22051) ((-594 . -614) 21933) ((-1235 . -290) 21844) ((-662 . -632) 21828) ((-186 . -611) 21810) ((-642 . -286) 21787) ((-1032 . -715) 21771) ((-571 . -290) T) ((-961 . -646) 21696) ((-1285 . -131) T) ((-733 . -646) 21656) ((-713 . -646) 21643) ((-275 . -102) T) ((-453 . -646) 21573) ((-50 . -102) T) ((-581 . -102) T) ((-518 . -102) T) ((-1254 . -1047) T) ((-1247 . -1047) T) ((-1226 . -1047) T) ((-507 . -644) 21555) ((-322 . -715) 21537) ((-1254 . -233) 21496) ((-1247 . -243) 21475) ((-1247 . -233) 21427) ((-1226 . -233) 21314) ((-1226 . -243) 21293) ((-1206 . -38) 21190) ((-595 . -1047) T) ((-594 . -1047) T) ((-1002 . -793) T) ((-1002 . -790) T) ((-969 . -793) T) ((-969 . -790) T) ((-870 . -1055) T) ((-109 . -611) 21172) ((-692 . -452) T) ((-379 . -715) 21137) ((-418 . -646) 21111) ((-868 . -867) 21095) ((-709 . -38) 21060) ((-594 . -233) 21019) ((-40 . -722) 20991) ((-351 . -329) 20968) ((-351 . -363) T) ((-1077 . -307) 20919) ((-294 . -1109) 20800) ((-1103 . -1212) T) ((-171 . -102) T) ((-1229 . -611) 20767) ((-841 . -131) 20719) ((-642 . -1250) 20703) ((-834 . -715) 20673) ((-825 . -715) 20643) ((-482 . -1212) T) ((-359 . -307) T) ((-353 . -307) T) ((-345 . -307) T) ((-642 . -602) 20620) ((-407 . -131) T) ((-520 . -664) 20604) ((-108 . -307) T) ((-294 . -23) 20487) ((-520 . -649) 20471) ((-692 . -402) NIL) ((-520 . -373) 20455) ((-291 . -611) 20437) ((-91 . -1097) 20415) ((-108 . -1020) T) ((-564 . -143) T) ((-1262 . -151) 20399) ((-482 . -1036) 20226) ((-1248 . -145) 20187) ((-1248 . -147) 20148) ((-1052 . -1212) T) ((-991 . -611) 20130) ((-860 . -611) 20112) ((-814 . -1054) 19955) ((-1273 . -93) T) ((-1272 . -93) T) ((-1169 . -612) NIL) ((-1093 . -1097) T) ((-1087 . -1097) T) ((-1084 . -309) 19942) ((-1070 . -1097) T) ((-227 . -1212) T) ((-1063 . -1097) T) ((-1034 . -1097) T) ((-1017 . -1097) T) ((-780 . -309) 19929) ((-778 . -309) 19916) ((-1169 . -611) 19898) ((-814 . -111) 19727) ((-1122 . -611) 19709) ((-624 . -1097) T) ((-577 . -173) T) ((-529 . -173) T) ((-454 . -309) 19696) ((-483 . -1097) T) ((-1122 . -612) 19444) ((-1032 . -172) T) ((-941 . -288) 19421) ((-218 . -1097) T) ((-852 . -611) 19403) ((-606 . -514) 19186) ((-81 . -614) 19127) ((-816 . -1036) 19111) ((-475 . -514) 18903) ((-961 . -724) T) ((-733 . -724) T) ((-713 . -724) T) ((-351 . -1109) T) ((-1176 . -611) 18885) ((-223 . -102) T) ((-482 . -377) 18854) ((-515 . -1097) T) ((-510 . -1097) T) ((-508 . -1097) T) ((-797 . -646) 18828) ((-1022 . -452) T) ((-956 . -514) 18761) ((-351 . -23) T) ((-633 . -131) T) ((-605 . -131) T) ((-354 . -452) T) ((-240 . -368) 18740) ((-379 . -172) T) ((-1246 . -1055) T) ((-1225 . -1055) T) ((-225 . -1000) T) ((-814 . -614) 18477) ((-697 . -387) T) ((-418 . -724) T) ((-699 . -1216) T) ((-1139 . -637) 18425) ((-580 . -867) 18409) ((-1277 . -1054) 18393) ((-1156 . -1188) 18369) ((-699 . -556) T) ((-126 . -1097) 18347) ((-712 . -1097) T) ((-482 . -898) 18279) ((-249 . -1097) T) ((-187 . -1097) T) ((-656 . -38) 18249) ((-354 . -402) T) ((-316 . -147) 18228) ((-316 . -145) 18207) ((-128 . -514) NIL) ((-116 . -556) T) ((-313 . -147) 18163) ((-313 . -145) 18119) ((-48 . -452) T) ((-162 . -1097) T) ((-157 . -1097) T) ((-1156 . -107) 18066) ((-780 . -1148) 18044) ((-687 . -34) T) ((-1277 . -111) 18023) ((-550 . -34) T) ((-484 . -107) 18007) ((-251 . -288) 17984) ((-250 . -288) 17961) ((-869 . -286) 17912) ((-45 . -1212) T) ((-1218 . -842) T) ((-814 . -1047) T) ((-660 . -644) 17881) ((-1175 . -47) 17858) ((-814 . -326) 17820) ((-1084 . -38) 17669) ((-814 . -233) 17648) ((-780 . -38) 17477) ((-778 . -38) 17326) ((-1112 . -490) 17307) ((-454 . -38) 17156) ((-1112 . -611) 17122) ((-1115 . -102) T) ((-642 . -612) 17083) ((-642 . -611) 16995) ((-581 . -1148) T) ((-518 . -1148) T) ((-1144 . -489) 16979) ((-343 . -1049) 16924) ((-1198 . -1097) 16902) ((-1139 . -25) T) ((-1139 . -21) T) ((-343 . -638) 16847) ((-1277 . -614) 16796) ((-474 . -1055) T) ((-1218 . -1097) T) ((-1226 . -790) NIL) ((-1226 . -793) NIL) ((-997 . -848) 16775) ((-836 . -1097) T) ((-817 . -611) 16757) ((-864 . -21) T) ((-864 . -25) T) ((-797 . -724) T) ((-174 . -1216) T) ((-581 . -38) 16722) ((-518 . -38) 16687) ((-386 . -611) 16669) ((-324 . -611) 16651) ((-169 . -286) 16609) ((-63 . -1212) T) ((-112 . -102) T) ((-870 . -1097) T) ((-174 . -556) T) ((-712 . -715) 16579) ((-294 . -131) 16462) ((-225 . -611) 16444) ((-225 . -612) 16374) ((-1001 . -637) 16313) ((-1277 . -1047) T) ((-1117 . -147) T) ((-630 . -1188) 16288) ((-729 . -907) 16267) ((-592 . -34) T) ((-645 . -107) 16251) ((-630 . -107) 16197) ((-1235 . -286) 16124) ((-729 . -646) 16049) ((-295 . -1212) T) ((-1175 . -1036) 15945) ((-941 . -616) 15922) ((-577 . -576) T) ((-577 . -527) T) ((-529 . -527) T) ((-1164 . -907) NIL) ((-1059 . -612) 15837) ((-1059 . -611) 15819) ((-950 . -611) 15801) ((-711 . -490) 15751) ((-343 . -102) T) ((-251 . -1054) 15648) ((-250 . -1054) 15545) ((-394 . -102) T) ((-31 . -1097) T) ((-950 . -612) 15406) ((-711 . -611) 15341) ((-1275 . -1205) 15310) ((-481 . -611) 15292) ((-481 . -612) 15153) ((-264 . -411) 15137) ((-247 . -411) 15121) ((-251 . -111) 15011) ((-250 . -111) 14901) ((-1171 . -646) 14826) ((-1170 . -646) 14723) ((-1164 . -646) 14575) ((-1123 . -646) 14500) ((-351 . -131) T) ((-82 . -441) T) ((-82 . -395) T) ((-1001 . -25) T) ((-1001 . -21) T) ((-871 . -1097) 14451) ((-40 . -1049) 14396) ((-870 . -715) 14348) ((-40 . -638) 14293) ((-379 . -290) T) ((-169 . -1000) 14244) ((-692 . -387) T) ((-997 . -995) 14228) ((-699 . -1109) T) ((-692 . -166) 14210) ((-1246 . -1097) T) ((-1225 . -1097) T) ((-316 . -1197) 14189) ((-316 . -1200) 14168) ((-1161 . -102) T) ((-316 . -957) 14147) ((-134 . -1109) T) ((-116 . -1109) T) ((-600 . -1260) 14131) ((-699 . -23) T) ((-600 . -1097) 14081) ((-316 . -95) 14060) ((-91 . -514) 13993) ((-174 . -363) T) ((-251 . -614) 13723) ((-250 . -614) 13453) ((-316 . -35) 13432) ((-606 . -489) 13366) ((-134 . -23) T) ((-116 . -23) T) ((-964 . -102) T) ((-716 . -1097) T) ((-475 . -489) 13303) ((-407 . -637) 13251) ((-651 . -1036) 13147) ((-956 . -489) 13131) ((-355 . -1055) T) ((-352 . -1055) T) ((-344 . -1055) T) ((-264 . -1055) T) ((-247 . -1055) T) ((-869 . -612) NIL) ((-869 . -611) 13113) ((-1273 . -490) 13094) ((-1272 . -490) 13075) ((-1285 . -21) T) ((-1273 . -611) 13041) ((-1272 . -611) 13007) ((-571 . -1000) T) ((-729 . -724) T) ((-1285 . -25) T) ((-251 . -1047) 12937) ((-250 . -1047) 12867) ((-72 . -1212) T) ((-251 . -233) 12819) ((-250 . -233) 12771) ((-40 . -102) T) ((-908 . -1055) T) ((-1178 . -102) T) ((-128 . -489) 12753) ((-1171 . -724) T) ((-1170 . -724) T) ((-1164 . -724) T) ((-1164 . -789) NIL) ((-1164 . -792) NIL) ((-952 . -102) T) ((-919 . -102) T) ((-868 . -1049) 12740) ((-1123 . -724) T) ((-769 . -102) T) ((-670 . -102) T) ((-868 . -638) 12727) ((-546 . -611) 12709) ((-474 . -1097) T) ((-339 . -1109) T) ((-174 . -1109) T) ((-319 . -918) 12688) ((-1246 . -715) 12529) ((-870 . -172) T) ((-1225 . -715) 12343) ((-841 . -21) 12295) ((-841 . -25) 12247) ((-245 . -1146) 12231) ((-126 . -514) 12164) ((-407 . -25) T) ((-407 . -21) T) ((-339 . -23) T) ((-169 . -612) 11930) ((-169 . -611) 11912) ((-174 . -23) T) ((-642 . -288) 11889) ((-520 . -34) T) ((-896 . -611) 11871) ((-89 . -1212) T) ((-839 . -611) 11853) ((-806 . -611) 11835) ((-767 . -611) 11817) ((-675 . -611) 11799) ((-240 . -646) 11647) ((-1173 . -1097) T) ((-1169 . -1054) 11470) ((-1147 . -1212) T) ((-1122 . -1054) 11313) ((-852 . -1054) 11297) ((-1229 . -616) 11281) ((-1169 . -111) 11090) ((-1122 . -111) 10919) ((-852 . -111) 10898) ((-1219 . -848) T) ((-1235 . -612) NIL) ((-1235 . -611) 10880) ((-343 . -1148) T) ((-853 . -611) 10862) ((-1073 . -286) 10841) ((-80 . -1212) T) ((-1002 . -907) NIL) ((-606 . -286) 10817) ((-1198 . -514) 10750) ((-487 . -1212) T) ((-571 . -611) 10732) ((-475 . -286) 10711) ((-1206 . -644) 10621) ((-517 . -93) T) ((-1084 . -231) 10605) ((-217 . -1212) T) ((-1002 . -646) 10555) ((-956 . -286) 10532) ((-289 . -918) T) ((-815 . -307) 10511) ((-868 . -102) T) ((-780 . -231) 10495) ((-912 . -646) 10447) ((-709 . -644) 10397) ((-692 . -722) 10364) ((-633 . -21) T) ((-633 . -25) T) ((-605 . -21) T) ((-547 . -102) T) ((-343 . -38) 10329) ((-487 . -882) 10311) ((-487 . -884) 10293) ((-474 . -715) 10134) ((-217 . -882) 10116) ((-64 . -1212) T) ((-217 . -884) 10098) ((-605 . -25) T) ((-427 . -646) 10072) ((-1169 . -614) 9841) ((-487 . -1036) 9801) ((-870 . -514) 9713) ((-1122 . -614) 9505) ((-852 . -614) 9423) ((-217 . -1036) 9383) ((-240 . -34) T) ((-998 . -1097) 9361) ((-580 . -1049) 9348) ((-564 . -1049) 9335) ((-495 . -1049) 9300) ((-1246 . -172) 9231) ((-1225 . -172) 9162) ((-580 . -638) 9149) ((-564 . -638) 9136) ((-495 . -638) 9101) ((-710 . -145) 9080) ((-710 . -147) 9059) ((-699 . -131) T) ((-136 . -465) 9036) ((-1144 . -611) 8968) ((-656 . -654) 8952) ((-128 . -286) 8927) ((-116 . -131) T) ((-477 . -1216) T) ((-606 . -602) 8903) ((-475 . -602) 8882) ((-336 . -335) 8851) ((-536 . -1097) T) ((-477 . -556) T) ((-1169 . -1047) T) ((-1122 . -1047) T) ((-852 . -1047) T) ((-240 . -789) 8830) ((-240 . -792) 8781) ((-240 . -791) 8760) ((-1169 . -326) 8737) ((-240 . -724) 8647) ((-956 . -19) 8631) ((-487 . -377) 8613) ((-487 . -338) 8595) ((-1122 . -326) 8567) ((-354 . -1269) 8544) ((-217 . -377) 8526) ((-217 . -338) 8508) ((-956 . -602) 8485) ((-1169 . -233) T) ((-1258 . -1097) T) ((-662 . -1097) T) ((-643 . -1097) T) ((-1185 . -1097) T) ((-1084 . -253) 8422) ((-585 . -644) 8382) ((-355 . -1097) T) ((-352 . -1097) T) ((-344 . -1097) T) ((-264 . -1097) T) ((-247 . -1097) T) ((-84 . -1212) T) ((-127 . -102) 8360) ((-121 . -102) 8338) ((-1185 . -608) 8317) ((-1225 . -514) 8177) ((-1138 . -1097) T) ((-1112 . -614) 8158) ((-479 . -1097) T) ((-1077 . -918) 8109) ((-1002 . -792) T) ((-479 . -608) 8088) ((-251 . -793) 8039) ((-251 . -790) 7990) ((-250 . -793) 7941) ((-40 . -1148) NIL) ((-250 . -790) 7892) ((-1002 . -789) T) ((-128 . -19) 7874) ((-1002 . -724) T) ((-697 . -1049) 7839) ((-969 . -792) T) ((-912 . -724) T) ((-908 . -1097) T) ((-128 . -602) 7814) ((-697 . -638) 7779) ((-91 . -489) 7763) ((-487 . -898) NIL) ((-890 . -611) 7745) ((-225 . -1054) 7710) ((-870 . -290) T) ((-217 . -898) NIL) ((-831 . -1109) 7689) ((-59 . -1097) 7639) ((-519 . -1097) 7617) ((-516 . -1097) 7567) ((-497 . -1097) 7545) ((-496 . -1097) 7495) ((-580 . -102) T) ((-564 . -102) T) ((-495 . -102) T) ((-474 . -172) 7426) ((-359 . -918) T) ((-353 . -918) T) ((-345 . -918) T) ((-225 . -111) 7382) ((-831 . -23) 7334) ((-427 . -724) T) ((-108 . -918) T) ((-40 . -38) 7279) ((-108 . -818) T) ((-581 . -349) T) ((-518 . -349) T) ((-834 . -286) 7258) ((-316 . -452) 7237) ((-313 . -452) T) ((-656 . -644) 7196) ((-600 . -514) 7129) ((-339 . -131) T) ((-174 . -131) T) ((-294 . -25) 6993) ((-294 . -21) 6876) ((-45 . -1188) 6855) ((-66 . -611) 6837) ((-55 . -102) T) ((-336 . -644) 6819) ((-45 . -107) 6769) ((-817 . -614) 6753) ((-1263 . -102) T) ((-1262 . -102) 6703) ((-1254 . -646) 6628) ((-1247 . -646) 6525) ((-1099 . -425) 6509) ((-1099 . -368) 6488) ((-386 . -614) 6472) ((-324 . -614) 6456) ((-1226 . -646) 6308) ((-1226 . -907) NIL) ((-1060 . -1212) T) ((-1084 . -644) 6218) ((-1059 . -1054) 6205) ((-1059 . -111) 6190) ((-950 . -1054) 6033) ((-950 . -111) 5862) ((-780 . -644) 5772) ((-778 . -644) 5682) ((-621 . -1049) 5669) ((-662 . -715) 5653) ((-621 . -638) 5640) ((-481 . -1054) 5483) ((-477 . -363) T) ((-461 . -644) 5439) ((-454 . -644) 5349) ((-225 . -614) 5299) ((-355 . -715) 5251) ((-352 . -715) 5203) ((-117 . -1049) 5148) ((-344 . -715) 5100) ((-264 . -715) 4949) ((-247 . -715) 4798) ((-1193 . -611) 4780) ((-1093 . -93) T) ((-117 . -638) 4725) ((-1087 . -93) T) ((-941 . -649) 4709) ((-1070 . -93) T) ((-481 . -111) 4538) ((-1063 . -93) T) ((-1034 . -93) T) ((-941 . -373) 4522) ((-248 . -102) T) ((-1017 . -93) T) ((-74 . -611) 4504) ((-961 . -47) 4483) ((-708 . -102) T) ((-697 . -102) T) ((-1 . -1097) T) ((-619 . -1109) T) ((-1085 . -611) 4465) ((-624 . -93) T) ((-1073 . -611) 4447) ((-908 . -715) 4412) ((-126 . -489) 4396) ((-483 . -93) T) ((-619 . -23) T) ((-390 . -23) T) ((-87 . -1212) T) ((-218 . -93) T) ((-606 . -611) 4378) ((-606 . -612) NIL) ((-475 . -612) NIL) ((-475 . -611) 4360) ((-351 . -25) T) ((-351 . -21) T) ((-50 . -644) 4319) ((-511 . -1097) T) ((-507 . -1097) T) ((-127 . -309) 4257) ((-121 . -309) 4195) ((-595 . -646) 4182) ((-594 . -646) 4107) ((-581 . -644) 4057) ((-225 . -1047) T) ((-518 . -644) 3987) ((-379 . -1000) T) ((-225 . -243) T) ((-225 . -233) T) ((-1059 . -614) 3959) ((-1059 . -616) 3940) ((-956 . -612) 3901) ((-956 . -611) 3813) ((-950 . -614) 3602) ((-868 . -38) 3589) ((-711 . -614) 3539) ((-1246 . -290) 3490) ((-1225 . -290) 3441) ((-481 . -614) 3226) ((-1117 . -452) T) ((-502 . -848) T) ((-316 . -1136) 3205) ((-997 . -147) 3184) ((-997 . -145) 3163) ((-495 . -309) 3150) ((-295 . -1188) 3129) ((-1180 . -611) 3111) ((-1179 . -611) 3093) ((-869 . -1054) 3038) ((-477 . -1109) T) ((-139 . -833) 3020) ((-114 . -833) 3001) ((-621 . -102) T) ((-1198 . -489) 2985) ((-251 . -368) 2964) ((-250 . -368) 2943) ((-1059 . -1047) T) ((-295 . -107) 2893) ((-130 . -611) 2875) ((-128 . -612) NIL) ((-128 . -611) 2819) ((-117 . -102) T) ((-950 . -1047) T) ((-869 . -111) 2748) ((-477 . -23) T) ((-481 . -1047) T) ((-1059 . -233) T) ((-950 . -326) 2717) ((-481 . -326) 2674) ((-355 . -172) T) ((-352 . -172) T) ((-344 . -172) T) ((-264 . -172) 2585) ((-247 . -172) 2496) ((-961 . -1036) 2392) ((-517 . -490) 2373) ((-733 . -1036) 2344) ((-517 . -611) 2310) ((-1102 . -102) T) ((-1089 . -611) 2277) ((-1032 . -611) 2259) ((-692 . -1049) 2209) ((-1275 . -151) 2193) ((-1273 . -614) 2174) ((-1272 . -614) 2155) ((-1267 . -611) 2137) ((-1254 . -724) T) ((-692 . -638) 2087) ((-1247 . -724) T) ((-1226 . -789) NIL) ((-1226 . -792) NIL) ((-169 . -1054) 1997) ((-908 . -172) T) ((-869 . -614) 1927) ((-1226 . -724) T) ((-1001 . -342) 1901) ((-223 . -644) 1853) ((-998 . -514) 1786) ((-841 . -848) 1765) ((-564 . -1148) T) ((-474 . -290) 1716) ((-595 . -724) T) ((-361 . -611) 1698) ((-322 . -611) 1680) ((-418 . -1036) 1576) ((-594 . -724) T) ((-407 . -848) 1527) ((-169 . -111) 1423) ((-831 . -131) 1375) ((-735 . -151) 1359) ((-1262 . -309) 1297) ((-487 . -307) T) ((-379 . -611) 1264) ((-520 . -1008) 1248) ((-379 . -612) 1162) ((-217 . -307) T) ((-141 . -151) 1144) ((-712 . -286) 1123) ((-487 . -1020) T) ((-580 . -38) 1110) ((-564 . -38) 1097) ((-495 . -38) 1062) ((-217 . -1020) T) ((-869 . -1047) T) ((-834 . -611) 1044) ((-825 . -611) 1026) ((-823 . -611) 1008) ((-814 . -907) 987) ((-1286 . -1109) T) ((-1235 . -1054) 810) ((-853 . -1054) 794) ((-869 . -243) T) ((-869 . -233) NIL) ((-687 . -1212) T) ((-1286 . -23) T) ((-814 . -646) 719) ((-550 . -1212) T) ((-418 . -338) 703) ((-571 . -1054) 690) ((-1235 . -111) 499) ((-699 . -637) 481) ((-853 . -111) 460) ((-381 . -23) T) ((-169 . -614) 238) ((-1185 . -514) 30) ((-679 . -1097) T) ((-674 . -1097) T) ((-660 . -1097) T))
\ No newline at end of file +(((-480 . -1099) T) ((-265 . -516) 187920) ((-247 . -516) 187863) ((-245 . -1099) 187813) ((-573 . -111) 187798) ((-533 . -23) T) ((-137 . -1099) T) ((-133 . -1099) T) ((-117 . -310) 187755) ((-138 . -1099) T) ((-481 . -516) 187547) ((-677 . -616) 187531) ((-694 . -102) T) ((-1140 . -516) 187450) ((-392 . -131) T) ((-1277 . -976) 187419) ((-1024 . -1051) 187356) ((-31 . -93) T) ((-602 . -491) 187340) ((-1024 . -640) 187277) ((-621 . -131) T) ((-819 . -846) T) ((-525 . -57) 187227) ((-521 . -516) 187160) ((-356 . -1051) 187105) ((-59 . -516) 187038) ((-518 . -516) 186971) ((-420 . -900) 186930) ((-169 . -1049) T) ((-499 . -516) 186863) ((-498 . -516) 186796) ((-356 . -640) 186741) ((-799 . -1038) 186524) ((-699 . -38) 186489) ((-1237 . -616) 186237) ((-345 . -351) T) ((-1093 . -1092) 186221) ((-1093 . -1099) 186199) ((-855 . -616) 186096) ((-169 . -243) 186047) ((-169 . -233) 185998) ((-1093 . -1094) 185956) ((-872 . -287) 185914) ((-225 . -795) T) ((-225 . -792) T) ((-694 . -285) NIL) ((-573 . -616) 185886) ((-1149 . -1190) 185865) ((-409 . -992) 185849) ((-48 . -1051) 185814) ((-701 . -21) T) ((-701 . -25) T) ((-48 . -640) 185779) ((-1279 . -648) 185753) ((-317 . -160) 185732) ((-317 . -143) 185711) ((-1149 . -107) 185661) ((-116 . -21) T) ((-40 . -231) 185638) ((-134 . -25) T) ((-116 . -25) T) ((-608 . -289) 185614) ((-477 . -289) 185593) ((-1237 . -327) 185570) ((-1237 . -1049) T) ((-855 . -1049) T) ((-799 . -340) 185554) ((-139 . -185) T) ((-117 . -1150) NIL) ((-91 . -613) 185486) ((-479 . -131) T) ((-1237 . -233) T) ((-1095 . -492) 185467) ((-1095 . -613) 185433) ((-1089 . -492) 185414) ((-1089 . -613) 185380) ((-594 . -1214) T) ((-1072 . -492) 185361) ((-573 . -1049) T) ((-1072 . -613) 185327) ((-662 . -717) 185311) ((-1065 . -492) 185292) ((-1065 . -613) 185258) ((-958 . -289) 185235) ((-60 . -34) T) ((-1061 . -795) T) ((-1061 . -792) T) ((-1036 . -492) 185216) ((-1019 . -492) 185197) ((-816 . -726) T) ((-731 . -47) 185162) ((-623 . -38) 185149) ((-357 . -291) T) ((-354 . -291) T) ((-346 . -291) T) ((-265 . -291) 185080) ((-247 . -291) 185011) ((-1036 . -613) 184977) ((-1024 . -102) T) ((-1019 . -613) 184943) ((-626 . -492) 184924) ((-415 . -726) T) ((-117 . -38) 184869) ((-485 . -492) 184850) ((-626 . -613) 184816) ((-415 . -475) T) ((-218 . -492) 184797) ((-485 . -613) 184763) ((-356 . -102) T) ((-218 . -613) 184729) ((-1208 . -1057) T) ((-345 . -646) 184659) ((-711 . -1057) T) ((-1173 . -47) 184636) ((-1172 . -47) 184606) ((-1166 . -47) 184583) ((-128 . -289) 184558) ((-1035 . -151) 184504) ((-910 . -291) T) ((-1125 . -47) 184476) ((-694 . -310) NIL) ((-517 . -613) 184458) ((-512 . -613) 184440) ((-510 . -613) 184422) ((-328 . -1099) 184372) ((-712 . -454) 184303) ((-48 . -102) T) ((-1248 . -287) 184288) ((-1227 . -287) 184208) ((-644 . -666) 184192) ((-644 . -651) 184176) ((-341 . -21) T) ((-341 . -25) T) ((-40 . -351) NIL) ((-174 . -21) T) ((-174 . -25) T) ((-644 . -375) 184160) ((-605 . -492) 184142) ((-602 . -287) 184119) ((-605 . -613) 184086) ((-390 . -102) T) ((-1119 . -143) T) ((-126 . -613) 184018) ((-874 . -1099) T) ((-658 . -413) 184002) ((-714 . -613) 183984) ((-249 . -613) 183951) ((-187 . -613) 183933) ((-162 . -613) 183915) ((-157 . -613) 183897) ((-1279 . -726) T) ((-1101 . -34) T) ((-871 . -795) NIL) ((-871 . -792) NIL) ((-858 . -850) T) ((-731 . -886) NIL) ((-1288 . -131) T) ((-383 . -131) T) ((-892 . -616) 183865) ((-904 . -102) T) ((-731 . -1038) 183741) ((-533 . -131) T) ((-1086 . -413) 183725) ((-1000 . -491) 183709) ((-117 . -402) 183686) ((-1166 . -1214) 183665) ((-782 . -413) 183649) ((-780 . -413) 183633) ((-943 . -34) T) ((-694 . -1150) NIL) ((-252 . -648) 183468) ((-251 . -648) 183290) ((-817 . -920) 183269) ((-456 . -413) 183253) ((-602 . -19) 183237) ((-1145 . -1207) 183206) ((-1166 . -886) NIL) ((-1166 . -884) 183158) ((-602 . -604) 183135) ((-1200 . -613) 183067) ((-1174 . -613) 183049) ((-62 . -397) T) ((-1172 . -1038) 182984) ((-1166 . -1038) 182950) ((-694 . -38) 182900) ((-40 . -646) 182830) ((-476 . -287) 182815) ((-1220 . -613) 182797) ((-731 . -379) 182781) ((-838 . -613) 182763) ((-658 . -1057) T) ((-1248 . -1002) 182729) ((-1227 . -1002) 182695) ((-1087 . -616) 182679) ((-1062 . -1190) 182654) ((-1075 . -616) 182631) ((-872 . -614) 182438) ((-872 . -613) 182420) ((-1187 . -491) 182357) ((-420 . -1022) 182335) ((-48 . -310) 182322) ((-1062 . -107) 182268) ((-481 . -491) 182205) ((-522 . -1214) T) ((-1166 . -340) 182157) ((-1140 . -491) 182128) ((-1166 . -379) 182080) ((-1086 . -1057) T) ((-439 . -102) T) ((-183 . -1099) T) ((-252 . -34) T) ((-251 . -34) T) ((-782 . -1057) T) ((-780 . -1057) T) ((-731 . -900) 182057) ((-456 . -1057) T) ((-59 . -491) 182041) ((-1034 . -1056) 182015) ((-521 . -491) 181999) ((-518 . -491) 181983) ((-499 . -491) 181967) ((-498 . -491) 181951) ((-245 . -516) 181884) ((-1034 . -111) 181851) ((-1173 . -900) 181764) ((-1172 . -900) 181670) ((-1166 . -900) 181503) ((-1125 . -900) 181487) ((-670 . -1111) T) ((-356 . -1150) T) ((-645 . -93) T) ((-323 . -1056) 181469) ((-252 . -791) 181448) ((-252 . -794) 181399) ((-31 . -492) 181380) ((-252 . -793) 181359) ((-251 . -791) 181338) ((-251 . -794) 181289) ((-251 . -793) 181268) ((-31 . -613) 181234) ((-50 . -1057) T) ((-252 . -726) 181144) ((-251 . -726) 181054) ((-1208 . -1099) T) ((-670 . -23) T) ((-583 . -1057) T) ((-520 . -1057) T) ((-381 . -1056) 181019) ((-323 . -111) 180994) ((-73 . -385) T) ((-73 . -397) T) ((-1024 . -38) 180931) ((-694 . -402) 180913) ((-99 . -102) T) ((-711 . -1099) T) ((-1292 . -1051) 180900) ((-1003 . -145) 180872) ((-1003 . -147) 180844) ((-870 . -646) 180816) ((-381 . -111) 180772) ((-320 . -1218) 180751) ((-476 . -1002) 180717) ((-356 . -38) 180682) ((-40 . -372) 180654) ((-873 . -613) 180526) ((-127 . -125) 180510) ((-121 . -125) 180494) ((-836 . -1056) 180464) ((-833 . -21) 180416) ((-827 . -1056) 180400) ((-833 . -25) 180352) ((-320 . -558) 180303) ((-519 . -616) 180284) ((-566 . -828) T) ((-240 . -1214) T) ((-1034 . -616) 180253) ((-836 . -111) 180218) ((-827 . -111) 180197) ((-1248 . -613) 180179) ((-1227 . -613) 180161) ((-1227 . -614) 179832) ((-1171 . -909) 179811) ((-1124 . -909) 179790) ((-48 . -38) 179755) ((-1286 . -1111) T) ((-602 . -613) 179667) ((-602 . -614) 179628) ((-1284 . -1111) T) ((-363 . -616) 179612) ((-323 . -616) 179596) ((-240 . -1038) 179423) ((-1171 . -648) 179348) ((-1124 . -648) 179273) ((-854 . -648) 179247) ((-718 . -613) 179229) ((-548 . -370) T) ((-1286 . -23) T) ((-1284 . -23) T) ((-493 . -1099) T) ((-381 . -616) 179179) ((-381 . -618) 179161) ((-1034 . -1049) T) ((-865 . -102) T) ((-1187 . -287) 179140) ((-169 . -370) 179091) ((-1004 . -1214) T) ((-836 . -616) 179045) ((-827 . -616) 179000) ((-44 . -23) T) ((-481 . -287) 178979) ((-587 . -1099) T) ((-1145 . -1108) 178948) ((-1103 . -1102) 178900) ((-392 . -21) T) ((-392 . -25) T) ((-152 . -1111) T) ((-1292 . -102) T) ((-1004 . -884) 178882) ((-1004 . -886) 178864) ((-1208 . -717) 178761) ((-623 . -231) 178745) ((-621 . -21) T) ((-290 . -558) T) ((-621 . -25) T) ((-1194 . -1099) T) ((-711 . -717) 178710) ((-240 . -379) 178679) ((-1004 . -1038) 178639) ((-381 . -1049) T) ((-223 . -1057) T) ((-117 . -231) 178616) ((-59 . -287) 178593) ((-152 . -23) T) ((-518 . -287) 178570) ((-328 . -516) 178503) ((-498 . -287) 178480) ((-381 . -243) T) ((-381 . -233) T) ((-836 . -1049) T) ((-827 . -1049) T) ((-712 . -949) 178449) ((-701 . -850) T) ((-476 . -613) 178431) ((-1250 . -1051) 178336) ((-582 . -646) 178308) ((-566 . -646) 178280) ((-497 . -646) 178230) ((-827 . -233) 178209) ((-134 . -850) T) ((-1250 . -640) 178101) ((-658 . -1099) T) ((-1187 . -604) 178080) ((-552 . -1190) 178059) ((-338 . -1099) T) ((-320 . -365) 178038) ((-409 . -147) 178017) ((-409 . -145) 177996) ((-964 . -1111) 177895) ((-240 . -900) 177827) ((-815 . -1111) 177737) ((-654 . -852) 177721) ((-481 . -604) 177700) ((-552 . -107) 177650) ((-1004 . -379) 177632) ((-1004 . -340) 177614) ((-97 . -1099) T) ((-964 . -23) 177425) ((-479 . -21) T) ((-479 . -25) T) ((-815 . -23) 177295) ((-1175 . -613) 177277) ((-59 . -19) 177261) ((-1175 . -614) 177183) ((-1171 . -726) T) ((-1124 . -726) T) ((-518 . -19) 177167) ((-498 . -19) 177151) ((-59 . -604) 177128) ((-1086 . -1099) T) ((-901 . -102) 177106) ((-854 . -726) T) ((-782 . -1099) T) ((-518 . -604) 177083) ((-498 . -604) 177060) ((-780 . -1099) T) ((-780 . -1064) 177027) ((-463 . -1099) T) ((-456 . -1099) T) ((-587 . -717) 177002) ((-649 . -1099) T) ((-1256 . -47) 176979) ((-1250 . -102) T) ((-1249 . -47) 176949) ((-1228 . -47) 176926) ((-1208 . -172) 176877) ((-1172 . -308) 176856) ((-1166 . -308) 176835) ((-1095 . -616) 176816) ((-1089 . -616) 176797) ((-1079 . -558) 176748) ((-1004 . -900) NIL) ((-1079 . -1218) 176699) ((-670 . -131) T) ((-627 . -1111) T) ((-1072 . -616) 176680) ((-1065 . -616) 176661) ((-1036 . -616) 176642) ((-1019 . -616) 176623) ((-699 . -646) 176573) ((-276 . -1099) T) ((-85 . -443) T) ((-85 . -397) T) ((-714 . -1056) 176543) ((-711 . -172) T) ((-50 . -1099) T) ((-596 . -47) 176520) ((-225 . -648) 176485) ((-583 . -1099) T) ((-520 . -1099) T) ((-489 . -820) T) ((-489 . -920) T) ((-361 . -1218) T) ((-355 . -1218) T) ((-347 . -1218) T) ((-320 . -1111) T) ((-317 . -1051) 176395) ((-314 . -1051) 176324) ((-108 . -1218) T) ((-626 . -616) 176305) ((-361 . -558) T) ((-217 . -920) T) ((-217 . -820) T) ((-317 . -640) 176215) ((-314 . -640) 176144) ((-355 . -558) T) ((-347 . -558) T) ((-485 . -616) 176125) ((-108 . -558) T) ((-658 . -717) 176095) ((-1166 . -1022) NIL) ((-218 . -616) 176076) ((-320 . -23) T) ((-67 . -1214) T) ((-1000 . -613) 176008) ((-694 . -231) 175990) ((-714 . -111) 175955) ((-644 . -34) T) ((-245 . -491) 175939) ((-1101 . -1097) 175923) ((-171 . -1099) T) ((-952 . -909) 175902) ((-1292 . -1150) T) ((-1288 . -21) T) ((-517 . -616) 175886) ((-1288 . -25) T) ((-1286 . -131) T) ((-1284 . -131) T) ((-483 . -909) 175865) ((-1277 . -102) T) ((-1260 . -613) 175831) ((-1249 . -1038) 175766) ((-1228 . -1214) 175745) ((-1228 . -886) NIL) ((-1228 . -884) 175697) ((-1086 . -717) 175546) ((-1061 . -648) 175533) ((-952 . -648) 175458) ((-782 . -717) 175287) ((-538 . -613) 175269) ((-538 . -614) 175250) ((-780 . -717) 175099) ((-1076 . -102) T) ((-383 . -25) T) ((-623 . -646) 175071) ((-383 . -21) T) ((-483 . -648) 174996) ((-463 . -717) 174967) ((-456 . -717) 174816) ((-987 . -102) T) ((-1228 . -1038) 174782) ((-1187 . -614) NIL) ((-1187 . -613) 174764) ((-737 . -102) T) ((-117 . -646) 174694) ((-605 . -616) 174676) ((-1141 . -1122) 174621) ((-1046 . -1207) 174550) ((-533 . -25) T) ((-901 . -310) 174488) ((-714 . -616) 174442) ((-681 . -93) T) ((-645 . -492) 174423) ((-141 . -102) T) ((-44 . -131) T) ((-676 . -93) T) ((-664 . -613) 174405) ((-345 . -1057) T) ((-290 . -1111) T) ((-645 . -613) 174358) ((-480 . -93) T) ((-357 . -613) 174340) ((-354 . -613) 174322) ((-346 . -613) 174304) ((-265 . -614) 174052) ((-265 . -613) 174034) ((-247 . -613) 174016) ((-247 . -614) 173877) ((-133 . -93) T) ((-138 . -93) T) ((-137 . -93) T) ((-1208 . -516) 173844) ((-1140 . -613) 173826) ((-1119 . -640) 173813) ((-819 . -857) T) ((-819 . -726) T) ((-602 . -289) 173790) ((-583 . -717) 173755) ((-481 . -614) NIL) ((-481 . -613) 173737) ((-520 . -717) 173682) ((-317 . -102) T) ((-314 . -102) T) ((-290 . -23) T) ((-152 . -131) T) ((-1119 . -1051) 173669) ((-910 . -613) 173651) ((-388 . -726) T) ((-872 . -1056) 173603) ((-910 . -614) 173585) ((-872 . -111) 173523) ((-714 . -1049) T) ((-712 . -1240) 173507) ((-694 . -351) NIL) ((-136 . -102) T) ((-114 . -102) T) ((-139 . -102) T) ((-521 . -613) 173439) ((-381 . -795) T) ((-223 . -1099) T) ((-381 . -792) T) ((-225 . -794) T) ((-225 . -791) T) ((-59 . -614) 173400) ((-59 . -613) 173312) ((-225 . -726) T) ((-518 . -614) 173273) ((-518 . -613) 173185) ((-499 . -613) 173117) ((-498 . -614) 173078) ((-498 . -613) 172990) ((-1079 . -365) 172941) ((-40 . -413) 172918) ((-77 . -1214) T) ((-871 . -909) NIL) ((-361 . -330) 172902) ((-361 . -365) T) ((-355 . -330) 172886) ((-355 . -365) T) ((-347 . -330) 172870) ((-347 . -365) T) ((-317 . -285) 172849) ((-108 . -365) T) ((-70 . -1214) T) ((-1228 . -340) 172801) ((-871 . -648) 172746) ((-1228 . -379) 172698) ((-964 . -131) 172553) ((-815 . -131) 172423) ((-958 . -651) 172407) ((-1086 . -172) 172318) ((-958 . -375) 172302) ((-1061 . -794) T) ((-1061 . -791) T) ((-872 . -616) 172200) ((-782 . -172) 172091) ((-780 . -172) 172002) ((-816 . -47) 171964) ((-1061 . -726) T) ((-328 . -491) 171948) ((-952 . -726) T) ((-456 . -172) 171859) ((-245 . -287) 171836) ((-1277 . -310) 171774) ((-1256 . -900) 171687) ((-1249 . -900) 171593) ((-483 . -726) T) ((-1248 . -1056) 171428) ((-1228 . -900) 171261) ((-1227 . -1056) 171069) ((-1208 . -291) 171048) ((-1184 . -1214) T) ((-1182 . -370) T) ((-1181 . -370) T) ((-1145 . -151) 171032) ((-1119 . -102) T) ((-1117 . -1099) T) ((-1079 . -23) T) ((-1079 . -1111) T) ((-1074 . -102) T) ((-927 . -955) T) ((-737 . -310) 170970) ((-75 . -1214) T) ((-664 . -384) 170942) ((-169 . -909) 170895) ((-30 . -955) T) ((-112 . -844) T) ((-1 . -613) 170877) ((-1003 . -411) 170849) ((-128 . -651) 170831) ((-50 . -620) 170815) ((-694 . -646) 170750) ((-596 . -900) 170663) ((-440 . -102) T) ((-128 . -375) 170645) ((-141 . -310) NIL) ((-872 . -1049) T) ((-833 . -850) 170624) ((-81 . -1214) T) ((-711 . -291) T) ((-40 . -1057) T) ((-583 . -172) T) ((-520 . -172) T) ((-513 . -613) 170606) ((-169 . -648) 170516) ((-509 . -613) 170498) ((-353 . -147) 170480) ((-353 . -145) T) ((-361 . -1111) T) ((-355 . -1111) T) ((-347 . -1111) T) ((-1004 . -308) T) ((-914 . -308) T) ((-872 . -243) T) ((-108 . -1111) T) ((-872 . -233) 170459) ((-1248 . -111) 170280) ((-1227 . -111) 170069) ((-245 . -1252) 170053) ((-566 . -848) T) ((-361 . -23) T) ((-356 . -351) T) ((-317 . -310) 170040) ((-314 . -310) 169981) ((-355 . -23) T) ((-320 . -131) T) ((-347 . -23) T) ((-1004 . -1022) T) ((-31 . -616) 169962) ((-108 . -23) T) ((-654 . -1051) 169946) ((-245 . -604) 169923) ((-334 . -1099) T) ((-654 . -640) 169893) ((-1250 . -38) 169785) ((-1237 . -909) 169764) ((-112 . -1099) T) ((-1035 . -102) T) ((-1237 . -648) 169689) ((-871 . -794) NIL) ((-855 . -648) 169663) ((-871 . -791) NIL) ((-816 . -886) NIL) ((-871 . -726) T) ((-1086 . -516) 169536) ((-782 . -516) 169483) ((-780 . -516) 169435) ((-573 . -648) 169422) ((-816 . -1038) 169250) ((-456 . -516) 169193) ((-390 . -391) T) ((-1248 . -616) 169006) ((-1227 . -616) 168754) ((-60 . -1214) T) ((-621 . -850) 168733) ((-502 . -661) T) ((-1145 . -976) 168702) ((-1024 . -646) 168639) ((-1003 . -454) T) ((-699 . -848) T) ((-512 . -792) T) ((-476 . -1056) 168474) ((-345 . -1099) T) ((-314 . -1150) NIL) ((-290 . -131) T) ((-396 . -1099) T) ((-870 . -1057) T) ((-694 . -372) 168441) ((-356 . -646) 168371) ((-223 . -620) 168348) ((-328 . -287) 168325) ((-476 . -111) 168146) ((-1248 . -1049) T) ((-1227 . -1049) T) ((-816 . -379) 168130) ((-169 . -726) T) ((-654 . -102) T) ((-1248 . -243) 168109) ((-1248 . -233) 168061) ((-1227 . -233) 167966) ((-1227 . -243) 167945) ((-1003 . -404) NIL) ((-670 . -639) 167893) ((-317 . -38) 167803) ((-314 . -38) 167732) ((-69 . -613) 167714) ((-320 . -495) 167680) ((-48 . -646) 167630) ((-1187 . -289) 167609) ((-1222 . -850) T) ((-1112 . -1111) 167519) ((-83 . -1214) T) ((-61 . -613) 167501) ((-481 . -289) 167480) ((-1279 . -1038) 167457) ((-1163 . -1099) T) ((-1112 . -23) 167327) ((-816 . -900) 167263) ((-1237 . -726) T) ((-1101 . -1214) T) ((-476 . -616) 167089) ((-1086 . -291) 167020) ((-966 . -1099) T) ((-893 . -102) T) ((-782 . -291) 166931) ((-328 . -19) 166915) ((-59 . -289) 166892) ((-780 . -291) 166823) ((-855 . -726) T) ((-117 . -848) NIL) ((-518 . -289) 166800) ((-328 . -604) 166777) ((-498 . -289) 166754) ((-456 . -291) 166685) ((-1035 . -310) 166536) ((-681 . -492) 166517) ((-573 . -726) T) ((-676 . -492) 166498) ((-681 . -613) 166448) ((-676 . -613) 166414) ((-662 . -613) 166396) ((-480 . -492) 166377) ((-480 . -613) 166343) ((-245 . -614) 166304) ((-245 . -492) 166281) ((-138 . -492) 166262) ((-137 . -492) 166243) ((-133 . -492) 166224) ((-245 . -613) 166116) ((-213 . -102) T) ((-138 . -613) 166082) ((-137 . -613) 166048) ((-133 . -613) 166014) ((-1146 . -34) T) ((-943 . -1214) T) ((-345 . -717) 165959) ((-670 . -25) T) ((-670 . -21) T) ((-1175 . -616) 165940) ((-476 . -1049) T) ((-635 . -419) 165905) ((-607 . -419) 165870) ((-1119 . -1150) T) ((-712 . -1051) 165693) ((-583 . -291) T) ((-520 . -291) T) ((-1249 . -308) 165672) ((-476 . -233) 165624) ((-476 . -243) 165603) ((-1228 . -308) 165582) ((-712 . -640) 165411) ((-1228 . -1022) NIL) ((-1079 . -131) T) ((-872 . -795) 165390) ((-144 . -102) T) ((-40 . -1099) T) ((-872 . -792) 165369) ((-644 . -1010) 165353) ((-582 . -1057) T) ((-566 . -1057) T) ((-497 . -1057) T) ((-409 . -454) T) ((-361 . -131) T) ((-317 . -402) 165337) ((-314 . -402) 165298) ((-355 . -131) T) ((-347 . -131) T) ((-1180 . -1099) T) ((-1119 . -38) 165285) ((-1093 . -613) 165252) ((-108 . -131) T) ((-954 . -1099) T) ((-921 . -1099) T) ((-771 . -1099) T) ((-672 . -1099) T) ((-701 . -147) T) ((-116 . -147) T) ((-1286 . -21) T) ((-1286 . -25) T) ((-1284 . -21) T) ((-1284 . -25) T) ((-664 . -1056) 165236) ((-533 . -850) T) ((-502 . -850) T) ((-357 . -1056) 165188) ((-354 . -1056) 165140) ((-346 . -1056) 165092) ((-252 . -1214) T) ((-251 . -1214) T) ((-265 . -1056) 164935) ((-247 . -1056) 164778) ((-664 . -111) 164757) ((-549 . -844) T) ((-357 . -111) 164695) ((-354 . -111) 164633) ((-346 . -111) 164571) ((-265 . -111) 164400) ((-247 . -111) 164229) ((-817 . -1218) 164208) ((-623 . -413) 164192) ((-44 . -21) T) ((-44 . -25) T) ((-815 . -639) 164098) ((-817 . -558) 164077) ((-252 . -1038) 163904) ((-251 . -1038) 163731) ((-126 . -119) 163715) ((-910 . -1056) 163680) ((-712 . -102) T) ((-699 . -1057) T) ((-538 . -618) 163583) ((-345 . -172) T) ((-88 . -613) 163565) ((-152 . -21) T) ((-152 . -25) T) ((-910 . -111) 163521) ((-40 . -717) 163466) ((-870 . -1099) T) ((-664 . -616) 163443) ((-645 . -616) 163424) ((-357 . -616) 163361) ((-354 . -616) 163298) ((-549 . -1099) T) ((-346 . -616) 163235) ((-328 . -614) 163196) ((-328 . -613) 163108) ((-265 . -616) 162861) ((-247 . -616) 162646) ((-1227 . -792) 162599) ((-1227 . -795) 162552) ((-252 . -379) 162521) ((-251 . -379) 162490) ((-654 . -38) 162460) ((-608 . -34) T) ((-484 . -1111) 162370) ((-477 . -34) T) ((-1112 . -131) 162240) ((-964 . -25) 162051) ((-910 . -616) 162001) ((-874 . -613) 161983) ((-964 . -21) 161938) ((-815 . -21) 161848) ((-815 . -25) 161699) ((-1220 . -370) T) ((-623 . -1057) T) ((-1177 . -558) 161678) ((-1171 . -47) 161655) ((-357 . -1049) T) ((-354 . -1049) T) ((-484 . -23) 161525) ((-346 . -1049) T) ((-265 . -1049) T) ((-247 . -1049) T) ((-1124 . -47) 161497) ((-117 . -1057) T) ((-1034 . -648) 161471) ((-958 . -34) T) ((-357 . -233) 161450) ((-357 . -243) T) ((-354 . -233) 161429) ((-354 . -243) T) ((-346 . -233) 161408) ((-346 . -243) T) ((-265 . -327) 161380) ((-247 . -327) 161337) ((-265 . -233) 161316) ((-1155 . -151) 161300) ((-252 . -900) 161232) ((-251 . -900) 161164) ((-1081 . -850) T) ((-416 . -1111) T) ((-1054 . -23) T) ((-910 . -1049) T) ((-323 . -648) 161146) ((-1024 . -848) T) ((-1208 . -1002) 161112) ((-1172 . -920) 161091) ((-1166 . -920) 161070) ((-1166 . -820) NIL) ((-999 . -1051) 160966) ((-910 . -243) T) ((-817 . -365) 160945) ((-387 . -23) T) ((-127 . -1099) 160923) ((-121 . -1099) 160901) ((-910 . -233) T) ((-128 . -34) T) ((-381 . -648) 160866) ((-999 . -640) 160814) ((-870 . -717) 160801) ((-1292 . -646) 160773) ((-1046 . -151) 160738) ((-40 . -172) T) ((-694 . -413) 160720) ((-712 . -310) 160707) ((-836 . -648) 160667) ((-827 . -648) 160641) ((-320 . -25) T) ((-320 . -21) T) ((-658 . -287) 160620) ((-582 . -1099) T) ((-566 . -1099) T) ((-497 . -1099) T) ((-245 . -289) 160597) ((-314 . -231) 160558) ((-1171 . -886) NIL) ((-55 . -1099) T) ((-1124 . -886) 160417) ((-129 . -850) T) ((-1171 . -1038) 160297) ((-1124 . -1038) 160180) ((-183 . -613) 160162) ((-854 . -1038) 160058) ((-782 . -287) 159985) ((-817 . -1111) T) ((-1034 . -726) T) ((-602 . -651) 159969) ((-1046 . -976) 159898) ((-999 . -102) T) ((-817 . -23) T) ((-712 . -1150) 159876) ((-694 . -1057) T) ((-602 . -375) 159860) ((-353 . -454) T) ((-345 . -291) T) ((-1265 . -1099) T) ((-248 . -1099) T) ((-401 . -102) T) ((-290 . -21) T) ((-290 . -25) T) ((-363 . -726) T) ((-710 . -1099) T) ((-699 . -1099) T) ((-363 . -475) T) ((-1208 . -613) 159842) ((-1171 . -379) 159826) ((-1124 . -379) 159810) ((-1024 . -413) 159772) ((-141 . -229) 159754) ((-381 . -794) T) ((-381 . -791) T) ((-870 . -172) T) ((-381 . -726) T) ((-711 . -613) 159736) ((-712 . -38) 159565) ((-1264 . -1262) 159549) ((-353 . -404) T) ((-1264 . -1099) 159499) ((-582 . -717) 159486) ((-566 . -717) 159473) ((-497 . -717) 159438) ((-1250 . -646) 159328) ((-317 . -629) 159307) ((-836 . -726) T) ((-827 . -726) T) ((-644 . -1214) T) ((-1079 . -639) 159255) ((-1171 . -900) 159198) ((-1124 . -900) 159182) ((-662 . -1056) 159166) ((-108 . -639) 159148) ((-484 . -131) 159018) ((-1177 . -1111) T) ((-952 . -47) 158987) ((-623 . -1099) T) ((-662 . -111) 158966) ((-493 . -613) 158932) ((-328 . -289) 158909) ((-483 . -47) 158866) ((-1177 . -23) T) ((-117 . -1099) T) ((-103 . -102) 158844) ((-1276 . -1111) T) ((-550 . -850) T) ((-1054 . -131) T) ((-1024 . -1057) T) ((-819 . -1038) 158828) ((-1003 . -724) 158800) ((-1276 . -23) T) ((-699 . -717) 158765) ((-587 . -613) 158747) ((-388 . -1038) 158731) ((-356 . -1057) T) ((-387 . -131) T) ((-325 . -1038) 158715) ((-1194 . -613) 158697) ((-1119 . -828) T) ((-225 . -886) 158679) ((-1004 . -920) T) ((-91 . -34) T) ((-1004 . -820) T) ((-914 . -920) T) ((-1104 . -1099) T) ((-1079 . -21) T) ((-489 . -1218) T) ((-1079 . -25) T) ((-999 . -310) 158644) ((-714 . -648) 158604) ((-217 . -1218) T) ((-681 . -616) 158585) ((-225 . -1038) 158545) ((-40 . -291) T) ((-676 . -616) 158526) ((-489 . -558) T) ((-480 . -616) 158507) ((-317 . -646) 158191) ((-314 . -646) 158105) ((-361 . -25) T) ((-361 . -21) T) ((-355 . -25) T) ((-217 . -558) T) ((-355 . -21) T) ((-347 . -25) T) ((-347 . -21) T) ((-245 . -616) 158082) ((-138 . -616) 158063) ((-137 . -616) 158044) ((-133 . -616) 158025) ((-108 . -25) T) ((-108 . -21) T) ((-48 . -1057) T) ((-582 . -172) T) ((-566 . -172) T) ((-497 . -172) T) ((-658 . -613) 158007) ((-737 . -736) 157991) ((-338 . -613) 157973) ((-68 . -385) T) ((-68 . -397) T) ((-1101 . -107) 157957) ((-1061 . -886) 157939) ((-952 . -886) 157864) ((-653 . -1111) T) ((-623 . -717) 157851) ((-483 . -886) NIL) ((-1145 . -102) T) ((-1093 . -618) 157835) ((-1061 . -1038) 157817) ((-97 . -613) 157799) ((-479 . -147) T) ((-952 . -1038) 157679) ((-117 . -717) 157624) ((-653 . -23) T) ((-483 . -1038) 157500) ((-1086 . -614) NIL) ((-1086 . -613) 157482) ((-782 . -614) NIL) ((-782 . -613) 157443) ((-780 . -614) 157077) ((-780 . -613) 156991) ((-1112 . -639) 156897) ((-463 . -613) 156879) ((-456 . -613) 156861) ((-456 . -614) 156722) ((-1035 . -229) 156668) ((-872 . -909) 156647) ((-126 . -34) T) ((-817 . -131) T) ((-649 . -613) 156629) ((-580 . -102) T) ((-357 . -1283) 156613) ((-354 . -1283) 156597) ((-346 . -1283) 156581) ((-127 . -516) 156514) ((-121 . -516) 156447) ((-513 . -792) T) ((-513 . -795) T) ((-512 . -794) T) ((-103 . -310) 156385) ((-222 . -102) 156363) ((-699 . -172) T) ((-694 . -1099) T) ((-872 . -648) 156315) ((-65 . -386) T) ((-276 . -613) 156297) ((-65 . -397) T) ((-952 . -379) 156281) ((-870 . -291) T) ((-50 . -613) 156263) ((-999 . -38) 156211) ((-1119 . -646) 156183) ((-583 . -613) 156165) ((-483 . -379) 156149) ((-583 . -614) 156131) ((-520 . -613) 156113) ((-910 . -1283) 156100) ((-871 . -1214) T) ((-701 . -454) T) ((-497 . -516) 156066) ((-489 . -365) T) ((-357 . -370) 156045) ((-354 . -370) 156024) ((-346 . -370) 156003) ((-714 . -726) T) ((-217 . -365) T) ((-116 . -454) T) ((-1287 . -1278) 155987) ((-871 . -884) 155964) ((-871 . -886) NIL) ((-964 . -850) 155863) ((-815 . -850) 155814) ((-1221 . -102) T) ((-654 . -656) 155798) ((-1200 . -34) T) ((-171 . -613) 155780) ((-1112 . -21) 155690) ((-1112 . -25) 155541) ((-871 . -1038) 155518) ((-952 . -900) 155499) ((-1237 . -47) 155476) ((-910 . -370) T) ((-59 . -651) 155460) ((-518 . -651) 155444) ((-483 . -900) 155421) ((-71 . -443) T) ((-71 . -397) T) ((-498 . -651) 155405) ((-59 . -375) 155389) ((-623 . -172) T) ((-518 . -375) 155373) ((-498 . -375) 155357) ((-827 . -708) 155341) ((-1171 . -308) 155320) ((-1177 . -131) T) ((-1141 . -1051) 155304) ((-117 . -172) T) ((-1141 . -640) 155236) ((-1145 . -310) 155174) ((-169 . -1214) T) ((-1276 . -131) T) ((-866 . -1051) 155144) ((-635 . -744) 155128) ((-607 . -744) 155112) ((-1249 . -920) 155091) ((-1228 . -920) 155070) ((-1228 . -820) NIL) ((-866 . -640) 155040) ((-694 . -717) 154990) ((-1227 . -909) 154943) ((-1024 . -1099) T) ((-871 . -379) 154920) ((-871 . -340) 154897) ((-905 . -1111) T) ((-169 . -884) 154881) ((-169 . -886) 154806) ((-489 . -1111) T) ((-356 . -1099) T) ((-217 . -1111) T) ((-76 . -443) T) ((-76 . -397) T) ((-169 . -1038) 154702) ((-320 . -850) T) ((-1264 . -516) 154635) ((-1248 . -648) 154532) ((-1227 . -648) 154402) ((-872 . -794) 154381) ((-872 . -791) 154360) ((-872 . -726) T) ((-489 . -23) T) ((-223 . -613) 154342) ((-174 . -454) T) ((-222 . -310) 154280) ((-86 . -443) T) ((-86 . -397) T) ((-217 . -23) T) ((-1288 . -1281) 154259) ((-677 . -1038) 154243) ((-582 . -291) T) ((-566 . -291) T) ((-497 . -291) T) ((-136 . -472) 154198) ((-654 . -646) 154157) ((-48 . -1099) T) ((-712 . -231) 154141) ((-871 . -900) NIL) ((-1237 . -886) NIL) ((-889 . -102) T) ((-885 . -102) T) ((-390 . -1099) T) ((-169 . -379) 154125) ((-169 . -340) 154109) ((-1237 . -1038) 153989) ((-855 . -1038) 153885) ((-1141 . -102) T) ((-653 . -131) T) ((-117 . -516) 153793) ((-662 . -792) 153772) ((-662 . -795) 153751) ((-573 . -1038) 153733) ((-295 . -1271) 153703) ((-866 . -102) T) ((-963 . -558) 153682) ((-1208 . -1056) 153565) ((-1003 . -1051) 153510) ((-484 . -639) 153416) ((-904 . -1099) T) ((-1024 . -717) 153353) ((-711 . -1056) 153318) ((-1003 . -640) 153263) ((-617 . -102) T) ((-602 . -34) T) ((-1146 . -1214) T) ((-1208 . -111) 153132) ((-476 . -648) 153029) ((-356 . -717) 152974) ((-169 . -900) 152933) ((-699 . -291) T) ((-694 . -172) T) ((-711 . -111) 152889) ((-1292 . -1057) T) ((-1237 . -379) 152873) ((-420 . -1218) 152851) ((-1117 . -613) 152833) ((-314 . -848) NIL) ((-420 . -558) T) ((-225 . -308) T) ((-1227 . -791) 152786) ((-1227 . -794) 152739) ((-1248 . -726) T) ((-1227 . -726) T) ((-48 . -717) 152704) ((-225 . -1022) T) ((-353 . -1271) 152681) ((-1250 . -413) 152647) ((-718 . -726) T) ((-334 . -613) 152629) ((-1237 . -900) 152572) ((-1208 . -616) 152454) ((-112 . -613) 152436) ((-112 . -614) 152418) ((-718 . -475) T) ((-711 . -616) 152368) ((-1287 . -1051) 152352) ((-484 . -21) 152262) ((-127 . -491) 152246) ((-121 . -491) 152230) ((-484 . -25) 152081) ((-1287 . -640) 152051) ((-623 . -291) T) ((-587 . -1056) 152026) ((-439 . -1099) T) ((-1061 . -308) T) ((-117 . -291) T) ((-1103 . -102) T) ((-1003 . -102) T) ((-587 . -111) 151994) ((-1141 . -310) 151932) ((-1208 . -1049) T) ((-1061 . -1022) T) ((-66 . -1214) T) ((-1054 . -25) T) ((-1054 . -21) T) ((-711 . -1049) T) ((-387 . -21) T) ((-387 . -25) T) ((-694 . -516) NIL) ((-1024 . -172) T) ((-711 . -243) T) ((-1061 . -547) T) ((-712 . -646) 151842) ((-508 . -102) T) ((-504 . -102) T) ((-356 . -172) T) ((-345 . -613) 151824) ((-409 . -1051) 151776) ((-396 . -613) 151758) ((-1119 . -848) T) ((-476 . -726) T) ((-892 . -1038) 151726) ((-409 . -640) 151678) ((-108 . -850) T) ((-658 . -1056) 151662) ((-489 . -131) T) ((-1250 . -1057) T) ((-217 . -131) T) ((-1155 . -102) 151640) ((-99 . -1099) T) ((-245 . -666) 151624) ((-245 . -651) 151608) ((-658 . -111) 151587) ((-587 . -616) 151571) ((-317 . -413) 151555) ((-245 . -375) 151539) ((-1158 . -235) 151486) ((-999 . -231) 151470) ((-74 . -1214) T) ((-48 . -172) T) ((-701 . -389) T) ((-701 . -143) T) ((-1287 . -102) T) ((-1194 . -616) 151452) ((-1086 . -1056) 151295) ((-265 . -909) 151274) ((-247 . -909) 151253) ((-782 . -1056) 151076) ((-780 . -1056) 150919) ((-608 . -1214) T) ((-1163 . -613) 150901) ((-1086 . -111) 150730) ((-1046 . -102) T) ((-477 . -1214) T) ((-463 . -1056) 150701) ((-456 . -1056) 150544) ((-664 . -648) 150528) ((-871 . -308) T) ((-782 . -111) 150337) ((-780 . -111) 150166) ((-357 . -648) 150118) ((-354 . -648) 150070) ((-346 . -648) 150022) ((-265 . -648) 149947) ((-247 . -648) 149872) ((-1157 . -850) T) ((-1087 . -1038) 149856) ((-463 . -111) 149817) ((-456 . -111) 149646) ((-1075 . -1038) 149623) ((-1000 . -34) T) ((-966 . -613) 149605) ((-958 . -1214) T) ((-126 . -1010) 149589) ((-963 . -1111) T) ((-871 . -1022) NIL) ((-735 . -1111) T) ((-715 . -1111) T) ((-658 . -616) 149507) ((-1264 . -491) 149491) ((-1141 . -38) 149451) ((-963 . -23) T) ((-910 . -648) 149416) ((-865 . -1099) T) ((-843 . -102) T) ((-817 . -21) T) ((-635 . -1051) 149400) ((-607 . -1051) 149384) ((-817 . -25) T) ((-735 . -23) T) ((-715 . -23) T) ((-635 . -640) 149368) ((-110 . -661) T) ((-607 . -640) 149352) ((-583 . -1056) 149317) ((-520 . -1056) 149262) ((-227 . -57) 149220) ((-455 . -23) T) ((-409 . -102) T) ((-264 . -102) T) ((-694 . -291) T) ((-866 . -38) 149190) ((-583 . -111) 149146) ((-520 . -111) 149075) ((-1086 . -616) 148811) ((-420 . -1111) T) ((-317 . -1057) 148701) ((-314 . -1057) T) ((-128 . -1214) T) ((-782 . -616) 148449) ((-780 . -616) 148215) ((-658 . -1049) T) ((-1292 . -1099) T) ((-456 . -616) 148000) ((-169 . -308) 147931) ((-420 . -23) T) ((-40 . -613) 147913) ((-40 . -614) 147897) ((-108 . -992) 147879) ((-116 . -869) 147863) ((-649 . -616) 147847) ((-48 . -516) 147813) ((-1200 . -1010) 147797) ((-1180 . -613) 147764) ((-1187 . -34) T) ((-954 . -613) 147730) ((-921 . -613) 147712) ((-1112 . -850) 147663) ((-771 . -613) 147645) ((-672 . -613) 147627) ((-1155 . -310) 147565) ((-481 . -34) T) ((-1091 . -1214) T) ((-479 . -454) T) ((-1140 . -34) T) ((-1086 . -1049) T) ((-50 . -616) 147534) ((-782 . -1049) T) ((-780 . -1049) T) ((-647 . -235) 147518) ((-632 . -235) 147464) ((-583 . -616) 147414) ((-520 . -616) 147344) ((-1237 . -308) 147323) ((-1086 . -327) 147284) ((-456 . -1049) T) ((-1177 . -21) T) ((-1086 . -233) 147263) ((-782 . -327) 147240) ((-782 . -233) T) ((-780 . -327) 147212) ((-731 . -1218) 147191) ((-328 . -651) 147175) ((-1177 . -25) T) ((-59 . -34) T) ((-521 . -34) T) ((-518 . -34) T) ((-456 . -327) 147154) ((-328 . -375) 147138) ((-499 . -34) T) ((-498 . -34) T) ((-1003 . -1150) NIL) ((-731 . -558) 147069) ((-635 . -102) T) ((-607 . -102) T) ((-357 . -726) T) ((-354 . -726) T) ((-346 . -726) T) ((-265 . -726) T) ((-247 . -726) T) ((-1046 . -310) 146977) ((-901 . -1099) 146955) ((-50 . -1049) T) ((-1276 . -21) T) ((-1276 . -25) T) ((-1173 . -558) 146934) ((-1172 . -1218) 146913) ((-1172 . -558) 146864) ((-583 . -1049) T) ((-520 . -1049) T) ((-1166 . -1218) 146843) ((-363 . -1038) 146827) ((-323 . -1038) 146811) ((-1024 . -291) T) ((-381 . -886) 146793) ((-1166 . -558) 146744) ((-1003 . -38) 146689) ((-999 . -646) 146612) ((-799 . -1111) T) ((-910 . -726) T) ((-583 . -243) T) ((-583 . -233) T) ((-520 . -233) T) ((-520 . -243) T) ((-1125 . -558) 146591) ((-356 . -291) T) ((-647 . -695) 146575) ((-381 . -1038) 146535) ((-295 . -1051) 146456) ((-1119 . -1057) T) ((-103 . -125) 146440) ((-295 . -640) 146382) ((-799 . -23) T) ((-1286 . -1281) 146358) ((-1264 . -287) 146335) ((-409 . -310) 146300) ((-1284 . -1281) 146279) ((-1250 . -1099) T) ((-870 . -613) 146261) ((-836 . -1038) 146230) ((-203 . -787) T) ((-202 . -787) T) ((-201 . -787) T) ((-200 . -787) T) ((-199 . -787) T) ((-198 . -787) T) ((-197 . -787) T) ((-196 . -787) T) ((-195 . -787) T) ((-194 . -787) T) ((-549 . -613) 146212) ((-497 . -1002) T) ((-275 . -839) T) ((-274 . -839) T) ((-273 . -839) T) ((-272 . -839) T) ((-48 . -291) T) ((-271 . -839) T) ((-270 . -839) T) ((-269 . -839) T) ((-193 . -787) T) ((-612 . -850) T) ((-654 . -413) 146196) ((-223 . -616) 146158) ((-110 . -850) T) ((-653 . -21) T) ((-653 . -25) T) ((-1287 . -38) 146128) ((-117 . -287) 146079) ((-1264 . -19) 146063) ((-1264 . -604) 146040) ((-1277 . -1099) T) ((-353 . -1051) 145985) ((-1076 . -1099) T) ((-987 . -1099) T) ((-963 . -131) T) ((-737 . -1099) T) ((-353 . -640) 145930) ((-735 . -131) T) ((-715 . -131) T) ((-513 . -793) T) ((-513 . -794) T) ((-455 . -131) T) ((-409 . -1150) 145908) ((-223 . -1049) T) ((-295 . -102) 145690) ((-141 . -1099) T) ((-699 . -1002) T) ((-91 . -1214) T) ((-127 . -613) 145622) ((-121 . -613) 145554) ((-1292 . -172) T) ((-1172 . -365) 145533) ((-1166 . -365) 145512) ((-317 . -1099) T) ((-420 . -131) T) ((-314 . -1099) T) ((-409 . -38) 145464) ((-1132 . -102) T) ((-1250 . -717) 145356) ((-654 . -1057) T) ((-1134 . -1259) T) ((-320 . -145) 145335) ((-320 . -147) 145314) ((-136 . -1099) T) ((-139 . -1099) T) ((-114 . -1099) T) ((-858 . -102) T) ((-582 . -613) 145296) ((-566 . -614) 145195) ((-566 . -613) 145177) ((-497 . -613) 145159) ((-497 . -614) 145104) ((-487 . -23) T) ((-484 . -850) 145055) ((-489 . -639) 145037) ((-965 . -613) 145019) ((-217 . -639) 145001) ((-225 . -406) T) ((-662 . -648) 144985) ((-55 . -613) 144967) ((-1171 . -920) 144946) ((-731 . -1111) T) ((-353 . -102) T) ((-1213 . -1082) T) ((-1119 . -844) T) ((-818 . -850) T) ((-731 . -23) T) ((-345 . -1056) 144891) ((-1157 . -1156) T) ((-1146 . -107) 144875) ((-1173 . -1111) T) ((-1172 . -1111) T) ((-517 . -1038) 144859) ((-1166 . -1111) T) ((-1125 . -1111) T) ((-345 . -111) 144788) ((-1004 . -1218) T) ((-126 . -1214) T) ((-914 . -1218) T) ((-694 . -287) NIL) ((-1265 . -613) 144770) ((-1173 . -23) T) ((-1172 . -23) T) ((-1166 . -23) T) ((-1004 . -558) T) ((-1141 . -231) 144754) ((-914 . -558) T) ((-1125 . -23) T) ((-248 . -613) 144736) ((-1074 . -1099) T) ((-799 . -131) T) ((-710 . -613) 144718) ((-317 . -717) 144628) ((-314 . -717) 144557) ((-699 . -613) 144539) ((-699 . -614) 144484) ((-409 . -402) 144468) ((-440 . -1099) T) ((-489 . -25) T) ((-489 . -21) T) ((-1119 . -1099) T) ((-217 . -25) T) ((-217 . -21) T) ((-712 . -413) 144452) ((-714 . -1038) 144421) ((-1264 . -613) 144333) ((-1264 . -614) 144294) ((-1250 . -172) T) ((-245 . -34) T) ((-345 . -616) 144224) ((-396 . -616) 144206) ((-926 . -974) T) ((-1200 . -1214) T) ((-662 . -791) 144185) ((-662 . -794) 144164) ((-400 . -397) T) ((-525 . -102) 144142) ((-1035 . -1099) T) ((-222 . -995) 144126) ((-506 . -102) T) ((-623 . -613) 144108) ((-45 . -850) NIL) ((-623 . -614) 144085) ((-1035 . -610) 144060) ((-901 . -516) 143993) ((-345 . -1049) T) ((-117 . -614) NIL) ((-117 . -613) 143975) ((-872 . -1214) T) ((-670 . -419) 143959) ((-670 . -1122) 143904) ((-502 . -151) 143886) ((-345 . -233) T) ((-345 . -243) T) ((-40 . -1056) 143831) ((-872 . -884) 143815) ((-872 . -886) 143740) ((-712 . -1057) T) ((-694 . -1002) NIL) ((-1248 . -47) 143710) ((-1227 . -47) 143687) ((-1140 . -1010) 143658) ((-3 . |UnionCategory|) T) ((-1119 . -717) 143645) ((-1104 . -613) 143627) ((-1079 . -147) 143606) ((-1079 . -145) 143557) ((-966 . -616) 143541) ((-225 . -920) T) ((-40 . -111) 143470) ((-872 . -1038) 143334) ((-1004 . -365) T) ((-1003 . -231) 143311) ((-701 . -1051) 143298) ((-914 . -365) T) ((-701 . -640) 143285) ((-320 . -1202) 143251) ((-381 . -308) T) ((-320 . -1199) 143217) ((-317 . -172) 143196) ((-314 . -172) T) ((-583 . -1283) 143183) ((-520 . -1283) 143160) ((-361 . -147) 143139) ((-116 . -1051) 143126) ((-361 . -145) 143077) ((-355 . -147) 143056) ((-355 . -145) 143007) ((-347 . -147) 142986) ((-608 . -1190) 142962) ((-116 . -640) 142949) ((-347 . -145) 142900) ((-320 . -35) 142866) ((-477 . -1190) 142845) ((0 . |EnumerationCategory|) T) ((-320 . -95) 142811) ((-381 . -1022) T) ((-108 . -147) T) ((-108 . -145) NIL) ((-45 . -235) 142761) ((-654 . -1099) T) ((-608 . -107) 142708) ((-487 . -131) T) ((-477 . -107) 142658) ((-240 . -1111) 142568) ((-872 . -379) 142552) ((-872 . -340) 142536) ((-240 . -23) 142406) ((-40 . -616) 142336) ((-1061 . -920) T) ((-1061 . -820) T) ((-583 . -370) T) ((-520 . -370) T) ((-1277 . -516) 142269) ((-1256 . -558) 142248) ((-353 . -1150) T) ((-328 . -34) T) ((-44 . -419) 142232) ((-1180 . -616) 142168) ((-873 . -1214) T) ((-392 . -744) 142152) ((-1249 . -1218) 142131) ((-1249 . -558) 142082) ((-1141 . -646) 142041) ((-731 . -131) T) ((-672 . -616) 142025) ((-1228 . -1218) 142004) ((-1228 . -558) 141955) ((-1227 . -1214) 141934) ((-1227 . -886) 141807) ((-1227 . -884) 141777) ((-1173 . -131) T) ((-312 . -1082) T) ((-1172 . -131) T) ((-737 . -516) 141710) ((-1166 . -131) T) ((-1125 . -131) T) ((-893 . -1099) T) ((-144 . -844) T) ((-1024 . -1002) T) ((-691 . -613) 141692) ((-1004 . -23) T) ((-525 . -310) 141630) ((-1004 . -1111) T) ((-141 . -516) NIL) ((-866 . -646) 141575) ((-1003 . -351) NIL) ((-971 . -23) T) ((-914 . -1111) T) ((-353 . -38) 141540) ((-914 . -23) T) ((-872 . -900) 141499) ((-82 . -613) 141481) ((-40 . -1049) T) ((-870 . -1056) 141468) ((-870 . -111) 141453) ((-701 . -102) T) ((-694 . -613) 141435) ((-602 . -1214) T) ((-597 . -558) 141414) ((-429 . -1111) T) ((-341 . -1051) 141398) ((-213 . -1099) T) ((-174 . -1051) 141330) ((-476 . -47) 141300) ((-134 . -102) T) ((-40 . -233) 141272) ((-40 . -243) T) ((-116 . -102) T) ((-596 . -558) 141251) ((-341 . -640) 141235) ((-694 . -614) 141143) ((-317 . -516) 141109) ((-174 . -640) 141041) ((-314 . -516) 140933) ((-1248 . -1038) 140917) ((-1227 . -1038) 140703) ((-999 . -413) 140687) ((-429 . -23) T) ((-1119 . -172) T) ((-1250 . -291) T) ((-654 . -717) 140657) ((-144 . -1099) T) ((-48 . -1002) T) ((-409 . -231) 140641) ((-296 . -235) 140591) ((-871 . -920) T) ((-871 . -820) NIL) ((-870 . -616) 140563) ((-864 . -850) T) ((-1227 . -340) 140533) ((-1227 . -379) 140503) ((-222 . -1120) 140487) ((-1264 . -289) 140464) ((-1208 . -648) 140389) ((-1003 . -646) 140319) ((-963 . -21) T) ((-963 . -25) T) ((-735 . -21) T) ((-735 . -25) T) ((-715 . -21) T) ((-715 . -25) T) ((-711 . -648) 140284) ((-455 . -21) T) ((-455 . -25) T) ((-341 . -102) T) ((-174 . -102) T) ((-999 . -1057) T) ((-870 . -1049) T) ((-774 . -102) T) ((-1249 . -365) 140263) ((-1248 . -900) 140169) ((-1228 . -365) 140148) ((-1227 . -900) 139999) ((-1024 . -613) 139981) ((-409 . -828) 139934) ((-1173 . -495) 139900) ((-169 . -920) 139831) ((-1172 . -495) 139797) ((-1166 . -495) 139763) ((-712 . -1099) T) ((-1125 . -495) 139729) ((-582 . -1056) 139716) ((-566 . -1056) 139703) ((-497 . -1056) 139668) ((-317 . -291) 139647) ((-314 . -291) T) ((-356 . -613) 139629) ((-420 . -25) T) ((-420 . -21) T) ((-99 . -287) 139608) ((-582 . -111) 139593) ((-566 . -111) 139578) ((-497 . -111) 139534) ((-1175 . -886) 139501) ((-901 . -491) 139485) ((-48 . -613) 139467) ((-48 . -614) 139412) ((-240 . -131) 139282) ((-1287 . -646) 139241) ((-1237 . -920) 139220) ((-816 . -1218) 139199) ((-390 . -492) 139180) ((-1035 . -516) 139024) ((-390 . -613) 138990) ((-816 . -558) 138921) ((-587 . -648) 138896) ((-265 . -47) 138868) ((-247 . -47) 138825) ((-533 . -511) 138802) ((-582 . -616) 138774) ((-566 . -616) 138746) ((-497 . -616) 138679) ((-1073 . -1214) T) ((-1000 . -1214) T) ((-1256 . -23) T) ((-699 . -1056) 138644) ((-1256 . -1111) T) ((-1249 . -1111) T) ((-1249 . -23) T) ((-1228 . -1111) T) ((-1228 . -23) T) ((-1003 . -372) 138616) ((-112 . -370) T) ((-476 . -900) 138522) ((-1208 . -726) T) ((-904 . -613) 138504) ((-55 . -616) 138486) ((-91 . -107) 138470) ((-1119 . -291) T) ((-905 . -850) 138421) ((-701 . -1150) T) ((-699 . -111) 138377) ((-843 . -646) 138294) ((-597 . -1111) T) ((-596 . -1111) T) ((-712 . -717) 138123) ((-711 . -726) T) ((-1004 . -131) T) ((-971 . -131) T) ((-489 . -850) T) ((-914 . -131) T) ((-799 . -25) T) ((-799 . -21) T) ((-217 . -850) T) ((-409 . -646) 138060) ((-582 . -1049) T) ((-566 . -1049) T) ((-497 . -1049) T) ((-597 . -23) T) ((-345 . -1283) 138037) ((-320 . -454) 138016) ((-341 . -310) 138003) ((-596 . -23) T) ((-429 . -131) T) ((-658 . -648) 137977) ((-245 . -1010) 137961) ((-872 . -308) T) ((-1288 . -1278) 137945) ((-771 . -792) T) ((-771 . -795) T) ((-701 . -38) 137932) ((-566 . -233) T) ((-497 . -243) T) ((-497 . -233) T) ((-1149 . -235) 137882) ((-1086 . -909) 137861) ((-116 . -38) 137848) ((-209 . -800) T) ((-208 . -800) T) ((-207 . -800) T) ((-206 . -800) T) ((-872 . -1022) 137826) ((-1277 . -491) 137810) ((-782 . -909) 137789) ((-780 . -909) 137768) ((-1187 . -1214) T) ((-456 . -909) 137747) ((-737 . -491) 137731) ((-1086 . -648) 137656) ((-699 . -616) 137591) ((-782 . -648) 137516) ((-623 . -1056) 137503) ((-481 . -1214) T) ((-345 . -370) T) ((-141 . -491) 137485) ((-780 . -648) 137410) ((-1140 . -1214) T) ((-551 . -850) T) ((-463 . -648) 137381) ((-265 . -886) 137240) ((-247 . -886) NIL) ((-117 . -1056) 137185) ((-456 . -648) 137110) ((-664 . -1038) 137087) ((-623 . -111) 137072) ((-392 . -1051) 137056) ((-357 . -1038) 137040) ((-354 . -1038) 137024) ((-346 . -1038) 137008) ((-265 . -1038) 136852) ((-247 . -1038) 136728) ((-117 . -111) 136657) ((-59 . -1214) T) ((-392 . -640) 136641) ((-621 . -1051) 136625) ((-521 . -1214) T) ((-518 . -1214) T) ((-499 . -1214) T) ((-498 . -1214) T) ((-439 . -613) 136607) ((-436 . -613) 136589) ((-621 . -640) 136573) ((-3 . -102) T) ((-1027 . -1207) 136542) ((-833 . -102) T) ((-689 . -57) 136500) ((-699 . -1049) T) ((-635 . -646) 136469) ((-607 . -646) 136438) ((-50 . -648) 136412) ((-290 . -454) T) ((-478 . -1207) 136381) ((0 . -102) T) ((-583 . -648) 136346) ((-520 . -648) 136291) ((-49 . -102) T) ((-910 . -1038) 136278) ((-699 . -243) T) ((-1079 . -411) 136257) ((-731 . -639) 136205) ((-999 . -1099) T) ((-712 . -172) 136096) ((-623 . -616) 135991) ((-489 . -992) 135973) ((-265 . -379) 135957) ((-247 . -379) 135941) ((-401 . -1099) T) ((-1026 . -102) 135919) ((-341 . -38) 135903) ((-217 . -992) 135885) ((-117 . -616) 135815) ((-174 . -38) 135747) ((-1248 . -308) 135726) ((-1227 . -308) 135705) ((-658 . -726) T) ((-99 . -613) 135687) ((-479 . -1051) 135652) ((-1166 . -639) 135604) ((-479 . -640) 135569) ((-487 . -25) T) ((-487 . -21) T) ((-1227 . -1022) 135521) ((-623 . -1049) T) ((-381 . -406) T) ((-392 . -102) T) ((-1104 . -618) 135436) ((-265 . -900) 135382) ((-247 . -900) 135359) ((-117 . -1049) T) ((-816 . -1111) T) ((-1086 . -726) T) ((-623 . -233) 135338) ((-621 . -102) T) ((-782 . -726) T) ((-780 . -726) T) ((-415 . -1111) T) ((-117 . -243) T) ((-40 . -370) NIL) ((-117 . -233) NIL) ((-1219 . -850) T) ((-456 . -726) T) ((-816 . -23) T) ((-731 . -25) T) ((-731 . -21) T) ((-1076 . -287) 135317) ((-78 . -398) T) ((-78 . -397) T) ((-535 . -767) 135299) ((-694 . -1056) 135249) ((-1256 . -131) T) ((-1249 . -131) T) ((-1228 . -131) T) ((-1173 . -25) T) ((-1141 . -413) 135233) ((-635 . -369) 135165) ((-607 . -369) 135097) ((-1155 . -1148) 135081) ((-103 . -1099) 135059) ((-1173 . -21) T) ((-1172 . -21) T) ((-865 . -613) 135041) ((-999 . -717) 134989) ((-223 . -648) 134956) ((-694 . -111) 134890) ((-50 . -726) T) ((-1172 . -25) T) ((-353 . -351) T) ((-1166 . -21) T) ((-1079 . -454) 134841) ((-1166 . -25) T) ((-712 . -516) 134788) ((-583 . -726) T) ((-520 . -726) T) ((-1125 . -21) T) ((-1125 . -25) T) ((-597 . -131) T) ((-295 . -646) 134523) ((-596 . -131) T) ((-361 . -454) T) ((-355 . -454) T) ((-347 . -454) T) ((-476 . -308) 134502) ((-1222 . -102) T) ((-314 . -287) 134437) ((-108 . -454) T) ((-79 . -443) T) ((-79 . -397) T) ((-479 . -102) T) ((-691 . -616) 134421) ((-1292 . -613) 134403) ((-1292 . -614) 134385) ((-1079 . -404) 134364) ((-1035 . -491) 134295) ((-566 . -795) T) ((-566 . -792) T) ((-1062 . -235) 134241) ((-361 . -404) 134192) ((-355 . -404) 134143) ((-347 . -404) 134094) ((-1279 . -1111) T) ((-1288 . -1051) 134078) ((-383 . -1051) 134062) ((-1288 . -640) 134032) ((-383 . -640) 134002) ((-694 . -616) 133937) ((-1279 . -23) T) ((-1266 . -102) T) ((-175 . -613) 133919) ((-1141 . -1057) T) ((-549 . -370) T) ((-670 . -744) 133903) ((-1177 . -145) 133882) ((-1177 . -147) 133861) ((-1145 . -1099) T) ((-1145 . -1070) 133830) ((-69 . -1214) T) ((-1024 . -1056) 133767) ((-353 . -646) 133697) ((-866 . -1057) T) ((-240 . -639) 133603) ((-694 . -1049) T) ((-356 . -1056) 133548) ((-61 . -1214) T) ((-1024 . -111) 133464) ((-901 . -613) 133375) ((-694 . -243) T) ((-694 . -233) NIL) ((-843 . -848) 133354) ((-699 . -795) T) ((-699 . -792) T) ((-1003 . -413) 133331) ((-356 . -111) 133260) ((-381 . -920) T) ((-409 . -848) 133239) ((-712 . -291) 133150) ((-223 . -726) T) ((-1256 . -495) 133116) ((-1249 . -495) 133082) ((-1228 . -495) 133048) ((-580 . -1099) T) ((-317 . -1002) 133027) ((-222 . -1099) 133005) ((-1221 . -844) T) ((-320 . -973) 132967) ((-105 . -102) T) ((-48 . -1056) 132932) ((-1288 . -102) T) ((-383 . -102) T) ((-48 . -111) 132888) ((-1004 . -639) 132870) ((-1250 . -613) 132852) ((-533 . -102) T) ((-502 . -102) T) ((-1132 . -1133) 132836) ((-152 . -1271) 132820) ((-245 . -1214) T) ((-1213 . -102) T) ((-1024 . -616) 132757) ((-1171 . -1218) 132736) ((-356 . -616) 132666) ((-1124 . -1218) 132645) ((-240 . -21) 132555) ((-240 . -25) 132406) ((-127 . -119) 132390) ((-121 . -119) 132374) ((-44 . -744) 132358) ((-1171 . -558) 132269) ((-1124 . -558) 132200) ((-1221 . -1099) T) ((-1035 . -287) 132175) ((-1165 . -1082) T) ((-994 . -1082) T) ((-816 . -131) T) ((-117 . -795) NIL) ((-117 . -792) NIL) ((-357 . -308) T) ((-354 . -308) T) ((-346 . -308) T) ((-252 . -1111) 132085) ((-251 . -1111) 131995) ((-1024 . -1049) T) ((-1003 . -1057) T) ((-48 . -616) 131928) ((-345 . -648) 131873) ((-621 . -38) 131857) ((-1277 . -613) 131819) ((-1277 . -614) 131780) ((-1076 . -613) 131762) ((-1024 . -243) T) ((-356 . -1049) T) ((-815 . -1271) 131732) ((-252 . -23) T) ((-251 . -23) T) ((-987 . -613) 131714) ((-737 . -614) 131675) ((-737 . -613) 131657) ((-799 . -850) 131636) ((-1158 . -151) 131583) ((-999 . -516) 131495) ((-356 . -233) T) ((-356 . -243) T) ((-390 . -616) 131476) ((-1004 . -25) T) ((-141 . -613) 131458) ((-141 . -614) 131417) ((-910 . -308) T) ((-1004 . -21) T) ((-971 . -25) T) ((-914 . -21) T) ((-914 . -25) T) ((-429 . -21) T) ((-429 . -25) T) ((-843 . -413) 131401) ((-48 . -1049) T) ((-1286 . -1278) 131385) ((-1284 . -1278) 131369) ((-1035 . -604) 131344) ((-317 . -614) 131205) ((-317 . -613) 131187) ((-314 . -614) NIL) ((-314 . -613) 131169) ((-48 . -243) T) ((-48 . -233) T) ((-654 . -287) 131130) ((-552 . -235) 131080) ((-139 . -613) 131047) ((-136 . -613) 131029) ((-114 . -613) 131011) ((-479 . -38) 130976) ((-1288 . -1285) 130955) ((-1279 . -131) T) ((-1287 . -1057) T) ((-1081 . -102) T) ((-88 . -1214) T) ((-502 . -310) NIL) ((-1000 . -107) 130939) ((-889 . -1099) T) ((-885 . -1099) T) ((-1264 . -651) 130923) ((-1264 . -375) 130907) ((-328 . -1214) T) ((-594 . -850) T) ((-1141 . -1099) T) ((-1141 . -1053) 130847) ((-103 . -516) 130780) ((-927 . -613) 130762) ((-345 . -726) T) ((-30 . -613) 130744) ((-866 . -1099) T) ((-843 . -1057) 130723) ((-40 . -648) 130668) ((-225 . -1218) T) ((-409 . -1057) T) ((-1157 . -151) 130650) ((-999 . -291) 130601) ((-617 . -1099) T) ((-225 . -558) T) ((-320 . -1245) 130585) ((-320 . -1242) 130555) ((-701 . -646) 130527) ((-1187 . -1190) 130506) ((-1074 . -613) 130488) ((-1187 . -107) 130438) ((-647 . -151) 130422) ((-632 . -151) 130368) ((-116 . -646) 130340) ((-481 . -1190) 130319) ((-489 . -147) T) ((-489 . -145) NIL) ((-1119 . -614) 130234) ((-440 . -613) 130216) ((-217 . -147) T) ((-217 . -145) NIL) ((-1119 . -613) 130198) ((-129 . -102) T) ((-52 . -102) T) ((-1228 . -639) 130150) ((-481 . -107) 130100) ((-993 . -23) T) ((-1288 . -38) 130070) ((-1171 . -1111) T) ((-1124 . -1111) T) ((-1061 . -1218) T) ((-312 . -102) T) ((-854 . -1111) T) ((-952 . -1218) 130049) ((-483 . -1218) 130028) ((-1061 . -558) T) ((-952 . -558) 129959) ((-1171 . -23) T) ((-1124 . -23) T) ((-854 . -23) T) ((-483 . -558) 129890) ((-1141 . -717) 129822) ((-670 . -1051) 129806) ((-1145 . -516) 129739) ((-670 . -640) 129723) ((-1035 . -614) NIL) ((-1035 . -613) 129705) ((-96 . -1082) T) ((-866 . -717) 129675) ((-1208 . -47) 129644) ((-252 . -131) T) ((-251 . -131) T) ((-1103 . -1099) T) ((-1003 . -1099) T) ((-62 . -613) 129626) ((-1166 . -850) NIL) ((-1024 . -792) T) ((-1024 . -795) T) ((-1292 . -1056) 129613) ((-1292 . -111) 129598) ((-1256 . -25) T) ((-1256 . -21) T) ((-870 . -648) 129585) ((-1249 . -21) T) ((-1249 . -25) T) ((-1228 . -21) T) ((-1228 . -25) T) ((-1027 . -151) 129569) ((-872 . -820) 129548) ((-872 . -920) T) ((-712 . -287) 129475) ((-597 . -21) T) ((-341 . -646) 129434) ((-597 . -25) T) ((-596 . -21) T) ((-174 . -646) 129351) ((-40 . -726) T) ((-222 . -516) 129284) ((-596 . -25) T) ((-478 . -151) 129268) ((-465 . -151) 129252) ((-921 . -794) T) ((-921 . -726) T) ((-771 . -793) T) ((-771 . -794) T) ((-508 . -1099) T) ((-504 . -1099) T) ((-771 . -726) T) ((-225 . -365) T) ((-1286 . -1051) 129236) ((-1284 . -1051) 129220) ((-1286 . -640) 129190) ((-1155 . -1099) 129168) ((-871 . -1218) T) ((-1284 . -640) 129138) ((-654 . -613) 129120) ((-871 . -558) T) ((-694 . -370) NIL) ((-44 . -1051) 129104) ((-1292 . -616) 129086) ((-1287 . -1099) T) ((-670 . -102) T) ((-361 . -1271) 129070) ((-355 . -1271) 129054) ((-44 . -640) 129038) ((-347 . -1271) 129022) ((-550 . -102) T) ((-522 . -850) 129001) ((-1046 . -1099) T) ((-817 . -454) 128980) ((-152 . -1051) 128964) ((-1046 . -1070) 128893) ((-1027 . -976) 128862) ((-819 . -1111) T) ((-1003 . -717) 128807) ((-152 . -640) 128791) ((-388 . -1111) T) ((-478 . -976) 128760) ((-465 . -976) 128729) ((-110 . -151) 128711) ((-73 . -613) 128693) ((-893 . -613) 128675) ((-1079 . -724) 128654) ((-1292 . -1049) T) ((-816 . -639) 128602) ((-295 . -1057) 128544) ((-169 . -1218) 128449) ((-225 . -1111) T) ((-325 . -23) T) ((-1166 . -992) 128401) ((-843 . -1099) T) ((-1250 . -1056) 128306) ((-1125 . -740) 128285) ((-1248 . -920) 128264) ((-1227 . -920) 128243) ((-870 . -726) T) ((-169 . -558) 128154) ((-582 . -648) 128141) ((-566 . -648) 128128) ((-409 . -1099) T) ((-264 . -1099) T) ((-213 . -613) 128110) ((-497 . -648) 128075) ((-225 . -23) T) ((-1227 . -820) 128028) ((-1286 . -102) T) ((-356 . -1283) 128005) ((-1284 . -102) T) ((-1250 . -111) 127897) ((-815 . -1051) 127794) ((-815 . -640) 127736) ((-144 . -613) 127718) ((-993 . -131) T) ((-44 . -102) T) ((-240 . -850) 127669) ((-1237 . -1218) 127648) ((-103 . -491) 127632) ((-1287 . -717) 127602) ((-1086 . -47) 127563) ((-1061 . -1111) T) ((-952 . -1111) T) ((-127 . -34) T) ((-121 . -34) T) ((-782 . -47) 127540) ((-780 . -47) 127512) ((-1237 . -558) 127423) ((-356 . -370) T) ((-483 . -1111) T) ((-1171 . -131) T) ((-1124 . -131) T) ((-456 . -47) 127402) ((-871 . -365) T) ((-854 . -131) T) ((-152 . -102) T) ((-1061 . -23) T) ((-952 . -23) T) ((-573 . -558) T) ((-816 . -25) T) ((-816 . -21) T) ((-1141 . -516) 127335) ((-593 . -1082) T) ((-587 . -1038) 127319) ((-1250 . -616) 127193) ((-483 . -23) T) ((-353 . -1057) T) ((-1208 . -900) 127174) ((-670 . -310) 127112) ((-1112 . -1271) 127082) ((-699 . -648) 127047) ((-1003 . -172) T) ((-963 . -145) 127026) ((-635 . -1099) T) ((-607 . -1099) T) ((-963 . -147) 127005) ((-1004 . -850) T) ((-735 . -147) 126984) ((-735 . -145) 126963) ((-971 . -850) T) ((-833 . -646) 126880) ((-476 . -920) 126859) ((-320 . -1051) 126694) ((-317 . -1056) 126604) ((-314 . -1056) 126533) ((-999 . -287) 126491) ((-409 . -717) 126443) ((-320 . -640) 126284) ((-701 . -848) T) ((-1250 . -1049) T) ((-317 . -111) 126180) ((-314 . -111) 126093) ((-964 . -102) T) ((-815 . -102) 125883) ((-712 . -614) NIL) ((-712 . -613) 125865) ((-658 . -1038) 125761) ((-1250 . -327) 125705) ((-1035 . -289) 125680) ((-582 . -726) T) ((-566 . -794) T) ((-169 . -365) 125631) ((-566 . -791) T) ((-566 . -726) T) ((-497 . -726) T) ((-1145 . -491) 125615) ((-1086 . -886) NIL) ((-871 . -1111) T) ((-117 . -909) NIL) ((-1286 . -1285) 125591) ((-1284 . -1285) 125570) ((-782 . -886) NIL) ((-780 . -886) 125429) ((-1279 . -25) T) ((-1279 . -21) T) ((-1211 . -102) 125407) ((-1105 . -397) T) ((-623 . -648) 125394) ((-456 . -886) NIL) ((-675 . -102) 125372) ((-1086 . -1038) 125199) ((-871 . -23) T) ((-782 . -1038) 125058) ((-780 . -1038) 124915) ((-117 . -648) 124860) ((-456 . -1038) 124736) ((-317 . -616) 124300) ((-314 . -616) 124183) ((-392 . -646) 124152) ((-649 . -1038) 124136) ((-627 . -102) T) ((-222 . -491) 124120) ((-1264 . -34) T) ((-621 . -646) 124079) ((-290 . -1051) 124066) ((-136 . -616) 124050) ((-290 . -640) 124037) ((-635 . -717) 124021) ((-607 . -717) 124005) ((-670 . -38) 123965) ((-320 . -102) T) ((-85 . -613) 123947) ((-50 . -1038) 123931) ((-1119 . -1056) 123918) ((-1086 . -379) 123902) ((-782 . -379) 123886) ((-699 . -726) T) ((-699 . -794) T) ((-699 . -791) T) ((-583 . -1038) 123873) ((-520 . -1038) 123850) ((-60 . -57) 123812) ((-325 . -131) T) ((-317 . -1049) 123702) ((-314 . -1049) T) ((-169 . -1111) T) ((-780 . -379) 123686) ((-45 . -151) 123636) ((-1004 . -992) 123618) ((-456 . -379) 123602) ((-409 . -172) T) ((-317 . -243) 123581) ((-314 . -243) T) ((-314 . -233) NIL) ((-295 . -1099) 123363) ((-225 . -131) T) ((-1119 . -111) 123348) ((-169 . -23) T) ((-799 . -147) 123327) ((-799 . -145) 123306) ((-252 . -639) 123212) ((-251 . -639) 123118) ((-320 . -285) 123084) ((-1155 . -516) 123017) ((-479 . -646) 122967) ((-1132 . -1099) T) ((-225 . -1059) T) ((-815 . -310) 122905) ((-1086 . -900) 122840) ((-782 . -900) 122783) ((-780 . -900) 122767) ((-1286 . -38) 122737) ((-1284 . -38) 122707) ((-1237 . -1111) T) ((-855 . -1111) T) ((-456 . -900) 122684) ((-858 . -1099) T) ((-1237 . -23) T) ((-1119 . -616) 122656) ((-573 . -1111) T) ((-855 . -23) T) ((-623 . -726) T) ((-357 . -920) T) ((-354 . -920) T) ((-290 . -102) T) ((-346 . -920) T) ((-1061 . -131) T) ((-970 . -1082) T) ((-952 . -131) T) ((-117 . -794) NIL) ((-117 . -791) NIL) ((-117 . -726) T) ((-694 . -909) NIL) ((-1046 . -516) 122557) ((-483 . -131) T) ((-573 . -23) T) ((-675 . -310) 122495) ((-635 . -761) T) ((-607 . -761) T) ((-1228 . -850) NIL) ((-1079 . -1051) 122405) ((-1003 . -291) T) ((-694 . -648) 122355) ((-252 . -21) T) ((-353 . -1099) T) ((-252 . -25) T) ((-251 . -21) T) ((-251 . -25) T) ((-152 . -38) 122339) ((-2 . -102) T) ((-910 . -920) T) ((-1079 . -640) 122207) ((-484 . -1271) 122177) ((-1119 . -1049) T) ((-711 . -308) T) ((-361 . -1051) 122129) ((-355 . -1051) 122081) ((-347 . -1051) 122033) ((-361 . -640) 121985) ((-223 . -1038) 121962) ((-355 . -640) 121914) ((-108 . -1051) 121864) ((-347 . -640) 121816) ((-295 . -717) 121758) ((-701 . -1057) T) ((-489 . -454) T) ((-409 . -516) 121670) ((-108 . -640) 121620) ((-217 . -454) T) ((-1119 . -233) T) ((-296 . -151) 121570) ((-999 . -614) 121531) ((-999 . -613) 121513) ((-989 . -613) 121495) ((-116 . -1057) T) ((-654 . -1056) 121479) ((-225 . -495) T) ((-401 . -613) 121461) ((-401 . -614) 121438) ((-1054 . -1271) 121408) ((-654 . -111) 121387) ((-1141 . -491) 121371) ((-1288 . -646) 121330) ((-383 . -646) 121299) ((-815 . -38) 121269) ((-63 . -443) T) ((-63 . -397) T) ((-1158 . -102) T) ((-871 . -131) T) ((-486 . -102) 121247) ((-1292 . -370) T) ((-1079 . -102) T) ((-1060 . -102) T) ((-353 . -717) 121192) ((-731 . -147) 121171) ((-731 . -145) 121150) ((-654 . -616) 121068) ((-1024 . -648) 121005) ((-525 . -1099) 120983) ((-361 . -102) T) ((-355 . -102) T) ((-347 . -102) T) ((-108 . -102) T) ((-506 . -1099) T) ((-356 . -648) 120928) ((-1171 . -639) 120876) ((-1124 . -639) 120824) ((-387 . -511) 120803) ((-833 . -848) 120782) ((-381 . -1218) T) ((-694 . -726) T) ((-341 . -1057) T) ((-1228 . -992) 120734) ((-174 . -1057) T) ((-103 . -613) 120666) ((-1173 . -145) 120645) ((-1173 . -147) 120624) ((-381 . -558) T) ((-1172 . -147) 120603) ((-1172 . -145) 120582) ((-1166 . -145) 120489) ((-409 . -291) T) ((-1166 . -147) 120396) ((-1125 . -147) 120375) ((-1125 . -145) 120354) ((-320 . -38) 120195) ((-169 . -131) T) ((-314 . -795) NIL) ((-314 . -792) NIL) ((-654 . -1049) T) ((-48 . -648) 120160) ((-1112 . -1051) 120057) ((-893 . -616) 120034) ((-1112 . -640) 119976) ((-1165 . -102) T) ((-994 . -102) T) ((-993 . -21) T) ((-127 . -1010) 119960) ((-121 . -1010) 119944) ((-993 . -25) T) ((-901 . -119) 119928) ((-1157 . -102) T) ((-1237 . -131) T) ((-1171 . -25) T) ((-1171 . -21) T) ((-855 . -131) T) ((-1124 . -25) T) ((-1124 . -21) T) ((-854 . -25) T) ((-854 . -21) T) ((-782 . -308) 119907) ((-647 . -102) 119885) ((-632 . -102) T) ((-1158 . -310) 119680) ((-573 . -131) T) ((-621 . -848) 119659) ((-1155 . -491) 119643) ((-1149 . -151) 119593) ((-1145 . -613) 119555) ((-1145 . -614) 119516) ((-1024 . -791) T) ((-1024 . -794) T) ((-1024 . -726) T) ((-712 . -1056) 119339) ((-486 . -310) 119277) ((-455 . -419) 119247) ((-353 . -172) T) ((-290 . -38) 119234) ((-275 . -102) T) ((-274 . -102) T) ((-273 . -102) T) ((-272 . -102) T) ((-271 . -102) T) ((-270 . -102) T) ((-345 . -1038) 119211) ((-269 . -102) T) ((-212 . -102) T) ((-211 . -102) T) ((-209 . -102) T) ((-208 . -102) T) ((-207 . -102) T) ((-206 . -102) T) ((-203 . -102) T) ((-202 . -102) T) ((-201 . -102) T) ((-200 . -102) T) ((-199 . -102) T) ((-198 . -102) T) ((-197 . -102) T) ((-196 . -102) T) ((-195 . -102) T) ((-194 . -102) T) ((-193 . -102) T) ((-356 . -726) T) ((-712 . -111) 119020) ((-670 . -231) 119004) ((-583 . -308) T) ((-520 . -308) T) ((-295 . -516) 118953) ((-108 . -310) NIL) ((-72 . -397) T) ((-1112 . -102) 118743) ((-833 . -413) 118727) ((-1119 . -795) T) ((-1119 . -792) T) ((-701 . -1099) T) ((-580 . -613) 118709) ((-381 . -365) T) ((-169 . -495) 118687) ((-222 . -613) 118619) ((-134 . -1099) T) ((-116 . -1099) T) ((-48 . -726) T) ((-1046 . -491) 118584) ((-141 . -427) 118566) ((-141 . -370) T) ((-1027 . -102) T) ((-514 . -511) 118545) ((-712 . -616) 118301) ((-478 . -102) T) ((-465 . -102) T) ((-1034 . -1111) T) ((-1221 . -613) 118283) ((-1180 . -1038) 118219) ((-1173 . -35) 118185) ((-1173 . -95) 118151) ((-1173 . -1202) 118117) ((-1173 . -1199) 118083) ((-1157 . -310) NIL) ((-89 . -398) T) ((-89 . -397) T) ((-1079 . -1150) 118062) ((-1172 . -1199) 118028) ((-1172 . -1202) 117994) ((-1034 . -23) T) ((-1172 . -95) 117960) ((-573 . -495) T) ((-1172 . -35) 117926) ((-1166 . -1199) 117892) ((-1166 . -1202) 117858) ((-1166 . -95) 117824) ((-363 . -1111) T) ((-361 . -1150) 117803) ((-355 . -1150) 117782) ((-347 . -1150) 117761) ((-1166 . -35) 117727) ((-1125 . -35) 117693) ((-1125 . -95) 117659) ((-108 . -1150) T) ((-1125 . -1202) 117625) ((-833 . -1057) 117604) ((-647 . -310) 117542) ((-632 . -310) 117393) ((-1125 . -1199) 117359) ((-712 . -1049) T) ((-1061 . -639) 117341) ((-1079 . -38) 117209) ((-952 . -639) 117157) ((-1004 . -147) T) ((-1004 . -145) NIL) ((-381 . -1111) T) ((-325 . -25) T) ((-323 . -23) T) ((-943 . -850) 117136) ((-712 . -327) 117113) ((-483 . -639) 117061) ((-40 . -1038) 116949) ((-712 . -233) T) ((-701 . -717) 116936) ((-341 . -1099) T) ((-174 . -1099) T) ((-332 . -850) T) ((-420 . -454) 116886) ((-381 . -23) T) ((-361 . -38) 116851) ((-355 . -38) 116816) ((-347 . -38) 116781) ((-80 . -443) T) ((-80 . -397) T) ((-225 . -25) T) ((-225 . -21) T) ((-836 . -1111) T) ((-108 . -38) 116731) ((-827 . -1111) T) ((-774 . -1099) T) ((-116 . -717) 116718) ((-672 . -1038) 116702) ((-612 . -102) T) ((-836 . -23) T) ((-827 . -23) T) ((-1155 . -287) 116679) ((-1112 . -310) 116617) ((-484 . -1051) 116514) ((-1101 . -235) 116498) ((-64 . -398) T) ((-64 . -397) T) ((-110 . -102) T) ((-484 . -640) 116440) ((-40 . -379) 116417) ((-96 . -102) T) ((-653 . -852) 116401) ((-1134 . -1082) T) ((-1061 . -21) T) ((-1061 . -25) T) ((-1054 . -1051) 116385) ((-815 . -231) 116354) ((-952 . -25) T) ((-952 . -21) T) ((-1054 . -640) 116296) ((-621 . -1057) T) ((-1119 . -370) T) ((-1027 . -310) 116234) ((-670 . -646) 116193) ((-483 . -25) T) ((-483 . -21) T) ((-387 . -1051) 116177) ((-889 . -613) 116159) ((-885 . -613) 116141) ((-525 . -516) 116074) ((-252 . -850) 116025) ((-251 . -850) 115976) ((-387 . -640) 115946) ((-871 . -639) 115923) ((-478 . -310) 115861) ((-465 . -310) 115799) ((-353 . -291) T) ((-1155 . -1252) 115783) ((-1141 . -613) 115745) ((-1141 . -614) 115706) ((-1139 . -102) T) ((-999 . -1056) 115602) ((-40 . -900) 115554) ((-1155 . -604) 115531) ((-1292 . -648) 115518) ((-866 . -492) 115495) ((-1062 . -151) 115441) ((-872 . -1218) T) ((-999 . -111) 115323) ((-341 . -717) 115307) ((-866 . -613) 115269) ((-174 . -717) 115201) ((-409 . -287) 115159) ((-872 . -558) T) ((-108 . -402) 115141) ((-84 . -386) T) ((-84 . -397) T) ((-701 . -172) T) ((-617 . -613) 115123) ((-99 . -726) T) ((-484 . -102) 114913) ((-99 . -475) T) ((-116 . -172) T) ((-1286 . -646) 114872) ((-1284 . -646) 114831) ((-1112 . -38) 114801) ((-169 . -639) 114749) ((-1054 . -102) T) ((-999 . -616) 114639) ((-871 . -25) T) ((-815 . -238) 114618) ((-871 . -21) T) ((-818 . -102) T) ((-44 . -646) 114561) ((-416 . -102) T) ((-387 . -102) T) ((-110 . -310) NIL) ((-227 . -102) 114539) ((-127 . -1214) T) ((-121 . -1214) T) ((-817 . -1051) 114490) ((-817 . -640) 114432) ((-1034 . -131) T) ((-670 . -369) 114416) ((-152 . -646) 114375) ((-999 . -1049) T) ((-1237 . -639) 114323) ((-1103 . -613) 114305) ((-1003 . -613) 114287) ((-517 . -23) T) ((-512 . -23) T) ((-345 . -308) T) ((-510 . -23) T) ((-323 . -131) T) ((-3 . -1099) T) ((-1003 . -614) 114271) ((-999 . -243) 114250) ((-999 . -233) 114229) ((-1292 . -726) T) ((-1256 . -145) 114208) ((-833 . -1099) T) ((-1256 . -147) 114187) ((-1249 . -147) 114166) ((-1249 . -145) 114145) ((-1248 . -1218) 114124) ((-1228 . -145) 114031) ((-1228 . -147) 113938) ((-1227 . -1218) 113917) ((-381 . -131) T) ((-566 . -886) 113899) ((0 . -1099) T) ((-174 . -172) T) ((-169 . -21) T) ((-169 . -25) T) ((-49 . -1099) T) ((-1250 . -648) 113804) ((-1248 . -558) 113755) ((-714 . -1111) T) ((-1227 . -558) 113706) ((-566 . -1038) 113688) ((-596 . -147) 113667) ((-596 . -145) 113646) ((-497 . -1038) 113589) ((-1134 . -1136) T) ((-87 . -386) T) ((-87 . -397) T) ((-872 . -365) T) ((-836 . -131) T) ((-827 . -131) T) ((-964 . -646) 113533) ((-714 . -23) T) ((-508 . -613) 113499) ((-504 . -613) 113481) ((-815 . -646) 113231) ((-1288 . -1057) T) ((-381 . -1059) T) ((-1026 . -1099) 113209) ((-55 . -1038) 113191) ((-901 . -34) T) ((-484 . -310) 113129) ((-593 . -102) T) ((-1155 . -614) 113090) ((-1155 . -613) 113022) ((-1177 . -1051) 112905) ((-45 . -102) T) ((-817 . -102) T) ((-1177 . -640) 112802) ((-1237 . -25) T) ((-1237 . -21) T) ((-855 . -25) T) ((-44 . -369) 112786) ((-855 . -21) T) ((-731 . -454) 112737) ((-1287 . -613) 112719) ((-1276 . -1051) 112689) ((-1054 . -310) 112627) ((-671 . -1082) T) ((-606 . -1082) T) ((-392 . -1099) T) ((-573 . -25) T) ((-573 . -21) T) ((-180 . -1082) T) ((-161 . -1082) T) ((-156 . -1082) T) ((-154 . -1082) T) ((-1276 . -640) 112597) ((-621 . -1099) T) ((-699 . -886) 112579) ((-1264 . -1214) T) ((-227 . -310) 112517) ((-144 . -370) T) ((-1046 . -614) 112459) ((-1046 . -613) 112402) ((-314 . -909) NIL) ((-1222 . -844) T) ((-699 . -1038) 112347) ((-711 . -920) T) ((-476 . -1218) 112326) ((-1172 . -454) 112305) ((-1166 . -454) 112284) ((-331 . -102) T) ((-872 . -1111) T) ((-320 . -646) 112166) ((-317 . -648) 111987) ((-314 . -648) 111916) ((-476 . -558) 111867) ((-341 . -516) 111833) ((-552 . -151) 111783) ((-40 . -308) T) ((-843 . -613) 111765) ((-701 . -291) T) ((-872 . -23) T) ((-381 . -495) T) ((-1079 . -231) 111735) ((-514 . -102) T) ((-409 . -614) 111542) ((-409 . -613) 111524) ((-264 . -613) 111506) ((-116 . -291) T) ((-1250 . -726) T) ((-1248 . -365) 111485) ((-1227 . -365) 111464) ((-1277 . -34) T) ((-1222 . -1099) T) ((-117 . -1214) T) ((-108 . -231) 111446) ((-1177 . -102) T) ((-479 . -1099) T) ((-525 . -491) 111430) ((-737 . -34) T) ((-653 . -1051) 111414) ((-484 . -38) 111384) ((-653 . -640) 111354) ((-141 . -34) T) ((-117 . -884) 111331) ((-117 . -886) NIL) ((-623 . -1038) 111214) ((-644 . -850) 111193) ((-1276 . -102) T) ((-296 . -102) T) ((-712 . -370) 111172) ((-117 . -1038) 111149) ((-392 . -717) 111133) ((-621 . -717) 111117) ((-45 . -310) 110921) ((-816 . -145) 110900) ((-816 . -147) 110879) ((-290 . -646) 110851) ((-1287 . -384) 110830) ((-819 . -850) T) ((-1266 . -1099) T) ((-1158 . -229) 110777) ((-388 . -850) 110756) ((-1256 . -1202) 110722) ((-1256 . -1199) 110688) ((-1249 . -1199) 110654) ((-517 . -131) T) ((-1249 . -1202) 110620) ((-1228 . -1199) 110586) ((-1228 . -1202) 110552) ((-1256 . -35) 110518) ((-1256 . -95) 110484) ((-635 . -613) 110453) ((-607 . -613) 110422) ((-225 . -850) T) ((-1249 . -95) 110388) ((-1249 . -35) 110354) ((-1248 . -1111) T) ((-1119 . -648) 110341) ((-1228 . -95) 110307) ((-1227 . -1111) T) ((-594 . -151) 110289) ((-1079 . -351) 110268) ((-174 . -291) T) ((-117 . -379) 110245) ((-117 . -340) 110222) ((-1228 . -35) 110188) ((-870 . -308) T) ((-314 . -794) NIL) ((-314 . -791) NIL) ((-317 . -726) 110037) ((-314 . -726) T) ((-476 . -365) 110016) ((-361 . -351) 109995) ((-355 . -351) 109974) ((-347 . -351) 109953) ((-317 . -475) 109932) ((-1248 . -23) T) ((-1227 . -23) T) ((-718 . -1111) T) ((-714 . -131) T) ((-653 . -102) T) ((-479 . -717) 109897) ((-45 . -283) 109847) ((-105 . -1099) T) ((-68 . -613) 109829) ((-970 . -102) T) ((-864 . -102) T) ((-623 . -900) 109788) ((-1288 . -1099) T) ((-383 . -1099) T) ((-82 . -1214) T) ((-1213 . -1099) T) ((-1061 . -850) T) ((-117 . -900) NIL) ((-782 . -920) 109767) ((-713 . -850) T) ((-533 . -1099) T) ((-502 . -1099) T) ((-357 . -1218) T) ((-354 . -1218) T) ((-346 . -1218) T) ((-265 . -1218) 109746) ((-247 . -1218) 109725) ((-535 . -860) T) ((-1112 . -231) 109694) ((-1157 . -828) T) ((-1141 . -1056) 109678) ((-392 . -761) T) ((-694 . -1214) T) ((-691 . -1038) 109662) ((-357 . -558) T) ((-354 . -558) T) ((-346 . -558) T) ((-265 . -558) 109593) ((-247 . -558) 109524) ((-527 . -1082) T) ((-1141 . -111) 109503) ((-455 . -744) 109473) ((-866 . -1056) 109443) ((-817 . -38) 109385) ((-694 . -884) 109367) ((-694 . -886) 109349) ((-296 . -310) 109153) ((-910 . -1218) T) ((-1155 . -289) 109130) ((-1079 . -646) 109025) ((-670 . -413) 109009) ((-866 . -111) 108974) ((-1004 . -454) T) ((-694 . -1038) 108919) ((-910 . -558) T) ((-535 . -613) 108901) ((-583 . -920) T) ((-489 . -1051) 108851) ((-476 . -1111) T) ((-520 . -920) T) ((-914 . -454) T) ((-65 . -613) 108833) ((-217 . -1051) 108783) ((-489 . -640) 108733) ((-361 . -646) 108670) ((-355 . -646) 108607) ((-347 . -646) 108544) ((-632 . -229) 108490) ((-217 . -640) 108440) ((-108 . -646) 108390) ((-476 . -23) T) ((-1119 . -794) T) ((-872 . -131) T) ((-1119 . -791) T) ((-1279 . -1281) 108369) ((-1119 . -726) T) ((-654 . -648) 108343) ((-295 . -613) 108084) ((-1141 . -616) 108002) ((-1035 . -34) T) ((-815 . -848) 107981) ((-582 . -308) T) ((-566 . -308) T) ((-497 . -308) T) ((-1288 . -717) 107951) ((-694 . -379) 107933) ((-694 . -340) 107915) ((-479 . -172) T) ((-383 . -717) 107885) ((-866 . -616) 107820) ((-871 . -850) NIL) ((-566 . -1022) T) ((-497 . -1022) T) ((-1132 . -613) 107802) ((-1112 . -238) 107781) ((-214 . -102) T) ((-1149 . -102) T) ((-71 . -613) 107763) ((-1141 . -1049) T) ((-1177 . -38) 107660) ((-858 . -613) 107642) ((-566 . -547) T) ((-670 . -1057) T) ((-731 . -949) 107595) ((-1141 . -233) 107574) ((-1081 . -1099) T) ((-1034 . -25) T) ((-1034 . -21) T) ((-1003 . -1056) 107519) ((-905 . -102) T) ((-866 . -1049) T) ((-694 . -900) NIL) ((-357 . -330) 107503) ((-357 . -365) T) ((-354 . -330) 107487) ((-354 . -365) T) ((-346 . -330) 107471) ((-346 . -365) T) ((-489 . -102) T) ((-1276 . -38) 107441) ((-548 . -850) T) ((-525 . -687) 107391) ((-217 . -102) T) ((-1024 . -1038) 107271) ((-1003 . -111) 107200) ((-1173 . -973) 107169) ((-522 . -151) 107153) ((-1079 . -372) 107132) ((-353 . -613) 107114) ((-323 . -21) T) ((-356 . -1038) 107091) ((-323 . -25) T) ((-1172 . -973) 107053) ((-1166 . -973) 107022) ((-76 . -613) 107004) ((-1125 . -973) 106971) ((-699 . -308) T) ((-129 . -844) T) ((-910 . -365) T) ((-381 . -25) T) ((-381 . -21) T) ((-910 . -330) 106958) ((-86 . -613) 106940) ((-699 . -1022) T) ((-677 . -850) T) ((-1248 . -131) T) ((-1227 . -131) T) ((-901 . -1010) 106924) ((-836 . -21) T) ((-48 . -1038) 106867) ((-836 . -25) T) ((-827 . -25) T) ((-827 . -21) T) ((-1112 . -646) 106617) ((-1286 . -1057) T) ((-551 . -102) T) ((-1284 . -1057) T) ((-654 . -726) T) ((-1103 . -618) 106520) ((-1003 . -616) 106450) ((-1287 . -1056) 106434) ((-815 . -413) 106403) ((-103 . -119) 106387) ((-129 . -1099) T) ((-52 . -1099) T) ((-926 . -613) 106369) ((-871 . -992) 106346) ((-823 . -102) T) ((-1287 . -111) 106325) ((-653 . -38) 106295) ((-573 . -850) T) ((-357 . -1111) T) ((-354 . -1111) T) ((-346 . -1111) T) ((-265 . -1111) T) ((-247 . -1111) T) ((-623 . -308) 106274) ((-1149 . -310) 106078) ((-664 . -23) T) ((-526 . -1082) T) ((-312 . -1099) T) ((-484 . -231) 106047) ((-152 . -1057) T) ((-357 . -23) T) ((-354 . -23) T) ((-346 . -23) T) ((-117 . -308) T) ((-265 . -23) T) ((-247 . -23) T) ((-1003 . -1049) T) ((-712 . -909) 106026) ((-1155 . -616) 106003) ((-1003 . -233) 105975) ((-1003 . -243) T) ((-117 . -1022) NIL) ((-910 . -1111) T) ((-1249 . -454) 105954) ((-1228 . -454) 105933) ((-525 . -613) 105865) ((-712 . -648) 105790) ((-409 . -1056) 105742) ((-506 . -613) 105724) ((-910 . -23) T) ((-489 . -310) NIL) ((-1287 . -616) 105680) ((-476 . -131) T) ((-217 . -310) NIL) ((-409 . -111) 105618) ((-815 . -1057) 105548) ((-737 . -1097) 105532) ((-1248 . -495) 105498) ((-1227 . -495) 105464) ((-550 . -844) T) ((-141 . -1097) 105446) ((-479 . -291) T) ((-1287 . -1049) T) ((-1219 . -102) T) ((-1062 . -102) T) ((-843 . -616) 105314) ((-502 . -516) NIL) ((-484 . -238) 105293) ((-409 . -616) 105191) ((-963 . -1051) 105074) ((-735 . -1051) 105044) ((-963 . -640) 104941) ((-1171 . -145) 104920) ((-735 . -640) 104890) ((-455 . -1051) 104860) ((-1171 . -147) 104839) ((-1124 . -147) 104818) ((-1124 . -145) 104797) ((-635 . -1056) 104781) ((-607 . -1056) 104765) ((-455 . -640) 104735) ((-1173 . -1255) 104719) ((-1173 . -1242) 104696) ((-670 . -1099) T) ((-670 . -1053) 104636) ((-1172 . -1247) 104597) ((-550 . -1099) T) ((-489 . -1150) T) ((-1172 . -1242) 104567) ((-1172 . -1245) 104551) ((-1166 . -1226) 104512) ((-217 . -1150) T) ((-345 . -920) T) ((-818 . -267) 104496) ((-635 . -111) 104475) ((-607 . -111) 104454) ((-1166 . -1242) 104431) ((-843 . -1049) 104410) ((-1166 . -1224) 104394) ((-517 . -25) T) ((-497 . -303) T) ((-513 . -23) T) ((-512 . -25) T) ((-510 . -25) T) ((-509 . -23) T) ((-420 . -1051) 104368) ((-409 . -1049) T) ((-320 . -1057) T) ((-694 . -308) T) ((-420 . -640) 104342) ((-108 . -848) T) ((-712 . -726) T) ((-409 . -243) T) ((-409 . -233) 104321) ((-489 . -38) 104271) ((-217 . -38) 104221) ((-476 . -495) 104187) ((-1221 . -370) T) ((-1157 . -1143) T) ((-1100 . -102) T) ((-701 . -613) 104169) ((-701 . -614) 104084) ((-714 . -21) T) ((-714 . -25) T) ((-1134 . -102) T) ((-484 . -646) 103834) ((-134 . -613) 103816) ((-116 . -613) 103798) ((-157 . -25) T) ((-1286 . -1099) T) ((-872 . -639) 103746) ((-1284 . -1099) T) ((-963 . -102) T) ((-735 . -102) T) ((-715 . -102) T) ((-455 . -102) T) ((-816 . -454) 103697) ((-44 . -1099) T) ((-1087 . -850) T) ((-1062 . -310) 103548) ((-664 . -131) T) ((-1054 . -646) 103517) ((-670 . -717) 103501) ((-290 . -1057) T) ((-357 . -131) T) ((-354 . -131) T) ((-346 . -131) T) ((-265 . -131) T) ((-247 . -131) T) ((-387 . -646) 103470) ((-420 . -102) T) ((-152 . -1099) T) ((-45 . -229) 103420) ((-799 . -1051) 103404) ((-958 . -850) 103383) ((-999 . -648) 103321) ((-799 . -640) 103305) ((-240 . -1271) 103275) ((-1024 . -308) T) ((-295 . -1056) 103196) ((-910 . -131) T) ((-40 . -920) T) ((-489 . -402) 103178) ((-356 . -308) T) ((-217 . -402) 103160) ((-1079 . -413) 103144) ((-295 . -111) 103060) ((-1182 . -850) T) ((-1181 . -850) T) ((-872 . -25) T) ((-872 . -21) T) ((-341 . -613) 103042) ((-1250 . -47) 102986) ((-225 . -147) T) ((-174 . -613) 102968) ((-1112 . -848) 102947) ((-774 . -613) 102929) ((-128 . -850) T) ((-608 . -235) 102876) ((-477 . -235) 102826) ((-1286 . -717) 102796) ((-48 . -308) T) ((-1284 . -717) 102766) ((-65 . -616) 102695) ((-964 . -1099) T) ((-815 . -1099) 102485) ((-313 . -102) T) ((-901 . -1214) T) ((-48 . -1022) T) ((-1227 . -639) 102393) ((-689 . -102) 102371) ((-44 . -717) 102355) ((-552 . -102) T) ((-295 . -616) 102286) ((-67 . -385) T) ((-67 . -397) T) ((-662 . -23) T) ((-817 . -646) 102222) ((-670 . -761) T) ((-1211 . -1099) 102200) ((-353 . -1056) 102145) ((-675 . -1099) 102123) ((-1061 . -147) T) ((-952 . -147) 102102) ((-952 . -145) 102081) ((-799 . -102) T) ((-152 . -717) 102065) ((-483 . -147) 102044) ((-483 . -145) 102023) ((-353 . -111) 101952) ((-1079 . -1057) T) ((-323 . -850) 101931) ((-1256 . -973) 101900) ((-627 . -1099) T) ((-1249 . -973) 101862) ((-513 . -131) T) ((-509 . -131) T) ((-296 . -229) 101812) ((-361 . -1057) T) ((-355 . -1057) T) ((-347 . -1057) T) ((-295 . -1049) 101754) ((-1228 . -973) 101723) ((-381 . -850) T) ((-108 . -1057) T) ((-999 . -726) T) ((-870 . -920) T) ((-843 . -795) 101702) ((-843 . -792) 101681) ((-420 . -310) 101620) ((-470 . -102) T) ((-596 . -973) 101589) ((-320 . -1099) T) ((-409 . -795) 101568) ((-409 . -792) 101547) ((-502 . -491) 101529) ((-1250 . -1038) 101495) ((-1248 . -21) T) ((-1248 . -25) T) ((-1227 . -21) T) ((-1227 . -25) T) ((-815 . -717) 101437) ((-353 . -616) 101367) ((-699 . -406) T) ((-1277 . -1214) T) ((-606 . -102) T) ((-1112 . -413) 101336) ((-1003 . -370) NIL) ((-671 . -102) T) ((-180 . -102) T) ((-161 . -102) T) ((-156 . -102) T) ((-154 . -102) T) ((-103 . -34) T) ((-1177 . -646) 101246) ((-737 . -1214) T) ((-731 . -1051) 101089) ((-44 . -761) T) ((-731 . -640) 100938) ((-594 . -102) T) ((-77 . -398) T) ((-77 . -397) T) ((-653 . -656) 100922) ((-141 . -1214) T) ((-871 . -147) T) ((-871 . -145) NIL) ((-1213 . -93) T) ((-353 . -1049) T) ((-70 . -385) T) ((-70 . -397) T) ((-1164 . -102) T) ((-670 . -516) 100855) ((-1276 . -646) 100800) ((-689 . -310) 100738) ((-963 . -38) 100635) ((-1179 . -613) 100617) ((-735 . -38) 100587) ((-552 . -310) 100391) ((-1173 . -1051) 100274) ((-317 . -1214) T) ((-353 . -233) T) ((-353 . -243) T) ((-314 . -1214) T) ((-290 . -1099) T) ((-1172 . -1051) 100109) ((-1166 . -1051) 99899) ((-1125 . -1051) 99782) ((-1173 . -640) 99679) ((-1172 . -640) 99520) ((-711 . -1218) T) ((-1166 . -640) 99316) ((-1155 . -651) 99300) ((-1125 . -640) 99197) ((-1208 . -558) 99176) ((-711 . -558) T) ((-317 . -884) 99160) ((-317 . -886) 99085) ((-314 . -884) 99046) ((-314 . -886) NIL) ((-799 . -310) 99011) ((-320 . -717) 98852) ((-325 . -324) 98829) ((-487 . -102) T) ((-476 . -25) T) ((-476 . -21) T) ((-420 . -38) 98803) ((-317 . -1038) 98466) ((-225 . -1199) T) ((-225 . -1202) T) ((-3 . -613) 98448) ((-314 . -1038) 98378) ((-2 . -1099) T) ((-2 . |RecordCategory|) T) ((-833 . -613) 98360) ((-1112 . -1057) 98290) ((-582 . -920) T) ((-566 . -820) T) ((-566 . -920) T) ((-497 . -920) T) ((-136 . -1038) 98274) ((-225 . -95) T) ((-169 . -147) 98253) ((-75 . -443) T) ((0 . -613) 98235) ((-75 . -397) T) ((-169 . -145) 98186) ((-225 . -35) T) ((-49 . -613) 98168) ((-479 . -1057) T) ((-489 . -231) 98150) ((-486 . -968) 98134) ((-484 . -848) 98113) ((-217 . -231) 98095) ((-81 . -443) T) ((-81 . -397) T) ((-1145 . -34) T) ((-815 . -172) 98074) ((-731 . -102) T) ((-653 . -646) 98033) ((-1026 . -613) 98000) ((-502 . -287) 97975) ((-317 . -379) 97944) ((-314 . -379) 97905) ((-314 . -340) 97866) ((-1084 . -613) 97848) ((-816 . -949) 97795) ((-662 . -131) T) ((-1237 . -145) 97774) ((-1237 . -147) 97753) ((-1173 . -102) T) ((-1172 . -102) T) ((-1166 . -102) T) ((-1158 . -1099) T) ((-1125 . -102) T) ((-222 . -34) T) ((-290 . -717) 97740) ((-1158 . -610) 97716) ((-594 . -310) NIL) ((-486 . -1099) 97694) ((-392 . -613) 97676) ((-512 . -850) T) ((-1149 . -229) 97626) ((-1256 . -1255) 97610) ((-1256 . -1242) 97587) ((-1249 . -1247) 97548) ((-1249 . -1242) 97518) ((-1249 . -1245) 97502) ((-1228 . -1226) 97463) ((-1228 . -1242) 97440) ((-621 . -613) 97422) ((-1228 . -1224) 97406) ((-699 . -920) T) ((-1173 . -285) 97372) ((-1172 . -285) 97338) ((-1166 . -285) 97304) ((-1079 . -1099) T) ((-1060 . -1099) T) ((-48 . -303) T) ((-317 . -900) 97270) ((-314 . -900) NIL) ((-1060 . -1067) 97249) ((-1119 . -886) 97231) ((-799 . -38) 97215) ((-265 . -639) 97163) ((-247 . -639) 97111) ((-701 . -1056) 97098) ((-596 . -1242) 97075) ((-1125 . -285) 97041) ((-320 . -172) 96972) ((-361 . -1099) T) ((-355 . -1099) T) ((-347 . -1099) T) ((-502 . -19) 96954) ((-1119 . -1038) 96936) ((-1101 . -151) 96920) ((-108 . -1099) T) ((-116 . -1056) 96907) ((-711 . -365) T) ((-502 . -604) 96882) ((-701 . -111) 96867) ((-438 . -102) T) ((-250 . -102) T) ((-45 . -1148) 96817) ((-116 . -111) 96802) ((-635 . -720) T) ((-607 . -720) T) ((-1266 . -613) 96784) ((-1222 . -613) 96766) ((-1220 . -850) T) ((-815 . -516) 96699) ((-1035 . -1214) T) ((-240 . -1051) 96596) ((-1208 . -1111) T) ((-1208 . -23) T) ((-943 . -151) 96580) ((-1171 . -454) 96511) ((-1166 . -310) 96396) ((-240 . -640) 96338) ((-1165 . -1099) T) ((-1157 . -1099) T) ((-1141 . -648) 96312) ((-527 . -102) T) ((-522 . -102) 96262) ((-1125 . -310) 96249) ((-1124 . -454) 96200) ((-1086 . -1218) 96179) ((-782 . -1218) 96158) ((-780 . -1218) 96137) ((-62 . -1214) T) ((-479 . -613) 96089) ((-479 . -614) 96011) ((-1086 . -558) 95942) ((-994 . -1099) T) ((-782 . -558) 95853) ((-780 . -558) 95784) ((-484 . -413) 95753) ((-623 . -920) 95732) ((-456 . -1218) 95711) ((-731 . -310) 95698) ((-701 . -616) 95670) ((-400 . -613) 95652) ((-675 . -516) 95585) ((-664 . -25) T) ((-664 . -21) T) ((-456 . -558) 95516) ((-357 . -25) T) ((-357 . -21) T) ((-117 . -920) T) ((-117 . -820) NIL) ((-354 . -25) T) ((-354 . -21) T) ((-346 . -25) T) ((-346 . -21) T) ((-265 . -25) T) ((-265 . -21) T) ((-247 . -25) T) ((-247 . -21) T) ((-83 . -386) T) ((-83 . -397) T) ((-134 . -616) 95498) ((-116 . -616) 95470) ((-1079 . -717) 95338) ((-1004 . -1051) 95288) ((-1004 . -640) 95238) ((-943 . -980) 95222) ((-914 . -640) 95174) ((-914 . -1051) 95126) ((-910 . -21) T) ((-910 . -25) T) ((-872 . -850) 95077) ((-866 . -648) 95037) ((-711 . -1111) T) ((-711 . -23) T) ((-290 . -172) T) ((-701 . -1049) T) ((-312 . -93) T) ((-701 . -233) T) ((-647 . -1099) 95015) ((-632 . -610) 94990) ((-632 . -1099) T) ((-583 . -1218) T) ((-583 . -558) T) ((-520 . -1218) T) ((-520 . -558) T) ((-489 . -646) 94940) ((-429 . -1051) 94924) ((-429 . -640) 94908) ((-361 . -717) 94860) ((-355 . -717) 94812) ((-341 . -1056) 94796) ((-347 . -717) 94748) ((-341 . -111) 94727) ((-174 . -1056) 94659) ((-217 . -646) 94609) ((-174 . -111) 94520) ((-108 . -717) 94470) ((-275 . -1099) T) ((-274 . -1099) T) ((-273 . -1099) T) ((-272 . -1099) T) ((-271 . -1099) T) ((-270 . -1099) T) ((-269 . -1099) T) ((-212 . -1099) T) ((-211 . -1099) T) ((-169 . -1202) 94448) ((-169 . -1199) 94426) ((-209 . -1099) T) ((-208 . -1099) T) ((-116 . -1049) T) ((-207 . -1099) T) ((-206 . -1099) T) ((-203 . -1099) T) ((-202 . -1099) T) ((-201 . -1099) T) ((-200 . -1099) T) ((-199 . -1099) T) ((-198 . -1099) T) ((-197 . -1099) T) ((-196 . -1099) T) ((-195 . -1099) T) ((-194 . -1099) T) ((-193 . -1099) T) ((-240 . -102) 94216) ((-169 . -35) 94194) ((-169 . -95) 94172) ((-654 . -1038) 94068) ((-484 . -1057) 93998) ((-1112 . -1099) 93788) ((-1141 . -34) T) ((-670 . -491) 93772) ((-73 . -1214) T) ((-105 . -613) 93754) ((-1288 . -613) 93736) ((-383 . -613) 93718) ((-341 . -616) 93670) ((-174 . -616) 93587) ((-1213 . -492) 93568) ((-731 . -38) 93417) ((-573 . -1202) T) ((-573 . -1199) T) ((-533 . -613) 93399) ((-522 . -310) 93337) ((-502 . -613) 93319) ((-502 . -614) 93301) ((-1213 . -613) 93267) ((-1166 . -1150) NIL) ((-1027 . -1070) 93236) ((-1027 . -1099) T) ((-1004 . -102) T) ((-971 . -102) T) ((-914 . -102) T) ((-893 . -1038) 93213) ((-1141 . -726) T) ((-1003 . -648) 93158) ((-478 . -1099) T) ((-465 . -1099) T) ((-587 . -23) T) ((-573 . -35) T) ((-573 . -95) T) ((-429 . -102) T) ((-1062 . -229) 93104) ((-1173 . -38) 93001) ((-866 . -726) T) ((-694 . -920) T) ((-513 . -25) T) ((-509 . -21) T) ((-509 . -25) T) ((-1172 . -38) 92842) ((-341 . -1049) T) ((-1166 . -38) 92638) ((-1079 . -172) T) ((-174 . -1049) T) ((-1125 . -38) 92535) ((-712 . -47) 92512) ((-361 . -172) T) ((-355 . -172) T) ((-521 . -57) 92486) ((-499 . -57) 92436) ((-353 . -1283) 92413) ((-225 . -454) T) ((-320 . -291) 92364) ((-347 . -172) T) ((-174 . -243) T) ((-1227 . -850) 92263) ((-108 . -172) T) ((-872 . -992) 92247) ((-658 . -1111) T) ((-583 . -365) T) ((-583 . -330) 92234) ((-520 . -330) 92211) ((-520 . -365) T) ((-317 . -308) 92190) ((-314 . -308) T) ((-602 . -850) 92169) ((-1112 . -717) 92111) ((-522 . -283) 92095) ((-658 . -23) T) ((-420 . -231) 92079) ((-314 . -1022) NIL) ((-338 . -23) T) ((-103 . -1010) 92063) ((-45 . -36) 92042) ((-612 . -1099) T) ((-353 . -370) T) ((-526 . -102) T) ((-497 . -27) T) ((-240 . -310) 91980) ((-1086 . -1111) T) ((-1287 . -648) 91954) ((-782 . -1111) T) ((-780 . -1111) T) ((-456 . -1111) T) ((-1061 . -454) T) ((-952 . -454) 91905) ((-1114 . -1082) T) ((-110 . -1099) T) ((-1086 . -23) T) ((-817 . -1057) T) ((-782 . -23) T) ((-780 . -23) T) ((-483 . -454) 91856) ((-1158 . -516) 91639) ((-383 . -384) 91618) ((-1177 . -413) 91602) ((-463 . -23) T) ((-456 . -23) T) ((-96 . -1099) T) ((-486 . -516) 91535) ((-1256 . -1051) 91418) ((-1256 . -640) 91315) ((-1249 . -640) 91156) ((-1249 . -1051) 90991) ((-290 . -291) T) ((-1228 . -1051) 90781) ((-1081 . -613) 90763) ((-1081 . -614) 90744) ((-409 . -909) 90723) ((-1228 . -640) 90519) ((-50 . -1111) T) ((-1208 . -131) T) ((-1024 . -920) T) ((-1003 . -726) T) ((-843 . -648) 90492) ((-712 . -886) NIL) ((-597 . -1051) 90465) ((-583 . -1111) T) ((-520 . -1111) T) ((-596 . -1051) 90348) ((-1166 . -402) 90300) ((-1004 . -310) NIL) ((-815 . -491) 90284) ((-597 . -640) 90257) ((-356 . -920) T) ((-596 . -640) 90154) ((-1155 . -34) T) ((-409 . -648) 90106) ((-50 . -23) T) ((-711 . -131) T) ((-712 . -1038) 89986) ((-583 . -23) T) ((-108 . -516) NIL) ((-520 . -23) T) ((-169 . -411) 89957) ((-1139 . -1099) T) ((-1279 . -1278) 89941) ((-701 . -795) T) ((-701 . -792) T) ((-1119 . -308) T) ((-381 . -147) T) ((-281 . -613) 89923) ((-1227 . -992) 89893) ((-48 . -920) T) ((-675 . -491) 89877) ((-252 . -1271) 89847) ((-251 . -1271) 89817) ((-1175 . -850) T) ((-1112 . -172) 89796) ((-1119 . -1022) T) ((-1046 . -34) T) ((-836 . -147) 89775) ((-836 . -145) 89754) ((-737 . -107) 89738) ((-612 . -132) T) ((-484 . -1099) 89528) ((-1177 . -1057) T) ((-871 . -454) T) ((-85 . -1214) T) ((-240 . -38) 89498) ((-141 . -107) 89480) ((-712 . -379) 89464) ((-833 . -616) 89332) ((-1287 . -726) T) ((-1276 . -1057) T) ((-1119 . -547) T) ((-581 . -102) T) ((-129 . -492) 89314) ((-1256 . -102) T) ((-392 . -1056) 89298) ((-1249 . -102) T) ((-1171 . -949) 89267) ((-129 . -613) 89234) ((-52 . -613) 89216) ((-1124 . -949) 89183) ((-653 . -413) 89167) ((-1228 . -102) T) ((-1157 . -516) NIL) ((-621 . -1056) 89151) ((-662 . -25) T) ((-662 . -21) T) ((-963 . -646) 89061) ((-735 . -646) 89006) ((-715 . -646) 88978) ((-392 . -111) 88957) ((-222 . -255) 88941) ((-1054 . -1053) 88881) ((-1054 . -1099) T) ((-1004 . -1150) T) ((-818 . -1099) T) ((-455 . -646) 88796) ((-345 . -1218) T) ((-635 . -648) 88780) ((-621 . -111) 88759) ((-607 . -648) 88743) ((-597 . -102) T) ((-312 . -492) 88724) ((-587 . -131) T) ((-596 . -102) T) ((-416 . -1099) T) ((-387 . -1099) T) ((-312 . -613) 88690) ((-227 . -1099) 88668) ((-647 . -516) 88601) ((-632 . -516) 88445) ((-833 . -1049) 88424) ((-644 . -151) 88408) ((-345 . -558) T) ((-712 . -900) 88351) ((-552 . -229) 88301) ((-1256 . -285) 88267) ((-1249 . -285) 88233) ((-1079 . -291) 88184) ((-489 . -848) T) ((-223 . -1111) T) ((-1228 . -285) 88150) ((-1208 . -495) 88116) ((-1004 . -38) 88066) ((-217 . -848) T) ((-420 . -646) 88025) ((-914 . -38) 87977) ((-843 . -794) 87956) ((-843 . -791) 87935) ((-843 . -726) 87914) ((-361 . -291) T) ((-355 . -291) T) ((-347 . -291) T) ((-169 . -454) 87845) ((-429 . -38) 87829) ((-108 . -291) T) ((-223 . -23) T) ((-409 . -794) 87808) ((-409 . -791) 87787) ((-409 . -726) T) ((-502 . -289) 87762) ((-479 . -1056) 87727) ((-658 . -131) T) ((-621 . -616) 87696) ((-1112 . -516) 87629) ((-338 . -131) T) ((-169 . -404) 87608) ((-484 . -717) 87550) ((-815 . -287) 87527) ((-479 . -111) 87483) ((-653 . -1057) T) ((-816 . -1051) 87326) ((-1275 . -1082) T) ((-1237 . -454) 87257) ((-816 . -640) 87106) ((-1274 . -1082) T) ((-1086 . -131) T) ((-1054 . -717) 87048) ((-782 . -131) T) ((-780 . -131) T) ((-573 . -454) T) ((-1027 . -516) 86981) ((-621 . -1049) T) ((-593 . -1099) T) ((-535 . -173) T) ((-463 . -131) T) ((-456 . -131) T) ((-45 . -1099) T) ((-387 . -717) 86951) ((-817 . -1099) T) ((-478 . -516) 86884) ((-465 . -516) 86817) ((-455 . -369) 86787) ((-45 . -610) 86766) ((-317 . -303) T) ((-479 . -616) 86716) ((-1228 . -310) 86601) ((-670 . -613) 86563) ((-59 . -850) 86542) ((-1004 . -402) 86524) ((-550 . -613) 86506) ((-799 . -646) 86465) ((-815 . -604) 86442) ((-518 . -850) 86421) ((-498 . -850) 86400) ((-40 . -1218) T) ((-999 . -1038) 86296) ((-50 . -131) T) ((-583 . -131) T) ((-520 . -131) T) ((-295 . -648) 86156) ((-345 . -330) 86133) ((-345 . -365) T) ((-323 . -324) 86110) ((-320 . -287) 86095) ((-40 . -558) T) ((-381 . -1199) T) ((-381 . -1202) T) ((-1035 . -1190) 86070) ((-1187 . -235) 86020) ((-1166 . -231) 85972) ((-331 . -1099) T) ((-381 . -95) T) ((-381 . -35) T) ((-1035 . -107) 85918) ((-479 . -1049) T) ((-1288 . -1056) 85902) ((-481 . -235) 85852) ((-1158 . -491) 85786) ((-1279 . -1051) 85770) ((-383 . -1056) 85754) ((-1279 . -640) 85724) ((-479 . -243) T) ((-816 . -102) T) ((-714 . -147) 85703) ((-714 . -145) 85682) ((-486 . -491) 85666) ((-487 . -337) 85635) ((-1288 . -111) 85614) ((-514 . -1099) T) ((-484 . -172) 85593) ((-999 . -379) 85577) ((-415 . -102) T) ((-383 . -111) 85556) ((-999 . -340) 85540) ((-280 . -983) 85524) ((-279 . -983) 85508) ((-1286 . -613) 85490) ((-1284 . -613) 85472) ((-110 . -516) NIL) ((-1171 . -1240) 85456) ((-854 . -852) 85440) ((-1177 . -1099) T) ((-103 . -1214) T) ((-952 . -949) 85401) ((-817 . -717) 85343) ((-1228 . -1150) NIL) ((-483 . -949) 85288) ((-1061 . -143) T) ((-60 . -102) 85266) ((-44 . -613) 85248) ((-78 . -613) 85230) ((-353 . -648) 85175) ((-1276 . -1099) T) ((-513 . -850) T) ((-345 . -1111) T) ((-296 . -1099) T) ((-999 . -900) 85134) ((-296 . -610) 85113) ((-1288 . -616) 85062) ((-1256 . -38) 84959) ((-1249 . -38) 84800) ((-1228 . -38) 84596) ((-489 . -1057) T) ((-383 . -616) 84580) ((-217 . -1057) T) ((-345 . -23) T) ((-152 . -613) 84562) ((-833 . -795) 84541) ((-833 . -792) 84520) ((-1213 . -616) 84501) ((-597 . -38) 84474) ((-596 . -38) 84371) ((-870 . -558) T) ((-223 . -131) T) ((-320 . -1002) 84337) ((-79 . -613) 84319) ((-712 . -308) 84298) ((-295 . -726) 84200) ((-824 . -102) T) ((-864 . -844) T) ((-295 . -475) 84179) ((-1279 . -102) T) ((-40 . -365) T) ((-872 . -147) 84158) ((-487 . -646) 84140) ((-872 . -145) 84119) ((-1157 . -491) 84101) ((-1288 . -1049) T) ((-484 . -516) 84034) ((-1145 . -1214) T) ((-964 . -613) 84016) ((-647 . -491) 84000) ((-632 . -491) 83931) ((-815 . -613) 83662) ((-48 . -27) T) ((-1177 . -717) 83559) ((-653 . -1099) T) ((-861 . -860) T) ((-438 . -366) 83533) ((-731 . -646) 83443) ((-1101 . -102) T) ((-970 . -1099) T) ((-864 . -1099) T) ((-816 . -310) 83430) ((-535 . -529) T) ((-535 . -578) T) ((-1284 . -384) 83402) ((-1054 . -516) 83335) ((-1158 . -287) 83311) ((-240 . -231) 83280) ((-252 . -1051) 83177) ((-251 . -1051) 83074) ((-1276 . -717) 83044) ((-1165 . -93) T) ((-994 . -93) T) ((-817 . -172) 83023) ((-252 . -640) 82965) ((-251 . -640) 82907) ((-1211 . -492) 82884) ((-227 . -516) 82817) ((-621 . -795) 82796) ((-621 . -792) 82775) ((-1211 . -613) 82687) ((-222 . -1214) T) ((-675 . -613) 82619) ((-1173 . -646) 82529) ((-1155 . -1010) 82513) ((-943 . -102) 82463) ((-353 . -726) T) ((-861 . -613) 82445) ((-1172 . -646) 82327) ((-1166 . -646) 82164) ((-1125 . -646) 82074) ((-1228 . -402) 82026) ((-1112 . -491) 82010) ((-60 . -310) 81948) ((-332 . -102) T) ((-1208 . -21) T) ((-1208 . -25) T) ((-40 . -1111) T) ((-711 . -21) T) ((-627 . -613) 81930) ((-517 . -324) 81909) ((-711 . -25) T) ((-441 . -102) T) ((-108 . -287) NIL) ((-921 . -1111) T) ((-40 . -23) T) ((-771 . -1111) T) ((-566 . -1218) T) ((-497 . -1218) T) ((-320 . -613) 81891) ((-1004 . -231) 81873) ((-169 . -166) 81857) ((-582 . -558) T) ((-566 . -558) T) ((-497 . -558) T) ((-771 . -23) T) ((-1248 . -147) 81836) ((-1158 . -604) 81812) ((-1248 . -145) 81791) ((-1027 . -491) 81775) ((-1227 . -145) 81700) ((-1227 . -147) 81625) ((-1279 . -1285) 81604) ((-478 . -491) 81588) ((-465 . -491) 81572) ((-525 . -34) T) ((-653 . -717) 81542) ((-112 . -967) T) ((-662 . -850) 81521) ((-1177 . -172) 81472) ((-367 . -102) T) ((-240 . -238) 81451) ((-252 . -102) T) ((-251 . -102) T) ((-1237 . -949) 81420) ((-245 . -850) 81399) ((-816 . -38) 81248) ((-45 . -516) 81040) ((-1157 . -287) 81015) ((-214 . -1099) T) ((-1149 . -1099) T) ((-1149 . -610) 80994) ((-587 . -25) T) ((-587 . -21) T) ((-1101 . -310) 80932) ((-963 . -413) 80916) ((-699 . -1218) T) ((-632 . -287) 80891) ((-1086 . -639) 80839) ((-782 . -639) 80787) ((-780 . -639) 80735) ((-345 . -131) T) ((-290 . -613) 80717) ((-905 . -1099) T) ((-699 . -558) T) ((-129 . -616) 80699) ((-870 . -1111) T) ((-456 . -639) 80647) ((-905 . -903) 80631) ((-381 . -454) T) ((-489 . -1099) T) ((-943 . -310) 80569) ((-701 . -648) 80556) ((-551 . -844) T) ((-217 . -1099) T) ((-317 . -920) 80535) ((-314 . -920) T) ((-314 . -820) NIL) ((-392 . -720) T) ((-870 . -23) T) ((-116 . -648) 80522) ((-476 . -145) 80501) ((-420 . -413) 80485) ((-476 . -147) 80464) ((-110 . -491) 80446) ((-312 . -616) 80427) ((-2 . -613) 80409) ((-186 . -102) T) ((-1157 . -19) 80391) ((-1157 . -604) 80366) ((-658 . -21) T) ((-658 . -25) T) ((-594 . -1143) T) ((-1112 . -287) 80343) ((-338 . -25) T) ((-338 . -21) T) ((-240 . -646) 80093) ((-497 . -365) T) ((-1279 . -38) 80063) ((-1171 . -1051) 79886) ((-1141 . -1214) T) ((-1124 . -1051) 79729) ((-854 . -1051) 79713) ((-632 . -604) 79688) ((-1171 . -640) 79517) ((-1124 . -640) 79366) ((-854 . -640) 79336) ((-1286 . -1056) 79320) ((-1284 . -1056) 79304) ((-551 . -1099) T) ((-1086 . -25) T) ((-1086 . -21) T) ((-533 . -792) T) ((-533 . -795) T) ((-117 . -1218) T) ((-963 . -1057) T) ((-623 . -558) T) ((-782 . -25) T) ((-782 . -21) T) ((-780 . -21) T) ((-780 . -25) T) ((-735 . -1057) T) ((-715 . -1057) T) ((-670 . -1056) 79288) ((-519 . -1082) T) ((-463 . -25) T) ((-117 . -558) T) ((-463 . -21) T) ((-456 . -25) T) ((-456 . -21) T) ((-1248 . -1199) 79254) ((-1248 . -1202) 79220) ((-1141 . -1038) 79116) ((-817 . -291) 79095) ((-1248 . -95) 79061) ((-823 . -1099) T) ((-1231 . -102) 79039) ((-966 . -967) T) ((-670 . -111) 79018) ((-296 . -516) 78810) ((-1228 . -231) 78762) ((-1227 . -1199) 78728) ((-1227 . -1202) 78694) ((-252 . -310) 78632) ((-251 . -310) 78570) ((-1222 . -370) T) ((-1158 . -614) NIL) ((-1158 . -613) 78552) ((-1219 . -844) T) ((-1141 . -379) 78536) ((-1119 . -820) T) ((-96 . -93) T) ((-1119 . -920) T) ((-1112 . -604) 78513) ((-1079 . -614) 78497) ((-1004 . -646) 78447) ((-914 . -646) 78384) ((-815 . -289) 78361) ((-486 . -613) 78293) ((-608 . -151) 78240) ((-489 . -717) 78190) ((-420 . -1057) T) ((-484 . -491) 78174) ((-429 . -646) 78133) ((-328 . -850) 78112) ((-341 . -648) 78086) ((-50 . -21) T) ((-50 . -25) T) ((-217 . -717) 78036) ((-169 . -724) 78007) ((-174 . -648) 77939) ((-583 . -21) T) ((-583 . -25) T) ((-520 . -25) T) ((-520 . -21) T) ((-477 . -151) 77889) ((-1079 . -613) 77871) ((-1060 . -613) 77853) ((-993 . -102) T) ((-862 . -102) T) ((-799 . -413) 77817) ((-40 . -131) T) ((-699 . -365) T) ((-701 . -726) T) ((-701 . -794) T) ((-701 . -791) T) ((-212 . -895) T) ((-582 . -1111) T) ((-566 . -1111) T) ((-497 . -1111) T) ((-361 . -613) 77799) ((-355 . -613) 77781) ((-347 . -613) 77763) ((-66 . -398) T) ((-66 . -397) T) ((-108 . -614) 77693) ((-108 . -613) 77635) ((-211 . -895) T) ((-958 . -151) 77619) ((-771 . -131) T) ((-670 . -616) 77537) ((-134 . -726) T) ((-116 . -726) T) ((-1248 . -35) 77503) ((-1054 . -491) 77487) ((-582 . -23) T) ((-566 . -23) T) ((-497 . -23) T) ((-1227 . -95) 77453) ((-1227 . -35) 77419) ((-1171 . -102) T) ((-1124 . -102) T) ((-854 . -102) T) ((-227 . -491) 77403) ((-1286 . -111) 77382) ((-1284 . -111) 77361) ((-44 . -1056) 77345) ((-1286 . -616) 77291) ((-1237 . -1240) 77275) ((-855 . -852) 77259) ((-1286 . -1049) T) ((-1177 . -291) 77238) ((-110 . -287) 77213) ((-1284 . -616) 77142) ((-128 . -151) 77124) ((-1141 . -900) 77083) ((-44 . -111) 77062) ((-1219 . -1099) T) ((-1180 . -1259) T) ((-1165 . -492) 77043) ((-1165 . -613) 77009) ((-670 . -1049) T) ((-1157 . -614) NIL) ((-1157 . -613) 76991) ((-1062 . -610) 76966) ((-1062 . -1099) T) ((-994 . -492) 76947) ((-74 . -443) T) ((-74 . -397) T) ((-994 . -613) 76913) ((-152 . -1056) 76897) ((-670 . -233) 76876) ((-573 . -556) 76860) ((-357 . -147) 76839) ((-357 . -145) 76790) ((-354 . -147) 76769) ((-354 . -145) 76720) ((-346 . -147) 76699) ((-346 . -145) 76650) ((-265 . -145) 76629) ((-265 . -147) 76608) ((-252 . -38) 76578) ((-247 . -147) 76557) ((-117 . -365) T) ((-247 . -145) 76536) ((-251 . -38) 76506) ((-152 . -111) 76485) ((-1003 . -1038) 76373) ((-1166 . -848) NIL) ((-694 . -1218) T) ((-799 . -1057) T) ((-699 . -1111) T) ((-1284 . -1049) T) ((-1155 . -1214) T) ((-1003 . -379) 76350) ((-910 . -145) T) ((-910 . -147) 76332) ((-870 . -131) T) ((-815 . -1056) 76229) ((-699 . -23) T) ((-694 . -558) T) ((-225 . -1051) 76194) ((-647 . -613) 76126) ((-647 . -614) 76087) ((-632 . -614) NIL) ((-632 . -613) 76069) ((-489 . -172) T) ((-225 . -640) 76034) ((-223 . -21) T) ((-217 . -172) T) ((-223 . -25) T) ((-476 . -1202) 76000) ((-476 . -1199) 75966) ((-275 . -613) 75948) ((-274 . -613) 75930) ((-273 . -613) 75912) ((-272 . -613) 75894) ((-271 . -613) 75876) ((-502 . -651) 75858) ((-270 . -613) 75840) ((-341 . -726) T) ((-269 . -613) 75822) ((-110 . -19) 75804) ((-174 . -726) T) ((-502 . -375) 75786) ((-212 . -613) 75768) ((-522 . -1148) 75752) ((-502 . -123) T) ((-110 . -604) 75727) ((-211 . -613) 75709) ((-476 . -35) 75675) ((-476 . -95) 75641) ((-209 . -613) 75623) ((-208 . -613) 75605) ((-207 . -613) 75587) ((-206 . -613) 75569) ((-203 . -613) 75551) ((-202 . -613) 75533) ((-201 . -613) 75515) ((-200 . -613) 75497) ((-199 . -613) 75479) ((-198 . -613) 75461) ((-197 . -613) 75443) ((-538 . -1102) 75395) ((-196 . -613) 75377) ((-195 . -613) 75359) ((-45 . -491) 75296) ((-194 . -613) 75278) ((-193 . -613) 75260) ((-152 . -616) 75229) ((-1114 . -102) T) ((-815 . -111) 75119) ((-644 . -102) 75069) ((-484 . -287) 75046) ((-1112 . -613) 74777) ((-1100 . -1099) T) ((-1046 . -1214) T) ((-1287 . -1038) 74761) ((-1061 . -1051) 74748) ((-1171 . -310) 74735) ((-952 . -1051) 74578) ((-1134 . -1099) T) ((-1124 . -310) 74565) ((-623 . -1111) T) ((-1061 . -640) 74552) ((-1095 . -1082) T) ((-952 . -640) 74401) ((-1089 . -1082) T) ((-483 . -1051) 74244) ((-1072 . -1082) T) ((-1065 . -1082) T) ((-1036 . -1082) T) ((-1019 . -1082) T) ((-117 . -1111) T) ((-483 . -640) 74093) ((-819 . -102) T) ((-626 . -1082) T) ((-623 . -23) T) ((-1149 . -516) 73885) ((-485 . -1082) T) ((-388 . -102) T) ((-325 . -102) T) ((-218 . -1082) T) ((-963 . -1099) T) ((-152 . -1049) T) ((-731 . -413) 73869) ((-117 . -23) T) ((-1003 . -900) 73821) ((-735 . -1099) T) ((-715 . -1099) T) ((-455 . -1099) T) ((-409 . -1214) T) ((-317 . -432) 73805) ((-593 . -93) T) ((-1256 . -646) 73715) ((-1027 . -614) 73676) ((-1024 . -1218) T) ((-225 . -102) T) ((-1027 . -613) 73638) ((-1249 . -646) 73520) ((-816 . -231) 73504) ((-815 . -616) 73234) ((-1228 . -646) 73071) ((-1024 . -558) T) ((-833 . -648) 73044) ((-356 . -1218) T) ((-478 . -613) 73006) ((-478 . -614) 72967) ((-465 . -614) 72928) ((-465 . -613) 72890) ((-597 . -646) 72862) ((-409 . -884) 72846) ((-320 . -1056) 72681) ((-409 . -886) 72606) ((-596 . -646) 72516) ((-843 . -1038) 72412) ((-489 . -516) NIL) ((-484 . -604) 72389) ((-356 . -558) T) ((-217 . -516) NIL) ((-872 . -454) T) ((-420 . -1099) T) ((-409 . -1038) 72253) ((-320 . -111) 72074) ((-694 . -365) T) ((-225 . -285) T) ((-1211 . -616) 72051) ((-48 . -1218) T) ((-815 . -1049) 71981) ((-1171 . -1150) 71959) ((-582 . -131) T) ((-566 . -131) T) ((-497 . -131) T) ((-1158 . -289) 71935) ((-48 . -558) T) ((-1061 . -102) T) ((-952 . -102) T) ((-871 . -1051) 71880) ((-317 . -27) 71859) ((-815 . -233) 71811) ((-249 . -835) 71793) ((-240 . -848) 71772) ((-187 . -835) 71754) ((-713 . -102) T) ((-296 . -491) 71691) ((-871 . -640) 71636) ((-483 . -102) T) ((-731 . -1057) T) ((-612 . -613) 71618) ((-612 . -614) 71479) ((-409 . -379) 71463) ((-409 . -340) 71447) ((-320 . -616) 71273) ((-1171 . -38) 71102) ((-1124 . -38) 70951) ((-854 . -38) 70921) ((-392 . -648) 70905) ((-644 . -310) 70843) ((-963 . -717) 70740) ((-735 . -717) 70710) ((-222 . -107) 70694) ((-45 . -287) 70619) ((-621 . -648) 70593) ((-313 . -1099) T) ((-290 . -1056) 70580) ((-110 . -613) 70562) ((-110 . -614) 70544) ((-455 . -717) 70514) ((-816 . -254) 70453) ((-689 . -1099) 70431) ((-552 . -1099) T) ((-1173 . -1057) T) ((-1172 . -1057) T) ((-96 . -492) 70412) ((-1166 . -1057) T) ((-290 . -111) 70397) ((-1125 . -1057) T) ((-552 . -610) 70376) ((-96 . -613) 70342) ((-1004 . -848) T) ((-227 . -687) 70300) ((-694 . -1111) T) ((-1208 . -740) 70276) ((-1024 . -365) T) ((-838 . -835) 70258) ((-833 . -794) 70237) ((-409 . -900) 70196) ((-320 . -1049) T) ((-345 . -25) T) ((-345 . -21) T) ((-169 . -1051) 70106) ((-68 . -1214) T) ((-833 . -791) 70085) ((-420 . -717) 70059) ((-799 . -1099) T) ((-712 . -920) 70038) ((-699 . -131) T) ((-169 . -640) 69866) ((-694 . -23) T) ((-489 . -291) T) ((-833 . -726) 69845) ((-320 . -233) 69797) ((-320 . -243) 69776) ((-217 . -291) T) ((-129 . -370) T) ((-1248 . -454) 69755) ((-1227 . -454) 69734) ((-356 . -330) 69711) ((-356 . -365) T) ((-1139 . -613) 69693) ((-45 . -1252) 69643) ((-871 . -102) T) ((-644 . -283) 69627) ((-699 . -1059) T) ((-1275 . -102) T) ((-1274 . -102) T) ((-479 . -648) 69592) ((-470 . -1099) T) ((-45 . -604) 69517) ((-1157 . -289) 69492) ((-290 . -616) 69464) ((-40 . -639) 69403) ((-1237 . -1051) 69226) ((-855 . -1051) 69210) ((-48 . -365) T) ((-1105 . -613) 69192) ((-1237 . -640) 69021) ((-855 . -640) 68991) ((-632 . -289) 68966) ((-816 . -646) 68876) ((-573 . -1051) 68863) ((-484 . -613) 68594) ((-240 . -413) 68563) ((-952 . -310) 68550) ((-573 . -640) 68537) ((-65 . -1214) T) ((-1062 . -516) 68381) ((-671 . -1099) T) ((-623 . -131) T) ((-483 . -310) 68368) ((-606 . -1099) T) ((-548 . -102) T) ((-117 . -131) T) ((-290 . -1049) T) ((-180 . -1099) T) ((-161 . -1099) T) ((-156 . -1099) T) ((-154 . -1099) T) ((-455 . -761) T) ((-31 . -1082) T) ((-963 . -172) 68319) ((-970 . -93) T) ((-1079 . -1056) 68229) ((-621 . -794) 68208) ((-594 . -1099) T) ((-621 . -791) 68187) ((-621 . -726) T) ((-296 . -287) 68166) ((-295 . -1214) T) ((-1054 . -613) 68128) ((-1054 . -614) 68089) ((-1024 . -1111) T) ((-169 . -102) T) ((-276 . -850) T) ((-1164 . -1099) T) ((-818 . -613) 68071) ((-1112 . -289) 68048) ((-1101 . -229) 68032) ((-1003 . -308) T) ((-799 . -717) 68016) ((-361 . -1056) 67968) ((-356 . -1111) T) ((-355 . -1056) 67920) ((-416 . -613) 67902) ((-387 . -613) 67884) ((-347 . -1056) 67836) ((-227 . -613) 67768) ((-1079 . -111) 67664) ((-1024 . -23) T) ((-108 . -1056) 67614) ((-898 . -102) T) ((-841 . -102) T) ((-808 . -102) T) ((-769 . -102) T) ((-677 . -102) T) ((-476 . -454) 67593) ((-420 . -172) T) ((-361 . -111) 67531) ((-355 . -111) 67469) ((-347 . -111) 67407) ((-252 . -231) 67376) ((-251 . -231) 67345) ((-356 . -23) T) ((-71 . -1214) T) ((-225 . -38) 67310) ((-108 . -111) 67244) ((-40 . -25) T) ((-40 . -21) T) ((-670 . -720) T) ((-169 . -285) 67222) ((-48 . -1111) T) ((-921 . -25) T) ((-771 . -25) T) ((-1288 . -648) 67196) ((-1149 . -491) 67133) ((-487 . -1099) T) ((-1279 . -646) 67092) ((-1237 . -102) T) ((-1061 . -1150) T) ((-855 . -102) T) ((-240 . -1057) 67022) ((-964 . -792) 66975) ((-964 . -795) 66928) ((-383 . -648) 66912) ((-48 . -23) T) ((-815 . -795) 66863) ((-815 . -792) 66814) ((-550 . -370) T) ((-296 . -604) 66793) ((-479 . -726) T) ((-573 . -102) T) ((-1079 . -616) 66611) ((-249 . -185) T) ((-187 . -185) T) ((-871 . -310) 66568) ((-653 . -287) 66547) ((-112 . -661) T) ((-361 . -616) 66484) ((-355 . -616) 66421) ((-347 . -616) 66358) ((-76 . -1214) T) ((-108 . -616) 66308) ((-1061 . -38) 66295) ((-664 . -376) 66274) ((-952 . -38) 66123) ((-731 . -1099) T) ((-483 . -38) 65972) ((-86 . -1214) T) ((-593 . -492) 65953) ((-573 . -285) T) ((-1228 . -848) NIL) ((-593 . -613) 65919) ((-1173 . -1099) T) ((-1172 . -1099) T) ((-1079 . -1049) T) ((-353 . -1038) 65896) ((-817 . -492) 65880) ((-1004 . -1057) T) ((-45 . -613) 65862) ((-45 . -614) NIL) ((-914 . -1057) T) ((-817 . -613) 65831) ((-1166 . -1099) T) ((-1146 . -102) 65809) ((-1079 . -243) 65760) ((-429 . -1057) T) ((-361 . -1049) T) ((-367 . -366) 65737) ((-355 . -1049) T) ((-347 . -1049) T) ((-252 . -238) 65716) ((-251 . -238) 65695) ((-1079 . -233) 65620) ((-1125 . -1099) T) ((-295 . -900) 65579) ((-108 . -1049) T) ((-694 . -131) T) ((-420 . -516) 65421) ((-361 . -233) 65400) ((-361 . -243) T) ((-44 . -720) T) ((-355 . -233) 65379) ((-355 . -243) T) ((-347 . -233) 65358) ((-347 . -243) T) ((-1165 . -616) 65339) ((-169 . -310) 65304) ((-108 . -243) T) ((-108 . -233) T) ((-994 . -616) 65285) ((-320 . -792) T) ((-870 . -21) T) ((-870 . -25) T) ((-409 . -308) T) ((-502 . -34) T) ((-110 . -289) 65260) ((-1112 . -1056) 65157) ((-871 . -1150) NIL) ((-331 . -613) 65139) ((-409 . -1022) 65117) ((-1112 . -111) 65007) ((-691 . -1259) T) ((-438 . -1099) T) ((-250 . -1099) T) ((-1288 . -726) T) ((-63 . -613) 64989) ((-871 . -38) 64934) ((-525 . -1214) T) ((-602 . -151) 64918) ((-514 . -613) 64900) ((-1237 . -310) 64887) ((-731 . -717) 64736) ((-533 . -793) T) ((-533 . -794) T) ((-566 . -639) 64718) ((-497 . -639) 64678) ((-357 . -454) T) ((-354 . -454) T) ((-346 . -454) T) ((-265 . -454) 64629) ((-527 . -1099) T) ((-522 . -1099) 64579) ((-247 . -454) 64530) ((-1149 . -287) 64509) ((-1177 . -613) 64491) ((-689 . -516) 64424) ((-963 . -291) 64403) ((-552 . -516) 64195) ((-252 . -646) 64015) ((-251 . -646) 63822) ((-1276 . -613) 63791) ((-1171 . -231) 63775) ((-1112 . -616) 63505) ((-169 . -1150) 63484) ((-1276 . -492) 63468) ((-1173 . -717) 63365) ((-1172 . -717) 63206) ((-892 . -102) T) ((-1166 . -717) 63002) ((-1125 . -717) 62899) ((-1155 . -674) 62883) ((-357 . -404) 62834) ((-354 . -404) 62785) ((-346 . -404) 62736) ((-1024 . -131) T) ((-799 . -516) 62648) ((-296 . -614) NIL) ((-296 . -613) 62630) ((-910 . -454) T) ((-964 . -370) 62583) ((-815 . -370) 62562) ((-512 . -511) 62541) ((-510 . -511) 62520) ((-489 . -287) NIL) ((-484 . -289) 62497) ((-420 . -291) T) ((-356 . -131) T) ((-217 . -287) NIL) ((-694 . -495) NIL) ((-99 . -1111) T) ((-169 . -38) 62325) ((-1248 . -973) 62287) ((-1146 . -310) 62225) ((-1227 . -973) 62194) ((-910 . -404) T) ((-1112 . -1049) 62124) ((-1250 . -558) T) ((-1149 . -604) 62103) ((-112 . -850) T) ((-1062 . -491) 62034) ((-582 . -21) T) ((-582 . -25) T) ((-566 . -21) T) ((-566 . -25) T) ((-497 . -25) T) ((-497 . -21) T) ((-1237 . -1150) 62012) ((-1112 . -233) 61964) ((-48 . -131) T) ((-1195 . -102) T) ((-240 . -1099) 61754) ((-871 . -402) 61731) ((-1087 . -102) T) ((-1075 . -102) T) ((-608 . -102) T) ((-477 . -102) T) ((-1237 . -38) 61560) ((-855 . -38) 61530) ((-1034 . -1051) 61504) ((-731 . -172) 61415) ((-653 . -613) 61397) ((-645 . -1082) T) ((-1034 . -640) 61381) ((-573 . -38) 61368) ((-970 . -492) 61349) ((-970 . -613) 61315) ((-958 . -102) 61265) ((-864 . -613) 61247) ((-864 . -614) 61169) ((-594 . -516) NIL) ((-1256 . -1057) T) ((-1249 . -1057) T) ((-323 . -1051) 61151) ((-1228 . -1057) T) ((-323 . -640) 61133) ((-1292 . -1111) T) ((-1208 . -147) 61112) ((-1208 . -145) 61091) ((-1182 . -102) T) ((-1181 . -102) T) ((-597 . -1057) T) ((-596 . -1057) T) ((-1173 . -172) 61042) ((-1172 . -172) 60973) ((-381 . -1051) 60938) ((-1166 . -172) 60869) ((-1125 . -172) 60820) ((-1004 . -1099) T) ((-971 . -1099) T) ((-914 . -1099) T) ((-381 . -640) 60785) ((-799 . -797) 60769) ((-699 . -25) T) ((-699 . -21) T) ((-117 . -639) 60746) ((-701 . -886) 60728) ((-429 . -1099) T) ((-317 . -1218) 60707) ((-314 . -1218) T) ((-169 . -402) 60691) ((-836 . -1051) 60661) ((-476 . -973) 60623) ((-130 . -102) T) ((-128 . -102) T) ((-72 . -613) 60605) ((-827 . -1051) 60589) ((-108 . -795) T) ((-108 . -792) T) ((-701 . -1038) 60571) ((-317 . -558) 60550) ((-314 . -558) T) ((-836 . -640) 60520) ((-827 . -640) 60490) ((-1292 . -23) T) ((-134 . -1038) 60472) ((-96 . -616) 60453) ((-993 . -646) 60435) ((-484 . -1056) 60332) ((-45 . -289) 60257) ((-240 . -717) 60199) ((-519 . -102) T) ((-484 . -111) 60089) ((-1091 . -102) 60067) ((-1034 . -102) T) ((-1171 . -646) 59977) ((-1124 . -646) 59887) ((-854 . -646) 59846) ((-644 . -828) 59825) ((-731 . -516) 59768) ((-1054 . -1056) 59752) ((-1134 . -93) T) ((-1062 . -287) 59727) ((-623 . -21) T) ((-623 . -25) T) ((-526 . -1099) T) ((-670 . -648) 59701) ((-363 . -102) T) ((-323 . -102) T) ((-387 . -1056) 59685) ((-1054 . -111) 59664) ((-816 . -413) 59648) ((-117 . -25) T) ((-89 . -613) 59630) ((-117 . -21) T) ((-608 . -310) 59425) ((-477 . -310) 59229) ((-1149 . -614) NIL) ((-387 . -111) 59208) ((-381 . -102) T) ((-214 . -613) 59190) ((-1149 . -613) 59172) ((-1166 . -516) 58941) ((-1004 . -717) 58891) ((-1125 . -516) 58861) ((-914 . -717) 58813) ((-484 . -616) 58543) ((-353 . -308) T) ((-1187 . -151) 58493) ((-958 . -310) 58431) ((-836 . -102) T) ((-429 . -717) 58415) ((-225 . -828) T) ((-827 . -102) T) ((-825 . -102) T) ((-481 . -151) 58365) ((-1248 . -1247) 58344) ((-1119 . -1218) T) ((-341 . -1038) 58311) ((-1248 . -1242) 58281) ((-1248 . -1245) 58265) ((-1227 . -1226) 58244) ((-80 . -613) 58226) ((-905 . -613) 58208) ((-1227 . -1242) 58185) ((-1119 . -558) T) ((-921 . -850) T) ((-771 . -850) T) ((-672 . -850) T) ((-489 . -614) 58115) ((-489 . -613) 58056) ((-381 . -285) T) ((-1227 . -1224) 58040) ((-1250 . -1111) T) ((-217 . -614) 57970) ((-217 . -613) 57911) ((-1286 . -648) 57885) ((-1062 . -604) 57860) ((-818 . -616) 57844) ((-59 . -151) 57828) ((-518 . -151) 57812) ((-498 . -151) 57796) ((-361 . -1283) 57780) ((-355 . -1283) 57764) ((-347 . -1283) 57748) ((-317 . -365) 57727) ((-314 . -365) T) ((-484 . -1049) 57657) ((-694 . -639) 57639) ((-1284 . -648) 57613) ((-128 . -310) NIL) ((-1250 . -23) T) ((-689 . -491) 57597) ((-64 . -613) 57579) ((-1112 . -795) 57530) ((-1112 . -792) 57481) ((-552 . -491) 57418) ((-670 . -34) T) ((-484 . -233) 57370) ((-296 . -289) 57349) ((-240 . -172) 57328) ((-816 . -1057) T) ((-44 . -648) 57286) ((-1079 . -370) 57237) ((-731 . -291) 57168) ((-522 . -516) 57101) ((-817 . -1056) 57052) ((-1086 . -145) 57031) ((-551 . -613) 57013) ((-361 . -370) 56992) ((-355 . -370) 56971) ((-347 . -370) 56950) ((-1086 . -147) 56929) ((-871 . -231) 56906) ((-817 . -111) 56848) ((-782 . -145) 56827) ((-782 . -147) 56806) ((-265 . -949) 56773) ((-252 . -848) 56752) ((-247 . -949) 56697) ((-251 . -848) 56676) ((-780 . -145) 56655) ((-780 . -147) 56634) ((-152 . -648) 56608) ((-581 . -1099) T) ((-456 . -147) 56587) ((-456 . -145) 56566) ((-670 . -726) T) ((-823 . -613) 56548) ((-1256 . -1099) T) ((-1249 . -1099) T) ((-1228 . -1099) T) ((-1208 . -1202) 56514) ((-1208 . -1199) 56480) ((-1173 . -291) 56459) ((-1172 . -291) 56410) ((-1166 . -291) 56361) ((-1125 . -291) 56340) ((-341 . -900) 56321) ((-1004 . -172) T) ((-914 . -172) T) ((-694 . -21) T) ((-694 . -25) T) ((-225 . -646) 56271) ((-597 . -1099) T) ((-596 . -1099) T) ((-476 . -1245) 56255) ((-476 . -1242) 56225) ((-420 . -287) 56153) ((-549 . -850) T) ((-317 . -1111) 56002) ((-314 . -1111) T) ((-1208 . -35) 55968) ((-1208 . -95) 55934) ((-84 . -613) 55916) ((-91 . -102) 55894) ((-1292 . -131) T) ((-714 . -1051) 55864) ((-593 . -616) 55845) ((-583 . -145) T) ((-583 . -147) 55827) ((-520 . -147) 55809) ((-520 . -145) T) ((-714 . -640) 55779) ((-317 . -23) 55631) ((-40 . -344) 55605) ((-314 . -23) T) ((-817 . -616) 55519) ((-1157 . -651) 55501) ((-1279 . -1057) T) ((-1157 . -375) 55483) ((-815 . -648) 55331) ((-1095 . -102) T) ((-1089 . -102) T) ((-1072 . -102) T) ((-169 . -231) 55315) ((-1065 . -102) T) ((-1036 . -102) T) ((-1019 . -102) T) ((-594 . -491) 55297) ((-626 . -102) T) ((-240 . -516) 55230) ((-485 . -102) T) ((-1286 . -726) T) ((-1284 . -726) T) ((-218 . -102) T) ((-1177 . -1056) 55113) ((-1061 . -646) 55085) ((-952 . -646) 54995) ((-1177 . -111) 54864) ((-483 . -646) 54774) ((-861 . -173) T) ((-817 . -1049) T) ((-681 . -1082) T) ((-676 . -1082) T) ((-517 . -102) T) ((-512 . -102) T) ((-48 . -639) 54734) ((-510 . -102) T) ((-480 . -1082) T) ((-1276 . -1056) 54704) ((-138 . -1082) T) ((-137 . -1082) T) ((-133 . -1082) T) ((-1034 . -38) 54688) ((-817 . -233) T) ((-817 . -243) 54667) ((-1276 . -111) 54632) ((-1256 . -717) 54529) ((-1249 . -717) 54370) ((-552 . -287) 54349) ((-1237 . -231) 54333) ((-1219 . -613) 54315) ((-606 . -93) T) ((-1062 . -614) NIL) ((-1062 . -613) 54297) ((-671 . -93) T) ((-180 . -93) T) ((-161 . -93) T) ((-156 . -93) T) ((-154 . -93) T) ((-1228 . -717) 54093) ((-1003 . -920) T) ((-152 . -726) T) ((-1177 . -616) 53946) ((-1112 . -370) 53925) ((-1024 . -25) T) ((-1004 . -516) NIL) ((-252 . -413) 53894) ((-251 . -413) 53863) ((-1024 . -21) T) ((-872 . -1051) 53815) ((-597 . -717) 53788) ((-596 . -717) 53685) ((-799 . -287) 53643) ((-126 . -102) 53621) ((-833 . -1038) 53517) ((-169 . -828) 53496) ((-320 . -648) 53393) ((-815 . -34) T) ((-714 . -102) T) ((-1119 . -1111) T) ((-1026 . -1214) T) ((-872 . -640) 53345) ((-381 . -38) 53310) ((-356 . -25) T) ((-356 . -21) T) ((-187 . -102) T) ((-162 . -102) T) ((-249 . -102) T) ((-157 . -102) T) ((-357 . -1271) 53294) ((-354 . -1271) 53278) ((-346 . -1271) 53262) ((-169 . -351) 53241) ((-566 . -850) T) ((-1119 . -23) T) ((-87 . -613) 53223) ((-701 . -308) T) ((-836 . -38) 53193) ((-827 . -38) 53163) ((-1276 . -616) 53105) ((-1250 . -131) T) ((-1149 . -289) 53084) ((-964 . -726) 52983) ((-964 . -793) 52936) ((-964 . -794) 52889) ((-815 . -791) 52868) ((-116 . -308) T) ((-91 . -310) 52806) ((-675 . -34) T) ((-552 . -604) 52785) ((-48 . -25) T) ((-48 . -21) T) ((-815 . -794) 52736) ((-815 . -793) 52715) ((-701 . -1022) T) ((-653 . -1056) 52699) ((-871 . -646) 52629) ((-815 . -726) 52539) ((-964 . -475) 52492) ((-484 . -795) 52443) ((-484 . -792) 52394) ((-910 . -1271) 52381) ((-1177 . -1049) T) ((-653 . -111) 52360) ((-1177 . -327) 52337) ((-1200 . -102) 52315) ((-1100 . -613) 52297) ((-701 . -547) T) ((-816 . -1099) T) ((-1276 . -1049) T) ((-1134 . -492) 52278) ((-1220 . -102) T) ((-415 . -1099) T) ((-1134 . -613) 52244) ((-252 . -1057) 52174) ((-251 . -1057) 52104) ((-838 . -102) T) ((-290 . -648) 52091) ((-594 . -287) 52066) ((-689 . -687) 52024) ((-963 . -613) 52006) ((-872 . -102) T) ((-735 . -613) 51988) ((-715 . -613) 51970) ((-1256 . -172) 51921) ((-1249 . -172) 51852) ((-1228 . -172) 51783) ((-699 . -850) T) ((-1004 . -291) T) ((-455 . -613) 51765) ((-627 . -726) T) ((-60 . -1099) 51743) ((-245 . -151) 51727) ((-914 . -291) T) ((-1024 . -1012) T) ((-627 . -475) T) ((-712 . -1218) 51706) ((-653 . -616) 51624) ((-169 . -646) 51519) ((-1264 . -850) 51498) ((-597 . -172) 51477) ((-596 . -172) 51428) ((-1248 . -640) 51269) ((-1248 . -1051) 51104) ((-1227 . -640) 50918) ((-1227 . -1051) 50726) ((-712 . -558) 50637) ((-409 . -920) T) ((-409 . -820) 50616) ((-320 . -794) T) ((-970 . -616) 50597) ((-320 . -726) T) ((-420 . -613) 50579) ((-420 . -614) 50486) ((-644 . -1148) 50470) ((-110 . -651) 50452) ((-174 . -308) T) ((-126 . -310) 50390) ((-110 . -375) 50372) ((-400 . -1214) T) ((-317 . -131) 50243) ((-314 . -131) T) ((-69 . -397) T) ((-110 . -123) T) ((-522 . -491) 50227) ((-654 . -1111) T) ((-594 . -19) 50209) ((-61 . -443) T) ((-61 . -397) T) ((-824 . -1099) T) ((-594 . -604) 50184) ((-479 . -1038) 50144) ((-653 . -1049) T) ((-654 . -23) T) ((-1279 . -1099) T) ((-31 . -102) T) ((-1237 . -646) 50054) ((-855 . -646) 50013) ((-816 . -717) 49862) ((-579 . -860) T) ((-573 . -646) 49834) ((-117 . -850) NIL) ((-1171 . -413) 49818) ((-1124 . -413) 49802) ((-854 . -413) 49786) ((-873 . -102) 49737) ((-1248 . -102) T) ((-1228 . -516) 49506) ((-1227 . -102) T) ((-1200 . -310) 49444) ((-1173 . -287) 49429) ((-1172 . -287) 49414) ((-527 . -93) T) ((-1166 . -287) 49262) ((-313 . -613) 49244) ((-1101 . -1099) T) ((-1079 . -648) 49154) ((-711 . -454) T) ((-689 . -613) 49086) ((-290 . -726) T) ((-108 . -909) NIL) ((-689 . -614) 49047) ((-601 . -613) 49029) ((-579 . -613) 49011) ((-552 . -614) NIL) ((-552 . -613) 48993) ((-531 . -613) 48975) ((-513 . -511) 48954) ((-489 . -1056) 48904) ((-476 . -1051) 48739) ((-509 . -511) 48718) ((-476 . -640) 48559) ((-217 . -1056) 48509) ((-361 . -648) 48461) ((-355 . -648) 48413) ((-225 . -848) T) ((-347 . -648) 48365) ((-602 . -102) 48315) ((-484 . -370) 48294) ((-108 . -648) 48244) ((-489 . -111) 48178) ((-240 . -491) 48162) ((-345 . -147) 48144) ((-345 . -145) T) ((-169 . -372) 48115) ((-943 . -1262) 48099) ((-217 . -111) 48033) ((-872 . -310) 47998) ((-943 . -1099) 47948) ((-799 . -614) 47909) ((-799 . -613) 47891) ((-718 . -102) T) ((-332 . -1099) T) ((-214 . -616) 47868) ((-1119 . -131) T) ((-714 . -38) 47838) ((-317 . -495) 47817) ((-502 . -1214) T) ((-1248 . -285) 47783) ((-1227 . -285) 47749) ((-328 . -151) 47733) ((-441 . -1099) T) ((-1062 . -289) 47708) ((-1279 . -717) 47678) ((-1158 . -34) T) ((-1288 . -1038) 47655) ((-470 . -613) 47637) ((-486 . -34) T) ((-383 . -1038) 47621) ((-1171 . -1057) T) ((-1124 . -1057) T) ((-854 . -1057) T) ((-1061 . -848) T) ((-489 . -616) 47571) ((-217 . -616) 47521) ((-816 . -172) 47432) ((-522 . -287) 47409) ((-1256 . -291) 47388) ((-1195 . -366) 47362) ((-1087 . -267) 47346) ((-671 . -492) 47327) ((-671 . -613) 47293) ((-606 . -492) 47274) ((-117 . -992) 47251) ((-606 . -613) 47201) ((-476 . -102) T) ((-180 . -492) 47182) ((-180 . -613) 47148) ((-161 . -492) 47129) ((-156 . -492) 47110) ((-154 . -492) 47091) ((-161 . -613) 47057) ((-156 . -613) 47023) ((-367 . -1099) T) ((-252 . -1099) T) ((-251 . -1099) T) ((-154 . -613) 46989) ((-1249 . -291) 46940) ((-1228 . -291) 46891) ((-872 . -1150) 46869) ((-1173 . -1002) 46835) ((-608 . -366) 46775) ((-1172 . -1002) 46741) ((-608 . -229) 46688) ((-694 . -850) T) ((-594 . -613) 46670) ((-594 . -614) NIL) ((-477 . -229) 46620) ((-489 . -1049) T) ((-1166 . -1002) 46586) ((-88 . -442) T) ((-88 . -397) T) ((-217 . -1049) T) ((-1125 . -1002) 46552) ((-1079 . -726) T) ((-712 . -1111) T) ((-597 . -291) 46531) ((-596 . -291) 46510) ((-489 . -243) T) ((-489 . -233) T) ((-217 . -243) T) ((-217 . -233) T) ((-1164 . -613) 46492) ((-872 . -38) 46444) ((-361 . -726) T) ((-355 . -726) T) ((-347 . -726) T) ((-108 . -794) T) ((-108 . -791) T) ((-712 . -23) T) ((-108 . -726) T) ((-522 . -1252) 46428) ((-1292 . -25) T) ((-476 . -285) 46394) ((-1292 . -21) T) ((-1227 . -310) 46333) ((-1175 . -102) T) ((-40 . -145) 46305) ((-40 . -147) 46277) ((-522 . -604) 46254) ((-1112 . -648) 46102) ((-602 . -310) 46040) ((-45 . -651) 45990) ((-45 . -666) 45940) ((-45 . -375) 45890) ((-1157 . -34) T) ((-871 . -848) NIL) ((-654 . -131) T) ((-487 . -613) 45872) ((-240 . -287) 45849) ((-186 . -1099) T) ((-1086 . -454) 45800) ((-816 . -516) 45674) ((-664 . -1051) 45658) ((-647 . -34) T) ((-632 . -34) T) ((-782 . -454) 45589) ((-664 . -640) 45573) ((-357 . -1051) 45525) ((-354 . -1051) 45477) ((-346 . -1051) 45429) ((-265 . -1051) 45272) ((-247 . -1051) 45115) ((-780 . -454) 45066) ((-357 . -640) 45018) ((-354 . -640) 44970) ((-346 . -640) 44922) ((-265 . -640) 44771) ((-247 . -640) 44620) ((-456 . -454) 44571) ((-952 . -413) 44555) ((-731 . -613) 44537) ((-252 . -717) 44479) ((-251 . -717) 44421) ((-731 . -614) 44282) ((-483 . -413) 44266) ((-341 . -303) T) ((-526 . -93) T) ((-353 . -920) T) ((-1000 . -102) 44244) ((-910 . -1051) 44209) ((-1024 . -850) T) ((-60 . -516) 44142) ((-910 . -640) 44107) ((-1227 . -1150) 44059) ((-1004 . -287) NIL) ((-225 . -1057) T) ((-381 . -828) T) ((-1112 . -34) T) ((-583 . -454) T) ((-520 . -454) T) ((-1231 . -1092) 44043) ((-1231 . -1099) 44021) ((-240 . -604) 43998) ((-1231 . -1094) 43955) ((-1173 . -613) 43937) ((-1172 . -613) 43919) ((-1166 . -613) 43901) ((-1166 . -614) NIL) ((-1125 . -613) 43883) ((-872 . -402) 43867) ((-538 . -102) T) ((-1248 . -38) 43708) ((-1227 . -38) 43522) ((-870 . -147) T) ((-583 . -404) T) ((-520 . -404) T) ((-1260 . -102) T) ((-1250 . -21) T) ((-1250 . -25) T) ((-1112 . -791) 43501) ((-1112 . -794) 43452) ((-1112 . -793) 43431) ((-993 . -1099) T) ((-1027 . -34) T) ((-862 . -1099) T) ((-1112 . -726) 43341) ((-664 . -102) T) ((-645 . -102) T) ((-552 . -289) 43320) ((-1187 . -102) T) ((-478 . -34) T) ((-465 . -34) T) ((-357 . -102) T) ((-354 . -102) T) ((-346 . -102) T) ((-265 . -102) T) ((-247 . -102) T) ((-479 . -308) T) ((-1061 . -1057) T) ((-952 . -1057) T) ((-317 . -639) 43226) ((-314 . -639) 43187) ((-1171 . -1099) T) ((-483 . -1057) T) ((-481 . -102) T) ((-438 . -613) 43169) ((-1124 . -1099) T) ((-250 . -613) 43151) ((-854 . -1099) T) ((-1140 . -102) T) ((-816 . -291) 43082) ((-963 . -1056) 42965) ((-479 . -1022) T) ((-735 . -1056) 42935) ((-1034 . -646) 42894) ((-455 . -1056) 42864) ((-1146 . -1120) 42848) ((-1101 . -516) 42781) ((-963 . -111) 42650) ((-910 . -102) T) ((-735 . -111) 42615) ((-527 . -492) 42596) ((-527 . -613) 42562) ((-59 . -102) 42512) ((-522 . -614) 42473) ((-522 . -613) 42385) ((-521 . -102) 42363) ((-518 . -102) 42313) ((-499 . -102) 42291) ((-498 . -102) 42241) ((-455 . -111) 42204) ((-252 . -172) 42183) ((-251 . -172) 42162) ((-323 . -646) 42144) ((-420 . -1056) 42118) ((-1208 . -973) 42080) ((-999 . -1111) T) ((-381 . -646) 42030) ((-1134 . -616) 42011) ((-943 . -516) 41944) ((-489 . -795) T) ((-476 . -38) 41785) ((-420 . -111) 41752) ((-489 . -792) T) ((-1000 . -310) 41690) ((-217 . -795) T) ((-217 . -792) T) ((-999 . -23) T) ((-712 . -131) T) ((-1227 . -402) 41660) ((-836 . -646) 41605) ((-827 . -646) 41564) ((-317 . -25) 41416) ((-169 . -413) 41400) ((-317 . -21) 41271) ((-314 . -25) T) ((-314 . -21) T) ((-864 . -370) T) ((-963 . -616) 41124) ((-110 . -34) T) ((-735 . -616) 41080) ((-715 . -616) 41062) ((-484 . -648) 40910) ((-871 . -1057) T) ((-594 . -289) 40885) ((-582 . -147) T) ((-566 . -147) T) ((-497 . -147) T) ((-1171 . -717) 40714) ((-1124 . -717) 40563) ((-1119 . -639) 40545) ((-854 . -717) 40515) ((-670 . -1214) T) ((-1 . -102) T) ((-420 . -616) 40423) ((-240 . -613) 40154) ((-1114 . -1099) T) ((-1237 . -413) 40138) ((-1187 . -310) 39942) ((-963 . -1049) T) ((-735 . -1049) T) ((-715 . -1049) T) ((-644 . -1099) 39892) ((-1054 . -648) 39876) ((-855 . -413) 39860) ((-513 . -102) T) ((-509 . -102) T) ((-265 . -310) 39847) ((-247 . -310) 39834) ((-963 . -327) 39813) ((-387 . -648) 39797) ((-670 . -1038) 39693) ((-481 . -310) 39497) ((-252 . -516) 39430) ((-251 . -516) 39363) ((-1140 . -310) 39289) ((-819 . -1099) T) ((-799 . -1056) 39273) ((-1256 . -287) 39258) ((-1249 . -287) 39243) ((-1228 . -287) 39091) ((-388 . -1099) T) ((-325 . -1099) T) ((-420 . -1049) T) ((-169 . -1057) T) ((-59 . -310) 39029) ((-799 . -111) 39008) ((-596 . -287) 38993) ((-521 . -310) 38931) ((-518 . -310) 38869) ((-499 . -310) 38807) ((-498 . -310) 38745) ((-420 . -233) 38724) ((-484 . -34) T) ((-1004 . -614) 38654) ((-225 . -1099) T) ((-1004 . -613) 38614) ((-971 . -613) 38574) ((-971 . -614) 38549) ((-914 . -613) 38531) ((-699 . -147) T) ((-701 . -920) T) ((-701 . -820) T) ((-429 . -613) 38513) ((-1119 . -21) T) ((-1119 . -25) T) ((-670 . -379) 38497) ((-116 . -920) T) ((-872 . -231) 38481) ((-78 . -1214) T) ((-126 . -125) 38465) ((-1054 . -34) T) ((-1286 . -1038) 38439) ((-1284 . -1038) 38396) ((-1237 . -1057) T) ((-855 . -1057) T) ((-484 . -791) 38375) ((-357 . -1150) 38354) ((-354 . -1150) 38333) ((-346 . -1150) 38312) ((-484 . -794) 38263) ((-484 . -793) 38242) ((-227 . -34) T) ((-484 . -726) 38152) ((-799 . -616) 38000) ((-662 . -1051) 37984) ((-60 . -491) 37968) ((-573 . -1057) T) ((-662 . -640) 37952) ((-1171 . -172) 37843) ((-1124 . -172) 37754) ((-1061 . -1099) T) ((-1086 . -949) 37699) ((-952 . -1099) T) ((-817 . -648) 37650) ((-782 . -949) 37619) ((-713 . -1099) T) ((-780 . -949) 37586) ((-518 . -283) 37570) ((-670 . -900) 37529) ((-483 . -1099) T) ((-456 . -949) 37496) ((-79 . -1214) T) ((-357 . -38) 37461) ((-354 . -38) 37426) ((-346 . -38) 37391) ((-265 . -38) 37240) ((-247 . -38) 37089) ((-910 . -1150) T) ((-526 . -492) 37070) ((-623 . -147) 37049) ((-623 . -145) 37028) ((-526 . -613) 36994) ((-117 . -147) T) ((-117 . -145) NIL) ((-416 . -726) T) ((-799 . -1049) T) ((-345 . -454) T) ((-1256 . -1002) 36960) ((-1249 . -1002) 36926) ((-1228 . -1002) 36892) ((-910 . -38) 36857) ((-225 . -717) 36822) ((-320 . -47) 36792) ((-40 . -411) 36764) ((-140 . -613) 36746) ((-999 . -131) T) ((-815 . -1214) T) ((-174 . -920) T) ((-551 . -370) T) ((-606 . -616) 36727) ((-345 . -404) T) ((-714 . -646) 36672) ((-671 . -616) 36653) ((-180 . -616) 36634) ((-161 . -616) 36615) ((-156 . -616) 36596) ((-154 . -616) 36577) ((-522 . -289) 36554) ((-1227 . -231) 36524) ((-815 . -1038) 36351) ((-45 . -34) T) ((-681 . -102) T) ((-676 . -102) T) ((-662 . -102) T) ((-654 . -21) T) ((-654 . -25) T) ((-1101 . -491) 36335) ((-675 . -1214) T) ((-480 . -102) T) ((-245 . -102) 36285) ((-548 . -844) T) ((-137 . -102) T) ((-133 . -102) T) ((-138 . -102) T) ((-871 . -1099) T) ((-1177 . -648) 36210) ((-1061 . -717) 36197) ((-731 . -1056) 36040) ((-1171 . -516) 35987) ((-952 . -717) 35836) ((-1124 . -516) 35788) ((-1275 . -1099) T) ((-1274 . -1099) T) ((-483 . -717) 35637) ((-67 . -613) 35619) ((-731 . -111) 35448) ((-943 . -491) 35432) ((-1276 . -648) 35392) ((-817 . -726) T) ((-1173 . -1056) 35275) ((-1172 . -1056) 35110) ((-1166 . -1056) 34900) ((-1125 . -1056) 34783) ((-1003 . -1218) T) ((-1093 . -102) 34761) ((-815 . -379) 34730) ((-581 . -613) 34712) ((-548 . -1099) T) ((-1003 . -558) T) ((-1173 . -111) 34581) ((-1172 . -111) 34402) ((-1166 . -111) 34171) ((-1125 . -111) 34040) ((-1104 . -1102) 34004) ((-381 . -848) T) ((-1256 . -613) 33986) ((-1249 . -613) 33968) ((-872 . -646) 33905) ((-1228 . -613) 33887) ((-1228 . -614) NIL) ((-240 . -289) 33864) ((-40 . -454) T) ((-225 . -172) T) ((-169 . -1099) T) ((-731 . -616) 33649) ((-694 . -147) T) ((-694 . -145) NIL) ((-597 . -613) 33631) ((-596 . -613) 33613) ((-898 . -1099) T) ((-841 . -1099) T) ((-808 . -1099) T) ((-769 . -1099) T) ((-658 . -852) 33597) ((-677 . -1099) T) ((-815 . -900) 33529) ((-1219 . -370) T) ((-40 . -404) NIL) ((-1173 . -616) 33411) ((-1119 . -661) T) ((-871 . -717) 33356) ((-252 . -491) 33340) ((-251 . -491) 33324) ((-1172 . -616) 33067) ((-1166 . -616) 32862) ((-712 . -639) 32810) ((-653 . -648) 32784) ((-1125 . -616) 32666) ((-296 . -34) T) ((-731 . -1049) T) ((-583 . -1271) 32653) ((-520 . -1271) 32630) ((-1237 . -1099) T) ((-1171 . -291) 32541) ((-1124 . -291) 32472) ((-1061 . -172) T) ((-855 . -1099) T) ((-952 . -172) 32383) ((-782 . -1240) 32367) ((-644 . -516) 32300) ((-77 . -613) 32282) ((-731 . -327) 32247) ((-1177 . -726) T) ((-573 . -1099) T) ((-483 . -172) 32158) ((-245 . -310) 32096) ((-1141 . -1111) T) ((-70 . -613) 32078) ((-1276 . -726) T) ((-1173 . -1049) T) ((-1172 . -1049) T) ((-328 . -102) 32028) ((-1166 . -1049) T) ((-1141 . -23) T) ((-1125 . -1049) T) ((-91 . -1120) 32012) ((-866 . -1111) T) ((-1173 . -233) 31971) ((-1172 . -243) 31950) ((-1172 . -233) 31902) ((-1166 . -233) 31789) ((-1166 . -243) 31768) ((-320 . -900) 31674) ((-866 . -23) T) ((-169 . -717) 31502) ((-409 . -1218) T) ((-1100 . -370) T) ((-1003 . -365) T) ((-870 . -454) T) ((-1024 . -147) T) ((-943 . -287) 31479) ((-314 . -850) NIL) ((-1248 . -646) 31361) ((-874 . -102) T) ((-1227 . -646) 31216) ((-712 . -25) T) ((-409 . -558) T) ((-712 . -21) T) ((-527 . -616) 31197) ((-356 . -147) 31179) ((-356 . -145) T) ((-1146 . -1099) 31157) ((-455 . -720) T) ((-75 . -613) 31139) ((-114 . -850) T) ((-245 . -283) 31123) ((-240 . -1056) 31020) ((-81 . -613) 31002) ((-735 . -370) 30955) ((-1175 . -828) T) ((-737 . -235) 30939) ((-1158 . -1214) T) ((-141 . -235) 30921) ((-240 . -111) 30811) ((-1237 . -717) 30640) ((-48 . -147) T) ((-871 . -172) T) ((-855 . -717) 30610) ((-486 . -1214) T) ((-952 . -516) 30557) ((-653 . -726) T) ((-573 . -717) 30544) ((-1034 . -1057) T) ((-483 . -516) 30487) ((-943 . -19) 30471) ((-943 . -604) 30448) ((-816 . -614) NIL) ((-816 . -613) 30430) ((-1208 . -1051) 30313) ((-1004 . -1056) 30263) ((-415 . -613) 30245) ((-252 . -287) 30222) ((-251 . -287) 30199) ((-489 . -909) NIL) ((-317 . -29) 30169) ((-108 . -1214) T) ((-1003 . -1111) T) ((-217 . -909) NIL) ((-1208 . -640) 30066) ((-914 . -1056) 30018) ((-1079 . -1038) 29914) ((-1004 . -111) 29848) ((-711 . -1051) 29813) ((-1003 . -23) T) ((-914 . -111) 29751) ((-737 . -695) 29735) ((-711 . -640) 29700) ((-265 . -231) 29684) ((-429 . -1056) 29668) ((-381 . -1057) T) ((-240 . -616) 29398) ((-694 . -1202) NIL) ((-489 . -648) 29348) ((-476 . -646) 29230) ((-108 . -884) 29212) ((-108 . -886) 29194) ((-694 . -1199) NIL) ((-217 . -648) 29144) ((-361 . -1038) 29128) ((-355 . -1038) 29112) ((-328 . -310) 29050) ((-347 . -1038) 29034) ((-225 . -291) T) ((-429 . -111) 29013) ((-60 . -613) 28945) ((-169 . -172) T) ((-1119 . -850) T) ((-108 . -1038) 28905) ((-892 . -1099) T) ((-836 . -1057) T) ((-827 . -1057) T) ((-694 . -35) NIL) ((-694 . -95) NIL) ((-314 . -992) 28866) ((-183 . -102) T) ((-582 . -454) T) ((-566 . -454) T) ((-497 . -454) T) ((-409 . -365) T) ((-240 . -1049) 28796) ((-1149 . -34) T) ((-479 . -920) T) ((-999 . -639) 28744) ((-252 . -604) 28721) ((-251 . -604) 28698) ((-1079 . -379) 28682) ((-871 . -516) 28590) ((-240 . -233) 28542) ((-1157 . -1214) T) ((-1004 . -616) 28492) ((-914 . -616) 28429) ((-824 . -613) 28411) ((-1287 . -1111) T) ((-1279 . -613) 28393) ((-1237 . -172) 28284) ((-429 . -616) 28253) ((-108 . -379) 28235) ((-108 . -340) 28217) ((-1061 . -291) T) ((-952 . -291) 28148) ((-799 . -370) 28127) ((-647 . -1214) T) ((-632 . -1214) T) ((-587 . -1051) 28102) ((-483 . -291) 28033) ((-573 . -172) T) ((-328 . -283) 28017) ((-1287 . -23) T) ((-1208 . -102) T) ((-1195 . -1099) T) ((-1087 . -1099) T) ((-1075 . -1099) T) ((-587 . -640) 27992) ((-83 . -613) 27974) ((-1182 . -844) T) ((-1181 . -844) T) ((-711 . -102) T) ((-357 . -351) 27953) ((-608 . -1099) T) ((-354 . -351) 27932) ((-346 . -351) 27911) ((-477 . -1099) T) ((-1187 . -229) 27861) ((-265 . -254) 27823) ((-1141 . -131) T) ((-608 . -610) 27799) ((-1079 . -900) 27732) ((-1004 . -1049) T) ((-914 . -1049) T) ((-477 . -610) 27711) ((-1166 . -792) NIL) ((-1166 . -795) NIL) ((-1101 . -614) 27672) ((-481 . -229) 27622) ((-1101 . -613) 27604) ((-1004 . -243) T) ((-1004 . -233) T) ((-429 . -1049) T) ((-958 . -1099) 27554) ((-914 . -243) T) ((-866 . -131) T) ((-699 . -454) T) ((-843 . -1111) 27533) ((-108 . -900) NIL) ((-1208 . -285) 27499) ((-872 . -848) 27478) ((-1112 . -1214) T) ((-905 . -726) T) ((-169 . -516) 27390) ((-999 . -25) T) ((-905 . -475) T) ((-409 . -1111) T) ((-489 . -794) T) ((-489 . -791) T) ((-910 . -351) T) ((-489 . -726) T) ((-217 . -794) T) ((-217 . -791) T) ((-999 . -21) T) ((-217 . -726) T) ((-843 . -23) 27342) ((-658 . -1051) 27326) ((-1182 . -1099) T) ((-526 . -616) 27307) ((-1181 . -1099) T) ((-320 . -308) 27286) ((-1035 . -235) 27232) ((-658 . -640) 27202) ((-409 . -23) T) ((-943 . -614) 27163) ((-943 . -613) 27075) ((-644 . -491) 27059) ((-45 . -1010) 27009) ((-617 . -967) T) ((-493 . -102) T) ((-332 . -613) 26991) ((-1112 . -1038) 26818) ((-594 . -651) 26800) ((-130 . -1099) T) ((-128 . -1099) T) ((-594 . -375) 26782) ((-345 . -1271) 26759) ((-441 . -613) 26741) ((-1237 . -516) 26688) ((-1086 . -1051) 26531) ((-1027 . -1214) T) ((-871 . -291) T) ((-1171 . -287) 26458) ((-1086 . -640) 26307) ((-1000 . -995) 26291) ((-782 . -1051) 26114) ((-780 . -1051) 25957) ((-782 . -640) 25786) ((-780 . -640) 25635) ((-478 . -1214) T) ((-465 . -1214) T) ((-587 . -102) T) ((-463 . -1051) 25606) ((-456 . -1051) 25449) ((-664 . -646) 25418) ((-623 . -454) 25397) ((-463 . -640) 25368) ((-456 . -640) 25217) ((-357 . -646) 25154) ((-354 . -646) 25091) ((-346 . -646) 25028) ((-265 . -646) 24938) ((-247 . -646) 24848) ((-1279 . -384) 24820) ((-519 . -1099) T) ((-117 . -454) T) ((-1194 . -102) T) ((-1091 . -1099) 24798) ((-1034 . -1099) T) ((-1114 . -93) T) ((-893 . -850) T) ((-1256 . -111) 24667) ((-353 . -1218) T) ((-1256 . -1056) 24550) ((-1112 . -379) 24519) ((-1249 . -1056) 24354) ((-1228 . -1056) 24144) ((-1249 . -111) 23965) ((-1228 . -111) 23734) ((-1208 . -310) 23721) ((-1003 . -131) T) ((-910 . -646) 23671) ((-367 . -613) 23653) ((-353 . -558) T) ((-290 . -308) T) ((-597 . -1056) 23626) ((-596 . -1056) 23509) ((-583 . -1051) 23474) ((-520 . -1051) 23419) ((-363 . -1099) T) ((-323 . -1099) T) ((-252 . -613) 23380) ((-251 . -613) 23341) ((-583 . -640) 23306) ((-520 . -640) 23251) ((-694 . -411) 23218) ((-635 . -23) T) ((-607 . -23) T) ((-658 . -102) T) ((-597 . -111) 23189) ((-596 . -111) 23058) ((-381 . -1099) T) ((-338 . -102) T) ((-169 . -291) 22969) ((-1227 . -848) 22922) ((-714 . -1057) T) ((-1146 . -516) 22855) ((-1112 . -900) 22787) ((-836 . -1099) T) ((-827 . -1099) T) ((-825 . -1099) T) ((-97 . -102) T) ((-144 . -850) T) ((-612 . -884) 22771) ((-110 . -1214) T) ((-1086 . -102) T) ((-1062 . -34) T) ((-782 . -102) T) ((-780 . -102) T) ((-1256 . -616) 22653) ((-1249 . -616) 22396) ((-463 . -102) T) ((-456 . -102) T) ((-1228 . -616) 22191) ((-240 . -795) 22142) ((-240 . -792) 22093) ((-649 . -102) T) ((-597 . -616) 22051) ((-596 . -616) 21933) ((-1237 . -291) 21844) ((-664 . -634) 21828) ((-186 . -613) 21810) ((-644 . -287) 21787) ((-1034 . -717) 21771) ((-573 . -291) T) ((-963 . -648) 21696) ((-1287 . -131) T) ((-735 . -648) 21656) ((-715 . -648) 21643) ((-276 . -102) T) ((-455 . -648) 21573) ((-50 . -102) T) ((-583 . -102) T) ((-520 . -102) T) ((-1256 . -1049) T) ((-1249 . -1049) T) ((-1228 . -1049) T) ((-509 . -646) 21555) ((-323 . -717) 21537) ((-1256 . -233) 21496) ((-1249 . -243) 21475) ((-1249 . -233) 21427) ((-1228 . -233) 21314) ((-1228 . -243) 21293) ((-1208 . -38) 21190) ((-597 . -1049) T) ((-596 . -1049) T) ((-1004 . -795) T) ((-1004 . -792) T) ((-971 . -795) T) ((-971 . -792) T) ((-872 . -1057) T) ((-109 . -613) 21172) ((-694 . -454) T) ((-381 . -717) 21137) ((-420 . -648) 21111) ((-870 . -869) 21095) ((-711 . -38) 21060) ((-596 . -233) 21019) ((-40 . -724) 20991) ((-353 . -330) 20968) ((-353 . -365) T) ((-1079 . -308) 20919) ((-295 . -1111) 20800) ((-1105 . -1214) T) ((-171 . -102) T) ((-1231 . -613) 20767) ((-843 . -131) 20719) ((-644 . -1252) 20703) ((-836 . -717) 20673) ((-827 . -717) 20643) ((-484 . -1214) T) ((-361 . -308) T) ((-355 . -308) T) ((-347 . -308) T) ((-644 . -604) 20620) ((-409 . -131) T) ((-522 . -666) 20604) ((-108 . -308) T) ((-295 . -23) 20487) ((-522 . -651) 20471) ((-694 . -404) NIL) ((-522 . -375) 20455) ((-292 . -613) 20437) ((-91 . -1099) 20415) ((-108 . -1022) T) ((-566 . -143) T) ((-1264 . -151) 20399) ((-484 . -1038) 20226) ((-1250 . -145) 20187) ((-1250 . -147) 20148) ((-1054 . -1214) T) ((-993 . -613) 20130) ((-862 . -613) 20112) ((-816 . -1056) 19955) ((-1275 . -93) T) ((-1274 . -93) T) ((-1171 . -614) NIL) ((-1095 . -1099) T) ((-1089 . -1099) T) ((-1086 . -310) 19942) ((-1072 . -1099) T) ((-227 . -1214) T) ((-1065 . -1099) T) ((-1036 . -1099) T) ((-1019 . -1099) T) ((-782 . -310) 19929) ((-780 . -310) 19916) ((-1171 . -613) 19898) ((-816 . -111) 19727) ((-1124 . -613) 19709) ((-626 . -1099) T) ((-579 . -173) T) ((-531 . -173) T) ((-456 . -310) 19696) ((-485 . -1099) T) ((-1124 . -614) 19444) ((-1034 . -172) T) ((-943 . -289) 19421) ((-218 . -1099) T) ((-854 . -613) 19403) ((-608 . -516) 19186) ((-81 . -616) 19127) ((-818 . -1038) 19111) ((-477 . -516) 18903) ((-963 . -726) T) ((-735 . -726) T) ((-715 . -726) T) ((-353 . -1111) T) ((-1178 . -613) 18885) ((-223 . -102) T) ((-484 . -379) 18854) ((-517 . -1099) T) ((-512 . -1099) T) ((-510 . -1099) T) ((-799 . -648) 18828) ((-1024 . -454) T) ((-958 . -516) 18761) ((-353 . -23) T) ((-635 . -131) T) ((-607 . -131) T) ((-356 . -454) T) ((-240 . -370) 18740) ((-381 . -172) T) ((-1248 . -1057) T) ((-1227 . -1057) T) ((-225 . -1002) T) ((-816 . -616) 18477) ((-699 . -389) T) ((-420 . -726) T) ((-701 . -1218) T) ((-1141 . -639) 18425) ((-582 . -869) 18409) ((-1279 . -1056) 18393) ((-1158 . -1190) 18369) ((-701 . -558) T) ((-126 . -1099) 18347) ((-714 . -1099) T) ((-484 . -900) 18279) ((-249 . -1099) T) ((-187 . -1099) T) ((-658 . -38) 18249) ((-356 . -404) T) ((-317 . -147) 18228) ((-317 . -145) 18207) ((-128 . -516) NIL) ((-116 . -558) T) ((-314 . -147) 18163) ((-314 . -145) 18119) ((-48 . -454) T) ((-162 . -1099) T) ((-157 . -1099) T) ((-1158 . -107) 18066) ((-782 . -1150) 18044) ((-689 . -34) T) ((-1279 . -111) 18023) ((-552 . -34) T) ((-486 . -107) 18007) ((-252 . -289) 17984) ((-251 . -289) 17961) ((-871 . -287) 17912) ((-45 . -1214) T) ((-1220 . -844) T) ((-816 . -1049) T) ((-662 . -646) 17881) ((-1177 . -47) 17858) ((-816 . -327) 17820) ((-1086 . -38) 17669) ((-816 . -233) 17648) ((-782 . -38) 17477) ((-780 . -38) 17326) ((-1114 . -492) 17307) ((-456 . -38) 17156) ((-1114 . -613) 17122) ((-1117 . -102) T) ((-644 . -614) 17083) ((-644 . -613) 16995) ((-583 . -1150) T) ((-520 . -1150) T) ((-1146 . -491) 16979) ((-345 . -1051) 16924) ((-1200 . -1099) 16902) ((-1141 . -25) T) ((-1141 . -21) T) ((-345 . -640) 16847) ((-1279 . -616) 16796) ((-476 . -1057) T) ((-1220 . -1099) T) ((-1228 . -792) NIL) ((-1228 . -795) NIL) ((-999 . -850) 16775) ((-838 . -1099) T) ((-819 . -613) 16757) ((-866 . -21) T) ((-866 . -25) T) ((-799 . -726) T) ((-174 . -1218) T) ((-583 . -38) 16722) ((-520 . -38) 16687) ((-388 . -613) 16669) ((-334 . -102) T) ((-325 . -613) 16651) ((-169 . -287) 16609) ((-63 . -1214) T) ((-112 . -102) T) ((-872 . -1099) T) ((-174 . -558) T) ((-714 . -717) 16579) ((-295 . -131) 16462) ((-225 . -613) 16444) ((-225 . -614) 16374) ((-1003 . -639) 16313) ((-1279 . -1049) T) ((-1119 . -147) T) ((-632 . -1190) 16288) ((-731 . -909) 16267) ((-594 . -34) T) ((-647 . -107) 16251) ((-632 . -107) 16197) ((-1237 . -287) 16124) ((-731 . -648) 16049) ((-296 . -1214) T) ((-1177 . -1038) 15945) ((-943 . -618) 15922) ((-579 . -578) T) ((-579 . -529) T) ((-531 . -529) T) ((-1166 . -909) NIL) ((-1061 . -614) 15837) ((-1061 . -613) 15819) ((-952 . -613) 15801) ((-713 . -492) 15751) ((-345 . -102) T) ((-252 . -1056) 15648) ((-251 . -1056) 15545) ((-396 . -102) T) ((-31 . -1099) T) ((-952 . -614) 15406) ((-713 . -613) 15341) ((-1277 . -1207) 15310) ((-483 . -613) 15292) ((-483 . -614) 15153) ((-265 . -413) 15137) ((-247 . -413) 15121) ((-252 . -111) 15011) ((-251 . -111) 14901) ((-1173 . -648) 14826) ((-1172 . -648) 14723) ((-1166 . -648) 14575) ((-1125 . -648) 14500) ((-353 . -131) T) ((-82 . -443) T) ((-82 . -397) T) ((-1003 . -25) T) ((-1003 . -21) T) ((-873 . -1099) 14451) ((-40 . -1051) 14396) ((-872 . -717) 14348) ((-40 . -640) 14293) ((-381 . -291) T) ((-169 . -1002) 14244) ((-694 . -389) T) ((-999 . -997) 14228) ((-701 . -1111) T) ((-694 . -166) 14210) ((-1248 . -1099) T) ((-1227 . -1099) T) ((-317 . -1199) 14189) ((-317 . -1202) 14168) ((-1163 . -102) T) ((-317 . -959) 14147) ((-134 . -1111) T) ((-116 . -1111) T) ((-602 . -1262) 14131) ((-701 . -23) T) ((-602 . -1099) 14081) ((-317 . -95) 14060) ((-91 . -516) 13993) ((-174 . -365) T) ((-252 . -616) 13723) ((-251 . -616) 13453) ((-317 . -35) 13432) ((-608 . -491) 13366) ((-134 . -23) T) ((-116 . -23) T) ((-966 . -102) T) ((-718 . -1099) T) ((-477 . -491) 13303) ((-409 . -639) 13251) ((-653 . -1038) 13147) ((-958 . -491) 13131) ((-357 . -1057) T) ((-354 . -1057) T) ((-346 . -1057) T) ((-265 . -1057) T) ((-247 . -1057) T) ((-871 . -614) NIL) ((-871 . -613) 13113) ((-1275 . -492) 13094) ((-1274 . -492) 13075) ((-1287 . -21) T) ((-1275 . -613) 13041) ((-1274 . -613) 13007) ((-573 . -1002) T) ((-731 . -726) T) ((-1287 . -25) T) ((-252 . -1049) 12937) ((-251 . -1049) 12867) ((-72 . -1214) T) ((-252 . -233) 12819) ((-251 . -233) 12771) ((-40 . -102) T) ((-910 . -1057) T) ((-1180 . -102) T) ((-128 . -491) 12753) ((-1173 . -726) T) ((-1172 . -726) T) ((-1166 . -726) T) ((-1166 . -791) NIL) ((-1166 . -794) NIL) ((-954 . -102) T) ((-921 . -102) T) ((-870 . -1051) 12740) ((-1125 . -726) T) ((-771 . -102) T) ((-672 . -102) T) ((-870 . -640) 12727) ((-548 . -613) 12709) ((-476 . -1099) T) ((-341 . -1111) T) ((-174 . -1111) T) ((-320 . -920) 12688) ((-1248 . -717) 12529) ((-872 . -172) T) ((-1227 . -717) 12343) ((-843 . -21) 12295) ((-843 . -25) 12247) ((-245 . -1148) 12231) ((-126 . -516) 12164) ((-409 . -25) T) ((-409 . -21) T) ((-341 . -23) T) ((-169 . -614) 11930) ((-169 . -613) 11912) ((-174 . -23) T) ((-644 . -289) 11889) ((-522 . -34) T) ((-898 . -613) 11871) ((-89 . -1214) T) ((-841 . -613) 11853) ((-808 . -613) 11835) ((-769 . -613) 11817) ((-677 . -613) 11799) ((-240 . -648) 11647) ((-1175 . -1099) T) ((-1171 . -1056) 11470) ((-1149 . -1214) T) ((-1124 . -1056) 11313) ((-854 . -1056) 11297) ((-1231 . -618) 11281) ((-1171 . -111) 11090) ((-1124 . -111) 10919) ((-854 . -111) 10898) ((-1221 . -850) T) ((-1237 . -614) NIL) ((-1237 . -613) 10880) ((-345 . -1150) T) ((-855 . -613) 10862) ((-1075 . -287) 10841) ((-80 . -1214) T) ((-1004 . -909) NIL) ((-608 . -287) 10817) ((-1200 . -516) 10750) ((-489 . -1214) T) ((-573 . -613) 10732) ((-477 . -287) 10711) ((-1208 . -646) 10621) ((-519 . -93) T) ((-1086 . -231) 10605) ((-217 . -1214) T) ((-1004 . -648) 10555) ((-958 . -287) 10532) ((-290 . -920) T) ((-817 . -308) 10511) ((-870 . -102) T) ((-782 . -231) 10495) ((-914 . -648) 10447) ((-711 . -646) 10397) ((-694 . -724) 10364) ((-635 . -21) T) ((-635 . -25) T) ((-607 . -21) T) ((-549 . -102) T) ((-345 . -38) 10329) ((-489 . -884) 10311) ((-489 . -886) 10293) ((-476 . -717) 10134) ((-217 . -884) 10116) ((-64 . -1214) T) ((-217 . -886) 10098) ((-607 . -25) T) ((-429 . -648) 10072) ((-1171 . -616) 9841) ((-489 . -1038) 9801) ((-872 . -516) 9713) ((-1124 . -616) 9505) ((-854 . -616) 9423) ((-217 . -1038) 9383) ((-240 . -34) T) ((-1000 . -1099) 9361) ((-582 . -1051) 9348) ((-566 . -1051) 9335) ((-497 . -1051) 9300) ((-1248 . -172) 9231) ((-1227 . -172) 9162) ((-582 . -640) 9149) ((-566 . -640) 9136) ((-497 . -640) 9101) ((-712 . -145) 9080) ((-712 . -147) 9059) ((-701 . -131) T) ((-136 . -467) 9036) ((-1146 . -613) 8968) ((-658 . -656) 8952) ((-128 . -287) 8927) ((-116 . -131) T) ((-479 . -1218) T) ((-608 . -604) 8903) ((-477 . -604) 8882) ((-338 . -337) 8851) ((-538 . -1099) T) ((-479 . -558) T) ((-1171 . -1049) T) ((-1124 . -1049) T) ((-854 . -1049) T) ((-240 . -791) 8830) ((-240 . -794) 8781) ((-240 . -793) 8760) ((-1171 . -327) 8737) ((-240 . -726) 8647) ((-958 . -19) 8631) ((-489 . -379) 8613) ((-489 . -340) 8595) ((-1124 . -327) 8567) ((-356 . -1271) 8544) ((-217 . -379) 8526) ((-217 . -340) 8508) ((-958 . -604) 8485) ((-1171 . -233) T) ((-1260 . -1099) T) ((-664 . -1099) T) ((-645 . -1099) T) ((-1187 . -1099) T) ((-1086 . -254) 8422) ((-587 . -646) 8382) ((-357 . -1099) T) ((-354 . -1099) T) ((-346 . -1099) T) ((-265 . -1099) T) ((-247 . -1099) T) ((-84 . -1214) T) ((-127 . -102) 8360) ((-121 . -102) 8338) ((-1187 . -610) 8317) ((-1227 . -516) 8177) ((-1140 . -1099) T) ((-1114 . -616) 8158) ((-481 . -1099) T) ((-1079 . -920) 8109) ((-1004 . -794) T) ((-481 . -610) 8088) ((-252 . -795) 8039) ((-252 . -792) 7990) ((-251 . -795) 7941) ((-40 . -1150) NIL) ((-251 . -792) 7892) ((-1004 . -791) T) ((-128 . -19) 7874) ((-1004 . -726) T) ((-699 . -1051) 7839) ((-971 . -794) T) ((-914 . -726) T) ((-910 . -1099) T) ((-128 . -604) 7814) ((-699 . -640) 7779) ((-91 . -491) 7763) ((-489 . -900) NIL) ((-892 . -613) 7745) ((-225 . -1056) 7710) ((-872 . -291) T) ((-217 . -900) NIL) ((-833 . -1111) 7689) ((-59 . -1099) 7639) ((-521 . -1099) 7617) ((-518 . -1099) 7567) ((-499 . -1099) 7545) ((-498 . -1099) 7495) ((-582 . -102) T) ((-566 . -102) T) ((-497 . -102) T) ((-476 . -172) 7426) ((-361 . -920) T) ((-355 . -920) T) ((-347 . -920) T) ((-225 . -111) 7382) ((-833 . -23) 7334) ((-429 . -726) T) ((-108 . -920) T) ((-40 . -38) 7279) ((-108 . -820) T) ((-583 . -351) T) ((-520 . -351) T) ((-836 . -287) 7258) ((-317 . -454) 7237) ((-314 . -454) T) ((-658 . -646) 7196) ((-602 . -516) 7129) ((-341 . -131) T) ((-174 . -131) T) ((-295 . -25) 6993) ((-295 . -21) 6876) ((-45 . -1190) 6855) ((-66 . -613) 6837) ((-55 . -102) T) ((-338 . -646) 6819) ((-45 . -107) 6769) ((-819 . -616) 6753) ((-1265 . -102) T) ((-1264 . -102) 6703) ((-1256 . -648) 6628) ((-1249 . -648) 6525) ((-1101 . -427) 6509) ((-1101 . -370) 6488) ((-388 . -616) 6472) ((-325 . -616) 6456) ((-1228 . -648) 6308) ((-1228 . -909) NIL) ((-1062 . -1214) T) ((-1086 . -646) 6218) ((-1061 . -1056) 6205) ((-1061 . -111) 6190) ((-952 . -1056) 6033) ((-952 . -111) 5862) ((-782 . -646) 5772) ((-780 . -646) 5682) ((-623 . -1051) 5669) ((-664 . -717) 5653) ((-623 . -640) 5640) ((-483 . -1056) 5483) ((-479 . -365) T) ((-463 . -646) 5439) ((-456 . -646) 5349) ((-225 . -616) 5299) ((-357 . -717) 5251) ((-354 . -717) 5203) ((-117 . -1051) 5148) ((-346 . -717) 5100) ((-265 . -717) 4949) ((-247 . -717) 4798) ((-1195 . -613) 4780) ((-1095 . -93) T) ((-117 . -640) 4725) ((-1089 . -93) T) ((-943 . -651) 4709) ((-1072 . -93) T) ((-483 . -111) 4538) ((-1065 . -93) T) ((-1036 . -93) T) ((-943 . -375) 4522) ((-248 . -102) T) ((-1019 . -93) T) ((-74 . -613) 4504) ((-963 . -47) 4483) ((-710 . -102) T) ((-699 . -102) T) ((-1 . -1099) T) ((-621 . -1111) T) ((-1087 . -613) 4465) ((-626 . -93) T) ((-1075 . -613) 4447) ((-910 . -717) 4412) ((-126 . -491) 4396) ((-485 . -93) T) ((-621 . -23) T) ((-392 . -23) T) ((-87 . -1214) T) ((-218 . -93) T) ((-608 . -613) 4378) ((-608 . -614) NIL) ((-477 . -614) NIL) ((-477 . -613) 4360) ((-353 . -25) T) ((-353 . -21) T) ((-50 . -646) 4319) ((-513 . -1099) T) ((-509 . -1099) T) ((-127 . -310) 4257) ((-121 . -310) 4195) ((-597 . -648) 4182) ((-596 . -648) 4107) ((-583 . -646) 4057) ((-225 . -1049) T) ((-520 . -646) 3987) ((-381 . -1002) T) ((-225 . -243) T) ((-225 . -233) T) ((-1061 . -616) 3959) ((-1061 . -618) 3940) ((-958 . -614) 3901) ((-958 . -613) 3813) ((-952 . -616) 3602) ((-870 . -38) 3589) ((-713 . -616) 3539) ((-1248 . -291) 3490) ((-1227 . -291) 3441) ((-483 . -616) 3226) ((-1119 . -454) T) ((-504 . -850) T) ((-317 . -1138) 3205) ((-999 . -147) 3184) ((-999 . -145) 3163) ((-497 . -310) 3150) ((-296 . -1190) 3129) ((-1182 . -613) 3111) ((-1181 . -613) 3093) ((-871 . -1056) 3038) ((-479 . -1111) T) ((-139 . -835) 3020) ((-114 . -835) 3001) ((-623 . -102) T) ((-1200 . -491) 2985) ((-252 . -370) 2964) ((-251 . -370) 2943) ((-1061 . -1049) T) ((-296 . -107) 2893) ((-130 . -613) 2875) ((-128 . -614) NIL) ((-128 . -613) 2819) ((-117 . -102) T) ((-952 . -1049) T) ((-871 . -111) 2748) ((-479 . -23) T) ((-483 . -1049) T) ((-1061 . -233) T) ((-952 . -327) 2717) ((-483 . -327) 2674) ((-357 . -172) T) ((-354 . -172) T) ((-346 . -172) T) ((-265 . -172) 2585) ((-247 . -172) 2496) ((-963 . -1038) 2392) ((-519 . -492) 2373) ((-735 . -1038) 2344) ((-519 . -613) 2310) ((-1104 . -102) T) ((-1091 . -613) 2277) ((-1034 . -613) 2259) ((-694 . -1051) 2209) ((-1277 . -151) 2193) ((-1275 . -616) 2174) ((-1274 . -616) 2155) ((-1269 . -613) 2137) ((-1256 . -726) T) ((-694 . -640) 2087) ((-1249 . -726) T) ((-1228 . -791) NIL) ((-1228 . -794) NIL) ((-169 . -1056) 1997) ((-910 . -172) T) ((-871 . -616) 1927) ((-1228 . -726) T) ((-1003 . -344) 1901) ((-223 . -646) 1853) ((-1000 . -516) 1786) ((-843 . -850) 1765) ((-566 . -1150) T) ((-476 . -291) 1716) ((-597 . -726) T) ((-363 . -613) 1698) ((-323 . -613) 1680) ((-420 . -1038) 1576) ((-596 . -726) T) ((-409 . -850) 1527) ((-169 . -111) 1423) ((-833 . -131) 1375) ((-737 . -151) 1359) ((-1264 . -310) 1297) ((-489 . -308) T) ((-381 . -613) 1264) ((-522 . -1010) 1248) ((-381 . -614) 1162) ((-217 . -308) T) ((-141 . -151) 1144) ((-714 . -287) 1123) ((-489 . -1022) T) ((-582 . -38) 1110) ((-566 . -38) 1097) ((-497 . -38) 1062) ((-217 . -1022) T) ((-871 . -1049) T) ((-836 . -613) 1044) ((-827 . -613) 1026) ((-825 . -613) 1008) ((-816 . -909) 987) ((-1288 . -1111) T) ((-1237 . -1056) 810) ((-855 . -1056) 794) ((-871 . -243) T) ((-871 . -233) NIL) ((-689 . -1214) T) ((-1288 . -23) T) ((-816 . -648) 719) ((-552 . -1214) T) ((-420 . -340) 703) ((-573 . -1056) 690) ((-1237 . -111) 499) ((-701 . -639) 481) ((-855 . -111) 460) ((-383 . -23) T) ((-169 . -616) 238) ((-1187 . -516) 30) ((-681 . -1099) T) ((-676 . -1099) T) ((-662 . -1099) T))
\ No newline at end of file diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase index ea3e0f2f..9934eff8 100644 --- a/src/share/algebra/compress.daase +++ b/src/share/algebra/compress.daase @@ -1,6 +1,6 @@ -(30 . 3452830384) -(4413 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| +(30 . 3453332748) +(4420 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join| |ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&| |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| @@ -73,10 +73,10 @@ |DirectProductFunctions2| |DirectProduct| |DisplayPackage| |DivisionRing&| |DivisionRing| |DoublyLinkedAggregate| |DataList| |DiscreteLogarithmPackage| |DistributedMultivariatePolynomial| - |Domain| |DomainConstructor| |DirectProductMatrixModule| - |DirectProductModule| |DifferentialPolynomialCategory&| - |DifferentialPolynomialCategory| |DequeueAggregate| - |TopLevelDrawFunctionsForCompiledFunctions| + |Domain| |DomainConstructor| |DomainTemplate| + |DirectProductMatrixModule| |DirectProductModule| + |DifferentialPolynomialCategory&| |DifferentialPolynomialCategory| + |DequeueAggregate| |TopLevelDrawFunctionsForCompiledFunctions| |TopLevelDrawFunctionsForAlgebraicCurves| |DrawComplex| |DrawNumericHack| |TopLevelDrawFunctions| |TopLevelDrawFunctionsForPoints| |DrawOptionFunctions0| @@ -108,7 +108,7 @@ |FreeAbelianMonoid| |FiniteAbelianMonoidRing&| |FiniteAbelianMonoidRing| |FlexibleArray| |FiniteAlgebraicExtensionField&| |FiniteAlgebraicExtensionField| - |FortranCode| |FourierComponent| |FortranCodePackage1| + |FortranCode| |FourierComponent| |FortranCodePackage1| |FunctorData| |FiniteDivisorFunctions2| |FiniteDivisorCategory&| |FiniteDivisorCategory| |FiniteDivisor| |FullyEvalableOver&| |FullyEvalableOver| |FortranExpression| @@ -478,661 +478,663 @@ |XPolynomial| |XPolynomialRing| |XRecursivePolynomial| |ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage| |IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping| - |Record| |Union| |safeCeiling| |atanIfCan| |fracPart| - |leadingCoefficientRicDE| |sinhIfCan| |nodes| |rootKerSimp| - |scaleRoots| |matrixConcat3D| |setelt!| |expr| |cycleTail| - |computePowers| |characteristicPolynomial| |part?| |push| |cyclic?| - |vedf2vef| |skewSFunction| |branchPoint?| |integralBasis| |updatD| - |factorials| |cfirst| |nonSingularModel| |sPol| |physicalLength!| - |nextPrimitivePoly| |rdHack1| |combineFeatureCompatibility| - |thenBranch| |logical?| |f02bjf| |OMcloseConn| |intensity| - |identityMatrix| |jacobi| |conjugates| |sn| |OMputEndBVar| - |traceMatrix| |connectTo| |normalizedAssociate| |iisech| |leftRecip| - |readInt32!| |variable| |nextColeman| |basisOfLeftNucloid| |OMserve| - |arrayStack| |position!| |hasPredicate?| |symbol| |complexSolve| - |readByte!| |fixPredicate| |iterators| |viewPhiDefault| |discreteLog| - |list?| |d01akf| |s18def| |hasoln| |expression| |splitConstant| - |definingPolynomial| |UpTriBddDenomInv| |computeBasis| - |doubleResultant| |henselFact| |has?| |padicFraction| |changeName| - |integer| |bezoutResultant| |midpoint| |d01apf| |setTopPredicate| - |harmonic| |setPredicates| |changeThreshhold| |pointColor| |ceiling| - |zeroDimPrimary?| |modulus| |patternMatch| |symmetric?| |number?| - |lfintegrate| |super| |extractBottom!| |presuper| - |lastSubResultantEuclidean| |HenselLift| |simplifyExp| |isConnected?| - |totalGroebner| |basisOfLeftAnnihilator| |groebnerIdeal| - |removeRedundantFactorsInPols| |postfix| |bivariateSLPEBR| |sequence| - |evenInfiniteProduct| |write!| |trueEqual| |printStatement| - |createMultiplicationMatrix| |port| |deepestTail| |delete!| - |setvalue!| |interReduce| |htrigs| |unravel| |difference| ** - |setCondition!| |dequeue| |sin2csc| |atanhIfCan| |explicitlyEmpty?| - |exprToXXP| |rewriteIdealWithHeadRemainder| |factorial| |revert| - |s01eaf| |imagj| |powers| |t| |absolutelyIrreducible?| - |primitiveElement| |identification| |ListOfTerms| |copies| - |reduceBasisAtInfinity| |addiag| |linkToFortran| |f01qef| |label| - |iiasinh| |error| |setValue!| |hostPlatform| |mkPrim| |nodeOf?| - |realElementary| |mainPrimitivePart| |setVariableOrder| |root?| - |minordet| |assert| |OMputString| |roughBasicSet| |typeLists| - |coth2trigh| |viewpoint| |dflist| |powmod| |OMunhandledSymbol| - |prefix?| |traverse| |identity| |isPower| |gensym| |e02bcf| |is?| - |f04arf| |nthCoef| |binaryFunction| - |zeroSetSplitIntoTriangularSystems| |viewDeltaXDefault| |varselect| - |pointSizeDefault| |sylvesterSequence| |quasiMonic?| |consnewpol| - |goodnessOfFit| |pushdown| |scopes| |iitanh| |cosIfCan| |connect| - |inrootof| |packageCall| |interval| |binding| |expressIdealMember| - |virtualDegree| |module| |leftTrace| |mesh?| |f01rdf| - |stoseInvertible?reg| |diagonalProduct| |associatorDependence| - |testDim| |graphState| |f04mbf| |padecf| |OMconnOutDevice| |rotate| - |functionIsOscillatory| |inRadical?| |constructor| - |numberOfPrimitivePoly| |indicialEquations| |OMgetAttr| |bindings| - |iiGamma| |removeZeroes| |newReduc| |invmultisect| |palglimint0| - |makingStats?| |d02gaf| |monicRightDivide| |create3Space| - |makeGraphImage| |infix?| |option| |systemSizeIF| - |mainCharacterization| |RemainderList| |useSingleFactorBound?| - |pushNewContour| |knownInfBasis| |iicsc| |tanhIfCan| |bigEndian| - |mask| |computeCycleLength| |infinityNorm| |curry| |setLength!| - |scale| |OMgetEndAttr| |stopTableInvSet!| |rationalFunction| - |applyRules| |endSubProgram| |OMread| |supersub| |condition| - |reverse!| |imagi| |contract| |mainKernel| |rk4| |integralCoordinates| - |leftUnits| |parabolic| |printInfo!| |fortranLiteralLine| |rischDEsys| - |constant| |cSinh| |rightTrim| |s17acf| |pseudoDivide| |OMreadStr| - |mainVariable| |isMult| |determinant| |initTable!| |lineColorDefault| - |OMputSymbol| |leftTrim| |deleteProperty!| |points| |getCode| - |minimumExponent| |basisOfRightNucleus| |factors| - |inputOutputBinaryFile| |cSech| |e01saf| |leftNorm| |ideal| |sts2stst| - |s13acf| |solve| |redPol| |squareTop| |optional?| |clearDenominator| - |leviCivitaSymbol| |polarCoordinates| |setnext!| - |numberOfComputedEntries| |stirling2| |selectIntegrationRoutines| - |OMclose| |printingInfo?| |maximumExponent| |normalDenom| |comment| - |checkForZero| |associates?| |primeFrobenius| |f02wef| - |genericLeftMinimalPolynomial| |genericLeftDiscriminant| |readable?| - |before?| |isAbsolutelyIrreducible?| |viewPosDefault| |cubic| - |parametric?| |acotIfCan| |graphStates| |laplace| |s21bbf| - |semiResultantEuclideannaif| |alphanumeric?| |diff| - |complexElementary| |sumOfKthPowerDivisors| |explimitedint| |forLoop| - |close| |delta| |lquo| |subMatrix| |Frobenius| |symmetricSquare| - |child?| |kind| |shrinkable| |superHeight| |oddintegers| |d03faf| - |setleaves!| |ellipticCylindrical| |abs| |chebyshevT| |diagonal?| |Ei| - |varList| |OMencodingUnknown| |separateFactors| |op| |beauzamyBound| - |display| |euclideanGroebner| |showTheFTable| |linearlyDependent?| - |entry?| |algebraicVariables| |innerSolve| |expextendedint| - |scripted?| |iFTable| |pattern| |algebraicOf| |solveLinear| - |selectMultiDimensionalRoutines| |computeCycleEntry| |integralMatrix| - |infiniteProduct| |var1Steps| |numericalOptimization| |f01rcf| - |extractProperty| |hexDigit?| |f02aef| |tubeRadius| |meshPar2Var| - |mantissa| |e02adf| |prinpolINFO| |patternVariable| |insert!| - |unknownEndian| |cardinality| |semiResultantEuclidean2| - |leftRegularRepresentation| |cos2sec| |aLinear| |escape| |edf2fi| - |goodPoint| |tanQ| |cyclicEqual?| |compile| |errorInfo| |ef2edf| - |factorSquareFree| |vark| |nthExponent| |closeComponent| |retract| - |internalSubPolSet?| |input| |message| |flagFactor| |lambda| - |lieAdmissible?| |f01maf| |transcendenceDegree| - |linearDependenceOverZ| |numberOfHues| |clearTheSymbolTable| - |headRemainder| |union| |patternMatchTimes| |library| |lifting1| - |f02aff| |listexp| |nthFlag| |imagI| |createLowComplexityNormalBasis| - |generalizedContinuumHypothesisAssumed?| |collectUnder| - |numberOfImproperPartitions| |bat| |d02gbf| |doubleComplex?| |mvar| - |appendPoint| |f04atf| |bitLength| |getIdentifier| |infix| - |printTypes| |unit?| |saturate| |viewWriteAvailable| |bandedJacobian| - |elements| |expenseOfEvaluation| |cylindrical| |normal?| |qfactor| - |ratDenom| |rightNorm| |times!| |rischDE| |readLineIfCan!| |conjugate| - |c06ebf| |rur| |preprocess| |set| |decrease| |euclideanNormalForm| - |distance| |fprindINFO| |recoverAfterFail| |cons| |reorder| |reindex| - |mathieu24| |quasiComponent| |iiacot| |OMUnknownCD?| |completeHermite| - |froot| |standardBasisOfCyclicSubmodule| |getOrder| |OMputEndApp| - |factorset| |cothIfCan| |fortranInteger| |setProperties!| |rowEch| - |increment| |bumptab1| |plus| |simpsono| |cAcosh| |zeroDimensional?| - |whatInfinity| |Is| |rightRegularRepresentation| |eulerE| |cCsch| - |e04naf| |crest| |rombergo| |unprotectedRemoveRedundantFactors| - |latex| |e02baf| |iiasech| |factorsOfDegree| |pointColorPalette| - |s15adf| |setMinPoints| |isOr| |cschIfCan| |block| |splitDenominator| - |e04ycf| |indiceSubResultantEuclidean| |zeroOf| |transcendent?| - |routines| |processTemplate| F2FG |fixedPoint| |prevPrime| - |insertBottom!| |chainSubResultants| |linSolve| |OMsend| |minIndex| - |times| |qelt| |idealSimplify| |localIntegralBasis| - |uncouplingMatrices| |initial| |elRow1!| |polCase| |rationalPower| - |scanOneDimSubspaces| |stoseLastSubResultant| |qsetelt| |returnType!| - |modTree| |groebgen| |startPolynomial| |boundOfCauchy| |mkAnswer| - |resultantnaif| |s21bdf| |selectFiniteRoutines| |sorted?| |xRange| - |overset?| |selectODEIVPRoutines| |Vectorise| |writeUInt8!| - |fractionPart| |reducedForm| |readUInt16!| |digit?| |mathieu22| - |yRange| |OMlistCDs| |algebraicCoefficients?| |d02raf| |optimize| - |outputSpacing| |FormatArabic| |acoshIfCan| |fortranLogical| - |fortranTypeOf| |numberOfOperations| |monom| |zRange| |leadingIdeal| - |halfExtendedSubResultantGcd1| |e02ajf| |LagrangeInterpolation| - |dfRange| |idealiserMatrix| |s17dhf| |dec| - |halfExtendedSubResultantGcd2| |map!| |exponential| |rule| |mapGen| - |singRicDE| |numericIfCan| |node| |makeSUP| |shuffle| |yCoord| - |repeatUntilLoop| |stopTable!| |indicialEquationAtInfinity| - |dmpToHdmp| |monomRDE| |changeBase| |groebner?| |f04maf| |modularGcd| - |monicRightFactorIfCan| |extendedEuclidean| |extensionDegree| |common| - |f04jgf| |push!| |completeHensel| |solveid| |hclf| |isList| - |indicialEquation| |complexNormalize| |lieAlgebra?| |BumInSepFFE| - |elliptic?| |subst| |leftCharacteristicPolynomial| |mathieu23| - |tRange| |e02zaf| |mainVariables| |genericRightTrace| |e04fdf| |box| - |cyclePartition| |totalDifferential| |solveRetract| |coerceL| - |numberOfMonomials| |mix| |meshFun2Var| |limitPlus| |constantOperator| - |physicalLength| |torsionIfCan| |alphabetic| - |resultantReduitEuclidean| |genus| |key| |exptMod| - |semiSubResultantGcdEuclidean1| |rootSimp| |s18adf| |e01daf| - |perspective| |zoom| |primitivePart!| |toseSquareFreePart| |cTan| - |magnitude| |iiacosh| |remove!| |discriminantEuclidean| |alphanumeric| - |karatsubaDivide| |toseInvertibleSet| |filename| |wrregime| - |rightUnit| |mappingAst| |finiteBound| |setClosed| |binaryTree| - |mainExpression| |linearPart| |exprToUPS| |selectPolynomials| - |overbar| |stoseInvertible?sqfreg| |parseString| |lifting| |queue| - |objects| |sub| |c06gqf| |parse| |nthFractionalTerm| - |prepareDecompose| |rationalPoints| |oddlambert| |normFactors| - |mulmod| |LyndonWordsList| |base| |stripCommentsAndBlanks| |leaf?| - |outputFixed| |e01baf| |isEquiv| |primPartElseUnitCanonical| - |superscript| |OMgetString| |sturmVariationsOf| |SturmHabichtSequence| - |basisOfCenter| |monomialIntegrate| |qroot| |OMencodingXML| |nullity| - |csc2sin| |dot| |equation| |radicalSolve| |subNode?| - |expandTrigProducts| |binaryTournament| |changeVar| |optpair| - |getProperty| |laurentRep| |leastPower| |inGroundField?| |mapSolve| - |getGraph| |lSpaceBasis| |bits| |remainder| |squareFreePart| - |viewSizeDefault| |monomials| |s17aff| |weighted| |aCubic| |directSum| - |upperCase| |mr| |nor| |f02axf| |s18dcf| |properties| - |singularitiesOf| |linear?| EQ |acschIfCan| |closedCurve| |nullary| - |symbolTable| |PDESolve| |rightFactorCandidate| |nonQsign| - |rightRankPolynomial| |stop| |parts| |zeroDimPrime?| |f01qcf| |expPot| - |translate| |genericRightDiscriminant| |nthRoot| |cotIfCan| - |pmComplexintegrate| |modifyPoint| |rectangularMatrix| - |pushFortranOutputStack| |semiResultantReduitEuclidean| |f02awf| - |s17ahf| |addMatchRestricted| |extractIfCan| |anticoord| |setPoly| - |halfExtendedResultant2| |zero| |lazyPseudoDivide| |flexible?| - |twoFactor| |popFortranOutputStack| |normalElement| |rootBound| - |lfextendedint| |gradient| |legendre| |screenResolution| |lllip| - |numberOfComposites| |clipWithRanges| |eof?| |lazyPrem| |makeop| - |wholeRadix| |outputAsFortran| |iilog| - |inverseIntegralMatrixAtInfinity| |c06ecf| |OMgetEndBind| |And| - |OMreceive| |exportedOperators| |backOldPos| |index| |lcm| - |graphCurves| |semiDegreeSubResultantEuclidean| |pdct| - |monomialIntPoly| |green| |unitVector| |Or| |previous| |permutations| - |minimalPolynomial| |removeIrreducibleRedundantFactors| - |positiveSolve| |groebner| |enqueue!| |suchThat| |critBonD| |delete| - |removeSquaresIfCan| |depth| |shallowCopy| |Not| |besselJ| |stirling1| - |swap| |critB| |addPoint2| |append| |axesColorDefault| |arguments| - |thetaCoord| |charClass| |outputForm| |pdf2ef| |f2df| |pair| |maxrank| - |quoted?| |purelyTranscendental?| |gcd| |subResultantGcd| |polar| - |value| |cAcsc| |OMopenFile| |showTheIFTable| |rightZero| |interpret| - |internalIntegrate| |OMReadError?| |cSin| |parametersOf| |stack| - |false| |polyPart| |coerceP| |normDeriv2| |airyAi| |dimensions| - |s13adf| |exponential1| |integralDerivationMatrix| |Ci| |exp1| - |exteriorDifferential| |basis| |primes| |roughEqualIdeals?| - |sizeLess?| |c06ekf| |wordInGenerators| |extend| |tower| - |pascalTriangle| |inverseLaplace| FG2F |deepExpand| |lexico| |point?| - |key?| |s14abf| |cAsec| |doubleFloatFormat| |e02ddf| |rowEchelonLocal| - |opeval| |univariatePolynomial| |goto| |palginfieldint| - |contractSolve| |putGraph| |multiplyExponents| |#| |nand| - |tensorProduct| |separate| |dim| |invertibleSet| - |basisOfMiddleNucleus| |rightAlternative?| |element?| |cExp| - |selectOptimizationRoutines| |OMputAttr| |d03edf| |root| |simplifyLog| - |cRationalPower| |mainDefiningPolynomial| |unexpand| |btwFact| - |colorDef| |hdmpToP| |empty| |truncate| |minimize| |precision| |ipow| - |e02aef| |gcdPrimitive| |variationOfParameters| |radix| |vector| - |createZechTable| |imports| |complexNumeric| |geometric| |infieldint| - |generateIrredPoly| |messagePrint| |elColumn2!| |createGenericMatrix| - |wordsForStrongGenerators| |differentiate| |f01brf| |recolor| - |continuedFraction| |divideIfCan| |collectQuasiMonic| |autoReduced?| - |initials| |iCompose| |mergeDifference| |kernels| |pole?| |even?| - |stosePrepareSubResAlgo| |complexLimit| |pastel| |outputFloating| - |numberOfChildren| |symmetricProduct| |pr2dmp| |log10| |lepol| |sign| - |readUInt32!| |univariate| |lastSubResultant| |distdfact| - |stopTableGcd!| |dominantTerm| |antisymmetricTensors| |squareMatrix| - |randomLC| |s17aef| |expandLog| |bitand| |realRoots| - |complexEigenvectors| |factorPolynomial| |linearlyDependentOverZ?| - |bringDown| |makeCrit| |s14baf| |selectPDERoutines| - |resetVariableOrder| |bitior| |f02bbf| |center| |split| |sup| - |mapmult| |headAst| |float?| |numerators| |nextsubResultant2| |bounds| - |factor| |schwerpunkt| |ridHack1| |nthr| |shade| |iiasin| |qqq| - |tracePowMod| |iisec| |integralMatrixAtInfinity| |sqrt| |monomRDEsys| - F |cCot| |drawComplexVectorField| |minColIndex| |powerSum| - |positiveRemainder| |insertRoot!| |GospersMethod| |maxPoints3D| |real| - |gbasis| |status| |iicsch| |setRow!| |rk4f| |iomode| - |fortranCompilerName| |basisOfCommutingElements| |ip4Address| |f04faf| - |createMultiplicationTable| |imag| |eulerPhi| |lambert| - |symmetricRemainder| |power!| |linearAssociatedExp| |round| |unary?| - |search| |null| |e02daf| |removeRoughlyRedundantFactorsInPol| - |directProduct| |leadingTerm| |tubePoints| |cyclic| - |commutativeEquality| |quote| |yellow| |stFuncN| |not| |nthRootIfCan| - |zCoord| |eyeDistance| |lazyEvaluate| |fixedDivisor| - |exprHasAlgebraicWeight| |blankSeparate| |pomopo!| |leftRemainder| - |and| |dictionary| |finiteBasis| |chineseRemainder| |brace| RF2UTS - |any| |removeDuplicates!| |minGbasis| |rst| |bytes| - |invertibleElseSplit?| |or| |regularRepresentation| |ddFact| - |destruct| |smith| |leaves| |create| |e02dcf| |padicallyExpand| - |intersect| |ODESolve| |defineProperty| |xor| |dualSignature| - |bfEntry| |raisePolynomial| |largest| |hspace| |iicoth| |bracket| - |reflect| |relerror| |case| |stopMusserTrials| |trace2PowMod| |refine| - |multiple?| |region| |leadingSupport| |atrapezoidal| |character?| - |nextSubsetGray| |Zero| |multiEuclideanTree| |setButtonValue| - |primextintfrac| |OMencodingSGML| |clip| |oblateSpheroidal| |cAcot| - |sizeMultiplication| |assign| |One| |printCode| |controlPanel| - |monomial| |primPartElseUnitCanonical!| |unaryFunction| |components| - |complexRoots| |OMParseError?| Y |solveLinearlyOverQ| |setOfMinN| - |bat1| |rangePascalTriangle| |mightHaveRoots| |s15aef| |multivariate| - |subscript| |rowEchelon| |coerce| |just| |s17dcf| |associatedSystem| - |errorKind| |factorList| |realSolve| |variables| |removeZero| - |jacobiIdentity?| |extendedResultant| |construct| |commutator| - |compose| |limitedint| |triangularSystems| |factorAndSplit| |e01sef| - |order| |removeSuperfluousCases| |writeLine!| |socf2socdf| |tanSum| - |iisqrt3| |measure2Result| |internalAugment| |double?| |divisors| - |derivationCoordinates| |factorSquareFreeByRecursion| - |oneDimensionalArray| |initializeGroupForWordProblem| - |singleFactorBound| |node?| |cn| |viewThetaDefault| |d03eef| - |findBinding| |f04asf| |bombieriNorm| |getSyntaxFormsFromFile| - |innerint| |deleteRoutine!| |predicates| |pushuconst| |cosSinInfo| - |tanIfCan| |polynomial| |select!| |permutationGroup| - |nextPrimitiveNormalPoly| |fortranLiteral| |showSummary| |matrixGcd| - |cAtanh| |extendedSubResultantGcd| |taylor| |mainSquareFreePart| |obj| - |surface| |laguerre| |localUnquote| |curve| |rationalPoint?| - |numberOfComponents| |totalLex| |laurent| |check| |d01gbf| - |prepareSubResAlgo| |subset?| |hostByteOrder| |cache| |showAttributes| - |explogs2trigs| |extendIfCan| |puiseux| |countable?| |UP2ifCan| - |getMatch| |highCommonTerms| |expintegrate| |doubleRank| |derivative| - |integralBasisAtInfinity| |homogeneous?| |getProperties| - |laurentIfCan| |eq?| |s17ajf| |linearAssociatedLog| |inv| |janko2| - |decomposeFunc| |ratDsolve| |setProperty!| |functionIsFracPolynomial?| - |pushucoef| |lagrange| |deref| |constantToUnaryFunction| |ground?| - |makeYoungTableau| |name| |subResultantGcdEuclidean| |length| - |compiledFunction| |contours| |OMputEndAtp| |ldf2vmf| |ground| - |trigs2explogs| |body| |setright!| |scripts| |writeBytes!| - |radicalSimplify| |over| |solveLinearPolynomialEquationByRecursion| - |numFunEvals| |leadingMonomial| |primitivePart| |currentSubProgram| - |OMputObject| |leftMinimalPolynomial| |useEisensteinCriterion?| - |OMputAtp| |remove| |OMsupportsSymbol?| |dequeue!| |completeSmith| - |pointLists| |definingEquations| |leadingCoefficient| - |groebnerFactorize| |rightRank| |exprex| |tValues| |critT| |plotPolar| - |logIfCan| |mapdiv| |frobenius| |member?| |last| |lookup| |nullSpace| - |generalInfiniteProduct| |multinomial| |signatureAst| - |leftFactorIfCan| |assoc| |s18acf| |algebraicSort| |bfKeys| |say| - |readIfCan!| |setAttributeButtonStep| |primaryDecomp| |s17agf| - |loopPoints| |countRealRoots| |signAround| |pseudoQuotient| |iiacsc| - |eigenvector| |shellSort| |subResultantChain| |asechIfCan| - |moreAlgebraic?| |extractIndex| |nary?| |rotatey| |nextsousResultant2| - |OMsetEncoding| |Lazard2| |e02gaf| |df2mf| |radicalEigenvalues| - |irreducibleRepresentation| |minRowIndex| |normalForm| |yCoordinates| - |norm| |selectfirst| |changeNameToObjf| |numFunEvals3D| |redPo| - |supDimElseRittWu?| |groebSolve| |coerceS| |argumentListOf| - |perfectNthPower?| |numeric| |recur| |s20adf| |getlo| |lllp| |e02agf| - |compdegd| |d02cjf| |radical| |asimpson| |screenResolution3D| - |adjoint| |exactQuotient| |validExponential| |iiexp| |d01fcf| - |SFunction| |gderiv| |evaluateInverse| |constant?| |subSet| |power| BY - |taylorRep| |numberOfIrreduciblePoly| |high| |alternative?| |rightGcd| - |getConstant| |tube| |objectOf| |e02bbf| |distFact| |startTableGcd!| - |removeSinSq| |rightDivide| |rootOf| |elRow2!| |coHeight| |unparse| - |sh| |trim| |iiperm| |outputAsScript| |increase| |d01bbf| - |representationType| |antisymmetric?| |jordanAlgebra?| - |rewriteIdealWithRemainder| |integral?| |arity| |startTable!| - |internalZeroSetSplit| |bipolar| |karatsubaOnce| - |coercePreimagesImages| |mpsode| |permutation| |subPolSet?| |s21baf| - |rightMinimalPolynomial| |binomThmExpt| |viewport2D| |upperCase?| - |prinshINFO| |expint| |interpretString| |coord| |prime| |idealiser| - |iipow| |iidprod| |setprevious!| |radPoly| |move| |zerosOf| |unit| - |partialQuotients| GF2FG |reducedDiscriminant| |OMopenString| |copy!| - |negative?| |spherical| |strongGenerators| |middle| NOT |quatern| - |incrementKthElement| |dn| |tubePointsDefault| |recip| |iiatan| - |cAcsch| |algDsolve| |approxNthRoot| |setEpilogue!| |leftOne| OR - |entry| |partition| |df2st| |getDatabase| |cyclicCopy| |hexDigit| - |basisOfLeftNucleus| |rightQuotient| |polyRDE| |sech2cosh| AND - |randomR| |imagK| |integral| |mesh| |readInt16!| |leftFactor| - |irreducible?| |complexZeros| |uniform| |e01bgf| |addBadValue| - |mapCoef| |listRepresentation| |cup| |horizConcat| |multiEuclidean| - |symbol?| D |hypergeometric0F1| |drawToScale| |listYoungTableaus| - |associative?| |replaceKthElement| |reify| |rightExactQuotient| - |leftRank| |maxColIndex| |normalise| |movedPoints| - |inverseIntegralMatrix| |clearTheIFTable| |toroidal| - |hasTopPredicate?| |changeMeasure| |showAllElements| |polynomialZeros| - |trapezoidal| |lex| |setScreenResolution3D| |karatsuba| |denomLODE| - |numberOfCycles| |sdf2lst| |tan2cot| |quotedOperators| - |stoseIntegralLastSubResultant| |drawComplex| |nil?| |maxdeg| - |capacity| |minPoly| |getMeasure| |selectNonFiniteRoutines| |f2st| - |getGoodPrime| |approxSqrt| |rootProduct| |f07aef| |setFieldInfo| - |perfectNthRoot| |char| |symbolIfCan| |integers| |clearTable!| - |expandPower| |tablePow| |graeffe| |shanksDiscLogAlgorithm| - |inputBinaryFile| |currentCategoryFrame| |leftExactQuotient| - |leftDivide| |concat!| |ode2| |quasiRegular| |rightOne| - |inverseColeman| |c06gbf| |plusInfinity| |listOfMonoms| |merge| - |safetyMargin| |sequences| |symbolTableOf| |readBytes!| - |stoseSquareFreePart| |equality| |integralAtInfinity?| |OMgetBVar| - |minusInfinity| |LyndonBasis| |vconcat| * |cycles| |resize| - |compound?| |discriminant| |iiacsch| |commutative?| |badNum| |row| - |floor| |rem| |prindINFO| |lintgcd| |setClipValue| |debug3D| |print| - |operation| |unitNormalize| |quadraticForm| |atom?| |An| - |var2StepsDefault| |quo| |bubbleSort!| |scan| |integerBound| - |realZeros| |resolve| |torsion?| |topPredicate| |structuralConstants| - |exponent| |numberOfFractionalTerms| |musserTrials| |ksec| = |sample| - |float| |csch2sinh| |biRank| |resetBadValues| |cot2trig| - |setLabelValue| |odd?| |pol| |div| |aspFilename| |pi| - |useSingleFactorBound| |insertionSort!| |type| |kovacic| |unitNormal| - |coefficients| |fortranCharacter| |lazyVariations| |exquo| - |partitions| < |transpose| |infinity| |bandedHessian| |lazyIntegrate| - |retractIfCan| |d01aqf| |pointPlot| |tanAn| |iisin| |innerSolve1| - |iicos| ~= > |setEmpty!| |eigenvectors| |build| |edf2efi| |coth2tanh| - |noKaratsuba| |universe| |unmakeSUP| ~ |normalize| <= - |multiplyCoefficients| |relationsIdeal| |externalList| |credPol| - |rightExtendedGcd| |leftScalarTimes!| |denomRicDE| |ptree| - |univariateSolve| |binary| |kernel| |signature| >= |pquo| - |singularAtInfinity?| |symmetricPower| |erf| |failed?| |minimumDegree| - |pseudoRemainder| |digit| |myDegree| |draw| |OMputBVar| - |LowTriBddDenomInv| |mainMonomials| |inverse| |parents| |minPol| - |basisOfCentroid| |Si| |f07fef| |OMlistSymbols| |/\\| |max| - |squareFreeFactors| |wholePart| |pdf2df| |lfunc| |freeOf?| |pade| - |clipSurface| |createNormalElement| |doubleDisc| |iitan| |close!| - |\\/| |makeTerm| + |prod| GE |dilog| |internalIntegrate0| |isQuotient| - |denominators| |infieldIntegrate| |chvar| |jacobian| - |powerAssociative?| |palgLODE| |rational?| - |areEquivalent?| GT |sin| - |vspace| |getMultiplicationMatrix| |semiResultantEuclidean1| - |stronglyReduce| |rquo| |makeObject| |exponents| |algintegrate| - |collectUpper| / |sinhcosh| LE |cos| |map| |OMputInteger| - |alternatingGroup| |zero?| |iroot| |mainValue| |extension| - |primintfldpoly| |possiblyNewVariety?| LT |monicDecomposeIfCan| |tan| - |stiffnessAndStabilityOfODEIF| |mindeg| |rootNormalize| |currentEnv| - |limitedIntegrate| |currentScope| |leastAffineMultiple| |shift| - |roughBase?| |coef| |ScanFloatIgnoreSpaces| |overlap| |cot| - |prefixRagits| |fullDisplay| |s21bcf| |leftRankPolynomial| - |realEigenvectors| |lfinfieldint| |integralLastSubResultant| - |cyclicGroup| |setPrologue!| |sec| |gcdcofactprim| |height| |iiacoth| - |OMconnectTCP| |trapezoidalo| |enterInCache| |lazyPseudoRemainder| - |makeViewport3D| |rischNormalize| |leadingIndex| |csc| |crushedSet| - |branchPointAtInfinity?| |quickSort| |numberOfNormalPoly| |hconcat| - |paren| |divide| |mathieu11| |selectsecond| |asin| |convert| - |property| |coefficient| |byteBuffer| |calcRanges| |rootsOf| - |radicalRoots| |invmod| |symmetricDifference| |LyndonCoordinates| - |roughUnitIdeal?| |acos| |mainMonomial| |s17dgf| |symFunc| - |trailingCoefficient| |hcrf| |cond| |lyndonIfCan| |c06eaf| - |numberOfDivisors| |complexForm| |atan| |outputArgs| |sumOfDivisors| - |rubiksGroup| |bit?| |semiLastSubResultantEuclidean| |ffactor| - |s20acf| |iicot| |isOp| |acot| |units| |innerEigenvectors| |nextPrime| - |stoseInvertibleSet| |axes| |OMencodingBinary| |polygamma| |c06gcf| - |e04dgf| |pmintegrate| |subCase?| |asec| |linGenPos| |string?| - |alternating| |nextIrreduciblePoly| |perfectSquare?| |rspace| - |nonLinearPart| |real?| |brillhartTrials| |simpson| |acsc| |weight| - |subHeight| |abelianGroup| |semiDiscriminantEuclidean| |comparison| - |ignore?| |graphImage| |mapBivariate| |sinh| |integer?| |e02ahf| - |birth| |LiePoly| |anfactor| |s14aaf| |monicCompleteDecompose| - |rootOfIrreduciblePoly| |zeroSetSplit| |cosh| |viewDeltaYDefault| - |OMputEndError| |quartic| |iExquo| |denominator| |vertConcat| - |chiSquare1| |subtractIfCan| |makeViewport2D| |tanh| |setImagSteps| - |code| |testModulus| |bright| |showClipRegion| |hex| |meatAxe| - |declare| |iiasec| |dmpToP| |coth| |figureUnits| |argument| |leftGcd| - |f01qdf| |addMatch| |iifact| |qsetelt!| |antiCommutator| |tail| - |categoryFrame| |implies| |sech| |unrankImproperPartitions1| - |listBranches| |monic?| |nilFactor| |null?| |integralRepresents| - |rationalApproximation| |makeEq| |infRittWu?| |csch| |OMbindTCP| - |prinb| |selectSumOfSquaresRoutines| |setPosition| |outlineRender| - |closed?| |viewDefaults| |shallowExpand| |function| - |nextLatticePermutation| |asinh| |FormatRoman| |outputList| - |convergents| |rules| |failed| |mirror| |firstSubsetGray| - |mapUnivariateIfCan| |e01bff| |listOfLists| |acosh| |OMgetEndObject| - |besselK| |fixedPointExquo| |notelem| |OMsupportsCD?| |point| - |hdmpToDmp| |acothIfCan| |unknown| |digits| |blue| |eval| |atanh| - |dom| |readInt8!| |bezoutDiscriminant| |sinIfCan| - |squareFreeLexTriangular| |mainCoefficients| |leader| |one?| - |dihedralGroup| |acsch| |heapSort| |rdregime| |acoth| |elliptic| |cap| - |LazardQuotient2| |Aleph| |functionIsContinuousAtEndPoints| - |principalAncestors| |fixedPoints| |asech| |isExpt| |isTerm| UTS2UP - |moebius| |oddInfiniteProduct| |series| |find| |isAnd| - |getMultiplicationTable| |setfirst!| |lhs| |purelyAlgebraic?| - |differentialVariables| |heap| |sort| |internalLastSubResultant| - |deepCopy| |phiCoord| |transcendentalDecompose| |quotientByP| |Beta| - |multiple| |rhs| |mdeg| |neglist| |newTypeLists| |cCsc| |augment| - |brillhartIrreducible?| |rowEchLocal| |randnum| |li| |extractClosed| - |applyQuote| |internalInfRittWu?| |title| |fi2df| |getBadValues| - |sncndn| |OMputEndBind| |accuracyIF| - |dimensionOfIrreducibleRepresentation| |fillPascalTriangle| |inspect| - |c06fpf| |palgRDE0| |factorSquareFreePolynomial| |linearMatrix| |min| - |cscIfCan| |rationalIfCan| |elem?| |SturmHabichtMultiple| |component| - |polyRicDE| |univariatePolynomialsGcds| |noLinearFactor?| |addmod| - |random| |palgextint0| |getStream| |rightMult| |newSubProgram| - |characteristicSet| |ruleset| |double| |e| |modularFactor| - |generalPosition| |B1solve| |balancedBinaryTree| |slex| |d02kef| - |redpps| |baseRDEsys| |degree| |true| |shiftRight| |changeWeightLevel| - |intPatternMatch| |partialFraction| |setErrorBound| |findCycle| |ord| - |outputAsTex| |prem| |returnTypeOf| |frst| |orthonormalBasis| |red| - |solveLinearPolynomialEquation| |plus!| |var1StepsDefault| |edf2df| - |genericRightMinimalPolynomial| |outputMeasure| |iprint| |cTanh| - |youngGroup| |log2| |commaSeparate| |expintfldpoly| |nothing| - |ScanFloatIgnoreSpacesIfCan| |sqfree| |squareFree| - |cyclotomicDecomposition| |in?| |gethi| |s19acf| |keys| - |divideExponents| |infLex?| |cyclicParents| |subQuasiComponent?| - |positive?| |style| |perfectSqrt| |any?| |rarrow| |replace| - |generalLambert| |hitherPlane| |expenseOfEvaluationIF| |copyInto!| - |c06frf| |normalized?| |makeFloatFunction| |baseRDE| |BasicMethod| - |legendreP| |palgLODE0| |pToDmp| |lighting| |rotate!| |monicDivide| - |wordInStrongGenerators| |mapDown!| |iidsum| |monicLeftDivide| |test| - |infinite?| |computeInt| |d01alf| |intcompBasis| |s17dlf| - |removeRedundantFactors| |f04adf| |presub| |companionBlocks| - |declare!| |fullPartialFraction| |subresultantSequence| - |reducedSystem| |univcase| |head| |addPoint| |finite?| - |linearPolynomials| |aQuartic| |findConstructor| |makeUnit| - |particularSolution| |divisor| |atoms| |diagonals| |reopen!| - |constDsolve| |partialDenominators| |width| |expIfCan| - |characteristic| |clearTheFTable| |e02bef| |e02akf| - |setLegalFortranSourceExtensions| |constantKernel| |enumerate| - |extractPoint| |cot2tan| |generate| |UnVectorise| |eq| |rk4a| - |prologue| |f02akf| |removeSuperfluousQuasiComponents| |e04ucf| - |separant| |complexExpand| |reverseLex| |dark| |asecIfCan| - |basisOfRightAnnihilator| |predicate| |balancedFactorisation| |iter| - |maxPoints| |Gamma| |prefix| |mainContent| |rightUnits| |call| - |subscriptedVariables| |exQuo| |square?| |removeSinhSq| |incrementBy| - |possiblyInfinite?| |flatten| |resetAttributeButtons| |littleEndian| - |midpoints| |doublyTransitive?| |iiacos| |argscript| - |jordanAdmissible?| |antiAssociative?| |LyndonWordsList1| |f04mcf| - |OMgetEndError| |expand| |degreePartition| |lo| |badValues| - |removeCosSq| |explicitEntries?| |setTex!| |updatF| |open| - |certainlySubVariety?| |numerator| |trigs| |inR?| |fmecg| - |filterWhile| |createNormalPrimitivePoly| |factor1| |squareFreePrim| - |bitTruth| |stoseInternalLastSubResultant| |moduloP| |segment| - |rightRecip| |extractSplittingLeaf| |s18aff| |reseed| - |toseLastSubResultant| |filterUntil| |transform| |outputBinaryFile| - |redmat| |inHallBasis?| |simplify| |makeMulti| |whileLoop| - |fintegrate| |charthRoot| |epilogue| |rightRemainder| |select| - |splitLinear| |tryFunctionalDecomposition?| |flexibleArray| |optional| - |size?| |restorePrecision| |f07adf| |normalDeriv| |primitiveMonomials| - |cCoth| |definingInequation| |coordinate| |ode| |checkPrecision| - |reduction| |wronskianMatrix| |typeList| |matrixDimensions| - |shufflein| |shiftLeft| |operations| |reductum| - |countRealRootsMultiple| |showTypeInOutput| |curryLeft| |orbits| - |gcdPolynomial| |clipBoolean| |exp| |iiatanh| |imagJ| |c05adf| - |drawStyle| |monomial?| |palgRDE| |rightScalarTimes!| |makeprod| - |generators| |removeRoughlyRedundantFactorsInContents| |parameters| - |OMputFloat| |leastMonomial| |createThreeSpace| |lowerCase?| - |OMconnInDevice| |gramschmidt| |semiIndiceSubResultantEuclidean| - |unrankImproperPartitions0| |csubst| |kmax| |closedCurve?| - |sizePascalTriangle| |linearDependence| |coshIfCan| |iflist2Result| - |internal?| |lazyGintegrate| |deriv| |elseBranch| |light| - |antiCommutative?| |nlde| |outerProduct| - |solveLinearPolynomialEquationByFractions| |minPoints3D| - |nextPartition| |PollardSmallFactor| |lexGroebner| |product| - |divideIfCan!| |commonDenominator| |cAcoth| |radicalEigenvector| - |makeRecord| |airyBi| |sortConstraints| |listConjugateBases| - |tan2trig| |cyclotomic| |toseInvertible?| |logGamma| |setsubMatrix!| - |decreasePrecision| |rightDiscriminant| |entries| |probablyZeroDim?| - |nil| |dimensionsOf| |argumentList!| |tanNa| |getZechTable| |s17adf| - |space| |getButtonValue| SEGMENT |bothWays| |RittWuCompare| |d01anf| - |rational| |ratPoly| |rk4qc| |roman| |rightTrace| |members| |lyndon?| - |laplacian| |mat| |triangulate| |solid?| |bipolarCylindrical| |d01gaf| - |evaluate| |endOfFile?| |sparsityIF| |prime?| |createPrimitiveElement| - |f01bsf| |isOpen?| |conditionP| |fractionFreeGauss!| |nsqfree| - |c06fqf| |approximate| |sturmSequence| |trunc| |makeResult| - |showScalarValues| |constantCoefficientRicDE| |toScale| - |leadingExponent| |d01asf| |cyclotomicFactorization| |moebiusMu| - |complex| |palgintegrate| |second| |compactFraction| |setAdaptive| - |log| |OMgetEndApp| |writeInt8!| |leadingBasisTerm| |checkRur| - |summation| |d02bhf| |constantOpIfCan| |conditionsForIdempotents| - |third| |bernoulli| |chebyshevU| |weierstrass| |pToHdmp| |listLoops| - |nextNormalPrimitivePoly| |taylorQuoByVar| |exprHasLogarithmicWeights| - |modularGcdPrimitive| |componentUpperBound| |medialSet| - |ramifiedAtInfinity?| |OMgetInteger| |setStatus| |qinterval| - |OMgetFloat| |genericPosition| |bumptab| |rCoord| |Hausdorff| - |kroneckerDelta| |linearAssociatedOrder| |critMonD1| |putColorInfo| - |gcdprim| |d01amf| |low| |numberOfFactors| |sum| |eigenvalues| |rank| - |dioSolve| |lexTriangular| |po| |composites| |rename!| |delay| - |quasiRegular?| |maxIndex| |branchIfCan| |c05nbf| |bsolve| - |eisensteinIrreducible?| |retractable?| |exprHasWeightCosWXorSinWX| - |nthFactor| |bitCoef| |swap!| |concat| |lfextlimint| |expt| - |OMgetSymbol| |leftExtendedGcd| |romberg| |primlimintfrac| - |OMgetEndAtp| |symmetricTensors| |ScanRoman| |sinh2csch| - |leftDiscriminant| |trivialIdeal?| |limit| |bernoulliB| - |semicolonSeparate| |SturmHabichtCoefficients| - |tableForDiscreteLogarithm| |solid| |subspace| |systemCommand| - |indiceSubResultant| |clipParametric| |makeVariable| |ocf2ocdf| - |sort!| |pow| |exponentialOrder| |fortranComplex| |f02adf| |isTimes| - |adaptive?| |triangSolve| |reduceLODE| |eigenMatrix| |lp| |quadratic?| - |linear| |exprToGenUPS| |initiallyReduced?| |selectAndPolynomials| - |upDateBranches| |firstNumer| |dimension| |inconsistent?| |besselY| - |c05pbf| |getOperands| |noncommutativeJordanAlgebra?| |isNot| - |rewriteSetByReducingWithParticularGenerators| - |semiSubResultantGcdEuclidean2| |createRandomElement| |duplicates| - |mergeFactors| |complexIntegrate| |critM| |normal| |nullary?| - |stFunc2| |parabolicCylindrical| |generalizedEigenvectors| - |showArrayValues| |xn| |removeCoshSq| |OMreadFile| |lists| - |KrullNumber| |setMaxPoints| |integrate| |wreath| |factorSFBRlcUnit| - |npcoef| |showFortranOutputStack| |internalDecompose| |conjug| - |resultant| |Nul| |halfExtendedResultant1| |createIrreduciblePoly| - |tanh2trigh| |seriesSolve| |sechIfCan| |source| |getOperator| - |coordinates| |rewriteSetWithReduction| |ParCondList| - |stoseInvertibleSetsqfreg| |fTable| |category| |univariate?| |df2fi| - |quadraticNorm| |weights| |parent| |lift| |approximants| - |univariatePolynomials| |ParCond| |modifyPointData| |hasSolution?| - |domain| |zeroVector| |d02ejf| |extractTop!| |OMgetType| |reduce| - |tubePlot| |lowerCase!| |basisOfRightNucloid| |digamma| |rightLcm| - |realEigenvalues| |rootPower| |package| |headReduce| - |genericRightNorm| |diagonal| |script| |linears| |addPointLast| - |diophantineSystem| |rootDirectory| |show| |completeEchelonBasis| - |tryFunctionalDecomposition| |gcdcofact| |reduced?| |generic| - |acscIfCan| |outputGeneral| |aromberg| |multiset| |insertMatch| - |more?| |f02xef| |associatedEquations| |stFunc1| |chiSquare| |hermite| - |target| |generalizedInverse| |subNodeOf?| |trace| |mindegTerm| - |degreeSubResultant| |reducedContinuedFraction| |resultantReduit| - |substring?| |separateDegrees| |optAttributes| |tex| |simplifyPower| - |setAdaptive3D| |printHeader| |nextSublist| |wholeRagits| |multMonom| - |OMgetObject| |sin?| |multisect| |extendedint| |overlabel| |uniform01| - |qualifier| |next| |ricDsolve| |totalfract| |coerceListOfPairs| - |suffix?| |iisinh| |zeroSquareMatrix| |formula| |scalarTypeOf| - |interactiveEnv| |complement| |insertTop!| |ref| |edf2ef| - |viewZoomDefault| |ravel| |OMwrite| |reverse| |color| |pair?| - |specialTrigs| |rightTraceMatrix| |decompose| |explicitlyFinite?| - |mapMatrixIfCan| |fortranLinkerArgs| |fill!| |reshape| |primeFactor| - |seriesToOutputForm| |choosemon| |getCurve| |dmp2rfi| |untab| - |OMmakeConn| |supRittWu?| |showTheRoutinesTable| - |rewriteIdealWithQuasiMonicGenerators| |child| |constantRight| - |totolex| |setelt| |hermiteH| |lastSubResultantElseSplit| |top| - |associator| |slash| |nrows| |cLog| |arg1| |imagk| |curryRight| - |regime| |quasiAlgebraicSet| |setProperty| |cAsinh| |byte| |ncols| - |comp| |scalarMatrix| |fibonacci| |OMgetVariable| |arg2| |OMgetError| - |conical| |copy| |cartesian| |option?| |fortranReal| |leftLcm| - |rootPoly| |elementary| |ratpart| |allRootsOf| |pack!| |qPot| |f01ref| - |continue| |leftZero| |mapExponents| |plot| |nativeModuleExtension| - |update| |inf| |equiv| |splitSquarefree| |conditions| |cSec| - |critpOrder| |palglimint| |pointColorDefault| |int| |poisson| - |generalizedContinuumHypothesisAssumed| |var2Steps| |iiabs| |corrPoly| - |match| |operator| |autoCoerce| |writeByte!| |seed| |list| - |OMputVariable| |ramified?| |lazyPremWithDefault| |contains?| - |fglmIfCan| |simpleBounds?| |genericLeftTrace| |init| |nthExpon| - |result| |primlimitedint| |cAsin| |car| |asinIfCan| |sumSquares| - |makeSketch| |hyperelliptic| |cAtan| |fractRadix| |tanintegrate| - |fractRagits| |cdr| |relativeApprox| |coerceImages| |lprop| |dihedral| - |s19abf| |removeConstantTerm| |OMputApp| |rootSplit| - |intermediateResultsIF| |datalist| |mainVariable?| |roughSubIdeal?| - |reset| |setDifference| |getVariableOrder| |d02bbf| |cycleLength| - |position| |generalSqFr| |const| |hessian| |hMonic| - |fortranCarriageReturn| |taylorIfCan| |pop!| |viewWriteDefault| - |setIntersection| |rightPower| |someBasis| |showTheSymbolTable| - |palgint0| |laguerreL| |readLine!| |normInvertible?| |setUnion| - |e02bdf| |complexNumericIfCan| |euler| |write| |f02ajf| |octon| - |cycle| |match?| |diag| |makeFR| |minrank| |createLowComplexityTable| - |tree| |save| |increasePrecision| |apply| |iteratedInitials| - |firstDenom| |reduceByQuasiMonic| |showIntensityFunctions| |curve?| - |aQuadratic| |polygon| |nextNormalPoly| |subResultantsChain| |c02aff| - |operators| |irreducibleFactor| |symmetricGroup| |subresultantVector| - |radicalOfLeftTraceForm| |zag| |cCos| |iicosh| |OMgetApp| |coleman| - |ScanArabic| |stiffnessAndStabilityFactor| |readUInt8!| |hash| - |fortranDouble| |repSq| |cAsech| |size| |resultantEuclideannaif| - |createPrimitiveNormalPoly| |setleft!| |secIfCan| |sqfrFactor| - |isobaric?| |count| |debug| |s13aaf| |solveInField| |iisqrt2| - |mapUnivariate| |e02dff| |Lazard| |algSplitSimple| |f07fdf| - |vectorise| |minus!| |makeSin| |invertible?| |pleskenSplit| |rotatez| - |rroot| |twist| |rangeIsFinite| |cyclicSubmodule| |d01ajf| |cycleElt| - |host| |primintegrate| |rotatex| |totalDegree| |first| |setOrder| - |e01bef| |OMgetBind| |adaptive| |setchildren!| |topFortranOutputStack| - |generator| |clearFortranOutputStack| |ptFunc| |diagonalMatrix| - |psolve| |besselI| |intChoose| |rest| |degreeSubResultantEuclidean| - |back| |s17def| |updateStatus!| |s18aef| |setFormula!| |compBound| - |palgint| |tab1| |substitute| |stoseInvertibleSetreg| |submod| - |s19adf| |setProperties| |hue| |normal01| |removeDuplicates| - |characteristicSerie| |imaginary| |reciprocalPolynomial| |minPoints| - |splitNodeOf!| |level| |triangular?| |lazyIrreducibleFactors| - |quasiMonicPolynomials| |terms| |external?| |directory| |pointData| - |decimal| |factorFraction| |split!| UP2UTS |direction| |lowerCase| - |represents| |pushdterm| |printStats!| |initiallyReduce| - |HermiteIntegrate| |invertIfCan| |basisOfNucleus| |every?| |llprop| - |merge!| |s19aaf| |adaptive3D?| |useEisensteinCriterion| - |getExplanations| |OMputEndAttr| |lazyResidueClass| |cPower| - |mainForm| |tab| |subTriSet?| |indices| |front| |empty?| |viewport3D| - |dAndcExp| |satisfy?| |OMputError| |mathieu12| |swapColumns!| |setref| - |matrix| |cycleSplit!| |unvectorise| |numer| |upperCase!| |omError| - |divergence| |f02agf| |read!| |fortranDoubleComplex| |algebraic?| - |shiftRoots| |genericRightTraceForm| |meshPar1Var| |denom| - |alphabetic?| |buildSyntax| |paraboloidal| |logpart| |constantIfCan| - |leftMult| |range| |setMaxPoints3D| |complementaryBasis| - |purelyAlgebraicLeadingMonomial?| |writable?| |returns| |c06fuf| - |less?| |monicModulo| |deepestInitial| |c06gsf| |lowerPolynomial| - |basicSet| |LiePolyIfCan| |pushup| |primitive?| - |generalizedEigenvector| |usingTable?| |lflimitedint| |ode1| - |removeRedundantFactorsInContents| |principalIdeal| |bag| - |binarySearchTree| |pile| |categories| |maxRowIndex| |pureLex| - |permutationRepresentation| |zeroDim?| |f02aaf| |OMputEndObject| - |ldf2lst| |e01sff| |internalSubQuasiComponent?| |lazy?| - |clipPointsDefault| |makeSeries| |repeating?| |constantLeft| - |lazyPseudoQuotient| |genericLeftNorm| |quadratic| - |identitySquareMatrix| |xCoord| |ReduceOrder| |setColumn!| - |divisorCascade| |SturmHabicht| |critMTonD1| |showAll?| |complete| - |maxint| |permanent| |powern| |lyndon| |irreducibleFactors| - |completeEval| |ranges| |resetNew| |userOrdered?| |cAcos| |id| - |stoseInvertible?| |newLine| |minset| |leftPower| |fortran| - |normalizeAtInfinity| |index?| LODO2FUN |callForm?| |solve1| |f02fjf| - |incr| |sylvesterMatrix| |colorFunction| |cross| |leftAlternative?| - |e01bhf| |sayLength| |normalizedDivide| |safeFloor| |algint| |table| - |generalTwoFactor| |sumOfSquares| |morphism| |mkcomm| - |genericLeftTraceForm| |resultantEuclidean| |factorsOfCyclicGroupSize| - |sincos| |bivariate?| |cyclicEntries| |new| |loadNativeModule| |hi| - |graphs| |evenlambert| |arbitrary| |ran| |selectOrPolynomials| - |bezoutMatrix| |bivariatePolynomials| |maxrow| |polygon?| |tanh2coth| - |rightCharacteristicPolynomial| |insert| |OMgetAtp| |mapExpon| - |f04axf| |orbit| |unitCanonical| |showRegion| |unitsColorDefault| - |OMputBind| |hasHi| |iterationVar| |inc| |top!| |localAbs| - |startStats!| |setStatus!| |setScreenResolution| |clearCache| - |integerIfCan| |tableau| |mkIntegral| |charpol| |options| |polyred| - |binomial| |createNormalPoly| |complex?| |euclideanSize| |children| - |sec2cos| |setrest!| |generic?| |factorByRecursion| |cCosh| - |composite| |leftQuotient| |collect| |createPrimitivePoly| - |att2Result| |schema| |void| |acosIfCan| |leftTraceMatrix| |e02def| - |curveColorPalette| |central?| |getRef| |cycleRagits| |mapUp!| - |zeroMatrix| |squareFreePolynomial| |isImplies| |swapRows!| - |tubeRadiusDefault| |string| |f02abf| |palgextint| |f01mcf| - |algebraicDecompose| |e04mbf| |primextendedint| |variable?| |exists?| - |singular?| |open?| |useNagFunctions| |LazardQuotient| |extract!| - |isPlus| |radicalEigenvectors| |makeCos| |belong?| |se2rfi| - |firstUncouplingMatrix| |getPickedPoints| |moduleSum| |weakBiRank| - |measure| |content| |setlast!| |f04qaf| |droot| |problemPoints| - |iibinom| |bumprow| |quotient| |OMgetEndBVar| |stronglyReduced?| - |setRealSteps| |e01sbf| |leftUnit| |whitePoint| |rootRadius| - |removeRoughlyRedundantFactorsInPols| |left| |column| |setMinPoints3D| - |rightFactorIfCan| |factorOfDegree| |withPredicates| |s17akf| - |complexEigenvalues| |imagE| |drawCurves| |right| |curveColor| - |numericalIntegration| |headReduced?| |e04gcf| |enterPointData| - |c02agf| |clikeUniv| |plenaryPower| |startTableInvSet!| |quoByVar| - |domainOf| |interpolate| |lazyPquo| |normalizeIfCan| |e04jaf| |rename| - |numberOfVariables| |elt| |coefChoose| |partialNumerators| - |principal?| |repeating| |factorGroebnerBasis| |localReal?| - |cycleEntry| |distribute| |extendedIntegrate| |OMUnknownSymbol?| - |bottom!| |cosh2sech| |nextItem| |duplicates?| |prolateSpheroidal| - |reducedQPowers| |asinhIfCan| |df2ef| |printInfo| |exactQuotient!| - |output| |nil| |infinite| |arbitraryExponent| |approximate| |complex| - |shallowMutable| |canonical| |noetherian| |central| - |partiallyOrderedSet| |arbitraryPrecision| |canonicalsClosed| - |noZeroDivisors| |rightUnitary| |leftUnitary| |additiveValuation| - |unitsKnown| |canonicalUnitNormal| |multiplicativeValuation| - |finiteAggregate| |shallowlyMutable| |commutative|)
\ No newline at end of file + |Record| |Union| |argumentList!| |safeFloor| |llprop| + |chineseRemainder| |OMputError| |OMputFloat| |perfectNthPower?| |expr| + |maxPoints| |setfirst!| |jacobi| |clipParametric| |sturmVariationsOf| + |scalarTypeOf| |s21bcf| |front| |exprToGenUPS| |OMmakeConn| + |extendedint| |numeric| |sparsityIF| |dmpToP| |checkForZero| + |gcdcofact| |traceMatrix| |ocf2ocdf| |concat!| |squareFreeFactors| + |radical| |leastPower| |findCycle| |powmod| |OMgetEndApp| |merge| + |expenseOfEvaluation| |mainCoefficients| |associates?| |s18aff| + |sizeMultiplication| |OMgetInteger| |iExquo| |variable| + |evaluateInverse| |makeResult| |goto| |removeConstantTerm| |setright!| + |Ei| |lazyPrem| |removeDuplicates!| |symbol| |iterators| |composites| + |squareTop| |subscript| |fi2df| |product| |deepExpand| + |stopMusserTrials| |d01ajf| |taylorQuoByVar| |expression| + |minColIndex| |splitLinear| |explicitlyEmpty?| |comparison| + |genericRightTrace| |separant| |OMputEndObject| |currentCategoryFrame| + |minPoints| |integer| |difference| |doubleComplex?| |OMencodingSGML| + |curryRight| |partialFraction| |sort| |denominator| |symmetricTensors| + |times!| |f02awf| |inf| |setProperties!| |processTemplate| + |indiceSubResultantEuclidean| |euclideanSize| |showArrayValues| + |numberOfComputedEntries| |removeCosSq| |positiveRemainder| |e01bff| + |eulerE| |leftRegularRepresentation| |attributeData| |getRef| + |lifting1| |OMputEndAttr| |prindINFO| |rk4a| |subscriptedVariables| + |norm| |normalDeriv| |iiGamma| |getDatabase| |splitDenominator| + |generic| |lfunc| |totalLex| |cubic| |laplace| |quasiMonic?| |bsolve| + |e04mbf| |LyndonWordsList| |interpretString| |graeffe| |backOldPos| + |random| |zeroSetSplitIntoTriangularSystems| |karatsuba| ** |basis| + |abelianGroup| |multinomial| |port| |mkAnswer| |showTypeInOutput| + |evaluate| |pointLists| |tab1| |numberOfOperations| |associative?| + |irreducible?| |compiledFunction| |invmod| |showAll?| + |leftTraceMatrix| |whitePoint| |cyclicParents| |ratPoly| |copyInto!| + |pointColor| |cAtan| |meshFun2Var| |trueEqual| |lyndon?| + |quadraticForm| |t| |label| |primitivePart!| |factorList| |quatern| + |primitive?| |f01rdf| |error| |size?| |romberg| |complexNormalize| + |LowTriBddDenomInv| |prem| |rubiksGroup| |algintegrate| + |palginfieldint| |reducedDiscriminant| |externalList| |assert| + |exprHasLogarithmicWeights| |elRow2!| |presub| |keys| + |alternatingGroup| |associator| |prefix?| |setMaxPoints3D| + |setProperty| |cAcos| |problemPoints| |prefixRagits| + |rangePascalTriangle| |pushup| |antiCommutative?| |createThreeSpace| + |atanhIfCan| |lazyGintegrate| |rightLcm| |addPointLast| |double?| + |complexElementary| |generateIrredPoly| |errorInfo| |hdmpToDmp| + |trivialIdeal?| |matrixConcat3D| |OMputVariable| |rootPoly| |mpsode| + |beauzamyBound| |symbolTableOf| |chainSubResultants| + |generalInfiniteProduct| |zerosOf| |integral| + |factorSquareFreePolynomial| |getCurve| |pureLex| |untab| + |removeRedundantFactorsInContents| |round| |outputSpacing| + |primextintfrac| |wrregime| |leftRankPolynomial| |divide| |nlde| + |numberOfHues| |OMencodingXML| |subQuasiComponent?| |extractTop!| + |f02abf| |constructor| |normalDenom| |c06eaf| |mesh?| |basisOfNucleus| + |lazy?| |intChoose| |makeYoungTableau| |createIrreduciblePoly| + |fortranCarriageReturn| |toseInvertible?| |mindegTerm| |bracket| + |printHeader| |getStream| |solveLinearPolynomialEquationByRecursion| + |moduloP| |infix?| |option| |packageCall| |nary?| |submod| |iifact| + |belong?| |predicate| |patternMatch| |sec2cos| |algDsolve| |monomials| + |mask| |operation| |partitions| |c02agf| |selectsecond| + |setErrorBound| |perfectNthRoot| |setClipValue| |limitPlus| + |basisOfLeftNucleus| |sqfree| |eisensteinIrreducible?| + |characteristic| |physicalLength!| |s14baf| |multiset| |condition| + |pdf2ef| |c06gbf| |domainOf| |dAndcExp| |primPartElseUnitCanonical!| + |e01bhf| |stopTableInvSet!| |findConstructor| |prinshINFO| + |radicalOfLeftTraceForm| |constant| |const| |diag| |prepareSubResAlgo| + |rightTrim| |basisOfCentroid| |numerator| |tubePointsDefault| |e01baf| + |subNodeOf?| |capacity| |rightExactQuotient| |semicolonSeparate| + |leftTrim| |leaf?| |moebiusMu| |dequeue| |createRandomElement| + |associatedEquations| |OMUnknownCD?| |doublyTransitive?| |relerror| + |plenaryPower| |antiCommutator| |leastAffineMultiple| |complexForm| + |infiniteProduct| |magnitude| |integers| |compound?| |upperCase?| + |newSubProgram| |index?| |startTableGcd!| |outputAsTex| |e02def| + |triangularSystems| |cap| |finiteBasis| |comment| |critT| + |enterInCache| |cCoth| |nextPartition| |controlPanel| |sncndn| |plus!| + |scopes| |overbar| |parameters| |lintgcd| |setOfMinN| |zeroOf| + |bumprow| |parents| |rarrow| |rightDivide| |degree| |setelt!| + |quartic| |univariatePolynomialsGcds| |shiftLeft| |OMputEndApp| + |determinant| |close| |viewDeltaXDefault| |selectPDERoutines| + |readIfCan!| |hcrf| |largest| |d02gaf| |henselFact| |reduceLODE| + |purelyAlgebraicLeadingMonomial?| |sqfrFactor| |writable?| + |fortranTypeOf| |HermiteIntegrate| |buildSyntax| |arrayStack| + |systemSizeIF| |curve?| |permutation| |varList| |kind| + |primlimitedint| |display| |iidsum| |complexLimit| |computePowers| + |postfix| |deriv| |removeSinSq| |mkPrim| |algebraicDecompose| |op| + |pattern| |LiePolyIfCan| |cAcot| |stoseInternalLastSubResultant| + |sinhcosh| |numberOfChildren| |sn| |string?| |integralRepresents| + |localAbs| |setRow!| |range| |tValues| |f01mcf| |mainSquareFreePart| + |droot| |meshPar1Var| |makeViewport3D| |mantissa| |member?| + |asinhIfCan| |rightUnit| |closedCurve?| |matrixDimensions| + |incrementKthElement| |ef2edf| |headReduced?| |diophantineSystem| + |tan2cot| |jordanAlgebra?| |prinpolINFO| |compile| |getPickedPoints| + |listOfMonoms| |getVariableOrder| |f2st| |exprToXXP| |collectUpper| + |quadratic| |input| |retract| |message| |nullSpace| |mapDown!| GF2FG + |OMconnInDevice| |nthRootIfCan| |unit?| |trapezoidalo| |expintfldpoly| + |headRemainder| |library| |elements| |tube| |terms| + |computeCycleLength| |curveColorPalette| |dfRange| |createNormalPoly| + |cExp| |d02kef| |union| |pseudoRemainder| |unit| |readBytes!| + |makeprod| |repeating| |sinhIfCan| |empty| |rootNormalize| |po| + |OMputEndAtp| |lowerCase?| |simplifyExp| |createNormalElement| + |stoseInvertible?| |gcdprim| |delay| |cSin| |OMsupportsSymbol?| |pdct| + |doubleResultant| |airyBi| |principalAncestors| |OMputBind| + |contains?| |duplicates?| |algSplitSimple| |push!| |schwerpunkt| |set| + |changeNameToObjf| |monicRightFactorIfCan| + |semiResultantReduitEuclidean| |selectAndPolynomials| |components| + |cons| |viewport3D| |basisOfMiddleNucleus| |roughEqualIdeals?| + |fTable| |sPol| |lastSubResultantEuclidean| |bivariateSLPEBR| + |graphState| |minGbasis| |swapColumns!| |chiSquare| |rightFactorIfCan| + |OMlistCDs| |pointData| |inverse| |generalTwoFactor| |leftNorm| + |extendedResultant| |removeSinhSq| |plus| |youngGroup| |weights| + |radPoly| |setsubMatrix!| |conjugates| |definingInequation| + |rightDiscriminant| |principalIdeal| |s17dlf| |Beta| + |removeRedundantFactorsInPols| |dictionary| |drawToScale| |top!| + |coth2tanh| |cyclotomicFactorization| |order| |biRank| |d02bhf| + |characteristicSet| |linearDependence| |showScalarValues| |OMread| + |setStatus| |zeroVector| |sample| |bitTruth| |useSingleFactorBound?| + |unrankImproperPartitions1| |recur| |KrullNumber| |shufflein| + |besselI| |palgRDE0| |times| |numberOfVariables| |repeating?| + |initial| |hyperelliptic| |vectorise| |iFTable| |setPrologue!| + |divisorCascade| |lift| |isTerm| |changeName| |Ci| |logpart| |iisech| + |binomial| |readUInt16!| |d02ejf| |reduce| |OMputEndError| |dark| + |nextSubsetGray| |null?| |exactQuotient| |eq?| |digit?| RF2UTS + |innerint| |point| |semiResultantEuclidean2| |script| |s19adf| |mesh| + |fortranLogical| |optimize| |identitySquareMatrix| |dihedralGroup| + |unary?| |iicsc| |makeVariable| |musserTrials| |acsch| + |reducedQPowers| |monom| |finite?| |subresultantSequence| |redPo| + |chebyshevT| |iiasin| |minimalPolynomial| |possiblyNewVariety?| + |eigenMatrix| |exprToUPS| |selectOptimizationRoutines| |rule| |node| + |nextPrime| |quasiComponent| |constant?| |stiffnessAndStabilityFactor| + |countRealRoots| |s13acf| |series| |addMatchRestricted| |tex| + |completeEchelonBasis| |f02agf| |monomRDEsys| + |removeRoughlyRedundantFactorsInPol| |rename| |groebnerIdeal| + |lazyPremWithDefault| |mainMonomial| |infieldIntegrate| |anticoord| + |common| |is?| |radicalEigenvalues| LODO2FUN |s18def| |minset| + |balancedBinaryTree| |linearAssociatedLog| |extensionDegree| + |weighted| |returnTypeOf| |setTopPredicate| |setRealSteps| + |useEisensteinCriterion| |inrootof| |perspective| |iisec| + |clipPointsDefault| |innerEigenvectors| |minPol| |cyclicEntries| + |solve| |linearPart| |getProperties| |leadingSupport| |min| |dequeue!| + |stronglyReduce| |leviCivitaSymbol| |factorAndSplit| |nullary?| + |deepestInitial| |middle| |key| |vconcat| |redpps| |updatF| |s17dgf| + |expt| |legendreP| |radicalRoots| |OMreceive| |f02bjf| + |OMunhandledSymbol| |edf2fi| |unrankImproperPartitions0| |bivariate?| + |subCase?| |setCondition!| |modularGcd| |badValues| |filename| + |writeByte!| |linearlyDependent?| |algebraicSort| |expPot| + |OMsetEncoding| |byte| |qinterval| |changeMeasure| |unexpand| + |LagrangeInterpolation| |solveLinearlyOverQ| |univariate?| + |critMTonD1| |d01aqf| |setMinPoints3D| |sh| |linearAssociatedExp| + |mathieu11| |inGroundField?| |OMputApp| |countRealRootsMultiple| + |fullPartialFraction| |subresultantVector| |OMgetObject| |orbit| + |parse| |rightCharacteristicPolynomial| |certainlySubVariety?| |cTanh| + |sturmSequence| |Gamma| |leftTrace| |univcase| |mapGen| |extractIndex| + |semiResultantEuclideannaif| |clearTheSymbolTable| |knownInfBasis| + |integralBasisAtInfinity| |bfKeys| |semiLastSubResultantEuclidean| + |selectSumOfSquaresRoutines| |int| |simpson| |implies| |f04maf| + |tanAn| |transform| |reduced?| |trace2PowMod| |subPolSet?| |tanQ| + |decreasePrecision| |qqq| |floor| |setEmpty!| |swapRows!| |universe| + |OMputAtp| |recoverAfterFail| |lflimitedint| |equation| |prinb| + |genericRightDiscriminant| |generalizedContinuumHypothesisAssumed?| + |functorData| |digamma| |palglimint0| |d01fcf| |imagj| |e04fdf| + |cycleSplit!| |degreePartition| |separate| |useSingleFactorBound| + |OMputAttr| |imaginary| |rational?| |subset?| |toroidal| |testDim| + |homogeneous?| |updatD| |bringDown| |patternMatchTimes| + |SturmHabichtCoefficients| |viewWriteDefault| |finiteBound| + |OMreadFile| |selectPolynomials| |mr| |dioSolve| + |extendedSubResultantGcd| |numberOfFractionalTerms| |properties| + |cyclic| |blue| |findBinding| EQ |subTriSet?| |internalAugment| + |denominators| |twoFactor| |extend| |df2mf| |read!| |approxSqrt| + |iidprod| |validExponential| |component| |stop| |xn| |hue| |translate| + |monomialIntPoly| |realEigenvectors| |cscIfCan| |palgintegrate| + |toseSquareFreePart| |ellipticCylindrical| |variationOfParameters| + |intermediateResultsIF| |leftRemainder| |wordsForStrongGenerators| + |back| |mkcomm| |rk4| |se2rfi| |s18aef| |transpose| |tanh2trigh| + |zero| |createMultiplicationMatrix| |pile| |allRootsOf| |typeLists| + |viewPosDefault| |linSolve| |LyndonWordsList1| |setMaxPoints| + |regularRepresentation| |realZeros| |f04faf| |changeBase| + |combineFeatureCompatibility| |s17adf| |adaptive?| |mapdiv| + |separateDegrees| |f01qef| |nodeOf?| |real?| |setClosed| |rootProduct| + |And| |setPosition| |genericLeftTraceForm| |index| |viewport2D| + |rootBound| |extractPoint| |df2ef| |realEigenvalues| |sincos| + |normal?| |indicialEquation| |subResultantGcd| |Or| |clipBoolean| + |powerAssociative?| |modularFactor| |OMgetFloat| |nthFractionalTerm| + |lcm| |escape| |suchThat| |reducedContinuedFraction| + |standardBasisOfCyclicSubmodule| |divisor| |antisymmetric?| + |optAttributes| |Not| |element?| |OMclose| |rCoord| |rowEch| + |positive?| |ord| |shiftRoots| |cSec| |iiacos| |setValue!| |delete| + |opeval| |distFact| |makeTerm| |pair| |closeComponent| |setColumn!| + |chebyshevU| |append| |idealiserMatrix| |e02daf| |movedPoints| + |hostPlatform| |qPot| |value| |head| |forLoop| |children| |interpret| + |torsionIfCan| |badNum| |csubst| |stack| |gcd| |iicot| |numFunEvals3D| + |stripCommentsAndBlanks| |in?| |polCase| |relativeApprox| + |exprHasAlgebraicWeight| |showTheFTable| |rowEchelonLocal| |normalize| + |rightFactorCandidate| |false| |tubePlot| |halfExtendedResultant1| + |singRicDE| |var1Steps| |indicialEquationAtInfinity| UTS2UP + |directory| |nsqfree| |OMReadError?| |selectOrPolynomials| + |lieAdmissible?| |compactFraction| |superHeight| |totalGroebner| + |plotPolar| |rightNorm| |lfinfieldint| |tower| |wholeRadix| + |OMconnectTCP| |squareFreePrim| |stoseInvertibleSet| |outputGeneral| + |virtualDegree| |swap| |radix| |bounds| |singularitiesOf| + |fillPascalTriangle| |exQuo| |retractable?| |even?| |exponential| + |limit| |mathieu24| |entry?| |internalSubQuasiComponent?| + |generalSqFr| |reify| |cyclePartition| |diff| |dim| |lfextendedint| + |removeCoshSq| |stronglyReduced?| |spherical| |c06gcf| |mergeFactors| + |clearTheFTable| |cyclotomic| |reduceBasisAtInfinity| |imagI| + |nullary| |imagE| |rightMult| |OMgetBVar| |conical| |explimitedint| + |lazyResidueClass| |removeSuperfluousQuasiComponents| |monicDivide| + |integralMatrixAtInfinity| |sumOfDivisors| |ignore?| |polygon?| |pol| + |extractIfCan| |gbasis| |s17akf| |binomThmExpt| |sub| |drawCurves| + |e01sff| |normFactors| |complexNumeric| |toseInvertibleSet| + |mathieu23| |content| |outputAsScript| + |semiIndiceSubResultantEuclidean| |acosIfCan| |Aleph| + |tryFunctionalDecomposition?| |expandPower| |factorial| |f02ajf| + |logIfCan| |viewWriteAvailable| |putColorInfo| |one?| |matrixGcd| + |connect| |createLowComplexityNormalBasis| |f04adf| |curve| |s17ahf| + |prologue| |kernels| |reverse!| |charClass| |reducedSystem| + |ScanArabic| |constantIfCan| |multiplyCoefficients| |asimpson| + |rdHack1| |purelyTranscendental?| |noLinearFactor?| |alphanumeric?| + |monomRDE| |univariate| |nthr| |jordanAdmissible?| |e02gaf| + |branchIfCan| |multisect| |wreath| |printStatement| |extendIfCan| + |nthFactor| |remove!| |log10| |taylorRep| |f07aef| |rank| + |cRationalPower| |definingPolynomial| |dmpToHdmp| |trigs| |heap| + |palgextint0| |palgLODE| |parabolicCylindrical| |e01sbf| + |sortConstraints| |bitand| |numerators| |cosIfCan| |close!| + |coshIfCan| |e02zaf| |center| |rationalPoint?| |hex| |acschIfCan| + |extendedIntegrate| |symbolIfCan| |discriminantEuclidean| |rotate| + |bitior| |factor| |clearTheIFTable| |fortran| |setLength!| + |chiSquare1| |OMgetAtp| |smith| |elliptic?| |evenInfiniteProduct| + |hasSolution?| |assign| |getConstant| |listOfLists| |sqrt| + |printStats!| |groebgen| F |generalizedContinuumHypothesisAssumed| + |df2st| |cAcsch| |leftFactorIfCan| |block| |fixedPoint| + |pseudoQuotient| |highCommonTerms| |simpsono| |getMeasure| |real| + |f02axf| |status| |f02xef| |cycleRagits| |shuffle| |seed| |rightRank| + |linear| |polar| |optional?| |complexSolve| |e04ycf| |imag| + |BumInSepFFE| |leftQuotient| |multiple?| |outlineRender| |decrease| + |nand| |sayLength| |seriesSolve| |cardinality| |null| |f07adf| + |search| |collect| |directProduct| |readByte!| |subNode?| |maxrank| + |multiplyExponents| |screenResolution3D| |setStatus!| |calcRanges| + |not| |polynomial| |lazyIntegrate| |integrate| |makeGraphImage| + |s17def| |leftFactor| |lists| |clipSurface| |setnext!| |schema| + |bytes| |s18acf| |OMreadStr| |permutations| |and| |nthFlag| + |insertMatch| |brace| |hermite| |drawStyle| |rootRadius| + |primitiveElement| |ScanFloatIgnoreSpaces| |stFunc1| |lSpaceBasis| + |bigEndian| |isExpt| |or| |extractBottom!| |showTheRoutinesTable| + |destruct| |showRegion| |OMputBVar| |alternating| |represents| + |generalPosition| |contract| + |rewriteSetByReducingWithParticularGenerators| |xor| |diagonals| + |identity| |rightScalarTimes!| |d01akf| |getMatch| |OMcloseConn| + |getOperator| |UP2ifCan| |flexibleArray| |twist| |cycles| |case| + |exp1| |tableau| |factorset| |realRoots| |scripted?| + |pointColorPalette| |aromberg| |Zero| |stopTableGcd!| + |SturmHabichtSequence| |partialNumerators| |expenseOfEvaluationIF| + |createNormalPrimitivePoly| |polyRDE| |nextNormalPoly| |setlast!| + |nonLinearPart| |constantRight| |fortranLiteralLine| |zag| |One| + |printCode| |factorByRecursion| |swap!| |monomial| |splitSquarefree| + |primaryDecomp| |rombergo| |invmultisect| |var2StepsDefault| + |fortranComplex| |pToHdmp| |bag| |f04qaf| |showIntensityFunctions| + |multivariate| |bubbleSort!| |alphabetic?| |frst| |lazyPquo| |coerce| + |nthCoef| Y |monomialIntegrate| |LyndonCoordinates| |d02bbf| + |variables| |elementary| |sylvesterSequence| |wholePart| |construct| + |iisqrt2| FG2F |airyAi| |integerBound| |isEquiv| |multiEuclidean| + |bandedHessian| |perfectSqrt| |isAnd| |totalfract| |integralBasis| + |formula| |rationalPoints| |root?| |scale| |OMgetEndError| |cCsc| + |leadingCoefficientRicDE| |exactQuotient!| |module| |polygamma| + |eyeDistance| |cn| |imagJ| |removeSuperfluousCases| |rationalIfCan| + |generators| |reopen!| |cyclicEqual?| |nextColeman| + |PollardSmallFactor| |ode| |crest| |setPoly| |rspace| + |quasiAlgebraicSet| |d01gbf| |changeThreshhold| |printInfo| + |showSummary| |resize| |scan| |tubeRadiusDefault| |shallowExpand| + |taylor| |GospersMethod| |numberOfNormalPoly| |stopTable!| |critMonD1| + |divisors| |obj| |nrows| |fractRagits| |setleaves!| |ODESolve| + |approximants| |laurent| |closedCurve| |symmetricPower| + |setVariableOrder| |att2Result| |readable?| |ncols| |cache| + |showAttributes| |dot| |hMonic| |puiseux| |lazyPseudoRemainder| + |fullDisplay| |outputArgs| |removeSquaresIfCan| |pushNewContour| + |weakBiRank| |generalizedEigenvector| |binaryFunction| |errorKind| + |nextsubResultant2| |tableForDiscreteLogarithm| |fortranReal| + |nextNormalPrimitivePoly| |trim| |byteBuffer| |symmetricSquare| + |alphabetic| |isNot| |bindings| |inv| |mdeg| |modulus| + |changeWeightLevel| |setProperties| |minrank| |f01qdf| |minimumDegree| + |extendedEuclidean| |polyred| |ground?| |s17aef| |rotatez| + |symmetricRemainder| |symmetricDifference| |tubeRadius| |signAround| + |OMencodingUnknown| |putGraph| |powerSum| |ground| |name| + |coercePreimagesImages| |enterPointData| |sinh2csch| + |rootOfIrreduciblePoly| |structuralConstants| |isList| |coerceS| + |host| |maximumExponent| |leadingMonomial| |ReduceOrder| |body| + |pack!| |genericRightMinimalPolynomial| |supDimElseRittWu?| + |convergents| |clearFortranOutputStack| |positiveSolve| |iicoth| + |indicialEquations| |omError| |datalist| |outputFixed| + |leadingCoefficient| |e01bgf| |e02bbf| |expint| |aQuadratic| + |normalForm| |remove| |OMgetEndObject| |nullity| |palgLODE0| + |atrapezoidal| |setEpilogue!| |bezoutDiscriminant| |over| |cyclic?| + |e02bdf| |graphCurves| |weight| |genericLeftMinimalPolynomial| |green| + |super| |chvar| |addiag| |charthRoot| |constantOpIfCan| + |rationalApproximation| |c06ebf| |hdmpToP| |antisymmetricTensors| + |last| |say| |secIfCan| |integralLastSubResultant| |elRow1!| + |transcendentalDecompose| |diagonal| |assoc| |leftDiscriminant| + |semiSubResultantGcdEuclidean2| |e02ajf| |hclf| |degreeSubResultant| + |conjugate| |generic?| |endSubProgram| |exportedOperators| + |fintegrate| |Lazard| |figureUnits| |makeFloatFunction| |An| + |mainVariable| |adaptive| |e02adf| |cross| |pow| |uncouplingMatrices| + |rightQuotient| |unitVector| |f02adf| |predicates| |psolve| + |factorGroebnerBasis| |zoom| |constantOperator| |lowerCase!| |find| + |laplacian| |readLineIfCan!| |fortranLinkerArgs| |iiacosh| + |unitNormalize| |iicos| |idealSimplify| |normInvertible?| |has?| |tab| + |coth2trigh| |aLinear| |maxColIndex| |overlabel| |cothIfCan| + |trailingCoefficient| |halfExtendedResultant2| |iiatan| |quotientByP| + |particularSolution| |var1StepsDefault| |rationalPower| |stirling1| + |ratDsolve| |representationType| |componentUpperBound| + |constantCoefficientRicDE| |monicLeftDivide| |resultantEuclideannaif| + |selectFiniteRoutines| |derivative| |s01eaf| |parseString| + |critpOrder| |janko2| |associatedSystem| |symmetricGroup| |iisinh| + |uniform01| |linearlyDependentOverZ?| BY |imagK| |mulmod| + |mainCharacterization| |acoshIfCan| |balancedFactorisation| |f04asf| + |s17dcf| |vedf2vef| |rightUnits| |degreeSubResultantEuclidean| + |signatureAst| |functionIsContinuousAtEndPoints| |cos2sec| + |internalLastSubResultant| |accuracyIF| |atoms| |csch2sinh| + |integralAtInfinity?| |startStats!| |perfectSquare?| + |resultantReduitEuclidean| |lieAlgebra?| |presuper| |makeop| + |diagonal?| |minIndex| |more?| |deleteProperty!| |OMserve| |uniform| + |graphImage| |sizeLess?| |rk4qc| |exteriorDifferential| + |useEisensteinCriterion?| |e04jaf| |crushedSet| |zeroDimPrime?| + |univariatePolynomials| |rootSplit| |divideIfCan| |readUInt8!| + |laguerreL| |compdegd| |iiacsc| |complexEigenvectors| |maxdeg| + |iiacot| |node?| |createGenericMatrix| |coHeight| |nextsousResultant2| + |roman| |rst| |leftUnits| |scaleRoots| |slex| |internalIntegrate| + |empty?| |OMUnknownSymbol?| |fmecg| |c06gsf| |RemainderList| + |infinityNorm| |c06ekf| |pade| |rewriteIdealWithRemainder| NOT + |rischNormalize| |ParCondList| |makeSUP| |linearMatrix| |linGenPos| + |cosh2sech| |cycleLength| |createPrimitiveNormalPoly| |entry| + |numericalIntegration| |selectODEIVPRoutines| OR |meshPar2Var| |infix| + |c02aff| |iisin| |eigenvalues| |e02akf| |factorsOfCyclicGroupSize| + |reducedForm| |child| AND |simplifyLog| |froot| |internal?| + |makeViewport2D| |iterationVar| |mapCoef| |primeFactor| F2FG |s14aaf| + |sin?| |getBadValues| |qfactor| |permutationGroup| |stirling2| D + |OMwrite| |readInt32!| |gradient| |identityMatrix| |initTable!| + |expressIdealMember| |powers| |critM| + |semiDegreeSubResultantEuclidean| |deref| |zero?| |push| + |iteratedInitials| |elColumn2!| |gensym| |pdf2df| |e04dgf| |imports| + |bitLength| |radicalSolve| |genericRightNorm| |nilFactor| |rename!| + |torsion?| |lyndon| |numberOfDivisors| |lexico| |log2| |palgextint| + |fixedPointExquo| |limitedint| |idealiser| |minimumExponent| + |firstNumer| |makeEq| |fixPredicate| |deleteRoutine!| + |dimensionOfIrreducibleRepresentation| |returnType!| |SFunction| + |c05adf| |explogs2trigs| |basicSet| |iiperm| |polyRicDE| + |conditionsForIdempotents| |zeroDim?| |setFormula!| |Hausdorff| + |mainVariable?| |polarCoordinates| |cycle| |addPoint2| |palglimint| + |complexNumericIfCan| |primPartElseUnitCanonical| |mapSolve| + |singular?| |sort!| |char| |noncommutativeJordanAlgebra?| |e02aef| + |OMgetError| |LazardQuotient| |leftCharacteristicPolynomial| + |superscript| |tubePoints| |e02ahf| |alphanumeric| |nonSingularModel| + |redmat| |setleft!| |polynomialZeros| |numberOfImproperPartitions| + |plusInfinity| |gramschmidt| |makeMulti| |sinIfCan| |lifting| * + |write!| |parametersOf| |totalDegree| |lookupFunction| |isOp| |sign| + |minusInfinity| |nextLatticePermutation| |normalizedDivide| + |cycleEntry| |rem| |printingInfo?| |sumOfSquares| |s15adf| |enumerate| + |print| |lazyIrreducibleFactors| |elem?| |B1solve| |equiv| + |rightTrace| |e02ddf| |quo| |deepestTail| |resultantnaif| + |insertionSort!| |commutativeEquality| |integralCoordinates| |resolve| + |Si| |pushuconst| |factorSFBRlcUnit| |bfEntry| |shellSort| + |totalDifferential| |resultantEuclidean| |lazyPseudoQuotient| = + |maxPoints3D| |weierstrass| |lexTriangular| |stoseInvertible?reg| + |bat1| |summation| |btwFact| |power!| |elseBranch| |div| + |inverseLaplace| |pi| |float| |nil?| |cAcsc| |octon| + |orthonormalBasis| |getButtonValue| |minimize| |reorder| |OMbindTCP| + |rewriteIdealWithQuasiMonicGenerators| |mix| |exquo| < |infinity| + |characteristicSerie| |retractIfCan| |parametric?| |makeFR| + |appendPoint| |type| |zeroMatrix| ~= |coerceImages| |viewPhiDefault| + |rootDirectory| > |lazyPseudoDivide| |laurentRep| |binarySearchTree| + |tanSum| |branchPoint?| |OMconnOutDevice| |quasiMonicPolynomials| + |branchPointAtInfinity?| |thenBranch| |semiResultantEuclidean1| + |acothIfCan| |#| |ksec| <= |useNagFunctions| |startPolynomial| + |differentialVariables| |consnewpol| |setref| |someBasis| + |setFieldInfo| |fibonacci| |ptree| ~ |signature| + |getSyntaxFormsFromFile| |transcendent?| |kernel| >= |binary| |erf| + |showTheIFTable| |iitan| |s20adf| |coefficient| |draw| |notelem| + |doubleDisc| |SturmHabicht| |rightRegularRepresentation| + |internalInfRittWu?| |denomRicDE| |integralMatrix| |dimensions| + |ricDsolve| |leadingExponent| |upperCase| |max| + |subResultantGcdEuclidean| |f04jgf| |pointColorDefault| |applyRules| + |ramifiedAtInfinity?| |iprint| |poisson| |/\\| |d01alf| |numFunEvals| + UP2UTS |roughSubIdeal?| |nonQsign| + |dilog| |totolex| |OMputString| + |quasiRegular| |isQuotient| |viewSizeDefault| |cup| |returns| |power| + |\\/| |OMopenFile| |d03eef| - GE |sin| |eulerPhi| |check| + |divideExponents| |edf2df| |makeObject| |cCot| |lllp| + |linearDependenceOverZ| |linear?| / GT |cos| |map| |OMgetEndBind| + |bipolar| |updateStatus!| |c06fqf| |normal01| |critB| |unitCanonical| + |pole?| |outputForm| LE |tan| |lighting| |jacobiIdentity?| + |explicitlyFinite?| |currentEnv| |companionBlocks| |symmetricProduct| + |derivationCoordinates| |shift| |color| |midpoints| |htrigs| |coef| LT + |cot| |physicalLength| |fractionFreeGauss!| |monicRightDivide| + |partialQuotients| |mindeg| |functionIsFracPolynomial?| |duplicates| + |maxRowIndex| |oddlambert| |sec| |eigenvectors| |height| + |OMsupportsCD?| |linearAssociatedOrder| |genericLeftDiscriminant| + |hconcat| |unvectorise| |primintfldpoly| |normDeriv2| |HenselLift| + |csc| |mapUp!| |s17ajf| |randomLC| |writeBytes!| |remainder| + |algebraic?| |moebius| |doubleFloatFormat| |asin| |convert| + |writeLine!| |property| |delete!| |firstUncouplingMatrix| + |FormatRoman| |sdf2lst| |bits| |divergence| |ran| |nthRoot| |equality| + |acos| |lfintegrate| |s21bbf| |latex| |divideIfCan!| |cond| + |normalizeAtInfinity| |randnum| |rightAlternative?| |atan| + |principal?| |trapezoidal| |denomLODE| |prolateSpheroidal| + |writeInt8!| |cosSinInfo| |padecf| |mainExpression| |dec| + |basisOfLeftNucloid| |acot| |units| |associatorDependence| |ideal| + |birth| |colorFunction| |subtractIfCan| |truncate| |topPredicate| + |argscript| |sumSquares| |asec| |LiePoly| |lexGroebner| |pointPlot| + |algebraicCoefficients?| |oddintegers| |readUInt32!| |upDateBranches| + |hypergeometric0F1| |exptMod| |BasicMethod| |acsc| |scalarMatrix| + |inverseColeman| |insertRoot!| |sech2cosh| |genericLeftNorm| + |listYoungTableaus| |sinh| |nthExpon| |ldf2vmf| |merge!| + |nextPrimitiveNormalPoly| |solveLinearPolynomialEquationByFractions| + |cycleElt| |toScale| |newLine| |bombieriNorm| |cosh| + |monicDecomposeIfCan| |binaryTree| |OMopenString| + |nextIrreduciblePoly| |mathieu12| |leftScalarTimes!| |optpair| + |unknownEndian| |f01qcf| |code| |credPol| |tanh| |d02gbf| |asechIfCan| + |cyclicGroup| |minPoly| |rightRemainder| |declare| |e04gcf| |coth| + |adjoint| |e02agf| |region| |setAttributeButtonStep| |bright| + |conditionP| |cAcosh| |clikeUniv| |bottom!| |setAdaptive3D| |tail| + |zeroDimensional?| |sech| |OMputInteger| |stoseSquareFreePart| + |medialSet| |getZechTable| |leftOne| |e04ucf| |coerceL| |atom?| + |cAtanh| |csch| |rightMinimalPolynomial| |nativeModuleExtension| + |continuedFraction| |normalElement| |firstSubsetGray| + |getExplanations| |permanent| |possiblyInfinite?| |cylindrical| + |asinh| |roughBase?| |s17aff| |outputList| |rules| |OMencodingBinary| + |failed| |semiSubResultantGcdEuclidean1| |internalZeroSetSplit| + |intcompBasis| |e02dff| |function| |genericLeftTrace| |acosh| + |inverseIntegralMatrixAtInfinity| |just| |getProperty| |lyndonIfCan| + |quotedOperators| |usingTable?| |leftAlternative?| |interpolate| + |unknown| |dom| |LazardQuotient2| |atanh| |monicCompleteDecompose| + |safetyMargin| |bothWays| |mappingAst| |digit| |Vectorise| |leader| + |cSinh| |bipolarCylindrical| |zeroSetSplit| |rotatey| |eval| + |littleEndian| |acoth| |ffactor| |extractClosed| |hasTopPredicate?| + |iiacoth| |logGamma| |wholeRagits| |coerceP| |space| |iisqrt3| |asech| + |cAsin| |printInfo!| |stFunc2| |mainDefiningPolynomial| |mainKernel| + |shrinkable| |exponentialOrder| |initiallyReduce| |orbits| |lhs| + |complexZeros| |baseRDEsys| |completeHermite| |eigenvector| |quote| + |invertible?| |reduceByQuasiMonic| |mapExponents| + |isAbsolutelyIrreducible?| |multiple| |rational| |rhs| + |singleFactorBound| |karatsubaDivide| |getlo| |completeHensel| + |shiftRight| |getCode| |readInt16!| |drawComplex| |reseed| |li| + |symbolTable| |ramified?| |applyQuote| |lazyEvaluate| |sechIfCan| + |title| |squareFree| |symmetric?| |subSet| |parent| + |computeCycleEntry| |move| |writeUInt8!| + |setLegalFortranSourceExtensions| |makingStats?| |df2fi| |removeZero| + |localUnquote| |create| |iicosh| + |removeRoughlyRedundantFactorsInContents| |pushFortranOutputStack| + |subspace| |objectOf| |d03faf| |simplifyPower| |f02bbf| |pToDmp| + |simplify| |quotient| |viewpoint| |popFortranOutputStack| |e| + |tanintegrate| |ruleset| |double| |digits| |listBranches| |isPlus| + |messagePrint| |hexDigit?| |copy!| |linkToFortran| + |sumOfKthPowerDivisors| |outputAsFortran| |OMParseError?| |rootOf| + |showTheSymbolTable| |fixedPoints| |invertibleSet| |corrPoly| |prime| + |readInt8!| |row| |true| |gethi| |arbitrary| |maxrow| |odd?| |iilog| + |external?| |c06fuf| |complementaryBasis| |modularGcdPrimitive| + |central?| |repeatUntilLoop| |enqueue!| |nothing| |depth| |rowEchelon| + |measure2Result| |increase| |unparse| |heapSort| |f01bsf| |arguments| + |commutative?| |startTable!| |negative?| |lastSubResultantElseSplit| + |f2df| |newTypeLists| |sylvesterMatrix| |splitConstant| + |normalizeIfCan| |split!| |moduleSum| |UpTriBddDenomInv| |multMonom| + |identification| |numberOfPrimitivePoly| |purelyAlgebraic?| + |sizePascalTriangle| |s17agf| |genus| |augment| |polyPart| |quoByVar| + |generalLambert| |test| |vark| |solve1| |cyclotomicDecomposition| + |factors| |insertTop!| |s17acf| |basisOfCommutingElements| |declare!| + |OMputSymbol| |rewriteSetWithReduction| |groebnerFactorize| + |numberOfCycles| |delta| |separateFactors| |outputBinaryFile| + |OMgetSymbol| |viewZoomDefault| |localIntegralBasis| + |mainPrimitivePart| |viewDefaults| |intPatternMatch| |tracePowMod| + |bernoulliB| |minus!| |adaptive3D?| |width| |isOr| |iiasinh| + |callForm?| |leadingIndex| |shade| |generate| |createZechTable| + |trunc| |isMult| |eq| |f02aff| |tanIfCan| |besselJ| + |fortranCompilerName| |zCoord| |maxint| |iter| |subHeight| + |numberOfMonomials| |f07fdf| |setLabelValue| |definingEquations| + |prefix| |call| |antiAssociative?| |permutationRepresentation| + |setrest!| |squareMatrix| |incrementBy| |flatten| |tanh2coth| + |neglist| |areEquivalent?| |fracPart| |overset?| |routines| + |pascalTriangle| |cfirst| |rquo| |expand| |unaryFunction| |debug3D| + |lo| |traverse| |removeIrreducibleRedundantFactors| |cycleTail| + |vector| |parabolic| |open| |fortranLiteral| |ptFunc| |argumentListOf| + |filterWhile| |compose| |iomode| |c06frf| |limitedIntegrate| |cot2tan| + |differentiate| |segment| |univariateSolve| |cPower| |primitivePart| + |makeUnit| |filterUntil| |lambda| |innerSolve1| |elliptic| |Frobenius| + |oddInfiniteProduct| |dominantTerm| |c06ecf| |fglmIfCan| |triangular?| + |f02aef| |select| |paraboloidal| |edf2ef| |isOpen?| |preprocess| + |optional| |qualifier| |curryLeft| |primitiveMonomials| |atanIfCan| + |discriminant| |frobenius| |selectIntegrationRoutines| |bit?| + |checkPrecision| |binding| |supRittWu?| |leftMult| |minordet| + |operations| |vertConcat| |s20acf| |reductum| |completeSmith| + |addMatch| |curveColor| |cAcoth| |tryFunctionalDecomposition| |exp| + |reindex| |univariatePolynomial| |domainTemplate| |fprindINFO| + |triangSolve| |countable?| |nodes| |irreducibleRepresentation| + |rectangularMatrix| |OMputObject| |powern| |cSech| |s19aaf| + |ListOfTerms| |number?| |connectTo| |fixedDivisor| |qroot| |leftLcm| + |rotate!| |nthExponent| |exprex| |expIfCan| |supersub| |outerProduct| + |lagrange| |constantLeft| |mainVariables| + |stiffnessAndStabilityOfODEIF| |s17dhf| |withPredicates| |d02cjf| + |startTableInvSet!| |genericRightTraceForm| |makeRecord| + |replaceKthElement| |hermiteH| |stoseInvertibleSetsqfreg| + |defineProperty| |rightExtendedGcd| |factorSquareFreeByRecursion| + |rootSimp| |OMgetType| |queue| |halfExtendedSubResultantGcd2| + |rightZero| |tRange| |makeCos| |nil| |complexIntegrate| |cschIfCan| + |iipow| |argument| |rischDE| SEGMENT |slash| |diagonalMatrix| + |safeCeiling| |normalizedAssociate| |exponent| |partition| |low| + |s21baf| |setTex!| |setPredicates| |resetBadValues| + |listConjugateBases| |hspace| |getMultiplicationMatrix| + |mapUnivariate| |invertIfCan| |myDegree| |rightGcd| |hostByteOrder| + |rootKerSimp| |initializeGroupForWordProblem| |createPrimitiveElement| + |approximate| |oneDimensionalArray| |singularAtInfinity?| + |setScreenResolution| |qelt| |loopPoints| |lambert| + |expandTrigProducts| |complex| |leaves| |lfextlimint| |solveLinear| + |f01ref| |meatAxe| |second| |red| |qsetelt| |dimensionsOf| |any?| + |coord| |critBonD| |mergeDifference| |s19acf| |noKaratsuba| |third| + |bat| |OMgetApp| |log| |conjug| |xRange| |mainContent| + |invertibleElseSplit?| |leftPower| |s18dcf| |distribute| |setvalue!| + |FormatArabic| |rdregime| |leftRank| |yRange| |completeEval| + |printTypes| |f04mcf| |s21bdf| |coleman| |radicalSimplify| |point?| + |sum| |kroneckerDelta| |zRange| |yellow| |unitsColorDefault| + |acotIfCan| |pr2dmp| |PDESolve| |fortranDoubleComplex| |aspFilename| + |ip4Address| |initials| |map!| |leftDivide| |basisOfRightAnnihilator| + |splitNodeOf!| |solid?| |basisOfRightNucleus| |Lazard2| |minRowIndex| + |concat| |iCompose| |stosePrepareSubResAlgo| |qsetelt!| + |approxNthRoot| |variable?| |isImplies| |lastSubResultant| + |interReduce| |yCoord| |contours| |directSum| + |characteristicPolynomial| |lex| |infRittWu?| |systemCommand| |c06fpf| + |fortranDouble| |categoryFrame| |sequences| |mainForm| |rur| |ParCond| + |subst| |inputOutputBinaryFile| |graphStates| |oblateSpheroidal| + |surface| |lp| |coordinate| |extractSplittingLeaf| |coordinates| + |aCubic| |box| |rightOne| |addmod| |internalSubPolSet?| |flexible?| + |checkRur| |besselK| |f01brf| |recip| |probablyZeroDim?| + |clearDenominator| |f02fjf| |d01gaf| |f04atf| |Nul| |normal| + |exprHasWeightCosWXorSinWX| |intensity| |moreAlgebraic?| |mirror| + |iiatanh| |resetAttributeButtons| |tanhIfCan| |reduction| + |radicalEigenvectors| |factorsOfDegree| |hasoln| |cartesian| + |OMgetBind| |unmakeSUP| |factorOfDegree| |indices| |readLine!| + |npcoef| |leftExactQuotient| |stoseLastSubResultant| |source| + |makeSeries| |light| |generalizedEigenvectors| |factorials| |build| + |f04mbf| |category| |selectMultiDimensionalRoutines| |iflist2Result| + |newReduc| |integral?| |e02baf| |baseRDE| |objects| + |constantToUnaryFunction| |setButtonValue| |domain| |hitherPlane| + |modifyPointData| |skewSFunction| |edf2efi| |imagi| + |squareFreeLexTriangular| |closed?| |base| |OMgetVariable| |package| + |trigs2explogs| |irreducibleFactor| |commutator| |isConnected?| + |addPoint| |ratDenom| |show| |basisOfLeftAnnihilator| |OMgetEndAttr| + |getGraph| |d01amf| |multiEuclideanTree| |integralDerivationMatrix| + |dmp2rfi| |halfExtendedSubResultantGcd1| |points| + |rewriteIdealWithHeadRemainder| |symbol?| |maxIndex| |unitNormal| + |addBadValue| |square?| |target| |zeroSquareMatrix| |trace| |iiasech| + |stoseInvertibleSetreg| |solveRetract| |substring?| |getOperands| + |character?| |mathieu22| |iiabs| |s13adf| |randomR| + |scanOneDimSubspaces| |decompose| |listRepresentation| |inconsistent?| + |xCoord| |quasiRegular?| |bandedJacobian| |semiDiscriminantEuclidean| + |next| |d03edf| |restorePrecision| |ridHack1| |f04arf| |suffix?| + |boundOfCauchy| |c05pbf| |arity| |dihedral| |coefficients| + |laurentIfCan| |rischDEsys| |headReduce| |ravel| |clipWithRanges| + |parts| |testModulus| |asecIfCan| |palgRDE| |realSolve| |reverse| + |nextPrimitivePoly| |var2Steps| |ldf2lst| |shanksDiscLogAlgorithm| + |reshape| |padicFraction| |firstDenom| |currentSubProgram| |d01asf| + |indiceSubResultant| |resultantReduit| |getMultiplicationTable| + |tablePow| |setchildren!| |numericIfCan| |alternative?| |graphs| + |inR?| |plot| |freeOf?| |zeroDimPrimary?| |reverseLex| |before?| + |setelt| |midpoint| |top| |selectfirst| |leftExtendedGcd| |euler| + |inverseIntegralMatrix| |ceiling| |operators| + |createMultiplicationTable| |arg1| |partialDenominators| |resetNew| + |monicModulo| |extension| |harmonic| |factorPolynomial| |composite| + |comp| |pseudoDivide| |arg2| |child?| |setScreenResolution3D| |copy| + |direction| |previous| |ranges| |SturmHabichtMultiple| |anfactor| + |gcdcofactprim| |quickSort| |primintegrate| |iitanh| |clip| + |getIdentifier| |ode2| |continue| |mapBivariate| |quoted?| |ddFact| + |polygon| |screenResolution| |update| |dimension| |conditions| + |showAllElements| |rationalFunction| |setprevious!| |showClipRegion| + |innerSolve| |float?| |flagFactor| |stoseIntegralLastSubResultant| + |satisfy?| |autoCoerce| |match| |factorSquareFree| |hasHi| |epilogue| + |list| |ScanRoman| |solveid| |part?| |curry| |radicalEigenvector| + |every?| |removeZeroes| |init| |result| |pointSizeDefault| |hexDigit| + |car| |mapMatrixIfCan| |genericPosition| |laguerre| |option?| |regime| + |primextendedint| |exponential1| |squareFreePart| |goodnessOfFit| + |cdr| |key?| |eof?| |contractSolve| |euclideanGroebner| |imagk| + |rangeIsFinite| |monomial?| |d01apf| |refine| |reset| + |numberOfComposites| |setDifference| |pomopo!| |s18adf| + |generalizedInverse| |d01anf| |rowEchLocal| |position| + |brillhartTrials| |showFortranOutputStack| |s13aaf| |gcdPolynomial| + |setIntersection| |computeBasis| |UnVectorise| |strongGenerators| + |redPol| |infinite?| |d01bbf| |complex?| |leadingIdeal| + |functionIsOscillatory| |write| |setUnion| |outputMeasure| |e01bef| + |commaSeparate| |match?| |expintegrate| |intersect| |tree| + |collectQuasiMonic| |complexExpand| |OMputEndBind| |save| |getOrder| + |apply| |explicitEntries?| |ipow| |lowerCase| |solid| |geometric| + |pushdown| |modTree| |e02bcf| |choosemon| |precision| |pushdterm| + |iicsch| |setAdaptive| |pmintegrate| |hessian| |split| |leadingTerm| + |sup| |rotatex| |size| |colorDef| |lookup| |mvar| |numberOfComponents| + |create3Space| |realElementary| |createPrimitivePoly| |debug| + |squareFreePolynomial| |hash| |aQuartic| |e02bef| |style| + |specialTrigs| |mkIntegral| |simpleBounds?| |leftMinimalPolynomial| + |algebraicVariables| |count| |ratpart| |internalIntegrate0| + |bernoulli| |yCoordinates| |gcdPrimitive| |cLog| |isTimes| + |subResultantsChain| |distdfact| |dflist| |fill!| |first| + |linearPolynomials| |doubleRank| |algebraicOf| |seriesToOutputForm| + |evenlambert| |generator| |lquo| |e04naf| |overlap| |monic?| |rest| + |isPower| |interactiveEnv| |leftZero| |setImagSteps| |iiasec| + |extract!| |distance| |endOfFile?| |selectNonFiniteRoutines| + |substitute| |mainValue| |relationsIdeal| |Is| |irreducibleFactors| + |less?| |discreteLog| |fortranCharacter| |csc2sin| |diagonalProduct| + |removeDuplicates| |level| |legendre| |dn| |subMatrix| |makeSketch| + |currentScope| |mapUnivariateIfCan| |quadratic?| |userOrdered?| + |initiallyReduced?| |complete| |whileLoop| |f01maf| |lepol| + |wordInStrongGenerators| |typeList| |numberOfFactors| |prevPrime| + |iibinom| |wordInGenerators| |pastel| |resetVariableOrder| + |pleskenSplit| |f02akf| |kmax| |getGoodPrime| |iiexp| + |rightRankPolynomial| |bumptab| |transcendenceDegree| |computeInt| + |kovacic| |setMinPoints| |mainMonomials| |cCsch| |s19abf| + |increasePrecision| |unprotectedRemoveRedundantFactors| + |toseLastSubResultant| |reciprocalPolynomial| |f02wef| |complement| + |stoseInvertible?sqfreg| |matrix| |open?| |numer| |coerceListOfPairs| + |increment| |bumptab1| |mapmult| |deepCopy| |sorted?| |inHallBasis?| + |cAsech| |f01rcf| |denom| |integer?| |coefChoose| |lineColorDefault| + |palgint0| |any| |OMgetEndBVar| |vspace| |root| |rk4f| |measure| |nor| + |reflect| |OMgetAttr| |infieldint| |listLoops| |cAsinh| |minPoints3D| + |entries| |modifyPoint| |internalDecompose| |prime?| + |commonDenominator| |failed?| |insertBottom!| |OMsend| |tan2trig| + |euclideanNormalForm| |padicallyExpand| |mat| |viewDeltaYDefault| + |categories| |asinIfCan| |cCos| |blankSeparate| |primeFrobenius| + |symFunc| |rootPower| |sequence| |varselect| |f04axf| + |prepareDecompose| |complexEigenvalues| |roughUnitIdeal?| + |primlimintfrac| |c05nbf| |brillhartIrreducible?| |tensorProduct| + |s14abf| |decomposeFunc| |lprop| |paren| |lllip| |s15aef| |cot2trig| + |exponents| |rightTraceMatrix| |unravel| |roughBasicSet| |infLex?| + |members| |leadingBasisTerm| |id| |d02raf| |fractRadix| + |ScanFloatIgnoreSpacesIfCan| |shallowCopy| |collectUnder| |revert| + |ode1| |compBound| |incr| |removeRoughlyRedundantFactorsInPols| |axes| + |axesColorDefault| |logical?| |upperCase!| |basisOfRightNucloid| + |basisOfCenter| |OMgetString| |constDsolve| |setProperty!| + |raisePolynomial| |table| |ref| |leftRecip| |nextSublist| |pquo| + |inspect| |factor1| |morphism| |position!| |new| |loadNativeModule| + |sin2csc| |solveLinearPolynomialEquation| |hi| |cCosh| |autoReduced?| + |outputFloating| |pmComplexintegrate| |whatInfinity| |groebner| + |groebner?| |insert| |operator| |pair?| |leftGcd| |sts2stst| + |encodingDirectory| |isobaric?| |nextItem| |exists?| |quadraticNorm| + |saturate| |inc| |copies| |clearTable!| |drawComplexVectorField| + |tanNa| |palgint| |clearCache| |changeVar| |options| |headAst| + |f07fef| |localReal?| |bitCoef| |groebSolve| |integerIfCan| + |normalized?| |abs| |e01daf| |OMlistSymbols| |bezoutMatrix| + |OMputEndBVar| |leastMonomial| |absolutelyIrreducible?| |fractionPart| + |void| |besselY| |recolor| |e01sef| |lowerPolynomial| |gderiv| + |LyndonBasis| |RittWuCompare| |e01saf| |string| |e02dcf| |f02aaf| + |primes| |stFuncN| |leftUnit| |algint| |extractProperty| |phiCoord| + |complexRoots| |normalise| |repSq| |column| |listexp| |jacobian| + |wronskianMatrix| |viewThetaDefault| |length| |expextendedint| + |replace| |factorFraction| |expandLog| |mightHaveRoots| |iroot| + |triangulate| |numberOfIrreduciblePoly| |scripts| |mapExpon| + |resultant| |rroot| |interval| |high| |rightRecip| |dualSignature| + |fortranInteger| |solveInField| |left| |OMgetEndAtp| |taylorIfCan| + |insert!| |binaryTournament| |pop!| |goodPoint| |iiacsch| + |constantKernel| |bivariatePolynomials| |right| + |createLowComplexityTable| |list?| |select!| |makeCrit| |cotIfCan| + |inputBinaryFile| |patternVariable| |lazyVariations| |rightPower| + |cyclicCopy| |makeSin| |setOrder| |cAsec| |cTan| |elt| + |numericalOptimization| |karatsubaOnce| |inRadical?| |charpol| + |removeRedundantFactors| |cyclicSubmodule| |prod| |horizConcat| + |thetaCoord| |rootsOf| |topFortranOutputStack| |bezoutResultant| + |subResultantChain| |linears| |pushucoef| |socf2socdf| |decimal| + |acscIfCan| |c06gqf| |hasPredicate?| |output| |nil| |infinite| + |arbitraryExponent| |approximate| |complex| |shallowMutable| + |canonical| |noetherian| |central| |partiallyOrderedSet| + |arbitraryPrecision| |canonicalsClosed| |noZeroDivisors| + |rightUnitary| |leftUnitary| |additiveValuation| |unitsKnown| + |canonicalUnitNormal| |multiplicativeValuation| |finiteAggregate| + |shallowlyMutable| |commutative|)
\ No newline at end of file diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase index 39ef426f..81b800dd 100644 --- a/src/share/algebra/interp.daase +++ b/src/share/algebra/interp.daase @@ -1,5324 +1,5332 @@ -(3219903 . 3452830407) -((-1824 (((-112) (-1 (-112) |#2| |#2|) $) 87) (((-112) $) NIL)) (-3659 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-3841 ((|#2| $ (-564) |#2|) NIL) ((|#2| $ (-1229 (-564)) |#2|) 44)) (-1540 (($ $) 81)) (-3741 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (-1 |#2| |#2| |#2|) $) 49)) (-3942 (((-564) (-1 (-112) |#2|) $) 27) (((-564) |#2| $) NIL) (((-564) |#2| $ (-564)) 97)) (-2018 (((-642 |#2|) $) 13)) (-2774 (($ (-1 (-112) |#2| |#2|) $ $) 64) (($ $ $) NIL)) (-1857 (($ (-1 |#2| |#2|) $) 37)) (-2947 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 60)) (-4247 (($ |#2| $ (-564)) NIL) (($ $ $ (-564)) 67)) (-3183 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 29)) (-4094 (((-112) (-1 (-112) |#2|) $) 23)) (-4369 ((|#2| $ (-564) |#2|) NIL) ((|#2| $ (-564)) NIL) (($ $ (-1229 (-564))) 66)) (-2083 (($ $ (-564)) 76) (($ $ (-1229 (-564))) 75)) (-4010 (((-769) (-1 (-112) |#2|) $) 34) (((-769) |#2| $) NIL)) (-3301 (($ $ $ (-564)) 69)) (-3865 (($ $) 68)) (-2401 (($ (-642 |#2|)) 73)) (-3634 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 88) (($ (-642 $)) 86)) (-2390 (((-860) $) 93)) (-3295 (((-112) (-1 (-112) |#2|) $) 22)) (-2821 (((-112) $ $) 96)) (-2844 (((-112) $ $) 100))) -(((-18 |#1| |#2|) (-10 -8 (-15 -2821 ((-112) |#1| |#1|)) (-15 -2390 ((-860) |#1|)) (-15 -2844 ((-112) |#1| |#1|)) (-15 -3659 (|#1| |#1|)) (-15 -3659 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1540 (|#1| |#1|)) (-15 -3301 (|#1| |#1| |#1| (-564))) (-15 -1824 ((-112) |#1|)) (-15 -2774 (|#1| |#1| |#1|)) (-15 -3942 ((-564) |#2| |#1| (-564))) (-15 -3942 ((-564) |#2| |#1|)) (-15 -3942 ((-564) (-1 (-112) |#2|) |#1|)) (-15 -1824 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2774 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3841 (|#2| |#1| (-1229 (-564)) |#2|)) (-15 -4247 (|#1| |#1| |#1| (-564))) (-15 -4247 (|#1| |#2| |#1| (-564))) (-15 -2083 (|#1| |#1| (-1229 (-564)))) (-15 -2083 (|#1| |#1| (-564))) (-15 -4369 (|#1| |#1| (-1229 (-564)))) (-15 -2947 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3634 (|#1| (-642 |#1|))) (-15 -3634 (|#1| |#1| |#1|)) (-15 -3634 (|#1| |#2| |#1|)) (-15 -3634 (|#1| |#1| |#2|)) (-15 -2401 (|#1| (-642 |#2|))) (-15 -3183 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3741 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3741 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3741 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4369 (|#2| |#1| (-564))) (-15 -4369 (|#2| |#1| (-564) |#2|)) (-15 -3841 (|#2| |#1| (-564) |#2|)) (-15 -4010 ((-769) |#2| |#1|)) (-15 -2018 ((-642 |#2|) |#1|)) (-15 -4010 ((-769) (-1 (-112) |#2|) |#1|)) (-15 -4094 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3295 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1857 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2947 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3865 (|#1| |#1|))) (-19 |#2|) (-1212)) (T -18)) +(3221568 . 3453332771) +((-4163 (((-112) (-1 (-112) |#2| |#2|) $) 87) (((-112) $) NIL)) (-2893 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-3901 ((|#2| $ (-566) |#2|) NIL) ((|#2| $ (-1231 (-566)) |#2|) 44)) (-2273 (($ $) 81)) (-1838 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (-1 |#2| |#2| |#2|) $) 49)) (-4000 (((-566) (-1 (-112) |#2|) $) 27) (((-566) |#2| $) NIL) (((-566) |#2| $ (-566)) 97)) (-3872 (((-644 |#2|) $) 13)) (-1330 (($ (-1 (-112) |#2| |#2|) $ $) 64) (($ $ $) NIL)) (-3708 (($ (-1 |#2| |#2|) $) 37)) (-3080 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 60)) (-4271 (($ |#2| $ (-566)) NIL) (($ $ $ (-566)) 67)) (-2688 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 29)) (-3966 (((-112) (-1 (-112) |#2|) $) 23)) (-4376 ((|#2| $ (-566) |#2|) NIL) ((|#2| $ (-566)) NIL) (($ $ (-1231 (-566))) 66)) (-2139 (($ $ (-566)) 76) (($ $ (-1231 (-566))) 75)) (-4068 (((-771) (-1 (-112) |#2|) $) 34) (((-771) |#2| $) NIL)) (-1438 (($ $ $ (-566)) 69)) (-3924 (($ $) 68)) (-2489 (($ (-644 |#2|)) 73)) (-3716 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 88) (($ (-644 $)) 86)) (-2479 (((-862) $) 93)) (-3667 (((-112) (-1 (-112) |#2|) $) 22)) (-2952 (((-112) $ $) 96)) (-2977 (((-112) $ $) 100))) +(((-18 |#1| |#2|) (-10 -8 (-15 -2952 ((-112) |#1| |#1|)) (-15 -2479 ((-862) |#1|)) (-15 -2977 ((-112) |#1| |#1|)) (-15 -2893 (|#1| |#1|)) (-15 -2893 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2273 (|#1| |#1|)) (-15 -1438 (|#1| |#1| |#1| (-566))) (-15 -4163 ((-112) |#1|)) (-15 -1330 (|#1| |#1| |#1|)) (-15 -4000 ((-566) |#2| |#1| (-566))) (-15 -4000 ((-566) |#2| |#1|)) (-15 -4000 ((-566) (-1 (-112) |#2|) |#1|)) (-15 -4163 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1330 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3901 (|#2| |#1| (-1231 (-566)) |#2|)) (-15 -4271 (|#1| |#1| |#1| (-566))) (-15 -4271 (|#1| |#2| |#1| (-566))) (-15 -2139 (|#1| |#1| (-1231 (-566)))) (-15 -2139 (|#1| |#1| (-566))) (-15 -4376 (|#1| |#1| (-1231 (-566)))) (-15 -3080 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3716 (|#1| (-644 |#1|))) (-15 -3716 (|#1| |#1| |#1|)) (-15 -3716 (|#1| |#2| |#1|)) (-15 -3716 (|#1| |#1| |#2|)) (-15 -2489 (|#1| (-644 |#2|))) (-15 -2688 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1838 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1838 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1838 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4376 (|#2| |#1| (-566))) (-15 -4376 (|#2| |#1| (-566) |#2|)) (-15 -3901 (|#2| |#1| (-566) |#2|)) (-15 -4068 ((-771) |#2| |#1|)) (-15 -3872 ((-644 |#2|) |#1|)) (-15 -4068 ((-771) (-1 (-112) |#2|) |#1|)) (-15 -3966 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3667 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3708 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3080 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3924 (|#1| |#1|))) (-19 |#2|) (-1214)) (T -18)) NIL -(-10 -8 (-15 -2821 ((-112) |#1| |#1|)) (-15 -2390 ((-860) |#1|)) (-15 -2844 ((-112) |#1| |#1|)) (-15 -3659 (|#1| |#1|)) (-15 -3659 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1540 (|#1| |#1|)) (-15 -3301 (|#1| |#1| |#1| (-564))) (-15 -1824 ((-112) |#1|)) (-15 -2774 (|#1| |#1| |#1|)) (-15 -3942 ((-564) |#2| |#1| (-564))) (-15 -3942 ((-564) |#2| |#1|)) (-15 -3942 ((-564) (-1 (-112) |#2|) |#1|)) (-15 -1824 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2774 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3841 (|#2| |#1| (-1229 (-564)) |#2|)) (-15 -4247 (|#1| |#1| |#1| (-564))) (-15 -4247 (|#1| |#2| |#1| (-564))) (-15 -2083 (|#1| |#1| (-1229 (-564)))) (-15 -2083 (|#1| |#1| (-564))) (-15 -4369 (|#1| |#1| (-1229 (-564)))) (-15 -2947 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3634 (|#1| (-642 |#1|))) (-15 -3634 (|#1| |#1| |#1|)) (-15 -3634 (|#1| |#2| |#1|)) (-15 -3634 (|#1| |#1| |#2|)) (-15 -2401 (|#1| (-642 |#2|))) (-15 -3183 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3741 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3741 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3741 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4369 (|#2| |#1| (-564))) (-15 -4369 (|#2| |#1| (-564) |#2|)) (-15 -3841 (|#2| |#1| (-564) |#2|)) (-15 -4010 ((-769) |#2| |#1|)) (-15 -2018 ((-642 |#2|) |#1|)) (-15 -4010 ((-769) (-1 (-112) |#2|) |#1|)) (-15 -4094 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3295 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1857 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2947 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3865 (|#1| |#1|))) -((-2856 (((-112) $ $) 19 (|has| |#1| (-1097)))) (-3633 (((-1267) $ (-564) (-564)) 41 (|has| $ (-6 -4411)))) (-1824 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-848)))) (-3659 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4411))) (($ $) 89 (-12 (|has| |#1| (-848)) (|has| $ (-6 -4411))))) (-3191 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-848)))) (-3442 (((-112) $ (-769)) 8)) (-3841 ((|#1| $ (-564) |#1|) 53 (|has| $ (-6 -4411))) ((|#1| $ (-1229 (-564)) |#1|) 59 (|has| $ (-6 -4411)))) (-3437 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4410)))) (-2822 (($) 7 T CONST)) (-1540 (($ $) 91 (|has| $ (-6 -4411)))) (-3817 (($ $) 101)) (-4067 (($ $) 79 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-2517 (($ |#1| $) 78 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4410)))) (-3741 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4410)))) (-3105 ((|#1| $ (-564) |#1|) 54 (|has| $ (-6 -4411)))) (-1804 ((|#1| $ (-564)) 52)) (-3942 (((-564) (-1 (-112) |#1|) $) 98) (((-564) |#1| $) 97 (|has| |#1| (-1097))) (((-564) |#1| $ (-564)) 96 (|has| |#1| (-1097)))) (-2018 (((-642 |#1|) $) 31 (|has| $ (-6 -4410)))) (-4233 (($ (-769) |#1|) 70)) (-3769 (((-112) $ (-769)) 9)) (-1802 (((-564) $) 44 (|has| (-564) (-848)))) (-3225 (($ $ $) 88 (|has| |#1| (-848)))) (-2774 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-848)))) (-3541 (((-642 |#1|) $) 30 (|has| $ (-6 -4410)))) (-2533 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3624 (((-564) $) 45 (|has| (-564) (-848)))) (-2903 (($ $ $) 87 (|has| |#1| (-848)))) (-1857 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4145 (((-112) $ (-769)) 10)) (-1778 (((-1155) $) 22 (|has| |#1| (-1097)))) (-4247 (($ |#1| $ (-564)) 61) (($ $ $ (-564)) 60)) (-4107 (((-642 (-564)) $) 47)) (-4207 (((-112) (-564) $) 48)) (-3999 (((-1117) $) 21 (|has| |#1| (-1097)))) (-4036 ((|#1| $) 43 (|has| (-564) (-848)))) (-3183 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-3826 (($ $ |#1|) 42 (|has| $ (-6 -4411)))) (-4094 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-2478 (((-112) $ $) 14)) (-1643 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3522 (((-642 |#1|) $) 49)) (-4109 (((-112) $) 11)) (-2179 (($) 12)) (-4369 ((|#1| $ (-564) |#1|) 51) ((|#1| $ (-564)) 50) (($ $ (-1229 (-564))) 64)) (-2083 (($ $ (-564)) 63) (($ $ (-1229 (-564))) 62)) (-4010 (((-769) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4410))) (((-769) |#1| $) 29 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3301 (($ $ $ (-564)) 92 (|has| $ (-6 -4411)))) (-3865 (($ $) 13)) (-3003 (((-536) $) 80 (|has| |#1| (-612 (-536))))) (-2401 (($ (-642 |#1|)) 71)) (-3634 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-642 $)) 66)) (-2390 (((-860) $) 18 (|has| |#1| (-611 (-860))))) (-1600 (((-112) $ $) 23 (|has| |#1| (-1097)))) (-3295 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4410)))) (-2881 (((-112) $ $) 85 (|has| |#1| (-848)))) (-2857 (((-112) $ $) 84 (|has| |#1| (-848)))) (-2821 (((-112) $ $) 20 (|has| |#1| (-1097)))) (-2868 (((-112) $ $) 86 (|has| |#1| (-848)))) (-2844 (((-112) $ $) 83 (|has| |#1| (-848)))) (-2158 (((-769) $) 6 (|has| $ (-6 -4410))))) -(((-19 |#1|) (-140) (-1212)) (T -19)) +(-10 -8 (-15 -2952 ((-112) |#1| |#1|)) (-15 -2479 ((-862) |#1|)) (-15 -2977 ((-112) |#1| |#1|)) (-15 -2893 (|#1| |#1|)) (-15 -2893 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2273 (|#1| |#1|)) (-15 -1438 (|#1| |#1| |#1| (-566))) (-15 -4163 ((-112) |#1|)) (-15 -1330 (|#1| |#1| |#1|)) (-15 -4000 ((-566) |#2| |#1| (-566))) (-15 -4000 ((-566) |#2| |#1|)) (-15 -4000 ((-566) (-1 (-112) |#2|) |#1|)) (-15 -4163 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1330 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3901 (|#2| |#1| (-1231 (-566)) |#2|)) (-15 -4271 (|#1| |#1| |#1| (-566))) (-15 -4271 (|#1| |#2| |#1| (-566))) (-15 -2139 (|#1| |#1| (-1231 (-566)))) (-15 -2139 (|#1| |#1| (-566))) (-15 -4376 (|#1| |#1| (-1231 (-566)))) (-15 -3080 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3716 (|#1| (-644 |#1|))) (-15 -3716 (|#1| |#1| |#1|)) (-15 -3716 (|#1| |#2| |#1|)) (-15 -3716 (|#1| |#1| |#2|)) (-15 -2489 (|#1| (-644 |#2|))) (-15 -2688 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1838 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1838 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1838 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4376 (|#2| |#1| (-566))) (-15 -4376 (|#2| |#1| (-566) |#2|)) (-15 -3901 (|#2| |#1| (-566) |#2|)) (-15 -4068 ((-771) |#2| |#1|)) (-15 -3872 ((-644 |#2|) |#1|)) (-15 -4068 ((-771) (-1 (-112) |#2|) |#1|)) (-15 -3966 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3667 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3708 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3080 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3924 (|#1| |#1|))) +((-2986 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2462 (((-1269) $ (-566) (-566)) 41 (|has| $ (-6 -4418)))) (-4163 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-850)))) (-2893 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4418))) (($ $) 89 (-12 (|has| |#1| (-850)) (|has| $ (-6 -4418))))) (-1374 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-850)))) (-1453 (((-112) $ (-771)) 8)) (-3901 ((|#1| $ (-566) |#1|) 53 (|has| $ (-6 -4418))) ((|#1| $ (-1231 (-566)) |#1|) 59 (|has| $ (-6 -4418)))) (-3543 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4417)))) (-1811 (($) 7 T CONST)) (-2273 (($ $) 91 (|has| $ (-6 -4418)))) (-3877 (($ $) 101)) (-4111 (($ $) 79 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-2628 (($ |#1| $) 78 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4417)))) (-1838 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4417)))) (-3719 ((|#1| $ (-566) |#1|) 54 (|has| $ (-6 -4418)))) (-3653 ((|#1| $ (-566)) 52)) (-4000 (((-566) (-1 (-112) |#1|) $) 98) (((-566) |#1| $) 97 (|has| |#1| (-1099))) (((-566) |#1| $ (-566)) 96 (|has| |#1| (-1099)))) (-3872 (((-644 |#1|) $) 31 (|has| $ (-6 -4417)))) (-4259 (($ (-771) |#1|) 70)) (-2756 (((-112) $ (-771)) 9)) (-2755 (((-566) $) 44 (|has| (-566) (-850)))) (-1920 (($ $ $) 88 (|has| |#1| (-850)))) (-1330 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-850)))) (-4227 (((-644 |#1|) $) 30 (|has| $ (-6 -4417)))) (-1688 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-3831 (((-566) $) 45 (|has| (-566) (-850)))) (-3038 (($ $ $) 87 (|has| |#1| (-850)))) (-3708 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4106 (((-112) $ (-771)) 10)) (-3151 (((-1157) $) 22 (|has| |#1| (-1099)))) (-4271 (($ |#1| $ (-566)) 61) (($ $ $ (-566)) 60)) (-3780 (((-644 (-566)) $) 47)) (-1605 (((-112) (-566) $) 48)) (-4059 (((-1119) $) 21 (|has| |#1| (-1099)))) (-4080 ((|#1| $) 43 (|has| (-566) (-850)))) (-2688 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-4079 (($ $ |#1|) 42 (|has| $ (-6 -4418)))) (-3966 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1844 (((-112) $ $) 14)) (-2210 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-4185 (((-644 |#1|) $) 49)) (-2788 (((-112) $) 11)) (-1737 (($) 12)) (-4376 ((|#1| $ (-566) |#1|) 51) ((|#1| $ (-566)) 50) (($ $ (-1231 (-566))) 64)) (-2139 (($ $ (-566)) 63) (($ $ (-1231 (-566))) 62)) (-4068 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4417))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-1438 (($ $ $ (-566)) 92 (|has| $ (-6 -4418)))) (-3924 (($ $) 13)) (-3136 (((-538) $) 80 (|has| |#1| (-614 (-538))))) (-2489 (($ (-644 |#1|)) 71)) (-3716 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-644 $)) 66)) (-2479 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-3900 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-3667 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4417)))) (-3019 (((-112) $ $) 85 (|has| |#1| (-850)))) (-2990 (((-112) $ $) 84 (|has| |#1| (-850)))) (-2952 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3004 (((-112) $ $) 86 (|has| |#1| (-850)))) (-2977 (((-112) $ $) 83 (|has| |#1| (-850)))) (-3002 (((-771) $) 6 (|has| $ (-6 -4417))))) +(((-19 |#1|) (-140) (-1214)) (T -19)) NIL -(-13 (-373 |t#1|) (-10 -7 (-6 -4411))) -(((-34) . T) ((-102) -2682 (|has| |#1| (-1097)) (|has| |#1| (-848))) ((-611 (-860)) -2682 (|has| |#1| (-1097)) (|has| |#1| (-848)) (|has| |#1| (-611 (-860)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-373 |#1|) . T) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-649 |#1|) . T) ((-848) |has| |#1| (-848)) ((-1097) -2682 (|has| |#1| (-1097)) (|has| |#1| (-848))) ((-1212) . T)) -((-3085 (((-3 $ "failed") $ $) 12)) (-2930 (($ $) NIL) (($ $ $) 9)) (* (($ (-919) $) NIL) (($ (-769) $) 16) (($ (-564) $) 26))) -(((-20 |#1|) (-10 -8 (-15 -2930 (|#1| |#1| |#1|)) (-15 -2930 (|#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 -3085 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-769) |#1|)) (-15 * (|#1| (-919) |#1|))) (-21)) (T -20)) +(-13 (-375 |t#1|) (-10 -7 (-6 -4418))) +(((-34) . T) ((-102) -2809 (|has| |#1| (-1099)) (|has| |#1| (-850))) ((-613 (-862)) -2809 (|has| |#1| (-1099)) (|has| |#1| (-850)) (|has| |#1| (-613 (-862)))) ((-151 |#1|) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-287 #0=(-566) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-375 |#1|) . T) ((-491 |#1|) . T) ((-604 #0# |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-651 |#1|) . T) ((-850) |has| |#1| (-850)) ((-1099) -2809 (|has| |#1| (-1099)) (|has| |#1| (-850))) ((-1214) . T)) +((-3174 (((-3 $ "failed") $ $) 12)) (-3065 (($ $) NIL) (($ $ $) 9)) (* (($ (-921) $) NIL) (($ (-771) $) 16) (($ (-566) $) 26))) +(((-20 |#1|) (-10 -8 (-15 -3065 (|#1| |#1| |#1|)) (-15 -3065 (|#1| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 -3174 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 * (|#1| (-921) |#1|))) (-21)) (T -20)) NIL -(-10 -8 (-15 -2930 (|#1| |#1| |#1|)) (-15 -2930 (|#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 -3085 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-769) |#1|)) (-15 * (|#1| (-919) |#1|))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-3085 (((-3 $ "failed") $ $) 20)) (-2822 (($) 18 T CONST)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2390 (((-860) $) 12)) (-1600 (((-112) $ $) 9)) (-2361 (($) 19 T CONST)) (-2821 (((-112) $ $) 6)) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24))) +(-10 -8 (-15 -3065 (|#1| |#1| |#1|)) (-15 -3065 (|#1| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 -3174 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 * (|#1| (-921) |#1|))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-3174 (((-3 $ "failed") $ $) 20)) (-1811 (($) 18 T CONST)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-2479 (((-862) $) 12)) (-3900 (((-112) $ $) 9)) (-2446 (($) 19 T CONST)) (-2952 (((-112) $ $) 6)) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24))) (((-21) (-140)) (T -21)) -((-2930 (*1 *1 *1) (-4 *1 (-21))) (-2930 (*1 *1 *1 *1) (-4 *1 (-21)))) -(-13 (-131) (-644 (-564)) (-10 -8 (-15 -2930 ($ $)) (-15 -2930 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-860)) . T) ((-644 (-564)) . T) ((-1097) . T)) -((-2950 (((-112) $) 10)) (-2822 (($) 15)) (* (($ (-919) $) 14) (($ (-769) $) 19))) -(((-22 |#1|) (-10 -8 (-15 * (|#1| (-769) |#1|)) (-15 -2950 ((-112) |#1|)) (-15 -2822 (|#1|)) (-15 * (|#1| (-919) |#1|))) (-23)) (T -22)) -NIL -(-10 -8 (-15 * (|#1| (-769) |#1|)) (-15 -2950 ((-112) |#1|)) (-15 -2822 (|#1|)) (-15 * (|#1| (-919) |#1|))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-2822 (($) 18 T CONST)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2390 (((-860) $) 12)) (-1600 (((-112) $ $) 9)) (-2361 (($) 19 T CONST)) (-2821 (((-112) $ $) 6)) (-2917 (($ $ $) 15)) (* (($ (-919) $) 14) (($ (-769) $) 16))) +((-3065 (*1 *1 *1) (-4 *1 (-21))) (-3065 (*1 *1 *1 *1) (-4 *1 (-21)))) +(-13 (-131) (-646 (-566)) (-10 -8 (-15 -3065 ($ $)) (-15 -3065 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-1099) . T)) +((-2845 (((-112) $) 10)) (-1811 (($) 15)) (* (($ (-921) $) 14) (($ (-771) $) 19))) +(((-22 |#1|) (-10 -8 (-15 * (|#1| (-771) |#1|)) (-15 -2845 ((-112) |#1|)) (-15 -1811 (|#1|)) (-15 * (|#1| (-921) |#1|))) (-23)) (T -22)) +NIL +(-10 -8 (-15 * (|#1| (-771) |#1|)) (-15 -2845 ((-112) |#1|)) (-15 -1811 (|#1|)) (-15 * (|#1| (-921) |#1|))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-1811 (($) 18 T CONST)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-2479 (((-862) $) 12)) (-3900 (((-112) $ $) 9)) (-2446 (($) 19 T CONST)) (-2952 (((-112) $ $) 6)) (-3052 (($ $ $) 15)) (* (($ (-921) $) 14) (($ (-771) $) 16))) (((-23) (-140)) (T -23)) -((-2361 (*1 *1) (-4 *1 (-23))) (-2822 (*1 *1) (-4 *1 (-23))) (-2950 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-769))))) -(-13 (-25) (-10 -8 (-15 (-2361) ($) -1551) (-15 -2822 ($) -1551) (-15 -2950 ((-112) $)) (-15 * ($ (-769) $)))) -(((-25) . T) ((-102) . T) ((-611 (-860)) . T) ((-1097) . T)) -((* (($ (-919) $) 10))) -(((-24 |#1|) (-10 -8 (-15 * (|#1| (-919) |#1|))) (-25)) (T -24)) -NIL -(-10 -8 (-15 * (|#1| (-919) |#1|))) -((-2856 (((-112) $ $) 7)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2390 (((-860) $) 12)) (-1600 (((-112) $ $) 9)) (-2821 (((-112) $ $) 6)) (-2917 (($ $ $) 15)) (* (($ (-919) $) 14))) +((-2446 (*1 *1) (-4 *1 (-23))) (-1811 (*1 *1) (-4 *1 (-23))) (-2845 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-771))))) +(-13 (-25) (-10 -8 (-15 (-2446) ($) -1573) (-15 -1811 ($) -1573) (-15 -2845 ((-112) $)) (-15 * ($ (-771) $)))) +(((-25) . T) ((-102) . T) ((-613 (-862)) . T) ((-1099) . T)) +((* (($ (-921) $) 10))) +(((-24 |#1|) (-10 -8 (-15 * (|#1| (-921) |#1|))) (-25)) (T -24)) +NIL +(-10 -8 (-15 * (|#1| (-921) |#1|))) +((-2986 (((-112) $ $) 7)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-2479 (((-862) $) 12)) (-3900 (((-112) $ $) 9)) (-2952 (((-112) $ $) 6)) (-3052 (($ $ $) 15)) (* (($ (-921) $) 14))) (((-25) (-140)) (T -25)) -((-2917 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-919))))) -(-13 (-1097) (-10 -8 (-15 -2917 ($ $ $)) (-15 * ($ (-919) $)))) -(((-102) . T) ((-611 (-860)) . T) ((-1097) . T)) -((-2659 (((-642 $) (-950 $)) 32) (((-642 $) (-1169 $)) 16) (((-642 $) (-1169 $) (-1173)) 20)) (-1791 (($ (-950 $)) 30) (($ (-1169 $)) 11) (($ (-1169 $) (-1173)) 60)) (-3008 (((-642 $) (-950 $)) 33) (((-642 $) (-1169 $)) 18) (((-642 $) (-1169 $) (-1173)) 19)) (-2619 (($ (-950 $)) 31) (($ (-1169 $)) 13) (($ (-1169 $) (-1173)) NIL))) -(((-26 |#1|) (-10 -8 (-15 -2659 ((-642 |#1|) (-1169 |#1|) (-1173))) (-15 -2659 ((-642 |#1|) (-1169 |#1|))) (-15 -2659 ((-642 |#1|) (-950 |#1|))) (-15 -1791 (|#1| (-1169 |#1|) (-1173))) (-15 -1791 (|#1| (-1169 |#1|))) (-15 -1791 (|#1| (-950 |#1|))) (-15 -3008 ((-642 |#1|) (-1169 |#1|) (-1173))) (-15 -3008 ((-642 |#1|) (-1169 |#1|))) (-15 -3008 ((-642 |#1|) (-950 |#1|))) (-15 -2619 (|#1| (-1169 |#1|) (-1173))) (-15 -2619 (|#1| (-1169 |#1|))) (-15 -2619 (|#1| (-950 |#1|)))) (-27)) (T -26)) -NIL -(-10 -8 (-15 -2659 ((-642 |#1|) (-1169 |#1|) (-1173))) (-15 -2659 ((-642 |#1|) (-1169 |#1|))) (-15 -2659 ((-642 |#1|) (-950 |#1|))) (-15 -1791 (|#1| (-1169 |#1|) (-1173))) (-15 -1791 (|#1| (-1169 |#1|))) (-15 -1791 (|#1| (-950 |#1|))) (-15 -3008 ((-642 |#1|) (-1169 |#1|) (-1173))) (-15 -3008 ((-642 |#1|) (-1169 |#1|))) (-15 -3008 ((-642 |#1|) (-950 |#1|))) (-15 -2619 (|#1| (-1169 |#1|) (-1173))) (-15 -2619 (|#1| (-1169 |#1|))) (-15 -2619 (|#1| (-950 |#1|)))) -((-2856 (((-112) $ $) 7)) (-2659 (((-642 $) (-950 $)) 88) (((-642 $) (-1169 $)) 87) (((-642 $) (-1169 $) (-1173)) 86)) (-1791 (($ (-950 $)) 91) (($ (-1169 $)) 90) (($ (-1169 $) (-1173)) 89)) (-2950 (((-112) $) 17)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) 47)) (-4252 (($ $) 46)) (-1722 (((-112) $) 44)) (-3085 (((-3 $ "failed") $ $) 20)) (-1993 (($ $) 81)) (-3282 (((-418 $) $) 80)) (-2264 (($ $) 100)) (-2134 (((-112) $ $) 65)) (-2822 (($) 18 T CONST)) (-3008 (((-642 $) (-950 $)) 94) (((-642 $) (-1169 $)) 93) (((-642 $) (-1169 $) (-1173)) 92)) (-2619 (($ (-950 $)) 97) (($ (-1169 $)) 96) (($ (-1169 $) (-1173)) 95)) (-2796 (($ $ $) 61)) (-2675 (((-3 $ "failed") $) 37)) (-2808 (($ $ $) 62)) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) 57)) (-3552 (((-112) $) 79)) (-3163 (((-112) $) 35)) (-2024 (($ $ (-564)) 99)) (-2709 (((-3 (-642 $) "failed") (-642 $) $) 58)) (-2066 (($ $ $) 52) (($ (-642 $)) 51)) (-1778 (((-1155) $) 10)) (-2481 (($ $) 78)) (-3999 (((-1117) $) 11)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) 50)) (-2105 (($ $ $) 54) (($ (-642 $)) 53)) (-2254 (((-418 $) $) 82)) (-1877 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2842 (((-3 $ "failed") $ $) 48)) (-1483 (((-3 (-642 $) "failed") (-642 $) $) 56)) (-4274 (((-769) $) 64)) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) 63)) (-2390 (((-860) $) 12) (($ (-564)) 33) (($ $) 49) (($ (-407 (-564))) 74)) (-3348 (((-769)) 32 T CONST)) (-1600 (((-112) $ $) 9)) (-1594 (((-112) $ $) 45)) (-2361 (($) 19 T CONST)) (-2371 (($) 34 T CONST)) (-2821 (((-112) $ $) 6)) (-2943 (($ $ $) 73)) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36) (($ $ (-564)) 77) (($ $ (-407 (-564))) 98)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ (-407 (-564))) 76) (($ (-407 (-564)) $) 75))) +((-3052 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-921))))) +(-13 (-1099) (-10 -8 (-15 -3052 ($ $ $)) (-15 * ($ (-921) $)))) +(((-102) . T) ((-613 (-862)) . T) ((-1099) . T)) +((-1498 (((-644 $) (-952 $)) 32) (((-644 $) (-1171 $)) 16) (((-644 $) (-1171 $) (-1175)) 20)) (-1625 (($ (-952 $)) 30) (($ (-1171 $)) 11) (($ (-1171 $) (-1175)) 60)) (-4386 (((-644 $) (-952 $)) 33) (((-644 $) (-1171 $)) 18) (((-644 $) (-1171 $) (-1175)) 19)) (-3388 (($ (-952 $)) 31) (($ (-1171 $)) 13) (($ (-1171 $) (-1175)) NIL))) +(((-26 |#1|) (-10 -8 (-15 -1498 ((-644 |#1|) (-1171 |#1|) (-1175))) (-15 -1498 ((-644 |#1|) (-1171 |#1|))) (-15 -1498 ((-644 |#1|) (-952 |#1|))) (-15 -1625 (|#1| (-1171 |#1|) (-1175))) (-15 -1625 (|#1| (-1171 |#1|))) (-15 -1625 (|#1| (-952 |#1|))) (-15 -4386 ((-644 |#1|) (-1171 |#1|) (-1175))) (-15 -4386 ((-644 |#1|) (-1171 |#1|))) (-15 -4386 ((-644 |#1|) (-952 |#1|))) (-15 -3388 (|#1| (-1171 |#1|) (-1175))) (-15 -3388 (|#1| (-1171 |#1|))) (-15 -3388 (|#1| (-952 |#1|)))) (-27)) (T -26)) +NIL +(-10 -8 (-15 -1498 ((-644 |#1|) (-1171 |#1|) (-1175))) (-15 -1498 ((-644 |#1|) (-1171 |#1|))) (-15 -1498 ((-644 |#1|) (-952 |#1|))) (-15 -1625 (|#1| (-1171 |#1|) (-1175))) (-15 -1625 (|#1| (-1171 |#1|))) (-15 -1625 (|#1| (-952 |#1|))) (-15 -4386 ((-644 |#1|) (-1171 |#1|) (-1175))) (-15 -4386 ((-644 |#1|) (-1171 |#1|))) (-15 -4386 ((-644 |#1|) (-952 |#1|))) (-15 -3388 (|#1| (-1171 |#1|) (-1175))) (-15 -3388 (|#1| (-1171 |#1|))) (-15 -3388 (|#1| (-952 |#1|)))) +((-2986 (((-112) $ $) 7)) (-1498 (((-644 $) (-952 $)) 88) (((-644 $) (-1171 $)) 87) (((-644 $) (-1171 $) (-1175)) 86)) (-1625 (($ (-952 $)) 91) (($ (-1171 $)) 90) (($ (-1171 $) (-1175)) 89)) (-2845 (((-112) $) 17)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) 47)) (-3087 (($ $) 46)) (-1716 (((-112) $) 44)) (-3174 (((-3 $ "failed") $ $) 20)) (-3980 (($ $) 81)) (-3348 (((-420 $) $) 80)) (-2338 (($ $) 100)) (-2761 (((-112) $ $) 65)) (-1811 (($) 18 T CONST)) (-4386 (((-644 $) (-952 $)) 94) (((-644 $) (-1171 $)) 93) (((-644 $) (-1171 $) (-1175)) 92)) (-3388 (($ (-952 $)) 97) (($ (-1171 $)) 96) (($ (-1171 $) (-1175)) 95)) (-2925 (($ $ $) 61)) (-3757 (((-3 $ "failed") $) 37)) (-2937 (($ $ $) 62)) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) 57)) (-4188 (((-112) $) 79)) (-2264 (((-112) $) 35)) (-3146 (($ $ (-566)) 99)) (-2495 (((-3 (-644 $) "failed") (-644 $) $) 58)) (-2120 (($ $ $) 52) (($ (-644 $)) 51)) (-3151 (((-1157) $) 10)) (-2577 (($ $) 78)) (-4059 (((-1119) $) 11)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-2162 (($ $ $) 54) (($ (-644 $)) 53)) (-2325 (((-420 $) $) 82)) (-2585 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2976 (((-3 $ "failed") $ $) 48)) (-2840 (((-3 (-644 $) "failed") (-644 $) $) 56)) (-1383 (((-771) $) 64)) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) 63)) (-2479 (((-862) $) 12) (($ (-566)) 33) (($ $) 49) (($ (-409 (-566))) 74)) (-1558 (((-771)) 32 T CONST)) (-3900 (((-112) $ $) 9)) (-1333 (((-112) $ $) 45)) (-2446 (($) 19 T CONST)) (-2459 (($) 34 T CONST)) (-2952 (((-112) $ $) 6)) (-3077 (($ $ $) 73)) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 77) (($ $ (-409 (-566))) 98)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ (-409 (-566))) 76) (($ (-409 (-566)) $) 75))) (((-27) (-140)) (T -27)) -((-2619 (*1 *1 *2) (-12 (-5 *2 (-950 *1)) (-4 *1 (-27)))) (-2619 (*1 *1 *2) (-12 (-5 *2 (-1169 *1)) (-4 *1 (-27)))) (-2619 (*1 *1 *2 *3) (-12 (-5 *2 (-1169 *1)) (-5 *3 (-1173)) (-4 *1 (-27)))) (-3008 (*1 *2 *3) (-12 (-5 *3 (-950 *1)) (-4 *1 (-27)) (-5 *2 (-642 *1)))) (-3008 (*1 *2 *3) (-12 (-5 *3 (-1169 *1)) (-4 *1 (-27)) (-5 *2 (-642 *1)))) (-3008 (*1 *2 *3 *4) (-12 (-5 *3 (-1169 *1)) (-5 *4 (-1173)) (-4 *1 (-27)) (-5 *2 (-642 *1)))) (-1791 (*1 *1 *2) (-12 (-5 *2 (-950 *1)) (-4 *1 (-27)))) (-1791 (*1 *1 *2) (-12 (-5 *2 (-1169 *1)) (-4 *1 (-27)))) (-1791 (*1 *1 *2 *3) (-12 (-5 *2 (-1169 *1)) (-5 *3 (-1173)) (-4 *1 (-27)))) (-2659 (*1 *2 *3) (-12 (-5 *3 (-950 *1)) (-4 *1 (-27)) (-5 *2 (-642 *1)))) (-2659 (*1 *2 *3) (-12 (-5 *3 (-1169 *1)) (-4 *1 (-27)) (-5 *2 (-642 *1)))) (-2659 (*1 *2 *3 *4) (-12 (-5 *3 (-1169 *1)) (-5 *4 (-1173)) (-4 *1 (-27)) (-5 *2 (-642 *1))))) -(-13 (-363) (-1000) (-10 -8 (-15 -2619 ($ (-950 $))) (-15 -2619 ($ (-1169 $))) (-15 -2619 ($ (-1169 $) (-1173))) (-15 -3008 ((-642 $) (-950 $))) (-15 -3008 ((-642 $) (-1169 $))) (-15 -3008 ((-642 $) (-1169 $) (-1173))) (-15 -1791 ($ (-950 $))) (-15 -1791 ($ (-1169 $))) (-15 -1791 ($ (-1169 $) (-1173))) (-15 -2659 ((-642 $) (-950 $))) (-15 -2659 ((-642 $) (-1169 $))) (-15 -2659 ((-642 $) (-1169 $) (-1173))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-860)) . T) ((-172) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-452) . T) ((-556) . T) ((-644 #0#) . T) ((-644 (-564)) . T) ((-644 $) . T) ((-646 #0#) . T) ((-646 $) . T) ((-638 #0#) . T) ((-638 $) . T) ((-715 #0#) . T) ((-715 $) . T) ((-724) . T) ((-918) . T) ((-1000) . T) ((-1049 #0#) . T) ((-1049 $) . T) ((-1054 #0#) . T) ((-1054 $) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T) ((-1216) . T)) -((-2659 (((-642 $) (-950 $)) NIL) (((-642 $) (-1169 $)) NIL) (((-642 $) (-1169 $) (-1173)) 55) (((-642 $) $) 22) (((-642 $) $ (-1173)) 46)) (-1791 (($ (-950 $)) NIL) (($ (-1169 $)) NIL) (($ (-1169 $) (-1173)) 57) (($ $) 20) (($ $ (-1173)) 40)) (-3008 (((-642 $) (-950 $)) NIL) (((-642 $) (-1169 $)) NIL) (((-642 $) (-1169 $) (-1173)) 53) (((-642 $) $) 18) (((-642 $) $ (-1173)) 48)) (-2619 (($ (-950 $)) NIL) (($ (-1169 $)) NIL) (($ (-1169 $) (-1173)) NIL) (($ $) 15) (($ $ (-1173)) 42))) -(((-28 |#1| |#2|) (-10 -8 (-15 -2659 ((-642 |#1|) |#1| (-1173))) (-15 -1791 (|#1| |#1| (-1173))) (-15 -2659 ((-642 |#1|) |#1|)) (-15 -1791 (|#1| |#1|)) (-15 -3008 ((-642 |#1|) |#1| (-1173))) (-15 -2619 (|#1| |#1| (-1173))) (-15 -3008 ((-642 |#1|) |#1|)) (-15 -2619 (|#1| |#1|)) (-15 -2659 ((-642 |#1|) (-1169 |#1|) (-1173))) (-15 -2659 ((-642 |#1|) (-1169 |#1|))) (-15 -2659 ((-642 |#1|) (-950 |#1|))) (-15 -1791 (|#1| (-1169 |#1|) (-1173))) (-15 -1791 (|#1| (-1169 |#1|))) (-15 -1791 (|#1| (-950 |#1|))) (-15 -3008 ((-642 |#1|) (-1169 |#1|) (-1173))) (-15 -3008 ((-642 |#1|) (-1169 |#1|))) (-15 -3008 ((-642 |#1|) (-950 |#1|))) (-15 -2619 (|#1| (-1169 |#1|) (-1173))) (-15 -2619 (|#1| (-1169 |#1|))) (-15 -2619 (|#1| (-950 |#1|)))) (-29 |#2|) (-556)) (T -28)) -NIL -(-10 -8 (-15 -2659 ((-642 |#1|) |#1| (-1173))) (-15 -1791 (|#1| |#1| (-1173))) (-15 -2659 ((-642 |#1|) |#1|)) (-15 -1791 (|#1| |#1|)) (-15 -3008 ((-642 |#1|) |#1| (-1173))) (-15 -2619 (|#1| |#1| (-1173))) (-15 -3008 ((-642 |#1|) |#1|)) (-15 -2619 (|#1| |#1|)) (-15 -2659 ((-642 |#1|) (-1169 |#1|) (-1173))) (-15 -2659 ((-642 |#1|) (-1169 |#1|))) (-15 -2659 ((-642 |#1|) (-950 |#1|))) (-15 -1791 (|#1| (-1169 |#1|) (-1173))) (-15 -1791 (|#1| (-1169 |#1|))) (-15 -1791 (|#1| (-950 |#1|))) (-15 -3008 ((-642 |#1|) (-1169 |#1|) (-1173))) (-15 -3008 ((-642 |#1|) (-1169 |#1|))) (-15 -3008 ((-642 |#1|) (-950 |#1|))) (-15 -2619 (|#1| (-1169 |#1|) (-1173))) (-15 -2619 (|#1| (-1169 |#1|))) (-15 -2619 (|#1| (-950 |#1|)))) -((-2856 (((-112) $ $) 7)) (-2659 (((-642 $) (-950 $)) 88) (((-642 $) (-1169 $)) 87) (((-642 $) (-1169 $) (-1173)) 86) (((-642 $) $) 134) (((-642 $) $ (-1173)) 132)) (-1791 (($ (-950 $)) 91) (($ (-1169 $)) 90) (($ (-1169 $) (-1173)) 89) (($ $) 135) (($ $ (-1173)) 133)) (-2950 (((-112) $) 17)) (-2397 (((-642 (-1173)) $) 203)) (-2223 (((-407 (-1169 $)) $ (-610 $)) 235 (|has| |#1| (-556)))) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) 47)) (-4252 (($ $) 46)) (-1722 (((-112) $) 44)) (-2138 (((-642 (-610 $)) $) 166)) (-3085 (((-3 $ "failed") $ $) 20)) (-1891 (($ $ (-642 (-610 $)) (-642 $)) 156) (($ $ (-642 (-294 $))) 155) (($ $ (-294 $)) 154)) (-1993 (($ $) 81)) (-3282 (((-418 $) $) 80)) (-2264 (($ $) 100)) (-2134 (((-112) $ $) 65)) (-2822 (($) 18 T CONST)) (-3008 (((-642 $) (-950 $)) 94) (((-642 $) (-1169 $)) 93) (((-642 $) (-1169 $) (-1173)) 92) (((-642 $) $) 138) (((-642 $) $ (-1173)) 136)) (-2619 (($ (-950 $)) 97) (($ (-1169 $)) 96) (($ (-1169 $) (-1173)) 95) (($ $) 139) (($ $ (-1173)) 137)) (-2849 (((-3 (-950 |#1|) "failed") $) 253 (|has| |#1| (-1047))) (((-3 (-407 (-950 |#1|)) "failed") $) 237 (|has| |#1| (-556))) (((-3 |#1| "failed") $) 199) (((-3 (-564) "failed") $) 196 (|has| |#1| (-1036 (-564)))) (((-3 (-1173) "failed") $) 190) (((-3 (-610 $) "failed") $) 141) (((-3 (-407 (-564)) "failed") $) 130 (-2682 (-12 (|has| |#1| (-1036 (-564))) (|has| |#1| (-556))) (|has| |#1| (-1036 (-407 (-564))))))) (-1687 (((-950 |#1|) $) 252 (|has| |#1| (-1047))) (((-407 (-950 |#1|)) $) 236 (|has| |#1| (-556))) ((|#1| $) 198) (((-564) $) 197 (|has| |#1| (-1036 (-564)))) (((-1173) $) 189) (((-610 $) $) 140) (((-407 (-564)) $) 131 (-2682 (-12 (|has| |#1| (-1036 (-564))) (|has| |#1| (-556))) (|has| |#1| (-1036 (-407 (-564))))))) (-2796 (($ $ $) 61)) (-3330 (((-687 |#1|) (-687 $)) 243 (|has| |#1| (-1047))) (((-2 (|:| -3544 (-687 |#1|)) (|:| |vec| (-1262 |#1|))) (-687 $) (-1262 $)) 242 (|has| |#1| (-1047))) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) 129 (-2682 (-2317 (|has| |#1| (-1047)) (|has| |#1| (-637 (-564)))) (-2317 (|has| |#1| (-637 (-564))) (|has| |#1| (-1047))))) (((-687 (-564)) (-687 $)) 128 (-2682 (-2317 (|has| |#1| (-1047)) (|has| |#1| (-637 (-564)))) (-2317 (|has| |#1| (-637 (-564))) (|has| |#1| (-1047)))))) (-2675 (((-3 $ "failed") $) 37)) (-2808 (($ $ $) 62)) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) 57)) (-3552 (((-112) $) 79)) (-1381 (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) 195 (|has| |#1| (-884 (-379)))) (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) 194 (|has| |#1| (-884 (-564))))) (-2998 (($ (-642 $)) 160) (($ $) 159)) (-3986 (((-642 (-114)) $) 167)) (-3898 (((-114) (-114)) 168)) (-3163 (((-112) $) 35)) (-2829 (((-112) $) 188 (|has| $ (-1036 (-564))))) (-3408 (($ $) 220 (|has| |#1| (-1047)))) (-4120 (((-1122 |#1| (-610 $)) $) 219 (|has| |#1| (-1047)))) (-2024 (($ $ (-564)) 99)) (-2709 (((-3 (-642 $) "failed") (-642 $) $) 58)) (-2744 (((-1169 $) (-610 $)) 185 (|has| $ (-1047)))) (-2947 (($ (-1 $ $) (-610 $)) 174)) (-1543 (((-3 (-610 $) "failed") $) 164)) (-2066 (($ $ $) 52) (($ (-642 $)) 51)) (-1778 (((-1155) $) 10)) (-2209 (((-642 (-610 $)) $) 165)) (-2879 (($ (-114) (-642 $)) 173) (($ (-114) $) 172)) (-3664 (((-3 (-642 $) "failed") $) 214 (|has| |#1| (-1109)))) (-1459 (((-3 (-2 (|:| |val| $) (|:| -2817 (-564))) "failed") $) 223 (|has| |#1| (-1047)))) (-4315 (((-3 (-642 $) "failed") $) 216 (|has| |#1| (-25)))) (-1558 (((-3 (-2 (|:| -2968 (-564)) (|:| |var| (-610 $))) "failed") $) 217 (|has| |#1| (-25)))) (-3177 (((-3 (-2 (|:| |var| (-610 $)) (|:| -2817 (-564))) "failed") $ (-1173)) 222 (|has| |#1| (-1047))) (((-3 (-2 (|:| |var| (-610 $)) (|:| -2817 (-564))) "failed") $ (-114)) 221 (|has| |#1| (-1047))) (((-3 (-2 (|:| |var| (-610 $)) (|:| -2817 (-564))) "failed") $) 215 (|has| |#1| (-1109)))) (-1462 (((-112) $ (-1173)) 171) (((-112) $ (-114)) 170)) (-2481 (($ $) 78)) (-2983 (((-769) $) 163)) (-3999 (((-1117) $) 11)) (-2491 (((-112) $) 201)) (-2500 ((|#1| $) 202)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) 50)) (-2105 (($ $ $) 54) (($ (-642 $)) 53)) (-2908 (((-112) $ (-1173)) 176) (((-112) $ $) 175)) (-2254 (((-418 $) $) 82)) (-1877 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2842 (((-3 $ "failed") $ $) 48)) (-1483 (((-3 (-642 $) "failed") (-642 $) $) 56)) (-2211 (((-112) $) 187 (|has| $ (-1036 (-564))))) (-3154 (($ $ (-1173) (-769) (-1 $ $)) 227 (|has| |#1| (-1047))) (($ $ (-1173) (-769) (-1 $ (-642 $))) 226 (|has| |#1| (-1047))) (($ $ (-642 (-1173)) (-642 (-769)) (-642 (-1 $ (-642 $)))) 225 (|has| |#1| (-1047))) (($ $ (-642 (-1173)) (-642 (-769)) (-642 (-1 $ $))) 224 (|has| |#1| (-1047))) (($ $ (-642 (-114)) (-642 $) (-1173)) 213 (|has| |#1| (-612 (-536)))) (($ $ (-114) $ (-1173)) 212 (|has| |#1| (-612 (-536)))) (($ $) 211 (|has| |#1| (-612 (-536)))) (($ $ (-642 (-1173))) 210 (|has| |#1| (-612 (-536)))) (($ $ (-1173)) 209 (|has| |#1| (-612 (-536)))) (($ $ (-114) (-1 $ $)) 184) (($ $ (-114) (-1 $ (-642 $))) 183) (($ $ (-642 (-114)) (-642 (-1 $ (-642 $)))) 182) (($ $ (-642 (-114)) (-642 (-1 $ $))) 181) (($ $ (-1173) (-1 $ $)) 180) (($ $ (-1173) (-1 $ (-642 $))) 179) (($ $ (-642 (-1173)) (-642 (-1 $ (-642 $)))) 178) (($ $ (-642 (-1173)) (-642 (-1 $ $))) 177) (($ $ (-642 $) (-642 $)) 148) (($ $ $ $) 147) (($ $ (-294 $)) 146) (($ $ (-642 (-294 $))) 145) (($ $ (-642 (-610 $)) (-642 $)) 144) (($ $ (-610 $) $) 143)) (-4274 (((-769) $) 64)) (-4369 (($ (-114) (-642 $)) 153) (($ (-114) $ $ $ $) 152) (($ (-114) $ $ $) 151) (($ (-114) $ $) 150) (($ (-114) $) 149)) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) 63)) (-4377 (($ $ $) 162) (($ $) 161)) (-2199 (($ $ (-1173)) 251 (|has| |#1| (-1047))) (($ $ (-642 (-1173))) 250 (|has| |#1| (-1047))) (($ $ (-1173) (-769)) 249 (|has| |#1| (-1047))) (($ $ (-642 (-1173)) (-642 (-769))) 248 (|has| |#1| (-1047)))) (-3082 (($ $) 230 (|has| |#1| (-556)))) (-4131 (((-1122 |#1| (-610 $)) $) 229 (|has| |#1| (-556)))) (-1361 (($ $) 186 (|has| $ (-1047)))) (-3003 (((-536) $) 257 (|has| |#1| (-612 (-536)))) (($ (-418 $)) 228 (|has| |#1| (-556))) (((-890 (-379)) $) 193 (|has| |#1| (-612 (-890 (-379))))) (((-890 (-564)) $) 192 (|has| |#1| (-612 (-890 (-564)))))) (-1736 (($ $ $) 256 (|has| |#1| (-473)))) (-2402 (($ $ $) 255 (|has| |#1| (-473)))) (-2390 (((-860) $) 12) (($ (-564)) 33) (($ $) 49) (($ (-407 (-564))) 74) (($ (-950 |#1|)) 254 (|has| |#1| (-1047))) (($ (-407 (-950 |#1|))) 238 (|has| |#1| (-556))) (($ (-407 (-950 (-407 |#1|)))) 234 (|has| |#1| (-556))) (($ (-950 (-407 |#1|))) 233 (|has| |#1| (-556))) (($ (-407 |#1|)) 232 (|has| |#1| (-556))) (($ (-1122 |#1| (-610 $))) 218 (|has| |#1| (-1047))) (($ |#1|) 200) (($ (-1173)) 191) (($ (-610 $)) 142)) (-3434 (((-3 $ "failed") $) 241 (|has| |#1| (-145)))) (-3348 (((-769)) 32 T CONST)) (-1899 (($ (-642 $)) 158) (($ $) 157)) (-4318 (((-112) (-114)) 169)) (-1600 (((-112) $ $) 9)) (-1594 (((-112) $ $) 45)) (-3210 (($ (-1173) (-642 $)) 208) (($ (-1173) $ $ $ $) 207) (($ (-1173) $ $ $) 206) (($ (-1173) $ $) 205) (($ (-1173) $) 204)) (-2361 (($) 19 T CONST)) (-2371 (($) 34 T CONST)) (-2711 (($ $ (-1173)) 247 (|has| |#1| (-1047))) (($ $ (-642 (-1173))) 246 (|has| |#1| (-1047))) (($ $ (-1173) (-769)) 245 (|has| |#1| (-1047))) (($ $ (-642 (-1173)) (-642 (-769))) 244 (|has| |#1| (-1047)))) (-2821 (((-112) $ $) 6)) (-2943 (($ $ $) 73) (($ (-1122 |#1| (-610 $)) (-1122 |#1| (-610 $))) 231 (|has| |#1| (-556)))) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36) (($ $ (-564)) 77) (($ $ (-407 (-564))) 98)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ (-407 (-564))) 76) (($ (-407 (-564)) $) 75) (($ $ |#1|) 240 (|has| |#1| (-172))) (($ |#1| $) 239 (|has| |#1| (-172))))) -(((-29 |#1|) (-140) (-556)) (T -29)) -((-2619 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-556)))) (-3008 (*1 *2 *1) (-12 (-4 *3 (-556)) (-5 *2 (-642 *1)) (-4 *1 (-29 *3)))) (-2619 (*1 *1 *1 *2) (-12 (-5 *2 (-1173)) (-4 *1 (-29 *3)) (-4 *3 (-556)))) (-3008 (*1 *2 *1 *3) (-12 (-5 *3 (-1173)) (-4 *4 (-556)) (-5 *2 (-642 *1)) (-4 *1 (-29 *4)))) (-1791 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-556)))) (-2659 (*1 *2 *1) (-12 (-4 *3 (-556)) (-5 *2 (-642 *1)) (-4 *1 (-29 *3)))) (-1791 (*1 *1 *1 *2) (-12 (-5 *2 (-1173)) (-4 *1 (-29 *3)) (-4 *3 (-556)))) (-2659 (*1 *2 *1 *3) (-12 (-5 *3 (-1173)) (-4 *4 (-556)) (-5 *2 (-642 *1)) (-4 *1 (-29 *4))))) -(-13 (-27) (-430 |t#1|) (-10 -8 (-15 -2619 ($ $)) (-15 -3008 ((-642 $) $)) (-15 -2619 ($ $ (-1173))) (-15 -3008 ((-642 $) $ (-1173))) (-15 -1791 ($ $)) (-15 -2659 ((-642 $) $)) (-15 -1791 ($ $ (-1173))) (-15 -2659 ((-642 $) $ (-1173))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-172)) ((-111 $ $) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) . T) ((-614 #1=(-407 (-950 |#1|))) |has| |#1| (-556)) ((-614 (-564)) . T) ((-614 #2=(-610 $)) . T) ((-614 #3=(-950 |#1|)) |has| |#1| (-1047)) ((-614 #4=(-1173)) . T) ((-614 |#1|) . T) ((-614 $) . T) ((-611 (-860)) . T) ((-172) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-612 (-890 (-379))) |has| |#1| (-612 (-890 (-379)))) ((-612 (-890 (-564))) |has| |#1| (-612 (-890 (-564)))) ((-243) . T) ((-290) . T) ((-307) . T) ((-309 $) . T) ((-302) . T) ((-363) . T) ((-377 |#1|) |has| |#1| (-1047)) ((-400 |#1|) . T) ((-411 |#1|) . T) ((-430 |#1|) . T) ((-452) . T) ((-473) |has| |#1| (-473)) ((-514 (-610 $) $) . T) ((-514 $ $) . T) ((-556) . T) ((-644 #0#) . T) ((-644 (-564)) . T) ((-644 |#1|) |has| |#1| (-172)) ((-644 $) . T) ((-646 #0#) . T) ((-646 |#1|) |has| |#1| (-172)) ((-646 $) . T) ((-638 #0#) . T) ((-638 |#1|) |has| |#1| (-172)) ((-638 $) . T) ((-637 (-564)) -12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1047))) ((-637 |#1|) |has| |#1| (-1047)) ((-715 #0#) . T) ((-715 |#1|) |has| |#1| (-172)) ((-715 $) . T) ((-724) . T) ((-898 (-1173)) |has| |#1| (-1047)) ((-884 (-379)) |has| |#1| (-884 (-379))) ((-884 (-564)) |has| |#1| (-884 (-564))) ((-882 |#1|) . T) ((-918) . T) ((-1000) . T) ((-1036 (-407 (-564))) -2682 (|has| |#1| (-1036 (-407 (-564)))) (-12 (|has| |#1| (-556)) (|has| |#1| (-1036 (-564))))) ((-1036 #1#) |has| |#1| (-556)) ((-1036 (-564)) |has| |#1| (-1036 (-564))) ((-1036 #2#) . T) ((-1036 #3#) |has| |#1| (-1047)) ((-1036 #4#) . T) ((-1036 |#1|) . T) ((-1049 #0#) . T) ((-1049 |#1|) |has| |#1| (-172)) ((-1049 $) . T) ((-1054 #0#) . T) ((-1054 |#1|) |has| |#1| (-172)) ((-1054 $) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T) ((-1212) . T) ((-1216) . T)) -((-1835 (((-1091 (-225)) $) NIL)) (-1825 (((-1091 (-225)) $) NIL)) (-2354 (($ $ (-225)) 166)) (-3918 (($ (-950 (-564)) (-1173) (-1173) (-1091 (-407 (-564))) (-1091 (-407 (-564)))) 104)) (-3112 (((-642 (-642 (-941 (-225)))) $) 182)) (-2390 (((-860) $) 196))) -(((-30) (-13 (-953) (-10 -8 (-15 -3918 ($ (-950 (-564)) (-1173) (-1173) (-1091 (-407 (-564))) (-1091 (-407 (-564))))) (-15 -2354 ($ $ (-225)))))) (T -30)) -((-3918 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-950 (-564))) (-5 *3 (-1173)) (-5 *4 (-1091 (-407 (-564)))) (-5 *1 (-30)))) (-2354 (*1 *1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-30))))) -(-13 (-953) (-10 -8 (-15 -3918 ($ (-950 (-564)) (-1173) (-1173) (-1091 (-407 (-564))) (-1091 (-407 (-564))))) (-15 -2354 ($ $ (-225))))) -((-2856 (((-112) $ $) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) 17) (($ (-1178)) NIL) (((-1178) $) NIL)) (-2502 (((-1132) $) 11)) (-1600 (((-112) $ $) NIL)) (-1959 (((-1132) $) 9)) (-2821 (((-112) $ $) NIL))) -(((-31) (-13 (-1080) (-10 -8 (-15 -1959 ((-1132) $)) (-15 -2502 ((-1132) $))))) (T -31)) -((-1959 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-31)))) (-2502 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-31))))) -(-13 (-1080) (-10 -8 (-15 -1959 ((-1132) $)) (-15 -2502 ((-1132) $)))) -((-2619 ((|#2| (-1169 |#2|) (-1173)) 41)) (-3898 (((-114) (-114)) 55)) (-2744 (((-1169 |#2|) (-610 |#2|)) 149 (|has| |#1| (-1036 (-564))))) (-2951 ((|#2| |#1| (-564)) 137 (|has| |#1| (-1036 (-564))))) (-1479 ((|#2| (-1169 |#2|) |#2|) 29)) (-4328 (((-860) (-642 |#2|)) 86)) (-1361 ((|#2| |#2|) 144 (|has| |#1| (-1036 (-564))))) (-4318 (((-112) (-114)) 17)) (** ((|#2| |#2| (-407 (-564))) 103 (|has| |#1| (-1036 (-564)))))) -(((-32 |#1| |#2|) (-10 -7 (-15 -2619 (|#2| (-1169 |#2|) (-1173))) (-15 -3898 ((-114) (-114))) (-15 -4318 ((-112) (-114))) (-15 -1479 (|#2| (-1169 |#2|) |#2|)) (-15 -4328 ((-860) (-642 |#2|))) (IF (|has| |#1| (-1036 (-564))) (PROGN (-15 ** (|#2| |#2| (-407 (-564)))) (-15 -2744 ((-1169 |#2|) (-610 |#2|))) (-15 -1361 (|#2| |#2|)) (-15 -2951 (|#2| |#1| (-564)))) |%noBranch|)) (-556) (-430 |#1|)) (T -32)) -((-2951 (*1 *2 *3 *4) (-12 (-5 *4 (-564)) (-4 *2 (-430 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1036 *4)) (-4 *3 (-556)))) (-1361 (*1 *2 *2) (-12 (-4 *3 (-1036 (-564))) (-4 *3 (-556)) (-5 *1 (-32 *3 *2)) (-4 *2 (-430 *3)))) (-2744 (*1 *2 *3) (-12 (-5 *3 (-610 *5)) (-4 *5 (-430 *4)) (-4 *4 (-1036 (-564))) (-4 *4 (-556)) (-5 *2 (-1169 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-407 (-564))) (-4 *4 (-1036 (-564))) (-4 *4 (-556)) (-5 *1 (-32 *4 *2)) (-4 *2 (-430 *4)))) (-4328 (*1 *2 *3) (-12 (-5 *3 (-642 *5)) (-4 *5 (-430 *4)) (-4 *4 (-556)) (-5 *2 (-860)) (-5 *1 (-32 *4 *5)))) (-1479 (*1 *2 *3 *2) (-12 (-5 *3 (-1169 *2)) (-4 *2 (-430 *4)) (-4 *4 (-556)) (-5 *1 (-32 *4 *2)))) (-4318 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-556)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-430 *4)))) (-3898 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-556)) (-5 *1 (-32 *3 *4)) (-4 *4 (-430 *3)))) (-2619 (*1 *2 *3 *4) (-12 (-5 *3 (-1169 *2)) (-5 *4 (-1173)) (-4 *2 (-430 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-556))))) -(-10 -7 (-15 -2619 (|#2| (-1169 |#2|) (-1173))) (-15 -3898 ((-114) (-114))) (-15 -4318 ((-112) (-114))) (-15 -1479 (|#2| (-1169 |#2|) |#2|)) (-15 -4328 ((-860) (-642 |#2|))) (IF (|has| |#1| (-1036 (-564))) (PROGN (-15 ** (|#2| |#2| (-407 (-564)))) (-15 -2744 ((-1169 |#2|) (-610 |#2|))) (-15 -1361 (|#2| |#2|)) (-15 -2951 (|#2| |#1| (-564)))) |%noBranch|)) -((-3442 (((-112) $ (-769)) 20)) (-2822 (($) 10)) (-3769 (((-112) $ (-769)) 19)) (-4145 (((-112) $ (-769)) 17)) (-2478 (((-112) $ $) 8)) (-4109 (((-112) $) 15))) -(((-33 |#1|) (-10 -8 (-15 -2822 (|#1|)) (-15 -3442 ((-112) |#1| (-769))) (-15 -3769 ((-112) |#1| (-769))) (-15 -4145 ((-112) |#1| (-769))) (-15 -4109 ((-112) |#1|)) (-15 -2478 ((-112) |#1| |#1|))) (-34)) (T -33)) -NIL -(-10 -8 (-15 -2822 (|#1|)) (-15 -3442 ((-112) |#1| (-769))) (-15 -3769 ((-112) |#1| (-769))) (-15 -4145 ((-112) |#1| (-769))) (-15 -4109 ((-112) |#1|)) (-15 -2478 ((-112) |#1| |#1|))) -((-3442 (((-112) $ (-769)) 8)) (-2822 (($) 7 T CONST)) (-3769 (((-112) $ (-769)) 9)) (-4145 (((-112) $ (-769)) 10)) (-2478 (((-112) $ $) 14)) (-4109 (((-112) $) 11)) (-2179 (($) 12)) (-3865 (($ $) 13)) (-2158 (((-769) $) 6 (|has| $ (-6 -4410))))) +((-3388 (*1 *1 *2) (-12 (-5 *2 (-952 *1)) (-4 *1 (-27)))) (-3388 (*1 *1 *2) (-12 (-5 *2 (-1171 *1)) (-4 *1 (-27)))) (-3388 (*1 *1 *2 *3) (-12 (-5 *2 (-1171 *1)) (-5 *3 (-1175)) (-4 *1 (-27)))) (-4386 (*1 *2 *3) (-12 (-5 *3 (-952 *1)) (-4 *1 (-27)) (-5 *2 (-644 *1)))) (-4386 (*1 *2 *3) (-12 (-5 *3 (-1171 *1)) (-4 *1 (-27)) (-5 *2 (-644 *1)))) (-4386 (*1 *2 *3 *4) (-12 (-5 *3 (-1171 *1)) (-5 *4 (-1175)) (-4 *1 (-27)) (-5 *2 (-644 *1)))) (-1625 (*1 *1 *2) (-12 (-5 *2 (-952 *1)) (-4 *1 (-27)))) (-1625 (*1 *1 *2) (-12 (-5 *2 (-1171 *1)) (-4 *1 (-27)))) (-1625 (*1 *1 *2 *3) (-12 (-5 *2 (-1171 *1)) (-5 *3 (-1175)) (-4 *1 (-27)))) (-1498 (*1 *2 *3) (-12 (-5 *3 (-952 *1)) (-4 *1 (-27)) (-5 *2 (-644 *1)))) (-1498 (*1 *2 *3) (-12 (-5 *3 (-1171 *1)) (-4 *1 (-27)) (-5 *2 (-644 *1)))) (-1498 (*1 *2 *3 *4) (-12 (-5 *3 (-1171 *1)) (-5 *4 (-1175)) (-4 *1 (-27)) (-5 *2 (-644 *1))))) +(-13 (-365) (-1002) (-10 -8 (-15 -3388 ($ (-952 $))) (-15 -3388 ($ (-1171 $))) (-15 -3388 ($ (-1171 $) (-1175))) (-15 -4386 ((-644 $) (-952 $))) (-15 -4386 ((-644 $) (-1171 $))) (-15 -4386 ((-644 $) (-1171 $) (-1175))) (-15 -1625 ($ (-952 $))) (-15 -1625 ($ (-1171 $))) (-15 -1625 ($ (-1171 $) (-1175))) (-15 -1498 ((-644 $) (-952 $))) (-15 -1498 ((-644 $) (-1171 $))) (-15 -1498 ((-644 $) (-1171 $) (-1175))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-409 (-566))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-616 #0#) . T) ((-616 (-566)) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-454) . T) ((-558) . T) ((-646 #0#) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 #0#) . T) ((-648 $) . T) ((-640 #0#) . T) ((-640 $) . T) ((-717 #0#) . T) ((-717 $) . T) ((-726) . T) ((-920) . T) ((-1002) . T) ((-1051 #0#) . T) ((-1051 $) . T) ((-1056 #0#) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1218) . T)) +((-1498 (((-644 $) (-952 $)) NIL) (((-644 $) (-1171 $)) NIL) (((-644 $) (-1171 $) (-1175)) 55) (((-644 $) $) 22) (((-644 $) $ (-1175)) 46)) (-1625 (($ (-952 $)) NIL) (($ (-1171 $)) NIL) (($ (-1171 $) (-1175)) 57) (($ $) 20) (($ $ (-1175)) 40)) (-4386 (((-644 $) (-952 $)) NIL) (((-644 $) (-1171 $)) NIL) (((-644 $) (-1171 $) (-1175)) 53) (((-644 $) $) 18) (((-644 $) $ (-1175)) 48)) (-3388 (($ (-952 $)) NIL) (($ (-1171 $)) NIL) (($ (-1171 $) (-1175)) NIL) (($ $) 15) (($ $ (-1175)) 42))) +(((-28 |#1| |#2|) (-10 -8 (-15 -1498 ((-644 |#1|) |#1| (-1175))) (-15 -1625 (|#1| |#1| (-1175))) (-15 -1498 ((-644 |#1|) |#1|)) (-15 -1625 (|#1| |#1|)) (-15 -4386 ((-644 |#1|) |#1| (-1175))) (-15 -3388 (|#1| |#1| (-1175))) (-15 -4386 ((-644 |#1|) |#1|)) (-15 -3388 (|#1| |#1|)) (-15 -1498 ((-644 |#1|) (-1171 |#1|) (-1175))) (-15 -1498 ((-644 |#1|) (-1171 |#1|))) (-15 -1498 ((-644 |#1|) (-952 |#1|))) (-15 -1625 (|#1| (-1171 |#1|) (-1175))) (-15 -1625 (|#1| (-1171 |#1|))) (-15 -1625 (|#1| (-952 |#1|))) (-15 -4386 ((-644 |#1|) (-1171 |#1|) (-1175))) (-15 -4386 ((-644 |#1|) (-1171 |#1|))) (-15 -4386 ((-644 |#1|) (-952 |#1|))) (-15 -3388 (|#1| (-1171 |#1|) (-1175))) (-15 -3388 (|#1| (-1171 |#1|))) (-15 -3388 (|#1| (-952 |#1|)))) (-29 |#2|) (-558)) (T -28)) +NIL +(-10 -8 (-15 -1498 ((-644 |#1|) |#1| (-1175))) (-15 -1625 (|#1| |#1| (-1175))) (-15 -1498 ((-644 |#1|) |#1|)) (-15 -1625 (|#1| |#1|)) (-15 -4386 ((-644 |#1|) |#1| (-1175))) (-15 -3388 (|#1| |#1| (-1175))) (-15 -4386 ((-644 |#1|) |#1|)) (-15 -3388 (|#1| |#1|)) (-15 -1498 ((-644 |#1|) (-1171 |#1|) (-1175))) (-15 -1498 ((-644 |#1|) (-1171 |#1|))) (-15 -1498 ((-644 |#1|) (-952 |#1|))) (-15 -1625 (|#1| (-1171 |#1|) (-1175))) (-15 -1625 (|#1| (-1171 |#1|))) (-15 -1625 (|#1| (-952 |#1|))) (-15 -4386 ((-644 |#1|) (-1171 |#1|) (-1175))) (-15 -4386 ((-644 |#1|) (-1171 |#1|))) (-15 -4386 ((-644 |#1|) (-952 |#1|))) (-15 -3388 (|#1| (-1171 |#1|) (-1175))) (-15 -3388 (|#1| (-1171 |#1|))) (-15 -3388 (|#1| (-952 |#1|)))) +((-2986 (((-112) $ $) 7)) (-1498 (((-644 $) (-952 $)) 88) (((-644 $) (-1171 $)) 87) (((-644 $) (-1171 $) (-1175)) 86) (((-644 $) $) 134) (((-644 $) $ (-1175)) 132)) (-1625 (($ (-952 $)) 91) (($ (-1171 $)) 90) (($ (-1171 $) (-1175)) 89) (($ $) 135) (($ $ (-1175)) 133)) (-2845 (((-112) $) 17)) (-2485 (((-644 (-1175)) $) 203)) (-2285 (((-409 (-1171 $)) $ (-612 $)) 235 (|has| |#1| (-558)))) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) 47)) (-3087 (($ $) 46)) (-1716 (((-112) $) 44)) (-2192 (((-644 (-612 $)) $) 166)) (-3174 (((-3 $ "failed") $ $) 20)) (-3739 (($ $ (-644 (-612 $)) (-644 $)) 156) (($ $ (-644 (-295 $))) 155) (($ $ (-295 $)) 154)) (-3980 (($ $) 81)) (-3348 (((-420 $) $) 80)) (-2338 (($ $) 100)) (-2761 (((-112) $ $) 65)) (-1811 (($) 18 T CONST)) (-4386 (((-644 $) (-952 $)) 94) (((-644 $) (-1171 $)) 93) (((-644 $) (-1171 $) (-1175)) 92) (((-644 $) $) 138) (((-644 $) $ (-1175)) 136)) (-3388 (($ (-952 $)) 97) (($ (-1171 $)) 96) (($ (-1171 $) (-1175)) 95) (($ $) 139) (($ $ (-1175)) 137)) (-2980 (((-3 (-952 |#1|) "failed") $) 253 (|has| |#1| (-1049))) (((-3 (-409 (-952 |#1|)) "failed") $) 237 (|has| |#1| (-558))) (((-3 |#1| "failed") $) 199) (((-3 (-566) "failed") $) 196 (|has| |#1| (-1038 (-566)))) (((-3 (-1175) "failed") $) 190) (((-3 (-612 $) "failed") $) 141) (((-3 (-409 (-566)) "failed") $) 130 (-2809 (-12 (|has| |#1| (-1038 (-566))) (|has| |#1| (-558))) (|has| |#1| (-1038 (-409 (-566))))))) (-1709 (((-952 |#1|) $) 252 (|has| |#1| (-1049))) (((-409 (-952 |#1|)) $) 236 (|has| |#1| (-558))) ((|#1| $) 198) (((-566) $) 197 (|has| |#1| (-1038 (-566)))) (((-1175) $) 189) (((-612 $) $) 140) (((-409 (-566)) $) 131 (-2809 (-12 (|has| |#1| (-1038 (-566))) (|has| |#1| (-558))) (|has| |#1| (-1038 (-409 (-566))))))) (-2925 (($ $ $) 61)) (-2275 (((-689 |#1|) (-689 $)) 243 (|has| |#1| (-1049))) (((-2 (|:| -4196 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) 242 (|has| |#1| (-1049))) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) 129 (-2809 (-2402 (|has| |#1| (-1049)) (|has| |#1| (-639 (-566)))) (-2402 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049))))) (((-689 (-566)) (-689 $)) 128 (-2809 (-2402 (|has| |#1| (-1049)) (|has| |#1| (-639 (-566)))) (-2402 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049)))))) (-3757 (((-3 $ "failed") $) 37)) (-2937 (($ $ $) 62)) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) 57)) (-4188 (((-112) $) 79)) (-1542 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 195 (|has| |#1| (-886 (-381)))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 194 (|has| |#1| (-886 (-566))))) (-4218 (($ (-644 $)) 160) (($ $) 159)) (-3909 (((-644 (-114)) $) 167)) (-4272 (((-114) (-114)) 168)) (-2264 (((-112) $) 35)) (-3400 (((-112) $) 188 (|has| $ (-1038 (-566))))) (-1579 (($ $) 220 (|has| |#1| (-1049)))) (-4157 (((-1124 |#1| (-612 $)) $) 219 (|has| |#1| (-1049)))) (-3146 (($ $ (-566)) 99)) (-2495 (((-3 (-644 $) "failed") (-644 $) $) 58)) (-3223 (((-1171 $) (-612 $)) 185 (|has| $ (-1049)))) (-3080 (($ (-1 $ $) (-612 $)) 174)) (-3314 (((-3 (-612 $) "failed") $) 164)) (-2120 (($ $ $) 52) (($ (-644 $)) 51)) (-3151 (((-1157) $) 10)) (-2272 (((-644 (-612 $)) $) 165)) (-3018 (($ (-114) (-644 $)) 173) (($ (-114) $) 172)) (-4075 (((-3 (-644 $) "failed") $) 214 (|has| |#1| (-1111)))) (-4092 (((-3 (-2 (|:| |val| $) (|:| -3631 (-566))) "failed") $) 223 (|has| |#1| (-1049)))) (-3380 (((-3 (-644 $) "failed") $) 216 (|has| |#1| (-25)))) (-3476 (((-3 (-2 (|:| -3103 (-566)) (|:| |var| (-612 $))) "failed") $) 217 (|has| |#1| (-25)))) (-2414 (((-3 (-2 (|:| |var| (-612 $)) (|:| -3631 (-566))) "failed") $ (-1175)) 222 (|has| |#1| (-1049))) (((-3 (-2 (|:| |var| (-612 $)) (|:| -3631 (-566))) "failed") $ (-114)) 221 (|has| |#1| (-1049))) (((-3 (-2 (|:| |var| (-612 $)) (|:| -3631 (-566))) "failed") $) 215 (|has| |#1| (-1111)))) (-1896 (((-112) $ (-1175)) 171) (((-112) $ (-114)) 170)) (-2577 (($ $) 78)) (-3117 (((-771) $) 163)) (-4059 (((-1119) $) 11)) (-2587 (((-112) $) 201)) (-2597 ((|#1| $) 202)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-2162 (($ $ $) 54) (($ (-644 $)) 53)) (-3897 (((-112) $ (-1175)) 176) (((-112) $ $) 175)) (-2325 (((-420 $) $) 82)) (-2585 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2976 (((-3 $ "failed") $ $) 48)) (-2840 (((-3 (-644 $) "failed") (-644 $) $) 56)) (-2206 (((-112) $) 187 (|has| $ (-1038 (-566))))) (-3297 (($ $ (-1175) (-771) (-1 $ $)) 227 (|has| |#1| (-1049))) (($ $ (-1175) (-771) (-1 $ (-644 $))) 226 (|has| |#1| (-1049))) (($ $ (-644 (-1175)) (-644 (-771)) (-644 (-1 $ (-644 $)))) 225 (|has| |#1| (-1049))) (($ $ (-644 (-1175)) (-644 (-771)) (-644 (-1 $ $))) 224 (|has| |#1| (-1049))) (($ $ (-644 (-114)) (-644 $) (-1175)) 213 (|has| |#1| (-614 (-538)))) (($ $ (-114) $ (-1175)) 212 (|has| |#1| (-614 (-538)))) (($ $) 211 (|has| |#1| (-614 (-538)))) (($ $ (-644 (-1175))) 210 (|has| |#1| (-614 (-538)))) (($ $ (-1175)) 209 (|has| |#1| (-614 (-538)))) (($ $ (-114) (-1 $ $)) 184) (($ $ (-114) (-1 $ (-644 $))) 183) (($ $ (-644 (-114)) (-644 (-1 $ (-644 $)))) 182) (($ $ (-644 (-114)) (-644 (-1 $ $))) 181) (($ $ (-1175) (-1 $ $)) 180) (($ $ (-1175) (-1 $ (-644 $))) 179) (($ $ (-644 (-1175)) (-644 (-1 $ (-644 $)))) 178) (($ $ (-644 (-1175)) (-644 (-1 $ $))) 177) (($ $ (-644 $) (-644 $)) 148) (($ $ $ $) 147) (($ $ (-295 $)) 146) (($ $ (-644 (-295 $))) 145) (($ $ (-644 (-612 $)) (-644 $)) 144) (($ $ (-612 $) $) 143)) (-1383 (((-771) $) 64)) (-4376 (($ (-114) (-644 $)) 153) (($ (-114) $ $ $ $) 152) (($ (-114) $ $ $) 151) (($ (-114) $ $) 150) (($ (-114) $) 149)) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) 63)) (-3683 (($ $ $) 162) (($ $) 161)) (-3526 (($ $ (-1175)) 251 (|has| |#1| (-1049))) (($ $ (-644 (-1175))) 250 (|has| |#1| (-1049))) (($ $ (-1175) (-771)) 249 (|has| |#1| (-1049))) (($ $ (-644 (-1175)) (-644 (-771))) 248 (|has| |#1| (-1049)))) (-1375 (($ $) 230 (|has| |#1| (-558)))) (-4167 (((-1124 |#1| (-612 $)) $) 229 (|has| |#1| (-558)))) (-2301 (($ $) 186 (|has| $ (-1049)))) (-3136 (((-538) $) 257 (|has| |#1| (-614 (-538)))) (($ (-420 $)) 228 (|has| |#1| (-558))) (((-892 (-381)) $) 193 (|has| |#1| (-614 (-892 (-381))))) (((-892 (-566)) $) 192 (|has| |#1| (-614 (-892 (-566)))))) (-2664 (($ $ $) 256 (|has| |#1| (-475)))) (-3815 (($ $ $) 255 (|has| |#1| (-475)))) (-2479 (((-862) $) 12) (($ (-566)) 33) (($ $) 49) (($ (-409 (-566))) 74) (($ (-952 |#1|)) 254 (|has| |#1| (-1049))) (($ (-409 (-952 |#1|))) 238 (|has| |#1| (-558))) (($ (-409 (-952 (-409 |#1|)))) 234 (|has| |#1| (-558))) (($ (-952 (-409 |#1|))) 233 (|has| |#1| (-558))) (($ (-409 |#1|)) 232 (|has| |#1| (-558))) (($ (-1124 |#1| (-612 $))) 218 (|has| |#1| (-1049))) (($ |#1|) 200) (($ (-1175)) 191) (($ (-612 $)) 142)) (-2645 (((-3 $ "failed") $) 241 (|has| |#1| (-145)))) (-1558 (((-771)) 32 T CONST)) (-3749 (($ (-644 $)) 158) (($ $) 157)) (-1540 (((-112) (-114)) 169)) (-3900 (((-112) $ $) 9)) (-1333 (((-112) $ $) 45)) (-3344 (($ (-1175) (-644 $)) 208) (($ (-1175) $ $ $ $) 207) (($ (-1175) $ $ $) 206) (($ (-1175) $ $) 205) (($ (-1175) $) 204)) (-2446 (($) 19 T CONST)) (-2459 (($) 34 T CONST)) (-2834 (($ $ (-1175)) 247 (|has| |#1| (-1049))) (($ $ (-644 (-1175))) 246 (|has| |#1| (-1049))) (($ $ (-1175) (-771)) 245 (|has| |#1| (-1049))) (($ $ (-644 (-1175)) (-644 (-771))) 244 (|has| |#1| (-1049)))) (-2952 (((-112) $ $) 6)) (-3077 (($ $ $) 73) (($ (-1124 |#1| (-612 $)) (-1124 |#1| (-612 $))) 231 (|has| |#1| (-558)))) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 77) (($ $ (-409 (-566))) 98)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ (-409 (-566))) 76) (($ (-409 (-566)) $) 75) (($ $ |#1|) 240 (|has| |#1| (-172))) (($ |#1| $) 239 (|has| |#1| (-172))))) +(((-29 |#1|) (-140) (-558)) (T -29)) +((-3388 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-558)))) (-4386 (*1 *2 *1) (-12 (-4 *3 (-558)) (-5 *2 (-644 *1)) (-4 *1 (-29 *3)))) (-3388 (*1 *1 *1 *2) (-12 (-5 *2 (-1175)) (-4 *1 (-29 *3)) (-4 *3 (-558)))) (-4386 (*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-558)) (-5 *2 (-644 *1)) (-4 *1 (-29 *4)))) (-1625 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-558)))) (-1498 (*1 *2 *1) (-12 (-4 *3 (-558)) (-5 *2 (-644 *1)) (-4 *1 (-29 *3)))) (-1625 (*1 *1 *1 *2) (-12 (-5 *2 (-1175)) (-4 *1 (-29 *3)) (-4 *3 (-558)))) (-1498 (*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-558)) (-5 *2 (-644 *1)) (-4 *1 (-29 *4))))) +(-13 (-27) (-432 |t#1|) (-10 -8 (-15 -3388 ($ $)) (-15 -4386 ((-644 $) $)) (-15 -3388 ($ $ (-1175))) (-15 -4386 ((-644 $) $ (-1175))) (-15 -1625 ($ $)) (-15 -1498 ((-644 $) $)) (-15 -1625 ($ $ (-1175))) (-15 -1498 ((-644 $) $ (-1175))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-409 (-566))) . T) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-172)) ((-111 $ $) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #0#) . T) ((-616 #1=(-409 (-952 |#1|))) |has| |#1| (-558)) ((-616 (-566)) . T) ((-616 #2=(-612 $)) . T) ((-616 #3=(-952 |#1|)) |has| |#1| (-1049)) ((-616 #4=(-1175)) . T) ((-616 |#1|) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-614 (-892 (-381))) |has| |#1| (-614 (-892 (-381)))) ((-614 (-892 (-566))) |has| |#1| (-614 (-892 (-566)))) ((-243) . T) ((-291) . T) ((-308) . T) ((-310 $) . T) ((-303) . T) ((-365) . T) ((-379 |#1|) |has| |#1| (-1049)) ((-402 |#1|) . T) ((-413 |#1|) . T) ((-432 |#1|) . T) ((-454) . T) ((-475) |has| |#1| (-475)) ((-516 (-612 $) $) . T) ((-516 $ $) . T) ((-558) . T) ((-646 #0#) . T) ((-646 (-566)) . T) ((-646 |#1|) |has| |#1| (-172)) ((-646 $) . T) ((-648 #0#) . T) ((-648 |#1|) |has| |#1| (-172)) ((-648 $) . T) ((-640 #0#) . T) ((-640 |#1|) |has| |#1| (-172)) ((-640 $) . T) ((-639 (-566)) -12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049))) ((-639 |#1|) |has| |#1| (-1049)) ((-717 #0#) . T) ((-717 |#1|) |has| |#1| (-172)) ((-717 $) . T) ((-726) . T) ((-900 (-1175)) |has| |#1| (-1049)) ((-886 (-381)) |has| |#1| (-886 (-381))) ((-886 (-566)) |has| |#1| (-886 (-566))) ((-884 |#1|) . T) ((-920) . T) ((-1002) . T) ((-1038 (-409 (-566))) -2809 (|has| |#1| (-1038 (-409 (-566)))) (-12 (|has| |#1| (-558)) (|has| |#1| (-1038 (-566))))) ((-1038 #1#) |has| |#1| (-558)) ((-1038 (-566)) |has| |#1| (-1038 (-566))) ((-1038 #2#) . T) ((-1038 #3#) |has| |#1| (-1049)) ((-1038 #4#) . T) ((-1038 |#1|) . T) ((-1051 #0#) . T) ((-1051 |#1|) |has| |#1| (-172)) ((-1051 $) . T) ((-1056 #0#) . T) ((-1056 |#1|) |has| |#1| (-172)) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1214) . T) ((-1218) . T)) +((-3688 (((-1093 (-225)) $) NIL)) (-3678 (((-1093 (-225)) $) NIL)) (-3991 (($ $ (-225)) 166)) (-4116 (($ (-952 (-566)) (-1175) (-1175) (-1093 (-409 (-566))) (-1093 (-409 (-566)))) 104)) (-3379 (((-644 (-644 (-943 (-225)))) $) 182)) (-2479 (((-862) $) 196))) +(((-30) (-13 (-955) (-10 -8 (-15 -4116 ($ (-952 (-566)) (-1175) (-1175) (-1093 (-409 (-566))) (-1093 (-409 (-566))))) (-15 -3991 ($ $ (-225)))))) (T -30)) +((-4116 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-952 (-566))) (-5 *3 (-1175)) (-5 *4 (-1093 (-409 (-566)))) (-5 *1 (-30)))) (-3991 (*1 *1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-30))))) +(-13 (-955) (-10 -8 (-15 -4116 ($ (-952 (-566)) (-1175) (-1175) (-1093 (-409 (-566))) (-1093 (-409 (-566))))) (-15 -3991 ($ $ (-225))))) +((-2986 (((-112) $ $) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) 17) (($ (-1180)) NIL) (((-1180) $) NIL)) (-2610 (((-1134) $) 11)) (-3900 (((-112) $ $) NIL)) (-3810 (((-1134) $) 9)) (-2952 (((-112) $ $) NIL))) +(((-31) (-13 (-1082) (-10 -8 (-15 -3810 ((-1134) $)) (-15 -2610 ((-1134) $))))) (T -31)) +((-3810 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-31)))) (-2610 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-31))))) +(-13 (-1082) (-10 -8 (-15 -3810 ((-1134) $)) (-15 -2610 ((-1134) $)))) +((-3388 ((|#2| (-1171 |#2|) (-1175)) 41)) (-4272 (((-114) (-114)) 55)) (-3223 (((-1171 |#2|) (-612 |#2|)) 149 (|has| |#1| (-1038 (-566))))) (-4338 ((|#2| |#1| (-566)) 137 (|has| |#1| (-1038 (-566))))) (-1909 ((|#2| (-1171 |#2|) |#2|) 29)) (-1684 (((-862) (-644 |#2|)) 86)) (-2301 ((|#2| |#2|) 144 (|has| |#1| (-1038 (-566))))) (-1540 (((-112) (-114)) 17)) (** ((|#2| |#2| (-409 (-566))) 103 (|has| |#1| (-1038 (-566)))))) +(((-32 |#1| |#2|) (-10 -7 (-15 -3388 (|#2| (-1171 |#2|) (-1175))) (-15 -4272 ((-114) (-114))) (-15 -1540 ((-112) (-114))) (-15 -1909 (|#2| (-1171 |#2|) |#2|)) (-15 -1684 ((-862) (-644 |#2|))) (IF (|has| |#1| (-1038 (-566))) (PROGN (-15 ** (|#2| |#2| (-409 (-566)))) (-15 -3223 ((-1171 |#2|) (-612 |#2|))) (-15 -2301 (|#2| |#2|)) (-15 -4338 (|#2| |#1| (-566)))) |%noBranch|)) (-558) (-432 |#1|)) (T -32)) +((-4338 (*1 *2 *3 *4) (-12 (-5 *4 (-566)) (-4 *2 (-432 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1038 *4)) (-4 *3 (-558)))) (-2301 (*1 *2 *2) (-12 (-4 *3 (-1038 (-566))) (-4 *3 (-558)) (-5 *1 (-32 *3 *2)) (-4 *2 (-432 *3)))) (-3223 (*1 *2 *3) (-12 (-5 *3 (-612 *5)) (-4 *5 (-432 *4)) (-4 *4 (-1038 (-566))) (-4 *4 (-558)) (-5 *2 (-1171 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-409 (-566))) (-4 *4 (-1038 (-566))) (-4 *4 (-558)) (-5 *1 (-32 *4 *2)) (-4 *2 (-432 *4)))) (-1684 (*1 *2 *3) (-12 (-5 *3 (-644 *5)) (-4 *5 (-432 *4)) (-4 *4 (-558)) (-5 *2 (-862)) (-5 *1 (-32 *4 *5)))) (-1909 (*1 *2 *3 *2) (-12 (-5 *3 (-1171 *2)) (-4 *2 (-432 *4)) (-4 *4 (-558)) (-5 *1 (-32 *4 *2)))) (-1540 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-558)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-432 *4)))) (-4272 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-558)) (-5 *1 (-32 *3 *4)) (-4 *4 (-432 *3)))) (-3388 (*1 *2 *3 *4) (-12 (-5 *3 (-1171 *2)) (-5 *4 (-1175)) (-4 *2 (-432 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-558))))) +(-10 -7 (-15 -3388 (|#2| (-1171 |#2|) (-1175))) (-15 -4272 ((-114) (-114))) (-15 -1540 ((-112) (-114))) (-15 -1909 (|#2| (-1171 |#2|) |#2|)) (-15 -1684 ((-862) (-644 |#2|))) (IF (|has| |#1| (-1038 (-566))) (PROGN (-15 ** (|#2| |#2| (-409 (-566)))) (-15 -3223 ((-1171 |#2|) (-612 |#2|))) (-15 -2301 (|#2| |#2|)) (-15 -4338 (|#2| |#1| (-566)))) |%noBranch|)) +((-1453 (((-112) $ (-771)) 20)) (-1811 (($) 10)) (-2756 (((-112) $ (-771)) 19)) (-4106 (((-112) $ (-771)) 17)) (-1844 (((-112) $ $) 8)) (-2788 (((-112) $) 15))) +(((-33 |#1|) (-10 -8 (-15 -1811 (|#1|)) (-15 -1453 ((-112) |#1| (-771))) (-15 -2756 ((-112) |#1| (-771))) (-15 -4106 ((-112) |#1| (-771))) (-15 -2788 ((-112) |#1|)) (-15 -1844 ((-112) |#1| |#1|))) (-34)) (T -33)) +NIL +(-10 -8 (-15 -1811 (|#1|)) (-15 -1453 ((-112) |#1| (-771))) (-15 -2756 ((-112) |#1| (-771))) (-15 -4106 ((-112) |#1| (-771))) (-15 -2788 ((-112) |#1|)) (-15 -1844 ((-112) |#1| |#1|))) +((-1453 (((-112) $ (-771)) 8)) (-1811 (($) 7 T CONST)) (-2756 (((-112) $ (-771)) 9)) (-4106 (((-112) $ (-771)) 10)) (-1844 (((-112) $ $) 14)) (-2788 (((-112) $) 11)) (-1737 (($) 12)) (-3924 (($ $) 13)) (-3002 (((-771) $) 6 (|has| $ (-6 -4417))))) (((-34) (-140)) (T -34)) -((-2478 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-3865 (*1 *1 *1) (-4 *1 (-34))) (-2179 (*1 *1) (-4 *1 (-34))) (-4109 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-4145 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-769)) (-5 *2 (-112)))) (-3769 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-769)) (-5 *2 (-112)))) (-3442 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-769)) (-5 *2 (-112)))) (-2822 (*1 *1) (-4 *1 (-34))) (-2158 (*1 *2 *1) (-12 (|has| *1 (-6 -4410)) (-4 *1 (-34)) (-5 *2 (-769))))) -(-13 (-1212) (-10 -8 (-15 -2478 ((-112) $ $)) (-15 -3865 ($ $)) (-15 -2179 ($)) (-15 -4109 ((-112) $)) (-15 -4145 ((-112) $ (-769))) (-15 -3769 ((-112) $ (-769))) (-15 -3442 ((-112) $ (-769))) (-15 -2822 ($) -1551) (IF (|has| $ (-6 -4410)) (-15 -2158 ((-769) $)) |%noBranch|))) -(((-1212) . T)) -((-3155 (($ $) 11)) (-3131 (($ $) 10)) (-3176 (($ $) 9)) (-3165 (($ $) 8)) (-3168 (($ $) 7)) (-3142 (($ $) 6))) +((-1844 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-3924 (*1 *1 *1) (-4 *1 (-34))) (-1737 (*1 *1) (-4 *1 (-34))) (-2788 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-4106 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-771)) (-5 *2 (-112)))) (-2756 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-771)) (-5 *2 (-112)))) (-1453 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-771)) (-5 *2 (-112)))) (-1811 (*1 *1) (-4 *1 (-34))) (-3002 (*1 *2 *1) (-12 (|has| *1 (-6 -4417)) (-4 *1 (-34)) (-5 *2 (-771))))) +(-13 (-1214) (-10 -8 (-15 -1844 ((-112) $ $)) (-15 -3924 ($ $)) (-15 -1737 ($)) (-15 -2788 ((-112) $)) (-15 -4106 ((-112) $ (-771))) (-15 -2756 ((-112) $ (-771))) (-15 -1453 ((-112) $ (-771))) (-15 -1811 ($) -1573) (IF (|has| $ (-6 -4417)) (-15 -3002 ((-771) $)) |%noBranch|))) +(((-1214) . T)) +((-3285 (($ $) 11)) (-3260 (($ $) 10)) (-3309 (($ $) 9)) (-1861 (($ $) 8)) (-3299 (($ $) 7)) (-3273 (($ $) 6))) (((-35) (-140)) (T -35)) -((-3155 (*1 *1 *1) (-4 *1 (-35))) (-3131 (*1 *1 *1) (-4 *1 (-35))) (-3176 (*1 *1 *1) (-4 *1 (-35))) (-3165 (*1 *1 *1) (-4 *1 (-35))) (-3168 (*1 *1 *1) (-4 *1 (-35))) (-3142 (*1 *1 *1) (-4 *1 (-35)))) -(-13 (-10 -8 (-15 -3142 ($ $)) (-15 -3168 ($ $)) (-15 -3165 ($ $)) (-15 -3176 ($ $)) (-15 -3131 ($ $)) (-15 -3155 ($ $)))) -((-2856 (((-112) $ $) 19 (-2682 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) (|has| |#2| (-1097)) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097))))) (-2108 (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) 126)) (-3585 (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) 149)) (-3107 (($ $) 147)) (-4222 (($) 73) (($ (-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) 72)) (-3633 (((-1267) $ |#1| |#1|) 100 (|has| $ (-6 -4411))) (((-1267) $ (-564) (-564)) 179 (|has| $ (-6 -4411)))) (-4083 (($ $ (-564)) 160 (|has| $ (-6 -4411)))) (-1824 (((-112) (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) 210) (((-112) $) 204 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-848)))) (-3659 (($ (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) 201 (|has| $ (-6 -4411))) (($ $) 200 (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-848)) (|has| $ (-6 -4411))))) (-3191 (($ (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) 211) (($ $) 205 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-848)))) (-3442 (((-112) $ (-769)) 8)) (-1407 (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) 135 (|has| $ (-6 -4411)))) (-4277 (($ $ $) 156 (|has| $ (-6 -4411)))) (-4326 (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) 158 (|has| $ (-6 -4411)))) (-3186 (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) 154 (|has| $ (-6 -4411)))) (-3841 ((|#2| $ |#1| |#2|) 74) (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $ (-564) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) 190 (|has| $ (-6 -4411))) (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $ (-1229 (-564)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) 161 (|has| $ (-6 -4411))) (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $ "last" (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) 159 (|has| $ (-6 -4411))) (($ $ "rest" $) 157 (|has| $ (-6 -4411))) (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $ "first" (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) 155 (|has| $ (-6 -4411))) (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $ "value" (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) 134 (|has| $ (-6 -4411)))) (-4041 (($ $ (-642 $)) 133 (|has| $ (-6 -4411)))) (-2438 (($ (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) 46 (|has| $ (-6 -4410))) (($ (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) 217)) (-3437 (($ (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) 56 (|has| $ (-6 -4410))) (($ (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) 176 (|has| $ (-6 -4410)))) (-3573 (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) 148)) (-2295 (((-3 |#2| "failed") |#1| $) 62)) (-2822 (($) 7 T CONST)) (-1540 (($ $) 202 (|has| $ (-6 -4411)))) (-3817 (($ $) 212)) (-4050 (($ $ (-769)) 143) (($ $) 141)) (-2324 (($ $) 215 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (-4067 (($ $) 59 (-2682 (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) (|has| $ (-6 -4410))) (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) (|has| $ (-6 -4410)))))) (-1927 (($ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) 48 (|has| $ (-6 -4410))) (($ (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) 47 (|has| $ (-6 -4410))) (((-3 |#2| "failed") |#1| $) 63) (($ (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) 221) (($ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) 216 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (-2517 (($ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) 58 (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) (|has| $ (-6 -4410)))) (($ (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) 55 (|has| $ (-6 -4410))) (($ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) 178 (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) (|has| $ (-6 -4410)))) (($ (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) 175 (|has| $ (-6 -4410)))) (-3741 (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) 57 (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) (|has| $ (-6 -4410)))) (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) 54 (|has| $ (-6 -4410))) (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) 53 (|has| $ (-6 -4410))) (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) 177 (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) (|has| $ (-6 -4410)))) (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) 174 (|has| $ (-6 -4410))) (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) 173 (|has| $ (-6 -4410)))) (-3105 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4411))) (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $ (-564) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) 191 (|has| $ (-6 -4411)))) (-1804 ((|#2| $ |#1|) 89) (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $ (-564)) 189)) (-3385 (((-112) $) 193)) (-3942 (((-564) (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) 209) (((-564) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) 208 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097))) (((-564) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $ (-564)) 207 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (-2018 (((-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) 31 (|has| $ (-6 -4410))) (((-642 |#2|) $) 80 (|has| $ (-6 -4410))) (((-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) 115 (|has| $ (-6 -4410)))) (-1300 (((-642 $) $) 124)) (-2423 (((-112) $ $) 132 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (-4233 (($ (-769) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) 170)) (-3769 (((-112) $ (-769)) 9)) (-1802 ((|#1| $) 97 (|has| |#1| (-848))) (((-564) $) 181 (|has| (-564) (-848)))) (-3225 (($ $ $) 199 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-848)))) (-4096 (($ (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $ $) 218) (($ $ $) 214 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-848)))) (-2774 (($ (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $ $) 213) (($ $ $) 206 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-848)))) (-3541 (((-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) 30 (|has| $ (-6 -4410))) (((-642 |#2|) $) 81 (|has| $ (-6 -4410))) (((-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) 116 (|has| $ (-6 -4410)))) (-2533 (((-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) 28 (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) (|has| $ (-6 -4410)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1097)) (|has| $ (-6 -4410)))) (((-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) 118 (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) (|has| $ (-6 -4410))))) (-3624 ((|#1| $) 96 (|has| |#1| (-848))) (((-564) $) 182 (|has| (-564) (-848)))) (-2903 (($ $ $) 198 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-848)))) (-1857 (($ (-1 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) 35 (|has| $ (-6 -4411))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4411))) (($ (-1 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) 111 (|has| $ (-6 -4411)))) (-2947 (($ (-1 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71) (($ (-1 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $ $) 167) (($ (-1 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) 110)) (-3902 (($ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) 226)) (-4145 (((-112) $ (-769)) 10)) (-2334 (((-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) 129)) (-1961 (((-112) $) 125)) (-1778 (((-1155) $) 22 (-2682 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) (|has| |#2| (-1097)) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097))))) (-2534 (($ $ (-769)) 146) (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) 144)) (-3287 (((-642 |#1|) $) 64)) (-2145 (((-112) |#1| $) 65)) (-3220 (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) 40)) (-1668 (($ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) 41) (($ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $ (-564)) 220) (($ $ $ (-564)) 219)) (-4247 (($ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $ (-564)) 163) (($ $ $ (-564)) 162)) (-4107 (((-642 |#1|) $) 94) (((-642 (-564)) $) 184)) (-4207 (((-112) |#1| $) 93) (((-112) (-564) $) 185)) (-3999 (((-1117) $) 21 (-2682 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) (|has| |#2| (-1097)) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097))))) (-4036 ((|#2| $) 98 (|has| |#1| (-848))) (($ $ (-769)) 140) (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) 138)) (-3183 (((-3 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) "failed") (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) 52) (((-3 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) "failed") (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) 172)) (-3826 (($ $ |#2|) 99 (|has| $ (-6 -4411))) (($ $ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) 180 (|has| $ (-6 -4411)))) (-4314 (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) 42)) (-3823 (((-112) $) 192)) (-4094 (((-112) (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) 33 (|has| $ (-6 -4410))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4410))) (((-112) (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) 113 (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))))) 27 (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (($ $ (-294 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) 26 (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (($ $ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) 25 (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (($ $ (-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) (-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) 24 (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (($ $ (-642 |#2|) (-642 |#2|)) 87 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-294 |#2|)) 85 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-642 (-294 |#2|))) 84 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) (-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) 122 (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (($ $ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) 121 (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (($ $ (-294 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) 120 (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (($ $ (-642 (-294 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))))) 119 (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097))))) (-2478 (((-112) $ $) 14)) (-1643 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097)))) (((-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) 183 (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097))))) (-3522 (((-642 |#2|) $) 92) (((-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) 186)) (-4109 (((-112) $) 11)) (-2179 (($) 12)) (-4369 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90) (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $ (-564) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) 188) (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $ (-564)) 187) (($ $ (-1229 (-564))) 166) (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $ "last") 145) (($ $ "rest") 142) (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $ "first") 139) (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $ "value") 127)) (-1743 (((-564) $ $) 130)) (-2318 (($) 50) (($ (-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) 49)) (-1406 (($ $ (-564)) 223) (($ $ (-1229 (-564))) 222)) (-2083 (($ $ (-564)) 165) (($ $ (-1229 (-564))) 164)) (-1311 (((-112) $) 128)) (-1306 (($ $) 152)) (-4118 (($ $) 153 (|has| $ (-6 -4411)))) (-3941 (((-769) $) 151)) (-4376 (($ $) 150)) (-4010 (((-769) (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) 32 (|has| $ (-6 -4410))) (((-769) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) 29 (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) (|has| $ (-6 -4410)))) (((-769) |#2| $) 82 (-12 (|has| |#2| (-1097)) (|has| $ (-6 -4410)))) (((-769) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4410))) (((-769) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) 117 (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) (|has| $ (-6 -4410)))) (((-769) (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) 114 (|has| $ (-6 -4410)))) (-3301 (($ $ $ (-564)) 203 (|has| $ (-6 -4411)))) (-3865 (($ $) 13)) (-3003 (((-536) $) 60 (-2682 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-612 (-536))) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-612 (-536)))))) (-2401 (($ (-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) 51) (($ (-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) 171)) (-2766 (($ $ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) 225) (($ $ $) 224)) (-3634 (($ $ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) 169) (($ (-642 $)) 168) (($ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) 137) (($ $ $) 136)) (-2390 (((-860) $) 18 (-2682 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-611 (-860))) (|has| |#2| (-611 (-860))) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-611 (-860)))))) (-4275 (((-642 $) $) 123)) (-1622 (((-112) $ $) 131 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (-1600 (((-112) $ $) 23 (-2682 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) (|has| |#2| (-1097)) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097))))) (-4160 (($ (-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) 43)) (-2541 (((-3 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) "failed") |#1| $) 109)) (-3295 (((-112) (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) 34 (|has| $ (-6 -4410))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4410))) (((-112) (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) 112 (|has| $ (-6 -4410)))) (-2881 (((-112) $ $) 196 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-848)))) (-2857 (((-112) $ $) 195 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-848)))) (-2821 (((-112) $ $) 20 (-2682 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) (|has| |#2| (-1097)) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097))))) (-2868 (((-112) $ $) 197 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-848)))) (-2844 (((-112) $ $) 194 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-848)))) (-2158 (((-769) $) 6 (|has| $ (-6 -4410))))) -(((-36 |#1| |#2|) (-140) (-1097) (-1097)) (T -36)) -((-2541 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-1097)) (-5 *2 (-2 (|:| -1914 *3) (|:| -2683 *4)))))) -(-13 (-1188 |t#1| |t#2|) (-664 (-2 (|:| -1914 |t#1|) (|:| -2683 |t#2|))) (-10 -8 (-15 -2541 ((-3 (-2 (|:| -1914 |t#1|) (|:| -2683 |t#2|)) "failed") |t#1| $)))) -(((-34) . T) ((-107 #0=(-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) . T) ((-102) -2682 (|has| |#2| (-1097)) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-848))) ((-611 (-860)) -2682 (|has| |#2| (-1097)) (|has| |#2| (-611 (-860))) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-848)) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-611 (-860)))) ((-151 #1=(-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) . T) ((-612 (-536)) |has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-612 (-536))) ((-229 #0#) . T) ((-235 #0#) . T) ((-286 #2=(-564) #1#) . T) ((-286 |#1| |#2|) . T) ((-288 #2# #1#) . T) ((-288 |#1| |#2|) . T) ((-309 #1#) -12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097))) ((-309 |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))) ((-282 #1#) . T) ((-373 #1#) . T) ((-489 #1#) . T) ((-489 |#2|) . T) ((-602 #2# #1#) . T) ((-602 |#1| |#2|) . T) ((-514 #1# #1#) -12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097))) ((-514 |#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))) ((-608 |#1| |#2|) . T) ((-649 #1#) . T) ((-664 #1#) . T) ((-848) |has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-848)) ((-1008 #1#) . T) ((-1097) -2682 (|has| |#2| (-1097)) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-848))) ((-1146 #1#) . T) ((-1188 |#1| |#2|) . T) ((-1212) . T) ((-1250 #1#) . T)) -((-2390 (((-860) $) NIL) (($ (-564)) NIL) (($ |#2|) 10))) -(((-37 |#1| |#2|) (-10 -8 (-15 -2390 (|#1| |#2|)) (-15 -2390 (|#1| (-564))) (-15 -2390 ((-860) |#1|))) (-38 |#2|) (-172)) (T -37)) -NIL -(-10 -8 (-15 -2390 (|#1| |#2|)) (-15 -2390 (|#1| (-564))) (-15 -2390 ((-860) |#1|))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-3085 (((-3 $ "failed") $ $) 20)) (-2822 (($) 18 T CONST)) (-2675 (((-3 $ "failed") $) 37)) (-3163 (((-112) $) 35)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2390 (((-860) $) 12) (($ (-564)) 33) (($ |#1|) 44)) (-3348 (((-769)) 32 T CONST)) (-1600 (((-112) $ $) 9)) (-2361 (($) 19 T CONST)) (-2371 (($) 34 T CONST)) (-2821 (((-112) $ $) 6)) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) +((-3285 (*1 *1 *1) (-4 *1 (-35))) (-3260 (*1 *1 *1) (-4 *1 (-35))) (-3309 (*1 *1 *1) (-4 *1 (-35))) (-1861 (*1 *1 *1) (-4 *1 (-35))) (-3299 (*1 *1 *1) (-4 *1 (-35))) (-3273 (*1 *1 *1) (-4 *1 (-35)))) +(-13 (-10 -8 (-15 -3273 ($ $)) (-15 -3299 ($ $)) (-15 -1861 ($ $)) (-15 -3309 ($ $)) (-15 -3260 ($ $)) (-15 -3285 ($ $)))) +((-2986 (((-112) $ $) 19 (-2809 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) (|has| |#2| (-1099)) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099))))) (-2153 (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) 126)) (-3673 (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) 149)) (-3238 (($ $) 147)) (-4250 (($) 73) (($ (-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) 72)) (-2462 (((-1269) $ |#1| |#1|) 100 (|has| $ (-6 -4418))) (((-1269) $ (-566) (-566)) 179 (|has| $ (-6 -4418)))) (-3427 (($ $ (-566)) 160 (|has| $ (-6 -4418)))) (-4163 (((-112) (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) 210) (((-112) $) 204 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-850)))) (-2893 (($ (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) 201 (|has| $ (-6 -4418))) (($ $) 200 (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-850)) (|has| $ (-6 -4418))))) (-1374 (($ (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) 211) (($ $) 205 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-850)))) (-1453 (((-112) $ (-771)) 8)) (-3684 (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) 135 (|has| $ (-6 -4418)))) (-3494 (($ $ $) 156 (|has| $ (-6 -4418)))) (-2454 (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) 158 (|has| $ (-6 -4418)))) (-1306 (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) 154 (|has| $ (-6 -4418)))) (-3901 ((|#2| $ |#1| |#2|) 74) (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $ (-566) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) 190 (|has| $ (-6 -4418))) (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $ (-1231 (-566)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) 161 (|has| $ (-6 -4418))) (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $ "last" (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) 159 (|has| $ (-6 -4418))) (($ $ "rest" $) 157 (|has| $ (-6 -4418))) (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $ "first" (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) 155 (|has| $ (-6 -4418))) (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $ "value" (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) 134 (|has| $ (-6 -4418)))) (-3891 (($ $ (-644 $)) 133 (|has| $ (-6 -4418)))) (-4364 (($ (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) 46 (|has| $ (-6 -4417))) (($ (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) 217)) (-3543 (($ (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) 56 (|has| $ (-6 -4417))) (($ (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) 176 (|has| $ (-6 -4417)))) (-3663 (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) 148)) (-2377 (((-3 |#2| "failed") |#1| $) 62)) (-1811 (($) 7 T CONST)) (-2273 (($ $) 202 (|has| $ (-6 -4418)))) (-3877 (($ $) 212)) (-4091 (($ $ (-771)) 143) (($ $) 141)) (-1346 (($ $) 215 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (-4111 (($ $) 59 (-2809 (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) (|has| $ (-6 -4417))) (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) (|has| $ (-6 -4417)))))) (-2295 (($ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) 48 (|has| $ (-6 -4417))) (($ (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) 47 (|has| $ (-6 -4417))) (((-3 |#2| "failed") |#1| $) 63) (($ (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) 221) (($ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) 216 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (-2628 (($ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) 58 (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) (|has| $ (-6 -4417)))) (($ (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) 55 (|has| $ (-6 -4417))) (($ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) 178 (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) (|has| $ (-6 -4417)))) (($ (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) 175 (|has| $ (-6 -4417)))) (-1838 (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) 57 (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) (|has| $ (-6 -4417)))) (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) 54 (|has| $ (-6 -4417))) (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) 53 (|has| $ (-6 -4417))) (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) 177 (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) (|has| $ (-6 -4417)))) (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) 174 (|has| $ (-6 -4417))) (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) 173 (|has| $ (-6 -4417)))) (-3719 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4418))) (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $ (-566) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) 191 (|has| $ (-6 -4418)))) (-3653 ((|#2| $ |#1|) 89) (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $ (-566)) 189)) (-3258 (((-112) $) 193)) (-4000 (((-566) (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) 209) (((-566) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) 208 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099))) (((-566) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $ (-566)) 207 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (-3872 (((-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) 31 (|has| $ (-6 -4417))) (((-644 |#2|) $) 80 (|has| $ (-6 -4417))) (((-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) 115 (|has| $ (-6 -4417)))) (-3578 (((-644 $) $) 124)) (-2778 (((-112) $ $) 132 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (-4259 (($ (-771) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) 170)) (-2756 (((-112) $ (-771)) 9)) (-2755 ((|#1| $) 97 (|has| |#1| (-850))) (((-566) $) 181 (|has| (-566) (-850)))) (-1920 (($ $ $) 199 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-850)))) (-3200 (($ (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $ $) 218) (($ $ $) 214 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-850)))) (-1330 (($ (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $ $) 213) (($ $ $) 206 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-850)))) (-4227 (((-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) 30 (|has| $ (-6 -4417))) (((-644 |#2|) $) 81 (|has| $ (-6 -4417))) (((-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) 116 (|has| $ (-6 -4417)))) (-1688 (((-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) 28 (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) (|has| $ (-6 -4417)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1099)) (|has| $ (-6 -4417)))) (((-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) 118 (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) (|has| $ (-6 -4417))))) (-3831 ((|#1| $) 96 (|has| |#1| (-850))) (((-566) $) 182 (|has| (-566) (-850)))) (-3038 (($ $ $) 198 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-850)))) (-3708 (($ (-1 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) 35 (|has| $ (-6 -4418))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4418))) (($ (-1 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) 111 (|has| $ (-6 -4418)))) (-3080 (($ (-1 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71) (($ (-1 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $ $) 167) (($ (-1 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) 110)) (-3960 (($ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) 226)) (-4106 (((-112) $ (-771)) 10)) (-3658 (((-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) 129)) (-1587 (((-112) $) 125)) (-3151 (((-1157) $) 22 (-2809 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) (|has| |#2| (-1099)) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099))))) (-2651 (($ $ (-771)) 146) (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) 144)) (-1467 (((-644 |#1|) $) 64)) (-3983 (((-112) |#1| $) 65)) (-4255 (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) 40)) (-4354 (($ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) 41) (($ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $ (-566)) 220) (($ $ $ (-566)) 219)) (-4271 (($ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $ (-566)) 163) (($ $ $ (-566)) 162)) (-3780 (((-644 |#1|) $) 94) (((-644 (-566)) $) 184)) (-1605 (((-112) |#1| $) 93) (((-112) (-566) $) 185)) (-4059 (((-1119) $) 21 (-2809 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) (|has| |#2| (-1099)) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099))))) (-4080 ((|#2| $) 98 (|has| |#1| (-850))) (($ $ (-771)) 140) (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) 138)) (-2688 (((-3 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) "failed") (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) 52) (((-3 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) "failed") (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) 172)) (-4079 (($ $ |#2|) 99 (|has| $ (-6 -4418))) (($ $ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) 180 (|has| $ (-6 -4418)))) (-4097 (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) 42)) (-3094 (((-112) $) 192)) (-3966 (((-112) (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) 33 (|has| $ (-6 -4417))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4417))) (((-112) (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) 113 (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))))) 27 (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (($ $ (-295 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) 26 (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (($ $ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) 25 (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (($ $ (-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) (-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) 24 (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) 87 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) 85 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 (-295 |#2|))) 84 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) (-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) 122 (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (($ $ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) 121 (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (($ $ (-295 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) 120 (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (($ $ (-644 (-295 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))))) 119 (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099))))) (-1844 (((-112) $ $) 14)) (-2210 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1099)))) (((-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) 183 (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099))))) (-4185 (((-644 |#2|) $) 92) (((-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) 186)) (-2788 (((-112) $) 11)) (-1737 (($) 12)) (-4376 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90) (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $ (-566) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) 188) (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $ (-566)) 187) (($ $ (-1231 (-566))) 166) (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $ "last") 145) (($ $ "rest") 142) (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $ "first") 139) (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $ "value") 127)) (-4098 (((-566) $ $) 130)) (-1797 (($) 50) (($ (-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) 49)) (-3139 (($ $ (-566)) 223) (($ $ (-1231 (-566))) 222)) (-2139 (($ $ (-566)) 165) (($ $ (-1231 (-566))) 164)) (-2636 (((-112) $) 128)) (-3513 (($ $) 152)) (-2018 (($ $) 153 (|has| $ (-6 -4418)))) (-2804 (((-771) $) 151)) (-2924 (($ $) 150)) (-4068 (((-771) (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) 32 (|has| $ (-6 -4417))) (((-771) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) 29 (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) (|has| $ (-6 -4417)))) (((-771) |#2| $) 82 (-12 (|has| |#2| (-1099)) (|has| $ (-6 -4417)))) (((-771) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4417))) (((-771) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) 117 (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) (|has| $ (-6 -4417)))) (((-771) (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) 114 (|has| $ (-6 -4417)))) (-1438 (($ $ $ (-566)) 203 (|has| $ (-6 -4418)))) (-3924 (($ $) 13)) (-3136 (((-538) $) 60 (-2809 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-614 (-538))) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-614 (-538)))))) (-2489 (($ (-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) 51) (($ (-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) 171)) (-1323 (($ $ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) 225) (($ $ $) 224)) (-3716 (($ $ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) 169) (($ (-644 $)) 168) (($ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) 137) (($ $ $) 136)) (-2479 (((-862) $) 18 (-2809 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-613 (-862))) (|has| |#2| (-613 (-862))) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-613 (-862)))))) (-2156 (((-644 $) $) 123)) (-3922 (((-112) $ $) 131 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (-3900 (((-112) $ $) 23 (-2809 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) (|has| |#2| (-1099)) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099))))) (-2471 (($ (-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) 43)) (-2658 (((-3 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) "failed") |#1| $) 109)) (-3667 (((-112) (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) 34 (|has| $ (-6 -4417))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4417))) (((-112) (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) 112 (|has| $ (-6 -4417)))) (-3019 (((-112) $ $) 196 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-850)))) (-2990 (((-112) $ $) 195 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-850)))) (-2952 (((-112) $ $) 20 (-2809 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) (|has| |#2| (-1099)) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099))))) (-3004 (((-112) $ $) 197 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-850)))) (-2977 (((-112) $ $) 194 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-850)))) (-3002 (((-771) $) 6 (|has| $ (-6 -4417))))) +(((-36 |#1| |#2|) (-140) (-1099) (-1099)) (T -36)) +((-2658 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-5 *2 (-2 (|:| -1928 *3) (|:| -2806 *4)))))) +(-13 (-1190 |t#1| |t#2|) (-666 (-2 (|:| -1928 |t#1|) (|:| -2806 |t#2|))) (-10 -8 (-15 -2658 ((-3 (-2 (|:| -1928 |t#1|) (|:| -2806 |t#2|)) "failed") |t#1| $)))) +(((-34) . T) ((-107 #0=(-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) . T) ((-102) -2809 (|has| |#2| (-1099)) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-850))) ((-613 (-862)) -2809 (|has| |#2| (-1099)) (|has| |#2| (-613 (-862))) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-850)) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-613 (-862)))) ((-151 #1=(-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) . T) ((-614 (-538)) |has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-614 (-538))) ((-229 #0#) . T) ((-235 #0#) . T) ((-287 #2=(-566) #1#) . T) ((-287 |#1| |#2|) . T) ((-289 #2# #1#) . T) ((-289 |#1| |#2|) . T) ((-310 #1#) -12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099))) ((-310 |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) ((-283 #1#) . T) ((-375 #1#) . T) ((-491 #1#) . T) ((-491 |#2|) . T) ((-604 #2# #1#) . T) ((-604 |#1| |#2|) . T) ((-516 #1# #1#) -12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099))) ((-516 |#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) ((-610 |#1| |#2|) . T) ((-651 #1#) . T) ((-666 #1#) . T) ((-850) |has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-850)) ((-1010 #1#) . T) ((-1099) -2809 (|has| |#2| (-1099)) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-850))) ((-1148 #1#) . T) ((-1190 |#1| |#2|) . T) ((-1214) . T) ((-1252 #1#) . T)) +((-2479 (((-862) $) NIL) (($ (-566)) NIL) (($ |#2|) 10))) +(((-37 |#1| |#2|) (-10 -8 (-15 -2479 (|#1| |#2|)) (-15 -2479 (|#1| (-566))) (-15 -2479 ((-862) |#1|))) (-38 |#2|) (-172)) (T -37)) +NIL +(-10 -8 (-15 -2479 (|#1| |#2|)) (-15 -2479 (|#1| (-566))) (-15 -2479 ((-862) |#1|))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-3174 (((-3 $ "failed") $ $) 20)) (-1811 (($) 18 T CONST)) (-3757 (((-3 $ "failed") $) 37)) (-2264 (((-112) $) 35)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-2479 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 44)) (-1558 (((-771)) 32 T CONST)) (-3900 (((-112) $ $) 9)) (-2446 (($) 19 T CONST)) (-2459 (($) 34 T CONST)) (-2952 (((-112) $ $) 6)) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) (((-38 |#1|) (-140) (-172)) (T -38)) NIL -(-13 (-1047) (-715 |t#1|) (-614 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-611 (-860)) . T) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-638 |#1|) . T) ((-715 |#1|) . T) ((-724) . T) ((-1049 |#1|) . T) ((-1054 |#1|) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T)) -((-2246 (((-418 |#1|) |#1|) 41)) (-2254 (((-418 |#1|) |#1|) 30) (((-418 |#1|) |#1| (-642 (-48))) 33)) (-3390 (((-112) |#1|) 59))) -(((-39 |#1|) (-10 -7 (-15 -2254 ((-418 |#1|) |#1| (-642 (-48)))) (-15 -2254 ((-418 |#1|) |#1|)) (-15 -2246 ((-418 |#1|) |#1|)) (-15 -3390 ((-112) |#1|))) (-1238 (-48))) (T -39)) -((-3390 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1238 (-48))))) (-2246 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1238 (-48))))) (-2254 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1238 (-48))))) (-2254 (*1 *2 *3 *4) (-12 (-5 *4 (-642 (-48))) (-5 *2 (-418 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1238 (-48)))))) -(-10 -7 (-15 -2254 ((-418 |#1|) |#1| (-642 (-48)))) (-15 -2254 ((-418 |#1|) |#1|)) (-15 -2246 ((-418 |#1|) |#1|)) (-15 -3390 ((-112) |#1|))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-2572 (((-2 (|:| |num| (-1262 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (|has| (-407 |#2|) (-363)))) (-4252 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-1722 (((-112) $) NIL (|has| (-407 |#2|) (-363)))) (-1335 (((-687 (-407 |#2|)) (-1262 $)) NIL) (((-687 (-407 |#2|))) NIL)) (-3778 (((-407 |#2|) $) NIL)) (-3651 (((-1185 (-919) (-769)) (-564)) NIL (|has| (-407 |#2|) (-349)))) (-3085 (((-3 $ "failed") $ $) NIL)) (-1993 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-3282 (((-418 $) $) NIL (|has| (-407 |#2|) (-363)))) (-2134 (((-112) $ $) NIL (|has| (-407 |#2|) (-363)))) (-4003 (((-769)) NIL (|has| (-407 |#2|) (-368)))) (-2883 (((-112)) NIL)) (-4310 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2822 (($) NIL T CONST)) (-2849 (((-3 (-564) "failed") $) NIL (|has| (-407 |#2|) (-1036 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-407 |#2|) (-1036 (-407 (-564))))) (((-3 (-407 |#2|) "failed") $) NIL)) (-1687 (((-564) $) NIL (|has| (-407 |#2|) (-1036 (-564)))) (((-407 (-564)) $) NIL (|has| (-407 |#2|) (-1036 (-407 (-564))))) (((-407 |#2|) $) NIL)) (-4087 (($ (-1262 (-407 |#2|)) (-1262 $)) NIL) (($ (-1262 (-407 |#2|))) 61) (($ (-1262 |#2|) |#2|) 136)) (-2629 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-407 |#2|) (-349)))) (-2796 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-2330 (((-687 (-407 |#2|)) $ (-1262 $)) NIL) (((-687 (-407 |#2|)) $) NIL)) (-3330 (((-687 (-564)) (-687 $)) NIL (|has| (-407 |#2|) (-637 (-564)))) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (|has| (-407 |#2|) (-637 (-564)))) (((-2 (|:| -3544 (-687 (-407 |#2|))) (|:| |vec| (-1262 (-407 |#2|)))) (-687 $) (-1262 $)) NIL) (((-687 (-407 |#2|)) (-687 $)) NIL)) (-1431 (((-1262 $) (-1262 $)) NIL)) (-3741 (($ |#3|) NIL) (((-3 $ "failed") (-407 |#3|)) NIL (|has| (-407 |#2|) (-363)))) (-2675 (((-3 $ "failed") $) NIL)) (-1954 (((-642 (-642 |#1|))) NIL (|has| |#1| (-368)))) (-2453 (((-112) |#1| |#1|) NIL)) (-3616 (((-919)) NIL)) (-3235 (($) NIL (|has| (-407 |#2|) (-368)))) (-3597 (((-112)) NIL)) (-3904 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2808 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) NIL (|has| (-407 |#2|) (-363)))) (-2511 (($ $) NIL)) (-1427 (($) NIL (|has| (-407 |#2|) (-349)))) (-4153 (((-112) $) NIL (|has| (-407 |#2|) (-349)))) (-1595 (($ $ (-769)) NIL (|has| (-407 |#2|) (-349))) (($ $) NIL (|has| (-407 |#2|) (-349)))) (-3552 (((-112) $) NIL (|has| (-407 |#2|) (-363)))) (-2408 (((-919) $) NIL (|has| (-407 |#2|) (-349))) (((-831 (-919)) $) NIL (|has| (-407 |#2|) (-349)))) (-3163 (((-112) $) NIL)) (-2454 (((-769)) NIL)) (-4206 (((-1262 $) (-1262 $)) 111)) (-2573 (((-407 |#2|) $) NIL)) (-1319 (((-642 (-950 |#1|)) (-1173)) NIL (|has| |#1| (-363)))) (-4382 (((-3 $ "failed") $) NIL (|has| (-407 |#2|) (-349)))) (-2709 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| (-407 |#2|) (-363)))) (-2076 ((|#3| $) NIL (|has| (-407 |#2|) (-363)))) (-2535 (((-919) $) NIL (|has| (-407 |#2|) (-368)))) (-3730 ((|#3| $) NIL)) (-2066 (($ (-642 $)) NIL (|has| (-407 |#2|) (-363))) (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-1778 (((-1155) $) NIL)) (-1522 (((-1267) (-769)) 88)) (-2058 (((-687 (-407 |#2|))) 56)) (-2723 (((-687 (-407 |#2|))) 49)) (-2481 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-3116 (($ (-1262 |#2|) |#2|) 137)) (-2263 (((-687 (-407 |#2|))) 50)) (-1654 (((-687 (-407 |#2|))) 48)) (-2127 (((-2 (|:| |num| (-687 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 135)) (-1545 (((-2 (|:| |num| (-1262 |#2|)) (|:| |den| |#2|)) $) 68)) (-2474 (((-1262 $)) 47)) (-1315 (((-1262 $)) 46)) (-2781 (((-112) $) NIL)) (-2633 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3910 (($) NIL (|has| (-407 |#2|) (-349)) CONST)) (-2065 (($ (-919)) NIL (|has| (-407 |#2|) (-368)))) (-3919 (((-3 |#2| "failed")) NIL)) (-3999 (((-1117) $) NIL)) (-1913 (((-769)) NIL)) (-4043 (($) NIL)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) NIL (|has| (-407 |#2|) (-363)))) (-2105 (($ (-642 $)) NIL (|has| (-407 |#2|) (-363))) (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-4229 (((-642 (-2 (|:| -2254 (-564)) (|:| -2817 (-564))))) NIL (|has| (-407 |#2|) (-349)))) (-2254 (((-418 $) $) NIL (|has| (-407 |#2|) (-363)))) (-1877 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-407 |#2|) (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL (|has| (-407 |#2|) (-363)))) (-2842 (((-3 $ "failed") $ $) NIL (|has| (-407 |#2|) (-363)))) (-1483 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| (-407 |#2|) (-363)))) (-4274 (((-769) $) NIL (|has| (-407 |#2|) (-363)))) (-4369 ((|#1| $ |#1| |#1|) NIL)) (-3169 (((-3 |#2| "failed")) NIL)) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL (|has| (-407 |#2|) (-363)))) (-2790 (((-407 |#2|) (-1262 $)) NIL) (((-407 |#2|)) 44)) (-1354 (((-769) $) NIL (|has| (-407 |#2|) (-349))) (((-3 (-769) "failed") $ $) NIL (|has| (-407 |#2|) (-349)))) (-2199 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-769)) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 |#2| |#2|)) 131) (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-898 (-1173))))) (($ $ (-1173) (-769)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-898 (-1173))))) (($ $ (-642 (-1173))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-898 (-1173))))) (($ $ (-1173)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-898 (-1173))))) (($ $ (-769)) NIL (-2682 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349)))) (($ $) NIL (-2682 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349))))) (-2418 (((-687 (-407 |#2|)) (-1262 $) (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363)))) (-1361 ((|#3|) 55)) (-3553 (($) NIL (|has| (-407 |#2|) (-349)))) (-3719 (((-1262 (-407 |#2|)) $ (-1262 $)) NIL) (((-687 (-407 |#2|)) (-1262 $) (-1262 $)) NIL) (((-1262 (-407 |#2|)) $) 62) (((-687 (-407 |#2|)) (-1262 $)) 112)) (-3003 (((-1262 (-407 |#2|)) $) NIL) (($ (-1262 (-407 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3556 (((-3 (-1262 $) "failed") (-687 $)) NIL (|has| (-407 |#2|) (-349)))) (-4140 (((-1262 $) (-1262 $)) NIL)) (-2390 (((-860) $) NIL) (($ (-564)) NIL) (($ (-407 |#2|)) NIL) (($ (-407 (-564))) NIL (-2682 (|has| (-407 |#2|) (-1036 (-407 (-564)))) (|has| (-407 |#2|) (-363)))) (($ $) NIL (|has| (-407 |#2|) (-363)))) (-3434 (($ $) NIL (|has| (-407 |#2|) (-349))) (((-3 $ "failed") $) NIL (|has| (-407 |#2|) (-145)))) (-1308 ((|#3| $) NIL)) (-3348 (((-769)) NIL T CONST)) (-2994 (((-112)) 42)) (-1314 (((-112) |#1|) 54) (((-112) |#2|) 143)) (-1600 (((-112) $ $) NIL)) (-2131 (((-1262 $)) 102)) (-1594 (((-112) $ $) NIL (|has| (-407 |#2|) (-363)))) (-4018 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1426 (((-112)) NIL)) (-2361 (($) 17 T CONST)) (-2371 (($) 27 T CONST)) (-2711 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-769)) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-898 (-1173))))) (($ $ (-1173) (-769)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-898 (-1173))))) (($ $ (-642 (-1173))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-898 (-1173))))) (($ $ (-1173)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-898 (-1173))))) (($ $ (-769)) NIL (-2682 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349)))) (($ $) NIL (-2682 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349))))) (-2821 (((-112) $ $) NIL)) (-2943 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL (|has| (-407 |#2|) (-363)))) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 |#2|)) NIL) (($ (-407 |#2|) $) NIL) (($ (-407 (-564)) $) NIL (|has| (-407 |#2|) (-363))) (($ $ (-407 (-564))) NIL (|has| (-407 |#2|) (-363))))) -(((-40 |#1| |#2| |#3| |#4|) (-13 (-342 |#1| |#2| |#3|) (-10 -7 (-15 -1522 ((-1267) (-769))))) (-363) (-1238 |#1|) (-1238 (-407 |#2|)) |#3|) (T -40)) -((-1522 (*1 *2 *3) (-12 (-5 *3 (-769)) (-4 *4 (-363)) (-4 *5 (-1238 *4)) (-5 *2 (-1267)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1238 (-407 *5))) (-14 *7 *6)))) -(-13 (-342 |#1| |#2| |#3|) (-10 -7 (-15 -1522 ((-1267) (-769))))) -((-3932 ((|#2| |#2|) 47)) (-1917 ((|#2| |#2|) 139 (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-452)) (|has| |#1| (-1036 (-564)))))) (-2750 ((|#2| |#2|) 100 (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-452)) (|has| |#1| (-1036 (-564)))))) (-3748 ((|#2| |#2|) 101 (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-452)) (|has| |#1| (-1036 (-564)))))) (-1301 ((|#2| (-114) |#2| (-769)) 135 (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-452)) (|has| |#1| (-1036 (-564)))))) (-3537 (((-1169 |#2|) |#2|) 44)) (-1731 ((|#2| |#2| (-642 (-610 |#2|))) 18) ((|#2| |#2| (-642 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16))) -(((-41 |#1| |#2|) (-10 -7 (-15 -3932 (|#2| |#2|)) (-15 -1731 (|#2| |#2|)) (-15 -1731 (|#2| |#2| |#2|)) (-15 -1731 (|#2| |#2| (-642 |#2|))) (-15 -1731 (|#2| |#2| (-642 (-610 |#2|)))) (-15 -3537 ((-1169 |#2|) |#2|)) (IF (|has| |#1| (-452)) (IF (|has| |#1| (-1036 (-564))) (IF (|has| |#2| (-430 |#1|)) (PROGN (-15 -3748 (|#2| |#2|)) (-15 -2750 (|#2| |#2|)) (-15 -1917 (|#2| |#2|)) (-15 -1301 (|#2| (-114) |#2| (-769)))) |%noBranch|) |%noBranch|) |%noBranch|)) (-556) (-13 (-363) (-302) (-10 -8 (-15 -4120 ((-1122 |#1| (-610 $)) $)) (-15 -4131 ((-1122 |#1| (-610 $)) $)) (-15 -2390 ($ (-1122 |#1| (-610 $))))))) (T -41)) -((-1301 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-114)) (-5 *4 (-769)) (-4 *5 (-452)) (-4 *5 (-1036 (-564))) (-4 *5 (-556)) (-5 *1 (-41 *5 *2)) (-4 *2 (-430 *5)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -4120 ((-1122 *5 (-610 $)) $)) (-15 -4131 ((-1122 *5 (-610 $)) $)) (-15 -2390 ($ (-1122 *5 (-610 $))))))))) (-1917 (*1 *2 *2) (-12 (-4 *3 (-452)) (-4 *3 (-1036 (-564))) (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-430 *3)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -4120 ((-1122 *3 (-610 $)) $)) (-15 -4131 ((-1122 *3 (-610 $)) $)) (-15 -2390 ($ (-1122 *3 (-610 $))))))))) (-2750 (*1 *2 *2) (-12 (-4 *3 (-452)) (-4 *3 (-1036 (-564))) (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-430 *3)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -4120 ((-1122 *3 (-610 $)) $)) (-15 -4131 ((-1122 *3 (-610 $)) $)) (-15 -2390 ($ (-1122 *3 (-610 $))))))))) (-3748 (*1 *2 *2) (-12 (-4 *3 (-452)) (-4 *3 (-1036 (-564))) (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-430 *3)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -4120 ((-1122 *3 (-610 $)) $)) (-15 -4131 ((-1122 *3 (-610 $)) $)) (-15 -2390 ($ (-1122 *3 (-610 $))))))))) (-3537 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-1169 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-363) (-302) (-10 -8 (-15 -4120 ((-1122 *4 (-610 $)) $)) (-15 -4131 ((-1122 *4 (-610 $)) $)) (-15 -2390 ($ (-1122 *4 (-610 $))))))))) (-1731 (*1 *2 *2 *3) (-12 (-5 *3 (-642 (-610 *2))) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -4120 ((-1122 *4 (-610 $)) $)) (-15 -4131 ((-1122 *4 (-610 $)) $)) (-15 -2390 ($ (-1122 *4 (-610 $))))))) (-4 *4 (-556)) (-5 *1 (-41 *4 *2)))) (-1731 (*1 *2 *2 *3) (-12 (-5 *3 (-642 *2)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -4120 ((-1122 *4 (-610 $)) $)) (-15 -4131 ((-1122 *4 (-610 $)) $)) (-15 -2390 ($ (-1122 *4 (-610 $))))))) (-4 *4 (-556)) (-5 *1 (-41 *4 *2)))) (-1731 (*1 *2 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -4120 ((-1122 *3 (-610 $)) $)) (-15 -4131 ((-1122 *3 (-610 $)) $)) (-15 -2390 ($ (-1122 *3 (-610 $))))))))) (-1731 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -4120 ((-1122 *3 (-610 $)) $)) (-15 -4131 ((-1122 *3 (-610 $)) $)) (-15 -2390 ($ (-1122 *3 (-610 $))))))))) (-3932 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -4120 ((-1122 *3 (-610 $)) $)) (-15 -4131 ((-1122 *3 (-610 $)) $)) (-15 -2390 ($ (-1122 *3 (-610 $)))))))))) -(-10 -7 (-15 -3932 (|#2| |#2|)) (-15 -1731 (|#2| |#2|)) (-15 -1731 (|#2| |#2| |#2|)) (-15 -1731 (|#2| |#2| (-642 |#2|))) (-15 -1731 (|#2| |#2| (-642 (-610 |#2|)))) (-15 -3537 ((-1169 |#2|) |#2|)) (IF (|has| |#1| (-452)) (IF (|has| |#1| (-1036 (-564))) (IF (|has| |#2| (-430 |#1|)) (PROGN (-15 -3748 (|#2| |#2|)) (-15 -2750 (|#2| |#2|)) (-15 -1917 (|#2| |#2|)) (-15 -1301 (|#2| (-114) |#2| (-769)))) |%noBranch|) |%noBranch|) |%noBranch|)) -((-2254 (((-418 (-1169 |#3|)) (-1169 |#3|) (-642 (-48))) 23) (((-418 |#3|) |#3| (-642 (-48))) 19))) -(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -2254 ((-418 |#3|) |#3| (-642 (-48)))) (-15 -2254 ((-418 (-1169 |#3|)) (-1169 |#3|) (-642 (-48))))) (-848) (-791) (-947 (-48) |#2| |#1|)) (T -42)) -((-2254 (*1 *2 *3 *4) (-12 (-5 *4 (-642 (-48))) (-4 *5 (-848)) (-4 *6 (-791)) (-4 *7 (-947 (-48) *6 *5)) (-5 *2 (-418 (-1169 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1169 *7)))) (-2254 (*1 *2 *3 *4) (-12 (-5 *4 (-642 (-48))) (-4 *5 (-848)) (-4 *6 (-791)) (-5 *2 (-418 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-947 (-48) *6 *5))))) -(-10 -7 (-15 -2254 ((-418 |#3|) |#3| (-642 (-48)))) (-15 -2254 ((-418 (-1169 |#3|)) (-1169 |#3|) (-642 (-48))))) -((-4323 (((-769) |#2|) 72)) (-2525 (((-769) |#2|) 76)) (-3990 (((-642 |#2|)) 39)) (-2719 (((-769) |#2|) 75)) (-2472 (((-769) |#2|) 71)) (-2825 (((-769) |#2|) 74)) (-3744 (((-642 (-687 |#1|))) 67)) (-1568 (((-642 |#2|)) 62)) (-3370 (((-642 |#2|) |#2|) 50)) (-4093 (((-642 |#2|)) 64)) (-2164 (((-642 |#2|)) 63)) (-1343 (((-642 (-687 |#1|))) 55)) (-2689 (((-642 |#2|)) 61)) (-1393 (((-642 |#2|) |#2|) 49)) (-2283 (((-642 |#2|)) 57)) (-2898 (((-642 (-687 |#1|))) 68)) (-1970 (((-642 |#2|)) 66)) (-2131 (((-1262 |#2|) (-1262 |#2|)) 101 (|has| |#1| (-307))))) -(((-43 |#1| |#2|) (-10 -7 (-15 -2719 ((-769) |#2|)) (-15 -2525 ((-769) |#2|)) (-15 -2472 ((-769) |#2|)) (-15 -4323 ((-769) |#2|)) (-15 -2825 ((-769) |#2|)) (-15 -2283 ((-642 |#2|))) (-15 -1393 ((-642 |#2|) |#2|)) (-15 -3370 ((-642 |#2|) |#2|)) (-15 -2689 ((-642 |#2|))) (-15 -1568 ((-642 |#2|))) (-15 -2164 ((-642 |#2|))) (-15 -4093 ((-642 |#2|))) (-15 -1970 ((-642 |#2|))) (-15 -1343 ((-642 (-687 |#1|)))) (-15 -3744 ((-642 (-687 |#1|)))) (-15 -2898 ((-642 (-687 |#1|)))) (-15 -3990 ((-642 |#2|))) (IF (|has| |#1| (-307)) (-15 -2131 ((-1262 |#2|) (-1262 |#2|))) |%noBranch|)) (-556) (-417 |#1|)) (T -43)) -((-2131 (*1 *2 *2) (-12 (-5 *2 (-1262 *4)) (-4 *4 (-417 *3)) (-4 *3 (-307)) (-4 *3 (-556)) (-5 *1 (-43 *3 *4)))) (-3990 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-642 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-2898 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-642 (-687 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-3744 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-642 (-687 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-1343 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-642 (-687 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-1970 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-642 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-4093 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-642 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-2164 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-642 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-1568 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-642 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-2689 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-642 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-3370 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-642 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-1393 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-642 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-2283 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-642 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-2825 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-769)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-4323 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-769)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-2472 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-769)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-2525 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-769)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-2719 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-769)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4))))) -(-10 -7 (-15 -2719 ((-769) |#2|)) (-15 -2525 ((-769) |#2|)) (-15 -2472 ((-769) |#2|)) (-15 -4323 ((-769) |#2|)) (-15 -2825 ((-769) |#2|)) (-15 -2283 ((-642 |#2|))) (-15 -1393 ((-642 |#2|) |#2|)) (-15 -3370 ((-642 |#2|) |#2|)) (-15 -2689 ((-642 |#2|))) (-15 -1568 ((-642 |#2|))) (-15 -2164 ((-642 |#2|))) (-15 -4093 ((-642 |#2|))) (-15 -1970 ((-642 |#2|))) (-15 -1343 ((-642 (-687 |#1|)))) (-15 -3744 ((-642 (-687 |#1|)))) (-15 -2898 ((-642 (-687 |#1|)))) (-15 -3990 ((-642 |#2|))) (IF (|has| |#1| (-307)) (-15 -2131 ((-1262 |#2|) (-1262 |#2|))) |%noBranch|)) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-2660 (((-3 $ "failed")) NIL (|has| |#1| (-556)))) (-3085 (((-3 $ "failed") $ $) NIL)) (-2816 (((-1262 (-687 |#1|)) (-1262 $)) NIL) (((-1262 (-687 |#1|))) 24)) (-3953 (((-1262 $)) 55)) (-2822 (($) NIL T CONST)) (-3378 (((-3 (-2 (|:| |particular| $) (|:| -2131 (-642 $))) "failed")) NIL (|has| |#1| (-556)))) (-1934 (((-3 $ "failed")) NIL (|has| |#1| (-556)))) (-3821 (((-687 |#1|) (-1262 $)) NIL) (((-687 |#1|)) NIL)) (-3540 ((|#1| $) NIL)) (-1771 (((-687 |#1|) $ (-1262 $)) NIL) (((-687 |#1|) $) NIL)) (-3420 (((-3 $ "failed") $) NIL (|has| |#1| (-556)))) (-2016 (((-1169 (-950 |#1|))) NIL (|has| |#1| (-363)))) (-3952 (($ $ (-919)) NIL)) (-1732 ((|#1| $) NIL)) (-2644 (((-1169 |#1|) $) NIL (|has| |#1| (-556)))) (-3521 ((|#1| (-1262 $)) NIL) ((|#1|) NIL)) (-4246 (((-1169 |#1|) $) NIL)) (-2165 (((-112)) 102)) (-4087 (($ (-1262 |#1|) (-1262 $)) NIL) (($ (-1262 |#1|)) NIL)) (-2675 (((-3 $ "failed") $) 14 (|has| |#1| (-556)))) (-3616 (((-919)) 56)) (-2927 (((-112)) NIL)) (-4359 (($ $ (-919)) NIL)) (-3682 (((-112)) NIL)) (-1888 (((-112)) NIL)) (-1693 (((-112)) 104)) (-1546 (((-3 (-2 (|:| |particular| $) (|:| -2131 (-642 $))) "failed")) NIL (|has| |#1| (-556)))) (-4337 (((-3 $ "failed")) NIL (|has| |#1| (-556)))) (-4289 (((-687 |#1|) (-1262 $)) NIL) (((-687 |#1|)) NIL)) (-1486 ((|#1| $) NIL)) (-1672 (((-687 |#1|) $ (-1262 $)) NIL) (((-687 |#1|) $) NIL)) (-1339 (((-3 $ "failed") $) NIL (|has| |#1| (-556)))) (-2975 (((-1169 (-950 |#1|))) NIL (|has| |#1| (-363)))) (-4204 (($ $ (-919)) NIL)) (-1573 ((|#1| $) NIL)) (-2514 (((-1169 |#1|) $) NIL (|has| |#1| (-556)))) (-3645 ((|#1| (-1262 $)) NIL) ((|#1|) NIL)) (-1892 (((-1169 |#1|) $) NIL)) (-4216 (((-112)) 101)) (-1778 (((-1155) $) NIL)) (-2631 (((-112)) 109)) (-3393 (((-112)) 108)) (-2399 (((-112)) 110)) (-3999 (((-1117) $) NIL)) (-2040 (((-112)) 103)) (-4369 ((|#1| $ (-564)) 58)) (-3719 (((-1262 |#1|) $ (-1262 $)) 53) (((-687 |#1|) (-1262 $) (-1262 $)) NIL) (((-1262 |#1|) $) 28) (((-687 |#1|) (-1262 $)) NIL)) (-3003 (((-1262 |#1|) $) NIL) (($ (-1262 |#1|)) NIL)) (-3584 (((-642 (-950 |#1|)) (-1262 $)) NIL) (((-642 (-950 |#1|))) NIL)) (-2402 (($ $ $) NIL)) (-2792 (((-112)) 98)) (-2390 (((-860) $) 75) (($ (-1262 |#1|)) 22)) (-1600 (((-112) $ $) NIL)) (-2131 (((-1262 $)) 49)) (-1491 (((-642 (-1262 |#1|))) NIL (|has| |#1| (-556)))) (-3845 (($ $ $ $) NIL)) (-2715 (((-112)) 94)) (-3975 (($ (-687 |#1|) $) 18)) (-3106 (($ $ $) NIL)) (-3498 (((-112)) 100)) (-3394 (((-112)) 95)) (-2609 (((-112)) 93)) (-2361 (($) NIL T CONST)) (-2821 (((-112) $ $) NIL)) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) NIL)) (** (($ $ (-919)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) 84) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1139 |#2| |#1|) $) 19))) -(((-44 |#1| |#2| |#3| |#4|) (-13 (-417 |#1|) (-646 (-1139 |#2| |#1|)) (-10 -8 (-15 -2390 ($ (-1262 |#1|))))) (-363) (-919) (-642 (-1173)) (-1262 (-687 |#1|))) (T -44)) -((-2390 (*1 *1 *2) (-12 (-5 *2 (-1262 *3)) (-4 *3 (-363)) (-14 *6 (-1262 (-687 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-919)) (-14 *5 (-642 (-1173)))))) -(-13 (-417 |#1|) (-646 (-1139 |#2| |#1|)) (-10 -8 (-15 -2390 ($ (-1262 |#1|))))) -((-2856 (((-112) $ $) NIL (-2682 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-2108 (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) NIL)) (-3585 (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) NIL)) (-3107 (($ $) NIL)) (-4222 (($) NIL) (($ (-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) NIL)) (-3633 (((-1267) $ |#1| |#1|) NIL (|has| $ (-6 -4411))) (((-1267) $ (-564) (-564)) NIL (|has| $ (-6 -4411)))) (-4083 (($ $ (-564)) NIL (|has| $ (-6 -4411)))) (-1824 (((-112) (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-848)))) (-3659 (($ (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4411))) (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-848))))) (-3191 (($ (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-848)))) (-3442 (((-112) $ (-769)) NIL)) (-1407 (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) NIL (|has| $ (-6 -4411)))) (-4277 (($ $ $) 33 (|has| $ (-6 -4411)))) (-4326 (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) NIL (|has| $ (-6 -4411)))) (-3186 (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) 35 (|has| $ (-6 -4411)))) (-3841 ((|#2| $ |#1| |#2|) 53) (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $ (-564) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) NIL (|has| $ (-6 -4411))) (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $ (-1229 (-564)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) NIL (|has| $ (-6 -4411))) (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $ "last" (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) NIL (|has| $ (-6 -4411))) (($ $ "rest" $) NIL (|has| $ (-6 -4411))) (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $ "first" (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) NIL (|has| $ (-6 -4411))) (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $ "value" (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) NIL (|has| $ (-6 -4411)))) (-4041 (($ $ (-642 $)) NIL (|has| $ (-6 -4411)))) (-2438 (($ (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410))) (($ (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL)) (-3437 (($ (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410))) (($ (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-3573 (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) NIL)) (-2295 (((-3 |#2| "failed") |#1| $) 43)) (-2822 (($) NIL T CONST)) (-1540 (($ $) NIL (|has| $ (-6 -4411)))) (-3817 (($ $) NIL)) (-4050 (($ $ (-769)) NIL) (($ $) 29)) (-2324 (($ $) NIL (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (-4067 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097))))) (-1927 (($ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) NIL (|has| $ (-6 -4410))) (($ (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-3 |#2| "failed") |#1| $) 56) (($ (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL) (($ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) NIL (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (-2517 (($ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (($ (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410))) (($ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (($ (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-3741 (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) NIL (|has| $ (-6 -4410))) (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) NIL (|has| $ (-6 -4410))) (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-3105 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4411))) (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $ (-564) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) NIL (|has| $ (-6 -4411)))) (-1804 ((|#2| $ |#1|) NIL) (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $ (-564)) NIL)) (-3385 (((-112) $) NIL)) (-3942 (((-564) (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL) (((-564) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) NIL (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097))) (((-564) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $ (-564)) NIL (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (-2018 (((-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) 20 (|has| $ (-6 -4410))) (((-642 |#2|) $) NIL (|has| $ (-6 -4410))) (((-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) 20 (|has| $ (-6 -4410)))) (-1300 (((-642 $) $) NIL)) (-2423 (((-112) $ $) NIL (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (-4233 (($ (-769) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) NIL)) (-3769 (((-112) $ (-769)) NIL)) (-1802 ((|#1| $) NIL (|has| |#1| (-848))) (((-564) $) 38 (|has| (-564) (-848)))) (-3225 (($ $ $) NIL (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-848)))) (-4096 (($ (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-848)))) (-2774 (($ (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-848)))) (-3541 (((-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-642 |#2|) $) NIL (|has| $ (-6 -4410))) (((-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-2533 (((-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097)))) (((-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097))))) (-3624 ((|#1| $) NIL (|has| |#1| (-848))) (((-564) $) 40 (|has| (-564) (-848)))) (-2903 (($ $ $) NIL (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-848)))) (-1857 (($ (-1 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4411))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4411))) (($ (-1 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-2947 (($ (-1 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL)) (-3902 (($ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) NIL)) (-4145 (((-112) $ (-769)) NIL)) (-2334 (((-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL)) (-1961 (((-112) $) NIL)) (-1778 (((-1155) $) 49 (-2682 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-2534 (($ $ (-769)) NIL) (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) NIL)) (-3287 (((-642 |#1|) $) 22)) (-2145 (((-112) |#1| $) NIL)) (-3220 (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) NIL)) (-1668 (($ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) NIL) (($ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-4247 (($ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-4107 (((-642 |#1|) $) NIL) (((-642 (-564)) $) NIL)) (-4207 (((-112) |#1| $) NIL) (((-112) (-564) $) NIL)) (-3999 (((-1117) $) NIL (-2682 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-4036 ((|#2| $) NIL (|has| |#1| (-848))) (($ $ (-769)) NIL) (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) 27)) (-3183 (((-3 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) "failed") (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL) (((-3 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) "failed") (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL)) (-3826 (($ $ |#2|) NIL (|has| $ (-6 -4411))) (($ $ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) NIL (|has| $ (-6 -4411)))) (-4314 (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) NIL)) (-3823 (((-112) $) NIL)) (-4094 (((-112) (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410))) (((-112) (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))))) NIL (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (($ $ (-294 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) NIL (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (($ $ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) NIL (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (($ $ (-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) (-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) NIL (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (($ $ (-642 |#2|) (-642 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-642 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) (-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) NIL (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (($ $ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) NIL (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (($ $ (-294 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) NIL (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (($ $ (-642 (-294 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))))) NIL (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097))))) (-2478 (((-112) $ $) NIL)) (-1643 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097)))) (((-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097))))) (-3522 (((-642 |#2|) $) NIL) (((-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) 19)) (-4109 (((-112) $) 18)) (-2179 (($) 14)) (-4369 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $ (-564) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) NIL) (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $ (-564)) NIL) (($ $ (-1229 (-564))) NIL) (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $ "first") NIL) (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $ "value") NIL)) (-1743 (((-564) $ $) NIL)) (-2318 (($) 13) (($ (-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) NIL)) (-1406 (($ $ (-564)) NIL) (($ $ (-1229 (-564))) NIL)) (-2083 (($ $ (-564)) NIL) (($ $ (-1229 (-564))) NIL)) (-1311 (((-112) $) NIL)) (-1306 (($ $) NIL)) (-4118 (($ $) NIL (|has| $ (-6 -4411)))) (-3941 (((-769) $) NIL)) (-4376 (($ $) NIL)) (-4010 (((-769) (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-769) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (((-769) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097)))) (((-769) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410))) (((-769) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (((-769) (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-3301 (($ $ $ (-564)) NIL (|has| $ (-6 -4411)))) (-3865 (($ $) NIL)) (-3003 (((-536) $) NIL (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-612 (-536))))) (-2401 (($ (-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) NIL) (($ (-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) NIL)) (-2766 (($ $ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) NIL) (($ $ $) NIL)) (-3634 (($ $ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) NIL) (($ (-642 $)) NIL) (($ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) 31) (($ $ $) NIL)) (-2390 (((-860) $) NIL (-2682 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-611 (-860))) (|has| |#2| (-611 (-860)))))) (-4275 (((-642 $) $) NIL)) (-1622 (((-112) $ $) NIL (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (-1600 (((-112) $ $) NIL (-2682 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-4160 (($ (-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) NIL)) (-2541 (((-3 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) "failed") |#1| $) 51)) (-3295 (((-112) (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410))) (((-112) (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-2881 (((-112) $ $) NIL (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-848)))) (-2857 (((-112) $ $) NIL (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-848)))) (-2821 (((-112) $ $) NIL (-2682 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-2868 (((-112) $ $) NIL (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-848)))) (-2844 (((-112) $ $) NIL (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-848)))) (-2158 (((-769) $) 25 (|has| $ (-6 -4410))))) -(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1097) (-1097)) (T -45)) +(-13 (-1049) (-717 |t#1|) (-616 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-616 (-566)) . T) ((-616 |#1|) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-640 |#1|) . T) ((-717 |#1|) . T) ((-726) . T) ((-1051 |#1|) . T) ((-1056 |#1|) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) +((-4045 (((-420 |#1|) |#1|) 41)) (-2325 (((-420 |#1|) |#1|) 30) (((-420 |#1|) |#1| (-644 (-48))) 33)) (-1593 (((-112) |#1|) 59))) +(((-39 |#1|) (-10 -7 (-15 -2325 ((-420 |#1|) |#1| (-644 (-48)))) (-15 -2325 ((-420 |#1|) |#1|)) (-15 -4045 ((-420 |#1|) |#1|)) (-15 -1593 ((-112) |#1|))) (-1240 (-48))) (T -39)) +((-1593 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1240 (-48))))) (-4045 (*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1240 (-48))))) (-2325 (*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1240 (-48))))) (-2325 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-48))) (-5 *2 (-420 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1240 (-48)))))) +(-10 -7 (-15 -2325 ((-420 |#1|) |#1| (-644 (-48)))) (-15 -2325 ((-420 |#1|) |#1|)) (-15 -4045 ((-420 |#1|) |#1|)) (-15 -1593 ((-112) |#1|))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-4072 (((-2 (|:| |num| (-1264 |#2|)) (|:| |den| |#2|)) $) NIL)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (|has| (-409 |#2|) (-365)))) (-3087 (($ $) NIL (|has| (-409 |#2|) (-365)))) (-1716 (((-112) $) NIL (|has| (-409 |#2|) (-365)))) (-1321 (((-689 (-409 |#2|)) (-1264 $)) NIL) (((-689 (-409 |#2|))) NIL)) (-3837 (((-409 |#2|) $) NIL)) (-2568 (((-1187 (-921) (-771)) (-566)) NIL (|has| (-409 |#2|) (-351)))) (-3174 (((-3 $ "failed") $ $) NIL)) (-3980 (($ $) NIL (|has| (-409 |#2|) (-365)))) (-3348 (((-420 $) $) NIL (|has| (-409 |#2|) (-365)))) (-2761 (((-112) $ $) NIL (|has| (-409 |#2|) (-365)))) (-4049 (((-771)) NIL (|has| (-409 |#2|) (-370)))) (-3651 (((-112)) NIL)) (-2892 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-1811 (($) NIL T CONST)) (-2980 (((-3 (-566) "failed") $) NIL (|has| (-409 |#2|) (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| (-409 |#2|) (-1038 (-409 (-566))))) (((-3 (-409 |#2|) "failed") $) NIL)) (-1709 (((-566) $) NIL (|has| (-409 |#2|) (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| (-409 |#2|) (-1038 (-409 (-566))))) (((-409 |#2|) $) NIL)) (-2422 (($ (-1264 (-409 |#2|)) (-1264 $)) NIL) (($ (-1264 (-409 |#2|))) 61) (($ (-1264 |#2|) |#2|) 136)) (-2713 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-409 |#2|) (-351)))) (-2925 (($ $ $) NIL (|has| (-409 |#2|) (-365)))) (-2087 (((-689 (-409 |#2|)) $ (-1264 $)) NIL) (((-689 (-409 |#2|)) $) NIL)) (-2275 (((-689 (-566)) (-689 $)) NIL (|has| (-409 |#2|) (-639 (-566)))) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| (-409 |#2|) (-639 (-566)))) (((-2 (|:| -4196 (-689 (-409 |#2|))) (|:| |vec| (-1264 (-409 |#2|)))) (-689 $) (-1264 $)) NIL) (((-689 (-409 |#2|)) (-689 $)) NIL)) (-2225 (((-1264 $) (-1264 $)) NIL)) (-1838 (($ |#3|) NIL) (((-3 $ "failed") (-409 |#3|)) NIL (|has| (-409 |#2|) (-365)))) (-3757 (((-3 $ "failed") $) NIL)) (-2502 (((-644 (-644 |#1|))) NIL (|has| |#1| (-370)))) (-2317 (((-112) |#1| |#1|) NIL)) (-2299 (((-921)) NIL)) (-1415 (($) NIL (|has| (-409 |#2|) (-370)))) (-3043 (((-112)) NIL)) (-3343 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2937 (($ $ $) NIL (|has| (-409 |#2|) (-365)))) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) NIL (|has| (-409 |#2|) (-365)))) (-3530 (($ $) NIL)) (-2409 (($) NIL (|has| (-409 |#2|) (-351)))) (-1450 (((-112) $) NIL (|has| (-409 |#2|) (-351)))) (-4202 (($ $ (-771)) NIL (|has| (-409 |#2|) (-351))) (($ $) NIL (|has| (-409 |#2|) (-351)))) (-4188 (((-112) $) NIL (|has| (-409 |#2|) (-365)))) (-1802 (((-921) $) NIL (|has| (-409 |#2|) (-351))) (((-833 (-921)) $) NIL (|has| (-409 |#2|) (-351)))) (-2264 (((-112) $) NIL)) (-4053 (((-771)) NIL)) (-3154 (((-1264 $) (-1264 $)) 111)) (-1398 (((-409 |#2|) $) NIL)) (-2904 (((-644 (-952 |#1|)) (-1175)) NIL (|has| |#1| (-365)))) (-4278 (((-3 $ "failed") $) NIL (|has| (-409 |#2|) (-351)))) (-2495 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| (-409 |#2|) (-365)))) (-1869 ((|#3| $) NIL (|has| (-409 |#2|) (-365)))) (-4051 (((-921) $) NIL (|has| (-409 |#2|) (-370)))) (-1829 ((|#3| $) NIL)) (-2120 (($ (-644 $)) NIL (|has| (-409 |#2|) (-365))) (($ $ $) NIL (|has| (-409 |#2|) (-365)))) (-3151 (((-1157) $) NIL)) (-1984 (((-1269) (-771)) 88)) (-3274 (((-689 (-409 |#2|))) 56)) (-3907 (((-689 (-409 |#2|))) 49)) (-2577 (($ $) NIL (|has| (-409 |#2|) (-365)))) (-1677 (($ (-1264 |#2|) |#2|) 137)) (-2236 (((-689 (-409 |#2|))) 50)) (-3033 (((-689 (-409 |#2|))) 48)) (-3825 (((-2 (|:| |num| (-689 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 135)) (-2942 (((-2 (|:| |num| (-1264 |#2|)) (|:| |den| |#2|)) $) 68)) (-1985 (((-1264 $)) 47)) (-2500 (((-1264 $)) 46)) (-2747 (((-112) $) NIL)) (-3796 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3968 (($) NIL (|has| (-409 |#2|) (-351)) CONST)) (-2104 (($ (-921)) NIL (|has| (-409 |#2|) (-370)))) (-1824 (((-3 |#2| "failed")) NIL)) (-4059 (((-1119) $) NIL)) (-3436 (((-771)) NIL)) (-4086 (($) NIL)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| (-409 |#2|) (-365)))) (-2162 (($ (-644 $)) NIL (|has| (-409 |#2|) (-365))) (($ $ $) NIL (|has| (-409 |#2|) (-365)))) (-2816 (((-644 (-2 (|:| -2325 (-566)) (|:| -3631 (-566))))) NIL (|has| (-409 |#2|) (-351)))) (-2325 (((-420 $) $) NIL (|has| (-409 |#2|) (-365)))) (-2585 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-409 |#2|) (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL (|has| (-409 |#2|) (-365)))) (-2976 (((-3 $ "failed") $ $) NIL (|has| (-409 |#2|) (-365)))) (-2840 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| (-409 |#2|) (-365)))) (-1383 (((-771) $) NIL (|has| (-409 |#2|) (-365)))) (-4376 ((|#1| $ |#1| |#1|) NIL)) (-3535 (((-3 |#2| "failed")) NIL)) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL (|has| (-409 |#2|) (-365)))) (-3553 (((-409 |#2|) (-1264 $)) NIL) (((-409 |#2|)) 44)) (-4107 (((-771) $) NIL (|has| (-409 |#2|) (-351))) (((-3 (-771) "failed") $ $) NIL (|has| (-409 |#2|) (-351)))) (-3526 (($ $ (-1 (-409 |#2|) (-409 |#2|)) (-771)) NIL (|has| (-409 |#2|) (-365))) (($ $ (-1 (-409 |#2|) (-409 |#2|))) NIL (|has| (-409 |#2|) (-365))) (($ $ (-1 |#2| |#2|)) 131) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175))))) (($ $ (-771)) NIL (-2809 (-12 (|has| (-409 |#2|) (-233)) (|has| (-409 |#2|) (-365))) (|has| (-409 |#2|) (-351)))) (($ $) NIL (-2809 (-12 (|has| (-409 |#2|) (-233)) (|has| (-409 |#2|) (-365))) (|has| (-409 |#2|) (-351))))) (-3098 (((-689 (-409 |#2|)) (-1264 $) (-1 (-409 |#2|) (-409 |#2|))) NIL (|has| (-409 |#2|) (-365)))) (-2301 ((|#3|) 55)) (-3648 (($) NIL (|has| (-409 |#2|) (-351)))) (-3747 (((-1264 (-409 |#2|)) $ (-1264 $)) NIL) (((-689 (-409 |#2|)) (-1264 $) (-1264 $)) NIL) (((-1264 (-409 |#2|)) $) 62) (((-689 (-409 |#2|)) (-1264 $)) 112)) (-3136 (((-1264 (-409 |#2|)) $) NIL) (($ (-1264 (-409 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3233 (((-3 (-1264 $) "failed") (-689 $)) NIL (|has| (-409 |#2|) (-351)))) (-3404 (((-1264 $) (-1264 $)) NIL)) (-2479 (((-862) $) NIL) (($ (-566)) NIL) (($ (-409 |#2|)) NIL) (($ (-409 (-566))) NIL (-2809 (|has| (-409 |#2|) (-1038 (-409 (-566)))) (|has| (-409 |#2|) (-365)))) (($ $) NIL (|has| (-409 |#2|) (-365)))) (-2645 (($ $) NIL (|has| (-409 |#2|) (-351))) (((-3 $ "failed") $) NIL (|has| (-409 |#2|) (-145)))) (-3728 ((|#3| $) NIL)) (-1558 (((-771)) NIL T CONST)) (-2998 (((-112)) 42)) (-2995 (((-112) |#1|) 54) (((-112) |#2|) 143)) (-3900 (((-112) $ $) NIL)) (-1419 (((-1264 $)) 102)) (-1333 (((-112) $ $) NIL (|has| (-409 |#2|) (-365)))) (-1756 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-4304 (((-112)) NIL)) (-2446 (($) 17 T CONST)) (-2459 (($) 27 T CONST)) (-2834 (($ $ (-1 (-409 |#2|) (-409 |#2|)) (-771)) NIL (|has| (-409 |#2|) (-365))) (($ $ (-1 (-409 |#2|) (-409 |#2|))) NIL (|has| (-409 |#2|) (-365))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175))))) (($ $ (-771)) NIL (-2809 (-12 (|has| (-409 |#2|) (-233)) (|has| (-409 |#2|) (-365))) (|has| (-409 |#2|) (-351)))) (($ $) NIL (-2809 (-12 (|has| (-409 |#2|) (-233)) (|has| (-409 |#2|) (-365))) (|has| (-409 |#2|) (-351))))) (-2952 (((-112) $ $) NIL)) (-3077 (($ $ $) NIL (|has| (-409 |#2|) (-365)))) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL (|has| (-409 |#2|) (-365)))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 |#2|)) NIL) (($ (-409 |#2|) $) NIL) (($ (-409 (-566)) $) NIL (|has| (-409 |#2|) (-365))) (($ $ (-409 (-566))) NIL (|has| (-409 |#2|) (-365))))) +(((-40 |#1| |#2| |#3| |#4|) (-13 (-344 |#1| |#2| |#3|) (-10 -7 (-15 -1984 ((-1269) (-771))))) (-365) (-1240 |#1|) (-1240 (-409 |#2|)) |#3|) (T -40)) +((-1984 (*1 *2 *3) (-12 (-5 *3 (-771)) (-4 *4 (-365)) (-4 *5 (-1240 *4)) (-5 *2 (-1269)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1240 (-409 *5))) (-14 *7 *6)))) +(-13 (-344 |#1| |#2| |#3|) (-10 -7 (-15 -1984 ((-1269) (-771))))) +((-2769 ((|#2| |#2|) 47)) (-3613 ((|#2| |#2|) 139 (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-454)) (|has| |#1| (-1038 (-566)))))) (-2100 ((|#2| |#2|) 100 (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-454)) (|has| |#1| (-1038 (-566)))))) (-4204 ((|#2| |#2|) 101 (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-454)) (|has| |#1| (-1038 (-566)))))) (-3646 ((|#2| (-114) |#2| (-771)) 135 (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-454)) (|has| |#1| (-1038 (-566)))))) (-1437 (((-1171 |#2|) |#2|) 44)) (-3818 ((|#2| |#2| (-644 (-612 |#2|))) 18) ((|#2| |#2| (-644 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16))) +(((-41 |#1| |#2|) (-10 -7 (-15 -2769 (|#2| |#2|)) (-15 -3818 (|#2| |#2|)) (-15 -3818 (|#2| |#2| |#2|)) (-15 -3818 (|#2| |#2| (-644 |#2|))) (-15 -3818 (|#2| |#2| (-644 (-612 |#2|)))) (-15 -1437 ((-1171 |#2|) |#2|)) (IF (|has| |#1| (-454)) (IF (|has| |#1| (-1038 (-566))) (IF (|has| |#2| (-432 |#1|)) (PROGN (-15 -4204 (|#2| |#2|)) (-15 -2100 (|#2| |#2|)) (-15 -3613 (|#2| |#2|)) (-15 -3646 (|#2| (-114) |#2| (-771)))) |%noBranch|) |%noBranch|) |%noBranch|)) (-558) (-13 (-365) (-303) (-10 -8 (-15 -4157 ((-1124 |#1| (-612 $)) $)) (-15 -4167 ((-1124 |#1| (-612 $)) $)) (-15 -2479 ($ (-1124 |#1| (-612 $))))))) (T -41)) +((-3646 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-114)) (-5 *4 (-771)) (-4 *5 (-454)) (-4 *5 (-1038 (-566))) (-4 *5 (-558)) (-5 *1 (-41 *5 *2)) (-4 *2 (-432 *5)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -4157 ((-1124 *5 (-612 $)) $)) (-15 -4167 ((-1124 *5 (-612 $)) $)) (-15 -2479 ($ (-1124 *5 (-612 $))))))))) (-3613 (*1 *2 *2) (-12 (-4 *3 (-454)) (-4 *3 (-1038 (-566))) (-4 *3 (-558)) (-5 *1 (-41 *3 *2)) (-4 *2 (-432 *3)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -4157 ((-1124 *3 (-612 $)) $)) (-15 -4167 ((-1124 *3 (-612 $)) $)) (-15 -2479 ($ (-1124 *3 (-612 $))))))))) (-2100 (*1 *2 *2) (-12 (-4 *3 (-454)) (-4 *3 (-1038 (-566))) (-4 *3 (-558)) (-5 *1 (-41 *3 *2)) (-4 *2 (-432 *3)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -4157 ((-1124 *3 (-612 $)) $)) (-15 -4167 ((-1124 *3 (-612 $)) $)) (-15 -2479 ($ (-1124 *3 (-612 $))))))))) (-4204 (*1 *2 *2) (-12 (-4 *3 (-454)) (-4 *3 (-1038 (-566))) (-4 *3 (-558)) (-5 *1 (-41 *3 *2)) (-4 *2 (-432 *3)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -4157 ((-1124 *3 (-612 $)) $)) (-15 -4167 ((-1124 *3 (-612 $)) $)) (-15 -2479 ($ (-1124 *3 (-612 $))))))))) (-1437 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-1171 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-365) (-303) (-10 -8 (-15 -4157 ((-1124 *4 (-612 $)) $)) (-15 -4167 ((-1124 *4 (-612 $)) $)) (-15 -2479 ($ (-1124 *4 (-612 $))))))))) (-3818 (*1 *2 *2 *3) (-12 (-5 *3 (-644 (-612 *2))) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -4157 ((-1124 *4 (-612 $)) $)) (-15 -4167 ((-1124 *4 (-612 $)) $)) (-15 -2479 ($ (-1124 *4 (-612 $))))))) (-4 *4 (-558)) (-5 *1 (-41 *4 *2)))) (-3818 (*1 *2 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -4157 ((-1124 *4 (-612 $)) $)) (-15 -4167 ((-1124 *4 (-612 $)) $)) (-15 -2479 ($ (-1124 *4 (-612 $))))))) (-4 *4 (-558)) (-5 *1 (-41 *4 *2)))) (-3818 (*1 *2 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -4157 ((-1124 *3 (-612 $)) $)) (-15 -4167 ((-1124 *3 (-612 $)) $)) (-15 -2479 ($ (-1124 *3 (-612 $))))))))) (-3818 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -4157 ((-1124 *3 (-612 $)) $)) (-15 -4167 ((-1124 *3 (-612 $)) $)) (-15 -2479 ($ (-1124 *3 (-612 $))))))))) (-2769 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -4157 ((-1124 *3 (-612 $)) $)) (-15 -4167 ((-1124 *3 (-612 $)) $)) (-15 -2479 ($ (-1124 *3 (-612 $)))))))))) +(-10 -7 (-15 -2769 (|#2| |#2|)) (-15 -3818 (|#2| |#2|)) (-15 -3818 (|#2| |#2| |#2|)) (-15 -3818 (|#2| |#2| (-644 |#2|))) (-15 -3818 (|#2| |#2| (-644 (-612 |#2|)))) (-15 -1437 ((-1171 |#2|) |#2|)) (IF (|has| |#1| (-454)) (IF (|has| |#1| (-1038 (-566))) (IF (|has| |#2| (-432 |#1|)) (PROGN (-15 -4204 (|#2| |#2|)) (-15 -2100 (|#2| |#2|)) (-15 -3613 (|#2| |#2|)) (-15 -3646 (|#2| (-114) |#2| (-771)))) |%noBranch|) |%noBranch|) |%noBranch|)) +((-2325 (((-420 (-1171 |#3|)) (-1171 |#3|) (-644 (-48))) 23) (((-420 |#3|) |#3| (-644 (-48))) 19))) +(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -2325 ((-420 |#3|) |#3| (-644 (-48)))) (-15 -2325 ((-420 (-1171 |#3|)) (-1171 |#3|) (-644 (-48))))) (-850) (-793) (-949 (-48) |#2| |#1|)) (T -42)) +((-2325 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-48))) (-4 *5 (-850)) (-4 *6 (-793)) (-4 *7 (-949 (-48) *6 *5)) (-5 *2 (-420 (-1171 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1171 *7)))) (-2325 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-48))) (-4 *5 (-850)) (-4 *6 (-793)) (-5 *2 (-420 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-949 (-48) *6 *5))))) +(-10 -7 (-15 -2325 ((-420 |#3|) |#3| (-644 (-48)))) (-15 -2325 ((-420 (-1171 |#3|)) (-1171 |#3|) (-644 (-48))))) +((-2563 (((-771) |#2|) 72)) (-2359 (((-771) |#2|) 76)) (-1572 (((-644 |#2|)) 39)) (-3687 (((-771) |#2|) 75)) (-4082 (((-771) |#2|) 71)) (-1803 (((-771) |#2|) 74)) (-4244 (((-644 (-689 |#1|))) 67)) (-3713 (((-644 |#2|)) 62)) (-3710 (((-644 |#2|) |#2|) 50)) (-1521 (((-644 |#2|)) 64)) (-1767 (((-644 |#2|)) 63)) (-3167 (((-644 (-689 |#1|))) 55)) (-1555 (((-644 |#2|)) 61)) (-3820 (((-644 |#2|) |#2|) 49)) (-3448 (((-644 |#2|)) 57)) (-1578 (((-644 (-689 |#1|))) 68)) (-4245 (((-644 |#2|)) 66)) (-1419 (((-1264 |#2|) (-1264 |#2|)) 101 (|has| |#1| (-308))))) +(((-43 |#1| |#2|) (-10 -7 (-15 -3687 ((-771) |#2|)) (-15 -2359 ((-771) |#2|)) (-15 -4082 ((-771) |#2|)) (-15 -2563 ((-771) |#2|)) (-15 -1803 ((-771) |#2|)) (-15 -3448 ((-644 |#2|))) (-15 -3820 ((-644 |#2|) |#2|)) (-15 -3710 ((-644 |#2|) |#2|)) (-15 -1555 ((-644 |#2|))) (-15 -3713 ((-644 |#2|))) (-15 -1767 ((-644 |#2|))) (-15 -1521 ((-644 |#2|))) (-15 -4245 ((-644 |#2|))) (-15 -3167 ((-644 (-689 |#1|)))) (-15 -4244 ((-644 (-689 |#1|)))) (-15 -1578 ((-644 (-689 |#1|)))) (-15 -1572 ((-644 |#2|))) (IF (|has| |#1| (-308)) (-15 -1419 ((-1264 |#2|) (-1264 |#2|))) |%noBranch|)) (-558) (-419 |#1|)) (T -43)) +((-1419 (*1 *2 *2) (-12 (-5 *2 (-1264 *4)) (-4 *4 (-419 *3)) (-4 *3 (-308)) (-4 *3 (-558)) (-5 *1 (-43 *3 *4)))) (-1572 (*1 *2) (-12 (-4 *3 (-558)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-419 *3)))) (-1578 (*1 *2) (-12 (-4 *3 (-558)) (-5 *2 (-644 (-689 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-419 *3)))) (-4244 (*1 *2) (-12 (-4 *3 (-558)) (-5 *2 (-644 (-689 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-419 *3)))) (-3167 (*1 *2) (-12 (-4 *3 (-558)) (-5 *2 (-644 (-689 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-419 *3)))) (-4245 (*1 *2) (-12 (-4 *3 (-558)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-419 *3)))) (-1521 (*1 *2) (-12 (-4 *3 (-558)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-419 *3)))) (-1767 (*1 *2) (-12 (-4 *3 (-558)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-419 *3)))) (-3713 (*1 *2) (-12 (-4 *3 (-558)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-419 *3)))) (-1555 (*1 *2) (-12 (-4 *3 (-558)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-419 *3)))) (-3710 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-644 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-419 *4)))) (-3820 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-644 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-419 *4)))) (-3448 (*1 *2) (-12 (-4 *3 (-558)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-419 *3)))) (-1803 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-771)) (-5 *1 (-43 *4 *3)) (-4 *3 (-419 *4)))) (-2563 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-771)) (-5 *1 (-43 *4 *3)) (-4 *3 (-419 *4)))) (-4082 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-771)) (-5 *1 (-43 *4 *3)) (-4 *3 (-419 *4)))) (-2359 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-771)) (-5 *1 (-43 *4 *3)) (-4 *3 (-419 *4)))) (-3687 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-771)) (-5 *1 (-43 *4 *3)) (-4 *3 (-419 *4))))) +(-10 -7 (-15 -3687 ((-771) |#2|)) (-15 -2359 ((-771) |#2|)) (-15 -4082 ((-771) |#2|)) (-15 -2563 ((-771) |#2|)) (-15 -1803 ((-771) |#2|)) (-15 -3448 ((-644 |#2|))) (-15 -3820 ((-644 |#2|) |#2|)) (-15 -3710 ((-644 |#2|) |#2|)) (-15 -1555 ((-644 |#2|))) (-15 -3713 ((-644 |#2|))) (-15 -1767 ((-644 |#2|))) (-15 -1521 ((-644 |#2|))) (-15 -4245 ((-644 |#2|))) (-15 -3167 ((-644 (-689 |#1|)))) (-15 -4244 ((-644 (-689 |#1|)))) (-15 -1578 ((-644 (-689 |#1|)))) (-15 -1572 ((-644 |#2|))) (IF (|has| |#1| (-308)) (-15 -1419 ((-1264 |#2|) (-1264 |#2|))) |%noBranch|)) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-1732 (((-3 $ "failed")) NIL (|has| |#1| (-558)))) (-3174 (((-3 $ "failed") $ $) NIL)) (-2603 (((-1264 (-689 |#1|)) (-1264 $)) NIL) (((-1264 (-689 |#1|))) 24)) (-3010 (((-1264 $)) 55)) (-1811 (($) NIL T CONST)) (-2738 (((-3 (-2 (|:| |particular| $) (|:| -1419 (-644 $))) "failed")) NIL (|has| |#1| (-558)))) (-1690 (((-3 $ "failed")) NIL (|has| |#1| (-558)))) (-4223 (((-689 |#1|) (-1264 $)) NIL) (((-689 |#1|)) NIL)) (-2935 ((|#1| $) NIL)) (-3030 (((-689 |#1|) $ (-1264 $)) NIL) (((-689 |#1|) $) NIL)) (-4347 (((-3 $ "failed") $) NIL (|has| |#1| (-558)))) (-4139 (((-1171 (-952 |#1|))) NIL (|has| |#1| (-365)))) (-4370 (($ $ (-921)) NIL)) (-2190 ((|#1| $) NIL)) (-3251 (((-1171 |#1|) $) NIL (|has| |#1| (-558)))) (-1792 ((|#1| (-1264 $)) NIL) ((|#1|) NIL)) (-1973 (((-1171 |#1|) $) NIL)) (-3156 (((-112)) 102)) (-2422 (($ (-1264 |#1|) (-1264 $)) NIL) (($ (-1264 |#1|)) NIL)) (-3757 (((-3 $ "failed") $) 14 (|has| |#1| (-558)))) (-2299 (((-921)) 56)) (-2116 (((-112)) NIL)) (-1595 (($ $ (-921)) NIL)) (-2895 (((-112)) NIL)) (-2751 (((-112)) NIL)) (-2185 (((-112)) 104)) (-2784 (((-3 (-2 (|:| |particular| $) (|:| -1419 (-644 $))) "failed")) NIL (|has| |#1| (-558)))) (-4320 (((-3 $ "failed")) NIL (|has| |#1| (-558)))) (-1434 (((-689 |#1|) (-1264 $)) NIL) (((-689 |#1|)) NIL)) (-1978 ((|#1| $) NIL)) (-1390 (((-689 |#1|) $ (-1264 $)) NIL) (((-689 |#1|) $) NIL)) (-4252 (((-3 $ "failed") $) NIL (|has| |#1| (-558)))) (-1509 (((-1171 (-952 |#1|))) NIL (|has| |#1| (-365)))) (-3681 (($ $ (-921)) NIL)) (-1782 ((|#1| $) NIL)) (-4066 (((-1171 |#1|) $) NIL (|has| |#1| (-558)))) (-2659 ((|#1| (-1264 $)) NIL) ((|#1|) NIL)) (-2899 (((-1171 |#1|) $) NIL)) (-3280 (((-112)) 101)) (-3151 (((-1157) $) NIL)) (-1698 (((-112)) 109)) (-2287 (((-112)) 108)) (-3093 (((-112)) 110)) (-4059 (((-1119) $) NIL)) (-3753 (((-112)) 103)) (-4376 ((|#1| $ (-566)) 58)) (-3747 (((-1264 |#1|) $ (-1264 $)) 53) (((-689 |#1|) (-1264 $) (-1264 $)) NIL) (((-1264 |#1|) $) 28) (((-689 |#1|) (-1264 $)) NIL)) (-3136 (((-1264 |#1|) $) NIL) (($ (-1264 |#1|)) NIL)) (-2880 (((-644 (-952 |#1|)) (-1264 $)) NIL) (((-644 (-952 |#1|))) NIL)) (-3815 (($ $ $) NIL)) (-3418 (((-112)) 98)) (-2479 (((-862) $) 75) (($ (-1264 |#1|)) 22)) (-3900 (((-112) $ $) NIL)) (-1419 (((-1264 $)) 49)) (-3170 (((-644 (-1264 |#1|))) NIL (|has| |#1| (-558)))) (-1469 (($ $ $ $) NIL)) (-1429 (((-112)) 94)) (-4029 (($ (-689 |#1|) $) 18)) (-1596 (($ $ $) NIL)) (-1478 (((-112)) 100)) (-3492 (((-112)) 95)) (-3893 (((-112)) 93)) (-2446 (($) NIL T CONST)) (-2952 (((-112) $ $) NIL)) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) NIL)) (** (($ $ (-921)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 84) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1141 |#2| |#1|) $) 19))) +(((-44 |#1| |#2| |#3| |#4|) (-13 (-419 |#1|) (-648 (-1141 |#2| |#1|)) (-10 -8 (-15 -2479 ($ (-1264 |#1|))))) (-365) (-921) (-644 (-1175)) (-1264 (-689 |#1|))) (T -44)) +((-2479 (*1 *1 *2) (-12 (-5 *2 (-1264 *3)) (-4 *3 (-365)) (-14 *6 (-1264 (-689 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-921)) (-14 *5 (-644 (-1175)))))) +(-13 (-419 |#1|) (-648 (-1141 |#2| |#1|)) (-10 -8 (-15 -2479 ($ (-1264 |#1|))))) +((-2986 (((-112) $ $) NIL (-2809 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-2153 (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) NIL)) (-3673 (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) NIL)) (-3238 (($ $) NIL)) (-4250 (($) NIL) (($ (-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) NIL)) (-2462 (((-1269) $ |#1| |#1|) NIL (|has| $ (-6 -4418))) (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4418)))) (-3427 (($ $ (-566)) NIL (|has| $ (-6 -4418)))) (-4163 (((-112) (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-850)))) (-2893 (($ (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4418))) (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-850))))) (-1374 (($ (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-850)))) (-1453 (((-112) $ (-771)) NIL)) (-3684 (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) NIL (|has| $ (-6 -4418)))) (-3494 (($ $ $) 33 (|has| $ (-6 -4418)))) (-2454 (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) NIL (|has| $ (-6 -4418)))) (-1306 (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) 35 (|has| $ (-6 -4418)))) (-3901 ((|#2| $ |#1| |#2|) 53) (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $ (-566) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) NIL (|has| $ (-6 -4418))) (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $ (-1231 (-566)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) NIL (|has| $ (-6 -4418))) (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $ "last" (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) NIL (|has| $ (-6 -4418))) (($ $ "rest" $) NIL (|has| $ (-6 -4418))) (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $ "first" (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) NIL (|has| $ (-6 -4418))) (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $ "value" (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) NIL (|has| $ (-6 -4418)))) (-3891 (($ $ (-644 $)) NIL (|has| $ (-6 -4418)))) (-4364 (($ (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417))) (($ (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL)) (-3543 (($ (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417))) (($ (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-3663 (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) NIL)) (-2377 (((-3 |#2| "failed") |#1| $) 43)) (-1811 (($) NIL T CONST)) (-2273 (($ $) NIL (|has| $ (-6 -4418)))) (-3877 (($ $) NIL)) (-4091 (($ $ (-771)) NIL) (($ $) 29)) (-1346 (($ $) NIL (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (-4111 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099))))) (-2295 (($ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) NIL (|has| $ (-6 -4417))) (($ (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-3 |#2| "failed") |#1| $) 56) (($ (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL) (($ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) NIL (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (-2628 (($ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (($ (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417))) (($ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (($ (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-1838 (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) NIL (|has| $ (-6 -4417))) (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) NIL (|has| $ (-6 -4417))) (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-3719 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4418))) (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $ (-566) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) NIL (|has| $ (-6 -4418)))) (-3653 ((|#2| $ |#1|) NIL) (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $ (-566)) NIL)) (-3258 (((-112) $) NIL)) (-4000 (((-566) (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL) (((-566) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) NIL (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099))) (((-566) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $ (-566)) NIL (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (-3872 (((-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) 20 (|has| $ (-6 -4417))) (((-644 |#2|) $) NIL (|has| $ (-6 -4417))) (((-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) 20 (|has| $ (-6 -4417)))) (-3578 (((-644 $) $) NIL)) (-2778 (((-112) $ $) NIL (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (-4259 (($ (-771) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) NIL)) (-2756 (((-112) $ (-771)) NIL)) (-2755 ((|#1| $) NIL (|has| |#1| (-850))) (((-566) $) 38 (|has| (-566) (-850)))) (-1920 (($ $ $) NIL (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-850)))) (-3200 (($ (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-850)))) (-1330 (($ (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-850)))) (-4227 (((-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-644 |#2|) $) NIL (|has| $ (-6 -4417))) (((-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-1688 (((-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1099)))) (((-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099))))) (-3831 ((|#1| $) NIL (|has| |#1| (-850))) (((-566) $) 40 (|has| (-566) (-850)))) (-3038 (($ $ $) NIL (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-850)))) (-3708 (($ (-1 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4418))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4418))) (($ (-1 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-3080 (($ (-1 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL)) (-3960 (($ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) NIL)) (-4106 (((-112) $ (-771)) NIL)) (-3658 (((-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL)) (-1587 (((-112) $) NIL)) (-3151 (((-1157) $) 49 (-2809 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-2651 (($ $ (-771)) NIL) (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) NIL)) (-1467 (((-644 |#1|) $) 22)) (-3983 (((-112) |#1| $) NIL)) (-4255 (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) NIL)) (-4354 (($ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) NIL) (($ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $ (-566)) NIL) (($ $ $ (-566)) NIL)) (-4271 (($ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $ (-566)) NIL) (($ $ $ (-566)) NIL)) (-3780 (((-644 |#1|) $) NIL) (((-644 (-566)) $) NIL)) (-1605 (((-112) |#1| $) NIL) (((-112) (-566) $) NIL)) (-4059 (((-1119) $) NIL (-2809 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-4080 ((|#2| $) NIL (|has| |#1| (-850))) (($ $ (-771)) NIL) (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) 27)) (-2688 (((-3 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) "failed") (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL) (((-3 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) "failed") (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL)) (-4079 (($ $ |#2|) NIL (|has| $ (-6 -4418))) (($ $ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) NIL (|has| $ (-6 -4418)))) (-4097 (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) NIL)) (-3094 (((-112) $) NIL)) (-3966 (((-112) (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417))) (((-112) (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))))) NIL (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (($ $ (-295 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) NIL (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (($ $ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) NIL (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (($ $ (-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) (-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) NIL (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) (-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) NIL (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (($ $ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) NIL (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (($ $ (-295 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) NIL (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (($ $ (-644 (-295 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))))) NIL (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099))))) (-1844 (((-112) $ $) NIL)) (-2210 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1099)))) (((-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099))))) (-4185 (((-644 |#2|) $) NIL) (((-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) 19)) (-2788 (((-112) $) 18)) (-1737 (($) 14)) (-4376 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $ (-566) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) NIL) (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $ (-566)) NIL) (($ $ (-1231 (-566))) NIL) (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $ "first") NIL) (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $ "value") NIL)) (-4098 (((-566) $ $) NIL)) (-1797 (($) 13) (($ (-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) NIL)) (-3139 (($ $ (-566)) NIL) (($ $ (-1231 (-566))) NIL)) (-2139 (($ $ (-566)) NIL) (($ $ (-1231 (-566))) NIL)) (-2636 (((-112) $) NIL)) (-3513 (($ $) NIL)) (-2018 (($ $) NIL (|has| $ (-6 -4418)))) (-2804 (((-771) $) NIL)) (-2924 (($ $) NIL)) (-4068 (((-771) (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-771) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (((-771) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1099)))) (((-771) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417))) (((-771) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (((-771) (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-1438 (($ $ $ (-566)) NIL (|has| $ (-6 -4418)))) (-3924 (($ $) NIL)) (-3136 (((-538) $) NIL (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-614 (-538))))) (-2489 (($ (-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) NIL) (($ (-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) NIL)) (-1323 (($ $ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) NIL) (($ $ $) NIL)) (-3716 (($ $ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) NIL) (($ (-644 $)) NIL) (($ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) 31) (($ $ $) NIL)) (-2479 (((-862) $) NIL (-2809 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-613 (-862))) (|has| |#2| (-613 (-862)))))) (-2156 (((-644 $) $) NIL)) (-3922 (((-112) $ $) NIL (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (-3900 (((-112) $ $) NIL (-2809 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-2471 (($ (-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) NIL)) (-2658 (((-3 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) "failed") |#1| $) 51)) (-3667 (((-112) (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417))) (((-112) (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-3019 (((-112) $ $) NIL (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-850)))) (-2990 (((-112) $ $) NIL (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-850)))) (-2952 (((-112) $ $) NIL (-2809 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-3004 (((-112) $ $) NIL (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-850)))) (-2977 (((-112) $ $) NIL (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-850)))) (-3002 (((-771) $) 25 (|has| $ (-6 -4417))))) +(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1099) (-1099)) (T -45)) NIL (-36 |#1| |#2|) -((-3471 (((-112) $) 12)) (-2947 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-407 (-564)) $) 25) (($ $ (-407 (-564))) NIL))) -(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 -3471 ((-112) |#1|)) (-15 -2947 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-769) |#1|)) (-15 * (|#1| (-919) |#1|))) (-47 |#2| |#3|) (-1047) (-790)) (T -46)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 -3471 ((-112) |#1|)) (-15 -2947 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-769) |#1|)) (-15 * (|#1| (-919) |#1|))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) 63 (|has| |#1| (-556)))) (-4252 (($ $) 64 (|has| |#1| (-556)))) (-1722 (((-112) $) 66 (|has| |#1| (-556)))) (-3085 (((-3 $ "failed") $ $) 20)) (-2822 (($) 18 T CONST)) (-3459 (($ $) 72)) (-2675 (((-3 $ "failed") $) 37)) (-3163 (((-112) $) 35)) (-3471 (((-112) $) 74)) (-2374 (($ |#1| |#2|) 73)) (-2947 (($ (-1 |#1| |#1|) $) 75)) (-2510 (($ $) 77)) (-2523 ((|#1| $) 78)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2842 (((-3 $ "failed") $ $) 62 (|has| |#1| (-556)))) (-3252 ((|#2| $) 76)) (-2390 (((-860) $) 12) (($ (-564)) 33) (($ (-407 (-564))) 69 (|has| |#1| (-38 (-407 (-564))))) (($ $) 61 (|has| |#1| (-556))) (($ |#1|) 59 (|has| |#1| (-172)))) (-3005 ((|#1| $ |#2|) 71)) (-3434 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-3348 (((-769)) 32 T CONST)) (-1600 (((-112) $ $) 9)) (-1594 (((-112) $ $) 65 (|has| |#1| (-556)))) (-2361 (($) 19 T CONST)) (-2371 (($) 34 T CONST)) (-2821 (((-112) $ $) 6)) (-2943 (($ $ |#1|) 70 (|has| |#1| (-363)))) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-407 (-564)) $) 68 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 67 (|has| |#1| (-38 (-407 (-564))))))) -(((-47 |#1| |#2|) (-140) (-1047) (-790)) (T -47)) -((-2523 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-790)) (-4 *2 (-1047)))) (-2510 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-790)))) (-3252 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-790)))) (-2947 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-790)))) (-3471 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-790)) (-5 *2 (-112)))) (-2374 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-790)))) (-3459 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-790)))) (-3005 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-790)) (-4 *2 (-1047)))) (-2943 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-790)) (-4 *2 (-363))))) -(-13 (-1047) (-111 |t#1| |t#1|) (-10 -8 (-15 -2523 (|t#1| $)) (-15 -2510 ($ $)) (-15 -3252 (|t#2| $)) (-15 -2947 ($ (-1 |t#1| |t#1|) $)) (-15 -3471 ((-112) $)) (-15 -2374 ($ |t#1| |t#2|)) (-15 -3459 ($ $)) (-15 -3005 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-363)) (-15 -2943 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-6 (-172)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-556)) (-6 (-556)) |%noBranch|) (IF (|has| |t#1| (-38 (-407 (-564)))) (-6 (-38 (-407 (-564)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-556)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2682 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) |has| |#1| (-38 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-614 $) |has| |#1| (-556)) ((-611 (-860)) . T) ((-172) -2682 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-290) |has| |#1| (-556)) ((-556) |has| |#1| (-556)) ((-644 #0#) |has| |#1| (-38 (-407 (-564)))) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-646 #0#) |has| |#1| (-38 (-407 (-564)))) ((-646 |#1|) . T) ((-646 $) . T) ((-638 #0#) |has| |#1| (-38 (-407 (-564)))) ((-638 |#1|) |has| |#1| (-172)) ((-638 $) |has| |#1| (-556)) ((-715 #0#) |has| |#1| (-38 (-407 (-564)))) ((-715 |#1|) |has| |#1| (-172)) ((-715 $) |has| |#1| (-556)) ((-724) . T) ((-1049 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1049 |#1|) . T) ((-1049 $) -2682 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-1054 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1054 |#1|) . T) ((-1054 $) -2682 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T)) -((-2856 (((-112) $ $) NIL)) (-2659 (((-642 $) (-1169 $) (-1173)) NIL) (((-642 $) (-1169 $)) NIL) (((-642 $) (-950 $)) NIL)) (-1791 (($ (-1169 $) (-1173)) NIL) (($ (-1169 $)) NIL) (($ (-950 $)) NIL)) (-2950 (((-112) $) 11)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-4252 (($ $) NIL)) (-1722 (((-112) $) NIL)) (-2138 (((-642 (-610 $)) $) NIL)) (-3085 (((-3 $ "failed") $ $) NIL)) (-1891 (($ $ (-294 $)) NIL) (($ $ (-642 (-294 $))) NIL) (($ $ (-642 (-610 $)) (-642 $)) NIL)) (-1993 (($ $) NIL)) (-3282 (((-418 $) $) NIL)) (-2264 (($ $) NIL)) (-2134 (((-112) $ $) NIL)) (-2822 (($) NIL T CONST)) (-3008 (((-642 $) (-1169 $) (-1173)) NIL) (((-642 $) (-1169 $)) NIL) (((-642 $) (-950 $)) NIL)) (-2619 (($ (-1169 $) (-1173)) NIL) (($ (-1169 $)) NIL) (($ (-950 $)) NIL)) (-2849 (((-3 (-610 $) "failed") $) NIL) (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL)) (-1687 (((-610 $) $) NIL) (((-564) $) NIL) (((-407 (-564)) $) NIL)) (-2796 (($ $ $) NIL)) (-3330 (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL) (((-687 (-564)) (-687 $)) NIL) (((-2 (|:| -3544 (-687 (-407 (-564)))) (|:| |vec| (-1262 (-407 (-564))))) (-687 $) (-1262 $)) NIL) (((-687 (-407 (-564))) (-687 $)) NIL)) (-3741 (($ $) NIL)) (-2675 (((-3 $ "failed") $) NIL)) (-2808 (($ $ $) NIL)) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) NIL)) (-3552 (((-112) $) NIL)) (-2998 (($ $) NIL) (($ (-642 $)) NIL)) (-3986 (((-642 (-114)) $) NIL)) (-3898 (((-114) (-114)) NIL)) (-3163 (((-112) $) 14)) (-2829 (((-112) $) NIL (|has| $ (-1036 (-564))))) (-4120 (((-1122 (-564) (-610 $)) $) NIL)) (-2024 (($ $ (-564)) NIL)) (-2573 (((-1169 $) (-1169 $) (-610 $)) NIL) (((-1169 $) (-1169 $) (-642 (-610 $))) NIL) (($ $ (-610 $)) NIL) (($ $ (-642 (-610 $))) NIL)) (-2709 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2744 (((-1169 $) (-610 $)) NIL (|has| $ (-1047)))) (-2947 (($ (-1 $ $) (-610 $)) NIL)) (-1543 (((-3 (-610 $) "failed") $) NIL)) (-2066 (($ (-642 $)) NIL) (($ $ $) NIL)) (-1778 (((-1155) $) NIL)) (-2209 (((-642 (-610 $)) $) NIL)) (-2879 (($ (-114) $) NIL) (($ (-114) (-642 $)) NIL)) (-1462 (((-112) $ (-114)) NIL) (((-112) $ (-1173)) NIL)) (-2481 (($ $) NIL)) (-2983 (((-769) $) NIL)) (-3999 (((-1117) $) NIL)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2105 (($ (-642 $)) NIL) (($ $ $) NIL)) (-2908 (((-112) $ $) NIL) (((-112) $ (-1173)) NIL)) (-2254 (((-418 $) $) NIL)) (-1877 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL)) (-2842 (((-3 $ "failed") $ $) NIL)) (-1483 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2211 (((-112) $) NIL (|has| $ (-1036 (-564))))) (-3154 (($ $ (-610 $) $) NIL) (($ $ (-642 (-610 $)) (-642 $)) NIL) (($ $ (-642 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-642 $) (-642 $)) NIL) (($ $ (-642 (-1173)) (-642 (-1 $ $))) NIL) (($ $ (-642 (-1173)) (-642 (-1 $ (-642 $)))) NIL) (($ $ (-1173) (-1 $ (-642 $))) NIL) (($ $ (-1173) (-1 $ $)) NIL) (($ $ (-642 (-114)) (-642 (-1 $ $))) NIL) (($ $ (-642 (-114)) (-642 (-1 $ (-642 $)))) NIL) (($ $ (-114) (-1 $ (-642 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-4274 (((-769) $) NIL)) (-4369 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-642 $)) NIL)) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL)) (-4377 (($ $) NIL) (($ $ $) NIL)) (-2199 (($ $ (-769)) NIL) (($ $) NIL)) (-4131 (((-1122 (-564) (-610 $)) $) NIL)) (-1361 (($ $) NIL (|has| $ (-1047)))) (-3003 (((-379) $) NIL) (((-225) $) NIL) (((-169 (-379)) $) NIL)) (-2390 (((-860) $) NIL) (($ (-610 $)) NIL) (($ (-407 (-564))) NIL) (($ $) NIL) (($ (-564)) NIL) (($ (-1122 (-564) (-610 $))) NIL)) (-3348 (((-769)) NIL T CONST)) (-1899 (($ $) NIL) (($ (-642 $)) NIL)) (-4318 (((-112) (-114)) NIL)) (-1600 (((-112) $ $) NIL)) (-1594 (((-112) $ $) NIL)) (-2361 (($) 7 T CONST)) (-2371 (($) 12 T CONST)) (-2711 (($ $ (-769)) NIL) (($ $) NIL)) (-2821 (((-112) $ $) 16)) (-2943 (($ $ $) NIL)) (-2930 (($ $ $) 15) (($ $) NIL)) (-2917 (($ $ $) NIL)) (** (($ $ (-407 (-564))) NIL) (($ $ (-564)) NIL) (($ $ (-769)) NIL) (($ $ (-919)) NIL)) (* (($ (-407 (-564)) $) NIL) (($ $ (-407 (-564))) NIL) (($ $ $) NIL) (($ (-564) $) NIL) (($ (-769) $) NIL) (($ (-919) $) NIL))) -(((-48) (-13 (-302) (-27) (-1036 (-564)) (-1036 (-407 (-564))) (-637 (-564)) (-1020) (-637 (-407 (-564))) (-147) (-612 (-169 (-379))) (-233) (-10 -8 (-15 -2390 ($ (-1122 (-564) (-610 $)))) (-15 -4120 ((-1122 (-564) (-610 $)) $)) (-15 -4131 ((-1122 (-564) (-610 $)) $)) (-15 -3741 ($ $)) (-15 -2573 ((-1169 $) (-1169 $) (-610 $))) (-15 -2573 ((-1169 $) (-1169 $) (-642 (-610 $)))) (-15 -2573 ($ $ (-610 $))) (-15 -2573 ($ $ (-642 (-610 $))))))) (T -48)) -((-2390 (*1 *1 *2) (-12 (-5 *2 (-1122 (-564) (-610 (-48)))) (-5 *1 (-48)))) (-4120 (*1 *2 *1) (-12 (-5 *2 (-1122 (-564) (-610 (-48)))) (-5 *1 (-48)))) (-4131 (*1 *2 *1) (-12 (-5 *2 (-1122 (-564) (-610 (-48)))) (-5 *1 (-48)))) (-3741 (*1 *1 *1) (-5 *1 (-48))) (-2573 (*1 *2 *2 *3) (-12 (-5 *2 (-1169 (-48))) (-5 *3 (-610 (-48))) (-5 *1 (-48)))) (-2573 (*1 *2 *2 *3) (-12 (-5 *2 (-1169 (-48))) (-5 *3 (-642 (-610 (-48)))) (-5 *1 (-48)))) (-2573 (*1 *1 *1 *2) (-12 (-5 *2 (-610 (-48))) (-5 *1 (-48)))) (-2573 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-610 (-48)))) (-5 *1 (-48))))) -(-13 (-302) (-27) (-1036 (-564)) (-1036 (-407 (-564))) (-637 (-564)) (-1020) (-637 (-407 (-564))) (-147) (-612 (-169 (-379))) (-233) (-10 -8 (-15 -2390 ($ (-1122 (-564) (-610 $)))) (-15 -4120 ((-1122 (-564) (-610 $)) $)) (-15 -4131 ((-1122 (-564) (-610 $)) $)) (-15 -3741 ($ $)) (-15 -2573 ((-1169 $) (-1169 $) (-610 $))) (-15 -2573 ((-1169 $) (-1169 $) (-642 (-610 $)))) (-15 -2573 ($ $ (-610 $))) (-15 -2573 ($ $ (-642 (-610 $)))))) -((-2856 (((-112) $ $) NIL)) (-3477 (((-642 (-506)) $) 17)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) 7)) (-2502 (((-1178) $) 18)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-49) (-13 (-1097) (-10 -8 (-15 -3477 ((-642 (-506)) $)) (-15 -2502 ((-1178) $))))) (T -49)) -((-3477 (*1 *2 *1) (-12 (-5 *2 (-642 (-506))) (-5 *1 (-49)))) (-2502 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-49))))) -(-13 (-1097) (-10 -8 (-15 -3477 ((-642 (-506)) $)) (-15 -2502 ((-1178) $)))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) 87)) (-3085 (((-3 $ "failed") $ $) NIL)) (-2822 (($) NIL T CONST)) (-3629 (((-112) $) 30)) (-2849 (((-3 |#1| "failed") $) 33)) (-1687 ((|#1| $) 34)) (-3459 (($ $) 40)) (-2675 (((-3 $ "failed") $) NIL)) (-3163 (((-112) $) NIL)) (-2947 (($ (-1 |#1| |#1|) $) NIL)) (-2523 ((|#1| $) 31)) (-3579 (($ $) 76)) (-1778 (((-1155) $) NIL)) (-2475 (((-112) $) 43)) (-3999 (((-1117) $) NIL)) (-4043 (($ (-769)) 74)) (-3466 (($ (-642 (-564))) 75)) (-3252 (((-769) $) 44)) (-2390 (((-860) $) 93) (($ (-564)) 71) (($ |#1|) 69)) (-3005 ((|#1| $ $) 28)) (-3348 (((-769)) 73 T CONST)) (-1600 (((-112) $ $) NIL)) (-2361 (($) 45 T CONST)) (-2371 (($) 17 T CONST)) (-2821 (((-112) $ $) NIL)) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) 66)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) 67) (($ |#1| $) 60))) -(((-50 |#1| |#2|) (-13 (-618 |#1|) (-1036 |#1|) (-10 -8 (-15 -2523 (|#1| $)) (-15 -3579 ($ $)) (-15 -3459 ($ $)) (-15 -3005 (|#1| $ $)) (-15 -4043 ($ (-769))) (-15 -3466 ($ (-642 (-564)))) (-15 -2475 ((-112) $)) (-15 -3629 ((-112) $)) (-15 -3252 ((-769) $)) (-15 -2947 ($ (-1 |#1| |#1|) $)))) (-1047) (-642 (-1173))) (T -50)) -((-2523 (*1 *2 *1) (-12 (-4 *2 (-1047)) (-5 *1 (-50 *2 *3)) (-14 *3 (-642 (-1173))))) (-3579 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1047)) (-14 *3 (-642 (-1173))))) (-3459 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1047)) (-14 *3 (-642 (-1173))))) (-3005 (*1 *2 *1 *1) (-12 (-4 *2 (-1047)) (-5 *1 (-50 *2 *3)) (-14 *3 (-642 (-1173))))) (-4043 (*1 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1047)) (-14 *4 (-642 (-1173))))) (-3466 (*1 *1 *2) (-12 (-5 *2 (-642 (-564))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1047)) (-14 *4 (-642 (-1173))))) (-2475 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1047)) (-14 *4 (-642 (-1173))))) (-3629 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1047)) (-14 *4 (-642 (-1173))))) (-3252 (*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1047)) (-14 *4 (-642 (-1173))))) (-2947 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1047)) (-5 *1 (-50 *3 *4)) (-14 *4 (-642 (-1173)))))) -(-13 (-618 |#1|) (-1036 |#1|) (-10 -8 (-15 -2523 (|#1| $)) (-15 -3579 ($ $)) (-15 -3459 ($ $)) (-15 -3005 (|#1| $ $)) (-15 -4043 ($ (-769))) (-15 -3466 ($ (-642 (-564)))) (-15 -2475 ((-112) $)) (-15 -3629 ((-112) $)) (-15 -3252 ((-769) $)) (-15 -2947 ($ (-1 |#1| |#1|) $)))) -((-3629 (((-112) (-52)) 13)) (-2849 (((-3 |#1| "failed") (-52)) 21)) (-1687 ((|#1| (-52)) 22)) (-2390 (((-52) |#1|) 18))) -(((-51 |#1|) (-10 -7 (-15 -2390 ((-52) |#1|)) (-15 -2849 ((-3 |#1| "failed") (-52))) (-15 -3629 ((-112) (-52))) (-15 -1687 (|#1| (-52)))) (-1212)) (T -51)) -((-1687 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1212)))) (-3629 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1212)))) (-2849 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1212)))) (-2390 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1212))))) -(-10 -7 (-15 -2390 ((-52) |#1|)) (-15 -2849 ((-3 |#1| "failed") (-52))) (-15 -3629 ((-112) (-52))) (-15 -1687 (|#1| (-52)))) -((-2856 (((-112) $ $) NIL)) (-3461 (((-1155) (-112)) 26)) (-2613 (((-860) $) 25)) (-2448 (((-772) $) 13)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-4362 (((-860) $) 17)) (-3156 (((-1101) $) 15)) (-2390 (((-860) $) 35)) (-1600 (((-112) $ $) NIL)) (-2323 (($ (-1101) (-772)) 36)) (-2821 (((-112) $ $) 19))) -(((-52) (-13 (-1097) (-10 -8 (-15 -2323 ($ (-1101) (-772))) (-15 -4362 ((-860) $)) (-15 -2613 ((-860) $)) (-15 -3156 ((-1101) $)) (-15 -2448 ((-772) $)) (-15 -3461 ((-1155) (-112)))))) (T -52)) -((-2323 (*1 *1 *2 *3) (-12 (-5 *2 (-1101)) (-5 *3 (-772)) (-5 *1 (-52)))) (-4362 (*1 *2 *1) (-12 (-5 *2 (-860)) (-5 *1 (-52)))) (-2613 (*1 *2 *1) (-12 (-5 *2 (-860)) (-5 *1 (-52)))) (-3156 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-52)))) (-2448 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-52)))) (-3461 (*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1155)) (-5 *1 (-52))))) -(-13 (-1097) (-10 -8 (-15 -2323 ($ (-1101) (-772))) (-15 -4362 ((-860) $)) (-15 -2613 ((-860) $)) (-15 -3156 ((-1101) $)) (-15 -2448 ((-772) $)) (-15 -3461 ((-1155) (-112))))) -((-3975 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 19))) -(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -3975 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1047) (-646 |#1|) (-850 |#1|)) (T -53)) -((-3975 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-646 *5)) (-4 *5 (-1047)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-850 *5))))) -(-10 -7 (-15 -3975 (|#2| |#3| (-1 |#2| |#2|) |#2|))) -((-2451 ((|#3| |#3| (-642 (-1173))) 46)) (-1535 ((|#3| (-642 (-1073 |#1| |#2| |#3|)) |#3| (-919)) 32) ((|#3| (-642 (-1073 |#1| |#2| |#3|)) |#3|) 31))) -(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -1535 (|#3| (-642 (-1073 |#1| |#2| |#3|)) |#3|)) (-15 -1535 (|#3| (-642 (-1073 |#1| |#2| |#3|)) |#3| (-919))) (-15 -2451 (|#3| |#3| (-642 (-1173))))) (-1097) (-13 (-1047) (-884 |#1|) (-612 (-890 |#1|))) (-13 (-430 |#2|) (-884 |#1|) (-612 (-890 |#1|)))) (T -54)) -((-2451 (*1 *2 *2 *3) (-12 (-5 *3 (-642 (-1173))) (-4 *4 (-1097)) (-4 *5 (-13 (-1047) (-884 *4) (-612 (-890 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-430 *5) (-884 *4) (-612 (-890 *4)))))) (-1535 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-642 (-1073 *5 *6 *2))) (-5 *4 (-919)) (-4 *5 (-1097)) (-4 *6 (-13 (-1047) (-884 *5) (-612 (-890 *5)))) (-4 *2 (-13 (-430 *6) (-884 *5) (-612 (-890 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-1535 (*1 *2 *3 *2) (-12 (-5 *3 (-642 (-1073 *4 *5 *2))) (-4 *4 (-1097)) (-4 *5 (-13 (-1047) (-884 *4) (-612 (-890 *4)))) (-4 *2 (-13 (-430 *5) (-884 *4) (-612 (-890 *4)))) (-5 *1 (-54 *4 *5 *2))))) -(-10 -7 (-15 -1535 (|#3| (-642 (-1073 |#1| |#2| |#3|)) |#3|)) (-15 -1535 (|#3| (-642 (-1073 |#1| |#2| |#3|)) |#3| (-919))) (-15 -2451 (|#3| |#3| (-642 (-1173))))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) 14)) (-2849 (((-3 (-769) "failed") $) 34)) (-1687 (((-769) $) NIL)) (-3163 (((-112) $) 16)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) 18)) (-2390 (((-860) $) 23) (($ (-769)) 29)) (-1600 (((-112) $ $) NIL)) (-4238 (($) 11 T CONST)) (-2821 (((-112) $ $) 20))) -(((-55) (-13 (-1097) (-1036 (-769)) (-10 -8 (-15 -4238 ($) -1551) (-15 -2950 ((-112) $)) (-15 -3163 ((-112) $))))) (T -55)) -((-4238 (*1 *1) (-5 *1 (-55))) (-2950 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) (-3163 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))) -(-13 (-1097) (-1036 (-769)) (-10 -8 (-15 -4238 ($) -1551) (-15 -2950 ((-112) $)) (-15 -3163 ((-112) $)))) -((-3442 (((-112) $ (-769)) 27)) (-2279 (($ $ (-564) |#3|) 66)) (-4184 (($ $ (-564) |#4|) 70)) (-2794 ((|#3| $ (-564)) 79)) (-2018 (((-642 |#2|) $) 47)) (-3769 (((-112) $ (-769)) 31)) (-2533 (((-112) |#2| $) 74)) (-1857 (($ (-1 |#2| |#2|) $) 55)) (-2947 (($ (-1 |#2| |#2|) $) 54) (($ (-1 |#2| |#2| |#2|) $ $) 58) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 62)) (-4145 (((-112) $ (-769)) 29)) (-3826 (($ $ |#2|) 52)) (-4094 (((-112) (-1 (-112) |#2|) $) 21)) (-4369 ((|#2| $ (-564) (-564)) NIL) ((|#2| $ (-564) (-564) |#2|) 35)) (-4010 (((-769) (-1 (-112) |#2|) $) 41) (((-769) |#2| $) 76)) (-3865 (($ $) 51)) (-4342 ((|#4| $ (-564)) 82)) (-2390 (((-860) $) 88)) (-3295 (((-112) (-1 (-112) |#2|) $) 20)) (-2821 (((-112) $ $) 73)) (-2158 (((-769) $) 32))) -(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2390 ((-860) |#1|)) (-15 -2947 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2947 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1857 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4184 (|#1| |#1| (-564) |#4|)) (-15 -2279 (|#1| |#1| (-564) |#3|)) (-15 -2018 ((-642 |#2|) |#1|)) (-15 -4342 (|#4| |#1| (-564))) (-15 -2794 (|#3| |#1| (-564))) (-15 -4369 (|#2| |#1| (-564) (-564) |#2|)) (-15 -4369 (|#2| |#1| (-564) (-564))) (-15 -3826 (|#1| |#1| |#2|)) (-15 -2821 ((-112) |#1| |#1|)) (-15 -2533 ((-112) |#2| |#1|)) (-15 -4010 ((-769) |#2| |#1|)) (-15 -4010 ((-769) (-1 (-112) |#2|) |#1|)) (-15 -4094 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3295 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2947 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2158 ((-769) |#1|)) (-15 -3442 ((-112) |#1| (-769))) (-15 -3769 ((-112) |#1| (-769))) (-15 -4145 ((-112) |#1| (-769))) (-15 -3865 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1212) (-373 |#2|) (-373 |#2|)) (T -56)) -NIL -(-10 -8 (-15 -2390 ((-860) |#1|)) (-15 -2947 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2947 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1857 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4184 (|#1| |#1| (-564) |#4|)) (-15 -2279 (|#1| |#1| (-564) |#3|)) (-15 -2018 ((-642 |#2|) |#1|)) (-15 -4342 (|#4| |#1| (-564))) (-15 -2794 (|#3| |#1| (-564))) (-15 -4369 (|#2| |#1| (-564) (-564) |#2|)) (-15 -4369 (|#2| |#1| (-564) (-564))) (-15 -3826 (|#1| |#1| |#2|)) (-15 -2821 ((-112) |#1| |#1|)) (-15 -2533 ((-112) |#2| |#1|)) (-15 -4010 ((-769) |#2| |#1|)) (-15 -4010 ((-769) (-1 (-112) |#2|) |#1|)) (-15 -4094 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3295 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2947 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2158 ((-769) |#1|)) (-15 -3442 ((-112) |#1| (-769))) (-15 -3769 ((-112) |#1| (-769))) (-15 -4145 ((-112) |#1| (-769))) (-15 -3865 (|#1| |#1|))) -((-2856 (((-112) $ $) 19 (|has| |#1| (-1097)))) (-3442 (((-112) $ (-769)) 8)) (-3841 ((|#1| $ (-564) (-564) |#1|) 45)) (-2279 (($ $ (-564) |#2|) 43)) (-4184 (($ $ (-564) |#3|) 42)) (-2822 (($) 7 T CONST)) (-2794 ((|#2| $ (-564)) 47)) (-3105 ((|#1| $ (-564) (-564) |#1|) 44)) (-1804 ((|#1| $ (-564) (-564)) 49)) (-2018 (((-642 |#1|) $) 31)) (-3847 (((-769) $) 52)) (-4233 (($ (-769) (-769) |#1|) 58)) (-3857 (((-769) $) 51)) (-3769 (((-112) $ (-769)) 9)) (-2570 (((-564) $) 56)) (-2269 (((-564) $) 54)) (-3541 (((-642 |#1|) $) 30 (|has| $ (-6 -4410)))) (-2533 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-4164 (((-564) $) 55)) (-2720 (((-564) $) 53)) (-1857 (($ (-1 |#1| |#1|) $) 35)) (-2947 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-4145 (((-112) $ (-769)) 10)) (-1778 (((-1155) $) 22 (|has| |#1| (-1097)))) (-3999 (((-1117) $) 21 (|has| |#1| (-1097)))) (-3826 (($ $ |#1|) 57)) (-4094 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-2478 (((-112) $ $) 14)) (-4109 (((-112) $) 11)) (-2179 (($) 12)) (-4369 ((|#1| $ (-564) (-564)) 50) ((|#1| $ (-564) (-564) |#1|) 48)) (-4010 (((-769) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4410))) (((-769) |#1| $) 29 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3865 (($ $) 13)) (-4342 ((|#3| $ (-564)) 46)) (-2390 (((-860) $) 18 (|has| |#1| (-611 (-860))))) (-1600 (((-112) $ $) 23 (|has| |#1| (-1097)))) (-3295 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4410)))) (-2821 (((-112) $ $) 20 (|has| |#1| (-1097)))) (-2158 (((-769) $) 6 (|has| $ (-6 -4410))))) -(((-57 |#1| |#2| |#3|) (-140) (-1212) (-373 |t#1|) (-373 |t#1|)) (T -57)) -((-2947 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-4233 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-769)) (-4 *3 (-1212)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-3826 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1212)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-2570 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-564)))) (-4164 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-564)))) (-2269 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-564)))) (-2720 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-564)))) (-3847 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-769)))) (-3857 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-769)))) (-4369 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-1212)))) (-1804 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-1212)))) (-4369 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1212)) (-4 *4 (-373 *2)) (-4 *5 (-373 *2)))) (-2794 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1212)) (-4 *5 (-373 *4)) (-4 *2 (-373 *4)))) (-4342 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1212)) (-4 *5 (-373 *4)) (-4 *2 (-373 *4)))) (-2018 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-642 *3)))) (-3841 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1212)) (-4 *4 (-373 *2)) (-4 *5 (-373 *2)))) (-3105 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1212)) (-4 *4 (-373 *2)) (-4 *5 (-373 *2)))) (-2279 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-564)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1212)) (-4 *3 (-373 *4)) (-4 *5 (-373 *4)))) (-4184 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-564)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1212)) (-4 *5 (-373 *4)) (-4 *3 (-373 *4)))) (-1857 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-2947 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-2947 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3))))) -(-13 (-489 |t#1|) (-10 -8 (-6 -4411) (-6 -4410) (-15 -4233 ($ (-769) (-769) |t#1|)) (-15 -3826 ($ $ |t#1|)) (-15 -2570 ((-564) $)) (-15 -4164 ((-564) $)) (-15 -2269 ((-564) $)) (-15 -2720 ((-564) $)) (-15 -3847 ((-769) $)) (-15 -3857 ((-769) $)) (-15 -4369 (|t#1| $ (-564) (-564))) (-15 -1804 (|t#1| $ (-564) (-564))) (-15 -4369 (|t#1| $ (-564) (-564) |t#1|)) (-15 -2794 (|t#2| $ (-564))) (-15 -4342 (|t#3| $ (-564))) (-15 -2018 ((-642 |t#1|) $)) (-15 -3841 (|t#1| $ (-564) (-564) |t#1|)) (-15 -3105 (|t#1| $ (-564) (-564) |t#1|)) (-15 -2279 ($ $ (-564) |t#2|)) (-15 -4184 ($ $ (-564) |t#3|)) (-15 -2947 ($ (-1 |t#1| |t#1|) $)) (-15 -1857 ($ (-1 |t#1| |t#1|) $)) (-15 -2947 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2947 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) -(((-34) . T) ((-102) |has| |#1| (-1097)) ((-611 (-860)) -2682 (|has| |#1| (-1097)) (|has| |#1| (-611 (-860)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-1097) |has| |#1| (-1097)) ((-1212) . T)) -((-2810 (((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 16)) (-3741 ((|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 18)) (-2947 (((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)) 13))) -(((-58 |#1| |#2|) (-10 -7 (-15 -2810 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -3741 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2947 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) (-1212) (-1212)) (T -58)) -((-2947 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1212)) (-4 *6 (-1212)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) (-3741 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1212)) (-4 *2 (-1212)) (-5 *1 (-58 *5 *2)))) (-2810 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1212)) (-4 *5 (-1212)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5))))) -(-10 -7 (-15 -2810 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -3741 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2947 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) -((-2856 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-3633 (((-1267) $ (-564) (-564)) NIL (|has| $ (-6 -4411)))) (-1824 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-848)))) (-3659 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4411))) (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-848))))) (-3191 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-848)))) (-3442 (((-112) $ (-769)) NIL)) (-3841 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4411))) ((|#1| $ (-1229 (-564)) |#1|) NIL (|has| $ (-6 -4411)))) (-3437 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2822 (($) NIL T CONST)) (-1540 (($ $) NIL (|has| $ (-6 -4411)))) (-3817 (($ $) NIL)) (-4067 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2517 (($ |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3741 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4410)))) (-3105 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4411)))) (-1804 ((|#1| $ (-564)) NIL)) (-3942 (((-564) (-1 (-112) |#1|) $) NIL) (((-564) |#1| $) NIL (|has| |#1| (-1097))) (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1097)))) (-2018 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2420 (($ (-642 |#1|)) 11) (($ (-769) |#1|) 14)) (-4233 (($ (-769) |#1|) 13)) (-3769 (((-112) $ (-769)) NIL)) (-1802 (((-564) $) NIL (|has| (-564) (-848)))) (-3225 (($ $ $) NIL (|has| |#1| (-848)))) (-2774 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-848)))) (-3541 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2533 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3624 (((-564) $) NIL (|has| (-564) (-848)))) (-2903 (($ $ $) NIL (|has| |#1| (-848)))) (-1857 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4145 (((-112) $ (-769)) NIL)) (-1778 (((-1155) $) NIL (|has| |#1| (-1097)))) (-4247 (($ |#1| $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-4107 (((-642 (-564)) $) NIL)) (-4207 (((-112) (-564) $) NIL)) (-3999 (((-1117) $) NIL (|has| |#1| (-1097)))) (-4036 ((|#1| $) NIL (|has| (-564) (-848)))) (-3183 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3826 (($ $ |#1|) NIL (|has| $ (-6 -4411)))) (-4094 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-2478 (((-112) $ $) NIL)) (-1643 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3522 (((-642 |#1|) $) NIL)) (-4109 (((-112) $) NIL)) (-2179 (($) NIL)) (-4369 ((|#1| $ (-564) |#1|) NIL) ((|#1| $ (-564)) NIL) (($ $ (-1229 (-564))) NIL)) (-2083 (($ $ (-564)) NIL) (($ $ (-1229 (-564))) NIL)) (-4010 (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-769) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3301 (($ $ $ (-564)) NIL (|has| $ (-6 -4411)))) (-3865 (($ $) NIL)) (-3003 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-2401 (($ (-642 |#1|)) 10)) (-3634 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-642 $)) NIL)) (-2390 (((-860) $) NIL (|has| |#1| (-611 (-860))))) (-1600 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-3295 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2881 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2857 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2821 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2868 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2844 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2158 (((-769) $) NIL (|has| $ (-6 -4410))))) -(((-59 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -2420 ($ (-642 |#1|))) (-15 -2420 ($ (-769) |#1|)))) (-1212)) (T -59)) -((-2420 (*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1212)) (-5 *1 (-59 *3)))) (-2420 (*1 *1 *2 *3) (-12 (-5 *2 (-769)) (-5 *1 (-59 *3)) (-4 *3 (-1212))))) -(-13 (-19 |#1|) (-10 -8 (-15 -2420 ($ (-642 |#1|))) (-15 -2420 ($ (-769) |#1|)))) -((-2856 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-3442 (((-112) $ (-769)) NIL)) (-3841 ((|#1| $ (-564) (-564) |#1|) NIL)) (-2279 (($ $ (-564) (-59 |#1|)) NIL)) (-4184 (($ $ (-564) (-59 |#1|)) NIL)) (-2822 (($) NIL T CONST)) (-2794 (((-59 |#1|) $ (-564)) NIL)) (-3105 ((|#1| $ (-564) (-564) |#1|) NIL)) (-1804 ((|#1| $ (-564) (-564)) NIL)) (-2018 (((-642 |#1|) $) NIL)) (-3847 (((-769) $) NIL)) (-4233 (($ (-769) (-769) |#1|) NIL)) (-3857 (((-769) $) NIL)) (-3769 (((-112) $ (-769)) NIL)) (-2570 (((-564) $) NIL)) (-2269 (((-564) $) NIL)) (-3541 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2533 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-4164 (((-564) $) NIL)) (-2720 (((-564) $) NIL)) (-1857 (($ (-1 |#1| |#1|) $) NIL)) (-2947 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4145 (((-112) $ (-769)) NIL)) (-1778 (((-1155) $) NIL (|has| |#1| (-1097)))) (-3999 (((-1117) $) NIL (|has| |#1| (-1097)))) (-3826 (($ $ |#1|) NIL)) (-4094 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-2478 (((-112) $ $) NIL)) (-4109 (((-112) $) NIL)) (-2179 (($) NIL)) (-4369 ((|#1| $ (-564) (-564)) NIL) ((|#1| $ (-564) (-564) |#1|) NIL)) (-4010 (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-769) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3865 (($ $) NIL)) (-4342 (((-59 |#1|) $ (-564)) NIL)) (-2390 (((-860) $) NIL (|has| |#1| (-611 (-860))))) (-1600 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-3295 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2821 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2158 (((-769) $) NIL (|has| $ (-6 -4410))))) -(((-60 |#1|) (-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4411))) (-1212)) (T -60)) -NIL -(-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4411))) -((-2849 (((-3 $ "failed") (-1262 (-316 (-379)))) 74) (((-3 $ "failed") (-1262 (-316 (-564)))) 63) (((-3 $ "failed") (-1262 (-950 (-379)))) 94) (((-3 $ "failed") (-1262 (-950 (-564)))) 84) (((-3 $ "failed") (-1262 (-407 (-950 (-379))))) 52) (((-3 $ "failed") (-1262 (-407 (-950 (-564))))) 39)) (-1687 (($ (-1262 (-316 (-379)))) 70) (($ (-1262 (-316 (-564)))) 59) (($ (-1262 (-950 (-379)))) 90) (($ (-1262 (-950 (-564)))) 80) (($ (-1262 (-407 (-950 (-379))))) 48) (($ (-1262 (-407 (-950 (-564))))) 32)) (-2056 (((-1267) $) 127)) (-2390 (((-860) $) 121) (($ (-642 (-330))) 103) (($ (-330)) 97) (($ (-2 (|:| |localSymbols| (-1177)) (|:| -3089 (-642 (-330))))) 101) (($ (-1262 (-339 (-2401 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2401) (-697)))) 31))) -(((-61 |#1|) (-13 (-441) (-10 -8 (-15 -2390 ($ (-1262 (-339 (-2401 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2401) (-697))))))) (-1173)) (T -61)) -((-2390 (*1 *1 *2) (-12 (-5 *2 (-1262 (-339 (-2401 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2401) (-697)))) (-5 *1 (-61 *3)) (-14 *3 (-1173))))) -(-13 (-441) (-10 -8 (-15 -2390 ($ (-1262 (-339 (-2401 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2401) (-697))))))) -((-2056 (((-1267) $) 54) (((-1267)) 55)) (-2390 (((-860) $) 51))) -(((-62 |#1|) (-13 (-395) (-10 -7 (-15 -2056 ((-1267))))) (-1173)) (T -62)) -((-2056 (*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-62 *3)) (-14 *3 (-1173))))) -(-13 (-395) (-10 -7 (-15 -2056 ((-1267))))) -((-2849 (((-3 $ "failed") (-1262 (-316 (-379)))) 154) (((-3 $ "failed") (-1262 (-316 (-564)))) 144) (((-3 $ "failed") (-1262 (-950 (-379)))) 174) (((-3 $ "failed") (-1262 (-950 (-564)))) 164) (((-3 $ "failed") (-1262 (-407 (-950 (-379))))) 133) (((-3 $ "failed") (-1262 (-407 (-950 (-564))))) 121)) (-1687 (($ (-1262 (-316 (-379)))) 150) (($ (-1262 (-316 (-564)))) 140) (($ (-1262 (-950 (-379)))) 170) (($ (-1262 (-950 (-564)))) 160) (($ (-1262 (-407 (-950 (-379))))) 129) (($ (-1262 (-407 (-950 (-564))))) 114)) (-2056 (((-1267) $) 107)) (-2390 (((-860) $) 101) (($ (-642 (-330))) 30) (($ (-330)) 35) (($ (-2 (|:| |localSymbols| (-1177)) (|:| -3089 (-642 (-330))))) 33) (($ (-1262 (-339 (-2401) (-2401 (QUOTE XC)) (-697)))) 99))) -(((-63 |#1|) (-13 (-441) (-10 -8 (-15 -2390 ($ (-1262 (-339 (-2401) (-2401 (QUOTE XC)) (-697))))))) (-1173)) (T -63)) -((-2390 (*1 *1 *2) (-12 (-5 *2 (-1262 (-339 (-2401) (-2401 (QUOTE XC)) (-697)))) (-5 *1 (-63 *3)) (-14 *3 (-1173))))) -(-13 (-441) (-10 -8 (-15 -2390 ($ (-1262 (-339 (-2401) (-2401 (QUOTE XC)) (-697))))))) -((-2849 (((-3 $ "failed") (-316 (-379))) 41) (((-3 $ "failed") (-316 (-564))) 46) (((-3 $ "failed") (-950 (-379))) 50) (((-3 $ "failed") (-950 (-564))) 54) (((-3 $ "failed") (-407 (-950 (-379)))) 36) (((-3 $ "failed") (-407 (-950 (-564)))) 29)) (-1687 (($ (-316 (-379))) 39) (($ (-316 (-564))) 44) (($ (-950 (-379))) 48) (($ (-950 (-564))) 52) (($ (-407 (-950 (-379)))) 34) (($ (-407 (-950 (-564)))) 26)) (-2056 (((-1267) $) 76)) (-2390 (((-860) $) 69) (($ (-642 (-330))) 61) (($ (-330)) 66) (($ (-2 (|:| |localSymbols| (-1177)) (|:| -3089 (-642 (-330))))) 64) (($ (-339 (-2401 (QUOTE X)) (-2401) (-697))) 25))) -(((-64 |#1|) (-13 (-396) (-10 -8 (-15 -2390 ($ (-339 (-2401 (QUOTE X)) (-2401) (-697)))))) (-1173)) (T -64)) -((-2390 (*1 *1 *2) (-12 (-5 *2 (-339 (-2401 (QUOTE X)) (-2401) (-697))) (-5 *1 (-64 *3)) (-14 *3 (-1173))))) -(-13 (-396) (-10 -8 (-15 -2390 ($ (-339 (-2401 (QUOTE X)) (-2401) (-697)))))) -((-2849 (((-3 $ "failed") (-687 (-316 (-379)))) 114) (((-3 $ "failed") (-687 (-316 (-564)))) 102) (((-3 $ "failed") (-687 (-950 (-379)))) 136) (((-3 $ "failed") (-687 (-950 (-564)))) 125) (((-3 $ "failed") (-687 (-407 (-950 (-379))))) 90) (((-3 $ "failed") (-687 (-407 (-950 (-564))))) 76)) (-1687 (($ (-687 (-316 (-379)))) 110) (($ (-687 (-316 (-564)))) 98) (($ (-687 (-950 (-379)))) 132) (($ (-687 (-950 (-564)))) 121) (($ (-687 (-407 (-950 (-379))))) 86) (($ (-687 (-407 (-950 (-564))))) 69)) (-2056 (((-1267) $) 144)) (-2390 (((-860) $) 138) (($ (-642 (-330))) 29) (($ (-330)) 34) (($ (-2 (|:| |localSymbols| (-1177)) (|:| -3089 (-642 (-330))))) 32) (($ (-687 (-339 (-2401) (-2401 (QUOTE X) (QUOTE HESS)) (-697)))) 59))) -(((-65 |#1|) (-13 (-384) (-614 (-687 (-339 (-2401) (-2401 (QUOTE X) (QUOTE HESS)) (-697))))) (-1173)) (T -65)) -NIL -(-13 (-384) (-614 (-687 (-339 (-2401) (-2401 (QUOTE X) (QUOTE HESS)) (-697))))) -((-2849 (((-3 $ "failed") (-316 (-379))) 60) (((-3 $ "failed") (-316 (-564))) 65) (((-3 $ "failed") (-950 (-379))) 69) (((-3 $ "failed") (-950 (-564))) 73) (((-3 $ "failed") (-407 (-950 (-379)))) 55) (((-3 $ "failed") (-407 (-950 (-564)))) 48)) (-1687 (($ (-316 (-379))) 58) (($ (-316 (-564))) 63) (($ (-950 (-379))) 67) (($ (-950 (-564))) 71) (($ (-407 (-950 (-379)))) 53) (($ (-407 (-950 (-564)))) 45)) (-2056 (((-1267) $) 82)) (-2390 (((-860) $) 76) (($ (-642 (-330))) 29) (($ (-330)) 34) (($ (-2 (|:| |localSymbols| (-1177)) (|:| -3089 (-642 (-330))))) 32) (($ (-339 (-2401) (-2401 (QUOTE XC)) (-697))) 40))) -(((-66 |#1|) (-13 (-396) (-10 -8 (-15 -2390 ($ (-339 (-2401) (-2401 (QUOTE XC)) (-697)))))) (-1173)) (T -66)) -((-2390 (*1 *1 *2) (-12 (-5 *2 (-339 (-2401) (-2401 (QUOTE XC)) (-697))) (-5 *1 (-66 *3)) (-14 *3 (-1173))))) -(-13 (-396) (-10 -8 (-15 -2390 ($ (-339 (-2401) (-2401 (QUOTE XC)) (-697)))))) -((-2056 (((-1267) $) 68)) (-2390 (((-860) $) 62) (($ (-687 (-697))) 54) (($ (-642 (-330))) 53) (($ (-330)) 60) (($ (-2 (|:| |localSymbols| (-1177)) (|:| -3089 (-642 (-330))))) 58))) -(((-67 |#1|) (-383) (-1173)) (T -67)) -NIL -(-383) -((-2056 (((-1267) $) 69)) (-2390 (((-860) $) 63) (($ (-687 (-697))) 55) (($ (-642 (-330))) 54) (($ (-330)) 57) (($ (-2 (|:| |localSymbols| (-1177)) (|:| -3089 (-642 (-330))))) 60))) -(((-68 |#1|) (-383) (-1173)) (T -68)) -NIL -(-383) -((-2056 (((-1267) $) NIL) (((-1267)) 33)) (-2390 (((-860) $) NIL))) -(((-69 |#1|) (-13 (-395) (-10 -7 (-15 -2056 ((-1267))))) (-1173)) (T -69)) -((-2056 (*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-69 *3)) (-14 *3 (-1173))))) -(-13 (-395) (-10 -7 (-15 -2056 ((-1267))))) -((-2056 (((-1267) $) 75)) (-2390 (((-860) $) 69) (($ (-687 (-697))) 61) (($ (-642 (-330))) 63) (($ (-330)) 66) (($ (-2 (|:| |localSymbols| (-1177)) (|:| -3089 (-642 (-330))))) 60))) -(((-70 |#1|) (-383) (-1173)) (T -70)) -NIL -(-383) -((-2849 (((-3 $ "failed") (-1262 (-316 (-379)))) 111) (((-3 $ "failed") (-1262 (-316 (-564)))) 100) (((-3 $ "failed") (-1262 (-950 (-379)))) 131) (((-3 $ "failed") (-1262 (-950 (-564)))) 121) (((-3 $ "failed") (-1262 (-407 (-950 (-379))))) 89) (((-3 $ "failed") (-1262 (-407 (-950 (-564))))) 76)) (-1687 (($ (-1262 (-316 (-379)))) 107) (($ (-1262 (-316 (-564)))) 96) (($ (-1262 (-950 (-379)))) 127) (($ (-1262 (-950 (-564)))) 117) (($ (-1262 (-407 (-950 (-379))))) 85) (($ (-1262 (-407 (-950 (-564))))) 69)) (-2056 (((-1267) $) 144)) (-2390 (((-860) $) 138) (($ (-642 (-330))) 133) (($ (-330)) 136) (($ (-2 (|:| |localSymbols| (-1177)) (|:| -3089 (-642 (-330))))) 61) (($ (-1262 (-339 (-2401 (QUOTE X)) (-2401 (QUOTE -2380)) (-697)))) 62))) -(((-71 |#1|) (-13 (-441) (-10 -8 (-15 -2390 ($ (-1262 (-339 (-2401 (QUOTE X)) (-2401 (QUOTE -2380)) (-697))))))) (-1173)) (T -71)) -((-2390 (*1 *1 *2) (-12 (-5 *2 (-1262 (-339 (-2401 (QUOTE X)) (-2401 (QUOTE -2380)) (-697)))) (-5 *1 (-71 *3)) (-14 *3 (-1173))))) -(-13 (-441) (-10 -8 (-15 -2390 ($ (-1262 (-339 (-2401 (QUOTE X)) (-2401 (QUOTE -2380)) (-697))))))) -((-2056 (((-1267) $) 33) (((-1267)) 32)) (-2390 (((-860) $) 36))) -(((-72 |#1|) (-13 (-395) (-10 -7 (-15 -2056 ((-1267))))) (-1173)) (T -72)) -((-2056 (*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-72 *3)) (-14 *3 (-1173))))) -(-13 (-395) (-10 -7 (-15 -2056 ((-1267))))) -((-2056 (((-1267) $) 65)) (-2390 (((-860) $) 59) (($ (-687 (-697))) 51) (($ (-642 (-330))) 53) (($ (-330)) 56) (($ (-2 (|:| |localSymbols| (-1177)) (|:| -3089 (-642 (-330))))) 50))) -(((-73 |#1|) (-383) (-1173)) (T -73)) -NIL -(-383) -((-2849 (((-3 $ "failed") (-1262 (-316 (-379)))) 130) (((-3 $ "failed") (-1262 (-316 (-564)))) 120) (((-3 $ "failed") (-1262 (-950 (-379)))) 150) (((-3 $ "failed") (-1262 (-950 (-564)))) 140) (((-3 $ "failed") (-1262 (-407 (-950 (-379))))) 110) (((-3 $ "failed") (-1262 (-407 (-950 (-564))))) 98)) (-1687 (($ (-1262 (-316 (-379)))) 126) (($ (-1262 (-316 (-564)))) 116) (($ (-1262 (-950 (-379)))) 146) (($ (-1262 (-950 (-564)))) 136) (($ (-1262 (-407 (-950 (-379))))) 106) (($ (-1262 (-407 (-950 (-564))))) 91)) (-2056 (((-1267) $) 83)) (-2390 (((-860) $) 28) (($ (-642 (-330))) 73) (($ (-330)) 69) (($ (-2 (|:| |localSymbols| (-1177)) (|:| -3089 (-642 (-330))))) 76) (($ (-1262 (-339 (-2401) (-2401 (QUOTE X)) (-697)))) 70))) -(((-74 |#1|) (-13 (-441) (-10 -8 (-15 -2390 ($ (-1262 (-339 (-2401) (-2401 (QUOTE X)) (-697))))))) (-1173)) (T -74)) -((-2390 (*1 *1 *2) (-12 (-5 *2 (-1262 (-339 (-2401) (-2401 (QUOTE X)) (-697)))) (-5 *1 (-74 *3)) (-14 *3 (-1173))))) -(-13 (-441) (-10 -8 (-15 -2390 ($ (-1262 (-339 (-2401) (-2401 (QUOTE X)) (-697))))))) -((-2849 (((-3 $ "failed") (-1262 (-316 (-379)))) 135) (((-3 $ "failed") (-1262 (-316 (-564)))) 124) (((-3 $ "failed") (-1262 (-950 (-379)))) 155) (((-3 $ "failed") (-1262 (-950 (-564)))) 145) (((-3 $ "failed") (-1262 (-407 (-950 (-379))))) 113) (((-3 $ "failed") (-1262 (-407 (-950 (-564))))) 100)) (-1687 (($ (-1262 (-316 (-379)))) 131) (($ (-1262 (-316 (-564)))) 120) (($ (-1262 (-950 (-379)))) 151) (($ (-1262 (-950 (-564)))) 141) (($ (-1262 (-407 (-950 (-379))))) 109) (($ (-1262 (-407 (-950 (-564))))) 93)) (-2056 (((-1267) $) 85)) (-2390 (((-860) $) 77) (($ (-642 (-330))) NIL) (($ (-330)) NIL) (($ (-2 (|:| |localSymbols| (-1177)) (|:| -3089 (-642 (-330))))) NIL) (($ (-1262 (-339 (-2401 (QUOTE X) (QUOTE EPS)) (-2401 (QUOTE -2380)) (-697)))) 72))) -(((-75 |#1| |#2| |#3|) (-13 (-441) (-10 -8 (-15 -2390 ($ (-1262 (-339 (-2401 (QUOTE X) (QUOTE EPS)) (-2401 (QUOTE -2380)) (-697))))))) (-1173) (-1173) (-1173)) (T -75)) -((-2390 (*1 *1 *2) (-12 (-5 *2 (-1262 (-339 (-2401 (QUOTE X) (QUOTE EPS)) (-2401 (QUOTE -2380)) (-697)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1173)) (-14 *4 (-1173)) (-14 *5 (-1173))))) -(-13 (-441) (-10 -8 (-15 -2390 ($ (-1262 (-339 (-2401 (QUOTE X) (QUOTE EPS)) (-2401 (QUOTE -2380)) (-697))))))) -((-2849 (((-3 $ "failed") (-1262 (-316 (-379)))) 141) (((-3 $ "failed") (-1262 (-316 (-564)))) 130) (((-3 $ "failed") (-1262 (-950 (-379)))) 161) (((-3 $ "failed") (-1262 (-950 (-564)))) 151) (((-3 $ "failed") (-1262 (-407 (-950 (-379))))) 119) (((-3 $ "failed") (-1262 (-407 (-950 (-564))))) 106)) (-1687 (($ (-1262 (-316 (-379)))) 137) (($ (-1262 (-316 (-564)))) 126) (($ (-1262 (-950 (-379)))) 157) (($ (-1262 (-950 (-564)))) 147) (($ (-1262 (-407 (-950 (-379))))) 115) (($ (-1262 (-407 (-950 (-564))))) 99)) (-2056 (((-1267) $) 91)) (-2390 (((-860) $) 83) (($ (-642 (-330))) NIL) (($ (-330)) NIL) (($ (-2 (|:| |localSymbols| (-1177)) (|:| -3089 (-642 (-330))))) NIL) (($ (-1262 (-339 (-2401 (QUOTE EPS)) (-2401 (QUOTE YA) (QUOTE YB)) (-697)))) 78))) -(((-76 |#1| |#2| |#3|) (-13 (-441) (-10 -8 (-15 -2390 ($ (-1262 (-339 (-2401 (QUOTE EPS)) (-2401 (QUOTE YA) (QUOTE YB)) (-697))))))) (-1173) (-1173) (-1173)) (T -76)) -((-2390 (*1 *1 *2) (-12 (-5 *2 (-1262 (-339 (-2401 (QUOTE EPS)) (-2401 (QUOTE YA) (QUOTE YB)) (-697)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1173)) (-14 *4 (-1173)) (-14 *5 (-1173))))) -(-13 (-441) (-10 -8 (-15 -2390 ($ (-1262 (-339 (-2401 (QUOTE EPS)) (-2401 (QUOTE YA) (QUOTE YB)) (-697))))))) -((-2849 (((-3 $ "failed") (-316 (-379))) 83) (((-3 $ "failed") (-316 (-564))) 88) (((-3 $ "failed") (-950 (-379))) 92) (((-3 $ "failed") (-950 (-564))) 96) (((-3 $ "failed") (-407 (-950 (-379)))) 78) (((-3 $ "failed") (-407 (-950 (-564)))) 71)) (-1687 (($ (-316 (-379))) 81) (($ (-316 (-564))) 86) (($ (-950 (-379))) 90) (($ (-950 (-564))) 94) (($ (-407 (-950 (-379)))) 76) (($ (-407 (-950 (-564)))) 68)) (-2056 (((-1267) $) 63)) (-2390 (((-860) $) 51) (($ (-642 (-330))) 47) (($ (-330)) 57) (($ (-2 (|:| |localSymbols| (-1177)) (|:| -3089 (-642 (-330))))) 55) (($ (-339 (-2401) (-2401 (QUOTE X)) (-697))) 48))) -(((-77 |#1|) (-13 (-396) (-10 -8 (-15 -2390 ($ (-339 (-2401) (-2401 (QUOTE X)) (-697)))))) (-1173)) (T -77)) -((-2390 (*1 *1 *2) (-12 (-5 *2 (-339 (-2401) (-2401 (QUOTE X)) (-697))) (-5 *1 (-77 *3)) (-14 *3 (-1173))))) -(-13 (-396) (-10 -8 (-15 -2390 ($ (-339 (-2401) (-2401 (QUOTE X)) (-697)))))) -((-2849 (((-3 $ "failed") (-316 (-379))) 47) (((-3 $ "failed") (-316 (-564))) 52) (((-3 $ "failed") (-950 (-379))) 56) (((-3 $ "failed") (-950 (-564))) 60) (((-3 $ "failed") (-407 (-950 (-379)))) 42) (((-3 $ "failed") (-407 (-950 (-564)))) 35)) (-1687 (($ (-316 (-379))) 45) (($ (-316 (-564))) 50) (($ (-950 (-379))) 54) (($ (-950 (-564))) 58) (($ (-407 (-950 (-379)))) 40) (($ (-407 (-950 (-564)))) 32)) (-2056 (((-1267) $) 81)) (-2390 (((-860) $) 75) (($ (-642 (-330))) 67) (($ (-330)) 72) (($ (-2 (|:| |localSymbols| (-1177)) (|:| -3089 (-642 (-330))))) 70) (($ (-339 (-2401) (-2401 (QUOTE X)) (-697))) 31))) -(((-78 |#1|) (-13 (-396) (-10 -8 (-15 -2390 ($ (-339 (-2401) (-2401 (QUOTE X)) (-697)))))) (-1173)) (T -78)) -((-2390 (*1 *1 *2) (-12 (-5 *2 (-339 (-2401) (-2401 (QUOTE X)) (-697))) (-5 *1 (-78 *3)) (-14 *3 (-1173))))) -(-13 (-396) (-10 -8 (-15 -2390 ($ (-339 (-2401) (-2401 (QUOTE X)) (-697)))))) -((-2849 (((-3 $ "failed") (-1262 (-316 (-379)))) 90) (((-3 $ "failed") (-1262 (-316 (-564)))) 79) (((-3 $ "failed") (-1262 (-950 (-379)))) 110) (((-3 $ "failed") (-1262 (-950 (-564)))) 100) (((-3 $ "failed") (-1262 (-407 (-950 (-379))))) 68) (((-3 $ "failed") (-1262 (-407 (-950 (-564))))) 55)) (-1687 (($ (-1262 (-316 (-379)))) 86) (($ (-1262 (-316 (-564)))) 75) (($ (-1262 (-950 (-379)))) 106) (($ (-1262 (-950 (-564)))) 96) (($ (-1262 (-407 (-950 (-379))))) 64) (($ (-1262 (-407 (-950 (-564))))) 48)) (-2056 (((-1267) $) 126)) (-2390 (((-860) $) 120) (($ (-642 (-330))) 113) (($ (-330)) 38) (($ (-2 (|:| |localSymbols| (-1177)) (|:| -3089 (-642 (-330))))) 116) (($ (-1262 (-339 (-2401) (-2401 (QUOTE XC)) (-697)))) 39))) -(((-79 |#1|) (-13 (-441) (-10 -8 (-15 -2390 ($ (-1262 (-339 (-2401) (-2401 (QUOTE XC)) (-697))))))) (-1173)) (T -79)) -((-2390 (*1 *1 *2) (-12 (-5 *2 (-1262 (-339 (-2401) (-2401 (QUOTE XC)) (-697)))) (-5 *1 (-79 *3)) (-14 *3 (-1173))))) -(-13 (-441) (-10 -8 (-15 -2390 ($ (-1262 (-339 (-2401) (-2401 (QUOTE XC)) (-697))))))) -((-2849 (((-3 $ "failed") (-1262 (-316 (-379)))) 158) (((-3 $ "failed") (-1262 (-316 (-564)))) 148) (((-3 $ "failed") (-1262 (-950 (-379)))) 178) (((-3 $ "failed") (-1262 (-950 (-564)))) 168) (((-3 $ "failed") (-1262 (-407 (-950 (-379))))) 138) (((-3 $ "failed") (-1262 (-407 (-950 (-564))))) 126)) (-1687 (($ (-1262 (-316 (-379)))) 154) (($ (-1262 (-316 (-564)))) 144) (($ (-1262 (-950 (-379)))) 174) (($ (-1262 (-950 (-564)))) 164) (($ (-1262 (-407 (-950 (-379))))) 134) (($ (-1262 (-407 (-950 (-564))))) 119)) (-2056 (((-1267) $) 112)) (-2390 (((-860) $) 106) (($ (-642 (-330))) 97) (($ (-330)) 104) (($ (-2 (|:| |localSymbols| (-1177)) (|:| -3089 (-642 (-330))))) 102) (($ (-1262 (-339 (-2401) (-2401 (QUOTE X)) (-697)))) 98))) -(((-80 |#1|) (-13 (-441) (-10 -8 (-15 -2390 ($ (-1262 (-339 (-2401) (-2401 (QUOTE X)) (-697))))))) (-1173)) (T -80)) -((-2390 (*1 *1 *2) (-12 (-5 *2 (-1262 (-339 (-2401) (-2401 (QUOTE X)) (-697)))) (-5 *1 (-80 *3)) (-14 *3 (-1173))))) -(-13 (-441) (-10 -8 (-15 -2390 ($ (-1262 (-339 (-2401) (-2401 (QUOTE X)) (-697))))))) -((-2849 (((-3 $ "failed") (-1262 (-316 (-379)))) 79) (((-3 $ "failed") (-1262 (-316 (-564)))) 68) (((-3 $ "failed") (-1262 (-950 (-379)))) 99) (((-3 $ "failed") (-1262 (-950 (-564)))) 89) (((-3 $ "failed") (-1262 (-407 (-950 (-379))))) 57) (((-3 $ "failed") (-1262 (-407 (-950 (-564))))) 44)) (-1687 (($ (-1262 (-316 (-379)))) 75) (($ (-1262 (-316 (-564)))) 64) (($ (-1262 (-950 (-379)))) 95) (($ (-1262 (-950 (-564)))) 85) (($ (-1262 (-407 (-950 (-379))))) 53) (($ (-1262 (-407 (-950 (-564))))) 37)) (-2056 (((-1267) $) 125)) (-2390 (((-860) $) 119) (($ (-642 (-330))) 110) (($ (-330)) 116) (($ (-2 (|:| |localSymbols| (-1177)) (|:| -3089 (-642 (-330))))) 114) (($ (-1262 (-339 (-2401) (-2401 (QUOTE X)) (-697)))) 36))) -(((-81 |#1|) (-13 (-441) (-614 (-1262 (-339 (-2401) (-2401 (QUOTE X)) (-697))))) (-1173)) (T -81)) -NIL -(-13 (-441) (-614 (-1262 (-339 (-2401) (-2401 (QUOTE X)) (-697))))) -((-2849 (((-3 $ "failed") (-1262 (-316 (-379)))) 98) (((-3 $ "failed") (-1262 (-316 (-564)))) 87) (((-3 $ "failed") (-1262 (-950 (-379)))) 118) (((-3 $ "failed") (-1262 (-950 (-564)))) 108) (((-3 $ "failed") (-1262 (-407 (-950 (-379))))) 76) (((-3 $ "failed") (-1262 (-407 (-950 (-564))))) 63)) (-1687 (($ (-1262 (-316 (-379)))) 94) (($ (-1262 (-316 (-564)))) 83) (($ (-1262 (-950 (-379)))) 114) (($ (-1262 (-950 (-564)))) 104) (($ (-1262 (-407 (-950 (-379))))) 72) (($ (-1262 (-407 (-950 (-564))))) 56)) (-2056 (((-1267) $) 48)) (-2390 (((-860) $) 42) (($ (-642 (-330))) 32) (($ (-330)) 35) (($ (-2 (|:| |localSymbols| (-1177)) (|:| -3089 (-642 (-330))))) 38) (($ (-1262 (-339 (-2401 (QUOTE X) (QUOTE -2380)) (-2401) (-697)))) 33))) -(((-82 |#1|) (-13 (-441) (-10 -8 (-15 -2390 ($ (-1262 (-339 (-2401 (QUOTE X) (QUOTE -2380)) (-2401) (-697))))))) (-1173)) (T -82)) -((-2390 (*1 *1 *2) (-12 (-5 *2 (-1262 (-339 (-2401 (QUOTE X) (QUOTE -2380)) (-2401) (-697)))) (-5 *1 (-82 *3)) (-14 *3 (-1173))))) -(-13 (-441) (-10 -8 (-15 -2390 ($ (-1262 (-339 (-2401 (QUOTE X) (QUOTE -2380)) (-2401) (-697))))))) -((-2849 (((-3 $ "failed") (-687 (-316 (-379)))) 118) (((-3 $ "failed") (-687 (-316 (-564)))) 107) (((-3 $ "failed") (-687 (-950 (-379)))) 140) (((-3 $ "failed") (-687 (-950 (-564)))) 129) (((-3 $ "failed") (-687 (-407 (-950 (-379))))) 96) (((-3 $ "failed") (-687 (-407 (-950 (-564))))) 83)) (-1687 (($ (-687 (-316 (-379)))) 114) (($ (-687 (-316 (-564)))) 103) (($ (-687 (-950 (-379)))) 136) (($ (-687 (-950 (-564)))) 125) (($ (-687 (-407 (-950 (-379))))) 92) (($ (-687 (-407 (-950 (-564))))) 76)) (-2056 (((-1267) $) 66)) (-2390 (((-860) $) 53) (($ (-642 (-330))) 60) (($ (-330)) 49) (($ (-2 (|:| |localSymbols| (-1177)) (|:| -3089 (-642 (-330))))) 58) (($ (-687 (-339 (-2401 (QUOTE X) (QUOTE -2380)) (-2401) (-697)))) 50))) -(((-83 |#1|) (-13 (-384) (-10 -8 (-15 -2390 ($ (-687 (-339 (-2401 (QUOTE X) (QUOTE -2380)) (-2401) (-697))))))) (-1173)) (T -83)) -((-2390 (*1 *1 *2) (-12 (-5 *2 (-687 (-339 (-2401 (QUOTE X) (QUOTE -2380)) (-2401) (-697)))) (-5 *1 (-83 *3)) (-14 *3 (-1173))))) -(-13 (-384) (-10 -8 (-15 -2390 ($ (-687 (-339 (-2401 (QUOTE X) (QUOTE -2380)) (-2401) (-697))))))) -((-2849 (((-3 $ "failed") (-687 (-316 (-379)))) 113) (((-3 $ "failed") (-687 (-316 (-564)))) 101) (((-3 $ "failed") (-687 (-950 (-379)))) 135) (((-3 $ "failed") (-687 (-950 (-564)))) 124) (((-3 $ "failed") (-687 (-407 (-950 (-379))))) 89) (((-3 $ "failed") (-687 (-407 (-950 (-564))))) 75)) (-1687 (($ (-687 (-316 (-379)))) 109) (($ (-687 (-316 (-564)))) 97) (($ (-687 (-950 (-379)))) 131) (($ (-687 (-950 (-564)))) 120) (($ (-687 (-407 (-950 (-379))))) 85) (($ (-687 (-407 (-950 (-564))))) 68)) (-2056 (((-1267) $) 60)) (-2390 (((-860) $) 54) (($ (-642 (-330))) 48) (($ (-330)) 51) (($ (-2 (|:| |localSymbols| (-1177)) (|:| -3089 (-642 (-330))))) 45) (($ (-687 (-339 (-2401 (QUOTE X)) (-2401) (-697)))) 46))) -(((-84 |#1|) (-13 (-384) (-10 -8 (-15 -2390 ($ (-687 (-339 (-2401 (QUOTE X)) (-2401) (-697))))))) (-1173)) (T -84)) -((-2390 (*1 *1 *2) (-12 (-5 *2 (-687 (-339 (-2401 (QUOTE X)) (-2401) (-697)))) (-5 *1 (-84 *3)) (-14 *3 (-1173))))) -(-13 (-384) (-10 -8 (-15 -2390 ($ (-687 (-339 (-2401 (QUOTE X)) (-2401) (-697))))))) -((-2849 (((-3 $ "failed") (-1262 (-316 (-379)))) 105) (((-3 $ "failed") (-1262 (-316 (-564)))) 94) (((-3 $ "failed") (-1262 (-950 (-379)))) 125) (((-3 $ "failed") (-1262 (-950 (-564)))) 115) (((-3 $ "failed") (-1262 (-407 (-950 (-379))))) 83) (((-3 $ "failed") (-1262 (-407 (-950 (-564))))) 70)) (-1687 (($ (-1262 (-316 (-379)))) 101) (($ (-1262 (-316 (-564)))) 90) (($ (-1262 (-950 (-379)))) 121) (($ (-1262 (-950 (-564)))) 111) (($ (-1262 (-407 (-950 (-379))))) 79) (($ (-1262 (-407 (-950 (-564))))) 63)) (-2056 (((-1267) $) 47)) (-2390 (((-860) $) 41) (($ (-642 (-330))) 50) (($ (-330)) 37) (($ (-2 (|:| |localSymbols| (-1177)) (|:| -3089 (-642 (-330))))) 53) (($ (-1262 (-339 (-2401 (QUOTE X)) (-2401) (-697)))) 38))) -(((-85 |#1|) (-13 (-441) (-10 -8 (-15 -2390 ($ (-1262 (-339 (-2401 (QUOTE X)) (-2401) (-697))))))) (-1173)) (T -85)) -((-2390 (*1 *1 *2) (-12 (-5 *2 (-1262 (-339 (-2401 (QUOTE X)) (-2401) (-697)))) (-5 *1 (-85 *3)) (-14 *3 (-1173))))) -(-13 (-441) (-10 -8 (-15 -2390 ($ (-1262 (-339 (-2401 (QUOTE X)) (-2401) (-697))))))) -((-2849 (((-3 $ "failed") (-1262 (-316 (-379)))) 80) (((-3 $ "failed") (-1262 (-316 (-564)))) 69) (((-3 $ "failed") (-1262 (-950 (-379)))) 100) (((-3 $ "failed") (-1262 (-950 (-564)))) 90) (((-3 $ "failed") (-1262 (-407 (-950 (-379))))) 58) (((-3 $ "failed") (-1262 (-407 (-950 (-564))))) 45)) (-1687 (($ (-1262 (-316 (-379)))) 76) (($ (-1262 (-316 (-564)))) 65) (($ (-1262 (-950 (-379)))) 96) (($ (-1262 (-950 (-564)))) 86) (($ (-1262 (-407 (-950 (-379))))) 54) (($ (-1262 (-407 (-950 (-564))))) 38)) (-2056 (((-1267) $) 126)) (-2390 (((-860) $) 120) (($ (-642 (-330))) 111) (($ (-330)) 117) (($ (-2 (|:| |localSymbols| (-1177)) (|:| -3089 (-642 (-330))))) 115) (($ (-1262 (-339 (-2401 (QUOTE X)) (-2401 (QUOTE -2380)) (-697)))) 37))) -(((-86 |#1|) (-13 (-441) (-10 -8 (-15 -2390 ($ (-1262 (-339 (-2401 (QUOTE X)) (-2401 (QUOTE -2380)) (-697))))))) (-1173)) (T -86)) -((-2390 (*1 *1 *2) (-12 (-5 *2 (-1262 (-339 (-2401 (QUOTE X)) (-2401 (QUOTE -2380)) (-697)))) (-5 *1 (-86 *3)) (-14 *3 (-1173))))) -(-13 (-441) (-10 -8 (-15 -2390 ($ (-1262 (-339 (-2401 (QUOTE X)) (-2401 (QUOTE -2380)) (-697))))))) -((-2849 (((-3 $ "failed") (-687 (-316 (-379)))) 117) (((-3 $ "failed") (-687 (-316 (-564)))) 105) (((-3 $ "failed") (-687 (-950 (-379)))) 139) (((-3 $ "failed") (-687 (-950 (-564)))) 128) (((-3 $ "failed") (-687 (-407 (-950 (-379))))) 93) (((-3 $ "failed") (-687 (-407 (-950 (-564))))) 79)) (-1687 (($ (-687 (-316 (-379)))) 113) (($ (-687 (-316 (-564)))) 101) (($ (-687 (-950 (-379)))) 135) (($ (-687 (-950 (-564)))) 124) (($ (-687 (-407 (-950 (-379))))) 89) (($ (-687 (-407 (-950 (-564))))) 72)) (-2056 (((-1267) $) 63)) (-2390 (((-860) $) 57) (($ (-642 (-330))) 47) (($ (-330)) 54) (($ (-2 (|:| |localSymbols| (-1177)) (|:| -3089 (-642 (-330))))) 52) (($ (-687 (-339 (-2401 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2401) (-697)))) 48))) -(((-87 |#1|) (-13 (-384) (-10 -8 (-15 -2390 ($ (-687 (-339 (-2401 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2401) (-697))))))) (-1173)) (T -87)) -((-2390 (*1 *1 *2) (-12 (-5 *2 (-687 (-339 (-2401 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2401) (-697)))) (-5 *1 (-87 *3)) (-14 *3 (-1173))))) -(-13 (-384) (-10 -8 (-15 -2390 ($ (-687 (-339 (-2401 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2401) (-697))))))) -((-2056 (((-1267) $) 45)) (-2390 (((-860) $) 39) (($ (-1262 (-697))) 101) (($ (-642 (-330))) 31) (($ (-330)) 36) (($ (-2 (|:| |localSymbols| (-1177)) (|:| -3089 (-642 (-330))))) 34))) -(((-88 |#1|) (-440) (-1173)) (T -88)) -NIL -(-440) -((-2849 (((-3 $ "failed") (-316 (-379))) 48) (((-3 $ "failed") (-316 (-564))) 53) (((-3 $ "failed") (-950 (-379))) 57) (((-3 $ "failed") (-950 (-564))) 61) (((-3 $ "failed") (-407 (-950 (-379)))) 43) (((-3 $ "failed") (-407 (-950 (-564)))) 36)) (-1687 (($ (-316 (-379))) 46) (($ (-316 (-564))) 51) (($ (-950 (-379))) 55) (($ (-950 (-564))) 59) (($ (-407 (-950 (-379)))) 41) (($ (-407 (-950 (-564)))) 33)) (-2056 (((-1267) $) 91)) (-2390 (((-860) $) 85) (($ (-642 (-330))) 79) (($ (-330)) 82) (($ (-2 (|:| |localSymbols| (-1177)) (|:| -3089 (-642 (-330))))) 77) (($ (-339 (-2401 (QUOTE X)) (-2401 (QUOTE -2380)) (-697))) 32))) -(((-89 |#1|) (-13 (-396) (-10 -8 (-15 -2390 ($ (-339 (-2401 (QUOTE X)) (-2401 (QUOTE -2380)) (-697)))))) (-1173)) (T -89)) -((-2390 (*1 *1 *2) (-12 (-5 *2 (-339 (-2401 (QUOTE X)) (-2401 (QUOTE -2380)) (-697))) (-5 *1 (-89 *3)) (-14 *3 (-1173))))) -(-13 (-396) (-10 -8 (-15 -2390 ($ (-339 (-2401 (QUOTE X)) (-2401 (QUOTE -2380)) (-697)))))) -((-1807 (((-1262 (-687 |#1|)) (-687 |#1|)) 65)) (-2393 (((-2 (|:| -3544 (-687 |#1|)) (|:| |vec| (-1262 (-642 (-919))))) |#2| (-919)) 54)) (-3771 (((-2 (|:| |minor| (-642 (-919))) (|:| -3359 |#2|) (|:| |minors| (-642 (-642 (-919)))) (|:| |ops| (-642 |#2|))) |#2| (-919)) 76 (|has| |#1| (-363))))) -(((-90 |#1| |#2|) (-10 -7 (-15 -2393 ((-2 (|:| -3544 (-687 |#1|)) (|:| |vec| (-1262 (-642 (-919))))) |#2| (-919))) (-15 -1807 ((-1262 (-687 |#1|)) (-687 |#1|))) (IF (|has| |#1| (-363)) (-15 -3771 ((-2 (|:| |minor| (-642 (-919))) (|:| -3359 |#2|) (|:| |minors| (-642 (-642 (-919)))) (|:| |ops| (-642 |#2|))) |#2| (-919))) |%noBranch|)) (-556) (-654 |#1|)) (T -90)) -((-3771 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *5 (-556)) (-5 *2 (-2 (|:| |minor| (-642 (-919))) (|:| -3359 *3) (|:| |minors| (-642 (-642 (-919)))) (|:| |ops| (-642 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-919)) (-4 *3 (-654 *5)))) (-1807 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-1262 (-687 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-687 *4)) (-4 *5 (-654 *4)))) (-2393 (*1 *2 *3 *4) (-12 (-4 *5 (-556)) (-5 *2 (-2 (|:| -3544 (-687 *5)) (|:| |vec| (-1262 (-642 (-919)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-919)) (-4 *3 (-654 *5))))) -(-10 -7 (-15 -2393 ((-2 (|:| -3544 (-687 |#1|)) (|:| |vec| (-1262 (-642 (-919))))) |#2| (-919))) (-15 -1807 ((-1262 (-687 |#1|)) (-687 |#1|))) (IF (|has| |#1| (-363)) (-15 -3771 ((-2 (|:| |minor| (-642 (-919))) (|:| -3359 |#2|) (|:| |minors| (-642 (-642 (-919)))) (|:| |ops| (-642 |#2|))) |#2| (-919))) |%noBranch|)) -((-2856 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-3844 ((|#1| $) 42)) (-3442 (((-112) $ (-769)) NIL)) (-2822 (($) NIL T CONST)) (-1881 ((|#1| |#1| $) 37)) (-3949 ((|#1| $) 35)) (-2018 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-3769 (((-112) $ (-769)) NIL)) (-3541 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2533 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-1857 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#1| |#1|) $) NIL)) (-4145 (((-112) $ (-769)) NIL)) (-1778 (((-1155) $) NIL (|has| |#1| (-1097)))) (-3220 ((|#1| $) NIL)) (-1668 (($ |#1| $) 38)) (-3999 (((-1117) $) NIL (|has| |#1| (-1097)))) (-4314 ((|#1| $) 36)) (-4094 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-2478 (((-112) $ $) NIL)) (-4109 (((-112) $) 18)) (-2179 (($) 46)) (-2085 (((-769) $) 33)) (-4010 (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-769) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3865 (($ $) 17)) (-2390 (((-860) $) 32 (|has| |#1| (-611 (-860))))) (-1600 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-4160 (($ (-642 |#1|)) NIL)) (-1345 (($ (-642 |#1|)) 44)) (-3295 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2821 (((-112) $ $) 15 (|has| |#1| (-1097)))) (-2158 (((-769) $) 12 (|has| $ (-6 -4410))))) -(((-91 |#1|) (-13 (-1118 |#1|) (-10 -8 (-15 -1345 ($ (-642 |#1|))))) (-1097)) (T -91)) -((-1345 (*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1097)) (-5 *1 (-91 *3))))) -(-13 (-1118 |#1|) (-10 -8 (-15 -1345 ($ (-642 |#1|))))) -((-2390 (((-860) $) 13) (($ (-1178)) 9) (((-1178) $) 8))) -(((-92 |#1|) (-10 -8 (-15 -2390 ((-1178) |#1|)) (-15 -2390 (|#1| (-1178))) (-15 -2390 ((-860) |#1|))) (-93)) (T -92)) -NIL -(-10 -8 (-15 -2390 ((-1178) |#1|)) (-15 -2390 (|#1| (-1178))) (-15 -2390 ((-860) |#1|))) -((-2856 (((-112) $ $) 7)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2390 (((-860) $) 12) (($ (-1178)) 17) (((-1178) $) 16)) (-1600 (((-112) $ $) 9)) (-2821 (((-112) $ $) 6))) +((-3989 (((-112) $) 12)) (-3080 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-409 (-566)) $) 25) (($ $ (-409 (-566))) NIL))) +(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-409 (-566)))) (-15 * (|#1| (-409 (-566)) |#1|)) (-15 -3989 ((-112) |#1|)) (-15 -3080 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 * (|#1| (-921) |#1|))) (-47 |#2| |#3|) (-1049) (-792)) (T -46)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-409 (-566)))) (-15 * (|#1| (-409 (-566)) |#1|)) (-15 -3989 ((-112) |#1|)) (-15 -3080 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 * (|#1| (-921) |#1|))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) 63 (|has| |#1| (-558)))) (-3087 (($ $) 64 (|has| |#1| (-558)))) (-1716 (((-112) $) 66 (|has| |#1| (-558)))) (-3174 (((-3 $ "failed") $ $) 20)) (-1811 (($) 18 T CONST)) (-3565 (($ $) 72)) (-3757 (((-3 $ "failed") $) 37)) (-2264 (((-112) $) 35)) (-3989 (((-112) $) 74)) (-2463 (($ |#1| |#2|) 73)) (-3080 (($ (-1 |#1| |#1|) $) 75)) (-2608 (($ $) 77)) (-2622 ((|#1| $) 78)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-2976 (((-3 $ "failed") $ $) 62 (|has| |#1| (-558)))) (-1630 ((|#2| $) 76)) (-2479 (((-862) $) 12) (($ (-566)) 33) (($ (-409 (-566))) 69 (|has| |#1| (-38 (-409 (-566))))) (($ $) 61 (|has| |#1| (-558))) (($ |#1|) 59 (|has| |#1| (-172)))) (-3025 ((|#1| $ |#2|) 71)) (-2645 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-1558 (((-771)) 32 T CONST)) (-3900 (((-112) $ $) 9)) (-1333 (((-112) $ $) 65 (|has| |#1| (-558)))) (-2446 (($) 19 T CONST)) (-2459 (($) 34 T CONST)) (-2952 (((-112) $ $) 6)) (-3077 (($ $ |#1|) 70 (|has| |#1| (-365)))) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-409 (-566)) $) 68 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 67 (|has| |#1| (-38 (-409 (-566))))))) +(((-47 |#1| |#2|) (-140) (-1049) (-792)) (T -47)) +((-2622 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-792)) (-4 *2 (-1049)))) (-2608 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-792)))) (-1630 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-792)))) (-3080 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792)))) (-3989 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792)) (-5 *2 (-112)))) (-2463 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-792)))) (-3565 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-792)))) (-3025 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-792)) (-4 *2 (-1049)))) (-3077 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-792)) (-4 *2 (-365))))) +(-13 (-1049) (-111 |t#1| |t#1|) (-10 -8 (-15 -2622 (|t#1| $)) (-15 -2608 ($ $)) (-15 -1630 (|t#2| $)) (-15 -3080 ($ (-1 |t#1| |t#1|) $)) (-15 -3989 ((-112) $)) (-15 -2463 ($ |t#1| |t#2|)) (-15 -3565 ($ $)) (-15 -3025 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-365)) (-15 -3077 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-6 (-172)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-558)) (-6 (-558)) |%noBranch|) (IF (|has| |t#1| (-38 (-409 (-566)))) (-6 (-38 (-409 (-566)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-558)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-409 (-566)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2809 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #0#) |has| |#1| (-38 (-409 (-566)))) ((-616 (-566)) . T) ((-616 |#1|) |has| |#1| (-172)) ((-616 $) |has| |#1| (-558)) ((-613 (-862)) . T) ((-172) -2809 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-291) |has| |#1| (-558)) ((-558) |has| |#1| (-558)) ((-646 #0#) |has| |#1| (-38 (-409 (-566)))) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #0#) |has| |#1| (-38 (-409 (-566)))) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #0#) |has| |#1| (-38 (-409 (-566)))) ((-640 |#1|) |has| |#1| (-172)) ((-640 $) |has| |#1| (-558)) ((-717 #0#) |has| |#1| (-38 (-409 (-566)))) ((-717 |#1|) |has| |#1| (-172)) ((-717 $) |has| |#1| (-558)) ((-726) . T) ((-1051 #0#) |has| |#1| (-38 (-409 (-566)))) ((-1051 |#1|) . T) ((-1051 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-1056 #0#) |has| |#1| (-38 (-409 (-566)))) ((-1056 |#1|) . T) ((-1056 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) +((-2986 (((-112) $ $) NIL)) (-1498 (((-644 $) (-1171 $) (-1175)) NIL) (((-644 $) (-1171 $)) NIL) (((-644 $) (-952 $)) NIL)) (-1625 (($ (-1171 $) (-1175)) NIL) (($ (-1171 $)) NIL) (($ (-952 $)) NIL)) (-2845 (((-112) $) 11)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-1716 (((-112) $) NIL)) (-2192 (((-644 (-612 $)) $) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-3739 (($ $ (-295 $)) NIL) (($ $ (-644 (-295 $))) NIL) (($ $ (-644 (-612 $)) (-644 $)) NIL)) (-3980 (($ $) NIL)) (-3348 (((-420 $) $) NIL)) (-2338 (($ $) NIL)) (-2761 (((-112) $ $) NIL)) (-1811 (($) NIL T CONST)) (-4386 (((-644 $) (-1171 $) (-1175)) NIL) (((-644 $) (-1171 $)) NIL) (((-644 $) (-952 $)) NIL)) (-3388 (($ (-1171 $) (-1175)) NIL) (($ (-1171 $)) NIL) (($ (-952 $)) NIL)) (-2980 (((-3 (-612 $) "failed") $) NIL) (((-3 (-566) "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL)) (-1709 (((-612 $) $) NIL) (((-566) $) NIL) (((-409 (-566)) $) NIL)) (-2925 (($ $ $) NIL)) (-2275 (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL) (((-689 (-566)) (-689 $)) NIL) (((-2 (|:| -4196 (-689 (-409 (-566)))) (|:| |vec| (-1264 (-409 (-566))))) (-689 $) (-1264 $)) NIL) (((-689 (-409 (-566))) (-689 $)) NIL)) (-1838 (($ $) NIL)) (-3757 (((-3 $ "failed") $) NIL)) (-2937 (($ $ $) NIL)) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) NIL)) (-4188 (((-112) $) NIL)) (-4218 (($ $) NIL) (($ (-644 $)) NIL)) (-3909 (((-644 (-114)) $) NIL)) (-4272 (((-114) (-114)) NIL)) (-2264 (((-112) $) 14)) (-3400 (((-112) $) NIL (|has| $ (-1038 (-566))))) (-4157 (((-1124 (-566) (-612 $)) $) NIL)) (-3146 (($ $ (-566)) NIL)) (-1398 (((-1171 $) (-1171 $) (-612 $)) NIL) (((-1171 $) (-1171 $) (-644 (-612 $))) NIL) (($ $ (-612 $)) NIL) (($ $ (-644 (-612 $))) NIL)) (-2495 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3223 (((-1171 $) (-612 $)) NIL (|has| $ (-1049)))) (-3080 (($ (-1 $ $) (-612 $)) NIL)) (-3314 (((-3 (-612 $) "failed") $) NIL)) (-2120 (($ (-644 $)) NIL) (($ $ $) NIL)) (-3151 (((-1157) $) NIL)) (-2272 (((-644 (-612 $)) $) NIL)) (-3018 (($ (-114) $) NIL) (($ (-114) (-644 $)) NIL)) (-1896 (((-112) $ (-114)) NIL) (((-112) $ (-1175)) NIL)) (-2577 (($ $) NIL)) (-3117 (((-771) $) NIL)) (-4059 (((-1119) $) NIL)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2162 (($ (-644 $)) NIL) (($ $ $) NIL)) (-3897 (((-112) $ $) NIL) (((-112) $ (-1175)) NIL)) (-2325 (((-420 $) $) NIL)) (-2585 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL)) (-2976 (((-3 $ "failed") $ $) NIL)) (-2840 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2206 (((-112) $) NIL (|has| $ (-1038 (-566))))) (-3297 (($ $ (-612 $) $) NIL) (($ $ (-644 (-612 $)) (-644 $)) NIL) (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-644 (-1175)) (-644 (-1 $ $))) NIL) (($ $ (-644 (-1175)) (-644 (-1 $ (-644 $)))) NIL) (($ $ (-1175) (-1 $ (-644 $))) NIL) (($ $ (-1175) (-1 $ $)) NIL) (($ $ (-644 (-114)) (-644 (-1 $ $))) NIL) (($ $ (-644 (-114)) (-644 (-1 $ (-644 $)))) NIL) (($ $ (-114) (-1 $ (-644 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-1383 (((-771) $) NIL)) (-4376 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-644 $)) NIL)) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL)) (-3683 (($ $) NIL) (($ $ $) NIL)) (-3526 (($ $ (-771)) NIL) (($ $) NIL)) (-4167 (((-1124 (-566) (-612 $)) $) NIL)) (-2301 (($ $) NIL (|has| $ (-1049)))) (-3136 (((-381) $) NIL) (((-225) $) NIL) (((-169 (-381)) $) NIL)) (-2479 (((-862) $) NIL) (($ (-612 $)) NIL) (($ (-409 (-566))) NIL) (($ $) NIL) (($ (-566)) NIL) (($ (-1124 (-566) (-612 $))) NIL)) (-1558 (((-771)) NIL T CONST)) (-3749 (($ $) NIL) (($ (-644 $)) NIL)) (-1540 (((-112) (-114)) NIL)) (-3900 (((-112) $ $) NIL)) (-1333 (((-112) $ $) NIL)) (-2446 (($) 7 T CONST)) (-2459 (($) 12 T CONST)) (-2834 (($ $ (-771)) NIL) (($ $) NIL)) (-2952 (((-112) $ $) 16)) (-3077 (($ $ $) NIL)) (-3065 (($ $ $) 15) (($ $) NIL)) (-3052 (($ $ $) NIL)) (** (($ $ (-409 (-566))) NIL) (($ $ (-566)) NIL) (($ $ (-771)) NIL) (($ $ (-921)) NIL)) (* (($ (-409 (-566)) $) NIL) (($ $ (-409 (-566))) NIL) (($ $ $) NIL) (($ (-566) $) NIL) (($ (-771) $) NIL) (($ (-921) $) NIL))) +(((-48) (-13 (-303) (-27) (-1038 (-566)) (-1038 (-409 (-566))) (-639 (-566)) (-1022) (-639 (-409 (-566))) (-147) (-614 (-169 (-381))) (-233) (-10 -8 (-15 -2479 ($ (-1124 (-566) (-612 $)))) (-15 -4157 ((-1124 (-566) (-612 $)) $)) (-15 -4167 ((-1124 (-566) (-612 $)) $)) (-15 -1838 ($ $)) (-15 -1398 ((-1171 $) (-1171 $) (-612 $))) (-15 -1398 ((-1171 $) (-1171 $) (-644 (-612 $)))) (-15 -1398 ($ $ (-612 $))) (-15 -1398 ($ $ (-644 (-612 $))))))) (T -48)) +((-2479 (*1 *1 *2) (-12 (-5 *2 (-1124 (-566) (-612 (-48)))) (-5 *1 (-48)))) (-4157 (*1 *2 *1) (-12 (-5 *2 (-1124 (-566) (-612 (-48)))) (-5 *1 (-48)))) (-4167 (*1 *2 *1) (-12 (-5 *2 (-1124 (-566) (-612 (-48)))) (-5 *1 (-48)))) (-1838 (*1 *1 *1) (-5 *1 (-48))) (-1398 (*1 *2 *2 *3) (-12 (-5 *2 (-1171 (-48))) (-5 *3 (-612 (-48))) (-5 *1 (-48)))) (-1398 (*1 *2 *2 *3) (-12 (-5 *2 (-1171 (-48))) (-5 *3 (-644 (-612 (-48)))) (-5 *1 (-48)))) (-1398 (*1 *1 *1 *2) (-12 (-5 *2 (-612 (-48))) (-5 *1 (-48)))) (-1398 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-612 (-48)))) (-5 *1 (-48))))) +(-13 (-303) (-27) (-1038 (-566)) (-1038 (-409 (-566))) (-639 (-566)) (-1022) (-639 (-409 (-566))) (-147) (-614 (-169 (-381))) (-233) (-10 -8 (-15 -2479 ($ (-1124 (-566) (-612 $)))) (-15 -4157 ((-1124 (-566) (-612 $)) $)) (-15 -4167 ((-1124 (-566) (-612 $)) $)) (-15 -1838 ($ $)) (-15 -1398 ((-1171 $) (-1171 $) (-612 $))) (-15 -1398 ((-1171 $) (-1171 $) (-644 (-612 $)))) (-15 -1398 ($ $ (-612 $))) (-15 -1398 ($ $ (-644 (-612 $)))))) +((-2986 (((-112) $ $) NIL)) (-1622 (((-644 (-508)) $) 17)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) 7)) (-2610 (((-1180) $) 18)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-49) (-13 (-1099) (-10 -8 (-15 -1622 ((-644 (-508)) $)) (-15 -2610 ((-1180) $))))) (T -49)) +((-1622 (*1 *2 *1) (-12 (-5 *2 (-644 (-508))) (-5 *1 (-49)))) (-2610 (*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-49))))) +(-13 (-1099) (-10 -8 (-15 -1622 ((-644 (-508)) $)) (-15 -2610 ((-1180) $)))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) 87)) (-3174 (((-3 $ "failed") $ $) NIL)) (-1811 (($) NIL T CONST)) (-2205 (((-112) $) 30)) (-2980 (((-3 |#1| "failed") $) 33)) (-1709 ((|#1| $) 34)) (-3565 (($ $) 40)) (-3757 (((-3 $ "failed") $) NIL)) (-2264 (((-112) $) NIL)) (-3080 (($ (-1 |#1| |#1|) $) NIL)) (-2622 ((|#1| $) 31)) (-4228 (($ $) 76)) (-3151 (((-1157) $) NIL)) (-2028 (((-112) $) 43)) (-4059 (((-1119) $) NIL)) (-4086 (($ (-771)) 74)) (-3571 (($ (-644 (-566))) 75)) (-1630 (((-771) $) 44)) (-2479 (((-862) $) 93) (($ (-566)) 71) (($ |#1|) 69)) (-3025 ((|#1| $ $) 28)) (-1558 (((-771)) 73 T CONST)) (-3900 (((-112) $ $) NIL)) (-2446 (($) 45 T CONST)) (-2459 (($) 17 T CONST)) (-2952 (((-112) $ $) NIL)) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) 66)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 67) (($ |#1| $) 60))) +(((-50 |#1| |#2|) (-13 (-620 |#1|) (-1038 |#1|) (-10 -8 (-15 -2622 (|#1| $)) (-15 -4228 ($ $)) (-15 -3565 ($ $)) (-15 -3025 (|#1| $ $)) (-15 -4086 ($ (-771))) (-15 -3571 ($ (-644 (-566)))) (-15 -2028 ((-112) $)) (-15 -2205 ((-112) $)) (-15 -1630 ((-771) $)) (-15 -3080 ($ (-1 |#1| |#1|) $)))) (-1049) (-644 (-1175))) (T -50)) +((-2622 (*1 *2 *1) (-12 (-4 *2 (-1049)) (-5 *1 (-50 *2 *3)) (-14 *3 (-644 (-1175))))) (-4228 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1049)) (-14 *3 (-644 (-1175))))) (-3565 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1049)) (-14 *3 (-644 (-1175))))) (-3025 (*1 *2 *1 *1) (-12 (-4 *2 (-1049)) (-5 *1 (-50 *2 *3)) (-14 *3 (-644 (-1175))))) (-4086 (*1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1049)) (-14 *4 (-644 (-1175))))) (-3571 (*1 *1 *2) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1049)) (-14 *4 (-644 (-1175))))) (-2028 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1049)) (-14 *4 (-644 (-1175))))) (-2205 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1049)) (-14 *4 (-644 (-1175))))) (-1630 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1049)) (-14 *4 (-644 (-1175))))) (-3080 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1049)) (-5 *1 (-50 *3 *4)) (-14 *4 (-644 (-1175)))))) +(-13 (-620 |#1|) (-1038 |#1|) (-10 -8 (-15 -2622 (|#1| $)) (-15 -4228 ($ $)) (-15 -3565 ($ $)) (-15 -3025 (|#1| $ $)) (-15 -4086 ($ (-771))) (-15 -3571 ($ (-644 (-566)))) (-15 -2028 ((-112) $)) (-15 -2205 ((-112) $)) (-15 -1630 ((-771) $)) (-15 -3080 ($ (-1 |#1| |#1|) $)))) +((-2205 (((-112) (-52)) 13)) (-2980 (((-3 |#1| "failed") (-52)) 21)) (-1709 ((|#1| (-52)) 22)) (-2479 (((-52) |#1|) 18))) +(((-51 |#1|) (-10 -7 (-15 -2479 ((-52) |#1|)) (-15 -2980 ((-3 |#1| "failed") (-52))) (-15 -2205 ((-112) (-52))) (-15 -1709 (|#1| (-52)))) (-1214)) (T -51)) +((-1709 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1214)))) (-2205 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1214)))) (-2980 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1214)))) (-2479 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1214))))) +(-10 -7 (-15 -2479 ((-52) |#1|)) (-15 -2980 ((-3 |#1| "failed") (-52))) (-15 -2205 ((-112) (-52))) (-15 -1709 (|#1| (-52)))) +((-2986 (((-112) $ $) NIL)) (-1424 (((-1157) (-112)) 26)) (-3365 (((-862) $) 25)) (-2540 (((-774) $) 13)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-1565 (((-862) $) 17)) (-3283 (((-1103) $) 15)) (-2479 (((-862) $) 35)) (-3900 (((-112) $ $) NIL)) (-4172 (($ (-1103) (-774)) 36)) (-2952 (((-112) $ $) 19))) +(((-52) (-13 (-1099) (-10 -8 (-15 -4172 ($ (-1103) (-774))) (-15 -1565 ((-862) $)) (-15 -3365 ((-862) $)) (-15 -3283 ((-1103) $)) (-15 -2540 ((-774) $)) (-15 -1424 ((-1157) (-112)))))) (T -52)) +((-4172 (*1 *1 *2 *3) (-12 (-5 *2 (-1103)) (-5 *3 (-774)) (-5 *1 (-52)))) (-1565 (*1 *2 *1) (-12 (-5 *2 (-862)) (-5 *1 (-52)))) (-3365 (*1 *2 *1) (-12 (-5 *2 (-862)) (-5 *1 (-52)))) (-3283 (*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-52)))) (-2540 (*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-52)))) (-1424 (*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1157)) (-5 *1 (-52))))) +(-13 (-1099) (-10 -8 (-15 -4172 ($ (-1103) (-774))) (-15 -1565 ((-862) $)) (-15 -3365 ((-862) $)) (-15 -3283 ((-1103) $)) (-15 -2540 ((-774) $)) (-15 -1424 ((-1157) (-112))))) +((-4029 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 19))) +(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -4029 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1049) (-648 |#1|) (-852 |#1|)) (T -53)) +((-4029 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-648 *5)) (-4 *5 (-1049)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-852 *5))))) +(-10 -7 (-15 -4029 (|#2| |#3| (-1 |#2| |#2|) |#2|))) +((-3359 ((|#3| |#3| (-644 (-1175))) 46)) (-3042 ((|#3| (-644 (-1075 |#1| |#2| |#3|)) |#3| (-921)) 32) ((|#3| (-644 (-1075 |#1| |#2| |#3|)) |#3|) 31))) +(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -3042 (|#3| (-644 (-1075 |#1| |#2| |#3|)) |#3|)) (-15 -3042 (|#3| (-644 (-1075 |#1| |#2| |#3|)) |#3| (-921))) (-15 -3359 (|#3| |#3| (-644 (-1175))))) (-1099) (-13 (-1049) (-886 |#1|) (-614 (-892 |#1|))) (-13 (-432 |#2|) (-886 |#1|) (-614 (-892 |#1|)))) (T -54)) +((-3359 (*1 *2 *2 *3) (-12 (-5 *3 (-644 (-1175))) (-4 *4 (-1099)) (-4 *5 (-13 (-1049) (-886 *4) (-614 (-892 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-432 *5) (-886 *4) (-614 (-892 *4)))))) (-3042 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-644 (-1075 *5 *6 *2))) (-5 *4 (-921)) (-4 *5 (-1099)) (-4 *6 (-13 (-1049) (-886 *5) (-614 (-892 *5)))) (-4 *2 (-13 (-432 *6) (-886 *5) (-614 (-892 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-3042 (*1 *2 *3 *2) (-12 (-5 *3 (-644 (-1075 *4 *5 *2))) (-4 *4 (-1099)) (-4 *5 (-13 (-1049) (-886 *4) (-614 (-892 *4)))) (-4 *2 (-13 (-432 *5) (-886 *4) (-614 (-892 *4)))) (-5 *1 (-54 *4 *5 *2))))) +(-10 -7 (-15 -3042 (|#3| (-644 (-1075 |#1| |#2| |#3|)) |#3|)) (-15 -3042 (|#3| (-644 (-1075 |#1| |#2| |#3|)) |#3| (-921))) (-15 -3359 (|#3| |#3| (-644 (-1175))))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) 14)) (-2980 (((-3 (-771) "failed") $) 34)) (-1709 (((-771) $) NIL)) (-2264 (((-112) $) 16)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) 18)) (-2479 (((-862) $) 23) (($ (-771)) 29)) (-3900 (((-112) $ $) NIL)) (-3398 (($) 11 T CONST)) (-2952 (((-112) $ $) 20))) +(((-55) (-13 (-1099) (-1038 (-771)) (-10 -8 (-15 -3398 ($) -1573) (-15 -2845 ((-112) $)) (-15 -2264 ((-112) $))))) (T -55)) +((-3398 (*1 *1) (-5 *1 (-55))) (-2845 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) (-2264 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))) +(-13 (-1099) (-1038 (-771)) (-10 -8 (-15 -3398 ($) -1573) (-15 -2845 ((-112) $)) (-15 -2264 ((-112) $)))) +((-1453 (((-112) $ (-771)) 27)) (-1679 (($ $ (-566) |#3|) 66)) (-2145 (($ $ (-566) |#4|) 70)) (-3395 ((|#3| $ (-566)) 79)) (-3872 (((-644 |#2|) $) 47)) (-2756 (((-112) $ (-771)) 31)) (-1688 (((-112) |#2| $) 74)) (-3708 (($ (-1 |#2| |#2|) $) 55)) (-3080 (($ (-1 |#2| |#2|) $) 54) (($ (-1 |#2| |#2| |#2|) $ $) 58) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 62)) (-4106 (((-112) $ (-771)) 29)) (-4079 (($ $ |#2|) 52)) (-3966 (((-112) (-1 (-112) |#2|) $) 21)) (-4376 ((|#2| $ (-566) (-566)) NIL) ((|#2| $ (-566) (-566) |#2|) 35)) (-4068 (((-771) (-1 (-112) |#2|) $) 41) (((-771) |#2| $) 76)) (-3924 (($ $) 51)) (-4327 ((|#4| $ (-566)) 82)) (-2479 (((-862) $) 88)) (-3667 (((-112) (-1 (-112) |#2|) $) 20)) (-2952 (((-112) $ $) 73)) (-3002 (((-771) $) 32))) +(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2479 ((-862) |#1|)) (-15 -3080 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3080 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3708 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2145 (|#1| |#1| (-566) |#4|)) (-15 -1679 (|#1| |#1| (-566) |#3|)) (-15 -3872 ((-644 |#2|) |#1|)) (-15 -4327 (|#4| |#1| (-566))) (-15 -3395 (|#3| |#1| (-566))) (-15 -4376 (|#2| |#1| (-566) (-566) |#2|)) (-15 -4376 (|#2| |#1| (-566) (-566))) (-15 -4079 (|#1| |#1| |#2|)) (-15 -2952 ((-112) |#1| |#1|)) (-15 -1688 ((-112) |#2| |#1|)) (-15 -4068 ((-771) |#2| |#1|)) (-15 -4068 ((-771) (-1 (-112) |#2|) |#1|)) (-15 -3966 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3667 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3080 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3002 ((-771) |#1|)) (-15 -1453 ((-112) |#1| (-771))) (-15 -2756 ((-112) |#1| (-771))) (-15 -4106 ((-112) |#1| (-771))) (-15 -3924 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1214) (-375 |#2|) (-375 |#2|)) (T -56)) +NIL +(-10 -8 (-15 -2479 ((-862) |#1|)) (-15 -3080 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3080 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3708 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2145 (|#1| |#1| (-566) |#4|)) (-15 -1679 (|#1| |#1| (-566) |#3|)) (-15 -3872 ((-644 |#2|) |#1|)) (-15 -4327 (|#4| |#1| (-566))) (-15 -3395 (|#3| |#1| (-566))) (-15 -4376 (|#2| |#1| (-566) (-566) |#2|)) (-15 -4376 (|#2| |#1| (-566) (-566))) (-15 -4079 (|#1| |#1| |#2|)) (-15 -2952 ((-112) |#1| |#1|)) (-15 -1688 ((-112) |#2| |#1|)) (-15 -4068 ((-771) |#2| |#1|)) (-15 -4068 ((-771) (-1 (-112) |#2|) |#1|)) (-15 -3966 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3667 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3080 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3002 ((-771) |#1|)) (-15 -1453 ((-112) |#1| (-771))) (-15 -2756 ((-112) |#1| (-771))) (-15 -4106 ((-112) |#1| (-771))) (-15 -3924 (|#1| |#1|))) +((-2986 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-1453 (((-112) $ (-771)) 8)) (-3901 ((|#1| $ (-566) (-566) |#1|) 45)) (-1679 (($ $ (-566) |#2|) 43)) (-2145 (($ $ (-566) |#3|) 42)) (-1811 (($) 7 T CONST)) (-3395 ((|#2| $ (-566)) 47)) (-3719 ((|#1| $ (-566) (-566) |#1|) 44)) (-3653 ((|#1| $ (-566) (-566)) 49)) (-3872 (((-644 |#1|) $) 31)) (-2541 (((-771) $) 52)) (-4259 (($ (-771) (-771) |#1|) 58)) (-2552 (((-771) $) 51)) (-2756 (((-112) $ (-771)) 9)) (-3715 (((-566) $) 56)) (-1359 (((-566) $) 54)) (-4227 (((-644 |#1|) $) 30 (|has| $ (-6 -4417)))) (-1688 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-3113 (((-566) $) 55)) (-2701 (((-566) $) 53)) (-3708 (($ (-1 |#1| |#1|) $) 35)) (-3080 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-4106 (((-112) $ (-771)) 10)) (-3151 (((-1157) $) 22 (|has| |#1| (-1099)))) (-4059 (((-1119) $) 21 (|has| |#1| (-1099)))) (-4079 (($ $ |#1|) 57)) (-3966 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1844 (((-112) $ $) 14)) (-2788 (((-112) $) 11)) (-1737 (($) 12)) (-4376 ((|#1| $ (-566) (-566)) 50) ((|#1| $ (-566) (-566) |#1|) 48)) (-4068 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4417))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-3924 (($ $) 13)) (-4327 ((|#3| $ (-566)) 46)) (-2479 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-3900 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-3667 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4417)))) (-2952 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3002 (((-771) $) 6 (|has| $ (-6 -4417))))) +(((-57 |#1| |#2| |#3|) (-140) (-1214) (-375 |t#1|) (-375 |t#1|)) (T -57)) +((-3080 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1214)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-4259 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-771)) (-4 *3 (-1214)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-4079 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1214)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-3715 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1214)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-566)))) (-3113 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1214)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-566)))) (-1359 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1214)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-566)))) (-2701 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1214)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-566)))) (-2541 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1214)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-771)))) (-2552 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1214)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-771)))) (-4376 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-566)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-1214)))) (-3653 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-566)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-1214)))) (-4376 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-566)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1214)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)))) (-3395 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1214)) (-4 *5 (-375 *4)) (-4 *2 (-375 *4)))) (-4327 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1214)) (-4 *5 (-375 *4)) (-4 *2 (-375 *4)))) (-3872 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1214)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-644 *3)))) (-3901 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-566)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1214)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)))) (-3719 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-566)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1214)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)))) (-1679 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-566)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1214)) (-4 *3 (-375 *4)) (-4 *5 (-375 *4)))) (-2145 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-566)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1214)) (-4 *5 (-375 *4)) (-4 *3 (-375 *4)))) (-3708 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1214)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3080 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1214)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3080 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1214)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3))))) +(-13 (-491 |t#1|) (-10 -8 (-6 -4418) (-6 -4417) (-15 -4259 ($ (-771) (-771) |t#1|)) (-15 -4079 ($ $ |t#1|)) (-15 -3715 ((-566) $)) (-15 -3113 ((-566) $)) (-15 -1359 ((-566) $)) (-15 -2701 ((-566) $)) (-15 -2541 ((-771) $)) (-15 -2552 ((-771) $)) (-15 -4376 (|t#1| $ (-566) (-566))) (-15 -3653 (|t#1| $ (-566) (-566))) (-15 -4376 (|t#1| $ (-566) (-566) |t#1|)) (-15 -3395 (|t#2| $ (-566))) (-15 -4327 (|t#3| $ (-566))) (-15 -3872 ((-644 |t#1|) $)) (-15 -3901 (|t#1| $ (-566) (-566) |t#1|)) (-15 -3719 (|t#1| $ (-566) (-566) |t#1|)) (-15 -1679 ($ $ (-566) |t#2|)) (-15 -2145 ($ $ (-566) |t#3|)) (-15 -3080 ($ (-1 |t#1| |t#1|) $)) (-15 -3708 ($ (-1 |t#1| |t#1|) $)) (-15 -3080 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3080 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) +(((-34) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2809 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1099) |has| |#1| (-1099)) ((-1214) . T)) +((-2531 (((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 16)) (-1838 ((|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 18)) (-3080 (((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)) 13))) +(((-58 |#1| |#2|) (-10 -7 (-15 -2531 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -1838 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -3080 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) (-1214) (-1214)) (T -58)) +((-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1214)) (-4 *6 (-1214)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) (-1838 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1214)) (-4 *2 (-1214)) (-5 *1 (-58 *5 *2)))) (-2531 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1214)) (-4 *5 (-1214)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5))))) +(-10 -7 (-15 -2531 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -1838 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -3080 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) +((-2986 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2462 (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4418)))) (-4163 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-850)))) (-2893 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4418))) (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-850))))) (-1374 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-850)))) (-1453 (((-112) $ (-771)) NIL)) (-3901 ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4418))) ((|#1| $ (-1231 (-566)) |#1|) NIL (|has| $ (-6 -4418)))) (-3543 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-1811 (($) NIL T CONST)) (-2273 (($ $) NIL (|has| $ (-6 -4418)))) (-3877 (($ $) NIL)) (-4111 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-2628 (($ |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-1838 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4417)))) (-3719 ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4418)))) (-3653 ((|#1| $ (-566)) NIL)) (-4000 (((-566) (-1 (-112) |#1|) $) NIL) (((-566) |#1| $) NIL (|has| |#1| (-1099))) (((-566) |#1| $ (-566)) NIL (|has| |#1| (-1099)))) (-3872 (((-644 |#1|) $) NIL (|has| $ (-6 -4417)))) (-3650 (($ (-644 |#1|)) 11) (($ (-771) |#1|) 14)) (-4259 (($ (-771) |#1|) 13)) (-2756 (((-112) $ (-771)) NIL)) (-2755 (((-566) $) NIL (|has| (-566) (-850)))) (-1920 (($ $ $) NIL (|has| |#1| (-850)))) (-1330 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-850)))) (-4227 (((-644 |#1|) $) NIL (|has| $ (-6 -4417)))) (-1688 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-3831 (((-566) $) NIL (|has| (-566) (-850)))) (-3038 (($ $ $) NIL (|has| |#1| (-850)))) (-3708 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4106 (((-112) $ (-771)) NIL)) (-3151 (((-1157) $) NIL (|has| |#1| (-1099)))) (-4271 (($ |#1| $ (-566)) NIL) (($ $ $ (-566)) NIL)) (-3780 (((-644 (-566)) $) NIL)) (-1605 (((-112) (-566) $) NIL)) (-4059 (((-1119) $) NIL (|has| |#1| (-1099)))) (-4080 ((|#1| $) NIL (|has| (-566) (-850)))) (-2688 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4079 (($ $ |#1|) NIL (|has| $ (-6 -4418)))) (-3966 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1844 (((-112) $ $) NIL)) (-2210 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-4185 (((-644 |#1|) $) NIL)) (-2788 (((-112) $) NIL)) (-1737 (($) NIL)) (-4376 ((|#1| $ (-566) |#1|) NIL) ((|#1| $ (-566)) NIL) (($ $ (-1231 (-566))) NIL)) (-2139 (($ $ (-566)) NIL) (($ $ (-1231 (-566))) NIL)) (-4068 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-1438 (($ $ $ (-566)) NIL (|has| $ (-6 -4418)))) (-3924 (($ $) NIL)) (-3136 (((-538) $) NIL (|has| |#1| (-614 (-538))))) (-2489 (($ (-644 |#1|)) 10)) (-3716 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-644 $)) NIL)) (-2479 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-3900 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3667 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-3019 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2990 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2952 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3004 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-850)))) (-3002 (((-771) $) NIL (|has| $ (-6 -4417))))) +(((-59 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -3650 ($ (-644 |#1|))) (-15 -3650 ($ (-771) |#1|)))) (-1214)) (T -59)) +((-3650 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1214)) (-5 *1 (-59 *3)))) (-3650 (*1 *1 *2 *3) (-12 (-5 *2 (-771)) (-5 *1 (-59 *3)) (-4 *3 (-1214))))) +(-13 (-19 |#1|) (-10 -8 (-15 -3650 ($ (-644 |#1|))) (-15 -3650 ($ (-771) |#1|)))) +((-2986 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1453 (((-112) $ (-771)) NIL)) (-3901 ((|#1| $ (-566) (-566) |#1|) NIL)) (-1679 (($ $ (-566) (-59 |#1|)) NIL)) (-2145 (($ $ (-566) (-59 |#1|)) NIL)) (-1811 (($) NIL T CONST)) (-3395 (((-59 |#1|) $ (-566)) NIL)) (-3719 ((|#1| $ (-566) (-566) |#1|) NIL)) (-3653 ((|#1| $ (-566) (-566)) NIL)) (-3872 (((-644 |#1|) $) NIL)) (-2541 (((-771) $) NIL)) (-4259 (($ (-771) (-771) |#1|) NIL)) (-2552 (((-771) $) NIL)) (-2756 (((-112) $ (-771)) NIL)) (-3715 (((-566) $) NIL)) (-1359 (((-566) $) NIL)) (-4227 (((-644 |#1|) $) NIL (|has| $ (-6 -4417)))) (-1688 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-3113 (((-566) $) NIL)) (-2701 (((-566) $) NIL)) (-3708 (($ (-1 |#1| |#1|) $) NIL)) (-3080 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4106 (((-112) $ (-771)) NIL)) (-3151 (((-1157) $) NIL (|has| |#1| (-1099)))) (-4059 (((-1119) $) NIL (|has| |#1| (-1099)))) (-4079 (($ $ |#1|) NIL)) (-3966 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1844 (((-112) $ $) NIL)) (-2788 (((-112) $) NIL)) (-1737 (($) NIL)) (-4376 ((|#1| $ (-566) (-566)) NIL) ((|#1| $ (-566) (-566) |#1|) NIL)) (-4068 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-3924 (($ $) NIL)) (-4327 (((-59 |#1|) $ (-566)) NIL)) (-2479 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-3900 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3667 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2952 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3002 (((-771) $) NIL (|has| $ (-6 -4417))))) +(((-60 |#1|) (-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4418))) (-1214)) (T -60)) +NIL +(-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4418))) +((-2980 (((-3 $ "failed") (-1264 (-317 (-381)))) 74) (((-3 $ "failed") (-1264 (-317 (-566)))) 63) (((-3 $ "failed") (-1264 (-952 (-381)))) 94) (((-3 $ "failed") (-1264 (-952 (-566)))) 84) (((-3 $ "failed") (-1264 (-409 (-952 (-381))))) 52) (((-3 $ "failed") (-1264 (-409 (-952 (-566))))) 39)) (-1709 (($ (-1264 (-317 (-381)))) 70) (($ (-1264 (-317 (-566)))) 59) (($ (-1264 (-952 (-381)))) 90) (($ (-1264 (-952 (-566)))) 80) (($ (-1264 (-409 (-952 (-381))))) 48) (($ (-1264 (-409 (-952 (-566))))) 32)) (-3386 (((-1269) $) 127)) (-2479 (((-862) $) 121) (($ (-644 (-331))) 103) (($ (-331)) 97) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3217 (-644 (-331))))) 101) (($ (-1264 (-341 (-2489 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2489) (-699)))) 31))) +(((-61 |#1|) (-13 (-443) (-10 -8 (-15 -2479 ($ (-1264 (-341 (-2489 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2489) (-699))))))) (-1175)) (T -61)) +((-2479 (*1 *1 *2) (-12 (-5 *2 (-1264 (-341 (-2489 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2489) (-699)))) (-5 *1 (-61 *3)) (-14 *3 (-1175))))) +(-13 (-443) (-10 -8 (-15 -2479 ($ (-1264 (-341 (-2489 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2489) (-699))))))) +((-3386 (((-1269) $) 54) (((-1269)) 55)) (-2479 (((-862) $) 51))) +(((-62 |#1|) (-13 (-397) (-10 -7 (-15 -3386 ((-1269))))) (-1175)) (T -62)) +((-3386 (*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-62 *3)) (-14 *3 (-1175))))) +(-13 (-397) (-10 -7 (-15 -3386 ((-1269))))) +((-2980 (((-3 $ "failed") (-1264 (-317 (-381)))) 154) (((-3 $ "failed") (-1264 (-317 (-566)))) 144) (((-3 $ "failed") (-1264 (-952 (-381)))) 174) (((-3 $ "failed") (-1264 (-952 (-566)))) 164) (((-3 $ "failed") (-1264 (-409 (-952 (-381))))) 133) (((-3 $ "failed") (-1264 (-409 (-952 (-566))))) 121)) (-1709 (($ (-1264 (-317 (-381)))) 150) (($ (-1264 (-317 (-566)))) 140) (($ (-1264 (-952 (-381)))) 170) (($ (-1264 (-952 (-566)))) 160) (($ (-1264 (-409 (-952 (-381))))) 129) (($ (-1264 (-409 (-952 (-566))))) 114)) (-3386 (((-1269) $) 107)) (-2479 (((-862) $) 101) (($ (-644 (-331))) 30) (($ (-331)) 35) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3217 (-644 (-331))))) 33) (($ (-1264 (-341 (-2489) (-2489 (QUOTE XC)) (-699)))) 99))) +(((-63 |#1|) (-13 (-443) (-10 -8 (-15 -2479 ($ (-1264 (-341 (-2489) (-2489 (QUOTE XC)) (-699))))))) (-1175)) (T -63)) +((-2479 (*1 *1 *2) (-12 (-5 *2 (-1264 (-341 (-2489) (-2489 (QUOTE XC)) (-699)))) (-5 *1 (-63 *3)) (-14 *3 (-1175))))) +(-13 (-443) (-10 -8 (-15 -2479 ($ (-1264 (-341 (-2489) (-2489 (QUOTE XC)) (-699))))))) +((-2980 (((-3 $ "failed") (-317 (-381))) 41) (((-3 $ "failed") (-317 (-566))) 46) (((-3 $ "failed") (-952 (-381))) 50) (((-3 $ "failed") (-952 (-566))) 54) (((-3 $ "failed") (-409 (-952 (-381)))) 36) (((-3 $ "failed") (-409 (-952 (-566)))) 29)) (-1709 (($ (-317 (-381))) 39) (($ (-317 (-566))) 44) (($ (-952 (-381))) 48) (($ (-952 (-566))) 52) (($ (-409 (-952 (-381)))) 34) (($ (-409 (-952 (-566)))) 26)) (-3386 (((-1269) $) 76)) (-2479 (((-862) $) 69) (($ (-644 (-331))) 61) (($ (-331)) 66) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3217 (-644 (-331))))) 64) (($ (-341 (-2489 (QUOTE X)) (-2489) (-699))) 25))) +(((-64 |#1|) (-13 (-398) (-10 -8 (-15 -2479 ($ (-341 (-2489 (QUOTE X)) (-2489) (-699)))))) (-1175)) (T -64)) +((-2479 (*1 *1 *2) (-12 (-5 *2 (-341 (-2489 (QUOTE X)) (-2489) (-699))) (-5 *1 (-64 *3)) (-14 *3 (-1175))))) +(-13 (-398) (-10 -8 (-15 -2479 ($ (-341 (-2489 (QUOTE X)) (-2489) (-699)))))) +((-2980 (((-3 $ "failed") (-689 (-317 (-381)))) 114) (((-3 $ "failed") (-689 (-317 (-566)))) 102) (((-3 $ "failed") (-689 (-952 (-381)))) 136) (((-3 $ "failed") (-689 (-952 (-566)))) 125) (((-3 $ "failed") (-689 (-409 (-952 (-381))))) 90) (((-3 $ "failed") (-689 (-409 (-952 (-566))))) 76)) (-1709 (($ (-689 (-317 (-381)))) 110) (($ (-689 (-317 (-566)))) 98) (($ (-689 (-952 (-381)))) 132) (($ (-689 (-952 (-566)))) 121) (($ (-689 (-409 (-952 (-381))))) 86) (($ (-689 (-409 (-952 (-566))))) 69)) (-3386 (((-1269) $) 144)) (-2479 (((-862) $) 138) (($ (-644 (-331))) 29) (($ (-331)) 34) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3217 (-644 (-331))))) 32) (($ (-689 (-341 (-2489) (-2489 (QUOTE X) (QUOTE HESS)) (-699)))) 59))) +(((-65 |#1|) (-13 (-386) (-616 (-689 (-341 (-2489) (-2489 (QUOTE X) (QUOTE HESS)) (-699))))) (-1175)) (T -65)) +NIL +(-13 (-386) (-616 (-689 (-341 (-2489) (-2489 (QUOTE X) (QUOTE HESS)) (-699))))) +((-2980 (((-3 $ "failed") (-317 (-381))) 60) (((-3 $ "failed") (-317 (-566))) 65) (((-3 $ "failed") (-952 (-381))) 69) (((-3 $ "failed") (-952 (-566))) 73) (((-3 $ "failed") (-409 (-952 (-381)))) 55) (((-3 $ "failed") (-409 (-952 (-566)))) 48)) (-1709 (($ (-317 (-381))) 58) (($ (-317 (-566))) 63) (($ (-952 (-381))) 67) (($ (-952 (-566))) 71) (($ (-409 (-952 (-381)))) 53) (($ (-409 (-952 (-566)))) 45)) (-3386 (((-1269) $) 82)) (-2479 (((-862) $) 76) (($ (-644 (-331))) 29) (($ (-331)) 34) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3217 (-644 (-331))))) 32) (($ (-341 (-2489) (-2489 (QUOTE XC)) (-699))) 40))) +(((-66 |#1|) (-13 (-398) (-10 -8 (-15 -2479 ($ (-341 (-2489) (-2489 (QUOTE XC)) (-699)))))) (-1175)) (T -66)) +((-2479 (*1 *1 *2) (-12 (-5 *2 (-341 (-2489) (-2489 (QUOTE XC)) (-699))) (-5 *1 (-66 *3)) (-14 *3 (-1175))))) +(-13 (-398) (-10 -8 (-15 -2479 ($ (-341 (-2489) (-2489 (QUOTE XC)) (-699)))))) +((-3386 (((-1269) $) 68)) (-2479 (((-862) $) 62) (($ (-689 (-699))) 54) (($ (-644 (-331))) 53) (($ (-331)) 60) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3217 (-644 (-331))))) 58))) +(((-67 |#1|) (-385) (-1175)) (T -67)) +NIL +(-385) +((-3386 (((-1269) $) 69)) (-2479 (((-862) $) 63) (($ (-689 (-699))) 55) (($ (-644 (-331))) 54) (($ (-331)) 57) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3217 (-644 (-331))))) 60))) +(((-68 |#1|) (-385) (-1175)) (T -68)) +NIL +(-385) +((-3386 (((-1269) $) NIL) (((-1269)) 33)) (-2479 (((-862) $) NIL))) +(((-69 |#1|) (-13 (-397) (-10 -7 (-15 -3386 ((-1269))))) (-1175)) (T -69)) +((-3386 (*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-69 *3)) (-14 *3 (-1175))))) +(-13 (-397) (-10 -7 (-15 -3386 ((-1269))))) +((-3386 (((-1269) $) 75)) (-2479 (((-862) $) 69) (($ (-689 (-699))) 61) (($ (-644 (-331))) 63) (($ (-331)) 66) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3217 (-644 (-331))))) 60))) +(((-70 |#1|) (-385) (-1175)) (T -70)) +NIL +(-385) +((-2980 (((-3 $ "failed") (-1264 (-317 (-381)))) 111) (((-3 $ "failed") (-1264 (-317 (-566)))) 100) (((-3 $ "failed") (-1264 (-952 (-381)))) 131) (((-3 $ "failed") (-1264 (-952 (-566)))) 121) (((-3 $ "failed") (-1264 (-409 (-952 (-381))))) 89) (((-3 $ "failed") (-1264 (-409 (-952 (-566))))) 76)) (-1709 (($ (-1264 (-317 (-381)))) 107) (($ (-1264 (-317 (-566)))) 96) (($ (-1264 (-952 (-381)))) 127) (($ (-1264 (-952 (-566)))) 117) (($ (-1264 (-409 (-952 (-381))))) 85) (($ (-1264 (-409 (-952 (-566))))) 69)) (-3386 (((-1269) $) 144)) (-2479 (((-862) $) 138) (($ (-644 (-331))) 133) (($ (-331)) 136) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3217 (-644 (-331))))) 61) (($ (-1264 (-341 (-2489 (QUOTE X)) (-2489 (QUOTE -2481)) (-699)))) 62))) +(((-71 |#1|) (-13 (-443) (-10 -8 (-15 -2479 ($ (-1264 (-341 (-2489 (QUOTE X)) (-2489 (QUOTE -2481)) (-699))))))) (-1175)) (T -71)) +((-2479 (*1 *1 *2) (-12 (-5 *2 (-1264 (-341 (-2489 (QUOTE X)) (-2489 (QUOTE -2481)) (-699)))) (-5 *1 (-71 *3)) (-14 *3 (-1175))))) +(-13 (-443) (-10 -8 (-15 -2479 ($ (-1264 (-341 (-2489 (QUOTE X)) (-2489 (QUOTE -2481)) (-699))))))) +((-3386 (((-1269) $) 33) (((-1269)) 32)) (-2479 (((-862) $) 36))) +(((-72 |#1|) (-13 (-397) (-10 -7 (-15 -3386 ((-1269))))) (-1175)) (T -72)) +((-3386 (*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-72 *3)) (-14 *3 (-1175))))) +(-13 (-397) (-10 -7 (-15 -3386 ((-1269))))) +((-3386 (((-1269) $) 65)) (-2479 (((-862) $) 59) (($ (-689 (-699))) 51) (($ (-644 (-331))) 53) (($ (-331)) 56) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3217 (-644 (-331))))) 50))) +(((-73 |#1|) (-385) (-1175)) (T -73)) +NIL +(-385) +((-2980 (((-3 $ "failed") (-1264 (-317 (-381)))) 130) (((-3 $ "failed") (-1264 (-317 (-566)))) 120) (((-3 $ "failed") (-1264 (-952 (-381)))) 150) (((-3 $ "failed") (-1264 (-952 (-566)))) 140) (((-3 $ "failed") (-1264 (-409 (-952 (-381))))) 110) (((-3 $ "failed") (-1264 (-409 (-952 (-566))))) 98)) (-1709 (($ (-1264 (-317 (-381)))) 126) (($ (-1264 (-317 (-566)))) 116) (($ (-1264 (-952 (-381)))) 146) (($ (-1264 (-952 (-566)))) 136) (($ (-1264 (-409 (-952 (-381))))) 106) (($ (-1264 (-409 (-952 (-566))))) 91)) (-3386 (((-1269) $) 83)) (-2479 (((-862) $) 28) (($ (-644 (-331))) 73) (($ (-331)) 69) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3217 (-644 (-331))))) 76) (($ (-1264 (-341 (-2489) (-2489 (QUOTE X)) (-699)))) 70))) +(((-74 |#1|) (-13 (-443) (-10 -8 (-15 -2479 ($ (-1264 (-341 (-2489) (-2489 (QUOTE X)) (-699))))))) (-1175)) (T -74)) +((-2479 (*1 *1 *2) (-12 (-5 *2 (-1264 (-341 (-2489) (-2489 (QUOTE X)) (-699)))) (-5 *1 (-74 *3)) (-14 *3 (-1175))))) +(-13 (-443) (-10 -8 (-15 -2479 ($ (-1264 (-341 (-2489) (-2489 (QUOTE X)) (-699))))))) +((-2980 (((-3 $ "failed") (-1264 (-317 (-381)))) 135) (((-3 $ "failed") (-1264 (-317 (-566)))) 124) (((-3 $ "failed") (-1264 (-952 (-381)))) 155) (((-3 $ "failed") (-1264 (-952 (-566)))) 145) (((-3 $ "failed") (-1264 (-409 (-952 (-381))))) 113) (((-3 $ "failed") (-1264 (-409 (-952 (-566))))) 100)) (-1709 (($ (-1264 (-317 (-381)))) 131) (($ (-1264 (-317 (-566)))) 120) (($ (-1264 (-952 (-381)))) 151) (($ (-1264 (-952 (-566)))) 141) (($ (-1264 (-409 (-952 (-381))))) 109) (($ (-1264 (-409 (-952 (-566))))) 93)) (-3386 (((-1269) $) 85)) (-2479 (((-862) $) 77) (($ (-644 (-331))) NIL) (($ (-331)) NIL) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3217 (-644 (-331))))) NIL) (($ (-1264 (-341 (-2489 (QUOTE X) (QUOTE EPS)) (-2489 (QUOTE -2481)) (-699)))) 72))) +(((-75 |#1| |#2| |#3|) (-13 (-443) (-10 -8 (-15 -2479 ($ (-1264 (-341 (-2489 (QUOTE X) (QUOTE EPS)) (-2489 (QUOTE -2481)) (-699))))))) (-1175) (-1175) (-1175)) (T -75)) +((-2479 (*1 *1 *2) (-12 (-5 *2 (-1264 (-341 (-2489 (QUOTE X) (QUOTE EPS)) (-2489 (QUOTE -2481)) (-699)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1175)) (-14 *4 (-1175)) (-14 *5 (-1175))))) +(-13 (-443) (-10 -8 (-15 -2479 ($ (-1264 (-341 (-2489 (QUOTE X) (QUOTE EPS)) (-2489 (QUOTE -2481)) (-699))))))) +((-2980 (((-3 $ "failed") (-1264 (-317 (-381)))) 141) (((-3 $ "failed") (-1264 (-317 (-566)))) 130) (((-3 $ "failed") (-1264 (-952 (-381)))) 161) (((-3 $ "failed") (-1264 (-952 (-566)))) 151) (((-3 $ "failed") (-1264 (-409 (-952 (-381))))) 119) (((-3 $ "failed") (-1264 (-409 (-952 (-566))))) 106)) (-1709 (($ (-1264 (-317 (-381)))) 137) (($ (-1264 (-317 (-566)))) 126) (($ (-1264 (-952 (-381)))) 157) (($ (-1264 (-952 (-566)))) 147) (($ (-1264 (-409 (-952 (-381))))) 115) (($ (-1264 (-409 (-952 (-566))))) 99)) (-3386 (((-1269) $) 91)) (-2479 (((-862) $) 83) (($ (-644 (-331))) NIL) (($ (-331)) NIL) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3217 (-644 (-331))))) NIL) (($ (-1264 (-341 (-2489 (QUOTE EPS)) (-2489 (QUOTE YA) (QUOTE YB)) (-699)))) 78))) +(((-76 |#1| |#2| |#3|) (-13 (-443) (-10 -8 (-15 -2479 ($ (-1264 (-341 (-2489 (QUOTE EPS)) (-2489 (QUOTE YA) (QUOTE YB)) (-699))))))) (-1175) (-1175) (-1175)) (T -76)) +((-2479 (*1 *1 *2) (-12 (-5 *2 (-1264 (-341 (-2489 (QUOTE EPS)) (-2489 (QUOTE YA) (QUOTE YB)) (-699)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1175)) (-14 *4 (-1175)) (-14 *5 (-1175))))) +(-13 (-443) (-10 -8 (-15 -2479 ($ (-1264 (-341 (-2489 (QUOTE EPS)) (-2489 (QUOTE YA) (QUOTE YB)) (-699))))))) +((-2980 (((-3 $ "failed") (-317 (-381))) 83) (((-3 $ "failed") (-317 (-566))) 88) (((-3 $ "failed") (-952 (-381))) 92) (((-3 $ "failed") (-952 (-566))) 96) (((-3 $ "failed") (-409 (-952 (-381)))) 78) (((-3 $ "failed") (-409 (-952 (-566)))) 71)) (-1709 (($ (-317 (-381))) 81) (($ (-317 (-566))) 86) (($ (-952 (-381))) 90) (($ (-952 (-566))) 94) (($ (-409 (-952 (-381)))) 76) (($ (-409 (-952 (-566)))) 68)) (-3386 (((-1269) $) 63)) (-2479 (((-862) $) 51) (($ (-644 (-331))) 47) (($ (-331)) 57) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3217 (-644 (-331))))) 55) (($ (-341 (-2489) (-2489 (QUOTE X)) (-699))) 48))) +(((-77 |#1|) (-13 (-398) (-10 -8 (-15 -2479 ($ (-341 (-2489) (-2489 (QUOTE X)) (-699)))))) (-1175)) (T -77)) +((-2479 (*1 *1 *2) (-12 (-5 *2 (-341 (-2489) (-2489 (QUOTE X)) (-699))) (-5 *1 (-77 *3)) (-14 *3 (-1175))))) +(-13 (-398) (-10 -8 (-15 -2479 ($ (-341 (-2489) (-2489 (QUOTE X)) (-699)))))) +((-2980 (((-3 $ "failed") (-317 (-381))) 47) (((-3 $ "failed") (-317 (-566))) 52) (((-3 $ "failed") (-952 (-381))) 56) (((-3 $ "failed") (-952 (-566))) 60) (((-3 $ "failed") (-409 (-952 (-381)))) 42) (((-3 $ "failed") (-409 (-952 (-566)))) 35)) (-1709 (($ (-317 (-381))) 45) (($ (-317 (-566))) 50) (($ (-952 (-381))) 54) (($ (-952 (-566))) 58) (($ (-409 (-952 (-381)))) 40) (($ (-409 (-952 (-566)))) 32)) (-3386 (((-1269) $) 81)) (-2479 (((-862) $) 75) (($ (-644 (-331))) 67) (($ (-331)) 72) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3217 (-644 (-331))))) 70) (($ (-341 (-2489) (-2489 (QUOTE X)) (-699))) 31))) +(((-78 |#1|) (-13 (-398) (-10 -8 (-15 -2479 ($ (-341 (-2489) (-2489 (QUOTE X)) (-699)))))) (-1175)) (T -78)) +((-2479 (*1 *1 *2) (-12 (-5 *2 (-341 (-2489) (-2489 (QUOTE X)) (-699))) (-5 *1 (-78 *3)) (-14 *3 (-1175))))) +(-13 (-398) (-10 -8 (-15 -2479 ($ (-341 (-2489) (-2489 (QUOTE X)) (-699)))))) +((-2980 (((-3 $ "failed") (-1264 (-317 (-381)))) 90) (((-3 $ "failed") (-1264 (-317 (-566)))) 79) (((-3 $ "failed") (-1264 (-952 (-381)))) 110) (((-3 $ "failed") (-1264 (-952 (-566)))) 100) (((-3 $ "failed") (-1264 (-409 (-952 (-381))))) 68) (((-3 $ "failed") (-1264 (-409 (-952 (-566))))) 55)) (-1709 (($ (-1264 (-317 (-381)))) 86) (($ (-1264 (-317 (-566)))) 75) (($ (-1264 (-952 (-381)))) 106) (($ (-1264 (-952 (-566)))) 96) (($ (-1264 (-409 (-952 (-381))))) 64) (($ (-1264 (-409 (-952 (-566))))) 48)) (-3386 (((-1269) $) 126)) (-2479 (((-862) $) 120) (($ (-644 (-331))) 113) (($ (-331)) 38) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3217 (-644 (-331))))) 116) (($ (-1264 (-341 (-2489) (-2489 (QUOTE XC)) (-699)))) 39))) +(((-79 |#1|) (-13 (-443) (-10 -8 (-15 -2479 ($ (-1264 (-341 (-2489) (-2489 (QUOTE XC)) (-699))))))) (-1175)) (T -79)) +((-2479 (*1 *1 *2) (-12 (-5 *2 (-1264 (-341 (-2489) (-2489 (QUOTE XC)) (-699)))) (-5 *1 (-79 *3)) (-14 *3 (-1175))))) +(-13 (-443) (-10 -8 (-15 -2479 ($ (-1264 (-341 (-2489) (-2489 (QUOTE XC)) (-699))))))) +((-2980 (((-3 $ "failed") (-1264 (-317 (-381)))) 158) (((-3 $ "failed") (-1264 (-317 (-566)))) 148) (((-3 $ "failed") (-1264 (-952 (-381)))) 178) (((-3 $ "failed") (-1264 (-952 (-566)))) 168) (((-3 $ "failed") (-1264 (-409 (-952 (-381))))) 138) (((-3 $ "failed") (-1264 (-409 (-952 (-566))))) 126)) (-1709 (($ (-1264 (-317 (-381)))) 154) (($ (-1264 (-317 (-566)))) 144) (($ (-1264 (-952 (-381)))) 174) (($ (-1264 (-952 (-566)))) 164) (($ (-1264 (-409 (-952 (-381))))) 134) (($ (-1264 (-409 (-952 (-566))))) 119)) (-3386 (((-1269) $) 112)) (-2479 (((-862) $) 106) (($ (-644 (-331))) 97) (($ (-331)) 104) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3217 (-644 (-331))))) 102) (($ (-1264 (-341 (-2489) (-2489 (QUOTE X)) (-699)))) 98))) +(((-80 |#1|) (-13 (-443) (-10 -8 (-15 -2479 ($ (-1264 (-341 (-2489) (-2489 (QUOTE X)) (-699))))))) (-1175)) (T -80)) +((-2479 (*1 *1 *2) (-12 (-5 *2 (-1264 (-341 (-2489) (-2489 (QUOTE X)) (-699)))) (-5 *1 (-80 *3)) (-14 *3 (-1175))))) +(-13 (-443) (-10 -8 (-15 -2479 ($ (-1264 (-341 (-2489) (-2489 (QUOTE X)) (-699))))))) +((-2980 (((-3 $ "failed") (-1264 (-317 (-381)))) 79) (((-3 $ "failed") (-1264 (-317 (-566)))) 68) (((-3 $ "failed") (-1264 (-952 (-381)))) 99) (((-3 $ "failed") (-1264 (-952 (-566)))) 89) (((-3 $ "failed") (-1264 (-409 (-952 (-381))))) 57) (((-3 $ "failed") (-1264 (-409 (-952 (-566))))) 44)) (-1709 (($ (-1264 (-317 (-381)))) 75) (($ (-1264 (-317 (-566)))) 64) (($ (-1264 (-952 (-381)))) 95) (($ (-1264 (-952 (-566)))) 85) (($ (-1264 (-409 (-952 (-381))))) 53) (($ (-1264 (-409 (-952 (-566))))) 37)) (-3386 (((-1269) $) 125)) (-2479 (((-862) $) 119) (($ (-644 (-331))) 110) (($ (-331)) 116) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3217 (-644 (-331))))) 114) (($ (-1264 (-341 (-2489) (-2489 (QUOTE X)) (-699)))) 36))) +(((-81 |#1|) (-13 (-443) (-616 (-1264 (-341 (-2489) (-2489 (QUOTE X)) (-699))))) (-1175)) (T -81)) +NIL +(-13 (-443) (-616 (-1264 (-341 (-2489) (-2489 (QUOTE X)) (-699))))) +((-2980 (((-3 $ "failed") (-1264 (-317 (-381)))) 98) (((-3 $ "failed") (-1264 (-317 (-566)))) 87) (((-3 $ "failed") (-1264 (-952 (-381)))) 118) (((-3 $ "failed") (-1264 (-952 (-566)))) 108) (((-3 $ "failed") (-1264 (-409 (-952 (-381))))) 76) (((-3 $ "failed") (-1264 (-409 (-952 (-566))))) 63)) (-1709 (($ (-1264 (-317 (-381)))) 94) (($ (-1264 (-317 (-566)))) 83) (($ (-1264 (-952 (-381)))) 114) (($ (-1264 (-952 (-566)))) 104) (($ (-1264 (-409 (-952 (-381))))) 72) (($ (-1264 (-409 (-952 (-566))))) 56)) (-3386 (((-1269) $) 48)) (-2479 (((-862) $) 42) (($ (-644 (-331))) 32) (($ (-331)) 35) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3217 (-644 (-331))))) 38) (($ (-1264 (-341 (-2489 (QUOTE X) (QUOTE -2481)) (-2489) (-699)))) 33))) +(((-82 |#1|) (-13 (-443) (-10 -8 (-15 -2479 ($ (-1264 (-341 (-2489 (QUOTE X) (QUOTE -2481)) (-2489) (-699))))))) (-1175)) (T -82)) +((-2479 (*1 *1 *2) (-12 (-5 *2 (-1264 (-341 (-2489 (QUOTE X) (QUOTE -2481)) (-2489) (-699)))) (-5 *1 (-82 *3)) (-14 *3 (-1175))))) +(-13 (-443) (-10 -8 (-15 -2479 ($ (-1264 (-341 (-2489 (QUOTE X) (QUOTE -2481)) (-2489) (-699))))))) +((-2980 (((-3 $ "failed") (-689 (-317 (-381)))) 118) (((-3 $ "failed") (-689 (-317 (-566)))) 107) (((-3 $ "failed") (-689 (-952 (-381)))) 140) (((-3 $ "failed") (-689 (-952 (-566)))) 129) (((-3 $ "failed") (-689 (-409 (-952 (-381))))) 96) (((-3 $ "failed") (-689 (-409 (-952 (-566))))) 83)) (-1709 (($ (-689 (-317 (-381)))) 114) (($ (-689 (-317 (-566)))) 103) (($ (-689 (-952 (-381)))) 136) (($ (-689 (-952 (-566)))) 125) (($ (-689 (-409 (-952 (-381))))) 92) (($ (-689 (-409 (-952 (-566))))) 76)) (-3386 (((-1269) $) 66)) (-2479 (((-862) $) 53) (($ (-644 (-331))) 60) (($ (-331)) 49) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3217 (-644 (-331))))) 58) (($ (-689 (-341 (-2489 (QUOTE X) (QUOTE -2481)) (-2489) (-699)))) 50))) +(((-83 |#1|) (-13 (-386) (-10 -8 (-15 -2479 ($ (-689 (-341 (-2489 (QUOTE X) (QUOTE -2481)) (-2489) (-699))))))) (-1175)) (T -83)) +((-2479 (*1 *1 *2) (-12 (-5 *2 (-689 (-341 (-2489 (QUOTE X) (QUOTE -2481)) (-2489) (-699)))) (-5 *1 (-83 *3)) (-14 *3 (-1175))))) +(-13 (-386) (-10 -8 (-15 -2479 ($ (-689 (-341 (-2489 (QUOTE X) (QUOTE -2481)) (-2489) (-699))))))) +((-2980 (((-3 $ "failed") (-689 (-317 (-381)))) 113) (((-3 $ "failed") (-689 (-317 (-566)))) 101) (((-3 $ "failed") (-689 (-952 (-381)))) 135) (((-3 $ "failed") (-689 (-952 (-566)))) 124) (((-3 $ "failed") (-689 (-409 (-952 (-381))))) 89) (((-3 $ "failed") (-689 (-409 (-952 (-566))))) 75)) (-1709 (($ (-689 (-317 (-381)))) 109) (($ (-689 (-317 (-566)))) 97) (($ (-689 (-952 (-381)))) 131) (($ (-689 (-952 (-566)))) 120) (($ (-689 (-409 (-952 (-381))))) 85) (($ (-689 (-409 (-952 (-566))))) 68)) (-3386 (((-1269) $) 60)) (-2479 (((-862) $) 54) (($ (-644 (-331))) 48) (($ (-331)) 51) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3217 (-644 (-331))))) 45) (($ (-689 (-341 (-2489 (QUOTE X)) (-2489) (-699)))) 46))) +(((-84 |#1|) (-13 (-386) (-10 -8 (-15 -2479 ($ (-689 (-341 (-2489 (QUOTE X)) (-2489) (-699))))))) (-1175)) (T -84)) +((-2479 (*1 *1 *2) (-12 (-5 *2 (-689 (-341 (-2489 (QUOTE X)) (-2489) (-699)))) (-5 *1 (-84 *3)) (-14 *3 (-1175))))) +(-13 (-386) (-10 -8 (-15 -2479 ($ (-689 (-341 (-2489 (QUOTE X)) (-2489) (-699))))))) +((-2980 (((-3 $ "failed") (-1264 (-317 (-381)))) 105) (((-3 $ "failed") (-1264 (-317 (-566)))) 94) (((-3 $ "failed") (-1264 (-952 (-381)))) 125) (((-3 $ "failed") (-1264 (-952 (-566)))) 115) (((-3 $ "failed") (-1264 (-409 (-952 (-381))))) 83) (((-3 $ "failed") (-1264 (-409 (-952 (-566))))) 70)) (-1709 (($ (-1264 (-317 (-381)))) 101) (($ (-1264 (-317 (-566)))) 90) (($ (-1264 (-952 (-381)))) 121) (($ (-1264 (-952 (-566)))) 111) (($ (-1264 (-409 (-952 (-381))))) 79) (($ (-1264 (-409 (-952 (-566))))) 63)) (-3386 (((-1269) $) 47)) (-2479 (((-862) $) 41) (($ (-644 (-331))) 50) (($ (-331)) 37) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3217 (-644 (-331))))) 53) (($ (-1264 (-341 (-2489 (QUOTE X)) (-2489) (-699)))) 38))) +(((-85 |#1|) (-13 (-443) (-10 -8 (-15 -2479 ($ (-1264 (-341 (-2489 (QUOTE X)) (-2489) (-699))))))) (-1175)) (T -85)) +((-2479 (*1 *1 *2) (-12 (-5 *2 (-1264 (-341 (-2489 (QUOTE X)) (-2489) (-699)))) (-5 *1 (-85 *3)) (-14 *3 (-1175))))) +(-13 (-443) (-10 -8 (-15 -2479 ($ (-1264 (-341 (-2489 (QUOTE X)) (-2489) (-699))))))) +((-2980 (((-3 $ "failed") (-1264 (-317 (-381)))) 80) (((-3 $ "failed") (-1264 (-317 (-566)))) 69) (((-3 $ "failed") (-1264 (-952 (-381)))) 100) (((-3 $ "failed") (-1264 (-952 (-566)))) 90) (((-3 $ "failed") (-1264 (-409 (-952 (-381))))) 58) (((-3 $ "failed") (-1264 (-409 (-952 (-566))))) 45)) (-1709 (($ (-1264 (-317 (-381)))) 76) (($ (-1264 (-317 (-566)))) 65) (($ (-1264 (-952 (-381)))) 96) (($ (-1264 (-952 (-566)))) 86) (($ (-1264 (-409 (-952 (-381))))) 54) (($ (-1264 (-409 (-952 (-566))))) 38)) (-3386 (((-1269) $) 126)) (-2479 (((-862) $) 120) (($ (-644 (-331))) 111) (($ (-331)) 117) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3217 (-644 (-331))))) 115) (($ (-1264 (-341 (-2489 (QUOTE X)) (-2489 (QUOTE -2481)) (-699)))) 37))) +(((-86 |#1|) (-13 (-443) (-10 -8 (-15 -2479 ($ (-1264 (-341 (-2489 (QUOTE X)) (-2489 (QUOTE -2481)) (-699))))))) (-1175)) (T -86)) +((-2479 (*1 *1 *2) (-12 (-5 *2 (-1264 (-341 (-2489 (QUOTE X)) (-2489 (QUOTE -2481)) (-699)))) (-5 *1 (-86 *3)) (-14 *3 (-1175))))) +(-13 (-443) (-10 -8 (-15 -2479 ($ (-1264 (-341 (-2489 (QUOTE X)) (-2489 (QUOTE -2481)) (-699))))))) +((-2980 (((-3 $ "failed") (-689 (-317 (-381)))) 117) (((-3 $ "failed") (-689 (-317 (-566)))) 105) (((-3 $ "failed") (-689 (-952 (-381)))) 139) (((-3 $ "failed") (-689 (-952 (-566)))) 128) (((-3 $ "failed") (-689 (-409 (-952 (-381))))) 93) (((-3 $ "failed") (-689 (-409 (-952 (-566))))) 79)) (-1709 (($ (-689 (-317 (-381)))) 113) (($ (-689 (-317 (-566)))) 101) (($ (-689 (-952 (-381)))) 135) (($ (-689 (-952 (-566)))) 124) (($ (-689 (-409 (-952 (-381))))) 89) (($ (-689 (-409 (-952 (-566))))) 72)) (-3386 (((-1269) $) 63)) (-2479 (((-862) $) 57) (($ (-644 (-331))) 47) (($ (-331)) 54) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3217 (-644 (-331))))) 52) (($ (-689 (-341 (-2489 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2489) (-699)))) 48))) +(((-87 |#1|) (-13 (-386) (-10 -8 (-15 -2479 ($ (-689 (-341 (-2489 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2489) (-699))))))) (-1175)) (T -87)) +((-2479 (*1 *1 *2) (-12 (-5 *2 (-689 (-341 (-2489 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2489) (-699)))) (-5 *1 (-87 *3)) (-14 *3 (-1175))))) +(-13 (-386) (-10 -8 (-15 -2479 ($ (-689 (-341 (-2489 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2489) (-699))))))) +((-3386 (((-1269) $) 45)) (-2479 (((-862) $) 39) (($ (-1264 (-699))) 101) (($ (-644 (-331))) 31) (($ (-331)) 36) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3217 (-644 (-331))))) 34))) +(((-88 |#1|) (-442) (-1175)) (T -88)) +NIL +(-442) +((-2980 (((-3 $ "failed") (-317 (-381))) 48) (((-3 $ "failed") (-317 (-566))) 53) (((-3 $ "failed") (-952 (-381))) 57) (((-3 $ "failed") (-952 (-566))) 61) (((-3 $ "failed") (-409 (-952 (-381)))) 43) (((-3 $ "failed") (-409 (-952 (-566)))) 36)) (-1709 (($ (-317 (-381))) 46) (($ (-317 (-566))) 51) (($ (-952 (-381))) 55) (($ (-952 (-566))) 59) (($ (-409 (-952 (-381)))) 41) (($ (-409 (-952 (-566)))) 33)) (-3386 (((-1269) $) 91)) (-2479 (((-862) $) 85) (($ (-644 (-331))) 79) (($ (-331)) 82) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3217 (-644 (-331))))) 77) (($ (-341 (-2489 (QUOTE X)) (-2489 (QUOTE -2481)) (-699))) 32))) +(((-89 |#1|) (-13 (-398) (-10 -8 (-15 -2479 ($ (-341 (-2489 (QUOTE X)) (-2489 (QUOTE -2481)) (-699)))))) (-1175)) (T -89)) +((-2479 (*1 *1 *2) (-12 (-5 *2 (-341 (-2489 (QUOTE X)) (-2489 (QUOTE -2481)) (-699))) (-5 *1 (-89 *3)) (-14 *3 (-1175))))) +(-13 (-398) (-10 -8 (-15 -2479 ($ (-341 (-2489 (QUOTE X)) (-2489 (QUOTE -2481)) (-699)))))) +((-2678 (((-1264 (-689 |#1|)) (-689 |#1|)) 65)) (-2724 (((-2 (|:| -4196 (-689 |#1|)) (|:| |vec| (-1264 (-644 (-921))))) |#2| (-921)) 54)) (-1591 (((-2 (|:| |minor| (-644 (-921))) (|:| -3477 |#2|) (|:| |minors| (-644 (-644 (-921)))) (|:| |ops| (-644 |#2|))) |#2| (-921)) 76 (|has| |#1| (-365))))) +(((-90 |#1| |#2|) (-10 -7 (-15 -2724 ((-2 (|:| -4196 (-689 |#1|)) (|:| |vec| (-1264 (-644 (-921))))) |#2| (-921))) (-15 -2678 ((-1264 (-689 |#1|)) (-689 |#1|))) (IF (|has| |#1| (-365)) (-15 -1591 ((-2 (|:| |minor| (-644 (-921))) (|:| -3477 |#2|) (|:| |minors| (-644 (-644 (-921)))) (|:| |ops| (-644 |#2|))) |#2| (-921))) |%noBranch|)) (-558) (-656 |#1|)) (T -90)) +((-1591 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *5 (-558)) (-5 *2 (-2 (|:| |minor| (-644 (-921))) (|:| -3477 *3) (|:| |minors| (-644 (-644 (-921)))) (|:| |ops| (-644 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-921)) (-4 *3 (-656 *5)))) (-2678 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-1264 (-689 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-689 *4)) (-4 *5 (-656 *4)))) (-2724 (*1 *2 *3 *4) (-12 (-4 *5 (-558)) (-5 *2 (-2 (|:| -4196 (-689 *5)) (|:| |vec| (-1264 (-644 (-921)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-921)) (-4 *3 (-656 *5))))) +(-10 -7 (-15 -2724 ((-2 (|:| -4196 (-689 |#1|)) (|:| |vec| (-1264 (-644 (-921))))) |#2| (-921))) (-15 -2678 ((-1264 (-689 |#1|)) (-689 |#1|))) (IF (|has| |#1| (-365)) (-15 -1591 ((-2 (|:| |minor| (-644 (-921))) (|:| -3477 |#2|) (|:| |minors| (-644 (-644 (-921)))) (|:| |ops| (-644 |#2|))) |#2| (-921))) |%noBranch|)) +((-2986 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3903 ((|#1| $) 42)) (-1453 (((-112) $ (-771)) NIL)) (-1811 (($) NIL T CONST)) (-1757 ((|#1| |#1| $) 37)) (-4356 ((|#1| $) 35)) (-3872 (((-644 |#1|) $) NIL (|has| $ (-6 -4417)))) (-2756 (((-112) $ (-771)) NIL)) (-4227 (((-644 |#1|) $) NIL (|has| $ (-6 -4417)))) (-1688 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-3708 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#1| |#1|) $) NIL)) (-4106 (((-112) $ (-771)) NIL)) (-3151 (((-1157) $) NIL (|has| |#1| (-1099)))) (-4255 ((|#1| $) NIL)) (-4354 (($ |#1| $) 38)) (-4059 (((-1119) $) NIL (|has| |#1| (-1099)))) (-4097 ((|#1| $) 36)) (-3966 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1844 (((-112) $ $) NIL)) (-2788 (((-112) $) 18)) (-1737 (($) 46)) (-3410 (((-771) $) 33)) (-4068 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-3924 (($ $) 17)) (-2479 (((-862) $) 32 (|has| |#1| (-613 (-862))))) (-3900 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2471 (($ (-644 |#1|)) NIL)) (-1652 (($ (-644 |#1|)) 44)) (-3667 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2952 (((-112) $ $) 15 (|has| |#1| (-1099)))) (-3002 (((-771) $) 12 (|has| $ (-6 -4417))))) +(((-91 |#1|) (-13 (-1120 |#1|) (-10 -8 (-15 -1652 ($ (-644 |#1|))))) (-1099)) (T -91)) +((-1652 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-5 *1 (-91 *3))))) +(-13 (-1120 |#1|) (-10 -8 (-15 -1652 ($ (-644 |#1|))))) +((-2479 (((-862) $) 13) (($ (-1180)) 9) (((-1180) $) 8))) +(((-92 |#1|) (-10 -8 (-15 -2479 ((-1180) |#1|)) (-15 -2479 (|#1| (-1180))) (-15 -2479 ((-862) |#1|))) (-93)) (T -92)) +NIL +(-10 -8 (-15 -2479 ((-1180) |#1|)) (-15 -2479 (|#1| (-1180))) (-15 -2479 ((-862) |#1|))) +((-2986 (((-112) $ $) 7)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-2479 (((-862) $) 12) (($ (-1180)) 17) (((-1180) $) 16)) (-3900 (((-112) $ $) 9)) (-2952 (((-112) $ $) 6))) (((-93) (-140)) (T -93)) NIL -(-13 (-1097) (-490 (-1178))) -(((-102) . T) ((-614 #0=(-1178)) . T) ((-611 (-860)) . T) ((-611 #0#) . T) ((-490 #0#) . T) ((-1097) . T)) -((-3047 (($ $) 10)) (-3058 (($ $) 12))) -(((-94 |#1|) (-10 -8 (-15 -3058 (|#1| |#1|)) (-15 -3047 (|#1| |#1|))) (-95)) (T -94)) +(-13 (-1099) (-492 (-1180))) +(((-102) . T) ((-616 #0=(-1180)) . T) ((-613 (-862)) . T) ((-613 #0#) . T) ((-492 #0#) . T) ((-1099) . T)) +((-3179 (($ $) 10)) (-3190 (($ $) 12))) +(((-94 |#1|) (-10 -8 (-15 -3190 (|#1| |#1|)) (-15 -3179 (|#1| |#1|))) (-95)) (T -94)) NIL -(-10 -8 (-15 -3058 (|#1| |#1|)) (-15 -3047 (|#1| |#1|))) -((-3025 (($ $) 11)) (-3002 (($ $) 10)) (-3047 (($ $) 9)) (-3058 (($ $) 8)) (-3035 (($ $) 7)) (-3014 (($ $) 6))) +(-10 -8 (-15 -3190 (|#1| |#1|)) (-15 -3179 (|#1| |#1|))) +((-3157 (($ $) 11)) (-3135 (($ $) 10)) (-3179 (($ $) 9)) (-3190 (($ $) 8)) (-3168 (($ $) 7)) (-3148 (($ $) 6))) (((-95) (-140)) (T -95)) -((-3025 (*1 *1 *1) (-4 *1 (-95))) (-3002 (*1 *1 *1) (-4 *1 (-95))) (-3047 (*1 *1 *1) (-4 *1 (-95))) (-3058 (*1 *1 *1) (-4 *1 (-95))) (-3035 (*1 *1 *1) (-4 *1 (-95))) (-3014 (*1 *1 *1) (-4 *1 (-95)))) -(-13 (-10 -8 (-15 -3014 ($ $)) (-15 -3035 ($ $)) (-15 -3058 ($ $)) (-15 -3047 ($ $)) (-15 -3002 ($ $)) (-15 -3025 ($ $)))) -((-2856 (((-112) $ $) NIL)) (-2493 (((-1132) $) 9)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) 15) (($ (-1178)) NIL) (((-1178) $) NIL)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-96) (-13 (-1080) (-10 -8 (-15 -2493 ((-1132) $))))) (T -96)) -((-2493 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-96))))) -(-13 (-1080) (-10 -8 (-15 -2493 ((-1132) $)))) -((-2856 (((-112) $ $) NIL)) (-2363 (((-379) (-1155) (-379)) 47) (((-379) (-1155) (-1155) (-379)) 45)) (-2547 (((-379) (-379)) 35)) (-3387 (((-1267)) 38)) (-1778 (((-1155) $) NIL)) (-2627 (((-379) (-1155) (-1155)) 51) (((-379) (-1155)) 53)) (-3999 (((-1117) $) NIL)) (-3531 (((-379) (-1155) (-1155)) 52)) (-1741 (((-379) (-1155) (-1155)) 54) (((-379) (-1155)) 55)) (-2390 (((-860) $) NIL)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-97) (-13 (-1097) (-10 -7 (-15 -2627 ((-379) (-1155) (-1155))) (-15 -2627 ((-379) (-1155))) (-15 -1741 ((-379) (-1155) (-1155))) (-15 -1741 ((-379) (-1155))) (-15 -3531 ((-379) (-1155) (-1155))) (-15 -3387 ((-1267))) (-15 -2547 ((-379) (-379))) (-15 -2363 ((-379) (-1155) (-379))) (-15 -2363 ((-379) (-1155) (-1155) (-379))) (-6 -4410)))) (T -97)) -((-2627 (*1 *2 *3 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-379)) (-5 *1 (-97)))) (-2627 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-379)) (-5 *1 (-97)))) (-1741 (*1 *2 *3 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-379)) (-5 *1 (-97)))) (-1741 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-379)) (-5 *1 (-97)))) (-3531 (*1 *2 *3 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-379)) (-5 *1 (-97)))) (-3387 (*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-97)))) (-2547 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-97)))) (-2363 (*1 *2 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-1155)) (-5 *1 (-97)))) (-2363 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-1155)) (-5 *1 (-97))))) -(-13 (-1097) (-10 -7 (-15 -2627 ((-379) (-1155) (-1155))) (-15 -2627 ((-379) (-1155))) (-15 -1741 ((-379) (-1155) (-1155))) (-15 -1741 ((-379) (-1155))) (-15 -3531 ((-379) (-1155) (-1155))) (-15 -3387 ((-1267))) (-15 -2547 ((-379) (-379))) (-15 -2363 ((-379) (-1155) (-379))) (-15 -2363 ((-379) (-1155) (-1155) (-379))) (-6 -4410))) +((-3157 (*1 *1 *1) (-4 *1 (-95))) (-3135 (*1 *1 *1) (-4 *1 (-95))) (-3179 (*1 *1 *1) (-4 *1 (-95))) (-3190 (*1 *1 *1) (-4 *1 (-95))) (-3168 (*1 *1 *1) (-4 *1 (-95))) (-3148 (*1 *1 *1) (-4 *1 (-95)))) +(-13 (-10 -8 (-15 -3148 ($ $)) (-15 -3168 ($ $)) (-15 -3190 ($ $)) (-15 -3179 ($ $)) (-15 -3135 ($ $)) (-15 -3157 ($ $)))) +((-2986 (((-112) $ $) NIL)) (-2598 (((-1134) $) 9)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) 15) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-96) (-13 (-1082) (-10 -8 (-15 -2598 ((-1134) $))))) (T -96)) +((-2598 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-96))))) +(-13 (-1082) (-10 -8 (-15 -2598 ((-1134) $)))) +((-2986 (((-112) $ $) NIL)) (-3801 (((-381) (-1157) (-381)) 47) (((-381) (-1157) (-1157) (-381)) 45)) (-3231 (((-381) (-381)) 35)) (-3770 (((-1269)) 38)) (-3151 (((-1157) $) NIL)) (-3413 (((-381) (-1157) (-1157)) 51) (((-381) (-1157)) 53)) (-4059 (((-1119) $) NIL)) (-2970 (((-381) (-1157) (-1157)) 52)) (-2370 (((-381) (-1157) (-1157)) 54) (((-381) (-1157)) 55)) (-2479 (((-862) $) NIL)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-97) (-13 (-1099) (-10 -7 (-15 -3413 ((-381) (-1157) (-1157))) (-15 -3413 ((-381) (-1157))) (-15 -2370 ((-381) (-1157) (-1157))) (-15 -2370 ((-381) (-1157))) (-15 -2970 ((-381) (-1157) (-1157))) (-15 -3770 ((-1269))) (-15 -3231 ((-381) (-381))) (-15 -3801 ((-381) (-1157) (-381))) (-15 -3801 ((-381) (-1157) (-1157) (-381))) (-6 -4417)))) (T -97)) +((-3413 (*1 *2 *3 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-381)) (-5 *1 (-97)))) (-3413 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-381)) (-5 *1 (-97)))) (-2370 (*1 *2 *3 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-381)) (-5 *1 (-97)))) (-2370 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-381)) (-5 *1 (-97)))) (-2970 (*1 *2 *3 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-381)) (-5 *1 (-97)))) (-3770 (*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-97)))) (-3231 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-97)))) (-3801 (*1 *2 *3 *2) (-12 (-5 *2 (-381)) (-5 *3 (-1157)) (-5 *1 (-97)))) (-3801 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-381)) (-5 *3 (-1157)) (-5 *1 (-97))))) +(-13 (-1099) (-10 -7 (-15 -3413 ((-381) (-1157) (-1157))) (-15 -3413 ((-381) (-1157))) (-15 -2370 ((-381) (-1157) (-1157))) (-15 -2370 ((-381) (-1157))) (-15 -2970 ((-381) (-1157) (-1157))) (-15 -3770 ((-1269))) (-15 -3231 ((-381) (-381))) (-15 -3801 ((-381) (-1157) (-381))) (-15 -3801 ((-381) (-1157) (-1157) (-381))) (-6 -4417))) NIL (((-98) (-140)) (T -98)) NIL -(-13 (-10 -7 (-6 -4410) (-6 (-4412 "*")) (-6 -4411) (-6 -4407) (-6 -4405) (-6 -4404) (-6 -4403) (-6 -4408) (-6 -4402) (-6 -4401) (-6 -4400) (-6 -4399) (-6 -4398) (-6 -4406) (-6 -4409) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4397))) -((-2856 (((-112) $ $) NIL)) (-2822 (($) NIL T CONST)) (-2675 (((-3 $ "failed") $) NIL)) (-3163 (((-112) $) NIL)) (-4225 (($ (-1 |#1| |#1|)) 27) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26) (($ (-1 |#1| |#1| (-564))) 24)) (-1778 (((-1155) $) NIL)) (-2481 (($ $) 16)) (-3999 (((-1117) $) NIL)) (-4369 ((|#1| $ |#1|) 13)) (-1736 (($ $ $) NIL)) (-2402 (($ $ $) NIL)) (-2390 (((-860) $) 22)) (-1600 (((-112) $ $) NIL)) (-2371 (($) 8 T CONST)) (-2821 (((-112) $ $) 10)) (-2943 (($ $ $) NIL)) (** (($ $ (-919)) 34) (($ $ (-769)) NIL) (($ $ (-564)) 18)) (* (($ $ $) 35))) -(((-99 |#1|) (-13 (-473) (-286 |#1| |#1|) (-10 -8 (-15 -4225 ($ (-1 |#1| |#1|))) (-15 -4225 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -4225 ($ (-1 |#1| |#1| (-564)))))) (-1047)) (T -99)) -((-4225 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1047)) (-5 *1 (-99 *3)))) (-4225 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1047)) (-5 *1 (-99 *3)))) (-4225 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-564))) (-4 *3 (-1047)) (-5 *1 (-99 *3))))) -(-13 (-473) (-286 |#1| |#1|) (-10 -8 (-15 -4225 ($ (-1 |#1| |#1|))) (-15 -4225 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -4225 ($ (-1 |#1| |#1| (-564)))))) -((-3372 (((-418 |#2|) |#2| (-642 |#2|)) 10) (((-418 |#2|) |#2| |#2|) 11))) -(((-100 |#1| |#2|) (-10 -7 (-15 -3372 ((-418 |#2|) |#2| |#2|)) (-15 -3372 ((-418 |#2|) |#2| (-642 |#2|)))) (-13 (-452) (-147)) (-1238 |#1|)) (T -100)) -((-3372 (*1 *2 *3 *4) (-12 (-5 *4 (-642 *3)) (-4 *3 (-1238 *5)) (-4 *5 (-13 (-452) (-147))) (-5 *2 (-418 *3)) (-5 *1 (-100 *5 *3)))) (-3372 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-452) (-147))) (-5 *2 (-418 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1238 *4))))) -(-10 -7 (-15 -3372 ((-418 |#2|) |#2| |#2|)) (-15 -3372 ((-418 |#2|) |#2| (-642 |#2|)))) -((-2856 (((-112) $ $) 10))) -(((-101 |#1|) (-10 -8 (-15 -2856 ((-112) |#1| |#1|))) (-102)) (T -101)) -NIL -(-10 -8 (-15 -2856 ((-112) |#1| |#1|))) -((-2856 (((-112) $ $) 7)) (-2821 (((-112) $ $) 6))) +(-13 (-10 -7 (-6 -4417) (-6 (-4419 "*")) (-6 -4418) (-6 -4414) (-6 -4412) (-6 -4411) (-6 -4410) (-6 -4415) (-6 -4409) (-6 -4408) (-6 -4407) (-6 -4406) (-6 -4405) (-6 -4413) (-6 -4416) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4404))) +((-2986 (((-112) $ $) NIL)) (-1811 (($) NIL T CONST)) (-3757 (((-3 $ "failed") $) NIL)) (-2264 (((-112) $) NIL)) (-4257 (($ (-1 |#1| |#1|)) 27) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26) (($ (-1 |#1| |#1| (-566))) 24)) (-3151 (((-1157) $) NIL)) (-2577 (($ $) 16)) (-4059 (((-1119) $) NIL)) (-4376 ((|#1| $ |#1|) 13)) (-2664 (($ $ $) NIL)) (-3815 (($ $ $) NIL)) (-2479 (((-862) $) 22)) (-3900 (((-112) $ $) NIL)) (-2459 (($) 8 T CONST)) (-2952 (((-112) $ $) 10)) (-3077 (($ $ $) NIL)) (** (($ $ (-921)) 34) (($ $ (-771)) NIL) (($ $ (-566)) 18)) (* (($ $ $) 35))) +(((-99 |#1|) (-13 (-475) (-287 |#1| |#1|) (-10 -8 (-15 -4257 ($ (-1 |#1| |#1|))) (-15 -4257 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -4257 ($ (-1 |#1| |#1| (-566)))))) (-1049)) (T -99)) +((-4257 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1049)) (-5 *1 (-99 *3)))) (-4257 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1049)) (-5 *1 (-99 *3)))) (-4257 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-566))) (-4 *3 (-1049)) (-5 *1 (-99 *3))))) +(-13 (-475) (-287 |#1| |#1|) (-10 -8 (-15 -4257 ($ (-1 |#1| |#1|))) (-15 -4257 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -4257 ($ (-1 |#1| |#1| (-566)))))) +((-2734 (((-420 |#2|) |#2| (-644 |#2|)) 10) (((-420 |#2|) |#2| |#2|) 11))) +(((-100 |#1| |#2|) (-10 -7 (-15 -2734 ((-420 |#2|) |#2| |#2|)) (-15 -2734 ((-420 |#2|) |#2| (-644 |#2|)))) (-13 (-454) (-147)) (-1240 |#1|)) (T -100)) +((-2734 (*1 *2 *3 *4) (-12 (-5 *4 (-644 *3)) (-4 *3 (-1240 *5)) (-4 *5 (-13 (-454) (-147))) (-5 *2 (-420 *3)) (-5 *1 (-100 *5 *3)))) (-2734 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-454) (-147))) (-5 *2 (-420 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1240 *4))))) +(-10 -7 (-15 -2734 ((-420 |#2|) |#2| |#2|)) (-15 -2734 ((-420 |#2|) |#2| (-644 |#2|)))) +((-2986 (((-112) $ $) 10))) +(((-101 |#1|) (-10 -8 (-15 -2986 ((-112) |#1| |#1|))) (-102)) (T -101)) +NIL +(-10 -8 (-15 -2986 ((-112) |#1| |#1|))) +((-2986 (((-112) $ $) 7)) (-2952 (((-112) $ $) 6))) (((-102) (-140)) (T -102)) -((-2856 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-2821 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))) -(-13 (-10 -8 (-15 -2821 ((-112) $ $)) (-15 -2856 ((-112) $ $)))) -((-2856 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2108 ((|#1| $) NIL)) (-3442 (((-112) $ (-769)) NIL)) (-1407 ((|#1| $ |#1|) 24 (|has| $ (-6 -4411)))) (-2503 (($ $ $) NIL (|has| $ (-6 -4411)))) (-4006 (($ $ $) NIL (|has| $ (-6 -4411)))) (-1628 (($ $ (-642 |#1|)) 34)) (-3841 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4411))) (($ $ "left" $) NIL (|has| $ (-6 -4411))) (($ $ "right" $) NIL (|has| $ (-6 -4411)))) (-4041 (($ $ (-642 $)) NIL (|has| $ (-6 -4411)))) (-2822 (($) NIL T CONST)) (-4351 (($ $) 12)) (-2018 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-1300 (((-642 $) $) NIL)) (-2423 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-1863 (($ $ |#1| $) 36)) (-3769 (((-112) $ (-769)) NIL)) (-3541 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2533 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-4295 ((|#1| $ (-1 |#1| |#1| |#1|)) 44) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 49)) (-3314 (($ $ |#1| (-1 |#1| |#1| |#1|)) 50) (($ $ |#1| (-1 (-642 |#1|) |#1| |#1| |#1|)) 53)) (-1857 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#1| |#1|) $) NIL)) (-4145 (((-112) $ (-769)) NIL)) (-4341 (($ $) 11)) (-2334 (((-642 |#1|) $) NIL)) (-1961 (((-112) $) 13)) (-1778 (((-1155) $) NIL (|has| |#1| (-1097)))) (-3999 (((-1117) $) NIL (|has| |#1| (-1097)))) (-4094 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-2478 (((-112) $ $) NIL)) (-4109 (((-112) $) 9)) (-2179 (($) 35)) (-4369 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1743 (((-564) $ $) NIL)) (-1311 (((-112) $) NIL)) (-4010 (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-769) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3865 (($ $) NIL)) (-2390 (((-860) $) NIL (|has| |#1| (-611 (-860))))) (-4275 (((-642 $) $) NIL)) (-1622 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-1600 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-3247 (($ (-769) |#1|) 37)) (-3295 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2821 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2158 (((-769) $) NIL (|has| $ (-6 -4410))))) -(((-103 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4410) (-6 -4411) (-15 -3247 ($ (-769) |#1|)) (-15 -1628 ($ $ (-642 |#1|))) (-15 -4295 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -4295 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3314 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3314 ($ $ |#1| (-1 (-642 |#1|) |#1| |#1| |#1|))))) (-1097)) (T -103)) -((-3247 (*1 *1 *2 *3) (-12 (-5 *2 (-769)) (-5 *1 (-103 *3)) (-4 *3 (-1097)))) (-1628 (*1 *1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1097)) (-5 *1 (-103 *3)))) (-4295 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1097)))) (-4295 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1097)) (-5 *1 (-103 *3)))) (-3314 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1097)) (-5 *1 (-103 *2)))) (-3314 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-642 *2) *2 *2 *2)) (-4 *2 (-1097)) (-5 *1 (-103 *2))))) -(-13 (-125 |#1|) (-10 -8 (-6 -4410) (-6 -4411) (-15 -3247 ($ (-769) |#1|)) (-15 -1628 ($ $ (-642 |#1|))) (-15 -4295 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -4295 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3314 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3314 ($ $ |#1| (-1 (-642 |#1|) |#1| |#1| |#1|))))) -((-4213 ((|#3| |#2| |#2|) 36)) (-1370 ((|#1| |#2| |#2|) 53 (|has| |#1| (-6 (-4412 "*"))))) (-4241 ((|#3| |#2| |#2|) 38)) (-3158 ((|#1| |#2|) 58 (|has| |#1| (-6 (-4412 "*")))))) -(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4213 (|#3| |#2| |#2|)) (-15 -4241 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4412 "*"))) (PROGN (-15 -1370 (|#1| |#2| |#2|)) (-15 -3158 (|#1| |#2|))) |%noBranch|)) (-1047) (-1238 |#1|) (-685 |#1| |#4| |#5|) (-373 |#1|) (-373 |#1|)) (T -104)) -((-3158 (*1 *2 *3) (-12 (|has| *2 (-6 (-4412 "*"))) (-4 *5 (-373 *2)) (-4 *6 (-373 *2)) (-4 *2 (-1047)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1238 *2)) (-4 *4 (-685 *2 *5 *6)))) (-1370 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4412 "*"))) (-4 *5 (-373 *2)) (-4 *6 (-373 *2)) (-4 *2 (-1047)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1238 *2)) (-4 *4 (-685 *2 *5 *6)))) (-4241 (*1 *2 *3 *3) (-12 (-4 *4 (-1047)) (-4 *2 (-685 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1238 *4)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)))) (-4213 (*1 *2 *3 *3) (-12 (-4 *4 (-1047)) (-4 *2 (-685 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1238 *4)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4))))) -(-10 -7 (-15 -4213 (|#3| |#2| |#2|)) (-15 -4241 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4412 "*"))) (PROGN (-15 -1370 (|#1| |#2| |#2|)) (-15 -3158 (|#1| |#2|))) |%noBranch|)) -((-2856 (((-112) $ $) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) NIL)) (-2544 (((-642 (-1173))) 37)) (-2343 (((-2 (|:| |zeros| (-1153 (-225))) (|:| |ones| (-1153 (-225))) (|:| |singularities| (-1153 (-225)))) (-1173)) 39)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-105) (-13 (-1097) (-10 -7 (-15 -2544 ((-642 (-1173)))) (-15 -2343 ((-2 (|:| |zeros| (-1153 (-225))) (|:| |ones| (-1153 (-225))) (|:| |singularities| (-1153 (-225)))) (-1173))) (-6 -4410)))) (T -105)) -((-2544 (*1 *2) (-12 (-5 *2 (-642 (-1173))) (-5 *1 (-105)))) (-2343 (*1 *2 *3) (-12 (-5 *3 (-1173)) (-5 *2 (-2 (|:| |zeros| (-1153 (-225))) (|:| |ones| (-1153 (-225))) (|:| |singularities| (-1153 (-225))))) (-5 *1 (-105))))) -(-13 (-1097) (-10 -7 (-15 -2544 ((-642 (-1173)))) (-15 -2343 ((-2 (|:| |zeros| (-1153 (-225))) (|:| |ones| (-1153 (-225))) (|:| |singularities| (-1153 (-225)))) (-1173))) (-6 -4410))) -((-4160 (($ (-642 |#2|)) 11))) -(((-106 |#1| |#2|) (-10 -8 (-15 -4160 (|#1| (-642 |#2|)))) (-107 |#2|) (-1212)) (T -106)) -NIL -(-10 -8 (-15 -4160 (|#1| (-642 |#2|)))) -((-2856 (((-112) $ $) 19 (|has| |#1| (-1097)))) (-3442 (((-112) $ (-769)) 8)) (-2822 (($) 7 T CONST)) (-2018 (((-642 |#1|) $) 31 (|has| $ (-6 -4410)))) (-3769 (((-112) $ (-769)) 9)) (-3541 (((-642 |#1|) $) 30 (|has| $ (-6 -4410)))) (-2533 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-1857 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#1| |#1|) $) 36)) (-4145 (((-112) $ (-769)) 10)) (-1778 (((-1155) $) 22 (|has| |#1| (-1097)))) (-3220 ((|#1| $) 40)) (-1668 (($ |#1| $) 41)) (-3999 (((-1117) $) 21 (|has| |#1| (-1097)))) (-4314 ((|#1| $) 42)) (-4094 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-2478 (((-112) $ $) 14)) (-4109 (((-112) $) 11)) (-2179 (($) 12)) (-4010 (((-769) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4410))) (((-769) |#1| $) 29 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3865 (($ $) 13)) (-2390 (((-860) $) 18 (|has| |#1| (-611 (-860))))) (-1600 (((-112) $ $) 23 (|has| |#1| (-1097)))) (-4160 (($ (-642 |#1|)) 43)) (-3295 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4410)))) (-2821 (((-112) $ $) 20 (|has| |#1| (-1097)))) (-2158 (((-769) $) 6 (|has| $ (-6 -4410))))) -(((-107 |#1|) (-140) (-1212)) (T -107)) -((-4160 (*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1212)) (-4 *1 (-107 *3)))) (-4314 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1212)))) (-1668 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1212)))) (-3220 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1212))))) -(-13 (-489 |t#1|) (-10 -8 (-6 -4411) (-15 -4160 ($ (-642 |t#1|))) (-15 -4314 (|t#1| $)) (-15 -1668 ($ |t#1| $)) (-15 -3220 (|t#1| $)))) -(((-34) . T) ((-102) |has| |#1| (-1097)) ((-611 (-860)) -2682 (|has| |#1| (-1097)) (|has| |#1| (-611 (-860)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-1097) |has| |#1| (-1097)) ((-1212) . T)) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-2905 (((-564) $) NIL (|has| (-564) (-307)))) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-4252 (($ $) NIL)) (-1722 (((-112) $) NIL)) (-3085 (((-3 $ "failed") $ $) NIL)) (-4297 (((-418 (-1169 $)) (-1169 $)) NIL (|has| (-564) (-907)))) (-1993 (($ $) NIL)) (-3282 (((-418 $) $) NIL)) (-3267 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) NIL (|has| (-564) (-907)))) (-2134 (((-112) $ $) NIL)) (-2221 (((-564) $) NIL (|has| (-564) (-818)))) (-2822 (($) NIL T CONST)) (-2849 (((-3 (-564) "failed") $) NIL) (((-3 (-1173) "failed") $) NIL (|has| (-564) (-1036 (-1173)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-564) (-1036 (-564)))) (((-3 (-564) "failed") $) NIL (|has| (-564) (-1036 (-564))))) (-1687 (((-564) $) NIL) (((-1173) $) NIL (|has| (-564) (-1036 (-1173)))) (((-407 (-564)) $) NIL (|has| (-564) (-1036 (-564)))) (((-564) $) NIL (|has| (-564) (-1036 (-564))))) (-2796 (($ $ $) NIL)) (-3330 (((-687 (-564)) (-687 $)) NIL (|has| (-564) (-637 (-564)))) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (|has| (-564) (-637 (-564)))) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL) (((-687 (-564)) (-687 $)) NIL)) (-2675 (((-3 $ "failed") $) NIL)) (-3235 (($) NIL (|has| (-564) (-545)))) (-2808 (($ $ $) NIL)) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) NIL)) (-3552 (((-112) $) NIL)) (-3292 (((-112) $) NIL (|has| (-564) (-818)))) (-1381 (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) NIL (|has| (-564) (-884 (-564)))) (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) NIL (|has| (-564) (-884 (-379))))) (-3163 (((-112) $) NIL)) (-3408 (($ $) NIL)) (-4120 (((-564) $) NIL)) (-4382 (((-3 $ "failed") $) NIL (|has| (-564) (-1148)))) (-2666 (((-112) $) NIL (|has| (-564) (-818)))) (-2709 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-3225 (($ $ $) NIL (|has| (-564) (-848)))) (-2903 (($ $ $) NIL (|has| (-564) (-848)))) (-2947 (($ (-1 (-564) (-564)) $) NIL)) (-2066 (($ $ $) NIL) (($ (-642 $)) NIL)) (-1778 (((-1155) $) NIL)) (-2481 (($ $) NIL)) (-3910 (($) NIL (|has| (-564) (-1148)) CONST)) (-3999 (((-1117) $) NIL)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2105 (($ $ $) NIL) (($ (-642 $)) NIL)) (-1830 (($ $) NIL (|has| (-564) (-307))) (((-407 (-564)) $) NIL)) (-2795 (((-564) $) NIL (|has| (-564) (-545)))) (-3223 (((-418 (-1169 $)) (-1169 $)) NIL (|has| (-564) (-907)))) (-2236 (((-418 (-1169 $)) (-1169 $)) NIL (|has| (-564) (-907)))) (-2254 (((-418 $) $) NIL)) (-1877 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2842 (((-3 $ "failed") $ $) NIL)) (-1483 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-3154 (($ $ (-642 (-564)) (-642 (-564))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-564) (-564)) NIL (|has| (-564) (-309 (-564)))) (($ $ (-294 (-564))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-642 (-294 (-564)))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-642 (-1173)) (-642 (-564))) NIL (|has| (-564) (-514 (-1173) (-564)))) (($ $ (-1173) (-564)) NIL (|has| (-564) (-514 (-1173) (-564))))) (-4274 (((-769) $) NIL)) (-4369 (($ $ (-564)) NIL (|has| (-564) (-286 (-564) (-564))))) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL)) (-2199 (($ $) NIL (|has| (-564) (-233))) (($ $ (-769)) NIL (|has| (-564) (-233))) (($ $ (-1173)) NIL (|has| (-564) (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| (-564) (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| (-564) (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| (-564) (-898 (-1173)))) (($ $ (-1 (-564) (-564)) (-769)) NIL) (($ $ (-1 (-564) (-564))) NIL)) (-3082 (($ $) NIL)) (-4131 (((-564) $) NIL)) (-3003 (((-890 (-564)) $) NIL (|has| (-564) (-612 (-890 (-564))))) (((-890 (-379)) $) NIL (|has| (-564) (-612 (-890 (-379))))) (((-536) $) NIL (|has| (-564) (-612 (-536)))) (((-379) $) NIL (|has| (-564) (-1020))) (((-225) $) NIL (|has| (-564) (-1020)))) (-3556 (((-3 (-1262 $) "failed") (-687 $)) NIL (-12 (|has| $ (-145)) (|has| (-564) (-907))))) (-2390 (((-860) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) 8) (($ (-564)) NIL) (($ (-1173)) NIL (|has| (-564) (-1036 (-1173)))) (((-407 (-564)) $) NIL) (((-1002 2) $) 10)) (-3434 (((-3 $ "failed") $) NIL (-2682 (-12 (|has| $ (-145)) (|has| (-564) (-907))) (|has| (-564) (-145))))) (-3348 (((-769)) NIL T CONST)) (-1378 (((-564) $) NIL (|has| (-564) (-545)))) (-2878 (($ (-407 (-564))) 9)) (-1600 (((-112) $ $) NIL)) (-1594 (((-112) $ $) NIL)) (-1630 (($ $) NIL (|has| (-564) (-818)))) (-2361 (($) NIL T CONST)) (-2371 (($) NIL T CONST)) (-2711 (($ $) NIL (|has| (-564) (-233))) (($ $ (-769)) NIL (|has| (-564) (-233))) (($ $ (-1173)) NIL (|has| (-564) (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| (-564) (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| (-564) (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| (-564) (-898 (-1173)))) (($ $ (-1 (-564) (-564)) (-769)) NIL) (($ $ (-1 (-564) (-564))) NIL)) (-2881 (((-112) $ $) NIL (|has| (-564) (-848)))) (-2857 (((-112) $ $) NIL (|has| (-564) (-848)))) (-2821 (((-112) $ $) NIL)) (-2868 (((-112) $ $) NIL (|has| (-564) (-848)))) (-2844 (((-112) $ $) NIL (|has| (-564) (-848)))) (-2943 (($ $ $) NIL) (($ (-564) (-564)) NIL)) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ (-564) $) NIL) (($ $ (-564)) NIL))) -(((-108) (-13 (-990 (-564)) (-611 (-407 (-564))) (-611 (-1002 2)) (-10 -8 (-15 -1830 ((-407 (-564)) $)) (-15 -2878 ($ (-407 (-564))))))) (T -108)) -((-1830 (*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-108)))) (-2878 (*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-108))))) -(-13 (-990 (-564)) (-611 (-407 (-564))) (-611 (-1002 2)) (-10 -8 (-15 -1830 ((-407 (-564)) $)) (-15 -2878 ($ (-407 (-564)))))) -((-2005 (((-642 (-963)) $) 13)) (-2493 (((-506) $) 9)) (-2390 (((-860) $) 20)) (-1482 (($ (-506) (-642 (-963))) 15))) -(((-109) (-13 (-611 (-860)) (-10 -8 (-15 -2493 ((-506) $)) (-15 -2005 ((-642 (-963)) $)) (-15 -1482 ($ (-506) (-642 (-963))))))) (T -109)) -((-2493 (*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-109)))) (-2005 (*1 *2 *1) (-12 (-5 *2 (-642 (-963))) (-5 *1 (-109)))) (-1482 (*1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-642 (-963))) (-5 *1 (-109))))) -(-13 (-611 (-860)) (-10 -8 (-15 -2493 ((-506) $)) (-15 -2005 ((-642 (-963)) $)) (-15 -1482 ($ (-506) (-642 (-963)))))) -((-2856 (((-112) $ $) NIL)) (-2866 (($ $) NIL)) (-2341 (($ $ $) NIL)) (-3633 (((-1267) $ (-564) (-564)) NIL (|has| $ (-6 -4411)))) (-1824 (((-112) $) NIL (|has| (-112) (-848))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-3659 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-112) (-848)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4411)))) (-3191 (($ $) NIL (|has| (-112) (-848))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-3442 (((-112) $ (-769)) NIL)) (-3841 (((-112) $ (-1229 (-564)) (-112)) NIL (|has| $ (-6 -4411))) (((-112) $ (-564) (-112)) NIL (|has| $ (-6 -4411)))) (-3437 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4410)))) (-2822 (($) NIL T CONST)) (-1540 (($ $) NIL (|has| $ (-6 -4411)))) (-3817 (($ $) NIL)) (-4067 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-112) (-1097))))) (-2517 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4410))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-112) (-1097))))) (-3741 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4410))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4410))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4410)) (|has| (-112) (-1097))))) (-3105 (((-112) $ (-564) (-112)) NIL (|has| $ (-6 -4411)))) (-1804 (((-112) $ (-564)) NIL)) (-3942 (((-564) (-112) $ (-564)) NIL (|has| (-112) (-1097))) (((-564) (-112) $) NIL (|has| (-112) (-1097))) (((-564) (-1 (-112) (-112)) $) NIL)) (-2018 (((-642 (-112)) $) NIL (|has| $ (-6 -4410)))) (-2329 (($ $ $) NIL)) (-2307 (($ $) NIL)) (-2002 (($ $ $) NIL)) (-4233 (($ (-769) (-112)) 10)) (-2159 (($ $ $) NIL)) (-3769 (((-112) $ (-769)) NIL)) (-1802 (((-564) $) NIL (|has| (-564) (-848)))) (-3225 (($ $ $) NIL)) (-2774 (($ $ $) NIL (|has| (-112) (-848))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-3541 (((-642 (-112)) $) NIL (|has| $ (-6 -4410)))) (-2533 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-112) (-1097))))) (-3624 (((-564) $) NIL (|has| (-564) (-848)))) (-2903 (($ $ $) NIL)) (-1857 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4411)))) (-2947 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-4145 (((-112) $ (-769)) NIL)) (-1778 (((-1155) $) NIL)) (-4247 (($ $ $ (-564)) NIL) (($ (-112) $ (-564)) NIL)) (-4107 (((-642 (-564)) $) NIL)) (-4207 (((-112) (-564) $) NIL)) (-3999 (((-1117) $) NIL)) (-4036 (((-112) $) NIL (|has| (-564) (-848)))) (-3183 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-3826 (($ $ (-112)) NIL (|has| $ (-6 -4411)))) (-4094 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-112)) (-642 (-112))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1097)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1097)))) (($ $ (-294 (-112))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1097)))) (($ $ (-642 (-294 (-112)))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1097))))) (-2478 (((-112) $ $) NIL)) (-1643 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-112) (-1097))))) (-3522 (((-642 (-112)) $) NIL)) (-4109 (((-112) $) NIL)) (-2179 (($) NIL)) (-4369 (($ $ (-1229 (-564))) NIL) (((-112) $ (-564)) NIL) (((-112) $ (-564) (-112)) NIL)) (-2083 (($ $ (-1229 (-564))) NIL) (($ $ (-564)) NIL)) (-4010 (((-769) (-112) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-112) (-1097)))) (((-769) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4410)))) (-3301 (($ $ $ (-564)) NIL (|has| $ (-6 -4411)))) (-3865 (($ $) NIL)) (-3003 (((-536) $) NIL (|has| (-112) (-612 (-536))))) (-2401 (($ (-642 (-112))) NIL)) (-3634 (($ (-642 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-2390 (((-860) $) NIL)) (-1991 (($ (-769) (-112)) 11)) (-1600 (((-112) $ $) NIL)) (-3295 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4410)))) (-2317 (($ $ $) NIL)) (-2915 (($ $ $) NIL)) (-2881 (((-112) $ $) NIL)) (-2857 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL)) (-2868 (((-112) $ $) NIL)) (-2844 (((-112) $ $) NIL)) (-2902 (($ $ $) NIL)) (-2158 (((-769) $) NIL (|has| $ (-6 -4410))))) -(((-110) (-13 (-123) (-10 -8 (-15 -1991 ($ (-769) (-112)))))) (T -110)) -((-1991 (*1 *1 *2 *3) (-12 (-5 *2 (-769)) (-5 *3 (-112)) (-5 *1 (-110))))) -(-13 (-123) (-10 -8 (-15 -1991 ($ (-769) (-112))))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-3085 (((-3 $ "failed") $ $) 20)) (-2822 (($) 18 T CONST)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2390 (((-860) $) 12)) (-1600 (((-112) $ $) 9)) (-2361 (($) 19 T CONST)) (-2821 (((-112) $ $) 6)) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ |#1| $) 27) (($ $ |#2|) 31))) -(((-111 |#1| |#2|) (-140) (-1047) (-1047)) (T -111)) -NIL -(-13 (-646 |t#1|) (-1054 |t#2|) (-10 -7 (-6 -4405) (-6 -4404))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-860)) . T) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-646 |#1|) . T) ((-1049 |#2|) . T) ((-1054 |#2|) . T) ((-1097) . T)) -((-2856 (((-112) $ $) NIL)) (-2866 (($ $) 13)) (-2341 (($ $ $) 18)) (-3253 (($) 7 T CONST)) (-3317 (($ $) 6)) (-4003 (((-769)) 26)) (-3235 (($) 34)) (-2329 (($ $ $) 16)) (-2307 (($ $) 9)) (-2002 (($ $ $) 19)) (-2159 (($ $ $) 20)) (-3225 (($ $ $) NIL) (($) NIL T CONST)) (-2903 (($ $ $) NIL) (($) NIL T CONST)) (-2535 (((-919) $) 32)) (-1778 (((-1155) $) NIL)) (-2065 (($ (-919)) 30)) (-3109 (($ $ $) 22)) (-3999 (((-1117) $) NIL)) (-2119 (($) 8 T CONST)) (-3884 (($ $ $) 23)) (-3003 (((-536) $) 36)) (-2390 (((-860) $) 38)) (-1600 (((-112) $ $) NIL)) (-2317 (($ $ $) 14)) (-2915 (($ $ $) 17)) (-2881 (((-112) $ $) NIL)) (-2857 (((-112) $ $) NIL)) (-2821 (((-112) $ $) 21)) (-2868 (((-112) $ $) NIL)) (-2844 (((-112) $ $) 24)) (-2902 (($ $ $) 15))) -(((-112) (-13 (-842) (-659) (-965) (-612 (-536)) (-10 -8 (-15 -2341 ($ $ $)) (-15 -2159 ($ $ $)) (-15 -2002 ($ $ $)) (-15 -3317 ($ $))))) (T -112)) -((-2341 (*1 *1 *1 *1) (-5 *1 (-112))) (-2159 (*1 *1 *1 *1) (-5 *1 (-112))) (-2002 (*1 *1 *1 *1) (-5 *1 (-112))) (-3317 (*1 *1 *1) (-5 *1 (-112)))) -(-13 (-842) (-659) (-965) (-612 (-536)) (-10 -8 (-15 -2341 ($ $ $)) (-15 -2159 ($ $ $)) (-15 -2002 ($ $ $)) (-15 -3317 ($ $)))) -((-3549 (((-3 (-1 |#1| (-642 |#1|)) "failed") (-114)) 23) (((-114) (-114) (-1 |#1| |#1|)) 13) (((-114) (-114) (-1 |#1| (-642 |#1|))) 11) (((-3 |#1| "failed") (-114) (-642 |#1|)) 25)) (-2473 (((-3 (-642 (-1 |#1| (-642 |#1|))) "failed") (-114)) 29) (((-114) (-114) (-1 |#1| |#1|)) 33) (((-114) (-114) (-642 (-1 |#1| (-642 |#1|)))) 30)) (-1908 (((-114) |#1|) 63)) (-3583 (((-3 |#1| "failed") (-114)) 58))) -(((-113 |#1|) (-10 -7 (-15 -3549 ((-3 |#1| "failed") (-114) (-642 |#1|))) (-15 -3549 ((-114) (-114) (-1 |#1| (-642 |#1|)))) (-15 -3549 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3549 ((-3 (-1 |#1| (-642 |#1|)) "failed") (-114))) (-15 -2473 ((-114) (-114) (-642 (-1 |#1| (-642 |#1|))))) (-15 -2473 ((-114) (-114) (-1 |#1| |#1|))) (-15 -2473 ((-3 (-642 (-1 |#1| (-642 |#1|))) "failed") (-114))) (-15 -1908 ((-114) |#1|)) (-15 -3583 ((-3 |#1| "failed") (-114)))) (-1097)) (T -113)) -((-3583 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *1 (-113 *2)) (-4 *2 (-1097)))) (-1908 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-1097)))) (-2473 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-642 (-1 *4 (-642 *4)))) (-5 *1 (-113 *4)) (-4 *4 (-1097)))) (-2473 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1097)) (-5 *1 (-113 *4)))) (-2473 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-642 (-1 *4 (-642 *4)))) (-4 *4 (-1097)) (-5 *1 (-113 *4)))) (-3549 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-642 *4))) (-5 *1 (-113 *4)) (-4 *4 (-1097)))) (-3549 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1097)) (-5 *1 (-113 *4)))) (-3549 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-642 *4))) (-4 *4 (-1097)) (-5 *1 (-113 *4)))) (-3549 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-642 *2)) (-5 *1 (-113 *2)) (-4 *2 (-1097))))) -(-10 -7 (-15 -3549 ((-3 |#1| "failed") (-114) (-642 |#1|))) (-15 -3549 ((-114) (-114) (-1 |#1| (-642 |#1|)))) (-15 -3549 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3549 ((-3 (-1 |#1| (-642 |#1|)) "failed") (-114))) (-15 -2473 ((-114) (-114) (-642 (-1 |#1| (-642 |#1|))))) (-15 -2473 ((-114) (-114) (-1 |#1| |#1|))) (-15 -2473 ((-3 (-642 (-1 |#1| (-642 |#1|))) "failed") (-114))) (-15 -1908 ((-114) |#1|)) (-15 -3583 ((-3 |#1| "failed") (-114)))) -((-2856 (((-112) $ $) NIL)) (-3059 (((-769) $) 91) (($ $ (-769)) 37)) (-2294 (((-112) $) 41)) (-3854 (($ $ (-1155) (-772)) 58) (($ $ (-506) (-772)) 33)) (-4064 (($ $ (-45 (-1155) (-772))) 16)) (-3004 (((-3 (-772) "failed") $ (-1155)) 27) (((-689 (-772)) $ (-506)) 32)) (-2005 (((-45 (-1155) (-772)) $) 15)) (-3898 (($ (-1173)) 20) (($ (-1173) (-769)) 23) (($ (-1173) (-55)) 24)) (-3692 (((-112) $) 39)) (-2561 (((-112) $) 43)) (-2493 (((-1173) $) 8)) (-3225 (($ $ $) NIL)) (-2903 (($ $ $) NIL)) (-1778 (((-1155) $) NIL)) (-1462 (((-112) $ (-1173)) 11)) (-1689 (($ $ (-1 (-536) (-642 (-536)))) 64) (((-3 (-1 (-536) (-642 (-536))) "failed") $) 71)) (-3999 (((-1117) $) NIL)) (-1366 (((-112) $ (-506)) 36)) (-2780 (($ $ (-1 (-112) $ $)) 45)) (-1639 (((-3 (-1 (-860) (-642 (-860))) "failed") $) 69) (($ $ (-1 (-860) (-642 (-860)))) 51) (($ $ (-1 (-860) (-860))) 53)) (-1564 (($ $ (-1155)) 55) (($ $ (-506)) 56)) (-3865 (($ $) 77)) (-3063 (($ $ (-1 (-112) $ $)) 46)) (-2390 (((-860) $) 60)) (-1600 (((-112) $ $) NIL)) (-1447 (($ $ (-506)) 34)) (-2634 (((-55) $) 72)) (-2881 (((-112) $ $) NIL)) (-2857 (((-112) $ $) NIL)) (-2821 (((-112) $ $) 89)) (-2868 (((-112) $ $) NIL)) (-2844 (((-112) $ $) 103))) -(((-114) (-13 (-848) (-833 (-1173)) (-10 -8 (-15 -2005 ((-45 (-1155) (-772)) $)) (-15 -3865 ($ $)) (-15 -3898 ($ (-1173))) (-15 -3898 ($ (-1173) (-769))) (-15 -3898 ($ (-1173) (-55))) (-15 -3692 ((-112) $)) (-15 -2294 ((-112) $)) (-15 -2561 ((-112) $)) (-15 -3059 ((-769) $)) (-15 -3059 ($ $ (-769))) (-15 -2780 ($ $ (-1 (-112) $ $))) (-15 -3063 ($ $ (-1 (-112) $ $))) (-15 -1639 ((-3 (-1 (-860) (-642 (-860))) "failed") $)) (-15 -1639 ($ $ (-1 (-860) (-642 (-860))))) (-15 -1639 ($ $ (-1 (-860) (-860)))) (-15 -1689 ($ $ (-1 (-536) (-642 (-536))))) (-15 -1689 ((-3 (-1 (-536) (-642 (-536))) "failed") $)) (-15 -1366 ((-112) $ (-506))) (-15 -1447 ($ $ (-506))) (-15 -1564 ($ $ (-1155))) (-15 -1564 ($ $ (-506))) (-15 -3004 ((-3 (-772) "failed") $ (-1155))) (-15 -3004 ((-689 (-772)) $ (-506))) (-15 -3854 ($ $ (-1155) (-772))) (-15 -3854 ($ $ (-506) (-772))) (-15 -4064 ($ $ (-45 (-1155) (-772))))))) (T -114)) -((-2005 (*1 *2 *1) (-12 (-5 *2 (-45 (-1155) (-772))) (-5 *1 (-114)))) (-3865 (*1 *1 *1) (-5 *1 (-114))) (-3898 (*1 *1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-114)))) (-3898 (*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-769)) (-5 *1 (-114)))) (-3898 (*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-55)) (-5 *1 (-114)))) (-3692 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-2294 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-2561 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-3059 (*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-114)))) (-3059 (*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-114)))) (-2780 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-3063 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-1639 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-860) (-642 (-860)))) (-5 *1 (-114)))) (-1639 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-860) (-642 (-860)))) (-5 *1 (-114)))) (-1639 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-860) (-860))) (-5 *1 (-114)))) (-1689 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-536) (-642 (-536)))) (-5 *1 (-114)))) (-1689 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-536) (-642 (-536)))) (-5 *1 (-114)))) (-1366 (*1 *2 *1 *3) (-12 (-5 *3 (-506)) (-5 *2 (-112)) (-5 *1 (-114)))) (-1447 (*1 *1 *1 *2) (-12 (-5 *2 (-506)) (-5 *1 (-114)))) (-1564 (*1 *1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-114)))) (-1564 (*1 *1 *1 *2) (-12 (-5 *2 (-506)) (-5 *1 (-114)))) (-3004 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1155)) (-5 *2 (-772)) (-5 *1 (-114)))) (-3004 (*1 *2 *1 *3) (-12 (-5 *3 (-506)) (-5 *2 (-689 (-772))) (-5 *1 (-114)))) (-3854 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1155)) (-5 *3 (-772)) (-5 *1 (-114)))) (-3854 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-772)) (-5 *1 (-114)))) (-4064 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1155) (-772))) (-5 *1 (-114))))) -(-13 (-848) (-833 (-1173)) (-10 -8 (-15 -2005 ((-45 (-1155) (-772)) $)) (-15 -3865 ($ $)) (-15 -3898 ($ (-1173))) (-15 -3898 ($ (-1173) (-769))) (-15 -3898 ($ (-1173) (-55))) (-15 -3692 ((-112) $)) (-15 -2294 ((-112) $)) (-15 -2561 ((-112) $)) (-15 -3059 ((-769) $)) (-15 -3059 ($ $ (-769))) (-15 -2780 ($ $ (-1 (-112) $ $))) (-15 -3063 ($ $ (-1 (-112) $ $))) (-15 -1639 ((-3 (-1 (-860) (-642 (-860))) "failed") $)) (-15 -1639 ($ $ (-1 (-860) (-642 (-860))))) (-15 -1639 ($ $ (-1 (-860) (-860)))) (-15 -1689 ($ $ (-1 (-536) (-642 (-536))))) (-15 -1689 ((-3 (-1 (-536) (-642 (-536))) "failed") $)) (-15 -1366 ((-112) $ (-506))) (-15 -1447 ($ $ (-506))) (-15 -1564 ($ $ (-1155))) (-15 -1564 ($ $ (-506))) (-15 -3004 ((-3 (-772) "failed") $ (-1155))) (-15 -3004 ((-689 (-772)) $ (-506))) (-15 -3854 ($ $ (-1155) (-772))) (-15 -3854 ($ $ (-506) (-772))) (-15 -4064 ($ $ (-45 (-1155) (-772)))))) -((-2811 (((-564) |#2|) 41))) -(((-115 |#1| |#2|) (-10 -7 (-15 -2811 ((-564) |#2|))) (-13 (-363) (-1036 (-407 (-564)))) (-1238 |#1|)) (T -115)) -((-2811 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-1036 (-407 *2)))) (-5 *2 (-564)) (-5 *1 (-115 *4 *3)) (-4 *3 (-1238 *4))))) -(-10 -7 (-15 -2811 ((-564) |#2|))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-4252 (($ $) NIL)) (-1722 (((-112) $) NIL)) (-3085 (((-3 $ "failed") $ $) NIL)) (-2264 (($ $ (-564)) NIL)) (-2134 (((-112) $ $) NIL)) (-2822 (($) NIL T CONST)) (-2171 (($ (-1169 (-564)) (-564)) NIL)) (-2796 (($ $ $) NIL)) (-2675 (((-3 $ "failed") $) NIL)) (-3196 (($ $) NIL)) (-2808 (($ $ $) NIL)) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) NIL)) (-2408 (((-769) $) NIL)) (-3163 (((-112) $) NIL)) (-2709 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-1380 (((-564)) NIL)) (-3418 (((-564) $) NIL)) (-2066 (($ $ $) NIL) (($ (-642 $)) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2105 (($ $ $) NIL) (($ (-642 $)) NIL)) (-1877 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2137 (($ $ (-564)) NIL)) (-2842 (((-3 $ "failed") $ $) NIL)) (-1483 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-4274 (((-769) $) NIL)) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL)) (-3152 (((-1153 (-564)) $) NIL)) (-4189 (($ $) NIL)) (-2390 (((-860) $) NIL) (($ (-564)) NIL) (($ $) NIL)) (-3348 (((-769)) NIL T CONST)) (-1600 (((-112) $ $) NIL)) (-1594 (((-112) $ $) NIL)) (-3560 (((-564) $ (-564)) NIL)) (-2361 (($) NIL T CONST)) (-2371 (($) NIL T CONST)) (-2821 (((-112) $ $) NIL)) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL))) -(((-116 |#1|) (-867 |#1|) (-564)) (T -116)) -NIL -(-867 |#1|) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-2905 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-307)))) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-4252 (($ $) NIL)) (-1722 (((-112) $) NIL)) (-3085 (((-3 $ "failed") $ $) NIL)) (-4297 (((-418 (-1169 $)) (-1169 $)) NIL (|has| (-116 |#1|) (-907)))) (-1993 (($ $) NIL)) (-3282 (((-418 $) $) NIL)) (-3267 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) NIL (|has| (-116 |#1|) (-907)))) (-2134 (((-112) $ $) NIL)) (-2221 (((-564) $) NIL (|has| (-116 |#1|) (-818)))) (-2822 (($) NIL T CONST)) (-2849 (((-3 (-116 |#1|) "failed") $) NIL) (((-3 (-1173) "failed") $) NIL (|has| (-116 |#1|) (-1036 (-1173)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-116 |#1|) (-1036 (-564)))) (((-3 (-564) "failed") $) NIL (|has| (-116 |#1|) (-1036 (-564))))) (-1687 (((-116 |#1|) $) NIL) (((-1173) $) NIL (|has| (-116 |#1|) (-1036 (-1173)))) (((-407 (-564)) $) NIL (|has| (-116 |#1|) (-1036 (-564)))) (((-564) $) NIL (|has| (-116 |#1|) (-1036 (-564))))) (-1506 (($ $) NIL) (($ (-564) $) NIL)) (-2796 (($ $ $) NIL)) (-3330 (((-687 (-564)) (-687 $)) NIL (|has| (-116 |#1|) (-637 (-564)))) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (|has| (-116 |#1|) (-637 (-564)))) (((-2 (|:| -3544 (-687 (-116 |#1|))) (|:| |vec| (-1262 (-116 |#1|)))) (-687 $) (-1262 $)) NIL) (((-687 (-116 |#1|)) (-687 $)) NIL)) (-2675 (((-3 $ "failed") $) NIL)) (-3235 (($) NIL (|has| (-116 |#1|) (-545)))) (-2808 (($ $ $) NIL)) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) NIL)) (-3552 (((-112) $) NIL)) (-3292 (((-112) $) NIL (|has| (-116 |#1|) (-818)))) (-1381 (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) NIL (|has| (-116 |#1|) (-884 (-564)))) (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) NIL (|has| (-116 |#1|) (-884 (-379))))) (-3163 (((-112) $) NIL)) (-3408 (($ $) NIL)) (-4120 (((-116 |#1|) $) NIL)) (-4382 (((-3 $ "failed") $) NIL (|has| (-116 |#1|) (-1148)))) (-2666 (((-112) $) NIL (|has| (-116 |#1|) (-818)))) (-2709 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-3225 (($ $ $) NIL (|has| (-116 |#1|) (-848)))) (-2903 (($ $ $) NIL (|has| (-116 |#1|) (-848)))) (-2947 (($ (-1 (-116 |#1|) (-116 |#1|)) $) NIL)) (-2066 (($ $ $) NIL) (($ (-642 $)) NIL)) (-1778 (((-1155) $) NIL)) (-2481 (($ $) NIL)) (-3910 (($) NIL (|has| (-116 |#1|) (-1148)) CONST)) (-3999 (((-1117) $) NIL)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2105 (($ $ $) NIL) (($ (-642 $)) NIL)) (-1830 (($ $) NIL (|has| (-116 |#1|) (-307)))) (-2795 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-545)))) (-3223 (((-418 (-1169 $)) (-1169 $)) NIL (|has| (-116 |#1|) (-907)))) (-2236 (((-418 (-1169 $)) (-1169 $)) NIL (|has| (-116 |#1|) (-907)))) (-2254 (((-418 $) $) NIL)) (-1877 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2842 (((-3 $ "failed") $ $) NIL)) (-1483 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-3154 (($ $ (-642 (-116 |#1|)) (-642 (-116 |#1|))) NIL (|has| (-116 |#1|) (-309 (-116 |#1|)))) (($ $ (-116 |#1|) (-116 |#1|)) NIL (|has| (-116 |#1|) (-309 (-116 |#1|)))) (($ $ (-294 (-116 |#1|))) NIL (|has| (-116 |#1|) (-309 (-116 |#1|)))) (($ $ (-642 (-294 (-116 |#1|)))) NIL (|has| (-116 |#1|) (-309 (-116 |#1|)))) (($ $ (-642 (-1173)) (-642 (-116 |#1|))) NIL (|has| (-116 |#1|) (-514 (-1173) (-116 |#1|)))) (($ $ (-1173) (-116 |#1|)) NIL (|has| (-116 |#1|) (-514 (-1173) (-116 |#1|))))) (-4274 (((-769) $) NIL)) (-4369 (($ $ (-116 |#1|)) NIL (|has| (-116 |#1|) (-286 (-116 |#1|) (-116 |#1|))))) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL)) (-2199 (($ $) NIL (|has| (-116 |#1|) (-233))) (($ $ (-769)) NIL (|has| (-116 |#1|) (-233))) (($ $ (-1173)) NIL (|has| (-116 |#1|) (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| (-116 |#1|) (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| (-116 |#1|) (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| (-116 |#1|) (-898 (-1173)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-769)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-3082 (($ $) NIL)) (-4131 (((-116 |#1|) $) NIL)) (-3003 (((-890 (-564)) $) NIL (|has| (-116 |#1|) (-612 (-890 (-564))))) (((-890 (-379)) $) NIL (|has| (-116 |#1|) (-612 (-890 (-379))))) (((-536) $) NIL (|has| (-116 |#1|) (-612 (-536)))) (((-379) $) NIL (|has| (-116 |#1|) (-1020))) (((-225) $) NIL (|has| (-116 |#1|) (-1020)))) (-2202 (((-174 (-407 (-564))) $) NIL)) (-3556 (((-3 (-1262 $) "failed") (-687 $)) NIL (-12 (|has| $ (-145)) (|has| (-116 |#1|) (-907))))) (-2390 (((-860) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-116 |#1|)) NIL) (($ (-1173)) NIL (|has| (-116 |#1|) (-1036 (-1173))))) (-3434 (((-3 $ "failed") $) NIL (-2682 (-12 (|has| $ (-145)) (|has| (-116 |#1|) (-907))) (|has| (-116 |#1|) (-145))))) (-3348 (((-769)) NIL T CONST)) (-1378 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-545)))) (-1600 (((-112) $ $) NIL)) (-1594 (((-112) $ $) NIL)) (-3560 (((-407 (-564)) $ (-564)) NIL)) (-1630 (($ $) NIL (|has| (-116 |#1|) (-818)))) (-2361 (($) NIL T CONST)) (-2371 (($) NIL T CONST)) (-2711 (($ $) NIL (|has| (-116 |#1|) (-233))) (($ $ (-769)) NIL (|has| (-116 |#1|) (-233))) (($ $ (-1173)) NIL (|has| (-116 |#1|) (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| (-116 |#1|) (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| (-116 |#1|) (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| (-116 |#1|) (-898 (-1173)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-769)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-2881 (((-112) $ $) NIL (|has| (-116 |#1|) (-848)))) (-2857 (((-112) $ $) NIL (|has| (-116 |#1|) (-848)))) (-2821 (((-112) $ $) NIL)) (-2868 (((-112) $ $) NIL (|has| (-116 |#1|) (-848)))) (-2844 (((-112) $ $) NIL (|has| (-116 |#1|) (-848)))) (-2943 (($ $ $) NIL) (($ (-116 |#1|) (-116 |#1|)) NIL)) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ (-116 |#1|) $) NIL) (($ $ (-116 |#1|)) NIL))) -(((-117 |#1|) (-13 (-990 (-116 |#1|)) (-10 -8 (-15 -3560 ((-407 (-564)) $ (-564))) (-15 -2202 ((-174 (-407 (-564))) $)) (-15 -1506 ($ $)) (-15 -1506 ($ (-564) $)))) (-564)) (T -117)) -((-3560 (*1 *2 *1 *3) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-564)))) (-2202 (*1 *2 *1) (-12 (-5 *2 (-174 (-407 (-564)))) (-5 *1 (-117 *3)) (-14 *3 (-564)))) (-1506 (*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-564)))) (-1506 (*1 *1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-117 *3)) (-14 *3 *2)))) -(-13 (-990 (-116 |#1|)) (-10 -8 (-15 -3560 ((-407 (-564)) $ (-564))) (-15 -2202 ((-174 (-407 (-564))) $)) (-15 -1506 ($ $)) (-15 -1506 ($ (-564) $)))) -((-3841 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 61) (($ $ "right" $) 63)) (-1300 (((-642 $) $) 31)) (-2423 (((-112) $ $) 36)) (-2533 (((-112) |#2| $) 40)) (-2334 (((-642 |#2|) $) 25)) (-1961 (((-112) $) 18)) (-4369 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-1311 (((-112) $) 57)) (-2390 (((-860) $) 47)) (-4275 (((-642 $) $) 32)) (-2821 (((-112) $ $) 38)) (-2158 (((-769) $) 50))) -(((-118 |#1| |#2|) (-10 -8 (-15 -2390 ((-860) |#1|)) (-15 -3841 (|#1| |#1| "right" |#1|)) (-15 -3841 (|#1| |#1| "left" |#1|)) (-15 -4369 (|#1| |#1| "right")) (-15 -4369 (|#1| |#1| "left")) (-15 -3841 (|#2| |#1| "value" |#2|)) (-15 -2423 ((-112) |#1| |#1|)) (-15 -2334 ((-642 |#2|) |#1|)) (-15 -1311 ((-112) |#1|)) (-15 -4369 (|#2| |#1| "value")) (-15 -1961 ((-112) |#1|)) (-15 -1300 ((-642 |#1|) |#1|)) (-15 -4275 ((-642 |#1|) |#1|)) (-15 -2821 ((-112) |#1| |#1|)) (-15 -2533 ((-112) |#2| |#1|)) (-15 -2158 ((-769) |#1|))) (-119 |#2|) (-1212)) (T -118)) -NIL -(-10 -8 (-15 -2390 ((-860) |#1|)) (-15 -3841 (|#1| |#1| "right" |#1|)) (-15 -3841 (|#1| |#1| "left" |#1|)) (-15 -4369 (|#1| |#1| "right")) (-15 -4369 (|#1| |#1| "left")) (-15 -3841 (|#2| |#1| "value" |#2|)) (-15 -2423 ((-112) |#1| |#1|)) (-15 -2334 ((-642 |#2|) |#1|)) (-15 -1311 ((-112) |#1|)) (-15 -4369 (|#2| |#1| "value")) (-15 -1961 ((-112) |#1|)) (-15 -1300 ((-642 |#1|) |#1|)) (-15 -4275 ((-642 |#1|) |#1|)) (-15 -2821 ((-112) |#1| |#1|)) (-15 -2533 ((-112) |#2| |#1|)) (-15 -2158 ((-769) |#1|))) -((-2856 (((-112) $ $) 19 (|has| |#1| (-1097)))) (-2108 ((|#1| $) 49)) (-3442 (((-112) $ (-769)) 8)) (-1407 ((|#1| $ |#1|) 40 (|has| $ (-6 -4411)))) (-2503 (($ $ $) 53 (|has| $ (-6 -4411)))) (-4006 (($ $ $) 55 (|has| $ (-6 -4411)))) (-3841 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4411))) (($ $ "left" $) 56 (|has| $ (-6 -4411))) (($ $ "right" $) 54 (|has| $ (-6 -4411)))) (-4041 (($ $ (-642 $)) 42 (|has| $ (-6 -4411)))) (-2822 (($) 7 T CONST)) (-4351 (($ $) 58)) (-2018 (((-642 |#1|) $) 31 (|has| $ (-6 -4410)))) (-1300 (((-642 $) $) 51)) (-2423 (((-112) $ $) 43 (|has| |#1| (-1097)))) (-3769 (((-112) $ (-769)) 9)) (-3541 (((-642 |#1|) $) 30 (|has| $ (-6 -4410)))) (-2533 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-1857 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#1| |#1|) $) 36)) (-4145 (((-112) $ (-769)) 10)) (-4341 (($ $) 60)) (-2334 (((-642 |#1|) $) 46)) (-1961 (((-112) $) 50)) (-1778 (((-1155) $) 22 (|has| |#1| (-1097)))) (-3999 (((-1117) $) 21 (|has| |#1| (-1097)))) (-4094 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-2478 (((-112) $ $) 14)) (-4109 (((-112) $) 11)) (-2179 (($) 12)) (-4369 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-1743 (((-564) $ $) 45)) (-1311 (((-112) $) 47)) (-4010 (((-769) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4410))) (((-769) |#1| $) 29 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3865 (($ $) 13)) (-2390 (((-860) $) 18 (|has| |#1| (-611 (-860))))) (-4275 (((-642 $) $) 52)) (-1622 (((-112) $ $) 44 (|has| |#1| (-1097)))) (-1600 (((-112) $ $) 23 (|has| |#1| (-1097)))) (-3295 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4410)))) (-2821 (((-112) $ $) 20 (|has| |#1| (-1097)))) (-2158 (((-769) $) 6 (|has| $ (-6 -4410))))) -(((-119 |#1|) (-140) (-1212)) (T -119)) -((-4341 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1212)))) (-4369 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1212)))) (-4351 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1212)))) (-4369 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1212)))) (-3841 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4411)) (-4 *1 (-119 *3)) (-4 *3 (-1212)))) (-4006 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4411)) (-4 *1 (-119 *2)) (-4 *2 (-1212)))) (-3841 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4411)) (-4 *1 (-119 *3)) (-4 *3 (-1212)))) (-2503 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4411)) (-4 *1 (-119 *2)) (-4 *2 (-1212))))) -(-13 (-1008 |t#1|) (-10 -8 (-15 -4341 ($ $)) (-15 -4369 ($ $ "left")) (-15 -4351 ($ $)) (-15 -4369 ($ $ "right")) (IF (|has| $ (-6 -4411)) (PROGN (-15 -3841 ($ $ "left" $)) (-15 -4006 ($ $ $)) (-15 -3841 ($ $ "right" $)) (-15 -2503 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1097)) ((-611 (-860)) -2682 (|has| |#1| (-1097)) (|has| |#1| (-611 (-860)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-1008 |#1|) . T) ((-1097) |has| |#1| (-1097)) ((-1212) . T)) -((-3233 (((-112) |#1|) 29)) (-3056 (((-769) (-769)) 28) (((-769)) 27)) (-3205 (((-112) |#1| (-112)) 30) (((-112) |#1|) 31))) -(((-120 |#1|) (-10 -7 (-15 -3205 ((-112) |#1|)) (-15 -3205 ((-112) |#1| (-112))) (-15 -3056 ((-769))) (-15 -3056 ((-769) (-769))) (-15 -3233 ((-112) |#1|))) (-1238 (-564))) (T -120)) -((-3233 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1238 (-564))))) (-3056 (*1 *2 *2) (-12 (-5 *2 (-769)) (-5 *1 (-120 *3)) (-4 *3 (-1238 (-564))))) (-3056 (*1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-120 *3)) (-4 *3 (-1238 (-564))))) (-3205 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1238 (-564))))) (-3205 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1238 (-564)))))) -(-10 -7 (-15 -3205 ((-112) |#1|)) (-15 -3205 ((-112) |#1| (-112))) (-15 -3056 ((-769))) (-15 -3056 ((-769) (-769))) (-15 -3233 ((-112) |#1|))) -((-2856 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2108 ((|#1| $) 18)) (-2246 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26)) (-3442 (((-112) $ (-769)) NIL)) (-1407 ((|#1| $ |#1|) NIL (|has| $ (-6 -4411)))) (-2503 (($ $ $) 21 (|has| $ (-6 -4411)))) (-4006 (($ $ $) 23 (|has| $ (-6 -4411)))) (-3841 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4411))) (($ $ "left" $) NIL (|has| $ (-6 -4411))) (($ $ "right" $) NIL (|has| $ (-6 -4411)))) (-4041 (($ $ (-642 $)) NIL (|has| $ (-6 -4411)))) (-2822 (($) NIL T CONST)) (-4351 (($ $) 20)) (-2018 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-1300 (((-642 $) $) NIL)) (-2423 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-1863 (($ $ |#1| $) 27)) (-3769 (((-112) $ (-769)) NIL)) (-3541 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2533 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-1857 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#1| |#1|) $) NIL)) (-4145 (((-112) $ (-769)) NIL)) (-4341 (($ $) 22)) (-2334 (((-642 |#1|) $) NIL)) (-1961 (((-112) $) NIL)) (-1778 (((-1155) $) NIL (|has| |#1| (-1097)))) (-2272 (($ |#1| $) 28)) (-1668 (($ |#1| $) 15)) (-3999 (((-1117) $) NIL (|has| |#1| (-1097)))) (-4094 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-2478 (((-112) $ $) NIL)) (-4109 (((-112) $) 17)) (-2179 (($) 11)) (-4369 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1743 (((-564) $ $) NIL)) (-1311 (((-112) $) NIL)) (-4010 (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-769) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3865 (($ $) NIL)) (-2390 (((-860) $) NIL (|has| |#1| (-611 (-860))))) (-4275 (((-642 $) $) NIL)) (-1622 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-4161 (($ (-642 |#1|)) 16)) (-1600 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-3295 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2821 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2158 (((-769) $) NIL (|has| $ (-6 -4410))))) -(((-121 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4411) (-6 -4410) (-15 -4161 ($ (-642 |#1|))) (-15 -1668 ($ |#1| $)) (-15 -2272 ($ |#1| $)) (-15 -2246 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-848)) (T -121)) -((-4161 (*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-848)) (-5 *1 (-121 *3)))) (-1668 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-848)))) (-2272 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-848)))) (-2246 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) (-5 *1 (-121 *3)) (-4 *3 (-848))))) -(-13 (-125 |#1|) (-10 -8 (-6 -4411) (-6 -4410) (-15 -4161 ($ (-642 |#1|))) (-15 -1668 ($ |#1| $)) (-15 -2272 ($ |#1| $)) (-15 -2246 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) -((-2866 (($ $) 13)) (-2307 (($ $) 11)) (-2002 (($ $ $) 23)) (-2159 (($ $ $) 21)) (-2915 (($ $ $) 19)) (-2902 (($ $ $) 17))) -(((-122 |#1|) (-10 -8 (-15 -2002 (|#1| |#1| |#1|)) (-15 -2159 (|#1| |#1| |#1|)) (-15 -2307 (|#1| |#1|)) (-15 -2866 (|#1| |#1|)) (-15 -2902 (|#1| |#1| |#1|)) (-15 -2915 (|#1| |#1| |#1|))) (-123)) (T -122)) -NIL -(-10 -8 (-15 -2002 (|#1| |#1| |#1|)) (-15 -2159 (|#1| |#1| |#1|)) (-15 -2307 (|#1| |#1|)) (-15 -2866 (|#1| |#1|)) (-15 -2902 (|#1| |#1| |#1|)) (-15 -2915 (|#1| |#1| |#1|))) -((-2856 (((-112) $ $) 7)) (-2866 (($ $) 104)) (-2341 (($ $ $) 26)) (-3633 (((-1267) $ (-564) (-564)) 67 (|has| $ (-6 -4411)))) (-1824 (((-112) $) 99 (|has| (-112) (-848))) (((-112) (-1 (-112) (-112) (-112)) $) 93)) (-3659 (($ $) 103 (-12 (|has| (-112) (-848)) (|has| $ (-6 -4411)))) (($ (-1 (-112) (-112) (-112)) $) 102 (|has| $ (-6 -4411)))) (-3191 (($ $) 98 (|has| (-112) (-848))) (($ (-1 (-112) (-112) (-112)) $) 92)) (-3442 (((-112) $ (-769)) 38)) (-3841 (((-112) $ (-1229 (-564)) (-112)) 89 (|has| $ (-6 -4411))) (((-112) $ (-564) (-112)) 55 (|has| $ (-6 -4411)))) (-3437 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4410)))) (-2822 (($) 39 T CONST)) (-1540 (($ $) 101 (|has| $ (-6 -4411)))) (-3817 (($ $) 91)) (-4067 (($ $) 69 (-12 (|has| (-112) (-1097)) (|has| $ (-6 -4410))))) (-2517 (($ (-1 (-112) (-112)) $) 73 (|has| $ (-6 -4410))) (($ (-112) $) 70 (-12 (|has| (-112) (-1097)) (|has| $ (-6 -4410))))) (-3741 (((-112) (-1 (-112) (-112) (-112)) $) 75 (|has| $ (-6 -4410))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 74 (|has| $ (-6 -4410))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 71 (-12 (|has| (-112) (-1097)) (|has| $ (-6 -4410))))) (-3105 (((-112) $ (-564) (-112)) 54 (|has| $ (-6 -4411)))) (-1804 (((-112) $ (-564)) 56)) (-3942 (((-564) (-112) $ (-564)) 96 (|has| (-112) (-1097))) (((-564) (-112) $) 95 (|has| (-112) (-1097))) (((-564) (-1 (-112) (-112)) $) 94)) (-2018 (((-642 (-112)) $) 46 (|has| $ (-6 -4410)))) (-2329 (($ $ $) 27)) (-2307 (($ $) 31)) (-2002 (($ $ $) 29)) (-4233 (($ (-769) (-112)) 78)) (-2159 (($ $ $) 30)) (-3769 (((-112) $ (-769)) 37)) (-1802 (((-564) $) 64 (|has| (-564) (-848)))) (-3225 (($ $ $) 14)) (-2774 (($ $ $) 97 (|has| (-112) (-848))) (($ (-1 (-112) (-112) (-112)) $ $) 90)) (-3541 (((-642 (-112)) $) 47 (|has| $ (-6 -4410)))) (-2533 (((-112) (-112) $) 49 (-12 (|has| (-112) (-1097)) (|has| $ (-6 -4410))))) (-3624 (((-564) $) 63 (|has| (-564) (-848)))) (-2903 (($ $ $) 15)) (-1857 (($ (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4411)))) (-2947 (($ (-1 (-112) (-112) (-112)) $ $) 83) (($ (-1 (-112) (-112)) $) 41)) (-4145 (((-112) $ (-769)) 36)) (-1778 (((-1155) $) 10)) (-4247 (($ $ $ (-564)) 88) (($ (-112) $ (-564)) 87)) (-4107 (((-642 (-564)) $) 61)) (-4207 (((-112) (-564) $) 60)) (-3999 (((-1117) $) 11)) (-4036 (((-112) $) 65 (|has| (-564) (-848)))) (-3183 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 76)) (-3826 (($ $ (-112)) 66 (|has| $ (-6 -4411)))) (-4094 (((-112) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-112)) (-642 (-112))) 53 (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1097)))) (($ $ (-112) (-112)) 52 (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1097)))) (($ $ (-294 (-112))) 51 (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1097)))) (($ $ (-642 (-294 (-112)))) 50 (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1097))))) (-2478 (((-112) $ $) 32)) (-1643 (((-112) (-112) $) 62 (-12 (|has| $ (-6 -4410)) (|has| (-112) (-1097))))) (-3522 (((-642 (-112)) $) 59)) (-4109 (((-112) $) 35)) (-2179 (($) 34)) (-4369 (($ $ (-1229 (-564))) 84) (((-112) $ (-564)) 58) (((-112) $ (-564) (-112)) 57)) (-2083 (($ $ (-1229 (-564))) 86) (($ $ (-564)) 85)) (-4010 (((-769) (-112) $) 48 (-12 (|has| (-112) (-1097)) (|has| $ (-6 -4410)))) (((-769) (-1 (-112) (-112)) $) 45 (|has| $ (-6 -4410)))) (-3301 (($ $ $ (-564)) 100 (|has| $ (-6 -4411)))) (-3865 (($ $) 33)) (-3003 (((-536) $) 68 (|has| (-112) (-612 (-536))))) (-2401 (($ (-642 (-112))) 77)) (-3634 (($ (-642 $)) 82) (($ $ $) 81) (($ (-112) $) 80) (($ $ (-112)) 79)) (-2390 (((-860) $) 12)) (-1600 (((-112) $ $) 9)) (-3295 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4410)))) (-2317 (($ $ $) 28)) (-2915 (($ $ $) 106)) (-2881 (((-112) $ $) 17)) (-2857 (((-112) $ $) 18)) (-2821 (((-112) $ $) 6)) (-2868 (((-112) $ $) 16)) (-2844 (((-112) $ $) 19)) (-2902 (($ $ $) 105)) (-2158 (((-769) $) 40 (|has| $ (-6 -4410))))) +((-2986 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-2952 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))) +(-13 (-10 -8 (-15 -2952 ((-112) $ $)) (-15 -2986 ((-112) $ $)))) +((-2986 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2153 ((|#1| $) NIL)) (-1453 (((-112) $ (-771)) NIL)) (-3684 ((|#1| $ |#1|) 24 (|has| $ (-6 -4418)))) (-1343 (($ $ $) NIL (|has| $ (-6 -4418)))) (-2906 (($ $ $) NIL (|has| $ (-6 -4418)))) (-2543 (($ $ (-644 |#1|)) 34)) (-3901 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4418))) (($ $ "left" $) NIL (|has| $ (-6 -4418))) (($ $ "right" $) NIL (|has| $ (-6 -4418)))) (-3891 (($ $ (-644 $)) NIL (|has| $ (-6 -4418)))) (-1811 (($) NIL T CONST)) (-4361 (($ $) 12)) (-3872 (((-644 |#1|) $) NIL (|has| $ (-6 -4417)))) (-3578 (((-644 $) $) NIL)) (-2778 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1875 (($ $ |#1| $) 36)) (-2756 (((-112) $ (-771)) NIL)) (-4227 (((-644 |#1|) $) NIL (|has| $ (-6 -4417)))) (-1688 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-3127 ((|#1| $ (-1 |#1| |#1| |#1|)) 44) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 49)) (-1712 (($ $ |#1| (-1 |#1| |#1| |#1|)) 50) (($ $ |#1| (-1 (-644 |#1|) |#1| |#1| |#1|)) 53)) (-3708 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#1| |#1|) $) NIL)) (-4106 (((-112) $ (-771)) NIL)) (-4351 (($ $) 11)) (-3658 (((-644 |#1|) $) NIL)) (-1587 (((-112) $) 13)) (-3151 (((-1157) $) NIL (|has| |#1| (-1099)))) (-4059 (((-1119) $) NIL (|has| |#1| (-1099)))) (-3966 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1844 (((-112) $ $) NIL)) (-2788 (((-112) $) 9)) (-1737 (($) 35)) (-4376 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4098 (((-566) $ $) NIL)) (-2636 (((-112) $) NIL)) (-4068 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-3924 (($ $) NIL)) (-2479 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-2156 (((-644 $) $) NIL)) (-3922 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3900 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1901 (($ (-771) |#1|) 37)) (-3667 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2952 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3002 (((-771) $) NIL (|has| $ (-6 -4417))))) +(((-103 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4417) (-6 -4418) (-15 -1901 ($ (-771) |#1|)) (-15 -2543 ($ $ (-644 |#1|))) (-15 -3127 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3127 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1712 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1712 ($ $ |#1| (-1 (-644 |#1|) |#1| |#1| |#1|))))) (-1099)) (T -103)) +((-1901 (*1 *1 *2 *3) (-12 (-5 *2 (-771)) (-5 *1 (-103 *3)) (-4 *3 (-1099)))) (-2543 (*1 *1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-5 *1 (-103 *3)))) (-3127 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1099)))) (-3127 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1099)) (-5 *1 (-103 *3)))) (-1712 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1099)) (-5 *1 (-103 *2)))) (-1712 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-644 *2) *2 *2 *2)) (-4 *2 (-1099)) (-5 *1 (-103 *2))))) +(-13 (-125 |#1|) (-10 -8 (-6 -4417) (-6 -4418) (-15 -1901 ($ (-771) |#1|)) (-15 -2543 ($ $ (-644 |#1|))) (-15 -3127 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3127 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1712 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1712 ($ $ |#1| (-1 (-644 |#1|) |#1| |#1| |#1|))))) +((-3424 ((|#3| |#2| |#2|) 36)) (-4388 ((|#1| |#2| |#2|) 53 (|has| |#1| (-6 (-4419 "*"))))) (-4301 ((|#3| |#2| |#2|) 38)) (-2634 ((|#1| |#2|) 58 (|has| |#1| (-6 (-4419 "*")))))) +(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3424 (|#3| |#2| |#2|)) (-15 -4301 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4419 "*"))) (PROGN (-15 -4388 (|#1| |#2| |#2|)) (-15 -2634 (|#1| |#2|))) |%noBranch|)) (-1049) (-1240 |#1|) (-687 |#1| |#4| |#5|) (-375 |#1|) (-375 |#1|)) (T -104)) +((-2634 (*1 *2 *3) (-12 (|has| *2 (-6 (-4419 "*"))) (-4 *5 (-375 *2)) (-4 *6 (-375 *2)) (-4 *2 (-1049)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1240 *2)) (-4 *4 (-687 *2 *5 *6)))) (-4388 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4419 "*"))) (-4 *5 (-375 *2)) (-4 *6 (-375 *2)) (-4 *2 (-1049)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1240 *2)) (-4 *4 (-687 *2 *5 *6)))) (-4301 (*1 *2 *3 *3) (-12 (-4 *4 (-1049)) (-4 *2 (-687 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1240 *4)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)))) (-3424 (*1 *2 *3 *3) (-12 (-4 *4 (-1049)) (-4 *2 (-687 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1240 *4)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4))))) +(-10 -7 (-15 -3424 (|#3| |#2| |#2|)) (-15 -4301 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4419 "*"))) (PROGN (-15 -4388 (|#1| |#2| |#2|)) (-15 -2634 (|#1| |#2|))) |%noBranch|)) +((-2986 (((-112) $ $) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) NIL)) (-1986 (((-644 (-1175))) 37)) (-2947 (((-2 (|:| |zeros| (-1155 (-225))) (|:| |ones| (-1155 (-225))) (|:| |singularities| (-1155 (-225)))) (-1175)) 39)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-105) (-13 (-1099) (-10 -7 (-15 -1986 ((-644 (-1175)))) (-15 -2947 ((-2 (|:| |zeros| (-1155 (-225))) (|:| |ones| (-1155 (-225))) (|:| |singularities| (-1155 (-225)))) (-1175))) (-6 -4417)))) (T -105)) +((-1986 (*1 *2) (-12 (-5 *2 (-644 (-1175))) (-5 *1 (-105)))) (-2947 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-2 (|:| |zeros| (-1155 (-225))) (|:| |ones| (-1155 (-225))) (|:| |singularities| (-1155 (-225))))) (-5 *1 (-105))))) +(-13 (-1099) (-10 -7 (-15 -1986 ((-644 (-1175)))) (-15 -2947 ((-2 (|:| |zeros| (-1155 (-225))) (|:| |ones| (-1155 (-225))) (|:| |singularities| (-1155 (-225)))) (-1175))) (-6 -4417))) +((-2471 (($ (-644 |#2|)) 11))) +(((-106 |#1| |#2|) (-10 -8 (-15 -2471 (|#1| (-644 |#2|)))) (-107 |#2|) (-1214)) (T -106)) +NIL +(-10 -8 (-15 -2471 (|#1| (-644 |#2|)))) +((-2986 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-1453 (((-112) $ (-771)) 8)) (-1811 (($) 7 T CONST)) (-3872 (((-644 |#1|) $) 31 (|has| $ (-6 -4417)))) (-2756 (((-112) $ (-771)) 9)) (-4227 (((-644 |#1|) $) 30 (|has| $ (-6 -4417)))) (-1688 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-3708 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#1| |#1|) $) 36)) (-4106 (((-112) $ (-771)) 10)) (-3151 (((-1157) $) 22 (|has| |#1| (-1099)))) (-4255 ((|#1| $) 40)) (-4354 (($ |#1| $) 41)) (-4059 (((-1119) $) 21 (|has| |#1| (-1099)))) (-4097 ((|#1| $) 42)) (-3966 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1844 (((-112) $ $) 14)) (-2788 (((-112) $) 11)) (-1737 (($) 12)) (-4068 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4417))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-3924 (($ $) 13)) (-2479 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-3900 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-2471 (($ (-644 |#1|)) 43)) (-3667 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4417)))) (-2952 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3002 (((-771) $) 6 (|has| $ (-6 -4417))))) +(((-107 |#1|) (-140) (-1214)) (T -107)) +((-2471 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1214)) (-4 *1 (-107 *3)))) (-4097 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1214)))) (-4354 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1214)))) (-4255 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1214))))) +(-13 (-491 |t#1|) (-10 -8 (-6 -4418) (-15 -2471 ($ (-644 |t#1|))) (-15 -4097 (|t#1| $)) (-15 -4354 ($ |t#1| $)) (-15 -4255 (|t#1| $)))) +(((-34) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2809 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1099) |has| |#1| (-1099)) ((-1214) . T)) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-2488 (((-566) $) NIL (|has| (-566) (-308)))) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-1716 (((-112) $) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-4058 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-566) (-909)))) (-3980 (($ $) NIL)) (-3348 (((-420 $) $) NIL)) (-4262 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| (-566) (-909)))) (-2761 (((-112) $ $) NIL)) (-2920 (((-566) $) NIL (|has| (-566) (-820)))) (-1811 (($) NIL T CONST)) (-2980 (((-3 (-566) "failed") $) NIL) (((-3 (-1175) "failed") $) NIL (|has| (-566) (-1038 (-1175)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| (-566) (-1038 (-566)))) (((-3 (-566) "failed") $) NIL (|has| (-566) (-1038 (-566))))) (-1709 (((-566) $) NIL) (((-1175) $) NIL (|has| (-566) (-1038 (-1175)))) (((-409 (-566)) $) NIL (|has| (-566) (-1038 (-566)))) (((-566) $) NIL (|has| (-566) (-1038 (-566))))) (-2925 (($ $ $) NIL)) (-2275 (((-689 (-566)) (-689 $)) NIL (|has| (-566) (-639 (-566)))) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| (-566) (-639 (-566)))) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL) (((-689 (-566)) (-689 $)) NIL)) (-3757 (((-3 $ "failed") $) NIL)) (-1415 (($) NIL (|has| (-566) (-547)))) (-2937 (($ $ $) NIL)) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) NIL)) (-4188 (((-112) $) NIL)) (-2133 (((-112) $) NIL (|has| (-566) (-820)))) (-1542 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (|has| (-566) (-886 (-566)))) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (|has| (-566) (-886 (-381))))) (-2264 (((-112) $) NIL)) (-1579 (($ $) NIL)) (-4157 (((-566) $) NIL)) (-4278 (((-3 $ "failed") $) NIL (|has| (-566) (-1150)))) (-3420 (((-112) $) NIL (|has| (-566) (-820)))) (-2495 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1920 (($ $ $) NIL (|has| (-566) (-850)))) (-3038 (($ $ $) NIL (|has| (-566) (-850)))) (-3080 (($ (-1 (-566) (-566)) $) NIL)) (-2120 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3151 (((-1157) $) NIL)) (-2577 (($ $) NIL)) (-3968 (($) NIL (|has| (-566) (-1150)) CONST)) (-4059 (((-1119) $) NIL)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2162 (($ $ $) NIL) (($ (-644 $)) NIL)) (-4305 (($ $) NIL (|has| (-566) (-308))) (((-409 (-566)) $) NIL)) (-2001 (((-566) $) NIL (|has| (-566) (-547)))) (-1500 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-566) (-909)))) (-3917 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-566) (-909)))) (-2325 (((-420 $) $) NIL)) (-2585 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2976 (((-3 $ "failed") $ $) NIL)) (-2840 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3297 (($ $ (-644 (-566)) (-644 (-566))) NIL (|has| (-566) (-310 (-566)))) (($ $ (-566) (-566)) NIL (|has| (-566) (-310 (-566)))) (($ $ (-295 (-566))) NIL (|has| (-566) (-310 (-566)))) (($ $ (-644 (-295 (-566)))) NIL (|has| (-566) (-310 (-566)))) (($ $ (-644 (-1175)) (-644 (-566))) NIL (|has| (-566) (-516 (-1175) (-566)))) (($ $ (-1175) (-566)) NIL (|has| (-566) (-516 (-1175) (-566))))) (-1383 (((-771) $) NIL)) (-4376 (($ $ (-566)) NIL (|has| (-566) (-287 (-566) (-566))))) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL)) (-3526 (($ $) NIL (|has| (-566) (-233))) (($ $ (-771)) NIL (|has| (-566) (-233))) (($ $ (-1175)) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-1 (-566) (-566)) (-771)) NIL) (($ $ (-1 (-566) (-566))) NIL)) (-1375 (($ $) NIL)) (-4167 (((-566) $) NIL)) (-3136 (((-892 (-566)) $) NIL (|has| (-566) (-614 (-892 (-566))))) (((-892 (-381)) $) NIL (|has| (-566) (-614 (-892 (-381))))) (((-538) $) NIL (|has| (-566) (-614 (-538)))) (((-381) $) NIL (|has| (-566) (-1022))) (((-225) $) NIL (|has| (-566) (-1022)))) (-3233 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| (-566) (-909))))) (-2479 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) 8) (($ (-566)) NIL) (($ (-1175)) NIL (|has| (-566) (-1038 (-1175)))) (((-409 (-566)) $) NIL) (((-1004 2) $) 10)) (-2645 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| $ (-145)) (|has| (-566) (-909))) (|has| (-566) (-145))))) (-1558 (((-771)) NIL T CONST)) (-3908 (((-566) $) NIL (|has| (-566) (-547)))) (-3020 (($ (-409 (-566))) 9)) (-3900 (((-112) $ $) NIL)) (-1333 (((-112) $ $) NIL)) (-4298 (($ $) NIL (|has| (-566) (-820)))) (-2446 (($) NIL T CONST)) (-2459 (($) NIL T CONST)) (-2834 (($ $) NIL (|has| (-566) (-233))) (($ $ (-771)) NIL (|has| (-566) (-233))) (($ $ (-1175)) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-1 (-566) (-566)) (-771)) NIL) (($ $ (-1 (-566) (-566))) NIL)) (-3019 (((-112) $ $) NIL (|has| (-566) (-850)))) (-2990 (((-112) $ $) NIL (|has| (-566) (-850)))) (-2952 (((-112) $ $) NIL)) (-3004 (((-112) $ $) NIL (|has| (-566) (-850)))) (-2977 (((-112) $ $) NIL (|has| (-566) (-850)))) (-3077 (($ $ $) NIL) (($ (-566) (-566)) NIL)) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ (-566) $) NIL) (($ $ (-566)) NIL))) +(((-108) (-13 (-992 (-566)) (-613 (-409 (-566))) (-613 (-1004 2)) (-10 -8 (-15 -4305 ((-409 (-566)) $)) (-15 -3020 ($ (-409 (-566))))))) (T -108)) +((-4305 (*1 *2 *1) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-108)))) (-3020 (*1 *1 *2) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-108))))) +(-13 (-992 (-566)) (-613 (-409 (-566))) (-613 (-1004 2)) (-10 -8 (-15 -4305 ((-409 (-566)) $)) (-15 -3020 ($ (-409 (-566)))))) +((-2041 (((-644 (-965)) $) 13)) (-2598 (((-508) $) 9)) (-2479 (((-862) $) 20)) (-3558 (($ (-508) (-644 (-965))) 15))) +(((-109) (-13 (-613 (-862)) (-10 -8 (-15 -2598 ((-508) $)) (-15 -2041 ((-644 (-965)) $)) (-15 -3558 ($ (-508) (-644 (-965))))))) (T -109)) +((-2598 (*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-109)))) (-2041 (*1 *2 *1) (-12 (-5 *2 (-644 (-965))) (-5 *1 (-109)))) (-3558 (*1 *1 *2 *3) (-12 (-5 *2 (-508)) (-5 *3 (-644 (-965))) (-5 *1 (-109))))) +(-13 (-613 (-862)) (-10 -8 (-15 -2598 ((-508) $)) (-15 -2041 ((-644 (-965)) $)) (-15 -3558 ($ (-508) (-644 (-965)))))) +((-2986 (((-112) $ $) NIL)) (-3014 (($ $) NIL)) (-2426 (($ $ $) NIL)) (-2462 (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4418)))) (-4163 (((-112) $) NIL (|has| (-112) (-850))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-2893 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-112) (-850)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4418)))) (-1374 (($ $) NIL (|has| (-112) (-850))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-1453 (((-112) $ (-771)) NIL)) (-3901 (((-112) $ (-1231 (-566)) (-112)) NIL (|has| $ (-6 -4418))) (((-112) $ (-566) (-112)) NIL (|has| $ (-6 -4418)))) (-3543 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4417)))) (-1811 (($) NIL T CONST)) (-2273 (($ $) NIL (|has| $ (-6 -4418)))) (-3877 (($ $) NIL)) (-4111 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-112) (-1099))))) (-2628 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4417))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-112) (-1099))))) (-1838 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4417))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4417))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4417)) (|has| (-112) (-1099))))) (-3719 (((-112) $ (-566) (-112)) NIL (|has| $ (-6 -4418)))) (-3653 (((-112) $ (-566)) NIL)) (-4000 (((-566) (-112) $ (-566)) NIL (|has| (-112) (-1099))) (((-566) (-112) $) NIL (|has| (-112) (-1099))) (((-566) (-1 (-112) (-112)) $) NIL)) (-3872 (((-644 (-112)) $) NIL (|has| $ (-6 -4417)))) (-2415 (($ $ $) NIL)) (-2387 (($ $) NIL)) (-4178 (($ $ $) NIL)) (-4259 (($ (-771) (-112)) 10)) (-2371 (($ $ $) NIL)) (-2756 (((-112) $ (-771)) NIL)) (-2755 (((-566) $) NIL (|has| (-566) (-850)))) (-1920 (($ $ $) NIL)) (-1330 (($ $ $) NIL (|has| (-112) (-850))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-4227 (((-644 (-112)) $) NIL (|has| $ (-6 -4417)))) (-1688 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-112) (-1099))))) (-3831 (((-566) $) NIL (|has| (-566) (-850)))) (-3038 (($ $ $) NIL)) (-3708 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4418)))) (-3080 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-4106 (((-112) $ (-771)) NIL)) (-3151 (((-1157) $) NIL)) (-4271 (($ $ $ (-566)) NIL) (($ (-112) $ (-566)) NIL)) (-3780 (((-644 (-566)) $) NIL)) (-1605 (((-112) (-566) $) NIL)) (-4059 (((-1119) $) NIL)) (-4080 (((-112) $) NIL (|has| (-566) (-850)))) (-2688 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-4079 (($ $ (-112)) NIL (|has| $ (-6 -4418)))) (-3966 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-112)) (-644 (-112))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1099)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1099)))) (($ $ (-295 (-112))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1099)))) (($ $ (-644 (-295 (-112)))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1099))))) (-1844 (((-112) $ $) NIL)) (-2210 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-112) (-1099))))) (-4185 (((-644 (-112)) $) NIL)) (-2788 (((-112) $) NIL)) (-1737 (($) NIL)) (-4376 (($ $ (-1231 (-566))) NIL) (((-112) $ (-566)) NIL) (((-112) $ (-566) (-112)) NIL)) (-2139 (($ $ (-1231 (-566))) NIL) (($ $ (-566)) NIL)) (-4068 (((-771) (-112) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-112) (-1099)))) (((-771) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4417)))) (-1438 (($ $ $ (-566)) NIL (|has| $ (-6 -4418)))) (-3924 (($ $) NIL)) (-3136 (((-538) $) NIL (|has| (-112) (-614 (-538))))) (-2489 (($ (-644 (-112))) NIL)) (-3716 (($ (-644 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-2479 (((-862) $) NIL)) (-3143 (($ (-771) (-112)) 11)) (-3900 (((-112) $ $) NIL)) (-3667 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4417)))) (-2402 (($ $ $) NIL)) (-3062 (($ $ $) NIL)) (-3019 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3004 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-3046 (($ $ $) NIL)) (-3002 (((-771) $) NIL (|has| $ (-6 -4417))))) +(((-110) (-13 (-123) (-10 -8 (-15 -3143 ($ (-771) (-112)))))) (T -110)) +((-3143 (*1 *1 *2 *3) (-12 (-5 *2 (-771)) (-5 *3 (-112)) (-5 *1 (-110))))) +(-13 (-123) (-10 -8 (-15 -3143 ($ (-771) (-112))))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-3174 (((-3 $ "failed") $ $) 20)) (-1811 (($) 18 T CONST)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-2479 (((-862) $) 12)) (-3900 (((-112) $ $) 9)) (-2446 (($) 19 T CONST)) (-2952 (((-112) $ $) 6)) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ |#1| $) 27) (($ $ |#2|) 31))) +(((-111 |#1| |#2|) (-140) (-1049) (-1049)) (T -111)) +NIL +(-13 (-648 |t#1|) (-1056 |t#2|) (-10 -7 (-6 -4412) (-6 -4411))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-648 |#1|) . T) ((-1051 |#2|) . T) ((-1056 |#2|) . T) ((-1099) . T)) +((-2986 (((-112) $ $) NIL)) (-3014 (($ $) 13)) (-2426 (($ $ $) 18)) (-3396 (($) 7 T CONST)) (-3441 (($ $) 6)) (-4049 (((-771)) 26)) (-1415 (($) 34)) (-2415 (($ $ $) 16)) (-2387 (($ $) 9)) (-4178 (($ $ $) 19)) (-2371 (($ $ $) 20)) (-1920 (($ $ $) NIL) (($) NIL T CONST)) (-3038 (($ $ $) NIL) (($) NIL T CONST)) (-4051 (((-921) $) 32)) (-3151 (((-1157) $) NIL)) (-2104 (($ (-921)) 30)) (-1991 (($ $ $) 22)) (-4059 (((-1119) $) NIL)) (-2174 (($) 8 T CONST)) (-2934 (($ $ $) 23)) (-3136 (((-538) $) 36)) (-2479 (((-862) $) 38)) (-3900 (((-112) $ $) NIL)) (-2402 (($ $ $) 14)) (-3062 (($ $ $) 17)) (-3019 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 21)) (-3004 (((-112) $ $) NIL)) (-2977 (((-112) $ $) 24)) (-3046 (($ $ $) 15))) +(((-112) (-13 (-844) (-661) (-967) (-614 (-538)) (-10 -8 (-15 -2426 ($ $ $)) (-15 -2371 ($ $ $)) (-15 -4178 ($ $ $)) (-15 -3441 ($ $))))) (T -112)) +((-2426 (*1 *1 *1 *1) (-5 *1 (-112))) (-2371 (*1 *1 *1 *1) (-5 *1 (-112))) (-4178 (*1 *1 *1 *1) (-5 *1 (-112))) (-3441 (*1 *1 *1) (-5 *1 (-112)))) +(-13 (-844) (-661) (-967) (-614 (-538)) (-10 -8 (-15 -2426 ($ $ $)) (-15 -2371 ($ $ $)) (-15 -4178 ($ $ $)) (-15 -3441 ($ $)))) +((-1425 (((-3 (-1 |#1| (-644 |#1|)) "failed") (-114)) 23) (((-114) (-114) (-1 |#1| |#1|)) 13) (((-114) (-114) (-1 |#1| (-644 |#1|))) 11) (((-3 |#1| "failed") (-114) (-644 |#1|)) 25)) (-2719 (((-3 (-644 (-1 |#1| (-644 |#1|))) "failed") (-114)) 29) (((-114) (-114) (-1 |#1| |#1|)) 33) (((-114) (-114) (-644 (-1 |#1| (-644 |#1|)))) 30)) (-2686 (((-114) |#1|) 63)) (-2646 (((-3 |#1| "failed") (-114)) 58))) +(((-113 |#1|) (-10 -7 (-15 -1425 ((-3 |#1| "failed") (-114) (-644 |#1|))) (-15 -1425 ((-114) (-114) (-1 |#1| (-644 |#1|)))) (-15 -1425 ((-114) (-114) (-1 |#1| |#1|))) (-15 -1425 ((-3 (-1 |#1| (-644 |#1|)) "failed") (-114))) (-15 -2719 ((-114) (-114) (-644 (-1 |#1| (-644 |#1|))))) (-15 -2719 ((-114) (-114) (-1 |#1| |#1|))) (-15 -2719 ((-3 (-644 (-1 |#1| (-644 |#1|))) "failed") (-114))) (-15 -2686 ((-114) |#1|)) (-15 -2646 ((-3 |#1| "failed") (-114)))) (-1099)) (T -113)) +((-2646 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *1 (-113 *2)) (-4 *2 (-1099)))) (-2686 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-1099)))) (-2719 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-644 (-1 *4 (-644 *4)))) (-5 *1 (-113 *4)) (-4 *4 (-1099)))) (-2719 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1099)) (-5 *1 (-113 *4)))) (-2719 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-644 (-1 *4 (-644 *4)))) (-4 *4 (-1099)) (-5 *1 (-113 *4)))) (-1425 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-644 *4))) (-5 *1 (-113 *4)) (-4 *4 (-1099)))) (-1425 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1099)) (-5 *1 (-113 *4)))) (-1425 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-644 *4))) (-4 *4 (-1099)) (-5 *1 (-113 *4)))) (-1425 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-644 *2)) (-5 *1 (-113 *2)) (-4 *2 (-1099))))) +(-10 -7 (-15 -1425 ((-3 |#1| "failed") (-114) (-644 |#1|))) (-15 -1425 ((-114) (-114) (-1 |#1| (-644 |#1|)))) (-15 -1425 ((-114) (-114) (-1 |#1| |#1|))) (-15 -1425 ((-3 (-1 |#1| (-644 |#1|)) "failed") (-114))) (-15 -2719 ((-114) (-114) (-644 (-1 |#1| (-644 |#1|))))) (-15 -2719 ((-114) (-114) (-1 |#1| |#1|))) (-15 -2719 ((-3 (-644 (-1 |#1| (-644 |#1|))) "failed") (-114))) (-15 -2686 ((-114) |#1|)) (-15 -2646 ((-3 |#1| "failed") (-114)))) +((-2986 (((-112) $ $) NIL)) (-2639 (((-771) $) 91) (($ $ (-771)) 37)) (-1857 (((-112) $) 41)) (-1472 (($ $ (-1157) (-774)) 58) (($ $ (-508) (-774)) 33)) (-2581 (($ $ (-45 (-1157) (-774))) 16)) (-3138 (((-3 (-774) "failed") $ (-1157)) 27) (((-691 (-774)) $ (-508)) 32)) (-2041 (((-45 (-1157) (-774)) $) 15)) (-4272 (($ (-1175)) 20) (($ (-1175) (-771)) 23) (($ (-1175) (-55)) 24)) (-1925 (((-112) $) 39)) (-1537 (((-112) $) 43)) (-2598 (((-1175) $) 8)) (-1920 (($ $ $) NIL)) (-3038 (($ $ $) NIL)) (-3151 (((-1157) $) NIL)) (-1896 (((-112) $ (-1175)) 11)) (-1708 (($ $ (-1 (-538) (-644 (-538)))) 64) (((-3 (-1 (-538) (-644 (-538))) "failed") $) 71)) (-4059 (((-1119) $) NIL)) (-2697 (((-112) $ (-508)) 36)) (-3147 (($ $ (-1 (-112) $ $)) 45)) (-1659 (((-3 (-1 (-862) (-644 (-862))) "failed") $) 69) (($ $ (-1 (-862) (-644 (-862)))) 51) (($ $ (-1 (-862) (-862))) 53)) (-2757 (($ $ (-1157)) 55) (($ $ (-508)) 56)) (-3924 (($ $) 77)) (-1362 (($ $ (-1 (-112) $ $)) 46)) (-2479 (((-862) $) 60)) (-3900 (((-112) $ $) NIL)) (-1463 (($ $ (-508)) 34)) (-3864 (((-55) $) 72)) (-3019 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 89)) (-3004 (((-112) $ $) NIL)) (-2977 (((-112) $ $) 103))) +(((-114) (-13 (-850) (-835 (-1175)) (-10 -8 (-15 -2041 ((-45 (-1157) (-774)) $)) (-15 -3924 ($ $)) (-15 -4272 ($ (-1175))) (-15 -4272 ($ (-1175) (-771))) (-15 -4272 ($ (-1175) (-55))) (-15 -1925 ((-112) $)) (-15 -1857 ((-112) $)) (-15 -1537 ((-112) $)) (-15 -2639 ((-771) $)) (-15 -2639 ($ $ (-771))) (-15 -3147 ($ $ (-1 (-112) $ $))) (-15 -1362 ($ $ (-1 (-112) $ $))) (-15 -1659 ((-3 (-1 (-862) (-644 (-862))) "failed") $)) (-15 -1659 ($ $ (-1 (-862) (-644 (-862))))) (-15 -1659 ($ $ (-1 (-862) (-862)))) (-15 -1708 ($ $ (-1 (-538) (-644 (-538))))) (-15 -1708 ((-3 (-1 (-538) (-644 (-538))) "failed") $)) (-15 -2697 ((-112) $ (-508))) (-15 -1463 ($ $ (-508))) (-15 -2757 ($ $ (-1157))) (-15 -2757 ($ $ (-508))) (-15 -3138 ((-3 (-774) "failed") $ (-1157))) (-15 -3138 ((-691 (-774)) $ (-508))) (-15 -1472 ($ $ (-1157) (-774))) (-15 -1472 ($ $ (-508) (-774))) (-15 -2581 ($ $ (-45 (-1157) (-774))))))) (T -114)) +((-2041 (*1 *2 *1) (-12 (-5 *2 (-45 (-1157) (-774))) (-5 *1 (-114)))) (-3924 (*1 *1 *1) (-5 *1 (-114))) (-4272 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-114)))) (-4272 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-771)) (-5 *1 (-114)))) (-4272 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-55)) (-5 *1 (-114)))) (-1925 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-1857 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-1537 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-2639 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-114)))) (-2639 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-114)))) (-3147 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-1362 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-1659 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-862) (-644 (-862)))) (-5 *1 (-114)))) (-1659 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-862) (-644 (-862)))) (-5 *1 (-114)))) (-1659 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-862) (-862))) (-5 *1 (-114)))) (-1708 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-538) (-644 (-538)))) (-5 *1 (-114)))) (-1708 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-538) (-644 (-538)))) (-5 *1 (-114)))) (-2697 (*1 *2 *1 *3) (-12 (-5 *3 (-508)) (-5 *2 (-112)) (-5 *1 (-114)))) (-1463 (*1 *1 *1 *2) (-12 (-5 *2 (-508)) (-5 *1 (-114)))) (-2757 (*1 *1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-114)))) (-2757 (*1 *1 *1 *2) (-12 (-5 *2 (-508)) (-5 *1 (-114)))) (-3138 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1157)) (-5 *2 (-774)) (-5 *1 (-114)))) (-3138 (*1 *2 *1 *3) (-12 (-5 *3 (-508)) (-5 *2 (-691 (-774))) (-5 *1 (-114)))) (-1472 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1157)) (-5 *3 (-774)) (-5 *1 (-114)))) (-1472 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-508)) (-5 *3 (-774)) (-5 *1 (-114)))) (-2581 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1157) (-774))) (-5 *1 (-114))))) +(-13 (-850) (-835 (-1175)) (-10 -8 (-15 -2041 ((-45 (-1157) (-774)) $)) (-15 -3924 ($ $)) (-15 -4272 ($ (-1175))) (-15 -4272 ($ (-1175) (-771))) (-15 -4272 ($ (-1175) (-55))) (-15 -1925 ((-112) $)) (-15 -1857 ((-112) $)) (-15 -1537 ((-112) $)) (-15 -2639 ((-771) $)) (-15 -2639 ($ $ (-771))) (-15 -3147 ($ $ (-1 (-112) $ $))) (-15 -1362 ($ $ (-1 (-112) $ $))) (-15 -1659 ((-3 (-1 (-862) (-644 (-862))) "failed") $)) (-15 -1659 ($ $ (-1 (-862) (-644 (-862))))) (-15 -1659 ($ $ (-1 (-862) (-862)))) (-15 -1708 ($ $ (-1 (-538) (-644 (-538))))) (-15 -1708 ((-3 (-1 (-538) (-644 (-538))) "failed") $)) (-15 -2697 ((-112) $ (-508))) (-15 -1463 ($ $ (-508))) (-15 -2757 ($ $ (-1157))) (-15 -2757 ($ $ (-508))) (-15 -3138 ((-3 (-774) "failed") $ (-1157))) (-15 -3138 ((-691 (-774)) $ (-508))) (-15 -1472 ($ $ (-1157) (-774))) (-15 -1472 ($ $ (-508) (-774))) (-15 -2581 ($ $ (-45 (-1157) (-774)))))) +((-2493 (((-566) |#2|) 41))) +(((-115 |#1| |#2|) (-10 -7 (-15 -2493 ((-566) |#2|))) (-13 (-365) (-1038 (-409 (-566)))) (-1240 |#1|)) (T -115)) +((-2493 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-1038 (-409 *2)))) (-5 *2 (-566)) (-5 *1 (-115 *4 *3)) (-4 *3 (-1240 *4))))) +(-10 -7 (-15 -2493 ((-566) |#2|))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-1716 (((-112) $) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-2338 (($ $ (-566)) NIL)) (-2761 (((-112) $ $) NIL)) (-1811 (($) NIL T CONST)) (-4175 (($ (-1171 (-566)) (-566)) NIL)) (-2925 (($ $ $) NIL)) (-3757 (((-3 $ "failed") $) NIL)) (-2707 (($ $) NIL)) (-2937 (($ $ $) NIL)) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) NIL)) (-1802 (((-771) $) NIL)) (-2264 (((-112) $) NIL)) (-2495 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2579 (((-566)) NIL)) (-1533 (((-566) $) NIL)) (-2120 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2162 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2585 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2050 (($ $ (-566)) NIL)) (-2976 (((-3 $ "failed") $ $) NIL)) (-2840 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1383 (((-771) $) NIL)) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL)) (-3378 (((-1155 (-566)) $) NIL)) (-4122 (($ $) NIL)) (-2479 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL)) (-1558 (((-771)) NIL T CONST)) (-3900 (((-112) $ $) NIL)) (-1333 (((-112) $ $) NIL)) (-3649 (((-566) $ (-566)) NIL)) (-2446 (($) NIL T CONST)) (-2459 (($) NIL T CONST)) (-2952 (((-112) $ $) NIL)) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL))) +(((-116 |#1|) (-869 |#1|) (-566)) (T -116)) +NIL +(-869 |#1|) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-2488 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-308)))) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-1716 (((-112) $) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-4058 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-116 |#1|) (-909)))) (-3980 (($ $) NIL)) (-3348 (((-420 $) $) NIL)) (-4262 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| (-116 |#1|) (-909)))) (-2761 (((-112) $ $) NIL)) (-2920 (((-566) $) NIL (|has| (-116 |#1|) (-820)))) (-1811 (($) NIL T CONST)) (-2980 (((-3 (-116 |#1|) "failed") $) NIL) (((-3 (-1175) "failed") $) NIL (|has| (-116 |#1|) (-1038 (-1175)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| (-116 |#1|) (-1038 (-566)))) (((-3 (-566) "failed") $) NIL (|has| (-116 |#1|) (-1038 (-566))))) (-1709 (((-116 |#1|) $) NIL) (((-1175) $) NIL (|has| (-116 |#1|) (-1038 (-1175)))) (((-409 (-566)) $) NIL (|has| (-116 |#1|) (-1038 (-566)))) (((-566) $) NIL (|has| (-116 |#1|) (-1038 (-566))))) (-3967 (($ $) NIL) (($ (-566) $) NIL)) (-2925 (($ $ $) NIL)) (-2275 (((-689 (-566)) (-689 $)) NIL (|has| (-116 |#1|) (-639 (-566)))) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| (-116 |#1|) (-639 (-566)))) (((-2 (|:| -4196 (-689 (-116 |#1|))) (|:| |vec| (-1264 (-116 |#1|)))) (-689 $) (-1264 $)) NIL) (((-689 (-116 |#1|)) (-689 $)) NIL)) (-3757 (((-3 $ "failed") $) NIL)) (-1415 (($) NIL (|has| (-116 |#1|) (-547)))) (-2937 (($ $ $) NIL)) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) NIL)) (-4188 (((-112) $) NIL)) (-2133 (((-112) $) NIL (|has| (-116 |#1|) (-820)))) (-1542 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (|has| (-116 |#1|) (-886 (-566)))) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (|has| (-116 |#1|) (-886 (-381))))) (-2264 (((-112) $) NIL)) (-1579 (($ $) NIL)) (-4157 (((-116 |#1|) $) NIL)) (-4278 (((-3 $ "failed") $) NIL (|has| (-116 |#1|) (-1150)))) (-3420 (((-112) $) NIL (|has| (-116 |#1|) (-820)))) (-2495 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1920 (($ $ $) NIL (|has| (-116 |#1|) (-850)))) (-3038 (($ $ $) NIL (|has| (-116 |#1|) (-850)))) (-3080 (($ (-1 (-116 |#1|) (-116 |#1|)) $) NIL)) (-2120 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3151 (((-1157) $) NIL)) (-2577 (($ $) NIL)) (-3968 (($) NIL (|has| (-116 |#1|) (-1150)) CONST)) (-4059 (((-1119) $) NIL)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2162 (($ $ $) NIL) (($ (-644 $)) NIL)) (-4305 (($ $) NIL (|has| (-116 |#1|) (-308)))) (-2001 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-547)))) (-1500 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-116 |#1|) (-909)))) (-3917 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-116 |#1|) (-909)))) (-2325 (((-420 $) $) NIL)) (-2585 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2976 (((-3 $ "failed") $ $) NIL)) (-2840 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3297 (($ $ (-644 (-116 |#1|)) (-644 (-116 |#1|))) NIL (|has| (-116 |#1|) (-310 (-116 |#1|)))) (($ $ (-116 |#1|) (-116 |#1|)) NIL (|has| (-116 |#1|) (-310 (-116 |#1|)))) (($ $ (-295 (-116 |#1|))) NIL (|has| (-116 |#1|) (-310 (-116 |#1|)))) (($ $ (-644 (-295 (-116 |#1|)))) NIL (|has| (-116 |#1|) (-310 (-116 |#1|)))) (($ $ (-644 (-1175)) (-644 (-116 |#1|))) NIL (|has| (-116 |#1|) (-516 (-1175) (-116 |#1|)))) (($ $ (-1175) (-116 |#1|)) NIL (|has| (-116 |#1|) (-516 (-1175) (-116 |#1|))))) (-1383 (((-771) $) NIL)) (-4376 (($ $ (-116 |#1|)) NIL (|has| (-116 |#1|) (-287 (-116 |#1|) (-116 |#1|))))) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL)) (-3526 (($ $) NIL (|has| (-116 |#1|) (-233))) (($ $ (-771)) NIL (|has| (-116 |#1|) (-233))) (($ $ (-1175)) NIL (|has| (-116 |#1|) (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| (-116 |#1|) (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| (-116 |#1|) (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| (-116 |#1|) (-900 (-1175)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-771)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-1375 (($ $) NIL)) (-4167 (((-116 |#1|) $) NIL)) (-3136 (((-892 (-566)) $) NIL (|has| (-116 |#1|) (-614 (-892 (-566))))) (((-892 (-381)) $) NIL (|has| (-116 |#1|) (-614 (-892 (-381))))) (((-538) $) NIL (|has| (-116 |#1|) (-614 (-538)))) (((-381) $) NIL (|has| (-116 |#1|) (-1022))) (((-225) $) NIL (|has| (-116 |#1|) (-1022)))) (-3253 (((-174 (-409 (-566))) $) NIL)) (-3233 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| (-116 |#1|) (-909))))) (-2479 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL) (($ (-116 |#1|)) NIL) (($ (-1175)) NIL (|has| (-116 |#1|) (-1038 (-1175))))) (-2645 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| $ (-145)) (|has| (-116 |#1|) (-909))) (|has| (-116 |#1|) (-145))))) (-1558 (((-771)) NIL T CONST)) (-3908 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-547)))) (-3900 (((-112) $ $) NIL)) (-1333 (((-112) $ $) NIL)) (-3649 (((-409 (-566)) $ (-566)) NIL)) (-4298 (($ $) NIL (|has| (-116 |#1|) (-820)))) (-2446 (($) NIL T CONST)) (-2459 (($) NIL T CONST)) (-2834 (($ $) NIL (|has| (-116 |#1|) (-233))) (($ $ (-771)) NIL (|has| (-116 |#1|) (-233))) (($ $ (-1175)) NIL (|has| (-116 |#1|) (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| (-116 |#1|) (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| (-116 |#1|) (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| (-116 |#1|) (-900 (-1175)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-771)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-3019 (((-112) $ $) NIL (|has| (-116 |#1|) (-850)))) (-2990 (((-112) $ $) NIL (|has| (-116 |#1|) (-850)))) (-2952 (((-112) $ $) NIL)) (-3004 (((-112) $ $) NIL (|has| (-116 |#1|) (-850)))) (-2977 (((-112) $ $) NIL (|has| (-116 |#1|) (-850)))) (-3077 (($ $ $) NIL) (($ (-116 |#1|) (-116 |#1|)) NIL)) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ (-116 |#1|) $) NIL) (($ $ (-116 |#1|)) NIL))) +(((-117 |#1|) (-13 (-992 (-116 |#1|)) (-10 -8 (-15 -3649 ((-409 (-566)) $ (-566))) (-15 -3253 ((-174 (-409 (-566))) $)) (-15 -3967 ($ $)) (-15 -3967 ($ (-566) $)))) (-566)) (T -117)) +((-3649 (*1 *2 *1 *3) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-566)))) (-3253 (*1 *2 *1) (-12 (-5 *2 (-174 (-409 (-566)))) (-5 *1 (-117 *3)) (-14 *3 (-566)))) (-3967 (*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-566)))) (-3967 (*1 *1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-117 *3)) (-14 *3 *2)))) +(-13 (-992 (-116 |#1|)) (-10 -8 (-15 -3649 ((-409 (-566)) $ (-566))) (-15 -3253 ((-174 (-409 (-566))) $)) (-15 -3967 ($ $)) (-15 -3967 ($ (-566) $)))) +((-3901 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 61) (($ $ "right" $) 63)) (-3578 (((-644 $) $) 31)) (-2778 (((-112) $ $) 36)) (-1688 (((-112) |#2| $) 40)) (-3658 (((-644 |#2|) $) 25)) (-1587 (((-112) $) 18)) (-4376 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-2636 (((-112) $) 57)) (-2479 (((-862) $) 47)) (-2156 (((-644 $) $) 32)) (-2952 (((-112) $ $) 38)) (-3002 (((-771) $) 50))) +(((-118 |#1| |#2|) (-10 -8 (-15 -2479 ((-862) |#1|)) (-15 -3901 (|#1| |#1| "right" |#1|)) (-15 -3901 (|#1| |#1| "left" |#1|)) (-15 -4376 (|#1| |#1| "right")) (-15 -4376 (|#1| |#1| "left")) (-15 -3901 (|#2| |#1| "value" |#2|)) (-15 -2778 ((-112) |#1| |#1|)) (-15 -3658 ((-644 |#2|) |#1|)) (-15 -2636 ((-112) |#1|)) (-15 -4376 (|#2| |#1| "value")) (-15 -1587 ((-112) |#1|)) (-15 -3578 ((-644 |#1|) |#1|)) (-15 -2156 ((-644 |#1|) |#1|)) (-15 -2952 ((-112) |#1| |#1|)) (-15 -1688 ((-112) |#2| |#1|)) (-15 -3002 ((-771) |#1|))) (-119 |#2|) (-1214)) (T -118)) +NIL +(-10 -8 (-15 -2479 ((-862) |#1|)) (-15 -3901 (|#1| |#1| "right" |#1|)) (-15 -3901 (|#1| |#1| "left" |#1|)) (-15 -4376 (|#1| |#1| "right")) (-15 -4376 (|#1| |#1| "left")) (-15 -3901 (|#2| |#1| "value" |#2|)) (-15 -2778 ((-112) |#1| |#1|)) (-15 -3658 ((-644 |#2|) |#1|)) (-15 -2636 ((-112) |#1|)) (-15 -4376 (|#2| |#1| "value")) (-15 -1587 ((-112) |#1|)) (-15 -3578 ((-644 |#1|) |#1|)) (-15 -2156 ((-644 |#1|) |#1|)) (-15 -2952 ((-112) |#1| |#1|)) (-15 -1688 ((-112) |#2| |#1|)) (-15 -3002 ((-771) |#1|))) +((-2986 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2153 ((|#1| $) 49)) (-1453 (((-112) $ (-771)) 8)) (-3684 ((|#1| $ |#1|) 40 (|has| $ (-6 -4418)))) (-1343 (($ $ $) 53 (|has| $ (-6 -4418)))) (-2906 (($ $ $) 55 (|has| $ (-6 -4418)))) (-3901 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4418))) (($ $ "left" $) 56 (|has| $ (-6 -4418))) (($ $ "right" $) 54 (|has| $ (-6 -4418)))) (-3891 (($ $ (-644 $)) 42 (|has| $ (-6 -4418)))) (-1811 (($) 7 T CONST)) (-4361 (($ $) 58)) (-3872 (((-644 |#1|) $) 31 (|has| $ (-6 -4417)))) (-3578 (((-644 $) $) 51)) (-2778 (((-112) $ $) 43 (|has| |#1| (-1099)))) (-2756 (((-112) $ (-771)) 9)) (-4227 (((-644 |#1|) $) 30 (|has| $ (-6 -4417)))) (-1688 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-3708 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#1| |#1|) $) 36)) (-4106 (((-112) $ (-771)) 10)) (-4351 (($ $) 60)) (-3658 (((-644 |#1|) $) 46)) (-1587 (((-112) $) 50)) (-3151 (((-1157) $) 22 (|has| |#1| (-1099)))) (-4059 (((-1119) $) 21 (|has| |#1| (-1099)))) (-3966 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1844 (((-112) $ $) 14)) (-2788 (((-112) $) 11)) (-1737 (($) 12)) (-4376 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-4098 (((-566) $ $) 45)) (-2636 (((-112) $) 47)) (-4068 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4417))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-3924 (($ $) 13)) (-2479 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-2156 (((-644 $) $) 52)) (-3922 (((-112) $ $) 44 (|has| |#1| (-1099)))) (-3900 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-3667 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4417)))) (-2952 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3002 (((-771) $) 6 (|has| $ (-6 -4417))))) +(((-119 |#1|) (-140) (-1214)) (T -119)) +((-4351 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1214)))) (-4376 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1214)))) (-4361 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1214)))) (-4376 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1214)))) (-3901 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4418)) (-4 *1 (-119 *3)) (-4 *3 (-1214)))) (-2906 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4418)) (-4 *1 (-119 *2)) (-4 *2 (-1214)))) (-3901 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4418)) (-4 *1 (-119 *3)) (-4 *3 (-1214)))) (-1343 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4418)) (-4 *1 (-119 *2)) (-4 *2 (-1214))))) +(-13 (-1010 |t#1|) (-10 -8 (-15 -4351 ($ $)) (-15 -4376 ($ $ "left")) (-15 -4361 ($ $)) (-15 -4376 ($ $ "right")) (IF (|has| $ (-6 -4418)) (PROGN (-15 -3901 ($ $ "left" $)) (-15 -2906 ($ $ $)) (-15 -3901 ($ $ "right" $)) (-15 -1343 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2809 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1010 |#1|) . T) ((-1099) |has| |#1| (-1099)) ((-1214) . T)) +((-2282 (((-112) |#1|) 29)) (-4001 (((-771) (-771)) 28) (((-771)) 27)) (-4213 (((-112) |#1| (-112)) 30) (((-112) |#1|) 31))) +(((-120 |#1|) (-10 -7 (-15 -4213 ((-112) |#1|)) (-15 -4213 ((-112) |#1| (-112))) (-15 -4001 ((-771))) (-15 -4001 ((-771) (-771))) (-15 -2282 ((-112) |#1|))) (-1240 (-566))) (T -120)) +((-2282 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1240 (-566))))) (-4001 (*1 *2 *2) (-12 (-5 *2 (-771)) (-5 *1 (-120 *3)) (-4 *3 (-1240 (-566))))) (-4001 (*1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-120 *3)) (-4 *3 (-1240 (-566))))) (-4213 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1240 (-566))))) (-4213 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1240 (-566)))))) +(-10 -7 (-15 -4213 ((-112) |#1|)) (-15 -4213 ((-112) |#1| (-112))) (-15 -4001 ((-771))) (-15 -4001 ((-771) (-771))) (-15 -2282 ((-112) |#1|))) +((-2986 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2153 ((|#1| $) 18)) (-4045 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26)) (-1453 (((-112) $ (-771)) NIL)) (-3684 ((|#1| $ |#1|) NIL (|has| $ (-6 -4418)))) (-1343 (($ $ $) 21 (|has| $ (-6 -4418)))) (-2906 (($ $ $) 23 (|has| $ (-6 -4418)))) (-3901 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4418))) (($ $ "left" $) NIL (|has| $ (-6 -4418))) (($ $ "right" $) NIL (|has| $ (-6 -4418)))) (-3891 (($ $ (-644 $)) NIL (|has| $ (-6 -4418)))) (-1811 (($) NIL T CONST)) (-4361 (($ $) 20)) (-3872 (((-644 |#1|) $) NIL (|has| $ (-6 -4417)))) (-3578 (((-644 $) $) NIL)) (-2778 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1875 (($ $ |#1| $) 27)) (-2756 (((-112) $ (-771)) NIL)) (-4227 (((-644 |#1|) $) NIL (|has| $ (-6 -4417)))) (-1688 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-3708 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#1| |#1|) $) NIL)) (-4106 (((-112) $ (-771)) NIL)) (-4351 (($ $) 22)) (-3658 (((-644 |#1|) $) NIL)) (-1587 (((-112) $) NIL)) (-3151 (((-1157) $) NIL (|has| |#1| (-1099)))) (-3193 (($ |#1| $) 28)) (-4354 (($ |#1| $) 15)) (-4059 (((-1119) $) NIL (|has| |#1| (-1099)))) (-3966 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1844 (((-112) $ $) NIL)) (-2788 (((-112) $) 17)) (-1737 (($) 11)) (-4376 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4098 (((-566) $ $) NIL)) (-2636 (((-112) $) NIL)) (-4068 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-3924 (($ $) NIL)) (-2479 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-2156 (((-644 $) $) NIL)) (-3922 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2993 (($ (-644 |#1|)) 16)) (-3900 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3667 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2952 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3002 (((-771) $) NIL (|has| $ (-6 -4417))))) +(((-121 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4418) (-6 -4417) (-15 -2993 ($ (-644 |#1|))) (-15 -4354 ($ |#1| $)) (-15 -3193 ($ |#1| $)) (-15 -4045 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-850)) (T -121)) +((-2993 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-850)) (-5 *1 (-121 *3)))) (-4354 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-850)))) (-3193 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-850)))) (-4045 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) (-5 *1 (-121 *3)) (-4 *3 (-850))))) +(-13 (-125 |#1|) (-10 -8 (-6 -4418) (-6 -4417) (-15 -2993 ($ (-644 |#1|))) (-15 -4354 ($ |#1| $)) (-15 -3193 ($ |#1| $)) (-15 -4045 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) +((-3014 (($ $) 13)) (-2387 (($ $) 11)) (-4178 (($ $ $) 23)) (-2371 (($ $ $) 21)) (-3062 (($ $ $) 19)) (-3046 (($ $ $) 17))) +(((-122 |#1|) (-10 -8 (-15 -4178 (|#1| |#1| |#1|)) (-15 -2371 (|#1| |#1| |#1|)) (-15 -2387 (|#1| |#1|)) (-15 -3014 (|#1| |#1|)) (-15 -3046 (|#1| |#1| |#1|)) (-15 -3062 (|#1| |#1| |#1|))) (-123)) (T -122)) +NIL +(-10 -8 (-15 -4178 (|#1| |#1| |#1|)) (-15 -2371 (|#1| |#1| |#1|)) (-15 -2387 (|#1| |#1|)) (-15 -3014 (|#1| |#1|)) (-15 -3046 (|#1| |#1| |#1|)) (-15 -3062 (|#1| |#1| |#1|))) +((-2986 (((-112) $ $) 7)) (-3014 (($ $) 104)) (-2426 (($ $ $) 26)) (-2462 (((-1269) $ (-566) (-566)) 67 (|has| $ (-6 -4418)))) (-4163 (((-112) $) 99 (|has| (-112) (-850))) (((-112) (-1 (-112) (-112) (-112)) $) 93)) (-2893 (($ $) 103 (-12 (|has| (-112) (-850)) (|has| $ (-6 -4418)))) (($ (-1 (-112) (-112) (-112)) $) 102 (|has| $ (-6 -4418)))) (-1374 (($ $) 98 (|has| (-112) (-850))) (($ (-1 (-112) (-112) (-112)) $) 92)) (-1453 (((-112) $ (-771)) 38)) (-3901 (((-112) $ (-1231 (-566)) (-112)) 89 (|has| $ (-6 -4418))) (((-112) $ (-566) (-112)) 55 (|has| $ (-6 -4418)))) (-3543 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4417)))) (-1811 (($) 39 T CONST)) (-2273 (($ $) 101 (|has| $ (-6 -4418)))) (-3877 (($ $) 91)) (-4111 (($ $) 69 (-12 (|has| (-112) (-1099)) (|has| $ (-6 -4417))))) (-2628 (($ (-1 (-112) (-112)) $) 73 (|has| $ (-6 -4417))) (($ (-112) $) 70 (-12 (|has| (-112) (-1099)) (|has| $ (-6 -4417))))) (-1838 (((-112) (-1 (-112) (-112) (-112)) $) 75 (|has| $ (-6 -4417))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 74 (|has| $ (-6 -4417))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 71 (-12 (|has| (-112) (-1099)) (|has| $ (-6 -4417))))) (-3719 (((-112) $ (-566) (-112)) 54 (|has| $ (-6 -4418)))) (-3653 (((-112) $ (-566)) 56)) (-4000 (((-566) (-112) $ (-566)) 96 (|has| (-112) (-1099))) (((-566) (-112) $) 95 (|has| (-112) (-1099))) (((-566) (-1 (-112) (-112)) $) 94)) (-3872 (((-644 (-112)) $) 46 (|has| $ (-6 -4417)))) (-2415 (($ $ $) 27)) (-2387 (($ $) 31)) (-4178 (($ $ $) 29)) (-4259 (($ (-771) (-112)) 78)) (-2371 (($ $ $) 30)) (-2756 (((-112) $ (-771)) 37)) (-2755 (((-566) $) 64 (|has| (-566) (-850)))) (-1920 (($ $ $) 14)) (-1330 (($ $ $) 97 (|has| (-112) (-850))) (($ (-1 (-112) (-112) (-112)) $ $) 90)) (-4227 (((-644 (-112)) $) 47 (|has| $ (-6 -4417)))) (-1688 (((-112) (-112) $) 49 (-12 (|has| (-112) (-1099)) (|has| $ (-6 -4417))))) (-3831 (((-566) $) 63 (|has| (-566) (-850)))) (-3038 (($ $ $) 15)) (-3708 (($ (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4418)))) (-3080 (($ (-1 (-112) (-112) (-112)) $ $) 83) (($ (-1 (-112) (-112)) $) 41)) (-4106 (((-112) $ (-771)) 36)) (-3151 (((-1157) $) 10)) (-4271 (($ $ $ (-566)) 88) (($ (-112) $ (-566)) 87)) (-3780 (((-644 (-566)) $) 61)) (-1605 (((-112) (-566) $) 60)) (-4059 (((-1119) $) 11)) (-4080 (((-112) $) 65 (|has| (-566) (-850)))) (-2688 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 76)) (-4079 (($ $ (-112)) 66 (|has| $ (-6 -4418)))) (-3966 (((-112) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-112)) (-644 (-112))) 53 (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1099)))) (($ $ (-112) (-112)) 52 (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1099)))) (($ $ (-295 (-112))) 51 (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1099)))) (($ $ (-644 (-295 (-112)))) 50 (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1099))))) (-1844 (((-112) $ $) 32)) (-2210 (((-112) (-112) $) 62 (-12 (|has| $ (-6 -4417)) (|has| (-112) (-1099))))) (-4185 (((-644 (-112)) $) 59)) (-2788 (((-112) $) 35)) (-1737 (($) 34)) (-4376 (($ $ (-1231 (-566))) 84) (((-112) $ (-566)) 58) (((-112) $ (-566) (-112)) 57)) (-2139 (($ $ (-1231 (-566))) 86) (($ $ (-566)) 85)) (-4068 (((-771) (-112) $) 48 (-12 (|has| (-112) (-1099)) (|has| $ (-6 -4417)))) (((-771) (-1 (-112) (-112)) $) 45 (|has| $ (-6 -4417)))) (-1438 (($ $ $ (-566)) 100 (|has| $ (-6 -4418)))) (-3924 (($ $) 33)) (-3136 (((-538) $) 68 (|has| (-112) (-614 (-538))))) (-2489 (($ (-644 (-112))) 77)) (-3716 (($ (-644 $)) 82) (($ $ $) 81) (($ (-112) $) 80) (($ $ (-112)) 79)) (-2479 (((-862) $) 12)) (-3900 (((-112) $ $) 9)) (-3667 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4417)))) (-2402 (($ $ $) 28)) (-3062 (($ $ $) 106)) (-3019 (((-112) $ $) 17)) (-2990 (((-112) $ $) 18)) (-2952 (((-112) $ $) 6)) (-3004 (((-112) $ $) 16)) (-2977 (((-112) $ $) 19)) (-3046 (($ $ $) 105)) (-3002 (((-771) $) 40 (|has| $ (-6 -4417))))) (((-123) (-140)) (T -123)) -((-2307 (*1 *1 *1) (-4 *1 (-123))) (-2159 (*1 *1 *1 *1) (-4 *1 (-123))) (-2002 (*1 *1 *1 *1) (-4 *1 (-123))) (-2317 (*1 *1 *1 *1) (-4 *1 (-123))) (-2329 (*1 *1 *1 *1) (-4 *1 (-123))) (-2341 (*1 *1 *1 *1) (-4 *1 (-123)))) -(-13 (-848) (-659) (-19 (-112)) (-10 -8 (-15 -2307 ($ $)) (-15 -2159 ($ $ $)) (-15 -2002 ($ $ $)) (-15 -2317 ($ $ $)) (-15 -2329 ($ $ $)) (-15 -2341 ($ $ $)))) -(((-34) . T) ((-102) . T) ((-611 (-860)) . T) ((-151 #0=(-112)) . T) ((-612 (-536)) |has| (-112) (-612 (-536))) ((-286 #1=(-564) #0#) . T) ((-288 #1# #0#) . T) ((-309 #0#) -12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1097))) ((-373 #0#) . T) ((-489 #0#) . T) ((-602 #1# #0#) . T) ((-514 #0# #0#) -12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1097))) ((-649 #0#) . T) ((-659) . T) ((-19 #0#) . T) ((-848) . T) ((-1097) . T) ((-1212) . T)) -((-1857 (($ (-1 |#2| |#2|) $) 22)) (-3865 (($ $) 16)) (-2158 (((-769) $) 25))) -(((-124 |#1| |#2|) (-10 -8 (-15 -1857 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2158 ((-769) |#1|)) (-15 -3865 (|#1| |#1|))) (-125 |#2|) (-1097)) (T -124)) -NIL -(-10 -8 (-15 -1857 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2158 ((-769) |#1|)) (-15 -3865 (|#1| |#1|))) -((-2856 (((-112) $ $) 19 (|has| |#1| (-1097)))) (-2108 ((|#1| $) 49)) (-3442 (((-112) $ (-769)) 8)) (-1407 ((|#1| $ |#1|) 40 (|has| $ (-6 -4411)))) (-2503 (($ $ $) 53 (|has| $ (-6 -4411)))) (-4006 (($ $ $) 55 (|has| $ (-6 -4411)))) (-3841 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4411))) (($ $ "left" $) 56 (|has| $ (-6 -4411))) (($ $ "right" $) 54 (|has| $ (-6 -4411)))) (-4041 (($ $ (-642 $)) 42 (|has| $ (-6 -4411)))) (-2822 (($) 7 T CONST)) (-4351 (($ $) 58)) (-2018 (((-642 |#1|) $) 31 (|has| $ (-6 -4410)))) (-1300 (((-642 $) $) 51)) (-2423 (((-112) $ $) 43 (|has| |#1| (-1097)))) (-1863 (($ $ |#1| $) 61)) (-3769 (((-112) $ (-769)) 9)) (-3541 (((-642 |#1|) $) 30 (|has| $ (-6 -4410)))) (-2533 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-1857 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#1| |#1|) $) 36)) (-4145 (((-112) $ (-769)) 10)) (-4341 (($ $) 60)) (-2334 (((-642 |#1|) $) 46)) (-1961 (((-112) $) 50)) (-1778 (((-1155) $) 22 (|has| |#1| (-1097)))) (-3999 (((-1117) $) 21 (|has| |#1| (-1097)))) (-4094 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-2478 (((-112) $ $) 14)) (-4109 (((-112) $) 11)) (-2179 (($) 12)) (-4369 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-1743 (((-564) $ $) 45)) (-1311 (((-112) $) 47)) (-4010 (((-769) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4410))) (((-769) |#1| $) 29 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3865 (($ $) 13)) (-2390 (((-860) $) 18 (|has| |#1| (-611 (-860))))) (-4275 (((-642 $) $) 52)) (-1622 (((-112) $ $) 44 (|has| |#1| (-1097)))) (-1600 (((-112) $ $) 23 (|has| |#1| (-1097)))) (-3295 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4410)))) (-2821 (((-112) $ $) 20 (|has| |#1| (-1097)))) (-2158 (((-769) $) 6 (|has| $ (-6 -4410))))) -(((-125 |#1|) (-140) (-1097)) (T -125)) -((-1863 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1097))))) -(-13 (-119 |t#1|) (-10 -8 (-6 -4411) (-6 -4410) (-15 -1863 ($ $ |t#1| $)))) -(((-34) . T) ((-102) |has| |#1| (-1097)) ((-119 |#1|) . T) ((-611 (-860)) -2682 (|has| |#1| (-1097)) (|has| |#1| (-611 (-860)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-1008 |#1|) . T) ((-1097) |has| |#1| (-1097)) ((-1212) . T)) -((-2856 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2108 ((|#1| $) 18)) (-3442 (((-112) $ (-769)) NIL)) (-1407 ((|#1| $ |#1|) 22 (|has| $ (-6 -4411)))) (-2503 (($ $ $) 23 (|has| $ (-6 -4411)))) (-4006 (($ $ $) 21 (|has| $ (-6 -4411)))) (-3841 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4411))) (($ $ "left" $) NIL (|has| $ (-6 -4411))) (($ $ "right" $) NIL (|has| $ (-6 -4411)))) (-4041 (($ $ (-642 $)) NIL (|has| $ (-6 -4411)))) (-2822 (($) NIL T CONST)) (-4351 (($ $) 24)) (-2018 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-1300 (((-642 $) $) NIL)) (-2423 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-1863 (($ $ |#1| $) NIL)) (-3769 (((-112) $ (-769)) NIL)) (-3541 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2533 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-1857 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#1| |#1|) $) NIL)) (-4145 (((-112) $ (-769)) NIL)) (-4341 (($ $) NIL)) (-2334 (((-642 |#1|) $) NIL)) (-1961 (((-112) $) NIL)) (-1778 (((-1155) $) NIL (|has| |#1| (-1097)))) (-1668 (($ |#1| $) 15)) (-3999 (((-1117) $) NIL (|has| |#1| (-1097)))) (-4094 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-2478 (((-112) $ $) NIL)) (-4109 (((-112) $) 17)) (-2179 (($) 11)) (-4369 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1743 (((-564) $ $) NIL)) (-1311 (((-112) $) NIL)) (-4010 (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-769) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3865 (($ $) 20)) (-2390 (((-860) $) NIL (|has| |#1| (-611 (-860))))) (-4275 (((-642 $) $) NIL)) (-1622 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-1981 (($ (-642 |#1|)) 16)) (-1600 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-3295 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2821 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2158 (((-769) $) NIL (|has| $ (-6 -4410))))) -(((-126 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4411) (-15 -1981 ($ (-642 |#1|))) (-15 -1668 ($ |#1| $)))) (-848)) (T -126)) -((-1981 (*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-848)) (-5 *1 (-126 *3)))) (-1668 (*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-848))))) -(-13 (-125 |#1|) (-10 -8 (-6 -4411) (-15 -1981 ($ (-642 |#1|))) (-15 -1668 ($ |#1| $)))) -((-2856 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2108 ((|#1| $) 30)) (-3442 (((-112) $ (-769)) NIL)) (-1407 ((|#1| $ |#1|) 32 (|has| $ (-6 -4411)))) (-2503 (($ $ $) 36 (|has| $ (-6 -4411)))) (-4006 (($ $ $) 34 (|has| $ (-6 -4411)))) (-3841 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4411))) (($ $ "left" $) NIL (|has| $ (-6 -4411))) (($ $ "right" $) NIL (|has| $ (-6 -4411)))) (-4041 (($ $ (-642 $)) NIL (|has| $ (-6 -4411)))) (-2822 (($) NIL T CONST)) (-4351 (($ $) 23)) (-2018 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-1300 (((-642 $) $) NIL)) (-2423 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-1863 (($ $ |#1| $) 16)) (-3769 (((-112) $ (-769)) NIL)) (-3541 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2533 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-1857 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#1| |#1|) $) NIL)) (-4145 (((-112) $ (-769)) NIL)) (-4341 (($ $) 22)) (-2334 (((-642 |#1|) $) NIL)) (-1961 (((-112) $) 25)) (-1778 (((-1155) $) NIL (|has| |#1| (-1097)))) (-3999 (((-1117) $) NIL (|has| |#1| (-1097)))) (-4094 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-2478 (((-112) $ $) NIL)) (-4109 (((-112) $) 20)) (-2179 (($) 11)) (-4369 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1743 (((-564) $ $) NIL)) (-1311 (((-112) $) NIL)) (-4010 (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-769) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3865 (($ $) NIL)) (-2390 (((-860) $) NIL (|has| |#1| (-611 (-860))))) (-4275 (((-642 $) $) NIL)) (-1622 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-1938 (($ |#1|) 18) (($ $ |#1| $) 17)) (-1600 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-3295 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2821 (((-112) $ $) 10 (|has| |#1| (-1097)))) (-2158 (((-769) $) NIL (|has| $ (-6 -4410))))) -(((-127 |#1|) (-13 (-125 |#1|) (-10 -8 (-15 -1938 ($ |#1|)) (-15 -1938 ($ $ |#1| $)))) (-1097)) (T -127)) -((-1938 (*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1097)))) (-1938 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1097))))) -(-13 (-125 |#1|) (-10 -8 (-15 -1938 ($ |#1|)) (-15 -1938 ($ $ |#1| $)))) -((-2856 (((-112) $ $) NIL (|has| (-129) (-1097)))) (-3633 (((-1267) $ (-564) (-564)) NIL (|has| $ (-6 -4411)))) (-1824 (((-112) (-1 (-112) (-129) (-129)) $) NIL) (((-112) $) NIL (|has| (-129) (-848)))) (-3659 (($ (-1 (-112) (-129) (-129)) $) NIL (|has| $ (-6 -4411))) (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-129) (-848))))) (-3191 (($ (-1 (-112) (-129) (-129)) $) NIL) (($ $) NIL (|has| (-129) (-848)))) (-3442 (((-112) $ (-769)) NIL)) (-3841 (((-129) $ (-564) (-129)) 26 (|has| $ (-6 -4411))) (((-129) $ (-1229 (-564)) (-129)) NIL (|has| $ (-6 -4411)))) (-1530 (((-769) $ (-769)) 34)) (-3437 (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4410)))) (-2822 (($) NIL T CONST)) (-1540 (($ $) NIL (|has| $ (-6 -4411)))) (-3817 (($ $) NIL)) (-4067 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-129) (-1097))))) (-2517 (($ (-129) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-129) (-1097)))) (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4410)))) (-3741 (((-129) (-1 (-129) (-129) (-129)) $ (-129) (-129)) NIL (-12 (|has| $ (-6 -4410)) (|has| (-129) (-1097)))) (((-129) (-1 (-129) (-129) (-129)) $ (-129)) NIL (|has| $ (-6 -4410))) (((-129) (-1 (-129) (-129) (-129)) $) NIL (|has| $ (-6 -4410)))) (-3105 (((-129) $ (-564) (-129)) 25 (|has| $ (-6 -4411)))) (-1804 (((-129) $ (-564)) 20)) (-3942 (((-564) (-1 (-112) (-129)) $) NIL) (((-564) (-129) $) NIL (|has| (-129) (-1097))) (((-564) (-129) $ (-564)) NIL (|has| (-129) (-1097)))) (-2018 (((-642 (-129)) $) NIL (|has| $ (-6 -4410)))) (-4233 (($ (-769) (-129)) 14)) (-3769 (((-112) $ (-769)) NIL)) (-1802 (((-564) $) 27 (|has| (-564) (-848)))) (-3225 (($ $ $) NIL (|has| (-129) (-848)))) (-2774 (($ (-1 (-112) (-129) (-129)) $ $) NIL) (($ $ $) NIL (|has| (-129) (-848)))) (-3541 (((-642 (-129)) $) NIL (|has| $ (-6 -4410)))) (-2533 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-129) (-1097))))) (-3624 (((-564) $) 30 (|has| (-564) (-848)))) (-2903 (($ $ $) NIL (|has| (-129) (-848)))) (-1857 (($ (-1 (-129) (-129)) $) NIL (|has| $ (-6 -4411)))) (-2947 (($ (-1 (-129) (-129)) $) NIL) (($ (-1 (-129) (-129) (-129)) $ $) NIL)) (-4145 (((-112) $ (-769)) NIL)) (-1778 (((-1155) $) NIL (|has| (-129) (-1097)))) (-4247 (($ (-129) $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-4107 (((-642 (-564)) $) NIL)) (-4207 (((-112) (-564) $) NIL)) (-3999 (((-1117) $) NIL (|has| (-129) (-1097)))) (-4036 (((-129) $) NIL (|has| (-564) (-848)))) (-3183 (((-3 (-129) "failed") (-1 (-112) (-129)) $) NIL)) (-3826 (($ $ (-129)) NIL (|has| $ (-6 -4411)))) (-4094 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 (-129)))) NIL (-12 (|has| (-129) (-309 (-129))) (|has| (-129) (-1097)))) (($ $ (-294 (-129))) NIL (-12 (|has| (-129) (-309 (-129))) (|has| (-129) (-1097)))) (($ $ (-129) (-129)) NIL (-12 (|has| (-129) (-309 (-129))) (|has| (-129) (-1097)))) (($ $ (-642 (-129)) (-642 (-129))) NIL (-12 (|has| (-129) (-309 (-129))) (|has| (-129) (-1097))))) (-2478 (((-112) $ $) NIL)) (-1643 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-129) (-1097))))) (-3522 (((-642 (-129)) $) NIL)) (-4109 (((-112) $) NIL)) (-2179 (($) 12)) (-4369 (((-129) $ (-564) (-129)) NIL) (((-129) $ (-564)) 23) (($ $ (-1229 (-564))) NIL)) (-2083 (($ $ (-564)) NIL) (($ $ (-1229 (-564))) NIL)) (-4010 (((-769) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4410))) (((-769) (-129) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-129) (-1097))))) (-3301 (($ $ $ (-564)) NIL (|has| $ (-6 -4411)))) (-3865 (($ $) NIL)) (-3003 (((-536) $) NIL (|has| (-129) (-612 (-536))))) (-2401 (($ (-642 (-129))) 47)) (-3634 (($ $ (-129)) NIL) (($ (-129) $) NIL) (($ $ $) 48) (($ (-642 $)) NIL)) (-2390 (((-956 (-129)) $) 35) (((-1155) $) 44) (((-860) $) NIL (|has| (-129) (-611 (-860))))) (-2743 (((-769) $) 18)) (-3006 (($ (-769)) 8)) (-1600 (((-112) $ $) NIL (|has| (-129) (-1097)))) (-3295 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4410)))) (-2881 (((-112) $ $) NIL (|has| (-129) (-848)))) (-2857 (((-112) $ $) NIL (|has| (-129) (-848)))) (-2821 (((-112) $ $) 32 (|has| (-129) (-1097)))) (-2868 (((-112) $ $) NIL (|has| (-129) (-848)))) (-2844 (((-112) $ $) NIL (|has| (-129) (-848)))) (-2158 (((-769) $) 15 (|has| $ (-6 -4410))))) -(((-128) (-13 (-19 (-129)) (-611 (-956 (-129))) (-611 (-1155)) (-10 -8 (-15 -3006 ($ (-769))) (-15 -2743 ((-769) $)) (-15 -1530 ((-769) $ (-769))) (-6 -4410)))) (T -128)) -((-3006 (*1 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-128)))) (-2743 (*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-128)))) (-1530 (*1 *2 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-128))))) -(-13 (-19 (-129)) (-611 (-956 (-129))) (-611 (-1155)) (-10 -8 (-15 -3006 ($ (-769))) (-15 -2743 ((-769) $)) (-15 -1530 ((-769) $ (-769))) (-6 -4410))) -((-2856 (((-112) $ $) NIL)) (-4003 (((-769)) NIL)) (-2822 (($) 12 T CONST)) (-3235 (($) NIL)) (-3225 (($ $ $) NIL) (($) 25 T CONST)) (-2903 (($ $ $) NIL) (($) 26 T CONST)) (-2535 (((-919) $) NIL)) (-1778 (((-1155) $) NIL)) (-2065 (($ (-919)) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) NIL) (($ (-144)) 16) (((-144) $) 18)) (-3856 (($ (-769)) 8)) (-2243 (($ $ $) 28)) (-2233 (($ $ $) 27)) (-1600 (((-112) $ $) NIL)) (-2881 (((-112) $ $) 23)) (-2857 (((-112) $ $) 21)) (-2821 (((-112) $ $) 19)) (-2868 (((-112) $ $) 22)) (-2844 (((-112) $ $) 20))) -(((-129) (-13 (-842) (-490 (-144)) (-10 -8 (-15 -3856 ($ (-769))) (-15 -2233 ($ $ $)) (-15 -2243 ($ $ $)) (-15 -2822 ($) -1551)))) (T -129)) -((-3856 (*1 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-129)))) (-2233 (*1 *1 *1 *1) (-5 *1 (-129))) (-2243 (*1 *1 *1 *1) (-5 *1 (-129))) (-2822 (*1 *1) (-5 *1 (-129)))) -(-13 (-842) (-490 (-144)) (-10 -8 (-15 -3856 ($ (-769))) (-15 -2233 ($ $ $)) (-15 -2243 ($ $ $)) (-15 -2822 ($) -1551))) +((-2387 (*1 *1 *1) (-4 *1 (-123))) (-2371 (*1 *1 *1 *1) (-4 *1 (-123))) (-4178 (*1 *1 *1 *1) (-4 *1 (-123))) (-2402 (*1 *1 *1 *1) (-4 *1 (-123))) (-2415 (*1 *1 *1 *1) (-4 *1 (-123))) (-2426 (*1 *1 *1 *1) (-4 *1 (-123)))) +(-13 (-850) (-661) (-19 (-112)) (-10 -8 (-15 -2387 ($ $)) (-15 -2371 ($ $ $)) (-15 -4178 ($ $ $)) (-15 -2402 ($ $ $)) (-15 -2415 ($ $ $)) (-15 -2426 ($ $ $)))) +(((-34) . T) ((-102) . T) ((-613 (-862)) . T) ((-151 #0=(-112)) . T) ((-614 (-538)) |has| (-112) (-614 (-538))) ((-287 #1=(-566) #0#) . T) ((-289 #1# #0#) . T) ((-310 #0#) -12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1099))) ((-375 #0#) . T) ((-491 #0#) . T) ((-604 #1# #0#) . T) ((-516 #0# #0#) -12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1099))) ((-651 #0#) . T) ((-661) . T) ((-19 #0#) . T) ((-850) . T) ((-1099) . T) ((-1214) . T)) +((-3708 (($ (-1 |#2| |#2|) $) 22)) (-3924 (($ $) 16)) (-3002 (((-771) $) 25))) +(((-124 |#1| |#2|) (-10 -8 (-15 -3708 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3002 ((-771) |#1|)) (-15 -3924 (|#1| |#1|))) (-125 |#2|) (-1099)) (T -124)) +NIL +(-10 -8 (-15 -3708 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3002 ((-771) |#1|)) (-15 -3924 (|#1| |#1|))) +((-2986 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2153 ((|#1| $) 49)) (-1453 (((-112) $ (-771)) 8)) (-3684 ((|#1| $ |#1|) 40 (|has| $ (-6 -4418)))) (-1343 (($ $ $) 53 (|has| $ (-6 -4418)))) (-2906 (($ $ $) 55 (|has| $ (-6 -4418)))) (-3901 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4418))) (($ $ "left" $) 56 (|has| $ (-6 -4418))) (($ $ "right" $) 54 (|has| $ (-6 -4418)))) (-3891 (($ $ (-644 $)) 42 (|has| $ (-6 -4418)))) (-1811 (($) 7 T CONST)) (-4361 (($ $) 58)) (-3872 (((-644 |#1|) $) 31 (|has| $ (-6 -4417)))) (-3578 (((-644 $) $) 51)) (-2778 (((-112) $ $) 43 (|has| |#1| (-1099)))) (-1875 (($ $ |#1| $) 61)) (-2756 (((-112) $ (-771)) 9)) (-4227 (((-644 |#1|) $) 30 (|has| $ (-6 -4417)))) (-1688 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-3708 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#1| |#1|) $) 36)) (-4106 (((-112) $ (-771)) 10)) (-4351 (($ $) 60)) (-3658 (((-644 |#1|) $) 46)) (-1587 (((-112) $) 50)) (-3151 (((-1157) $) 22 (|has| |#1| (-1099)))) (-4059 (((-1119) $) 21 (|has| |#1| (-1099)))) (-3966 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1844 (((-112) $ $) 14)) (-2788 (((-112) $) 11)) (-1737 (($) 12)) (-4376 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-4098 (((-566) $ $) 45)) (-2636 (((-112) $) 47)) (-4068 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4417))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-3924 (($ $) 13)) (-2479 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-2156 (((-644 $) $) 52)) (-3922 (((-112) $ $) 44 (|has| |#1| (-1099)))) (-3900 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-3667 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4417)))) (-2952 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3002 (((-771) $) 6 (|has| $ (-6 -4417))))) +(((-125 |#1|) (-140) (-1099)) (T -125)) +((-1875 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1099))))) +(-13 (-119 |t#1|) (-10 -8 (-6 -4418) (-6 -4417) (-15 -1875 ($ $ |t#1| $)))) +(((-34) . T) ((-102) |has| |#1| (-1099)) ((-119 |#1|) . T) ((-613 (-862)) -2809 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1010 |#1|) . T) ((-1099) |has| |#1| (-1099)) ((-1214) . T)) +((-2986 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2153 ((|#1| $) 18)) (-1453 (((-112) $ (-771)) NIL)) (-3684 ((|#1| $ |#1|) 22 (|has| $ (-6 -4418)))) (-1343 (($ $ $) 23 (|has| $ (-6 -4418)))) (-2906 (($ $ $) 21 (|has| $ (-6 -4418)))) (-3901 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4418))) (($ $ "left" $) NIL (|has| $ (-6 -4418))) (($ $ "right" $) NIL (|has| $ (-6 -4418)))) (-3891 (($ $ (-644 $)) NIL (|has| $ (-6 -4418)))) (-1811 (($) NIL T CONST)) (-4361 (($ $) 24)) (-3872 (((-644 |#1|) $) NIL (|has| $ (-6 -4417)))) (-3578 (((-644 $) $) NIL)) (-2778 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1875 (($ $ |#1| $) NIL)) (-2756 (((-112) $ (-771)) NIL)) (-4227 (((-644 |#1|) $) NIL (|has| $ (-6 -4417)))) (-1688 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-3708 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#1| |#1|) $) NIL)) (-4106 (((-112) $ (-771)) NIL)) (-4351 (($ $) NIL)) (-3658 (((-644 |#1|) $) NIL)) (-1587 (((-112) $) NIL)) (-3151 (((-1157) $) NIL (|has| |#1| (-1099)))) (-4354 (($ |#1| $) 15)) (-4059 (((-1119) $) NIL (|has| |#1| (-1099)))) (-3966 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1844 (((-112) $ $) NIL)) (-2788 (((-112) $) 17)) (-1737 (($) 11)) (-4376 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4098 (((-566) $ $) NIL)) (-2636 (((-112) $) NIL)) (-4068 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-3924 (($ $) 20)) (-2479 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-2156 (((-644 $) $) NIL)) (-3922 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-4355 (($ (-644 |#1|)) 16)) (-3900 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3667 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2952 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3002 (((-771) $) NIL (|has| $ (-6 -4417))))) +(((-126 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4418) (-15 -4355 ($ (-644 |#1|))) (-15 -4354 ($ |#1| $)))) (-850)) (T -126)) +((-4355 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-850)) (-5 *1 (-126 *3)))) (-4354 (*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-850))))) +(-13 (-125 |#1|) (-10 -8 (-6 -4418) (-15 -4355 ($ (-644 |#1|))) (-15 -4354 ($ |#1| $)))) +((-2986 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2153 ((|#1| $) 30)) (-1453 (((-112) $ (-771)) NIL)) (-3684 ((|#1| $ |#1|) 32 (|has| $ (-6 -4418)))) (-1343 (($ $ $) 36 (|has| $ (-6 -4418)))) (-2906 (($ $ $) 34 (|has| $ (-6 -4418)))) (-3901 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4418))) (($ $ "left" $) NIL (|has| $ (-6 -4418))) (($ $ "right" $) NIL (|has| $ (-6 -4418)))) (-3891 (($ $ (-644 $)) NIL (|has| $ (-6 -4418)))) (-1811 (($) NIL T CONST)) (-4361 (($ $) 23)) (-3872 (((-644 |#1|) $) NIL (|has| $ (-6 -4417)))) (-3578 (((-644 $) $) NIL)) (-2778 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1875 (($ $ |#1| $) 16)) (-2756 (((-112) $ (-771)) NIL)) (-4227 (((-644 |#1|) $) NIL (|has| $ (-6 -4417)))) (-1688 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-3708 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#1| |#1|) $) NIL)) (-4106 (((-112) $ (-771)) NIL)) (-4351 (($ $) 22)) (-3658 (((-644 |#1|) $) NIL)) (-1587 (((-112) $) 25)) (-3151 (((-1157) $) NIL (|has| |#1| (-1099)))) (-4059 (((-1119) $) NIL (|has| |#1| (-1099)))) (-3966 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1844 (((-112) $ $) NIL)) (-2788 (((-112) $) 20)) (-1737 (($) 11)) (-4376 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4098 (((-566) $ $) NIL)) (-2636 (((-112) $) NIL)) (-4068 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-3924 (($ $) NIL)) (-2479 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-2156 (((-644 $) $) NIL)) (-3922 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3209 (($ |#1|) 18) (($ $ |#1| $) 17)) (-3900 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3667 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2952 (((-112) $ $) 10 (|has| |#1| (-1099)))) (-3002 (((-771) $) NIL (|has| $ (-6 -4417))))) +(((-127 |#1|) (-13 (-125 |#1|) (-10 -8 (-15 -3209 ($ |#1|)) (-15 -3209 ($ $ |#1| $)))) (-1099)) (T -127)) +((-3209 (*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1099)))) (-3209 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1099))))) +(-13 (-125 |#1|) (-10 -8 (-15 -3209 ($ |#1|)) (-15 -3209 ($ $ |#1| $)))) +((-2986 (((-112) $ $) NIL (|has| (-129) (-1099)))) (-2462 (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4418)))) (-4163 (((-112) (-1 (-112) (-129) (-129)) $) NIL) (((-112) $) NIL (|has| (-129) (-850)))) (-2893 (($ (-1 (-112) (-129) (-129)) $) NIL (|has| $ (-6 -4418))) (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-129) (-850))))) (-1374 (($ (-1 (-112) (-129) (-129)) $) NIL) (($ $) NIL (|has| (-129) (-850)))) (-1453 (((-112) $ (-771)) NIL)) (-3901 (((-129) $ (-566) (-129)) 26 (|has| $ (-6 -4418))) (((-129) $ (-1231 (-566)) (-129)) NIL (|has| $ (-6 -4418)))) (-2328 (((-771) $ (-771)) 34)) (-3543 (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4417)))) (-1811 (($) NIL T CONST)) (-2273 (($ $) NIL (|has| $ (-6 -4418)))) (-3877 (($ $) NIL)) (-4111 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-129) (-1099))))) (-2628 (($ (-129) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-129) (-1099)))) (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4417)))) (-1838 (((-129) (-1 (-129) (-129) (-129)) $ (-129) (-129)) NIL (-12 (|has| $ (-6 -4417)) (|has| (-129) (-1099)))) (((-129) (-1 (-129) (-129) (-129)) $ (-129)) NIL (|has| $ (-6 -4417))) (((-129) (-1 (-129) (-129) (-129)) $) NIL (|has| $ (-6 -4417)))) (-3719 (((-129) $ (-566) (-129)) 25 (|has| $ (-6 -4418)))) (-3653 (((-129) $ (-566)) 20)) (-4000 (((-566) (-1 (-112) (-129)) $) NIL) (((-566) (-129) $) NIL (|has| (-129) (-1099))) (((-566) (-129) $ (-566)) NIL (|has| (-129) (-1099)))) (-3872 (((-644 (-129)) $) NIL (|has| $ (-6 -4417)))) (-4259 (($ (-771) (-129)) 14)) (-2756 (((-112) $ (-771)) NIL)) (-2755 (((-566) $) 27 (|has| (-566) (-850)))) (-1920 (($ $ $) NIL (|has| (-129) (-850)))) (-1330 (($ (-1 (-112) (-129) (-129)) $ $) NIL) (($ $ $) NIL (|has| (-129) (-850)))) (-4227 (((-644 (-129)) $) NIL (|has| $ (-6 -4417)))) (-1688 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-129) (-1099))))) (-3831 (((-566) $) 30 (|has| (-566) (-850)))) (-3038 (($ $ $) NIL (|has| (-129) (-850)))) (-3708 (($ (-1 (-129) (-129)) $) NIL (|has| $ (-6 -4418)))) (-3080 (($ (-1 (-129) (-129)) $) NIL) (($ (-1 (-129) (-129) (-129)) $ $) NIL)) (-4106 (((-112) $ (-771)) NIL)) (-3151 (((-1157) $) NIL (|has| (-129) (-1099)))) (-4271 (($ (-129) $ (-566)) NIL) (($ $ $ (-566)) NIL)) (-3780 (((-644 (-566)) $) NIL)) (-1605 (((-112) (-566) $) NIL)) (-4059 (((-1119) $) NIL (|has| (-129) (-1099)))) (-4080 (((-129) $) NIL (|has| (-566) (-850)))) (-2688 (((-3 (-129) "failed") (-1 (-112) (-129)) $) NIL)) (-4079 (($ $ (-129)) NIL (|has| $ (-6 -4418)))) (-3966 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 (-129)))) NIL (-12 (|has| (-129) (-310 (-129))) (|has| (-129) (-1099)))) (($ $ (-295 (-129))) NIL (-12 (|has| (-129) (-310 (-129))) (|has| (-129) (-1099)))) (($ $ (-129) (-129)) NIL (-12 (|has| (-129) (-310 (-129))) (|has| (-129) (-1099)))) (($ $ (-644 (-129)) (-644 (-129))) NIL (-12 (|has| (-129) (-310 (-129))) (|has| (-129) (-1099))))) (-1844 (((-112) $ $) NIL)) (-2210 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-129) (-1099))))) (-4185 (((-644 (-129)) $) NIL)) (-2788 (((-112) $) NIL)) (-1737 (($) 12)) (-4376 (((-129) $ (-566) (-129)) NIL) (((-129) $ (-566)) 23) (($ $ (-1231 (-566))) NIL)) (-2139 (($ $ (-566)) NIL) (($ $ (-1231 (-566))) NIL)) (-4068 (((-771) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4417))) (((-771) (-129) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-129) (-1099))))) (-1438 (($ $ $ (-566)) NIL (|has| $ (-6 -4418)))) (-3924 (($ $) NIL)) (-3136 (((-538) $) NIL (|has| (-129) (-614 (-538))))) (-2489 (($ (-644 (-129))) 47)) (-3716 (($ $ (-129)) NIL) (($ (-129) $) NIL) (($ $ $) 48) (($ (-644 $)) NIL)) (-2479 (((-958 (-129)) $) 35) (((-1157) $) 44) (((-862) $) NIL (|has| (-129) (-613 (-862))))) (-1583 (((-771) $) 18)) (-2572 (($ (-771)) 8)) (-3900 (((-112) $ $) NIL (|has| (-129) (-1099)))) (-3667 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4417)))) (-3019 (((-112) $ $) NIL (|has| (-129) (-850)))) (-2990 (((-112) $ $) NIL (|has| (-129) (-850)))) (-2952 (((-112) $ $) 32 (|has| (-129) (-1099)))) (-3004 (((-112) $ $) NIL (|has| (-129) (-850)))) (-2977 (((-112) $ $) NIL (|has| (-129) (-850)))) (-3002 (((-771) $) 15 (|has| $ (-6 -4417))))) +(((-128) (-13 (-19 (-129)) (-613 (-958 (-129))) (-613 (-1157)) (-10 -8 (-15 -2572 ($ (-771))) (-15 -1583 ((-771) $)) (-15 -2328 ((-771) $ (-771))) (-6 -4417)))) (T -128)) +((-2572 (*1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-128)))) (-1583 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-128)))) (-2328 (*1 *2 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-128))))) +(-13 (-19 (-129)) (-613 (-958 (-129))) (-613 (-1157)) (-10 -8 (-15 -2572 ($ (-771))) (-15 -1583 ((-771) $)) (-15 -2328 ((-771) $ (-771))) (-6 -4417))) +((-2986 (((-112) $ $) NIL)) (-4049 (((-771)) NIL)) (-1811 (($) 12 T CONST)) (-1415 (($) NIL)) (-1920 (($ $ $) NIL) (($) 25 T CONST)) (-3038 (($ $ $) NIL) (($) 26 T CONST)) (-4051 (((-921) $) NIL)) (-3151 (((-1157) $) NIL)) (-2104 (($ (-921)) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) NIL) (($ (-144)) 16) (((-144) $) 18)) (-1952 (($ (-771)) 8)) (-2324 (($ $ $) 28)) (-2310 (($ $ $) 27)) (-3900 (((-112) $ $) NIL)) (-3019 (((-112) $ $) 23)) (-2990 (((-112) $ $) 21)) (-2952 (((-112) $ $) 19)) (-3004 (((-112) $ $) 22)) (-2977 (((-112) $ $) 20))) +(((-129) (-13 (-844) (-492 (-144)) (-10 -8 (-15 -1952 ($ (-771))) (-15 -2310 ($ $ $)) (-15 -2324 ($ $ $)) (-15 -1811 ($) -1573)))) (T -129)) +((-1952 (*1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-129)))) (-2310 (*1 *1 *1 *1) (-5 *1 (-129))) (-2324 (*1 *1 *1 *1) (-5 *1 (-129))) (-1811 (*1 *1) (-5 *1 (-129)))) +(-13 (-844) (-492 (-144)) (-10 -8 (-15 -1952 ($ (-771))) (-15 -2310 ($ $ $)) (-15 -2324 ($ $ $)) (-15 -1811 ($) -1573))) ((|NonNegativeInteger|) (< |#1| 256)) -((-2856 (((-112) $ $) NIL)) (-1669 (($) 6 T CONST)) (-3388 (($) 7 T CONST)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) 14)) (-1525 (($) 8 T CONST)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) 10))) -(((-130) (-13 (-1097) (-10 -8 (-15 -3388 ($) -1551) (-15 -1525 ($) -1551) (-15 -1669 ($) -1551)))) (T -130)) -((-3388 (*1 *1) (-5 *1 (-130))) (-1525 (*1 *1) (-5 *1 (-130))) (-1669 (*1 *1) (-5 *1 (-130)))) -(-13 (-1097) (-10 -8 (-15 -3388 ($) -1551) (-15 -1525 ($) -1551) (-15 -1669 ($) -1551))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-3085 (((-3 $ "failed") $ $) 20)) (-2822 (($) 18 T CONST)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2390 (((-860) $) 12)) (-1600 (((-112) $ $) 9)) (-2361 (($) 19 T CONST)) (-2821 (((-112) $ $) 6)) (-2917 (($ $ $) 15)) (* (($ (-919) $) 14) (($ (-769) $) 16))) +((-2986 (((-112) $ $) NIL)) (-3215 (($) 6 T CONST)) (-3298 (($) 7 T CONST)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) 14)) (-2413 (($) 8 T CONST)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 10))) +(((-130) (-13 (-1099) (-10 -8 (-15 -3298 ($) -1573) (-15 -2413 ($) -1573) (-15 -3215 ($) -1573)))) (T -130)) +((-3298 (*1 *1) (-5 *1 (-130))) (-2413 (*1 *1) (-5 *1 (-130))) (-3215 (*1 *1) (-5 *1 (-130)))) +(-13 (-1099) (-10 -8 (-15 -3298 ($) -1573) (-15 -2413 ($) -1573) (-15 -3215 ($) -1573))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-3174 (((-3 $ "failed") $ $) 20)) (-1811 (($) 18 T CONST)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-2479 (((-862) $) 12)) (-3900 (((-112) $ $) 9)) (-2446 (($) 19 T CONST)) (-2952 (((-112) $ $) 6)) (-3052 (($ $ $) 15)) (* (($ (-921) $) 14) (($ (-771) $) 16))) (((-131) (-140)) (T -131)) -((-3085 (*1 *1 *1 *1) (|partial| -4 *1 (-131)))) -(-13 (-23) (-10 -8 (-15 -3085 ((-3 $ "failed") $ $)))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-611 (-860)) . T) ((-1097) . T)) -((-2856 (((-112) $ $) 7)) (-3124 (((-1267) $ (-769)) 14)) (-3942 (((-769) $) 15)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2390 (((-860) $) 12)) (-1600 (((-112) $ $) 9)) (-2821 (((-112) $ $) 6))) +((-3174 (*1 *1 *1 *1) (|partial| -4 *1 (-131)))) +(-13 (-23) (-10 -8 (-15 -3174 ((-3 $ "failed") $ $)))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-613 (-862)) . T) ((-1099) . T)) +((-2986 (((-112) $ $) 7)) (-2102 (((-1269) $ (-771)) 14)) (-4000 (((-771) $) 15)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-2479 (((-862) $) 12)) (-3900 (((-112) $ $) 9)) (-2952 (((-112) $ $) 6))) (((-132) (-140)) (T -132)) -((-3942 (*1 *2 *1) (-12 (-4 *1 (-132)) (-5 *2 (-769)))) (-3124 (*1 *2 *1 *3) (-12 (-4 *1 (-132)) (-5 *3 (-769)) (-5 *2 (-1267))))) -(-13 (-1097) (-10 -8 (-15 -3942 ((-769) $)) (-15 -3124 ((-1267) $ (-769))))) -(((-102) . T) ((-611 (-860)) . T) ((-1097) . T)) -((-2856 (((-112) $ $) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) 16) (($ (-1178)) NIL) (((-1178) $) NIL)) (-2502 (((-642 (-1132)) $) 10)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-133) (-13 (-1080) (-10 -8 (-15 -2502 ((-642 (-1132)) $))))) (T -133)) -((-2502 (*1 *2 *1) (-12 (-5 *2 (-642 (-1132))) (-5 *1 (-133))))) -(-13 (-1080) (-10 -8 (-15 -2502 ((-642 (-1132)) $)))) -((-2856 (((-112) $ $) 49)) (-2950 (((-112) $) NIL)) (-2822 (($) NIL T CONST)) (-2849 (((-3 (-769) "failed") $) 58)) (-1687 (((-769) $) 56)) (-2675 (((-3 $ "failed") $) NIL)) (-3163 (((-112) $) NIL)) (-3225 (($ $ $) NIL)) (-2903 (($ $ $) 37)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-1709 (((-112)) 59)) (-3893 (((-112) (-112)) 61)) (-3334 (((-112) $) 30)) (-2467 (((-112) $) 55)) (-2390 (((-860) $) 28) (($ (-769)) 20)) (-1600 (((-112) $ $) NIL)) (-2361 (($) 18 T CONST)) (-2371 (($) 19 T CONST)) (-3172 (($ (-769)) 21)) (-2881 (((-112) $ $) NIL)) (-2857 (((-112) $ $) 40)) (-2821 (((-112) $ $) 32)) (-2868 (((-112) $ $) NIL)) (-2844 (((-112) $ $) 35)) (-2930 (((-3 $ "failed") $ $) 42)) (-2917 (($ $ $) 38)) (** (($ $ (-769)) NIL) (($ $ (-919)) NIL) (($ $ $) 54)) (* (($ (-769) $) 48) (($ (-919) $) NIL) (($ $ $) 45))) -(((-134) (-13 (-848) (-23) (-724) (-1036 (-769)) (-10 -8 (-6 (-4412 "*")) (-15 -2930 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3172 ($ (-769))) (-15 -3334 ((-112) $)) (-15 -2467 ((-112) $)) (-15 -1709 ((-112))) (-15 -3893 ((-112) (-112)))))) (T -134)) -((-2930 (*1 *1 *1 *1) (|partial| -5 *1 (-134))) (** (*1 *1 *1 *1) (-5 *1 (-134))) (-3172 (*1 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-134)))) (-3334 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-2467 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-1709 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-3893 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134))))) -(-13 (-848) (-23) (-724) (-1036 (-769)) (-10 -8 (-6 (-4412 "*")) (-15 -2930 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3172 ($ (-769))) (-15 -3334 ((-112) $)) (-15 -2467 ((-112) $)) (-15 -1709 ((-112))) (-15 -3893 ((-112) (-112))))) -((-3827 (((-136 |#1| |#2| |#4|) (-642 |#4|) (-136 |#1| |#2| |#3|)) 14)) (-2947 (((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|)) 18))) -(((-135 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3827 ((-136 |#1| |#2| |#4|) (-642 |#4|) (-136 |#1| |#2| |#3|))) (-15 -2947 ((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|)))) (-564) (-769) (-172) (-172)) (T -135)) -((-2947 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-564)) (-14 *6 (-769)) (-4 *7 (-172)) (-4 *8 (-172)) (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))) (-3827 (*1 *2 *3 *4) (-12 (-5 *3 (-642 *8)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-564)) (-14 *6 (-769)) (-4 *7 (-172)) (-4 *8 (-172)) (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8))))) -(-10 -7 (-15 -3827 ((-136 |#1| |#2| |#4|) (-642 |#4|) (-136 |#1| |#2| |#3|))) (-15 -2947 ((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|)))) -((-2856 (((-112) $ $) NIL)) (-1410 (($ (-642 |#3|)) 64)) (-2845 (($ $) 126) (($ $ (-564) (-564)) 125)) (-2822 (($) 20)) (-2849 (((-3 |#3| "failed") $) 86)) (-1687 ((|#3| $) NIL)) (-1748 (($ $ (-642 (-564))) 127)) (-3815 (((-642 |#3|) $) 59)) (-3616 (((-769) $) 69)) (-3506 (($ $ $) 120)) (-1582 (($) 68)) (-1778 (((-1155) $) NIL)) (-3606 (($) 19)) (-3999 (((-1117) $) NIL)) (-4369 ((|#3| $) 71) ((|#3| $ (-564)) 72) ((|#3| $ (-564) (-564)) 73) ((|#3| $ (-564) (-564) (-564)) 74) ((|#3| $ (-564) (-564) (-564) (-564)) 75) ((|#3| $ (-642 (-564))) 76)) (-3252 (((-769) $) 70)) (-1542 (($ $ (-564) $ (-564)) 121) (($ $ (-564) (-564)) 123)) (-2390 (((-860) $) 94) (($ |#3|) 95) (($ (-240 |#2| |#3|)) 102) (($ (-1139 |#2| |#3|)) 105) (($ (-642 |#3|)) 77) (($ (-642 $)) 83)) (-1600 (((-112) $ $) NIL)) (-2361 (($) 96 T CONST)) (-2371 (($) 97 T CONST)) (-2821 (((-112) $ $) 107)) (-2930 (($ $) 113) (($ $ $) 111)) (-2917 (($ $ $) 109)) (* (($ |#3| $) 118) (($ $ |#3|) 119) (($ $ (-564)) 116) (($ (-564) $) 115) (($ $ $) 122))) -(((-136 |#1| |#2| |#3|) (-13 (-465 |#3| (-769)) (-470 (-564) (-769)) (-10 -8 (-15 -2390 ($ (-240 |#2| |#3|))) (-15 -2390 ($ (-1139 |#2| |#3|))) (-15 -2390 ($ (-642 |#3|))) (-15 -2390 ($ (-642 $))) (-15 -3616 ((-769) $)) (-15 -4369 (|#3| $)) (-15 -4369 (|#3| $ (-564))) (-15 -4369 (|#3| $ (-564) (-564))) (-15 -4369 (|#3| $ (-564) (-564) (-564))) (-15 -4369 (|#3| $ (-564) (-564) (-564) (-564))) (-15 -4369 (|#3| $ (-642 (-564)))) (-15 -3506 ($ $ $)) (-15 * ($ $ $)) (-15 -1542 ($ $ (-564) $ (-564))) (-15 -1542 ($ $ (-564) (-564))) (-15 -2845 ($ $)) (-15 -2845 ($ $ (-564) (-564))) (-15 -1748 ($ $ (-642 (-564)))) (-15 -3606 ($)) (-15 -1582 ($)) (-15 -3815 ((-642 |#3|) $)) (-15 -1410 ($ (-642 |#3|))) (-15 -2822 ($)))) (-564) (-769) (-172)) (T -136)) -((-3506 (*1 *1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-769)) (-4 *4 (-172)))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-240 *4 *5)) (-14 *4 (-769)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-1139 *4 *5)) (-14 *4 (-769)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-642 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)) (-14 *4 (-769)))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-642 (-136 *3 *4 *5))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)) (-14 *4 (-769)) (-4 *5 (-172)))) (-3616 (*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)) (-14 *4 *2) (-4 *5 (-172)))) (-4369 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-136 *3 *4 *2)) (-14 *3 (-564)) (-14 *4 (-769)))) (-4369 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-769)))) (-4369 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-564)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-769)))) (-4369 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-564)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-769)))) (-4369 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-564)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-769)))) (-4369 (*1 *2 *1 *3) (-12 (-5 *3 (-642 (-564))) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 (-564)) (-14 *5 (-769)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-769)) (-4 *4 (-172)))) (-1542 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-769)) (-4 *5 (-172)))) (-1542 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-769)) (-4 *5 (-172)))) (-2845 (*1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-769)) (-4 *4 (-172)))) (-2845 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-769)) (-4 *5 (-172)))) (-1748 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-564))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)) (-14 *4 (-769)) (-4 *5 (-172)))) (-3606 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-769)) (-4 *4 (-172)))) (-1582 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-769)) (-4 *4 (-172)))) (-3815 (*1 *2 *1) (-12 (-5 *2 (-642 *5)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)) (-14 *4 (-769)) (-4 *5 (-172)))) (-1410 (*1 *1 *2) (-12 (-5 *2 (-642 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)) (-14 *4 (-769)))) (-2822 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-769)) (-4 *4 (-172))))) -(-13 (-465 |#3| (-769)) (-470 (-564) (-769)) (-10 -8 (-15 -2390 ($ (-240 |#2| |#3|))) (-15 -2390 ($ (-1139 |#2| |#3|))) (-15 -2390 ($ (-642 |#3|))) (-15 -2390 ($ (-642 $))) (-15 -3616 ((-769) $)) (-15 -4369 (|#3| $)) (-15 -4369 (|#3| $ (-564))) (-15 -4369 (|#3| $ (-564) (-564))) (-15 -4369 (|#3| $ (-564) (-564) (-564))) (-15 -4369 (|#3| $ (-564) (-564) (-564) (-564))) (-15 -4369 (|#3| $ (-642 (-564)))) (-15 -3506 ($ $ $)) (-15 * ($ $ $)) (-15 -1542 ($ $ (-564) $ (-564))) (-15 -1542 ($ $ (-564) (-564))) (-15 -2845 ($ $)) (-15 -2845 ($ $ (-564) (-564))) (-15 -1748 ($ $ (-642 (-564)))) (-15 -3606 ($)) (-15 -1582 ($)) (-15 -3815 ((-642 |#3|) $)) (-15 -1410 ($ (-642 |#3|))) (-15 -2822 ($)))) -((-2856 (((-112) $ $) NIL)) (-3199 (((-1132) $) 11)) (-3187 (((-1132) $) 9)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) 17) (($ (-1178)) NIL) (((-1178) $) NIL)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-137) (-13 (-1080) (-10 -8 (-15 -3187 ((-1132) $)) (-15 -3199 ((-1132) $))))) (T -137)) -((-3187 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-137)))) (-3199 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-137))))) -(-13 (-1080) (-10 -8 (-15 -3187 ((-1132) $)) (-15 -3199 ((-1132) $)))) -((-2856 (((-112) $ $) NIL)) (-1778 (((-1155) $) NIL)) (-1623 (((-186) $) 10)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) 20) (($ (-1178)) NIL) (((-1178) $) NIL)) (-2502 (((-642 (-1132)) $) 13)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-138) (-13 (-1080) (-10 -8 (-15 -1623 ((-186) $)) (-15 -2502 ((-642 (-1132)) $))))) (T -138)) -((-1623 (*1 *2 *1) (-12 (-5 *2 (-186)) (-5 *1 (-138)))) (-2502 (*1 *2 *1) (-12 (-5 *2 (-642 (-1132))) (-5 *1 (-138))))) -(-13 (-1080) (-10 -8 (-15 -1623 ((-186) $)) (-15 -2502 ((-642 (-1132)) $)))) -((-2856 (((-112) $ $) NIL)) (-3458 (((-642 (-863)) $) NIL)) (-2493 (((-506) $) NIL)) (-1778 (((-1155) $) NIL)) (-1623 (((-186) $) NIL)) (-1462 (((-112) $ (-506)) NIL)) (-3999 (((-1117) $) NIL)) (-2342 (((-642 (-112)) $) NIL)) (-2390 (((-860) $) NIL) (((-187) $) 6)) (-1600 (((-112) $ $) NIL)) (-2634 (((-55) $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-139) (-13 (-185) (-611 (-187)))) (T -139)) -NIL -(-13 (-185) (-611 (-187))) -((-3174 (((-642 (-183)) $) 13)) (-2896 (((-642 (-183)) $) 14)) (-2063 (((-642 (-836)) $) 10)) (-1500 (((-139) $) 7)) (-2390 (((-860) $) 16))) -(((-140) (-13 (-611 (-860)) (-10 -8 (-15 -1500 ((-139) $)) (-15 -2063 ((-642 (-836)) $)) (-15 -3174 ((-642 (-183)) $)) (-15 -2896 ((-642 (-183)) $))))) (T -140)) -((-1500 (*1 *2 *1) (-12 (-5 *2 (-139)) (-5 *1 (-140)))) (-2063 (*1 *2 *1) (-12 (-5 *2 (-642 (-836))) (-5 *1 (-140)))) (-3174 (*1 *2 *1) (-12 (-5 *2 (-642 (-183))) (-5 *1 (-140)))) (-2896 (*1 *2 *1) (-12 (-5 *2 (-642 (-183))) (-5 *1 (-140))))) -(-13 (-611 (-860)) (-10 -8 (-15 -1500 ((-139) $)) (-15 -2063 ((-642 (-836)) $)) (-15 -3174 ((-642 (-183)) $)) (-15 -2896 ((-642 (-183)) $)))) -((-2856 (((-112) $ $) NIL)) (-2000 (($) 17 T CONST)) (-2864 (($) NIL (|has| (-144) (-368)))) (-1700 (($ $ $) 19) (($ $ (-144)) NIL) (($ (-144) $) NIL)) (-3011 (($ $ $) NIL)) (-2460 (((-112) $ $) NIL)) (-3442 (((-112) $ (-769)) NIL)) (-4003 (((-769)) NIL (|has| (-144) (-368)))) (-1740 (($) NIL) (($ (-642 (-144))) NIL)) (-2438 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4410)))) (-3437 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4410)))) (-2822 (($) NIL T CONST)) (-4067 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-144) (-1097))))) (-1927 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4410))) (($ (-144) $) 61 (|has| $ (-6 -4410)))) (-2517 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4410))) (($ (-144) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-144) (-1097))))) (-3741 (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4410))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4410))) (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4410)) (|has| (-144) (-1097))))) (-3235 (($) NIL (|has| (-144) (-368)))) (-2018 (((-642 (-144)) $) 70 (|has| $ (-6 -4410)))) (-1309 (((-112) $ $) NIL)) (-3769 (((-112) $ (-769)) NIL)) (-3225 (((-144) $) NIL (|has| (-144) (-848)))) (-3541 (((-642 (-144)) $) NIL (|has| $ (-6 -4410)))) (-2533 (((-112) (-144) $) 27 (-12 (|has| $ (-6 -4410)) (|has| (-144) (-1097))))) (-2903 (((-144) $) NIL (|has| (-144) (-848)))) (-1857 (($ (-1 (-144) (-144)) $) 69 (|has| $ (-6 -4411)))) (-2947 (($ (-1 (-144) (-144)) $) 65)) (-4086 (($) 18 T CONST)) (-2535 (((-919) $) NIL (|has| (-144) (-368)))) (-4145 (((-112) $ (-769)) NIL)) (-1778 (((-1155) $) NIL)) (-2338 (($ $ $) 30)) (-3220 (((-144) $) 62)) (-1668 (($ (-144) $) 60)) (-2065 (($ (-919)) NIL (|has| (-144) (-368)))) (-2688 (($) 16 T CONST)) (-3999 (((-1117) $) NIL)) (-3183 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-4314 (((-144) $) 63)) (-4094 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-144)) (-642 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1097)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1097)))) (($ $ (-294 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1097)))) (($ $ (-642 (-294 (-144)))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1097))))) (-2478 (((-112) $ $) NIL)) (-4109 (((-112) $) NIL)) (-2179 (($) 58)) (-2889 (($) 15 T CONST)) (-1411 (($ $ $) 32) (($ $ (-144)) NIL)) (-2318 (($ (-642 (-144))) NIL) (($) NIL)) (-4010 (((-769) (-144) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-144) (-1097)))) (((-769) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4410)))) (-3865 (($ $) NIL)) (-3003 (((-1155) $) 37) (((-536) $) NIL (|has| (-144) (-612 (-536)))) (((-642 (-144)) $) 35)) (-2401 (($ (-642 (-144))) NIL)) (-3810 (($ $) 33 (|has| (-144) (-368)))) (-2390 (((-860) $) 55)) (-2097 (($ (-1155)) 14) (($ (-642 (-144))) 52)) (-1670 (((-769) $) NIL)) (-2321 (($) 59) (($ (-642 (-144))) NIL)) (-1600 (((-112) $ $) NIL)) (-4160 (($ (-642 (-144))) NIL)) (-3295 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4410)))) (-1929 (($) 21 T CONST)) (-1911 (($) 20 T CONST)) (-2821 (((-112) $ $) 24)) (-2158 (((-769) $) 57 (|has| $ (-6 -4410))))) -(((-141) (-13 (-1097) (-612 (-1155)) (-425 (-144)) (-612 (-642 (-144))) (-10 -8 (-15 -2097 ($ (-1155))) (-15 -2097 ($ (-642 (-144)))) (-15 -2889 ($) -1551) (-15 -2688 ($) -1551) (-15 -2000 ($) -1551) (-15 -4086 ($) -1551) (-15 -1911 ($) -1551) (-15 -1929 ($) -1551)))) (T -141)) -((-2097 (*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-141)))) (-2097 (*1 *1 *2) (-12 (-5 *2 (-642 (-144))) (-5 *1 (-141)))) (-2889 (*1 *1) (-5 *1 (-141))) (-2688 (*1 *1) (-5 *1 (-141))) (-2000 (*1 *1) (-5 *1 (-141))) (-4086 (*1 *1) (-5 *1 (-141))) (-1911 (*1 *1) (-5 *1 (-141))) (-1929 (*1 *1) (-5 *1 (-141)))) -(-13 (-1097) (-612 (-1155)) (-425 (-144)) (-612 (-642 (-144))) (-10 -8 (-15 -2097 ($ (-1155))) (-15 -2097 ($ (-642 (-144)))) (-15 -2889 ($) -1551) (-15 -2688 ($) -1551) (-15 -2000 ($) -1551) (-15 -4086 ($) -1551) (-15 -1911 ($) -1551) (-15 -1929 ($) -1551))) -((-1788 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-3508 ((|#1| |#3|) 9)) (-1581 ((|#3| |#3|) 15))) -(((-142 |#1| |#2| |#3|) (-10 -7 (-15 -3508 (|#1| |#3|)) (-15 -1581 (|#3| |#3|)) (-15 -1788 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-556) (-990 |#1|) (-373 |#2|)) (T -142)) -((-1788 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-990 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-142 *4 *5 *3)) (-4 *3 (-373 *5)))) (-1581 (*1 *2 *2) (-12 (-4 *3 (-556)) (-4 *4 (-990 *3)) (-5 *1 (-142 *3 *4 *2)) (-4 *2 (-373 *4)))) (-3508 (*1 *2 *3) (-12 (-4 *4 (-990 *2)) (-4 *2 (-556)) (-5 *1 (-142 *2 *4 *3)) (-4 *3 (-373 *4))))) -(-10 -7 (-15 -3508 (|#1| |#3|)) (-15 -1581 (|#3| |#3|)) (-15 -1788 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-2641 (($ $ $) 8)) (-1420 (($ $) 7)) (-4271 (($ $ $) 6))) +((-4000 (*1 *2 *1) (-12 (-4 *1 (-132)) (-5 *2 (-771)))) (-2102 (*1 *2 *1 *3) (-12 (-4 *1 (-132)) (-5 *3 (-771)) (-5 *2 (-1269))))) +(-13 (-1099) (-10 -8 (-15 -4000 ((-771) $)) (-15 -2102 ((-1269) $ (-771))))) +(((-102) . T) ((-613 (-862)) . T) ((-1099) . T)) +((-2986 (((-112) $ $) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) 16) (($ (-1180)) NIL) (((-1180) $) NIL)) (-2610 (((-644 (-1134)) $) 10)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-133) (-13 (-1082) (-10 -8 (-15 -2610 ((-644 (-1134)) $))))) (T -133)) +((-2610 (*1 *2 *1) (-12 (-5 *2 (-644 (-1134))) (-5 *1 (-133))))) +(-13 (-1082) (-10 -8 (-15 -2610 ((-644 (-1134)) $)))) +((-2986 (((-112) $ $) 49)) (-2845 (((-112) $) NIL)) (-1811 (($) NIL T CONST)) (-2980 (((-3 (-771) "failed") $) 58)) (-1709 (((-771) $) 56)) (-3757 (((-3 $ "failed") $) NIL)) (-2264 (((-112) $) NIL)) (-1920 (($ $ $) NIL)) (-3038 (($ $ $) 37)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2011 (((-112)) 59)) (-2342 (((-112) (-112)) 61)) (-1864 (((-112) $) 30)) (-3577 (((-112) $) 55)) (-2479 (((-862) $) 28) (($ (-771)) 20)) (-3900 (((-112) $ $) NIL)) (-2446 (($) 18 T CONST)) (-2459 (($) 19 T CONST)) (-2256 (($ (-771)) 21)) (-3019 (((-112) $ $) NIL)) (-2990 (((-112) $ $) 40)) (-2952 (((-112) $ $) 32)) (-3004 (((-112) $ $) NIL)) (-2977 (((-112) $ $) 35)) (-3065 (((-3 $ "failed") $ $) 42)) (-3052 (($ $ $) 38)) (** (($ $ (-771)) NIL) (($ $ (-921)) NIL) (($ $ $) 54)) (* (($ (-771) $) 48) (($ (-921) $) NIL) (($ $ $) 45))) +(((-134) (-13 (-850) (-23) (-726) (-1038 (-771)) (-10 -8 (-6 (-4419 "*")) (-15 -3065 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2256 ($ (-771))) (-15 -1864 ((-112) $)) (-15 -3577 ((-112) $)) (-15 -2011 ((-112))) (-15 -2342 ((-112) (-112)))))) (T -134)) +((-3065 (*1 *1 *1 *1) (|partial| -5 *1 (-134))) (** (*1 *1 *1 *1) (-5 *1 (-134))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-134)))) (-1864 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-3577 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-2011 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-2342 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134))))) +(-13 (-850) (-23) (-726) (-1038 (-771)) (-10 -8 (-6 (-4419 "*")) (-15 -3065 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2256 ($ (-771))) (-15 -1864 ((-112) $)) (-15 -3577 ((-112) $)) (-15 -2011 ((-112))) (-15 -2342 ((-112) (-112))))) +((-3882 (((-136 |#1| |#2| |#4|) (-644 |#4|) (-136 |#1| |#2| |#3|)) 14)) (-3080 (((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|)) 18))) +(((-135 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3882 ((-136 |#1| |#2| |#4|) (-644 |#4|) (-136 |#1| |#2| |#3|))) (-15 -3080 ((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|)))) (-566) (-771) (-172) (-172)) (T -135)) +((-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-566)) (-14 *6 (-771)) (-4 *7 (-172)) (-4 *8 (-172)) (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))) (-3882 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-566)) (-14 *6 (-771)) (-4 *7 (-172)) (-4 *8 (-172)) (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8))))) +(-10 -7 (-15 -3882 ((-136 |#1| |#2| |#4|) (-644 |#4|) (-136 |#1| |#2| |#3|))) (-15 -3080 ((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|)))) +((-2986 (((-112) $ $) NIL)) (-4224 (($ (-644 |#3|)) 64)) (-2076 (($ $) 126) (($ $ (-566) (-566)) 125)) (-1811 (($) 20)) (-2980 (((-3 |#3| "failed") $) 86)) (-1709 ((|#3| $) NIL)) (-3572 (($ $ (-644 (-566))) 127)) (-3870 (((-644 |#3|) $) 59)) (-2299 (((-771) $) 69)) (-1353 (($ $ $) 120)) (-1923 (($) 68)) (-3151 (((-1157) $) NIL)) (-3697 (($) 19)) (-4059 (((-1119) $) NIL)) (-4376 ((|#3| $) 71) ((|#3| $ (-566)) 72) ((|#3| $ (-566) (-566)) 73) ((|#3| $ (-566) (-566) (-566)) 74) ((|#3| $ (-566) (-566) (-566) (-566)) 75) ((|#3| $ (-644 (-566))) 76)) (-1630 (((-771) $) 70)) (-2424 (($ $ (-566) $ (-566)) 121) (($ $ (-566) (-566)) 123)) (-2479 (((-862) $) 94) (($ |#3|) 95) (($ (-240 |#2| |#3|)) 102) (($ (-1141 |#2| |#3|)) 105) (($ (-644 |#3|)) 77) (($ (-644 $)) 83)) (-3900 (((-112) $ $) NIL)) (-2446 (($) 96 T CONST)) (-2459 (($) 97 T CONST)) (-2952 (((-112) $ $) 107)) (-3065 (($ $) 113) (($ $ $) 111)) (-3052 (($ $ $) 109)) (* (($ |#3| $) 118) (($ $ |#3|) 119) (($ $ (-566)) 116) (($ (-566) $) 115) (($ $ $) 122))) +(((-136 |#1| |#2| |#3|) (-13 (-467 |#3| (-771)) (-472 (-566) (-771)) (-10 -8 (-15 -2479 ($ (-240 |#2| |#3|))) (-15 -2479 ($ (-1141 |#2| |#3|))) (-15 -2479 ($ (-644 |#3|))) (-15 -2479 ($ (-644 $))) (-15 -2299 ((-771) $)) (-15 -4376 (|#3| $)) (-15 -4376 (|#3| $ (-566))) (-15 -4376 (|#3| $ (-566) (-566))) (-15 -4376 (|#3| $ (-566) (-566) (-566))) (-15 -4376 (|#3| $ (-566) (-566) (-566) (-566))) (-15 -4376 (|#3| $ (-644 (-566)))) (-15 -1353 ($ $ $)) (-15 * ($ $ $)) (-15 -2424 ($ $ (-566) $ (-566))) (-15 -2424 ($ $ (-566) (-566))) (-15 -2076 ($ $)) (-15 -2076 ($ $ (-566) (-566))) (-15 -3572 ($ $ (-644 (-566)))) (-15 -3697 ($)) (-15 -1923 ($)) (-15 -3870 ((-644 |#3|) $)) (-15 -4224 ($ (-644 |#3|))) (-15 -1811 ($)))) (-566) (-771) (-172)) (T -136)) +((-1353 (*1 *1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-566)) (-14 *3 (-771)) (-4 *4 (-172)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-240 *4 *5)) (-14 *4 (-771)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-566)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-1141 *4 *5)) (-14 *4 (-771)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-566)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-644 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-566)) (-14 *4 (-771)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-644 (-136 *3 *4 *5))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-566)) (-14 *4 (-771)) (-4 *5 (-172)))) (-2299 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-566)) (-14 *4 *2) (-4 *5 (-172)))) (-4376 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-136 *3 *4 *2)) (-14 *3 (-566)) (-14 *4 (-771)))) (-4376 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-771)))) (-4376 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-566)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-771)))) (-4376 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-566)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-771)))) (-4376 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-566)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-771)))) (-4376 (*1 *2 *1 *3) (-12 (-5 *3 (-644 (-566))) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 (-566)) (-14 *5 (-771)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-566)) (-14 *3 (-771)) (-4 *4 (-172)))) (-2424 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-771)) (-4 *5 (-172)))) (-2424 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-771)) (-4 *5 (-172)))) (-2076 (*1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-566)) (-14 *3 (-771)) (-4 *4 (-172)))) (-2076 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-771)) (-4 *5 (-172)))) (-3572 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-566)) (-14 *4 (-771)) (-4 *5 (-172)))) (-3697 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-566)) (-14 *3 (-771)) (-4 *4 (-172)))) (-1923 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-566)) (-14 *3 (-771)) (-4 *4 (-172)))) (-3870 (*1 *2 *1) (-12 (-5 *2 (-644 *5)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-566)) (-14 *4 (-771)) (-4 *5 (-172)))) (-4224 (*1 *1 *2) (-12 (-5 *2 (-644 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-566)) (-14 *4 (-771)))) (-1811 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-566)) (-14 *3 (-771)) (-4 *4 (-172))))) +(-13 (-467 |#3| (-771)) (-472 (-566) (-771)) (-10 -8 (-15 -2479 ($ (-240 |#2| |#3|))) (-15 -2479 ($ (-1141 |#2| |#3|))) (-15 -2479 ($ (-644 |#3|))) (-15 -2479 ($ (-644 $))) (-15 -2299 ((-771) $)) (-15 -4376 (|#3| $)) (-15 -4376 (|#3| $ (-566))) (-15 -4376 (|#3| $ (-566) (-566))) (-15 -4376 (|#3| $ (-566) (-566) (-566))) (-15 -4376 (|#3| $ (-566) (-566) (-566) (-566))) (-15 -4376 (|#3| $ (-644 (-566)))) (-15 -1353 ($ $ $)) (-15 * ($ $ $)) (-15 -2424 ($ $ (-566) $ (-566))) (-15 -2424 ($ $ (-566) (-566))) (-15 -2076 ($ $)) (-15 -2076 ($ $ (-566) (-566))) (-15 -3572 ($ $ (-644 (-566)))) (-15 -3697 ($)) (-15 -1923 ($)) (-15 -3870 ((-644 |#3|) $)) (-15 -4224 ($ (-644 |#3|))) (-15 -1811 ($)))) +((-2986 (((-112) $ $) NIL)) (-3331 (((-1134) $) 11)) (-3319 (((-1134) $) 9)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) 17) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-137) (-13 (-1082) (-10 -8 (-15 -3319 ((-1134) $)) (-15 -3331 ((-1134) $))))) (T -137)) +((-3319 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-137)))) (-3331 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-137))))) +(-13 (-1082) (-10 -8 (-15 -3319 ((-1134) $)) (-15 -3331 ((-1134) $)))) +((-2986 (((-112) $ $) NIL)) (-3151 (((-1157) $) NIL)) (-1657 (((-186) $) 10)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) 20) (($ (-1180)) NIL) (((-1180) $) NIL)) (-2610 (((-644 (-1134)) $) 13)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-138) (-13 (-1082) (-10 -8 (-15 -1657 ((-186) $)) (-15 -2610 ((-644 (-1134)) $))))) (T -138)) +((-1657 (*1 *2 *1) (-12 (-5 *2 (-186)) (-5 *1 (-138)))) (-2610 (*1 *2 *1) (-12 (-5 *2 (-644 (-1134))) (-5 *1 (-138))))) +(-13 (-1082) (-10 -8 (-15 -1657 ((-186) $)) (-15 -2610 ((-644 (-1134)) $)))) +((-2986 (((-112) $ $) NIL)) (-3562 (((-644 (-865)) $) NIL)) (-2598 (((-508) $) NIL)) (-3151 (((-1157) $) NIL)) (-1657 (((-186) $) NIL)) (-1896 (((-112) $ (-508)) NIL)) (-4059 (((-1119) $) NIL)) (-4348 (((-644 (-112)) $) NIL)) (-2479 (((-862) $) NIL) (((-187) $) 6)) (-3900 (((-112) $ $) NIL)) (-3864 (((-55) $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-139) (-13 (-185) (-613 (-187)))) (T -139)) +NIL +(-13 (-185) (-613 (-187))) +((-1752 (((-644 (-183)) $) 13)) (-1627 (((-644 (-183)) $) 14)) (-2667 (((-644 (-838)) $) 10)) (-1517 (((-139) $) 7)) (-2479 (((-862) $) 16))) +(((-140) (-13 (-613 (-862)) (-10 -8 (-15 -1517 ((-139) $)) (-15 -2667 ((-644 (-838)) $)) (-15 -1752 ((-644 (-183)) $)) (-15 -1627 ((-644 (-183)) $))))) (T -140)) +((-1517 (*1 *2 *1) (-12 (-5 *2 (-139)) (-5 *1 (-140)))) (-2667 (*1 *2 *1) (-12 (-5 *2 (-644 (-838))) (-5 *1 (-140)))) (-1752 (*1 *2 *1) (-12 (-5 *2 (-644 (-183))) (-5 *1 (-140)))) (-1627 (*1 *2 *1) (-12 (-5 *2 (-644 (-183))) (-5 *1 (-140))))) +(-13 (-613 (-862)) (-10 -8 (-15 -1517 ((-139) $)) (-15 -2667 ((-644 (-838)) $)) (-15 -1752 ((-644 (-183)) $)) (-15 -1627 ((-644 (-183)) $)))) +((-2986 (((-112) $ $) NIL)) (-3037 (($) 17 T CONST)) (-2004 (($) NIL (|has| (-144) (-370)))) (-1730 (($ $ $) 19) (($ $ (-144)) NIL) (($ (-144) $) NIL)) (-2591 (($ $ $) NIL)) (-2025 (((-112) $ $) NIL)) (-1453 (((-112) $ (-771)) NIL)) (-4049 (((-771)) NIL (|has| (-144) (-370)))) (-1759 (($) NIL) (($ (-644 (-144))) NIL)) (-4364 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4417)))) (-3543 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4417)))) (-1811 (($) NIL T CONST)) (-4111 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-144) (-1099))))) (-2295 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4417))) (($ (-144) $) 61 (|has| $ (-6 -4417)))) (-2628 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4417))) (($ (-144) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-144) (-1099))))) (-1838 (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4417))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4417))) (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4417)) (|has| (-144) (-1099))))) (-1415 (($) NIL (|has| (-144) (-370)))) (-3872 (((-644 (-144)) $) 70 (|has| $ (-6 -4417)))) (-3963 (((-112) $ $) NIL)) (-2756 (((-112) $ (-771)) NIL)) (-1920 (((-144) $) NIL (|has| (-144) (-850)))) (-4227 (((-644 (-144)) $) NIL (|has| $ (-6 -4417)))) (-1688 (((-112) (-144) $) 27 (-12 (|has| $ (-6 -4417)) (|has| (-144) (-1099))))) (-3038 (((-144) $) NIL (|has| (-144) (-850)))) (-3708 (($ (-1 (-144) (-144)) $) 69 (|has| $ (-6 -4418)))) (-3080 (($ (-1 (-144) (-144)) $) 65)) (-4032 (($) 18 T CONST)) (-4051 (((-921) $) NIL (|has| (-144) (-370)))) (-4106 (((-112) $ (-771)) NIL)) (-3151 (((-1157) $) NIL)) (-4022 (($ $ $) 30)) (-4255 (((-144) $) 62)) (-4354 (($ (-144) $) 60)) (-2104 (($ (-921)) NIL (|has| (-144) (-370)))) (-3971 (($) 16 T CONST)) (-4059 (((-1119) $) NIL)) (-2688 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-4097 (((-144) $) 63)) (-3966 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-144)) (-644 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099)))) (($ $ (-295 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099)))) (($ $ (-644 (-295 (-144)))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099))))) (-1844 (((-112) $ $) NIL)) (-2788 (((-112) $) NIL)) (-1737 (($) 58)) (-3290 (($) 15 T CONST)) (-1369 (($ $ $) 32) (($ $ (-144)) NIL)) (-1797 (($ (-644 (-144))) NIL) (($) NIL)) (-4068 (((-771) (-144) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-144) (-1099)))) (((-771) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4417)))) (-3924 (($ $) NIL)) (-3136 (((-1157) $) 37) (((-538) $) NIL (|has| (-144) (-614 (-538)))) (((-644 (-144)) $) 35)) (-2489 (($ (-644 (-144))) NIL)) (-4153 (($ $) 33 (|has| (-144) (-370)))) (-2479 (((-862) $) 55)) (-2274 (($ (-1157)) 14) (($ (-644 (-144))) 52)) (-2374 (((-771) $) NIL)) (-2405 (($) 59) (($ (-644 (-144))) NIL)) (-3900 (((-112) $ $) NIL)) (-2471 (($ (-644 (-144))) NIL)) (-3667 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4417)))) (-2903 (($) 21 T CONST)) (-2574 (($) 20 T CONST)) (-2952 (((-112) $ $) 24)) (-3002 (((-771) $) 57 (|has| $ (-6 -4417))))) +(((-141) (-13 (-1099) (-614 (-1157)) (-427 (-144)) (-614 (-644 (-144))) (-10 -8 (-15 -2274 ($ (-1157))) (-15 -2274 ($ (-644 (-144)))) (-15 -3290 ($) -1573) (-15 -3971 ($) -1573) (-15 -3037 ($) -1573) (-15 -4032 ($) -1573) (-15 -2574 ($) -1573) (-15 -2903 ($) -1573)))) (T -141)) +((-2274 (*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-141)))) (-2274 (*1 *1 *2) (-12 (-5 *2 (-644 (-144))) (-5 *1 (-141)))) (-3290 (*1 *1) (-5 *1 (-141))) (-3971 (*1 *1) (-5 *1 (-141))) (-3037 (*1 *1) (-5 *1 (-141))) (-4032 (*1 *1) (-5 *1 (-141))) (-2574 (*1 *1) (-5 *1 (-141))) (-2903 (*1 *1) (-5 *1 (-141)))) +(-13 (-1099) (-614 (-1157)) (-427 (-144)) (-614 (-644 (-144))) (-10 -8 (-15 -2274 ($ (-1157))) (-15 -2274 ($ (-644 (-144)))) (-15 -3290 ($) -1573) (-15 -3971 ($) -1573) (-15 -3037 ($) -1573) (-15 -4032 ($) -1573) (-15 -2574 ($) -1573) (-15 -2903 ($) -1573))) +((-1402 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-4189 ((|#1| |#3|) 9)) (-3759 ((|#3| |#3|) 15))) +(((-142 |#1| |#2| |#3|) (-10 -7 (-15 -4189 (|#1| |#3|)) (-15 -3759 (|#3| |#3|)) (-15 -1402 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-558) (-992 |#1|) (-375 |#2|)) (T -142)) +((-1402 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-992 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-142 *4 *5 *3)) (-4 *3 (-375 *5)))) (-3759 (*1 *2 *2) (-12 (-4 *3 (-558)) (-4 *4 (-992 *3)) (-5 *1 (-142 *3 *4 *2)) (-4 *2 (-375 *4)))) (-4189 (*1 *2 *3) (-12 (-4 *4 (-992 *2)) (-4 *2 (-558)) (-5 *1 (-142 *2 *4 *3)) (-4 *3 (-375 *4))))) +(-10 -7 (-15 -4189 (|#1| |#3|)) (-15 -3759 (|#3| |#3|)) (-15 -1402 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-1655 (($ $ $) 8)) (-2259 (($ $) 7)) (-1835 (($ $ $) 6))) (((-143) (-140)) (T -143)) -((-2641 (*1 *1 *1 *1) (-4 *1 (-143))) (-1420 (*1 *1 *1) (-4 *1 (-143))) (-4271 (*1 *1 *1 *1) (-4 *1 (-143)))) -(-13 (-10 -8 (-15 -4271 ($ $ $)) (-15 -1420 ($ $)) (-15 -2641 ($ $ $)))) -((-2856 (((-112) $ $) NIL)) (-2647 (((-112) $) 39)) (-2000 (($ $) 55)) (-3530 (($) 26)) (-4003 (((-769)) 13)) (-3235 (($) 25)) (-2304 (($) 27)) (-3260 (((-769) $) 21)) (-3225 (($ $ $) NIL) (($) NIL T CONST)) (-2903 (($ $ $) NIL) (($) NIL T CONST)) (-3481 (((-112) $) 41)) (-4086 (($ $) 56)) (-2535 (((-919) $) 23)) (-1778 (((-1155) $) 49)) (-2065 (($ (-919)) 20)) (-1660 (((-112) $) 37)) (-3999 (((-1117) $) NIL)) (-1675 (($) 28)) (-1833 (((-112) $) 35)) (-2390 (((-860) $) 30)) (-2754 (($ (-769)) 19) (($ (-1155)) 54)) (-1600 (((-112) $ $) NIL)) (-1610 (((-112) $) 45)) (-4132 (((-112) $) 43)) (-2881 (((-112) $ $) 11)) (-2857 (((-112) $ $) 9)) (-2821 (((-112) $ $) 7)) (-2868 (((-112) $ $) 10)) (-2844 (((-112) $ $) 8))) -(((-144) (-13 (-842) (-10 -8 (-15 -3260 ((-769) $)) (-15 -2754 ($ (-769))) (-15 -2754 ($ (-1155))) (-15 -3530 ($)) (-15 -2304 ($)) (-15 -1675 ($)) (-15 -2000 ($ $)) (-15 -4086 ($ $)) (-15 -1833 ((-112) $)) (-15 -1660 ((-112) $)) (-15 -4132 ((-112) $)) (-15 -2647 ((-112) $)) (-15 -3481 ((-112) $)) (-15 -1610 ((-112) $))))) (T -144)) -((-3260 (*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-144)))) (-2754 (*1 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-144)))) (-2754 (*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-144)))) (-3530 (*1 *1) (-5 *1 (-144))) (-2304 (*1 *1) (-5 *1 (-144))) (-1675 (*1 *1) (-5 *1 (-144))) (-2000 (*1 *1 *1) (-5 *1 (-144))) (-4086 (*1 *1 *1) (-5 *1 (-144))) (-1833 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-1660 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-4132 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-2647 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-3481 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-1610 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) -(-13 (-842) (-10 -8 (-15 -3260 ((-769) $)) (-15 -2754 ($ (-769))) (-15 -2754 ($ (-1155))) (-15 -3530 ($)) (-15 -2304 ($)) (-15 -1675 ($)) (-15 -2000 ($ $)) (-15 -4086 ($ $)) (-15 -1833 ((-112) $)) (-15 -1660 ((-112) $)) (-15 -4132 ((-112) $)) (-15 -2647 ((-112) $)) (-15 -3481 ((-112) $)) (-15 -1610 ((-112) $)))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-3085 (((-3 $ "failed") $ $) 20)) (-2822 (($) 18 T CONST)) (-2675 (((-3 $ "failed") $) 37)) (-3163 (((-112) $) 35)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2390 (((-860) $) 12) (($ (-564)) 33)) (-3434 (((-3 $ "failed") $) 39)) (-3348 (((-769)) 32 T CONST)) (-1600 (((-112) $ $) 9)) (-2361 (($) 19 T CONST)) (-2371 (($) 34 T CONST)) (-2821 (((-112) $ $) 6)) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27))) +((-1655 (*1 *1 *1 *1) (-4 *1 (-143))) (-2259 (*1 *1 *1) (-4 *1 (-143))) (-1835 (*1 *1 *1 *1) (-4 *1 (-143)))) +(-13 (-10 -8 (-15 -1835 ($ $ $)) (-15 -2259 ($ $)) (-15 -1655 ($ $ $)))) +((-2986 (((-112) $ $) NIL)) (-1603 (((-112) $) 39)) (-3037 (($ $) 55)) (-3307 (($) 26)) (-4049 (((-771)) 13)) (-1415 (($) 25)) (-3324 (($) 27)) (-2134 (((-771) $) 21)) (-1920 (($ $ $) NIL) (($) NIL T CONST)) (-3038 (($ $ $) NIL) (($) NIL T CONST)) (-1741 (((-112) $) 41)) (-4032 (($ $) 56)) (-4051 (((-921) $) 23)) (-3151 (((-1157) $) 49)) (-2104 (($ (-921)) 20)) (-3382 (((-112) $) 37)) (-4059 (((-1119) $) NIL)) (-2121 (($) 28)) (-1845 (((-112) $) 35)) (-2479 (((-862) $) 30)) (-2894 (($ (-771)) 19) (($ (-1157)) 54)) (-3900 (((-112) $ $) NIL)) (-2283 (((-112) $) 45)) (-2476 (((-112) $) 43)) (-3019 (((-112) $ $) 11)) (-2990 (((-112) $ $) 9)) (-2952 (((-112) $ $) 7)) (-3004 (((-112) $ $) 10)) (-2977 (((-112) $ $) 8))) +(((-144) (-13 (-844) (-10 -8 (-15 -2134 ((-771) $)) (-15 -2894 ($ (-771))) (-15 -2894 ($ (-1157))) (-15 -3307 ($)) (-15 -3324 ($)) (-15 -2121 ($)) (-15 -3037 ($ $)) (-15 -4032 ($ $)) (-15 -1845 ((-112) $)) (-15 -3382 ((-112) $)) (-15 -2476 ((-112) $)) (-15 -1603 ((-112) $)) (-15 -1741 ((-112) $)) (-15 -2283 ((-112) $))))) (T -144)) +((-2134 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-144)))) (-2894 (*1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-144)))) (-2894 (*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-144)))) (-3307 (*1 *1) (-5 *1 (-144))) (-3324 (*1 *1) (-5 *1 (-144))) (-2121 (*1 *1) (-5 *1 (-144))) (-3037 (*1 *1 *1) (-5 *1 (-144))) (-4032 (*1 *1 *1) (-5 *1 (-144))) (-1845 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-3382 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-2476 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-1603 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-1741 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-2283 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) +(-13 (-844) (-10 -8 (-15 -2134 ((-771) $)) (-15 -2894 ($ (-771))) (-15 -2894 ($ (-1157))) (-15 -3307 ($)) (-15 -3324 ($)) (-15 -2121 ($)) (-15 -3037 ($ $)) (-15 -4032 ($ $)) (-15 -1845 ((-112) $)) (-15 -3382 ((-112) $)) (-15 -2476 ((-112) $)) (-15 -1603 ((-112) $)) (-15 -1741 ((-112) $)) (-15 -2283 ((-112) $)))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-3174 (((-3 $ "failed") $ $) 20)) (-1811 (($) 18 T CONST)) (-3757 (((-3 $ "failed") $) 37)) (-2264 (((-112) $) 35)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-2479 (((-862) $) 12) (($ (-566)) 33)) (-2645 (((-3 $ "failed") $) 39)) (-1558 (((-771)) 32 T CONST)) (-3900 (((-112) $ $) 9)) (-2446 (($) 19 T CONST)) (-2459 (($) 34 T CONST)) (-2952 (((-112) $ $) 6)) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27))) (((-145) (-140)) (T -145)) -((-3434 (*1 *1 *1) (|partial| -4 *1 (-145)))) -(-13 (-1047) (-10 -8 (-15 -3434 ((-3 $ "failed") $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-860)) . T) ((-644 (-564)) . T) ((-644 $) . T) ((-646 $) . T) ((-724) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T)) -((-1308 ((|#1| (-687 |#1|) |#1|) 23))) -(((-146 |#1|) (-10 -7 (-15 -1308 (|#1| (-687 |#1|) |#1|))) (-172)) (T -146)) -((-1308 (*1 *2 *3 *2) (-12 (-5 *3 (-687 *2)) (-4 *2 (-172)) (-5 *1 (-146 *2))))) -(-10 -7 (-15 -1308 (|#1| (-687 |#1|) |#1|))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-3085 (((-3 $ "failed") $ $) 20)) (-2822 (($) 18 T CONST)) (-2675 (((-3 $ "failed") $) 37)) (-3163 (((-112) $) 35)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2390 (((-860) $) 12) (($ (-564)) 33)) (-3348 (((-769)) 32 T CONST)) (-1600 (((-112) $ $) 9)) (-2361 (($) 19 T CONST)) (-2371 (($) 34 T CONST)) (-2821 (((-112) $ $) 6)) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27))) +((-2645 (*1 *1 *1) (|partial| -4 *1 (-145)))) +(-13 (-1049) (-10 -8 (-15 -2645 ((-3 $ "failed") $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-616 (-566)) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 $) . T) ((-726) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) +((-3728 ((|#1| (-689 |#1|) |#1|) 23))) +(((-146 |#1|) (-10 -7 (-15 -3728 (|#1| (-689 |#1|) |#1|))) (-172)) (T -146)) +((-3728 (*1 *2 *3 *2) (-12 (-5 *3 (-689 *2)) (-4 *2 (-172)) (-5 *1 (-146 *2))))) +(-10 -7 (-15 -3728 (|#1| (-689 |#1|) |#1|))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-3174 (((-3 $ "failed") $ $) 20)) (-1811 (($) 18 T CONST)) (-3757 (((-3 $ "failed") $) 37)) (-2264 (((-112) $) 35)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-2479 (((-862) $) 12) (($ (-566)) 33)) (-1558 (((-771)) 32 T CONST)) (-3900 (((-112) $ $) 9)) (-2446 (($) 19 T CONST)) (-2459 (($) 34 T CONST)) (-2952 (((-112) $ $) 6)) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27))) (((-147) (-140)) (T -147)) NIL -(-13 (-1047)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-860)) . T) ((-644 (-564)) . T) ((-644 $) . T) ((-646 $) . T) ((-724) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T)) -((-3870 (((-2 (|:| -2817 (-769)) (|:| -2968 (-407 |#2|)) (|:| |radicand| |#2|)) (-407 |#2|) (-769)) 76)) (-2657 (((-3 (-2 (|:| |radicand| (-407 |#2|)) (|:| |deg| (-769))) "failed") |#3|) 56)) (-4267 (((-2 (|:| -2968 (-407 |#2|)) (|:| |poly| |#3|)) |#3|) 41)) (-1677 ((|#1| |#3| |#3|) 44)) (-3154 ((|#3| |#3| (-407 |#2|) (-407 |#2|)) 20)) (-2925 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| |deg| (-769))) |#3| |#3|) 53))) -(((-148 |#1| |#2| |#3|) (-10 -7 (-15 -4267 ((-2 (|:| -2968 (-407 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2657 ((-3 (-2 (|:| |radicand| (-407 |#2|)) (|:| |deg| (-769))) "failed") |#3|)) (-15 -3870 ((-2 (|:| -2817 (-769)) (|:| -2968 (-407 |#2|)) (|:| |radicand| |#2|)) (-407 |#2|) (-769))) (-15 -1677 (|#1| |#3| |#3|)) (-15 -3154 (|#3| |#3| (-407 |#2|) (-407 |#2|))) (-15 -2925 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| |deg| (-769))) |#3| |#3|))) (-1216) (-1238 |#1|) (-1238 (-407 |#2|))) (T -148)) -((-2925 (*1 *2 *3 *3) (-12 (-4 *4 (-1216)) (-4 *5 (-1238 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-407 *5)) (|:| |c2| (-407 *5)) (|:| |deg| (-769)))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1238 (-407 *5))))) (-3154 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-407 *5)) (-4 *4 (-1216)) (-4 *5 (-1238 *4)) (-5 *1 (-148 *4 *5 *2)) (-4 *2 (-1238 *3)))) (-1677 (*1 *2 *3 *3) (-12 (-4 *4 (-1238 *2)) (-4 *2 (-1216)) (-5 *1 (-148 *2 *4 *3)) (-4 *3 (-1238 (-407 *4))))) (-3870 (*1 *2 *3 *4) (-12 (-5 *3 (-407 *6)) (-4 *5 (-1216)) (-4 *6 (-1238 *5)) (-5 *2 (-2 (|:| -2817 (-769)) (|:| -2968 *3) (|:| |radicand| *6))) (-5 *1 (-148 *5 *6 *7)) (-5 *4 (-769)) (-4 *7 (-1238 *3)))) (-2657 (*1 *2 *3) (|partial| -12 (-4 *4 (-1216)) (-4 *5 (-1238 *4)) (-5 *2 (-2 (|:| |radicand| (-407 *5)) (|:| |deg| (-769)))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1238 (-407 *5))))) (-4267 (*1 *2 *3) (-12 (-4 *4 (-1216)) (-4 *5 (-1238 *4)) (-5 *2 (-2 (|:| -2968 (-407 *5)) (|:| |poly| *3))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1238 (-407 *5)))))) -(-10 -7 (-15 -4267 ((-2 (|:| -2968 (-407 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2657 ((-3 (-2 (|:| |radicand| (-407 |#2|)) (|:| |deg| (-769))) "failed") |#3|)) (-15 -3870 ((-2 (|:| -2817 (-769)) (|:| -2968 (-407 |#2|)) (|:| |radicand| |#2|)) (-407 |#2|) (-769))) (-15 -1677 (|#1| |#3| |#3|)) (-15 -3154 (|#3| |#3| (-407 |#2|) (-407 |#2|))) (-15 -2925 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| |deg| (-769))) |#3| |#3|))) -((-3267 (((-3 (-642 (-1169 |#2|)) "failed") (-642 (-1169 |#2|)) (-1169 |#2|)) 35))) -(((-149 |#1| |#2|) (-10 -7 (-15 -3267 ((-3 (-642 (-1169 |#2|)) "failed") (-642 (-1169 |#2|)) (-1169 |#2|)))) (-545) (-166 |#1|)) (T -149)) -((-3267 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-642 (-1169 *5))) (-5 *3 (-1169 *5)) (-4 *5 (-166 *4)) (-4 *4 (-545)) (-5 *1 (-149 *4 *5))))) -(-10 -7 (-15 -3267 ((-3 (-642 (-1169 |#2|)) "failed") (-642 (-1169 |#2|)) (-1169 |#2|)))) -((-3437 (($ (-1 (-112) |#2|) $) 35)) (-4067 (($ $) 42)) (-2517 (($ (-1 (-112) |#2|) $) 33) (($ |#2| $) 38)) (-3741 ((|#2| (-1 |#2| |#2| |#2|) $) 28) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 30) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40)) (-3183 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 25)) (-4094 (((-112) (-1 (-112) |#2|) $) 22)) (-4010 (((-769) (-1 (-112) |#2|) $) 18) (((-769) |#2| $) NIL)) (-3295 (((-112) (-1 (-112) |#2|) $) 21)) (-2158 (((-769) $) 12))) -(((-150 |#1| |#2|) (-10 -8 (-15 -4067 (|#1| |#1|)) (-15 -2517 (|#1| |#2| |#1|)) (-15 -3741 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3437 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2517 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3741 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3741 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3183 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4010 ((-769) |#2| |#1|)) (-15 -4010 ((-769) (-1 (-112) |#2|) |#1|)) (-15 -4094 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3295 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2158 ((-769) |#1|))) (-151 |#2|) (-1212)) (T -150)) -NIL -(-10 -8 (-15 -4067 (|#1| |#1|)) (-15 -2517 (|#1| |#2| |#1|)) (-15 -3741 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3437 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2517 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3741 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3741 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3183 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4010 ((-769) |#2| |#1|)) (-15 -4010 ((-769) (-1 (-112) |#2|) |#1|)) (-15 -4094 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3295 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2158 ((-769) |#1|))) -((-2856 (((-112) $ $) 19 (|has| |#1| (-1097)))) (-3442 (((-112) $ (-769)) 8)) (-3437 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4410)))) (-2822 (($) 7 T CONST)) (-4067 (($ $) 42 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-2517 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4410))) (($ |#1| $) 43 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3741 ((|#1| (-1 |#1| |#1| |#1|) $) 48 (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 47 (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-2018 (((-642 |#1|) $) 31 (|has| $ (-6 -4410)))) (-3769 (((-112) $ (-769)) 9)) (-3541 (((-642 |#1|) $) 30 (|has| $ (-6 -4410)))) (-2533 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-1857 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#1| |#1|) $) 36)) (-4145 (((-112) $ (-769)) 10)) (-1778 (((-1155) $) 22 (|has| |#1| (-1097)))) (-3999 (((-1117) $) 21 (|has| |#1| (-1097)))) (-3183 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 49)) (-4094 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-2478 (((-112) $ $) 14)) (-4109 (((-112) $) 11)) (-2179 (($) 12)) (-4010 (((-769) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4410))) (((-769) |#1| $) 29 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3865 (($ $) 13)) (-3003 (((-536) $) 41 (|has| |#1| (-612 (-536))))) (-2401 (($ (-642 |#1|)) 50)) (-2390 (((-860) $) 18 (|has| |#1| (-611 (-860))))) (-1600 (((-112) $ $) 23 (|has| |#1| (-1097)))) (-3295 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4410)))) (-2821 (((-112) $ $) 20 (|has| |#1| (-1097)))) (-2158 (((-769) $) 6 (|has| $ (-6 -4410))))) -(((-151 |#1|) (-140) (-1212)) (T -151)) -((-2401 (*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1212)) (-4 *1 (-151 *3)))) (-3183 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-151 *2)) (-4 *2 (-1212)))) (-3741 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4410)) (-4 *1 (-151 *2)) (-4 *2 (-1212)))) (-3741 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4410)) (-4 *1 (-151 *2)) (-4 *2 (-1212)))) (-2517 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4410)) (-4 *1 (-151 *3)) (-4 *3 (-1212)))) (-3437 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4410)) (-4 *1 (-151 *3)) (-4 *3 (-1212)))) (-3741 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1097)) (|has| *1 (-6 -4410)) (-4 *1 (-151 *2)) (-4 *2 (-1212)))) (-2517 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4410)) (-4 *1 (-151 *2)) (-4 *2 (-1212)) (-4 *2 (-1097)))) (-4067 (*1 *1 *1) (-12 (|has| *1 (-6 -4410)) (-4 *1 (-151 *2)) (-4 *2 (-1212)) (-4 *2 (-1097))))) -(-13 (-489 |t#1|) (-10 -8 (-15 -2401 ($ (-642 |t#1|))) (-15 -3183 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4410)) (PROGN (-15 -3741 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -3741 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -2517 ($ (-1 (-112) |t#1|) $)) (-15 -3437 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1097)) (PROGN (-15 -3741 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -2517 ($ |t#1| $)) (-15 -4067 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1097)) ((-611 (-860)) -2682 (|has| |#1| (-1097)) (|has| |#1| (-611 (-860)))) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-1097) |has| |#1| (-1097)) ((-1212) . T)) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-3085 (((-3 $ "failed") $ $) NIL)) (-2822 (($) NIL T CONST)) (-2675 (((-3 $ "failed") $) 114)) (-3163 (((-112) $) NIL)) (-2374 (($ |#2| (-642 (-919))) 74)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-3243 (($ (-919)) 61)) (-3677 (((-134)) 26)) (-2390 (((-860) $) 89) (($ (-564)) 57) (($ |#2|) 58)) (-3005 ((|#2| $ (-642 (-919))) 77)) (-3348 (((-769)) 23 T CONST)) (-1600 (((-112) $ $) NIL)) (-2361 (($) 51 T CONST)) (-2371 (($) 55 T CONST)) (-2821 (((-112) $ $) 37)) (-2943 (($ $ |#2|) NIL)) (-2930 (($ $) 46) (($ $ $) 44)) (-2917 (($ $ $) 42)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 48) (($ $ $) 67) (($ |#2| $) 50) (($ $ |#2|) NIL))) -(((-152 |#1| |#2| |#3|) (-13 (-1047) (-38 |#2|) (-1269 |#2|) (-10 -8 (-15 -3243 ($ (-919))) (-15 -2374 ($ |#2| (-642 (-919)))) (-15 -3005 (|#2| $ (-642 (-919)))) (-15 -2675 ((-3 $ "failed") $)))) (-919) (-363) (-991 |#1| |#2|)) (T -152)) -((-2675 (*1 *1 *1) (|partial| -12 (-5 *1 (-152 *2 *3 *4)) (-14 *2 (-919)) (-4 *3 (-363)) (-14 *4 (-991 *2 *3)))) (-3243 (*1 *1 *2) (-12 (-5 *2 (-919)) (-5 *1 (-152 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-363)) (-14 *5 (-991 *3 *4)))) (-2374 (*1 *1 *2 *3) (-12 (-5 *3 (-642 (-919))) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-919)) (-4 *2 (-363)) (-14 *5 (-991 *4 *2)))) (-3005 (*1 *2 *1 *3) (-12 (-5 *3 (-642 (-919))) (-4 *2 (-363)) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-919)) (-14 *5 (-991 *4 *2))))) -(-13 (-1047) (-38 |#2|) (-1269 |#2|) (-10 -8 (-15 -3243 ($ (-919))) (-15 -2374 ($ |#2| (-642 (-919)))) (-15 -3005 (|#2| $ (-642 (-919)))) (-15 -2675 ((-3 $ "failed") $)))) -((-2051 (((-2 (|:| |brans| (-642 (-642 (-941 (-225))))) (|:| |xValues| (-1091 (-225))) (|:| |yValues| (-1091 (-225)))) (-642 (-642 (-941 (-225)))) (-225) (-225) (-225) (-225)) 62)) (-3656 (((-2 (|:| |brans| (-642 (-642 (-941 (-225))))) (|:| |xValues| (-1091 (-225))) (|:| |yValues| (-1091 (-225)))) (-925) (-407 (-564)) (-407 (-564))) 101) (((-2 (|:| |brans| (-642 (-642 (-941 (-225))))) (|:| |xValues| (-1091 (-225))) (|:| |yValues| (-1091 (-225)))) (-925)) 102)) (-2366 (((-2 (|:| |brans| (-642 (-642 (-941 (-225))))) (|:| |xValues| (-1091 (-225))) (|:| |yValues| (-1091 (-225)))) (-642 (-642 (-941 (-225))))) 105) (((-2 (|:| |brans| (-642 (-642 (-941 (-225))))) (|:| |xValues| (-1091 (-225))) (|:| |yValues| (-1091 (-225)))) (-642 (-941 (-225)))) 104) (((-2 (|:| |brans| (-642 (-642 (-941 (-225))))) (|:| |xValues| (-1091 (-225))) (|:| |yValues| (-1091 (-225)))) (-925) (-407 (-564)) (-407 (-564))) 96) (((-2 (|:| |brans| (-642 (-642 (-941 (-225))))) (|:| |xValues| (-1091 (-225))) (|:| |yValues| (-1091 (-225)))) (-925)) 97))) -(((-153) (-10 -7 (-15 -2366 ((-2 (|:| |brans| (-642 (-642 (-941 (-225))))) (|:| |xValues| (-1091 (-225))) (|:| |yValues| (-1091 (-225)))) (-925))) (-15 -2366 ((-2 (|:| |brans| (-642 (-642 (-941 (-225))))) (|:| |xValues| (-1091 (-225))) (|:| |yValues| (-1091 (-225)))) (-925) (-407 (-564)) (-407 (-564)))) (-15 -3656 ((-2 (|:| |brans| (-642 (-642 (-941 (-225))))) (|:| |xValues| (-1091 (-225))) (|:| |yValues| (-1091 (-225)))) (-925))) (-15 -3656 ((-2 (|:| |brans| (-642 (-642 (-941 (-225))))) (|:| |xValues| (-1091 (-225))) (|:| |yValues| (-1091 (-225)))) (-925) (-407 (-564)) (-407 (-564)))) (-15 -2051 ((-2 (|:| |brans| (-642 (-642 (-941 (-225))))) (|:| |xValues| (-1091 (-225))) (|:| |yValues| (-1091 (-225)))) (-642 (-642 (-941 (-225)))) (-225) (-225) (-225) (-225))) (-15 -2366 ((-2 (|:| |brans| (-642 (-642 (-941 (-225))))) (|:| |xValues| (-1091 (-225))) (|:| |yValues| (-1091 (-225)))) (-642 (-941 (-225))))) (-15 -2366 ((-2 (|:| |brans| (-642 (-642 (-941 (-225))))) (|:| |xValues| (-1091 (-225))) (|:| |yValues| (-1091 (-225)))) (-642 (-642 (-941 (-225)))))))) (T -153)) -((-2366 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-642 (-642 (-941 (-225))))) (|:| |xValues| (-1091 (-225))) (|:| |yValues| (-1091 (-225))))) (-5 *1 (-153)) (-5 *3 (-642 (-642 (-941 (-225))))))) (-2366 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-642 (-642 (-941 (-225))))) (|:| |xValues| (-1091 (-225))) (|:| |yValues| (-1091 (-225))))) (-5 *1 (-153)) (-5 *3 (-642 (-941 (-225)))))) (-2051 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-225)) (-5 *2 (-2 (|:| |brans| (-642 (-642 (-941 *4)))) (|:| |xValues| (-1091 *4)) (|:| |yValues| (-1091 *4)))) (-5 *1 (-153)) (-5 *3 (-642 (-642 (-941 *4)))))) (-3656 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-925)) (-5 *4 (-407 (-564))) (-5 *2 (-2 (|:| |brans| (-642 (-642 (-941 (-225))))) (|:| |xValues| (-1091 (-225))) (|:| |yValues| (-1091 (-225))))) (-5 *1 (-153)))) (-3656 (*1 *2 *3) (-12 (-5 *3 (-925)) (-5 *2 (-2 (|:| |brans| (-642 (-642 (-941 (-225))))) (|:| |xValues| (-1091 (-225))) (|:| |yValues| (-1091 (-225))))) (-5 *1 (-153)))) (-2366 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-925)) (-5 *4 (-407 (-564))) (-5 *2 (-2 (|:| |brans| (-642 (-642 (-941 (-225))))) (|:| |xValues| (-1091 (-225))) (|:| |yValues| (-1091 (-225))))) (-5 *1 (-153)))) (-2366 (*1 *2 *3) (-12 (-5 *3 (-925)) (-5 *2 (-2 (|:| |brans| (-642 (-642 (-941 (-225))))) (|:| |xValues| (-1091 (-225))) (|:| |yValues| (-1091 (-225))))) (-5 *1 (-153))))) -(-10 -7 (-15 -2366 ((-2 (|:| |brans| (-642 (-642 (-941 (-225))))) (|:| |xValues| (-1091 (-225))) (|:| |yValues| (-1091 (-225)))) (-925))) (-15 -2366 ((-2 (|:| |brans| (-642 (-642 (-941 (-225))))) (|:| |xValues| (-1091 (-225))) (|:| |yValues| (-1091 (-225)))) (-925) (-407 (-564)) (-407 (-564)))) (-15 -3656 ((-2 (|:| |brans| (-642 (-642 (-941 (-225))))) (|:| |xValues| (-1091 (-225))) (|:| |yValues| (-1091 (-225)))) (-925))) (-15 -3656 ((-2 (|:| |brans| (-642 (-642 (-941 (-225))))) (|:| |xValues| (-1091 (-225))) (|:| |yValues| (-1091 (-225)))) (-925) (-407 (-564)) (-407 (-564)))) (-15 -2051 ((-2 (|:| |brans| (-642 (-642 (-941 (-225))))) (|:| |xValues| (-1091 (-225))) (|:| |yValues| (-1091 (-225)))) (-642 (-642 (-941 (-225)))) (-225) (-225) (-225) (-225))) (-15 -2366 ((-2 (|:| |brans| (-642 (-642 (-941 (-225))))) (|:| |xValues| (-1091 (-225))) (|:| |yValues| (-1091 (-225)))) (-642 (-941 (-225))))) (-15 -2366 ((-2 (|:| |brans| (-642 (-642 (-941 (-225))))) (|:| |xValues| (-1091 (-225))) (|:| |yValues| (-1091 (-225)))) (-642 (-642 (-941 (-225))))))) -((-2856 (((-112) $ $) NIL)) (-1778 (((-1155) $) NIL)) (-1352 (((-642 (-1132)) $) 20)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) 27) (($ (-1178)) NIL) (((-1178) $) NIL)) (-2502 (((-1132) $) 9)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-154) (-13 (-1080) (-10 -8 (-15 -1352 ((-642 (-1132)) $)) (-15 -2502 ((-1132) $))))) (T -154)) -((-1352 (*1 *2 *1) (-12 (-5 *2 (-642 (-1132))) (-5 *1 (-154)))) (-2502 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-154))))) -(-13 (-1080) (-10 -8 (-15 -1352 ((-642 (-1132)) $)) (-15 -2502 ((-1132) $)))) -((-2701 (((-642 (-169 |#2|)) |#1| |#2|) 50))) -(((-155 |#1| |#2|) (-10 -7 (-15 -2701 ((-642 (-169 |#2|)) |#1| |#2|))) (-1238 (-169 (-564))) (-13 (-363) (-846))) (T -155)) -((-2701 (*1 *2 *3 *4) (-12 (-5 *2 (-642 (-169 *4))) (-5 *1 (-155 *3 *4)) (-4 *3 (-1238 (-169 (-564)))) (-4 *4 (-13 (-363) (-846)))))) -(-10 -7 (-15 -2701 ((-642 (-169 |#2|)) |#1| |#2|))) -((-2856 (((-112) $ $) NIL)) (-3199 (((-1211) $) 12)) (-3187 (((-1132) $) 9)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) 19) (($ (-1178)) NIL) (((-1178) $) NIL)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-156) (-13 (-1080) (-10 -8 (-15 -3187 ((-1132) $)) (-15 -3199 ((-1211) $))))) (T -156)) -((-3187 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-156)))) (-3199 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-156))))) -(-13 (-1080) (-10 -8 (-15 -3187 ((-1132) $)) (-15 -3199 ((-1211) $)))) -((-2856 (((-112) $ $) NIL)) (-2305 (($) 41)) (-3266 (($) 40)) (-1697 (((-919)) 46)) (-1778 (((-1155) $) NIL)) (-4065 (((-564) $) 44)) (-3999 (((-1117) $) NIL)) (-2071 (($) 42)) (-3818 (($ (-564)) 47)) (-2390 (((-860) $) 53)) (-3153 (($) 43)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) 38)) (-2917 (($ $ $) 35)) (* (($ (-919) $) 45) (($ (-225) $) 11))) -(((-157) (-13 (-25) (-10 -8 (-15 * ($ (-919) $)) (-15 * ($ (-225) $)) (-15 -2917 ($ $ $)) (-15 -3266 ($)) (-15 -2305 ($)) (-15 -2071 ($)) (-15 -3153 ($)) (-15 -4065 ((-564) $)) (-15 -1697 ((-919))) (-15 -3818 ($ (-564)))))) (T -157)) -((-2917 (*1 *1 *1 *1) (-5 *1 (-157))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-919)) (-5 *1 (-157)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-157)))) (-3266 (*1 *1) (-5 *1 (-157))) (-2305 (*1 *1) (-5 *1 (-157))) (-2071 (*1 *1) (-5 *1 (-157))) (-3153 (*1 *1) (-5 *1 (-157))) (-4065 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-157)))) (-1697 (*1 *2) (-12 (-5 *2 (-919)) (-5 *1 (-157)))) (-3818 (*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-157))))) -(-13 (-25) (-10 -8 (-15 * ($ (-919) $)) (-15 * ($ (-225) $)) (-15 -2917 ($ $ $)) (-15 -3266 ($)) (-15 -2305 ($)) (-15 -2071 ($)) (-15 -3153 ($)) (-15 -4065 ((-564) $)) (-15 -1697 ((-919))) (-15 -3818 ($ (-564))))) -((-3581 ((|#2| |#2| (-1089 |#2|)) 98) ((|#2| |#2| (-1173)) 75)) (-3506 ((|#2| |#2| (-1089 |#2|)) 97) ((|#2| |#2| (-1173)) 74)) (-2641 ((|#2| |#2| |#2|) 25)) (-3898 (((-114) (-114)) 111)) (-2183 ((|#2| (-642 |#2|)) 130)) (-2654 ((|#2| (-642 |#2|)) 152)) (-2625 ((|#2| (-642 |#2|)) 138)) (-3104 ((|#2| |#2|) 136)) (-3315 ((|#2| (-642 |#2|)) 124)) (-2655 ((|#2| (-642 |#2|)) 125)) (-4330 ((|#2| (-642 |#2|)) 150)) (-1317 ((|#2| |#2| (-1173)) 63) ((|#2| |#2|) 62)) (-1420 ((|#2| |#2|) 21)) (-4271 ((|#2| |#2| |#2|) 24)) (-4318 (((-112) (-114)) 55)) (** ((|#2| |#2| |#2|) 46))) -(((-158 |#1| |#2|) (-10 -7 (-15 -4318 ((-112) (-114))) (-15 -3898 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -4271 (|#2| |#2| |#2|)) (-15 -2641 (|#2| |#2| |#2|)) (-15 -1420 (|#2| |#2|)) (-15 -1317 (|#2| |#2|)) (-15 -1317 (|#2| |#2| (-1173))) (-15 -3581 (|#2| |#2| (-1173))) (-15 -3581 (|#2| |#2| (-1089 |#2|))) (-15 -3506 (|#2| |#2| (-1173))) (-15 -3506 (|#2| |#2| (-1089 |#2|))) (-15 -3104 (|#2| |#2|)) (-15 -4330 (|#2| (-642 |#2|))) (-15 -2625 (|#2| (-642 |#2|))) (-15 -2654 (|#2| (-642 |#2|))) (-15 -3315 (|#2| (-642 |#2|))) (-15 -2655 (|#2| (-642 |#2|))) (-15 -2183 (|#2| (-642 |#2|)))) (-556) (-430 |#1|)) (T -158)) -((-2183 (*1 *2 *3) (-12 (-5 *3 (-642 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-556)))) (-2655 (*1 *2 *3) (-12 (-5 *3 (-642 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-556)))) (-3315 (*1 *2 *3) (-12 (-5 *3 (-642 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-556)))) (-2654 (*1 *2 *3) (-12 (-5 *3 (-642 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-556)))) (-2625 (*1 *2 *3) (-12 (-5 *3 (-642 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-556)))) (-4330 (*1 *2 *3) (-12 (-5 *3 (-642 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-556)))) (-3104 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) (-3506 (*1 *2 *2 *3) (-12 (-5 *3 (-1089 *2)) (-4 *2 (-430 *4)) (-4 *4 (-556)) (-5 *1 (-158 *4 *2)))) (-3506 (*1 *2 *2 *3) (-12 (-5 *3 (-1173)) (-4 *4 (-556)) (-5 *1 (-158 *4 *2)) (-4 *2 (-430 *4)))) (-3581 (*1 *2 *2 *3) (-12 (-5 *3 (-1089 *2)) (-4 *2 (-430 *4)) (-4 *4 (-556)) (-5 *1 (-158 *4 *2)))) (-3581 (*1 *2 *2 *3) (-12 (-5 *3 (-1173)) (-4 *4 (-556)) (-5 *1 (-158 *4 *2)) (-4 *2 (-430 *4)))) (-1317 (*1 *2 *2 *3) (-12 (-5 *3 (-1173)) (-4 *4 (-556)) (-5 *1 (-158 *4 *2)) (-4 *2 (-430 *4)))) (-1317 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) (-1420 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) (-2641 (*1 *2 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) (-4271 (*1 *2 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) (-3898 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-556)) (-5 *1 (-158 *3 *4)) (-4 *4 (-430 *3)))) (-4318 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-556)) (-5 *2 (-112)) (-5 *1 (-158 *4 *5)) (-4 *5 (-430 *4))))) -(-10 -7 (-15 -4318 ((-112) (-114))) (-15 -3898 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -4271 (|#2| |#2| |#2|)) (-15 -2641 (|#2| |#2| |#2|)) (-15 -1420 (|#2| |#2|)) (-15 -1317 (|#2| |#2|)) (-15 -1317 (|#2| |#2| (-1173))) (-15 -3581 (|#2| |#2| (-1173))) (-15 -3581 (|#2| |#2| (-1089 |#2|))) (-15 -3506 (|#2| |#2| (-1173))) (-15 -3506 (|#2| |#2| (-1089 |#2|))) (-15 -3104 (|#2| |#2|)) (-15 -4330 (|#2| (-642 |#2|))) (-15 -2625 (|#2| (-642 |#2|))) (-15 -2654 (|#2| (-642 |#2|))) (-15 -3315 (|#2| (-642 |#2|))) (-15 -2655 (|#2| (-642 |#2|))) (-15 -2183 (|#2| (-642 |#2|)))) -((-1586 ((|#1| |#1| |#1|) 67)) (-2089 ((|#1| |#1| |#1|) 64)) (-2641 ((|#1| |#1| |#1|) 58)) (-2684 ((|#1| |#1|) 45)) (-2538 ((|#1| |#1| (-642 |#1|)) 55)) (-1420 ((|#1| |#1|) 48)) (-4271 ((|#1| |#1| |#1|) 51))) -(((-159 |#1|) (-10 -7 (-15 -4271 (|#1| |#1| |#1|)) (-15 -1420 (|#1| |#1|)) (-15 -2538 (|#1| |#1| (-642 |#1|))) (-15 -2684 (|#1| |#1|)) (-15 -2641 (|#1| |#1| |#1|)) (-15 -2089 (|#1| |#1| |#1|)) (-15 -1586 (|#1| |#1| |#1|))) (-545)) (T -159)) -((-1586 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) (-2089 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) (-2641 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) (-2684 (*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) (-2538 (*1 *2 *2 *3) (-12 (-5 *3 (-642 *2)) (-4 *2 (-545)) (-5 *1 (-159 *2)))) (-1420 (*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) (-4271 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545))))) -(-10 -7 (-15 -4271 (|#1| |#1| |#1|)) (-15 -1420 (|#1| |#1|)) (-15 -2538 (|#1| |#1| (-642 |#1|))) (-15 -2684 (|#1| |#1|)) (-15 -2641 (|#1| |#1| |#1|)) (-15 -2089 (|#1| |#1| |#1|)) (-15 -1586 (|#1| |#1| |#1|))) -((-3581 (($ $ (-1173)) 12) (($ $ (-1089 $)) 11)) (-3506 (($ $ (-1173)) 10) (($ $ (-1089 $)) 9)) (-2641 (($ $ $) 8)) (-1317 (($ $) 14) (($ $ (-1173)) 13)) (-1420 (($ $) 7)) (-4271 (($ $ $) 6))) +(-13 (-1049)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-616 (-566)) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 $) . T) ((-726) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) +((-1492 (((-2 (|:| -3631 (-771)) (|:| -3103 (-409 |#2|)) (|:| |radicand| |#2|)) (-409 |#2|) (-771)) 76)) (-1788 (((-3 (-2 (|:| |radicand| (-409 |#2|)) (|:| |deg| (-771))) "failed") |#3|) 56)) (-4064 (((-2 (|:| -3103 (-409 |#2|)) (|:| |poly| |#3|)) |#3|) 41)) (-4357 ((|#1| |#3| |#3|) 44)) (-3297 ((|#3| |#3| (-409 |#2|) (-409 |#2|)) 20)) (-2643 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-409 |#2|)) (|:| |c2| (-409 |#2|)) (|:| |deg| (-771))) |#3| |#3|) 53))) +(((-148 |#1| |#2| |#3|) (-10 -7 (-15 -4064 ((-2 (|:| -3103 (-409 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1788 ((-3 (-2 (|:| |radicand| (-409 |#2|)) (|:| |deg| (-771))) "failed") |#3|)) (-15 -1492 ((-2 (|:| -3631 (-771)) (|:| -3103 (-409 |#2|)) (|:| |radicand| |#2|)) (-409 |#2|) (-771))) (-15 -4357 (|#1| |#3| |#3|)) (-15 -3297 (|#3| |#3| (-409 |#2|) (-409 |#2|))) (-15 -2643 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-409 |#2|)) (|:| |c2| (-409 |#2|)) (|:| |deg| (-771))) |#3| |#3|))) (-1218) (-1240 |#1|) (-1240 (-409 |#2|))) (T -148)) +((-2643 (*1 *2 *3 *3) (-12 (-4 *4 (-1218)) (-4 *5 (-1240 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-409 *5)) (|:| |c2| (-409 *5)) (|:| |deg| (-771)))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1240 (-409 *5))))) (-3297 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-409 *5)) (-4 *4 (-1218)) (-4 *5 (-1240 *4)) (-5 *1 (-148 *4 *5 *2)) (-4 *2 (-1240 *3)))) (-4357 (*1 *2 *3 *3) (-12 (-4 *4 (-1240 *2)) (-4 *2 (-1218)) (-5 *1 (-148 *2 *4 *3)) (-4 *3 (-1240 (-409 *4))))) (-1492 (*1 *2 *3 *4) (-12 (-5 *3 (-409 *6)) (-4 *5 (-1218)) (-4 *6 (-1240 *5)) (-5 *2 (-2 (|:| -3631 (-771)) (|:| -3103 *3) (|:| |radicand| *6))) (-5 *1 (-148 *5 *6 *7)) (-5 *4 (-771)) (-4 *7 (-1240 *3)))) (-1788 (*1 *2 *3) (|partial| -12 (-4 *4 (-1218)) (-4 *5 (-1240 *4)) (-5 *2 (-2 (|:| |radicand| (-409 *5)) (|:| |deg| (-771)))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1240 (-409 *5))))) (-4064 (*1 *2 *3) (-12 (-4 *4 (-1218)) (-4 *5 (-1240 *4)) (-5 *2 (-2 (|:| -3103 (-409 *5)) (|:| |poly| *3))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1240 (-409 *5)))))) +(-10 -7 (-15 -4064 ((-2 (|:| -3103 (-409 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1788 ((-3 (-2 (|:| |radicand| (-409 |#2|)) (|:| |deg| (-771))) "failed") |#3|)) (-15 -1492 ((-2 (|:| -3631 (-771)) (|:| -3103 (-409 |#2|)) (|:| |radicand| |#2|)) (-409 |#2|) (-771))) (-15 -4357 (|#1| |#3| |#3|)) (-15 -3297 (|#3| |#3| (-409 |#2|) (-409 |#2|))) (-15 -2643 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-409 |#2|)) (|:| |c2| (-409 |#2|)) (|:| |deg| (-771))) |#3| |#3|))) +((-4262 (((-3 (-644 (-1171 |#2|)) "failed") (-644 (-1171 |#2|)) (-1171 |#2|)) 35))) +(((-149 |#1| |#2|) (-10 -7 (-15 -4262 ((-3 (-644 (-1171 |#2|)) "failed") (-644 (-1171 |#2|)) (-1171 |#2|)))) (-547) (-166 |#1|)) (T -149)) +((-4262 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-644 (-1171 *5))) (-5 *3 (-1171 *5)) (-4 *5 (-166 *4)) (-4 *4 (-547)) (-5 *1 (-149 *4 *5))))) +(-10 -7 (-15 -4262 ((-3 (-644 (-1171 |#2|)) "failed") (-644 (-1171 |#2|)) (-1171 |#2|)))) +((-3543 (($ (-1 (-112) |#2|) $) 35)) (-4111 (($ $) 42)) (-2628 (($ (-1 (-112) |#2|) $) 33) (($ |#2| $) 38)) (-1838 ((|#2| (-1 |#2| |#2| |#2|) $) 28) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 30) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40)) (-2688 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 25)) (-3966 (((-112) (-1 (-112) |#2|) $) 22)) (-4068 (((-771) (-1 (-112) |#2|) $) 18) (((-771) |#2| $) NIL)) (-3667 (((-112) (-1 (-112) |#2|) $) 21)) (-3002 (((-771) $) 12))) +(((-150 |#1| |#2|) (-10 -8 (-15 -4111 (|#1| |#1|)) (-15 -2628 (|#1| |#2| |#1|)) (-15 -1838 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3543 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2628 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1838 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1838 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2688 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4068 ((-771) |#2| |#1|)) (-15 -4068 ((-771) (-1 (-112) |#2|) |#1|)) (-15 -3966 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3667 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3002 ((-771) |#1|))) (-151 |#2|) (-1214)) (T -150)) +NIL +(-10 -8 (-15 -4111 (|#1| |#1|)) (-15 -2628 (|#1| |#2| |#1|)) (-15 -1838 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3543 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2628 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1838 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1838 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2688 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4068 ((-771) |#2| |#1|)) (-15 -4068 ((-771) (-1 (-112) |#2|) |#1|)) (-15 -3966 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3667 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3002 ((-771) |#1|))) +((-2986 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-1453 (((-112) $ (-771)) 8)) (-3543 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4417)))) (-1811 (($) 7 T CONST)) (-4111 (($ $) 42 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-2628 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4417))) (($ |#1| $) 43 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-1838 ((|#1| (-1 |#1| |#1| |#1|) $) 48 (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 47 (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-3872 (((-644 |#1|) $) 31 (|has| $ (-6 -4417)))) (-2756 (((-112) $ (-771)) 9)) (-4227 (((-644 |#1|) $) 30 (|has| $ (-6 -4417)))) (-1688 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-3708 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#1| |#1|) $) 36)) (-4106 (((-112) $ (-771)) 10)) (-3151 (((-1157) $) 22 (|has| |#1| (-1099)))) (-4059 (((-1119) $) 21 (|has| |#1| (-1099)))) (-2688 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 49)) (-3966 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1844 (((-112) $ $) 14)) (-2788 (((-112) $) 11)) (-1737 (($) 12)) (-4068 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4417))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-3924 (($ $) 13)) (-3136 (((-538) $) 41 (|has| |#1| (-614 (-538))))) (-2489 (($ (-644 |#1|)) 50)) (-2479 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-3900 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-3667 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4417)))) (-2952 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3002 (((-771) $) 6 (|has| $ (-6 -4417))))) +(((-151 |#1|) (-140) (-1214)) (T -151)) +((-2489 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1214)) (-4 *1 (-151 *3)))) (-2688 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-151 *2)) (-4 *2 (-1214)))) (-1838 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4417)) (-4 *1 (-151 *2)) (-4 *2 (-1214)))) (-1838 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4417)) (-4 *1 (-151 *2)) (-4 *2 (-1214)))) (-2628 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4417)) (-4 *1 (-151 *3)) (-4 *3 (-1214)))) (-3543 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4417)) (-4 *1 (-151 *3)) (-4 *3 (-1214)))) (-1838 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1099)) (|has| *1 (-6 -4417)) (-4 *1 (-151 *2)) (-4 *2 (-1214)))) (-2628 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4417)) (-4 *1 (-151 *2)) (-4 *2 (-1214)) (-4 *2 (-1099)))) (-4111 (*1 *1 *1) (-12 (|has| *1 (-6 -4417)) (-4 *1 (-151 *2)) (-4 *2 (-1214)) (-4 *2 (-1099))))) +(-13 (-491 |t#1|) (-10 -8 (-15 -2489 ($ (-644 |t#1|))) (-15 -2688 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4417)) (PROGN (-15 -1838 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -1838 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -2628 ($ (-1 (-112) |t#1|) $)) (-15 -3543 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1099)) (PROGN (-15 -1838 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -2628 ($ |t#1| $)) (-15 -4111 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-614 (-538))) (-6 (-614 (-538))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2809 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1099) |has| |#1| (-1099)) ((-1214) . T)) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-1811 (($) NIL T CONST)) (-3757 (((-3 $ "failed") $) 114)) (-2264 (((-112) $) NIL)) (-2463 (($ |#2| (-644 (-921))) 74)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-3374 (($ (-921)) 61)) (-3944 (((-134)) 26)) (-2479 (((-862) $) 89) (($ (-566)) 57) (($ |#2|) 58)) (-3025 ((|#2| $ (-644 (-921))) 77)) (-1558 (((-771)) 23 T CONST)) (-3900 (((-112) $ $) NIL)) (-2446 (($) 51 T CONST)) (-2459 (($) 55 T CONST)) (-2952 (((-112) $ $) 37)) (-3077 (($ $ |#2|) NIL)) (-3065 (($ $) 46) (($ $ $) 44)) (-3052 (($ $ $) 42)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 48) (($ $ $) 67) (($ |#2| $) 50) (($ $ |#2|) NIL))) +(((-152 |#1| |#2| |#3|) (-13 (-1049) (-38 |#2|) (-1271 |#2|) (-10 -8 (-15 -3374 ($ (-921))) (-15 -2463 ($ |#2| (-644 (-921)))) (-15 -3025 (|#2| $ (-644 (-921)))) (-15 -3757 ((-3 $ "failed") $)))) (-921) (-365) (-993 |#1| |#2|)) (T -152)) +((-3757 (*1 *1 *1) (|partial| -12 (-5 *1 (-152 *2 *3 *4)) (-14 *2 (-921)) (-4 *3 (-365)) (-14 *4 (-993 *2 *3)))) (-3374 (*1 *1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-152 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-365)) (-14 *5 (-993 *3 *4)))) (-2463 (*1 *1 *2 *3) (-12 (-5 *3 (-644 (-921))) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-921)) (-4 *2 (-365)) (-14 *5 (-993 *4 *2)))) (-3025 (*1 *2 *1 *3) (-12 (-5 *3 (-644 (-921))) (-4 *2 (-365)) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-921)) (-14 *5 (-993 *4 *2))))) +(-13 (-1049) (-38 |#2|) (-1271 |#2|) (-10 -8 (-15 -3374 ($ (-921))) (-15 -2463 ($ |#2| (-644 (-921)))) (-15 -3025 (|#2| $ (-644 (-921)))) (-15 -3757 ((-3 $ "failed") $)))) +((-3871 (((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-644 (-644 (-943 (-225)))) (-225) (-225) (-225) (-225)) 62)) (-1308 (((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-927) (-409 (-566)) (-409 (-566))) 101) (((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-927)) 102)) (-3934 (((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-644 (-644 (-943 (-225))))) 105) (((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-644 (-943 (-225)))) 104) (((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-927) (-409 (-566)) (-409 (-566))) 96) (((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-927)) 97))) +(((-153) (-10 -7 (-15 -3934 ((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-927))) (-15 -3934 ((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-927) (-409 (-566)) (-409 (-566)))) (-15 -1308 ((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-927))) (-15 -1308 ((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-927) (-409 (-566)) (-409 (-566)))) (-15 -3871 ((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-644 (-644 (-943 (-225)))) (-225) (-225) (-225) (-225))) (-15 -3934 ((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-644 (-943 (-225))))) (-15 -3934 ((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-644 (-644 (-943 (-225)))))))) (T -153)) +((-3934 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225))))) (-5 *1 (-153)) (-5 *3 (-644 (-644 (-943 (-225))))))) (-3934 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225))))) (-5 *1 (-153)) (-5 *3 (-644 (-943 (-225)))))) (-3871 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-225)) (-5 *2 (-2 (|:| |brans| (-644 (-644 (-943 *4)))) (|:| |xValues| (-1093 *4)) (|:| |yValues| (-1093 *4)))) (-5 *1 (-153)) (-5 *3 (-644 (-644 (-943 *4)))))) (-1308 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-927)) (-5 *4 (-409 (-566))) (-5 *2 (-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225))))) (-5 *1 (-153)))) (-1308 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225))))) (-5 *1 (-153)))) (-3934 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-927)) (-5 *4 (-409 (-566))) (-5 *2 (-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225))))) (-5 *1 (-153)))) (-3934 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225))))) (-5 *1 (-153))))) +(-10 -7 (-15 -3934 ((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-927))) (-15 -3934 ((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-927) (-409 (-566)) (-409 (-566)))) (-15 -1308 ((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-927))) (-15 -1308 ((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-927) (-409 (-566)) (-409 (-566)))) (-15 -3871 ((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-644 (-644 (-943 (-225)))) (-225) (-225) (-225) (-225))) (-15 -3934 ((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-644 (-943 (-225))))) (-15 -3934 ((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-644 (-644 (-943 (-225))))))) +((-2986 (((-112) $ $) NIL)) (-3151 (((-1157) $) NIL)) (-1348 (((-644 (-1134)) $) 20)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) 27) (($ (-1180)) NIL) (((-1180) $) NIL)) (-2610 (((-1134) $) 9)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-154) (-13 (-1082) (-10 -8 (-15 -1348 ((-644 (-1134)) $)) (-15 -2610 ((-1134) $))))) (T -154)) +((-1348 (*1 *2 *1) (-12 (-5 *2 (-644 (-1134))) (-5 *1 (-154)))) (-2610 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-154))))) +(-13 (-1082) (-10 -8 (-15 -1348 ((-644 (-1134)) $)) (-15 -2610 ((-1134) $)))) +((-3320 (((-644 (-169 |#2|)) |#1| |#2|) 50))) +(((-155 |#1| |#2|) (-10 -7 (-15 -3320 ((-644 (-169 |#2|)) |#1| |#2|))) (-1240 (-169 (-566))) (-13 (-365) (-848))) (T -155)) +((-3320 (*1 *2 *3 *4) (-12 (-5 *2 (-644 (-169 *4))) (-5 *1 (-155 *3 *4)) (-4 *3 (-1240 (-169 (-566)))) (-4 *4 (-13 (-365) (-848)))))) +(-10 -7 (-15 -3320 ((-644 (-169 |#2|)) |#1| |#2|))) +((-2986 (((-112) $ $) NIL)) (-3331 (((-1213) $) 12)) (-3319 (((-1134) $) 9)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) 19) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-156) (-13 (-1082) (-10 -8 (-15 -3319 ((-1134) $)) (-15 -3331 ((-1213) $))))) (T -156)) +((-3319 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-156)))) (-3331 (*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-156))))) +(-13 (-1082) (-10 -8 (-15 -3319 ((-1134) $)) (-15 -3331 ((-1213) $)))) +((-2986 (((-112) $ $) NIL)) (-3699 (($) 41)) (-3664 (($) 40)) (-1512 (((-921)) 46)) (-3151 (((-1157) $) NIL)) (-2059 (((-566) $) 44)) (-4059 (((-1119) $) NIL)) (-2641 (($) 42)) (-3100 (($ (-566)) 47)) (-2479 (((-862) $) 53)) (-2043 (($) 43)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 38)) (-3052 (($ $ $) 35)) (* (($ (-921) $) 45) (($ (-225) $) 11))) +(((-157) (-13 (-25) (-10 -8 (-15 * ($ (-921) $)) (-15 * ($ (-225) $)) (-15 -3052 ($ $ $)) (-15 -3664 ($)) (-15 -3699 ($)) (-15 -2641 ($)) (-15 -2043 ($)) (-15 -2059 ((-566) $)) (-15 -1512 ((-921))) (-15 -3100 ($ (-566)))))) (T -157)) +((-3052 (*1 *1 *1 *1) (-5 *1 (-157))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-921)) (-5 *1 (-157)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-157)))) (-3664 (*1 *1) (-5 *1 (-157))) (-3699 (*1 *1) (-5 *1 (-157))) (-2641 (*1 *1) (-5 *1 (-157))) (-2043 (*1 *1) (-5 *1 (-157))) (-2059 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-157)))) (-1512 (*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-157)))) (-3100 (*1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-157))))) +(-13 (-25) (-10 -8 (-15 * ($ (-921) $)) (-15 * ($ (-225) $)) (-15 -3052 ($ $ $)) (-15 -3664 ($)) (-15 -3699 ($)) (-15 -2641 ($)) (-15 -2043 ($)) (-15 -2059 ((-566) $)) (-15 -1512 ((-921))) (-15 -3100 ($ (-566))))) +((-2958 ((|#2| |#2| (-1091 |#2|)) 98) ((|#2| |#2| (-1175)) 75)) (-1353 ((|#2| |#2| (-1091 |#2|)) 97) ((|#2| |#2| (-1175)) 74)) (-1655 ((|#2| |#2| |#2|) 25)) (-4272 (((-114) (-114)) 111)) (-4031 ((|#2| (-644 |#2|)) 130)) (-3623 ((|#2| (-644 |#2|)) 152)) (-2878 ((|#2| (-644 |#2|)) 138)) (-1539 ((|#2| |#2|) 136)) (-1660 ((|#2| (-644 |#2|)) 124)) (-2054 ((|#2| (-644 |#2|)) 125)) (-4130 ((|#2| (-644 |#2|)) 150)) (-3789 ((|#2| |#2| (-1175)) 63) ((|#2| |#2|) 62)) (-2259 ((|#2| |#2|) 21)) (-1835 ((|#2| |#2| |#2|) 24)) (-1540 (((-112) (-114)) 55)) (** ((|#2| |#2| |#2|) 46))) +(((-158 |#1| |#2|) (-10 -7 (-15 -1540 ((-112) (-114))) (-15 -4272 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -1835 (|#2| |#2| |#2|)) (-15 -1655 (|#2| |#2| |#2|)) (-15 -2259 (|#2| |#2|)) (-15 -3789 (|#2| |#2|)) (-15 -3789 (|#2| |#2| (-1175))) (-15 -2958 (|#2| |#2| (-1175))) (-15 -2958 (|#2| |#2| (-1091 |#2|))) (-15 -1353 (|#2| |#2| (-1175))) (-15 -1353 (|#2| |#2| (-1091 |#2|))) (-15 -1539 (|#2| |#2|)) (-15 -4130 (|#2| (-644 |#2|))) (-15 -2878 (|#2| (-644 |#2|))) (-15 -3623 (|#2| (-644 |#2|))) (-15 -1660 (|#2| (-644 |#2|))) (-15 -2054 (|#2| (-644 |#2|))) (-15 -4031 (|#2| (-644 |#2|)))) (-558) (-432 |#1|)) (T -158)) +((-4031 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-432 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-558)))) (-2054 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-432 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-558)))) (-1660 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-432 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-558)))) (-3623 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-432 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-558)))) (-2878 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-432 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-558)))) (-4130 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-432 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-558)))) (-1539 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-158 *3 *2)) (-4 *2 (-432 *3)))) (-1353 (*1 *2 *2 *3) (-12 (-5 *3 (-1091 *2)) (-4 *2 (-432 *4)) (-4 *4 (-558)) (-5 *1 (-158 *4 *2)))) (-1353 (*1 *2 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-558)) (-5 *1 (-158 *4 *2)) (-4 *2 (-432 *4)))) (-2958 (*1 *2 *2 *3) (-12 (-5 *3 (-1091 *2)) (-4 *2 (-432 *4)) (-4 *4 (-558)) (-5 *1 (-158 *4 *2)))) (-2958 (*1 *2 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-558)) (-5 *1 (-158 *4 *2)) (-4 *2 (-432 *4)))) (-3789 (*1 *2 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-558)) (-5 *1 (-158 *4 *2)) (-4 *2 (-432 *4)))) (-3789 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-158 *3 *2)) (-4 *2 (-432 *3)))) (-2259 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-158 *3 *2)) (-4 *2 (-432 *3)))) (-1655 (*1 *2 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-158 *3 *2)) (-4 *2 (-432 *3)))) (-1835 (*1 *2 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-158 *3 *2)) (-4 *2 (-432 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-158 *3 *2)) (-4 *2 (-432 *3)))) (-4272 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-558)) (-5 *1 (-158 *3 *4)) (-4 *4 (-432 *3)))) (-1540 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-558)) (-5 *2 (-112)) (-5 *1 (-158 *4 *5)) (-4 *5 (-432 *4))))) +(-10 -7 (-15 -1540 ((-112) (-114))) (-15 -4272 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -1835 (|#2| |#2| |#2|)) (-15 -1655 (|#2| |#2| |#2|)) (-15 -2259 (|#2| |#2|)) (-15 -3789 (|#2| |#2|)) (-15 -3789 (|#2| |#2| (-1175))) (-15 -2958 (|#2| |#2| (-1175))) (-15 -2958 (|#2| |#2| (-1091 |#2|))) (-15 -1353 (|#2| |#2| (-1175))) (-15 -1353 (|#2| |#2| (-1091 |#2|))) (-15 -1539 (|#2| |#2|)) (-15 -4130 (|#2| (-644 |#2|))) (-15 -2878 (|#2| (-644 |#2|))) (-15 -3623 (|#2| (-644 |#2|))) (-15 -1660 (|#2| (-644 |#2|))) (-15 -2054 (|#2| (-644 |#2|))) (-15 -4031 (|#2| (-644 |#2|)))) +((-2833 ((|#1| |#1| |#1|) 67)) (-2711 ((|#1| |#1| |#1|) 64)) (-1655 ((|#1| |#1| |#1|) 58)) (-3632 ((|#1| |#1|) 45)) (-1421 ((|#1| |#1| (-644 |#1|)) 55)) (-2259 ((|#1| |#1|) 48)) (-1835 ((|#1| |#1| |#1|) 51))) +(((-159 |#1|) (-10 -7 (-15 -1835 (|#1| |#1| |#1|)) (-15 -2259 (|#1| |#1|)) (-15 -1421 (|#1| |#1| (-644 |#1|))) (-15 -3632 (|#1| |#1|)) (-15 -1655 (|#1| |#1| |#1|)) (-15 -2711 (|#1| |#1| |#1|)) (-15 -2833 (|#1| |#1| |#1|))) (-547)) (T -159)) +((-2833 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-547)))) (-2711 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-547)))) (-1655 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-547)))) (-3632 (*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-547)))) (-1421 (*1 *2 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-547)) (-5 *1 (-159 *2)))) (-2259 (*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-547)))) (-1835 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-547))))) +(-10 -7 (-15 -1835 (|#1| |#1| |#1|)) (-15 -2259 (|#1| |#1|)) (-15 -1421 (|#1| |#1| (-644 |#1|))) (-15 -3632 (|#1| |#1|)) (-15 -1655 (|#1| |#1| |#1|)) (-15 -2711 (|#1| |#1| |#1|)) (-15 -2833 (|#1| |#1| |#1|))) +((-2958 (($ $ (-1175)) 12) (($ $ (-1091 $)) 11)) (-1353 (($ $ (-1175)) 10) (($ $ (-1091 $)) 9)) (-1655 (($ $ $) 8)) (-3789 (($ $) 14) (($ $ (-1175)) 13)) (-2259 (($ $) 7)) (-1835 (($ $ $) 6))) (((-160) (-140)) (T -160)) -((-1317 (*1 *1 *1) (-4 *1 (-160))) (-1317 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1173)))) (-3581 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1173)))) (-3581 (*1 *1 *1 *2) (-12 (-5 *2 (-1089 *1)) (-4 *1 (-160)))) (-3506 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1173)))) (-3506 (*1 *1 *1 *2) (-12 (-5 *2 (-1089 *1)) (-4 *1 (-160))))) -(-13 (-143) (-10 -8 (-15 -1317 ($ $)) (-15 -1317 ($ $ (-1173))) (-15 -3581 ($ $ (-1173))) (-15 -3581 ($ $ (-1089 $))) (-15 -3506 ($ $ (-1173))) (-15 -3506 ($ $ (-1089 $))))) +((-3789 (*1 *1 *1) (-4 *1 (-160))) (-3789 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1175)))) (-2958 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1175)))) (-2958 (*1 *1 *1 *2) (-12 (-5 *2 (-1091 *1)) (-4 *1 (-160)))) (-1353 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1175)))) (-1353 (*1 *1 *1 *2) (-12 (-5 *2 (-1091 *1)) (-4 *1 (-160))))) +(-13 (-143) (-10 -8 (-15 -3789 ($ $)) (-15 -3789 ($ $ (-1175))) (-15 -2958 ($ $ (-1175))) (-15 -2958 ($ $ (-1091 $))) (-15 -1353 ($ $ (-1175))) (-15 -1353 ($ $ (-1091 $))))) (((-143) . T)) -((-2856 (((-112) $ $) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) 16) (($ (-1178)) NIL) (((-1178) $) NIL)) (-2502 (((-642 (-1132)) $) 10)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-161) (-13 (-1080) (-10 -8 (-15 -2502 ((-642 (-1132)) $))))) (T -161)) -((-2502 (*1 *2 *1) (-12 (-5 *2 (-642 (-1132))) (-5 *1 (-161))))) -(-13 (-1080) (-10 -8 (-15 -2502 ((-642 (-1132)) $)))) -((-2856 (((-112) $ $) NIL)) (-4226 (($ (-564)) 14) (($ $ $) 15)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) 18)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) 9))) -(((-162) (-13 (-1097) (-10 -8 (-15 -4226 ($ (-564))) (-15 -4226 ($ $ $))))) (T -162)) -((-4226 (*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-162)))) (-4226 (*1 *1 *1 *1) (-5 *1 (-162)))) -(-13 (-1097) (-10 -8 (-15 -4226 ($ (-564))) (-15 -4226 ($ $ $)))) -((-3898 (((-114) (-1173)) 102))) -(((-163) (-10 -7 (-15 -3898 ((-114) (-1173))))) (T -163)) -((-3898 (*1 *2 *3) (-12 (-5 *3 (-1173)) (-5 *2 (-114)) (-5 *1 (-163))))) -(-10 -7 (-15 -3898 ((-114) (-1173)))) -((-2090 ((|#3| |#3|) 19))) -(((-164 |#1| |#2| |#3|) (-10 -7 (-15 -2090 (|#3| |#3|))) (-1047) (-1238 |#1|) (-1238 |#2|)) (T -164)) -((-2090 (*1 *2 *2) (-12 (-4 *3 (-1047)) (-4 *4 (-1238 *3)) (-5 *1 (-164 *3 *4 *2)) (-4 *2 (-1238 *4))))) -(-10 -7 (-15 -2090 (|#3| |#3|))) -((-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) 223)) (-3778 ((|#2| $) 102)) (-3087 (($ $) 256)) (-2958 (($ $) 250)) (-3267 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) 47)) (-3067 (($ $) 254)) (-2933 (($ $) 248)) (-2849 (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 |#2| "failed") $) 146)) (-1687 (((-564) $) NIL) (((-407 (-564)) $) NIL) ((|#2| $) 144)) (-2796 (($ $ $) 229)) (-3330 (((-687 (-564)) (-687 $)) NIL) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL) (((-2 (|:| -3544 (-687 |#2|)) (|:| |vec| (-1262 |#2|))) (-687 $) (-1262 $)) 160) (((-687 |#2|) (-687 $)) 154)) (-3741 (($ (-1169 |#2|)) 125) (((-3 $ "failed") (-407 (-1169 |#2|))) NIL)) (-2675 (((-3 $ "failed") $) 214)) (-3227 (((-3 (-407 (-564)) "failed") $) 204)) (-2929 (((-112) $) 199)) (-3536 (((-407 (-564)) $) 202)) (-3616 (((-919)) 96)) (-2808 (($ $ $) 231)) (-1583 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 270)) (-2833 (($) 245)) (-1381 (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) 193) (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) 198)) (-2573 ((|#2| $) 100)) (-2076 (((-1169 |#2|) $) 127)) (-2947 (($ (-1 |#2| |#2|) $) 108)) (-3576 (($ $) 247)) (-3730 (((-1169 |#2|) $) 126)) (-2481 (($ $) 207)) (-4069 (($) 103)) (-3223 (((-418 (-1169 $)) (-1169 $)) 95)) (-2236 (((-418 (-1169 $)) (-1169 $)) 64)) (-2842 (((-3 $ "failed") $ |#2|) 209) (((-3 $ "failed") $ $) 212)) (-3466 (($ $) 246)) (-4274 (((-769) $) 226)) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) 236)) (-2790 ((|#2| (-1262 $)) NIL) ((|#2|) 98)) (-2199 (($ $ (-1 |#2| |#2|) (-769)) NIL) (($ $ (-1 |#2| |#2|)) 119) (($ $ (-642 (-1173)) (-642 (-769))) NIL) (($ $ (-1173) (-769)) NIL) (($ $ (-642 (-1173))) NIL) (($ $ (-1173)) NIL) (($ $ (-769)) NIL) (($ $) NIL)) (-1361 (((-1169 |#2|)) 120)) (-3077 (($ $) 255)) (-2946 (($ $) 249)) (-3719 (((-1262 |#2|) $ (-1262 $)) 136) (((-687 |#2|) (-1262 $) (-1262 $)) NIL) (((-1262 |#2|) $) 116) (((-687 |#2|) (-1262 $)) NIL)) (-3003 (((-1262 |#2|) $) NIL) (($ (-1262 |#2|)) NIL) (((-1169 |#2|) $) NIL) (($ (-1169 |#2|)) NIL) (((-890 (-564)) $) 184) (((-890 (-379)) $) 188) (((-169 (-379)) $) 172) (((-169 (-225)) $) 167) (((-536) $) 180)) (-1736 (($ $) 104)) (-2390 (((-860) $) 143) (($ (-564)) NIL) (($ |#2|) NIL) (($ (-407 (-564))) NIL) (($ $) NIL)) (-1308 (((-1169 |#2|) $) 32)) (-3348 (((-769)) 106)) (-1600 (((-112) $ $) 13)) (-3155 (($ $) 259)) (-3025 (($ $) 253)) (-3131 (($ $) 257)) (-3002 (($ $) 251)) (-3100 ((|#2| $) 242)) (-3142 (($ $) 258)) (-3014 (($ $) 252)) (-1630 (($ $) 162)) (-2821 (((-112) $ $) 110)) (-2930 (($ $) 112) (($ $ $) NIL)) (-2917 (($ $ $) 111)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-407 (-564))) 277) (($ $ $) NIL) (($ $ (-564)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 118) (($ $ $) 147) (($ $ |#2|) NIL) (($ |#2| $) 114) (($ (-407 (-564)) $) NIL) (($ $ (-407 (-564))) NIL))) -(((-165 |#1| |#2|) (-10 -8 (-15 -2199 (|#1| |#1|)) (-15 -2199 (|#1| |#1| (-769))) (-15 -2390 (|#1| |#1|)) (-15 -2842 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2838 ((-2 (|:| -2660 |#1|) (|:| -4397 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2199 (|#1| |#1| (-1173))) (-15 -2199 (|#1| |#1| (-642 (-1173)))) (-15 -2199 (|#1| |#1| (-1173) (-769))) (-15 -2199 (|#1| |#1| (-642 (-1173)) (-642 (-769)))) (-15 -4274 ((-769) |#1|)) (-15 -2999 ((-2 (|:| -4332 |#1|) (|:| -1992 |#1|)) |#1| |#1|)) (-15 -2808 (|#1| |#1| |#1|)) (-15 -2796 (|#1| |#1| |#1|)) (-15 -2481 (|#1| |#1|)) (-15 ** (|#1| |#1| (-564))) (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 -2390 (|#1| (-407 (-564)))) (-15 -3003 ((-536) |#1|)) (-15 -3003 ((-169 (-225)) |#1|)) (-15 -3003 ((-169 (-379)) |#1|)) (-15 -2958 (|#1| |#1|)) (-15 -2933 (|#1| |#1|)) (-15 -2946 (|#1| |#1|)) (-15 -3014 (|#1| |#1|)) (-15 -3002 (|#1| |#1|)) (-15 -3025 (|#1| |#1|)) (-15 -3077 (|#1| |#1|)) (-15 -3067 (|#1| |#1|)) (-15 -3087 (|#1| |#1|)) (-15 -3142 (|#1| |#1|)) (-15 -3131 (|#1| |#1|)) (-15 -3155 (|#1| |#1|)) (-15 -3576 (|#1| |#1|)) (-15 -3466 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2833 (|#1|)) (-15 ** (|#1| |#1| (-407 (-564)))) (-15 -2236 ((-418 (-1169 |#1|)) (-1169 |#1|))) (-15 -3223 ((-418 (-1169 |#1|)) (-1169 |#1|))) (-15 -3267 ((-3 (-642 (-1169 |#1|)) "failed") (-642 (-1169 |#1|)) (-1169 |#1|))) (-15 -3227 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3536 ((-407 (-564)) |#1|)) (-15 -2929 ((-112) |#1|)) (-15 -1583 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3100 (|#2| |#1|)) (-15 -1630 (|#1| |#1|)) (-15 -2842 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1736 (|#1| |#1|)) (-15 -4069 (|#1|)) (-15 -3003 ((-890 (-379)) |#1|)) (-15 -3003 ((-890 (-564)) |#1|)) (-15 -1381 ((-887 (-379) |#1|) |#1| (-890 (-379)) (-887 (-379) |#1|))) (-15 -1381 ((-887 (-564) |#1|) |#1| (-890 (-564)) (-887 (-564) |#1|))) (-15 -2947 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2199 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2199 (|#1| |#1| (-1 |#2| |#2|) (-769))) (-15 -3741 ((-3 |#1| "failed") (-407 (-1169 |#2|)))) (-15 -3730 ((-1169 |#2|) |#1|)) (-15 -3003 (|#1| (-1169 |#2|))) (-15 -3741 (|#1| (-1169 |#2|))) (-15 -1361 ((-1169 |#2|))) (-15 -3330 ((-687 |#2|) (-687 |#1|))) (-15 -3330 ((-2 (|:| -3544 (-687 |#2|)) (|:| |vec| (-1262 |#2|))) (-687 |#1|) (-1262 |#1|))) (-15 -3330 ((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 |#1|) (-1262 |#1|))) (-15 -3330 ((-687 (-564)) (-687 |#1|))) (-15 -2849 ((-3 |#2| "failed") |#1|)) (-15 -1687 (|#2| |#1|)) (-15 -1687 ((-407 (-564)) |#1|)) (-15 -2849 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -1687 ((-564) |#1|)) (-15 -2849 ((-3 (-564) "failed") |#1|)) (-15 -3003 ((-1169 |#2|) |#1|)) (-15 -2790 (|#2|)) (-15 -3003 (|#1| (-1262 |#2|))) (-15 -3003 ((-1262 |#2|) |#1|)) (-15 -3719 ((-687 |#2|) (-1262 |#1|))) (-15 -3719 ((-1262 |#2|) |#1|)) (-15 -2076 ((-1169 |#2|) |#1|)) (-15 -1308 ((-1169 |#2|) |#1|)) (-15 -2790 (|#2| (-1262 |#1|))) (-15 -3719 ((-687 |#2|) (-1262 |#1|) (-1262 |#1|))) (-15 -3719 ((-1262 |#2|) |#1| (-1262 |#1|))) (-15 -2573 (|#2| |#1|)) (-15 -3778 (|#2| |#1|)) (-15 -3616 ((-919))) (-15 -2390 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3348 ((-769))) (-15 -2390 (|#1| (-564))) (-15 ** (|#1| |#1| (-769))) (-15 -2675 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-919))) (-15 -2930 (|#1| |#1| |#1|)) (-15 -2930 (|#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-769) |#1|)) (-15 * (|#1| (-919) |#1|)) (-15 -2917 (|#1| |#1| |#1|)) (-15 -1600 ((-112) |#1| |#1|)) (-15 -2390 ((-860) |#1|)) (-15 -2821 ((-112) |#1| |#1|))) (-166 |#2|) (-172)) (T -165)) -((-3348 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-769)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) (-3616 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-919)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) (-2790 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-165 *3 *2)) (-4 *3 (-166 *2)))) (-1361 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1169 *4)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4))))) -(-10 -8 (-15 -2199 (|#1| |#1|)) (-15 -2199 (|#1| |#1| (-769))) (-15 -2390 (|#1| |#1|)) (-15 -2842 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2838 ((-2 (|:| -2660 |#1|) (|:| -4397 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2199 (|#1| |#1| (-1173))) (-15 -2199 (|#1| |#1| (-642 (-1173)))) (-15 -2199 (|#1| |#1| (-1173) (-769))) (-15 -2199 (|#1| |#1| (-642 (-1173)) (-642 (-769)))) (-15 -4274 ((-769) |#1|)) (-15 -2999 ((-2 (|:| -4332 |#1|) (|:| -1992 |#1|)) |#1| |#1|)) (-15 -2808 (|#1| |#1| |#1|)) (-15 -2796 (|#1| |#1| |#1|)) (-15 -2481 (|#1| |#1|)) (-15 ** (|#1| |#1| (-564))) (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 -2390 (|#1| (-407 (-564)))) (-15 -3003 ((-536) |#1|)) (-15 -3003 ((-169 (-225)) |#1|)) (-15 -3003 ((-169 (-379)) |#1|)) (-15 -2958 (|#1| |#1|)) (-15 -2933 (|#1| |#1|)) (-15 -2946 (|#1| |#1|)) (-15 -3014 (|#1| |#1|)) (-15 -3002 (|#1| |#1|)) (-15 -3025 (|#1| |#1|)) (-15 -3077 (|#1| |#1|)) (-15 -3067 (|#1| |#1|)) (-15 -3087 (|#1| |#1|)) (-15 -3142 (|#1| |#1|)) (-15 -3131 (|#1| |#1|)) (-15 -3155 (|#1| |#1|)) (-15 -3576 (|#1| |#1|)) (-15 -3466 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2833 (|#1|)) (-15 ** (|#1| |#1| (-407 (-564)))) (-15 -2236 ((-418 (-1169 |#1|)) (-1169 |#1|))) (-15 -3223 ((-418 (-1169 |#1|)) (-1169 |#1|))) (-15 -3267 ((-3 (-642 (-1169 |#1|)) "failed") (-642 (-1169 |#1|)) (-1169 |#1|))) (-15 -3227 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3536 ((-407 (-564)) |#1|)) (-15 -2929 ((-112) |#1|)) (-15 -1583 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3100 (|#2| |#1|)) (-15 -1630 (|#1| |#1|)) (-15 -2842 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1736 (|#1| |#1|)) (-15 -4069 (|#1|)) (-15 -3003 ((-890 (-379)) |#1|)) (-15 -3003 ((-890 (-564)) |#1|)) (-15 -1381 ((-887 (-379) |#1|) |#1| (-890 (-379)) (-887 (-379) |#1|))) (-15 -1381 ((-887 (-564) |#1|) |#1| (-890 (-564)) (-887 (-564) |#1|))) (-15 -2947 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2199 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2199 (|#1| |#1| (-1 |#2| |#2|) (-769))) (-15 -3741 ((-3 |#1| "failed") (-407 (-1169 |#2|)))) (-15 -3730 ((-1169 |#2|) |#1|)) (-15 -3003 (|#1| (-1169 |#2|))) (-15 -3741 (|#1| (-1169 |#2|))) (-15 -1361 ((-1169 |#2|))) (-15 -3330 ((-687 |#2|) (-687 |#1|))) (-15 -3330 ((-2 (|:| -3544 (-687 |#2|)) (|:| |vec| (-1262 |#2|))) (-687 |#1|) (-1262 |#1|))) (-15 -3330 ((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 |#1|) (-1262 |#1|))) (-15 -3330 ((-687 (-564)) (-687 |#1|))) (-15 -2849 ((-3 |#2| "failed") |#1|)) (-15 -1687 (|#2| |#1|)) (-15 -1687 ((-407 (-564)) |#1|)) (-15 -2849 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -1687 ((-564) |#1|)) (-15 -2849 ((-3 (-564) "failed") |#1|)) (-15 -3003 ((-1169 |#2|) |#1|)) (-15 -2790 (|#2|)) (-15 -3003 (|#1| (-1262 |#2|))) (-15 -3003 ((-1262 |#2|) |#1|)) (-15 -3719 ((-687 |#2|) (-1262 |#1|))) (-15 -3719 ((-1262 |#2|) |#1|)) (-15 -2076 ((-1169 |#2|) |#1|)) (-15 -1308 ((-1169 |#2|) |#1|)) (-15 -2790 (|#2| (-1262 |#1|))) (-15 -3719 ((-687 |#2|) (-1262 |#1|) (-1262 |#1|))) (-15 -3719 ((-1262 |#2|) |#1| (-1262 |#1|))) (-15 -2573 (|#2| |#1|)) (-15 -3778 (|#2| |#1|)) (-15 -3616 ((-919))) (-15 -2390 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3348 ((-769))) (-15 -2390 (|#1| (-564))) (-15 ** (|#1| |#1| (-769))) (-15 -2675 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-919))) (-15 -2930 (|#1| |#1| |#1|)) (-15 -2930 (|#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-769) |#1|)) (-15 * (|#1| (-919) |#1|)) (-15 -2917 (|#1| |#1| |#1|)) (-15 -1600 ((-112) |#1| |#1|)) (-15 -2390 ((-860) |#1|)) (-15 -2821 ((-112) |#1| |#1|))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) 102 (-2682 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-907)))))) (-4252 (($ $) 103 (-2682 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-907)))))) (-1722 (((-112) $) 105 (-2682 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-907)))))) (-1335 (((-687 |#1|) (-1262 $)) 53) (((-687 |#1|)) 68)) (-3778 ((|#1| $) 59)) (-3087 (($ $) 229 (|has| |#1| (-1197)))) (-2958 (($ $) 212 (|has| |#1| (-1197)))) (-3651 (((-1185 (-919) (-769)) (-564)) 155 (|has| |#1| (-349)))) (-3085 (((-3 $ "failed") $ $) 20)) (-4297 (((-418 (-1169 $)) (-1169 $)) 243 (-12 (|has| |#1| (-307)) (|has| |#1| (-907))))) (-1993 (($ $) 122 (-2682 (-12 (|has| |#1| (-307)) (|has| |#1| (-907))) (|has| |#1| (-363))))) (-3282 (((-418 $) $) 123 (-2682 (-12 (|has| |#1| (-307)) (|has| |#1| (-907))) (|has| |#1| (-363))))) (-2264 (($ $) 242 (-12 (|has| |#1| (-1000)) (|has| |#1| (-1197))))) (-3267 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) 246 (-12 (|has| |#1| (-307)) (|has| |#1| (-907))))) (-2134 (((-112) $ $) 113 (|has| |#1| (-307)))) (-4003 (((-769)) 96 (|has| |#1| (-368)))) (-3067 (($ $) 228 (|has| |#1| (-1197)))) (-2933 (($ $) 213 (|has| |#1| (-1197)))) (-3110 (($ $) 227 (|has| |#1| (-1197)))) (-2981 (($ $) 214 (|has| |#1| (-1197)))) (-2822 (($) 18 T CONST)) (-2849 (((-3 (-564) "failed") $) 178 (|has| |#1| (-1036 (-564)))) (((-3 (-407 (-564)) "failed") $) 176 (|has| |#1| (-1036 (-407 (-564))))) (((-3 |#1| "failed") $) 173)) (-1687 (((-564) $) 177 (|has| |#1| (-1036 (-564)))) (((-407 (-564)) $) 175 (|has| |#1| (-1036 (-407 (-564))))) ((|#1| $) 174)) (-4087 (($ (-1262 |#1|) (-1262 $)) 55) (($ (-1262 |#1|)) 71)) (-2629 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| |#1| (-349)))) (-2796 (($ $ $) 117 (|has| |#1| (-307)))) (-2330 (((-687 |#1|) $ (-1262 $)) 60) (((-687 |#1|) $) 66)) (-3330 (((-687 (-564)) (-687 $)) 172 (|has| |#1| (-637 (-564)))) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) 171 (|has| |#1| (-637 (-564)))) (((-2 (|:| -3544 (-687 |#1|)) (|:| |vec| (-1262 |#1|))) (-687 $) (-1262 $)) 170) (((-687 |#1|) (-687 $)) 169)) (-3741 (($ (-1169 |#1|)) 166) (((-3 $ "failed") (-407 (-1169 |#1|))) 163 (|has| |#1| (-363)))) (-2675 (((-3 $ "failed") $) 37)) (-2275 ((|#1| $) 254)) (-3227 (((-3 (-407 (-564)) "failed") $) 247 (|has| |#1| (-545)))) (-2929 (((-112) $) 249 (|has| |#1| (-545)))) (-3536 (((-407 (-564)) $) 248 (|has| |#1| (-545)))) (-3616 (((-919)) 61)) (-3235 (($) 99 (|has| |#1| (-368)))) (-2808 (($ $ $) 116 (|has| |#1| (-307)))) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) 111 (|has| |#1| (-307)))) (-1427 (($) 157 (|has| |#1| (-349)))) (-4153 (((-112) $) 158 (|has| |#1| (-349)))) (-1595 (($ $ (-769)) 149 (|has| |#1| (-349))) (($ $) 148 (|has| |#1| (-349)))) (-3552 (((-112) $) 124 (-2682 (-12 (|has| |#1| (-307)) (|has| |#1| (-907))) (|has| |#1| (-363))))) (-1583 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 250 (-12 (|has| |#1| (-1057)) (|has| |#1| (-1197))))) (-2833 (($) 239 (|has| |#1| (-1197)))) (-1381 (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) 262 (|has| |#1| (-884 (-564)))) (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) 261 (|has| |#1| (-884 (-379))))) (-2408 (((-919) $) 160 (|has| |#1| (-349))) (((-831 (-919)) $) 146 (|has| |#1| (-349)))) (-3163 (((-112) $) 35)) (-2024 (($ $ (-564)) 241 (-12 (|has| |#1| (-1000)) (|has| |#1| (-1197))))) (-2573 ((|#1| $) 58)) (-4382 (((-3 $ "failed") $) 150 (|has| |#1| (-349)))) (-2709 (((-3 (-642 $) "failed") (-642 $) $) 120 (|has| |#1| (-307)))) (-2076 (((-1169 |#1|) $) 51 (|has| |#1| (-363)))) (-2947 (($ (-1 |#1| |#1|) $) 263)) (-2535 (((-919) $) 98 (|has| |#1| (-368)))) (-3576 (($ $) 236 (|has| |#1| (-1197)))) (-3730 (((-1169 |#1|) $) 164)) (-2066 (($ (-642 $)) 109 (-2682 (|has| |#1| (-307)) (-12 (|has| |#1| (-307)) (|has| |#1| (-907))))) (($ $ $) 108 (-2682 (|has| |#1| (-307)) (-12 (|has| |#1| (-307)) (|has| |#1| (-907)))))) (-1778 (((-1155) $) 10)) (-2481 (($ $) 125 (|has| |#1| (-363)))) (-3910 (($) 151 (|has| |#1| (-349)) CONST)) (-2065 (($ (-919)) 97 (|has| |#1| (-368)))) (-4069 (($) 258)) (-2287 ((|#1| $) 255)) (-3999 (((-1117) $) 11)) (-4043 (($) 168)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) 110 (-2682 (|has| |#1| (-307)) (-12 (|has| |#1| (-307)) (|has| |#1| (-907)))))) (-2105 (($ (-642 $)) 107 (-2682 (|has| |#1| (-307)) (-12 (|has| |#1| (-307)) (|has| |#1| (-907))))) (($ $ $) 106 (-2682 (|has| |#1| (-307)) (-12 (|has| |#1| (-307)) (|has| |#1| (-907)))))) (-4229 (((-642 (-2 (|:| -2254 (-564)) (|:| -2817 (-564))))) 154 (|has| |#1| (-349)))) (-3223 (((-418 (-1169 $)) (-1169 $)) 245 (-12 (|has| |#1| (-307)) (|has| |#1| (-907))))) (-2236 (((-418 (-1169 $)) (-1169 $)) 244 (-12 (|has| |#1| (-307)) (|has| |#1| (-907))))) (-2254 (((-418 $) $) 121 (-2682 (-12 (|has| |#1| (-307)) (|has| |#1| (-907))) (|has| |#1| (-363))))) (-1877 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119 (|has| |#1| (-307))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) 118 (|has| |#1| (-307)))) (-2842 (((-3 $ "failed") $ |#1|) 253 (|has| |#1| (-556))) (((-3 $ "failed") $ $) 101 (-2682 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-907)))))) (-1483 (((-3 (-642 $) "failed") (-642 $) $) 112 (|has| |#1| (-307)))) (-3466 (($ $) 237 (|has| |#1| (-1197)))) (-3154 (($ $ (-642 |#1|) (-642 |#1|)) 269 (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) 268 (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) 267 (|has| |#1| (-309 |#1|))) (($ $ (-642 (-294 |#1|))) 266 (|has| |#1| (-309 |#1|))) (($ $ (-642 (-1173)) (-642 |#1|)) 265 (|has| |#1| (-514 (-1173) |#1|))) (($ $ (-1173) |#1|) 264 (|has| |#1| (-514 (-1173) |#1|)))) (-4274 (((-769) $) 114 (|has| |#1| (-307)))) (-4369 (($ $ |#1|) 270 (|has| |#1| (-286 |#1| |#1|)))) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) 115 (|has| |#1| (-307)))) (-2790 ((|#1| (-1262 $)) 54) ((|#1|) 67)) (-1354 (((-769) $) 159 (|has| |#1| (-349))) (((-3 (-769) "failed") $ $) 147 (|has| |#1| (-349)))) (-2199 (($ $ (-1 |#1| |#1|) (-769)) 131) (($ $ (-1 |#1| |#1|)) 130) (($ $ (-642 (-1173)) (-642 (-769))) 138 (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) 139 (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) 140 (|has| |#1| (-898 (-1173)))) (($ $ (-1173)) 141 (|has| |#1| (-898 (-1173)))) (($ $ (-769)) 143 (-2682 (-2317 (|has| |#1| (-363)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-2317 (|has| |#1| (-233)) (|has| |#1| (-363))))) (($ $) 145 (-2682 (-2317 (|has| |#1| (-363)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-2317 (|has| |#1| (-233)) (|has| |#1| (-363)))))) (-2418 (((-687 |#1|) (-1262 $) (-1 |#1| |#1|)) 162 (|has| |#1| (-363)))) (-1361 (((-1169 |#1|)) 167)) (-3120 (($ $) 226 (|has| |#1| (-1197)))) (-2992 (($ $) 215 (|has| |#1| (-1197)))) (-3553 (($) 156 (|has| |#1| (-349)))) (-3098 (($ $) 225 (|has| |#1| (-1197)))) (-2971 (($ $) 216 (|has| |#1| (-1197)))) (-3077 (($ $) 224 (|has| |#1| (-1197)))) (-2946 (($ $) 217 (|has| |#1| (-1197)))) (-3719 (((-1262 |#1|) $ (-1262 $)) 57) (((-687 |#1|) (-1262 $) (-1262 $)) 56) (((-1262 |#1|) $) 73) (((-687 |#1|) (-1262 $)) 72)) (-3003 (((-1262 |#1|) $) 70) (($ (-1262 |#1|)) 69) (((-1169 |#1|) $) 179) (($ (-1169 |#1|)) 165) (((-890 (-564)) $) 260 (|has| |#1| (-612 (-890 (-564))))) (((-890 (-379)) $) 259 (|has| |#1| (-612 (-890 (-379))))) (((-169 (-379)) $) 211 (|has| |#1| (-1020))) (((-169 (-225)) $) 210 (|has| |#1| (-1020))) (((-536) $) 209 (|has| |#1| (-612 (-536))))) (-1736 (($ $) 257)) (-3556 (((-3 (-1262 $) "failed") (-687 $)) 153 (-2682 (-2317 (|has| $ (-145)) (-12 (|has| |#1| (-307)) (|has| |#1| (-907)))) (|has| |#1| (-349))))) (-3571 (($ |#1| |#1|) 256)) (-2390 (((-860) $) 12) (($ (-564)) 33) (($ |#1|) 44) (($ (-407 (-564))) 95 (-2682 (|has| |#1| (-363)) (|has| |#1| (-1036 (-407 (-564)))))) (($ $) 100 (-2682 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-907)))))) (-3434 (($ $) 152 (|has| |#1| (-349))) (((-3 $ "failed") $) 50 (-2682 (-2317 (|has| $ (-145)) (-12 (|has| |#1| (-307)) (|has| |#1| (-907)))) (|has| |#1| (-145))))) (-1308 (((-1169 |#1|) $) 52)) (-3348 (((-769)) 32 T CONST)) (-1600 (((-112) $ $) 9)) (-2131 (((-1262 $)) 74)) (-3155 (($ $) 235 (|has| |#1| (-1197)))) (-3025 (($ $) 223 (|has| |#1| (-1197)))) (-1594 (((-112) $ $) 104 (-2682 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-907)))))) (-3131 (($ $) 234 (|has| |#1| (-1197)))) (-3002 (($ $) 222 (|has| |#1| (-1197)))) (-3176 (($ $) 233 (|has| |#1| (-1197)))) (-3047 (($ $) 221 (|has| |#1| (-1197)))) (-3100 ((|#1| $) 251 (|has| |#1| (-1197)))) (-3165 (($ $) 232 (|has| |#1| (-1197)))) (-3058 (($ $) 220 (|has| |#1| (-1197)))) (-3168 (($ $) 231 (|has| |#1| (-1197)))) (-3035 (($ $) 219 (|has| |#1| (-1197)))) (-3142 (($ $) 230 (|has| |#1| (-1197)))) (-3014 (($ $) 218 (|has| |#1| (-1197)))) (-1630 (($ $) 252 (|has| |#1| (-1057)))) (-2361 (($) 19 T CONST)) (-2371 (($) 34 T CONST)) (-2711 (($ $ (-1 |#1| |#1|) (-769)) 133) (($ $ (-1 |#1| |#1|)) 132) (($ $ (-642 (-1173)) (-642 (-769))) 134 (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) 135 (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) 136 (|has| |#1| (-898 (-1173)))) (($ $ (-1173)) 137 (|has| |#1| (-898 (-1173)))) (($ $ (-769)) 142 (-2682 (-2317 (|has| |#1| (-363)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-2317 (|has| |#1| (-233)) (|has| |#1| (-363))))) (($ $) 144 (-2682 (-2317 (|has| |#1| (-363)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-2317 (|has| |#1| (-233)) (|has| |#1| (-363)))))) (-2821 (((-112) $ $) 6)) (-2943 (($ $ $) 129 (|has| |#1| (-363)))) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36) (($ $ (-407 (-564))) 240 (-12 (|has| |#1| (-1000)) (|has| |#1| (-1197)))) (($ $ $) 238 (|has| |#1| (-1197))) (($ $ (-564)) 126 (|has| |#1| (-363)))) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-407 (-564)) $) 128 (|has| |#1| (-363))) (($ $ (-407 (-564))) 127 (|has| |#1| (-363))))) +((-2986 (((-112) $ $) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) 16) (($ (-1180)) NIL) (((-1180) $) NIL)) (-2610 (((-644 (-1134)) $) 10)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-161) (-13 (-1082) (-10 -8 (-15 -2610 ((-644 (-1134)) $))))) (T -161)) +((-2610 (*1 *2 *1) (-12 (-5 *2 (-644 (-1134))) (-5 *1 (-161))))) +(-13 (-1082) (-10 -8 (-15 -2610 ((-644 (-1134)) $)))) +((-2986 (((-112) $ $) NIL)) (-2072 (($ (-566)) 14) (($ $ $) 15)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) 18)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 9))) +(((-162) (-13 (-1099) (-10 -8 (-15 -2072 ($ (-566))) (-15 -2072 ($ $ $))))) (T -162)) +((-2072 (*1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-162)))) (-2072 (*1 *1 *1 *1) (-5 *1 (-162)))) +(-13 (-1099) (-10 -8 (-15 -2072 ($ (-566))) (-15 -2072 ($ $ $)))) +((-4272 (((-114) (-1175)) 102))) +(((-163) (-10 -7 (-15 -4272 ((-114) (-1175))))) (T -163)) +((-4272 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-114)) (-5 *1 (-163))))) +(-10 -7 (-15 -4272 ((-114) (-1175)))) +((-2199 ((|#3| |#3|) 19))) +(((-164 |#1| |#2| |#3|) (-10 -7 (-15 -2199 (|#3| |#3|))) (-1049) (-1240 |#1|) (-1240 |#2|)) (T -164)) +((-2199 (*1 *2 *2) (-12 (-4 *3 (-1049)) (-4 *4 (-1240 *3)) (-5 *1 (-164 *3 *4 *2)) (-4 *2 (-1240 *4))))) +(-10 -7 (-15 -2199 (|#3| |#3|))) +((-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) 223)) (-3837 ((|#2| $) 102)) (-3219 (($ $) 256)) (-3091 (($ $) 250)) (-4262 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) 47)) (-3197 (($ $) 254)) (-3067 (($ $) 248)) (-2980 (((-3 (-566) "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL) (((-3 |#2| "failed") $) 146)) (-1709 (((-566) $) NIL) (((-409 (-566)) $) NIL) ((|#2| $) 144)) (-2925 (($ $ $) 229)) (-2275 (((-689 (-566)) (-689 $)) NIL) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL) (((-2 (|:| -4196 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 $) (-1264 $)) 160) (((-689 |#2|) (-689 $)) 154)) (-1838 (($ (-1171 |#2|)) 125) (((-3 $ "failed") (-409 (-1171 |#2|))) NIL)) (-3757 (((-3 $ "failed") $) 214)) (-2515 (((-3 (-409 (-566)) "failed") $) 204)) (-2024 (((-112) $) 199)) (-3330 (((-409 (-566)) $) 202)) (-2299 (((-921)) 96)) (-2937 (($ $ $) 231)) (-2885 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 270)) (-2964 (($) 245)) (-1542 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 193) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 198)) (-1398 ((|#2| $) 100)) (-1869 (((-1171 |#2|) $) 127)) (-3080 (($ (-1 |#2| |#2|) $) 108)) (-3676 (($ $) 247)) (-1829 (((-1171 |#2|) $) 126)) (-2577 (($ $) 207)) (-2023 (($) 103)) (-1500 (((-420 (-1171 $)) (-1171 $)) 95)) (-3917 (((-420 (-1171 $)) (-1171 $)) 64)) (-2976 (((-3 $ "failed") $ |#2|) 209) (((-3 $ "failed") $ $) 212)) (-3571 (($ $) 246)) (-1383 (((-771) $) 226)) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) 236)) (-3553 ((|#2| (-1264 $)) NIL) ((|#2|) 98)) (-3526 (($ $ (-1 |#2| |#2|) (-771)) NIL) (($ $ (-1 |#2| |#2|)) 119) (($ $ (-644 (-1175)) (-644 (-771))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175)) NIL) (($ $ (-771)) NIL) (($ $) NIL)) (-2301 (((-1171 |#2|)) 120)) (-3207 (($ $) 255)) (-3079 (($ $) 249)) (-3747 (((-1264 |#2|) $ (-1264 $)) 136) (((-689 |#2|) (-1264 $) (-1264 $)) NIL) (((-1264 |#2|) $) 116) (((-689 |#2|) (-1264 $)) NIL)) (-3136 (((-1264 |#2|) $) NIL) (($ (-1264 |#2|)) NIL) (((-1171 |#2|) $) NIL) (($ (-1171 |#2|)) NIL) (((-892 (-566)) $) 184) (((-892 (-381)) $) 188) (((-169 (-381)) $) 172) (((-169 (-225)) $) 167) (((-538) $) 180)) (-2664 (($ $) 104)) (-2479 (((-862) $) 143) (($ (-566)) NIL) (($ |#2|) NIL) (($ (-409 (-566))) NIL) (($ $) NIL)) (-3728 (((-1171 |#2|) $) 32)) (-1558 (((-771)) 106)) (-3900 (((-112) $ $) 13)) (-3285 (($ $) 259)) (-3157 (($ $) 253)) (-3260 (($ $) 257)) (-3135 (($ $) 251)) (-3624 ((|#2| $) 242)) (-3273 (($ $) 258)) (-3148 (($ $) 252)) (-4298 (($ $) 162)) (-2952 (((-112) $ $) 110)) (-3065 (($ $) 112) (($ $ $) NIL)) (-3052 (($ $ $) 111)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-409 (-566))) 277) (($ $ $) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 118) (($ $ $) 147) (($ $ |#2|) NIL) (($ |#2| $) 114) (($ (-409 (-566)) $) NIL) (($ $ (-409 (-566))) NIL))) +(((-165 |#1| |#2|) (-10 -8 (-15 -3526 (|#1| |#1|)) (-15 -3526 (|#1| |#1| (-771))) (-15 -2479 (|#1| |#1|)) (-15 -2976 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3832 ((-2 (|:| -1732 |#1|) (|:| -4404 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3526 (|#1| |#1| (-1175))) (-15 -3526 (|#1| |#1| (-644 (-1175)))) (-15 -3526 (|#1| |#1| (-1175) (-771))) (-15 -3526 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -1383 ((-771) |#1|)) (-15 -1510 ((-2 (|:| -3371 |#1|) (|:| -3131 |#1|)) |#1| |#1|)) (-15 -2937 (|#1| |#1| |#1|)) (-15 -2925 (|#1| |#1| |#1|)) (-15 -2577 (|#1| |#1|)) (-15 ** (|#1| |#1| (-566))) (-15 * (|#1| |#1| (-409 (-566)))) (-15 * (|#1| (-409 (-566)) |#1|)) (-15 -2479 (|#1| (-409 (-566)))) (-15 -3136 ((-538) |#1|)) (-15 -3136 ((-169 (-225)) |#1|)) (-15 -3136 ((-169 (-381)) |#1|)) (-15 -3091 (|#1| |#1|)) (-15 -3067 (|#1| |#1|)) (-15 -3079 (|#1| |#1|)) (-15 -3148 (|#1| |#1|)) (-15 -3135 (|#1| |#1|)) (-15 -3157 (|#1| |#1|)) (-15 -3207 (|#1| |#1|)) (-15 -3197 (|#1| |#1|)) (-15 -3219 (|#1| |#1|)) (-15 -3273 (|#1| |#1|)) (-15 -3260 (|#1| |#1|)) (-15 -3285 (|#1| |#1|)) (-15 -3676 (|#1| |#1|)) (-15 -3571 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2964 (|#1|)) (-15 ** (|#1| |#1| (-409 (-566)))) (-15 -3917 ((-420 (-1171 |#1|)) (-1171 |#1|))) (-15 -1500 ((-420 (-1171 |#1|)) (-1171 |#1|))) (-15 -4262 ((-3 (-644 (-1171 |#1|)) "failed") (-644 (-1171 |#1|)) (-1171 |#1|))) (-15 -2515 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -3330 ((-409 (-566)) |#1|)) (-15 -2024 ((-112) |#1|)) (-15 -2885 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3624 (|#2| |#1|)) (-15 -4298 (|#1| |#1|)) (-15 -2976 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2664 (|#1| |#1|)) (-15 -2023 (|#1|)) (-15 -3136 ((-892 (-381)) |#1|)) (-15 -3136 ((-892 (-566)) |#1|)) (-15 -1542 ((-889 (-381) |#1|) |#1| (-892 (-381)) (-889 (-381) |#1|))) (-15 -1542 ((-889 (-566) |#1|) |#1| (-892 (-566)) (-889 (-566) |#1|))) (-15 -3080 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3526 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3526 (|#1| |#1| (-1 |#2| |#2|) (-771))) (-15 -1838 ((-3 |#1| "failed") (-409 (-1171 |#2|)))) (-15 -1829 ((-1171 |#2|) |#1|)) (-15 -3136 (|#1| (-1171 |#2|))) (-15 -1838 (|#1| (-1171 |#2|))) (-15 -2301 ((-1171 |#2|))) (-15 -2275 ((-689 |#2|) (-689 |#1|))) (-15 -2275 ((-2 (|:| -4196 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 |#1|) (-1264 |#1|))) (-15 -2275 ((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 |#1|) (-1264 |#1|))) (-15 -2275 ((-689 (-566)) (-689 |#1|))) (-15 -2980 ((-3 |#2| "failed") |#1|)) (-15 -1709 (|#2| |#1|)) (-15 -1709 ((-409 (-566)) |#1|)) (-15 -2980 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -1709 ((-566) |#1|)) (-15 -2980 ((-3 (-566) "failed") |#1|)) (-15 -3136 ((-1171 |#2|) |#1|)) (-15 -3553 (|#2|)) (-15 -3136 (|#1| (-1264 |#2|))) (-15 -3136 ((-1264 |#2|) |#1|)) (-15 -3747 ((-689 |#2|) (-1264 |#1|))) (-15 -3747 ((-1264 |#2|) |#1|)) (-15 -1869 ((-1171 |#2|) |#1|)) (-15 -3728 ((-1171 |#2|) |#1|)) (-15 -3553 (|#2| (-1264 |#1|))) (-15 -3747 ((-689 |#2|) (-1264 |#1|) (-1264 |#1|))) (-15 -3747 ((-1264 |#2|) |#1| (-1264 |#1|))) (-15 -1398 (|#2| |#1|)) (-15 -3837 (|#2| |#1|)) (-15 -2299 ((-921))) (-15 -2479 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1558 ((-771))) (-15 -2479 (|#1| (-566))) (-15 ** (|#1| |#1| (-771))) (-15 -3757 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-921))) (-15 -3065 (|#1| |#1| |#1|)) (-15 -3065 (|#1| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 * (|#1| (-921) |#1|)) (-15 -3052 (|#1| |#1| |#1|)) (-15 -3900 ((-112) |#1| |#1|)) (-15 -2479 ((-862) |#1|)) (-15 -2952 ((-112) |#1| |#1|))) (-166 |#2|) (-172)) (T -165)) +((-1558 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-771)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) (-2299 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-921)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) (-3553 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-165 *3 *2)) (-4 *3 (-166 *2)))) (-2301 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1171 *4)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4))))) +(-10 -8 (-15 -3526 (|#1| |#1|)) (-15 -3526 (|#1| |#1| (-771))) (-15 -2479 (|#1| |#1|)) (-15 -2976 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3832 ((-2 (|:| -1732 |#1|) (|:| -4404 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3526 (|#1| |#1| (-1175))) (-15 -3526 (|#1| |#1| (-644 (-1175)))) (-15 -3526 (|#1| |#1| (-1175) (-771))) (-15 -3526 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -1383 ((-771) |#1|)) (-15 -1510 ((-2 (|:| -3371 |#1|) (|:| -3131 |#1|)) |#1| |#1|)) (-15 -2937 (|#1| |#1| |#1|)) (-15 -2925 (|#1| |#1| |#1|)) (-15 -2577 (|#1| |#1|)) (-15 ** (|#1| |#1| (-566))) (-15 * (|#1| |#1| (-409 (-566)))) (-15 * (|#1| (-409 (-566)) |#1|)) (-15 -2479 (|#1| (-409 (-566)))) (-15 -3136 ((-538) |#1|)) (-15 -3136 ((-169 (-225)) |#1|)) (-15 -3136 ((-169 (-381)) |#1|)) (-15 -3091 (|#1| |#1|)) (-15 -3067 (|#1| |#1|)) (-15 -3079 (|#1| |#1|)) (-15 -3148 (|#1| |#1|)) (-15 -3135 (|#1| |#1|)) (-15 -3157 (|#1| |#1|)) (-15 -3207 (|#1| |#1|)) (-15 -3197 (|#1| |#1|)) (-15 -3219 (|#1| |#1|)) (-15 -3273 (|#1| |#1|)) (-15 -3260 (|#1| |#1|)) (-15 -3285 (|#1| |#1|)) (-15 -3676 (|#1| |#1|)) (-15 -3571 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2964 (|#1|)) (-15 ** (|#1| |#1| (-409 (-566)))) (-15 -3917 ((-420 (-1171 |#1|)) (-1171 |#1|))) (-15 -1500 ((-420 (-1171 |#1|)) (-1171 |#1|))) (-15 -4262 ((-3 (-644 (-1171 |#1|)) "failed") (-644 (-1171 |#1|)) (-1171 |#1|))) (-15 -2515 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -3330 ((-409 (-566)) |#1|)) (-15 -2024 ((-112) |#1|)) (-15 -2885 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3624 (|#2| |#1|)) (-15 -4298 (|#1| |#1|)) (-15 -2976 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2664 (|#1| |#1|)) (-15 -2023 (|#1|)) (-15 -3136 ((-892 (-381)) |#1|)) (-15 -3136 ((-892 (-566)) |#1|)) (-15 -1542 ((-889 (-381) |#1|) |#1| (-892 (-381)) (-889 (-381) |#1|))) (-15 -1542 ((-889 (-566) |#1|) |#1| (-892 (-566)) (-889 (-566) |#1|))) (-15 -3080 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3526 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3526 (|#1| |#1| (-1 |#2| |#2|) (-771))) (-15 -1838 ((-3 |#1| "failed") (-409 (-1171 |#2|)))) (-15 -1829 ((-1171 |#2|) |#1|)) (-15 -3136 (|#1| (-1171 |#2|))) (-15 -1838 (|#1| (-1171 |#2|))) (-15 -2301 ((-1171 |#2|))) (-15 -2275 ((-689 |#2|) (-689 |#1|))) (-15 -2275 ((-2 (|:| -4196 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 |#1|) (-1264 |#1|))) (-15 -2275 ((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 |#1|) (-1264 |#1|))) (-15 -2275 ((-689 (-566)) (-689 |#1|))) (-15 -2980 ((-3 |#2| "failed") |#1|)) (-15 -1709 (|#2| |#1|)) (-15 -1709 ((-409 (-566)) |#1|)) (-15 -2980 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -1709 ((-566) |#1|)) (-15 -2980 ((-3 (-566) "failed") |#1|)) (-15 -3136 ((-1171 |#2|) |#1|)) (-15 -3553 (|#2|)) (-15 -3136 (|#1| (-1264 |#2|))) (-15 -3136 ((-1264 |#2|) |#1|)) (-15 -3747 ((-689 |#2|) (-1264 |#1|))) (-15 -3747 ((-1264 |#2|) |#1|)) (-15 -1869 ((-1171 |#2|) |#1|)) (-15 -3728 ((-1171 |#2|) |#1|)) (-15 -3553 (|#2| (-1264 |#1|))) (-15 -3747 ((-689 |#2|) (-1264 |#1|) (-1264 |#1|))) (-15 -3747 ((-1264 |#2|) |#1| (-1264 |#1|))) (-15 -1398 (|#2| |#1|)) (-15 -3837 (|#2| |#1|)) (-15 -2299 ((-921))) (-15 -2479 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1558 ((-771))) (-15 -2479 (|#1| (-566))) (-15 ** (|#1| |#1| (-771))) (-15 -3757 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-921))) (-15 -3065 (|#1| |#1| |#1|)) (-15 -3065 (|#1| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 * (|#1| (-921) |#1|)) (-15 -3052 (|#1| |#1| |#1|)) (-15 -3900 ((-112) |#1| |#1|)) (-15 -2479 ((-862) |#1|)) (-15 -2952 ((-112) |#1| |#1|))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) 102 (-2809 (|has| |#1| (-558)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909)))))) (-3087 (($ $) 103 (-2809 (|has| |#1| (-558)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909)))))) (-1716 (((-112) $) 105 (-2809 (|has| |#1| (-558)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909)))))) (-1321 (((-689 |#1|) (-1264 $)) 53) (((-689 |#1|)) 68)) (-3837 ((|#1| $) 59)) (-3219 (($ $) 229 (|has| |#1| (-1199)))) (-3091 (($ $) 212 (|has| |#1| (-1199)))) (-2568 (((-1187 (-921) (-771)) (-566)) 155 (|has| |#1| (-351)))) (-3174 (((-3 $ "failed") $ $) 20)) (-4058 (((-420 (-1171 $)) (-1171 $)) 243 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))))) (-3980 (($ $) 122 (-2809 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-365))))) (-3348 (((-420 $) $) 123 (-2809 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-365))))) (-2338 (($ $) 242 (-12 (|has| |#1| (-1002)) (|has| |#1| (-1199))))) (-4262 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) 246 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))))) (-2761 (((-112) $ $) 113 (|has| |#1| (-308)))) (-4049 (((-771)) 96 (|has| |#1| (-370)))) (-3197 (($ $) 228 (|has| |#1| (-1199)))) (-3067 (($ $) 213 (|has| |#1| (-1199)))) (-3240 (($ $) 227 (|has| |#1| (-1199)))) (-3115 (($ $) 214 (|has| |#1| (-1199)))) (-1811 (($) 18 T CONST)) (-2980 (((-3 (-566) "failed") $) 178 (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) 176 (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) 173)) (-1709 (((-566) $) 177 (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) 175 (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) 174)) (-2422 (($ (-1264 |#1|) (-1264 $)) 55) (($ (-1264 |#1|)) 71)) (-2713 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| |#1| (-351)))) (-2925 (($ $ $) 117 (|has| |#1| (-308)))) (-2087 (((-689 |#1|) $ (-1264 $)) 60) (((-689 |#1|) $) 66)) (-2275 (((-689 (-566)) (-689 $)) 172 (|has| |#1| (-639 (-566)))) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) 171 (|has| |#1| (-639 (-566)))) (((-2 (|:| -4196 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) 170) (((-689 |#1|) (-689 $)) 169)) (-1838 (($ (-1171 |#1|)) 166) (((-3 $ "failed") (-409 (-1171 |#1|))) 163 (|has| |#1| (-365)))) (-3757 (((-3 $ "failed") $) 37)) (-2352 ((|#1| $) 254)) (-2515 (((-3 (-409 (-566)) "failed") $) 247 (|has| |#1| (-547)))) (-2024 (((-112) $) 249 (|has| |#1| (-547)))) (-3330 (((-409 (-566)) $) 248 (|has| |#1| (-547)))) (-2299 (((-921)) 61)) (-1415 (($) 99 (|has| |#1| (-370)))) (-2937 (($ $ $) 116 (|has| |#1| (-308)))) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) 111 (|has| |#1| (-308)))) (-2409 (($) 157 (|has| |#1| (-351)))) (-1450 (((-112) $) 158 (|has| |#1| (-351)))) (-4202 (($ $ (-771)) 149 (|has| |#1| (-351))) (($ $) 148 (|has| |#1| (-351)))) (-4188 (((-112) $) 124 (-2809 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-365))))) (-2885 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 250 (-12 (|has| |#1| (-1059)) (|has| |#1| (-1199))))) (-2964 (($) 239 (|has| |#1| (-1199)))) (-1542 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 262 (|has| |#1| (-886 (-566)))) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 261 (|has| |#1| (-886 (-381))))) (-1802 (((-921) $) 160 (|has| |#1| (-351))) (((-833 (-921)) $) 146 (|has| |#1| (-351)))) (-2264 (((-112) $) 35)) (-3146 (($ $ (-566)) 241 (-12 (|has| |#1| (-1002)) (|has| |#1| (-1199))))) (-1398 ((|#1| $) 58)) (-4278 (((-3 $ "failed") $) 150 (|has| |#1| (-351)))) (-2495 (((-3 (-644 $) "failed") (-644 $) $) 120 (|has| |#1| (-308)))) (-1869 (((-1171 |#1|) $) 51 (|has| |#1| (-365)))) (-3080 (($ (-1 |#1| |#1|) $) 263)) (-4051 (((-921) $) 98 (|has| |#1| (-370)))) (-3676 (($ $) 236 (|has| |#1| (-1199)))) (-1829 (((-1171 |#1|) $) 164)) (-2120 (($ (-644 $)) 109 (-2809 (|has| |#1| (-308)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909))))) (($ $ $) 108 (-2809 (|has| |#1| (-308)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909)))))) (-3151 (((-1157) $) 10)) (-2577 (($ $) 125 (|has| |#1| (-365)))) (-3968 (($) 151 (|has| |#1| (-351)) CONST)) (-2104 (($ (-921)) 97 (|has| |#1| (-370)))) (-2023 (($) 258)) (-2365 ((|#1| $) 255)) (-4059 (((-1119) $) 11)) (-4086 (($) 168)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) 110 (-2809 (|has| |#1| (-308)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909)))))) (-2162 (($ (-644 $)) 107 (-2809 (|has| |#1| (-308)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909))))) (($ $ $) 106 (-2809 (|has| |#1| (-308)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909)))))) (-2816 (((-644 (-2 (|:| -2325 (-566)) (|:| -3631 (-566))))) 154 (|has| |#1| (-351)))) (-1500 (((-420 (-1171 $)) (-1171 $)) 245 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))))) (-3917 (((-420 (-1171 $)) (-1171 $)) 244 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))))) (-2325 (((-420 $) $) 121 (-2809 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-365))))) (-2585 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119 (|has| |#1| (-308))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) 118 (|has| |#1| (-308)))) (-2976 (((-3 $ "failed") $ |#1|) 253 (|has| |#1| (-558))) (((-3 $ "failed") $ $) 101 (-2809 (|has| |#1| (-558)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909)))))) (-2840 (((-3 (-644 $) "failed") (-644 $) $) 112 (|has| |#1| (-308)))) (-3571 (($ $) 237 (|has| |#1| (-1199)))) (-3297 (($ $ (-644 |#1|) (-644 |#1|)) 269 (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) 268 (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) 267 (|has| |#1| (-310 |#1|))) (($ $ (-644 (-295 |#1|))) 266 (|has| |#1| (-310 |#1|))) (($ $ (-644 (-1175)) (-644 |#1|)) 265 (|has| |#1| (-516 (-1175) |#1|))) (($ $ (-1175) |#1|) 264 (|has| |#1| (-516 (-1175) |#1|)))) (-1383 (((-771) $) 114 (|has| |#1| (-308)))) (-4376 (($ $ |#1|) 270 (|has| |#1| (-287 |#1| |#1|)))) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) 115 (|has| |#1| (-308)))) (-3553 ((|#1| (-1264 $)) 54) ((|#1|) 67)) (-4107 (((-771) $) 159 (|has| |#1| (-351))) (((-3 (-771) "failed") $ $) 147 (|has| |#1| (-351)))) (-3526 (($ $ (-1 |#1| |#1|) (-771)) 131) (($ $ (-1 |#1| |#1|)) 130) (($ $ (-644 (-1175)) (-644 (-771))) 138 (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) 139 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) 140 (|has| |#1| (-900 (-1175)))) (($ $ (-1175)) 141 (|has| |#1| (-900 (-1175)))) (($ $ (-771)) 143 (-2809 (-2402 (|has| |#1| (-365)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-2402 (|has| |#1| (-233)) (|has| |#1| (-365))))) (($ $) 145 (-2809 (-2402 (|has| |#1| (-365)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-2402 (|has| |#1| (-233)) (|has| |#1| (-365)))))) (-3098 (((-689 |#1|) (-1264 $) (-1 |#1| |#1|)) 162 (|has| |#1| (-365)))) (-2301 (((-1171 |#1|)) 167)) (-3250 (($ $) 226 (|has| |#1| (-1199)))) (-3126 (($ $) 215 (|has| |#1| (-1199)))) (-3648 (($) 156 (|has| |#1| (-351)))) (-3227 (($ $) 225 (|has| |#1| (-1199)))) (-3105 (($ $) 216 (|has| |#1| (-1199)))) (-3207 (($ $) 224 (|has| |#1| (-1199)))) (-3079 (($ $) 217 (|has| |#1| (-1199)))) (-3747 (((-1264 |#1|) $ (-1264 $)) 57) (((-689 |#1|) (-1264 $) (-1264 $)) 56) (((-1264 |#1|) $) 73) (((-689 |#1|) (-1264 $)) 72)) (-3136 (((-1264 |#1|) $) 70) (($ (-1264 |#1|)) 69) (((-1171 |#1|) $) 179) (($ (-1171 |#1|)) 165) (((-892 (-566)) $) 260 (|has| |#1| (-614 (-892 (-566))))) (((-892 (-381)) $) 259 (|has| |#1| (-614 (-892 (-381))))) (((-169 (-381)) $) 211 (|has| |#1| (-1022))) (((-169 (-225)) $) 210 (|has| |#1| (-1022))) (((-538) $) 209 (|has| |#1| (-614 (-538))))) (-2664 (($ $) 257)) (-3233 (((-3 (-1264 $) "failed") (-689 $)) 153 (-2809 (-2402 (|has| $ (-145)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909)))) (|has| |#1| (-351))))) (-3657 (($ |#1| |#1|) 256)) (-2479 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 44) (($ (-409 (-566))) 95 (-2809 (|has| |#1| (-365)) (|has| |#1| (-1038 (-409 (-566)))))) (($ $) 100 (-2809 (|has| |#1| (-558)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909)))))) (-2645 (($ $) 152 (|has| |#1| (-351))) (((-3 $ "failed") $) 50 (-2809 (-2402 (|has| $ (-145)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909)))) (|has| |#1| (-145))))) (-3728 (((-1171 |#1|) $) 52)) (-1558 (((-771)) 32 T CONST)) (-3900 (((-112) $ $) 9)) (-1419 (((-1264 $)) 74)) (-3285 (($ $) 235 (|has| |#1| (-1199)))) (-3157 (($ $) 223 (|has| |#1| (-1199)))) (-1333 (((-112) $ $) 104 (-2809 (|has| |#1| (-558)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909)))))) (-3260 (($ $) 234 (|has| |#1| (-1199)))) (-3135 (($ $) 222 (|has| |#1| (-1199)))) (-3309 (($ $) 233 (|has| |#1| (-1199)))) (-3179 (($ $) 221 (|has| |#1| (-1199)))) (-3624 ((|#1| $) 251 (|has| |#1| (-1199)))) (-1861 (($ $) 232 (|has| |#1| (-1199)))) (-3190 (($ $) 220 (|has| |#1| (-1199)))) (-3299 (($ $) 231 (|has| |#1| (-1199)))) (-3168 (($ $) 219 (|has| |#1| (-1199)))) (-3273 (($ $) 230 (|has| |#1| (-1199)))) (-3148 (($ $) 218 (|has| |#1| (-1199)))) (-4298 (($ $) 252 (|has| |#1| (-1059)))) (-2446 (($) 19 T CONST)) (-2459 (($) 34 T CONST)) (-2834 (($ $ (-1 |#1| |#1|) (-771)) 133) (($ $ (-1 |#1| |#1|)) 132) (($ $ (-644 (-1175)) (-644 (-771))) 134 (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) 135 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) 136 (|has| |#1| (-900 (-1175)))) (($ $ (-1175)) 137 (|has| |#1| (-900 (-1175)))) (($ $ (-771)) 142 (-2809 (-2402 (|has| |#1| (-365)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-2402 (|has| |#1| (-233)) (|has| |#1| (-365))))) (($ $) 144 (-2809 (-2402 (|has| |#1| (-365)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-2402 (|has| |#1| (-233)) (|has| |#1| (-365)))))) (-2952 (((-112) $ $) 6)) (-3077 (($ $ $) 129 (|has| |#1| (-365)))) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-409 (-566))) 240 (-12 (|has| |#1| (-1002)) (|has| |#1| (-1199)))) (($ $ $) 238 (|has| |#1| (-1199))) (($ $ (-566)) 126 (|has| |#1| (-365)))) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-409 (-566)) $) 128 (|has| |#1| (-365))) (($ $ (-409 (-566))) 127 (|has| |#1| (-365))))) (((-166 |#1|) (-140) (-172)) (T -166)) -((-2573 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-4069 (*1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-1736 (*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-3571 (*1 *1 *2 *2) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-2287 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-2275 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-2842 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-556)))) (-1630 (*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1057)))) (-3100 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1197)))) (-1583 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-1057)) (-4 *3 (-1197)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-2929 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112)))) (-3536 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-564))))) (-3227 (*1 *2 *1) (|partial| -12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-564)))))) -(-13 (-722 |t#1| (-1169 |t#1|)) (-411 |t#1|) (-231 |t#1|) (-338 |t#1|) (-400 |t#1|) (-882 |t#1|) (-377 |t#1|) (-172) (-10 -8 (-6 -3571) (-15 -4069 ($)) (-15 -1736 ($ $)) (-15 -3571 ($ |t#1| |t#1|)) (-15 -2287 (|t#1| $)) (-15 -2275 (|t#1| $)) (-15 -2573 (|t#1| $)) (IF (|has| |t#1| (-556)) (PROGN (-6 (-556)) (-15 -2842 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-307)) (-6 (-307)) |%noBranch|) (IF (|has| |t#1| (-6 -4409)) (-6 -4409) |%noBranch|) (IF (|has| |t#1| (-6 -4406)) (-6 -4406) |%noBranch|) (IF (|has| |t#1| (-363)) (-6 (-363)) |%noBranch|) (IF (|has| |t#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1020)) (PROGN (-6 (-612 (-169 (-225)))) (-6 (-612 (-169 (-379))))) |%noBranch|) (IF (|has| |t#1| (-1057)) (-15 -1630 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1197)) (PROGN (-6 (-1197)) (-15 -3100 (|t#1| $)) (IF (|has| |t#1| (-1000)) (-6 (-1000)) |%noBranch|) (IF (|has| |t#1| (-1057)) (-15 -1583 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-545)) (PROGN (-15 -2929 ((-112) $)) (-15 -3536 ((-407 (-564)) $)) (-15 -3227 ((-3 (-407 (-564)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-907)) (IF (|has| |t#1| (-307)) (-6 (-907)) |%noBranch|) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) -2682 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-38 |#1|) . T) ((-38 $) -2682 (|has| |#1| (-556)) (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-35) |has| |#1| (-1197)) ((-95) |has| |#1| (-1197)) ((-102) . T) ((-111 #0# #0#) -2682 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2682 (|has| |#1| (-349)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-614 #0#) -2682 (|has| |#1| (-1036 (-407 (-564)))) (|has| |#1| (-349)) (|has| |#1| (-363))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-614 $) -2682 (|has| |#1| (-556)) (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-611 (-860)) . T) ((-172) . T) ((-612 (-169 (-225))) |has| |#1| (-1020)) ((-612 (-169 (-379))) |has| |#1| (-1020)) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-612 (-890 (-379))) |has| |#1| (-612 (-890 (-379)))) ((-612 (-890 (-564))) |has| |#1| (-612 (-890 (-564)))) ((-612 #1=(-1169 |#1|)) . T) ((-231 |#1|) . T) ((-233) -2682 (|has| |#1| (-349)) (|has| |#1| (-233))) ((-243) -2682 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-284) |has| |#1| (-1197)) ((-286 |#1| $) |has| |#1| (-286 |#1| |#1|)) ((-290) -2682 (|has| |#1| (-556)) (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-307) -2682 (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-309 |#1|) |has| |#1| (-309 |#1|)) ((-363) -2682 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-402) |has| |#1| (-349)) ((-368) -2682 (|has| |#1| (-368)) (|has| |#1| (-349))) ((-349) |has| |#1| (-349)) ((-370 |#1| #1#) . T) ((-409 |#1| #1#) . T) ((-338 |#1|) . T) ((-377 |#1|) . T) ((-400 |#1|) . T) ((-411 |#1|) . T) ((-452) -2682 (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-493) |has| |#1| (-1197)) ((-514 (-1173) |#1|) |has| |#1| (-514 (-1173) |#1|)) ((-514 |#1| |#1|) |has| |#1| (-309 |#1|)) ((-556) -2682 (|has| |#1| (-556)) (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-644 #0#) -2682 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-646 #0#) -2682 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-646 |#1|) . T) ((-646 $) . T) ((-638 #0#) -2682 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-638 |#1|) . T) ((-638 $) -2682 (|has| |#1| (-556)) (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-715 #0#) -2682 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-715 |#1|) . T) ((-715 $) -2682 (|has| |#1| (-556)) (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-722 |#1| #1#) . T) ((-724) . T) ((-898 (-1173)) |has| |#1| (-898 (-1173))) ((-884 (-379)) |has| |#1| (-884 (-379))) ((-884 (-564)) |has| |#1| (-884 (-564))) ((-882 |#1|) . T) ((-907) -12 (|has| |#1| (-307)) (|has| |#1| (-907))) ((-918) -2682 (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-1000) -12 (|has| |#1| (-1000)) (|has| |#1| (-1197))) ((-1036 (-407 (-564))) |has| |#1| (-1036 (-407 (-564)))) ((-1036 (-564)) |has| |#1| (-1036 (-564))) ((-1036 |#1|) . T) ((-1049 #0#) -2682 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-1049 |#1|) . T) ((-1049 $) . T) ((-1054 #0#) -2682 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-1054 |#1|) . T) ((-1054 $) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T) ((-1148) |has| |#1| (-349)) ((-1197) |has| |#1| (-1197)) ((-1200) |has| |#1| (-1197)) ((-1212) . T) ((-1216) -2682 (|has| |#1| (-349)) (|has| |#1| (-363)) (-12 (|has| |#1| (-307)) (|has| |#1| (-907))))) -((-2254 (((-418 |#2|) |#2|) 69))) -(((-167 |#1| |#2|) (-10 -7 (-15 -2254 ((-418 |#2|) |#2|))) (-307) (-1238 (-169 |#1|))) (T -167)) -((-2254 (*1 *2 *3) (-12 (-4 *4 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-167 *4 *3)) (-4 *3 (-1238 (-169 *4)))))) -(-10 -7 (-15 -2254 ((-418 |#2|) |#2|))) -((-2947 (((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|)) 14))) -(((-168 |#1| |#2|) (-10 -7 (-15 -2947 ((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|)))) (-172) (-172)) (T -168)) -((-2947 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-169 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-5 *2 (-169 *6)) (-5 *1 (-168 *5 *6))))) -(-10 -7 (-15 -2947 ((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|)))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) 34)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (-2682 (-12 (|has| |#1| (-307)) (|has| |#1| (-907))) (|has| |#1| (-556))))) (-4252 (($ $) NIL (-2682 (-12 (|has| |#1| (-307)) (|has| |#1| (-907))) (|has| |#1| (-556))))) (-1722 (((-112) $) NIL (-2682 (-12 (|has| |#1| (-307)) (|has| |#1| (-907))) (|has| |#1| (-556))))) (-1335 (((-687 |#1|) (-1262 $)) NIL) (((-687 |#1|)) NIL)) (-3778 ((|#1| $) NIL)) (-3087 (($ $) NIL (|has| |#1| (-1197)))) (-2958 (($ $) NIL (|has| |#1| (-1197)))) (-3651 (((-1185 (-919) (-769)) (-564)) NIL (|has| |#1| (-349)))) (-3085 (((-3 $ "failed") $ $) NIL)) (-4297 (((-418 (-1169 $)) (-1169 $)) NIL (-12 (|has| |#1| (-307)) (|has| |#1| (-907))))) (-1993 (($ $) NIL (-2682 (-12 (|has| |#1| (-307)) (|has| |#1| (-907))) (|has| |#1| (-363))))) (-3282 (((-418 $) $) NIL (-2682 (-12 (|has| |#1| (-307)) (|has| |#1| (-907))) (|has| |#1| (-363))))) (-2264 (($ $) NIL (-12 (|has| |#1| (-1000)) (|has| |#1| (-1197))))) (-3267 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) NIL (-12 (|has| |#1| (-307)) (|has| |#1| (-907))))) (-2134 (((-112) $ $) NIL (|has| |#1| (-307)))) (-4003 (((-769)) NIL (|has| |#1| (-368)))) (-3067 (($ $) NIL (|has| |#1| (-1197)))) (-2933 (($ $) NIL (|has| |#1| (-1197)))) (-3110 (($ $) NIL (|has| |#1| (-1197)))) (-2981 (($ $) NIL (|has| |#1| (-1197)))) (-2822 (($) NIL T CONST)) (-2849 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1036 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1036 (-407 (-564))))) (((-3 |#1| "failed") $) NIL)) (-1687 (((-564) $) NIL (|has| |#1| (-1036 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1036 (-407 (-564))))) ((|#1| $) NIL)) (-4087 (($ (-1262 |#1|) (-1262 $)) NIL) (($ (-1262 |#1|)) NIL)) (-2629 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-349)))) (-2796 (($ $ $) NIL (|has| |#1| (-307)))) (-2330 (((-687 |#1|) $ (-1262 $)) NIL) (((-687 |#1|) $) NIL)) (-3330 (((-687 (-564)) (-687 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -3544 (-687 |#1|)) (|:| |vec| (-1262 |#1|))) (-687 $) (-1262 $)) NIL) (((-687 |#1|) (-687 $)) NIL)) (-3741 (($ (-1169 |#1|)) NIL) (((-3 $ "failed") (-407 (-1169 |#1|))) NIL (|has| |#1| (-363)))) (-2675 (((-3 $ "failed") $) NIL)) (-2275 ((|#1| $) 13)) (-3227 (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-545)))) (-2929 (((-112) $) NIL (|has| |#1| (-545)))) (-3536 (((-407 (-564)) $) NIL (|has| |#1| (-545)))) (-3616 (((-919)) NIL)) (-3235 (($) NIL (|has| |#1| (-368)))) (-2808 (($ $ $) NIL (|has| |#1| (-307)))) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) NIL (|has| |#1| (-307)))) (-1427 (($) NIL (|has| |#1| (-349)))) (-4153 (((-112) $) NIL (|has| |#1| (-349)))) (-1595 (($ $ (-769)) NIL (|has| |#1| (-349))) (($ $) NIL (|has| |#1| (-349)))) (-3552 (((-112) $) NIL (-2682 (-12 (|has| |#1| (-307)) (|has| |#1| (-907))) (|has| |#1| (-363))))) (-1583 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1057)) (|has| |#1| (-1197))))) (-2833 (($) NIL (|has| |#1| (-1197)))) (-1381 (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) NIL (|has| |#1| (-884 (-564)))) (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) NIL (|has| |#1| (-884 (-379))))) (-2408 (((-919) $) NIL (|has| |#1| (-349))) (((-831 (-919)) $) NIL (|has| |#1| (-349)))) (-3163 (((-112) $) 36)) (-2024 (($ $ (-564)) NIL (-12 (|has| |#1| (-1000)) (|has| |#1| (-1197))))) (-2573 ((|#1| $) 47)) (-4382 (((-3 $ "failed") $) NIL (|has| |#1| (-349)))) (-2709 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#1| (-307)))) (-2076 (((-1169 |#1|) $) NIL (|has| |#1| (-363)))) (-2947 (($ (-1 |#1| |#1|) $) NIL)) (-2535 (((-919) $) NIL (|has| |#1| (-368)))) (-3576 (($ $) NIL (|has| |#1| (-1197)))) (-3730 (((-1169 |#1|) $) NIL)) (-2066 (($ (-642 $)) NIL (|has| |#1| (-307))) (($ $ $) NIL (|has| |#1| (-307)))) (-1778 (((-1155) $) NIL)) (-2481 (($ $) NIL (|has| |#1| (-363)))) (-3910 (($) NIL (|has| |#1| (-349)) CONST)) (-2065 (($ (-919)) NIL (|has| |#1| (-368)))) (-4069 (($) NIL)) (-2287 ((|#1| $) 15)) (-3999 (((-1117) $) NIL)) (-4043 (($) NIL)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) NIL (|has| |#1| (-307)))) (-2105 (($ (-642 $)) NIL (|has| |#1| (-307))) (($ $ $) NIL (|has| |#1| (-307)))) (-4229 (((-642 (-2 (|:| -2254 (-564)) (|:| -2817 (-564))))) NIL (|has| |#1| (-349)))) (-3223 (((-418 (-1169 $)) (-1169 $)) NIL (-12 (|has| |#1| (-307)) (|has| |#1| (-907))))) (-2236 (((-418 (-1169 $)) (-1169 $)) NIL (-12 (|has| |#1| (-307)) (|has| |#1| (-907))))) (-2254 (((-418 $) $) NIL (-2682 (-12 (|has| |#1| (-307)) (|has| |#1| (-907))) (|has| |#1| (-363))))) (-1877 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-307))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL (|has| |#1| (-307)))) (-2842 (((-3 $ "failed") $ |#1|) 45 (|has| |#1| (-556))) (((-3 $ "failed") $ $) 48 (-2682 (-12 (|has| |#1| (-307)) (|has| |#1| (-907))) (|has| |#1| (-556))))) (-1483 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#1| (-307)))) (-3466 (($ $) NIL (|has| |#1| (-1197)))) (-3154 (($ $ (-642 |#1|) (-642 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ (-642 (-294 |#1|))) NIL (|has| |#1| (-309 |#1|))) (($ $ (-642 (-1173)) (-642 |#1|)) NIL (|has| |#1| (-514 (-1173) |#1|))) (($ $ (-1173) |#1|) NIL (|has| |#1| (-514 (-1173) |#1|)))) (-4274 (((-769) $) NIL (|has| |#1| (-307)))) (-4369 (($ $ |#1|) NIL (|has| |#1| (-286 |#1| |#1|)))) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL (|has| |#1| (-307)))) (-2790 ((|#1| (-1262 $)) NIL) ((|#1|) NIL)) (-1354 (((-769) $) NIL (|has| |#1| (-349))) (((-3 (-769) "failed") $ $) NIL (|has| |#1| (-349)))) (-2199 (($ $ (-1 |#1| |#1|) (-769)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1173)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-769)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-2418 (((-687 |#1|) (-1262 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-363)))) (-1361 (((-1169 |#1|)) NIL)) (-3120 (($ $) NIL (|has| |#1| (-1197)))) (-2992 (($ $) NIL (|has| |#1| (-1197)))) (-3553 (($) NIL (|has| |#1| (-349)))) (-3098 (($ $) NIL (|has| |#1| (-1197)))) (-2971 (($ $) NIL (|has| |#1| (-1197)))) (-3077 (($ $) NIL (|has| |#1| (-1197)))) (-2946 (($ $) NIL (|has| |#1| (-1197)))) (-3719 (((-1262 |#1|) $ (-1262 $)) NIL) (((-687 |#1|) (-1262 $) (-1262 $)) NIL) (((-1262 |#1|) $) NIL) (((-687 |#1|) (-1262 $)) NIL)) (-3003 (((-1262 |#1|) $) NIL) (($ (-1262 |#1|)) NIL) (((-1169 |#1|) $) NIL) (($ (-1169 |#1|)) NIL) (((-890 (-564)) $) NIL (|has| |#1| (-612 (-890 (-564))))) (((-890 (-379)) $) NIL (|has| |#1| (-612 (-890 (-379))))) (((-169 (-379)) $) NIL (|has| |#1| (-1020))) (((-169 (-225)) $) NIL (|has| |#1| (-1020))) (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-1736 (($ $) 46)) (-3556 (((-3 (-1262 $) "failed") (-687 $)) NIL (-2682 (-12 (|has| $ (-145)) (|has| |#1| (-307)) (|has| |#1| (-907))) (|has| |#1| (-349))))) (-3571 (($ |#1| |#1|) 38)) (-2390 (((-860) $) NIL) (($ (-564)) NIL) (($ |#1|) 37) (($ (-407 (-564))) NIL (-2682 (|has| |#1| (-363)) (|has| |#1| (-1036 (-407 (-564)))))) (($ $) NIL (-2682 (-12 (|has| |#1| (-307)) (|has| |#1| (-907))) (|has| |#1| (-556))))) (-3434 (($ $) NIL (|has| |#1| (-349))) (((-3 $ "failed") $) NIL (-2682 (-12 (|has| $ (-145)) (|has| |#1| (-307)) (|has| |#1| (-907))) (|has| |#1| (-145))))) (-1308 (((-1169 |#1|) $) NIL)) (-3348 (((-769)) NIL T CONST)) (-1600 (((-112) $ $) NIL)) (-2131 (((-1262 $)) NIL)) (-3155 (($ $) NIL (|has| |#1| (-1197)))) (-3025 (($ $) NIL (|has| |#1| (-1197)))) (-1594 (((-112) $ $) NIL (-2682 (-12 (|has| |#1| (-307)) (|has| |#1| (-907))) (|has| |#1| (-556))))) (-3131 (($ $) NIL (|has| |#1| (-1197)))) (-3002 (($ $) NIL (|has| |#1| (-1197)))) (-3176 (($ $) NIL (|has| |#1| (-1197)))) (-3047 (($ $) NIL (|has| |#1| (-1197)))) (-3100 ((|#1| $) NIL (|has| |#1| (-1197)))) (-3165 (($ $) NIL (|has| |#1| (-1197)))) (-3058 (($ $) NIL (|has| |#1| (-1197)))) (-3168 (($ $) NIL (|has| |#1| (-1197)))) (-3035 (($ $) NIL (|has| |#1| (-1197)))) (-3142 (($ $) NIL (|has| |#1| (-1197)))) (-3014 (($ $) NIL (|has| |#1| (-1197)))) (-1630 (($ $) NIL (|has| |#1| (-1057)))) (-2361 (($) 28 T CONST)) (-2371 (($) 30 T CONST)) (-3816 (((-1155) $) 23 (|has| |#1| (-826))) (((-1155) $ (-112)) 25 (|has| |#1| (-826))) (((-1267) (-820) $) 26 (|has| |#1| (-826))) (((-1267) (-820) $ (-112)) 27 (|has| |#1| (-826)))) (-2711 (($ $ (-1 |#1| |#1|) (-769)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1173)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-769)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-2821 (((-112) $ $) NIL)) (-2943 (($ $ $) NIL (|has| |#1| (-363)))) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) 40)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-407 (-564))) NIL (-12 (|has| |#1| (-1000)) (|has| |#1| (-1197)))) (($ $ $) NIL (|has| |#1| (-1197))) (($ $ (-564)) NIL (|has| |#1| (-363)))) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) 43) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-407 (-564)) $) NIL (|has| |#1| (-363))) (($ $ (-407 (-564))) NIL (|has| |#1| (-363))))) -(((-169 |#1|) (-13 (-166 |#1|) (-10 -7 (IF (|has| |#1| (-826)) (-6 (-826)) |%noBranch|))) (-172)) (T -169)) -NIL -(-13 (-166 |#1|) (-10 -7 (IF (|has| |#1| (-826)) (-6 (-826)) |%noBranch|))) -((-3003 (((-890 |#1|) |#3|) 22))) -(((-170 |#1| |#2| |#3|) (-10 -7 (-15 -3003 ((-890 |#1|) |#3|))) (-1097) (-13 (-612 (-890 |#1|)) (-172)) (-166 |#2|)) (T -170)) -((-3003 (*1 *2 *3) (-12 (-4 *5 (-13 (-612 *2) (-172))) (-5 *2 (-890 *4)) (-5 *1 (-170 *4 *5 *3)) (-4 *4 (-1097)) (-4 *3 (-166 *5))))) -(-10 -7 (-15 -3003 ((-890 |#1|) |#3|))) -((-2856 (((-112) $ $) NIL)) (-3546 (((-112) $) 9)) (-3652 (((-112) $ (-112)) 11)) (-4233 (($) 13)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-3865 (($ $) 14)) (-2390 (((-860) $) 18)) (-3126 (((-112) $) 8)) (-1616 (((-112) $ (-112)) 10)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-171) (-13 (-1097) (-10 -8 (-15 -4233 ($)) (-15 -3126 ((-112) $)) (-15 -3546 ((-112) $)) (-15 -1616 ((-112) $ (-112))) (-15 -3652 ((-112) $ (-112))) (-15 -3865 ($ $))))) (T -171)) -((-4233 (*1 *1) (-5 *1 (-171))) (-3126 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-3546 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-1616 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-3652 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-3865 (*1 *1 *1) (-5 *1 (-171)))) -(-13 (-1097) (-10 -8 (-15 -4233 ($)) (-15 -3126 ((-112) $)) (-15 -3546 ((-112) $)) (-15 -1616 ((-112) $ (-112))) (-15 -3652 ((-112) $ (-112))) (-15 -3865 ($ $)))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-3085 (((-3 $ "failed") $ $) 20)) (-2822 (($) 18 T CONST)) (-2675 (((-3 $ "failed") $) 37)) (-3163 (((-112) $) 35)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2390 (((-860) $) 12) (($ (-564)) 33)) (-3348 (((-769)) 32 T CONST)) (-1600 (((-112) $ $) 9)) (-2361 (($) 19 T CONST)) (-2371 (($) 34 T CONST)) (-2821 (((-112) $ $) 6)) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27))) +((-1398 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-2023 (*1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-2664 (*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-3657 (*1 *1 *2 *2) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-2365 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-2352 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-2976 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-558)))) (-4298 (*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1059)))) (-3624 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1199)))) (-2885 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-1059)) (-4 *3 (-1199)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-2024 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-547)) (-5 *2 (-112)))) (-3330 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-547)) (-5 *2 (-409 (-566))))) (-2515 (*1 *2 *1) (|partial| -12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-547)) (-5 *2 (-409 (-566)))))) +(-13 (-724 |t#1| (-1171 |t#1|)) (-413 |t#1|) (-231 |t#1|) (-340 |t#1|) (-402 |t#1|) (-884 |t#1|) (-379 |t#1|) (-172) (-10 -8 (-6 -3657) (-15 -2023 ($)) (-15 -2664 ($ $)) (-15 -3657 ($ |t#1| |t#1|)) (-15 -2365 (|t#1| $)) (-15 -2352 (|t#1| $)) (-15 -1398 (|t#1| $)) (IF (|has| |t#1| (-558)) (PROGN (-6 (-558)) (-15 -2976 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-308)) (-6 (-308)) |%noBranch|) (IF (|has| |t#1| (-6 -4416)) (-6 -4416) |%noBranch|) (IF (|has| |t#1| (-6 -4413)) (-6 -4413) |%noBranch|) (IF (|has| |t#1| (-365)) (-6 (-365)) |%noBranch|) (IF (|has| |t#1| (-614 (-538))) (-6 (-614 (-538))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1022)) (PROGN (-6 (-614 (-169 (-225)))) (-6 (-614 (-169 (-381))))) |%noBranch|) (IF (|has| |t#1| (-1059)) (-15 -4298 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1199)) (PROGN (-6 (-1199)) (-15 -3624 (|t#1| $)) (IF (|has| |t#1| (-1002)) (-6 (-1002)) |%noBranch|) (IF (|has| |t#1| (-1059)) (-15 -2885 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-547)) (PROGN (-15 -2024 ((-112) $)) (-15 -3330 ((-409 (-566)) $)) (-15 -2515 ((-3 (-409 (-566)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-909)) (IF (|has| |t#1| (-308)) (-6 (-909)) |%noBranch|) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-409 (-566))) -2809 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-38 |#1|) . T) ((-38 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-35) |has| |#1| (-1199)) ((-95) |has| |#1| (-1199)) ((-102) . T) ((-111 #0# #0#) -2809 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2809 (|has| |#1| (-351)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-616 #0#) -2809 (|has| |#1| (-1038 (-409 (-566)))) (|has| |#1| (-351)) (|has| |#1| (-365))) ((-616 (-566)) . T) ((-616 |#1|) . T) ((-616 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-613 (-862)) . T) ((-172) . T) ((-614 (-169 (-225))) |has| |#1| (-1022)) ((-614 (-169 (-381))) |has| |#1| (-1022)) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-614 (-892 (-381))) |has| |#1| (-614 (-892 (-381)))) ((-614 (-892 (-566))) |has| |#1| (-614 (-892 (-566)))) ((-614 #1=(-1171 |#1|)) . T) ((-231 |#1|) . T) ((-233) -2809 (|has| |#1| (-351)) (|has| |#1| (-233))) ((-243) -2809 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-285) |has| |#1| (-1199)) ((-287 |#1| $) |has| |#1| (-287 |#1| |#1|)) ((-291) -2809 (|has| |#1| (-558)) (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-308) -2809 (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-310 |#1|) |has| |#1| (-310 |#1|)) ((-365) -2809 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-404) |has| |#1| (-351)) ((-370) -2809 (|has| |#1| (-370)) (|has| |#1| (-351))) ((-351) |has| |#1| (-351)) ((-372 |#1| #1#) . T) ((-411 |#1| #1#) . T) ((-340 |#1|) . T) ((-379 |#1|) . T) ((-402 |#1|) . T) ((-413 |#1|) . T) ((-454) -2809 (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-495) |has| |#1| (-1199)) ((-516 (-1175) |#1|) |has| |#1| (-516 (-1175) |#1|)) ((-516 |#1| |#1|) |has| |#1| (-310 |#1|)) ((-558) -2809 (|has| |#1| (-558)) (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-646 #0#) -2809 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #0#) -2809 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #0#) -2809 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-640 |#1|) . T) ((-640 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-639 (-566)) |has| |#1| (-639 (-566))) ((-639 |#1|) . T) ((-717 #0#) -2809 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-717 |#1|) . T) ((-717 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-724 |#1| #1#) . T) ((-726) . T) ((-900 (-1175)) |has| |#1| (-900 (-1175))) ((-886 (-381)) |has| |#1| (-886 (-381))) ((-886 (-566)) |has| |#1| (-886 (-566))) ((-884 |#1|) . T) ((-909) -12 (|has| |#1| (-308)) (|has| |#1| (-909))) ((-920) -2809 (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-1002) -12 (|has| |#1| (-1002)) (|has| |#1| (-1199))) ((-1038 (-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) ((-1038 (-566)) |has| |#1| (-1038 (-566))) ((-1038 |#1|) . T) ((-1051 #0#) -2809 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-1051 |#1|) . T) ((-1051 $) . T) ((-1056 #0#) -2809 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-1056 |#1|) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1150) |has| |#1| (-351)) ((-1199) |has| |#1| (-1199)) ((-1202) |has| |#1| (-1199)) ((-1214) . T) ((-1218) -2809 (|has| |#1| (-351)) (|has| |#1| (-365)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909))))) +((-2325 (((-420 |#2|) |#2|) 69))) +(((-167 |#1| |#2|) (-10 -7 (-15 -2325 ((-420 |#2|) |#2|))) (-308) (-1240 (-169 |#1|))) (T -167)) +((-2325 (*1 *2 *3) (-12 (-4 *4 (-308)) (-5 *2 (-420 *3)) (-5 *1 (-167 *4 *3)) (-4 *3 (-1240 (-169 *4)))))) +(-10 -7 (-15 -2325 ((-420 |#2|) |#2|))) +((-3080 (((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|)) 14))) +(((-168 |#1| |#2|) (-10 -7 (-15 -3080 ((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|)))) (-172) (-172)) (T -168)) +((-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-169 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-5 *2 (-169 *6)) (-5 *1 (-168 *5 *6))))) +(-10 -7 (-15 -3080 ((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|)))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) 34)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (-2809 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-558))))) (-3087 (($ $) NIL (-2809 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-558))))) (-1716 (((-112) $) NIL (-2809 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-558))))) (-1321 (((-689 |#1|) (-1264 $)) NIL) (((-689 |#1|)) NIL)) (-3837 ((|#1| $) NIL)) (-3219 (($ $) NIL (|has| |#1| (-1199)))) (-3091 (($ $) NIL (|has| |#1| (-1199)))) (-2568 (((-1187 (-921) (-771)) (-566)) NIL (|has| |#1| (-351)))) (-3174 (((-3 $ "failed") $ $) NIL)) (-4058 (((-420 (-1171 $)) (-1171 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-909))))) (-3980 (($ $) NIL (-2809 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-365))))) (-3348 (((-420 $) $) NIL (-2809 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-365))))) (-2338 (($ $) NIL (-12 (|has| |#1| (-1002)) (|has| |#1| (-1199))))) (-4262 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-909))))) (-2761 (((-112) $ $) NIL (|has| |#1| (-308)))) (-4049 (((-771)) NIL (|has| |#1| (-370)))) (-3197 (($ $) NIL (|has| |#1| (-1199)))) (-3067 (($ $) NIL (|has| |#1| (-1199)))) (-3240 (($ $) NIL (|has| |#1| (-1199)))) (-3115 (($ $) NIL (|has| |#1| (-1199)))) (-1811 (($) NIL T CONST)) (-2980 (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) NIL)) (-1709 (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) NIL)) (-2422 (($ (-1264 |#1|) (-1264 $)) NIL) (($ (-1264 |#1|)) NIL)) (-2713 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-351)))) (-2925 (($ $ $) NIL (|has| |#1| (-308)))) (-2087 (((-689 |#1|) $ (-1264 $)) NIL) (((-689 |#1|) $) NIL)) (-2275 (((-689 (-566)) (-689 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -4196 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) NIL) (((-689 |#1|) (-689 $)) NIL)) (-1838 (($ (-1171 |#1|)) NIL) (((-3 $ "failed") (-409 (-1171 |#1|))) NIL (|has| |#1| (-365)))) (-3757 (((-3 $ "failed") $) NIL)) (-2352 ((|#1| $) 13)) (-2515 (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-547)))) (-2024 (((-112) $) NIL (|has| |#1| (-547)))) (-3330 (((-409 (-566)) $) NIL (|has| |#1| (-547)))) (-2299 (((-921)) NIL)) (-1415 (($) NIL (|has| |#1| (-370)))) (-2937 (($ $ $) NIL (|has| |#1| (-308)))) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) NIL (|has| |#1| (-308)))) (-2409 (($) NIL (|has| |#1| (-351)))) (-1450 (((-112) $) NIL (|has| |#1| (-351)))) (-4202 (($ $ (-771)) NIL (|has| |#1| (-351))) (($ $) NIL (|has| |#1| (-351)))) (-4188 (((-112) $) NIL (-2809 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-365))))) (-2885 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1059)) (|has| |#1| (-1199))))) (-2964 (($) NIL (|has| |#1| (-1199)))) (-1542 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (|has| |#1| (-886 (-566)))) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (|has| |#1| (-886 (-381))))) (-1802 (((-921) $) NIL (|has| |#1| (-351))) (((-833 (-921)) $) NIL (|has| |#1| (-351)))) (-2264 (((-112) $) 36)) (-3146 (($ $ (-566)) NIL (-12 (|has| |#1| (-1002)) (|has| |#1| (-1199))))) (-1398 ((|#1| $) 47)) (-4278 (((-3 $ "failed") $) NIL (|has| |#1| (-351)))) (-2495 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-308)))) (-1869 (((-1171 |#1|) $) NIL (|has| |#1| (-365)))) (-3080 (($ (-1 |#1| |#1|) $) NIL)) (-4051 (((-921) $) NIL (|has| |#1| (-370)))) (-3676 (($ $) NIL (|has| |#1| (-1199)))) (-1829 (((-1171 |#1|) $) NIL)) (-2120 (($ (-644 $)) NIL (|has| |#1| (-308))) (($ $ $) NIL (|has| |#1| (-308)))) (-3151 (((-1157) $) NIL)) (-2577 (($ $) NIL (|has| |#1| (-365)))) (-3968 (($) NIL (|has| |#1| (-351)) CONST)) (-2104 (($ (-921)) NIL (|has| |#1| (-370)))) (-2023 (($) NIL)) (-2365 ((|#1| $) 15)) (-4059 (((-1119) $) NIL)) (-4086 (($) NIL)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-308)))) (-2162 (($ (-644 $)) NIL (|has| |#1| (-308))) (($ $ $) NIL (|has| |#1| (-308)))) (-2816 (((-644 (-2 (|:| -2325 (-566)) (|:| -3631 (-566))))) NIL (|has| |#1| (-351)))) (-1500 (((-420 (-1171 $)) (-1171 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-909))))) (-3917 (((-420 (-1171 $)) (-1171 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-909))))) (-2325 (((-420 $) $) NIL (-2809 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-365))))) (-2585 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-308))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL (|has| |#1| (-308)))) (-2976 (((-3 $ "failed") $ |#1|) 45 (|has| |#1| (-558))) (((-3 $ "failed") $ $) 48 (-2809 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-558))))) (-2840 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-308)))) (-3571 (($ $) NIL (|has| |#1| (-1199)))) (-3297 (($ $ (-644 |#1|) (-644 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ (-644 (-295 |#1|))) NIL (|has| |#1| (-310 |#1|))) (($ $ (-644 (-1175)) (-644 |#1|)) NIL (|has| |#1| (-516 (-1175) |#1|))) (($ $ (-1175) |#1|) NIL (|has| |#1| (-516 (-1175) |#1|)))) (-1383 (((-771) $) NIL (|has| |#1| (-308)))) (-4376 (($ $ |#1|) NIL (|has| |#1| (-287 |#1| |#1|)))) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL (|has| |#1| (-308)))) (-3553 ((|#1| (-1264 $)) NIL) ((|#1|) NIL)) (-4107 (((-771) $) NIL (|has| |#1| (-351))) (((-3 (-771) "failed") $ $) NIL (|has| |#1| (-351)))) (-3526 (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-771)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-3098 (((-689 |#1|) (-1264 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-365)))) (-2301 (((-1171 |#1|)) NIL)) (-3250 (($ $) NIL (|has| |#1| (-1199)))) (-3126 (($ $) NIL (|has| |#1| (-1199)))) (-3648 (($) NIL (|has| |#1| (-351)))) (-3227 (($ $) NIL (|has| |#1| (-1199)))) (-3105 (($ $) NIL (|has| |#1| (-1199)))) (-3207 (($ $) NIL (|has| |#1| (-1199)))) (-3079 (($ $) NIL (|has| |#1| (-1199)))) (-3747 (((-1264 |#1|) $ (-1264 $)) NIL) (((-689 |#1|) (-1264 $) (-1264 $)) NIL) (((-1264 |#1|) $) NIL) (((-689 |#1|) (-1264 $)) NIL)) (-3136 (((-1264 |#1|) $) NIL) (($ (-1264 |#1|)) NIL) (((-1171 |#1|) $) NIL) (($ (-1171 |#1|)) NIL) (((-892 (-566)) $) NIL (|has| |#1| (-614 (-892 (-566))))) (((-892 (-381)) $) NIL (|has| |#1| (-614 (-892 (-381))))) (((-169 (-381)) $) NIL (|has| |#1| (-1022))) (((-169 (-225)) $) NIL (|has| |#1| (-1022))) (((-538) $) NIL (|has| |#1| (-614 (-538))))) (-2664 (($ $) 46)) (-3233 (((-3 (-1264 $) "failed") (-689 $)) NIL (-2809 (-12 (|has| $ (-145)) (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-351))))) (-3657 (($ |#1| |#1|) 38)) (-2479 (((-862) $) NIL) (($ (-566)) NIL) (($ |#1|) 37) (($ (-409 (-566))) NIL (-2809 (|has| |#1| (-365)) (|has| |#1| (-1038 (-409 (-566)))))) (($ $) NIL (-2809 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-558))))) (-2645 (($ $) NIL (|has| |#1| (-351))) (((-3 $ "failed") $) NIL (-2809 (-12 (|has| $ (-145)) (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-145))))) (-3728 (((-1171 |#1|) $) NIL)) (-1558 (((-771)) NIL T CONST)) (-3900 (((-112) $ $) NIL)) (-1419 (((-1264 $)) NIL)) (-3285 (($ $) NIL (|has| |#1| (-1199)))) (-3157 (($ $) NIL (|has| |#1| (-1199)))) (-1333 (((-112) $ $) NIL (-2809 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-558))))) (-3260 (($ $) NIL (|has| |#1| (-1199)))) (-3135 (($ $) NIL (|has| |#1| (-1199)))) (-3309 (($ $) NIL (|has| |#1| (-1199)))) (-3179 (($ $) NIL (|has| |#1| (-1199)))) (-3624 ((|#1| $) NIL (|has| |#1| (-1199)))) (-1861 (($ $) NIL (|has| |#1| (-1199)))) (-3190 (($ $) NIL (|has| |#1| (-1199)))) (-3299 (($ $) NIL (|has| |#1| (-1199)))) (-3168 (($ $) NIL (|has| |#1| (-1199)))) (-3273 (($ $) NIL (|has| |#1| (-1199)))) (-3148 (($ $) NIL (|has| |#1| (-1199)))) (-4298 (($ $) NIL (|has| |#1| (-1059)))) (-2446 (($) 28 T CONST)) (-2459 (($) 30 T CONST)) (-2835 (((-1157) $) 23 (|has| |#1| (-828))) (((-1157) $ (-112)) 25 (|has| |#1| (-828))) (((-1269) (-822) $) 26 (|has| |#1| (-828))) (((-1269) (-822) $ (-112)) 27 (|has| |#1| (-828)))) (-2834 (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-771)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-2952 (((-112) $ $) NIL)) (-3077 (($ $ $) NIL (|has| |#1| (-365)))) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) 40)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-409 (-566))) NIL (-12 (|has| |#1| (-1002)) (|has| |#1| (-1199)))) (($ $ $) NIL (|has| |#1| (-1199))) (($ $ (-566)) NIL (|has| |#1| (-365)))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 43) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-409 (-566)) $) NIL (|has| |#1| (-365))) (($ $ (-409 (-566))) NIL (|has| |#1| (-365))))) +(((-169 |#1|) (-13 (-166 |#1|) (-10 -7 (IF (|has| |#1| (-828)) (-6 (-828)) |%noBranch|))) (-172)) (T -169)) +NIL +(-13 (-166 |#1|) (-10 -7 (IF (|has| |#1| (-828)) (-6 (-828)) |%noBranch|))) +((-3136 (((-892 |#1|) |#3|) 22))) +(((-170 |#1| |#2| |#3|) (-10 -7 (-15 -3136 ((-892 |#1|) |#3|))) (-1099) (-13 (-614 (-892 |#1|)) (-172)) (-166 |#2|)) (T -170)) +((-3136 (*1 *2 *3) (-12 (-4 *5 (-13 (-614 *2) (-172))) (-5 *2 (-892 *4)) (-5 *1 (-170 *4 *5 *3)) (-4 *4 (-1099)) (-4 *3 (-166 *5))))) +(-10 -7 (-15 -3136 ((-892 |#1|) |#3|))) +((-2986 (((-112) $ $) NIL)) (-3712 (((-112) $) 9)) (-4033 (((-112) $ (-112)) 11)) (-4259 (($) 13)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-3924 (($ $) 14)) (-2479 (((-862) $) 18)) (-3809 (((-112) $) 8)) (-1637 (((-112) $ (-112)) 10)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-171) (-13 (-1099) (-10 -8 (-15 -4259 ($)) (-15 -3809 ((-112) $)) (-15 -3712 ((-112) $)) (-15 -1637 ((-112) $ (-112))) (-15 -4033 ((-112) $ (-112))) (-15 -3924 ($ $))))) (T -171)) +((-4259 (*1 *1) (-5 *1 (-171))) (-3809 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-3712 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-1637 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-4033 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-3924 (*1 *1 *1) (-5 *1 (-171)))) +(-13 (-1099) (-10 -8 (-15 -4259 ($)) (-15 -3809 ((-112) $)) (-15 -3712 ((-112) $)) (-15 -1637 ((-112) $ (-112))) (-15 -4033 ((-112) $ (-112))) (-15 -3924 ($ $)))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-3174 (((-3 $ "failed") $ $) 20)) (-1811 (($) 18 T CONST)) (-3757 (((-3 $ "failed") $) 37)) (-2264 (((-112) $) 35)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-2479 (((-862) $) 12) (($ (-566)) 33)) (-1558 (((-771)) 32 T CONST)) (-3900 (((-112) $ $) 9)) (-2446 (($) 19 T CONST)) (-2459 (($) 34 T CONST)) (-2952 (((-112) $ $) 6)) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27))) (((-172) (-140)) (T -172)) NIL -(-13 (-1047) (-111 $ $) (-10 -7 (-6 (-4412 "*")))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-860)) . T) ((-644 (-564)) . T) ((-644 $) . T) ((-646 $) . T) ((-724) . T) ((-1049 $) . T) ((-1054 $) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T)) -((-2914 (($ $) 6))) +(-13 (-1049) (-111 $ $) (-10 -7 (-6 (-4419 "*")))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-616 (-566)) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 $) . T) ((-726) . T) ((-1051 $) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) +((-2313 (($ $) 6))) (((-173) (-140)) (T -173)) -((-2914 (*1 *1 *1) (-4 *1 (-173)))) -(-13 (-10 -8 (-15 -2914 ($ $)))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-2905 ((|#1| $) 81)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-4252 (($ $) NIL)) (-1722 (((-112) $) NIL)) (-3085 (((-3 $ "failed") $ $) NIL)) (-1993 (($ $) NIL)) (-3282 (((-418 $) $) NIL)) (-2134 (((-112) $ $) NIL)) (-2822 (($) NIL T CONST)) (-2796 (($ $ $) NIL)) (-1831 (($ $) 21)) (-3781 (($ |#1| (-1153 |#1|)) 50)) (-2675 (((-3 $ "failed") $) 123)) (-2808 (($ $ $) NIL)) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) NIL)) (-3552 (((-112) $) NIL)) (-2661 (((-1153 |#1|) $) 88)) (-4371 (((-1153 |#1|) $) 85)) (-3345 (((-1153 |#1|) $) 86)) (-3163 (((-112) $) NIL)) (-2251 (((-1153 |#1|) $) 94)) (-2709 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2066 (($ (-642 $)) NIL) (($ $ $) NIL)) (-1778 (((-1155) $) NIL)) (-2481 (($ $) NIL)) (-3999 (((-1117) $) NIL)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2105 (($ (-642 $)) NIL) (($ $ $) NIL)) (-2254 (((-418 $) $) NIL)) (-1877 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL)) (-2137 (($ $ (-564)) 97)) (-2842 (((-3 $ "failed") $ $) NIL)) (-1483 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-4274 (((-769) $) NIL)) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL)) (-2923 (((-1153 |#1|) $) 95)) (-3134 (((-1153 (-407 |#1|)) $) 14)) (-2202 (($ (-407 |#1|)) 17) (($ |#1| (-1153 |#1|) (-1153 |#1|)) 40)) (-4189 (($ $) 99)) (-2390 (((-860) $) 140) (($ (-564)) 53) (($ |#1|) 54) (($ (-407 |#1|)) 38) (($ (-407 (-564))) NIL) (($ $) NIL)) (-3348 (((-769)) 70 T CONST)) (-1600 (((-112) $ $) NIL)) (-1594 (((-112) $ $) NIL)) (-3731 (((-1153 (-407 |#1|)) $) 20)) (-2361 (($) 27 T CONST)) (-2371 (($) 30 T CONST)) (-2821 (((-112) $ $) 37)) (-2943 (($ $ $) 121)) (-2930 (($ $) 112) (($ $ $) 109)) (-2917 (($ $ $) 107)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 119) (($ $ $) 114) (($ $ |#1|) NIL) (($ |#1| $) 116) (($ (-407 |#1|) $) 117) (($ $ (-407 |#1|)) NIL) (($ (-407 (-564)) $) NIL) (($ $ (-407 (-564))) NIL))) -(((-174 |#1|) (-13 (-38 |#1|) (-38 (-407 |#1|)) (-363) (-10 -8 (-15 -2202 ($ (-407 |#1|))) (-15 -2202 ($ |#1| (-1153 |#1|) (-1153 |#1|))) (-15 -3781 ($ |#1| (-1153 |#1|))) (-15 -4371 ((-1153 |#1|) $)) (-15 -3345 ((-1153 |#1|) $)) (-15 -2661 ((-1153 |#1|) $)) (-15 -2905 (|#1| $)) (-15 -1831 ($ $)) (-15 -3731 ((-1153 (-407 |#1|)) $)) (-15 -3134 ((-1153 (-407 |#1|)) $)) (-15 -2251 ((-1153 |#1|) $)) (-15 -2923 ((-1153 |#1|) $)) (-15 -2137 ($ $ (-564))) (-15 -4189 ($ $)))) (-307)) (T -174)) -((-2202 (*1 *1 *2) (-12 (-5 *2 (-407 *3)) (-4 *3 (-307)) (-5 *1 (-174 *3)))) (-2202 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1153 *2)) (-4 *2 (-307)) (-5 *1 (-174 *2)))) (-3781 (*1 *1 *2 *3) (-12 (-5 *3 (-1153 *2)) (-4 *2 (-307)) (-5 *1 (-174 *2)))) (-4371 (*1 *2 *1) (-12 (-5 *2 (-1153 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-3345 (*1 *2 *1) (-12 (-5 *2 (-1153 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-2661 (*1 *2 *1) (-12 (-5 *2 (-1153 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-2905 (*1 *2 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307)))) (-1831 (*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307)))) (-3731 (*1 *2 *1) (-12 (-5 *2 (-1153 (-407 *3))) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-3134 (*1 *2 *1) (-12 (-5 *2 (-1153 (-407 *3))) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-2251 (*1 *2 *1) (-12 (-5 *2 (-1153 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-2923 (*1 *2 *1) (-12 (-5 *2 (-1153 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-2137 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-4189 (*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307))))) -(-13 (-38 |#1|) (-38 (-407 |#1|)) (-363) (-10 -8 (-15 -2202 ($ (-407 |#1|))) (-15 -2202 ($ |#1| (-1153 |#1|) (-1153 |#1|))) (-15 -3781 ($ |#1| (-1153 |#1|))) (-15 -4371 ((-1153 |#1|) $)) (-15 -3345 ((-1153 |#1|) $)) (-15 -2661 ((-1153 |#1|) $)) (-15 -2905 (|#1| $)) (-15 -1831 ($ $)) (-15 -3731 ((-1153 (-407 |#1|)) $)) (-15 -3134 ((-1153 (-407 |#1|)) $)) (-15 -2251 ((-1153 |#1|) $)) (-15 -2923 ((-1153 |#1|) $)) (-15 -2137 ($ $ (-564))) (-15 -4189 ($ $)))) -((-1310 (($ (-109) $) 15)) (-2427 (((-689 (-109)) (-506) $) 14)) (-2390 (((-860) $) 18)) (-1504 (((-642 (-109)) $) 8))) -(((-175) (-13 (-611 (-860)) (-10 -8 (-15 -1504 ((-642 (-109)) $)) (-15 -1310 ($ (-109) $)) (-15 -2427 ((-689 (-109)) (-506) $))))) (T -175)) -((-1504 (*1 *2 *1) (-12 (-5 *2 (-642 (-109))) (-5 *1 (-175)))) (-1310 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-175)))) (-2427 (*1 *2 *3 *1) (-12 (-5 *3 (-506)) (-5 *2 (-689 (-109))) (-5 *1 (-175))))) -(-13 (-611 (-860)) (-10 -8 (-15 -1504 ((-642 (-109)) $)) (-15 -1310 ($ (-109) $)) (-15 -2427 ((-689 (-109)) (-506) $)))) -((-2725 (((-1 (-941 |#1|) (-941 |#1|)) |#1|) 40)) (-2667 (((-941 |#1|) (-941 |#1|)) 24)) (-4384 (((-1 (-941 |#1|) (-941 |#1|)) |#1|) 36)) (-2107 (((-941 |#1|) (-941 |#1|)) 22)) (-4134 (((-941 |#1|) (-941 |#1|)) 30)) (-3694 (((-941 |#1|) (-941 |#1|)) 29)) (-1547 (((-941 |#1|) (-941 |#1|)) 28)) (-2367 (((-1 (-941 |#1|) (-941 |#1|)) |#1|) 37)) (-1629 (((-1 (-941 |#1|) (-941 |#1|)) |#1|) 35)) (-3169 (((-1 (-941 |#1|) (-941 |#1|)) |#1|) 34)) (-1728 (((-941 |#1|) (-941 |#1|)) 23)) (-3864 (((-1 (-941 |#1|) (-941 |#1|)) |#1| |#1|) 43)) (-3866 (((-941 |#1|) (-941 |#1|)) 8)) (-3547 (((-1 (-941 |#1|) (-941 |#1|)) |#1|) 39)) (-2637 (((-1 (-941 |#1|) (-941 |#1|)) |#1|) 38))) -(((-176 |#1|) (-10 -7 (-15 -3866 ((-941 |#1|) (-941 |#1|))) (-15 -2107 ((-941 |#1|) (-941 |#1|))) (-15 -1728 ((-941 |#1|) (-941 |#1|))) (-15 -2667 ((-941 |#1|) (-941 |#1|))) (-15 -1547 ((-941 |#1|) (-941 |#1|))) (-15 -3694 ((-941 |#1|) (-941 |#1|))) (-15 -4134 ((-941 |#1|) (-941 |#1|))) (-15 -3169 ((-1 (-941 |#1|) (-941 |#1|)) |#1|)) (-15 -1629 ((-1 (-941 |#1|) (-941 |#1|)) |#1|)) (-15 -4384 ((-1 (-941 |#1|) (-941 |#1|)) |#1|)) (-15 -2367 ((-1 (-941 |#1|) (-941 |#1|)) |#1|)) (-15 -2637 ((-1 (-941 |#1|) (-941 |#1|)) |#1|)) (-15 -3547 ((-1 (-941 |#1|) (-941 |#1|)) |#1|)) (-15 -2725 ((-1 (-941 |#1|) (-941 |#1|)) |#1|)) (-15 -3864 ((-1 (-941 |#1|) (-941 |#1|)) |#1| |#1|))) (-13 (-363) (-1197) (-1000))) (T -176)) -((-3864 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-941 *3) (-941 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1197) (-1000))))) (-2725 (*1 *2 *3) (-12 (-5 *2 (-1 (-941 *3) (-941 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1197) (-1000))))) (-3547 (*1 *2 *3) (-12 (-5 *2 (-1 (-941 *3) (-941 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1197) (-1000))))) (-2637 (*1 *2 *3) (-12 (-5 *2 (-1 (-941 *3) (-941 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1197) (-1000))))) (-2367 (*1 *2 *3) (-12 (-5 *2 (-1 (-941 *3) (-941 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1197) (-1000))))) (-4384 (*1 *2 *3) (-12 (-5 *2 (-1 (-941 *3) (-941 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1197) (-1000))))) (-1629 (*1 *2 *3) (-12 (-5 *2 (-1 (-941 *3) (-941 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1197) (-1000))))) (-3169 (*1 *2 *3) (-12 (-5 *2 (-1 (-941 *3) (-941 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1197) (-1000))))) (-4134 (*1 *2 *2) (-12 (-5 *2 (-941 *3)) (-4 *3 (-13 (-363) (-1197) (-1000))) (-5 *1 (-176 *3)))) (-3694 (*1 *2 *2) (-12 (-5 *2 (-941 *3)) (-4 *3 (-13 (-363) (-1197) (-1000))) (-5 *1 (-176 *3)))) (-1547 (*1 *2 *2) (-12 (-5 *2 (-941 *3)) (-4 *3 (-13 (-363) (-1197) (-1000))) (-5 *1 (-176 *3)))) (-2667 (*1 *2 *2) (-12 (-5 *2 (-941 *3)) (-4 *3 (-13 (-363) (-1197) (-1000))) (-5 *1 (-176 *3)))) (-1728 (*1 *2 *2) (-12 (-5 *2 (-941 *3)) (-4 *3 (-13 (-363) (-1197) (-1000))) (-5 *1 (-176 *3)))) (-2107 (*1 *2 *2) (-12 (-5 *2 (-941 *3)) (-4 *3 (-13 (-363) (-1197) (-1000))) (-5 *1 (-176 *3)))) (-3866 (*1 *2 *2) (-12 (-5 *2 (-941 *3)) (-4 *3 (-13 (-363) (-1197) (-1000))) (-5 *1 (-176 *3))))) -(-10 -7 (-15 -3866 ((-941 |#1|) (-941 |#1|))) (-15 -2107 ((-941 |#1|) (-941 |#1|))) (-15 -1728 ((-941 |#1|) (-941 |#1|))) (-15 -2667 ((-941 |#1|) (-941 |#1|))) (-15 -1547 ((-941 |#1|) (-941 |#1|))) (-15 -3694 ((-941 |#1|) (-941 |#1|))) (-15 -4134 ((-941 |#1|) (-941 |#1|))) (-15 -3169 ((-1 (-941 |#1|) (-941 |#1|)) |#1|)) (-15 -1629 ((-1 (-941 |#1|) (-941 |#1|)) |#1|)) (-15 -4384 ((-1 (-941 |#1|) (-941 |#1|)) |#1|)) (-15 -2367 ((-1 (-941 |#1|) (-941 |#1|)) |#1|)) (-15 -2637 ((-1 (-941 |#1|) (-941 |#1|)) |#1|)) (-15 -3547 ((-1 (-941 |#1|) (-941 |#1|)) |#1|)) (-15 -2725 ((-1 (-941 |#1|) (-941 |#1|)) |#1|)) (-15 -3864 ((-1 (-941 |#1|) (-941 |#1|)) |#1| |#1|))) -((-1308 ((|#2| |#3|) 28))) -(((-177 |#1| |#2| |#3|) (-10 -7 (-15 -1308 (|#2| |#3|))) (-172) (-1238 |#1|) (-722 |#1| |#2|)) (T -177)) -((-1308 (*1 *2 *3) (-12 (-4 *4 (-172)) (-4 *2 (-1238 *4)) (-5 *1 (-177 *4 *2 *3)) (-4 *3 (-722 *4 *2))))) -(-10 -7 (-15 -1308 (|#2| |#3|))) -((-1381 (((-887 |#1| |#3|) |#3| (-890 |#1|) (-887 |#1| |#3|)) 44 (|has| (-950 |#2|) (-884 |#1|))))) -(((-178 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-950 |#2|) (-884 |#1|)) (-15 -1381 ((-887 |#1| |#3|) |#3| (-890 |#1|) (-887 |#1| |#3|))) |%noBranch|)) (-1097) (-13 (-884 |#1|) (-172)) (-166 |#2|)) (T -178)) -((-1381 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-887 *5 *3)) (-5 *4 (-890 *5)) (-4 *5 (-1097)) (-4 *3 (-166 *6)) (-4 (-950 *6) (-884 *5)) (-4 *6 (-13 (-884 *5) (-172))) (-5 *1 (-178 *5 *6 *3))))) -(-10 -7 (IF (|has| (-950 |#2|) (-884 |#1|)) (-15 -1381 ((-887 |#1| |#3|) |#3| (-890 |#1|) (-887 |#1| |#3|))) |%noBranch|)) -((-2362 (((-642 |#1|) (-642 |#1|) |#1|) 41)) (-1816 (((-642 |#1|) |#1| (-642 |#1|)) 20)) (-2320 (((-642 |#1|) (-642 (-642 |#1|)) (-642 |#1|)) 36) ((|#1| (-642 |#1|) (-642 |#1|)) 32))) -(((-179 |#1|) (-10 -7 (-15 -1816 ((-642 |#1|) |#1| (-642 |#1|))) (-15 -2320 (|#1| (-642 |#1|) (-642 |#1|))) (-15 -2320 ((-642 |#1|) (-642 (-642 |#1|)) (-642 |#1|))) (-15 -2362 ((-642 |#1|) (-642 |#1|) |#1|))) (-307)) (T -179)) -((-2362 (*1 *2 *2 *3) (-12 (-5 *2 (-642 *3)) (-4 *3 (-307)) (-5 *1 (-179 *3)))) (-2320 (*1 *2 *3 *2) (-12 (-5 *3 (-642 (-642 *4))) (-5 *2 (-642 *4)) (-4 *4 (-307)) (-5 *1 (-179 *4)))) (-2320 (*1 *2 *3 *3) (-12 (-5 *3 (-642 *2)) (-5 *1 (-179 *2)) (-4 *2 (-307)))) (-1816 (*1 *2 *3 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-307)) (-5 *1 (-179 *3))))) -(-10 -7 (-15 -1816 ((-642 |#1|) |#1| (-642 |#1|))) (-15 -2320 (|#1| (-642 |#1|) (-642 |#1|))) (-15 -2320 ((-642 |#1|) (-642 (-642 |#1|)) (-642 |#1|))) (-15 -2362 ((-642 |#1|) (-642 |#1|) |#1|))) -((-2856 (((-112) $ $) NIL)) (-3775 (((-1211) $) 13)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-1359 (((-1132) $) 10)) (-2390 (((-860) $) 20) (($ (-1178)) NIL) (((-1178) $) NIL)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-180) (-13 (-1080) (-10 -8 (-15 -1359 ((-1132) $)) (-15 -3775 ((-1211) $))))) (T -180)) -((-1359 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-180)))) (-3775 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-180))))) -(-13 (-1080) (-10 -8 (-15 -1359 ((-1132) $)) (-15 -3775 ((-1211) $)))) -((-1818 (((-2 (|:| |start| |#2|) (|:| -1569 (-418 |#2|))) |#2|) 66)) (-3258 ((|#1| |#1|) 58)) (-2255 (((-169 |#1|) |#2|) 93)) (-4339 ((|#1| |#2|) 141) ((|#1| |#2| |#1|) 90)) (-4070 ((|#2| |#2|) 91)) (-4024 (((-418 |#2|) |#2| |#1|) 121) (((-418 |#2|) |#2| |#1| (-112)) 88)) (-2573 ((|#1| |#2|) 120)) (-2760 ((|#2| |#2|) 135)) (-2254 (((-418 |#2|) |#2|) 158) (((-418 |#2|) |#2| |#1|) 33) (((-418 |#2|) |#2| |#1| (-112)) 157)) (-4185 (((-642 (-2 (|:| -1569 (-642 |#2|)) (|:| -1437 |#1|))) |#2| |#2|) 156) (((-642 (-2 (|:| -1569 (-642 |#2|)) (|:| -1437 |#1|))) |#2| |#2| (-112)) 81)) (-2701 (((-642 (-169 |#1|)) |#2| |#1|) 42) (((-642 (-169 |#1|)) |#2|) 43))) -(((-181 |#1| |#2|) (-10 -7 (-15 -2701 ((-642 (-169 |#1|)) |#2|)) (-15 -2701 ((-642 (-169 |#1|)) |#2| |#1|)) (-15 -4185 ((-642 (-2 (|:| -1569 (-642 |#2|)) (|:| -1437 |#1|))) |#2| |#2| (-112))) (-15 -4185 ((-642 (-2 (|:| -1569 (-642 |#2|)) (|:| -1437 |#1|))) |#2| |#2|)) (-15 -2254 ((-418 |#2|) |#2| |#1| (-112))) (-15 -2254 ((-418 |#2|) |#2| |#1|)) (-15 -2254 ((-418 |#2|) |#2|)) (-15 -2760 (|#2| |#2|)) (-15 -2573 (|#1| |#2|)) (-15 -4024 ((-418 |#2|) |#2| |#1| (-112))) (-15 -4024 ((-418 |#2|) |#2| |#1|)) (-15 -4070 (|#2| |#2|)) (-15 -4339 (|#1| |#2| |#1|)) (-15 -4339 (|#1| |#2|)) (-15 -2255 ((-169 |#1|) |#2|)) (-15 -3258 (|#1| |#1|)) (-15 -1818 ((-2 (|:| |start| |#2|) (|:| -1569 (-418 |#2|))) |#2|))) (-13 (-363) (-846)) (-1238 (-169 |#1|))) (T -181)) -((-1818 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-846))) (-5 *2 (-2 (|:| |start| *3) (|:| -1569 (-418 *3)))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1238 (-169 *4))))) (-3258 (*1 *2 *2) (-12 (-4 *2 (-13 (-363) (-846))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1238 (-169 *2))))) (-2255 (*1 *2 *3) (-12 (-5 *2 (-169 *4)) (-5 *1 (-181 *4 *3)) (-4 *4 (-13 (-363) (-846))) (-4 *3 (-1238 *2)))) (-4339 (*1 *2 *3) (-12 (-4 *2 (-13 (-363) (-846))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1238 (-169 *2))))) (-4339 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-363) (-846))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1238 (-169 *2))))) (-4070 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-846))) (-5 *1 (-181 *3 *2)) (-4 *2 (-1238 (-169 *3))))) (-4024 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-363) (-846))) (-5 *2 (-418 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1238 (-169 *4))))) (-4024 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-363) (-846))) (-5 *2 (-418 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1238 (-169 *4))))) (-2573 (*1 *2 *3) (-12 (-4 *2 (-13 (-363) (-846))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1238 (-169 *2))))) (-2760 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-846))) (-5 *1 (-181 *3 *2)) (-4 *2 (-1238 (-169 *3))))) (-2254 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-846))) (-5 *2 (-418 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1238 (-169 *4))))) (-2254 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-363) (-846))) (-5 *2 (-418 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1238 (-169 *4))))) (-2254 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-363) (-846))) (-5 *2 (-418 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1238 (-169 *4))))) (-4185 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-363) (-846))) (-5 *2 (-642 (-2 (|:| -1569 (-642 *3)) (|:| -1437 *4)))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1238 (-169 *4))))) (-4185 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-363) (-846))) (-5 *2 (-642 (-2 (|:| -1569 (-642 *3)) (|:| -1437 *5)))) (-5 *1 (-181 *5 *3)) (-4 *3 (-1238 (-169 *5))))) (-2701 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-363) (-846))) (-5 *2 (-642 (-169 *4))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1238 (-169 *4))))) (-2701 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-846))) (-5 *2 (-642 (-169 *4))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1238 (-169 *4)))))) -(-10 -7 (-15 -2701 ((-642 (-169 |#1|)) |#2|)) (-15 -2701 ((-642 (-169 |#1|)) |#2| |#1|)) (-15 -4185 ((-642 (-2 (|:| -1569 (-642 |#2|)) (|:| -1437 |#1|))) |#2| |#2| (-112))) (-15 -4185 ((-642 (-2 (|:| -1569 (-642 |#2|)) (|:| -1437 |#1|))) |#2| |#2|)) (-15 -2254 ((-418 |#2|) |#2| |#1| (-112))) (-15 -2254 ((-418 |#2|) |#2| |#1|)) (-15 -2254 ((-418 |#2|) |#2|)) (-15 -2760 (|#2| |#2|)) (-15 -2573 (|#1| |#2|)) (-15 -4024 ((-418 |#2|) |#2| |#1| (-112))) (-15 -4024 ((-418 |#2|) |#2| |#1|)) (-15 -4070 (|#2| |#2|)) (-15 -4339 (|#1| |#2| |#1|)) (-15 -4339 (|#1| |#2|)) (-15 -2255 ((-169 |#1|) |#2|)) (-15 -3258 (|#1| |#1|)) (-15 -1818 ((-2 (|:| |start| |#2|) (|:| -1569 (-418 |#2|))) |#2|))) -((-4031 (((-3 |#2| "failed") |#2|) 20)) (-1527 (((-769) |#2|) 23)) (-1653 ((|#2| |#2| |#2|) 25))) -(((-182 |#1| |#2|) (-10 -7 (-15 -4031 ((-3 |#2| "failed") |#2|)) (-15 -1527 ((-769) |#2|)) (-15 -1653 (|#2| |#2| |#2|))) (-1212) (-672 |#1|)) (T -182)) -((-1653 (*1 *2 *2 *2) (-12 (-4 *3 (-1212)) (-5 *1 (-182 *3 *2)) (-4 *2 (-672 *3)))) (-1527 (*1 *2 *3) (-12 (-4 *4 (-1212)) (-5 *2 (-769)) (-5 *1 (-182 *4 *3)) (-4 *3 (-672 *4)))) (-4031 (*1 *2 *2) (|partial| -12 (-4 *3 (-1212)) (-5 *1 (-182 *3 *2)) (-4 *2 (-672 *3))))) -(-10 -7 (-15 -4031 ((-3 |#2| "failed") |#2|)) (-15 -1527 ((-769) |#2|)) (-15 -1653 (|#2| |#2| |#2|))) -((-2856 (((-112) $ $) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-1500 (((-187) $) 7)) (-2390 (((-860) $) 14)) (-1600 (((-112) $ $) NIL)) (-2095 (((-642 (-1178)) $) 10)) (-2821 (((-112) $ $) 12))) -(((-183) (-13 (-1097) (-10 -8 (-15 -1500 ((-187) $)) (-15 -2095 ((-642 (-1178)) $))))) (T -183)) -((-1500 (*1 *2 *1) (-12 (-5 *2 (-187)) (-5 *1 (-183)))) (-2095 (*1 *2 *1) (-12 (-5 *2 (-642 (-1178))) (-5 *1 (-183))))) -(-13 (-1097) (-10 -8 (-15 -1500 ((-187) $)) (-15 -2095 ((-642 (-1178)) $)))) -((-3458 (((-642 (-863)) $) 16)) (-1623 (((-186) $) 8)) (-2342 (((-642 (-112)) $) 13)) (-2634 (((-55) $) 10))) -(((-184 |#1|) (-10 -8 (-15 -3458 ((-642 (-863)) |#1|)) (-15 -2342 ((-642 (-112)) |#1|)) (-15 -1623 ((-186) |#1|)) (-15 -2634 ((-55) |#1|))) (-185)) (T -184)) -NIL -(-10 -8 (-15 -3458 ((-642 (-863)) |#1|)) (-15 -2342 ((-642 (-112)) |#1|)) (-15 -1623 ((-186) |#1|)) (-15 -2634 ((-55) |#1|))) -((-2856 (((-112) $ $) 7)) (-3458 (((-642 (-863)) $) 19)) (-2493 (((-506) $) 16)) (-1778 (((-1155) $) 10)) (-1623 (((-186) $) 21)) (-1462 (((-112) $ (-506)) 14)) (-3999 (((-1117) $) 11)) (-2342 (((-642 (-112)) $) 20)) (-2390 (((-860) $) 12)) (-1600 (((-112) $ $) 9)) (-2634 (((-55) $) 15)) (-2821 (((-112) $ $) 6))) +((-2313 (*1 *1 *1) (-4 *1 (-173)))) +(-13 (-10 -8 (-15 -2313 ($ $)))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-2488 ((|#1| $) 81)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-1716 (((-112) $) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-3980 (($ $) NIL)) (-3348 (((-420 $) $) NIL)) (-2761 (((-112) $ $) NIL)) (-1811 (($) NIL T CONST)) (-2925 (($ $ $) NIL)) (-2817 (($ $) 21)) (-2123 (($ |#1| (-1155 |#1|)) 50)) (-3757 (((-3 $ "failed") $) 123)) (-2937 (($ $ $) NIL)) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) NIL)) (-4188 (((-112) $) NIL)) (-3109 (((-1155 |#1|) $) 88)) (-2449 (((-1155 |#1|) $) 85)) (-3912 (((-1155 |#1|) $) 86)) (-2264 (((-112) $) NIL)) (-2311 (((-1155 |#1|) $) 94)) (-2495 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2120 (($ (-644 $)) NIL) (($ $ $) NIL)) (-3151 (((-1157) $) NIL)) (-2577 (($ $) NIL)) (-4059 (((-1119) $) NIL)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2162 (($ (-644 $)) NIL) (($ $ $) NIL)) (-2325 (((-420 $) $) NIL)) (-2585 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL)) (-2050 (($ $ (-566)) 97)) (-2976 (((-3 $ "failed") $ $) NIL)) (-2840 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1383 (((-771) $) NIL)) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL)) (-2048 (((-1155 |#1|) $) 95)) (-2614 (((-1155 (-409 |#1|)) $) 14)) (-3253 (($ (-409 |#1|)) 17) (($ |#1| (-1155 |#1|) (-1155 |#1|)) 40)) (-4122 (($ $) 99)) (-2479 (((-862) $) 140) (($ (-566)) 53) (($ |#1|) 54) (($ (-409 |#1|)) 38) (($ (-409 (-566))) NIL) (($ $) NIL)) (-1558 (((-771)) 70 T CONST)) (-3900 (((-112) $ $) NIL)) (-1333 (((-112) $ $) NIL)) (-2545 (((-1155 (-409 |#1|)) $) 20)) (-2446 (($) 27 T CONST)) (-2459 (($) 30 T CONST)) (-2952 (((-112) $ $) 37)) (-3077 (($ $ $) 121)) (-3065 (($ $) 112) (($ $ $) 109)) (-3052 (($ $ $) 107)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 119) (($ $ $) 114) (($ $ |#1|) NIL) (($ |#1| $) 116) (($ (-409 |#1|) $) 117) (($ $ (-409 |#1|)) NIL) (($ (-409 (-566)) $) NIL) (($ $ (-409 (-566))) NIL))) +(((-174 |#1|) (-13 (-38 |#1|) (-38 (-409 |#1|)) (-365) (-10 -8 (-15 -3253 ($ (-409 |#1|))) (-15 -3253 ($ |#1| (-1155 |#1|) (-1155 |#1|))) (-15 -2123 ($ |#1| (-1155 |#1|))) (-15 -2449 ((-1155 |#1|) $)) (-15 -3912 ((-1155 |#1|) $)) (-15 -3109 ((-1155 |#1|) $)) (-15 -2488 (|#1| $)) (-15 -2817 ($ $)) (-15 -2545 ((-1155 (-409 |#1|)) $)) (-15 -2614 ((-1155 (-409 |#1|)) $)) (-15 -2311 ((-1155 |#1|) $)) (-15 -2048 ((-1155 |#1|) $)) (-15 -2050 ($ $ (-566))) (-15 -4122 ($ $)))) (-308)) (T -174)) +((-3253 (*1 *1 *2) (-12 (-5 *2 (-409 *3)) (-4 *3 (-308)) (-5 *1 (-174 *3)))) (-3253 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1155 *2)) (-4 *2 (-308)) (-5 *1 (-174 *2)))) (-2123 (*1 *1 *2 *3) (-12 (-5 *3 (-1155 *2)) (-4 *2 (-308)) (-5 *1 (-174 *2)))) (-2449 (*1 *2 *1) (-12 (-5 *2 (-1155 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-3912 (*1 *2 *1) (-12 (-5 *2 (-1155 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-3109 (*1 *2 *1) (-12 (-5 *2 (-1155 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-2488 (*1 *2 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308)))) (-2817 (*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308)))) (-2545 (*1 *2 *1) (-12 (-5 *2 (-1155 (-409 *3))) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-2614 (*1 *2 *1) (-12 (-5 *2 (-1155 (-409 *3))) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-2311 (*1 *2 *1) (-12 (-5 *2 (-1155 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-2048 (*1 *2 *1) (-12 (-5 *2 (-1155 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-2050 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-4122 (*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308))))) +(-13 (-38 |#1|) (-38 (-409 |#1|)) (-365) (-10 -8 (-15 -3253 ($ (-409 |#1|))) (-15 -3253 ($ |#1| (-1155 |#1|) (-1155 |#1|))) (-15 -2123 ($ |#1| (-1155 |#1|))) (-15 -2449 ((-1155 |#1|) $)) (-15 -3912 ((-1155 |#1|) $)) (-15 -3109 ((-1155 |#1|) $)) (-15 -2488 (|#1| $)) (-15 -2817 ($ $)) (-15 -2545 ((-1155 (-409 |#1|)) $)) (-15 -2614 ((-1155 (-409 |#1|)) $)) (-15 -2311 ((-1155 |#1|) $)) (-15 -2048 ((-1155 |#1|) $)) (-15 -2050 ($ $ (-566))) (-15 -4122 ($ $)))) +((-2846 (($ (-109) $) 15)) (-2044 (((-691 (-109)) (-508) $) 14)) (-2479 (((-862) $) 18)) (-2576 (((-644 (-109)) $) 8))) +(((-175) (-13 (-613 (-862)) (-10 -8 (-15 -2576 ((-644 (-109)) $)) (-15 -2846 ($ (-109) $)) (-15 -2044 ((-691 (-109)) (-508) $))))) (T -175)) +((-2576 (*1 *2 *1) (-12 (-5 *2 (-644 (-109))) (-5 *1 (-175)))) (-2846 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-175)))) (-2044 (*1 *2 *3 *1) (-12 (-5 *3 (-508)) (-5 *2 (-691 (-109))) (-5 *1 (-175))))) +(-13 (-613 (-862)) (-10 -8 (-15 -2576 ((-644 (-109)) $)) (-15 -2846 ($ (-109) $)) (-15 -2044 ((-691 (-109)) (-508) $)))) +((-2026 (((-1 (-943 |#1|) (-943 |#1|)) |#1|) 40)) (-2220 (((-943 |#1|) (-943 |#1|)) 24)) (-3161 (((-1 (-943 |#1|) (-943 |#1|)) |#1|) 36)) (-2361 (((-943 |#1|) (-943 |#1|)) 22)) (-3544 (((-943 |#1|) (-943 |#1|)) 30)) (-2307 (((-943 |#1|) (-943 |#1|)) 29)) (-3515 (((-943 |#1|) (-943 |#1|)) 28)) (-3742 (((-1 (-943 |#1|) (-943 |#1|)) |#1|) 37)) (-2066 (((-1 (-943 |#1|) (-943 |#1|)) |#1|) 35)) (-3535 (((-1 (-943 |#1|) (-943 |#1|)) |#1|) 34)) (-3259 (((-943 |#1|) (-943 |#1|)) 23)) (-2231 (((-1 (-943 |#1|) (-943 |#1|)) |#1| |#1|) 43)) (-3776 (((-943 |#1|) (-943 |#1|)) 8)) (-3294 (((-1 (-943 |#1|) (-943 |#1|)) |#1|) 39)) (-3082 (((-1 (-943 |#1|) (-943 |#1|)) |#1|) 38))) +(((-176 |#1|) (-10 -7 (-15 -3776 ((-943 |#1|) (-943 |#1|))) (-15 -2361 ((-943 |#1|) (-943 |#1|))) (-15 -3259 ((-943 |#1|) (-943 |#1|))) (-15 -2220 ((-943 |#1|) (-943 |#1|))) (-15 -3515 ((-943 |#1|) (-943 |#1|))) (-15 -2307 ((-943 |#1|) (-943 |#1|))) (-15 -3544 ((-943 |#1|) (-943 |#1|))) (-15 -3535 ((-1 (-943 |#1|) (-943 |#1|)) |#1|)) (-15 -2066 ((-1 (-943 |#1|) (-943 |#1|)) |#1|)) (-15 -3161 ((-1 (-943 |#1|) (-943 |#1|)) |#1|)) (-15 -3742 ((-1 (-943 |#1|) (-943 |#1|)) |#1|)) (-15 -3082 ((-1 (-943 |#1|) (-943 |#1|)) |#1|)) (-15 -3294 ((-1 (-943 |#1|) (-943 |#1|)) |#1|)) (-15 -2026 ((-1 (-943 |#1|) (-943 |#1|)) |#1|)) (-15 -2231 ((-1 (-943 |#1|) (-943 |#1|)) |#1| |#1|))) (-13 (-365) (-1199) (-1002))) (T -176)) +((-2231 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-943 *3) (-943 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1199) (-1002))))) (-2026 (*1 *2 *3) (-12 (-5 *2 (-1 (-943 *3) (-943 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1199) (-1002))))) (-3294 (*1 *2 *3) (-12 (-5 *2 (-1 (-943 *3) (-943 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1199) (-1002))))) (-3082 (*1 *2 *3) (-12 (-5 *2 (-1 (-943 *3) (-943 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1199) (-1002))))) (-3742 (*1 *2 *3) (-12 (-5 *2 (-1 (-943 *3) (-943 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1199) (-1002))))) (-3161 (*1 *2 *3) (-12 (-5 *2 (-1 (-943 *3) (-943 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1199) (-1002))))) (-2066 (*1 *2 *3) (-12 (-5 *2 (-1 (-943 *3) (-943 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1199) (-1002))))) (-3535 (*1 *2 *3) (-12 (-5 *2 (-1 (-943 *3) (-943 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1199) (-1002))))) (-3544 (*1 *2 *2) (-12 (-5 *2 (-943 *3)) (-4 *3 (-13 (-365) (-1199) (-1002))) (-5 *1 (-176 *3)))) (-2307 (*1 *2 *2) (-12 (-5 *2 (-943 *3)) (-4 *3 (-13 (-365) (-1199) (-1002))) (-5 *1 (-176 *3)))) (-3515 (*1 *2 *2) (-12 (-5 *2 (-943 *3)) (-4 *3 (-13 (-365) (-1199) (-1002))) (-5 *1 (-176 *3)))) (-2220 (*1 *2 *2) (-12 (-5 *2 (-943 *3)) (-4 *3 (-13 (-365) (-1199) (-1002))) (-5 *1 (-176 *3)))) (-3259 (*1 *2 *2) (-12 (-5 *2 (-943 *3)) (-4 *3 (-13 (-365) (-1199) (-1002))) (-5 *1 (-176 *3)))) (-2361 (*1 *2 *2) (-12 (-5 *2 (-943 *3)) (-4 *3 (-13 (-365) (-1199) (-1002))) (-5 *1 (-176 *3)))) (-3776 (*1 *2 *2) (-12 (-5 *2 (-943 *3)) (-4 *3 (-13 (-365) (-1199) (-1002))) (-5 *1 (-176 *3))))) +(-10 -7 (-15 -3776 ((-943 |#1|) (-943 |#1|))) (-15 -2361 ((-943 |#1|) (-943 |#1|))) (-15 -3259 ((-943 |#1|) (-943 |#1|))) (-15 -2220 ((-943 |#1|) (-943 |#1|))) (-15 -3515 ((-943 |#1|) (-943 |#1|))) (-15 -2307 ((-943 |#1|) (-943 |#1|))) (-15 -3544 ((-943 |#1|) (-943 |#1|))) (-15 -3535 ((-1 (-943 |#1|) (-943 |#1|)) |#1|)) (-15 -2066 ((-1 (-943 |#1|) (-943 |#1|)) |#1|)) (-15 -3161 ((-1 (-943 |#1|) (-943 |#1|)) |#1|)) (-15 -3742 ((-1 (-943 |#1|) (-943 |#1|)) |#1|)) (-15 -3082 ((-1 (-943 |#1|) (-943 |#1|)) |#1|)) (-15 -3294 ((-1 (-943 |#1|) (-943 |#1|)) |#1|)) (-15 -2026 ((-1 (-943 |#1|) (-943 |#1|)) |#1|)) (-15 -2231 ((-1 (-943 |#1|) (-943 |#1|)) |#1| |#1|))) +((-3728 ((|#2| |#3|) 28))) +(((-177 |#1| |#2| |#3|) (-10 -7 (-15 -3728 (|#2| |#3|))) (-172) (-1240 |#1|) (-724 |#1| |#2|)) (T -177)) +((-3728 (*1 *2 *3) (-12 (-4 *4 (-172)) (-4 *2 (-1240 *4)) (-5 *1 (-177 *4 *2 *3)) (-4 *3 (-724 *4 *2))))) +(-10 -7 (-15 -3728 (|#2| |#3|))) +((-1542 (((-889 |#1| |#3|) |#3| (-892 |#1|) (-889 |#1| |#3|)) 44 (|has| (-952 |#2|) (-886 |#1|))))) +(((-178 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-952 |#2|) (-886 |#1|)) (-15 -1542 ((-889 |#1| |#3|) |#3| (-892 |#1|) (-889 |#1| |#3|))) |%noBranch|)) (-1099) (-13 (-886 |#1|) (-172)) (-166 |#2|)) (T -178)) +((-1542 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-889 *5 *3)) (-5 *4 (-892 *5)) (-4 *5 (-1099)) (-4 *3 (-166 *6)) (-4 (-952 *6) (-886 *5)) (-4 *6 (-13 (-886 *5) (-172))) (-5 *1 (-178 *5 *6 *3))))) +(-10 -7 (IF (|has| (-952 |#2|) (-886 |#1|)) (-15 -1542 ((-889 |#1| |#3|) |#3| (-892 |#1|) (-889 |#1| |#3|))) |%noBranch|)) +((-3824 (((-644 |#1|) (-644 |#1|) |#1|) 41)) (-4036 (((-644 |#1|) |#1| (-644 |#1|)) 20)) (-1300 (((-644 |#1|) (-644 (-644 |#1|)) (-644 |#1|)) 36) ((|#1| (-644 |#1|) (-644 |#1|)) 32))) +(((-179 |#1|) (-10 -7 (-15 -4036 ((-644 |#1|) |#1| (-644 |#1|))) (-15 -1300 (|#1| (-644 |#1|) (-644 |#1|))) (-15 -1300 ((-644 |#1|) (-644 (-644 |#1|)) (-644 |#1|))) (-15 -3824 ((-644 |#1|) (-644 |#1|) |#1|))) (-308)) (T -179)) +((-3824 (*1 *2 *2 *3) (-12 (-5 *2 (-644 *3)) (-4 *3 (-308)) (-5 *1 (-179 *3)))) (-1300 (*1 *2 *3 *2) (-12 (-5 *3 (-644 (-644 *4))) (-5 *2 (-644 *4)) (-4 *4 (-308)) (-5 *1 (-179 *4)))) (-1300 (*1 *2 *3 *3) (-12 (-5 *3 (-644 *2)) (-5 *1 (-179 *2)) (-4 *2 (-308)))) (-4036 (*1 *2 *3 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-308)) (-5 *1 (-179 *3))))) +(-10 -7 (-15 -4036 ((-644 |#1|) |#1| (-644 |#1|))) (-15 -1300 (|#1| (-644 |#1|) (-644 |#1|))) (-15 -1300 ((-644 |#1|) (-644 (-644 |#1|)) (-644 |#1|))) (-15 -3824 ((-644 |#1|) (-644 |#1|) |#1|))) +((-2986 (((-112) $ $) NIL)) (-3835 (((-1213) $) 13)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-1358 (((-1134) $) 10)) (-2479 (((-862) $) 20) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-180) (-13 (-1082) (-10 -8 (-15 -1358 ((-1134) $)) (-15 -3835 ((-1213) $))))) (T -180)) +((-1358 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-180)))) (-3835 (*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-180))))) +(-13 (-1082) (-10 -8 (-15 -1358 ((-1134) $)) (-15 -3835 ((-1213) $)))) +((-3006 (((-2 (|:| |start| |#2|) (|:| -3445 (-420 |#2|))) |#2|) 66)) (-1551 ((|#1| |#1|) 58)) (-1758 (((-169 |#1|) |#2|) 93)) (-2408 ((|#1| |#2|) 141) ((|#1| |#2| |#1|) 90)) (-4151 ((|#2| |#2|) 91)) (-4134 (((-420 |#2|) |#2| |#1|) 121) (((-420 |#2|) |#2| |#1| (-112)) 88)) (-1398 ((|#1| |#2|) 120)) (-1413 ((|#2| |#2|) 135)) (-2325 (((-420 |#2|) |#2|) 158) (((-420 |#2|) |#2| |#1|) 33) (((-420 |#2|) |#2| |#1| (-112)) 157)) (-1828 (((-644 (-2 (|:| -3445 (-644 |#2|)) (|:| -1452 |#1|))) |#2| |#2|) 156) (((-644 (-2 (|:| -3445 (-644 |#2|)) (|:| -1452 |#1|))) |#2| |#2| (-112)) 81)) (-3320 (((-644 (-169 |#1|)) |#2| |#1|) 42) (((-644 (-169 |#1|)) |#2|) 43))) +(((-181 |#1| |#2|) (-10 -7 (-15 -3320 ((-644 (-169 |#1|)) |#2|)) (-15 -3320 ((-644 (-169 |#1|)) |#2| |#1|)) (-15 -1828 ((-644 (-2 (|:| -3445 (-644 |#2|)) (|:| -1452 |#1|))) |#2| |#2| (-112))) (-15 -1828 ((-644 (-2 (|:| -3445 (-644 |#2|)) (|:| -1452 |#1|))) |#2| |#2|)) (-15 -2325 ((-420 |#2|) |#2| |#1| (-112))) (-15 -2325 ((-420 |#2|) |#2| |#1|)) (-15 -2325 ((-420 |#2|) |#2|)) (-15 -1413 (|#2| |#2|)) (-15 -1398 (|#1| |#2|)) (-15 -4134 ((-420 |#2|) |#2| |#1| (-112))) (-15 -4134 ((-420 |#2|) |#2| |#1|)) (-15 -4151 (|#2| |#2|)) (-15 -2408 (|#1| |#2| |#1|)) (-15 -2408 (|#1| |#2|)) (-15 -1758 ((-169 |#1|) |#2|)) (-15 -1551 (|#1| |#1|)) (-15 -3006 ((-2 (|:| |start| |#2|) (|:| -3445 (-420 |#2|))) |#2|))) (-13 (-365) (-848)) (-1240 (-169 |#1|))) (T -181)) +((-3006 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-848))) (-5 *2 (-2 (|:| |start| *3) (|:| -3445 (-420 *3)))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1240 (-169 *4))))) (-1551 (*1 *2 *2) (-12 (-4 *2 (-13 (-365) (-848))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1240 (-169 *2))))) (-1758 (*1 *2 *3) (-12 (-5 *2 (-169 *4)) (-5 *1 (-181 *4 *3)) (-4 *4 (-13 (-365) (-848))) (-4 *3 (-1240 *2)))) (-2408 (*1 *2 *3) (-12 (-4 *2 (-13 (-365) (-848))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1240 (-169 *2))))) (-2408 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-365) (-848))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1240 (-169 *2))))) (-4151 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-848))) (-5 *1 (-181 *3 *2)) (-4 *2 (-1240 (-169 *3))))) (-4134 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-365) (-848))) (-5 *2 (-420 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1240 (-169 *4))))) (-4134 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-365) (-848))) (-5 *2 (-420 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1240 (-169 *4))))) (-1398 (*1 *2 *3) (-12 (-4 *2 (-13 (-365) (-848))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1240 (-169 *2))))) (-1413 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-848))) (-5 *1 (-181 *3 *2)) (-4 *2 (-1240 (-169 *3))))) (-2325 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-848))) (-5 *2 (-420 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1240 (-169 *4))))) (-2325 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-365) (-848))) (-5 *2 (-420 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1240 (-169 *4))))) (-2325 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-365) (-848))) (-5 *2 (-420 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1240 (-169 *4))))) (-1828 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-365) (-848))) (-5 *2 (-644 (-2 (|:| -3445 (-644 *3)) (|:| -1452 *4)))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1240 (-169 *4))))) (-1828 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-365) (-848))) (-5 *2 (-644 (-2 (|:| -3445 (-644 *3)) (|:| -1452 *5)))) (-5 *1 (-181 *5 *3)) (-4 *3 (-1240 (-169 *5))))) (-3320 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-365) (-848))) (-5 *2 (-644 (-169 *4))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1240 (-169 *4))))) (-3320 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-848))) (-5 *2 (-644 (-169 *4))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1240 (-169 *4)))))) +(-10 -7 (-15 -3320 ((-644 (-169 |#1|)) |#2|)) (-15 -3320 ((-644 (-169 |#1|)) |#2| |#1|)) (-15 -1828 ((-644 (-2 (|:| -3445 (-644 |#2|)) (|:| -1452 |#1|))) |#2| |#2| (-112))) (-15 -1828 ((-644 (-2 (|:| -3445 (-644 |#2|)) (|:| -1452 |#1|))) |#2| |#2|)) (-15 -2325 ((-420 |#2|) |#2| |#1| (-112))) (-15 -2325 ((-420 |#2|) |#2| |#1|)) (-15 -2325 ((-420 |#2|) |#2|)) (-15 -1413 (|#2| |#2|)) (-15 -1398 (|#1| |#2|)) (-15 -4134 ((-420 |#2|) |#2| |#1| (-112))) (-15 -4134 ((-420 |#2|) |#2| |#1|)) (-15 -4151 (|#2| |#2|)) (-15 -2408 (|#1| |#2| |#1|)) (-15 -2408 (|#1| |#2|)) (-15 -1758 ((-169 |#1|) |#2|)) (-15 -1551 (|#1| |#1|)) (-15 -3006 ((-2 (|:| |start| |#2|) (|:| -3445 (-420 |#2|))) |#2|))) +((-3203 (((-3 |#2| "failed") |#2|) 20)) (-1724 (((-771) |#2|) 23)) (-3352 ((|#2| |#2| |#2|) 25))) +(((-182 |#1| |#2|) (-10 -7 (-15 -3203 ((-3 |#2| "failed") |#2|)) (-15 -1724 ((-771) |#2|)) (-15 -3352 (|#2| |#2| |#2|))) (-1214) (-674 |#1|)) (T -182)) +((-3352 (*1 *2 *2 *2) (-12 (-4 *3 (-1214)) (-5 *1 (-182 *3 *2)) (-4 *2 (-674 *3)))) (-1724 (*1 *2 *3) (-12 (-4 *4 (-1214)) (-5 *2 (-771)) (-5 *1 (-182 *4 *3)) (-4 *3 (-674 *4)))) (-3203 (*1 *2 *2) (|partial| -12 (-4 *3 (-1214)) (-5 *1 (-182 *3 *2)) (-4 *2 (-674 *3))))) +(-10 -7 (-15 -3203 ((-3 |#2| "failed") |#2|)) (-15 -1724 ((-771) |#2|)) (-15 -3352 (|#2| |#2| |#2|))) +((-2986 (((-112) $ $) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-1517 (((-187) $) 7)) (-2479 (((-862) $) 14)) (-3900 (((-112) $ $) NIL)) (-3417 (((-644 (-1180)) $) 10)) (-2952 (((-112) $ $) 12))) +(((-183) (-13 (-1099) (-10 -8 (-15 -1517 ((-187) $)) (-15 -3417 ((-644 (-1180)) $))))) (T -183)) +((-1517 (*1 *2 *1) (-12 (-5 *2 (-187)) (-5 *1 (-183)))) (-3417 (*1 *2 *1) (-12 (-5 *2 (-644 (-1180))) (-5 *1 (-183))))) +(-13 (-1099) (-10 -8 (-15 -1517 ((-187) $)) (-15 -3417 ((-644 (-1180)) $)))) +((-3562 (((-644 (-865)) $) 16)) (-1657 (((-186) $) 8)) (-4348 (((-644 (-112)) $) 13)) (-3864 (((-55) $) 10))) +(((-184 |#1|) (-10 -8 (-15 -3562 ((-644 (-865)) |#1|)) (-15 -4348 ((-644 (-112)) |#1|)) (-15 -1657 ((-186) |#1|)) (-15 -3864 ((-55) |#1|))) (-185)) (T -184)) +NIL +(-10 -8 (-15 -3562 ((-644 (-865)) |#1|)) (-15 -4348 ((-644 (-112)) |#1|)) (-15 -1657 ((-186) |#1|)) (-15 -3864 ((-55) |#1|))) +((-2986 (((-112) $ $) 7)) (-3562 (((-644 (-865)) $) 19)) (-2598 (((-508) $) 16)) (-3151 (((-1157) $) 10)) (-1657 (((-186) $) 21)) (-1896 (((-112) $ (-508)) 14)) (-4059 (((-1119) $) 11)) (-4348 (((-644 (-112)) $) 20)) (-2479 (((-862) $) 12)) (-3900 (((-112) $ $) 9)) (-3864 (((-55) $) 15)) (-2952 (((-112) $ $) 6))) (((-185) (-140)) (T -185)) -((-1623 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-186)))) (-2342 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-642 (-112))))) (-3458 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-642 (-863)))))) -(-13 (-833 (-506)) (-10 -8 (-15 -1623 ((-186) $)) (-15 -2342 ((-642 (-112)) $)) (-15 -3458 ((-642 (-863)) $)))) -(((-102) . T) ((-611 (-860)) . T) ((-833 (-506)) . T) ((-1097) . T)) -((-2856 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-8 (($) 7 T CONST)) (-2390 (((-860) $) 12)) (-9 (($) 6 T CONST)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) 10))) -(((-186) (-13 (-1097) (-10 -8 (-15 -9 ($) -1551) (-15 -8 ($) -1551) (-15 -7 ($) -1551)))) (T -186)) +((-1657 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-186)))) (-4348 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-644 (-112))))) (-3562 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-644 (-865)))))) +(-13 (-835 (-508)) (-10 -8 (-15 -1657 ((-186) $)) (-15 -4348 ((-644 (-112)) $)) (-15 -3562 ((-644 (-865)) $)))) +(((-102) . T) ((-613 (-862)) . T) ((-835 (-508)) . T) ((-1099) . T)) +((-2986 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-8 (($) 7 T CONST)) (-2479 (((-862) $) 12)) (-9 (($) 6 T CONST)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 10))) +(((-186) (-13 (-1099) (-10 -8 (-15 -9 ($) -1573) (-15 -8 ($) -1573) (-15 -7 ($) -1573)))) (T -186)) ((-9 (*1 *1) (-5 *1 (-186))) (-8 (*1 *1) (-5 *1 (-186))) (-7 (*1 *1) (-5 *1 (-186)))) -(-13 (-1097) (-10 -8 (-15 -9 ($) -1551) (-15 -8 ($) -1551) (-15 -7 ($) -1551))) -((-2856 (((-112) $ $) NIL)) (-3458 (((-642 (-863)) $) NIL)) (-2493 (((-506) $) 8)) (-1778 (((-1155) $) NIL)) (-1623 (((-186) $) 10)) (-1462 (((-112) $ (-506)) NIL)) (-3999 (((-1117) $) NIL)) (-3337 (((-689 $) (-506)) 17)) (-2342 (((-642 (-112)) $) NIL)) (-2390 (((-860) $) NIL)) (-1600 (((-112) $ $) NIL)) (-2634 (((-55) $) 12)) (-2821 (((-112) $ $) NIL))) -(((-187) (-13 (-185) (-10 -8 (-15 -3337 ((-689 $) (-506)))))) (T -187)) -((-3337 (*1 *2 *3) (-12 (-5 *3 (-506)) (-5 *2 (-689 (-187))) (-5 *1 (-187))))) -(-13 (-185) (-10 -8 (-15 -3337 ((-689 $) (-506))))) -((-3409 ((|#2| |#2|) 28)) (-3055 (((-112) |#2|) 19)) (-2275 (((-316 |#1|) |#2|) 12)) (-2287 (((-316 |#1|) |#2|) 14)) (-1887 ((|#2| |#2| (-1173)) 69) ((|#2| |#2|) 70)) (-3024 (((-169 (-316 |#1|)) |#2|) 10)) (-1612 ((|#2| |#2| (-1173)) 66) ((|#2| |#2|) 60))) -(((-188 |#1| |#2|) (-10 -7 (-15 -1887 (|#2| |#2|)) (-15 -1887 (|#2| |#2| (-1173))) (-15 -1612 (|#2| |#2|)) (-15 -1612 (|#2| |#2| (-1173))) (-15 -2275 ((-316 |#1|) |#2|)) (-15 -2287 ((-316 |#1|) |#2|)) (-15 -3055 ((-112) |#2|)) (-15 -3409 (|#2| |#2|)) (-15 -3024 ((-169 (-316 |#1|)) |#2|))) (-13 (-556) (-1036 (-564))) (-13 (-27) (-1197) (-430 (-169 |#1|)))) (T -188)) -((-3024 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-1036 (-564)))) (-5 *2 (-169 (-316 *4))) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1197) (-430 (-169 *4)))))) (-3409 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-1036 (-564)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1197) (-430 (-169 *3)))))) (-3055 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-1036 (-564)))) (-5 *2 (-112)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1197) (-430 (-169 *4)))))) (-2287 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-1036 (-564)))) (-5 *2 (-316 *4)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1197) (-430 (-169 *4)))))) (-2275 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-1036 (-564)))) (-5 *2 (-316 *4)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1197) (-430 (-169 *4)))))) (-1612 (*1 *2 *2 *3) (-12 (-5 *3 (-1173)) (-4 *4 (-13 (-556) (-1036 (-564)))) (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1197) (-430 (-169 *4)))))) (-1612 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-1036 (-564)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1197) (-430 (-169 *3)))))) (-1887 (*1 *2 *2 *3) (-12 (-5 *3 (-1173)) (-4 *4 (-13 (-556) (-1036 (-564)))) (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1197) (-430 (-169 *4)))))) (-1887 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-1036 (-564)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1197) (-430 (-169 *3))))))) -(-10 -7 (-15 -1887 (|#2| |#2|)) (-15 -1887 (|#2| |#2| (-1173))) (-15 -1612 (|#2| |#2|)) (-15 -1612 (|#2| |#2| (-1173))) (-15 -2275 ((-316 |#1|) |#2|)) (-15 -2287 ((-316 |#1|) |#2|)) (-15 -3055 ((-112) |#2|)) (-15 -3409 (|#2| |#2|)) (-15 -3024 ((-169 (-316 |#1|)) |#2|))) -((-2121 (((-1262 (-687 (-950 |#1|))) (-1262 (-687 |#1|))) 26)) (-2390 (((-1262 (-687 (-407 (-950 |#1|)))) (-1262 (-687 |#1|))) 37))) -(((-189 |#1|) (-10 -7 (-15 -2121 ((-1262 (-687 (-950 |#1|))) (-1262 (-687 |#1|)))) (-15 -2390 ((-1262 (-687 (-407 (-950 |#1|)))) (-1262 (-687 |#1|))))) (-172)) (T -189)) -((-2390 (*1 *2 *3) (-12 (-5 *3 (-1262 (-687 *4))) (-4 *4 (-172)) (-5 *2 (-1262 (-687 (-407 (-950 *4))))) (-5 *1 (-189 *4)))) (-2121 (*1 *2 *3) (-12 (-5 *3 (-1262 (-687 *4))) (-4 *4 (-172)) (-5 *2 (-1262 (-687 (-950 *4)))) (-5 *1 (-189 *4))))) -(-10 -7 (-15 -2121 ((-1262 (-687 (-950 |#1|))) (-1262 (-687 |#1|)))) (-15 -2390 ((-1262 (-687 (-407 (-950 |#1|)))) (-1262 (-687 |#1|))))) -((-3704 (((-1175 (-407 (-564))) (-1175 (-407 (-564))) (-1175 (-407 (-564)))) 89)) (-1313 (((-1175 (-407 (-564))) (-642 (-564)) (-642 (-564))) 100)) (-2270 (((-1175 (-407 (-564))) (-564)) 56)) (-4236 (((-1175 (-407 (-564))) (-564)) 75)) (-3154 (((-407 (-564)) (-1175 (-407 (-564)))) 85)) (-3871 (((-1175 (-407 (-564))) (-564)) 37)) (-3928 (((-1175 (-407 (-564))) (-564)) 68)) (-2302 (((-1175 (-407 (-564))) (-564)) 62)) (-2707 (((-1175 (-407 (-564))) (-1175 (-407 (-564))) (-1175 (-407 (-564)))) 83)) (-4189 (((-1175 (-407 (-564))) (-564)) 29)) (-3170 (((-407 (-564)) (-1175 (-407 (-564))) (-1175 (-407 (-564)))) 87)) (-3050 (((-1175 (-407 (-564))) (-564)) 35)) (-2599 (((-1175 (-407 (-564))) (-642 (-564))) 96))) -(((-190) (-10 -7 (-15 -4189 ((-1175 (-407 (-564))) (-564))) (-15 -2270 ((-1175 (-407 (-564))) (-564))) (-15 -3871 ((-1175 (-407 (-564))) (-564))) (-15 -3050 ((-1175 (-407 (-564))) (-564))) (-15 -2302 ((-1175 (-407 (-564))) (-564))) (-15 -3928 ((-1175 (-407 (-564))) (-564))) (-15 -4236 ((-1175 (-407 (-564))) (-564))) (-15 -3170 ((-407 (-564)) (-1175 (-407 (-564))) (-1175 (-407 (-564))))) (-15 -2707 ((-1175 (-407 (-564))) (-1175 (-407 (-564))) (-1175 (-407 (-564))))) (-15 -3154 ((-407 (-564)) (-1175 (-407 (-564))))) (-15 -3704 ((-1175 (-407 (-564))) (-1175 (-407 (-564))) (-1175 (-407 (-564))))) (-15 -2599 ((-1175 (-407 (-564))) (-642 (-564)))) (-15 -1313 ((-1175 (-407 (-564))) (-642 (-564)) (-642 (-564)))))) (T -190)) -((-1313 (*1 *2 *3 *3) (-12 (-5 *3 (-642 (-564))) (-5 *2 (-1175 (-407 (-564)))) (-5 *1 (-190)))) (-2599 (*1 *2 *3) (-12 (-5 *3 (-642 (-564))) (-5 *2 (-1175 (-407 (-564)))) (-5 *1 (-190)))) (-3704 (*1 *2 *2 *2) (-12 (-5 *2 (-1175 (-407 (-564)))) (-5 *1 (-190)))) (-3154 (*1 *2 *3) (-12 (-5 *3 (-1175 (-407 (-564)))) (-5 *2 (-407 (-564))) (-5 *1 (-190)))) (-2707 (*1 *2 *2 *2) (-12 (-5 *2 (-1175 (-407 (-564)))) (-5 *1 (-190)))) (-3170 (*1 *2 *3 *3) (-12 (-5 *3 (-1175 (-407 (-564)))) (-5 *2 (-407 (-564))) (-5 *1 (-190)))) (-4236 (*1 *2 *3) (-12 (-5 *2 (-1175 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))) (-3928 (*1 *2 *3) (-12 (-5 *2 (-1175 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))) (-2302 (*1 *2 *3) (-12 (-5 *2 (-1175 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))) (-3050 (*1 *2 *3) (-12 (-5 *2 (-1175 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))) (-3871 (*1 *2 *3) (-12 (-5 *2 (-1175 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))) (-2270 (*1 *2 *3) (-12 (-5 *2 (-1175 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))) (-4189 (*1 *2 *3) (-12 (-5 *2 (-1175 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564))))) -(-10 -7 (-15 -4189 ((-1175 (-407 (-564))) (-564))) (-15 -2270 ((-1175 (-407 (-564))) (-564))) (-15 -3871 ((-1175 (-407 (-564))) (-564))) (-15 -3050 ((-1175 (-407 (-564))) (-564))) (-15 -2302 ((-1175 (-407 (-564))) (-564))) (-15 -3928 ((-1175 (-407 (-564))) (-564))) (-15 -4236 ((-1175 (-407 (-564))) (-564))) (-15 -3170 ((-407 (-564)) (-1175 (-407 (-564))) (-1175 (-407 (-564))))) (-15 -2707 ((-1175 (-407 (-564))) (-1175 (-407 (-564))) (-1175 (-407 (-564))))) (-15 -3154 ((-407 (-564)) (-1175 (-407 (-564))))) (-15 -3704 ((-1175 (-407 (-564))) (-1175 (-407 (-564))) (-1175 (-407 (-564))))) (-15 -2599 ((-1175 (-407 (-564))) (-642 (-564)))) (-15 -1313 ((-1175 (-407 (-564))) (-642 (-564)) (-642 (-564))))) -((-3569 (((-418 (-1169 (-564))) (-564)) 38)) (-3283 (((-642 (-1169 (-564))) (-564)) 33)) (-3516 (((-1169 (-564)) (-564)) 28))) -(((-191) (-10 -7 (-15 -3283 ((-642 (-1169 (-564))) (-564))) (-15 -3516 ((-1169 (-564)) (-564))) (-15 -3569 ((-418 (-1169 (-564))) (-564))))) (T -191)) -((-3569 (*1 *2 *3) (-12 (-5 *2 (-418 (-1169 (-564)))) (-5 *1 (-191)) (-5 *3 (-564)))) (-3516 (*1 *2 *3) (-12 (-5 *2 (-1169 (-564))) (-5 *1 (-191)) (-5 *3 (-564)))) (-3283 (*1 *2 *3) (-12 (-5 *2 (-642 (-1169 (-564)))) (-5 *1 (-191)) (-5 *3 (-564))))) -(-10 -7 (-15 -3283 ((-642 (-1169 (-564))) (-564))) (-15 -3516 ((-1169 (-564)) (-564))) (-15 -3569 ((-418 (-1169 (-564))) (-564)))) -((-2006 (((-1153 (-225)) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 132)) (-2736 (((-642 (-1155)) (-1153 (-225))) NIL)) (-4028 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 108)) (-4329 (((-642 (-225)) (-316 (-225)) (-1173) (-1091 (-841 (-225)))) NIL)) (-4170 (((-642 (-1155)) (-642 (-225))) NIL)) (-2586 (((-225) (-1091 (-841 (-225)))) 31)) (-3285 (((-225) (-1091 (-841 (-225)))) 32)) (-1498 (((-379) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 126)) (-3173 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 68)) (-2685 (((-1155) (-225)) NIL)) (-3277 (((-1155) (-642 (-1155))) 27)) (-1368 (((-1033) (-1173) (-1173) (-1033)) 13))) -(((-192) (-10 -7 (-15 -4028 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3173 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2586 ((-225) (-1091 (-841 (-225))))) (-15 -3285 ((-225) (-1091 (-841 (-225))))) (-15 -1498 ((-379) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4329 ((-642 (-225)) (-316 (-225)) (-1173) (-1091 (-841 (-225))))) (-15 -2006 ((-1153 (-225)) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2685 ((-1155) (-225))) (-15 -4170 ((-642 (-1155)) (-642 (-225)))) (-15 -2736 ((-642 (-1155)) (-1153 (-225)))) (-15 -3277 ((-1155) (-642 (-1155)))) (-15 -1368 ((-1033) (-1173) (-1173) (-1033))))) (T -192)) -((-1368 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1033)) (-5 *3 (-1173)) (-5 *1 (-192)))) (-3277 (*1 *2 *3) (-12 (-5 *3 (-642 (-1155))) (-5 *2 (-1155)) (-5 *1 (-192)))) (-2736 (*1 *2 *3) (-12 (-5 *3 (-1153 (-225))) (-5 *2 (-642 (-1155))) (-5 *1 (-192)))) (-4170 (*1 *2 *3) (-12 (-5 *3 (-642 (-225))) (-5 *2 (-642 (-1155))) (-5 *1 (-192)))) (-2685 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1155)) (-5 *1 (-192)))) (-2006 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-1153 (-225))) (-5 *1 (-192)))) (-4329 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-225))) (-5 *4 (-1173)) (-5 *5 (-1091 (-841 (-225)))) (-5 *2 (-642 (-225))) (-5 *1 (-192)))) (-1498 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-379)) (-5 *1 (-192)))) (-3285 (*1 *2 *3) (-12 (-5 *3 (-1091 (-841 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) (-2586 (*1 *2 *3) (-12 (-5 *3 (-1091 (-841 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) (-3173 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-192)))) (-4028 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-192))))) -(-10 -7 (-15 -4028 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3173 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2586 ((-225) (-1091 (-841 (-225))))) (-15 -3285 ((-225) (-1091 (-841 (-225))))) (-15 -1498 ((-379) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4329 ((-642 (-225)) (-316 (-225)) (-1173) (-1091 (-841 (-225))))) (-15 -2006 ((-1153 (-225)) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2685 ((-1155) (-225))) (-15 -4170 ((-642 (-1155)) (-642 (-225)))) (-15 -2736 ((-642 (-1155)) (-1153 (-225)))) (-15 -3277 ((-1155) (-642 (-1155)))) (-15 -1368 ((-1033) (-1173) (-1173) (-1033)))) -((-2856 (((-112) $ $) NIL)) (-4353 (((-1033) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1033)) 61) (((-1033) (-2 (|:| |fn| (-316 (-225))) (|:| -4138 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1033)) NIL)) (-4324 (((-2 (|:| -4324 (-379)) (|:| |explanations| (-1155)) (|:| |extra| (-1033))) (-1060) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 33) (((-2 (|:| -4324 (-379)) (|:| |explanations| (-1155)) (|:| |extra| (-1033))) (-1060) (-2 (|:| |fn| (-316 (-225))) (|:| -4138 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) NIL)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-193) (-785)) (T -193)) -NIL -(-785) -((-2856 (((-112) $ $) NIL)) (-4353 (((-1033) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1033)) 66) (((-1033) (-2 (|:| |fn| (-316 (-225))) (|:| -4138 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1033)) NIL)) (-4324 (((-2 (|:| -4324 (-379)) (|:| |explanations| (-1155)) (|:| |extra| (-1033))) (-1060) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 44) (((-2 (|:| -4324 (-379)) (|:| |explanations| (-1155)) (|:| |extra| (-1033))) (-1060) (-2 (|:| |fn| (-316 (-225))) (|:| -4138 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) NIL)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-194) (-785)) (T -194)) -NIL -(-785) -((-2856 (((-112) $ $) NIL)) (-4353 (((-1033) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1033)) 81) (((-1033) (-2 (|:| |fn| (-316 (-225))) (|:| -4138 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1033)) NIL)) (-4324 (((-2 (|:| -4324 (-379)) (|:| |explanations| (-1155)) (|:| |extra| (-1033))) (-1060) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 46) (((-2 (|:| -4324 (-379)) (|:| |explanations| (-1155)) (|:| |extra| (-1033))) (-1060) (-2 (|:| |fn| (-316 (-225))) (|:| -4138 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) NIL)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-195) (-785)) (T -195)) -NIL -(-785) -((-2856 (((-112) $ $) NIL)) (-4353 (((-1033) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1033)) 63) (((-1033) (-2 (|:| |fn| (-316 (-225))) (|:| -4138 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1033)) NIL)) (-4324 (((-2 (|:| -4324 (-379)) (|:| |explanations| (-1155)) (|:| |extra| (-1033))) (-1060) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 36) (((-2 (|:| -4324 (-379)) (|:| |explanations| (-1155)) (|:| |extra| (-1033))) (-1060) (-2 (|:| |fn| (-316 (-225))) (|:| -4138 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) NIL)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-196) (-785)) (T -196)) -NIL -(-785) -((-2856 (((-112) $ $) NIL)) (-4353 (((-1033) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1033)) 75) (((-1033) (-2 (|:| |fn| (-316 (-225))) (|:| -4138 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1033)) NIL)) (-4324 (((-2 (|:| -4324 (-379)) (|:| |explanations| (-1155)) (|:| |extra| (-1033))) (-1060) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 40) (((-2 (|:| -4324 (-379)) (|:| |explanations| (-1155)) (|:| |extra| (-1033))) (-1060) (-2 (|:| |fn| (-316 (-225))) (|:| -4138 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) NIL)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-197) (-785)) (T -197)) -NIL -(-785) -((-2856 (((-112) $ $) NIL)) (-4353 (((-1033) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1033)) 90) (((-1033) (-2 (|:| |fn| (-316 (-225))) (|:| -4138 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1033)) NIL)) (-4324 (((-2 (|:| -4324 (-379)) (|:| |explanations| (-1155)) (|:| |extra| (-1033))) (-1060) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 49) (((-2 (|:| -4324 (-379)) (|:| |explanations| (-1155)) (|:| |extra| (-1033))) (-1060) (-2 (|:| |fn| (-316 (-225))) (|:| -4138 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) NIL)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-198) (-785)) (T -198)) -NIL -(-785) -((-2856 (((-112) $ $) NIL)) (-4353 (((-1033) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1033)) 90) (((-1033) (-2 (|:| |fn| (-316 (-225))) (|:| -4138 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1033)) NIL)) (-4324 (((-2 (|:| -4324 (-379)) (|:| |explanations| (-1155)) (|:| |extra| (-1033))) (-1060) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 51) (((-2 (|:| -4324 (-379)) (|:| |explanations| (-1155)) (|:| |extra| (-1033))) (-1060) (-2 (|:| |fn| (-316 (-225))) (|:| -4138 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) NIL)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-199) (-785)) (T -199)) -NIL -(-785) -((-2856 (((-112) $ $) NIL)) (-4353 (((-1033) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1033)) 77) (((-1033) (-2 (|:| |fn| (-316 (-225))) (|:| -4138 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1033)) NIL)) (-4324 (((-2 (|:| -4324 (-379)) (|:| |explanations| (-1155)) (|:| |extra| (-1033))) (-1060) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 42) (((-2 (|:| -4324 (-379)) (|:| |explanations| (-1155)) (|:| |extra| (-1033))) (-1060) (-2 (|:| |fn| (-316 (-225))) (|:| -4138 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) NIL)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-200) (-785)) (T -200)) -NIL -(-785) -((-2856 (((-112) $ $) NIL)) (-4353 (((-1033) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1033)) NIL) (((-1033) (-2 (|:| |fn| (-316 (-225))) (|:| -4138 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1033)) 78)) (-4324 (((-2 (|:| -4324 (-379)) (|:| |explanations| (-1155)) (|:| |extra| (-1033))) (-1060) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL) (((-2 (|:| -4324 (-379)) (|:| |explanations| (-1155)) (|:| |extra| (-1033))) (-1060) (-2 (|:| |fn| (-316 (-225))) (|:| -4138 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 38)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) NIL)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-201) (-785)) (T -201)) -NIL -(-785) -((-2856 (((-112) $ $) NIL)) (-4353 (((-1033) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1033)) NIL) (((-1033) (-2 (|:| |fn| (-316 (-225))) (|:| -4138 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1033)) 79)) (-4324 (((-2 (|:| -4324 (-379)) (|:| |explanations| (-1155)) (|:| |extra| (-1033))) (-1060) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL) (((-2 (|:| -4324 (-379)) (|:| |explanations| (-1155)) (|:| |extra| (-1033))) (-1060) (-2 (|:| |fn| (-316 (-225))) (|:| -4138 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 44)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) NIL)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-202) (-785)) (T -202)) -NIL -(-785) -((-2856 (((-112) $ $) NIL)) (-4353 (((-1033) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1033)) 105) (((-1033) (-2 (|:| |fn| (-316 (-225))) (|:| -4138 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1033)) NIL)) (-4324 (((-2 (|:| -4324 (-379)) (|:| |explanations| (-1155)) (|:| |extra| (-1033))) (-1060) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 86) (((-2 (|:| -4324 (-379)) (|:| |explanations| (-1155)) (|:| |extra| (-1033))) (-1060) (-2 (|:| |fn| (-316 (-225))) (|:| -4138 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) NIL)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-203) (-785)) (T -203)) -NIL -(-785) -((-3630 (((-3 (-2 (|:| -1637 (-114)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 111)) (-3593 (((-564) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 58)) (-2313 (((-3 (-642 (-225)) "failed") (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 92))) -(((-204) (-10 -7 (-15 -3630 ((-3 (-2 (|:| -1637 (-114)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2313 ((-3 (-642 (-225)) "failed") (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3593 ((-564) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -204)) -((-3593 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-564)) (-5 *1 (-204)))) (-2313 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-642 (-225))) (-5 *1 (-204)))) (-3630 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -1637 (-114)) (|:| |w| (-225)))) (-5 *1 (-204))))) -(-10 -7 (-15 -3630 ((-3 (-2 (|:| -1637 (-114)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2313 ((-3 (-642 (-225)) "failed") (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3593 ((-564) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) -((-1517 (((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 49)) (-2959 (((-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 160)) (-3997 (((-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))) (-687 (-316 (-225)))) 112)) (-3551 (((-379) (-687 (-316 (-225)))) 140)) (-2926 (((-687 (-316 (-225))) (-1262 (-316 (-225))) (-642 (-1173))) 136)) (-3933 (((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 37)) (-3300 (((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 53)) (-3154 (((-687 (-316 (-225))) (-687 (-316 (-225))) (-642 (-1173)) (-1262 (-316 (-225)))) 125)) (-1324 (((-379) (-379) (-642 (-379))) 133) (((-379) (-379) (-379)) 128)) (-3217 (((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 45))) -(((-205) (-10 -7 (-15 -1324 ((-379) (-379) (-379))) (-15 -1324 ((-379) (-379) (-642 (-379)))) (-15 -3551 ((-379) (-687 (-316 (-225))))) (-15 -2926 ((-687 (-316 (-225))) (-1262 (-316 (-225))) (-642 (-1173)))) (-15 -3154 ((-687 (-316 (-225))) (-687 (-316 (-225))) (-642 (-1173)) (-1262 (-316 (-225))))) (-15 -3997 ((-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))) (-687 (-316 (-225))))) (-15 -2959 ((-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1517 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3300 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3217 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3933 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -205)) -((-3933 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-379)) (-5 *1 (-205)))) (-3217 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-379)) (-5 *1 (-205)))) (-3300 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-379)) (-5 *1 (-205)))) (-1517 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-379)) (-5 *1 (-205)))) (-2959 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379)))) (-5 *1 (-205)))) (-3997 (*1 *2 *3) (-12 (-5 *3 (-687 (-316 (-225)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379)))) (-5 *1 (-205)))) (-3154 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-687 (-316 (-225)))) (-5 *3 (-642 (-1173))) (-5 *4 (-1262 (-316 (-225)))) (-5 *1 (-205)))) (-2926 (*1 *2 *3 *4) (-12 (-5 *3 (-1262 (-316 (-225)))) (-5 *4 (-642 (-1173))) (-5 *2 (-687 (-316 (-225)))) (-5 *1 (-205)))) (-3551 (*1 *2 *3) (-12 (-5 *3 (-687 (-316 (-225)))) (-5 *2 (-379)) (-5 *1 (-205)))) (-1324 (*1 *2 *2 *3) (-12 (-5 *3 (-642 (-379))) (-5 *2 (-379)) (-5 *1 (-205)))) (-1324 (*1 *2 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-205))))) -(-10 -7 (-15 -1324 ((-379) (-379) (-379))) (-15 -1324 ((-379) (-379) (-642 (-379)))) (-15 -3551 ((-379) (-687 (-316 (-225))))) (-15 -2926 ((-687 (-316 (-225))) (-1262 (-316 (-225))) (-642 (-1173)))) (-15 -3154 ((-687 (-316 (-225))) (-687 (-316 (-225))) (-642 (-1173)) (-1262 (-316 (-225))))) (-15 -3997 ((-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))) (-687 (-316 (-225))))) (-15 -2959 ((-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1517 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3300 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3217 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3933 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) -((-2856 (((-112) $ $) NIL)) (-4324 (((-2 (|:| -4324 (-379)) (|:| |explanations| (-1155))) (-1060) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 43)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) NIL)) (-1600 (((-112) $ $) NIL)) (-2339 (((-1033) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 75)) (-2821 (((-112) $ $) NIL))) -(((-206) (-798)) (T -206)) -NIL -(-798) -((-2856 (((-112) $ $) NIL)) (-4324 (((-2 (|:| -4324 (-379)) (|:| |explanations| (-1155))) (-1060) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 43)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) NIL)) (-1600 (((-112) $ $) NIL)) (-2339 (((-1033) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 73)) (-2821 (((-112) $ $) NIL))) -(((-207) (-798)) (T -207)) -NIL -(-798) -((-2856 (((-112) $ $) NIL)) (-4324 (((-2 (|:| -4324 (-379)) (|:| |explanations| (-1155))) (-1060) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 40)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) NIL)) (-1600 (((-112) $ $) NIL)) (-2339 (((-1033) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 76)) (-2821 (((-112) $ $) NIL))) -(((-208) (-798)) (T -208)) -NIL -(-798) -((-2856 (((-112) $ $) NIL)) (-4324 (((-2 (|:| -4324 (-379)) (|:| |explanations| (-1155))) (-1060) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 48)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) NIL)) (-1600 (((-112) $ $) NIL)) (-2339 (((-1033) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 88)) (-2821 (((-112) $ $) NIL))) -(((-209) (-798)) (T -209)) -NIL -(-798) -((-1634 (((-642 (-1173)) (-1173) (-769)) 26)) (-3380 (((-316 (-225)) (-316 (-225))) 35)) (-1890 (((-112) (-2 (|:| |pde| (-642 (-316 (-225)))) (|:| |constraints| (-642 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-769)) (|:| |boundaryType| (-564)) (|:| |dStart| (-687 (-225))) (|:| |dFinish| (-687 (-225)))))) (|:| |f| (-642 (-642 (-316 (-225))))) (|:| |st| (-1155)) (|:| |tol| (-225)))) 87)) (-4292 (((-112) (-225) (-225) (-642 (-316 (-225)))) 47))) -(((-210) (-10 -7 (-15 -1634 ((-642 (-1173)) (-1173) (-769))) (-15 -3380 ((-316 (-225)) (-316 (-225)))) (-15 -4292 ((-112) (-225) (-225) (-642 (-316 (-225))))) (-15 -1890 ((-112) (-2 (|:| |pde| (-642 (-316 (-225)))) (|:| |constraints| (-642 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-769)) (|:| |boundaryType| (-564)) (|:| |dStart| (-687 (-225))) (|:| |dFinish| (-687 (-225)))))) (|:| |f| (-642 (-642 (-316 (-225))))) (|:| |st| (-1155)) (|:| |tol| (-225))))))) (T -210)) -((-1890 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-642 (-316 (-225)))) (|:| |constraints| (-642 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-769)) (|:| |boundaryType| (-564)) (|:| |dStart| (-687 (-225))) (|:| |dFinish| (-687 (-225)))))) (|:| |f| (-642 (-642 (-316 (-225))))) (|:| |st| (-1155)) (|:| |tol| (-225)))) (-5 *2 (-112)) (-5 *1 (-210)))) (-4292 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-642 (-316 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-210)))) (-3380 (*1 *2 *2) (-12 (-5 *2 (-316 (-225))) (-5 *1 (-210)))) (-1634 (*1 *2 *3 *4) (-12 (-5 *4 (-769)) (-5 *2 (-642 (-1173))) (-5 *1 (-210)) (-5 *3 (-1173))))) -(-10 -7 (-15 -1634 ((-642 (-1173)) (-1173) (-769))) (-15 -3380 ((-316 (-225)) (-316 (-225)))) (-15 -4292 ((-112) (-225) (-225) (-642 (-316 (-225))))) (-15 -1890 ((-112) (-2 (|:| |pde| (-642 (-316 (-225)))) (|:| |constraints| (-642 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-769)) (|:| |boundaryType| (-564)) (|:| |dStart| (-687 (-225))) (|:| |dFinish| (-687 (-225)))))) (|:| |f| (-642 (-642 (-316 (-225))))) (|:| |st| (-1155)) (|:| |tol| (-225)))))) -((-2856 (((-112) $ $) NIL)) (-4324 (((-2 (|:| -4324 (-379)) (|:| |explanations| (-1155))) (-1060) (-2 (|:| |pde| (-642 (-316 (-225)))) (|:| |constraints| (-642 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-769)) (|:| |boundaryType| (-564)) (|:| |dStart| (-687 (-225))) (|:| |dFinish| (-687 (-225)))))) (|:| |f| (-642 (-642 (-316 (-225))))) (|:| |st| (-1155)) (|:| |tol| (-225)))) 28)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) NIL)) (-1600 (((-112) $ $) NIL)) (-2013 (((-1033) (-2 (|:| |pde| (-642 (-316 (-225)))) (|:| |constraints| (-642 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-769)) (|:| |boundaryType| (-564)) (|:| |dStart| (-687 (-225))) (|:| |dFinish| (-687 (-225)))))) (|:| |f| (-642 (-642 (-316 (-225))))) (|:| |st| (-1155)) (|:| |tol| (-225)))) 70)) (-2821 (((-112) $ $) NIL))) -(((-211) (-893)) (T -211)) -NIL -(-893) -((-2856 (((-112) $ $) NIL)) (-4324 (((-2 (|:| -4324 (-379)) (|:| |explanations| (-1155))) (-1060) (-2 (|:| |pde| (-642 (-316 (-225)))) (|:| |constraints| (-642 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-769)) (|:| |boundaryType| (-564)) (|:| |dStart| (-687 (-225))) (|:| |dFinish| (-687 (-225)))))) (|:| |f| (-642 (-642 (-316 (-225))))) (|:| |st| (-1155)) (|:| |tol| (-225)))) 24)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) NIL)) (-1600 (((-112) $ $) NIL)) (-2013 (((-1033) (-2 (|:| |pde| (-642 (-316 (-225)))) (|:| |constraints| (-642 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-769)) (|:| |boundaryType| (-564)) (|:| |dStart| (-687 (-225))) (|:| |dFinish| (-687 (-225)))))) (|:| |f| (-642 (-642 (-316 (-225))))) (|:| |st| (-1155)) (|:| |tol| (-225)))) NIL)) (-2821 (((-112) $ $) NIL))) -(((-212) (-893)) (T -212)) -NIL -(-893) -((-2856 (((-112) $ $) NIL)) (-1814 ((|#2| $ (-769) |#2|) 11)) (-1804 ((|#2| $ (-769)) 10)) (-4233 (($) 8)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) 26)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) 13))) -(((-213 |#1| |#2|) (-13 (-1097) (-10 -8 (-15 -4233 ($)) (-15 -1804 (|#2| $ (-769))) (-15 -1814 (|#2| $ (-769) |#2|)))) (-919) (-1097)) (T -213)) -((-4233 (*1 *1) (-12 (-5 *1 (-213 *2 *3)) (-14 *2 (-919)) (-4 *3 (-1097)))) (-1804 (*1 *2 *1 *3) (-12 (-5 *3 (-769)) (-4 *2 (-1097)) (-5 *1 (-213 *4 *2)) (-14 *4 (-919)))) (-1814 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-769)) (-5 *1 (-213 *4 *2)) (-14 *4 (-919)) (-4 *2 (-1097))))) -(-13 (-1097) (-10 -8 (-15 -4233 ($)) (-15 -1804 (|#2| $ (-769))) (-15 -1814 (|#2| $ (-769) |#2|)))) -((-2856 (((-112) $ $) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2973 (((-1267) $) 37) (((-1267) $ (-919) (-919)) 44)) (-4369 (($ $ (-987)) 19) (((-245 (-1155)) $ (-1173)) 15)) (-1639 (((-1267) $) 35)) (-2390 (((-860) $) 32) (($ (-642 |#1|)) 8)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL)) (-2930 (($ $ $) 27)) (-2917 (($ $ $) 22))) -(((-214 |#1|) (-13 (-1097) (-614 (-642 |#1|)) (-10 -8 (-15 -4369 ($ $ (-987))) (-15 -4369 ((-245 (-1155)) $ (-1173))) (-15 -2917 ($ $ $)) (-15 -2930 ($ $ $)) (-15 -1639 ((-1267) $)) (-15 -2973 ((-1267) $)) (-15 -2973 ((-1267) $ (-919) (-919))))) (-13 (-848) (-10 -8 (-15 -4369 ((-1155) $ (-1173))) (-15 -1639 ((-1267) $)) (-15 -2973 ((-1267) $))))) (T -214)) -((-4369 (*1 *1 *1 *2) (-12 (-5 *2 (-987)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-848) (-10 -8 (-15 -4369 ((-1155) $ (-1173))) (-15 -1639 ((-1267) $)) (-15 -2973 ((-1267) $))))))) (-4369 (*1 *2 *1 *3) (-12 (-5 *3 (-1173)) (-5 *2 (-245 (-1155))) (-5 *1 (-214 *4)) (-4 *4 (-13 (-848) (-10 -8 (-15 -4369 ((-1155) $ *3)) (-15 -1639 ((-1267) $)) (-15 -2973 ((-1267) $))))))) (-2917 (*1 *1 *1 *1) (-12 (-5 *1 (-214 *2)) (-4 *2 (-13 (-848) (-10 -8 (-15 -4369 ((-1155) $ (-1173))) (-15 -1639 ((-1267) $)) (-15 -2973 ((-1267) $))))))) (-2930 (*1 *1 *1 *1) (-12 (-5 *1 (-214 *2)) (-4 *2 (-13 (-848) (-10 -8 (-15 -4369 ((-1155) $ (-1173))) (-15 -1639 ((-1267) $)) (-15 -2973 ((-1267) $))))))) (-1639 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-848) (-10 -8 (-15 -4369 ((-1155) $ (-1173))) (-15 -1639 (*2 $)) (-15 -2973 (*2 $))))))) (-2973 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-848) (-10 -8 (-15 -4369 ((-1155) $ (-1173))) (-15 -1639 (*2 $)) (-15 -2973 (*2 $))))))) (-2973 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-919)) (-5 *2 (-1267)) (-5 *1 (-214 *4)) (-4 *4 (-13 (-848) (-10 -8 (-15 -4369 ((-1155) $ (-1173))) (-15 -1639 (*2 $)) (-15 -2973 (*2 $)))))))) -(-13 (-1097) (-614 (-642 |#1|)) (-10 -8 (-15 -4369 ($ $ (-987))) (-15 -4369 ((-245 (-1155)) $ (-1173))) (-15 -2917 ($ $ $)) (-15 -2930 ($ $ $)) (-15 -1639 ((-1267) $)) (-15 -2973 ((-1267) $)) (-15 -2973 ((-1267) $ (-919) (-919))))) -((-1364 ((|#2| |#4| (-1 |#2| |#2|)) 49))) -(((-215 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1364 (|#2| |#4| (-1 |#2| |#2|)))) (-363) (-1238 |#1|) (-1238 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -215)) -((-1364 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-363)) (-4 *6 (-1238 (-407 *2))) (-4 *2 (-1238 *5)) (-5 *1 (-215 *5 *2 *6 *3)) (-4 *3 (-342 *5 *2 *6))))) -(-10 -7 (-15 -1364 (|#2| |#4| (-1 |#2| |#2|)))) -((-2261 ((|#2| |#2| (-769) |#2|) 58)) (-2353 ((|#2| |#2| (-769) |#2|) 54)) (-1636 (((-642 |#2|) (-642 (-2 (|:| |deg| (-769)) (|:| -2918 |#2|)))) 82)) (-3784 (((-642 (-2 (|:| |deg| (-769)) (|:| -2918 |#2|))) |#2|) 76)) (-2700 (((-112) |#2|) 74)) (-1683 (((-418 |#2|) |#2|) 96)) (-2254 (((-418 |#2|) |#2|) 95)) (-1915 ((|#2| |#2| (-769) |#2|) 52)) (-2225 (((-2 (|:| |cont| |#1|) (|:| -1569 (-642 (-2 (|:| |irr| |#2|) (|:| -3660 (-564)))))) |#2| (-112)) 88))) -(((-216 |#1| |#2|) (-10 -7 (-15 -2254 ((-418 |#2|) |#2|)) (-15 -1683 ((-418 |#2|) |#2|)) (-15 -2225 ((-2 (|:| |cont| |#1|) (|:| -1569 (-642 (-2 (|:| |irr| |#2|) (|:| -3660 (-564)))))) |#2| (-112))) (-15 -3784 ((-642 (-2 (|:| |deg| (-769)) (|:| -2918 |#2|))) |#2|)) (-15 -1636 ((-642 |#2|) (-642 (-2 (|:| |deg| (-769)) (|:| -2918 |#2|))))) (-15 -1915 (|#2| |#2| (-769) |#2|)) (-15 -2353 (|#2| |#2| (-769) |#2|)) (-15 -2261 (|#2| |#2| (-769) |#2|)) (-15 -2700 ((-112) |#2|))) (-349) (-1238 |#1|)) (T -216)) -((-2700 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1238 *4)))) (-2261 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-769)) (-4 *4 (-349)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1238 *4)))) (-2353 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-769)) (-4 *4 (-349)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1238 *4)))) (-1915 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-769)) (-4 *4 (-349)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1238 *4)))) (-1636 (*1 *2 *3) (-12 (-5 *3 (-642 (-2 (|:| |deg| (-769)) (|:| -2918 *5)))) (-4 *5 (-1238 *4)) (-4 *4 (-349)) (-5 *2 (-642 *5)) (-5 *1 (-216 *4 *5)))) (-3784 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-642 (-2 (|:| |deg| (-769)) (|:| -2918 *3)))) (-5 *1 (-216 *4 *3)) (-4 *3 (-1238 *4)))) (-2225 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-349)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1569 (-642 (-2 (|:| |irr| *3) (|:| -3660 (-564))))))) (-5 *1 (-216 *5 *3)) (-4 *3 (-1238 *5)))) (-1683 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-418 *3)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1238 *4)))) (-2254 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-418 *3)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1238 *4))))) -(-10 -7 (-15 -2254 ((-418 |#2|) |#2|)) (-15 -1683 ((-418 |#2|) |#2|)) (-15 -2225 ((-2 (|:| |cont| |#1|) (|:| -1569 (-642 (-2 (|:| |irr| |#2|) (|:| -3660 (-564)))))) |#2| (-112))) (-15 -3784 ((-642 (-2 (|:| |deg| (-769)) (|:| -2918 |#2|))) |#2|)) (-15 -1636 ((-642 |#2|) (-642 (-2 (|:| |deg| (-769)) (|:| -2918 |#2|))))) (-15 -1915 (|#2| |#2| (-769) |#2|)) (-15 -2353 (|#2| |#2| (-769) |#2|)) (-15 -2261 (|#2| |#2| (-769) |#2|)) (-15 -2700 ((-112) |#2|))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-2905 (((-564) $) NIL (|has| (-564) (-307)))) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-4252 (($ $) NIL)) (-1722 (((-112) $) NIL)) (-3085 (((-3 $ "failed") $ $) NIL)) (-4297 (((-418 (-1169 $)) (-1169 $)) NIL (|has| (-564) (-907)))) (-1993 (($ $) NIL)) (-3282 (((-418 $) $) NIL)) (-3267 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) NIL (|has| (-564) (-907)))) (-2134 (((-112) $ $) NIL)) (-2221 (((-564) $) NIL (|has| (-564) (-818)))) (-2822 (($) NIL T CONST)) (-2849 (((-3 (-564) "failed") $) NIL) (((-3 (-1173) "failed") $) NIL (|has| (-564) (-1036 (-1173)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-564) (-1036 (-564)))) (((-3 (-564) "failed") $) NIL (|has| (-564) (-1036 (-564))))) (-1687 (((-564) $) NIL) (((-1173) $) NIL (|has| (-564) (-1036 (-1173)))) (((-407 (-564)) $) NIL (|has| (-564) (-1036 (-564)))) (((-564) $) NIL (|has| (-564) (-1036 (-564))))) (-2796 (($ $ $) NIL)) (-3330 (((-687 (-564)) (-687 $)) NIL (|has| (-564) (-637 (-564)))) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (|has| (-564) (-637 (-564)))) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL) (((-687 (-564)) (-687 $)) NIL)) (-2675 (((-3 $ "failed") $) NIL)) (-3235 (($) NIL (|has| (-564) (-545)))) (-2808 (($ $ $) NIL)) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) NIL)) (-3552 (((-112) $) NIL)) (-3292 (((-112) $) NIL (|has| (-564) (-818)))) (-1381 (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) NIL (|has| (-564) (-884 (-564)))) (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) NIL (|has| (-564) (-884 (-379))))) (-3163 (((-112) $) NIL)) (-3408 (($ $) NIL)) (-4120 (((-564) $) NIL)) (-4382 (((-3 $ "failed") $) NIL (|has| (-564) (-1148)))) (-2666 (((-112) $) NIL (|has| (-564) (-818)))) (-2709 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-3225 (($ $ $) NIL (|has| (-564) (-848)))) (-2903 (($ $ $) NIL (|has| (-564) (-848)))) (-2947 (($ (-1 (-564) (-564)) $) NIL)) (-2066 (($ $ $) NIL) (($ (-642 $)) NIL)) (-1778 (((-1155) $) NIL)) (-2481 (($ $) NIL)) (-3910 (($) NIL (|has| (-564) (-1148)) CONST)) (-3999 (((-1117) $) NIL)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2105 (($ $ $) NIL) (($ (-642 $)) NIL)) (-1830 (($ $) NIL (|has| (-564) (-307))) (((-407 (-564)) $) NIL)) (-2795 (((-564) $) NIL (|has| (-564) (-545)))) (-3223 (((-418 (-1169 $)) (-1169 $)) NIL (|has| (-564) (-907)))) (-2236 (((-418 (-1169 $)) (-1169 $)) NIL (|has| (-564) (-907)))) (-2254 (((-418 $) $) NIL)) (-1877 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2842 (((-3 $ "failed") $ $) NIL)) (-1483 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-3154 (($ $ (-642 (-564)) (-642 (-564))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-564) (-564)) NIL (|has| (-564) (-309 (-564)))) (($ $ (-294 (-564))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-642 (-294 (-564)))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-642 (-1173)) (-642 (-564))) NIL (|has| (-564) (-514 (-1173) (-564)))) (($ $ (-1173) (-564)) NIL (|has| (-564) (-514 (-1173) (-564))))) (-4274 (((-769) $) NIL)) (-4369 (($ $ (-564)) NIL (|has| (-564) (-286 (-564) (-564))))) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL)) (-2199 (($ $) NIL (|has| (-564) (-233))) (($ $ (-769)) NIL (|has| (-564) (-233))) (($ $ (-1173)) NIL (|has| (-564) (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| (-564) (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| (-564) (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| (-564) (-898 (-1173)))) (($ $ (-1 (-564) (-564)) (-769)) NIL) (($ $ (-1 (-564) (-564))) NIL)) (-3082 (($ $) NIL)) (-4131 (((-564) $) NIL)) (-4081 (($ (-407 (-564))) 9)) (-3003 (((-890 (-564)) $) NIL (|has| (-564) (-612 (-890 (-564))))) (((-890 (-379)) $) NIL (|has| (-564) (-612 (-890 (-379))))) (((-536) $) NIL (|has| (-564) (-612 (-536)))) (((-379) $) NIL (|has| (-564) (-1020))) (((-225) $) NIL (|has| (-564) (-1020)))) (-3556 (((-3 (-1262 $) "failed") (-687 $)) NIL (-12 (|has| $ (-145)) (|has| (-564) (-907))))) (-2390 (((-860) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) 8) (($ (-564)) NIL) (($ (-1173)) NIL (|has| (-564) (-1036 (-1173)))) (((-407 (-564)) $) NIL) (((-1002 10) $) 10)) (-3434 (((-3 $ "failed") $) NIL (-2682 (-12 (|has| $ (-145)) (|has| (-564) (-907))) (|has| (-564) (-145))))) (-3348 (((-769)) NIL T CONST)) (-1378 (((-564) $) NIL (|has| (-564) (-545)))) (-1600 (((-112) $ $) NIL)) (-1594 (((-112) $ $) NIL)) (-1630 (($ $) NIL (|has| (-564) (-818)))) (-2361 (($) NIL T CONST)) (-2371 (($) NIL T CONST)) (-2711 (($ $) NIL (|has| (-564) (-233))) (($ $ (-769)) NIL (|has| (-564) (-233))) (($ $ (-1173)) NIL (|has| (-564) (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| (-564) (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| (-564) (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| (-564) (-898 (-1173)))) (($ $ (-1 (-564) (-564)) (-769)) NIL) (($ $ (-1 (-564) (-564))) NIL)) (-2881 (((-112) $ $) NIL (|has| (-564) (-848)))) (-2857 (((-112) $ $) NIL (|has| (-564) (-848)))) (-2821 (((-112) $ $) NIL)) (-2868 (((-112) $ $) NIL (|has| (-564) (-848)))) (-2844 (((-112) $ $) NIL (|has| (-564) (-848)))) (-2943 (($ $ $) NIL) (($ (-564) (-564)) NIL)) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ (-564) $) NIL) (($ $ (-564)) NIL))) -(((-217) (-13 (-990 (-564)) (-611 (-407 (-564))) (-611 (-1002 10)) (-10 -8 (-15 -1830 ((-407 (-564)) $)) (-15 -4081 ($ (-407 (-564))))))) (T -217)) -((-1830 (*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-217)))) (-4081 (*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-217))))) -(-13 (-990 (-564)) (-611 (-407 (-564))) (-611 (-1002 10)) (-10 -8 (-15 -1830 ((-407 (-564)) $)) (-15 -4081 ($ (-407 (-564)))))) -((-2856 (((-112) $ $) NIL)) (-2880 (((-1115) $) 13)) (-1778 (((-1155) $) NIL)) (-3332 (((-483) $) 10)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) 23) (($ (-1178)) NIL) (((-1178) $) NIL)) (-2502 (((-1132) $) 15)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-218) (-13 (-1080) (-10 -8 (-15 -3332 ((-483) $)) (-15 -2880 ((-1115) $)) (-15 -2502 ((-1132) $))))) (T -218)) -((-3332 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-218)))) (-2880 (*1 *2 *1) (-12 (-5 *2 (-1115)) (-5 *1 (-218)))) (-2502 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-218))))) -(-13 (-1080) (-10 -8 (-15 -3332 ((-483) $)) (-15 -2880 ((-1115) $)) (-15 -2502 ((-1132) $)))) -((-3703 (((-3 (|:| |f1| (-841 |#2|)) (|:| |f2| (-642 (-841 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1089 (-841 |#2|)) (-1155)) 29) (((-3 (|:| |f1| (-841 |#2|)) (|:| |f2| (-642 (-841 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1089 (-841 |#2|))) 25)) (-2431 (((-3 (|:| |f1| (-841 |#2|)) (|:| |f2| (-642 (-841 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1173) (-841 |#2|) (-841 |#2|) (-112)) 17))) -(((-219 |#1| |#2|) (-10 -7 (-15 -3703 ((-3 (|:| |f1| (-841 |#2|)) (|:| |f2| (-642 (-841 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1089 (-841 |#2|)))) (-15 -3703 ((-3 (|:| |f1| (-841 |#2|)) (|:| |f2| (-642 (-841 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1089 (-841 |#2|)) (-1155))) (-15 -2431 ((-3 (|:| |f1| (-841 |#2|)) (|:| |f2| (-642 (-841 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1173) (-841 |#2|) (-841 |#2|) (-112)))) (-13 (-307) (-147) (-1036 (-564)) (-637 (-564))) (-13 (-1197) (-957) (-29 |#1|))) (T -219)) -((-2431 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1173)) (-5 *6 (-112)) (-4 *7 (-13 (-307) (-147) (-1036 (-564)) (-637 (-564)))) (-4 *3 (-13 (-1197) (-957) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-841 *3)) (|:| |f2| (-642 (-841 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *7 *3)) (-5 *5 (-841 *3)))) (-3703 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1089 (-841 *3))) (-5 *5 (-1155)) (-4 *3 (-13 (-1197) (-957) (-29 *6))) (-4 *6 (-13 (-307) (-147) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-3 (|:| |f1| (-841 *3)) (|:| |f2| (-642 (-841 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *6 *3)))) (-3703 (*1 *2 *3 *4) (-12 (-5 *4 (-1089 (-841 *3))) (-4 *3 (-13 (-1197) (-957) (-29 *5))) (-4 *5 (-13 (-307) (-147) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-3 (|:| |f1| (-841 *3)) (|:| |f2| (-642 (-841 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *5 *3))))) -(-10 -7 (-15 -3703 ((-3 (|:| |f1| (-841 |#2|)) (|:| |f2| (-642 (-841 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1089 (-841 |#2|)))) (-15 -3703 ((-3 (|:| |f1| (-841 |#2|)) (|:| |f2| (-642 (-841 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1089 (-841 |#2|)) (-1155))) (-15 -2431 ((-3 (|:| |f1| (-841 |#2|)) (|:| |f2| (-642 (-841 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1173) (-841 |#2|) (-841 |#2|) (-112)))) -((-3703 (((-3 (|:| |f1| (-841 (-316 |#1|))) (|:| |f2| (-642 (-841 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-950 |#1|)) (-1089 (-841 (-407 (-950 |#1|)))) (-1155)) 49) (((-3 (|:| |f1| (-841 (-316 |#1|))) (|:| |f2| (-642 (-841 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-950 |#1|)) (-1089 (-841 (-407 (-950 |#1|))))) 46) (((-3 (|:| |f1| (-841 (-316 |#1|))) (|:| |f2| (-642 (-841 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-950 |#1|)) (-1089 (-841 (-316 |#1|))) (-1155)) 50) (((-3 (|:| |f1| (-841 (-316 |#1|))) (|:| |f2| (-642 (-841 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-950 |#1|)) (-1089 (-841 (-316 |#1|)))) 22))) -(((-220 |#1|) (-10 -7 (-15 -3703 ((-3 (|:| |f1| (-841 (-316 |#1|))) (|:| |f2| (-642 (-841 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-950 |#1|)) (-1089 (-841 (-316 |#1|))))) (-15 -3703 ((-3 (|:| |f1| (-841 (-316 |#1|))) (|:| |f2| (-642 (-841 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-950 |#1|)) (-1089 (-841 (-316 |#1|))) (-1155))) (-15 -3703 ((-3 (|:| |f1| (-841 (-316 |#1|))) (|:| |f2| (-642 (-841 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-950 |#1|)) (-1089 (-841 (-407 (-950 |#1|)))))) (-15 -3703 ((-3 (|:| |f1| (-841 (-316 |#1|))) (|:| |f2| (-642 (-841 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-950 |#1|)) (-1089 (-841 (-407 (-950 |#1|)))) (-1155)))) (-13 (-307) (-147) (-1036 (-564)) (-637 (-564)))) (T -220)) -((-3703 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1089 (-841 (-407 (-950 *6))))) (-5 *5 (-1155)) (-5 *3 (-407 (-950 *6))) (-4 *6 (-13 (-307) (-147) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-3 (|:| |f1| (-841 (-316 *6))) (|:| |f2| (-642 (-841 (-316 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *6)))) (-3703 (*1 *2 *3 *4) (-12 (-5 *4 (-1089 (-841 (-407 (-950 *5))))) (-5 *3 (-407 (-950 *5))) (-4 *5 (-13 (-307) (-147) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-3 (|:| |f1| (-841 (-316 *5))) (|:| |f2| (-642 (-841 (-316 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *5)))) (-3703 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-407 (-950 *6))) (-5 *4 (-1089 (-841 (-316 *6)))) (-5 *5 (-1155)) (-4 *6 (-13 (-307) (-147) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-3 (|:| |f1| (-841 (-316 *6))) (|:| |f2| (-642 (-841 (-316 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *6)))) (-3703 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-950 *5))) (-5 *4 (-1089 (-841 (-316 *5)))) (-4 *5 (-13 (-307) (-147) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-3 (|:| |f1| (-841 (-316 *5))) (|:| |f2| (-642 (-841 (-316 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *5))))) -(-10 -7 (-15 -3703 ((-3 (|:| |f1| (-841 (-316 |#1|))) (|:| |f2| (-642 (-841 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-950 |#1|)) (-1089 (-841 (-316 |#1|))))) (-15 -3703 ((-3 (|:| |f1| (-841 (-316 |#1|))) (|:| |f2| (-642 (-841 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-950 |#1|)) (-1089 (-841 (-316 |#1|))) (-1155))) (-15 -3703 ((-3 (|:| |f1| (-841 (-316 |#1|))) (|:| |f2| (-642 (-841 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-950 |#1|)) (-1089 (-841 (-407 (-950 |#1|)))))) (-15 -3703 ((-3 (|:| |f1| (-841 (-316 |#1|))) (|:| |f2| (-642 (-841 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-950 |#1|)) (-1089 (-841 (-407 (-950 |#1|)))) (-1155)))) -((-3741 (((-2 (|:| -2830 (-1169 |#1|)) (|:| |deg| (-919))) (-1169 |#1|)) 26)) (-3398 (((-642 (-316 |#2|)) (-316 |#2|) (-919)) 54))) -(((-221 |#1| |#2|) (-10 -7 (-15 -3741 ((-2 (|:| -2830 (-1169 |#1|)) (|:| |deg| (-919))) (-1169 |#1|))) (-15 -3398 ((-642 (-316 |#2|)) (-316 |#2|) (-919)))) (-1047) (-556)) (T -221)) -((-3398 (*1 *2 *3 *4) (-12 (-5 *4 (-919)) (-4 *6 (-556)) (-5 *2 (-642 (-316 *6))) (-5 *1 (-221 *5 *6)) (-5 *3 (-316 *6)) (-4 *5 (-1047)))) (-3741 (*1 *2 *3) (-12 (-4 *4 (-1047)) (-5 *2 (-2 (|:| -2830 (-1169 *4)) (|:| |deg| (-919)))) (-5 *1 (-221 *4 *5)) (-5 *3 (-1169 *4)) (-4 *5 (-556))))) -(-10 -7 (-15 -3741 ((-2 (|:| -2830 (-1169 |#1|)) (|:| |deg| (-919))) (-1169 |#1|))) (-15 -3398 ((-642 (-316 |#2|)) (-316 |#2|) (-919)))) -((-2856 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-4259 ((|#1| $) NIL)) (-3844 ((|#1| $) 30)) (-3442 (((-112) $ (-769)) NIL)) (-2822 (($) NIL T CONST)) (-3311 (($ $) NIL)) (-1540 (($ $) 39)) (-1881 ((|#1| |#1| $) NIL)) (-3949 ((|#1| $) NIL)) (-2018 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-3769 (((-112) $ (-769)) NIL)) (-3541 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2533 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-1857 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#1| |#1|) $) NIL)) (-4145 (((-112) $ (-769)) NIL)) (-2495 (((-769) $) NIL)) (-1778 (((-1155) $) NIL (|has| |#1| (-1097)))) (-3220 ((|#1| $) NIL)) (-3811 ((|#1| |#1| $) 35)) (-1798 ((|#1| |#1| $) 37)) (-1668 (($ |#1| $) NIL)) (-2983 (((-769) $) 33)) (-3999 (((-1117) $) NIL (|has| |#1| (-1097)))) (-4108 ((|#1| $) NIL)) (-3739 ((|#1| $) 31)) (-1386 ((|#1| $) 29)) (-4314 ((|#1| $) NIL)) (-4094 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-2478 (((-112) $ $) NIL)) (-2080 ((|#1| |#1| $) NIL)) (-4109 (((-112) $) 9)) (-2179 (($) NIL)) (-2519 ((|#1| $) NIL)) (-1414 (($) NIL) (($ (-642 |#1|)) 16)) (-2085 (((-769) $) NIL)) (-4010 (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-769) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3865 (($ $) NIL)) (-2390 (((-860) $) NIL (|has| |#1| (-611 (-860))))) (-4380 ((|#1| $) 13)) (-1600 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-4160 (($ (-642 |#1|)) NIL)) (-4052 ((|#1| $) NIL)) (-3295 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2821 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2158 (((-769) $) NIL (|has| $ (-6 -4410))))) -(((-222 |#1|) (-13 (-254 |#1|) (-10 -8 (-15 -1414 ($ (-642 |#1|))))) (-1097)) (T -222)) -((-1414 (*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1097)) (-5 *1 (-222 *3))))) -(-13 (-254 |#1|) (-10 -8 (-15 -1414 ($ (-642 |#1|))))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-1901 (($ (-316 |#1|)) 27)) (-3085 (((-3 $ "failed") $ $) NIL)) (-2822 (($) NIL T CONST)) (-3629 (((-112) $) NIL)) (-2849 (((-3 (-316 |#1|) "failed") $) NIL)) (-1687 (((-316 |#1|) $) NIL)) (-3459 (($ $) 35)) (-2675 (((-3 $ "failed") $) NIL)) (-3163 (((-112) $) NIL)) (-2947 (($ (-1 (-316 |#1|) (-316 |#1|)) $) NIL)) (-2523 (((-316 |#1|) $) NIL)) (-3579 (($ $) 34)) (-1778 (((-1155) $) NIL)) (-2475 (((-112) $) NIL)) (-3999 (((-1117) $) NIL)) (-4043 (($ (-769)) NIL)) (-2130 (($ $) 36)) (-3252 (((-564) $) NIL)) (-2390 (((-860) $) 68) (($ (-564)) NIL) (($ (-316 |#1|)) NIL)) (-3005 (((-316 |#1|) $ $) NIL)) (-3348 (((-769)) NIL T CONST)) (-1600 (((-112) $ $) NIL)) (-2361 (($) 29 T CONST)) (-2371 (($) NIL T CONST)) (-2821 (((-112) $ $) 32)) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) 23)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) 28) (($ (-316 |#1|) $) 22))) -(((-223 |#1| |#2|) (-13 (-618 (-316 |#1|)) (-1036 (-316 |#1|)) (-10 -8 (-15 -2523 ((-316 |#1|) $)) (-15 -3579 ($ $)) (-15 -3459 ($ $)) (-15 -3005 ((-316 |#1|) $ $)) (-15 -4043 ($ (-769))) (-15 -2475 ((-112) $)) (-15 -3629 ((-112) $)) (-15 -3252 ((-564) $)) (-15 -2947 ($ (-1 (-316 |#1|) (-316 |#1|)) $)) (-15 -1901 ($ (-316 |#1|))) (-15 -2130 ($ $)))) (-13 (-1047) (-848)) (-642 (-1173))) (T -223)) -((-2523 (*1 *2 *1) (-12 (-5 *2 (-316 *3)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1047) (-848))) (-14 *4 (-642 (-1173))))) (-3579 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1047) (-848))) (-14 *3 (-642 (-1173))))) (-3459 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1047) (-848))) (-14 *3 (-642 (-1173))))) (-3005 (*1 *2 *1 *1) (-12 (-5 *2 (-316 *3)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1047) (-848))) (-14 *4 (-642 (-1173))))) (-4043 (*1 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1047) (-848))) (-14 *4 (-642 (-1173))))) (-2475 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1047) (-848))) (-14 *4 (-642 (-1173))))) (-3629 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1047) (-848))) (-14 *4 (-642 (-1173))))) (-3252 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1047) (-848))) (-14 *4 (-642 (-1173))))) (-2947 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-316 *3) (-316 *3))) (-4 *3 (-13 (-1047) (-848))) (-5 *1 (-223 *3 *4)) (-14 *4 (-642 (-1173))))) (-1901 (*1 *1 *2) (-12 (-5 *2 (-316 *3)) (-4 *3 (-13 (-1047) (-848))) (-5 *1 (-223 *3 *4)) (-14 *4 (-642 (-1173))))) (-2130 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1047) (-848))) (-14 *3 (-642 (-1173)))))) -(-13 (-618 (-316 |#1|)) (-1036 (-316 |#1|)) (-10 -8 (-15 -2523 ((-316 |#1|) $)) (-15 -3579 ($ $)) (-15 -3459 ($ $)) (-15 -3005 ((-316 |#1|) $ $)) (-15 -4043 ($ (-769))) (-15 -2475 ((-112) $)) (-15 -3629 ((-112) $)) (-15 -3252 ((-564) $)) (-15 -2947 ($ (-1 (-316 |#1|) (-316 |#1|)) $)) (-15 -1901 ($ (-316 |#1|))) (-15 -2130 ($ $)))) -((-3064 (((-112) (-1155)) 26)) (-3319 (((-3 (-841 |#2|) "failed") (-610 |#2|) |#2| (-841 |#2|) (-841 |#2|) (-112)) 35)) (-1593 (((-3 (-112) "failed") (-1169 |#2|) (-841 |#2|) (-841 |#2|) (-112)) 84) (((-3 (-112) "failed") (-950 |#1|) (-1173) (-841 |#2|) (-841 |#2|) (-112)) 85))) -(((-224 |#1| |#2|) (-10 -7 (-15 -3064 ((-112) (-1155))) (-15 -3319 ((-3 (-841 |#2|) "failed") (-610 |#2|) |#2| (-841 |#2|) (-841 |#2|) (-112))) (-15 -1593 ((-3 (-112) "failed") (-950 |#1|) (-1173) (-841 |#2|) (-841 |#2|) (-112))) (-15 -1593 ((-3 (-112) "failed") (-1169 |#2|) (-841 |#2|) (-841 |#2|) (-112)))) (-13 (-452) (-1036 (-564)) (-637 (-564))) (-13 (-1197) (-29 |#1|))) (T -224)) -((-1593 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1169 *6)) (-5 *4 (-841 *6)) (-4 *6 (-13 (-1197) (-29 *5))) (-4 *5 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *1 (-224 *5 *6)))) (-1593 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-950 *6)) (-5 *4 (-1173)) (-5 *5 (-841 *7)) (-4 *6 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-4 *7 (-13 (-1197) (-29 *6))) (-5 *1 (-224 *6 *7)))) (-3319 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-841 *4)) (-5 *3 (-610 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1197) (-29 *6))) (-4 *6 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *1 (-224 *6 *4)))) (-3064 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-112)) (-5 *1 (-224 *4 *5)) (-4 *5 (-13 (-1197) (-29 *4)))))) -(-10 -7 (-15 -3064 ((-112) (-1155))) (-15 -3319 ((-3 (-841 |#2|) "failed") (-610 |#2|) |#2| (-841 |#2|) (-841 |#2|) (-112))) (-15 -1593 ((-3 (-112) "failed") (-950 |#1|) (-1173) (-841 |#2|) (-841 |#2|) (-112))) (-15 -1593 ((-3 (-112) "failed") (-1169 |#2|) (-841 |#2|) (-841 |#2|) (-112)))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) 100)) (-2905 (((-564) $) 36)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-4252 (($ $) NIL)) (-1722 (((-112) $) NIL)) (-2180 (($ $) NIL)) (-3087 (($ $) 89)) (-2958 (($ $) 77)) (-3085 (((-3 $ "failed") $ $) NIL)) (-1993 (($ $) NIL)) (-3282 (((-418 $) $) NIL)) (-2264 (($ $) 68)) (-2134 (((-112) $ $) NIL)) (-3067 (($ $) 87)) (-2933 (($ $) 75)) (-2221 (((-564) $) 130)) (-3110 (($ $) 92)) (-2981 (($ $) 79)) (-2822 (($) NIL T CONST)) (-2293 (($ $) NIL)) (-2849 (((-3 (-564) "failed") $) 129) (((-3 (-407 (-564)) "failed") $) 126)) (-1687 (((-564) $) 127) (((-407 (-564)) $) 124)) (-2796 (($ $ $) NIL)) (-2675 (((-3 $ "failed") $) 105)) (-3117 (((-407 (-564)) $ (-769)) 119) (((-407 (-564)) $ (-769) (-769)) 118)) (-2808 (($ $ $) NIL)) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) NIL)) (-3552 (((-112) $) NIL)) (-2182 (((-919)) 29) (((-919) (-919)) NIL (|has| $ (-6 -4401)))) (-3292 (((-112) $) NIL)) (-2833 (($) 47)) (-1381 (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) NIL)) (-2408 (((-564) $) 43)) (-3163 (((-112) $) 101)) (-2024 (($ $ (-564)) NIL)) (-2573 (($ $) NIL)) (-2666 (((-112) $) 99)) (-2709 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-3225 (($ $ $) 65) (($) 39 (-12 (-2307 (|has| $ (-6 -4393))) (-2307 (|has| $ (-6 -4401)))))) (-2903 (($ $ $) 64) (($) 38 (-12 (-2307 (|has| $ (-6 -4393))) (-2307 (|has| $ (-6 -4401)))))) (-1664 (((-564) $) 27)) (-3276 (($ $) 34)) (-2219 (($ $) 69)) (-3576 (($ $) 74)) (-2066 (($ $ $) NIL) (($ (-642 $)) NIL)) (-1778 (((-1155) $) NIL)) (-2481 (($ $) NIL)) (-3974 (((-919) (-564)) NIL (|has| $ (-6 -4401)))) (-3999 (((-1117) $) 103)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2105 (($ $ $) NIL) (($ (-642 $)) NIL)) (-1830 (($ $) NIL)) (-2795 (($ $) NIL)) (-2823 (($ (-564) (-564)) NIL) (($ (-564) (-564) (-919)) 112)) (-2254 (((-418 $) $) NIL)) (-1877 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2842 (((-3 $ "failed") $ $) NIL)) (-1483 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2817 (((-564) $) 28)) (-2129 (($) 46)) (-3466 (($ $) 73)) (-4274 (((-769) $) NIL)) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL)) (-3152 (((-919)) NIL) (((-919) (-919)) NIL (|has| $ (-6 -4401)))) (-2199 (($ $ (-769)) NIL) (($ $) 106)) (-3520 (((-919) (-564)) NIL (|has| $ (-6 -4401)))) (-3120 (($ $) 90)) (-2992 (($ $) 80)) (-3098 (($ $) 91)) (-2971 (($ $) 78)) (-3077 (($ $) 88)) (-2946 (($ $) 76)) (-3003 (((-379) $) 115) (((-225) $) 14) (((-890 (-379)) $) NIL) (((-536) $) 53)) (-2390 (((-860) $) 50) (($ (-564)) 72) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-564)) 72) (($ (-407 (-564))) NIL)) (-3348 (((-769)) NIL T CONST)) (-1378 (($ $) NIL)) (-1991 (((-919)) 37) (((-919) (-919)) NIL (|has| $ (-6 -4401)))) (-1600 (((-112) $ $) NIL)) (-1959 (((-919)) 25)) (-3155 (($ $) 95)) (-3025 (($ $) 83) (($ $ $) 122)) (-1594 (((-112) $ $) NIL)) (-3131 (($ $) 93)) (-3002 (($ $) 81)) (-3176 (($ $) 98)) (-3047 (($ $) 86)) (-3165 (($ $) 96)) (-3058 (($ $) 84)) (-3168 (($ $) 97)) (-3035 (($ $) 85)) (-3142 (($ $) 94)) (-3014 (($ $) 82)) (-1630 (($ $) 121)) (-2361 (($) 23 T CONST)) (-2371 (($) 44 T CONST)) (-3816 (((-1155) $) 18) (((-1155) $ (-112)) 20) (((-1267) (-820) $) 21) (((-1267) (-820) $ (-112)) 22)) (-3375 (($ $) 109)) (-2711 (($ $ (-769)) NIL) (($ $) NIL)) (-3197 (($ $ $) 111)) (-2881 (((-112) $ $) 58)) (-2857 (((-112) $ $) 55)) (-2821 (((-112) $ $) 66)) (-2868 (((-112) $ $) 57)) (-2844 (((-112) $ $) 54)) (-2943 (($ $ $) 45) (($ $ (-564)) 67)) (-2930 (($ $) 59) (($ $ $) 61)) (-2917 (($ $ $) 60)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) 70) (($ $ (-407 (-564))) 154) (($ $ $) 71)) (* (($ (-919) $) 35) (($ (-769) $) NIL) (($ (-564) $) 63) (($ $ $) 62) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL))) -(((-225) (-13 (-404) (-233) (-826) (-1197) (-612 (-536)) (-10 -8 (-15 -2943 ($ $ (-564))) (-15 ** ($ $ $)) (-15 -2129 ($)) (-15 -3276 ($ $)) (-15 -2219 ($ $)) (-15 -3025 ($ $ $)) (-15 -3375 ($ $)) (-15 -3197 ($ $ $)) (-15 -3117 ((-407 (-564)) $ (-769))) (-15 -3117 ((-407 (-564)) $ (-769) (-769)))))) (T -225)) -((** (*1 *1 *1 *1) (-5 *1 (-225))) (-2943 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-225)))) (-2129 (*1 *1) (-5 *1 (-225))) (-3276 (*1 *1 *1) (-5 *1 (-225))) (-2219 (*1 *1 *1) (-5 *1 (-225))) (-3025 (*1 *1 *1 *1) (-5 *1 (-225))) (-3375 (*1 *1 *1) (-5 *1 (-225))) (-3197 (*1 *1 *1 *1) (-5 *1 (-225))) (-3117 (*1 *2 *1 *3) (-12 (-5 *3 (-769)) (-5 *2 (-407 (-564))) (-5 *1 (-225)))) (-3117 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-769)) (-5 *2 (-407 (-564))) (-5 *1 (-225))))) -(-13 (-404) (-233) (-826) (-1197) (-612 (-536)) (-10 -8 (-15 -2943 ($ $ (-564))) (-15 ** ($ $ $)) (-15 -2129 ($)) (-15 -3276 ($ $)) (-15 -2219 ($ $)) (-15 -3025 ($ $ $)) (-15 -3375 ($ $)) (-15 -3197 ($ $ $)) (-15 -3117 ((-407 (-564)) $ (-769))) (-15 -3117 ((-407 (-564)) $ (-769) (-769))))) -((-3042 (((-169 (-225)) (-769) (-169 (-225))) 11) (((-225) (-769) (-225)) 12)) (-3518 (((-169 (-225)) (-169 (-225))) 13) (((-225) (-225)) 14)) (-2712 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 19) (((-225) (-225) (-225)) 22)) (-3745 (((-169 (-225)) (-169 (-225))) 27) (((-225) (-225)) 26)) (-3679 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 57) (((-225) (-225) (-225)) 49)) (-3144 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 62) (((-225) (-225) (-225)) 60)) (-2088 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 15) (((-225) (-225) (-225)) 16)) (-4048 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 17) (((-225) (-225) (-225)) 18)) (-3512 (((-169 (-225)) (-169 (-225))) 74) (((-225) (-225)) 73)) (-2123 (((-225) (-225)) 68) (((-169 (-225)) (-169 (-225))) 72)) (-3375 (((-169 (-225)) (-169 (-225))) 8) (((-225) (-225)) 9)) (-3197 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 35) (((-225) (-225) (-225)) 31))) -(((-226) (-10 -7 (-15 -3375 ((-225) (-225))) (-15 -3375 ((-169 (-225)) (-169 (-225)))) (-15 -3197 ((-225) (-225) (-225))) (-15 -3197 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3518 ((-225) (-225))) (-15 -3518 ((-169 (-225)) (-169 (-225)))) (-15 -3745 ((-225) (-225))) (-15 -3745 ((-169 (-225)) (-169 (-225)))) (-15 -3042 ((-225) (-769) (-225))) (-15 -3042 ((-169 (-225)) (-769) (-169 (-225)))) (-15 -2088 ((-225) (-225) (-225))) (-15 -2088 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3679 ((-225) (-225) (-225))) (-15 -3679 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -4048 ((-225) (-225) (-225))) (-15 -4048 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3144 ((-225) (-225) (-225))) (-15 -3144 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -2123 ((-169 (-225)) (-169 (-225)))) (-15 -2123 ((-225) (-225))) (-15 -3512 ((-225) (-225))) (-15 -3512 ((-169 (-225)) (-169 (-225)))) (-15 -2712 ((-225) (-225) (-225))) (-15 -2712 ((-169 (-225)) (-169 (-225)) (-169 (-225)))))) (T -226)) -((-2712 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2712 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3512 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3512 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2123 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2123 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3144 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3144 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-4048 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-4048 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3679 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3679 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2088 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2088 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3042 (*1 *2 *3 *2) (-12 (-5 *2 (-169 (-225))) (-5 *3 (-769)) (-5 *1 (-226)))) (-3042 (*1 *2 *3 *2) (-12 (-5 *2 (-225)) (-5 *3 (-769)) (-5 *1 (-226)))) (-3745 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3745 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3518 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3518 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3197 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3197 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3375 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3375 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))) -(-10 -7 (-15 -3375 ((-225) (-225))) (-15 -3375 ((-169 (-225)) (-169 (-225)))) (-15 -3197 ((-225) (-225) (-225))) (-15 -3197 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3518 ((-225) (-225))) (-15 -3518 ((-169 (-225)) (-169 (-225)))) (-15 -3745 ((-225) (-225))) (-15 -3745 ((-169 (-225)) (-169 (-225)))) (-15 -3042 ((-225) (-769) (-225))) (-15 -3042 ((-169 (-225)) (-769) (-169 (-225)))) (-15 -2088 ((-225) (-225) (-225))) (-15 -2088 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3679 ((-225) (-225) (-225))) (-15 -3679 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -4048 ((-225) (-225) (-225))) (-15 -4048 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3144 ((-225) (-225) (-225))) (-15 -3144 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -2123 ((-169 (-225)) (-169 (-225)))) (-15 -2123 ((-225) (-225))) (-15 -3512 ((-225) (-225))) (-15 -3512 ((-169 (-225)) (-169 (-225)))) (-15 -2712 ((-225) (-225) (-225))) (-15 -2712 ((-169 (-225)) (-169 (-225)) (-169 (-225))))) -((-2856 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2038 (($ (-769) (-769)) NIL)) (-3083 (($ $ $) NIL)) (-2845 (($ (-1262 |#1|)) NIL) (($ $) NIL)) (-2022 (($ |#1| |#1| |#1|) 33)) (-1382 (((-112) $) NIL)) (-4299 (($ $ (-564) (-564)) NIL)) (-4115 (($ $ (-564) (-564)) NIL)) (-1619 (($ $ (-564) (-564) (-564) (-564)) NIL)) (-1579 (($ $) NIL)) (-3382 (((-112) $) NIL)) (-3442 (((-112) $ (-769)) NIL)) (-3519 (($ $ (-564) (-564) $) NIL)) (-3841 ((|#1| $ (-564) (-564) |#1|) NIL) (($ $ (-642 (-564)) (-642 (-564)) $) NIL)) (-2279 (($ $ (-564) (-1262 |#1|)) NIL)) (-4184 (($ $ (-564) (-1262 |#1|)) NIL)) (-1531 (($ |#1| |#1| |#1|) 32)) (-3859 (($ (-769) |#1|) NIL)) (-2822 (($) NIL T CONST)) (-2389 (($ $) NIL (|has| |#1| (-307)))) (-2794 (((-1262 |#1|) $ (-564)) NIL)) (-4025 (($ |#1|) 31)) (-2562 (($ |#1|) 30)) (-4034 (($ |#1|) 29)) (-3616 (((-769) $) NIL (|has| |#1| (-556)))) (-3105 ((|#1| $ (-564) (-564) |#1|) NIL)) (-1804 ((|#1| $ (-564) (-564)) NIL)) (-2018 (((-642 |#1|) $) NIL)) (-1974 (((-769) $) NIL (|has| |#1| (-556)))) (-2536 (((-642 (-1262 |#1|)) $) NIL (|has| |#1| (-556)))) (-3847 (((-769) $) NIL)) (-4233 (($ (-769) (-769) |#1|) NIL)) (-3857 (((-769) $) NIL)) (-3769 (((-112) $ (-769)) NIL)) (-1446 ((|#1| $) NIL (|has| |#1| (-6 (-4412 "*"))))) (-2570 (((-564) $) NIL)) (-2269 (((-564) $) NIL)) (-3541 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2533 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-4164 (((-564) $) NIL)) (-2720 (((-564) $) NIL)) (-4117 (($ (-642 (-642 |#1|))) 11)) (-1857 (($ (-1 |#1| |#1|) $) NIL)) (-2947 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3141 (((-642 (-642 |#1|)) $) NIL)) (-4145 (((-112) $ (-769)) NIL)) (-1778 (((-1155) $) NIL (|has| |#1| (-1097)))) (-2895 (((-3 $ "failed") $) NIL (|has| |#1| (-363)))) (-1458 (($) 12)) (-2708 (($ $ $) NIL)) (-3999 (((-1117) $) NIL (|has| |#1| (-1097)))) (-3826 (($ $ |#1|) NIL)) (-2842 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556)))) (-4094 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-2478 (((-112) $ $) NIL)) (-4109 (((-112) $) NIL)) (-2179 (($) NIL)) (-4369 ((|#1| $ (-564) (-564)) NIL) ((|#1| $ (-564) (-564) |#1|) NIL) (($ $ (-642 (-564)) (-642 (-564))) NIL)) (-4046 (($ (-642 |#1|)) NIL) (($ (-642 $)) NIL)) (-1632 (((-112) $) NIL)) (-1559 ((|#1| $) NIL (|has| |#1| (-6 (-4412 "*"))))) (-4010 (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-769) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3865 (($ $) NIL)) (-4342 (((-1262 |#1|) $ (-564)) NIL)) (-2390 (($ (-1262 |#1|)) NIL) (((-860) $) NIL (|has| |#1| (-611 (-860))))) (-1600 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-3295 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2630 (((-112) $) NIL)) (-2821 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2943 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-2930 (($ $ $) NIL) (($ $) NIL)) (-2917 (($ $ $) NIL)) (** (($ $ (-769)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-564) $) NIL) (((-1262 |#1|) $ (-1262 |#1|)) 15) (((-1262 |#1|) (-1262 |#1|) $) NIL) (((-941 |#1|) $ (-941 |#1|)) 21)) (-2158 (((-769) $) NIL (|has| $ (-6 -4410))))) -(((-227 |#1|) (-13 (-685 |#1| (-1262 |#1|) (-1262 |#1|)) (-10 -8 (-15 * ((-941 |#1|) $ (-941 |#1|))) (-15 -1458 ($)) (-15 -4034 ($ |#1|)) (-15 -2562 ($ |#1|)) (-15 -4025 ($ |#1|)) (-15 -1531 ($ |#1| |#1| |#1|)) (-15 -2022 ($ |#1| |#1| |#1|)))) (-13 (-363) (-1197))) (T -227)) -((* (*1 *2 *1 *2) (-12 (-5 *2 (-941 *3)) (-4 *3 (-13 (-363) (-1197))) (-5 *1 (-227 *3)))) (-1458 (*1 *1) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1197))))) (-4034 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1197))))) (-2562 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1197))))) (-4025 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1197))))) (-1531 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1197))))) (-2022 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1197)))))) -(-13 (-685 |#1| (-1262 |#1|) (-1262 |#1|)) (-10 -8 (-15 * ((-941 |#1|) $ (-941 |#1|))) (-15 -1458 ($)) (-15 -4034 ($ |#1|)) (-15 -2562 ($ |#1|)) (-15 -4025 ($ |#1|)) (-15 -1531 ($ |#1| |#1| |#1|)) (-15 -2022 ($ |#1| |#1| |#1|)))) -((-2438 (($ (-1 (-112) |#2|) $) 16)) (-1927 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 27)) (-2318 (($) NIL) (($ (-642 |#2|)) 11)) (-2821 (((-112) $ $) 25))) -(((-228 |#1| |#2|) (-10 -8 (-15 -2438 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1927 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1927 (|#1| |#2| |#1|)) (-15 -2318 (|#1| (-642 |#2|))) (-15 -2318 (|#1|)) (-15 -2821 ((-112) |#1| |#1|))) (-229 |#2|) (-1097)) (T -228)) -NIL -(-10 -8 (-15 -2438 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1927 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1927 (|#1| |#2| |#1|)) (-15 -2318 (|#1| (-642 |#2|))) (-15 -2318 (|#1|)) (-15 -2821 ((-112) |#1| |#1|))) -((-2856 (((-112) $ $) 19 (|has| |#1| (-1097)))) (-3442 (((-112) $ (-769)) 8)) (-2438 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4410)))) (-3437 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4410)))) (-2822 (($) 7 T CONST)) (-4067 (($ $) 59 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-1927 (($ |#1| $) 48 (|has| $ (-6 -4410))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4410)))) (-2517 (($ |#1| $) 58 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4410)))) (-3741 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4410)))) (-2018 (((-642 |#1|) $) 31 (|has| $ (-6 -4410)))) (-3769 (((-112) $ (-769)) 9)) (-3541 (((-642 |#1|) $) 30 (|has| $ (-6 -4410)))) (-2533 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-1857 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#1| |#1|) $) 36)) (-4145 (((-112) $ (-769)) 10)) (-1778 (((-1155) $) 22 (|has| |#1| (-1097)))) (-3220 ((|#1| $) 40)) (-1668 (($ |#1| $) 41)) (-3999 (((-1117) $) 21 (|has| |#1| (-1097)))) (-3183 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-4314 ((|#1| $) 42)) (-4094 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-2478 (((-112) $ $) 14)) (-4109 (((-112) $) 11)) (-2179 (($) 12)) (-2318 (($) 50) (($ (-642 |#1|)) 49)) (-4010 (((-769) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4410))) (((-769) |#1| $) 29 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3865 (($ $) 13)) (-3003 (((-536) $) 60 (|has| |#1| (-612 (-536))))) (-2401 (($ (-642 |#1|)) 51)) (-2390 (((-860) $) 18 (|has| |#1| (-611 (-860))))) (-1600 (((-112) $ $) 23 (|has| |#1| (-1097)))) (-4160 (($ (-642 |#1|)) 43)) (-3295 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4410)))) (-2821 (((-112) $ $) 20 (|has| |#1| (-1097)))) (-2158 (((-769) $) 6 (|has| $ (-6 -4410))))) -(((-229 |#1|) (-140) (-1097)) (T -229)) +(-13 (-1099) (-10 -8 (-15 -9 ($) -1573) (-15 -8 ($) -1573) (-15 -7 ($) -1573))) +((-2986 (((-112) $ $) NIL)) (-3562 (((-644 (-865)) $) NIL)) (-2598 (((-508) $) 8)) (-3151 (((-1157) $) NIL)) (-1657 (((-186) $) 10)) (-1896 (((-112) $ (-508)) NIL)) (-4059 (((-1119) $) NIL)) (-1570 (((-691 $) (-508)) 17)) (-4348 (((-644 (-112)) $) NIL)) (-2479 (((-862) $) NIL)) (-3900 (((-112) $ $) NIL)) (-3864 (((-55) $) 12)) (-2952 (((-112) $ $) NIL))) +(((-187) (-13 (-185) (-10 -8 (-15 -1570 ((-691 $) (-508)))))) (T -187)) +((-1570 (*1 *2 *3) (-12 (-5 *3 (-508)) (-5 *2 (-691 (-187))) (-5 *1 (-187))))) +(-13 (-185) (-10 -8 (-15 -1570 ((-691 $) (-508))))) +((-2303 ((|#2| |#2|) 28)) (-2098 (((-112) |#2|) 19)) (-2352 (((-317 |#1|) |#2|) 12)) (-2365 (((-317 |#1|) |#2|) 14)) (-1455 ((|#2| |#2| (-1175)) 69) ((|#2| |#2|) 70)) (-1598 (((-169 (-317 |#1|)) |#2|) 10)) (-1485 ((|#2| |#2| (-1175)) 66) ((|#2| |#2|) 60))) +(((-188 |#1| |#2|) (-10 -7 (-15 -1455 (|#2| |#2|)) (-15 -1455 (|#2| |#2| (-1175))) (-15 -1485 (|#2| |#2|)) (-15 -1485 (|#2| |#2| (-1175))) (-15 -2352 ((-317 |#1|) |#2|)) (-15 -2365 ((-317 |#1|) |#2|)) (-15 -2098 ((-112) |#2|)) (-15 -2303 (|#2| |#2|)) (-15 -1598 ((-169 (-317 |#1|)) |#2|))) (-13 (-558) (-1038 (-566))) (-13 (-27) (-1199) (-432 (-169 |#1|)))) (T -188)) +((-1598 (*1 *2 *3) (-12 (-4 *4 (-13 (-558) (-1038 (-566)))) (-5 *2 (-169 (-317 *4))) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1199) (-432 (-169 *4)))))) (-2303 (*1 *2 *2) (-12 (-4 *3 (-13 (-558) (-1038 (-566)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1199) (-432 (-169 *3)))))) (-2098 (*1 *2 *3) (-12 (-4 *4 (-13 (-558) (-1038 (-566)))) (-5 *2 (-112)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1199) (-432 (-169 *4)))))) (-2365 (*1 *2 *3) (-12 (-4 *4 (-13 (-558) (-1038 (-566)))) (-5 *2 (-317 *4)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1199) (-432 (-169 *4)))))) (-2352 (*1 *2 *3) (-12 (-4 *4 (-13 (-558) (-1038 (-566)))) (-5 *2 (-317 *4)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1199) (-432 (-169 *4)))))) (-1485 (*1 *2 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-558) (-1038 (-566)))) (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1199) (-432 (-169 *4)))))) (-1485 (*1 *2 *2) (-12 (-4 *3 (-13 (-558) (-1038 (-566)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1199) (-432 (-169 *3)))))) (-1455 (*1 *2 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-558) (-1038 (-566)))) (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1199) (-432 (-169 *4)))))) (-1455 (*1 *2 *2) (-12 (-4 *3 (-13 (-558) (-1038 (-566)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1199) (-432 (-169 *3))))))) +(-10 -7 (-15 -1455 (|#2| |#2|)) (-15 -1455 (|#2| |#2| (-1175))) (-15 -1485 (|#2| |#2|)) (-15 -1485 (|#2| |#2| (-1175))) (-15 -2352 ((-317 |#1|) |#2|)) (-15 -2365 ((-317 |#1|) |#2|)) (-15 -2098 ((-112) |#2|)) (-15 -2303 (|#2| |#2|)) (-15 -1598 ((-169 (-317 |#1|)) |#2|))) +((-3306 (((-1264 (-689 (-952 |#1|))) (-1264 (-689 |#1|))) 26)) (-2479 (((-1264 (-689 (-409 (-952 |#1|)))) (-1264 (-689 |#1|))) 37))) +(((-189 |#1|) (-10 -7 (-15 -3306 ((-1264 (-689 (-952 |#1|))) (-1264 (-689 |#1|)))) (-15 -2479 ((-1264 (-689 (-409 (-952 |#1|)))) (-1264 (-689 |#1|))))) (-172)) (T -189)) +((-2479 (*1 *2 *3) (-12 (-5 *3 (-1264 (-689 *4))) (-4 *4 (-172)) (-5 *2 (-1264 (-689 (-409 (-952 *4))))) (-5 *1 (-189 *4)))) (-3306 (*1 *2 *3) (-12 (-5 *3 (-1264 (-689 *4))) (-4 *4 (-172)) (-5 *2 (-1264 (-689 (-952 *4)))) (-5 *1 (-189 *4))))) +(-10 -7 (-15 -3306 ((-1264 (-689 (-952 |#1|))) (-1264 (-689 |#1|)))) (-15 -2479 ((-1264 (-689 (-409 (-952 |#1|)))) (-1264 (-689 |#1|))))) +((-2291 (((-1177 (-409 (-566))) (-1177 (-409 (-566))) (-1177 (-409 (-566)))) 89)) (-3805 (((-1177 (-409 (-566))) (-644 (-566)) (-644 (-566))) 100)) (-2596 (((-1177 (-409 (-566))) (-566)) 56)) (-3894 (((-1177 (-409 (-566))) (-566)) 75)) (-3297 (((-409 (-566)) (-1177 (-409 (-566)))) 85)) (-2486 (((-1177 (-409 (-566))) (-566)) 37)) (-3865 (((-1177 (-409 (-566))) (-566)) 68)) (-2042 (((-1177 (-409 (-566))) (-566)) 62)) (-3059 (((-1177 (-409 (-566))) (-1177 (-409 (-566))) (-1177 (-409 (-566)))) 83)) (-4122 (((-1177 (-409 (-566))) (-566)) 29)) (-1610 (((-409 (-566)) (-1177 (-409 (-566))) (-1177 (-409 (-566)))) 87)) (-2421 (((-1177 (-409 (-566))) (-566)) 35)) (-2874 (((-1177 (-409 (-566))) (-644 (-566))) 96))) +(((-190) (-10 -7 (-15 -4122 ((-1177 (-409 (-566))) (-566))) (-15 -2596 ((-1177 (-409 (-566))) (-566))) (-15 -2486 ((-1177 (-409 (-566))) (-566))) (-15 -2421 ((-1177 (-409 (-566))) (-566))) (-15 -2042 ((-1177 (-409 (-566))) (-566))) (-15 -3865 ((-1177 (-409 (-566))) (-566))) (-15 -3894 ((-1177 (-409 (-566))) (-566))) (-15 -1610 ((-409 (-566)) (-1177 (-409 (-566))) (-1177 (-409 (-566))))) (-15 -3059 ((-1177 (-409 (-566))) (-1177 (-409 (-566))) (-1177 (-409 (-566))))) (-15 -3297 ((-409 (-566)) (-1177 (-409 (-566))))) (-15 -2291 ((-1177 (-409 (-566))) (-1177 (-409 (-566))) (-1177 (-409 (-566))))) (-15 -2874 ((-1177 (-409 (-566))) (-644 (-566)))) (-15 -3805 ((-1177 (-409 (-566))) (-644 (-566)) (-644 (-566)))))) (T -190)) +((-3805 (*1 *2 *3 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)))) (-2874 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)))) (-2291 (*1 *2 *2 *2) (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)))) (-3297 (*1 *2 *3) (-12 (-5 *3 (-1177 (-409 (-566)))) (-5 *2 (-409 (-566))) (-5 *1 (-190)))) (-3059 (*1 *2 *2 *2) (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)))) (-1610 (*1 *2 *3 *3) (-12 (-5 *3 (-1177 (-409 (-566)))) (-5 *2 (-409 (-566))) (-5 *1 (-190)))) (-3894 (*1 *2 *3) (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)) (-5 *3 (-566)))) (-3865 (*1 *2 *3) (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)) (-5 *3 (-566)))) (-2042 (*1 *2 *3) (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)) (-5 *3 (-566)))) (-2421 (*1 *2 *3) (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)) (-5 *3 (-566)))) (-2486 (*1 *2 *3) (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)) (-5 *3 (-566)))) (-2596 (*1 *2 *3) (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)) (-5 *3 (-566)))) (-4122 (*1 *2 *3) (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)) (-5 *3 (-566))))) +(-10 -7 (-15 -4122 ((-1177 (-409 (-566))) (-566))) (-15 -2596 ((-1177 (-409 (-566))) (-566))) (-15 -2486 ((-1177 (-409 (-566))) (-566))) (-15 -2421 ((-1177 (-409 (-566))) (-566))) (-15 -2042 ((-1177 (-409 (-566))) (-566))) (-15 -3865 ((-1177 (-409 (-566))) (-566))) (-15 -3894 ((-1177 (-409 (-566))) (-566))) (-15 -1610 ((-409 (-566)) (-1177 (-409 (-566))) (-1177 (-409 (-566))))) (-15 -3059 ((-1177 (-409 (-566))) (-1177 (-409 (-566))) (-1177 (-409 (-566))))) (-15 -3297 ((-409 (-566)) (-1177 (-409 (-566))))) (-15 -2291 ((-1177 (-409 (-566))) (-1177 (-409 (-566))) (-1177 (-409 (-566))))) (-15 -2874 ((-1177 (-409 (-566))) (-644 (-566)))) (-15 -3805 ((-1177 (-409 (-566))) (-644 (-566)) (-644 (-566))))) +((-1801 (((-420 (-1171 (-566))) (-566)) 38)) (-3444 (((-644 (-1171 (-566))) (-566)) 33)) (-2224 (((-1171 (-566)) (-566)) 28))) +(((-191) (-10 -7 (-15 -3444 ((-644 (-1171 (-566))) (-566))) (-15 -2224 ((-1171 (-566)) (-566))) (-15 -1801 ((-420 (-1171 (-566))) (-566))))) (T -191)) +((-1801 (*1 *2 *3) (-12 (-5 *2 (-420 (-1171 (-566)))) (-5 *1 (-191)) (-5 *3 (-566)))) (-2224 (*1 *2 *3) (-12 (-5 *2 (-1171 (-566))) (-5 *1 (-191)) (-5 *3 (-566)))) (-3444 (*1 *2 *3) (-12 (-5 *2 (-644 (-1171 (-566)))) (-5 *1 (-191)) (-5 *3 (-566))))) +(-10 -7 (-15 -3444 ((-644 (-1171 (-566))) (-566))) (-15 -2224 ((-1171 (-566)) (-566))) (-15 -1801 ((-420 (-1171 (-566))) (-566)))) +((-2202 (((-1155 (-225)) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 132)) (-3142 (((-644 (-1157)) (-1155 (-225))) NIL)) (-3988 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 108)) (-1474 (((-644 (-225)) (-317 (-225)) (-1175) (-1093 (-843 (-225)))) NIL)) (-3880 (((-644 (-1157)) (-644 (-225))) NIL)) (-3334 (((-225) (-1093 (-843 (-225)))) 31)) (-3397 (((-225) (-1093 (-843 (-225)))) 32)) (-4014 (((-381) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 126)) (-2741 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 68)) (-2343 (((-1157) (-225)) NIL)) (-4019 (((-1157) (-644 (-1157))) 27)) (-1831 (((-1035) (-1175) (-1175) (-1035)) 13))) +(((-192) (-10 -7 (-15 -3988 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2741 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3334 ((-225) (-1093 (-843 (-225))))) (-15 -3397 ((-225) (-1093 (-843 (-225))))) (-15 -4014 ((-381) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1474 ((-644 (-225)) (-317 (-225)) (-1175) (-1093 (-843 (-225))))) (-15 -2202 ((-1155 (-225)) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2343 ((-1157) (-225))) (-15 -3880 ((-644 (-1157)) (-644 (-225)))) (-15 -3142 ((-644 (-1157)) (-1155 (-225)))) (-15 -4019 ((-1157) (-644 (-1157)))) (-15 -1831 ((-1035) (-1175) (-1175) (-1035))))) (T -192)) +((-1831 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1035)) (-5 *3 (-1175)) (-5 *1 (-192)))) (-4019 (*1 *2 *3) (-12 (-5 *3 (-644 (-1157))) (-5 *2 (-1157)) (-5 *1 (-192)))) (-3142 (*1 *2 *3) (-12 (-5 *3 (-1155 (-225))) (-5 *2 (-644 (-1157))) (-5 *1 (-192)))) (-3880 (*1 *2 *3) (-12 (-5 *3 (-644 (-225))) (-5 *2 (-644 (-1157))) (-5 *1 (-192)))) (-2343 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1157)) (-5 *1 (-192)))) (-2202 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-1155 (-225))) (-5 *1 (-192)))) (-1474 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 (-225))) (-5 *4 (-1175)) (-5 *5 (-1093 (-843 (-225)))) (-5 *2 (-644 (-225))) (-5 *1 (-192)))) (-4014 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-381)) (-5 *1 (-192)))) (-3397 (*1 *2 *3) (-12 (-5 *3 (-1093 (-843 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) (-3334 (*1 *2 *3) (-12 (-5 *3 (-1093 (-843 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) (-2741 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-192)))) (-3988 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-192))))) +(-10 -7 (-15 -3988 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2741 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3334 ((-225) (-1093 (-843 (-225))))) (-15 -3397 ((-225) (-1093 (-843 (-225))))) (-15 -4014 ((-381) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1474 ((-644 (-225)) (-317 (-225)) (-1175) (-1093 (-843 (-225))))) (-15 -2202 ((-1155 (-225)) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2343 ((-1157) (-225))) (-15 -3880 ((-644 (-1157)) (-644 (-225)))) (-15 -3142 ((-644 (-1157)) (-1155 (-225)))) (-15 -4019 ((-1157) (-644 (-1157)))) (-15 -1831 ((-1035) (-1175) (-1175) (-1035)))) +((-2986 (((-112) $ $) NIL)) (-2807 (((-1035) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) 61) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -1680 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) NIL)) (-4177 (((-2 (|:| -4177 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 33) (((-2 (|:| -4177 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -1680 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) NIL)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-193) (-787)) (T -193)) +NIL +(-787) +((-2986 (((-112) $ $) NIL)) (-2807 (((-1035) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) 66) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -1680 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) NIL)) (-4177 (((-2 (|:| -4177 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 44) (((-2 (|:| -4177 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -1680 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) NIL)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-194) (-787)) (T -194)) +NIL +(-787) +((-2986 (((-112) $ $) NIL)) (-2807 (((-1035) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) 81) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -1680 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) NIL)) (-4177 (((-2 (|:| -4177 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 46) (((-2 (|:| -4177 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -1680 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) NIL)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-195) (-787)) (T -195)) +NIL +(-787) +((-2986 (((-112) $ $) NIL)) (-2807 (((-1035) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) 63) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -1680 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) NIL)) (-4177 (((-2 (|:| -4177 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 36) (((-2 (|:| -4177 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -1680 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) NIL)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-196) (-787)) (T -196)) +NIL +(-787) +((-2986 (((-112) $ $) NIL)) (-2807 (((-1035) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) 75) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -1680 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) NIL)) (-4177 (((-2 (|:| -4177 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 40) (((-2 (|:| -4177 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -1680 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) NIL)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-197) (-787)) (T -197)) +NIL +(-787) +((-2986 (((-112) $ $) NIL)) (-2807 (((-1035) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) 90) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -1680 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) NIL)) (-4177 (((-2 (|:| -4177 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 49) (((-2 (|:| -4177 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -1680 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) NIL)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-198) (-787)) (T -198)) +NIL +(-787) +((-2986 (((-112) $ $) NIL)) (-2807 (((-1035) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) 90) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -1680 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) NIL)) (-4177 (((-2 (|:| -4177 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 51) (((-2 (|:| -4177 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -1680 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) NIL)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-199) (-787)) (T -199)) +NIL +(-787) +((-2986 (((-112) $ $) NIL)) (-2807 (((-1035) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) 77) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -1680 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) NIL)) (-4177 (((-2 (|:| -4177 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 42) (((-2 (|:| -4177 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -1680 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) NIL)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-200) (-787)) (T -200)) +NIL +(-787) +((-2986 (((-112) $ $) NIL)) (-2807 (((-1035) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) NIL) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -1680 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) 78)) (-4177 (((-2 (|:| -4177 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL) (((-2 (|:| -4177 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -1680 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 38)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) NIL)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-201) (-787)) (T -201)) +NIL +(-787) +((-2986 (((-112) $ $) NIL)) (-2807 (((-1035) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) NIL) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -1680 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) 79)) (-4177 (((-2 (|:| -4177 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL) (((-2 (|:| -4177 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -1680 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 44)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) NIL)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-202) (-787)) (T -202)) +NIL +(-787) +((-2986 (((-112) $ $) NIL)) (-2807 (((-1035) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) 105) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -1680 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) NIL)) (-4177 (((-2 (|:| -4177 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 86) (((-2 (|:| -4177 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -1680 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) NIL)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-203) (-787)) (T -203)) +NIL +(-787) +((-3765 (((-3 (-2 (|:| -1668 (-114)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 111)) (-1464 (((-566) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 58)) (-2169 (((-3 (-644 (-225)) "failed") (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 92))) +(((-204) (-10 -7 (-15 -3765 ((-3 (-2 (|:| -1668 (-114)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2169 ((-3 (-644 (-225)) "failed") (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1464 ((-566) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -204)) +((-1464 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-566)) (-5 *1 (-204)))) (-2169 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-644 (-225))) (-5 *1 (-204)))) (-3765 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -1668 (-114)) (|:| |w| (-225)))) (-5 *1 (-204))))) +(-10 -7 (-15 -3765 ((-3 (-2 (|:| -1668 (-114)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2169 ((-3 (-644 (-225)) "failed") (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1464 ((-566) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) +((-1653 (((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 49)) (-3600 (((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 160)) (-1879 (((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-689 (-317 (-225)))) 112)) (-1317 (((-381) (-689 (-317 (-225)))) 140)) (-4329 (((-689 (-317 (-225))) (-1264 (-317 (-225))) (-644 (-1175))) 136)) (-2068 (((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 37)) (-2450 (((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 53)) (-3297 (((-689 (-317 (-225))) (-689 (-317 (-225))) (-644 (-1175)) (-1264 (-317 (-225)))) 125)) (-2091 (((-381) (-381) (-644 (-381))) 133) (((-381) (-381) (-381)) 128)) (-2744 (((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 45))) +(((-205) (-10 -7 (-15 -2091 ((-381) (-381) (-381))) (-15 -2091 ((-381) (-381) (-644 (-381)))) (-15 -1317 ((-381) (-689 (-317 (-225))))) (-15 -4329 ((-689 (-317 (-225))) (-1264 (-317 (-225))) (-644 (-1175)))) (-15 -3297 ((-689 (-317 (-225))) (-689 (-317 (-225))) (-644 (-1175)) (-1264 (-317 (-225))))) (-15 -1879 ((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-689 (-317 (-225))))) (-15 -3600 ((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1653 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2450 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2744 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2068 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -205)) +((-2068 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-381)) (-5 *1 (-205)))) (-2744 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-381)) (-5 *1 (-205)))) (-2450 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-381)) (-5 *1 (-205)))) (-1653 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-381)) (-5 *1 (-205)))) (-3600 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381)))) (-5 *1 (-205)))) (-1879 (*1 *2 *3) (-12 (-5 *3 (-689 (-317 (-225)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381)))) (-5 *1 (-205)))) (-3297 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-689 (-317 (-225)))) (-5 *3 (-644 (-1175))) (-5 *4 (-1264 (-317 (-225)))) (-5 *1 (-205)))) (-4329 (*1 *2 *3 *4) (-12 (-5 *3 (-1264 (-317 (-225)))) (-5 *4 (-644 (-1175))) (-5 *2 (-689 (-317 (-225)))) (-5 *1 (-205)))) (-1317 (*1 *2 *3) (-12 (-5 *3 (-689 (-317 (-225)))) (-5 *2 (-381)) (-5 *1 (-205)))) (-2091 (*1 *2 *2 *3) (-12 (-5 *3 (-644 (-381))) (-5 *2 (-381)) (-5 *1 (-205)))) (-2091 (*1 *2 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-205))))) +(-10 -7 (-15 -2091 ((-381) (-381) (-381))) (-15 -2091 ((-381) (-381) (-644 (-381)))) (-15 -1317 ((-381) (-689 (-317 (-225))))) (-15 -4329 ((-689 (-317 (-225))) (-1264 (-317 (-225))) (-644 (-1175)))) (-15 -3297 ((-689 (-317 (-225))) (-689 (-317 (-225))) (-644 (-1175)) (-1264 (-317 (-225))))) (-15 -1879 ((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-689 (-317 (-225))))) (-15 -3600 ((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1653 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2450 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2744 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2068 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) +((-2986 (((-112) $ $) NIL)) (-4177 (((-2 (|:| -4177 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 43)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) NIL)) (-3900 (((-112) $ $) NIL)) (-2544 (((-1035) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 75)) (-2952 (((-112) $ $) NIL))) +(((-206) (-800)) (T -206)) +NIL +(-800) +((-2986 (((-112) $ $) NIL)) (-4177 (((-2 (|:| -4177 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 43)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) NIL)) (-3900 (((-112) $ $) NIL)) (-2544 (((-1035) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 73)) (-2952 (((-112) $ $) NIL))) +(((-207) (-800)) (T -207)) +NIL +(-800) +((-2986 (((-112) $ $) NIL)) (-4177 (((-2 (|:| -4177 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 40)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) NIL)) (-3900 (((-112) $ $) NIL)) (-2544 (((-1035) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 76)) (-2952 (((-112) $ $) NIL))) +(((-208) (-800)) (T -208)) +NIL +(-800) +((-2986 (((-112) $ $) NIL)) (-4177 (((-2 (|:| -4177 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 48)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) NIL)) (-3900 (((-112) $ $) NIL)) (-2544 (((-1035) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 88)) (-2952 (((-112) $ $) NIL))) +(((-209) (-800)) (T -209)) +NIL +(-800) +((-1656 (((-644 (-1175)) (-1175) (-771)) 26)) (-1397 (((-317 (-225)) (-317 (-225))) 35)) (-2332 (((-112) (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225)))) 87)) (-3406 (((-112) (-225) (-225) (-644 (-317 (-225)))) 47))) +(((-210) (-10 -7 (-15 -1656 ((-644 (-1175)) (-1175) (-771))) (-15 -1397 ((-317 (-225)) (-317 (-225)))) (-15 -3406 ((-112) (-225) (-225) (-644 (-317 (-225))))) (-15 -2332 ((-112) (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225))))))) (T -210)) +((-2332 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225)))) (-5 *2 (-112)) (-5 *1 (-210)))) (-3406 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-644 (-317 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-210)))) (-1397 (*1 *2 *2) (-12 (-5 *2 (-317 (-225))) (-5 *1 (-210)))) (-1656 (*1 *2 *3 *4) (-12 (-5 *4 (-771)) (-5 *2 (-644 (-1175))) (-5 *1 (-210)) (-5 *3 (-1175))))) +(-10 -7 (-15 -1656 ((-644 (-1175)) (-1175) (-771))) (-15 -1397 ((-317 (-225)) (-317 (-225)))) (-15 -3406 ((-112) (-225) (-225) (-644 (-317 (-225))))) (-15 -2332 ((-112) (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225)))))) +((-2986 (((-112) $ $) NIL)) (-4177 (((-2 (|:| -4177 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225)))) 28)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) NIL)) (-3900 (((-112) $ $) NIL)) (-3703 (((-1035) (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225)))) 70)) (-2952 (((-112) $ $) NIL))) +(((-211) (-895)) (T -211)) +NIL +(-895) +((-2986 (((-112) $ $) NIL)) (-4177 (((-2 (|:| -4177 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225)))) 24)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) NIL)) (-3900 (((-112) $ $) NIL)) (-3703 (((-1035) (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225)))) NIL)) (-2952 (((-112) $ $) NIL))) +(((-212) (-895)) (T -212)) +NIL +(-895) +((-2986 (((-112) $ $) NIL)) (-3665 ((|#2| $ (-771) |#2|) 11)) (-3653 ((|#2| $ (-771)) 10)) (-4259 (($) 8)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) 26)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 13))) +(((-213 |#1| |#2|) (-13 (-1099) (-10 -8 (-15 -4259 ($)) (-15 -3653 (|#2| $ (-771))) (-15 -3665 (|#2| $ (-771) |#2|)))) (-921) (-1099)) (T -213)) +((-4259 (*1 *1) (-12 (-5 *1 (-213 *2 *3)) (-14 *2 (-921)) (-4 *3 (-1099)))) (-3653 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-4 *2 (-1099)) (-5 *1 (-213 *4 *2)) (-14 *4 (-921)))) (-3665 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-771)) (-5 *1 (-213 *4 *2)) (-14 *4 (-921)) (-4 *2 (-1099))))) +(-13 (-1099) (-10 -8 (-15 -4259 ($)) (-15 -3653 (|#2| $ (-771))) (-15 -3665 (|#2| $ (-771) |#2|)))) +((-2986 (((-112) $ $) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2559 (((-1269) $) 37) (((-1269) $ (-921) (-921)) 44)) (-4376 (($ $ (-989)) 19) (((-245 (-1157)) $ (-1175)) 15)) (-1659 (((-1269) $) 35)) (-2479 (((-862) $) 32) (($ (-644 |#1|)) 8)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3065 (($ $ $) 27)) (-3052 (($ $ $) 22))) +(((-214 |#1|) (-13 (-1099) (-616 (-644 |#1|)) (-10 -8 (-15 -4376 ($ $ (-989))) (-15 -4376 ((-245 (-1157)) $ (-1175))) (-15 -3052 ($ $ $)) (-15 -3065 ($ $ $)) (-15 -1659 ((-1269) $)) (-15 -2559 ((-1269) $)) (-15 -2559 ((-1269) $ (-921) (-921))))) (-13 (-850) (-10 -8 (-15 -4376 ((-1157) $ (-1175))) (-15 -1659 ((-1269) $)) (-15 -2559 ((-1269) $))))) (T -214)) +((-4376 (*1 *1 *1 *2) (-12 (-5 *2 (-989)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-850) (-10 -8 (-15 -4376 ((-1157) $ (-1175))) (-15 -1659 ((-1269) $)) (-15 -2559 ((-1269) $))))))) (-4376 (*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-245 (-1157))) (-5 *1 (-214 *4)) (-4 *4 (-13 (-850) (-10 -8 (-15 -4376 ((-1157) $ *3)) (-15 -1659 ((-1269) $)) (-15 -2559 ((-1269) $))))))) (-3052 (*1 *1 *1 *1) (-12 (-5 *1 (-214 *2)) (-4 *2 (-13 (-850) (-10 -8 (-15 -4376 ((-1157) $ (-1175))) (-15 -1659 ((-1269) $)) (-15 -2559 ((-1269) $))))))) (-3065 (*1 *1 *1 *1) (-12 (-5 *1 (-214 *2)) (-4 *2 (-13 (-850) (-10 -8 (-15 -4376 ((-1157) $ (-1175))) (-15 -1659 ((-1269) $)) (-15 -2559 ((-1269) $))))))) (-1659 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-850) (-10 -8 (-15 -4376 ((-1157) $ (-1175))) (-15 -1659 (*2 $)) (-15 -2559 (*2 $))))))) (-2559 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-850) (-10 -8 (-15 -4376 ((-1157) $ (-1175))) (-15 -1659 (*2 $)) (-15 -2559 (*2 $))))))) (-2559 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1269)) (-5 *1 (-214 *4)) (-4 *4 (-13 (-850) (-10 -8 (-15 -4376 ((-1157) $ (-1175))) (-15 -1659 (*2 $)) (-15 -2559 (*2 $)))))))) +(-13 (-1099) (-616 (-644 |#1|)) (-10 -8 (-15 -4376 ($ $ (-989))) (-15 -4376 ((-245 (-1157)) $ (-1175))) (-15 -3052 ($ $ $)) (-15 -3065 ($ $ $)) (-15 -1659 ((-1269) $)) (-15 -2559 ((-1269) $)) (-15 -2559 ((-1269) $ (-921) (-921))))) +((-1750 ((|#2| |#4| (-1 |#2| |#2|)) 49))) +(((-215 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1750 (|#2| |#4| (-1 |#2| |#2|)))) (-365) (-1240 |#1|) (-1240 (-409 |#2|)) (-344 |#1| |#2| |#3|)) (T -215)) +((-1750 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-365)) (-4 *6 (-1240 (-409 *2))) (-4 *2 (-1240 *5)) (-5 *1 (-215 *5 *2 *6 *3)) (-4 *3 (-344 *5 *2 *6))))) +(-10 -7 (-15 -1750 (|#2| |#4| (-1 |#2| |#2|)))) +((-3463 ((|#2| |#2| (-771) |#2|) 58)) (-1996 ((|#2| |#2| (-771) |#2|) 54)) (-3455 (((-644 |#2|) (-644 (-2 (|:| |deg| (-771)) (|:| -4383 |#2|)))) 82)) (-2095 (((-644 (-2 (|:| |deg| (-771)) (|:| -4383 |#2|))) |#2|) 76)) (-1430 (((-112) |#2|) 74)) (-3957 (((-420 |#2|) |#2|) 96)) (-2325 (((-420 |#2|) |#2|) 95)) (-3188 ((|#2| |#2| (-771) |#2|) 52)) (-4077 (((-2 (|:| |cont| |#1|) (|:| -3445 (-644 (-2 (|:| |irr| |#2|) (|:| -2677 (-566)))))) |#2| (-112)) 88))) +(((-216 |#1| |#2|) (-10 -7 (-15 -2325 ((-420 |#2|) |#2|)) (-15 -3957 ((-420 |#2|) |#2|)) (-15 -4077 ((-2 (|:| |cont| |#1|) (|:| -3445 (-644 (-2 (|:| |irr| |#2|) (|:| -2677 (-566)))))) |#2| (-112))) (-15 -2095 ((-644 (-2 (|:| |deg| (-771)) (|:| -4383 |#2|))) |#2|)) (-15 -3455 ((-644 |#2|) (-644 (-2 (|:| |deg| (-771)) (|:| -4383 |#2|))))) (-15 -3188 (|#2| |#2| (-771) |#2|)) (-15 -1996 (|#2| |#2| (-771) |#2|)) (-15 -3463 (|#2| |#2| (-771) |#2|)) (-15 -1430 ((-112) |#2|))) (-351) (-1240 |#1|)) (T -216)) +((-1430 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-112)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1240 *4)))) (-3463 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-771)) (-4 *4 (-351)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1240 *4)))) (-1996 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-771)) (-4 *4 (-351)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1240 *4)))) (-3188 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-771)) (-4 *4 (-351)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1240 *4)))) (-3455 (*1 *2 *3) (-12 (-5 *3 (-644 (-2 (|:| |deg| (-771)) (|:| -4383 *5)))) (-4 *5 (-1240 *4)) (-4 *4 (-351)) (-5 *2 (-644 *5)) (-5 *1 (-216 *4 *5)))) (-2095 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-644 (-2 (|:| |deg| (-771)) (|:| -4383 *3)))) (-5 *1 (-216 *4 *3)) (-4 *3 (-1240 *4)))) (-4077 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-351)) (-5 *2 (-2 (|:| |cont| *5) (|:| -3445 (-644 (-2 (|:| |irr| *3) (|:| -2677 (-566))))))) (-5 *1 (-216 *5 *3)) (-4 *3 (-1240 *5)))) (-3957 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-420 *3)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1240 *4)))) (-2325 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-420 *3)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1240 *4))))) +(-10 -7 (-15 -2325 ((-420 |#2|) |#2|)) (-15 -3957 ((-420 |#2|) |#2|)) (-15 -4077 ((-2 (|:| |cont| |#1|) (|:| -3445 (-644 (-2 (|:| |irr| |#2|) (|:| -2677 (-566)))))) |#2| (-112))) (-15 -2095 ((-644 (-2 (|:| |deg| (-771)) (|:| -4383 |#2|))) |#2|)) (-15 -3455 ((-644 |#2|) (-644 (-2 (|:| |deg| (-771)) (|:| -4383 |#2|))))) (-15 -3188 (|#2| |#2| (-771) |#2|)) (-15 -1996 (|#2| |#2| (-771) |#2|)) (-15 -3463 (|#2| |#2| (-771) |#2|)) (-15 -1430 ((-112) |#2|))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-2488 (((-566) $) NIL (|has| (-566) (-308)))) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-1716 (((-112) $) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-4058 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-566) (-909)))) (-3980 (($ $) NIL)) (-3348 (((-420 $) $) NIL)) (-4262 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| (-566) (-909)))) (-2761 (((-112) $ $) NIL)) (-2920 (((-566) $) NIL (|has| (-566) (-820)))) (-1811 (($) NIL T CONST)) (-2980 (((-3 (-566) "failed") $) NIL) (((-3 (-1175) "failed") $) NIL (|has| (-566) (-1038 (-1175)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| (-566) (-1038 (-566)))) (((-3 (-566) "failed") $) NIL (|has| (-566) (-1038 (-566))))) (-1709 (((-566) $) NIL) (((-1175) $) NIL (|has| (-566) (-1038 (-1175)))) (((-409 (-566)) $) NIL (|has| (-566) (-1038 (-566)))) (((-566) $) NIL (|has| (-566) (-1038 (-566))))) (-2925 (($ $ $) NIL)) (-2275 (((-689 (-566)) (-689 $)) NIL (|has| (-566) (-639 (-566)))) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| (-566) (-639 (-566)))) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL) (((-689 (-566)) (-689 $)) NIL)) (-3757 (((-3 $ "failed") $) NIL)) (-1415 (($) NIL (|has| (-566) (-547)))) (-2937 (($ $ $) NIL)) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) NIL)) (-4188 (((-112) $) NIL)) (-2133 (((-112) $) NIL (|has| (-566) (-820)))) (-1542 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (|has| (-566) (-886 (-566)))) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (|has| (-566) (-886 (-381))))) (-2264 (((-112) $) NIL)) (-1579 (($ $) NIL)) (-4157 (((-566) $) NIL)) (-4278 (((-3 $ "failed") $) NIL (|has| (-566) (-1150)))) (-3420 (((-112) $) NIL (|has| (-566) (-820)))) (-2495 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1920 (($ $ $) NIL (|has| (-566) (-850)))) (-3038 (($ $ $) NIL (|has| (-566) (-850)))) (-3080 (($ (-1 (-566) (-566)) $) NIL)) (-2120 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3151 (((-1157) $) NIL)) (-2577 (($ $) NIL)) (-3968 (($) NIL (|has| (-566) (-1150)) CONST)) (-4059 (((-1119) $) NIL)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2162 (($ $ $) NIL) (($ (-644 $)) NIL)) (-4305 (($ $) NIL (|has| (-566) (-308))) (((-409 (-566)) $) NIL)) (-2001 (((-566) $) NIL (|has| (-566) (-547)))) (-1500 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-566) (-909)))) (-3917 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-566) (-909)))) (-2325 (((-420 $) $) NIL)) (-2585 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2976 (((-3 $ "failed") $ $) NIL)) (-2840 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3297 (($ $ (-644 (-566)) (-644 (-566))) NIL (|has| (-566) (-310 (-566)))) (($ $ (-566) (-566)) NIL (|has| (-566) (-310 (-566)))) (($ $ (-295 (-566))) NIL (|has| (-566) (-310 (-566)))) (($ $ (-644 (-295 (-566)))) NIL (|has| (-566) (-310 (-566)))) (($ $ (-644 (-1175)) (-644 (-566))) NIL (|has| (-566) (-516 (-1175) (-566)))) (($ $ (-1175) (-566)) NIL (|has| (-566) (-516 (-1175) (-566))))) (-1383 (((-771) $) NIL)) (-4376 (($ $ (-566)) NIL (|has| (-566) (-287 (-566) (-566))))) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL)) (-3526 (($ $) NIL (|has| (-566) (-233))) (($ $ (-771)) NIL (|has| (-566) (-233))) (($ $ (-1175)) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-1 (-566) (-566)) (-771)) NIL) (($ $ (-1 (-566) (-566))) NIL)) (-1375 (($ $) NIL)) (-4167 (((-566) $) NIL)) (-4393 (($ (-409 (-566))) 9)) (-3136 (((-892 (-566)) $) NIL (|has| (-566) (-614 (-892 (-566))))) (((-892 (-381)) $) NIL (|has| (-566) (-614 (-892 (-381))))) (((-538) $) NIL (|has| (-566) (-614 (-538)))) (((-381) $) NIL (|has| (-566) (-1022))) (((-225) $) NIL (|has| (-566) (-1022)))) (-3233 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| (-566) (-909))))) (-2479 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) 8) (($ (-566)) NIL) (($ (-1175)) NIL (|has| (-566) (-1038 (-1175)))) (((-409 (-566)) $) NIL) (((-1004 10) $) 10)) (-2645 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| $ (-145)) (|has| (-566) (-909))) (|has| (-566) (-145))))) (-1558 (((-771)) NIL T CONST)) (-3908 (((-566) $) NIL (|has| (-566) (-547)))) (-3900 (((-112) $ $) NIL)) (-1333 (((-112) $ $) NIL)) (-4298 (($ $) NIL (|has| (-566) (-820)))) (-2446 (($) NIL T CONST)) (-2459 (($) NIL T CONST)) (-2834 (($ $) NIL (|has| (-566) (-233))) (($ $ (-771)) NIL (|has| (-566) (-233))) (($ $ (-1175)) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-1 (-566) (-566)) (-771)) NIL) (($ $ (-1 (-566) (-566))) NIL)) (-3019 (((-112) $ $) NIL (|has| (-566) (-850)))) (-2990 (((-112) $ $) NIL (|has| (-566) (-850)))) (-2952 (((-112) $ $) NIL)) (-3004 (((-112) $ $) NIL (|has| (-566) (-850)))) (-2977 (((-112) $ $) NIL (|has| (-566) (-850)))) (-3077 (($ $ $) NIL) (($ (-566) (-566)) NIL)) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ (-566) $) NIL) (($ $ (-566)) NIL))) +(((-217) (-13 (-992 (-566)) (-613 (-409 (-566))) (-613 (-1004 10)) (-10 -8 (-15 -4305 ((-409 (-566)) $)) (-15 -4393 ($ (-409 (-566))))))) (T -217)) +((-4305 (*1 *2 *1) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-217)))) (-4393 (*1 *1 *2) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-217))))) +(-13 (-992 (-566)) (-613 (-409 (-566))) (-613 (-1004 10)) (-10 -8 (-15 -4305 ((-409 (-566)) $)) (-15 -4393 ($ (-409 (-566)))))) +((-2986 (((-112) $ $) NIL)) (-3015 (((-1117) $) 13)) (-3151 (((-1157) $) NIL)) (-2154 (((-485) $) 10)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) 23) (($ (-1180)) NIL) (((-1180) $) NIL)) (-2610 (((-1134) $) 15)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-218) (-13 (-1082) (-10 -8 (-15 -2154 ((-485) $)) (-15 -3015 ((-1117) $)) (-15 -2610 ((-1134) $))))) (T -218)) +((-2154 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-218)))) (-3015 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-218)))) (-2610 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-218))))) +(-13 (-1082) (-10 -8 (-15 -2154 ((-485) $)) (-15 -3015 ((-1117) $)) (-15 -2610 ((-1134) $)))) +((-2390 (((-3 (|:| |f1| (-843 |#2|)) (|:| |f2| (-644 (-843 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1091 (-843 |#2|)) (-1157)) 29) (((-3 (|:| |f1| (-843 |#2|)) (|:| |f2| (-644 (-843 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1091 (-843 |#2|))) 25)) (-1847 (((-3 (|:| |f1| (-843 |#2|)) (|:| |f2| (-644 (-843 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1175) (-843 |#2|) (-843 |#2|) (-112)) 17))) +(((-219 |#1| |#2|) (-10 -7 (-15 -2390 ((-3 (|:| |f1| (-843 |#2|)) (|:| |f2| (-644 (-843 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1091 (-843 |#2|)))) (-15 -2390 ((-3 (|:| |f1| (-843 |#2|)) (|:| |f2| (-644 (-843 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1091 (-843 |#2|)) (-1157))) (-15 -1847 ((-3 (|:| |f1| (-843 |#2|)) (|:| |f2| (-644 (-843 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1175) (-843 |#2|) (-843 |#2|) (-112)))) (-13 (-308) (-147) (-1038 (-566)) (-639 (-566))) (-13 (-1199) (-959) (-29 |#1|))) (T -219)) +((-1847 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1175)) (-5 *6 (-112)) (-4 *7 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) (-4 *3 (-13 (-1199) (-959) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-843 *3)) (|:| |f2| (-644 (-843 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *7 *3)) (-5 *5 (-843 *3)))) (-2390 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1091 (-843 *3))) (-5 *5 (-1157)) (-4 *3 (-13 (-1199) (-959) (-29 *6))) (-4 *6 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-3 (|:| |f1| (-843 *3)) (|:| |f2| (-644 (-843 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *6 *3)))) (-2390 (*1 *2 *3 *4) (-12 (-5 *4 (-1091 (-843 *3))) (-4 *3 (-13 (-1199) (-959) (-29 *5))) (-4 *5 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-3 (|:| |f1| (-843 *3)) (|:| |f2| (-644 (-843 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *5 *3))))) +(-10 -7 (-15 -2390 ((-3 (|:| |f1| (-843 |#2|)) (|:| |f2| (-644 (-843 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1091 (-843 |#2|)))) (-15 -2390 ((-3 (|:| |f1| (-843 |#2|)) (|:| |f2| (-644 (-843 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1091 (-843 |#2|)) (-1157))) (-15 -1847 ((-3 (|:| |f1| (-843 |#2|)) (|:| |f2| (-644 (-843 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1175) (-843 |#2|) (-843 |#2|) (-112)))) +((-2390 (((-3 (|:| |f1| (-843 (-317 |#1|))) (|:| |f2| (-644 (-843 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-409 (-952 |#1|)) (-1091 (-843 (-409 (-952 |#1|)))) (-1157)) 49) (((-3 (|:| |f1| (-843 (-317 |#1|))) (|:| |f2| (-644 (-843 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-409 (-952 |#1|)) (-1091 (-843 (-409 (-952 |#1|))))) 46) (((-3 (|:| |f1| (-843 (-317 |#1|))) (|:| |f2| (-644 (-843 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-409 (-952 |#1|)) (-1091 (-843 (-317 |#1|))) (-1157)) 50) (((-3 (|:| |f1| (-843 (-317 |#1|))) (|:| |f2| (-644 (-843 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-409 (-952 |#1|)) (-1091 (-843 (-317 |#1|)))) 22))) +(((-220 |#1|) (-10 -7 (-15 -2390 ((-3 (|:| |f1| (-843 (-317 |#1|))) (|:| |f2| (-644 (-843 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-409 (-952 |#1|)) (-1091 (-843 (-317 |#1|))))) (-15 -2390 ((-3 (|:| |f1| (-843 (-317 |#1|))) (|:| |f2| (-644 (-843 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-409 (-952 |#1|)) (-1091 (-843 (-317 |#1|))) (-1157))) (-15 -2390 ((-3 (|:| |f1| (-843 (-317 |#1|))) (|:| |f2| (-644 (-843 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-409 (-952 |#1|)) (-1091 (-843 (-409 (-952 |#1|)))))) (-15 -2390 ((-3 (|:| |f1| (-843 (-317 |#1|))) (|:| |f2| (-644 (-843 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-409 (-952 |#1|)) (-1091 (-843 (-409 (-952 |#1|)))) (-1157)))) (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) (T -220)) +((-2390 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1091 (-843 (-409 (-952 *6))))) (-5 *5 (-1157)) (-5 *3 (-409 (-952 *6))) (-4 *6 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-3 (|:| |f1| (-843 (-317 *6))) (|:| |f2| (-644 (-843 (-317 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *6)))) (-2390 (*1 *2 *3 *4) (-12 (-5 *4 (-1091 (-843 (-409 (-952 *5))))) (-5 *3 (-409 (-952 *5))) (-4 *5 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-3 (|:| |f1| (-843 (-317 *5))) (|:| |f2| (-644 (-843 (-317 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *5)))) (-2390 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-409 (-952 *6))) (-5 *4 (-1091 (-843 (-317 *6)))) (-5 *5 (-1157)) (-4 *6 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-3 (|:| |f1| (-843 (-317 *6))) (|:| |f2| (-644 (-843 (-317 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *6)))) (-2390 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-1091 (-843 (-317 *5)))) (-4 *5 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-3 (|:| |f1| (-843 (-317 *5))) (|:| |f2| (-644 (-843 (-317 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *5))))) +(-10 -7 (-15 -2390 ((-3 (|:| |f1| (-843 (-317 |#1|))) (|:| |f2| (-644 (-843 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-409 (-952 |#1|)) (-1091 (-843 (-317 |#1|))))) (-15 -2390 ((-3 (|:| |f1| (-843 (-317 |#1|))) (|:| |f2| (-644 (-843 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-409 (-952 |#1|)) (-1091 (-843 (-317 |#1|))) (-1157))) (-15 -2390 ((-3 (|:| |f1| (-843 (-317 |#1|))) (|:| |f2| (-644 (-843 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-409 (-952 |#1|)) (-1091 (-843 (-409 (-952 |#1|)))))) (-15 -2390 ((-3 (|:| |f1| (-843 (-317 |#1|))) (|:| |f2| (-644 (-843 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-409 (-952 |#1|)) (-1091 (-843 (-409 (-952 |#1|)))) (-1157)))) +((-1838 (((-2 (|:| -2240 (-1171 |#1|)) (|:| |deg| (-921))) (-1171 |#1|)) 26)) (-3507 (((-644 (-317 |#2|)) (-317 |#2|) (-921)) 54))) +(((-221 |#1| |#2|) (-10 -7 (-15 -1838 ((-2 (|:| -2240 (-1171 |#1|)) (|:| |deg| (-921))) (-1171 |#1|))) (-15 -3507 ((-644 (-317 |#2|)) (-317 |#2|) (-921)))) (-1049) (-558)) (T -221)) +((-3507 (*1 *2 *3 *4) (-12 (-5 *4 (-921)) (-4 *6 (-558)) (-5 *2 (-644 (-317 *6))) (-5 *1 (-221 *5 *6)) (-5 *3 (-317 *6)) (-4 *5 (-1049)))) (-1838 (*1 *2 *3) (-12 (-4 *4 (-1049)) (-5 *2 (-2 (|:| -2240 (-1171 *4)) (|:| |deg| (-921)))) (-5 *1 (-221 *4 *5)) (-5 *3 (-1171 *4)) (-4 *5 (-558))))) +(-10 -7 (-15 -1838 ((-2 (|:| -2240 (-1171 |#1|)) (|:| |deg| (-921))) (-1171 |#1|))) (-15 -3507 ((-644 (-317 |#2|)) (-317 |#2|) (-921)))) +((-2986 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1799 ((|#1| $) NIL)) (-3903 ((|#1| $) 30)) (-1453 (((-112) $ (-771)) NIL)) (-1811 (($) NIL T CONST)) (-3591 (($ $) NIL)) (-2273 (($ $) 39)) (-1757 ((|#1| |#1| $) NIL)) (-4356 ((|#1| $) NIL)) (-3872 (((-644 |#1|) $) NIL (|has| $ (-6 -4417)))) (-2756 (((-112) $ (-771)) NIL)) (-4227 (((-644 |#1|) $) NIL (|has| $ (-6 -4417)))) (-1688 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-3708 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#1| |#1|) $) NIL)) (-4106 (((-112) $ (-771)) NIL)) (-4332 (((-771) $) NIL)) (-3151 (((-1157) $) NIL (|has| |#1| (-1099)))) (-4255 ((|#1| $) NIL)) (-3446 ((|#1| |#1| $) 35)) (-4191 ((|#1| |#1| $) 37)) (-4354 (($ |#1| $) NIL)) (-3117 (((-771) $) 33)) (-4059 (((-1119) $) NIL (|has| |#1| (-1099)))) (-1312 ((|#1| $) NIL)) (-1515 ((|#1| $) 31)) (-2416 ((|#1| $) 29)) (-4097 ((|#1| $) NIL)) (-3966 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1844 (((-112) $ $) NIL)) (-3408 ((|#1| |#1| $) NIL)) (-2788 (((-112) $) 9)) (-1737 (($) NIL)) (-1921 ((|#1| $) NIL)) (-1589 (($) NIL) (($ (-644 |#1|)) 16)) (-3410 (((-771) $) NIL)) (-4068 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-3924 (($ $) NIL)) (-2479 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-3236 ((|#1| $) 13)) (-3900 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2471 (($ (-644 |#1|)) NIL)) (-2071 ((|#1| $) NIL)) (-3667 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2952 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3002 (((-771) $) NIL (|has| $ (-6 -4417))))) +(((-222 |#1|) (-13 (-255 |#1|) (-10 -8 (-15 -1589 ($ (-644 |#1|))))) (-1099)) (T -222)) +((-1589 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-5 *1 (-222 *3))))) +(-13 (-255 |#1|) (-10 -8 (-15 -1589 ($ (-644 |#1|))))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-2949 (($ (-317 |#1|)) 27)) (-3174 (((-3 $ "failed") $ $) NIL)) (-1811 (($) NIL T CONST)) (-2205 (((-112) $) NIL)) (-2980 (((-3 (-317 |#1|) "failed") $) NIL)) (-1709 (((-317 |#1|) $) NIL)) (-3565 (($ $) 35)) (-3757 (((-3 $ "failed") $) NIL)) (-2264 (((-112) $) NIL)) (-3080 (($ (-1 (-317 |#1|) (-317 |#1|)) $) NIL)) (-2622 (((-317 |#1|) $) NIL)) (-4228 (($ $) 34)) (-3151 (((-1157) $) NIL)) (-2028 (((-112) $) NIL)) (-4059 (((-1119) $) NIL)) (-4086 (($ (-771)) NIL)) (-2763 (($ $) 36)) (-1630 (((-566) $) NIL)) (-2479 (((-862) $) 68) (($ (-566)) NIL) (($ (-317 |#1|)) NIL)) (-3025 (((-317 |#1|) $ $) NIL)) (-1558 (((-771)) NIL T CONST)) (-3900 (((-112) $ $) NIL)) (-2446 (($) 29 T CONST)) (-2459 (($) NIL T CONST)) (-2952 (((-112) $ $) 32)) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) 23)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 28) (($ (-317 |#1|) $) 22))) +(((-223 |#1| |#2|) (-13 (-620 (-317 |#1|)) (-1038 (-317 |#1|)) (-10 -8 (-15 -2622 ((-317 |#1|) $)) (-15 -4228 ($ $)) (-15 -3565 ($ $)) (-15 -3025 ((-317 |#1|) $ $)) (-15 -4086 ($ (-771))) (-15 -2028 ((-112) $)) (-15 -2205 ((-112) $)) (-15 -1630 ((-566) $)) (-15 -3080 ($ (-1 (-317 |#1|) (-317 |#1|)) $)) (-15 -2949 ($ (-317 |#1|))) (-15 -2763 ($ $)))) (-13 (-1049) (-850)) (-644 (-1175))) (T -223)) +((-2622 (*1 *2 *1) (-12 (-5 *2 (-317 *3)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1049) (-850))) (-14 *4 (-644 (-1175))))) (-4228 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1049) (-850))) (-14 *3 (-644 (-1175))))) (-3565 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1049) (-850))) (-14 *3 (-644 (-1175))))) (-3025 (*1 *2 *1 *1) (-12 (-5 *2 (-317 *3)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1049) (-850))) (-14 *4 (-644 (-1175))))) (-4086 (*1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1049) (-850))) (-14 *4 (-644 (-1175))))) (-2028 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1049) (-850))) (-14 *4 (-644 (-1175))))) (-2205 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1049) (-850))) (-14 *4 (-644 (-1175))))) (-1630 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1049) (-850))) (-14 *4 (-644 (-1175))))) (-3080 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-317 *3) (-317 *3))) (-4 *3 (-13 (-1049) (-850))) (-5 *1 (-223 *3 *4)) (-14 *4 (-644 (-1175))))) (-2949 (*1 *1 *2) (-12 (-5 *2 (-317 *3)) (-4 *3 (-13 (-1049) (-850))) (-5 *1 (-223 *3 *4)) (-14 *4 (-644 (-1175))))) (-2763 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1049) (-850))) (-14 *3 (-644 (-1175)))))) +(-13 (-620 (-317 |#1|)) (-1038 (-317 |#1|)) (-10 -8 (-15 -2622 ((-317 |#1|) $)) (-15 -4228 ($ $)) (-15 -3565 ($ $)) (-15 -3025 ((-317 |#1|) $ $)) (-15 -4086 ($ (-771))) (-15 -2028 ((-112) $)) (-15 -2205 ((-112) $)) (-15 -1630 ((-566) $)) (-15 -3080 ($ (-1 (-317 |#1|) (-317 |#1|)) $)) (-15 -2949 ($ (-317 |#1|))) (-15 -2763 ($ $)))) +((-2238 (((-112) (-1157)) 26)) (-4142 (((-3 (-843 |#2|) "failed") (-612 |#2|) |#2| (-843 |#2|) (-843 |#2|) (-112)) 35)) (-1319 (((-3 (-112) "failed") (-1171 |#2|) (-843 |#2|) (-843 |#2|) (-112)) 84) (((-3 (-112) "failed") (-952 |#1|) (-1175) (-843 |#2|) (-843 |#2|) (-112)) 85))) +(((-224 |#1| |#2|) (-10 -7 (-15 -2238 ((-112) (-1157))) (-15 -4142 ((-3 (-843 |#2|) "failed") (-612 |#2|) |#2| (-843 |#2|) (-843 |#2|) (-112))) (-15 -1319 ((-3 (-112) "failed") (-952 |#1|) (-1175) (-843 |#2|) (-843 |#2|) (-112))) (-15 -1319 ((-3 (-112) "failed") (-1171 |#2|) (-843 |#2|) (-843 |#2|) (-112)))) (-13 (-454) (-1038 (-566)) (-639 (-566))) (-13 (-1199) (-29 |#1|))) (T -224)) +((-1319 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1171 *6)) (-5 *4 (-843 *6)) (-4 *6 (-13 (-1199) (-29 *5))) (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-224 *5 *6)))) (-1319 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-952 *6)) (-5 *4 (-1175)) (-5 *5 (-843 *7)) (-4 *6 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-4 *7 (-13 (-1199) (-29 *6))) (-5 *1 (-224 *6 *7)))) (-4142 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-843 *4)) (-5 *3 (-612 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1199) (-29 *6))) (-4 *6 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-224 *6 *4)))) (-2238 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-112)) (-5 *1 (-224 *4 *5)) (-4 *5 (-13 (-1199) (-29 *4)))))) +(-10 -7 (-15 -2238 ((-112) (-1157))) (-15 -4142 ((-3 (-843 |#2|) "failed") (-612 |#2|) |#2| (-843 |#2|) (-843 |#2|) (-112))) (-15 -1319 ((-3 (-112) "failed") (-952 |#1|) (-1175) (-843 |#2|) (-843 |#2|) (-112))) (-15 -1319 ((-3 (-112) "failed") (-1171 |#2|) (-843 |#2|) (-843 |#2|) (-112)))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) 100)) (-2488 (((-566) $) 36)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-1716 (((-112) $) NIL)) (-3175 (($ $) NIL)) (-3219 (($ $) 89)) (-3091 (($ $) 77)) (-3174 (((-3 $ "failed") $ $) NIL)) (-3980 (($ $) NIL)) (-3348 (((-420 $) $) NIL)) (-2338 (($ $) 68)) (-2761 (((-112) $ $) NIL)) (-3197 (($ $) 87)) (-3067 (($ $) 75)) (-2920 (((-566) $) 130)) (-3240 (($ $) 92)) (-3115 (($ $) 79)) (-1811 (($) NIL T CONST)) (-1505 (($ $) NIL)) (-2980 (((-3 (-566) "failed") $) 129) (((-3 (-409 (-566)) "failed") $) 126)) (-1709 (((-566) $) 127) (((-409 (-566)) $) 124)) (-2925 (($ $ $) NIL)) (-3757 (((-3 $ "failed") $) 105)) (-2647 (((-409 (-566)) $ (-771)) 119) (((-409 (-566)) $ (-771) (-771)) 118)) (-2937 (($ $ $) NIL)) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) NIL)) (-4188 (((-112) $) NIL)) (-4039 (((-921)) 29) (((-921) (-921)) NIL (|has| $ (-6 -4408)))) (-2133 (((-112) $) NIL)) (-2964 (($) 47)) (-1542 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL)) (-1802 (((-566) $) 43)) (-2264 (((-112) $) 101)) (-3146 (($ $ (-566)) NIL)) (-1398 (($ $) NIL)) (-3420 (((-112) $) 99)) (-2495 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1920 (($ $ $) 65) (($) 39 (-12 (-2387 (|has| $ (-6 -4400))) (-2387 (|has| $ (-6 -4408)))))) (-3038 (($ $ $) 64) (($) 38 (-12 (-2387 (|has| $ (-6 -4400))) (-2387 (|has| $ (-6 -4408)))))) (-1687 (((-566) $) 27)) (-2862 (($ $) 34)) (-2296 (($ $) 69)) (-3676 (($ $) 74)) (-2120 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3151 (((-1157) $) NIL)) (-2577 (($ $) NIL)) (-4148 (((-921) (-566)) NIL (|has| $ (-6 -4408)))) (-4059 (((-1119) $) 103)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2162 (($ $ $) NIL) (($ (-644 $)) NIL)) (-4305 (($ $) NIL)) (-2001 (($ $) NIL)) (-2965 (($ (-566) (-566)) NIL) (($ (-566) (-566) (-921)) 112)) (-2325 (((-420 $) $) NIL)) (-2585 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2976 (((-3 $ "failed") $ $) NIL)) (-2840 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3631 (((-566) $) 28)) (-2439 (($) 46)) (-3571 (($ $) 73)) (-1383 (((-771) $) NIL)) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL)) (-3378 (((-921)) NIL) (((-921) (-921)) NIL (|has| $ (-6 -4408)))) (-3526 (($ $ (-771)) NIL) (($ $) 106)) (-1999 (((-921) (-566)) NIL (|has| $ (-6 -4408)))) (-3250 (($ $) 90)) (-3126 (($ $) 80)) (-3227 (($ $) 91)) (-3105 (($ $) 78)) (-3207 (($ $) 88)) (-3079 (($ $) 76)) (-3136 (((-381) $) 115) (((-225) $) 14) (((-892 (-381)) $) NIL) (((-538) $) 53)) (-2479 (((-862) $) 50) (($ (-566)) 72) (($ $) NIL) (($ (-409 (-566))) NIL) (($ (-566)) 72) (($ (-409 (-566))) NIL)) (-1558 (((-771)) NIL T CONST)) (-3908 (($ $) NIL)) (-3143 (((-921)) 37) (((-921) (-921)) NIL (|has| $ (-6 -4408)))) (-3900 (((-112) $ $) NIL)) (-3810 (((-921)) 25)) (-3285 (($ $) 95)) (-3157 (($ $) 83) (($ $ $) 122)) (-1333 (((-112) $ $) NIL)) (-3260 (($ $) 93)) (-3135 (($ $) 81)) (-3309 (($ $) 98)) (-3179 (($ $) 86)) (-1861 (($ $) 96)) (-3190 (($ $) 84)) (-3299 (($ $) 97)) (-3168 (($ $) 85)) (-3273 (($ $) 94)) (-3148 (($ $) 82)) (-4298 (($ $) 121)) (-2446 (($) 23 T CONST)) (-2459 (($) 44 T CONST)) (-2835 (((-1157) $) 18) (((-1157) $ (-112)) 20) (((-1269) (-822) $) 21) (((-1269) (-822) $ (-112)) 22)) (-1977 (($ $) 109)) (-2834 (($ $ (-771)) NIL) (($ $) NIL)) (-1795 (($ $ $) 111)) (-3019 (((-112) $ $) 58)) (-2990 (((-112) $ $) 55)) (-2952 (((-112) $ $) 66)) (-3004 (((-112) $ $) 57)) (-2977 (((-112) $ $) 54)) (-3077 (($ $ $) 45) (($ $ (-566)) 67)) (-3065 (($ $) 59) (($ $ $) 61)) (-3052 (($ $ $) 60)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) 70) (($ $ (-409 (-566))) 154) (($ $ $) 71)) (* (($ (-921) $) 35) (($ (-771) $) NIL) (($ (-566) $) 63) (($ $ $) 62) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL))) +(((-225) (-13 (-406) (-233) (-828) (-1199) (-614 (-538)) (-10 -8 (-15 -3077 ($ $ (-566))) (-15 ** ($ $ $)) (-15 -2439 ($)) (-15 -2862 ($ $)) (-15 -2296 ($ $)) (-15 -3157 ($ $ $)) (-15 -1977 ($ $)) (-15 -1795 ($ $ $)) (-15 -2647 ((-409 (-566)) $ (-771))) (-15 -2647 ((-409 (-566)) $ (-771) (-771)))))) (T -225)) +((** (*1 *1 *1 *1) (-5 *1 (-225))) (-3077 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-225)))) (-2439 (*1 *1) (-5 *1 (-225))) (-2862 (*1 *1 *1) (-5 *1 (-225))) (-2296 (*1 *1 *1) (-5 *1 (-225))) (-3157 (*1 *1 *1 *1) (-5 *1 (-225))) (-1977 (*1 *1 *1) (-5 *1 (-225))) (-1795 (*1 *1 *1 *1) (-5 *1 (-225))) (-2647 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-5 *2 (-409 (-566))) (-5 *1 (-225)))) (-2647 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-771)) (-5 *2 (-409 (-566))) (-5 *1 (-225))))) +(-13 (-406) (-233) (-828) (-1199) (-614 (-538)) (-10 -8 (-15 -3077 ($ $ (-566))) (-15 ** ($ $ $)) (-15 -2439 ($)) (-15 -2862 ($ $)) (-15 -2296 ($ $)) (-15 -3157 ($ $ $)) (-15 -1977 ($ $)) (-15 -1795 ($ $ $)) (-15 -2647 ((-409 (-566)) $ (-771))) (-15 -2647 ((-409 (-566)) $ (-771) (-771))))) +((-2510 (((-169 (-225)) (-771) (-169 (-225))) 11) (((-225) (-771) (-225)) 12)) (-3304 (((-169 (-225)) (-169 (-225))) 13) (((-225) (-225)) 14)) (-3187 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 19) (((-225) (-225) (-225)) 22)) (-2013 (((-169 (-225)) (-169 (-225))) 27) (((-225) (-225)) 26)) (-4307 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 57) (((-225) (-225) (-225)) 49)) (-3755 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 62) (((-225) (-225) (-225)) 60)) (-3480 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 15) (((-225) (-225) (-225)) 16)) (-1818 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 17) (((-225) (-225) (-225)) 18)) (-1751 (((-169 (-225)) (-169 (-225))) 74) (((-225) (-225)) 73)) (-2492 (((-225) (-225)) 68) (((-169 (-225)) (-169 (-225))) 72)) (-1977 (((-169 (-225)) (-169 (-225))) 8) (((-225) (-225)) 9)) (-1795 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 35) (((-225) (-225) (-225)) 31))) +(((-226) (-10 -7 (-15 -1977 ((-225) (-225))) (-15 -1977 ((-169 (-225)) (-169 (-225)))) (-15 -1795 ((-225) (-225) (-225))) (-15 -1795 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3304 ((-225) (-225))) (-15 -3304 ((-169 (-225)) (-169 (-225)))) (-15 -2013 ((-225) (-225))) (-15 -2013 ((-169 (-225)) (-169 (-225)))) (-15 -2510 ((-225) (-771) (-225))) (-15 -2510 ((-169 (-225)) (-771) (-169 (-225)))) (-15 -3480 ((-225) (-225) (-225))) (-15 -3480 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -4307 ((-225) (-225) (-225))) (-15 -4307 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -1818 ((-225) (-225) (-225))) (-15 -1818 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3755 ((-225) (-225) (-225))) (-15 -3755 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -2492 ((-169 (-225)) (-169 (-225)))) (-15 -2492 ((-225) (-225))) (-15 -1751 ((-225) (-225))) (-15 -1751 ((-169 (-225)) (-169 (-225)))) (-15 -3187 ((-225) (-225) (-225))) (-15 -3187 ((-169 (-225)) (-169 (-225)) (-169 (-225)))))) (T -226)) +((-3187 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3187 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-1751 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-1751 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2492 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2492 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3755 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3755 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-1818 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-1818 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-4307 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-4307 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3480 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3480 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2510 (*1 *2 *3 *2) (-12 (-5 *2 (-169 (-225))) (-5 *3 (-771)) (-5 *1 (-226)))) (-2510 (*1 *2 *3 *2) (-12 (-5 *2 (-225)) (-5 *3 (-771)) (-5 *1 (-226)))) (-2013 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2013 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3304 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3304 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-1795 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-1795 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-1977 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-1977 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))) +(-10 -7 (-15 -1977 ((-225) (-225))) (-15 -1977 ((-169 (-225)) (-169 (-225)))) (-15 -1795 ((-225) (-225) (-225))) (-15 -1795 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3304 ((-225) (-225))) (-15 -3304 ((-169 (-225)) (-169 (-225)))) (-15 -2013 ((-225) (-225))) (-15 -2013 ((-169 (-225)) (-169 (-225)))) (-15 -2510 ((-225) (-771) (-225))) (-15 -2510 ((-169 (-225)) (-771) (-169 (-225)))) (-15 -3480 ((-225) (-225) (-225))) (-15 -3480 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -4307 ((-225) (-225) (-225))) (-15 -4307 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -1818 ((-225) (-225) (-225))) (-15 -1818 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3755 ((-225) (-225) (-225))) (-15 -3755 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -2492 ((-169 (-225)) (-169 (-225)))) (-15 -2492 ((-225) (-225))) (-15 -1751 ((-225) (-225))) (-15 -1751 ((-169 (-225)) (-169 (-225)))) (-15 -3187 ((-225) (-225) (-225))) (-15 -3187 ((-169 (-225)) (-169 (-225)) (-169 (-225))))) +((-2986 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2078 (($ (-771) (-771)) NIL)) (-3563 (($ $ $) NIL)) (-2076 (($ (-1264 |#1|)) NIL) (($ $) NIL)) (-2060 (($ |#1| |#1| |#1|) 33)) (-3349 (((-112) $) NIL)) (-2003 (($ $ (-566) (-566)) NIL)) (-1775 (($ $ (-566) (-566)) NIL)) (-4115 (($ $ (-566) (-566) (-566) (-566)) NIL)) (-1350 (($ $) NIL)) (-3834 (((-112) $) NIL)) (-1453 (((-112) $ (-771)) NIL)) (-1789 (($ $ (-566) (-566) $) NIL)) (-3901 ((|#1| $ (-566) (-566) |#1|) NIL) (($ $ (-644 (-566)) (-644 (-566)) $) NIL)) (-1679 (($ $ (-566) (-1264 |#1|)) NIL)) (-2145 (($ $ (-566) (-1264 |#1|)) NIL)) (-2504 (($ |#1| |#1| |#1|) 32)) (-3191 (($ (-771) |#1|) NIL)) (-1811 (($) NIL T CONST)) (-3411 (($ $) NIL (|has| |#1| (-308)))) (-3395 (((-1264 |#1|) $ (-566)) NIL)) (-2589 (($ |#1|) 31)) (-3296 (($ |#1|) 30)) (-4048 (($ |#1|) 29)) (-2299 (((-771) $) NIL (|has| |#1| (-558)))) (-3719 ((|#1| $ (-566) (-566) |#1|) NIL)) (-3653 ((|#1| $ (-566) (-566)) NIL)) (-3872 (((-644 |#1|) $) NIL)) (-2630 (((-771) $) NIL (|has| |#1| (-558)))) (-1711 (((-644 (-1264 |#1|)) $) NIL (|has| |#1| (-558)))) (-2541 (((-771) $) NIL)) (-4259 (($ (-771) (-771) |#1|) NIL)) (-2552 (((-771) $) NIL)) (-2756 (((-112) $ (-771)) NIL)) (-3561 ((|#1| $) NIL (|has| |#1| (-6 (-4419 "*"))))) (-3715 (((-566) $) NIL)) (-1359 (((-566) $) NIL)) (-4227 (((-644 |#1|) $) NIL (|has| $ (-6 -4417)))) (-1688 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-3113 (((-566) $) NIL)) (-2701 (((-566) $) NIL)) (-4155 (($ (-644 (-644 |#1|))) 11)) (-3708 (($ (-1 |#1| |#1|) $) NIL)) (-3080 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2337 (((-644 (-644 |#1|)) $) NIL)) (-4106 (((-112) $ (-771)) NIL)) (-3151 (((-1157) $) NIL (|has| |#1| (-1099)))) (-1780 (((-3 $ "failed") $) NIL (|has| |#1| (-365)))) (-2428 (($) 12)) (-4384 (($ $ $) NIL)) (-4059 (((-1119) $) NIL (|has| |#1| (-1099)))) (-4079 (($ $ |#1|) NIL)) (-2976 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558)))) (-3966 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1844 (((-112) $ $) NIL)) (-2788 (((-112) $) NIL)) (-1737 (($) NIL)) (-4376 ((|#1| $ (-566) (-566)) NIL) ((|#1| $ (-566) (-566) |#1|) NIL) (($ $ (-644 (-566)) (-644 (-566))) NIL)) (-3628 (($ (-644 |#1|)) NIL) (($ (-644 $)) NIL)) (-2754 (((-112) $) NIL)) (-1636 ((|#1| $) NIL (|has| |#1| (-6 (-4419 "*"))))) (-4068 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-3924 (($ $) NIL)) (-4327 (((-1264 |#1|) $ (-566)) NIL)) (-2479 (($ (-1264 |#1|)) NIL) (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-3900 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3667 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2126 (((-112) $) NIL)) (-2952 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3077 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3065 (($ $ $) NIL) (($ $) NIL)) (-3052 (($ $ $) NIL)) (** (($ $ (-771)) NIL) (($ $ (-566)) NIL (|has| |#1| (-365)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-566) $) NIL) (((-1264 |#1|) $ (-1264 |#1|)) 15) (((-1264 |#1|) (-1264 |#1|) $) NIL) (((-943 |#1|) $ (-943 |#1|)) 21)) (-3002 (((-771) $) NIL (|has| $ (-6 -4417))))) +(((-227 |#1|) (-13 (-687 |#1| (-1264 |#1|) (-1264 |#1|)) (-10 -8 (-15 * ((-943 |#1|) $ (-943 |#1|))) (-15 -2428 ($)) (-15 -4048 ($ |#1|)) (-15 -3296 ($ |#1|)) (-15 -2589 ($ |#1|)) (-15 -2504 ($ |#1| |#1| |#1|)) (-15 -2060 ($ |#1| |#1| |#1|)))) (-13 (-365) (-1199))) (T -227)) +((* (*1 *2 *1 *2) (-12 (-5 *2 (-943 *3)) (-4 *3 (-13 (-365) (-1199))) (-5 *1 (-227 *3)))) (-2428 (*1 *1) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1199))))) (-4048 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1199))))) (-3296 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1199))))) (-2589 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1199))))) (-2504 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1199))))) (-2060 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1199)))))) +(-13 (-687 |#1| (-1264 |#1|) (-1264 |#1|)) (-10 -8 (-15 * ((-943 |#1|) $ (-943 |#1|))) (-15 -2428 ($)) (-15 -4048 ($ |#1|)) (-15 -3296 ($ |#1|)) (-15 -2589 ($ |#1|)) (-15 -2504 ($ |#1| |#1| |#1|)) (-15 -2060 ($ |#1| |#1| |#1|)))) +((-4364 (($ (-1 (-112) |#2|) $) 16)) (-2295 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 27)) (-1797 (($) NIL) (($ (-644 |#2|)) 11)) (-2952 (((-112) $ $) 25))) +(((-228 |#1| |#2|) (-10 -8 (-15 -4364 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2295 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2295 (|#1| |#2| |#1|)) (-15 -1797 (|#1| (-644 |#2|))) (-15 -1797 (|#1|)) (-15 -2952 ((-112) |#1| |#1|))) (-229 |#2|) (-1099)) (T -228)) +NIL +(-10 -8 (-15 -4364 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2295 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2295 (|#1| |#2| |#1|)) (-15 -1797 (|#1| (-644 |#2|))) (-15 -1797 (|#1|)) (-15 -2952 ((-112) |#1| |#1|))) +((-2986 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-1453 (((-112) $ (-771)) 8)) (-4364 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4417)))) (-3543 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4417)))) (-1811 (($) 7 T CONST)) (-4111 (($ $) 59 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-2295 (($ |#1| $) 48 (|has| $ (-6 -4417))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4417)))) (-2628 (($ |#1| $) 58 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4417)))) (-1838 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4417)))) (-3872 (((-644 |#1|) $) 31 (|has| $ (-6 -4417)))) (-2756 (((-112) $ (-771)) 9)) (-4227 (((-644 |#1|) $) 30 (|has| $ (-6 -4417)))) (-1688 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-3708 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#1| |#1|) $) 36)) (-4106 (((-112) $ (-771)) 10)) (-3151 (((-1157) $) 22 (|has| |#1| (-1099)))) (-4255 ((|#1| $) 40)) (-4354 (($ |#1| $) 41)) (-4059 (((-1119) $) 21 (|has| |#1| (-1099)))) (-2688 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-4097 ((|#1| $) 42)) (-3966 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1844 (((-112) $ $) 14)) (-2788 (((-112) $) 11)) (-1737 (($) 12)) (-1797 (($) 50) (($ (-644 |#1|)) 49)) (-4068 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4417))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-3924 (($ $) 13)) (-3136 (((-538) $) 60 (|has| |#1| (-614 (-538))))) (-2489 (($ (-644 |#1|)) 51)) (-2479 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-3900 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-2471 (($ (-644 |#1|)) 43)) (-3667 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4417)))) (-2952 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3002 (((-771) $) 6 (|has| $ (-6 -4417))))) +(((-229 |#1|) (-140) (-1099)) (T -229)) NIL (-13 (-235 |t#1|)) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1097)) ((-611 (-860)) -2682 (|has| |#1| (-1097)) (|has| |#1| (-611 (-860)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-235 |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-1097) |has| |#1| (-1097)) ((-1212) . T)) -((-2199 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-769)) 14) (($ $ (-642 (-1173)) (-642 (-769))) NIL) (($ $ (-1173) (-769)) NIL) (($ $ (-642 (-1173))) NIL) (($ $ (-1173)) 22) (($ $ (-769)) NIL) (($ $) 19)) (-2711 (($ $ (-1 |#2| |#2|)) 15) (($ $ (-1 |#2| |#2|) (-769)) 17) (($ $ (-642 (-1173)) (-642 (-769))) NIL) (($ $ (-1173) (-769)) NIL) (($ $ (-642 (-1173))) NIL) (($ $ (-1173)) NIL) (($ $ (-769)) NIL) (($ $) NIL))) -(((-230 |#1| |#2|) (-10 -8 (-15 -2199 (|#1| |#1|)) (-15 -2711 (|#1| |#1|)) (-15 -2199 (|#1| |#1| (-769))) (-15 -2711 (|#1| |#1| (-769))) (-15 -2199 (|#1| |#1| (-1173))) (-15 -2199 (|#1| |#1| (-642 (-1173)))) (-15 -2199 (|#1| |#1| (-1173) (-769))) (-15 -2199 (|#1| |#1| (-642 (-1173)) (-642 (-769)))) (-15 -2711 (|#1| |#1| (-1173))) (-15 -2711 (|#1| |#1| (-642 (-1173)))) (-15 -2711 (|#1| |#1| (-1173) (-769))) (-15 -2711 (|#1| |#1| (-642 (-1173)) (-642 (-769)))) (-15 -2711 (|#1| |#1| (-1 |#2| |#2|) (-769))) (-15 -2711 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2199 (|#1| |#1| (-1 |#2| |#2|) (-769))) (-15 -2199 (|#1| |#1| (-1 |#2| |#2|)))) (-231 |#2|) (-1047)) (T -230)) -NIL -(-10 -8 (-15 -2199 (|#1| |#1|)) (-15 -2711 (|#1| |#1|)) (-15 -2199 (|#1| |#1| (-769))) (-15 -2711 (|#1| |#1| (-769))) (-15 -2199 (|#1| |#1| (-1173))) (-15 -2199 (|#1| |#1| (-642 (-1173)))) (-15 -2199 (|#1| |#1| (-1173) (-769))) (-15 -2199 (|#1| |#1| (-642 (-1173)) (-642 (-769)))) (-15 -2711 (|#1| |#1| (-1173))) (-15 -2711 (|#1| |#1| (-642 (-1173)))) (-15 -2711 (|#1| |#1| (-1173) (-769))) (-15 -2711 (|#1| |#1| (-642 (-1173)) (-642 (-769)))) (-15 -2711 (|#1| |#1| (-1 |#2| |#2|) (-769))) (-15 -2711 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2199 (|#1| |#1| (-1 |#2| |#2|) (-769))) (-15 -2199 (|#1| |#1| (-1 |#2| |#2|)))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-3085 (((-3 $ "failed") $ $) 20)) (-2822 (($) 18 T CONST)) (-2675 (((-3 $ "failed") $) 37)) (-3163 (((-112) $) 35)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2199 (($ $ (-1 |#1| |#1|)) 56) (($ $ (-1 |#1| |#1|) (-769)) 55) (($ $ (-642 (-1173)) (-642 (-769))) 48 (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) 47 (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) 46 (|has| |#1| (-898 (-1173)))) (($ $ (-1173)) 45 (|has| |#1| (-898 (-1173)))) (($ $ (-769)) 43 (|has| |#1| (-233))) (($ $) 41 (|has| |#1| (-233)))) (-2390 (((-860) $) 12) (($ (-564)) 33)) (-3348 (((-769)) 32 T CONST)) (-1600 (((-112) $ $) 9)) (-2361 (($) 19 T CONST)) (-2371 (($) 34 T CONST)) (-2711 (($ $ (-1 |#1| |#1|)) 54) (($ $ (-1 |#1| |#1|) (-769)) 53) (($ $ (-642 (-1173)) (-642 (-769))) 52 (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) 51 (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) 50 (|has| |#1| (-898 (-1173)))) (($ $ (-1173)) 49 (|has| |#1| (-898 (-1173)))) (($ $ (-769)) 44 (|has| |#1| (-233))) (($ $) 42 (|has| |#1| (-233)))) (-2821 (((-112) $ $) 6)) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27))) -(((-231 |#1|) (-140) (-1047)) (T -231)) -((-2199 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1047)))) (-2199 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-769)) (-4 *1 (-231 *4)) (-4 *4 (-1047)))) (-2711 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1047)))) (-2711 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-769)) (-4 *1 (-231 *4)) (-4 *4 (-1047))))) -(-13 (-1047) (-10 -8 (-15 -2199 ($ $ (-1 |t#1| |t#1|))) (-15 -2199 ($ $ (-1 |t#1| |t#1|) (-769))) (-15 -2711 ($ $ (-1 |t#1| |t#1|))) (-15 -2711 ($ $ (-1 |t#1| |t#1|) (-769))) (IF (|has| |t#1| (-233)) (-6 (-233)) |%noBranch|) (IF (|has| |t#1| (-898 (-1173))) (-6 (-898 (-1173))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-860)) . T) ((-233) |has| |#1| (-233)) ((-644 (-564)) . T) ((-644 $) . T) ((-646 $) . T) ((-724) . T) ((-898 (-1173)) |has| |#1| (-898 (-1173))) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T)) -((-2199 (($ $) NIL) (($ $ (-769)) 13)) (-2711 (($ $) 8) (($ $ (-769)) 15))) -(((-232 |#1|) (-10 -8 (-15 -2711 (|#1| |#1| (-769))) (-15 -2199 (|#1| |#1| (-769))) (-15 -2711 (|#1| |#1|)) (-15 -2199 (|#1| |#1|))) (-233)) (T -232)) -NIL -(-10 -8 (-15 -2711 (|#1| |#1| (-769))) (-15 -2199 (|#1| |#1| (-769))) (-15 -2711 (|#1| |#1|)) (-15 -2199 (|#1| |#1|))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-3085 (((-3 $ "failed") $ $) 20)) (-2822 (($) 18 T CONST)) (-2675 (((-3 $ "failed") $) 37)) (-3163 (((-112) $) 35)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2199 (($ $) 42) (($ $ (-769)) 40)) (-2390 (((-860) $) 12) (($ (-564)) 33)) (-3348 (((-769)) 32 T CONST)) (-1600 (((-112) $ $) 9)) (-2361 (($) 19 T CONST)) (-2371 (($) 34 T CONST)) (-2711 (($ $) 41) (($ $ (-769)) 39)) (-2821 (((-112) $ $) 6)) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2809 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-151 |#1|) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-235 |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1099) |has| |#1| (-1099)) ((-1214) . T)) +((-3526 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-771)) 14) (($ $ (-644 (-1175)) (-644 (-771))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175)) 22) (($ $ (-771)) NIL) (($ $) 19)) (-2834 (($ $ (-1 |#2| |#2|)) 15) (($ $ (-1 |#2| |#2|) (-771)) 17) (($ $ (-644 (-1175)) (-644 (-771))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175)) NIL) (($ $ (-771)) NIL) (($ $) NIL))) +(((-230 |#1| |#2|) (-10 -8 (-15 -3526 (|#1| |#1|)) (-15 -2834 (|#1| |#1|)) (-15 -3526 (|#1| |#1| (-771))) (-15 -2834 (|#1| |#1| (-771))) (-15 -3526 (|#1| |#1| (-1175))) (-15 -3526 (|#1| |#1| (-644 (-1175)))) (-15 -3526 (|#1| |#1| (-1175) (-771))) (-15 -3526 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -2834 (|#1| |#1| (-1175))) (-15 -2834 (|#1| |#1| (-644 (-1175)))) (-15 -2834 (|#1| |#1| (-1175) (-771))) (-15 -2834 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -2834 (|#1| |#1| (-1 |#2| |#2|) (-771))) (-15 -2834 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3526 (|#1| |#1| (-1 |#2| |#2|) (-771))) (-15 -3526 (|#1| |#1| (-1 |#2| |#2|)))) (-231 |#2|) (-1049)) (T -230)) +NIL +(-10 -8 (-15 -3526 (|#1| |#1|)) (-15 -2834 (|#1| |#1|)) (-15 -3526 (|#1| |#1| (-771))) (-15 -2834 (|#1| |#1| (-771))) (-15 -3526 (|#1| |#1| (-1175))) (-15 -3526 (|#1| |#1| (-644 (-1175)))) (-15 -3526 (|#1| |#1| (-1175) (-771))) (-15 -3526 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -2834 (|#1| |#1| (-1175))) (-15 -2834 (|#1| |#1| (-644 (-1175)))) (-15 -2834 (|#1| |#1| (-1175) (-771))) (-15 -2834 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -2834 (|#1| |#1| (-1 |#2| |#2|) (-771))) (-15 -2834 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3526 (|#1| |#1| (-1 |#2| |#2|) (-771))) (-15 -3526 (|#1| |#1| (-1 |#2| |#2|)))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-3174 (((-3 $ "failed") $ $) 20)) (-1811 (($) 18 T CONST)) (-3757 (((-3 $ "failed") $) 37)) (-2264 (((-112) $) 35)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-3526 (($ $ (-1 |#1| |#1|)) 56) (($ $ (-1 |#1| |#1|) (-771)) 55) (($ $ (-644 (-1175)) (-644 (-771))) 48 (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) 47 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) 46 (|has| |#1| (-900 (-1175)))) (($ $ (-1175)) 45 (|has| |#1| (-900 (-1175)))) (($ $ (-771)) 43 (|has| |#1| (-233))) (($ $) 41 (|has| |#1| (-233)))) (-2479 (((-862) $) 12) (($ (-566)) 33)) (-1558 (((-771)) 32 T CONST)) (-3900 (((-112) $ $) 9)) (-2446 (($) 19 T CONST)) (-2459 (($) 34 T CONST)) (-2834 (($ $ (-1 |#1| |#1|)) 54) (($ $ (-1 |#1| |#1|) (-771)) 53) (($ $ (-644 (-1175)) (-644 (-771))) 52 (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) 51 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) 50 (|has| |#1| (-900 (-1175)))) (($ $ (-1175)) 49 (|has| |#1| (-900 (-1175)))) (($ $ (-771)) 44 (|has| |#1| (-233))) (($ $) 42 (|has| |#1| (-233)))) (-2952 (((-112) $ $) 6)) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27))) +(((-231 |#1|) (-140) (-1049)) (T -231)) +((-3526 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1049)))) (-3526 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-771)) (-4 *1 (-231 *4)) (-4 *4 (-1049)))) (-2834 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1049)))) (-2834 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-771)) (-4 *1 (-231 *4)) (-4 *4 (-1049))))) +(-13 (-1049) (-10 -8 (-15 -3526 ($ $ (-1 |t#1| |t#1|))) (-15 -3526 ($ $ (-1 |t#1| |t#1|) (-771))) (-15 -2834 ($ $ (-1 |t#1| |t#1|))) (-15 -2834 ($ $ (-1 |t#1| |t#1|) (-771))) (IF (|has| |t#1| (-233)) (-6 (-233)) |%noBranch|) (IF (|has| |t#1| (-900 (-1175))) (-6 (-900 (-1175))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-616 (-566)) . T) ((-613 (-862)) . T) ((-233) |has| |#1| (-233)) ((-646 (-566)) . T) ((-646 $) . T) ((-648 $) . T) ((-726) . T) ((-900 (-1175)) |has| |#1| (-900 (-1175))) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) +((-3526 (($ $) NIL) (($ $ (-771)) 13)) (-2834 (($ $) 8) (($ $ (-771)) 15))) +(((-232 |#1|) (-10 -8 (-15 -2834 (|#1| |#1| (-771))) (-15 -3526 (|#1| |#1| (-771))) (-15 -2834 (|#1| |#1|)) (-15 -3526 (|#1| |#1|))) (-233)) (T -232)) +NIL +(-10 -8 (-15 -2834 (|#1| |#1| (-771))) (-15 -3526 (|#1| |#1| (-771))) (-15 -2834 (|#1| |#1|)) (-15 -3526 (|#1| |#1|))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-3174 (((-3 $ "failed") $ $) 20)) (-1811 (($) 18 T CONST)) (-3757 (((-3 $ "failed") $) 37)) (-2264 (((-112) $) 35)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-3526 (($ $) 42) (($ $ (-771)) 40)) (-2479 (((-862) $) 12) (($ (-566)) 33)) (-1558 (((-771)) 32 T CONST)) (-3900 (((-112) $ $) 9)) (-2446 (($) 19 T CONST)) (-2459 (($) 34 T CONST)) (-2834 (($ $) 41) (($ $ (-771)) 39)) (-2952 (((-112) $ $) 6)) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27))) (((-233) (-140)) (T -233)) -((-2199 (*1 *1 *1) (-4 *1 (-233))) (-2711 (*1 *1 *1) (-4 *1 (-233))) (-2199 (*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-769)))) (-2711 (*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-769))))) -(-13 (-1047) (-10 -8 (-15 -2199 ($ $)) (-15 -2711 ($ $)) (-15 -2199 ($ $ (-769))) (-15 -2711 ($ $ (-769))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-860)) . T) ((-644 (-564)) . T) ((-644 $) . T) ((-646 $) . T) ((-724) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T)) -((-2318 (($) 12) (($ (-642 |#2|)) NIL)) (-3865 (($ $) 14)) (-2401 (($ (-642 |#2|)) 10)) (-2390 (((-860) $) 21))) -(((-234 |#1| |#2|) (-10 -8 (-15 -2390 ((-860) |#1|)) (-15 -2318 (|#1| (-642 |#2|))) (-15 -2318 (|#1|)) (-15 -2401 (|#1| (-642 |#2|))) (-15 -3865 (|#1| |#1|))) (-235 |#2|) (-1097)) (T -234)) -NIL -(-10 -8 (-15 -2390 ((-860) |#1|)) (-15 -2318 (|#1| (-642 |#2|))) (-15 -2318 (|#1|)) (-15 -2401 (|#1| (-642 |#2|))) (-15 -3865 (|#1| |#1|))) -((-2856 (((-112) $ $) 19 (|has| |#1| (-1097)))) (-3442 (((-112) $ (-769)) 8)) (-2438 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4410)))) (-3437 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4410)))) (-2822 (($) 7 T CONST)) (-4067 (($ $) 59 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-1927 (($ |#1| $) 48 (|has| $ (-6 -4410))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4410)))) (-2517 (($ |#1| $) 58 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4410)))) (-3741 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4410)))) (-2018 (((-642 |#1|) $) 31 (|has| $ (-6 -4410)))) (-3769 (((-112) $ (-769)) 9)) (-3541 (((-642 |#1|) $) 30 (|has| $ (-6 -4410)))) (-2533 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-1857 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#1| |#1|) $) 36)) (-4145 (((-112) $ (-769)) 10)) (-1778 (((-1155) $) 22 (|has| |#1| (-1097)))) (-3220 ((|#1| $) 40)) (-1668 (($ |#1| $) 41)) (-3999 (((-1117) $) 21 (|has| |#1| (-1097)))) (-3183 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-4314 ((|#1| $) 42)) (-4094 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-2478 (((-112) $ $) 14)) (-4109 (((-112) $) 11)) (-2179 (($) 12)) (-2318 (($) 50) (($ (-642 |#1|)) 49)) (-4010 (((-769) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4410))) (((-769) |#1| $) 29 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3865 (($ $) 13)) (-3003 (((-536) $) 60 (|has| |#1| (-612 (-536))))) (-2401 (($ (-642 |#1|)) 51)) (-2390 (((-860) $) 18 (|has| |#1| (-611 (-860))))) (-1600 (((-112) $ $) 23 (|has| |#1| (-1097)))) (-4160 (($ (-642 |#1|)) 43)) (-3295 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4410)))) (-2821 (((-112) $ $) 20 (|has| |#1| (-1097)))) (-2158 (((-769) $) 6 (|has| $ (-6 -4410))))) -(((-235 |#1|) (-140) (-1097)) (T -235)) -((-2318 (*1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1097)))) (-2318 (*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1097)) (-4 *1 (-235 *3)))) (-1927 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4410)) (-4 *1 (-235 *2)) (-4 *2 (-1097)))) (-1927 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4410)) (-4 *1 (-235 *3)) (-4 *3 (-1097)))) (-2438 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4410)) (-4 *1 (-235 *3)) (-4 *3 (-1097))))) -(-13 (-107 |t#1|) (-151 |t#1|) (-10 -8 (-15 -2318 ($)) (-15 -2318 ($ (-642 |t#1|))) (IF (|has| $ (-6 -4410)) (PROGN (-15 -1927 ($ |t#1| $)) (-15 -1927 ($ (-1 (-112) |t#1|) $)) (-15 -2438 ($ (-1 (-112) |t#1|) $))) |%noBranch|))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1097)) ((-611 (-860)) -2682 (|has| |#1| (-1097)) (|has| |#1| (-611 (-860)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-1097) |has| |#1| (-1097)) ((-1212) . T)) -((-3617 (((-2 (|:| |varOrder| (-642 (-1173))) (|:| |inhom| (-3 (-642 (-1262 (-769))) "failed")) (|:| |hom| (-642 (-1262 (-769))))) (-294 (-950 (-564)))) 42))) -(((-236) (-10 -7 (-15 -3617 ((-2 (|:| |varOrder| (-642 (-1173))) (|:| |inhom| (-3 (-642 (-1262 (-769))) "failed")) (|:| |hom| (-642 (-1262 (-769))))) (-294 (-950 (-564))))))) (T -236)) -((-3617 (*1 *2 *3) (-12 (-5 *3 (-294 (-950 (-564)))) (-5 *2 (-2 (|:| |varOrder| (-642 (-1173))) (|:| |inhom| (-3 (-642 (-1262 (-769))) "failed")) (|:| |hom| (-642 (-1262 (-769)))))) (-5 *1 (-236))))) -(-10 -7 (-15 -3617 ((-2 (|:| |varOrder| (-642 (-1173))) (|:| |inhom| (-3 (-642 (-1262 (-769))) "failed")) (|:| |hom| (-642 (-1262 (-769))))) (-294 (-950 (-564)))))) -((-4003 (((-769)) 56)) (-3330 (((-2 (|:| -3544 (-687 |#3|)) (|:| |vec| (-1262 |#3|))) (-687 $) (-1262 $)) 53) (((-687 |#3|) (-687 $)) 44) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL) (((-687 (-564)) (-687 $)) NIL)) (-3677 (((-134)) 62)) (-2199 (($ $ (-1 |#3| |#3|) (-769)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-642 (-1173)) (-642 (-769))) NIL) (($ $ (-1173) (-769)) NIL) (($ $ (-642 (-1173))) NIL) (($ $ (-1173)) NIL) (($ $ (-769)) NIL) (($ $) NIL)) (-2390 (((-1262 |#3|) $) NIL) (($ |#3|) NIL) (((-860) $) NIL) (($ (-564)) 12) (($ (-407 (-564))) NIL)) (-3348 (((-769)) 15)) (-2943 (($ $ |#3|) 59))) -(((-237 |#1| |#2| |#3|) (-10 -8 (-15 -2390 (|#1| (-407 (-564)))) (-15 -2390 (|#1| (-564))) (-15 -2390 ((-860) |#1|)) (-15 -3348 ((-769))) (-15 -2199 (|#1| |#1|)) (-15 -2199 (|#1| |#1| (-769))) (-15 -2199 (|#1| |#1| (-1173))) (-15 -2199 (|#1| |#1| (-642 (-1173)))) (-15 -2199 (|#1| |#1| (-1173) (-769))) (-15 -2199 (|#1| |#1| (-642 (-1173)) (-642 (-769)))) (-15 -3330 ((-687 (-564)) (-687 |#1|))) (-15 -3330 ((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 |#1|) (-1262 |#1|))) (-15 -2390 (|#1| |#3|)) (-15 -2199 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2199 (|#1| |#1| (-1 |#3| |#3|) (-769))) (-15 -3330 ((-687 |#3|) (-687 |#1|))) (-15 -3330 ((-2 (|:| -3544 (-687 |#3|)) (|:| |vec| (-1262 |#3|))) (-687 |#1|) (-1262 |#1|))) (-15 -4003 ((-769))) (-15 -2943 (|#1| |#1| |#3|)) (-15 -3677 ((-134))) (-15 -2390 ((-1262 |#3|) |#1|))) (-238 |#2| |#3|) (-769) (-1212)) (T -237)) -((-3677 (*1 *2) (-12 (-14 *4 (-769)) (-4 *5 (-1212)) (-5 *2 (-134)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) (-4003 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1212)) (-5 *2 (-769)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) (-3348 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1212)) (-5 *2 (-769)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5))))) -(-10 -8 (-15 -2390 (|#1| (-407 (-564)))) (-15 -2390 (|#1| (-564))) (-15 -2390 ((-860) |#1|)) (-15 -3348 ((-769))) (-15 -2199 (|#1| |#1|)) (-15 -2199 (|#1| |#1| (-769))) (-15 -2199 (|#1| |#1| (-1173))) (-15 -2199 (|#1| |#1| (-642 (-1173)))) (-15 -2199 (|#1| |#1| (-1173) (-769))) (-15 -2199 (|#1| |#1| (-642 (-1173)) (-642 (-769)))) (-15 -3330 ((-687 (-564)) (-687 |#1|))) (-15 -3330 ((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 |#1|) (-1262 |#1|))) (-15 -2390 (|#1| |#3|)) (-15 -2199 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2199 (|#1| |#1| (-1 |#3| |#3|) (-769))) (-15 -3330 ((-687 |#3|) (-687 |#1|))) (-15 -3330 ((-2 (|:| -3544 (-687 |#3|)) (|:| |vec| (-1262 |#3|))) (-687 |#1|) (-1262 |#1|))) (-15 -4003 ((-769))) (-15 -2943 (|#1| |#1| |#3|)) (-15 -3677 ((-134))) (-15 -2390 ((-1262 |#3|) |#1|))) -((-2856 (((-112) $ $) 19 (|has| |#2| (-1097)))) (-2950 (((-112) $) 73 (|has| |#2| (-131)))) (-2072 (($ (-919)) 126 (|has| |#2| (-1047)))) (-3633 (((-1267) $ (-564) (-564)) 41 (|has| $ (-6 -4411)))) (-2247 (($ $ $) 122 (|has| |#2| (-791)))) (-3085 (((-3 $ "failed") $ $) 75 (|has| |#2| (-131)))) (-3442 (((-112) $ (-769)) 8)) (-4003 (((-769)) 108 (|has| |#2| (-368)))) (-2221 (((-564) $) 120 (|has| |#2| (-846)))) (-3841 ((|#2| $ (-564) |#2|) 53 (|has| $ (-6 -4411)))) (-2822 (($) 7 T CONST)) (-2849 (((-3 (-564) "failed") $) 68 (-2317 (|has| |#2| (-1036 (-564))) (|has| |#2| (-1097)))) (((-3 (-407 (-564)) "failed") $) 65 (-2317 (|has| |#2| (-1036 (-407 (-564)))) (|has| |#2| (-1097)))) (((-3 |#2| "failed") $) 62 (|has| |#2| (-1097)))) (-1687 (((-564) $) 67 (-2317 (|has| |#2| (-1036 (-564))) (|has| |#2| (-1097)))) (((-407 (-564)) $) 64 (-2317 (|has| |#2| (-1036 (-407 (-564)))) (|has| |#2| (-1097)))) ((|#2| $) 63 (|has| |#2| (-1097)))) (-3330 (((-687 (-564)) (-687 $)) 107 (-2317 (|has| |#2| (-637 (-564))) (|has| |#2| (-1047)))) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) 106 (-2317 (|has| |#2| (-637 (-564))) (|has| |#2| (-1047)))) (((-2 (|:| -3544 (-687 |#2|)) (|:| |vec| (-1262 |#2|))) (-687 $) (-1262 $)) 105 (|has| |#2| (-1047))) (((-687 |#2|) (-687 $)) 104 (|has| |#2| (-1047)))) (-2675 (((-3 $ "failed") $) 80 (|has| |#2| (-724)))) (-3235 (($) 111 (|has| |#2| (-368)))) (-3105 ((|#2| $ (-564) |#2|) 54 (|has| $ (-6 -4411)))) (-1804 ((|#2| $ (-564)) 52)) (-3292 (((-112) $) 118 (|has| |#2| (-846)))) (-2018 (((-642 |#2|) $) 31 (|has| $ (-6 -4410)))) (-3163 (((-112) $) 82 (|has| |#2| (-724)))) (-2666 (((-112) $) 119 (|has| |#2| (-846)))) (-3769 (((-112) $ (-769)) 9)) (-1802 (((-564) $) 44 (|has| (-564) (-848)))) (-3225 (($ $ $) 117 (-2682 (|has| |#2| (-846)) (|has| |#2| (-791))))) (-3541 (((-642 |#2|) $) 30 (|has| $ (-6 -4410)))) (-2533 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1097)) (|has| $ (-6 -4410))))) (-3624 (((-564) $) 45 (|has| (-564) (-848)))) (-2903 (($ $ $) 116 (-2682 (|has| |#2| (-846)) (|has| |#2| (-791))))) (-1857 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#2| |#2|) $) 36)) (-2535 (((-919) $) 110 (|has| |#2| (-368)))) (-4145 (((-112) $ (-769)) 10)) (-1778 (((-1155) $) 22 (|has| |#2| (-1097)))) (-4107 (((-642 (-564)) $) 47)) (-4207 (((-112) (-564) $) 48)) (-2065 (($ (-919)) 109 (|has| |#2| (-368)))) (-3999 (((-1117) $) 21 (|has| |#2| (-1097)))) (-4036 ((|#2| $) 43 (|has| (-564) (-848)))) (-3826 (($ $ |#2|) 42 (|has| $ (-6 -4411)))) (-4094 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#2|))) 27 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-294 |#2|)) 26 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-642 |#2|) (-642 |#2|)) 24 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))))) (-2478 (((-112) $ $) 14)) (-1643 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097))))) (-3522 (((-642 |#2|) $) 49)) (-4109 (((-112) $) 11)) (-2179 (($) 12)) (-4369 ((|#2| $ (-564) |#2|) 51) ((|#2| $ (-564)) 50)) (-1976 ((|#2| $ $) 125 (|has| |#2| (-1047)))) (-2299 (($ (-1262 |#2|)) 127)) (-3677 (((-134)) 124 (|has| |#2| (-363)))) (-2199 (($ $) 99 (-2317 (|has| |#2| (-233)) (|has| |#2| (-1047)))) (($ $ (-769)) 97 (-2317 (|has| |#2| (-233)) (|has| |#2| (-1047)))) (($ $ (-1173)) 95 (-2317 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) (($ $ (-642 (-1173))) 94 (-2317 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) (($ $ (-1173) (-769)) 93 (-2317 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) (($ $ (-642 (-1173)) (-642 (-769))) 92 (-2317 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) (($ $ (-1 |#2| |#2|) (-769)) 85 (|has| |#2| (-1047))) (($ $ (-1 |#2| |#2|)) 84 (|has| |#2| (-1047)))) (-4010 (((-769) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4410))) (((-769) |#2| $) 29 (-12 (|has| |#2| (-1097)) (|has| $ (-6 -4410))))) (-3865 (($ $) 13)) (-2390 (((-1262 |#2|) $) 128) (($ (-564)) 69 (-2682 (-2317 (|has| |#2| (-1036 (-564))) (|has| |#2| (-1097))) (|has| |#2| (-1047)))) (($ (-407 (-564))) 66 (-2317 (|has| |#2| (-1036 (-407 (-564)))) (|has| |#2| (-1097)))) (($ |#2|) 61 (|has| |#2| (-1097))) (((-860) $) 18 (|has| |#2| (-611 (-860))))) (-3348 (((-769)) 103 (|has| |#2| (-1047)) CONST)) (-1600 (((-112) $ $) 23 (|has| |#2| (-1097)))) (-3295 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4410)))) (-1630 (($ $) 121 (|has| |#2| (-846)))) (-2361 (($) 72 (|has| |#2| (-131)) CONST)) (-2371 (($) 83 (|has| |#2| (-724)) CONST)) (-2711 (($ $) 98 (-2317 (|has| |#2| (-233)) (|has| |#2| (-1047)))) (($ $ (-769)) 96 (-2317 (|has| |#2| (-233)) (|has| |#2| (-1047)))) (($ $ (-1173)) 91 (-2317 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) (($ $ (-642 (-1173))) 90 (-2317 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) (($ $ (-1173) (-769)) 89 (-2317 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) (($ $ (-642 (-1173)) (-642 (-769))) 88 (-2317 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) (($ $ (-1 |#2| |#2|) (-769)) 87 (|has| |#2| (-1047))) (($ $ (-1 |#2| |#2|)) 86 (|has| |#2| (-1047)))) (-2881 (((-112) $ $) 114 (-2682 (|has| |#2| (-846)) (|has| |#2| (-791))))) (-2857 (((-112) $ $) 113 (-2682 (|has| |#2| (-846)) (|has| |#2| (-791))))) (-2821 (((-112) $ $) 20 (|has| |#2| (-1097)))) (-2868 (((-112) $ $) 115 (-2682 (|has| |#2| (-846)) (|has| |#2| (-791))))) (-2844 (((-112) $ $) 112 (-2682 (|has| |#2| (-846)) (|has| |#2| (-791))))) (-2943 (($ $ |#2|) 123 (|has| |#2| (-363)))) (-2930 (($ $ $) 102 (|has| |#2| (-1047))) (($ $) 101 (|has| |#2| (-1047)))) (-2917 (($ $ $) 70 (|has| |#2| (-25)))) (** (($ $ (-769)) 81 (|has| |#2| (-724))) (($ $ (-919)) 78 (|has| |#2| (-724)))) (* (($ (-564) $) 100 (|has| |#2| (-1047))) (($ $ $) 79 (|has| |#2| (-724))) (($ $ |#2|) 77 (|has| |#2| (-724))) (($ |#2| $) 76 (|has| |#2| (-724))) (($ (-769) $) 74 (|has| |#2| (-131))) (($ (-919) $) 71 (|has| |#2| (-25)))) (-2158 (((-769) $) 6 (|has| $ (-6 -4410))))) -(((-238 |#1| |#2|) (-140) (-769) (-1212)) (T -238)) -((-2299 (*1 *1 *2) (-12 (-5 *2 (-1262 *4)) (-4 *4 (-1212)) (-4 *1 (-238 *3 *4)))) (-2072 (*1 *1 *2) (-12 (-5 *2 (-919)) (-4 *1 (-238 *3 *4)) (-4 *4 (-1047)) (-4 *4 (-1212)))) (-1976 (*1 *2 *1 *1) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1212)) (-4 *2 (-1047)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1212)) (-4 *2 (-724)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1212)) (-4 *2 (-724))))) -(-13 (-602 (-564) |t#2|) (-611 (-1262 |t#2|)) (-10 -8 (-6 -4410) (-15 -2299 ($ (-1262 |t#2|))) (IF (|has| |t#2| (-1097)) (-6 (-411 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1047)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-231 |t#2|)) (-6 (-377 |t#2|)) (-15 -2072 ($ (-919))) (-15 -1976 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-131)) (-6 (-131)) |%noBranch|) (IF (|has| |t#2| (-724)) (PROGN (-6 (-724)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-368)) (-6 (-368)) |%noBranch|) (IF (|has| |t#2| (-172)) (PROGN (-6 (-38 |t#2|)) (-6 (-172))) |%noBranch|) (IF (|has| |t#2| (-6 -4407)) (-6 -4407) |%noBranch|) (IF (|has| |t#2| (-846)) (-6 (-846)) |%noBranch|) (IF (|has| |t#2| (-791)) (-6 (-791)) |%noBranch|) (IF (|has| |t#2| (-363)) (-6 (-1269 |t#2|)) |%noBranch|))) -(((-21) -2682 (|has| |#2| (-1047)) (|has| |#2| (-846)) (|has| |#2| (-363)) (|has| |#2| (-172))) ((-23) -2682 (|has| |#2| (-1047)) (|has| |#2| (-846)) (|has| |#2| (-791)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-131))) ((-25) -2682 (|has| |#2| (-1047)) (|has| |#2| (-846)) (|has| |#2| (-791)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) -2682 (|has| |#2| (-1097)) (|has| |#2| (-1047)) (|has| |#2| (-846)) (|has| |#2| (-791)) (|has| |#2| (-724)) (|has| |#2| (-368)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -2682 (|has| |#2| (-1047)) (|has| |#2| (-363)) (|has| |#2| (-172))) ((-111 $ $) |has| |#2| (-172)) ((-131) -2682 (|has| |#2| (-1047)) (|has| |#2| (-846)) (|has| |#2| (-791)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-131))) ((-614 #0=(-407 (-564))) -12 (|has| |#2| (-1036 (-407 (-564)))) (|has| |#2| (-1097))) ((-614 (-564)) -2682 (|has| |#2| (-1047)) (-12 (|has| |#2| (-1036 (-564))) (|has| |#2| (-1097))) (|has| |#2| (-846)) (|has| |#2| (-172))) ((-614 |#2|) -2682 (|has| |#2| (-1097)) (|has| |#2| (-172))) ((-611 (-860)) -2682 (|has| |#2| (-1097)) (|has| |#2| (-1047)) (|has| |#2| (-846)) (|has| |#2| (-791)) (|has| |#2| (-724)) (|has| |#2| (-368)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-611 (-860))) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-611 (-1262 |#2|)) . T) ((-172) |has| |#2| (-172)) ((-231 |#2|) |has| |#2| (-1047)) ((-233) -12 (|has| |#2| (-233)) (|has| |#2| (-1047))) ((-286 #1=(-564) |#2|) . T) ((-288 #1# |#2|) . T) ((-309 |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))) ((-368) |has| |#2| (-368)) ((-377 |#2|) |has| |#2| (-1047)) ((-411 |#2|) |has| |#2| (-1097)) ((-489 |#2|) . T) ((-602 #1# |#2|) . T) ((-514 |#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))) ((-644 (-564)) -2682 (|has| |#2| (-1047)) (|has| |#2| (-846)) (|has| |#2| (-363)) (|has| |#2| (-172))) ((-644 |#2|) -2682 (|has| |#2| (-1047)) (|has| |#2| (-363)) (|has| |#2| (-172))) ((-644 $) -2682 (|has| |#2| (-1047)) (|has| |#2| (-846)) (|has| |#2| (-172))) ((-646 |#2|) -2682 (|has| |#2| (-1047)) (|has| |#2| (-363)) (|has| |#2| (-172))) ((-646 $) -2682 (|has| |#2| (-1047)) (|has| |#2| (-846)) (|has| |#2| (-172))) ((-638 |#2|) -2682 (|has| |#2| (-363)) (|has| |#2| (-172))) ((-637 (-564)) -12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1047))) ((-637 |#2|) |has| |#2| (-1047)) ((-715 |#2|) -2682 (|has| |#2| (-363)) (|has| |#2| (-172))) ((-724) -2682 (|has| |#2| (-1047)) (|has| |#2| (-846)) (|has| |#2| (-724)) (|has| |#2| (-172))) ((-789) |has| |#2| (-846)) ((-790) -2682 (|has| |#2| (-846)) (|has| |#2| (-791))) ((-791) |has| |#2| (-791)) ((-792) -2682 (|has| |#2| (-846)) (|has| |#2| (-791))) ((-793) -2682 (|has| |#2| (-846)) (|has| |#2| (-791))) ((-846) |has| |#2| (-846)) ((-848) -2682 (|has| |#2| (-846)) (|has| |#2| (-791))) ((-898 (-1173)) -12 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047))) ((-1036 #0#) -12 (|has| |#2| (-1036 (-407 (-564)))) (|has| |#2| (-1097))) ((-1036 (-564)) -12 (|has| |#2| (-1036 (-564))) (|has| |#2| (-1097))) ((-1036 |#2|) |has| |#2| (-1097)) ((-1049 |#2|) -2682 (|has| |#2| (-1047)) (|has| |#2| (-363)) (|has| |#2| (-172))) ((-1049 $) |has| |#2| (-172)) ((-1054 |#2|) -2682 (|has| |#2| (-1047)) (|has| |#2| (-363)) (|has| |#2| (-172))) ((-1054 $) |has| |#2| (-172)) ((-1047) -2682 (|has| |#2| (-1047)) (|has| |#2| (-846)) (|has| |#2| (-172))) ((-1055) -2682 (|has| |#2| (-1047)) (|has| |#2| (-846)) (|has| |#2| (-172))) ((-1109) -2682 (|has| |#2| (-1047)) (|has| |#2| (-846)) (|has| |#2| (-724)) (|has| |#2| (-172))) ((-1097) -2682 (|has| |#2| (-1097)) (|has| |#2| (-1047)) (|has| |#2| (-846)) (|has| |#2| (-791)) (|has| |#2| (-724)) (|has| |#2| (-368)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-1212) . T) ((-1269 |#2|) |has| |#2| (-363))) -((-2810 (((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|) 21)) (-3741 ((|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|) 23)) (-2947 (((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|)) 18))) -(((-239 |#1| |#2| |#3|) (-10 -7 (-15 -2810 ((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -3741 (|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -2947 ((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|)))) (-769) (-1212) (-1212)) (T -239)) -((-2947 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-240 *5 *6)) (-14 *5 (-769)) (-4 *6 (-1212)) (-4 *7 (-1212)) (-5 *2 (-240 *5 *7)) (-5 *1 (-239 *5 *6 *7)))) (-3741 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-240 *5 *6)) (-14 *5 (-769)) (-4 *6 (-1212)) (-4 *2 (-1212)) (-5 *1 (-239 *5 *6 *2)))) (-2810 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-240 *6 *7)) (-14 *6 (-769)) (-4 *7 (-1212)) (-4 *5 (-1212)) (-5 *2 (-240 *6 *5)) (-5 *1 (-239 *6 *7 *5))))) -(-10 -7 (-15 -2810 ((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -3741 (|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -2947 ((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|)))) -((-2856 (((-112) $ $) NIL (|has| |#2| (-1097)))) (-2950 (((-112) $) NIL (|has| |#2| (-131)))) (-2072 (($ (-919)) 65 (|has| |#2| (-1047)))) (-3633 (((-1267) $ (-564) (-564)) NIL (|has| $ (-6 -4411)))) (-2247 (($ $ $) 70 (|has| |#2| (-791)))) (-3085 (((-3 $ "failed") $ $) 57 (|has| |#2| (-131)))) (-3442 (((-112) $ (-769)) 17)) (-4003 (((-769)) NIL (|has| |#2| (-368)))) (-2221 (((-564) $) NIL (|has| |#2| (-846)))) (-3841 ((|#2| $ (-564) |#2|) NIL (|has| $ (-6 -4411)))) (-2822 (($) NIL T CONST)) (-2849 (((-3 (-564) "failed") $) NIL (-12 (|has| |#2| (-1036 (-564))) (|has| |#2| (-1097)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| |#2| (-1036 (-407 (-564)))) (|has| |#2| (-1097)))) (((-3 |#2| "failed") $) 34 (|has| |#2| (-1097)))) (-1687 (((-564) $) NIL (-12 (|has| |#2| (-1036 (-564))) (|has| |#2| (-1097)))) (((-407 (-564)) $) NIL (-12 (|has| |#2| (-1036 (-407 (-564)))) (|has| |#2| (-1097)))) ((|#2| $) 32 (|has| |#2| (-1097)))) (-3330 (((-687 (-564)) (-687 $)) NIL (-12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1047)))) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (-12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1047)))) (((-2 (|:| -3544 (-687 |#2|)) (|:| |vec| (-1262 |#2|))) (-687 $) (-1262 $)) NIL (|has| |#2| (-1047))) (((-687 |#2|) (-687 $)) NIL (|has| |#2| (-1047)))) (-2675 (((-3 $ "failed") $) 61 (|has| |#2| (-724)))) (-3235 (($) NIL (|has| |#2| (-368)))) (-3105 ((|#2| $ (-564) |#2|) NIL (|has| $ (-6 -4411)))) (-1804 ((|#2| $ (-564)) 59)) (-3292 (((-112) $) NIL (|has| |#2| (-846)))) (-2018 (((-642 |#2|) $) 15 (|has| $ (-6 -4410)))) (-3163 (((-112) $) NIL (|has| |#2| (-724)))) (-2666 (((-112) $) NIL (|has| |#2| (-846)))) (-3769 (((-112) $ (-769)) NIL)) (-1802 (((-564) $) 20 (|has| (-564) (-848)))) (-3225 (($ $ $) NIL (-2682 (|has| |#2| (-791)) (|has| |#2| (-846))))) (-3541 (((-642 |#2|) $) NIL (|has| $ (-6 -4410)))) (-2533 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097))))) (-3624 (((-564) $) 58 (|has| (-564) (-848)))) (-2903 (($ $ $) NIL (-2682 (|has| |#2| (-791)) (|has| |#2| (-846))))) (-1857 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#2| |#2|) $) 47)) (-2535 (((-919) $) NIL (|has| |#2| (-368)))) (-4145 (((-112) $ (-769)) NIL)) (-1778 (((-1155) $) NIL (|has| |#2| (-1097)))) (-4107 (((-642 (-564)) $) NIL)) (-4207 (((-112) (-564) $) NIL)) (-2065 (($ (-919)) NIL (|has| |#2| (-368)))) (-3999 (((-1117) $) NIL (|has| |#2| (-1097)))) (-4036 ((|#2| $) NIL (|has| (-564) (-848)))) (-3826 (($ $ |#2|) NIL (|has| $ (-6 -4411)))) (-4094 (((-112) (-1 (-112) |#2|) $) 24 (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-642 |#2|) (-642 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))))) (-2478 (((-112) $ $) NIL)) (-1643 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097))))) (-3522 (((-642 |#2|) $) NIL)) (-4109 (((-112) $) NIL)) (-2179 (($) NIL)) (-4369 ((|#2| $ (-564) |#2|) NIL) ((|#2| $ (-564)) 21)) (-1976 ((|#2| $ $) NIL (|has| |#2| (-1047)))) (-2299 (($ (-1262 |#2|)) 18)) (-3677 (((-134)) NIL (|has| |#2| (-363)))) (-2199 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1047)))) (($ $ (-769)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1047)))) (($ $ (-1173)) NIL (-12 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) (($ $ (-642 (-1173))) NIL (-12 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) (($ $ (-1173) (-769)) NIL (-12 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) (($ $ (-1 |#2| |#2|) (-769)) NIL (|has| |#2| (-1047))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1047)))) (-4010 (((-769) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410))) (((-769) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097))))) (-3865 (($ $) NIL)) (-2390 (((-1262 |#2|) $) 10) (($ (-564)) NIL (-2682 (-12 (|has| |#2| (-1036 (-564))) (|has| |#2| (-1097))) (|has| |#2| (-1047)))) (($ (-407 (-564))) NIL (-12 (|has| |#2| (-1036 (-407 (-564)))) (|has| |#2| (-1097)))) (($ |#2|) 13 (|has| |#2| (-1097))) (((-860) $) NIL (|has| |#2| (-611 (-860))))) (-3348 (((-769)) NIL (|has| |#2| (-1047)) CONST)) (-1600 (((-112) $ $) NIL (|has| |#2| (-1097)))) (-3295 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410)))) (-1630 (($ $) NIL (|has| |#2| (-846)))) (-2361 (($) 40 (|has| |#2| (-131)) CONST)) (-2371 (($) 44 (|has| |#2| (-724)) CONST)) (-2711 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1047)))) (($ $ (-769)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1047)))) (($ $ (-1173)) NIL (-12 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) (($ $ (-642 (-1173))) NIL (-12 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) (($ $ (-1173) (-769)) NIL (-12 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) (($ $ (-1 |#2| |#2|) (-769)) NIL (|has| |#2| (-1047))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1047)))) (-2881 (((-112) $ $) NIL (-2682 (|has| |#2| (-791)) (|has| |#2| (-846))))) (-2857 (((-112) $ $) NIL (-2682 (|has| |#2| (-791)) (|has| |#2| (-846))))) (-2821 (((-112) $ $) 31 (|has| |#2| (-1097)))) (-2868 (((-112) $ $) NIL (-2682 (|has| |#2| (-791)) (|has| |#2| (-846))))) (-2844 (((-112) $ $) 68 (-2682 (|has| |#2| (-791)) (|has| |#2| (-846))))) (-2943 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-2930 (($ $ $) NIL (|has| |#2| (-1047))) (($ $) NIL (|has| |#2| (-1047)))) (-2917 (($ $ $) 38 (|has| |#2| (-25)))) (** (($ $ (-769)) NIL (|has| |#2| (-724))) (($ $ (-919)) NIL (|has| |#2| (-724)))) (* (($ (-564) $) NIL (|has| |#2| (-1047))) (($ $ $) 50 (|has| |#2| (-724))) (($ $ |#2|) 48 (|has| |#2| (-724))) (($ |#2| $) 49 (|has| |#2| (-724))) (($ (-769) $) NIL (|has| |#2| (-131))) (($ (-919) $) NIL (|has| |#2| (-25)))) (-2158 (((-769) $) NIL (|has| $ (-6 -4410))))) -(((-240 |#1| |#2|) (-238 |#1| |#2|) (-769) (-1212)) (T -240)) +((-3526 (*1 *1 *1) (-4 *1 (-233))) (-2834 (*1 *1 *1) (-4 *1 (-233))) (-3526 (*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-771)))) (-2834 (*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-771))))) +(-13 (-1049) (-10 -8 (-15 -3526 ($ $)) (-15 -2834 ($ $)) (-15 -3526 ($ $ (-771))) (-15 -2834 ($ $ (-771))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-616 (-566)) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 $) . T) ((-726) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) +((-1797 (($) 12) (($ (-644 |#2|)) NIL)) (-3924 (($ $) 14)) (-2489 (($ (-644 |#2|)) 10)) (-2479 (((-862) $) 21))) +(((-234 |#1| |#2|) (-10 -8 (-15 -2479 ((-862) |#1|)) (-15 -1797 (|#1| (-644 |#2|))) (-15 -1797 (|#1|)) (-15 -2489 (|#1| (-644 |#2|))) (-15 -3924 (|#1| |#1|))) (-235 |#2|) (-1099)) (T -234)) +NIL +(-10 -8 (-15 -2479 ((-862) |#1|)) (-15 -1797 (|#1| (-644 |#2|))) (-15 -1797 (|#1|)) (-15 -2489 (|#1| (-644 |#2|))) (-15 -3924 (|#1| |#1|))) +((-2986 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-1453 (((-112) $ (-771)) 8)) (-4364 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4417)))) (-3543 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4417)))) (-1811 (($) 7 T CONST)) (-4111 (($ $) 59 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-2295 (($ |#1| $) 48 (|has| $ (-6 -4417))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4417)))) (-2628 (($ |#1| $) 58 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4417)))) (-1838 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4417)))) (-3872 (((-644 |#1|) $) 31 (|has| $ (-6 -4417)))) (-2756 (((-112) $ (-771)) 9)) (-4227 (((-644 |#1|) $) 30 (|has| $ (-6 -4417)))) (-1688 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-3708 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#1| |#1|) $) 36)) (-4106 (((-112) $ (-771)) 10)) (-3151 (((-1157) $) 22 (|has| |#1| (-1099)))) (-4255 ((|#1| $) 40)) (-4354 (($ |#1| $) 41)) (-4059 (((-1119) $) 21 (|has| |#1| (-1099)))) (-2688 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-4097 ((|#1| $) 42)) (-3966 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1844 (((-112) $ $) 14)) (-2788 (((-112) $) 11)) (-1737 (($) 12)) (-1797 (($) 50) (($ (-644 |#1|)) 49)) (-4068 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4417))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-3924 (($ $) 13)) (-3136 (((-538) $) 60 (|has| |#1| (-614 (-538))))) (-2489 (($ (-644 |#1|)) 51)) (-2479 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-3900 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-2471 (($ (-644 |#1|)) 43)) (-3667 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4417)))) (-2952 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3002 (((-771) $) 6 (|has| $ (-6 -4417))))) +(((-235 |#1|) (-140) (-1099)) (T -235)) +((-1797 (*1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1099)))) (-1797 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-4 *1 (-235 *3)))) (-2295 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4417)) (-4 *1 (-235 *2)) (-4 *2 (-1099)))) (-2295 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4417)) (-4 *1 (-235 *3)) (-4 *3 (-1099)))) (-4364 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4417)) (-4 *1 (-235 *3)) (-4 *3 (-1099))))) +(-13 (-107 |t#1|) (-151 |t#1|) (-10 -8 (-15 -1797 ($)) (-15 -1797 ($ (-644 |t#1|))) (IF (|has| $ (-6 -4417)) (PROGN (-15 -2295 ($ |t#1| $)) (-15 -2295 ($ (-1 (-112) |t#1|) $)) (-15 -4364 ($ (-1 (-112) |t#1|) $))) |%noBranch|))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2809 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-151 |#1|) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1099) |has| |#1| (-1099)) ((-1214) . T)) +((-2038 (((-2 (|:| |varOrder| (-644 (-1175))) (|:| |inhom| (-3 (-644 (-1264 (-771))) "failed")) (|:| |hom| (-644 (-1264 (-771))))) (-295 (-952 (-566)))) 42))) +(((-236) (-10 -7 (-15 -2038 ((-2 (|:| |varOrder| (-644 (-1175))) (|:| |inhom| (-3 (-644 (-1264 (-771))) "failed")) (|:| |hom| (-644 (-1264 (-771))))) (-295 (-952 (-566))))))) (T -236)) +((-2038 (*1 *2 *3) (-12 (-5 *3 (-295 (-952 (-566)))) (-5 *2 (-2 (|:| |varOrder| (-644 (-1175))) (|:| |inhom| (-3 (-644 (-1264 (-771))) "failed")) (|:| |hom| (-644 (-1264 (-771)))))) (-5 *1 (-236))))) +(-10 -7 (-15 -2038 ((-2 (|:| |varOrder| (-644 (-1175))) (|:| |inhom| (-3 (-644 (-1264 (-771))) "failed")) (|:| |hom| (-644 (-1264 (-771))))) (-295 (-952 (-566)))))) +((-4049 (((-771)) 56)) (-2275 (((-2 (|:| -4196 (-689 |#3|)) (|:| |vec| (-1264 |#3|))) (-689 $) (-1264 $)) 53) (((-689 |#3|) (-689 $)) 44) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL) (((-689 (-566)) (-689 $)) NIL)) (-3944 (((-134)) 62)) (-3526 (($ $ (-1 |#3| |#3|) (-771)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-644 (-1175)) (-644 (-771))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175)) NIL) (($ $ (-771)) NIL) (($ $) NIL)) (-2479 (((-1264 |#3|) $) NIL) (($ |#3|) NIL) (((-862) $) NIL) (($ (-566)) 12) (($ (-409 (-566))) NIL)) (-1558 (((-771)) 15)) (-3077 (($ $ |#3|) 59))) +(((-237 |#1| |#2| |#3|) (-10 -8 (-15 -2479 (|#1| (-409 (-566)))) (-15 -2479 (|#1| (-566))) (-15 -2479 ((-862) |#1|)) (-15 -1558 ((-771))) (-15 -3526 (|#1| |#1|)) (-15 -3526 (|#1| |#1| (-771))) (-15 -3526 (|#1| |#1| (-1175))) (-15 -3526 (|#1| |#1| (-644 (-1175)))) (-15 -3526 (|#1| |#1| (-1175) (-771))) (-15 -3526 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -2275 ((-689 (-566)) (-689 |#1|))) (-15 -2275 ((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 |#1|) (-1264 |#1|))) (-15 -2479 (|#1| |#3|)) (-15 -3526 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3526 (|#1| |#1| (-1 |#3| |#3|) (-771))) (-15 -2275 ((-689 |#3|) (-689 |#1|))) (-15 -2275 ((-2 (|:| -4196 (-689 |#3|)) (|:| |vec| (-1264 |#3|))) (-689 |#1|) (-1264 |#1|))) (-15 -4049 ((-771))) (-15 -3077 (|#1| |#1| |#3|)) (-15 -3944 ((-134))) (-15 -2479 ((-1264 |#3|) |#1|))) (-238 |#2| |#3|) (-771) (-1214)) (T -237)) +((-3944 (*1 *2) (-12 (-14 *4 (-771)) (-4 *5 (-1214)) (-5 *2 (-134)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) (-4049 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1214)) (-5 *2 (-771)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) (-1558 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1214)) (-5 *2 (-771)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5))))) +(-10 -8 (-15 -2479 (|#1| (-409 (-566)))) (-15 -2479 (|#1| (-566))) (-15 -2479 ((-862) |#1|)) (-15 -1558 ((-771))) (-15 -3526 (|#1| |#1|)) (-15 -3526 (|#1| |#1| (-771))) (-15 -3526 (|#1| |#1| (-1175))) (-15 -3526 (|#1| |#1| (-644 (-1175)))) (-15 -3526 (|#1| |#1| (-1175) (-771))) (-15 -3526 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -2275 ((-689 (-566)) (-689 |#1|))) (-15 -2275 ((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 |#1|) (-1264 |#1|))) (-15 -2479 (|#1| |#3|)) (-15 -3526 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3526 (|#1| |#1| (-1 |#3| |#3|) (-771))) (-15 -2275 ((-689 |#3|) (-689 |#1|))) (-15 -2275 ((-2 (|:| -4196 (-689 |#3|)) (|:| |vec| (-1264 |#3|))) (-689 |#1|) (-1264 |#1|))) (-15 -4049 ((-771))) (-15 -3077 (|#1| |#1| |#3|)) (-15 -3944 ((-134))) (-15 -2479 ((-1264 |#3|) |#1|))) +((-2986 (((-112) $ $) 19 (|has| |#2| (-1099)))) (-2845 (((-112) $) 73 (|has| |#2| (-131)))) (-2680 (($ (-921)) 126 (|has| |#2| (-1049)))) (-2462 (((-1269) $ (-566) (-566)) 41 (|has| $ (-6 -4418)))) (-4047 (($ $ $) 122 (|has| |#2| (-793)))) (-3174 (((-3 $ "failed") $ $) 75 (|has| |#2| (-131)))) (-1453 (((-112) $ (-771)) 8)) (-4049 (((-771)) 108 (|has| |#2| (-370)))) (-2920 (((-566) $) 120 (|has| |#2| (-848)))) (-3901 ((|#2| $ (-566) |#2|) 53 (|has| $ (-6 -4418)))) (-1811 (($) 7 T CONST)) (-2980 (((-3 (-566) "failed") $) 68 (-2402 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099)))) (((-3 (-409 (-566)) "failed") $) 65 (-2402 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099)))) (((-3 |#2| "failed") $) 62 (|has| |#2| (-1099)))) (-1709 (((-566) $) 67 (-2402 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099)))) (((-409 (-566)) $) 64 (-2402 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099)))) ((|#2| $) 63 (|has| |#2| (-1099)))) (-2275 (((-689 (-566)) (-689 $)) 107 (-2402 (|has| |#2| (-639 (-566))) (|has| |#2| (-1049)))) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) 106 (-2402 (|has| |#2| (-639 (-566))) (|has| |#2| (-1049)))) (((-2 (|:| -4196 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 $) (-1264 $)) 105 (|has| |#2| (-1049))) (((-689 |#2|) (-689 $)) 104 (|has| |#2| (-1049)))) (-3757 (((-3 $ "failed") $) 80 (|has| |#2| (-726)))) (-1415 (($) 111 (|has| |#2| (-370)))) (-3719 ((|#2| $ (-566) |#2|) 54 (|has| $ (-6 -4418)))) (-3653 ((|#2| $ (-566)) 52)) (-2133 (((-112) $) 118 (|has| |#2| (-848)))) (-3872 (((-644 |#2|) $) 31 (|has| $ (-6 -4417)))) (-2264 (((-112) $) 82 (|has| |#2| (-726)))) (-3420 (((-112) $) 119 (|has| |#2| (-848)))) (-2756 (((-112) $ (-771)) 9)) (-2755 (((-566) $) 44 (|has| (-566) (-850)))) (-1920 (($ $ $) 117 (-2809 (|has| |#2| (-848)) (|has| |#2| (-793))))) (-4227 (((-644 |#2|) $) 30 (|has| $ (-6 -4417)))) (-1688 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1099)) (|has| $ (-6 -4417))))) (-3831 (((-566) $) 45 (|has| (-566) (-850)))) (-3038 (($ $ $) 116 (-2809 (|has| |#2| (-848)) (|has| |#2| (-793))))) (-3708 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#2| |#2|) $) 36)) (-4051 (((-921) $) 110 (|has| |#2| (-370)))) (-4106 (((-112) $ (-771)) 10)) (-3151 (((-1157) $) 22 (|has| |#2| (-1099)))) (-3780 (((-644 (-566)) $) 47)) (-1605 (((-112) (-566) $) 48)) (-2104 (($ (-921)) 109 (|has| |#2| (-370)))) (-4059 (((-1119) $) 21 (|has| |#2| (-1099)))) (-4080 ((|#2| $) 43 (|has| (-566) (-850)))) (-4079 (($ $ |#2|) 42 (|has| $ (-6 -4418)))) (-3966 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#2|))) 27 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) 26 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) 24 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))) (-1844 (((-112) $ $) 14)) (-2210 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1099))))) (-4185 (((-644 |#2|) $) 49)) (-2788 (((-112) $) 11)) (-1737 (($) 12)) (-4376 ((|#2| $ (-566) |#2|) 51) ((|#2| $ (-566)) 50)) (-2555 ((|#2| $ $) 125 (|has| |#2| (-1049)))) (-2379 (($ (-1264 |#2|)) 127)) (-3944 (((-134)) 124 (|has| |#2| (-365)))) (-3526 (($ $) 99 (-2402 (|has| |#2| (-233)) (|has| |#2| (-1049)))) (($ $ (-771)) 97 (-2402 (|has| |#2| (-233)) (|has| |#2| (-1049)))) (($ $ (-1175)) 95 (-2402 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-644 (-1175))) 94 (-2402 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-1175) (-771)) 93 (-2402 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-644 (-1175)) (-644 (-771))) 92 (-2402 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-1 |#2| |#2|) (-771)) 85 (|has| |#2| (-1049))) (($ $ (-1 |#2| |#2|)) 84 (|has| |#2| (-1049)))) (-4068 (((-771) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4417))) (((-771) |#2| $) 29 (-12 (|has| |#2| (-1099)) (|has| $ (-6 -4417))))) (-3924 (($ $) 13)) (-2479 (((-1264 |#2|) $) 128) (($ (-566)) 69 (-2809 (-2402 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099))) (|has| |#2| (-1049)))) (($ (-409 (-566))) 66 (-2402 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099)))) (($ |#2|) 61 (|has| |#2| (-1099))) (((-862) $) 18 (|has| |#2| (-613 (-862))))) (-1558 (((-771)) 103 (|has| |#2| (-1049)) CONST)) (-3900 (((-112) $ $) 23 (|has| |#2| (-1099)))) (-3667 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4417)))) (-4298 (($ $) 121 (|has| |#2| (-848)))) (-2446 (($) 72 (|has| |#2| (-131)) CONST)) (-2459 (($) 83 (|has| |#2| (-726)) CONST)) (-2834 (($ $) 98 (-2402 (|has| |#2| (-233)) (|has| |#2| (-1049)))) (($ $ (-771)) 96 (-2402 (|has| |#2| (-233)) (|has| |#2| (-1049)))) (($ $ (-1175)) 91 (-2402 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-644 (-1175))) 90 (-2402 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-1175) (-771)) 89 (-2402 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-644 (-1175)) (-644 (-771))) 88 (-2402 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-1 |#2| |#2|) (-771)) 87 (|has| |#2| (-1049))) (($ $ (-1 |#2| |#2|)) 86 (|has| |#2| (-1049)))) (-3019 (((-112) $ $) 114 (-2809 (|has| |#2| (-848)) (|has| |#2| (-793))))) (-2990 (((-112) $ $) 113 (-2809 (|has| |#2| (-848)) (|has| |#2| (-793))))) (-2952 (((-112) $ $) 20 (|has| |#2| (-1099)))) (-3004 (((-112) $ $) 115 (-2809 (|has| |#2| (-848)) (|has| |#2| (-793))))) (-2977 (((-112) $ $) 112 (-2809 (|has| |#2| (-848)) (|has| |#2| (-793))))) (-3077 (($ $ |#2|) 123 (|has| |#2| (-365)))) (-3065 (($ $ $) 102 (|has| |#2| (-1049))) (($ $) 101 (|has| |#2| (-1049)))) (-3052 (($ $ $) 70 (|has| |#2| (-25)))) (** (($ $ (-771)) 81 (|has| |#2| (-726))) (($ $ (-921)) 78 (|has| |#2| (-726)))) (* (($ (-566) $) 100 (|has| |#2| (-1049))) (($ $ $) 79 (|has| |#2| (-726))) (($ $ |#2|) 77 (|has| |#2| (-726))) (($ |#2| $) 76 (|has| |#2| (-726))) (($ (-771) $) 74 (|has| |#2| (-131))) (($ (-921) $) 71 (|has| |#2| (-25)))) (-3002 (((-771) $) 6 (|has| $ (-6 -4417))))) +(((-238 |#1| |#2|) (-140) (-771) (-1214)) (T -238)) +((-2379 (*1 *1 *2) (-12 (-5 *2 (-1264 *4)) (-4 *4 (-1214)) (-4 *1 (-238 *3 *4)))) (-2680 (*1 *1 *2) (-12 (-5 *2 (-921)) (-4 *1 (-238 *3 *4)) (-4 *4 (-1049)) (-4 *4 (-1214)))) (-2555 (*1 *2 *1 *1) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1214)) (-4 *2 (-1049)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1214)) (-4 *2 (-726)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1214)) (-4 *2 (-726))))) +(-13 (-604 (-566) |t#2|) (-613 (-1264 |t#2|)) (-10 -8 (-6 -4417) (-15 -2379 ($ (-1264 |t#2|))) (IF (|has| |t#2| (-1099)) (-6 (-413 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1049)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-231 |t#2|)) (-6 (-379 |t#2|)) (-15 -2680 ($ (-921))) (-15 -2555 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-131)) (-6 (-131)) |%noBranch|) (IF (|has| |t#2| (-726)) (PROGN (-6 (-726)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-370)) (-6 (-370)) |%noBranch|) (IF (|has| |t#2| (-172)) (PROGN (-6 (-38 |t#2|)) (-6 (-172))) |%noBranch|) (IF (|has| |t#2| (-6 -4414)) (-6 -4414) |%noBranch|) (IF (|has| |t#2| (-848)) (-6 (-848)) |%noBranch|) (IF (|has| |t#2| (-793)) (-6 (-793)) |%noBranch|) (IF (|has| |t#2| (-365)) (-6 (-1271 |t#2|)) |%noBranch|))) +(((-21) -2809 (|has| |#2| (-1049)) (|has| |#2| (-848)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-23) -2809 (|has| |#2| (-1049)) (|has| |#2| (-848)) (|has| |#2| (-793)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-131))) ((-25) -2809 (|has| |#2| (-1049)) (|has| |#2| (-848)) (|has| |#2| (-793)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) -2809 (|has| |#2| (-1099)) (|has| |#2| (-1049)) (|has| |#2| (-848)) (|has| |#2| (-793)) (|has| |#2| (-726)) (|has| |#2| (-370)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -2809 (|has| |#2| (-1049)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-111 $ $) |has| |#2| (-172)) ((-131) -2809 (|has| |#2| (-1049)) (|has| |#2| (-848)) (|has| |#2| (-793)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-131))) ((-616 #0=(-409 (-566))) -12 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099))) ((-616 (-566)) -2809 (|has| |#2| (-1049)) (-12 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099))) (|has| |#2| (-848)) (|has| |#2| (-172))) ((-616 |#2|) -2809 (|has| |#2| (-1099)) (|has| |#2| (-172))) ((-613 (-862)) -2809 (|has| |#2| (-1099)) (|has| |#2| (-1049)) (|has| |#2| (-848)) (|has| |#2| (-793)) (|has| |#2| (-726)) (|has| |#2| (-370)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-613 (-862))) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-613 (-1264 |#2|)) . T) ((-172) |has| |#2| (-172)) ((-231 |#2|) |has| |#2| (-1049)) ((-233) -12 (|has| |#2| (-233)) (|has| |#2| (-1049))) ((-287 #1=(-566) |#2|) . T) ((-289 #1# |#2|) . T) ((-310 |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) ((-370) |has| |#2| (-370)) ((-379 |#2|) |has| |#2| (-1049)) ((-413 |#2|) |has| |#2| (-1099)) ((-491 |#2|) . T) ((-604 #1# |#2|) . T) ((-516 |#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) ((-646 (-566)) -2809 (|has| |#2| (-1049)) (|has| |#2| (-848)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-646 |#2|) -2809 (|has| |#2| (-1049)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-646 $) -2809 (|has| |#2| (-1049)) (|has| |#2| (-848)) (|has| |#2| (-172))) ((-648 |#2|) -2809 (|has| |#2| (-1049)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-648 $) -2809 (|has| |#2| (-1049)) (|has| |#2| (-848)) (|has| |#2| (-172))) ((-640 |#2|) -2809 (|has| |#2| (-365)) (|has| |#2| (-172))) ((-639 (-566)) -12 (|has| |#2| (-639 (-566))) (|has| |#2| (-1049))) ((-639 |#2|) |has| |#2| (-1049)) ((-717 |#2|) -2809 (|has| |#2| (-365)) (|has| |#2| (-172))) ((-726) -2809 (|has| |#2| (-1049)) (|has| |#2| (-848)) (|has| |#2| (-726)) (|has| |#2| (-172))) ((-791) |has| |#2| (-848)) ((-792) -2809 (|has| |#2| (-848)) (|has| |#2| (-793))) ((-793) |has| |#2| (-793)) ((-794) -2809 (|has| |#2| (-848)) (|has| |#2| (-793))) ((-795) -2809 (|has| |#2| (-848)) (|has| |#2| (-793))) ((-848) |has| |#2| (-848)) ((-850) -2809 (|has| |#2| (-848)) (|has| |#2| (-793))) ((-900 (-1175)) -12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049))) ((-1038 #0#) -12 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099))) ((-1038 (-566)) -12 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099))) ((-1038 |#2|) |has| |#2| (-1099)) ((-1051 |#2|) -2809 (|has| |#2| (-1049)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-1051 $) |has| |#2| (-172)) ((-1056 |#2|) -2809 (|has| |#2| (-1049)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-1056 $) |has| |#2| (-172)) ((-1049) -2809 (|has| |#2| (-1049)) (|has| |#2| (-848)) (|has| |#2| (-172))) ((-1057) -2809 (|has| |#2| (-1049)) (|has| |#2| (-848)) (|has| |#2| (-172))) ((-1111) -2809 (|has| |#2| (-1049)) (|has| |#2| (-848)) (|has| |#2| (-726)) (|has| |#2| (-172))) ((-1099) -2809 (|has| |#2| (-1099)) (|has| |#2| (-1049)) (|has| |#2| (-848)) (|has| |#2| (-793)) (|has| |#2| (-726)) (|has| |#2| (-370)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-1214) . T) ((-1271 |#2|) |has| |#2| (-365))) +((-2531 (((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|) 21)) (-1838 ((|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|) 23)) (-3080 (((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|)) 18))) +(((-239 |#1| |#2| |#3|) (-10 -7 (-15 -2531 ((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -1838 (|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -3080 ((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|)))) (-771) (-1214) (-1214)) (T -239)) +((-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-240 *5 *6)) (-14 *5 (-771)) (-4 *6 (-1214)) (-4 *7 (-1214)) (-5 *2 (-240 *5 *7)) (-5 *1 (-239 *5 *6 *7)))) (-1838 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-240 *5 *6)) (-14 *5 (-771)) (-4 *6 (-1214)) (-4 *2 (-1214)) (-5 *1 (-239 *5 *6 *2)))) (-2531 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-240 *6 *7)) (-14 *6 (-771)) (-4 *7 (-1214)) (-4 *5 (-1214)) (-5 *2 (-240 *6 *5)) (-5 *1 (-239 *6 *7 *5))))) +(-10 -7 (-15 -2531 ((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -1838 (|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -3080 ((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|)))) +((-2986 (((-112) $ $) NIL (|has| |#2| (-1099)))) (-2845 (((-112) $) NIL (|has| |#2| (-131)))) (-2680 (($ (-921)) 65 (|has| |#2| (-1049)))) (-2462 (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4418)))) (-4047 (($ $ $) 70 (|has| |#2| (-793)))) (-3174 (((-3 $ "failed") $ $) 57 (|has| |#2| (-131)))) (-1453 (((-112) $ (-771)) 17)) (-4049 (((-771)) NIL (|has| |#2| (-370)))) (-2920 (((-566) $) NIL (|has| |#2| (-848)))) (-3901 ((|#2| $ (-566) |#2|) NIL (|has| $ (-6 -4418)))) (-1811 (($) NIL T CONST)) (-2980 (((-3 (-566) "failed") $) NIL (-12 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099)))) (((-3 (-409 (-566)) "failed") $) NIL (-12 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099)))) (((-3 |#2| "failed") $) 34 (|has| |#2| (-1099)))) (-1709 (((-566) $) NIL (-12 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099)))) (((-409 (-566)) $) NIL (-12 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099)))) ((|#2| $) 32 (|has| |#2| (-1099)))) (-2275 (((-689 (-566)) (-689 $)) NIL (-12 (|has| |#2| (-639 (-566))) (|has| |#2| (-1049)))) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (-12 (|has| |#2| (-639 (-566))) (|has| |#2| (-1049)))) (((-2 (|:| -4196 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 $) (-1264 $)) NIL (|has| |#2| (-1049))) (((-689 |#2|) (-689 $)) NIL (|has| |#2| (-1049)))) (-3757 (((-3 $ "failed") $) 61 (|has| |#2| (-726)))) (-1415 (($) NIL (|has| |#2| (-370)))) (-3719 ((|#2| $ (-566) |#2|) NIL (|has| $ (-6 -4418)))) (-3653 ((|#2| $ (-566)) 59)) (-2133 (((-112) $) NIL (|has| |#2| (-848)))) (-3872 (((-644 |#2|) $) 15 (|has| $ (-6 -4417)))) (-2264 (((-112) $) NIL (|has| |#2| (-726)))) (-3420 (((-112) $) NIL (|has| |#2| (-848)))) (-2756 (((-112) $ (-771)) NIL)) (-2755 (((-566) $) 20 (|has| (-566) (-850)))) (-1920 (($ $ $) NIL (-2809 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-4227 (((-644 |#2|) $) NIL (|has| $ (-6 -4417)))) (-1688 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1099))))) (-3831 (((-566) $) 58 (|has| (-566) (-850)))) (-3038 (($ $ $) NIL (-2809 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-3708 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#2| |#2|) $) 47)) (-4051 (((-921) $) NIL (|has| |#2| (-370)))) (-4106 (((-112) $ (-771)) NIL)) (-3151 (((-1157) $) NIL (|has| |#2| (-1099)))) (-3780 (((-644 (-566)) $) NIL)) (-1605 (((-112) (-566) $) NIL)) (-2104 (($ (-921)) NIL (|has| |#2| (-370)))) (-4059 (((-1119) $) NIL (|has| |#2| (-1099)))) (-4080 ((|#2| $) NIL (|has| (-566) (-850)))) (-4079 (($ $ |#2|) NIL (|has| $ (-6 -4418)))) (-3966 (((-112) (-1 (-112) |#2|) $) 24 (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))) (-1844 (((-112) $ $) NIL)) (-2210 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1099))))) (-4185 (((-644 |#2|) $) NIL)) (-2788 (((-112) $) NIL)) (-1737 (($) NIL)) (-4376 ((|#2| $ (-566) |#2|) NIL) ((|#2| $ (-566)) 21)) (-2555 ((|#2| $ $) NIL (|has| |#2| (-1049)))) (-2379 (($ (-1264 |#2|)) 18)) (-3944 (((-134)) NIL (|has| |#2| (-365)))) (-3526 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1049)))) (($ $ (-771)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1049)))) (($ $ (-1175)) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-1 |#2| |#2|) (-771)) NIL (|has| |#2| (-1049))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1049)))) (-4068 (((-771) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417))) (((-771) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1099))))) (-3924 (($ $) NIL)) (-2479 (((-1264 |#2|) $) 10) (($ (-566)) NIL (-2809 (-12 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099))) (|has| |#2| (-1049)))) (($ (-409 (-566))) NIL (-12 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099)))) (($ |#2|) 13 (|has| |#2| (-1099))) (((-862) $) NIL (|has| |#2| (-613 (-862))))) (-1558 (((-771)) NIL (|has| |#2| (-1049)) CONST)) (-3900 (((-112) $ $) NIL (|has| |#2| (-1099)))) (-3667 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417)))) (-4298 (($ $) NIL (|has| |#2| (-848)))) (-2446 (($) 40 (|has| |#2| (-131)) CONST)) (-2459 (($) 44 (|has| |#2| (-726)) CONST)) (-2834 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1049)))) (($ $ (-771)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1049)))) (($ $ (-1175)) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-1 |#2| |#2|) (-771)) NIL (|has| |#2| (-1049))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1049)))) (-3019 (((-112) $ $) NIL (-2809 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-2990 (((-112) $ $) NIL (-2809 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-2952 (((-112) $ $) 31 (|has| |#2| (-1099)))) (-3004 (((-112) $ $) NIL (-2809 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-2977 (((-112) $ $) 68 (-2809 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-3077 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3065 (($ $ $) NIL (|has| |#2| (-1049))) (($ $) NIL (|has| |#2| (-1049)))) (-3052 (($ $ $) 38 (|has| |#2| (-25)))) (** (($ $ (-771)) NIL (|has| |#2| (-726))) (($ $ (-921)) NIL (|has| |#2| (-726)))) (* (($ (-566) $) NIL (|has| |#2| (-1049))) (($ $ $) 50 (|has| |#2| (-726))) (($ $ |#2|) 48 (|has| |#2| (-726))) (($ |#2| $) 49 (|has| |#2| (-726))) (($ (-771) $) NIL (|has| |#2| (-131))) (($ (-921) $) NIL (|has| |#2| (-25)))) (-3002 (((-771) $) NIL (|has| $ (-6 -4417))))) +(((-240 |#1| |#2|) (-238 |#1| |#2|) (-771) (-1214)) (T -240)) NIL (-238 |#1| |#2|) -((-4218 (((-564) (-642 (-1155))) 36) (((-564) (-1155)) 29)) (-2545 (((-1267) (-642 (-1155))) 41) (((-1267) (-1155)) 40)) (-4202 (((-1155)) 16)) (-1430 (((-1155) (-564) (-1155)) 23)) (-2245 (((-642 (-1155)) (-642 (-1155)) (-564) (-1155)) 37) (((-1155) (-1155) (-564) (-1155)) 35)) (-3091 (((-642 (-1155)) (-642 (-1155))) 15) (((-642 (-1155)) (-1155)) 11))) -(((-241) (-10 -7 (-15 -3091 ((-642 (-1155)) (-1155))) (-15 -3091 ((-642 (-1155)) (-642 (-1155)))) (-15 -4202 ((-1155))) (-15 -1430 ((-1155) (-564) (-1155))) (-15 -2245 ((-1155) (-1155) (-564) (-1155))) (-15 -2245 ((-642 (-1155)) (-642 (-1155)) (-564) (-1155))) (-15 -2545 ((-1267) (-1155))) (-15 -2545 ((-1267) (-642 (-1155)))) (-15 -4218 ((-564) (-1155))) (-15 -4218 ((-564) (-642 (-1155)))))) (T -241)) -((-4218 (*1 *2 *3) (-12 (-5 *3 (-642 (-1155))) (-5 *2 (-564)) (-5 *1 (-241)))) (-4218 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-564)) (-5 *1 (-241)))) (-2545 (*1 *2 *3) (-12 (-5 *3 (-642 (-1155))) (-5 *2 (-1267)) (-5 *1 (-241)))) (-2545 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-241)))) (-2245 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-642 (-1155))) (-5 *3 (-564)) (-5 *4 (-1155)) (-5 *1 (-241)))) (-2245 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1155)) (-5 *3 (-564)) (-5 *1 (-241)))) (-1430 (*1 *2 *3 *2) (-12 (-5 *2 (-1155)) (-5 *3 (-564)) (-5 *1 (-241)))) (-4202 (*1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-241)))) (-3091 (*1 *2 *2) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-241)))) (-3091 (*1 *2 *3) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-241)) (-5 *3 (-1155))))) -(-10 -7 (-15 -3091 ((-642 (-1155)) (-1155))) (-15 -3091 ((-642 (-1155)) (-642 (-1155)))) (-15 -4202 ((-1155))) (-15 -1430 ((-1155) (-564) (-1155))) (-15 -2245 ((-1155) (-1155) (-564) (-1155))) (-15 -2245 ((-642 (-1155)) (-642 (-1155)) (-564) (-1155))) (-15 -2545 ((-1267) (-1155))) (-15 -2545 ((-1267) (-642 (-1155)))) (-15 -4218 ((-564) (-1155))) (-15 -4218 ((-564) (-642 (-1155))))) -((** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) 20)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ (-407 (-564)) $) 27) (($ $ (-407 (-564))) NIL))) -(((-242 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-564))) (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 ** (|#1| |#1| (-769))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-919))) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-769) |#1|)) (-15 * (|#1| (-919) |#1|))) (-243)) (T -242)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-564))) (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 ** (|#1| |#1| (-769))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-919))) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-769) |#1|)) (-15 * (|#1| (-919) |#1|))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-3085 (((-3 $ "failed") $ $) 20)) (-2822 (($) 18 T CONST)) (-2675 (((-3 $ "failed") $) 37)) (-3163 (((-112) $) 35)) (-1778 (((-1155) $) 10)) (-2481 (($ $) 47)) (-3999 (((-1117) $) 11)) (-2390 (((-860) $) 12) (($ (-564)) 33) (($ (-407 (-564))) 51)) (-3348 (((-769)) 32 T CONST)) (-1600 (((-112) $ $) 9)) (-2361 (($) 19 T CONST)) (-2371 (($) 34 T CONST)) (-2821 (((-112) $ $) 6)) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36) (($ $ (-564)) 48)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ (-407 (-564)) $) 50) (($ $ (-407 (-564))) 49))) +((-2372 (((-566) (-644 (-1157))) 36) (((-566) (-1157)) 29)) (-2652 (((-1269) (-644 (-1157))) 41) (((-1269) (-1157)) 40)) (-3205 (((-1157)) 16)) (-4283 (((-1157) (-566) (-1157)) 23)) (-2316 (((-644 (-1157)) (-644 (-1157)) (-566) (-1157)) 37) (((-1157) (-1157) (-566) (-1157)) 35)) (-3232 (((-644 (-1157)) (-644 (-1157))) 15) (((-644 (-1157)) (-1157)) 11))) +(((-241) (-10 -7 (-15 -3232 ((-644 (-1157)) (-1157))) (-15 -3232 ((-644 (-1157)) (-644 (-1157)))) (-15 -3205 ((-1157))) (-15 -4283 ((-1157) (-566) (-1157))) (-15 -2316 ((-1157) (-1157) (-566) (-1157))) (-15 -2316 ((-644 (-1157)) (-644 (-1157)) (-566) (-1157))) (-15 -2652 ((-1269) (-1157))) (-15 -2652 ((-1269) (-644 (-1157)))) (-15 -2372 ((-566) (-1157))) (-15 -2372 ((-566) (-644 (-1157)))))) (T -241)) +((-2372 (*1 *2 *3) (-12 (-5 *3 (-644 (-1157))) (-5 *2 (-566)) (-5 *1 (-241)))) (-2372 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-566)) (-5 *1 (-241)))) (-2652 (*1 *2 *3) (-12 (-5 *3 (-644 (-1157))) (-5 *2 (-1269)) (-5 *1 (-241)))) (-2652 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-241)))) (-2316 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-644 (-1157))) (-5 *3 (-566)) (-5 *4 (-1157)) (-5 *1 (-241)))) (-2316 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1157)) (-5 *3 (-566)) (-5 *1 (-241)))) (-4283 (*1 *2 *3 *2) (-12 (-5 *2 (-1157)) (-5 *3 (-566)) (-5 *1 (-241)))) (-3205 (*1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-241)))) (-3232 (*1 *2 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-241)))) (-3232 (*1 *2 *3) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-241)) (-5 *3 (-1157))))) +(-10 -7 (-15 -3232 ((-644 (-1157)) (-1157))) (-15 -3232 ((-644 (-1157)) (-644 (-1157)))) (-15 -3205 ((-1157))) (-15 -4283 ((-1157) (-566) (-1157))) (-15 -2316 ((-1157) (-1157) (-566) (-1157))) (-15 -2316 ((-644 (-1157)) (-644 (-1157)) (-566) (-1157))) (-15 -2652 ((-1269) (-1157))) (-15 -2652 ((-1269) (-644 (-1157)))) (-15 -2372 ((-566) (-1157))) (-15 -2372 ((-566) (-644 (-1157))))) +((** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) 20)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ (-409 (-566)) $) 27) (($ $ (-409 (-566))) NIL))) +(((-242 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-566))) (-15 * (|#1| |#1| (-409 (-566)))) (-15 * (|#1| (-409 (-566)) |#1|)) (-15 ** (|#1| |#1| (-771))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-921))) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 * (|#1| (-921) |#1|))) (-243)) (T -242)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-566))) (-15 * (|#1| |#1| (-409 (-566)))) (-15 * (|#1| (-409 (-566)) |#1|)) (-15 ** (|#1| |#1| (-771))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-921))) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 * (|#1| (-921) |#1|))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-3174 (((-3 $ "failed") $ $) 20)) (-1811 (($) 18 T CONST)) (-3757 (((-3 $ "failed") $) 37)) (-2264 (((-112) $) 35)) (-3151 (((-1157) $) 10)) (-2577 (($ $) 47)) (-4059 (((-1119) $) 11)) (-2479 (((-862) $) 12) (($ (-566)) 33) (($ (-409 (-566))) 51)) (-1558 (((-771)) 32 T CONST)) (-3900 (((-112) $ $) 9)) (-2446 (($) 19 T CONST)) (-2459 (($) 34 T CONST)) (-2952 (((-112) $ $) 6)) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 48)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ (-409 (-566)) $) 50) (($ $ (-409 (-566))) 49))) (((-243) (-140)) (T -243)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-243)) (-5 *2 (-564)))) (-2481 (*1 *1 *1) (-4 *1 (-243)))) -(-13 (-290) (-38 (-407 (-564))) (-10 -8 (-15 ** ($ $ (-564))) (-15 -2481 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-614 #0#) . T) ((-614 (-564)) . T) ((-611 (-860)) . T) ((-290) . T) ((-644 #0#) . T) ((-644 (-564)) . T) ((-644 $) . T) ((-646 #0#) . T) ((-646 $) . T) ((-638 #0#) . T) ((-715 #0#) . T) ((-724) . T) ((-1049 #0#) . T) ((-1049 $) . T) ((-1054 #0#) . T) ((-1054 $) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T)) -((-2856 (((-112) $ $) 19 (|has| |#1| (-1097)))) (-2108 ((|#1| $) 49)) (-3107 (($ $) 58)) (-3442 (((-112) $ (-769)) 8)) (-1407 ((|#1| $ |#1|) 40 (|has| $ (-6 -4411)))) (-2656 (($ $ $) 54 (|has| $ (-6 -4411)))) (-1584 (($ $ $) 53 (|has| $ (-6 -4411)))) (-3841 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4411)))) (-4041 (($ $ (-642 $)) 42 (|has| $ (-6 -4411)))) (-2822 (($) 7 T CONST)) (-2074 (($ $) 57)) (-2018 (((-642 |#1|) $) 31 (|has| $ (-6 -4410)))) (-1300 (((-642 $) $) 51)) (-2423 (((-112) $ $) 43 (|has| |#1| (-1097)))) (-3800 (($ $) 56)) (-3769 (((-112) $ (-769)) 9)) (-3541 (((-642 |#1|) $) 30 (|has| $ (-6 -4410)))) (-2533 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-1857 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#1| |#1|) $) 36)) (-4145 (((-112) $ (-769)) 10)) (-2334 (((-642 |#1|) $) 46)) (-1961 (((-112) $) 50)) (-1778 (((-1155) $) 22 (|has| |#1| (-1097)))) (-2534 ((|#1| $) 60)) (-3332 (($ $) 59)) (-3999 (((-1117) $) 21 (|has| |#1| (-1097)))) (-4094 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-2478 (((-112) $ $) 14)) (-4109 (((-112) $) 11)) (-2179 (($) 12)) (-4369 ((|#1| $ "value") 48)) (-1743 (((-564) $ $) 45)) (-1311 (((-112) $) 47)) (-4010 (((-769) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4410))) (((-769) |#1| $) 29 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3865 (($ $) 13)) (-2766 (($ $ $) 55 (|has| $ (-6 -4411)))) (-2390 (((-860) $) 18 (|has| |#1| (-611 (-860))))) (-4275 (((-642 $) $) 52)) (-1622 (((-112) $ $) 44 (|has| |#1| (-1097)))) (-1600 (((-112) $ $) 23 (|has| |#1| (-1097)))) (-3295 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4410)))) (-2821 (((-112) $ $) 20 (|has| |#1| (-1097)))) (-2158 (((-769) $) 6 (|has| $ (-6 -4410))))) -(((-244 |#1|) (-140) (-1212)) (T -244)) -((-2534 (*1 *2 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1212)))) (-3332 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1212)))) (-3107 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1212)))) (-2074 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1212)))) (-3800 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1212)))) (-2766 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4411)) (-4 *1 (-244 *2)) (-4 *2 (-1212)))) (-2656 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4411)) (-4 *1 (-244 *2)) (-4 *2 (-1212)))) (-1584 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4411)) (-4 *1 (-244 *2)) (-4 *2 (-1212))))) -(-13 (-1008 |t#1|) (-10 -8 (-15 -2534 (|t#1| $)) (-15 -3332 ($ $)) (-15 -3107 ($ $)) (-15 -2074 ($ $)) (-15 -3800 ($ $)) (IF (|has| $ (-6 -4411)) (PROGN (-15 -2766 ($ $ $)) (-15 -2656 ($ $ $)) (-15 -1584 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1097)) ((-611 (-860)) -2682 (|has| |#1| (-1097)) (|has| |#1| (-611 (-860)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-1008 |#1|) . T) ((-1097) |has| |#1| (-1097)) ((-1212) . T)) -((-2856 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2108 ((|#1| $) NIL)) (-3585 ((|#1| $) NIL)) (-3107 (($ $) NIL)) (-3633 (((-1267) $ (-564) (-564)) NIL (|has| $ (-6 -4411)))) (-4083 (($ $ (-564)) NIL (|has| $ (-6 -4411)))) (-1824 (((-112) $) NIL (|has| |#1| (-848))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3659 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-848)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4411)))) (-3191 (($ $) 10 (|has| |#1| (-848))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3442 (((-112) $ (-769)) NIL)) (-1407 ((|#1| $ |#1|) NIL (|has| $ (-6 -4411)))) (-4277 (($ $ $) NIL (|has| $ (-6 -4411)))) (-4326 ((|#1| $ |#1|) NIL (|has| $ (-6 -4411)))) (-3186 ((|#1| $ |#1|) NIL (|has| $ (-6 -4411)))) (-3841 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4411))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4411))) (($ $ "rest" $) NIL (|has| $ (-6 -4411))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4411))) ((|#1| $ (-1229 (-564)) |#1|) NIL (|has| $ (-6 -4411))) ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4411)))) (-4041 (($ $ (-642 $)) NIL (|has| $ (-6 -4411)))) (-2438 (($ (-1 (-112) |#1|) $) NIL)) (-3437 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3573 ((|#1| $) NIL)) (-2822 (($) NIL T CONST)) (-1540 (($ $) NIL (|has| $ (-6 -4411)))) (-3817 (($ $) NIL)) (-4050 (($ $) NIL) (($ $ (-769)) NIL)) (-2324 (($ $) NIL (|has| |#1| (-1097)))) (-4067 (($ $) 7 (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-1927 (($ |#1| $) NIL (|has| |#1| (-1097))) (($ (-1 (-112) |#1|) $) NIL)) (-2517 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3741 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3105 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4411)))) (-1804 ((|#1| $ (-564)) NIL)) (-3385 (((-112) $) NIL)) (-3942 (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1097))) (((-564) |#1| $) NIL (|has| |#1| (-1097))) (((-564) (-1 (-112) |#1|) $) NIL)) (-2018 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-1300 (((-642 $) $) NIL)) (-2423 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-4233 (($ (-769) |#1|) NIL)) (-3769 (((-112) $ (-769)) NIL)) (-1802 (((-564) $) NIL (|has| (-564) (-848)))) (-3225 (($ $ $) NIL (|has| |#1| (-848)))) (-4096 (($ $ $) NIL (|has| |#1| (-848))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2774 (($ $ $) NIL (|has| |#1| (-848))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3541 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2533 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3624 (((-564) $) NIL (|has| (-564) (-848)))) (-2903 (($ $ $) NIL (|has| |#1| (-848)))) (-1857 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3902 (($ |#1|) NIL)) (-4145 (((-112) $ (-769)) NIL)) (-2334 (((-642 |#1|) $) NIL)) (-1961 (((-112) $) NIL)) (-1778 (((-1155) $) NIL (|has| |#1| (-1097)))) (-2534 ((|#1| $) NIL) (($ $ (-769)) NIL)) (-1668 (($ $ $ (-564)) NIL) (($ |#1| $ (-564)) NIL)) (-4247 (($ $ $ (-564)) NIL) (($ |#1| $ (-564)) NIL)) (-4107 (((-642 (-564)) $) NIL)) (-4207 (((-112) (-564) $) NIL)) (-3999 (((-1117) $) NIL (|has| |#1| (-1097)))) (-4036 ((|#1| $) NIL) (($ $ (-769)) NIL)) (-3183 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3826 (($ $ |#1|) NIL (|has| $ (-6 -4411)))) (-3823 (((-112) $) NIL)) (-4094 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-2478 (((-112) $ $) NIL)) (-1643 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3522 (((-642 |#1|) $) NIL)) (-4109 (((-112) $) NIL)) (-2179 (($) NIL)) (-4369 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1229 (-564))) NIL) ((|#1| $ (-564)) NIL) ((|#1| $ (-564) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-769) $ "count") 16)) (-1743 (((-564) $ $) NIL)) (-1406 (($ $ (-1229 (-564))) NIL) (($ $ (-564)) NIL)) (-2083 (($ $ (-1229 (-564))) NIL) (($ $ (-564)) NIL)) (-3934 (($ (-642 |#1|)) 22)) (-1311 (((-112) $) NIL)) (-1306 (($ $) NIL)) (-4118 (($ $) NIL (|has| $ (-6 -4411)))) (-3941 (((-769) $) NIL)) (-4376 (($ $) NIL)) (-4010 (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-769) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3301 (($ $ $ (-564)) NIL (|has| $ (-6 -4411)))) (-3865 (($ $) NIL)) (-3003 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-2401 (($ (-642 |#1|)) NIL)) (-2766 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3634 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-642 $)) NIL) (($ $ |#1|) NIL)) (-2390 (($ (-642 |#1|)) 17) (((-642 |#1|) $) 18) (((-860) $) 21 (|has| |#1| (-611 (-860))))) (-4275 (((-642 $) $) NIL)) (-1622 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-1600 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-3295 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2881 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2857 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2821 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2868 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2844 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2158 (((-769) $) 14 (|has| $ (-6 -4410))))) -(((-245 |#1|) (-13 (-664 |#1|) (-490 (-642 |#1|)) (-10 -8 (-15 -3934 ($ (-642 |#1|))) (-15 -4369 ($ $ "unique")) (-15 -4369 ($ $ "sort")) (-15 -4369 ((-769) $ "count")))) (-848)) (T -245)) -((-3934 (*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-848)) (-5 *1 (-245 *3)))) (-4369 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-245 *3)) (-4 *3 (-848)))) (-4369 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-245 *3)) (-4 *3 (-848)))) (-4369 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-769)) (-5 *1 (-245 *4)) (-4 *4 (-848))))) -(-13 (-664 |#1|) (-490 (-642 |#1|)) (-10 -8 (-15 -3934 ($ (-642 |#1|))) (-15 -4369 ($ $ "unique")) (-15 -4369 ($ $ "sort")) (-15 -4369 ((-769) $ "count")))) -((-2761 (((-3 (-769) "failed") |#1| |#1| (-769)) 43))) -(((-246 |#1|) (-10 -7 (-15 -2761 ((-3 (-769) "failed") |#1| |#1| (-769)))) (-13 (-724) (-368) (-10 -7 (-15 ** (|#1| |#1| (-564)))))) (T -246)) -((-2761 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-769)) (-4 *3 (-13 (-724) (-368) (-10 -7 (-15 ** (*3 *3 (-564)))))) (-5 *1 (-246 *3))))) -(-10 -7 (-15 -2761 ((-3 (-769) "failed") |#1| |#1| (-769)))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-2397 (((-642 (-862 |#1|)) $) NIL)) (-2223 (((-1169 $) $ (-862 |#1|)) NIL) (((-1169 |#2|) $) NIL)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (|has| |#2| (-556)))) (-4252 (($ $) NIL (|has| |#2| (-556)))) (-1722 (((-112) $) NIL (|has| |#2| (-556)))) (-4035 (((-769) $) NIL) (((-769) $ (-642 (-862 |#1|))) NIL)) (-3085 (((-3 $ "failed") $ $) NIL)) (-4297 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#2| (-907)))) (-1993 (($ $) NIL (|has| |#2| (-452)))) (-3282 (((-418 $) $) NIL (|has| |#2| (-452)))) (-3267 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) NIL (|has| |#2| (-907)))) (-2822 (($) NIL T CONST)) (-2849 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1036 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#2| (-1036 (-564)))) (((-3 (-862 |#1|) "failed") $) NIL)) (-1687 ((|#2| $) NIL) (((-407 (-564)) $) NIL (|has| |#2| (-1036 (-407 (-564))))) (((-564) $) NIL (|has| |#2| (-1036 (-564)))) (((-862 |#1|) $) NIL)) (-3710 (($ $ $ (-862 |#1|)) NIL (|has| |#2| (-172)))) (-1747 (($ $ (-642 (-564))) NIL)) (-3459 (($ $) NIL)) (-3330 (((-687 (-564)) (-687 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -3544 (-687 |#2|)) (|:| |vec| (-1262 |#2|))) (-687 $) (-1262 $)) NIL) (((-687 |#2|) (-687 $)) NIL)) (-2675 (((-3 $ "failed") $) NIL)) (-2511 (($ $) NIL (|has| |#2| (-452))) (($ $ (-862 |#1|)) NIL (|has| |#2| (-452)))) (-3446 (((-642 $) $) NIL)) (-3552 (((-112) $) NIL (|has| |#2| (-907)))) (-2315 (($ $ |#2| (-240 (-2158 |#1|) (-769)) $) NIL)) (-1381 (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) NIL (-12 (|has| (-862 |#1|) (-884 (-379))) (|has| |#2| (-884 (-379))))) (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) NIL (-12 (|has| (-862 |#1|) (-884 (-564))) (|has| |#2| (-884 (-564)))))) (-3163 (((-112) $) NIL)) (-1904 (((-769) $) NIL)) (-2387 (($ (-1169 |#2|) (-862 |#1|)) NIL) (($ (-1169 $) (-862 |#1|)) NIL)) (-1995 (((-642 $) $) NIL)) (-3471 (((-112) $) NIL)) (-2374 (($ |#2| (-240 (-2158 |#1|) (-769))) NIL) (($ $ (-862 |#1|) (-769)) NIL) (($ $ (-642 (-862 |#1|)) (-642 (-769))) NIL)) (-3312 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $ (-862 |#1|)) NIL)) (-2887 (((-240 (-2158 |#1|) (-769)) $) NIL) (((-769) $ (-862 |#1|)) NIL) (((-642 (-769)) $ (-642 (-862 |#1|))) NIL)) (-3879 (($ (-1 (-240 (-2158 |#1|) (-769)) (-240 (-2158 |#1|) (-769))) $) NIL)) (-2947 (($ (-1 |#2| |#2|) $) NIL)) (-1557 (((-3 (-862 |#1|) "failed") $) NIL)) (-2510 (($ $) NIL)) (-2523 ((|#2| $) NIL)) (-2066 (($ (-642 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-1778 (((-1155) $) NIL)) (-3664 (((-3 (-642 $) "failed") $) NIL)) (-4315 (((-3 (-642 $) "failed") $) NIL)) (-3177 (((-3 (-2 (|:| |var| (-862 |#1|)) (|:| -2817 (-769))) "failed") $) NIL)) (-3999 (((-1117) $) NIL)) (-2491 (((-112) $) NIL)) (-2500 ((|#2| $) NIL)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) NIL (|has| |#2| (-452)))) (-2105 (($ (-642 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-3223 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#2| (-907)))) (-2236 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#2| (-907)))) (-2254 (((-418 $) $) NIL (|has| |#2| (-907)))) (-2842 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-556)))) (-3154 (($ $ (-642 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-642 $) (-642 $)) NIL) (($ $ (-862 |#1|) |#2|) NIL) (($ $ (-642 (-862 |#1|)) (-642 |#2|)) NIL) (($ $ (-862 |#1|) $) NIL) (($ $ (-642 (-862 |#1|)) (-642 $)) NIL)) (-2790 (($ $ (-862 |#1|)) NIL (|has| |#2| (-172)))) (-2199 (($ $ (-862 |#1|)) NIL) (($ $ (-642 (-862 |#1|))) NIL) (($ $ (-862 |#1|) (-769)) NIL) (($ $ (-642 (-862 |#1|)) (-642 (-769))) NIL)) (-3252 (((-240 (-2158 |#1|) (-769)) $) NIL) (((-769) $ (-862 |#1|)) NIL) (((-642 (-769)) $ (-642 (-862 |#1|))) NIL)) (-3003 (((-890 (-379)) $) NIL (-12 (|has| (-862 |#1|) (-612 (-890 (-379)))) (|has| |#2| (-612 (-890 (-379)))))) (((-890 (-564)) $) NIL (-12 (|has| (-862 |#1|) (-612 (-890 (-564)))) (|has| |#2| (-612 (-890 (-564)))))) (((-536) $) NIL (-12 (|has| (-862 |#1|) (-612 (-536))) (|has| |#2| (-612 (-536)))))) (-4325 ((|#2| $) NIL (|has| |#2| (-452))) (($ $ (-862 |#1|)) NIL (|has| |#2| (-452)))) (-3556 (((-3 (-1262 $) "failed") (-687 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-907))))) (-2390 (((-860) $) NIL) (($ (-564)) NIL) (($ |#2|) NIL) (($ (-862 |#1|)) NIL) (($ (-407 (-564))) NIL (-2682 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1036 (-407 (-564)))))) (($ $) NIL (|has| |#2| (-556)))) (-2839 (((-642 |#2|) $) NIL)) (-3005 ((|#2| $ (-240 (-2158 |#1|) (-769))) NIL) (($ $ (-862 |#1|) (-769)) NIL) (($ $ (-642 (-862 |#1|)) (-642 (-769))) NIL)) (-3434 (((-3 $ "failed") $) NIL (-2682 (-12 (|has| $ (-145)) (|has| |#2| (-907))) (|has| |#2| (-145))))) (-3348 (((-769)) NIL T CONST)) (-2645 (($ $ $ (-769)) NIL (|has| |#2| (-172)))) (-1600 (((-112) $ $) NIL)) (-1594 (((-112) $ $) NIL (|has| |#2| (-556)))) (-2361 (($) NIL T CONST)) (-2371 (($) NIL T CONST)) (-2711 (($ $ (-862 |#1|)) NIL) (($ $ (-642 (-862 |#1|))) NIL) (($ $ (-862 |#1|) (-769)) NIL) (($ $ (-642 (-862 |#1|)) (-642 (-769))) NIL)) (-2821 (((-112) $ $) NIL)) (-2943 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#2| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#2| (-38 (-407 (-564))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-247 |#1| |#2|) (-13 (-947 |#2| (-240 (-2158 |#1|) (-769)) (-862 |#1|)) (-10 -8 (-15 -1747 ($ $ (-642 (-564)))))) (-642 (-1173)) (-1047)) (T -247)) -((-1747 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-564))) (-5 *1 (-247 *3 *4)) (-14 *3 (-642 (-1173))) (-4 *4 (-1047))))) -(-13 (-947 |#2| (-240 (-2158 |#1|) (-769)) (-862 |#1|)) (-10 -8 (-15 -1747 ($ $ (-642 (-564)))))) -((-2856 (((-112) $ $) NIL)) (-2442 (((-1267) $) 17)) (-2717 (((-183) $) 11)) (-2349 (($ (-183)) 12)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-1500 (((-249) $) 7)) (-2390 (((-860) $) 9)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) 15))) -(((-248) (-13 (-1097) (-10 -8 (-15 -1500 ((-249) $)) (-15 -2717 ((-183) $)) (-15 -2349 ($ (-183))) (-15 -2442 ((-1267) $))))) (T -248)) -((-1500 (*1 *2 *1) (-12 (-5 *2 (-249)) (-5 *1 (-248)))) (-2717 (*1 *2 *1) (-12 (-5 *2 (-183)) (-5 *1 (-248)))) (-2349 (*1 *1 *2) (-12 (-5 *2 (-183)) (-5 *1 (-248)))) (-2442 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-248))))) -(-13 (-1097) (-10 -8 (-15 -1500 ((-249) $)) (-15 -2717 ((-183) $)) (-15 -2349 ($ (-183))) (-15 -2442 ((-1267) $)))) -((-2856 (((-112) $ $) NIL)) (-3458 (((-642 (-863)) $) NIL)) (-2493 (((-506) $) NIL)) (-1778 (((-1155) $) NIL)) (-1623 (((-186) $) NIL)) (-1462 (((-112) $ (-506)) NIL)) (-3999 (((-1117) $) NIL)) (-2342 (((-642 (-112)) $) NIL)) (-2390 (((-860) $) NIL) (((-187) $) 6)) (-1600 (((-112) $ $) NIL)) (-2634 (((-55) $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-249) (-13 (-185) (-611 (-187)))) (T -249)) -NIL -(-13 (-185) (-611 (-187))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-2072 (($ (-919)) NIL (|has| |#4| (-1047)))) (-3633 (((-1267) $ (-564) (-564)) NIL (|has| $ (-6 -4411)))) (-2247 (($ $ $) NIL (|has| |#4| (-791)))) (-3085 (((-3 $ "failed") $ $) NIL)) (-3442 (((-112) $ (-769)) NIL)) (-4003 (((-769)) NIL (|has| |#4| (-368)))) (-2221 (((-564) $) NIL (|has| |#4| (-846)))) (-3841 ((|#4| $ (-564) |#4|) NIL (|has| $ (-6 -4411)))) (-2822 (($) NIL T CONST)) (-2849 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1097))) (((-3 (-564) "failed") $) NIL (-12 (|has| |#4| (-1036 (-564))) (|has| |#4| (-1097)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| |#4| (-1036 (-407 (-564)))) (|has| |#4| (-1097))))) (-1687 ((|#4| $) NIL (|has| |#4| (-1097))) (((-564) $) NIL (-12 (|has| |#4| (-1036 (-564))) (|has| |#4| (-1097)))) (((-407 (-564)) $) NIL (-12 (|has| |#4| (-1036 (-407 (-564)))) (|has| |#4| (-1097))))) (-3330 (((-2 (|:| -3544 (-687 |#4|)) (|:| |vec| (-1262 |#4|))) (-687 $) (-1262 $)) NIL (|has| |#4| (-1047))) (((-687 |#4|) (-687 $)) NIL (|has| |#4| (-1047))) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (-12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1047)))) (((-687 (-564)) (-687 $)) NIL (-12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1047))))) (-2675 (((-3 $ "failed") $) NIL (-2682 (-12 (|has| |#4| (-233)) (|has| |#4| (-1047))) (-12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1047))) (|has| |#4| (-724)) (-12 (|has| |#4| (-898 (-1173))) (|has| |#4| (-1047)))))) (-3235 (($) NIL (|has| |#4| (-368)))) (-3105 ((|#4| $ (-564) |#4|) NIL (|has| $ (-6 -4411)))) (-1804 ((|#4| $ (-564)) NIL)) (-3292 (((-112) $) NIL (|has| |#4| (-846)))) (-2018 (((-642 |#4|) $) NIL (|has| $ (-6 -4410)))) (-3163 (((-112) $) NIL (-2682 (-12 (|has| |#4| (-233)) (|has| |#4| (-1047))) (-12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1047))) (|has| |#4| (-724)) (-12 (|has| |#4| (-898 (-1173))) (|has| |#4| (-1047)))))) (-2666 (((-112) $) NIL (|has| |#4| (-846)))) (-3769 (((-112) $ (-769)) NIL)) (-1802 (((-564) $) NIL (|has| (-564) (-848)))) (-3225 (($ $ $) NIL (-2682 (|has| |#4| (-791)) (|has| |#4| (-846))))) (-3541 (((-642 |#4|) $) NIL (|has| $ (-6 -4410)))) (-2533 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#4| (-1097))))) (-3624 (((-564) $) NIL (|has| (-564) (-848)))) (-2903 (($ $ $) NIL (-2682 (|has| |#4| (-791)) (|has| |#4| (-846))))) (-1857 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#4| |#4|) $) NIL)) (-2535 (((-919) $) NIL (|has| |#4| (-368)))) (-4145 (((-112) $ (-769)) NIL)) (-1778 (((-1155) $) NIL)) (-4107 (((-642 (-564)) $) NIL)) (-4207 (((-112) (-564) $) NIL)) (-2065 (($ (-919)) NIL (|has| |#4| (-368)))) (-3999 (((-1117) $) NIL)) (-4036 ((|#4| $) NIL (|has| (-564) (-848)))) (-3826 (($ $ |#4|) NIL (|has| $ (-6 -4411)))) (-4094 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ (-642 |#4|) (-642 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097))))) (-2478 (((-112) $ $) NIL)) (-1643 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#4| (-1097))))) (-3522 (((-642 |#4|) $) NIL)) (-4109 (((-112) $) NIL)) (-2179 (($) NIL)) (-4369 ((|#4| $ (-564) |#4|) NIL) ((|#4| $ (-564)) 16)) (-1976 ((|#4| $ $) NIL (|has| |#4| (-1047)))) (-2299 (($ (-1262 |#4|)) NIL)) (-3677 (((-134)) NIL (|has| |#4| (-363)))) (-2199 (($ $ (-1 |#4| |#4|) (-769)) NIL (|has| |#4| (-1047))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1047))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| |#4| (-898 (-1173))) (|has| |#4| (-1047)))) (($ $ (-1173) (-769)) NIL (-12 (|has| |#4| (-898 (-1173))) (|has| |#4| (-1047)))) (($ $ (-642 (-1173))) NIL (-12 (|has| |#4| (-898 (-1173))) (|has| |#4| (-1047)))) (($ $ (-1173)) NIL (-12 (|has| |#4| (-898 (-1173))) (|has| |#4| (-1047)))) (($ $ (-769)) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1047)))) (($ $) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1047))))) (-4010 (((-769) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4410))) (((-769) |#4| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#4| (-1097))))) (-3865 (($ $) NIL)) (-2390 (((-1262 |#4|) $) NIL) (((-860) $) NIL) (($ |#4|) NIL (|has| |#4| (-1097))) (($ (-564)) NIL (-2682 (-12 (|has| |#4| (-1036 (-564))) (|has| |#4| (-1097))) (|has| |#4| (-1047)))) (($ (-407 (-564))) NIL (-12 (|has| |#4| (-1036 (-407 (-564)))) (|has| |#4| (-1097))))) (-3348 (((-769)) NIL (|has| |#4| (-1047)) CONST)) (-1600 (((-112) $ $) NIL)) (-3295 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4410)))) (-1630 (($ $) NIL (|has| |#4| (-846)))) (-2361 (($) NIL T CONST)) (-2371 (($) NIL (-2682 (-12 (|has| |#4| (-233)) (|has| |#4| (-1047))) (-12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1047))) (|has| |#4| (-724)) (-12 (|has| |#4| (-898 (-1173))) (|has| |#4| (-1047)))) CONST)) (-2711 (($ $ (-1 |#4| |#4|) (-769)) NIL (|has| |#4| (-1047))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1047))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| |#4| (-898 (-1173))) (|has| |#4| (-1047)))) (($ $ (-1173) (-769)) NIL (-12 (|has| |#4| (-898 (-1173))) (|has| |#4| (-1047)))) (($ $ (-642 (-1173))) NIL (-12 (|has| |#4| (-898 (-1173))) (|has| |#4| (-1047)))) (($ $ (-1173)) NIL (-12 (|has| |#4| (-898 (-1173))) (|has| |#4| (-1047)))) (($ $ (-769)) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1047)))) (($ $) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1047))))) (-2881 (((-112) $ $) NIL (-2682 (|has| |#4| (-791)) (|has| |#4| (-846))))) (-2857 (((-112) $ $) NIL (-2682 (|has| |#4| (-791)) (|has| |#4| (-846))))) (-2821 (((-112) $ $) NIL)) (-2868 (((-112) $ $) NIL (-2682 (|has| |#4| (-791)) (|has| |#4| (-846))))) (-2844 (((-112) $ $) NIL (-2682 (|has| |#4| (-791)) (|has| |#4| (-846))))) (-2943 (($ $ |#4|) NIL (|has| |#4| (-363)))) (-2930 (($ $ $) NIL) (($ $) NIL)) (-2917 (($ $ $) NIL)) (** (($ $ (-769)) NIL (-2682 (-12 (|has| |#4| (-233)) (|has| |#4| (-1047))) (-12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1047))) (|has| |#4| (-724)) (-12 (|has| |#4| (-898 (-1173))) (|has| |#4| (-1047))))) (($ $ (-919)) NIL (-2682 (-12 (|has| |#4| (-233)) (|has| |#4| (-1047))) (-12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1047))) (|has| |#4| (-724)) (-12 (|has| |#4| (-898 (-1173))) (|has| |#4| (-1047)))))) (* (($ |#2| $) 18) (($ (-564) $) NIL) (($ (-769) $) NIL) (($ (-919) $) NIL) (($ |#3| $) 22) (($ $ |#4|) NIL (|has| |#4| (-724))) (($ |#4| $) NIL (|has| |#4| (-724))) (($ $ $) NIL (-2682 (-12 (|has| |#4| (-233)) (|has| |#4| (-1047))) (-12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1047))) (|has| |#4| (-724)) (-12 (|has| |#4| (-898 (-1173))) (|has| |#4| (-1047)))))) (-2158 (((-769) $) NIL (|has| $ (-6 -4410))))) -(((-250 |#1| |#2| |#3| |#4|) (-13 (-238 |#1| |#4|) (-646 |#2|) (-646 |#3|)) (-919) (-1047) (-1120 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-646 |#2|)) (T -250)) -NIL -(-13 (-238 |#1| |#4|) (-646 |#2|) (-646 |#3|)) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-2072 (($ (-919)) NIL (|has| |#3| (-1047)))) (-3633 (((-1267) $ (-564) (-564)) NIL (|has| $ (-6 -4411)))) (-2247 (($ $ $) NIL (|has| |#3| (-791)))) (-3085 (((-3 $ "failed") $ $) NIL)) (-3442 (((-112) $ (-769)) NIL)) (-4003 (((-769)) NIL (|has| |#3| (-368)))) (-2221 (((-564) $) NIL (|has| |#3| (-846)))) (-3841 ((|#3| $ (-564) |#3|) NIL (|has| $ (-6 -4411)))) (-2822 (($) NIL T CONST)) (-2849 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1097))) (((-3 (-564) "failed") $) NIL (-12 (|has| |#3| (-1036 (-564))) (|has| |#3| (-1097)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| |#3| (-1036 (-407 (-564)))) (|has| |#3| (-1097))))) (-1687 ((|#3| $) NIL (|has| |#3| (-1097))) (((-564) $) NIL (-12 (|has| |#3| (-1036 (-564))) (|has| |#3| (-1097)))) (((-407 (-564)) $) NIL (-12 (|has| |#3| (-1036 (-407 (-564)))) (|has| |#3| (-1097))))) (-3330 (((-2 (|:| -3544 (-687 |#3|)) (|:| |vec| (-1262 |#3|))) (-687 $) (-1262 $)) NIL (|has| |#3| (-1047))) (((-687 |#3|) (-687 $)) NIL (|has| |#3| (-1047))) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1047)))) (((-687 (-564)) (-687 $)) NIL (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1047))))) (-2675 (((-3 $ "failed") $) NIL (-2682 (-12 (|has| |#3| (-233)) (|has| |#3| (-1047))) (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1047))) (|has| |#3| (-724)) (-12 (|has| |#3| (-898 (-1173))) (|has| |#3| (-1047)))))) (-3235 (($) NIL (|has| |#3| (-368)))) (-3105 ((|#3| $ (-564) |#3|) NIL (|has| $ (-6 -4411)))) (-1804 ((|#3| $ (-564)) NIL)) (-3292 (((-112) $) NIL (|has| |#3| (-846)))) (-2018 (((-642 |#3|) $) NIL (|has| $ (-6 -4410)))) (-3163 (((-112) $) NIL (-2682 (-12 (|has| |#3| (-233)) (|has| |#3| (-1047))) (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1047))) (|has| |#3| (-724)) (-12 (|has| |#3| (-898 (-1173))) (|has| |#3| (-1047)))))) (-2666 (((-112) $) NIL (|has| |#3| (-846)))) (-3769 (((-112) $ (-769)) NIL)) (-1802 (((-564) $) NIL (|has| (-564) (-848)))) (-3225 (($ $ $) NIL (-2682 (|has| |#3| (-791)) (|has| |#3| (-846))))) (-3541 (((-642 |#3|) $) NIL (|has| $ (-6 -4410)))) (-2533 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#3| (-1097))))) (-3624 (((-564) $) NIL (|has| (-564) (-848)))) (-2903 (($ $ $) NIL (-2682 (|has| |#3| (-791)) (|has| |#3| (-846))))) (-1857 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#3| |#3|) $) NIL)) (-2535 (((-919) $) NIL (|has| |#3| (-368)))) (-4145 (((-112) $ (-769)) NIL)) (-1778 (((-1155) $) NIL)) (-4107 (((-642 (-564)) $) NIL)) (-4207 (((-112) (-564) $) NIL)) (-2065 (($ (-919)) NIL (|has| |#3| (-368)))) (-3999 (((-1117) $) NIL)) (-4036 ((|#3| $) NIL (|has| (-564) (-848)))) (-3826 (($ $ |#3|) NIL (|has| $ (-6 -4411)))) (-4094 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#3|))) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1097)))) (($ $ (-294 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1097)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1097)))) (($ $ (-642 |#3|) (-642 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1097))))) (-2478 (((-112) $ $) NIL)) (-1643 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#3| (-1097))))) (-3522 (((-642 |#3|) $) NIL)) (-4109 (((-112) $) NIL)) (-2179 (($) NIL)) (-4369 ((|#3| $ (-564) |#3|) NIL) ((|#3| $ (-564)) 15)) (-1976 ((|#3| $ $) NIL (|has| |#3| (-1047)))) (-2299 (($ (-1262 |#3|)) NIL)) (-3677 (((-134)) NIL (|has| |#3| (-363)))) (-2199 (($ $ (-1 |#3| |#3|) (-769)) NIL (|has| |#3| (-1047))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1047))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| |#3| (-898 (-1173))) (|has| |#3| (-1047)))) (($ $ (-1173) (-769)) NIL (-12 (|has| |#3| (-898 (-1173))) (|has| |#3| (-1047)))) (($ $ (-642 (-1173))) NIL (-12 (|has| |#3| (-898 (-1173))) (|has| |#3| (-1047)))) (($ $ (-1173)) NIL (-12 (|has| |#3| (-898 (-1173))) (|has| |#3| (-1047)))) (($ $ (-769)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1047)))) (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1047))))) (-4010 (((-769) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4410))) (((-769) |#3| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#3| (-1097))))) (-3865 (($ $) NIL)) (-2390 (((-1262 |#3|) $) NIL) (((-860) $) NIL) (($ |#3|) NIL (|has| |#3| (-1097))) (($ (-564)) NIL (-2682 (-12 (|has| |#3| (-1036 (-564))) (|has| |#3| (-1097))) (|has| |#3| (-1047)))) (($ (-407 (-564))) NIL (-12 (|has| |#3| (-1036 (-407 (-564)))) (|has| |#3| (-1097))))) (-3348 (((-769)) NIL (|has| |#3| (-1047)) CONST)) (-1600 (((-112) $ $) NIL)) (-3295 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4410)))) (-1630 (($ $) NIL (|has| |#3| (-846)))) (-2361 (($) NIL T CONST)) (-2371 (($) NIL (-2682 (-12 (|has| |#3| (-233)) (|has| |#3| (-1047))) (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1047))) (|has| |#3| (-724)) (-12 (|has| |#3| (-898 (-1173))) (|has| |#3| (-1047)))) CONST)) (-2711 (($ $ (-1 |#3| |#3|) (-769)) NIL (|has| |#3| (-1047))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1047))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| |#3| (-898 (-1173))) (|has| |#3| (-1047)))) (($ $ (-1173) (-769)) NIL (-12 (|has| |#3| (-898 (-1173))) (|has| |#3| (-1047)))) (($ $ (-642 (-1173))) NIL (-12 (|has| |#3| (-898 (-1173))) (|has| |#3| (-1047)))) (($ $ (-1173)) NIL (-12 (|has| |#3| (-898 (-1173))) (|has| |#3| (-1047)))) (($ $ (-769)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1047)))) (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1047))))) (-2881 (((-112) $ $) NIL (-2682 (|has| |#3| (-791)) (|has| |#3| (-846))))) (-2857 (((-112) $ $) NIL (-2682 (|has| |#3| (-791)) (|has| |#3| (-846))))) (-2821 (((-112) $ $) NIL)) (-2868 (((-112) $ $) NIL (-2682 (|has| |#3| (-791)) (|has| |#3| (-846))))) (-2844 (((-112) $ $) NIL (-2682 (|has| |#3| (-791)) (|has| |#3| (-846))))) (-2943 (($ $ |#3|) NIL (|has| |#3| (-363)))) (-2930 (($ $ $) NIL) (($ $) NIL)) (-2917 (($ $ $) NIL)) (** (($ $ (-769)) NIL (-2682 (-12 (|has| |#3| (-233)) (|has| |#3| (-1047))) (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1047))) (|has| |#3| (-724)) (-12 (|has| |#3| (-898 (-1173))) (|has| |#3| (-1047))))) (($ $ (-919)) NIL (-2682 (-12 (|has| |#3| (-233)) (|has| |#3| (-1047))) (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1047))) (|has| |#3| (-724)) (-12 (|has| |#3| (-898 (-1173))) (|has| |#3| (-1047)))))) (* (($ |#2| $) 17) (($ (-564) $) NIL) (($ (-769) $) NIL) (($ (-919) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-724))) (($ |#3| $) NIL (|has| |#3| (-724))) (($ $ $) NIL (-2682 (-12 (|has| |#3| (-233)) (|has| |#3| (-1047))) (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1047))) (|has| |#3| (-724)) (-12 (|has| |#3| (-898 (-1173))) (|has| |#3| (-1047)))))) (-2158 (((-769) $) NIL (|has| $ (-6 -4410))))) -(((-251 |#1| |#2| |#3|) (-13 (-238 |#1| |#3|) (-646 |#2|)) (-769) (-1047) (-646 |#2|)) (T -251)) -NIL -(-13 (-238 |#1| |#3|) (-646 |#2|)) -((-3728 (((-642 (-769)) $) 56) (((-642 (-769)) $ |#3|) 59)) (-3059 (((-769) $) 58) (((-769) $ |#3|) 61)) (-3365 (($ $) 76)) (-2849 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 (-564) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 83)) (-2408 (((-769) $ |#3|) 43) (((-769) $) 38)) (-3657 (((-1 $ (-769)) |#3|) 15) (((-1 $ (-769)) $) 88)) (-3162 ((|#4| $) 69)) (-4009 (((-112) $) 67)) (-1808 (($ $) 75)) (-3154 (($ $ (-642 (-294 $))) 114) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-642 $) (-642 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-642 |#4|) (-642 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-642 |#4|) (-642 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-642 |#3|) (-642 $)) 106) (($ $ |#3| |#2|) NIL) (($ $ (-642 |#3|) (-642 |#2|)) 100)) (-2199 (($ $ |#4|) NIL) (($ $ (-642 |#4|)) NIL) (($ $ |#4| (-769)) NIL) (($ $ (-642 |#4|) (-642 (-769))) NIL) (($ $) NIL) (($ $ (-769)) NIL) (($ $ (-1173)) NIL) (($ $ (-642 (-1173))) NIL) (($ $ (-1173) (-769)) NIL) (($ $ (-642 (-1173)) (-642 (-769))) NIL) (($ $ (-1 |#2| |#2|) (-769)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-3189 (((-642 |#3|) $) 86)) (-3252 ((|#5| $) NIL) (((-769) $ |#4|) NIL) (((-642 (-769)) $ (-642 |#4|)) NIL) (((-769) $ |#3|) 49)) (-2390 (((-860) $) NIL) (($ (-564)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 78) (($ (-407 (-564))) NIL) (($ $) NIL))) -(((-252 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2390 (|#1| |#1|)) (-15 -2390 (|#1| (-407 (-564)))) (-15 -3154 (|#1| |#1| (-642 |#3|) (-642 |#2|))) (-15 -3154 (|#1| |#1| |#3| |#2|)) (-15 -3154 (|#1| |#1| (-642 |#3|) (-642 |#1|))) (-15 -3154 (|#1| |#1| |#3| |#1|)) (-15 -3657 ((-1 |#1| (-769)) |#1|)) (-15 -3365 (|#1| |#1|)) (-15 -1808 (|#1| |#1|)) (-15 -3162 (|#4| |#1|)) (-15 -4009 ((-112) |#1|)) (-15 -3059 ((-769) |#1| |#3|)) (-15 -3728 ((-642 (-769)) |#1| |#3|)) (-15 -3059 ((-769) |#1|)) (-15 -3728 ((-642 (-769)) |#1|)) (-15 -3252 ((-769) |#1| |#3|)) (-15 -2408 ((-769) |#1|)) (-15 -2408 ((-769) |#1| |#3|)) (-15 -3189 ((-642 |#3|) |#1|)) (-15 -3657 ((-1 |#1| (-769)) |#3|)) (-15 -2390 (|#1| |#3|)) (-15 -2849 ((-3 |#3| "failed") |#1|)) (-15 -2199 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2199 (|#1| |#1| (-1 |#2| |#2|) (-769))) (-15 -2199 (|#1| |#1| (-642 (-1173)) (-642 (-769)))) (-15 -2199 (|#1| |#1| (-1173) (-769))) (-15 -2199 (|#1| |#1| (-642 (-1173)))) (-15 -2199 (|#1| |#1| (-1173))) (-15 -2199 (|#1| |#1| (-769))) (-15 -2199 (|#1| |#1|)) (-15 -3252 ((-642 (-769)) |#1| (-642 |#4|))) (-15 -3252 ((-769) |#1| |#4|)) (-15 -2390 (|#1| |#4|)) (-15 -2849 ((-3 |#4| "failed") |#1|)) (-15 -3154 (|#1| |#1| (-642 |#4|) (-642 |#1|))) (-15 -3154 (|#1| |#1| |#4| |#1|)) (-15 -3154 (|#1| |#1| (-642 |#4|) (-642 |#2|))) (-15 -3154 (|#1| |#1| |#4| |#2|)) (-15 -3154 (|#1| |#1| (-642 |#1|) (-642 |#1|))) (-15 -3154 (|#1| |#1| |#1| |#1|)) (-15 -3154 (|#1| |#1| (-294 |#1|))) (-15 -3154 (|#1| |#1| (-642 (-294 |#1|)))) (-15 -3252 (|#5| |#1|)) (-15 -2849 ((-3 (-564) "failed") |#1|)) (-15 -2849 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2849 ((-3 |#2| "failed") |#1|)) (-15 -2390 (|#1| |#2|)) (-15 -2199 (|#1| |#1| (-642 |#4|) (-642 (-769)))) (-15 -2199 (|#1| |#1| |#4| (-769))) (-15 -2199 (|#1| |#1| (-642 |#4|))) (-15 -2199 (|#1| |#1| |#4|)) (-15 -2390 (|#1| (-564))) (-15 -2390 ((-860) |#1|))) (-253 |#2| |#3| |#4| |#5|) (-1047) (-848) (-266 |#3|) (-791)) (T -252)) -NIL -(-10 -8 (-15 -2390 (|#1| |#1|)) (-15 -2390 (|#1| (-407 (-564)))) (-15 -3154 (|#1| |#1| (-642 |#3|) (-642 |#2|))) (-15 -3154 (|#1| |#1| |#3| |#2|)) (-15 -3154 (|#1| |#1| (-642 |#3|) (-642 |#1|))) (-15 -3154 (|#1| |#1| |#3| |#1|)) (-15 -3657 ((-1 |#1| (-769)) |#1|)) (-15 -3365 (|#1| |#1|)) (-15 -1808 (|#1| |#1|)) (-15 -3162 (|#4| |#1|)) (-15 -4009 ((-112) |#1|)) (-15 -3059 ((-769) |#1| |#3|)) (-15 -3728 ((-642 (-769)) |#1| |#3|)) (-15 -3059 ((-769) |#1|)) (-15 -3728 ((-642 (-769)) |#1|)) (-15 -3252 ((-769) |#1| |#3|)) (-15 -2408 ((-769) |#1|)) (-15 -2408 ((-769) |#1| |#3|)) (-15 -3189 ((-642 |#3|) |#1|)) (-15 -3657 ((-1 |#1| (-769)) |#3|)) (-15 -2390 (|#1| |#3|)) (-15 -2849 ((-3 |#3| "failed") |#1|)) (-15 -2199 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2199 (|#1| |#1| (-1 |#2| |#2|) (-769))) (-15 -2199 (|#1| |#1| (-642 (-1173)) (-642 (-769)))) (-15 -2199 (|#1| |#1| (-1173) (-769))) (-15 -2199 (|#1| |#1| (-642 (-1173)))) (-15 -2199 (|#1| |#1| (-1173))) (-15 -2199 (|#1| |#1| (-769))) (-15 -2199 (|#1| |#1|)) (-15 -3252 ((-642 (-769)) |#1| (-642 |#4|))) (-15 -3252 ((-769) |#1| |#4|)) (-15 -2390 (|#1| |#4|)) (-15 -2849 ((-3 |#4| "failed") |#1|)) (-15 -3154 (|#1| |#1| (-642 |#4|) (-642 |#1|))) (-15 -3154 (|#1| |#1| |#4| |#1|)) (-15 -3154 (|#1| |#1| (-642 |#4|) (-642 |#2|))) (-15 -3154 (|#1| |#1| |#4| |#2|)) (-15 -3154 (|#1| |#1| (-642 |#1|) (-642 |#1|))) (-15 -3154 (|#1| |#1| |#1| |#1|)) (-15 -3154 (|#1| |#1| (-294 |#1|))) (-15 -3154 (|#1| |#1| (-642 (-294 |#1|)))) (-15 -3252 (|#5| |#1|)) (-15 -2849 ((-3 (-564) "failed") |#1|)) (-15 -2849 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2849 ((-3 |#2| "failed") |#1|)) (-15 -2390 (|#1| |#2|)) (-15 -2199 (|#1| |#1| (-642 |#4|) (-642 (-769)))) (-15 -2199 (|#1| |#1| |#4| (-769))) (-15 -2199 (|#1| |#1| (-642 |#4|))) (-15 -2199 (|#1| |#1| |#4|)) (-15 -2390 (|#1| (-564))) (-15 -2390 ((-860) |#1|))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-3728 (((-642 (-769)) $) 216) (((-642 (-769)) $ |#2|) 214)) (-3059 (((-769) $) 215) (((-769) $ |#2|) 213)) (-2397 (((-642 |#3|) $) 112)) (-2223 (((-1169 $) $ |#3|) 127) (((-1169 |#1|) $) 126)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) 89 (|has| |#1| (-556)))) (-4252 (($ $) 90 (|has| |#1| (-556)))) (-1722 (((-112) $) 92 (|has| |#1| (-556)))) (-4035 (((-769) $) 114) (((-769) $ (-642 |#3|)) 113)) (-3085 (((-3 $ "failed") $ $) 20)) (-4297 (((-418 (-1169 $)) (-1169 $)) 102 (|has| |#1| (-907)))) (-1993 (($ $) 100 (|has| |#1| (-452)))) (-3282 (((-418 $) $) 99 (|has| |#1| (-452)))) (-3267 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) 105 (|has| |#1| (-907)))) (-3365 (($ $) 209)) (-2822 (($) 18 T CONST)) (-2849 (((-3 |#1| "failed") $) 166) (((-3 (-407 (-564)) "failed") $) 163 (|has| |#1| (-1036 (-407 (-564))))) (((-3 (-564) "failed") $) 161 (|has| |#1| (-1036 (-564)))) (((-3 |#3| "failed") $) 138) (((-3 |#2| "failed") $) 223)) (-1687 ((|#1| $) 165) (((-407 (-564)) $) 164 (|has| |#1| (-1036 (-407 (-564))))) (((-564) $) 162 (|has| |#1| (-1036 (-564)))) ((|#3| $) 139) ((|#2| $) 224)) (-3710 (($ $ $ |#3|) 110 (|has| |#1| (-172)))) (-3459 (($ $) 156)) (-3330 (((-687 (-564)) (-687 $)) 136 (|has| |#1| (-637 (-564)))) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) 135 (|has| |#1| (-637 (-564)))) (((-2 (|:| -3544 (-687 |#1|)) (|:| |vec| (-1262 |#1|))) (-687 $) (-1262 $)) 134) (((-687 |#1|) (-687 $)) 133)) (-2675 (((-3 $ "failed") $) 37)) (-2511 (($ $) 178 (|has| |#1| (-452))) (($ $ |#3|) 107 (|has| |#1| (-452)))) (-3446 (((-642 $) $) 111)) (-3552 (((-112) $) 98 (|has| |#1| (-907)))) (-2315 (($ $ |#1| |#4| $) 174)) (-1381 (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) 86 (-12 (|has| |#3| (-884 (-379))) (|has| |#1| (-884 (-379))))) (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) 85 (-12 (|has| |#3| (-884 (-564))) (|has| |#1| (-884 (-564)))))) (-2408 (((-769) $ |#2|) 219) (((-769) $) 218)) (-3163 (((-112) $) 35)) (-1904 (((-769) $) 171)) (-2387 (($ (-1169 |#1|) |#3|) 119) (($ (-1169 $) |#3|) 118)) (-1995 (((-642 $) $) 128)) (-3471 (((-112) $) 154)) (-2374 (($ |#1| |#4|) 155) (($ $ |#3| (-769)) 121) (($ $ (-642 |#3|) (-642 (-769))) 120)) (-3312 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $ |#3|) 122)) (-2887 ((|#4| $) 172) (((-769) $ |#3|) 124) (((-642 (-769)) $ (-642 |#3|)) 123)) (-3879 (($ (-1 |#4| |#4|) $) 173)) (-2947 (($ (-1 |#1| |#1|) $) 153)) (-3657 (((-1 $ (-769)) |#2|) 221) (((-1 $ (-769)) $) 208 (|has| |#1| (-233)))) (-1557 (((-3 |#3| "failed") $) 125)) (-2510 (($ $) 151)) (-2523 ((|#1| $) 150)) (-3162 ((|#3| $) 211)) (-2066 (($ (-642 $)) 96 (|has| |#1| (-452))) (($ $ $) 95 (|has| |#1| (-452)))) (-1778 (((-1155) $) 10)) (-4009 (((-112) $) 212)) (-3664 (((-3 (-642 $) "failed") $) 116)) (-4315 (((-3 (-642 $) "failed") $) 117)) (-3177 (((-3 (-2 (|:| |var| |#3|) (|:| -2817 (-769))) "failed") $) 115)) (-1808 (($ $) 210)) (-3999 (((-1117) $) 11)) (-2491 (((-112) $) 168)) (-2500 ((|#1| $) 169)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) 97 (|has| |#1| (-452)))) (-2105 (($ (-642 $)) 94 (|has| |#1| (-452))) (($ $ $) 93 (|has| |#1| (-452)))) (-3223 (((-418 (-1169 $)) (-1169 $)) 104 (|has| |#1| (-907)))) (-2236 (((-418 (-1169 $)) (-1169 $)) 103 (|has| |#1| (-907)))) (-2254 (((-418 $) $) 101 (|has| |#1| (-907)))) (-2842 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-556))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-556)))) (-3154 (($ $ (-642 (-294 $))) 147) (($ $ (-294 $)) 146) (($ $ $ $) 145) (($ $ (-642 $) (-642 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-642 |#3|) (-642 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-642 |#3|) (-642 $)) 140) (($ $ |#2| $) 207 (|has| |#1| (-233))) (($ $ (-642 |#2|) (-642 $)) 206 (|has| |#1| (-233))) (($ $ |#2| |#1|) 205 (|has| |#1| (-233))) (($ $ (-642 |#2|) (-642 |#1|)) 204 (|has| |#1| (-233)))) (-2790 (($ $ |#3|) 109 (|has| |#1| (-172)))) (-2199 (($ $ |#3|) 46) (($ $ (-642 |#3|)) 45) (($ $ |#3| (-769)) 44) (($ $ (-642 |#3|) (-642 (-769))) 43) (($ $) 240 (|has| |#1| (-233))) (($ $ (-769)) 238 (|has| |#1| (-233))) (($ $ (-1173)) 236 (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) 235 (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) 234 (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) 233 (|has| |#1| (-898 (-1173)))) (($ $ (-1 |#1| |#1|) (-769)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-3189 (((-642 |#2|) $) 220)) (-3252 ((|#4| $) 152) (((-769) $ |#3|) 132) (((-642 (-769)) $ (-642 |#3|)) 131) (((-769) $ |#2|) 217)) (-3003 (((-890 (-379)) $) 84 (-12 (|has| |#3| (-612 (-890 (-379)))) (|has| |#1| (-612 (-890 (-379)))))) (((-890 (-564)) $) 83 (-12 (|has| |#3| (-612 (-890 (-564)))) (|has| |#1| (-612 (-890 (-564)))))) (((-536) $) 82 (-12 (|has| |#3| (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-4325 ((|#1| $) 177 (|has| |#1| (-452))) (($ $ |#3|) 108 (|has| |#1| (-452)))) (-3556 (((-3 (-1262 $) "failed") (-687 $)) 106 (-2317 (|has| $ (-145)) (|has| |#1| (-907))))) (-2390 (((-860) $) 12) (($ (-564)) 33) (($ |#1|) 167) (($ |#3|) 137) (($ |#2|) 222) (($ (-407 (-564))) 80 (-2682 (|has| |#1| (-1036 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564)))))) (($ $) 87 (|has| |#1| (-556)))) (-2839 (((-642 |#1|) $) 170)) (-3005 ((|#1| $ |#4|) 157) (($ $ |#3| (-769)) 130) (($ $ (-642 |#3|) (-642 (-769))) 129)) (-3434 (((-3 $ "failed") $) 81 (-2682 (-2317 (|has| $ (-145)) (|has| |#1| (-907))) (|has| |#1| (-145))))) (-3348 (((-769)) 32 T CONST)) (-2645 (($ $ $ (-769)) 175 (|has| |#1| (-172)))) (-1600 (((-112) $ $) 9)) (-1594 (((-112) $ $) 91 (|has| |#1| (-556)))) (-2361 (($) 19 T CONST)) (-2371 (($) 34 T CONST)) (-2711 (($ $ |#3|) 42) (($ $ (-642 |#3|)) 41) (($ $ |#3| (-769)) 40) (($ $ (-642 |#3|) (-642 (-769))) 39) (($ $) 239 (|has| |#1| (-233))) (($ $ (-769)) 237 (|has| |#1| (-233))) (($ $ (-1173)) 232 (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) 231 (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) 230 (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) 229 (|has| |#1| (-898 (-1173)))) (($ $ (-1 |#1| |#1|) (-769)) 228) (($ $ (-1 |#1| |#1|)) 227)) (-2821 (((-112) $ $) 6)) (-2943 (($ $ |#1|) 158 (|has| |#1| (-363)))) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ (-407 (-564))) 160 (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) 159 (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 149) (($ $ |#1|) 148))) -(((-253 |#1| |#2| |#3| |#4|) (-140) (-1047) (-848) (-266 |t#2|) (-791)) (T -253)) -((-3657 (*1 *2 *3) (-12 (-4 *4 (-1047)) (-4 *3 (-848)) (-4 *5 (-266 *3)) (-4 *6 (-791)) (-5 *2 (-1 *1 (-769))) (-4 *1 (-253 *4 *3 *5 *6)))) (-3189 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-848)) (-4 *5 (-266 *4)) (-4 *6 (-791)) (-5 *2 (-642 *4)))) (-2408 (*1 *2 *1 *3) (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1047)) (-4 *3 (-848)) (-4 *5 (-266 *3)) (-4 *6 (-791)) (-5 *2 (-769)))) (-2408 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-848)) (-4 *5 (-266 *4)) (-4 *6 (-791)) (-5 *2 (-769)))) (-3252 (*1 *2 *1 *3) (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1047)) (-4 *3 (-848)) (-4 *5 (-266 *3)) (-4 *6 (-791)) (-5 *2 (-769)))) (-3728 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-848)) (-4 *5 (-266 *4)) (-4 *6 (-791)) (-5 *2 (-642 (-769))))) (-3059 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-848)) (-4 *5 (-266 *4)) (-4 *6 (-791)) (-5 *2 (-769)))) (-3728 (*1 *2 *1 *3) (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1047)) (-4 *3 (-848)) (-4 *5 (-266 *3)) (-4 *6 (-791)) (-5 *2 (-642 (-769))))) (-3059 (*1 *2 *1 *3) (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1047)) (-4 *3 (-848)) (-4 *5 (-266 *3)) (-4 *6 (-791)) (-5 *2 (-769)))) (-4009 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-848)) (-4 *5 (-266 *4)) (-4 *6 (-791)) (-5 *2 (-112)))) (-3162 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *2 *5)) (-4 *3 (-1047)) (-4 *4 (-848)) (-4 *5 (-791)) (-4 *2 (-266 *4)))) (-1808 (*1 *1 *1) (-12 (-4 *1 (-253 *2 *3 *4 *5)) (-4 *2 (-1047)) (-4 *3 (-848)) (-4 *4 (-266 *3)) (-4 *5 (-791)))) (-3365 (*1 *1 *1) (-12 (-4 *1 (-253 *2 *3 *4 *5)) (-4 *2 (-1047)) (-4 *3 (-848)) (-4 *4 (-266 *3)) (-4 *5 (-791)))) (-3657 (*1 *2 *1) (-12 (-4 *3 (-233)) (-4 *3 (-1047)) (-4 *4 (-848)) (-4 *5 (-266 *4)) (-4 *6 (-791)) (-5 *2 (-1 *1 (-769))) (-4 *1 (-253 *3 *4 *5 *6))))) -(-13 (-947 |t#1| |t#4| |t#3|) (-231 |t#1|) (-1036 |t#2|) (-10 -8 (-15 -3657 ((-1 $ (-769)) |t#2|)) (-15 -3189 ((-642 |t#2|) $)) (-15 -2408 ((-769) $ |t#2|)) (-15 -2408 ((-769) $)) (-15 -3252 ((-769) $ |t#2|)) (-15 -3728 ((-642 (-769)) $)) (-15 -3059 ((-769) $)) (-15 -3728 ((-642 (-769)) $ |t#2|)) (-15 -3059 ((-769) $ |t#2|)) (-15 -4009 ((-112) $)) (-15 -3162 (|t#3| $)) (-15 -1808 ($ $)) (-15 -3365 ($ $)) (IF (|has| |t#1| (-233)) (PROGN (-6 (-514 |t#2| |t#1|)) (-6 (-514 |t#2| $)) (-6 (-309 $)) (-15 -3657 ((-1 $ (-769)) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2682 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2682 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) -2682 (|has| |#1| (-1036 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-614 |#2|) . T) ((-614 |#3|) . T) ((-614 $) -2682 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-611 (-860)) . T) ((-172) -2682 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-612 (-536)) -12 (|has| |#1| (-612 (-536))) (|has| |#3| (-612 (-536)))) ((-612 (-890 (-379))) -12 (|has| |#1| (-612 (-890 (-379)))) (|has| |#3| (-612 (-890 (-379))))) ((-612 (-890 (-564))) -12 (|has| |#1| (-612 (-890 (-564)))) (|has| |#3| (-612 (-890 (-564))))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-290) -2682 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-309 $) . T) ((-326 |#1| |#4|) . T) ((-377 |#1|) . T) ((-411 |#1|) . T) ((-452) -2682 (|has| |#1| (-907)) (|has| |#1| (-452))) ((-514 |#2| |#1|) |has| |#1| (-233)) ((-514 |#2| $) |has| |#1| (-233)) ((-514 |#3| |#1|) . T) ((-514 |#3| $) . T) ((-514 $ $) . T) ((-556) -2682 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-644 #0#) |has| |#1| (-38 (-407 (-564)))) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-646 #0#) |has| |#1| (-38 (-407 (-564)))) ((-646 |#1|) . T) ((-646 $) . T) ((-638 #0#) |has| |#1| (-38 (-407 (-564)))) ((-638 |#1|) |has| |#1| (-172)) ((-638 $) -2682 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-715 #0#) |has| |#1| (-38 (-407 (-564)))) ((-715 |#1|) |has| |#1| (-172)) ((-715 $) -2682 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-724) . T) ((-898 (-1173)) |has| |#1| (-898 (-1173))) ((-898 |#3|) . T) ((-884 (-379)) -12 (|has| |#1| (-884 (-379))) (|has| |#3| (-884 (-379)))) ((-884 (-564)) -12 (|has| |#1| (-884 (-564))) (|has| |#3| (-884 (-564)))) ((-947 |#1| |#4| |#3|) . T) ((-907) |has| |#1| (-907)) ((-1036 (-407 (-564))) |has| |#1| (-1036 (-407 (-564)))) ((-1036 (-564)) |has| |#1| (-1036 (-564))) ((-1036 |#1|) . T) ((-1036 |#2|) . T) ((-1036 |#3|) . T) ((-1049 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1049 |#1|) . T) ((-1049 $) -2682 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-1054 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1054 |#1|) . T) ((-1054 $) -2682 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T) ((-1216) |has| |#1| (-907))) -((-2856 (((-112) $ $) 19 (|has| |#1| (-1097)))) (-4259 ((|#1| $) 55)) (-3844 ((|#1| $) 45)) (-3442 (((-112) $ (-769)) 8)) (-2822 (($) 7 T CONST)) (-3311 (($ $) 61)) (-1540 (($ $) 49)) (-1881 ((|#1| |#1| $) 47)) (-3949 ((|#1| $) 46)) (-2018 (((-642 |#1|) $) 31 (|has| $ (-6 -4410)))) (-3769 (((-112) $ (-769)) 9)) (-3541 (((-642 |#1|) $) 30 (|has| $ (-6 -4410)))) (-2533 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-1857 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#1| |#1|) $) 36)) (-4145 (((-112) $ (-769)) 10)) (-2495 (((-769) $) 62)) (-1778 (((-1155) $) 22 (|has| |#1| (-1097)))) (-3220 ((|#1| $) 40)) (-3811 ((|#1| |#1| $) 53)) (-1798 ((|#1| |#1| $) 52)) (-1668 (($ |#1| $) 41)) (-2983 (((-769) $) 56)) (-3999 (((-1117) $) 21 (|has| |#1| (-1097)))) (-4108 ((|#1| $) 63)) (-3739 ((|#1| $) 51)) (-1386 ((|#1| $) 50)) (-4314 ((|#1| $) 42)) (-4094 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-2478 (((-112) $ $) 14)) (-2080 ((|#1| |#1| $) 59)) (-4109 (((-112) $) 11)) (-2179 (($) 12)) (-2519 ((|#1| $) 60)) (-1414 (($) 58) (($ (-642 |#1|)) 57)) (-2085 (((-769) $) 44)) (-4010 (((-769) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4410))) (((-769) |#1| $) 29 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3865 (($ $) 13)) (-2390 (((-860) $) 18 (|has| |#1| (-611 (-860))))) (-4380 ((|#1| $) 54)) (-1600 (((-112) $ $) 23 (|has| |#1| (-1097)))) (-4160 (($ (-642 |#1|)) 43)) (-4052 ((|#1| $) 64)) (-3295 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4410)))) (-2821 (((-112) $ $) 20 (|has| |#1| (-1097)))) (-2158 (((-769) $) 6 (|has| $ (-6 -4410))))) -(((-254 |#1|) (-140) (-1212)) (T -254)) -((-1414 (*1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1212)))) (-1414 (*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1212)) (-4 *1 (-254 *3)))) (-2983 (*1 *2 *1) (-12 (-4 *1 (-254 *3)) (-4 *3 (-1212)) (-5 *2 (-769)))) (-4259 (*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1212)))) (-4380 (*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1212)))) (-3811 (*1 *2 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1212)))) (-1798 (*1 *2 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1212)))) (-3739 (*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1212)))) (-1386 (*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1212)))) (-1540 (*1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1212))))) -(-13 (-1118 |t#1|) (-993 |t#1|) (-10 -8 (-15 -1414 ($)) (-15 -1414 ($ (-642 |t#1|))) (-15 -2983 ((-769) $)) (-15 -4259 (|t#1| $)) (-15 -4380 (|t#1| $)) (-15 -3811 (|t#1| |t#1| $)) (-15 -1798 (|t#1| |t#1| $)) (-15 -3739 (|t#1| $)) (-15 -1386 (|t#1| $)) (-15 -1540 ($ $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1097)) ((-611 (-860)) -2682 (|has| |#1| (-1097)) (|has| |#1| (-611 (-860)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-993 |#1|) . T) ((-1097) |has| |#1| (-1097)) ((-1118 |#1|) . T) ((-1212) . T)) -((-2201 (((-1 (-941 (-225)) (-225) (-225)) (-1 (-941 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))) 153)) (-2939 (((-1130 (-225)) (-880 (-1 (-225) (-225) (-225))) (-1091 (-379)) (-1091 (-379))) 173) (((-1130 (-225)) (-880 (-1 (-225) (-225) (-225))) (-1091 (-379)) (-1091 (-379)) (-642 (-263))) 171) (((-1130 (-225)) (-1 (-941 (-225)) (-225) (-225)) (-1091 (-379)) (-1091 (-379))) 176) (((-1130 (-225)) (-1 (-941 (-225)) (-225) (-225)) (-1091 (-379)) (-1091 (-379)) (-642 (-263))) 172) (((-1130 (-225)) (-1 (-225) (-225) (-225)) (-1091 (-379)) (-1091 (-379))) 164) (((-1130 (-225)) (-1 (-225) (-225) (-225)) (-1091 (-379)) (-1091 (-379)) (-642 (-263))) 163) (((-1130 (-225)) (-1 (-941 (-225)) (-225)) (-1091 (-379))) 145) (((-1130 (-225)) (-1 (-941 (-225)) (-225)) (-1091 (-379)) (-642 (-263))) 143) (((-1130 (-225)) (-877 (-1 (-225) (-225))) (-1091 (-379))) 144) (((-1130 (-225)) (-877 (-1 (-225) (-225))) (-1091 (-379)) (-642 (-263))) 141)) (-2891 (((-1264) (-880 (-1 (-225) (-225) (-225))) (-1091 (-379)) (-1091 (-379))) 175) (((-1264) (-880 (-1 (-225) (-225) (-225))) (-1091 (-379)) (-1091 (-379)) (-642 (-263))) 174) (((-1264) (-1 (-941 (-225)) (-225) (-225)) (-1091 (-379)) (-1091 (-379))) 178) (((-1264) (-1 (-941 (-225)) (-225) (-225)) (-1091 (-379)) (-1091 (-379)) (-642 (-263))) 177) (((-1264) (-1 (-225) (-225) (-225)) (-1091 (-379)) (-1091 (-379))) 166) (((-1264) (-1 (-225) (-225) (-225)) (-1091 (-379)) (-1091 (-379)) (-642 (-263))) 165) (((-1264) (-1 (-941 (-225)) (-225)) (-1091 (-379))) 151) (((-1264) (-1 (-941 (-225)) (-225)) (-1091 (-379)) (-642 (-263))) 150) (((-1264) (-877 (-1 (-225) (-225))) (-1091 (-379))) 149) (((-1264) (-877 (-1 (-225) (-225))) (-1091 (-379)) (-642 (-263))) 148) (((-1263) (-875 (-1 (-225) (-225))) (-1091 (-379))) 113) (((-1263) (-875 (-1 (-225) (-225))) (-1091 (-379)) (-642 (-263))) 112) (((-1263) (-1 (-225) (-225)) (-1091 (-379))) 107) (((-1263) (-1 (-225) (-225)) (-1091 (-379)) (-642 (-263))) 105))) -(((-255) (-10 -7 (-15 -2891 ((-1263) (-1 (-225) (-225)) (-1091 (-379)) (-642 (-263)))) (-15 -2891 ((-1263) (-1 (-225) (-225)) (-1091 (-379)))) (-15 -2891 ((-1263) (-875 (-1 (-225) (-225))) (-1091 (-379)) (-642 (-263)))) (-15 -2891 ((-1263) (-875 (-1 (-225) (-225))) (-1091 (-379)))) (-15 -2891 ((-1264) (-877 (-1 (-225) (-225))) (-1091 (-379)) (-642 (-263)))) (-15 -2891 ((-1264) (-877 (-1 (-225) (-225))) (-1091 (-379)))) (-15 -2891 ((-1264) (-1 (-941 (-225)) (-225)) (-1091 (-379)) (-642 (-263)))) (-15 -2891 ((-1264) (-1 (-941 (-225)) (-225)) (-1091 (-379)))) (-15 -2939 ((-1130 (-225)) (-877 (-1 (-225) (-225))) (-1091 (-379)) (-642 (-263)))) (-15 -2939 ((-1130 (-225)) (-877 (-1 (-225) (-225))) (-1091 (-379)))) (-15 -2939 ((-1130 (-225)) (-1 (-941 (-225)) (-225)) (-1091 (-379)) (-642 (-263)))) (-15 -2939 ((-1130 (-225)) (-1 (-941 (-225)) (-225)) (-1091 (-379)))) (-15 -2891 ((-1264) (-1 (-225) (-225) (-225)) (-1091 (-379)) (-1091 (-379)) (-642 (-263)))) (-15 -2891 ((-1264) (-1 (-225) (-225) (-225)) (-1091 (-379)) (-1091 (-379)))) (-15 -2939 ((-1130 (-225)) (-1 (-225) (-225) (-225)) (-1091 (-379)) (-1091 (-379)) (-642 (-263)))) (-15 -2939 ((-1130 (-225)) (-1 (-225) (-225) (-225)) (-1091 (-379)) (-1091 (-379)))) (-15 -2891 ((-1264) (-1 (-941 (-225)) (-225) (-225)) (-1091 (-379)) (-1091 (-379)) (-642 (-263)))) (-15 -2891 ((-1264) (-1 (-941 (-225)) (-225) (-225)) (-1091 (-379)) (-1091 (-379)))) (-15 -2939 ((-1130 (-225)) (-1 (-941 (-225)) (-225) (-225)) (-1091 (-379)) (-1091 (-379)) (-642 (-263)))) (-15 -2939 ((-1130 (-225)) (-1 (-941 (-225)) (-225) (-225)) (-1091 (-379)) (-1091 (-379)))) (-15 -2891 ((-1264) (-880 (-1 (-225) (-225) (-225))) (-1091 (-379)) (-1091 (-379)) (-642 (-263)))) (-15 -2891 ((-1264) (-880 (-1 (-225) (-225) (-225))) (-1091 (-379)) (-1091 (-379)))) (-15 -2939 ((-1130 (-225)) (-880 (-1 (-225) (-225) (-225))) (-1091 (-379)) (-1091 (-379)) (-642 (-263)))) (-15 -2939 ((-1130 (-225)) (-880 (-1 (-225) (-225) (-225))) (-1091 (-379)) (-1091 (-379)))) (-15 -2201 ((-1 (-941 (-225)) (-225) (-225)) (-1 (-941 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))) (T -255)) -((-2201 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-941 (-225)) (-225) (-225))) (-5 *3 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-255)))) (-2939 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-880 (-1 (-225) (-225) (-225)))) (-5 *4 (-1091 (-379))) (-5 *2 (-1130 (-225))) (-5 *1 (-255)))) (-2939 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-880 (-1 (-225) (-225) (-225)))) (-5 *4 (-1091 (-379))) (-5 *5 (-642 (-263))) (-5 *2 (-1130 (-225))) (-5 *1 (-255)))) (-2891 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-880 (-1 (-225) (-225) (-225)))) (-5 *4 (-1091 (-379))) (-5 *2 (-1264)) (-5 *1 (-255)))) (-2891 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-880 (-1 (-225) (-225) (-225)))) (-5 *4 (-1091 (-379))) (-5 *5 (-642 (-263))) (-5 *2 (-1264)) (-5 *1 (-255)))) (-2939 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-941 (-225)) (-225) (-225))) (-5 *4 (-1091 (-379))) (-5 *2 (-1130 (-225))) (-5 *1 (-255)))) (-2939 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-941 (-225)) (-225) (-225))) (-5 *4 (-1091 (-379))) (-5 *5 (-642 (-263))) (-5 *2 (-1130 (-225))) (-5 *1 (-255)))) (-2891 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-941 (-225)) (-225) (-225))) (-5 *4 (-1091 (-379))) (-5 *2 (-1264)) (-5 *1 (-255)))) (-2891 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-941 (-225)) (-225) (-225))) (-5 *4 (-1091 (-379))) (-5 *5 (-642 (-263))) (-5 *2 (-1264)) (-5 *1 (-255)))) (-2939 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1091 (-379))) (-5 *2 (-1130 (-225))) (-5 *1 (-255)))) (-2939 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1091 (-379))) (-5 *5 (-642 (-263))) (-5 *2 (-1130 (-225))) (-5 *1 (-255)))) (-2891 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1091 (-379))) (-5 *2 (-1264)) (-5 *1 (-255)))) (-2891 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1091 (-379))) (-5 *5 (-642 (-263))) (-5 *2 (-1264)) (-5 *1 (-255)))) (-2939 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-941 (-225)) (-225))) (-5 *4 (-1091 (-379))) (-5 *2 (-1130 (-225))) (-5 *1 (-255)))) (-2939 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-941 (-225)) (-225))) (-5 *4 (-1091 (-379))) (-5 *5 (-642 (-263))) (-5 *2 (-1130 (-225))) (-5 *1 (-255)))) (-2939 (*1 *2 *3 *4) (-12 (-5 *3 (-877 (-1 (-225) (-225)))) (-5 *4 (-1091 (-379))) (-5 *2 (-1130 (-225))) (-5 *1 (-255)))) (-2939 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-877 (-1 (-225) (-225)))) (-5 *4 (-1091 (-379))) (-5 *5 (-642 (-263))) (-5 *2 (-1130 (-225))) (-5 *1 (-255)))) (-2891 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-941 (-225)) (-225))) (-5 *4 (-1091 (-379))) (-5 *2 (-1264)) (-5 *1 (-255)))) (-2891 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-941 (-225)) (-225))) (-5 *4 (-1091 (-379))) (-5 *5 (-642 (-263))) (-5 *2 (-1264)) (-5 *1 (-255)))) (-2891 (*1 *2 *3 *4) (-12 (-5 *3 (-877 (-1 (-225) (-225)))) (-5 *4 (-1091 (-379))) (-5 *2 (-1264)) (-5 *1 (-255)))) (-2891 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-877 (-1 (-225) (-225)))) (-5 *4 (-1091 (-379))) (-5 *5 (-642 (-263))) (-5 *2 (-1264)) (-5 *1 (-255)))) (-2891 (*1 *2 *3 *4) (-12 (-5 *3 (-875 (-1 (-225) (-225)))) (-5 *4 (-1091 (-379))) (-5 *2 (-1263)) (-5 *1 (-255)))) (-2891 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-875 (-1 (-225) (-225)))) (-5 *4 (-1091 (-379))) (-5 *5 (-642 (-263))) (-5 *2 (-1263)) (-5 *1 (-255)))) (-2891 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1091 (-379))) (-5 *2 (-1263)) (-5 *1 (-255)))) (-2891 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1091 (-379))) (-5 *5 (-642 (-263))) (-5 *2 (-1263)) (-5 *1 (-255))))) -(-10 -7 (-15 -2891 ((-1263) (-1 (-225) (-225)) (-1091 (-379)) (-642 (-263)))) (-15 -2891 ((-1263) (-1 (-225) (-225)) (-1091 (-379)))) (-15 -2891 ((-1263) (-875 (-1 (-225) (-225))) (-1091 (-379)) (-642 (-263)))) (-15 -2891 ((-1263) (-875 (-1 (-225) (-225))) (-1091 (-379)))) (-15 -2891 ((-1264) (-877 (-1 (-225) (-225))) (-1091 (-379)) (-642 (-263)))) (-15 -2891 ((-1264) (-877 (-1 (-225) (-225))) (-1091 (-379)))) (-15 -2891 ((-1264) (-1 (-941 (-225)) (-225)) (-1091 (-379)) (-642 (-263)))) (-15 -2891 ((-1264) (-1 (-941 (-225)) (-225)) (-1091 (-379)))) (-15 -2939 ((-1130 (-225)) (-877 (-1 (-225) (-225))) (-1091 (-379)) (-642 (-263)))) (-15 -2939 ((-1130 (-225)) (-877 (-1 (-225) (-225))) (-1091 (-379)))) (-15 -2939 ((-1130 (-225)) (-1 (-941 (-225)) (-225)) (-1091 (-379)) (-642 (-263)))) (-15 -2939 ((-1130 (-225)) (-1 (-941 (-225)) (-225)) (-1091 (-379)))) (-15 -2891 ((-1264) (-1 (-225) (-225) (-225)) (-1091 (-379)) (-1091 (-379)) (-642 (-263)))) (-15 -2891 ((-1264) (-1 (-225) (-225) (-225)) (-1091 (-379)) (-1091 (-379)))) (-15 -2939 ((-1130 (-225)) (-1 (-225) (-225) (-225)) (-1091 (-379)) (-1091 (-379)) (-642 (-263)))) (-15 -2939 ((-1130 (-225)) (-1 (-225) (-225) (-225)) (-1091 (-379)) (-1091 (-379)))) (-15 -2891 ((-1264) (-1 (-941 (-225)) (-225) (-225)) (-1091 (-379)) (-1091 (-379)) (-642 (-263)))) (-15 -2891 ((-1264) (-1 (-941 (-225)) (-225) (-225)) (-1091 (-379)) (-1091 (-379)))) (-15 -2939 ((-1130 (-225)) (-1 (-941 (-225)) (-225) (-225)) (-1091 (-379)) (-1091 (-379)) (-642 (-263)))) (-15 -2939 ((-1130 (-225)) (-1 (-941 (-225)) (-225) (-225)) (-1091 (-379)) (-1091 (-379)))) (-15 -2891 ((-1264) (-880 (-1 (-225) (-225) (-225))) (-1091 (-379)) (-1091 (-379)) (-642 (-263)))) (-15 -2891 ((-1264) (-880 (-1 (-225) (-225) (-225))) (-1091 (-379)) (-1091 (-379)))) (-15 -2939 ((-1130 (-225)) (-880 (-1 (-225) (-225) (-225))) (-1091 (-379)) (-1091 (-379)) (-642 (-263)))) (-15 -2939 ((-1130 (-225)) (-880 (-1 (-225) (-225) (-225))) (-1091 (-379)) (-1091 (-379)))) (-15 -2201 ((-1 (-941 (-225)) (-225) (-225)) (-1 (-941 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))))) -((-2891 (((-1263) (-294 |#2|) (-1173) (-1173) (-642 (-263))) 101))) -(((-256 |#1| |#2|) (-10 -7 (-15 -2891 ((-1263) (-294 |#2|) (-1173) (-1173) (-642 (-263))))) (-13 (-556) (-848) (-1036 (-564))) (-430 |#1|)) (T -256)) -((-2891 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-294 *7)) (-5 *4 (-1173)) (-5 *5 (-642 (-263))) (-4 *7 (-430 *6)) (-4 *6 (-13 (-556) (-848) (-1036 (-564)))) (-5 *2 (-1263)) (-5 *1 (-256 *6 *7))))) -(-10 -7 (-15 -2891 ((-1263) (-294 |#2|) (-1173) (-1173) (-642 (-263))))) -((-4335 (((-564) (-564)) 73)) (-3088 (((-564) (-564)) 74)) (-2799 (((-225) (-225)) 75)) (-2268 (((-1264) (-1 (-169 (-225)) (-169 (-225))) (-1091 (-225)) (-1091 (-225))) 72)) (-2740 (((-1264) (-1 (-169 (-225)) (-169 (-225))) (-1091 (-225)) (-1091 (-225)) (-112)) 70))) -(((-257) (-10 -7 (-15 -2740 ((-1264) (-1 (-169 (-225)) (-169 (-225))) (-1091 (-225)) (-1091 (-225)) (-112))) (-15 -2268 ((-1264) (-1 (-169 (-225)) (-169 (-225))) (-1091 (-225)) (-1091 (-225)))) (-15 -4335 ((-564) (-564))) (-15 -3088 ((-564) (-564))) (-15 -2799 ((-225) (-225))))) (T -257)) -((-2799 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-257)))) (-3088 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-257)))) (-4335 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-257)))) (-2268 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1091 (-225))) (-5 *2 (-1264)) (-5 *1 (-257)))) (-2740 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1091 (-225))) (-5 *5 (-112)) (-5 *2 (-1264)) (-5 *1 (-257))))) -(-10 -7 (-15 -2740 ((-1264) (-1 (-169 (-225)) (-169 (-225))) (-1091 (-225)) (-1091 (-225)) (-112))) (-15 -2268 ((-1264) (-1 (-169 (-225)) (-169 (-225))) (-1091 (-225)) (-1091 (-225)))) (-15 -4335 ((-564) (-564))) (-15 -3088 ((-564) (-564))) (-15 -2799 ((-225) (-225)))) -((-2390 (((-1089 (-379)) (-1089 (-316 |#1|))) 16))) -(((-258 |#1|) (-10 -7 (-15 -2390 ((-1089 (-379)) (-1089 (-316 |#1|))))) (-13 (-848) (-556) (-612 (-379)))) (T -258)) -((-2390 (*1 *2 *3) (-12 (-5 *3 (-1089 (-316 *4))) (-4 *4 (-13 (-848) (-556) (-612 (-379)))) (-5 *2 (-1089 (-379))) (-5 *1 (-258 *4))))) -(-10 -7 (-15 -2390 ((-1089 (-379)) (-1089 (-316 |#1|))))) -((-2939 (((-1130 (-225)) (-880 |#1|) (-1089 (-379)) (-1089 (-379))) 75) (((-1130 (-225)) (-880 |#1|) (-1089 (-379)) (-1089 (-379)) (-642 (-263))) 74) (((-1130 (-225)) |#1| (-1089 (-379)) (-1089 (-379))) 65) (((-1130 (-225)) |#1| (-1089 (-379)) (-1089 (-379)) (-642 (-263))) 64) (((-1130 (-225)) (-877 |#1|) (-1089 (-379))) 56) (((-1130 (-225)) (-877 |#1|) (-1089 (-379)) (-642 (-263))) 55)) (-2891 (((-1264) (-880 |#1|) (-1089 (-379)) (-1089 (-379))) 78) (((-1264) (-880 |#1|) (-1089 (-379)) (-1089 (-379)) (-642 (-263))) 77) (((-1264) |#1| (-1089 (-379)) (-1089 (-379))) 68) (((-1264) |#1| (-1089 (-379)) (-1089 (-379)) (-642 (-263))) 67) (((-1264) (-877 |#1|) (-1089 (-379))) 60) (((-1264) (-877 |#1|) (-1089 (-379)) (-642 (-263))) 59) (((-1263) (-875 |#1|) (-1089 (-379))) 47) (((-1263) (-875 |#1|) (-1089 (-379)) (-642 (-263))) 46) (((-1263) |#1| (-1089 (-379))) 38) (((-1263) |#1| (-1089 (-379)) (-642 (-263))) 36))) -(((-259 |#1|) (-10 -7 (-15 -2891 ((-1263) |#1| (-1089 (-379)) (-642 (-263)))) (-15 -2891 ((-1263) |#1| (-1089 (-379)))) (-15 -2891 ((-1263) (-875 |#1|) (-1089 (-379)) (-642 (-263)))) (-15 -2891 ((-1263) (-875 |#1|) (-1089 (-379)))) (-15 -2891 ((-1264) (-877 |#1|) (-1089 (-379)) (-642 (-263)))) (-15 -2891 ((-1264) (-877 |#1|) (-1089 (-379)))) (-15 -2939 ((-1130 (-225)) (-877 |#1|) (-1089 (-379)) (-642 (-263)))) (-15 -2939 ((-1130 (-225)) (-877 |#1|) (-1089 (-379)))) (-15 -2891 ((-1264) |#1| (-1089 (-379)) (-1089 (-379)) (-642 (-263)))) (-15 -2891 ((-1264) |#1| (-1089 (-379)) (-1089 (-379)))) (-15 -2939 ((-1130 (-225)) |#1| (-1089 (-379)) (-1089 (-379)) (-642 (-263)))) (-15 -2939 ((-1130 (-225)) |#1| (-1089 (-379)) (-1089 (-379)))) (-15 -2891 ((-1264) (-880 |#1|) (-1089 (-379)) (-1089 (-379)) (-642 (-263)))) (-15 -2891 ((-1264) (-880 |#1|) (-1089 (-379)) (-1089 (-379)))) (-15 -2939 ((-1130 (-225)) (-880 |#1|) (-1089 (-379)) (-1089 (-379)) (-642 (-263)))) (-15 -2939 ((-1130 (-225)) (-880 |#1|) (-1089 (-379)) (-1089 (-379))))) (-13 (-612 (-536)) (-1097))) (T -259)) -((-2939 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-880 *5)) (-5 *4 (-1089 (-379))) (-4 *5 (-13 (-612 (-536)) (-1097))) (-5 *2 (-1130 (-225))) (-5 *1 (-259 *5)))) (-2939 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-880 *6)) (-5 *4 (-1089 (-379))) (-5 *5 (-642 (-263))) (-4 *6 (-13 (-612 (-536)) (-1097))) (-5 *2 (-1130 (-225))) (-5 *1 (-259 *6)))) (-2891 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-880 *5)) (-5 *4 (-1089 (-379))) (-4 *5 (-13 (-612 (-536)) (-1097))) (-5 *2 (-1264)) (-5 *1 (-259 *5)))) (-2891 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-880 *6)) (-5 *4 (-1089 (-379))) (-5 *5 (-642 (-263))) (-4 *6 (-13 (-612 (-536)) (-1097))) (-5 *2 (-1264)) (-5 *1 (-259 *6)))) (-2939 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1089 (-379))) (-5 *2 (-1130 (-225))) (-5 *1 (-259 *3)) (-4 *3 (-13 (-612 (-536)) (-1097))))) (-2939 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1089 (-379))) (-5 *5 (-642 (-263))) (-5 *2 (-1130 (-225))) (-5 *1 (-259 *3)) (-4 *3 (-13 (-612 (-536)) (-1097))))) (-2891 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1089 (-379))) (-5 *2 (-1264)) (-5 *1 (-259 *3)) (-4 *3 (-13 (-612 (-536)) (-1097))))) (-2891 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1089 (-379))) (-5 *5 (-642 (-263))) (-5 *2 (-1264)) (-5 *1 (-259 *3)) (-4 *3 (-13 (-612 (-536)) (-1097))))) (-2939 (*1 *2 *3 *4) (-12 (-5 *3 (-877 *5)) (-5 *4 (-1089 (-379))) (-4 *5 (-13 (-612 (-536)) (-1097))) (-5 *2 (-1130 (-225))) (-5 *1 (-259 *5)))) (-2939 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-877 *6)) (-5 *4 (-1089 (-379))) (-5 *5 (-642 (-263))) (-4 *6 (-13 (-612 (-536)) (-1097))) (-5 *2 (-1130 (-225))) (-5 *1 (-259 *6)))) (-2891 (*1 *2 *3 *4) (-12 (-5 *3 (-877 *5)) (-5 *4 (-1089 (-379))) (-4 *5 (-13 (-612 (-536)) (-1097))) (-5 *2 (-1264)) (-5 *1 (-259 *5)))) (-2891 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-877 *6)) (-5 *4 (-1089 (-379))) (-5 *5 (-642 (-263))) (-4 *6 (-13 (-612 (-536)) (-1097))) (-5 *2 (-1264)) (-5 *1 (-259 *6)))) (-2891 (*1 *2 *3 *4) (-12 (-5 *3 (-875 *5)) (-5 *4 (-1089 (-379))) (-4 *5 (-13 (-612 (-536)) (-1097))) (-5 *2 (-1263)) (-5 *1 (-259 *5)))) (-2891 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-875 *6)) (-5 *4 (-1089 (-379))) (-5 *5 (-642 (-263))) (-4 *6 (-13 (-612 (-536)) (-1097))) (-5 *2 (-1263)) (-5 *1 (-259 *6)))) (-2891 (*1 *2 *3 *4) (-12 (-5 *4 (-1089 (-379))) (-5 *2 (-1263)) (-5 *1 (-259 *3)) (-4 *3 (-13 (-612 (-536)) (-1097))))) (-2891 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1089 (-379))) (-5 *5 (-642 (-263))) (-5 *2 (-1263)) (-5 *1 (-259 *3)) (-4 *3 (-13 (-612 (-536)) (-1097)))))) -(-10 -7 (-15 -2891 ((-1263) |#1| (-1089 (-379)) (-642 (-263)))) (-15 -2891 ((-1263) |#1| (-1089 (-379)))) (-15 -2891 ((-1263) (-875 |#1|) (-1089 (-379)) (-642 (-263)))) (-15 -2891 ((-1263) (-875 |#1|) (-1089 (-379)))) (-15 -2891 ((-1264) (-877 |#1|) (-1089 (-379)) (-642 (-263)))) (-15 -2891 ((-1264) (-877 |#1|) (-1089 (-379)))) (-15 -2939 ((-1130 (-225)) (-877 |#1|) (-1089 (-379)) (-642 (-263)))) (-15 -2939 ((-1130 (-225)) (-877 |#1|) (-1089 (-379)))) (-15 -2891 ((-1264) |#1| (-1089 (-379)) (-1089 (-379)) (-642 (-263)))) (-15 -2891 ((-1264) |#1| (-1089 (-379)) (-1089 (-379)))) (-15 -2939 ((-1130 (-225)) |#1| (-1089 (-379)) (-1089 (-379)) (-642 (-263)))) (-15 -2939 ((-1130 (-225)) |#1| (-1089 (-379)) (-1089 (-379)))) (-15 -2891 ((-1264) (-880 |#1|) (-1089 (-379)) (-1089 (-379)) (-642 (-263)))) (-15 -2891 ((-1264) (-880 |#1|) (-1089 (-379)) (-1089 (-379)))) (-15 -2939 ((-1130 (-225)) (-880 |#1|) (-1089 (-379)) (-1089 (-379)) (-642 (-263)))) (-15 -2939 ((-1130 (-225)) (-880 |#1|) (-1089 (-379)) (-1089 (-379))))) -((-2891 (((-1264) (-642 (-225)) (-642 (-225)) (-642 (-225)) (-642 (-263))) 23) (((-1264) (-642 (-225)) (-642 (-225)) (-642 (-225))) 24) (((-1263) (-642 (-941 (-225))) (-642 (-263))) 16) (((-1263) (-642 (-941 (-225)))) 17) (((-1263) (-642 (-225)) (-642 (-225)) (-642 (-263))) 20) (((-1263) (-642 (-225)) (-642 (-225))) 21))) -(((-260) (-10 -7 (-15 -2891 ((-1263) (-642 (-225)) (-642 (-225)))) (-15 -2891 ((-1263) (-642 (-225)) (-642 (-225)) (-642 (-263)))) (-15 -2891 ((-1263) (-642 (-941 (-225))))) (-15 -2891 ((-1263) (-642 (-941 (-225))) (-642 (-263)))) (-15 -2891 ((-1264) (-642 (-225)) (-642 (-225)) (-642 (-225)))) (-15 -2891 ((-1264) (-642 (-225)) (-642 (-225)) (-642 (-225)) (-642 (-263)))))) (T -260)) -((-2891 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-642 (-225))) (-5 *4 (-642 (-263))) (-5 *2 (-1264)) (-5 *1 (-260)))) (-2891 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-642 (-225))) (-5 *2 (-1264)) (-5 *1 (-260)))) (-2891 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-941 (-225)))) (-5 *4 (-642 (-263))) (-5 *2 (-1263)) (-5 *1 (-260)))) (-2891 (*1 *2 *3) (-12 (-5 *3 (-642 (-941 (-225)))) (-5 *2 (-1263)) (-5 *1 (-260)))) (-2891 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-642 (-225))) (-5 *4 (-642 (-263))) (-5 *2 (-1263)) (-5 *1 (-260)))) (-2891 (*1 *2 *3 *3) (-12 (-5 *3 (-642 (-225))) (-5 *2 (-1263)) (-5 *1 (-260))))) -(-10 -7 (-15 -2891 ((-1263) (-642 (-225)) (-642 (-225)))) (-15 -2891 ((-1263) (-642 (-225)) (-642 (-225)) (-642 (-263)))) (-15 -2891 ((-1263) (-642 (-941 (-225))))) (-15 -2891 ((-1263) (-642 (-941 (-225))) (-642 (-263)))) (-15 -2891 ((-1264) (-642 (-225)) (-642 (-225)) (-642 (-225)))) (-15 -2891 ((-1264) (-642 (-225)) (-642 (-225)) (-642 (-225)) (-642 (-263))))) -((-1452 (((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -1531 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-642 (-263)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -1531 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 25)) (-3894 (((-919) (-642 (-263)) (-919)) 52)) (-1656 (((-919) (-642 (-263)) (-919)) 51)) (-3036 (((-642 (-379)) (-642 (-263)) (-642 (-379))) 68)) (-1662 (((-379) (-642 (-263)) (-379)) 57)) (-2301 (((-919) (-642 (-263)) (-919)) 53)) (-3566 (((-112) (-642 (-263)) (-112)) 27)) (-3212 (((-1155) (-642 (-263)) (-1155)) 19)) (-3293 (((-1155) (-642 (-263)) (-1155)) 26)) (-3530 (((-1130 (-225)) (-642 (-263))) 46)) (-4196 (((-642 (-1091 (-379))) (-642 (-263)) (-642 (-1091 (-379)))) 40)) (-1782 (((-872) (-642 (-263)) (-872)) 32)) (-4291 (((-872) (-642 (-263)) (-872)) 33)) (-2651 (((-1 (-941 (-225)) (-941 (-225))) (-642 (-263)) (-1 (-941 (-225)) (-941 (-225)))) 63)) (-3465 (((-112) (-642 (-263)) (-112)) 14)) (-4040 (((-112) (-642 (-263)) (-112)) 13))) -(((-261) (-10 -7 (-15 -4040 ((-112) (-642 (-263)) (-112))) (-15 -3465 ((-112) (-642 (-263)) (-112))) (-15 -1452 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -1531 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-642 (-263)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -1531 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3212 ((-1155) (-642 (-263)) (-1155))) (-15 -3293 ((-1155) (-642 (-263)) (-1155))) (-15 -3566 ((-112) (-642 (-263)) (-112))) (-15 -1782 ((-872) (-642 (-263)) (-872))) (-15 -4291 ((-872) (-642 (-263)) (-872))) (-15 -4196 ((-642 (-1091 (-379))) (-642 (-263)) (-642 (-1091 (-379))))) (-15 -1656 ((-919) (-642 (-263)) (-919))) (-15 -3894 ((-919) (-642 (-263)) (-919))) (-15 -3530 ((-1130 (-225)) (-642 (-263)))) (-15 -2301 ((-919) (-642 (-263)) (-919))) (-15 -1662 ((-379) (-642 (-263)) (-379))) (-15 -2651 ((-1 (-941 (-225)) (-941 (-225))) (-642 (-263)) (-1 (-941 (-225)) (-941 (-225))))) (-15 -3036 ((-642 (-379)) (-642 (-263)) (-642 (-379)))))) (T -261)) -((-3036 (*1 *2 *3 *2) (-12 (-5 *2 (-642 (-379))) (-5 *3 (-642 (-263))) (-5 *1 (-261)))) (-2651 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-941 (-225)) (-941 (-225)))) (-5 *3 (-642 (-263))) (-5 *1 (-261)))) (-1662 (*1 *2 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-642 (-263))) (-5 *1 (-261)))) (-2301 (*1 *2 *3 *2) (-12 (-5 *2 (-919)) (-5 *3 (-642 (-263))) (-5 *1 (-261)))) (-3530 (*1 *2 *3) (-12 (-5 *3 (-642 (-263))) (-5 *2 (-1130 (-225))) (-5 *1 (-261)))) (-3894 (*1 *2 *3 *2) (-12 (-5 *2 (-919)) (-5 *3 (-642 (-263))) (-5 *1 (-261)))) (-1656 (*1 *2 *3 *2) (-12 (-5 *2 (-919)) (-5 *3 (-642 (-263))) (-5 *1 (-261)))) (-4196 (*1 *2 *3 *2) (-12 (-5 *2 (-642 (-1091 (-379)))) (-5 *3 (-642 (-263))) (-5 *1 (-261)))) (-4291 (*1 *2 *3 *2) (-12 (-5 *2 (-872)) (-5 *3 (-642 (-263))) (-5 *1 (-261)))) (-1782 (*1 *2 *3 *2) (-12 (-5 *2 (-872)) (-5 *3 (-642 (-263))) (-5 *1 (-261)))) (-3566 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-642 (-263))) (-5 *1 (-261)))) (-3293 (*1 *2 *3 *2) (-12 (-5 *2 (-1155)) (-5 *3 (-642 (-263))) (-5 *1 (-261)))) (-3212 (*1 *2 *3 *2) (-12 (-5 *2 (-1155)) (-5 *3 (-642 (-263))) (-5 *1 (-261)))) (-1452 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -1531 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *3 (-642 (-263))) (-5 *1 (-261)))) (-3465 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-642 (-263))) (-5 *1 (-261)))) (-4040 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-642 (-263))) (-5 *1 (-261))))) -(-10 -7 (-15 -4040 ((-112) (-642 (-263)) (-112))) (-15 -3465 ((-112) (-642 (-263)) (-112))) (-15 -1452 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -1531 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-642 (-263)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -1531 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3212 ((-1155) (-642 (-263)) (-1155))) (-15 -3293 ((-1155) (-642 (-263)) (-1155))) (-15 -3566 ((-112) (-642 (-263)) (-112))) (-15 -1782 ((-872) (-642 (-263)) (-872))) (-15 -4291 ((-872) (-642 (-263)) (-872))) (-15 -4196 ((-642 (-1091 (-379))) (-642 (-263)) (-642 (-1091 (-379))))) (-15 -1656 ((-919) (-642 (-263)) (-919))) (-15 -3894 ((-919) (-642 (-263)) (-919))) (-15 -3530 ((-1130 (-225)) (-642 (-263)))) (-15 -2301 ((-919) (-642 (-263)) (-919))) (-15 -1662 ((-379) (-642 (-263)) (-379))) (-15 -2651 ((-1 (-941 (-225)) (-941 (-225))) (-642 (-263)) (-1 (-941 (-225)) (-941 (-225))))) (-15 -3036 ((-642 (-379)) (-642 (-263)) (-642 (-379))))) -((-1516 (((-3 |#1| "failed") (-642 (-263)) (-1173)) 17))) -(((-262 |#1|) (-10 -7 (-15 -1516 ((-3 |#1| "failed") (-642 (-263)) (-1173)))) (-1212)) (T -262)) -((-1516 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-642 (-263))) (-5 *4 (-1173)) (-5 *1 (-262 *2)) (-4 *2 (-1212))))) -(-10 -7 (-15 -1516 ((-3 |#1| "failed") (-642 (-263)) (-1173)))) -((-2856 (((-112) $ $) NIL)) (-1452 (($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -1531 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 24)) (-3894 (($ (-919)) 81)) (-1656 (($ (-919)) 80)) (-2660 (($ (-642 (-379))) 87)) (-1662 (($ (-379)) 66)) (-2301 (($ (-919)) 82)) (-3566 (($ (-112)) 33)) (-3212 (($ (-1155)) 28)) (-3293 (($ (-1155)) 29)) (-3530 (($ (-1130 (-225))) 76)) (-4196 (($ (-642 (-1091 (-379)))) 72)) (-4138 (($ (-642 (-1091 (-379)))) 68) (($ (-642 (-1091 (-407 (-564))))) 71)) (-1377 (($ (-379)) 38) (($ (-872)) 42)) (-3867 (((-112) (-642 $) (-1173)) 100)) (-1516 (((-3 (-52) "failed") (-642 $) (-1173)) 102)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-4352 (($ (-379)) 43) (($ (-872)) 44)) (-3719 (($ (-1 (-941 (-225)) (-941 (-225)))) 65)) (-2651 (($ (-1 (-941 (-225)) (-941 (-225)))) 83)) (-4214 (($ (-1 (-225) (-225))) 48) (($ (-1 (-225) (-225) (-225))) 52) (($ (-1 (-225) (-225) (-225) (-225))) 56)) (-2390 (((-860) $) 93)) (-2366 (($ (-112)) 34) (($ (-642 (-1091 (-379)))) 60)) (-1600 (((-112) $ $) NIL)) (-4040 (($ (-112)) 35)) (-2821 (((-112) $ $) 97))) -(((-263) (-13 (-1097) (-10 -8 (-15 -4040 ($ (-112))) (-15 -2366 ($ (-112))) (-15 -1452 ($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -1531 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3212 ($ (-1155))) (-15 -3293 ($ (-1155))) (-15 -3566 ($ (-112))) (-15 -2366 ($ (-642 (-1091 (-379))))) (-15 -3719 ($ (-1 (-941 (-225)) (-941 (-225))))) (-15 -1377 ($ (-379))) (-15 -1377 ($ (-872))) (-15 -4352 ($ (-379))) (-15 -4352 ($ (-872))) (-15 -4214 ($ (-1 (-225) (-225)))) (-15 -4214 ($ (-1 (-225) (-225) (-225)))) (-15 -4214 ($ (-1 (-225) (-225) (-225) (-225)))) (-15 -1662 ($ (-379))) (-15 -4138 ($ (-642 (-1091 (-379))))) (-15 -4138 ($ (-642 (-1091 (-407 (-564)))))) (-15 -4196 ($ (-642 (-1091 (-379))))) (-15 -3530 ($ (-1130 (-225)))) (-15 -1656 ($ (-919))) (-15 -3894 ($ (-919))) (-15 -2301 ($ (-919))) (-15 -2651 ($ (-1 (-941 (-225)) (-941 (-225))))) (-15 -2660 ($ (-642 (-379)))) (-15 -1516 ((-3 (-52) "failed") (-642 $) (-1173))) (-15 -3867 ((-112) (-642 $) (-1173)))))) (T -263)) -((-4040 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263)))) (-1452 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -1531 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *1 (-263)))) (-3212 (*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-263)))) (-3293 (*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-263)))) (-3566 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-642 (-1091 (-379)))) (-5 *1 (-263)))) (-3719 (*1 *1 *2) (-12 (-5 *2 (-1 (-941 (-225)) (-941 (-225)))) (-5 *1 (-263)))) (-1377 (*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-263)))) (-1377 (*1 *1 *2) (-12 (-5 *2 (-872)) (-5 *1 (-263)))) (-4352 (*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-263)))) (-4352 (*1 *1 *2) (-12 (-5 *2 (-872)) (-5 *1 (-263)))) (-4214 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-263)))) (-4214 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-263)))) (-4214 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-263)))) (-1662 (*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-263)))) (-4138 (*1 *1 *2) (-12 (-5 *2 (-642 (-1091 (-379)))) (-5 *1 (-263)))) (-4138 (*1 *1 *2) (-12 (-5 *2 (-642 (-1091 (-407 (-564))))) (-5 *1 (-263)))) (-4196 (*1 *1 *2) (-12 (-5 *2 (-642 (-1091 (-379)))) (-5 *1 (-263)))) (-3530 (*1 *1 *2) (-12 (-5 *2 (-1130 (-225))) (-5 *1 (-263)))) (-1656 (*1 *1 *2) (-12 (-5 *2 (-919)) (-5 *1 (-263)))) (-3894 (*1 *1 *2) (-12 (-5 *2 (-919)) (-5 *1 (-263)))) (-2301 (*1 *1 *2) (-12 (-5 *2 (-919)) (-5 *1 (-263)))) (-2651 (*1 *1 *2) (-12 (-5 *2 (-1 (-941 (-225)) (-941 (-225)))) (-5 *1 (-263)))) (-2660 (*1 *1 *2) (-12 (-5 *2 (-642 (-379))) (-5 *1 (-263)))) (-1516 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-642 (-263))) (-5 *4 (-1173)) (-5 *2 (-52)) (-5 *1 (-263)))) (-3867 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-263))) (-5 *4 (-1173)) (-5 *2 (-112)) (-5 *1 (-263))))) -(-13 (-1097) (-10 -8 (-15 -4040 ($ (-112))) (-15 -2366 ($ (-112))) (-15 -1452 ($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -1531 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3212 ($ (-1155))) (-15 -3293 ($ (-1155))) (-15 -3566 ($ (-112))) (-15 -2366 ($ (-642 (-1091 (-379))))) (-15 -3719 ($ (-1 (-941 (-225)) (-941 (-225))))) (-15 -1377 ($ (-379))) (-15 -1377 ($ (-872))) (-15 -4352 ($ (-379))) (-15 -4352 ($ (-872))) (-15 -4214 ($ (-1 (-225) (-225)))) (-15 -4214 ($ (-1 (-225) (-225) (-225)))) (-15 -4214 ($ (-1 (-225) (-225) (-225) (-225)))) (-15 -1662 ($ (-379))) (-15 -4138 ($ (-642 (-1091 (-379))))) (-15 -4138 ($ (-642 (-1091 (-407 (-564)))))) (-15 -4196 ($ (-642 (-1091 (-379))))) (-15 -3530 ($ (-1130 (-225)))) (-15 -1656 ($ (-919))) (-15 -3894 ($ (-919))) (-15 -2301 ($ (-919))) (-15 -2651 ($ (-1 (-941 (-225)) (-941 (-225))))) (-15 -2660 ($ (-642 (-379)))) (-15 -1516 ((-3 (-52) "failed") (-642 $) (-1173))) (-15 -3867 ((-112) (-642 $) (-1173))))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-3728 (((-642 (-769)) $) NIL) (((-642 (-769)) $ |#2|) NIL)) (-3059 (((-769) $) NIL) (((-769) $ |#2|) NIL)) (-2397 (((-642 |#3|) $) NIL)) (-2223 (((-1169 $) $ |#3|) NIL) (((-1169 |#1|) $) NIL)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-4252 (($ $) NIL (|has| |#1| (-556)))) (-1722 (((-112) $) NIL (|has| |#1| (-556)))) (-4035 (((-769) $) NIL) (((-769) $ (-642 |#3|)) NIL)) (-3085 (((-3 $ "failed") $ $) NIL)) (-4297 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-1993 (($ $) NIL (|has| |#1| (-452)))) (-3282 (((-418 $) $) NIL (|has| |#1| (-452)))) (-3267 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-3365 (($ $) NIL)) (-2822 (($) NIL T CONST)) (-2849 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1036 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1036 (-564)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1122 |#1| |#2|) "failed") $) 23)) (-1687 ((|#1| $) NIL) (((-407 (-564)) $) NIL (|has| |#1| (-1036 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1036 (-564)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1122 |#1| |#2|) $) NIL)) (-3710 (($ $ $ |#3|) NIL (|has| |#1| (-172)))) (-3459 (($ $) NIL)) (-3330 (((-687 (-564)) (-687 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -3544 (-687 |#1|)) (|:| |vec| (-1262 |#1|))) (-687 $) (-1262 $)) NIL) (((-687 |#1|) (-687 $)) NIL)) (-2675 (((-3 $ "failed") $) NIL)) (-2511 (($ $) NIL (|has| |#1| (-452))) (($ $ |#3|) NIL (|has| |#1| (-452)))) (-3446 (((-642 $) $) NIL)) (-3552 (((-112) $) NIL (|has| |#1| (-907)))) (-2315 (($ $ |#1| (-531 |#3|) $) NIL)) (-1381 (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) NIL (-12 (|has| |#1| (-884 (-379))) (|has| |#3| (-884 (-379))))) (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) NIL (-12 (|has| |#1| (-884 (-564))) (|has| |#3| (-884 (-564)))))) (-2408 (((-769) $ |#2|) NIL) (((-769) $) 10)) (-3163 (((-112) $) NIL)) (-1904 (((-769) $) NIL)) (-2387 (($ (-1169 |#1|) |#3|) NIL) (($ (-1169 $) |#3|) NIL)) (-1995 (((-642 $) $) NIL)) (-3471 (((-112) $) NIL)) (-2374 (($ |#1| (-531 |#3|)) NIL) (($ $ |#3| (-769)) NIL) (($ $ (-642 |#3|) (-642 (-769))) NIL)) (-3312 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $ |#3|) NIL)) (-2887 (((-531 |#3|) $) NIL) (((-769) $ |#3|) NIL) (((-642 (-769)) $ (-642 |#3|)) NIL)) (-3879 (($ (-1 (-531 |#3|) (-531 |#3|)) $) NIL)) (-2947 (($ (-1 |#1| |#1|) $) NIL)) (-3657 (((-1 $ (-769)) |#2|) NIL) (((-1 $ (-769)) $) NIL (|has| |#1| (-233)))) (-1557 (((-3 |#3| "failed") $) NIL)) (-2510 (($ $) NIL)) (-2523 ((|#1| $) NIL)) (-3162 ((|#3| $) NIL)) (-2066 (($ (-642 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-1778 (((-1155) $) NIL)) (-4009 (((-112) $) NIL)) (-3664 (((-3 (-642 $) "failed") $) NIL)) (-4315 (((-3 (-642 $) "failed") $) NIL)) (-3177 (((-3 (-2 (|:| |var| |#3|) (|:| -2817 (-769))) "failed") $) NIL)) (-1808 (($ $) NIL)) (-3999 (((-1117) $) NIL)) (-2491 (((-112) $) NIL)) (-2500 ((|#1| $) NIL)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) NIL (|has| |#1| (-452)))) (-2105 (($ (-642 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3223 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-2236 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-2254 (((-418 $) $) NIL (|has| |#1| (-907)))) (-2842 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-3154 (($ $ (-642 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-642 $) (-642 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-642 |#3|) (-642 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-642 |#3|) (-642 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-233))) (($ $ (-642 |#2|) (-642 $)) NIL (|has| |#1| (-233))) (($ $ |#2| |#1|) NIL (|has| |#1| (-233))) (($ $ (-642 |#2|) (-642 |#1|)) NIL (|has| |#1| (-233)))) (-2790 (($ $ |#3|) NIL (|has| |#1| (-172)))) (-2199 (($ $ |#3|) NIL) (($ $ (-642 |#3|)) NIL) (($ $ |#3| (-769)) NIL) (($ $ (-642 |#3|) (-642 (-769))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-769)) NIL (|has| |#1| (-233))) (($ $ (-1173)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1 |#1| |#1|) (-769)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3189 (((-642 |#2|) $) NIL)) (-3252 (((-531 |#3|) $) NIL) (((-769) $ |#3|) NIL) (((-642 (-769)) $ (-642 |#3|)) NIL) (((-769) $ |#2|) NIL)) (-3003 (((-890 (-379)) $) NIL (-12 (|has| |#1| (-612 (-890 (-379)))) (|has| |#3| (-612 (-890 (-379)))))) (((-890 (-564)) $) NIL (-12 (|has| |#1| (-612 (-890 (-564)))) (|has| |#3| (-612 (-890 (-564)))))) (((-536) $) NIL (-12 (|has| |#1| (-612 (-536))) (|has| |#3| (-612 (-536)))))) (-4325 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ |#3|) NIL (|has| |#1| (-452)))) (-3556 (((-3 (-1262 $) "failed") (-687 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-907))))) (-2390 (((-860) $) NIL) (($ (-564)) NIL) (($ |#1|) 26) (($ |#3|) 25) (($ |#2|) NIL) (($ (-1122 |#1| |#2|)) 32) (($ (-407 (-564))) NIL (-2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1036 (-407 (-564)))))) (($ $) NIL (|has| |#1| (-556)))) (-2839 (((-642 |#1|) $) NIL)) (-3005 ((|#1| $ (-531 |#3|)) NIL) (($ $ |#3| (-769)) NIL) (($ $ (-642 |#3|) (-642 (-769))) NIL)) (-3434 (((-3 $ "failed") $) NIL (-2682 (-12 (|has| $ (-145)) (|has| |#1| (-907))) (|has| |#1| (-145))))) (-3348 (((-769)) NIL T CONST)) (-2645 (($ $ $ (-769)) NIL (|has| |#1| (-172)))) (-1600 (((-112) $ $) NIL)) (-1594 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2361 (($) NIL T CONST)) (-2371 (($) NIL T CONST)) (-2711 (($ $ |#3|) NIL) (($ $ (-642 |#3|)) NIL) (($ $ |#3| (-769)) NIL) (($ $ (-642 |#3|) (-642 (-769))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-769)) NIL (|has| |#1| (-233))) (($ $ (-1173)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1 |#1| |#1|) (-769)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2821 (((-112) $ $) NIL)) (-2943 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-264 |#1| |#2| |#3|) (-13 (-253 |#1| |#2| |#3| (-531 |#3|)) (-1036 (-1122 |#1| |#2|))) (-1047) (-848) (-266 |#2|)) (T -264)) -NIL -(-13 (-253 |#1| |#2| |#3| (-531 |#3|)) (-1036 (-1122 |#1| |#2|))) -((-3059 (((-769) $) 37)) (-2849 (((-3 |#2| "failed") $) 22)) (-1687 ((|#2| $) 33)) (-2199 (($ $) 14) (($ $ (-769)) 18)) (-2390 (((-860) $) 32) (($ |#2|) 11)) (-2821 (((-112) $ $) 26)) (-2844 (((-112) $ $) 36))) -(((-265 |#1| |#2|) (-10 -8 (-15 -2199 (|#1| |#1| (-769))) (-15 -2199 (|#1| |#1|)) (-15 -3059 ((-769) |#1|)) (-15 -2390 (|#1| |#2|)) (-15 -2849 ((-3 |#2| "failed") |#1|)) (-15 -1687 (|#2| |#1|)) (-15 -2844 ((-112) |#1| |#1|)) (-15 -2390 ((-860) |#1|)) (-15 -2821 ((-112) |#1| |#1|))) (-266 |#2|) (-848)) (T -265)) -NIL -(-10 -8 (-15 -2199 (|#1| |#1| (-769))) (-15 -2199 (|#1| |#1|)) (-15 -3059 ((-769) |#1|)) (-15 -2390 (|#1| |#2|)) (-15 -2849 ((-3 |#2| "failed") |#1|)) (-15 -1687 (|#2| |#1|)) (-15 -2844 ((-112) |#1| |#1|)) (-15 -2390 ((-860) |#1|)) (-15 -2821 ((-112) |#1| |#1|))) -((-2856 (((-112) $ $) 7)) (-3059 (((-769) $) 23)) (-1341 ((|#1| $) 24)) (-2849 (((-3 |#1| "failed") $) 28)) (-1687 ((|#1| $) 29)) (-2408 (((-769) $) 25)) (-3225 (($ $ $) 14)) (-2903 (($ $ $) 15)) (-3657 (($ |#1| (-769)) 26)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2199 (($ $) 22) (($ $ (-769)) 21)) (-2390 (((-860) $) 12) (($ |#1|) 27)) (-1600 (((-112) $ $) 9)) (-2881 (((-112) $ $) 17)) (-2857 (((-112) $ $) 18)) (-2821 (((-112) $ $) 6)) (-2868 (((-112) $ $) 16)) (-2844 (((-112) $ $) 19))) -(((-266 |#1|) (-140) (-848)) (T -266)) -((-2390 (*1 *1 *2) (-12 (-4 *1 (-266 *2)) (-4 *2 (-848)))) (-3657 (*1 *1 *2 *3) (-12 (-5 *3 (-769)) (-4 *1 (-266 *2)) (-4 *2 (-848)))) (-2408 (*1 *2 *1) (-12 (-4 *1 (-266 *3)) (-4 *3 (-848)) (-5 *2 (-769)))) (-1341 (*1 *2 *1) (-12 (-4 *1 (-266 *2)) (-4 *2 (-848)))) (-3059 (*1 *2 *1) (-12 (-4 *1 (-266 *3)) (-4 *3 (-848)) (-5 *2 (-769)))) (-2199 (*1 *1 *1) (-12 (-4 *1 (-266 *2)) (-4 *2 (-848)))) (-2199 (*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-4 *1 (-266 *3)) (-4 *3 (-848))))) -(-13 (-848) (-1036 |t#1|) (-10 -8 (-15 -3657 ($ |t#1| (-769))) (-15 -2408 ((-769) $)) (-15 -1341 (|t#1| $)) (-15 -3059 ((-769) $)) (-15 -2199 ($ $)) (-15 -2199 ($ $ (-769))) (-15 -2390 ($ |t#1|)))) -(((-102) . T) ((-614 |#1|) . T) ((-611 (-860)) . T) ((-848) . T) ((-1036 |#1|) . T) ((-1097) . T)) -((-2397 (((-642 (-1173)) (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3910 (-642 (-225))))) 54)) (-1634 (((-642 (-1173)) (-316 (-225)) (-769)) 96)) (-4224 (((-3 (-316 (-225)) "failed") (-316 (-225))) 64)) (-3438 (((-316 (-225)) (-316 (-225))) 82)) (-3513 (((-2 (|:| |fn| (-316 (-225))) (|:| -3910 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225))))) (-2 (|:| |fn| (-316 (-225))) (|:| -3910 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) 39)) (-3908 (((-112) (-642 (-316 (-225)))) 106)) (-3670 (((-112) (-316 (-225))) 37)) (-3785 (((-642 (-1155)) (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3910 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3910 (-642 (-225))))))) 134)) (-3054 (((-642 (-316 (-225))) (-642 (-316 (-225)))) 110)) (-1940 (((-642 (-316 (-225))) (-642 (-316 (-225)))) 108)) (-3224 (((-687 (-225)) (-642 (-316 (-225))) (-769)) 122)) (-2007 (((-112) (-316 (-225))) 32) (((-112) (-642 (-316 (-225)))) 107)) (-1936 (((-642 (-225)) (-642 (-841 (-225))) (-225)) 15)) (-1727 (((-379) (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3910 (-642 (-225))))) 128)) (-2575 (((-1033) (-1173) (-1033)) 47))) -(((-267) (-10 -7 (-15 -1936 ((-642 (-225)) (-642 (-841 (-225))) (-225))) (-15 -3513 ((-2 (|:| |fn| (-316 (-225))) (|:| -3910 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225))))) (-2 (|:| |fn| (-316 (-225))) (|:| -3910 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225))))))) (-15 -4224 ((-3 (-316 (-225)) "failed") (-316 (-225)))) (-15 -3438 ((-316 (-225)) (-316 (-225)))) (-15 -3908 ((-112) (-642 (-316 (-225))))) (-15 -2007 ((-112) (-642 (-316 (-225))))) (-15 -2007 ((-112) (-316 (-225)))) (-15 -3224 ((-687 (-225)) (-642 (-316 (-225))) (-769))) (-15 -1940 ((-642 (-316 (-225))) (-642 (-316 (-225))))) (-15 -3054 ((-642 (-316 (-225))) (-642 (-316 (-225))))) (-15 -3670 ((-112) (-316 (-225)))) (-15 -2397 ((-642 (-1173)) (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3910 (-642 (-225)))))) (-15 -1634 ((-642 (-1173)) (-316 (-225)) (-769))) (-15 -2575 ((-1033) (-1173) (-1033))) (-15 -1727 ((-379) (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3910 (-642 (-225)))))) (-15 -3785 ((-642 (-1155)) (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3910 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3910 (-642 (-225)))))))))) (T -267)) -((-3785 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3910 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3910 (-642 (-225))))))) (-5 *2 (-642 (-1155))) (-5 *1 (-267)))) (-1727 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3910 (-642 (-225))))) (-5 *2 (-379)) (-5 *1 (-267)))) (-2575 (*1 *2 *3 *2) (-12 (-5 *2 (-1033)) (-5 *3 (-1173)) (-5 *1 (-267)))) (-1634 (*1 *2 *3 *4) (-12 (-5 *3 (-316 (-225))) (-5 *4 (-769)) (-5 *2 (-642 (-1173))) (-5 *1 (-267)))) (-2397 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3910 (-642 (-225))))) (-5 *2 (-642 (-1173))) (-5 *1 (-267)))) (-3670 (*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-112)) (-5 *1 (-267)))) (-3054 (*1 *2 *2) (-12 (-5 *2 (-642 (-316 (-225)))) (-5 *1 (-267)))) (-1940 (*1 *2 *2) (-12 (-5 *2 (-642 (-316 (-225)))) (-5 *1 (-267)))) (-3224 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-316 (-225)))) (-5 *4 (-769)) (-5 *2 (-687 (-225))) (-5 *1 (-267)))) (-2007 (*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-112)) (-5 *1 (-267)))) (-2007 (*1 *2 *3) (-12 (-5 *3 (-642 (-316 (-225)))) (-5 *2 (-112)) (-5 *1 (-267)))) (-3908 (*1 *2 *3) (-12 (-5 *3 (-642 (-316 (-225)))) (-5 *2 (-112)) (-5 *1 (-267)))) (-3438 (*1 *2 *2) (-12 (-5 *2 (-316 (-225))) (-5 *1 (-267)))) (-4224 (*1 *2 *2) (|partial| -12 (-5 *2 (-316 (-225))) (-5 *1 (-267)))) (-3513 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-316 (-225))) (|:| -3910 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) (-5 *1 (-267)))) (-1936 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-841 (-225)))) (-5 *4 (-225)) (-5 *2 (-642 *4)) (-5 *1 (-267))))) -(-10 -7 (-15 -1936 ((-642 (-225)) (-642 (-841 (-225))) (-225))) (-15 -3513 ((-2 (|:| |fn| (-316 (-225))) (|:| -3910 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225))))) (-2 (|:| |fn| (-316 (-225))) (|:| -3910 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225))))))) (-15 -4224 ((-3 (-316 (-225)) "failed") (-316 (-225)))) (-15 -3438 ((-316 (-225)) (-316 (-225)))) (-15 -3908 ((-112) (-642 (-316 (-225))))) (-15 -2007 ((-112) (-642 (-316 (-225))))) (-15 -2007 ((-112) (-316 (-225)))) (-15 -3224 ((-687 (-225)) (-642 (-316 (-225))) (-769))) (-15 -1940 ((-642 (-316 (-225))) (-642 (-316 (-225))))) (-15 -3054 ((-642 (-316 (-225))) (-642 (-316 (-225))))) (-15 -3670 ((-112) (-316 (-225)))) (-15 -2397 ((-642 (-1173)) (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3910 (-642 (-225)))))) (-15 -1634 ((-642 (-1173)) (-316 (-225)) (-769))) (-15 -2575 ((-1033) (-1173) (-1033))) (-15 -1727 ((-379) (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3910 (-642 (-225)))))) (-15 -3785 ((-642 (-1155)) (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3910 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3910 (-642 (-225))))))))) -((-2856 (((-112) $ $) NIL)) (-1657 (((-1033) (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3910 (-642 (-225))))) NIL) (((-1033) (-2 (|:| |fn| (-316 (-225))) (|:| -3910 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) 56)) (-4324 (((-2 (|:| -4324 (-379)) (|:| |explanations| (-1155))) (-1060) (-2 (|:| |fn| (-316 (-225))) (|:| -3910 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) 32) (((-2 (|:| -4324 (-379)) (|:| |explanations| (-1155))) (-1060) (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3910 (-642 (-225))))) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) NIL)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-268) (-837)) (T -268)) -NIL -(-837) -((-2856 (((-112) $ $) NIL)) (-1657 (((-1033) (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3910 (-642 (-225))))) 72) (((-1033) (-2 (|:| |fn| (-316 (-225))) (|:| -3910 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) 63)) (-4324 (((-2 (|:| -4324 (-379)) (|:| |explanations| (-1155))) (-1060) (-2 (|:| |fn| (-316 (-225))) (|:| -3910 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) 41) (((-2 (|:| -4324 (-379)) (|:| |explanations| (-1155))) (-1060) (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3910 (-642 (-225))))) 43)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) NIL)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-269) (-837)) (T -269)) -NIL -(-837) -((-2856 (((-112) $ $) NIL)) (-1657 (((-1033) (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3910 (-642 (-225))))) 90) (((-1033) (-2 (|:| |fn| (-316 (-225))) (|:| -3910 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) 85)) (-4324 (((-2 (|:| -4324 (-379)) (|:| |explanations| (-1155))) (-1060) (-2 (|:| |fn| (-316 (-225))) (|:| -3910 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) 52) (((-2 (|:| -4324 (-379)) (|:| |explanations| (-1155))) (-1060) (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3910 (-642 (-225))))) 65)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) NIL)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-270) (-837)) (T -270)) -NIL -(-837) -((-2856 (((-112) $ $) NIL)) (-1657 (((-1033) (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3910 (-642 (-225))))) NIL) (((-1033) (-2 (|:| |fn| (-316 (-225))) (|:| -3910 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) 73)) (-4324 (((-2 (|:| -4324 (-379)) (|:| |explanations| (-1155))) (-1060) (-2 (|:| |fn| (-316 (-225))) (|:| -3910 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) 45) (((-2 (|:| -4324 (-379)) (|:| |explanations| (-1155))) (-1060) (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3910 (-642 (-225))))) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) NIL)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-271) (-837)) (T -271)) -NIL -(-837) -((-2856 (((-112) $ $) NIL)) (-1657 (((-1033) (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3910 (-642 (-225))))) NIL) (((-1033) (-2 (|:| |fn| (-316 (-225))) (|:| -3910 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) 65)) (-4324 (((-2 (|:| -4324 (-379)) (|:| |explanations| (-1155))) (-1060) (-2 (|:| |fn| (-316 (-225))) (|:| -3910 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) 31) (((-2 (|:| -4324 (-379)) (|:| |explanations| (-1155))) (-1060) (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3910 (-642 (-225))))) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) NIL)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-272) (-837)) (T -272)) -NIL -(-837) -((-2856 (((-112) $ $) NIL)) (-1657 (((-1033) (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3910 (-642 (-225))))) NIL) (((-1033) (-2 (|:| |fn| (-316 (-225))) (|:| -3910 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) 90)) (-4324 (((-2 (|:| -4324 (-379)) (|:| |explanations| (-1155))) (-1060) (-2 (|:| |fn| (-316 (-225))) (|:| -3910 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) 33) (((-2 (|:| -4324 (-379)) (|:| |explanations| (-1155))) (-1060) (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3910 (-642 (-225))))) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) NIL)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-273) (-837)) (T -273)) -NIL -(-837) -((-2856 (((-112) $ $) NIL)) (-1657 (((-1033) (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3910 (-642 (-225))))) NIL) (((-1033) (-2 (|:| |fn| (-316 (-225))) (|:| -3910 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) 95)) (-4324 (((-2 (|:| -4324 (-379)) (|:| |explanations| (-1155))) (-1060) (-2 (|:| |fn| (-316 (-225))) (|:| -3910 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) 32) (((-2 (|:| -4324 (-379)) (|:| |explanations| (-1155))) (-1060) (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3910 (-642 (-225))))) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) NIL)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-274) (-837)) (T -274)) -NIL -(-837) -((-2856 (((-112) $ $) NIL)) (-3225 (($ $ $) NIL)) (-2903 (($ $ $) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2940 (((-642 (-564)) $) 29)) (-3252 (((-769) $) 27)) (-2390 (((-860) $) 36) (($ (-642 (-564))) 23)) (-1600 (((-112) $ $) NIL)) (-3711 (($ (-769)) 33)) (-2881 (((-112) $ $) NIL)) (-2857 (((-112) $ $) NIL)) (-2821 (((-112) $ $) 9)) (-2868 (((-112) $ $) NIL)) (-2844 (((-112) $ $) 17))) -(((-275) (-13 (-848) (-10 -8 (-15 -2390 ($ (-642 (-564)))) (-15 -3252 ((-769) $)) (-15 -2940 ((-642 (-564)) $)) (-15 -3711 ($ (-769)))))) (T -275)) -((-2390 (*1 *1 *2) (-12 (-5 *2 (-642 (-564))) (-5 *1 (-275)))) (-3252 (*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-275)))) (-2940 (*1 *2 *1) (-12 (-5 *2 (-642 (-564))) (-5 *1 (-275)))) (-3711 (*1 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-275))))) -(-13 (-848) (-10 -8 (-15 -2390 ($ (-642 (-564)))) (-15 -3252 ((-769) $)) (-15 -2940 ((-642 (-564)) $)) (-15 -3711 ($ (-769))))) -((-3087 ((|#2| |#2|) 77)) (-2958 ((|#2| |#2|) 65)) (-3820 (((-3 |#2| "failed") |#2| (-642 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 125)) (-3067 ((|#2| |#2|) 75)) (-2933 ((|#2| |#2|) 63)) (-3110 ((|#2| |#2|) 79)) (-2981 ((|#2| |#2|) 67)) (-2833 ((|#2|) 46)) (-3898 (((-114) (-114)) 100)) (-3576 ((|#2| |#2|) 61)) (-4375 (((-112) |#2|) 147)) (-1476 ((|#2| |#2|) 195)) (-2913 ((|#2| |#2|) 171)) (-2413 ((|#2|) 59)) (-4014 ((|#2|) 58)) (-3805 ((|#2| |#2|) 191)) (-2853 ((|#2| |#2|) 167)) (-1338 ((|#2| |#2|) 199)) (-2262 ((|#2| |#2|) 175)) (-2057 ((|#2| |#2|) 163)) (-2597 ((|#2| |#2|) 165)) (-2278 ((|#2| |#2|) 201)) (-1523 ((|#2| |#2|) 177)) (-2347 ((|#2| |#2|) 197)) (-3033 ((|#2| |#2|) 173)) (-3993 ((|#2| |#2|) 193)) (-2855 ((|#2| |#2|) 169)) (-3467 ((|#2| |#2|) 207)) (-2676 ((|#2| |#2|) 183)) (-1436 ((|#2| |#2|) 203)) (-2259 ((|#2| |#2|) 179)) (-1780 ((|#2| |#2|) 211)) (-3096 ((|#2| |#2|) 187)) (-2791 ((|#2| |#2|) 213)) (-2554 ((|#2| |#2|) 189)) (-2984 ((|#2| |#2|) 209)) (-1751 ((|#2| |#2|) 185)) (-1926 ((|#2| |#2|) 205)) (-3391 ((|#2| |#2|) 181)) (-3466 ((|#2| |#2|) 62)) (-3120 ((|#2| |#2|) 80)) (-2992 ((|#2| |#2|) 68)) (-3098 ((|#2| |#2|) 78)) (-2971 ((|#2| |#2|) 66)) (-3077 ((|#2| |#2|) 76)) (-2946 ((|#2| |#2|) 64)) (-4318 (((-112) (-114)) 98)) (-3155 ((|#2| |#2|) 83)) (-3025 ((|#2| |#2|) 71)) (-3131 ((|#2| |#2|) 81)) (-3002 ((|#2| |#2|) 69)) (-3176 ((|#2| |#2|) 85)) (-3047 ((|#2| |#2|) 73)) (-3165 ((|#2| |#2|) 86)) (-3058 ((|#2| |#2|) 74)) (-3168 ((|#2| |#2|) 84)) (-3035 ((|#2| |#2|) 72)) (-3142 ((|#2| |#2|) 82)) (-3014 ((|#2| |#2|) 70))) -(((-276 |#1| |#2|) (-10 -7 (-15 -3466 (|#2| |#2|)) (-15 -3576 (|#2| |#2|)) (-15 -2933 (|#2| |#2|)) (-15 -2946 (|#2| |#2|)) (-15 -2958 (|#2| |#2|)) (-15 -2971 (|#2| |#2|)) (-15 -2981 (|#2| |#2|)) (-15 -2992 (|#2| |#2|)) (-15 -3002 (|#2| |#2|)) (-15 -3014 (|#2| |#2|)) (-15 -3025 (|#2| |#2|)) (-15 -3035 (|#2| |#2|)) (-15 -3047 (|#2| |#2|)) (-15 -3058 (|#2| |#2|)) (-15 -3067 (|#2| |#2|)) (-15 -3077 (|#2| |#2|)) (-15 -3087 (|#2| |#2|)) (-15 -3098 (|#2| |#2|)) (-15 -3110 (|#2| |#2|)) (-15 -3120 (|#2| |#2|)) (-15 -3131 (|#2| |#2|)) (-15 -3142 (|#2| |#2|)) (-15 -3155 (|#2| |#2|)) (-15 -3168 (|#2| |#2|)) (-15 -3176 (|#2| |#2|)) (-15 -3165 (|#2| |#2|)) (-15 -2833 (|#2|)) (-15 -4318 ((-112) (-114))) (-15 -3898 ((-114) (-114))) (-15 -4014 (|#2|)) (-15 -2413 (|#2|)) (-15 -2597 (|#2| |#2|)) (-15 -2057 (|#2| |#2|)) (-15 -2853 (|#2| |#2|)) (-15 -2855 (|#2| |#2|)) (-15 -2913 (|#2| |#2|)) (-15 -3033 (|#2| |#2|)) (-15 -2262 (|#2| |#2|)) (-15 -1523 (|#2| |#2|)) (-15 -2259 (|#2| |#2|)) (-15 -3391 (|#2| |#2|)) (-15 -2676 (|#2| |#2|)) (-15 -1751 (|#2| |#2|)) (-15 -3096 (|#2| |#2|)) (-15 -2554 (|#2| |#2|)) (-15 -3805 (|#2| |#2|)) (-15 -3993 (|#2| |#2|)) (-15 -1476 (|#2| |#2|)) (-15 -2347 (|#2| |#2|)) (-15 -1338 (|#2| |#2|)) (-15 -2278 (|#2| |#2|)) (-15 -1436 (|#2| |#2|)) (-15 -1926 (|#2| |#2|)) (-15 -3467 (|#2| |#2|)) (-15 -2984 (|#2| |#2|)) (-15 -1780 (|#2| |#2|)) (-15 -2791 (|#2| |#2|)) (-15 -3820 ((-3 |#2| "failed") |#2| (-642 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -4375 ((-112) |#2|))) (-556) (-13 (-430 |#1|) (-1000))) (T -276)) -((-4375 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-112)) (-5 *1 (-276 *4 *3)) (-4 *3 (-13 (-430 *4) (-1000))))) (-3820 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-642 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-430 *4) (-1000))) (-4 *4 (-556)) (-5 *1 (-276 *4 *2)))) (-2791 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-1780 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-2984 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-3467 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-1926 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-1436 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-2278 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-1338 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-2347 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-1476 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-3993 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-3805 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-2554 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-3096 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-1751 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-2676 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-3391 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-2259 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-1523 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-2262 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-3033 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-2913 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-2855 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-2853 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-2057 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-2597 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-2413 (*1 *2) (-12 (-4 *2 (-13 (-430 *3) (-1000))) (-5 *1 (-276 *3 *2)) (-4 *3 (-556)))) (-4014 (*1 *2) (-12 (-4 *2 (-13 (-430 *3) (-1000))) (-5 *1 (-276 *3 *2)) (-4 *3 (-556)))) (-3898 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-556)) (-5 *1 (-276 *3 *4)) (-4 *4 (-13 (-430 *3) (-1000))))) (-4318 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-556)) (-5 *2 (-112)) (-5 *1 (-276 *4 *5)) (-4 *5 (-13 (-430 *4) (-1000))))) (-2833 (*1 *2) (-12 (-4 *2 (-13 (-430 *3) (-1000))) (-5 *1 (-276 *3 *2)) (-4 *3 (-556)))) (-3165 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-3176 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-3168 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-3155 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-3142 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-3131 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-3120 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-3110 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-3098 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-3087 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-3077 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-3067 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-3058 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-3047 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-3035 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-3025 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-3014 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-3002 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-2992 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-2981 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-2971 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-2958 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-2946 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-2933 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-3576 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-3466 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000)))))) -(-10 -7 (-15 -3466 (|#2| |#2|)) (-15 -3576 (|#2| |#2|)) (-15 -2933 (|#2| |#2|)) (-15 -2946 (|#2| |#2|)) (-15 -2958 (|#2| |#2|)) (-15 -2971 (|#2| |#2|)) (-15 -2981 (|#2| |#2|)) (-15 -2992 (|#2| |#2|)) (-15 -3002 (|#2| |#2|)) (-15 -3014 (|#2| |#2|)) (-15 -3025 (|#2| |#2|)) (-15 -3035 (|#2| |#2|)) (-15 -3047 (|#2| |#2|)) (-15 -3058 (|#2| |#2|)) (-15 -3067 (|#2| |#2|)) (-15 -3077 (|#2| |#2|)) (-15 -3087 (|#2| |#2|)) (-15 -3098 (|#2| |#2|)) (-15 -3110 (|#2| |#2|)) (-15 -3120 (|#2| |#2|)) (-15 -3131 (|#2| |#2|)) (-15 -3142 (|#2| |#2|)) (-15 -3155 (|#2| |#2|)) (-15 -3168 (|#2| |#2|)) (-15 -3176 (|#2| |#2|)) (-15 -3165 (|#2| |#2|)) (-15 -2833 (|#2|)) (-15 -4318 ((-112) (-114))) (-15 -3898 ((-114) (-114))) (-15 -4014 (|#2|)) (-15 -2413 (|#2|)) (-15 -2597 (|#2| |#2|)) (-15 -2057 (|#2| |#2|)) (-15 -2853 (|#2| |#2|)) (-15 -2855 (|#2| |#2|)) (-15 -2913 (|#2| |#2|)) (-15 -3033 (|#2| |#2|)) (-15 -2262 (|#2| |#2|)) (-15 -1523 (|#2| |#2|)) (-15 -2259 (|#2| |#2|)) (-15 -3391 (|#2| |#2|)) (-15 -2676 (|#2| |#2|)) (-15 -1751 (|#2| |#2|)) (-15 -3096 (|#2| |#2|)) (-15 -2554 (|#2| |#2|)) (-15 -3805 (|#2| |#2|)) (-15 -3993 (|#2| |#2|)) (-15 -1476 (|#2| |#2|)) (-15 -2347 (|#2| |#2|)) (-15 -1338 (|#2| |#2|)) (-15 -2278 (|#2| |#2|)) (-15 -1436 (|#2| |#2|)) (-15 -1926 (|#2| |#2|)) (-15 -3467 (|#2| |#2|)) (-15 -2984 (|#2| |#2|)) (-15 -1780 (|#2| |#2|)) (-15 -2791 (|#2| |#2|)) (-15 -3820 ((-3 |#2| "failed") |#2| (-642 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -4375 ((-112) |#2|))) -((-2596 (((-3 |#2| "failed") (-642 (-610 |#2|)) |#2| (-1173)) 153)) (-1678 ((|#2| (-407 (-564)) |#2|) 49)) (-2961 ((|#2| |#2| (-610 |#2|)) 146)) (-2990 (((-2 (|:| |func| |#2|) (|:| |kers| (-642 (-610 |#2|))) (|:| |vals| (-642 |#2|))) |#2| (-1173)) 145)) (-1442 ((|#2| |#2| (-1173)) 20) ((|#2| |#2|) 23)) (-2867 ((|#2| |#2| (-1173)) 159) ((|#2| |#2|) 157))) -(((-277 |#1| |#2|) (-10 -7 (-15 -2867 (|#2| |#2|)) (-15 -2867 (|#2| |#2| (-1173))) (-15 -2990 ((-2 (|:| |func| |#2|) (|:| |kers| (-642 (-610 |#2|))) (|:| |vals| (-642 |#2|))) |#2| (-1173))) (-15 -1442 (|#2| |#2|)) (-15 -1442 (|#2| |#2| (-1173))) (-15 -2596 ((-3 |#2| "failed") (-642 (-610 |#2|)) |#2| (-1173))) (-15 -2961 (|#2| |#2| (-610 |#2|))) (-15 -1678 (|#2| (-407 (-564)) |#2|))) (-13 (-556) (-1036 (-564)) (-637 (-564))) (-13 (-27) (-1197) (-430 |#1|))) (T -277)) -((-1678 (*1 *2 *3 *2) (-12 (-5 *3 (-407 (-564))) (-4 *4 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1197) (-430 *4))))) (-2961 (*1 *2 *2 *3) (-12 (-5 *3 (-610 *2)) (-4 *2 (-13 (-27) (-1197) (-430 *4))) (-4 *4 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *1 (-277 *4 *2)))) (-2596 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-642 (-610 *2))) (-5 *4 (-1173)) (-4 *2 (-13 (-27) (-1197) (-430 *5))) (-4 *5 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *1 (-277 *5 *2)))) (-1442 (*1 *2 *2 *3) (-12 (-5 *3 (-1173)) (-4 *4 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1197) (-430 *4))))) (-1442 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-27) (-1197) (-430 *3))))) (-2990 (*1 *2 *3 *4) (-12 (-5 *4 (-1173)) (-4 *5 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-642 (-610 *3))) (|:| |vals| (-642 *3)))) (-5 *1 (-277 *5 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *5))))) (-2867 (*1 *2 *2 *3) (-12 (-5 *3 (-1173)) (-4 *4 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1197) (-430 *4))))) (-2867 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-27) (-1197) (-430 *3)))))) -(-10 -7 (-15 -2867 (|#2| |#2|)) (-15 -2867 (|#2| |#2| (-1173))) (-15 -2990 ((-2 (|:| |func| |#2|) (|:| |kers| (-642 (-610 |#2|))) (|:| |vals| (-642 |#2|))) |#2| (-1173))) (-15 -1442 (|#2| |#2|)) (-15 -1442 (|#2| |#2| (-1173))) (-15 -2596 ((-3 |#2| "failed") (-642 (-610 |#2|)) |#2| (-1173))) (-15 -2961 (|#2| |#2| (-610 |#2|))) (-15 -1678 (|#2| (-407 (-564)) |#2|))) -((-1524 (((-3 |#3| "failed") |#3|) 120)) (-3087 ((|#3| |#3|) 142)) (-2436 (((-3 |#3| "failed") |#3|) 89)) (-2958 ((|#3| |#3|) 132)) (-1299 (((-3 |#3| "failed") |#3|) 65)) (-3067 ((|#3| |#3|) 140)) (-3159 (((-3 |#3| "failed") |#3|) 53)) (-2933 ((|#3| |#3|) 130)) (-3716 (((-3 |#3| "failed") |#3|) 122)) (-3110 ((|#3| |#3|) 144)) (-4007 (((-3 |#3| "failed") |#3|) 91)) (-2981 ((|#3| |#3|) 134)) (-2308 (((-3 |#3| "failed") |#3| (-769)) 41)) (-2530 (((-3 |#3| "failed") |#3|) 81)) (-3576 ((|#3| |#3|) 129)) (-3347 (((-3 |#3| "failed") |#3|) 51)) (-3466 ((|#3| |#3|) 128)) (-1786 (((-3 |#3| "failed") |#3|) 123)) (-3120 ((|#3| |#3|) 145)) (-3226 (((-3 |#3| "failed") |#3|) 92)) (-2992 ((|#3| |#3|) 135)) (-1759 (((-3 |#3| "failed") |#3|) 121)) (-3098 ((|#3| |#3|) 143)) (-2025 (((-3 |#3| "failed") |#3|) 90)) (-2971 ((|#3| |#3|) 133)) (-3491 (((-3 |#3| "failed") |#3|) 67)) (-3077 ((|#3| |#3|) 141)) (-1477 (((-3 |#3| "failed") |#3|) 55)) (-2946 ((|#3| |#3|) 131)) (-1416 (((-3 |#3| "failed") |#3|) 73)) (-3155 ((|#3| |#3|) 148)) (-1296 (((-3 |#3| "failed") |#3|) 114)) (-3025 ((|#3| |#3|) 154)) (-4386 (((-3 |#3| "failed") |#3|) 69)) (-3131 ((|#3| |#3|) 146)) (-3916 (((-3 |#3| "failed") |#3|) 57)) (-3002 ((|#3| |#3|) 136)) (-2558 (((-3 |#3| "failed") |#3|) 77)) (-3176 ((|#3| |#3|) 150)) (-3369 (((-3 |#3| "failed") |#3|) 61)) (-3047 ((|#3| |#3|) 138)) (-2009 (((-3 |#3| "failed") |#3|) 79)) (-3165 ((|#3| |#3|) 151)) (-3764 (((-3 |#3| "failed") |#3|) 63)) (-3058 ((|#3| |#3|) 139)) (-3150 (((-3 |#3| "failed") |#3|) 75)) (-3168 ((|#3| |#3|) 149)) (-1605 (((-3 |#3| "failed") |#3|) 117)) (-3035 ((|#3| |#3|) 155)) (-1842 (((-3 |#3| "failed") |#3|) 71)) (-3142 ((|#3| |#3|) 147)) (-4288 (((-3 |#3| "failed") |#3|) 59)) (-3014 ((|#3| |#3|) 137)) (** ((|#3| |#3| (-407 (-564))) 47 (|has| |#1| (-363))))) -(((-278 |#1| |#2| |#3|) (-13 (-981 |#3|) (-10 -7 (IF (|has| |#1| (-363)) (-15 ** (|#3| |#3| (-407 (-564)))) |%noBranch|) (-15 -3466 (|#3| |#3|)) (-15 -3576 (|#3| |#3|)) (-15 -2933 (|#3| |#3|)) (-15 -2946 (|#3| |#3|)) (-15 -2958 (|#3| |#3|)) (-15 -2971 (|#3| |#3|)) (-15 -2981 (|#3| |#3|)) (-15 -2992 (|#3| |#3|)) (-15 -3002 (|#3| |#3|)) (-15 -3014 (|#3| |#3|)) (-15 -3025 (|#3| |#3|)) (-15 -3035 (|#3| |#3|)) (-15 -3047 (|#3| |#3|)) (-15 -3058 (|#3| |#3|)) (-15 -3067 (|#3| |#3|)) (-15 -3077 (|#3| |#3|)) (-15 -3087 (|#3| |#3|)) (-15 -3098 (|#3| |#3|)) (-15 -3110 (|#3| |#3|)) (-15 -3120 (|#3| |#3|)) (-15 -3131 (|#3| |#3|)) (-15 -3142 (|#3| |#3|)) (-15 -3155 (|#3| |#3|)) (-15 -3168 (|#3| |#3|)) (-15 -3176 (|#3| |#3|)) (-15 -3165 (|#3| |#3|)))) (-38 (-407 (-564))) (-1253 |#1|) (-1224 |#1| |#2|)) (T -278)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-407 (-564))) (-4 *4 (-363)) (-4 *4 (-38 *3)) (-4 *5 (-1253 *4)) (-5 *1 (-278 *4 *5 *2)) (-4 *2 (-1224 *4 *5)))) (-3466 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) (-3576 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) (-2933 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) (-2946 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) (-2958 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) (-2971 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) (-2981 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) (-2992 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) (-3002 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) (-3014 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) (-3025 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) (-3035 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) (-3047 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) (-3058 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) (-3067 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) (-3077 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) (-3087 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) (-3098 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) (-3110 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) (-3120 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) (-3131 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) (-3142 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) (-3155 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) (-3168 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) (-3176 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) (-3165 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4))))) -(-13 (-981 |#3|) (-10 -7 (IF (|has| |#1| (-363)) (-15 ** (|#3| |#3| (-407 (-564)))) |%noBranch|) (-15 -3466 (|#3| |#3|)) (-15 -3576 (|#3| |#3|)) (-15 -2933 (|#3| |#3|)) (-15 -2946 (|#3| |#3|)) (-15 -2958 (|#3| |#3|)) (-15 -2971 (|#3| |#3|)) (-15 -2981 (|#3| |#3|)) (-15 -2992 (|#3| |#3|)) (-15 -3002 (|#3| |#3|)) (-15 -3014 (|#3| |#3|)) (-15 -3025 (|#3| |#3|)) (-15 -3035 (|#3| |#3|)) (-15 -3047 (|#3| |#3|)) (-15 -3058 (|#3| |#3|)) (-15 -3067 (|#3| |#3|)) (-15 -3077 (|#3| |#3|)) (-15 -3087 (|#3| |#3|)) (-15 -3098 (|#3| |#3|)) (-15 -3110 (|#3| |#3|)) (-15 -3120 (|#3| |#3|)) (-15 -3131 (|#3| |#3|)) (-15 -3142 (|#3| |#3|)) (-15 -3155 (|#3| |#3|)) (-15 -3168 (|#3| |#3|)) (-15 -3176 (|#3| |#3|)) (-15 -3165 (|#3| |#3|)))) -((-1524 (((-3 |#3| "failed") |#3|) 70)) (-3087 ((|#3| |#3|) 137)) (-2436 (((-3 |#3| "failed") |#3|) 54)) (-2958 ((|#3| |#3|) 125)) (-1299 (((-3 |#3| "failed") |#3|) 66)) (-3067 ((|#3| |#3|) 135)) (-3159 (((-3 |#3| "failed") |#3|) 50)) (-2933 ((|#3| |#3|) 123)) (-3716 (((-3 |#3| "failed") |#3|) 74)) (-3110 ((|#3| |#3|) 139)) (-4007 (((-3 |#3| "failed") |#3|) 58)) (-2981 ((|#3| |#3|) 127)) (-2308 (((-3 |#3| "failed") |#3| (-769)) 38)) (-2530 (((-3 |#3| "failed") |#3|) 48)) (-3576 ((|#3| |#3|) 111)) (-3347 (((-3 |#3| "failed") |#3|) 46)) (-3466 ((|#3| |#3|) 122)) (-1786 (((-3 |#3| "failed") |#3|) 76)) (-3120 ((|#3| |#3|) 140)) (-3226 (((-3 |#3| "failed") |#3|) 60)) (-2992 ((|#3| |#3|) 128)) (-1759 (((-3 |#3| "failed") |#3|) 72)) (-3098 ((|#3| |#3|) 138)) (-2025 (((-3 |#3| "failed") |#3|) 56)) (-2971 ((|#3| |#3|) 126)) (-3491 (((-3 |#3| "failed") |#3|) 68)) (-3077 ((|#3| |#3|) 136)) (-1477 (((-3 |#3| "failed") |#3|) 52)) (-2946 ((|#3| |#3|) 124)) (-1416 (((-3 |#3| "failed") |#3|) 78)) (-3155 ((|#3| |#3|) 143)) (-1296 (((-3 |#3| "failed") |#3|) 62)) (-3025 ((|#3| |#3|) 131)) (-4386 (((-3 |#3| "failed") |#3|) 112)) (-3131 ((|#3| |#3|) 141)) (-3916 (((-3 |#3| "failed") |#3|) 100)) (-3002 ((|#3| |#3|) 129)) (-2558 (((-3 |#3| "failed") |#3|) 116)) (-3176 ((|#3| |#3|) 145)) (-3369 (((-3 |#3| "failed") |#3|) 107)) (-3047 ((|#3| |#3|) 133)) (-2009 (((-3 |#3| "failed") |#3|) 117)) (-3165 ((|#3| |#3|) 146)) (-3764 (((-3 |#3| "failed") |#3|) 109)) (-3058 ((|#3| |#3|) 134)) (-3150 (((-3 |#3| "failed") |#3|) 80)) (-3168 ((|#3| |#3|) 144)) (-1605 (((-3 |#3| "failed") |#3|) 64)) (-3035 ((|#3| |#3|) 132)) (-1842 (((-3 |#3| "failed") |#3|) 113)) (-3142 ((|#3| |#3|) 142)) (-4288 (((-3 |#3| "failed") |#3|) 103)) (-3014 ((|#3| |#3|) 130)) (** ((|#3| |#3| (-407 (-564))) 44 (|has| |#1| (-363))))) -(((-279 |#1| |#2| |#3| |#4|) (-13 (-981 |#3|) (-10 -7 (IF (|has| |#1| (-363)) (-15 ** (|#3| |#3| (-407 (-564)))) |%noBranch|) (-15 -3466 (|#3| |#3|)) (-15 -3576 (|#3| |#3|)) (-15 -2933 (|#3| |#3|)) (-15 -2946 (|#3| |#3|)) (-15 -2958 (|#3| |#3|)) (-15 -2971 (|#3| |#3|)) (-15 -2981 (|#3| |#3|)) (-15 -2992 (|#3| |#3|)) (-15 -3002 (|#3| |#3|)) (-15 -3014 (|#3| |#3|)) (-15 -3025 (|#3| |#3|)) (-15 -3035 (|#3| |#3|)) (-15 -3047 (|#3| |#3|)) (-15 -3058 (|#3| |#3|)) (-15 -3067 (|#3| |#3|)) (-15 -3077 (|#3| |#3|)) (-15 -3087 (|#3| |#3|)) (-15 -3098 (|#3| |#3|)) (-15 -3110 (|#3| |#3|)) (-15 -3120 (|#3| |#3|)) (-15 -3131 (|#3| |#3|)) (-15 -3142 (|#3| |#3|)) (-15 -3155 (|#3| |#3|)) (-15 -3168 (|#3| |#3|)) (-15 -3176 (|#3| |#3|)) (-15 -3165 (|#3| |#3|)))) (-38 (-407 (-564))) (-1222 |#1|) (-1245 |#1| |#2|) (-981 |#2|)) (T -279)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-407 (-564))) (-4 *4 (-363)) (-4 *4 (-38 *3)) (-4 *5 (-1222 *4)) (-5 *1 (-279 *4 *5 *2 *6)) (-4 *2 (-1245 *4 *5)) (-4 *6 (-981 *5)))) (-3466 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) (-3576 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) (-2933 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) (-2946 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) (-2958 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) (-2971 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) (-2981 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) (-2992 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) (-3002 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) (-3014 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) (-3025 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) (-3035 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) (-3047 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) (-3058 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) (-3067 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) (-3077 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) (-3087 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) (-3098 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) (-3110 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) (-3120 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) (-3131 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) (-3142 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) (-3155 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) (-3168 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) (-3176 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) (-3165 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4))))) -(-13 (-981 |#3|) (-10 -7 (IF (|has| |#1| (-363)) (-15 ** (|#3| |#3| (-407 (-564)))) |%noBranch|) (-15 -3466 (|#3| |#3|)) (-15 -3576 (|#3| |#3|)) (-15 -2933 (|#3| |#3|)) (-15 -2946 (|#3| |#3|)) (-15 -2958 (|#3| |#3|)) (-15 -2971 (|#3| |#3|)) (-15 -2981 (|#3| |#3|)) (-15 -2992 (|#3| |#3|)) (-15 -3002 (|#3| |#3|)) (-15 -3014 (|#3| |#3|)) (-15 -3025 (|#3| |#3|)) (-15 -3035 (|#3| |#3|)) (-15 -3047 (|#3| |#3|)) (-15 -3058 (|#3| |#3|)) (-15 -3067 (|#3| |#3|)) (-15 -3077 (|#3| |#3|)) (-15 -3087 (|#3| |#3|)) (-15 -3098 (|#3| |#3|)) (-15 -3110 (|#3| |#3|)) (-15 -3120 (|#3| |#3|)) (-15 -3131 (|#3| |#3|)) (-15 -3142 (|#3| |#3|)) (-15 -3155 (|#3| |#3|)) (-15 -3168 (|#3| |#3|)) (-15 -3176 (|#3| |#3|)) (-15 -3165 (|#3| |#3|)))) -((-4308 (((-112) $) 20)) (-2836 (((-183) $) 7)) (-3718 (((-3 (-506) "failed") $) 14)) (-3681 (((-3 (-642 $) "failed") $) NIL)) (-1719 (((-3 (-506) "failed") $) 21)) (-2611 (((-3 (-1101) "failed") $) 18)) (-2602 (((-112) $) 16)) (-2390 (((-860) $) NIL)) (-4209 (((-112) $) 9))) -(((-280) (-13 (-611 (-860)) (-10 -8 (-15 -2836 ((-183) $)) (-15 -2602 ((-112) $)) (-15 -2611 ((-3 (-1101) "failed") $)) (-15 -4308 ((-112) $)) (-15 -1719 ((-3 (-506) "failed") $)) (-15 -4209 ((-112) $)) (-15 -3718 ((-3 (-506) "failed") $)) (-15 -3681 ((-3 (-642 $) "failed") $))))) (T -280)) -((-2836 (*1 *2 *1) (-12 (-5 *2 (-183)) (-5 *1 (-280)))) (-2602 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280)))) (-2611 (*1 *2 *1) (|partial| -12 (-5 *2 (-1101)) (-5 *1 (-280)))) (-4308 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280)))) (-1719 (*1 *2 *1) (|partial| -12 (-5 *2 (-506)) (-5 *1 (-280)))) (-4209 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280)))) (-3718 (*1 *2 *1) (|partial| -12 (-5 *2 (-506)) (-5 *1 (-280)))) (-3681 (*1 *2 *1) (|partial| -12 (-5 *2 (-642 (-280))) (-5 *1 (-280))))) -(-13 (-611 (-860)) (-10 -8 (-15 -2836 ((-183) $)) (-15 -2602 ((-112) $)) (-15 -2611 ((-3 (-1101) "failed") $)) (-15 -4308 ((-112) $)) (-15 -1719 ((-3 (-506) "failed") $)) (-15 -4209 ((-112) $)) (-15 -3718 ((-3 (-506) "failed") $)) (-15 -3681 ((-3 (-642 $) "failed") $)))) -((-3437 (($ (-1 (-112) |#2|) $) 24)) (-4067 (($ $) 38)) (-1927 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 36)) (-2517 (($ |#2| $) 34) (($ (-1 (-112) |#2|) $) 18)) (-4096 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 42)) (-4247 (($ |#2| $ (-564)) 20) (($ $ $ (-564)) 22)) (-2083 (($ $ (-564)) 11) (($ $ (-1229 (-564))) 14)) (-2766 (($ $ |#2|) 32) (($ $ $) NIL)) (-3634 (($ $ |#2|) 31) (($ |#2| $) NIL) (($ $ $) 26) (($ (-642 $)) NIL))) -(((-281 |#1| |#2|) (-10 -8 (-15 -4096 (|#1| |#1| |#1|)) (-15 -1927 (|#1| |#2| |#1|)) (-15 -4096 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1927 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2766 (|#1| |#1| |#1|)) (-15 -2766 (|#1| |#1| |#2|)) (-15 -4247 (|#1| |#1| |#1| (-564))) (-15 -4247 (|#1| |#2| |#1| (-564))) (-15 -2083 (|#1| |#1| (-1229 (-564)))) (-15 -2083 (|#1| |#1| (-564))) (-15 -3634 (|#1| (-642 |#1|))) (-15 -3634 (|#1| |#1| |#1|)) (-15 -3634 (|#1| |#2| |#1|)) (-15 -3634 (|#1| |#1| |#2|)) (-15 -2517 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3437 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2517 (|#1| |#2| |#1|)) (-15 -4067 (|#1| |#1|))) (-282 |#2|) (-1212)) (T -281)) -NIL -(-10 -8 (-15 -4096 (|#1| |#1| |#1|)) (-15 -1927 (|#1| |#2| |#1|)) (-15 -4096 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1927 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2766 (|#1| |#1| |#1|)) (-15 -2766 (|#1| |#1| |#2|)) (-15 -4247 (|#1| |#1| |#1| (-564))) (-15 -4247 (|#1| |#2| |#1| (-564))) (-15 -2083 (|#1| |#1| (-1229 (-564)))) (-15 -2083 (|#1| |#1| (-564))) (-15 -3634 (|#1| (-642 |#1|))) (-15 -3634 (|#1| |#1| |#1|)) (-15 -3634 (|#1| |#2| |#1|)) (-15 -3634 (|#1| |#1| |#2|)) (-15 -2517 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3437 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2517 (|#1| |#2| |#1|)) (-15 -4067 (|#1| |#1|))) -((-2856 (((-112) $ $) 19 (|has| |#1| (-1097)))) (-3633 (((-1267) $ (-564) (-564)) 41 (|has| $ (-6 -4411)))) (-3442 (((-112) $ (-769)) 8)) (-3841 ((|#1| $ (-564) |#1|) 53 (|has| $ (-6 -4411))) ((|#1| $ (-1229 (-564)) |#1|) 59 (|has| $ (-6 -4411)))) (-2438 (($ (-1 (-112) |#1|) $) 86)) (-3437 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4410)))) (-2822 (($) 7 T CONST)) (-2324 (($ $) 84 (|has| |#1| (-1097)))) (-4067 (($ $) 79 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-1927 (($ (-1 (-112) |#1|) $) 90) (($ |#1| $) 85 (|has| |#1| (-1097)))) (-2517 (($ |#1| $) 78 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4410)))) (-3741 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4410)))) (-3105 ((|#1| $ (-564) |#1|) 54 (|has| $ (-6 -4411)))) (-1804 ((|#1| $ (-564)) 52)) (-2018 (((-642 |#1|) $) 31 (|has| $ (-6 -4410)))) (-4233 (($ (-769) |#1|) 70)) (-3769 (((-112) $ (-769)) 9)) (-1802 (((-564) $) 44 (|has| (-564) (-848)))) (-4096 (($ (-1 (-112) |#1| |#1|) $ $) 87) (($ $ $) 83 (|has| |#1| (-848)))) (-3541 (((-642 |#1|) $) 30 (|has| $ (-6 -4410)))) (-2533 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3624 (((-564) $) 45 (|has| (-564) (-848)))) (-1857 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4145 (((-112) $ (-769)) 10)) (-1778 (((-1155) $) 22 (|has| |#1| (-1097)))) (-1668 (($ |#1| $ (-564)) 89) (($ $ $ (-564)) 88)) (-4247 (($ |#1| $ (-564)) 61) (($ $ $ (-564)) 60)) (-4107 (((-642 (-564)) $) 47)) (-4207 (((-112) (-564) $) 48)) (-3999 (((-1117) $) 21 (|has| |#1| (-1097)))) (-4036 ((|#1| $) 43 (|has| (-564) (-848)))) (-3183 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-3826 (($ $ |#1|) 42 (|has| $ (-6 -4411)))) (-4094 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-2478 (((-112) $ $) 14)) (-1643 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3522 (((-642 |#1|) $) 49)) (-4109 (((-112) $) 11)) (-2179 (($) 12)) (-4369 ((|#1| $ (-564) |#1|) 51) ((|#1| $ (-564)) 50) (($ $ (-1229 (-564))) 64)) (-1406 (($ $ (-564)) 92) (($ $ (-1229 (-564))) 91)) (-2083 (($ $ (-564)) 63) (($ $ (-1229 (-564))) 62)) (-4010 (((-769) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4410))) (((-769) |#1| $) 29 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3865 (($ $) 13)) (-3003 (((-536) $) 80 (|has| |#1| (-612 (-536))))) (-2401 (($ (-642 |#1|)) 71)) (-2766 (($ $ |#1|) 94) (($ $ $) 93)) (-3634 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-642 $)) 66)) (-2390 (((-860) $) 18 (|has| |#1| (-611 (-860))))) (-1600 (((-112) $ $) 23 (|has| |#1| (-1097)))) (-3295 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4410)))) (-2821 (((-112) $ $) 20 (|has| |#1| (-1097)))) (-2158 (((-769) $) 6 (|has| $ (-6 -4410))))) -(((-282 |#1|) (-140) (-1212)) (T -282)) -((-2766 (*1 *1 *1 *2) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1212)))) (-2766 (*1 *1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1212)))) (-1406 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-282 *3)) (-4 *3 (-1212)))) (-1406 (*1 *1 *1 *2) (-12 (-5 *2 (-1229 (-564))) (-4 *1 (-282 *3)) (-4 *3 (-1212)))) (-1927 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-282 *3)) (-4 *3 (-1212)))) (-1668 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-282 *2)) (-4 *2 (-1212)))) (-1668 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-282 *3)) (-4 *3 (-1212)))) (-4096 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-282 *3)) (-4 *3 (-1212)))) (-2438 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-282 *3)) (-4 *3 (-1212)))) (-1927 (*1 *1 *2 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1212)) (-4 *2 (-1097)))) (-2324 (*1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1212)) (-4 *2 (-1097)))) (-4096 (*1 *1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1212)) (-4 *2 (-848))))) -(-13 (-649 |t#1|) (-10 -8 (-6 -4411) (-15 -2766 ($ $ |t#1|)) (-15 -2766 ($ $ $)) (-15 -1406 ($ $ (-564))) (-15 -1406 ($ $ (-1229 (-564)))) (-15 -1927 ($ (-1 (-112) |t#1|) $)) (-15 -1668 ($ |t#1| $ (-564))) (-15 -1668 ($ $ $ (-564))) (-15 -4096 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -2438 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1097)) (PROGN (-15 -1927 ($ |t#1| $)) (-15 -2324 ($ $))) |%noBranch|) (IF (|has| |t#1| (-848)) (-15 -4096 ($ $ $)) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1097)) ((-611 (-860)) -2682 (|has| |#1| (-1097)) (|has| |#1| (-611 (-860)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-649 |#1|) . T) ((-1097) |has| |#1| (-1097)) ((-1212) . T)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-243)) (-5 *2 (-566)))) (-2577 (*1 *1 *1) (-4 *1 (-243)))) +(-13 (-291) (-38 (-409 (-566))) (-10 -8 (-15 ** ($ $ (-566))) (-15 -2577 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-409 (-566))) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-616 #0#) . T) ((-616 (-566)) . T) ((-613 (-862)) . T) ((-291) . T) ((-646 #0#) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 #0#) . T) ((-648 $) . T) ((-640 #0#) . T) ((-717 #0#) . T) ((-726) . T) ((-1051 #0#) . T) ((-1051 $) . T) ((-1056 #0#) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) +((-2986 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2153 ((|#1| $) 49)) (-3238 (($ $) 58)) (-1453 (((-112) $ (-771)) 8)) (-3684 ((|#1| $ |#1|) 40 (|has| $ (-6 -4418)))) (-3948 (($ $ $) 54 (|has| $ (-6 -4418)))) (-2396 (($ $ $) 53 (|has| $ (-6 -4418)))) (-3901 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4418)))) (-3891 (($ $ (-644 $)) 42 (|has| $ (-6 -4418)))) (-1811 (($) 7 T CONST)) (-3926 (($ $) 57)) (-3872 (((-644 |#1|) $) 31 (|has| $ (-6 -4417)))) (-3578 (((-644 $) $) 51)) (-2778 (((-112) $ $) 43 (|has| |#1| (-1099)))) (-3856 (($ $) 56)) (-2756 (((-112) $ (-771)) 9)) (-4227 (((-644 |#1|) $) 30 (|has| $ (-6 -4417)))) (-1688 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-3708 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#1| |#1|) $) 36)) (-4106 (((-112) $ (-771)) 10)) (-3658 (((-644 |#1|) $) 46)) (-1587 (((-112) $) 50)) (-3151 (((-1157) $) 22 (|has| |#1| (-1099)))) (-2651 ((|#1| $) 60)) (-2154 (($ $) 59)) (-4059 (((-1119) $) 21 (|has| |#1| (-1099)))) (-3966 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1844 (((-112) $ $) 14)) (-2788 (((-112) $) 11)) (-1737 (($) 12)) (-4376 ((|#1| $ "value") 48)) (-4098 (((-566) $ $) 45)) (-2636 (((-112) $) 47)) (-4068 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4417))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-3924 (($ $) 13)) (-1323 (($ $ $) 55 (|has| $ (-6 -4418)))) (-2479 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-2156 (((-644 $) $) 52)) (-3922 (((-112) $ $) 44 (|has| |#1| (-1099)))) (-3900 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-3667 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4417)))) (-2952 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3002 (((-771) $) 6 (|has| $ (-6 -4417))))) +(((-244 |#1|) (-140) (-1214)) (T -244)) +((-2651 (*1 *2 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1214)))) (-2154 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1214)))) (-3238 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1214)))) (-3926 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1214)))) (-3856 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1214)))) (-1323 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4418)) (-4 *1 (-244 *2)) (-4 *2 (-1214)))) (-3948 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4418)) (-4 *1 (-244 *2)) (-4 *2 (-1214)))) (-2396 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4418)) (-4 *1 (-244 *2)) (-4 *2 (-1214))))) +(-13 (-1010 |t#1|) (-10 -8 (-15 -2651 (|t#1| $)) (-15 -2154 ($ $)) (-15 -3238 ($ $)) (-15 -3926 ($ $)) (-15 -3856 ($ $)) (IF (|has| $ (-6 -4418)) (PROGN (-15 -1323 ($ $ $)) (-15 -3948 ($ $ $)) (-15 -2396 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2809 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1010 |#1|) . T) ((-1099) |has| |#1| (-1099)) ((-1214) . T)) +((-2986 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2153 ((|#1| $) NIL)) (-3673 ((|#1| $) NIL)) (-3238 (($ $) NIL)) (-2462 (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4418)))) (-3427 (($ $ (-566)) NIL (|has| $ (-6 -4418)))) (-4163 (((-112) $) NIL (|has| |#1| (-850))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2893 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-850)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4418)))) (-1374 (($ $) 10 (|has| |#1| (-850))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1453 (((-112) $ (-771)) NIL)) (-3684 ((|#1| $ |#1|) NIL (|has| $ (-6 -4418)))) (-3494 (($ $ $) NIL (|has| $ (-6 -4418)))) (-2454 ((|#1| $ |#1|) NIL (|has| $ (-6 -4418)))) (-1306 ((|#1| $ |#1|) NIL (|has| $ (-6 -4418)))) (-3901 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4418))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4418))) (($ $ "rest" $) NIL (|has| $ (-6 -4418))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4418))) ((|#1| $ (-1231 (-566)) |#1|) NIL (|has| $ (-6 -4418))) ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4418)))) (-3891 (($ $ (-644 $)) NIL (|has| $ (-6 -4418)))) (-4364 (($ (-1 (-112) |#1|) $) NIL)) (-3543 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-3663 ((|#1| $) NIL)) (-1811 (($) NIL T CONST)) (-2273 (($ $) NIL (|has| $ (-6 -4418)))) (-3877 (($ $) NIL)) (-4091 (($ $) NIL) (($ $ (-771)) NIL)) (-1346 (($ $) NIL (|has| |#1| (-1099)))) (-4111 (($ $) 7 (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-2295 (($ |#1| $) NIL (|has| |#1| (-1099))) (($ (-1 (-112) |#1|) $) NIL)) (-2628 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-1838 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-3719 ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4418)))) (-3653 ((|#1| $ (-566)) NIL)) (-3258 (((-112) $) NIL)) (-4000 (((-566) |#1| $ (-566)) NIL (|has| |#1| (-1099))) (((-566) |#1| $) NIL (|has| |#1| (-1099))) (((-566) (-1 (-112) |#1|) $) NIL)) (-3872 (((-644 |#1|) $) NIL (|has| $ (-6 -4417)))) (-3578 (((-644 $) $) NIL)) (-2778 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-4259 (($ (-771) |#1|) NIL)) (-2756 (((-112) $ (-771)) NIL)) (-2755 (((-566) $) NIL (|has| (-566) (-850)))) (-1920 (($ $ $) NIL (|has| |#1| (-850)))) (-3200 (($ $ $) NIL (|has| |#1| (-850))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1330 (($ $ $) NIL (|has| |#1| (-850))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-4227 (((-644 |#1|) $) NIL (|has| $ (-6 -4417)))) (-1688 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-3831 (((-566) $) NIL (|has| (-566) (-850)))) (-3038 (($ $ $) NIL (|has| |#1| (-850)))) (-3708 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3960 (($ |#1|) NIL)) (-4106 (((-112) $ (-771)) NIL)) (-3658 (((-644 |#1|) $) NIL)) (-1587 (((-112) $) NIL)) (-3151 (((-1157) $) NIL (|has| |#1| (-1099)))) (-2651 ((|#1| $) NIL) (($ $ (-771)) NIL)) (-4354 (($ $ $ (-566)) NIL) (($ |#1| $ (-566)) NIL)) (-4271 (($ $ $ (-566)) NIL) (($ |#1| $ (-566)) NIL)) (-3780 (((-644 (-566)) $) NIL)) (-1605 (((-112) (-566) $) NIL)) (-4059 (((-1119) $) NIL (|has| |#1| (-1099)))) (-4080 ((|#1| $) NIL) (($ $ (-771)) NIL)) (-2688 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4079 (($ $ |#1|) NIL (|has| $ (-6 -4418)))) (-3094 (((-112) $) NIL)) (-3966 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1844 (((-112) $ $) NIL)) (-2210 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-4185 (((-644 |#1|) $) NIL)) (-2788 (((-112) $) NIL)) (-1737 (($) NIL)) (-4376 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1231 (-566))) NIL) ((|#1| $ (-566)) NIL) ((|#1| $ (-566) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-771) $ "count") 16)) (-4098 (((-566) $ $) NIL)) (-3139 (($ $ (-1231 (-566))) NIL) (($ $ (-566)) NIL)) (-2139 (($ $ (-1231 (-566))) NIL) (($ $ (-566)) NIL)) (-2620 (($ (-644 |#1|)) 22)) (-2636 (((-112) $) NIL)) (-3513 (($ $) NIL)) (-2018 (($ $) NIL (|has| $ (-6 -4418)))) (-2804 (((-771) $) NIL)) (-2924 (($ $) NIL)) (-4068 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-1438 (($ $ $ (-566)) NIL (|has| $ (-6 -4418)))) (-3924 (($ $) NIL)) (-3136 (((-538) $) NIL (|has| |#1| (-614 (-538))))) (-2489 (($ (-644 |#1|)) NIL)) (-1323 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3716 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-644 $)) NIL) (($ $ |#1|) NIL)) (-2479 (($ (-644 |#1|)) 17) (((-644 |#1|) $) 18) (((-862) $) 21 (|has| |#1| (-613 (-862))))) (-2156 (((-644 $) $) NIL)) (-3922 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3900 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3667 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-3019 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2990 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2952 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3004 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-850)))) (-3002 (((-771) $) 14 (|has| $ (-6 -4417))))) +(((-245 |#1|) (-13 (-666 |#1|) (-492 (-644 |#1|)) (-10 -8 (-15 -2620 ($ (-644 |#1|))) (-15 -4376 ($ $ "unique")) (-15 -4376 ($ $ "sort")) (-15 -4376 ((-771) $ "count")))) (-850)) (T -245)) +((-2620 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-850)) (-5 *1 (-245 *3)))) (-4376 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-245 *3)) (-4 *3 (-850)))) (-4376 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-245 *3)) (-4 *3 (-850)))) (-4376 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-771)) (-5 *1 (-245 *4)) (-4 *4 (-850))))) +(-13 (-666 |#1|) (-492 (-644 |#1|)) (-10 -8 (-15 -2620 ($ (-644 |#1|))) (-15 -4376 ($ $ "unique")) (-15 -4376 ($ $ "sort")) (-15 -4376 ((-771) $ "count")))) +((-3881 (((-3 (-771) "failed") |#1| |#1| (-771)) 43))) +(((-246 |#1|) (-10 -7 (-15 -3881 ((-3 (-771) "failed") |#1| |#1| (-771)))) (-13 (-726) (-370) (-10 -7 (-15 ** (|#1| |#1| (-566)))))) (T -246)) +((-3881 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-771)) (-4 *3 (-13 (-726) (-370) (-10 -7 (-15 ** (*3 *3 (-566)))))) (-5 *1 (-246 *3))))) +(-10 -7 (-15 -3881 ((-3 (-771) "failed") |#1| |#1| (-771)))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-2485 (((-644 (-864 |#1|)) $) NIL)) (-2285 (((-1171 $) $ (-864 |#1|)) NIL) (((-1171 |#2|) $) NIL)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (|has| |#2| (-558)))) (-3087 (($ $) NIL (|has| |#2| (-558)))) (-1716 (((-112) $) NIL (|has| |#2| (-558)))) (-2917 (((-771) $) NIL) (((-771) $ (-644 (-864 |#1|))) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-4058 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-3980 (($ $) NIL (|has| |#2| (-454)))) (-3348 (((-420 $) $) NIL (|has| |#2| (-454)))) (-4262 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-1811 (($) NIL T CONST)) (-2980 (((-3 |#2| "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#2| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) NIL (|has| |#2| (-1038 (-566)))) (((-3 (-864 |#1|) "failed") $) NIL)) (-1709 ((|#2| $) NIL) (((-409 (-566)) $) NIL (|has| |#2| (-1038 (-409 (-566))))) (((-566) $) NIL (|has| |#2| (-1038 (-566)))) (((-864 |#1|) $) NIL)) (-4343 (($ $ $ (-864 |#1|)) NIL (|has| |#2| (-172)))) (-2972 (($ $ (-644 (-566))) NIL)) (-3565 (($ $) NIL)) (-2275 (((-689 (-566)) (-689 $)) NIL (|has| |#2| (-639 (-566)))) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| |#2| (-639 (-566)))) (((-2 (|:| -4196 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 $) (-1264 $)) NIL) (((-689 |#2|) (-689 $)) NIL)) (-3757 (((-3 $ "failed") $) NIL)) (-3530 (($ $) NIL (|has| |#2| (-454))) (($ $ (-864 |#1|)) NIL (|has| |#2| (-454)))) (-3551 (((-644 $) $) NIL)) (-4188 (((-112) $) NIL (|has| |#2| (-909)))) (-3995 (($ $ |#2| (-240 (-3002 |#1|) (-771)) $) NIL)) (-1542 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| (-864 |#1|) (-886 (-381))) (|has| |#2| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| (-864 |#1|) (-886 (-566))) (|has| |#2| (-886 (-566)))))) (-2264 (((-112) $) NIL)) (-3486 (((-771) $) NIL)) (-2474 (($ (-1171 |#2|) (-864 |#1|)) NIL) (($ (-1171 $) (-864 |#1|)) NIL)) (-1545 (((-644 $) $) NIL)) (-3989 (((-112) $) NIL)) (-2463 (($ |#2| (-240 (-3002 |#1|) (-771))) NIL) (($ $ (-864 |#1|) (-771)) NIL) (($ $ (-644 (-864 |#1|)) (-644 (-771))) NIL)) (-2235 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $ (-864 |#1|)) NIL)) (-2584 (((-240 (-3002 |#1|) (-771)) $) NIL) (((-771) $ (-864 |#1|)) NIL) (((-644 (-771)) $ (-644 (-864 |#1|))) NIL)) (-3327 (($ (-1 (-240 (-3002 |#1|) (-771)) (-240 (-3002 |#1|) (-771))) $) NIL)) (-3080 (($ (-1 |#2| |#2|) $) NIL)) (-2673 (((-3 (-864 |#1|) "failed") $) NIL)) (-2608 (($ $) NIL)) (-2622 ((|#2| $) NIL)) (-2120 (($ (-644 $)) NIL (|has| |#2| (-454))) (($ $ $) NIL (|has| |#2| (-454)))) (-3151 (((-1157) $) NIL)) (-4075 (((-3 (-644 $) "failed") $) NIL)) (-3380 (((-3 (-644 $) "failed") $) NIL)) (-2414 (((-3 (-2 (|:| |var| (-864 |#1|)) (|:| -3631 (-771))) "failed") $) NIL)) (-4059 (((-1119) $) NIL)) (-2587 (((-112) $) NIL)) (-2597 ((|#2| $) NIL)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#2| (-454)))) (-2162 (($ (-644 $)) NIL (|has| |#2| (-454))) (($ $ $) NIL (|has| |#2| (-454)))) (-1500 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-3917 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-2325 (((-420 $) $) NIL (|has| |#2| (-909)))) (-2976 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-558))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-558)))) (-3297 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-864 |#1|) |#2|) NIL) (($ $ (-644 (-864 |#1|)) (-644 |#2|)) NIL) (($ $ (-864 |#1|) $) NIL) (($ $ (-644 (-864 |#1|)) (-644 $)) NIL)) (-3553 (($ $ (-864 |#1|)) NIL (|has| |#2| (-172)))) (-3526 (($ $ (-864 |#1|)) NIL) (($ $ (-644 (-864 |#1|))) NIL) (($ $ (-864 |#1|) (-771)) NIL) (($ $ (-644 (-864 |#1|)) (-644 (-771))) NIL)) (-1630 (((-240 (-3002 |#1|) (-771)) $) NIL) (((-771) $ (-864 |#1|)) NIL) (((-644 (-771)) $ (-644 (-864 |#1|))) NIL)) (-3136 (((-892 (-381)) $) NIL (-12 (|has| (-864 |#1|) (-614 (-892 (-381)))) (|has| |#2| (-614 (-892 (-381)))))) (((-892 (-566)) $) NIL (-12 (|has| (-864 |#1|) (-614 (-892 (-566)))) (|has| |#2| (-614 (-892 (-566)))))) (((-538) $) NIL (-12 (|has| (-864 |#1|) (-614 (-538))) (|has| |#2| (-614 (-538)))))) (-2252 ((|#2| $) NIL (|has| |#2| (-454))) (($ $ (-864 |#1|)) NIL (|has| |#2| (-454)))) (-3233 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-909))))) (-2479 (((-862) $) NIL) (($ (-566)) NIL) (($ |#2|) NIL) (($ (-864 |#1|)) NIL) (($ (-409 (-566))) NIL (-2809 (|has| |#2| (-38 (-409 (-566)))) (|has| |#2| (-1038 (-409 (-566)))))) (($ $) NIL (|has| |#2| (-558)))) (-3866 (((-644 |#2|) $) NIL)) (-3025 ((|#2| $ (-240 (-3002 |#1|) (-771))) NIL) (($ $ (-864 |#1|) (-771)) NIL) (($ $ (-644 (-864 |#1|)) (-644 (-771))) NIL)) (-2645 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| $ (-145)) (|has| |#2| (-909))) (|has| |#2| (-145))))) (-1558 (((-771)) NIL T CONST)) (-2244 (($ $ $ (-771)) NIL (|has| |#2| (-172)))) (-3900 (((-112) $ $) NIL)) (-1333 (((-112) $ $) NIL (|has| |#2| (-558)))) (-2446 (($) NIL T CONST)) (-2459 (($) NIL T CONST)) (-2834 (($ $ (-864 |#1|)) NIL) (($ $ (-644 (-864 |#1|))) NIL) (($ $ (-864 |#1|) (-771)) NIL) (($ $ (-644 (-864 |#1|)) (-644 (-771))) NIL)) (-2952 (((-112) $ $) NIL)) (-3077 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL (|has| |#2| (-38 (-409 (-566))))) (($ (-409 (-566)) $) NIL (|has| |#2| (-38 (-409 (-566))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-247 |#1| |#2|) (-13 (-949 |#2| (-240 (-3002 |#1|) (-771)) (-864 |#1|)) (-10 -8 (-15 -2972 ($ $ (-644 (-566)))))) (-644 (-1175)) (-1049)) (T -247)) +((-2972 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-247 *3 *4)) (-14 *3 (-644 (-1175))) (-4 *4 (-1049))))) +(-13 (-949 |#2| (-240 (-3002 |#1|) (-771)) (-864 |#1|)) (-10 -8 (-15 -2972 ($ $ (-644 (-566)))))) +((-2986 (((-112) $ $) NIL)) (-2529 (((-1269) $) 17)) (-2213 (((-183) $) 11)) (-4179 (($ (-183)) 12)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-1517 (((-249) $) 7)) (-2479 (((-862) $) 9)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 15))) +(((-248) (-13 (-1099) (-10 -8 (-15 -1517 ((-249) $)) (-15 -2213 ((-183) $)) (-15 -4179 ($ (-183))) (-15 -2529 ((-1269) $))))) (T -248)) +((-1517 (*1 *2 *1) (-12 (-5 *2 (-249)) (-5 *1 (-248)))) (-2213 (*1 *2 *1) (-12 (-5 *2 (-183)) (-5 *1 (-248)))) (-4179 (*1 *1 *2) (-12 (-5 *2 (-183)) (-5 *1 (-248)))) (-2529 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-248))))) +(-13 (-1099) (-10 -8 (-15 -1517 ((-249) $)) (-15 -2213 ((-183) $)) (-15 -4179 ($ (-183))) (-15 -2529 ((-1269) $)))) +((-2986 (((-112) $ $) NIL)) (-3562 (((-644 (-865)) $) NIL)) (-2598 (((-508) $) NIL)) (-3151 (((-1157) $) NIL)) (-1657 (((-186) $) NIL)) (-1896 (((-112) $ (-508)) NIL)) (-4059 (((-1119) $) NIL)) (-2012 (((-334) $) 7)) (-4348 (((-644 (-112)) $) NIL)) (-2479 (((-862) $) NIL) (((-187) $) 8)) (-3900 (((-112) $ $) NIL)) (-3864 (((-55) $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-249) (-13 (-185) (-613 (-187)) (-10 -8 (-15 -2012 ((-334) $))))) (T -249)) +((-2012 (*1 *2 *1) (-12 (-5 *2 (-334)) (-5 *1 (-249))))) +(-13 (-185) (-613 (-187)) (-10 -8 (-15 -2012 ((-334) $)))) +((-2986 (((-112) $ $) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-4376 (((-1180) $ (-771)) 13)) (-2479 (((-862) $) 20)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 16)) (-3002 (((-771) $) 9))) +(((-250) (-13 (-1099) (-10 -8 (-15 -3002 ((-771) $)) (-15 -4376 ((-1180) $ (-771)))))) (T -250)) +((-3002 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-250)))) (-4376 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1180)) (-5 *1 (-250))))) +(-13 (-1099) (-10 -8 (-15 -3002 ((-771) $)) (-15 -4376 ((-1180) $ (-771))))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-2680 (($ (-921)) NIL (|has| |#4| (-1049)))) (-2462 (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4418)))) (-4047 (($ $ $) NIL (|has| |#4| (-793)))) (-3174 (((-3 $ "failed") $ $) NIL)) (-1453 (((-112) $ (-771)) NIL)) (-4049 (((-771)) NIL (|has| |#4| (-370)))) (-2920 (((-566) $) NIL (|has| |#4| (-848)))) (-3901 ((|#4| $ (-566) |#4|) NIL (|has| $ (-6 -4418)))) (-1811 (($) NIL T CONST)) (-2980 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1099))) (((-3 (-566) "failed") $) NIL (-12 (|has| |#4| (-1038 (-566))) (|has| |#4| (-1099)))) (((-3 (-409 (-566)) "failed") $) NIL (-12 (|has| |#4| (-1038 (-409 (-566)))) (|has| |#4| (-1099))))) (-1709 ((|#4| $) NIL (|has| |#4| (-1099))) (((-566) $) NIL (-12 (|has| |#4| (-1038 (-566))) (|has| |#4| (-1099)))) (((-409 (-566)) $) NIL (-12 (|has| |#4| (-1038 (-409 (-566)))) (|has| |#4| (-1099))))) (-2275 (((-2 (|:| -4196 (-689 |#4|)) (|:| |vec| (-1264 |#4|))) (-689 $) (-1264 $)) NIL (|has| |#4| (-1049))) (((-689 |#4|) (-689 $)) NIL (|has| |#4| (-1049))) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (-12 (|has| |#4| (-639 (-566))) (|has| |#4| (-1049)))) (((-689 (-566)) (-689 $)) NIL (-12 (|has| |#4| (-639 (-566))) (|has| |#4| (-1049))))) (-3757 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| |#4| (-233)) (|has| |#4| (-1049))) (-12 (|has| |#4| (-639 (-566))) (|has| |#4| (-1049))) (|has| |#4| (-726)) (-12 (|has| |#4| (-900 (-1175))) (|has| |#4| (-1049)))))) (-1415 (($) NIL (|has| |#4| (-370)))) (-3719 ((|#4| $ (-566) |#4|) NIL (|has| $ (-6 -4418)))) (-3653 ((|#4| $ (-566)) NIL)) (-2133 (((-112) $) NIL (|has| |#4| (-848)))) (-3872 (((-644 |#4|) $) NIL (|has| $ (-6 -4417)))) (-2264 (((-112) $) NIL (-2809 (-12 (|has| |#4| (-233)) (|has| |#4| (-1049))) (-12 (|has| |#4| (-639 (-566))) (|has| |#4| (-1049))) (|has| |#4| (-726)) (-12 (|has| |#4| (-900 (-1175))) (|has| |#4| (-1049)))))) (-3420 (((-112) $) NIL (|has| |#4| (-848)))) (-2756 (((-112) $ (-771)) NIL)) (-2755 (((-566) $) NIL (|has| (-566) (-850)))) (-1920 (($ $ $) NIL (-2809 (|has| |#4| (-793)) (|has| |#4| (-848))))) (-4227 (((-644 |#4|) $) NIL (|has| $ (-6 -4417)))) (-1688 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#4| (-1099))))) (-3831 (((-566) $) NIL (|has| (-566) (-850)))) (-3038 (($ $ $) NIL (-2809 (|has| |#4| (-793)) (|has| |#4| (-848))))) (-3708 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#4| |#4|) $) NIL)) (-4051 (((-921) $) NIL (|has| |#4| (-370)))) (-4106 (((-112) $ (-771)) NIL)) (-3151 (((-1157) $) NIL)) (-3780 (((-644 (-566)) $) NIL)) (-1605 (((-112) (-566) $) NIL)) (-2104 (($ (-921)) NIL (|has| |#4| (-370)))) (-4059 (((-1119) $) NIL)) (-4080 ((|#4| $) NIL (|has| (-566) (-850)))) (-4079 (($ $ |#4|) NIL (|has| $ (-6 -4418)))) (-3966 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-295 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-644 |#4|) (-644 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))))) (-1844 (((-112) $ $) NIL)) (-2210 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#4| (-1099))))) (-4185 (((-644 |#4|) $) NIL)) (-2788 (((-112) $) NIL)) (-1737 (($) NIL)) (-4376 ((|#4| $ (-566) |#4|) NIL) ((|#4| $ (-566)) 16)) (-2555 ((|#4| $ $) NIL (|has| |#4| (-1049)))) (-2379 (($ (-1264 |#4|)) NIL)) (-3944 (((-134)) NIL (|has| |#4| (-365)))) (-3526 (($ $ (-1 |#4| |#4|) (-771)) NIL (|has| |#4| (-1049))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1049))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#4| (-900 (-1175))) (|has| |#4| (-1049)))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#4| (-900 (-1175))) (|has| |#4| (-1049)))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#4| (-900 (-1175))) (|has| |#4| (-1049)))) (($ $ (-1175)) NIL (-12 (|has| |#4| (-900 (-1175))) (|has| |#4| (-1049)))) (($ $ (-771)) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1049)))) (($ $) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1049))))) (-4068 (((-771) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4417))) (((-771) |#4| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#4| (-1099))))) (-3924 (($ $) NIL)) (-2479 (((-1264 |#4|) $) NIL) (((-862) $) NIL) (($ |#4|) NIL (|has| |#4| (-1099))) (($ (-566)) NIL (-2809 (-12 (|has| |#4| (-1038 (-566))) (|has| |#4| (-1099))) (|has| |#4| (-1049)))) (($ (-409 (-566))) NIL (-12 (|has| |#4| (-1038 (-409 (-566)))) (|has| |#4| (-1099))))) (-1558 (((-771)) NIL (|has| |#4| (-1049)) CONST)) (-3900 (((-112) $ $) NIL)) (-3667 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4417)))) (-4298 (($ $) NIL (|has| |#4| (-848)))) (-2446 (($) NIL T CONST)) (-2459 (($) NIL (-2809 (-12 (|has| |#4| (-233)) (|has| |#4| (-1049))) (-12 (|has| |#4| (-639 (-566))) (|has| |#4| (-1049))) (|has| |#4| (-726)) (-12 (|has| |#4| (-900 (-1175))) (|has| |#4| (-1049)))) CONST)) (-2834 (($ $ (-1 |#4| |#4|) (-771)) NIL (|has| |#4| (-1049))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1049))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#4| (-900 (-1175))) (|has| |#4| (-1049)))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#4| (-900 (-1175))) (|has| |#4| (-1049)))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#4| (-900 (-1175))) (|has| |#4| (-1049)))) (($ $ (-1175)) NIL (-12 (|has| |#4| (-900 (-1175))) (|has| |#4| (-1049)))) (($ $ (-771)) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1049)))) (($ $) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1049))))) (-3019 (((-112) $ $) NIL (-2809 (|has| |#4| (-793)) (|has| |#4| (-848))))) (-2990 (((-112) $ $) NIL (-2809 (|has| |#4| (-793)) (|has| |#4| (-848))))) (-2952 (((-112) $ $) NIL)) (-3004 (((-112) $ $) NIL (-2809 (|has| |#4| (-793)) (|has| |#4| (-848))))) (-2977 (((-112) $ $) NIL (-2809 (|has| |#4| (-793)) (|has| |#4| (-848))))) (-3077 (($ $ |#4|) NIL (|has| |#4| (-365)))) (-3065 (($ $ $) NIL) (($ $) NIL)) (-3052 (($ $ $) NIL)) (** (($ $ (-771)) NIL (-2809 (-12 (|has| |#4| (-233)) (|has| |#4| (-1049))) (-12 (|has| |#4| (-639 (-566))) (|has| |#4| (-1049))) (|has| |#4| (-726)) (-12 (|has| |#4| (-900 (-1175))) (|has| |#4| (-1049))))) (($ $ (-921)) NIL (-2809 (-12 (|has| |#4| (-233)) (|has| |#4| (-1049))) (-12 (|has| |#4| (-639 (-566))) (|has| |#4| (-1049))) (|has| |#4| (-726)) (-12 (|has| |#4| (-900 (-1175))) (|has| |#4| (-1049)))))) (* (($ |#2| $) 18) (($ (-566) $) NIL) (($ (-771) $) NIL) (($ (-921) $) NIL) (($ |#3| $) 22) (($ $ |#4|) NIL (|has| |#4| (-726))) (($ |#4| $) NIL (|has| |#4| (-726))) (($ $ $) NIL (-2809 (-12 (|has| |#4| (-233)) (|has| |#4| (-1049))) (-12 (|has| |#4| (-639 (-566))) (|has| |#4| (-1049))) (|has| |#4| (-726)) (-12 (|has| |#4| (-900 (-1175))) (|has| |#4| (-1049)))))) (-3002 (((-771) $) NIL (|has| $ (-6 -4417))))) +(((-251 |#1| |#2| |#3| |#4|) (-13 (-238 |#1| |#4|) (-648 |#2|) (-648 |#3|)) (-921) (-1049) (-1122 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-648 |#2|)) (T -251)) +NIL +(-13 (-238 |#1| |#4|) (-648 |#2|) (-648 |#3|)) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-2680 (($ (-921)) NIL (|has| |#3| (-1049)))) (-2462 (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4418)))) (-4047 (($ $ $) NIL (|has| |#3| (-793)))) (-3174 (((-3 $ "failed") $ $) NIL)) (-1453 (((-112) $ (-771)) NIL)) (-4049 (((-771)) NIL (|has| |#3| (-370)))) (-2920 (((-566) $) NIL (|has| |#3| (-848)))) (-3901 ((|#3| $ (-566) |#3|) NIL (|has| $ (-6 -4418)))) (-1811 (($) NIL T CONST)) (-2980 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1099))) (((-3 (-566) "failed") $) NIL (-12 (|has| |#3| (-1038 (-566))) (|has| |#3| (-1099)))) (((-3 (-409 (-566)) "failed") $) NIL (-12 (|has| |#3| (-1038 (-409 (-566)))) (|has| |#3| (-1099))))) (-1709 ((|#3| $) NIL (|has| |#3| (-1099))) (((-566) $) NIL (-12 (|has| |#3| (-1038 (-566))) (|has| |#3| (-1099)))) (((-409 (-566)) $) NIL (-12 (|has| |#3| (-1038 (-409 (-566)))) (|has| |#3| (-1099))))) (-2275 (((-2 (|:| -4196 (-689 |#3|)) (|:| |vec| (-1264 |#3|))) (-689 $) (-1264 $)) NIL (|has| |#3| (-1049))) (((-689 |#3|) (-689 $)) NIL (|has| |#3| (-1049))) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (-12 (|has| |#3| (-639 (-566))) (|has| |#3| (-1049)))) (((-689 (-566)) (-689 $)) NIL (-12 (|has| |#3| (-639 (-566))) (|has| |#3| (-1049))))) (-3757 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| |#3| (-233)) (|has| |#3| (-1049))) (-12 (|has| |#3| (-639 (-566))) (|has| |#3| (-1049))) (|has| |#3| (-726)) (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))))) (-1415 (($) NIL (|has| |#3| (-370)))) (-3719 ((|#3| $ (-566) |#3|) NIL (|has| $ (-6 -4418)))) (-3653 ((|#3| $ (-566)) NIL)) (-2133 (((-112) $) NIL (|has| |#3| (-848)))) (-3872 (((-644 |#3|) $) NIL (|has| $ (-6 -4417)))) (-2264 (((-112) $) NIL (-2809 (-12 (|has| |#3| (-233)) (|has| |#3| (-1049))) (-12 (|has| |#3| (-639 (-566))) (|has| |#3| (-1049))) (|has| |#3| (-726)) (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))))) (-3420 (((-112) $) NIL (|has| |#3| (-848)))) (-2756 (((-112) $ (-771)) NIL)) (-2755 (((-566) $) NIL (|has| (-566) (-850)))) (-1920 (($ $ $) NIL (-2809 (|has| |#3| (-793)) (|has| |#3| (-848))))) (-4227 (((-644 |#3|) $) NIL (|has| $ (-6 -4417)))) (-1688 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#3| (-1099))))) (-3831 (((-566) $) NIL (|has| (-566) (-850)))) (-3038 (($ $ $) NIL (-2809 (|has| |#3| (-793)) (|has| |#3| (-848))))) (-3708 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#3| |#3|) $) NIL)) (-4051 (((-921) $) NIL (|has| |#3| (-370)))) (-4106 (((-112) $ (-771)) NIL)) (-3151 (((-1157) $) NIL)) (-3780 (((-644 (-566)) $) NIL)) (-1605 (((-112) (-566) $) NIL)) (-2104 (($ (-921)) NIL (|has| |#3| (-370)))) (-4059 (((-1119) $) NIL)) (-4080 ((|#3| $) NIL (|has| (-566) (-850)))) (-4079 (($ $ |#3|) NIL (|has| $ (-6 -4418)))) (-3966 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#3|))) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099)))) (($ $ (-295 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099)))) (($ $ (-644 |#3|) (-644 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099))))) (-1844 (((-112) $ $) NIL)) (-2210 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#3| (-1099))))) (-4185 (((-644 |#3|) $) NIL)) (-2788 (((-112) $) NIL)) (-1737 (($) NIL)) (-4376 ((|#3| $ (-566) |#3|) NIL) ((|#3| $ (-566)) 15)) (-2555 ((|#3| $ $) NIL (|has| |#3| (-1049)))) (-2379 (($ (-1264 |#3|)) NIL)) (-3944 (((-134)) NIL (|has| |#3| (-365)))) (-3526 (($ $ (-1 |#3| |#3|) (-771)) NIL (|has| |#3| (-1049))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1049))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (($ $ (-1175)) NIL (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (($ $ (-771)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1049)))) (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1049))))) (-4068 (((-771) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4417))) (((-771) |#3| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#3| (-1099))))) (-3924 (($ $) NIL)) (-2479 (((-1264 |#3|) $) NIL) (((-862) $) NIL) (($ |#3|) NIL (|has| |#3| (-1099))) (($ (-566)) NIL (-2809 (-12 (|has| |#3| (-1038 (-566))) (|has| |#3| (-1099))) (|has| |#3| (-1049)))) (($ (-409 (-566))) NIL (-12 (|has| |#3| (-1038 (-409 (-566)))) (|has| |#3| (-1099))))) (-1558 (((-771)) NIL (|has| |#3| (-1049)) CONST)) (-3900 (((-112) $ $) NIL)) (-3667 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4417)))) (-4298 (($ $) NIL (|has| |#3| (-848)))) (-2446 (($) NIL T CONST)) (-2459 (($) NIL (-2809 (-12 (|has| |#3| (-233)) (|has| |#3| (-1049))) (-12 (|has| |#3| (-639 (-566))) (|has| |#3| (-1049))) (|has| |#3| (-726)) (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) CONST)) (-2834 (($ $ (-1 |#3| |#3|) (-771)) NIL (|has| |#3| (-1049))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1049))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (($ $ (-1175)) NIL (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (($ $ (-771)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1049)))) (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1049))))) (-3019 (((-112) $ $) NIL (-2809 (|has| |#3| (-793)) (|has| |#3| (-848))))) (-2990 (((-112) $ $) NIL (-2809 (|has| |#3| (-793)) (|has| |#3| (-848))))) (-2952 (((-112) $ $) NIL)) (-3004 (((-112) $ $) NIL (-2809 (|has| |#3| (-793)) (|has| |#3| (-848))))) (-2977 (((-112) $ $) NIL (-2809 (|has| |#3| (-793)) (|has| |#3| (-848))))) (-3077 (($ $ |#3|) NIL (|has| |#3| (-365)))) (-3065 (($ $ $) NIL) (($ $) NIL)) (-3052 (($ $ $) NIL)) (** (($ $ (-771)) NIL (-2809 (-12 (|has| |#3| (-233)) (|has| |#3| (-1049))) (-12 (|has| |#3| (-639 (-566))) (|has| |#3| (-1049))) (|has| |#3| (-726)) (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049))))) (($ $ (-921)) NIL (-2809 (-12 (|has| |#3| (-233)) (|has| |#3| (-1049))) (-12 (|has| |#3| (-639 (-566))) (|has| |#3| (-1049))) (|has| |#3| (-726)) (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))))) (* (($ |#2| $) 17) (($ (-566) $) NIL) (($ (-771) $) NIL) (($ (-921) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-726))) (($ |#3| $) NIL (|has| |#3| (-726))) (($ $ $) NIL (-2809 (-12 (|has| |#3| (-233)) (|has| |#3| (-1049))) (-12 (|has| |#3| (-639 (-566))) (|has| |#3| (-1049))) (|has| |#3| (-726)) (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))))) (-3002 (((-771) $) NIL (|has| $ (-6 -4417))))) +(((-252 |#1| |#2| |#3|) (-13 (-238 |#1| |#3|) (-648 |#2|)) (-771) (-1049) (-648 |#2|)) (T -252)) +NIL +(-13 (-238 |#1| |#3|) (-648 |#2|)) +((-1787 (((-644 (-771)) $) 56) (((-644 (-771)) $ |#3|) 59)) (-2639 (((-771) $) 58) (((-771) $ |#3|) 61)) (-1364 (($ $) 76)) (-2980 (((-3 |#2| "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL) (((-3 (-566) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 83)) (-1802 (((-771) $ |#3|) 43) (((-771) $) 38)) (-1859 (((-1 $ (-771)) |#3|) 15) (((-1 $ (-771)) $) 88)) (-3292 ((|#4| $) 69)) (-4277 (((-112) $) 67)) (-1823 (($ $) 75)) (-3297 (($ $ (-644 (-295 $))) 114) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-644 |#4|) (-644 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-644 |#4|) (-644 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-644 |#3|) (-644 $)) 106) (($ $ |#3| |#2|) NIL) (($ $ (-644 |#3|) (-644 |#2|)) 100)) (-3526 (($ $ |#4|) NIL) (($ $ (-644 |#4|)) NIL) (($ $ |#4| (-771)) NIL) (($ $ (-644 |#4|) (-644 (-771))) NIL) (($ $) NIL) (($ $ (-771)) NIL) (($ $ (-1175)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL) (($ $ (-1 |#2| |#2|) (-771)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-3007 (((-644 |#3|) $) 86)) (-1630 ((|#5| $) NIL) (((-771) $ |#4|) NIL) (((-644 (-771)) $ (-644 |#4|)) NIL) (((-771) $ |#3|) 49)) (-2479 (((-862) $) NIL) (($ (-566)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 78) (($ (-409 (-566))) NIL) (($ $) NIL))) +(((-253 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2479 (|#1| |#1|)) (-15 -2479 (|#1| (-409 (-566)))) (-15 -3297 (|#1| |#1| (-644 |#3|) (-644 |#2|))) (-15 -3297 (|#1| |#1| |#3| |#2|)) (-15 -3297 (|#1| |#1| (-644 |#3|) (-644 |#1|))) (-15 -3297 (|#1| |#1| |#3| |#1|)) (-15 -1859 ((-1 |#1| (-771)) |#1|)) (-15 -1364 (|#1| |#1|)) (-15 -1823 (|#1| |#1|)) (-15 -3292 (|#4| |#1|)) (-15 -4277 ((-112) |#1|)) (-15 -2639 ((-771) |#1| |#3|)) (-15 -1787 ((-644 (-771)) |#1| |#3|)) (-15 -2639 ((-771) |#1|)) (-15 -1787 ((-644 (-771)) |#1|)) (-15 -1630 ((-771) |#1| |#3|)) (-15 -1802 ((-771) |#1|)) (-15 -1802 ((-771) |#1| |#3|)) (-15 -3007 ((-644 |#3|) |#1|)) (-15 -1859 ((-1 |#1| (-771)) |#3|)) (-15 -2479 (|#1| |#3|)) (-15 -2980 ((-3 |#3| "failed") |#1|)) (-15 -3526 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3526 (|#1| |#1| (-1 |#2| |#2|) (-771))) (-15 -3526 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -3526 (|#1| |#1| (-1175) (-771))) (-15 -3526 (|#1| |#1| (-644 (-1175)))) (-15 -3526 (|#1| |#1| (-1175))) (-15 -3526 (|#1| |#1| (-771))) (-15 -3526 (|#1| |#1|)) (-15 -1630 ((-644 (-771)) |#1| (-644 |#4|))) (-15 -1630 ((-771) |#1| |#4|)) (-15 -2479 (|#1| |#4|)) (-15 -2980 ((-3 |#4| "failed") |#1|)) (-15 -3297 (|#1| |#1| (-644 |#4|) (-644 |#1|))) (-15 -3297 (|#1| |#1| |#4| |#1|)) (-15 -3297 (|#1| |#1| (-644 |#4|) (-644 |#2|))) (-15 -3297 (|#1| |#1| |#4| |#2|)) (-15 -3297 (|#1| |#1| (-644 |#1|) (-644 |#1|))) (-15 -3297 (|#1| |#1| |#1| |#1|)) (-15 -3297 (|#1| |#1| (-295 |#1|))) (-15 -3297 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -1630 (|#5| |#1|)) (-15 -2980 ((-3 (-566) "failed") |#1|)) (-15 -2980 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -2980 ((-3 |#2| "failed") |#1|)) (-15 -2479 (|#1| |#2|)) (-15 -3526 (|#1| |#1| (-644 |#4|) (-644 (-771)))) (-15 -3526 (|#1| |#1| |#4| (-771))) (-15 -3526 (|#1| |#1| (-644 |#4|))) (-15 -3526 (|#1| |#1| |#4|)) (-15 -2479 (|#1| (-566))) (-15 -2479 ((-862) |#1|))) (-254 |#2| |#3| |#4| |#5|) (-1049) (-850) (-267 |#3|) (-793)) (T -253)) +NIL +(-10 -8 (-15 -2479 (|#1| |#1|)) (-15 -2479 (|#1| (-409 (-566)))) (-15 -3297 (|#1| |#1| (-644 |#3|) (-644 |#2|))) (-15 -3297 (|#1| |#1| |#3| |#2|)) (-15 -3297 (|#1| |#1| (-644 |#3|) (-644 |#1|))) (-15 -3297 (|#1| |#1| |#3| |#1|)) (-15 -1859 ((-1 |#1| (-771)) |#1|)) (-15 -1364 (|#1| |#1|)) (-15 -1823 (|#1| |#1|)) (-15 -3292 (|#4| |#1|)) (-15 -4277 ((-112) |#1|)) (-15 -2639 ((-771) |#1| |#3|)) (-15 -1787 ((-644 (-771)) |#1| |#3|)) (-15 -2639 ((-771) |#1|)) (-15 -1787 ((-644 (-771)) |#1|)) (-15 -1630 ((-771) |#1| |#3|)) (-15 -1802 ((-771) |#1|)) (-15 -1802 ((-771) |#1| |#3|)) (-15 -3007 ((-644 |#3|) |#1|)) (-15 -1859 ((-1 |#1| (-771)) |#3|)) (-15 -2479 (|#1| |#3|)) (-15 -2980 ((-3 |#3| "failed") |#1|)) (-15 -3526 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3526 (|#1| |#1| (-1 |#2| |#2|) (-771))) (-15 -3526 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -3526 (|#1| |#1| (-1175) (-771))) (-15 -3526 (|#1| |#1| (-644 (-1175)))) (-15 -3526 (|#1| |#1| (-1175))) (-15 -3526 (|#1| |#1| (-771))) (-15 -3526 (|#1| |#1|)) (-15 -1630 ((-644 (-771)) |#1| (-644 |#4|))) (-15 -1630 ((-771) |#1| |#4|)) (-15 -2479 (|#1| |#4|)) (-15 -2980 ((-3 |#4| "failed") |#1|)) (-15 -3297 (|#1| |#1| (-644 |#4|) (-644 |#1|))) (-15 -3297 (|#1| |#1| |#4| |#1|)) (-15 -3297 (|#1| |#1| (-644 |#4|) (-644 |#2|))) (-15 -3297 (|#1| |#1| |#4| |#2|)) (-15 -3297 (|#1| |#1| (-644 |#1|) (-644 |#1|))) (-15 -3297 (|#1| |#1| |#1| |#1|)) (-15 -3297 (|#1| |#1| (-295 |#1|))) (-15 -3297 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -1630 (|#5| |#1|)) (-15 -2980 ((-3 (-566) "failed") |#1|)) (-15 -2980 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -2980 ((-3 |#2| "failed") |#1|)) (-15 -2479 (|#1| |#2|)) (-15 -3526 (|#1| |#1| (-644 |#4|) (-644 (-771)))) (-15 -3526 (|#1| |#1| |#4| (-771))) (-15 -3526 (|#1| |#1| (-644 |#4|))) (-15 -3526 (|#1| |#1| |#4|)) (-15 -2479 (|#1| (-566))) (-15 -2479 ((-862) |#1|))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-1787 (((-644 (-771)) $) 216) (((-644 (-771)) $ |#2|) 214)) (-2639 (((-771) $) 215) (((-771) $ |#2|) 213)) (-2485 (((-644 |#3|) $) 112)) (-2285 (((-1171 $) $ |#3|) 127) (((-1171 |#1|) $) 126)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) 89 (|has| |#1| (-558)))) (-3087 (($ $) 90 (|has| |#1| (-558)))) (-1716 (((-112) $) 92 (|has| |#1| (-558)))) (-2917 (((-771) $) 114) (((-771) $ (-644 |#3|)) 113)) (-3174 (((-3 $ "failed") $ $) 20)) (-4058 (((-420 (-1171 $)) (-1171 $)) 102 (|has| |#1| (-909)))) (-3980 (($ $) 100 (|has| |#1| (-454)))) (-3348 (((-420 $) $) 99 (|has| |#1| (-454)))) (-4262 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) 105 (|has| |#1| (-909)))) (-1364 (($ $) 209)) (-1811 (($) 18 T CONST)) (-2980 (((-3 |#1| "failed") $) 166) (((-3 (-409 (-566)) "failed") $) 163 (|has| |#1| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) 161 (|has| |#1| (-1038 (-566)))) (((-3 |#3| "failed") $) 138) (((-3 |#2| "failed") $) 223)) (-1709 ((|#1| $) 165) (((-409 (-566)) $) 164 (|has| |#1| (-1038 (-409 (-566))))) (((-566) $) 162 (|has| |#1| (-1038 (-566)))) ((|#3| $) 139) ((|#2| $) 224)) (-4343 (($ $ $ |#3|) 110 (|has| |#1| (-172)))) (-3565 (($ $) 156)) (-2275 (((-689 (-566)) (-689 $)) 136 (|has| |#1| (-639 (-566)))) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) 135 (|has| |#1| (-639 (-566)))) (((-2 (|:| -4196 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) 134) (((-689 |#1|) (-689 $)) 133)) (-3757 (((-3 $ "failed") $) 37)) (-3530 (($ $) 178 (|has| |#1| (-454))) (($ $ |#3|) 107 (|has| |#1| (-454)))) (-3551 (((-644 $) $) 111)) (-4188 (((-112) $) 98 (|has| |#1| (-909)))) (-3995 (($ $ |#1| |#4| $) 174)) (-1542 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 86 (-12 (|has| |#3| (-886 (-381))) (|has| |#1| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 85 (-12 (|has| |#3| (-886 (-566))) (|has| |#1| (-886 (-566)))))) (-1802 (((-771) $ |#2|) 219) (((-771) $) 218)) (-2264 (((-112) $) 35)) (-3486 (((-771) $) 171)) (-2474 (($ (-1171 |#1|) |#3|) 119) (($ (-1171 $) |#3|) 118)) (-1545 (((-644 $) $) 128)) (-3989 (((-112) $) 154)) (-2463 (($ |#1| |#4|) 155) (($ $ |#3| (-771)) 121) (($ $ (-644 |#3|) (-644 (-771))) 120)) (-2235 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $ |#3|) 122)) (-2584 ((|#4| $) 172) (((-771) $ |#3|) 124) (((-644 (-771)) $ (-644 |#3|)) 123)) (-3327 (($ (-1 |#4| |#4|) $) 173)) (-3080 (($ (-1 |#1| |#1|) $) 153)) (-1859 (((-1 $ (-771)) |#2|) 221) (((-1 $ (-771)) $) 208 (|has| |#1| (-233)))) (-2673 (((-3 |#3| "failed") $) 125)) (-2608 (($ $) 151)) (-2622 ((|#1| $) 150)) (-3292 ((|#3| $) 211)) (-2120 (($ (-644 $)) 96 (|has| |#1| (-454))) (($ $ $) 95 (|has| |#1| (-454)))) (-3151 (((-1157) $) 10)) (-4277 (((-112) $) 212)) (-4075 (((-3 (-644 $) "failed") $) 116)) (-3380 (((-3 (-644 $) "failed") $) 117)) (-2414 (((-3 (-2 (|:| |var| |#3|) (|:| -3631 (-771))) "failed") $) 115)) (-1823 (($ $) 210)) (-4059 (((-1119) $) 11)) (-2587 (((-112) $) 168)) (-2597 ((|#1| $) 169)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) 97 (|has| |#1| (-454)))) (-2162 (($ (-644 $)) 94 (|has| |#1| (-454))) (($ $ $) 93 (|has| |#1| (-454)))) (-1500 (((-420 (-1171 $)) (-1171 $)) 104 (|has| |#1| (-909)))) (-3917 (((-420 (-1171 $)) (-1171 $)) 103 (|has| |#1| (-909)))) (-2325 (((-420 $) $) 101 (|has| |#1| (-909)))) (-2976 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-558))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-558)))) (-3297 (($ $ (-644 (-295 $))) 147) (($ $ (-295 $)) 146) (($ $ $ $) 145) (($ $ (-644 $) (-644 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-644 |#3|) (-644 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-644 |#3|) (-644 $)) 140) (($ $ |#2| $) 207 (|has| |#1| (-233))) (($ $ (-644 |#2|) (-644 $)) 206 (|has| |#1| (-233))) (($ $ |#2| |#1|) 205 (|has| |#1| (-233))) (($ $ (-644 |#2|) (-644 |#1|)) 204 (|has| |#1| (-233)))) (-3553 (($ $ |#3|) 109 (|has| |#1| (-172)))) (-3526 (($ $ |#3|) 46) (($ $ (-644 |#3|)) 45) (($ $ |#3| (-771)) 44) (($ $ (-644 |#3|) (-644 (-771))) 43) (($ $) 240 (|has| |#1| (-233))) (($ $ (-771)) 238 (|has| |#1| (-233))) (($ $ (-1175)) 236 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) 235 (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) 234 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) 233 (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-3007 (((-644 |#2|) $) 220)) (-1630 ((|#4| $) 152) (((-771) $ |#3|) 132) (((-644 (-771)) $ (-644 |#3|)) 131) (((-771) $ |#2|) 217)) (-3136 (((-892 (-381)) $) 84 (-12 (|has| |#3| (-614 (-892 (-381)))) (|has| |#1| (-614 (-892 (-381)))))) (((-892 (-566)) $) 83 (-12 (|has| |#3| (-614 (-892 (-566)))) (|has| |#1| (-614 (-892 (-566)))))) (((-538) $) 82 (-12 (|has| |#3| (-614 (-538))) (|has| |#1| (-614 (-538)))))) (-2252 ((|#1| $) 177 (|has| |#1| (-454))) (($ $ |#3|) 108 (|has| |#1| (-454)))) (-3233 (((-3 (-1264 $) "failed") (-689 $)) 106 (-2402 (|has| $ (-145)) (|has| |#1| (-909))))) (-2479 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 167) (($ |#3|) 137) (($ |#2|) 222) (($ (-409 (-566))) 80 (-2809 (|has| |#1| (-1038 (-409 (-566)))) (|has| |#1| (-38 (-409 (-566)))))) (($ $) 87 (|has| |#1| (-558)))) (-3866 (((-644 |#1|) $) 170)) (-3025 ((|#1| $ |#4|) 157) (($ $ |#3| (-771)) 130) (($ $ (-644 |#3|) (-644 (-771))) 129)) (-2645 (((-3 $ "failed") $) 81 (-2809 (-2402 (|has| $ (-145)) (|has| |#1| (-909))) (|has| |#1| (-145))))) (-1558 (((-771)) 32 T CONST)) (-2244 (($ $ $ (-771)) 175 (|has| |#1| (-172)))) (-3900 (((-112) $ $) 9)) (-1333 (((-112) $ $) 91 (|has| |#1| (-558)))) (-2446 (($) 19 T CONST)) (-2459 (($) 34 T CONST)) (-2834 (($ $ |#3|) 42) (($ $ (-644 |#3|)) 41) (($ $ |#3| (-771)) 40) (($ $ (-644 |#3|) (-644 (-771))) 39) (($ $) 239 (|has| |#1| (-233))) (($ $ (-771)) 237 (|has| |#1| (-233))) (($ $ (-1175)) 232 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) 231 (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) 230 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) 229 (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) 228) (($ $ (-1 |#1| |#1|)) 227)) (-2952 (((-112) $ $) 6)) (-3077 (($ $ |#1|) 158 (|has| |#1| (-365)))) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ (-409 (-566))) 160 (|has| |#1| (-38 (-409 (-566))))) (($ (-409 (-566)) $) 159 (|has| |#1| (-38 (-409 (-566))))) (($ |#1| $) 149) (($ $ |#1|) 148))) +(((-254 |#1| |#2| |#3| |#4|) (-140) (-1049) (-850) (-267 |t#2|) (-793)) (T -254)) +((-1859 (*1 *2 *3) (-12 (-4 *4 (-1049)) (-4 *3 (-850)) (-4 *5 (-267 *3)) (-4 *6 (-793)) (-5 *2 (-1 *1 (-771))) (-4 *1 (-254 *4 *3 *5 *6)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-850)) (-4 *5 (-267 *4)) (-4 *6 (-793)) (-5 *2 (-644 *4)))) (-1802 (*1 *2 *1 *3) (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1049)) (-4 *3 (-850)) (-4 *5 (-267 *3)) (-4 *6 (-793)) (-5 *2 (-771)))) (-1802 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-850)) (-4 *5 (-267 *4)) (-4 *6 (-793)) (-5 *2 (-771)))) (-1630 (*1 *2 *1 *3) (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1049)) (-4 *3 (-850)) (-4 *5 (-267 *3)) (-4 *6 (-793)) (-5 *2 (-771)))) (-1787 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-850)) (-4 *5 (-267 *4)) (-4 *6 (-793)) (-5 *2 (-644 (-771))))) (-2639 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-850)) (-4 *5 (-267 *4)) (-4 *6 (-793)) (-5 *2 (-771)))) (-1787 (*1 *2 *1 *3) (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1049)) (-4 *3 (-850)) (-4 *5 (-267 *3)) (-4 *6 (-793)) (-5 *2 (-644 (-771))))) (-2639 (*1 *2 *1 *3) (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1049)) (-4 *3 (-850)) (-4 *5 (-267 *3)) (-4 *6 (-793)) (-5 *2 (-771)))) (-4277 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-850)) (-4 *5 (-267 *4)) (-4 *6 (-793)) (-5 *2 (-112)))) (-3292 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *2 *5)) (-4 *3 (-1049)) (-4 *4 (-850)) (-4 *5 (-793)) (-4 *2 (-267 *4)))) (-1823 (*1 *1 *1) (-12 (-4 *1 (-254 *2 *3 *4 *5)) (-4 *2 (-1049)) (-4 *3 (-850)) (-4 *4 (-267 *3)) (-4 *5 (-793)))) (-1364 (*1 *1 *1) (-12 (-4 *1 (-254 *2 *3 *4 *5)) (-4 *2 (-1049)) (-4 *3 (-850)) (-4 *4 (-267 *3)) (-4 *5 (-793)))) (-1859 (*1 *2 *1) (-12 (-4 *3 (-233)) (-4 *3 (-1049)) (-4 *4 (-850)) (-4 *5 (-267 *4)) (-4 *6 (-793)) (-5 *2 (-1 *1 (-771))) (-4 *1 (-254 *3 *4 *5 *6))))) +(-13 (-949 |t#1| |t#4| |t#3|) (-231 |t#1|) (-1038 |t#2|) (-10 -8 (-15 -1859 ((-1 $ (-771)) |t#2|)) (-15 -3007 ((-644 |t#2|) $)) (-15 -1802 ((-771) $ |t#2|)) (-15 -1802 ((-771) $)) (-15 -1630 ((-771) $ |t#2|)) (-15 -1787 ((-644 (-771)) $)) (-15 -2639 ((-771) $)) (-15 -1787 ((-644 (-771)) $ |t#2|)) (-15 -2639 ((-771) $ |t#2|)) (-15 -4277 ((-112) $)) (-15 -3292 (|t#3| $)) (-15 -1823 ($ $)) (-15 -1364 ($ $)) (IF (|has| |t#1| (-233)) (PROGN (-6 (-516 |t#2| |t#1|)) (-6 (-516 |t#2| $)) (-6 (-310 $)) (-15 -1859 ((-1 $ (-771)) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-409 (-566)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #0#) -2809 (|has| |#1| (-1038 (-409 (-566)))) (|has| |#1| (-38 (-409 (-566))))) ((-616 (-566)) . T) ((-616 |#1|) . T) ((-616 |#2|) . T) ((-616 |#3|) . T) ((-616 $) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-613 (-862)) . T) ((-172) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-172))) ((-614 (-538)) -12 (|has| |#1| (-614 (-538))) (|has| |#3| (-614 (-538)))) ((-614 (-892 (-381))) -12 (|has| |#1| (-614 (-892 (-381)))) (|has| |#3| (-614 (-892 (-381))))) ((-614 (-892 (-566))) -12 (|has| |#1| (-614 (-892 (-566)))) (|has| |#3| (-614 (-892 (-566))))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-291) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-310 $) . T) ((-327 |#1| |#4|) . T) ((-379 |#1|) . T) ((-413 |#1|) . T) ((-454) -2809 (|has| |#1| (-909)) (|has| |#1| (-454))) ((-516 |#2| |#1|) |has| |#1| (-233)) ((-516 |#2| $) |has| |#1| (-233)) ((-516 |#3| |#1|) . T) ((-516 |#3| $) . T) ((-516 $ $) . T) ((-558) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-646 #0#) |has| |#1| (-38 (-409 (-566)))) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #0#) |has| |#1| (-38 (-409 (-566)))) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #0#) |has| |#1| (-38 (-409 (-566)))) ((-640 |#1|) |has| |#1| (-172)) ((-640 $) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-639 (-566)) |has| |#1| (-639 (-566))) ((-639 |#1|) . T) ((-717 #0#) |has| |#1| (-38 (-409 (-566)))) ((-717 |#1|) |has| |#1| (-172)) ((-717 $) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-726) . T) ((-900 (-1175)) |has| |#1| (-900 (-1175))) ((-900 |#3|) . T) ((-886 (-381)) -12 (|has| |#1| (-886 (-381))) (|has| |#3| (-886 (-381)))) ((-886 (-566)) -12 (|has| |#1| (-886 (-566))) (|has| |#3| (-886 (-566)))) ((-949 |#1| |#4| |#3|) . T) ((-909) |has| |#1| (-909)) ((-1038 (-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) ((-1038 (-566)) |has| |#1| (-1038 (-566))) ((-1038 |#1|) . T) ((-1038 |#2|) . T) ((-1038 |#3|) . T) ((-1051 #0#) |has| |#1| (-38 (-409 (-566)))) ((-1051 |#1|) . T) ((-1051 $) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-172))) ((-1056 #0#) |has| |#1| (-38 (-409 (-566)))) ((-1056 |#1|) . T) ((-1056 $) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-172))) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1218) |has| |#1| (-909))) +((-2986 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-1799 ((|#1| $) 55)) (-3903 ((|#1| $) 45)) (-1453 (((-112) $ (-771)) 8)) (-1811 (($) 7 T CONST)) (-3591 (($ $) 61)) (-2273 (($ $) 49)) (-1757 ((|#1| |#1| $) 47)) (-4356 ((|#1| $) 46)) (-3872 (((-644 |#1|) $) 31 (|has| $ (-6 -4417)))) (-2756 (((-112) $ (-771)) 9)) (-4227 (((-644 |#1|) $) 30 (|has| $ (-6 -4417)))) (-1688 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-3708 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#1| |#1|) $) 36)) (-4106 (((-112) $ (-771)) 10)) (-4332 (((-771) $) 62)) (-3151 (((-1157) $) 22 (|has| |#1| (-1099)))) (-4255 ((|#1| $) 40)) (-3446 ((|#1| |#1| $) 53)) (-4191 ((|#1| |#1| $) 52)) (-4354 (($ |#1| $) 41)) (-3117 (((-771) $) 56)) (-4059 (((-1119) $) 21 (|has| |#1| (-1099)))) (-1312 ((|#1| $) 63)) (-1515 ((|#1| $) 51)) (-2416 ((|#1| $) 50)) (-4097 ((|#1| $) 42)) (-3966 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1844 (((-112) $ $) 14)) (-3408 ((|#1| |#1| $) 59)) (-2788 (((-112) $) 11)) (-1737 (($) 12)) (-1921 ((|#1| $) 60)) (-1589 (($) 58) (($ (-644 |#1|)) 57)) (-3410 (((-771) $) 44)) (-4068 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4417))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-3924 (($ $) 13)) (-2479 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-3236 ((|#1| $) 54)) (-3900 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-2471 (($ (-644 |#1|)) 43)) (-2071 ((|#1| $) 64)) (-3667 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4417)))) (-2952 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3002 (((-771) $) 6 (|has| $ (-6 -4417))))) +(((-255 |#1|) (-140) (-1214)) (T -255)) +((-1589 (*1 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1214)))) (-1589 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1214)) (-4 *1 (-255 *3)))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-255 *3)) (-4 *3 (-1214)) (-5 *2 (-771)))) (-1799 (*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1214)))) (-3236 (*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1214)))) (-3446 (*1 *2 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1214)))) (-4191 (*1 *2 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1214)))) (-1515 (*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1214)))) (-2416 (*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1214)))) (-2273 (*1 *1 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1214))))) +(-13 (-1120 |t#1|) (-995 |t#1|) (-10 -8 (-15 -1589 ($)) (-15 -1589 ($ (-644 |t#1|))) (-15 -3117 ((-771) $)) (-15 -1799 (|t#1| $)) (-15 -3236 (|t#1| $)) (-15 -3446 (|t#1| |t#1| $)) (-15 -4191 (|t#1| |t#1| $)) (-15 -1515 (|t#1| $)) (-15 -2416 (|t#1| $)) (-15 -2273 ($ $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2809 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-995 |#1|) . T) ((-1099) |has| |#1| (-1099)) ((-1120 |#1|) . T) ((-1214) . T)) +((-4308 (((-1 (-943 (-225)) (-225) (-225)) (-1 (-943 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))) 153)) (-3072 (((-1132 (-225)) (-882 (-1 (-225) (-225) (-225))) (-1093 (-381)) (-1093 (-381))) 173) (((-1132 (-225)) (-882 (-1 (-225) (-225) (-225))) (-1093 (-381)) (-1093 (-381)) (-644 (-264))) 171) (((-1132 (-225)) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-381)) (-1093 (-381))) 176) (((-1132 (-225)) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-381)) (-1093 (-381)) (-644 (-264))) 172) (((-1132 (-225)) (-1 (-225) (-225) (-225)) (-1093 (-381)) (-1093 (-381))) 164) (((-1132 (-225)) (-1 (-225) (-225) (-225)) (-1093 (-381)) (-1093 (-381)) (-644 (-264))) 163) (((-1132 (-225)) (-1 (-943 (-225)) (-225)) (-1093 (-381))) 145) (((-1132 (-225)) (-1 (-943 (-225)) (-225)) (-1093 (-381)) (-644 (-264))) 143) (((-1132 (-225)) (-879 (-1 (-225) (-225))) (-1093 (-381))) 144) (((-1132 (-225)) (-879 (-1 (-225) (-225))) (-1093 (-381)) (-644 (-264))) 141)) (-3026 (((-1266) (-882 (-1 (-225) (-225) (-225))) (-1093 (-381)) (-1093 (-381))) 175) (((-1266) (-882 (-1 (-225) (-225) (-225))) (-1093 (-381)) (-1093 (-381)) (-644 (-264))) 174) (((-1266) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-381)) (-1093 (-381))) 178) (((-1266) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-381)) (-1093 (-381)) (-644 (-264))) 177) (((-1266) (-1 (-225) (-225) (-225)) (-1093 (-381)) (-1093 (-381))) 166) (((-1266) (-1 (-225) (-225) (-225)) (-1093 (-381)) (-1093 (-381)) (-644 (-264))) 165) (((-1266) (-1 (-943 (-225)) (-225)) (-1093 (-381))) 151) (((-1266) (-1 (-943 (-225)) (-225)) (-1093 (-381)) (-644 (-264))) 150) (((-1266) (-879 (-1 (-225) (-225))) (-1093 (-381))) 149) (((-1266) (-879 (-1 (-225) (-225))) (-1093 (-381)) (-644 (-264))) 148) (((-1265) (-877 (-1 (-225) (-225))) (-1093 (-381))) 113) (((-1265) (-877 (-1 (-225) (-225))) (-1093 (-381)) (-644 (-264))) 112) (((-1265) (-1 (-225) (-225)) (-1093 (-381))) 107) (((-1265) (-1 (-225) (-225)) (-1093 (-381)) (-644 (-264))) 105))) +(((-256) (-10 -7 (-15 -3026 ((-1265) (-1 (-225) (-225)) (-1093 (-381)) (-644 (-264)))) (-15 -3026 ((-1265) (-1 (-225) (-225)) (-1093 (-381)))) (-15 -3026 ((-1265) (-877 (-1 (-225) (-225))) (-1093 (-381)) (-644 (-264)))) (-15 -3026 ((-1265) (-877 (-1 (-225) (-225))) (-1093 (-381)))) (-15 -3026 ((-1266) (-879 (-1 (-225) (-225))) (-1093 (-381)) (-644 (-264)))) (-15 -3026 ((-1266) (-879 (-1 (-225) (-225))) (-1093 (-381)))) (-15 -3026 ((-1266) (-1 (-943 (-225)) (-225)) (-1093 (-381)) (-644 (-264)))) (-15 -3026 ((-1266) (-1 (-943 (-225)) (-225)) (-1093 (-381)))) (-15 -3072 ((-1132 (-225)) (-879 (-1 (-225) (-225))) (-1093 (-381)) (-644 (-264)))) (-15 -3072 ((-1132 (-225)) (-879 (-1 (-225) (-225))) (-1093 (-381)))) (-15 -3072 ((-1132 (-225)) (-1 (-943 (-225)) (-225)) (-1093 (-381)) (-644 (-264)))) (-15 -3072 ((-1132 (-225)) (-1 (-943 (-225)) (-225)) (-1093 (-381)))) (-15 -3026 ((-1266) (-1 (-225) (-225) (-225)) (-1093 (-381)) (-1093 (-381)) (-644 (-264)))) (-15 -3026 ((-1266) (-1 (-225) (-225) (-225)) (-1093 (-381)) (-1093 (-381)))) (-15 -3072 ((-1132 (-225)) (-1 (-225) (-225) (-225)) (-1093 (-381)) (-1093 (-381)) (-644 (-264)))) (-15 -3072 ((-1132 (-225)) (-1 (-225) (-225) (-225)) (-1093 (-381)) (-1093 (-381)))) (-15 -3026 ((-1266) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-381)) (-1093 (-381)) (-644 (-264)))) (-15 -3026 ((-1266) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-381)) (-1093 (-381)))) (-15 -3072 ((-1132 (-225)) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-381)) (-1093 (-381)) (-644 (-264)))) (-15 -3072 ((-1132 (-225)) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-381)) (-1093 (-381)))) (-15 -3026 ((-1266) (-882 (-1 (-225) (-225) (-225))) (-1093 (-381)) (-1093 (-381)) (-644 (-264)))) (-15 -3026 ((-1266) (-882 (-1 (-225) (-225) (-225))) (-1093 (-381)) (-1093 (-381)))) (-15 -3072 ((-1132 (-225)) (-882 (-1 (-225) (-225) (-225))) (-1093 (-381)) (-1093 (-381)) (-644 (-264)))) (-15 -3072 ((-1132 (-225)) (-882 (-1 (-225) (-225) (-225))) (-1093 (-381)) (-1093 (-381)))) (-15 -4308 ((-1 (-943 (-225)) (-225) (-225)) (-1 (-943 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))) (T -256)) +((-4308 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-943 (-225)) (-225) (-225))) (-5 *3 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-256)))) (-3072 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-882 (-1 (-225) (-225) (-225)))) (-5 *4 (-1093 (-381))) (-5 *2 (-1132 (-225))) (-5 *1 (-256)))) (-3072 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-882 (-1 (-225) (-225) (-225)))) (-5 *4 (-1093 (-381))) (-5 *5 (-644 (-264))) (-5 *2 (-1132 (-225))) (-5 *1 (-256)))) (-3026 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-882 (-1 (-225) (-225) (-225)))) (-5 *4 (-1093 (-381))) (-5 *2 (-1266)) (-5 *1 (-256)))) (-3026 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-882 (-1 (-225) (-225) (-225)))) (-5 *4 (-1093 (-381))) (-5 *5 (-644 (-264))) (-5 *2 (-1266)) (-5 *1 (-256)))) (-3072 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-943 (-225)) (-225) (-225))) (-5 *4 (-1093 (-381))) (-5 *2 (-1132 (-225))) (-5 *1 (-256)))) (-3072 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-943 (-225)) (-225) (-225))) (-5 *4 (-1093 (-381))) (-5 *5 (-644 (-264))) (-5 *2 (-1132 (-225))) (-5 *1 (-256)))) (-3026 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-943 (-225)) (-225) (-225))) (-5 *4 (-1093 (-381))) (-5 *2 (-1266)) (-5 *1 (-256)))) (-3026 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-943 (-225)) (-225) (-225))) (-5 *4 (-1093 (-381))) (-5 *5 (-644 (-264))) (-5 *2 (-1266)) (-5 *1 (-256)))) (-3072 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1093 (-381))) (-5 *2 (-1132 (-225))) (-5 *1 (-256)))) (-3072 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1093 (-381))) (-5 *5 (-644 (-264))) (-5 *2 (-1132 (-225))) (-5 *1 (-256)))) (-3026 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1093 (-381))) (-5 *2 (-1266)) (-5 *1 (-256)))) (-3026 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1093 (-381))) (-5 *5 (-644 (-264))) (-5 *2 (-1266)) (-5 *1 (-256)))) (-3072 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-943 (-225)) (-225))) (-5 *4 (-1093 (-381))) (-5 *2 (-1132 (-225))) (-5 *1 (-256)))) (-3072 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-943 (-225)) (-225))) (-5 *4 (-1093 (-381))) (-5 *5 (-644 (-264))) (-5 *2 (-1132 (-225))) (-5 *1 (-256)))) (-3072 (*1 *2 *3 *4) (-12 (-5 *3 (-879 (-1 (-225) (-225)))) (-5 *4 (-1093 (-381))) (-5 *2 (-1132 (-225))) (-5 *1 (-256)))) (-3072 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-879 (-1 (-225) (-225)))) (-5 *4 (-1093 (-381))) (-5 *5 (-644 (-264))) (-5 *2 (-1132 (-225))) (-5 *1 (-256)))) (-3026 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-943 (-225)) (-225))) (-5 *4 (-1093 (-381))) (-5 *2 (-1266)) (-5 *1 (-256)))) (-3026 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-943 (-225)) (-225))) (-5 *4 (-1093 (-381))) (-5 *5 (-644 (-264))) (-5 *2 (-1266)) (-5 *1 (-256)))) (-3026 (*1 *2 *3 *4) (-12 (-5 *3 (-879 (-1 (-225) (-225)))) (-5 *4 (-1093 (-381))) (-5 *2 (-1266)) (-5 *1 (-256)))) (-3026 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-879 (-1 (-225) (-225)))) (-5 *4 (-1093 (-381))) (-5 *5 (-644 (-264))) (-5 *2 (-1266)) (-5 *1 (-256)))) (-3026 (*1 *2 *3 *4) (-12 (-5 *3 (-877 (-1 (-225) (-225)))) (-5 *4 (-1093 (-381))) (-5 *2 (-1265)) (-5 *1 (-256)))) (-3026 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-877 (-1 (-225) (-225)))) (-5 *4 (-1093 (-381))) (-5 *5 (-644 (-264))) (-5 *2 (-1265)) (-5 *1 (-256)))) (-3026 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1093 (-381))) (-5 *2 (-1265)) (-5 *1 (-256)))) (-3026 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1093 (-381))) (-5 *5 (-644 (-264))) (-5 *2 (-1265)) (-5 *1 (-256))))) +(-10 -7 (-15 -3026 ((-1265) (-1 (-225) (-225)) (-1093 (-381)) (-644 (-264)))) (-15 -3026 ((-1265) (-1 (-225) (-225)) (-1093 (-381)))) (-15 -3026 ((-1265) (-877 (-1 (-225) (-225))) (-1093 (-381)) (-644 (-264)))) (-15 -3026 ((-1265) (-877 (-1 (-225) (-225))) (-1093 (-381)))) (-15 -3026 ((-1266) (-879 (-1 (-225) (-225))) (-1093 (-381)) (-644 (-264)))) (-15 -3026 ((-1266) (-879 (-1 (-225) (-225))) (-1093 (-381)))) (-15 -3026 ((-1266) (-1 (-943 (-225)) (-225)) (-1093 (-381)) (-644 (-264)))) (-15 -3026 ((-1266) (-1 (-943 (-225)) (-225)) (-1093 (-381)))) (-15 -3072 ((-1132 (-225)) (-879 (-1 (-225) (-225))) (-1093 (-381)) (-644 (-264)))) (-15 -3072 ((-1132 (-225)) (-879 (-1 (-225) (-225))) (-1093 (-381)))) (-15 -3072 ((-1132 (-225)) (-1 (-943 (-225)) (-225)) (-1093 (-381)) (-644 (-264)))) (-15 -3072 ((-1132 (-225)) (-1 (-943 (-225)) (-225)) (-1093 (-381)))) (-15 -3026 ((-1266) (-1 (-225) (-225) (-225)) (-1093 (-381)) (-1093 (-381)) (-644 (-264)))) (-15 -3026 ((-1266) (-1 (-225) (-225) (-225)) (-1093 (-381)) (-1093 (-381)))) (-15 -3072 ((-1132 (-225)) (-1 (-225) (-225) (-225)) (-1093 (-381)) (-1093 (-381)) (-644 (-264)))) (-15 -3072 ((-1132 (-225)) (-1 (-225) (-225) (-225)) (-1093 (-381)) (-1093 (-381)))) (-15 -3026 ((-1266) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-381)) (-1093 (-381)) (-644 (-264)))) (-15 -3026 ((-1266) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-381)) (-1093 (-381)))) (-15 -3072 ((-1132 (-225)) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-381)) (-1093 (-381)) (-644 (-264)))) (-15 -3072 ((-1132 (-225)) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-381)) (-1093 (-381)))) (-15 -3026 ((-1266) (-882 (-1 (-225) (-225) (-225))) (-1093 (-381)) (-1093 (-381)) (-644 (-264)))) (-15 -3026 ((-1266) (-882 (-1 (-225) (-225) (-225))) (-1093 (-381)) (-1093 (-381)))) (-15 -3072 ((-1132 (-225)) (-882 (-1 (-225) (-225) (-225))) (-1093 (-381)) (-1093 (-381)) (-644 (-264)))) (-15 -3072 ((-1132 (-225)) (-882 (-1 (-225) (-225) (-225))) (-1093 (-381)) (-1093 (-381)))) (-15 -4308 ((-1 (-943 (-225)) (-225) (-225)) (-1 (-943 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))))) +((-3026 (((-1265) (-295 |#2|) (-1175) (-1175) (-644 (-264))) 101))) +(((-257 |#1| |#2|) (-10 -7 (-15 -3026 ((-1265) (-295 |#2|) (-1175) (-1175) (-644 (-264))))) (-13 (-558) (-850) (-1038 (-566))) (-432 |#1|)) (T -257)) +((-3026 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-295 *7)) (-5 *4 (-1175)) (-5 *5 (-644 (-264))) (-4 *7 (-432 *6)) (-4 *6 (-13 (-558) (-850) (-1038 (-566)))) (-5 *2 (-1265)) (-5 *1 (-257 *6 *7))))) +(-10 -7 (-15 -3026 ((-1265) (-295 |#2|) (-1175) (-1175) (-644 (-264))))) +((-1907 (((-566) (-566)) 73)) (-4095 (((-566) (-566)) 74)) (-1553 (((-225) (-225)) 75)) (-4285 (((-1266) (-1 (-169 (-225)) (-169 (-225))) (-1093 (-225)) (-1093 (-225))) 72)) (-3339 (((-1266) (-1 (-169 (-225)) (-169 (-225))) (-1093 (-225)) (-1093 (-225)) (-112)) 70))) +(((-258) (-10 -7 (-15 -3339 ((-1266) (-1 (-169 (-225)) (-169 (-225))) (-1093 (-225)) (-1093 (-225)) (-112))) (-15 -4285 ((-1266) (-1 (-169 (-225)) (-169 (-225))) (-1093 (-225)) (-1093 (-225)))) (-15 -1907 ((-566) (-566))) (-15 -4095 ((-566) (-566))) (-15 -1553 ((-225) (-225))))) (T -258)) +((-1553 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-258)))) (-4095 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-258)))) (-1907 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-258)))) (-4285 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1093 (-225))) (-5 *2 (-1266)) (-5 *1 (-258)))) (-3339 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1093 (-225))) (-5 *5 (-112)) (-5 *2 (-1266)) (-5 *1 (-258))))) +(-10 -7 (-15 -3339 ((-1266) (-1 (-169 (-225)) (-169 (-225))) (-1093 (-225)) (-1093 (-225)) (-112))) (-15 -4285 ((-1266) (-1 (-169 (-225)) (-169 (-225))) (-1093 (-225)) (-1093 (-225)))) (-15 -1907 ((-566) (-566))) (-15 -4095 ((-566) (-566))) (-15 -1553 ((-225) (-225)))) +((-2479 (((-1091 (-381)) (-1091 (-317 |#1|))) 16))) +(((-259 |#1|) (-10 -7 (-15 -2479 ((-1091 (-381)) (-1091 (-317 |#1|))))) (-13 (-850) (-558) (-614 (-381)))) (T -259)) +((-2479 (*1 *2 *3) (-12 (-5 *3 (-1091 (-317 *4))) (-4 *4 (-13 (-850) (-558) (-614 (-381)))) (-5 *2 (-1091 (-381))) (-5 *1 (-259 *4))))) +(-10 -7 (-15 -2479 ((-1091 (-381)) (-1091 (-317 |#1|))))) +((-3072 (((-1132 (-225)) (-882 |#1|) (-1091 (-381)) (-1091 (-381))) 75) (((-1132 (-225)) (-882 |#1|) (-1091 (-381)) (-1091 (-381)) (-644 (-264))) 74) (((-1132 (-225)) |#1| (-1091 (-381)) (-1091 (-381))) 65) (((-1132 (-225)) |#1| (-1091 (-381)) (-1091 (-381)) (-644 (-264))) 64) (((-1132 (-225)) (-879 |#1|) (-1091 (-381))) 56) (((-1132 (-225)) (-879 |#1|) (-1091 (-381)) (-644 (-264))) 55)) (-3026 (((-1266) (-882 |#1|) (-1091 (-381)) (-1091 (-381))) 78) (((-1266) (-882 |#1|) (-1091 (-381)) (-1091 (-381)) (-644 (-264))) 77) (((-1266) |#1| (-1091 (-381)) (-1091 (-381))) 68) (((-1266) |#1| (-1091 (-381)) (-1091 (-381)) (-644 (-264))) 67) (((-1266) (-879 |#1|) (-1091 (-381))) 60) (((-1266) (-879 |#1|) (-1091 (-381)) (-644 (-264))) 59) (((-1265) (-877 |#1|) (-1091 (-381))) 47) (((-1265) (-877 |#1|) (-1091 (-381)) (-644 (-264))) 46) (((-1265) |#1| (-1091 (-381))) 38) (((-1265) |#1| (-1091 (-381)) (-644 (-264))) 36))) +(((-260 |#1|) (-10 -7 (-15 -3026 ((-1265) |#1| (-1091 (-381)) (-644 (-264)))) (-15 -3026 ((-1265) |#1| (-1091 (-381)))) (-15 -3026 ((-1265) (-877 |#1|) (-1091 (-381)) (-644 (-264)))) (-15 -3026 ((-1265) (-877 |#1|) (-1091 (-381)))) (-15 -3026 ((-1266) (-879 |#1|) (-1091 (-381)) (-644 (-264)))) (-15 -3026 ((-1266) (-879 |#1|) (-1091 (-381)))) (-15 -3072 ((-1132 (-225)) (-879 |#1|) (-1091 (-381)) (-644 (-264)))) (-15 -3072 ((-1132 (-225)) (-879 |#1|) (-1091 (-381)))) (-15 -3026 ((-1266) |#1| (-1091 (-381)) (-1091 (-381)) (-644 (-264)))) (-15 -3026 ((-1266) |#1| (-1091 (-381)) (-1091 (-381)))) (-15 -3072 ((-1132 (-225)) |#1| (-1091 (-381)) (-1091 (-381)) (-644 (-264)))) (-15 -3072 ((-1132 (-225)) |#1| (-1091 (-381)) (-1091 (-381)))) (-15 -3026 ((-1266) (-882 |#1|) (-1091 (-381)) (-1091 (-381)) (-644 (-264)))) (-15 -3026 ((-1266) (-882 |#1|) (-1091 (-381)) (-1091 (-381)))) (-15 -3072 ((-1132 (-225)) (-882 |#1|) (-1091 (-381)) (-1091 (-381)) (-644 (-264)))) (-15 -3072 ((-1132 (-225)) (-882 |#1|) (-1091 (-381)) (-1091 (-381))))) (-13 (-614 (-538)) (-1099))) (T -260)) +((-3072 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-882 *5)) (-5 *4 (-1091 (-381))) (-4 *5 (-13 (-614 (-538)) (-1099))) (-5 *2 (-1132 (-225))) (-5 *1 (-260 *5)))) (-3072 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-882 *6)) (-5 *4 (-1091 (-381))) (-5 *5 (-644 (-264))) (-4 *6 (-13 (-614 (-538)) (-1099))) (-5 *2 (-1132 (-225))) (-5 *1 (-260 *6)))) (-3026 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-882 *5)) (-5 *4 (-1091 (-381))) (-4 *5 (-13 (-614 (-538)) (-1099))) (-5 *2 (-1266)) (-5 *1 (-260 *5)))) (-3026 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-882 *6)) (-5 *4 (-1091 (-381))) (-5 *5 (-644 (-264))) (-4 *6 (-13 (-614 (-538)) (-1099))) (-5 *2 (-1266)) (-5 *1 (-260 *6)))) (-3072 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1091 (-381))) (-5 *2 (-1132 (-225))) (-5 *1 (-260 *3)) (-4 *3 (-13 (-614 (-538)) (-1099))))) (-3072 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1091 (-381))) (-5 *5 (-644 (-264))) (-5 *2 (-1132 (-225))) (-5 *1 (-260 *3)) (-4 *3 (-13 (-614 (-538)) (-1099))))) (-3026 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1091 (-381))) (-5 *2 (-1266)) (-5 *1 (-260 *3)) (-4 *3 (-13 (-614 (-538)) (-1099))))) (-3026 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1091 (-381))) (-5 *5 (-644 (-264))) (-5 *2 (-1266)) (-5 *1 (-260 *3)) (-4 *3 (-13 (-614 (-538)) (-1099))))) (-3072 (*1 *2 *3 *4) (-12 (-5 *3 (-879 *5)) (-5 *4 (-1091 (-381))) (-4 *5 (-13 (-614 (-538)) (-1099))) (-5 *2 (-1132 (-225))) (-5 *1 (-260 *5)))) (-3072 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-879 *6)) (-5 *4 (-1091 (-381))) (-5 *5 (-644 (-264))) (-4 *6 (-13 (-614 (-538)) (-1099))) (-5 *2 (-1132 (-225))) (-5 *1 (-260 *6)))) (-3026 (*1 *2 *3 *4) (-12 (-5 *3 (-879 *5)) (-5 *4 (-1091 (-381))) (-4 *5 (-13 (-614 (-538)) (-1099))) (-5 *2 (-1266)) (-5 *1 (-260 *5)))) (-3026 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-879 *6)) (-5 *4 (-1091 (-381))) (-5 *5 (-644 (-264))) (-4 *6 (-13 (-614 (-538)) (-1099))) (-5 *2 (-1266)) (-5 *1 (-260 *6)))) (-3026 (*1 *2 *3 *4) (-12 (-5 *3 (-877 *5)) (-5 *4 (-1091 (-381))) (-4 *5 (-13 (-614 (-538)) (-1099))) (-5 *2 (-1265)) (-5 *1 (-260 *5)))) (-3026 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-877 *6)) (-5 *4 (-1091 (-381))) (-5 *5 (-644 (-264))) (-4 *6 (-13 (-614 (-538)) (-1099))) (-5 *2 (-1265)) (-5 *1 (-260 *6)))) (-3026 (*1 *2 *3 *4) (-12 (-5 *4 (-1091 (-381))) (-5 *2 (-1265)) (-5 *1 (-260 *3)) (-4 *3 (-13 (-614 (-538)) (-1099))))) (-3026 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1091 (-381))) (-5 *5 (-644 (-264))) (-5 *2 (-1265)) (-5 *1 (-260 *3)) (-4 *3 (-13 (-614 (-538)) (-1099)))))) +(-10 -7 (-15 -3026 ((-1265) |#1| (-1091 (-381)) (-644 (-264)))) (-15 -3026 ((-1265) |#1| (-1091 (-381)))) (-15 -3026 ((-1265) (-877 |#1|) (-1091 (-381)) (-644 (-264)))) (-15 -3026 ((-1265) (-877 |#1|) (-1091 (-381)))) (-15 -3026 ((-1266) (-879 |#1|) (-1091 (-381)) (-644 (-264)))) (-15 -3026 ((-1266) (-879 |#1|) (-1091 (-381)))) (-15 -3072 ((-1132 (-225)) (-879 |#1|) (-1091 (-381)) (-644 (-264)))) (-15 -3072 ((-1132 (-225)) (-879 |#1|) (-1091 (-381)))) (-15 -3026 ((-1266) |#1| (-1091 (-381)) (-1091 (-381)) (-644 (-264)))) (-15 -3026 ((-1266) |#1| (-1091 (-381)) (-1091 (-381)))) (-15 -3072 ((-1132 (-225)) |#1| (-1091 (-381)) (-1091 (-381)) (-644 (-264)))) (-15 -3072 ((-1132 (-225)) |#1| (-1091 (-381)) (-1091 (-381)))) (-15 -3026 ((-1266) (-882 |#1|) (-1091 (-381)) (-1091 (-381)) (-644 (-264)))) (-15 -3026 ((-1266) (-882 |#1|) (-1091 (-381)) (-1091 (-381)))) (-15 -3072 ((-1132 (-225)) (-882 |#1|) (-1091 (-381)) (-1091 (-381)) (-644 (-264)))) (-15 -3072 ((-1132 (-225)) (-882 |#1|) (-1091 (-381)) (-1091 (-381))))) +((-3026 (((-1266) (-644 (-225)) (-644 (-225)) (-644 (-225)) (-644 (-264))) 23) (((-1266) (-644 (-225)) (-644 (-225)) (-644 (-225))) 24) (((-1265) (-644 (-943 (-225))) (-644 (-264))) 16) (((-1265) (-644 (-943 (-225)))) 17) (((-1265) (-644 (-225)) (-644 (-225)) (-644 (-264))) 20) (((-1265) (-644 (-225)) (-644 (-225))) 21))) +(((-261) (-10 -7 (-15 -3026 ((-1265) (-644 (-225)) (-644 (-225)))) (-15 -3026 ((-1265) (-644 (-225)) (-644 (-225)) (-644 (-264)))) (-15 -3026 ((-1265) (-644 (-943 (-225))))) (-15 -3026 ((-1265) (-644 (-943 (-225))) (-644 (-264)))) (-15 -3026 ((-1266) (-644 (-225)) (-644 (-225)) (-644 (-225)))) (-15 -3026 ((-1266) (-644 (-225)) (-644 (-225)) (-644 (-225)) (-644 (-264)))))) (T -261)) +((-3026 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-644 (-225))) (-5 *4 (-644 (-264))) (-5 *2 (-1266)) (-5 *1 (-261)))) (-3026 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-644 (-225))) (-5 *2 (-1266)) (-5 *1 (-261)))) (-3026 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-943 (-225)))) (-5 *4 (-644 (-264))) (-5 *2 (-1265)) (-5 *1 (-261)))) (-3026 (*1 *2 *3) (-12 (-5 *3 (-644 (-943 (-225)))) (-5 *2 (-1265)) (-5 *1 (-261)))) (-3026 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-644 (-225))) (-5 *4 (-644 (-264))) (-5 *2 (-1265)) (-5 *1 (-261)))) (-3026 (*1 *2 *3 *3) (-12 (-5 *3 (-644 (-225))) (-5 *2 (-1265)) (-5 *1 (-261))))) +(-10 -7 (-15 -3026 ((-1265) (-644 (-225)) (-644 (-225)))) (-15 -3026 ((-1265) (-644 (-225)) (-644 (-225)) (-644 (-264)))) (-15 -3026 ((-1265) (-644 (-943 (-225))))) (-15 -3026 ((-1265) (-644 (-943 (-225))) (-644 (-264)))) (-15 -3026 ((-1266) (-644 (-225)) (-644 (-225)) (-644 (-225)))) (-15 -3026 ((-1266) (-644 (-225)) (-644 (-225)) (-644 (-225)) (-644 (-264))))) +((-3372 (((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2504 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-644 (-264)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2504 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 25)) (-3879 (((-921) (-644 (-264)) (-921)) 52)) (-2178 (((-921) (-644 (-264)) (-921)) 51)) (-3169 (((-644 (-381)) (-644 (-264)) (-644 (-381))) 68)) (-2592 (((-381) (-644 (-264)) (-381)) 57)) (-2901 (((-921) (-644 (-264)) (-921)) 53)) (-3204 (((-112) (-644 (-264)) (-112)) 27)) (-3347 (((-1157) (-644 (-264)) (-1157)) 19)) (-4062 (((-1157) (-644 (-264)) (-1157)) 26)) (-3307 (((-1132 (-225)) (-644 (-264))) 46)) (-3927 (((-644 (-1093 (-381))) (-644 (-264)) (-644 (-1093 (-381)))) 40)) (-2444 (((-874) (-644 (-264)) (-874)) 32)) (-1725 (((-874) (-644 (-264)) (-874)) 33)) (-3668 (((-1 (-943 (-225)) (-943 (-225))) (-644 (-264)) (-1 (-943 (-225)) (-943 (-225)))) 63)) (-2115 (((-112) (-644 (-264)) (-112)) 14)) (-2674 (((-112) (-644 (-264)) (-112)) 13))) +(((-262) (-10 -7 (-15 -2674 ((-112) (-644 (-264)) (-112))) (-15 -2115 ((-112) (-644 (-264)) (-112))) (-15 -3372 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2504 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-644 (-264)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2504 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3347 ((-1157) (-644 (-264)) (-1157))) (-15 -4062 ((-1157) (-644 (-264)) (-1157))) (-15 -3204 ((-112) (-644 (-264)) (-112))) (-15 -2444 ((-874) (-644 (-264)) (-874))) (-15 -1725 ((-874) (-644 (-264)) (-874))) (-15 -3927 ((-644 (-1093 (-381))) (-644 (-264)) (-644 (-1093 (-381))))) (-15 -2178 ((-921) (-644 (-264)) (-921))) (-15 -3879 ((-921) (-644 (-264)) (-921))) (-15 -3307 ((-1132 (-225)) (-644 (-264)))) (-15 -2901 ((-921) (-644 (-264)) (-921))) (-15 -2592 ((-381) (-644 (-264)) (-381))) (-15 -3668 ((-1 (-943 (-225)) (-943 (-225))) (-644 (-264)) (-1 (-943 (-225)) (-943 (-225))))) (-15 -3169 ((-644 (-381)) (-644 (-264)) (-644 (-381)))))) (T -262)) +((-3169 (*1 *2 *3 *2) (-12 (-5 *2 (-644 (-381))) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) (-3668 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-943 (-225)) (-943 (-225)))) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) (-2592 (*1 *2 *3 *2) (-12 (-5 *2 (-381)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) (-2901 (*1 *2 *3 *2) (-12 (-5 *2 (-921)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) (-3307 (*1 *2 *3) (-12 (-5 *3 (-644 (-264))) (-5 *2 (-1132 (-225))) (-5 *1 (-262)))) (-3879 (*1 *2 *3 *2) (-12 (-5 *2 (-921)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) (-2178 (*1 *2 *3 *2) (-12 (-5 *2 (-921)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) (-3927 (*1 *2 *3 *2) (-12 (-5 *2 (-644 (-1093 (-381)))) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) (-1725 (*1 *2 *3 *2) (-12 (-5 *2 (-874)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) (-2444 (*1 *2 *3 *2) (-12 (-5 *2 (-874)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) (-3204 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) (-4062 (*1 *2 *3 *2) (-12 (-5 *2 (-1157)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) (-3347 (*1 *2 *3 *2) (-12 (-5 *2 (-1157)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) (-3372 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2504 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) (-2115 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) (-2674 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-644 (-264))) (-5 *1 (-262))))) +(-10 -7 (-15 -2674 ((-112) (-644 (-264)) (-112))) (-15 -2115 ((-112) (-644 (-264)) (-112))) (-15 -3372 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2504 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-644 (-264)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2504 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3347 ((-1157) (-644 (-264)) (-1157))) (-15 -4062 ((-1157) (-644 (-264)) (-1157))) (-15 -3204 ((-112) (-644 (-264)) (-112))) (-15 -2444 ((-874) (-644 (-264)) (-874))) (-15 -1725 ((-874) (-644 (-264)) (-874))) (-15 -3927 ((-644 (-1093 (-381))) (-644 (-264)) (-644 (-1093 (-381))))) (-15 -2178 ((-921) (-644 (-264)) (-921))) (-15 -3879 ((-921) (-644 (-264)) (-921))) (-15 -3307 ((-1132 (-225)) (-644 (-264)))) (-15 -2901 ((-921) (-644 (-264)) (-921))) (-15 -2592 ((-381) (-644 (-264)) (-381))) (-15 -3668 ((-1 (-943 (-225)) (-943 (-225))) (-644 (-264)) (-1 (-943 (-225)) (-943 (-225))))) (-15 -3169 ((-644 (-381)) (-644 (-264)) (-644 (-381))))) +((-1535 (((-3 |#1| "failed") (-644 (-264)) (-1175)) 17))) +(((-263 |#1|) (-10 -7 (-15 -1535 ((-3 |#1| "failed") (-644 (-264)) (-1175)))) (-1214)) (T -263)) +((-1535 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-644 (-264))) (-5 *4 (-1175)) (-5 *1 (-263 *2)) (-4 *2 (-1214))))) +(-10 -7 (-15 -1535 ((-3 |#1| "failed") (-644 (-264)) (-1175)))) +((-2986 (((-112) $ $) NIL)) (-3372 (($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2504 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 24)) (-3879 (($ (-921)) 81)) (-2178 (($ (-921)) 80)) (-1732 (($ (-644 (-381))) 87)) (-2592 (($ (-381)) 66)) (-2901 (($ (-921)) 82)) (-3204 (($ (-112)) 33)) (-3347 (($ (-1157)) 28)) (-4062 (($ (-1157)) 29)) (-3307 (($ (-1132 (-225))) 76)) (-3927 (($ (-644 (-1093 (-381)))) 72)) (-1680 (($ (-644 (-1093 (-381)))) 68) (($ (-644 (-1093 (-409 (-566))))) 71)) (-1439 (($ (-381)) 38) (($ (-874)) 42)) (-3976 (((-112) (-644 $) (-1175)) 100)) (-1535 (((-3 (-52) "failed") (-644 $) (-1175)) 102)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-3568 (($ (-381)) 43) (($ (-874)) 44)) (-3747 (($ (-1 (-943 (-225)) (-943 (-225)))) 65)) (-3668 (($ (-1 (-943 (-225)) (-943 (-225)))) 83)) (-3173 (($ (-1 (-225) (-225))) 48) (($ (-1 (-225) (-225) (-225))) 52) (($ (-1 (-225) (-225) (-225) (-225))) 56)) (-2479 (((-862) $) 93)) (-3934 (($ (-112)) 34) (($ (-644 (-1093 (-381)))) 60)) (-3900 (((-112) $ $) NIL)) (-2674 (($ (-112)) 35)) (-2952 (((-112) $ $) 97))) +(((-264) (-13 (-1099) (-10 -8 (-15 -2674 ($ (-112))) (-15 -3934 ($ (-112))) (-15 -3372 ($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2504 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3347 ($ (-1157))) (-15 -4062 ($ (-1157))) (-15 -3204 ($ (-112))) (-15 -3934 ($ (-644 (-1093 (-381))))) (-15 -3747 ($ (-1 (-943 (-225)) (-943 (-225))))) (-15 -1439 ($ (-381))) (-15 -1439 ($ (-874))) (-15 -3568 ($ (-381))) (-15 -3568 ($ (-874))) (-15 -3173 ($ (-1 (-225) (-225)))) (-15 -3173 ($ (-1 (-225) (-225) (-225)))) (-15 -3173 ($ (-1 (-225) (-225) (-225) (-225)))) (-15 -2592 ($ (-381))) (-15 -1680 ($ (-644 (-1093 (-381))))) (-15 -1680 ($ (-644 (-1093 (-409 (-566)))))) (-15 -3927 ($ (-644 (-1093 (-381))))) (-15 -3307 ($ (-1132 (-225)))) (-15 -2178 ($ (-921))) (-15 -3879 ($ (-921))) (-15 -2901 ($ (-921))) (-15 -3668 ($ (-1 (-943 (-225)) (-943 (-225))))) (-15 -1732 ($ (-644 (-381)))) (-15 -1535 ((-3 (-52) "failed") (-644 $) (-1175))) (-15 -3976 ((-112) (-644 $) (-1175)))))) (T -264)) +((-2674 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-264)))) (-3934 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-264)))) (-3372 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2504 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *1 (-264)))) (-3347 (*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-264)))) (-4062 (*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-264)))) (-3204 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-264)))) (-3934 (*1 *1 *2) (-12 (-5 *2 (-644 (-1093 (-381)))) (-5 *1 (-264)))) (-3747 (*1 *1 *2) (-12 (-5 *2 (-1 (-943 (-225)) (-943 (-225)))) (-5 *1 (-264)))) (-1439 (*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-264)))) (-1439 (*1 *1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-264)))) (-3568 (*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-264)))) (-3568 (*1 *1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-264)))) (-3173 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-264)))) (-3173 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-264)))) (-3173 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-264)))) (-2592 (*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-264)))) (-1680 (*1 *1 *2) (-12 (-5 *2 (-644 (-1093 (-381)))) (-5 *1 (-264)))) (-1680 (*1 *1 *2) (-12 (-5 *2 (-644 (-1093 (-409 (-566))))) (-5 *1 (-264)))) (-3927 (*1 *1 *2) (-12 (-5 *2 (-644 (-1093 (-381)))) (-5 *1 (-264)))) (-3307 (*1 *1 *2) (-12 (-5 *2 (-1132 (-225))) (-5 *1 (-264)))) (-2178 (*1 *1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-264)))) (-3879 (*1 *1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-264)))) (-2901 (*1 *1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-264)))) (-3668 (*1 *1 *2) (-12 (-5 *2 (-1 (-943 (-225)) (-943 (-225)))) (-5 *1 (-264)))) (-1732 (*1 *1 *2) (-12 (-5 *2 (-644 (-381))) (-5 *1 (-264)))) (-1535 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-644 (-264))) (-5 *4 (-1175)) (-5 *2 (-52)) (-5 *1 (-264)))) (-3976 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-264))) (-5 *4 (-1175)) (-5 *2 (-112)) (-5 *1 (-264))))) +(-13 (-1099) (-10 -8 (-15 -2674 ($ (-112))) (-15 -3934 ($ (-112))) (-15 -3372 ($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2504 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3347 ($ (-1157))) (-15 -4062 ($ (-1157))) (-15 -3204 ($ (-112))) (-15 -3934 ($ (-644 (-1093 (-381))))) (-15 -3747 ($ (-1 (-943 (-225)) (-943 (-225))))) (-15 -1439 ($ (-381))) (-15 -1439 ($ (-874))) (-15 -3568 ($ (-381))) (-15 -3568 ($ (-874))) (-15 -3173 ($ (-1 (-225) (-225)))) (-15 -3173 ($ (-1 (-225) (-225) (-225)))) (-15 -3173 ($ (-1 (-225) (-225) (-225) (-225)))) (-15 -2592 ($ (-381))) (-15 -1680 ($ (-644 (-1093 (-381))))) (-15 -1680 ($ (-644 (-1093 (-409 (-566)))))) (-15 -3927 ($ (-644 (-1093 (-381))))) (-15 -3307 ($ (-1132 (-225)))) (-15 -2178 ($ (-921))) (-15 -3879 ($ (-921))) (-15 -2901 ($ (-921))) (-15 -3668 ($ (-1 (-943 (-225)) (-943 (-225))))) (-15 -1732 ($ (-644 (-381)))) (-15 -1535 ((-3 (-52) "failed") (-644 $) (-1175))) (-15 -3976 ((-112) (-644 $) (-1175))))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-1787 (((-644 (-771)) $) NIL) (((-644 (-771)) $ |#2|) NIL)) (-2639 (((-771) $) NIL) (((-771) $ |#2|) NIL)) (-2485 (((-644 |#3|) $) NIL)) (-2285 (((-1171 $) $ |#3|) NIL) (((-1171 |#1|) $) NIL)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-3087 (($ $) NIL (|has| |#1| (-558)))) (-1716 (((-112) $) NIL (|has| |#1| (-558)))) (-2917 (((-771) $) NIL) (((-771) $ (-644 |#3|)) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-4058 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-3980 (($ $) NIL (|has| |#1| (-454)))) (-3348 (((-420 $) $) NIL (|has| |#1| (-454)))) (-4262 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-1364 (($ $) NIL)) (-1811 (($) NIL T CONST)) (-2980 (((-3 |#1| "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1124 |#1| |#2|) "failed") $) 23)) (-1709 ((|#1| $) NIL) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-566) $) NIL (|has| |#1| (-1038 (-566)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1124 |#1| |#2|) $) NIL)) (-4343 (($ $ $ |#3|) NIL (|has| |#1| (-172)))) (-3565 (($ $) NIL)) (-2275 (((-689 (-566)) (-689 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -4196 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) NIL) (((-689 |#1|) (-689 $)) NIL)) (-3757 (((-3 $ "failed") $) NIL)) (-3530 (($ $) NIL (|has| |#1| (-454))) (($ $ |#3|) NIL (|has| |#1| (-454)))) (-3551 (((-644 $) $) NIL)) (-4188 (((-112) $) NIL (|has| |#1| (-909)))) (-3995 (($ $ |#1| (-533 |#3|) $) NIL)) (-1542 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| |#1| (-886 (-381))) (|has| |#3| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| |#1| (-886 (-566))) (|has| |#3| (-886 (-566)))))) (-1802 (((-771) $ |#2|) NIL) (((-771) $) 10)) (-2264 (((-112) $) NIL)) (-3486 (((-771) $) NIL)) (-2474 (($ (-1171 |#1|) |#3|) NIL) (($ (-1171 $) |#3|) NIL)) (-1545 (((-644 $) $) NIL)) (-3989 (((-112) $) NIL)) (-2463 (($ |#1| (-533 |#3|)) NIL) (($ $ |#3| (-771)) NIL) (($ $ (-644 |#3|) (-644 (-771))) NIL)) (-2235 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $ |#3|) NIL)) (-2584 (((-533 |#3|) $) NIL) (((-771) $ |#3|) NIL) (((-644 (-771)) $ (-644 |#3|)) NIL)) (-3327 (($ (-1 (-533 |#3|) (-533 |#3|)) $) NIL)) (-3080 (($ (-1 |#1| |#1|) $) NIL)) (-1859 (((-1 $ (-771)) |#2|) NIL) (((-1 $ (-771)) $) NIL (|has| |#1| (-233)))) (-2673 (((-3 |#3| "failed") $) NIL)) (-2608 (($ $) NIL)) (-2622 ((|#1| $) NIL)) (-3292 ((|#3| $) NIL)) (-2120 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-3151 (((-1157) $) NIL)) (-4277 (((-112) $) NIL)) (-4075 (((-3 (-644 $) "failed") $) NIL)) (-3380 (((-3 (-644 $) "failed") $) NIL)) (-2414 (((-3 (-2 (|:| |var| |#3|) (|:| -3631 (-771))) "failed") $) NIL)) (-1823 (($ $) NIL)) (-4059 (((-1119) $) NIL)) (-2587 (((-112) $) NIL)) (-2597 ((|#1| $) NIL)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-454)))) (-2162 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-1500 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-3917 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-2325 (((-420 $) $) NIL (|has| |#1| (-909)))) (-2976 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-3297 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-644 |#3|) (-644 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-644 |#3|) (-644 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-233))) (($ $ (-644 |#2|) (-644 $)) NIL (|has| |#1| (-233))) (($ $ |#2| |#1|) NIL (|has| |#1| (-233))) (($ $ (-644 |#2|) (-644 |#1|)) NIL (|has| |#1| (-233)))) (-3553 (($ $ |#3|) NIL (|has| |#1| (-172)))) (-3526 (($ $ |#3|) NIL) (($ $ (-644 |#3|)) NIL) (($ $ |#3| (-771)) NIL) (($ $ (-644 |#3|) (-644 (-771))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-771)) NIL (|has| |#1| (-233))) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3007 (((-644 |#2|) $) NIL)) (-1630 (((-533 |#3|) $) NIL) (((-771) $ |#3|) NIL) (((-644 (-771)) $ (-644 |#3|)) NIL) (((-771) $ |#2|) NIL)) (-3136 (((-892 (-381)) $) NIL (-12 (|has| |#1| (-614 (-892 (-381)))) (|has| |#3| (-614 (-892 (-381)))))) (((-892 (-566)) $) NIL (-12 (|has| |#1| (-614 (-892 (-566)))) (|has| |#3| (-614 (-892 (-566)))))) (((-538) $) NIL (-12 (|has| |#1| (-614 (-538))) (|has| |#3| (-614 (-538)))))) (-2252 ((|#1| $) NIL (|has| |#1| (-454))) (($ $ |#3|) NIL (|has| |#1| (-454)))) (-3233 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-909))))) (-2479 (((-862) $) NIL) (($ (-566)) NIL) (($ |#1|) 26) (($ |#3|) 25) (($ |#2|) NIL) (($ (-1124 |#1| |#2|)) 32) (($ (-409 (-566))) NIL (-2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566)))))) (($ $) NIL (|has| |#1| (-558)))) (-3866 (((-644 |#1|) $) NIL)) (-3025 ((|#1| $ (-533 |#3|)) NIL) (($ $ |#3| (-771)) NIL) (($ $ (-644 |#3|) (-644 (-771))) NIL)) (-2645 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| $ (-145)) (|has| |#1| (-909))) (|has| |#1| (-145))))) (-1558 (((-771)) NIL T CONST)) (-2244 (($ $ $ (-771)) NIL (|has| |#1| (-172)))) (-3900 (((-112) $ $) NIL)) (-1333 (((-112) $ $) NIL (|has| |#1| (-558)))) (-2446 (($) NIL T CONST)) (-2459 (($) NIL T CONST)) (-2834 (($ $ |#3|) NIL) (($ $ (-644 |#3|)) NIL) (($ $ |#3| (-771)) NIL) (($ $ (-644 |#3|) (-644 (-771))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-771)) NIL (|has| |#1| (-233))) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2952 (((-112) $ $) NIL)) (-3077 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-265 |#1| |#2| |#3|) (-13 (-254 |#1| |#2| |#3| (-533 |#3|)) (-1038 (-1124 |#1| |#2|))) (-1049) (-850) (-267 |#2|)) (T -265)) +NIL +(-13 (-254 |#1| |#2| |#3| (-533 |#3|)) (-1038 (-1124 |#1| |#2|))) +((-2639 (((-771) $) 37)) (-2980 (((-3 |#2| "failed") $) 22)) (-1709 ((|#2| $) 33)) (-3526 (($ $) 14) (($ $ (-771)) 18)) (-2479 (((-862) $) 32) (($ |#2|) 11)) (-2952 (((-112) $ $) 26)) (-2977 (((-112) $ $) 36))) +(((-266 |#1| |#2|) (-10 -8 (-15 -3526 (|#1| |#1| (-771))) (-15 -3526 (|#1| |#1|)) (-15 -2639 ((-771) |#1|)) (-15 -2479 (|#1| |#2|)) (-15 -2980 ((-3 |#2| "failed") |#1|)) (-15 -1709 (|#2| |#1|)) (-15 -2977 ((-112) |#1| |#1|)) (-15 -2479 ((-862) |#1|)) (-15 -2952 ((-112) |#1| |#1|))) (-267 |#2|) (-850)) (T -266)) +NIL +(-10 -8 (-15 -3526 (|#1| |#1| (-771))) (-15 -3526 (|#1| |#1|)) (-15 -2639 ((-771) |#1|)) (-15 -2479 (|#1| |#2|)) (-15 -2980 ((-3 |#2| "failed") |#1|)) (-15 -1709 (|#2| |#1|)) (-15 -2977 ((-112) |#1| |#1|)) (-15 -2479 ((-862) |#1|)) (-15 -2952 ((-112) |#1| |#1|))) +((-2986 (((-112) $ $) 7)) (-2639 (((-771) $) 23)) (-1338 ((|#1| $) 24)) (-2980 (((-3 |#1| "failed") $) 28)) (-1709 ((|#1| $) 29)) (-1802 (((-771) $) 25)) (-1920 (($ $ $) 14)) (-3038 (($ $ $) 15)) (-1859 (($ |#1| (-771)) 26)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-3526 (($ $) 22) (($ $ (-771)) 21)) (-2479 (((-862) $) 12) (($ |#1|) 27)) (-3900 (((-112) $ $) 9)) (-3019 (((-112) $ $) 17)) (-2990 (((-112) $ $) 18)) (-2952 (((-112) $ $) 6)) (-3004 (((-112) $ $) 16)) (-2977 (((-112) $ $) 19))) +(((-267 |#1|) (-140) (-850)) (T -267)) +((-2479 (*1 *1 *2) (-12 (-4 *1 (-267 *2)) (-4 *2 (-850)))) (-1859 (*1 *1 *2 *3) (-12 (-5 *3 (-771)) (-4 *1 (-267 *2)) (-4 *2 (-850)))) (-1802 (*1 *2 *1) (-12 (-4 *1 (-267 *3)) (-4 *3 (-850)) (-5 *2 (-771)))) (-1338 (*1 *2 *1) (-12 (-4 *1 (-267 *2)) (-4 *2 (-850)))) (-2639 (*1 *2 *1) (-12 (-4 *1 (-267 *3)) (-4 *3 (-850)) (-5 *2 (-771)))) (-3526 (*1 *1 *1) (-12 (-4 *1 (-267 *2)) (-4 *2 (-850)))) (-3526 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-267 *3)) (-4 *3 (-850))))) +(-13 (-850) (-1038 |t#1|) (-10 -8 (-15 -1859 ($ |t#1| (-771))) (-15 -1802 ((-771) $)) (-15 -1338 (|t#1| $)) (-15 -2639 ((-771) $)) (-15 -3526 ($ $)) (-15 -3526 ($ $ (-771))) (-15 -2479 ($ |t#1|)))) +(((-102) . T) ((-616 |#1|) . T) ((-613 (-862)) . T) ((-850) . T) ((-1038 |#1|) . T) ((-1099) . T)) +((-2485 (((-644 (-1175)) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3968 (-644 (-225))))) 54)) (-1656 (((-644 (-1175)) (-317 (-225)) (-771)) 96)) (-2927 (((-3 (-317 (-225)) "failed") (-317 (-225))) 64)) (-1360 (((-317 (-225)) (-317 (-225))) 82)) (-2309 (((-2 (|:| |fn| (-317 (-225))) (|:| -3968 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225))))) (-2 (|:| |fn| (-317 (-225))) (|:| -3968 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 39)) (-4065 (((-112) (-644 (-317 (-225)))) 106)) (-4119 (((-112) (-317 (-225))) 37)) (-2127 (((-644 (-1157)) (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -3968 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3968 (-644 (-225))))))) 134)) (-2455 (((-644 (-317 (-225))) (-644 (-317 (-225)))) 110)) (-1917 (((-644 (-317 (-225))) (-644 (-317 (-225)))) 108)) (-2801 (((-689 (-225)) (-644 (-317 (-225))) (-771)) 122)) (-3076 (((-112) (-317 (-225))) 32) (((-112) (-644 (-317 (-225)))) 107)) (-2034 (((-644 (-225)) (-644 (-843 (-225))) (-225)) 15)) (-1331 (((-381) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3968 (-644 (-225))))) 128)) (-1760 (((-1035) (-1175) (-1035)) 47))) +(((-268) (-10 -7 (-15 -2034 ((-644 (-225)) (-644 (-843 (-225))) (-225))) (-15 -2309 ((-2 (|:| |fn| (-317 (-225))) (|:| -3968 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225))))) (-2 (|:| |fn| (-317 (-225))) (|:| -3968 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225))))))) (-15 -2927 ((-3 (-317 (-225)) "failed") (-317 (-225)))) (-15 -1360 ((-317 (-225)) (-317 (-225)))) (-15 -4065 ((-112) (-644 (-317 (-225))))) (-15 -3076 ((-112) (-644 (-317 (-225))))) (-15 -3076 ((-112) (-317 (-225)))) (-15 -2801 ((-689 (-225)) (-644 (-317 (-225))) (-771))) (-15 -1917 ((-644 (-317 (-225))) (-644 (-317 (-225))))) (-15 -2455 ((-644 (-317 (-225))) (-644 (-317 (-225))))) (-15 -4119 ((-112) (-317 (-225)))) (-15 -2485 ((-644 (-1175)) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3968 (-644 (-225)))))) (-15 -1656 ((-644 (-1175)) (-317 (-225)) (-771))) (-15 -1760 ((-1035) (-1175) (-1035))) (-15 -1331 ((-381) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3968 (-644 (-225)))))) (-15 -2127 ((-644 (-1157)) (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -3968 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3968 (-644 (-225)))))))))) (T -268)) +((-2127 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -3968 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3968 (-644 (-225))))))) (-5 *2 (-644 (-1157))) (-5 *1 (-268)))) (-1331 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3968 (-644 (-225))))) (-5 *2 (-381)) (-5 *1 (-268)))) (-1760 (*1 *2 *3 *2) (-12 (-5 *2 (-1035)) (-5 *3 (-1175)) (-5 *1 (-268)))) (-1656 (*1 *2 *3 *4) (-12 (-5 *3 (-317 (-225))) (-5 *4 (-771)) (-5 *2 (-644 (-1175))) (-5 *1 (-268)))) (-2485 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3968 (-644 (-225))))) (-5 *2 (-644 (-1175))) (-5 *1 (-268)))) (-4119 (*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-112)) (-5 *1 (-268)))) (-2455 (*1 *2 *2) (-12 (-5 *2 (-644 (-317 (-225)))) (-5 *1 (-268)))) (-1917 (*1 *2 *2) (-12 (-5 *2 (-644 (-317 (-225)))) (-5 *1 (-268)))) (-2801 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-317 (-225)))) (-5 *4 (-771)) (-5 *2 (-689 (-225))) (-5 *1 (-268)))) (-3076 (*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-112)) (-5 *1 (-268)))) (-3076 (*1 *2 *3) (-12 (-5 *3 (-644 (-317 (-225)))) (-5 *2 (-112)) (-5 *1 (-268)))) (-4065 (*1 *2 *3) (-12 (-5 *3 (-644 (-317 (-225)))) (-5 *2 (-112)) (-5 *1 (-268)))) (-1360 (*1 *2 *2) (-12 (-5 *2 (-317 (-225))) (-5 *1 (-268)))) (-2927 (*1 *2 *2) (|partial| -12 (-5 *2 (-317 (-225))) (-5 *1 (-268)))) (-2309 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-317 (-225))) (|:| -3968 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (-5 *1 (-268)))) (-2034 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-843 (-225)))) (-5 *4 (-225)) (-5 *2 (-644 *4)) (-5 *1 (-268))))) +(-10 -7 (-15 -2034 ((-644 (-225)) (-644 (-843 (-225))) (-225))) (-15 -2309 ((-2 (|:| |fn| (-317 (-225))) (|:| -3968 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225))))) (-2 (|:| |fn| (-317 (-225))) (|:| -3968 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225))))))) (-15 -2927 ((-3 (-317 (-225)) "failed") (-317 (-225)))) (-15 -1360 ((-317 (-225)) (-317 (-225)))) (-15 -4065 ((-112) (-644 (-317 (-225))))) (-15 -3076 ((-112) (-644 (-317 (-225))))) (-15 -3076 ((-112) (-317 (-225)))) (-15 -2801 ((-689 (-225)) (-644 (-317 (-225))) (-771))) (-15 -1917 ((-644 (-317 (-225))) (-644 (-317 (-225))))) (-15 -2455 ((-644 (-317 (-225))) (-644 (-317 (-225))))) (-15 -4119 ((-112) (-317 (-225)))) (-15 -2485 ((-644 (-1175)) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3968 (-644 (-225)))))) (-15 -1656 ((-644 (-1175)) (-317 (-225)) (-771))) (-15 -1760 ((-1035) (-1175) (-1035))) (-15 -1331 ((-381) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3968 (-644 (-225)))))) (-15 -2127 ((-644 (-1157)) (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -3968 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3968 (-644 (-225))))))))) +((-2986 (((-112) $ $) NIL)) (-4377 (((-1035) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3968 (-644 (-225))))) NIL) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -3968 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 56)) (-4177 (((-2 (|:| -4177 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -3968 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 32) (((-2 (|:| -4177 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3968 (-644 (-225))))) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) NIL)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-269) (-839)) (T -269)) +NIL +(-839) +((-2986 (((-112) $ $) NIL)) (-4377 (((-1035) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3968 (-644 (-225))))) 72) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -3968 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 63)) (-4177 (((-2 (|:| -4177 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -3968 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 41) (((-2 (|:| -4177 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3968 (-644 (-225))))) 43)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) NIL)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-270) (-839)) (T -270)) +NIL +(-839) +((-2986 (((-112) $ $) NIL)) (-4377 (((-1035) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3968 (-644 (-225))))) 90) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -3968 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 85)) (-4177 (((-2 (|:| -4177 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -3968 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 52) (((-2 (|:| -4177 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3968 (-644 (-225))))) 65)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) NIL)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-271) (-839)) (T -271)) +NIL +(-839) +((-2986 (((-112) $ $) NIL)) (-4377 (((-1035) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3968 (-644 (-225))))) NIL) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -3968 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 73)) (-4177 (((-2 (|:| -4177 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -3968 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 45) (((-2 (|:| -4177 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3968 (-644 (-225))))) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) NIL)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-272) (-839)) (T -272)) +NIL +(-839) +((-2986 (((-112) $ $) NIL)) (-4377 (((-1035) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3968 (-644 (-225))))) NIL) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -3968 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 65)) (-4177 (((-2 (|:| -4177 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -3968 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 31) (((-2 (|:| -4177 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3968 (-644 (-225))))) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) NIL)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-273) (-839)) (T -273)) +NIL +(-839) +((-2986 (((-112) $ $) NIL)) (-4377 (((-1035) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3968 (-644 (-225))))) NIL) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -3968 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 90)) (-4177 (((-2 (|:| -4177 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -3968 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 33) (((-2 (|:| -4177 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3968 (-644 (-225))))) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) NIL)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-274) (-839)) (T -274)) +NIL +(-839) +((-2986 (((-112) $ $) NIL)) (-4377 (((-1035) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3968 (-644 (-225))))) NIL) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -3968 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 95)) (-4177 (((-2 (|:| -4177 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -3968 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 32) (((-2 (|:| -4177 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3968 (-644 (-225))))) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) NIL)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-275) (-839)) (T -275)) +NIL +(-839) +((-2986 (((-112) $ $) NIL)) (-1920 (($ $ $) NIL)) (-3038 (($ $ $) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-4222 (((-644 (-566)) $) 29)) (-1630 (((-771) $) 27)) (-2479 (((-862) $) 36) (($ (-644 (-566))) 23)) (-3900 (((-112) $ $) NIL)) (-3763 (($ (-771)) 33)) (-3019 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 9)) (-3004 (((-112) $ $) NIL)) (-2977 (((-112) $ $) 17))) +(((-276) (-13 (-850) (-10 -8 (-15 -2479 ($ (-644 (-566)))) (-15 -1630 ((-771) $)) (-15 -4222 ((-644 (-566)) $)) (-15 -3763 ($ (-771)))))) (T -276)) +((-2479 (*1 *1 *2) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-276)))) (-1630 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-276)))) (-4222 (*1 *2 *1) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-276)))) (-3763 (*1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-276))))) +(-13 (-850) (-10 -8 (-15 -2479 ($ (-644 (-566)))) (-15 -1630 ((-771) $)) (-15 -4222 ((-644 (-566)) $)) (-15 -3763 ($ (-771))))) +((-3219 ((|#2| |#2|) 77)) (-3091 ((|#2| |#2|) 65)) (-4063 (((-3 |#2| "failed") |#2| (-644 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 125)) (-3197 ((|#2| |#2|) 75)) (-3067 ((|#2| |#2|) 63)) (-3240 ((|#2| |#2|) 79)) (-3115 ((|#2| |#2|) 67)) (-2964 ((|#2|) 46)) (-4272 (((-114) (-114)) 100)) (-3676 ((|#2| |#2|) 61)) (-4293 (((-112) |#2|) 147)) (-3933 ((|#2| |#2|) 195)) (-3023 ((|#2| |#2|) 171)) (-3308 ((|#2|) 59)) (-2490 ((|#2|) 58)) (-2726 ((|#2| |#2|) 191)) (-2813 ((|#2| |#2|) 167)) (-1834 ((|#2| |#2|) 199)) (-1911 ((|#2| |#2|) 175)) (-3401 ((|#2| |#2|) 163)) (-4138 ((|#2| |#2|) 165)) (-4041 ((|#2| |#2|) 201)) (-1858 ((|#2| |#2|) 177)) (-2617 ((|#2| |#2|) 197)) (-2163 ((|#2| |#2|) 173)) (-3361 ((|#2| |#2|) 193)) (-2694 ((|#2| |#2|) 169)) (-3769 ((|#2| |#2|) 207)) (-2706 ((|#2| |#2|) 183)) (-3469 ((|#2| |#2|) 203)) (-1868 ((|#2| |#2|) 179)) (-3838 ((|#2| |#2|) 211)) (-4096 ((|#2| |#2|) 187)) (-4358 ((|#2| |#2|) 213)) (-2774 ((|#2| |#2|) 189)) (-3303 ((|#2| |#2|) 209)) (-2777 ((|#2| |#2|) 185)) (-2692 ((|#2| |#2|) 205)) (-2137 ((|#2| |#2|) 181)) (-3571 ((|#2| |#2|) 62)) (-3250 ((|#2| |#2|) 80)) (-3126 ((|#2| |#2|) 68)) (-3227 ((|#2| |#2|) 78)) (-3105 ((|#2| |#2|) 66)) (-3207 ((|#2| |#2|) 76)) (-3079 ((|#2| |#2|) 64)) (-1540 (((-112) (-114)) 98)) (-3285 ((|#2| |#2|) 83)) (-3157 ((|#2| |#2|) 71)) (-3260 ((|#2| |#2|) 81)) (-3135 ((|#2| |#2|) 69)) (-3309 ((|#2| |#2|) 85)) (-3179 ((|#2| |#2|) 73)) (-1861 ((|#2| |#2|) 86)) (-3190 ((|#2| |#2|) 74)) (-3299 ((|#2| |#2|) 84)) (-3168 ((|#2| |#2|) 72)) (-3273 ((|#2| |#2|) 82)) (-3148 ((|#2| |#2|) 70))) +(((-277 |#1| |#2|) (-10 -7 (-15 -3571 (|#2| |#2|)) (-15 -3676 (|#2| |#2|)) (-15 -3067 (|#2| |#2|)) (-15 -3079 (|#2| |#2|)) (-15 -3091 (|#2| |#2|)) (-15 -3105 (|#2| |#2|)) (-15 -3115 (|#2| |#2|)) (-15 -3126 (|#2| |#2|)) (-15 -3135 (|#2| |#2|)) (-15 -3148 (|#2| |#2|)) (-15 -3157 (|#2| |#2|)) (-15 -3168 (|#2| |#2|)) (-15 -3179 (|#2| |#2|)) (-15 -3190 (|#2| |#2|)) (-15 -3197 (|#2| |#2|)) (-15 -3207 (|#2| |#2|)) (-15 -3219 (|#2| |#2|)) (-15 -3227 (|#2| |#2|)) (-15 -3240 (|#2| |#2|)) (-15 -3250 (|#2| |#2|)) (-15 -3260 (|#2| |#2|)) (-15 -3273 (|#2| |#2|)) (-15 -3285 (|#2| |#2|)) (-15 -3299 (|#2| |#2|)) (-15 -3309 (|#2| |#2|)) (-15 -1861 (|#2| |#2|)) (-15 -2964 (|#2|)) (-15 -1540 ((-112) (-114))) (-15 -4272 ((-114) (-114))) (-15 -2490 (|#2|)) (-15 -3308 (|#2|)) (-15 -4138 (|#2| |#2|)) (-15 -3401 (|#2| |#2|)) (-15 -2813 (|#2| |#2|)) (-15 -2694 (|#2| |#2|)) (-15 -3023 (|#2| |#2|)) (-15 -2163 (|#2| |#2|)) (-15 -1911 (|#2| |#2|)) (-15 -1858 (|#2| |#2|)) (-15 -1868 (|#2| |#2|)) (-15 -2137 (|#2| |#2|)) (-15 -2706 (|#2| |#2|)) (-15 -2777 (|#2| |#2|)) (-15 -4096 (|#2| |#2|)) (-15 -2774 (|#2| |#2|)) (-15 -2726 (|#2| |#2|)) (-15 -3361 (|#2| |#2|)) (-15 -3933 (|#2| |#2|)) (-15 -2617 (|#2| |#2|)) (-15 -1834 (|#2| |#2|)) (-15 -4041 (|#2| |#2|)) (-15 -3469 (|#2| |#2|)) (-15 -2692 (|#2| |#2|)) (-15 -3769 (|#2| |#2|)) (-15 -3303 (|#2| |#2|)) (-15 -3838 (|#2| |#2|)) (-15 -4358 (|#2| |#2|)) (-15 -4063 ((-3 |#2| "failed") |#2| (-644 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -4293 ((-112) |#2|))) (-558) (-13 (-432 |#1|) (-1002))) (T -277)) +((-4293 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-112)) (-5 *1 (-277 *4 *3)) (-4 *3 (-13 (-432 *4) (-1002))))) (-4063 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-644 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-432 *4) (-1002))) (-4 *4 (-558)) (-5 *1 (-277 *4 *2)))) (-4358 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3838 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3303 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3769 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-2692 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3469 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-4041 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-1834 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-2617 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3933 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3361 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-2726 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-2774 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-4096 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-2777 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-2706 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-2137 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-1868 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-1858 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-1911 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-2163 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3023 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-2694 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-2813 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3401 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-4138 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3308 (*1 *2) (-12 (-4 *2 (-13 (-432 *3) (-1002))) (-5 *1 (-277 *3 *2)) (-4 *3 (-558)))) (-2490 (*1 *2) (-12 (-4 *2 (-13 (-432 *3) (-1002))) (-5 *1 (-277 *3 *2)) (-4 *3 (-558)))) (-4272 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-558)) (-5 *1 (-277 *3 *4)) (-4 *4 (-13 (-432 *3) (-1002))))) (-1540 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-558)) (-5 *2 (-112)) (-5 *1 (-277 *4 *5)) (-4 *5 (-13 (-432 *4) (-1002))))) (-2964 (*1 *2) (-12 (-4 *2 (-13 (-432 *3) (-1002))) (-5 *1 (-277 *3 *2)) (-4 *3 (-558)))) (-1861 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3309 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3299 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3285 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3273 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3260 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3250 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3240 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3227 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3219 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3207 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3197 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3190 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3179 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3168 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3157 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3148 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3135 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3126 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3115 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3105 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3091 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3079 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3067 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3676 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3571 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002)))))) +(-10 -7 (-15 -3571 (|#2| |#2|)) (-15 -3676 (|#2| |#2|)) (-15 -3067 (|#2| |#2|)) (-15 -3079 (|#2| |#2|)) (-15 -3091 (|#2| |#2|)) (-15 -3105 (|#2| |#2|)) (-15 -3115 (|#2| |#2|)) (-15 -3126 (|#2| |#2|)) (-15 -3135 (|#2| |#2|)) (-15 -3148 (|#2| |#2|)) (-15 -3157 (|#2| |#2|)) (-15 -3168 (|#2| |#2|)) (-15 -3179 (|#2| |#2|)) (-15 -3190 (|#2| |#2|)) (-15 -3197 (|#2| |#2|)) (-15 -3207 (|#2| |#2|)) (-15 -3219 (|#2| |#2|)) (-15 -3227 (|#2| |#2|)) (-15 -3240 (|#2| |#2|)) (-15 -3250 (|#2| |#2|)) (-15 -3260 (|#2| |#2|)) (-15 -3273 (|#2| |#2|)) (-15 -3285 (|#2| |#2|)) (-15 -3299 (|#2| |#2|)) (-15 -3309 (|#2| |#2|)) (-15 -1861 (|#2| |#2|)) (-15 -2964 (|#2|)) (-15 -1540 ((-112) (-114))) (-15 -4272 ((-114) (-114))) (-15 -2490 (|#2|)) (-15 -3308 (|#2|)) (-15 -4138 (|#2| |#2|)) (-15 -3401 (|#2| |#2|)) (-15 -2813 (|#2| |#2|)) (-15 -2694 (|#2| |#2|)) (-15 -3023 (|#2| |#2|)) (-15 -2163 (|#2| |#2|)) (-15 -1911 (|#2| |#2|)) (-15 -1858 (|#2| |#2|)) (-15 -1868 (|#2| |#2|)) (-15 -2137 (|#2| |#2|)) (-15 -2706 (|#2| |#2|)) (-15 -2777 (|#2| |#2|)) (-15 -4096 (|#2| |#2|)) (-15 -2774 (|#2| |#2|)) (-15 -2726 (|#2| |#2|)) (-15 -3361 (|#2| |#2|)) (-15 -3933 (|#2| |#2|)) (-15 -2617 (|#2| |#2|)) (-15 -1834 (|#2| |#2|)) (-15 -4041 (|#2| |#2|)) (-15 -3469 (|#2| |#2|)) (-15 -2692 (|#2| |#2|)) (-15 -3769 (|#2| |#2|)) (-15 -3303 (|#2| |#2|)) (-15 -3838 (|#2| |#2|)) (-15 -4358 (|#2| |#2|)) (-15 -4063 ((-3 |#2| "failed") |#2| (-644 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -4293 ((-112) |#2|))) +((-2055 (((-3 |#2| "failed") (-644 (-612 |#2|)) |#2| (-1175)) 153)) (-1998 ((|#2| (-409 (-566)) |#2|) 49)) (-1738 ((|#2| |#2| (-612 |#2|)) 146)) (-2798 (((-2 (|:| |func| |#2|) (|:| |kers| (-644 (-612 |#2|))) (|:| |vals| (-644 |#2|))) |#2| (-1175)) 145)) (-4055 ((|#2| |#2| (-1175)) 20) ((|#2| |#2|) 23)) (-2172 ((|#2| |#2| (-1175)) 159) ((|#2| |#2|) 157))) +(((-278 |#1| |#2|) (-10 -7 (-15 -2172 (|#2| |#2|)) (-15 -2172 (|#2| |#2| (-1175))) (-15 -2798 ((-2 (|:| |func| |#2|) (|:| |kers| (-644 (-612 |#2|))) (|:| |vals| (-644 |#2|))) |#2| (-1175))) (-15 -4055 (|#2| |#2|)) (-15 -4055 (|#2| |#2| (-1175))) (-15 -2055 ((-3 |#2| "failed") (-644 (-612 |#2|)) |#2| (-1175))) (-15 -1738 (|#2| |#2| (-612 |#2|))) (-15 -1998 (|#2| (-409 (-566)) |#2|))) (-13 (-558) (-1038 (-566)) (-639 (-566))) (-13 (-27) (-1199) (-432 |#1|))) (T -278)) +((-1998 (*1 *2 *3 *2) (-12 (-5 *3 (-409 (-566))) (-4 *4 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *4))))) (-1738 (*1 *2 *2 *3) (-12 (-5 *3 (-612 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *4))) (-4 *4 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-278 *4 *2)))) (-2055 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-644 (-612 *2))) (-5 *4 (-1175)) (-4 *2 (-13 (-27) (-1199) (-432 *5))) (-4 *5 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-278 *5 *2)))) (-4055 (*1 *2 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *4))))) (-4055 (*1 *2 *2) (-12 (-4 *3 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *3))))) (-2798 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-4 *5 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-644 (-612 *3))) (|:| |vals| (-644 *3)))) (-5 *1 (-278 *5 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *5))))) (-2172 (*1 *2 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *4))))) (-2172 (*1 *2 *2) (-12 (-4 *3 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *3)))))) +(-10 -7 (-15 -2172 (|#2| |#2|)) (-15 -2172 (|#2| |#2| (-1175))) (-15 -2798 ((-2 (|:| |func| |#2|) (|:| |kers| (-644 (-612 |#2|))) (|:| |vals| (-644 |#2|))) |#2| (-1175))) (-15 -4055 (|#2| |#2|)) (-15 -4055 (|#2| |#2| (-1175))) (-15 -2055 ((-3 |#2| "failed") (-644 (-612 |#2|)) |#2| (-1175))) (-15 -1738 (|#2| |#2| (-612 |#2|))) (-15 -1998 (|#2| (-409 (-566)) |#2|))) +((-3771 (((-3 |#3| "failed") |#3|) 120)) (-3219 ((|#3| |#3|) 142)) (-3479 (((-3 |#3| "failed") |#3|) 89)) (-3091 ((|#3| |#3|) 132)) (-1736 (((-3 |#3| "failed") |#3|) 65)) (-3197 ((|#3| |#3|) 140)) (-2912 (((-3 |#3| "failed") |#3|) 53)) (-3067 ((|#3| |#3|) 130)) (-3346 (((-3 |#3| "failed") |#3|) 122)) (-3240 ((|#3| |#3|) 144)) (-2653 (((-3 |#3| "failed") |#3|) 91)) (-3115 ((|#3| |#3|) 134)) (-1715 (((-3 |#3| "failed") |#3| (-771)) 41)) (-2261 (((-3 |#3| "failed") |#3|) 81)) (-3676 ((|#3| |#3|) 129)) (-3594 (((-3 |#3| "failed") |#3|) 51)) (-3571 ((|#3| |#3|) 128)) (-3622 (((-3 |#3| "failed") |#3|) 123)) (-3250 ((|#3| |#3|) 145)) (-2063 (((-3 |#3| "failed") |#3|) 92)) (-3126 ((|#3| |#3|) 135)) (-2703 (((-3 |#3| "failed") |#3|) 121)) (-3227 ((|#3| |#3|) 143)) (-4366 (((-3 |#3| "failed") |#3|) 90)) (-3105 ((|#3| |#3|) 133)) (-2314 (((-3 |#3| "failed") |#3|) 67)) (-3207 ((|#3| |#3|) 141)) (-2312 (((-3 |#3| "failed") |#3|) 55)) (-3079 ((|#3| |#3|) 131)) (-1480 (((-3 |#3| "failed") |#3|) 73)) (-3285 ((|#3| |#3|) 148)) (-3552 (((-3 |#3| "failed") |#3|) 114)) (-3157 ((|#3| |#3|) 154)) (-1689 (((-3 |#3| "failed") |#3|) 69)) (-3260 ((|#3| |#3|) 146)) (-4199 (((-3 |#3| "failed") |#3|) 57)) (-3135 ((|#3| |#3|) 136)) (-3221 (((-3 |#3| "failed") |#3|) 77)) (-3309 ((|#3| |#3|) 150)) (-3874 (((-3 |#3| "failed") |#3|) 61)) (-3179 ((|#3| |#3|) 138)) (-2319 (((-3 |#3| "failed") |#3|) 79)) (-1861 ((|#3| |#3|) 151)) (-4394 (((-3 |#3| "failed") |#3|) 63)) (-3190 ((|#3| |#3|) 139)) (-3001 (((-3 |#3| "failed") |#3|) 75)) (-3299 ((|#3| |#3|) 149)) (-3701 (((-3 |#3| "failed") |#3|) 117)) (-3168 ((|#3| |#3|) 155)) (-2733 (((-3 |#3| "failed") |#3|) 71)) (-3273 ((|#3| |#3|) 147)) (-2255 (((-3 |#3| "failed") |#3|) 59)) (-3148 ((|#3| |#3|) 137)) (** ((|#3| |#3| (-409 (-566))) 47 (|has| |#1| (-365))))) +(((-279 |#1| |#2| |#3|) (-13 (-983 |#3|) (-10 -7 (IF (|has| |#1| (-365)) (-15 ** (|#3| |#3| (-409 (-566)))) |%noBranch|) (-15 -3571 (|#3| |#3|)) (-15 -3676 (|#3| |#3|)) (-15 -3067 (|#3| |#3|)) (-15 -3079 (|#3| |#3|)) (-15 -3091 (|#3| |#3|)) (-15 -3105 (|#3| |#3|)) (-15 -3115 (|#3| |#3|)) (-15 -3126 (|#3| |#3|)) (-15 -3135 (|#3| |#3|)) (-15 -3148 (|#3| |#3|)) (-15 -3157 (|#3| |#3|)) (-15 -3168 (|#3| |#3|)) (-15 -3179 (|#3| |#3|)) (-15 -3190 (|#3| |#3|)) (-15 -3197 (|#3| |#3|)) (-15 -3207 (|#3| |#3|)) (-15 -3219 (|#3| |#3|)) (-15 -3227 (|#3| |#3|)) (-15 -3240 (|#3| |#3|)) (-15 -3250 (|#3| |#3|)) (-15 -3260 (|#3| |#3|)) (-15 -3273 (|#3| |#3|)) (-15 -3285 (|#3| |#3|)) (-15 -3299 (|#3| |#3|)) (-15 -3309 (|#3| |#3|)) (-15 -1861 (|#3| |#3|)))) (-38 (-409 (-566))) (-1255 |#1|) (-1226 |#1| |#2|)) (T -279)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-409 (-566))) (-4 *4 (-365)) (-4 *4 (-38 *3)) (-4 *5 (-1255 *4)) (-5 *1 (-279 *4 *5 *2)) (-4 *2 (-1226 *4 *5)))) (-3571 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-3676 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-3067 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-3079 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-3091 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-3105 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-3115 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-3126 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-3135 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-3148 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-3157 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-3168 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-3179 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-3190 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-3197 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-3207 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-3219 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-3227 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-3240 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-3250 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-3260 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-3273 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-3285 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-3299 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-3309 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-1861 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4))))) +(-13 (-983 |#3|) (-10 -7 (IF (|has| |#1| (-365)) (-15 ** (|#3| |#3| (-409 (-566)))) |%noBranch|) (-15 -3571 (|#3| |#3|)) (-15 -3676 (|#3| |#3|)) (-15 -3067 (|#3| |#3|)) (-15 -3079 (|#3| |#3|)) (-15 -3091 (|#3| |#3|)) (-15 -3105 (|#3| |#3|)) (-15 -3115 (|#3| |#3|)) (-15 -3126 (|#3| |#3|)) (-15 -3135 (|#3| |#3|)) (-15 -3148 (|#3| |#3|)) (-15 -3157 (|#3| |#3|)) (-15 -3168 (|#3| |#3|)) (-15 -3179 (|#3| |#3|)) (-15 -3190 (|#3| |#3|)) (-15 -3197 (|#3| |#3|)) (-15 -3207 (|#3| |#3|)) (-15 -3219 (|#3| |#3|)) (-15 -3227 (|#3| |#3|)) (-15 -3240 (|#3| |#3|)) (-15 -3250 (|#3| |#3|)) (-15 -3260 (|#3| |#3|)) (-15 -3273 (|#3| |#3|)) (-15 -3285 (|#3| |#3|)) (-15 -3299 (|#3| |#3|)) (-15 -3309 (|#3| |#3|)) (-15 -1861 (|#3| |#3|)))) +((-3771 (((-3 |#3| "failed") |#3|) 70)) (-3219 ((|#3| |#3|) 137)) (-3479 (((-3 |#3| "failed") |#3|) 54)) (-3091 ((|#3| |#3|) 125)) (-1736 (((-3 |#3| "failed") |#3|) 66)) (-3197 ((|#3| |#3|) 135)) (-2912 (((-3 |#3| "failed") |#3|) 50)) (-3067 ((|#3| |#3|) 123)) (-3346 (((-3 |#3| "failed") |#3|) 74)) (-3240 ((|#3| |#3|) 139)) (-2653 (((-3 |#3| "failed") |#3|) 58)) (-3115 ((|#3| |#3|) 127)) (-1715 (((-3 |#3| "failed") |#3| (-771)) 38)) (-2261 (((-3 |#3| "failed") |#3|) 48)) (-3676 ((|#3| |#3|) 111)) (-3594 (((-3 |#3| "failed") |#3|) 46)) (-3571 ((|#3| |#3|) 122)) (-3622 (((-3 |#3| "failed") |#3|) 76)) (-3250 ((|#3| |#3|) 140)) (-2063 (((-3 |#3| "failed") |#3|) 60)) (-3126 ((|#3| |#3|) 128)) (-2703 (((-3 |#3| "failed") |#3|) 72)) (-3227 ((|#3| |#3|) 138)) (-4366 (((-3 |#3| "failed") |#3|) 56)) (-3105 ((|#3| |#3|) 126)) (-2314 (((-3 |#3| "failed") |#3|) 68)) (-3207 ((|#3| |#3|) 136)) (-2312 (((-3 |#3| "failed") |#3|) 52)) (-3079 ((|#3| |#3|) 124)) (-1480 (((-3 |#3| "failed") |#3|) 78)) (-3285 ((|#3| |#3|) 143)) (-3552 (((-3 |#3| "failed") |#3|) 62)) (-3157 ((|#3| |#3|) 131)) (-1689 (((-3 |#3| "failed") |#3|) 112)) (-3260 ((|#3| |#3|) 141)) (-4199 (((-3 |#3| "failed") |#3|) 100)) (-3135 ((|#3| |#3|) 129)) (-3221 (((-3 |#3| "failed") |#3|) 116)) (-3309 ((|#3| |#3|) 145)) (-3874 (((-3 |#3| "failed") |#3|) 107)) (-3179 ((|#3| |#3|) 133)) (-2319 (((-3 |#3| "failed") |#3|) 117)) (-1861 ((|#3| |#3|) 146)) (-4394 (((-3 |#3| "failed") |#3|) 109)) (-3190 ((|#3| |#3|) 134)) (-3001 (((-3 |#3| "failed") |#3|) 80)) (-3299 ((|#3| |#3|) 144)) (-3701 (((-3 |#3| "failed") |#3|) 64)) (-3168 ((|#3| |#3|) 132)) (-2733 (((-3 |#3| "failed") |#3|) 113)) (-3273 ((|#3| |#3|) 142)) (-2255 (((-3 |#3| "failed") |#3|) 103)) (-3148 ((|#3| |#3|) 130)) (** ((|#3| |#3| (-409 (-566))) 44 (|has| |#1| (-365))))) +(((-280 |#1| |#2| |#3| |#4|) (-13 (-983 |#3|) (-10 -7 (IF (|has| |#1| (-365)) (-15 ** (|#3| |#3| (-409 (-566)))) |%noBranch|) (-15 -3571 (|#3| |#3|)) (-15 -3676 (|#3| |#3|)) (-15 -3067 (|#3| |#3|)) (-15 -3079 (|#3| |#3|)) (-15 -3091 (|#3| |#3|)) (-15 -3105 (|#3| |#3|)) (-15 -3115 (|#3| |#3|)) (-15 -3126 (|#3| |#3|)) (-15 -3135 (|#3| |#3|)) (-15 -3148 (|#3| |#3|)) (-15 -3157 (|#3| |#3|)) (-15 -3168 (|#3| |#3|)) (-15 -3179 (|#3| |#3|)) (-15 -3190 (|#3| |#3|)) (-15 -3197 (|#3| |#3|)) (-15 -3207 (|#3| |#3|)) (-15 -3219 (|#3| |#3|)) (-15 -3227 (|#3| |#3|)) (-15 -3240 (|#3| |#3|)) (-15 -3250 (|#3| |#3|)) (-15 -3260 (|#3| |#3|)) (-15 -3273 (|#3| |#3|)) (-15 -3285 (|#3| |#3|)) (-15 -3299 (|#3| |#3|)) (-15 -3309 (|#3| |#3|)) (-15 -1861 (|#3| |#3|)))) (-38 (-409 (-566))) (-1224 |#1|) (-1247 |#1| |#2|) (-983 |#2|)) (T -280)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-409 (-566))) (-4 *4 (-365)) (-4 *4 (-38 *3)) (-4 *5 (-1224 *4)) (-5 *1 (-280 *4 *5 *2 *6)) (-4 *2 (-1247 *4 *5)) (-4 *6 (-983 *5)))) (-3571 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-3676 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-3067 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-3079 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-3091 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-3105 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-3115 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-3126 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-3135 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-3148 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-3157 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-3168 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-3179 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-3190 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-3197 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-3207 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-3219 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-3227 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-3240 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-3250 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-3260 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-3273 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-3285 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-3299 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-3309 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-1861 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4))))) +(-13 (-983 |#3|) (-10 -7 (IF (|has| |#1| (-365)) (-15 ** (|#3| |#3| (-409 (-566)))) |%noBranch|) (-15 -3571 (|#3| |#3|)) (-15 -3676 (|#3| |#3|)) (-15 -3067 (|#3| |#3|)) (-15 -3079 (|#3| |#3|)) (-15 -3091 (|#3| |#3|)) (-15 -3105 (|#3| |#3|)) (-15 -3115 (|#3| |#3|)) (-15 -3126 (|#3| |#3|)) (-15 -3135 (|#3| |#3|)) (-15 -3148 (|#3| |#3|)) (-15 -3157 (|#3| |#3|)) (-15 -3168 (|#3| |#3|)) (-15 -3179 (|#3| |#3|)) (-15 -3190 (|#3| |#3|)) (-15 -3197 (|#3| |#3|)) (-15 -3207 (|#3| |#3|)) (-15 -3219 (|#3| |#3|)) (-15 -3227 (|#3| |#3|)) (-15 -3240 (|#3| |#3|)) (-15 -3250 (|#3| |#3|)) (-15 -3260 (|#3| |#3|)) (-15 -3273 (|#3| |#3|)) (-15 -3285 (|#3| |#3|)) (-15 -3299 (|#3| |#3|)) (-15 -3309 (|#3| |#3|)) (-15 -1861 (|#3| |#3|)))) +((-3721 (((-112) $) 20)) (-2984 (((-183) $) 7)) (-2433 (((-3 (-508) "failed") $) 14)) (-3842 (((-3 (-644 $) "failed") $) NIL)) (-3935 (((-3 (-508) "failed") $) 21)) (-2336 (((-3 (-1103) "failed") $) 18)) (-1878 (((-112) $) 16)) (-2479 (((-862) $) NIL)) (-3470 (((-112) $) 9))) +(((-281) (-13 (-613 (-862)) (-10 -8 (-15 -2984 ((-183) $)) (-15 -1878 ((-112) $)) (-15 -2336 ((-3 (-1103) "failed") $)) (-15 -3721 ((-112) $)) (-15 -3935 ((-3 (-508) "failed") $)) (-15 -3470 ((-112) $)) (-15 -2433 ((-3 (-508) "failed") $)) (-15 -3842 ((-3 (-644 $) "failed") $))))) (T -281)) +((-2984 (*1 *2 *1) (-12 (-5 *2 (-183)) (-5 *1 (-281)))) (-1878 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281)))) (-2336 (*1 *2 *1) (|partial| -12 (-5 *2 (-1103)) (-5 *1 (-281)))) (-3721 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281)))) (-3935 (*1 *2 *1) (|partial| -12 (-5 *2 (-508)) (-5 *1 (-281)))) (-3470 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281)))) (-2433 (*1 *2 *1) (|partial| -12 (-5 *2 (-508)) (-5 *1 (-281)))) (-3842 (*1 *2 *1) (|partial| -12 (-5 *2 (-644 (-281))) (-5 *1 (-281))))) +(-13 (-613 (-862)) (-10 -8 (-15 -2984 ((-183) $)) (-15 -1878 ((-112) $)) (-15 -2336 ((-3 (-1103) "failed") $)) (-15 -3721 ((-112) $)) (-15 -3935 ((-3 (-508) "failed") $)) (-15 -3470 ((-112) $)) (-15 -2433 ((-3 (-508) "failed") $)) (-15 -3842 ((-3 (-644 $) "failed") $)))) +((-3543 (($ (-1 (-112) |#2|) $) 24)) (-4111 (($ $) 38)) (-2295 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 36)) (-2628 (($ |#2| $) 34) (($ (-1 (-112) |#2|) $) 18)) (-3200 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 42)) (-4271 (($ |#2| $ (-566)) 20) (($ $ $ (-566)) 22)) (-2139 (($ $ (-566)) 11) (($ $ (-1231 (-566))) 14)) (-1323 (($ $ |#2|) 32) (($ $ $) NIL)) (-3716 (($ $ |#2|) 31) (($ |#2| $) NIL) (($ $ $) 26) (($ (-644 $)) NIL))) +(((-282 |#1| |#2|) (-10 -8 (-15 -3200 (|#1| |#1| |#1|)) (-15 -2295 (|#1| |#2| |#1|)) (-15 -3200 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2295 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1323 (|#1| |#1| |#1|)) (-15 -1323 (|#1| |#1| |#2|)) (-15 -4271 (|#1| |#1| |#1| (-566))) (-15 -4271 (|#1| |#2| |#1| (-566))) (-15 -2139 (|#1| |#1| (-1231 (-566)))) (-15 -2139 (|#1| |#1| (-566))) (-15 -3716 (|#1| (-644 |#1|))) (-15 -3716 (|#1| |#1| |#1|)) (-15 -3716 (|#1| |#2| |#1|)) (-15 -3716 (|#1| |#1| |#2|)) (-15 -2628 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3543 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2628 (|#1| |#2| |#1|)) (-15 -4111 (|#1| |#1|))) (-283 |#2|) (-1214)) (T -282)) +NIL +(-10 -8 (-15 -3200 (|#1| |#1| |#1|)) (-15 -2295 (|#1| |#2| |#1|)) (-15 -3200 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2295 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1323 (|#1| |#1| |#1|)) (-15 -1323 (|#1| |#1| |#2|)) (-15 -4271 (|#1| |#1| |#1| (-566))) (-15 -4271 (|#1| |#2| |#1| (-566))) (-15 -2139 (|#1| |#1| (-1231 (-566)))) (-15 -2139 (|#1| |#1| (-566))) (-15 -3716 (|#1| (-644 |#1|))) (-15 -3716 (|#1| |#1| |#1|)) (-15 -3716 (|#1| |#2| |#1|)) (-15 -3716 (|#1| |#1| |#2|)) (-15 -2628 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3543 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2628 (|#1| |#2| |#1|)) (-15 -4111 (|#1| |#1|))) +((-2986 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2462 (((-1269) $ (-566) (-566)) 41 (|has| $ (-6 -4418)))) (-1453 (((-112) $ (-771)) 8)) (-3901 ((|#1| $ (-566) |#1|) 53 (|has| $ (-6 -4418))) ((|#1| $ (-1231 (-566)) |#1|) 59 (|has| $ (-6 -4418)))) (-4364 (($ (-1 (-112) |#1|) $) 86)) (-3543 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4417)))) (-1811 (($) 7 T CONST)) (-1346 (($ $) 84 (|has| |#1| (-1099)))) (-4111 (($ $) 79 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-2295 (($ (-1 (-112) |#1|) $) 90) (($ |#1| $) 85 (|has| |#1| (-1099)))) (-2628 (($ |#1| $) 78 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4417)))) (-1838 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4417)))) (-3719 ((|#1| $ (-566) |#1|) 54 (|has| $ (-6 -4418)))) (-3653 ((|#1| $ (-566)) 52)) (-3872 (((-644 |#1|) $) 31 (|has| $ (-6 -4417)))) (-4259 (($ (-771) |#1|) 70)) (-2756 (((-112) $ (-771)) 9)) (-2755 (((-566) $) 44 (|has| (-566) (-850)))) (-3200 (($ (-1 (-112) |#1| |#1|) $ $) 87) (($ $ $) 83 (|has| |#1| (-850)))) (-4227 (((-644 |#1|) $) 30 (|has| $ (-6 -4417)))) (-1688 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-3831 (((-566) $) 45 (|has| (-566) (-850)))) (-3708 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4106 (((-112) $ (-771)) 10)) (-3151 (((-1157) $) 22 (|has| |#1| (-1099)))) (-4354 (($ |#1| $ (-566)) 89) (($ $ $ (-566)) 88)) (-4271 (($ |#1| $ (-566)) 61) (($ $ $ (-566)) 60)) (-3780 (((-644 (-566)) $) 47)) (-1605 (((-112) (-566) $) 48)) (-4059 (((-1119) $) 21 (|has| |#1| (-1099)))) (-4080 ((|#1| $) 43 (|has| (-566) (-850)))) (-2688 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-4079 (($ $ |#1|) 42 (|has| $ (-6 -4418)))) (-3966 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1844 (((-112) $ $) 14)) (-2210 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-4185 (((-644 |#1|) $) 49)) (-2788 (((-112) $) 11)) (-1737 (($) 12)) (-4376 ((|#1| $ (-566) |#1|) 51) ((|#1| $ (-566)) 50) (($ $ (-1231 (-566))) 64)) (-3139 (($ $ (-566)) 92) (($ $ (-1231 (-566))) 91)) (-2139 (($ $ (-566)) 63) (($ $ (-1231 (-566))) 62)) (-4068 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4417))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-3924 (($ $) 13)) (-3136 (((-538) $) 80 (|has| |#1| (-614 (-538))))) (-2489 (($ (-644 |#1|)) 71)) (-1323 (($ $ |#1|) 94) (($ $ $) 93)) (-3716 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-644 $)) 66)) (-2479 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-3900 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-3667 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4417)))) (-2952 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3002 (((-771) $) 6 (|has| $ (-6 -4417))))) +(((-283 |#1|) (-140) (-1214)) (T -283)) +((-1323 (*1 *1 *1 *2) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1214)))) (-1323 (*1 *1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1214)))) (-3139 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-283 *3)) (-4 *3 (-1214)))) (-3139 (*1 *1 *1 *2) (-12 (-5 *2 (-1231 (-566))) (-4 *1 (-283 *3)) (-4 *3 (-1214)))) (-2295 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-283 *3)) (-4 *3 (-1214)))) (-4354 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-566)) (-4 *1 (-283 *2)) (-4 *2 (-1214)))) (-4354 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-283 *3)) (-4 *3 (-1214)))) (-3200 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-283 *3)) (-4 *3 (-1214)))) (-4364 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-283 *3)) (-4 *3 (-1214)))) (-2295 (*1 *1 *2 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1214)) (-4 *2 (-1099)))) (-1346 (*1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1214)) (-4 *2 (-1099)))) (-3200 (*1 *1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1214)) (-4 *2 (-850))))) +(-13 (-651 |t#1|) (-10 -8 (-6 -4418) (-15 -1323 ($ $ |t#1|)) (-15 -1323 ($ $ $)) (-15 -3139 ($ $ (-566))) (-15 -3139 ($ $ (-1231 (-566)))) (-15 -2295 ($ (-1 (-112) |t#1|) $)) (-15 -4354 ($ |t#1| $ (-566))) (-15 -4354 ($ $ $ (-566))) (-15 -3200 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -4364 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1099)) (PROGN (-15 -2295 ($ |t#1| $)) (-15 -1346 ($ $))) |%noBranch|) (IF (|has| |t#1| (-850)) (-15 -3200 ($ $ $)) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2809 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-151 |#1|) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-287 #0=(-566) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-604 #0# |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-651 |#1|) . T) ((-1099) |has| |#1| (-1099)) ((-1214) . T)) ((** (($ $ $) 10))) -(((-283 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-284)) (T -283)) +(((-284 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-285)) (T -284)) NIL (-10 -8 (-15 ** (|#1| |#1| |#1|))) -((-3576 (($ $) 6)) (-3466 (($ $) 7)) (** (($ $ $) 8))) -(((-284) (-140)) (T -284)) -((** (*1 *1 *1 *1) (-4 *1 (-284))) (-3466 (*1 *1 *1) (-4 *1 (-284))) (-3576 (*1 *1 *1) (-4 *1 (-284)))) -(-13 (-10 -8 (-15 -3576 ($ $)) (-15 -3466 ($ $)) (-15 ** ($ $ $)))) -((-3215 (((-642 (-1153 |#1|)) (-1153 |#1|) |#1|) 35)) (-1333 ((|#2| |#2| |#1|) 39)) (-2673 ((|#2| |#2| |#1|) 41)) (-2424 ((|#2| |#2| |#1|) 40))) -(((-285 |#1| |#2|) (-10 -7 (-15 -1333 (|#2| |#2| |#1|)) (-15 -2424 (|#2| |#2| |#1|)) (-15 -2673 (|#2| |#2| |#1|)) (-15 -3215 ((-642 (-1153 |#1|)) (-1153 |#1|) |#1|))) (-363) (-1253 |#1|)) (T -285)) -((-3215 (*1 *2 *3 *4) (-12 (-4 *4 (-363)) (-5 *2 (-642 (-1153 *4))) (-5 *1 (-285 *4 *5)) (-5 *3 (-1153 *4)) (-4 *5 (-1253 *4)))) (-2673 (*1 *2 *2 *3) (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1253 *3)))) (-2424 (*1 *2 *2 *3) (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1253 *3)))) (-1333 (*1 *2 *2 *3) (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1253 *3))))) -(-10 -7 (-15 -1333 (|#2| |#2| |#1|)) (-15 -2424 (|#2| |#2| |#1|)) (-15 -2673 (|#2| |#2| |#1|)) (-15 -3215 ((-642 (-1153 |#1|)) (-1153 |#1|) |#1|))) -((-4369 ((|#2| $ |#1|) 6))) -(((-286 |#1| |#2|) (-140) (-1097) (-1212)) (T -286)) -((-4369 (*1 *2 *1 *3) (-12 (-4 *1 (-286 *3 *2)) (-4 *3 (-1097)) (-4 *2 (-1212))))) -(-13 (-10 -8 (-15 -4369 (|t#2| $ |t#1|)))) -((-3105 ((|#3| $ |#2| |#3|) 12)) (-1804 ((|#3| $ |#2|) 10))) -(((-287 |#1| |#2| |#3|) (-10 -8 (-15 -3105 (|#3| |#1| |#2| |#3|)) (-15 -1804 (|#3| |#1| |#2|))) (-288 |#2| |#3|) (-1097) (-1212)) (T -287)) -NIL -(-10 -8 (-15 -3105 (|#3| |#1| |#2| |#3|)) (-15 -1804 (|#3| |#1| |#2|))) -((-3841 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4411)))) (-3105 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4411)))) (-1804 ((|#2| $ |#1|) 11)) (-4369 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) -(((-288 |#1| |#2|) (-140) (-1097) (-1212)) (T -288)) -((-4369 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-288 *3 *2)) (-4 *3 (-1097)) (-4 *2 (-1212)))) (-1804 (*1 *2 *1 *3) (-12 (-4 *1 (-288 *3 *2)) (-4 *3 (-1097)) (-4 *2 (-1212)))) (-3841 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4411)) (-4 *1 (-288 *3 *2)) (-4 *3 (-1097)) (-4 *2 (-1212)))) (-3105 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4411)) (-4 *1 (-288 *3 *2)) (-4 *3 (-1097)) (-4 *2 (-1212))))) -(-13 (-286 |t#1| |t#2|) (-10 -8 (-15 -4369 (|t#2| $ |t#1| |t#2|)) (-15 -1804 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4411)) (PROGN (-15 -3841 (|t#2| $ |t#1| |t#2|)) (-15 -3105 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) -(((-286 |#1| |#2|) . T)) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) 37)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) 44)) (-4252 (($ $) 41)) (-1722 (((-112) $) NIL)) (-3085 (((-3 $ "failed") $ $) NIL)) (-2134 (((-112) $ $) NIL)) (-2822 (($) NIL T CONST)) (-2796 (($ $ $) 35)) (-3741 (($ |#2| |#3|) 18)) (-2675 (((-3 $ "failed") $) NIL)) (-2808 (($ $ $) NIL)) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) NIL)) (-3163 (((-112) $) NIL)) (-2709 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-1380 ((|#3| $) NIL)) (-2066 (($ $ $) NIL) (($ (-642 $)) NIL)) (-1778 (((-1155) $) NIL)) (-2481 (($ $) 19)) (-3999 (((-1117) $) NIL)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2105 (($ $ $) NIL) (($ (-642 $)) NIL)) (-1877 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2842 (((-3 $ "failed") $ $) NIL)) (-1483 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-3381 (((-3 $ "failed") $ $) NIL)) (-4274 (((-769) $) 36)) (-4369 ((|#2| $ |#2|) 46)) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) 23)) (-2390 (((-860) $) NIL) (($ (-564)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-3348 (((-769)) NIL T CONST)) (-1600 (((-112) $ $) NIL)) (-1594 (((-112) $ $) NIL)) (-2361 (($) 31 T CONST)) (-2371 (($) 39 T CONST)) (-2821 (((-112) $ $) NIL)) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) 40))) -(((-289 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-307) (-10 -8 (-15 -1380 (|#3| $)) (-15 -2390 (|#2| $)) (-15 -3741 ($ |#2| |#3|)) (-15 -3381 ((-3 $ "failed") $ $)) (-15 -2675 ((-3 $ "failed") $)) (-15 -2481 ($ $)) (-15 -4369 (|#2| $ |#2|)))) (-172) (-1238 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -289)) -((-2675 (*1 *1 *1) (|partial| -12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1238 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1380 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-23)) (-5 *1 (-289 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1238 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-2390 (*1 *2 *1) (-12 (-4 *2 (-1238 *3)) (-5 *1 (-289 *3 *2 *4 *5 *6 *7)) (-4 *3 (-172)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-3741 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-289 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1238 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3381 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1238 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2481 (*1 *1 *1) (-12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1238 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-4369 (*1 *2 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-289 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1238 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))) -(-13 (-307) (-10 -8 (-15 -1380 (|#3| $)) (-15 -2390 (|#2| $)) (-15 -3741 ($ |#2| |#3|)) (-15 -3381 ((-3 $ "failed") $ $)) (-15 -2675 ((-3 $ "failed") $)) (-15 -2481 ($ $)) (-15 -4369 (|#2| $ |#2|)))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-3085 (((-3 $ "failed") $ $) 20)) (-2822 (($) 18 T CONST)) (-2675 (((-3 $ "failed") $) 37)) (-3163 (((-112) $) 35)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2390 (((-860) $) 12) (($ (-564)) 33)) (-3348 (((-769)) 32 T CONST)) (-1600 (((-112) $ $) 9)) (-2361 (($) 19 T CONST)) (-2371 (($) 34 T CONST)) (-2821 (((-112) $ $) 6)) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27))) -(((-290) (-140)) (T -290)) -NIL -(-13 (-1047) (-111 $ $) (-10 -7 (-6 -4403))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-860)) . T) ((-644 (-564)) . T) ((-644 $) . T) ((-646 $) . T) ((-724) . T) ((-1049 $) . T) ((-1054 $) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T)) -((-2485 (($ (-506) (-506) (-1101) $) 19)) (-1761 (($ (-506) (-642 (-963)) $) 23)) (-1475 (((-642 (-1082)) $) 10)) (-3809 (($) 25)) (-1984 (((-689 (-1101)) (-506) (-506) $) 18)) (-2476 (((-642 (-963)) (-506) $) 22)) (-2179 (($) 7)) (-2962 (($) 24)) (-2390 (((-860) $) 29)) (-3108 (($) 26))) -(((-291) (-13 (-611 (-860)) (-10 -8 (-15 -2179 ($)) (-15 -1475 ((-642 (-1082)) $)) (-15 -1984 ((-689 (-1101)) (-506) (-506) $)) (-15 -2485 ($ (-506) (-506) (-1101) $)) (-15 -2476 ((-642 (-963)) (-506) $)) (-15 -1761 ($ (-506) (-642 (-963)) $)) (-15 -2962 ($)) (-15 -3809 ($)) (-15 -3108 ($))))) (T -291)) -((-2179 (*1 *1) (-5 *1 (-291))) (-1475 (*1 *2 *1) (-12 (-5 *2 (-642 (-1082))) (-5 *1 (-291)))) (-1984 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-506)) (-5 *2 (-689 (-1101))) (-5 *1 (-291)))) (-2485 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-506)) (-5 *3 (-1101)) (-5 *1 (-291)))) (-2476 (*1 *2 *3 *1) (-12 (-5 *3 (-506)) (-5 *2 (-642 (-963))) (-5 *1 (-291)))) (-1761 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-506)) (-5 *3 (-642 (-963))) (-5 *1 (-291)))) (-2962 (*1 *1) (-5 *1 (-291))) (-3809 (*1 *1) (-5 *1 (-291))) (-3108 (*1 *1) (-5 *1 (-291)))) -(-13 (-611 (-860)) (-10 -8 (-15 -2179 ($)) (-15 -1475 ((-642 (-1082)) $)) (-15 -1984 ((-689 (-1101)) (-506) (-506) $)) (-15 -2485 ($ (-506) (-506) (-1101) $)) (-15 -2476 ((-642 (-963)) (-506) $)) (-15 -1761 ($ (-506) (-642 (-963)) $)) (-15 -2962 ($)) (-15 -3809 ($)) (-15 -3108 ($)))) -((-3695 (((-642 (-2 (|:| |eigval| (-3 (-407 (-950 |#1|)) (-1162 (-1173) (-950 |#1|)))) (|:| |geneigvec| (-642 (-687 (-407 (-950 |#1|))))))) (-687 (-407 (-950 |#1|)))) 105)) (-4154 (((-642 (-687 (-407 (-950 |#1|)))) (-2 (|:| |eigval| (-3 (-407 (-950 |#1|)) (-1162 (-1173) (-950 |#1|)))) (|:| |eigmult| (-769)) (|:| |eigvec| (-642 (-687 (-407 (-950 |#1|)))))) (-687 (-407 (-950 |#1|)))) 100) (((-642 (-687 (-407 (-950 |#1|)))) (-3 (-407 (-950 |#1|)) (-1162 (-1173) (-950 |#1|))) (-687 (-407 (-950 |#1|))) (-769) (-769)) 41)) (-2859 (((-642 (-2 (|:| |eigval| (-3 (-407 (-950 |#1|)) (-1162 (-1173) (-950 |#1|)))) (|:| |eigmult| (-769)) (|:| |eigvec| (-642 (-687 (-407 (-950 |#1|))))))) (-687 (-407 (-950 |#1|)))) 102)) (-2555 (((-642 (-687 (-407 (-950 |#1|)))) (-3 (-407 (-950 |#1|)) (-1162 (-1173) (-950 |#1|))) (-687 (-407 (-950 |#1|)))) 77)) (-3615 (((-642 (-3 (-407 (-950 |#1|)) (-1162 (-1173) (-950 |#1|)))) (-687 (-407 (-950 |#1|)))) 76)) (-1308 (((-950 |#1|) (-687 (-407 (-950 |#1|)))) 57) (((-950 |#1|) (-687 (-407 (-950 |#1|))) (-1173)) 58))) -(((-292 |#1|) (-10 -7 (-15 -1308 ((-950 |#1|) (-687 (-407 (-950 |#1|))) (-1173))) (-15 -1308 ((-950 |#1|) (-687 (-407 (-950 |#1|))))) (-15 -3615 ((-642 (-3 (-407 (-950 |#1|)) (-1162 (-1173) (-950 |#1|)))) (-687 (-407 (-950 |#1|))))) (-15 -2555 ((-642 (-687 (-407 (-950 |#1|)))) (-3 (-407 (-950 |#1|)) (-1162 (-1173) (-950 |#1|))) (-687 (-407 (-950 |#1|))))) (-15 -4154 ((-642 (-687 (-407 (-950 |#1|)))) (-3 (-407 (-950 |#1|)) (-1162 (-1173) (-950 |#1|))) (-687 (-407 (-950 |#1|))) (-769) (-769))) (-15 -4154 ((-642 (-687 (-407 (-950 |#1|)))) (-2 (|:| |eigval| (-3 (-407 (-950 |#1|)) (-1162 (-1173) (-950 |#1|)))) (|:| |eigmult| (-769)) (|:| |eigvec| (-642 (-687 (-407 (-950 |#1|)))))) (-687 (-407 (-950 |#1|))))) (-15 -3695 ((-642 (-2 (|:| |eigval| (-3 (-407 (-950 |#1|)) (-1162 (-1173) (-950 |#1|)))) (|:| |geneigvec| (-642 (-687 (-407 (-950 |#1|))))))) (-687 (-407 (-950 |#1|))))) (-15 -2859 ((-642 (-2 (|:| |eigval| (-3 (-407 (-950 |#1|)) (-1162 (-1173) (-950 |#1|)))) (|:| |eigmult| (-769)) (|:| |eigvec| (-642 (-687 (-407 (-950 |#1|))))))) (-687 (-407 (-950 |#1|)))))) (-452)) (T -292)) -((-2859 (*1 *2 *3) (-12 (-4 *4 (-452)) (-5 *2 (-642 (-2 (|:| |eigval| (-3 (-407 (-950 *4)) (-1162 (-1173) (-950 *4)))) (|:| |eigmult| (-769)) (|:| |eigvec| (-642 (-687 (-407 (-950 *4)))))))) (-5 *1 (-292 *4)) (-5 *3 (-687 (-407 (-950 *4)))))) (-3695 (*1 *2 *3) (-12 (-4 *4 (-452)) (-5 *2 (-642 (-2 (|:| |eigval| (-3 (-407 (-950 *4)) (-1162 (-1173) (-950 *4)))) (|:| |geneigvec| (-642 (-687 (-407 (-950 *4)))))))) (-5 *1 (-292 *4)) (-5 *3 (-687 (-407 (-950 *4)))))) (-4154 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-407 (-950 *5)) (-1162 (-1173) (-950 *5)))) (|:| |eigmult| (-769)) (|:| |eigvec| (-642 *4)))) (-4 *5 (-452)) (-5 *2 (-642 (-687 (-407 (-950 *5))))) (-5 *1 (-292 *5)) (-5 *4 (-687 (-407 (-950 *5)))))) (-4154 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-407 (-950 *6)) (-1162 (-1173) (-950 *6)))) (-5 *5 (-769)) (-4 *6 (-452)) (-5 *2 (-642 (-687 (-407 (-950 *6))))) (-5 *1 (-292 *6)) (-5 *4 (-687 (-407 (-950 *6)))))) (-2555 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-407 (-950 *5)) (-1162 (-1173) (-950 *5)))) (-4 *5 (-452)) (-5 *2 (-642 (-687 (-407 (-950 *5))))) (-5 *1 (-292 *5)) (-5 *4 (-687 (-407 (-950 *5)))))) (-3615 (*1 *2 *3) (-12 (-5 *3 (-687 (-407 (-950 *4)))) (-4 *4 (-452)) (-5 *2 (-642 (-3 (-407 (-950 *4)) (-1162 (-1173) (-950 *4))))) (-5 *1 (-292 *4)))) (-1308 (*1 *2 *3) (-12 (-5 *3 (-687 (-407 (-950 *4)))) (-5 *2 (-950 *4)) (-5 *1 (-292 *4)) (-4 *4 (-452)))) (-1308 (*1 *2 *3 *4) (-12 (-5 *3 (-687 (-407 (-950 *5)))) (-5 *4 (-1173)) (-5 *2 (-950 *5)) (-5 *1 (-292 *5)) (-4 *5 (-452))))) -(-10 -7 (-15 -1308 ((-950 |#1|) (-687 (-407 (-950 |#1|))) (-1173))) (-15 -1308 ((-950 |#1|) (-687 (-407 (-950 |#1|))))) (-15 -3615 ((-642 (-3 (-407 (-950 |#1|)) (-1162 (-1173) (-950 |#1|)))) (-687 (-407 (-950 |#1|))))) (-15 -2555 ((-642 (-687 (-407 (-950 |#1|)))) (-3 (-407 (-950 |#1|)) (-1162 (-1173) (-950 |#1|))) (-687 (-407 (-950 |#1|))))) (-15 -4154 ((-642 (-687 (-407 (-950 |#1|)))) (-3 (-407 (-950 |#1|)) (-1162 (-1173) (-950 |#1|))) (-687 (-407 (-950 |#1|))) (-769) (-769))) (-15 -4154 ((-642 (-687 (-407 (-950 |#1|)))) (-2 (|:| |eigval| (-3 (-407 (-950 |#1|)) (-1162 (-1173) (-950 |#1|)))) (|:| |eigmult| (-769)) (|:| |eigvec| (-642 (-687 (-407 (-950 |#1|)))))) (-687 (-407 (-950 |#1|))))) (-15 -3695 ((-642 (-2 (|:| |eigval| (-3 (-407 (-950 |#1|)) (-1162 (-1173) (-950 |#1|)))) (|:| |geneigvec| (-642 (-687 (-407 (-950 |#1|))))))) (-687 (-407 (-950 |#1|))))) (-15 -2859 ((-642 (-2 (|:| |eigval| (-3 (-407 (-950 |#1|)) (-1162 (-1173) (-950 |#1|)))) (|:| |eigmult| (-769)) (|:| |eigvec| (-642 (-687 (-407 (-950 |#1|))))))) (-687 (-407 (-950 |#1|)))))) -((-2947 (((-294 |#2|) (-1 |#2| |#1|) (-294 |#1|)) 14))) -(((-293 |#1| |#2|) (-10 -7 (-15 -2947 ((-294 |#2|) (-1 |#2| |#1|) (-294 |#1|)))) (-1212) (-1212)) (T -293)) -((-2947 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-294 *5)) (-4 *5 (-1212)) (-4 *6 (-1212)) (-5 *2 (-294 *6)) (-5 *1 (-293 *5 *6))))) -(-10 -7 (-15 -2947 ((-294 |#2|) (-1 |#2| |#1|) (-294 |#1|)))) -((-2856 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2950 (((-112) $) NIL (|has| |#1| (-21)))) (-2090 (($ $) 12)) (-3085 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1891 (($ $ $) 95 (|has| |#1| (-302)))) (-2822 (($) NIL (-2682 (|has| |#1| (-21)) (|has| |#1| (-724))) CONST)) (-2112 (($ $) 51 (|has| |#1| (-21)))) (-2769 (((-3 $ "failed") $) 62 (|has| |#1| (-724)))) (-3199 ((|#1| $) 11)) (-2675 (((-3 $ "failed") $) 60 (|has| |#1| (-724)))) (-3163 (((-112) $) NIL (|has| |#1| (-724)))) (-2947 (($ (-1 |#1| |#1|) $) 14)) (-3187 ((|#1| $) 10)) (-3878 (($ $) 50 (|has| |#1| (-21)))) (-2681 (((-3 $ "failed") $) 61 (|has| |#1| (-724)))) (-1778 (((-1155) $) NIL (|has| |#1| (-1097)))) (-2481 (($ $) 64 (-2682 (|has| |#1| (-363)) (|has| |#1| (-473))))) (-3999 (((-1117) $) NIL (|has| |#1| (-1097)))) (-2406 (((-642 $) $) 85 (|has| |#1| (-556)))) (-3154 (($ $ $) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 $)) 28 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-1173) |#1|) 17 (|has| |#1| (-514 (-1173) |#1|))) (($ $ (-642 (-1173)) (-642 |#1|)) 21 (|has| |#1| (-514 (-1173) |#1|)))) (-1977 (($ |#1| |#1|) 9)) (-3677 (((-134)) 90 (|has| |#1| (-363)))) (-2199 (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1173)) 87 (|has| |#1| (-898 (-1173))))) (-1736 (($ $ $) NIL (|has| |#1| (-473)))) (-2402 (($ $ $) NIL (|has| |#1| (-473)))) (-2390 (($ (-564)) NIL (|has| |#1| (-1047))) (((-112) $) 37 (|has| |#1| (-1097))) (((-860) $) 36 (|has| |#1| (-1097)))) (-3348 (((-769)) 67 (|has| |#1| (-1047)) CONST)) (-1600 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2361 (($) 47 (|has| |#1| (-21)) CONST)) (-2371 (($) 57 (|has| |#1| (-724)) CONST)) (-2711 (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1173)) NIL (|has| |#1| (-898 (-1173))))) (-2821 (($ |#1| |#1|) 8) (((-112) $ $) 32 (|has| |#1| (-1097)))) (-2943 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) 92 (-2682 (|has| |#1| (-363)) (|has| |#1| (-473))))) (-2930 (($ |#1| $) 45 (|has| |#1| (-21))) (($ $ |#1|) 46 (|has| |#1| (-21))) (($ $ $) 44 (|has| |#1| (-21))) (($ $) 43 (|has| |#1| (-21)))) (-2917 (($ |#1| $) 40 (|has| |#1| (-25))) (($ $ |#1|) 41 (|has| |#1| (-25))) (($ $ $) 39 (|has| |#1| (-25)))) (** (($ $ (-564)) NIL (|has| |#1| (-473))) (($ $ (-769)) NIL (|has| |#1| (-724))) (($ $ (-919)) NIL (|has| |#1| (-1109)))) (* (($ $ |#1|) 55 (|has| |#1| (-1109))) (($ |#1| $) 54 (|has| |#1| (-1109))) (($ $ $) 53 (|has| |#1| (-1109))) (($ (-564) $) 70 (|has| |#1| (-21))) (($ (-769) $) NIL (|has| |#1| (-21))) (($ (-919) $) NIL (|has| |#1| (-25))))) -(((-294 |#1|) (-13 (-1212) (-10 -8 (-15 -2821 ($ |#1| |#1|)) (-15 -1977 ($ |#1| |#1|)) (-15 -2090 ($ $)) (-15 -3187 (|#1| $)) (-15 -3199 (|#1| $)) (-15 -2947 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-514 (-1173) |#1|)) (-6 (-514 (-1173) |#1|)) |%noBranch|) (IF (|has| |#1| (-1097)) (PROGN (-6 (-1097)) (-6 (-611 (-112))) (IF (|has| |#1| (-309 |#1|)) (PROGN (-15 -3154 ($ $ $)) (-15 -3154 ($ $ (-642 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -2917 ($ |#1| $)) (-15 -2917 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3878 ($ $)) (-15 -2112 ($ $)) (-15 -2930 ($ |#1| $)) (-15 -2930 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1109)) (PROGN (-6 (-1109)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-724)) (PROGN (-6 (-724)) (-15 -2681 ((-3 $ "failed") $)) (-15 -2769 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-473)) (PROGN (-6 (-473)) (-15 -2681 ((-3 $ "failed") $)) (-15 -2769 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1047)) (PROGN (-6 (-1047)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-715 |#1|)) |%noBranch|) (IF (|has| |#1| (-556)) (-15 -2406 ((-642 $) $)) |%noBranch|) (IF (|has| |#1| (-898 (-1173))) (-6 (-898 (-1173))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-6 (-1269 |#1|)) (-15 -2943 ($ $ $)) (-15 -2481 ($ $))) |%noBranch|) (IF (|has| |#1| (-302)) (-15 -1891 ($ $ $)) |%noBranch|))) (-1212)) (T -294)) -((-2821 (*1 *1 *2 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1212)))) (-1977 (*1 *1 *2 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1212)))) (-2090 (*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1212)))) (-3187 (*1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1212)))) (-3199 (*1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1212)))) (-2947 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1212)) (-5 *1 (-294 *3)))) (-3154 (*1 *1 *1 *1) (-12 (-4 *2 (-309 *2)) (-4 *2 (-1097)) (-4 *2 (-1212)) (-5 *1 (-294 *2)))) (-3154 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-294 *3))) (-4 *3 (-309 *3)) (-4 *3 (-1097)) (-4 *3 (-1212)) (-5 *1 (-294 *3)))) (-2917 (*1 *1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-25)) (-4 *2 (-1212)))) (-2917 (*1 *1 *1 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-25)) (-4 *2 (-1212)))) (-3878 (*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1212)))) (-2112 (*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1212)))) (-2930 (*1 *1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1212)))) (-2930 (*1 *1 *1 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1212)))) (-2681 (*1 *1 *1) (|partial| -12 (-5 *1 (-294 *2)) (-4 *2 (-724)) (-4 *2 (-1212)))) (-2769 (*1 *1 *1) (|partial| -12 (-5 *1 (-294 *2)) (-4 *2 (-724)) (-4 *2 (-1212)))) (-2406 (*1 *2 *1) (-12 (-5 *2 (-642 (-294 *3))) (-5 *1 (-294 *3)) (-4 *3 (-556)) (-4 *3 (-1212)))) (-1891 (*1 *1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-302)) (-4 *2 (-1212)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1109)) (-4 *2 (-1212)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1109)) (-4 *2 (-1212)))) (-2943 (*1 *1 *1 *1) (-2682 (-12 (-5 *1 (-294 *2)) (-4 *2 (-363)) (-4 *2 (-1212))) (-12 (-5 *1 (-294 *2)) (-4 *2 (-473)) (-4 *2 (-1212))))) (-2481 (*1 *1 *1) (-2682 (-12 (-5 *1 (-294 *2)) (-4 *2 (-363)) (-4 *2 (-1212))) (-12 (-5 *1 (-294 *2)) (-4 *2 (-473)) (-4 *2 (-1212)))))) -(-13 (-1212) (-10 -8 (-15 -2821 ($ |#1| |#1|)) (-15 -1977 ($ |#1| |#1|)) (-15 -2090 ($ $)) (-15 -3187 (|#1| $)) (-15 -3199 (|#1| $)) (-15 -2947 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-514 (-1173) |#1|)) (-6 (-514 (-1173) |#1|)) |%noBranch|) (IF (|has| |#1| (-1097)) (PROGN (-6 (-1097)) (-6 (-611 (-112))) (IF (|has| |#1| (-309 |#1|)) (PROGN (-15 -3154 ($ $ $)) (-15 -3154 ($ $ (-642 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -2917 ($ |#1| $)) (-15 -2917 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3878 ($ $)) (-15 -2112 ($ $)) (-15 -2930 ($ |#1| $)) (-15 -2930 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1109)) (PROGN (-6 (-1109)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-724)) (PROGN (-6 (-724)) (-15 -2681 ((-3 $ "failed") $)) (-15 -2769 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-473)) (PROGN (-6 (-473)) (-15 -2681 ((-3 $ "failed") $)) (-15 -2769 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1047)) (PROGN (-6 (-1047)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-715 |#1|)) |%noBranch|) (IF (|has| |#1| (-556)) (-15 -2406 ((-642 $) $)) |%noBranch|) (IF (|has| |#1| (-898 (-1173))) (-6 (-898 (-1173))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-6 (-1269 |#1|)) (-15 -2943 ($ $ $)) (-15 -2481 ($ $))) |%noBranch|) (IF (|has| |#1| (-302)) (-15 -1891 ($ $ $)) |%noBranch|))) -((-2856 (((-112) $ $) NIL (-2682 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-4222 (($) NIL) (($ (-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) NIL)) (-3633 (((-1267) $ |#1| |#1|) NIL (|has| $ (-6 -4411)))) (-3442 (((-112) $ (-769)) NIL)) (-3841 ((|#2| $ |#1| |#2|) NIL)) (-2438 (($ (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-3437 (($ (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-2295 (((-3 |#2| "failed") |#1| $) NIL)) (-2822 (($) NIL T CONST)) (-4067 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097))))) (-1927 (($ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) NIL (|has| $ (-6 -4410))) (($ (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-3 |#2| "failed") |#1| $) NIL)) (-2517 (($ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (($ (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-3741 (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) NIL (|has| $ (-6 -4410))) (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-3105 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4411)))) (-1804 ((|#2| $ |#1|) NIL)) (-2018 (((-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-642 |#2|) $) NIL (|has| $ (-6 -4410)))) (-3769 (((-112) $ (-769)) NIL)) (-1802 ((|#1| $) NIL (|has| |#1| (-848)))) (-3541 (((-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-642 |#2|) $) NIL (|has| $ (-6 -4410)))) (-2533 (((-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097))))) (-3624 ((|#1| $) NIL (|has| |#1| (-848)))) (-1857 (($ (-1 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4411))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4411)))) (-2947 (($ (-1 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4145 (((-112) $ (-769)) NIL)) (-1778 (((-1155) $) NIL (-2682 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-3287 (((-642 |#1|) $) NIL)) (-2145 (((-112) |#1| $) NIL)) (-3220 (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) NIL)) (-1668 (($ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) NIL)) (-4107 (((-642 |#1|) $) NIL)) (-4207 (((-112) |#1| $) NIL)) (-3999 (((-1117) $) NIL (-2682 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-4036 ((|#2| $) NIL (|has| |#1| (-848)))) (-3183 (((-3 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) "failed") (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL)) (-3826 (($ $ |#2|) NIL (|has| $ (-6 -4411)))) (-4314 (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) NIL)) (-4094 (((-112) (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))))) NIL (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (($ $ (-294 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) NIL (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (($ $ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) NIL (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (($ $ (-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) (-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) NIL (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (($ $ (-642 |#2|) (-642 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-642 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))))) (-2478 (((-112) $ $) NIL)) (-1643 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097))))) (-3522 (((-642 |#2|) $) NIL)) (-4109 (((-112) $) NIL)) (-2179 (($) NIL)) (-4369 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2318 (($) NIL) (($ (-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) NIL)) (-4010 (((-769) (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-769) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (((-769) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097)))) (((-769) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410)))) (-3865 (($ $) NIL)) (-3003 (((-536) $) NIL (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-612 (-536))))) (-2401 (($ (-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) NIL)) (-2390 (((-860) $) NIL (-2682 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-611 (-860))) (|has| |#2| (-611 (-860)))))) (-1600 (((-112) $ $) NIL (-2682 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-4160 (($ (-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) NIL)) (-3295 (((-112) (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410)))) (-2821 (((-112) $ $) NIL (-2682 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-2158 (((-769) $) NIL (|has| $ (-6 -4410))))) -(((-295 |#1| |#2|) (-13 (-1188 |#1| |#2|) (-10 -7 (-6 -4410))) (-1097) (-1097)) (T -295)) -NIL -(-13 (-1188 |#1| |#2|) (-10 -7 (-6 -4410))) -((-1437 (((-312) (-1155) (-642 (-1155))) 17) (((-312) (-1155) (-1155)) 16) (((-312) (-642 (-1155))) 15) (((-312) (-1155)) 14))) -(((-296) (-10 -7 (-15 -1437 ((-312) (-1155))) (-15 -1437 ((-312) (-642 (-1155)))) (-15 -1437 ((-312) (-1155) (-1155))) (-15 -1437 ((-312) (-1155) (-642 (-1155)))))) (T -296)) -((-1437 (*1 *2 *3 *4) (-12 (-5 *4 (-642 (-1155))) (-5 *3 (-1155)) (-5 *2 (-312)) (-5 *1 (-296)))) (-1437 (*1 *2 *3 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-312)) (-5 *1 (-296)))) (-1437 (*1 *2 *3) (-12 (-5 *3 (-642 (-1155))) (-5 *2 (-312)) (-5 *1 (-296)))) (-1437 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-312)) (-5 *1 (-296))))) -(-10 -7 (-15 -1437 ((-312) (-1155))) (-15 -1437 ((-312) (-642 (-1155)))) (-15 -1437 ((-312) (-1155) (-1155))) (-15 -1437 ((-312) (-1155) (-642 (-1155))))) -((-2947 ((|#2| (-1 |#2| |#1|) (-1155) (-610 |#1|)) 18))) -(((-297 |#1| |#2|) (-10 -7 (-15 -2947 (|#2| (-1 |#2| |#1|) (-1155) (-610 |#1|)))) (-302) (-1212)) (T -297)) -((-2947 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1155)) (-5 *5 (-610 *6)) (-4 *6 (-302)) (-4 *2 (-1212)) (-5 *1 (-297 *6 *2))))) -(-10 -7 (-15 -2947 (|#2| (-1 |#2| |#1|) (-1155) (-610 |#1|)))) -((-2947 ((|#2| (-1 |#2| |#1|) (-610 |#1|)) 17))) -(((-298 |#1| |#2|) (-10 -7 (-15 -2947 (|#2| (-1 |#2| |#1|) (-610 |#1|)))) (-302) (-302)) (T -298)) -((-2947 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-610 *5)) (-4 *5 (-302)) (-4 *2 (-302)) (-5 *1 (-298 *5 *2))))) -(-10 -7 (-15 -2947 (|#2| (-1 |#2| |#1|) (-610 |#1|)))) -((-3284 (((-112) (-225)) 12))) -(((-299 |#1| |#2|) (-10 -7 (-15 -3284 ((-112) (-225)))) (-225) (-225)) (T -299)) -((-3284 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-299 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-10 -7 (-15 -3284 ((-112) (-225)))) -((-2659 (((-1153 (-225)) (-316 (-225)) (-642 (-1173)) (-1091 (-841 (-225)))) 118)) (-2006 (((-1153 (-225)) (-1262 (-316 (-225))) (-642 (-1173)) (-1091 (-841 (-225)))) 135) (((-1153 (-225)) (-316 (-225)) (-642 (-1173)) (-1091 (-841 (-225)))) 72)) (-2736 (((-642 (-1155)) (-1153 (-225))) NIL)) (-4329 (((-642 (-225)) (-316 (-225)) (-1173) (-1091 (-841 (-225)))) 69)) (-2729 (((-642 (-225)) (-950 (-407 (-564))) (-1173) (-1091 (-841 (-225)))) 59)) (-4170 (((-642 (-1155)) (-642 (-225))) NIL)) (-2586 (((-225) (-1091 (-841 (-225)))) 29)) (-3285 (((-225) (-1091 (-841 (-225)))) 30)) (-2486 (((-112) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 64)) (-2685 (((-1155) (-225)) NIL))) -(((-300) (-10 -7 (-15 -2586 ((-225) (-1091 (-841 (-225))))) (-15 -3285 ((-225) (-1091 (-841 (-225))))) (-15 -2486 ((-112) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4329 ((-642 (-225)) (-316 (-225)) (-1173) (-1091 (-841 (-225))))) (-15 -2659 ((-1153 (-225)) (-316 (-225)) (-642 (-1173)) (-1091 (-841 (-225))))) (-15 -2006 ((-1153 (-225)) (-316 (-225)) (-642 (-1173)) (-1091 (-841 (-225))))) (-15 -2006 ((-1153 (-225)) (-1262 (-316 (-225))) (-642 (-1173)) (-1091 (-841 (-225))))) (-15 -2729 ((-642 (-225)) (-950 (-407 (-564))) (-1173) (-1091 (-841 (-225))))) (-15 -2685 ((-1155) (-225))) (-15 -4170 ((-642 (-1155)) (-642 (-225)))) (-15 -2736 ((-642 (-1155)) (-1153 (-225)))))) (T -300)) -((-2736 (*1 *2 *3) (-12 (-5 *3 (-1153 (-225))) (-5 *2 (-642 (-1155))) (-5 *1 (-300)))) (-4170 (*1 *2 *3) (-12 (-5 *3 (-642 (-225))) (-5 *2 (-642 (-1155))) (-5 *1 (-300)))) (-2685 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1155)) (-5 *1 (-300)))) (-2729 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-950 (-407 (-564)))) (-5 *4 (-1173)) (-5 *5 (-1091 (-841 (-225)))) (-5 *2 (-642 (-225))) (-5 *1 (-300)))) (-2006 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1262 (-316 (-225)))) (-5 *4 (-642 (-1173))) (-5 *5 (-1091 (-841 (-225)))) (-5 *2 (-1153 (-225))) (-5 *1 (-300)))) (-2006 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-225))) (-5 *4 (-642 (-1173))) (-5 *5 (-1091 (-841 (-225)))) (-5 *2 (-1153 (-225))) (-5 *1 (-300)))) (-2659 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-225))) (-5 *4 (-642 (-1173))) (-5 *5 (-1091 (-841 (-225)))) (-5 *2 (-1153 (-225))) (-5 *1 (-300)))) (-4329 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-225))) (-5 *4 (-1173)) (-5 *5 (-1091 (-841 (-225)))) (-5 *2 (-642 (-225))) (-5 *1 (-300)))) (-2486 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-112)) (-5 *1 (-300)))) (-3285 (*1 *2 *3) (-12 (-5 *3 (-1091 (-841 (-225)))) (-5 *2 (-225)) (-5 *1 (-300)))) (-2586 (*1 *2 *3) (-12 (-5 *3 (-1091 (-841 (-225)))) (-5 *2 (-225)) (-5 *1 (-300))))) -(-10 -7 (-15 -2586 ((-225) (-1091 (-841 (-225))))) (-15 -3285 ((-225) (-1091 (-841 (-225))))) (-15 -2486 ((-112) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4329 ((-642 (-225)) (-316 (-225)) (-1173) (-1091 (-841 (-225))))) (-15 -2659 ((-1153 (-225)) (-316 (-225)) (-642 (-1173)) (-1091 (-841 (-225))))) (-15 -2006 ((-1153 (-225)) (-316 (-225)) (-642 (-1173)) (-1091 (-841 (-225))))) (-15 -2006 ((-1153 (-225)) (-1262 (-316 (-225))) (-642 (-1173)) (-1091 (-841 (-225))))) (-15 -2729 ((-642 (-225)) (-950 (-407 (-564))) (-1173) (-1091 (-841 (-225))))) (-15 -2685 ((-1155) (-225))) (-15 -4170 ((-642 (-1155)) (-642 (-225)))) (-15 -2736 ((-642 (-1155)) (-1153 (-225))))) -((-2138 (((-642 (-610 $)) $) 27)) (-1891 (($ $ (-294 $)) 79) (($ $ (-642 (-294 $))) 140) (($ $ (-642 (-610 $)) (-642 $)) NIL)) (-2849 (((-3 (-610 $) "failed") $) 128)) (-1687 (((-610 $) $) 127)) (-2998 (($ $) 17) (($ (-642 $)) 54)) (-3986 (((-642 (-114)) $) 35)) (-3898 (((-114) (-114)) 89)) (-2829 (((-112) $) 151)) (-2947 (($ (-1 $ $) (-610 $)) 87)) (-1543 (((-3 (-610 $) "failed") $) 95)) (-2879 (($ (-114) $) 59) (($ (-114) (-642 $)) 111)) (-1462 (((-112) $ (-114)) 133) (((-112) $ (-1173)) 132)) (-2983 (((-769) $) 44)) (-2908 (((-112) $ $) 57) (((-112) $ (-1173)) 49)) (-2211 (((-112) $) 149)) (-3154 (($ $ (-610 $) $) NIL) (($ $ (-642 (-610 $)) (-642 $)) NIL) (($ $ (-642 (-294 $))) 138) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-642 $) (-642 $)) NIL) (($ $ (-642 (-1173)) (-642 (-1 $ $))) 82) (($ $ (-642 (-1173)) (-642 (-1 $ (-642 $)))) NIL) (($ $ (-1173) (-1 $ (-642 $))) 67) (($ $ (-1173) (-1 $ $)) 73) (($ $ (-642 (-114)) (-642 (-1 $ $))) 81) (($ $ (-642 (-114)) (-642 (-1 $ (-642 $)))) 83) (($ $ (-114) (-1 $ (-642 $))) 69) (($ $ (-114) (-1 $ $)) 75)) (-4369 (($ (-114) $) 60) (($ (-114) $ $) 61) (($ (-114) $ $ $) 62) (($ (-114) $ $ $ $) 63) (($ (-114) (-642 $)) 124)) (-4377 (($ $) 51) (($ $ $) 136)) (-1899 (($ $) 15) (($ (-642 $)) 53)) (-4318 (((-112) (-114)) 21))) -(((-301 |#1|) (-10 -8 (-15 -2829 ((-112) |#1|)) (-15 -2211 ((-112) |#1|)) (-15 -3154 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -3154 (|#1| |#1| (-114) (-1 |#1| (-642 |#1|)))) (-15 -3154 (|#1| |#1| (-642 (-114)) (-642 (-1 |#1| (-642 |#1|))))) (-15 -3154 (|#1| |#1| (-642 (-114)) (-642 (-1 |#1| |#1|)))) (-15 -3154 (|#1| |#1| (-1173) (-1 |#1| |#1|))) (-15 -3154 (|#1| |#1| (-1173) (-1 |#1| (-642 |#1|)))) (-15 -3154 (|#1| |#1| (-642 (-1173)) (-642 (-1 |#1| (-642 |#1|))))) (-15 -3154 (|#1| |#1| (-642 (-1173)) (-642 (-1 |#1| |#1|)))) (-15 -2908 ((-112) |#1| (-1173))) (-15 -2908 ((-112) |#1| |#1|)) (-15 -2947 (|#1| (-1 |#1| |#1|) (-610 |#1|))) (-15 -2879 (|#1| (-114) (-642 |#1|))) (-15 -2879 (|#1| (-114) |#1|)) (-15 -1462 ((-112) |#1| (-1173))) (-15 -1462 ((-112) |#1| (-114))) (-15 -4318 ((-112) (-114))) (-15 -3898 ((-114) (-114))) (-15 -3986 ((-642 (-114)) |#1|)) (-15 -2138 ((-642 (-610 |#1|)) |#1|)) (-15 -1543 ((-3 (-610 |#1|) "failed") |#1|)) (-15 -2983 ((-769) |#1|)) (-15 -4377 (|#1| |#1| |#1|)) (-15 -4377 (|#1| |#1|)) (-15 -2998 (|#1| (-642 |#1|))) (-15 -2998 (|#1| |#1|)) (-15 -1899 (|#1| (-642 |#1|))) (-15 -1899 (|#1| |#1|)) (-15 -1891 (|#1| |#1| (-642 (-610 |#1|)) (-642 |#1|))) (-15 -1891 (|#1| |#1| (-642 (-294 |#1|)))) (-15 -1891 (|#1| |#1| (-294 |#1|))) (-15 -4369 (|#1| (-114) (-642 |#1|))) (-15 -4369 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -4369 (|#1| (-114) |#1| |#1| |#1|)) (-15 -4369 (|#1| (-114) |#1| |#1|)) (-15 -4369 (|#1| (-114) |#1|)) (-15 -3154 (|#1| |#1| (-642 |#1|) (-642 |#1|))) (-15 -3154 (|#1| |#1| |#1| |#1|)) (-15 -3154 (|#1| |#1| (-294 |#1|))) (-15 -3154 (|#1| |#1| (-642 (-294 |#1|)))) (-15 -3154 (|#1| |#1| (-642 (-610 |#1|)) (-642 |#1|))) (-15 -3154 (|#1| |#1| (-610 |#1|) |#1|)) (-15 -2849 ((-3 (-610 |#1|) "failed") |#1|)) (-15 -1687 ((-610 |#1|) |#1|))) (-302)) (T -301)) -((-3898 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-301 *3)) (-4 *3 (-302)))) (-4318 (*1 *2 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-301 *4)) (-4 *4 (-302))))) -(-10 -8 (-15 -2829 ((-112) |#1|)) (-15 -2211 ((-112) |#1|)) (-15 -3154 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -3154 (|#1| |#1| (-114) (-1 |#1| (-642 |#1|)))) (-15 -3154 (|#1| |#1| (-642 (-114)) (-642 (-1 |#1| (-642 |#1|))))) (-15 -3154 (|#1| |#1| (-642 (-114)) (-642 (-1 |#1| |#1|)))) (-15 -3154 (|#1| |#1| (-1173) (-1 |#1| |#1|))) (-15 -3154 (|#1| |#1| (-1173) (-1 |#1| (-642 |#1|)))) (-15 -3154 (|#1| |#1| (-642 (-1173)) (-642 (-1 |#1| (-642 |#1|))))) (-15 -3154 (|#1| |#1| (-642 (-1173)) (-642 (-1 |#1| |#1|)))) (-15 -2908 ((-112) |#1| (-1173))) (-15 -2908 ((-112) |#1| |#1|)) (-15 -2947 (|#1| (-1 |#1| |#1|) (-610 |#1|))) (-15 -2879 (|#1| (-114) (-642 |#1|))) (-15 -2879 (|#1| (-114) |#1|)) (-15 -1462 ((-112) |#1| (-1173))) (-15 -1462 ((-112) |#1| (-114))) (-15 -4318 ((-112) (-114))) (-15 -3898 ((-114) (-114))) (-15 -3986 ((-642 (-114)) |#1|)) (-15 -2138 ((-642 (-610 |#1|)) |#1|)) (-15 -1543 ((-3 (-610 |#1|) "failed") |#1|)) (-15 -2983 ((-769) |#1|)) (-15 -4377 (|#1| |#1| |#1|)) (-15 -4377 (|#1| |#1|)) (-15 -2998 (|#1| (-642 |#1|))) (-15 -2998 (|#1| |#1|)) (-15 -1899 (|#1| (-642 |#1|))) (-15 -1899 (|#1| |#1|)) (-15 -1891 (|#1| |#1| (-642 (-610 |#1|)) (-642 |#1|))) (-15 -1891 (|#1| |#1| (-642 (-294 |#1|)))) (-15 -1891 (|#1| |#1| (-294 |#1|))) (-15 -4369 (|#1| (-114) (-642 |#1|))) (-15 -4369 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -4369 (|#1| (-114) |#1| |#1| |#1|)) (-15 -4369 (|#1| (-114) |#1| |#1|)) (-15 -4369 (|#1| (-114) |#1|)) (-15 -3154 (|#1| |#1| (-642 |#1|) (-642 |#1|))) (-15 -3154 (|#1| |#1| |#1| |#1|)) (-15 -3154 (|#1| |#1| (-294 |#1|))) (-15 -3154 (|#1| |#1| (-642 (-294 |#1|)))) (-15 -3154 (|#1| |#1| (-642 (-610 |#1|)) (-642 |#1|))) (-15 -3154 (|#1| |#1| (-610 |#1|) |#1|)) (-15 -2849 ((-3 (-610 |#1|) "failed") |#1|)) (-15 -1687 ((-610 |#1|) |#1|))) -((-2856 (((-112) $ $) 7)) (-2138 (((-642 (-610 $)) $) 39)) (-1891 (($ $ (-294 $)) 51) (($ $ (-642 (-294 $))) 50) (($ $ (-642 (-610 $)) (-642 $)) 49)) (-2849 (((-3 (-610 $) "failed") $) 64)) (-1687 (((-610 $) $) 65)) (-2998 (($ $) 46) (($ (-642 $)) 45)) (-3986 (((-642 (-114)) $) 38)) (-3898 (((-114) (-114)) 37)) (-2829 (((-112) $) 17 (|has| $ (-1036 (-564))))) (-2744 (((-1169 $) (-610 $)) 20 (|has| $ (-1047)))) (-2947 (($ (-1 $ $) (-610 $)) 31)) (-1543 (((-3 (-610 $) "failed") $) 41)) (-1778 (((-1155) $) 10)) (-2209 (((-642 (-610 $)) $) 40)) (-2879 (($ (-114) $) 33) (($ (-114) (-642 $)) 32)) (-1462 (((-112) $ (-114)) 35) (((-112) $ (-1173)) 34)) (-2983 (((-769) $) 42)) (-3999 (((-1117) $) 11)) (-2908 (((-112) $ $) 30) (((-112) $ (-1173)) 29)) (-2211 (((-112) $) 18 (|has| $ (-1036 (-564))))) (-3154 (($ $ (-610 $) $) 62) (($ $ (-642 (-610 $)) (-642 $)) 61) (($ $ (-642 (-294 $))) 60) (($ $ (-294 $)) 59) (($ $ $ $) 58) (($ $ (-642 $) (-642 $)) 57) (($ $ (-642 (-1173)) (-642 (-1 $ $))) 28) (($ $ (-642 (-1173)) (-642 (-1 $ (-642 $)))) 27) (($ $ (-1173) (-1 $ (-642 $))) 26) (($ $ (-1173) (-1 $ $)) 25) (($ $ (-642 (-114)) (-642 (-1 $ $))) 24) (($ $ (-642 (-114)) (-642 (-1 $ (-642 $)))) 23) (($ $ (-114) (-1 $ (-642 $))) 22) (($ $ (-114) (-1 $ $)) 21)) (-4369 (($ (-114) $) 56) (($ (-114) $ $) 55) (($ (-114) $ $ $) 54) (($ (-114) $ $ $ $) 53) (($ (-114) (-642 $)) 52)) (-4377 (($ $) 44) (($ $ $) 43)) (-1361 (($ $) 19 (|has| $ (-1047)))) (-2390 (((-860) $) 12) (($ (-610 $)) 63)) (-1899 (($ $) 48) (($ (-642 $)) 47)) (-4318 (((-112) (-114)) 36)) (-1600 (((-112) $ $) 9)) (-2821 (((-112) $ $) 6))) -(((-302) (-140)) (T -302)) -((-4369 (*1 *1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) (-4369 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) (-4369 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) (-4369 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) (-4369 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-642 *1)) (-4 *1 (-302)))) (-1891 (*1 *1 *1 *2) (-12 (-5 *2 (-294 *1)) (-4 *1 (-302)))) (-1891 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-294 *1))) (-4 *1 (-302)))) (-1891 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-642 (-610 *1))) (-5 *3 (-642 *1)) (-4 *1 (-302)))) (-1899 (*1 *1 *1) (-4 *1 (-302))) (-1899 (*1 *1 *2) (-12 (-5 *2 (-642 *1)) (-4 *1 (-302)))) (-2998 (*1 *1 *1) (-4 *1 (-302))) (-2998 (*1 *1 *2) (-12 (-5 *2 (-642 *1)) (-4 *1 (-302)))) (-4377 (*1 *1 *1) (-4 *1 (-302))) (-4377 (*1 *1 *1 *1) (-4 *1 (-302))) (-2983 (*1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-769)))) (-1543 (*1 *2 *1) (|partial| -12 (-5 *2 (-610 *1)) (-4 *1 (-302)))) (-2209 (*1 *2 *1) (-12 (-5 *2 (-642 (-610 *1))) (-4 *1 (-302)))) (-2138 (*1 *2 *1) (-12 (-5 *2 (-642 (-610 *1))) (-4 *1 (-302)))) (-3986 (*1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-642 (-114))))) (-3898 (*1 *2 *2) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) (-4318 (*1 *2 *3) (-12 (-4 *1 (-302)) (-5 *3 (-114)) (-5 *2 (-112)))) (-1462 (*1 *2 *1 *3) (-12 (-4 *1 (-302)) (-5 *3 (-114)) (-5 *2 (-112)))) (-1462 (*1 *2 *1 *3) (-12 (-4 *1 (-302)) (-5 *3 (-1173)) (-5 *2 (-112)))) (-2879 (*1 *1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) (-2879 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-642 *1)) (-4 *1 (-302)))) (-2947 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-610 *1)) (-4 *1 (-302)))) (-2908 (*1 *2 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-112)))) (-2908 (*1 *2 *1 *3) (-12 (-4 *1 (-302)) (-5 *3 (-1173)) (-5 *2 (-112)))) (-3154 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-642 (-1173))) (-5 *3 (-642 (-1 *1 *1))) (-4 *1 (-302)))) (-3154 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-642 (-1173))) (-5 *3 (-642 (-1 *1 (-642 *1)))) (-4 *1 (-302)))) (-3154 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-1 *1 (-642 *1))) (-4 *1 (-302)))) (-3154 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-1 *1 *1)) (-4 *1 (-302)))) (-3154 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-642 (-114))) (-5 *3 (-642 (-1 *1 *1))) (-4 *1 (-302)))) (-3154 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-642 (-114))) (-5 *3 (-642 (-1 *1 (-642 *1)))) (-4 *1 (-302)))) (-3154 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-642 *1))) (-4 *1 (-302)))) (-3154 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-302)))) (-2744 (*1 *2 *3) (-12 (-5 *3 (-610 *1)) (-4 *1 (-1047)) (-4 *1 (-302)) (-5 *2 (-1169 *1)))) (-1361 (*1 *1 *1) (-12 (-4 *1 (-1047)) (-4 *1 (-302)))) (-2211 (*1 *2 *1) (-12 (-4 *1 (-1036 (-564))) (-4 *1 (-302)) (-5 *2 (-112)))) (-2829 (*1 *2 *1) (-12 (-4 *1 (-1036 (-564))) (-4 *1 (-302)) (-5 *2 (-112))))) -(-13 (-1097) (-1036 (-610 $)) (-514 (-610 $) $) (-309 $) (-10 -8 (-15 -4369 ($ (-114) $)) (-15 -4369 ($ (-114) $ $)) (-15 -4369 ($ (-114) $ $ $)) (-15 -4369 ($ (-114) $ $ $ $)) (-15 -4369 ($ (-114) (-642 $))) (-15 -1891 ($ $ (-294 $))) (-15 -1891 ($ $ (-642 (-294 $)))) (-15 -1891 ($ $ (-642 (-610 $)) (-642 $))) (-15 -1899 ($ $)) (-15 -1899 ($ (-642 $))) (-15 -2998 ($ $)) (-15 -2998 ($ (-642 $))) (-15 -4377 ($ $)) (-15 -4377 ($ $ $)) (-15 -2983 ((-769) $)) (-15 -1543 ((-3 (-610 $) "failed") $)) (-15 -2209 ((-642 (-610 $)) $)) (-15 -2138 ((-642 (-610 $)) $)) (-15 -3986 ((-642 (-114)) $)) (-15 -3898 ((-114) (-114))) (-15 -4318 ((-112) (-114))) (-15 -1462 ((-112) $ (-114))) (-15 -1462 ((-112) $ (-1173))) (-15 -2879 ($ (-114) $)) (-15 -2879 ($ (-114) (-642 $))) (-15 -2947 ($ (-1 $ $) (-610 $))) (-15 -2908 ((-112) $ $)) (-15 -2908 ((-112) $ (-1173))) (-15 -3154 ($ $ (-642 (-1173)) (-642 (-1 $ $)))) (-15 -3154 ($ $ (-642 (-1173)) (-642 (-1 $ (-642 $))))) (-15 -3154 ($ $ (-1173) (-1 $ (-642 $)))) (-15 -3154 ($ $ (-1173) (-1 $ $))) (-15 -3154 ($ $ (-642 (-114)) (-642 (-1 $ $)))) (-15 -3154 ($ $ (-642 (-114)) (-642 (-1 $ (-642 $))))) (-15 -3154 ($ $ (-114) (-1 $ (-642 $)))) (-15 -3154 ($ $ (-114) (-1 $ $))) (IF (|has| $ (-1047)) (PROGN (-15 -2744 ((-1169 $) (-610 $))) (-15 -1361 ($ $))) |%noBranch|) (IF (|has| $ (-1036 (-564))) (PROGN (-15 -2211 ((-112) $)) (-15 -2829 ((-112) $))) |%noBranch|))) -(((-102) . T) ((-614 #0=(-610 $)) . T) ((-611 (-860)) . T) ((-309 $) . T) ((-514 (-610 $) $) . T) ((-514 $ $) . T) ((-1036 #0#) . T) ((-1097) . T)) -((-3201 (((-642 |#1|) (-642 |#1|)) 10))) -(((-303 |#1|) (-10 -7 (-15 -3201 ((-642 |#1|) (-642 |#1|)))) (-846)) (T -303)) -((-3201 (*1 *2 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-846)) (-5 *1 (-303 *3))))) -(-10 -7 (-15 -3201 ((-642 |#1|) (-642 |#1|)))) -((-2947 (((-687 |#2|) (-1 |#2| |#1|) (-687 |#1|)) 17))) -(((-304 |#1| |#2|) (-10 -7 (-15 -2947 ((-687 |#2|) (-1 |#2| |#1|) (-687 |#1|)))) (-1047) (-1047)) (T -304)) -((-2947 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-687 *5)) (-4 *5 (-1047)) (-4 *6 (-1047)) (-5 *2 (-687 *6)) (-5 *1 (-304 *5 *6))))) -(-10 -7 (-15 -2947 ((-687 |#2|) (-1 |#2| |#1|) (-687 |#1|)))) -((-1312 (((-1262 (-316 (-379))) (-1262 (-316 (-225)))) 112)) (-2411 (((-1091 (-841 (-225))) (-1091 (-841 (-379)))) 45)) (-2736 (((-642 (-1155)) (-1153 (-225))) 94)) (-2099 (((-316 (-379)) (-950 (-225))) 55)) (-2906 (((-225) (-950 (-225))) 51)) (-3272 (((-1155) (-379)) 197)) (-3658 (((-841 (-225)) (-841 (-379))) 39)) (-1845 (((-2 (|:| |additions| (-564)) (|:| |multiplications| (-564)) (|:| |exponentiations| (-564)) (|:| |functionCalls| (-564))) (-1262 (-316 (-225)))) 165)) (-2414 (((-1033) (-2 (|:| -4324 (-379)) (|:| -2493 (-1155)) (|:| |explanations| (-642 (-1155))) (|:| |extra| (-1033)))) 209) (((-1033) (-2 (|:| -4324 (-379)) (|:| -2493 (-1155)) (|:| |explanations| (-642 (-1155))))) 207)) (-3544 (((-687 (-225)) (-642 (-225)) (-769)) 21)) (-2499 (((-1262 (-697)) (-642 (-225))) 101)) (-4170 (((-642 (-1155)) (-642 (-225))) 81)) (-2922 (((-3 (-316 (-225)) "failed") (-316 (-225))) 130)) (-3284 (((-112) (-225) (-1091 (-841 (-225)))) 119)) (-3492 (((-1033) (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))) 226)) (-2586 (((-225) (-1091 (-841 (-225)))) 114)) (-3285 (((-225) (-1091 (-841 (-225)))) 115)) (-3213 (((-225) (-407 (-564))) 33)) (-2747 (((-1155) (-379)) 79)) (-2100 (((-225) (-379)) 24)) (-1727 (((-379) (-1262 (-316 (-225)))) 179)) (-1682 (((-316 (-225)) (-316 (-379))) 30)) (-1676 (((-407 (-564)) (-316 (-225))) 58)) (-2861 (((-316 (-407 (-564))) (-316 (-225))) 75)) (-3813 (((-316 (-379)) (-316 (-225))) 105)) (-3270 (((-225) (-316 (-225))) 59)) (-1453 (((-642 (-225)) (-642 (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564)))))) 70)) (-1852 (((-1091 (-841 (-225))) (-1091 (-841 (-225)))) 67)) (-2685 (((-1155) (-225)) 78)) (-2567 (((-697) (-225)) 97)) (-3726 (((-407 (-564)) (-225)) 60)) (-4387 (((-316 (-379)) (-225)) 54)) (-3003 (((-642 (-1091 (-841 (-225)))) (-642 (-1091 (-841 (-379))))) 48)) (-3634 (((-1033) (-642 (-1033))) 193) (((-1033) (-1033) (-1033)) 187)) (-4285 (((-1033) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1153 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4138 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 223))) -(((-305) (-10 -7 (-15 -2100 ((-225) (-379))) (-15 -1682 ((-316 (-225)) (-316 (-379)))) (-15 -3658 ((-841 (-225)) (-841 (-379)))) (-15 -2411 ((-1091 (-841 (-225))) (-1091 (-841 (-379))))) (-15 -3003 ((-642 (-1091 (-841 (-225)))) (-642 (-1091 (-841 (-379)))))) (-15 -3726 ((-407 (-564)) (-225))) (-15 -1676 ((-407 (-564)) (-316 (-225)))) (-15 -3270 ((-225) (-316 (-225)))) (-15 -2922 ((-3 (-316 (-225)) "failed") (-316 (-225)))) (-15 -1727 ((-379) (-1262 (-316 (-225))))) (-15 -1845 ((-2 (|:| |additions| (-564)) (|:| |multiplications| (-564)) (|:| |exponentiations| (-564)) (|:| |functionCalls| (-564))) (-1262 (-316 (-225))))) (-15 -2861 ((-316 (-407 (-564))) (-316 (-225)))) (-15 -1852 ((-1091 (-841 (-225))) (-1091 (-841 (-225))))) (-15 -1453 ((-642 (-225)) (-642 (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564))))))) (-15 -2567 ((-697) (-225))) (-15 -2499 ((-1262 (-697)) (-642 (-225)))) (-15 -3813 ((-316 (-379)) (-316 (-225)))) (-15 -1312 ((-1262 (-316 (-379))) (-1262 (-316 (-225))))) (-15 -3284 ((-112) (-225) (-1091 (-841 (-225))))) (-15 -2685 ((-1155) (-225))) (-15 -2747 ((-1155) (-379))) (-15 -4170 ((-642 (-1155)) (-642 (-225)))) (-15 -2736 ((-642 (-1155)) (-1153 (-225)))) (-15 -2586 ((-225) (-1091 (-841 (-225))))) (-15 -3285 ((-225) (-1091 (-841 (-225))))) (-15 -3634 ((-1033) (-1033) (-1033))) (-15 -3634 ((-1033) (-642 (-1033)))) (-15 -3272 ((-1155) (-379))) (-15 -2414 ((-1033) (-2 (|:| -4324 (-379)) (|:| -2493 (-1155)) (|:| |explanations| (-642 (-1155)))))) (-15 -2414 ((-1033) (-2 (|:| -4324 (-379)) (|:| -2493 (-1155)) (|:| |explanations| (-642 (-1155))) (|:| |extra| (-1033))))) (-15 -4285 ((-1033) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1153 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4138 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3492 ((-1033) (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))) (-15 -2099 ((-316 (-379)) (-950 (-225)))) (-15 -2906 ((-225) (-950 (-225)))) (-15 -4387 ((-316 (-379)) (-225))) (-15 -3213 ((-225) (-407 (-564)))) (-15 -3544 ((-687 (-225)) (-642 (-225)) (-769))))) (T -305)) -((-3544 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-225))) (-5 *4 (-769)) (-5 *2 (-687 (-225))) (-5 *1 (-305)))) (-3213 (*1 *2 *3) (-12 (-5 *3 (-407 (-564))) (-5 *2 (-225)) (-5 *1 (-305)))) (-4387 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-316 (-379))) (-5 *1 (-305)))) (-2906 (*1 *2 *3) (-12 (-5 *3 (-950 (-225))) (-5 *2 (-225)) (-5 *1 (-305)))) (-2099 (*1 *2 *3) (-12 (-5 *3 (-950 (-225))) (-5 *2 (-316 (-379))) (-5 *1 (-305)))) (-3492 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))) (-5 *2 (-1033)) (-5 *1 (-305)))) (-4285 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1153 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4138 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1033)) (-5 *1 (-305)))) (-2414 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4324 (-379)) (|:| -2493 (-1155)) (|:| |explanations| (-642 (-1155))) (|:| |extra| (-1033)))) (-5 *2 (-1033)) (-5 *1 (-305)))) (-2414 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4324 (-379)) (|:| -2493 (-1155)) (|:| |explanations| (-642 (-1155))))) (-5 *2 (-1033)) (-5 *1 (-305)))) (-3272 (*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1155)) (-5 *1 (-305)))) (-3634 (*1 *2 *3) (-12 (-5 *3 (-642 (-1033))) (-5 *2 (-1033)) (-5 *1 (-305)))) (-3634 (*1 *2 *2 *2) (-12 (-5 *2 (-1033)) (-5 *1 (-305)))) (-3285 (*1 *2 *3) (-12 (-5 *3 (-1091 (-841 (-225)))) (-5 *2 (-225)) (-5 *1 (-305)))) (-2586 (*1 *2 *3) (-12 (-5 *3 (-1091 (-841 (-225)))) (-5 *2 (-225)) (-5 *1 (-305)))) (-2736 (*1 *2 *3) (-12 (-5 *3 (-1153 (-225))) (-5 *2 (-642 (-1155))) (-5 *1 (-305)))) (-4170 (*1 *2 *3) (-12 (-5 *3 (-642 (-225))) (-5 *2 (-642 (-1155))) (-5 *1 (-305)))) (-2747 (*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1155)) (-5 *1 (-305)))) (-2685 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1155)) (-5 *1 (-305)))) (-3284 (*1 *2 *3 *4) (-12 (-5 *4 (-1091 (-841 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-305)))) (-1312 (*1 *2 *3) (-12 (-5 *3 (-1262 (-316 (-225)))) (-5 *2 (-1262 (-316 (-379)))) (-5 *1 (-305)))) (-3813 (*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-316 (-379))) (-5 *1 (-305)))) (-2499 (*1 *2 *3) (-12 (-5 *3 (-642 (-225))) (-5 *2 (-1262 (-697))) (-5 *1 (-305)))) (-2567 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-697)) (-5 *1 (-305)))) (-1453 (*1 *2 *3) (-12 (-5 *3 (-642 (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564)))))) (-5 *2 (-642 (-225))) (-5 *1 (-305)))) (-1852 (*1 *2 *2) (-12 (-5 *2 (-1091 (-841 (-225)))) (-5 *1 (-305)))) (-2861 (*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-316 (-407 (-564)))) (-5 *1 (-305)))) (-1845 (*1 *2 *3) (-12 (-5 *3 (-1262 (-316 (-225)))) (-5 *2 (-2 (|:| |additions| (-564)) (|:| |multiplications| (-564)) (|:| |exponentiations| (-564)) (|:| |functionCalls| (-564)))) (-5 *1 (-305)))) (-1727 (*1 *2 *3) (-12 (-5 *3 (-1262 (-316 (-225)))) (-5 *2 (-379)) (-5 *1 (-305)))) (-2922 (*1 *2 *2) (|partial| -12 (-5 *2 (-316 (-225))) (-5 *1 (-305)))) (-3270 (*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-225)) (-5 *1 (-305)))) (-1676 (*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-407 (-564))) (-5 *1 (-305)))) (-3726 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-407 (-564))) (-5 *1 (-305)))) (-3003 (*1 *2 *3) (-12 (-5 *3 (-642 (-1091 (-841 (-379))))) (-5 *2 (-642 (-1091 (-841 (-225))))) (-5 *1 (-305)))) (-2411 (*1 *2 *3) (-12 (-5 *3 (-1091 (-841 (-379)))) (-5 *2 (-1091 (-841 (-225)))) (-5 *1 (-305)))) (-3658 (*1 *2 *3) (-12 (-5 *3 (-841 (-379))) (-5 *2 (-841 (-225))) (-5 *1 (-305)))) (-1682 (*1 *2 *3) (-12 (-5 *3 (-316 (-379))) (-5 *2 (-316 (-225))) (-5 *1 (-305)))) (-2100 (*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-225)) (-5 *1 (-305))))) -(-10 -7 (-15 -2100 ((-225) (-379))) (-15 -1682 ((-316 (-225)) (-316 (-379)))) (-15 -3658 ((-841 (-225)) (-841 (-379)))) (-15 -2411 ((-1091 (-841 (-225))) (-1091 (-841 (-379))))) (-15 -3003 ((-642 (-1091 (-841 (-225)))) (-642 (-1091 (-841 (-379)))))) (-15 -3726 ((-407 (-564)) (-225))) (-15 -1676 ((-407 (-564)) (-316 (-225)))) (-15 -3270 ((-225) (-316 (-225)))) (-15 -2922 ((-3 (-316 (-225)) "failed") (-316 (-225)))) (-15 -1727 ((-379) (-1262 (-316 (-225))))) (-15 -1845 ((-2 (|:| |additions| (-564)) (|:| |multiplications| (-564)) (|:| |exponentiations| (-564)) (|:| |functionCalls| (-564))) (-1262 (-316 (-225))))) (-15 -2861 ((-316 (-407 (-564))) (-316 (-225)))) (-15 -1852 ((-1091 (-841 (-225))) (-1091 (-841 (-225))))) (-15 -1453 ((-642 (-225)) (-642 (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564))))))) (-15 -2567 ((-697) (-225))) (-15 -2499 ((-1262 (-697)) (-642 (-225)))) (-15 -3813 ((-316 (-379)) (-316 (-225)))) (-15 -1312 ((-1262 (-316 (-379))) (-1262 (-316 (-225))))) (-15 -3284 ((-112) (-225) (-1091 (-841 (-225))))) (-15 -2685 ((-1155) (-225))) (-15 -2747 ((-1155) (-379))) (-15 -4170 ((-642 (-1155)) (-642 (-225)))) (-15 -2736 ((-642 (-1155)) (-1153 (-225)))) (-15 -2586 ((-225) (-1091 (-841 (-225))))) (-15 -3285 ((-225) (-1091 (-841 (-225))))) (-15 -3634 ((-1033) (-1033) (-1033))) (-15 -3634 ((-1033) (-642 (-1033)))) (-15 -3272 ((-1155) (-379))) (-15 -2414 ((-1033) (-2 (|:| -4324 (-379)) (|:| -2493 (-1155)) (|:| |explanations| (-642 (-1155)))))) (-15 -2414 ((-1033) (-2 (|:| -4324 (-379)) (|:| -2493 (-1155)) (|:| |explanations| (-642 (-1155))) (|:| |extra| (-1033))))) (-15 -4285 ((-1033) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1153 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4138 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3492 ((-1033) (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))) (-15 -2099 ((-316 (-379)) (-950 (-225)))) (-15 -2906 ((-225) (-950 (-225)))) (-15 -4387 ((-316 (-379)) (-225))) (-15 -3213 ((-225) (-407 (-564)))) (-15 -3544 ((-687 (-225)) (-642 (-225)) (-769)))) -((-2134 (((-112) $ $) 14)) (-2796 (($ $ $) 18)) (-2808 (($ $ $) 17)) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) 50)) (-2709 (((-3 (-642 $) "failed") (-642 $) $) 65)) (-2105 (($ $ $) 25) (($ (-642 $)) NIL)) (-1877 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) 35) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 40)) (-2842 (((-3 $ "failed") $ $) 21)) (-1483 (((-3 (-642 $) "failed") (-642 $) $) 53))) -(((-306 |#1|) (-10 -8 (-15 -2709 ((-3 (-642 |#1|) "failed") (-642 |#1|) |#1|)) (-15 -1877 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1877 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4043 |#1|)) |#1| |#1|)) (-15 -2796 (|#1| |#1| |#1|)) (-15 -2808 (|#1| |#1| |#1|)) (-15 -2134 ((-112) |#1| |#1|)) (-15 -1483 ((-3 (-642 |#1|) "failed") (-642 |#1|) |#1|)) (-15 -4159 ((-2 (|:| -2968 (-642 |#1|)) (|:| -4043 |#1|)) (-642 |#1|))) (-15 -2105 (|#1| (-642 |#1|))) (-15 -2105 (|#1| |#1| |#1|)) (-15 -2842 ((-3 |#1| "failed") |#1| |#1|))) (-307)) (T -306)) -NIL -(-10 -8 (-15 -2709 ((-3 (-642 |#1|) "failed") (-642 |#1|) |#1|)) (-15 -1877 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1877 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4043 |#1|)) |#1| |#1|)) (-15 -2796 (|#1| |#1| |#1|)) (-15 -2808 (|#1| |#1| |#1|)) (-15 -2134 ((-112) |#1| |#1|)) (-15 -1483 ((-3 (-642 |#1|) "failed") (-642 |#1|) |#1|)) (-15 -4159 ((-2 (|:| -2968 (-642 |#1|)) (|:| -4043 |#1|)) (-642 |#1|))) (-15 -2105 (|#1| (-642 |#1|))) (-15 -2105 (|#1| |#1| |#1|)) (-15 -2842 ((-3 |#1| "failed") |#1| |#1|))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) 47)) (-4252 (($ $) 46)) (-1722 (((-112) $) 44)) (-3085 (((-3 $ "failed") $ $) 20)) (-2134 (((-112) $ $) 65)) (-2822 (($) 18 T CONST)) (-2796 (($ $ $) 61)) (-2675 (((-3 $ "failed") $) 37)) (-2808 (($ $ $) 62)) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) 57)) (-3163 (((-112) $) 35)) (-2709 (((-3 (-642 $) "failed") (-642 $) $) 58)) (-2066 (($ $ $) 52) (($ (-642 $)) 51)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) 50)) (-2105 (($ $ $) 54) (($ (-642 $)) 53)) (-1877 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2842 (((-3 $ "failed") $ $) 48)) (-1483 (((-3 (-642 $) "failed") (-642 $) $) 56)) (-4274 (((-769) $) 64)) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) 63)) (-2390 (((-860) $) 12) (($ (-564)) 33) (($ $) 49)) (-3348 (((-769)) 32 T CONST)) (-1600 (((-112) $ $) 9)) (-1594 (((-112) $ $) 45)) (-2361 (($) 19 T CONST)) (-2371 (($) 34 T CONST)) (-2821 (((-112) $ $) 6)) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27))) -(((-307) (-140)) (T -307)) -((-2134 (*1 *2 *1 *1) (-12 (-4 *1 (-307)) (-5 *2 (-112)))) (-4274 (*1 *2 *1) (-12 (-4 *1 (-307)) (-5 *2 (-769)))) (-2999 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4332 *1) (|:| -1992 *1))) (-4 *1 (-307)))) (-2808 (*1 *1 *1 *1) (-4 *1 (-307))) (-2796 (*1 *1 *1 *1) (-4 *1 (-307))) (-1877 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4043 *1))) (-4 *1 (-307)))) (-1877 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-307)))) (-2709 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-642 *1)) (-4 *1 (-307))))) -(-13 (-918) (-10 -8 (-15 -2134 ((-112) $ $)) (-15 -4274 ((-769) $)) (-15 -2999 ((-2 (|:| -4332 $) (|:| -1992 $)) $ $)) (-15 -2808 ($ $ $)) (-15 -2796 ($ $ $)) (-15 -1877 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $)) (-15 -1877 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -2709 ((-3 (-642 $) "failed") (-642 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-860)) . T) ((-172) . T) ((-290) . T) ((-452) . T) ((-556) . T) ((-644 (-564)) . T) ((-644 $) . T) ((-646 $) . T) ((-638 $) . T) ((-715 $) . T) ((-724) . T) ((-918) . T) ((-1049 $) . T) ((-1054 $) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T)) -((-3154 (($ $ (-642 |#2|) (-642 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-294 |#2|)) 11) (($ $ (-642 (-294 |#2|))) NIL))) -(((-308 |#1| |#2|) (-10 -8 (-15 -3154 (|#1| |#1| (-642 (-294 |#2|)))) (-15 -3154 (|#1| |#1| (-294 |#2|))) (-15 -3154 (|#1| |#1| |#2| |#2|)) (-15 -3154 (|#1| |#1| (-642 |#2|) (-642 |#2|)))) (-309 |#2|) (-1097)) (T -308)) -NIL -(-10 -8 (-15 -3154 (|#1| |#1| (-642 (-294 |#2|)))) (-15 -3154 (|#1| |#1| (-294 |#2|))) (-15 -3154 (|#1| |#1| |#2| |#2|)) (-15 -3154 (|#1| |#1| (-642 |#2|) (-642 |#2|)))) -((-3154 (($ $ (-642 |#1|) (-642 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-294 |#1|)) 11) (($ $ (-642 (-294 |#1|))) 10))) -(((-309 |#1|) (-140) (-1097)) (T -309)) -((-3154 (*1 *1 *1 *2) (-12 (-5 *2 (-294 *3)) (-4 *1 (-309 *3)) (-4 *3 (-1097)))) (-3154 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-294 *3))) (-4 *1 (-309 *3)) (-4 *3 (-1097))))) -(-13 (-514 |t#1| |t#1|) (-10 -8 (-15 -3154 ($ $ (-294 |t#1|))) (-15 -3154 ($ $ (-642 (-294 |t#1|)))))) -(((-514 |#1| |#1|) . T)) -((-3154 ((|#1| (-1 |#1| (-564)) (-1175 (-407 (-564)))) 25))) -(((-310 |#1|) (-10 -7 (-15 -3154 (|#1| (-1 |#1| (-564)) (-1175 (-407 (-564)))))) (-38 (-407 (-564)))) (T -310)) -((-3154 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-564))) (-5 *4 (-1175 (-407 (-564)))) (-5 *1 (-310 *2)) (-4 *2 (-38 (-407 (-564))))))) -(-10 -7 (-15 -3154 (|#1| (-1 |#1| (-564)) (-1175 (-407 (-564)))))) -((-2856 (((-112) $ $) NIL)) (-4073 (((-564) $) 12)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-1359 (((-1132) $) 9)) (-2390 (((-860) $) 19) (($ (-1178)) NIL) (((-1178) $) NIL)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-311) (-13 (-1080) (-10 -8 (-15 -1359 ((-1132) $)) (-15 -4073 ((-564) $))))) (T -311)) -((-1359 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-311)))) (-4073 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-311))))) -(-13 (-1080) (-10 -8 (-15 -1359 ((-1132) $)) (-15 -4073 ((-564) $)))) -((-2856 (((-112) $ $) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) 7)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) 9))) -(((-312) (-1097)) (T -312)) -NIL -(-1097) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) 60)) (-2905 (((-1248 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-307)))) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-4252 (($ $) NIL)) (-1722 (((-112) $) NIL)) (-3085 (((-3 $ "failed") $ $) NIL)) (-4297 (((-418 (-1169 $)) (-1169 $)) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-907)))) (-1993 (($ $) NIL)) (-3282 (((-418 $) $) NIL)) (-3267 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-907)))) (-2134 (((-112) $ $) NIL)) (-2221 (((-564) $) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-818)))) (-2822 (($) NIL T CONST)) (-2849 (((-3 (-1248 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1173) "failed") $) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-1036 (-1173)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-1036 (-564)))) (((-3 (-564) "failed") $) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-1036 (-564)))) (((-3 (-1247 |#2| |#3| |#4|) "failed") $) 26)) (-1687 (((-1248 |#1| |#2| |#3| |#4|) $) NIL) (((-1173) $) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-1036 (-1173)))) (((-407 (-564)) $) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-1036 (-564)))) (((-564) $) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-1036 (-564)))) (((-1247 |#2| |#3| |#4|) $) NIL)) (-2796 (($ $ $) NIL)) (-3330 (((-687 (-564)) (-687 $)) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-637 (-564)))) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-637 (-564)))) (((-2 (|:| -3544 (-687 (-1248 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1262 (-1248 |#1| |#2| |#3| |#4|)))) (-687 $) (-1262 $)) NIL) (((-687 (-1248 |#1| |#2| |#3| |#4|)) (-687 $)) NIL)) (-2675 (((-3 $ "failed") $) NIL)) (-3235 (($) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-545)))) (-2808 (($ $ $) NIL)) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) NIL)) (-3552 (((-112) $) NIL)) (-3292 (((-112) $) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-818)))) (-1381 (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-884 (-564)))) (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-884 (-379))))) (-3163 (((-112) $) NIL)) (-3408 (($ $) NIL)) (-4120 (((-1248 |#1| |#2| |#3| |#4|) $) 22)) (-4382 (((-3 $ "failed") $) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-1148)))) (-2666 (((-112) $) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-818)))) (-2709 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-3225 (($ $ $) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-848)))) (-2903 (($ $ $) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-848)))) (-2947 (($ (-1 (-1248 |#1| |#2| |#3| |#4|) (-1248 |#1| |#2| |#3| |#4|)) $) NIL)) (-1907 (((-3 (-841 |#2|) "failed") $) 80)) (-2066 (($ $ $) NIL) (($ (-642 $)) NIL)) (-1778 (((-1155) $) NIL)) (-2481 (($ $) NIL)) (-3910 (($) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-1148)) CONST)) (-3999 (((-1117) $) NIL)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2105 (($ $ $) NIL) (($ (-642 $)) NIL)) (-1830 (($ $) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-307)))) (-2795 (((-1248 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-545)))) (-3223 (((-418 (-1169 $)) (-1169 $)) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-907)))) (-2236 (((-418 (-1169 $)) (-1169 $)) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-907)))) (-2254 (((-418 $) $) NIL)) (-1877 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2842 (((-3 $ "failed") $ $) NIL)) (-1483 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-3154 (($ $ (-642 (-1248 |#1| |#2| |#3| |#4|)) (-642 (-1248 |#1| |#2| |#3| |#4|))) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-309 (-1248 |#1| |#2| |#3| |#4|)))) (($ $ (-1248 |#1| |#2| |#3| |#4|) (-1248 |#1| |#2| |#3| |#4|)) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-309 (-1248 |#1| |#2| |#3| |#4|)))) (($ $ (-294 (-1248 |#1| |#2| |#3| |#4|))) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-309 (-1248 |#1| |#2| |#3| |#4|)))) (($ $ (-642 (-294 (-1248 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-309 (-1248 |#1| |#2| |#3| |#4|)))) (($ $ (-642 (-1173)) (-642 (-1248 |#1| |#2| |#3| |#4|))) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-514 (-1173) (-1248 |#1| |#2| |#3| |#4|)))) (($ $ (-1173) (-1248 |#1| |#2| |#3| |#4|)) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-514 (-1173) (-1248 |#1| |#2| |#3| |#4|))))) (-4274 (((-769) $) NIL)) (-4369 (($ $ (-1248 |#1| |#2| |#3| |#4|)) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-286 (-1248 |#1| |#2| |#3| |#4|) (-1248 |#1| |#2| |#3| |#4|))))) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL)) (-2199 (($ $) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-769)) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-1173)) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-898 (-1173)))) (($ $ (-1 (-1248 |#1| |#2| |#3| |#4|) (-1248 |#1| |#2| |#3| |#4|)) (-769)) NIL) (($ $ (-1 (-1248 |#1| |#2| |#3| |#4|) (-1248 |#1| |#2| |#3| |#4|))) NIL)) (-3082 (($ $) NIL)) (-4131 (((-1248 |#1| |#2| |#3| |#4|) $) 19)) (-3003 (((-890 (-564)) $) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-612 (-890 (-564))))) (((-890 (-379)) $) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-612 (-890 (-379))))) (((-536) $) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-612 (-536)))) (((-379) $) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-1020))) (((-225) $) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-1020)))) (-3556 (((-3 (-1262 $) "failed") (-687 $)) NIL (-12 (|has| $ (-145)) (|has| (-1248 |#1| |#2| |#3| |#4|) (-907))))) (-2390 (((-860) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-1248 |#1| |#2| |#3| |#4|)) 30) (($ (-1173)) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-1036 (-1173)))) (($ (-1247 |#2| |#3| |#4|)) 37)) (-3434 (((-3 $ "failed") $) NIL (-2682 (-12 (|has| $ (-145)) (|has| (-1248 |#1| |#2| |#3| |#4|) (-907))) (|has| (-1248 |#1| |#2| |#3| |#4|) (-145))))) (-3348 (((-769)) NIL T CONST)) (-1378 (((-1248 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-545)))) (-1600 (((-112) $ $) NIL)) (-1594 (((-112) $ $) NIL)) (-1630 (($ $) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-818)))) (-2361 (($) NIL T CONST)) (-2371 (($) NIL T CONST)) (-2711 (($ $) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-769)) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-1173)) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-898 (-1173)))) (($ $ (-1 (-1248 |#1| |#2| |#3| |#4|) (-1248 |#1| |#2| |#3| |#4|)) (-769)) NIL) (($ $ (-1 (-1248 |#1| |#2| |#3| |#4|) (-1248 |#1| |#2| |#3| |#4|))) NIL)) (-2881 (((-112) $ $) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-848)))) (-2857 (((-112) $ $) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-848)))) (-2821 (((-112) $ $) NIL)) (-2868 (((-112) $ $) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-848)))) (-2844 (((-112) $ $) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-848)))) (-2943 (($ $ $) 35) (($ (-1248 |#1| |#2| |#3| |#4|) (-1248 |#1| |#2| |#3| |#4|)) 32)) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ (-1248 |#1| |#2| |#3| |#4|) $) 31) (($ $ (-1248 |#1| |#2| |#3| |#4|)) NIL))) -(((-313 |#1| |#2| |#3| |#4|) (-13 (-990 (-1248 |#1| |#2| |#3| |#4|)) (-1036 (-1247 |#2| |#3| |#4|)) (-10 -8 (-15 -1907 ((-3 (-841 |#2|) "failed") $)) (-15 -2390 ($ (-1247 |#2| |#3| |#4|))))) (-13 (-1036 (-564)) (-637 (-564)) (-452)) (-13 (-27) (-1197) (-430 |#1|)) (-1173) |#2|) (T -313)) -((-2390 (*1 *1 *2) (-12 (-5 *2 (-1247 *4 *5 *6)) (-4 *4 (-13 (-27) (-1197) (-430 *3))) (-14 *5 (-1173)) (-14 *6 *4) (-4 *3 (-13 (-1036 (-564)) (-637 (-564)) (-452))) (-5 *1 (-313 *3 *4 *5 *6)))) (-1907 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1036 (-564)) (-637 (-564)) (-452))) (-5 *2 (-841 *4)) (-5 *1 (-313 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1197) (-430 *3))) (-14 *5 (-1173)) (-14 *6 *4)))) -(-13 (-990 (-1248 |#1| |#2| |#3| |#4|)) (-1036 (-1247 |#2| |#3| |#4|)) (-10 -8 (-15 -1907 ((-3 (-841 |#2|) "failed") $)) (-15 -2390 ($ (-1247 |#2| |#3| |#4|))))) -((-2947 (((-316 |#2|) (-1 |#2| |#1|) (-316 |#1|)) 13))) -(((-314 |#1| |#2|) (-10 -7 (-15 -2947 ((-316 |#2|) (-1 |#2| |#1|) (-316 |#1|)))) (-1097) (-1097)) (T -314)) -((-2947 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-316 *5)) (-4 *5 (-1097)) (-4 *6 (-1097)) (-5 *2 (-316 *6)) (-5 *1 (-314 *5 *6))))) -(-10 -7 (-15 -2947 ((-316 |#2|) (-1 |#2| |#1|) (-316 |#1|)))) -((-2446 (((-52) |#2| (-294 |#2|) (-769)) 40) (((-52) |#2| (-294 |#2|)) 32) (((-52) |#2| (-769)) 35) (((-52) |#2|) 33) (((-52) (-1173)) 26)) (-3182 (((-52) |#2| (-294 |#2|) (-407 (-564))) 59) (((-52) |#2| (-294 |#2|)) 56) (((-52) |#2| (-407 (-564))) 58) (((-52) |#2|) 57) (((-52) (-1173)) 55)) (-2466 (((-52) |#2| (-294 |#2|) (-407 (-564))) 54) (((-52) |#2| (-294 |#2|)) 51) (((-52) |#2| (-407 (-564))) 53) (((-52) |#2|) 52) (((-52) (-1173)) 50)) (-2456 (((-52) |#2| (-294 |#2|) (-564)) 47) (((-52) |#2| (-294 |#2|)) 44) (((-52) |#2| (-564)) 46) (((-52) |#2|) 45) (((-52) (-1173)) 43))) -(((-315 |#1| |#2|) (-10 -7 (-15 -2446 ((-52) (-1173))) (-15 -2446 ((-52) |#2|)) (-15 -2446 ((-52) |#2| (-769))) (-15 -2446 ((-52) |#2| (-294 |#2|))) (-15 -2446 ((-52) |#2| (-294 |#2|) (-769))) (-15 -2456 ((-52) (-1173))) (-15 -2456 ((-52) |#2|)) (-15 -2456 ((-52) |#2| (-564))) (-15 -2456 ((-52) |#2| (-294 |#2|))) (-15 -2456 ((-52) |#2| (-294 |#2|) (-564))) (-15 -2466 ((-52) (-1173))) (-15 -2466 ((-52) |#2|)) (-15 -2466 ((-52) |#2| (-407 (-564)))) (-15 -2466 ((-52) |#2| (-294 |#2|))) (-15 -2466 ((-52) |#2| (-294 |#2|) (-407 (-564)))) (-15 -3182 ((-52) (-1173))) (-15 -3182 ((-52) |#2|)) (-15 -3182 ((-52) |#2| (-407 (-564)))) (-15 -3182 ((-52) |#2| (-294 |#2|))) (-15 -3182 ((-52) |#2| (-294 |#2|) (-407 (-564))))) (-13 (-452) (-1036 (-564)) (-637 (-564))) (-13 (-27) (-1197) (-430 |#1|))) (T -315)) -((-3182 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-294 *3)) (-5 *5 (-407 (-564))) (-4 *3 (-13 (-27) (-1197) (-430 *6))) (-4 *6 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *6 *3)))) (-3182 (*1 *2 *3 *4) (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *5))) (-4 *5 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)))) (-3182 (*1 *2 *3 *4) (-12 (-5 *4 (-407 (-564))) (-4 *5 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *5))))) (-3182 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *4))))) (-3182 (*1 *2 *3) (-12 (-5 *3 (-1173)) (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1197) (-430 *4))))) (-2466 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-294 *3)) (-5 *5 (-407 (-564))) (-4 *3 (-13 (-27) (-1197) (-430 *6))) (-4 *6 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *6 *3)))) (-2466 (*1 *2 *3 *4) (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *5))) (-4 *5 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)))) (-2466 (*1 *2 *3 *4) (-12 (-5 *4 (-407 (-564))) (-4 *5 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *5))))) (-2466 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *4))))) (-2466 (*1 *2 *3) (-12 (-5 *3 (-1173)) (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1197) (-430 *4))))) (-2456 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *6))) (-4 *6 (-13 (-452) (-1036 *5) (-637 *5))) (-5 *5 (-564)) (-5 *2 (-52)) (-5 *1 (-315 *6 *3)))) (-2456 (*1 *2 *3 *4) (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *5))) (-4 *5 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)))) (-2456 (*1 *2 *3 *4) (-12 (-5 *4 (-564)) (-4 *5 (-13 (-452) (-1036 *4) (-637 *4))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *5))))) (-2456 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *4))))) (-2456 (*1 *2 *3) (-12 (-5 *3 (-1173)) (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1197) (-430 *4))))) (-2446 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-294 *3)) (-5 *5 (-769)) (-4 *3 (-13 (-27) (-1197) (-430 *6))) (-4 *6 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *6 *3)))) (-2446 (*1 *2 *3 *4) (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *5))) (-4 *5 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)))) (-2446 (*1 *2 *3 *4) (-12 (-5 *4 (-769)) (-4 *5 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *5))))) (-2446 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *4))))) (-2446 (*1 *2 *3) (-12 (-5 *3 (-1173)) (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1197) (-430 *4)))))) -(-10 -7 (-15 -2446 ((-52) (-1173))) (-15 -2446 ((-52) |#2|)) (-15 -2446 ((-52) |#2| (-769))) (-15 -2446 ((-52) |#2| (-294 |#2|))) (-15 -2446 ((-52) |#2| (-294 |#2|) (-769))) (-15 -2456 ((-52) (-1173))) (-15 -2456 ((-52) |#2|)) (-15 -2456 ((-52) |#2| (-564))) (-15 -2456 ((-52) |#2| (-294 |#2|))) (-15 -2456 ((-52) |#2| (-294 |#2|) (-564))) (-15 -2466 ((-52) (-1173))) (-15 -2466 ((-52) |#2|)) (-15 -2466 ((-52) |#2| (-407 (-564)))) (-15 -2466 ((-52) |#2| (-294 |#2|))) (-15 -2466 ((-52) |#2| (-294 |#2|) (-407 (-564)))) (-15 -3182 ((-52) (-1173))) (-15 -3182 ((-52) |#2|)) (-15 -3182 ((-52) |#2| (-407 (-564)))) (-15 -3182 ((-52) |#2| (-294 |#2|))) (-15 -3182 ((-52) |#2| (-294 |#2|) (-407 (-564))))) -((-2856 (((-112) $ $) NIL)) (-2659 (((-642 $) $ (-1173)) NIL (|has| |#1| (-556))) (((-642 $) $) NIL (|has| |#1| (-556))) (((-642 $) (-1169 $) (-1173)) NIL (|has| |#1| (-556))) (((-642 $) (-1169 $)) NIL (|has| |#1| (-556))) (((-642 $) (-950 $)) NIL (|has| |#1| (-556)))) (-1791 (($ $ (-1173)) NIL (|has| |#1| (-556))) (($ $) NIL (|has| |#1| (-556))) (($ (-1169 $) (-1173)) NIL (|has| |#1| (-556))) (($ (-1169 $)) NIL (|has| |#1| (-556))) (($ (-950 $)) NIL (|has| |#1| (-556)))) (-2950 (((-112) $) 27 (-2682 (|has| |#1| (-25)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1047)))))) (-2397 (((-642 (-1173)) $) 368)) (-2223 (((-407 (-1169 $)) $ (-610 $)) NIL (|has| |#1| (-556)))) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-4252 (($ $) NIL (|has| |#1| (-556)))) (-1722 (((-112) $) NIL (|has| |#1| (-556)))) (-2138 (((-642 (-610 $)) $) NIL)) (-3087 (($ $) 171 (|has| |#1| (-556)))) (-2958 (($ $) 147 (|has| |#1| (-556)))) (-3581 (($ $ (-1089 $)) 232 (|has| |#1| (-556))) (($ $ (-1173)) 228 (|has| |#1| (-556)))) (-3085 (((-3 $ "failed") $ $) NIL (-2682 (|has| |#1| (-21)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1047)))))) (-1891 (($ $ (-294 $)) NIL) (($ $ (-642 (-294 $))) 386) (($ $ (-642 (-610 $)) (-642 $)) 430)) (-4297 (((-418 (-1169 $)) (-1169 $)) 308 (-12 (|has| |#1| (-452)) (|has| |#1| (-556))))) (-1993 (($ $) NIL (|has| |#1| (-556)))) (-3282 (((-418 $) $) NIL (|has| |#1| (-556)))) (-2264 (($ $) NIL (|has| |#1| (-556)))) (-2134 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3067 (($ $) 167 (|has| |#1| (-556)))) (-2933 (($ $) 143 (|has| |#1| (-556)))) (-3787 (($ $ (-564)) 73 (|has| |#1| (-556)))) (-3110 (($ $) 175 (|has| |#1| (-556)))) (-2981 (($ $) 151 (|has| |#1| (-556)))) (-2822 (($) NIL (-2682 (|has| |#1| (-25)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1047))) (|has| |#1| (-1109))) CONST)) (-3008 (((-642 $) $ (-1173)) NIL (|has| |#1| (-556))) (((-642 $) $) NIL (|has| |#1| (-556))) (((-642 $) (-1169 $) (-1173)) NIL (|has| |#1| (-556))) (((-642 $) (-1169 $)) NIL (|has| |#1| (-556))) (((-642 $) (-950 $)) NIL (|has| |#1| (-556)))) (-2619 (($ $ (-1173)) NIL (|has| |#1| (-556))) (($ $) NIL (|has| |#1| (-556))) (($ (-1169 $) (-1173)) 134 (|has| |#1| (-556))) (($ (-1169 $)) NIL (|has| |#1| (-556))) (($ (-950 $)) NIL (|has| |#1| (-556)))) (-2849 (((-3 (-610 $) "failed") $) 18) (((-3 (-1173) "failed") $) NIL) (((-3 |#1| "failed") $) 441) (((-3 (-48) "failed") $) 336 (-12 (|has| |#1| (-556)) (|has| |#1| (-1036 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1036 (-564)))) (((-3 (-407 (-950 |#1|)) "failed") $) NIL (|has| |#1| (-556))) (((-3 (-950 |#1|) "failed") $) NIL (|has| |#1| (-1047))) (((-3 (-407 (-564)) "failed") $) 46 (-2682 (-12 (|has| |#1| (-556)) (|has| |#1| (-1036 (-564)))) (|has| |#1| (-1036 (-407 (-564))))))) (-1687 (((-610 $) $) 12) (((-1173) $) NIL) ((|#1| $) 421) (((-48) $) NIL (-12 (|has| |#1| (-556)) (|has| |#1| (-1036 (-564))))) (((-564) $) NIL (|has| |#1| (-1036 (-564)))) (((-407 (-950 |#1|)) $) NIL (|has| |#1| (-556))) (((-950 |#1|) $) NIL (|has| |#1| (-1047))) (((-407 (-564)) $) 319 (-2682 (-12 (|has| |#1| (-556)) (|has| |#1| (-1036 (-564)))) (|has| |#1| (-1036 (-407 (-564))))))) (-2796 (($ $ $) NIL (|has| |#1| (-556)))) (-3330 (((-2 (|:| -3544 (-687 |#1|)) (|:| |vec| (-1262 |#1|))) (-687 $) (-1262 $)) 125 (|has| |#1| (-1047))) (((-687 |#1|) (-687 $)) 115 (|has| |#1| (-1047))) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1047)))) (((-687 (-564)) (-687 $)) NIL (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1047))))) (-3741 (($ $) 96 (|has| |#1| (-556)))) (-2675 (((-3 $ "failed") $) NIL (-2682 (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1047))) (|has| |#1| (-1109))))) (-2808 (($ $ $) NIL (|has| |#1| (-556)))) (-3506 (($ $ (-1089 $)) 236 (|has| |#1| (-556))) (($ $ (-1173)) 234 (|has| |#1| (-556)))) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) NIL (|has| |#1| (-556)))) (-3552 (((-112) $) NIL (|has| |#1| (-556)))) (-3042 (($ $ $) 202 (|has| |#1| (-556)))) (-2833 (($) 137 (|has| |#1| (-556)))) (-2641 (($ $ $) 222 (|has| |#1| (-556)))) (-1381 (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) 392 (|has| |#1| (-884 (-564)))) (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) 399 (|has| |#1| (-884 (-379))))) (-2998 (($ $) NIL) (($ (-642 $)) NIL)) (-3986 (((-642 (-114)) $) NIL)) (-3898 (((-114) (-114)) 276)) (-3163 (((-112) $) 25 (-2682 (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1047))) (|has| |#1| (-1109))))) (-2829 (((-112) $) NIL (|has| $ (-1036 (-564))))) (-3408 (($ $) 72 (|has| |#1| (-1047)))) (-4120 (((-1122 |#1| (-610 $)) $) 91 (|has| |#1| (-1047)))) (-1383 (((-112) $) 62 (|has| |#1| (-556)))) (-2024 (($ $ (-564)) NIL (|has| |#1| (-556)))) (-2709 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#1| (-556)))) (-2744 (((-1169 $) (-610 $)) 277 (|has| $ (-1047)))) (-2947 (($ (-1 $ $) (-610 $)) 426)) (-1543 (((-3 (-610 $) "failed") $) NIL)) (-3576 (($ $) 141 (|has| |#1| (-556)))) (-3208 (($ $) 247 (|has| |#1| (-556)))) (-2066 (($ (-642 $)) NIL (|has| |#1| (-556))) (($ $ $) NIL (|has| |#1| (-556)))) (-1778 (((-1155) $) NIL)) (-2209 (((-642 (-610 $)) $) 49)) (-2879 (($ (-114) $) NIL) (($ (-114) (-642 $)) 431)) (-3664 (((-3 (-642 $) "failed") $) NIL (|has| |#1| (-1109)))) (-1459 (((-3 (-2 (|:| |val| $) (|:| -2817 (-564))) "failed") $) NIL (|has| |#1| (-1047)))) (-4315 (((-3 (-642 $) "failed") $) 436 (|has| |#1| (-25)))) (-1558 (((-3 (-2 (|:| -2968 (-564)) (|:| |var| (-610 $))) "failed") $) 440 (|has| |#1| (-25)))) (-3177 (((-3 (-2 (|:| |var| (-610 $)) (|:| -2817 (-564))) "failed") $) NIL (|has| |#1| (-1109))) (((-3 (-2 (|:| |var| (-610 $)) (|:| -2817 (-564))) "failed") $ (-114)) NIL (|has| |#1| (-1047))) (((-3 (-2 (|:| |var| (-610 $)) (|:| -2817 (-564))) "failed") $ (-1173)) NIL (|has| |#1| (-1047)))) (-1462 (((-112) $ (-114)) NIL) (((-112) $ (-1173)) 51)) (-2481 (($ $) NIL (-2682 (|has| |#1| (-473)) (|has| |#1| (-556))))) (-2696 (($ $ (-1173)) 251 (|has| |#1| (-556))) (($ $ (-1089 $)) 253 (|has| |#1| (-556)))) (-2983 (((-769) $) NIL)) (-3999 (((-1117) $) NIL)) (-2491 (((-112) $) 43)) (-2500 ((|#1| $) NIL)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) 301 (|has| |#1| (-556)))) (-2105 (($ (-642 $)) NIL (|has| |#1| (-556))) (($ $ $) NIL (|has| |#1| (-556)))) (-2908 (((-112) $ $) NIL) (((-112) $ (-1173)) NIL)) (-1317 (($ $ (-1173)) 226 (|has| |#1| (-556))) (($ $) 224 (|has| |#1| (-556)))) (-1420 (($ $) 218 (|has| |#1| (-556)))) (-2236 (((-418 (-1169 $)) (-1169 $)) 306 (-12 (|has| |#1| (-452)) (|has| |#1| (-556))))) (-2254 (((-418 $) $) NIL (|has| |#1| (-556)))) (-1877 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-556))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL (|has| |#1| (-556)))) (-2842 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-1483 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#1| (-556)))) (-3466 (($ $) 139 (|has| |#1| (-556)))) (-2211 (((-112) $) NIL (|has| $ (-1036 (-564))))) (-3154 (($ $ (-610 $) $) NIL) (($ $ (-642 (-610 $)) (-642 $)) 425) (($ $ (-642 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-642 $) (-642 $)) NIL) (($ $ (-642 (-1173)) (-642 (-1 $ $))) NIL) (($ $ (-642 (-1173)) (-642 (-1 $ (-642 $)))) NIL) (($ $ (-1173) (-1 $ (-642 $))) NIL) (($ $ (-1173) (-1 $ $)) NIL) (($ $ (-642 (-114)) (-642 (-1 $ $))) 379) (($ $ (-642 (-114)) (-642 (-1 $ (-642 $)))) NIL) (($ $ (-114) (-1 $ (-642 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1173)) NIL (|has| |#1| (-612 (-536)))) (($ $ (-642 (-1173))) NIL (|has| |#1| (-612 (-536)))) (($ $) NIL (|has| |#1| (-612 (-536)))) (($ $ (-114) $ (-1173)) 366 (|has| |#1| (-612 (-536)))) (($ $ (-642 (-114)) (-642 $) (-1173)) 365 (|has| |#1| (-612 (-536)))) (($ $ (-642 (-1173)) (-642 (-769)) (-642 (-1 $ $))) NIL (|has| |#1| (-1047))) (($ $ (-642 (-1173)) (-642 (-769)) (-642 (-1 $ (-642 $)))) NIL (|has| |#1| (-1047))) (($ $ (-1173) (-769) (-1 $ (-642 $))) NIL (|has| |#1| (-1047))) (($ $ (-1173) (-769) (-1 $ $)) NIL (|has| |#1| (-1047)))) (-4274 (((-769) $) NIL (|has| |#1| (-556)))) (-2885 (($ $) 239 (|has| |#1| (-556)))) (-4369 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-642 $)) NIL)) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL (|has| |#1| (-556)))) (-4377 (($ $) NIL) (($ $ $) NIL)) (-2920 (($ $) 249 (|has| |#1| (-556)))) (-3745 (($ $) 200 (|has| |#1| (-556)))) (-2199 (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#1| (-1047))) (($ $ (-1173) (-769)) NIL (|has| |#1| (-1047))) (($ $ (-642 (-1173))) NIL (|has| |#1| (-1047))) (($ $ (-1173)) NIL (|has| |#1| (-1047)))) (-3082 (($ $) 74 (|has| |#1| (-556)))) (-4131 (((-1122 |#1| (-610 $)) $) 93 (|has| |#1| (-556)))) (-1361 (($ $) 317 (|has| $ (-1047)))) (-3120 (($ $) 177 (|has| |#1| (-556)))) (-2992 (($ $) 153 (|has| |#1| (-556)))) (-3098 (($ $) 173 (|has| |#1| (-556)))) (-2971 (($ $) 149 (|has| |#1| (-556)))) (-3077 (($ $) 169 (|has| |#1| (-556)))) (-2946 (($ $) 145 (|has| |#1| (-556)))) (-3003 (((-890 (-564)) $) NIL (|has| |#1| (-612 (-890 (-564))))) (((-890 (-379)) $) NIL (|has| |#1| (-612 (-890 (-379))))) (($ (-418 $)) NIL (|has| |#1| (-556))) (((-536) $) 363 (|has| |#1| (-612 (-536))))) (-1736 (($ $ $) NIL (|has| |#1| (-473)))) (-2402 (($ $ $) NIL (|has| |#1| (-473)))) (-2390 (((-860) $) 424) (($ (-610 $)) 415) (($ (-1173)) 381) (($ |#1|) 337) (($ $) NIL (|has| |#1| (-556))) (($ (-48)) 312 (-12 (|has| |#1| (-556)) (|has| |#1| (-1036 (-564))))) (($ (-1122 |#1| (-610 $))) 95 (|has| |#1| (-1047))) (($ (-407 |#1|)) NIL (|has| |#1| (-556))) (($ (-950 (-407 |#1|))) NIL (|has| |#1| (-556))) (($ (-407 (-950 (-407 |#1|)))) NIL (|has| |#1| (-556))) (($ (-407 (-950 |#1|))) NIL (|has| |#1| (-556))) (($ (-950 |#1|)) NIL (|has| |#1| (-1047))) (($ (-407 (-564))) NIL (-2682 (|has| |#1| (-556)) (|has| |#1| (-1036 (-407 (-564)))))) (($ (-564)) 34 (-2682 (|has| |#1| (-1036 (-564))) (|has| |#1| (-1047))))) (-3434 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3348 (((-769)) NIL (|has| |#1| (-1047)) CONST)) (-1899 (($ $) NIL) (($ (-642 $)) NIL)) (-4271 (($ $ $) 220 (|has| |#1| (-556)))) (-3679 (($ $ $) 206 (|has| |#1| (-556)))) (-3144 (($ $ $) 210 (|has| |#1| (-556)))) (-2088 (($ $ $) 204 (|has| |#1| (-556)))) (-4048 (($ $ $) 208 (|has| |#1| (-556)))) (-4318 (((-112) (-114)) 10)) (-1600 (((-112) $ $) 86)) (-3155 (($ $) 183 (|has| |#1| (-556)))) (-3025 (($ $) 159 (|has| |#1| (-556)))) (-1594 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3131 (($ $) 179 (|has| |#1| (-556)))) (-3002 (($ $) 155 (|has| |#1| (-556)))) (-3176 (($ $) 187 (|has| |#1| (-556)))) (-3047 (($ $) 163 (|has| |#1| (-556)))) (-3210 (($ (-1173) $) NIL) (($ (-1173) $ $) NIL) (($ (-1173) $ $ $) NIL) (($ (-1173) $ $ $ $) NIL) (($ (-1173) (-642 $)) NIL)) (-3512 (($ $) 214 (|has| |#1| (-556)))) (-2123 (($ $) 212 (|has| |#1| (-556)))) (-3165 (($ $) 189 (|has| |#1| (-556)))) (-3058 (($ $) 165 (|has| |#1| (-556)))) (-3168 (($ $) 185 (|has| |#1| (-556)))) (-3035 (($ $) 161 (|has| |#1| (-556)))) (-3142 (($ $) 181 (|has| |#1| (-556)))) (-3014 (($ $) 157 (|has| |#1| (-556)))) (-1630 (($ $) 192 (|has| |#1| (-556)))) (-2361 (($) 21 (-2682 (|has| |#1| (-25)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1047)))) CONST)) (-2899 (($ $) 243 (|has| |#1| (-556)))) (-2371 (($) 23 (-2682 (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1047))) (|has| |#1| (-1109))) CONST)) (-3375 (($ $) 194 (|has| |#1| (-556))) (($ $ $) 196 (|has| |#1| (-556)))) (-1633 (($ $) 241 (|has| |#1| (-556)))) (-2711 (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#1| (-1047))) (($ $ (-1173) (-769)) NIL (|has| |#1| (-1047))) (($ $ (-642 (-1173))) NIL (|has| |#1| (-1047))) (($ $ (-1173)) NIL (|has| |#1| (-1047)))) (-2128 (($ $) 245 (|has| |#1| (-556)))) (-3197 (($ $ $) 198 (|has| |#1| (-556)))) (-2821 (((-112) $ $) 88)) (-2943 (($ (-1122 |#1| (-610 $)) (-1122 |#1| (-610 $))) 106 (|has| |#1| (-556))) (($ $ $) 42 (-2682 (|has| |#1| (-473)) (|has| |#1| (-556))))) (-2930 (($ $ $) 40 (-2682 (|has| |#1| (-21)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1047))))) (($ $) 29 (-2682 (|has| |#1| (-21)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1047)))))) (-2917 (($ $ $) 38 (-2682 (|has| |#1| (-25)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1047)))))) (** (($ $ $) 64 (|has| |#1| (-556))) (($ $ (-407 (-564))) 314 (|has| |#1| (-556))) (($ $ (-564)) 80 (-2682 (|has| |#1| (-473)) (|has| |#1| (-556)))) (($ $ (-769)) 75 (-2682 (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1047))) (|has| |#1| (-1109)))) (($ $ (-919)) 84 (-2682 (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1047))) (|has| |#1| (-1109))))) (* (($ (-407 (-564)) $) NIL (|has| |#1| (-556))) (($ $ (-407 (-564))) NIL (|has| |#1| (-556))) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))) (($ $ $) 36 (-2682 (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1047))) (|has| |#1| (-1109)))) (($ (-564) $) 32 (-2682 (|has| |#1| (-21)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1047))))) (($ (-769) $) NIL (-2682 (|has| |#1| (-25)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1047))))) (($ (-919) $) NIL (-2682 (|has| |#1| (-25)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1047))))))) -(((-316 |#1|) (-13 (-430 |#1|) (-10 -8 (IF (|has| |#1| (-556)) (PROGN (-6 (-29 |#1|)) (-6 (-1197)) (-6 (-160)) (-6 (-627)) (-6 (-1136)) (-15 -3741 ($ $)) (-15 -1383 ((-112) $)) (-15 -3787 ($ $ (-564))) (IF (|has| |#1| (-452)) (PROGN (-15 -2236 ((-418 (-1169 $)) (-1169 $))) (-15 -4297 ((-418 (-1169 $)) (-1169 $)))) |%noBranch|) (IF (|has| |#1| (-1036 (-564))) (-6 (-1036 (-48))) |%noBranch|)) |%noBranch|))) (-1097)) (T -316)) -((-3741 (*1 *1 *1) (-12 (-5 *1 (-316 *2)) (-4 *2 (-556)) (-4 *2 (-1097)))) (-1383 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-316 *3)) (-4 *3 (-556)) (-4 *3 (-1097)))) (-3787 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-316 *3)) (-4 *3 (-556)) (-4 *3 (-1097)))) (-2236 (*1 *2 *3) (-12 (-5 *2 (-418 (-1169 *1))) (-5 *1 (-316 *4)) (-5 *3 (-1169 *1)) (-4 *4 (-452)) (-4 *4 (-556)) (-4 *4 (-1097)))) (-4297 (*1 *2 *3) (-12 (-5 *2 (-418 (-1169 *1))) (-5 *1 (-316 *4)) (-5 *3 (-1169 *1)) (-4 *4 (-452)) (-4 *4 (-556)) (-4 *4 (-1097))))) -(-13 (-430 |#1|) (-10 -8 (IF (|has| |#1| (-556)) (PROGN (-6 (-29 |#1|)) (-6 (-1197)) (-6 (-160)) (-6 (-627)) (-6 (-1136)) (-15 -3741 ($ $)) (-15 -1383 ((-112) $)) (-15 -3787 ($ $ (-564))) (IF (|has| |#1| (-452)) (PROGN (-15 -2236 ((-418 (-1169 $)) (-1169 $))) (-15 -4297 ((-418 (-1169 $)) (-1169 $)))) |%noBranch|) (IF (|has| |#1| (-1036 (-564))) (-6 (-1036 (-48))) |%noBranch|)) |%noBranch|))) -((-3715 (((-52) |#2| (-114) (-294 |#2|) (-642 |#2|)) 89) (((-52) |#2| (-114) (-294 |#2|) (-294 |#2|)) 85) (((-52) |#2| (-114) (-294 |#2|) |#2|) 87) (((-52) (-294 |#2|) (-114) (-294 |#2|) |#2|) 88) (((-52) (-642 |#2|) (-642 (-114)) (-294 |#2|) (-642 (-294 |#2|))) 81) (((-52) (-642 |#2|) (-642 (-114)) (-294 |#2|) (-642 |#2|)) 83) (((-52) (-642 (-294 |#2|)) (-642 (-114)) (-294 |#2|) (-642 |#2|)) 84) (((-52) (-642 (-294 |#2|)) (-642 (-114)) (-294 |#2|) (-642 (-294 |#2|))) 82) (((-52) (-294 |#2|) (-114) (-294 |#2|) (-642 |#2|)) 90) (((-52) (-294 |#2|) (-114) (-294 |#2|) (-294 |#2|)) 86))) -(((-317 |#1| |#2|) (-10 -7 (-15 -3715 ((-52) (-294 |#2|) (-114) (-294 |#2|) (-294 |#2|))) (-15 -3715 ((-52) (-294 |#2|) (-114) (-294 |#2|) (-642 |#2|))) (-15 -3715 ((-52) (-642 (-294 |#2|)) (-642 (-114)) (-294 |#2|) (-642 (-294 |#2|)))) (-15 -3715 ((-52) (-642 (-294 |#2|)) (-642 (-114)) (-294 |#2|) (-642 |#2|))) (-15 -3715 ((-52) (-642 |#2|) (-642 (-114)) (-294 |#2|) (-642 |#2|))) (-15 -3715 ((-52) (-642 |#2|) (-642 (-114)) (-294 |#2|) (-642 (-294 |#2|)))) (-15 -3715 ((-52) (-294 |#2|) (-114) (-294 |#2|) |#2|)) (-15 -3715 ((-52) |#2| (-114) (-294 |#2|) |#2|)) (-15 -3715 ((-52) |#2| (-114) (-294 |#2|) (-294 |#2|))) (-15 -3715 ((-52) |#2| (-114) (-294 |#2|) (-642 |#2|)))) (-13 (-556) (-612 (-536))) (-430 |#1|)) (T -317)) -((-3715 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-114)) (-5 *5 (-294 *3)) (-5 *6 (-642 *3)) (-4 *3 (-430 *7)) (-4 *7 (-13 (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *7 *3)))) (-3715 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-114)) (-5 *5 (-294 *3)) (-4 *3 (-430 *6)) (-4 *6 (-13 (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *6 *3)))) (-3715 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-114)) (-5 *5 (-294 *3)) (-4 *3 (-430 *6)) (-4 *6 (-13 (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *6 *3)))) (-3715 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-294 *5)) (-5 *4 (-114)) (-4 *5 (-430 *6)) (-4 *6 (-13 (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *6 *5)))) (-3715 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-642 *8)) (-5 *4 (-642 (-114))) (-5 *6 (-642 (-294 *8))) (-4 *8 (-430 *7)) (-5 *5 (-294 *8)) (-4 *7 (-13 (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *7 *8)))) (-3715 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-642 *7)) (-5 *4 (-642 (-114))) (-5 *5 (-294 *7)) (-4 *7 (-430 *6)) (-4 *6 (-13 (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *6 *7)))) (-3715 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-642 (-294 *8))) (-5 *4 (-642 (-114))) (-5 *5 (-294 *8)) (-5 *6 (-642 *8)) (-4 *8 (-430 *7)) (-4 *7 (-13 (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *7 *8)))) (-3715 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-642 (-294 *7))) (-5 *4 (-642 (-114))) (-5 *5 (-294 *7)) (-4 *7 (-430 *6)) (-4 *6 (-13 (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *6 *7)))) (-3715 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-294 *7)) (-5 *4 (-114)) (-5 *5 (-642 *7)) (-4 *7 (-430 *6)) (-4 *6 (-13 (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *6 *7)))) (-3715 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-294 *6)) (-5 *4 (-114)) (-4 *6 (-430 *5)) (-4 *5 (-13 (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *5 *6))))) -(-10 -7 (-15 -3715 ((-52) (-294 |#2|) (-114) (-294 |#2|) (-294 |#2|))) (-15 -3715 ((-52) (-294 |#2|) (-114) (-294 |#2|) (-642 |#2|))) (-15 -3715 ((-52) (-642 (-294 |#2|)) (-642 (-114)) (-294 |#2|) (-642 (-294 |#2|)))) (-15 -3715 ((-52) (-642 (-294 |#2|)) (-642 (-114)) (-294 |#2|) (-642 |#2|))) (-15 -3715 ((-52) (-642 |#2|) (-642 (-114)) (-294 |#2|) (-642 |#2|))) (-15 -3715 ((-52) (-642 |#2|) (-642 (-114)) (-294 |#2|) (-642 (-294 |#2|)))) (-15 -3715 ((-52) (-294 |#2|) (-114) (-294 |#2|) |#2|)) (-15 -3715 ((-52) |#2| (-114) (-294 |#2|) |#2|)) (-15 -3715 ((-52) |#2| (-114) (-294 |#2|) (-294 |#2|))) (-15 -3715 ((-52) |#2| (-114) (-294 |#2|) (-642 |#2|)))) -((-3742 (((-1207 (-924)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1091 (-225)) (-225) (-564) (-1155)) 67) (((-1207 (-924)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1091 (-225)) (-225) (-564)) 68) (((-1207 (-924)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1091 (-225)) (-1 (-225) (-225)) (-564) (-1155)) 64) (((-1207 (-924)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1091 (-225)) (-1 (-225) (-225)) (-564)) 65)) (-2490 (((-1 (-225) (-225)) (-225)) 66))) -(((-318) (-10 -7 (-15 -2490 ((-1 (-225) (-225)) (-225))) (-15 -3742 ((-1207 (-924)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1091 (-225)) (-1 (-225) (-225)) (-564))) (-15 -3742 ((-1207 (-924)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1091 (-225)) (-1 (-225) (-225)) (-564) (-1155))) (-15 -3742 ((-1207 (-924)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1091 (-225)) (-225) (-564))) (-15 -3742 ((-1207 (-924)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1091 (-225)) (-225) (-564) (-1155))))) (T -318)) -((-3742 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1091 (-225))) (-5 *6 (-225)) (-5 *7 (-564)) (-5 *8 (-1155)) (-5 *2 (-1207 (-924))) (-5 *1 (-318)))) (-3742 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1091 (-225))) (-5 *6 (-225)) (-5 *7 (-564)) (-5 *2 (-1207 (-924))) (-5 *1 (-318)))) (-3742 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1091 (-225))) (-5 *6 (-564)) (-5 *7 (-1155)) (-5 *2 (-1207 (-924))) (-5 *1 (-318)))) (-3742 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1091 (-225))) (-5 *6 (-564)) (-5 *2 (-1207 (-924))) (-5 *1 (-318)))) (-2490 (*1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-318)) (-5 *3 (-225))))) -(-10 -7 (-15 -2490 ((-1 (-225) (-225)) (-225))) (-15 -3742 ((-1207 (-924)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1091 (-225)) (-1 (-225) (-225)) (-564))) (-15 -3742 ((-1207 (-924)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1091 (-225)) (-1 (-225) (-225)) (-564) (-1155))) (-15 -3742 ((-1207 (-924)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1091 (-225)) (-225) (-564))) (-15 -3742 ((-1207 (-924)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1091 (-225)) (-225) (-564) (-1155)))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) 26)) (-2397 (((-642 (-1079)) $) NIL)) (-1341 (((-1173) $) NIL)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-4252 (($ $) NIL (|has| |#1| (-556)))) (-1722 (((-112) $) NIL (|has| |#1| (-556)))) (-2180 (($ $ (-407 (-564))) NIL) (($ $ (-407 (-564)) (-407 (-564))) NIL)) (-4077 (((-1153 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|))) $) 20)) (-3087 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2958 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3085 (((-3 $ "failed") $ $) NIL)) (-1993 (($ $) NIL (|has| |#1| (-363)))) (-3282 (((-418 $) $) NIL (|has| |#1| (-363)))) (-2264 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2134 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3067 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2933 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3182 (($ (-769) (-1153 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|)))) NIL)) (-3110 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2981 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2822 (($) NIL T CONST)) (-2796 (($ $ $) NIL (|has| |#1| (-363)))) (-3459 (($ $) 36)) (-2675 (((-3 $ "failed") $) NIL)) (-2808 (($ $ $) NIL (|has| |#1| (-363)))) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) NIL (|has| |#1| (-363)))) (-3552 (((-112) $) NIL (|has| |#1| (-363)))) (-2210 (((-112) $) NIL)) (-2833 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2408 (((-407 (-564)) $) NIL) (((-407 (-564)) $ (-407 (-564))) 16)) (-3163 (((-112) $) NIL)) (-2024 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2157 (($ $ (-919)) NIL) (($ $ (-407 (-564))) NIL)) (-2709 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#1| (-363)))) (-3471 (((-112) $) NIL)) (-2374 (($ |#1| (-407 (-564))) NIL) (($ $ (-1079) (-407 (-564))) NIL) (($ $ (-642 (-1079)) (-642 (-407 (-564)))) NIL)) (-3225 (($ $ $) NIL)) (-2903 (($ $ $) NIL)) (-2947 (($ (-1 |#1| |#1|) $) NIL)) (-3576 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2510 (($ $) NIL)) (-2523 ((|#1| $) NIL)) (-2066 (($ (-642 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-1778 (((-1155) $) NIL)) (-2481 (($ $) NIL (|has| |#1| (-363)))) (-3703 (($ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1173)) NIL (-2682 (-12 (|has| |#1| (-15 -3703 (|#1| |#1| (-1173)))) (|has| |#1| (-15 -2397 ((-642 (-1173)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-957)) (|has| |#1| (-1197)))))) (-3999 (((-1117) $) NIL)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) NIL (|has| |#1| (-363)))) (-2105 (($ (-642 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2254 (((-418 $) $) NIL (|has| |#1| (-363)))) (-1877 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL (|has| |#1| (-363)))) (-2137 (($ $ (-407 (-564))) NIL)) (-2842 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-1483 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#1| (-363)))) (-3661 (((-407 (-564)) $) 17)) (-1858 (($ (-1247 |#1| |#2| |#3|)) 11)) (-2817 (((-1247 |#1| |#2| |#3|) $) 12)) (-3466 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3154 (((-1153 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))))) (-4274 (((-769) $) NIL (|has| |#1| (-363)))) (-4369 ((|#1| $ (-407 (-564))) NIL) (($ $ $) NIL (|has| (-407 (-564)) (-1109)))) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL (|has| |#1| (-363)))) (-2199 (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-1173) (-769)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-642 (-1173))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-1173)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-769)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-3252 (((-407 (-564)) $) NIL)) (-3120 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2992 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3098 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2971 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3077 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2946 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4189 (($ $) 10)) (-2390 (((-860) $) 42) (($ (-564)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556)))) (-3005 ((|#1| $ (-407 (-564))) 34)) (-3434 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3348 (((-769)) NIL T CONST)) (-2245 ((|#1| $) NIL)) (-1600 (((-112) $ $) NIL)) (-3155 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3025 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1594 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3131 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3002 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3176 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3047 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3560 ((|#1| $ (-407 (-564))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))) (|has| |#1| (-15 -2390 (|#1| (-1173))))))) (-3165 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3058 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3168 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3035 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3142 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3014 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2361 (($) NIL T CONST)) (-2371 (($) NIL T CONST)) (-2711 (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-1173) (-769)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-642 (-1173))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-1173)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-769)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-2881 (((-112) $ $) NIL)) (-2857 (((-112) $ $) NIL)) (-2821 (((-112) $ $) 28)) (-2868 (((-112) $ $) NIL)) (-2844 (((-112) $ $) 37)) (-2943 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))))) -(((-319 |#1| |#2| |#3|) (-13 (-1243 |#1|) (-790) (-10 -8 (-15 -1858 ($ (-1247 |#1| |#2| |#3|))) (-15 -2817 ((-1247 |#1| |#2| |#3|) $)) (-15 -3661 ((-407 (-564)) $)))) (-363) (-1173) |#1|) (T -319)) -((-1858 (*1 *1 *2) (-12 (-5 *2 (-1247 *3 *4 *5)) (-4 *3 (-363)) (-14 *4 (-1173)) (-14 *5 *3) (-5 *1 (-319 *3 *4 *5)))) (-2817 (*1 *2 *1) (-12 (-5 *2 (-1247 *3 *4 *5)) (-5 *1 (-319 *3 *4 *5)) (-4 *3 (-363)) (-14 *4 (-1173)) (-14 *5 *3))) (-3661 (*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-319 *3 *4 *5)) (-4 *3 (-363)) (-14 *4 (-1173)) (-14 *5 *3)))) -(-13 (-1243 |#1|) (-790) (-10 -8 (-15 -1858 ($ (-1247 |#1| |#2| |#3|))) (-15 -2817 ((-1247 |#1| |#2| |#3|) $)) (-15 -3661 ((-407 (-564)) $)))) -((-2024 (((-2 (|:| -2817 (-769)) (|:| -2968 |#1|) (|:| |radicand| (-642 |#1|))) (-418 |#1|) (-769)) 35)) (-3576 (((-642 (-2 (|:| -2968 (-769)) (|:| |logand| |#1|))) (-418 |#1|)) 40))) -(((-320 |#1|) (-10 -7 (-15 -2024 ((-2 (|:| -2817 (-769)) (|:| -2968 |#1|) (|:| |radicand| (-642 |#1|))) (-418 |#1|) (-769))) (-15 -3576 ((-642 (-2 (|:| -2968 (-769)) (|:| |logand| |#1|))) (-418 |#1|)))) (-556)) (T -320)) -((-3576 (*1 *2 *3) (-12 (-5 *3 (-418 *4)) (-4 *4 (-556)) (-5 *2 (-642 (-2 (|:| -2968 (-769)) (|:| |logand| *4)))) (-5 *1 (-320 *4)))) (-2024 (*1 *2 *3 *4) (-12 (-5 *3 (-418 *5)) (-4 *5 (-556)) (-5 *2 (-2 (|:| -2817 (-769)) (|:| -2968 *5) (|:| |radicand| (-642 *5)))) (-5 *1 (-320 *5)) (-5 *4 (-769))))) -(-10 -7 (-15 -2024 ((-2 (|:| -2817 (-769)) (|:| -2968 |#1|) (|:| |radicand| (-642 |#1|))) (-418 |#1|) (-769))) (-15 -3576 ((-642 (-2 (|:| -2968 (-769)) (|:| |logand| |#1|))) (-418 |#1|)))) -((-2397 (((-642 |#2|) (-1169 |#4|)) 44)) (-4239 ((|#3| (-564)) 47)) (-2344 (((-1169 |#4|) (-1169 |#3|)) 30)) (-3445 (((-1169 |#4|) (-1169 |#4|) (-564)) 66)) (-4149 (((-1169 |#3|) (-1169 |#4|)) 21)) (-3252 (((-642 (-769)) (-1169 |#4|) (-642 |#2|)) 41)) (-4195 (((-1169 |#3|) (-1169 |#4|) (-642 |#2|) (-642 |#3|)) 35))) -(((-321 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4195 ((-1169 |#3|) (-1169 |#4|) (-642 |#2|) (-642 |#3|))) (-15 -3252 ((-642 (-769)) (-1169 |#4|) (-642 |#2|))) (-15 -2397 ((-642 |#2|) (-1169 |#4|))) (-15 -4149 ((-1169 |#3|) (-1169 |#4|))) (-15 -2344 ((-1169 |#4|) (-1169 |#3|))) (-15 -3445 ((-1169 |#4|) (-1169 |#4|) (-564))) (-15 -4239 (|#3| (-564)))) (-791) (-848) (-1047) (-947 |#3| |#1| |#2|)) (T -321)) -((-4239 (*1 *2 *3) (-12 (-5 *3 (-564)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *2 (-1047)) (-5 *1 (-321 *4 *5 *2 *6)) (-4 *6 (-947 *2 *4 *5)))) (-3445 (*1 *2 *2 *3) (-12 (-5 *2 (-1169 *7)) (-5 *3 (-564)) (-4 *7 (-947 *6 *4 *5)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1047)) (-5 *1 (-321 *4 *5 *6 *7)))) (-2344 (*1 *2 *3) (-12 (-5 *3 (-1169 *6)) (-4 *6 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-1169 *7)) (-5 *1 (-321 *4 *5 *6 *7)) (-4 *7 (-947 *6 *4 *5)))) (-4149 (*1 *2 *3) (-12 (-5 *3 (-1169 *7)) (-4 *7 (-947 *6 *4 *5)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1047)) (-5 *2 (-1169 *6)) (-5 *1 (-321 *4 *5 *6 *7)))) (-2397 (*1 *2 *3) (-12 (-5 *3 (-1169 *7)) (-4 *7 (-947 *6 *4 *5)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1047)) (-5 *2 (-642 *5)) (-5 *1 (-321 *4 *5 *6 *7)))) (-3252 (*1 *2 *3 *4) (-12 (-5 *3 (-1169 *8)) (-5 *4 (-642 *6)) (-4 *6 (-848)) (-4 *8 (-947 *7 *5 *6)) (-4 *5 (-791)) (-4 *7 (-1047)) (-5 *2 (-642 (-769))) (-5 *1 (-321 *5 *6 *7 *8)))) (-4195 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1169 *9)) (-5 *4 (-642 *7)) (-5 *5 (-642 *8)) (-4 *7 (-848)) (-4 *8 (-1047)) (-4 *9 (-947 *8 *6 *7)) (-4 *6 (-791)) (-5 *2 (-1169 *8)) (-5 *1 (-321 *6 *7 *8 *9))))) -(-10 -7 (-15 -4195 ((-1169 |#3|) (-1169 |#4|) (-642 |#2|) (-642 |#3|))) (-15 -3252 ((-642 (-769)) (-1169 |#4|) (-642 |#2|))) (-15 -2397 ((-642 |#2|) (-1169 |#4|))) (-15 -4149 ((-1169 |#3|) (-1169 |#4|))) (-15 -2344 ((-1169 |#4|) (-1169 |#3|))) (-15 -3445 ((-1169 |#4|) (-1169 |#4|) (-564))) (-15 -4239 (|#3| (-564)))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) 19)) (-4077 (((-642 (-2 (|:| |gen| |#1|) (|:| -3466 (-564)))) $) 21)) (-3085 (((-3 $ "failed") $ $) NIL)) (-4003 (((-769) $) NIL)) (-2822 (($) NIL T CONST)) (-2849 (((-3 |#1| "failed") $) NIL)) (-1687 ((|#1| $) NIL)) (-3631 ((|#1| $ (-564)) NIL)) (-1464 (((-564) $ (-564)) NIL)) (-3225 (($ $ $) NIL (|has| |#1| (-848)))) (-2903 (($ $ $) NIL (|has| |#1| (-848)))) (-1860 (($ (-1 |#1| |#1|) $) NIL)) (-2705 (($ (-1 (-564) (-564)) $) 11)) (-1778 (((-1155) $) NIL)) (-2470 (($ $ $) NIL (|has| (-564) (-790)))) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) NIL) (($ |#1|) NIL)) (-3005 (((-564) |#1| $) NIL)) (-1600 (((-112) $ $) NIL)) (-2361 (($) NIL T CONST)) (-2881 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2857 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2821 (((-112) $ $) NIL)) (-2868 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2844 (((-112) $ $) 29 (|has| |#1| (-848)))) (-2930 (($ $) 12) (($ $ $) 28)) (-2917 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ (-564)) NIL) (($ (-564) |#1|) 27))) -(((-322 |#1|) (-13 (-21) (-715 (-564)) (-323 |#1| (-564)) (-10 -7 (IF (|has| |#1| (-848)) (-6 (-848)) |%noBranch|))) (-1097)) (T -322)) -NIL -(-13 (-21) (-715 (-564)) (-323 |#1| (-564)) (-10 -7 (IF (|has| |#1| (-848)) (-6 (-848)) |%noBranch|))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-4077 (((-642 (-2 (|:| |gen| |#1|) (|:| -3466 |#2|))) $) 28)) (-3085 (((-3 $ "failed") $ $) 20)) (-4003 (((-769) $) 29)) (-2822 (($) 18 T CONST)) (-2849 (((-3 |#1| "failed") $) 33)) (-1687 ((|#1| $) 34)) (-3631 ((|#1| $ (-564)) 26)) (-1464 ((|#2| $ (-564)) 27)) (-1860 (($ (-1 |#1| |#1|) $) 23)) (-2705 (($ (-1 |#2| |#2|) $) 24)) (-1778 (((-1155) $) 10)) (-2470 (($ $ $) 22 (|has| |#2| (-790)))) (-3999 (((-1117) $) 11)) (-2390 (((-860) $) 12) (($ |#1|) 32)) (-3005 ((|#2| |#1| $) 25)) (-1600 (((-112) $ $) 9)) (-2361 (($) 19 T CONST)) (-2821 (((-112) $ $) 6)) (-2917 (($ $ $) 15) (($ |#1| $) 31)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ |#2| |#1|) 30))) -(((-323 |#1| |#2|) (-140) (-1097) (-131)) (T -323)) -((-2917 (*1 *1 *2 *1) (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-1097)) (-4 *3 (-131)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-323 *3 *2)) (-4 *3 (-1097)) (-4 *2 (-131)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-131)) (-5 *2 (-769)))) (-4077 (*1 *2 *1) (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-131)) (-5 *2 (-642 (-2 (|:| |gen| *3) (|:| -3466 *4)))))) (-1464 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-323 *4 *2)) (-4 *4 (-1097)) (-4 *2 (-131)))) (-3631 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-323 *2 *4)) (-4 *4 (-131)) (-4 *2 (-1097)))) (-3005 (*1 *2 *3 *1) (-12 (-4 *1 (-323 *3 *2)) (-4 *3 (-1097)) (-4 *2 (-131)))) (-2705 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-323 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-131)))) (-1860 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-323 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-131)))) (-2470 (*1 *1 *1 *1) (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-1097)) (-4 *3 (-131)) (-4 *3 (-790))))) -(-13 (-131) (-1036 |t#1|) (-10 -8 (-15 -2917 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -4003 ((-769) $)) (-15 -4077 ((-642 (-2 (|:| |gen| |t#1|) (|:| -3466 |t#2|))) $)) (-15 -1464 (|t#2| $ (-564))) (-15 -3631 (|t#1| $ (-564))) (-15 -3005 (|t#2| |t#1| $)) (-15 -2705 ($ (-1 |t#2| |t#2|) $)) (-15 -1860 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-790)) (-15 -2470 ($ $ $)) |%noBranch|))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 |#1|) . T) ((-611 (-860)) . T) ((-1036 |#1|) . T) ((-1097) . T)) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-4077 (((-642 (-2 (|:| |gen| |#1|) (|:| -3466 (-769)))) $) NIL)) (-3085 (((-3 $ "failed") $ $) NIL)) (-4003 (((-769) $) NIL)) (-2822 (($) NIL T CONST)) (-2849 (((-3 |#1| "failed") $) NIL)) (-1687 ((|#1| $) NIL)) (-3631 ((|#1| $ (-564)) NIL)) (-1464 (((-769) $ (-564)) NIL)) (-1860 (($ (-1 |#1| |#1|) $) NIL)) (-2705 (($ (-1 (-769) (-769)) $) NIL)) (-1778 (((-1155) $) NIL)) (-2470 (($ $ $) NIL (|has| (-769) (-790)))) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) NIL) (($ |#1|) NIL)) (-3005 (((-769) |#1| $) NIL)) (-1600 (((-112) $ $) NIL)) (-2361 (($) NIL T CONST)) (-2821 (((-112) $ $) NIL)) (-2917 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-769) |#1|) NIL))) -(((-324 |#1|) (-323 |#1| (-769)) (-1097)) (T -324)) -NIL -(-323 |#1| (-769)) -((-2511 (($ $) 72)) (-2315 (($ $ |#2| |#3| $) 14)) (-3879 (($ (-1 |#3| |#3|) $) 51)) (-2491 (((-112) $) 42)) (-2500 ((|#2| $) 44)) (-2842 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 64)) (-4325 ((|#2| $) 68)) (-2839 (((-642 |#2|) $) 56)) (-2645 (($ $ $ (-769)) 37)) (-2943 (($ $ |#2|) 60))) -(((-325 |#1| |#2| |#3|) (-10 -8 (-15 -2511 (|#1| |#1|)) (-15 -4325 (|#2| |#1|)) (-15 -2842 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2645 (|#1| |#1| |#1| (-769))) (-15 -2315 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3879 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2839 ((-642 |#2|) |#1|)) (-15 -2500 (|#2| |#1|)) (-15 -2491 ((-112) |#1|)) (-15 -2842 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2943 (|#1| |#1| |#2|))) (-326 |#2| |#3|) (-1047) (-790)) (T -325)) -NIL -(-10 -8 (-15 -2511 (|#1| |#1|)) (-15 -4325 (|#2| |#1|)) (-15 -2842 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2645 (|#1| |#1| |#1| (-769))) (-15 -2315 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3879 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2839 ((-642 |#2|) |#1|)) (-15 -2500 (|#2| |#1|)) (-15 -2491 ((-112) |#1|)) (-15 -2842 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2943 (|#1| |#1| |#2|))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) 63 (|has| |#1| (-556)))) (-4252 (($ $) 64 (|has| |#1| (-556)))) (-1722 (((-112) $) 66 (|has| |#1| (-556)))) (-3085 (((-3 $ "failed") $ $) 20)) (-2822 (($) 18 T CONST)) (-2849 (((-3 (-564) "failed") $) 100 (|has| |#1| (-1036 (-564)))) (((-3 (-407 (-564)) "failed") $) 98 (|has| |#1| (-1036 (-407 (-564))))) (((-3 |#1| "failed") $) 95)) (-1687 (((-564) $) 99 (|has| |#1| (-1036 (-564)))) (((-407 (-564)) $) 97 (|has| |#1| (-1036 (-407 (-564))))) ((|#1| $) 96)) (-3459 (($ $) 72)) (-2675 (((-3 $ "failed") $) 37)) (-2511 (($ $) 84 (|has| |#1| (-452)))) (-2315 (($ $ |#1| |#2| $) 88)) (-3163 (((-112) $) 35)) (-1904 (((-769) $) 91)) (-3471 (((-112) $) 74)) (-2374 (($ |#1| |#2|) 73)) (-2887 ((|#2| $) 90)) (-3879 (($ (-1 |#2| |#2|) $) 89)) (-2947 (($ (-1 |#1| |#1|) $) 75)) (-2510 (($ $) 77)) (-2523 ((|#1| $) 78)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2491 (((-112) $) 94)) (-2500 ((|#1| $) 93)) (-2842 (((-3 $ "failed") $ $) 62 (|has| |#1| (-556))) (((-3 $ "failed") $ |#1|) 86 (|has| |#1| (-556)))) (-3252 ((|#2| $) 76)) (-4325 ((|#1| $) 85 (|has| |#1| (-452)))) (-2390 (((-860) $) 12) (($ (-564)) 33) (($ $) 61 (|has| |#1| (-556))) (($ |#1|) 59) (($ (-407 (-564))) 69 (-2682 (|has| |#1| (-1036 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564))))))) (-2839 (((-642 |#1|) $) 92)) (-3005 ((|#1| $ |#2|) 71)) (-3434 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-3348 (((-769)) 32 T CONST)) (-2645 (($ $ $ (-769)) 87 (|has| |#1| (-172)))) (-1600 (((-112) $ $) 9)) (-1594 (((-112) $ $) 65 (|has| |#1| (-556)))) (-2361 (($) 19 T CONST)) (-2371 (($) 34 T CONST)) (-2821 (((-112) $ $) 6)) (-2943 (($ $ |#1|) 70 (|has| |#1| (-363)))) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-407 (-564)) $) 68 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 67 (|has| |#1| (-38 (-407 (-564))))))) -(((-326 |#1| |#2|) (-140) (-1047) (-790)) (T -326)) -((-2491 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-790)) (-5 *2 (-112)))) (-2500 (*1 *2 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *3 (-790)) (-4 *2 (-1047)))) (-2839 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-790)) (-5 *2 (-642 *3)))) (-1904 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-790)) (-5 *2 (-769)))) (-2887 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-790)))) (-3879 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-790)))) (-2315 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-790)))) (-2645 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-769)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-790)) (-4 *3 (-172)))) (-2842 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-790)) (-4 *2 (-556)))) (-4325 (*1 *2 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *3 (-790)) (-4 *2 (-1047)) (-4 *2 (-452)))) (-2511 (*1 *1 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-790)) (-4 *2 (-452))))) -(-13 (-47 |t#1| |t#2|) (-411 |t#1|) (-10 -8 (-15 -2491 ((-112) $)) (-15 -2500 (|t#1| $)) (-15 -2839 ((-642 |t#1|) $)) (-15 -1904 ((-769) $)) (-15 -2887 (|t#2| $)) (-15 -3879 ($ (-1 |t#2| |t#2|) $)) (-15 -2315 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-172)) (-15 -2645 ($ $ $ (-769))) |%noBranch|) (IF (|has| |t#1| (-556)) (-15 -2842 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-452)) (PROGN (-15 -4325 (|t#1| $)) (-15 -2511 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-556)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2682 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) -2682 (|has| |#1| (-1036 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-614 $) |has| |#1| (-556)) ((-611 (-860)) . T) ((-172) -2682 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-290) |has| |#1| (-556)) ((-411 |#1|) . T) ((-556) |has| |#1| (-556)) ((-644 #0#) |has| |#1| (-38 (-407 (-564)))) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-646 #0#) |has| |#1| (-38 (-407 (-564)))) ((-646 |#1|) . T) ((-646 $) . T) ((-638 #0#) |has| |#1| (-38 (-407 (-564)))) ((-638 |#1|) |has| |#1| (-172)) ((-638 $) |has| |#1| (-556)) ((-715 #0#) |has| |#1| (-38 (-407 (-564)))) ((-715 |#1|) |has| |#1| (-172)) ((-715 $) |has| |#1| (-556)) ((-724) . T) ((-1036 (-407 (-564))) |has| |#1| (-1036 (-407 (-564)))) ((-1036 (-564)) |has| |#1| (-1036 (-564))) ((-1036 |#1|) . T) ((-1049 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1049 |#1|) . T) ((-1049 $) -2682 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-1054 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1054 |#1|) . T) ((-1054 $) -2682 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T)) -((-2856 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-3633 (((-1267) $ (-564) (-564)) NIL (|has| $ (-6 -4411)))) (-1824 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-848)))) (-3659 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4411))) (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-848))))) (-3191 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-848)))) (-3442 (((-112) $ (-769)) NIL)) (-1624 (((-112) (-112)) NIL)) (-3841 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4411))) ((|#1| $ (-1229 (-564)) |#1|) NIL (|has| $ (-6 -4411)))) (-2438 (($ (-1 (-112) |#1|) $) NIL)) (-3437 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2822 (($) NIL T CONST)) (-1540 (($ $) NIL (|has| $ (-6 -4411)))) (-3817 (($ $) NIL)) (-2324 (($ $) NIL (|has| |#1| (-1097)))) (-4067 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-1927 (($ |#1| $) NIL (|has| |#1| (-1097))) (($ (-1 (-112) |#1|) $) NIL)) (-2517 (($ |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3741 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4410)))) (-3105 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4411)))) (-1804 ((|#1| $ (-564)) NIL)) (-3942 (((-564) (-1 (-112) |#1|) $) NIL) (((-564) |#1| $) NIL (|has| |#1| (-1097))) (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1097)))) (-1321 (($ $ (-564)) NIL)) (-1909 (((-769) $) NIL)) (-2018 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-4233 (($ (-769) |#1|) NIL)) (-3769 (((-112) $ (-769)) NIL)) (-1802 (((-564) $) NIL (|has| (-564) (-848)))) (-3225 (($ $ $) NIL (|has| |#1| (-848)))) (-4096 (($ $ $) NIL (|has| |#1| (-848))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2774 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-848)))) (-3541 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2533 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3624 (((-564) $) NIL (|has| (-564) (-848)))) (-2903 (($ $ $) NIL (|has| |#1| (-848)))) (-1857 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4145 (((-112) $ (-769)) NIL)) (-1778 (((-1155) $) NIL (|has| |#1| (-1097)))) (-1668 (($ $ $ (-564)) NIL) (($ |#1| $ (-564)) NIL)) (-4247 (($ |#1| $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-4107 (((-642 (-564)) $) NIL)) (-4207 (((-112) (-564) $) NIL)) (-3999 (((-1117) $) NIL (|has| |#1| (-1097)))) (-3440 (($ (-642 |#1|)) NIL)) (-4036 ((|#1| $) NIL (|has| (-564) (-848)))) (-3183 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3826 (($ $ |#1|) NIL (|has| $ (-6 -4411)))) (-4094 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-2478 (((-112) $ $) NIL)) (-1643 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3522 (((-642 |#1|) $) NIL)) (-4109 (((-112) $) NIL)) (-2179 (($) NIL)) (-4369 ((|#1| $ (-564) |#1|) NIL) ((|#1| $ (-564)) NIL) (($ $ (-1229 (-564))) NIL)) (-1406 (($ $ (-1229 (-564))) NIL) (($ $ (-564)) NIL)) (-2083 (($ $ (-564)) NIL) (($ $ (-1229 (-564))) NIL)) (-4010 (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-769) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3301 (($ $ $ (-564)) NIL (|has| $ (-6 -4411)))) (-3865 (($ $) NIL)) (-3003 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-2401 (($ (-642 |#1|)) NIL)) (-2766 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3634 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-642 $)) NIL)) (-2390 (((-860) $) NIL (|has| |#1| (-611 (-860))))) (-1600 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-3295 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2881 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2857 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2821 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2868 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2844 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2158 (((-769) $) NIL (|has| $ (-6 -4410))))) -(((-327 |#1|) (-13 (-19 |#1|) (-282 |#1|) (-10 -8 (-15 -3440 ($ (-642 |#1|))) (-15 -1909 ((-769) $)) (-15 -1321 ($ $ (-564))) (-15 -1624 ((-112) (-112))))) (-1212)) (T -327)) -((-3440 (*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1212)) (-5 *1 (-327 *3)))) (-1909 (*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-327 *3)) (-4 *3 (-1212)))) (-1321 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-327 *3)) (-4 *3 (-1212)))) (-1624 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-327 *3)) (-4 *3 (-1212))))) -(-13 (-19 |#1|) (-282 |#1|) (-10 -8 (-15 -3440 ($ (-642 |#1|))) (-15 -1909 ((-769) $)) (-15 -1321 ($ $ (-564))) (-15 -1624 ((-112) (-112))))) -((-1792 (((-112) $) 50)) (-1695 (((-769)) 26)) (-3778 ((|#2| $) 54) (($ $ (-919)) 124)) (-4003 (((-769)) 125)) (-4087 (($ (-1262 |#2|)) 23)) (-1729 (((-112) $) 138)) (-2573 ((|#2| $) 56) (($ $ (-919)) 121)) (-2076 (((-1169 |#2|) $) NIL) (((-1169 $) $ (-919)) 112)) (-3607 (((-1169 |#2|) $) 98)) (-2480 (((-1169 |#2|) $) 94) (((-3 (-1169 |#2|) "failed") $ $) 91)) (-2292 (($ $ (-1169 |#2|)) 62)) (-1878 (((-831 (-919))) 33) (((-919)) 51)) (-3677 (((-134)) 30)) (-3252 (((-831 (-919)) $) 35) (((-919) $) 141)) (-2911 (($) 131)) (-3719 (((-1262 |#2|) $) NIL) (((-687 |#2|) (-1262 $)) 45)) (-3434 (($ $) NIL) (((-3 $ "failed") $) 101)) (-4127 (((-112) $) 48))) -(((-328 |#1| |#2|) (-10 -8 (-15 -3434 ((-3 |#1| "failed") |#1|)) (-15 -4003 ((-769))) (-15 -3434 (|#1| |#1|)) (-15 -2480 ((-3 (-1169 |#2|) "failed") |#1| |#1|)) (-15 -2480 ((-1169 |#2|) |#1|)) (-15 -3607 ((-1169 |#2|) |#1|)) (-15 -2292 (|#1| |#1| (-1169 |#2|))) (-15 -1729 ((-112) |#1|)) (-15 -2911 (|#1|)) (-15 -3778 (|#1| |#1| (-919))) (-15 -2573 (|#1| |#1| (-919))) (-15 -2076 ((-1169 |#1|) |#1| (-919))) (-15 -3778 (|#2| |#1|)) (-15 -2573 (|#2| |#1|)) (-15 -3252 ((-919) |#1|)) (-15 -1878 ((-919))) (-15 -2076 ((-1169 |#2|) |#1|)) (-15 -4087 (|#1| (-1262 |#2|))) (-15 -3719 ((-687 |#2|) (-1262 |#1|))) (-15 -3719 ((-1262 |#2|) |#1|)) (-15 -1695 ((-769))) (-15 -1878 ((-831 (-919)))) (-15 -3252 ((-831 (-919)) |#1|)) (-15 -1792 ((-112) |#1|)) (-15 -4127 ((-112) |#1|)) (-15 -3677 ((-134)))) (-329 |#2|) (-363)) (T -328)) -((-3677 (*1 *2) (-12 (-4 *4 (-363)) (-5 *2 (-134)) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4)))) (-1878 (*1 *2) (-12 (-4 *4 (-363)) (-5 *2 (-831 (-919))) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4)))) (-1695 (*1 *2) (-12 (-4 *4 (-363)) (-5 *2 (-769)) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4)))) (-1878 (*1 *2) (-12 (-4 *4 (-363)) (-5 *2 (-919)) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4)))) (-4003 (*1 *2) (-12 (-4 *4 (-363)) (-5 *2 (-769)) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4))))) -(-10 -8 (-15 -3434 ((-3 |#1| "failed") |#1|)) (-15 -4003 ((-769))) (-15 -3434 (|#1| |#1|)) (-15 -2480 ((-3 (-1169 |#2|) "failed") |#1| |#1|)) (-15 -2480 ((-1169 |#2|) |#1|)) (-15 -3607 ((-1169 |#2|) |#1|)) (-15 -2292 (|#1| |#1| (-1169 |#2|))) (-15 -1729 ((-112) |#1|)) (-15 -2911 (|#1|)) (-15 -3778 (|#1| |#1| (-919))) (-15 -2573 (|#1| |#1| (-919))) (-15 -2076 ((-1169 |#1|) |#1| (-919))) (-15 -3778 (|#2| |#1|)) (-15 -2573 (|#2| |#1|)) (-15 -3252 ((-919) |#1|)) (-15 -1878 ((-919))) (-15 -2076 ((-1169 |#2|) |#1|)) (-15 -4087 (|#1| (-1262 |#2|))) (-15 -3719 ((-687 |#2|) (-1262 |#1|))) (-15 -3719 ((-1262 |#2|) |#1|)) (-15 -1695 ((-769))) (-15 -1878 ((-831 (-919)))) (-15 -3252 ((-831 (-919)) |#1|)) (-15 -1792 ((-112) |#1|)) (-15 -4127 ((-112) |#1|)) (-15 -3677 ((-134)))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) 47)) (-4252 (($ $) 46)) (-1722 (((-112) $) 44)) (-1792 (((-112) $) 104)) (-1695 (((-769)) 100)) (-3778 ((|#1| $) 150) (($ $ (-919)) 147 (|has| |#1| (-368)))) (-3651 (((-1185 (-919) (-769)) (-564)) 132 (|has| |#1| (-368)))) (-3085 (((-3 $ "failed") $ $) 20)) (-1993 (($ $) 81)) (-3282 (((-418 $) $) 80)) (-2134 (((-112) $ $) 65)) (-4003 (((-769)) 122 (|has| |#1| (-368)))) (-2822 (($) 18 T CONST)) (-2849 (((-3 |#1| "failed") $) 111)) (-1687 ((|#1| $) 112)) (-4087 (($ (-1262 |#1|)) 156)) (-2629 (((-3 "prime" "polynomial" "normal" "cyclic")) 138 (|has| |#1| (-368)))) (-2796 (($ $ $) 61)) (-2675 (((-3 $ "failed") $) 37)) (-3235 (($) 119 (|has| |#1| (-368)))) (-2808 (($ $ $) 62)) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) 57)) (-1427 (($) 134 (|has| |#1| (-368)))) (-4153 (((-112) $) 135 (|has| |#1| (-368)))) (-1595 (($ $ (-769)) 97 (-2682 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) 96 (-2682 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3552 (((-112) $) 79)) (-2408 (((-919) $) 137 (|has| |#1| (-368))) (((-831 (-919)) $) 94 (-2682 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3163 (((-112) $) 35)) (-2043 (($) 145 (|has| |#1| (-368)))) (-1729 (((-112) $) 144 (|has| |#1| (-368)))) (-2573 ((|#1| $) 151) (($ $ (-919)) 148 (|has| |#1| (-368)))) (-4382 (((-3 $ "failed") $) 123 (|has| |#1| (-368)))) (-2709 (((-3 (-642 $) "failed") (-642 $) $) 58)) (-2076 (((-1169 |#1|) $) 155) (((-1169 $) $ (-919)) 149 (|has| |#1| (-368)))) (-2535 (((-919) $) 120 (|has| |#1| (-368)))) (-3607 (((-1169 |#1|) $) 141 (|has| |#1| (-368)))) (-2480 (((-1169 |#1|) $) 140 (|has| |#1| (-368))) (((-3 (-1169 |#1|) "failed") $ $) 139 (|has| |#1| (-368)))) (-2292 (($ $ (-1169 |#1|)) 142 (|has| |#1| (-368)))) (-2066 (($ $ $) 52) (($ (-642 $)) 51)) (-1778 (((-1155) $) 10)) (-2481 (($ $) 78)) (-3910 (($) 124 (|has| |#1| (-368)) CONST)) (-2065 (($ (-919)) 121 (|has| |#1| (-368)))) (-1987 (((-112) $) 103)) (-3999 (((-1117) $) 11)) (-4043 (($) 143 (|has| |#1| (-368)))) (-3464 (((-1169 $) (-1169 $) (-1169 $)) 50)) (-2105 (($ $ $) 54) (($ (-642 $)) 53)) (-4229 (((-642 (-2 (|:| -2254 (-564)) (|:| -2817 (-564))))) 131 (|has| |#1| (-368)))) (-2254 (((-418 $) $) 82)) (-1878 (((-831 (-919))) 101) (((-919)) 153)) (-1877 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2842 (((-3 $ "failed") $ $) 48)) (-1483 (((-3 (-642 $) "failed") (-642 $) $) 56)) (-4274 (((-769) $) 64)) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) 63)) (-1354 (((-769) $) 136 (|has| |#1| (-368))) (((-3 (-769) "failed") $ $) 95 (-2682 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3677 (((-134)) 109)) (-2199 (($ $) 128 (|has| |#1| (-368))) (($ $ (-769)) 126 (|has| |#1| (-368)))) (-3252 (((-831 (-919)) $) 102) (((-919) $) 152)) (-1361 (((-1169 |#1|)) 154)) (-3553 (($) 133 (|has| |#1| (-368)))) (-2911 (($) 146 (|has| |#1| (-368)))) (-3719 (((-1262 |#1|) $) 158) (((-687 |#1|) (-1262 $)) 157)) (-3556 (((-3 (-1262 $) "failed") (-687 $)) 130 (|has| |#1| (-368)))) (-2390 (((-860) $) 12) (($ (-564)) 33) (($ $) 49) (($ (-407 (-564))) 74) (($ |#1|) 110)) (-3434 (($ $) 129 (|has| |#1| (-368))) (((-3 $ "failed") $) 93 (-2682 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3348 (((-769)) 32 T CONST)) (-1600 (((-112) $ $) 9)) (-2131 (((-1262 $)) 160) (((-1262 $) (-919)) 159)) (-1594 (((-112) $ $) 45)) (-4127 (((-112) $) 105)) (-2361 (($) 19 T CONST)) (-2371 (($) 34 T CONST)) (-1620 (($ $) 99 (|has| |#1| (-368))) (($ $ (-769)) 98 (|has| |#1| (-368)))) (-2711 (($ $) 127 (|has| |#1| (-368))) (($ $ (-769)) 125 (|has| |#1| (-368)))) (-2821 (((-112) $ $) 6)) (-2943 (($ $ $) 73) (($ $ |#1|) 108)) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36) (($ $ (-564)) 77)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ (-407 (-564))) 76) (($ (-407 (-564)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106))) -(((-329 |#1|) (-140) (-363)) (T -329)) -((-2131 (*1 *2) (-12 (-4 *3 (-363)) (-5 *2 (-1262 *1)) (-4 *1 (-329 *3)))) (-2131 (*1 *2 *3) (-12 (-5 *3 (-919)) (-4 *4 (-363)) (-5 *2 (-1262 *1)) (-4 *1 (-329 *4)))) (-3719 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1262 *3)))) (-3719 (*1 *2 *3) (-12 (-5 *3 (-1262 *1)) (-4 *1 (-329 *4)) (-4 *4 (-363)) (-5 *2 (-687 *4)))) (-4087 (*1 *1 *2) (-12 (-5 *2 (-1262 *3)) (-4 *3 (-363)) (-4 *1 (-329 *3)))) (-2076 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1169 *3)))) (-1361 (*1 *2) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1169 *3)))) (-1878 (*1 *2) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-919)))) (-3252 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-919)))) (-2573 (*1 *2 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-363)))) (-3778 (*1 *2 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-363)))) (-2076 (*1 *2 *1 *3) (-12 (-5 *3 (-919)) (-4 *4 (-368)) (-4 *4 (-363)) (-5 *2 (-1169 *1)) (-4 *1 (-329 *4)))) (-2573 (*1 *1 *1 *2) (-12 (-5 *2 (-919)) (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)))) (-3778 (*1 *1 *1 *2) (-12 (-5 *2 (-919)) (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)))) (-2911 (*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363)))) (-2043 (*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363)))) (-1729 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) (-5 *2 (-112)))) (-4043 (*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363)))) (-2292 (*1 *1 *1 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-368)) (-4 *1 (-329 *3)) (-4 *3 (-363)))) (-3607 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) (-5 *2 (-1169 *3)))) (-2480 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) (-5 *2 (-1169 *3)))) (-2480 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) (-5 *2 (-1169 *3))))) -(-13 (-1281 |t#1|) (-1036 |t#1|) (-10 -8 (-15 -2131 ((-1262 $))) (-15 -2131 ((-1262 $) (-919))) (-15 -3719 ((-1262 |t#1|) $)) (-15 -3719 ((-687 |t#1|) (-1262 $))) (-15 -4087 ($ (-1262 |t#1|))) (-15 -2076 ((-1169 |t#1|) $)) (-15 -1361 ((-1169 |t#1|))) (-15 -1878 ((-919))) (-15 -3252 ((-919) $)) (-15 -2573 (|t#1| $)) (-15 -3778 (|t#1| $)) (IF (|has| |t#1| (-368)) (PROGN (-6 (-349)) (-15 -2076 ((-1169 $) $ (-919))) (-15 -2573 ($ $ (-919))) (-15 -3778 ($ $ (-919))) (-15 -2911 ($)) (-15 -2043 ($)) (-15 -1729 ((-112) $)) (-15 -4043 ($)) (-15 -2292 ($ $ (-1169 |t#1|))) (-15 -3607 ((-1169 |t#1|) $)) (-15 -2480 ((-1169 |t#1|) $)) (-15 -2480 ((-3 (-1169 |t#1|) "failed") $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2682 (|has| |#1| (-368)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-614 $) . T) ((-611 (-860)) . T) ((-172) . T) ((-233) |has| |#1| (-368)) ((-243) . T) ((-290) . T) ((-307) . T) ((-1281 |#1|) . T) ((-363) . T) ((-402) -2682 (|has| |#1| (-368)) (|has| |#1| (-145))) ((-368) |has| |#1| (-368)) ((-349) |has| |#1| (-368)) ((-452) . T) ((-556) . T) ((-644 #0#) . T) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-646 #0#) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-638 #0#) . T) ((-638 |#1|) . T) ((-638 $) . T) ((-715 #0#) . T) ((-715 |#1|) . T) ((-715 $) . T) ((-724) . T) ((-918) . T) ((-1036 |#1|) . T) ((-1049 #0#) . T) ((-1049 |#1|) . T) ((-1049 $) . T) ((-1054 #0#) . T) ((-1054 |#1|) . T) ((-1054 $) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T) ((-1148) |has| |#1| (-368)) ((-1216) . T) ((-1269 |#1|) . T)) -((-2856 (((-112) $ $) NIL)) (-3432 (($ (-1172) $) 104)) (-2017 (($) 93)) (-2828 (((-1117) (-1117)) 9)) (-3973 (($) 94)) (-4143 (($) 108) (($ (-316 (-697))) 116) (($ (-316 (-699))) 112) (($ (-316 (-692))) 120) (($ (-316 (-379))) 127) (($ (-316 (-564))) 123) (($ (-316 (-169 (-379)))) 131)) (-1867 (($ (-1172) $) 105)) (-1402 (($ (-642 (-860))) 95)) (-2372 (((-1267) $) 91)) (-2802 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 35)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2153 (($ (-1117)) 60)) (-1566 (((-1101) $) 32)) (-1615 (($ (-1089 (-950 (-564))) $) 101) (($ (-1089 (-950 (-564))) (-950 (-564)) $) 102)) (-3877 (($ (-1117)) 103)) (-3020 (($ (-1172) $) 133) (($ (-1172) $ $) 134)) (-1879 (($ (-1173) (-642 (-1173))) 92)) (-1592 (($ (-1155)) 98) (($ (-642 (-1155))) 96)) (-2390 (((-860) $) 136)) (-3089 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1173)) (|:| |arrayIndex| (-642 (-950 (-564)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1305 (-860)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1173)) (|:| |rand| (-860)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1172)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -4109 (-112)) (|:| -2108 (-2 (|:| |ints2Floats?| (-112)) (|:| -1305 (-860)))))) (|:| |blockBranch| (-642 $)) (|:| |commentBranch| (-642 (-1155))) (|:| |callBranch| (-1155)) (|:| |forBranch| (-2 (|:| -4138 (-1089 (-950 (-564)))) (|:| |span| (-950 (-564))) (|:| -2502 $))) (|:| |labelBranch| (-1117)) (|:| |loopBranch| (-2 (|:| |switch| (-1172)) (|:| -2502 $))) (|:| |commonBranch| (-2 (|:| -2493 (-1173)) (|:| |contents| (-642 (-1173))))) (|:| |printBranch| (-642 (-860)))) $) 51)) (-3379 (($ (-1155)) 205)) (-1787 (($ (-642 $)) 132)) (-1600 (((-112) $ $) NIL)) (-2370 (($ (-1173) (-1155)) 138) (($ (-1173) (-316 (-699))) 178) (($ (-1173) (-316 (-697))) 179) (($ (-1173) (-316 (-692))) 180) (($ (-1173) (-687 (-699))) 141) (($ (-1173) (-687 (-697))) 144) (($ (-1173) (-687 (-692))) 147) (($ (-1173) (-1262 (-699))) 150) (($ (-1173) (-1262 (-697))) 153) (($ (-1173) (-1262 (-692))) 156) (($ (-1173) (-687 (-316 (-699)))) 159) (($ (-1173) (-687 (-316 (-697)))) 162) (($ (-1173) (-687 (-316 (-692)))) 165) (($ (-1173) (-1262 (-316 (-699)))) 168) (($ (-1173) (-1262 (-316 (-697)))) 171) (($ (-1173) (-1262 (-316 (-692)))) 174) (($ (-1173) (-642 (-950 (-564))) (-316 (-699))) 175) (($ (-1173) (-642 (-950 (-564))) (-316 (-697))) 176) (($ (-1173) (-642 (-950 (-564))) (-316 (-692))) 177) (($ (-1173) (-316 (-564))) 202) (($ (-1173) (-316 (-379))) 203) (($ (-1173) (-316 (-169 (-379)))) 204) (($ (-1173) (-687 (-316 (-564)))) 183) (($ (-1173) (-687 (-316 (-379)))) 186) (($ (-1173) (-687 (-316 (-169 (-379))))) 189) (($ (-1173) (-1262 (-316 (-564)))) 192) (($ (-1173) (-1262 (-316 (-379)))) 195) (($ (-1173) (-1262 (-316 (-169 (-379))))) 198) (($ (-1173) (-642 (-950 (-564))) (-316 (-564))) 199) (($ (-1173) (-642 (-950 (-564))) (-316 (-379))) 200) (($ (-1173) (-642 (-950 (-564))) (-316 (-169 (-379)))) 201)) (-2821 (((-112) $ $) NIL))) -(((-330) (-13 (-1097) (-10 -8 (-15 -1615 ($ (-1089 (-950 (-564))) $)) (-15 -1615 ($ (-1089 (-950 (-564))) (-950 (-564)) $)) (-15 -3432 ($ (-1172) $)) (-15 -1867 ($ (-1172) $)) (-15 -2153 ($ (-1117))) (-15 -3877 ($ (-1117))) (-15 -1592 ($ (-1155))) (-15 -1592 ($ (-642 (-1155)))) (-15 -3379 ($ (-1155))) (-15 -4143 ($)) (-15 -4143 ($ (-316 (-697)))) (-15 -4143 ($ (-316 (-699)))) (-15 -4143 ($ (-316 (-692)))) (-15 -4143 ($ (-316 (-379)))) (-15 -4143 ($ (-316 (-564)))) (-15 -4143 ($ (-316 (-169 (-379))))) (-15 -3020 ($ (-1172) $)) (-15 -3020 ($ (-1172) $ $)) (-15 -2370 ($ (-1173) (-1155))) (-15 -2370 ($ (-1173) (-316 (-699)))) (-15 -2370 ($ (-1173) (-316 (-697)))) (-15 -2370 ($ (-1173) (-316 (-692)))) (-15 -2370 ($ (-1173) (-687 (-699)))) (-15 -2370 ($ (-1173) (-687 (-697)))) (-15 -2370 ($ (-1173) (-687 (-692)))) (-15 -2370 ($ (-1173) (-1262 (-699)))) (-15 -2370 ($ (-1173) (-1262 (-697)))) (-15 -2370 ($ (-1173) (-1262 (-692)))) (-15 -2370 ($ (-1173) (-687 (-316 (-699))))) (-15 -2370 ($ (-1173) (-687 (-316 (-697))))) (-15 -2370 ($ (-1173) (-687 (-316 (-692))))) (-15 -2370 ($ (-1173) (-1262 (-316 (-699))))) (-15 -2370 ($ (-1173) (-1262 (-316 (-697))))) (-15 -2370 ($ (-1173) (-1262 (-316 (-692))))) (-15 -2370 ($ (-1173) (-642 (-950 (-564))) (-316 (-699)))) (-15 -2370 ($ (-1173) (-642 (-950 (-564))) (-316 (-697)))) (-15 -2370 ($ (-1173) (-642 (-950 (-564))) (-316 (-692)))) (-15 -2370 ($ (-1173) (-316 (-564)))) (-15 -2370 ($ (-1173) (-316 (-379)))) (-15 -2370 ($ (-1173) (-316 (-169 (-379))))) (-15 -2370 ($ (-1173) (-687 (-316 (-564))))) (-15 -2370 ($ (-1173) (-687 (-316 (-379))))) (-15 -2370 ($ (-1173) (-687 (-316 (-169 (-379)))))) (-15 -2370 ($ (-1173) (-1262 (-316 (-564))))) (-15 -2370 ($ (-1173) (-1262 (-316 (-379))))) (-15 -2370 ($ (-1173) (-1262 (-316 (-169 (-379)))))) (-15 -2370 ($ (-1173) (-642 (-950 (-564))) (-316 (-564)))) (-15 -2370 ($ (-1173) (-642 (-950 (-564))) (-316 (-379)))) (-15 -2370 ($ (-1173) (-642 (-950 (-564))) (-316 (-169 (-379))))) (-15 -1787 ($ (-642 $))) (-15 -2017 ($)) (-15 -3973 ($)) (-15 -1402 ($ (-642 (-860)))) (-15 -1879 ($ (-1173) (-642 (-1173)))) (-15 -2802 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3089 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1173)) (|:| |arrayIndex| (-642 (-950 (-564)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1305 (-860)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1173)) (|:| |rand| (-860)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1172)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -4109 (-112)) (|:| -2108 (-2 (|:| |ints2Floats?| (-112)) (|:| -1305 (-860)))))) (|:| |blockBranch| (-642 $)) (|:| |commentBranch| (-642 (-1155))) (|:| |callBranch| (-1155)) (|:| |forBranch| (-2 (|:| -4138 (-1089 (-950 (-564)))) (|:| |span| (-950 (-564))) (|:| -2502 $))) (|:| |labelBranch| (-1117)) (|:| |loopBranch| (-2 (|:| |switch| (-1172)) (|:| -2502 $))) (|:| |commonBranch| (-2 (|:| -2493 (-1173)) (|:| |contents| (-642 (-1173))))) (|:| |printBranch| (-642 (-860)))) $)) (-15 -2372 ((-1267) $)) (-15 -1566 ((-1101) $)) (-15 -2828 ((-1117) (-1117)))))) (T -330)) -((-1615 (*1 *1 *2 *1) (-12 (-5 *2 (-1089 (-950 (-564)))) (-5 *1 (-330)))) (-1615 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1089 (-950 (-564)))) (-5 *3 (-950 (-564))) (-5 *1 (-330)))) (-3432 (*1 *1 *2 *1) (-12 (-5 *2 (-1172)) (-5 *1 (-330)))) (-1867 (*1 *1 *2 *1) (-12 (-5 *2 (-1172)) (-5 *1 (-330)))) (-2153 (*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-330)))) (-3877 (*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-330)))) (-1592 (*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-330)))) (-1592 (*1 *1 *2) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-330)))) (-3379 (*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-330)))) (-4143 (*1 *1) (-5 *1 (-330))) (-4143 (*1 *1 *2) (-12 (-5 *2 (-316 (-697))) (-5 *1 (-330)))) (-4143 (*1 *1 *2) (-12 (-5 *2 (-316 (-699))) (-5 *1 (-330)))) (-4143 (*1 *1 *2) (-12 (-5 *2 (-316 (-692))) (-5 *1 (-330)))) (-4143 (*1 *1 *2) (-12 (-5 *2 (-316 (-379))) (-5 *1 (-330)))) (-4143 (*1 *1 *2) (-12 (-5 *2 (-316 (-564))) (-5 *1 (-330)))) (-4143 (*1 *1 *2) (-12 (-5 *2 (-316 (-169 (-379)))) (-5 *1 (-330)))) (-3020 (*1 *1 *2 *1) (-12 (-5 *2 (-1172)) (-5 *1 (-330)))) (-3020 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1172)) (-5 *1 (-330)))) (-2370 (*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-1155)) (-5 *1 (-330)))) (-2370 (*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-316 (-699))) (-5 *1 (-330)))) (-2370 (*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-316 (-697))) (-5 *1 (-330)))) (-2370 (*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-316 (-692))) (-5 *1 (-330)))) (-2370 (*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-687 (-699))) (-5 *1 (-330)))) (-2370 (*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-687 (-697))) (-5 *1 (-330)))) (-2370 (*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-687 (-692))) (-5 *1 (-330)))) (-2370 (*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-1262 (-699))) (-5 *1 (-330)))) (-2370 (*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-1262 (-697))) (-5 *1 (-330)))) (-2370 (*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-1262 (-692))) (-5 *1 (-330)))) (-2370 (*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-687 (-316 (-699)))) (-5 *1 (-330)))) (-2370 (*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-687 (-316 (-697)))) (-5 *1 (-330)))) (-2370 (*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-687 (-316 (-692)))) (-5 *1 (-330)))) (-2370 (*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-1262 (-316 (-699)))) (-5 *1 (-330)))) (-2370 (*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-1262 (-316 (-697)))) (-5 *1 (-330)))) (-2370 (*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-1262 (-316 (-692)))) (-5 *1 (-330)))) (-2370 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1173)) (-5 *3 (-642 (-950 (-564)))) (-5 *4 (-316 (-699))) (-5 *1 (-330)))) (-2370 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1173)) (-5 *3 (-642 (-950 (-564)))) (-5 *4 (-316 (-697))) (-5 *1 (-330)))) (-2370 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1173)) (-5 *3 (-642 (-950 (-564)))) (-5 *4 (-316 (-692))) (-5 *1 (-330)))) (-2370 (*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-316 (-564))) (-5 *1 (-330)))) (-2370 (*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-316 (-379))) (-5 *1 (-330)))) (-2370 (*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-316 (-169 (-379)))) (-5 *1 (-330)))) (-2370 (*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-687 (-316 (-564)))) (-5 *1 (-330)))) (-2370 (*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-687 (-316 (-379)))) (-5 *1 (-330)))) (-2370 (*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-687 (-316 (-169 (-379))))) (-5 *1 (-330)))) (-2370 (*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-1262 (-316 (-564)))) (-5 *1 (-330)))) (-2370 (*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-1262 (-316 (-379)))) (-5 *1 (-330)))) (-2370 (*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-1262 (-316 (-169 (-379))))) (-5 *1 (-330)))) (-2370 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1173)) (-5 *3 (-642 (-950 (-564)))) (-5 *4 (-316 (-564))) (-5 *1 (-330)))) (-2370 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1173)) (-5 *3 (-642 (-950 (-564)))) (-5 *4 (-316 (-379))) (-5 *1 (-330)))) (-2370 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1173)) (-5 *3 (-642 (-950 (-564)))) (-5 *4 (-316 (-169 (-379)))) (-5 *1 (-330)))) (-1787 (*1 *1 *2) (-12 (-5 *2 (-642 (-330))) (-5 *1 (-330)))) (-2017 (*1 *1) (-5 *1 (-330))) (-3973 (*1 *1) (-5 *1 (-330))) (-1402 (*1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-330)))) (-1879 (*1 *1 *2 *3) (-12 (-5 *3 (-642 (-1173))) (-5 *2 (-1173)) (-5 *1 (-330)))) (-2802 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-330)))) (-3089 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1173)) (|:| |arrayIndex| (-642 (-950 (-564)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1305 (-860)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1173)) (|:| |rand| (-860)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1172)) (|:| |thenClause| (-330)) (|:| |elseClause| (-330)))) (|:| |returnBranch| (-2 (|:| -4109 (-112)) (|:| -2108 (-2 (|:| |ints2Floats?| (-112)) (|:| -1305 (-860)))))) (|:| |blockBranch| (-642 (-330))) (|:| |commentBranch| (-642 (-1155))) (|:| |callBranch| (-1155)) (|:| |forBranch| (-2 (|:| -4138 (-1089 (-950 (-564)))) (|:| |span| (-950 (-564))) (|:| -2502 (-330)))) (|:| |labelBranch| (-1117)) (|:| |loopBranch| (-2 (|:| |switch| (-1172)) (|:| -2502 (-330)))) (|:| |commonBranch| (-2 (|:| -2493 (-1173)) (|:| |contents| (-642 (-1173))))) (|:| |printBranch| (-642 (-860))))) (-5 *1 (-330)))) (-2372 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-330)))) (-1566 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-330)))) (-2828 (*1 *2 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-330))))) -(-13 (-1097) (-10 -8 (-15 -1615 ($ (-1089 (-950 (-564))) $)) (-15 -1615 ($ (-1089 (-950 (-564))) (-950 (-564)) $)) (-15 -3432 ($ (-1172) $)) (-15 -1867 ($ (-1172) $)) (-15 -2153 ($ (-1117))) (-15 -3877 ($ (-1117))) (-15 -1592 ($ (-1155))) (-15 -1592 ($ (-642 (-1155)))) (-15 -3379 ($ (-1155))) (-15 -4143 ($)) (-15 -4143 ($ (-316 (-697)))) (-15 -4143 ($ (-316 (-699)))) (-15 -4143 ($ (-316 (-692)))) (-15 -4143 ($ (-316 (-379)))) (-15 -4143 ($ (-316 (-564)))) (-15 -4143 ($ (-316 (-169 (-379))))) (-15 -3020 ($ (-1172) $)) (-15 -3020 ($ (-1172) $ $)) (-15 -2370 ($ (-1173) (-1155))) (-15 -2370 ($ (-1173) (-316 (-699)))) (-15 -2370 ($ (-1173) (-316 (-697)))) (-15 -2370 ($ (-1173) (-316 (-692)))) (-15 -2370 ($ (-1173) (-687 (-699)))) (-15 -2370 ($ (-1173) (-687 (-697)))) (-15 -2370 ($ (-1173) (-687 (-692)))) (-15 -2370 ($ (-1173) (-1262 (-699)))) (-15 -2370 ($ (-1173) (-1262 (-697)))) (-15 -2370 ($ (-1173) (-1262 (-692)))) (-15 -2370 ($ (-1173) (-687 (-316 (-699))))) (-15 -2370 ($ (-1173) (-687 (-316 (-697))))) (-15 -2370 ($ (-1173) (-687 (-316 (-692))))) (-15 -2370 ($ (-1173) (-1262 (-316 (-699))))) (-15 -2370 ($ (-1173) (-1262 (-316 (-697))))) (-15 -2370 ($ (-1173) (-1262 (-316 (-692))))) (-15 -2370 ($ (-1173) (-642 (-950 (-564))) (-316 (-699)))) (-15 -2370 ($ (-1173) (-642 (-950 (-564))) (-316 (-697)))) (-15 -2370 ($ (-1173) (-642 (-950 (-564))) (-316 (-692)))) (-15 -2370 ($ (-1173) (-316 (-564)))) (-15 -2370 ($ (-1173) (-316 (-379)))) (-15 -2370 ($ (-1173) (-316 (-169 (-379))))) (-15 -2370 ($ (-1173) (-687 (-316 (-564))))) (-15 -2370 ($ (-1173) (-687 (-316 (-379))))) (-15 -2370 ($ (-1173) (-687 (-316 (-169 (-379)))))) (-15 -2370 ($ (-1173) (-1262 (-316 (-564))))) (-15 -2370 ($ (-1173) (-1262 (-316 (-379))))) (-15 -2370 ($ (-1173) (-1262 (-316 (-169 (-379)))))) (-15 -2370 ($ (-1173) (-642 (-950 (-564))) (-316 (-564)))) (-15 -2370 ($ (-1173) (-642 (-950 (-564))) (-316 (-379)))) (-15 -2370 ($ (-1173) (-642 (-950 (-564))) (-316 (-169 (-379))))) (-15 -1787 ($ (-642 $))) (-15 -2017 ($)) (-15 -3973 ($)) (-15 -1402 ($ (-642 (-860)))) (-15 -1879 ($ (-1173) (-642 (-1173)))) (-15 -2802 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3089 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1173)) (|:| |arrayIndex| (-642 (-950 (-564)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1305 (-860)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1173)) (|:| |rand| (-860)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1172)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -4109 (-112)) (|:| -2108 (-2 (|:| |ints2Floats?| (-112)) (|:| -1305 (-860)))))) (|:| |blockBranch| (-642 $)) (|:| |commentBranch| (-642 (-1155))) (|:| |callBranch| (-1155)) (|:| |forBranch| (-2 (|:| -4138 (-1089 (-950 (-564)))) (|:| |span| (-950 (-564))) (|:| -2502 $))) (|:| |labelBranch| (-1117)) (|:| |loopBranch| (-2 (|:| |switch| (-1172)) (|:| -2502 $))) (|:| |commonBranch| (-2 (|:| -2493 (-1173)) (|:| |contents| (-642 (-1173))))) (|:| |printBranch| (-642 (-860)))) $)) (-15 -2372 ((-1267) $)) (-15 -1566 ((-1101) $)) (-15 -2828 ((-1117) (-1117))))) -((-2856 (((-112) $ $) NIL)) (-3794 (((-112) $) 13)) (-2933 (($ |#1|) 10)) (-3225 (($ $ $) NIL)) (-2903 (($ $ $) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2946 (($ |#1|) 12)) (-2390 (((-860) $) 19)) (-1600 (((-112) $ $) NIL)) (-3100 ((|#1| $) 14)) (-2881 (((-112) $ $) NIL)) (-2857 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL)) (-2868 (((-112) $ $) NIL)) (-2844 (((-112) $ $) 21))) -(((-331 |#1|) (-13 (-848) (-10 -8 (-15 -2933 ($ |#1|)) (-15 -2946 ($ |#1|)) (-15 -3794 ((-112) $)) (-15 -3100 (|#1| $)))) (-848)) (T -331)) -((-2933 (*1 *1 *2) (-12 (-5 *1 (-331 *2)) (-4 *2 (-848)))) (-2946 (*1 *1 *2) (-12 (-5 *1 (-331 *2)) (-4 *2 (-848)))) (-3794 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-331 *3)) (-4 *3 (-848)))) (-3100 (*1 *2 *1) (-12 (-5 *1 (-331 *2)) (-4 *2 (-848))))) -(-13 (-848) (-10 -8 (-15 -2933 ($ |#1|)) (-15 -2946 ($ |#1|)) (-15 -3794 ((-112) $)) (-15 -3100 (|#1| $)))) -((-3737 (((-330) (-1173) (-950 (-564))) 23)) (-3806 (((-330) (-1173) (-950 (-564))) 27)) (-4296 (((-330) (-1173) (-1089 (-950 (-564))) (-1089 (-950 (-564)))) 26) (((-330) (-1173) (-950 (-564)) (-950 (-564))) 24)) (-4181 (((-330) (-1173) (-950 (-564))) 31))) -(((-332) (-10 -7 (-15 -3737 ((-330) (-1173) (-950 (-564)))) (-15 -4296 ((-330) (-1173) (-950 (-564)) (-950 (-564)))) (-15 -4296 ((-330) (-1173) (-1089 (-950 (-564))) (-1089 (-950 (-564))))) (-15 -3806 ((-330) (-1173) (-950 (-564)))) (-15 -4181 ((-330) (-1173) (-950 (-564)))))) (T -332)) -((-4181 (*1 *2 *3 *4) (-12 (-5 *3 (-1173)) (-5 *4 (-950 (-564))) (-5 *2 (-330)) (-5 *1 (-332)))) (-3806 (*1 *2 *3 *4) (-12 (-5 *3 (-1173)) (-5 *4 (-950 (-564))) (-5 *2 (-330)) (-5 *1 (-332)))) (-4296 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1173)) (-5 *4 (-1089 (-950 (-564)))) (-5 *2 (-330)) (-5 *1 (-332)))) (-4296 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1173)) (-5 *4 (-950 (-564))) (-5 *2 (-330)) (-5 *1 (-332)))) (-3737 (*1 *2 *3 *4) (-12 (-5 *3 (-1173)) (-5 *4 (-950 (-564))) (-5 *2 (-330)) (-5 *1 (-332))))) -(-10 -7 (-15 -3737 ((-330) (-1173) (-950 (-564)))) (-15 -4296 ((-330) (-1173) (-950 (-564)) (-950 (-564)))) (-15 -4296 ((-330) (-1173) (-1089 (-950 (-564))) (-1089 (-950 (-564))))) (-15 -3806 ((-330) (-1173) (-950 (-564)))) (-15 -4181 ((-330) (-1173) (-950 (-564))))) -((-2947 (((-336 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-336 |#1| |#2| |#3| |#4|)) 33))) -(((-333 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2947 ((-336 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-336 |#1| |#2| |#3| |#4|)))) (-363) (-1238 |#1|) (-1238 (-407 |#2|)) (-342 |#1| |#2| |#3|) (-363) (-1238 |#5|) (-1238 (-407 |#6|)) (-342 |#5| |#6| |#7|)) (T -333)) -((-2947 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-336 *5 *6 *7 *8)) (-4 *5 (-363)) (-4 *6 (-1238 *5)) (-4 *7 (-1238 (-407 *6))) (-4 *8 (-342 *5 *6 *7)) (-4 *9 (-363)) (-4 *10 (-1238 *9)) (-4 *11 (-1238 (-407 *10))) (-5 *2 (-336 *9 *10 *11 *12)) (-5 *1 (-333 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-342 *9 *10 *11))))) -(-10 -7 (-15 -2947 ((-336 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-336 |#1| |#2| |#3| |#4|)))) -((-4372 (((-112) $) 14))) -(((-334 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4372 ((-112) |#1|))) (-335 |#2| |#3| |#4| |#5|) (-363) (-1238 |#2|) (-1238 (-407 |#3|)) (-342 |#2| |#3| |#4|)) (T -334)) -NIL -(-10 -8 (-15 -4372 ((-112) |#1|))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-3085 (((-3 $ "failed") $ $) 20)) (-2822 (($) 18 T CONST)) (-3741 (($ $) 29)) (-4372 (((-112) $) 28)) (-1778 (((-1155) $) 10)) (-1574 (((-413 |#2| (-407 |#2|) |#3| |#4|) $) 35)) (-3999 (((-1117) $) 11)) (-4043 (((-3 |#4| "failed") $) 27)) (-3340 (($ (-413 |#2| (-407 |#2|) |#3| |#4|)) 34) (($ |#4|) 33) (($ |#1| |#1|) 32) (($ |#1| |#1| (-564)) 31) (($ |#4| |#2| |#2| |#2| |#1|) 26)) (-3822 (((-2 (|:| -4200 (-413 |#2| (-407 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 30)) (-2390 (((-860) $) 12)) (-1600 (((-112) $ $) 9)) (-2361 (($) 19 T CONST)) (-2821 (((-112) $ $) 6)) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24))) -(((-335 |#1| |#2| |#3| |#4|) (-140) (-363) (-1238 |t#1|) (-1238 (-407 |t#2|)) (-342 |t#1| |t#2| |t#3|)) (T -335)) -((-1574 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-5 *2 (-413 *4 (-407 *4) *5 *6)))) (-3340 (*1 *1 *2) (-12 (-5 *2 (-413 *4 (-407 *4) *5 *6)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-4 *3 (-363)) (-4 *1 (-335 *3 *4 *5 *6)))) (-3340 (*1 *1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))) (-4 *1 (-335 *3 *4 *5 *2)) (-4 *2 (-342 *3 *4 *5)))) (-3340 (*1 *1 *2 *2) (-12 (-4 *2 (-363)) (-4 *3 (-1238 *2)) (-4 *4 (-1238 (-407 *3))) (-4 *1 (-335 *2 *3 *4 *5)) (-4 *5 (-342 *2 *3 *4)))) (-3340 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-564)) (-4 *2 (-363)) (-4 *4 (-1238 *2)) (-4 *5 (-1238 (-407 *4))) (-4 *1 (-335 *2 *4 *5 *6)) (-4 *6 (-342 *2 *4 *5)))) (-3822 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-5 *2 (-2 (|:| -4200 (-413 *4 (-407 *4) *5 *6)) (|:| |principalPart| *6))))) (-3741 (*1 *1 *1) (-12 (-4 *1 (-335 *2 *3 *4 *5)) (-4 *2 (-363)) (-4 *3 (-1238 *2)) (-4 *4 (-1238 (-407 *3))) (-4 *5 (-342 *2 *3 *4)))) (-4372 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-5 *2 (-112)))) (-4043 (*1 *2 *1) (|partial| -12 (-4 *1 (-335 *3 *4 *5 *2)) (-4 *3 (-363)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))) (-4 *2 (-342 *3 *4 *5)))) (-3340 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-363)) (-4 *3 (-1238 *4)) (-4 *5 (-1238 (-407 *3))) (-4 *1 (-335 *4 *3 *5 *2)) (-4 *2 (-342 *4 *3 *5))))) -(-13 (-21) (-10 -8 (-15 -1574 ((-413 |t#2| (-407 |t#2|) |t#3| |t#4|) $)) (-15 -3340 ($ (-413 |t#2| (-407 |t#2|) |t#3| |t#4|))) (-15 -3340 ($ |t#4|)) (-15 -3340 ($ |t#1| |t#1|)) (-15 -3340 ($ |t#1| |t#1| (-564))) (-15 -3822 ((-2 (|:| -4200 (-413 |t#2| (-407 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -3741 ($ $)) (-15 -4372 ((-112) $)) (-15 -4043 ((-3 |t#4| "failed") $)) (-15 -3340 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-860)) . T) ((-644 (-564)) . T) ((-1097) . T)) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-3085 (((-3 $ "failed") $ $) NIL)) (-2822 (($) NIL T CONST)) (-3741 (($ $) 33)) (-4372 (((-112) $) NIL)) (-1778 (((-1155) $) NIL)) (-1990 (((-1262 |#4|) $) 135)) (-1574 (((-413 |#2| (-407 |#2|) |#3| |#4|) $) 31)) (-3999 (((-1117) $) NIL)) (-4043 (((-3 |#4| "failed") $) 36)) (-2319 (((-1262 |#4|) $) 127)) (-3340 (($ (-413 |#2| (-407 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-564)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-3822 (((-2 (|:| -4200 (-413 |#2| (-407 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-2390 (((-860) $) 17)) (-1600 (((-112) $ $) NIL)) (-2361 (($) 14 T CONST)) (-2821 (((-112) $ $) 20)) (-2930 (($ $) 27) (($ $ $) NIL)) (-2917 (($ $ $) 25)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 23))) -(((-336 |#1| |#2| |#3| |#4|) (-13 (-335 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2319 ((-1262 |#4|) $)) (-15 -1990 ((-1262 |#4|) $)))) (-363) (-1238 |#1|) (-1238 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -336)) -((-2319 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))) (-5 *2 (-1262 *6)) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *6 (-342 *3 *4 *5)))) (-1990 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))) (-5 *2 (-1262 *6)) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *6 (-342 *3 *4 *5))))) -(-13 (-335 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2319 ((-1262 |#4|) $)) (-15 -1990 ((-1262 |#4|) $)))) -((-3154 (($ $ (-1173) |#2|) NIL) (($ $ (-642 (-1173)) (-642 |#2|)) 20) (($ $ (-642 (-294 |#2|))) 15) (($ $ (-294 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-642 |#2|) (-642 |#2|)) NIL)) (-4369 (($ $ |#2|) 11))) -(((-337 |#1| |#2|) (-10 -8 (-15 -4369 (|#1| |#1| |#2|)) (-15 -3154 (|#1| |#1| (-642 |#2|) (-642 |#2|))) (-15 -3154 (|#1| |#1| |#2| |#2|)) (-15 -3154 (|#1| |#1| (-294 |#2|))) (-15 -3154 (|#1| |#1| (-642 (-294 |#2|)))) (-15 -3154 (|#1| |#1| (-642 (-1173)) (-642 |#2|))) (-15 -3154 (|#1| |#1| (-1173) |#2|))) (-338 |#2|) (-1097)) (T -337)) -NIL -(-10 -8 (-15 -4369 (|#1| |#1| |#2|)) (-15 -3154 (|#1| |#1| (-642 |#2|) (-642 |#2|))) (-15 -3154 (|#1| |#1| |#2| |#2|)) (-15 -3154 (|#1| |#1| (-294 |#2|))) (-15 -3154 (|#1| |#1| (-642 (-294 |#2|)))) (-15 -3154 (|#1| |#1| (-642 (-1173)) (-642 |#2|))) (-15 -3154 (|#1| |#1| (-1173) |#2|))) -((-2947 (($ (-1 |#1| |#1|) $) 6)) (-3154 (($ $ (-1173) |#1|) 17 (|has| |#1| (-514 (-1173) |#1|))) (($ $ (-642 (-1173)) (-642 |#1|)) 16 (|has| |#1| (-514 (-1173) |#1|))) (($ $ (-642 (-294 |#1|))) 15 (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) 14 (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-309 |#1|))) (($ $ (-642 |#1|) (-642 |#1|)) 12 (|has| |#1| (-309 |#1|)))) (-4369 (($ $ |#1|) 11 (|has| |#1| (-286 |#1| |#1|))))) -(((-338 |#1|) (-140) (-1097)) (T -338)) -((-2947 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-338 *3)) (-4 *3 (-1097))))) -(-13 (-10 -8 (-15 -2947 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-286 |t#1| |t#1|)) (-6 (-286 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-309 |t#1|)) (-6 (-309 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-514 (-1173) |t#1|)) (-6 (-514 (-1173) |t#1|)) |%noBranch|))) -(((-286 |#1| $) |has| |#1| (-286 |#1| |#1|)) ((-309 |#1|) |has| |#1| (-309 |#1|)) ((-514 (-1173) |#1|) |has| |#1| (-514 (-1173) |#1|)) ((-514 |#1| |#1|) |has| |#1| (-309 |#1|))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-2397 (((-642 (-1173)) $) NIL)) (-4312 (((-112)) 99) (((-112) (-112)) 100)) (-2138 (((-642 (-610 $)) $) NIL)) (-3087 (($ $) NIL)) (-2958 (($ $) NIL)) (-3085 (((-3 $ "failed") $ $) NIL)) (-1891 (($ $ (-294 $)) NIL) (($ $ (-642 (-294 $))) NIL) (($ $ (-642 (-610 $)) (-642 $)) NIL)) (-2264 (($ $) NIL)) (-3067 (($ $) NIL)) (-2933 (($ $) NIL)) (-2822 (($) NIL T CONST)) (-2849 (((-3 (-610 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-316 |#3|)) 79) (((-3 $ "failed") (-1173)) 105) (((-3 $ "failed") (-316 (-564))) 67 (|has| |#3| (-1036 (-564)))) (((-3 $ "failed") (-407 (-950 (-564)))) 73 (|has| |#3| (-1036 (-564)))) (((-3 $ "failed") (-950 (-564))) 68 (|has| |#3| (-1036 (-564)))) (((-3 $ "failed") (-316 (-379))) 97 (|has| |#3| (-1036 (-379)))) (((-3 $ "failed") (-407 (-950 (-379)))) 91 (|has| |#3| (-1036 (-379)))) (((-3 $ "failed") (-950 (-379))) 86 (|has| |#3| (-1036 (-379))))) (-1687 (((-610 $) $) NIL) ((|#3| $) NIL) (($ (-316 |#3|)) 80) (($ (-1173)) 106) (($ (-316 (-564))) 69 (|has| |#3| (-1036 (-564)))) (($ (-407 (-950 (-564)))) 74 (|has| |#3| (-1036 (-564)))) (($ (-950 (-564))) 70 (|has| |#3| (-1036 (-564)))) (($ (-316 (-379))) 98 (|has| |#3| (-1036 (-379)))) (($ (-407 (-950 (-379)))) 92 (|has| |#3| (-1036 (-379)))) (($ (-950 (-379))) 88 (|has| |#3| (-1036 (-379))))) (-2675 (((-3 $ "failed") $) NIL)) (-2833 (($) 10)) (-2998 (($ $) NIL) (($ (-642 $)) NIL)) (-3986 (((-642 (-114)) $) NIL)) (-3898 (((-114) (-114)) NIL)) (-3163 (((-112) $) NIL)) (-2829 (((-112) $) NIL (|has| $ (-1036 (-564))))) (-2744 (((-1169 $) (-610 $)) NIL (|has| $ (-1047)))) (-2947 (($ (-1 $ $) (-610 $)) NIL)) (-1543 (((-3 (-610 $) "failed") $) NIL)) (-2219 (($ $) 102)) (-3576 (($ $) NIL)) (-1778 (((-1155) $) NIL)) (-2209 (((-642 (-610 $)) $) NIL)) (-2879 (($ (-114) $) 101) (($ (-114) (-642 $)) NIL)) (-1462 (((-112) $ (-114)) NIL) (((-112) $ (-1173)) NIL)) (-2983 (((-769) $) NIL)) (-3999 (((-1117) $) NIL)) (-2908 (((-112) $ $) NIL) (((-112) $ (-1173)) NIL)) (-3466 (($ $) NIL)) (-2211 (((-112) $) NIL (|has| $ (-1036 (-564))))) (-3154 (($ $ (-610 $) $) NIL) (($ $ (-642 (-610 $)) (-642 $)) NIL) (($ $ (-642 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-642 $) (-642 $)) NIL) (($ $ (-642 (-1173)) (-642 (-1 $ $))) NIL) (($ $ (-642 (-1173)) (-642 (-1 $ (-642 $)))) NIL) (($ $ (-1173) (-1 $ (-642 $))) NIL) (($ $ (-1173) (-1 $ $)) NIL) (($ $ (-642 (-114)) (-642 (-1 $ $))) NIL) (($ $ (-642 (-114)) (-642 (-1 $ (-642 $)))) NIL) (($ $ (-114) (-1 $ (-642 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-4369 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-642 $)) NIL)) (-4377 (($ $) NIL) (($ $ $) NIL)) (-2199 (($ $ (-642 (-1173)) (-642 (-769))) NIL) (($ $ (-1173) (-769)) NIL) (($ $ (-642 (-1173))) NIL) (($ $ (-1173)) NIL)) (-1361 (($ $) NIL (|has| $ (-1047)))) (-3077 (($ $) NIL)) (-2946 (($ $) NIL)) (-2390 (((-860) $) NIL) (($ (-610 $)) NIL) (($ |#3|) NIL) (($ (-564)) NIL) (((-316 |#3|) $) 104)) (-3348 (((-769)) NIL T CONST)) (-1899 (($ $) NIL) (($ (-642 $)) NIL)) (-4318 (((-112) (-114)) NIL)) (-1600 (((-112) $ $) NIL)) (-3025 (($ $) NIL)) (-3002 (($ $) NIL)) (-3014 (($ $) NIL)) (-1630 (($ $) NIL)) (-2361 (($) 103 T CONST)) (-2371 (($) NIL T CONST)) (-2711 (($ $ (-642 (-1173)) (-642 (-769))) NIL) (($ $ (-1173) (-769)) NIL) (($ $ (-642 (-1173))) NIL) (($ $ (-1173)) NIL)) (-2821 (((-112) $ $) NIL)) (-2930 (($ $ $) NIL) (($ $) NIL)) (-2917 (($ $ $) NIL)) (** (($ $ (-769)) NIL) (($ $ (-919)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-564) $) NIL) (($ (-769) $) NIL) (($ (-919) $) NIL))) -(((-339 |#1| |#2| |#3|) (-13 (-302) (-38 |#3|) (-1036 |#3|) (-898 (-1173)) (-10 -8 (-15 -1687 ($ (-316 |#3|))) (-15 -2849 ((-3 $ "failed") (-316 |#3|))) (-15 -1687 ($ (-1173))) (-15 -2849 ((-3 $ "failed") (-1173))) (-15 -2390 ((-316 |#3|) $)) (IF (|has| |#3| (-1036 (-564))) (PROGN (-15 -1687 ($ (-316 (-564)))) (-15 -2849 ((-3 $ "failed") (-316 (-564)))) (-15 -1687 ($ (-407 (-950 (-564))))) (-15 -2849 ((-3 $ "failed") (-407 (-950 (-564))))) (-15 -1687 ($ (-950 (-564)))) (-15 -2849 ((-3 $ "failed") (-950 (-564))))) |%noBranch|) (IF (|has| |#3| (-1036 (-379))) (PROGN (-15 -1687 ($ (-316 (-379)))) (-15 -2849 ((-3 $ "failed") (-316 (-379)))) (-15 -1687 ($ (-407 (-950 (-379))))) (-15 -2849 ((-3 $ "failed") (-407 (-950 (-379))))) (-15 -1687 ($ (-950 (-379)))) (-15 -2849 ((-3 $ "failed") (-950 (-379))))) |%noBranch|) (-15 -1630 ($ $)) (-15 -2264 ($ $)) (-15 -3466 ($ $)) (-15 -3576 ($ $)) (-15 -2219 ($ $)) (-15 -2933 ($ $)) (-15 -2946 ($ $)) (-15 -2958 ($ $)) (-15 -3002 ($ $)) (-15 -3014 ($ $)) (-15 -3025 ($ $)) (-15 -3067 ($ $)) (-15 -3077 ($ $)) (-15 -3087 ($ $)) (-15 -2833 ($)) (-15 -2397 ((-642 (-1173)) $)) (-15 -4312 ((-112))) (-15 -4312 ((-112) (-112))))) (-642 (-1173)) (-642 (-1173)) (-387)) (T -339)) -((-1687 (*1 *1 *2) (-12 (-5 *2 (-316 *5)) (-4 *5 (-387)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-642 (-1173))) (-14 *4 (-642 (-1173))))) (-2849 (*1 *1 *2) (|partial| -12 (-5 *2 (-316 *5)) (-4 *5 (-387)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-642 (-1173))) (-14 *4 (-642 (-1173))))) (-1687 (*1 *1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-642 *2)) (-14 *4 (-642 *2)) (-4 *5 (-387)))) (-2849 (*1 *1 *2) (|partial| -12 (-5 *2 (-1173)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-642 *2)) (-14 *4 (-642 *2)) (-4 *5 (-387)))) (-2390 (*1 *2 *1) (-12 (-5 *2 (-316 *5)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-642 (-1173))) (-14 *4 (-642 (-1173))) (-4 *5 (-387)))) (-1687 (*1 *1 *2) (-12 (-5 *2 (-316 (-564))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1036 (-564))) (-14 *3 (-642 (-1173))) (-14 *4 (-642 (-1173))) (-4 *5 (-387)))) (-2849 (*1 *1 *2) (|partial| -12 (-5 *2 (-316 (-564))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1036 (-564))) (-14 *3 (-642 (-1173))) (-14 *4 (-642 (-1173))) (-4 *5 (-387)))) (-1687 (*1 *1 *2) (-12 (-5 *2 (-407 (-950 (-564)))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1036 (-564))) (-14 *3 (-642 (-1173))) (-14 *4 (-642 (-1173))) (-4 *5 (-387)))) (-2849 (*1 *1 *2) (|partial| -12 (-5 *2 (-407 (-950 (-564)))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1036 (-564))) (-14 *3 (-642 (-1173))) (-14 *4 (-642 (-1173))) (-4 *5 (-387)))) (-1687 (*1 *1 *2) (-12 (-5 *2 (-950 (-564))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1036 (-564))) (-14 *3 (-642 (-1173))) (-14 *4 (-642 (-1173))) (-4 *5 (-387)))) (-2849 (*1 *1 *2) (|partial| -12 (-5 *2 (-950 (-564))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1036 (-564))) (-14 *3 (-642 (-1173))) (-14 *4 (-642 (-1173))) (-4 *5 (-387)))) (-1687 (*1 *1 *2) (-12 (-5 *2 (-316 (-379))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1036 (-379))) (-14 *3 (-642 (-1173))) (-14 *4 (-642 (-1173))) (-4 *5 (-387)))) (-2849 (*1 *1 *2) (|partial| -12 (-5 *2 (-316 (-379))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1036 (-379))) (-14 *3 (-642 (-1173))) (-14 *4 (-642 (-1173))) (-4 *5 (-387)))) (-1687 (*1 *1 *2) (-12 (-5 *2 (-407 (-950 (-379)))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1036 (-379))) (-14 *3 (-642 (-1173))) (-14 *4 (-642 (-1173))) (-4 *5 (-387)))) (-2849 (*1 *1 *2) (|partial| -12 (-5 *2 (-407 (-950 (-379)))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1036 (-379))) (-14 *3 (-642 (-1173))) (-14 *4 (-642 (-1173))) (-4 *5 (-387)))) (-1687 (*1 *1 *2) (-12 (-5 *2 (-950 (-379))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1036 (-379))) (-14 *3 (-642 (-1173))) (-14 *4 (-642 (-1173))) (-4 *5 (-387)))) (-2849 (*1 *1 *2) (|partial| -12 (-5 *2 (-950 (-379))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1036 (-379))) (-14 *3 (-642 (-1173))) (-14 *4 (-642 (-1173))) (-4 *5 (-387)))) (-1630 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-642 (-1173))) (-14 *3 (-642 (-1173))) (-4 *4 (-387)))) (-2264 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-642 (-1173))) (-14 *3 (-642 (-1173))) (-4 *4 (-387)))) (-3466 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-642 (-1173))) (-14 *3 (-642 (-1173))) (-4 *4 (-387)))) (-3576 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-642 (-1173))) (-14 *3 (-642 (-1173))) (-4 *4 (-387)))) (-2219 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-642 (-1173))) (-14 *3 (-642 (-1173))) (-4 *4 (-387)))) (-2933 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-642 (-1173))) (-14 *3 (-642 (-1173))) (-4 *4 (-387)))) (-2946 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-642 (-1173))) (-14 *3 (-642 (-1173))) (-4 *4 (-387)))) (-2958 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-642 (-1173))) (-14 *3 (-642 (-1173))) (-4 *4 (-387)))) (-3002 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-642 (-1173))) (-14 *3 (-642 (-1173))) (-4 *4 (-387)))) (-3014 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-642 (-1173))) (-14 *3 (-642 (-1173))) (-4 *4 (-387)))) (-3025 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-642 (-1173))) (-14 *3 (-642 (-1173))) (-4 *4 (-387)))) (-3067 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-642 (-1173))) (-14 *3 (-642 (-1173))) (-4 *4 (-387)))) (-3077 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-642 (-1173))) (-14 *3 (-642 (-1173))) (-4 *4 (-387)))) (-3087 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-642 (-1173))) (-14 *3 (-642 (-1173))) (-4 *4 (-387)))) (-2833 (*1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-642 (-1173))) (-14 *3 (-642 (-1173))) (-4 *4 (-387)))) (-2397 (*1 *2 *1) (-12 (-5 *2 (-642 (-1173))) (-5 *1 (-339 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-387)))) (-4312 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-642 (-1173))) (-14 *4 (-642 (-1173))) (-4 *5 (-387)))) (-4312 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-642 (-1173))) (-14 *4 (-642 (-1173))) (-4 *5 (-387))))) -(-13 (-302) (-38 |#3|) (-1036 |#3|) (-898 (-1173)) (-10 -8 (-15 -1687 ($ (-316 |#3|))) (-15 -2849 ((-3 $ "failed") (-316 |#3|))) (-15 -1687 ($ (-1173))) (-15 -2849 ((-3 $ "failed") (-1173))) (-15 -2390 ((-316 |#3|) $)) (IF (|has| |#3| (-1036 (-564))) (PROGN (-15 -1687 ($ (-316 (-564)))) (-15 -2849 ((-3 $ "failed") (-316 (-564)))) (-15 -1687 ($ (-407 (-950 (-564))))) (-15 -2849 ((-3 $ "failed") (-407 (-950 (-564))))) (-15 -1687 ($ (-950 (-564)))) (-15 -2849 ((-3 $ "failed") (-950 (-564))))) |%noBranch|) (IF (|has| |#3| (-1036 (-379))) (PROGN (-15 -1687 ($ (-316 (-379)))) (-15 -2849 ((-3 $ "failed") (-316 (-379)))) (-15 -1687 ($ (-407 (-950 (-379))))) (-15 -2849 ((-3 $ "failed") (-407 (-950 (-379))))) (-15 -1687 ($ (-950 (-379)))) (-15 -2849 ((-3 $ "failed") (-950 (-379))))) |%noBranch|) (-15 -1630 ($ $)) (-15 -2264 ($ $)) (-15 -3466 ($ $)) (-15 -3576 ($ $)) (-15 -2219 ($ $)) (-15 -2933 ($ $)) (-15 -2946 ($ $)) (-15 -2958 ($ $)) (-15 -3002 ($ $)) (-15 -3014 ($ $)) (-15 -3025 ($ $)) (-15 -3067 ($ $)) (-15 -3077 ($ $)) (-15 -3087 ($ $)) (-15 -2833 ($)) (-15 -2397 ((-642 (-1173)) $)) (-15 -4312 ((-112))) (-15 -4312 ((-112) (-112))))) -((-2947 ((|#8| (-1 |#5| |#1|) |#4|) 19))) -(((-340 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2947 (|#8| (-1 |#5| |#1|) |#4|))) (-1216) (-1238 |#1|) (-1238 (-407 |#2|)) (-342 |#1| |#2| |#3|) (-1216) (-1238 |#5|) (-1238 (-407 |#6|)) (-342 |#5| |#6| |#7|)) (T -340)) -((-2947 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1216)) (-4 *8 (-1216)) (-4 *6 (-1238 *5)) (-4 *7 (-1238 (-407 *6))) (-4 *9 (-1238 *8)) (-4 *2 (-342 *8 *9 *10)) (-5 *1 (-340 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-342 *5 *6 *7)) (-4 *10 (-1238 (-407 *9)))))) -(-10 -7 (-15 -2947 (|#8| (-1 |#5| |#1|) |#4|))) -((-2572 (((-2 (|:| |num| (-1262 |#3|)) (|:| |den| |#3|)) $) 40)) (-4087 (($ (-1262 (-407 |#3|)) (-1262 $)) NIL) (($ (-1262 (-407 |#3|))) NIL) (($ (-1262 |#3|) |#3|) 177)) (-1431 (((-1262 $) (-1262 $)) 161)) (-1954 (((-642 (-642 |#2|))) 130)) (-2453 (((-112) |#2| |#2|) 77)) (-2511 (($ $) 152)) (-2454 (((-769)) 33)) (-4206 (((-1262 $) (-1262 $)) 222)) (-1319 (((-642 (-950 |#2|)) (-1173)) 119)) (-2781 (((-112) $) 174)) (-2633 (((-112) $) 27) (((-112) $ |#2|) 31) (((-112) $ |#3|) 226)) (-3919 (((-3 |#3| "failed")) 53)) (-1913 (((-769)) 188)) (-4369 ((|#2| $ |#2| |#2|) 144)) (-3169 (((-3 |#3| "failed")) 72)) (-2199 (($ $ (-1 (-407 |#3|) (-407 |#3|)) (-769)) NIL) (($ $ (-1 (-407 |#3|) (-407 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 230) (($ $ (-642 (-1173)) (-642 (-769))) NIL) (($ $ (-1173) (-769)) NIL) (($ $ (-642 (-1173))) NIL) (($ $ (-1173)) NIL) (($ $ (-769)) NIL) (($ $) NIL)) (-4140 (((-1262 $) (-1262 $)) 167)) (-4018 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 69)) (-1426 (((-112)) 35))) -(((-341 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2199 (|#1| |#1|)) (-15 -2199 (|#1| |#1| (-769))) (-15 -2199 (|#1| |#1| (-1173))) (-15 -2199 (|#1| |#1| (-642 (-1173)))) (-15 -2199 (|#1| |#1| (-1173) (-769))) (-15 -2199 (|#1| |#1| (-642 (-1173)) (-642 (-769)))) (-15 -1954 ((-642 (-642 |#2|)))) (-15 -1319 ((-642 (-950 |#2|)) (-1173))) (-15 -4018 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3919 ((-3 |#3| "failed"))) (-15 -3169 ((-3 |#3| "failed"))) (-15 -4369 (|#2| |#1| |#2| |#2|)) (-15 -2511 (|#1| |#1|)) (-15 -2199 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2633 ((-112) |#1| |#3|)) (-15 -2633 ((-112) |#1| |#2|)) (-15 -4087 (|#1| (-1262 |#3|) |#3|)) (-15 -2572 ((-2 (|:| |num| (-1262 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1431 ((-1262 |#1|) (-1262 |#1|))) (-15 -4206 ((-1262 |#1|) (-1262 |#1|))) (-15 -4140 ((-1262 |#1|) (-1262 |#1|))) (-15 -2633 ((-112) |#1|)) (-15 -2781 ((-112) |#1|)) (-15 -2453 ((-112) |#2| |#2|)) (-15 -1426 ((-112))) (-15 -1913 ((-769))) (-15 -2454 ((-769))) (-15 -2199 (|#1| |#1| (-1 (-407 |#3|) (-407 |#3|)))) (-15 -2199 (|#1| |#1| (-1 (-407 |#3|) (-407 |#3|)) (-769))) (-15 -4087 (|#1| (-1262 (-407 |#3|)))) (-15 -4087 (|#1| (-1262 (-407 |#3|)) (-1262 |#1|)))) (-342 |#2| |#3| |#4|) (-1216) (-1238 |#2|) (-1238 (-407 |#3|))) (T -341)) -((-2454 (*1 *2) (-12 (-4 *4 (-1216)) (-4 *5 (-1238 *4)) (-4 *6 (-1238 (-407 *5))) (-5 *2 (-769)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6)))) (-1913 (*1 *2) (-12 (-4 *4 (-1216)) (-4 *5 (-1238 *4)) (-4 *6 (-1238 (-407 *5))) (-5 *2 (-769)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6)))) (-1426 (*1 *2) (-12 (-4 *4 (-1216)) (-4 *5 (-1238 *4)) (-4 *6 (-1238 (-407 *5))) (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6)))) (-2453 (*1 *2 *3 *3) (-12 (-4 *3 (-1216)) (-4 *5 (-1238 *3)) (-4 *6 (-1238 (-407 *5))) (-5 *2 (-112)) (-5 *1 (-341 *4 *3 *5 *6)) (-4 *4 (-342 *3 *5 *6)))) (-3169 (*1 *2) (|partial| -12 (-4 *4 (-1216)) (-4 *5 (-1238 (-407 *2))) (-4 *2 (-1238 *4)) (-5 *1 (-341 *3 *4 *2 *5)) (-4 *3 (-342 *4 *2 *5)))) (-3919 (*1 *2) (|partial| -12 (-4 *4 (-1216)) (-4 *5 (-1238 (-407 *2))) (-4 *2 (-1238 *4)) (-5 *1 (-341 *3 *4 *2 *5)) (-4 *3 (-342 *4 *2 *5)))) (-1319 (*1 *2 *3) (-12 (-5 *3 (-1173)) (-4 *5 (-1216)) (-4 *6 (-1238 *5)) (-4 *7 (-1238 (-407 *6))) (-5 *2 (-642 (-950 *5))) (-5 *1 (-341 *4 *5 *6 *7)) (-4 *4 (-342 *5 *6 *7)))) (-1954 (*1 *2) (-12 (-4 *4 (-1216)) (-4 *5 (-1238 *4)) (-4 *6 (-1238 (-407 *5))) (-5 *2 (-642 (-642 *4))) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6))))) -(-10 -8 (-15 -2199 (|#1| |#1|)) (-15 -2199 (|#1| |#1| (-769))) (-15 -2199 (|#1| |#1| (-1173))) (-15 -2199 (|#1| |#1| (-642 (-1173)))) (-15 -2199 (|#1| |#1| (-1173) (-769))) (-15 -2199 (|#1| |#1| (-642 (-1173)) (-642 (-769)))) (-15 -1954 ((-642 (-642 |#2|)))) (-15 -1319 ((-642 (-950 |#2|)) (-1173))) (-15 -4018 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3919 ((-3 |#3| "failed"))) (-15 -3169 ((-3 |#3| "failed"))) (-15 -4369 (|#2| |#1| |#2| |#2|)) (-15 -2511 (|#1| |#1|)) (-15 -2199 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2633 ((-112) |#1| |#3|)) (-15 -2633 ((-112) |#1| |#2|)) (-15 -4087 (|#1| (-1262 |#3|) |#3|)) (-15 -2572 ((-2 (|:| |num| (-1262 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1431 ((-1262 |#1|) (-1262 |#1|))) (-15 -4206 ((-1262 |#1|) (-1262 |#1|))) (-15 -4140 ((-1262 |#1|) (-1262 |#1|))) (-15 -2633 ((-112) |#1|)) (-15 -2781 ((-112) |#1|)) (-15 -2453 ((-112) |#2| |#2|)) (-15 -1426 ((-112))) (-15 -1913 ((-769))) (-15 -2454 ((-769))) (-15 -2199 (|#1| |#1| (-1 (-407 |#3|) (-407 |#3|)))) (-15 -2199 (|#1| |#1| (-1 (-407 |#3|) (-407 |#3|)) (-769))) (-15 -4087 (|#1| (-1262 (-407 |#3|)))) (-15 -4087 (|#1| (-1262 (-407 |#3|)) (-1262 |#1|)))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-2572 (((-2 (|:| |num| (-1262 |#2|)) (|:| |den| |#2|)) $) 204)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) 102 (|has| (-407 |#2|) (-363)))) (-4252 (($ $) 103 (|has| (-407 |#2|) (-363)))) (-1722 (((-112) $) 105 (|has| (-407 |#2|) (-363)))) (-1335 (((-687 (-407 |#2|)) (-1262 $)) 53) (((-687 (-407 |#2|))) 68)) (-3778 (((-407 |#2|) $) 59)) (-3651 (((-1185 (-919) (-769)) (-564)) 155 (|has| (-407 |#2|) (-349)))) (-3085 (((-3 $ "failed") $ $) 20)) (-1993 (($ $) 122 (|has| (-407 |#2|) (-363)))) (-3282 (((-418 $) $) 123 (|has| (-407 |#2|) (-363)))) (-2134 (((-112) $ $) 113 (|has| (-407 |#2|) (-363)))) (-4003 (((-769)) 96 (|has| (-407 |#2|) (-368)))) (-2883 (((-112)) 221)) (-4310 (((-112) |#1|) 220) (((-112) |#2|) 219)) (-2822 (($) 18 T CONST)) (-2849 (((-3 (-564) "failed") $) 178 (|has| (-407 |#2|) (-1036 (-564)))) (((-3 (-407 (-564)) "failed") $) 176 (|has| (-407 |#2|) (-1036 (-407 (-564))))) (((-3 (-407 |#2|) "failed") $) 173)) (-1687 (((-564) $) 177 (|has| (-407 |#2|) (-1036 (-564)))) (((-407 (-564)) $) 175 (|has| (-407 |#2|) (-1036 (-407 (-564))))) (((-407 |#2|) $) 174)) (-4087 (($ (-1262 (-407 |#2|)) (-1262 $)) 55) (($ (-1262 (-407 |#2|))) 71) (($ (-1262 |#2|) |#2|) 203)) (-2629 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| (-407 |#2|) (-349)))) (-2796 (($ $ $) 117 (|has| (-407 |#2|) (-363)))) (-2330 (((-687 (-407 |#2|)) $ (-1262 $)) 60) (((-687 (-407 |#2|)) $) 66)) (-3330 (((-687 (-564)) (-687 $)) 172 (|has| (-407 |#2|) (-637 (-564)))) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) 171 (|has| (-407 |#2|) (-637 (-564)))) (((-2 (|:| -3544 (-687 (-407 |#2|))) (|:| |vec| (-1262 (-407 |#2|)))) (-687 $) (-1262 $)) 170) (((-687 (-407 |#2|)) (-687 $)) 169)) (-1431 (((-1262 $) (-1262 $)) 209)) (-3741 (($ |#3|) 166) (((-3 $ "failed") (-407 |#3|)) 163 (|has| (-407 |#2|) (-363)))) (-2675 (((-3 $ "failed") $) 37)) (-1954 (((-642 (-642 |#1|))) 190 (|has| |#1| (-368)))) (-2453 (((-112) |#1| |#1|) 225)) (-3616 (((-919)) 61)) (-3235 (($) 99 (|has| (-407 |#2|) (-368)))) (-3597 (((-112)) 218)) (-3904 (((-112) |#1|) 217) (((-112) |#2|) 216)) (-2808 (($ $ $) 116 (|has| (-407 |#2|) (-363)))) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) 111 (|has| (-407 |#2|) (-363)))) (-2511 (($ $) 196)) (-1427 (($) 157 (|has| (-407 |#2|) (-349)))) (-4153 (((-112) $) 158 (|has| (-407 |#2|) (-349)))) (-1595 (($ $ (-769)) 149 (|has| (-407 |#2|) (-349))) (($ $) 148 (|has| (-407 |#2|) (-349)))) (-3552 (((-112) $) 124 (|has| (-407 |#2|) (-363)))) (-2408 (((-919) $) 160 (|has| (-407 |#2|) (-349))) (((-831 (-919)) $) 146 (|has| (-407 |#2|) (-349)))) (-3163 (((-112) $) 35)) (-2454 (((-769)) 228)) (-4206 (((-1262 $) (-1262 $)) 210)) (-2573 (((-407 |#2|) $) 58)) (-1319 (((-642 (-950 |#1|)) (-1173)) 191 (|has| |#1| (-363)))) (-4382 (((-3 $ "failed") $) 150 (|has| (-407 |#2|) (-349)))) (-2709 (((-3 (-642 $) "failed") (-642 $) $) 120 (|has| (-407 |#2|) (-363)))) (-2076 ((|#3| $) 51 (|has| (-407 |#2|) (-363)))) (-2535 (((-919) $) 98 (|has| (-407 |#2|) (-368)))) (-3730 ((|#3| $) 164)) (-2066 (($ (-642 $)) 109 (|has| (-407 |#2|) (-363))) (($ $ $) 108 (|has| (-407 |#2|) (-363)))) (-1778 (((-1155) $) 10)) (-2058 (((-687 (-407 |#2|))) 205)) (-2723 (((-687 (-407 |#2|))) 207)) (-2481 (($ $) 125 (|has| (-407 |#2|) (-363)))) (-3116 (($ (-1262 |#2|) |#2|) 201)) (-2263 (((-687 (-407 |#2|))) 206)) (-1654 (((-687 (-407 |#2|))) 208)) (-2127 (((-2 (|:| |num| (-687 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 200)) (-1545 (((-2 (|:| |num| (-1262 |#2|)) (|:| |den| |#2|)) $) 202)) (-2474 (((-1262 $)) 214)) (-1315 (((-1262 $)) 215)) (-2781 (((-112) $) 213)) (-2633 (((-112) $) 212) (((-112) $ |#1|) 199) (((-112) $ |#2|) 198)) (-3910 (($) 151 (|has| (-407 |#2|) (-349)) CONST)) (-2065 (($ (-919)) 97 (|has| (-407 |#2|) (-368)))) (-3919 (((-3 |#2| "failed")) 193)) (-3999 (((-1117) $) 11)) (-1913 (((-769)) 227)) (-4043 (($) 168)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) 110 (|has| (-407 |#2|) (-363)))) (-2105 (($ (-642 $)) 107 (|has| (-407 |#2|) (-363))) (($ $ $) 106 (|has| (-407 |#2|) (-363)))) (-4229 (((-642 (-2 (|:| -2254 (-564)) (|:| -2817 (-564))))) 154 (|has| (-407 |#2|) (-349)))) (-2254 (((-418 $) $) 121 (|has| (-407 |#2|) (-363)))) (-1877 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119 (|has| (-407 |#2|) (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) 118 (|has| (-407 |#2|) (-363)))) (-2842 (((-3 $ "failed") $ $) 101 (|has| (-407 |#2|) (-363)))) (-1483 (((-3 (-642 $) "failed") (-642 $) $) 112 (|has| (-407 |#2|) (-363)))) (-4274 (((-769) $) 114 (|has| (-407 |#2|) (-363)))) (-4369 ((|#1| $ |#1| |#1|) 195)) (-3169 (((-3 |#2| "failed")) 194)) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) 115 (|has| (-407 |#2|) (-363)))) (-2790 (((-407 |#2|) (-1262 $)) 54) (((-407 |#2|)) 67)) (-1354 (((-769) $) 159 (|has| (-407 |#2|) (-349))) (((-3 (-769) "failed") $ $) 147 (|has| (-407 |#2|) (-349)))) (-2199 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-769)) 131 (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) 130 (|has| (-407 |#2|) (-363))) (($ $ (-1 |#2| |#2|)) 197) (($ $ (-642 (-1173)) (-642 (-769))) 138 (-2682 (-2317 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-898 (-1173)))) (-2317 (|has| (-407 |#2|) (-898 (-1173))) (|has| (-407 |#2|) (-363))))) (($ $ (-1173) (-769)) 139 (-2682 (-2317 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-898 (-1173)))) (-2317 (|has| (-407 |#2|) (-898 (-1173))) (|has| (-407 |#2|) (-363))))) (($ $ (-642 (-1173))) 140 (-2682 (-2317 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-898 (-1173)))) (-2317 (|has| (-407 |#2|) (-898 (-1173))) (|has| (-407 |#2|) (-363))))) (($ $ (-1173)) 141 (-2682 (-2317 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-898 (-1173)))) (-2317 (|has| (-407 |#2|) (-898 (-1173))) (|has| (-407 |#2|) (-363))))) (($ $ (-769)) 143 (-2682 (-2317 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-233))) (-2317 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349)))) (($ $) 145 (-2682 (-2317 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-233))) (-2317 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349))))) (-2418 (((-687 (-407 |#2|)) (-1262 $) (-1 (-407 |#2|) (-407 |#2|))) 162 (|has| (-407 |#2|) (-363)))) (-1361 ((|#3|) 167)) (-3553 (($) 156 (|has| (-407 |#2|) (-349)))) (-3719 (((-1262 (-407 |#2|)) $ (-1262 $)) 57) (((-687 (-407 |#2|)) (-1262 $) (-1262 $)) 56) (((-1262 (-407 |#2|)) $) 73) (((-687 (-407 |#2|)) (-1262 $)) 72)) (-3003 (((-1262 (-407 |#2|)) $) 70) (($ (-1262 (-407 |#2|))) 69) ((|#3| $) 179) (($ |#3|) 165)) (-3556 (((-3 (-1262 $) "failed") (-687 $)) 153 (|has| (-407 |#2|) (-349)))) (-4140 (((-1262 $) (-1262 $)) 211)) (-2390 (((-860) $) 12) (($ (-564)) 33) (($ (-407 |#2|)) 44) (($ (-407 (-564))) 95 (-2682 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-1036 (-407 (-564)))))) (($ $) 100 (|has| (-407 |#2|) (-363)))) (-3434 (($ $) 152 (|has| (-407 |#2|) (-349))) (((-3 $ "failed") $) 50 (|has| (-407 |#2|) (-145)))) (-1308 ((|#3| $) 52)) (-3348 (((-769)) 32 T CONST)) (-2994 (((-112)) 224)) (-1314 (((-112) |#1|) 223) (((-112) |#2|) 222)) (-1600 (((-112) $ $) 9)) (-2131 (((-1262 $)) 74)) (-1594 (((-112) $ $) 104 (|has| (-407 |#2|) (-363)))) (-4018 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 192)) (-1426 (((-112)) 226)) (-2361 (($) 19 T CONST)) (-2371 (($) 34 T CONST)) (-2711 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-769)) 133 (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) 132 (|has| (-407 |#2|) (-363))) (($ $ (-642 (-1173)) (-642 (-769))) 134 (-2682 (-2317 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-898 (-1173)))) (-2317 (|has| (-407 |#2|) (-898 (-1173))) (|has| (-407 |#2|) (-363))))) (($ $ (-1173) (-769)) 135 (-2682 (-2317 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-898 (-1173)))) (-2317 (|has| (-407 |#2|) (-898 (-1173))) (|has| (-407 |#2|) (-363))))) (($ $ (-642 (-1173))) 136 (-2682 (-2317 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-898 (-1173)))) (-2317 (|has| (-407 |#2|) (-898 (-1173))) (|has| (-407 |#2|) (-363))))) (($ $ (-1173)) 137 (-2682 (-2317 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-898 (-1173)))) (-2317 (|has| (-407 |#2|) (-898 (-1173))) (|has| (-407 |#2|) (-363))))) (($ $ (-769)) 142 (-2682 (-2317 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-233))) (-2317 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349)))) (($ $) 144 (-2682 (-2317 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-233))) (-2317 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349))))) (-2821 (((-112) $ $) 6)) (-2943 (($ $ $) 129 (|has| (-407 |#2|) (-363)))) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36) (($ $ (-564)) 126 (|has| (-407 |#2|) (-363)))) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ (-407 |#2|)) 46) (($ (-407 |#2|) $) 45) (($ (-407 (-564)) $) 128 (|has| (-407 |#2|) (-363))) (($ $ (-407 (-564))) 127 (|has| (-407 |#2|) (-363))))) -(((-342 |#1| |#2| |#3|) (-140) (-1216) (-1238 |t#1|) (-1238 (-407 |t#2|))) (T -342)) -((-2454 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))) (-5 *2 (-769)))) (-1913 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))) (-5 *2 (-769)))) (-1426 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))) (-5 *2 (-112)))) (-2453 (*1 *2 *3 *3) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))) (-5 *2 (-112)))) (-2994 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))) (-5 *2 (-112)))) (-1314 (*1 *2 *3) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))) (-5 *2 (-112)))) (-1314 (*1 *2 *3) (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1216)) (-4 *3 (-1238 *4)) (-4 *5 (-1238 (-407 *3))) (-5 *2 (-112)))) (-2883 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))) (-5 *2 (-112)))) (-4310 (*1 *2 *3) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))) (-5 *2 (-112)))) (-4310 (*1 *2 *3) (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1216)) (-4 *3 (-1238 *4)) (-4 *5 (-1238 (-407 *3))) (-5 *2 (-112)))) (-3597 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))) (-5 *2 (-112)))) (-3904 (*1 *2 *3) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))) (-5 *2 (-112)))) (-3904 (*1 *2 *3) (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1216)) (-4 *3 (-1238 *4)) (-4 *5 (-1238 (-407 *3))) (-5 *2 (-112)))) (-1315 (*1 *2) (-12 (-4 *3 (-1216)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))) (-5 *2 (-1262 *1)) (-4 *1 (-342 *3 *4 *5)))) (-2474 (*1 *2) (-12 (-4 *3 (-1216)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))) (-5 *2 (-1262 *1)) (-4 *1 (-342 *3 *4 *5)))) (-2781 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))) (-5 *2 (-112)))) (-2633 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))) (-5 *2 (-112)))) (-4140 (*1 *2 *2) (-12 (-5 *2 (-1262 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))))) (-4206 (*1 *2 *2) (-12 (-5 *2 (-1262 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))))) (-1431 (*1 *2 *2) (-12 (-5 *2 (-1262 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))))) (-1654 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))) (-5 *2 (-687 (-407 *4))))) (-2723 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))) (-5 *2 (-687 (-407 *4))))) (-2263 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))) (-5 *2 (-687 (-407 *4))))) (-2058 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))) (-5 *2 (-687 (-407 *4))))) (-2572 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))) (-5 *2 (-2 (|:| |num| (-1262 *4)) (|:| |den| *4))))) (-4087 (*1 *1 *2 *3) (-12 (-5 *2 (-1262 *3)) (-4 *3 (-1238 *4)) (-4 *4 (-1216)) (-4 *1 (-342 *4 *3 *5)) (-4 *5 (-1238 (-407 *3))))) (-1545 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))) (-5 *2 (-2 (|:| |num| (-1262 *4)) (|:| |den| *4))))) (-3116 (*1 *1 *2 *3) (-12 (-5 *2 (-1262 *3)) (-4 *3 (-1238 *4)) (-4 *4 (-1216)) (-4 *1 (-342 *4 *3 *5)) (-4 *5 (-1238 (-407 *3))))) (-2127 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-342 *4 *5 *6)) (-4 *4 (-1216)) (-4 *5 (-1238 *4)) (-4 *6 (-1238 (-407 *5))) (-5 *2 (-2 (|:| |num| (-687 *5)) (|:| |den| *5))))) (-2633 (*1 *2 *1 *3) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))) (-5 *2 (-112)))) (-2633 (*1 *2 *1 *3) (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1216)) (-4 *3 (-1238 *4)) (-4 *5 (-1238 (-407 *3))) (-5 *2 (-112)))) (-2199 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))))) (-2511 (*1 *1 *1) (-12 (-4 *1 (-342 *2 *3 *4)) (-4 *2 (-1216)) (-4 *3 (-1238 *2)) (-4 *4 (-1238 (-407 *3))))) (-4369 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-342 *2 *3 *4)) (-4 *2 (-1216)) (-4 *3 (-1238 *2)) (-4 *4 (-1238 (-407 *3))))) (-3169 (*1 *2) (|partial| -12 (-4 *1 (-342 *3 *2 *4)) (-4 *3 (-1216)) (-4 *4 (-1238 (-407 *2))) (-4 *2 (-1238 *3)))) (-3919 (*1 *2) (|partial| -12 (-4 *1 (-342 *3 *2 *4)) (-4 *3 (-1216)) (-4 *4 (-1238 (-407 *2))) (-4 *2 (-1238 *3)))) (-4018 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1238 *4)) (-4 *4 (-1216)) (-4 *6 (-1238 (-407 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-342 *4 *5 *6)))) (-1319 (*1 *2 *3) (-12 (-5 *3 (-1173)) (-4 *1 (-342 *4 *5 *6)) (-4 *4 (-1216)) (-4 *5 (-1238 *4)) (-4 *6 (-1238 (-407 *5))) (-4 *4 (-363)) (-5 *2 (-642 (-950 *4))))) (-1954 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))) (-4 *3 (-368)) (-5 *2 (-642 (-642 *3)))))) -(-13 (-722 (-407 |t#2|) |t#3|) (-10 -8 (-15 -2454 ((-769))) (-15 -1913 ((-769))) (-15 -1426 ((-112))) (-15 -2453 ((-112) |t#1| |t#1|)) (-15 -2994 ((-112))) (-15 -1314 ((-112) |t#1|)) (-15 -1314 ((-112) |t#2|)) (-15 -2883 ((-112))) (-15 -4310 ((-112) |t#1|)) (-15 -4310 ((-112) |t#2|)) (-15 -3597 ((-112))) (-15 -3904 ((-112) |t#1|)) (-15 -3904 ((-112) |t#2|)) (-15 -1315 ((-1262 $))) (-15 -2474 ((-1262 $))) (-15 -2781 ((-112) $)) (-15 -2633 ((-112) $)) (-15 -4140 ((-1262 $) (-1262 $))) (-15 -4206 ((-1262 $) (-1262 $))) (-15 -1431 ((-1262 $) (-1262 $))) (-15 -1654 ((-687 (-407 |t#2|)))) (-15 -2723 ((-687 (-407 |t#2|)))) (-15 -2263 ((-687 (-407 |t#2|)))) (-15 -2058 ((-687 (-407 |t#2|)))) (-15 -2572 ((-2 (|:| |num| (-1262 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -4087 ($ (-1262 |t#2|) |t#2|)) (-15 -1545 ((-2 (|:| |num| (-1262 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3116 ($ (-1262 |t#2|) |t#2|)) (-15 -2127 ((-2 (|:| |num| (-687 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -2633 ((-112) $ |t#1|)) (-15 -2633 ((-112) $ |t#2|)) (-15 -2199 ($ $ (-1 |t#2| |t#2|))) (-15 -2511 ($ $)) (-15 -4369 (|t#1| $ |t#1| |t#1|)) (-15 -3169 ((-3 |t#2| "failed"))) (-15 -3919 ((-3 |t#2| "failed"))) (-15 -4018 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-363)) (-15 -1319 ((-642 (-950 |t#1|)) (-1173))) |%noBranch|) (IF (|has| |t#1| (-368)) (-15 -1954 ((-642 (-642 |t#1|)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) -2682 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-38 #1=(-407 |#2|)) . T) ((-38 $) -2682 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-102) . T) ((-111 #0# #0#) -2682 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2682 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-145))) ((-147) |has| (-407 |#2|) (-147)) ((-614 #0#) -2682 (|has| (-407 |#2|) (-1036 (-407 (-564)))) (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-614 #1#) . T) ((-614 (-564)) . T) ((-614 $) -2682 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-611 (-860)) . T) ((-172) . T) ((-612 |#3|) . T) ((-231 #1#) |has| (-407 |#2|) (-363)) ((-233) -2682 (|has| (-407 |#2|) (-349)) (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363)))) ((-243) -2682 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-290) -2682 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-307) -2682 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-363) -2682 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-402) |has| (-407 |#2|) (-349)) ((-368) -2682 (|has| (-407 |#2|) (-368)) (|has| (-407 |#2|) (-349))) ((-349) |has| (-407 |#2|) (-349)) ((-370 #1# |#3|) . T) ((-409 #1# |#3|) . T) ((-377 #1#) . T) ((-411 #1#) . T) ((-452) -2682 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-556) -2682 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-644 #0#) -2682 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-644 #1#) . T) ((-644 (-564)) . T) ((-644 $) . T) ((-646 #0#) -2682 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-646 #1#) . T) ((-646 $) . T) ((-638 #0#) -2682 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-638 #1#) . T) ((-638 $) -2682 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-637 #1#) . T) ((-637 (-564)) |has| (-407 |#2|) (-637 (-564))) ((-715 #0#) -2682 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-715 #1#) . T) ((-715 $) -2682 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-722 #1# |#3|) . T) ((-724) . T) ((-898 (-1173)) -12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-898 (-1173)))) ((-918) -2682 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-1036 (-407 (-564))) |has| (-407 |#2|) (-1036 (-407 (-564)))) ((-1036 #1#) . T) ((-1036 (-564)) |has| (-407 |#2|) (-1036 (-564))) ((-1049 #0#) -2682 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-1049 #1#) . T) ((-1049 $) . T) ((-1054 #0#) -2682 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-1054 #1#) . T) ((-1054 $) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T) ((-1148) |has| (-407 |#2|) (-349)) ((-1216) -2682 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363)))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-4252 (($ $) NIL)) (-1722 (((-112) $) NIL)) (-1792 (((-112) $) NIL)) (-1695 (((-769)) NIL)) (-3778 (((-908 |#1|) $) NIL) (($ $ (-919)) NIL (|has| (-908 |#1|) (-368)))) (-3651 (((-1185 (-919) (-769)) (-564)) NIL (|has| (-908 |#1|) (-368)))) (-3085 (((-3 $ "failed") $ $) NIL)) (-1993 (($ $) NIL)) (-3282 (((-418 $) $) NIL)) (-2134 (((-112) $ $) NIL)) (-4003 (((-769)) NIL (|has| (-908 |#1|) (-368)))) (-2822 (($) NIL T CONST)) (-2849 (((-3 (-908 |#1|) "failed") $) NIL)) (-1687 (((-908 |#1|) $) NIL)) (-4087 (($ (-1262 (-908 |#1|))) NIL)) (-2629 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-908 |#1|) (-368)))) (-2796 (($ $ $) NIL)) (-2675 (((-3 $ "failed") $) NIL)) (-3235 (($) NIL (|has| (-908 |#1|) (-368)))) (-2808 (($ $ $) NIL)) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) NIL)) (-1427 (($) NIL (|has| (-908 |#1|) (-368)))) (-4153 (((-112) $) NIL (|has| (-908 |#1|) (-368)))) (-1595 (($ $ (-769)) NIL (-2682 (|has| (-908 |#1|) (-145)) (|has| (-908 |#1|) (-368)))) (($ $) NIL (-2682 (|has| (-908 |#1|) (-145)) (|has| (-908 |#1|) (-368))))) (-3552 (((-112) $) NIL)) (-2408 (((-919) $) NIL (|has| (-908 |#1|) (-368))) (((-831 (-919)) $) NIL (-2682 (|has| (-908 |#1|) (-145)) (|has| (-908 |#1|) (-368))))) (-3163 (((-112) $) NIL)) (-2043 (($) NIL (|has| (-908 |#1|) (-368)))) (-1729 (((-112) $) NIL (|has| (-908 |#1|) (-368)))) (-2573 (((-908 |#1|) $) NIL) (($ $ (-919)) NIL (|has| (-908 |#1|) (-368)))) (-4382 (((-3 $ "failed") $) NIL (|has| (-908 |#1|) (-368)))) (-2709 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2076 (((-1169 (-908 |#1|)) $) NIL) (((-1169 $) $ (-919)) NIL (|has| (-908 |#1|) (-368)))) (-2535 (((-919) $) NIL (|has| (-908 |#1|) (-368)))) (-3607 (((-1169 (-908 |#1|)) $) NIL (|has| (-908 |#1|) (-368)))) (-2480 (((-1169 (-908 |#1|)) $) NIL (|has| (-908 |#1|) (-368))) (((-3 (-1169 (-908 |#1|)) "failed") $ $) NIL (|has| (-908 |#1|) (-368)))) (-2292 (($ $ (-1169 (-908 |#1|))) NIL (|has| (-908 |#1|) (-368)))) (-2066 (($ $ $) NIL) (($ (-642 $)) NIL)) (-1778 (((-1155) $) NIL)) (-2481 (($ $) NIL)) (-3910 (($) NIL (|has| (-908 |#1|) (-368)) CONST)) (-2065 (($ (-919)) NIL (|has| (-908 |#1|) (-368)))) (-1987 (((-112) $) NIL)) (-3999 (((-1117) $) NIL)) (-3528 (((-956 (-1117))) NIL)) (-4043 (($) NIL (|has| (-908 |#1|) (-368)))) (-3464 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2105 (($ $ $) NIL) (($ (-642 $)) NIL)) (-4229 (((-642 (-2 (|:| -2254 (-564)) (|:| -2817 (-564))))) NIL (|has| (-908 |#1|) (-368)))) (-2254 (((-418 $) $) NIL)) (-1878 (((-831 (-919))) NIL) (((-919)) NIL)) (-1877 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2842 (((-3 $ "failed") $ $) NIL)) (-1483 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-4274 (((-769) $) NIL)) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL)) (-1354 (((-769) $) NIL (|has| (-908 |#1|) (-368))) (((-3 (-769) "failed") $ $) NIL (-2682 (|has| (-908 |#1|) (-145)) (|has| (-908 |#1|) (-368))))) (-3677 (((-134)) NIL)) (-2199 (($ $) NIL (|has| (-908 |#1|) (-368))) (($ $ (-769)) NIL (|has| (-908 |#1|) (-368)))) (-3252 (((-831 (-919)) $) NIL) (((-919) $) NIL)) (-1361 (((-1169 (-908 |#1|))) NIL)) (-3553 (($) NIL (|has| (-908 |#1|) (-368)))) (-2911 (($) NIL (|has| (-908 |#1|) (-368)))) (-3719 (((-1262 (-908 |#1|)) $) NIL) (((-687 (-908 |#1|)) (-1262 $)) NIL)) (-3556 (((-3 (-1262 $) "failed") (-687 $)) NIL (|has| (-908 |#1|) (-368)))) (-2390 (((-860) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-908 |#1|)) NIL)) (-3434 (($ $) NIL (|has| (-908 |#1|) (-368))) (((-3 $ "failed") $) NIL (-2682 (|has| (-908 |#1|) (-145)) (|has| (-908 |#1|) (-368))))) (-3348 (((-769)) NIL T CONST)) (-1600 (((-112) $ $) NIL)) (-2131 (((-1262 $)) NIL) (((-1262 $) (-919)) NIL)) (-1594 (((-112) $ $) NIL)) (-4127 (((-112) $) NIL)) (-2361 (($) NIL T CONST)) (-2371 (($) NIL T CONST)) (-1620 (($ $) NIL (|has| (-908 |#1|) (-368))) (($ $ (-769)) NIL (|has| (-908 |#1|) (-368)))) (-2711 (($ $) NIL (|has| (-908 |#1|) (-368))) (($ $ (-769)) NIL (|has| (-908 |#1|) (-368)))) (-2821 (((-112) $ $) NIL)) (-2943 (($ $ $) NIL) (($ $ (-908 |#1|)) NIL)) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ (-908 |#1|)) NIL) (($ (-908 |#1|) $) NIL))) -(((-343 |#1| |#2|) (-13 (-329 (-908 |#1|)) (-10 -7 (-15 -3528 ((-956 (-1117)))))) (-919) (-919)) (T -343)) -((-3528 (*1 *2) (-12 (-5 *2 (-956 (-1117))) (-5 *1 (-343 *3 *4)) (-14 *3 (-919)) (-14 *4 (-919))))) -(-13 (-329 (-908 |#1|)) (-10 -7 (-15 -3528 ((-956 (-1117)))))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) 58)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-4252 (($ $) NIL)) (-1722 (((-112) $) NIL)) (-1792 (((-112) $) NIL)) (-1695 (((-769)) NIL)) (-3778 ((|#1| $) NIL) (($ $ (-919)) NIL (|has| |#1| (-368)))) (-3651 (((-1185 (-919) (-769)) (-564)) 56 (|has| |#1| (-368)))) (-3085 (((-3 $ "failed") $ $) NIL)) (-1993 (($ $) NIL)) (-3282 (((-418 $) $) NIL)) (-2134 (((-112) $ $) NIL)) (-4003 (((-769)) NIL (|has| |#1| (-368)))) (-2822 (($) NIL T CONST)) (-2849 (((-3 |#1| "failed") $) 144)) (-1687 ((|#1| $) 115)) (-4087 (($ (-1262 |#1|)) 132)) (-2629 (((-3 "prime" "polynomial" "normal" "cyclic")) 123 (|has| |#1| (-368)))) (-2796 (($ $ $) NIL)) (-2675 (((-3 $ "failed") $) NIL)) (-3235 (($) 126 (|has| |#1| (-368)))) (-2808 (($ $ $) NIL)) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) NIL)) (-1427 (($) 162 (|has| |#1| (-368)))) (-4153 (((-112) $) 66 (|has| |#1| (-368)))) (-1595 (($ $ (-769)) NIL (-2682 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-2682 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3552 (((-112) $) NIL)) (-2408 (((-919) $) 60 (|has| |#1| (-368))) (((-831 (-919)) $) NIL (-2682 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3163 (((-112) $) 62)) (-2043 (($) 164 (|has| |#1| (-368)))) (-1729 (((-112) $) NIL (|has| |#1| (-368)))) (-2573 ((|#1| $) NIL) (($ $ (-919)) NIL (|has| |#1| (-368)))) (-4382 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-2709 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2076 (((-1169 |#1|) $) 119) (((-1169 $) $ (-919)) NIL (|has| |#1| (-368)))) (-2535 (((-919) $) 173 (|has| |#1| (-368)))) (-3607 (((-1169 |#1|) $) NIL (|has| |#1| (-368)))) (-2480 (((-1169 |#1|) $) NIL (|has| |#1| (-368))) (((-3 (-1169 |#1|) "failed") $ $) NIL (|has| |#1| (-368)))) (-2292 (($ $ (-1169 |#1|)) NIL (|has| |#1| (-368)))) (-2066 (($ $ $) NIL) (($ (-642 $)) NIL)) (-1778 (((-1155) $) NIL)) (-2481 (($ $) 180)) (-3910 (($) NIL (|has| |#1| (-368)) CONST)) (-2065 (($ (-919)) 98 (|has| |#1| (-368)))) (-1987 (((-112) $) 149)) (-3999 (((-1117) $) NIL)) (-3528 (((-956 (-1117))) 57)) (-4043 (($) 160 (|has| |#1| (-368)))) (-3464 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2105 (($ $ $) NIL) (($ (-642 $)) NIL)) (-4229 (((-642 (-2 (|:| -2254 (-564)) (|:| -2817 (-564))))) 121 (|has| |#1| (-368)))) (-2254 (((-418 $) $) NIL)) (-1878 (((-831 (-919))) 92) (((-919)) 93)) (-1877 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2842 (((-3 $ "failed") $ $) NIL)) (-1483 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-4274 (((-769) $) NIL)) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL)) (-1354 (((-769) $) 163 (|has| |#1| (-368))) (((-3 (-769) "failed") $ $) 156 (-2682 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3677 (((-134)) NIL)) (-2199 (($ $) NIL (|has| |#1| (-368))) (($ $ (-769)) NIL (|has| |#1| (-368)))) (-3252 (((-831 (-919)) $) NIL) (((-919) $) NIL)) (-1361 (((-1169 |#1|)) 124)) (-3553 (($) 161 (|has| |#1| (-368)))) (-2911 (($) 169 (|has| |#1| (-368)))) (-3719 (((-1262 |#1|) $) 77) (((-687 |#1|) (-1262 $)) NIL)) (-3556 (((-3 (-1262 $) "failed") (-687 $)) NIL (|has| |#1| (-368)))) (-2390 (((-860) $) 176) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ |#1|) 102)) (-3434 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-2682 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3348 (((-769)) 157 T CONST)) (-1600 (((-112) $ $) NIL)) (-2131 (((-1262 $)) 146) (((-1262 $) (-919)) 100)) (-1594 (((-112) $ $) NIL)) (-4127 (((-112) $) NIL)) (-2361 (($) 67 T CONST)) (-2371 (($) 105 T CONST)) (-1620 (($ $) 109 (|has| |#1| (-368))) (($ $ (-769)) NIL (|has| |#1| (-368)))) (-2711 (($ $) NIL (|has| |#1| (-368))) (($ $ (-769)) NIL (|has| |#1| (-368)))) (-2821 (((-112) $ $) 65)) (-2943 (($ $ $) 178) (($ $ |#1|) 179)) (-2930 (($ $) 159) (($ $ $) NIL)) (-2917 (($ $ $) 86)) (** (($ $ (-919)) 182) (($ $ (-769)) 183) (($ $ (-564)) 181)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 104) (($ $ $) 103) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 177))) -(((-344 |#1| |#2|) (-13 (-329 |#1|) (-10 -7 (-15 -3528 ((-956 (-1117)))))) (-349) (-1169 |#1|)) (T -344)) -((-3528 (*1 *2) (-12 (-5 *2 (-956 (-1117))) (-5 *1 (-344 *3 *4)) (-4 *3 (-349)) (-14 *4 (-1169 *3))))) -(-13 (-329 |#1|) (-10 -7 (-15 -3528 ((-956 (-1117)))))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-4252 (($ $) NIL)) (-1722 (((-112) $) NIL)) (-1792 (((-112) $) NIL)) (-1695 (((-769)) NIL)) (-3778 ((|#1| $) NIL) (($ $ (-919)) NIL (|has| |#1| (-368)))) (-3651 (((-1185 (-919) (-769)) (-564)) NIL (|has| |#1| (-368)))) (-3085 (((-3 $ "failed") $ $) NIL)) (-1993 (($ $) NIL)) (-3282 (((-418 $) $) NIL)) (-2134 (((-112) $ $) NIL)) (-4003 (((-769)) NIL (|has| |#1| (-368)))) (-2822 (($) NIL T CONST)) (-2849 (((-3 |#1| "failed") $) NIL)) (-1687 ((|#1| $) NIL)) (-4087 (($ (-1262 |#1|)) NIL)) (-2629 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-368)))) (-2796 (($ $ $) NIL)) (-2675 (((-3 $ "failed") $) NIL)) (-3235 (($) NIL (|has| |#1| (-368)))) (-2808 (($ $ $) NIL)) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) NIL)) (-1427 (($) NIL (|has| |#1| (-368)))) (-4153 (((-112) $) NIL (|has| |#1| (-368)))) (-1595 (($ $ (-769)) NIL (-2682 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-2682 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3552 (((-112) $) NIL)) (-2408 (((-919) $) NIL (|has| |#1| (-368))) (((-831 (-919)) $) NIL (-2682 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3163 (((-112) $) NIL)) (-2043 (($) NIL (|has| |#1| (-368)))) (-1729 (((-112) $) NIL (|has| |#1| (-368)))) (-2573 ((|#1| $) NIL) (($ $ (-919)) NIL (|has| |#1| (-368)))) (-4382 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-2709 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2076 (((-1169 |#1|) $) NIL) (((-1169 $) $ (-919)) NIL (|has| |#1| (-368)))) (-2535 (((-919) $) NIL (|has| |#1| (-368)))) (-3607 (((-1169 |#1|) $) NIL (|has| |#1| (-368)))) (-2480 (((-1169 |#1|) $) NIL (|has| |#1| (-368))) (((-3 (-1169 |#1|) "failed") $ $) NIL (|has| |#1| (-368)))) (-2292 (($ $ (-1169 |#1|)) NIL (|has| |#1| (-368)))) (-2066 (($ $ $) NIL) (($ (-642 $)) NIL)) (-1778 (((-1155) $) NIL)) (-2481 (($ $) NIL)) (-3910 (($) NIL (|has| |#1| (-368)) CONST)) (-2065 (($ (-919)) NIL (|has| |#1| (-368)))) (-1987 (((-112) $) NIL)) (-3999 (((-1117) $) NIL)) (-3528 (((-956 (-1117))) NIL)) (-4043 (($) NIL (|has| |#1| (-368)))) (-3464 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2105 (($ $ $) NIL) (($ (-642 $)) NIL)) (-4229 (((-642 (-2 (|:| -2254 (-564)) (|:| -2817 (-564))))) NIL (|has| |#1| (-368)))) (-2254 (((-418 $) $) NIL)) (-1878 (((-831 (-919))) NIL) (((-919)) NIL)) (-1877 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2842 (((-3 $ "failed") $ $) NIL)) (-1483 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-4274 (((-769) $) NIL)) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL)) (-1354 (((-769) $) NIL (|has| |#1| (-368))) (((-3 (-769) "failed") $ $) NIL (-2682 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3677 (((-134)) NIL)) (-2199 (($ $) NIL (|has| |#1| (-368))) (($ $ (-769)) NIL (|has| |#1| (-368)))) (-3252 (((-831 (-919)) $) NIL) (((-919) $) NIL)) (-1361 (((-1169 |#1|)) NIL)) (-3553 (($) NIL (|has| |#1| (-368)))) (-2911 (($) NIL (|has| |#1| (-368)))) (-3719 (((-1262 |#1|) $) NIL) (((-687 |#1|) (-1262 $)) NIL)) (-3556 (((-3 (-1262 $) "failed") (-687 $)) NIL (|has| |#1| (-368)))) (-2390 (((-860) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ |#1|) NIL)) (-3434 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-2682 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3348 (((-769)) NIL T CONST)) (-1600 (((-112) $ $) NIL)) (-2131 (((-1262 $)) NIL) (((-1262 $) (-919)) NIL)) (-1594 (((-112) $ $) NIL)) (-4127 (((-112) $) NIL)) (-2361 (($) NIL T CONST)) (-2371 (($) NIL T CONST)) (-1620 (($ $) NIL (|has| |#1| (-368))) (($ $ (-769)) NIL (|has| |#1| (-368)))) (-2711 (($ $) NIL (|has| |#1| (-368))) (($ $ (-769)) NIL (|has| |#1| (-368)))) (-2821 (((-112) $ $) NIL)) (-2943 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-345 |#1| |#2|) (-13 (-329 |#1|) (-10 -7 (-15 -3528 ((-956 (-1117)))))) (-349) (-919)) (T -345)) -((-3528 (*1 *2) (-12 (-5 *2 (-956 (-1117))) (-5 *1 (-345 *3 *4)) (-4 *3 (-349)) (-14 *4 (-919))))) -(-13 (-329 |#1|) (-10 -7 (-15 -3528 ((-956 (-1117)))))) -((-2369 (((-769) (-1262 (-642 (-2 (|:| -2108 |#1|) (|:| -2065 (-1117)))))) 61)) (-2189 (((-956 (-1117)) (-1169 |#1|)) 113)) (-2286 (((-1262 (-642 (-2 (|:| -2108 |#1|) (|:| -2065 (-1117))))) (-1169 |#1|)) 105)) (-1403 (((-687 |#1|) (-1262 (-642 (-2 (|:| -2108 |#1|) (|:| -2065 (-1117)))))) 115)) (-3971 (((-3 (-1262 (-642 (-2 (|:| -2108 |#1|) (|:| -2065 (-1117))))) "failed") (-919)) 13)) (-1708 (((-3 (-1169 |#1|) (-1262 (-642 (-2 (|:| -2108 |#1|) (|:| -2065 (-1117)))))) (-919)) 18))) -(((-346 |#1|) (-10 -7 (-15 -2189 ((-956 (-1117)) (-1169 |#1|))) (-15 -2286 ((-1262 (-642 (-2 (|:| -2108 |#1|) (|:| -2065 (-1117))))) (-1169 |#1|))) (-15 -1403 ((-687 |#1|) (-1262 (-642 (-2 (|:| -2108 |#1|) (|:| -2065 (-1117))))))) (-15 -2369 ((-769) (-1262 (-642 (-2 (|:| -2108 |#1|) (|:| -2065 (-1117))))))) (-15 -3971 ((-3 (-1262 (-642 (-2 (|:| -2108 |#1|) (|:| -2065 (-1117))))) "failed") (-919))) (-15 -1708 ((-3 (-1169 |#1|) (-1262 (-642 (-2 (|:| -2108 |#1|) (|:| -2065 (-1117)))))) (-919)))) (-349)) (T -346)) -((-1708 (*1 *2 *3) (-12 (-5 *3 (-919)) (-5 *2 (-3 (-1169 *4) (-1262 (-642 (-2 (|:| -2108 *4) (|:| -2065 (-1117))))))) (-5 *1 (-346 *4)) (-4 *4 (-349)))) (-3971 (*1 *2 *3) (|partial| -12 (-5 *3 (-919)) (-5 *2 (-1262 (-642 (-2 (|:| -2108 *4) (|:| -2065 (-1117)))))) (-5 *1 (-346 *4)) (-4 *4 (-349)))) (-2369 (*1 *2 *3) (-12 (-5 *3 (-1262 (-642 (-2 (|:| -2108 *4) (|:| -2065 (-1117)))))) (-4 *4 (-349)) (-5 *2 (-769)) (-5 *1 (-346 *4)))) (-1403 (*1 *2 *3) (-12 (-5 *3 (-1262 (-642 (-2 (|:| -2108 *4) (|:| -2065 (-1117)))))) (-4 *4 (-349)) (-5 *2 (-687 *4)) (-5 *1 (-346 *4)))) (-2286 (*1 *2 *3) (-12 (-5 *3 (-1169 *4)) (-4 *4 (-349)) (-5 *2 (-1262 (-642 (-2 (|:| -2108 *4) (|:| -2065 (-1117)))))) (-5 *1 (-346 *4)))) (-2189 (*1 *2 *3) (-12 (-5 *3 (-1169 *4)) (-4 *4 (-349)) (-5 *2 (-956 (-1117))) (-5 *1 (-346 *4))))) -(-10 -7 (-15 -2189 ((-956 (-1117)) (-1169 |#1|))) (-15 -2286 ((-1262 (-642 (-2 (|:| -2108 |#1|) (|:| -2065 (-1117))))) (-1169 |#1|))) (-15 -1403 ((-687 |#1|) (-1262 (-642 (-2 (|:| -2108 |#1|) (|:| -2065 (-1117))))))) (-15 -2369 ((-769) (-1262 (-642 (-2 (|:| -2108 |#1|) (|:| -2065 (-1117))))))) (-15 -3971 ((-3 (-1262 (-642 (-2 (|:| -2108 |#1|) (|:| -2065 (-1117))))) "failed") (-919))) (-15 -1708 ((-3 (-1169 |#1|) (-1262 (-642 (-2 (|:| -2108 |#1|) (|:| -2065 (-1117)))))) (-919)))) -((-2390 ((|#1| |#3|) 108) ((|#3| |#1|) 91))) -(((-347 |#1| |#2| |#3|) (-10 -7 (-15 -2390 (|#3| |#1|)) (-15 -2390 (|#1| |#3|))) (-329 |#2|) (-349) (-329 |#2|)) (T -347)) -((-2390 (*1 *2 *3) (-12 (-4 *4 (-349)) (-4 *2 (-329 *4)) (-5 *1 (-347 *2 *4 *3)) (-4 *3 (-329 *4)))) (-2390 (*1 *2 *3) (-12 (-4 *4 (-349)) (-4 *2 (-329 *4)) (-5 *1 (-347 *3 *4 *2)) (-4 *3 (-329 *4))))) -(-10 -7 (-15 -2390 (|#3| |#1|)) (-15 -2390 (|#1| |#3|))) -((-4153 (((-112) $) 60)) (-2408 (((-831 (-919)) $) 23) (((-919) $) 66)) (-4382 (((-3 $ "failed") $) 18)) (-3910 (($) 9)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) 116)) (-1354 (((-3 (-769) "failed") $ $) 94) (((-769) $) 81)) (-2199 (($ $ (-769)) NIL) (($ $) 8)) (-3553 (($) 53)) (-3556 (((-3 (-1262 $) "failed") (-687 $)) 38)) (-3434 (((-3 $ "failed") $) 45) (($ $) 44))) -(((-348 |#1|) (-10 -8 (-15 -2408 ((-919) |#1|)) (-15 -1354 ((-769) |#1|)) (-15 -4153 ((-112) |#1|)) (-15 -3553 (|#1|)) (-15 -3556 ((-3 (-1262 |#1|) "failed") (-687 |#1|))) (-15 -3434 (|#1| |#1|)) (-15 -2199 (|#1| |#1|)) (-15 -2199 (|#1| |#1| (-769))) (-15 -3910 (|#1|)) (-15 -4382 ((-3 |#1| "failed") |#1|)) (-15 -1354 ((-3 (-769) "failed") |#1| |#1|)) (-15 -2408 ((-831 (-919)) |#1|)) (-15 -3434 ((-3 |#1| "failed") |#1|)) (-15 -3464 ((-1169 |#1|) (-1169 |#1|) (-1169 |#1|)))) (-349)) (T -348)) -NIL -(-10 -8 (-15 -2408 ((-919) |#1|)) (-15 -1354 ((-769) |#1|)) (-15 -4153 ((-112) |#1|)) (-15 -3553 (|#1|)) (-15 -3556 ((-3 (-1262 |#1|) "failed") (-687 |#1|))) (-15 -3434 (|#1| |#1|)) (-15 -2199 (|#1| |#1|)) (-15 -2199 (|#1| |#1| (-769))) (-15 -3910 (|#1|)) (-15 -4382 ((-3 |#1| "failed") |#1|)) (-15 -1354 ((-3 (-769) "failed") |#1| |#1|)) (-15 -2408 ((-831 (-919)) |#1|)) (-15 -3434 ((-3 |#1| "failed") |#1|)) (-15 -3464 ((-1169 |#1|) (-1169 |#1|) (-1169 |#1|)))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) 47)) (-4252 (($ $) 46)) (-1722 (((-112) $) 44)) (-3651 (((-1185 (-919) (-769)) (-564)) 101)) (-3085 (((-3 $ "failed") $ $) 20)) (-1993 (($ $) 81)) (-3282 (((-418 $) $) 80)) (-2134 (((-112) $ $) 65)) (-4003 (((-769)) 111)) (-2822 (($) 18 T CONST)) (-2629 (((-3 "prime" "polynomial" "normal" "cyclic")) 95)) (-2796 (($ $ $) 61)) (-2675 (((-3 $ "failed") $) 37)) (-3235 (($) 114)) (-2808 (($ $ $) 62)) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) 57)) (-1427 (($) 99)) (-4153 (((-112) $) 98)) (-1595 (($ $) 87) (($ $ (-769)) 86)) (-3552 (((-112) $) 79)) (-2408 (((-831 (-919)) $) 89) (((-919) $) 96)) (-3163 (((-112) $) 35)) (-4382 (((-3 $ "failed") $) 110)) (-2709 (((-3 (-642 $) "failed") (-642 $) $) 58)) (-2535 (((-919) $) 113)) (-2066 (($ $ $) 52) (($ (-642 $)) 51)) (-1778 (((-1155) $) 10)) (-2481 (($ $) 78)) (-3910 (($) 109 T CONST)) (-2065 (($ (-919)) 112)) (-3999 (((-1117) $) 11)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) 50)) (-2105 (($ $ $) 54) (($ (-642 $)) 53)) (-4229 (((-642 (-2 (|:| -2254 (-564)) (|:| -2817 (-564))))) 102)) (-2254 (((-418 $) $) 82)) (-1877 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2842 (((-3 $ "failed") $ $) 48)) (-1483 (((-3 (-642 $) "failed") (-642 $) $) 56)) (-4274 (((-769) $) 64)) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) 63)) (-1354 (((-3 (-769) "failed") $ $) 88) (((-769) $) 97)) (-2199 (($ $ (-769)) 107) (($ $) 105)) (-3553 (($) 100)) (-3556 (((-3 (-1262 $) "failed") (-687 $)) 103)) (-2390 (((-860) $) 12) (($ (-564)) 33) (($ $) 49) (($ (-407 (-564))) 74)) (-3434 (((-3 $ "failed") $) 90) (($ $) 104)) (-3348 (((-769)) 32 T CONST)) (-1600 (((-112) $ $) 9)) (-1594 (((-112) $ $) 45)) (-2361 (($) 19 T CONST)) (-2371 (($) 34 T CONST)) (-2711 (($ $ (-769)) 108) (($ $) 106)) (-2821 (((-112) $ $) 6)) (-2943 (($ $ $) 73)) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36) (($ $ (-564)) 77)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ (-407 (-564))) 76) (($ (-407 (-564)) $) 75))) -(((-349) (-140)) (T -349)) -((-3434 (*1 *1 *1) (-4 *1 (-349))) (-3556 (*1 *2 *3) (|partial| -12 (-5 *3 (-687 *1)) (-4 *1 (-349)) (-5 *2 (-1262 *1)))) (-4229 (*1 *2) (-12 (-4 *1 (-349)) (-5 *2 (-642 (-2 (|:| -2254 (-564)) (|:| -2817 (-564))))))) (-3651 (*1 *2 *3) (-12 (-4 *1 (-349)) (-5 *3 (-564)) (-5 *2 (-1185 (-919) (-769))))) (-3553 (*1 *1) (-4 *1 (-349))) (-1427 (*1 *1) (-4 *1 (-349))) (-4153 (*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-112)))) (-1354 (*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-769)))) (-2408 (*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-919)))) (-2629 (*1 *2) (-12 (-4 *1 (-349)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(-13 (-402) (-368) (-1148) (-233) (-10 -8 (-15 -3434 ($ $)) (-15 -3556 ((-3 (-1262 $) "failed") (-687 $))) (-15 -4229 ((-642 (-2 (|:| -2254 (-564)) (|:| -2817 (-564)))))) (-15 -3651 ((-1185 (-919) (-769)) (-564))) (-15 -3553 ($)) (-15 -1427 ($)) (-15 -4153 ((-112) $)) (-15 -1354 ((-769) $)) (-15 -2408 ((-919) $)) (-15 -2629 ((-3 "prime" "polynomial" "normal" "cyclic"))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) . T) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-860)) . T) ((-172) . T) ((-233) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-402) . T) ((-368) . T) ((-452) . T) ((-556) . T) ((-644 #0#) . T) ((-644 (-564)) . T) ((-644 $) . T) ((-646 #0#) . T) ((-646 $) . T) ((-638 #0#) . T) ((-638 $) . T) ((-715 #0#) . T) ((-715 $) . T) ((-724) . T) ((-918) . T) ((-1049 #0#) . T) ((-1049 $) . T) ((-1054 #0#) . T) ((-1054 $) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T) ((-1148) . T) ((-1216) . T)) -((-1806 (((-2 (|:| -2131 (-687 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-687 |#1|))) |#1|) 55)) (-1315 (((-2 (|:| -2131 (-687 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-687 |#1|)))) 53))) -(((-350 |#1| |#2| |#3|) (-10 -7 (-15 -1315 ((-2 (|:| -2131 (-687 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-687 |#1|))))) (-15 -1806 ((-2 (|:| -2131 (-687 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-687 |#1|))) |#1|))) (-13 (-307) (-10 -8 (-15 -3282 ((-418 $) $)))) (-1238 |#1|) (-409 |#1| |#2|)) (T -350)) -((-1806 (*1 *2 *3) (-12 (-4 *3 (-13 (-307) (-10 -8 (-15 -3282 ((-418 $) $))))) (-4 *4 (-1238 *3)) (-5 *2 (-2 (|:| -2131 (-687 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-687 *3)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-1315 (*1 *2) (-12 (-4 *3 (-13 (-307) (-10 -8 (-15 -3282 ((-418 $) $))))) (-4 *4 (-1238 *3)) (-5 *2 (-2 (|:| -2131 (-687 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-687 *3)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-409 *3 *4))))) -(-10 -7 (-15 -1315 ((-2 (|:| -2131 (-687 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-687 |#1|))))) (-15 -1806 ((-2 (|:| -2131 (-687 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-687 |#1|))) |#1|))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-4252 (($ $) NIL)) (-1722 (((-112) $) NIL)) (-1792 (((-112) $) NIL)) (-1695 (((-769)) NIL)) (-3778 (((-908 |#1|) $) NIL) (($ $ (-919)) NIL (|has| (-908 |#1|) (-368)))) (-3651 (((-1185 (-919) (-769)) (-564)) NIL (|has| (-908 |#1|) (-368)))) (-3085 (((-3 $ "failed") $ $) NIL)) (-1993 (($ $) NIL)) (-3282 (((-418 $) $) NIL)) (-2369 (((-769)) NIL)) (-2134 (((-112) $ $) NIL)) (-4003 (((-769)) NIL (|has| (-908 |#1|) (-368)))) (-2822 (($) NIL T CONST)) (-2849 (((-3 (-908 |#1|) "failed") $) NIL)) (-1687 (((-908 |#1|) $) NIL)) (-4087 (($ (-1262 (-908 |#1|))) NIL)) (-2629 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-908 |#1|) (-368)))) (-2796 (($ $ $) NIL)) (-2675 (((-3 $ "failed") $) NIL)) (-3235 (($) NIL (|has| (-908 |#1|) (-368)))) (-2808 (($ $ $) NIL)) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) NIL)) (-1427 (($) NIL (|has| (-908 |#1|) (-368)))) (-4153 (((-112) $) NIL (|has| (-908 |#1|) (-368)))) (-1595 (($ $ (-769)) NIL (-2682 (|has| (-908 |#1|) (-145)) (|has| (-908 |#1|) (-368)))) (($ $) NIL (-2682 (|has| (-908 |#1|) (-145)) (|has| (-908 |#1|) (-368))))) (-3552 (((-112) $) NIL)) (-2408 (((-919) $) NIL (|has| (-908 |#1|) (-368))) (((-831 (-919)) $) NIL (-2682 (|has| (-908 |#1|) (-145)) (|has| (-908 |#1|) (-368))))) (-3163 (((-112) $) NIL)) (-2043 (($) NIL (|has| (-908 |#1|) (-368)))) (-1729 (((-112) $) NIL (|has| (-908 |#1|) (-368)))) (-2573 (((-908 |#1|) $) NIL) (($ $ (-919)) NIL (|has| (-908 |#1|) (-368)))) (-4382 (((-3 $ "failed") $) NIL (|has| (-908 |#1|) (-368)))) (-2709 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2076 (((-1169 (-908 |#1|)) $) NIL) (((-1169 $) $ (-919)) NIL (|has| (-908 |#1|) (-368)))) (-2535 (((-919) $) NIL (|has| (-908 |#1|) (-368)))) (-3607 (((-1169 (-908 |#1|)) $) NIL (|has| (-908 |#1|) (-368)))) (-2480 (((-1169 (-908 |#1|)) $) NIL (|has| (-908 |#1|) (-368))) (((-3 (-1169 (-908 |#1|)) "failed") $ $) NIL (|has| (-908 |#1|) (-368)))) (-2292 (($ $ (-1169 (-908 |#1|))) NIL (|has| (-908 |#1|) (-368)))) (-2066 (($ $ $) NIL) (($ (-642 $)) NIL)) (-1778 (((-1155) $) NIL)) (-2481 (($ $) NIL)) (-3910 (($) NIL (|has| (-908 |#1|) (-368)) CONST)) (-2065 (($ (-919)) NIL (|has| (-908 |#1|) (-368)))) (-1987 (((-112) $) NIL)) (-3999 (((-1117) $) NIL)) (-3185 (((-1262 (-642 (-2 (|:| -2108 (-908 |#1|)) (|:| -2065 (-1117)))))) NIL)) (-2935 (((-687 (-908 |#1|))) NIL)) (-4043 (($) NIL (|has| (-908 |#1|) (-368)))) (-3464 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2105 (($ $ $) NIL) (($ (-642 $)) NIL)) (-4229 (((-642 (-2 (|:| -2254 (-564)) (|:| -2817 (-564))))) NIL (|has| (-908 |#1|) (-368)))) (-2254 (((-418 $) $) NIL)) (-1878 (((-831 (-919))) NIL) (((-919)) NIL)) (-1877 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2842 (((-3 $ "failed") $ $) NIL)) (-1483 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-4274 (((-769) $) NIL)) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL)) (-1354 (((-769) $) NIL (|has| (-908 |#1|) (-368))) (((-3 (-769) "failed") $ $) NIL (-2682 (|has| (-908 |#1|) (-145)) (|has| (-908 |#1|) (-368))))) (-3677 (((-134)) NIL)) (-2199 (($ $) NIL (|has| (-908 |#1|) (-368))) (($ $ (-769)) NIL (|has| (-908 |#1|) (-368)))) (-3252 (((-831 (-919)) $) NIL) (((-919) $) NIL)) (-1361 (((-1169 (-908 |#1|))) NIL)) (-3553 (($) NIL (|has| (-908 |#1|) (-368)))) (-2911 (($) NIL (|has| (-908 |#1|) (-368)))) (-3719 (((-1262 (-908 |#1|)) $) NIL) (((-687 (-908 |#1|)) (-1262 $)) NIL)) (-3556 (((-3 (-1262 $) "failed") (-687 $)) NIL (|has| (-908 |#1|) (-368)))) (-2390 (((-860) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-908 |#1|)) NIL)) (-3434 (($ $) NIL (|has| (-908 |#1|) (-368))) (((-3 $ "failed") $) NIL (-2682 (|has| (-908 |#1|) (-145)) (|has| (-908 |#1|) (-368))))) (-3348 (((-769)) NIL T CONST)) (-1600 (((-112) $ $) NIL)) (-2131 (((-1262 $)) NIL) (((-1262 $) (-919)) NIL)) (-1594 (((-112) $ $) NIL)) (-4127 (((-112) $) NIL)) (-2361 (($) NIL T CONST)) (-2371 (($) NIL T CONST)) (-1620 (($ $) NIL (|has| (-908 |#1|) (-368))) (($ $ (-769)) NIL (|has| (-908 |#1|) (-368)))) (-2711 (($ $) NIL (|has| (-908 |#1|) (-368))) (($ $ (-769)) NIL (|has| (-908 |#1|) (-368)))) (-2821 (((-112) $ $) NIL)) (-2943 (($ $ $) NIL) (($ $ (-908 |#1|)) NIL)) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ (-908 |#1|)) NIL) (($ (-908 |#1|) $) NIL))) -(((-351 |#1| |#2|) (-13 (-329 (-908 |#1|)) (-10 -7 (-15 -3185 ((-1262 (-642 (-2 (|:| -2108 (-908 |#1|)) (|:| -2065 (-1117))))))) (-15 -2935 ((-687 (-908 |#1|)))) (-15 -2369 ((-769))))) (-919) (-919)) (T -351)) -((-3185 (*1 *2) (-12 (-5 *2 (-1262 (-642 (-2 (|:| -2108 (-908 *3)) (|:| -2065 (-1117)))))) (-5 *1 (-351 *3 *4)) (-14 *3 (-919)) (-14 *4 (-919)))) (-2935 (*1 *2) (-12 (-5 *2 (-687 (-908 *3))) (-5 *1 (-351 *3 *4)) (-14 *3 (-919)) (-14 *4 (-919)))) (-2369 (*1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-351 *3 *4)) (-14 *3 (-919)) (-14 *4 (-919))))) -(-13 (-329 (-908 |#1|)) (-10 -7 (-15 -3185 ((-1262 (-642 (-2 (|:| -2108 (-908 |#1|)) (|:| -2065 (-1117))))))) (-15 -2935 ((-687 (-908 |#1|)))) (-15 -2369 ((-769))))) -((-2856 (((-112) $ $) 76)) (-2950 (((-112) $) 90)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-4252 (($ $) NIL)) (-1722 (((-112) $) NIL)) (-1792 (((-112) $) NIL)) (-1695 (((-769)) NIL)) (-3778 ((|#1| $) 108) (($ $ (-919)) 106 (|has| |#1| (-368)))) (-3651 (((-1185 (-919) (-769)) (-564)) 177 (|has| |#1| (-368)))) (-3085 (((-3 $ "failed") $ $) NIL)) (-1993 (($ $) NIL)) (-3282 (((-418 $) $) NIL)) (-2369 (((-769)) 105)) (-2134 (((-112) $ $) NIL)) (-4003 (((-769)) 193 (|has| |#1| (-368)))) (-2822 (($) NIL T CONST)) (-2849 (((-3 |#1| "failed") $) 130)) (-1687 ((|#1| $) 107)) (-4087 (($ (-1262 |#1|)) 74)) (-2629 (((-3 "prime" "polynomial" "normal" "cyclic")) 219 (|has| |#1| (-368)))) (-2796 (($ $ $) NIL)) (-2675 (((-3 $ "failed") $) NIL)) (-3235 (($) 189 (|has| |#1| (-368)))) (-2808 (($ $ $) NIL)) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) NIL)) (-1427 (($) 178 (|has| |#1| (-368)))) (-4153 (((-112) $) NIL (|has| |#1| (-368)))) (-1595 (($ $ (-769)) NIL (-2682 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-2682 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3552 (((-112) $) NIL)) (-2408 (((-919) $) NIL (|has| |#1| (-368))) (((-831 (-919)) $) NIL (-2682 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3163 (((-112) $) NIL)) (-2043 (($) 116 (|has| |#1| (-368)))) (-1729 (((-112) $) 206 (|has| |#1| (-368)))) (-2573 ((|#1| $) 110) (($ $ (-919)) 109 (|has| |#1| (-368)))) (-4382 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-2709 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2076 (((-1169 |#1|) $) 220) (((-1169 $) $ (-919)) NIL (|has| |#1| (-368)))) (-2535 (((-919) $) 154 (|has| |#1| (-368)))) (-3607 (((-1169 |#1|) $) 89 (|has| |#1| (-368)))) (-2480 (((-1169 |#1|) $) 86 (|has| |#1| (-368))) (((-3 (-1169 |#1|) "failed") $ $) 98 (|has| |#1| (-368)))) (-2292 (($ $ (-1169 |#1|)) 85 (|has| |#1| (-368)))) (-2066 (($ $ $) NIL) (($ (-642 $)) NIL)) (-1778 (((-1155) $) NIL)) (-2481 (($ $) 224)) (-3910 (($) NIL (|has| |#1| (-368)) CONST)) (-2065 (($ (-919)) 157 (|has| |#1| (-368)))) (-1987 (((-112) $) 126)) (-3999 (((-1117) $) NIL)) (-3185 (((-1262 (-642 (-2 (|:| -2108 |#1|) (|:| -2065 (-1117)))))) 99)) (-2935 (((-687 |#1|)) 103)) (-4043 (($) 112 (|has| |#1| (-368)))) (-3464 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2105 (($ $ $) NIL) (($ (-642 $)) NIL)) (-4229 (((-642 (-2 (|:| -2254 (-564)) (|:| -2817 (-564))))) 180 (|has| |#1| (-368)))) (-2254 (((-418 $) $) NIL)) (-1878 (((-831 (-919))) NIL) (((-919)) 181)) (-1877 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2842 (((-3 $ "failed") $ $) NIL)) (-1483 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-4274 (((-769) $) NIL)) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL)) (-1354 (((-769) $) NIL (|has| |#1| (-368))) (((-3 (-769) "failed") $ $) NIL (-2682 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3677 (((-134)) NIL)) (-2199 (($ $) NIL (|has| |#1| (-368))) (($ $ (-769)) NIL (|has| |#1| (-368)))) (-3252 (((-831 (-919)) $) NIL) (((-919) $) 78)) (-1361 (((-1169 |#1|)) 182)) (-3553 (($) 153 (|has| |#1| (-368)))) (-2911 (($) NIL (|has| |#1| (-368)))) (-3719 (((-1262 |#1|) $) 124) (((-687 |#1|) (-1262 $)) NIL)) (-3556 (((-3 (-1262 $) "failed") (-687 $)) NIL (|has| |#1| (-368)))) (-2390 (((-860) $) 146) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ |#1|) 73)) (-3434 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-2682 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3348 (((-769)) 187 T CONST)) (-1600 (((-112) $ $) NIL)) (-2131 (((-1262 $)) 203) (((-1262 $) (-919)) 119)) (-1594 (((-112) $ $) NIL)) (-4127 (((-112) $) NIL)) (-2361 (($) 140 T CONST)) (-2371 (($) 44 T CONST)) (-1620 (($ $) 125 (|has| |#1| (-368))) (($ $ (-769)) 117 (|has| |#1| (-368)))) (-2711 (($ $) NIL (|has| |#1| (-368))) (($ $ (-769)) NIL (|has| |#1| (-368)))) (-2821 (((-112) $ $) 214)) (-2943 (($ $ $) 122) (($ $ |#1|) 123)) (-2930 (($ $) 208) (($ $ $) 212)) (-2917 (($ $ $) 210)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) 159)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 217) (($ $ $) 171) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 121))) -(((-352 |#1| |#2|) (-13 (-329 |#1|) (-10 -7 (-15 -3185 ((-1262 (-642 (-2 (|:| -2108 |#1|) (|:| -2065 (-1117))))))) (-15 -2935 ((-687 |#1|))) (-15 -2369 ((-769))))) (-349) (-3 (-1169 |#1|) (-1262 (-642 (-2 (|:| -2108 |#1|) (|:| -2065 (-1117))))))) (T -352)) -((-3185 (*1 *2) (-12 (-5 *2 (-1262 (-642 (-2 (|:| -2108 *3) (|:| -2065 (-1117)))))) (-5 *1 (-352 *3 *4)) (-4 *3 (-349)) (-14 *4 (-3 (-1169 *3) *2)))) (-2935 (*1 *2) (-12 (-5 *2 (-687 *3)) (-5 *1 (-352 *3 *4)) (-4 *3 (-349)) (-14 *4 (-3 (-1169 *3) (-1262 (-642 (-2 (|:| -2108 *3) (|:| -2065 (-1117))))))))) (-2369 (*1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-352 *3 *4)) (-4 *3 (-349)) (-14 *4 (-3 (-1169 *3) (-1262 (-642 (-2 (|:| -2108 *3) (|:| -2065 (-1117)))))))))) -(-13 (-329 |#1|) (-10 -7 (-15 -3185 ((-1262 (-642 (-2 (|:| -2108 |#1|) (|:| -2065 (-1117))))))) (-15 -2935 ((-687 |#1|))) (-15 -2369 ((-769))))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-4252 (($ $) NIL)) (-1722 (((-112) $) NIL)) (-1792 (((-112) $) NIL)) (-1695 (((-769)) NIL)) (-3778 ((|#1| $) NIL) (($ $ (-919)) NIL (|has| |#1| (-368)))) (-3651 (((-1185 (-919) (-769)) (-564)) NIL (|has| |#1| (-368)))) (-3085 (((-3 $ "failed") $ $) NIL)) (-1993 (($ $) NIL)) (-3282 (((-418 $) $) NIL)) (-2369 (((-769)) NIL)) (-2134 (((-112) $ $) NIL)) (-4003 (((-769)) NIL (|has| |#1| (-368)))) (-2822 (($) NIL T CONST)) (-2849 (((-3 |#1| "failed") $) NIL)) (-1687 ((|#1| $) NIL)) (-4087 (($ (-1262 |#1|)) NIL)) (-2629 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-368)))) (-2796 (($ $ $) NIL)) (-2675 (((-3 $ "failed") $) NIL)) (-3235 (($) NIL (|has| |#1| (-368)))) (-2808 (($ $ $) NIL)) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) NIL)) (-1427 (($) NIL (|has| |#1| (-368)))) (-4153 (((-112) $) NIL (|has| |#1| (-368)))) (-1595 (($ $ (-769)) NIL (-2682 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-2682 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3552 (((-112) $) NIL)) (-2408 (((-919) $) NIL (|has| |#1| (-368))) (((-831 (-919)) $) NIL (-2682 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3163 (((-112) $) NIL)) (-2043 (($) NIL (|has| |#1| (-368)))) (-1729 (((-112) $) NIL (|has| |#1| (-368)))) (-2573 ((|#1| $) NIL) (($ $ (-919)) NIL (|has| |#1| (-368)))) (-4382 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-2709 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2076 (((-1169 |#1|) $) NIL) (((-1169 $) $ (-919)) NIL (|has| |#1| (-368)))) (-2535 (((-919) $) NIL (|has| |#1| (-368)))) (-3607 (((-1169 |#1|) $) NIL (|has| |#1| (-368)))) (-2480 (((-1169 |#1|) $) NIL (|has| |#1| (-368))) (((-3 (-1169 |#1|) "failed") $ $) NIL (|has| |#1| (-368)))) (-2292 (($ $ (-1169 |#1|)) NIL (|has| |#1| (-368)))) (-2066 (($ $ $) NIL) (($ (-642 $)) NIL)) (-1778 (((-1155) $) NIL)) (-2481 (($ $) NIL)) (-3910 (($) NIL (|has| |#1| (-368)) CONST)) (-2065 (($ (-919)) NIL (|has| |#1| (-368)))) (-1987 (((-112) $) NIL)) (-3999 (((-1117) $) NIL)) (-3185 (((-1262 (-642 (-2 (|:| -2108 |#1|) (|:| -2065 (-1117)))))) NIL)) (-2935 (((-687 |#1|)) NIL)) (-4043 (($) NIL (|has| |#1| (-368)))) (-3464 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2105 (($ $ $) NIL) (($ (-642 $)) NIL)) (-4229 (((-642 (-2 (|:| -2254 (-564)) (|:| -2817 (-564))))) NIL (|has| |#1| (-368)))) (-2254 (((-418 $) $) NIL)) (-1878 (((-831 (-919))) NIL) (((-919)) NIL)) (-1877 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2842 (((-3 $ "failed") $ $) NIL)) (-1483 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-4274 (((-769) $) NIL)) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL)) (-1354 (((-769) $) NIL (|has| |#1| (-368))) (((-3 (-769) "failed") $ $) NIL (-2682 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3677 (((-134)) NIL)) (-2199 (($ $) NIL (|has| |#1| (-368))) (($ $ (-769)) NIL (|has| |#1| (-368)))) (-3252 (((-831 (-919)) $) NIL) (((-919) $) NIL)) (-1361 (((-1169 |#1|)) NIL)) (-3553 (($) NIL (|has| |#1| (-368)))) (-2911 (($) NIL (|has| |#1| (-368)))) (-3719 (((-1262 |#1|) $) NIL) (((-687 |#1|) (-1262 $)) NIL)) (-3556 (((-3 (-1262 $) "failed") (-687 $)) NIL (|has| |#1| (-368)))) (-2390 (((-860) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ |#1|) NIL)) (-3434 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-2682 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3348 (((-769)) NIL T CONST)) (-1600 (((-112) $ $) NIL)) (-2131 (((-1262 $)) NIL) (((-1262 $) (-919)) NIL)) (-1594 (((-112) $ $) NIL)) (-4127 (((-112) $) NIL)) (-2361 (($) NIL T CONST)) (-2371 (($) NIL T CONST)) (-1620 (($ $) NIL (|has| |#1| (-368))) (($ $ (-769)) NIL (|has| |#1| (-368)))) (-2711 (($ $) NIL (|has| |#1| (-368))) (($ $ (-769)) NIL (|has| |#1| (-368)))) (-2821 (((-112) $ $) NIL)) (-2943 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-353 |#1| |#2|) (-13 (-329 |#1|) (-10 -7 (-15 -3185 ((-1262 (-642 (-2 (|:| -2108 |#1|) (|:| -2065 (-1117))))))) (-15 -2935 ((-687 |#1|))) (-15 -2369 ((-769))))) (-349) (-919)) (T -353)) -((-3185 (*1 *2) (-12 (-5 *2 (-1262 (-642 (-2 (|:| -2108 *3) (|:| -2065 (-1117)))))) (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) (-14 *4 (-919)))) (-2935 (*1 *2) (-12 (-5 *2 (-687 *3)) (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) (-14 *4 (-919)))) (-2369 (*1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) (-14 *4 (-919))))) -(-13 (-329 |#1|) (-10 -7 (-15 -3185 ((-1262 (-642 (-2 (|:| -2108 |#1|) (|:| -2065 (-1117))))))) (-15 -2935 ((-687 |#1|))) (-15 -2369 ((-769))))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-4252 (($ $) NIL)) (-1722 (((-112) $) NIL)) (-1792 (((-112) $) NIL)) (-1695 (((-769)) NIL)) (-3778 (((-908 |#1|) $) NIL) (($ $ (-919)) NIL (|has| (-908 |#1|) (-368)))) (-3651 (((-1185 (-919) (-769)) (-564)) NIL (|has| (-908 |#1|) (-368)))) (-3085 (((-3 $ "failed") $ $) NIL)) (-1993 (($ $) NIL)) (-3282 (((-418 $) $) NIL)) (-2134 (((-112) $ $) NIL)) (-4003 (((-769)) NIL (|has| (-908 |#1|) (-368)))) (-2822 (($) NIL T CONST)) (-2849 (((-3 (-908 |#1|) "failed") $) NIL)) (-1687 (((-908 |#1|) $) NIL)) (-4087 (($ (-1262 (-908 |#1|))) NIL)) (-2629 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-908 |#1|) (-368)))) (-2796 (($ $ $) NIL)) (-2675 (((-3 $ "failed") $) NIL)) (-3235 (($) NIL (|has| (-908 |#1|) (-368)))) (-2808 (($ $ $) NIL)) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) NIL)) (-1427 (($) NIL (|has| (-908 |#1|) (-368)))) (-4153 (((-112) $) NIL (|has| (-908 |#1|) (-368)))) (-1595 (($ $ (-769)) NIL (-2682 (|has| (-908 |#1|) (-145)) (|has| (-908 |#1|) (-368)))) (($ $) NIL (-2682 (|has| (-908 |#1|) (-145)) (|has| (-908 |#1|) (-368))))) (-3552 (((-112) $) NIL)) (-2408 (((-919) $) NIL (|has| (-908 |#1|) (-368))) (((-831 (-919)) $) NIL (-2682 (|has| (-908 |#1|) (-145)) (|has| (-908 |#1|) (-368))))) (-3163 (((-112) $) NIL)) (-2043 (($) NIL (|has| (-908 |#1|) (-368)))) (-1729 (((-112) $) NIL (|has| (-908 |#1|) (-368)))) (-2573 (((-908 |#1|) $) NIL) (($ $ (-919)) NIL (|has| (-908 |#1|) (-368)))) (-4382 (((-3 $ "failed") $) NIL (|has| (-908 |#1|) (-368)))) (-2709 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2076 (((-1169 (-908 |#1|)) $) NIL) (((-1169 $) $ (-919)) NIL (|has| (-908 |#1|) (-368)))) (-2535 (((-919) $) NIL (|has| (-908 |#1|) (-368)))) (-3607 (((-1169 (-908 |#1|)) $) NIL (|has| (-908 |#1|) (-368)))) (-2480 (((-1169 (-908 |#1|)) $) NIL (|has| (-908 |#1|) (-368))) (((-3 (-1169 (-908 |#1|)) "failed") $ $) NIL (|has| (-908 |#1|) (-368)))) (-2292 (($ $ (-1169 (-908 |#1|))) NIL (|has| (-908 |#1|) (-368)))) (-2066 (($ $ $) NIL) (($ (-642 $)) NIL)) (-1778 (((-1155) $) NIL)) (-2481 (($ $) NIL)) (-3910 (($) NIL (|has| (-908 |#1|) (-368)) CONST)) (-2065 (($ (-919)) NIL (|has| (-908 |#1|) (-368)))) (-1987 (((-112) $) NIL)) (-3999 (((-1117) $) NIL)) (-4043 (($) NIL (|has| (-908 |#1|) (-368)))) (-3464 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2105 (($ $ $) NIL) (($ (-642 $)) NIL)) (-4229 (((-642 (-2 (|:| -2254 (-564)) (|:| -2817 (-564))))) NIL (|has| (-908 |#1|) (-368)))) (-2254 (((-418 $) $) NIL)) (-1878 (((-831 (-919))) NIL) (((-919)) NIL)) (-1877 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2842 (((-3 $ "failed") $ $) NIL)) (-1483 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-4274 (((-769) $) NIL)) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL)) (-1354 (((-769) $) NIL (|has| (-908 |#1|) (-368))) (((-3 (-769) "failed") $ $) NIL (-2682 (|has| (-908 |#1|) (-145)) (|has| (-908 |#1|) (-368))))) (-3677 (((-134)) NIL)) (-2199 (($ $) NIL (|has| (-908 |#1|) (-368))) (($ $ (-769)) NIL (|has| (-908 |#1|) (-368)))) (-3252 (((-831 (-919)) $) NIL) (((-919) $) NIL)) (-1361 (((-1169 (-908 |#1|))) NIL)) (-3553 (($) NIL (|has| (-908 |#1|) (-368)))) (-2911 (($) NIL (|has| (-908 |#1|) (-368)))) (-3719 (((-1262 (-908 |#1|)) $) NIL) (((-687 (-908 |#1|)) (-1262 $)) NIL)) (-3556 (((-3 (-1262 $) "failed") (-687 $)) NIL (|has| (-908 |#1|) (-368)))) (-2390 (((-860) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-908 |#1|)) NIL)) (-3434 (($ $) NIL (|has| (-908 |#1|) (-368))) (((-3 $ "failed") $) NIL (-2682 (|has| (-908 |#1|) (-145)) (|has| (-908 |#1|) (-368))))) (-3348 (((-769)) NIL T CONST)) (-1600 (((-112) $ $) NIL)) (-2131 (((-1262 $)) NIL) (((-1262 $) (-919)) NIL)) (-1594 (((-112) $ $) NIL)) (-4127 (((-112) $) NIL)) (-2361 (($) NIL T CONST)) (-2371 (($) NIL T CONST)) (-1620 (($ $) NIL (|has| (-908 |#1|) (-368))) (($ $ (-769)) NIL (|has| (-908 |#1|) (-368)))) (-2711 (($ $) NIL (|has| (-908 |#1|) (-368))) (($ $ (-769)) NIL (|has| (-908 |#1|) (-368)))) (-2821 (((-112) $ $) NIL)) (-2943 (($ $ $) NIL) (($ $ (-908 |#1|)) NIL)) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ (-908 |#1|)) NIL) (($ (-908 |#1|) $) NIL))) -(((-354 |#1| |#2|) (-329 (-908 |#1|)) (-919) (-919)) (T -354)) -NIL -(-329 (-908 |#1|)) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-4252 (($ $) NIL)) (-1722 (((-112) $) NIL)) (-1792 (((-112) $) NIL)) (-1695 (((-769)) NIL)) (-3778 ((|#1| $) NIL) (($ $ (-919)) NIL (|has| |#1| (-368)))) (-3651 (((-1185 (-919) (-769)) (-564)) 135 (|has| |#1| (-368)))) (-3085 (((-3 $ "failed") $ $) NIL)) (-1993 (($ $) NIL)) (-3282 (((-418 $) $) NIL)) (-2134 (((-112) $ $) NIL)) (-4003 (((-769)) 165 (|has| |#1| (-368)))) (-2822 (($) NIL T CONST)) (-2849 (((-3 |#1| "failed") $) 109)) (-1687 ((|#1| $) 106)) (-4087 (($ (-1262 |#1|)) 101)) (-2629 (((-3 "prime" "polynomial" "normal" "cyclic")) 132 (|has| |#1| (-368)))) (-2796 (($ $ $) NIL)) (-2675 (((-3 $ "failed") $) NIL)) (-3235 (($) 98 (|has| |#1| (-368)))) (-2808 (($ $ $) NIL)) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) NIL)) (-1427 (($) 51 (|has| |#1| (-368)))) (-4153 (((-112) $) NIL (|has| |#1| (-368)))) (-1595 (($ $ (-769)) NIL (-2682 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-2682 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3552 (((-112) $) NIL)) (-2408 (((-919) $) NIL (|has| |#1| (-368))) (((-831 (-919)) $) NIL (-2682 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3163 (((-112) $) NIL)) (-2043 (($) 136 (|has| |#1| (-368)))) (-1729 (((-112) $) 90 (|has| |#1| (-368)))) (-2573 ((|#1| $) 47) (($ $ (-919)) 52 (|has| |#1| (-368)))) (-4382 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-2709 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2076 (((-1169 |#1|) $) 79) (((-1169 $) $ (-919)) NIL (|has| |#1| (-368)))) (-2535 (((-919) $) 113 (|has| |#1| (-368)))) (-3607 (((-1169 |#1|) $) NIL (|has| |#1| (-368)))) (-2480 (((-1169 |#1|) $) NIL (|has| |#1| (-368))) (((-3 (-1169 |#1|) "failed") $ $) NIL (|has| |#1| (-368)))) (-2292 (($ $ (-1169 |#1|)) NIL (|has| |#1| (-368)))) (-2066 (($ $ $) NIL) (($ (-642 $)) NIL)) (-1778 (((-1155) $) NIL)) (-2481 (($ $) NIL)) (-3910 (($) NIL (|has| |#1| (-368)) CONST)) (-2065 (($ (-919)) 111 (|has| |#1| (-368)))) (-1987 (((-112) $) 167)) (-3999 (((-1117) $) NIL)) (-4043 (($) 44 (|has| |#1| (-368)))) (-3464 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2105 (($ $ $) NIL) (($ (-642 $)) NIL)) (-4229 (((-642 (-2 (|:| -2254 (-564)) (|:| -2817 (-564))))) 130 (|has| |#1| (-368)))) (-2254 (((-418 $) $) NIL)) (-1878 (((-831 (-919))) NIL) (((-919)) 164)) (-1877 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2842 (((-3 $ "failed") $ $) NIL)) (-1483 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-4274 (((-769) $) NIL)) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL)) (-1354 (((-769) $) NIL (|has| |#1| (-368))) (((-3 (-769) "failed") $ $) NIL (-2682 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3677 (((-134)) NIL)) (-2199 (($ $) NIL (|has| |#1| (-368))) (($ $ (-769)) NIL (|has| |#1| (-368)))) (-3252 (((-831 (-919)) $) NIL) (((-919) $) 71)) (-1361 (((-1169 |#1|)) 104)) (-3553 (($) 141 (|has| |#1| (-368)))) (-2911 (($) NIL (|has| |#1| (-368)))) (-3719 (((-1262 |#1|) $) 66) (((-687 |#1|) (-1262 $)) NIL)) (-3556 (((-3 (-1262 $) "failed") (-687 $)) NIL (|has| |#1| (-368)))) (-2390 (((-860) $) 163) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ |#1|) 103)) (-3434 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-2682 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3348 (((-769)) 169 T CONST)) (-1600 (((-112) $ $) 171)) (-2131 (((-1262 $)) 125) (((-1262 $) (-919)) 60)) (-1594 (((-112) $ $) NIL)) (-4127 (((-112) $) NIL)) (-2361 (($) 127 T CONST)) (-2371 (($) 40 T CONST)) (-1620 (($ $) 82 (|has| |#1| (-368))) (($ $ (-769)) NIL (|has| |#1| (-368)))) (-2711 (($ $) NIL (|has| |#1| (-368))) (($ $ (-769)) NIL (|has| |#1| (-368)))) (-2821 (((-112) $ $) 123)) (-2943 (($ $ $) 115) (($ $ |#1|) 116)) (-2930 (($ $) 96) (($ $ $) 121)) (-2917 (($ $ $) 119)) (** (($ $ (-919)) NIL) (($ $ (-769)) 55) (($ $ (-564)) 146)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 94) (($ $ $) 68) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 92))) -(((-355 |#1| |#2|) (-329 |#1|) (-349) (-1169 |#1|)) (T -355)) -NIL -(-329 |#1|) -((-3075 ((|#1| (-1169 |#2|)) 63))) -(((-356 |#1| |#2|) (-10 -7 (-15 -3075 (|#1| (-1169 |#2|)))) (-13 (-402) (-10 -7 (-15 -2390 (|#1| |#2|)) (-15 -2535 ((-919) |#1|)) (-15 -2131 ((-1262 |#1|) (-919))) (-15 -1620 (|#1| |#1|)))) (-349)) (T -356)) -((-3075 (*1 *2 *3) (-12 (-5 *3 (-1169 *4)) (-4 *4 (-349)) (-4 *2 (-13 (-402) (-10 -7 (-15 -2390 (*2 *4)) (-15 -2535 ((-919) *2)) (-15 -2131 ((-1262 *2) (-919))) (-15 -1620 (*2 *2))))) (-5 *1 (-356 *2 *4))))) -(-10 -7 (-15 -3075 (|#1| (-1169 |#2|)))) -((-4385 (((-956 (-1169 |#1|)) (-1169 |#1|)) 53)) (-3235 (((-1169 |#1|) (-919) (-919)) 168) (((-1169 |#1|) (-919)) 164)) (-4153 (((-112) (-1169 |#1|)) 120)) (-1501 (((-919) (-919)) 98)) (-2996 (((-919) (-919)) 105)) (-2607 (((-919) (-919)) 96)) (-1729 (((-112) (-1169 |#1|)) 124)) (-1322 (((-3 (-1169 |#1|) "failed") (-1169 |#1|)) 149)) (-2440 (((-3 (-1169 |#1|) "failed") (-1169 |#1|)) 154)) (-3591 (((-3 (-1169 |#1|) "failed") (-1169 |#1|)) 153)) (-3983 (((-3 (-1169 |#1|) "failed") (-1169 |#1|)) 152)) (-3051 (((-3 (-1169 |#1|) "failed") (-1169 |#1|)) 144)) (-2965 (((-1169 |#1|) (-1169 |#1|)) 84)) (-4284 (((-1169 |#1|) (-919)) 159)) (-4005 (((-1169 |#1|) (-919)) 162)) (-3413 (((-1169 |#1|) (-919)) 161)) (-4272 (((-1169 |#1|) (-919)) 160)) (-3713 (((-1169 |#1|) (-919)) 157))) -(((-357 |#1|) (-10 -7 (-15 -4153 ((-112) (-1169 |#1|))) (-15 -1729 ((-112) (-1169 |#1|))) (-15 -2607 ((-919) (-919))) (-15 -1501 ((-919) (-919))) (-15 -2996 ((-919) (-919))) (-15 -3713 ((-1169 |#1|) (-919))) (-15 -4284 ((-1169 |#1|) (-919))) (-15 -4272 ((-1169 |#1|) (-919))) (-15 -3413 ((-1169 |#1|) (-919))) (-15 -4005 ((-1169 |#1|) (-919))) (-15 -3051 ((-3 (-1169 |#1|) "failed") (-1169 |#1|))) (-15 -1322 ((-3 (-1169 |#1|) "failed") (-1169 |#1|))) (-15 -3983 ((-3 (-1169 |#1|) "failed") (-1169 |#1|))) (-15 -3591 ((-3 (-1169 |#1|) "failed") (-1169 |#1|))) (-15 -2440 ((-3 (-1169 |#1|) "failed") (-1169 |#1|))) (-15 -3235 ((-1169 |#1|) (-919))) (-15 -3235 ((-1169 |#1|) (-919) (-919))) (-15 -2965 ((-1169 |#1|) (-1169 |#1|))) (-15 -4385 ((-956 (-1169 |#1|)) (-1169 |#1|)))) (-349)) (T -357)) -((-4385 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-956 (-1169 *4))) (-5 *1 (-357 *4)) (-5 *3 (-1169 *4)))) (-2965 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))) (-3235 (*1 *2 *3 *3) (-12 (-5 *3 (-919)) (-5 *2 (-1169 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-3235 (*1 *2 *3) (-12 (-5 *3 (-919)) (-5 *2 (-1169 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-2440 (*1 *2 *2) (|partial| -12 (-5 *2 (-1169 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))) (-3591 (*1 *2 *2) (|partial| -12 (-5 *2 (-1169 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))) (-3983 (*1 *2 *2) (|partial| -12 (-5 *2 (-1169 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))) (-1322 (*1 *2 *2) (|partial| -12 (-5 *2 (-1169 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))) (-3051 (*1 *2 *2) (|partial| -12 (-5 *2 (-1169 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))) (-4005 (*1 *2 *3) (-12 (-5 *3 (-919)) (-5 *2 (-1169 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-3413 (*1 *2 *3) (-12 (-5 *3 (-919)) (-5 *2 (-1169 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-4272 (*1 *2 *3) (-12 (-5 *3 (-919)) (-5 *2 (-1169 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-4284 (*1 *2 *3) (-12 (-5 *3 (-919)) (-5 *2 (-1169 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-3713 (*1 *2 *3) (-12 (-5 *3 (-919)) (-5 *2 (-1169 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-2996 (*1 *2 *2) (-12 (-5 *2 (-919)) (-5 *1 (-357 *3)) (-4 *3 (-349)))) (-1501 (*1 *2 *2) (-12 (-5 *2 (-919)) (-5 *1 (-357 *3)) (-4 *3 (-349)))) (-2607 (*1 *2 *2) (-12 (-5 *2 (-919)) (-5 *1 (-357 *3)) (-4 *3 (-349)))) (-1729 (*1 *2 *3) (-12 (-5 *3 (-1169 *4)) (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-357 *4)))) (-4153 (*1 *2 *3) (-12 (-5 *3 (-1169 *4)) (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-357 *4))))) -(-10 -7 (-15 -4153 ((-112) (-1169 |#1|))) (-15 -1729 ((-112) (-1169 |#1|))) (-15 -2607 ((-919) (-919))) (-15 -1501 ((-919) (-919))) (-15 -2996 ((-919) (-919))) (-15 -3713 ((-1169 |#1|) (-919))) (-15 -4284 ((-1169 |#1|) (-919))) (-15 -4272 ((-1169 |#1|) (-919))) (-15 -3413 ((-1169 |#1|) (-919))) (-15 -4005 ((-1169 |#1|) (-919))) (-15 -3051 ((-3 (-1169 |#1|) "failed") (-1169 |#1|))) (-15 -1322 ((-3 (-1169 |#1|) "failed") (-1169 |#1|))) (-15 -3983 ((-3 (-1169 |#1|) "failed") (-1169 |#1|))) (-15 -3591 ((-3 (-1169 |#1|) "failed") (-1169 |#1|))) (-15 -2440 ((-3 (-1169 |#1|) "failed") (-1169 |#1|))) (-15 -3235 ((-1169 |#1|) (-919))) (-15 -3235 ((-1169 |#1|) (-919) (-919))) (-15 -2965 ((-1169 |#1|) (-1169 |#1|))) (-15 -4385 ((-956 (-1169 |#1|)) (-1169 |#1|)))) -((-3267 (((-3 (-642 |#3|) "failed") (-642 |#3|) |#3|) 38))) -(((-358 |#1| |#2| |#3|) (-10 -7 (-15 -3267 ((-3 (-642 |#3|) "failed") (-642 |#3|) |#3|))) (-349) (-1238 |#1|) (-1238 |#2|)) (T -358)) -((-3267 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-642 *3)) (-4 *3 (-1238 *5)) (-4 *5 (-1238 *4)) (-4 *4 (-349)) (-5 *1 (-358 *4 *5 *3))))) -(-10 -7 (-15 -3267 ((-3 (-642 |#3|) "failed") (-642 |#3|) |#3|))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-4252 (($ $) NIL)) (-1722 (((-112) $) NIL)) (-1792 (((-112) $) NIL)) (-1695 (((-769)) NIL)) (-3778 ((|#1| $) NIL) (($ $ (-919)) NIL (|has| |#1| (-368)))) (-3651 (((-1185 (-919) (-769)) (-564)) NIL (|has| |#1| (-368)))) (-3085 (((-3 $ "failed") $ $) NIL)) (-1993 (($ $) NIL)) (-3282 (((-418 $) $) NIL)) (-2134 (((-112) $ $) NIL)) (-4003 (((-769)) NIL (|has| |#1| (-368)))) (-2822 (($) NIL T CONST)) (-2849 (((-3 |#1| "failed") $) NIL)) (-1687 ((|#1| $) NIL)) (-4087 (($ (-1262 |#1|)) NIL)) (-2629 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-368)))) (-2796 (($ $ $) NIL)) (-2675 (((-3 $ "failed") $) NIL)) (-3235 (($) NIL (|has| |#1| (-368)))) (-2808 (($ $ $) NIL)) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) NIL)) (-1427 (($) NIL (|has| |#1| (-368)))) (-4153 (((-112) $) NIL (|has| |#1| (-368)))) (-1595 (($ $ (-769)) NIL (-2682 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-2682 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3552 (((-112) $) NIL)) (-2408 (((-919) $) NIL (|has| |#1| (-368))) (((-831 (-919)) $) NIL (-2682 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3163 (((-112) $) NIL)) (-2043 (($) NIL (|has| |#1| (-368)))) (-1729 (((-112) $) NIL (|has| |#1| (-368)))) (-2573 ((|#1| $) NIL) (($ $ (-919)) NIL (|has| |#1| (-368)))) (-4382 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-2709 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2076 (((-1169 |#1|) $) NIL) (((-1169 $) $ (-919)) NIL (|has| |#1| (-368)))) (-2535 (((-919) $) NIL (|has| |#1| (-368)))) (-3607 (((-1169 |#1|) $) NIL (|has| |#1| (-368)))) (-2480 (((-1169 |#1|) $) NIL (|has| |#1| (-368))) (((-3 (-1169 |#1|) "failed") $ $) NIL (|has| |#1| (-368)))) (-2292 (($ $ (-1169 |#1|)) NIL (|has| |#1| (-368)))) (-2066 (($ $ $) NIL) (($ (-642 $)) NIL)) (-1778 (((-1155) $) NIL)) (-2481 (($ $) NIL)) (-3910 (($) NIL (|has| |#1| (-368)) CONST)) (-2065 (($ (-919)) NIL (|has| |#1| (-368)))) (-1987 (((-112) $) NIL)) (-3999 (((-1117) $) NIL)) (-4043 (($) NIL (|has| |#1| (-368)))) (-3464 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2105 (($ $ $) NIL) (($ (-642 $)) NIL)) (-4229 (((-642 (-2 (|:| -2254 (-564)) (|:| -2817 (-564))))) NIL (|has| |#1| (-368)))) (-2254 (((-418 $) $) NIL)) (-1878 (((-831 (-919))) NIL) (((-919)) NIL)) (-1877 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2842 (((-3 $ "failed") $ $) NIL)) (-1483 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-4274 (((-769) $) NIL)) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL)) (-1354 (((-769) $) NIL (|has| |#1| (-368))) (((-3 (-769) "failed") $ $) NIL (-2682 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3677 (((-134)) NIL)) (-2199 (($ $) NIL (|has| |#1| (-368))) (($ $ (-769)) NIL (|has| |#1| (-368)))) (-3252 (((-831 (-919)) $) NIL) (((-919) $) NIL)) (-1361 (((-1169 |#1|)) NIL)) (-3553 (($) NIL (|has| |#1| (-368)))) (-2911 (($) NIL (|has| |#1| (-368)))) (-3719 (((-1262 |#1|) $) NIL) (((-687 |#1|) (-1262 $)) NIL)) (-3556 (((-3 (-1262 $) "failed") (-687 $)) NIL (|has| |#1| (-368)))) (-2390 (((-860) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ |#1|) NIL)) (-3434 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-2682 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3348 (((-769)) NIL T CONST)) (-1600 (((-112) $ $) NIL)) (-2131 (((-1262 $)) NIL) (((-1262 $) (-919)) NIL)) (-1594 (((-112) $ $) NIL)) (-4127 (((-112) $) NIL)) (-2361 (($) NIL T CONST)) (-2371 (($) NIL T CONST)) (-1620 (($ $) NIL (|has| |#1| (-368))) (($ $ (-769)) NIL (|has| |#1| (-368)))) (-2711 (($ $) NIL (|has| |#1| (-368))) (($ $ (-769)) NIL (|has| |#1| (-368)))) (-2821 (((-112) $ $) NIL)) (-2943 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-359 |#1| |#2|) (-329 |#1|) (-349) (-919)) (T -359)) -NIL -(-329 |#1|) -((-1768 (((-112) (-642 (-950 |#1|))) 41)) (-2079 (((-642 (-950 |#1|)) (-642 (-950 |#1|))) 53)) (-3907 (((-3 (-642 (-950 |#1|)) "failed") (-642 (-950 |#1|))) 48))) -(((-360 |#1| |#2|) (-10 -7 (-15 -1768 ((-112) (-642 (-950 |#1|)))) (-15 -3907 ((-3 (-642 (-950 |#1|)) "failed") (-642 (-950 |#1|)))) (-15 -2079 ((-642 (-950 |#1|)) (-642 (-950 |#1|))))) (-452) (-642 (-1173))) (T -360)) -((-2079 (*1 *2 *2) (-12 (-5 *2 (-642 (-950 *3))) (-4 *3 (-452)) (-5 *1 (-360 *3 *4)) (-14 *4 (-642 (-1173))))) (-3907 (*1 *2 *2) (|partial| -12 (-5 *2 (-642 (-950 *3))) (-4 *3 (-452)) (-5 *1 (-360 *3 *4)) (-14 *4 (-642 (-1173))))) (-1768 (*1 *2 *3) (-12 (-5 *3 (-642 (-950 *4))) (-4 *4 (-452)) (-5 *2 (-112)) (-5 *1 (-360 *4 *5)) (-14 *5 (-642 (-1173)))))) -(-10 -7 (-15 -1768 ((-112) (-642 (-950 |#1|)))) (-15 -3907 ((-3 (-642 (-950 |#1|)) "failed") (-642 (-950 |#1|)))) (-15 -2079 ((-642 (-950 |#1|)) (-642 (-950 |#1|))))) -((-2856 (((-112) $ $) NIL)) (-4003 (((-769) $) NIL)) (-2822 (($) NIL T CONST)) (-2849 (((-3 |#1| "failed") $) NIL)) (-1687 ((|#1| $) NIL)) (-2675 (((-3 $ "failed") $) NIL)) (-3163 (((-112) $) 17)) (-3631 ((|#1| $ (-564)) NIL)) (-3911 (((-564) $ (-564)) NIL)) (-1860 (($ (-1 |#1| |#1|) $) 34)) (-4249 (($ (-1 (-564) (-564)) $) 26)) (-1778 (((-1155) $) NIL)) (-2481 (($ $) 28)) (-3999 (((-1117) $) NIL)) (-1569 (((-642 (-2 (|:| |gen| |#1|) (|:| -3466 (-564)))) $) 30)) (-1736 (($ $ $) NIL)) (-2402 (($ $ $) NIL)) (-2390 (((-860) $) 40) (($ |#1|) NIL)) (-1600 (((-112) $ $) NIL)) (-2371 (($) 11 T CONST)) (-2821 (((-112) $ $) NIL)) (-2943 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL) (($ |#1| (-564)) 19)) (* (($ $ $) 53) (($ |#1| $) 23) (($ $ |#1|) 21))) -(((-361 |#1|) (-13 (-473) (-1036 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-564))) (-15 -4003 ((-769) $)) (-15 -3911 ((-564) $ (-564))) (-15 -3631 (|#1| $ (-564))) (-15 -4249 ($ (-1 (-564) (-564)) $)) (-15 -1860 ($ (-1 |#1| |#1|) $)) (-15 -1569 ((-642 (-2 (|:| |gen| |#1|) (|:| -3466 (-564)))) $)))) (-1097)) (T -361)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-361 *2)) (-4 *2 (-1097)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-361 *2)) (-4 *2 (-1097)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-361 *2)) (-4 *2 (-1097)))) (-4003 (*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-361 *3)) (-4 *3 (-1097)))) (-3911 (*1 *2 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-361 *3)) (-4 *3 (-1097)))) (-3631 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-361 *2)) (-4 *2 (-1097)))) (-4249 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-564) (-564))) (-5 *1 (-361 *3)) (-4 *3 (-1097)))) (-1860 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1097)) (-5 *1 (-361 *3)))) (-1569 (*1 *2 *1) (-12 (-5 *2 (-642 (-2 (|:| |gen| *3) (|:| -3466 (-564))))) (-5 *1 (-361 *3)) (-4 *3 (-1097))))) -(-13 (-473) (-1036 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-564))) (-15 -4003 ((-769) $)) (-15 -3911 ((-564) $ (-564))) (-15 -3631 (|#1| $ (-564))) (-15 -4249 ($ (-1 (-564) (-564)) $)) (-15 -1860 ($ (-1 |#1| |#1|) $)) (-15 -1569 ((-642 (-2 (|:| |gen| |#1|) (|:| -3466 (-564)))) $)))) -((-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) 13)) (-4252 (($ $) 14)) (-3282 (((-418 $) $) 34)) (-3552 (((-112) $) 30)) (-2481 (($ $) 19)) (-2105 (($ $ $) 25) (($ (-642 $)) NIL)) (-2254 (((-418 $) $) 35)) (-2842 (((-3 $ "failed") $ $) 24)) (-4274 (((-769) $) 28)) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) 39)) (-1594 (((-112) $ $) 16)) (-2943 (($ $ $) 37))) -(((-362 |#1|) (-10 -8 (-15 -2943 (|#1| |#1| |#1|)) (-15 -2481 (|#1| |#1|)) (-15 -3552 ((-112) |#1|)) (-15 -3282 ((-418 |#1|) |#1|)) (-15 -2254 ((-418 |#1|) |#1|)) (-15 -2999 ((-2 (|:| -4332 |#1|) (|:| -1992 |#1|)) |#1| |#1|)) (-15 -4274 ((-769) |#1|)) (-15 -2105 (|#1| (-642 |#1|))) (-15 -2105 (|#1| |#1| |#1|)) (-15 -1594 ((-112) |#1| |#1|)) (-15 -4252 (|#1| |#1|)) (-15 -2838 ((-2 (|:| -2660 |#1|) (|:| -4397 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2842 ((-3 |#1| "failed") |#1| |#1|))) (-363)) (T -362)) -NIL -(-10 -8 (-15 -2943 (|#1| |#1| |#1|)) (-15 -2481 (|#1| |#1|)) (-15 -3552 ((-112) |#1|)) (-15 -3282 ((-418 |#1|) |#1|)) (-15 -2254 ((-418 |#1|) |#1|)) (-15 -2999 ((-2 (|:| -4332 |#1|) (|:| -1992 |#1|)) |#1| |#1|)) (-15 -4274 ((-769) |#1|)) (-15 -2105 (|#1| (-642 |#1|))) (-15 -2105 (|#1| |#1| |#1|)) (-15 -1594 ((-112) |#1| |#1|)) (-15 -4252 (|#1| |#1|)) (-15 -2838 ((-2 (|:| -2660 |#1|) (|:| -4397 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2842 ((-3 |#1| "failed") |#1| |#1|))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) 47)) (-4252 (($ $) 46)) (-1722 (((-112) $) 44)) (-3085 (((-3 $ "failed") $ $) 20)) (-1993 (($ $) 81)) (-3282 (((-418 $) $) 80)) (-2134 (((-112) $ $) 65)) (-2822 (($) 18 T CONST)) (-2796 (($ $ $) 61)) (-2675 (((-3 $ "failed") $) 37)) (-2808 (($ $ $) 62)) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) 57)) (-3552 (((-112) $) 79)) (-3163 (((-112) $) 35)) (-2709 (((-3 (-642 $) "failed") (-642 $) $) 58)) (-2066 (($ $ $) 52) (($ (-642 $)) 51)) (-1778 (((-1155) $) 10)) (-2481 (($ $) 78)) (-3999 (((-1117) $) 11)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) 50)) (-2105 (($ $ $) 54) (($ (-642 $)) 53)) (-2254 (((-418 $) $) 82)) (-1877 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2842 (((-3 $ "failed") $ $) 48)) (-1483 (((-3 (-642 $) "failed") (-642 $) $) 56)) (-4274 (((-769) $) 64)) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) 63)) (-2390 (((-860) $) 12) (($ (-564)) 33) (($ $) 49) (($ (-407 (-564))) 74)) (-3348 (((-769)) 32 T CONST)) (-1600 (((-112) $ $) 9)) (-1594 (((-112) $ $) 45)) (-2361 (($) 19 T CONST)) (-2371 (($) 34 T CONST)) (-2821 (((-112) $ $) 6)) (-2943 (($ $ $) 73)) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36) (($ $ (-564)) 77)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ (-407 (-564))) 76) (($ (-407 (-564)) $) 75))) -(((-363) (-140)) (T -363)) -((-2943 (*1 *1 *1 *1) (-4 *1 (-363)))) -(-13 (-307) (-1216) (-243) (-10 -8 (-15 -2943 ($ $ $)) (-6 -4408) (-6 -4402))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-860)) . T) ((-172) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-452) . T) ((-556) . T) ((-644 #0#) . T) ((-644 (-564)) . T) ((-644 $) . T) ((-646 #0#) . T) ((-646 $) . T) ((-638 #0#) . T) ((-638 $) . T) ((-715 #0#) . T) ((-715 $) . T) ((-724) . T) ((-918) . T) ((-1049 #0#) . T) ((-1049 $) . T) ((-1054 #0#) . T) ((-1054 $) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T) ((-1216) . T)) -((-2856 (((-112) $ $) 7)) (-1400 ((|#2| $ |#2|) 14)) (-3343 (($ $ (-1155)) 19)) (-4125 ((|#2| $) 15)) (-3406 (($ |#1|) 21) (($ |#1| (-1155)) 20)) (-2493 ((|#1| $) 17)) (-1778 (((-1155) $) 10)) (-2281 (((-1155) $) 16)) (-3999 (((-1117) $) 11)) (-2390 (((-860) $) 12)) (-2914 (($ $) 18)) (-1600 (((-112) $ $) 9)) (-2821 (((-112) $ $) 6))) -(((-364 |#1| |#2|) (-140) (-1097) (-1097)) (T -364)) -((-3406 (*1 *1 *2) (-12 (-4 *1 (-364 *2 *3)) (-4 *2 (-1097)) (-4 *3 (-1097)))) (-3406 (*1 *1 *2 *3) (-12 (-5 *3 (-1155)) (-4 *1 (-364 *2 *4)) (-4 *2 (-1097)) (-4 *4 (-1097)))) (-3343 (*1 *1 *1 *2) (-12 (-5 *2 (-1155)) (-4 *1 (-364 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-1097)))) (-2914 (*1 *1 *1) (-12 (-4 *1 (-364 *2 *3)) (-4 *2 (-1097)) (-4 *3 (-1097)))) (-2493 (*1 *2 *1) (-12 (-4 *1 (-364 *2 *3)) (-4 *3 (-1097)) (-4 *2 (-1097)))) (-2281 (*1 *2 *1) (-12 (-4 *1 (-364 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-1097)) (-5 *2 (-1155)))) (-4125 (*1 *2 *1) (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-1097)) (-4 *2 (-1097)))) (-1400 (*1 *2 *1 *2) (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-1097)) (-4 *2 (-1097))))) -(-13 (-1097) (-10 -8 (-15 -3406 ($ |t#1|)) (-15 -3406 ($ |t#1| (-1155))) (-15 -3343 ($ $ (-1155))) (-15 -2914 ($ $)) (-15 -2493 (|t#1| $)) (-15 -2281 ((-1155) $)) (-15 -4125 (|t#2| $)) (-15 -1400 (|t#2| $ |t#2|)))) -(((-102) . T) ((-611 (-860)) . T) ((-1097) . T)) -((-2856 (((-112) $ $) NIL)) (-1400 ((|#1| $ |#1|) 31)) (-3343 (($ $ (-1155)) 23)) (-2546 (((-3 |#1| "failed") $) 30)) (-4125 ((|#1| $) 28)) (-3406 (($ (-388)) 22) (($ (-388) (-1155)) 21)) (-2493 (((-388) $) 25)) (-1778 (((-1155) $) NIL)) (-2281 (((-1155) $) 26)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) 20)) (-2914 (($ $) 24)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) 19))) -(((-365 |#1|) (-13 (-364 (-388) |#1|) (-10 -8 (-15 -2546 ((-3 |#1| "failed") $)))) (-1097)) (T -365)) -((-2546 (*1 *2 *1) (|partial| -12 (-5 *1 (-365 *2)) (-4 *2 (-1097))))) -(-13 (-364 (-388) |#1|) (-10 -8 (-15 -2546 ((-3 |#1| "failed") $)))) -((-2816 (((-1262 (-687 |#2|)) (-1262 $)) 70)) (-3821 (((-687 |#2|) (-1262 $)) 141)) (-3540 ((|#2| $) 39)) (-1771 (((-687 |#2|) $ (-1262 $)) 144)) (-3420 (((-3 $ "failed") $) 91)) (-1732 ((|#2| $) 42)) (-2644 (((-1169 |#2|) $) 99)) (-3521 ((|#2| (-1262 $)) 124)) (-4246 (((-1169 |#2|) $) 34)) (-2165 (((-112)) 118)) (-4087 (($ (-1262 |#2|) (-1262 $)) 134)) (-2675 (((-3 $ "failed") $) 95)) (-3682 (((-112)) 112)) (-1888 (((-112)) 107)) (-1693 (((-112)) 61)) (-4289 (((-687 |#2|) (-1262 $)) 139)) (-1486 ((|#2| $) 38)) (-1672 (((-687 |#2|) $ (-1262 $)) 143)) (-1339 (((-3 $ "failed") $) 89)) (-1573 ((|#2| $) 41)) (-2514 (((-1169 |#2|) $) 98)) (-3645 ((|#2| (-1262 $)) 122)) (-1892 (((-1169 |#2|) $) 32)) (-4216 (((-112)) 117)) (-2631 (((-112)) 109)) (-3393 (((-112)) 59)) (-2399 (((-112)) 104)) (-2040 (((-112)) 119)) (-3719 (((-1262 |#2|) $ (-1262 $)) NIL) (((-687 |#2|) (-1262 $) (-1262 $)) 130)) (-2792 (((-112)) 115)) (-1491 (((-642 (-1262 |#2|))) 103)) (-2715 (((-112)) 116)) (-3498 (((-112)) 113)) (-3394 (((-112)) 54)) (-2609 (((-112)) 120))) -(((-366 |#1| |#2|) (-10 -8 (-15 -2644 ((-1169 |#2|) |#1|)) (-15 -2514 ((-1169 |#2|) |#1|)) (-15 -1491 ((-642 (-1262 |#2|)))) (-15 -3420 ((-3 |#1| "failed") |#1|)) (-15 -1339 ((-3 |#1| "failed") |#1|)) (-15 -2675 ((-3 |#1| "failed") |#1|)) (-15 -1888 ((-112))) (-15 -2631 ((-112))) (-15 -3682 ((-112))) (-15 -3393 ((-112))) (-15 -1693 ((-112))) (-15 -2399 ((-112))) (-15 -2609 ((-112))) (-15 -2040 ((-112))) (-15 -2165 ((-112))) (-15 -4216 ((-112))) (-15 -3394 ((-112))) (-15 -2715 ((-112))) (-15 -3498 ((-112))) (-15 -2792 ((-112))) (-15 -4246 ((-1169 |#2|) |#1|)) (-15 -1892 ((-1169 |#2|) |#1|)) (-15 -3821 ((-687 |#2|) (-1262 |#1|))) (-15 -4289 ((-687 |#2|) (-1262 |#1|))) (-15 -3521 (|#2| (-1262 |#1|))) (-15 -3645 (|#2| (-1262 |#1|))) (-15 -4087 (|#1| (-1262 |#2|) (-1262 |#1|))) (-15 -3719 ((-687 |#2|) (-1262 |#1|) (-1262 |#1|))) (-15 -3719 ((-1262 |#2|) |#1| (-1262 |#1|))) (-15 -1732 (|#2| |#1|)) (-15 -1573 (|#2| |#1|)) (-15 -3540 (|#2| |#1|)) (-15 -1486 (|#2| |#1|)) (-15 -1771 ((-687 |#2|) |#1| (-1262 |#1|))) (-15 -1672 ((-687 |#2|) |#1| (-1262 |#1|))) (-15 -2816 ((-1262 (-687 |#2|)) (-1262 |#1|)))) (-367 |#2|) (-172)) (T -366)) -((-2792 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3498 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-2715 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3394 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-4216 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-2165 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-2040 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-2609 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-2399 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-1693 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3393 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3682 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-2631 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-1888 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-1491 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-642 (-1262 *4))) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4))))) -(-10 -8 (-15 -2644 ((-1169 |#2|) |#1|)) (-15 -2514 ((-1169 |#2|) |#1|)) (-15 -1491 ((-642 (-1262 |#2|)))) (-15 -3420 ((-3 |#1| "failed") |#1|)) (-15 -1339 ((-3 |#1| "failed") |#1|)) (-15 -2675 ((-3 |#1| "failed") |#1|)) (-15 -1888 ((-112))) (-15 -2631 ((-112))) (-15 -3682 ((-112))) (-15 -3393 ((-112))) (-15 -1693 ((-112))) (-15 -2399 ((-112))) (-15 -2609 ((-112))) (-15 -2040 ((-112))) (-15 -2165 ((-112))) (-15 -4216 ((-112))) (-15 -3394 ((-112))) (-15 -2715 ((-112))) (-15 -3498 ((-112))) (-15 -2792 ((-112))) (-15 -4246 ((-1169 |#2|) |#1|)) (-15 -1892 ((-1169 |#2|) |#1|)) (-15 -3821 ((-687 |#2|) (-1262 |#1|))) (-15 -4289 ((-687 |#2|) (-1262 |#1|))) (-15 -3521 (|#2| (-1262 |#1|))) (-15 -3645 (|#2| (-1262 |#1|))) (-15 -4087 (|#1| (-1262 |#2|) (-1262 |#1|))) (-15 -3719 ((-687 |#2|) (-1262 |#1|) (-1262 |#1|))) (-15 -3719 ((-1262 |#2|) |#1| (-1262 |#1|))) (-15 -1732 (|#2| |#1|)) (-15 -1573 (|#2| |#1|)) (-15 -3540 (|#2| |#1|)) (-15 -1486 (|#2| |#1|)) (-15 -1771 ((-687 |#2|) |#1| (-1262 |#1|))) (-15 -1672 ((-687 |#2|) |#1| (-1262 |#1|))) (-15 -2816 ((-1262 (-687 |#2|)) (-1262 |#1|)))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-2660 (((-3 $ "failed")) 42 (|has| |#1| (-556)))) (-3085 (((-3 $ "failed") $ $) 20)) (-2816 (((-1262 (-687 |#1|)) (-1262 $)) 83)) (-3953 (((-1262 $)) 86)) (-2822 (($) 18 T CONST)) (-3378 (((-3 (-2 (|:| |particular| $) (|:| -2131 (-642 $))) "failed")) 45 (|has| |#1| (-556)))) (-1934 (((-3 $ "failed")) 43 (|has| |#1| (-556)))) (-3821 (((-687 |#1|) (-1262 $)) 70)) (-3540 ((|#1| $) 79)) (-1771 (((-687 |#1|) $ (-1262 $)) 81)) (-3420 (((-3 $ "failed") $) 50 (|has| |#1| (-556)))) (-3952 (($ $ (-919)) 31)) (-1732 ((|#1| $) 77)) (-2644 (((-1169 |#1|) $) 47 (|has| |#1| (-556)))) (-3521 ((|#1| (-1262 $)) 72)) (-4246 (((-1169 |#1|) $) 68)) (-2165 (((-112)) 62)) (-4087 (($ (-1262 |#1|) (-1262 $)) 74)) (-2675 (((-3 $ "failed") $) 52 (|has| |#1| (-556)))) (-3616 (((-919)) 85)) (-2927 (((-112)) 59)) (-4359 (($ $ (-919)) 38)) (-3682 (((-112)) 55)) (-1888 (((-112)) 53)) (-1693 (((-112)) 57)) (-1546 (((-3 (-2 (|:| |particular| $) (|:| -2131 (-642 $))) "failed")) 46 (|has| |#1| (-556)))) (-4337 (((-3 $ "failed")) 44 (|has| |#1| (-556)))) (-4289 (((-687 |#1|) (-1262 $)) 71)) (-1486 ((|#1| $) 80)) (-1672 (((-687 |#1|) $ (-1262 $)) 82)) (-1339 (((-3 $ "failed") $) 51 (|has| |#1| (-556)))) (-4204 (($ $ (-919)) 32)) (-1573 ((|#1| $) 78)) (-2514 (((-1169 |#1|) $) 48 (|has| |#1| (-556)))) (-3645 ((|#1| (-1262 $)) 73)) (-1892 (((-1169 |#1|) $) 69)) (-4216 (((-112)) 63)) (-1778 (((-1155) $) 10)) (-2631 (((-112)) 54)) (-3393 (((-112)) 56)) (-2399 (((-112)) 58)) (-3999 (((-1117) $) 11)) (-2040 (((-112)) 61)) (-3719 (((-1262 |#1|) $ (-1262 $)) 76) (((-687 |#1|) (-1262 $) (-1262 $)) 75)) (-3584 (((-642 (-950 |#1|)) (-1262 $)) 84)) (-2402 (($ $ $) 28)) (-2792 (((-112)) 67)) (-2390 (((-860) $) 12)) (-1600 (((-112) $ $) 9)) (-1491 (((-642 (-1262 |#1|))) 49 (|has| |#1| (-556)))) (-3845 (($ $ $ $) 29)) (-2715 (((-112)) 65)) (-3106 (($ $ $) 27)) (-3498 (((-112)) 66)) (-3394 (((-112)) 64)) (-2609 (((-112)) 60)) (-2361 (($) 19 T CONST)) (-2821 (((-112) $ $) 6)) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 33)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) -(((-367 |#1|) (-140) (-172)) (T -367)) -((-3953 (*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1262 *1)) (-4 *1 (-367 *3)))) (-3616 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-919)))) (-3584 (*1 *2 *3) (-12 (-5 *3 (-1262 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-642 (-950 *4))))) (-2816 (*1 *2 *3) (-12 (-5 *3 (-1262 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-1262 (-687 *4))))) (-1672 (*1 *2 *1 *3) (-12 (-5 *3 (-1262 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-687 *4)))) (-1771 (*1 *2 *1 *3) (-12 (-5 *3 (-1262 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-687 *4)))) (-1486 (*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-3540 (*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-1573 (*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-1732 (*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-3719 (*1 *2 *1 *3) (-12 (-5 *3 (-1262 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-1262 *4)))) (-3719 (*1 *2 *3 *3) (-12 (-5 *3 (-1262 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-687 *4)))) (-4087 (*1 *1 *2 *3) (-12 (-5 *2 (-1262 *4)) (-5 *3 (-1262 *1)) (-4 *4 (-172)) (-4 *1 (-367 *4)))) (-3645 (*1 *2 *3) (-12 (-5 *3 (-1262 *1)) (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-3521 (*1 *2 *3) (-12 (-5 *3 (-1262 *1)) (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-4289 (*1 *2 *3) (-12 (-5 *3 (-1262 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-687 *4)))) (-3821 (*1 *2 *3) (-12 (-5 *3 (-1262 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-687 *4)))) (-1892 (*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-1169 *3)))) (-4246 (*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-1169 *3)))) (-2792 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3498 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2715 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3394 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-4216 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2165 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2040 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2609 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2927 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2399 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1693 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3393 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3682 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2631 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1888 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2675 (*1 *1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-556)))) (-1339 (*1 *1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-556)))) (-3420 (*1 *1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-556)))) (-1491 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-556)) (-5 *2 (-642 (-1262 *3))))) (-2514 (*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-556)) (-5 *2 (-1169 *3)))) (-2644 (*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-556)) (-5 *2 (-1169 *3)))) (-1546 (*1 *2) (|partial| -12 (-4 *3 (-556)) (-4 *3 (-172)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2131 (-642 *1)))) (-4 *1 (-367 *3)))) (-3378 (*1 *2) (|partial| -12 (-4 *3 (-556)) (-4 *3 (-172)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2131 (-642 *1)))) (-4 *1 (-367 *3)))) (-4337 (*1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-556)) (-4 *2 (-172)))) (-1934 (*1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-556)) (-4 *2 (-172)))) (-2660 (*1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-556)) (-4 *2 (-172))))) -(-13 (-742 |t#1|) (-10 -8 (-15 -3953 ((-1262 $))) (-15 -3616 ((-919))) (-15 -3584 ((-642 (-950 |t#1|)) (-1262 $))) (-15 -2816 ((-1262 (-687 |t#1|)) (-1262 $))) (-15 -1672 ((-687 |t#1|) $ (-1262 $))) (-15 -1771 ((-687 |t#1|) $ (-1262 $))) (-15 -1486 (|t#1| $)) (-15 -3540 (|t#1| $)) (-15 -1573 (|t#1| $)) (-15 -1732 (|t#1| $)) (-15 -3719 ((-1262 |t#1|) $ (-1262 $))) (-15 -3719 ((-687 |t#1|) (-1262 $) (-1262 $))) (-15 -4087 ($ (-1262 |t#1|) (-1262 $))) (-15 -3645 (|t#1| (-1262 $))) (-15 -3521 (|t#1| (-1262 $))) (-15 -4289 ((-687 |t#1|) (-1262 $))) (-15 -3821 ((-687 |t#1|) (-1262 $))) (-15 -1892 ((-1169 |t#1|) $)) (-15 -4246 ((-1169 |t#1|) $)) (-15 -2792 ((-112))) (-15 -3498 ((-112))) (-15 -2715 ((-112))) (-15 -3394 ((-112))) (-15 -4216 ((-112))) (-15 -2165 ((-112))) (-15 -2040 ((-112))) (-15 -2609 ((-112))) (-15 -2927 ((-112))) (-15 -2399 ((-112))) (-15 -1693 ((-112))) (-15 -3393 ((-112))) (-15 -3682 ((-112))) (-15 -2631 ((-112))) (-15 -1888 ((-112))) (IF (|has| |t#1| (-556)) (PROGN (-15 -2675 ((-3 $ "failed") $)) (-15 -1339 ((-3 $ "failed") $)) (-15 -3420 ((-3 $ "failed") $)) (-15 -1491 ((-642 (-1262 |t#1|)))) (-15 -2514 ((-1169 |t#1|) $)) (-15 -2644 ((-1169 |t#1|) $)) (-15 -1546 ((-3 (-2 (|:| |particular| $) (|:| -2131 (-642 $))) "failed"))) (-15 -3378 ((-3 (-2 (|:| |particular| $) (|:| -2131 (-642 $))) "failed"))) (-15 -4337 ((-3 $ "failed"))) (-15 -1934 ((-3 $ "failed"))) (-15 -2660 ((-3 $ "failed"))) (-6 -4407)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-611 (-860)) . T) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-646 |#1|) . T) ((-638 |#1|) . T) ((-715 |#1|) . T) ((-718) . T) ((-742 |#1|) . T) ((-759) . T) ((-1049 |#1|) . T) ((-1054 |#1|) . T) ((-1097) . T)) -((-2856 (((-112) $ $) 7)) (-4003 (((-769)) 17)) (-3235 (($) 14)) (-2535 (((-919) $) 15)) (-1778 (((-1155) $) 10)) (-2065 (($ (-919)) 16)) (-3999 (((-1117) $) 11)) (-2390 (((-860) $) 12)) (-1600 (((-112) $ $) 9)) (-2821 (((-112) $ $) 6))) -(((-368) (-140)) (T -368)) -((-4003 (*1 *2) (-12 (-4 *1 (-368)) (-5 *2 (-769)))) (-2065 (*1 *1 *2) (-12 (-5 *2 (-919)) (-4 *1 (-368)))) (-2535 (*1 *2 *1) (-12 (-4 *1 (-368)) (-5 *2 (-919)))) (-3235 (*1 *1) (-4 *1 (-368)))) -(-13 (-1097) (-10 -8 (-15 -4003 ((-769))) (-15 -2065 ($ (-919))) (-15 -2535 ((-919) $)) (-15 -3235 ($)))) -(((-102) . T) ((-611 (-860)) . T) ((-1097) . T)) -((-1335 (((-687 |#2|) (-1262 $)) 47)) (-4087 (($ (-1262 |#2|) (-1262 $)) 41)) (-2330 (((-687 |#2|) $ (-1262 $)) 49)) (-2790 ((|#2| (-1262 $)) 13)) (-3719 (((-1262 |#2|) $ (-1262 $)) NIL) (((-687 |#2|) (-1262 $) (-1262 $)) 27))) -(((-369 |#1| |#2| |#3|) (-10 -8 (-15 -1335 ((-687 |#2|) (-1262 |#1|))) (-15 -2790 (|#2| (-1262 |#1|))) (-15 -4087 (|#1| (-1262 |#2|) (-1262 |#1|))) (-15 -3719 ((-687 |#2|) (-1262 |#1|) (-1262 |#1|))) (-15 -3719 ((-1262 |#2|) |#1| (-1262 |#1|))) (-15 -2330 ((-687 |#2|) |#1| (-1262 |#1|)))) (-370 |#2| |#3|) (-172) (-1238 |#2|)) (T -369)) -NIL -(-10 -8 (-15 -1335 ((-687 |#2|) (-1262 |#1|))) (-15 -2790 (|#2| (-1262 |#1|))) (-15 -4087 (|#1| (-1262 |#2|) (-1262 |#1|))) (-15 -3719 ((-687 |#2|) (-1262 |#1|) (-1262 |#1|))) (-15 -3719 ((-1262 |#2|) |#1| (-1262 |#1|))) (-15 -2330 ((-687 |#2|) |#1| (-1262 |#1|)))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-1335 (((-687 |#1|) (-1262 $)) 53)) (-3778 ((|#1| $) 59)) (-3085 (((-3 $ "failed") $ $) 20)) (-2822 (($) 18 T CONST)) (-4087 (($ (-1262 |#1|) (-1262 $)) 55)) (-2330 (((-687 |#1|) $ (-1262 $)) 60)) (-2675 (((-3 $ "failed") $) 37)) (-3616 (((-919)) 61)) (-3163 (((-112) $) 35)) (-2573 ((|#1| $) 58)) (-2076 ((|#2| $) 51 (|has| |#1| (-363)))) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2790 ((|#1| (-1262 $)) 54)) (-3719 (((-1262 |#1|) $ (-1262 $)) 57) (((-687 |#1|) (-1262 $) (-1262 $)) 56)) (-2390 (((-860) $) 12) (($ (-564)) 33) (($ |#1|) 44)) (-3434 (((-3 $ "failed") $) 50 (|has| |#1| (-145)))) (-1308 ((|#2| $) 52)) (-3348 (((-769)) 32 T CONST)) (-1600 (((-112) $ $) 9)) (-2361 (($) 19 T CONST)) (-2371 (($) 34 T CONST)) (-2821 (((-112) $ $) 6)) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) -(((-370 |#1| |#2|) (-140) (-172) (-1238 |t#1|)) (T -370)) -((-3616 (*1 *2) (-12 (-4 *1 (-370 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1238 *3)) (-5 *2 (-919)))) (-2330 (*1 *2 *1 *3) (-12 (-5 *3 (-1262 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1238 *4)) (-5 *2 (-687 *4)))) (-3778 (*1 *2 *1) (-12 (-4 *1 (-370 *2 *3)) (-4 *3 (-1238 *2)) (-4 *2 (-172)))) (-2573 (*1 *2 *1) (-12 (-4 *1 (-370 *2 *3)) (-4 *3 (-1238 *2)) (-4 *2 (-172)))) (-3719 (*1 *2 *1 *3) (-12 (-5 *3 (-1262 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1238 *4)) (-5 *2 (-1262 *4)))) (-3719 (*1 *2 *3 *3) (-12 (-5 *3 (-1262 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1238 *4)) (-5 *2 (-687 *4)))) (-4087 (*1 *1 *2 *3) (-12 (-5 *2 (-1262 *4)) (-5 *3 (-1262 *1)) (-4 *4 (-172)) (-4 *1 (-370 *4 *5)) (-4 *5 (-1238 *4)))) (-2790 (*1 *2 *3) (-12 (-5 *3 (-1262 *1)) (-4 *1 (-370 *2 *4)) (-4 *4 (-1238 *2)) (-4 *2 (-172)))) (-1335 (*1 *2 *3) (-12 (-5 *3 (-1262 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1238 *4)) (-5 *2 (-687 *4)))) (-1308 (*1 *2 *1) (-12 (-4 *1 (-370 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1238 *3)))) (-2076 (*1 *2 *1) (-12 (-4 *1 (-370 *3 *2)) (-4 *3 (-172)) (-4 *3 (-363)) (-4 *2 (-1238 *3))))) -(-13 (-38 |t#1|) (-10 -8 (-15 -3616 ((-919))) (-15 -2330 ((-687 |t#1|) $ (-1262 $))) (-15 -3778 (|t#1| $)) (-15 -2573 (|t#1| $)) (-15 -3719 ((-1262 |t#1|) $ (-1262 $))) (-15 -3719 ((-687 |t#1|) (-1262 $) (-1262 $))) (-15 -4087 ($ (-1262 |t#1|) (-1262 $))) (-15 -2790 (|t#1| (-1262 $))) (-15 -1335 ((-687 |t#1|) (-1262 $))) (-15 -1308 (|t#2| $)) (IF (|has| |t#1| (-363)) (-15 -2076 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-611 (-860)) . T) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-638 |#1|) . T) ((-715 |#1|) . T) ((-724) . T) ((-1049 |#1|) . T) ((-1054 |#1|) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T)) -((-2810 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25)) (-3741 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17)) (-2947 ((|#4| (-1 |#3| |#1|) |#2|) 23))) -(((-371 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2947 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3741 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2810 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1212) (-373 |#1|) (-1212) (-373 |#3|)) (T -371)) -((-2810 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1212)) (-4 *5 (-1212)) (-4 *2 (-373 *5)) (-5 *1 (-371 *6 *4 *5 *2)) (-4 *4 (-373 *6)))) (-3741 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1212)) (-4 *2 (-1212)) (-5 *1 (-371 *5 *4 *2 *6)) (-4 *4 (-373 *5)) (-4 *6 (-373 *2)))) (-2947 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1212)) (-4 *6 (-1212)) (-4 *2 (-373 *6)) (-5 *1 (-371 *5 *4 *6 *2)) (-4 *4 (-373 *5))))) -(-10 -7 (-15 -2947 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3741 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2810 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-1824 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-3659 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-3191 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-3817 (($ $) 25)) (-3942 (((-564) (-1 (-112) |#2|) $) NIL) (((-564) |#2| $) 11) (((-564) |#2| $ (-564)) NIL)) (-2774 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20))) -(((-372 |#1| |#2|) (-10 -8 (-15 -3659 (|#1| |#1|)) (-15 -3659 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1824 ((-112) |#1|)) (-15 -3191 (|#1| |#1|)) (-15 -2774 (|#1| |#1| |#1|)) (-15 -3942 ((-564) |#2| |#1| (-564))) (-15 -3942 ((-564) |#2| |#1|)) (-15 -3942 ((-564) (-1 (-112) |#2|) |#1|)) (-15 -1824 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3191 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3817 (|#1| |#1|)) (-15 -2774 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-373 |#2|) (-1212)) (T -372)) -NIL -(-10 -8 (-15 -3659 (|#1| |#1|)) (-15 -3659 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1824 ((-112) |#1|)) (-15 -3191 (|#1| |#1|)) (-15 -2774 (|#1| |#1| |#1|)) (-15 -3942 ((-564) |#2| |#1| (-564))) (-15 -3942 ((-564) |#2| |#1|)) (-15 -3942 ((-564) (-1 (-112) |#2|) |#1|)) (-15 -1824 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3191 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3817 (|#1| |#1|)) (-15 -2774 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) -((-2856 (((-112) $ $) 19 (|has| |#1| (-1097)))) (-3633 (((-1267) $ (-564) (-564)) 41 (|has| $ (-6 -4411)))) (-1824 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-848)))) (-3659 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4411))) (($ $) 89 (-12 (|has| |#1| (-848)) (|has| $ (-6 -4411))))) (-3191 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-848)))) (-3442 (((-112) $ (-769)) 8)) (-3841 ((|#1| $ (-564) |#1|) 53 (|has| $ (-6 -4411))) ((|#1| $ (-1229 (-564)) |#1|) 59 (|has| $ (-6 -4411)))) (-3437 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4410)))) (-2822 (($) 7 T CONST)) (-1540 (($ $) 91 (|has| $ (-6 -4411)))) (-3817 (($ $) 101)) (-4067 (($ $) 79 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-2517 (($ |#1| $) 78 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4410)))) (-3741 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4410)))) (-3105 ((|#1| $ (-564) |#1|) 54 (|has| $ (-6 -4411)))) (-1804 ((|#1| $ (-564)) 52)) (-3942 (((-564) (-1 (-112) |#1|) $) 98) (((-564) |#1| $) 97 (|has| |#1| (-1097))) (((-564) |#1| $ (-564)) 96 (|has| |#1| (-1097)))) (-2018 (((-642 |#1|) $) 31 (|has| $ (-6 -4410)))) (-4233 (($ (-769) |#1|) 70)) (-3769 (((-112) $ (-769)) 9)) (-1802 (((-564) $) 44 (|has| (-564) (-848)))) (-3225 (($ $ $) 88 (|has| |#1| (-848)))) (-2774 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-848)))) (-3541 (((-642 |#1|) $) 30 (|has| $ (-6 -4410)))) (-2533 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3624 (((-564) $) 45 (|has| (-564) (-848)))) (-2903 (($ $ $) 87 (|has| |#1| (-848)))) (-1857 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4145 (((-112) $ (-769)) 10)) (-1778 (((-1155) $) 22 (|has| |#1| (-1097)))) (-4247 (($ |#1| $ (-564)) 61) (($ $ $ (-564)) 60)) (-4107 (((-642 (-564)) $) 47)) (-4207 (((-112) (-564) $) 48)) (-3999 (((-1117) $) 21 (|has| |#1| (-1097)))) (-4036 ((|#1| $) 43 (|has| (-564) (-848)))) (-3183 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-3826 (($ $ |#1|) 42 (|has| $ (-6 -4411)))) (-4094 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-2478 (((-112) $ $) 14)) (-1643 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3522 (((-642 |#1|) $) 49)) (-4109 (((-112) $) 11)) (-2179 (($) 12)) (-4369 ((|#1| $ (-564) |#1|) 51) ((|#1| $ (-564)) 50) (($ $ (-1229 (-564))) 64)) (-2083 (($ $ (-564)) 63) (($ $ (-1229 (-564))) 62)) (-4010 (((-769) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4410))) (((-769) |#1| $) 29 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3301 (($ $ $ (-564)) 92 (|has| $ (-6 -4411)))) (-3865 (($ $) 13)) (-3003 (((-536) $) 80 (|has| |#1| (-612 (-536))))) (-2401 (($ (-642 |#1|)) 71)) (-3634 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-642 $)) 66)) (-2390 (((-860) $) 18 (|has| |#1| (-611 (-860))))) (-1600 (((-112) $ $) 23 (|has| |#1| (-1097)))) (-3295 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4410)))) (-2881 (((-112) $ $) 85 (|has| |#1| (-848)))) (-2857 (((-112) $ $) 84 (|has| |#1| (-848)))) (-2821 (((-112) $ $) 20 (|has| |#1| (-1097)))) (-2868 (((-112) $ $) 86 (|has| |#1| (-848)))) (-2844 (((-112) $ $) 83 (|has| |#1| (-848)))) (-2158 (((-769) $) 6 (|has| $ (-6 -4410))))) -(((-373 |#1|) (-140) (-1212)) (T -373)) -((-2774 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-373 *3)) (-4 *3 (-1212)))) (-3817 (*1 *1 *1) (-12 (-4 *1 (-373 *2)) (-4 *2 (-1212)))) (-3191 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-373 *3)) (-4 *3 (-1212)))) (-1824 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-373 *4)) (-4 *4 (-1212)) (-5 *2 (-112)))) (-3942 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-373 *4)) (-4 *4 (-1212)) (-5 *2 (-564)))) (-3942 (*1 *2 *3 *1) (-12 (-4 *1 (-373 *3)) (-4 *3 (-1212)) (-4 *3 (-1097)) (-5 *2 (-564)))) (-3942 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-373 *3)) (-4 *3 (-1212)) (-4 *3 (-1097)))) (-2774 (*1 *1 *1 *1) (-12 (-4 *1 (-373 *2)) (-4 *2 (-1212)) (-4 *2 (-848)))) (-3191 (*1 *1 *1) (-12 (-4 *1 (-373 *2)) (-4 *2 (-1212)) (-4 *2 (-848)))) (-1824 (*1 *2 *1) (-12 (-4 *1 (-373 *3)) (-4 *3 (-1212)) (-4 *3 (-848)) (-5 *2 (-112)))) (-3301 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-564)) (|has| *1 (-6 -4411)) (-4 *1 (-373 *3)) (-4 *3 (-1212)))) (-1540 (*1 *1 *1) (-12 (|has| *1 (-6 -4411)) (-4 *1 (-373 *2)) (-4 *2 (-1212)))) (-3659 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4411)) (-4 *1 (-373 *3)) (-4 *3 (-1212)))) (-3659 (*1 *1 *1) (-12 (|has| *1 (-6 -4411)) (-4 *1 (-373 *2)) (-4 *2 (-1212)) (-4 *2 (-848))))) -(-13 (-649 |t#1|) (-10 -8 (-6 -4410) (-15 -2774 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -3817 ($ $)) (-15 -3191 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -1824 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -3942 ((-564) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1097)) (PROGN (-15 -3942 ((-564) |t#1| $)) (-15 -3942 ((-564) |t#1| $ (-564)))) |%noBranch|) (IF (|has| |t#1| (-848)) (PROGN (-6 (-848)) (-15 -2774 ($ $ $)) (-15 -3191 ($ $)) (-15 -1824 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4411)) (PROGN (-15 -3301 ($ $ $ (-564))) (-15 -1540 ($ $)) (-15 -3659 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-848)) (-15 -3659 ($ $)) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-102) -2682 (|has| |#1| (-1097)) (|has| |#1| (-848))) ((-611 (-860)) -2682 (|has| |#1| (-1097)) (|has| |#1| (-848)) (|has| |#1| (-611 (-860)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-649 |#1|) . T) ((-848) |has| |#1| (-848)) ((-1097) -2682 (|has| |#1| (-1097)) (|has| |#1| (-848))) ((-1212) . T)) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-1634 (((-642 |#1|) $) 37)) (-3562 (($ $ (-769)) 38)) (-3085 (((-3 $ "failed") $ $) 20)) (-2822 (($) 18 T CONST)) (-2938 (((-1286 |#1| |#2|) (-1286 |#1| |#2|) $) 41)) (-3137 (($ $) 39)) (-1618 (((-1286 |#1| |#2|) (-1286 |#1| |#2|) $) 42)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-3154 (($ $ |#1| $) 36) (($ $ (-642 |#1|) (-642 $)) 35)) (-3252 (((-769) $) 43)) (-2401 (($ $ $) 34)) (-2390 (((-860) $) 12) (($ |#1|) 46) (((-1277 |#1| |#2|) $) 45) (((-1286 |#1| |#2|) $) 44)) (-2968 ((|#2| (-1286 |#1| |#2|) $) 47)) (-1600 (((-112) $ $) 9)) (-2361 (($) 19 T CONST)) (-3071 (($ (-670 |#1|)) 40)) (-2821 (((-112) $ $) 6)) (-2943 (($ $ |#2|) 33 (|has| |#2| (-363)))) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ |#2| $) 27) (($ $ |#2|) 31))) -(((-374 |#1| |#2|) (-140) (-848) (-172)) (T -374)) -((-2968 (*1 *2 *3 *1) (-12 (-5 *3 (-1286 *4 *2)) (-4 *1 (-374 *4 *2)) (-4 *4 (-848)) (-4 *2 (-172)))) (-2390 (*1 *1 *2) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-848)) (-4 *3 (-172)))) (-2390 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-848)) (-4 *4 (-172)) (-5 *2 (-1277 *3 *4)))) (-2390 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-848)) (-4 *4 (-172)) (-5 *2 (-1286 *3 *4)))) (-3252 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-848)) (-4 *4 (-172)) (-5 *2 (-769)))) (-1618 (*1 *2 *2 *1) (-12 (-5 *2 (-1286 *3 *4)) (-4 *1 (-374 *3 *4)) (-4 *3 (-848)) (-4 *4 (-172)))) (-2938 (*1 *2 *2 *1) (-12 (-5 *2 (-1286 *3 *4)) (-4 *1 (-374 *3 *4)) (-4 *3 (-848)) (-4 *4 (-172)))) (-3071 (*1 *1 *2) (-12 (-5 *2 (-670 *3)) (-4 *3 (-848)) (-4 *1 (-374 *3 *4)) (-4 *4 (-172)))) (-3137 (*1 *1 *1) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-848)) (-4 *3 (-172)))) (-3562 (*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-4 *1 (-374 *3 *4)) (-4 *3 (-848)) (-4 *4 (-172)))) (-1634 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-848)) (-4 *4 (-172)) (-5 *2 (-642 *3)))) (-3154 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-848)) (-4 *3 (-172)))) (-3154 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-642 *4)) (-5 *3 (-642 *1)) (-4 *1 (-374 *4 *5)) (-4 *4 (-848)) (-4 *5 (-172))))) -(-13 (-632 |t#2|) (-10 -8 (-15 -2968 (|t#2| (-1286 |t#1| |t#2|) $)) (-15 -2390 ($ |t#1|)) (-15 -2390 ((-1277 |t#1| |t#2|) $)) (-15 -2390 ((-1286 |t#1| |t#2|) $)) (-15 -3252 ((-769) $)) (-15 -1618 ((-1286 |t#1| |t#2|) (-1286 |t#1| |t#2|) $)) (-15 -2938 ((-1286 |t#1| |t#2|) (-1286 |t#1| |t#2|) $)) (-15 -3071 ($ (-670 |t#1|))) (-15 -3137 ($ $)) (-15 -3562 ($ $ (-769))) (-15 -1634 ((-642 |t#1|) $)) (-15 -3154 ($ $ |t#1| $)) (-15 -3154 ($ $ (-642 |t#1|) (-642 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-611 (-860)) . T) ((-644 (-564)) . T) ((-644 |#2|) . T) ((-646 |#2|) . T) ((-632 |#2|) . T) ((-638 |#2|) . T) ((-715 |#2|) . T) ((-1049 |#2|) . T) ((-1054 |#2|) . T) ((-1097) . T)) -((-2556 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 44)) (-2995 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-3166 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 35))) -(((-375 |#1| |#2|) (-10 -7 (-15 -2995 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3166 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2556 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1212) (-13 (-373 |#1|) (-10 -7 (-6 -4411)))) (T -375)) -((-2556 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1212)) (-5 *1 (-375 *4 *2)) (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4411)))))) (-3166 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1212)) (-5 *1 (-375 *4 *2)) (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4411)))))) (-2995 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1212)) (-5 *1 (-375 *4 *2)) (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4411))))))) -(-10 -7 (-15 -2995 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3166 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2556 (|#2| (-1 (-112) |#1| |#1|) |#2|))) -((-3330 (((-687 |#2|) (-687 $)) NIL) (((-2 (|:| -3544 (-687 |#2|)) (|:| |vec| (-1262 |#2|))) (-687 $) (-1262 $)) NIL) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) 22) (((-687 (-564)) (-687 $)) 14))) -(((-376 |#1| |#2|) (-10 -8 (-15 -3330 ((-687 (-564)) (-687 |#1|))) (-15 -3330 ((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 |#1|) (-1262 |#1|))) (-15 -3330 ((-2 (|:| -3544 (-687 |#2|)) (|:| |vec| (-1262 |#2|))) (-687 |#1|) (-1262 |#1|))) (-15 -3330 ((-687 |#2|) (-687 |#1|)))) (-377 |#2|) (-1047)) (T -376)) -NIL -(-10 -8 (-15 -3330 ((-687 (-564)) (-687 |#1|))) (-15 -3330 ((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 |#1|) (-1262 |#1|))) (-15 -3330 ((-2 (|:| -3544 (-687 |#2|)) (|:| |vec| (-1262 |#2|))) (-687 |#1|) (-1262 |#1|))) (-15 -3330 ((-687 |#2|) (-687 |#1|)))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-3085 (((-3 $ "failed") $ $) 20)) (-2822 (($) 18 T CONST)) (-3330 (((-687 |#1|) (-687 $)) 40) (((-2 (|:| -3544 (-687 |#1|)) (|:| |vec| (-1262 |#1|))) (-687 $) (-1262 $)) 39) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) 47 (|has| |#1| (-637 (-564)))) (((-687 (-564)) (-687 $)) 46 (|has| |#1| (-637 (-564))))) (-2675 (((-3 $ "failed") $) 37)) (-3163 (((-112) $) 35)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2390 (((-860) $) 12) (($ (-564)) 33)) (-3348 (((-769)) 32 T CONST)) (-1600 (((-112) $ $) 9)) (-2361 (($) 19 T CONST)) (-2371 (($) 34 T CONST)) (-2821 (((-112) $ $) 6)) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27))) -(((-377 |#1|) (-140) (-1047)) (T -377)) -NIL -(-13 (-637 |t#1|) (-10 -7 (IF (|has| |t#1| (-637 (-564))) (-6 (-637 (-564))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-860)) . T) ((-644 (-564)) . T) ((-644 $) . T) ((-646 $) . T) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-724) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T)) -((-1349 (((-642 (-294 (-950 (-169 |#1|)))) (-294 (-407 (-950 (-169 (-564))))) |#1|) 51) (((-642 (-294 (-950 (-169 |#1|)))) (-407 (-950 (-169 (-564)))) |#1|) 50) (((-642 (-642 (-294 (-950 (-169 |#1|))))) (-642 (-294 (-407 (-950 (-169 (-564)))))) |#1|) 47) (((-642 (-642 (-294 (-950 (-169 |#1|))))) (-642 (-407 (-950 (-169 (-564))))) |#1|) 41)) (-2378 (((-642 (-642 (-169 |#1|))) (-642 (-407 (-950 (-169 (-564))))) (-642 (-1173)) |#1|) 30) (((-642 (-169 |#1|)) (-407 (-950 (-169 (-564)))) |#1|) 18))) -(((-378 |#1|) (-10 -7 (-15 -1349 ((-642 (-642 (-294 (-950 (-169 |#1|))))) (-642 (-407 (-950 (-169 (-564))))) |#1|)) (-15 -1349 ((-642 (-642 (-294 (-950 (-169 |#1|))))) (-642 (-294 (-407 (-950 (-169 (-564)))))) |#1|)) (-15 -1349 ((-642 (-294 (-950 (-169 |#1|)))) (-407 (-950 (-169 (-564)))) |#1|)) (-15 -1349 ((-642 (-294 (-950 (-169 |#1|)))) (-294 (-407 (-950 (-169 (-564))))) |#1|)) (-15 -2378 ((-642 (-169 |#1|)) (-407 (-950 (-169 (-564)))) |#1|)) (-15 -2378 ((-642 (-642 (-169 |#1|))) (-642 (-407 (-950 (-169 (-564))))) (-642 (-1173)) |#1|))) (-13 (-363) (-846))) (T -378)) -((-2378 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-642 (-407 (-950 (-169 (-564)))))) (-5 *4 (-642 (-1173))) (-5 *2 (-642 (-642 (-169 *5)))) (-5 *1 (-378 *5)) (-4 *5 (-13 (-363) (-846))))) (-2378 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-950 (-169 (-564))))) (-5 *2 (-642 (-169 *4))) (-5 *1 (-378 *4)) (-4 *4 (-13 (-363) (-846))))) (-1349 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-407 (-950 (-169 (-564)))))) (-5 *2 (-642 (-294 (-950 (-169 *4))))) (-5 *1 (-378 *4)) (-4 *4 (-13 (-363) (-846))))) (-1349 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-950 (-169 (-564))))) (-5 *2 (-642 (-294 (-950 (-169 *4))))) (-5 *1 (-378 *4)) (-4 *4 (-13 (-363) (-846))))) (-1349 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-294 (-407 (-950 (-169 (-564))))))) (-5 *2 (-642 (-642 (-294 (-950 (-169 *4)))))) (-5 *1 (-378 *4)) (-4 *4 (-13 (-363) (-846))))) (-1349 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-407 (-950 (-169 (-564)))))) (-5 *2 (-642 (-642 (-294 (-950 (-169 *4)))))) (-5 *1 (-378 *4)) (-4 *4 (-13 (-363) (-846)))))) -(-10 -7 (-15 -1349 ((-642 (-642 (-294 (-950 (-169 |#1|))))) (-642 (-407 (-950 (-169 (-564))))) |#1|)) (-15 -1349 ((-642 (-642 (-294 (-950 (-169 |#1|))))) (-642 (-294 (-407 (-950 (-169 (-564)))))) |#1|)) (-15 -1349 ((-642 (-294 (-950 (-169 |#1|)))) (-407 (-950 (-169 (-564)))) |#1|)) (-15 -1349 ((-642 (-294 (-950 (-169 |#1|)))) (-294 (-407 (-950 (-169 (-564))))) |#1|)) (-15 -2378 ((-642 (-169 |#1|)) (-407 (-950 (-169 (-564)))) |#1|)) (-15 -2378 ((-642 (-642 (-169 |#1|))) (-642 (-407 (-950 (-169 (-564))))) (-642 (-1173)) |#1|))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) 35)) (-2905 (((-564) $) 62)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-4252 (($ $) NIL)) (-1722 (((-112) $) NIL)) (-2180 (($ $) 144)) (-3087 (($ $) 107)) (-2958 (($ $) 94)) (-3085 (((-3 $ "failed") $ $) NIL)) (-1993 (($ $) NIL)) (-3282 (((-418 $) $) NIL)) (-2264 (($ $) 47)) (-2134 (((-112) $ $) NIL)) (-3067 (($ $) 105)) (-2933 (($ $) 88)) (-2221 (((-564) $) 81)) (-2966 (($ $ (-564)) 76)) (-3110 (($ $) NIL)) (-2981 (($ $) NIL)) (-2822 (($) NIL T CONST)) (-2293 (($ $) 146)) (-2849 (((-3 (-564) "failed") $) 242) (((-3 (-407 (-564)) "failed") $) 238)) (-1687 (((-564) $) 240) (((-407 (-564)) $) 236)) (-2796 (($ $ $) NIL)) (-2350 (((-564) $ $) 133)) (-2675 (((-3 $ "failed") $) 149)) (-3117 (((-407 (-564)) $ (-769)) 243) (((-407 (-564)) $ (-769) (-769)) 235)) (-2808 (($ $ $) NIL)) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) NIL)) (-3552 (((-112) $) NIL)) (-2182 (((-919)) 96) (((-919) (-919)) 129 (|has| $ (-6 -4401)))) (-3292 (((-112) $) 138)) (-2833 (($) 41)) (-1381 (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) NIL)) (-1840 (((-1267) (-769)) 201)) (-3765 (((-1267)) 206) (((-1267) (-769)) 207)) (-2215 (((-1267)) 208) (((-1267) (-769)) 209)) (-1962 (((-1267)) 204) (((-1267) (-769)) 205)) (-2408 (((-564) $) 69)) (-3163 (((-112) $) 40)) (-2024 (($ $ (-564)) NIL)) (-2867 (($ $) 51)) (-2573 (($ $) NIL)) (-2666 (((-112) $) 37)) (-2709 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-3225 (($ $ $) NIL) (($) NIL (-12 (-2307 (|has| $ (-6 -4393))) (-2307 (|has| $ (-6 -4401)))))) (-2903 (($ $ $) NIL) (($) 130 (-12 (-2307 (|has| $ (-6 -4393))) (-2307 (|has| $ (-6 -4401)))))) (-1664 (((-564) $) 17)) (-3276 (($) 115) (($ $) 121)) (-2219 (($) 120) (($ $) 122)) (-3576 (($ $) 110)) (-2066 (($ $ $) NIL) (($ (-642 $)) NIL)) (-1778 (((-1155) $) NIL)) (-2481 (($ $) 151)) (-3974 (((-919) (-564)) 46 (|has| $ (-6 -4401)))) (-3999 (((-1117) $) NIL)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2105 (($ $ $) NIL) (($ (-642 $)) NIL)) (-1830 (($ $) 60)) (-2795 (($ $) 143)) (-2823 (($ (-564) (-564)) 139) (($ (-564) (-564) (-919)) 140)) (-2254 (((-418 $) $) NIL)) (-1877 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2842 (((-3 $ "failed") $ $) NIL)) (-1483 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2817 (((-564) $) 19)) (-2129 (($) 123)) (-3466 (($ $) 104)) (-4274 (((-769) $) NIL)) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL)) (-3152 (((-919)) 131) (((-919) (-919)) 132 (|has| $ (-6 -4401)))) (-2199 (($ $ (-769)) NIL) (($ $) 150)) (-3520 (((-919) (-564)) 50 (|has| $ (-6 -4401)))) (-3120 (($ $) NIL)) (-2992 (($ $) NIL)) (-3098 (($ $) NIL)) (-2971 (($ $) NIL)) (-3077 (($ $) 106)) (-2946 (($ $) 93)) (-3003 (((-379) $) 229) (((-225) $) 230) (((-890 (-379)) $) NIL) (((-1155) $) 212) (((-536) $) 227) (($ (-225)) 234)) (-2390 (((-860) $) 216) (($ (-564)) 239) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-564)) 239) (($ (-407 (-564))) NIL) (((-225) $) 231)) (-3348 (((-769)) NIL T CONST)) (-1378 (($ $) 145)) (-1991 (((-919)) 61) (((-919) (-919)) 83 (|has| $ (-6 -4401)))) (-1600 (((-112) $ $) NIL)) (-1959 (((-919)) 134)) (-3155 (($ $) 113)) (-3025 (($ $) 49) (($ $ $) 59)) (-1594 (((-112) $ $) NIL)) (-3131 (($ $) 111)) (-3002 (($ $) 39)) (-3176 (($ $) NIL)) (-3047 (($ $) NIL)) (-3165 (($ $) NIL)) (-3058 (($ $) NIL)) (-3168 (($ $) NIL)) (-3035 (($ $) NIL)) (-3142 (($ $) 112)) (-3014 (($ $) 52)) (-1630 (($ $) 58)) (-2361 (($) 36 T CONST)) (-2371 (($) 43 T CONST)) (-3816 (((-1155) $) 27) (((-1155) $ (-112)) 29) (((-1267) (-820) $) 30) (((-1267) (-820) $ (-112)) 31)) (-2711 (($ $ (-769)) NIL) (($ $) NIL)) (-2881 (((-112) $ $) 213)) (-2857 (((-112) $ $) 45)) (-2821 (((-112) $ $) 56)) (-2868 (((-112) $ $) NIL)) (-2844 (((-112) $ $) 57)) (-2943 (($ $ $) 48) (($ $ (-564)) 42)) (-2930 (($ $) 38) (($ $ $) 53)) (-2917 (($ $ $) 75)) (** (($ $ (-919)) 86) (($ $ (-769)) NIL) (($ $ (-564)) 116) (($ $ (-407 (-564))) 162) (($ $ $) 153)) (* (($ (-919) $) 82) (($ (-769) $) NIL) (($ (-564) $) 87) (($ $ $) 74) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL))) -(((-379) (-13 (-404) (-233) (-612 (-1155)) (-826) (-611 (-225)) (-1197) (-612 (-536)) (-616 (-225)) (-10 -8 (-15 -2943 ($ $ (-564))) (-15 ** ($ $ $)) (-15 -2867 ($ $)) (-15 -2350 ((-564) $ $)) (-15 -2966 ($ $ (-564))) (-15 -3117 ((-407 (-564)) $ (-769))) (-15 -3117 ((-407 (-564)) $ (-769) (-769))) (-15 -3276 ($)) (-15 -2219 ($)) (-15 -2129 ($)) (-15 -3025 ($ $ $)) (-15 -3276 ($ $)) (-15 -2219 ($ $)) (-15 -2215 ((-1267))) (-15 -2215 ((-1267) (-769))) (-15 -1962 ((-1267))) (-15 -1962 ((-1267) (-769))) (-15 -3765 ((-1267))) (-15 -3765 ((-1267) (-769))) (-15 -1840 ((-1267) (-769))) (-6 -4401) (-6 -4393)))) (T -379)) -((** (*1 *1 *1 *1) (-5 *1 (-379))) (-2943 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-379)))) (-2867 (*1 *1 *1) (-5 *1 (-379))) (-2350 (*1 *2 *1 *1) (-12 (-5 *2 (-564)) (-5 *1 (-379)))) (-2966 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-379)))) (-3117 (*1 *2 *1 *3) (-12 (-5 *3 (-769)) (-5 *2 (-407 (-564))) (-5 *1 (-379)))) (-3117 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-769)) (-5 *2 (-407 (-564))) (-5 *1 (-379)))) (-3276 (*1 *1) (-5 *1 (-379))) (-2219 (*1 *1) (-5 *1 (-379))) (-2129 (*1 *1) (-5 *1 (-379))) (-3025 (*1 *1 *1 *1) (-5 *1 (-379))) (-3276 (*1 *1 *1) (-5 *1 (-379))) (-2219 (*1 *1 *1) (-5 *1 (-379))) (-2215 (*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-379)))) (-2215 (*1 *2 *3) (-12 (-5 *3 (-769)) (-5 *2 (-1267)) (-5 *1 (-379)))) (-1962 (*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-379)))) (-1962 (*1 *2 *3) (-12 (-5 *3 (-769)) (-5 *2 (-1267)) (-5 *1 (-379)))) (-3765 (*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-379)))) (-3765 (*1 *2 *3) (-12 (-5 *3 (-769)) (-5 *2 (-1267)) (-5 *1 (-379)))) (-1840 (*1 *2 *3) (-12 (-5 *3 (-769)) (-5 *2 (-1267)) (-5 *1 (-379))))) -(-13 (-404) (-233) (-612 (-1155)) (-826) (-611 (-225)) (-1197) (-612 (-536)) (-616 (-225)) (-10 -8 (-15 -2943 ($ $ (-564))) (-15 ** ($ $ $)) (-15 -2867 ($ $)) (-15 -2350 ((-564) $ $)) (-15 -2966 ($ $ (-564))) (-15 -3117 ((-407 (-564)) $ (-769))) (-15 -3117 ((-407 (-564)) $ (-769) (-769))) (-15 -3276 ($)) (-15 -2219 ($)) (-15 -2129 ($)) (-15 -3025 ($ $ $)) (-15 -3276 ($ $)) (-15 -2219 ($ $)) (-15 -2215 ((-1267))) (-15 -2215 ((-1267) (-769))) (-15 -1962 ((-1267))) (-15 -1962 ((-1267) (-769))) (-15 -3765 ((-1267))) (-15 -3765 ((-1267) (-769))) (-15 -1840 ((-1267) (-769))) (-6 -4401) (-6 -4393))) -((-1577 (((-642 (-294 (-950 |#1|))) (-294 (-407 (-950 (-564)))) |#1|) 46) (((-642 (-294 (-950 |#1|))) (-407 (-950 (-564))) |#1|) 45) (((-642 (-642 (-294 (-950 |#1|)))) (-642 (-294 (-407 (-950 (-564))))) |#1|) 42) (((-642 (-642 (-294 (-950 |#1|)))) (-642 (-407 (-950 (-564)))) |#1|) 36)) (-2234 (((-642 |#1|) (-407 (-950 (-564))) |#1|) 20) (((-642 (-642 |#1|)) (-642 (-407 (-950 (-564)))) (-642 (-1173)) |#1|) 30))) -(((-380 |#1|) (-10 -7 (-15 -1577 ((-642 (-642 (-294 (-950 |#1|)))) (-642 (-407 (-950 (-564)))) |#1|)) (-15 -1577 ((-642 (-642 (-294 (-950 |#1|)))) (-642 (-294 (-407 (-950 (-564))))) |#1|)) (-15 -1577 ((-642 (-294 (-950 |#1|))) (-407 (-950 (-564))) |#1|)) (-15 -1577 ((-642 (-294 (-950 |#1|))) (-294 (-407 (-950 (-564)))) |#1|)) (-15 -2234 ((-642 (-642 |#1|)) (-642 (-407 (-950 (-564)))) (-642 (-1173)) |#1|)) (-15 -2234 ((-642 |#1|) (-407 (-950 (-564))) |#1|))) (-13 (-846) (-363))) (T -380)) -((-2234 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-950 (-564)))) (-5 *2 (-642 *4)) (-5 *1 (-380 *4)) (-4 *4 (-13 (-846) (-363))))) (-2234 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-642 (-407 (-950 (-564))))) (-5 *4 (-642 (-1173))) (-5 *2 (-642 (-642 *5))) (-5 *1 (-380 *5)) (-4 *5 (-13 (-846) (-363))))) (-1577 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-407 (-950 (-564))))) (-5 *2 (-642 (-294 (-950 *4)))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-846) (-363))))) (-1577 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-950 (-564)))) (-5 *2 (-642 (-294 (-950 *4)))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-846) (-363))))) (-1577 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-294 (-407 (-950 (-564)))))) (-5 *2 (-642 (-642 (-294 (-950 *4))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-846) (-363))))) (-1577 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-407 (-950 (-564))))) (-5 *2 (-642 (-642 (-294 (-950 *4))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-846) (-363)))))) -(-10 -7 (-15 -1577 ((-642 (-642 (-294 (-950 |#1|)))) (-642 (-407 (-950 (-564)))) |#1|)) (-15 -1577 ((-642 (-642 (-294 (-950 |#1|)))) (-642 (-294 (-407 (-950 (-564))))) |#1|)) (-15 -1577 ((-642 (-294 (-950 |#1|))) (-407 (-950 (-564))) |#1|)) (-15 -1577 ((-642 (-294 (-950 |#1|))) (-294 (-407 (-950 (-564)))) |#1|)) (-15 -2234 ((-642 (-642 |#1|)) (-642 (-407 (-950 (-564)))) (-642 (-1173)) |#1|)) (-15 -2234 ((-642 |#1|) (-407 (-950 (-564))) |#1|))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-3085 (((-3 $ "failed") $ $) NIL)) (-2822 (($) NIL T CONST)) (-2849 (((-3 |#2| "failed") $) 30)) (-1687 ((|#2| $) 32)) (-3459 (($ $) NIL)) (-1904 (((-769) $) 11)) (-1995 (((-642 $) $) 23)) (-3471 (((-112) $) NIL)) (-1846 (($ |#2| |#1|) 21)) (-2947 (($ (-1 |#1| |#1|) $) NIL)) (-2300 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17)) (-2510 ((|#2| $) 18)) (-2523 ((|#1| $) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) 51) (($ |#2|) 31)) (-2839 (((-642 |#1|) $) 20)) (-3005 ((|#1| $ |#2|) 55)) (-1600 (((-112) $ $) NIL)) (-2361 (($) 33 T CONST)) (-1429 (((-642 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14)) (-2821 (((-112) $ $) NIL)) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ |#1| $) 36) (($ $ |#1|) 37) (($ |#1| |#2|) 39) (($ |#2| |#1|) 40))) -(((-381 |#1| |#2|) (-13 (-382 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1047) (-848)) (T -381)) -((* (*1 *1 *2 *3) (-12 (-5 *1 (-381 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-848))))) -(-13 (-382 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-3085 (((-3 $ "failed") $ $) 20)) (-2822 (($) 18 T CONST)) (-2849 (((-3 |#2| "failed") $) 49)) (-1687 ((|#2| $) 50)) (-3459 (($ $) 35)) (-1904 (((-769) $) 39)) (-1995 (((-642 $) $) 40)) (-3471 (((-112) $) 43)) (-1846 (($ |#2| |#1|) 44)) (-2947 (($ (-1 |#1| |#1|) $) 45)) (-2300 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 36)) (-2510 ((|#2| $) 38)) (-2523 ((|#1| $) 37)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2390 (((-860) $) 12) (($ |#2|) 48)) (-2839 (((-642 |#1|) $) 41)) (-3005 ((|#1| $ |#2|) 46)) (-1600 (((-112) $ $) 9)) (-2361 (($) 19 T CONST)) (-1429 (((-642 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 42)) (-2821 (((-112) $ $) 6)) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31) (($ |#1| |#2|) 47))) -(((-382 |#1| |#2|) (-140) (-1047) (-1097)) (T -382)) -((* (*1 *1 *2 *3) (-12 (-4 *1 (-382 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-1097)))) (-3005 (*1 *2 *1 *3) (-12 (-4 *1 (-382 *2 *3)) (-4 *3 (-1097)) (-4 *2 (-1047)))) (-2947 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-382 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-1097)))) (-1846 (*1 *1 *2 *3) (-12 (-4 *1 (-382 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-1097)))) (-3471 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-1097)) (-5 *2 (-112)))) (-1429 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-1097)) (-5 *2 (-642 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-2839 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-1097)) (-5 *2 (-642 *3)))) (-1995 (*1 *2 *1) (-12 (-4 *3 (-1047)) (-4 *4 (-1097)) (-5 *2 (-642 *1)) (-4 *1 (-382 *3 *4)))) (-1904 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-1097)) (-5 *2 (-769)))) (-2510 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-1097)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-382 *2 *3)) (-4 *3 (-1097)) (-4 *2 (-1047)))) (-2300 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-1097)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-3459 (*1 *1 *1) (-12 (-4 *1 (-382 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-1097))))) -(-13 (-111 |t#1| |t#1|) (-1036 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -3005 (|t#1| $ |t#2|)) (-15 -2947 ($ (-1 |t#1| |t#1|) $)) (-15 -1846 ($ |t#2| |t#1|)) (-15 -3471 ((-112) $)) (-15 -1429 ((-642 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -2839 ((-642 |t#1|) $)) (-15 -1995 ((-642 $) $)) (-15 -1904 ((-769) $)) (-15 -2510 (|t#2| $)) (-15 -2523 (|t#1| $)) (-15 -2300 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -3459 ($ $)) (IF (|has| |t#1| (-172)) (-6 (-715 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 |#2|) . T) ((-611 (-860)) . T) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-646 |#1|) . T) ((-638 |#1|) |has| |#1| (-172)) ((-715 |#1|) |has| |#1| (-172)) ((-1036 |#2|) . T) ((-1049 |#1|) . T) ((-1054 |#1|) . T) ((-1097) . T)) -((-2056 (((-1267) $) 7)) (-2390 (((-860) $) 8) (($ (-687 (-697))) 14) (($ (-642 (-330))) 13) (($ (-330)) 12) (($ (-2 (|:| |localSymbols| (-1177)) (|:| -3089 (-642 (-330))))) 11))) -(((-383) (-140)) (T -383)) -((-2390 (*1 *1 *2) (-12 (-5 *2 (-687 (-697))) (-4 *1 (-383)))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-642 (-330))) (-4 *1 (-383)))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-383)))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1177)) (|:| -3089 (-642 (-330))))) (-4 *1 (-383))))) -(-13 (-395) (-10 -8 (-15 -2390 ($ (-687 (-697)))) (-15 -2390 ($ (-642 (-330)))) (-15 -2390 ($ (-330))) (-15 -2390 ($ (-2 (|:| |localSymbols| (-1177)) (|:| -3089 (-642 (-330)))))))) -(((-611 (-860)) . T) ((-395) . T) ((-1212) . T)) -((-2849 (((-3 $ "failed") (-687 (-316 (-379)))) 21) (((-3 $ "failed") (-687 (-316 (-564)))) 19) (((-3 $ "failed") (-687 (-950 (-379)))) 17) (((-3 $ "failed") (-687 (-950 (-564)))) 15) (((-3 $ "failed") (-687 (-407 (-950 (-379))))) 13) (((-3 $ "failed") (-687 (-407 (-950 (-564))))) 11)) (-1687 (($ (-687 (-316 (-379)))) 22) (($ (-687 (-316 (-564)))) 20) (($ (-687 (-950 (-379)))) 18) (($ (-687 (-950 (-564)))) 16) (($ (-687 (-407 (-950 (-379))))) 14) (($ (-687 (-407 (-950 (-564))))) 12)) (-2056 (((-1267) $) 7)) (-2390 (((-860) $) 8) (($ (-642 (-330))) 25) (($ (-330)) 24) (($ (-2 (|:| |localSymbols| (-1177)) (|:| -3089 (-642 (-330))))) 23))) -(((-384) (-140)) (T -384)) -((-2390 (*1 *1 *2) (-12 (-5 *2 (-642 (-330))) (-4 *1 (-384)))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-384)))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1177)) (|:| -3089 (-642 (-330))))) (-4 *1 (-384)))) (-1687 (*1 *1 *2) (-12 (-5 *2 (-687 (-316 (-379)))) (-4 *1 (-384)))) (-2849 (*1 *1 *2) (|partial| -12 (-5 *2 (-687 (-316 (-379)))) (-4 *1 (-384)))) (-1687 (*1 *1 *2) (-12 (-5 *2 (-687 (-316 (-564)))) (-4 *1 (-384)))) (-2849 (*1 *1 *2) (|partial| -12 (-5 *2 (-687 (-316 (-564)))) (-4 *1 (-384)))) (-1687 (*1 *1 *2) (-12 (-5 *2 (-687 (-950 (-379)))) (-4 *1 (-384)))) (-2849 (*1 *1 *2) (|partial| -12 (-5 *2 (-687 (-950 (-379)))) (-4 *1 (-384)))) (-1687 (*1 *1 *2) (-12 (-5 *2 (-687 (-950 (-564)))) (-4 *1 (-384)))) (-2849 (*1 *1 *2) (|partial| -12 (-5 *2 (-687 (-950 (-564)))) (-4 *1 (-384)))) (-1687 (*1 *1 *2) (-12 (-5 *2 (-687 (-407 (-950 (-379))))) (-4 *1 (-384)))) (-2849 (*1 *1 *2) (|partial| -12 (-5 *2 (-687 (-407 (-950 (-379))))) (-4 *1 (-384)))) (-1687 (*1 *1 *2) (-12 (-5 *2 (-687 (-407 (-950 (-564))))) (-4 *1 (-384)))) (-2849 (*1 *1 *2) (|partial| -12 (-5 *2 (-687 (-407 (-950 (-564))))) (-4 *1 (-384))))) -(-13 (-395) (-10 -8 (-15 -2390 ($ (-642 (-330)))) (-15 -2390 ($ (-330))) (-15 -2390 ($ (-2 (|:| |localSymbols| (-1177)) (|:| -3089 (-642 (-330)))))) (-15 -1687 ($ (-687 (-316 (-379))))) (-15 -2849 ((-3 $ "failed") (-687 (-316 (-379))))) (-15 -1687 ($ (-687 (-316 (-564))))) (-15 -2849 ((-3 $ "failed") (-687 (-316 (-564))))) (-15 -1687 ($ (-687 (-950 (-379))))) (-15 -2849 ((-3 $ "failed") (-687 (-950 (-379))))) (-15 -1687 ($ (-687 (-950 (-564))))) (-15 -2849 ((-3 $ "failed") (-687 (-950 (-564))))) (-15 -1687 ($ (-687 (-407 (-950 (-379)))))) (-15 -2849 ((-3 $ "failed") (-687 (-407 (-950 (-379)))))) (-15 -1687 ($ (-687 (-407 (-950 (-564)))))) (-15 -2849 ((-3 $ "failed") (-687 (-407 (-950 (-564)))))))) -(((-611 (-860)) . T) ((-395) . T) ((-1212) . T)) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-3085 (((-3 $ "failed") $ $) NIL)) (-2822 (($) NIL T CONST)) (-3459 (($ $) NIL)) (-2374 (($ |#1| |#2|) NIL)) (-2947 (($ (-1 |#1| |#1|) $) NIL)) (-2357 ((|#2| $) NIL)) (-2523 ((|#1| $) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) 34)) (-1600 (((-112) $ $) NIL)) (-2361 (($) 12 T CONST)) (-2821 (((-112) $ $) NIL)) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ |#1| $) 15) (($ $ |#1|) 18))) -(((-385 |#1| |#2|) (-13 (-111 |#1| |#1|) (-509 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-172)) (-6 (-715 |#1|)) |%noBranch|))) (-1047) (-848)) (T -385)) -NIL -(-13 (-111 |#1| |#1|) (-509 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-172)) (-6 (-715 |#1|)) |%noBranch|))) -((-2856 (((-112) $ $) NIL)) (-4003 (((-769) $) 74)) (-2822 (($) NIL T CONST)) (-2938 (((-3 $ "failed") $ $) 77)) (-2849 (((-3 |#1| "failed") $) NIL)) (-1687 ((|#1| $) NIL)) (-2675 (((-3 $ "failed") $) NIL)) (-2970 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64)) (-3163 (((-112) $) 17)) (-3631 ((|#1| $ (-564)) NIL)) (-3911 (((-769) $ (-564)) NIL)) (-3225 (($ $ $) NIL (|has| |#1| (-848)))) (-2903 (($ $ $) NIL (|has| |#1| (-848)))) (-1860 (($ (-1 |#1| |#1|) $) 40)) (-4249 (($ (-1 (-769) (-769)) $) 37)) (-1618 (((-3 $ "failed") $ $) 60)) (-1778 (((-1155) $) NIL)) (-3019 (($ $ $) 28)) (-1884 (($ $ $) 26)) (-3999 (((-1117) $) NIL)) (-1569 (((-642 (-2 (|:| |gen| |#1|) (|:| -3466 (-769)))) $) 34)) (-2999 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 70)) (-2390 (((-860) $) 24) (($ |#1|) NIL)) (-1600 (((-112) $ $) NIL)) (-2371 (($) 11 T CONST)) (-2881 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2857 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2821 (((-112) $ $) NIL)) (-2868 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2844 (((-112) $ $) 84 (|has| |#1| (-848)))) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ |#1| (-769)) 42)) (* (($ $ $) 52) (($ |#1| $) 32) (($ $ |#1|) 30))) -(((-386 |#1|) (-13 (-724) (-1036 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-769))) (-15 -1884 ($ $ $)) (-15 -3019 ($ $ $)) (-15 -1618 ((-3 $ "failed") $ $)) (-15 -2938 ((-3 $ "failed") $ $)) (-15 -2999 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2970 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -4003 ((-769) $)) (-15 -1569 ((-642 (-2 (|:| |gen| |#1|) (|:| -3466 (-769)))) $)) (-15 -3911 ((-769) $ (-564))) (-15 -3631 (|#1| $ (-564))) (-15 -4249 ($ (-1 (-769) (-769)) $)) (-15 -1860 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-848)) (-6 (-848)) |%noBranch|))) (-1097)) (T -386)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1097)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1097)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-769)) (-5 *1 (-386 *2)) (-4 *2 (-1097)))) (-1884 (*1 *1 *1 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1097)))) (-3019 (*1 *1 *1 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1097)))) (-1618 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-386 *2)) (-4 *2 (-1097)))) (-2938 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-386 *2)) (-4 *2 (-1097)))) (-2999 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-386 *3)) (|:| |rm| (-386 *3)))) (-5 *1 (-386 *3)) (-4 *3 (-1097)))) (-2970 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-386 *3)) (|:| |mm| (-386 *3)) (|:| |rm| (-386 *3)))) (-5 *1 (-386 *3)) (-4 *3 (-1097)))) (-4003 (*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-386 *3)) (-4 *3 (-1097)))) (-1569 (*1 *2 *1) (-12 (-5 *2 (-642 (-2 (|:| |gen| *3) (|:| -3466 (-769))))) (-5 *1 (-386 *3)) (-4 *3 (-1097)))) (-3911 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-769)) (-5 *1 (-386 *4)) (-4 *4 (-1097)))) (-3631 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-386 *2)) (-4 *2 (-1097)))) (-4249 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-769) (-769))) (-5 *1 (-386 *3)) (-4 *3 (-1097)))) (-1860 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1097)) (-5 *1 (-386 *3))))) -(-13 (-724) (-1036 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-769))) (-15 -1884 ($ $ $)) (-15 -3019 ($ $ $)) (-15 -1618 ((-3 $ "failed") $ $)) (-15 -2938 ((-3 $ "failed") $ $)) (-15 -2999 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2970 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -4003 ((-769) $)) (-15 -1569 ((-642 (-2 (|:| |gen| |#1|) (|:| -3466 (-769)))) $)) (-15 -3911 ((-769) $ (-564))) (-15 -3631 (|#1| $ (-564))) (-15 -4249 ($ (-1 (-769) (-769)) $)) (-15 -1860 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-848)) (-6 (-848)) |%noBranch|))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) 47)) (-4252 (($ $) 46)) (-1722 (((-112) $) 44)) (-3085 (((-3 $ "failed") $ $) 20)) (-2822 (($) 18 T CONST)) (-2849 (((-3 (-564) "failed") $) 53)) (-1687 (((-564) $) 54)) (-2675 (((-3 $ "failed") $) 37)) (-3163 (((-112) $) 35)) (-3225 (($ $ $) 60)) (-2903 (($ $ $) 59)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2842 (((-3 $ "failed") $ $) 48)) (-2390 (((-860) $) 12) (($ (-564)) 33) (($ $) 49) (($ (-564)) 52)) (-3348 (((-769)) 32 T CONST)) (-1600 (((-112) $ $) 9)) (-1594 (((-112) $ $) 45)) (-2361 (($) 19 T CONST)) (-2371 (($) 34 T CONST)) (-2881 (((-112) $ $) 57)) (-2857 (((-112) $ $) 56)) (-2821 (((-112) $ $) 6)) (-2868 (((-112) $ $) 58)) (-2844 (((-112) $ $) 55)) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27))) -(((-387) (-140)) (T -387)) -NIL -(-13 (-556) (-848) (-1036 (-564))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-860)) . T) ((-172) . T) ((-290) . T) ((-556) . T) ((-644 (-564)) . T) ((-644 $) . T) ((-646 $) . T) ((-638 $) . T) ((-715 $) . T) ((-724) . T) ((-848) . T) ((-1036 (-564)) . T) ((-1049 $) . T) ((-1054 $) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T)) -((-2856 (((-112) $ $) NIL)) (-4142 (((-112) $) 25)) (-1599 (((-112) $) 22)) (-4233 (($ (-1155) (-1155) (-1155)) 26)) (-2493 (((-1155) $) 16)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-1932 (($ (-1155) (-1155) (-1155)) 14)) (-2953 (((-1155) $) 17)) (-4309 (((-112) $) 18)) (-4079 (((-1155) $) 15)) (-2390 (((-860) $) 12) (($ (-1155)) 13) (((-1155) $) 9)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) 7))) -(((-388) (-389)) (T -388)) -NIL -(-389) -((-2856 (((-112) $ $) 7)) (-4142 (((-112) $) 17)) (-1599 (((-112) $) 18)) (-4233 (($ (-1155) (-1155) (-1155)) 16)) (-2493 (((-1155) $) 21)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-1932 (($ (-1155) (-1155) (-1155)) 23)) (-2953 (((-1155) $) 20)) (-4309 (((-112) $) 19)) (-4079 (((-1155) $) 22)) (-2390 (((-860) $) 12) (($ (-1155)) 25) (((-1155) $) 24)) (-1600 (((-112) $ $) 9)) (-2821 (((-112) $ $) 6))) +((-3676 (($ $) 6)) (-3571 (($ $) 7)) (** (($ $ $) 8))) +(((-285) (-140)) (T -285)) +((** (*1 *1 *1 *1) (-4 *1 (-285))) (-3571 (*1 *1 *1) (-4 *1 (-285))) (-3676 (*1 *1 *1) (-4 *1 (-285)))) +(-13 (-10 -8 (-15 -3676 ($ $)) (-15 -3571 ($ $)) (-15 ** ($ $ $)))) +((-1618 (((-644 (-1155 |#1|)) (-1155 |#1|) |#1|) 35)) (-1675 ((|#2| |#2| |#1|) 39)) (-4114 ((|#2| |#2| |#1|) 41)) (-2512 ((|#2| |#2| |#1|) 40))) +(((-286 |#1| |#2|) (-10 -7 (-15 -1675 (|#2| |#2| |#1|)) (-15 -2512 (|#2| |#2| |#1|)) (-15 -4114 (|#2| |#2| |#1|)) (-15 -1618 ((-644 (-1155 |#1|)) (-1155 |#1|) |#1|))) (-365) (-1255 |#1|)) (T -286)) +((-1618 (*1 *2 *3 *4) (-12 (-4 *4 (-365)) (-5 *2 (-644 (-1155 *4))) (-5 *1 (-286 *4 *5)) (-5 *3 (-1155 *4)) (-4 *5 (-1255 *4)))) (-4114 (*1 *2 *2 *3) (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1255 *3)))) (-2512 (*1 *2 *2 *3) (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1255 *3)))) (-1675 (*1 *2 *2 *3) (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1255 *3))))) +(-10 -7 (-15 -1675 (|#2| |#2| |#1|)) (-15 -2512 (|#2| |#2| |#1|)) (-15 -4114 (|#2| |#2| |#1|)) (-15 -1618 ((-644 (-1155 |#1|)) (-1155 |#1|) |#1|))) +((-4376 ((|#2| $ |#1|) 6))) +(((-287 |#1| |#2|) (-140) (-1099) (-1214)) (T -287)) +((-4376 (*1 *2 *1 *3) (-12 (-4 *1 (-287 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1214))))) +(-13 (-10 -8 (-15 -4376 (|t#2| $ |t#1|)))) +((-3719 ((|#3| $ |#2| |#3|) 12)) (-3653 ((|#3| $ |#2|) 10))) +(((-288 |#1| |#2| |#3|) (-10 -8 (-15 -3719 (|#3| |#1| |#2| |#3|)) (-15 -3653 (|#3| |#1| |#2|))) (-289 |#2| |#3|) (-1099) (-1214)) (T -288)) +NIL +(-10 -8 (-15 -3719 (|#3| |#1| |#2| |#3|)) (-15 -3653 (|#3| |#1| |#2|))) +((-3901 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4418)))) (-3719 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4418)))) (-3653 ((|#2| $ |#1|) 11)) (-4376 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) +(((-289 |#1| |#2|) (-140) (-1099) (-1214)) (T -289)) +((-4376 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-289 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1214)))) (-3653 (*1 *2 *1 *3) (-12 (-4 *1 (-289 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1214)))) (-3901 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4418)) (-4 *1 (-289 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1214)))) (-3719 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4418)) (-4 *1 (-289 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1214))))) +(-13 (-287 |t#1| |t#2|) (-10 -8 (-15 -4376 (|t#2| $ |t#1| |t#2|)) (-15 -3653 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4418)) (PROGN (-15 -3901 (|t#2| $ |t#1| |t#2|)) (-15 -3719 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) +(((-287 |#1| |#2|) . T)) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) 37)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) 44)) (-3087 (($ $) 41)) (-1716 (((-112) $) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-2761 (((-112) $ $) NIL)) (-1811 (($) NIL T CONST)) (-2925 (($ $ $) 35)) (-1838 (($ |#2| |#3|) 18)) (-3757 (((-3 $ "failed") $) NIL)) (-2937 (($ $ $) NIL)) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) NIL)) (-2264 (((-112) $) NIL)) (-2495 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2579 ((|#3| $) NIL)) (-2120 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3151 (((-1157) $) NIL)) (-2577 (($ $) 19)) (-4059 (((-1119) $) NIL)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2162 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2585 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2976 (((-3 $ "failed") $ $) NIL)) (-2840 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2204 (((-3 $ "failed") $ $) NIL)) (-1383 (((-771) $) 36)) (-4376 ((|#2| $ |#2|) 46)) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) 23)) (-2479 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-1558 (((-771)) NIL T CONST)) (-3900 (((-112) $ $) NIL)) (-1333 (((-112) $ $) NIL)) (-2446 (($) 31 T CONST)) (-2459 (($) 39 T CONST)) (-2952 (((-112) $ $) NIL)) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 40))) +(((-290 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-308) (-10 -8 (-15 -2579 (|#3| $)) (-15 -2479 (|#2| $)) (-15 -1838 ($ |#2| |#3|)) (-15 -2204 ((-3 $ "failed") $ $)) (-15 -3757 ((-3 $ "failed") $)) (-15 -2577 ($ $)) (-15 -4376 (|#2| $ |#2|)))) (-172) (-1240 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -290)) +((-3757 (*1 *1 *1) (|partial| -12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1240 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2579 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-23)) (-5 *1 (-290 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1240 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-2479 (*1 *2 *1) (-12 (-4 *2 (-1240 *3)) (-5 *1 (-290 *3 *2 *4 *5 *6 *7)) (-4 *3 (-172)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-1838 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-290 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1240 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2204 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1240 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2577 (*1 *1 *1) (-12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1240 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-4376 (*1 *2 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-290 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1240 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))) +(-13 (-308) (-10 -8 (-15 -2579 (|#3| $)) (-15 -2479 (|#2| $)) (-15 -1838 ($ |#2| |#3|)) (-15 -2204 ((-3 $ "failed") $ $)) (-15 -3757 ((-3 $ "failed") $)) (-15 -2577 ($ $)) (-15 -4376 (|#2| $ |#2|)))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-3174 (((-3 $ "failed") $ $) 20)) (-1811 (($) 18 T CONST)) (-3757 (((-3 $ "failed") $) 37)) (-2264 (((-112) $) 35)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-2479 (((-862) $) 12) (($ (-566)) 33)) (-1558 (((-771)) 32 T CONST)) (-3900 (((-112) $ $) 9)) (-2446 (($) 19 T CONST)) (-2459 (($) 34 T CONST)) (-2952 (((-112) $ $) 6)) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27))) +(((-291) (-140)) (T -291)) +NIL +(-13 (-1049) (-111 $ $) (-10 -7 (-6 -4410))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-616 (-566)) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 $) . T) ((-726) . T) ((-1051 $) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) +((-4248 (($ (-508) (-508) (-1103) $) 19)) (-1380 (($ (-508) (-644 (-965)) $) 23)) (-1620 (((-644 (-1084)) $) 10)) (-4093 (($) 25)) (-3276 (((-691 (-1103)) (-508) (-508) $) 18)) (-1918 (((-644 (-965)) (-508) $) 22)) (-1737 (($) 7)) (-3095 (($) 24)) (-2479 (((-862) $) 29)) (-3734 (($) 26))) +(((-292) (-13 (-613 (-862)) (-10 -8 (-15 -1737 ($)) (-15 -1620 ((-644 (-1084)) $)) (-15 -3276 ((-691 (-1103)) (-508) (-508) $)) (-15 -4248 ($ (-508) (-508) (-1103) $)) (-15 -1918 ((-644 (-965)) (-508) $)) (-15 -1380 ($ (-508) (-644 (-965)) $)) (-15 -3095 ($)) (-15 -4093 ($)) (-15 -3734 ($))))) (T -292)) +((-1737 (*1 *1) (-5 *1 (-292))) (-1620 (*1 *2 *1) (-12 (-5 *2 (-644 (-1084))) (-5 *1 (-292)))) (-3276 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-508)) (-5 *2 (-691 (-1103))) (-5 *1 (-292)))) (-4248 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-508)) (-5 *3 (-1103)) (-5 *1 (-292)))) (-1918 (*1 *2 *3 *1) (-12 (-5 *3 (-508)) (-5 *2 (-644 (-965))) (-5 *1 (-292)))) (-1380 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-508)) (-5 *3 (-644 (-965))) (-5 *1 (-292)))) (-3095 (*1 *1) (-5 *1 (-292))) (-4093 (*1 *1) (-5 *1 (-292))) (-3734 (*1 *1) (-5 *1 (-292)))) +(-13 (-613 (-862)) (-10 -8 (-15 -1737 ($)) (-15 -1620 ((-644 (-1084)) $)) (-15 -3276 ((-691 (-1103)) (-508) (-508) $)) (-15 -4248 ($ (-508) (-508) (-1103) $)) (-15 -1918 ((-644 (-965)) (-508) $)) (-15 -1380 ($ (-508) (-644 (-965)) $)) (-15 -3095 ($)) (-15 -4093 ($)) (-15 -3734 ($)))) +((-3788 (((-644 (-2 (|:| |eigval| (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|)))) (|:| |geneigvec| (-644 (-689 (-409 (-952 |#1|))))))) (-689 (-409 (-952 |#1|)))) 105)) (-2564 (((-644 (-689 (-409 (-952 |#1|)))) (-2 (|:| |eigval| (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|)))) (|:| |eigmult| (-771)) (|:| |eigvec| (-644 (-689 (-409 (-952 |#1|)))))) (-689 (-409 (-952 |#1|)))) 100) (((-644 (-689 (-409 (-952 |#1|)))) (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|))) (-689 (-409 (-952 |#1|))) (-771) (-771)) 41)) (-3116 (((-644 (-2 (|:| |eigval| (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|)))) (|:| |eigmult| (-771)) (|:| |eigvec| (-644 (-689 (-409 (-952 |#1|))))))) (-689 (-409 (-952 |#1|)))) 102)) (-3323 (((-644 (-689 (-409 (-952 |#1|)))) (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|))) (-689 (-409 (-952 |#1|)))) 77)) (-2814 (((-644 (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|)))) (-689 (-409 (-952 |#1|)))) 76)) (-3728 (((-952 |#1|) (-689 (-409 (-952 |#1|)))) 57) (((-952 |#1|) (-689 (-409 (-952 |#1|))) (-1175)) 58))) +(((-293 |#1|) (-10 -7 (-15 -3728 ((-952 |#1|) (-689 (-409 (-952 |#1|))) (-1175))) (-15 -3728 ((-952 |#1|) (-689 (-409 (-952 |#1|))))) (-15 -2814 ((-644 (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|)))) (-689 (-409 (-952 |#1|))))) (-15 -3323 ((-644 (-689 (-409 (-952 |#1|)))) (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|))) (-689 (-409 (-952 |#1|))))) (-15 -2564 ((-644 (-689 (-409 (-952 |#1|)))) (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|))) (-689 (-409 (-952 |#1|))) (-771) (-771))) (-15 -2564 ((-644 (-689 (-409 (-952 |#1|)))) (-2 (|:| |eigval| (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|)))) (|:| |eigmult| (-771)) (|:| |eigvec| (-644 (-689 (-409 (-952 |#1|)))))) (-689 (-409 (-952 |#1|))))) (-15 -3788 ((-644 (-2 (|:| |eigval| (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|)))) (|:| |geneigvec| (-644 (-689 (-409 (-952 |#1|))))))) (-689 (-409 (-952 |#1|))))) (-15 -3116 ((-644 (-2 (|:| |eigval| (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|)))) (|:| |eigmult| (-771)) (|:| |eigvec| (-644 (-689 (-409 (-952 |#1|))))))) (-689 (-409 (-952 |#1|)))))) (-454)) (T -293)) +((-3116 (*1 *2 *3) (-12 (-4 *4 (-454)) (-5 *2 (-644 (-2 (|:| |eigval| (-3 (-409 (-952 *4)) (-1164 (-1175) (-952 *4)))) (|:| |eigmult| (-771)) (|:| |eigvec| (-644 (-689 (-409 (-952 *4)))))))) (-5 *1 (-293 *4)) (-5 *3 (-689 (-409 (-952 *4)))))) (-3788 (*1 *2 *3) (-12 (-4 *4 (-454)) (-5 *2 (-644 (-2 (|:| |eigval| (-3 (-409 (-952 *4)) (-1164 (-1175) (-952 *4)))) (|:| |geneigvec| (-644 (-689 (-409 (-952 *4)))))))) (-5 *1 (-293 *4)) (-5 *3 (-689 (-409 (-952 *4)))))) (-2564 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-409 (-952 *5)) (-1164 (-1175) (-952 *5)))) (|:| |eigmult| (-771)) (|:| |eigvec| (-644 *4)))) (-4 *5 (-454)) (-5 *2 (-644 (-689 (-409 (-952 *5))))) (-5 *1 (-293 *5)) (-5 *4 (-689 (-409 (-952 *5)))))) (-2564 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-409 (-952 *6)) (-1164 (-1175) (-952 *6)))) (-5 *5 (-771)) (-4 *6 (-454)) (-5 *2 (-644 (-689 (-409 (-952 *6))))) (-5 *1 (-293 *6)) (-5 *4 (-689 (-409 (-952 *6)))))) (-3323 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-409 (-952 *5)) (-1164 (-1175) (-952 *5)))) (-4 *5 (-454)) (-5 *2 (-644 (-689 (-409 (-952 *5))))) (-5 *1 (-293 *5)) (-5 *4 (-689 (-409 (-952 *5)))))) (-2814 (*1 *2 *3) (-12 (-5 *3 (-689 (-409 (-952 *4)))) (-4 *4 (-454)) (-5 *2 (-644 (-3 (-409 (-952 *4)) (-1164 (-1175) (-952 *4))))) (-5 *1 (-293 *4)))) (-3728 (*1 *2 *3) (-12 (-5 *3 (-689 (-409 (-952 *4)))) (-5 *2 (-952 *4)) (-5 *1 (-293 *4)) (-4 *4 (-454)))) (-3728 (*1 *2 *3 *4) (-12 (-5 *3 (-689 (-409 (-952 *5)))) (-5 *4 (-1175)) (-5 *2 (-952 *5)) (-5 *1 (-293 *5)) (-4 *5 (-454))))) +(-10 -7 (-15 -3728 ((-952 |#1|) (-689 (-409 (-952 |#1|))) (-1175))) (-15 -3728 ((-952 |#1|) (-689 (-409 (-952 |#1|))))) (-15 -2814 ((-644 (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|)))) (-689 (-409 (-952 |#1|))))) (-15 -3323 ((-644 (-689 (-409 (-952 |#1|)))) (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|))) (-689 (-409 (-952 |#1|))))) (-15 -2564 ((-644 (-689 (-409 (-952 |#1|)))) (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|))) (-689 (-409 (-952 |#1|))) (-771) (-771))) (-15 -2564 ((-644 (-689 (-409 (-952 |#1|)))) (-2 (|:| |eigval| (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|)))) (|:| |eigmult| (-771)) (|:| |eigvec| (-644 (-689 (-409 (-952 |#1|)))))) (-689 (-409 (-952 |#1|))))) (-15 -3788 ((-644 (-2 (|:| |eigval| (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|)))) (|:| |geneigvec| (-644 (-689 (-409 (-952 |#1|))))))) (-689 (-409 (-952 |#1|))))) (-15 -3116 ((-644 (-2 (|:| |eigval| (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|)))) (|:| |eigmult| (-771)) (|:| |eigvec| (-644 (-689 (-409 (-952 |#1|))))))) (-689 (-409 (-952 |#1|)))))) +((-3080 (((-295 |#2|) (-1 |#2| |#1|) (-295 |#1|)) 14))) +(((-294 |#1| |#2|) (-10 -7 (-15 -3080 ((-295 |#2|) (-1 |#2| |#1|) (-295 |#1|)))) (-1214) (-1214)) (T -294)) +((-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-295 *5)) (-4 *5 (-1214)) (-4 *6 (-1214)) (-5 *2 (-295 *6)) (-5 *1 (-294 *5 *6))))) +(-10 -7 (-15 -3080 ((-295 |#2|) (-1 |#2| |#1|) (-295 |#1|)))) +((-2986 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2845 (((-112) $) NIL (|has| |#1| (-21)))) (-2199 (($ $) 12)) (-3174 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3739 (($ $ $) 95 (|has| |#1| (-303)))) (-1811 (($) NIL (-2809 (|has| |#1| (-21)) (|has| |#1| (-726))) CONST)) (-3617 (($ $) 51 (|has| |#1| (-21)))) (-3750 (((-3 $ "failed") $) 62 (|has| |#1| (-726)))) (-3331 ((|#1| $) 11)) (-3757 (((-3 $ "failed") $) 60 (|has| |#1| (-726)))) (-2264 (((-112) $) NIL (|has| |#1| (-726)))) (-3080 (($ (-1 |#1| |#1|) $) 14)) (-3319 ((|#1| $) 10)) (-4094 (($ $) 50 (|has| |#1| (-21)))) (-3245 (((-3 $ "failed") $) 61 (|has| |#1| (-726)))) (-3151 (((-1157) $) NIL (|has| |#1| (-1099)))) (-2577 (($ $) 64 (-2809 (|has| |#1| (-365)) (|has| |#1| (-475))))) (-4059 (((-1119) $) NIL (|has| |#1| (-1099)))) (-1924 (((-644 $) $) 85 (|has| |#1| (-558)))) (-3297 (($ $ $) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 $)) 28 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-1175) |#1|) 17 (|has| |#1| (-516 (-1175) |#1|))) (($ $ (-644 (-1175)) (-644 |#1|)) 21 (|has| |#1| (-516 (-1175) |#1|)))) (-2008 (($ |#1| |#1|) 9)) (-3944 (((-134)) 90 (|has| |#1| (-365)))) (-3526 (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175)) 87 (|has| |#1| (-900 (-1175))))) (-2664 (($ $ $) NIL (|has| |#1| (-475)))) (-3815 (($ $ $) NIL (|has| |#1| (-475)))) (-2479 (($ (-566)) NIL (|has| |#1| (-1049))) (((-112) $) 37 (|has| |#1| (-1099))) (((-862) $) 36 (|has| |#1| (-1099)))) (-1558 (((-771)) 67 (|has| |#1| (-1049)) CONST)) (-3900 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2446 (($) 47 (|has| |#1| (-21)) CONST)) (-2459 (($) 57 (|has| |#1| (-726)) CONST)) (-2834 (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175))))) (-2952 (($ |#1| |#1|) 8) (((-112) $ $) 32 (|has| |#1| (-1099)))) (-3077 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) 92 (-2809 (|has| |#1| (-365)) (|has| |#1| (-475))))) (-3065 (($ |#1| $) 45 (|has| |#1| (-21))) (($ $ |#1|) 46 (|has| |#1| (-21))) (($ $ $) 44 (|has| |#1| (-21))) (($ $) 43 (|has| |#1| (-21)))) (-3052 (($ |#1| $) 40 (|has| |#1| (-25))) (($ $ |#1|) 41 (|has| |#1| (-25))) (($ $ $) 39 (|has| |#1| (-25)))) (** (($ $ (-566)) NIL (|has| |#1| (-475))) (($ $ (-771)) NIL (|has| |#1| (-726))) (($ $ (-921)) NIL (|has| |#1| (-1111)))) (* (($ $ |#1|) 55 (|has| |#1| (-1111))) (($ |#1| $) 54 (|has| |#1| (-1111))) (($ $ $) 53 (|has| |#1| (-1111))) (($ (-566) $) 70 (|has| |#1| (-21))) (($ (-771) $) NIL (|has| |#1| (-21))) (($ (-921) $) NIL (|has| |#1| (-25))))) +(((-295 |#1|) (-13 (-1214) (-10 -8 (-15 -2952 ($ |#1| |#1|)) (-15 -2008 ($ |#1| |#1|)) (-15 -2199 ($ $)) (-15 -3319 (|#1| $)) (-15 -3331 (|#1| $)) (-15 -3080 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-516 (-1175) |#1|)) (-6 (-516 (-1175) |#1|)) |%noBranch|) (IF (|has| |#1| (-1099)) (PROGN (-6 (-1099)) (-6 (-613 (-112))) (IF (|has| |#1| (-310 |#1|)) (PROGN (-15 -3297 ($ $ $)) (-15 -3297 ($ $ (-644 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3052 ($ |#1| $)) (-15 -3052 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -4094 ($ $)) (-15 -3617 ($ $)) (-15 -3065 ($ |#1| $)) (-15 -3065 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1111)) (PROGN (-6 (-1111)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-726)) (PROGN (-6 (-726)) (-15 -3245 ((-3 $ "failed") $)) (-15 -3750 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-475)) (PROGN (-6 (-475)) (-15 -3245 ((-3 $ "failed") $)) (-15 -3750 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1049)) (PROGN (-6 (-1049)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-717 |#1|)) |%noBranch|) (IF (|has| |#1| (-558)) (-15 -1924 ((-644 $) $)) |%noBranch|) (IF (|has| |#1| (-900 (-1175))) (-6 (-900 (-1175))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-6 (-1271 |#1|)) (-15 -3077 ($ $ $)) (-15 -2577 ($ $))) |%noBranch|) (IF (|has| |#1| (-303)) (-15 -3739 ($ $ $)) |%noBranch|))) (-1214)) (T -295)) +((-2952 (*1 *1 *2 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1214)))) (-2008 (*1 *1 *2 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1214)))) (-2199 (*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1214)))) (-3319 (*1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1214)))) (-3331 (*1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1214)))) (-3080 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1214)) (-5 *1 (-295 *3)))) (-3297 (*1 *1 *1 *1) (-12 (-4 *2 (-310 *2)) (-4 *2 (-1099)) (-4 *2 (-1214)) (-5 *1 (-295 *2)))) (-3297 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-295 *3))) (-4 *3 (-310 *3)) (-4 *3 (-1099)) (-4 *3 (-1214)) (-5 *1 (-295 *3)))) (-3052 (*1 *1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-25)) (-4 *2 (-1214)))) (-3052 (*1 *1 *1 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-25)) (-4 *2 (-1214)))) (-4094 (*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1214)))) (-3617 (*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1214)))) (-3065 (*1 *1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1214)))) (-3065 (*1 *1 *1 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1214)))) (-3245 (*1 *1 *1) (|partial| -12 (-5 *1 (-295 *2)) (-4 *2 (-726)) (-4 *2 (-1214)))) (-3750 (*1 *1 *1) (|partial| -12 (-5 *1 (-295 *2)) (-4 *2 (-726)) (-4 *2 (-1214)))) (-1924 (*1 *2 *1) (-12 (-5 *2 (-644 (-295 *3))) (-5 *1 (-295 *3)) (-4 *3 (-558)) (-4 *3 (-1214)))) (-3739 (*1 *1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-303)) (-4 *2 (-1214)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1111)) (-4 *2 (-1214)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1111)) (-4 *2 (-1214)))) (-3077 (*1 *1 *1 *1) (-2809 (-12 (-5 *1 (-295 *2)) (-4 *2 (-365)) (-4 *2 (-1214))) (-12 (-5 *1 (-295 *2)) (-4 *2 (-475)) (-4 *2 (-1214))))) (-2577 (*1 *1 *1) (-2809 (-12 (-5 *1 (-295 *2)) (-4 *2 (-365)) (-4 *2 (-1214))) (-12 (-5 *1 (-295 *2)) (-4 *2 (-475)) (-4 *2 (-1214)))))) +(-13 (-1214) (-10 -8 (-15 -2952 ($ |#1| |#1|)) (-15 -2008 ($ |#1| |#1|)) (-15 -2199 ($ $)) (-15 -3319 (|#1| $)) (-15 -3331 (|#1| $)) (-15 -3080 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-516 (-1175) |#1|)) (-6 (-516 (-1175) |#1|)) |%noBranch|) (IF (|has| |#1| (-1099)) (PROGN (-6 (-1099)) (-6 (-613 (-112))) (IF (|has| |#1| (-310 |#1|)) (PROGN (-15 -3297 ($ $ $)) (-15 -3297 ($ $ (-644 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3052 ($ |#1| $)) (-15 -3052 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -4094 ($ $)) (-15 -3617 ($ $)) (-15 -3065 ($ |#1| $)) (-15 -3065 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1111)) (PROGN (-6 (-1111)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-726)) (PROGN (-6 (-726)) (-15 -3245 ((-3 $ "failed") $)) (-15 -3750 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-475)) (PROGN (-6 (-475)) (-15 -3245 ((-3 $ "failed") $)) (-15 -3750 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1049)) (PROGN (-6 (-1049)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-717 |#1|)) |%noBranch|) (IF (|has| |#1| (-558)) (-15 -1924 ((-644 $) $)) |%noBranch|) (IF (|has| |#1| (-900 (-1175))) (-6 (-900 (-1175))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-6 (-1271 |#1|)) (-15 -3077 ($ $ $)) (-15 -2577 ($ $))) |%noBranch|) (IF (|has| |#1| (-303)) (-15 -3739 ($ $ $)) |%noBranch|))) +((-2986 (((-112) $ $) NIL (-2809 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-4250 (($) NIL) (($ (-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) NIL)) (-2462 (((-1269) $ |#1| |#1|) NIL (|has| $ (-6 -4418)))) (-1453 (((-112) $ (-771)) NIL)) (-3901 ((|#2| $ |#1| |#2|) NIL)) (-4364 (($ (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-3543 (($ (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-2377 (((-3 |#2| "failed") |#1| $) NIL)) (-1811 (($) NIL T CONST)) (-4111 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099))))) (-2295 (($ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) NIL (|has| $ (-6 -4417))) (($ (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-3 |#2| "failed") |#1| $) NIL)) (-2628 (($ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (($ (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-1838 (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) NIL (|has| $ (-6 -4417))) (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-3719 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4418)))) (-3653 ((|#2| $ |#1|) NIL)) (-3872 (((-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-644 |#2|) $) NIL (|has| $ (-6 -4417)))) (-2756 (((-112) $ (-771)) NIL)) (-2755 ((|#1| $) NIL (|has| |#1| (-850)))) (-4227 (((-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-644 |#2|) $) NIL (|has| $ (-6 -4417)))) (-1688 (((-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1099))))) (-3831 ((|#1| $) NIL (|has| |#1| (-850)))) (-3708 (($ (-1 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4418))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4418)))) (-3080 (($ (-1 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4106 (((-112) $ (-771)) NIL)) (-3151 (((-1157) $) NIL (-2809 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-1467 (((-644 |#1|) $) NIL)) (-3983 (((-112) |#1| $) NIL)) (-4255 (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) NIL)) (-4354 (($ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) NIL)) (-3780 (((-644 |#1|) $) NIL)) (-1605 (((-112) |#1| $) NIL)) (-4059 (((-1119) $) NIL (-2809 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-4080 ((|#2| $) NIL (|has| |#1| (-850)))) (-2688 (((-3 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) "failed") (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL)) (-4079 (($ $ |#2|) NIL (|has| $ (-6 -4418)))) (-4097 (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) NIL)) (-3966 (((-112) (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))))) NIL (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (($ $ (-295 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) NIL (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (($ $ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) NIL (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (($ $ (-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) (-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) NIL (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))) (-1844 (((-112) $ $) NIL)) (-2210 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1099))))) (-4185 (((-644 |#2|) $) NIL)) (-2788 (((-112) $) NIL)) (-1737 (($) NIL)) (-4376 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1797 (($) NIL) (($ (-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) NIL)) (-4068 (((-771) (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-771) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (((-771) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1099)))) (((-771) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417)))) (-3924 (($ $) NIL)) (-3136 (((-538) $) NIL (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-614 (-538))))) (-2489 (($ (-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) NIL)) (-2479 (((-862) $) NIL (-2809 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-613 (-862))) (|has| |#2| (-613 (-862)))))) (-3900 (((-112) $ $) NIL (-2809 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-2471 (($ (-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) NIL)) (-3667 (((-112) (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417)))) (-2952 (((-112) $ $) NIL (-2809 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-3002 (((-771) $) NIL (|has| $ (-6 -4417))))) +(((-296 |#1| |#2|) (-13 (-1190 |#1| |#2|) (-10 -7 (-6 -4417))) (-1099) (-1099)) (T -296)) +NIL +(-13 (-1190 |#1| |#2|) (-10 -7 (-6 -4417))) +((-1452 (((-313) (-1157) (-644 (-1157))) 17) (((-313) (-1157) (-1157)) 16) (((-313) (-644 (-1157))) 15) (((-313) (-1157)) 14))) +(((-297) (-10 -7 (-15 -1452 ((-313) (-1157))) (-15 -1452 ((-313) (-644 (-1157)))) (-15 -1452 ((-313) (-1157) (-1157))) (-15 -1452 ((-313) (-1157) (-644 (-1157)))))) (T -297)) +((-1452 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-1157))) (-5 *3 (-1157)) (-5 *2 (-313)) (-5 *1 (-297)))) (-1452 (*1 *2 *3 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-313)) (-5 *1 (-297)))) (-1452 (*1 *2 *3) (-12 (-5 *3 (-644 (-1157))) (-5 *2 (-313)) (-5 *1 (-297)))) (-1452 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-313)) (-5 *1 (-297))))) +(-10 -7 (-15 -1452 ((-313) (-1157))) (-15 -1452 ((-313) (-644 (-1157)))) (-15 -1452 ((-313) (-1157) (-1157))) (-15 -1452 ((-313) (-1157) (-644 (-1157))))) +((-3080 ((|#2| (-1 |#2| |#1|) (-1157) (-612 |#1|)) 18))) +(((-298 |#1| |#2|) (-10 -7 (-15 -3080 (|#2| (-1 |#2| |#1|) (-1157) (-612 |#1|)))) (-303) (-1214)) (T -298)) +((-3080 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1157)) (-5 *5 (-612 *6)) (-4 *6 (-303)) (-4 *2 (-1214)) (-5 *1 (-298 *6 *2))))) +(-10 -7 (-15 -3080 (|#2| (-1 |#2| |#1|) (-1157) (-612 |#1|)))) +((-3080 ((|#2| (-1 |#2| |#1|) (-612 |#1|)) 17))) +(((-299 |#1| |#2|) (-10 -7 (-15 -3080 (|#2| (-1 |#2| |#1|) (-612 |#1|)))) (-303) (-303)) (T -299)) +((-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-612 *5)) (-4 *5 (-303)) (-4 *2 (-303)) (-5 *1 (-299 *5 *2))))) +(-10 -7 (-15 -3080 (|#2| (-1 |#2| |#1|) (-612 |#1|)))) +((-2166 (((-112) (-225)) 12))) +(((-300 |#1| |#2|) (-10 -7 (-15 -2166 ((-112) (-225)))) (-225) (-225)) (T -300)) +((-2166 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-300 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-10 -7 (-15 -2166 ((-112) (-225)))) +((-1498 (((-1155 (-225)) (-317 (-225)) (-644 (-1175)) (-1093 (-843 (-225)))) 118)) (-2202 (((-1155 (-225)) (-1264 (-317 (-225))) (-644 (-1175)) (-1093 (-843 (-225)))) 135) (((-1155 (-225)) (-317 (-225)) (-644 (-1175)) (-1093 (-843 (-225)))) 72)) (-3142 (((-644 (-1157)) (-1155 (-225))) NIL)) (-1474 (((-644 (-225)) (-317 (-225)) (-1175) (-1093 (-843 (-225)))) 69)) (-2907 (((-644 (-225)) (-952 (-409 (-566))) (-1175) (-1093 (-843 (-225)))) 59)) (-3880 (((-644 (-1157)) (-644 (-225))) NIL)) (-3334 (((-225) (-1093 (-843 (-225)))) 29)) (-3397 (((-225) (-1093 (-843 (-225)))) 30)) (-3111 (((-112) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 64)) (-2343 (((-1157) (-225)) NIL))) +(((-301) (-10 -7 (-15 -3334 ((-225) (-1093 (-843 (-225))))) (-15 -3397 ((-225) (-1093 (-843 (-225))))) (-15 -3111 ((-112) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1474 ((-644 (-225)) (-317 (-225)) (-1175) (-1093 (-843 (-225))))) (-15 -1498 ((-1155 (-225)) (-317 (-225)) (-644 (-1175)) (-1093 (-843 (-225))))) (-15 -2202 ((-1155 (-225)) (-317 (-225)) (-644 (-1175)) (-1093 (-843 (-225))))) (-15 -2202 ((-1155 (-225)) (-1264 (-317 (-225))) (-644 (-1175)) (-1093 (-843 (-225))))) (-15 -2907 ((-644 (-225)) (-952 (-409 (-566))) (-1175) (-1093 (-843 (-225))))) (-15 -2343 ((-1157) (-225))) (-15 -3880 ((-644 (-1157)) (-644 (-225)))) (-15 -3142 ((-644 (-1157)) (-1155 (-225)))))) (T -301)) +((-3142 (*1 *2 *3) (-12 (-5 *3 (-1155 (-225))) (-5 *2 (-644 (-1157))) (-5 *1 (-301)))) (-3880 (*1 *2 *3) (-12 (-5 *3 (-644 (-225))) (-5 *2 (-644 (-1157))) (-5 *1 (-301)))) (-2343 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1157)) (-5 *1 (-301)))) (-2907 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-952 (-409 (-566)))) (-5 *4 (-1175)) (-5 *5 (-1093 (-843 (-225)))) (-5 *2 (-644 (-225))) (-5 *1 (-301)))) (-2202 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1264 (-317 (-225)))) (-5 *4 (-644 (-1175))) (-5 *5 (-1093 (-843 (-225)))) (-5 *2 (-1155 (-225))) (-5 *1 (-301)))) (-2202 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 (-225))) (-5 *4 (-644 (-1175))) (-5 *5 (-1093 (-843 (-225)))) (-5 *2 (-1155 (-225))) (-5 *1 (-301)))) (-1498 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 (-225))) (-5 *4 (-644 (-1175))) (-5 *5 (-1093 (-843 (-225)))) (-5 *2 (-1155 (-225))) (-5 *1 (-301)))) (-1474 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 (-225))) (-5 *4 (-1175)) (-5 *5 (-1093 (-843 (-225)))) (-5 *2 (-644 (-225))) (-5 *1 (-301)))) (-3111 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-112)) (-5 *1 (-301)))) (-3397 (*1 *2 *3) (-12 (-5 *3 (-1093 (-843 (-225)))) (-5 *2 (-225)) (-5 *1 (-301)))) (-3334 (*1 *2 *3) (-12 (-5 *3 (-1093 (-843 (-225)))) (-5 *2 (-225)) (-5 *1 (-301))))) +(-10 -7 (-15 -3334 ((-225) (-1093 (-843 (-225))))) (-15 -3397 ((-225) (-1093 (-843 (-225))))) (-15 -3111 ((-112) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1474 ((-644 (-225)) (-317 (-225)) (-1175) (-1093 (-843 (-225))))) (-15 -1498 ((-1155 (-225)) (-317 (-225)) (-644 (-1175)) (-1093 (-843 (-225))))) (-15 -2202 ((-1155 (-225)) (-317 (-225)) (-644 (-1175)) (-1093 (-843 (-225))))) (-15 -2202 ((-1155 (-225)) (-1264 (-317 (-225))) (-644 (-1175)) (-1093 (-843 (-225))))) (-15 -2907 ((-644 (-225)) (-952 (-409 (-566))) (-1175) (-1093 (-843 (-225))))) (-15 -2343 ((-1157) (-225))) (-15 -3880 ((-644 (-1157)) (-644 (-225)))) (-15 -3142 ((-644 (-1157)) (-1155 (-225))))) +((-2192 (((-644 (-612 $)) $) 27)) (-3739 (($ $ (-295 $)) 79) (($ $ (-644 (-295 $))) 140) (($ $ (-644 (-612 $)) (-644 $)) NIL)) (-2980 (((-3 (-612 $) "failed") $) 128)) (-1709 (((-612 $) $) 127)) (-4218 (($ $) 17) (($ (-644 $)) 54)) (-3909 (((-644 (-114)) $) 35)) (-4272 (((-114) (-114)) 89)) (-3400 (((-112) $) 151)) (-3080 (($ (-1 $ $) (-612 $)) 87)) (-3314 (((-3 (-612 $) "failed") $) 95)) (-3018 (($ (-114) $) 59) (($ (-114) (-644 $)) 111)) (-1896 (((-112) $ (-114)) 133) (((-112) $ (-1175)) 132)) (-3117 (((-771) $) 44)) (-3897 (((-112) $ $) 57) (((-112) $ (-1175)) 49)) (-2206 (((-112) $) 149)) (-3297 (($ $ (-612 $) $) NIL) (($ $ (-644 (-612 $)) (-644 $)) NIL) (($ $ (-644 (-295 $))) 138) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-644 (-1175)) (-644 (-1 $ $))) 82) (($ $ (-644 (-1175)) (-644 (-1 $ (-644 $)))) NIL) (($ $ (-1175) (-1 $ (-644 $))) 67) (($ $ (-1175) (-1 $ $)) 73) (($ $ (-644 (-114)) (-644 (-1 $ $))) 81) (($ $ (-644 (-114)) (-644 (-1 $ (-644 $)))) 83) (($ $ (-114) (-1 $ (-644 $))) 69) (($ $ (-114) (-1 $ $)) 75)) (-4376 (($ (-114) $) 60) (($ (-114) $ $) 61) (($ (-114) $ $ $) 62) (($ (-114) $ $ $ $) 63) (($ (-114) (-644 $)) 124)) (-3683 (($ $) 51) (($ $ $) 136)) (-3749 (($ $) 15) (($ (-644 $)) 53)) (-1540 (((-112) (-114)) 21))) +(((-302 |#1|) (-10 -8 (-15 -3400 ((-112) |#1|)) (-15 -2206 ((-112) |#1|)) (-15 -3297 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -3297 (|#1| |#1| (-114) (-1 |#1| (-644 |#1|)))) (-15 -3297 (|#1| |#1| (-644 (-114)) (-644 (-1 |#1| (-644 |#1|))))) (-15 -3297 (|#1| |#1| (-644 (-114)) (-644 (-1 |#1| |#1|)))) (-15 -3297 (|#1| |#1| (-1175) (-1 |#1| |#1|))) (-15 -3297 (|#1| |#1| (-1175) (-1 |#1| (-644 |#1|)))) (-15 -3297 (|#1| |#1| (-644 (-1175)) (-644 (-1 |#1| (-644 |#1|))))) (-15 -3297 (|#1| |#1| (-644 (-1175)) (-644 (-1 |#1| |#1|)))) (-15 -3897 ((-112) |#1| (-1175))) (-15 -3897 ((-112) |#1| |#1|)) (-15 -3080 (|#1| (-1 |#1| |#1|) (-612 |#1|))) (-15 -3018 (|#1| (-114) (-644 |#1|))) (-15 -3018 (|#1| (-114) |#1|)) (-15 -1896 ((-112) |#1| (-1175))) (-15 -1896 ((-112) |#1| (-114))) (-15 -1540 ((-112) (-114))) (-15 -4272 ((-114) (-114))) (-15 -3909 ((-644 (-114)) |#1|)) (-15 -2192 ((-644 (-612 |#1|)) |#1|)) (-15 -3314 ((-3 (-612 |#1|) "failed") |#1|)) (-15 -3117 ((-771) |#1|)) (-15 -3683 (|#1| |#1| |#1|)) (-15 -3683 (|#1| |#1|)) (-15 -4218 (|#1| (-644 |#1|))) (-15 -4218 (|#1| |#1|)) (-15 -3749 (|#1| (-644 |#1|))) (-15 -3749 (|#1| |#1|)) (-15 -3739 (|#1| |#1| (-644 (-612 |#1|)) (-644 |#1|))) (-15 -3739 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -3739 (|#1| |#1| (-295 |#1|))) (-15 -4376 (|#1| (-114) (-644 |#1|))) (-15 -4376 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -4376 (|#1| (-114) |#1| |#1| |#1|)) (-15 -4376 (|#1| (-114) |#1| |#1|)) (-15 -4376 (|#1| (-114) |#1|)) (-15 -3297 (|#1| |#1| (-644 |#1|) (-644 |#1|))) (-15 -3297 (|#1| |#1| |#1| |#1|)) (-15 -3297 (|#1| |#1| (-295 |#1|))) (-15 -3297 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -3297 (|#1| |#1| (-644 (-612 |#1|)) (-644 |#1|))) (-15 -3297 (|#1| |#1| (-612 |#1|) |#1|)) (-15 -2980 ((-3 (-612 |#1|) "failed") |#1|)) (-15 -1709 ((-612 |#1|) |#1|))) (-303)) (T -302)) +((-4272 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-302 *3)) (-4 *3 (-303)))) (-1540 (*1 *2 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-302 *4)) (-4 *4 (-303))))) +(-10 -8 (-15 -3400 ((-112) |#1|)) (-15 -2206 ((-112) |#1|)) (-15 -3297 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -3297 (|#1| |#1| (-114) (-1 |#1| (-644 |#1|)))) (-15 -3297 (|#1| |#1| (-644 (-114)) (-644 (-1 |#1| (-644 |#1|))))) (-15 -3297 (|#1| |#1| (-644 (-114)) (-644 (-1 |#1| |#1|)))) (-15 -3297 (|#1| |#1| (-1175) (-1 |#1| |#1|))) (-15 -3297 (|#1| |#1| (-1175) (-1 |#1| (-644 |#1|)))) (-15 -3297 (|#1| |#1| (-644 (-1175)) (-644 (-1 |#1| (-644 |#1|))))) (-15 -3297 (|#1| |#1| (-644 (-1175)) (-644 (-1 |#1| |#1|)))) (-15 -3897 ((-112) |#1| (-1175))) (-15 -3897 ((-112) |#1| |#1|)) (-15 -3080 (|#1| (-1 |#1| |#1|) (-612 |#1|))) (-15 -3018 (|#1| (-114) (-644 |#1|))) (-15 -3018 (|#1| (-114) |#1|)) (-15 -1896 ((-112) |#1| (-1175))) (-15 -1896 ((-112) |#1| (-114))) (-15 -1540 ((-112) (-114))) (-15 -4272 ((-114) (-114))) (-15 -3909 ((-644 (-114)) |#1|)) (-15 -2192 ((-644 (-612 |#1|)) |#1|)) (-15 -3314 ((-3 (-612 |#1|) "failed") |#1|)) (-15 -3117 ((-771) |#1|)) (-15 -3683 (|#1| |#1| |#1|)) (-15 -3683 (|#1| |#1|)) (-15 -4218 (|#1| (-644 |#1|))) (-15 -4218 (|#1| |#1|)) (-15 -3749 (|#1| (-644 |#1|))) (-15 -3749 (|#1| |#1|)) (-15 -3739 (|#1| |#1| (-644 (-612 |#1|)) (-644 |#1|))) (-15 -3739 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -3739 (|#1| |#1| (-295 |#1|))) (-15 -4376 (|#1| (-114) (-644 |#1|))) (-15 -4376 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -4376 (|#1| (-114) |#1| |#1| |#1|)) (-15 -4376 (|#1| (-114) |#1| |#1|)) (-15 -4376 (|#1| (-114) |#1|)) (-15 -3297 (|#1| |#1| (-644 |#1|) (-644 |#1|))) (-15 -3297 (|#1| |#1| |#1| |#1|)) (-15 -3297 (|#1| |#1| (-295 |#1|))) (-15 -3297 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -3297 (|#1| |#1| (-644 (-612 |#1|)) (-644 |#1|))) (-15 -3297 (|#1| |#1| (-612 |#1|) |#1|)) (-15 -2980 ((-3 (-612 |#1|) "failed") |#1|)) (-15 -1709 ((-612 |#1|) |#1|))) +((-2986 (((-112) $ $) 7)) (-2192 (((-644 (-612 $)) $) 39)) (-3739 (($ $ (-295 $)) 51) (($ $ (-644 (-295 $))) 50) (($ $ (-644 (-612 $)) (-644 $)) 49)) (-2980 (((-3 (-612 $) "failed") $) 64)) (-1709 (((-612 $) $) 65)) (-4218 (($ $) 46) (($ (-644 $)) 45)) (-3909 (((-644 (-114)) $) 38)) (-4272 (((-114) (-114)) 37)) (-3400 (((-112) $) 17 (|has| $ (-1038 (-566))))) (-3223 (((-1171 $) (-612 $)) 20 (|has| $ (-1049)))) (-3080 (($ (-1 $ $) (-612 $)) 31)) (-3314 (((-3 (-612 $) "failed") $) 41)) (-3151 (((-1157) $) 10)) (-2272 (((-644 (-612 $)) $) 40)) (-3018 (($ (-114) $) 33) (($ (-114) (-644 $)) 32)) (-1896 (((-112) $ (-114)) 35) (((-112) $ (-1175)) 34)) (-3117 (((-771) $) 42)) (-4059 (((-1119) $) 11)) (-3897 (((-112) $ $) 30) (((-112) $ (-1175)) 29)) (-2206 (((-112) $) 18 (|has| $ (-1038 (-566))))) (-3297 (($ $ (-612 $) $) 62) (($ $ (-644 (-612 $)) (-644 $)) 61) (($ $ (-644 (-295 $))) 60) (($ $ (-295 $)) 59) (($ $ $ $) 58) (($ $ (-644 $) (-644 $)) 57) (($ $ (-644 (-1175)) (-644 (-1 $ $))) 28) (($ $ (-644 (-1175)) (-644 (-1 $ (-644 $)))) 27) (($ $ (-1175) (-1 $ (-644 $))) 26) (($ $ (-1175) (-1 $ $)) 25) (($ $ (-644 (-114)) (-644 (-1 $ $))) 24) (($ $ (-644 (-114)) (-644 (-1 $ (-644 $)))) 23) (($ $ (-114) (-1 $ (-644 $))) 22) (($ $ (-114) (-1 $ $)) 21)) (-4376 (($ (-114) $) 56) (($ (-114) $ $) 55) (($ (-114) $ $ $) 54) (($ (-114) $ $ $ $) 53) (($ (-114) (-644 $)) 52)) (-3683 (($ $) 44) (($ $ $) 43)) (-2301 (($ $) 19 (|has| $ (-1049)))) (-2479 (((-862) $) 12) (($ (-612 $)) 63)) (-3749 (($ $) 48) (($ (-644 $)) 47)) (-1540 (((-112) (-114)) 36)) (-3900 (((-112) $ $) 9)) (-2952 (((-112) $ $) 6))) +(((-303) (-140)) (T -303)) +((-4376 (*1 *1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) (-4376 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) (-4376 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) (-4376 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) (-4376 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-644 *1)) (-4 *1 (-303)))) (-3739 (*1 *1 *1 *2) (-12 (-5 *2 (-295 *1)) (-4 *1 (-303)))) (-3739 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-295 *1))) (-4 *1 (-303)))) (-3739 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-612 *1))) (-5 *3 (-644 *1)) (-4 *1 (-303)))) (-3749 (*1 *1 *1) (-4 *1 (-303))) (-3749 (*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-303)))) (-4218 (*1 *1 *1) (-4 *1 (-303))) (-4218 (*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-303)))) (-3683 (*1 *1 *1) (-4 *1 (-303))) (-3683 (*1 *1 *1 *1) (-4 *1 (-303))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-771)))) (-3314 (*1 *2 *1) (|partial| -12 (-5 *2 (-612 *1)) (-4 *1 (-303)))) (-2272 (*1 *2 *1) (-12 (-5 *2 (-644 (-612 *1))) (-4 *1 (-303)))) (-2192 (*1 *2 *1) (-12 (-5 *2 (-644 (-612 *1))) (-4 *1 (-303)))) (-3909 (*1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-644 (-114))))) (-4272 (*1 *2 *2) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) (-1540 (*1 *2 *3) (-12 (-4 *1 (-303)) (-5 *3 (-114)) (-5 *2 (-112)))) (-1896 (*1 *2 *1 *3) (-12 (-4 *1 (-303)) (-5 *3 (-114)) (-5 *2 (-112)))) (-1896 (*1 *2 *1 *3) (-12 (-4 *1 (-303)) (-5 *3 (-1175)) (-5 *2 (-112)))) (-3018 (*1 *1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) (-3018 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-644 *1)) (-4 *1 (-303)))) (-3080 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-612 *1)) (-4 *1 (-303)))) (-3897 (*1 *2 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-112)))) (-3897 (*1 *2 *1 *3) (-12 (-4 *1 (-303)) (-5 *3 (-1175)) (-5 *2 (-112)))) (-3297 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-1175))) (-5 *3 (-644 (-1 *1 *1))) (-4 *1 (-303)))) (-3297 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-1175))) (-5 *3 (-644 (-1 *1 (-644 *1)))) (-4 *1 (-303)))) (-3297 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1 *1 (-644 *1))) (-4 *1 (-303)))) (-3297 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1 *1 *1)) (-4 *1 (-303)))) (-3297 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-114))) (-5 *3 (-644 (-1 *1 *1))) (-4 *1 (-303)))) (-3297 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-114))) (-5 *3 (-644 (-1 *1 (-644 *1)))) (-4 *1 (-303)))) (-3297 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-644 *1))) (-4 *1 (-303)))) (-3297 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-303)))) (-3223 (*1 *2 *3) (-12 (-5 *3 (-612 *1)) (-4 *1 (-1049)) (-4 *1 (-303)) (-5 *2 (-1171 *1)))) (-2301 (*1 *1 *1) (-12 (-4 *1 (-1049)) (-4 *1 (-303)))) (-2206 (*1 *2 *1) (-12 (-4 *1 (-1038 (-566))) (-4 *1 (-303)) (-5 *2 (-112)))) (-3400 (*1 *2 *1) (-12 (-4 *1 (-1038 (-566))) (-4 *1 (-303)) (-5 *2 (-112))))) +(-13 (-1099) (-1038 (-612 $)) (-516 (-612 $) $) (-310 $) (-10 -8 (-15 -4376 ($ (-114) $)) (-15 -4376 ($ (-114) $ $)) (-15 -4376 ($ (-114) $ $ $)) (-15 -4376 ($ (-114) $ $ $ $)) (-15 -4376 ($ (-114) (-644 $))) (-15 -3739 ($ $ (-295 $))) (-15 -3739 ($ $ (-644 (-295 $)))) (-15 -3739 ($ $ (-644 (-612 $)) (-644 $))) (-15 -3749 ($ $)) (-15 -3749 ($ (-644 $))) (-15 -4218 ($ $)) (-15 -4218 ($ (-644 $))) (-15 -3683 ($ $)) (-15 -3683 ($ $ $)) (-15 -3117 ((-771) $)) (-15 -3314 ((-3 (-612 $) "failed") $)) (-15 -2272 ((-644 (-612 $)) $)) (-15 -2192 ((-644 (-612 $)) $)) (-15 -3909 ((-644 (-114)) $)) (-15 -4272 ((-114) (-114))) (-15 -1540 ((-112) (-114))) (-15 -1896 ((-112) $ (-114))) (-15 -1896 ((-112) $ (-1175))) (-15 -3018 ($ (-114) $)) (-15 -3018 ($ (-114) (-644 $))) (-15 -3080 ($ (-1 $ $) (-612 $))) (-15 -3897 ((-112) $ $)) (-15 -3897 ((-112) $ (-1175))) (-15 -3297 ($ $ (-644 (-1175)) (-644 (-1 $ $)))) (-15 -3297 ($ $ (-644 (-1175)) (-644 (-1 $ (-644 $))))) (-15 -3297 ($ $ (-1175) (-1 $ (-644 $)))) (-15 -3297 ($ $ (-1175) (-1 $ $))) (-15 -3297 ($ $ (-644 (-114)) (-644 (-1 $ $)))) (-15 -3297 ($ $ (-644 (-114)) (-644 (-1 $ (-644 $))))) (-15 -3297 ($ $ (-114) (-1 $ (-644 $)))) (-15 -3297 ($ $ (-114) (-1 $ $))) (IF (|has| $ (-1049)) (PROGN (-15 -3223 ((-1171 $) (-612 $))) (-15 -2301 ($ $))) |%noBranch|) (IF (|has| $ (-1038 (-566))) (PROGN (-15 -2206 ((-112) $)) (-15 -3400 ((-112) $))) |%noBranch|))) +(((-102) . T) ((-616 #0=(-612 $)) . T) ((-613 (-862)) . T) ((-310 $) . T) ((-516 (-612 $) $) . T) ((-516 $ $) . T) ((-1038 #0#) . T) ((-1099) . T)) +((-3499 (((-644 |#1|) (-644 |#1|)) 10))) +(((-304 |#1|) (-10 -7 (-15 -3499 ((-644 |#1|) (-644 |#1|)))) (-848)) (T -304)) +((-3499 (*1 *2 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-848)) (-5 *1 (-304 *3))))) +(-10 -7 (-15 -3499 ((-644 |#1|) (-644 |#1|)))) +((-3080 (((-689 |#2|) (-1 |#2| |#1|) (-689 |#1|)) 17))) +(((-305 |#1| |#2|) (-10 -7 (-15 -3080 ((-689 |#2|) (-1 |#2| |#1|) (-689 |#1|)))) (-1049) (-1049)) (T -305)) +((-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-689 *5)) (-4 *5 (-1049)) (-4 *6 (-1049)) (-5 *2 (-689 *6)) (-5 *1 (-305 *5 *6))))) +(-10 -7 (-15 -3080 ((-689 |#2|) (-1 |#2| |#1|) (-689 |#1|)))) +((-2737 (((-1264 (-317 (-381))) (-1264 (-317 (-225)))) 112)) (-4392 (((-1093 (-843 (-225))) (-1093 (-843 (-381)))) 45)) (-3142 (((-644 (-1157)) (-1155 (-225))) 94)) (-1563 (((-317 (-381)) (-952 (-225))) 55)) (-2850 (((-225) (-952 (-225))) 51)) (-4017 (((-1157) (-381)) 197)) (-1322 (((-843 (-225)) (-843 (-381))) 39)) (-1428 (((-2 (|:| |additions| (-566)) (|:| |multiplications| (-566)) (|:| |exponentiations| (-566)) (|:| |functionCalls| (-566))) (-1264 (-317 (-225)))) 165)) (-3412 (((-1035) (-2 (|:| -4177 (-381)) (|:| -2598 (-1157)) (|:| |explanations| (-644 (-1157))) (|:| |extra| (-1035)))) 209) (((-1035) (-2 (|:| -4177 (-381)) (|:| -2598 (-1157)) (|:| |explanations| (-644 (-1157))))) 207)) (-4196 (((-689 (-225)) (-644 (-225)) (-771)) 21)) (-3199 (((-1264 (-699)) (-644 (-225))) 101)) (-3880 (((-644 (-1157)) (-644 (-225))) 81)) (-3057 (((-3 (-317 (-225)) "failed") (-317 (-225))) 130)) (-2166 (((-112) (-225) (-1093 (-843 (-225)))) 119)) (-3794 (((-1035) (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))) 226)) (-3334 (((-225) (-1093 (-843 (-225)))) 114)) (-3397 (((-225) (-1093 (-843 (-225)))) 115)) (-1352 (((-225) (-409 (-566))) 33)) (-1704 (((-1157) (-381)) 79)) (-3422 (((-225) (-381)) 24)) (-1331 (((-381) (-1264 (-317 (-225)))) 179)) (-1694 (((-317 (-225)) (-317 (-381))) 30)) (-1939 (((-409 (-566)) (-317 (-225))) 58)) (-3806 (((-317 (-409 (-566))) (-317 (-225))) 75)) (-3545 (((-317 (-381)) (-317 (-225))) 105)) (-3071 (((-225) (-317 (-225))) 59)) (-4078 (((-644 (-225)) (-644 (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566)))))) 70)) (-1726 (((-1093 (-843 (-225))) (-1093 (-843 (-225)))) 67)) (-2343 (((-1157) (-225)) 78)) (-2051 (((-699) (-225)) 97)) (-3357 (((-409 (-566)) (-225)) 60)) (-2108 (((-317 (-381)) (-225)) 54)) (-3136 (((-644 (-1093 (-843 (-225)))) (-644 (-1093 (-843 (-381))))) 48)) (-3716 (((-1035) (-644 (-1035))) 193) (((-1035) (-1035) (-1035)) 187)) (-2550 (((-1035) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1680 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 223))) +(((-306) (-10 -7 (-15 -3422 ((-225) (-381))) (-15 -1694 ((-317 (-225)) (-317 (-381)))) (-15 -1322 ((-843 (-225)) (-843 (-381)))) (-15 -4392 ((-1093 (-843 (-225))) (-1093 (-843 (-381))))) (-15 -3136 ((-644 (-1093 (-843 (-225)))) (-644 (-1093 (-843 (-381)))))) (-15 -3357 ((-409 (-566)) (-225))) (-15 -1939 ((-409 (-566)) (-317 (-225)))) (-15 -3071 ((-225) (-317 (-225)))) (-15 -3057 ((-3 (-317 (-225)) "failed") (-317 (-225)))) (-15 -1331 ((-381) (-1264 (-317 (-225))))) (-15 -1428 ((-2 (|:| |additions| (-566)) (|:| |multiplications| (-566)) (|:| |exponentiations| (-566)) (|:| |functionCalls| (-566))) (-1264 (-317 (-225))))) (-15 -3806 ((-317 (-409 (-566))) (-317 (-225)))) (-15 -1726 ((-1093 (-843 (-225))) (-1093 (-843 (-225))))) (-15 -4078 ((-644 (-225)) (-644 (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566))))))) (-15 -2051 ((-699) (-225))) (-15 -3199 ((-1264 (-699)) (-644 (-225)))) (-15 -3545 ((-317 (-381)) (-317 (-225)))) (-15 -2737 ((-1264 (-317 (-381))) (-1264 (-317 (-225))))) (-15 -2166 ((-112) (-225) (-1093 (-843 (-225))))) (-15 -2343 ((-1157) (-225))) (-15 -1704 ((-1157) (-381))) (-15 -3880 ((-644 (-1157)) (-644 (-225)))) (-15 -3142 ((-644 (-1157)) (-1155 (-225)))) (-15 -3334 ((-225) (-1093 (-843 (-225))))) (-15 -3397 ((-225) (-1093 (-843 (-225))))) (-15 -3716 ((-1035) (-1035) (-1035))) (-15 -3716 ((-1035) (-644 (-1035)))) (-15 -4017 ((-1157) (-381))) (-15 -3412 ((-1035) (-2 (|:| -4177 (-381)) (|:| -2598 (-1157)) (|:| |explanations| (-644 (-1157)))))) (-15 -3412 ((-1035) (-2 (|:| -4177 (-381)) (|:| -2598 (-1157)) (|:| |explanations| (-644 (-1157))) (|:| |extra| (-1035))))) (-15 -2550 ((-1035) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1680 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3794 ((-1035) (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))) (-15 -1563 ((-317 (-381)) (-952 (-225)))) (-15 -2850 ((-225) (-952 (-225)))) (-15 -2108 ((-317 (-381)) (-225))) (-15 -1352 ((-225) (-409 (-566)))) (-15 -4196 ((-689 (-225)) (-644 (-225)) (-771))))) (T -306)) +((-4196 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-225))) (-5 *4 (-771)) (-5 *2 (-689 (-225))) (-5 *1 (-306)))) (-1352 (*1 *2 *3) (-12 (-5 *3 (-409 (-566))) (-5 *2 (-225)) (-5 *1 (-306)))) (-2108 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-317 (-381))) (-5 *1 (-306)))) (-2850 (*1 *2 *3) (-12 (-5 *3 (-952 (-225))) (-5 *2 (-225)) (-5 *1 (-306)))) (-1563 (*1 *2 *3) (-12 (-5 *3 (-952 (-225))) (-5 *2 (-317 (-381))) (-5 *1 (-306)))) (-3794 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))) (-5 *2 (-1035)) (-5 *1 (-306)))) (-2550 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1680 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1035)) (-5 *1 (-306)))) (-3412 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4177 (-381)) (|:| -2598 (-1157)) (|:| |explanations| (-644 (-1157))) (|:| |extra| (-1035)))) (-5 *2 (-1035)) (-5 *1 (-306)))) (-3412 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4177 (-381)) (|:| -2598 (-1157)) (|:| |explanations| (-644 (-1157))))) (-5 *2 (-1035)) (-5 *1 (-306)))) (-4017 (*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1157)) (-5 *1 (-306)))) (-3716 (*1 *2 *3) (-12 (-5 *3 (-644 (-1035))) (-5 *2 (-1035)) (-5 *1 (-306)))) (-3716 (*1 *2 *2 *2) (-12 (-5 *2 (-1035)) (-5 *1 (-306)))) (-3397 (*1 *2 *3) (-12 (-5 *3 (-1093 (-843 (-225)))) (-5 *2 (-225)) (-5 *1 (-306)))) (-3334 (*1 *2 *3) (-12 (-5 *3 (-1093 (-843 (-225)))) (-5 *2 (-225)) (-5 *1 (-306)))) (-3142 (*1 *2 *3) (-12 (-5 *3 (-1155 (-225))) (-5 *2 (-644 (-1157))) (-5 *1 (-306)))) (-3880 (*1 *2 *3) (-12 (-5 *3 (-644 (-225))) (-5 *2 (-644 (-1157))) (-5 *1 (-306)))) (-1704 (*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1157)) (-5 *1 (-306)))) (-2343 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1157)) (-5 *1 (-306)))) (-2166 (*1 *2 *3 *4) (-12 (-5 *4 (-1093 (-843 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-306)))) (-2737 (*1 *2 *3) (-12 (-5 *3 (-1264 (-317 (-225)))) (-5 *2 (-1264 (-317 (-381)))) (-5 *1 (-306)))) (-3545 (*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-317 (-381))) (-5 *1 (-306)))) (-3199 (*1 *2 *3) (-12 (-5 *3 (-644 (-225))) (-5 *2 (-1264 (-699))) (-5 *1 (-306)))) (-2051 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-699)) (-5 *1 (-306)))) (-4078 (*1 *2 *3) (-12 (-5 *3 (-644 (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566)))))) (-5 *2 (-644 (-225))) (-5 *1 (-306)))) (-1726 (*1 *2 *2) (-12 (-5 *2 (-1093 (-843 (-225)))) (-5 *1 (-306)))) (-3806 (*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-317 (-409 (-566)))) (-5 *1 (-306)))) (-1428 (*1 *2 *3) (-12 (-5 *3 (-1264 (-317 (-225)))) (-5 *2 (-2 (|:| |additions| (-566)) (|:| |multiplications| (-566)) (|:| |exponentiations| (-566)) (|:| |functionCalls| (-566)))) (-5 *1 (-306)))) (-1331 (*1 *2 *3) (-12 (-5 *3 (-1264 (-317 (-225)))) (-5 *2 (-381)) (-5 *1 (-306)))) (-3057 (*1 *2 *2) (|partial| -12 (-5 *2 (-317 (-225))) (-5 *1 (-306)))) (-3071 (*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-225)) (-5 *1 (-306)))) (-1939 (*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-409 (-566))) (-5 *1 (-306)))) (-3357 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-409 (-566))) (-5 *1 (-306)))) (-3136 (*1 *2 *3) (-12 (-5 *3 (-644 (-1093 (-843 (-381))))) (-5 *2 (-644 (-1093 (-843 (-225))))) (-5 *1 (-306)))) (-4392 (*1 *2 *3) (-12 (-5 *3 (-1093 (-843 (-381)))) (-5 *2 (-1093 (-843 (-225)))) (-5 *1 (-306)))) (-1322 (*1 *2 *3) (-12 (-5 *3 (-843 (-381))) (-5 *2 (-843 (-225))) (-5 *1 (-306)))) (-1694 (*1 *2 *3) (-12 (-5 *3 (-317 (-381))) (-5 *2 (-317 (-225))) (-5 *1 (-306)))) (-3422 (*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-225)) (-5 *1 (-306))))) +(-10 -7 (-15 -3422 ((-225) (-381))) (-15 -1694 ((-317 (-225)) (-317 (-381)))) (-15 -1322 ((-843 (-225)) (-843 (-381)))) (-15 -4392 ((-1093 (-843 (-225))) (-1093 (-843 (-381))))) (-15 -3136 ((-644 (-1093 (-843 (-225)))) (-644 (-1093 (-843 (-381)))))) (-15 -3357 ((-409 (-566)) (-225))) (-15 -1939 ((-409 (-566)) (-317 (-225)))) (-15 -3071 ((-225) (-317 (-225)))) (-15 -3057 ((-3 (-317 (-225)) "failed") (-317 (-225)))) (-15 -1331 ((-381) (-1264 (-317 (-225))))) (-15 -1428 ((-2 (|:| |additions| (-566)) (|:| |multiplications| (-566)) (|:| |exponentiations| (-566)) (|:| |functionCalls| (-566))) (-1264 (-317 (-225))))) (-15 -3806 ((-317 (-409 (-566))) (-317 (-225)))) (-15 -1726 ((-1093 (-843 (-225))) (-1093 (-843 (-225))))) (-15 -4078 ((-644 (-225)) (-644 (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566))))))) (-15 -2051 ((-699) (-225))) (-15 -3199 ((-1264 (-699)) (-644 (-225)))) (-15 -3545 ((-317 (-381)) (-317 (-225)))) (-15 -2737 ((-1264 (-317 (-381))) (-1264 (-317 (-225))))) (-15 -2166 ((-112) (-225) (-1093 (-843 (-225))))) (-15 -2343 ((-1157) (-225))) (-15 -1704 ((-1157) (-381))) (-15 -3880 ((-644 (-1157)) (-644 (-225)))) (-15 -3142 ((-644 (-1157)) (-1155 (-225)))) (-15 -3334 ((-225) (-1093 (-843 (-225))))) (-15 -3397 ((-225) (-1093 (-843 (-225))))) (-15 -3716 ((-1035) (-1035) (-1035))) (-15 -3716 ((-1035) (-644 (-1035)))) (-15 -4017 ((-1157) (-381))) (-15 -3412 ((-1035) (-2 (|:| -4177 (-381)) (|:| -2598 (-1157)) (|:| |explanations| (-644 (-1157)))))) (-15 -3412 ((-1035) (-2 (|:| -4177 (-381)) (|:| -2598 (-1157)) (|:| |explanations| (-644 (-1157))) (|:| |extra| (-1035))))) (-15 -2550 ((-1035) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1680 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3794 ((-1035) (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))) (-15 -1563 ((-317 (-381)) (-952 (-225)))) (-15 -2850 ((-225) (-952 (-225)))) (-15 -2108 ((-317 (-381)) (-225))) (-15 -1352 ((-225) (-409 (-566)))) (-15 -4196 ((-689 (-225)) (-644 (-225)) (-771)))) +((-2761 (((-112) $ $) 14)) (-2925 (($ $ $) 18)) (-2937 (($ $ $) 17)) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) 50)) (-2495 (((-3 (-644 $) "failed") (-644 $) $) 65)) (-2162 (($ $ $) 25) (($ (-644 $)) NIL)) (-2585 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) 35) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 40)) (-2976 (((-3 $ "failed") $ $) 21)) (-2840 (((-3 (-644 $) "failed") (-644 $) $) 53))) +(((-307 |#1|) (-10 -8 (-15 -2495 ((-3 (-644 |#1|) "failed") (-644 |#1|) |#1|)) (-15 -2585 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -2585 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4086 |#1|)) |#1| |#1|)) (-15 -2925 (|#1| |#1| |#1|)) (-15 -2937 (|#1| |#1| |#1|)) (-15 -2761 ((-112) |#1| |#1|)) (-15 -2840 ((-3 (-644 |#1|) "failed") (-644 |#1|) |#1|)) (-15 -1793 ((-2 (|:| -3103 (-644 |#1|)) (|:| -4086 |#1|)) (-644 |#1|))) (-15 -2162 (|#1| (-644 |#1|))) (-15 -2162 (|#1| |#1| |#1|)) (-15 -2976 ((-3 |#1| "failed") |#1| |#1|))) (-308)) (T -307)) +NIL +(-10 -8 (-15 -2495 ((-3 (-644 |#1|) "failed") (-644 |#1|) |#1|)) (-15 -2585 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -2585 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4086 |#1|)) |#1| |#1|)) (-15 -2925 (|#1| |#1| |#1|)) (-15 -2937 (|#1| |#1| |#1|)) (-15 -2761 ((-112) |#1| |#1|)) (-15 -2840 ((-3 (-644 |#1|) "failed") (-644 |#1|) |#1|)) (-15 -1793 ((-2 (|:| -3103 (-644 |#1|)) (|:| -4086 |#1|)) (-644 |#1|))) (-15 -2162 (|#1| (-644 |#1|))) (-15 -2162 (|#1| |#1| |#1|)) (-15 -2976 ((-3 |#1| "failed") |#1| |#1|))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) 47)) (-3087 (($ $) 46)) (-1716 (((-112) $) 44)) (-3174 (((-3 $ "failed") $ $) 20)) (-2761 (((-112) $ $) 65)) (-1811 (($) 18 T CONST)) (-2925 (($ $ $) 61)) (-3757 (((-3 $ "failed") $) 37)) (-2937 (($ $ $) 62)) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) 57)) (-2264 (((-112) $) 35)) (-2495 (((-3 (-644 $) "failed") (-644 $) $) 58)) (-2120 (($ $ $) 52) (($ (-644 $)) 51)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-2162 (($ $ $) 54) (($ (-644 $)) 53)) (-2585 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2976 (((-3 $ "failed") $ $) 48)) (-2840 (((-3 (-644 $) "failed") (-644 $) $) 56)) (-1383 (((-771) $) 64)) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) 63)) (-2479 (((-862) $) 12) (($ (-566)) 33) (($ $) 49)) (-1558 (((-771)) 32 T CONST)) (-3900 (((-112) $ $) 9)) (-1333 (((-112) $ $) 45)) (-2446 (($) 19 T CONST)) (-2459 (($) 34 T CONST)) (-2952 (((-112) $ $) 6)) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27))) +(((-308) (-140)) (T -308)) +((-2761 (*1 *2 *1 *1) (-12 (-4 *1 (-308)) (-5 *2 (-112)))) (-1383 (*1 *2 *1) (-12 (-4 *1 (-308)) (-5 *2 (-771)))) (-1510 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3371 *1) (|:| -3131 *1))) (-4 *1 (-308)))) (-2937 (*1 *1 *1 *1) (-4 *1 (-308))) (-2925 (*1 *1 *1 *1) (-4 *1 (-308))) (-2585 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4086 *1))) (-4 *1 (-308)))) (-2585 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-308)))) (-2495 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-644 *1)) (-4 *1 (-308))))) +(-13 (-920) (-10 -8 (-15 -2761 ((-112) $ $)) (-15 -1383 ((-771) $)) (-15 -1510 ((-2 (|:| -3371 $) (|:| -3131 $)) $ $)) (-15 -2937 ($ $ $)) (-15 -2925 ($ $ $)) (-15 -2585 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $)) (-15 -2585 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -2495 ((-3 (-644 $) "failed") (-644 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-616 (-566)) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-291) . T) ((-454) . T) ((-558) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 $) . T) ((-640 $) . T) ((-717 $) . T) ((-726) . T) ((-920) . T) ((-1051 $) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) +((-3297 (($ $ (-644 |#2|) (-644 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-295 |#2|)) 11) (($ $ (-644 (-295 |#2|))) NIL))) +(((-309 |#1| |#2|) (-10 -8 (-15 -3297 (|#1| |#1| (-644 (-295 |#2|)))) (-15 -3297 (|#1| |#1| (-295 |#2|))) (-15 -3297 (|#1| |#1| |#2| |#2|)) (-15 -3297 (|#1| |#1| (-644 |#2|) (-644 |#2|)))) (-310 |#2|) (-1099)) (T -309)) +NIL +(-10 -8 (-15 -3297 (|#1| |#1| (-644 (-295 |#2|)))) (-15 -3297 (|#1| |#1| (-295 |#2|))) (-15 -3297 (|#1| |#1| |#2| |#2|)) (-15 -3297 (|#1| |#1| (-644 |#2|) (-644 |#2|)))) +((-3297 (($ $ (-644 |#1|) (-644 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-295 |#1|)) 11) (($ $ (-644 (-295 |#1|))) 10))) +(((-310 |#1|) (-140) (-1099)) (T -310)) +((-3297 (*1 *1 *1 *2) (-12 (-5 *2 (-295 *3)) (-4 *1 (-310 *3)) (-4 *3 (-1099)))) (-3297 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-295 *3))) (-4 *1 (-310 *3)) (-4 *3 (-1099))))) +(-13 (-516 |t#1| |t#1|) (-10 -8 (-15 -3297 ($ $ (-295 |t#1|))) (-15 -3297 ($ $ (-644 (-295 |t#1|)))))) +(((-516 |#1| |#1|) . T)) +((-3297 ((|#1| (-1 |#1| (-566)) (-1177 (-409 (-566)))) 25))) +(((-311 |#1|) (-10 -7 (-15 -3297 (|#1| (-1 |#1| (-566)) (-1177 (-409 (-566)))))) (-38 (-409 (-566)))) (T -311)) +((-3297 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-566))) (-5 *4 (-1177 (-409 (-566)))) (-5 *1 (-311 *2)) (-4 *2 (-38 (-409 (-566))))))) +(-10 -7 (-15 -3297 (|#1| (-1 |#1| (-566)) (-1177 (-409 (-566)))))) +((-2986 (((-112) $ $) NIL)) (-4112 (((-566) $) 12)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-1358 (((-1134) $) 9)) (-2479 (((-862) $) 19) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-312) (-13 (-1082) (-10 -8 (-15 -1358 ((-1134) $)) (-15 -4112 ((-566) $))))) (T -312)) +((-1358 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-312)))) (-4112 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-312))))) +(-13 (-1082) (-10 -8 (-15 -1358 ((-1134) $)) (-15 -4112 ((-566) $)))) +((-2986 (((-112) $ $) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) 7)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 9))) +(((-313) (-1099)) (T -313)) +NIL +(-1099) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) 60)) (-2488 (((-1250 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-308)))) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-1716 (((-112) $) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-4058 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-909)))) (-3980 (($ $) NIL)) (-3348 (((-420 $) $) NIL)) (-4262 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-909)))) (-2761 (((-112) $ $) NIL)) (-2920 (((-566) $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-820)))) (-1811 (($) NIL T CONST)) (-2980 (((-3 (-1250 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1175) "failed") $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-1038 (-1175)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-1038 (-566)))) (((-3 (-566) "failed") $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-1038 (-566)))) (((-3 (-1249 |#2| |#3| |#4|) "failed") $) 26)) (-1709 (((-1250 |#1| |#2| |#3| |#4|) $) NIL) (((-1175) $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-1038 (-1175)))) (((-409 (-566)) $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-1038 (-566)))) (((-566) $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-1038 (-566)))) (((-1249 |#2| |#3| |#4|) $) NIL)) (-2925 (($ $ $) NIL)) (-2275 (((-689 (-566)) (-689 $)) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-639 (-566)))) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-639 (-566)))) (((-2 (|:| -4196 (-689 (-1250 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1264 (-1250 |#1| |#2| |#3| |#4|)))) (-689 $) (-1264 $)) NIL) (((-689 (-1250 |#1| |#2| |#3| |#4|)) (-689 $)) NIL)) (-3757 (((-3 $ "failed") $) NIL)) (-1415 (($) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-547)))) (-2937 (($ $ $) NIL)) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) NIL)) (-4188 (((-112) $) NIL)) (-2133 (((-112) $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-820)))) (-1542 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-886 (-566)))) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-886 (-381))))) (-2264 (((-112) $) NIL)) (-1579 (($ $) NIL)) (-4157 (((-1250 |#1| |#2| |#3| |#4|) $) 22)) (-4278 (((-3 $ "failed") $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-1150)))) (-3420 (((-112) $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-820)))) (-2495 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1920 (($ $ $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-850)))) (-3038 (($ $ $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-850)))) (-3080 (($ (-1 (-1250 |#1| |#2| |#3| |#4|) (-1250 |#1| |#2| |#3| |#4|)) $) NIL)) (-1554 (((-3 (-843 |#2|) "failed") $) 80)) (-2120 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3151 (((-1157) $) NIL)) (-2577 (($ $) NIL)) (-3968 (($) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-1150)) CONST)) (-4059 (((-1119) $) NIL)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2162 (($ $ $) NIL) (($ (-644 $)) NIL)) (-4305 (($ $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-308)))) (-2001 (((-1250 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-547)))) (-1500 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-909)))) (-3917 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-909)))) (-2325 (((-420 $) $) NIL)) (-2585 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2976 (((-3 $ "failed") $ $) NIL)) (-2840 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3297 (($ $ (-644 (-1250 |#1| |#2| |#3| |#4|)) (-644 (-1250 |#1| |#2| |#3| |#4|))) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-310 (-1250 |#1| |#2| |#3| |#4|)))) (($ $ (-1250 |#1| |#2| |#3| |#4|) (-1250 |#1| |#2| |#3| |#4|)) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-310 (-1250 |#1| |#2| |#3| |#4|)))) (($ $ (-295 (-1250 |#1| |#2| |#3| |#4|))) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-310 (-1250 |#1| |#2| |#3| |#4|)))) (($ $ (-644 (-295 (-1250 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-310 (-1250 |#1| |#2| |#3| |#4|)))) (($ $ (-644 (-1175)) (-644 (-1250 |#1| |#2| |#3| |#4|))) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-516 (-1175) (-1250 |#1| |#2| |#3| |#4|)))) (($ $ (-1175) (-1250 |#1| |#2| |#3| |#4|)) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-516 (-1175) (-1250 |#1| |#2| |#3| |#4|))))) (-1383 (((-771) $) NIL)) (-4376 (($ $ (-1250 |#1| |#2| |#3| |#4|)) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-287 (-1250 |#1| |#2| |#3| |#4|) (-1250 |#1| |#2| |#3| |#4|))))) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL)) (-3526 (($ $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-771)) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-1175)) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-900 (-1175)))) (($ $ (-1 (-1250 |#1| |#2| |#3| |#4|) (-1250 |#1| |#2| |#3| |#4|)) (-771)) NIL) (($ $ (-1 (-1250 |#1| |#2| |#3| |#4|) (-1250 |#1| |#2| |#3| |#4|))) NIL)) (-1375 (($ $) NIL)) (-4167 (((-1250 |#1| |#2| |#3| |#4|) $) 19)) (-3136 (((-892 (-566)) $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-614 (-892 (-566))))) (((-892 (-381)) $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-614 (-892 (-381))))) (((-538) $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-614 (-538)))) (((-381) $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-1022))) (((-225) $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-1022)))) (-3233 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| (-1250 |#1| |#2| |#3| |#4|) (-909))))) (-2479 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL) (($ (-1250 |#1| |#2| |#3| |#4|)) 30) (($ (-1175)) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-1038 (-1175)))) (($ (-1249 |#2| |#3| |#4|)) 37)) (-2645 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| $ (-145)) (|has| (-1250 |#1| |#2| |#3| |#4|) (-909))) (|has| (-1250 |#1| |#2| |#3| |#4|) (-145))))) (-1558 (((-771)) NIL T CONST)) (-3908 (((-1250 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-547)))) (-3900 (((-112) $ $) NIL)) (-1333 (((-112) $ $) NIL)) (-4298 (($ $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-820)))) (-2446 (($) NIL T CONST)) (-2459 (($) NIL T CONST)) (-2834 (($ $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-771)) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-1175)) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-900 (-1175)))) (($ $ (-1 (-1250 |#1| |#2| |#3| |#4|) (-1250 |#1| |#2| |#3| |#4|)) (-771)) NIL) (($ $ (-1 (-1250 |#1| |#2| |#3| |#4|) (-1250 |#1| |#2| |#3| |#4|))) NIL)) (-3019 (((-112) $ $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-850)))) (-2990 (((-112) $ $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-850)))) (-2952 (((-112) $ $) NIL)) (-3004 (((-112) $ $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-850)))) (-2977 (((-112) $ $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-850)))) (-3077 (($ $ $) 35) (($ (-1250 |#1| |#2| |#3| |#4|) (-1250 |#1| |#2| |#3| |#4|)) 32)) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ (-1250 |#1| |#2| |#3| |#4|) $) 31) (($ $ (-1250 |#1| |#2| |#3| |#4|)) NIL))) +(((-314 |#1| |#2| |#3| |#4|) (-13 (-992 (-1250 |#1| |#2| |#3| |#4|)) (-1038 (-1249 |#2| |#3| |#4|)) (-10 -8 (-15 -1554 ((-3 (-843 |#2|) "failed") $)) (-15 -2479 ($ (-1249 |#2| |#3| |#4|))))) (-13 (-1038 (-566)) (-639 (-566)) (-454)) (-13 (-27) (-1199) (-432 |#1|)) (-1175) |#2|) (T -314)) +((-2479 (*1 *1 *2) (-12 (-5 *2 (-1249 *4 *5 *6)) (-4 *4 (-13 (-27) (-1199) (-432 *3))) (-14 *5 (-1175)) (-14 *6 *4) (-4 *3 (-13 (-1038 (-566)) (-639 (-566)) (-454))) (-5 *1 (-314 *3 *4 *5 *6)))) (-1554 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1038 (-566)) (-639 (-566)) (-454))) (-5 *2 (-843 *4)) (-5 *1 (-314 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1199) (-432 *3))) (-14 *5 (-1175)) (-14 *6 *4)))) +(-13 (-992 (-1250 |#1| |#2| |#3| |#4|)) (-1038 (-1249 |#2| |#3| |#4|)) (-10 -8 (-15 -1554 ((-3 (-843 |#2|) "failed") $)) (-15 -2479 ($ (-1249 |#2| |#3| |#4|))))) +((-3080 (((-317 |#2|) (-1 |#2| |#1|) (-317 |#1|)) 13))) +(((-315 |#1| |#2|) (-10 -7 (-15 -3080 ((-317 |#2|) (-1 |#2| |#1|) (-317 |#1|)))) (-1099) (-1099)) (T -315)) +((-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-317 *5)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-5 *2 (-317 *6)) (-5 *1 (-315 *5 *6))))) +(-10 -7 (-15 -3080 ((-317 |#2|) (-1 |#2| |#1|) (-317 |#1|)))) +((-2534 (((-52) |#2| (-295 |#2|) (-771)) 40) (((-52) |#2| (-295 |#2|)) 32) (((-52) |#2| (-771)) 35) (((-52) |#2|) 33) (((-52) (-1175)) 26)) (-1882 (((-52) |#2| (-295 |#2|) (-409 (-566))) 59) (((-52) |#2| (-295 |#2|)) 56) (((-52) |#2| (-409 (-566))) 58) (((-52) |#2|) 57) (((-52) (-1175)) 55)) (-2557 (((-52) |#2| (-295 |#2|) (-409 (-566))) 54) (((-52) |#2| (-295 |#2|)) 51) (((-52) |#2| (-409 (-566))) 53) (((-52) |#2|) 52) (((-52) (-1175)) 50)) (-2546 (((-52) |#2| (-295 |#2|) (-566)) 47) (((-52) |#2| (-295 |#2|)) 44) (((-52) |#2| (-566)) 46) (((-52) |#2|) 45) (((-52) (-1175)) 43))) +(((-316 |#1| |#2|) (-10 -7 (-15 -2534 ((-52) (-1175))) (-15 -2534 ((-52) |#2|)) (-15 -2534 ((-52) |#2| (-771))) (-15 -2534 ((-52) |#2| (-295 |#2|))) (-15 -2534 ((-52) |#2| (-295 |#2|) (-771))) (-15 -2546 ((-52) (-1175))) (-15 -2546 ((-52) |#2|)) (-15 -2546 ((-52) |#2| (-566))) (-15 -2546 ((-52) |#2| (-295 |#2|))) (-15 -2546 ((-52) |#2| (-295 |#2|) (-566))) (-15 -2557 ((-52) (-1175))) (-15 -2557 ((-52) |#2|)) (-15 -2557 ((-52) |#2| (-409 (-566)))) (-15 -2557 ((-52) |#2| (-295 |#2|))) (-15 -2557 ((-52) |#2| (-295 |#2|) (-409 (-566)))) (-15 -1882 ((-52) (-1175))) (-15 -1882 ((-52) |#2|)) (-15 -1882 ((-52) |#2| (-409 (-566)))) (-15 -1882 ((-52) |#2| (-295 |#2|))) (-15 -1882 ((-52) |#2| (-295 |#2|) (-409 (-566))))) (-13 (-454) (-1038 (-566)) (-639 (-566))) (-13 (-27) (-1199) (-432 |#1|))) (T -316)) +((-1882 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-295 *3)) (-5 *5 (-409 (-566))) (-4 *3 (-13 (-27) (-1199) (-432 *6))) (-4 *6 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *3)))) (-1882 (*1 *2 *3 *4) (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *5))) (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)))) (-1882 (*1 *2 *3 *4) (-12 (-5 *4 (-409 (-566))) (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *5))))) (-1882 (*1 *2 *3) (-12 (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *4))))) (-1882 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1199) (-432 *4))))) (-2557 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-295 *3)) (-5 *5 (-409 (-566))) (-4 *3 (-13 (-27) (-1199) (-432 *6))) (-4 *6 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *3)))) (-2557 (*1 *2 *3 *4) (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *5))) (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)))) (-2557 (*1 *2 *3 *4) (-12 (-5 *4 (-409 (-566))) (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *5))))) (-2557 (*1 *2 *3) (-12 (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *4))))) (-2557 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1199) (-432 *4))))) (-2546 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *6))) (-4 *6 (-13 (-454) (-1038 *5) (-639 *5))) (-5 *5 (-566)) (-5 *2 (-52)) (-5 *1 (-316 *6 *3)))) (-2546 (*1 *2 *3 *4) (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *5))) (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)))) (-2546 (*1 *2 *3 *4) (-12 (-5 *4 (-566)) (-4 *5 (-13 (-454) (-1038 *4) (-639 *4))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *5))))) (-2546 (*1 *2 *3) (-12 (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *4))))) (-2546 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1199) (-432 *4))))) (-2534 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-295 *3)) (-5 *5 (-771)) (-4 *3 (-13 (-27) (-1199) (-432 *6))) (-4 *6 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *3)))) (-2534 (*1 *2 *3 *4) (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *5))) (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)))) (-2534 (*1 *2 *3 *4) (-12 (-5 *4 (-771)) (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *5))))) (-2534 (*1 *2 *3) (-12 (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *4))))) (-2534 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1199) (-432 *4)))))) +(-10 -7 (-15 -2534 ((-52) (-1175))) (-15 -2534 ((-52) |#2|)) (-15 -2534 ((-52) |#2| (-771))) (-15 -2534 ((-52) |#2| (-295 |#2|))) (-15 -2534 ((-52) |#2| (-295 |#2|) (-771))) (-15 -2546 ((-52) (-1175))) (-15 -2546 ((-52) |#2|)) (-15 -2546 ((-52) |#2| (-566))) (-15 -2546 ((-52) |#2| (-295 |#2|))) (-15 -2546 ((-52) |#2| (-295 |#2|) (-566))) (-15 -2557 ((-52) (-1175))) (-15 -2557 ((-52) |#2|)) (-15 -2557 ((-52) |#2| (-409 (-566)))) (-15 -2557 ((-52) |#2| (-295 |#2|))) (-15 -2557 ((-52) |#2| (-295 |#2|) (-409 (-566)))) (-15 -1882 ((-52) (-1175))) (-15 -1882 ((-52) |#2|)) (-15 -1882 ((-52) |#2| (-409 (-566)))) (-15 -1882 ((-52) |#2| (-295 |#2|))) (-15 -1882 ((-52) |#2| (-295 |#2|) (-409 (-566))))) +((-2986 (((-112) $ $) NIL)) (-1498 (((-644 $) $ (-1175)) NIL (|has| |#1| (-558))) (((-644 $) $) NIL (|has| |#1| (-558))) (((-644 $) (-1171 $) (-1175)) NIL (|has| |#1| (-558))) (((-644 $) (-1171 $)) NIL (|has| |#1| (-558))) (((-644 $) (-952 $)) NIL (|has| |#1| (-558)))) (-1625 (($ $ (-1175)) NIL (|has| |#1| (-558))) (($ $) NIL (|has| |#1| (-558))) (($ (-1171 $) (-1175)) NIL (|has| |#1| (-558))) (($ (-1171 $)) NIL (|has| |#1| (-558))) (($ (-952 $)) NIL (|has| |#1| (-558)))) (-2845 (((-112) $) 27 (-2809 (|has| |#1| (-25)) (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049)))))) (-2485 (((-644 (-1175)) $) 368)) (-2285 (((-409 (-1171 $)) $ (-612 $)) NIL (|has| |#1| (-558)))) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-3087 (($ $) NIL (|has| |#1| (-558)))) (-1716 (((-112) $) NIL (|has| |#1| (-558)))) (-2192 (((-644 (-612 $)) $) NIL)) (-3219 (($ $) 171 (|has| |#1| (-558)))) (-3091 (($ $) 147 (|has| |#1| (-558)))) (-2958 (($ $ (-1091 $)) 232 (|has| |#1| (-558))) (($ $ (-1175)) 228 (|has| |#1| (-558)))) (-3174 (((-3 $ "failed") $ $) NIL (-2809 (|has| |#1| (-21)) (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049)))))) (-3739 (($ $ (-295 $)) NIL) (($ $ (-644 (-295 $))) 386) (($ $ (-644 (-612 $)) (-644 $)) 430)) (-4058 (((-420 (-1171 $)) (-1171 $)) 308 (-12 (|has| |#1| (-454)) (|has| |#1| (-558))))) (-3980 (($ $) NIL (|has| |#1| (-558)))) (-3348 (((-420 $) $) NIL (|has| |#1| (-558)))) (-2338 (($ $) NIL (|has| |#1| (-558)))) (-2761 (((-112) $ $) NIL (|has| |#1| (-558)))) (-3197 (($ $) 167 (|has| |#1| (-558)))) (-3067 (($ $) 143 (|has| |#1| (-558)))) (-3367 (($ $ (-566)) 73 (|has| |#1| (-558)))) (-3240 (($ $) 175 (|has| |#1| (-558)))) (-3115 (($ $) 151 (|has| |#1| (-558)))) (-1811 (($) NIL (-2809 (|has| |#1| (-25)) (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049))) (|has| |#1| (-1111))) CONST)) (-4386 (((-644 $) $ (-1175)) NIL (|has| |#1| (-558))) (((-644 $) $) NIL (|has| |#1| (-558))) (((-644 $) (-1171 $) (-1175)) NIL (|has| |#1| (-558))) (((-644 $) (-1171 $)) NIL (|has| |#1| (-558))) (((-644 $) (-952 $)) NIL (|has| |#1| (-558)))) (-3388 (($ $ (-1175)) NIL (|has| |#1| (-558))) (($ $) NIL (|has| |#1| (-558))) (($ (-1171 $) (-1175)) 134 (|has| |#1| (-558))) (($ (-1171 $)) NIL (|has| |#1| (-558))) (($ (-952 $)) NIL (|has| |#1| (-558)))) (-2980 (((-3 (-612 $) "failed") $) 18) (((-3 (-1175) "failed") $) NIL) (((-3 |#1| "failed") $) 441) (((-3 (-48) "failed") $) 336 (-12 (|has| |#1| (-558)) (|has| |#1| (-1038 (-566))))) (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-952 |#1|)) "failed") $) NIL (|has| |#1| (-558))) (((-3 (-952 |#1|) "failed") $) NIL (|has| |#1| (-1049))) (((-3 (-409 (-566)) "failed") $) 46 (-2809 (-12 (|has| |#1| (-558)) (|has| |#1| (-1038 (-566)))) (|has| |#1| (-1038 (-409 (-566))))))) (-1709 (((-612 $) $) 12) (((-1175) $) NIL) ((|#1| $) 421) (((-48) $) NIL (-12 (|has| |#1| (-558)) (|has| |#1| (-1038 (-566))))) (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-409 (-952 |#1|)) $) NIL (|has| |#1| (-558))) (((-952 |#1|) $) NIL (|has| |#1| (-1049))) (((-409 (-566)) $) 319 (-2809 (-12 (|has| |#1| (-558)) (|has| |#1| (-1038 (-566)))) (|has| |#1| (-1038 (-409 (-566))))))) (-2925 (($ $ $) NIL (|has| |#1| (-558)))) (-2275 (((-2 (|:| -4196 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) 125 (|has| |#1| (-1049))) (((-689 |#1|) (-689 $)) 115 (|has| |#1| (-1049))) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049)))) (((-689 (-566)) (-689 $)) NIL (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049))))) (-1838 (($ $) 96 (|has| |#1| (-558)))) (-3757 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049))) (|has| |#1| (-1111))))) (-2937 (($ $ $) NIL (|has| |#1| (-558)))) (-1353 (($ $ (-1091 $)) 236 (|has| |#1| (-558))) (($ $ (-1175)) 234 (|has| |#1| (-558)))) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) NIL (|has| |#1| (-558)))) (-4188 (((-112) $) NIL (|has| |#1| (-558)))) (-2510 (($ $ $) 202 (|has| |#1| (-558)))) (-2964 (($) 137 (|has| |#1| (-558)))) (-1655 (($ $ $) 222 (|has| |#1| (-558)))) (-1542 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 392 (|has| |#1| (-886 (-566)))) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 399 (|has| |#1| (-886 (-381))))) (-4218 (($ $) NIL) (($ (-644 $)) NIL)) (-3909 (((-644 (-114)) $) NIL)) (-4272 (((-114) (-114)) 276)) (-2264 (((-112) $) 25 (-2809 (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049))) (|has| |#1| (-1111))))) (-3400 (((-112) $) NIL (|has| $ (-1038 (-566))))) (-1579 (($ $) 72 (|has| |#1| (-1049)))) (-4157 (((-1124 |#1| (-612 $)) $) 91 (|has| |#1| (-1049)))) (-3586 (((-112) $) 62 (|has| |#1| (-558)))) (-3146 (($ $ (-566)) NIL (|has| |#1| (-558)))) (-2495 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-558)))) (-3223 (((-1171 $) (-612 $)) 277 (|has| $ (-1049)))) (-3080 (($ (-1 $ $) (-612 $)) 426)) (-3314 (((-3 (-612 $) "failed") $) NIL)) (-3676 (($ $) 141 (|has| |#1| (-558)))) (-3341 (($ $) 247 (|has| |#1| (-558)))) (-2120 (($ (-644 $)) NIL (|has| |#1| (-558))) (($ $ $) NIL (|has| |#1| (-558)))) (-3151 (((-1157) $) NIL)) (-2272 (((-644 (-612 $)) $) 49)) (-3018 (($ (-114) $) NIL) (($ (-114) (-644 $)) 431)) (-4075 (((-3 (-644 $) "failed") $) NIL (|has| |#1| (-1111)))) (-4092 (((-3 (-2 (|:| |val| $) (|:| -3631 (-566))) "failed") $) NIL (|has| |#1| (-1049)))) (-3380 (((-3 (-644 $) "failed") $) 436 (|has| |#1| (-25)))) (-3476 (((-3 (-2 (|:| -3103 (-566)) (|:| |var| (-612 $))) "failed") $) 440 (|has| |#1| (-25)))) (-2414 (((-3 (-2 (|:| |var| (-612 $)) (|:| -3631 (-566))) "failed") $) NIL (|has| |#1| (-1111))) (((-3 (-2 (|:| |var| (-612 $)) (|:| -3631 (-566))) "failed") $ (-114)) NIL (|has| |#1| (-1049))) (((-3 (-2 (|:| |var| (-612 $)) (|:| -3631 (-566))) "failed") $ (-1175)) NIL (|has| |#1| (-1049)))) (-1896 (((-112) $ (-114)) NIL) (((-112) $ (-1175)) 51)) (-2577 (($ $) NIL (-2809 (|has| |#1| (-475)) (|has| |#1| (-558))))) (-1499 (($ $ (-1175)) 251 (|has| |#1| (-558))) (($ $ (-1091 $)) 253 (|has| |#1| (-558)))) (-3117 (((-771) $) NIL)) (-4059 (((-1119) $) NIL)) (-2587 (((-112) $) 43)) (-2597 ((|#1| $) NIL)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) 301 (|has| |#1| (-558)))) (-2162 (($ (-644 $)) NIL (|has| |#1| (-558))) (($ $ $) NIL (|has| |#1| (-558)))) (-3897 (((-112) $ $) NIL) (((-112) $ (-1175)) NIL)) (-3789 (($ $ (-1175)) 226 (|has| |#1| (-558))) (($ $) 224 (|has| |#1| (-558)))) (-2259 (($ $) 218 (|has| |#1| (-558)))) (-3917 (((-420 (-1171 $)) (-1171 $)) 306 (-12 (|has| |#1| (-454)) (|has| |#1| (-558))))) (-2325 (((-420 $) $) NIL (|has| |#1| (-558)))) (-2585 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-558))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL (|has| |#1| (-558)))) (-2976 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-2840 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-558)))) (-3571 (($ $) 139 (|has| |#1| (-558)))) (-2206 (((-112) $) NIL (|has| $ (-1038 (-566))))) (-3297 (($ $ (-612 $) $) NIL) (($ $ (-644 (-612 $)) (-644 $)) 425) (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-644 (-1175)) (-644 (-1 $ $))) NIL) (($ $ (-644 (-1175)) (-644 (-1 $ (-644 $)))) NIL) (($ $ (-1175) (-1 $ (-644 $))) NIL) (($ $ (-1175) (-1 $ $)) NIL) (($ $ (-644 (-114)) (-644 (-1 $ $))) 379) (($ $ (-644 (-114)) (-644 (-1 $ (-644 $)))) NIL) (($ $ (-114) (-1 $ (-644 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1175)) NIL (|has| |#1| (-614 (-538)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-614 (-538)))) (($ $) NIL (|has| |#1| (-614 (-538)))) (($ $ (-114) $ (-1175)) 366 (|has| |#1| (-614 (-538)))) (($ $ (-644 (-114)) (-644 $) (-1175)) 365 (|has| |#1| (-614 (-538)))) (($ $ (-644 (-1175)) (-644 (-771)) (-644 (-1 $ $))) NIL (|has| |#1| (-1049))) (($ $ (-644 (-1175)) (-644 (-771)) (-644 (-1 $ (-644 $)))) NIL (|has| |#1| (-1049))) (($ $ (-1175) (-771) (-1 $ (-644 $))) NIL (|has| |#1| (-1049))) (($ $ (-1175) (-771) (-1 $ $)) NIL (|has| |#1| (-1049)))) (-1383 (((-771) $) NIL (|has| |#1| (-558)))) (-3021 (($ $) 239 (|has| |#1| (-558)))) (-4376 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-644 $)) NIL)) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL (|has| |#1| (-558)))) (-3683 (($ $) NIL) (($ $ $) NIL)) (-3053 (($ $) 249 (|has| |#1| (-558)))) (-2013 (($ $) 200 (|has| |#1| (-558)))) (-3526 (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-1049))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-1049))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-1049))) (($ $ (-1175)) NIL (|has| |#1| (-1049)))) (-1375 (($ $) 74 (|has| |#1| (-558)))) (-4167 (((-1124 |#1| (-612 $)) $) 93 (|has| |#1| (-558)))) (-2301 (($ $) 317 (|has| $ (-1049)))) (-3250 (($ $) 177 (|has| |#1| (-558)))) (-3126 (($ $) 153 (|has| |#1| (-558)))) (-3227 (($ $) 173 (|has| |#1| (-558)))) (-3105 (($ $) 149 (|has| |#1| (-558)))) (-3207 (($ $) 169 (|has| |#1| (-558)))) (-3079 (($ $) 145 (|has| |#1| (-558)))) (-3136 (((-892 (-566)) $) NIL (|has| |#1| (-614 (-892 (-566))))) (((-892 (-381)) $) NIL (|has| |#1| (-614 (-892 (-381))))) (($ (-420 $)) NIL (|has| |#1| (-558))) (((-538) $) 363 (|has| |#1| (-614 (-538))))) (-2664 (($ $ $) NIL (|has| |#1| (-475)))) (-3815 (($ $ $) NIL (|has| |#1| (-475)))) (-2479 (((-862) $) 424) (($ (-612 $)) 415) (($ (-1175)) 381) (($ |#1|) 337) (($ $) NIL (|has| |#1| (-558))) (($ (-48)) 312 (-12 (|has| |#1| (-558)) (|has| |#1| (-1038 (-566))))) (($ (-1124 |#1| (-612 $))) 95 (|has| |#1| (-1049))) (($ (-409 |#1|)) NIL (|has| |#1| (-558))) (($ (-952 (-409 |#1|))) NIL (|has| |#1| (-558))) (($ (-409 (-952 (-409 |#1|)))) NIL (|has| |#1| (-558))) (($ (-409 (-952 |#1|))) NIL (|has| |#1| (-558))) (($ (-952 |#1|)) NIL (|has| |#1| (-1049))) (($ (-409 (-566))) NIL (-2809 (|has| |#1| (-558)) (|has| |#1| (-1038 (-409 (-566)))))) (($ (-566)) 34 (-2809 (|has| |#1| (-1038 (-566))) (|has| |#1| (-1049))))) (-2645 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1558 (((-771)) NIL (|has| |#1| (-1049)) CONST)) (-3749 (($ $) NIL) (($ (-644 $)) NIL)) (-1835 (($ $ $) 220 (|has| |#1| (-558)))) (-4307 (($ $ $) 206 (|has| |#1| (-558)))) (-3755 (($ $ $) 210 (|has| |#1| (-558)))) (-3480 (($ $ $) 204 (|has| |#1| (-558)))) (-1818 (($ $ $) 208 (|has| |#1| (-558)))) (-1540 (((-112) (-114)) 10)) (-3900 (((-112) $ $) 86)) (-3285 (($ $) 183 (|has| |#1| (-558)))) (-3157 (($ $) 159 (|has| |#1| (-558)))) (-1333 (((-112) $ $) NIL (|has| |#1| (-558)))) (-3260 (($ $) 179 (|has| |#1| (-558)))) (-3135 (($ $) 155 (|has| |#1| (-558)))) (-3309 (($ $) 187 (|has| |#1| (-558)))) (-3179 (($ $) 163 (|has| |#1| (-558)))) (-3344 (($ (-1175) $) NIL) (($ (-1175) $ $) NIL) (($ (-1175) $ $ $) NIL) (($ (-1175) $ $ $ $) NIL) (($ (-1175) (-644 $)) NIL)) (-1751 (($ $) 214 (|has| |#1| (-558)))) (-2492 (($ $) 212 (|has| |#1| (-558)))) (-1861 (($ $) 189 (|has| |#1| (-558)))) (-3190 (($ $) 165 (|has| |#1| (-558)))) (-3299 (($ $) 185 (|has| |#1| (-558)))) (-3168 (($ $) 161 (|has| |#1| (-558)))) (-3273 (($ $) 181 (|has| |#1| (-558)))) (-3148 (($ $) 157 (|has| |#1| (-558)))) (-4298 (($ $) 192 (|has| |#1| (-558)))) (-2446 (($) 21 (-2809 (|has| |#1| (-25)) (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049)))) CONST)) (-2944 (($ $) 243 (|has| |#1| (-558)))) (-2459 (($) 23 (-2809 (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049))) (|has| |#1| (-1111))) CONST)) (-1977 (($ $) 194 (|has| |#1| (-558))) (($ $ $) 196 (|has| |#1| (-558)))) (-1344 (($ $) 241 (|has| |#1| (-558)))) (-2834 (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-1049))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-1049))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-1049))) (($ $ (-1175)) NIL (|has| |#1| (-1049)))) (-1832 (($ $) 245 (|has| |#1| (-558)))) (-1795 (($ $ $) 198 (|has| |#1| (-558)))) (-2952 (((-112) $ $) 88)) (-3077 (($ (-1124 |#1| (-612 $)) (-1124 |#1| (-612 $))) 106 (|has| |#1| (-558))) (($ $ $) 42 (-2809 (|has| |#1| (-475)) (|has| |#1| (-558))))) (-3065 (($ $ $) 40 (-2809 (|has| |#1| (-21)) (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049))))) (($ $) 29 (-2809 (|has| |#1| (-21)) (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049)))))) (-3052 (($ $ $) 38 (-2809 (|has| |#1| (-25)) (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049)))))) (** (($ $ $) 64 (|has| |#1| (-558))) (($ $ (-409 (-566))) 314 (|has| |#1| (-558))) (($ $ (-566)) 80 (-2809 (|has| |#1| (-475)) (|has| |#1| (-558)))) (($ $ (-771)) 75 (-2809 (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049))) (|has| |#1| (-1111)))) (($ $ (-921)) 84 (-2809 (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049))) (|has| |#1| (-1111))))) (* (($ (-409 (-566)) $) NIL (|has| |#1| (-558))) (($ $ (-409 (-566))) NIL (|has| |#1| (-558))) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))) (($ $ $) 36 (-2809 (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049))) (|has| |#1| (-1111)))) (($ (-566) $) 32 (-2809 (|has| |#1| (-21)) (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049))))) (($ (-771) $) NIL (-2809 (|has| |#1| (-25)) (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049))))) (($ (-921) $) NIL (-2809 (|has| |#1| (-25)) (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049))))))) +(((-317 |#1|) (-13 (-432 |#1|) (-10 -8 (IF (|has| |#1| (-558)) (PROGN (-6 (-29 |#1|)) (-6 (-1199)) (-6 (-160)) (-6 (-629)) (-6 (-1138)) (-15 -1838 ($ $)) (-15 -3586 ((-112) $)) (-15 -3367 ($ $ (-566))) (IF (|has| |#1| (-454)) (PROGN (-15 -3917 ((-420 (-1171 $)) (-1171 $))) (-15 -4058 ((-420 (-1171 $)) (-1171 $)))) |%noBranch|) (IF (|has| |#1| (-1038 (-566))) (-6 (-1038 (-48))) |%noBranch|)) |%noBranch|))) (-1099)) (T -317)) +((-1838 (*1 *1 *1) (-12 (-5 *1 (-317 *2)) (-4 *2 (-558)) (-4 *2 (-1099)))) (-3586 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-317 *3)) (-4 *3 (-558)) (-4 *3 (-1099)))) (-3367 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-317 *3)) (-4 *3 (-558)) (-4 *3 (-1099)))) (-3917 (*1 *2 *3) (-12 (-5 *2 (-420 (-1171 *1))) (-5 *1 (-317 *4)) (-5 *3 (-1171 *1)) (-4 *4 (-454)) (-4 *4 (-558)) (-4 *4 (-1099)))) (-4058 (*1 *2 *3) (-12 (-5 *2 (-420 (-1171 *1))) (-5 *1 (-317 *4)) (-5 *3 (-1171 *1)) (-4 *4 (-454)) (-4 *4 (-558)) (-4 *4 (-1099))))) +(-13 (-432 |#1|) (-10 -8 (IF (|has| |#1| (-558)) (PROGN (-6 (-29 |#1|)) (-6 (-1199)) (-6 (-160)) (-6 (-629)) (-6 (-1138)) (-15 -1838 ($ $)) (-15 -3586 ((-112) $)) (-15 -3367 ($ $ (-566))) (IF (|has| |#1| (-454)) (PROGN (-15 -3917 ((-420 (-1171 $)) (-1171 $))) (-15 -4058 ((-420 (-1171 $)) (-1171 $)))) |%noBranch|) (IF (|has| |#1| (-1038 (-566))) (-6 (-1038 (-48))) |%noBranch|)) |%noBranch|))) +((-2373 (((-52) |#2| (-114) (-295 |#2|) (-644 |#2|)) 89) (((-52) |#2| (-114) (-295 |#2|) (-295 |#2|)) 85) (((-52) |#2| (-114) (-295 |#2|) |#2|) 87) (((-52) (-295 |#2|) (-114) (-295 |#2|) |#2|) 88) (((-52) (-644 |#2|) (-644 (-114)) (-295 |#2|) (-644 (-295 |#2|))) 81) (((-52) (-644 |#2|) (-644 (-114)) (-295 |#2|) (-644 |#2|)) 83) (((-52) (-644 (-295 |#2|)) (-644 (-114)) (-295 |#2|) (-644 |#2|)) 84) (((-52) (-644 (-295 |#2|)) (-644 (-114)) (-295 |#2|) (-644 (-295 |#2|))) 82) (((-52) (-295 |#2|) (-114) (-295 |#2|) (-644 |#2|)) 90) (((-52) (-295 |#2|) (-114) (-295 |#2|) (-295 |#2|)) 86))) +(((-318 |#1| |#2|) (-10 -7 (-15 -2373 ((-52) (-295 |#2|) (-114) (-295 |#2|) (-295 |#2|))) (-15 -2373 ((-52) (-295 |#2|) (-114) (-295 |#2|) (-644 |#2|))) (-15 -2373 ((-52) (-644 (-295 |#2|)) (-644 (-114)) (-295 |#2|) (-644 (-295 |#2|)))) (-15 -2373 ((-52) (-644 (-295 |#2|)) (-644 (-114)) (-295 |#2|) (-644 |#2|))) (-15 -2373 ((-52) (-644 |#2|) (-644 (-114)) (-295 |#2|) (-644 |#2|))) (-15 -2373 ((-52) (-644 |#2|) (-644 (-114)) (-295 |#2|) (-644 (-295 |#2|)))) (-15 -2373 ((-52) (-295 |#2|) (-114) (-295 |#2|) |#2|)) (-15 -2373 ((-52) |#2| (-114) (-295 |#2|) |#2|)) (-15 -2373 ((-52) |#2| (-114) (-295 |#2|) (-295 |#2|))) (-15 -2373 ((-52) |#2| (-114) (-295 |#2|) (-644 |#2|)))) (-13 (-558) (-614 (-538))) (-432 |#1|)) (T -318)) +((-2373 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-114)) (-5 *5 (-295 *3)) (-5 *6 (-644 *3)) (-4 *3 (-432 *7)) (-4 *7 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) (-5 *1 (-318 *7 *3)))) (-2373 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-114)) (-5 *5 (-295 *3)) (-4 *3 (-432 *6)) (-4 *6 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *3)))) (-2373 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-114)) (-5 *5 (-295 *3)) (-4 *3 (-432 *6)) (-4 *6 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *3)))) (-2373 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-295 *5)) (-5 *4 (-114)) (-4 *5 (-432 *6)) (-4 *6 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *5)))) (-2373 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 (-114))) (-5 *6 (-644 (-295 *8))) (-4 *8 (-432 *7)) (-5 *5 (-295 *8)) (-4 *7 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) (-5 *1 (-318 *7 *8)))) (-2373 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-644 *7)) (-5 *4 (-644 (-114))) (-5 *5 (-295 *7)) (-4 *7 (-432 *6)) (-4 *6 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *7)))) (-2373 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-644 (-295 *8))) (-5 *4 (-644 (-114))) (-5 *5 (-295 *8)) (-5 *6 (-644 *8)) (-4 *8 (-432 *7)) (-4 *7 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) (-5 *1 (-318 *7 *8)))) (-2373 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-644 (-295 *7))) (-5 *4 (-644 (-114))) (-5 *5 (-295 *7)) (-4 *7 (-432 *6)) (-4 *6 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *7)))) (-2373 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-295 *7)) (-5 *4 (-114)) (-5 *5 (-644 *7)) (-4 *7 (-432 *6)) (-4 *6 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *7)))) (-2373 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-295 *6)) (-5 *4 (-114)) (-4 *6 (-432 *5)) (-4 *5 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) (-5 *1 (-318 *5 *6))))) +(-10 -7 (-15 -2373 ((-52) (-295 |#2|) (-114) (-295 |#2|) (-295 |#2|))) (-15 -2373 ((-52) (-295 |#2|) (-114) (-295 |#2|) (-644 |#2|))) (-15 -2373 ((-52) (-644 (-295 |#2|)) (-644 (-114)) (-295 |#2|) (-644 (-295 |#2|)))) (-15 -2373 ((-52) (-644 (-295 |#2|)) (-644 (-114)) (-295 |#2|) (-644 |#2|))) (-15 -2373 ((-52) (-644 |#2|) (-644 (-114)) (-295 |#2|) (-644 |#2|))) (-15 -2373 ((-52) (-644 |#2|) (-644 (-114)) (-295 |#2|) (-644 (-295 |#2|)))) (-15 -2373 ((-52) (-295 |#2|) (-114) (-295 |#2|) |#2|)) (-15 -2373 ((-52) |#2| (-114) (-295 |#2|) |#2|)) (-15 -2373 ((-52) |#2| (-114) (-295 |#2|) (-295 |#2|))) (-15 -2373 ((-52) |#2| (-114) (-295 |#2|) (-644 |#2|)))) +((-2175 (((-1209 (-926)) (-317 (-566)) (-317 (-566)) (-317 (-566)) (-1 (-225) (-225)) (-1093 (-225)) (-225) (-566) (-1157)) 67) (((-1209 (-926)) (-317 (-566)) (-317 (-566)) (-317 (-566)) (-1 (-225) (-225)) (-1093 (-225)) (-225) (-566)) 68) (((-1209 (-926)) (-317 (-566)) (-317 (-566)) (-317 (-566)) (-1 (-225) (-225)) (-1093 (-225)) (-1 (-225) (-225)) (-566) (-1157)) 64) (((-1209 (-926)) (-317 (-566)) (-317 (-566)) (-317 (-566)) (-1 (-225) (-225)) (-1093 (-225)) (-1 (-225) (-225)) (-566)) 65)) (-3800 (((-1 (-225) (-225)) (-225)) 66))) +(((-319) (-10 -7 (-15 -3800 ((-1 (-225) (-225)) (-225))) (-15 -2175 ((-1209 (-926)) (-317 (-566)) (-317 (-566)) (-317 (-566)) (-1 (-225) (-225)) (-1093 (-225)) (-1 (-225) (-225)) (-566))) (-15 -2175 ((-1209 (-926)) (-317 (-566)) (-317 (-566)) (-317 (-566)) (-1 (-225) (-225)) (-1093 (-225)) (-1 (-225) (-225)) (-566) (-1157))) (-15 -2175 ((-1209 (-926)) (-317 (-566)) (-317 (-566)) (-317 (-566)) (-1 (-225) (-225)) (-1093 (-225)) (-225) (-566))) (-15 -2175 ((-1209 (-926)) (-317 (-566)) (-317 (-566)) (-317 (-566)) (-1 (-225) (-225)) (-1093 (-225)) (-225) (-566) (-1157))))) (T -319)) +((-2175 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-317 (-566))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1093 (-225))) (-5 *6 (-225)) (-5 *7 (-566)) (-5 *8 (-1157)) (-5 *2 (-1209 (-926))) (-5 *1 (-319)))) (-2175 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-317 (-566))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1093 (-225))) (-5 *6 (-225)) (-5 *7 (-566)) (-5 *2 (-1209 (-926))) (-5 *1 (-319)))) (-2175 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-317 (-566))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1093 (-225))) (-5 *6 (-566)) (-5 *7 (-1157)) (-5 *2 (-1209 (-926))) (-5 *1 (-319)))) (-2175 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-317 (-566))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1093 (-225))) (-5 *6 (-566)) (-5 *2 (-1209 (-926))) (-5 *1 (-319)))) (-3800 (*1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-319)) (-5 *3 (-225))))) +(-10 -7 (-15 -3800 ((-1 (-225) (-225)) (-225))) (-15 -2175 ((-1209 (-926)) (-317 (-566)) (-317 (-566)) (-317 (-566)) (-1 (-225) (-225)) (-1093 (-225)) (-1 (-225) (-225)) (-566))) (-15 -2175 ((-1209 (-926)) (-317 (-566)) (-317 (-566)) (-317 (-566)) (-1 (-225) (-225)) (-1093 (-225)) (-1 (-225) (-225)) (-566) (-1157))) (-15 -2175 ((-1209 (-926)) (-317 (-566)) (-317 (-566)) (-317 (-566)) (-1 (-225) (-225)) (-1093 (-225)) (-225) (-566))) (-15 -2175 ((-1209 (-926)) (-317 (-566)) (-317 (-566)) (-317 (-566)) (-1 (-225) (-225)) (-1093 (-225)) (-225) (-566) (-1157)))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) 26)) (-2485 (((-644 (-1081)) $) NIL)) (-1338 (((-1175) $) NIL)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-3087 (($ $) NIL (|has| |#1| (-558)))) (-1716 (((-112) $) NIL (|has| |#1| (-558)))) (-3175 (($ $ (-409 (-566))) NIL) (($ $ (-409 (-566)) (-409 (-566))) NIL)) (-1723 (((-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#1|))) $) 20)) (-3219 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3091 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3174 (((-3 $ "failed") $ $) NIL)) (-3980 (($ $) NIL (|has| |#1| (-365)))) (-3348 (((-420 $) $) NIL (|has| |#1| (-365)))) (-2338 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2761 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3197 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3067 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1882 (($ (-771) (-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#1|)))) NIL)) (-3240 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3115 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1811 (($) NIL T CONST)) (-2925 (($ $ $) NIL (|has| |#1| (-365)))) (-3565 (($ $) 36)) (-3757 (((-3 $ "failed") $) NIL)) (-2937 (($ $ $) NIL (|has| |#1| (-365)))) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) NIL (|has| |#1| (-365)))) (-4188 (((-112) $) NIL (|has| |#1| (-365)))) (-3088 (((-112) $) NIL)) (-2964 (($) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1802 (((-409 (-566)) $) NIL) (((-409 (-566)) $ (-409 (-566))) 16)) (-2264 (((-112) $) NIL)) (-3146 (($ $ (-566)) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2383 (($ $ (-921)) NIL) (($ $ (-409 (-566))) NIL)) (-2495 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-3989 (((-112) $) NIL)) (-2463 (($ |#1| (-409 (-566))) NIL) (($ $ (-1081) (-409 (-566))) NIL) (($ $ (-644 (-1081)) (-644 (-409 (-566)))) NIL)) (-1920 (($ $ $) NIL)) (-3038 (($ $ $) NIL)) (-3080 (($ (-1 |#1| |#1|) $) NIL)) (-3676 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2608 (($ $) NIL)) (-2622 ((|#1| $) NIL)) (-2120 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3151 (((-1157) $) NIL)) (-2577 (($ $) NIL (|has| |#1| (-365)))) (-2390 (($ $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-1175)) NIL (-2809 (-12 (|has| |#1| (-15 -2390 (|#1| |#1| (-1175)))) (|has| |#1| (-15 -2485 ((-644 (-1175)) |#1|))) (|has| |#1| (-38 (-409 (-566))))) (-12 (|has| |#1| (-29 (-566))) (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-959)) (|has| |#1| (-1199)))))) (-4059 (((-1119) $) NIL)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-365)))) (-2162 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2325 (((-420 $) $) NIL (|has| |#1| (-365)))) (-2585 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL (|has| |#1| (-365)))) (-2050 (($ $ (-409 (-566))) NIL)) (-2976 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-2840 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-3316 (((-409 (-566)) $) 17)) (-2207 (($ (-1249 |#1| |#2| |#3|)) 11)) (-3631 (((-1249 |#1| |#2| |#3|) $) 12)) (-3571 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3297 (((-1155 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-409 (-566))))))) (-1383 (((-771) $) NIL (|has| |#1| (-365)))) (-4376 ((|#1| $ (-409 (-566))) NIL) (($ $ $) NIL (|has| (-409 (-566)) (-1111)))) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL (|has| |#1| (-365)))) (-3526 (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-771)) NIL (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (-1630 (((-409 (-566)) $) NIL)) (-3250 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3126 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3227 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3105 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3207 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3079 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4122 (($ $) 10)) (-2479 (((-862) $) 42) (($ (-566)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $) NIL (|has| |#1| (-558)))) (-3025 ((|#1| $ (-409 (-566))) 34)) (-2645 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1558 (((-771)) NIL T CONST)) (-2316 ((|#1| $) NIL)) (-3900 (((-112) $ $) NIL)) (-3285 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3157 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1333 (((-112) $ $) NIL (|has| |#1| (-558)))) (-3260 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3135 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3309 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3179 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3649 ((|#1| $ (-409 (-566))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-409 (-566))))) (|has| |#1| (-15 -2479 (|#1| (-1175))))))) (-1861 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3190 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3299 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3168 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3273 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3148 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2446 (($) NIL T CONST)) (-2459 (($) NIL T CONST)) (-2834 (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-771)) NIL (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (-3019 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 28)) (-3004 (((-112) $ $) NIL)) (-2977 (((-112) $ $) 37)) (-3077 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))))) +(((-320 |#1| |#2| |#3|) (-13 (-1245 |#1|) (-792) (-10 -8 (-15 -2207 ($ (-1249 |#1| |#2| |#3|))) (-15 -3631 ((-1249 |#1| |#2| |#3|) $)) (-15 -3316 ((-409 (-566)) $)))) (-365) (-1175) |#1|) (T -320)) +((-2207 (*1 *1 *2) (-12 (-5 *2 (-1249 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-1175)) (-14 *5 *3) (-5 *1 (-320 *3 *4 *5)))) (-3631 (*1 *2 *1) (-12 (-5 *2 (-1249 *3 *4 *5)) (-5 *1 (-320 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-1175)) (-14 *5 *3))) (-3316 (*1 *2 *1) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-320 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-1175)) (-14 *5 *3)))) +(-13 (-1245 |#1|) (-792) (-10 -8 (-15 -2207 ($ (-1249 |#1| |#2| |#3|))) (-15 -3631 ((-1249 |#1| |#2| |#3|) $)) (-15 -3316 ((-409 (-566)) $)))) +((-3146 (((-2 (|:| -3631 (-771)) (|:| -3103 |#1|) (|:| |radicand| (-644 |#1|))) (-420 |#1|) (-771)) 35)) (-3676 (((-644 (-2 (|:| -3103 (-771)) (|:| |logand| |#1|))) (-420 |#1|)) 40))) +(((-321 |#1|) (-10 -7 (-15 -3146 ((-2 (|:| -3631 (-771)) (|:| -3103 |#1|) (|:| |radicand| (-644 |#1|))) (-420 |#1|) (-771))) (-15 -3676 ((-644 (-2 (|:| -3103 (-771)) (|:| |logand| |#1|))) (-420 |#1|)))) (-558)) (T -321)) +((-3676 (*1 *2 *3) (-12 (-5 *3 (-420 *4)) (-4 *4 (-558)) (-5 *2 (-644 (-2 (|:| -3103 (-771)) (|:| |logand| *4)))) (-5 *1 (-321 *4)))) (-3146 (*1 *2 *3 *4) (-12 (-5 *3 (-420 *5)) (-4 *5 (-558)) (-5 *2 (-2 (|:| -3631 (-771)) (|:| -3103 *5) (|:| |radicand| (-644 *5)))) (-5 *1 (-321 *5)) (-5 *4 (-771))))) +(-10 -7 (-15 -3146 ((-2 (|:| -3631 (-771)) (|:| -3103 |#1|) (|:| |radicand| (-644 |#1|))) (-420 |#1|) (-771))) (-15 -3676 ((-644 (-2 (|:| -3103 (-771)) (|:| |logand| |#1|))) (-420 |#1|)))) +((-2485 (((-644 |#2|) (-1171 |#4|)) 44)) (-3145 ((|#3| (-566)) 47)) (-4249 (((-1171 |#4|) (-1171 |#3|)) 30)) (-1399 (((-1171 |#4|) (-1171 |#4|) (-566)) 66)) (-4310 (((-1171 |#3|) (-1171 |#4|)) 21)) (-1630 (((-644 (-771)) (-1171 |#4|) (-644 |#2|)) 41)) (-3689 (((-1171 |#3|) (-1171 |#4|) (-644 |#2|) (-644 |#3|)) 35))) +(((-322 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3689 ((-1171 |#3|) (-1171 |#4|) (-644 |#2|) (-644 |#3|))) (-15 -1630 ((-644 (-771)) (-1171 |#4|) (-644 |#2|))) (-15 -2485 ((-644 |#2|) (-1171 |#4|))) (-15 -4310 ((-1171 |#3|) (-1171 |#4|))) (-15 -4249 ((-1171 |#4|) (-1171 |#3|))) (-15 -1399 ((-1171 |#4|) (-1171 |#4|) (-566))) (-15 -3145 (|#3| (-566)))) (-793) (-850) (-1049) (-949 |#3| |#1| |#2|)) (T -322)) +((-3145 (*1 *2 *3) (-12 (-5 *3 (-566)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *2 (-1049)) (-5 *1 (-322 *4 *5 *2 *6)) (-4 *6 (-949 *2 *4 *5)))) (-1399 (*1 *2 *2 *3) (-12 (-5 *2 (-1171 *7)) (-5 *3 (-566)) (-4 *7 (-949 *6 *4 *5)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1049)) (-5 *1 (-322 *4 *5 *6 *7)))) (-4249 (*1 *2 *3) (-12 (-5 *3 (-1171 *6)) (-4 *6 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-1171 *7)) (-5 *1 (-322 *4 *5 *6 *7)) (-4 *7 (-949 *6 *4 *5)))) (-4310 (*1 *2 *3) (-12 (-5 *3 (-1171 *7)) (-4 *7 (-949 *6 *4 *5)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1049)) (-5 *2 (-1171 *6)) (-5 *1 (-322 *4 *5 *6 *7)))) (-2485 (*1 *2 *3) (-12 (-5 *3 (-1171 *7)) (-4 *7 (-949 *6 *4 *5)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1049)) (-5 *2 (-644 *5)) (-5 *1 (-322 *4 *5 *6 *7)))) (-1630 (*1 *2 *3 *4) (-12 (-5 *3 (-1171 *8)) (-5 *4 (-644 *6)) (-4 *6 (-850)) (-4 *8 (-949 *7 *5 *6)) (-4 *5 (-793)) (-4 *7 (-1049)) (-5 *2 (-644 (-771))) (-5 *1 (-322 *5 *6 *7 *8)))) (-3689 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1171 *9)) (-5 *4 (-644 *7)) (-5 *5 (-644 *8)) (-4 *7 (-850)) (-4 *8 (-1049)) (-4 *9 (-949 *8 *6 *7)) (-4 *6 (-793)) (-5 *2 (-1171 *8)) (-5 *1 (-322 *6 *7 *8 *9))))) +(-10 -7 (-15 -3689 ((-1171 |#3|) (-1171 |#4|) (-644 |#2|) (-644 |#3|))) (-15 -1630 ((-644 (-771)) (-1171 |#4|) (-644 |#2|))) (-15 -2485 ((-644 |#2|) (-1171 |#4|))) (-15 -4310 ((-1171 |#3|) (-1171 |#4|))) (-15 -4249 ((-1171 |#4|) (-1171 |#3|))) (-15 -1399 ((-1171 |#4|) (-1171 |#4|) (-566))) (-15 -3145 (|#3| (-566)))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) 19)) (-1723 (((-644 (-2 (|:| |gen| |#1|) (|:| -3571 (-566)))) $) 21)) (-3174 (((-3 $ "failed") $ $) NIL)) (-4049 (((-771) $) NIL)) (-1811 (($) NIL T CONST)) (-2980 (((-3 |#1| "failed") $) NIL)) (-1709 ((|#1| $) NIL)) (-2294 ((|#1| $ (-566)) NIL)) (-2480 (((-566) $ (-566)) NIL)) (-1920 (($ $ $) NIL (|has| |#1| (-850)))) (-3038 (($ $ $) NIL (|has| |#1| (-850)))) (-1980 (($ (-1 |#1| |#1|) $) NIL)) (-2825 (($ (-1 (-566) (-566)) $) 11)) (-3151 (((-1157) $) NIL)) (-2349 (($ $ $) NIL (|has| (-566) (-792)))) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) NIL) (($ |#1|) NIL)) (-3025 (((-566) |#1| $) NIL)) (-3900 (((-112) $ $) NIL)) (-2446 (($) NIL T CONST)) (-3019 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2990 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2952 (((-112) $ $) NIL)) (-3004 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2977 (((-112) $ $) 29 (|has| |#1| (-850)))) (-3065 (($ $) 12) (($ $ $) 28)) (-3052 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ (-566)) NIL) (($ (-566) |#1|) 27))) +(((-323 |#1|) (-13 (-21) (-717 (-566)) (-324 |#1| (-566)) (-10 -7 (IF (|has| |#1| (-850)) (-6 (-850)) |%noBranch|))) (-1099)) (T -323)) +NIL +(-13 (-21) (-717 (-566)) (-324 |#1| (-566)) (-10 -7 (IF (|has| |#1| (-850)) (-6 (-850)) |%noBranch|))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-1723 (((-644 (-2 (|:| |gen| |#1|) (|:| -3571 |#2|))) $) 28)) (-3174 (((-3 $ "failed") $ $) 20)) (-4049 (((-771) $) 29)) (-1811 (($) 18 T CONST)) (-2980 (((-3 |#1| "failed") $) 33)) (-1709 ((|#1| $) 34)) (-2294 ((|#1| $ (-566)) 26)) (-2480 ((|#2| $ (-566)) 27)) (-1980 (($ (-1 |#1| |#1|) $) 23)) (-2825 (($ (-1 |#2| |#2|) $) 24)) (-3151 (((-1157) $) 10)) (-2349 (($ $ $) 22 (|has| |#2| (-792)))) (-4059 (((-1119) $) 11)) (-2479 (((-862) $) 12) (($ |#1|) 32)) (-3025 ((|#2| |#1| $) 25)) (-3900 (((-112) $ $) 9)) (-2446 (($) 19 T CONST)) (-2952 (((-112) $ $) 6)) (-3052 (($ $ $) 15) (($ |#1| $) 31)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ |#2| |#1|) 30))) +(((-324 |#1| |#2|) (-140) (-1099) (-131)) (T -324)) +((-3052 (*1 *1 *2 *1) (-12 (-4 *1 (-324 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-131)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-324 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-131)))) (-4049 (*1 *2 *1) (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-131)) (-5 *2 (-771)))) (-1723 (*1 *2 *1) (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-131)) (-5 *2 (-644 (-2 (|:| |gen| *3) (|:| -3571 *4)))))) (-2480 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-4 *1 (-324 *4 *2)) (-4 *4 (-1099)) (-4 *2 (-131)))) (-2294 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-4 *1 (-324 *2 *4)) (-4 *4 (-131)) (-4 *2 (-1099)))) (-3025 (*1 *2 *3 *1) (-12 (-4 *1 (-324 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-131)))) (-2825 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-324 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-131)))) (-1980 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-324 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-131)))) (-2349 (*1 *1 *1 *1) (-12 (-4 *1 (-324 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-131)) (-4 *3 (-792))))) +(-13 (-131) (-1038 |t#1|) (-10 -8 (-15 -3052 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -4049 ((-771) $)) (-15 -1723 ((-644 (-2 (|:| |gen| |t#1|) (|:| -3571 |t#2|))) $)) (-15 -2480 (|t#2| $ (-566))) (-15 -2294 (|t#1| $ (-566))) (-15 -3025 (|t#2| |t#1| $)) (-15 -2825 ($ (-1 |t#2| |t#2|) $)) (-15 -1980 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-792)) (-15 -2349 ($ $ $)) |%noBranch|))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-616 |#1|) . T) ((-613 (-862)) . T) ((-1038 |#1|) . T) ((-1099) . T)) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-1723 (((-644 (-2 (|:| |gen| |#1|) (|:| -3571 (-771)))) $) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-4049 (((-771) $) NIL)) (-1811 (($) NIL T CONST)) (-2980 (((-3 |#1| "failed") $) NIL)) (-1709 ((|#1| $) NIL)) (-2294 ((|#1| $ (-566)) NIL)) (-2480 (((-771) $ (-566)) NIL)) (-1980 (($ (-1 |#1| |#1|) $) NIL)) (-2825 (($ (-1 (-771) (-771)) $) NIL)) (-3151 (((-1157) $) NIL)) (-2349 (($ $ $) NIL (|has| (-771) (-792)))) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) NIL) (($ |#1|) NIL)) (-3025 (((-771) |#1| $) NIL)) (-3900 (((-112) $ $) NIL)) (-2446 (($) NIL T CONST)) (-2952 (((-112) $ $) NIL)) (-3052 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-771) |#1|) NIL))) +(((-325 |#1|) (-324 |#1| (-771)) (-1099)) (T -325)) +NIL +(-324 |#1| (-771)) +((-3530 (($ $) 72)) (-3995 (($ $ |#2| |#3| $) 14)) (-3327 (($ (-1 |#3| |#3|) $) 51)) (-2587 (((-112) $) 42)) (-2597 ((|#2| $) 44)) (-2976 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 64)) (-2252 ((|#2| $) 68)) (-3866 (((-644 |#2|) $) 56)) (-2244 (($ $ $ (-771)) 37)) (-3077 (($ $ |#2|) 60))) +(((-326 |#1| |#2| |#3|) (-10 -8 (-15 -3530 (|#1| |#1|)) (-15 -2252 (|#2| |#1|)) (-15 -2976 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2244 (|#1| |#1| |#1| (-771))) (-15 -3995 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3327 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3866 ((-644 |#2|) |#1|)) (-15 -2597 (|#2| |#1|)) (-15 -2587 ((-112) |#1|)) (-15 -2976 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3077 (|#1| |#1| |#2|))) (-327 |#2| |#3|) (-1049) (-792)) (T -326)) +NIL +(-10 -8 (-15 -3530 (|#1| |#1|)) (-15 -2252 (|#2| |#1|)) (-15 -2976 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2244 (|#1| |#1| |#1| (-771))) (-15 -3995 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3327 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3866 ((-644 |#2|) |#1|)) (-15 -2597 (|#2| |#1|)) (-15 -2587 ((-112) |#1|)) (-15 -2976 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3077 (|#1| |#1| |#2|))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) 63 (|has| |#1| (-558)))) (-3087 (($ $) 64 (|has| |#1| (-558)))) (-1716 (((-112) $) 66 (|has| |#1| (-558)))) (-3174 (((-3 $ "failed") $ $) 20)) (-1811 (($) 18 T CONST)) (-2980 (((-3 (-566) "failed") $) 100 (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) 98 (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) 95)) (-1709 (((-566) $) 99 (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) 97 (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) 96)) (-3565 (($ $) 72)) (-3757 (((-3 $ "failed") $) 37)) (-3530 (($ $) 84 (|has| |#1| (-454)))) (-3995 (($ $ |#1| |#2| $) 88)) (-2264 (((-112) $) 35)) (-3486 (((-771) $) 91)) (-3989 (((-112) $) 74)) (-2463 (($ |#1| |#2|) 73)) (-2584 ((|#2| $) 90)) (-3327 (($ (-1 |#2| |#2|) $) 89)) (-3080 (($ (-1 |#1| |#1|) $) 75)) (-2608 (($ $) 77)) (-2622 ((|#1| $) 78)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-2587 (((-112) $) 94)) (-2597 ((|#1| $) 93)) (-2976 (((-3 $ "failed") $ $) 62 (|has| |#1| (-558))) (((-3 $ "failed") $ |#1|) 86 (|has| |#1| (-558)))) (-1630 ((|#2| $) 76)) (-2252 ((|#1| $) 85 (|has| |#1| (-454)))) (-2479 (((-862) $) 12) (($ (-566)) 33) (($ $) 61 (|has| |#1| (-558))) (($ |#1|) 59) (($ (-409 (-566))) 69 (-2809 (|has| |#1| (-1038 (-409 (-566)))) (|has| |#1| (-38 (-409 (-566))))))) (-3866 (((-644 |#1|) $) 92)) (-3025 ((|#1| $ |#2|) 71)) (-2645 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-1558 (((-771)) 32 T CONST)) (-2244 (($ $ $ (-771)) 87 (|has| |#1| (-172)))) (-3900 (((-112) $ $) 9)) (-1333 (((-112) $ $) 65 (|has| |#1| (-558)))) (-2446 (($) 19 T CONST)) (-2459 (($) 34 T CONST)) (-2952 (((-112) $ $) 6)) (-3077 (($ $ |#1|) 70 (|has| |#1| (-365)))) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-409 (-566)) $) 68 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 67 (|has| |#1| (-38 (-409 (-566))))))) +(((-327 |#1| |#2|) (-140) (-1049) (-792)) (T -327)) +((-2587 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792)) (-5 *2 (-112)))) (-2597 (*1 *2 *1) (-12 (-4 *1 (-327 *2 *3)) (-4 *3 (-792)) (-4 *2 (-1049)))) (-3866 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792)) (-5 *2 (-644 *3)))) (-3486 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792)) (-5 *2 (-771)))) (-2584 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-792)))) (-3327 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-327 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792)))) (-3995 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-792)))) (-2244 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-327 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792)) (-4 *3 (-172)))) (-2976 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-792)) (-4 *2 (-558)))) (-2252 (*1 *2 *1) (-12 (-4 *1 (-327 *2 *3)) (-4 *3 (-792)) (-4 *2 (-1049)) (-4 *2 (-454)))) (-3530 (*1 *1 *1) (-12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-792)) (-4 *2 (-454))))) +(-13 (-47 |t#1| |t#2|) (-413 |t#1|) (-10 -8 (-15 -2587 ((-112) $)) (-15 -2597 (|t#1| $)) (-15 -3866 ((-644 |t#1|) $)) (-15 -3486 ((-771) $)) (-15 -2584 (|t#2| $)) (-15 -3327 ($ (-1 |t#2| |t#2|) $)) (-15 -3995 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-172)) (-15 -2244 ($ $ $ (-771))) |%noBranch|) (IF (|has| |t#1| (-558)) (-15 -2976 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-454)) (PROGN (-15 -2252 (|t#1| $)) (-15 -3530 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-558)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-409 (-566)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2809 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #0#) -2809 (|has| |#1| (-1038 (-409 (-566)))) (|has| |#1| (-38 (-409 (-566))))) ((-616 (-566)) . T) ((-616 |#1|) . T) ((-616 $) |has| |#1| (-558)) ((-613 (-862)) . T) ((-172) -2809 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-291) |has| |#1| (-558)) ((-413 |#1|) . T) ((-558) |has| |#1| (-558)) ((-646 #0#) |has| |#1| (-38 (-409 (-566)))) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #0#) |has| |#1| (-38 (-409 (-566)))) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #0#) |has| |#1| (-38 (-409 (-566)))) ((-640 |#1|) |has| |#1| (-172)) ((-640 $) |has| |#1| (-558)) ((-717 #0#) |has| |#1| (-38 (-409 (-566)))) ((-717 |#1|) |has| |#1| (-172)) ((-717 $) |has| |#1| (-558)) ((-726) . T) ((-1038 (-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) ((-1038 (-566)) |has| |#1| (-1038 (-566))) ((-1038 |#1|) . T) ((-1051 #0#) |has| |#1| (-38 (-409 (-566)))) ((-1051 |#1|) . T) ((-1051 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-1056 #0#) |has| |#1| (-38 (-409 (-566)))) ((-1056 |#1|) . T) ((-1056 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) +((-2986 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2462 (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4418)))) (-4163 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-850)))) (-2893 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4418))) (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-850))))) (-1374 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-850)))) (-1453 (((-112) $ (-771)) NIL)) (-3315 (((-112) (-112)) NIL)) (-3901 ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4418))) ((|#1| $ (-1231 (-566)) |#1|) NIL (|has| $ (-6 -4418)))) (-4364 (($ (-1 (-112) |#1|) $) NIL)) (-3543 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-1811 (($) NIL T CONST)) (-2273 (($ $) NIL (|has| $ (-6 -4418)))) (-3877 (($ $) NIL)) (-1346 (($ $) NIL (|has| |#1| (-1099)))) (-4111 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-2295 (($ |#1| $) NIL (|has| |#1| (-1099))) (($ (-1 (-112) |#1|) $) NIL)) (-2628 (($ |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-1838 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4417)))) (-3719 ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4418)))) (-3653 ((|#1| $ (-566)) NIL)) (-4000 (((-566) (-1 (-112) |#1|) $) NIL) (((-566) |#1| $) NIL (|has| |#1| (-1099))) (((-566) |#1| $ (-566)) NIL (|has| |#1| (-1099)))) (-1559 (($ $ (-566)) NIL)) (-3106 (((-771) $) NIL)) (-3872 (((-644 |#1|) $) NIL (|has| $ (-6 -4417)))) (-4259 (($ (-771) |#1|) NIL)) (-2756 (((-112) $ (-771)) NIL)) (-2755 (((-566) $) NIL (|has| (-566) (-850)))) (-1920 (($ $ $) NIL (|has| |#1| (-850)))) (-3200 (($ $ $) NIL (|has| |#1| (-850))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1330 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-850)))) (-4227 (((-644 |#1|) $) NIL (|has| $ (-6 -4417)))) (-1688 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-3831 (((-566) $) NIL (|has| (-566) (-850)))) (-3038 (($ $ $) NIL (|has| |#1| (-850)))) (-3708 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4106 (((-112) $ (-771)) NIL)) (-3151 (((-1157) $) NIL (|has| |#1| (-1099)))) (-4354 (($ $ $ (-566)) NIL) (($ |#1| $ (-566)) NIL)) (-4271 (($ |#1| $ (-566)) NIL) (($ $ $ (-566)) NIL)) (-3780 (((-644 (-566)) $) NIL)) (-1605 (((-112) (-566) $) NIL)) (-4059 (((-1119) $) NIL (|has| |#1| (-1099)))) (-2435 (($ (-644 |#1|)) NIL)) (-4080 ((|#1| $) NIL (|has| (-566) (-850)))) (-2688 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4079 (($ $ |#1|) NIL (|has| $ (-6 -4418)))) (-3966 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1844 (((-112) $ $) NIL)) (-2210 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-4185 (((-644 |#1|) $) NIL)) (-2788 (((-112) $) NIL)) (-1737 (($) NIL)) (-4376 ((|#1| $ (-566) |#1|) NIL) ((|#1| $ (-566)) NIL) (($ $ (-1231 (-566))) NIL)) (-3139 (($ $ (-1231 (-566))) NIL) (($ $ (-566)) NIL)) (-2139 (($ $ (-566)) NIL) (($ $ (-1231 (-566))) NIL)) (-4068 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-1438 (($ $ $ (-566)) NIL (|has| $ (-6 -4418)))) (-3924 (($ $) NIL)) (-3136 (((-538) $) NIL (|has| |#1| (-614 (-538))))) (-2489 (($ (-644 |#1|)) NIL)) (-1323 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3716 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-644 $)) NIL)) (-2479 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-3900 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3667 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-3019 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2990 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2952 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3004 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-850)))) (-3002 (((-771) $) NIL (|has| $ (-6 -4417))))) +(((-328 |#1|) (-13 (-19 |#1|) (-283 |#1|) (-10 -8 (-15 -2435 ($ (-644 |#1|))) (-15 -3106 ((-771) $)) (-15 -1559 ($ $ (-566))) (-15 -3315 ((-112) (-112))))) (-1214)) (T -328)) +((-2435 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1214)) (-5 *1 (-328 *3)))) (-3106 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-328 *3)) (-4 *3 (-1214)))) (-1559 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-328 *3)) (-4 *3 (-1214)))) (-3315 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-328 *3)) (-4 *3 (-1214))))) +(-13 (-19 |#1|) (-283 |#1|) (-10 -8 (-15 -2435 ($ (-644 |#1|))) (-15 -3106 ((-771) $)) (-15 -1559 ($ $ (-566))) (-15 -3315 ((-112) (-112))))) +((-3017 (((-112) $) 50)) (-4141 (((-771)) 26)) (-3837 ((|#2| $) 54) (($ $ (-921)) 124)) (-4049 (((-771)) 125)) (-2422 (($ (-1264 |#2|)) 23)) (-2111 (((-112) $) 138)) (-1398 ((|#2| $) 56) (($ $ (-921)) 121)) (-1869 (((-1171 |#2|) $) NIL) (((-1171 $) $ (-921)) 112)) (-3119 (((-1171 |#2|) $) 98)) (-1902 (((-1171 |#2|) $) 94) (((-3 (-1171 |#2|) "failed") $ $) 91)) (-1963 (($ $ (-1171 |#2|)) 62)) (-1903 (((-833 (-921))) 33) (((-921)) 51)) (-3944 (((-134)) 30)) (-1630 (((-833 (-921)) $) 35) (((-921) $) 141)) (-1743 (($) 131)) (-3747 (((-1264 |#2|) $) NIL) (((-689 |#2|) (-1264 $)) 45)) (-2645 (($ $) NIL) (((-3 $ "failed") $) 101)) (-3132 (((-112) $) 48))) +(((-329 |#1| |#2|) (-10 -8 (-15 -2645 ((-3 |#1| "failed") |#1|)) (-15 -4049 ((-771))) (-15 -2645 (|#1| |#1|)) (-15 -1902 ((-3 (-1171 |#2|) "failed") |#1| |#1|)) (-15 -1902 ((-1171 |#2|) |#1|)) (-15 -3119 ((-1171 |#2|) |#1|)) (-15 -1963 (|#1| |#1| (-1171 |#2|))) (-15 -2111 ((-112) |#1|)) (-15 -1743 (|#1|)) (-15 -3837 (|#1| |#1| (-921))) (-15 -1398 (|#1| |#1| (-921))) (-15 -1869 ((-1171 |#1|) |#1| (-921))) (-15 -3837 (|#2| |#1|)) (-15 -1398 (|#2| |#1|)) (-15 -1630 ((-921) |#1|)) (-15 -1903 ((-921))) (-15 -1869 ((-1171 |#2|) |#1|)) (-15 -2422 (|#1| (-1264 |#2|))) (-15 -3747 ((-689 |#2|) (-1264 |#1|))) (-15 -3747 ((-1264 |#2|) |#1|)) (-15 -4141 ((-771))) (-15 -1903 ((-833 (-921)))) (-15 -1630 ((-833 (-921)) |#1|)) (-15 -3017 ((-112) |#1|)) (-15 -3132 ((-112) |#1|)) (-15 -3944 ((-134)))) (-330 |#2|) (-365)) (T -329)) +((-3944 (*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-134)) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4)))) (-1903 (*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-833 (-921))) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4)))) (-4141 (*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-771)) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4)))) (-1903 (*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-921)) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4)))) (-4049 (*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-771)) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4))))) +(-10 -8 (-15 -2645 ((-3 |#1| "failed") |#1|)) (-15 -4049 ((-771))) (-15 -2645 (|#1| |#1|)) (-15 -1902 ((-3 (-1171 |#2|) "failed") |#1| |#1|)) (-15 -1902 ((-1171 |#2|) |#1|)) (-15 -3119 ((-1171 |#2|) |#1|)) (-15 -1963 (|#1| |#1| (-1171 |#2|))) (-15 -2111 ((-112) |#1|)) (-15 -1743 (|#1|)) (-15 -3837 (|#1| |#1| (-921))) (-15 -1398 (|#1| |#1| (-921))) (-15 -1869 ((-1171 |#1|) |#1| (-921))) (-15 -3837 (|#2| |#1|)) (-15 -1398 (|#2| |#1|)) (-15 -1630 ((-921) |#1|)) (-15 -1903 ((-921))) (-15 -1869 ((-1171 |#2|) |#1|)) (-15 -2422 (|#1| (-1264 |#2|))) (-15 -3747 ((-689 |#2|) (-1264 |#1|))) (-15 -3747 ((-1264 |#2|) |#1|)) (-15 -4141 ((-771))) (-15 -1903 ((-833 (-921)))) (-15 -1630 ((-833 (-921)) |#1|)) (-15 -3017 ((-112) |#1|)) (-15 -3132 ((-112) |#1|)) (-15 -3944 ((-134)))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) 47)) (-3087 (($ $) 46)) (-1716 (((-112) $) 44)) (-3017 (((-112) $) 104)) (-4141 (((-771)) 100)) (-3837 ((|#1| $) 150) (($ $ (-921)) 147 (|has| |#1| (-370)))) (-2568 (((-1187 (-921) (-771)) (-566)) 132 (|has| |#1| (-370)))) (-3174 (((-3 $ "failed") $ $) 20)) (-3980 (($ $) 81)) (-3348 (((-420 $) $) 80)) (-2761 (((-112) $ $) 65)) (-4049 (((-771)) 122 (|has| |#1| (-370)))) (-1811 (($) 18 T CONST)) (-2980 (((-3 |#1| "failed") $) 111)) (-1709 ((|#1| $) 112)) (-2422 (($ (-1264 |#1|)) 156)) (-2713 (((-3 "prime" "polynomial" "normal" "cyclic")) 138 (|has| |#1| (-370)))) (-2925 (($ $ $) 61)) (-3757 (((-3 $ "failed") $) 37)) (-1415 (($) 119 (|has| |#1| (-370)))) (-2937 (($ $ $) 62)) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) 57)) (-2409 (($) 134 (|has| |#1| (-370)))) (-1450 (((-112) $) 135 (|has| |#1| (-370)))) (-4202 (($ $ (-771)) 97 (-2809 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) 96 (-2809 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4188 (((-112) $) 79)) (-1802 (((-921) $) 137 (|has| |#1| (-370))) (((-833 (-921)) $) 94 (-2809 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2264 (((-112) $) 35)) (-3254 (($) 145 (|has| |#1| (-370)))) (-2111 (((-112) $) 144 (|has| |#1| (-370)))) (-1398 ((|#1| $) 151) (($ $ (-921)) 148 (|has| |#1| (-370)))) (-4278 (((-3 $ "failed") $) 123 (|has| |#1| (-370)))) (-2495 (((-3 (-644 $) "failed") (-644 $) $) 58)) (-1869 (((-1171 |#1|) $) 155) (((-1171 $) $ (-921)) 149 (|has| |#1| (-370)))) (-4051 (((-921) $) 120 (|has| |#1| (-370)))) (-3119 (((-1171 |#1|) $) 141 (|has| |#1| (-370)))) (-1902 (((-1171 |#1|) $) 140 (|has| |#1| (-370))) (((-3 (-1171 |#1|) "failed") $ $) 139 (|has| |#1| (-370)))) (-1963 (($ $ (-1171 |#1|)) 142 (|has| |#1| (-370)))) (-2120 (($ $ $) 52) (($ (-644 $)) 51)) (-3151 (((-1157) $) 10)) (-2577 (($ $) 78)) (-3968 (($) 124 (|has| |#1| (-370)) CONST)) (-2104 (($ (-921)) 121 (|has| |#1| (-370)))) (-1965 (((-112) $) 103)) (-4059 (((-1119) $) 11)) (-4086 (($) 143 (|has| |#1| (-370)))) (-4004 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-2162 (($ $ $) 54) (($ (-644 $)) 53)) (-2816 (((-644 (-2 (|:| -2325 (-566)) (|:| -3631 (-566))))) 131 (|has| |#1| (-370)))) (-2325 (((-420 $) $) 82)) (-1903 (((-833 (-921))) 101) (((-921)) 153)) (-2585 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2976 (((-3 $ "failed") $ $) 48)) (-2840 (((-3 (-644 $) "failed") (-644 $) $) 56)) (-1383 (((-771) $) 64)) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) 63)) (-4107 (((-771) $) 136 (|has| |#1| (-370))) (((-3 (-771) "failed") $ $) 95 (-2809 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3944 (((-134)) 109)) (-3526 (($ $) 128 (|has| |#1| (-370))) (($ $ (-771)) 126 (|has| |#1| (-370)))) (-1630 (((-833 (-921)) $) 102) (((-921) $) 152)) (-2301 (((-1171 |#1|)) 154)) (-3648 (($) 133 (|has| |#1| (-370)))) (-1743 (($) 146 (|has| |#1| (-370)))) (-3747 (((-1264 |#1|) $) 158) (((-689 |#1|) (-1264 $)) 157)) (-3233 (((-3 (-1264 $) "failed") (-689 $)) 130 (|has| |#1| (-370)))) (-2479 (((-862) $) 12) (($ (-566)) 33) (($ $) 49) (($ (-409 (-566))) 74) (($ |#1|) 110)) (-2645 (($ $) 129 (|has| |#1| (-370))) (((-3 $ "failed") $) 93 (-2809 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1558 (((-771)) 32 T CONST)) (-3900 (((-112) $ $) 9)) (-1419 (((-1264 $)) 160) (((-1264 $) (-921)) 159)) (-1333 (((-112) $ $) 45)) (-3132 (((-112) $) 105)) (-2446 (($) 19 T CONST)) (-2459 (($) 34 T CONST)) (-3536 (($ $) 99 (|has| |#1| (-370))) (($ $ (-771)) 98 (|has| |#1| (-370)))) (-2834 (($ $) 127 (|has| |#1| (-370))) (($ $ (-771)) 125 (|has| |#1| (-370)))) (-2952 (((-112) $ $) 6)) (-3077 (($ $ $) 73) (($ $ |#1|) 108)) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 77)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ (-409 (-566))) 76) (($ (-409 (-566)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106))) +(((-330 |#1|) (-140) (-365)) (T -330)) +((-1419 (*1 *2) (-12 (-4 *3 (-365)) (-5 *2 (-1264 *1)) (-4 *1 (-330 *3)))) (-1419 (*1 *2 *3) (-12 (-5 *3 (-921)) (-4 *4 (-365)) (-5 *2 (-1264 *1)) (-4 *1 (-330 *4)))) (-3747 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1264 *3)))) (-3747 (*1 *2 *3) (-12 (-5 *3 (-1264 *1)) (-4 *1 (-330 *4)) (-4 *4 (-365)) (-5 *2 (-689 *4)))) (-2422 (*1 *1 *2) (-12 (-5 *2 (-1264 *3)) (-4 *3 (-365)) (-4 *1 (-330 *3)))) (-1869 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1171 *3)))) (-2301 (*1 *2) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1171 *3)))) (-1903 (*1 *2) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-921)))) (-1630 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-921)))) (-1398 (*1 *2 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-365)))) (-3837 (*1 *2 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-365)))) (-1869 (*1 *2 *1 *3) (-12 (-5 *3 (-921)) (-4 *4 (-370)) (-4 *4 (-365)) (-5 *2 (-1171 *1)) (-4 *1 (-330 *4)))) (-1398 (*1 *1 *1 *2) (-12 (-5 *2 (-921)) (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)))) (-3837 (*1 *1 *1 *2) (-12 (-5 *2 (-921)) (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)))) (-1743 (*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365)))) (-3254 (*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365)))) (-2111 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-112)))) (-4086 (*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365)))) (-1963 (*1 *1 *1 *2) (-12 (-5 *2 (-1171 *3)) (-4 *3 (-370)) (-4 *1 (-330 *3)) (-4 *3 (-365)))) (-3119 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-1171 *3)))) (-1902 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-1171 *3)))) (-1902 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-1171 *3))))) +(-13 (-1283 |t#1|) (-1038 |t#1|) (-10 -8 (-15 -1419 ((-1264 $))) (-15 -1419 ((-1264 $) (-921))) (-15 -3747 ((-1264 |t#1|) $)) (-15 -3747 ((-689 |t#1|) (-1264 $))) (-15 -2422 ($ (-1264 |t#1|))) (-15 -1869 ((-1171 |t#1|) $)) (-15 -2301 ((-1171 |t#1|))) (-15 -1903 ((-921))) (-15 -1630 ((-921) $)) (-15 -1398 (|t#1| $)) (-15 -3837 (|t#1| $)) (IF (|has| |t#1| (-370)) (PROGN (-6 (-351)) (-15 -1869 ((-1171 $) $ (-921))) (-15 -1398 ($ $ (-921))) (-15 -3837 ($ $ (-921))) (-15 -1743 ($)) (-15 -3254 ($)) (-15 -2111 ((-112) $)) (-15 -4086 ($)) (-15 -1963 ($ $ (-1171 |t#1|))) (-15 -3119 ((-1171 |t#1|) $)) (-15 -1902 ((-1171 |t#1|) $)) (-15 -1902 ((-3 (-1171 |t#1|) "failed") $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-409 (-566))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2809 (|has| |#1| (-370)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-616 #0#) . T) ((-616 (-566)) . T) ((-616 |#1|) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-233) |has| |#1| (-370)) ((-243) . T) ((-291) . T) ((-308) . T) ((-1283 |#1|) . T) ((-365) . T) ((-404) -2809 (|has| |#1| (-370)) (|has| |#1| (-145))) ((-370) |has| |#1| (-370)) ((-351) |has| |#1| (-370)) ((-454) . T) ((-558) . T) ((-646 #0#) . T) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #0#) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #0#) . T) ((-640 |#1|) . T) ((-640 $) . T) ((-717 #0#) . T) ((-717 |#1|) . T) ((-717 $) . T) ((-726) . T) ((-920) . T) ((-1038 |#1|) . T) ((-1051 #0#) . T) ((-1051 |#1|) . T) ((-1051 $) . T) ((-1056 #0#) . T) ((-1056 |#1|) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1150) |has| |#1| (-370)) ((-1218) . T) ((-1271 |#1|) . T)) +((-2986 (((-112) $ $) NIL)) (-4123 (($ (-1174) $) 104)) (-2057 (($) 93)) (-3488 (((-1119) (-1119)) 9)) (-4027 (($) 94)) (-3060 (($) 108) (($ (-317 (-699))) 116) (($ (-317 (-701))) 112) (($ (-317 (-694))) 120) (($ (-317 (-381))) 127) (($ (-317 (-566))) 123) (($ (-317 (-169 (-381)))) 131)) (-3407 (($ (-1174) $) 105)) (-2292 (($ (-644 (-862))) 95)) (-2460 (((-1269) $) 91)) (-1547 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 35)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-1341 (($ (-1119)) 60)) (-3337 (((-1103) $) 32)) (-2155 (($ (-1091 (-952 (-566))) $) 101) (($ (-1091 (-952 (-566))) (-952 (-566)) $) 102)) (-3937 (($ (-1119)) 103)) (-3153 (($ (-1174) $) 133) (($ (-1174) $ $) 134)) (-1895 (($ (-1175) (-644 (-1175))) 92)) (-1612 (($ (-1157)) 98) (($ (-644 (-1157))) 96)) (-2479 (((-862) $) 136)) (-3217 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1175)) (|:| |arrayIndex| (-644 (-952 (-566)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1304 (-862)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1175)) (|:| |rand| (-862)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1174)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2788 (-112)) (|:| -2153 (-2 (|:| |ints2Floats?| (-112)) (|:| -1304 (-862)))))) (|:| |blockBranch| (-644 $)) (|:| |commentBranch| (-644 (-1157))) (|:| |callBranch| (-1157)) (|:| |forBranch| (-2 (|:| -1680 (-1091 (-952 (-566)))) (|:| |span| (-952 (-566))) (|:| -2610 $))) (|:| |labelBranch| (-1119)) (|:| |loopBranch| (-2 (|:| |switch| (-1174)) (|:| -2610 $))) (|:| |commonBranch| (-2 (|:| -2598 (-1175)) (|:| |contents| (-644 (-1175))))) (|:| |printBranch| (-644 (-862)))) $) 51)) (-3491 (($ (-1157)) 205)) (-2346 (($ (-644 $)) 132)) (-3900 (((-112) $ $) NIL)) (-2335 (($ (-1175) (-1157)) 138) (($ (-1175) (-317 (-701))) 178) (($ (-1175) (-317 (-699))) 179) (($ (-1175) (-317 (-694))) 180) (($ (-1175) (-689 (-701))) 141) (($ (-1175) (-689 (-699))) 144) (($ (-1175) (-689 (-694))) 147) (($ (-1175) (-1264 (-701))) 150) (($ (-1175) (-1264 (-699))) 153) (($ (-1175) (-1264 (-694))) 156) (($ (-1175) (-689 (-317 (-701)))) 159) (($ (-1175) (-689 (-317 (-699)))) 162) (($ (-1175) (-689 (-317 (-694)))) 165) (($ (-1175) (-1264 (-317 (-701)))) 168) (($ (-1175) (-1264 (-317 (-699)))) 171) (($ (-1175) (-1264 (-317 (-694)))) 174) (($ (-1175) (-644 (-952 (-566))) (-317 (-701))) 175) (($ (-1175) (-644 (-952 (-566))) (-317 (-699))) 176) (($ (-1175) (-644 (-952 (-566))) (-317 (-694))) 177) (($ (-1175) (-317 (-566))) 202) (($ (-1175) (-317 (-381))) 203) (($ (-1175) (-317 (-169 (-381)))) 204) (($ (-1175) (-689 (-317 (-566)))) 183) (($ (-1175) (-689 (-317 (-381)))) 186) (($ (-1175) (-689 (-317 (-169 (-381))))) 189) (($ (-1175) (-1264 (-317 (-566)))) 192) (($ (-1175) (-1264 (-317 (-381)))) 195) (($ (-1175) (-1264 (-317 (-169 (-381))))) 198) (($ (-1175) (-644 (-952 (-566))) (-317 (-566))) 199) (($ (-1175) (-644 (-952 (-566))) (-317 (-381))) 200) (($ (-1175) (-644 (-952 (-566))) (-317 (-169 (-381)))) 201)) (-2952 (((-112) $ $) NIL))) +(((-331) (-13 (-1099) (-10 -8 (-15 -2155 ($ (-1091 (-952 (-566))) $)) (-15 -2155 ($ (-1091 (-952 (-566))) (-952 (-566)) $)) (-15 -4123 ($ (-1174) $)) (-15 -3407 ($ (-1174) $)) (-15 -1341 ($ (-1119))) (-15 -3937 ($ (-1119))) (-15 -1612 ($ (-1157))) (-15 -1612 ($ (-644 (-1157)))) (-15 -3491 ($ (-1157))) (-15 -3060 ($)) (-15 -3060 ($ (-317 (-699)))) (-15 -3060 ($ (-317 (-701)))) (-15 -3060 ($ (-317 (-694)))) (-15 -3060 ($ (-317 (-381)))) (-15 -3060 ($ (-317 (-566)))) (-15 -3060 ($ (-317 (-169 (-381))))) (-15 -3153 ($ (-1174) $)) (-15 -3153 ($ (-1174) $ $)) (-15 -2335 ($ (-1175) (-1157))) (-15 -2335 ($ (-1175) (-317 (-701)))) (-15 -2335 ($ (-1175) (-317 (-699)))) (-15 -2335 ($ (-1175) (-317 (-694)))) (-15 -2335 ($ (-1175) (-689 (-701)))) (-15 -2335 ($ (-1175) (-689 (-699)))) (-15 -2335 ($ (-1175) (-689 (-694)))) (-15 -2335 ($ (-1175) (-1264 (-701)))) (-15 -2335 ($ (-1175) (-1264 (-699)))) (-15 -2335 ($ (-1175) (-1264 (-694)))) (-15 -2335 ($ (-1175) (-689 (-317 (-701))))) (-15 -2335 ($ (-1175) (-689 (-317 (-699))))) (-15 -2335 ($ (-1175) (-689 (-317 (-694))))) (-15 -2335 ($ (-1175) (-1264 (-317 (-701))))) (-15 -2335 ($ (-1175) (-1264 (-317 (-699))))) (-15 -2335 ($ (-1175) (-1264 (-317 (-694))))) (-15 -2335 ($ (-1175) (-644 (-952 (-566))) (-317 (-701)))) (-15 -2335 ($ (-1175) (-644 (-952 (-566))) (-317 (-699)))) (-15 -2335 ($ (-1175) (-644 (-952 (-566))) (-317 (-694)))) (-15 -2335 ($ (-1175) (-317 (-566)))) (-15 -2335 ($ (-1175) (-317 (-381)))) (-15 -2335 ($ (-1175) (-317 (-169 (-381))))) (-15 -2335 ($ (-1175) (-689 (-317 (-566))))) (-15 -2335 ($ (-1175) (-689 (-317 (-381))))) (-15 -2335 ($ (-1175) (-689 (-317 (-169 (-381)))))) (-15 -2335 ($ (-1175) (-1264 (-317 (-566))))) (-15 -2335 ($ (-1175) (-1264 (-317 (-381))))) (-15 -2335 ($ (-1175) (-1264 (-317 (-169 (-381)))))) (-15 -2335 ($ (-1175) (-644 (-952 (-566))) (-317 (-566)))) (-15 -2335 ($ (-1175) (-644 (-952 (-566))) (-317 (-381)))) (-15 -2335 ($ (-1175) (-644 (-952 (-566))) (-317 (-169 (-381))))) (-15 -2346 ($ (-644 $))) (-15 -2057 ($)) (-15 -4027 ($)) (-15 -2292 ($ (-644 (-862)))) (-15 -1895 ($ (-1175) (-644 (-1175)))) (-15 -1547 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3217 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1175)) (|:| |arrayIndex| (-644 (-952 (-566)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1304 (-862)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1175)) (|:| |rand| (-862)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1174)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2788 (-112)) (|:| -2153 (-2 (|:| |ints2Floats?| (-112)) (|:| -1304 (-862)))))) (|:| |blockBranch| (-644 $)) (|:| |commentBranch| (-644 (-1157))) (|:| |callBranch| (-1157)) (|:| |forBranch| (-2 (|:| -1680 (-1091 (-952 (-566)))) (|:| |span| (-952 (-566))) (|:| -2610 $))) (|:| |labelBranch| (-1119)) (|:| |loopBranch| (-2 (|:| |switch| (-1174)) (|:| -2610 $))) (|:| |commonBranch| (-2 (|:| -2598 (-1175)) (|:| |contents| (-644 (-1175))))) (|:| |printBranch| (-644 (-862)))) $)) (-15 -2460 ((-1269) $)) (-15 -3337 ((-1103) $)) (-15 -3488 ((-1119) (-1119)))))) (T -331)) +((-2155 (*1 *1 *2 *1) (-12 (-5 *2 (-1091 (-952 (-566)))) (-5 *1 (-331)))) (-2155 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1091 (-952 (-566)))) (-5 *3 (-952 (-566))) (-5 *1 (-331)))) (-4123 (*1 *1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-331)))) (-3407 (*1 *1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-331)))) (-1341 (*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-331)))) (-3937 (*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-331)))) (-1612 (*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-331)))) (-1612 (*1 *1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-331)))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-331)))) (-3060 (*1 *1) (-5 *1 (-331))) (-3060 (*1 *1 *2) (-12 (-5 *2 (-317 (-699))) (-5 *1 (-331)))) (-3060 (*1 *1 *2) (-12 (-5 *2 (-317 (-701))) (-5 *1 (-331)))) (-3060 (*1 *1 *2) (-12 (-5 *2 (-317 (-694))) (-5 *1 (-331)))) (-3060 (*1 *1 *2) (-12 (-5 *2 (-317 (-381))) (-5 *1 (-331)))) (-3060 (*1 *1 *2) (-12 (-5 *2 (-317 (-566))) (-5 *1 (-331)))) (-3060 (*1 *1 *2) (-12 (-5 *2 (-317 (-169 (-381)))) (-5 *1 (-331)))) (-3153 (*1 *1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-331)))) (-3153 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-331)))) (-2335 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1157)) (-5 *1 (-331)))) (-2335 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-317 (-701))) (-5 *1 (-331)))) (-2335 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-317 (-699))) (-5 *1 (-331)))) (-2335 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-317 (-694))) (-5 *1 (-331)))) (-2335 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-701))) (-5 *1 (-331)))) (-2335 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-699))) (-5 *1 (-331)))) (-2335 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-694))) (-5 *1 (-331)))) (-2335 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1264 (-701))) (-5 *1 (-331)))) (-2335 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1264 (-699))) (-5 *1 (-331)))) (-2335 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1264 (-694))) (-5 *1 (-331)))) (-2335 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-317 (-701)))) (-5 *1 (-331)))) (-2335 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-317 (-699)))) (-5 *1 (-331)))) (-2335 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-317 (-694)))) (-5 *1 (-331)))) (-2335 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1264 (-317 (-701)))) (-5 *1 (-331)))) (-2335 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1264 (-317 (-699)))) (-5 *1 (-331)))) (-2335 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1264 (-317 (-694)))) (-5 *1 (-331)))) (-2335 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1175)) (-5 *3 (-644 (-952 (-566)))) (-5 *4 (-317 (-701))) (-5 *1 (-331)))) (-2335 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1175)) (-5 *3 (-644 (-952 (-566)))) (-5 *4 (-317 (-699))) (-5 *1 (-331)))) (-2335 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1175)) (-5 *3 (-644 (-952 (-566)))) (-5 *4 (-317 (-694))) (-5 *1 (-331)))) (-2335 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-317 (-566))) (-5 *1 (-331)))) (-2335 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-317 (-381))) (-5 *1 (-331)))) (-2335 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-317 (-169 (-381)))) (-5 *1 (-331)))) (-2335 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-317 (-566)))) (-5 *1 (-331)))) (-2335 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-317 (-381)))) (-5 *1 (-331)))) (-2335 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-317 (-169 (-381))))) (-5 *1 (-331)))) (-2335 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1264 (-317 (-566)))) (-5 *1 (-331)))) (-2335 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1264 (-317 (-381)))) (-5 *1 (-331)))) (-2335 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1264 (-317 (-169 (-381))))) (-5 *1 (-331)))) (-2335 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1175)) (-5 *3 (-644 (-952 (-566)))) (-5 *4 (-317 (-566))) (-5 *1 (-331)))) (-2335 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1175)) (-5 *3 (-644 (-952 (-566)))) (-5 *4 (-317 (-381))) (-5 *1 (-331)))) (-2335 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1175)) (-5 *3 (-644 (-952 (-566)))) (-5 *4 (-317 (-169 (-381)))) (-5 *1 (-331)))) (-2346 (*1 *1 *2) (-12 (-5 *2 (-644 (-331))) (-5 *1 (-331)))) (-2057 (*1 *1) (-5 *1 (-331))) (-4027 (*1 *1) (-5 *1 (-331))) (-2292 (*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-331)))) (-1895 (*1 *1 *2 *3) (-12 (-5 *3 (-644 (-1175))) (-5 *2 (-1175)) (-5 *1 (-331)))) (-1547 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-331)))) (-3217 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1175)) (|:| |arrayIndex| (-644 (-952 (-566)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1304 (-862)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1175)) (|:| |rand| (-862)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1174)) (|:| |thenClause| (-331)) (|:| |elseClause| (-331)))) (|:| |returnBranch| (-2 (|:| -2788 (-112)) (|:| -2153 (-2 (|:| |ints2Floats?| (-112)) (|:| -1304 (-862)))))) (|:| |blockBranch| (-644 (-331))) (|:| |commentBranch| (-644 (-1157))) (|:| |callBranch| (-1157)) (|:| |forBranch| (-2 (|:| -1680 (-1091 (-952 (-566)))) (|:| |span| (-952 (-566))) (|:| -2610 (-331)))) (|:| |labelBranch| (-1119)) (|:| |loopBranch| (-2 (|:| |switch| (-1174)) (|:| -2610 (-331)))) (|:| |commonBranch| (-2 (|:| -2598 (-1175)) (|:| |contents| (-644 (-1175))))) (|:| |printBranch| (-644 (-862))))) (-5 *1 (-331)))) (-2460 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-331)))) (-3337 (*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-331)))) (-3488 (*1 *2 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-331))))) +(-13 (-1099) (-10 -8 (-15 -2155 ($ (-1091 (-952 (-566))) $)) (-15 -2155 ($ (-1091 (-952 (-566))) (-952 (-566)) $)) (-15 -4123 ($ (-1174) $)) (-15 -3407 ($ (-1174) $)) (-15 -1341 ($ (-1119))) (-15 -3937 ($ (-1119))) (-15 -1612 ($ (-1157))) (-15 -1612 ($ (-644 (-1157)))) (-15 -3491 ($ (-1157))) (-15 -3060 ($)) (-15 -3060 ($ (-317 (-699)))) (-15 -3060 ($ (-317 (-701)))) (-15 -3060 ($ (-317 (-694)))) (-15 -3060 ($ (-317 (-381)))) (-15 -3060 ($ (-317 (-566)))) (-15 -3060 ($ (-317 (-169 (-381))))) (-15 -3153 ($ (-1174) $)) (-15 -3153 ($ (-1174) $ $)) (-15 -2335 ($ (-1175) (-1157))) (-15 -2335 ($ (-1175) (-317 (-701)))) (-15 -2335 ($ (-1175) (-317 (-699)))) (-15 -2335 ($ (-1175) (-317 (-694)))) (-15 -2335 ($ (-1175) (-689 (-701)))) (-15 -2335 ($ (-1175) (-689 (-699)))) (-15 -2335 ($ (-1175) (-689 (-694)))) (-15 -2335 ($ (-1175) (-1264 (-701)))) (-15 -2335 ($ (-1175) (-1264 (-699)))) (-15 -2335 ($ (-1175) (-1264 (-694)))) (-15 -2335 ($ (-1175) (-689 (-317 (-701))))) (-15 -2335 ($ (-1175) (-689 (-317 (-699))))) (-15 -2335 ($ (-1175) (-689 (-317 (-694))))) (-15 -2335 ($ (-1175) (-1264 (-317 (-701))))) (-15 -2335 ($ (-1175) (-1264 (-317 (-699))))) (-15 -2335 ($ (-1175) (-1264 (-317 (-694))))) (-15 -2335 ($ (-1175) (-644 (-952 (-566))) (-317 (-701)))) (-15 -2335 ($ (-1175) (-644 (-952 (-566))) (-317 (-699)))) (-15 -2335 ($ (-1175) (-644 (-952 (-566))) (-317 (-694)))) (-15 -2335 ($ (-1175) (-317 (-566)))) (-15 -2335 ($ (-1175) (-317 (-381)))) (-15 -2335 ($ (-1175) (-317 (-169 (-381))))) (-15 -2335 ($ (-1175) (-689 (-317 (-566))))) (-15 -2335 ($ (-1175) (-689 (-317 (-381))))) (-15 -2335 ($ (-1175) (-689 (-317 (-169 (-381)))))) (-15 -2335 ($ (-1175) (-1264 (-317 (-566))))) (-15 -2335 ($ (-1175) (-1264 (-317 (-381))))) (-15 -2335 ($ (-1175) (-1264 (-317 (-169 (-381)))))) (-15 -2335 ($ (-1175) (-644 (-952 (-566))) (-317 (-566)))) (-15 -2335 ($ (-1175) (-644 (-952 (-566))) (-317 (-381)))) (-15 -2335 ($ (-1175) (-644 (-952 (-566))) (-317 (-169 (-381))))) (-15 -2346 ($ (-644 $))) (-15 -2057 ($)) (-15 -4027 ($)) (-15 -2292 ($ (-644 (-862)))) (-15 -1895 ($ (-1175) (-644 (-1175)))) (-15 -1547 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3217 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1175)) (|:| |arrayIndex| (-644 (-952 (-566)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1304 (-862)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1175)) (|:| |rand| (-862)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1174)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2788 (-112)) (|:| -2153 (-2 (|:| |ints2Floats?| (-112)) (|:| -1304 (-862)))))) (|:| |blockBranch| (-644 $)) (|:| |commentBranch| (-644 (-1157))) (|:| |callBranch| (-1157)) (|:| |forBranch| (-2 (|:| -1680 (-1091 (-952 (-566)))) (|:| |span| (-952 (-566))) (|:| -2610 $))) (|:| |labelBranch| (-1119)) (|:| |loopBranch| (-2 (|:| |switch| (-1174)) (|:| -2610 $))) (|:| |commonBranch| (-2 (|:| -2598 (-1175)) (|:| |contents| (-644 (-1175))))) (|:| |printBranch| (-644 (-862)))) $)) (-15 -2460 ((-1269) $)) (-15 -3337 ((-1103) $)) (-15 -3488 ((-1119) (-1119))))) +((-2986 (((-112) $ $) NIL)) (-2829 (((-112) $) 13)) (-3067 (($ |#1|) 10)) (-1920 (($ $ $) NIL)) (-3038 (($ $ $) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-3079 (($ |#1|) 12)) (-2479 (((-862) $) 19)) (-3900 (((-112) $ $) NIL)) (-3624 ((|#1| $) 14)) (-3019 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3004 (((-112) $ $) NIL)) (-2977 (((-112) $ $) 21))) +(((-332 |#1|) (-13 (-850) (-10 -8 (-15 -3067 ($ |#1|)) (-15 -3079 ($ |#1|)) (-15 -2829 ((-112) $)) (-15 -3624 (|#1| $)))) (-850)) (T -332)) +((-3067 (*1 *1 *2) (-12 (-5 *1 (-332 *2)) (-4 *2 (-850)))) (-3079 (*1 *1 *2) (-12 (-5 *1 (-332 *2)) (-4 *2 (-850)))) (-2829 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-332 *3)) (-4 *3 (-850)))) (-3624 (*1 *2 *1) (-12 (-5 *1 (-332 *2)) (-4 *2 (-850))))) +(-13 (-850) (-10 -8 (-15 -3067 ($ |#1|)) (-15 -3079 ($ |#1|)) (-15 -2829 ((-112) $)) (-15 -3624 (|#1| $)))) +((-1810 (((-331) (-1175) (-952 (-566))) 23)) (-3836 (((-331) (-1175) (-952 (-566))) 27)) (-2985 (((-331) (-1175) (-1091 (-952 (-566))) (-1091 (-952 (-566)))) 26) (((-331) (-1175) (-952 (-566)) (-952 (-566))) 24)) (-1855 (((-331) (-1175) (-952 (-566))) 31))) +(((-333) (-10 -7 (-15 -1810 ((-331) (-1175) (-952 (-566)))) (-15 -2985 ((-331) (-1175) (-952 (-566)) (-952 (-566)))) (-15 -2985 ((-331) (-1175) (-1091 (-952 (-566))) (-1091 (-952 (-566))))) (-15 -3836 ((-331) (-1175) (-952 (-566)))) (-15 -1855 ((-331) (-1175) (-952 (-566)))))) (T -333)) +((-1855 (*1 *2 *3 *4) (-12 (-5 *3 (-1175)) (-5 *4 (-952 (-566))) (-5 *2 (-331)) (-5 *1 (-333)))) (-3836 (*1 *2 *3 *4) (-12 (-5 *3 (-1175)) (-5 *4 (-952 (-566))) (-5 *2 (-331)) (-5 *1 (-333)))) (-2985 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1175)) (-5 *4 (-1091 (-952 (-566)))) (-5 *2 (-331)) (-5 *1 (-333)))) (-2985 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1175)) (-5 *4 (-952 (-566))) (-5 *2 (-331)) (-5 *1 (-333)))) (-1810 (*1 *2 *3 *4) (-12 (-5 *3 (-1175)) (-5 *4 (-952 (-566))) (-5 *2 (-331)) (-5 *1 (-333))))) +(-10 -7 (-15 -1810 ((-331) (-1175) (-952 (-566)))) (-15 -2985 ((-331) (-1175) (-952 (-566)) (-952 (-566)))) (-15 -2985 ((-331) (-1175) (-1091 (-952 (-566))) (-1091 (-952 (-566))))) (-15 -3836 ((-331) (-1175) (-952 (-566)))) (-15 -1855 ((-331) (-1175) (-952 (-566))))) +((-2986 (((-112) $ $) NIL)) (-2918 (((-508) $) 19)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-4276 (((-958 (-771)) $) 17)) (-3574 (((-250) $) 7)) (-2479 (((-862) $) 25)) (-4198 (((-958 (-183)) $) 15)) (-3900 (((-112) $ $) NIL)) (-1391 (((-644 (-873 (-1180) (-771))) $) 12)) (-2952 (((-112) $ $) 21))) +(((-334) (-13 (-1099) (-10 -8 (-15 -3574 ((-250) $)) (-15 -1391 ((-644 (-873 (-1180) (-771))) $)) (-15 -4276 ((-958 (-771)) $)) (-15 -4198 ((-958 (-183)) $)) (-15 -2918 ((-508) $))))) (T -334)) +((-3574 (*1 *2 *1) (-12 (-5 *2 (-250)) (-5 *1 (-334)))) (-1391 (*1 *2 *1) (-12 (-5 *2 (-644 (-873 (-1180) (-771)))) (-5 *1 (-334)))) (-4276 (*1 *2 *1) (-12 (-5 *2 (-958 (-771))) (-5 *1 (-334)))) (-4198 (*1 *2 *1) (-12 (-5 *2 (-958 (-183))) (-5 *1 (-334)))) (-2918 (*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-334))))) +(-13 (-1099) (-10 -8 (-15 -3574 ((-250) $)) (-15 -1391 ((-644 (-873 (-1180) (-771))) $)) (-15 -4276 ((-958 (-771)) $)) (-15 -4198 ((-958 (-183)) $)) (-15 -2918 ((-508) $)))) +((-3080 (((-338 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-338 |#1| |#2| |#3| |#4|)) 33))) +(((-335 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3080 ((-338 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-338 |#1| |#2| |#3| |#4|)))) (-365) (-1240 |#1|) (-1240 (-409 |#2|)) (-344 |#1| |#2| |#3|) (-365) (-1240 |#5|) (-1240 (-409 |#6|)) (-344 |#5| |#6| |#7|)) (T -335)) +((-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-338 *5 *6 *7 *8)) (-4 *5 (-365)) (-4 *6 (-1240 *5)) (-4 *7 (-1240 (-409 *6))) (-4 *8 (-344 *5 *6 *7)) (-4 *9 (-365)) (-4 *10 (-1240 *9)) (-4 *11 (-1240 (-409 *10))) (-5 *2 (-338 *9 *10 *11 *12)) (-5 *1 (-335 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-344 *9 *10 *11))))) +(-10 -7 (-15 -3080 ((-338 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-338 |#1| |#2| |#3| |#4|)))) +((-3158 (((-112) $) 14))) +(((-336 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3158 ((-112) |#1|))) (-337 |#2| |#3| |#4| |#5|) (-365) (-1240 |#2|) (-1240 (-409 |#3|)) (-344 |#2| |#3| |#4|)) (T -336)) +NIL +(-10 -8 (-15 -3158 ((-112) |#1|))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-3174 (((-3 $ "failed") $ $) 20)) (-1811 (($) 18 T CONST)) (-1838 (($ $) 29)) (-3158 (((-112) $) 28)) (-3151 (((-1157) $) 10)) (-3171 (((-415 |#2| (-409 |#2|) |#3| |#4|) $) 35)) (-4059 (((-1119) $) 11)) (-4086 (((-3 |#4| "failed") $) 27)) (-2125 (($ (-415 |#2| (-409 |#2|) |#3| |#4|)) 34) (($ |#4|) 33) (($ |#1| |#1|) 32) (($ |#1| |#1| (-566)) 31) (($ |#4| |#2| |#2| |#2| |#1|) 26)) (-3849 (((-2 (|:| -4229 (-415 |#2| (-409 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 30)) (-2479 (((-862) $) 12)) (-3900 (((-112) $ $) 9)) (-2446 (($) 19 T CONST)) (-2952 (((-112) $ $) 6)) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24))) +(((-337 |#1| |#2| |#3| |#4|) (-140) (-365) (-1240 |t#1|) (-1240 (-409 |t#2|)) (-344 |t#1| |t#2| |t#3|)) (T -337)) +((-3171 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-4 *6 (-344 *3 *4 *5)) (-5 *2 (-415 *4 (-409 *4) *5 *6)))) (-2125 (*1 *1 *2) (-12 (-5 *2 (-415 *4 (-409 *4) *5 *6)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-4 *6 (-344 *3 *4 *5)) (-4 *3 (-365)) (-4 *1 (-337 *3 *4 *5 *6)))) (-2125 (*1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-4 *1 (-337 *3 *4 *5 *2)) (-4 *2 (-344 *3 *4 *5)))) (-2125 (*1 *1 *2 *2) (-12 (-4 *2 (-365)) (-4 *3 (-1240 *2)) (-4 *4 (-1240 (-409 *3))) (-4 *1 (-337 *2 *3 *4 *5)) (-4 *5 (-344 *2 *3 *4)))) (-2125 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-566)) (-4 *2 (-365)) (-4 *4 (-1240 *2)) (-4 *5 (-1240 (-409 *4))) (-4 *1 (-337 *2 *4 *5 *6)) (-4 *6 (-344 *2 *4 *5)))) (-3849 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-4 *6 (-344 *3 *4 *5)) (-5 *2 (-2 (|:| -4229 (-415 *4 (-409 *4) *5 *6)) (|:| |principalPart| *6))))) (-1838 (*1 *1 *1) (-12 (-4 *1 (-337 *2 *3 *4 *5)) (-4 *2 (-365)) (-4 *3 (-1240 *2)) (-4 *4 (-1240 (-409 *3))) (-4 *5 (-344 *2 *3 *4)))) (-3158 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-4 *6 (-344 *3 *4 *5)) (-5 *2 (-112)))) (-4086 (*1 *2 *1) (|partial| -12 (-4 *1 (-337 *3 *4 *5 *2)) (-4 *3 (-365)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-4 *2 (-344 *3 *4 *5)))) (-2125 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-365)) (-4 *3 (-1240 *4)) (-4 *5 (-1240 (-409 *3))) (-4 *1 (-337 *4 *3 *5 *2)) (-4 *2 (-344 *4 *3 *5))))) +(-13 (-21) (-10 -8 (-15 -3171 ((-415 |t#2| (-409 |t#2|) |t#3| |t#4|) $)) (-15 -2125 ($ (-415 |t#2| (-409 |t#2|) |t#3| |t#4|))) (-15 -2125 ($ |t#4|)) (-15 -2125 ($ |t#1| |t#1|)) (-15 -2125 ($ |t#1| |t#1| (-566))) (-15 -3849 ((-2 (|:| -4229 (-415 |t#2| (-409 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -1838 ($ $)) (-15 -3158 ((-112) $)) (-15 -4086 ((-3 |t#4| "failed") $)) (-15 -2125 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-1099) . T)) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-1811 (($) NIL T CONST)) (-1838 (($ $) 33)) (-3158 (((-112) $) NIL)) (-3151 (((-1157) $) NIL)) (-2412 (((-1264 |#4|) $) 135)) (-3171 (((-415 |#2| (-409 |#2|) |#3| |#4|) $) 31)) (-4059 (((-1119) $) NIL)) (-4086 (((-3 |#4| "failed") $) 36)) (-1611 (((-1264 |#4|) $) 127)) (-2125 (($ (-415 |#2| (-409 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-566)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-3849 (((-2 (|:| -4229 (-415 |#2| (-409 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-2479 (((-862) $) 17)) (-3900 (((-112) $ $) NIL)) (-2446 (($) 14 T CONST)) (-2952 (((-112) $ $) 20)) (-3065 (($ $) 27) (($ $ $) NIL)) (-3052 (($ $ $) 25)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 23))) +(((-338 |#1| |#2| |#3| |#4|) (-13 (-337 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1611 ((-1264 |#4|) $)) (-15 -2412 ((-1264 |#4|) $)))) (-365) (-1240 |#1|) (-1240 (-409 |#2|)) (-344 |#1| |#2| |#3|)) (T -338)) +((-1611 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-1264 *6)) (-5 *1 (-338 *3 *4 *5 *6)) (-4 *6 (-344 *3 *4 *5)))) (-2412 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-1264 *6)) (-5 *1 (-338 *3 *4 *5 *6)) (-4 *6 (-344 *3 *4 *5))))) +(-13 (-337 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1611 ((-1264 |#4|) $)) (-15 -2412 ((-1264 |#4|) $)))) +((-3297 (($ $ (-1175) |#2|) NIL) (($ $ (-644 (-1175)) (-644 |#2|)) 20) (($ $ (-644 (-295 |#2|))) 15) (($ $ (-295 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-644 |#2|) (-644 |#2|)) NIL)) (-4376 (($ $ |#2|) 11))) +(((-339 |#1| |#2|) (-10 -8 (-15 -4376 (|#1| |#1| |#2|)) (-15 -3297 (|#1| |#1| (-644 |#2|) (-644 |#2|))) (-15 -3297 (|#1| |#1| |#2| |#2|)) (-15 -3297 (|#1| |#1| (-295 |#2|))) (-15 -3297 (|#1| |#1| (-644 (-295 |#2|)))) (-15 -3297 (|#1| |#1| (-644 (-1175)) (-644 |#2|))) (-15 -3297 (|#1| |#1| (-1175) |#2|))) (-340 |#2|) (-1099)) (T -339)) +NIL +(-10 -8 (-15 -4376 (|#1| |#1| |#2|)) (-15 -3297 (|#1| |#1| (-644 |#2|) (-644 |#2|))) (-15 -3297 (|#1| |#1| |#2| |#2|)) (-15 -3297 (|#1| |#1| (-295 |#2|))) (-15 -3297 (|#1| |#1| (-644 (-295 |#2|)))) (-15 -3297 (|#1| |#1| (-644 (-1175)) (-644 |#2|))) (-15 -3297 (|#1| |#1| (-1175) |#2|))) +((-3080 (($ (-1 |#1| |#1|) $) 6)) (-3297 (($ $ (-1175) |#1|) 17 (|has| |#1| (-516 (-1175) |#1|))) (($ $ (-644 (-1175)) (-644 |#1|)) 16 (|has| |#1| (-516 (-1175) |#1|))) (($ $ (-644 (-295 |#1|))) 15 (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) 14 (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-310 |#1|))) (($ $ (-644 |#1|) (-644 |#1|)) 12 (|has| |#1| (-310 |#1|)))) (-4376 (($ $ |#1|) 11 (|has| |#1| (-287 |#1| |#1|))))) +(((-340 |#1|) (-140) (-1099)) (T -340)) +((-3080 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-340 *3)) (-4 *3 (-1099))))) +(-13 (-10 -8 (-15 -3080 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-287 |t#1| |t#1|)) (-6 (-287 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-310 |t#1|)) (-6 (-310 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-516 (-1175) |t#1|)) (-6 (-516 (-1175) |t#1|)) |%noBranch|))) +(((-287 |#1| $) |has| |#1| (-287 |#1| |#1|)) ((-310 |#1|) |has| |#1| (-310 |#1|)) ((-516 (-1175) |#1|) |has| |#1| (-516 (-1175) |#1|)) ((-516 |#1| |#1|) |has| |#1| (-310 |#1|))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-2485 (((-644 (-1175)) $) NIL)) (-3005 (((-112)) 99) (((-112) (-112)) 100)) (-2192 (((-644 (-612 $)) $) NIL)) (-3219 (($ $) NIL)) (-3091 (($ $) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-3739 (($ $ (-295 $)) NIL) (($ $ (-644 (-295 $))) NIL) (($ $ (-644 (-612 $)) (-644 $)) NIL)) (-2338 (($ $) NIL)) (-3197 (($ $) NIL)) (-3067 (($ $) NIL)) (-1811 (($) NIL T CONST)) (-2980 (((-3 (-612 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-317 |#3|)) 79) (((-3 $ "failed") (-1175)) 105) (((-3 $ "failed") (-317 (-566))) 67 (|has| |#3| (-1038 (-566)))) (((-3 $ "failed") (-409 (-952 (-566)))) 73 (|has| |#3| (-1038 (-566)))) (((-3 $ "failed") (-952 (-566))) 68 (|has| |#3| (-1038 (-566)))) (((-3 $ "failed") (-317 (-381))) 97 (|has| |#3| (-1038 (-381)))) (((-3 $ "failed") (-409 (-952 (-381)))) 91 (|has| |#3| (-1038 (-381)))) (((-3 $ "failed") (-952 (-381))) 86 (|has| |#3| (-1038 (-381))))) (-1709 (((-612 $) $) NIL) ((|#3| $) NIL) (($ (-317 |#3|)) 80) (($ (-1175)) 106) (($ (-317 (-566))) 69 (|has| |#3| (-1038 (-566)))) (($ (-409 (-952 (-566)))) 74 (|has| |#3| (-1038 (-566)))) (($ (-952 (-566))) 70 (|has| |#3| (-1038 (-566)))) (($ (-317 (-381))) 98 (|has| |#3| (-1038 (-381)))) (($ (-409 (-952 (-381)))) 92 (|has| |#3| (-1038 (-381)))) (($ (-952 (-381))) 88 (|has| |#3| (-1038 (-381))))) (-3757 (((-3 $ "failed") $) NIL)) (-2964 (($) 10)) (-4218 (($ $) NIL) (($ (-644 $)) NIL)) (-3909 (((-644 (-114)) $) NIL)) (-4272 (((-114) (-114)) NIL)) (-2264 (((-112) $) NIL)) (-3400 (((-112) $) NIL (|has| $ (-1038 (-566))))) (-3223 (((-1171 $) (-612 $)) NIL (|has| $ (-1049)))) (-3080 (($ (-1 $ $) (-612 $)) NIL)) (-3314 (((-3 (-612 $) "failed") $) NIL)) (-2296 (($ $) 102)) (-3676 (($ $) NIL)) (-3151 (((-1157) $) NIL)) (-2272 (((-644 (-612 $)) $) NIL)) (-3018 (($ (-114) $) 101) (($ (-114) (-644 $)) NIL)) (-1896 (((-112) $ (-114)) NIL) (((-112) $ (-1175)) NIL)) (-3117 (((-771) $) NIL)) (-4059 (((-1119) $) NIL)) (-3897 (((-112) $ $) NIL) (((-112) $ (-1175)) NIL)) (-3571 (($ $) NIL)) (-2206 (((-112) $) NIL (|has| $ (-1038 (-566))))) (-3297 (($ $ (-612 $) $) NIL) (($ $ (-644 (-612 $)) (-644 $)) NIL) (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-644 (-1175)) (-644 (-1 $ $))) NIL) (($ $ (-644 (-1175)) (-644 (-1 $ (-644 $)))) NIL) (($ $ (-1175) (-1 $ (-644 $))) NIL) (($ $ (-1175) (-1 $ $)) NIL) (($ $ (-644 (-114)) (-644 (-1 $ $))) NIL) (($ $ (-644 (-114)) (-644 (-1 $ (-644 $)))) NIL) (($ $ (-114) (-1 $ (-644 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-4376 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-644 $)) NIL)) (-3683 (($ $) NIL) (($ $ $) NIL)) (-3526 (($ $ (-644 (-1175)) (-644 (-771))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175)) NIL)) (-2301 (($ $) NIL (|has| $ (-1049)))) (-3207 (($ $) NIL)) (-3079 (($ $) NIL)) (-2479 (((-862) $) NIL) (($ (-612 $)) NIL) (($ |#3|) NIL) (($ (-566)) NIL) (((-317 |#3|) $) 104)) (-1558 (((-771)) NIL T CONST)) (-3749 (($ $) NIL) (($ (-644 $)) NIL)) (-1540 (((-112) (-114)) NIL)) (-3900 (((-112) $ $) NIL)) (-3157 (($ $) NIL)) (-3135 (($ $) NIL)) (-3148 (($ $) NIL)) (-4298 (($ $) NIL)) (-2446 (($) 103 T CONST)) (-2459 (($) NIL T CONST)) (-2834 (($ $ (-644 (-1175)) (-644 (-771))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175)) NIL)) (-2952 (((-112) $ $) NIL)) (-3065 (($ $ $) NIL) (($ $) NIL)) (-3052 (($ $ $) NIL)) (** (($ $ (-771)) NIL) (($ $ (-921)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-566) $) NIL) (($ (-771) $) NIL) (($ (-921) $) NIL))) +(((-341 |#1| |#2| |#3|) (-13 (-303) (-38 |#3|) (-1038 |#3|) (-900 (-1175)) (-10 -8 (-15 -1709 ($ (-317 |#3|))) (-15 -2980 ((-3 $ "failed") (-317 |#3|))) (-15 -1709 ($ (-1175))) (-15 -2980 ((-3 $ "failed") (-1175))) (-15 -2479 ((-317 |#3|) $)) (IF (|has| |#3| (-1038 (-566))) (PROGN (-15 -1709 ($ (-317 (-566)))) (-15 -2980 ((-3 $ "failed") (-317 (-566)))) (-15 -1709 ($ (-409 (-952 (-566))))) (-15 -2980 ((-3 $ "failed") (-409 (-952 (-566))))) (-15 -1709 ($ (-952 (-566)))) (-15 -2980 ((-3 $ "failed") (-952 (-566))))) |%noBranch|) (IF (|has| |#3| (-1038 (-381))) (PROGN (-15 -1709 ($ (-317 (-381)))) (-15 -2980 ((-3 $ "failed") (-317 (-381)))) (-15 -1709 ($ (-409 (-952 (-381))))) (-15 -2980 ((-3 $ "failed") (-409 (-952 (-381))))) (-15 -1709 ($ (-952 (-381)))) (-15 -2980 ((-3 $ "failed") (-952 (-381))))) |%noBranch|) (-15 -4298 ($ $)) (-15 -2338 ($ $)) (-15 -3571 ($ $)) (-15 -3676 ($ $)) (-15 -2296 ($ $)) (-15 -3067 ($ $)) (-15 -3079 ($ $)) (-15 -3091 ($ $)) (-15 -3135 ($ $)) (-15 -3148 ($ $)) (-15 -3157 ($ $)) (-15 -3197 ($ $)) (-15 -3207 ($ $)) (-15 -3219 ($ $)) (-15 -2964 ($)) (-15 -2485 ((-644 (-1175)) $)) (-15 -3005 ((-112))) (-15 -3005 ((-112) (-112))))) (-644 (-1175)) (-644 (-1175)) (-389)) (T -341)) +((-1709 (*1 *1 *2) (-12 (-5 *2 (-317 *5)) (-4 *5 (-389)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))))) (-2980 (*1 *1 *2) (|partial| -12 (-5 *2 (-317 *5)) (-4 *5 (-389)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))))) (-1709 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-644 *2)) (-14 *4 (-644 *2)) (-4 *5 (-389)))) (-2980 (*1 *1 *2) (|partial| -12 (-5 *2 (-1175)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-644 *2)) (-14 *4 (-644 *2)) (-4 *5 (-389)))) (-2479 (*1 *2 *1) (-12 (-5 *2 (-317 *5)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) (-1709 (*1 *1 *2) (-12 (-5 *2 (-317 (-566))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1038 (-566))) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) (-2980 (*1 *1 *2) (|partial| -12 (-5 *2 (-317 (-566))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1038 (-566))) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) (-1709 (*1 *1 *2) (-12 (-5 *2 (-409 (-952 (-566)))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1038 (-566))) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) (-2980 (*1 *1 *2) (|partial| -12 (-5 *2 (-409 (-952 (-566)))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1038 (-566))) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) (-1709 (*1 *1 *2) (-12 (-5 *2 (-952 (-566))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1038 (-566))) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) (-2980 (*1 *1 *2) (|partial| -12 (-5 *2 (-952 (-566))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1038 (-566))) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) (-1709 (*1 *1 *2) (-12 (-5 *2 (-317 (-381))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1038 (-381))) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) (-2980 (*1 *1 *2) (|partial| -12 (-5 *2 (-317 (-381))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1038 (-381))) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) (-1709 (*1 *1 *2) (-12 (-5 *2 (-409 (-952 (-381)))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1038 (-381))) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) (-2980 (*1 *1 *2) (|partial| -12 (-5 *2 (-409 (-952 (-381)))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1038 (-381))) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) (-1709 (*1 *1 *2) (-12 (-5 *2 (-952 (-381))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1038 (-381))) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) (-2980 (*1 *1 *2) (|partial| -12 (-5 *2 (-952 (-381))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1038 (-381))) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) (-4298 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) (-2338 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) (-3571 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) (-3676 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) (-2296 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) (-3067 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) (-3079 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) (-3091 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) (-3135 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) (-3148 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) (-3157 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) (-3197 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) (-3207 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) (-3219 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) (-2964 (*1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) (-2485 (*1 *2 *1) (-12 (-5 *2 (-644 (-1175))) (-5 *1 (-341 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-389)))) (-3005 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) (-3005 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))) (-4 *5 (-389))))) +(-13 (-303) (-38 |#3|) (-1038 |#3|) (-900 (-1175)) (-10 -8 (-15 -1709 ($ (-317 |#3|))) (-15 -2980 ((-3 $ "failed") (-317 |#3|))) (-15 -1709 ($ (-1175))) (-15 -2980 ((-3 $ "failed") (-1175))) (-15 -2479 ((-317 |#3|) $)) (IF (|has| |#3| (-1038 (-566))) (PROGN (-15 -1709 ($ (-317 (-566)))) (-15 -2980 ((-3 $ "failed") (-317 (-566)))) (-15 -1709 ($ (-409 (-952 (-566))))) (-15 -2980 ((-3 $ "failed") (-409 (-952 (-566))))) (-15 -1709 ($ (-952 (-566)))) (-15 -2980 ((-3 $ "failed") (-952 (-566))))) |%noBranch|) (IF (|has| |#3| (-1038 (-381))) (PROGN (-15 -1709 ($ (-317 (-381)))) (-15 -2980 ((-3 $ "failed") (-317 (-381)))) (-15 -1709 ($ (-409 (-952 (-381))))) (-15 -2980 ((-3 $ "failed") (-409 (-952 (-381))))) (-15 -1709 ($ (-952 (-381)))) (-15 -2980 ((-3 $ "failed") (-952 (-381))))) |%noBranch|) (-15 -4298 ($ $)) (-15 -2338 ($ $)) (-15 -3571 ($ $)) (-15 -3676 ($ $)) (-15 -2296 ($ $)) (-15 -3067 ($ $)) (-15 -3079 ($ $)) (-15 -3091 ($ $)) (-15 -3135 ($ $)) (-15 -3148 ($ $)) (-15 -3157 ($ $)) (-15 -3197 ($ $)) (-15 -3207 ($ $)) (-15 -3219 ($ $)) (-15 -2964 ($)) (-15 -2485 ((-644 (-1175)) $)) (-15 -3005 ((-112))) (-15 -3005 ((-112) (-112))))) +((-3080 ((|#8| (-1 |#5| |#1|) |#4|) 19))) +(((-342 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3080 (|#8| (-1 |#5| |#1|) |#4|))) (-1218) (-1240 |#1|) (-1240 (-409 |#2|)) (-344 |#1| |#2| |#3|) (-1218) (-1240 |#5|) (-1240 (-409 |#6|)) (-344 |#5| |#6| |#7|)) (T -342)) +((-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1218)) (-4 *8 (-1218)) (-4 *6 (-1240 *5)) (-4 *7 (-1240 (-409 *6))) (-4 *9 (-1240 *8)) (-4 *2 (-344 *8 *9 *10)) (-5 *1 (-342 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-344 *5 *6 *7)) (-4 *10 (-1240 (-409 *9)))))) +(-10 -7 (-15 -3080 (|#8| (-1 |#5| |#1|) |#4|))) +((-4072 (((-2 (|:| |num| (-1264 |#3|)) (|:| |den| |#3|)) $) 40)) (-2422 (($ (-1264 (-409 |#3|)) (-1264 $)) NIL) (($ (-1264 (-409 |#3|))) NIL) (($ (-1264 |#3|) |#3|) 177)) (-2225 (((-1264 $) (-1264 $)) 161)) (-2502 (((-644 (-644 |#2|))) 130)) (-2317 (((-112) |#2| |#2|) 77)) (-3530 (($ $) 152)) (-4053 (((-771)) 33)) (-3154 (((-1264 $) (-1264 $)) 222)) (-2904 (((-644 (-952 |#2|)) (-1175)) 119)) (-2747 (((-112) $) 174)) (-3796 (((-112) $) 27) (((-112) $ |#2|) 31) (((-112) $ |#3|) 226)) (-1824 (((-3 |#3| "failed")) 53)) (-3436 (((-771)) 188)) (-4376 ((|#2| $ |#2| |#2|) 144)) (-3535 (((-3 |#3| "failed")) 72)) (-3526 (($ $ (-1 (-409 |#3|) (-409 |#3|)) (-771)) NIL) (($ $ (-1 (-409 |#3|) (-409 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 230) (($ $ (-644 (-1175)) (-644 (-771))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175)) NIL) (($ $ (-771)) NIL) (($ $) NIL)) (-3404 (((-1264 $) (-1264 $)) 167)) (-1756 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 69)) (-4304 (((-112)) 35))) +(((-343 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3526 (|#1| |#1|)) (-15 -3526 (|#1| |#1| (-771))) (-15 -3526 (|#1| |#1| (-1175))) (-15 -3526 (|#1| |#1| (-644 (-1175)))) (-15 -3526 (|#1| |#1| (-1175) (-771))) (-15 -3526 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -2502 ((-644 (-644 |#2|)))) (-15 -2904 ((-644 (-952 |#2|)) (-1175))) (-15 -1756 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1824 ((-3 |#3| "failed"))) (-15 -3535 ((-3 |#3| "failed"))) (-15 -4376 (|#2| |#1| |#2| |#2|)) (-15 -3530 (|#1| |#1|)) (-15 -3526 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3796 ((-112) |#1| |#3|)) (-15 -3796 ((-112) |#1| |#2|)) (-15 -2422 (|#1| (-1264 |#3|) |#3|)) (-15 -4072 ((-2 (|:| |num| (-1264 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2225 ((-1264 |#1|) (-1264 |#1|))) (-15 -3154 ((-1264 |#1|) (-1264 |#1|))) (-15 -3404 ((-1264 |#1|) (-1264 |#1|))) (-15 -3796 ((-112) |#1|)) (-15 -2747 ((-112) |#1|)) (-15 -2317 ((-112) |#2| |#2|)) (-15 -4304 ((-112))) (-15 -3436 ((-771))) (-15 -4053 ((-771))) (-15 -3526 (|#1| |#1| (-1 (-409 |#3|) (-409 |#3|)))) (-15 -3526 (|#1| |#1| (-1 (-409 |#3|) (-409 |#3|)) (-771))) (-15 -2422 (|#1| (-1264 (-409 |#3|)))) (-15 -2422 (|#1| (-1264 (-409 |#3|)) (-1264 |#1|)))) (-344 |#2| |#3| |#4|) (-1218) (-1240 |#2|) (-1240 (-409 |#3|))) (T -343)) +((-4053 (*1 *2) (-12 (-4 *4 (-1218)) (-4 *5 (-1240 *4)) (-4 *6 (-1240 (-409 *5))) (-5 *2 (-771)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6)))) (-3436 (*1 *2) (-12 (-4 *4 (-1218)) (-4 *5 (-1240 *4)) (-4 *6 (-1240 (-409 *5))) (-5 *2 (-771)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6)))) (-4304 (*1 *2) (-12 (-4 *4 (-1218)) (-4 *5 (-1240 *4)) (-4 *6 (-1240 (-409 *5))) (-5 *2 (-112)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6)))) (-2317 (*1 *2 *3 *3) (-12 (-4 *3 (-1218)) (-4 *5 (-1240 *3)) (-4 *6 (-1240 (-409 *5))) (-5 *2 (-112)) (-5 *1 (-343 *4 *3 *5 *6)) (-4 *4 (-344 *3 *5 *6)))) (-3535 (*1 *2) (|partial| -12 (-4 *4 (-1218)) (-4 *5 (-1240 (-409 *2))) (-4 *2 (-1240 *4)) (-5 *1 (-343 *3 *4 *2 *5)) (-4 *3 (-344 *4 *2 *5)))) (-1824 (*1 *2) (|partial| -12 (-4 *4 (-1218)) (-4 *5 (-1240 (-409 *2))) (-4 *2 (-1240 *4)) (-5 *1 (-343 *3 *4 *2 *5)) (-4 *3 (-344 *4 *2 *5)))) (-2904 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-4 *5 (-1218)) (-4 *6 (-1240 *5)) (-4 *7 (-1240 (-409 *6))) (-5 *2 (-644 (-952 *5))) (-5 *1 (-343 *4 *5 *6 *7)) (-4 *4 (-344 *5 *6 *7)))) (-2502 (*1 *2) (-12 (-4 *4 (-1218)) (-4 *5 (-1240 *4)) (-4 *6 (-1240 (-409 *5))) (-5 *2 (-644 (-644 *4))) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6))))) +(-10 -8 (-15 -3526 (|#1| |#1|)) (-15 -3526 (|#1| |#1| (-771))) (-15 -3526 (|#1| |#1| (-1175))) (-15 -3526 (|#1| |#1| (-644 (-1175)))) (-15 -3526 (|#1| |#1| (-1175) (-771))) (-15 -3526 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -2502 ((-644 (-644 |#2|)))) (-15 -2904 ((-644 (-952 |#2|)) (-1175))) (-15 -1756 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1824 ((-3 |#3| "failed"))) (-15 -3535 ((-3 |#3| "failed"))) (-15 -4376 (|#2| |#1| |#2| |#2|)) (-15 -3530 (|#1| |#1|)) (-15 -3526 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3796 ((-112) |#1| |#3|)) (-15 -3796 ((-112) |#1| |#2|)) (-15 -2422 (|#1| (-1264 |#3|) |#3|)) (-15 -4072 ((-2 (|:| |num| (-1264 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2225 ((-1264 |#1|) (-1264 |#1|))) (-15 -3154 ((-1264 |#1|) (-1264 |#1|))) (-15 -3404 ((-1264 |#1|) (-1264 |#1|))) (-15 -3796 ((-112) |#1|)) (-15 -2747 ((-112) |#1|)) (-15 -2317 ((-112) |#2| |#2|)) (-15 -4304 ((-112))) (-15 -3436 ((-771))) (-15 -4053 ((-771))) (-15 -3526 (|#1| |#1| (-1 (-409 |#3|) (-409 |#3|)))) (-15 -3526 (|#1| |#1| (-1 (-409 |#3|) (-409 |#3|)) (-771))) (-15 -2422 (|#1| (-1264 (-409 |#3|)))) (-15 -2422 (|#1| (-1264 (-409 |#3|)) (-1264 |#1|)))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-4072 (((-2 (|:| |num| (-1264 |#2|)) (|:| |den| |#2|)) $) 204)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) 102 (|has| (-409 |#2|) (-365)))) (-3087 (($ $) 103 (|has| (-409 |#2|) (-365)))) (-1716 (((-112) $) 105 (|has| (-409 |#2|) (-365)))) (-1321 (((-689 (-409 |#2|)) (-1264 $)) 53) (((-689 (-409 |#2|))) 68)) (-3837 (((-409 |#2|) $) 59)) (-2568 (((-1187 (-921) (-771)) (-566)) 155 (|has| (-409 |#2|) (-351)))) (-3174 (((-3 $ "failed") $ $) 20)) (-3980 (($ $) 122 (|has| (-409 |#2|) (-365)))) (-3348 (((-420 $) $) 123 (|has| (-409 |#2|) (-365)))) (-2761 (((-112) $ $) 113 (|has| (-409 |#2|) (-365)))) (-4049 (((-771)) 96 (|has| (-409 |#2|) (-370)))) (-3651 (((-112)) 221)) (-2892 (((-112) |#1|) 220) (((-112) |#2|) 219)) (-1811 (($) 18 T CONST)) (-2980 (((-3 (-566) "failed") $) 178 (|has| (-409 |#2|) (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) 176 (|has| (-409 |#2|) (-1038 (-409 (-566))))) (((-3 (-409 |#2|) "failed") $) 173)) (-1709 (((-566) $) 177 (|has| (-409 |#2|) (-1038 (-566)))) (((-409 (-566)) $) 175 (|has| (-409 |#2|) (-1038 (-409 (-566))))) (((-409 |#2|) $) 174)) (-2422 (($ (-1264 (-409 |#2|)) (-1264 $)) 55) (($ (-1264 (-409 |#2|))) 71) (($ (-1264 |#2|) |#2|) 203)) (-2713 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| (-409 |#2|) (-351)))) (-2925 (($ $ $) 117 (|has| (-409 |#2|) (-365)))) (-2087 (((-689 (-409 |#2|)) $ (-1264 $)) 60) (((-689 (-409 |#2|)) $) 66)) (-2275 (((-689 (-566)) (-689 $)) 172 (|has| (-409 |#2|) (-639 (-566)))) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) 171 (|has| (-409 |#2|) (-639 (-566)))) (((-2 (|:| -4196 (-689 (-409 |#2|))) (|:| |vec| (-1264 (-409 |#2|)))) (-689 $) (-1264 $)) 170) (((-689 (-409 |#2|)) (-689 $)) 169)) (-2225 (((-1264 $) (-1264 $)) 209)) (-1838 (($ |#3|) 166) (((-3 $ "failed") (-409 |#3|)) 163 (|has| (-409 |#2|) (-365)))) (-3757 (((-3 $ "failed") $) 37)) (-2502 (((-644 (-644 |#1|))) 190 (|has| |#1| (-370)))) (-2317 (((-112) |#1| |#1|) 225)) (-2299 (((-921)) 61)) (-1415 (($) 99 (|has| (-409 |#2|) (-370)))) (-3043 (((-112)) 218)) (-3343 (((-112) |#1|) 217) (((-112) |#2|) 216)) (-2937 (($ $ $) 116 (|has| (-409 |#2|) (-365)))) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) 111 (|has| (-409 |#2|) (-365)))) (-3530 (($ $) 196)) (-2409 (($) 157 (|has| (-409 |#2|) (-351)))) (-1450 (((-112) $) 158 (|has| (-409 |#2|) (-351)))) (-4202 (($ $ (-771)) 149 (|has| (-409 |#2|) (-351))) (($ $) 148 (|has| (-409 |#2|) (-351)))) (-4188 (((-112) $) 124 (|has| (-409 |#2|) (-365)))) (-1802 (((-921) $) 160 (|has| (-409 |#2|) (-351))) (((-833 (-921)) $) 146 (|has| (-409 |#2|) (-351)))) (-2264 (((-112) $) 35)) (-4053 (((-771)) 228)) (-3154 (((-1264 $) (-1264 $)) 210)) (-1398 (((-409 |#2|) $) 58)) (-2904 (((-644 (-952 |#1|)) (-1175)) 191 (|has| |#1| (-365)))) (-4278 (((-3 $ "failed") $) 150 (|has| (-409 |#2|) (-351)))) (-2495 (((-3 (-644 $) "failed") (-644 $) $) 120 (|has| (-409 |#2|) (-365)))) (-1869 ((|#3| $) 51 (|has| (-409 |#2|) (-365)))) (-4051 (((-921) $) 98 (|has| (-409 |#2|) (-370)))) (-1829 ((|#3| $) 164)) (-2120 (($ (-644 $)) 109 (|has| (-409 |#2|) (-365))) (($ $ $) 108 (|has| (-409 |#2|) (-365)))) (-3151 (((-1157) $) 10)) (-3274 (((-689 (-409 |#2|))) 205)) (-3907 (((-689 (-409 |#2|))) 207)) (-2577 (($ $) 125 (|has| (-409 |#2|) (-365)))) (-1677 (($ (-1264 |#2|) |#2|) 201)) (-2236 (((-689 (-409 |#2|))) 206)) (-3033 (((-689 (-409 |#2|))) 208)) (-3825 (((-2 (|:| |num| (-689 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 200)) (-2942 (((-2 (|:| |num| (-1264 |#2|)) (|:| |den| |#2|)) $) 202)) (-1985 (((-1264 $)) 214)) (-2500 (((-1264 $)) 215)) (-2747 (((-112) $) 213)) (-3796 (((-112) $) 212) (((-112) $ |#1|) 199) (((-112) $ |#2|) 198)) (-3968 (($) 151 (|has| (-409 |#2|) (-351)) CONST)) (-2104 (($ (-921)) 97 (|has| (-409 |#2|) (-370)))) (-1824 (((-3 |#2| "failed")) 193)) (-4059 (((-1119) $) 11)) (-3436 (((-771)) 227)) (-4086 (($) 168)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) 110 (|has| (-409 |#2|) (-365)))) (-2162 (($ (-644 $)) 107 (|has| (-409 |#2|) (-365))) (($ $ $) 106 (|has| (-409 |#2|) (-365)))) (-2816 (((-644 (-2 (|:| -2325 (-566)) (|:| -3631 (-566))))) 154 (|has| (-409 |#2|) (-351)))) (-2325 (((-420 $) $) 121 (|has| (-409 |#2|) (-365)))) (-2585 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119 (|has| (-409 |#2|) (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) 118 (|has| (-409 |#2|) (-365)))) (-2976 (((-3 $ "failed") $ $) 101 (|has| (-409 |#2|) (-365)))) (-2840 (((-3 (-644 $) "failed") (-644 $) $) 112 (|has| (-409 |#2|) (-365)))) (-1383 (((-771) $) 114 (|has| (-409 |#2|) (-365)))) (-4376 ((|#1| $ |#1| |#1|) 195)) (-3535 (((-3 |#2| "failed")) 194)) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) 115 (|has| (-409 |#2|) (-365)))) (-3553 (((-409 |#2|) (-1264 $)) 54) (((-409 |#2|)) 67)) (-4107 (((-771) $) 159 (|has| (-409 |#2|) (-351))) (((-3 (-771) "failed") $ $) 147 (|has| (-409 |#2|) (-351)))) (-3526 (($ $ (-1 (-409 |#2|) (-409 |#2|)) (-771)) 131 (|has| (-409 |#2|) (-365))) (($ $ (-1 (-409 |#2|) (-409 |#2|))) 130 (|has| (-409 |#2|) (-365))) (($ $ (-1 |#2| |#2|)) 197) (($ $ (-644 (-1175)) (-644 (-771))) 138 (-2809 (-2402 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175)))) (-2402 (|has| (-409 |#2|) (-900 (-1175))) (|has| (-409 |#2|) (-365))))) (($ $ (-1175) (-771)) 139 (-2809 (-2402 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175)))) (-2402 (|has| (-409 |#2|) (-900 (-1175))) (|has| (-409 |#2|) (-365))))) (($ $ (-644 (-1175))) 140 (-2809 (-2402 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175)))) (-2402 (|has| (-409 |#2|) (-900 (-1175))) (|has| (-409 |#2|) (-365))))) (($ $ (-1175)) 141 (-2809 (-2402 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175)))) (-2402 (|has| (-409 |#2|) (-900 (-1175))) (|has| (-409 |#2|) (-365))))) (($ $ (-771)) 143 (-2809 (-2402 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-233))) (-2402 (|has| (-409 |#2|) (-233)) (|has| (-409 |#2|) (-365))) (|has| (-409 |#2|) (-351)))) (($ $) 145 (-2809 (-2402 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-233))) (-2402 (|has| (-409 |#2|) (-233)) (|has| (-409 |#2|) (-365))) (|has| (-409 |#2|) (-351))))) (-3098 (((-689 (-409 |#2|)) (-1264 $) (-1 (-409 |#2|) (-409 |#2|))) 162 (|has| (-409 |#2|) (-365)))) (-2301 ((|#3|) 167)) (-3648 (($) 156 (|has| (-409 |#2|) (-351)))) (-3747 (((-1264 (-409 |#2|)) $ (-1264 $)) 57) (((-689 (-409 |#2|)) (-1264 $) (-1264 $)) 56) (((-1264 (-409 |#2|)) $) 73) (((-689 (-409 |#2|)) (-1264 $)) 72)) (-3136 (((-1264 (-409 |#2|)) $) 70) (($ (-1264 (-409 |#2|))) 69) ((|#3| $) 179) (($ |#3|) 165)) (-3233 (((-3 (-1264 $) "failed") (-689 $)) 153 (|has| (-409 |#2|) (-351)))) (-3404 (((-1264 $) (-1264 $)) 211)) (-2479 (((-862) $) 12) (($ (-566)) 33) (($ (-409 |#2|)) 44) (($ (-409 (-566))) 95 (-2809 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-1038 (-409 (-566)))))) (($ $) 100 (|has| (-409 |#2|) (-365)))) (-2645 (($ $) 152 (|has| (-409 |#2|) (-351))) (((-3 $ "failed") $) 50 (|has| (-409 |#2|) (-145)))) (-3728 ((|#3| $) 52)) (-1558 (((-771)) 32 T CONST)) (-2998 (((-112)) 224)) (-2995 (((-112) |#1|) 223) (((-112) |#2|) 222)) (-3900 (((-112) $ $) 9)) (-1419 (((-1264 $)) 74)) (-1333 (((-112) $ $) 104 (|has| (-409 |#2|) (-365)))) (-1756 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 192)) (-4304 (((-112)) 226)) (-2446 (($) 19 T CONST)) (-2459 (($) 34 T CONST)) (-2834 (($ $ (-1 (-409 |#2|) (-409 |#2|)) (-771)) 133 (|has| (-409 |#2|) (-365))) (($ $ (-1 (-409 |#2|) (-409 |#2|))) 132 (|has| (-409 |#2|) (-365))) (($ $ (-644 (-1175)) (-644 (-771))) 134 (-2809 (-2402 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175)))) (-2402 (|has| (-409 |#2|) (-900 (-1175))) (|has| (-409 |#2|) (-365))))) (($ $ (-1175) (-771)) 135 (-2809 (-2402 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175)))) (-2402 (|has| (-409 |#2|) (-900 (-1175))) (|has| (-409 |#2|) (-365))))) (($ $ (-644 (-1175))) 136 (-2809 (-2402 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175)))) (-2402 (|has| (-409 |#2|) (-900 (-1175))) (|has| (-409 |#2|) (-365))))) (($ $ (-1175)) 137 (-2809 (-2402 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175)))) (-2402 (|has| (-409 |#2|) (-900 (-1175))) (|has| (-409 |#2|) (-365))))) (($ $ (-771)) 142 (-2809 (-2402 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-233))) (-2402 (|has| (-409 |#2|) (-233)) (|has| (-409 |#2|) (-365))) (|has| (-409 |#2|) (-351)))) (($ $) 144 (-2809 (-2402 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-233))) (-2402 (|has| (-409 |#2|) (-233)) (|has| (-409 |#2|) (-365))) (|has| (-409 |#2|) (-351))))) (-2952 (((-112) $ $) 6)) (-3077 (($ $ $) 129 (|has| (-409 |#2|) (-365)))) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 126 (|has| (-409 |#2|) (-365)))) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ (-409 |#2|)) 46) (($ (-409 |#2|) $) 45) (($ (-409 (-566)) $) 128 (|has| (-409 |#2|) (-365))) (($ $ (-409 (-566))) 127 (|has| (-409 |#2|) (-365))))) +(((-344 |#1| |#2| |#3|) (-140) (-1218) (-1240 |t#1|) (-1240 (-409 |t#2|))) (T -344)) +((-4053 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-771)))) (-3436 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-771)))) (-4304 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-112)))) (-2317 (*1 *2 *3 *3) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-112)))) (-2998 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-112)))) (-2995 (*1 *2 *3) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-112)))) (-2995 (*1 *2 *3) (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1218)) (-4 *3 (-1240 *4)) (-4 *5 (-1240 (-409 *3))) (-5 *2 (-112)))) (-3651 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-112)))) (-2892 (*1 *2 *3) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-112)))) (-2892 (*1 *2 *3) (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1218)) (-4 *3 (-1240 *4)) (-4 *5 (-1240 (-409 *3))) (-5 *2 (-112)))) (-3043 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-112)))) (-3343 (*1 *2 *3) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-112)))) (-3343 (*1 *2 *3) (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1218)) (-4 *3 (-1240 *4)) (-4 *5 (-1240 (-409 *3))) (-5 *2 (-112)))) (-2500 (*1 *2) (-12 (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-1264 *1)) (-4 *1 (-344 *3 *4 *5)))) (-1985 (*1 *2) (-12 (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-1264 *1)) (-4 *1 (-344 *3 *4 *5)))) (-2747 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-112)))) (-3796 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-112)))) (-3404 (*1 *2 *2) (-12 (-5 *2 (-1264 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))))) (-3154 (*1 *2 *2) (-12 (-5 *2 (-1264 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))))) (-2225 (*1 *2 *2) (-12 (-5 *2 (-1264 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))))) (-3033 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-689 (-409 *4))))) (-3907 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-689 (-409 *4))))) (-2236 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-689 (-409 *4))))) (-3274 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-689 (-409 *4))))) (-4072 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-2 (|:| |num| (-1264 *4)) (|:| |den| *4))))) (-2422 (*1 *1 *2 *3) (-12 (-5 *2 (-1264 *3)) (-4 *3 (-1240 *4)) (-4 *4 (-1218)) (-4 *1 (-344 *4 *3 *5)) (-4 *5 (-1240 (-409 *3))))) (-2942 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-2 (|:| |num| (-1264 *4)) (|:| |den| *4))))) (-1677 (*1 *1 *2 *3) (-12 (-5 *2 (-1264 *3)) (-4 *3 (-1240 *4)) (-4 *4 (-1218)) (-4 *1 (-344 *4 *3 *5)) (-4 *5 (-1240 (-409 *3))))) (-3825 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-344 *4 *5 *6)) (-4 *4 (-1218)) (-4 *5 (-1240 *4)) (-4 *6 (-1240 (-409 *5))) (-5 *2 (-2 (|:| |num| (-689 *5)) (|:| |den| *5))))) (-3796 (*1 *2 *1 *3) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-112)))) (-3796 (*1 *2 *1 *3) (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1218)) (-4 *3 (-1240 *4)) (-4 *5 (-1240 (-409 *3))) (-5 *2 (-112)))) (-3526 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))))) (-3530 (*1 *1 *1) (-12 (-4 *1 (-344 *2 *3 *4)) (-4 *2 (-1218)) (-4 *3 (-1240 *2)) (-4 *4 (-1240 (-409 *3))))) (-4376 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-344 *2 *3 *4)) (-4 *2 (-1218)) (-4 *3 (-1240 *2)) (-4 *4 (-1240 (-409 *3))))) (-3535 (*1 *2) (|partial| -12 (-4 *1 (-344 *3 *2 *4)) (-4 *3 (-1218)) (-4 *4 (-1240 (-409 *2))) (-4 *2 (-1240 *3)))) (-1824 (*1 *2) (|partial| -12 (-4 *1 (-344 *3 *2 *4)) (-4 *3 (-1218)) (-4 *4 (-1240 (-409 *2))) (-4 *2 (-1240 *3)))) (-1756 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1240 *4)) (-4 *4 (-1218)) (-4 *6 (-1240 (-409 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-344 *4 *5 *6)))) (-2904 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-4 *1 (-344 *4 *5 *6)) (-4 *4 (-1218)) (-4 *5 (-1240 *4)) (-4 *6 (-1240 (-409 *5))) (-4 *4 (-365)) (-5 *2 (-644 (-952 *4))))) (-2502 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-4 *3 (-370)) (-5 *2 (-644 (-644 *3)))))) +(-13 (-724 (-409 |t#2|) |t#3|) (-10 -8 (-15 -4053 ((-771))) (-15 -3436 ((-771))) (-15 -4304 ((-112))) (-15 -2317 ((-112) |t#1| |t#1|)) (-15 -2998 ((-112))) (-15 -2995 ((-112) |t#1|)) (-15 -2995 ((-112) |t#2|)) (-15 -3651 ((-112))) (-15 -2892 ((-112) |t#1|)) (-15 -2892 ((-112) |t#2|)) (-15 -3043 ((-112))) (-15 -3343 ((-112) |t#1|)) (-15 -3343 ((-112) |t#2|)) (-15 -2500 ((-1264 $))) (-15 -1985 ((-1264 $))) (-15 -2747 ((-112) $)) (-15 -3796 ((-112) $)) (-15 -3404 ((-1264 $) (-1264 $))) (-15 -3154 ((-1264 $) (-1264 $))) (-15 -2225 ((-1264 $) (-1264 $))) (-15 -3033 ((-689 (-409 |t#2|)))) (-15 -3907 ((-689 (-409 |t#2|)))) (-15 -2236 ((-689 (-409 |t#2|)))) (-15 -3274 ((-689 (-409 |t#2|)))) (-15 -4072 ((-2 (|:| |num| (-1264 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2422 ($ (-1264 |t#2|) |t#2|)) (-15 -2942 ((-2 (|:| |num| (-1264 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1677 ($ (-1264 |t#2|) |t#2|)) (-15 -3825 ((-2 (|:| |num| (-689 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -3796 ((-112) $ |t#1|)) (-15 -3796 ((-112) $ |t#2|)) (-15 -3526 ($ $ (-1 |t#2| |t#2|))) (-15 -3530 ($ $)) (-15 -4376 (|t#1| $ |t#1| |t#1|)) (-15 -3535 ((-3 |t#2| "failed"))) (-15 -1824 ((-3 |t#2| "failed"))) (-15 -1756 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-365)) (-15 -2904 ((-644 (-952 |t#1|)) (-1175))) |%noBranch|) (IF (|has| |t#1| (-370)) (-15 -2502 ((-644 (-644 |t#1|)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-409 (-566))) -2809 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-38 #1=(-409 |#2|)) . T) ((-38 $) -2809 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-102) . T) ((-111 #0# #0#) -2809 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2809 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-145))) ((-147) |has| (-409 |#2|) (-147)) ((-616 #0#) -2809 (|has| (-409 |#2|) (-1038 (-409 (-566)))) (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-616 #1#) . T) ((-616 (-566)) . T) ((-616 $) -2809 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-613 (-862)) . T) ((-172) . T) ((-614 |#3|) . T) ((-231 #1#) |has| (-409 |#2|) (-365)) ((-233) -2809 (|has| (-409 |#2|) (-351)) (-12 (|has| (-409 |#2|) (-233)) (|has| (-409 |#2|) (-365)))) ((-243) -2809 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-291) -2809 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-308) -2809 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-365) -2809 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-404) |has| (-409 |#2|) (-351)) ((-370) -2809 (|has| (-409 |#2|) (-370)) (|has| (-409 |#2|) (-351))) ((-351) |has| (-409 |#2|) (-351)) ((-372 #1# |#3|) . T) ((-411 #1# |#3|) . T) ((-379 #1#) . T) ((-413 #1#) . T) ((-454) -2809 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-558) -2809 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-646 #0#) -2809 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-646 #1#) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 #0#) -2809 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-648 #1#) . T) ((-648 $) . T) ((-640 #0#) -2809 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-640 #1#) . T) ((-640 $) -2809 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-639 #1#) . T) ((-639 (-566)) |has| (-409 |#2|) (-639 (-566))) ((-717 #0#) -2809 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-717 #1#) . T) ((-717 $) -2809 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-724 #1# |#3|) . T) ((-726) . T) ((-900 (-1175)) -12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175)))) ((-920) -2809 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-1038 (-409 (-566))) |has| (-409 |#2|) (-1038 (-409 (-566)))) ((-1038 #1#) . T) ((-1038 (-566)) |has| (-409 |#2|) (-1038 (-566))) ((-1051 #0#) -2809 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-1051 #1#) . T) ((-1051 $) . T) ((-1056 #0#) -2809 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-1056 #1#) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1150) |has| (-409 |#2|) (-351)) ((-1218) -2809 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365)))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-1716 (((-112) $) NIL)) (-3017 (((-112) $) NIL)) (-4141 (((-771)) NIL)) (-3837 (((-910 |#1|) $) NIL) (($ $ (-921)) NIL (|has| (-910 |#1|) (-370)))) (-2568 (((-1187 (-921) (-771)) (-566)) NIL (|has| (-910 |#1|) (-370)))) (-3174 (((-3 $ "failed") $ $) NIL)) (-3980 (($ $) NIL)) (-3348 (((-420 $) $) NIL)) (-2761 (((-112) $ $) NIL)) (-4049 (((-771)) NIL (|has| (-910 |#1|) (-370)))) (-1811 (($) NIL T CONST)) (-2980 (((-3 (-910 |#1|) "failed") $) NIL)) (-1709 (((-910 |#1|) $) NIL)) (-2422 (($ (-1264 (-910 |#1|))) NIL)) (-2713 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-910 |#1|) (-370)))) (-2925 (($ $ $) NIL)) (-3757 (((-3 $ "failed") $) NIL)) (-1415 (($) NIL (|has| (-910 |#1|) (-370)))) (-2937 (($ $ $) NIL)) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) NIL)) (-2409 (($) NIL (|has| (-910 |#1|) (-370)))) (-1450 (((-112) $) NIL (|has| (-910 |#1|) (-370)))) (-4202 (($ $ (-771)) NIL (-2809 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-370)))) (($ $) NIL (-2809 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-370))))) (-4188 (((-112) $) NIL)) (-1802 (((-921) $) NIL (|has| (-910 |#1|) (-370))) (((-833 (-921)) $) NIL (-2809 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-370))))) (-2264 (((-112) $) NIL)) (-3254 (($) NIL (|has| (-910 |#1|) (-370)))) (-2111 (((-112) $) NIL (|has| (-910 |#1|) (-370)))) (-1398 (((-910 |#1|) $) NIL) (($ $ (-921)) NIL (|has| (-910 |#1|) (-370)))) (-4278 (((-3 $ "failed") $) NIL (|has| (-910 |#1|) (-370)))) (-2495 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1869 (((-1171 (-910 |#1|)) $) NIL) (((-1171 $) $ (-921)) NIL (|has| (-910 |#1|) (-370)))) (-4051 (((-921) $) NIL (|has| (-910 |#1|) (-370)))) (-3119 (((-1171 (-910 |#1|)) $) NIL (|has| (-910 |#1|) (-370)))) (-1902 (((-1171 (-910 |#1|)) $) NIL (|has| (-910 |#1|) (-370))) (((-3 (-1171 (-910 |#1|)) "failed") $ $) NIL (|has| (-910 |#1|) (-370)))) (-1963 (($ $ (-1171 (-910 |#1|))) NIL (|has| (-910 |#1|) (-370)))) (-2120 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3151 (((-1157) $) NIL)) (-2577 (($ $) NIL)) (-3968 (($) NIL (|has| (-910 |#1|) (-370)) CONST)) (-2104 (($ (-921)) NIL (|has| (-910 |#1|) (-370)))) (-1965 (((-112) $) NIL)) (-4059 (((-1119) $) NIL)) (-3244 (((-958 (-1119))) NIL)) (-4086 (($) NIL (|has| (-910 |#1|) (-370)))) (-4004 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2162 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2816 (((-644 (-2 (|:| -2325 (-566)) (|:| -3631 (-566))))) NIL (|has| (-910 |#1|) (-370)))) (-2325 (((-420 $) $) NIL)) (-1903 (((-833 (-921))) NIL) (((-921)) NIL)) (-2585 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2976 (((-3 $ "failed") $ $) NIL)) (-2840 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1383 (((-771) $) NIL)) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL)) (-4107 (((-771) $) NIL (|has| (-910 |#1|) (-370))) (((-3 (-771) "failed") $ $) NIL (-2809 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-370))))) (-3944 (((-134)) NIL)) (-3526 (($ $) NIL (|has| (-910 |#1|) (-370))) (($ $ (-771)) NIL (|has| (-910 |#1|) (-370)))) (-1630 (((-833 (-921)) $) NIL) (((-921) $) NIL)) (-2301 (((-1171 (-910 |#1|))) NIL)) (-3648 (($) NIL (|has| (-910 |#1|) (-370)))) (-1743 (($) NIL (|has| (-910 |#1|) (-370)))) (-3747 (((-1264 (-910 |#1|)) $) NIL) (((-689 (-910 |#1|)) (-1264 $)) NIL)) (-3233 (((-3 (-1264 $) "failed") (-689 $)) NIL (|has| (-910 |#1|) (-370)))) (-2479 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL) (($ (-910 |#1|)) NIL)) (-2645 (($ $) NIL (|has| (-910 |#1|) (-370))) (((-3 $ "failed") $) NIL (-2809 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-370))))) (-1558 (((-771)) NIL T CONST)) (-3900 (((-112) $ $) NIL)) (-1419 (((-1264 $)) NIL) (((-1264 $) (-921)) NIL)) (-1333 (((-112) $ $) NIL)) (-3132 (((-112) $) NIL)) (-2446 (($) NIL T CONST)) (-2459 (($) NIL T CONST)) (-3536 (($ $) NIL (|has| (-910 |#1|) (-370))) (($ $ (-771)) NIL (|has| (-910 |#1|) (-370)))) (-2834 (($ $) NIL (|has| (-910 |#1|) (-370))) (($ $ (-771)) NIL (|has| (-910 |#1|) (-370)))) (-2952 (((-112) $ $) NIL)) (-3077 (($ $ $) NIL) (($ $ (-910 |#1|)) NIL)) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ $ (-910 |#1|)) NIL) (($ (-910 |#1|) $) NIL))) +(((-345 |#1| |#2|) (-13 (-330 (-910 |#1|)) (-10 -7 (-15 -3244 ((-958 (-1119)))))) (-921) (-921)) (T -345)) +((-3244 (*1 *2) (-12 (-5 *2 (-958 (-1119))) (-5 *1 (-345 *3 *4)) (-14 *3 (-921)) (-14 *4 (-921))))) +(-13 (-330 (-910 |#1|)) (-10 -7 (-15 -3244 ((-958 (-1119)))))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) 58)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-1716 (((-112) $) NIL)) (-3017 (((-112) $) NIL)) (-4141 (((-771)) NIL)) (-3837 ((|#1| $) NIL) (($ $ (-921)) NIL (|has| |#1| (-370)))) (-2568 (((-1187 (-921) (-771)) (-566)) 56 (|has| |#1| (-370)))) (-3174 (((-3 $ "failed") $ $) NIL)) (-3980 (($ $) NIL)) (-3348 (((-420 $) $) NIL)) (-2761 (((-112) $ $) NIL)) (-4049 (((-771)) NIL (|has| |#1| (-370)))) (-1811 (($) NIL T CONST)) (-2980 (((-3 |#1| "failed") $) 144)) (-1709 ((|#1| $) 115)) (-2422 (($ (-1264 |#1|)) 132)) (-2713 (((-3 "prime" "polynomial" "normal" "cyclic")) 123 (|has| |#1| (-370)))) (-2925 (($ $ $) NIL)) (-3757 (((-3 $ "failed") $) NIL)) (-1415 (($) 126 (|has| |#1| (-370)))) (-2937 (($ $ $) NIL)) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) NIL)) (-2409 (($) 162 (|has| |#1| (-370)))) (-1450 (((-112) $) 66 (|has| |#1| (-370)))) (-4202 (($ $ (-771)) NIL (-2809 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-2809 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4188 (((-112) $) NIL)) (-1802 (((-921) $) 60 (|has| |#1| (-370))) (((-833 (-921)) $) NIL (-2809 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2264 (((-112) $) 62)) (-3254 (($) 164 (|has| |#1| (-370)))) (-2111 (((-112) $) NIL (|has| |#1| (-370)))) (-1398 ((|#1| $) NIL) (($ $ (-921)) NIL (|has| |#1| (-370)))) (-4278 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-2495 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1869 (((-1171 |#1|) $) 119) (((-1171 $) $ (-921)) NIL (|has| |#1| (-370)))) (-4051 (((-921) $) 173 (|has| |#1| (-370)))) (-3119 (((-1171 |#1|) $) NIL (|has| |#1| (-370)))) (-1902 (((-1171 |#1|) $) NIL (|has| |#1| (-370))) (((-3 (-1171 |#1|) "failed") $ $) NIL (|has| |#1| (-370)))) (-1963 (($ $ (-1171 |#1|)) NIL (|has| |#1| (-370)))) (-2120 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3151 (((-1157) $) NIL)) (-2577 (($ $) 180)) (-3968 (($) NIL (|has| |#1| (-370)) CONST)) (-2104 (($ (-921)) 98 (|has| |#1| (-370)))) (-1965 (((-112) $) 149)) (-4059 (((-1119) $) NIL)) (-3244 (((-958 (-1119))) 57)) (-4086 (($) 160 (|has| |#1| (-370)))) (-4004 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2162 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2816 (((-644 (-2 (|:| -2325 (-566)) (|:| -3631 (-566))))) 121 (|has| |#1| (-370)))) (-2325 (((-420 $) $) NIL)) (-1903 (((-833 (-921))) 92) (((-921)) 93)) (-2585 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2976 (((-3 $ "failed") $ $) NIL)) (-2840 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1383 (((-771) $) NIL)) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL)) (-4107 (((-771) $) 163 (|has| |#1| (-370))) (((-3 (-771) "failed") $ $) 156 (-2809 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3944 (((-134)) NIL)) (-3526 (($ $) NIL (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-1630 (((-833 (-921)) $) NIL) (((-921) $) NIL)) (-2301 (((-1171 |#1|)) 124)) (-3648 (($) 161 (|has| |#1| (-370)))) (-1743 (($) 169 (|has| |#1| (-370)))) (-3747 (((-1264 |#1|) $) 77) (((-689 |#1|) (-1264 $)) NIL)) (-3233 (((-3 (-1264 $) "failed") (-689 $)) NIL (|has| |#1| (-370)))) (-2479 (((-862) $) 176) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL) (($ |#1|) 102)) (-2645 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-2809 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1558 (((-771)) 157 T CONST)) (-3900 (((-112) $ $) NIL)) (-1419 (((-1264 $)) 146) (((-1264 $) (-921)) 100)) (-1333 (((-112) $ $) NIL)) (-3132 (((-112) $) NIL)) (-2446 (($) 67 T CONST)) (-2459 (($) 105 T CONST)) (-3536 (($ $) 109 (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-2834 (($ $) NIL (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-2952 (((-112) $ $) 65)) (-3077 (($ $ $) 178) (($ $ |#1|) 179)) (-3065 (($ $) 159) (($ $ $) NIL)) (-3052 (($ $ $) 86)) (** (($ $ (-921)) 182) (($ $ (-771)) 183) (($ $ (-566)) 181)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 104) (($ $ $) 103) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 177))) +(((-346 |#1| |#2|) (-13 (-330 |#1|) (-10 -7 (-15 -3244 ((-958 (-1119)))))) (-351) (-1171 |#1|)) (T -346)) +((-3244 (*1 *2) (-12 (-5 *2 (-958 (-1119))) (-5 *1 (-346 *3 *4)) (-4 *3 (-351)) (-14 *4 (-1171 *3))))) +(-13 (-330 |#1|) (-10 -7 (-15 -3244 ((-958 (-1119)))))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-1716 (((-112) $) NIL)) (-3017 (((-112) $) NIL)) (-4141 (((-771)) NIL)) (-3837 ((|#1| $) NIL) (($ $ (-921)) NIL (|has| |#1| (-370)))) (-2568 (((-1187 (-921) (-771)) (-566)) NIL (|has| |#1| (-370)))) (-3174 (((-3 $ "failed") $ $) NIL)) (-3980 (($ $) NIL)) (-3348 (((-420 $) $) NIL)) (-2761 (((-112) $ $) NIL)) (-4049 (((-771)) NIL (|has| |#1| (-370)))) (-1811 (($) NIL T CONST)) (-2980 (((-3 |#1| "failed") $) NIL)) (-1709 ((|#1| $) NIL)) (-2422 (($ (-1264 |#1|)) NIL)) (-2713 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-370)))) (-2925 (($ $ $) NIL)) (-3757 (((-3 $ "failed") $) NIL)) (-1415 (($) NIL (|has| |#1| (-370)))) (-2937 (($ $ $) NIL)) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) NIL)) (-2409 (($) NIL (|has| |#1| (-370)))) (-1450 (((-112) $) NIL (|has| |#1| (-370)))) (-4202 (($ $ (-771)) NIL (-2809 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-2809 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4188 (((-112) $) NIL)) (-1802 (((-921) $) NIL (|has| |#1| (-370))) (((-833 (-921)) $) NIL (-2809 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2264 (((-112) $) NIL)) (-3254 (($) NIL (|has| |#1| (-370)))) (-2111 (((-112) $) NIL (|has| |#1| (-370)))) (-1398 ((|#1| $) NIL) (($ $ (-921)) NIL (|has| |#1| (-370)))) (-4278 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-2495 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1869 (((-1171 |#1|) $) NIL) (((-1171 $) $ (-921)) NIL (|has| |#1| (-370)))) (-4051 (((-921) $) NIL (|has| |#1| (-370)))) (-3119 (((-1171 |#1|) $) NIL (|has| |#1| (-370)))) (-1902 (((-1171 |#1|) $) NIL (|has| |#1| (-370))) (((-3 (-1171 |#1|) "failed") $ $) NIL (|has| |#1| (-370)))) (-1963 (($ $ (-1171 |#1|)) NIL (|has| |#1| (-370)))) (-2120 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3151 (((-1157) $) NIL)) (-2577 (($ $) NIL)) (-3968 (($) NIL (|has| |#1| (-370)) CONST)) (-2104 (($ (-921)) NIL (|has| |#1| (-370)))) (-1965 (((-112) $) NIL)) (-4059 (((-1119) $) NIL)) (-3244 (((-958 (-1119))) NIL)) (-4086 (($) NIL (|has| |#1| (-370)))) (-4004 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2162 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2816 (((-644 (-2 (|:| -2325 (-566)) (|:| -3631 (-566))))) NIL (|has| |#1| (-370)))) (-2325 (((-420 $) $) NIL)) (-1903 (((-833 (-921))) NIL) (((-921)) NIL)) (-2585 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2976 (((-3 $ "failed") $ $) NIL)) (-2840 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1383 (((-771) $) NIL)) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL)) (-4107 (((-771) $) NIL (|has| |#1| (-370))) (((-3 (-771) "failed") $ $) NIL (-2809 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3944 (((-134)) NIL)) (-3526 (($ $) NIL (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-1630 (((-833 (-921)) $) NIL) (((-921) $) NIL)) (-2301 (((-1171 |#1|)) NIL)) (-3648 (($) NIL (|has| |#1| (-370)))) (-1743 (($) NIL (|has| |#1| (-370)))) (-3747 (((-1264 |#1|) $) NIL) (((-689 |#1|) (-1264 $)) NIL)) (-3233 (((-3 (-1264 $) "failed") (-689 $)) NIL (|has| |#1| (-370)))) (-2479 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL) (($ |#1|) NIL)) (-2645 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-2809 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1558 (((-771)) NIL T CONST)) (-3900 (((-112) $ $) NIL)) (-1419 (((-1264 $)) NIL) (((-1264 $) (-921)) NIL)) (-1333 (((-112) $ $) NIL)) (-3132 (((-112) $) NIL)) (-2446 (($) NIL T CONST)) (-2459 (($) NIL T CONST)) (-3536 (($ $) NIL (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-2834 (($ $) NIL (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-2952 (((-112) $ $) NIL)) (-3077 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-347 |#1| |#2|) (-13 (-330 |#1|) (-10 -7 (-15 -3244 ((-958 (-1119)))))) (-351) (-921)) (T -347)) +((-3244 (*1 *2) (-12 (-5 *2 (-958 (-1119))) (-5 *1 (-347 *3 *4)) (-4 *3 (-351)) (-14 *4 (-921))))) +(-13 (-330 |#1|) (-10 -7 (-15 -3244 ((-958 (-1119)))))) +((-1335 (((-771) (-1264 (-644 (-2 (|:| -2153 |#1|) (|:| -2104 (-1119)))))) 61)) (-3474 (((-958 (-1119)) (-1171 |#1|)) 113)) (-3910 (((-1264 (-644 (-2 (|:| -2153 |#1|) (|:| -2104 (-1119))))) (-1171 |#1|)) 105)) (-2079 (((-689 |#1|) (-1264 (-644 (-2 (|:| -2153 |#1|) (|:| -2104 (-1119)))))) 115)) (-4362 (((-3 (-1264 (-644 (-2 (|:| -2153 |#1|) (|:| -2104 (-1119))))) "failed") (-921)) 13)) (-2267 (((-3 (-1171 |#1|) (-1264 (-644 (-2 (|:| -2153 |#1|) (|:| -2104 (-1119)))))) (-921)) 18))) +(((-348 |#1|) (-10 -7 (-15 -3474 ((-958 (-1119)) (-1171 |#1|))) (-15 -3910 ((-1264 (-644 (-2 (|:| -2153 |#1|) (|:| -2104 (-1119))))) (-1171 |#1|))) (-15 -2079 ((-689 |#1|) (-1264 (-644 (-2 (|:| -2153 |#1|) (|:| -2104 (-1119))))))) (-15 -1335 ((-771) (-1264 (-644 (-2 (|:| -2153 |#1|) (|:| -2104 (-1119))))))) (-15 -4362 ((-3 (-1264 (-644 (-2 (|:| -2153 |#1|) (|:| -2104 (-1119))))) "failed") (-921))) (-15 -2267 ((-3 (-1171 |#1|) (-1264 (-644 (-2 (|:| -2153 |#1|) (|:| -2104 (-1119)))))) (-921)))) (-351)) (T -348)) +((-2267 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-3 (-1171 *4) (-1264 (-644 (-2 (|:| -2153 *4) (|:| -2104 (-1119))))))) (-5 *1 (-348 *4)) (-4 *4 (-351)))) (-4362 (*1 *2 *3) (|partial| -12 (-5 *3 (-921)) (-5 *2 (-1264 (-644 (-2 (|:| -2153 *4) (|:| -2104 (-1119)))))) (-5 *1 (-348 *4)) (-4 *4 (-351)))) (-1335 (*1 *2 *3) (-12 (-5 *3 (-1264 (-644 (-2 (|:| -2153 *4) (|:| -2104 (-1119)))))) (-4 *4 (-351)) (-5 *2 (-771)) (-5 *1 (-348 *4)))) (-2079 (*1 *2 *3) (-12 (-5 *3 (-1264 (-644 (-2 (|:| -2153 *4) (|:| -2104 (-1119)))))) (-4 *4 (-351)) (-5 *2 (-689 *4)) (-5 *1 (-348 *4)))) (-3910 (*1 *2 *3) (-12 (-5 *3 (-1171 *4)) (-4 *4 (-351)) (-5 *2 (-1264 (-644 (-2 (|:| -2153 *4) (|:| -2104 (-1119)))))) (-5 *1 (-348 *4)))) (-3474 (*1 *2 *3) (-12 (-5 *3 (-1171 *4)) (-4 *4 (-351)) (-5 *2 (-958 (-1119))) (-5 *1 (-348 *4))))) +(-10 -7 (-15 -3474 ((-958 (-1119)) (-1171 |#1|))) (-15 -3910 ((-1264 (-644 (-2 (|:| -2153 |#1|) (|:| -2104 (-1119))))) (-1171 |#1|))) (-15 -2079 ((-689 |#1|) (-1264 (-644 (-2 (|:| -2153 |#1|) (|:| -2104 (-1119))))))) (-15 -1335 ((-771) (-1264 (-644 (-2 (|:| -2153 |#1|) (|:| -2104 (-1119))))))) (-15 -4362 ((-3 (-1264 (-644 (-2 (|:| -2153 |#1|) (|:| -2104 (-1119))))) "failed") (-921))) (-15 -2267 ((-3 (-1171 |#1|) (-1264 (-644 (-2 (|:| -2153 |#1|) (|:| -2104 (-1119)))))) (-921)))) +((-2479 ((|#1| |#3|) 108) ((|#3| |#1|) 91))) +(((-349 |#1| |#2| |#3|) (-10 -7 (-15 -2479 (|#3| |#1|)) (-15 -2479 (|#1| |#3|))) (-330 |#2|) (-351) (-330 |#2|)) (T -349)) +((-2479 (*1 *2 *3) (-12 (-4 *4 (-351)) (-4 *2 (-330 *4)) (-5 *1 (-349 *2 *4 *3)) (-4 *3 (-330 *4)))) (-2479 (*1 *2 *3) (-12 (-4 *4 (-351)) (-4 *2 (-330 *4)) (-5 *1 (-349 *3 *4 *2)) (-4 *3 (-330 *4))))) +(-10 -7 (-15 -2479 (|#3| |#1|)) (-15 -2479 (|#1| |#3|))) +((-1450 (((-112) $) 60)) (-1802 (((-833 (-921)) $) 23) (((-921) $) 66)) (-4278 (((-3 $ "failed") $) 18)) (-3968 (($) 9)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) 116)) (-4107 (((-3 (-771) "failed") $ $) 94) (((-771) $) 81)) (-3526 (($ $ (-771)) NIL) (($ $) 8)) (-3648 (($) 53)) (-3233 (((-3 (-1264 $) "failed") (-689 $)) 38)) (-2645 (((-3 $ "failed") $) 45) (($ $) 44))) +(((-350 |#1|) (-10 -8 (-15 -1802 ((-921) |#1|)) (-15 -4107 ((-771) |#1|)) (-15 -1450 ((-112) |#1|)) (-15 -3648 (|#1|)) (-15 -3233 ((-3 (-1264 |#1|) "failed") (-689 |#1|))) (-15 -2645 (|#1| |#1|)) (-15 -3526 (|#1| |#1|)) (-15 -3526 (|#1| |#1| (-771))) (-15 -3968 (|#1|)) (-15 -4278 ((-3 |#1| "failed") |#1|)) (-15 -4107 ((-3 (-771) "failed") |#1| |#1|)) (-15 -1802 ((-833 (-921)) |#1|)) (-15 -2645 ((-3 |#1| "failed") |#1|)) (-15 -4004 ((-1171 |#1|) (-1171 |#1|) (-1171 |#1|)))) (-351)) (T -350)) +NIL +(-10 -8 (-15 -1802 ((-921) |#1|)) (-15 -4107 ((-771) |#1|)) (-15 -1450 ((-112) |#1|)) (-15 -3648 (|#1|)) (-15 -3233 ((-3 (-1264 |#1|) "failed") (-689 |#1|))) (-15 -2645 (|#1| |#1|)) (-15 -3526 (|#1| |#1|)) (-15 -3526 (|#1| |#1| (-771))) (-15 -3968 (|#1|)) (-15 -4278 ((-3 |#1| "failed") |#1|)) (-15 -4107 ((-3 (-771) "failed") |#1| |#1|)) (-15 -1802 ((-833 (-921)) |#1|)) (-15 -2645 ((-3 |#1| "failed") |#1|)) (-15 -4004 ((-1171 |#1|) (-1171 |#1|) (-1171 |#1|)))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) 47)) (-3087 (($ $) 46)) (-1716 (((-112) $) 44)) (-2568 (((-1187 (-921) (-771)) (-566)) 101)) (-3174 (((-3 $ "failed") $ $) 20)) (-3980 (($ $) 81)) (-3348 (((-420 $) $) 80)) (-2761 (((-112) $ $) 65)) (-4049 (((-771)) 111)) (-1811 (($) 18 T CONST)) (-2713 (((-3 "prime" "polynomial" "normal" "cyclic")) 95)) (-2925 (($ $ $) 61)) (-3757 (((-3 $ "failed") $) 37)) (-1415 (($) 114)) (-2937 (($ $ $) 62)) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) 57)) (-2409 (($) 99)) (-1450 (((-112) $) 98)) (-4202 (($ $) 87) (($ $ (-771)) 86)) (-4188 (((-112) $) 79)) (-1802 (((-833 (-921)) $) 89) (((-921) $) 96)) (-2264 (((-112) $) 35)) (-4278 (((-3 $ "failed") $) 110)) (-2495 (((-3 (-644 $) "failed") (-644 $) $) 58)) (-4051 (((-921) $) 113)) (-2120 (($ $ $) 52) (($ (-644 $)) 51)) (-3151 (((-1157) $) 10)) (-2577 (($ $) 78)) (-3968 (($) 109 T CONST)) (-2104 (($ (-921)) 112)) (-4059 (((-1119) $) 11)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-2162 (($ $ $) 54) (($ (-644 $)) 53)) (-2816 (((-644 (-2 (|:| -2325 (-566)) (|:| -3631 (-566))))) 102)) (-2325 (((-420 $) $) 82)) (-2585 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2976 (((-3 $ "failed") $ $) 48)) (-2840 (((-3 (-644 $) "failed") (-644 $) $) 56)) (-1383 (((-771) $) 64)) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) 63)) (-4107 (((-3 (-771) "failed") $ $) 88) (((-771) $) 97)) (-3526 (($ $ (-771)) 107) (($ $) 105)) (-3648 (($) 100)) (-3233 (((-3 (-1264 $) "failed") (-689 $)) 103)) (-2479 (((-862) $) 12) (($ (-566)) 33) (($ $) 49) (($ (-409 (-566))) 74)) (-2645 (((-3 $ "failed") $) 90) (($ $) 104)) (-1558 (((-771)) 32 T CONST)) (-3900 (((-112) $ $) 9)) (-1333 (((-112) $ $) 45)) (-2446 (($) 19 T CONST)) (-2459 (($) 34 T CONST)) (-2834 (($ $ (-771)) 108) (($ $) 106)) (-2952 (((-112) $ $) 6)) (-3077 (($ $ $) 73)) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 77)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ (-409 (-566))) 76) (($ (-409 (-566)) $) 75))) +(((-351) (-140)) (T -351)) +((-2645 (*1 *1 *1) (-4 *1 (-351))) (-3233 (*1 *2 *3) (|partial| -12 (-5 *3 (-689 *1)) (-4 *1 (-351)) (-5 *2 (-1264 *1)))) (-2816 (*1 *2) (-12 (-4 *1 (-351)) (-5 *2 (-644 (-2 (|:| -2325 (-566)) (|:| -3631 (-566))))))) (-2568 (*1 *2 *3) (-12 (-4 *1 (-351)) (-5 *3 (-566)) (-5 *2 (-1187 (-921) (-771))))) (-3648 (*1 *1) (-4 *1 (-351))) (-2409 (*1 *1) (-4 *1 (-351))) (-1450 (*1 *2 *1) (-12 (-4 *1 (-351)) (-5 *2 (-112)))) (-4107 (*1 *2 *1) (-12 (-4 *1 (-351)) (-5 *2 (-771)))) (-1802 (*1 *2 *1) (-12 (-4 *1 (-351)) (-5 *2 (-921)))) (-2713 (*1 *2) (-12 (-4 *1 (-351)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(-13 (-404) (-370) (-1150) (-233) (-10 -8 (-15 -2645 ($ $)) (-15 -3233 ((-3 (-1264 $) "failed") (-689 $))) (-15 -2816 ((-644 (-2 (|:| -2325 (-566)) (|:| -3631 (-566)))))) (-15 -2568 ((-1187 (-921) (-771)) (-566))) (-15 -3648 ($)) (-15 -2409 ($)) (-15 -1450 ((-112) $)) (-15 -4107 ((-771) $)) (-15 -1802 ((-921) $)) (-15 -2713 ((-3 "prime" "polynomial" "normal" "cyclic"))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-409 (-566))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) . T) ((-616 #0#) . T) ((-616 (-566)) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-233) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-404) . T) ((-370) . T) ((-454) . T) ((-558) . T) ((-646 #0#) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 #0#) . T) ((-648 $) . T) ((-640 #0#) . T) ((-640 $) . T) ((-717 #0#) . T) ((-717 $) . T) ((-726) . T) ((-920) . T) ((-1051 #0#) . T) ((-1051 $) . T) ((-1056 #0#) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1150) . T) ((-1218) . T)) +((-3459 (((-2 (|:| -1419 (-689 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-689 |#1|))) |#1|) 55)) (-2500 (((-2 (|:| -1419 (-689 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-689 |#1|)))) 53))) +(((-352 |#1| |#2| |#3|) (-10 -7 (-15 -2500 ((-2 (|:| -1419 (-689 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-689 |#1|))))) (-15 -3459 ((-2 (|:| -1419 (-689 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-689 |#1|))) |#1|))) (-13 (-308) (-10 -8 (-15 -3348 ((-420 $) $)))) (-1240 |#1|) (-411 |#1| |#2|)) (T -352)) +((-3459 (*1 *2 *3) (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 -3348 ((-420 $) $))))) (-4 *4 (-1240 *3)) (-5 *2 (-2 (|:| -1419 (-689 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-689 *3)))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-411 *3 *4)))) (-2500 (*1 *2) (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 -3348 ((-420 $) $))))) (-4 *4 (-1240 *3)) (-5 *2 (-2 (|:| -1419 (-689 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-689 *3)))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-411 *3 *4))))) +(-10 -7 (-15 -2500 ((-2 (|:| -1419 (-689 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-689 |#1|))))) (-15 -3459 ((-2 (|:| -1419 (-689 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-689 |#1|))) |#1|))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-1716 (((-112) $) NIL)) (-3017 (((-112) $) NIL)) (-4141 (((-771)) NIL)) (-3837 (((-910 |#1|) $) NIL) (($ $ (-921)) NIL (|has| (-910 |#1|) (-370)))) (-2568 (((-1187 (-921) (-771)) (-566)) NIL (|has| (-910 |#1|) (-370)))) (-3174 (((-3 $ "failed") $ $) NIL)) (-3980 (($ $) NIL)) (-3348 (((-420 $) $) NIL)) (-1335 (((-771)) NIL)) (-2761 (((-112) $ $) NIL)) (-4049 (((-771)) NIL (|has| (-910 |#1|) (-370)))) (-1811 (($) NIL T CONST)) (-2980 (((-3 (-910 |#1|) "failed") $) NIL)) (-1709 (((-910 |#1|) $) NIL)) (-2422 (($ (-1264 (-910 |#1|))) NIL)) (-2713 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-910 |#1|) (-370)))) (-2925 (($ $ $) NIL)) (-3757 (((-3 $ "failed") $) NIL)) (-1415 (($) NIL (|has| (-910 |#1|) (-370)))) (-2937 (($ $ $) NIL)) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) NIL)) (-2409 (($) NIL (|has| (-910 |#1|) (-370)))) (-1450 (((-112) $) NIL (|has| (-910 |#1|) (-370)))) (-4202 (($ $ (-771)) NIL (-2809 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-370)))) (($ $) NIL (-2809 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-370))))) (-4188 (((-112) $) NIL)) (-1802 (((-921) $) NIL (|has| (-910 |#1|) (-370))) (((-833 (-921)) $) NIL (-2809 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-370))))) (-2264 (((-112) $) NIL)) (-3254 (($) NIL (|has| (-910 |#1|) (-370)))) (-2111 (((-112) $) NIL (|has| (-910 |#1|) (-370)))) (-1398 (((-910 |#1|) $) NIL) (($ $ (-921)) NIL (|has| (-910 |#1|) (-370)))) (-4278 (((-3 $ "failed") $) NIL (|has| (-910 |#1|) (-370)))) (-2495 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1869 (((-1171 (-910 |#1|)) $) NIL) (((-1171 $) $ (-921)) NIL (|has| (-910 |#1|) (-370)))) (-4051 (((-921) $) NIL (|has| (-910 |#1|) (-370)))) (-3119 (((-1171 (-910 |#1|)) $) NIL (|has| (-910 |#1|) (-370)))) (-1902 (((-1171 (-910 |#1|)) $) NIL (|has| (-910 |#1|) (-370))) (((-3 (-1171 (-910 |#1|)) "failed") $ $) NIL (|has| (-910 |#1|) (-370)))) (-1963 (($ $ (-1171 (-910 |#1|))) NIL (|has| (-910 |#1|) (-370)))) (-2120 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3151 (((-1157) $) NIL)) (-2577 (($ $) NIL)) (-3968 (($) NIL (|has| (-910 |#1|) (-370)) CONST)) (-2104 (($ (-921)) NIL (|has| (-910 |#1|) (-370)))) (-1965 (((-112) $) NIL)) (-4059 (((-1119) $) NIL)) (-3889 (((-1264 (-644 (-2 (|:| -2153 (-910 |#1|)) (|:| -2104 (-1119)))))) NIL)) (-3640 (((-689 (-910 |#1|))) NIL)) (-4086 (($) NIL (|has| (-910 |#1|) (-370)))) (-4004 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2162 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2816 (((-644 (-2 (|:| -2325 (-566)) (|:| -3631 (-566))))) NIL (|has| (-910 |#1|) (-370)))) (-2325 (((-420 $) $) NIL)) (-1903 (((-833 (-921))) NIL) (((-921)) NIL)) (-2585 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2976 (((-3 $ "failed") $ $) NIL)) (-2840 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1383 (((-771) $) NIL)) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL)) (-4107 (((-771) $) NIL (|has| (-910 |#1|) (-370))) (((-3 (-771) "failed") $ $) NIL (-2809 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-370))))) (-3944 (((-134)) NIL)) (-3526 (($ $) NIL (|has| (-910 |#1|) (-370))) (($ $ (-771)) NIL (|has| (-910 |#1|) (-370)))) (-1630 (((-833 (-921)) $) NIL) (((-921) $) NIL)) (-2301 (((-1171 (-910 |#1|))) NIL)) (-3648 (($) NIL (|has| (-910 |#1|) (-370)))) (-1743 (($) NIL (|has| (-910 |#1|) (-370)))) (-3747 (((-1264 (-910 |#1|)) $) NIL) (((-689 (-910 |#1|)) (-1264 $)) NIL)) (-3233 (((-3 (-1264 $) "failed") (-689 $)) NIL (|has| (-910 |#1|) (-370)))) (-2479 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL) (($ (-910 |#1|)) NIL)) (-2645 (($ $) NIL (|has| (-910 |#1|) (-370))) (((-3 $ "failed") $) NIL (-2809 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-370))))) (-1558 (((-771)) NIL T CONST)) (-3900 (((-112) $ $) NIL)) (-1419 (((-1264 $)) NIL) (((-1264 $) (-921)) NIL)) (-1333 (((-112) $ $) NIL)) (-3132 (((-112) $) NIL)) (-2446 (($) NIL T CONST)) (-2459 (($) NIL T CONST)) (-3536 (($ $) NIL (|has| (-910 |#1|) (-370))) (($ $ (-771)) NIL (|has| (-910 |#1|) (-370)))) (-2834 (($ $) NIL (|has| (-910 |#1|) (-370))) (($ $ (-771)) NIL (|has| (-910 |#1|) (-370)))) (-2952 (((-112) $ $) NIL)) (-3077 (($ $ $) NIL) (($ $ (-910 |#1|)) NIL)) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ $ (-910 |#1|)) NIL) (($ (-910 |#1|) $) NIL))) +(((-353 |#1| |#2|) (-13 (-330 (-910 |#1|)) (-10 -7 (-15 -3889 ((-1264 (-644 (-2 (|:| -2153 (-910 |#1|)) (|:| -2104 (-1119))))))) (-15 -3640 ((-689 (-910 |#1|)))) (-15 -1335 ((-771))))) (-921) (-921)) (T -353)) +((-3889 (*1 *2) (-12 (-5 *2 (-1264 (-644 (-2 (|:| -2153 (-910 *3)) (|:| -2104 (-1119)))))) (-5 *1 (-353 *3 *4)) (-14 *3 (-921)) (-14 *4 (-921)))) (-3640 (*1 *2) (-12 (-5 *2 (-689 (-910 *3))) (-5 *1 (-353 *3 *4)) (-14 *3 (-921)) (-14 *4 (-921)))) (-1335 (*1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-353 *3 *4)) (-14 *3 (-921)) (-14 *4 (-921))))) +(-13 (-330 (-910 |#1|)) (-10 -7 (-15 -3889 ((-1264 (-644 (-2 (|:| -2153 (-910 |#1|)) (|:| -2104 (-1119))))))) (-15 -3640 ((-689 (-910 |#1|)))) (-15 -1335 ((-771))))) +((-2986 (((-112) $ $) 76)) (-2845 (((-112) $) 90)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-1716 (((-112) $) NIL)) (-3017 (((-112) $) NIL)) (-4141 (((-771)) NIL)) (-3837 ((|#1| $) 108) (($ $ (-921)) 106 (|has| |#1| (-370)))) (-2568 (((-1187 (-921) (-771)) (-566)) 177 (|has| |#1| (-370)))) (-3174 (((-3 $ "failed") $ $) NIL)) (-3980 (($ $) NIL)) (-3348 (((-420 $) $) NIL)) (-1335 (((-771)) 105)) (-2761 (((-112) $ $) NIL)) (-4049 (((-771)) 193 (|has| |#1| (-370)))) (-1811 (($) NIL T CONST)) (-2980 (((-3 |#1| "failed") $) 130)) (-1709 ((|#1| $) 107)) (-2422 (($ (-1264 |#1|)) 74)) (-2713 (((-3 "prime" "polynomial" "normal" "cyclic")) 219 (|has| |#1| (-370)))) (-2925 (($ $ $) NIL)) (-3757 (((-3 $ "failed") $) NIL)) (-1415 (($) 189 (|has| |#1| (-370)))) (-2937 (($ $ $) NIL)) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) NIL)) (-2409 (($) 178 (|has| |#1| (-370)))) (-1450 (((-112) $) NIL (|has| |#1| (-370)))) (-4202 (($ $ (-771)) NIL (-2809 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-2809 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4188 (((-112) $) NIL)) (-1802 (((-921) $) NIL (|has| |#1| (-370))) (((-833 (-921)) $) NIL (-2809 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2264 (((-112) $) NIL)) (-3254 (($) 116 (|has| |#1| (-370)))) (-2111 (((-112) $) 206 (|has| |#1| (-370)))) (-1398 ((|#1| $) 110) (($ $ (-921)) 109 (|has| |#1| (-370)))) (-4278 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-2495 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1869 (((-1171 |#1|) $) 220) (((-1171 $) $ (-921)) NIL (|has| |#1| (-370)))) (-4051 (((-921) $) 154 (|has| |#1| (-370)))) (-3119 (((-1171 |#1|) $) 89 (|has| |#1| (-370)))) (-1902 (((-1171 |#1|) $) 86 (|has| |#1| (-370))) (((-3 (-1171 |#1|) "failed") $ $) 98 (|has| |#1| (-370)))) (-1963 (($ $ (-1171 |#1|)) 85 (|has| |#1| (-370)))) (-2120 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3151 (((-1157) $) NIL)) (-2577 (($ $) 224)) (-3968 (($) NIL (|has| |#1| (-370)) CONST)) (-2104 (($ (-921)) 157 (|has| |#1| (-370)))) (-1965 (((-112) $) 126)) (-4059 (((-1119) $) NIL)) (-3889 (((-1264 (-644 (-2 (|:| -2153 |#1|) (|:| -2104 (-1119)))))) 99)) (-3640 (((-689 |#1|)) 103)) (-4086 (($) 112 (|has| |#1| (-370)))) (-4004 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2162 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2816 (((-644 (-2 (|:| -2325 (-566)) (|:| -3631 (-566))))) 180 (|has| |#1| (-370)))) (-2325 (((-420 $) $) NIL)) (-1903 (((-833 (-921))) NIL) (((-921)) 181)) (-2585 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2976 (((-3 $ "failed") $ $) NIL)) (-2840 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1383 (((-771) $) NIL)) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL)) (-4107 (((-771) $) NIL (|has| |#1| (-370))) (((-3 (-771) "failed") $ $) NIL (-2809 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3944 (((-134)) NIL)) (-3526 (($ $) NIL (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-1630 (((-833 (-921)) $) NIL) (((-921) $) 78)) (-2301 (((-1171 |#1|)) 182)) (-3648 (($) 153 (|has| |#1| (-370)))) (-1743 (($) NIL (|has| |#1| (-370)))) (-3747 (((-1264 |#1|) $) 124) (((-689 |#1|) (-1264 $)) NIL)) (-3233 (((-3 (-1264 $) "failed") (-689 $)) NIL (|has| |#1| (-370)))) (-2479 (((-862) $) 146) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL) (($ |#1|) 73)) (-2645 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-2809 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1558 (((-771)) 187 T CONST)) (-3900 (((-112) $ $) NIL)) (-1419 (((-1264 $)) 203) (((-1264 $) (-921)) 119)) (-1333 (((-112) $ $) NIL)) (-3132 (((-112) $) NIL)) (-2446 (($) 140 T CONST)) (-2459 (($) 44 T CONST)) (-3536 (($ $) 125 (|has| |#1| (-370))) (($ $ (-771)) 117 (|has| |#1| (-370)))) (-2834 (($ $) NIL (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-2952 (((-112) $ $) 214)) (-3077 (($ $ $) 122) (($ $ |#1|) 123)) (-3065 (($ $) 208) (($ $ $) 212)) (-3052 (($ $ $) 210)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) 159)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 217) (($ $ $) 171) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 121))) +(((-354 |#1| |#2|) (-13 (-330 |#1|) (-10 -7 (-15 -3889 ((-1264 (-644 (-2 (|:| -2153 |#1|) (|:| -2104 (-1119))))))) (-15 -3640 ((-689 |#1|))) (-15 -1335 ((-771))))) (-351) (-3 (-1171 |#1|) (-1264 (-644 (-2 (|:| -2153 |#1|) (|:| -2104 (-1119))))))) (T -354)) +((-3889 (*1 *2) (-12 (-5 *2 (-1264 (-644 (-2 (|:| -2153 *3) (|:| -2104 (-1119)))))) (-5 *1 (-354 *3 *4)) (-4 *3 (-351)) (-14 *4 (-3 (-1171 *3) *2)))) (-3640 (*1 *2) (-12 (-5 *2 (-689 *3)) (-5 *1 (-354 *3 *4)) (-4 *3 (-351)) (-14 *4 (-3 (-1171 *3) (-1264 (-644 (-2 (|:| -2153 *3) (|:| -2104 (-1119))))))))) (-1335 (*1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-354 *3 *4)) (-4 *3 (-351)) (-14 *4 (-3 (-1171 *3) (-1264 (-644 (-2 (|:| -2153 *3) (|:| -2104 (-1119)))))))))) +(-13 (-330 |#1|) (-10 -7 (-15 -3889 ((-1264 (-644 (-2 (|:| -2153 |#1|) (|:| -2104 (-1119))))))) (-15 -3640 ((-689 |#1|))) (-15 -1335 ((-771))))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-1716 (((-112) $) NIL)) (-3017 (((-112) $) NIL)) (-4141 (((-771)) NIL)) (-3837 ((|#1| $) NIL) (($ $ (-921)) NIL (|has| |#1| (-370)))) (-2568 (((-1187 (-921) (-771)) (-566)) NIL (|has| |#1| (-370)))) (-3174 (((-3 $ "failed") $ $) NIL)) (-3980 (($ $) NIL)) (-3348 (((-420 $) $) NIL)) (-1335 (((-771)) NIL)) (-2761 (((-112) $ $) NIL)) (-4049 (((-771)) NIL (|has| |#1| (-370)))) (-1811 (($) NIL T CONST)) (-2980 (((-3 |#1| "failed") $) NIL)) (-1709 ((|#1| $) NIL)) (-2422 (($ (-1264 |#1|)) NIL)) (-2713 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-370)))) (-2925 (($ $ $) NIL)) (-3757 (((-3 $ "failed") $) NIL)) (-1415 (($) NIL (|has| |#1| (-370)))) (-2937 (($ $ $) NIL)) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) NIL)) (-2409 (($) NIL (|has| |#1| (-370)))) (-1450 (((-112) $) NIL (|has| |#1| (-370)))) (-4202 (($ $ (-771)) NIL (-2809 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-2809 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4188 (((-112) $) NIL)) (-1802 (((-921) $) NIL (|has| |#1| (-370))) (((-833 (-921)) $) NIL (-2809 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2264 (((-112) $) NIL)) (-3254 (($) NIL (|has| |#1| (-370)))) (-2111 (((-112) $) NIL (|has| |#1| (-370)))) (-1398 ((|#1| $) NIL) (($ $ (-921)) NIL (|has| |#1| (-370)))) (-4278 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-2495 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1869 (((-1171 |#1|) $) NIL) (((-1171 $) $ (-921)) NIL (|has| |#1| (-370)))) (-4051 (((-921) $) NIL (|has| |#1| (-370)))) (-3119 (((-1171 |#1|) $) NIL (|has| |#1| (-370)))) (-1902 (((-1171 |#1|) $) NIL (|has| |#1| (-370))) (((-3 (-1171 |#1|) "failed") $ $) NIL (|has| |#1| (-370)))) (-1963 (($ $ (-1171 |#1|)) NIL (|has| |#1| (-370)))) (-2120 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3151 (((-1157) $) NIL)) (-2577 (($ $) NIL)) (-3968 (($) NIL (|has| |#1| (-370)) CONST)) (-2104 (($ (-921)) NIL (|has| |#1| (-370)))) (-1965 (((-112) $) NIL)) (-4059 (((-1119) $) NIL)) (-3889 (((-1264 (-644 (-2 (|:| -2153 |#1|) (|:| -2104 (-1119)))))) NIL)) (-3640 (((-689 |#1|)) NIL)) (-4086 (($) NIL (|has| |#1| (-370)))) (-4004 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2162 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2816 (((-644 (-2 (|:| -2325 (-566)) (|:| -3631 (-566))))) NIL (|has| |#1| (-370)))) (-2325 (((-420 $) $) NIL)) (-1903 (((-833 (-921))) NIL) (((-921)) NIL)) (-2585 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2976 (((-3 $ "failed") $ $) NIL)) (-2840 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1383 (((-771) $) NIL)) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL)) (-4107 (((-771) $) NIL (|has| |#1| (-370))) (((-3 (-771) "failed") $ $) NIL (-2809 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3944 (((-134)) NIL)) (-3526 (($ $) NIL (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-1630 (((-833 (-921)) $) NIL) (((-921) $) NIL)) (-2301 (((-1171 |#1|)) NIL)) (-3648 (($) NIL (|has| |#1| (-370)))) (-1743 (($) NIL (|has| |#1| (-370)))) (-3747 (((-1264 |#1|) $) NIL) (((-689 |#1|) (-1264 $)) NIL)) (-3233 (((-3 (-1264 $) "failed") (-689 $)) NIL (|has| |#1| (-370)))) (-2479 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL) (($ |#1|) NIL)) (-2645 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-2809 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1558 (((-771)) NIL T CONST)) (-3900 (((-112) $ $) NIL)) (-1419 (((-1264 $)) NIL) (((-1264 $) (-921)) NIL)) (-1333 (((-112) $ $) NIL)) (-3132 (((-112) $) NIL)) (-2446 (($) NIL T CONST)) (-2459 (($) NIL T CONST)) (-3536 (($ $) NIL (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-2834 (($ $) NIL (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-2952 (((-112) $ $) NIL)) (-3077 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-355 |#1| |#2|) (-13 (-330 |#1|) (-10 -7 (-15 -3889 ((-1264 (-644 (-2 (|:| -2153 |#1|) (|:| -2104 (-1119))))))) (-15 -3640 ((-689 |#1|))) (-15 -1335 ((-771))))) (-351) (-921)) (T -355)) +((-3889 (*1 *2) (-12 (-5 *2 (-1264 (-644 (-2 (|:| -2153 *3) (|:| -2104 (-1119)))))) (-5 *1 (-355 *3 *4)) (-4 *3 (-351)) (-14 *4 (-921)))) (-3640 (*1 *2) (-12 (-5 *2 (-689 *3)) (-5 *1 (-355 *3 *4)) (-4 *3 (-351)) (-14 *4 (-921)))) (-1335 (*1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-355 *3 *4)) (-4 *3 (-351)) (-14 *4 (-921))))) +(-13 (-330 |#1|) (-10 -7 (-15 -3889 ((-1264 (-644 (-2 (|:| -2153 |#1|) (|:| -2104 (-1119))))))) (-15 -3640 ((-689 |#1|))) (-15 -1335 ((-771))))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-1716 (((-112) $) NIL)) (-3017 (((-112) $) NIL)) (-4141 (((-771)) NIL)) (-3837 (((-910 |#1|) $) NIL) (($ $ (-921)) NIL (|has| (-910 |#1|) (-370)))) (-2568 (((-1187 (-921) (-771)) (-566)) NIL (|has| (-910 |#1|) (-370)))) (-3174 (((-3 $ "failed") $ $) NIL)) (-3980 (($ $) NIL)) (-3348 (((-420 $) $) NIL)) (-2761 (((-112) $ $) NIL)) (-4049 (((-771)) NIL (|has| (-910 |#1|) (-370)))) (-1811 (($) NIL T CONST)) (-2980 (((-3 (-910 |#1|) "failed") $) NIL)) (-1709 (((-910 |#1|) $) NIL)) (-2422 (($ (-1264 (-910 |#1|))) NIL)) (-2713 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-910 |#1|) (-370)))) (-2925 (($ $ $) NIL)) (-3757 (((-3 $ "failed") $) NIL)) (-1415 (($) NIL (|has| (-910 |#1|) (-370)))) (-2937 (($ $ $) NIL)) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) NIL)) (-2409 (($) NIL (|has| (-910 |#1|) (-370)))) (-1450 (((-112) $) NIL (|has| (-910 |#1|) (-370)))) (-4202 (($ $ (-771)) NIL (-2809 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-370)))) (($ $) NIL (-2809 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-370))))) (-4188 (((-112) $) NIL)) (-1802 (((-921) $) NIL (|has| (-910 |#1|) (-370))) (((-833 (-921)) $) NIL (-2809 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-370))))) (-2264 (((-112) $) NIL)) (-3254 (($) NIL (|has| (-910 |#1|) (-370)))) (-2111 (((-112) $) NIL (|has| (-910 |#1|) (-370)))) (-1398 (((-910 |#1|) $) NIL) (($ $ (-921)) NIL (|has| (-910 |#1|) (-370)))) (-4278 (((-3 $ "failed") $) NIL (|has| (-910 |#1|) (-370)))) (-2495 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1869 (((-1171 (-910 |#1|)) $) NIL) (((-1171 $) $ (-921)) NIL (|has| (-910 |#1|) (-370)))) (-4051 (((-921) $) NIL (|has| (-910 |#1|) (-370)))) (-3119 (((-1171 (-910 |#1|)) $) NIL (|has| (-910 |#1|) (-370)))) (-1902 (((-1171 (-910 |#1|)) $) NIL (|has| (-910 |#1|) (-370))) (((-3 (-1171 (-910 |#1|)) "failed") $ $) NIL (|has| (-910 |#1|) (-370)))) (-1963 (($ $ (-1171 (-910 |#1|))) NIL (|has| (-910 |#1|) (-370)))) (-2120 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3151 (((-1157) $) NIL)) (-2577 (($ $) NIL)) (-3968 (($) NIL (|has| (-910 |#1|) (-370)) CONST)) (-2104 (($ (-921)) NIL (|has| (-910 |#1|) (-370)))) (-1965 (((-112) $) NIL)) (-4059 (((-1119) $) NIL)) (-4086 (($) NIL (|has| (-910 |#1|) (-370)))) (-4004 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2162 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2816 (((-644 (-2 (|:| -2325 (-566)) (|:| -3631 (-566))))) NIL (|has| (-910 |#1|) (-370)))) (-2325 (((-420 $) $) NIL)) (-1903 (((-833 (-921))) NIL) (((-921)) NIL)) (-2585 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2976 (((-3 $ "failed") $ $) NIL)) (-2840 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1383 (((-771) $) NIL)) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL)) (-4107 (((-771) $) NIL (|has| (-910 |#1|) (-370))) (((-3 (-771) "failed") $ $) NIL (-2809 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-370))))) (-3944 (((-134)) NIL)) (-3526 (($ $) NIL (|has| (-910 |#1|) (-370))) (($ $ (-771)) NIL (|has| (-910 |#1|) (-370)))) (-1630 (((-833 (-921)) $) NIL) (((-921) $) NIL)) (-2301 (((-1171 (-910 |#1|))) NIL)) (-3648 (($) NIL (|has| (-910 |#1|) (-370)))) (-1743 (($) NIL (|has| (-910 |#1|) (-370)))) (-3747 (((-1264 (-910 |#1|)) $) NIL) (((-689 (-910 |#1|)) (-1264 $)) NIL)) (-3233 (((-3 (-1264 $) "failed") (-689 $)) NIL (|has| (-910 |#1|) (-370)))) (-2479 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL) (($ (-910 |#1|)) NIL)) (-2645 (($ $) NIL (|has| (-910 |#1|) (-370))) (((-3 $ "failed") $) NIL (-2809 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-370))))) (-1558 (((-771)) NIL T CONST)) (-3900 (((-112) $ $) NIL)) (-1419 (((-1264 $)) NIL) (((-1264 $) (-921)) NIL)) (-1333 (((-112) $ $) NIL)) (-3132 (((-112) $) NIL)) (-2446 (($) NIL T CONST)) (-2459 (($) NIL T CONST)) (-3536 (($ $) NIL (|has| (-910 |#1|) (-370))) (($ $ (-771)) NIL (|has| (-910 |#1|) (-370)))) (-2834 (($ $) NIL (|has| (-910 |#1|) (-370))) (($ $ (-771)) NIL (|has| (-910 |#1|) (-370)))) (-2952 (((-112) $ $) NIL)) (-3077 (($ $ $) NIL) (($ $ (-910 |#1|)) NIL)) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ $ (-910 |#1|)) NIL) (($ (-910 |#1|) $) NIL))) +(((-356 |#1| |#2|) (-330 (-910 |#1|)) (-921) (-921)) (T -356)) +NIL +(-330 (-910 |#1|)) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-1716 (((-112) $) NIL)) (-3017 (((-112) $) NIL)) (-4141 (((-771)) NIL)) (-3837 ((|#1| $) NIL) (($ $ (-921)) NIL (|has| |#1| (-370)))) (-2568 (((-1187 (-921) (-771)) (-566)) 135 (|has| |#1| (-370)))) (-3174 (((-3 $ "failed") $ $) NIL)) (-3980 (($ $) NIL)) (-3348 (((-420 $) $) NIL)) (-2761 (((-112) $ $) NIL)) (-4049 (((-771)) 165 (|has| |#1| (-370)))) (-1811 (($) NIL T CONST)) (-2980 (((-3 |#1| "failed") $) 109)) (-1709 ((|#1| $) 106)) (-2422 (($ (-1264 |#1|)) 101)) (-2713 (((-3 "prime" "polynomial" "normal" "cyclic")) 132 (|has| |#1| (-370)))) (-2925 (($ $ $) NIL)) (-3757 (((-3 $ "failed") $) NIL)) (-1415 (($) 98 (|has| |#1| (-370)))) (-2937 (($ $ $) NIL)) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) NIL)) (-2409 (($) 51 (|has| |#1| (-370)))) (-1450 (((-112) $) NIL (|has| |#1| (-370)))) (-4202 (($ $ (-771)) NIL (-2809 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-2809 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4188 (((-112) $) NIL)) (-1802 (((-921) $) NIL (|has| |#1| (-370))) (((-833 (-921)) $) NIL (-2809 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2264 (((-112) $) NIL)) (-3254 (($) 136 (|has| |#1| (-370)))) (-2111 (((-112) $) 90 (|has| |#1| (-370)))) (-1398 ((|#1| $) 47) (($ $ (-921)) 52 (|has| |#1| (-370)))) (-4278 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-2495 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1869 (((-1171 |#1|) $) 79) (((-1171 $) $ (-921)) NIL (|has| |#1| (-370)))) (-4051 (((-921) $) 113 (|has| |#1| (-370)))) (-3119 (((-1171 |#1|) $) NIL (|has| |#1| (-370)))) (-1902 (((-1171 |#1|) $) NIL (|has| |#1| (-370))) (((-3 (-1171 |#1|) "failed") $ $) NIL (|has| |#1| (-370)))) (-1963 (($ $ (-1171 |#1|)) NIL (|has| |#1| (-370)))) (-2120 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3151 (((-1157) $) NIL)) (-2577 (($ $) NIL)) (-3968 (($) NIL (|has| |#1| (-370)) CONST)) (-2104 (($ (-921)) 111 (|has| |#1| (-370)))) (-1965 (((-112) $) 167)) (-4059 (((-1119) $) NIL)) (-4086 (($) 44 (|has| |#1| (-370)))) (-4004 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2162 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2816 (((-644 (-2 (|:| -2325 (-566)) (|:| -3631 (-566))))) 130 (|has| |#1| (-370)))) (-2325 (((-420 $) $) NIL)) (-1903 (((-833 (-921))) NIL) (((-921)) 164)) (-2585 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2976 (((-3 $ "failed") $ $) NIL)) (-2840 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1383 (((-771) $) NIL)) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL)) (-4107 (((-771) $) NIL (|has| |#1| (-370))) (((-3 (-771) "failed") $ $) NIL (-2809 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3944 (((-134)) NIL)) (-3526 (($ $) NIL (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-1630 (((-833 (-921)) $) NIL) (((-921) $) 71)) (-2301 (((-1171 |#1|)) 104)) (-3648 (($) 141 (|has| |#1| (-370)))) (-1743 (($) NIL (|has| |#1| (-370)))) (-3747 (((-1264 |#1|) $) 66) (((-689 |#1|) (-1264 $)) NIL)) (-3233 (((-3 (-1264 $) "failed") (-689 $)) NIL (|has| |#1| (-370)))) (-2479 (((-862) $) 163) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL) (($ |#1|) 103)) (-2645 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-2809 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1558 (((-771)) 169 T CONST)) (-3900 (((-112) $ $) 171)) (-1419 (((-1264 $)) 125) (((-1264 $) (-921)) 60)) (-1333 (((-112) $ $) NIL)) (-3132 (((-112) $) NIL)) (-2446 (($) 127 T CONST)) (-2459 (($) 40 T CONST)) (-3536 (($ $) 82 (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-2834 (($ $) NIL (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-2952 (((-112) $ $) 123)) (-3077 (($ $ $) 115) (($ $ |#1|) 116)) (-3065 (($ $) 96) (($ $ $) 121)) (-3052 (($ $ $) 119)) (** (($ $ (-921)) NIL) (($ $ (-771)) 55) (($ $ (-566)) 146)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 94) (($ $ $) 68) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 92))) +(((-357 |#1| |#2|) (-330 |#1|) (-351) (-1171 |#1|)) (T -357)) +NIL +(-330 |#1|) +((-2602 ((|#1| (-1171 |#2|)) 63))) +(((-358 |#1| |#2|) (-10 -7 (-15 -2602 (|#1| (-1171 |#2|)))) (-13 (-404) (-10 -7 (-15 -2479 (|#1| |#2|)) (-15 -4051 ((-921) |#1|)) (-15 -1419 ((-1264 |#1|) (-921))) (-15 -3536 (|#1| |#1|)))) (-351)) (T -358)) +((-2602 (*1 *2 *3) (-12 (-5 *3 (-1171 *4)) (-4 *4 (-351)) (-4 *2 (-13 (-404) (-10 -7 (-15 -2479 (*2 *4)) (-15 -4051 ((-921) *2)) (-15 -1419 ((-1264 *2) (-921))) (-15 -3536 (*2 *2))))) (-5 *1 (-358 *2 *4))))) +(-10 -7 (-15 -2602 (|#1| (-1171 |#2|)))) +((-1862 (((-958 (-1171 |#1|)) (-1171 |#1|)) 53)) (-1415 (((-1171 |#1|) (-921) (-921)) 168) (((-1171 |#1|) (-921)) 164)) (-1450 (((-112) (-1171 |#1|)) 120)) (-3432 (((-921) (-921)) 98)) (-2536 (((-921) (-921)) 105)) (-4340 (((-921) (-921)) 96)) (-2111 (((-112) (-1171 |#1|)) 124)) (-3878 (((-3 (-1171 |#1|) "failed") (-1171 |#1|)) 149)) (-3201 (((-3 (-1171 |#1|) "failed") (-1171 |#1|)) 154)) (-2570 (((-3 (-1171 |#1|) "failed") (-1171 |#1|)) 153)) (-2453 (((-3 (-1171 |#1|) "failed") (-1171 |#1|)) 152)) (-3211 (((-3 (-1171 |#1|) "failed") (-1171 |#1|)) 144)) (-1597 (((-1171 |#1|) (-1171 |#1|)) 84)) (-4056 (((-1171 |#1|) (-921)) 159)) (-2805 (((-1171 |#1|) (-921)) 162)) (-2451 (((-1171 |#1|) (-921)) 161)) (-1727 (((-1171 |#1|) (-921)) 160)) (-1525 (((-1171 |#1|) (-921)) 157))) +(((-359 |#1|) (-10 -7 (-15 -1450 ((-112) (-1171 |#1|))) (-15 -2111 ((-112) (-1171 |#1|))) (-15 -4340 ((-921) (-921))) (-15 -3432 ((-921) (-921))) (-15 -2536 ((-921) (-921))) (-15 -1525 ((-1171 |#1|) (-921))) (-15 -4056 ((-1171 |#1|) (-921))) (-15 -1727 ((-1171 |#1|) (-921))) (-15 -2451 ((-1171 |#1|) (-921))) (-15 -2805 ((-1171 |#1|) (-921))) (-15 -3211 ((-3 (-1171 |#1|) "failed") (-1171 |#1|))) (-15 -3878 ((-3 (-1171 |#1|) "failed") (-1171 |#1|))) (-15 -2453 ((-3 (-1171 |#1|) "failed") (-1171 |#1|))) (-15 -2570 ((-3 (-1171 |#1|) "failed") (-1171 |#1|))) (-15 -3201 ((-3 (-1171 |#1|) "failed") (-1171 |#1|))) (-15 -1415 ((-1171 |#1|) (-921))) (-15 -1415 ((-1171 |#1|) (-921) (-921))) (-15 -1597 ((-1171 |#1|) (-1171 |#1|))) (-15 -1862 ((-958 (-1171 |#1|)) (-1171 |#1|)))) (-351)) (T -359)) +((-1862 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-958 (-1171 *4))) (-5 *1 (-359 *4)) (-5 *3 (-1171 *4)))) (-1597 (*1 *2 *2) (-12 (-5 *2 (-1171 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))) (-1415 (*1 *2 *3 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1171 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-1415 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1171 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-3201 (*1 *2 *2) (|partial| -12 (-5 *2 (-1171 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))) (-2570 (*1 *2 *2) (|partial| -12 (-5 *2 (-1171 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))) (-2453 (*1 *2 *2) (|partial| -12 (-5 *2 (-1171 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))) (-3878 (*1 *2 *2) (|partial| -12 (-5 *2 (-1171 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))) (-3211 (*1 *2 *2) (|partial| -12 (-5 *2 (-1171 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))) (-2805 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1171 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-2451 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1171 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-1727 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1171 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-4056 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1171 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-1525 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1171 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-2536 (*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-359 *3)) (-4 *3 (-351)))) (-3432 (*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-359 *3)) (-4 *3 (-351)))) (-4340 (*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-359 *3)) (-4 *3 (-351)))) (-2111 (*1 *2 *3) (-12 (-5 *3 (-1171 *4)) (-4 *4 (-351)) (-5 *2 (-112)) (-5 *1 (-359 *4)))) (-1450 (*1 *2 *3) (-12 (-5 *3 (-1171 *4)) (-4 *4 (-351)) (-5 *2 (-112)) (-5 *1 (-359 *4))))) +(-10 -7 (-15 -1450 ((-112) (-1171 |#1|))) (-15 -2111 ((-112) (-1171 |#1|))) (-15 -4340 ((-921) (-921))) (-15 -3432 ((-921) (-921))) (-15 -2536 ((-921) (-921))) (-15 -1525 ((-1171 |#1|) (-921))) (-15 -4056 ((-1171 |#1|) (-921))) (-15 -1727 ((-1171 |#1|) (-921))) (-15 -2451 ((-1171 |#1|) (-921))) (-15 -2805 ((-1171 |#1|) (-921))) (-15 -3211 ((-3 (-1171 |#1|) "failed") (-1171 |#1|))) (-15 -3878 ((-3 (-1171 |#1|) "failed") (-1171 |#1|))) (-15 -2453 ((-3 (-1171 |#1|) "failed") (-1171 |#1|))) (-15 -2570 ((-3 (-1171 |#1|) "failed") (-1171 |#1|))) (-15 -3201 ((-3 (-1171 |#1|) "failed") (-1171 |#1|))) (-15 -1415 ((-1171 |#1|) (-921))) (-15 -1415 ((-1171 |#1|) (-921) (-921))) (-15 -1597 ((-1171 |#1|) (-1171 |#1|))) (-15 -1862 ((-958 (-1171 |#1|)) (-1171 |#1|)))) +((-4262 (((-3 (-644 |#3|) "failed") (-644 |#3|) |#3|) 38))) +(((-360 |#1| |#2| |#3|) (-10 -7 (-15 -4262 ((-3 (-644 |#3|) "failed") (-644 |#3|) |#3|))) (-351) (-1240 |#1|) (-1240 |#2|)) (T -360)) +((-4262 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-644 *3)) (-4 *3 (-1240 *5)) (-4 *5 (-1240 *4)) (-4 *4 (-351)) (-5 *1 (-360 *4 *5 *3))))) +(-10 -7 (-15 -4262 ((-3 (-644 |#3|) "failed") (-644 |#3|) |#3|))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-1716 (((-112) $) NIL)) (-3017 (((-112) $) NIL)) (-4141 (((-771)) NIL)) (-3837 ((|#1| $) NIL) (($ $ (-921)) NIL (|has| |#1| (-370)))) (-2568 (((-1187 (-921) (-771)) (-566)) NIL (|has| |#1| (-370)))) (-3174 (((-3 $ "failed") $ $) NIL)) (-3980 (($ $) NIL)) (-3348 (((-420 $) $) NIL)) (-2761 (((-112) $ $) NIL)) (-4049 (((-771)) NIL (|has| |#1| (-370)))) (-1811 (($) NIL T CONST)) (-2980 (((-3 |#1| "failed") $) NIL)) (-1709 ((|#1| $) NIL)) (-2422 (($ (-1264 |#1|)) NIL)) (-2713 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-370)))) (-2925 (($ $ $) NIL)) (-3757 (((-3 $ "failed") $) NIL)) (-1415 (($) NIL (|has| |#1| (-370)))) (-2937 (($ $ $) NIL)) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) NIL)) (-2409 (($) NIL (|has| |#1| (-370)))) (-1450 (((-112) $) NIL (|has| |#1| (-370)))) (-4202 (($ $ (-771)) NIL (-2809 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-2809 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4188 (((-112) $) NIL)) (-1802 (((-921) $) NIL (|has| |#1| (-370))) (((-833 (-921)) $) NIL (-2809 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2264 (((-112) $) NIL)) (-3254 (($) NIL (|has| |#1| (-370)))) (-2111 (((-112) $) NIL (|has| |#1| (-370)))) (-1398 ((|#1| $) NIL) (($ $ (-921)) NIL (|has| |#1| (-370)))) (-4278 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-2495 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1869 (((-1171 |#1|) $) NIL) (((-1171 $) $ (-921)) NIL (|has| |#1| (-370)))) (-4051 (((-921) $) NIL (|has| |#1| (-370)))) (-3119 (((-1171 |#1|) $) NIL (|has| |#1| (-370)))) (-1902 (((-1171 |#1|) $) NIL (|has| |#1| (-370))) (((-3 (-1171 |#1|) "failed") $ $) NIL (|has| |#1| (-370)))) (-1963 (($ $ (-1171 |#1|)) NIL (|has| |#1| (-370)))) (-2120 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3151 (((-1157) $) NIL)) (-2577 (($ $) NIL)) (-3968 (($) NIL (|has| |#1| (-370)) CONST)) (-2104 (($ (-921)) NIL (|has| |#1| (-370)))) (-1965 (((-112) $) NIL)) (-4059 (((-1119) $) NIL)) (-4086 (($) NIL (|has| |#1| (-370)))) (-4004 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2162 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2816 (((-644 (-2 (|:| -2325 (-566)) (|:| -3631 (-566))))) NIL (|has| |#1| (-370)))) (-2325 (((-420 $) $) NIL)) (-1903 (((-833 (-921))) NIL) (((-921)) NIL)) (-2585 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2976 (((-3 $ "failed") $ $) NIL)) (-2840 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1383 (((-771) $) NIL)) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL)) (-4107 (((-771) $) NIL (|has| |#1| (-370))) (((-3 (-771) "failed") $ $) NIL (-2809 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3944 (((-134)) NIL)) (-3526 (($ $) NIL (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-1630 (((-833 (-921)) $) NIL) (((-921) $) NIL)) (-2301 (((-1171 |#1|)) NIL)) (-3648 (($) NIL (|has| |#1| (-370)))) (-1743 (($) NIL (|has| |#1| (-370)))) (-3747 (((-1264 |#1|) $) NIL) (((-689 |#1|) (-1264 $)) NIL)) (-3233 (((-3 (-1264 $) "failed") (-689 $)) NIL (|has| |#1| (-370)))) (-2479 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL) (($ |#1|) NIL)) (-2645 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-2809 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1558 (((-771)) NIL T CONST)) (-3900 (((-112) $ $) NIL)) (-1419 (((-1264 $)) NIL) (((-1264 $) (-921)) NIL)) (-1333 (((-112) $ $) NIL)) (-3132 (((-112) $) NIL)) (-2446 (($) NIL T CONST)) (-2459 (($) NIL T CONST)) (-3536 (($ $) NIL (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-2834 (($ $) NIL (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-2952 (((-112) $ $) NIL)) (-3077 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-361 |#1| |#2|) (-330 |#1|) (-351) (-921)) (T -361)) +NIL +(-330 |#1|) +((-3239 (((-112) (-644 (-952 |#1|))) 41)) (-4269 (((-644 (-952 |#1|)) (-644 (-952 |#1|))) 53)) (-3540 (((-3 (-644 (-952 |#1|)) "failed") (-644 (-952 |#1|))) 48))) +(((-362 |#1| |#2|) (-10 -7 (-15 -3239 ((-112) (-644 (-952 |#1|)))) (-15 -3540 ((-3 (-644 (-952 |#1|)) "failed") (-644 (-952 |#1|)))) (-15 -4269 ((-644 (-952 |#1|)) (-644 (-952 |#1|))))) (-454) (-644 (-1175))) (T -362)) +((-4269 (*1 *2 *2) (-12 (-5 *2 (-644 (-952 *3))) (-4 *3 (-454)) (-5 *1 (-362 *3 *4)) (-14 *4 (-644 (-1175))))) (-3540 (*1 *2 *2) (|partial| -12 (-5 *2 (-644 (-952 *3))) (-4 *3 (-454)) (-5 *1 (-362 *3 *4)) (-14 *4 (-644 (-1175))))) (-3239 (*1 *2 *3) (-12 (-5 *3 (-644 (-952 *4))) (-4 *4 (-454)) (-5 *2 (-112)) (-5 *1 (-362 *4 *5)) (-14 *5 (-644 (-1175)))))) +(-10 -7 (-15 -3239 ((-112) (-644 (-952 |#1|)))) (-15 -3540 ((-3 (-644 (-952 |#1|)) "failed") (-644 (-952 |#1|)))) (-15 -4269 ((-644 (-952 |#1|)) (-644 (-952 |#1|))))) +((-2986 (((-112) $ $) NIL)) (-4049 (((-771) $) NIL)) (-1811 (($) NIL T CONST)) (-2980 (((-3 |#1| "failed") $) NIL)) (-1709 ((|#1| $) NIL)) (-3757 (((-3 $ "failed") $) NIL)) (-2264 (((-112) $) 17)) (-2294 ((|#1| $ (-566)) NIL)) (-3198 (((-566) $ (-566)) NIL)) (-1980 (($ (-1 |#1| |#1|) $) 34)) (-4342 (($ (-1 (-566) (-566)) $) 26)) (-3151 (((-1157) $) NIL)) (-2577 (($ $) 28)) (-4059 (((-1119) $) NIL)) (-3445 (((-644 (-2 (|:| |gen| |#1|) (|:| -3571 (-566)))) $) 30)) (-2664 (($ $ $) NIL)) (-3815 (($ $ $) NIL)) (-2479 (((-862) $) 40) (($ |#1|) NIL)) (-3900 (((-112) $ $) NIL)) (-2459 (($) 11 T CONST)) (-2952 (((-112) $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL) (($ |#1| (-566)) 19)) (* (($ $ $) 53) (($ |#1| $) 23) (($ $ |#1|) 21))) +(((-363 |#1|) (-13 (-475) (-1038 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-566))) (-15 -4049 ((-771) $)) (-15 -3198 ((-566) $ (-566))) (-15 -2294 (|#1| $ (-566))) (-15 -4342 ($ (-1 (-566) (-566)) $)) (-15 -1980 ($ (-1 |#1| |#1|) $)) (-15 -3445 ((-644 (-2 (|:| |gen| |#1|) (|:| -3571 (-566)))) $)))) (-1099)) (T -363)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-363 *2)) (-4 *2 (-1099)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-363 *2)) (-4 *2 (-1099)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-566)) (-5 *1 (-363 *2)) (-4 *2 (-1099)))) (-4049 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-363 *3)) (-4 *3 (-1099)))) (-3198 (*1 *2 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-363 *3)) (-4 *3 (-1099)))) (-2294 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *1 (-363 *2)) (-4 *2 (-1099)))) (-4342 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-566) (-566))) (-5 *1 (-363 *3)) (-4 *3 (-1099)))) (-1980 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1099)) (-5 *1 (-363 *3)))) (-3445 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |gen| *3) (|:| -3571 (-566))))) (-5 *1 (-363 *3)) (-4 *3 (-1099))))) +(-13 (-475) (-1038 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-566))) (-15 -4049 ((-771) $)) (-15 -3198 ((-566) $ (-566))) (-15 -2294 (|#1| $ (-566))) (-15 -4342 ($ (-1 (-566) (-566)) $)) (-15 -1980 ($ (-1 |#1| |#1|) $)) (-15 -3445 ((-644 (-2 (|:| |gen| |#1|) (|:| -3571 (-566)))) $)))) +((-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) 13)) (-3087 (($ $) 14)) (-3348 (((-420 $) $) 34)) (-4188 (((-112) $) 30)) (-2577 (($ $) 19)) (-2162 (($ $ $) 25) (($ (-644 $)) NIL)) (-2325 (((-420 $) $) 35)) (-2976 (((-3 $ "failed") $ $) 24)) (-1383 (((-771) $) 28)) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) 39)) (-1333 (((-112) $ $) 16)) (-3077 (($ $ $) 37))) +(((-364 |#1|) (-10 -8 (-15 -3077 (|#1| |#1| |#1|)) (-15 -2577 (|#1| |#1|)) (-15 -4188 ((-112) |#1|)) (-15 -3348 ((-420 |#1|) |#1|)) (-15 -2325 ((-420 |#1|) |#1|)) (-15 -1510 ((-2 (|:| -3371 |#1|) (|:| -3131 |#1|)) |#1| |#1|)) (-15 -1383 ((-771) |#1|)) (-15 -2162 (|#1| (-644 |#1|))) (-15 -2162 (|#1| |#1| |#1|)) (-15 -1333 ((-112) |#1| |#1|)) (-15 -3087 (|#1| |#1|)) (-15 -3832 ((-2 (|:| -1732 |#1|) (|:| -4404 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2976 ((-3 |#1| "failed") |#1| |#1|))) (-365)) (T -364)) +NIL +(-10 -8 (-15 -3077 (|#1| |#1| |#1|)) (-15 -2577 (|#1| |#1|)) (-15 -4188 ((-112) |#1|)) (-15 -3348 ((-420 |#1|) |#1|)) (-15 -2325 ((-420 |#1|) |#1|)) (-15 -1510 ((-2 (|:| -3371 |#1|) (|:| -3131 |#1|)) |#1| |#1|)) (-15 -1383 ((-771) |#1|)) (-15 -2162 (|#1| (-644 |#1|))) (-15 -2162 (|#1| |#1| |#1|)) (-15 -1333 ((-112) |#1| |#1|)) (-15 -3087 (|#1| |#1|)) (-15 -3832 ((-2 (|:| -1732 |#1|) (|:| -4404 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2976 ((-3 |#1| "failed") |#1| |#1|))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) 47)) (-3087 (($ $) 46)) (-1716 (((-112) $) 44)) (-3174 (((-3 $ "failed") $ $) 20)) (-3980 (($ $) 81)) (-3348 (((-420 $) $) 80)) (-2761 (((-112) $ $) 65)) (-1811 (($) 18 T CONST)) (-2925 (($ $ $) 61)) (-3757 (((-3 $ "failed") $) 37)) (-2937 (($ $ $) 62)) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) 57)) (-4188 (((-112) $) 79)) (-2264 (((-112) $) 35)) (-2495 (((-3 (-644 $) "failed") (-644 $) $) 58)) (-2120 (($ $ $) 52) (($ (-644 $)) 51)) (-3151 (((-1157) $) 10)) (-2577 (($ $) 78)) (-4059 (((-1119) $) 11)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-2162 (($ $ $) 54) (($ (-644 $)) 53)) (-2325 (((-420 $) $) 82)) (-2585 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2976 (((-3 $ "failed") $ $) 48)) (-2840 (((-3 (-644 $) "failed") (-644 $) $) 56)) (-1383 (((-771) $) 64)) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) 63)) (-2479 (((-862) $) 12) (($ (-566)) 33) (($ $) 49) (($ (-409 (-566))) 74)) (-1558 (((-771)) 32 T CONST)) (-3900 (((-112) $ $) 9)) (-1333 (((-112) $ $) 45)) (-2446 (($) 19 T CONST)) (-2459 (($) 34 T CONST)) (-2952 (((-112) $ $) 6)) (-3077 (($ $ $) 73)) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 77)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ (-409 (-566))) 76) (($ (-409 (-566)) $) 75))) +(((-365) (-140)) (T -365)) +((-3077 (*1 *1 *1 *1) (-4 *1 (-365)))) +(-13 (-308) (-1218) (-243) (-10 -8 (-15 -3077 ($ $ $)) (-6 -4415) (-6 -4409))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-409 (-566))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-616 #0#) . T) ((-616 (-566)) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-454) . T) ((-558) . T) ((-646 #0#) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 #0#) . T) ((-648 $) . T) ((-640 #0#) . T) ((-640 $) . T) ((-717 #0#) . T) ((-717 $) . T) ((-726) . T) ((-920) . T) ((-1051 #0#) . T) ((-1051 $) . T) ((-1056 #0#) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1218) . T)) +((-2986 (((-112) $ $) 7)) (-2915 ((|#2| $ |#2|) 14)) (-2517 (($ $ (-1157)) 19)) (-2052 ((|#2| $) 15)) (-3516 (($ |#1|) 21) (($ |#1| (-1157)) 20)) (-2598 ((|#1| $) 17)) (-3151 (((-1157) $) 10)) (-3522 (((-1157) $) 16)) (-4059 (((-1119) $) 11)) (-2479 (((-862) $) 12)) (-2313 (($ $) 18)) (-3900 (((-112) $ $) 9)) (-2952 (((-112) $ $) 6))) +(((-366 |#1| |#2|) (-140) (-1099) (-1099)) (T -366)) +((-3516 (*1 *1 *2) (-12 (-4 *1 (-366 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099)))) (-3516 (*1 *1 *2 *3) (-12 (-5 *3 (-1157)) (-4 *1 (-366 *2 *4)) (-4 *2 (-1099)) (-4 *4 (-1099)))) (-2517 (*1 *1 *1 *2) (-12 (-5 *2 (-1157)) (-4 *1 (-366 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)))) (-2313 (*1 *1 *1) (-12 (-4 *1 (-366 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099)))) (-2598 (*1 *2 *1) (-12 (-4 *1 (-366 *2 *3)) (-4 *3 (-1099)) (-4 *2 (-1099)))) (-3522 (*1 *2 *1) (-12 (-4 *1 (-366 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-5 *2 (-1157)))) (-2052 (*1 *2 *1) (-12 (-4 *1 (-366 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1099)))) (-2915 (*1 *2 *1 *2) (-12 (-4 *1 (-366 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1099))))) +(-13 (-1099) (-10 -8 (-15 -3516 ($ |t#1|)) (-15 -3516 ($ |t#1| (-1157))) (-15 -2517 ($ $ (-1157))) (-15 -2313 ($ $)) (-15 -2598 (|t#1| $)) (-15 -3522 ((-1157) $)) (-15 -2052 (|t#2| $)) (-15 -2915 (|t#2| $ |t#2|)))) +(((-102) . T) ((-613 (-862)) . T) ((-1099) . T)) +((-2986 (((-112) $ $) NIL)) (-2915 ((|#1| $ |#1|) 31)) (-2517 (($ $ (-1157)) 23)) (-1640 (((-3 |#1| "failed") $) 30)) (-2052 ((|#1| $) 28)) (-3516 (($ (-390)) 22) (($ (-390) (-1157)) 21)) (-2598 (((-390) $) 25)) (-3151 (((-1157) $) NIL)) (-3522 (((-1157) $) 26)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) 20)) (-2313 (($ $) 24)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 19))) +(((-367 |#1|) (-13 (-366 (-390) |#1|) (-10 -8 (-15 -1640 ((-3 |#1| "failed") $)))) (-1099)) (T -367)) +((-1640 (*1 *2 *1) (|partial| -12 (-5 *1 (-367 *2)) (-4 *2 (-1099))))) +(-13 (-366 (-390) |#1|) (-10 -8 (-15 -1640 ((-3 |#1| "failed") $)))) +((-2603 (((-1264 (-689 |#2|)) (-1264 $)) 70)) (-4223 (((-689 |#2|) (-1264 $)) 141)) (-2935 ((|#2| $) 39)) (-3030 (((-689 |#2|) $ (-1264 $)) 144)) (-4347 (((-3 $ "failed") $) 91)) (-2190 ((|#2| $) 42)) (-3251 (((-1171 |#2|) $) 99)) (-1792 ((|#2| (-1264 $)) 124)) (-1973 (((-1171 |#2|) $) 34)) (-3156 (((-112)) 118)) (-2422 (($ (-1264 |#2|) (-1264 $)) 134)) (-3757 (((-3 $ "failed") $) 95)) (-2895 (((-112)) 112)) (-2751 (((-112)) 107)) (-2185 (((-112)) 61)) (-1434 (((-689 |#2|) (-1264 $)) 139)) (-1978 ((|#2| $) 38)) (-1390 (((-689 |#2|) $ (-1264 $)) 143)) (-4252 (((-3 $ "failed") $) 89)) (-1782 ((|#2| $) 41)) (-4066 (((-1171 |#2|) $) 98)) (-2659 ((|#2| (-1264 $)) 122)) (-2899 (((-1171 |#2|) $) 32)) (-3280 (((-112)) 117)) (-1698 (((-112)) 109)) (-2287 (((-112)) 59)) (-3093 (((-112)) 104)) (-3753 (((-112)) 119)) (-3747 (((-1264 |#2|) $ (-1264 $)) NIL) (((-689 |#2|) (-1264 $) (-1264 $)) 130)) (-3418 (((-112)) 115)) (-3170 (((-644 (-1264 |#2|))) 103)) (-1429 (((-112)) 116)) (-1478 (((-112)) 113)) (-3492 (((-112)) 54)) (-3893 (((-112)) 120))) +(((-368 |#1| |#2|) (-10 -8 (-15 -3251 ((-1171 |#2|) |#1|)) (-15 -4066 ((-1171 |#2|) |#1|)) (-15 -3170 ((-644 (-1264 |#2|)))) (-15 -4347 ((-3 |#1| "failed") |#1|)) (-15 -4252 ((-3 |#1| "failed") |#1|)) (-15 -3757 ((-3 |#1| "failed") |#1|)) (-15 -2751 ((-112))) (-15 -1698 ((-112))) (-15 -2895 ((-112))) (-15 -2287 ((-112))) (-15 -2185 ((-112))) (-15 -3093 ((-112))) (-15 -3893 ((-112))) (-15 -3753 ((-112))) (-15 -3156 ((-112))) (-15 -3280 ((-112))) (-15 -3492 ((-112))) (-15 -1429 ((-112))) (-15 -1478 ((-112))) (-15 -3418 ((-112))) (-15 -1973 ((-1171 |#2|) |#1|)) (-15 -2899 ((-1171 |#2|) |#1|)) (-15 -4223 ((-689 |#2|) (-1264 |#1|))) (-15 -1434 ((-689 |#2|) (-1264 |#1|))) (-15 -1792 (|#2| (-1264 |#1|))) (-15 -2659 (|#2| (-1264 |#1|))) (-15 -2422 (|#1| (-1264 |#2|) (-1264 |#1|))) (-15 -3747 ((-689 |#2|) (-1264 |#1|) (-1264 |#1|))) (-15 -3747 ((-1264 |#2|) |#1| (-1264 |#1|))) (-15 -2190 (|#2| |#1|)) (-15 -1782 (|#2| |#1|)) (-15 -2935 (|#2| |#1|)) (-15 -1978 (|#2| |#1|)) (-15 -3030 ((-689 |#2|) |#1| (-1264 |#1|))) (-15 -1390 ((-689 |#2|) |#1| (-1264 |#1|))) (-15 -2603 ((-1264 (-689 |#2|)) (-1264 |#1|)))) (-369 |#2|) (-172)) (T -368)) +((-3418 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-1478 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-1429 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-3492 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-3280 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-3156 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-3753 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-3893 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-3093 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-2185 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-2287 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-2895 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-1698 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-2751 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-3170 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-644 (-1264 *4))) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4))))) +(-10 -8 (-15 -3251 ((-1171 |#2|) |#1|)) (-15 -4066 ((-1171 |#2|) |#1|)) (-15 -3170 ((-644 (-1264 |#2|)))) (-15 -4347 ((-3 |#1| "failed") |#1|)) (-15 -4252 ((-3 |#1| "failed") |#1|)) (-15 -3757 ((-3 |#1| "failed") |#1|)) (-15 -2751 ((-112))) (-15 -1698 ((-112))) (-15 -2895 ((-112))) (-15 -2287 ((-112))) (-15 -2185 ((-112))) (-15 -3093 ((-112))) (-15 -3893 ((-112))) (-15 -3753 ((-112))) (-15 -3156 ((-112))) (-15 -3280 ((-112))) (-15 -3492 ((-112))) (-15 -1429 ((-112))) (-15 -1478 ((-112))) (-15 -3418 ((-112))) (-15 -1973 ((-1171 |#2|) |#1|)) (-15 -2899 ((-1171 |#2|) |#1|)) (-15 -4223 ((-689 |#2|) (-1264 |#1|))) (-15 -1434 ((-689 |#2|) (-1264 |#1|))) (-15 -1792 (|#2| (-1264 |#1|))) (-15 -2659 (|#2| (-1264 |#1|))) (-15 -2422 (|#1| (-1264 |#2|) (-1264 |#1|))) (-15 -3747 ((-689 |#2|) (-1264 |#1|) (-1264 |#1|))) (-15 -3747 ((-1264 |#2|) |#1| (-1264 |#1|))) (-15 -2190 (|#2| |#1|)) (-15 -1782 (|#2| |#1|)) (-15 -2935 (|#2| |#1|)) (-15 -1978 (|#2| |#1|)) (-15 -3030 ((-689 |#2|) |#1| (-1264 |#1|))) (-15 -1390 ((-689 |#2|) |#1| (-1264 |#1|))) (-15 -2603 ((-1264 (-689 |#2|)) (-1264 |#1|)))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-1732 (((-3 $ "failed")) 42 (|has| |#1| (-558)))) (-3174 (((-3 $ "failed") $ $) 20)) (-2603 (((-1264 (-689 |#1|)) (-1264 $)) 83)) (-3010 (((-1264 $)) 86)) (-1811 (($) 18 T CONST)) (-2738 (((-3 (-2 (|:| |particular| $) (|:| -1419 (-644 $))) "failed")) 45 (|has| |#1| (-558)))) (-1690 (((-3 $ "failed")) 43 (|has| |#1| (-558)))) (-4223 (((-689 |#1|) (-1264 $)) 70)) (-2935 ((|#1| $) 79)) (-3030 (((-689 |#1|) $ (-1264 $)) 81)) (-4347 (((-3 $ "failed") $) 50 (|has| |#1| (-558)))) (-4370 (($ $ (-921)) 31)) (-2190 ((|#1| $) 77)) (-3251 (((-1171 |#1|) $) 47 (|has| |#1| (-558)))) (-1792 ((|#1| (-1264 $)) 72)) (-1973 (((-1171 |#1|) $) 68)) (-3156 (((-112)) 62)) (-2422 (($ (-1264 |#1|) (-1264 $)) 74)) (-3757 (((-3 $ "failed") $) 52 (|has| |#1| (-558)))) (-2299 (((-921)) 85)) (-2116 (((-112)) 59)) (-1595 (($ $ (-921)) 38)) (-2895 (((-112)) 55)) (-2751 (((-112)) 53)) (-2185 (((-112)) 57)) (-2784 (((-3 (-2 (|:| |particular| $) (|:| -1419 (-644 $))) "failed")) 46 (|has| |#1| (-558)))) (-4320 (((-3 $ "failed")) 44 (|has| |#1| (-558)))) (-1434 (((-689 |#1|) (-1264 $)) 71)) (-1978 ((|#1| $) 80)) (-1390 (((-689 |#1|) $ (-1264 $)) 82)) (-4252 (((-3 $ "failed") $) 51 (|has| |#1| (-558)))) (-3681 (($ $ (-921)) 32)) (-1782 ((|#1| $) 78)) (-4066 (((-1171 |#1|) $) 48 (|has| |#1| (-558)))) (-2659 ((|#1| (-1264 $)) 73)) (-2899 (((-1171 |#1|) $) 69)) (-3280 (((-112)) 63)) (-3151 (((-1157) $) 10)) (-1698 (((-112)) 54)) (-2287 (((-112)) 56)) (-3093 (((-112)) 58)) (-4059 (((-1119) $) 11)) (-3753 (((-112)) 61)) (-3747 (((-1264 |#1|) $ (-1264 $)) 76) (((-689 |#1|) (-1264 $) (-1264 $)) 75)) (-2880 (((-644 (-952 |#1|)) (-1264 $)) 84)) (-3815 (($ $ $) 28)) (-3418 (((-112)) 67)) (-2479 (((-862) $) 12)) (-3900 (((-112) $ $) 9)) (-3170 (((-644 (-1264 |#1|))) 49 (|has| |#1| (-558)))) (-1469 (($ $ $ $) 29)) (-1429 (((-112)) 65)) (-1596 (($ $ $) 27)) (-1478 (((-112)) 66)) (-3492 (((-112)) 64)) (-3893 (((-112)) 60)) (-2446 (($) 19 T CONST)) (-2952 (((-112) $ $) 6)) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 33)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) +(((-369 |#1|) (-140) (-172)) (T -369)) +((-3010 (*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1264 *1)) (-4 *1 (-369 *3)))) (-2299 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-921)))) (-2880 (*1 *2 *3) (-12 (-5 *3 (-1264 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-644 (-952 *4))))) (-2603 (*1 *2 *3) (-12 (-5 *3 (-1264 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-1264 (-689 *4))))) (-1390 (*1 *2 *1 *3) (-12 (-5 *3 (-1264 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-689 *4)))) (-3030 (*1 *2 *1 *3) (-12 (-5 *3 (-1264 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-689 *4)))) (-1978 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-2935 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-1782 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-2190 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-3747 (*1 *2 *1 *3) (-12 (-5 *3 (-1264 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-1264 *4)))) (-3747 (*1 *2 *3 *3) (-12 (-5 *3 (-1264 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-689 *4)))) (-2422 (*1 *1 *2 *3) (-12 (-5 *2 (-1264 *4)) (-5 *3 (-1264 *1)) (-4 *4 (-172)) (-4 *1 (-369 *4)))) (-2659 (*1 *2 *3) (-12 (-5 *3 (-1264 *1)) (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-1792 (*1 *2 *3) (-12 (-5 *3 (-1264 *1)) (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-1434 (*1 *2 *3) (-12 (-5 *3 (-1264 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-689 *4)))) (-4223 (*1 *2 *3) (-12 (-5 *3 (-1264 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-689 *4)))) (-2899 (*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-1171 *3)))) (-1973 (*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-1171 *3)))) (-3418 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1478 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1429 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3492 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3280 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3156 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3753 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3893 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2116 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3093 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2185 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2287 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2895 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1698 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2751 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3757 (*1 *1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-558)))) (-4252 (*1 *1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-558)))) (-4347 (*1 *1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-558)))) (-3170 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-558)) (-5 *2 (-644 (-1264 *3))))) (-4066 (*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-558)) (-5 *2 (-1171 *3)))) (-3251 (*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-558)) (-5 *2 (-1171 *3)))) (-2784 (*1 *2) (|partial| -12 (-4 *3 (-558)) (-4 *3 (-172)) (-5 *2 (-2 (|:| |particular| *1) (|:| -1419 (-644 *1)))) (-4 *1 (-369 *3)))) (-2738 (*1 *2) (|partial| -12 (-4 *3 (-558)) (-4 *3 (-172)) (-5 *2 (-2 (|:| |particular| *1) (|:| -1419 (-644 *1)))) (-4 *1 (-369 *3)))) (-4320 (*1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-558)) (-4 *2 (-172)))) (-1690 (*1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-558)) (-4 *2 (-172)))) (-1732 (*1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-558)) (-4 *2 (-172))))) +(-13 (-744 |t#1|) (-10 -8 (-15 -3010 ((-1264 $))) (-15 -2299 ((-921))) (-15 -2880 ((-644 (-952 |t#1|)) (-1264 $))) (-15 -2603 ((-1264 (-689 |t#1|)) (-1264 $))) (-15 -1390 ((-689 |t#1|) $ (-1264 $))) (-15 -3030 ((-689 |t#1|) $ (-1264 $))) (-15 -1978 (|t#1| $)) (-15 -2935 (|t#1| $)) (-15 -1782 (|t#1| $)) (-15 -2190 (|t#1| $)) (-15 -3747 ((-1264 |t#1|) $ (-1264 $))) (-15 -3747 ((-689 |t#1|) (-1264 $) (-1264 $))) (-15 -2422 ($ (-1264 |t#1|) (-1264 $))) (-15 -2659 (|t#1| (-1264 $))) (-15 -1792 (|t#1| (-1264 $))) (-15 -1434 ((-689 |t#1|) (-1264 $))) (-15 -4223 ((-689 |t#1|) (-1264 $))) (-15 -2899 ((-1171 |t#1|) $)) (-15 -1973 ((-1171 |t#1|) $)) (-15 -3418 ((-112))) (-15 -1478 ((-112))) (-15 -1429 ((-112))) (-15 -3492 ((-112))) (-15 -3280 ((-112))) (-15 -3156 ((-112))) (-15 -3753 ((-112))) (-15 -3893 ((-112))) (-15 -2116 ((-112))) (-15 -3093 ((-112))) (-15 -2185 ((-112))) (-15 -2287 ((-112))) (-15 -2895 ((-112))) (-15 -1698 ((-112))) (-15 -2751 ((-112))) (IF (|has| |t#1| (-558)) (PROGN (-15 -3757 ((-3 $ "failed") $)) (-15 -4252 ((-3 $ "failed") $)) (-15 -4347 ((-3 $ "failed") $)) (-15 -3170 ((-644 (-1264 |t#1|)))) (-15 -4066 ((-1171 |t#1|) $)) (-15 -3251 ((-1171 |t#1|) $)) (-15 -2784 ((-3 (-2 (|:| |particular| $) (|:| -1419 (-644 $))) "failed"))) (-15 -2738 ((-3 (-2 (|:| |particular| $) (|:| -1419 (-644 $))) "failed"))) (-15 -4320 ((-3 $ "failed"))) (-15 -1690 ((-3 $ "failed"))) (-15 -1732 ((-3 $ "failed"))) (-6 -4414)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-648 |#1|) . T) ((-640 |#1|) . T) ((-717 |#1|) . T) ((-720) . T) ((-744 |#1|) . T) ((-761) . T) ((-1051 |#1|) . T) ((-1056 |#1|) . T) ((-1099) . T)) +((-2986 (((-112) $ $) 7)) (-4049 (((-771)) 17)) (-1415 (($) 14)) (-4051 (((-921) $) 15)) (-3151 (((-1157) $) 10)) (-2104 (($ (-921)) 16)) (-4059 (((-1119) $) 11)) (-2479 (((-862) $) 12)) (-3900 (((-112) $ $) 9)) (-2952 (((-112) $ $) 6))) +(((-370) (-140)) (T -370)) +((-4049 (*1 *2) (-12 (-4 *1 (-370)) (-5 *2 (-771)))) (-2104 (*1 *1 *2) (-12 (-5 *2 (-921)) (-4 *1 (-370)))) (-4051 (*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-921)))) (-1415 (*1 *1) (-4 *1 (-370)))) +(-13 (-1099) (-10 -8 (-15 -4049 ((-771))) (-15 -2104 ($ (-921))) (-15 -4051 ((-921) $)) (-15 -1415 ($)))) +(((-102) . T) ((-613 (-862)) . T) ((-1099) . T)) +((-1321 (((-689 |#2|) (-1264 $)) 47)) (-2422 (($ (-1264 |#2|) (-1264 $)) 41)) (-2087 (((-689 |#2|) $ (-1264 $)) 49)) (-3553 ((|#2| (-1264 $)) 13)) (-3747 (((-1264 |#2|) $ (-1264 $)) NIL) (((-689 |#2|) (-1264 $) (-1264 $)) 27))) +(((-371 |#1| |#2| |#3|) (-10 -8 (-15 -1321 ((-689 |#2|) (-1264 |#1|))) (-15 -3553 (|#2| (-1264 |#1|))) (-15 -2422 (|#1| (-1264 |#2|) (-1264 |#1|))) (-15 -3747 ((-689 |#2|) (-1264 |#1|) (-1264 |#1|))) (-15 -3747 ((-1264 |#2|) |#1| (-1264 |#1|))) (-15 -2087 ((-689 |#2|) |#1| (-1264 |#1|)))) (-372 |#2| |#3|) (-172) (-1240 |#2|)) (T -371)) +NIL +(-10 -8 (-15 -1321 ((-689 |#2|) (-1264 |#1|))) (-15 -3553 (|#2| (-1264 |#1|))) (-15 -2422 (|#1| (-1264 |#2|) (-1264 |#1|))) (-15 -3747 ((-689 |#2|) (-1264 |#1|) (-1264 |#1|))) (-15 -3747 ((-1264 |#2|) |#1| (-1264 |#1|))) (-15 -2087 ((-689 |#2|) |#1| (-1264 |#1|)))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-1321 (((-689 |#1|) (-1264 $)) 53)) (-3837 ((|#1| $) 59)) (-3174 (((-3 $ "failed") $ $) 20)) (-1811 (($) 18 T CONST)) (-2422 (($ (-1264 |#1|) (-1264 $)) 55)) (-2087 (((-689 |#1|) $ (-1264 $)) 60)) (-3757 (((-3 $ "failed") $) 37)) (-2299 (((-921)) 61)) (-2264 (((-112) $) 35)) (-1398 ((|#1| $) 58)) (-1869 ((|#2| $) 51 (|has| |#1| (-365)))) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-3553 ((|#1| (-1264 $)) 54)) (-3747 (((-1264 |#1|) $ (-1264 $)) 57) (((-689 |#1|) (-1264 $) (-1264 $)) 56)) (-2479 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 44)) (-2645 (((-3 $ "failed") $) 50 (|has| |#1| (-145)))) (-3728 ((|#2| $) 52)) (-1558 (((-771)) 32 T CONST)) (-3900 (((-112) $ $) 9)) (-2446 (($) 19 T CONST)) (-2459 (($) 34 T CONST)) (-2952 (((-112) $ $) 6)) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) +(((-372 |#1| |#2|) (-140) (-172) (-1240 |t#1|)) (T -372)) +((-2299 (*1 *2) (-12 (-4 *1 (-372 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1240 *3)) (-5 *2 (-921)))) (-2087 (*1 *2 *1 *3) (-12 (-5 *3 (-1264 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1240 *4)) (-5 *2 (-689 *4)))) (-3837 (*1 *2 *1) (-12 (-4 *1 (-372 *2 *3)) (-4 *3 (-1240 *2)) (-4 *2 (-172)))) (-1398 (*1 *2 *1) (-12 (-4 *1 (-372 *2 *3)) (-4 *3 (-1240 *2)) (-4 *2 (-172)))) (-3747 (*1 *2 *1 *3) (-12 (-5 *3 (-1264 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1240 *4)) (-5 *2 (-1264 *4)))) (-3747 (*1 *2 *3 *3) (-12 (-5 *3 (-1264 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1240 *4)) (-5 *2 (-689 *4)))) (-2422 (*1 *1 *2 *3) (-12 (-5 *2 (-1264 *4)) (-5 *3 (-1264 *1)) (-4 *4 (-172)) (-4 *1 (-372 *4 *5)) (-4 *5 (-1240 *4)))) (-3553 (*1 *2 *3) (-12 (-5 *3 (-1264 *1)) (-4 *1 (-372 *2 *4)) (-4 *4 (-1240 *2)) (-4 *2 (-172)))) (-1321 (*1 *2 *3) (-12 (-5 *3 (-1264 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1240 *4)) (-5 *2 (-689 *4)))) (-3728 (*1 *2 *1) (-12 (-4 *1 (-372 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1240 *3)))) (-1869 (*1 *2 *1) (-12 (-4 *1 (-372 *3 *2)) (-4 *3 (-172)) (-4 *3 (-365)) (-4 *2 (-1240 *3))))) +(-13 (-38 |t#1|) (-10 -8 (-15 -2299 ((-921))) (-15 -2087 ((-689 |t#1|) $ (-1264 $))) (-15 -3837 (|t#1| $)) (-15 -1398 (|t#1| $)) (-15 -3747 ((-1264 |t#1|) $ (-1264 $))) (-15 -3747 ((-689 |t#1|) (-1264 $) (-1264 $))) (-15 -2422 ($ (-1264 |t#1|) (-1264 $))) (-15 -3553 (|t#1| (-1264 $))) (-15 -1321 ((-689 |t#1|) (-1264 $))) (-15 -3728 (|t#2| $)) (IF (|has| |t#1| (-365)) (-15 -1869 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 (-566)) . T) ((-616 |#1|) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-640 |#1|) . T) ((-717 |#1|) . T) ((-726) . T) ((-1051 |#1|) . T) ((-1056 |#1|) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) +((-2531 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25)) (-1838 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17)) (-3080 ((|#4| (-1 |#3| |#1|) |#2|) 23))) +(((-373 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3080 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1838 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2531 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1214) (-375 |#1|) (-1214) (-375 |#3|)) (T -373)) +((-2531 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1214)) (-4 *5 (-1214)) (-4 *2 (-375 *5)) (-5 *1 (-373 *6 *4 *5 *2)) (-4 *4 (-375 *6)))) (-1838 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1214)) (-4 *2 (-1214)) (-5 *1 (-373 *5 *4 *2 *6)) (-4 *4 (-375 *5)) (-4 *6 (-375 *2)))) (-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1214)) (-4 *6 (-1214)) (-4 *2 (-375 *6)) (-5 *1 (-373 *5 *4 *6 *2)) (-4 *4 (-375 *5))))) +(-10 -7 (-15 -3080 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1838 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2531 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-4163 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-2893 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-1374 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-3877 (($ $) 25)) (-4000 (((-566) (-1 (-112) |#2|) $) NIL) (((-566) |#2| $) 11) (((-566) |#2| $ (-566)) NIL)) (-1330 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20))) +(((-374 |#1| |#2|) (-10 -8 (-15 -2893 (|#1| |#1|)) (-15 -2893 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4163 ((-112) |#1|)) (-15 -1374 (|#1| |#1|)) (-15 -1330 (|#1| |#1| |#1|)) (-15 -4000 ((-566) |#2| |#1| (-566))) (-15 -4000 ((-566) |#2| |#1|)) (-15 -4000 ((-566) (-1 (-112) |#2|) |#1|)) (-15 -4163 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1374 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3877 (|#1| |#1|)) (-15 -1330 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-375 |#2|) (-1214)) (T -374)) +NIL +(-10 -8 (-15 -2893 (|#1| |#1|)) (-15 -2893 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4163 ((-112) |#1|)) (-15 -1374 (|#1| |#1|)) (-15 -1330 (|#1| |#1| |#1|)) (-15 -4000 ((-566) |#2| |#1| (-566))) (-15 -4000 ((-566) |#2| |#1|)) (-15 -4000 ((-566) (-1 (-112) |#2|) |#1|)) (-15 -4163 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1374 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3877 (|#1| |#1|)) (-15 -1330 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) +((-2986 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2462 (((-1269) $ (-566) (-566)) 41 (|has| $ (-6 -4418)))) (-4163 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-850)))) (-2893 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4418))) (($ $) 89 (-12 (|has| |#1| (-850)) (|has| $ (-6 -4418))))) (-1374 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-850)))) (-1453 (((-112) $ (-771)) 8)) (-3901 ((|#1| $ (-566) |#1|) 53 (|has| $ (-6 -4418))) ((|#1| $ (-1231 (-566)) |#1|) 59 (|has| $ (-6 -4418)))) (-3543 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4417)))) (-1811 (($) 7 T CONST)) (-2273 (($ $) 91 (|has| $ (-6 -4418)))) (-3877 (($ $) 101)) (-4111 (($ $) 79 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-2628 (($ |#1| $) 78 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4417)))) (-1838 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4417)))) (-3719 ((|#1| $ (-566) |#1|) 54 (|has| $ (-6 -4418)))) (-3653 ((|#1| $ (-566)) 52)) (-4000 (((-566) (-1 (-112) |#1|) $) 98) (((-566) |#1| $) 97 (|has| |#1| (-1099))) (((-566) |#1| $ (-566)) 96 (|has| |#1| (-1099)))) (-3872 (((-644 |#1|) $) 31 (|has| $ (-6 -4417)))) (-4259 (($ (-771) |#1|) 70)) (-2756 (((-112) $ (-771)) 9)) (-2755 (((-566) $) 44 (|has| (-566) (-850)))) (-1920 (($ $ $) 88 (|has| |#1| (-850)))) (-1330 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-850)))) (-4227 (((-644 |#1|) $) 30 (|has| $ (-6 -4417)))) (-1688 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-3831 (((-566) $) 45 (|has| (-566) (-850)))) (-3038 (($ $ $) 87 (|has| |#1| (-850)))) (-3708 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4106 (((-112) $ (-771)) 10)) (-3151 (((-1157) $) 22 (|has| |#1| (-1099)))) (-4271 (($ |#1| $ (-566)) 61) (($ $ $ (-566)) 60)) (-3780 (((-644 (-566)) $) 47)) (-1605 (((-112) (-566) $) 48)) (-4059 (((-1119) $) 21 (|has| |#1| (-1099)))) (-4080 ((|#1| $) 43 (|has| (-566) (-850)))) (-2688 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-4079 (($ $ |#1|) 42 (|has| $ (-6 -4418)))) (-3966 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1844 (((-112) $ $) 14)) (-2210 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-4185 (((-644 |#1|) $) 49)) (-2788 (((-112) $) 11)) (-1737 (($) 12)) (-4376 ((|#1| $ (-566) |#1|) 51) ((|#1| $ (-566)) 50) (($ $ (-1231 (-566))) 64)) (-2139 (($ $ (-566)) 63) (($ $ (-1231 (-566))) 62)) (-4068 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4417))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-1438 (($ $ $ (-566)) 92 (|has| $ (-6 -4418)))) (-3924 (($ $) 13)) (-3136 (((-538) $) 80 (|has| |#1| (-614 (-538))))) (-2489 (($ (-644 |#1|)) 71)) (-3716 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-644 $)) 66)) (-2479 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-3900 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-3667 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4417)))) (-3019 (((-112) $ $) 85 (|has| |#1| (-850)))) (-2990 (((-112) $ $) 84 (|has| |#1| (-850)))) (-2952 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3004 (((-112) $ $) 86 (|has| |#1| (-850)))) (-2977 (((-112) $ $) 83 (|has| |#1| (-850)))) (-3002 (((-771) $) 6 (|has| $ (-6 -4417))))) +(((-375 |#1|) (-140) (-1214)) (T -375)) +((-1330 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-375 *3)) (-4 *3 (-1214)))) (-3877 (*1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1214)))) (-1374 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-375 *3)) (-4 *3 (-1214)))) (-4163 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-375 *4)) (-4 *4 (-1214)) (-5 *2 (-112)))) (-4000 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-375 *4)) (-4 *4 (-1214)) (-5 *2 (-566)))) (-4000 (*1 *2 *3 *1) (-12 (-4 *1 (-375 *3)) (-4 *3 (-1214)) (-4 *3 (-1099)) (-5 *2 (-566)))) (-4000 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-375 *3)) (-4 *3 (-1214)) (-4 *3 (-1099)))) (-1330 (*1 *1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1214)) (-4 *2 (-850)))) (-1374 (*1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1214)) (-4 *2 (-850)))) (-4163 (*1 *2 *1) (-12 (-4 *1 (-375 *3)) (-4 *3 (-1214)) (-4 *3 (-850)) (-5 *2 (-112)))) (-1438 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-566)) (|has| *1 (-6 -4418)) (-4 *1 (-375 *3)) (-4 *3 (-1214)))) (-2273 (*1 *1 *1) (-12 (|has| *1 (-6 -4418)) (-4 *1 (-375 *2)) (-4 *2 (-1214)))) (-2893 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4418)) (-4 *1 (-375 *3)) (-4 *3 (-1214)))) (-2893 (*1 *1 *1) (-12 (|has| *1 (-6 -4418)) (-4 *1 (-375 *2)) (-4 *2 (-1214)) (-4 *2 (-850))))) +(-13 (-651 |t#1|) (-10 -8 (-6 -4417) (-15 -1330 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -3877 ($ $)) (-15 -1374 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -4163 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -4000 ((-566) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1099)) (PROGN (-15 -4000 ((-566) |t#1| $)) (-15 -4000 ((-566) |t#1| $ (-566)))) |%noBranch|) (IF (|has| |t#1| (-850)) (PROGN (-6 (-850)) (-15 -1330 ($ $ $)) (-15 -1374 ($ $)) (-15 -4163 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4418)) (PROGN (-15 -1438 ($ $ $ (-566))) (-15 -2273 ($ $)) (-15 -2893 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-850)) (-15 -2893 ($ $)) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-102) -2809 (|has| |#1| (-1099)) (|has| |#1| (-850))) ((-613 (-862)) -2809 (|has| |#1| (-1099)) (|has| |#1| (-850)) (|has| |#1| (-613 (-862)))) ((-151 |#1|) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-287 #0=(-566) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-604 #0# |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-651 |#1|) . T) ((-850) |has| |#1| (-850)) ((-1099) -2809 (|has| |#1| (-1099)) (|has| |#1| (-850))) ((-1214) . T)) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-1656 (((-644 |#1|) $) 37)) (-3475 (($ $ (-771)) 38)) (-3174 (((-3 $ "failed") $ $) 20)) (-1811 (($) 18 T CONST)) (-3506 (((-1288 |#1| |#2|) (-1288 |#1| |#2|) $) 41)) (-3768 (($ $) 39)) (-4087 (((-1288 |#1| |#2|) (-1288 |#1| |#2|) $) 42)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-3297 (($ $ |#1| $) 36) (($ $ (-644 |#1|) (-644 $)) 35)) (-1630 (((-771) $) 43)) (-2489 (($ $ $) 34)) (-2479 (((-862) $) 12) (($ |#1|) 46) (((-1279 |#1| |#2|) $) 45) (((-1288 |#1| |#2|) $) 44)) (-3103 ((|#2| (-1288 |#1| |#2|) $) 47)) (-3900 (((-112) $ $) 9)) (-2446 (($) 19 T CONST)) (-3180 (($ (-672 |#1|)) 40)) (-2952 (((-112) $ $) 6)) (-3077 (($ $ |#2|) 33 (|has| |#2| (-365)))) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ |#2| $) 27) (($ $ |#2|) 31))) +(((-376 |#1| |#2|) (-140) (-850) (-172)) (T -376)) +((-3103 (*1 *2 *3 *1) (-12 (-5 *3 (-1288 *4 *2)) (-4 *1 (-376 *4 *2)) (-4 *4 (-850)) (-4 *2 (-172)))) (-2479 (*1 *1 *2) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-850)) (-4 *3 (-172)))) (-2479 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)) (-5 *2 (-1279 *3 *4)))) (-2479 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)) (-5 *2 (-1288 *3 *4)))) (-1630 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)) (-5 *2 (-771)))) (-4087 (*1 *2 *2 *1) (-12 (-5 *2 (-1288 *3 *4)) (-4 *1 (-376 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)))) (-3506 (*1 *2 *2 *1) (-12 (-5 *2 (-1288 *3 *4)) (-4 *1 (-376 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)))) (-3180 (*1 *1 *2) (-12 (-5 *2 (-672 *3)) (-4 *3 (-850)) (-4 *1 (-376 *3 *4)) (-4 *4 (-172)))) (-3768 (*1 *1 *1) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-850)) (-4 *3 (-172)))) (-3475 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-376 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)))) (-1656 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)) (-5 *2 (-644 *3)))) (-3297 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-850)) (-4 *3 (-172)))) (-3297 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 *4)) (-5 *3 (-644 *1)) (-4 *1 (-376 *4 *5)) (-4 *4 (-850)) (-4 *5 (-172))))) +(-13 (-634 |t#2|) (-10 -8 (-15 -3103 (|t#2| (-1288 |t#1| |t#2|) $)) (-15 -2479 ($ |t#1|)) (-15 -2479 ((-1279 |t#1| |t#2|) $)) (-15 -2479 ((-1288 |t#1| |t#2|) $)) (-15 -1630 ((-771) $)) (-15 -4087 ((-1288 |t#1| |t#2|) (-1288 |t#1| |t#2|) $)) (-15 -3506 ((-1288 |t#1| |t#2|) (-1288 |t#1| |t#2|) $)) (-15 -3180 ($ (-672 |t#1|))) (-15 -3768 ($ $)) (-15 -3475 ($ $ (-771))) (-15 -1656 ((-644 |t#1|) $)) (-15 -3297 ($ $ |t#1| $)) (-15 -3297 ($ $ (-644 |t#1|) (-644 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 |#2|) . T) ((-648 |#2|) . T) ((-634 |#2|) . T) ((-640 |#2|) . T) ((-717 |#2|) . T) ((-1051 |#2|) . T) ((-1056 |#2|) . T) ((-1099) . T)) +((-2948 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 44)) (-3931 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-3415 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 35))) +(((-377 |#1| |#2|) (-10 -7 (-15 -3931 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3415 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2948 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1214) (-13 (-375 |#1|) (-10 -7 (-6 -4418)))) (T -377)) +((-2948 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1214)) (-5 *1 (-377 *4 *2)) (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4418)))))) (-3415 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1214)) (-5 *1 (-377 *4 *2)) (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4418)))))) (-3931 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1214)) (-5 *1 (-377 *4 *2)) (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4418))))))) +(-10 -7 (-15 -3931 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3415 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2948 (|#2| (-1 (-112) |#1| |#1|) |#2|))) +((-2275 (((-689 |#2|) (-689 $)) NIL) (((-2 (|:| -4196 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 $) (-1264 $)) NIL) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) 22) (((-689 (-566)) (-689 $)) 14))) +(((-378 |#1| |#2|) (-10 -8 (-15 -2275 ((-689 (-566)) (-689 |#1|))) (-15 -2275 ((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 |#1|) (-1264 |#1|))) (-15 -2275 ((-2 (|:| -4196 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 |#1|) (-1264 |#1|))) (-15 -2275 ((-689 |#2|) (-689 |#1|)))) (-379 |#2|) (-1049)) (T -378)) +NIL +(-10 -8 (-15 -2275 ((-689 (-566)) (-689 |#1|))) (-15 -2275 ((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 |#1|) (-1264 |#1|))) (-15 -2275 ((-2 (|:| -4196 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 |#1|) (-1264 |#1|))) (-15 -2275 ((-689 |#2|) (-689 |#1|)))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-3174 (((-3 $ "failed") $ $) 20)) (-1811 (($) 18 T CONST)) (-2275 (((-689 |#1|) (-689 $)) 40) (((-2 (|:| -4196 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) 39) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) 47 (|has| |#1| (-639 (-566)))) (((-689 (-566)) (-689 $)) 46 (|has| |#1| (-639 (-566))))) (-3757 (((-3 $ "failed") $) 37)) (-2264 (((-112) $) 35)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-2479 (((-862) $) 12) (($ (-566)) 33)) (-1558 (((-771)) 32 T CONST)) (-3900 (((-112) $ $) 9)) (-2446 (($) 19 T CONST)) (-2459 (($) 34 T CONST)) (-2952 (((-112) $ $) 6)) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27))) +(((-379 |#1|) (-140) (-1049)) (T -379)) +NIL +(-13 (-639 |t#1|) (-10 -7 (IF (|has| |t#1| (-639 (-566))) (-6 (-639 (-566))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-616 (-566)) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 $) . T) ((-639 (-566)) |has| |#1| (-639 (-566))) ((-639 |#1|) . T) ((-726) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) +((-2363 (((-644 (-295 (-952 (-169 |#1|)))) (-295 (-409 (-952 (-169 (-566))))) |#1|) 51) (((-644 (-295 (-952 (-169 |#1|)))) (-409 (-952 (-169 (-566)))) |#1|) 50) (((-644 (-644 (-295 (-952 (-169 |#1|))))) (-644 (-295 (-409 (-952 (-169 (-566)))))) |#1|) 47) (((-644 (-644 (-295 (-952 (-169 |#1|))))) (-644 (-409 (-952 (-169 (-566))))) |#1|) 41)) (-4324 (((-644 (-644 (-169 |#1|))) (-644 (-409 (-952 (-169 (-566))))) (-644 (-1175)) |#1|) 30) (((-644 (-169 |#1|)) (-409 (-952 (-169 (-566)))) |#1|) 18))) +(((-380 |#1|) (-10 -7 (-15 -2363 ((-644 (-644 (-295 (-952 (-169 |#1|))))) (-644 (-409 (-952 (-169 (-566))))) |#1|)) (-15 -2363 ((-644 (-644 (-295 (-952 (-169 |#1|))))) (-644 (-295 (-409 (-952 (-169 (-566)))))) |#1|)) (-15 -2363 ((-644 (-295 (-952 (-169 |#1|)))) (-409 (-952 (-169 (-566)))) |#1|)) (-15 -2363 ((-644 (-295 (-952 (-169 |#1|)))) (-295 (-409 (-952 (-169 (-566))))) |#1|)) (-15 -4324 ((-644 (-169 |#1|)) (-409 (-952 (-169 (-566)))) |#1|)) (-15 -4324 ((-644 (-644 (-169 |#1|))) (-644 (-409 (-952 (-169 (-566))))) (-644 (-1175)) |#1|))) (-13 (-365) (-848))) (T -380)) +((-4324 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-644 (-409 (-952 (-169 (-566)))))) (-5 *4 (-644 (-1175))) (-5 *2 (-644 (-644 (-169 *5)))) (-5 *1 (-380 *5)) (-4 *5 (-13 (-365) (-848))))) (-4324 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-952 (-169 (-566))))) (-5 *2 (-644 (-169 *4))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-848))))) (-2363 (*1 *2 *3 *4) (-12 (-5 *3 (-295 (-409 (-952 (-169 (-566)))))) (-5 *2 (-644 (-295 (-952 (-169 *4))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-848))))) (-2363 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-952 (-169 (-566))))) (-5 *2 (-644 (-295 (-952 (-169 *4))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-848))))) (-2363 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-295 (-409 (-952 (-169 (-566))))))) (-5 *2 (-644 (-644 (-295 (-952 (-169 *4)))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-848))))) (-2363 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-409 (-952 (-169 (-566)))))) (-5 *2 (-644 (-644 (-295 (-952 (-169 *4)))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-848)))))) +(-10 -7 (-15 -2363 ((-644 (-644 (-295 (-952 (-169 |#1|))))) (-644 (-409 (-952 (-169 (-566))))) |#1|)) (-15 -2363 ((-644 (-644 (-295 (-952 (-169 |#1|))))) (-644 (-295 (-409 (-952 (-169 (-566)))))) |#1|)) (-15 -2363 ((-644 (-295 (-952 (-169 |#1|)))) (-409 (-952 (-169 (-566)))) |#1|)) (-15 -2363 ((-644 (-295 (-952 (-169 |#1|)))) (-295 (-409 (-952 (-169 (-566))))) |#1|)) (-15 -4324 ((-644 (-169 |#1|)) (-409 (-952 (-169 (-566)))) |#1|)) (-15 -4324 ((-644 (-644 (-169 |#1|))) (-644 (-409 (-952 (-169 (-566))))) (-644 (-1175)) |#1|))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) 35)) (-2488 (((-566) $) 62)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-1716 (((-112) $) NIL)) (-3175 (($ $) 144)) (-3219 (($ $) 107)) (-3091 (($ $) 94)) (-3174 (((-3 $ "failed") $ $) NIL)) (-3980 (($ $) NIL)) (-3348 (((-420 $) $) NIL)) (-2338 (($ $) 47)) (-2761 (((-112) $ $) NIL)) (-3197 (($ $) 105)) (-3067 (($ $) 88)) (-2920 (((-566) $) 81)) (-3099 (($ $ (-566)) 76)) (-3240 (($ $) NIL)) (-3115 (($ $) NIL)) (-1811 (($) NIL T CONST)) (-1505 (($ $) 146)) (-2980 (((-3 (-566) "failed") $) 242) (((-3 (-409 (-566)) "failed") $) 238)) (-1709 (((-566) $) 240) (((-409 (-566)) $) 236)) (-2925 (($ $ $) NIL)) (-1594 (((-566) $ $) 133)) (-3757 (((-3 $ "failed") $) 149)) (-2647 (((-409 (-566)) $ (-771)) 243) (((-409 (-566)) $ (-771) (-771)) 235)) (-2937 (($ $ $) NIL)) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) NIL)) (-4188 (((-112) $) NIL)) (-4039 (((-921)) 96) (((-921) (-921)) 129 (|has| $ (-6 -4408)))) (-2133 (((-112) $) 138)) (-2964 (($) 41)) (-1542 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL)) (-1506 (((-1269) (-771)) 201)) (-2197 (((-1269)) 206) (((-1269) (-771)) 207)) (-4266 (((-1269)) 208) (((-1269) (-771)) 209)) (-2621 (((-1269)) 204) (((-1269) (-771)) 205)) (-1802 (((-566) $) 69)) (-2264 (((-112) $) 40)) (-3146 (($ $ (-566)) NIL)) (-2172 (($ $) 51)) (-1398 (($ $) NIL)) (-3420 (((-112) $) 37)) (-2495 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1920 (($ $ $) NIL) (($) NIL (-12 (-2387 (|has| $ (-6 -4400))) (-2387 (|has| $ (-6 -4408)))))) (-3038 (($ $ $) NIL) (($) 130 (-12 (-2387 (|has| $ (-6 -4400))) (-2387 (|has| $ (-6 -4408)))))) (-1687 (((-566) $) 17)) (-2862 (($) 115) (($ $) 121)) (-2296 (($) 120) (($ $) 122)) (-3676 (($ $) 110)) (-2120 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3151 (((-1157) $) NIL)) (-2577 (($ $) 151)) (-4148 (((-921) (-566)) 46 (|has| $ (-6 -4408)))) (-4059 (((-1119) $) NIL)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2162 (($ $ $) NIL) (($ (-644 $)) NIL)) (-4305 (($ $) 60)) (-2001 (($ $) 143)) (-2965 (($ (-566) (-566)) 139) (($ (-566) (-566) (-921)) 140)) (-2325 (((-420 $) $) NIL)) (-2585 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2976 (((-3 $ "failed") $ $) NIL)) (-2840 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3631 (((-566) $) 19)) (-2439 (($) 123)) (-3571 (($ $) 104)) (-1383 (((-771) $) NIL)) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL)) (-3378 (((-921)) 131) (((-921) (-921)) 132 (|has| $ (-6 -4408)))) (-3526 (($ $ (-771)) NIL) (($ $) 150)) (-1999 (((-921) (-566)) 50 (|has| $ (-6 -4408)))) (-3250 (($ $) NIL)) (-3126 (($ $) NIL)) (-3227 (($ $) NIL)) (-3105 (($ $) NIL)) (-3207 (($ $) 106)) (-3079 (($ $) 93)) (-3136 (((-381) $) 229) (((-225) $) 230) (((-892 (-381)) $) NIL) (((-1157) $) 212) (((-538) $) 227) (($ (-225)) 234)) (-2479 (((-862) $) 216) (($ (-566)) 239) (($ $) NIL) (($ (-409 (-566))) NIL) (($ (-566)) 239) (($ (-409 (-566))) NIL) (((-225) $) 231)) (-1558 (((-771)) NIL T CONST)) (-3908 (($ $) 145)) (-3143 (((-921)) 61) (((-921) (-921)) 83 (|has| $ (-6 -4408)))) (-3900 (((-112) $ $) NIL)) (-3810 (((-921)) 134)) (-3285 (($ $) 113)) (-3157 (($ $) 49) (($ $ $) 59)) (-1333 (((-112) $ $) NIL)) (-3260 (($ $) 111)) (-3135 (($ $) 39)) (-3309 (($ $) NIL)) (-3179 (($ $) NIL)) (-1861 (($ $) NIL)) (-3190 (($ $) NIL)) (-3299 (($ $) NIL)) (-3168 (($ $) NIL)) (-3273 (($ $) 112)) (-3148 (($ $) 52)) (-4298 (($ $) 58)) (-2446 (($) 36 T CONST)) (-2459 (($) 43 T CONST)) (-2835 (((-1157) $) 27) (((-1157) $ (-112)) 29) (((-1269) (-822) $) 30) (((-1269) (-822) $ (-112)) 31)) (-2834 (($ $ (-771)) NIL) (($ $) NIL)) (-3019 (((-112) $ $) 213)) (-2990 (((-112) $ $) 45)) (-2952 (((-112) $ $) 56)) (-3004 (((-112) $ $) NIL)) (-2977 (((-112) $ $) 57)) (-3077 (($ $ $) 48) (($ $ (-566)) 42)) (-3065 (($ $) 38) (($ $ $) 53)) (-3052 (($ $ $) 75)) (** (($ $ (-921)) 86) (($ $ (-771)) NIL) (($ $ (-566)) 116) (($ $ (-409 (-566))) 162) (($ $ $) 153)) (* (($ (-921) $) 82) (($ (-771) $) NIL) (($ (-566) $) 87) (($ $ $) 74) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL))) +(((-381) (-13 (-406) (-233) (-614 (-1157)) (-828) (-613 (-225)) (-1199) (-614 (-538)) (-618 (-225)) (-10 -8 (-15 -3077 ($ $ (-566))) (-15 ** ($ $ $)) (-15 -2172 ($ $)) (-15 -1594 ((-566) $ $)) (-15 -3099 ($ $ (-566))) (-15 -2647 ((-409 (-566)) $ (-771))) (-15 -2647 ((-409 (-566)) $ (-771) (-771))) (-15 -2862 ($)) (-15 -2296 ($)) (-15 -2439 ($)) (-15 -3157 ($ $ $)) (-15 -2862 ($ $)) (-15 -2296 ($ $)) (-15 -4266 ((-1269))) (-15 -4266 ((-1269) (-771))) (-15 -2621 ((-1269))) (-15 -2621 ((-1269) (-771))) (-15 -2197 ((-1269))) (-15 -2197 ((-1269) (-771))) (-15 -1506 ((-1269) (-771))) (-6 -4408) (-6 -4400)))) (T -381)) +((** (*1 *1 *1 *1) (-5 *1 (-381))) (-3077 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-381)))) (-2172 (*1 *1 *1) (-5 *1 (-381))) (-1594 (*1 *2 *1 *1) (-12 (-5 *2 (-566)) (-5 *1 (-381)))) (-3099 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-381)))) (-2647 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-5 *2 (-409 (-566))) (-5 *1 (-381)))) (-2647 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-771)) (-5 *2 (-409 (-566))) (-5 *1 (-381)))) (-2862 (*1 *1) (-5 *1 (-381))) (-2296 (*1 *1) (-5 *1 (-381))) (-2439 (*1 *1) (-5 *1 (-381))) (-3157 (*1 *1 *1 *1) (-5 *1 (-381))) (-2862 (*1 *1 *1) (-5 *1 (-381))) (-2296 (*1 *1 *1) (-5 *1 (-381))) (-4266 (*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-381)))) (-4266 (*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1269)) (-5 *1 (-381)))) (-2621 (*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-381)))) (-2621 (*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1269)) (-5 *1 (-381)))) (-2197 (*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-381)))) (-2197 (*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1269)) (-5 *1 (-381)))) (-1506 (*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1269)) (-5 *1 (-381))))) +(-13 (-406) (-233) (-614 (-1157)) (-828) (-613 (-225)) (-1199) (-614 (-538)) (-618 (-225)) (-10 -8 (-15 -3077 ($ $ (-566))) (-15 ** ($ $ $)) (-15 -2172 ($ $)) (-15 -1594 ((-566) $ $)) (-15 -3099 ($ $ (-566))) (-15 -2647 ((-409 (-566)) $ (-771))) (-15 -2647 ((-409 (-566)) $ (-771) (-771))) (-15 -2862 ($)) (-15 -2296 ($)) (-15 -2439 ($)) (-15 -3157 ($ $ $)) (-15 -2862 ($ $)) (-15 -2296 ($ $)) (-15 -4266 ((-1269))) (-15 -4266 ((-1269) (-771))) (-15 -2621 ((-1269))) (-15 -2621 ((-1269) (-771))) (-15 -2197 ((-1269))) (-15 -2197 ((-1269) (-771))) (-15 -1506 ((-1269) (-771))) (-6 -4408) (-6 -4400))) +((-1916 (((-644 (-295 (-952 |#1|))) (-295 (-409 (-952 (-566)))) |#1|) 46) (((-644 (-295 (-952 |#1|))) (-409 (-952 (-566))) |#1|) 45) (((-644 (-644 (-295 (-952 |#1|)))) (-644 (-295 (-409 (-952 (-566))))) |#1|) 42) (((-644 (-644 (-295 (-952 |#1|)))) (-644 (-409 (-952 (-566)))) |#1|) 36)) (-2442 (((-644 |#1|) (-409 (-952 (-566))) |#1|) 20) (((-644 (-644 |#1|)) (-644 (-409 (-952 (-566)))) (-644 (-1175)) |#1|) 30))) +(((-382 |#1|) (-10 -7 (-15 -1916 ((-644 (-644 (-295 (-952 |#1|)))) (-644 (-409 (-952 (-566)))) |#1|)) (-15 -1916 ((-644 (-644 (-295 (-952 |#1|)))) (-644 (-295 (-409 (-952 (-566))))) |#1|)) (-15 -1916 ((-644 (-295 (-952 |#1|))) (-409 (-952 (-566))) |#1|)) (-15 -1916 ((-644 (-295 (-952 |#1|))) (-295 (-409 (-952 (-566)))) |#1|)) (-15 -2442 ((-644 (-644 |#1|)) (-644 (-409 (-952 (-566)))) (-644 (-1175)) |#1|)) (-15 -2442 ((-644 |#1|) (-409 (-952 (-566))) |#1|))) (-13 (-848) (-365))) (T -382)) +((-2442 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-952 (-566)))) (-5 *2 (-644 *4)) (-5 *1 (-382 *4)) (-4 *4 (-13 (-848) (-365))))) (-2442 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-644 (-409 (-952 (-566))))) (-5 *4 (-644 (-1175))) (-5 *2 (-644 (-644 *5))) (-5 *1 (-382 *5)) (-4 *5 (-13 (-848) (-365))))) (-1916 (*1 *2 *3 *4) (-12 (-5 *3 (-295 (-409 (-952 (-566))))) (-5 *2 (-644 (-295 (-952 *4)))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-848) (-365))))) (-1916 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-952 (-566)))) (-5 *2 (-644 (-295 (-952 *4)))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-848) (-365))))) (-1916 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-295 (-409 (-952 (-566)))))) (-5 *2 (-644 (-644 (-295 (-952 *4))))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-848) (-365))))) (-1916 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-409 (-952 (-566))))) (-5 *2 (-644 (-644 (-295 (-952 *4))))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-848) (-365)))))) +(-10 -7 (-15 -1916 ((-644 (-644 (-295 (-952 |#1|)))) (-644 (-409 (-952 (-566)))) |#1|)) (-15 -1916 ((-644 (-644 (-295 (-952 |#1|)))) (-644 (-295 (-409 (-952 (-566))))) |#1|)) (-15 -1916 ((-644 (-295 (-952 |#1|))) (-409 (-952 (-566))) |#1|)) (-15 -1916 ((-644 (-295 (-952 |#1|))) (-295 (-409 (-952 (-566)))) |#1|)) (-15 -2442 ((-644 (-644 |#1|)) (-644 (-409 (-952 (-566)))) (-644 (-1175)) |#1|)) (-15 -2442 ((-644 |#1|) (-409 (-952 (-566))) |#1|))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-1811 (($) NIL T CONST)) (-2980 (((-3 |#2| "failed") $) 30)) (-1709 ((|#2| $) 32)) (-3565 (($ $) NIL)) (-3486 (((-771) $) 11)) (-1545 (((-644 $) $) 23)) (-3989 (((-112) $) NIL)) (-1863 (($ |#2| |#1|) 21)) (-3080 (($ (-1 |#1| |#1|) $) NIL)) (-4046 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17)) (-2608 ((|#2| $) 18)) (-2622 ((|#1| $) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) 51) (($ |#2|) 31)) (-3866 (((-644 |#1|) $) 20)) (-3025 ((|#1| $ |#2|) 55)) (-3900 (((-112) $ $) NIL)) (-2446 (($) 33 T CONST)) (-3585 (((-644 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14)) (-2952 (((-112) $ $) NIL)) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ |#1| $) 36) (($ $ |#1|) 37) (($ |#1| |#2|) 39) (($ |#2| |#1|) 40))) +(((-383 |#1| |#2|) (-13 (-384 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1049) (-850)) (T -383)) +((* (*1 *1 *2 *3) (-12 (-5 *1 (-383 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-850))))) +(-13 (-384 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-3174 (((-3 $ "failed") $ $) 20)) (-1811 (($) 18 T CONST)) (-2980 (((-3 |#2| "failed") $) 49)) (-1709 ((|#2| $) 50)) (-3565 (($ $) 35)) (-3486 (((-771) $) 39)) (-1545 (((-644 $) $) 40)) (-3989 (((-112) $) 43)) (-1863 (($ |#2| |#1|) 44)) (-3080 (($ (-1 |#1| |#1|) $) 45)) (-4046 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 36)) (-2608 ((|#2| $) 38)) (-2622 ((|#1| $) 37)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-2479 (((-862) $) 12) (($ |#2|) 48)) (-3866 (((-644 |#1|) $) 41)) (-3025 ((|#1| $ |#2|) 46)) (-3900 (((-112) $ $) 9)) (-2446 (($) 19 T CONST)) (-3585 (((-644 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 42)) (-2952 (((-112) $ $) 6)) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31) (($ |#1| |#2|) 47))) +(((-384 |#1| |#2|) (-140) (-1049) (-1099)) (T -384)) +((* (*1 *1 *2 *3) (-12 (-4 *1 (-384 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-1099)))) (-3025 (*1 *2 *1 *3) (-12 (-4 *1 (-384 *2 *3)) (-4 *3 (-1099)) (-4 *2 (-1049)))) (-3080 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-384 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1099)))) (-1863 (*1 *1 *2 *3) (-12 (-4 *1 (-384 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-1099)))) (-3989 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1099)) (-5 *2 (-112)))) (-3585 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1099)) (-5 *2 (-644 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3866 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1099)) (-5 *2 (-644 *3)))) (-1545 (*1 *2 *1) (-12 (-4 *3 (-1049)) (-4 *4 (-1099)) (-5 *2 (-644 *1)) (-4 *1 (-384 *3 *4)))) (-3486 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1099)) (-5 *2 (-771)))) (-2608 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-1099)))) (-2622 (*1 *2 *1) (-12 (-4 *1 (-384 *2 *3)) (-4 *3 (-1099)) (-4 *2 (-1049)))) (-4046 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1099)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-3565 (*1 *1 *1) (-12 (-4 *1 (-384 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-1099))))) +(-13 (-111 |t#1| |t#1|) (-1038 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -3025 (|t#1| $ |t#2|)) (-15 -3080 ($ (-1 |t#1| |t#1|) $)) (-15 -1863 ($ |t#2| |t#1|)) (-15 -3989 ((-112) $)) (-15 -3585 ((-644 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3866 ((-644 |t#1|) $)) (-15 -1545 ((-644 $) $)) (-15 -3486 ((-771) $)) (-15 -2608 (|t#2| $)) (-15 -2622 (|t#1| $)) (-15 -4046 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -3565 ($ $)) (IF (|has| |t#1| (-172)) (-6 (-717 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-616 |#2|) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-648 |#1|) . T) ((-640 |#1|) |has| |#1| (-172)) ((-717 |#1|) |has| |#1| (-172)) ((-1038 |#2|) . T) ((-1051 |#1|) . T) ((-1056 |#1|) . T) ((-1099) . T)) +((-3386 (((-1269) $) 7)) (-2479 (((-862) $) 8) (($ (-689 (-699))) 14) (($ (-644 (-331))) 13) (($ (-331)) 12) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3217 (-644 (-331))))) 11))) +(((-385) (-140)) (T -385)) +((-2479 (*1 *1 *2) (-12 (-5 *2 (-689 (-699))) (-4 *1 (-385)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-644 (-331))) (-4 *1 (-385)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-385)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1179)) (|:| -3217 (-644 (-331))))) (-4 *1 (-385))))) +(-13 (-397) (-10 -8 (-15 -2479 ($ (-689 (-699)))) (-15 -2479 ($ (-644 (-331)))) (-15 -2479 ($ (-331))) (-15 -2479 ($ (-2 (|:| |localSymbols| (-1179)) (|:| -3217 (-644 (-331)))))))) +(((-613 (-862)) . T) ((-397) . T) ((-1214) . T)) +((-2980 (((-3 $ "failed") (-689 (-317 (-381)))) 21) (((-3 $ "failed") (-689 (-317 (-566)))) 19) (((-3 $ "failed") (-689 (-952 (-381)))) 17) (((-3 $ "failed") (-689 (-952 (-566)))) 15) (((-3 $ "failed") (-689 (-409 (-952 (-381))))) 13) (((-3 $ "failed") (-689 (-409 (-952 (-566))))) 11)) (-1709 (($ (-689 (-317 (-381)))) 22) (($ (-689 (-317 (-566)))) 20) (($ (-689 (-952 (-381)))) 18) (($ (-689 (-952 (-566)))) 16) (($ (-689 (-409 (-952 (-381))))) 14) (($ (-689 (-409 (-952 (-566))))) 12)) (-3386 (((-1269) $) 7)) (-2479 (((-862) $) 8) (($ (-644 (-331))) 25) (($ (-331)) 24) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3217 (-644 (-331))))) 23))) +(((-386) (-140)) (T -386)) +((-2479 (*1 *1 *2) (-12 (-5 *2 (-644 (-331))) (-4 *1 (-386)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-386)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1179)) (|:| -3217 (-644 (-331))))) (-4 *1 (-386)))) (-1709 (*1 *1 *2) (-12 (-5 *2 (-689 (-317 (-381)))) (-4 *1 (-386)))) (-2980 (*1 *1 *2) (|partial| -12 (-5 *2 (-689 (-317 (-381)))) (-4 *1 (-386)))) (-1709 (*1 *1 *2) (-12 (-5 *2 (-689 (-317 (-566)))) (-4 *1 (-386)))) (-2980 (*1 *1 *2) (|partial| -12 (-5 *2 (-689 (-317 (-566)))) (-4 *1 (-386)))) (-1709 (*1 *1 *2) (-12 (-5 *2 (-689 (-952 (-381)))) (-4 *1 (-386)))) (-2980 (*1 *1 *2) (|partial| -12 (-5 *2 (-689 (-952 (-381)))) (-4 *1 (-386)))) (-1709 (*1 *1 *2) (-12 (-5 *2 (-689 (-952 (-566)))) (-4 *1 (-386)))) (-2980 (*1 *1 *2) (|partial| -12 (-5 *2 (-689 (-952 (-566)))) (-4 *1 (-386)))) (-1709 (*1 *1 *2) (-12 (-5 *2 (-689 (-409 (-952 (-381))))) (-4 *1 (-386)))) (-2980 (*1 *1 *2) (|partial| -12 (-5 *2 (-689 (-409 (-952 (-381))))) (-4 *1 (-386)))) (-1709 (*1 *1 *2) (-12 (-5 *2 (-689 (-409 (-952 (-566))))) (-4 *1 (-386)))) (-2980 (*1 *1 *2) (|partial| -12 (-5 *2 (-689 (-409 (-952 (-566))))) (-4 *1 (-386))))) +(-13 (-397) (-10 -8 (-15 -2479 ($ (-644 (-331)))) (-15 -2479 ($ (-331))) (-15 -2479 ($ (-2 (|:| |localSymbols| (-1179)) (|:| -3217 (-644 (-331)))))) (-15 -1709 ($ (-689 (-317 (-381))))) (-15 -2980 ((-3 $ "failed") (-689 (-317 (-381))))) (-15 -1709 ($ (-689 (-317 (-566))))) (-15 -2980 ((-3 $ "failed") (-689 (-317 (-566))))) (-15 -1709 ($ (-689 (-952 (-381))))) (-15 -2980 ((-3 $ "failed") (-689 (-952 (-381))))) (-15 -1709 ($ (-689 (-952 (-566))))) (-15 -2980 ((-3 $ "failed") (-689 (-952 (-566))))) (-15 -1709 ($ (-689 (-409 (-952 (-381)))))) (-15 -2980 ((-3 $ "failed") (-689 (-409 (-952 (-381)))))) (-15 -1709 ($ (-689 (-409 (-952 (-566)))))) (-15 -2980 ((-3 $ "failed") (-689 (-409 (-952 (-566)))))))) +(((-613 (-862)) . T) ((-397) . T) ((-1214) . T)) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-1811 (($) NIL T CONST)) (-3565 (($ $) NIL)) (-2463 (($ |#1| |#2|) NIL)) (-3080 (($ (-1 |#1| |#1|) $) NIL)) (-1919 ((|#2| $) NIL)) (-2622 ((|#1| $) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) 34)) (-3900 (((-112) $ $) NIL)) (-2446 (($) 12 T CONST)) (-2952 (((-112) $ $) NIL)) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ |#1| $) 15) (($ $ |#1|) 18))) +(((-387 |#1| |#2|) (-13 (-111 |#1| |#1|) (-511 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-172)) (-6 (-717 |#1|)) |%noBranch|))) (-1049) (-850)) (T -387)) +NIL +(-13 (-111 |#1| |#1|) (-511 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-172)) (-6 (-717 |#1|)) |%noBranch|))) +((-2986 (((-112) $ $) NIL)) (-4049 (((-771) $) 74)) (-1811 (($) NIL T CONST)) (-3506 (((-3 $ "failed") $ $) 77)) (-2980 (((-3 |#1| "failed") $) NIL)) (-1709 ((|#1| $) NIL)) (-3757 (((-3 $ "failed") $) NIL)) (-4089 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64)) (-2264 (((-112) $) 17)) (-2294 ((|#1| $ (-566)) NIL)) (-3198 (((-771) $ (-566)) NIL)) (-1920 (($ $ $) NIL (|has| |#1| (-850)))) (-3038 (($ $ $) NIL (|has| |#1| (-850)))) (-1980 (($ (-1 |#1| |#1|) $) 40)) (-4342 (($ (-1 (-771) (-771)) $) 37)) (-4087 (((-3 $ "failed") $ $) 60)) (-3151 (((-1157) $) NIL)) (-1641 (($ $ $) 28)) (-2662 (($ $ $) 26)) (-4059 (((-1119) $) NIL)) (-3445 (((-644 (-2 (|:| |gen| |#1|) (|:| -3571 (-771)))) $) 34)) (-1510 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 70)) (-2479 (((-862) $) 24) (($ |#1|) NIL)) (-3900 (((-112) $ $) NIL)) (-2459 (($) 11 T CONST)) (-3019 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2990 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2952 (((-112) $ $) NIL)) (-3004 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2977 (((-112) $ $) 84 (|has| |#1| (-850)))) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ |#1| (-771)) 42)) (* (($ $ $) 52) (($ |#1| $) 32) (($ $ |#1|) 30))) +(((-388 |#1|) (-13 (-726) (-1038 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-771))) (-15 -2662 ($ $ $)) (-15 -1641 ($ $ $)) (-15 -4087 ((-3 $ "failed") $ $)) (-15 -3506 ((-3 $ "failed") $ $)) (-15 -1510 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4089 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -4049 ((-771) $)) (-15 -3445 ((-644 (-2 (|:| |gen| |#1|) (|:| -3571 (-771)))) $)) (-15 -3198 ((-771) $ (-566))) (-15 -2294 (|#1| $ (-566))) (-15 -4342 ($ (-1 (-771) (-771)) $)) (-15 -1980 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-850)) (-6 (-850)) |%noBranch|))) (-1099)) (T -388)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-1099)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-388 *2)) (-4 *2 (-1099)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-771)) (-5 *1 (-388 *2)) (-4 *2 (-1099)))) (-2662 (*1 *1 *1 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-1099)))) (-1641 (*1 *1 *1 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-1099)))) (-4087 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-388 *2)) (-4 *2 (-1099)))) (-3506 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-388 *2)) (-4 *2 (-1099)))) (-1510 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-388 *3)) (|:| |rm| (-388 *3)))) (-5 *1 (-388 *3)) (-4 *3 (-1099)))) (-4089 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-388 *3)) (|:| |mm| (-388 *3)) (|:| |rm| (-388 *3)))) (-5 *1 (-388 *3)) (-4 *3 (-1099)))) (-4049 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-388 *3)) (-4 *3 (-1099)))) (-3445 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |gen| *3) (|:| -3571 (-771))))) (-5 *1 (-388 *3)) (-4 *3 (-1099)))) (-3198 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *2 (-771)) (-5 *1 (-388 *4)) (-4 *4 (-1099)))) (-2294 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *1 (-388 *2)) (-4 *2 (-1099)))) (-4342 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-771) (-771))) (-5 *1 (-388 *3)) (-4 *3 (-1099)))) (-1980 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1099)) (-5 *1 (-388 *3))))) +(-13 (-726) (-1038 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-771))) (-15 -2662 ($ $ $)) (-15 -1641 ($ $ $)) (-15 -4087 ((-3 $ "failed") $ $)) (-15 -3506 ((-3 $ "failed") $ $)) (-15 -1510 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4089 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -4049 ((-771) $)) (-15 -3445 ((-644 (-2 (|:| |gen| |#1|) (|:| -3571 (-771)))) $)) (-15 -3198 ((-771) $ (-566))) (-15 -2294 (|#1| $ (-566))) (-15 -4342 ($ (-1 (-771) (-771)) $)) (-15 -1980 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-850)) (-6 (-850)) |%noBranch|))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) 47)) (-3087 (($ $) 46)) (-1716 (((-112) $) 44)) (-3174 (((-3 $ "failed") $ $) 20)) (-1811 (($) 18 T CONST)) (-2980 (((-3 (-566) "failed") $) 53)) (-1709 (((-566) $) 54)) (-3757 (((-3 $ "failed") $) 37)) (-2264 (((-112) $) 35)) (-1920 (($ $ $) 60)) (-3038 (($ $ $) 59)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-2976 (((-3 $ "failed") $ $) 48)) (-2479 (((-862) $) 12) (($ (-566)) 33) (($ $) 49) (($ (-566)) 52)) (-1558 (((-771)) 32 T CONST)) (-3900 (((-112) $ $) 9)) (-1333 (((-112) $ $) 45)) (-2446 (($) 19 T CONST)) (-2459 (($) 34 T CONST)) (-3019 (((-112) $ $) 57)) (-2990 (((-112) $ $) 56)) (-2952 (((-112) $ $) 6)) (-3004 (((-112) $ $) 58)) (-2977 (((-112) $ $) 55)) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27))) (((-389) (-140)) (T -389)) -((-1932 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1155)) (-4 *1 (-389)))) (-4079 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1155)))) (-2493 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1155)))) (-2953 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1155)))) (-4309 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112)))) (-1599 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112)))) (-4142 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112)))) (-4233 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1155)) (-4 *1 (-389))))) -(-13 (-1097) (-490 (-1155)) (-10 -8 (-15 -1932 ($ (-1155) (-1155) (-1155))) (-15 -4079 ((-1155) $)) (-15 -2493 ((-1155) $)) (-15 -2953 ((-1155) $)) (-15 -4309 ((-112) $)) (-15 -1599 ((-112) $)) (-15 -4142 ((-112) $)) (-15 -4233 ($ (-1155) (-1155) (-1155))))) -(((-102) . T) ((-614 #0=(-1155)) . T) ((-611 (-860)) . T) ((-611 #0#) . T) ((-490 #0#) . T) ((-1097) . T)) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-3085 (((-3 $ "failed") $ $) NIL)) (-3128 (((-860) $) 64)) (-2822 (($) NIL T CONST)) (-3952 (($ $ (-919)) NIL)) (-4359 (($ $ (-919)) NIL)) (-4204 (($ $ (-919)) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-4043 (($ (-769)) 38)) (-3677 (((-769)) 18)) (-2142 (((-860) $) 66)) (-2402 (($ $ $) NIL)) (-2390 (((-860) $) NIL)) (-1600 (((-112) $ $) NIL)) (-3845 (($ $ $ $) NIL)) (-3106 (($ $ $) NIL)) (-2361 (($) 24 T CONST)) (-2821 (((-112) $ $) 41)) (-2930 (($ $) 48) (($ $ $) 50)) (-2917 (($ $ $) 51)) (** (($ $ (-919)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) 52) (($ $ |#3|) NIL) (($ |#3| $) 47))) -(((-390 |#1| |#2| |#3|) (-13 (-742 |#3|) (-10 -8 (-15 -3677 ((-769))) (-15 -2142 ((-860) $)) (-15 -3128 ((-860) $)) (-15 -4043 ($ (-769))))) (-769) (-769) (-172)) (T -390)) -((-3677 (*1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-172)))) (-2142 (*1 *2 *1) (-12 (-5 *2 (-860)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 (-769)) (-14 *4 (-769)) (-4 *5 (-172)))) (-3128 (*1 *2 *1) (-12 (-5 *2 (-860)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 (-769)) (-14 *4 (-769)) (-4 *5 (-172)))) (-4043 (*1 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-172))))) -(-13 (-742 |#3|) (-10 -8 (-15 -3677 ((-769))) (-15 -2142 ((-860) $)) (-15 -3128 ((-860) $)) (-15 -4043 ($ (-769))))) -((-4042 (((-1155)) 12)) (-3707 (((-1144 (-1155))) 31)) (-2029 (((-1267) (-1155)) 28) (((-1267) (-388)) 27)) (-2042 (((-1267)) 29)) (-4044 (((-1144 (-1155))) 30))) -(((-391) (-10 -7 (-15 -4044 ((-1144 (-1155)))) (-15 -3707 ((-1144 (-1155)))) (-15 -2042 ((-1267))) (-15 -2029 ((-1267) (-388))) (-15 -2029 ((-1267) (-1155))) (-15 -4042 ((-1155))))) (T -391)) -((-4042 (*1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-391)))) (-2029 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-391)))) (-2029 (*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1267)) (-5 *1 (-391)))) (-2042 (*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-391)))) (-3707 (*1 *2) (-12 (-5 *2 (-1144 (-1155))) (-5 *1 (-391)))) (-4044 (*1 *2) (-12 (-5 *2 (-1144 (-1155))) (-5 *1 (-391))))) -(-10 -7 (-15 -4044 ((-1144 (-1155)))) (-15 -3707 ((-1144 (-1155)))) (-15 -2042 ((-1267))) (-15 -2029 ((-1267) (-388))) (-15 -2029 ((-1267) (-1155))) (-15 -4042 ((-1155)))) -((-2408 (((-769) (-336 |#1| |#2| |#3| |#4|)) 19))) -(((-392 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2408 ((-769) (-336 |#1| |#2| |#3| |#4|)))) (-13 (-368) (-363)) (-1238 |#1|) (-1238 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -392)) -((-2408 (*1 *2 *3) (-12 (-5 *3 (-336 *4 *5 *6 *7)) (-4 *4 (-13 (-368) (-363))) (-4 *5 (-1238 *4)) (-4 *6 (-1238 (-407 *5))) (-4 *7 (-342 *4 *5 *6)) (-5 *2 (-769)) (-5 *1 (-392 *4 *5 *6 *7))))) -(-10 -7 (-15 -2408 ((-769) (-336 |#1| |#2| |#3| |#4|)))) -((-2390 (((-394) |#1|) 11))) -(((-393 |#1|) (-10 -7 (-15 -2390 ((-394) |#1|))) (-1097)) (T -393)) -((-2390 (*1 *2 *3) (-12 (-5 *2 (-394)) (-5 *1 (-393 *3)) (-4 *3 (-1097))))) -(-10 -7 (-15 -2390 ((-394) |#1|))) -((-2856 (((-112) $ $) NIL)) (-2980 (((-642 (-1155)) $ (-642 (-1155))) 43)) (-4056 (((-642 (-1155)) $ (-642 (-1155))) 44)) (-2680 (((-642 (-1155)) $ (-642 (-1155))) 45)) (-3361 (((-642 (-1155)) $) 40)) (-4233 (($) 30)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-3807 (((-642 (-1155)) $) 41)) (-3435 (((-642 (-1155)) $) 42)) (-1639 (((-1267) $ (-564)) 38) (((-1267) $) 39)) (-3003 (($ (-860) (-564)) 35)) (-2390 (((-860) $) 54) (($ (-860)) 32)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-394) (-13 (-1097) (-614 (-860)) (-10 -8 (-15 -3003 ($ (-860) (-564))) (-15 -1639 ((-1267) $ (-564))) (-15 -1639 ((-1267) $)) (-15 -3435 ((-642 (-1155)) $)) (-15 -3807 ((-642 (-1155)) $)) (-15 -4233 ($)) (-15 -3361 ((-642 (-1155)) $)) (-15 -2680 ((-642 (-1155)) $ (-642 (-1155)))) (-15 -4056 ((-642 (-1155)) $ (-642 (-1155)))) (-15 -2980 ((-642 (-1155)) $ (-642 (-1155))))))) (T -394)) -((-3003 (*1 *1 *2 *3) (-12 (-5 *2 (-860)) (-5 *3 (-564)) (-5 *1 (-394)))) (-1639 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1267)) (-5 *1 (-394)))) (-1639 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-394)))) (-3435 (*1 *2 *1) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-394)))) (-3807 (*1 *2 *1) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-394)))) (-4233 (*1 *1) (-5 *1 (-394))) (-3361 (*1 *2 *1) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-394)))) (-2680 (*1 *2 *1 *2) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-394)))) (-4056 (*1 *2 *1 *2) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-394)))) (-2980 (*1 *2 *1 *2) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-394))))) -(-13 (-1097) (-614 (-860)) (-10 -8 (-15 -3003 ($ (-860) (-564))) (-15 -1639 ((-1267) $ (-564))) (-15 -1639 ((-1267) $)) (-15 -3435 ((-642 (-1155)) $)) (-15 -3807 ((-642 (-1155)) $)) (-15 -4233 ($)) (-15 -3361 ((-642 (-1155)) $)) (-15 -2680 ((-642 (-1155)) $ (-642 (-1155)))) (-15 -4056 ((-642 (-1155)) $ (-642 (-1155)))) (-15 -2980 ((-642 (-1155)) $ (-642 (-1155)))))) -((-2056 (((-1267) $) 7)) (-2390 (((-860) $) 8))) -(((-395) (-140)) (T -395)) -((-2056 (*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-1267))))) -(-13 (-1212) (-611 (-860)) (-10 -8 (-15 -2056 ((-1267) $)))) -(((-611 (-860)) . T) ((-1212) . T)) -((-2849 (((-3 $ "failed") (-316 (-379))) 21) (((-3 $ "failed") (-316 (-564))) 19) (((-3 $ "failed") (-950 (-379))) 17) (((-3 $ "failed") (-950 (-564))) 15) (((-3 $ "failed") (-407 (-950 (-379)))) 13) (((-3 $ "failed") (-407 (-950 (-564)))) 11)) (-1687 (($ (-316 (-379))) 22) (($ (-316 (-564))) 20) (($ (-950 (-379))) 18) (($ (-950 (-564))) 16) (($ (-407 (-950 (-379)))) 14) (($ (-407 (-950 (-564)))) 12)) (-2056 (((-1267) $) 7)) (-2390 (((-860) $) 8) (($ (-642 (-330))) 25) (($ (-330)) 24) (($ (-2 (|:| |localSymbols| (-1177)) (|:| -3089 (-642 (-330))))) 23))) -(((-396) (-140)) (T -396)) -((-2390 (*1 *1 *2) (-12 (-5 *2 (-642 (-330))) (-4 *1 (-396)))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-396)))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1177)) (|:| -3089 (-642 (-330))))) (-4 *1 (-396)))) (-1687 (*1 *1 *2) (-12 (-5 *2 (-316 (-379))) (-4 *1 (-396)))) (-2849 (*1 *1 *2) (|partial| -12 (-5 *2 (-316 (-379))) (-4 *1 (-396)))) (-1687 (*1 *1 *2) (-12 (-5 *2 (-316 (-564))) (-4 *1 (-396)))) (-2849 (*1 *1 *2) (|partial| -12 (-5 *2 (-316 (-564))) (-4 *1 (-396)))) (-1687 (*1 *1 *2) (-12 (-5 *2 (-950 (-379))) (-4 *1 (-396)))) (-2849 (*1 *1 *2) (|partial| -12 (-5 *2 (-950 (-379))) (-4 *1 (-396)))) (-1687 (*1 *1 *2) (-12 (-5 *2 (-950 (-564))) (-4 *1 (-396)))) (-2849 (*1 *1 *2) (|partial| -12 (-5 *2 (-950 (-564))) (-4 *1 (-396)))) (-1687 (*1 *1 *2) (-12 (-5 *2 (-407 (-950 (-379)))) (-4 *1 (-396)))) (-2849 (*1 *1 *2) (|partial| -12 (-5 *2 (-407 (-950 (-379)))) (-4 *1 (-396)))) (-1687 (*1 *1 *2) (-12 (-5 *2 (-407 (-950 (-564)))) (-4 *1 (-396)))) (-2849 (*1 *1 *2) (|partial| -12 (-5 *2 (-407 (-950 (-564)))) (-4 *1 (-396))))) -(-13 (-395) (-10 -8 (-15 -2390 ($ (-642 (-330)))) (-15 -2390 ($ (-330))) (-15 -2390 ($ (-2 (|:| |localSymbols| (-1177)) (|:| -3089 (-642 (-330)))))) (-15 -1687 ($ (-316 (-379)))) (-15 -2849 ((-3 $ "failed") (-316 (-379)))) (-15 -1687 ($ (-316 (-564)))) (-15 -2849 ((-3 $ "failed") (-316 (-564)))) (-15 -1687 ($ (-950 (-379)))) (-15 -2849 ((-3 $ "failed") (-950 (-379)))) (-15 -1687 ($ (-950 (-564)))) (-15 -2849 ((-3 $ "failed") (-950 (-564)))) (-15 -1687 ($ (-407 (-950 (-379))))) (-15 -2849 ((-3 $ "failed") (-407 (-950 (-379))))) (-15 -1687 ($ (-407 (-950 (-564))))) (-15 -2849 ((-3 $ "failed") (-407 (-950 (-564))))))) -(((-611 (-860)) . T) ((-395) . T) ((-1212) . T)) -((-3352 (((-642 (-1155)) (-642 (-1155))) 9)) (-2056 (((-1267) (-388)) 27)) (-1433 (((-1101) (-1173) (-642 (-1173)) (-1176) (-642 (-1173))) 60) (((-1101) (-1173) (-642 (-3 (|:| |array| (-642 (-1173))) (|:| |scalar| (-1173)))) (-642 (-642 (-3 (|:| |array| (-642 (-1173))) (|:| |scalar| (-1173))))) (-642 (-1173)) (-1173)) 35) (((-1101) (-1173) (-642 (-3 (|:| |array| (-642 (-1173))) (|:| |scalar| (-1173)))) (-642 (-642 (-3 (|:| |array| (-642 (-1173))) (|:| |scalar| (-1173))))) (-642 (-1173))) 34))) -(((-397) (-10 -7 (-15 -1433 ((-1101) (-1173) (-642 (-3 (|:| |array| (-642 (-1173))) (|:| |scalar| (-1173)))) (-642 (-642 (-3 (|:| |array| (-642 (-1173))) (|:| |scalar| (-1173))))) (-642 (-1173)))) (-15 -1433 ((-1101) (-1173) (-642 (-3 (|:| |array| (-642 (-1173))) (|:| |scalar| (-1173)))) (-642 (-642 (-3 (|:| |array| (-642 (-1173))) (|:| |scalar| (-1173))))) (-642 (-1173)) (-1173))) (-15 -1433 ((-1101) (-1173) (-642 (-1173)) (-1176) (-642 (-1173)))) (-15 -2056 ((-1267) (-388))) (-15 -3352 ((-642 (-1155)) (-642 (-1155)))))) (T -397)) -((-3352 (*1 *2 *2) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-397)))) (-2056 (*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1267)) (-5 *1 (-397)))) (-1433 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-642 (-1173))) (-5 *5 (-1176)) (-5 *3 (-1173)) (-5 *2 (-1101)) (-5 *1 (-397)))) (-1433 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-642 (-642 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-642 (-3 (|:| |array| (-642 *3)) (|:| |scalar| (-1173))))) (-5 *6 (-642 (-1173))) (-5 *3 (-1173)) (-5 *2 (-1101)) (-5 *1 (-397)))) (-1433 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-642 (-642 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-642 (-3 (|:| |array| (-642 *3)) (|:| |scalar| (-1173))))) (-5 *6 (-642 (-1173))) (-5 *3 (-1173)) (-5 *2 (-1101)) (-5 *1 (-397))))) -(-10 -7 (-15 -1433 ((-1101) (-1173) (-642 (-3 (|:| |array| (-642 (-1173))) (|:| |scalar| (-1173)))) (-642 (-642 (-3 (|:| |array| (-642 (-1173))) (|:| |scalar| (-1173))))) (-642 (-1173)))) (-15 -1433 ((-1101) (-1173) (-642 (-3 (|:| |array| (-642 (-1173))) (|:| |scalar| (-1173)))) (-642 (-642 (-3 (|:| |array| (-642 (-1173))) (|:| |scalar| (-1173))))) (-642 (-1173)) (-1173))) (-15 -1433 ((-1101) (-1173) (-642 (-1173)) (-1176) (-642 (-1173)))) (-15 -2056 ((-1267) (-388))) (-15 -3352 ((-642 (-1155)) (-642 (-1155))))) -((-2056 (((-1267) $) 36)) (-2390 (((-860) $) 98) (($ (-330)) 100) (($ (-642 (-330))) 99) (($ (-2 (|:| |localSymbols| (-1177)) (|:| -3089 (-642 (-330))))) 97) (($ (-316 (-699))) 53) (($ (-316 (-697))) 73) (($ (-316 (-692))) 86) (($ (-294 (-316 (-699)))) 68) (($ (-294 (-316 (-697)))) 81) (($ (-294 (-316 (-692)))) 94) (($ (-316 (-564))) 105) (($ (-316 (-379))) 118) (($ (-316 (-169 (-379)))) 131) (($ (-294 (-316 (-564)))) 113) (($ (-294 (-316 (-379)))) 126) (($ (-294 (-316 (-169 (-379))))) 139))) -(((-398 |#1| |#2| |#3| |#4|) (-13 (-395) (-10 -8 (-15 -2390 ($ (-330))) (-15 -2390 ($ (-642 (-330)))) (-15 -2390 ($ (-2 (|:| |localSymbols| (-1177)) (|:| -3089 (-642 (-330)))))) (-15 -2390 ($ (-316 (-699)))) (-15 -2390 ($ (-316 (-697)))) (-15 -2390 ($ (-316 (-692)))) (-15 -2390 ($ (-294 (-316 (-699))))) (-15 -2390 ($ (-294 (-316 (-697))))) (-15 -2390 ($ (-294 (-316 (-692))))) (-15 -2390 ($ (-316 (-564)))) (-15 -2390 ($ (-316 (-379)))) (-15 -2390 ($ (-316 (-169 (-379))))) (-15 -2390 ($ (-294 (-316 (-564))))) (-15 -2390 ($ (-294 (-316 (-379))))) (-15 -2390 ($ (-294 (-316 (-169 (-379)))))))) (-1173) (-3 (|:| |fst| (-434)) (|:| -4287 "void")) (-642 (-1173)) (-1177)) (T -398)) -((-2390 (*1 *1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1173)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -4287 "void"))) (-14 *5 (-642 (-1173))) (-14 *6 (-1177)))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-642 (-330))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1173)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -4287 "void"))) (-14 *5 (-642 (-1173))) (-14 *6 (-1177)))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1177)) (|:| -3089 (-642 (-330))))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1173)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -4287 "void"))) (-14 *5 (-642 (-1173))) (-14 *6 (-1177)))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-316 (-699))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1173)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -4287 "void"))) (-14 *5 (-642 (-1173))) (-14 *6 (-1177)))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-316 (-697))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1173)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -4287 "void"))) (-14 *5 (-642 (-1173))) (-14 *6 (-1177)))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-316 (-692))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1173)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -4287 "void"))) (-14 *5 (-642 (-1173))) (-14 *6 (-1177)))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-699)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1173)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -4287 "void"))) (-14 *5 (-642 (-1173))) (-14 *6 (-1177)))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-697)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1173)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -4287 "void"))) (-14 *5 (-642 (-1173))) (-14 *6 (-1177)))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-692)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1173)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -4287 "void"))) (-14 *5 (-642 (-1173))) (-14 *6 (-1177)))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-316 (-564))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1173)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -4287 "void"))) (-14 *5 (-642 (-1173))) (-14 *6 (-1177)))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-316 (-379))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1173)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -4287 "void"))) (-14 *5 (-642 (-1173))) (-14 *6 (-1177)))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-316 (-169 (-379)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1173)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -4287 "void"))) (-14 *5 (-642 (-1173))) (-14 *6 (-1177)))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-564)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1173)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -4287 "void"))) (-14 *5 (-642 (-1173))) (-14 *6 (-1177)))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-379)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1173)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -4287 "void"))) (-14 *5 (-642 (-1173))) (-14 *6 (-1177)))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-169 (-379))))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1173)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -4287 "void"))) (-14 *5 (-642 (-1173))) (-14 *6 (-1177))))) -(-13 (-395) (-10 -8 (-15 -2390 ($ (-330))) (-15 -2390 ($ (-642 (-330)))) (-15 -2390 ($ (-2 (|:| |localSymbols| (-1177)) (|:| -3089 (-642 (-330)))))) (-15 -2390 ($ (-316 (-699)))) (-15 -2390 ($ (-316 (-697)))) (-15 -2390 ($ (-316 (-692)))) (-15 -2390 ($ (-294 (-316 (-699))))) (-15 -2390 ($ (-294 (-316 (-697))))) (-15 -2390 ($ (-294 (-316 (-692))))) (-15 -2390 ($ (-316 (-564)))) (-15 -2390 ($ (-316 (-379)))) (-15 -2390 ($ (-316 (-169 (-379))))) (-15 -2390 ($ (-294 (-316 (-564))))) (-15 -2390 ($ (-294 (-316 (-379))))) (-15 -2390 ($ (-294 (-316 (-169 (-379)))))))) -((-2856 (((-112) $ $) NIL)) (-2120 ((|#2| $) 38)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-3328 (($ (-407 |#2|)) 95)) (-1297 (((-642 (-2 (|:| -2817 (-769)) (|:| -2245 |#2|) (|:| |num| |#2|))) $) 39)) (-2199 (($ $) 34) (($ $ (-769)) 36)) (-3003 (((-407 |#2|) $) 51)) (-2401 (($ (-642 (-2 (|:| -2817 (-769)) (|:| -2245 |#2|) (|:| |num| |#2|)))) 33)) (-2390 (((-860) $) 132)) (-1600 (((-112) $ $) NIL)) (-2711 (($ $) 35) (($ $ (-769)) 37)) (-2821 (((-112) $ $) NIL)) (-2917 (($ |#2| $) 41))) -(((-399 |#1| |#2|) (-13 (-1097) (-612 (-407 |#2|)) (-10 -8 (-15 -2917 ($ |#2| $)) (-15 -3328 ($ (-407 |#2|))) (-15 -2120 (|#2| $)) (-15 -1297 ((-642 (-2 (|:| -2817 (-769)) (|:| -2245 |#2|) (|:| |num| |#2|))) $)) (-15 -2401 ($ (-642 (-2 (|:| -2817 (-769)) (|:| -2245 |#2|) (|:| |num| |#2|))))) (-15 -2199 ($ $)) (-15 -2711 ($ $)) (-15 -2199 ($ $ (-769))) (-15 -2711 ($ $ (-769))))) (-13 (-363) (-147)) (-1238 |#1|)) (T -399)) -((-2917 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *2)) (-4 *2 (-1238 *3)))) (-3328 (*1 *1 *2) (-12 (-5 *2 (-407 *4)) (-4 *4 (-1238 *3)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4)))) (-2120 (*1 *2 *1) (-12 (-4 *2 (-1238 *3)) (-5 *1 (-399 *3 *2)) (-4 *3 (-13 (-363) (-147))))) (-1297 (*1 *2 *1) (-12 (-4 *3 (-13 (-363) (-147))) (-5 *2 (-642 (-2 (|:| -2817 (-769)) (|:| -2245 *4) (|:| |num| *4)))) (-5 *1 (-399 *3 *4)) (-4 *4 (-1238 *3)))) (-2401 (*1 *1 *2) (-12 (-5 *2 (-642 (-2 (|:| -2817 (-769)) (|:| -2245 *4) (|:| |num| *4)))) (-4 *4 (-1238 *3)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4)))) (-2199 (*1 *1 *1) (-12 (-4 *2 (-13 (-363) (-147))) (-5 *1 (-399 *2 *3)) (-4 *3 (-1238 *2)))) (-2711 (*1 *1 *1) (-12 (-4 *2 (-13 (-363) (-147))) (-5 *1 (-399 *2 *3)) (-4 *3 (-1238 *2)))) (-2199 (*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4)) (-4 *4 (-1238 *3)))) (-2711 (*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4)) (-4 *4 (-1238 *3))))) -(-13 (-1097) (-612 (-407 |#2|)) (-10 -8 (-15 -2917 ($ |#2| $)) (-15 -3328 ($ (-407 |#2|))) (-15 -2120 (|#2| $)) (-15 -1297 ((-642 (-2 (|:| -2817 (-769)) (|:| -2245 |#2|) (|:| |num| |#2|))) $)) (-15 -2401 ($ (-642 (-2 (|:| -2817 (-769)) (|:| -2245 |#2|) (|:| |num| |#2|))))) (-15 -2199 ($ $)) (-15 -2711 ($ $)) (-15 -2199 ($ $ (-769))) (-15 -2711 ($ $ (-769))))) -((-2856 (((-112) $ $) 9 (-2682 (|has| |#1| (-884 (-564))) (|has| |#1| (-884 (-379)))))) (-1381 (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) 16 (|has| |#1| (-884 (-379)))) (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) 15 (|has| |#1| (-884 (-564))))) (-1778 (((-1155) $) 13 (-2682 (|has| |#1| (-884 (-564))) (|has| |#1| (-884 (-379)))))) (-3999 (((-1117) $) 12 (-2682 (|has| |#1| (-884 (-564))) (|has| |#1| (-884 (-379)))))) (-2390 (((-860) $) 11 (-2682 (|has| |#1| (-884 (-564))) (|has| |#1| (-884 (-379)))))) (-1600 (((-112) $ $) 14 (-2682 (|has| |#1| (-884 (-564))) (|has| |#1| (-884 (-379)))))) (-2821 (((-112) $ $) 10 (-2682 (|has| |#1| (-884 (-564))) (|has| |#1| (-884 (-379))))))) -(((-400 |#1|) (-140) (-1212)) (T -400)) -NIL -(-13 (-1212) (-10 -7 (IF (|has| |t#1| (-884 (-564))) (-6 (-884 (-564))) |%noBranch|) (IF (|has| |t#1| (-884 (-379))) (-6 (-884 (-379))) |%noBranch|))) -(((-102) -2682 (|has| |#1| (-884 (-564))) (|has| |#1| (-884 (-379)))) ((-611 (-860)) -2682 (|has| |#1| (-884 (-564))) (|has| |#1| (-884 (-379)))) ((-884 (-379)) |has| |#1| (-884 (-379))) ((-884 (-564)) |has| |#1| (-884 (-564))) ((-1097) -2682 (|has| |#1| (-884 (-564))) (|has| |#1| (-884 (-379)))) ((-1212) . T)) -((-1595 (($ $) 10) (($ $ (-769)) 12))) -(((-401 |#1|) (-10 -8 (-15 -1595 (|#1| |#1| (-769))) (-15 -1595 (|#1| |#1|))) (-402)) (T -401)) -NIL -(-10 -8 (-15 -1595 (|#1| |#1| (-769))) (-15 -1595 (|#1| |#1|))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) 47)) (-4252 (($ $) 46)) (-1722 (((-112) $) 44)) (-3085 (((-3 $ "failed") $ $) 20)) (-1993 (($ $) 81)) (-3282 (((-418 $) $) 80)) (-2134 (((-112) $ $) 65)) (-2822 (($) 18 T CONST)) (-2796 (($ $ $) 61)) (-2675 (((-3 $ "failed") $) 37)) (-2808 (($ $ $) 62)) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) 57)) (-1595 (($ $) 87) (($ $ (-769)) 86)) (-3552 (((-112) $) 79)) (-2408 (((-831 (-919)) $) 89)) (-3163 (((-112) $) 35)) (-2709 (((-3 (-642 $) "failed") (-642 $) $) 58)) (-2066 (($ $ $) 52) (($ (-642 $)) 51)) (-1778 (((-1155) $) 10)) (-2481 (($ $) 78)) (-3999 (((-1117) $) 11)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) 50)) (-2105 (($ $ $) 54) (($ (-642 $)) 53)) (-2254 (((-418 $) $) 82)) (-1877 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2842 (((-3 $ "failed") $ $) 48)) (-1483 (((-3 (-642 $) "failed") (-642 $) $) 56)) (-4274 (((-769) $) 64)) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) 63)) (-1354 (((-3 (-769) "failed") $ $) 88)) (-2390 (((-860) $) 12) (($ (-564)) 33) (($ $) 49) (($ (-407 (-564))) 74)) (-3434 (((-3 $ "failed") $) 90)) (-3348 (((-769)) 32 T CONST)) (-1600 (((-112) $ $) 9)) (-1594 (((-112) $ $) 45)) (-2361 (($) 19 T CONST)) (-2371 (($) 34 T CONST)) (-2821 (((-112) $ $) 6)) (-2943 (($ $ $) 73)) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36) (($ $ (-564)) 77)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ (-407 (-564))) 76) (($ (-407 (-564)) $) 75))) -(((-402) (-140)) (T -402)) -((-2408 (*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-831 (-919))))) (-1354 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-402)) (-5 *2 (-769)))) (-1595 (*1 *1 *1) (-4 *1 (-402))) (-1595 (*1 *1 *1 *2) (-12 (-4 *1 (-402)) (-5 *2 (-769))))) -(-13 (-363) (-145) (-10 -8 (-15 -2408 ((-831 (-919)) $)) (-15 -1354 ((-3 (-769) "failed") $ $)) (-15 -1595 ($ $)) (-15 -1595 ($ $ (-769))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) . T) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-860)) . T) ((-172) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-452) . T) ((-556) . T) ((-644 #0#) . T) ((-644 (-564)) . T) ((-644 $) . T) ((-646 #0#) . T) ((-646 $) . T) ((-638 #0#) . T) ((-638 $) . T) ((-715 #0#) . T) ((-715 $) . T) ((-724) . T) ((-918) . T) ((-1049 #0#) . T) ((-1049 $) . T) ((-1054 #0#) . T) ((-1054 $) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T) ((-1216) . T)) -((-2823 (($ (-564) (-564)) 11) (($ (-564) (-564) (-919)) NIL)) (-3152 (((-919)) 20) (((-919) (-919)) NIL))) -(((-403 |#1|) (-10 -8 (-15 -3152 ((-919) (-919))) (-15 -3152 ((-919))) (-15 -2823 (|#1| (-564) (-564) (-919))) (-15 -2823 (|#1| (-564) (-564)))) (-404)) (T -403)) -((-3152 (*1 *2) (-12 (-5 *2 (-919)) (-5 *1 (-403 *3)) (-4 *3 (-404)))) (-3152 (*1 *2 *2) (-12 (-5 *2 (-919)) (-5 *1 (-403 *3)) (-4 *3 (-404))))) -(-10 -8 (-15 -3152 ((-919) (-919))) (-15 -3152 ((-919))) (-15 -2823 (|#1| (-564) (-564) (-919))) (-15 -2823 (|#1| (-564) (-564)))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-2905 (((-564) $) 97)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) 47)) (-4252 (($ $) 46)) (-1722 (((-112) $) 44)) (-2180 (($ $) 95)) (-3085 (((-3 $ "failed") $ $) 20)) (-1993 (($ $) 81)) (-3282 (((-418 $) $) 80)) (-2264 (($ $) 105)) (-2134 (((-112) $ $) 65)) (-2221 (((-564) $) 122)) (-2822 (($) 18 T CONST)) (-2293 (($ $) 94)) (-2849 (((-3 (-564) "failed") $) 110) (((-3 (-407 (-564)) "failed") $) 107)) (-1687 (((-564) $) 111) (((-407 (-564)) $) 108)) (-2796 (($ $ $) 61)) (-2675 (((-3 $ "failed") $) 37)) (-2808 (($ $ $) 62)) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) 57)) (-3552 (((-112) $) 79)) (-2182 (((-919)) 138) (((-919) (-919)) 135 (|has| $ (-6 -4401)))) (-3292 (((-112) $) 120)) (-1381 (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) 101)) (-2408 (((-564) $) 144)) (-3163 (((-112) $) 35)) (-2024 (($ $ (-564)) 104)) (-2573 (($ $) 100)) (-2666 (((-112) $) 121)) (-2709 (((-3 (-642 $) "failed") (-642 $) $) 58)) (-3225 (($ $ $) 119) (($) 132 (-12 (-2307 (|has| $ (-6 -4401))) (-2307 (|has| $ (-6 -4393)))))) (-2903 (($ $ $) 118) (($) 131 (-12 (-2307 (|has| $ (-6 -4401))) (-2307 (|has| $ (-6 -4393)))))) (-1664 (((-564) $) 141)) (-2066 (($ $ $) 52) (($ (-642 $)) 51)) (-1778 (((-1155) $) 10)) (-2481 (($ $) 78)) (-3974 (((-919) (-564)) 134 (|has| $ (-6 -4401)))) (-3999 (((-1117) $) 11)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) 50)) (-2105 (($ $ $) 54) (($ (-642 $)) 53)) (-1830 (($ $) 96)) (-2795 (($ $) 98)) (-2823 (($ (-564) (-564)) 146) (($ (-564) (-564) (-919)) 145)) (-2254 (((-418 $) $) 82)) (-1877 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2842 (((-3 $ "failed") $ $) 48)) (-1483 (((-3 (-642 $) "failed") (-642 $) $) 56)) (-2817 (((-564) $) 142)) (-4274 (((-769) $) 64)) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) 63)) (-3152 (((-919)) 139) (((-919) (-919)) 136 (|has| $ (-6 -4401)))) (-3520 (((-919) (-564)) 133 (|has| $ (-6 -4401)))) (-3003 (((-379) $) 113) (((-225) $) 112) (((-890 (-379)) $) 102)) (-2390 (((-860) $) 12) (($ (-564)) 33) (($ $) 49) (($ (-407 (-564))) 74) (($ (-564)) 109) (($ (-407 (-564))) 106)) (-3348 (((-769)) 32 T CONST)) (-1378 (($ $) 99)) (-1991 (((-919)) 140) (((-919) (-919)) 137 (|has| $ (-6 -4401)))) (-1600 (((-112) $ $) 9)) (-1959 (((-919)) 143)) (-1594 (((-112) $ $) 45)) (-1630 (($ $) 123)) (-2361 (($) 19 T CONST)) (-2371 (($) 34 T CONST)) (-2881 (((-112) $ $) 116)) (-2857 (((-112) $ $) 115)) (-2821 (((-112) $ $) 6)) (-2868 (((-112) $ $) 117)) (-2844 (((-112) $ $) 114)) (-2943 (($ $ $) 73)) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36) (($ $ (-564)) 77) (($ $ (-407 (-564))) 103)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ (-407 (-564))) 76) (($ (-407 (-564)) $) 75))) +NIL +(-13 (-558) (-850) (-1038 (-566))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-616 (-566)) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-291) . T) ((-558) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 $) . T) ((-640 $) . T) ((-717 $) . T) ((-726) . T) ((-850) . T) ((-1038 (-566)) . T) ((-1051 $) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) +((-2986 (((-112) $ $) NIL)) (-1648 (((-112) $) 25)) (-2551 (((-112) $) 22)) (-4259 (($ (-1157) (-1157) (-1157)) 26)) (-2598 (((-1157) $) 16)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-1946 (($ (-1157) (-1157) (-1157)) 14)) (-3915 (((-1157) $) 17)) (-4279 (((-112) $) 18)) (-2181 (((-1157) $) 15)) (-2479 (((-862) $) 12) (($ (-1157)) 13) (((-1157) $) 9)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 7))) +(((-390) (-391)) (T -390)) +NIL +(-391) +((-2986 (((-112) $ $) 7)) (-1648 (((-112) $) 17)) (-2551 (((-112) $) 18)) (-4259 (($ (-1157) (-1157) (-1157)) 16)) (-2598 (((-1157) $) 21)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-1946 (($ (-1157) (-1157) (-1157)) 23)) (-3915 (((-1157) $) 20)) (-4279 (((-112) $) 19)) (-2181 (((-1157) $) 22)) (-2479 (((-862) $) 12) (($ (-1157)) 25) (((-1157) $) 24)) (-3900 (((-112) $ $) 9)) (-2952 (((-112) $ $) 6))) +(((-391) (-140)) (T -391)) +((-1946 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1157)) (-4 *1 (-391)))) (-2181 (*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-1157)))) (-2598 (*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-1157)))) (-3915 (*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-1157)))) (-4279 (*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-112)))) (-2551 (*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-112)))) (-1648 (*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-112)))) (-4259 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1157)) (-4 *1 (-391))))) +(-13 (-1099) (-492 (-1157)) (-10 -8 (-15 -1946 ($ (-1157) (-1157) (-1157))) (-15 -2181 ((-1157) $)) (-15 -2598 ((-1157) $)) (-15 -3915 ((-1157) $)) (-15 -4279 ((-112) $)) (-15 -2551 ((-112) $)) (-15 -1648 ((-112) $)) (-15 -4259 ($ (-1157) (-1157) (-1157))))) +(((-102) . T) ((-616 #0=(-1157)) . T) ((-613 (-862)) . T) ((-613 #0#) . T) ((-492 #0#) . T) ((-1099) . T)) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-2533 (((-862) $) 64)) (-1811 (($) NIL T CONST)) (-4370 (($ $ (-921)) NIL)) (-1595 (($ $ (-921)) NIL)) (-3681 (($ $ (-921)) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-4086 (($ (-771)) 38)) (-3944 (((-771)) 18)) (-1354 (((-862) $) 66)) (-3815 (($ $ $) NIL)) (-2479 (((-862) $) NIL)) (-3900 (((-112) $ $) NIL)) (-1469 (($ $ $ $) NIL)) (-1596 (($ $ $) NIL)) (-2446 (($) 24 T CONST)) (-2952 (((-112) $ $) 41)) (-3065 (($ $) 48) (($ $ $) 50)) (-3052 (($ $ $) 51)) (** (($ $ (-921)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 52) (($ $ |#3|) NIL) (($ |#3| $) 47))) +(((-392 |#1| |#2| |#3|) (-13 (-744 |#3|) (-10 -8 (-15 -3944 ((-771))) (-15 -1354 ((-862) $)) (-15 -2533 ((-862) $)) (-15 -4086 ($ (-771))))) (-771) (-771) (-172)) (T -392)) +((-3944 (*1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-392 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-172)))) (-1354 (*1 *2 *1) (-12 (-5 *2 (-862)) (-5 *1 (-392 *3 *4 *5)) (-14 *3 (-771)) (-14 *4 (-771)) (-4 *5 (-172)))) (-2533 (*1 *2 *1) (-12 (-5 *2 (-862)) (-5 *1 (-392 *3 *4 *5)) (-14 *3 (-771)) (-14 *4 (-771)) (-4 *5 (-172)))) (-4086 (*1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-392 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-172))))) +(-13 (-744 |#3|) (-10 -8 (-15 -3944 ((-771))) (-15 -1354 ((-862) $)) (-15 -2533 ((-862) $)) (-15 -4086 ($ (-771))))) +((-4387 (((-1157)) 12)) (-4002 (((-1146 (-1157))) 31)) (-3363 (((-1269) (-1157)) 28) (((-1269) (-390)) 27)) (-3373 (((-1269)) 29)) (-2615 (((-1146 (-1157))) 30))) +(((-393) (-10 -7 (-15 -2615 ((-1146 (-1157)))) (-15 -4002 ((-1146 (-1157)))) (-15 -3373 ((-1269))) (-15 -3363 ((-1269) (-390))) (-15 -3363 ((-1269) (-1157))) (-15 -4387 ((-1157))))) (T -393)) +((-4387 (*1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-393)))) (-3363 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-393)))) (-3363 (*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1269)) (-5 *1 (-393)))) (-3373 (*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-393)))) (-4002 (*1 *2) (-12 (-5 *2 (-1146 (-1157))) (-5 *1 (-393)))) (-2615 (*1 *2) (-12 (-5 *2 (-1146 (-1157))) (-5 *1 (-393))))) +(-10 -7 (-15 -2615 ((-1146 (-1157)))) (-15 -4002 ((-1146 (-1157)))) (-15 -3373 ((-1269))) (-15 -3363 ((-1269) (-390))) (-15 -3363 ((-1269) (-1157))) (-15 -4387 ((-1157)))) +((-1802 (((-771) (-338 |#1| |#2| |#3| |#4|)) 19))) +(((-394 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1802 ((-771) (-338 |#1| |#2| |#3| |#4|)))) (-13 (-370) (-365)) (-1240 |#1|) (-1240 (-409 |#2|)) (-344 |#1| |#2| |#3|)) (T -394)) +((-1802 (*1 *2 *3) (-12 (-5 *3 (-338 *4 *5 *6 *7)) (-4 *4 (-13 (-370) (-365))) (-4 *5 (-1240 *4)) (-4 *6 (-1240 (-409 *5))) (-4 *7 (-344 *4 *5 *6)) (-5 *2 (-771)) (-5 *1 (-394 *4 *5 *6 *7))))) +(-10 -7 (-15 -1802 ((-771) (-338 |#1| |#2| |#3| |#4|)))) +((-2479 (((-396) |#1|) 11))) +(((-395 |#1|) (-10 -7 (-15 -2479 ((-396) |#1|))) (-1099)) (T -395)) +((-2479 (*1 *2 *3) (-12 (-5 *2 (-396)) (-5 *1 (-395 *3)) (-4 *3 (-1099))))) +(-10 -7 (-15 -2479 ((-396) |#1|))) +((-2986 (((-112) $ $) NIL)) (-1827 (((-644 (-1157)) $ (-644 (-1157))) 43)) (-2882 (((-644 (-1157)) $ (-644 (-1157))) 44)) (-2633 (((-644 (-1157)) $ (-644 (-1157))) 45)) (-2271 (((-644 (-1157)) $) 40)) (-4259 (($) 30)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2501 (((-644 (-1157)) $) 41)) (-3959 (((-644 (-1157)) $) 42)) (-1659 (((-1269) $ (-566)) 38) (((-1269) $) 39)) (-3136 (($ (-862) (-566)) 35)) (-2479 (((-862) $) 54) (($ (-862)) 32)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-396) (-13 (-1099) (-616 (-862)) (-10 -8 (-15 -3136 ($ (-862) (-566))) (-15 -1659 ((-1269) $ (-566))) (-15 -1659 ((-1269) $)) (-15 -3959 ((-644 (-1157)) $)) (-15 -2501 ((-644 (-1157)) $)) (-15 -4259 ($)) (-15 -2271 ((-644 (-1157)) $)) (-15 -2633 ((-644 (-1157)) $ (-644 (-1157)))) (-15 -2882 ((-644 (-1157)) $ (-644 (-1157)))) (-15 -1827 ((-644 (-1157)) $ (-644 (-1157))))))) (T -396)) +((-3136 (*1 *1 *2 *3) (-12 (-5 *2 (-862)) (-5 *3 (-566)) (-5 *1 (-396)))) (-1659 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *2 (-1269)) (-5 *1 (-396)))) (-1659 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-396)))) (-3959 (*1 *2 *1) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-396)))) (-2501 (*1 *2 *1) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-396)))) (-4259 (*1 *1) (-5 *1 (-396))) (-2271 (*1 *2 *1) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-396)))) (-2633 (*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-396)))) (-2882 (*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-396)))) (-1827 (*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-396))))) +(-13 (-1099) (-616 (-862)) (-10 -8 (-15 -3136 ($ (-862) (-566))) (-15 -1659 ((-1269) $ (-566))) (-15 -1659 ((-1269) $)) (-15 -3959 ((-644 (-1157)) $)) (-15 -2501 ((-644 (-1157)) $)) (-15 -4259 ($)) (-15 -2271 ((-644 (-1157)) $)) (-15 -2633 ((-644 (-1157)) $ (-644 (-1157)))) (-15 -2882 ((-644 (-1157)) $ (-644 (-1157)))) (-15 -1827 ((-644 (-1157)) $ (-644 (-1157)))))) +((-3386 (((-1269) $) 7)) (-2479 (((-862) $) 8))) +(((-397) (-140)) (T -397)) +((-3386 (*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-1269))))) +(-13 (-1214) (-613 (-862)) (-10 -8 (-15 -3386 ((-1269) $)))) +(((-613 (-862)) . T) ((-1214) . T)) +((-2980 (((-3 $ "failed") (-317 (-381))) 21) (((-3 $ "failed") (-317 (-566))) 19) (((-3 $ "failed") (-952 (-381))) 17) (((-3 $ "failed") (-952 (-566))) 15) (((-3 $ "failed") (-409 (-952 (-381)))) 13) (((-3 $ "failed") (-409 (-952 (-566)))) 11)) (-1709 (($ (-317 (-381))) 22) (($ (-317 (-566))) 20) (($ (-952 (-381))) 18) (($ (-952 (-566))) 16) (($ (-409 (-952 (-381)))) 14) (($ (-409 (-952 (-566)))) 12)) (-3386 (((-1269) $) 7)) (-2479 (((-862) $) 8) (($ (-644 (-331))) 25) (($ (-331)) 24) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3217 (-644 (-331))))) 23))) +(((-398) (-140)) (T -398)) +((-2479 (*1 *1 *2) (-12 (-5 *2 (-644 (-331))) (-4 *1 (-398)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-398)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1179)) (|:| -3217 (-644 (-331))))) (-4 *1 (-398)))) (-1709 (*1 *1 *2) (-12 (-5 *2 (-317 (-381))) (-4 *1 (-398)))) (-2980 (*1 *1 *2) (|partial| -12 (-5 *2 (-317 (-381))) (-4 *1 (-398)))) (-1709 (*1 *1 *2) (-12 (-5 *2 (-317 (-566))) (-4 *1 (-398)))) (-2980 (*1 *1 *2) (|partial| -12 (-5 *2 (-317 (-566))) (-4 *1 (-398)))) (-1709 (*1 *1 *2) (-12 (-5 *2 (-952 (-381))) (-4 *1 (-398)))) (-2980 (*1 *1 *2) (|partial| -12 (-5 *2 (-952 (-381))) (-4 *1 (-398)))) (-1709 (*1 *1 *2) (-12 (-5 *2 (-952 (-566))) (-4 *1 (-398)))) (-2980 (*1 *1 *2) (|partial| -12 (-5 *2 (-952 (-566))) (-4 *1 (-398)))) (-1709 (*1 *1 *2) (-12 (-5 *2 (-409 (-952 (-381)))) (-4 *1 (-398)))) (-2980 (*1 *1 *2) (|partial| -12 (-5 *2 (-409 (-952 (-381)))) (-4 *1 (-398)))) (-1709 (*1 *1 *2) (-12 (-5 *2 (-409 (-952 (-566)))) (-4 *1 (-398)))) (-2980 (*1 *1 *2) (|partial| -12 (-5 *2 (-409 (-952 (-566)))) (-4 *1 (-398))))) +(-13 (-397) (-10 -8 (-15 -2479 ($ (-644 (-331)))) (-15 -2479 ($ (-331))) (-15 -2479 ($ (-2 (|:| |localSymbols| (-1179)) (|:| -3217 (-644 (-331)))))) (-15 -1709 ($ (-317 (-381)))) (-15 -2980 ((-3 $ "failed") (-317 (-381)))) (-15 -1709 ($ (-317 (-566)))) (-15 -2980 ((-3 $ "failed") (-317 (-566)))) (-15 -1709 ($ (-952 (-381)))) (-15 -2980 ((-3 $ "failed") (-952 (-381)))) (-15 -1709 ($ (-952 (-566)))) (-15 -2980 ((-3 $ "failed") (-952 (-566)))) (-15 -1709 ($ (-409 (-952 (-381))))) (-15 -2980 ((-3 $ "failed") (-409 (-952 (-381))))) (-15 -1709 ($ (-409 (-952 (-566))))) (-15 -2980 ((-3 $ "failed") (-409 (-952 (-566))))))) +(((-613 (-862)) . T) ((-397) . T) ((-1214) . T)) +((-3355 (((-644 (-1157)) (-644 (-1157))) 9)) (-3386 (((-1269) (-390)) 27)) (-3384 (((-1103) (-1175) (-644 (-1175)) (-1178) (-644 (-1175))) 60) (((-1103) (-1175) (-644 (-3 (|:| |array| (-644 (-1175))) (|:| |scalar| (-1175)))) (-644 (-644 (-3 (|:| |array| (-644 (-1175))) (|:| |scalar| (-1175))))) (-644 (-1175)) (-1175)) 35) (((-1103) (-1175) (-644 (-3 (|:| |array| (-644 (-1175))) (|:| |scalar| (-1175)))) (-644 (-644 (-3 (|:| |array| (-644 (-1175))) (|:| |scalar| (-1175))))) (-644 (-1175))) 34))) +(((-399) (-10 -7 (-15 -3384 ((-1103) (-1175) (-644 (-3 (|:| |array| (-644 (-1175))) (|:| |scalar| (-1175)))) (-644 (-644 (-3 (|:| |array| (-644 (-1175))) (|:| |scalar| (-1175))))) (-644 (-1175)))) (-15 -3384 ((-1103) (-1175) (-644 (-3 (|:| |array| (-644 (-1175))) (|:| |scalar| (-1175)))) (-644 (-644 (-3 (|:| |array| (-644 (-1175))) (|:| |scalar| (-1175))))) (-644 (-1175)) (-1175))) (-15 -3384 ((-1103) (-1175) (-644 (-1175)) (-1178) (-644 (-1175)))) (-15 -3386 ((-1269) (-390))) (-15 -3355 ((-644 (-1157)) (-644 (-1157)))))) (T -399)) +((-3355 (*1 *2 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-399)))) (-3386 (*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1269)) (-5 *1 (-399)))) (-3384 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-644 (-1175))) (-5 *5 (-1178)) (-5 *3 (-1175)) (-5 *2 (-1103)) (-5 *1 (-399)))) (-3384 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-644 (-644 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-644 (-3 (|:| |array| (-644 *3)) (|:| |scalar| (-1175))))) (-5 *6 (-644 (-1175))) (-5 *3 (-1175)) (-5 *2 (-1103)) (-5 *1 (-399)))) (-3384 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-644 (-644 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-644 (-3 (|:| |array| (-644 *3)) (|:| |scalar| (-1175))))) (-5 *6 (-644 (-1175))) (-5 *3 (-1175)) (-5 *2 (-1103)) (-5 *1 (-399))))) +(-10 -7 (-15 -3384 ((-1103) (-1175) (-644 (-3 (|:| |array| (-644 (-1175))) (|:| |scalar| (-1175)))) (-644 (-644 (-3 (|:| |array| (-644 (-1175))) (|:| |scalar| (-1175))))) (-644 (-1175)))) (-15 -3384 ((-1103) (-1175) (-644 (-3 (|:| |array| (-644 (-1175))) (|:| |scalar| (-1175)))) (-644 (-644 (-3 (|:| |array| (-644 (-1175))) (|:| |scalar| (-1175))))) (-644 (-1175)) (-1175))) (-15 -3384 ((-1103) (-1175) (-644 (-1175)) (-1178) (-644 (-1175)))) (-15 -3386 ((-1269) (-390))) (-15 -3355 ((-644 (-1157)) (-644 (-1157))))) +((-3386 (((-1269) $) 36)) (-2479 (((-862) $) 98) (($ (-331)) 100) (($ (-644 (-331))) 99) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3217 (-644 (-331))))) 97) (($ (-317 (-701))) 53) (($ (-317 (-699))) 73) (($ (-317 (-694))) 86) (($ (-295 (-317 (-701)))) 68) (($ (-295 (-317 (-699)))) 81) (($ (-295 (-317 (-694)))) 94) (($ (-317 (-566))) 105) (($ (-317 (-381))) 118) (($ (-317 (-169 (-381)))) 131) (($ (-295 (-317 (-566)))) 113) (($ (-295 (-317 (-381)))) 126) (($ (-295 (-317 (-169 (-381))))) 139))) +(((-400 |#1| |#2| |#3| |#4|) (-13 (-397) (-10 -8 (-15 -2479 ($ (-331))) (-15 -2479 ($ (-644 (-331)))) (-15 -2479 ($ (-2 (|:| |localSymbols| (-1179)) (|:| -3217 (-644 (-331)))))) (-15 -2479 ($ (-317 (-701)))) (-15 -2479 ($ (-317 (-699)))) (-15 -2479 ($ (-317 (-694)))) (-15 -2479 ($ (-295 (-317 (-701))))) (-15 -2479 ($ (-295 (-317 (-699))))) (-15 -2479 ($ (-295 (-317 (-694))))) (-15 -2479 ($ (-317 (-566)))) (-15 -2479 ($ (-317 (-381)))) (-15 -2479 ($ (-317 (-169 (-381))))) (-15 -2479 ($ (-295 (-317 (-566))))) (-15 -2479 ($ (-295 (-317 (-381))))) (-15 -2479 ($ (-295 (-317 (-169 (-381)))))))) (-1175) (-3 (|:| |fst| (-436)) (|:| -4306 "void")) (-644 (-1175)) (-1179)) (T -400)) +((-2479 (*1 *1 *2) (-12 (-5 *2 (-331)) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -4306 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-644 (-331))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -4306 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1179)) (|:| -3217 (-644 (-331))))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -4306 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-317 (-701))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -4306 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-317 (-699))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -4306 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-317 (-694))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -4306 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-701)))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -4306 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-699)))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -4306 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-694)))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -4306 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-317 (-566))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -4306 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-317 (-381))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -4306 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-317 (-169 (-381)))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -4306 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-566)))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -4306 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-381)))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -4306 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-169 (-381))))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -4306 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179))))) +(-13 (-397) (-10 -8 (-15 -2479 ($ (-331))) (-15 -2479 ($ (-644 (-331)))) (-15 -2479 ($ (-2 (|:| |localSymbols| (-1179)) (|:| -3217 (-644 (-331)))))) (-15 -2479 ($ (-317 (-701)))) (-15 -2479 ($ (-317 (-699)))) (-15 -2479 ($ (-317 (-694)))) (-15 -2479 ($ (-295 (-317 (-701))))) (-15 -2479 ($ (-295 (-317 (-699))))) (-15 -2479 ($ (-295 (-317 (-694))))) (-15 -2479 ($ (-317 (-566)))) (-15 -2479 ($ (-317 (-381)))) (-15 -2479 ($ (-317 (-169 (-381))))) (-15 -2479 ($ (-295 (-317 (-566))))) (-15 -2479 ($ (-295 (-317 (-381))))) (-15 -2479 ($ (-295 (-317 (-169 (-381)))))))) +((-2986 (((-112) $ $) NIL)) (-3438 ((|#2| $) 38)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-1968 (($ (-409 |#2|)) 95)) (-3501 (((-644 (-2 (|:| -3631 (-771)) (|:| -2316 |#2|) (|:| |num| |#2|))) $) 39)) (-3526 (($ $) 34) (($ $ (-771)) 36)) (-3136 (((-409 |#2|) $) 51)) (-2489 (($ (-644 (-2 (|:| -3631 (-771)) (|:| -2316 |#2|) (|:| |num| |#2|)))) 33)) (-2479 (((-862) $) 132)) (-3900 (((-112) $ $) NIL)) (-2834 (($ $) 35) (($ $ (-771)) 37)) (-2952 (((-112) $ $) NIL)) (-3052 (($ |#2| $) 41))) +(((-401 |#1| |#2|) (-13 (-1099) (-614 (-409 |#2|)) (-10 -8 (-15 -3052 ($ |#2| $)) (-15 -1968 ($ (-409 |#2|))) (-15 -3438 (|#2| $)) (-15 -3501 ((-644 (-2 (|:| -3631 (-771)) (|:| -2316 |#2|) (|:| |num| |#2|))) $)) (-15 -2489 ($ (-644 (-2 (|:| -3631 (-771)) (|:| -2316 |#2|) (|:| |num| |#2|))))) (-15 -3526 ($ $)) (-15 -2834 ($ $)) (-15 -3526 ($ $ (-771))) (-15 -2834 ($ $ (-771))))) (-13 (-365) (-147)) (-1240 |#1|)) (T -401)) +((-3052 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-365) (-147))) (-5 *1 (-401 *3 *2)) (-4 *2 (-1240 *3)))) (-1968 (*1 *1 *2) (-12 (-5 *2 (-409 *4)) (-4 *4 (-1240 *3)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-401 *3 *4)))) (-3438 (*1 *2 *1) (-12 (-4 *2 (-1240 *3)) (-5 *1 (-401 *3 *2)) (-4 *3 (-13 (-365) (-147))))) (-3501 (*1 *2 *1) (-12 (-4 *3 (-13 (-365) (-147))) (-5 *2 (-644 (-2 (|:| -3631 (-771)) (|:| -2316 *4) (|:| |num| *4)))) (-5 *1 (-401 *3 *4)) (-4 *4 (-1240 *3)))) (-2489 (*1 *1 *2) (-12 (-5 *2 (-644 (-2 (|:| -3631 (-771)) (|:| -2316 *4) (|:| |num| *4)))) (-4 *4 (-1240 *3)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-401 *3 *4)))) (-3526 (*1 *1 *1) (-12 (-4 *2 (-13 (-365) (-147))) (-5 *1 (-401 *2 *3)) (-4 *3 (-1240 *2)))) (-2834 (*1 *1 *1) (-12 (-4 *2 (-13 (-365) (-147))) (-5 *1 (-401 *2 *3)) (-4 *3 (-1240 *2)))) (-3526 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-401 *3 *4)) (-4 *4 (-1240 *3)))) (-2834 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-401 *3 *4)) (-4 *4 (-1240 *3))))) +(-13 (-1099) (-614 (-409 |#2|)) (-10 -8 (-15 -3052 ($ |#2| $)) (-15 -1968 ($ (-409 |#2|))) (-15 -3438 (|#2| $)) (-15 -3501 ((-644 (-2 (|:| -3631 (-771)) (|:| -2316 |#2|) (|:| |num| |#2|))) $)) (-15 -2489 ($ (-644 (-2 (|:| -3631 (-771)) (|:| -2316 |#2|) (|:| |num| |#2|))))) (-15 -3526 ($ $)) (-15 -2834 ($ $)) (-15 -3526 ($ $ (-771))) (-15 -2834 ($ $ (-771))))) +((-2986 (((-112) $ $) 9 (-2809 (|has| |#1| (-886 (-566))) (|has| |#1| (-886 (-381)))))) (-1542 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 16 (|has| |#1| (-886 (-381)))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 15 (|has| |#1| (-886 (-566))))) (-3151 (((-1157) $) 13 (-2809 (|has| |#1| (-886 (-566))) (|has| |#1| (-886 (-381)))))) (-4059 (((-1119) $) 12 (-2809 (|has| |#1| (-886 (-566))) (|has| |#1| (-886 (-381)))))) (-2479 (((-862) $) 11 (-2809 (|has| |#1| (-886 (-566))) (|has| |#1| (-886 (-381)))))) (-3900 (((-112) $ $) 14 (-2809 (|has| |#1| (-886 (-566))) (|has| |#1| (-886 (-381)))))) (-2952 (((-112) $ $) 10 (-2809 (|has| |#1| (-886 (-566))) (|has| |#1| (-886 (-381))))))) +(((-402 |#1|) (-140) (-1214)) (T -402)) +NIL +(-13 (-1214) (-10 -7 (IF (|has| |t#1| (-886 (-566))) (-6 (-886 (-566))) |%noBranch|) (IF (|has| |t#1| (-886 (-381))) (-6 (-886 (-381))) |%noBranch|))) +(((-102) -2809 (|has| |#1| (-886 (-566))) (|has| |#1| (-886 (-381)))) ((-613 (-862)) -2809 (|has| |#1| (-886 (-566))) (|has| |#1| (-886 (-381)))) ((-886 (-381)) |has| |#1| (-886 (-381))) ((-886 (-566)) |has| |#1| (-886 (-566))) ((-1099) -2809 (|has| |#1| (-886 (-566))) (|has| |#1| (-886 (-381)))) ((-1214) . T)) +((-4202 (($ $) 10) (($ $ (-771)) 12))) +(((-403 |#1|) (-10 -8 (-15 -4202 (|#1| |#1| (-771))) (-15 -4202 (|#1| |#1|))) (-404)) (T -403)) +NIL +(-10 -8 (-15 -4202 (|#1| |#1| (-771))) (-15 -4202 (|#1| |#1|))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) 47)) (-3087 (($ $) 46)) (-1716 (((-112) $) 44)) (-3174 (((-3 $ "failed") $ $) 20)) (-3980 (($ $) 81)) (-3348 (((-420 $) $) 80)) (-2761 (((-112) $ $) 65)) (-1811 (($) 18 T CONST)) (-2925 (($ $ $) 61)) (-3757 (((-3 $ "failed") $) 37)) (-2937 (($ $ $) 62)) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) 57)) (-4202 (($ $) 87) (($ $ (-771)) 86)) (-4188 (((-112) $) 79)) (-1802 (((-833 (-921)) $) 89)) (-2264 (((-112) $) 35)) (-2495 (((-3 (-644 $) "failed") (-644 $) $) 58)) (-2120 (($ $ $) 52) (($ (-644 $)) 51)) (-3151 (((-1157) $) 10)) (-2577 (($ $) 78)) (-4059 (((-1119) $) 11)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-2162 (($ $ $) 54) (($ (-644 $)) 53)) (-2325 (((-420 $) $) 82)) (-2585 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2976 (((-3 $ "failed") $ $) 48)) (-2840 (((-3 (-644 $) "failed") (-644 $) $) 56)) (-1383 (((-771) $) 64)) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) 63)) (-4107 (((-3 (-771) "failed") $ $) 88)) (-2479 (((-862) $) 12) (($ (-566)) 33) (($ $) 49) (($ (-409 (-566))) 74)) (-2645 (((-3 $ "failed") $) 90)) (-1558 (((-771)) 32 T CONST)) (-3900 (((-112) $ $) 9)) (-1333 (((-112) $ $) 45)) (-2446 (($) 19 T CONST)) (-2459 (($) 34 T CONST)) (-2952 (((-112) $ $) 6)) (-3077 (($ $ $) 73)) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 77)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ (-409 (-566))) 76) (($ (-409 (-566)) $) 75))) (((-404) (-140)) (T -404)) -((-2823 (*1 *1 *2 *2) (-12 (-5 *2 (-564)) (-4 *1 (-404)))) (-2823 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-564)) (-5 *3 (-919)) (-4 *1 (-404)))) (-2408 (*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-564)))) (-1959 (*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-919)))) (-2817 (*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-564)))) (-1664 (*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-564)))) (-1991 (*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-919)))) (-3152 (*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-919)))) (-2182 (*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-919)))) (-1991 (*1 *2 *2) (-12 (-5 *2 (-919)) (|has| *1 (-6 -4401)) (-4 *1 (-404)))) (-3152 (*1 *2 *2) (-12 (-5 *2 (-919)) (|has| *1 (-6 -4401)) (-4 *1 (-404)))) (-2182 (*1 *2 *2) (-12 (-5 *2 (-919)) (|has| *1 (-6 -4401)) (-4 *1 (-404)))) (-3974 (*1 *2 *3) (-12 (-5 *3 (-564)) (|has| *1 (-6 -4401)) (-4 *1 (-404)) (-5 *2 (-919)))) (-3520 (*1 *2 *3) (-12 (-5 *3 (-564)) (|has| *1 (-6 -4401)) (-4 *1 (-404)) (-5 *2 (-919)))) (-3225 (*1 *1) (-12 (-4 *1 (-404)) (-2307 (|has| *1 (-6 -4401))) (-2307 (|has| *1 (-6 -4393))))) (-2903 (*1 *1) (-12 (-4 *1 (-404)) (-2307 (|has| *1 (-6 -4401))) (-2307 (|has| *1 (-6 -4393)))))) -(-13 (-1057) (-10 -8 (-6 -3560) (-15 -2823 ($ (-564) (-564))) (-15 -2823 ($ (-564) (-564) (-919))) (-15 -2408 ((-564) $)) (-15 -1959 ((-919))) (-15 -2817 ((-564) $)) (-15 -1664 ((-564) $)) (-15 -1991 ((-919))) (-15 -3152 ((-919))) (-15 -2182 ((-919))) (IF (|has| $ (-6 -4401)) (PROGN (-15 -1991 ((-919) (-919))) (-15 -3152 ((-919) (-919))) (-15 -2182 ((-919) (-919))) (-15 -3974 ((-919) (-564))) (-15 -3520 ((-919) (-564)))) |%noBranch|) (IF (|has| $ (-6 -4393)) |%noBranch| (IF (|has| $ (-6 -4401)) |%noBranch| (PROGN (-15 -3225 ($)) (-15 -2903 ($))))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-860)) . T) ((-172) . T) ((-612 (-225)) . T) ((-612 (-379)) . T) ((-612 (-890 (-379))) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-452) . T) ((-556) . T) ((-644 #0#) . T) ((-644 (-564)) . T) ((-644 $) . T) ((-646 #0#) . T) ((-646 $) . T) ((-638 #0#) . T) ((-638 $) . T) ((-715 #0#) . T) ((-715 $) . T) ((-724) . T) ((-789) . T) ((-790) . T) ((-792) . T) ((-793) . T) ((-846) . T) ((-848) . T) ((-884 (-379)) . T) ((-918) . T) ((-1000) . T) ((-1020) . T) ((-1057) . T) ((-1036 (-407 (-564))) . T) ((-1036 (-564)) . T) ((-1049 #0#) . T) ((-1049 $) . T) ((-1054 #0#) . T) ((-1054 $) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T) ((-1216) . T)) -((-2947 (((-418 |#2|) (-1 |#2| |#1|) (-418 |#1|)) 20))) -(((-405 |#1| |#2|) (-10 -7 (-15 -2947 ((-418 |#2|) (-1 |#2| |#1|) (-418 |#1|)))) (-556) (-556)) (T -405)) -((-2947 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-418 *5)) (-4 *5 (-556)) (-4 *6 (-556)) (-5 *2 (-418 *6)) (-5 *1 (-405 *5 *6))))) -(-10 -7 (-15 -2947 ((-418 |#2|) (-1 |#2| |#1|) (-418 |#1|)))) -((-2947 (((-407 |#2|) (-1 |#2| |#1|) (-407 |#1|)) 13))) -(((-406 |#1| |#2|) (-10 -7 (-15 -2947 ((-407 |#2|) (-1 |#2| |#1|) (-407 |#1|)))) (-556) (-556)) (T -406)) -((-2947 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-407 *5)) (-4 *5 (-556)) (-4 *6 (-556)) (-5 *2 (-407 *6)) (-5 *1 (-406 *5 *6))))) -(-10 -7 (-15 -2947 ((-407 |#2|) (-1 |#2| |#1|) (-407 |#1|)))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) 13)) (-2905 ((|#1| $) 21 (|has| |#1| (-307)))) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-4252 (($ $) NIL)) (-1722 (((-112) $) NIL)) (-3085 (((-3 $ "failed") $ $) NIL)) (-4297 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-1993 (($ $) NIL)) (-3282 (((-418 $) $) NIL)) (-3267 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-2134 (((-112) $ $) NIL)) (-2221 (((-564) $) NIL (|has| |#1| (-818)))) (-2822 (($) NIL T CONST)) (-2849 (((-3 |#1| "failed") $) 17) (((-3 (-1173) "failed") $) NIL (|has| |#1| (-1036 (-1173)))) (((-3 (-407 (-564)) "failed") $) 72 (|has| |#1| (-1036 (-564)))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1036 (-564))))) (-1687 ((|#1| $) 15) (((-1173) $) NIL (|has| |#1| (-1036 (-1173)))) (((-407 (-564)) $) 69 (|has| |#1| (-1036 (-564)))) (((-564) $) NIL (|has| |#1| (-1036 (-564))))) (-2796 (($ $ $) NIL)) (-3330 (((-687 (-564)) (-687 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -3544 (-687 |#1|)) (|:| |vec| (-1262 |#1|))) (-687 $) (-1262 $)) NIL) (((-687 |#1|) (-687 $)) NIL)) (-2675 (((-3 $ "failed") $) 51)) (-3235 (($) NIL (|has| |#1| (-545)))) (-2808 (($ $ $) NIL)) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) NIL)) (-3552 (((-112) $) NIL)) (-3292 (((-112) $) NIL (|has| |#1| (-818)))) (-1381 (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) NIL (|has| |#1| (-884 (-564)))) (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) NIL (|has| |#1| (-884 (-379))))) (-3163 (((-112) $) 57)) (-3408 (($ $) NIL)) (-4120 ((|#1| $) 73)) (-4382 (((-3 $ "failed") $) NIL (|has| |#1| (-1148)))) (-2666 (((-112) $) NIL (|has| |#1| (-818)))) (-2709 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-3225 (($ $ $) NIL (|has| |#1| (-848)))) (-2903 (($ $ $) NIL (|has| |#1| (-848)))) (-2947 (($ (-1 |#1| |#1|) $) NIL)) (-2066 (($ $ $) NIL) (($ (-642 $)) NIL)) (-1778 (((-1155) $) NIL)) (-2481 (($ $) NIL)) (-3910 (($) NIL (|has| |#1| (-1148)) CONST)) (-3999 (((-1117) $) NIL)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) 100)) (-2105 (($ $ $) NIL) (($ (-642 $)) NIL)) (-1830 (($ $) NIL (|has| |#1| (-307)))) (-2795 ((|#1| $) 28 (|has| |#1| (-545)))) (-3223 (((-418 (-1169 $)) (-1169 $)) 148 (|has| |#1| (-907)))) (-2236 (((-418 (-1169 $)) (-1169 $)) 141 (|has| |#1| (-907)))) (-2254 (((-418 $) $) NIL)) (-1877 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2842 (((-3 $ "failed") $ $) NIL)) (-1483 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-3154 (($ $ (-642 |#1|) (-642 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ (-642 (-294 |#1|))) NIL (|has| |#1| (-309 |#1|))) (($ $ (-642 (-1173)) (-642 |#1|)) NIL (|has| |#1| (-514 (-1173) |#1|))) (($ $ (-1173) |#1|) NIL (|has| |#1| (-514 (-1173) |#1|)))) (-4274 (((-769) $) NIL)) (-4369 (($ $ |#1|) NIL (|has| |#1| (-286 |#1| |#1|)))) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL)) (-2199 (($ $) NIL (|has| |#1| (-233))) (($ $ (-769)) NIL (|has| |#1| (-233))) (($ $ (-1173)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1 |#1| |#1|) (-769)) NIL) (($ $ (-1 |#1| |#1|)) 64)) (-3082 (($ $) NIL)) (-4131 ((|#1| $) 75)) (-3003 (((-890 (-564)) $) NIL (|has| |#1| (-612 (-890 (-564))))) (((-890 (-379)) $) NIL (|has| |#1| (-612 (-890 (-379))))) (((-536) $) NIL (|has| |#1| (-612 (-536)))) (((-379) $) NIL (|has| |#1| (-1020))) (((-225) $) NIL (|has| |#1| (-1020)))) (-3556 (((-3 (-1262 $) "failed") (-687 $)) 125 (-12 (|has| $ (-145)) (|has| |#1| (-907))))) (-2390 (((-860) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ |#1|) 10) (($ (-1173)) NIL (|has| |#1| (-1036 (-1173))))) (-3434 (((-3 $ "failed") $) 102 (-2682 (-12 (|has| $ (-145)) (|has| |#1| (-907))) (|has| |#1| (-145))))) (-3348 (((-769)) 103 T CONST)) (-1378 ((|#1| $) 26 (|has| |#1| (-545)))) (-1600 (((-112) $ $) NIL)) (-1594 (((-112) $ $) NIL)) (-1630 (($ $) NIL (|has| |#1| (-818)))) (-2361 (($) 22 T CONST)) (-2371 (($) 8 T CONST)) (-3816 (((-1155) $) 44 (-12 (|has| |#1| (-545)) (|has| |#1| (-826)))) (((-1155) $ (-112)) 45 (-12 (|has| |#1| (-545)) (|has| |#1| (-826)))) (((-1267) (-820) $) 46 (-12 (|has| |#1| (-545)) (|has| |#1| (-826)))) (((-1267) (-820) $ (-112)) 47 (-12 (|has| |#1| (-545)) (|has| |#1| (-826))))) (-2711 (($ $) NIL (|has| |#1| (-233))) (($ $ (-769)) NIL (|has| |#1| (-233))) (($ $ (-1173)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1 |#1| |#1|) (-769)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2881 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2857 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2821 (((-112) $ $) 66)) (-2868 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2844 (((-112) $ $) 24 (|has| |#1| (-848)))) (-2943 (($ $ $) 136) (($ |#1| |#1|) 53)) (-2930 (($ $) 25) (($ $ $) 56)) (-2917 (($ $ $) 54)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) 135)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 61) (($ $ $) 58) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ |#1| $) 62) (($ $ |#1|) 88))) -(((-407 |#1|) (-13 (-990 |#1|) (-10 -7 (IF (|has| |#1| (-545)) (IF (|has| |#1| (-826)) (-6 (-826)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4397)) (IF (|has| |#1| (-452)) (IF (|has| |#1| (-6 -4408)) (-6 -4397) |%noBranch|) |%noBranch|) |%noBranch|))) (-556)) (T -407)) -NIL -(-13 (-990 |#1|) (-10 -7 (IF (|has| |#1| (-545)) (IF (|has| |#1| (-826)) (-6 (-826)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4397)) (IF (|has| |#1| (-452)) (IF (|has| |#1| (-6 -4408)) (-6 -4397) |%noBranch|) |%noBranch|) |%noBranch|))) -((-1335 (((-687 |#2|) (-1262 $)) NIL) (((-687 |#2|)) 18)) (-4087 (($ (-1262 |#2|) (-1262 $)) NIL) (($ (-1262 |#2|)) 24)) (-2330 (((-687 |#2|) $ (-1262 $)) NIL) (((-687 |#2|) $) 40)) (-2076 ((|#3| $) 73)) (-2790 ((|#2| (-1262 $)) NIL) ((|#2|) 20)) (-3719 (((-1262 |#2|) $ (-1262 $)) NIL) (((-687 |#2|) (-1262 $) (-1262 $)) NIL) (((-1262 |#2|) $) 22) (((-687 |#2|) (-1262 $)) 38)) (-3003 (((-1262 |#2|) $) 11) (($ (-1262 |#2|)) 13)) (-1308 ((|#3| $) 55))) -(((-408 |#1| |#2| |#3|) (-10 -8 (-15 -2330 ((-687 |#2|) |#1|)) (-15 -2790 (|#2|)) (-15 -1335 ((-687 |#2|))) (-15 -3003 (|#1| (-1262 |#2|))) (-15 -3003 ((-1262 |#2|) |#1|)) (-15 -4087 (|#1| (-1262 |#2|))) (-15 -3719 ((-687 |#2|) (-1262 |#1|))) (-15 -3719 ((-1262 |#2|) |#1|)) (-15 -2076 (|#3| |#1|)) (-15 -1308 (|#3| |#1|)) (-15 -1335 ((-687 |#2|) (-1262 |#1|))) (-15 -2790 (|#2| (-1262 |#1|))) (-15 -4087 (|#1| (-1262 |#2|) (-1262 |#1|))) (-15 -3719 ((-687 |#2|) (-1262 |#1|) (-1262 |#1|))) (-15 -3719 ((-1262 |#2|) |#1| (-1262 |#1|))) (-15 -2330 ((-687 |#2|) |#1| (-1262 |#1|)))) (-409 |#2| |#3|) (-172) (-1238 |#2|)) (T -408)) -((-1335 (*1 *2) (-12 (-4 *4 (-172)) (-4 *5 (-1238 *4)) (-5 *2 (-687 *4)) (-5 *1 (-408 *3 *4 *5)) (-4 *3 (-409 *4 *5)))) (-2790 (*1 *2) (-12 (-4 *4 (-1238 *2)) (-4 *2 (-172)) (-5 *1 (-408 *3 *2 *4)) (-4 *3 (-409 *2 *4))))) -(-10 -8 (-15 -2330 ((-687 |#2|) |#1|)) (-15 -2790 (|#2|)) (-15 -1335 ((-687 |#2|))) (-15 -3003 (|#1| (-1262 |#2|))) (-15 -3003 ((-1262 |#2|) |#1|)) (-15 -4087 (|#1| (-1262 |#2|))) (-15 -3719 ((-687 |#2|) (-1262 |#1|))) (-15 -3719 ((-1262 |#2|) |#1|)) (-15 -2076 (|#3| |#1|)) (-15 -1308 (|#3| |#1|)) (-15 -1335 ((-687 |#2|) (-1262 |#1|))) (-15 -2790 (|#2| (-1262 |#1|))) (-15 -4087 (|#1| (-1262 |#2|) (-1262 |#1|))) (-15 -3719 ((-687 |#2|) (-1262 |#1|) (-1262 |#1|))) (-15 -3719 ((-1262 |#2|) |#1| (-1262 |#1|))) (-15 -2330 ((-687 |#2|) |#1| (-1262 |#1|)))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-1335 (((-687 |#1|) (-1262 $)) 53) (((-687 |#1|)) 68)) (-3778 ((|#1| $) 59)) (-3085 (((-3 $ "failed") $ $) 20)) (-2822 (($) 18 T CONST)) (-4087 (($ (-1262 |#1|) (-1262 $)) 55) (($ (-1262 |#1|)) 71)) (-2330 (((-687 |#1|) $ (-1262 $)) 60) (((-687 |#1|) $) 66)) (-2675 (((-3 $ "failed") $) 37)) (-3616 (((-919)) 61)) (-3163 (((-112) $) 35)) (-2573 ((|#1| $) 58)) (-2076 ((|#2| $) 51 (|has| |#1| (-363)))) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2790 ((|#1| (-1262 $)) 54) ((|#1|) 67)) (-3719 (((-1262 |#1|) $ (-1262 $)) 57) (((-687 |#1|) (-1262 $) (-1262 $)) 56) (((-1262 |#1|) $) 73) (((-687 |#1|) (-1262 $)) 72)) (-3003 (((-1262 |#1|) $) 70) (($ (-1262 |#1|)) 69)) (-2390 (((-860) $) 12) (($ (-564)) 33) (($ |#1|) 44)) (-3434 (((-3 $ "failed") $) 50 (|has| |#1| (-145)))) (-1308 ((|#2| $) 52)) (-3348 (((-769)) 32 T CONST)) (-1600 (((-112) $ $) 9)) (-2131 (((-1262 $)) 74)) (-2361 (($) 19 T CONST)) (-2371 (($) 34 T CONST)) (-2821 (((-112) $ $) 6)) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) -(((-409 |#1| |#2|) (-140) (-172) (-1238 |t#1|)) (T -409)) -((-2131 (*1 *2) (-12 (-4 *3 (-172)) (-4 *4 (-1238 *3)) (-5 *2 (-1262 *1)) (-4 *1 (-409 *3 *4)))) (-3719 (*1 *2 *1) (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1238 *3)) (-5 *2 (-1262 *3)))) (-3719 (*1 *2 *3) (-12 (-5 *3 (-1262 *1)) (-4 *1 (-409 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1238 *4)) (-5 *2 (-687 *4)))) (-4087 (*1 *1 *2) (-12 (-5 *2 (-1262 *3)) (-4 *3 (-172)) (-4 *1 (-409 *3 *4)) (-4 *4 (-1238 *3)))) (-3003 (*1 *2 *1) (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1238 *3)) (-5 *2 (-1262 *3)))) (-3003 (*1 *1 *2) (-12 (-5 *2 (-1262 *3)) (-4 *3 (-172)) (-4 *1 (-409 *3 *4)) (-4 *4 (-1238 *3)))) (-1335 (*1 *2) (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1238 *3)) (-5 *2 (-687 *3)))) (-2790 (*1 *2) (-12 (-4 *1 (-409 *2 *3)) (-4 *3 (-1238 *2)) (-4 *2 (-172)))) (-2330 (*1 *2 *1) (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1238 *3)) (-5 *2 (-687 *3))))) -(-13 (-370 |t#1| |t#2|) (-10 -8 (-15 -2131 ((-1262 $))) (-15 -3719 ((-1262 |t#1|) $)) (-15 -3719 ((-687 |t#1|) (-1262 $))) (-15 -4087 ($ (-1262 |t#1|))) (-15 -3003 ((-1262 |t#1|) $)) (-15 -3003 ($ (-1262 |t#1|))) (-15 -1335 ((-687 |t#1|))) (-15 -2790 (|t#1|)) (-15 -2330 ((-687 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-611 (-860)) . T) ((-370 |#1| |#2|) . T) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-638 |#1|) . T) ((-715 |#1|) . T) ((-724) . T) ((-1049 |#1|) . T) ((-1054 |#1|) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T)) -((-2849 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) 27) (((-3 (-564) "failed") $) 19)) (-1687 ((|#2| $) NIL) (((-407 (-564)) $) 24) (((-564) $) 14)) (-2390 (($ |#2|) NIL) (($ (-407 (-564))) 22) (($ (-564)) 11))) -(((-410 |#1| |#2|) (-10 -8 (-15 -2390 (|#1| (-564))) (-15 -2849 ((-3 (-564) "failed") |#1|)) (-15 -1687 ((-564) |#1|)) (-15 -2390 (|#1| (-407 (-564)))) (-15 -2849 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -1687 ((-407 (-564)) |#1|)) (-15 -1687 (|#2| |#1|)) (-15 -2849 ((-3 |#2| "failed") |#1|)) (-15 -2390 (|#1| |#2|))) (-411 |#2|) (-1212)) (T -410)) -NIL -(-10 -8 (-15 -2390 (|#1| (-564))) (-15 -2849 ((-3 (-564) "failed") |#1|)) (-15 -1687 ((-564) |#1|)) (-15 -2390 (|#1| (-407 (-564)))) (-15 -2849 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -1687 ((-407 (-564)) |#1|)) (-15 -1687 (|#2| |#1|)) (-15 -2849 ((-3 |#2| "failed") |#1|)) (-15 -2390 (|#1| |#2|))) -((-2849 (((-3 |#1| "failed") $) 9) (((-3 (-407 (-564)) "failed") $) 16 (|has| |#1| (-1036 (-407 (-564))))) (((-3 (-564) "failed") $) 13 (|has| |#1| (-1036 (-564))))) (-1687 ((|#1| $) 8) (((-407 (-564)) $) 17 (|has| |#1| (-1036 (-407 (-564))))) (((-564) $) 14 (|has| |#1| (-1036 (-564))))) (-2390 (($ |#1|) 6) (($ (-407 (-564))) 15 (|has| |#1| (-1036 (-407 (-564))))) (($ (-564)) 12 (|has| |#1| (-1036 (-564)))))) -(((-411 |#1|) (-140) (-1212)) (T -411)) -NIL -(-13 (-1036 |t#1|) (-10 -7 (IF (|has| |t#1| (-1036 (-564))) (-6 (-1036 (-564))) |%noBranch|) (IF (|has| |t#1| (-1036 (-407 (-564)))) (-6 (-1036 (-407 (-564)))) |%noBranch|))) -(((-614 #0=(-407 (-564))) |has| |#1| (-1036 (-407 (-564)))) ((-614 #1=(-564)) |has| |#1| (-1036 (-564))) ((-614 |#1|) . T) ((-1036 #0#) |has| |#1| (-1036 (-407 (-564)))) ((-1036 #1#) |has| |#1| (-1036 (-564))) ((-1036 |#1|) . T)) -((-2947 (((-413 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-413 |#1| |#2| |#3| |#4|)) 35))) -(((-412 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2947 ((-413 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-413 |#1| |#2| |#3| |#4|)))) (-307) (-990 |#1|) (-1238 |#2|) (-13 (-409 |#2| |#3|) (-1036 |#2|)) (-307) (-990 |#5|) (-1238 |#6|) (-13 (-409 |#6| |#7|) (-1036 |#6|))) (T -412)) -((-2947 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-413 *5 *6 *7 *8)) (-4 *5 (-307)) (-4 *6 (-990 *5)) (-4 *7 (-1238 *6)) (-4 *8 (-13 (-409 *6 *7) (-1036 *6))) (-4 *9 (-307)) (-4 *10 (-990 *9)) (-4 *11 (-1238 *10)) (-5 *2 (-413 *9 *10 *11 *12)) (-5 *1 (-412 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-409 *10 *11) (-1036 *10)))))) -(-10 -7 (-15 -2947 ((-413 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-413 |#1| |#2| |#3| |#4|)))) -((-2856 (((-112) $ $) NIL)) (-2822 (($) NIL T CONST)) (-2675 (((-3 $ "failed") $) NIL)) (-2230 ((|#4| (-769) (-1262 |#4|)) 60)) (-3163 (((-112) $) NIL)) (-4120 (((-1262 |#4|) $) 17)) (-2573 ((|#2| $) 55)) (-2181 (($ $) 163)) (-1778 (((-1155) $) NIL)) (-2481 (($ $) 108)) (-1574 (($ (-1262 |#4|)) 107)) (-3999 (((-1117) $) NIL)) (-4131 ((|#1| $) 18)) (-1736 (($ $ $) NIL)) (-2402 (($ $ $) NIL)) (-2390 (((-860) $) 153)) (-1600 (((-112) $ $) NIL)) (-2131 (((-1262 |#4|) $) 146)) (-2371 (($) 11 T CONST)) (-2821 (((-112) $ $) 41)) (-2943 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) 139)) (* (($ $ $) 135))) -(((-413 |#1| |#2| |#3| |#4|) (-13 (-473) (-10 -8 (-15 -1574 ($ (-1262 |#4|))) (-15 -2131 ((-1262 |#4|) $)) (-15 -2573 (|#2| $)) (-15 -4120 ((-1262 |#4|) $)) (-15 -4131 (|#1| $)) (-15 -2181 ($ $)) (-15 -2230 (|#4| (-769) (-1262 |#4|))))) (-307) (-990 |#1|) (-1238 |#2|) (-13 (-409 |#2| |#3|) (-1036 |#2|))) (T -413)) -((-1574 (*1 *1 *2) (-12 (-5 *2 (-1262 *6)) (-4 *6 (-13 (-409 *4 *5) (-1036 *4))) (-4 *4 (-990 *3)) (-4 *5 (-1238 *4)) (-4 *3 (-307)) (-5 *1 (-413 *3 *4 *5 *6)))) (-2131 (*1 *2 *1) (-12 (-4 *3 (-307)) (-4 *4 (-990 *3)) (-4 *5 (-1238 *4)) (-5 *2 (-1262 *6)) (-5 *1 (-413 *3 *4 *5 *6)) (-4 *6 (-13 (-409 *4 *5) (-1036 *4))))) (-2573 (*1 *2 *1) (-12 (-4 *4 (-1238 *2)) (-4 *2 (-990 *3)) (-5 *1 (-413 *3 *2 *4 *5)) (-4 *3 (-307)) (-4 *5 (-13 (-409 *2 *4) (-1036 *2))))) (-4120 (*1 *2 *1) (-12 (-4 *3 (-307)) (-4 *4 (-990 *3)) (-4 *5 (-1238 *4)) (-5 *2 (-1262 *6)) (-5 *1 (-413 *3 *4 *5 *6)) (-4 *6 (-13 (-409 *4 *5) (-1036 *4))))) (-4131 (*1 *2 *1) (-12 (-4 *3 (-990 *2)) (-4 *4 (-1238 *3)) (-4 *2 (-307)) (-5 *1 (-413 *2 *3 *4 *5)) (-4 *5 (-13 (-409 *3 *4) (-1036 *3))))) (-2181 (*1 *1 *1) (-12 (-4 *2 (-307)) (-4 *3 (-990 *2)) (-4 *4 (-1238 *3)) (-5 *1 (-413 *2 *3 *4 *5)) (-4 *5 (-13 (-409 *3 *4) (-1036 *3))))) (-2230 (*1 *2 *3 *4) (-12 (-5 *3 (-769)) (-5 *4 (-1262 *2)) (-4 *5 (-307)) (-4 *6 (-990 *5)) (-4 *2 (-13 (-409 *6 *7) (-1036 *6))) (-5 *1 (-413 *5 *6 *7 *2)) (-4 *7 (-1238 *6))))) -(-13 (-473) (-10 -8 (-15 -1574 ($ (-1262 |#4|))) (-15 -2131 ((-1262 |#4|) $)) (-15 -2573 (|#2| $)) (-15 -4120 ((-1262 |#4|) $)) (-15 -4131 (|#1| $)) (-15 -2181 ($ $)) (-15 -2230 (|#4| (-769) (-1262 |#4|))))) -((-2856 (((-112) $ $) NIL)) (-2822 (($) NIL T CONST)) (-2675 (((-3 $ "failed") $) NIL)) (-3163 (((-112) $) NIL)) (-2573 ((|#2| $) 71)) (-1485 (($ (-1262 |#4|)) 27) (($ (-413 |#1| |#2| |#3| |#4|)) 86 (|has| |#4| (-1036 |#2|)))) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) 37)) (-1600 (((-112) $ $) NIL)) (-2131 (((-1262 |#4|) $) 28)) (-2371 (($) 25 T CONST)) (-2821 (((-112) $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ $ $) 82))) -(((-414 |#1| |#2| |#3| |#4| |#5|) (-13 (-724) (-10 -8 (-15 -2131 ((-1262 |#4|) $)) (-15 -2573 (|#2| $)) (-15 -1485 ($ (-1262 |#4|))) (IF (|has| |#4| (-1036 |#2|)) (-15 -1485 ($ (-413 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-307) (-990 |#1|) (-1238 |#2|) (-409 |#2| |#3|) (-1262 |#4|)) (T -414)) -((-2131 (*1 *2 *1) (-12 (-4 *3 (-307)) (-4 *4 (-990 *3)) (-4 *5 (-1238 *4)) (-5 *2 (-1262 *6)) (-5 *1 (-414 *3 *4 *5 *6 *7)) (-4 *6 (-409 *4 *5)) (-14 *7 *2))) (-2573 (*1 *2 *1) (-12 (-4 *4 (-1238 *2)) (-4 *2 (-990 *3)) (-5 *1 (-414 *3 *2 *4 *5 *6)) (-4 *3 (-307)) (-4 *5 (-409 *2 *4)) (-14 *6 (-1262 *5)))) (-1485 (*1 *1 *2) (-12 (-5 *2 (-1262 *6)) (-4 *6 (-409 *4 *5)) (-4 *4 (-990 *3)) (-4 *5 (-1238 *4)) (-4 *3 (-307)) (-5 *1 (-414 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1485 (*1 *1 *2) (-12 (-5 *2 (-413 *3 *4 *5 *6)) (-4 *6 (-1036 *4)) (-4 *3 (-307)) (-4 *4 (-990 *3)) (-4 *5 (-1238 *4)) (-4 *6 (-409 *4 *5)) (-14 *7 (-1262 *6)) (-5 *1 (-414 *3 *4 *5 *6 *7))))) -(-13 (-724) (-10 -8 (-15 -2131 ((-1262 |#4|) $)) (-15 -2573 (|#2| $)) (-15 -1485 ($ (-1262 |#4|))) (IF (|has| |#4| (-1036 |#2|)) (-15 -1485 ($ (-413 |#1| |#2| |#3| |#4|))) |%noBranch|))) -((-2947 ((|#3| (-1 |#4| |#2|) |#1|) 32))) -(((-415 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2947 (|#3| (-1 |#4| |#2|) |#1|))) (-417 |#2|) (-172) (-417 |#4|) (-172)) (T -415)) -((-2947 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-417 *6)) (-5 *1 (-415 *4 *5 *2 *6)) (-4 *4 (-417 *5))))) -(-10 -7 (-15 -2947 (|#3| (-1 |#4| |#2|) |#1|))) -((-2660 (((-3 $ "failed")) 99)) (-2816 (((-1262 (-687 |#2|)) (-1262 $)) NIL) (((-1262 (-687 |#2|))) 104)) (-3378 (((-3 (-2 (|:| |particular| $) (|:| -2131 (-642 $))) "failed")) 97)) (-1934 (((-3 $ "failed")) 96)) (-3821 (((-687 |#2|) (-1262 $)) NIL) (((-687 |#2|)) 115)) (-1771 (((-687 |#2|) $ (-1262 $)) NIL) (((-687 |#2|) $) 123)) (-2016 (((-1169 (-950 |#2|))) 65)) (-3521 ((|#2| (-1262 $)) NIL) ((|#2|) 119)) (-4087 (($ (-1262 |#2|) (-1262 $)) NIL) (($ (-1262 |#2|)) 125)) (-1546 (((-3 (-2 (|:| |particular| $) (|:| -2131 (-642 $))) "failed")) 95)) (-4337 (((-3 $ "failed")) 87)) (-4289 (((-687 |#2|) (-1262 $)) NIL) (((-687 |#2|)) 113)) (-1672 (((-687 |#2|) $ (-1262 $)) NIL) (((-687 |#2|) $) 121)) (-2975 (((-1169 (-950 |#2|))) 64)) (-3645 ((|#2| (-1262 $)) NIL) ((|#2|) 117)) (-3719 (((-1262 |#2|) $ (-1262 $)) NIL) (((-687 |#2|) (-1262 $) (-1262 $)) NIL) (((-1262 |#2|) $) 124) (((-687 |#2|) (-1262 $)) 133)) (-3003 (((-1262 |#2|) $) 109) (($ (-1262 |#2|)) 111)) (-3584 (((-642 (-950 |#2|)) (-1262 $)) NIL) (((-642 (-950 |#2|))) 107)) (-3975 (($ (-687 |#2|) $) 103))) -(((-416 |#1| |#2|) (-10 -8 (-15 -3975 (|#1| (-687 |#2|) |#1|)) (-15 -2016 ((-1169 (-950 |#2|)))) (-15 -2975 ((-1169 (-950 |#2|)))) (-15 -1771 ((-687 |#2|) |#1|)) (-15 -1672 ((-687 |#2|) |#1|)) (-15 -3821 ((-687 |#2|))) (-15 -4289 ((-687 |#2|))) (-15 -3521 (|#2|)) (-15 -3645 (|#2|)) (-15 -3003 (|#1| (-1262 |#2|))) (-15 -3003 ((-1262 |#2|) |#1|)) (-15 -4087 (|#1| (-1262 |#2|))) (-15 -3584 ((-642 (-950 |#2|)))) (-15 -2816 ((-1262 (-687 |#2|)))) (-15 -3719 ((-687 |#2|) (-1262 |#1|))) (-15 -3719 ((-1262 |#2|) |#1|)) (-15 -2660 ((-3 |#1| "failed"))) (-15 -1934 ((-3 |#1| "failed"))) (-15 -4337 ((-3 |#1| "failed"))) (-15 -3378 ((-3 (-2 (|:| |particular| |#1|) (|:| -2131 (-642 |#1|))) "failed"))) (-15 -1546 ((-3 (-2 (|:| |particular| |#1|) (|:| -2131 (-642 |#1|))) "failed"))) (-15 -3821 ((-687 |#2|) (-1262 |#1|))) (-15 -4289 ((-687 |#2|) (-1262 |#1|))) (-15 -3521 (|#2| (-1262 |#1|))) (-15 -3645 (|#2| (-1262 |#1|))) (-15 -4087 (|#1| (-1262 |#2|) (-1262 |#1|))) (-15 -3719 ((-687 |#2|) (-1262 |#1|) (-1262 |#1|))) (-15 -3719 ((-1262 |#2|) |#1| (-1262 |#1|))) (-15 -1771 ((-687 |#2|) |#1| (-1262 |#1|))) (-15 -1672 ((-687 |#2|) |#1| (-1262 |#1|))) (-15 -2816 ((-1262 (-687 |#2|)) (-1262 |#1|))) (-15 -3584 ((-642 (-950 |#2|)) (-1262 |#1|)))) (-417 |#2|) (-172)) (T -416)) -((-2816 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1262 (-687 *4))) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))) (-3584 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-642 (-950 *4))) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))) (-3645 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-416 *3 *2)) (-4 *3 (-417 *2)))) (-3521 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-416 *3 *2)) (-4 *3 (-417 *2)))) (-4289 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-687 *4)) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))) (-3821 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-687 *4)) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))) (-2975 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1169 (-950 *4))) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))) (-2016 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1169 (-950 *4))) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4))))) -(-10 -8 (-15 -3975 (|#1| (-687 |#2|) |#1|)) (-15 -2016 ((-1169 (-950 |#2|)))) (-15 -2975 ((-1169 (-950 |#2|)))) (-15 -1771 ((-687 |#2|) |#1|)) (-15 -1672 ((-687 |#2|) |#1|)) (-15 -3821 ((-687 |#2|))) (-15 -4289 ((-687 |#2|))) (-15 -3521 (|#2|)) (-15 -3645 (|#2|)) (-15 -3003 (|#1| (-1262 |#2|))) (-15 -3003 ((-1262 |#2|) |#1|)) (-15 -4087 (|#1| (-1262 |#2|))) (-15 -3584 ((-642 (-950 |#2|)))) (-15 -2816 ((-1262 (-687 |#2|)))) (-15 -3719 ((-687 |#2|) (-1262 |#1|))) (-15 -3719 ((-1262 |#2|) |#1|)) (-15 -2660 ((-3 |#1| "failed"))) (-15 -1934 ((-3 |#1| "failed"))) (-15 -4337 ((-3 |#1| "failed"))) (-15 -3378 ((-3 (-2 (|:| |particular| |#1|) (|:| -2131 (-642 |#1|))) "failed"))) (-15 -1546 ((-3 (-2 (|:| |particular| |#1|) (|:| -2131 (-642 |#1|))) "failed"))) (-15 -3821 ((-687 |#2|) (-1262 |#1|))) (-15 -4289 ((-687 |#2|) (-1262 |#1|))) (-15 -3521 (|#2| (-1262 |#1|))) (-15 -3645 (|#2| (-1262 |#1|))) (-15 -4087 (|#1| (-1262 |#2|) (-1262 |#1|))) (-15 -3719 ((-687 |#2|) (-1262 |#1|) (-1262 |#1|))) (-15 -3719 ((-1262 |#2|) |#1| (-1262 |#1|))) (-15 -1771 ((-687 |#2|) |#1| (-1262 |#1|))) (-15 -1672 ((-687 |#2|) |#1| (-1262 |#1|))) (-15 -2816 ((-1262 (-687 |#2|)) (-1262 |#1|))) (-15 -3584 ((-642 (-950 |#2|)) (-1262 |#1|)))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-2660 (((-3 $ "failed")) 42 (|has| |#1| (-556)))) (-3085 (((-3 $ "failed") $ $) 20)) (-2816 (((-1262 (-687 |#1|)) (-1262 $)) 83) (((-1262 (-687 |#1|))) 105)) (-3953 (((-1262 $)) 86)) (-2822 (($) 18 T CONST)) (-3378 (((-3 (-2 (|:| |particular| $) (|:| -2131 (-642 $))) "failed")) 45 (|has| |#1| (-556)))) (-1934 (((-3 $ "failed")) 43 (|has| |#1| (-556)))) (-3821 (((-687 |#1|) (-1262 $)) 70) (((-687 |#1|)) 97)) (-3540 ((|#1| $) 79)) (-1771 (((-687 |#1|) $ (-1262 $)) 81) (((-687 |#1|) $) 95)) (-3420 (((-3 $ "failed") $) 50 (|has| |#1| (-556)))) (-2016 (((-1169 (-950 |#1|))) 93 (|has| |#1| (-363)))) (-3952 (($ $ (-919)) 31)) (-1732 ((|#1| $) 77)) (-2644 (((-1169 |#1|) $) 47 (|has| |#1| (-556)))) (-3521 ((|#1| (-1262 $)) 72) ((|#1|) 99)) (-4246 (((-1169 |#1|) $) 68)) (-2165 (((-112)) 62)) (-4087 (($ (-1262 |#1|) (-1262 $)) 74) (($ (-1262 |#1|)) 103)) (-2675 (((-3 $ "failed") $) 52 (|has| |#1| (-556)))) (-3616 (((-919)) 85)) (-2927 (((-112)) 59)) (-4359 (($ $ (-919)) 38)) (-3682 (((-112)) 55)) (-1888 (((-112)) 53)) (-1693 (((-112)) 57)) (-1546 (((-3 (-2 (|:| |particular| $) (|:| -2131 (-642 $))) "failed")) 46 (|has| |#1| (-556)))) (-4337 (((-3 $ "failed")) 44 (|has| |#1| (-556)))) (-4289 (((-687 |#1|) (-1262 $)) 71) (((-687 |#1|)) 98)) (-1486 ((|#1| $) 80)) (-1672 (((-687 |#1|) $ (-1262 $)) 82) (((-687 |#1|) $) 96)) (-1339 (((-3 $ "failed") $) 51 (|has| |#1| (-556)))) (-2975 (((-1169 (-950 |#1|))) 94 (|has| |#1| (-363)))) (-4204 (($ $ (-919)) 32)) (-1573 ((|#1| $) 78)) (-2514 (((-1169 |#1|) $) 48 (|has| |#1| (-556)))) (-3645 ((|#1| (-1262 $)) 73) ((|#1|) 100)) (-1892 (((-1169 |#1|) $) 69)) (-4216 (((-112)) 63)) (-1778 (((-1155) $) 10)) (-2631 (((-112)) 54)) (-3393 (((-112)) 56)) (-2399 (((-112)) 58)) (-3999 (((-1117) $) 11)) (-2040 (((-112)) 61)) (-4369 ((|#1| $ (-564)) 106)) (-3719 (((-1262 |#1|) $ (-1262 $)) 76) (((-687 |#1|) (-1262 $) (-1262 $)) 75) (((-1262 |#1|) $) 108) (((-687 |#1|) (-1262 $)) 107)) (-3003 (((-1262 |#1|) $) 102) (($ (-1262 |#1|)) 101)) (-3584 (((-642 (-950 |#1|)) (-1262 $)) 84) (((-642 (-950 |#1|))) 104)) (-2402 (($ $ $) 28)) (-2792 (((-112)) 67)) (-2390 (((-860) $) 12)) (-1600 (((-112) $ $) 9)) (-2131 (((-1262 $)) 109)) (-1491 (((-642 (-1262 |#1|))) 49 (|has| |#1| (-556)))) (-3845 (($ $ $ $) 29)) (-2715 (((-112)) 65)) (-3975 (($ (-687 |#1|) $) 92)) (-3106 (($ $ $) 27)) (-3498 (((-112)) 66)) (-3394 (((-112)) 64)) (-2609 (((-112)) 60)) (-2361 (($) 19 T CONST)) (-2821 (((-112) $ $) 6)) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 33)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) -(((-417 |#1|) (-140) (-172)) (T -417)) -((-2131 (*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1262 *1)) (-4 *1 (-417 *3)))) (-3719 (*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-1262 *3)))) (-3719 (*1 *2 *3) (-12 (-5 *3 (-1262 *1)) (-4 *1 (-417 *4)) (-4 *4 (-172)) (-5 *2 (-687 *4)))) (-4369 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-417 *2)) (-4 *2 (-172)))) (-2816 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-1262 (-687 *3))))) (-3584 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-642 (-950 *3))))) (-4087 (*1 *1 *2) (-12 (-5 *2 (-1262 *3)) (-4 *3 (-172)) (-4 *1 (-417 *3)))) (-3003 (*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-1262 *3)))) (-3003 (*1 *1 *2) (-12 (-5 *2 (-1262 *3)) (-4 *3 (-172)) (-4 *1 (-417 *3)))) (-3645 (*1 *2) (-12 (-4 *1 (-417 *2)) (-4 *2 (-172)))) (-3521 (*1 *2) (-12 (-4 *1 (-417 *2)) (-4 *2 (-172)))) (-4289 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-687 *3)))) (-3821 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-687 *3)))) (-1672 (*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-687 *3)))) (-1771 (*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-687 *3)))) (-2975 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-4 *3 (-363)) (-5 *2 (-1169 (-950 *3))))) (-2016 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-4 *3 (-363)) (-5 *2 (-1169 (-950 *3))))) (-3975 (*1 *1 *2 *1) (-12 (-5 *2 (-687 *3)) (-4 *1 (-417 *3)) (-4 *3 (-172))))) -(-13 (-367 |t#1|) (-10 -8 (-15 -2131 ((-1262 $))) (-15 -3719 ((-1262 |t#1|) $)) (-15 -3719 ((-687 |t#1|) (-1262 $))) (-15 -4369 (|t#1| $ (-564))) (-15 -2816 ((-1262 (-687 |t#1|)))) (-15 -3584 ((-642 (-950 |t#1|)))) (-15 -4087 ($ (-1262 |t#1|))) (-15 -3003 ((-1262 |t#1|) $)) (-15 -3003 ($ (-1262 |t#1|))) (-15 -3645 (|t#1|)) (-15 -3521 (|t#1|)) (-15 -4289 ((-687 |t#1|))) (-15 -3821 ((-687 |t#1|))) (-15 -1672 ((-687 |t#1|) $)) (-15 -1771 ((-687 |t#1|) $)) (IF (|has| |t#1| (-363)) (PROGN (-15 -2975 ((-1169 (-950 |t#1|)))) (-15 -2016 ((-1169 (-950 |t#1|))))) |%noBranch|) (-15 -3975 ($ (-687 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-611 (-860)) . T) ((-367 |#1|) . T) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-646 |#1|) . T) ((-638 |#1|) . T) ((-715 |#1|) . T) ((-718) . T) ((-742 |#1|) . T) ((-759) . T) ((-1049 |#1|) . T) ((-1054 |#1|) . T) ((-1097) . T)) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) 60)) (-2803 (($ $) 78)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) 191)) (-4252 (($ $) NIL)) (-1722 (((-112) $) 48)) (-2660 ((|#1| $) 16)) (-3085 (((-3 $ "failed") $ $) NIL)) (-1993 (($ $) NIL (|has| |#1| (-1216)))) (-3282 (((-418 $) $) NIL (|has| |#1| (-1216)))) (-4008 (($ |#1| (-564)) 42)) (-2822 (($) NIL T CONST)) (-2849 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1036 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1036 (-407 (-564))))) (((-3 |#1| "failed") $) 148)) (-1687 (((-564) $) NIL (|has| |#1| (-1036 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1036 (-407 (-564))))) ((|#1| $) 74)) (-2675 (((-3 $ "failed") $) 164)) (-3227 (((-3 (-407 (-564)) "failed") $) 84 (|has| |#1| (-545)))) (-2929 (((-112) $) 80 (|has| |#1| (-545)))) (-3536 (((-407 (-564)) $) 91 (|has| |#1| (-545)))) (-3828 (($ |#1| (-564)) 44)) (-3552 (((-112) $) 213 (|has| |#1| (-1216)))) (-3163 (((-112) $) 62)) (-3613 (((-769) $) 51)) (-1706 (((-3 "nil" "sqfr" "irred" "prime") $ (-564)) 175)) (-3631 ((|#1| $ (-564)) 174)) (-1685 (((-564) $ (-564)) 173)) (-3114 (($ |#1| (-564)) 41)) (-2947 (($ (-1 |#1| |#1|) $) 183)) (-3969 (($ |#1| (-642 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-564))))) 79)) (-2066 (($ (-642 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-1778 (((-1155) $) NIL)) (-3987 (($ |#1| (-564)) 43)) (-3999 (((-1117) $) NIL)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) NIL (|has| |#1| (-452)))) (-2105 (($ (-642 $)) NIL (|has| |#1| (-452))) (($ $ $) 192 (|has| |#1| (-452)))) (-1691 (($ |#1| (-564) (-3 "nil" "sqfr" "irred" "prime")) 40)) (-1569 (((-642 (-2 (|:| -2254 |#1|) (|:| -2817 (-564)))) $) 73)) (-2395 (((-642 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-564)))) $) 12)) (-2254 (((-418 $) $) NIL (|has| |#1| (-1216)))) (-2842 (((-3 $ "failed") $ $) 176)) (-2817 (((-564) $) 167)) (-3398 ((|#1| $) 75)) (-3154 (($ $ (-642 |#1|) (-642 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ (-642 (-294 |#1|))) 100 (|has| |#1| (-309 |#1|))) (($ $ (-642 (-1173)) (-642 |#1|)) 106 (|has| |#1| (-514 (-1173) |#1|))) (($ $ (-1173) |#1|) NIL (|has| |#1| (-514 (-1173) |#1|))) (($ $ (-1173) $) NIL (|has| |#1| (-514 (-1173) $))) (($ $ (-642 (-1173)) (-642 $)) 107 (|has| |#1| (-514 (-1173) $))) (($ $ (-642 (-294 $))) 103 (|has| |#1| (-309 $))) (($ $ (-294 $)) NIL (|has| |#1| (-309 $))) (($ $ $ $) NIL (|has| |#1| (-309 $))) (($ $ (-642 $) (-642 $)) NIL (|has| |#1| (-309 $)))) (-4369 (($ $ |#1|) 92 (|has| |#1| (-286 |#1| |#1|))) (($ $ $) 93 (|has| |#1| (-286 $ $)))) (-2199 (($ $) NIL (|has| |#1| (-233))) (($ $ (-769)) NIL (|has| |#1| (-233))) (($ $ (-1173)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1 |#1| |#1|) (-769)) NIL) (($ $ (-1 |#1| |#1|)) 182)) (-3003 (((-536) $) 39 (|has| |#1| (-612 (-536)))) (((-379) $) 113 (|has| |#1| (-1020))) (((-225) $) 119 (|has| |#1| (-1020)))) (-2390 (((-860) $) 146) (($ (-564)) 65) (($ $) NIL) (($ |#1|) 64) (($ (-407 (-564))) NIL (|has| |#1| (-1036 (-407 (-564)))))) (-3348 (((-769)) 67 T CONST)) (-1600 (((-112) $ $) NIL)) (-1594 (((-112) $ $) NIL)) (-2361 (($) 53 T CONST)) (-2371 (($) 52 T CONST)) (-2711 (($ $) NIL (|has| |#1| (-233))) (($ $ (-769)) NIL (|has| |#1| (-233))) (($ $ (-1173)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1 |#1| |#1|) (-769)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2821 (((-112) $ $) 159)) (-2930 (($ $) 161) (($ $ $) NIL)) (-2917 (($ $ $) 180)) (** (($ $ (-919)) NIL) (($ $ (-769)) 125)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 69) (($ $ $) 68) (($ |#1| $) 70) (($ $ |#1|) NIL))) -(((-418 |#1|) (-13 (-556) (-231 |#1|) (-38 |#1|) (-338 |#1|) (-411 |#1|) (-10 -8 (-15 -3398 (|#1| $)) (-15 -2817 ((-564) $)) (-15 -3969 ($ |#1| (-642 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-564)))))) (-15 -2395 ((-642 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-564)))) $)) (-15 -3114 ($ |#1| (-564))) (-15 -1569 ((-642 (-2 (|:| -2254 |#1|) (|:| -2817 (-564)))) $)) (-15 -3987 ($ |#1| (-564))) (-15 -1685 ((-564) $ (-564))) (-15 -3631 (|#1| $ (-564))) (-15 -1706 ((-3 "nil" "sqfr" "irred" "prime") $ (-564))) (-15 -3613 ((-769) $)) (-15 -3828 ($ |#1| (-564))) (-15 -4008 ($ |#1| (-564))) (-15 -1691 ($ |#1| (-564) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2660 (|#1| $)) (-15 -2803 ($ $)) (-15 -2947 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-452)) (-6 (-452)) |%noBranch|) (IF (|has| |#1| (-1020)) (-6 (-1020)) |%noBranch|) (IF (|has| |#1| (-1216)) (-6 (-1216)) |%noBranch|) (IF (|has| |#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -2929 ((-112) $)) (-15 -3536 ((-407 (-564)) $)) (-15 -3227 ((-3 (-407 (-564)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-286 $ $)) (-6 (-286 $ $)) |%noBranch|) (IF (|has| |#1| (-309 $)) (-6 (-309 $)) |%noBranch|) (IF (|has| |#1| (-514 (-1173) $)) (-6 (-514 (-1173) $)) |%noBranch|))) (-556)) (T -418)) -((-2947 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-556)) (-5 *1 (-418 *3)))) (-3398 (*1 *2 *1) (-12 (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-2817 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-418 *3)) (-4 *3 (-556)))) (-3969 (*1 *1 *2 *3) (-12 (-5 *3 (-642 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-564))))) (-4 *2 (-556)) (-5 *1 (-418 *2)))) (-2395 (*1 *2 *1) (-12 (-5 *2 (-642 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-564))))) (-5 *1 (-418 *3)) (-4 *3 (-556)))) (-3114 (*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-1569 (*1 *2 *1) (-12 (-5 *2 (-642 (-2 (|:| -2254 *3) (|:| -2817 (-564))))) (-5 *1 (-418 *3)) (-4 *3 (-556)))) (-3987 (*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-1685 (*1 *2 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-418 *3)) (-4 *3 (-556)))) (-3631 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-1706 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-418 *4)) (-4 *4 (-556)))) (-3613 (*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-418 *3)) (-4 *3 (-556)))) (-3828 (*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-4008 (*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-1691 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-564)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-2660 (*1 *2 *1) (-12 (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-2803 (*1 *1 *1) (-12 (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-2929 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-418 *3)) (-4 *3 (-545)) (-4 *3 (-556)))) (-3536 (*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-418 *3)) (-4 *3 (-545)) (-4 *3 (-556)))) (-3227 (*1 *2 *1) (|partial| -12 (-5 *2 (-407 (-564))) (-5 *1 (-418 *3)) (-4 *3 (-545)) (-4 *3 (-556))))) -(-13 (-556) (-231 |#1|) (-38 |#1|) (-338 |#1|) (-411 |#1|) (-10 -8 (-15 -3398 (|#1| $)) (-15 -2817 ((-564) $)) (-15 -3969 ($ |#1| (-642 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-564)))))) (-15 -2395 ((-642 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-564)))) $)) (-15 -3114 ($ |#1| (-564))) (-15 -1569 ((-642 (-2 (|:| -2254 |#1|) (|:| -2817 (-564)))) $)) (-15 -3987 ($ |#1| (-564))) (-15 -1685 ((-564) $ (-564))) (-15 -3631 (|#1| $ (-564))) (-15 -1706 ((-3 "nil" "sqfr" "irred" "prime") $ (-564))) (-15 -3613 ((-769) $)) (-15 -3828 ($ |#1| (-564))) (-15 -4008 ($ |#1| (-564))) (-15 -1691 ($ |#1| (-564) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2660 (|#1| $)) (-15 -2803 ($ $)) (-15 -2947 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-452)) (-6 (-452)) |%noBranch|) (IF (|has| |#1| (-1020)) (-6 (-1020)) |%noBranch|) (IF (|has| |#1| (-1216)) (-6 (-1216)) |%noBranch|) (IF (|has| |#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -2929 ((-112) $)) (-15 -3536 ((-407 (-564)) $)) (-15 -3227 ((-3 (-407 (-564)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-286 $ $)) (-6 (-286 $ $)) |%noBranch|) (IF (|has| |#1| (-309 $)) (-6 (-309 $)) |%noBranch|) (IF (|has| |#1| (-514 (-1173) $)) (-6 (-514 (-1173) $)) |%noBranch|))) -((-2354 (((-418 |#1|) (-418 |#1|) (-1 (-418 |#1|) |#1|)) 28)) (-3688 (((-418 |#1|) (-418 |#1|) (-418 |#1|)) 17))) -(((-419 |#1|) (-10 -7 (-15 -2354 ((-418 |#1|) (-418 |#1|) (-1 (-418 |#1|) |#1|))) (-15 -3688 ((-418 |#1|) (-418 |#1|) (-418 |#1|)))) (-556)) (T -419)) -((-3688 (*1 *2 *2 *2) (-12 (-5 *2 (-418 *3)) (-4 *3 (-556)) (-5 *1 (-419 *3)))) (-2354 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-418 *4) *4)) (-4 *4 (-556)) (-5 *2 (-418 *4)) (-5 *1 (-419 *4))))) -(-10 -7 (-15 -2354 ((-418 |#1|) (-418 |#1|) (-1 (-418 |#1|) |#1|))) (-15 -3688 ((-418 |#1|) (-418 |#1|) (-418 |#1|)))) -((-4260 ((|#2| |#2|) 183)) (-1418 (((-3 (|:| |%expansion| (-313 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1155)) (|:| |prob| (-1155))))) |#2| (-112)) 60))) -(((-420 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1418 ((-3 (|:| |%expansion| (-313 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1155)) (|:| |prob| (-1155))))) |#2| (-112))) (-15 -4260 (|#2| |#2|))) (-13 (-452) (-1036 (-564)) (-637 (-564))) (-13 (-27) (-1197) (-430 |#1|)) (-1173) |#2|) (T -420)) -((-4260 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *1 (-420 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1197) (-430 *3))) (-14 *4 (-1173)) (-14 *5 *2))) (-1418 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-3 (|:| |%expansion| (-313 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1155)) (|:| |prob| (-1155)))))) (-5 *1 (-420 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1197) (-430 *5))) (-14 *6 (-1173)) (-14 *7 *3)))) -(-10 -7 (-15 -1418 ((-3 (|:| |%expansion| (-313 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1155)) (|:| |prob| (-1155))))) |#2| (-112))) (-15 -4260 (|#2| |#2|))) -((-2947 ((|#4| (-1 |#3| |#1|) |#2|) 11))) -(((-421 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2947 (|#4| (-1 |#3| |#1|) |#2|))) (-1047) (-430 |#1|) (-1047) (-430 |#3|)) (T -421)) -((-2947 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1047)) (-4 *6 (-1047)) (-4 *2 (-430 *6)) (-5 *1 (-421 *5 *4 *6 *2)) (-4 *4 (-430 *5))))) -(-10 -7 (-15 -2947 (|#4| (-1 |#3| |#1|) |#2|))) -((-4260 ((|#2| |#2|) 104)) (-1941 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1155)) (|:| |prob| (-1155))))) |#2| (-112) (-1155)) 52)) (-3672 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1155)) (|:| |prob| (-1155))))) |#2| (-112) (-1155)) 171))) -(((-422 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1941 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1155)) (|:| |prob| (-1155))))) |#2| (-112) (-1155))) (-15 -3672 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1155)) (|:| |prob| (-1155))))) |#2| (-112) (-1155))) (-15 -4260 (|#2| |#2|))) (-13 (-452) (-1036 (-564)) (-637 (-564))) (-13 (-27) (-1197) (-430 |#1|) (-10 -8 (-15 -2390 ($ |#3|)))) (-846) (-13 (-1240 |#2| |#3|) (-363) (-1197) (-10 -8 (-15 -2199 ($ $)) (-15 -3703 ($ $)))) (-981 |#4|) (-1173)) (T -422)) -((-4260 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-4 *2 (-13 (-27) (-1197) (-430 *3) (-10 -8 (-15 -2390 ($ *4))))) (-4 *4 (-846)) (-4 *5 (-13 (-1240 *2 *4) (-363) (-1197) (-10 -8 (-15 -2199 ($ $)) (-15 -3703 ($ $))))) (-5 *1 (-422 *3 *2 *4 *5 *6 *7)) (-4 *6 (-981 *5)) (-14 *7 (-1173)))) (-3672 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-4 *3 (-13 (-27) (-1197) (-430 *6) (-10 -8 (-15 -2390 ($ *7))))) (-4 *7 (-846)) (-4 *8 (-13 (-1240 *3 *7) (-363) (-1197) (-10 -8 (-15 -2199 ($ $)) (-15 -3703 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1155)) (|:| |prob| (-1155)))))) (-5 *1 (-422 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1155)) (-4 *9 (-981 *8)) (-14 *10 (-1173)))) (-1941 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-4 *3 (-13 (-27) (-1197) (-430 *6) (-10 -8 (-15 -2390 ($ *7))))) (-4 *7 (-846)) (-4 *8 (-13 (-1240 *3 *7) (-363) (-1197) (-10 -8 (-15 -2199 ($ $)) (-15 -3703 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1155)) (|:| |prob| (-1155)))))) (-5 *1 (-422 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1155)) (-4 *9 (-981 *8)) (-14 *10 (-1173))))) -(-10 -7 (-15 -1941 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1155)) (|:| |prob| (-1155))))) |#2| (-112) (-1155))) (-15 -3672 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1155)) (|:| |prob| (-1155))))) |#2| (-112) (-1155))) (-15 -4260 (|#2| |#2|))) -((-2810 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-3741 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-2947 ((|#4| (-1 |#3| |#1|) |#2|) 17))) -(((-423 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2947 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3741 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2810 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1097) (-425 |#1|) (-1097) (-425 |#3|)) (T -423)) -((-2810 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1097)) (-4 *5 (-1097)) (-4 *2 (-425 *5)) (-5 *1 (-423 *6 *4 *5 *2)) (-4 *4 (-425 *6)))) (-3741 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1097)) (-4 *2 (-1097)) (-5 *1 (-423 *5 *4 *2 *6)) (-4 *4 (-425 *5)) (-4 *6 (-425 *2)))) (-2947 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *2 (-425 *6)) (-5 *1 (-423 *5 *4 *6 *2)) (-4 *4 (-425 *5))))) -(-10 -7 (-15 -2947 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3741 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2810 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-2864 (($) 52)) (-1700 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 46)) (-3011 (($ $ $) 45)) (-2460 (((-112) $ $) 34)) (-4003 (((-769)) 56)) (-1740 (($ (-642 |#2|)) 23) (($) NIL)) (-3235 (($) 67)) (-1309 (((-112) $ $) 15)) (-3225 ((|#2| $) 78)) (-2903 ((|#2| $) 76)) (-2535 (((-919) $) 71)) (-2338 (($ $ $) 41)) (-2065 (($ (-919)) 61)) (-1411 (($ $ |#2|) NIL) (($ $ $) 44)) (-4010 (((-769) (-1 (-112) |#2|) $) NIL) (((-769) |#2| $) 31)) (-2401 (($ (-642 |#2|)) 27)) (-3810 (($ $) 54)) (-2390 (((-860) $) 39)) (-1670 (((-769) $) 24)) (-2321 (($ (-642 |#2|)) 22) (($) NIL)) (-2821 (((-112) $ $) 19))) -(((-424 |#1| |#2|) (-10 -8 (-15 -4003 ((-769))) (-15 -2065 (|#1| (-919))) (-15 -2535 ((-919) |#1|)) (-15 -3235 (|#1|)) (-15 -3225 (|#2| |#1|)) (-15 -2903 (|#2| |#1|)) (-15 -2864 (|#1|)) (-15 -3810 (|#1| |#1|)) (-15 -1670 ((-769) |#1|)) (-15 -2821 ((-112) |#1| |#1|)) (-15 -2390 ((-860) |#1|)) (-15 -1309 ((-112) |#1| |#1|)) (-15 -2321 (|#1|)) (-15 -2321 (|#1| (-642 |#2|))) (-15 -1740 (|#1|)) (-15 -1740 (|#1| (-642 |#2|))) (-15 -2338 (|#1| |#1| |#1|)) (-15 -1411 (|#1| |#1| |#1|)) (-15 -1411 (|#1| |#1| |#2|)) (-15 -3011 (|#1| |#1| |#1|)) (-15 -2460 ((-112) |#1| |#1|)) (-15 -1700 (|#1| |#1| |#1|)) (-15 -1700 (|#1| |#1| |#2|)) (-15 -1700 (|#1| |#2| |#1|)) (-15 -2401 (|#1| (-642 |#2|))) (-15 -4010 ((-769) |#2| |#1|)) (-15 -4010 ((-769) (-1 (-112) |#2|) |#1|))) (-425 |#2|) (-1097)) (T -424)) -((-4003 (*1 *2) (-12 (-4 *4 (-1097)) (-5 *2 (-769)) (-5 *1 (-424 *3 *4)) (-4 *3 (-425 *4))))) -(-10 -8 (-15 -4003 ((-769))) (-15 -2065 (|#1| (-919))) (-15 -2535 ((-919) |#1|)) (-15 -3235 (|#1|)) (-15 -3225 (|#2| |#1|)) (-15 -2903 (|#2| |#1|)) (-15 -2864 (|#1|)) (-15 -3810 (|#1| |#1|)) (-15 -1670 ((-769) |#1|)) (-15 -2821 ((-112) |#1| |#1|)) (-15 -2390 ((-860) |#1|)) (-15 -1309 ((-112) |#1| |#1|)) (-15 -2321 (|#1|)) (-15 -2321 (|#1| (-642 |#2|))) (-15 -1740 (|#1|)) (-15 -1740 (|#1| (-642 |#2|))) (-15 -2338 (|#1| |#1| |#1|)) (-15 -1411 (|#1| |#1| |#1|)) (-15 -1411 (|#1| |#1| |#2|)) (-15 -3011 (|#1| |#1| |#1|)) (-15 -2460 ((-112) |#1| |#1|)) (-15 -1700 (|#1| |#1| |#1|)) (-15 -1700 (|#1| |#1| |#2|)) (-15 -1700 (|#1| |#2| |#1|)) (-15 -2401 (|#1| (-642 |#2|))) (-15 -4010 ((-769) |#2| |#1|)) (-15 -4010 ((-769) (-1 (-112) |#2|) |#1|))) -((-2856 (((-112) $ $) 19)) (-2864 (($) 68 (|has| |#1| (-368)))) (-1700 (($ |#1| $) 83) (($ $ |#1|) 82) (($ $ $) 81)) (-3011 (($ $ $) 79)) (-2460 (((-112) $ $) 80)) (-3442 (((-112) $ (-769)) 8)) (-4003 (((-769)) 62 (|has| |#1| (-368)))) (-1740 (($ (-642 |#1|)) 75) (($) 74)) (-2438 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4410)))) (-3437 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4410)))) (-2822 (($) 7 T CONST)) (-4067 (($ $) 59 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-1927 (($ |#1| $) 48 (|has| $ (-6 -4410))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4410)))) (-2517 (($ |#1| $) 58 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4410)))) (-3741 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4410)))) (-3235 (($) 65 (|has| |#1| (-368)))) (-2018 (((-642 |#1|) $) 31 (|has| $ (-6 -4410)))) (-1309 (((-112) $ $) 71)) (-3769 (((-112) $ (-769)) 9)) (-3225 ((|#1| $) 66 (|has| |#1| (-848)))) (-3541 (((-642 |#1|) $) 30 (|has| $ (-6 -4410)))) (-2533 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-2903 ((|#1| $) 67 (|has| |#1| (-848)))) (-1857 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#1| |#1|) $) 36)) (-2535 (((-919) $) 64 (|has| |#1| (-368)))) (-4145 (((-112) $ (-769)) 10)) (-1778 (((-1155) $) 22)) (-2338 (($ $ $) 76)) (-3220 ((|#1| $) 40)) (-1668 (($ |#1| $) 41)) (-2065 (($ (-919)) 63 (|has| |#1| (-368)))) (-3999 (((-1117) $) 21)) (-3183 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-4314 ((|#1| $) 42)) (-4094 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-2478 (((-112) $ $) 14)) (-4109 (((-112) $) 11)) (-2179 (($) 12)) (-1411 (($ $ |#1|) 78) (($ $ $) 77)) (-2318 (($) 50) (($ (-642 |#1|)) 49)) (-4010 (((-769) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4410))) (((-769) |#1| $) 29 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3865 (($ $) 13)) (-3003 (((-536) $) 60 (|has| |#1| (-612 (-536))))) (-2401 (($ (-642 |#1|)) 51)) (-3810 (($ $) 69 (|has| |#1| (-368)))) (-2390 (((-860) $) 18)) (-1670 (((-769) $) 70)) (-2321 (($ (-642 |#1|)) 73) (($) 72)) (-1600 (((-112) $ $) 23)) (-4160 (($ (-642 |#1|)) 43)) (-3295 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4410)))) (-2821 (((-112) $ $) 20)) (-2158 (((-769) $) 6 (|has| $ (-6 -4410))))) -(((-425 |#1|) (-140) (-1097)) (T -425)) -((-1670 (*1 *2 *1) (-12 (-4 *1 (-425 *3)) (-4 *3 (-1097)) (-5 *2 (-769)))) (-3810 (*1 *1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1097)) (-4 *2 (-368)))) (-2864 (*1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-368)) (-4 *2 (-1097)))) (-2903 (*1 *2 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1097)) (-4 *2 (-848)))) (-3225 (*1 *2 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1097)) (-4 *2 (-848))))) -(-13 (-229 |t#1|) (-1095 |t#1|) (-10 -8 (-6 -4410) (-15 -1670 ((-769) $)) (IF (|has| |t#1| (-368)) (PROGN (-6 (-368)) (-15 -3810 ($ $)) (-15 -2864 ($))) |%noBranch|) (IF (|has| |t#1| (-848)) (PROGN (-15 -2903 (|t#1| $)) (-15 -3225 (|t#1| $))) |%noBranch|))) -(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-611 (-860)) . T) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-229 |#1|) . T) ((-235 |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-368) |has| |#1| (-368)) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-1095 |#1|) . T) ((-1097) . T) ((-1212) . T)) -((-2921 (((-585 |#2|) |#2| (-1173)) 38)) (-2114 (((-585 |#2|) |#2| (-1173)) 21)) (-3689 ((|#2| |#2| (-1173)) 26))) -(((-426 |#1| |#2|) (-10 -7 (-15 -2114 ((-585 |#2|) |#2| (-1173))) (-15 -2921 ((-585 |#2|) |#2| (-1173))) (-15 -3689 (|#2| |#2| (-1173)))) (-13 (-307) (-147) (-1036 (-564)) (-637 (-564))) (-13 (-1197) (-29 |#1|))) (T -426)) -((-3689 (*1 *2 *2 *3) (-12 (-5 *3 (-1173)) (-4 *4 (-13 (-307) (-147) (-1036 (-564)) (-637 (-564)))) (-5 *1 (-426 *4 *2)) (-4 *2 (-13 (-1197) (-29 *4))))) (-2921 (*1 *2 *3 *4) (-12 (-5 *4 (-1173)) (-4 *5 (-13 (-307) (-147) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-585 *3)) (-5 *1 (-426 *5 *3)) (-4 *3 (-13 (-1197) (-29 *5))))) (-2114 (*1 *2 *3 *4) (-12 (-5 *4 (-1173)) (-4 *5 (-13 (-307) (-147) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-585 *3)) (-5 *1 (-426 *5 *3)) (-4 *3 (-13 (-1197) (-29 *5)))))) -(-10 -7 (-15 -2114 ((-585 |#2|) |#2| (-1173))) (-15 -2921 ((-585 |#2|) |#2| (-1173))) (-15 -3689 (|#2| |#2| (-1173)))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-3085 (((-3 $ "failed") $ $) NIL)) (-2822 (($) NIL T CONST)) (-2675 (((-3 $ "failed") $) NIL)) (-3163 (((-112) $) NIL)) (-4022 (($ |#2| |#1|) 37)) (-4317 (($ |#2| |#1|) 35)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-331 |#2|)) 25)) (-3348 (((-769)) NIL T CONST)) (-1600 (((-112) $ $) NIL)) (-2361 (($) 10 T CONST)) (-2371 (($) 16 T CONST)) (-2821 (((-112) $ $) NIL)) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) 36)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) 39) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-427 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4397)) (IF (|has| |#1| (-6 -4397)) (-6 -4397) |%noBranch|) |%noBranch|) (-15 -2390 ($ |#1|)) (-15 -2390 ($ (-331 |#2|))) (-15 -4022 ($ |#2| |#1|)) (-15 -4317 ($ |#2| |#1|)))) (-13 (-172) (-38 (-407 (-564)))) (-13 (-848) (-21))) (T -427)) -((-2390 (*1 *1 *2) (-12 (-5 *1 (-427 *2 *3)) (-4 *2 (-13 (-172) (-38 (-407 (-564))))) (-4 *3 (-13 (-848) (-21))))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-331 *4)) (-4 *4 (-13 (-848) (-21))) (-5 *1 (-427 *3 *4)) (-4 *3 (-13 (-172) (-38 (-407 (-564))))))) (-4022 (*1 *1 *2 *3) (-12 (-5 *1 (-427 *3 *2)) (-4 *3 (-13 (-172) (-38 (-407 (-564))))) (-4 *2 (-13 (-848) (-21))))) (-4317 (*1 *1 *2 *3) (-12 (-5 *1 (-427 *3 *2)) (-4 *3 (-13 (-172) (-38 (-407 (-564))))) (-4 *2 (-13 (-848) (-21)))))) -(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4397)) (IF (|has| |#1| (-6 -4397)) (-6 -4397) |%noBranch|) |%noBranch|) (-15 -2390 ($ |#1|)) (-15 -2390 ($ (-331 |#2|))) (-15 -4022 ($ |#2| |#1|)) (-15 -4317 ($ |#2| |#1|)))) -((-3703 (((-3 |#2| (-642 |#2|)) |#2| (-1173)) 115))) -(((-428 |#1| |#2|) (-10 -7 (-15 -3703 ((-3 |#2| (-642 |#2|)) |#2| (-1173)))) (-13 (-307) (-147) (-1036 (-564)) (-637 (-564))) (-13 (-1197) (-957) (-29 |#1|))) (T -428)) -((-3703 (*1 *2 *3 *4) (-12 (-5 *4 (-1173)) (-4 *5 (-13 (-307) (-147) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-3 *3 (-642 *3))) (-5 *1 (-428 *5 *3)) (-4 *3 (-13 (-1197) (-957) (-29 *5)))))) -(-10 -7 (-15 -3703 ((-3 |#2| (-642 |#2|)) |#2| (-1173)))) -((-2397 (((-642 (-1173)) $) 81)) (-2223 (((-407 (-1169 $)) $ (-610 $)) 314)) (-1891 (($ $ (-294 $)) NIL) (($ $ (-642 (-294 $))) NIL) (($ $ (-642 (-610 $)) (-642 $)) 278)) (-2849 (((-3 (-610 $) "failed") $) NIL) (((-3 (-1173) "failed") $) 84) (((-3 (-564) "failed") $) NIL) (((-3 |#2| "failed") $) 274) (((-3 (-407 (-950 |#2|)) "failed") $) 364) (((-3 (-950 |#2|) "failed") $) 276) (((-3 (-407 (-564)) "failed") $) NIL)) (-1687 (((-610 $) $) NIL) (((-1173) $) 28) (((-564) $) NIL) ((|#2| $) 272) (((-407 (-950 |#2|)) $) 346) (((-950 |#2|) $) 273) (((-407 (-564)) $) NIL)) (-3898 (((-114) (-114)) 47)) (-3408 (($ $) 99)) (-1543 (((-3 (-610 $) "failed") $) 269)) (-2209 (((-642 (-610 $)) $) 270)) (-3664 (((-3 (-642 $) "failed") $) 288)) (-1459 (((-3 (-2 (|:| |val| $) (|:| -2817 (-564))) "failed") $) 295)) (-4315 (((-3 (-642 $) "failed") $) 286)) (-1558 (((-3 (-2 (|:| -2968 (-564)) (|:| |var| (-610 $))) "failed") $) 305)) (-3177 (((-3 (-2 (|:| |var| (-610 $)) (|:| -2817 (-564))) "failed") $) 292) (((-3 (-2 (|:| |var| (-610 $)) (|:| -2817 (-564))) "failed") $ (-114)) 256) (((-3 (-2 (|:| |var| (-610 $)) (|:| -2817 (-564))) "failed") $ (-1173)) 258)) (-2491 (((-112) $) 17)) (-2500 ((|#2| $) 19)) (-3154 (($ $ (-610 $) $) NIL) (($ $ (-642 (-610 $)) (-642 $)) 277) (($ $ (-642 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-642 $) (-642 $)) NIL) (($ $ (-642 (-1173)) (-642 (-1 $ $))) NIL) (($ $ (-642 (-1173)) (-642 (-1 $ (-642 $)))) 109) (($ $ (-1173) (-1 $ (-642 $))) NIL) (($ $ (-1173) (-1 $ $)) NIL) (($ $ (-642 (-114)) (-642 (-1 $ $))) NIL) (($ $ (-642 (-114)) (-642 (-1 $ (-642 $)))) NIL) (($ $ (-114) (-1 $ (-642 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1173)) 62) (($ $ (-642 (-1173))) 281) (($ $) 282) (($ $ (-114) $ (-1173)) 65) (($ $ (-642 (-114)) (-642 $) (-1173)) 72) (($ $ (-642 (-1173)) (-642 (-769)) (-642 (-1 $ $))) 120) (($ $ (-642 (-1173)) (-642 (-769)) (-642 (-1 $ (-642 $)))) 283) (($ $ (-1173) (-769) (-1 $ (-642 $))) 105) (($ $ (-1173) (-769) (-1 $ $)) 104)) (-4369 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-642 $)) 119)) (-2199 (($ $ (-642 (-1173)) (-642 (-769))) NIL) (($ $ (-1173) (-769)) NIL) (($ $ (-642 (-1173))) NIL) (($ $ (-1173)) 279)) (-3082 (($ $) 325)) (-3003 (((-890 (-564)) $) 298) (((-890 (-379)) $) 302) (($ (-418 $)) 360) (((-536) $) NIL)) (-2390 (((-860) $) 280) (($ (-610 $)) 93) (($ (-1173)) 24) (($ |#2|) NIL) (($ (-1122 |#2| (-610 $))) NIL) (($ (-407 |#2|)) 330) (($ (-950 (-407 |#2|))) 369) (($ (-407 (-950 (-407 |#2|)))) 342) (($ (-407 (-950 |#2|))) 336) (($ $) NIL) (($ (-950 |#2|)) 218) (($ (-407 (-564))) 374) (($ (-564)) NIL)) (-3348 (((-769)) 88)) (-4318 (((-112) (-114)) 42)) (-3210 (($ (-1173) $) 31) (($ (-1173) $ $) 32) (($ (-1173) $ $ $) 33) (($ (-1173) $ $ $ $) 34) (($ (-1173) (-642 $)) 39)) (* (($ (-407 (-564)) $) NIL) (($ $ (-407 (-564))) NIL) (($ |#2| $) 307) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-564) $) NIL) (($ (-769) $) NIL) (($ (-919) $) NIL))) -(((-429 |#1| |#2|) (-10 -8 (-15 * (|#1| (-919) |#1|)) (-15 * (|#1| (-769) |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2390 (|#1| (-564))) (-15 -3348 ((-769))) (-15 -2390 (|#1| (-407 (-564)))) (-15 -2849 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -1687 ((-407 (-564)) |#1|)) (-15 -3003 ((-536) |#1|)) (-15 -2390 (|#1| (-950 |#2|))) (-15 -2849 ((-3 (-950 |#2|) "failed") |#1|)) (-15 -1687 ((-950 |#2|) |#1|)) (-15 -2199 (|#1| |#1| (-1173))) (-15 -2199 (|#1| |#1| (-642 (-1173)))) (-15 -2199 (|#1| |#1| (-1173) (-769))) (-15 -2199 (|#1| |#1| (-642 (-1173)) (-642 (-769)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2390 (|#1| |#1|)) (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 -2390 (|#1| (-407 (-950 |#2|)))) (-15 -2849 ((-3 (-407 (-950 |#2|)) "failed") |#1|)) (-15 -1687 ((-407 (-950 |#2|)) |#1|)) (-15 -2223 ((-407 (-1169 |#1|)) |#1| (-610 |#1|))) (-15 -2390 (|#1| (-407 (-950 (-407 |#2|))))) (-15 -2390 (|#1| (-950 (-407 |#2|)))) (-15 -2390 (|#1| (-407 |#2|))) (-15 -3082 (|#1| |#1|)) (-15 -3003 (|#1| (-418 |#1|))) (-15 -3154 (|#1| |#1| (-1173) (-769) (-1 |#1| |#1|))) (-15 -3154 (|#1| |#1| (-1173) (-769) (-1 |#1| (-642 |#1|)))) (-15 -3154 (|#1| |#1| (-642 (-1173)) (-642 (-769)) (-642 (-1 |#1| (-642 |#1|))))) (-15 -3154 (|#1| |#1| (-642 (-1173)) (-642 (-769)) (-642 (-1 |#1| |#1|)))) (-15 -1459 ((-3 (-2 (|:| |val| |#1|) (|:| -2817 (-564))) "failed") |#1|)) (-15 -3177 ((-3 (-2 (|:| |var| (-610 |#1|)) (|:| -2817 (-564))) "failed") |#1| (-1173))) (-15 -3177 ((-3 (-2 (|:| |var| (-610 |#1|)) (|:| -2817 (-564))) "failed") |#1| (-114))) (-15 -3408 (|#1| |#1|)) (-15 -2390 (|#1| (-1122 |#2| (-610 |#1|)))) (-15 -1558 ((-3 (-2 (|:| -2968 (-564)) (|:| |var| (-610 |#1|))) "failed") |#1|)) (-15 -4315 ((-3 (-642 |#1|) "failed") |#1|)) (-15 -3177 ((-3 (-2 (|:| |var| (-610 |#1|)) (|:| -2817 (-564))) "failed") |#1|)) (-15 -3664 ((-3 (-642 |#1|) "failed") |#1|)) (-15 -3154 (|#1| |#1| (-642 (-114)) (-642 |#1|) (-1173))) (-15 -3154 (|#1| |#1| (-114) |#1| (-1173))) (-15 -3154 (|#1| |#1|)) (-15 -3154 (|#1| |#1| (-642 (-1173)))) (-15 -3154 (|#1| |#1| (-1173))) (-15 -3210 (|#1| (-1173) (-642 |#1|))) (-15 -3210 (|#1| (-1173) |#1| |#1| |#1| |#1|)) (-15 -3210 (|#1| (-1173) |#1| |#1| |#1|)) (-15 -3210 (|#1| (-1173) |#1| |#1|)) (-15 -3210 (|#1| (-1173) |#1|)) (-15 -2397 ((-642 (-1173)) |#1|)) (-15 -2500 (|#2| |#1|)) (-15 -2491 ((-112) |#1|)) (-15 -2390 (|#1| |#2|)) (-15 -2849 ((-3 |#2| "failed") |#1|)) (-15 -1687 (|#2| |#1|)) (-15 -1687 ((-564) |#1|)) (-15 -2849 ((-3 (-564) "failed") |#1|)) (-15 -3003 ((-890 (-379)) |#1|)) (-15 -3003 ((-890 (-564)) |#1|)) (-15 -2390 (|#1| (-1173))) (-15 -2849 ((-3 (-1173) "failed") |#1|)) (-15 -1687 ((-1173) |#1|)) (-15 -3154 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -3154 (|#1| |#1| (-114) (-1 |#1| (-642 |#1|)))) (-15 -3154 (|#1| |#1| (-642 (-114)) (-642 (-1 |#1| (-642 |#1|))))) (-15 -3154 (|#1| |#1| (-642 (-114)) (-642 (-1 |#1| |#1|)))) (-15 -3154 (|#1| |#1| (-1173) (-1 |#1| |#1|))) (-15 -3154 (|#1| |#1| (-1173) (-1 |#1| (-642 |#1|)))) (-15 -3154 (|#1| |#1| (-642 (-1173)) (-642 (-1 |#1| (-642 |#1|))))) (-15 -3154 (|#1| |#1| (-642 (-1173)) (-642 (-1 |#1| |#1|)))) (-15 -4318 ((-112) (-114))) (-15 -3898 ((-114) (-114))) (-15 -2209 ((-642 (-610 |#1|)) |#1|)) (-15 -1543 ((-3 (-610 |#1|) "failed") |#1|)) (-15 -1891 (|#1| |#1| (-642 (-610 |#1|)) (-642 |#1|))) (-15 -1891 (|#1| |#1| (-642 (-294 |#1|)))) (-15 -1891 (|#1| |#1| (-294 |#1|))) (-15 -4369 (|#1| (-114) (-642 |#1|))) (-15 -4369 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -4369 (|#1| (-114) |#1| |#1| |#1|)) (-15 -4369 (|#1| (-114) |#1| |#1|)) (-15 -4369 (|#1| (-114) |#1|)) (-15 -3154 (|#1| |#1| (-642 |#1|) (-642 |#1|))) (-15 -3154 (|#1| |#1| |#1| |#1|)) (-15 -3154 (|#1| |#1| (-294 |#1|))) (-15 -3154 (|#1| |#1| (-642 (-294 |#1|)))) (-15 -3154 (|#1| |#1| (-642 (-610 |#1|)) (-642 |#1|))) (-15 -3154 (|#1| |#1| (-610 |#1|) |#1|)) (-15 -2390 (|#1| (-610 |#1|))) (-15 -2849 ((-3 (-610 |#1|) "failed") |#1|)) (-15 -1687 ((-610 |#1|) |#1|)) (-15 -2390 ((-860) |#1|))) (-430 |#2|) (-1097)) (T -429)) -((-3898 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *4 (-1097)) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4)))) (-4318 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *5 (-1097)) (-5 *2 (-112)) (-5 *1 (-429 *4 *5)) (-4 *4 (-430 *5)))) (-3348 (*1 *2) (-12 (-4 *4 (-1097)) (-5 *2 (-769)) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4))))) -(-10 -8 (-15 * (|#1| (-919) |#1|)) (-15 * (|#1| (-769) |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2390 (|#1| (-564))) (-15 -3348 ((-769))) (-15 -2390 (|#1| (-407 (-564)))) (-15 -2849 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -1687 ((-407 (-564)) |#1|)) (-15 -3003 ((-536) |#1|)) (-15 -2390 (|#1| (-950 |#2|))) (-15 -2849 ((-3 (-950 |#2|) "failed") |#1|)) (-15 -1687 ((-950 |#2|) |#1|)) (-15 -2199 (|#1| |#1| (-1173))) (-15 -2199 (|#1| |#1| (-642 (-1173)))) (-15 -2199 (|#1| |#1| (-1173) (-769))) (-15 -2199 (|#1| |#1| (-642 (-1173)) (-642 (-769)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2390 (|#1| |#1|)) (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 -2390 (|#1| (-407 (-950 |#2|)))) (-15 -2849 ((-3 (-407 (-950 |#2|)) "failed") |#1|)) (-15 -1687 ((-407 (-950 |#2|)) |#1|)) (-15 -2223 ((-407 (-1169 |#1|)) |#1| (-610 |#1|))) (-15 -2390 (|#1| (-407 (-950 (-407 |#2|))))) (-15 -2390 (|#1| (-950 (-407 |#2|)))) (-15 -2390 (|#1| (-407 |#2|))) (-15 -3082 (|#1| |#1|)) (-15 -3003 (|#1| (-418 |#1|))) (-15 -3154 (|#1| |#1| (-1173) (-769) (-1 |#1| |#1|))) (-15 -3154 (|#1| |#1| (-1173) (-769) (-1 |#1| (-642 |#1|)))) (-15 -3154 (|#1| |#1| (-642 (-1173)) (-642 (-769)) (-642 (-1 |#1| (-642 |#1|))))) (-15 -3154 (|#1| |#1| (-642 (-1173)) (-642 (-769)) (-642 (-1 |#1| |#1|)))) (-15 -1459 ((-3 (-2 (|:| |val| |#1|) (|:| -2817 (-564))) "failed") |#1|)) (-15 -3177 ((-3 (-2 (|:| |var| (-610 |#1|)) (|:| -2817 (-564))) "failed") |#1| (-1173))) (-15 -3177 ((-3 (-2 (|:| |var| (-610 |#1|)) (|:| -2817 (-564))) "failed") |#1| (-114))) (-15 -3408 (|#1| |#1|)) (-15 -2390 (|#1| (-1122 |#2| (-610 |#1|)))) (-15 -1558 ((-3 (-2 (|:| -2968 (-564)) (|:| |var| (-610 |#1|))) "failed") |#1|)) (-15 -4315 ((-3 (-642 |#1|) "failed") |#1|)) (-15 -3177 ((-3 (-2 (|:| |var| (-610 |#1|)) (|:| -2817 (-564))) "failed") |#1|)) (-15 -3664 ((-3 (-642 |#1|) "failed") |#1|)) (-15 -3154 (|#1| |#1| (-642 (-114)) (-642 |#1|) (-1173))) (-15 -3154 (|#1| |#1| (-114) |#1| (-1173))) (-15 -3154 (|#1| |#1|)) (-15 -3154 (|#1| |#1| (-642 (-1173)))) (-15 -3154 (|#1| |#1| (-1173))) (-15 -3210 (|#1| (-1173) (-642 |#1|))) (-15 -3210 (|#1| (-1173) |#1| |#1| |#1| |#1|)) (-15 -3210 (|#1| (-1173) |#1| |#1| |#1|)) (-15 -3210 (|#1| (-1173) |#1| |#1|)) (-15 -3210 (|#1| (-1173) |#1|)) (-15 -2397 ((-642 (-1173)) |#1|)) (-15 -2500 (|#2| |#1|)) (-15 -2491 ((-112) |#1|)) (-15 -2390 (|#1| |#2|)) (-15 -2849 ((-3 |#2| "failed") |#1|)) (-15 -1687 (|#2| |#1|)) (-15 -1687 ((-564) |#1|)) (-15 -2849 ((-3 (-564) "failed") |#1|)) (-15 -3003 ((-890 (-379)) |#1|)) (-15 -3003 ((-890 (-564)) |#1|)) (-15 -2390 (|#1| (-1173))) (-15 -2849 ((-3 (-1173) "failed") |#1|)) (-15 -1687 ((-1173) |#1|)) (-15 -3154 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -3154 (|#1| |#1| (-114) (-1 |#1| (-642 |#1|)))) (-15 -3154 (|#1| |#1| (-642 (-114)) (-642 (-1 |#1| (-642 |#1|))))) (-15 -3154 (|#1| |#1| (-642 (-114)) (-642 (-1 |#1| |#1|)))) (-15 -3154 (|#1| |#1| (-1173) (-1 |#1| |#1|))) (-15 -3154 (|#1| |#1| (-1173) (-1 |#1| (-642 |#1|)))) (-15 -3154 (|#1| |#1| (-642 (-1173)) (-642 (-1 |#1| (-642 |#1|))))) (-15 -3154 (|#1| |#1| (-642 (-1173)) (-642 (-1 |#1| |#1|)))) (-15 -4318 ((-112) (-114))) (-15 -3898 ((-114) (-114))) (-15 -2209 ((-642 (-610 |#1|)) |#1|)) (-15 -1543 ((-3 (-610 |#1|) "failed") |#1|)) (-15 -1891 (|#1| |#1| (-642 (-610 |#1|)) (-642 |#1|))) (-15 -1891 (|#1| |#1| (-642 (-294 |#1|)))) (-15 -1891 (|#1| |#1| (-294 |#1|))) (-15 -4369 (|#1| (-114) (-642 |#1|))) (-15 -4369 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -4369 (|#1| (-114) |#1| |#1| |#1|)) (-15 -4369 (|#1| (-114) |#1| |#1|)) (-15 -4369 (|#1| (-114) |#1|)) (-15 -3154 (|#1| |#1| (-642 |#1|) (-642 |#1|))) (-15 -3154 (|#1| |#1| |#1| |#1|)) (-15 -3154 (|#1| |#1| (-294 |#1|))) (-15 -3154 (|#1| |#1| (-642 (-294 |#1|)))) (-15 -3154 (|#1| |#1| (-642 (-610 |#1|)) (-642 |#1|))) (-15 -3154 (|#1| |#1| (-610 |#1|) |#1|)) (-15 -2390 (|#1| (-610 |#1|))) (-15 -2849 ((-3 (-610 |#1|) "failed") |#1|)) (-15 -1687 ((-610 |#1|) |#1|)) (-15 -2390 ((-860) |#1|))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 116 (|has| |#1| (-25)))) (-2397 (((-642 (-1173)) $) 203)) (-2223 (((-407 (-1169 $)) $ (-610 $)) 171 (|has| |#1| (-556)))) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) 143 (|has| |#1| (-556)))) (-4252 (($ $) 144 (|has| |#1| (-556)))) (-1722 (((-112) $) 146 (|has| |#1| (-556)))) (-2138 (((-642 (-610 $)) $) 39)) (-3085 (((-3 $ "failed") $ $) 118 (|has| |#1| (-21)))) (-1891 (($ $ (-294 $)) 51) (($ $ (-642 (-294 $))) 50) (($ $ (-642 (-610 $)) (-642 $)) 49)) (-1993 (($ $) 163 (|has| |#1| (-556)))) (-3282 (((-418 $) $) 164 (|has| |#1| (-556)))) (-2134 (((-112) $ $) 154 (|has| |#1| (-556)))) (-2822 (($) 104 (-2682 (|has| |#1| (-1109)) (|has| |#1| (-25))) CONST)) (-2849 (((-3 (-610 $) "failed") $) 64) (((-3 (-1173) "failed") $) 216) (((-3 (-564) "failed") $) 210 (|has| |#1| (-1036 (-564)))) (((-3 |#1| "failed") $) 207) (((-3 (-407 (-950 |#1|)) "failed") $) 169 (|has| |#1| (-556))) (((-3 (-950 |#1|) "failed") $) 123 (|has| |#1| (-1047))) (((-3 (-407 (-564)) "failed") $) 98 (-2682 (-12 (|has| |#1| (-1036 (-564))) (|has| |#1| (-556))) (|has| |#1| (-1036 (-407 (-564))))))) (-1687 (((-610 $) $) 65) (((-1173) $) 217) (((-564) $) 209 (|has| |#1| (-1036 (-564)))) ((|#1| $) 208) (((-407 (-950 |#1|)) $) 170 (|has| |#1| (-556))) (((-950 |#1|) $) 124 (|has| |#1| (-1047))) (((-407 (-564)) $) 99 (-2682 (-12 (|has| |#1| (-1036 (-564))) (|has| |#1| (-556))) (|has| |#1| (-1036 (-407 (-564))))))) (-2796 (($ $ $) 158 (|has| |#1| (-556)))) (-3330 (((-687 (-564)) (-687 $)) 137 (-2317 (|has| |#1| (-637 (-564))) (|has| |#1| (-1047)))) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) 136 (-2317 (|has| |#1| (-637 (-564))) (|has| |#1| (-1047)))) (((-2 (|:| -3544 (-687 |#1|)) (|:| |vec| (-1262 |#1|))) (-687 $) (-1262 $)) 135 (|has| |#1| (-1047))) (((-687 |#1|) (-687 $)) 134 (|has| |#1| (-1047)))) (-2675 (((-3 $ "failed") $) 106 (|has| |#1| (-1109)))) (-2808 (($ $ $) 157 (|has| |#1| (-556)))) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) 152 (|has| |#1| (-556)))) (-3552 (((-112) $) 165 (|has| |#1| (-556)))) (-1381 (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) 212 (|has| |#1| (-884 (-564)))) (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) 211 (|has| |#1| (-884 (-379))))) (-2998 (($ $) 46) (($ (-642 $)) 45)) (-3986 (((-642 (-114)) $) 38)) (-3898 (((-114) (-114)) 37)) (-3163 (((-112) $) 105 (|has| |#1| (-1109)))) (-2829 (((-112) $) 17 (|has| $ (-1036 (-564))))) (-3408 (($ $) 186 (|has| |#1| (-1047)))) (-4120 (((-1122 |#1| (-610 $)) $) 187 (|has| |#1| (-1047)))) (-2709 (((-3 (-642 $) "failed") (-642 $) $) 161 (|has| |#1| (-556)))) (-2744 (((-1169 $) (-610 $)) 20 (|has| $ (-1047)))) (-2947 (($ (-1 $ $) (-610 $)) 31)) (-1543 (((-3 (-610 $) "failed") $) 41)) (-2066 (($ (-642 $)) 150 (|has| |#1| (-556))) (($ $ $) 149 (|has| |#1| (-556)))) (-1778 (((-1155) $) 10)) (-2209 (((-642 (-610 $)) $) 40)) (-2879 (($ (-114) $) 33) (($ (-114) (-642 $)) 32)) (-3664 (((-3 (-642 $) "failed") $) 192 (|has| |#1| (-1109)))) (-1459 (((-3 (-2 (|:| |val| $) (|:| -2817 (-564))) "failed") $) 183 (|has| |#1| (-1047)))) (-4315 (((-3 (-642 $) "failed") $) 190 (|has| |#1| (-25)))) (-1558 (((-3 (-2 (|:| -2968 (-564)) (|:| |var| (-610 $))) "failed") $) 189 (|has| |#1| (-25)))) (-3177 (((-3 (-2 (|:| |var| (-610 $)) (|:| -2817 (-564))) "failed") $) 191 (|has| |#1| (-1109))) (((-3 (-2 (|:| |var| (-610 $)) (|:| -2817 (-564))) "failed") $ (-114)) 185 (|has| |#1| (-1047))) (((-3 (-2 (|:| |var| (-610 $)) (|:| -2817 (-564))) "failed") $ (-1173)) 184 (|has| |#1| (-1047)))) (-1462 (((-112) $ (-114)) 35) (((-112) $ (-1173)) 34)) (-2481 (($ $) 108 (-2682 (|has| |#1| (-473)) (|has| |#1| (-556))))) (-2983 (((-769) $) 42)) (-3999 (((-1117) $) 11)) (-2491 (((-112) $) 205)) (-2500 ((|#1| $) 204)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) 151 (|has| |#1| (-556)))) (-2105 (($ (-642 $)) 148 (|has| |#1| (-556))) (($ $ $) 147 (|has| |#1| (-556)))) (-2908 (((-112) $ $) 30) (((-112) $ (-1173)) 29)) (-2254 (((-418 $) $) 162 (|has| |#1| (-556)))) (-1877 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 160 (|has| |#1| (-556))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) 159 (|has| |#1| (-556)))) (-2842 (((-3 $ "failed") $ $) 142 (|has| |#1| (-556)))) (-1483 (((-3 (-642 $) "failed") (-642 $) $) 153 (|has| |#1| (-556)))) (-2211 (((-112) $) 18 (|has| $ (-1036 (-564))))) (-3154 (($ $ (-610 $) $) 62) (($ $ (-642 (-610 $)) (-642 $)) 61) (($ $ (-642 (-294 $))) 60) (($ $ (-294 $)) 59) (($ $ $ $) 58) (($ $ (-642 $) (-642 $)) 57) (($ $ (-642 (-1173)) (-642 (-1 $ $))) 28) (($ $ (-642 (-1173)) (-642 (-1 $ (-642 $)))) 27) (($ $ (-1173) (-1 $ (-642 $))) 26) (($ $ (-1173) (-1 $ $)) 25) (($ $ (-642 (-114)) (-642 (-1 $ $))) 24) (($ $ (-642 (-114)) (-642 (-1 $ (-642 $)))) 23) (($ $ (-114) (-1 $ (-642 $))) 22) (($ $ (-114) (-1 $ $)) 21) (($ $ (-1173)) 197 (|has| |#1| (-612 (-536)))) (($ $ (-642 (-1173))) 196 (|has| |#1| (-612 (-536)))) (($ $) 195 (|has| |#1| (-612 (-536)))) (($ $ (-114) $ (-1173)) 194 (|has| |#1| (-612 (-536)))) (($ $ (-642 (-114)) (-642 $) (-1173)) 193 (|has| |#1| (-612 (-536)))) (($ $ (-642 (-1173)) (-642 (-769)) (-642 (-1 $ $))) 182 (|has| |#1| (-1047))) (($ $ (-642 (-1173)) (-642 (-769)) (-642 (-1 $ (-642 $)))) 181 (|has| |#1| (-1047))) (($ $ (-1173) (-769) (-1 $ (-642 $))) 180 (|has| |#1| (-1047))) (($ $ (-1173) (-769) (-1 $ $)) 179 (|has| |#1| (-1047)))) (-4274 (((-769) $) 155 (|has| |#1| (-556)))) (-4369 (($ (-114) $) 56) (($ (-114) $ $) 55) (($ (-114) $ $ $) 54) (($ (-114) $ $ $ $) 53) (($ (-114) (-642 $)) 52)) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) 156 (|has| |#1| (-556)))) (-4377 (($ $) 44) (($ $ $) 43)) (-2199 (($ $ (-642 (-1173)) (-642 (-769))) 128 (|has| |#1| (-1047))) (($ $ (-1173) (-769)) 127 (|has| |#1| (-1047))) (($ $ (-642 (-1173))) 126 (|has| |#1| (-1047))) (($ $ (-1173)) 125 (|has| |#1| (-1047)))) (-3082 (($ $) 176 (|has| |#1| (-556)))) (-4131 (((-1122 |#1| (-610 $)) $) 177 (|has| |#1| (-556)))) (-1361 (($ $) 19 (|has| $ (-1047)))) (-3003 (((-890 (-564)) $) 214 (|has| |#1| (-612 (-890 (-564))))) (((-890 (-379)) $) 213 (|has| |#1| (-612 (-890 (-379))))) (($ (-418 $)) 178 (|has| |#1| (-556))) (((-536) $) 100 (|has| |#1| (-612 (-536))))) (-1736 (($ $ $) 111 (|has| |#1| (-473)))) (-2402 (($ $ $) 112 (|has| |#1| (-473)))) (-2390 (((-860) $) 12) (($ (-610 $)) 63) (($ (-1173)) 215) (($ |#1|) 206) (($ (-1122 |#1| (-610 $))) 188 (|has| |#1| (-1047))) (($ (-407 |#1|)) 174 (|has| |#1| (-556))) (($ (-950 (-407 |#1|))) 173 (|has| |#1| (-556))) (($ (-407 (-950 (-407 |#1|)))) 172 (|has| |#1| (-556))) (($ (-407 (-950 |#1|))) 168 (|has| |#1| (-556))) (($ $) 141 (|has| |#1| (-556))) (($ (-950 |#1|)) 122 (|has| |#1| (-1047))) (($ (-407 (-564))) 97 (-2682 (|has| |#1| (-556)) (-12 (|has| |#1| (-1036 (-564))) (|has| |#1| (-556))) (|has| |#1| (-1036 (-407 (-564)))))) (($ (-564)) 96 (-2682 (|has| |#1| (-1047)) (|has| |#1| (-1036 (-564)))))) (-3434 (((-3 $ "failed") $) 138 (|has| |#1| (-145)))) (-3348 (((-769)) 133 (|has| |#1| (-1047)) CONST)) (-1899 (($ $) 48) (($ (-642 $)) 47)) (-4318 (((-112) (-114)) 36)) (-1600 (((-112) $ $) 9)) (-1594 (((-112) $ $) 145 (|has| |#1| (-556)))) (-3210 (($ (-1173) $) 202) (($ (-1173) $ $) 201) (($ (-1173) $ $ $) 200) (($ (-1173) $ $ $ $) 199) (($ (-1173) (-642 $)) 198)) (-2361 (($) 115 (|has| |#1| (-25)) CONST)) (-2371 (($) 103 (|has| |#1| (-1109)) CONST)) (-2711 (($ $ (-642 (-1173)) (-642 (-769))) 132 (|has| |#1| (-1047))) (($ $ (-1173) (-769)) 131 (|has| |#1| (-1047))) (($ $ (-642 (-1173))) 130 (|has| |#1| (-1047))) (($ $ (-1173)) 129 (|has| |#1| (-1047)))) (-2821 (((-112) $ $) 6)) (-2943 (($ (-1122 |#1| (-610 $)) (-1122 |#1| (-610 $))) 175 (|has| |#1| (-556))) (($ $ $) 109 (-2682 (|has| |#1| (-473)) (|has| |#1| (-556))))) (-2930 (($ $ $) 121 (|has| |#1| (-21))) (($ $) 120 (|has| |#1| (-21)))) (-2917 (($ $ $) 113 (|has| |#1| (-25)))) (** (($ $ (-564)) 110 (-2682 (|has| |#1| (-473)) (|has| |#1| (-556)))) (($ $ (-769)) 107 (|has| |#1| (-1109))) (($ $ (-919)) 102 (|has| |#1| (-1109)))) (* (($ (-407 (-564)) $) 167 (|has| |#1| (-556))) (($ $ (-407 (-564))) 166 (|has| |#1| (-556))) (($ |#1| $) 140 (|has| |#1| (-172))) (($ $ |#1|) 139 (|has| |#1| (-172))) (($ (-564) $) 119 (|has| |#1| (-21))) (($ (-769) $) 117 (|has| |#1| (-25))) (($ (-919) $) 114 (|has| |#1| (-25))) (($ $ $) 101 (|has| |#1| (-1109))))) -(((-430 |#1|) (-140) (-1097)) (T -430)) -((-2491 (*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-1097)) (-5 *2 (-112)))) (-2500 (*1 *2 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-1097)))) (-2397 (*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-1097)) (-5 *2 (-642 (-1173))))) (-3210 (*1 *1 *2 *1) (-12 (-5 *2 (-1173)) (-4 *1 (-430 *3)) (-4 *3 (-1097)))) (-3210 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1173)) (-4 *1 (-430 *3)) (-4 *3 (-1097)))) (-3210 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1173)) (-4 *1 (-430 *3)) (-4 *3 (-1097)))) (-3210 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1173)) (-4 *1 (-430 *3)) (-4 *3 (-1097)))) (-3210 (*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-642 *1)) (-4 *1 (-430 *4)) (-4 *4 (-1097)))) (-3154 (*1 *1 *1 *2) (-12 (-5 *2 (-1173)) (-4 *1 (-430 *3)) (-4 *3 (-1097)) (-4 *3 (-612 (-536))))) (-3154 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-1173))) (-4 *1 (-430 *3)) (-4 *3 (-1097)) (-4 *3 (-612 (-536))))) (-3154 (*1 *1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-1097)) (-4 *2 (-612 (-536))))) (-3154 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1173)) (-4 *1 (-430 *4)) (-4 *4 (-1097)) (-4 *4 (-612 (-536))))) (-3154 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-642 (-114))) (-5 *3 (-642 *1)) (-5 *4 (-1173)) (-4 *1 (-430 *5)) (-4 *5 (-1097)) (-4 *5 (-612 (-536))))) (-3664 (*1 *2 *1) (|partial| -12 (-4 *3 (-1109)) (-4 *3 (-1097)) (-5 *2 (-642 *1)) (-4 *1 (-430 *3)))) (-3177 (*1 *2 *1) (|partial| -12 (-4 *3 (-1109)) (-4 *3 (-1097)) (-5 *2 (-2 (|:| |var| (-610 *1)) (|:| -2817 (-564)))) (-4 *1 (-430 *3)))) (-4315 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1097)) (-5 *2 (-642 *1)) (-4 *1 (-430 *3)))) (-1558 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1097)) (-5 *2 (-2 (|:| -2968 (-564)) (|:| |var| (-610 *1)))) (-4 *1 (-430 *3)))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-1122 *3 (-610 *1))) (-4 *3 (-1047)) (-4 *3 (-1097)) (-4 *1 (-430 *3)))) (-4120 (*1 *2 *1) (-12 (-4 *3 (-1047)) (-4 *3 (-1097)) (-5 *2 (-1122 *3 (-610 *1))) (-4 *1 (-430 *3)))) (-3408 (*1 *1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-1097)) (-4 *2 (-1047)))) (-3177 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1047)) (-4 *4 (-1097)) (-5 *2 (-2 (|:| |var| (-610 *1)) (|:| -2817 (-564)))) (-4 *1 (-430 *4)))) (-3177 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1173)) (-4 *4 (-1047)) (-4 *4 (-1097)) (-5 *2 (-2 (|:| |var| (-610 *1)) (|:| -2817 (-564)))) (-4 *1 (-430 *4)))) (-1459 (*1 *2 *1) (|partial| -12 (-4 *3 (-1047)) (-4 *3 (-1097)) (-5 *2 (-2 (|:| |val| *1) (|:| -2817 (-564)))) (-4 *1 (-430 *3)))) (-3154 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-642 (-1173))) (-5 *3 (-642 (-769))) (-5 *4 (-642 (-1 *1 *1))) (-4 *1 (-430 *5)) (-4 *5 (-1097)) (-4 *5 (-1047)))) (-3154 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-642 (-1173))) (-5 *3 (-642 (-769))) (-5 *4 (-642 (-1 *1 (-642 *1)))) (-4 *1 (-430 *5)) (-4 *5 (-1097)) (-4 *5 (-1047)))) (-3154 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1173)) (-5 *3 (-769)) (-5 *4 (-1 *1 (-642 *1))) (-4 *1 (-430 *5)) (-4 *5 (-1097)) (-4 *5 (-1047)))) (-3154 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1173)) (-5 *3 (-769)) (-5 *4 (-1 *1 *1)) (-4 *1 (-430 *5)) (-4 *5 (-1097)) (-4 *5 (-1047)))) (-3003 (*1 *1 *2) (-12 (-5 *2 (-418 *1)) (-4 *1 (-430 *3)) (-4 *3 (-556)) (-4 *3 (-1097)))) (-4131 (*1 *2 *1) (-12 (-4 *3 (-556)) (-4 *3 (-1097)) (-5 *2 (-1122 *3 (-610 *1))) (-4 *1 (-430 *3)))) (-3082 (*1 *1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-1097)) (-4 *2 (-556)))) (-2943 (*1 *1 *2 *2) (-12 (-5 *2 (-1122 *3 (-610 *1))) (-4 *3 (-556)) (-4 *3 (-1097)) (-4 *1 (-430 *3)))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-407 *3)) (-4 *3 (-556)) (-4 *3 (-1097)) (-4 *1 (-430 *3)))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-950 (-407 *3))) (-4 *3 (-556)) (-4 *3 (-1097)) (-4 *1 (-430 *3)))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-407 (-950 (-407 *3)))) (-4 *3 (-556)) (-4 *3 (-1097)) (-4 *1 (-430 *3)))) (-2223 (*1 *2 *1 *3) (-12 (-5 *3 (-610 *1)) (-4 *1 (-430 *4)) (-4 *4 (-1097)) (-4 *4 (-556)) (-5 *2 (-407 (-1169 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-4 *1 (-430 *3)) (-4 *3 (-1097)) (-4 *3 (-1109))))) -(-13 (-302) (-1036 (-1173)) (-882 |t#1|) (-400 |t#1|) (-411 |t#1|) (-10 -8 (-15 -2491 ((-112) $)) (-15 -2500 (|t#1| $)) (-15 -2397 ((-642 (-1173)) $)) (-15 -3210 ($ (-1173) $)) (-15 -3210 ($ (-1173) $ $)) (-15 -3210 ($ (-1173) $ $ $)) (-15 -3210 ($ (-1173) $ $ $ $)) (-15 -3210 ($ (-1173) (-642 $))) (IF (|has| |t#1| (-612 (-536))) (PROGN (-6 (-612 (-536))) (-15 -3154 ($ $ (-1173))) (-15 -3154 ($ $ (-642 (-1173)))) (-15 -3154 ($ $)) (-15 -3154 ($ $ (-114) $ (-1173))) (-15 -3154 ($ $ (-642 (-114)) (-642 $) (-1173)))) |%noBranch|) (IF (|has| |t#1| (-1109)) (PROGN (-6 (-724)) (-15 ** ($ $ (-769))) (-15 -3664 ((-3 (-642 $) "failed") $)) (-15 -3177 ((-3 (-2 (|:| |var| (-610 $)) (|:| -2817 (-564))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-473)) (-6 (-473)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -4315 ((-3 (-642 $) "failed") $)) (-15 -1558 ((-3 (-2 (|:| -2968 (-564)) (|:| |var| (-610 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1047)) (PROGN (-6 (-1047)) (-6 (-1036 (-950 |t#1|))) (-6 (-898 (-1173))) (-6 (-377 |t#1|)) (-15 -2390 ($ (-1122 |t#1| (-610 $)))) (-15 -4120 ((-1122 |t#1| (-610 $)) $)) (-15 -3408 ($ $)) (-15 -3177 ((-3 (-2 (|:| |var| (-610 $)) (|:| -2817 (-564))) "failed") $ (-114))) (-15 -3177 ((-3 (-2 (|:| |var| (-610 $)) (|:| -2817 (-564))) "failed") $ (-1173))) (-15 -1459 ((-3 (-2 (|:| |val| $) (|:| -2817 (-564))) "failed") $)) (-15 -3154 ($ $ (-642 (-1173)) (-642 (-769)) (-642 (-1 $ $)))) (-15 -3154 ($ $ (-642 (-1173)) (-642 (-769)) (-642 (-1 $ (-642 $))))) (-15 -3154 ($ $ (-1173) (-769) (-1 $ (-642 $)))) (-15 -3154 ($ $ (-1173) (-769) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-556)) (PROGN (-6 (-363)) (-6 (-1036 (-407 (-950 |t#1|)))) (-15 -3003 ($ (-418 $))) (-15 -4131 ((-1122 |t#1| (-610 $)) $)) (-15 -3082 ($ $)) (-15 -2943 ($ (-1122 |t#1| (-610 $)) (-1122 |t#1| (-610 $)))) (-15 -2390 ($ (-407 |t#1|))) (-15 -2390 ($ (-950 (-407 |t#1|)))) (-15 -2390 ($ (-407 (-950 (-407 |t#1|))))) (-15 -2223 ((-407 (-1169 $)) $ (-610 $))) (IF (|has| |t#1| (-1036 (-564))) (-6 (-1036 (-407 (-564)))) |%noBranch|)) |%noBranch|))) -(((-21) -2682 (|has| |#1| (-1047)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-23) -2682 (|has| |#1| (-1047)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -2682 (|has| |#1| (-1047)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-407 (-564))) |has| |#1| (-556)) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-556)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-556)) ((-111 |#1| |#1|) |has| |#1| (-172)) ((-111 $ $) |has| |#1| (-556)) ((-131) -2682 (|has| |#1| (-1047)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) -2682 (|has| |#1| (-1036 (-407 (-564)))) (|has| |#1| (-556))) ((-614 #1=(-407 (-950 |#1|))) |has| |#1| (-556)) ((-614 (-564)) -2682 (|has| |#1| (-1047)) (|has| |#1| (-1036 (-564))) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-614 #2=(-610 $)) . T) ((-614 #3=(-950 |#1|)) |has| |#1| (-1047)) ((-614 #4=(-1173)) . T) ((-614 |#1|) . T) ((-614 $) |has| |#1| (-556)) ((-611 (-860)) . T) ((-172) |has| |#1| (-556)) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-612 (-890 (-379))) |has| |#1| (-612 (-890 (-379)))) ((-612 (-890 (-564))) |has| |#1| (-612 (-890 (-564)))) ((-243) |has| |#1| (-556)) ((-290) |has| |#1| (-556)) ((-307) |has| |#1| (-556)) ((-309 $) . T) ((-302) . T) ((-363) |has| |#1| (-556)) ((-377 |#1|) |has| |#1| (-1047)) ((-400 |#1|) . T) ((-411 |#1|) . T) ((-452) |has| |#1| (-556)) ((-473) |has| |#1| (-473)) ((-514 (-610 $) $) . T) ((-514 $ $) . T) ((-556) |has| |#1| (-556)) ((-644 #0#) |has| |#1| (-556)) ((-644 (-564)) -2682 (|has| |#1| (-1047)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-644 |#1|) |has| |#1| (-172)) ((-644 $) -2682 (|has| |#1| (-1047)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-646 #0#) |has| |#1| (-556)) ((-646 |#1|) |has| |#1| (-172)) ((-646 $) -2682 (|has| |#1| (-1047)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-638 #0#) |has| |#1| (-556)) ((-638 |#1|) |has| |#1| (-172)) ((-638 $) |has| |#1| (-556)) ((-637 (-564)) -12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1047))) ((-637 |#1|) |has| |#1| (-1047)) ((-715 #0#) |has| |#1| (-556)) ((-715 |#1|) |has| |#1| (-172)) ((-715 $) |has| |#1| (-556)) ((-724) -2682 (|has| |#1| (-1109)) (|has| |#1| (-1047)) (|has| |#1| (-556)) (|has| |#1| (-473)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-898 (-1173)) |has| |#1| (-1047)) ((-884 (-379)) |has| |#1| (-884 (-379))) ((-884 (-564)) |has| |#1| (-884 (-564))) ((-882 |#1|) . T) ((-918) |has| |#1| (-556)) ((-1036 (-407 (-564))) -2682 (|has| |#1| (-1036 (-407 (-564)))) (-12 (|has| |#1| (-556)) (|has| |#1| (-1036 (-564))))) ((-1036 #1#) |has| |#1| (-556)) ((-1036 (-564)) |has| |#1| (-1036 (-564))) ((-1036 #2#) . T) ((-1036 #3#) |has| |#1| (-1047)) ((-1036 #4#) . T) ((-1036 |#1|) . T) ((-1049 #0#) |has| |#1| (-556)) ((-1049 |#1|) |has| |#1| (-172)) ((-1049 $) |has| |#1| (-556)) ((-1054 #0#) |has| |#1| (-556)) ((-1054 |#1|) |has| |#1| (-172)) ((-1054 $) |has| |#1| (-556)) ((-1047) -2682 (|has| |#1| (-1047)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1055) -2682 (|has| |#1| (-1047)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1109) -2682 (|has| |#1| (-1109)) (|has| |#1| (-1047)) (|has| |#1| (-556)) (|has| |#1| (-473)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1097) . T) ((-1212) . T) ((-1216) |has| |#1| (-556))) -((-3042 ((|#2| |#2| |#2|) 31)) (-3898 (((-114) (-114)) 43)) (-3895 ((|#2| |#2|) 63)) (-1505 ((|#2| |#2|) 66)) (-3745 ((|#2| |#2|) 30)) (-3679 ((|#2| |#2| |#2|) 33)) (-3144 ((|#2| |#2| |#2|) 35)) (-2088 ((|#2| |#2| |#2|) 32)) (-4048 ((|#2| |#2| |#2|) 34)) (-4318 (((-112) (-114)) 41)) (-3512 ((|#2| |#2|) 37)) (-2123 ((|#2| |#2|) 36)) (-1630 ((|#2| |#2|) 25)) (-3375 ((|#2| |#2| |#2|) 28) ((|#2| |#2|) 26)) (-3197 ((|#2| |#2| |#2|) 29))) -(((-431 |#1| |#2|) (-10 -7 (-15 -4318 ((-112) (-114))) (-15 -3898 ((-114) (-114))) (-15 -1630 (|#2| |#2|)) (-15 -3375 (|#2| |#2|)) (-15 -3375 (|#2| |#2| |#2|)) (-15 -3197 (|#2| |#2| |#2|)) (-15 -3745 (|#2| |#2|)) (-15 -3042 (|#2| |#2| |#2|)) (-15 -2088 (|#2| |#2| |#2|)) (-15 -3679 (|#2| |#2| |#2|)) (-15 -4048 (|#2| |#2| |#2|)) (-15 -3144 (|#2| |#2| |#2|)) (-15 -2123 (|#2| |#2|)) (-15 -3512 (|#2| |#2|)) (-15 -1505 (|#2| |#2|)) (-15 -3895 (|#2| |#2|))) (-556) (-430 |#1|)) (T -431)) -((-3895 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-1505 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-3512 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-2123 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-3144 (*1 *2 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-4048 (*1 *2 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-3679 (*1 *2 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-2088 (*1 *2 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-3042 (*1 *2 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-3745 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-3197 (*1 *2 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-3375 (*1 *2 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-3375 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-1630 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-3898 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-556)) (-5 *1 (-431 *3 *4)) (-4 *4 (-430 *3)))) (-4318 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-556)) (-5 *2 (-112)) (-5 *1 (-431 *4 *5)) (-4 *5 (-430 *4))))) -(-10 -7 (-15 -4318 ((-112) (-114))) (-15 -3898 ((-114) (-114))) (-15 -1630 (|#2| |#2|)) (-15 -3375 (|#2| |#2|)) (-15 -3375 (|#2| |#2| |#2|)) (-15 -3197 (|#2| |#2| |#2|)) (-15 -3745 (|#2| |#2|)) (-15 -3042 (|#2| |#2| |#2|)) (-15 -2088 (|#2| |#2| |#2|)) (-15 -3679 (|#2| |#2| |#2|)) (-15 -4048 (|#2| |#2| |#2|)) (-15 -3144 (|#2| |#2| |#2|)) (-15 -2123 (|#2| |#2|)) (-15 -3512 (|#2| |#2|)) (-15 -1505 (|#2| |#2|)) (-15 -3895 (|#2| |#2|))) -((-1427 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1169 |#2|)) (|:| |pol2| (-1169 |#2|)) (|:| |prim| (-1169 |#2|))) |#2| |#2|) 106 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-642 (-1169 |#2|))) (|:| |prim| (-1169 |#2|))) (-642 |#2|)) 68))) -(((-432 |#1| |#2|) (-10 -7 (-15 -1427 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-642 (-1169 |#2|))) (|:| |prim| (-1169 |#2|))) (-642 |#2|))) (IF (|has| |#2| (-27)) (-15 -1427 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1169 |#2|)) (|:| |pol2| (-1169 |#2|)) (|:| |prim| (-1169 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-556) (-147)) (-430 |#1|)) (T -432)) -((-1427 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-556) (-147))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1169 *3)) (|:| |pol2| (-1169 *3)) (|:| |prim| (-1169 *3)))) (-5 *1 (-432 *4 *3)) (-4 *3 (-27)) (-4 *3 (-430 *4)))) (-1427 (*1 *2 *3) (-12 (-5 *3 (-642 *5)) (-4 *5 (-430 *4)) (-4 *4 (-13 (-556) (-147))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-642 (-1169 *5))) (|:| |prim| (-1169 *5)))) (-5 *1 (-432 *4 *5))))) -(-10 -7 (-15 -1427 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-642 (-1169 |#2|))) (|:| |prim| (-1169 |#2|))) (-642 |#2|))) (IF (|has| |#2| (-27)) (-15 -1427 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1169 |#2|)) (|:| |pol2| (-1169 |#2|)) (|:| |prim| (-1169 |#2|))) |#2| |#2|)) |%noBranch|)) -((-1507 (((-1267)) 19)) (-2238 (((-1169 (-407 (-564))) |#2| (-610 |#2|)) 41) (((-407 (-564)) |#2|) 25))) -(((-433 |#1| |#2|) (-10 -7 (-15 -2238 ((-407 (-564)) |#2|)) (-15 -2238 ((-1169 (-407 (-564))) |#2| (-610 |#2|))) (-15 -1507 ((-1267)))) (-13 (-556) (-1036 (-564))) (-430 |#1|)) (T -433)) -((-1507 (*1 *2) (-12 (-4 *3 (-13 (-556) (-1036 (-564)))) (-5 *2 (-1267)) (-5 *1 (-433 *3 *4)) (-4 *4 (-430 *3)))) (-2238 (*1 *2 *3 *4) (-12 (-5 *4 (-610 *3)) (-4 *3 (-430 *5)) (-4 *5 (-13 (-556) (-1036 (-564)))) (-5 *2 (-1169 (-407 (-564)))) (-5 *1 (-433 *5 *3)))) (-2238 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-1036 (-564)))) (-5 *2 (-407 (-564))) (-5 *1 (-433 *4 *3)) (-4 *3 (-430 *4))))) -(-10 -7 (-15 -2238 ((-407 (-564)) |#2|)) (-15 -2238 ((-1169 (-407 (-564))) |#2| (-610 |#2|))) (-15 -1507 ((-1267)))) -((-3055 (((-112) $) 32)) (-1326 (((-112) $) 34)) (-3068 (((-112) $) 35)) (-1714 (((-112) $) 38)) (-2416 (((-112) $) 33)) (-4273 (((-112) $) 37)) (-2390 (((-860) $) 20) (($ (-1155)) 31) (($ (-1173)) 26) (((-1173) $) 24) (((-1101) $) 23)) (-2359 (((-112) $) 36)) (-2821 (((-112) $ $) 17))) -(((-434) (-13 (-611 (-860)) (-10 -8 (-15 -2390 ($ (-1155))) (-15 -2390 ($ (-1173))) (-15 -2390 ((-1173) $)) (-15 -2390 ((-1101) $)) (-15 -3055 ((-112) $)) (-15 -2416 ((-112) $)) (-15 -3068 ((-112) $)) (-15 -4273 ((-112) $)) (-15 -1714 ((-112) $)) (-15 -2359 ((-112) $)) (-15 -1326 ((-112) $)) (-15 -2821 ((-112) $ $))))) (T -434)) -((-2390 (*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-434)))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-434)))) (-2390 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-434)))) (-2390 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-434)))) (-3055 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-2416 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-3068 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-4273 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-1714 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-2359 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-1326 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-2821 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434))))) -(-13 (-611 (-860)) (-10 -8 (-15 -2390 ($ (-1155))) (-15 -2390 ($ (-1173))) (-15 -2390 ((-1173) $)) (-15 -2390 ((-1101) $)) (-15 -3055 ((-112) $)) (-15 -2416 ((-112) $)) (-15 -3068 ((-112) $)) (-15 -4273 ((-112) $)) (-15 -1714 ((-112) $)) (-15 -2359 ((-112) $)) (-15 -1326 ((-112) $)) (-15 -2821 ((-112) $ $)))) -((-1730 (((-3 (-418 (-1169 (-407 (-564)))) "failed") |#3|) 72)) (-3031 (((-418 |#3|) |#3|) 34)) (-3072 (((-3 (-418 (-1169 (-48))) "failed") |#3|) 46 (|has| |#2| (-1036 (-48))))) (-2468 (((-3 (|:| |overq| (-1169 (-407 (-564)))) (|:| |overan| (-1169 (-48))) (|:| -3136 (-112))) |#3|) 37))) -(((-435 |#1| |#2| |#3|) (-10 -7 (-15 -3031 ((-418 |#3|) |#3|)) (-15 -1730 ((-3 (-418 (-1169 (-407 (-564)))) "failed") |#3|)) (-15 -2468 ((-3 (|:| |overq| (-1169 (-407 (-564)))) (|:| |overan| (-1169 (-48))) (|:| -3136 (-112))) |#3|)) (IF (|has| |#2| (-1036 (-48))) (-15 -3072 ((-3 (-418 (-1169 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-556) (-1036 (-564))) (-430 |#1|) (-1238 |#2|)) (T -435)) -((-3072 (*1 *2 *3) (|partial| -12 (-4 *5 (-1036 (-48))) (-4 *4 (-13 (-556) (-1036 (-564)))) (-4 *5 (-430 *4)) (-5 *2 (-418 (-1169 (-48)))) (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1238 *5)))) (-2468 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-1036 (-564)))) (-4 *5 (-430 *4)) (-5 *2 (-3 (|:| |overq| (-1169 (-407 (-564)))) (|:| |overan| (-1169 (-48))) (|:| -3136 (-112)))) (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1238 *5)))) (-1730 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-556) (-1036 (-564)))) (-4 *5 (-430 *4)) (-5 *2 (-418 (-1169 (-407 (-564))))) (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1238 *5)))) (-3031 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-1036 (-564)))) (-4 *5 (-430 *4)) (-5 *2 (-418 *3)) (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1238 *5))))) -(-10 -7 (-15 -3031 ((-418 |#3|) |#3|)) (-15 -1730 ((-3 (-418 (-1169 (-407 (-564)))) "failed") |#3|)) (-15 -2468 ((-3 (|:| |overq| (-1169 (-407 (-564)))) (|:| |overan| (-1169 (-48))) (|:| -3136 (-112))) |#3|)) (IF (|has| |#2| (-1036 (-48))) (-15 -3072 ((-3 (-418 (-1169 (-48))) "failed") |#3|)) |%noBranch|)) -((-2856 (((-112) $ $) NIL)) (-1400 (((-1155) $ (-1155)) NIL)) (-3343 (($ $ (-1155)) NIL)) (-4125 (((-1155) $) NIL)) (-1794 (((-388) (-388) (-388)) 17) (((-388) (-388)) 15)) (-3406 (($ (-388)) NIL) (($ (-388) (-1155)) NIL)) (-2493 (((-388) $) NIL)) (-1778 (((-1155) $) NIL)) (-2281 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-1549 (((-1267) (-1155)) 9)) (-2441 (((-1267) (-1155)) 10)) (-3947 (((-1267)) 11)) (-2390 (((-860) $) NIL)) (-2914 (($ $) 39)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-436) (-13 (-364 (-388) (-1155)) (-10 -7 (-15 -1794 ((-388) (-388) (-388))) (-15 -1794 ((-388) (-388))) (-15 -1549 ((-1267) (-1155))) (-15 -2441 ((-1267) (-1155))) (-15 -3947 ((-1267)))))) (T -436)) -((-1794 (*1 *2 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-436)))) (-1794 (*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-436)))) (-1549 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-436)))) (-2441 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-436)))) (-3947 (*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-436))))) -(-13 (-364 (-388) (-1155)) (-10 -7 (-15 -1794 ((-388) (-388) (-388))) (-15 -1794 ((-388) (-388))) (-15 -1549 ((-1267) (-1155))) (-15 -2441 ((-1267) (-1155))) (-15 -3947 ((-1267))))) -((-2856 (((-112) $ $) NIL)) (-3808 (((-3 (|:| |fst| (-434)) (|:| -4287 "void")) $) 11)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-3868 (($) 35)) (-1843 (($) 41)) (-1760 (($) 37)) (-4126 (($) 39)) (-4000 (($) 36)) (-3662 (($) 38)) (-2840 (($) 40)) (-4078 (((-112) $) 8)) (-3525 (((-642 (-950 (-564))) $) 19)) (-2401 (($ (-3 (|:| |fst| (-434)) (|:| -4287 "void")) (-642 (-1173)) (-112)) 29) (($ (-3 (|:| |fst| (-434)) (|:| -4287 "void")) (-642 (-950 (-564))) (-112)) 30)) (-2390 (((-860) $) 24) (($ (-434)) 32)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-437) (-13 (-1097) (-10 -8 (-15 -2390 ($ (-434))) (-15 -3808 ((-3 (|:| |fst| (-434)) (|:| -4287 "void")) $)) (-15 -3525 ((-642 (-950 (-564))) $)) (-15 -4078 ((-112) $)) (-15 -2401 ($ (-3 (|:| |fst| (-434)) (|:| -4287 "void")) (-642 (-1173)) (-112))) (-15 -2401 ($ (-3 (|:| |fst| (-434)) (|:| -4287 "void")) (-642 (-950 (-564))) (-112))) (-15 -3868 ($)) (-15 -4000 ($)) (-15 -1760 ($)) (-15 -1843 ($)) (-15 -3662 ($)) (-15 -4126 ($)) (-15 -2840 ($))))) (T -437)) -((-2390 (*1 *1 *2) (-12 (-5 *2 (-434)) (-5 *1 (-437)))) (-3808 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -4287 "void"))) (-5 *1 (-437)))) (-3525 (*1 *2 *1) (-12 (-5 *2 (-642 (-950 (-564)))) (-5 *1 (-437)))) (-4078 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-2401 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -4287 "void"))) (-5 *3 (-642 (-1173))) (-5 *4 (-112)) (-5 *1 (-437)))) (-2401 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -4287 "void"))) (-5 *3 (-642 (-950 (-564)))) (-5 *4 (-112)) (-5 *1 (-437)))) (-3868 (*1 *1) (-5 *1 (-437))) (-4000 (*1 *1) (-5 *1 (-437))) (-1760 (*1 *1) (-5 *1 (-437))) (-1843 (*1 *1) (-5 *1 (-437))) (-3662 (*1 *1) (-5 *1 (-437))) (-4126 (*1 *1) (-5 *1 (-437))) (-2840 (*1 *1) (-5 *1 (-437)))) -(-13 (-1097) (-10 -8 (-15 -2390 ($ (-434))) (-15 -3808 ((-3 (|:| |fst| (-434)) (|:| -4287 "void")) $)) (-15 -3525 ((-642 (-950 (-564))) $)) (-15 -4078 ((-112) $)) (-15 -2401 ($ (-3 (|:| |fst| (-434)) (|:| -4287 "void")) (-642 (-1173)) (-112))) (-15 -2401 ($ (-3 (|:| |fst| (-434)) (|:| -4287 "void")) (-642 (-950 (-564))) (-112))) (-15 -3868 ($)) (-15 -4000 ($)) (-15 -1760 ($)) (-15 -1843 ($)) (-15 -3662 ($)) (-15 -4126 ($)) (-15 -2840 ($)))) -((-2856 (((-112) $ $) NIL)) (-2493 (((-1173) $) 8)) (-1778 (((-1155) $) 17)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) 11)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) 14))) -(((-438 |#1|) (-13 (-1097) (-10 -8 (-15 -2493 ((-1173) $)))) (-1173)) (T -438)) -((-2493 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-438 *3)) (-14 *3 *2)))) -(-13 (-1097) (-10 -8 (-15 -2493 ((-1173) $)))) -((-2856 (((-112) $ $) NIL)) (-2880 (((-1115) $) 7)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) 13)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) 9))) -(((-439) (-13 (-1097) (-10 -8 (-15 -2880 ((-1115) $))))) (T -439)) -((-2880 (*1 *2 *1) (-12 (-5 *2 (-1115)) (-5 *1 (-439))))) -(-13 (-1097) (-10 -8 (-15 -2880 ((-1115) $)))) -((-2056 (((-1267) $) 7)) (-2390 (((-860) $) 8) (($ (-1262 (-697))) 14) (($ (-642 (-330))) 13) (($ (-330)) 12) (($ (-2 (|:| |localSymbols| (-1177)) (|:| -3089 (-642 (-330))))) 11))) -(((-440) (-140)) (T -440)) -((-2390 (*1 *1 *2) (-12 (-5 *2 (-1262 (-697))) (-4 *1 (-440)))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-642 (-330))) (-4 *1 (-440)))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-440)))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1177)) (|:| -3089 (-642 (-330))))) (-4 *1 (-440))))) -(-13 (-395) (-10 -8 (-15 -2390 ($ (-1262 (-697)))) (-15 -2390 ($ (-642 (-330)))) (-15 -2390 ($ (-330))) (-15 -2390 ($ (-2 (|:| |localSymbols| (-1177)) (|:| -3089 (-642 (-330)))))))) -(((-611 (-860)) . T) ((-395) . T) ((-1212) . T)) -((-2849 (((-3 $ "failed") (-1262 (-316 (-379)))) 21) (((-3 $ "failed") (-1262 (-316 (-564)))) 19) (((-3 $ "failed") (-1262 (-950 (-379)))) 17) (((-3 $ "failed") (-1262 (-950 (-564)))) 15) (((-3 $ "failed") (-1262 (-407 (-950 (-379))))) 13) (((-3 $ "failed") (-1262 (-407 (-950 (-564))))) 11)) (-1687 (($ (-1262 (-316 (-379)))) 22) (($ (-1262 (-316 (-564)))) 20) (($ (-1262 (-950 (-379)))) 18) (($ (-1262 (-950 (-564)))) 16) (($ (-1262 (-407 (-950 (-379))))) 14) (($ (-1262 (-407 (-950 (-564))))) 12)) (-2056 (((-1267) $) 7)) (-2390 (((-860) $) 8) (($ (-642 (-330))) 25) (($ (-330)) 24) (($ (-2 (|:| |localSymbols| (-1177)) (|:| -3089 (-642 (-330))))) 23))) -(((-441) (-140)) (T -441)) -((-2390 (*1 *1 *2) (-12 (-5 *2 (-642 (-330))) (-4 *1 (-441)))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-441)))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1177)) (|:| -3089 (-642 (-330))))) (-4 *1 (-441)))) (-1687 (*1 *1 *2) (-12 (-5 *2 (-1262 (-316 (-379)))) (-4 *1 (-441)))) (-2849 (*1 *1 *2) (|partial| -12 (-5 *2 (-1262 (-316 (-379)))) (-4 *1 (-441)))) (-1687 (*1 *1 *2) (-12 (-5 *2 (-1262 (-316 (-564)))) (-4 *1 (-441)))) (-2849 (*1 *1 *2) (|partial| -12 (-5 *2 (-1262 (-316 (-564)))) (-4 *1 (-441)))) (-1687 (*1 *1 *2) (-12 (-5 *2 (-1262 (-950 (-379)))) (-4 *1 (-441)))) (-2849 (*1 *1 *2) (|partial| -12 (-5 *2 (-1262 (-950 (-379)))) (-4 *1 (-441)))) (-1687 (*1 *1 *2) (-12 (-5 *2 (-1262 (-950 (-564)))) (-4 *1 (-441)))) (-2849 (*1 *1 *2) (|partial| -12 (-5 *2 (-1262 (-950 (-564)))) (-4 *1 (-441)))) (-1687 (*1 *1 *2) (-12 (-5 *2 (-1262 (-407 (-950 (-379))))) (-4 *1 (-441)))) (-2849 (*1 *1 *2) (|partial| -12 (-5 *2 (-1262 (-407 (-950 (-379))))) (-4 *1 (-441)))) (-1687 (*1 *1 *2) (-12 (-5 *2 (-1262 (-407 (-950 (-564))))) (-4 *1 (-441)))) (-2849 (*1 *1 *2) (|partial| -12 (-5 *2 (-1262 (-407 (-950 (-564))))) (-4 *1 (-441))))) -(-13 (-395) (-10 -8 (-15 -2390 ($ (-642 (-330)))) (-15 -2390 ($ (-330))) (-15 -2390 ($ (-2 (|:| |localSymbols| (-1177)) (|:| -3089 (-642 (-330)))))) (-15 -1687 ($ (-1262 (-316 (-379))))) (-15 -2849 ((-3 $ "failed") (-1262 (-316 (-379))))) (-15 -1687 ($ (-1262 (-316 (-564))))) (-15 -2849 ((-3 $ "failed") (-1262 (-316 (-564))))) (-15 -1687 ($ (-1262 (-950 (-379))))) (-15 -2849 ((-3 $ "failed") (-1262 (-950 (-379))))) (-15 -1687 ($ (-1262 (-950 (-564))))) (-15 -2849 ((-3 $ "failed") (-1262 (-950 (-564))))) (-15 -1687 ($ (-1262 (-407 (-950 (-379)))))) (-15 -2849 ((-3 $ "failed") (-1262 (-407 (-950 (-379)))))) (-15 -1687 ($ (-1262 (-407 (-950 (-564)))))) (-15 -2849 ((-3 $ "failed") (-1262 (-407 (-950 (-564)))))))) -(((-611 (-860)) . T) ((-395) . T) ((-1212) . T)) -((-1520 (((-112)) 18)) (-2834 (((-112) (-112)) 19)) (-2515 (((-112)) 14)) (-4099 (((-112) (-112)) 15)) (-3439 (((-112)) 16)) (-3760 (((-112) (-112)) 17)) (-2352 (((-919) (-919)) 22) (((-919)) 21)) (-3613 (((-769) (-642 (-2 (|:| -2254 |#1|) (|:| -3252 (-564))))) 52)) (-2819 (((-919) (-919)) 24) (((-919)) 23)) (-3244 (((-2 (|:| -2652 (-564)) (|:| -1569 (-642 |#1|))) |#1|) 97)) (-3969 (((-418 |#1|) (-2 (|:| |contp| (-564)) (|:| -1569 (-642 (-2 (|:| |irr| |#1|) (|:| -3660 (-564))))))) 178)) (-1365 (((-2 (|:| |contp| (-564)) (|:| -1569 (-642 (-2 (|:| |irr| |#1|) (|:| -3660 (-564)))))) |#1| (-112)) 211)) (-1683 (((-418 |#1|) |#1| (-769) (-769)) 226) (((-418 |#1|) |#1| (-642 (-769)) (-769)) 223) (((-418 |#1|) |#1| (-642 (-769))) 225) (((-418 |#1|) |#1| (-769)) 224) (((-418 |#1|) |#1|) 222)) (-4345 (((-3 |#1| "failed") (-919) |#1| (-642 (-769)) (-769) (-112)) 228) (((-3 |#1| "failed") (-919) |#1| (-642 (-769)) (-769)) 229) (((-3 |#1| "failed") (-919) |#1| (-642 (-769))) 231) (((-3 |#1| "failed") (-919) |#1| (-769)) 230) (((-3 |#1| "failed") (-919) |#1|) 232)) (-2254 (((-418 |#1|) |#1| (-769) (-769)) 221) (((-418 |#1|) |#1| (-642 (-769)) (-769)) 217) (((-418 |#1|) |#1| (-642 (-769))) 219) (((-418 |#1|) |#1| (-769)) 218) (((-418 |#1|) |#1|) 216)) (-3628 (((-112) |#1|) 44)) (-3399 (((-735 (-769)) (-642 (-2 (|:| -2254 |#1|) (|:| -3252 (-564))))) 102)) (-2176 (((-2 (|:| |contp| (-564)) (|:| -1569 (-642 (-2 (|:| |irr| |#1|) (|:| -3660 (-564)))))) |#1| (-112) (-1099 (-769)) (-769)) 215))) -(((-442 |#1|) (-10 -7 (-15 -3969 ((-418 |#1|) (-2 (|:| |contp| (-564)) (|:| -1569 (-642 (-2 (|:| |irr| |#1|) (|:| -3660 (-564)))))))) (-15 -3399 ((-735 (-769)) (-642 (-2 (|:| -2254 |#1|) (|:| -3252 (-564)))))) (-15 -2819 ((-919))) (-15 -2819 ((-919) (-919))) (-15 -2352 ((-919))) (-15 -2352 ((-919) (-919))) (-15 -3613 ((-769) (-642 (-2 (|:| -2254 |#1|) (|:| -3252 (-564)))))) (-15 -3244 ((-2 (|:| -2652 (-564)) (|:| -1569 (-642 |#1|))) |#1|)) (-15 -1520 ((-112))) (-15 -2834 ((-112) (-112))) (-15 -2515 ((-112))) (-15 -4099 ((-112) (-112))) (-15 -3628 ((-112) |#1|)) (-15 -3439 ((-112))) (-15 -3760 ((-112) (-112))) (-15 -2254 ((-418 |#1|) |#1|)) (-15 -2254 ((-418 |#1|) |#1| (-769))) (-15 -2254 ((-418 |#1|) |#1| (-642 (-769)))) (-15 -2254 ((-418 |#1|) |#1| (-642 (-769)) (-769))) (-15 -2254 ((-418 |#1|) |#1| (-769) (-769))) (-15 -1683 ((-418 |#1|) |#1|)) (-15 -1683 ((-418 |#1|) |#1| (-769))) (-15 -1683 ((-418 |#1|) |#1| (-642 (-769)))) (-15 -1683 ((-418 |#1|) |#1| (-642 (-769)) (-769))) (-15 -1683 ((-418 |#1|) |#1| (-769) (-769))) (-15 -4345 ((-3 |#1| "failed") (-919) |#1|)) (-15 -4345 ((-3 |#1| "failed") (-919) |#1| (-769))) (-15 -4345 ((-3 |#1| "failed") (-919) |#1| (-642 (-769)))) (-15 -4345 ((-3 |#1| "failed") (-919) |#1| (-642 (-769)) (-769))) (-15 -4345 ((-3 |#1| "failed") (-919) |#1| (-642 (-769)) (-769) (-112))) (-15 -1365 ((-2 (|:| |contp| (-564)) (|:| -1569 (-642 (-2 (|:| |irr| |#1|) (|:| -3660 (-564)))))) |#1| (-112))) (-15 -2176 ((-2 (|:| |contp| (-564)) (|:| -1569 (-642 (-2 (|:| |irr| |#1|) (|:| -3660 (-564)))))) |#1| (-112) (-1099 (-769)) (-769)))) (-1238 (-564))) (T -442)) -((-2176 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1099 (-769))) (-5 *6 (-769)) (-5 *2 (-2 (|:| |contp| (-564)) (|:| -1569 (-642 (-2 (|:| |irr| *3) (|:| -3660 (-564))))))) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564))))) (-1365 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-564)) (|:| -1569 (-642 (-2 (|:| |irr| *3) (|:| -3660 (-564))))))) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564))))) (-4345 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-919)) (-5 *4 (-642 (-769))) (-5 *5 (-769)) (-5 *6 (-112)) (-5 *1 (-442 *2)) (-4 *2 (-1238 (-564))))) (-4345 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-919)) (-5 *4 (-642 (-769))) (-5 *5 (-769)) (-5 *1 (-442 *2)) (-4 *2 (-1238 (-564))))) (-4345 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-919)) (-5 *4 (-642 (-769))) (-5 *1 (-442 *2)) (-4 *2 (-1238 (-564))))) (-4345 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-919)) (-5 *4 (-769)) (-5 *1 (-442 *2)) (-4 *2 (-1238 (-564))))) (-4345 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-919)) (-5 *1 (-442 *2)) (-4 *2 (-1238 (-564))))) (-1683 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-769)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564))))) (-1683 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-642 (-769))) (-5 *5 (-769)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564))))) (-1683 (*1 *2 *3 *4) (-12 (-5 *4 (-642 (-769))) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564))))) (-1683 (*1 *2 *3 *4) (-12 (-5 *4 (-769)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564))))) (-1683 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564))))) (-2254 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-769)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564))))) (-2254 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-642 (-769))) (-5 *5 (-769)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564))))) (-2254 (*1 *2 *3 *4) (-12 (-5 *4 (-642 (-769))) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564))))) (-2254 (*1 *2 *3 *4) (-12 (-5 *4 (-769)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564))))) (-2254 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564))))) (-3760 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564))))) (-3439 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564))))) (-3628 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564))))) (-4099 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564))))) (-2515 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564))))) (-2834 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564))))) (-1520 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564))))) (-3244 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2652 (-564)) (|:| -1569 (-642 *3)))) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564))))) (-3613 (*1 *2 *3) (-12 (-5 *3 (-642 (-2 (|:| -2254 *4) (|:| -3252 (-564))))) (-4 *4 (-1238 (-564))) (-5 *2 (-769)) (-5 *1 (-442 *4)))) (-2352 (*1 *2 *2) (-12 (-5 *2 (-919)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564))))) (-2352 (*1 *2) (-12 (-5 *2 (-919)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564))))) (-2819 (*1 *2 *2) (-12 (-5 *2 (-919)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564))))) (-2819 (*1 *2) (-12 (-5 *2 (-919)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564))))) (-3399 (*1 *2 *3) (-12 (-5 *3 (-642 (-2 (|:| -2254 *4) (|:| -3252 (-564))))) (-4 *4 (-1238 (-564))) (-5 *2 (-735 (-769))) (-5 *1 (-442 *4)))) (-3969 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-564)) (|:| -1569 (-642 (-2 (|:| |irr| *4) (|:| -3660 (-564))))))) (-4 *4 (-1238 (-564))) (-5 *2 (-418 *4)) (-5 *1 (-442 *4))))) -(-10 -7 (-15 -3969 ((-418 |#1|) (-2 (|:| |contp| (-564)) (|:| -1569 (-642 (-2 (|:| |irr| |#1|) (|:| -3660 (-564)))))))) (-15 -3399 ((-735 (-769)) (-642 (-2 (|:| -2254 |#1|) (|:| -3252 (-564)))))) (-15 -2819 ((-919))) (-15 -2819 ((-919) (-919))) (-15 -2352 ((-919))) (-15 -2352 ((-919) (-919))) (-15 -3613 ((-769) (-642 (-2 (|:| -2254 |#1|) (|:| -3252 (-564)))))) (-15 -3244 ((-2 (|:| -2652 (-564)) (|:| -1569 (-642 |#1|))) |#1|)) (-15 -1520 ((-112))) (-15 -2834 ((-112) (-112))) (-15 -2515 ((-112))) (-15 -4099 ((-112) (-112))) (-15 -3628 ((-112) |#1|)) (-15 -3439 ((-112))) (-15 -3760 ((-112) (-112))) (-15 -2254 ((-418 |#1|) |#1|)) (-15 -2254 ((-418 |#1|) |#1| (-769))) (-15 -2254 ((-418 |#1|) |#1| (-642 (-769)))) (-15 -2254 ((-418 |#1|) |#1| (-642 (-769)) (-769))) (-15 -2254 ((-418 |#1|) |#1| (-769) (-769))) (-15 -1683 ((-418 |#1|) |#1|)) (-15 -1683 ((-418 |#1|) |#1| (-769))) (-15 -1683 ((-418 |#1|) |#1| (-642 (-769)))) (-15 -1683 ((-418 |#1|) |#1| (-642 (-769)) (-769))) (-15 -1683 ((-418 |#1|) |#1| (-769) (-769))) (-15 -4345 ((-3 |#1| "failed") (-919) |#1|)) (-15 -4345 ((-3 |#1| "failed") (-919) |#1| (-769))) (-15 -4345 ((-3 |#1| "failed") (-919) |#1| (-642 (-769)))) (-15 -4345 ((-3 |#1| "failed") (-919) |#1| (-642 (-769)) (-769))) (-15 -4345 ((-3 |#1| "failed") (-919) |#1| (-642 (-769)) (-769) (-112))) (-15 -1365 ((-2 (|:| |contp| (-564)) (|:| -1569 (-642 (-2 (|:| |irr| |#1|) (|:| -3660 (-564)))))) |#1| (-112))) (-15 -2176 ((-2 (|:| |contp| (-564)) (|:| -1569 (-642 (-2 (|:| |irr| |#1|) (|:| -3660 (-564)))))) |#1| (-112) (-1099 (-769)) (-769)))) -((-2422 (((-564) |#2|) 52) (((-564) |#2| (-769)) 51)) (-2044 (((-564) |#2|) 67)) (-3727 ((|#3| |#2|) 26)) (-2573 ((|#3| |#2| (-919)) 15)) (-2495 ((|#3| |#2|) 16)) (-1528 ((|#3| |#2|) 9)) (-2983 ((|#3| |#2|) 10)) (-2429 ((|#3| |#2| (-919)) 74) ((|#3| |#2|) 34)) (-1638 (((-564) |#2|) 69))) -(((-443 |#1| |#2| |#3|) (-10 -7 (-15 -1638 ((-564) |#2|)) (-15 -2429 (|#3| |#2|)) (-15 -2429 (|#3| |#2| (-919))) (-15 -2044 ((-564) |#2|)) (-15 -2422 ((-564) |#2| (-769))) (-15 -2422 ((-564) |#2|)) (-15 -2573 (|#3| |#2| (-919))) (-15 -3727 (|#3| |#2|)) (-15 -1528 (|#3| |#2|)) (-15 -2983 (|#3| |#2|)) (-15 -2495 (|#3| |#2|))) (-1047) (-1238 |#1|) (-13 (-404) (-1036 |#1|) (-363) (-1197) (-284))) (T -443)) -((-2495 (*1 *2 *3) (-12 (-4 *4 (-1047)) (-4 *2 (-13 (-404) (-1036 *4) (-363) (-1197) (-284))) (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1238 *4)))) (-2983 (*1 *2 *3) (-12 (-4 *4 (-1047)) (-4 *2 (-13 (-404) (-1036 *4) (-363) (-1197) (-284))) (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1238 *4)))) (-1528 (*1 *2 *3) (-12 (-4 *4 (-1047)) (-4 *2 (-13 (-404) (-1036 *4) (-363) (-1197) (-284))) (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1238 *4)))) (-3727 (*1 *2 *3) (-12 (-4 *4 (-1047)) (-4 *2 (-13 (-404) (-1036 *4) (-363) (-1197) (-284))) (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1238 *4)))) (-2573 (*1 *2 *3 *4) (-12 (-5 *4 (-919)) (-4 *5 (-1047)) (-4 *2 (-13 (-404) (-1036 *5) (-363) (-1197) (-284))) (-5 *1 (-443 *5 *3 *2)) (-4 *3 (-1238 *5)))) (-2422 (*1 *2 *3) (-12 (-4 *4 (-1047)) (-5 *2 (-564)) (-5 *1 (-443 *4 *3 *5)) (-4 *3 (-1238 *4)) (-4 *5 (-13 (-404) (-1036 *4) (-363) (-1197) (-284))))) (-2422 (*1 *2 *3 *4) (-12 (-5 *4 (-769)) (-4 *5 (-1047)) (-5 *2 (-564)) (-5 *1 (-443 *5 *3 *6)) (-4 *3 (-1238 *5)) (-4 *6 (-13 (-404) (-1036 *5) (-363) (-1197) (-284))))) (-2044 (*1 *2 *3) (-12 (-4 *4 (-1047)) (-5 *2 (-564)) (-5 *1 (-443 *4 *3 *5)) (-4 *3 (-1238 *4)) (-4 *5 (-13 (-404) (-1036 *4) (-363) (-1197) (-284))))) (-2429 (*1 *2 *3 *4) (-12 (-5 *4 (-919)) (-4 *5 (-1047)) (-4 *2 (-13 (-404) (-1036 *5) (-363) (-1197) (-284))) (-5 *1 (-443 *5 *3 *2)) (-4 *3 (-1238 *5)))) (-2429 (*1 *2 *3) (-12 (-4 *4 (-1047)) (-4 *2 (-13 (-404) (-1036 *4) (-363) (-1197) (-284))) (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1238 *4)))) (-1638 (*1 *2 *3) (-12 (-4 *4 (-1047)) (-5 *2 (-564)) (-5 *1 (-443 *4 *3 *5)) (-4 *3 (-1238 *4)) (-4 *5 (-13 (-404) (-1036 *4) (-363) (-1197) (-284)))))) -(-10 -7 (-15 -1638 ((-564) |#2|)) (-15 -2429 (|#3| |#2|)) (-15 -2429 (|#3| |#2| (-919))) (-15 -2044 ((-564) |#2|)) (-15 -2422 ((-564) |#2| (-769))) (-15 -2422 ((-564) |#2|)) (-15 -2573 (|#3| |#2| (-919))) (-15 -3727 (|#3| |#2|)) (-15 -1528 (|#3| |#2|)) (-15 -2983 (|#3| |#2|)) (-15 -2495 (|#3| |#2|))) -((-4119 ((|#2| (-1262 |#1|)) 45)) (-4128 ((|#2| |#2| |#1|) 61)) (-1302 ((|#2| |#2| |#1|) 53)) (-3817 ((|#2| |#2|) 49)) (-3113 (((-112) |#2|) 36)) (-1781 (((-642 |#2|) (-919) (-418 |#2|)) 24)) (-4345 ((|#2| (-919) (-418 |#2|)) 28)) (-3399 (((-735 (-769)) (-418 |#2|)) 33))) -(((-444 |#1| |#2|) (-10 -7 (-15 -3113 ((-112) |#2|)) (-15 -4119 (|#2| (-1262 |#1|))) (-15 -3817 (|#2| |#2|)) (-15 -1302 (|#2| |#2| |#1|)) (-15 -4128 (|#2| |#2| |#1|)) (-15 -3399 ((-735 (-769)) (-418 |#2|))) (-15 -4345 (|#2| (-919) (-418 |#2|))) (-15 -1781 ((-642 |#2|) (-919) (-418 |#2|)))) (-1047) (-1238 |#1|)) (T -444)) -((-1781 (*1 *2 *3 *4) (-12 (-5 *3 (-919)) (-5 *4 (-418 *6)) (-4 *6 (-1238 *5)) (-4 *5 (-1047)) (-5 *2 (-642 *6)) (-5 *1 (-444 *5 *6)))) (-4345 (*1 *2 *3 *4) (-12 (-5 *3 (-919)) (-5 *4 (-418 *2)) (-4 *2 (-1238 *5)) (-5 *1 (-444 *5 *2)) (-4 *5 (-1047)))) (-3399 (*1 *2 *3) (-12 (-5 *3 (-418 *5)) (-4 *5 (-1238 *4)) (-4 *4 (-1047)) (-5 *2 (-735 (-769))) (-5 *1 (-444 *4 *5)))) (-4128 (*1 *2 *2 *3) (-12 (-4 *3 (-1047)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1238 *3)))) (-1302 (*1 *2 *2 *3) (-12 (-4 *3 (-1047)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1238 *3)))) (-3817 (*1 *2 *2) (-12 (-4 *3 (-1047)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1238 *3)))) (-4119 (*1 *2 *3) (-12 (-5 *3 (-1262 *4)) (-4 *4 (-1047)) (-4 *2 (-1238 *4)) (-5 *1 (-444 *4 *2)))) (-3113 (*1 *2 *3) (-12 (-4 *4 (-1047)) (-5 *2 (-112)) (-5 *1 (-444 *4 *3)) (-4 *3 (-1238 *4))))) -(-10 -7 (-15 -3113 ((-112) |#2|)) (-15 -4119 (|#2| (-1262 |#1|))) (-15 -3817 (|#2| |#2|)) (-15 -1302 (|#2| |#2| |#1|)) (-15 -4128 (|#2| |#2| |#1|)) (-15 -3399 ((-735 (-769)) (-418 |#2|))) (-15 -4345 (|#2| (-919) (-418 |#2|))) (-15 -1781 ((-642 |#2|) (-919) (-418 |#2|)))) -((-3489 (((-769)) 59)) (-2775 (((-769)) 29 (|has| |#1| (-404))) (((-769) (-769)) 28 (|has| |#1| (-404)))) (-4220 (((-564) |#1|) 25 (|has| |#1| (-404)))) (-1295 (((-564) |#1|) 27 (|has| |#1| (-404)))) (-2384 (((-769)) 58) (((-769) (-769)) 57)) (-2139 ((|#1| (-769) (-564)) 37)) (-3219 (((-1267)) 61))) -(((-445 |#1|) (-10 -7 (-15 -2139 (|#1| (-769) (-564))) (-15 -2384 ((-769) (-769))) (-15 -2384 ((-769))) (-15 -3489 ((-769))) (-15 -3219 ((-1267))) (IF (|has| |#1| (-404)) (PROGN (-15 -1295 ((-564) |#1|)) (-15 -4220 ((-564) |#1|)) (-15 -2775 ((-769) (-769))) (-15 -2775 ((-769)))) |%noBranch|)) (-1047)) (T -445)) -((-2775 (*1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1047)))) (-2775 (*1 *2 *2) (-12 (-5 *2 (-769)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1047)))) (-4220 (*1 *2 *3) (-12 (-5 *2 (-564)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1047)))) (-1295 (*1 *2 *3) (-12 (-5 *2 (-564)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1047)))) (-3219 (*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-445 *3)) (-4 *3 (-1047)))) (-3489 (*1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-445 *3)) (-4 *3 (-1047)))) (-2384 (*1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-445 *3)) (-4 *3 (-1047)))) (-2384 (*1 *2 *2) (-12 (-5 *2 (-769)) (-5 *1 (-445 *3)) (-4 *3 (-1047)))) (-2139 (*1 *2 *3 *4) (-12 (-5 *3 (-769)) (-5 *4 (-564)) (-5 *1 (-445 *2)) (-4 *2 (-1047))))) -(-10 -7 (-15 -2139 (|#1| (-769) (-564))) (-15 -2384 ((-769) (-769))) (-15 -2384 ((-769))) (-15 -3489 ((-769))) (-15 -3219 ((-1267))) (IF (|has| |#1| (-404)) (PROGN (-15 -1295 ((-564) |#1|)) (-15 -4220 ((-564) |#1|)) (-15 -2775 ((-769) (-769))) (-15 -2775 ((-769)))) |%noBranch|)) -((-3917 (((-642 (-564)) (-564)) 76)) (-3552 (((-112) (-169 (-564))) 82)) (-2254 (((-418 (-169 (-564))) (-169 (-564))) 75))) -(((-446) (-10 -7 (-15 -2254 ((-418 (-169 (-564))) (-169 (-564)))) (-15 -3917 ((-642 (-564)) (-564))) (-15 -3552 ((-112) (-169 (-564)))))) (T -446)) -((-3552 (*1 *2 *3) (-12 (-5 *3 (-169 (-564))) (-5 *2 (-112)) (-5 *1 (-446)))) (-3917 (*1 *2 *3) (-12 (-5 *2 (-642 (-564))) (-5 *1 (-446)) (-5 *3 (-564)))) (-2254 (*1 *2 *3) (-12 (-5 *2 (-418 (-169 (-564)))) (-5 *1 (-446)) (-5 *3 (-169 (-564)))))) -(-10 -7 (-15 -2254 ((-418 (-169 (-564))) (-169 (-564)))) (-15 -3917 ((-642 (-564)) (-564))) (-15 -3552 ((-112) (-169 (-564))))) -((-1742 ((|#4| |#4| (-642 |#4|)) 82)) (-1640 (((-642 |#4|) (-642 |#4|) (-1155) (-1155)) 22) (((-642 |#4|) (-642 |#4|) (-1155)) 21) (((-642 |#4|) (-642 |#4|)) 13))) -(((-447 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1742 (|#4| |#4| (-642 |#4|))) (-15 -1640 ((-642 |#4|) (-642 |#4|))) (-15 -1640 ((-642 |#4|) (-642 |#4|) (-1155))) (-15 -1640 ((-642 |#4|) (-642 |#4|) (-1155) (-1155)))) (-307) (-791) (-848) (-947 |#1| |#2| |#3|)) (T -447)) -((-1640 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-642 *7)) (-5 *3 (-1155)) (-4 *7 (-947 *4 *5 *6)) (-4 *4 (-307)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *1 (-447 *4 *5 *6 *7)))) (-1640 (*1 *2 *2 *3) (-12 (-5 *2 (-642 *7)) (-5 *3 (-1155)) (-4 *7 (-947 *4 *5 *6)) (-4 *4 (-307)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *1 (-447 *4 *5 *6 *7)))) (-1640 (*1 *2 *2) (-12 (-5 *2 (-642 *6)) (-4 *6 (-947 *3 *4 *5)) (-4 *3 (-307)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-447 *3 *4 *5 *6)))) (-1742 (*1 *2 *2 *3) (-12 (-5 *3 (-642 *2)) (-4 *2 (-947 *4 *5 *6)) (-4 *4 (-307)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *1 (-447 *4 *5 *6 *2))))) -(-10 -7 (-15 -1742 (|#4| |#4| (-642 |#4|))) (-15 -1640 ((-642 |#4|) (-642 |#4|))) (-15 -1640 ((-642 |#4|) (-642 |#4|) (-1155))) (-15 -1640 ((-642 |#4|) (-642 |#4|) (-1155) (-1155)))) -((-2524 (((-642 (-642 |#4|)) (-642 |#4|) (-112)) 91) (((-642 (-642 |#4|)) (-642 |#4|)) 90) (((-642 (-642 |#4|)) (-642 |#4|) (-642 |#4|) (-112)) 84) (((-642 (-642 |#4|)) (-642 |#4|) (-642 |#4|)) 85)) (-4374 (((-642 (-642 |#4|)) (-642 |#4|) (-112)) 55) (((-642 (-642 |#4|)) (-642 |#4|)) 77))) -(((-448 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4374 ((-642 (-642 |#4|)) (-642 |#4|))) (-15 -4374 ((-642 (-642 |#4|)) (-642 |#4|) (-112))) (-15 -2524 ((-642 (-642 |#4|)) (-642 |#4|) (-642 |#4|))) (-15 -2524 ((-642 (-642 |#4|)) (-642 |#4|) (-642 |#4|) (-112))) (-15 -2524 ((-642 (-642 |#4|)) (-642 |#4|))) (-15 -2524 ((-642 (-642 |#4|)) (-642 |#4|) (-112)))) (-13 (-307) (-147)) (-791) (-848) (-947 |#1| |#2| |#3|)) (T -448)) -((-2524 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *8 (-947 *5 *6 *7)) (-5 *2 (-642 (-642 *8))) (-5 *1 (-448 *5 *6 *7 *8)) (-5 *3 (-642 *8)))) (-2524 (*1 *2 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-947 *4 *5 *6)) (-5 *2 (-642 (-642 *7))) (-5 *1 (-448 *4 *5 *6 *7)) (-5 *3 (-642 *7)))) (-2524 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *8 (-947 *5 *6 *7)) (-5 *2 (-642 (-642 *8))) (-5 *1 (-448 *5 *6 *7 *8)) (-5 *3 (-642 *8)))) (-2524 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-947 *4 *5 *6)) (-5 *2 (-642 (-642 *7))) (-5 *1 (-448 *4 *5 *6 *7)) (-5 *3 (-642 *7)))) (-4374 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *8 (-947 *5 *6 *7)) (-5 *2 (-642 (-642 *8))) (-5 *1 (-448 *5 *6 *7 *8)) (-5 *3 (-642 *8)))) (-4374 (*1 *2 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-947 *4 *5 *6)) (-5 *2 (-642 (-642 *7))) (-5 *1 (-448 *4 *5 *6 *7)) (-5 *3 (-642 *7))))) -(-10 -7 (-15 -4374 ((-642 (-642 |#4|)) (-642 |#4|))) (-15 -4374 ((-642 (-642 |#4|)) (-642 |#4|) (-112))) (-15 -2524 ((-642 (-642 |#4|)) (-642 |#4|) (-642 |#4|))) (-15 -2524 ((-642 (-642 |#4|)) (-642 |#4|) (-642 |#4|) (-112))) (-15 -2524 ((-642 (-642 |#4|)) (-642 |#4|))) (-15 -2524 ((-642 (-642 |#4|)) (-642 |#4|) (-112)))) -((-1484 (((-769) |#4|) 12)) (-3405 (((-642 (-2 (|:| |totdeg| (-769)) (|:| -2830 |#4|))) |#4| (-769) (-642 (-2 (|:| |totdeg| (-769)) (|:| -2830 |#4|)))) 39)) (-1316 (((-642 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-642 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-642 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 51)) (-1320 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 54)) (-1578 ((|#4| |#4| (-642 |#4|)) 56)) (-2577 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-642 |#4|)) 98)) (-2648 (((-1267) |#4|) 61)) (-1666 (((-1267) (-642 |#4|)) 71)) (-2797 (((-564) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-564) (-564) (-564)) 68)) (-3122 (((-1267) (-564)) 113)) (-2325 (((-642 |#4|) (-642 |#4|)) 105)) (-2239 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-769)) (|:| -2830 |#4|)) |#4| (-769)) 31)) (-2220 (((-564) |#4|) 110)) (-3946 ((|#4| |#4|) 37)) (-2276 (((-642 |#4|) (-642 |#4|) (-564) (-564)) 76)) (-1744 (((-564) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-564) (-564) (-564) (-564)) 126)) (-3888 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20)) (-2528 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 80)) (-3608 (((-642 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-642 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 78)) (-4187 (((-642 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-642 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49)) (-3690 (((-112) |#2| |#2|) 77)) (-2082 (((-642 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-642 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 50)) (-2091 (((-112) |#2| |#2| |#2| |#2|) 82)) (-2872 ((|#4| |#4| (-642 |#4|)) 99))) -(((-449 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2872 (|#4| |#4| (-642 |#4|))) (-15 -1578 (|#4| |#4| (-642 |#4|))) (-15 -2276 ((-642 |#4|) (-642 |#4|) (-564) (-564))) (-15 -2528 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3690 ((-112) |#2| |#2|)) (-15 -2091 ((-112) |#2| |#2| |#2| |#2|)) (-15 -2082 ((-642 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-642 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4187 ((-642 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-642 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3608 ((-642 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-642 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2577 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-642 |#4|))) (-15 -3946 (|#4| |#4|)) (-15 -3405 ((-642 (-2 (|:| |totdeg| (-769)) (|:| -2830 |#4|))) |#4| (-769) (-642 (-2 (|:| |totdeg| (-769)) (|:| -2830 |#4|))))) (-15 -1320 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1316 ((-642 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-642 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-642 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2325 ((-642 |#4|) (-642 |#4|))) (-15 -2220 ((-564) |#4|)) (-15 -2648 ((-1267) |#4|)) (-15 -2797 ((-564) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-564) (-564) (-564))) (-15 -1744 ((-564) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-564) (-564) (-564) (-564))) (-15 -1666 ((-1267) (-642 |#4|))) (-15 -3122 ((-1267) (-564))) (-15 -3888 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2239 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-769)) (|:| -2830 |#4|)) |#4| (-769))) (-15 -1484 ((-769) |#4|))) (-452) (-791) (-848) (-947 |#1| |#2| |#3|)) (T -449)) -((-1484 (*1 *2 *3) (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-769)) (-5 *1 (-449 *4 *5 *6 *3)) (-4 *3 (-947 *4 *5 *6)))) (-2239 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-769)) (|:| -2830 *4))) (-5 *5 (-769)) (-4 *4 (-947 *6 *7 *8)) (-4 *6 (-452)) (-4 *7 (-791)) (-4 *8 (-848)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-449 *6 *7 *8 *4)))) (-3888 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-769)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-791)) (-4 *7 (-947 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-848)) (-5 *2 (-112)) (-5 *1 (-449 *4 *5 *6 *7)))) (-3122 (*1 *2 *3) (-12 (-5 *3 (-564)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-1267)) (-5 *1 (-449 *4 *5 *6 *7)) (-4 *7 (-947 *4 *5 *6)))) (-1666 (*1 *2 *3) (-12 (-5 *3 (-642 *7)) (-4 *7 (-947 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-1267)) (-5 *1 (-449 *4 *5 *6 *7)))) (-1744 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-769)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-791)) (-4 *4 (-947 *5 *6 *7)) (-4 *5 (-452)) (-4 *7 (-848)) (-5 *1 (-449 *5 *6 *7 *4)))) (-2797 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-769)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-791)) (-4 *4 (-947 *5 *6 *7)) (-4 *5 (-452)) (-4 *7 (-848)) (-5 *1 (-449 *5 *6 *7 *4)))) (-2648 (*1 *2 *3) (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-1267)) (-5 *1 (-449 *4 *5 *6 *3)) (-4 *3 (-947 *4 *5 *6)))) (-2220 (*1 *2 *3) (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-564)) (-5 *1 (-449 *4 *5 *6 *3)) (-4 *3 (-947 *4 *5 *6)))) (-2325 (*1 *2 *2) (-12 (-5 *2 (-642 *6)) (-4 *6 (-947 *3 *4 *5)) (-4 *3 (-452)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-449 *3 *4 *5 *6)))) (-1316 (*1 *2 *2 *2) (-12 (-5 *2 (-642 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-769)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-791)) (-4 *6 (-947 *3 *4 *5)) (-4 *3 (-452)) (-4 *5 (-848)) (-5 *1 (-449 *3 *4 *5 *6)))) (-1320 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-769)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-791)) (-4 *2 (-947 *4 *5 *6)) (-5 *1 (-449 *4 *5 *6 *2)) (-4 *4 (-452)) (-4 *6 (-848)))) (-3405 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-642 (-2 (|:| |totdeg| (-769)) (|:| -2830 *3)))) (-5 *4 (-769)) (-4 *3 (-947 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *1 (-449 *5 *6 *7 *3)))) (-3946 (*1 *2 *2) (-12 (-4 *3 (-452)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-449 *3 *4 *5 *2)) (-4 *2 (-947 *3 *4 *5)))) (-2577 (*1 *2 *3 *4) (-12 (-5 *4 (-642 *3)) (-4 *3 (-947 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-449 *5 *6 *7 *3)))) (-3608 (*1 *2 *3 *2) (-12 (-5 *2 (-642 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-769)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-791)) (-4 *6 (-947 *4 *3 *5)) (-4 *4 (-452)) (-4 *5 (-848)) (-5 *1 (-449 *4 *3 *5 *6)))) (-4187 (*1 *2 *2) (-12 (-5 *2 (-642 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-769)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-791)) (-4 *6 (-947 *3 *4 *5)) (-4 *3 (-452)) (-4 *5 (-848)) (-5 *1 (-449 *3 *4 *5 *6)))) (-2082 (*1 *2 *3 *2) (-12 (-5 *2 (-642 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-769)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-791)) (-4 *3 (-947 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-848)) (-5 *1 (-449 *4 *5 *6 *3)))) (-2091 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-452)) (-4 *3 (-791)) (-4 *5 (-848)) (-5 *2 (-112)) (-5 *1 (-449 *4 *3 *5 *6)) (-4 *6 (-947 *4 *3 *5)))) (-3690 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *3 (-791)) (-4 *5 (-848)) (-5 *2 (-112)) (-5 *1 (-449 *4 *3 *5 *6)) (-4 *6 (-947 *4 *3 *5)))) (-2528 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-769)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-791)) (-4 *7 (-947 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-848)) (-5 *2 (-112)) (-5 *1 (-449 *4 *5 *6 *7)))) (-2276 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-642 *7)) (-5 *3 (-564)) (-4 *7 (-947 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *1 (-449 *4 *5 *6 *7)))) (-1578 (*1 *2 *2 *3) (-12 (-5 *3 (-642 *2)) (-4 *2 (-947 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *1 (-449 *4 *5 *6 *2)))) (-2872 (*1 *2 *2 *3) (-12 (-5 *3 (-642 *2)) (-4 *2 (-947 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *1 (-449 *4 *5 *6 *2))))) -(-10 -7 (-15 -2872 (|#4| |#4| (-642 |#4|))) (-15 -1578 (|#4| |#4| (-642 |#4|))) (-15 -2276 ((-642 |#4|) (-642 |#4|) (-564) (-564))) (-15 -2528 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3690 ((-112) |#2| |#2|)) (-15 -2091 ((-112) |#2| |#2| |#2| |#2|)) (-15 -2082 ((-642 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-642 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4187 ((-642 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-642 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3608 ((-642 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-642 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2577 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-642 |#4|))) (-15 -3946 (|#4| |#4|)) (-15 -3405 ((-642 (-2 (|:| |totdeg| (-769)) (|:| -2830 |#4|))) |#4| (-769) (-642 (-2 (|:| |totdeg| (-769)) (|:| -2830 |#4|))))) (-15 -1320 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1316 ((-642 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-642 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-642 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2325 ((-642 |#4|) (-642 |#4|))) (-15 -2220 ((-564) |#4|)) (-15 -2648 ((-1267) |#4|)) (-15 -2797 ((-564) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-564) (-564) (-564))) (-15 -1744 ((-564) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-564) (-564) (-564) (-564))) (-15 -1666 ((-1267) (-642 |#4|))) (-15 -3122 ((-1267) (-564))) (-15 -3888 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2239 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-769)) (|:| -2830 |#4|)) |#4| (-769))) (-15 -1484 ((-769) |#4|))) -((-2571 ((|#4| |#4| (-642 |#4|)) 20 (|has| |#1| (-363)))) (-2079 (((-642 |#4|) (-642 |#4|) (-1155) (-1155)) 46) (((-642 |#4|) (-642 |#4|) (-1155)) 45) (((-642 |#4|) (-642 |#4|)) 34))) -(((-450 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2079 ((-642 |#4|) (-642 |#4|))) (-15 -2079 ((-642 |#4|) (-642 |#4|) (-1155))) (-15 -2079 ((-642 |#4|) (-642 |#4|) (-1155) (-1155))) (IF (|has| |#1| (-363)) (-15 -2571 (|#4| |#4| (-642 |#4|))) |%noBranch|)) (-452) (-791) (-848) (-947 |#1| |#2| |#3|)) (T -450)) -((-2571 (*1 *2 *2 *3) (-12 (-5 *3 (-642 *2)) (-4 *2 (-947 *4 *5 *6)) (-4 *4 (-363)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *1 (-450 *4 *5 *6 *2)))) (-2079 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-642 *7)) (-5 *3 (-1155)) (-4 *7 (-947 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *1 (-450 *4 *5 *6 *7)))) (-2079 (*1 *2 *2 *3) (-12 (-5 *2 (-642 *7)) (-5 *3 (-1155)) (-4 *7 (-947 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *1 (-450 *4 *5 *6 *7)))) (-2079 (*1 *2 *2) (-12 (-5 *2 (-642 *6)) (-4 *6 (-947 *3 *4 *5)) (-4 *3 (-452)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-450 *3 *4 *5 *6))))) -(-10 -7 (-15 -2079 ((-642 |#4|) (-642 |#4|))) (-15 -2079 ((-642 |#4|) (-642 |#4|) (-1155))) (-15 -2079 ((-642 |#4|) (-642 |#4|) (-1155) (-1155))) (IF (|has| |#1| (-363)) (-15 -2571 (|#4| |#4| (-642 |#4|))) |%noBranch|)) -((-2066 (($ $ $) 14) (($ (-642 $)) 21)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) 46)) (-2105 (($ $ $) NIL) (($ (-642 $)) 22))) -(((-451 |#1|) (-10 -8 (-15 -3464 ((-1169 |#1|) (-1169 |#1|) (-1169 |#1|))) (-15 -2066 (|#1| (-642 |#1|))) (-15 -2066 (|#1| |#1| |#1|)) (-15 -2105 (|#1| (-642 |#1|))) (-15 -2105 (|#1| |#1| |#1|))) (-452)) (T -451)) -NIL -(-10 -8 (-15 -3464 ((-1169 |#1|) (-1169 |#1|) (-1169 |#1|))) (-15 -2066 (|#1| (-642 |#1|))) (-15 -2066 (|#1| |#1| |#1|)) (-15 -2105 (|#1| (-642 |#1|))) (-15 -2105 (|#1| |#1| |#1|))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) 47)) (-4252 (($ $) 46)) (-1722 (((-112) $) 44)) (-3085 (((-3 $ "failed") $ $) 20)) (-2822 (($) 18 T CONST)) (-2675 (((-3 $ "failed") $) 37)) (-3163 (((-112) $) 35)) (-2066 (($ $ $) 52) (($ (-642 $)) 51)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) 50)) (-2105 (($ $ $) 54) (($ (-642 $)) 53)) (-2842 (((-3 $ "failed") $ $) 48)) (-2390 (((-860) $) 12) (($ (-564)) 33) (($ $) 49)) (-3348 (((-769)) 32 T CONST)) (-1600 (((-112) $ $) 9)) (-1594 (((-112) $ $) 45)) (-2361 (($) 19 T CONST)) (-2371 (($) 34 T CONST)) (-2821 (((-112) $ $) 6)) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27))) -(((-452) (-140)) (T -452)) -((-2105 (*1 *1 *1 *1) (-4 *1 (-452))) (-2105 (*1 *1 *2) (-12 (-5 *2 (-642 *1)) (-4 *1 (-452)))) (-2066 (*1 *1 *1 *1) (-4 *1 (-452))) (-2066 (*1 *1 *2) (-12 (-5 *2 (-642 *1)) (-4 *1 (-452)))) (-3464 (*1 *2 *2 *2) (-12 (-5 *2 (-1169 *1)) (-4 *1 (-452))))) -(-13 (-556) (-10 -8 (-15 -2105 ($ $ $)) (-15 -2105 ($ (-642 $))) (-15 -2066 ($ $ $)) (-15 -2066 ($ (-642 $))) (-15 -3464 ((-1169 $) (-1169 $) (-1169 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-860)) . T) ((-172) . T) ((-290) . T) ((-556) . T) ((-644 (-564)) . T) ((-644 $) . T) ((-646 $) . T) ((-638 $) . T) ((-715 $) . T) ((-724) . T) ((-1049 $) . T) ((-1054 $) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T)) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-2660 (((-3 $ "failed")) NIL (|has| (-407 (-950 |#1|)) (-556)))) (-3085 (((-3 $ "failed") $ $) NIL)) (-2816 (((-1262 (-687 (-407 (-950 |#1|)))) (-1262 $)) NIL) (((-1262 (-687 (-407 (-950 |#1|))))) NIL)) (-3953 (((-1262 $)) NIL)) (-2822 (($) NIL T CONST)) (-3378 (((-3 (-2 (|:| |particular| $) (|:| -2131 (-642 $))) "failed")) NIL)) (-1934 (((-3 $ "failed")) NIL (|has| (-407 (-950 |#1|)) (-556)))) (-3821 (((-687 (-407 (-950 |#1|))) (-1262 $)) NIL) (((-687 (-407 (-950 |#1|)))) NIL)) (-3540 (((-407 (-950 |#1|)) $) NIL)) (-1771 (((-687 (-407 (-950 |#1|))) $ (-1262 $)) NIL) (((-687 (-407 (-950 |#1|))) $) NIL)) (-3420 (((-3 $ "failed") $) NIL (|has| (-407 (-950 |#1|)) (-556)))) (-2016 (((-1169 (-950 (-407 (-950 |#1|))))) NIL (|has| (-407 (-950 |#1|)) (-363))) (((-1169 (-407 (-950 |#1|)))) 94 (|has| |#1| (-556)))) (-3952 (($ $ (-919)) NIL)) (-1732 (((-407 (-950 |#1|)) $) NIL)) (-2644 (((-1169 (-407 (-950 |#1|))) $) 92 (|has| (-407 (-950 |#1|)) (-556)))) (-3521 (((-407 (-950 |#1|)) (-1262 $)) NIL) (((-407 (-950 |#1|))) NIL)) (-4246 (((-1169 (-407 (-950 |#1|))) $) NIL)) (-2165 (((-112)) NIL)) (-4087 (($ (-1262 (-407 (-950 |#1|))) (-1262 $)) 118) (($ (-1262 (-407 (-950 |#1|)))) NIL)) (-2675 (((-3 $ "failed") $) NIL (|has| (-407 (-950 |#1|)) (-556)))) (-3616 (((-919)) NIL)) (-2927 (((-112)) NIL)) (-4359 (($ $ (-919)) NIL)) (-3682 (((-112)) NIL)) (-1888 (((-112)) NIL)) (-1693 (((-112)) NIL)) (-1546 (((-3 (-2 (|:| |particular| $) (|:| -2131 (-642 $))) "failed")) NIL)) (-4337 (((-3 $ "failed")) NIL (|has| (-407 (-950 |#1|)) (-556)))) (-4289 (((-687 (-407 (-950 |#1|))) (-1262 $)) NIL) (((-687 (-407 (-950 |#1|)))) NIL)) (-1486 (((-407 (-950 |#1|)) $) NIL)) (-1672 (((-687 (-407 (-950 |#1|))) $ (-1262 $)) NIL) (((-687 (-407 (-950 |#1|))) $) NIL)) (-1339 (((-3 $ "failed") $) NIL (|has| (-407 (-950 |#1|)) (-556)))) (-2975 (((-1169 (-950 (-407 (-950 |#1|))))) NIL (|has| (-407 (-950 |#1|)) (-363))) (((-1169 (-407 (-950 |#1|)))) 93 (|has| |#1| (-556)))) (-4204 (($ $ (-919)) NIL)) (-1573 (((-407 (-950 |#1|)) $) NIL)) (-2514 (((-1169 (-407 (-950 |#1|))) $) 87 (|has| (-407 (-950 |#1|)) (-556)))) (-3645 (((-407 (-950 |#1|)) (-1262 $)) NIL) (((-407 (-950 |#1|))) NIL)) (-1892 (((-1169 (-407 (-950 |#1|))) $) NIL)) (-4216 (((-112)) NIL)) (-1778 (((-1155) $) NIL)) (-2631 (((-112)) NIL)) (-3393 (((-112)) NIL)) (-2399 (((-112)) NIL)) (-3999 (((-1117) $) NIL)) (-4129 (((-407 (-950 |#1|)) $ $) 78 (|has| |#1| (-556)))) (-1897 (((-407 (-950 |#1|)) $) 104 (|has| |#1| (-556)))) (-3751 (((-407 (-950 |#1|)) $) 108 (|has| |#1| (-556)))) (-3271 (((-1169 (-407 (-950 |#1|))) $) 98 (|has| |#1| (-556)))) (-2023 (((-407 (-950 |#1|))) 79 (|has| |#1| (-556)))) (-4227 (((-407 (-950 |#1|)) $ $) 71 (|has| |#1| (-556)))) (-3909 (((-407 (-950 |#1|)) $) 103 (|has| |#1| (-556)))) (-4179 (((-407 (-950 |#1|)) $) 107 (|has| |#1| (-556)))) (-1597 (((-1169 (-407 (-950 |#1|))) $) 97 (|has| |#1| (-556)))) (-1598 (((-407 (-950 |#1|))) 75 (|has| |#1| (-556)))) (-3763 (($) 114) (($ (-1173)) 122) (($ (-1262 (-1173))) 121) (($ (-1262 $)) 109) (($ (-1173) (-1262 $)) 120) (($ (-1262 (-1173)) (-1262 $)) 119)) (-2040 (((-112)) NIL)) (-4369 (((-407 (-950 |#1|)) $ (-564)) NIL)) (-3719 (((-1262 (-407 (-950 |#1|))) $ (-1262 $)) 111) (((-687 (-407 (-950 |#1|))) (-1262 $) (-1262 $)) NIL) (((-1262 (-407 (-950 |#1|))) $) 45) (((-687 (-407 (-950 |#1|))) (-1262 $)) NIL)) (-3003 (((-1262 (-407 (-950 |#1|))) $) NIL) (($ (-1262 (-407 (-950 |#1|)))) 42)) (-3584 (((-642 (-950 (-407 (-950 |#1|)))) (-1262 $)) NIL) (((-642 (-950 (-407 (-950 |#1|))))) NIL) (((-642 (-950 |#1|)) (-1262 $)) 112 (|has| |#1| (-556))) (((-642 (-950 |#1|))) 113 (|has| |#1| (-556)))) (-2402 (($ $ $) NIL)) (-2792 (((-112)) NIL)) (-2390 (((-860) $) NIL) (($ (-1262 (-407 (-950 |#1|)))) NIL)) (-1600 (((-112) $ $) NIL)) (-2131 (((-1262 $)) 67)) (-1491 (((-642 (-1262 (-407 (-950 |#1|))))) NIL (|has| (-407 (-950 |#1|)) (-556)))) (-3845 (($ $ $ $) NIL)) (-2715 (((-112)) NIL)) (-3975 (($ (-687 (-407 (-950 |#1|))) $) NIL)) (-3106 (($ $ $) NIL)) (-3498 (((-112)) NIL)) (-3394 (((-112)) NIL)) (-2609 (((-112)) NIL)) (-2361 (($) NIL T CONST)) (-2821 (((-112) $ $) NIL)) (-2930 (($ $) NIL) (($ $ $) 110)) (-2917 (($ $ $) NIL)) (** (($ $ (-919)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) 63) (($ $ (-407 (-950 |#1|))) NIL) (($ (-407 (-950 |#1|)) $) NIL) (($ (-1139 |#2| (-407 (-950 |#1|))) $) NIL))) -(((-453 |#1| |#2| |#3| |#4|) (-13 (-417 (-407 (-950 |#1|))) (-646 (-1139 |#2| (-407 (-950 |#1|)))) (-10 -8 (-15 -2390 ($ (-1262 (-407 (-950 |#1|))))) (-15 -1546 ((-3 (-2 (|:| |particular| $) (|:| -2131 (-642 $))) "failed"))) (-15 -3378 ((-3 (-2 (|:| |particular| $) (|:| -2131 (-642 $))) "failed"))) (-15 -3763 ($)) (-15 -3763 ($ (-1173))) (-15 -3763 ($ (-1262 (-1173)))) (-15 -3763 ($ (-1262 $))) (-15 -3763 ($ (-1173) (-1262 $))) (-15 -3763 ($ (-1262 (-1173)) (-1262 $))) (IF (|has| |#1| (-556)) (PROGN (-15 -2975 ((-1169 (-407 (-950 |#1|))))) (-15 -1597 ((-1169 (-407 (-950 |#1|))) $)) (-15 -3909 ((-407 (-950 |#1|)) $)) (-15 -4179 ((-407 (-950 |#1|)) $)) (-15 -2016 ((-1169 (-407 (-950 |#1|))))) (-15 -3271 ((-1169 (-407 (-950 |#1|))) $)) (-15 -1897 ((-407 (-950 |#1|)) $)) (-15 -3751 ((-407 (-950 |#1|)) $)) (-15 -4227 ((-407 (-950 |#1|)) $ $)) (-15 -1598 ((-407 (-950 |#1|)))) (-15 -4129 ((-407 (-950 |#1|)) $ $)) (-15 -2023 ((-407 (-950 |#1|)))) (-15 -3584 ((-642 (-950 |#1|)) (-1262 $))) (-15 -3584 ((-642 (-950 |#1|))))) |%noBranch|))) (-172) (-919) (-642 (-1173)) (-1262 (-687 |#1|))) (T -453)) -((-2390 (*1 *1 *2) (-12 (-5 *2 (-1262 (-407 (-950 *3)))) (-4 *3 (-172)) (-14 *6 (-1262 (-687 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-14 *4 (-919)) (-14 *5 (-642 (-1173))))) (-1546 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-453 *3 *4 *5 *6)) (|:| -2131 (-642 (-453 *3 *4 *5 *6))))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-919)) (-14 *5 (-642 (-1173))) (-14 *6 (-1262 (-687 *3))))) (-3378 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-453 *3 *4 *5 *6)) (|:| -2131 (-642 (-453 *3 *4 *5 *6))))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-919)) (-14 *5 (-642 (-1173))) (-14 *6 (-1262 (-687 *3))))) (-3763 (*1 *1) (-12 (-5 *1 (-453 *2 *3 *4 *5)) (-4 *2 (-172)) (-14 *3 (-919)) (-14 *4 (-642 (-1173))) (-14 *5 (-1262 (-687 *2))))) (-3763 (*1 *1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-919)) (-14 *5 (-642 *2)) (-14 *6 (-1262 (-687 *3))))) (-3763 (*1 *1 *2) (-12 (-5 *2 (-1262 (-1173))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-919)) (-14 *5 (-642 (-1173))) (-14 *6 (-1262 (-687 *3))))) (-3763 (*1 *1 *2) (-12 (-5 *2 (-1262 (-453 *3 *4 *5 *6))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-919)) (-14 *5 (-642 (-1173))) (-14 *6 (-1262 (-687 *3))))) (-3763 (*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-1262 (-453 *4 *5 *6 *7))) (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-919)) (-14 *6 (-642 *2)) (-14 *7 (-1262 (-687 *4))))) (-3763 (*1 *1 *2 *3) (-12 (-5 *2 (-1262 (-1173))) (-5 *3 (-1262 (-453 *4 *5 *6 *7))) (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-919)) (-14 *6 (-642 (-1173))) (-14 *7 (-1262 (-687 *4))))) (-2975 (*1 *2) (-12 (-5 *2 (-1169 (-407 (-950 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-919)) (-14 *5 (-642 (-1173))) (-14 *6 (-1262 (-687 *3))))) (-1597 (*1 *2 *1) (-12 (-5 *2 (-1169 (-407 (-950 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-919)) (-14 *5 (-642 (-1173))) (-14 *6 (-1262 (-687 *3))))) (-3909 (*1 *2 *1) (-12 (-5 *2 (-407 (-950 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-919)) (-14 *5 (-642 (-1173))) (-14 *6 (-1262 (-687 *3))))) (-4179 (*1 *2 *1) (-12 (-5 *2 (-407 (-950 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-919)) (-14 *5 (-642 (-1173))) (-14 *6 (-1262 (-687 *3))))) (-2016 (*1 *2) (-12 (-5 *2 (-1169 (-407 (-950 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-919)) (-14 *5 (-642 (-1173))) (-14 *6 (-1262 (-687 *3))))) (-3271 (*1 *2 *1) (-12 (-5 *2 (-1169 (-407 (-950 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-919)) (-14 *5 (-642 (-1173))) (-14 *6 (-1262 (-687 *3))))) (-1897 (*1 *2 *1) (-12 (-5 *2 (-407 (-950 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-919)) (-14 *5 (-642 (-1173))) (-14 *6 (-1262 (-687 *3))))) (-3751 (*1 *2 *1) (-12 (-5 *2 (-407 (-950 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-919)) (-14 *5 (-642 (-1173))) (-14 *6 (-1262 (-687 *3))))) (-4227 (*1 *2 *1 *1) (-12 (-5 *2 (-407 (-950 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-919)) (-14 *5 (-642 (-1173))) (-14 *6 (-1262 (-687 *3))))) (-1598 (*1 *2) (-12 (-5 *2 (-407 (-950 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-919)) (-14 *5 (-642 (-1173))) (-14 *6 (-1262 (-687 *3))))) (-4129 (*1 *2 *1 *1) (-12 (-5 *2 (-407 (-950 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-919)) (-14 *5 (-642 (-1173))) (-14 *6 (-1262 (-687 *3))))) (-2023 (*1 *2) (-12 (-5 *2 (-407 (-950 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-919)) (-14 *5 (-642 (-1173))) (-14 *6 (-1262 (-687 *3))))) (-3584 (*1 *2 *3) (-12 (-5 *3 (-1262 (-453 *4 *5 *6 *7))) (-5 *2 (-642 (-950 *4))) (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-556)) (-4 *4 (-172)) (-14 *5 (-919)) (-14 *6 (-642 (-1173))) (-14 *7 (-1262 (-687 *4))))) (-3584 (*1 *2) (-12 (-5 *2 (-642 (-950 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-919)) (-14 *5 (-642 (-1173))) (-14 *6 (-1262 (-687 *3)))))) -(-13 (-417 (-407 (-950 |#1|))) (-646 (-1139 |#2| (-407 (-950 |#1|)))) (-10 -8 (-15 -2390 ($ (-1262 (-407 (-950 |#1|))))) (-15 -1546 ((-3 (-2 (|:| |particular| $) (|:| -2131 (-642 $))) "failed"))) (-15 -3378 ((-3 (-2 (|:| |particular| $) (|:| -2131 (-642 $))) "failed"))) (-15 -3763 ($)) (-15 -3763 ($ (-1173))) (-15 -3763 ($ (-1262 (-1173)))) (-15 -3763 ($ (-1262 $))) (-15 -3763 ($ (-1173) (-1262 $))) (-15 -3763 ($ (-1262 (-1173)) (-1262 $))) (IF (|has| |#1| (-556)) (PROGN (-15 -2975 ((-1169 (-407 (-950 |#1|))))) (-15 -1597 ((-1169 (-407 (-950 |#1|))) $)) (-15 -3909 ((-407 (-950 |#1|)) $)) (-15 -4179 ((-407 (-950 |#1|)) $)) (-15 -2016 ((-1169 (-407 (-950 |#1|))))) (-15 -3271 ((-1169 (-407 (-950 |#1|))) $)) (-15 -1897 ((-407 (-950 |#1|)) $)) (-15 -3751 ((-407 (-950 |#1|)) $)) (-15 -4227 ((-407 (-950 |#1|)) $ $)) (-15 -1598 ((-407 (-950 |#1|)))) (-15 -4129 ((-407 (-950 |#1|)) $ $)) (-15 -2023 ((-407 (-950 |#1|)))) (-15 -3584 ((-642 (-950 |#1|)) (-1262 $))) (-15 -3584 ((-642 (-950 |#1|))))) |%noBranch|))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) 18)) (-2397 (((-642 (-862 |#1|)) $) 92)) (-2223 (((-1169 $) $ (-862 |#1|)) 55) (((-1169 |#2|) $) 143)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (|has| |#2| (-556)))) (-4252 (($ $) NIL (|has| |#2| (-556)))) (-1722 (((-112) $) NIL (|has| |#2| (-556)))) (-4035 (((-769) $) 27) (((-769) $ (-642 (-862 |#1|))) NIL)) (-3085 (((-3 $ "failed") $ $) NIL)) (-4297 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#2| (-907)))) (-1993 (($ $) NIL (|has| |#2| (-452)))) (-3282 (((-418 $) $) NIL (|has| |#2| (-452)))) (-3267 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) NIL (|has| |#2| (-907)))) (-2822 (($) NIL T CONST)) (-2849 (((-3 |#2| "failed") $) 53) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1036 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#2| (-1036 (-564)))) (((-3 (-862 |#1|) "failed") $) NIL)) (-1687 ((|#2| $) 51) (((-407 (-564)) $) NIL (|has| |#2| (-1036 (-407 (-564))))) (((-564) $) NIL (|has| |#2| (-1036 (-564)))) (((-862 |#1|) $) NIL)) (-3710 (($ $ $ (-862 |#1|)) NIL (|has| |#2| (-172)))) (-1747 (($ $ (-642 (-564))) 98)) (-3459 (($ $) 85)) (-3330 (((-687 (-564)) (-687 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -3544 (-687 |#2|)) (|:| |vec| (-1262 |#2|))) (-687 $) (-1262 $)) NIL) (((-687 |#2|) (-687 $)) NIL)) (-2675 (((-3 $ "failed") $) NIL)) (-2511 (($ $) NIL (|has| |#2| (-452))) (($ $ (-862 |#1|)) NIL (|has| |#2| (-452)))) (-3446 (((-642 $) $) NIL)) (-3552 (((-112) $) NIL (|has| |#2| (-907)))) (-2315 (($ $ |#2| |#3| $) NIL)) (-1381 (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) NIL (-12 (|has| (-862 |#1|) (-884 (-379))) (|has| |#2| (-884 (-379))))) (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) NIL (-12 (|has| (-862 |#1|) (-884 (-564))) (|has| |#2| (-884 (-564)))))) (-3163 (((-112) $) NIL)) (-1904 (((-769) $) 68)) (-2387 (($ (-1169 |#2|) (-862 |#1|)) 148) (($ (-1169 $) (-862 |#1|)) 61)) (-1995 (((-642 $) $) NIL)) (-3471 (((-112) $) 71)) (-2374 (($ |#2| |#3|) 38) (($ $ (-862 |#1|) (-769)) 40) (($ $ (-642 (-862 |#1|)) (-642 (-769))) NIL)) (-3312 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $ (-862 |#1|)) NIL)) (-2887 ((|#3| $) NIL) (((-769) $ (-862 |#1|)) 59) (((-642 (-769)) $ (-642 (-862 |#1|))) 66)) (-3879 (($ (-1 |#3| |#3|) $) NIL)) (-2947 (($ (-1 |#2| |#2|) $) NIL)) (-1557 (((-3 (-862 |#1|) "failed") $) 48)) (-2510 (($ $) NIL)) (-2523 ((|#2| $) 50)) (-2066 (($ (-642 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-1778 (((-1155) $) NIL)) (-3664 (((-3 (-642 $) "failed") $) NIL)) (-4315 (((-3 (-642 $) "failed") $) NIL)) (-3177 (((-3 (-2 (|:| |var| (-862 |#1|)) (|:| -2817 (-769))) "failed") $) NIL)) (-3999 (((-1117) $) NIL)) (-2491 (((-112) $) 49)) (-2500 ((|#2| $) 141)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) NIL (|has| |#2| (-452)))) (-2105 (($ (-642 $)) NIL (|has| |#2| (-452))) (($ $ $) 154 (|has| |#2| (-452)))) (-3223 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#2| (-907)))) (-2236 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#2| (-907)))) (-2254 (((-418 $) $) NIL (|has| |#2| (-907)))) (-2842 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-556)))) (-3154 (($ $ (-642 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-642 $) (-642 $)) NIL) (($ $ (-862 |#1|) |#2|) 105) (($ $ (-642 (-862 |#1|)) (-642 |#2|)) 111) (($ $ (-862 |#1|) $) 103) (($ $ (-642 (-862 |#1|)) (-642 $)) 129)) (-2790 (($ $ (-862 |#1|)) NIL (|has| |#2| (-172)))) (-2199 (($ $ (-862 |#1|)) 62) (($ $ (-642 (-862 |#1|))) NIL) (($ $ (-862 |#1|) (-769)) NIL) (($ $ (-642 (-862 |#1|)) (-642 (-769))) NIL)) (-3252 ((|#3| $) 84) (((-769) $ (-862 |#1|)) 45) (((-642 (-769)) $ (-642 (-862 |#1|))) 65)) (-3003 (((-890 (-379)) $) NIL (-12 (|has| (-862 |#1|) (-612 (-890 (-379)))) (|has| |#2| (-612 (-890 (-379)))))) (((-890 (-564)) $) NIL (-12 (|has| (-862 |#1|) (-612 (-890 (-564)))) (|has| |#2| (-612 (-890 (-564)))))) (((-536) $) NIL (-12 (|has| (-862 |#1|) (-612 (-536))) (|has| |#2| (-612 (-536)))))) (-4325 ((|#2| $) 150 (|has| |#2| (-452))) (($ $ (-862 |#1|)) NIL (|has| |#2| (-452)))) (-3556 (((-3 (-1262 $) "failed") (-687 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-907))))) (-2390 (((-860) $) 179) (($ (-564)) NIL) (($ |#2|) 104) (($ (-862 |#1|)) 42) (($ (-407 (-564))) NIL (-2682 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1036 (-407 (-564)))))) (($ $) NIL (|has| |#2| (-556)))) (-2839 (((-642 |#2|) $) NIL)) (-3005 ((|#2| $ |#3|) NIL) (($ $ (-862 |#1|) (-769)) NIL) (($ $ (-642 (-862 |#1|)) (-642 (-769))) NIL)) (-3434 (((-3 $ "failed") $) NIL (-2682 (-12 (|has| $ (-145)) (|has| |#2| (-907))) (|has| |#2| (-145))))) (-3348 (((-769)) NIL T CONST)) (-2645 (($ $ $ (-769)) NIL (|has| |#2| (-172)))) (-1600 (((-112) $ $) NIL)) (-1594 (((-112) $ $) NIL (|has| |#2| (-556)))) (-2361 (($) 22 T CONST)) (-2371 (($) 31 T CONST)) (-2711 (($ $ (-862 |#1|)) NIL) (($ $ (-642 (-862 |#1|))) NIL) (($ $ (-862 |#1|) (-769)) NIL) (($ $ (-642 (-862 |#1|)) (-642 (-769))) NIL)) (-2821 (((-112) $ $) NIL)) (-2943 (($ $ |#2|) 81 (|has| |#2| (-363)))) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) 136)) (** (($ $ (-919)) NIL) (($ $ (-769)) 134)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) 39) (($ $ (-407 (-564))) NIL (|has| |#2| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#2| (-38 (-407 (-564))))) (($ |#2| $) 80) (($ $ |#2|) NIL))) -(((-454 |#1| |#2| |#3|) (-13 (-947 |#2| |#3| (-862 |#1|)) (-10 -8 (-15 -1747 ($ $ (-642 (-564)))))) (-642 (-1173)) (-1047) (-238 (-2158 |#1|) (-769))) (T -454)) -((-1747 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-564))) (-14 *3 (-642 (-1173))) (-5 *1 (-454 *3 *4 *5)) (-4 *4 (-1047)) (-4 *5 (-238 (-2158 *3) (-769)))))) -(-13 (-947 |#2| |#3| (-862 |#1|)) (-10 -8 (-15 -1747 ($ $ (-642 (-564)))))) -((-3090 (((-112) |#1| (-642 |#2|)) 94)) (-2759 (((-3 (-1262 (-642 |#2|)) "failed") (-769) |#1| (-642 |#2|)) 103)) (-1883 (((-3 (-642 |#2|) "failed") |#2| |#1| (-1262 (-642 |#2|))) 105)) (-3452 ((|#2| |#2| |#1|) 35)) (-4057 (((-769) |#2| (-642 |#2|)) 26))) -(((-455 |#1| |#2|) (-10 -7 (-15 -3452 (|#2| |#2| |#1|)) (-15 -4057 ((-769) |#2| (-642 |#2|))) (-15 -2759 ((-3 (-1262 (-642 |#2|)) "failed") (-769) |#1| (-642 |#2|))) (-15 -1883 ((-3 (-642 |#2|) "failed") |#2| |#1| (-1262 (-642 |#2|)))) (-15 -3090 ((-112) |#1| (-642 |#2|)))) (-307) (-1238 |#1|)) (T -455)) -((-3090 (*1 *2 *3 *4) (-12 (-5 *4 (-642 *5)) (-4 *5 (-1238 *3)) (-4 *3 (-307)) (-5 *2 (-112)) (-5 *1 (-455 *3 *5)))) (-1883 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1262 (-642 *3))) (-4 *4 (-307)) (-5 *2 (-642 *3)) (-5 *1 (-455 *4 *3)) (-4 *3 (-1238 *4)))) (-2759 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-769)) (-4 *4 (-307)) (-4 *6 (-1238 *4)) (-5 *2 (-1262 (-642 *6))) (-5 *1 (-455 *4 *6)) (-5 *5 (-642 *6)))) (-4057 (*1 *2 *3 *4) (-12 (-5 *4 (-642 *3)) (-4 *3 (-1238 *5)) (-4 *5 (-307)) (-5 *2 (-769)) (-5 *1 (-455 *5 *3)))) (-3452 (*1 *2 *2 *3) (-12 (-4 *3 (-307)) (-5 *1 (-455 *3 *2)) (-4 *2 (-1238 *3))))) -(-10 -7 (-15 -3452 (|#2| |#2| |#1|)) (-15 -4057 ((-769) |#2| (-642 |#2|))) (-15 -2759 ((-3 (-1262 (-642 |#2|)) "failed") (-769) |#1| (-642 |#2|))) (-15 -1883 ((-3 (-642 |#2|) "failed") |#2| |#1| (-1262 (-642 |#2|)))) (-15 -3090 ((-112) |#1| (-642 |#2|)))) -((-2254 (((-418 |#5|) |#5|) 24))) -(((-456 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2254 ((-418 |#5|) |#5|))) (-13 (-848) (-10 -8 (-15 -3003 ((-1173) $)) (-15 -1341 ((-3 $ "failed") (-1173))))) (-791) (-556) (-556) (-947 |#4| |#2| |#1|)) (T -456)) -((-2254 (*1 *2 *3) (-12 (-4 *4 (-13 (-848) (-10 -8 (-15 -3003 ((-1173) $)) (-15 -1341 ((-3 $ "failed") (-1173)))))) (-4 *5 (-791)) (-4 *7 (-556)) (-5 *2 (-418 *3)) (-5 *1 (-456 *4 *5 *6 *7 *3)) (-4 *6 (-556)) (-4 *3 (-947 *7 *5 *4))))) -(-10 -7 (-15 -2254 ((-418 |#5|) |#5|))) -((-2694 ((|#3|) 40)) (-3464 (((-1169 |#4|) (-1169 |#4|) (-1169 |#4|)) 36))) -(((-457 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3464 ((-1169 |#4|) (-1169 |#4|) (-1169 |#4|))) (-15 -2694 (|#3|))) (-791) (-848) (-907) (-947 |#3| |#1| |#2|)) (T -457)) -((-2694 (*1 *2) (-12 (-4 *3 (-791)) (-4 *4 (-848)) (-4 *2 (-907)) (-5 *1 (-457 *3 *4 *2 *5)) (-4 *5 (-947 *2 *3 *4)))) (-3464 (*1 *2 *2 *2) (-12 (-5 *2 (-1169 *6)) (-4 *6 (-947 *5 *3 *4)) (-4 *3 (-791)) (-4 *4 (-848)) (-4 *5 (-907)) (-5 *1 (-457 *3 *4 *5 *6))))) -(-10 -7 (-15 -3464 ((-1169 |#4|) (-1169 |#4|) (-1169 |#4|))) (-15 -2694 (|#3|))) -((-2254 (((-418 (-1169 |#1|)) (-1169 |#1|)) 43))) -(((-458 |#1|) (-10 -7 (-15 -2254 ((-418 (-1169 |#1|)) (-1169 |#1|)))) (-307)) (T -458)) -((-2254 (*1 *2 *3) (-12 (-4 *4 (-307)) (-5 *2 (-418 (-1169 *4))) (-5 *1 (-458 *4)) (-5 *3 (-1169 *4))))) -(-10 -7 (-15 -2254 ((-418 (-1169 |#1|)) (-1169 |#1|)))) -((-2446 (((-52) |#2| (-1173) (-294 |#2|) (-1229 (-769))) 44) (((-52) (-1 |#2| (-564)) (-294 |#2|) (-1229 (-769))) 43) (((-52) |#2| (-1173) (-294 |#2|)) 36) (((-52) (-1 |#2| (-564)) (-294 |#2|)) 29)) (-3182 (((-52) |#2| (-1173) (-294 |#2|) (-1229 (-407 (-564))) (-407 (-564))) 88) (((-52) (-1 |#2| (-407 (-564))) (-294 |#2|) (-1229 (-407 (-564))) (-407 (-564))) 87) (((-52) |#2| (-1173) (-294 |#2|) (-1229 (-564))) 86) (((-52) (-1 |#2| (-564)) (-294 |#2|) (-1229 (-564))) 85) (((-52) |#2| (-1173) (-294 |#2|)) 80) (((-52) (-1 |#2| (-564)) (-294 |#2|)) 79)) (-2466 (((-52) |#2| (-1173) (-294 |#2|) (-1229 (-407 (-564))) (-407 (-564))) 74) (((-52) (-1 |#2| (-407 (-564))) (-294 |#2|) (-1229 (-407 (-564))) (-407 (-564))) 72)) (-2456 (((-52) |#2| (-1173) (-294 |#2|) (-1229 (-564))) 51) (((-52) (-1 |#2| (-564)) (-294 |#2|) (-1229 (-564))) 50))) -(((-459 |#1| |#2|) (-10 -7 (-15 -2446 ((-52) (-1 |#2| (-564)) (-294 |#2|))) (-15 -2446 ((-52) |#2| (-1173) (-294 |#2|))) (-15 -2446 ((-52) (-1 |#2| (-564)) (-294 |#2|) (-1229 (-769)))) (-15 -2446 ((-52) |#2| (-1173) (-294 |#2|) (-1229 (-769)))) (-15 -2456 ((-52) (-1 |#2| (-564)) (-294 |#2|) (-1229 (-564)))) (-15 -2456 ((-52) |#2| (-1173) (-294 |#2|) (-1229 (-564)))) (-15 -2466 ((-52) (-1 |#2| (-407 (-564))) (-294 |#2|) (-1229 (-407 (-564))) (-407 (-564)))) (-15 -2466 ((-52) |#2| (-1173) (-294 |#2|) (-1229 (-407 (-564))) (-407 (-564)))) (-15 -3182 ((-52) (-1 |#2| (-564)) (-294 |#2|))) (-15 -3182 ((-52) |#2| (-1173) (-294 |#2|))) (-15 -3182 ((-52) (-1 |#2| (-564)) (-294 |#2|) (-1229 (-564)))) (-15 -3182 ((-52) |#2| (-1173) (-294 |#2|) (-1229 (-564)))) (-15 -3182 ((-52) (-1 |#2| (-407 (-564))) (-294 |#2|) (-1229 (-407 (-564))) (-407 (-564)))) (-15 -3182 ((-52) |#2| (-1173) (-294 |#2|) (-1229 (-407 (-564))) (-407 (-564))))) (-13 (-556) (-1036 (-564)) (-637 (-564))) (-13 (-27) (-1197) (-430 |#1|))) (T -459)) -((-3182 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1173)) (-5 *5 (-294 *3)) (-5 *6 (-1229 (-407 (-564)))) (-5 *7 (-407 (-564))) (-4 *3 (-13 (-27) (-1197) (-430 *8))) (-4 *8 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *8 *3)))) (-3182 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-407 (-564)))) (-5 *4 (-294 *8)) (-5 *5 (-1229 (-407 (-564)))) (-5 *6 (-407 (-564))) (-4 *8 (-13 (-27) (-1197) (-430 *7))) (-4 *7 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *7 *8)))) (-3182 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1173)) (-5 *5 (-294 *3)) (-5 *6 (-1229 (-564))) (-4 *3 (-13 (-27) (-1197) (-430 *7))) (-4 *7 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *7 *3)))) (-3182 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-564))) (-5 *4 (-294 *7)) (-5 *5 (-1229 (-564))) (-4 *7 (-13 (-27) (-1197) (-430 *6))) (-4 *6 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *6 *7)))) (-3182 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1173)) (-5 *5 (-294 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *6))) (-4 *6 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *6 *3)))) (-3182 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-564))) (-5 *4 (-294 *6)) (-4 *6 (-13 (-27) (-1197) (-430 *5))) (-4 *5 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *5 *6)))) (-2466 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1173)) (-5 *5 (-294 *3)) (-5 *6 (-1229 (-407 (-564)))) (-5 *7 (-407 (-564))) (-4 *3 (-13 (-27) (-1197) (-430 *8))) (-4 *8 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *8 *3)))) (-2466 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-407 (-564)))) (-5 *4 (-294 *8)) (-5 *5 (-1229 (-407 (-564)))) (-5 *6 (-407 (-564))) (-4 *8 (-13 (-27) (-1197) (-430 *7))) (-4 *7 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *7 *8)))) (-2456 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1173)) (-5 *5 (-294 *3)) (-5 *6 (-1229 (-564))) (-4 *3 (-13 (-27) (-1197) (-430 *7))) (-4 *7 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *7 *3)))) (-2456 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-564))) (-5 *4 (-294 *7)) (-5 *5 (-1229 (-564))) (-4 *7 (-13 (-27) (-1197) (-430 *6))) (-4 *6 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *6 *7)))) (-2446 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1173)) (-5 *5 (-294 *3)) (-5 *6 (-1229 (-769))) (-4 *3 (-13 (-27) (-1197) (-430 *7))) (-4 *7 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *7 *3)))) (-2446 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-564))) (-5 *4 (-294 *7)) (-5 *5 (-1229 (-769))) (-4 *7 (-13 (-27) (-1197) (-430 *6))) (-4 *6 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *6 *7)))) (-2446 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1173)) (-5 *5 (-294 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *6))) (-4 *6 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *6 *3)))) (-2446 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-564))) (-5 *4 (-294 *6)) (-4 *6 (-13 (-27) (-1197) (-430 *5))) (-4 *5 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *5 *6))))) -(-10 -7 (-15 -2446 ((-52) (-1 |#2| (-564)) (-294 |#2|))) (-15 -2446 ((-52) |#2| (-1173) (-294 |#2|))) (-15 -2446 ((-52) (-1 |#2| (-564)) (-294 |#2|) (-1229 (-769)))) (-15 -2446 ((-52) |#2| (-1173) (-294 |#2|) (-1229 (-769)))) (-15 -2456 ((-52) (-1 |#2| (-564)) (-294 |#2|) (-1229 (-564)))) (-15 -2456 ((-52) |#2| (-1173) (-294 |#2|) (-1229 (-564)))) (-15 -2466 ((-52) (-1 |#2| (-407 (-564))) (-294 |#2|) (-1229 (-407 (-564))) (-407 (-564)))) (-15 -2466 ((-52) |#2| (-1173) (-294 |#2|) (-1229 (-407 (-564))) (-407 (-564)))) (-15 -3182 ((-52) (-1 |#2| (-564)) (-294 |#2|))) (-15 -3182 ((-52) |#2| (-1173) (-294 |#2|))) (-15 -3182 ((-52) (-1 |#2| (-564)) (-294 |#2|) (-1229 (-564)))) (-15 -3182 ((-52) |#2| (-1173) (-294 |#2|) (-1229 (-564)))) (-15 -3182 ((-52) (-1 |#2| (-407 (-564))) (-294 |#2|) (-1229 (-407 (-564))) (-407 (-564)))) (-15 -3182 ((-52) |#2| (-1173) (-294 |#2|) (-1229 (-407 (-564))) (-407 (-564))))) -((-3452 ((|#2| |#2| |#1|) 15)) (-1882 (((-642 |#2|) |#2| (-642 |#2|) |#1| (-919)) 82)) (-1389 (((-2 (|:| |plist| (-642 |#2|)) (|:| |modulo| |#1|)) |#2| (-642 |#2|) |#1| (-919)) 72))) -(((-460 |#1| |#2|) (-10 -7 (-15 -1389 ((-2 (|:| |plist| (-642 |#2|)) (|:| |modulo| |#1|)) |#2| (-642 |#2|) |#1| (-919))) (-15 -1882 ((-642 |#2|) |#2| (-642 |#2|) |#1| (-919))) (-15 -3452 (|#2| |#2| |#1|))) (-307) (-1238 |#1|)) (T -460)) -((-3452 (*1 *2 *2 *3) (-12 (-4 *3 (-307)) (-5 *1 (-460 *3 *2)) (-4 *2 (-1238 *3)))) (-1882 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-642 *3)) (-5 *5 (-919)) (-4 *3 (-1238 *4)) (-4 *4 (-307)) (-5 *1 (-460 *4 *3)))) (-1389 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-919)) (-4 *5 (-307)) (-4 *3 (-1238 *5)) (-5 *2 (-2 (|:| |plist| (-642 *3)) (|:| |modulo| *5))) (-5 *1 (-460 *5 *3)) (-5 *4 (-642 *3))))) -(-10 -7 (-15 -1389 ((-2 (|:| |plist| (-642 |#2|)) (|:| |modulo| |#1|)) |#2| (-642 |#2|) |#1| (-919))) (-15 -1882 ((-642 |#2|) |#2| (-642 |#2|) |#1| (-919))) (-15 -3452 (|#2| |#2| |#1|))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) 28)) (-2072 (($ |#3|) 25)) (-3085 (((-3 $ "failed") $ $) NIL)) (-2822 (($) NIL T CONST)) (-3459 (($ $) 32)) (-3792 (($ |#2| |#4| $) 33)) (-2374 (($ |#2| (-711 |#3| |#4| |#5|)) 24)) (-2510 (((-711 |#3| |#4| |#5|) $) 15)) (-2991 ((|#3| $) 19)) (-3567 ((|#4| $) 17)) (-2523 ((|#2| $) 29)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) NIL)) (-2860 (($ |#2| |#3| |#4|) 26)) (-1600 (((-112) $ $) NIL)) (-2361 (($) 36 T CONST)) (-2821 (((-112) $ $) NIL)) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) 34)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-461 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-715 |#6|) (-715 |#2|) (-10 -8 (-15 -2523 (|#2| $)) (-15 -2510 ((-711 |#3| |#4| |#5|) $)) (-15 -3567 (|#4| $)) (-15 -2991 (|#3| $)) (-15 -3459 ($ $)) (-15 -2374 ($ |#2| (-711 |#3| |#4| |#5|))) (-15 -2072 ($ |#3|)) (-15 -2860 ($ |#2| |#3| |#4|)) (-15 -3792 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-642 (-1173)) (-172) (-848) (-238 (-2158 |#1|) (-769)) (-1 (-112) (-2 (|:| -2065 |#3|) (|:| -2817 |#4|)) (-2 (|:| -2065 |#3|) (|:| -2817 |#4|))) (-947 |#2| |#4| (-862 |#1|))) (T -461)) -((* (*1 *1 *2 *1) (-12 (-14 *3 (-642 (-1173))) (-4 *4 (-172)) (-4 *6 (-238 (-2158 *3) (-769))) (-14 *7 (-1 (-112) (-2 (|:| -2065 *5) (|:| -2817 *6)) (-2 (|:| -2065 *5) (|:| -2817 *6)))) (-5 *1 (-461 *3 *4 *5 *6 *7 *2)) (-4 *5 (-848)) (-4 *2 (-947 *4 *6 (-862 *3))))) (-2523 (*1 *2 *1) (-12 (-14 *3 (-642 (-1173))) (-4 *5 (-238 (-2158 *3) (-769))) (-14 *6 (-1 (-112) (-2 (|:| -2065 *4) (|:| -2817 *5)) (-2 (|:| -2065 *4) (|:| -2817 *5)))) (-4 *2 (-172)) (-5 *1 (-461 *3 *2 *4 *5 *6 *7)) (-4 *4 (-848)) (-4 *7 (-947 *2 *5 (-862 *3))))) (-2510 (*1 *2 *1) (-12 (-14 *3 (-642 (-1173))) (-4 *4 (-172)) (-4 *6 (-238 (-2158 *3) (-769))) (-14 *7 (-1 (-112) (-2 (|:| -2065 *5) (|:| -2817 *6)) (-2 (|:| -2065 *5) (|:| -2817 *6)))) (-5 *2 (-711 *5 *6 *7)) (-5 *1 (-461 *3 *4 *5 *6 *7 *8)) (-4 *5 (-848)) (-4 *8 (-947 *4 *6 (-862 *3))))) (-3567 (*1 *2 *1) (-12 (-14 *3 (-642 (-1173))) (-4 *4 (-172)) (-14 *6 (-1 (-112) (-2 (|:| -2065 *5) (|:| -2817 *2)) (-2 (|:| -2065 *5) (|:| -2817 *2)))) (-4 *2 (-238 (-2158 *3) (-769))) (-5 *1 (-461 *3 *4 *5 *2 *6 *7)) (-4 *5 (-848)) (-4 *7 (-947 *4 *2 (-862 *3))))) (-2991 (*1 *2 *1) (-12 (-14 *3 (-642 (-1173))) (-4 *4 (-172)) (-4 *5 (-238 (-2158 *3) (-769))) (-14 *6 (-1 (-112) (-2 (|:| -2065 *2) (|:| -2817 *5)) (-2 (|:| -2065 *2) (|:| -2817 *5)))) (-4 *2 (-848)) (-5 *1 (-461 *3 *4 *2 *5 *6 *7)) (-4 *7 (-947 *4 *5 (-862 *3))))) (-3459 (*1 *1 *1) (-12 (-14 *2 (-642 (-1173))) (-4 *3 (-172)) (-4 *5 (-238 (-2158 *2) (-769))) (-14 *6 (-1 (-112) (-2 (|:| -2065 *4) (|:| -2817 *5)) (-2 (|:| -2065 *4) (|:| -2817 *5)))) (-5 *1 (-461 *2 *3 *4 *5 *6 *7)) (-4 *4 (-848)) (-4 *7 (-947 *3 *5 (-862 *2))))) (-2374 (*1 *1 *2 *3) (-12 (-5 *3 (-711 *5 *6 *7)) (-4 *5 (-848)) (-4 *6 (-238 (-2158 *4) (-769))) (-14 *7 (-1 (-112) (-2 (|:| -2065 *5) (|:| -2817 *6)) (-2 (|:| -2065 *5) (|:| -2817 *6)))) (-14 *4 (-642 (-1173))) (-4 *2 (-172)) (-5 *1 (-461 *4 *2 *5 *6 *7 *8)) (-4 *8 (-947 *2 *6 (-862 *4))))) (-2072 (*1 *1 *2) (-12 (-14 *3 (-642 (-1173))) (-4 *4 (-172)) (-4 *5 (-238 (-2158 *3) (-769))) (-14 *6 (-1 (-112) (-2 (|:| -2065 *2) (|:| -2817 *5)) (-2 (|:| -2065 *2) (|:| -2817 *5)))) (-5 *1 (-461 *3 *4 *2 *5 *6 *7)) (-4 *2 (-848)) (-4 *7 (-947 *4 *5 (-862 *3))))) (-2860 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-642 (-1173))) (-4 *2 (-172)) (-4 *4 (-238 (-2158 *5) (-769))) (-14 *6 (-1 (-112) (-2 (|:| -2065 *3) (|:| -2817 *4)) (-2 (|:| -2065 *3) (|:| -2817 *4)))) (-5 *1 (-461 *5 *2 *3 *4 *6 *7)) (-4 *3 (-848)) (-4 *7 (-947 *2 *4 (-862 *5))))) (-3792 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-642 (-1173))) (-4 *2 (-172)) (-4 *3 (-238 (-2158 *4) (-769))) (-14 *6 (-1 (-112) (-2 (|:| -2065 *5) (|:| -2817 *3)) (-2 (|:| -2065 *5) (|:| -2817 *3)))) (-5 *1 (-461 *4 *2 *5 *3 *6 *7)) (-4 *5 (-848)) (-4 *7 (-947 *2 *3 (-862 *4)))))) -(-13 (-715 |#6|) (-715 |#2|) (-10 -8 (-15 -2523 (|#2| $)) (-15 -2510 ((-711 |#3| |#4| |#5|) $)) (-15 -3567 (|#4| $)) (-15 -2991 (|#3| $)) (-15 -3459 ($ $)) (-15 -2374 ($ |#2| (-711 |#3| |#4| |#5|))) (-15 -2072 ($ |#3|)) (-15 -2860 ($ |#2| |#3| |#4|)) (-15 -3792 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) -((-2273 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39))) -(((-462 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2273 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-791) (-848) (-556) (-947 |#3| |#1| |#2|) (-13 (-1036 (-407 (-564))) (-363) (-10 -8 (-15 -2390 ($ |#4|)) (-15 -4120 (|#4| $)) (-15 -4131 (|#4| $))))) (T -462)) -((-2273 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-848)) (-4 *5 (-791)) (-4 *6 (-556)) (-4 *7 (-947 *6 *5 *3)) (-5 *1 (-462 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1036 (-407 (-564))) (-363) (-10 -8 (-15 -2390 ($ *7)) (-15 -4120 (*7 $)) (-15 -4131 (*7 $)))))))) -(-10 -7 (-15 -2273 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) -((-2856 (((-112) $ $) NIL)) (-2397 (((-642 |#3|) $) 41)) (-3646 (((-112) $) NIL)) (-4074 (((-112) $) NIL (|has| |#1| (-556)))) (-3191 (((-2 (|:| |under| $) (|:| -2795 $) (|:| |upper| $)) $ |#3|) NIL)) (-3442 (((-112) $ (-769)) NIL)) (-3437 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4410)))) (-2822 (($) NIL T CONST)) (-3013 (((-112) $) NIL (|has| |#1| (-556)))) (-3936 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2133 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2967 (((-112) $) NIL (|has| |#1| (-556)))) (-2632 (((-642 |#4|) (-642 |#4|) $) NIL (|has| |#1| (-556)))) (-1419 (((-642 |#4|) (-642 |#4|) $) NIL (|has| |#1| (-556)))) (-2849 (((-3 $ "failed") (-642 |#4|)) 49)) (-1687 (($ (-642 |#4|)) NIL)) (-4067 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#4| (-1097))))) (-2517 (($ |#4| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#4| (-1097)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4410)))) (-1992 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-3741 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4410)) (|has| |#4| (-1097)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4410))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4410)))) (-2018 (((-642 |#4|) $) 18 (|has| $ (-6 -4410)))) (-1715 ((|#3| $) 47)) (-3769 (((-112) $ (-769)) NIL)) (-3541 (((-642 |#4|) $) 14 (|has| $ (-6 -4410)))) (-2533 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4410)) (|has| |#4| (-1097))))) (-1857 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#4| |#4|) $) 21)) (-1896 (((-642 |#3|) $) NIL)) (-3935 (((-112) |#3| $) NIL)) (-4145 (((-112) $ (-769)) NIL)) (-1778 (((-1155) $) NIL)) (-1699 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-3999 (((-1117) $) NIL)) (-3183 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4094 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 |#4|) (-642 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ (-642 (-294 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097))))) (-2478 (((-112) $ $) NIL)) (-4109 (((-112) $) 39)) (-2179 (($) 17)) (-4010 (((-769) |#4| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#4| (-1097)))) (((-769) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4410)))) (-3865 (($ $) 16)) (-3003 (((-536) $) NIL (|has| |#4| (-612 (-536)))) (($ (-642 |#4|)) 51)) (-2401 (($ (-642 |#4|)) 13)) (-2942 (($ $ |#3|) NIL)) (-1710 (($ $ |#3|) NIL)) (-4283 (($ $ |#3|) NIL)) (-2390 (((-860) $) 38) (((-642 |#4|) $) 50)) (-1600 (((-112) $ $) NIL)) (-3295 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4410)))) (-2821 (((-112) $ $) 30)) (-2158 (((-769) $) NIL (|has| $ (-6 -4410))))) -(((-463 |#1| |#2| |#3| |#4|) (-13 (-974 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3003 ($ (-642 |#4|))) (-6 -4410) (-6 -4411))) (-1047) (-791) (-848) (-1062 |#1| |#2| |#3|)) (T -463)) -((-3003 (*1 *1 *2) (-12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-463 *3 *4 *5 *6))))) -(-13 (-974 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3003 ($ (-642 |#4|))) (-6 -4410) (-6 -4411))) -((-2361 (($) 11)) (-2371 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) -(((-464 |#1| |#2| |#3|) (-10 -8 (-15 -2371 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2361 (|#1|))) (-465 |#2| |#3|) (-172) (-23)) (T -464)) -NIL -(-10 -8 (-15 -2371 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2361 (|#1|))) -((-2856 (((-112) $ $) 7)) (-2849 (((-3 |#1| "failed") $) 27)) (-1687 ((|#1| $) 28)) (-3506 (($ $ $) 24)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-3252 ((|#2| $) 20)) (-2390 (((-860) $) 12) (($ |#1|) 26)) (-1600 (((-112) $ $) 9)) (-2361 (($) 19 T CONST)) (-2371 (($) 25 T CONST)) (-2821 (((-112) $ $) 6)) (-2930 (($ $) 16) (($ $ $) 14)) (-2917 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17))) -(((-465 |#1| |#2|) (-140) (-172) (-23)) (T -465)) -((-2371 (*1 *1) (-12 (-4 *1 (-465 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-3506 (*1 *1 *1 *1) (-12 (-4 *1 (-465 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))) -(-13 (-470 |t#1| |t#2|) (-1036 |t#1|) (-10 -8 (-15 (-2371) ($) -1551) (-15 -3506 ($ $ $)))) -(((-102) . T) ((-614 |#1|) . T) ((-611 (-860)) . T) ((-470 |#1| |#2|) . T) ((-1036 |#1|) . T) ((-1097) . T)) -((-2360 (((-1262 (-1262 (-564))) (-1262 (-1262 (-564))) (-919)) 29)) (-3138 (((-1262 (-1262 (-564))) (-919)) 24))) -(((-466) (-10 -7 (-15 -2360 ((-1262 (-1262 (-564))) (-1262 (-1262 (-564))) (-919))) (-15 -3138 ((-1262 (-1262 (-564))) (-919))))) (T -466)) -((-3138 (*1 *2 *3) (-12 (-5 *3 (-919)) (-5 *2 (-1262 (-1262 (-564)))) (-5 *1 (-466)))) (-2360 (*1 *2 *2 *3) (-12 (-5 *2 (-1262 (-1262 (-564)))) (-5 *3 (-919)) (-5 *1 (-466))))) -(-10 -7 (-15 -2360 ((-1262 (-1262 (-564))) (-1262 (-1262 (-564))) (-919))) (-15 -3138 ((-1262 (-1262 (-564))) (-919)))) -((-2048 (((-564) (-564)) 32) (((-564)) 24)) (-4071 (((-564) (-564)) 28) (((-564)) 20)) (-3374 (((-564) (-564)) 30) (((-564)) 22)) (-2713 (((-112) (-112)) 14) (((-112)) 12)) (-4174 (((-112) (-112)) 13) (((-112)) 11)) (-4040 (((-112) (-112)) 26) (((-112)) 17))) -(((-467) (-10 -7 (-15 -4174 ((-112))) (-15 -2713 ((-112))) (-15 -4174 ((-112) (-112))) (-15 -2713 ((-112) (-112))) (-15 -4040 ((-112))) (-15 -3374 ((-564))) (-15 -4071 ((-564))) (-15 -2048 ((-564))) (-15 -4040 ((-112) (-112))) (-15 -3374 ((-564) (-564))) (-15 -4071 ((-564) (-564))) (-15 -2048 ((-564) (-564))))) (T -467)) -((-2048 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) (-4071 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) (-3374 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) (-4040 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) (-2048 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) (-4071 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) (-3374 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) (-4040 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) (-2713 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) (-4174 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) (-2713 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) (-4174 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467))))) -(-10 -7 (-15 -4174 ((-112))) (-15 -2713 ((-112))) (-15 -4174 ((-112) (-112))) (-15 -2713 ((-112) (-112))) (-15 -4040 ((-112))) (-15 -3374 ((-564))) (-15 -4071 ((-564))) (-15 -2048 ((-564))) (-15 -4040 ((-112) (-112))) (-15 -3374 ((-564) (-564))) (-15 -4071 ((-564) (-564))) (-15 -2048 ((-564) (-564)))) -((-2856 (((-112) $ $) NIL)) (-3036 (((-642 (-379)) $) 34) (((-642 (-379)) $ (-642 (-379))) 146)) (-4196 (((-642 (-1091 (-379))) $) 16) (((-642 (-1091 (-379))) $ (-642 (-1091 (-379)))) 142)) (-3609 (((-642 (-642 (-941 (-225)))) (-642 (-642 (-941 (-225)))) (-642 (-872))) 58)) (-2521 (((-642 (-642 (-941 (-225)))) $) 137)) (-3148 (((-1267) $ (-941 (-225)) (-872)) 163)) (-1514 (($ $) 136) (($ (-642 (-642 (-941 (-225))))) 149) (($ (-642 (-642 (-941 (-225)))) (-642 (-872)) (-642 (-872)) (-642 (-919))) 148) (($ (-642 (-642 (-941 (-225)))) (-642 (-872)) (-642 (-872)) (-642 (-919)) (-642 (-263))) 150)) (-1778 (((-1155) $) NIL)) (-1914 (((-564) $) 110)) (-3999 (((-1117) $) NIL)) (-3065 (($) 147)) (-3099 (((-642 (-225)) (-642 (-642 (-941 (-225))))) 89)) (-3230 (((-1267) $ (-642 (-941 (-225))) (-872) (-872) (-919)) 155) (((-1267) $ (-941 (-225))) 157) (((-1267) $ (-941 (-225)) (-872) (-872) (-919)) 156)) (-2390 (((-860) $) 169) (($ (-642 (-642 (-941 (-225))))) 164)) (-1600 (((-112) $ $) NIL)) (-1716 (((-1267) $ (-941 (-225))) 162)) (-2821 (((-112) $ $) NIL))) -(((-468) (-13 (-1097) (-10 -8 (-15 -3065 ($)) (-15 -1514 ($ $)) (-15 -1514 ($ (-642 (-642 (-941 (-225)))))) (-15 -1514 ($ (-642 (-642 (-941 (-225)))) (-642 (-872)) (-642 (-872)) (-642 (-919)))) (-15 -1514 ($ (-642 (-642 (-941 (-225)))) (-642 (-872)) (-642 (-872)) (-642 (-919)) (-642 (-263)))) (-15 -2521 ((-642 (-642 (-941 (-225)))) $)) (-15 -1914 ((-564) $)) (-15 -4196 ((-642 (-1091 (-379))) $)) (-15 -4196 ((-642 (-1091 (-379))) $ (-642 (-1091 (-379))))) (-15 -3036 ((-642 (-379)) $)) (-15 -3036 ((-642 (-379)) $ (-642 (-379)))) (-15 -3230 ((-1267) $ (-642 (-941 (-225))) (-872) (-872) (-919))) (-15 -3230 ((-1267) $ (-941 (-225)))) (-15 -3230 ((-1267) $ (-941 (-225)) (-872) (-872) (-919))) (-15 -1716 ((-1267) $ (-941 (-225)))) (-15 -3148 ((-1267) $ (-941 (-225)) (-872))) (-15 -2390 ($ (-642 (-642 (-941 (-225)))))) (-15 -2390 ((-860) $)) (-15 -3609 ((-642 (-642 (-941 (-225)))) (-642 (-642 (-941 (-225)))) (-642 (-872)))) (-15 -3099 ((-642 (-225)) (-642 (-642 (-941 (-225))))))))) (T -468)) -((-2390 (*1 *2 *1) (-12 (-5 *2 (-860)) (-5 *1 (-468)))) (-3065 (*1 *1) (-5 *1 (-468))) (-1514 (*1 *1 *1) (-5 *1 (-468))) (-1514 (*1 *1 *2) (-12 (-5 *2 (-642 (-642 (-941 (-225))))) (-5 *1 (-468)))) (-1514 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-642 (-642 (-941 (-225))))) (-5 *3 (-642 (-872))) (-5 *4 (-642 (-919))) (-5 *1 (-468)))) (-1514 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-642 (-642 (-941 (-225))))) (-5 *3 (-642 (-872))) (-5 *4 (-642 (-919))) (-5 *5 (-642 (-263))) (-5 *1 (-468)))) (-2521 (*1 *2 *1) (-12 (-5 *2 (-642 (-642 (-941 (-225))))) (-5 *1 (-468)))) (-1914 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-468)))) (-4196 (*1 *2 *1) (-12 (-5 *2 (-642 (-1091 (-379)))) (-5 *1 (-468)))) (-4196 (*1 *2 *1 *2) (-12 (-5 *2 (-642 (-1091 (-379)))) (-5 *1 (-468)))) (-3036 (*1 *2 *1) (-12 (-5 *2 (-642 (-379))) (-5 *1 (-468)))) (-3036 (*1 *2 *1 *2) (-12 (-5 *2 (-642 (-379))) (-5 *1 (-468)))) (-3230 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-642 (-941 (-225)))) (-5 *4 (-872)) (-5 *5 (-919)) (-5 *2 (-1267)) (-5 *1 (-468)))) (-3230 (*1 *2 *1 *3) (-12 (-5 *3 (-941 (-225))) (-5 *2 (-1267)) (-5 *1 (-468)))) (-3230 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-941 (-225))) (-5 *4 (-872)) (-5 *5 (-919)) (-5 *2 (-1267)) (-5 *1 (-468)))) (-1716 (*1 *2 *1 *3) (-12 (-5 *3 (-941 (-225))) (-5 *2 (-1267)) (-5 *1 (-468)))) (-3148 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-941 (-225))) (-5 *4 (-872)) (-5 *2 (-1267)) (-5 *1 (-468)))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-642 (-642 (-941 (-225))))) (-5 *1 (-468)))) (-3609 (*1 *2 *2 *3) (-12 (-5 *2 (-642 (-642 (-941 (-225))))) (-5 *3 (-642 (-872))) (-5 *1 (-468)))) (-3099 (*1 *2 *3) (-12 (-5 *3 (-642 (-642 (-941 (-225))))) (-5 *2 (-642 (-225))) (-5 *1 (-468))))) -(-13 (-1097) (-10 -8 (-15 -3065 ($)) (-15 -1514 ($ $)) (-15 -1514 ($ (-642 (-642 (-941 (-225)))))) (-15 -1514 ($ (-642 (-642 (-941 (-225)))) (-642 (-872)) (-642 (-872)) (-642 (-919)))) (-15 -1514 ($ (-642 (-642 (-941 (-225)))) (-642 (-872)) (-642 (-872)) (-642 (-919)) (-642 (-263)))) (-15 -2521 ((-642 (-642 (-941 (-225)))) $)) (-15 -1914 ((-564) $)) (-15 -4196 ((-642 (-1091 (-379))) $)) (-15 -4196 ((-642 (-1091 (-379))) $ (-642 (-1091 (-379))))) (-15 -3036 ((-642 (-379)) $)) (-15 -3036 ((-642 (-379)) $ (-642 (-379)))) (-15 -3230 ((-1267) $ (-642 (-941 (-225))) (-872) (-872) (-919))) (-15 -3230 ((-1267) $ (-941 (-225)))) (-15 -3230 ((-1267) $ (-941 (-225)) (-872) (-872) (-919))) (-15 -1716 ((-1267) $ (-941 (-225)))) (-15 -3148 ((-1267) $ (-941 (-225)) (-872))) (-15 -2390 ($ (-642 (-642 (-941 (-225)))))) (-15 -2390 ((-860) $)) (-15 -3609 ((-642 (-642 (-941 (-225)))) (-642 (-642 (-941 (-225)))) (-642 (-872)))) (-15 -3099 ((-642 (-225)) (-642 (-642 (-941 (-225)))))))) -((-2930 (($ $) NIL) (($ $ $) 11))) -(((-469 |#1| |#2| |#3|) (-10 -8 (-15 -2930 (|#1| |#1| |#1|)) (-15 -2930 (|#1| |#1|))) (-470 |#2| |#3|) (-172) (-23)) (T -469)) -NIL -(-10 -8 (-15 -2930 (|#1| |#1| |#1|)) (-15 -2930 (|#1| |#1|))) -((-2856 (((-112) $ $) 7)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-3252 ((|#2| $) 20)) (-2390 (((-860) $) 12)) (-1600 (((-112) $ $) 9)) (-2361 (($) 19 T CONST)) (-2821 (((-112) $ $) 6)) (-2930 (($ $) 16) (($ $ $) 14)) (-2917 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17))) -(((-470 |#1| |#2|) (-140) (-172) (-23)) (T -470)) -((-3252 (*1 *2 *1) (-12 (-4 *1 (-470 *3 *2)) (-4 *3 (-172)) (-4 *2 (-23)))) (-2361 (*1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-2930 (*1 *1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-2917 (*1 *1 *1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-2930 (*1 *1 *1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))) -(-13 (-1097) (-10 -8 (-15 -3252 (|t#2| $)) (-15 (-2361) ($) -1551) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -2930 ($ $)) (-15 -2917 ($ $ $)) (-15 -2930 ($ $ $)))) -(((-102) . T) ((-611 (-860)) . T) ((-1097) . T)) -((-1492 (((-3 (-642 (-481 |#1| |#2|)) "failed") (-642 (-481 |#1| |#2|)) (-642 (-862 |#1|))) 137)) (-2579 (((-642 (-642 (-247 |#1| |#2|))) (-642 (-247 |#1| |#2|)) (-642 (-862 |#1|))) 134)) (-3602 (((-2 (|:| |dpolys| (-642 (-247 |#1| |#2|))) (|:| |coords| (-642 (-564)))) (-642 (-247 |#1| |#2|)) (-642 (-862 |#1|))) 86))) -(((-471 |#1| |#2| |#3|) (-10 -7 (-15 -2579 ((-642 (-642 (-247 |#1| |#2|))) (-642 (-247 |#1| |#2|)) (-642 (-862 |#1|)))) (-15 -1492 ((-3 (-642 (-481 |#1| |#2|)) "failed") (-642 (-481 |#1| |#2|)) (-642 (-862 |#1|)))) (-15 -3602 ((-2 (|:| |dpolys| (-642 (-247 |#1| |#2|))) (|:| |coords| (-642 (-564)))) (-642 (-247 |#1| |#2|)) (-642 (-862 |#1|))))) (-642 (-1173)) (-452) (-452)) (T -471)) -((-3602 (*1 *2 *3 *4) (-12 (-5 *4 (-642 (-862 *5))) (-14 *5 (-642 (-1173))) (-4 *6 (-452)) (-5 *2 (-2 (|:| |dpolys| (-642 (-247 *5 *6))) (|:| |coords| (-642 (-564))))) (-5 *1 (-471 *5 *6 *7)) (-5 *3 (-642 (-247 *5 *6))) (-4 *7 (-452)))) (-1492 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-642 (-481 *4 *5))) (-5 *3 (-642 (-862 *4))) (-14 *4 (-642 (-1173))) (-4 *5 (-452)) (-5 *1 (-471 *4 *5 *6)) (-4 *6 (-452)))) (-2579 (*1 *2 *3 *4) (-12 (-5 *4 (-642 (-862 *5))) (-14 *5 (-642 (-1173))) (-4 *6 (-452)) (-5 *2 (-642 (-642 (-247 *5 *6)))) (-5 *1 (-471 *5 *6 *7)) (-5 *3 (-642 (-247 *5 *6))) (-4 *7 (-452))))) -(-10 -7 (-15 -2579 ((-642 (-642 (-247 |#1| |#2|))) (-642 (-247 |#1| |#2|)) (-642 (-862 |#1|)))) (-15 -1492 ((-3 (-642 (-481 |#1| |#2|)) "failed") (-642 (-481 |#1| |#2|)) (-642 (-862 |#1|)))) (-15 -3602 ((-2 (|:| |dpolys| (-642 (-247 |#1| |#2|))) (|:| |coords| (-642 (-564)))) (-642 (-247 |#1| |#2|)) (-642 (-862 |#1|))))) -((-2675 (((-3 $ "failed") $) 11)) (-1736 (($ $ $) 23)) (-2402 (($ $ $) 24)) (-2943 (($ $ $) 9)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) 22))) -(((-472 |#1|) (-10 -8 (-15 -2402 (|#1| |#1| |#1|)) (-15 -1736 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-564))) (-15 -2943 (|#1| |#1| |#1|)) (-15 -2675 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-769))) (-15 ** (|#1| |#1| (-919)))) (-473)) (T -472)) -NIL -(-10 -8 (-15 -2402 (|#1| |#1| |#1|)) (-15 -1736 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-564))) (-15 -2943 (|#1| |#1| |#1|)) (-15 -2675 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-769))) (-15 ** (|#1| |#1| (-919)))) -((-2856 (((-112) $ $) 7)) (-2822 (($) 19 T CONST)) (-2675 (((-3 $ "failed") $) 16)) (-3163 (((-112) $) 18)) (-1778 (((-1155) $) 10)) (-2481 (($ $) 25)) (-3999 (((-1117) $) 11)) (-1736 (($ $ $) 22)) (-2402 (($ $ $) 21)) (-2390 (((-860) $) 12)) (-1600 (((-112) $ $) 9)) (-2371 (($) 20 T CONST)) (-2821 (((-112) $ $) 6)) (-2943 (($ $ $) 24)) (** (($ $ (-919)) 14) (($ $ (-769)) 17) (($ $ (-564)) 23)) (* (($ $ $) 15))) -(((-473) (-140)) (T -473)) -((-2481 (*1 *1 *1) (-4 *1 (-473))) (-2943 (*1 *1 *1 *1) (-4 *1 (-473))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-473)) (-5 *2 (-564)))) (-1736 (*1 *1 *1 *1) (-4 *1 (-473))) (-2402 (*1 *1 *1 *1) (-4 *1 (-473)))) -(-13 (-724) (-10 -8 (-15 -2481 ($ $)) (-15 -2943 ($ $ $)) (-15 ** ($ $ (-564))) (-6 -4407) (-15 -1736 ($ $ $)) (-15 -2402 ($ $ $)))) -(((-102) . T) ((-611 (-860)) . T) ((-724) . T) ((-1109) . T) ((-1097) . T)) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-2397 (((-642 (-1079)) $) NIL)) (-1341 (((-1173) $) 18)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-4252 (($ $) NIL (|has| |#1| (-556)))) (-1722 (((-112) $) NIL (|has| |#1| (-556)))) (-2180 (($ $ (-407 (-564))) NIL) (($ $ (-407 (-564)) (-407 (-564))) NIL)) (-4077 (((-1153 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|))) $) NIL)) (-3087 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2958 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3085 (((-3 $ "failed") $ $) NIL)) (-1993 (($ $) NIL (|has| |#1| (-363)))) (-3282 (((-418 $) $) NIL (|has| |#1| (-363)))) (-2264 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2134 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3067 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2933 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3182 (($ (-769) (-1153 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|)))) NIL)) (-3110 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2981 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2822 (($) NIL T CONST)) (-2796 (($ $ $) NIL (|has| |#1| (-363)))) (-3459 (($ $) NIL)) (-2675 (((-3 $ "failed") $) NIL)) (-2808 (($ $ $) NIL (|has| |#1| (-363)))) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) NIL (|has| |#1| (-363)))) (-3552 (((-112) $) NIL (|has| |#1| (-363)))) (-2210 (((-112) $) NIL)) (-2833 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2408 (((-407 (-564)) $) NIL) (((-407 (-564)) $ (-407 (-564))) NIL)) (-3163 (((-112) $) NIL)) (-2024 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2157 (($ $ (-919)) NIL) (($ $ (-407 (-564))) NIL)) (-2709 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#1| (-363)))) (-3471 (((-112) $) NIL)) (-2374 (($ |#1| (-407 (-564))) NIL) (($ $ (-1079) (-407 (-564))) NIL) (($ $ (-642 (-1079)) (-642 (-407 (-564)))) NIL)) (-2947 (($ (-1 |#1| |#1|) $) 25)) (-3576 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2510 (($ $) NIL)) (-2523 ((|#1| $) NIL)) (-2066 (($ (-642 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-1778 (((-1155) $) NIL)) (-2481 (($ $) NIL (|has| |#1| (-363)))) (-3703 (($ $) 29 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1173)) 35 (-2682 (-12 (|has| |#1| (-15 -3703 (|#1| |#1| (-1173)))) (|has| |#1| (-15 -2397 ((-642 (-1173)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-957)) (|has| |#1| (-1197))))) (($ $ (-1258 |#2|)) 30 (|has| |#1| (-38 (-407 (-564)))))) (-3999 (((-1117) $) NIL)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) NIL (|has| |#1| (-363)))) (-2105 (($ (-642 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2254 (((-418 $) $) NIL (|has| |#1| (-363)))) (-1877 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL (|has| |#1| (-363)))) (-2137 (($ $ (-407 (-564))) NIL)) (-2842 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-1483 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#1| (-363)))) (-3466 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3154 (((-1153 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))))) (-4274 (((-769) $) NIL (|has| |#1| (-363)))) (-4369 ((|#1| $ (-407 (-564))) NIL) (($ $ $) NIL (|has| (-407 (-564)) (-1109)))) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL (|has| |#1| (-363)))) (-2199 (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-1173) (-769)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-642 (-1173))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-1173)) 28 (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-769)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) 14 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $ (-1258 |#2|)) 16)) (-3252 (((-407 (-564)) $) NIL)) (-3120 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2992 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3098 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2971 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3077 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2946 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4189 (($ $) NIL)) (-2390 (((-860) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1258 |#2|)) NIL) (($ (-1247 |#1| |#2| |#3|)) 9) (($ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556)))) (-3005 ((|#1| $ (-407 (-564))) NIL)) (-3434 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3348 (((-769)) NIL T CONST)) (-2245 ((|#1| $) 21)) (-1600 (((-112) $ $) NIL)) (-3155 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3025 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1594 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3131 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3002 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3176 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3047 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3560 ((|#1| $ (-407 (-564))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))) (|has| |#1| (-15 -2390 (|#1| (-1173))))))) (-3165 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3058 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3168 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3035 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3142 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3014 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2361 (($) NIL T CONST)) (-2371 (($) NIL T CONST)) (-2711 (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-1173) (-769)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-642 (-1173))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-1173)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-769)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-2821 (((-112) $ $) NIL)) (-2943 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2930 (($ $) NIL) (($ $ $) 27)) (-2917 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 26) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))))) -(((-474 |#1| |#2| |#3|) (-13 (-1243 |#1|) (-10 -8 (-15 -2390 ($ (-1258 |#2|))) (-15 -2390 ($ (-1247 |#1| |#2| |#3|))) (-15 -2199 ($ $ (-1258 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3703 ($ $ (-1258 |#2|))) |%noBranch|))) (-1047) (-1173) |#1|) (T -474)) -((-2390 (*1 *1 *2) (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-474 *3 *4 *5)) (-4 *3 (-1047)) (-14 *5 *3))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-1247 *3 *4 *5)) (-4 *3 (-1047)) (-14 *4 (-1173)) (-14 *5 *3) (-5 *1 (-474 *3 *4 *5)))) (-2199 (*1 *1 *1 *2) (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-474 *3 *4 *5)) (-4 *3 (-1047)) (-14 *5 *3))) (-3703 (*1 *1 *1 *2) (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-474 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1047)) (-14 *5 *3)))) -(-13 (-1243 |#1|) (-10 -8 (-15 -2390 ($ (-1258 |#2|))) (-15 -2390 ($ (-1247 |#1| |#2| |#3|))) (-15 -2199 ($ $ (-1258 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3703 ($ $ (-1258 |#2|))) |%noBranch|))) -((-2856 (((-112) $ $) NIL (-2682 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-4222 (($) NIL) (($ (-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) NIL)) (-3633 (((-1267) $ |#1| |#1|) NIL (|has| $ (-6 -4411)))) (-3442 (((-112) $ (-769)) NIL)) (-3841 ((|#2| $ |#1| |#2|) 18)) (-2438 (($ (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-3437 (($ (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-2295 (((-3 |#2| "failed") |#1| $) 19)) (-2822 (($) NIL T CONST)) (-4067 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097))))) (-1927 (($ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) NIL (|has| $ (-6 -4410))) (($ (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-3 |#2| "failed") |#1| $) 16)) (-2517 (($ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (($ (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-3741 (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) NIL (|has| $ (-6 -4410))) (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-3105 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4411)))) (-1804 ((|#2| $ |#1|) NIL)) (-2018 (((-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-642 |#2|) $) NIL (|has| $ (-6 -4410)))) (-3769 (((-112) $ (-769)) NIL)) (-1802 ((|#1| $) NIL (|has| |#1| (-848)))) (-3541 (((-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-642 |#2|) $) NIL (|has| $ (-6 -4410)))) (-2533 (((-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097))))) (-3624 ((|#1| $) NIL (|has| |#1| (-848)))) (-1857 (($ (-1 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4411))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4411)))) (-2947 (($ (-1 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4145 (((-112) $ (-769)) NIL)) (-1778 (((-1155) $) NIL (-2682 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-3287 (((-642 |#1|) $) NIL)) (-2145 (((-112) |#1| $) NIL)) (-3220 (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) NIL)) (-1668 (($ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) NIL)) (-4107 (((-642 |#1|) $) NIL)) (-4207 (((-112) |#1| $) NIL)) (-3999 (((-1117) $) NIL (-2682 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-4036 ((|#2| $) NIL (|has| |#1| (-848)))) (-3183 (((-3 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) "failed") (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL)) (-3826 (($ $ |#2|) NIL (|has| $ (-6 -4411)))) (-4314 (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) NIL)) (-4094 (((-112) (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))))) NIL (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (($ $ (-294 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) NIL (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (($ $ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) NIL (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (($ $ (-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) (-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) NIL (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (($ $ (-642 |#2|) (-642 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-642 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))))) (-2478 (((-112) $ $) NIL)) (-1643 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097))))) (-3522 (((-642 |#2|) $) NIL)) (-4109 (((-112) $) NIL)) (-2179 (($) NIL)) (-4369 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-2318 (($) NIL) (($ (-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) NIL)) (-4010 (((-769) (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-769) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (((-769) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097)))) (((-769) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410)))) (-3865 (($ $) NIL)) (-3003 (((-536) $) NIL (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-612 (-536))))) (-2401 (($ (-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) NIL)) (-2390 (((-860) $) NIL (-2682 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-611 (-860))) (|has| |#2| (-611 (-860)))))) (-1600 (((-112) $ $) NIL (-2682 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-4160 (($ (-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) NIL)) (-3295 (((-112) (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410)))) (-2821 (((-112) $ $) NIL (-2682 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-2158 (((-769) $) NIL (|has| $ (-6 -4410))))) -(((-475 |#1| |#2| |#3| |#4|) (-1188 |#1| |#2|) (-1097) (-1097) (-1188 |#1| |#2|) |#2|) (T -475)) -NIL -(-1188 |#1| |#2|) -((-2856 (((-112) $ $) NIL)) (-1466 (((-642 (-2 (|:| -1616 $) (|:| -3406 (-642 |#4|)))) (-642 |#4|)) NIL)) (-3076 (((-642 $) (-642 |#4|)) NIL)) (-2397 (((-642 |#3|) $) NIL)) (-3646 (((-112) $) NIL)) (-4074 (((-112) $) NIL (|has| |#1| (-556)))) (-4334 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2937 ((|#4| |#4| $) NIL)) (-3191 (((-2 (|:| |under| $) (|:| -2795 $) (|:| |upper| $)) $ |#3|) NIL)) (-3442 (((-112) $ (-769)) NIL)) (-3437 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4410))) (((-3 |#4| "failed") $ |#3|) NIL)) (-2822 (($) NIL T CONST)) (-3013 (((-112) $) 29 (|has| |#1| (-556)))) (-3936 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2133 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2967 (((-112) $) NIL (|has| |#1| (-556)))) (-3720 (((-642 |#4|) (-642 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2632 (((-642 |#4|) (-642 |#4|) $) NIL (|has| |#1| (-556)))) (-1419 (((-642 |#4|) (-642 |#4|) $) NIL (|has| |#1| (-556)))) (-2849 (((-3 $ "failed") (-642 |#4|)) NIL)) (-1687 (($ (-642 |#4|)) NIL)) (-4050 (((-3 $ "failed") $) 45)) (-2398 ((|#4| |#4| $) NIL)) (-4067 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#4| (-1097))))) (-2517 (($ |#4| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#4| (-1097)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4410)))) (-1992 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-3762 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3978 ((|#4| |#4| $) NIL)) (-3741 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4410)) (|has| |#4| (-1097)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4410))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4410))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1750 (((-2 (|:| -1616 (-642 |#4|)) (|:| -3406 (-642 |#4|))) $) NIL)) (-2018 (((-642 |#4|) $) 18 (|has| $ (-6 -4410)))) (-3303 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1715 ((|#3| $) 38)) (-3769 (((-112) $ (-769)) NIL)) (-3541 (((-642 |#4|) $) 19 (|has| $ (-6 -4410)))) (-2533 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4410)) (|has| |#4| (-1097))))) (-1857 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#4| |#4|) $) 23)) (-1896 (((-642 |#3|) $) NIL)) (-3935 (((-112) |#3| $) NIL)) (-4145 (((-112) $ (-769)) NIL)) (-1778 (((-1155) $) NIL)) (-2534 (((-3 |#4| "failed") $) 42)) (-2206 (((-642 |#4|) $) NIL)) (-3673 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4090 ((|#4| |#4| $) NIL)) (-3119 (((-112) $ $) NIL)) (-1699 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-4354 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3750 ((|#4| |#4| $) NIL)) (-3999 (((-1117) $) NIL)) (-4036 (((-3 |#4| "failed") $) 40)) (-3183 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2465 (((-3 $ "failed") $ |#4|) 58)) (-2137 (($ $ |#4|) NIL)) (-4094 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 |#4|) (-642 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ (-642 (-294 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097))))) (-2478 (((-112) $ $) NIL)) (-4109 (((-112) $) 17)) (-2179 (($) 14)) (-3252 (((-769) $) NIL)) (-4010 (((-769) |#4| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#4| (-1097)))) (((-769) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4410)))) (-3865 (($ $) 13)) (-3003 (((-536) $) NIL (|has| |#4| (-612 (-536))))) (-2401 (($ (-642 |#4|)) 22)) (-2942 (($ $ |#3|) 52)) (-1710 (($ $ |#3|) 54)) (-2204 (($ $) NIL)) (-4283 (($ $ |#3|) NIL)) (-2390 (((-860) $) 35) (((-642 |#4|) $) 46)) (-2621 (((-769) $) NIL (|has| |#3| (-368)))) (-1600 (((-112) $ $) NIL)) (-4150 (((-3 (-2 (|:| |bas| $) (|:| -3844 (-642 |#4|))) "failed") (-642 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3844 (-642 |#4|))) "failed") (-642 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2205 (((-112) $ (-1 (-112) |#4| (-642 |#4|))) NIL)) (-3295 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4410)))) (-1644 (((-642 |#3|) $) NIL)) (-4127 (((-112) |#3| $) NIL)) (-2821 (((-112) $ $) NIL)) (-2158 (((-769) $) NIL (|has| $ (-6 -4410))))) -(((-476 |#1| |#2| |#3| |#4|) (-1205 |#1| |#2| |#3| |#4|) (-556) (-791) (-848) (-1062 |#1| |#2| |#3|)) (T -476)) -NIL -(-1205 |#1| |#2| |#3| |#4|) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-4252 (($ $) NIL)) (-1722 (((-112) $) NIL)) (-3085 (((-3 $ "failed") $ $) NIL)) (-1993 (($ $) NIL)) (-3282 (((-418 $) $) NIL)) (-2134 (((-112) $ $) NIL)) (-2822 (($) NIL T CONST)) (-2849 (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL)) (-1687 (((-564) $) NIL) (((-407 (-564)) $) NIL)) (-2796 (($ $ $) NIL)) (-2675 (((-3 $ "failed") $) NIL)) (-2808 (($ $ $) NIL)) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) NIL)) (-3552 (((-112) $) NIL)) (-2833 (($) 17)) (-3163 (((-112) $) NIL)) (-2709 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2066 (($ $ $) NIL) (($ (-642 $)) NIL)) (-1778 (((-1155) $) NIL)) (-2481 (($ $) NIL)) (-3999 (((-1117) $) NIL)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2105 (($ $ $) NIL) (($ (-642 $)) NIL)) (-2254 (((-418 $) $) NIL)) (-1877 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2842 (((-3 $ "failed") $ $) NIL)) (-1483 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-4274 (((-769) $) NIL)) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL)) (-3003 (((-379) $) 21) (((-225) $) 24) (((-407 (-1169 (-564))) $) 18) (((-536) $) 53)) (-2390 (((-860) $) 51) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (((-225) $) 23) (((-379) $) 20)) (-3348 (((-769)) NIL T CONST)) (-1600 (((-112) $ $) NIL)) (-1594 (((-112) $ $) NIL)) (-2361 (($) 37 T CONST)) (-2371 (($) 8 T CONST)) (-2821 (((-112) $ $) NIL)) (-2943 (($ $ $) NIL)) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL))) -(((-477) (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564))) (-1020) (-611 (-225)) (-611 (-379)) (-612 (-407 (-1169 (-564)))) (-612 (-536)) (-10 -8 (-15 -2833 ($))))) (T -477)) -((-2833 (*1 *1) (-5 *1 (-477)))) -(-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564))) (-1020) (-611 (-225)) (-611 (-379)) (-612 (-407 (-1169 (-564)))) (-612 (-536)) (-10 -8 (-15 -2833 ($)))) -((-2856 (((-112) $ $) NIL)) (-3199 (((-1132) $) 11)) (-3187 (((-1132) $) 9)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) 17) (($ (-1178)) NIL) (((-1178) $) NIL)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-478) (-13 (-1080) (-10 -8 (-15 -3187 ((-1132) $)) (-15 -3199 ((-1132) $))))) (T -478)) -((-3187 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-478)))) (-3199 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-478))))) -(-13 (-1080) (-10 -8 (-15 -3187 ((-1132) $)) (-15 -3199 ((-1132) $)))) -((-2856 (((-112) $ $) NIL (-2682 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-4222 (($) NIL) (($ (-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) NIL)) (-3633 (((-1267) $ |#1| |#1|) NIL (|has| $ (-6 -4411)))) (-3442 (((-112) $ (-769)) NIL)) (-3841 ((|#2| $ |#1| |#2|) 16)) (-2438 (($ (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-3437 (($ (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-2295 (((-3 |#2| "failed") |#1| $) 20)) (-2822 (($) NIL T CONST)) (-4067 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097))))) (-1927 (($ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) NIL (|has| $ (-6 -4410))) (($ (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-3 |#2| "failed") |#1| $) 18)) (-2517 (($ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (($ (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-3741 (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) NIL (|has| $ (-6 -4410))) (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-3105 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4411)))) (-1804 ((|#2| $ |#1|) NIL)) (-2018 (((-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-642 |#2|) $) NIL (|has| $ (-6 -4410)))) (-3769 (((-112) $ (-769)) NIL)) (-1802 ((|#1| $) NIL (|has| |#1| (-848)))) (-3541 (((-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-642 |#2|) $) NIL (|has| $ (-6 -4410)))) (-2533 (((-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097))))) (-3624 ((|#1| $) NIL (|has| |#1| (-848)))) (-1857 (($ (-1 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4411))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4411)))) (-2947 (($ (-1 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4145 (((-112) $ (-769)) NIL)) (-1778 (((-1155) $) NIL (-2682 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-3287 (((-642 |#1|) $) 13)) (-2145 (((-112) |#1| $) NIL)) (-3220 (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) NIL)) (-1668 (($ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) NIL)) (-4107 (((-642 |#1|) $) NIL)) (-4207 (((-112) |#1| $) NIL)) (-3999 (((-1117) $) NIL (-2682 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-4036 ((|#2| $) NIL (|has| |#1| (-848)))) (-3183 (((-3 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) "failed") (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL)) (-3826 (($ $ |#2|) NIL (|has| $ (-6 -4411)))) (-4314 (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) NIL)) (-4094 (((-112) (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))))) NIL (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (($ $ (-294 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) NIL (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (($ $ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) NIL (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (($ $ (-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) (-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) NIL (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (($ $ (-642 |#2|) (-642 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-642 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))))) (-2478 (((-112) $ $) NIL)) (-1643 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097))))) (-3522 (((-642 |#2|) $) NIL)) (-4109 (((-112) $) NIL)) (-2179 (($) 19)) (-4369 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2318 (($) NIL) (($ (-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) NIL)) (-4010 (((-769) (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-769) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (((-769) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097)))) (((-769) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410)))) (-3865 (($ $) NIL)) (-3003 (((-536) $) NIL (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-612 (-536))))) (-2401 (($ (-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) NIL)) (-2390 (((-860) $) NIL (-2682 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-611 (-860))) (|has| |#2| (-611 (-860)))))) (-1600 (((-112) $ $) NIL (-2682 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-4160 (($ (-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) NIL)) (-3295 (((-112) (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410)))) (-2821 (((-112) $ $) 11 (-2682 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-2158 (((-769) $) 15 (|has| $ (-6 -4410))))) -(((-479 |#1| |#2| |#3|) (-13 (-1188 |#1| |#2|) (-10 -7 (-6 -4410))) (-1097) (-1097) (-1155)) (T -479)) -NIL -(-13 (-1188 |#1| |#2|) (-10 -7 (-6 -4410))) -((-2907 (((-564) (-564) (-564)) 19)) (-3429 (((-112) (-564) (-564) (-564) (-564)) 28)) (-3357 (((-1262 (-642 (-564))) (-769) (-769)) 44))) -(((-480) (-10 -7 (-15 -2907 ((-564) (-564) (-564))) (-15 -3429 ((-112) (-564) (-564) (-564) (-564))) (-15 -3357 ((-1262 (-642 (-564))) (-769) (-769))))) (T -480)) -((-3357 (*1 *2 *3 *3) (-12 (-5 *3 (-769)) (-5 *2 (-1262 (-642 (-564)))) (-5 *1 (-480)))) (-3429 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-564)) (-5 *2 (-112)) (-5 *1 (-480)))) (-2907 (*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-480))))) -(-10 -7 (-15 -2907 ((-564) (-564) (-564))) (-15 -3429 ((-112) (-564) (-564) (-564) (-564))) (-15 -3357 ((-1262 (-642 (-564))) (-769) (-769)))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-2397 (((-642 (-862 |#1|)) $) NIL)) (-2223 (((-1169 $) $ (-862 |#1|)) NIL) (((-1169 |#2|) $) NIL)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (|has| |#2| (-556)))) (-4252 (($ $) NIL (|has| |#2| (-556)))) (-1722 (((-112) $) NIL (|has| |#2| (-556)))) (-4035 (((-769) $) NIL) (((-769) $ (-642 (-862 |#1|))) NIL)) (-3085 (((-3 $ "failed") $ $) NIL)) (-4297 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#2| (-907)))) (-1993 (($ $) NIL (|has| |#2| (-452)))) (-3282 (((-418 $) $) NIL (|has| |#2| (-452)))) (-3267 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) NIL (|has| |#2| (-907)))) (-2822 (($) NIL T CONST)) (-2849 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1036 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#2| (-1036 (-564)))) (((-3 (-862 |#1|) "failed") $) NIL)) (-1687 ((|#2| $) NIL) (((-407 (-564)) $) NIL (|has| |#2| (-1036 (-407 (-564))))) (((-564) $) NIL (|has| |#2| (-1036 (-564)))) (((-862 |#1|) $) NIL)) (-3710 (($ $ $ (-862 |#1|)) NIL (|has| |#2| (-172)))) (-1747 (($ $ (-642 (-564))) NIL)) (-3459 (($ $) NIL)) (-3330 (((-687 (-564)) (-687 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -3544 (-687 |#2|)) (|:| |vec| (-1262 |#2|))) (-687 $) (-1262 $)) NIL) (((-687 |#2|) (-687 $)) NIL)) (-2675 (((-3 $ "failed") $) NIL)) (-2511 (($ $) NIL (|has| |#2| (-452))) (($ $ (-862 |#1|)) NIL (|has| |#2| (-452)))) (-3446 (((-642 $) $) NIL)) (-3552 (((-112) $) NIL (|has| |#2| (-907)))) (-2315 (($ $ |#2| (-482 (-2158 |#1|) (-769)) $) NIL)) (-1381 (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) NIL (-12 (|has| (-862 |#1|) (-884 (-379))) (|has| |#2| (-884 (-379))))) (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) NIL (-12 (|has| (-862 |#1|) (-884 (-564))) (|has| |#2| (-884 (-564)))))) (-3163 (((-112) $) NIL)) (-1904 (((-769) $) NIL)) (-2387 (($ (-1169 |#2|) (-862 |#1|)) NIL) (($ (-1169 $) (-862 |#1|)) NIL)) (-1995 (((-642 $) $) NIL)) (-3471 (((-112) $) NIL)) (-2374 (($ |#2| (-482 (-2158 |#1|) (-769))) NIL) (($ $ (-862 |#1|) (-769)) NIL) (($ $ (-642 (-862 |#1|)) (-642 (-769))) NIL)) (-3312 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $ (-862 |#1|)) NIL)) (-2887 (((-482 (-2158 |#1|) (-769)) $) NIL) (((-769) $ (-862 |#1|)) NIL) (((-642 (-769)) $ (-642 (-862 |#1|))) NIL)) (-3879 (($ (-1 (-482 (-2158 |#1|) (-769)) (-482 (-2158 |#1|) (-769))) $) NIL)) (-2947 (($ (-1 |#2| |#2|) $) NIL)) (-1557 (((-3 (-862 |#1|) "failed") $) NIL)) (-2510 (($ $) NIL)) (-2523 ((|#2| $) NIL)) (-2066 (($ (-642 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-1778 (((-1155) $) NIL)) (-3664 (((-3 (-642 $) "failed") $) NIL)) (-4315 (((-3 (-642 $) "failed") $) NIL)) (-3177 (((-3 (-2 (|:| |var| (-862 |#1|)) (|:| -2817 (-769))) "failed") $) NIL)) (-3999 (((-1117) $) NIL)) (-2491 (((-112) $) NIL)) (-2500 ((|#2| $) NIL)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) NIL (|has| |#2| (-452)))) (-2105 (($ (-642 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-3223 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#2| (-907)))) (-2236 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#2| (-907)))) (-2254 (((-418 $) $) NIL (|has| |#2| (-907)))) (-2842 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-556)))) (-3154 (($ $ (-642 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-642 $) (-642 $)) NIL) (($ $ (-862 |#1|) |#2|) NIL) (($ $ (-642 (-862 |#1|)) (-642 |#2|)) NIL) (($ $ (-862 |#1|) $) NIL) (($ $ (-642 (-862 |#1|)) (-642 $)) NIL)) (-2790 (($ $ (-862 |#1|)) NIL (|has| |#2| (-172)))) (-2199 (($ $ (-862 |#1|)) NIL) (($ $ (-642 (-862 |#1|))) NIL) (($ $ (-862 |#1|) (-769)) NIL) (($ $ (-642 (-862 |#1|)) (-642 (-769))) NIL)) (-3252 (((-482 (-2158 |#1|) (-769)) $) NIL) (((-769) $ (-862 |#1|)) NIL) (((-642 (-769)) $ (-642 (-862 |#1|))) NIL)) (-3003 (((-890 (-379)) $) NIL (-12 (|has| (-862 |#1|) (-612 (-890 (-379)))) (|has| |#2| (-612 (-890 (-379)))))) (((-890 (-564)) $) NIL (-12 (|has| (-862 |#1|) (-612 (-890 (-564)))) (|has| |#2| (-612 (-890 (-564)))))) (((-536) $) NIL (-12 (|has| (-862 |#1|) (-612 (-536))) (|has| |#2| (-612 (-536)))))) (-4325 ((|#2| $) NIL (|has| |#2| (-452))) (($ $ (-862 |#1|)) NIL (|has| |#2| (-452)))) (-3556 (((-3 (-1262 $) "failed") (-687 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-907))))) (-2390 (((-860) $) NIL) (($ (-564)) NIL) (($ |#2|) NIL) (($ (-862 |#1|)) NIL) (($ (-407 (-564))) NIL (-2682 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1036 (-407 (-564)))))) (($ $) NIL (|has| |#2| (-556)))) (-2839 (((-642 |#2|) $) NIL)) (-3005 ((|#2| $ (-482 (-2158 |#1|) (-769))) NIL) (($ $ (-862 |#1|) (-769)) NIL) (($ $ (-642 (-862 |#1|)) (-642 (-769))) NIL)) (-3434 (((-3 $ "failed") $) NIL (-2682 (-12 (|has| $ (-145)) (|has| |#2| (-907))) (|has| |#2| (-145))))) (-3348 (((-769)) NIL T CONST)) (-2645 (($ $ $ (-769)) NIL (|has| |#2| (-172)))) (-1600 (((-112) $ $) NIL)) (-1594 (((-112) $ $) NIL (|has| |#2| (-556)))) (-2361 (($) NIL T CONST)) (-2371 (($) NIL T CONST)) (-2711 (($ $ (-862 |#1|)) NIL) (($ $ (-642 (-862 |#1|))) NIL) (($ $ (-862 |#1|) (-769)) NIL) (($ $ (-642 (-862 |#1|)) (-642 (-769))) NIL)) (-2821 (((-112) $ $) NIL)) (-2943 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#2| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#2| (-38 (-407 (-564))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-481 |#1| |#2|) (-13 (-947 |#2| (-482 (-2158 |#1|) (-769)) (-862 |#1|)) (-10 -8 (-15 -1747 ($ $ (-642 (-564)))))) (-642 (-1173)) (-1047)) (T -481)) -((-1747 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-564))) (-5 *1 (-481 *3 *4)) (-14 *3 (-642 (-1173))) (-4 *4 (-1047))))) -(-13 (-947 |#2| (-482 (-2158 |#1|) (-769)) (-862 |#1|)) (-10 -8 (-15 -1747 ($ $ (-642 (-564)))))) -((-2856 (((-112) $ $) NIL (|has| |#2| (-1097)))) (-2950 (((-112) $) NIL (|has| |#2| (-131)))) (-2072 (($ (-919)) NIL (|has| |#2| (-1047)))) (-3633 (((-1267) $ (-564) (-564)) NIL (|has| $ (-6 -4411)))) (-2247 (($ $ $) NIL (|has| |#2| (-791)))) (-3085 (((-3 $ "failed") $ $) NIL (|has| |#2| (-131)))) (-3442 (((-112) $ (-769)) NIL)) (-4003 (((-769)) NIL (|has| |#2| (-368)))) (-2221 (((-564) $) NIL (|has| |#2| (-846)))) (-3841 ((|#2| $ (-564) |#2|) NIL (|has| $ (-6 -4411)))) (-2822 (($) NIL T CONST)) (-2849 (((-3 (-564) "failed") $) NIL (-12 (|has| |#2| (-1036 (-564))) (|has| |#2| (-1097)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| |#2| (-1036 (-407 (-564)))) (|has| |#2| (-1097)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1097)))) (-1687 (((-564) $) NIL (-12 (|has| |#2| (-1036 (-564))) (|has| |#2| (-1097)))) (((-407 (-564)) $) NIL (-12 (|has| |#2| (-1036 (-407 (-564)))) (|has| |#2| (-1097)))) ((|#2| $) NIL (|has| |#2| (-1097)))) (-3330 (((-687 (-564)) (-687 $)) NIL (-12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1047)))) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (-12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1047)))) (((-2 (|:| -3544 (-687 |#2|)) (|:| |vec| (-1262 |#2|))) (-687 $) (-1262 $)) NIL (|has| |#2| (-1047))) (((-687 |#2|) (-687 $)) NIL (|has| |#2| (-1047)))) (-2675 (((-3 $ "failed") $) NIL (|has| |#2| (-724)))) (-3235 (($) NIL (|has| |#2| (-368)))) (-3105 ((|#2| $ (-564) |#2|) NIL (|has| $ (-6 -4411)))) (-1804 ((|#2| $ (-564)) 15)) (-3292 (((-112) $) NIL (|has| |#2| (-846)))) (-2018 (((-642 |#2|) $) NIL (|has| $ (-6 -4410)))) (-3163 (((-112) $) NIL (|has| |#2| (-724)))) (-2666 (((-112) $) NIL (|has| |#2| (-846)))) (-3769 (((-112) $ (-769)) NIL)) (-1802 (((-564) $) NIL (|has| (-564) (-848)))) (-3225 (($ $ $) NIL (-2682 (|has| |#2| (-791)) (|has| |#2| (-846))))) (-3541 (((-642 |#2|) $) NIL (|has| $ (-6 -4410)))) (-2533 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097))))) (-3624 (((-564) $) NIL (|has| (-564) (-848)))) (-2903 (($ $ $) NIL (-2682 (|has| |#2| (-791)) (|has| |#2| (-846))))) (-1857 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#2| |#2|) $) NIL)) (-2535 (((-919) $) NIL (|has| |#2| (-368)))) (-4145 (((-112) $ (-769)) NIL)) (-1778 (((-1155) $) NIL (|has| |#2| (-1097)))) (-4107 (((-642 (-564)) $) NIL)) (-4207 (((-112) (-564) $) NIL)) (-2065 (($ (-919)) NIL (|has| |#2| (-368)))) (-3999 (((-1117) $) NIL (|has| |#2| (-1097)))) (-4036 ((|#2| $) NIL (|has| (-564) (-848)))) (-3826 (($ $ |#2|) NIL (|has| $ (-6 -4411)))) (-4094 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-642 |#2|) (-642 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))))) (-2478 (((-112) $ $) NIL)) (-1643 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097))))) (-3522 (((-642 |#2|) $) NIL)) (-4109 (((-112) $) NIL)) (-2179 (($) NIL)) (-4369 ((|#2| $ (-564) |#2|) NIL) ((|#2| $ (-564)) NIL)) (-1976 ((|#2| $ $) NIL (|has| |#2| (-1047)))) (-2299 (($ (-1262 |#2|)) NIL)) (-3677 (((-134)) NIL (|has| |#2| (-363)))) (-2199 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1047)))) (($ $ (-769)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1047)))) (($ $ (-1173)) NIL (-12 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) (($ $ (-642 (-1173))) NIL (-12 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) (($ $ (-1173) (-769)) NIL (-12 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) (($ $ (-1 |#2| |#2|) (-769)) NIL (|has| |#2| (-1047))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1047)))) (-4010 (((-769) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410))) (((-769) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097))))) (-3865 (($ $) NIL)) (-2390 (((-1262 |#2|) $) NIL) (($ (-564)) NIL (-2682 (-12 (|has| |#2| (-1036 (-564))) (|has| |#2| (-1097))) (|has| |#2| (-1047)))) (($ (-407 (-564))) NIL (-12 (|has| |#2| (-1036 (-407 (-564)))) (|has| |#2| (-1097)))) (($ |#2|) NIL (|has| |#2| (-1097))) (((-860) $) NIL (|has| |#2| (-611 (-860))))) (-3348 (((-769)) NIL (|has| |#2| (-1047)) CONST)) (-1600 (((-112) $ $) NIL (|has| |#2| (-1097)))) (-3295 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410)))) (-1630 (($ $) NIL (|has| |#2| (-846)))) (-2361 (($) NIL (|has| |#2| (-131)) CONST)) (-2371 (($) NIL (|has| |#2| (-724)) CONST)) (-2711 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1047)))) (($ $ (-769)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1047)))) (($ $ (-1173)) NIL (-12 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) (($ $ (-642 (-1173))) NIL (-12 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) (($ $ (-1173) (-769)) NIL (-12 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) (($ $ (-1 |#2| |#2|) (-769)) NIL (|has| |#2| (-1047))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1047)))) (-2881 (((-112) $ $) NIL (-2682 (|has| |#2| (-791)) (|has| |#2| (-846))))) (-2857 (((-112) $ $) NIL (-2682 (|has| |#2| (-791)) (|has| |#2| (-846))))) (-2821 (((-112) $ $) NIL (|has| |#2| (-1097)))) (-2868 (((-112) $ $) NIL (-2682 (|has| |#2| (-791)) (|has| |#2| (-846))))) (-2844 (((-112) $ $) 21 (-2682 (|has| |#2| (-791)) (|has| |#2| (-846))))) (-2943 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-2930 (($ $ $) NIL (|has| |#2| (-1047))) (($ $) NIL (|has| |#2| (-1047)))) (-2917 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-769)) NIL (|has| |#2| (-724))) (($ $ (-919)) NIL (|has| |#2| (-724)))) (* (($ (-564) $) NIL (|has| |#2| (-1047))) (($ $ $) NIL (|has| |#2| (-724))) (($ $ |#2|) NIL (|has| |#2| (-724))) (($ |#2| $) NIL (|has| |#2| (-724))) (($ (-769) $) NIL (|has| |#2| (-131))) (($ (-919) $) NIL (|has| |#2| (-25)))) (-2158 (((-769) $) NIL (|has| $ (-6 -4410))))) -(((-482 |#1| |#2|) (-238 |#1| |#2|) (-769) (-791)) (T -482)) +((-1802 (*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-833 (-921))))) (-4107 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-404)) (-5 *2 (-771)))) (-4202 (*1 *1 *1) (-4 *1 (-404))) (-4202 (*1 *1 *1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-771))))) +(-13 (-365) (-145) (-10 -8 (-15 -1802 ((-833 (-921)) $)) (-15 -4107 ((-3 (-771) "failed") $ $)) (-15 -4202 ($ $)) (-15 -4202 ($ $ (-771))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-409 (-566))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) . T) ((-616 #0#) . T) ((-616 (-566)) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-454) . T) ((-558) . T) ((-646 #0#) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 #0#) . T) ((-648 $) . T) ((-640 #0#) . T) ((-640 $) . T) ((-717 #0#) . T) ((-717 $) . T) ((-726) . T) ((-920) . T) ((-1051 #0#) . T) ((-1051 $) . T) ((-1056 #0#) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1218) . T)) +((-2965 (($ (-566) (-566)) 11) (($ (-566) (-566) (-921)) NIL)) (-3378 (((-921)) 20) (((-921) (-921)) NIL))) +(((-405 |#1|) (-10 -8 (-15 -3378 ((-921) (-921))) (-15 -3378 ((-921))) (-15 -2965 (|#1| (-566) (-566) (-921))) (-15 -2965 (|#1| (-566) (-566)))) (-406)) (T -405)) +((-3378 (*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-405 *3)) (-4 *3 (-406)))) (-3378 (*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-405 *3)) (-4 *3 (-406))))) +(-10 -8 (-15 -3378 ((-921) (-921))) (-15 -3378 ((-921))) (-15 -2965 (|#1| (-566) (-566) (-921))) (-15 -2965 (|#1| (-566) (-566)))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-2488 (((-566) $) 97)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) 47)) (-3087 (($ $) 46)) (-1716 (((-112) $) 44)) (-3175 (($ $) 95)) (-3174 (((-3 $ "failed") $ $) 20)) (-3980 (($ $) 81)) (-3348 (((-420 $) $) 80)) (-2338 (($ $) 105)) (-2761 (((-112) $ $) 65)) (-2920 (((-566) $) 122)) (-1811 (($) 18 T CONST)) (-1505 (($ $) 94)) (-2980 (((-3 (-566) "failed") $) 110) (((-3 (-409 (-566)) "failed") $) 107)) (-1709 (((-566) $) 111) (((-409 (-566)) $) 108)) (-2925 (($ $ $) 61)) (-3757 (((-3 $ "failed") $) 37)) (-2937 (($ $ $) 62)) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) 57)) (-4188 (((-112) $) 79)) (-4039 (((-921)) 138) (((-921) (-921)) 135 (|has| $ (-6 -4408)))) (-2133 (((-112) $) 120)) (-1542 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 101)) (-1802 (((-566) $) 144)) (-2264 (((-112) $) 35)) (-3146 (($ $ (-566)) 104)) (-1398 (($ $) 100)) (-3420 (((-112) $) 121)) (-2495 (((-3 (-644 $) "failed") (-644 $) $) 58)) (-1920 (($ $ $) 119) (($) 132 (-12 (-2387 (|has| $ (-6 -4408))) (-2387 (|has| $ (-6 -4400)))))) (-3038 (($ $ $) 118) (($) 131 (-12 (-2387 (|has| $ (-6 -4408))) (-2387 (|has| $ (-6 -4400)))))) (-1687 (((-566) $) 141)) (-2120 (($ $ $) 52) (($ (-644 $)) 51)) (-3151 (((-1157) $) 10)) (-2577 (($ $) 78)) (-4148 (((-921) (-566)) 134 (|has| $ (-6 -4408)))) (-4059 (((-1119) $) 11)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-2162 (($ $ $) 54) (($ (-644 $)) 53)) (-4305 (($ $) 96)) (-2001 (($ $) 98)) (-2965 (($ (-566) (-566)) 146) (($ (-566) (-566) (-921)) 145)) (-2325 (((-420 $) $) 82)) (-2585 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2976 (((-3 $ "failed") $ $) 48)) (-2840 (((-3 (-644 $) "failed") (-644 $) $) 56)) (-3631 (((-566) $) 142)) (-1383 (((-771) $) 64)) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) 63)) (-3378 (((-921)) 139) (((-921) (-921)) 136 (|has| $ (-6 -4408)))) (-1999 (((-921) (-566)) 133 (|has| $ (-6 -4408)))) (-3136 (((-381) $) 113) (((-225) $) 112) (((-892 (-381)) $) 102)) (-2479 (((-862) $) 12) (($ (-566)) 33) (($ $) 49) (($ (-409 (-566))) 74) (($ (-566)) 109) (($ (-409 (-566))) 106)) (-1558 (((-771)) 32 T CONST)) (-3908 (($ $) 99)) (-3143 (((-921)) 140) (((-921) (-921)) 137 (|has| $ (-6 -4408)))) (-3900 (((-112) $ $) 9)) (-3810 (((-921)) 143)) (-1333 (((-112) $ $) 45)) (-4298 (($ $) 123)) (-2446 (($) 19 T CONST)) (-2459 (($) 34 T CONST)) (-3019 (((-112) $ $) 116)) (-2990 (((-112) $ $) 115)) (-2952 (((-112) $ $) 6)) (-3004 (((-112) $ $) 117)) (-2977 (((-112) $ $) 114)) (-3077 (($ $ $) 73)) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 77) (($ $ (-409 (-566))) 103)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ (-409 (-566))) 76) (($ (-409 (-566)) $) 75))) +(((-406) (-140)) (T -406)) +((-2965 (*1 *1 *2 *2) (-12 (-5 *2 (-566)) (-4 *1 (-406)))) (-2965 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-566)) (-5 *3 (-921)) (-4 *1 (-406)))) (-1802 (*1 *2 *1) (-12 (-4 *1 (-406)) (-5 *2 (-566)))) (-3810 (*1 *2) (-12 (-4 *1 (-406)) (-5 *2 (-921)))) (-3631 (*1 *2 *1) (-12 (-4 *1 (-406)) (-5 *2 (-566)))) (-1687 (*1 *2 *1) (-12 (-4 *1 (-406)) (-5 *2 (-566)))) (-3143 (*1 *2) (-12 (-4 *1 (-406)) (-5 *2 (-921)))) (-3378 (*1 *2) (-12 (-4 *1 (-406)) (-5 *2 (-921)))) (-4039 (*1 *2) (-12 (-4 *1 (-406)) (-5 *2 (-921)))) (-3143 (*1 *2 *2) (-12 (-5 *2 (-921)) (|has| *1 (-6 -4408)) (-4 *1 (-406)))) (-3378 (*1 *2 *2) (-12 (-5 *2 (-921)) (|has| *1 (-6 -4408)) (-4 *1 (-406)))) (-4039 (*1 *2 *2) (-12 (-5 *2 (-921)) (|has| *1 (-6 -4408)) (-4 *1 (-406)))) (-4148 (*1 *2 *3) (-12 (-5 *3 (-566)) (|has| *1 (-6 -4408)) (-4 *1 (-406)) (-5 *2 (-921)))) (-1999 (*1 *2 *3) (-12 (-5 *3 (-566)) (|has| *1 (-6 -4408)) (-4 *1 (-406)) (-5 *2 (-921)))) (-1920 (*1 *1) (-12 (-4 *1 (-406)) (-2387 (|has| *1 (-6 -4408))) (-2387 (|has| *1 (-6 -4400))))) (-3038 (*1 *1) (-12 (-4 *1 (-406)) (-2387 (|has| *1 (-6 -4408))) (-2387 (|has| *1 (-6 -4400)))))) +(-13 (-1059) (-10 -8 (-6 -3649) (-15 -2965 ($ (-566) (-566))) (-15 -2965 ($ (-566) (-566) (-921))) (-15 -1802 ((-566) $)) (-15 -3810 ((-921))) (-15 -3631 ((-566) $)) (-15 -1687 ((-566) $)) (-15 -3143 ((-921))) (-15 -3378 ((-921))) (-15 -4039 ((-921))) (IF (|has| $ (-6 -4408)) (PROGN (-15 -3143 ((-921) (-921))) (-15 -3378 ((-921) (-921))) (-15 -4039 ((-921) (-921))) (-15 -4148 ((-921) (-566))) (-15 -1999 ((-921) (-566)))) |%noBranch|) (IF (|has| $ (-6 -4400)) |%noBranch| (IF (|has| $ (-6 -4408)) |%noBranch| (PROGN (-15 -1920 ($)) (-15 -3038 ($))))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-409 (-566))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-616 #0#) . T) ((-616 (-566)) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-614 (-225)) . T) ((-614 (-381)) . T) ((-614 (-892 (-381))) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-454) . T) ((-558) . T) ((-646 #0#) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 #0#) . T) ((-648 $) . T) ((-640 #0#) . T) ((-640 $) . T) ((-717 #0#) . T) ((-717 $) . T) ((-726) . T) ((-791) . T) ((-792) . T) ((-794) . T) ((-795) . T) ((-848) . T) ((-850) . T) ((-886 (-381)) . T) ((-920) . T) ((-1002) . T) ((-1022) . T) ((-1059) . T) ((-1038 (-409 (-566))) . T) ((-1038 (-566)) . T) ((-1051 #0#) . T) ((-1051 $) . T) ((-1056 #0#) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1218) . T)) +((-3080 (((-420 |#2|) (-1 |#2| |#1|) (-420 |#1|)) 20))) +(((-407 |#1| |#2|) (-10 -7 (-15 -3080 ((-420 |#2|) (-1 |#2| |#1|) (-420 |#1|)))) (-558) (-558)) (T -407)) +((-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-420 *5)) (-4 *5 (-558)) (-4 *6 (-558)) (-5 *2 (-420 *6)) (-5 *1 (-407 *5 *6))))) +(-10 -7 (-15 -3080 ((-420 |#2|) (-1 |#2| |#1|) (-420 |#1|)))) +((-3080 (((-409 |#2|) (-1 |#2| |#1|) (-409 |#1|)) 13))) +(((-408 |#1| |#2|) (-10 -7 (-15 -3080 ((-409 |#2|) (-1 |#2| |#1|) (-409 |#1|)))) (-558) (-558)) (T -408)) +((-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-409 *5)) (-4 *5 (-558)) (-4 *6 (-558)) (-5 *2 (-409 *6)) (-5 *1 (-408 *5 *6))))) +(-10 -7 (-15 -3080 ((-409 |#2|) (-1 |#2| |#1|) (-409 |#1|)))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) 13)) (-2488 ((|#1| $) 21 (|has| |#1| (-308)))) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-1716 (((-112) $) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-4058 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-3980 (($ $) NIL)) (-3348 (((-420 $) $) NIL)) (-4262 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-2761 (((-112) $ $) NIL)) (-2920 (((-566) $) NIL (|has| |#1| (-820)))) (-1811 (($) NIL T CONST)) (-2980 (((-3 |#1| "failed") $) 17) (((-3 (-1175) "failed") $) NIL (|has| |#1| (-1038 (-1175)))) (((-3 (-409 (-566)) "failed") $) 72 (|has| |#1| (-1038 (-566)))) (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566))))) (-1709 ((|#1| $) 15) (((-1175) $) NIL (|has| |#1| (-1038 (-1175)))) (((-409 (-566)) $) 69 (|has| |#1| (-1038 (-566)))) (((-566) $) NIL (|has| |#1| (-1038 (-566))))) (-2925 (($ $ $) NIL)) (-2275 (((-689 (-566)) (-689 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -4196 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) NIL) (((-689 |#1|) (-689 $)) NIL)) (-3757 (((-3 $ "failed") $) 51)) (-1415 (($) NIL (|has| |#1| (-547)))) (-2937 (($ $ $) NIL)) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) NIL)) (-4188 (((-112) $) NIL)) (-2133 (((-112) $) NIL (|has| |#1| (-820)))) (-1542 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (|has| |#1| (-886 (-566)))) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (|has| |#1| (-886 (-381))))) (-2264 (((-112) $) 57)) (-1579 (($ $) NIL)) (-4157 ((|#1| $) 73)) (-4278 (((-3 $ "failed") $) NIL (|has| |#1| (-1150)))) (-3420 (((-112) $) NIL (|has| |#1| (-820)))) (-2495 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1920 (($ $ $) NIL (|has| |#1| (-850)))) (-3038 (($ $ $) NIL (|has| |#1| (-850)))) (-3080 (($ (-1 |#1| |#1|) $) NIL)) (-2120 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3151 (((-1157) $) NIL)) (-2577 (($ $) NIL)) (-3968 (($) NIL (|has| |#1| (-1150)) CONST)) (-4059 (((-1119) $) NIL)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) 100)) (-2162 (($ $ $) NIL) (($ (-644 $)) NIL)) (-4305 (($ $) NIL (|has| |#1| (-308)))) (-2001 ((|#1| $) 28 (|has| |#1| (-547)))) (-1500 (((-420 (-1171 $)) (-1171 $)) 148 (|has| |#1| (-909)))) (-3917 (((-420 (-1171 $)) (-1171 $)) 141 (|has| |#1| (-909)))) (-2325 (((-420 $) $) NIL)) (-2585 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2976 (((-3 $ "failed") $ $) NIL)) (-2840 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3297 (($ $ (-644 |#1|) (-644 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ (-644 (-295 |#1|))) NIL (|has| |#1| (-310 |#1|))) (($ $ (-644 (-1175)) (-644 |#1|)) NIL (|has| |#1| (-516 (-1175) |#1|))) (($ $ (-1175) |#1|) NIL (|has| |#1| (-516 (-1175) |#1|)))) (-1383 (((-771) $) NIL)) (-4376 (($ $ |#1|) NIL (|has| |#1| (-287 |#1| |#1|)))) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL)) (-3526 (($ $) NIL (|has| |#1| (-233))) (($ $ (-771)) NIL (|has| |#1| (-233))) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) 64)) (-1375 (($ $) NIL)) (-4167 ((|#1| $) 75)) (-3136 (((-892 (-566)) $) NIL (|has| |#1| (-614 (-892 (-566))))) (((-892 (-381)) $) NIL (|has| |#1| (-614 (-892 (-381))))) (((-538) $) NIL (|has| |#1| (-614 (-538)))) (((-381) $) NIL (|has| |#1| (-1022))) (((-225) $) NIL (|has| |#1| (-1022)))) (-3233 (((-3 (-1264 $) "failed") (-689 $)) 125 (-12 (|has| $ (-145)) (|has| |#1| (-909))))) (-2479 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL) (($ |#1|) 10) (($ (-1175)) NIL (|has| |#1| (-1038 (-1175))))) (-2645 (((-3 $ "failed") $) 102 (-2809 (-12 (|has| $ (-145)) (|has| |#1| (-909))) (|has| |#1| (-145))))) (-1558 (((-771)) 103 T CONST)) (-3908 ((|#1| $) 26 (|has| |#1| (-547)))) (-3900 (((-112) $ $) NIL)) (-1333 (((-112) $ $) NIL)) (-4298 (($ $) NIL (|has| |#1| (-820)))) (-2446 (($) 22 T CONST)) (-2459 (($) 8 T CONST)) (-2835 (((-1157) $) 44 (-12 (|has| |#1| (-547)) (|has| |#1| (-828)))) (((-1157) $ (-112)) 45 (-12 (|has| |#1| (-547)) (|has| |#1| (-828)))) (((-1269) (-822) $) 46 (-12 (|has| |#1| (-547)) (|has| |#1| (-828)))) (((-1269) (-822) $ (-112)) 47 (-12 (|has| |#1| (-547)) (|has| |#1| (-828))))) (-2834 (($ $) NIL (|has| |#1| (-233))) (($ $ (-771)) NIL (|has| |#1| (-233))) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3019 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2990 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2952 (((-112) $ $) 66)) (-3004 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2977 (((-112) $ $) 24 (|has| |#1| (-850)))) (-3077 (($ $ $) 136) (($ |#1| |#1|) 53)) (-3065 (($ $) 25) (($ $ $) 56)) (-3052 (($ $ $) 54)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) 135)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 61) (($ $ $) 58) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ |#1| $) 62) (($ $ |#1|) 88))) +(((-409 |#1|) (-13 (-992 |#1|) (-10 -7 (IF (|has| |#1| (-547)) (IF (|has| |#1| (-828)) (-6 (-828)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4404)) (IF (|has| |#1| (-454)) (IF (|has| |#1| (-6 -4415)) (-6 -4404) |%noBranch|) |%noBranch|) |%noBranch|))) (-558)) (T -409)) +NIL +(-13 (-992 |#1|) (-10 -7 (IF (|has| |#1| (-547)) (IF (|has| |#1| (-828)) (-6 (-828)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4404)) (IF (|has| |#1| (-454)) (IF (|has| |#1| (-6 -4415)) (-6 -4404) |%noBranch|) |%noBranch|) |%noBranch|))) +((-1321 (((-689 |#2|) (-1264 $)) NIL) (((-689 |#2|)) 18)) (-2422 (($ (-1264 |#2|) (-1264 $)) NIL) (($ (-1264 |#2|)) 24)) (-2087 (((-689 |#2|) $ (-1264 $)) NIL) (((-689 |#2|) $) 40)) (-1869 ((|#3| $) 73)) (-3553 ((|#2| (-1264 $)) NIL) ((|#2|) 20)) (-3747 (((-1264 |#2|) $ (-1264 $)) NIL) (((-689 |#2|) (-1264 $) (-1264 $)) NIL) (((-1264 |#2|) $) 22) (((-689 |#2|) (-1264 $)) 38)) (-3136 (((-1264 |#2|) $) 11) (($ (-1264 |#2|)) 13)) (-3728 ((|#3| $) 55))) +(((-410 |#1| |#2| |#3|) (-10 -8 (-15 -2087 ((-689 |#2|) |#1|)) (-15 -3553 (|#2|)) (-15 -1321 ((-689 |#2|))) (-15 -3136 (|#1| (-1264 |#2|))) (-15 -3136 ((-1264 |#2|) |#1|)) (-15 -2422 (|#1| (-1264 |#2|))) (-15 -3747 ((-689 |#2|) (-1264 |#1|))) (-15 -3747 ((-1264 |#2|) |#1|)) (-15 -1869 (|#3| |#1|)) (-15 -3728 (|#3| |#1|)) (-15 -1321 ((-689 |#2|) (-1264 |#1|))) (-15 -3553 (|#2| (-1264 |#1|))) (-15 -2422 (|#1| (-1264 |#2|) (-1264 |#1|))) (-15 -3747 ((-689 |#2|) (-1264 |#1|) (-1264 |#1|))) (-15 -3747 ((-1264 |#2|) |#1| (-1264 |#1|))) (-15 -2087 ((-689 |#2|) |#1| (-1264 |#1|)))) (-411 |#2| |#3|) (-172) (-1240 |#2|)) (T -410)) +((-1321 (*1 *2) (-12 (-4 *4 (-172)) (-4 *5 (-1240 *4)) (-5 *2 (-689 *4)) (-5 *1 (-410 *3 *4 *5)) (-4 *3 (-411 *4 *5)))) (-3553 (*1 *2) (-12 (-4 *4 (-1240 *2)) (-4 *2 (-172)) (-5 *1 (-410 *3 *2 *4)) (-4 *3 (-411 *2 *4))))) +(-10 -8 (-15 -2087 ((-689 |#2|) |#1|)) (-15 -3553 (|#2|)) (-15 -1321 ((-689 |#2|))) (-15 -3136 (|#1| (-1264 |#2|))) (-15 -3136 ((-1264 |#2|) |#1|)) (-15 -2422 (|#1| (-1264 |#2|))) (-15 -3747 ((-689 |#2|) (-1264 |#1|))) (-15 -3747 ((-1264 |#2|) |#1|)) (-15 -1869 (|#3| |#1|)) (-15 -3728 (|#3| |#1|)) (-15 -1321 ((-689 |#2|) (-1264 |#1|))) (-15 -3553 (|#2| (-1264 |#1|))) (-15 -2422 (|#1| (-1264 |#2|) (-1264 |#1|))) (-15 -3747 ((-689 |#2|) (-1264 |#1|) (-1264 |#1|))) (-15 -3747 ((-1264 |#2|) |#1| (-1264 |#1|))) (-15 -2087 ((-689 |#2|) |#1| (-1264 |#1|)))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-1321 (((-689 |#1|) (-1264 $)) 53) (((-689 |#1|)) 68)) (-3837 ((|#1| $) 59)) (-3174 (((-3 $ "failed") $ $) 20)) (-1811 (($) 18 T CONST)) (-2422 (($ (-1264 |#1|) (-1264 $)) 55) (($ (-1264 |#1|)) 71)) (-2087 (((-689 |#1|) $ (-1264 $)) 60) (((-689 |#1|) $) 66)) (-3757 (((-3 $ "failed") $) 37)) (-2299 (((-921)) 61)) (-2264 (((-112) $) 35)) (-1398 ((|#1| $) 58)) (-1869 ((|#2| $) 51 (|has| |#1| (-365)))) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-3553 ((|#1| (-1264 $)) 54) ((|#1|) 67)) (-3747 (((-1264 |#1|) $ (-1264 $)) 57) (((-689 |#1|) (-1264 $) (-1264 $)) 56) (((-1264 |#1|) $) 73) (((-689 |#1|) (-1264 $)) 72)) (-3136 (((-1264 |#1|) $) 70) (($ (-1264 |#1|)) 69)) (-2479 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 44)) (-2645 (((-3 $ "failed") $) 50 (|has| |#1| (-145)))) (-3728 ((|#2| $) 52)) (-1558 (((-771)) 32 T CONST)) (-3900 (((-112) $ $) 9)) (-1419 (((-1264 $)) 74)) (-2446 (($) 19 T CONST)) (-2459 (($) 34 T CONST)) (-2952 (((-112) $ $) 6)) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) +(((-411 |#1| |#2|) (-140) (-172) (-1240 |t#1|)) (T -411)) +((-1419 (*1 *2) (-12 (-4 *3 (-172)) (-4 *4 (-1240 *3)) (-5 *2 (-1264 *1)) (-4 *1 (-411 *3 *4)))) (-3747 (*1 *2 *1) (-12 (-4 *1 (-411 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1240 *3)) (-5 *2 (-1264 *3)))) (-3747 (*1 *2 *3) (-12 (-5 *3 (-1264 *1)) (-4 *1 (-411 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1240 *4)) (-5 *2 (-689 *4)))) (-2422 (*1 *1 *2) (-12 (-5 *2 (-1264 *3)) (-4 *3 (-172)) (-4 *1 (-411 *3 *4)) (-4 *4 (-1240 *3)))) (-3136 (*1 *2 *1) (-12 (-4 *1 (-411 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1240 *3)) (-5 *2 (-1264 *3)))) (-3136 (*1 *1 *2) (-12 (-5 *2 (-1264 *3)) (-4 *3 (-172)) (-4 *1 (-411 *3 *4)) (-4 *4 (-1240 *3)))) (-1321 (*1 *2) (-12 (-4 *1 (-411 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1240 *3)) (-5 *2 (-689 *3)))) (-3553 (*1 *2) (-12 (-4 *1 (-411 *2 *3)) (-4 *3 (-1240 *2)) (-4 *2 (-172)))) (-2087 (*1 *2 *1) (-12 (-4 *1 (-411 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1240 *3)) (-5 *2 (-689 *3))))) +(-13 (-372 |t#1| |t#2|) (-10 -8 (-15 -1419 ((-1264 $))) (-15 -3747 ((-1264 |t#1|) $)) (-15 -3747 ((-689 |t#1|) (-1264 $))) (-15 -2422 ($ (-1264 |t#1|))) (-15 -3136 ((-1264 |t#1|) $)) (-15 -3136 ($ (-1264 |t#1|))) (-15 -1321 ((-689 |t#1|))) (-15 -3553 (|t#1|)) (-15 -2087 ((-689 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 (-566)) . T) ((-616 |#1|) . T) ((-613 (-862)) . T) ((-372 |#1| |#2|) . T) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-640 |#1|) . T) ((-717 |#1|) . T) ((-726) . T) ((-1051 |#1|) . T) ((-1056 |#1|) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) +((-2980 (((-3 |#2| "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) 27) (((-3 (-566) "failed") $) 19)) (-1709 ((|#2| $) NIL) (((-409 (-566)) $) 24) (((-566) $) 14)) (-2479 (($ |#2|) NIL) (($ (-409 (-566))) 22) (($ (-566)) 11))) +(((-412 |#1| |#2|) (-10 -8 (-15 -2479 (|#1| (-566))) (-15 -2980 ((-3 (-566) "failed") |#1|)) (-15 -1709 ((-566) |#1|)) (-15 -2479 (|#1| (-409 (-566)))) (-15 -2980 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -1709 ((-409 (-566)) |#1|)) (-15 -1709 (|#2| |#1|)) (-15 -2980 ((-3 |#2| "failed") |#1|)) (-15 -2479 (|#1| |#2|))) (-413 |#2|) (-1214)) (T -412)) +NIL +(-10 -8 (-15 -2479 (|#1| (-566))) (-15 -2980 ((-3 (-566) "failed") |#1|)) (-15 -1709 ((-566) |#1|)) (-15 -2479 (|#1| (-409 (-566)))) (-15 -2980 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -1709 ((-409 (-566)) |#1|)) (-15 -1709 (|#2| |#1|)) (-15 -2980 ((-3 |#2| "failed") |#1|)) (-15 -2479 (|#1| |#2|))) +((-2980 (((-3 |#1| "failed") $) 9) (((-3 (-409 (-566)) "failed") $) 16 (|has| |#1| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) 13 (|has| |#1| (-1038 (-566))))) (-1709 ((|#1| $) 8) (((-409 (-566)) $) 17 (|has| |#1| (-1038 (-409 (-566))))) (((-566) $) 14 (|has| |#1| (-1038 (-566))))) (-2479 (($ |#1|) 6) (($ (-409 (-566))) 15 (|has| |#1| (-1038 (-409 (-566))))) (($ (-566)) 12 (|has| |#1| (-1038 (-566)))))) +(((-413 |#1|) (-140) (-1214)) (T -413)) +NIL +(-13 (-1038 |t#1|) (-10 -7 (IF (|has| |t#1| (-1038 (-566))) (-6 (-1038 (-566))) |%noBranch|) (IF (|has| |t#1| (-1038 (-409 (-566)))) (-6 (-1038 (-409 (-566)))) |%noBranch|))) +(((-616 #0=(-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) ((-616 #1=(-566)) |has| |#1| (-1038 (-566))) ((-616 |#1|) . T) ((-1038 #0#) |has| |#1| (-1038 (-409 (-566)))) ((-1038 #1#) |has| |#1| (-1038 (-566))) ((-1038 |#1|) . T)) +((-3080 (((-415 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-415 |#1| |#2| |#3| |#4|)) 35))) +(((-414 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3080 ((-415 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-415 |#1| |#2| |#3| |#4|)))) (-308) (-992 |#1|) (-1240 |#2|) (-13 (-411 |#2| |#3|) (-1038 |#2|)) (-308) (-992 |#5|) (-1240 |#6|) (-13 (-411 |#6| |#7|) (-1038 |#6|))) (T -414)) +((-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-415 *5 *6 *7 *8)) (-4 *5 (-308)) (-4 *6 (-992 *5)) (-4 *7 (-1240 *6)) (-4 *8 (-13 (-411 *6 *7) (-1038 *6))) (-4 *9 (-308)) (-4 *10 (-992 *9)) (-4 *11 (-1240 *10)) (-5 *2 (-415 *9 *10 *11 *12)) (-5 *1 (-414 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-411 *10 *11) (-1038 *10)))))) +(-10 -7 (-15 -3080 ((-415 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-415 |#1| |#2| |#3| |#4|)))) +((-2986 (((-112) $ $) NIL)) (-1811 (($) NIL T CONST)) (-3757 (((-3 $ "failed") $) NIL)) (-3129 ((|#4| (-771) (-1264 |#4|)) 60)) (-2264 (((-112) $) NIL)) (-4157 (((-1264 |#4|) $) 17)) (-1398 ((|#2| $) 55)) (-2971 (($ $) 163)) (-3151 (((-1157) $) NIL)) (-2577 (($ $) 108)) (-3171 (($ (-1264 |#4|)) 107)) (-4059 (((-1119) $) NIL)) (-4167 ((|#1| $) 18)) (-2664 (($ $ $) NIL)) (-3815 (($ $ $) NIL)) (-2479 (((-862) $) 153)) (-3900 (((-112) $ $) NIL)) (-1419 (((-1264 |#4|) $) 146)) (-2459 (($) 11 T CONST)) (-2952 (((-112) $ $) 41)) (-3077 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) 139)) (* (($ $ $) 135))) +(((-415 |#1| |#2| |#3| |#4|) (-13 (-475) (-10 -8 (-15 -3171 ($ (-1264 |#4|))) (-15 -1419 ((-1264 |#4|) $)) (-15 -1398 (|#2| $)) (-15 -4157 ((-1264 |#4|) $)) (-15 -4167 (|#1| $)) (-15 -2971 ($ $)) (-15 -3129 (|#4| (-771) (-1264 |#4|))))) (-308) (-992 |#1|) (-1240 |#2|) (-13 (-411 |#2| |#3|) (-1038 |#2|))) (T -415)) +((-3171 (*1 *1 *2) (-12 (-5 *2 (-1264 *6)) (-4 *6 (-13 (-411 *4 *5) (-1038 *4))) (-4 *4 (-992 *3)) (-4 *5 (-1240 *4)) (-4 *3 (-308)) (-5 *1 (-415 *3 *4 *5 *6)))) (-1419 (*1 *2 *1) (-12 (-4 *3 (-308)) (-4 *4 (-992 *3)) (-4 *5 (-1240 *4)) (-5 *2 (-1264 *6)) (-5 *1 (-415 *3 *4 *5 *6)) (-4 *6 (-13 (-411 *4 *5) (-1038 *4))))) (-1398 (*1 *2 *1) (-12 (-4 *4 (-1240 *2)) (-4 *2 (-992 *3)) (-5 *1 (-415 *3 *2 *4 *5)) (-4 *3 (-308)) (-4 *5 (-13 (-411 *2 *4) (-1038 *2))))) (-4157 (*1 *2 *1) (-12 (-4 *3 (-308)) (-4 *4 (-992 *3)) (-4 *5 (-1240 *4)) (-5 *2 (-1264 *6)) (-5 *1 (-415 *3 *4 *5 *6)) (-4 *6 (-13 (-411 *4 *5) (-1038 *4))))) (-4167 (*1 *2 *1) (-12 (-4 *3 (-992 *2)) (-4 *4 (-1240 *3)) (-4 *2 (-308)) (-5 *1 (-415 *2 *3 *4 *5)) (-4 *5 (-13 (-411 *3 *4) (-1038 *3))))) (-2971 (*1 *1 *1) (-12 (-4 *2 (-308)) (-4 *3 (-992 *2)) (-4 *4 (-1240 *3)) (-5 *1 (-415 *2 *3 *4 *5)) (-4 *5 (-13 (-411 *3 *4) (-1038 *3))))) (-3129 (*1 *2 *3 *4) (-12 (-5 *3 (-771)) (-5 *4 (-1264 *2)) (-4 *5 (-308)) (-4 *6 (-992 *5)) (-4 *2 (-13 (-411 *6 *7) (-1038 *6))) (-5 *1 (-415 *5 *6 *7 *2)) (-4 *7 (-1240 *6))))) +(-13 (-475) (-10 -8 (-15 -3171 ($ (-1264 |#4|))) (-15 -1419 ((-1264 |#4|) $)) (-15 -1398 (|#2| $)) (-15 -4157 ((-1264 |#4|) $)) (-15 -4167 (|#1| $)) (-15 -2971 ($ $)) (-15 -3129 (|#4| (-771) (-1264 |#4|))))) +((-2986 (((-112) $ $) NIL)) (-1811 (($) NIL T CONST)) (-3757 (((-3 $ "failed") $) NIL)) (-2264 (((-112) $) NIL)) (-1398 ((|#2| $) 71)) (-2509 (($ (-1264 |#4|)) 27) (($ (-415 |#1| |#2| |#3| |#4|)) 86 (|has| |#4| (-1038 |#2|)))) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) 37)) (-3900 (((-112) $ $) NIL)) (-1419 (((-1264 |#4|) $) 28)) (-2459 (($) 25 T CONST)) (-2952 (((-112) $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ $ $) 82))) +(((-416 |#1| |#2| |#3| |#4| |#5|) (-13 (-726) (-10 -8 (-15 -1419 ((-1264 |#4|) $)) (-15 -1398 (|#2| $)) (-15 -2509 ($ (-1264 |#4|))) (IF (|has| |#4| (-1038 |#2|)) (-15 -2509 ($ (-415 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-308) (-992 |#1|) (-1240 |#2|) (-411 |#2| |#3|) (-1264 |#4|)) (T -416)) +((-1419 (*1 *2 *1) (-12 (-4 *3 (-308)) (-4 *4 (-992 *3)) (-4 *5 (-1240 *4)) (-5 *2 (-1264 *6)) (-5 *1 (-416 *3 *4 *5 *6 *7)) (-4 *6 (-411 *4 *5)) (-14 *7 *2))) (-1398 (*1 *2 *1) (-12 (-4 *4 (-1240 *2)) (-4 *2 (-992 *3)) (-5 *1 (-416 *3 *2 *4 *5 *6)) (-4 *3 (-308)) (-4 *5 (-411 *2 *4)) (-14 *6 (-1264 *5)))) (-2509 (*1 *1 *2) (-12 (-5 *2 (-1264 *6)) (-4 *6 (-411 *4 *5)) (-4 *4 (-992 *3)) (-4 *5 (-1240 *4)) (-4 *3 (-308)) (-5 *1 (-416 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-2509 (*1 *1 *2) (-12 (-5 *2 (-415 *3 *4 *5 *6)) (-4 *6 (-1038 *4)) (-4 *3 (-308)) (-4 *4 (-992 *3)) (-4 *5 (-1240 *4)) (-4 *6 (-411 *4 *5)) (-14 *7 (-1264 *6)) (-5 *1 (-416 *3 *4 *5 *6 *7))))) +(-13 (-726) (-10 -8 (-15 -1419 ((-1264 |#4|) $)) (-15 -1398 (|#2| $)) (-15 -2509 ($ (-1264 |#4|))) (IF (|has| |#4| (-1038 |#2|)) (-15 -2509 ($ (-415 |#1| |#2| |#3| |#4|))) |%noBranch|))) +((-3080 ((|#3| (-1 |#4| |#2|) |#1|) 32))) +(((-417 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3080 (|#3| (-1 |#4| |#2|) |#1|))) (-419 |#2|) (-172) (-419 |#4|) (-172)) (T -417)) +((-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-419 *6)) (-5 *1 (-417 *4 *5 *2 *6)) (-4 *4 (-419 *5))))) +(-10 -7 (-15 -3080 (|#3| (-1 |#4| |#2|) |#1|))) +((-1732 (((-3 $ "failed")) 99)) (-2603 (((-1264 (-689 |#2|)) (-1264 $)) NIL) (((-1264 (-689 |#2|))) 104)) (-2738 (((-3 (-2 (|:| |particular| $) (|:| -1419 (-644 $))) "failed")) 97)) (-1690 (((-3 $ "failed")) 96)) (-4223 (((-689 |#2|) (-1264 $)) NIL) (((-689 |#2|)) 115)) (-3030 (((-689 |#2|) $ (-1264 $)) NIL) (((-689 |#2|) $) 123)) (-4139 (((-1171 (-952 |#2|))) 65)) (-1792 ((|#2| (-1264 $)) NIL) ((|#2|) 119)) (-2422 (($ (-1264 |#2|) (-1264 $)) NIL) (($ (-1264 |#2|)) 125)) (-2784 (((-3 (-2 (|:| |particular| $) (|:| -1419 (-644 $))) "failed")) 95)) (-4320 (((-3 $ "failed")) 87)) (-1434 (((-689 |#2|) (-1264 $)) NIL) (((-689 |#2|)) 113)) (-1390 (((-689 |#2|) $ (-1264 $)) NIL) (((-689 |#2|) $) 121)) (-1509 (((-1171 (-952 |#2|))) 64)) (-2659 ((|#2| (-1264 $)) NIL) ((|#2|) 117)) (-3747 (((-1264 |#2|) $ (-1264 $)) NIL) (((-689 |#2|) (-1264 $) (-1264 $)) NIL) (((-1264 |#2|) $) 124) (((-689 |#2|) (-1264 $)) 133)) (-3136 (((-1264 |#2|) $) 109) (($ (-1264 |#2|)) 111)) (-2880 (((-644 (-952 |#2|)) (-1264 $)) NIL) (((-644 (-952 |#2|))) 107)) (-4029 (($ (-689 |#2|) $) 103))) +(((-418 |#1| |#2|) (-10 -8 (-15 -4029 (|#1| (-689 |#2|) |#1|)) (-15 -4139 ((-1171 (-952 |#2|)))) (-15 -1509 ((-1171 (-952 |#2|)))) (-15 -3030 ((-689 |#2|) |#1|)) (-15 -1390 ((-689 |#2|) |#1|)) (-15 -4223 ((-689 |#2|))) (-15 -1434 ((-689 |#2|))) (-15 -1792 (|#2|)) (-15 -2659 (|#2|)) (-15 -3136 (|#1| (-1264 |#2|))) (-15 -3136 ((-1264 |#2|) |#1|)) (-15 -2422 (|#1| (-1264 |#2|))) (-15 -2880 ((-644 (-952 |#2|)))) (-15 -2603 ((-1264 (-689 |#2|)))) (-15 -3747 ((-689 |#2|) (-1264 |#1|))) (-15 -3747 ((-1264 |#2|) |#1|)) (-15 -1732 ((-3 |#1| "failed"))) (-15 -1690 ((-3 |#1| "failed"))) (-15 -4320 ((-3 |#1| "failed"))) (-15 -2738 ((-3 (-2 (|:| |particular| |#1|) (|:| -1419 (-644 |#1|))) "failed"))) (-15 -2784 ((-3 (-2 (|:| |particular| |#1|) (|:| -1419 (-644 |#1|))) "failed"))) (-15 -4223 ((-689 |#2|) (-1264 |#1|))) (-15 -1434 ((-689 |#2|) (-1264 |#1|))) (-15 -1792 (|#2| (-1264 |#1|))) (-15 -2659 (|#2| (-1264 |#1|))) (-15 -2422 (|#1| (-1264 |#2|) (-1264 |#1|))) (-15 -3747 ((-689 |#2|) (-1264 |#1|) (-1264 |#1|))) (-15 -3747 ((-1264 |#2|) |#1| (-1264 |#1|))) (-15 -3030 ((-689 |#2|) |#1| (-1264 |#1|))) (-15 -1390 ((-689 |#2|) |#1| (-1264 |#1|))) (-15 -2603 ((-1264 (-689 |#2|)) (-1264 |#1|))) (-15 -2880 ((-644 (-952 |#2|)) (-1264 |#1|)))) (-419 |#2|) (-172)) (T -418)) +((-2603 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1264 (-689 *4))) (-5 *1 (-418 *3 *4)) (-4 *3 (-419 *4)))) (-2880 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-644 (-952 *4))) (-5 *1 (-418 *3 *4)) (-4 *3 (-419 *4)))) (-2659 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-418 *3 *2)) (-4 *3 (-419 *2)))) (-1792 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-418 *3 *2)) (-4 *3 (-419 *2)))) (-1434 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-689 *4)) (-5 *1 (-418 *3 *4)) (-4 *3 (-419 *4)))) (-4223 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-689 *4)) (-5 *1 (-418 *3 *4)) (-4 *3 (-419 *4)))) (-1509 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1171 (-952 *4))) (-5 *1 (-418 *3 *4)) (-4 *3 (-419 *4)))) (-4139 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1171 (-952 *4))) (-5 *1 (-418 *3 *4)) (-4 *3 (-419 *4))))) +(-10 -8 (-15 -4029 (|#1| (-689 |#2|) |#1|)) (-15 -4139 ((-1171 (-952 |#2|)))) (-15 -1509 ((-1171 (-952 |#2|)))) (-15 -3030 ((-689 |#2|) |#1|)) (-15 -1390 ((-689 |#2|) |#1|)) (-15 -4223 ((-689 |#2|))) (-15 -1434 ((-689 |#2|))) (-15 -1792 (|#2|)) (-15 -2659 (|#2|)) (-15 -3136 (|#1| (-1264 |#2|))) (-15 -3136 ((-1264 |#2|) |#1|)) (-15 -2422 (|#1| (-1264 |#2|))) (-15 -2880 ((-644 (-952 |#2|)))) (-15 -2603 ((-1264 (-689 |#2|)))) (-15 -3747 ((-689 |#2|) (-1264 |#1|))) (-15 -3747 ((-1264 |#2|) |#1|)) (-15 -1732 ((-3 |#1| "failed"))) (-15 -1690 ((-3 |#1| "failed"))) (-15 -4320 ((-3 |#1| "failed"))) (-15 -2738 ((-3 (-2 (|:| |particular| |#1|) (|:| -1419 (-644 |#1|))) "failed"))) (-15 -2784 ((-3 (-2 (|:| |particular| |#1|) (|:| -1419 (-644 |#1|))) "failed"))) (-15 -4223 ((-689 |#2|) (-1264 |#1|))) (-15 -1434 ((-689 |#2|) (-1264 |#1|))) (-15 -1792 (|#2| (-1264 |#1|))) (-15 -2659 (|#2| (-1264 |#1|))) (-15 -2422 (|#1| (-1264 |#2|) (-1264 |#1|))) (-15 -3747 ((-689 |#2|) (-1264 |#1|) (-1264 |#1|))) (-15 -3747 ((-1264 |#2|) |#1| (-1264 |#1|))) (-15 -3030 ((-689 |#2|) |#1| (-1264 |#1|))) (-15 -1390 ((-689 |#2|) |#1| (-1264 |#1|))) (-15 -2603 ((-1264 (-689 |#2|)) (-1264 |#1|))) (-15 -2880 ((-644 (-952 |#2|)) (-1264 |#1|)))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-1732 (((-3 $ "failed")) 42 (|has| |#1| (-558)))) (-3174 (((-3 $ "failed") $ $) 20)) (-2603 (((-1264 (-689 |#1|)) (-1264 $)) 83) (((-1264 (-689 |#1|))) 105)) (-3010 (((-1264 $)) 86)) (-1811 (($) 18 T CONST)) (-2738 (((-3 (-2 (|:| |particular| $) (|:| -1419 (-644 $))) "failed")) 45 (|has| |#1| (-558)))) (-1690 (((-3 $ "failed")) 43 (|has| |#1| (-558)))) (-4223 (((-689 |#1|) (-1264 $)) 70) (((-689 |#1|)) 97)) (-2935 ((|#1| $) 79)) (-3030 (((-689 |#1|) $ (-1264 $)) 81) (((-689 |#1|) $) 95)) (-4347 (((-3 $ "failed") $) 50 (|has| |#1| (-558)))) (-4139 (((-1171 (-952 |#1|))) 93 (|has| |#1| (-365)))) (-4370 (($ $ (-921)) 31)) (-2190 ((|#1| $) 77)) (-3251 (((-1171 |#1|) $) 47 (|has| |#1| (-558)))) (-1792 ((|#1| (-1264 $)) 72) ((|#1|) 99)) (-1973 (((-1171 |#1|) $) 68)) (-3156 (((-112)) 62)) (-2422 (($ (-1264 |#1|) (-1264 $)) 74) (($ (-1264 |#1|)) 103)) (-3757 (((-3 $ "failed") $) 52 (|has| |#1| (-558)))) (-2299 (((-921)) 85)) (-2116 (((-112)) 59)) (-1595 (($ $ (-921)) 38)) (-2895 (((-112)) 55)) (-2751 (((-112)) 53)) (-2185 (((-112)) 57)) (-2784 (((-3 (-2 (|:| |particular| $) (|:| -1419 (-644 $))) "failed")) 46 (|has| |#1| (-558)))) (-4320 (((-3 $ "failed")) 44 (|has| |#1| (-558)))) (-1434 (((-689 |#1|) (-1264 $)) 71) (((-689 |#1|)) 98)) (-1978 ((|#1| $) 80)) (-1390 (((-689 |#1|) $ (-1264 $)) 82) (((-689 |#1|) $) 96)) (-4252 (((-3 $ "failed") $) 51 (|has| |#1| (-558)))) (-1509 (((-1171 (-952 |#1|))) 94 (|has| |#1| (-365)))) (-3681 (($ $ (-921)) 32)) (-1782 ((|#1| $) 78)) (-4066 (((-1171 |#1|) $) 48 (|has| |#1| (-558)))) (-2659 ((|#1| (-1264 $)) 73) ((|#1|) 100)) (-2899 (((-1171 |#1|) $) 69)) (-3280 (((-112)) 63)) (-3151 (((-1157) $) 10)) (-1698 (((-112)) 54)) (-2287 (((-112)) 56)) (-3093 (((-112)) 58)) (-4059 (((-1119) $) 11)) (-3753 (((-112)) 61)) (-4376 ((|#1| $ (-566)) 106)) (-3747 (((-1264 |#1|) $ (-1264 $)) 76) (((-689 |#1|) (-1264 $) (-1264 $)) 75) (((-1264 |#1|) $) 108) (((-689 |#1|) (-1264 $)) 107)) (-3136 (((-1264 |#1|) $) 102) (($ (-1264 |#1|)) 101)) (-2880 (((-644 (-952 |#1|)) (-1264 $)) 84) (((-644 (-952 |#1|))) 104)) (-3815 (($ $ $) 28)) (-3418 (((-112)) 67)) (-2479 (((-862) $) 12)) (-3900 (((-112) $ $) 9)) (-1419 (((-1264 $)) 109)) (-3170 (((-644 (-1264 |#1|))) 49 (|has| |#1| (-558)))) (-1469 (($ $ $ $) 29)) (-1429 (((-112)) 65)) (-4029 (($ (-689 |#1|) $) 92)) (-1596 (($ $ $) 27)) (-1478 (((-112)) 66)) (-3492 (((-112)) 64)) (-3893 (((-112)) 60)) (-2446 (($) 19 T CONST)) (-2952 (((-112) $ $) 6)) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 33)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) +(((-419 |#1|) (-140) (-172)) (T -419)) +((-1419 (*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1264 *1)) (-4 *1 (-419 *3)))) (-3747 (*1 *2 *1) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-1264 *3)))) (-3747 (*1 *2 *3) (-12 (-5 *3 (-1264 *1)) (-4 *1 (-419 *4)) (-4 *4 (-172)) (-5 *2 (-689 *4)))) (-4376 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-4 *1 (-419 *2)) (-4 *2 (-172)))) (-2603 (*1 *2) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-1264 (-689 *3))))) (-2880 (*1 *2) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-644 (-952 *3))))) (-2422 (*1 *1 *2) (-12 (-5 *2 (-1264 *3)) (-4 *3 (-172)) (-4 *1 (-419 *3)))) (-3136 (*1 *2 *1) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-1264 *3)))) (-3136 (*1 *1 *2) (-12 (-5 *2 (-1264 *3)) (-4 *3 (-172)) (-4 *1 (-419 *3)))) (-2659 (*1 *2) (-12 (-4 *1 (-419 *2)) (-4 *2 (-172)))) (-1792 (*1 *2) (-12 (-4 *1 (-419 *2)) (-4 *2 (-172)))) (-1434 (*1 *2) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-689 *3)))) (-4223 (*1 *2) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-689 *3)))) (-1390 (*1 *2 *1) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-689 *3)))) (-3030 (*1 *2 *1) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-689 *3)))) (-1509 (*1 *2) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-4 *3 (-365)) (-5 *2 (-1171 (-952 *3))))) (-4139 (*1 *2) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-4 *3 (-365)) (-5 *2 (-1171 (-952 *3))))) (-4029 (*1 *1 *2 *1) (-12 (-5 *2 (-689 *3)) (-4 *1 (-419 *3)) (-4 *3 (-172))))) +(-13 (-369 |t#1|) (-10 -8 (-15 -1419 ((-1264 $))) (-15 -3747 ((-1264 |t#1|) $)) (-15 -3747 ((-689 |t#1|) (-1264 $))) (-15 -4376 (|t#1| $ (-566))) (-15 -2603 ((-1264 (-689 |t#1|)))) (-15 -2880 ((-644 (-952 |t#1|)))) (-15 -2422 ($ (-1264 |t#1|))) (-15 -3136 ((-1264 |t#1|) $)) (-15 -3136 ($ (-1264 |t#1|))) (-15 -2659 (|t#1|)) (-15 -1792 (|t#1|)) (-15 -1434 ((-689 |t#1|))) (-15 -4223 ((-689 |t#1|))) (-15 -1390 ((-689 |t#1|) $)) (-15 -3030 ((-689 |t#1|) $)) (IF (|has| |t#1| (-365)) (PROGN (-15 -1509 ((-1171 (-952 |t#1|)))) (-15 -4139 ((-1171 (-952 |t#1|))))) |%noBranch|) (-15 -4029 ($ (-689 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-613 (-862)) . T) ((-369 |#1|) . T) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-648 |#1|) . T) ((-640 |#1|) . T) ((-717 |#1|) . T) ((-720) . T) ((-744 |#1|) . T) ((-761) . T) ((-1051 |#1|) . T) ((-1056 |#1|) . T) ((-1099) . T)) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) 60)) (-2693 (($ $) 78)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) 191)) (-3087 (($ $) NIL)) (-1716 (((-112) $) 48)) (-1732 ((|#1| $) 16)) (-3174 (((-3 $ "failed") $ $) NIL)) (-3980 (($ $) NIL (|has| |#1| (-1218)))) (-3348 (((-420 $) $) NIL (|has| |#1| (-1218)))) (-1647 (($ |#1| (-566)) 42)) (-1811 (($) NIL T CONST)) (-2980 (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) 148)) (-1709 (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) 74)) (-3757 (((-3 $ "failed") $) 164)) (-2515 (((-3 (-409 (-566)) "failed") $) 84 (|has| |#1| (-547)))) (-2024 (((-112) $) 80 (|has| |#1| (-547)))) (-3330 (((-409 (-566)) $) 91 (|has| |#1| (-547)))) (-2826 (($ |#1| (-566)) 44)) (-4188 (((-112) $) 213 (|has| |#1| (-1218)))) (-2264 (((-112) $) 62)) (-4128 (((-771) $) 51)) (-2403 (((-3 "nil" "sqfr" "irred" "prime") $ (-566)) 175)) (-2294 ((|#1| $ (-566)) 174)) (-3592 (((-566) $ (-566)) 173)) (-2856 (($ |#1| (-566)) 41)) (-3080 (($ (-1 |#1| |#1|) $) 183)) (-2982 (($ |#1| (-644 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-566))))) 79)) (-2120 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-3151 (((-1157) $) NIL)) (-3814 (($ |#1| (-566)) 43)) (-4059 (((-1119) $) NIL)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-454)))) (-2162 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) 192 (|has| |#1| (-454)))) (-3952 (($ |#1| (-566) (-3 "nil" "sqfr" "irred" "prime")) 40)) (-3445 (((-644 (-2 (|:| -2325 |#1|) (|:| -3631 (-566)))) $) 73)) (-1448 (((-644 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-566)))) $) 12)) (-2325 (((-420 $) $) NIL (|has| |#1| (-1218)))) (-2976 (((-3 $ "failed") $ $) 176)) (-3631 (((-566) $) 167)) (-3507 ((|#1| $) 75)) (-3297 (($ $ (-644 |#1|) (-644 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ (-644 (-295 |#1|))) 100 (|has| |#1| (-310 |#1|))) (($ $ (-644 (-1175)) (-644 |#1|)) 106 (|has| |#1| (-516 (-1175) |#1|))) (($ $ (-1175) |#1|) NIL (|has| |#1| (-516 (-1175) |#1|))) (($ $ (-1175) $) NIL (|has| |#1| (-516 (-1175) $))) (($ $ (-644 (-1175)) (-644 $)) 107 (|has| |#1| (-516 (-1175) $))) (($ $ (-644 (-295 $))) 103 (|has| |#1| (-310 $))) (($ $ (-295 $)) NIL (|has| |#1| (-310 $))) (($ $ $ $) NIL (|has| |#1| (-310 $))) (($ $ (-644 $) (-644 $)) NIL (|has| |#1| (-310 $)))) (-4376 (($ $ |#1|) 92 (|has| |#1| (-287 |#1| |#1|))) (($ $ $) 93 (|has| |#1| (-287 $ $)))) (-3526 (($ $) NIL (|has| |#1| (-233))) (($ $ (-771)) NIL (|has| |#1| (-233))) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) 182)) (-3136 (((-538) $) 39 (|has| |#1| (-614 (-538)))) (((-381) $) 113 (|has| |#1| (-1022))) (((-225) $) 119 (|has| |#1| (-1022)))) (-2479 (((-862) $) 146) (($ (-566)) 65) (($ $) NIL) (($ |#1|) 64) (($ (-409 (-566))) NIL (|has| |#1| (-1038 (-409 (-566)))))) (-1558 (((-771)) 67 T CONST)) (-3900 (((-112) $ $) NIL)) (-1333 (((-112) $ $) NIL)) (-2446 (($) 53 T CONST)) (-2459 (($) 52 T CONST)) (-2834 (($ $) NIL (|has| |#1| (-233))) (($ $ (-771)) NIL (|has| |#1| (-233))) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2952 (((-112) $ $) 159)) (-3065 (($ $) 161) (($ $ $) NIL)) (-3052 (($ $ $) 180)) (** (($ $ (-921)) NIL) (($ $ (-771)) 125)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 69) (($ $ $) 68) (($ |#1| $) 70) (($ $ |#1|) NIL))) +(((-420 |#1|) (-13 (-558) (-231 |#1|) (-38 |#1|) (-340 |#1|) (-413 |#1|) (-10 -8 (-15 -3507 (|#1| $)) (-15 -3631 ((-566) $)) (-15 -2982 ($ |#1| (-644 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-566)))))) (-15 -1448 ((-644 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-566)))) $)) (-15 -2856 ($ |#1| (-566))) (-15 -3445 ((-644 (-2 (|:| -2325 |#1|) (|:| -3631 (-566)))) $)) (-15 -3814 ($ |#1| (-566))) (-15 -3592 ((-566) $ (-566))) (-15 -2294 (|#1| $ (-566))) (-15 -2403 ((-3 "nil" "sqfr" "irred" "prime") $ (-566))) (-15 -4128 ((-771) $)) (-15 -2826 ($ |#1| (-566))) (-15 -1647 ($ |#1| (-566))) (-15 -3952 ($ |#1| (-566) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -1732 (|#1| $)) (-15 -2693 ($ $)) (-15 -3080 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-454)) (-6 (-454)) |%noBranch|) (IF (|has| |#1| (-1022)) (-6 (-1022)) |%noBranch|) (IF (|has| |#1| (-1218)) (-6 (-1218)) |%noBranch|) (IF (|has| |#1| (-614 (-538))) (-6 (-614 (-538))) |%noBranch|) (IF (|has| |#1| (-547)) (PROGN (-15 -2024 ((-112) $)) (-15 -3330 ((-409 (-566)) $)) (-15 -2515 ((-3 (-409 (-566)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-287 $ $)) (-6 (-287 $ $)) |%noBranch|) (IF (|has| |#1| (-310 $)) (-6 (-310 $)) |%noBranch|) (IF (|has| |#1| (-516 (-1175) $)) (-6 (-516 (-1175) $)) |%noBranch|))) (-558)) (T -420)) +((-3080 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-558)) (-5 *1 (-420 *3)))) (-3507 (*1 *2 *1) (-12 (-5 *1 (-420 *2)) (-4 *2 (-558)))) (-3631 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-420 *3)) (-4 *3 (-558)))) (-2982 (*1 *1 *2 *3) (-12 (-5 *3 (-644 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-566))))) (-4 *2 (-558)) (-5 *1 (-420 *2)))) (-1448 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-566))))) (-5 *1 (-420 *3)) (-4 *3 (-558)))) (-2856 (*1 *1 *2 *3) (-12 (-5 *3 (-566)) (-5 *1 (-420 *2)) (-4 *2 (-558)))) (-3445 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| -2325 *3) (|:| -3631 (-566))))) (-5 *1 (-420 *3)) (-4 *3 (-558)))) (-3814 (*1 *1 *2 *3) (-12 (-5 *3 (-566)) (-5 *1 (-420 *2)) (-4 *2 (-558)))) (-3592 (*1 *2 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-420 *3)) (-4 *3 (-558)))) (-2294 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *1 (-420 *2)) (-4 *2 (-558)))) (-2403 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-420 *4)) (-4 *4 (-558)))) (-4128 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-420 *3)) (-4 *3 (-558)))) (-2826 (*1 *1 *2 *3) (-12 (-5 *3 (-566)) (-5 *1 (-420 *2)) (-4 *2 (-558)))) (-1647 (*1 *1 *2 *3) (-12 (-5 *3 (-566)) (-5 *1 (-420 *2)) (-4 *2 (-558)))) (-3952 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-566)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-420 *2)) (-4 *2 (-558)))) (-1732 (*1 *2 *1) (-12 (-5 *1 (-420 *2)) (-4 *2 (-558)))) (-2693 (*1 *1 *1) (-12 (-5 *1 (-420 *2)) (-4 *2 (-558)))) (-2024 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-420 *3)) (-4 *3 (-547)) (-4 *3 (-558)))) (-3330 (*1 *2 *1) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-420 *3)) (-4 *3 (-547)) (-4 *3 (-558)))) (-2515 (*1 *2 *1) (|partial| -12 (-5 *2 (-409 (-566))) (-5 *1 (-420 *3)) (-4 *3 (-547)) (-4 *3 (-558))))) +(-13 (-558) (-231 |#1|) (-38 |#1|) (-340 |#1|) (-413 |#1|) (-10 -8 (-15 -3507 (|#1| $)) (-15 -3631 ((-566) $)) (-15 -2982 ($ |#1| (-644 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-566)))))) (-15 -1448 ((-644 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-566)))) $)) (-15 -2856 ($ |#1| (-566))) (-15 -3445 ((-644 (-2 (|:| -2325 |#1|) (|:| -3631 (-566)))) $)) (-15 -3814 ($ |#1| (-566))) (-15 -3592 ((-566) $ (-566))) (-15 -2294 (|#1| $ (-566))) (-15 -2403 ((-3 "nil" "sqfr" "irred" "prime") $ (-566))) (-15 -4128 ((-771) $)) (-15 -2826 ($ |#1| (-566))) (-15 -1647 ($ |#1| (-566))) (-15 -3952 ($ |#1| (-566) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -1732 (|#1| $)) (-15 -2693 ($ $)) (-15 -3080 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-454)) (-6 (-454)) |%noBranch|) (IF (|has| |#1| (-1022)) (-6 (-1022)) |%noBranch|) (IF (|has| |#1| (-1218)) (-6 (-1218)) |%noBranch|) (IF (|has| |#1| (-614 (-538))) (-6 (-614 (-538))) |%noBranch|) (IF (|has| |#1| (-547)) (PROGN (-15 -2024 ((-112) $)) (-15 -3330 ((-409 (-566)) $)) (-15 -2515 ((-3 (-409 (-566)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-287 $ $)) (-6 (-287 $ $)) |%noBranch|) (IF (|has| |#1| (-310 $)) (-6 (-310 $)) |%noBranch|) (IF (|has| |#1| (-516 (-1175) $)) (-6 (-516 (-1175) $)) |%noBranch|))) +((-3991 (((-420 |#1|) (-420 |#1|) (-1 (-420 |#1|) |#1|)) 28)) (-2222 (((-420 |#1|) (-420 |#1|) (-420 |#1|)) 17))) +(((-421 |#1|) (-10 -7 (-15 -3991 ((-420 |#1|) (-420 |#1|) (-1 (-420 |#1|) |#1|))) (-15 -2222 ((-420 |#1|) (-420 |#1|) (-420 |#1|)))) (-558)) (T -421)) +((-2222 (*1 *2 *2 *2) (-12 (-5 *2 (-420 *3)) (-4 *3 (-558)) (-5 *1 (-421 *3)))) (-3991 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-420 *4) *4)) (-4 *4 (-558)) (-5 *2 (-420 *4)) (-5 *1 (-421 *4))))) +(-10 -7 (-15 -3991 ((-420 |#1|) (-420 |#1|) (-1 (-420 |#1|) |#1|))) (-15 -2222 ((-420 |#1|) (-420 |#1|) (-420 |#1|)))) +((-1678 ((|#2| |#2|) 183)) (-1705 (((-3 (|:| |%expansion| (-314 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1157)) (|:| |prob| (-1157))))) |#2| (-112)) 60))) +(((-422 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1705 ((-3 (|:| |%expansion| (-314 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1157)) (|:| |prob| (-1157))))) |#2| (-112))) (-15 -1678 (|#2| |#2|))) (-13 (-454) (-1038 (-566)) (-639 (-566))) (-13 (-27) (-1199) (-432 |#1|)) (-1175) |#2|) (T -422)) +((-1678 (*1 *2 *2) (-12 (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-422 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1199) (-432 *3))) (-14 *4 (-1175)) (-14 *5 *2))) (-1705 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-3 (|:| |%expansion| (-314 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1157)) (|:| |prob| (-1157)))))) (-5 *1 (-422 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1199) (-432 *5))) (-14 *6 (-1175)) (-14 *7 *3)))) +(-10 -7 (-15 -1705 ((-3 (|:| |%expansion| (-314 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1157)) (|:| |prob| (-1157))))) |#2| (-112))) (-15 -1678 (|#2| |#2|))) +((-3080 ((|#4| (-1 |#3| |#1|) |#2|) 11))) +(((-423 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3080 (|#4| (-1 |#3| |#1|) |#2|))) (-1049) (-432 |#1|) (-1049) (-432 |#3|)) (T -423)) +((-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1049)) (-4 *6 (-1049)) (-4 *2 (-432 *6)) (-5 *1 (-423 *5 *4 *6 *2)) (-4 *4 (-432 *5))))) +(-10 -7 (-15 -3080 (|#4| (-1 |#3| |#1|) |#2|))) +((-1678 ((|#2| |#2|) 104)) (-1872 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1157)) (|:| |prob| (-1157))))) |#2| (-112) (-1157)) 52)) (-1313 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1157)) (|:| |prob| (-1157))))) |#2| (-112) (-1157)) 171))) +(((-424 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1872 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1157)) (|:| |prob| (-1157))))) |#2| (-112) (-1157))) (-15 -1313 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1157)) (|:| |prob| (-1157))))) |#2| (-112) (-1157))) (-15 -1678 (|#2| |#2|))) (-13 (-454) (-1038 (-566)) (-639 (-566))) (-13 (-27) (-1199) (-432 |#1|) (-10 -8 (-15 -2479 ($ |#3|)))) (-848) (-13 (-1242 |#2| |#3|) (-365) (-1199) (-10 -8 (-15 -3526 ($ $)) (-15 -2390 ($ $)))) (-983 |#4|) (-1175)) (T -424)) +((-1678 (*1 *2 *2) (-12 (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-4 *2 (-13 (-27) (-1199) (-432 *3) (-10 -8 (-15 -2479 ($ *4))))) (-4 *4 (-848)) (-4 *5 (-13 (-1242 *2 *4) (-365) (-1199) (-10 -8 (-15 -3526 ($ $)) (-15 -2390 ($ $))))) (-5 *1 (-424 *3 *2 *4 *5 *6 *7)) (-4 *6 (-983 *5)) (-14 *7 (-1175)))) (-1313 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-4 *3 (-13 (-27) (-1199) (-432 *6) (-10 -8 (-15 -2479 ($ *7))))) (-4 *7 (-848)) (-4 *8 (-13 (-1242 *3 *7) (-365) (-1199) (-10 -8 (-15 -3526 ($ $)) (-15 -2390 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1157)) (|:| |prob| (-1157)))))) (-5 *1 (-424 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1157)) (-4 *9 (-983 *8)) (-14 *10 (-1175)))) (-1872 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-4 *3 (-13 (-27) (-1199) (-432 *6) (-10 -8 (-15 -2479 ($ *7))))) (-4 *7 (-848)) (-4 *8 (-13 (-1242 *3 *7) (-365) (-1199) (-10 -8 (-15 -3526 ($ $)) (-15 -2390 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1157)) (|:| |prob| (-1157)))))) (-5 *1 (-424 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1157)) (-4 *9 (-983 *8)) (-14 *10 (-1175))))) +(-10 -7 (-15 -1872 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1157)) (|:| |prob| (-1157))))) |#2| (-112) (-1157))) (-15 -1313 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1157)) (|:| |prob| (-1157))))) |#2| (-112) (-1157))) (-15 -1678 (|#2| |#2|))) +((-2531 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-1838 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-3080 ((|#4| (-1 |#3| |#1|) |#2|) 17))) +(((-425 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3080 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1838 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2531 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1099) (-427 |#1|) (-1099) (-427 |#3|)) (T -425)) +((-2531 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1099)) (-4 *5 (-1099)) (-4 *2 (-427 *5)) (-5 *1 (-425 *6 *4 *5 *2)) (-4 *4 (-427 *6)))) (-1838 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1099)) (-4 *2 (-1099)) (-5 *1 (-425 *5 *4 *2 *6)) (-4 *4 (-427 *5)) (-4 *6 (-427 *2)))) (-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *2 (-427 *6)) (-5 *1 (-425 *5 *4 *6 *2)) (-4 *4 (-427 *5))))) +(-10 -7 (-15 -3080 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1838 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2531 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-2004 (($) 52)) (-1730 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 46)) (-2591 (($ $ $) 45)) (-2025 (((-112) $ $) 34)) (-4049 (((-771)) 56)) (-1759 (($ (-644 |#2|)) 23) (($) NIL)) (-1415 (($) 67)) (-3963 (((-112) $ $) 15)) (-1920 ((|#2| $) 78)) (-3038 ((|#2| $) 76)) (-4051 (((-921) $) 71)) (-4022 (($ $ $) 41)) (-2104 (($ (-921)) 61)) (-1369 (($ $ |#2|) NIL) (($ $ $) 44)) (-4068 (((-771) (-1 (-112) |#2|) $) NIL) (((-771) |#2| $) 31)) (-2489 (($ (-644 |#2|)) 27)) (-4153 (($ $) 54)) (-2479 (((-862) $) 39)) (-2374 (((-771) $) 24)) (-2405 (($ (-644 |#2|)) 22) (($) NIL)) (-2952 (((-112) $ $) 19))) +(((-426 |#1| |#2|) (-10 -8 (-15 -4049 ((-771))) (-15 -2104 (|#1| (-921))) (-15 -4051 ((-921) |#1|)) (-15 -1415 (|#1|)) (-15 -1920 (|#2| |#1|)) (-15 -3038 (|#2| |#1|)) (-15 -2004 (|#1|)) (-15 -4153 (|#1| |#1|)) (-15 -2374 ((-771) |#1|)) (-15 -2952 ((-112) |#1| |#1|)) (-15 -2479 ((-862) |#1|)) (-15 -3963 ((-112) |#1| |#1|)) (-15 -2405 (|#1|)) (-15 -2405 (|#1| (-644 |#2|))) (-15 -1759 (|#1|)) (-15 -1759 (|#1| (-644 |#2|))) (-15 -4022 (|#1| |#1| |#1|)) (-15 -1369 (|#1| |#1| |#1|)) (-15 -1369 (|#1| |#1| |#2|)) (-15 -2591 (|#1| |#1| |#1|)) (-15 -2025 ((-112) |#1| |#1|)) (-15 -1730 (|#1| |#1| |#1|)) (-15 -1730 (|#1| |#1| |#2|)) (-15 -1730 (|#1| |#2| |#1|)) (-15 -2489 (|#1| (-644 |#2|))) (-15 -4068 ((-771) |#2| |#1|)) (-15 -4068 ((-771) (-1 (-112) |#2|) |#1|))) (-427 |#2|) (-1099)) (T -426)) +((-4049 (*1 *2) (-12 (-4 *4 (-1099)) (-5 *2 (-771)) (-5 *1 (-426 *3 *4)) (-4 *3 (-427 *4))))) +(-10 -8 (-15 -4049 ((-771))) (-15 -2104 (|#1| (-921))) (-15 -4051 ((-921) |#1|)) (-15 -1415 (|#1|)) (-15 -1920 (|#2| |#1|)) (-15 -3038 (|#2| |#1|)) (-15 -2004 (|#1|)) (-15 -4153 (|#1| |#1|)) (-15 -2374 ((-771) |#1|)) (-15 -2952 ((-112) |#1| |#1|)) (-15 -2479 ((-862) |#1|)) (-15 -3963 ((-112) |#1| |#1|)) (-15 -2405 (|#1|)) (-15 -2405 (|#1| (-644 |#2|))) (-15 -1759 (|#1|)) (-15 -1759 (|#1| (-644 |#2|))) (-15 -4022 (|#1| |#1| |#1|)) (-15 -1369 (|#1| |#1| |#1|)) (-15 -1369 (|#1| |#1| |#2|)) (-15 -2591 (|#1| |#1| |#1|)) (-15 -2025 ((-112) |#1| |#1|)) (-15 -1730 (|#1| |#1| |#1|)) (-15 -1730 (|#1| |#1| |#2|)) (-15 -1730 (|#1| |#2| |#1|)) (-15 -2489 (|#1| (-644 |#2|))) (-15 -4068 ((-771) |#2| |#1|)) (-15 -4068 ((-771) (-1 (-112) |#2|) |#1|))) +((-2986 (((-112) $ $) 19)) (-2004 (($) 68 (|has| |#1| (-370)))) (-1730 (($ |#1| $) 83) (($ $ |#1|) 82) (($ $ $) 81)) (-2591 (($ $ $) 79)) (-2025 (((-112) $ $) 80)) (-1453 (((-112) $ (-771)) 8)) (-4049 (((-771)) 62 (|has| |#1| (-370)))) (-1759 (($ (-644 |#1|)) 75) (($) 74)) (-4364 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4417)))) (-3543 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4417)))) (-1811 (($) 7 T CONST)) (-4111 (($ $) 59 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-2295 (($ |#1| $) 48 (|has| $ (-6 -4417))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4417)))) (-2628 (($ |#1| $) 58 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4417)))) (-1838 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4417)))) (-1415 (($) 65 (|has| |#1| (-370)))) (-3872 (((-644 |#1|) $) 31 (|has| $ (-6 -4417)))) (-3963 (((-112) $ $) 71)) (-2756 (((-112) $ (-771)) 9)) (-1920 ((|#1| $) 66 (|has| |#1| (-850)))) (-4227 (((-644 |#1|) $) 30 (|has| $ (-6 -4417)))) (-1688 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-3038 ((|#1| $) 67 (|has| |#1| (-850)))) (-3708 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#1| |#1|) $) 36)) (-4051 (((-921) $) 64 (|has| |#1| (-370)))) (-4106 (((-112) $ (-771)) 10)) (-3151 (((-1157) $) 22)) (-4022 (($ $ $) 76)) (-4255 ((|#1| $) 40)) (-4354 (($ |#1| $) 41)) (-2104 (($ (-921)) 63 (|has| |#1| (-370)))) (-4059 (((-1119) $) 21)) (-2688 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-4097 ((|#1| $) 42)) (-3966 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1844 (((-112) $ $) 14)) (-2788 (((-112) $) 11)) (-1737 (($) 12)) (-1369 (($ $ |#1|) 78) (($ $ $) 77)) (-1797 (($) 50) (($ (-644 |#1|)) 49)) (-4068 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4417))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-3924 (($ $) 13)) (-3136 (((-538) $) 60 (|has| |#1| (-614 (-538))))) (-2489 (($ (-644 |#1|)) 51)) (-4153 (($ $) 69 (|has| |#1| (-370)))) (-2479 (((-862) $) 18)) (-2374 (((-771) $) 70)) (-2405 (($ (-644 |#1|)) 73) (($) 72)) (-3900 (((-112) $ $) 23)) (-2471 (($ (-644 |#1|)) 43)) (-3667 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4417)))) (-2952 (((-112) $ $) 20)) (-3002 (((-771) $) 6 (|has| $ (-6 -4417))))) +(((-427 |#1|) (-140) (-1099)) (T -427)) +((-2374 (*1 *2 *1) (-12 (-4 *1 (-427 *3)) (-4 *3 (-1099)) (-5 *2 (-771)))) (-4153 (*1 *1 *1) (-12 (-4 *1 (-427 *2)) (-4 *2 (-1099)) (-4 *2 (-370)))) (-2004 (*1 *1) (-12 (-4 *1 (-427 *2)) (-4 *2 (-370)) (-4 *2 (-1099)))) (-3038 (*1 *2 *1) (-12 (-4 *1 (-427 *2)) (-4 *2 (-1099)) (-4 *2 (-850)))) (-1920 (*1 *2 *1) (-12 (-4 *1 (-427 *2)) (-4 *2 (-1099)) (-4 *2 (-850))))) +(-13 (-229 |t#1|) (-1097 |t#1|) (-10 -8 (-6 -4417) (-15 -2374 ((-771) $)) (IF (|has| |t#1| (-370)) (PROGN (-6 (-370)) (-15 -4153 ($ $)) (-15 -2004 ($))) |%noBranch|) (IF (|has| |t#1| (-850)) (PROGN (-15 -3038 (|t#1| $)) (-15 -1920 (|t#1| $))) |%noBranch|))) +(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-613 (-862)) . T) ((-151 |#1|) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-229 |#1|) . T) ((-235 |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-370) |has| |#1| (-370)) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1097 |#1|) . T) ((-1099) . T) ((-1214) . T)) +((-4070 (((-587 |#2|) |#2| (-1175)) 38)) (-2787 (((-587 |#2|) |#2| (-1175)) 21)) (-3621 ((|#2| |#2| (-1175)) 26))) +(((-428 |#1| |#2|) (-10 -7 (-15 -2787 ((-587 |#2|) |#2| (-1175))) (-15 -4070 ((-587 |#2|) |#2| (-1175))) (-15 -3621 (|#2| |#2| (-1175)))) (-13 (-308) (-147) (-1038 (-566)) (-639 (-566))) (-13 (-1199) (-29 |#1|))) (T -428)) +((-3621 (*1 *2 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-428 *4 *2)) (-4 *2 (-13 (-1199) (-29 *4))))) (-4070 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-4 *5 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-587 *3)) (-5 *1 (-428 *5 *3)) (-4 *3 (-13 (-1199) (-29 *5))))) (-2787 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-4 *5 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-587 *3)) (-5 *1 (-428 *5 *3)) (-4 *3 (-13 (-1199) (-29 *5)))))) +(-10 -7 (-15 -2787 ((-587 |#2|) |#2| (-1175))) (-15 -4070 ((-587 |#2|) |#2| (-1175))) (-15 -3621 (|#2| |#2| (-1175)))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-1811 (($) NIL T CONST)) (-3757 (((-3 $ "failed") $) NIL)) (-2264 (((-112) $) NIL)) (-4372 (($ |#2| |#1|) 37)) (-3619 (($ |#2| |#1|) 35)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) NIL) (($ (-566)) NIL) (($ |#1|) NIL) (($ (-332 |#2|)) 25)) (-1558 (((-771)) NIL T CONST)) (-3900 (((-112) $ $) NIL)) (-2446 (($) 10 T CONST)) (-2459 (($) 16 T CONST)) (-2952 (((-112) $ $) NIL)) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) 36)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 39) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-429 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4404)) (IF (|has| |#1| (-6 -4404)) (-6 -4404) |%noBranch|) |%noBranch|) (-15 -2479 ($ |#1|)) (-15 -2479 ($ (-332 |#2|))) (-15 -4372 ($ |#2| |#1|)) (-15 -3619 ($ |#2| |#1|)))) (-13 (-172) (-38 (-409 (-566)))) (-13 (-850) (-21))) (T -429)) +((-2479 (*1 *1 *2) (-12 (-5 *1 (-429 *2 *3)) (-4 *2 (-13 (-172) (-38 (-409 (-566))))) (-4 *3 (-13 (-850) (-21))))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-332 *4)) (-4 *4 (-13 (-850) (-21))) (-5 *1 (-429 *3 *4)) (-4 *3 (-13 (-172) (-38 (-409 (-566))))))) (-4372 (*1 *1 *2 *3) (-12 (-5 *1 (-429 *3 *2)) (-4 *3 (-13 (-172) (-38 (-409 (-566))))) (-4 *2 (-13 (-850) (-21))))) (-3619 (*1 *1 *2 *3) (-12 (-5 *1 (-429 *3 *2)) (-4 *3 (-13 (-172) (-38 (-409 (-566))))) (-4 *2 (-13 (-850) (-21)))))) +(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4404)) (IF (|has| |#1| (-6 -4404)) (-6 -4404) |%noBranch|) |%noBranch|) (-15 -2479 ($ |#1|)) (-15 -2479 ($ (-332 |#2|))) (-15 -4372 ($ |#2| |#1|)) (-15 -3619 ($ |#2| |#1|)))) +((-2390 (((-3 |#2| (-644 |#2|)) |#2| (-1175)) 115))) +(((-430 |#1| |#2|) (-10 -7 (-15 -2390 ((-3 |#2| (-644 |#2|)) |#2| (-1175)))) (-13 (-308) (-147) (-1038 (-566)) (-639 (-566))) (-13 (-1199) (-959) (-29 |#1|))) (T -430)) +((-2390 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-4 *5 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-3 *3 (-644 *3))) (-5 *1 (-430 *5 *3)) (-4 *3 (-13 (-1199) (-959) (-29 *5)))))) +(-10 -7 (-15 -2390 ((-3 |#2| (-644 |#2|)) |#2| (-1175)))) +((-2485 (((-644 (-1175)) $) 81)) (-2285 (((-409 (-1171 $)) $ (-612 $)) 314)) (-3739 (($ $ (-295 $)) NIL) (($ $ (-644 (-295 $))) NIL) (($ $ (-644 (-612 $)) (-644 $)) 278)) (-2980 (((-3 (-612 $) "failed") $) NIL) (((-3 (-1175) "failed") $) 84) (((-3 (-566) "failed") $) NIL) (((-3 |#2| "failed") $) 274) (((-3 (-409 (-952 |#2|)) "failed") $) 364) (((-3 (-952 |#2|) "failed") $) 276) (((-3 (-409 (-566)) "failed") $) NIL)) (-1709 (((-612 $) $) NIL) (((-1175) $) 28) (((-566) $) NIL) ((|#2| $) 272) (((-409 (-952 |#2|)) $) 346) (((-952 |#2|) $) 273) (((-409 (-566)) $) NIL)) (-4272 (((-114) (-114)) 47)) (-1579 (($ $) 99)) (-3314 (((-3 (-612 $) "failed") $) 269)) (-2272 (((-644 (-612 $)) $) 270)) (-4075 (((-3 (-644 $) "failed") $) 288)) (-4092 (((-3 (-2 (|:| |val| $) (|:| -3631 (-566))) "failed") $) 295)) (-3380 (((-3 (-644 $) "failed") $) 286)) (-3476 (((-3 (-2 (|:| -3103 (-566)) (|:| |var| (-612 $))) "failed") $) 305)) (-2414 (((-3 (-2 (|:| |var| (-612 $)) (|:| -3631 (-566))) "failed") $) 292) (((-3 (-2 (|:| |var| (-612 $)) (|:| -3631 (-566))) "failed") $ (-114)) 256) (((-3 (-2 (|:| |var| (-612 $)) (|:| -3631 (-566))) "failed") $ (-1175)) 258)) (-2587 (((-112) $) 17)) (-2597 ((|#2| $) 19)) (-3297 (($ $ (-612 $) $) NIL) (($ $ (-644 (-612 $)) (-644 $)) 277) (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-644 (-1175)) (-644 (-1 $ $))) NIL) (($ $ (-644 (-1175)) (-644 (-1 $ (-644 $)))) 109) (($ $ (-1175) (-1 $ (-644 $))) NIL) (($ $ (-1175) (-1 $ $)) NIL) (($ $ (-644 (-114)) (-644 (-1 $ $))) NIL) (($ $ (-644 (-114)) (-644 (-1 $ (-644 $)))) NIL) (($ $ (-114) (-1 $ (-644 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1175)) 62) (($ $ (-644 (-1175))) 281) (($ $) 282) (($ $ (-114) $ (-1175)) 65) (($ $ (-644 (-114)) (-644 $) (-1175)) 72) (($ $ (-644 (-1175)) (-644 (-771)) (-644 (-1 $ $))) 120) (($ $ (-644 (-1175)) (-644 (-771)) (-644 (-1 $ (-644 $)))) 283) (($ $ (-1175) (-771) (-1 $ (-644 $))) 105) (($ $ (-1175) (-771) (-1 $ $)) 104)) (-4376 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-644 $)) 119)) (-3526 (($ $ (-644 (-1175)) (-644 (-771))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175)) 279)) (-1375 (($ $) 325)) (-3136 (((-892 (-566)) $) 298) (((-892 (-381)) $) 302) (($ (-420 $)) 360) (((-538) $) NIL)) (-2479 (((-862) $) 280) (($ (-612 $)) 93) (($ (-1175)) 24) (($ |#2|) NIL) (($ (-1124 |#2| (-612 $))) NIL) (($ (-409 |#2|)) 330) (($ (-952 (-409 |#2|))) 369) (($ (-409 (-952 (-409 |#2|)))) 342) (($ (-409 (-952 |#2|))) 336) (($ $) NIL) (($ (-952 |#2|)) 218) (($ (-409 (-566))) 374) (($ (-566)) NIL)) (-1558 (((-771)) 88)) (-1540 (((-112) (-114)) 42)) (-3344 (($ (-1175) $) 31) (($ (-1175) $ $) 32) (($ (-1175) $ $ $) 33) (($ (-1175) $ $ $ $) 34) (($ (-1175) (-644 $)) 39)) (* (($ (-409 (-566)) $) NIL) (($ $ (-409 (-566))) NIL) (($ |#2| $) 307) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-566) $) NIL) (($ (-771) $) NIL) (($ (-921) $) NIL))) +(((-431 |#1| |#2|) (-10 -8 (-15 * (|#1| (-921) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2479 (|#1| (-566))) (-15 -1558 ((-771))) (-15 -2479 (|#1| (-409 (-566)))) (-15 -2980 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -1709 ((-409 (-566)) |#1|)) (-15 -3136 ((-538) |#1|)) (-15 -2479 (|#1| (-952 |#2|))) (-15 -2980 ((-3 (-952 |#2|) "failed") |#1|)) (-15 -1709 ((-952 |#2|) |#1|)) (-15 -3526 (|#1| |#1| (-1175))) (-15 -3526 (|#1| |#1| (-644 (-1175)))) (-15 -3526 (|#1| |#1| (-1175) (-771))) (-15 -3526 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2479 (|#1| |#1|)) (-15 * (|#1| |#1| (-409 (-566)))) (-15 * (|#1| (-409 (-566)) |#1|)) (-15 -2479 (|#1| (-409 (-952 |#2|)))) (-15 -2980 ((-3 (-409 (-952 |#2|)) "failed") |#1|)) (-15 -1709 ((-409 (-952 |#2|)) |#1|)) (-15 -2285 ((-409 (-1171 |#1|)) |#1| (-612 |#1|))) (-15 -2479 (|#1| (-409 (-952 (-409 |#2|))))) (-15 -2479 (|#1| (-952 (-409 |#2|)))) (-15 -2479 (|#1| (-409 |#2|))) (-15 -1375 (|#1| |#1|)) (-15 -3136 (|#1| (-420 |#1|))) (-15 -3297 (|#1| |#1| (-1175) (-771) (-1 |#1| |#1|))) (-15 -3297 (|#1| |#1| (-1175) (-771) (-1 |#1| (-644 |#1|)))) (-15 -3297 (|#1| |#1| (-644 (-1175)) (-644 (-771)) (-644 (-1 |#1| (-644 |#1|))))) (-15 -3297 (|#1| |#1| (-644 (-1175)) (-644 (-771)) (-644 (-1 |#1| |#1|)))) (-15 -4092 ((-3 (-2 (|:| |val| |#1|) (|:| -3631 (-566))) "failed") |#1|)) (-15 -2414 ((-3 (-2 (|:| |var| (-612 |#1|)) (|:| -3631 (-566))) "failed") |#1| (-1175))) (-15 -2414 ((-3 (-2 (|:| |var| (-612 |#1|)) (|:| -3631 (-566))) "failed") |#1| (-114))) (-15 -1579 (|#1| |#1|)) (-15 -2479 (|#1| (-1124 |#2| (-612 |#1|)))) (-15 -3476 ((-3 (-2 (|:| -3103 (-566)) (|:| |var| (-612 |#1|))) "failed") |#1|)) (-15 -3380 ((-3 (-644 |#1|) "failed") |#1|)) (-15 -2414 ((-3 (-2 (|:| |var| (-612 |#1|)) (|:| -3631 (-566))) "failed") |#1|)) (-15 -4075 ((-3 (-644 |#1|) "failed") |#1|)) (-15 -3297 (|#1| |#1| (-644 (-114)) (-644 |#1|) (-1175))) (-15 -3297 (|#1| |#1| (-114) |#1| (-1175))) (-15 -3297 (|#1| |#1|)) (-15 -3297 (|#1| |#1| (-644 (-1175)))) (-15 -3297 (|#1| |#1| (-1175))) (-15 -3344 (|#1| (-1175) (-644 |#1|))) (-15 -3344 (|#1| (-1175) |#1| |#1| |#1| |#1|)) (-15 -3344 (|#1| (-1175) |#1| |#1| |#1|)) (-15 -3344 (|#1| (-1175) |#1| |#1|)) (-15 -3344 (|#1| (-1175) |#1|)) (-15 -2485 ((-644 (-1175)) |#1|)) (-15 -2597 (|#2| |#1|)) (-15 -2587 ((-112) |#1|)) (-15 -2479 (|#1| |#2|)) (-15 -2980 ((-3 |#2| "failed") |#1|)) (-15 -1709 (|#2| |#1|)) (-15 -1709 ((-566) |#1|)) (-15 -2980 ((-3 (-566) "failed") |#1|)) (-15 -3136 ((-892 (-381)) |#1|)) (-15 -3136 ((-892 (-566)) |#1|)) (-15 -2479 (|#1| (-1175))) (-15 -2980 ((-3 (-1175) "failed") |#1|)) (-15 -1709 ((-1175) |#1|)) (-15 -3297 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -3297 (|#1| |#1| (-114) (-1 |#1| (-644 |#1|)))) (-15 -3297 (|#1| |#1| (-644 (-114)) (-644 (-1 |#1| (-644 |#1|))))) (-15 -3297 (|#1| |#1| (-644 (-114)) (-644 (-1 |#1| |#1|)))) (-15 -3297 (|#1| |#1| (-1175) (-1 |#1| |#1|))) (-15 -3297 (|#1| |#1| (-1175) (-1 |#1| (-644 |#1|)))) (-15 -3297 (|#1| |#1| (-644 (-1175)) (-644 (-1 |#1| (-644 |#1|))))) (-15 -3297 (|#1| |#1| (-644 (-1175)) (-644 (-1 |#1| |#1|)))) (-15 -1540 ((-112) (-114))) (-15 -4272 ((-114) (-114))) (-15 -2272 ((-644 (-612 |#1|)) |#1|)) (-15 -3314 ((-3 (-612 |#1|) "failed") |#1|)) (-15 -3739 (|#1| |#1| (-644 (-612 |#1|)) (-644 |#1|))) (-15 -3739 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -3739 (|#1| |#1| (-295 |#1|))) (-15 -4376 (|#1| (-114) (-644 |#1|))) (-15 -4376 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -4376 (|#1| (-114) |#1| |#1| |#1|)) (-15 -4376 (|#1| (-114) |#1| |#1|)) (-15 -4376 (|#1| (-114) |#1|)) (-15 -3297 (|#1| |#1| (-644 |#1|) (-644 |#1|))) (-15 -3297 (|#1| |#1| |#1| |#1|)) (-15 -3297 (|#1| |#1| (-295 |#1|))) (-15 -3297 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -3297 (|#1| |#1| (-644 (-612 |#1|)) (-644 |#1|))) (-15 -3297 (|#1| |#1| (-612 |#1|) |#1|)) (-15 -2479 (|#1| (-612 |#1|))) (-15 -2980 ((-3 (-612 |#1|) "failed") |#1|)) (-15 -1709 ((-612 |#1|) |#1|)) (-15 -2479 ((-862) |#1|))) (-432 |#2|) (-1099)) (T -431)) +((-4272 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *4 (-1099)) (-5 *1 (-431 *3 *4)) (-4 *3 (-432 *4)))) (-1540 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *5 (-1099)) (-5 *2 (-112)) (-5 *1 (-431 *4 *5)) (-4 *4 (-432 *5)))) (-1558 (*1 *2) (-12 (-4 *4 (-1099)) (-5 *2 (-771)) (-5 *1 (-431 *3 *4)) (-4 *3 (-432 *4))))) +(-10 -8 (-15 * (|#1| (-921) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2479 (|#1| (-566))) (-15 -1558 ((-771))) (-15 -2479 (|#1| (-409 (-566)))) (-15 -2980 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -1709 ((-409 (-566)) |#1|)) (-15 -3136 ((-538) |#1|)) (-15 -2479 (|#1| (-952 |#2|))) (-15 -2980 ((-3 (-952 |#2|) "failed") |#1|)) (-15 -1709 ((-952 |#2|) |#1|)) (-15 -3526 (|#1| |#1| (-1175))) (-15 -3526 (|#1| |#1| (-644 (-1175)))) (-15 -3526 (|#1| |#1| (-1175) (-771))) (-15 -3526 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2479 (|#1| |#1|)) (-15 * (|#1| |#1| (-409 (-566)))) (-15 * (|#1| (-409 (-566)) |#1|)) (-15 -2479 (|#1| (-409 (-952 |#2|)))) (-15 -2980 ((-3 (-409 (-952 |#2|)) "failed") |#1|)) (-15 -1709 ((-409 (-952 |#2|)) |#1|)) (-15 -2285 ((-409 (-1171 |#1|)) |#1| (-612 |#1|))) (-15 -2479 (|#1| (-409 (-952 (-409 |#2|))))) (-15 -2479 (|#1| (-952 (-409 |#2|)))) (-15 -2479 (|#1| (-409 |#2|))) (-15 -1375 (|#1| |#1|)) (-15 -3136 (|#1| (-420 |#1|))) (-15 -3297 (|#1| |#1| (-1175) (-771) (-1 |#1| |#1|))) (-15 -3297 (|#1| |#1| (-1175) (-771) (-1 |#1| (-644 |#1|)))) (-15 -3297 (|#1| |#1| (-644 (-1175)) (-644 (-771)) (-644 (-1 |#1| (-644 |#1|))))) (-15 -3297 (|#1| |#1| (-644 (-1175)) (-644 (-771)) (-644 (-1 |#1| |#1|)))) (-15 -4092 ((-3 (-2 (|:| |val| |#1|) (|:| -3631 (-566))) "failed") |#1|)) (-15 -2414 ((-3 (-2 (|:| |var| (-612 |#1|)) (|:| -3631 (-566))) "failed") |#1| (-1175))) (-15 -2414 ((-3 (-2 (|:| |var| (-612 |#1|)) (|:| -3631 (-566))) "failed") |#1| (-114))) (-15 -1579 (|#1| |#1|)) (-15 -2479 (|#1| (-1124 |#2| (-612 |#1|)))) (-15 -3476 ((-3 (-2 (|:| -3103 (-566)) (|:| |var| (-612 |#1|))) "failed") |#1|)) (-15 -3380 ((-3 (-644 |#1|) "failed") |#1|)) (-15 -2414 ((-3 (-2 (|:| |var| (-612 |#1|)) (|:| -3631 (-566))) "failed") |#1|)) (-15 -4075 ((-3 (-644 |#1|) "failed") |#1|)) (-15 -3297 (|#1| |#1| (-644 (-114)) (-644 |#1|) (-1175))) (-15 -3297 (|#1| |#1| (-114) |#1| (-1175))) (-15 -3297 (|#1| |#1|)) (-15 -3297 (|#1| |#1| (-644 (-1175)))) (-15 -3297 (|#1| |#1| (-1175))) (-15 -3344 (|#1| (-1175) (-644 |#1|))) (-15 -3344 (|#1| (-1175) |#1| |#1| |#1| |#1|)) (-15 -3344 (|#1| (-1175) |#1| |#1| |#1|)) (-15 -3344 (|#1| (-1175) |#1| |#1|)) (-15 -3344 (|#1| (-1175) |#1|)) (-15 -2485 ((-644 (-1175)) |#1|)) (-15 -2597 (|#2| |#1|)) (-15 -2587 ((-112) |#1|)) (-15 -2479 (|#1| |#2|)) (-15 -2980 ((-3 |#2| "failed") |#1|)) (-15 -1709 (|#2| |#1|)) (-15 -1709 ((-566) |#1|)) (-15 -2980 ((-3 (-566) "failed") |#1|)) (-15 -3136 ((-892 (-381)) |#1|)) (-15 -3136 ((-892 (-566)) |#1|)) (-15 -2479 (|#1| (-1175))) (-15 -2980 ((-3 (-1175) "failed") |#1|)) (-15 -1709 ((-1175) |#1|)) (-15 -3297 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -3297 (|#1| |#1| (-114) (-1 |#1| (-644 |#1|)))) (-15 -3297 (|#1| |#1| (-644 (-114)) (-644 (-1 |#1| (-644 |#1|))))) (-15 -3297 (|#1| |#1| (-644 (-114)) (-644 (-1 |#1| |#1|)))) (-15 -3297 (|#1| |#1| (-1175) (-1 |#1| |#1|))) (-15 -3297 (|#1| |#1| (-1175) (-1 |#1| (-644 |#1|)))) (-15 -3297 (|#1| |#1| (-644 (-1175)) (-644 (-1 |#1| (-644 |#1|))))) (-15 -3297 (|#1| |#1| (-644 (-1175)) (-644 (-1 |#1| |#1|)))) (-15 -1540 ((-112) (-114))) (-15 -4272 ((-114) (-114))) (-15 -2272 ((-644 (-612 |#1|)) |#1|)) (-15 -3314 ((-3 (-612 |#1|) "failed") |#1|)) (-15 -3739 (|#1| |#1| (-644 (-612 |#1|)) (-644 |#1|))) (-15 -3739 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -3739 (|#1| |#1| (-295 |#1|))) (-15 -4376 (|#1| (-114) (-644 |#1|))) (-15 -4376 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -4376 (|#1| (-114) |#1| |#1| |#1|)) (-15 -4376 (|#1| (-114) |#1| |#1|)) (-15 -4376 (|#1| (-114) |#1|)) (-15 -3297 (|#1| |#1| (-644 |#1|) (-644 |#1|))) (-15 -3297 (|#1| |#1| |#1| |#1|)) (-15 -3297 (|#1| |#1| (-295 |#1|))) (-15 -3297 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -3297 (|#1| |#1| (-644 (-612 |#1|)) (-644 |#1|))) (-15 -3297 (|#1| |#1| (-612 |#1|) |#1|)) (-15 -2479 (|#1| (-612 |#1|))) (-15 -2980 ((-3 (-612 |#1|) "failed") |#1|)) (-15 -1709 ((-612 |#1|) |#1|)) (-15 -2479 ((-862) |#1|))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 116 (|has| |#1| (-25)))) (-2485 (((-644 (-1175)) $) 203)) (-2285 (((-409 (-1171 $)) $ (-612 $)) 171 (|has| |#1| (-558)))) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) 143 (|has| |#1| (-558)))) (-3087 (($ $) 144 (|has| |#1| (-558)))) (-1716 (((-112) $) 146 (|has| |#1| (-558)))) (-2192 (((-644 (-612 $)) $) 39)) (-3174 (((-3 $ "failed") $ $) 118 (|has| |#1| (-21)))) (-3739 (($ $ (-295 $)) 51) (($ $ (-644 (-295 $))) 50) (($ $ (-644 (-612 $)) (-644 $)) 49)) (-3980 (($ $) 163 (|has| |#1| (-558)))) (-3348 (((-420 $) $) 164 (|has| |#1| (-558)))) (-2761 (((-112) $ $) 154 (|has| |#1| (-558)))) (-1811 (($) 104 (-2809 (|has| |#1| (-1111)) (|has| |#1| (-25))) CONST)) (-2980 (((-3 (-612 $) "failed") $) 64) (((-3 (-1175) "failed") $) 216) (((-3 (-566) "failed") $) 210 (|has| |#1| (-1038 (-566)))) (((-3 |#1| "failed") $) 207) (((-3 (-409 (-952 |#1|)) "failed") $) 169 (|has| |#1| (-558))) (((-3 (-952 |#1|) "failed") $) 123 (|has| |#1| (-1049))) (((-3 (-409 (-566)) "failed") $) 98 (-2809 (-12 (|has| |#1| (-1038 (-566))) (|has| |#1| (-558))) (|has| |#1| (-1038 (-409 (-566))))))) (-1709 (((-612 $) $) 65) (((-1175) $) 217) (((-566) $) 209 (|has| |#1| (-1038 (-566)))) ((|#1| $) 208) (((-409 (-952 |#1|)) $) 170 (|has| |#1| (-558))) (((-952 |#1|) $) 124 (|has| |#1| (-1049))) (((-409 (-566)) $) 99 (-2809 (-12 (|has| |#1| (-1038 (-566))) (|has| |#1| (-558))) (|has| |#1| (-1038 (-409 (-566))))))) (-2925 (($ $ $) 158 (|has| |#1| (-558)))) (-2275 (((-689 (-566)) (-689 $)) 137 (-2402 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049)))) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) 136 (-2402 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049)))) (((-2 (|:| -4196 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) 135 (|has| |#1| (-1049))) (((-689 |#1|) (-689 $)) 134 (|has| |#1| (-1049)))) (-3757 (((-3 $ "failed") $) 106 (|has| |#1| (-1111)))) (-2937 (($ $ $) 157 (|has| |#1| (-558)))) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) 152 (|has| |#1| (-558)))) (-4188 (((-112) $) 165 (|has| |#1| (-558)))) (-1542 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 212 (|has| |#1| (-886 (-566)))) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 211 (|has| |#1| (-886 (-381))))) (-4218 (($ $) 46) (($ (-644 $)) 45)) (-3909 (((-644 (-114)) $) 38)) (-4272 (((-114) (-114)) 37)) (-2264 (((-112) $) 105 (|has| |#1| (-1111)))) (-3400 (((-112) $) 17 (|has| $ (-1038 (-566))))) (-1579 (($ $) 186 (|has| |#1| (-1049)))) (-4157 (((-1124 |#1| (-612 $)) $) 187 (|has| |#1| (-1049)))) (-2495 (((-3 (-644 $) "failed") (-644 $) $) 161 (|has| |#1| (-558)))) (-3223 (((-1171 $) (-612 $)) 20 (|has| $ (-1049)))) (-3080 (($ (-1 $ $) (-612 $)) 31)) (-3314 (((-3 (-612 $) "failed") $) 41)) (-2120 (($ (-644 $)) 150 (|has| |#1| (-558))) (($ $ $) 149 (|has| |#1| (-558)))) (-3151 (((-1157) $) 10)) (-2272 (((-644 (-612 $)) $) 40)) (-3018 (($ (-114) $) 33) (($ (-114) (-644 $)) 32)) (-4075 (((-3 (-644 $) "failed") $) 192 (|has| |#1| (-1111)))) (-4092 (((-3 (-2 (|:| |val| $) (|:| -3631 (-566))) "failed") $) 183 (|has| |#1| (-1049)))) (-3380 (((-3 (-644 $) "failed") $) 190 (|has| |#1| (-25)))) (-3476 (((-3 (-2 (|:| -3103 (-566)) (|:| |var| (-612 $))) "failed") $) 189 (|has| |#1| (-25)))) (-2414 (((-3 (-2 (|:| |var| (-612 $)) (|:| -3631 (-566))) "failed") $) 191 (|has| |#1| (-1111))) (((-3 (-2 (|:| |var| (-612 $)) (|:| -3631 (-566))) "failed") $ (-114)) 185 (|has| |#1| (-1049))) (((-3 (-2 (|:| |var| (-612 $)) (|:| -3631 (-566))) "failed") $ (-1175)) 184 (|has| |#1| (-1049)))) (-1896 (((-112) $ (-114)) 35) (((-112) $ (-1175)) 34)) (-2577 (($ $) 108 (-2809 (|has| |#1| (-475)) (|has| |#1| (-558))))) (-3117 (((-771) $) 42)) (-4059 (((-1119) $) 11)) (-2587 (((-112) $) 205)) (-2597 ((|#1| $) 204)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) 151 (|has| |#1| (-558)))) (-2162 (($ (-644 $)) 148 (|has| |#1| (-558))) (($ $ $) 147 (|has| |#1| (-558)))) (-3897 (((-112) $ $) 30) (((-112) $ (-1175)) 29)) (-2325 (((-420 $) $) 162 (|has| |#1| (-558)))) (-2585 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 160 (|has| |#1| (-558))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) 159 (|has| |#1| (-558)))) (-2976 (((-3 $ "failed") $ $) 142 (|has| |#1| (-558)))) (-2840 (((-3 (-644 $) "failed") (-644 $) $) 153 (|has| |#1| (-558)))) (-2206 (((-112) $) 18 (|has| $ (-1038 (-566))))) (-3297 (($ $ (-612 $) $) 62) (($ $ (-644 (-612 $)) (-644 $)) 61) (($ $ (-644 (-295 $))) 60) (($ $ (-295 $)) 59) (($ $ $ $) 58) (($ $ (-644 $) (-644 $)) 57) (($ $ (-644 (-1175)) (-644 (-1 $ $))) 28) (($ $ (-644 (-1175)) (-644 (-1 $ (-644 $)))) 27) (($ $ (-1175) (-1 $ (-644 $))) 26) (($ $ (-1175) (-1 $ $)) 25) (($ $ (-644 (-114)) (-644 (-1 $ $))) 24) (($ $ (-644 (-114)) (-644 (-1 $ (-644 $)))) 23) (($ $ (-114) (-1 $ (-644 $))) 22) (($ $ (-114) (-1 $ $)) 21) (($ $ (-1175)) 197 (|has| |#1| (-614 (-538)))) (($ $ (-644 (-1175))) 196 (|has| |#1| (-614 (-538)))) (($ $) 195 (|has| |#1| (-614 (-538)))) (($ $ (-114) $ (-1175)) 194 (|has| |#1| (-614 (-538)))) (($ $ (-644 (-114)) (-644 $) (-1175)) 193 (|has| |#1| (-614 (-538)))) (($ $ (-644 (-1175)) (-644 (-771)) (-644 (-1 $ $))) 182 (|has| |#1| (-1049))) (($ $ (-644 (-1175)) (-644 (-771)) (-644 (-1 $ (-644 $)))) 181 (|has| |#1| (-1049))) (($ $ (-1175) (-771) (-1 $ (-644 $))) 180 (|has| |#1| (-1049))) (($ $ (-1175) (-771) (-1 $ $)) 179 (|has| |#1| (-1049)))) (-1383 (((-771) $) 155 (|has| |#1| (-558)))) (-4376 (($ (-114) $) 56) (($ (-114) $ $) 55) (($ (-114) $ $ $) 54) (($ (-114) $ $ $ $) 53) (($ (-114) (-644 $)) 52)) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) 156 (|has| |#1| (-558)))) (-3683 (($ $) 44) (($ $ $) 43)) (-3526 (($ $ (-644 (-1175)) (-644 (-771))) 128 (|has| |#1| (-1049))) (($ $ (-1175) (-771)) 127 (|has| |#1| (-1049))) (($ $ (-644 (-1175))) 126 (|has| |#1| (-1049))) (($ $ (-1175)) 125 (|has| |#1| (-1049)))) (-1375 (($ $) 176 (|has| |#1| (-558)))) (-4167 (((-1124 |#1| (-612 $)) $) 177 (|has| |#1| (-558)))) (-2301 (($ $) 19 (|has| $ (-1049)))) (-3136 (((-892 (-566)) $) 214 (|has| |#1| (-614 (-892 (-566))))) (((-892 (-381)) $) 213 (|has| |#1| (-614 (-892 (-381))))) (($ (-420 $)) 178 (|has| |#1| (-558))) (((-538) $) 100 (|has| |#1| (-614 (-538))))) (-2664 (($ $ $) 111 (|has| |#1| (-475)))) (-3815 (($ $ $) 112 (|has| |#1| (-475)))) (-2479 (((-862) $) 12) (($ (-612 $)) 63) (($ (-1175)) 215) (($ |#1|) 206) (($ (-1124 |#1| (-612 $))) 188 (|has| |#1| (-1049))) (($ (-409 |#1|)) 174 (|has| |#1| (-558))) (($ (-952 (-409 |#1|))) 173 (|has| |#1| (-558))) (($ (-409 (-952 (-409 |#1|)))) 172 (|has| |#1| (-558))) (($ (-409 (-952 |#1|))) 168 (|has| |#1| (-558))) (($ $) 141 (|has| |#1| (-558))) (($ (-952 |#1|)) 122 (|has| |#1| (-1049))) (($ (-409 (-566))) 97 (-2809 (|has| |#1| (-558)) (-12 (|has| |#1| (-1038 (-566))) (|has| |#1| (-558))) (|has| |#1| (-1038 (-409 (-566)))))) (($ (-566)) 96 (-2809 (|has| |#1| (-1049)) (|has| |#1| (-1038 (-566)))))) (-2645 (((-3 $ "failed") $) 138 (|has| |#1| (-145)))) (-1558 (((-771)) 133 (|has| |#1| (-1049)) CONST)) (-3749 (($ $) 48) (($ (-644 $)) 47)) (-1540 (((-112) (-114)) 36)) (-3900 (((-112) $ $) 9)) (-1333 (((-112) $ $) 145 (|has| |#1| (-558)))) (-3344 (($ (-1175) $) 202) (($ (-1175) $ $) 201) (($ (-1175) $ $ $) 200) (($ (-1175) $ $ $ $) 199) (($ (-1175) (-644 $)) 198)) (-2446 (($) 115 (|has| |#1| (-25)) CONST)) (-2459 (($) 103 (|has| |#1| (-1111)) CONST)) (-2834 (($ $ (-644 (-1175)) (-644 (-771))) 132 (|has| |#1| (-1049))) (($ $ (-1175) (-771)) 131 (|has| |#1| (-1049))) (($ $ (-644 (-1175))) 130 (|has| |#1| (-1049))) (($ $ (-1175)) 129 (|has| |#1| (-1049)))) (-2952 (((-112) $ $) 6)) (-3077 (($ (-1124 |#1| (-612 $)) (-1124 |#1| (-612 $))) 175 (|has| |#1| (-558))) (($ $ $) 109 (-2809 (|has| |#1| (-475)) (|has| |#1| (-558))))) (-3065 (($ $ $) 121 (|has| |#1| (-21))) (($ $) 120 (|has| |#1| (-21)))) (-3052 (($ $ $) 113 (|has| |#1| (-25)))) (** (($ $ (-566)) 110 (-2809 (|has| |#1| (-475)) (|has| |#1| (-558)))) (($ $ (-771)) 107 (|has| |#1| (-1111))) (($ $ (-921)) 102 (|has| |#1| (-1111)))) (* (($ (-409 (-566)) $) 167 (|has| |#1| (-558))) (($ $ (-409 (-566))) 166 (|has| |#1| (-558))) (($ |#1| $) 140 (|has| |#1| (-172))) (($ $ |#1|) 139 (|has| |#1| (-172))) (($ (-566) $) 119 (|has| |#1| (-21))) (($ (-771) $) 117 (|has| |#1| (-25))) (($ (-921) $) 114 (|has| |#1| (-25))) (($ $ $) 101 (|has| |#1| (-1111))))) +(((-432 |#1|) (-140) (-1099)) (T -432)) +((-2587 (*1 *2 *1) (-12 (-4 *1 (-432 *3)) (-4 *3 (-1099)) (-5 *2 (-112)))) (-2597 (*1 *2 *1) (-12 (-4 *1 (-432 *2)) (-4 *2 (-1099)))) (-2485 (*1 *2 *1) (-12 (-4 *1 (-432 *3)) (-4 *3 (-1099)) (-5 *2 (-644 (-1175))))) (-3344 (*1 *1 *2 *1) (-12 (-5 *2 (-1175)) (-4 *1 (-432 *3)) (-4 *3 (-1099)))) (-3344 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1175)) (-4 *1 (-432 *3)) (-4 *3 (-1099)))) (-3344 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1175)) (-4 *1 (-432 *3)) (-4 *3 (-1099)))) (-3344 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1175)) (-4 *1 (-432 *3)) (-4 *3 (-1099)))) (-3344 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-644 *1)) (-4 *1 (-432 *4)) (-4 *4 (-1099)))) (-3297 (*1 *1 *1 *2) (-12 (-5 *2 (-1175)) (-4 *1 (-432 *3)) (-4 *3 (-1099)) (-4 *3 (-614 (-538))))) (-3297 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-1175))) (-4 *1 (-432 *3)) (-4 *3 (-1099)) (-4 *3 (-614 (-538))))) (-3297 (*1 *1 *1) (-12 (-4 *1 (-432 *2)) (-4 *2 (-1099)) (-4 *2 (-614 (-538))))) (-3297 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1175)) (-4 *1 (-432 *4)) (-4 *4 (-1099)) (-4 *4 (-614 (-538))))) (-3297 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-644 (-114))) (-5 *3 (-644 *1)) (-5 *4 (-1175)) (-4 *1 (-432 *5)) (-4 *5 (-1099)) (-4 *5 (-614 (-538))))) (-4075 (*1 *2 *1) (|partial| -12 (-4 *3 (-1111)) (-4 *3 (-1099)) (-5 *2 (-644 *1)) (-4 *1 (-432 *3)))) (-2414 (*1 *2 *1) (|partial| -12 (-4 *3 (-1111)) (-4 *3 (-1099)) (-5 *2 (-2 (|:| |var| (-612 *1)) (|:| -3631 (-566)))) (-4 *1 (-432 *3)))) (-3380 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1099)) (-5 *2 (-644 *1)) (-4 *1 (-432 *3)))) (-3476 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1099)) (-5 *2 (-2 (|:| -3103 (-566)) (|:| |var| (-612 *1)))) (-4 *1 (-432 *3)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-1124 *3 (-612 *1))) (-4 *3 (-1049)) (-4 *3 (-1099)) (-4 *1 (-432 *3)))) (-4157 (*1 *2 *1) (-12 (-4 *3 (-1049)) (-4 *3 (-1099)) (-5 *2 (-1124 *3 (-612 *1))) (-4 *1 (-432 *3)))) (-1579 (*1 *1 *1) (-12 (-4 *1 (-432 *2)) (-4 *2 (-1099)) (-4 *2 (-1049)))) (-2414 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1049)) (-4 *4 (-1099)) (-5 *2 (-2 (|:| |var| (-612 *1)) (|:| -3631 (-566)))) (-4 *1 (-432 *4)))) (-2414 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1175)) (-4 *4 (-1049)) (-4 *4 (-1099)) (-5 *2 (-2 (|:| |var| (-612 *1)) (|:| -3631 (-566)))) (-4 *1 (-432 *4)))) (-4092 (*1 *2 *1) (|partial| -12 (-4 *3 (-1049)) (-4 *3 (-1099)) (-5 *2 (-2 (|:| |val| *1) (|:| -3631 (-566)))) (-4 *1 (-432 *3)))) (-3297 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-644 (-1175))) (-5 *3 (-644 (-771))) (-5 *4 (-644 (-1 *1 *1))) (-4 *1 (-432 *5)) (-4 *5 (-1099)) (-4 *5 (-1049)))) (-3297 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-644 (-1175))) (-5 *3 (-644 (-771))) (-5 *4 (-644 (-1 *1 (-644 *1)))) (-4 *1 (-432 *5)) (-4 *5 (-1099)) (-4 *5 (-1049)))) (-3297 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1175)) (-5 *3 (-771)) (-5 *4 (-1 *1 (-644 *1))) (-4 *1 (-432 *5)) (-4 *5 (-1099)) (-4 *5 (-1049)))) (-3297 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1175)) (-5 *3 (-771)) (-5 *4 (-1 *1 *1)) (-4 *1 (-432 *5)) (-4 *5 (-1099)) (-4 *5 (-1049)))) (-3136 (*1 *1 *2) (-12 (-5 *2 (-420 *1)) (-4 *1 (-432 *3)) (-4 *3 (-558)) (-4 *3 (-1099)))) (-4167 (*1 *2 *1) (-12 (-4 *3 (-558)) (-4 *3 (-1099)) (-5 *2 (-1124 *3 (-612 *1))) (-4 *1 (-432 *3)))) (-1375 (*1 *1 *1) (-12 (-4 *1 (-432 *2)) (-4 *2 (-1099)) (-4 *2 (-558)))) (-3077 (*1 *1 *2 *2) (-12 (-5 *2 (-1124 *3 (-612 *1))) (-4 *3 (-558)) (-4 *3 (-1099)) (-4 *1 (-432 *3)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-409 *3)) (-4 *3 (-558)) (-4 *3 (-1099)) (-4 *1 (-432 *3)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-952 (-409 *3))) (-4 *3 (-558)) (-4 *3 (-1099)) (-4 *1 (-432 *3)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-409 (-952 (-409 *3)))) (-4 *3 (-558)) (-4 *3 (-1099)) (-4 *1 (-432 *3)))) (-2285 (*1 *2 *1 *3) (-12 (-5 *3 (-612 *1)) (-4 *1 (-432 *4)) (-4 *4 (-1099)) (-4 *4 (-558)) (-5 *2 (-409 (-1171 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-432 *3)) (-4 *3 (-1099)) (-4 *3 (-1111))))) +(-13 (-303) (-1038 (-1175)) (-884 |t#1|) (-402 |t#1|) (-413 |t#1|) (-10 -8 (-15 -2587 ((-112) $)) (-15 -2597 (|t#1| $)) (-15 -2485 ((-644 (-1175)) $)) (-15 -3344 ($ (-1175) $)) (-15 -3344 ($ (-1175) $ $)) (-15 -3344 ($ (-1175) $ $ $)) (-15 -3344 ($ (-1175) $ $ $ $)) (-15 -3344 ($ (-1175) (-644 $))) (IF (|has| |t#1| (-614 (-538))) (PROGN (-6 (-614 (-538))) (-15 -3297 ($ $ (-1175))) (-15 -3297 ($ $ (-644 (-1175)))) (-15 -3297 ($ $)) (-15 -3297 ($ $ (-114) $ (-1175))) (-15 -3297 ($ $ (-644 (-114)) (-644 $) (-1175)))) |%noBranch|) (IF (|has| |t#1| (-1111)) (PROGN (-6 (-726)) (-15 ** ($ $ (-771))) (-15 -4075 ((-3 (-644 $) "failed") $)) (-15 -2414 ((-3 (-2 (|:| |var| (-612 $)) (|:| -3631 (-566))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-475)) (-6 (-475)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -3380 ((-3 (-644 $) "failed") $)) (-15 -3476 ((-3 (-2 (|:| -3103 (-566)) (|:| |var| (-612 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1049)) (PROGN (-6 (-1049)) (-6 (-1038 (-952 |t#1|))) (-6 (-900 (-1175))) (-6 (-379 |t#1|)) (-15 -2479 ($ (-1124 |t#1| (-612 $)))) (-15 -4157 ((-1124 |t#1| (-612 $)) $)) (-15 -1579 ($ $)) (-15 -2414 ((-3 (-2 (|:| |var| (-612 $)) (|:| -3631 (-566))) "failed") $ (-114))) (-15 -2414 ((-3 (-2 (|:| |var| (-612 $)) (|:| -3631 (-566))) "failed") $ (-1175))) (-15 -4092 ((-3 (-2 (|:| |val| $) (|:| -3631 (-566))) "failed") $)) (-15 -3297 ($ $ (-644 (-1175)) (-644 (-771)) (-644 (-1 $ $)))) (-15 -3297 ($ $ (-644 (-1175)) (-644 (-771)) (-644 (-1 $ (-644 $))))) (-15 -3297 ($ $ (-1175) (-771) (-1 $ (-644 $)))) (-15 -3297 ($ $ (-1175) (-771) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-558)) (PROGN (-6 (-365)) (-6 (-1038 (-409 (-952 |t#1|)))) (-15 -3136 ($ (-420 $))) (-15 -4167 ((-1124 |t#1| (-612 $)) $)) (-15 -1375 ($ $)) (-15 -3077 ($ (-1124 |t#1| (-612 $)) (-1124 |t#1| (-612 $)))) (-15 -2479 ($ (-409 |t#1|))) (-15 -2479 ($ (-952 (-409 |t#1|)))) (-15 -2479 ($ (-409 (-952 (-409 |t#1|))))) (-15 -2285 ((-409 (-1171 $)) $ (-612 $))) (IF (|has| |t#1| (-1038 (-566))) (-6 (-1038 (-409 (-566)))) |%noBranch|)) |%noBranch|))) +(((-21) -2809 (|has| |#1| (-1049)) (|has| |#1| (-558)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-23) -2809 (|has| |#1| (-1049)) (|has| |#1| (-558)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -2809 (|has| |#1| (-1049)) (|has| |#1| (-558)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-409 (-566))) |has| |#1| (-558)) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-558)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-558)) ((-111 |#1| |#1|) |has| |#1| (-172)) ((-111 $ $) |has| |#1| (-558)) ((-131) -2809 (|has| |#1| (-1049)) (|has| |#1| (-558)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #0#) -2809 (|has| |#1| (-1038 (-409 (-566)))) (|has| |#1| (-558))) ((-616 #1=(-409 (-952 |#1|))) |has| |#1| (-558)) ((-616 (-566)) -2809 (|has| |#1| (-1049)) (|has| |#1| (-1038 (-566))) (|has| |#1| (-558)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-616 #2=(-612 $)) . T) ((-616 #3=(-952 |#1|)) |has| |#1| (-1049)) ((-616 #4=(-1175)) . T) ((-616 |#1|) . T) ((-616 $) |has| |#1| (-558)) ((-613 (-862)) . T) ((-172) |has| |#1| (-558)) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-614 (-892 (-381))) |has| |#1| (-614 (-892 (-381)))) ((-614 (-892 (-566))) |has| |#1| (-614 (-892 (-566)))) ((-243) |has| |#1| (-558)) ((-291) |has| |#1| (-558)) ((-308) |has| |#1| (-558)) ((-310 $) . T) ((-303) . T) ((-365) |has| |#1| (-558)) ((-379 |#1|) |has| |#1| (-1049)) ((-402 |#1|) . T) ((-413 |#1|) . T) ((-454) |has| |#1| (-558)) ((-475) |has| |#1| (-475)) ((-516 (-612 $) $) . T) ((-516 $ $) . T) ((-558) |has| |#1| (-558)) ((-646 #0#) |has| |#1| (-558)) ((-646 (-566)) -2809 (|has| |#1| (-1049)) (|has| |#1| (-558)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-646 |#1|) |has| |#1| (-172)) ((-646 $) -2809 (|has| |#1| (-1049)) (|has| |#1| (-558)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-648 #0#) |has| |#1| (-558)) ((-648 |#1|) |has| |#1| (-172)) ((-648 $) -2809 (|has| |#1| (-1049)) (|has| |#1| (-558)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-640 #0#) |has| |#1| (-558)) ((-640 |#1|) |has| |#1| (-172)) ((-640 $) |has| |#1| (-558)) ((-639 (-566)) -12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049))) ((-639 |#1|) |has| |#1| (-1049)) ((-717 #0#) |has| |#1| (-558)) ((-717 |#1|) |has| |#1| (-172)) ((-717 $) |has| |#1| (-558)) ((-726) -2809 (|has| |#1| (-1111)) (|has| |#1| (-1049)) (|has| |#1| (-558)) (|has| |#1| (-475)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-900 (-1175)) |has| |#1| (-1049)) ((-886 (-381)) |has| |#1| (-886 (-381))) ((-886 (-566)) |has| |#1| (-886 (-566))) ((-884 |#1|) . T) ((-920) |has| |#1| (-558)) ((-1038 (-409 (-566))) -2809 (|has| |#1| (-1038 (-409 (-566)))) (-12 (|has| |#1| (-558)) (|has| |#1| (-1038 (-566))))) ((-1038 #1#) |has| |#1| (-558)) ((-1038 (-566)) |has| |#1| (-1038 (-566))) ((-1038 #2#) . T) ((-1038 #3#) |has| |#1| (-1049)) ((-1038 #4#) . T) ((-1038 |#1|) . T) ((-1051 #0#) |has| |#1| (-558)) ((-1051 |#1|) |has| |#1| (-172)) ((-1051 $) |has| |#1| (-558)) ((-1056 #0#) |has| |#1| (-558)) ((-1056 |#1|) |has| |#1| (-172)) ((-1056 $) |has| |#1| (-558)) ((-1049) -2809 (|has| |#1| (-1049)) (|has| |#1| (-558)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1057) -2809 (|has| |#1| (-1049)) (|has| |#1| (-558)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1111) -2809 (|has| |#1| (-1111)) (|has| |#1| (-1049)) (|has| |#1| (-558)) (|has| |#1| (-475)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1099) . T) ((-1214) . T) ((-1218) |has| |#1| (-558))) +((-2510 ((|#2| |#2| |#2|) 31)) (-4272 (((-114) (-114)) 43)) (-3845 ((|#2| |#2|) 63)) (-1400 ((|#2| |#2|) 66)) (-2013 ((|#2| |#2|) 30)) (-4307 ((|#2| |#2| |#2|) 33)) (-3755 ((|#2| |#2| |#2|) 35)) (-3480 ((|#2| |#2| |#2|) 32)) (-1818 ((|#2| |#2| |#2|) 34)) (-1540 (((-112) (-114)) 41)) (-1751 ((|#2| |#2|) 37)) (-2492 ((|#2| |#2|) 36)) (-4298 ((|#2| |#2|) 25)) (-1977 ((|#2| |#2| |#2|) 28) ((|#2| |#2|) 26)) (-1795 ((|#2| |#2| |#2|) 29))) +(((-433 |#1| |#2|) (-10 -7 (-15 -1540 ((-112) (-114))) (-15 -4272 ((-114) (-114))) (-15 -4298 (|#2| |#2|)) (-15 -1977 (|#2| |#2|)) (-15 -1977 (|#2| |#2| |#2|)) (-15 -1795 (|#2| |#2| |#2|)) (-15 -2013 (|#2| |#2|)) (-15 -2510 (|#2| |#2| |#2|)) (-15 -3480 (|#2| |#2| |#2|)) (-15 -4307 (|#2| |#2| |#2|)) (-15 -1818 (|#2| |#2| |#2|)) (-15 -3755 (|#2| |#2| |#2|)) (-15 -2492 (|#2| |#2|)) (-15 -1751 (|#2| |#2|)) (-15 -1400 (|#2| |#2|)) (-15 -3845 (|#2| |#2|))) (-558) (-432 |#1|)) (T -433)) +((-3845 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-1400 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-1751 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-2492 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-3755 (*1 *2 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-1818 (*1 *2 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-4307 (*1 *2 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-3480 (*1 *2 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-2510 (*1 *2 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-2013 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-1795 (*1 *2 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-1977 (*1 *2 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-1977 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-4298 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-4272 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-558)) (-5 *1 (-433 *3 *4)) (-4 *4 (-432 *3)))) (-1540 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-558)) (-5 *2 (-112)) (-5 *1 (-433 *4 *5)) (-4 *5 (-432 *4))))) +(-10 -7 (-15 -1540 ((-112) (-114))) (-15 -4272 ((-114) (-114))) (-15 -4298 (|#2| |#2|)) (-15 -1977 (|#2| |#2|)) (-15 -1977 (|#2| |#2| |#2|)) (-15 -1795 (|#2| |#2| |#2|)) (-15 -2013 (|#2| |#2|)) (-15 -2510 (|#2| |#2| |#2|)) (-15 -3480 (|#2| |#2| |#2|)) (-15 -4307 (|#2| |#2| |#2|)) (-15 -1818 (|#2| |#2| |#2|)) (-15 -3755 (|#2| |#2| |#2|)) (-15 -2492 (|#2| |#2|)) (-15 -1751 (|#2| |#2|)) (-15 -1400 (|#2| |#2|)) (-15 -3845 (|#2| |#2|))) +((-2409 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1171 |#2|)) (|:| |pol2| (-1171 |#2|)) (|:| |prim| (-1171 |#2|))) |#2| |#2|) 106 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-644 (-1171 |#2|))) (|:| |prim| (-1171 |#2|))) (-644 |#2|)) 68))) +(((-434 |#1| |#2|) (-10 -7 (-15 -2409 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-644 (-1171 |#2|))) (|:| |prim| (-1171 |#2|))) (-644 |#2|))) (IF (|has| |#2| (-27)) (-15 -2409 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1171 |#2|)) (|:| |pol2| (-1171 |#2|)) (|:| |prim| (-1171 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-558) (-147)) (-432 |#1|)) (T -434)) +((-2409 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-558) (-147))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1171 *3)) (|:| |pol2| (-1171 *3)) (|:| |prim| (-1171 *3)))) (-5 *1 (-434 *4 *3)) (-4 *3 (-27)) (-4 *3 (-432 *4)))) (-2409 (*1 *2 *3) (-12 (-5 *3 (-644 *5)) (-4 *5 (-432 *4)) (-4 *4 (-13 (-558) (-147))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-644 (-1171 *5))) (|:| |prim| (-1171 *5)))) (-5 *1 (-434 *4 *5))))) +(-10 -7 (-15 -2409 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-644 (-1171 |#2|))) (|:| |prim| (-1171 |#2|))) (-644 |#2|))) (IF (|has| |#2| (-27)) (-15 -2409 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1171 |#2|)) (|:| |pol2| (-1171 |#2|)) (|:| |prim| (-1171 |#2|))) |#2| |#2|)) |%noBranch|)) +((-3795 (((-1269)) 19)) (-2030 (((-1171 (-409 (-566))) |#2| (-612 |#2|)) 41) (((-409 (-566)) |#2|) 25))) +(((-435 |#1| |#2|) (-10 -7 (-15 -2030 ((-409 (-566)) |#2|)) (-15 -2030 ((-1171 (-409 (-566))) |#2| (-612 |#2|))) (-15 -3795 ((-1269)))) (-13 (-558) (-1038 (-566))) (-432 |#1|)) (T -435)) +((-3795 (*1 *2) (-12 (-4 *3 (-13 (-558) (-1038 (-566)))) (-5 *2 (-1269)) (-5 *1 (-435 *3 *4)) (-4 *4 (-432 *3)))) (-2030 (*1 *2 *3 *4) (-12 (-5 *4 (-612 *3)) (-4 *3 (-432 *5)) (-4 *5 (-13 (-558) (-1038 (-566)))) (-5 *2 (-1171 (-409 (-566)))) (-5 *1 (-435 *5 *3)))) (-2030 (*1 *2 *3) (-12 (-4 *4 (-13 (-558) (-1038 (-566)))) (-5 *2 (-409 (-566))) (-5 *1 (-435 *4 *3)) (-4 *3 (-432 *4))))) +(-10 -7 (-15 -2030 ((-409 (-566)) |#2|)) (-15 -2030 ((-1171 (-409 (-566))) |#2| (-612 |#2|))) (-15 -3795 ((-1269)))) +((-2098 (((-112) $) 32)) (-4242 (((-112) $) 34)) (-4168 (((-112) $) 35)) (-1370 (((-112) $) 38)) (-1484 (((-112) $) 33)) (-4012 (((-112) $) 37)) (-2479 (((-862) $) 20) (($ (-1157)) 31) (($ (-1175)) 26) (((-1175) $) 24) (((-1103) $) 23)) (-3843 (((-112) $) 36)) (-2952 (((-112) $ $) 17))) +(((-436) (-13 (-613 (-862)) (-10 -8 (-15 -2479 ($ (-1157))) (-15 -2479 ($ (-1175))) (-15 -2479 ((-1175) $)) (-15 -2479 ((-1103) $)) (-15 -2098 ((-112) $)) (-15 -1484 ((-112) $)) (-15 -4168 ((-112) $)) (-15 -4012 ((-112) $)) (-15 -1370 ((-112) $)) (-15 -3843 ((-112) $)) (-15 -4242 ((-112) $)) (-15 -2952 ((-112) $ $))))) (T -436)) +((-2479 (*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-436)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-436)))) (-2479 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-436)))) (-2479 (*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-436)))) (-2098 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436)))) (-1484 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436)))) (-4168 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436)))) (-4012 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436)))) (-1370 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436)))) (-3843 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436)))) (-4242 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436)))) (-2952 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436))))) +(-13 (-613 (-862)) (-10 -8 (-15 -2479 ($ (-1157))) (-15 -2479 ($ (-1175))) (-15 -2479 ((-1175) $)) (-15 -2479 ((-1103) $)) (-15 -2098 ((-112) $)) (-15 -1484 ((-112) $)) (-15 -4168 ((-112) $)) (-15 -4012 ((-112) $)) (-15 -1370 ((-112) $)) (-15 -3843 ((-112) $)) (-15 -4242 ((-112) $)) (-15 -2952 ((-112) $ $)))) +((-2831 (((-3 (-420 (-1171 (-409 (-566)))) "failed") |#3|) 72)) (-3300 (((-420 |#3|) |#3|) 34)) (-3929 (((-3 (-420 (-1171 (-48))) "failed") |#3|) 46 (|has| |#2| (-1038 (-48))))) (-2434 (((-3 (|:| |overq| (-1171 (-409 (-566)))) (|:| |overan| (-1171 (-48))) (|:| -3266 (-112))) |#3|) 37))) +(((-437 |#1| |#2| |#3|) (-10 -7 (-15 -3300 ((-420 |#3|) |#3|)) (-15 -2831 ((-3 (-420 (-1171 (-409 (-566)))) "failed") |#3|)) (-15 -2434 ((-3 (|:| |overq| (-1171 (-409 (-566)))) (|:| |overan| (-1171 (-48))) (|:| -3266 (-112))) |#3|)) (IF (|has| |#2| (-1038 (-48))) (-15 -3929 ((-3 (-420 (-1171 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-558) (-1038 (-566))) (-432 |#1|) (-1240 |#2|)) (T -437)) +((-3929 (*1 *2 *3) (|partial| -12 (-4 *5 (-1038 (-48))) (-4 *4 (-13 (-558) (-1038 (-566)))) (-4 *5 (-432 *4)) (-5 *2 (-420 (-1171 (-48)))) (-5 *1 (-437 *4 *5 *3)) (-4 *3 (-1240 *5)))) (-2434 (*1 *2 *3) (-12 (-4 *4 (-13 (-558) (-1038 (-566)))) (-4 *5 (-432 *4)) (-5 *2 (-3 (|:| |overq| (-1171 (-409 (-566)))) (|:| |overan| (-1171 (-48))) (|:| -3266 (-112)))) (-5 *1 (-437 *4 *5 *3)) (-4 *3 (-1240 *5)))) (-2831 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-558) (-1038 (-566)))) (-4 *5 (-432 *4)) (-5 *2 (-420 (-1171 (-409 (-566))))) (-5 *1 (-437 *4 *5 *3)) (-4 *3 (-1240 *5)))) (-3300 (*1 *2 *3) (-12 (-4 *4 (-13 (-558) (-1038 (-566)))) (-4 *5 (-432 *4)) (-5 *2 (-420 *3)) (-5 *1 (-437 *4 *5 *3)) (-4 *3 (-1240 *5))))) +(-10 -7 (-15 -3300 ((-420 |#3|) |#3|)) (-15 -2831 ((-3 (-420 (-1171 (-409 (-566)))) "failed") |#3|)) (-15 -2434 ((-3 (|:| |overq| (-1171 (-409 (-566)))) (|:| |overan| (-1171 (-48))) (|:| -3266 (-112))) |#3|)) (IF (|has| |#2| (-1038 (-48))) (-15 -3929 ((-3 (-420 (-1171 (-48))) "failed") |#3|)) |%noBranch|)) +((-2986 (((-112) $ $) NIL)) (-2915 (((-1157) $ (-1157)) NIL)) (-2517 (($ $ (-1157)) NIL)) (-2052 (((-1157) $) NIL)) (-1381 (((-390) (-390) (-390)) 17) (((-390) (-390)) 15)) (-3516 (($ (-390)) NIL) (($ (-390) (-1157)) NIL)) (-2598 (((-390) $) NIL)) (-3151 (((-1157) $) NIL)) (-3522 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2457 (((-1269) (-1157)) 9)) (-3517 (((-1269) (-1157)) 10)) (-1526 (((-1269)) 11)) (-2479 (((-862) $) NIL)) (-2313 (($ $) 39)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-438) (-13 (-366 (-390) (-1157)) (-10 -7 (-15 -1381 ((-390) (-390) (-390))) (-15 -1381 ((-390) (-390))) (-15 -2457 ((-1269) (-1157))) (-15 -3517 ((-1269) (-1157))) (-15 -1526 ((-1269)))))) (T -438)) +((-1381 (*1 *2 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-438)))) (-1381 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-438)))) (-2457 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-438)))) (-3517 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-438)))) (-1526 (*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-438))))) +(-13 (-366 (-390) (-1157)) (-10 -7 (-15 -1381 ((-390) (-390) (-390))) (-15 -1381 ((-390) (-390))) (-15 -2457 ((-1269) (-1157))) (-15 -3517 ((-1269) (-1157))) (-15 -1526 ((-1269))))) +((-2986 (((-112) $ $) NIL)) (-1310 (((-3 (|:| |fst| (-436)) (|:| -4306 "void")) $) 11)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2569 (($) 35)) (-1853 (($) 41)) (-4349 (($) 37)) (-3704 (($) 39)) (-3733 (($) 36)) (-2469 (($) 38)) (-4108 (($) 40)) (-3402 (((-112) $) 8)) (-3666 (((-644 (-952 (-566))) $) 19)) (-2489 (($ (-3 (|:| |fst| (-436)) (|:| -4306 "void")) (-644 (-1175)) (-112)) 29) (($ (-3 (|:| |fst| (-436)) (|:| -4306 "void")) (-644 (-952 (-566))) (-112)) 30)) (-2479 (((-862) $) 24) (($ (-436)) 32)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-439) (-13 (-1099) (-10 -8 (-15 -2479 ($ (-436))) (-15 -1310 ((-3 (|:| |fst| (-436)) (|:| -4306 "void")) $)) (-15 -3666 ((-644 (-952 (-566))) $)) (-15 -3402 ((-112) $)) (-15 -2489 ($ (-3 (|:| |fst| (-436)) (|:| -4306 "void")) (-644 (-1175)) (-112))) (-15 -2489 ($ (-3 (|:| |fst| (-436)) (|:| -4306 "void")) (-644 (-952 (-566))) (-112))) (-15 -2569 ($)) (-15 -3733 ($)) (-15 -4349 ($)) (-15 -1853 ($)) (-15 -2469 ($)) (-15 -3704 ($)) (-15 -4108 ($))))) (T -439)) +((-2479 (*1 *1 *2) (-12 (-5 *2 (-436)) (-5 *1 (-439)))) (-1310 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-436)) (|:| -4306 "void"))) (-5 *1 (-439)))) (-3666 (*1 *2 *1) (-12 (-5 *2 (-644 (-952 (-566)))) (-5 *1 (-439)))) (-3402 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))) (-2489 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-436)) (|:| -4306 "void"))) (-5 *3 (-644 (-1175))) (-5 *4 (-112)) (-5 *1 (-439)))) (-2489 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-436)) (|:| -4306 "void"))) (-5 *3 (-644 (-952 (-566)))) (-5 *4 (-112)) (-5 *1 (-439)))) (-2569 (*1 *1) (-5 *1 (-439))) (-3733 (*1 *1) (-5 *1 (-439))) (-4349 (*1 *1) (-5 *1 (-439))) (-1853 (*1 *1) (-5 *1 (-439))) (-2469 (*1 *1) (-5 *1 (-439))) (-3704 (*1 *1) (-5 *1 (-439))) (-4108 (*1 *1) (-5 *1 (-439)))) +(-13 (-1099) (-10 -8 (-15 -2479 ($ (-436))) (-15 -1310 ((-3 (|:| |fst| (-436)) (|:| -4306 "void")) $)) (-15 -3666 ((-644 (-952 (-566))) $)) (-15 -3402 ((-112) $)) (-15 -2489 ($ (-3 (|:| |fst| (-436)) (|:| -4306 "void")) (-644 (-1175)) (-112))) (-15 -2489 ($ (-3 (|:| |fst| (-436)) (|:| -4306 "void")) (-644 (-952 (-566))) (-112))) (-15 -2569 ($)) (-15 -3733 ($)) (-15 -4349 ($)) (-15 -1853 ($)) (-15 -2469 ($)) (-15 -3704 ($)) (-15 -4108 ($)))) +((-2986 (((-112) $ $) NIL)) (-2598 (((-1175) $) 8)) (-3151 (((-1157) $) 17)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) 11)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 14))) +(((-440 |#1|) (-13 (-1099) (-10 -8 (-15 -2598 ((-1175) $)))) (-1175)) (T -440)) +((-2598 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-440 *3)) (-14 *3 *2)))) +(-13 (-1099) (-10 -8 (-15 -2598 ((-1175) $)))) +((-2986 (((-112) $ $) NIL)) (-3015 (((-1117) $) 7)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) 13)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 9))) +(((-441) (-13 (-1099) (-10 -8 (-15 -3015 ((-1117) $))))) (T -441)) +((-3015 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-441))))) +(-13 (-1099) (-10 -8 (-15 -3015 ((-1117) $)))) +((-3386 (((-1269) $) 7)) (-2479 (((-862) $) 8) (($ (-1264 (-699))) 14) (($ (-644 (-331))) 13) (($ (-331)) 12) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3217 (-644 (-331))))) 11))) +(((-442) (-140)) (T -442)) +((-2479 (*1 *1 *2) (-12 (-5 *2 (-1264 (-699))) (-4 *1 (-442)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-644 (-331))) (-4 *1 (-442)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-442)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1179)) (|:| -3217 (-644 (-331))))) (-4 *1 (-442))))) +(-13 (-397) (-10 -8 (-15 -2479 ($ (-1264 (-699)))) (-15 -2479 ($ (-644 (-331)))) (-15 -2479 ($ (-331))) (-15 -2479 ($ (-2 (|:| |localSymbols| (-1179)) (|:| -3217 (-644 (-331)))))))) +(((-613 (-862)) . T) ((-397) . T) ((-1214) . T)) +((-2980 (((-3 $ "failed") (-1264 (-317 (-381)))) 21) (((-3 $ "failed") (-1264 (-317 (-566)))) 19) (((-3 $ "failed") (-1264 (-952 (-381)))) 17) (((-3 $ "failed") (-1264 (-952 (-566)))) 15) (((-3 $ "failed") (-1264 (-409 (-952 (-381))))) 13) (((-3 $ "failed") (-1264 (-409 (-952 (-566))))) 11)) (-1709 (($ (-1264 (-317 (-381)))) 22) (($ (-1264 (-317 (-566)))) 20) (($ (-1264 (-952 (-381)))) 18) (($ (-1264 (-952 (-566)))) 16) (($ (-1264 (-409 (-952 (-381))))) 14) (($ (-1264 (-409 (-952 (-566))))) 12)) (-3386 (((-1269) $) 7)) (-2479 (((-862) $) 8) (($ (-644 (-331))) 25) (($ (-331)) 24) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3217 (-644 (-331))))) 23))) +(((-443) (-140)) (T -443)) +((-2479 (*1 *1 *2) (-12 (-5 *2 (-644 (-331))) (-4 *1 (-443)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-443)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1179)) (|:| -3217 (-644 (-331))))) (-4 *1 (-443)))) (-1709 (*1 *1 *2) (-12 (-5 *2 (-1264 (-317 (-381)))) (-4 *1 (-443)))) (-2980 (*1 *1 *2) (|partial| -12 (-5 *2 (-1264 (-317 (-381)))) (-4 *1 (-443)))) (-1709 (*1 *1 *2) (-12 (-5 *2 (-1264 (-317 (-566)))) (-4 *1 (-443)))) (-2980 (*1 *1 *2) (|partial| -12 (-5 *2 (-1264 (-317 (-566)))) (-4 *1 (-443)))) (-1709 (*1 *1 *2) (-12 (-5 *2 (-1264 (-952 (-381)))) (-4 *1 (-443)))) (-2980 (*1 *1 *2) (|partial| -12 (-5 *2 (-1264 (-952 (-381)))) (-4 *1 (-443)))) (-1709 (*1 *1 *2) (-12 (-5 *2 (-1264 (-952 (-566)))) (-4 *1 (-443)))) (-2980 (*1 *1 *2) (|partial| -12 (-5 *2 (-1264 (-952 (-566)))) (-4 *1 (-443)))) (-1709 (*1 *1 *2) (-12 (-5 *2 (-1264 (-409 (-952 (-381))))) (-4 *1 (-443)))) (-2980 (*1 *1 *2) (|partial| -12 (-5 *2 (-1264 (-409 (-952 (-381))))) (-4 *1 (-443)))) (-1709 (*1 *1 *2) (-12 (-5 *2 (-1264 (-409 (-952 (-566))))) (-4 *1 (-443)))) (-2980 (*1 *1 *2) (|partial| -12 (-5 *2 (-1264 (-409 (-952 (-566))))) (-4 *1 (-443))))) +(-13 (-397) (-10 -8 (-15 -2479 ($ (-644 (-331)))) (-15 -2479 ($ (-331))) (-15 -2479 ($ (-2 (|:| |localSymbols| (-1179)) (|:| -3217 (-644 (-331)))))) (-15 -1709 ($ (-1264 (-317 (-381))))) (-15 -2980 ((-3 $ "failed") (-1264 (-317 (-381))))) (-15 -1709 ($ (-1264 (-317 (-566))))) (-15 -2980 ((-3 $ "failed") (-1264 (-317 (-566))))) (-15 -1709 ($ (-1264 (-952 (-381))))) (-15 -2980 ((-3 $ "failed") (-1264 (-952 (-381))))) (-15 -1709 ($ (-1264 (-952 (-566))))) (-15 -2980 ((-3 $ "failed") (-1264 (-952 (-566))))) (-15 -1709 ($ (-1264 (-409 (-952 (-381)))))) (-15 -2980 ((-3 $ "failed") (-1264 (-409 (-952 (-381)))))) (-15 -1709 ($ (-1264 (-409 (-952 (-566)))))) (-15 -2980 ((-3 $ "failed") (-1264 (-409 (-952 (-566)))))))) +(((-613 (-862)) . T) ((-397) . T) ((-1214) . T)) +((-1813 (((-112)) 18)) (-2021 (((-112) (-112)) 19)) (-2764 (((-112)) 14)) (-1908 (((-112) (-112)) 15)) (-2257 (((-112)) 16)) (-3570 (((-112) (-112)) 17)) (-1355 (((-921) (-921)) 22) (((-921)) 21)) (-4128 (((-771) (-644 (-2 (|:| -2325 |#1|) (|:| -1630 (-566))))) 52)) (-1860 (((-921) (-921)) 24) (((-921)) 23)) (-2117 (((-2 (|:| -3393 (-566)) (|:| -3445 (-644 |#1|))) |#1|) 97)) (-2982 (((-420 |#1|) (-2 (|:| |contp| (-566)) (|:| -3445 (-644 (-2 (|:| |irr| |#1|) (|:| -2677 (-566))))))) 178)) (-1644 (((-2 (|:| |contp| (-566)) (|:| -3445 (-644 (-2 (|:| |irr| |#1|) (|:| -2677 (-566)))))) |#1| (-112)) 211)) (-3957 (((-420 |#1|) |#1| (-771) (-771)) 226) (((-420 |#1|) |#1| (-644 (-771)) (-771)) 223) (((-420 |#1|) |#1| (-644 (-771))) 225) (((-420 |#1|) |#1| (-771)) 224) (((-420 |#1|) |#1|) 222)) (-3779 (((-3 |#1| "failed") (-921) |#1| (-644 (-771)) (-771) (-112)) 228) (((-3 |#1| "failed") (-921) |#1| (-644 (-771)) (-771)) 229) (((-3 |#1| "failed") (-921) |#1| (-644 (-771))) 231) (((-3 |#1| "failed") (-921) |#1| (-771)) 230) (((-3 |#1| "failed") (-921) |#1|) 232)) (-2325 (((-420 |#1|) |#1| (-771) (-771)) 221) (((-420 |#1|) |#1| (-644 (-771)) (-771)) 217) (((-420 |#1|) |#1| (-644 (-771))) 219) (((-420 |#1|) |#1| (-771)) 218) (((-420 |#1|) |#1|) 216)) (-1557 (((-112) |#1|) 44)) (-2019 (((-737 (-771)) (-644 (-2 (|:| -2325 |#1|) (|:| -1630 (-566))))) 102)) (-2959 (((-2 (|:| |contp| (-566)) (|:| -3445 (-644 (-2 (|:| |irr| |#1|) (|:| -2677 (-566)))))) |#1| (-112) (-1101 (-771)) (-771)) 215))) +(((-444 |#1|) (-10 -7 (-15 -2982 ((-420 |#1|) (-2 (|:| |contp| (-566)) (|:| -3445 (-644 (-2 (|:| |irr| |#1|) (|:| -2677 (-566)))))))) (-15 -2019 ((-737 (-771)) (-644 (-2 (|:| -2325 |#1|) (|:| -1630 (-566)))))) (-15 -1860 ((-921))) (-15 -1860 ((-921) (-921))) (-15 -1355 ((-921))) (-15 -1355 ((-921) (-921))) (-15 -4128 ((-771) (-644 (-2 (|:| -2325 |#1|) (|:| -1630 (-566)))))) (-15 -2117 ((-2 (|:| -3393 (-566)) (|:| -3445 (-644 |#1|))) |#1|)) (-15 -1813 ((-112))) (-15 -2021 ((-112) (-112))) (-15 -2764 ((-112))) (-15 -1908 ((-112) (-112))) (-15 -1557 ((-112) |#1|)) (-15 -2257 ((-112))) (-15 -3570 ((-112) (-112))) (-15 -2325 ((-420 |#1|) |#1|)) (-15 -2325 ((-420 |#1|) |#1| (-771))) (-15 -2325 ((-420 |#1|) |#1| (-644 (-771)))) (-15 -2325 ((-420 |#1|) |#1| (-644 (-771)) (-771))) (-15 -2325 ((-420 |#1|) |#1| (-771) (-771))) (-15 -3957 ((-420 |#1|) |#1|)) (-15 -3957 ((-420 |#1|) |#1| (-771))) (-15 -3957 ((-420 |#1|) |#1| (-644 (-771)))) (-15 -3957 ((-420 |#1|) |#1| (-644 (-771)) (-771))) (-15 -3957 ((-420 |#1|) |#1| (-771) (-771))) (-15 -3779 ((-3 |#1| "failed") (-921) |#1|)) (-15 -3779 ((-3 |#1| "failed") (-921) |#1| (-771))) (-15 -3779 ((-3 |#1| "failed") (-921) |#1| (-644 (-771)))) (-15 -3779 ((-3 |#1| "failed") (-921) |#1| (-644 (-771)) (-771))) (-15 -3779 ((-3 |#1| "failed") (-921) |#1| (-644 (-771)) (-771) (-112))) (-15 -1644 ((-2 (|:| |contp| (-566)) (|:| -3445 (-644 (-2 (|:| |irr| |#1|) (|:| -2677 (-566)))))) |#1| (-112))) (-15 -2959 ((-2 (|:| |contp| (-566)) (|:| -3445 (-644 (-2 (|:| |irr| |#1|) (|:| -2677 (-566)))))) |#1| (-112) (-1101 (-771)) (-771)))) (-1240 (-566))) (T -444)) +((-2959 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1101 (-771))) (-5 *6 (-771)) (-5 *2 (-2 (|:| |contp| (-566)) (|:| -3445 (-644 (-2 (|:| |irr| *3) (|:| -2677 (-566))))))) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-1644 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-566)) (|:| -3445 (-644 (-2 (|:| |irr| *3) (|:| -2677 (-566))))))) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-3779 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-921)) (-5 *4 (-644 (-771))) (-5 *5 (-771)) (-5 *6 (-112)) (-5 *1 (-444 *2)) (-4 *2 (-1240 (-566))))) (-3779 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-921)) (-5 *4 (-644 (-771))) (-5 *5 (-771)) (-5 *1 (-444 *2)) (-4 *2 (-1240 (-566))))) (-3779 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-921)) (-5 *4 (-644 (-771))) (-5 *1 (-444 *2)) (-4 *2 (-1240 (-566))))) (-3779 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-921)) (-5 *4 (-771)) (-5 *1 (-444 *2)) (-4 *2 (-1240 (-566))))) (-3779 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-921)) (-5 *1 (-444 *2)) (-4 *2 (-1240 (-566))))) (-3957 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-771)) (-5 *2 (-420 *3)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-3957 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-644 (-771))) (-5 *5 (-771)) (-5 *2 (-420 *3)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-3957 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-771))) (-5 *2 (-420 *3)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-3957 (*1 *2 *3 *4) (-12 (-5 *4 (-771)) (-5 *2 (-420 *3)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-3957 (*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-2325 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-771)) (-5 *2 (-420 *3)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-2325 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-644 (-771))) (-5 *5 (-771)) (-5 *2 (-420 *3)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-2325 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-771))) (-5 *2 (-420 *3)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-2325 (*1 *2 *3 *4) (-12 (-5 *4 (-771)) (-5 *2 (-420 *3)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-2325 (*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-3570 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-2257 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-1557 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-1908 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-2764 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-2021 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-1813 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-2117 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3393 (-566)) (|:| -3445 (-644 *3)))) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-4128 (*1 *2 *3) (-12 (-5 *3 (-644 (-2 (|:| -2325 *4) (|:| -1630 (-566))))) (-4 *4 (-1240 (-566))) (-5 *2 (-771)) (-5 *1 (-444 *4)))) (-1355 (*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-1355 (*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-1860 (*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-1860 (*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-2019 (*1 *2 *3) (-12 (-5 *3 (-644 (-2 (|:| -2325 *4) (|:| -1630 (-566))))) (-4 *4 (-1240 (-566))) (-5 *2 (-737 (-771))) (-5 *1 (-444 *4)))) (-2982 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-566)) (|:| -3445 (-644 (-2 (|:| |irr| *4) (|:| -2677 (-566))))))) (-4 *4 (-1240 (-566))) (-5 *2 (-420 *4)) (-5 *1 (-444 *4))))) +(-10 -7 (-15 -2982 ((-420 |#1|) (-2 (|:| |contp| (-566)) (|:| -3445 (-644 (-2 (|:| |irr| |#1|) (|:| -2677 (-566)))))))) (-15 -2019 ((-737 (-771)) (-644 (-2 (|:| -2325 |#1|) (|:| -1630 (-566)))))) (-15 -1860 ((-921))) (-15 -1860 ((-921) (-921))) (-15 -1355 ((-921))) (-15 -1355 ((-921) (-921))) (-15 -4128 ((-771) (-644 (-2 (|:| -2325 |#1|) (|:| -1630 (-566)))))) (-15 -2117 ((-2 (|:| -3393 (-566)) (|:| -3445 (-644 |#1|))) |#1|)) (-15 -1813 ((-112))) (-15 -2021 ((-112) (-112))) (-15 -2764 ((-112))) (-15 -1908 ((-112) (-112))) (-15 -1557 ((-112) |#1|)) (-15 -2257 ((-112))) (-15 -3570 ((-112) (-112))) (-15 -2325 ((-420 |#1|) |#1|)) (-15 -2325 ((-420 |#1|) |#1| (-771))) (-15 -2325 ((-420 |#1|) |#1| (-644 (-771)))) (-15 -2325 ((-420 |#1|) |#1| (-644 (-771)) (-771))) (-15 -2325 ((-420 |#1|) |#1| (-771) (-771))) (-15 -3957 ((-420 |#1|) |#1|)) (-15 -3957 ((-420 |#1|) |#1| (-771))) (-15 -3957 ((-420 |#1|) |#1| (-644 (-771)))) (-15 -3957 ((-420 |#1|) |#1| (-644 (-771)) (-771))) (-15 -3957 ((-420 |#1|) |#1| (-771) (-771))) (-15 -3779 ((-3 |#1| "failed") (-921) |#1|)) (-15 -3779 ((-3 |#1| "failed") (-921) |#1| (-771))) (-15 -3779 ((-3 |#1| "failed") (-921) |#1| (-644 (-771)))) (-15 -3779 ((-3 |#1| "failed") (-921) |#1| (-644 (-771)) (-771))) (-15 -3779 ((-3 |#1| "failed") (-921) |#1| (-644 (-771)) (-771) (-112))) (-15 -1644 ((-2 (|:| |contp| (-566)) (|:| -3445 (-644 (-2 (|:| |irr| |#1|) (|:| -2677 (-566)))))) |#1| (-112))) (-15 -2959 ((-2 (|:| |contp| (-566)) (|:| -3445 (-644 (-2 (|:| |irr| |#1|) (|:| -2677 (-566)))))) |#1| (-112) (-1101 (-771)) (-771)))) +((-3332 (((-566) |#2|) 52) (((-566) |#2| (-771)) 51)) (-2106 (((-566) |#2|) 67)) (-4280 ((|#3| |#2|) 26)) (-1398 ((|#3| |#2| (-921)) 15)) (-4332 ((|#3| |#2|) 16)) (-2793 ((|#3| |#2|) 9)) (-3117 ((|#3| |#2|) 10)) (-3206 ((|#3| |#2| (-921)) 74) ((|#3| |#2|) 34)) (-1494 (((-566) |#2|) 69))) +(((-445 |#1| |#2| |#3|) (-10 -7 (-15 -1494 ((-566) |#2|)) (-15 -3206 (|#3| |#2|)) (-15 -3206 (|#3| |#2| (-921))) (-15 -2106 ((-566) |#2|)) (-15 -3332 ((-566) |#2| (-771))) (-15 -3332 ((-566) |#2|)) (-15 -1398 (|#3| |#2| (-921))) (-15 -4280 (|#3| |#2|)) (-15 -2793 (|#3| |#2|)) (-15 -3117 (|#3| |#2|)) (-15 -4332 (|#3| |#2|))) (-1049) (-1240 |#1|) (-13 (-406) (-1038 |#1|) (-365) (-1199) (-285))) (T -445)) +((-4332 (*1 *2 *3) (-12 (-4 *4 (-1049)) (-4 *2 (-13 (-406) (-1038 *4) (-365) (-1199) (-285))) (-5 *1 (-445 *4 *3 *2)) (-4 *3 (-1240 *4)))) (-3117 (*1 *2 *3) (-12 (-4 *4 (-1049)) (-4 *2 (-13 (-406) (-1038 *4) (-365) (-1199) (-285))) (-5 *1 (-445 *4 *3 *2)) (-4 *3 (-1240 *4)))) (-2793 (*1 *2 *3) (-12 (-4 *4 (-1049)) (-4 *2 (-13 (-406) (-1038 *4) (-365) (-1199) (-285))) (-5 *1 (-445 *4 *3 *2)) (-4 *3 (-1240 *4)))) (-4280 (*1 *2 *3) (-12 (-4 *4 (-1049)) (-4 *2 (-13 (-406) (-1038 *4) (-365) (-1199) (-285))) (-5 *1 (-445 *4 *3 *2)) (-4 *3 (-1240 *4)))) (-1398 (*1 *2 *3 *4) (-12 (-5 *4 (-921)) (-4 *5 (-1049)) (-4 *2 (-13 (-406) (-1038 *5) (-365) (-1199) (-285))) (-5 *1 (-445 *5 *3 *2)) (-4 *3 (-1240 *5)))) (-3332 (*1 *2 *3) (-12 (-4 *4 (-1049)) (-5 *2 (-566)) (-5 *1 (-445 *4 *3 *5)) (-4 *3 (-1240 *4)) (-4 *5 (-13 (-406) (-1038 *4) (-365) (-1199) (-285))))) (-3332 (*1 *2 *3 *4) (-12 (-5 *4 (-771)) (-4 *5 (-1049)) (-5 *2 (-566)) (-5 *1 (-445 *5 *3 *6)) (-4 *3 (-1240 *5)) (-4 *6 (-13 (-406) (-1038 *5) (-365) (-1199) (-285))))) (-2106 (*1 *2 *3) (-12 (-4 *4 (-1049)) (-5 *2 (-566)) (-5 *1 (-445 *4 *3 *5)) (-4 *3 (-1240 *4)) (-4 *5 (-13 (-406) (-1038 *4) (-365) (-1199) (-285))))) (-3206 (*1 *2 *3 *4) (-12 (-5 *4 (-921)) (-4 *5 (-1049)) (-4 *2 (-13 (-406) (-1038 *5) (-365) (-1199) (-285))) (-5 *1 (-445 *5 *3 *2)) (-4 *3 (-1240 *5)))) (-3206 (*1 *2 *3) (-12 (-4 *4 (-1049)) (-4 *2 (-13 (-406) (-1038 *4) (-365) (-1199) (-285))) (-5 *1 (-445 *4 *3 *2)) (-4 *3 (-1240 *4)))) (-1494 (*1 *2 *3) (-12 (-4 *4 (-1049)) (-5 *2 (-566)) (-5 *1 (-445 *4 *3 *5)) (-4 *3 (-1240 *4)) (-4 *5 (-13 (-406) (-1038 *4) (-365) (-1199) (-285)))))) +(-10 -7 (-15 -1494 ((-566) |#2|)) (-15 -3206 (|#3| |#2|)) (-15 -3206 (|#3| |#2| (-921))) (-15 -2106 ((-566) |#2|)) (-15 -3332 ((-566) |#2| (-771))) (-15 -3332 ((-566) |#2|)) (-15 -1398 (|#3| |#2| (-921))) (-15 -4280 (|#3| |#2|)) (-15 -2793 (|#3| |#2|)) (-15 -3117 (|#3| |#2|)) (-15 -4332 (|#3| |#2|))) +((-3122 ((|#2| (-1264 |#1|)) 45)) (-2135 ((|#2| |#2| |#1|) 61)) (-2785 ((|#2| |#2| |#1|) 53)) (-3877 ((|#2| |#2|) 49)) (-4090 (((-112) |#2|) 36)) (-3774 (((-644 |#2|) (-921) (-420 |#2|)) 24)) (-3779 ((|#2| (-921) (-420 |#2|)) 28)) (-2019 (((-737 (-771)) (-420 |#2|)) 33))) +(((-446 |#1| |#2|) (-10 -7 (-15 -4090 ((-112) |#2|)) (-15 -3122 (|#2| (-1264 |#1|))) (-15 -3877 (|#2| |#2|)) (-15 -2785 (|#2| |#2| |#1|)) (-15 -2135 (|#2| |#2| |#1|)) (-15 -2019 ((-737 (-771)) (-420 |#2|))) (-15 -3779 (|#2| (-921) (-420 |#2|))) (-15 -3774 ((-644 |#2|) (-921) (-420 |#2|)))) (-1049) (-1240 |#1|)) (T -446)) +((-3774 (*1 *2 *3 *4) (-12 (-5 *3 (-921)) (-5 *4 (-420 *6)) (-4 *6 (-1240 *5)) (-4 *5 (-1049)) (-5 *2 (-644 *6)) (-5 *1 (-446 *5 *6)))) (-3779 (*1 *2 *3 *4) (-12 (-5 *3 (-921)) (-5 *4 (-420 *2)) (-4 *2 (-1240 *5)) (-5 *1 (-446 *5 *2)) (-4 *5 (-1049)))) (-2019 (*1 *2 *3) (-12 (-5 *3 (-420 *5)) (-4 *5 (-1240 *4)) (-4 *4 (-1049)) (-5 *2 (-737 (-771))) (-5 *1 (-446 *4 *5)))) (-2135 (*1 *2 *2 *3) (-12 (-4 *3 (-1049)) (-5 *1 (-446 *3 *2)) (-4 *2 (-1240 *3)))) (-2785 (*1 *2 *2 *3) (-12 (-4 *3 (-1049)) (-5 *1 (-446 *3 *2)) (-4 *2 (-1240 *3)))) (-3877 (*1 *2 *2) (-12 (-4 *3 (-1049)) (-5 *1 (-446 *3 *2)) (-4 *2 (-1240 *3)))) (-3122 (*1 *2 *3) (-12 (-5 *3 (-1264 *4)) (-4 *4 (-1049)) (-4 *2 (-1240 *4)) (-5 *1 (-446 *4 *2)))) (-4090 (*1 *2 *3) (-12 (-4 *4 (-1049)) (-5 *2 (-112)) (-5 *1 (-446 *4 *3)) (-4 *3 (-1240 *4))))) +(-10 -7 (-15 -4090 ((-112) |#2|)) (-15 -3122 (|#2| (-1264 |#1|))) (-15 -3877 (|#2| |#2|)) (-15 -2785 (|#2| |#2| |#1|)) (-15 -2135 (|#2| |#2| |#1|)) (-15 -2019 ((-737 (-771)) (-420 |#2|))) (-15 -3779 (|#2| (-921) (-420 |#2|))) (-15 -3774 ((-644 |#2|) (-921) (-420 |#2|)))) +((-3434 (((-771)) 59)) (-3287 (((-771)) 29 (|has| |#1| (-406))) (((-771) (-771)) 28 (|has| |#1| (-406)))) (-1298 (((-566) |#1|) 25 (|has| |#1| (-406)))) (-3629 (((-566) |#1|) 27 (|has| |#1| (-406)))) (-1476 (((-771)) 58) (((-771) (-771)) 57)) (-3504 ((|#1| (-771) (-566)) 37)) (-2203 (((-1269)) 61))) +(((-447 |#1|) (-10 -7 (-15 -3504 (|#1| (-771) (-566))) (-15 -1476 ((-771) (-771))) (-15 -1476 ((-771))) (-15 -3434 ((-771))) (-15 -2203 ((-1269))) (IF (|has| |#1| (-406)) (PROGN (-15 -3629 ((-566) |#1|)) (-15 -1298 ((-566) |#1|)) (-15 -3287 ((-771) (-771))) (-15 -3287 ((-771)))) |%noBranch|)) (-1049)) (T -447)) +((-3287 (*1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-447 *3)) (-4 *3 (-406)) (-4 *3 (-1049)))) (-3287 (*1 *2 *2) (-12 (-5 *2 (-771)) (-5 *1 (-447 *3)) (-4 *3 (-406)) (-4 *3 (-1049)))) (-1298 (*1 *2 *3) (-12 (-5 *2 (-566)) (-5 *1 (-447 *3)) (-4 *3 (-406)) (-4 *3 (-1049)))) (-3629 (*1 *2 *3) (-12 (-5 *2 (-566)) (-5 *1 (-447 *3)) (-4 *3 (-406)) (-4 *3 (-1049)))) (-2203 (*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-447 *3)) (-4 *3 (-1049)))) (-3434 (*1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-447 *3)) (-4 *3 (-1049)))) (-1476 (*1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-447 *3)) (-4 *3 (-1049)))) (-1476 (*1 *2 *2) (-12 (-5 *2 (-771)) (-5 *1 (-447 *3)) (-4 *3 (-1049)))) (-3504 (*1 *2 *3 *4) (-12 (-5 *3 (-771)) (-5 *4 (-566)) (-5 *1 (-447 *2)) (-4 *2 (-1049))))) +(-10 -7 (-15 -3504 (|#1| (-771) (-566))) (-15 -1476 ((-771) (-771))) (-15 -1476 ((-771))) (-15 -3434 ((-771))) (-15 -2203 ((-1269))) (IF (|has| |#1| (-406)) (PROGN (-15 -3629 ((-566) |#1|)) (-15 -1298 ((-566) |#1|)) (-15 -3287 ((-771) (-771))) (-15 -3287 ((-771)))) |%noBranch|)) +((-3178 (((-644 (-566)) (-566)) 76)) (-4188 (((-112) (-169 (-566))) 82)) (-2325 (((-420 (-169 (-566))) (-169 (-566))) 75))) +(((-448) (-10 -7 (-15 -2325 ((-420 (-169 (-566))) (-169 (-566)))) (-15 -3178 ((-644 (-566)) (-566))) (-15 -4188 ((-112) (-169 (-566)))))) (T -448)) +((-4188 (*1 *2 *3) (-12 (-5 *3 (-169 (-566))) (-5 *2 (-112)) (-5 *1 (-448)))) (-3178 (*1 *2 *3) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-448)) (-5 *3 (-566)))) (-2325 (*1 *2 *3) (-12 (-5 *2 (-420 (-169 (-566)))) (-5 *1 (-448)) (-5 *3 (-169 (-566)))))) +(-10 -7 (-15 -2325 ((-420 (-169 (-566))) (-169 (-566)))) (-15 -3178 ((-644 (-566)) (-566))) (-15 -4188 ((-112) (-169 (-566))))) +((-4194 ((|#4| |#4| (-644 |#4|)) 82)) (-3986 (((-644 |#4|) (-644 |#4|) (-1157) (-1157)) 22) (((-644 |#4|) (-644 |#4|) (-1157)) 21) (((-644 |#4|) (-644 |#4|)) 13))) +(((-449 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4194 (|#4| |#4| (-644 |#4|))) (-15 -3986 ((-644 |#4|) (-644 |#4|))) (-15 -3986 ((-644 |#4|) (-644 |#4|) (-1157))) (-15 -3986 ((-644 |#4|) (-644 |#4|) (-1157) (-1157)))) (-308) (-793) (-850) (-949 |#1| |#2| |#3|)) (T -449)) +((-3986 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-644 *7)) (-5 *3 (-1157)) (-4 *7 (-949 *4 *5 *6)) (-4 *4 (-308)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-449 *4 *5 *6 *7)))) (-3986 (*1 *2 *2 *3) (-12 (-5 *2 (-644 *7)) (-5 *3 (-1157)) (-4 *7 (-949 *4 *5 *6)) (-4 *4 (-308)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-449 *4 *5 *6 *7)))) (-3986 (*1 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-949 *3 *4 *5)) (-4 *3 (-308)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-449 *3 *4 *5 *6)))) (-4194 (*1 *2 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-949 *4 *5 *6)) (-4 *4 (-308)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-449 *4 *5 *6 *2))))) +(-10 -7 (-15 -4194 (|#4| |#4| (-644 |#4|))) (-15 -3986 ((-644 |#4|) (-644 |#4|))) (-15 -3986 ((-644 |#4|) (-644 |#4|) (-1157))) (-15 -3986 ((-644 |#4|) (-644 |#4|) (-1157) (-1157)))) +((-3452 (((-644 (-644 |#4|)) (-644 |#4|) (-112)) 91) (((-644 (-644 |#4|)) (-644 |#4|)) 90) (((-644 (-644 |#4|)) (-644 |#4|) (-644 |#4|) (-112)) 84) (((-644 (-644 |#4|)) (-644 |#4|) (-644 |#4|)) 85)) (-2684 (((-644 (-644 |#4|)) (-644 |#4|) (-112)) 55) (((-644 (-644 |#4|)) (-644 |#4|)) 77))) +(((-450 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2684 ((-644 (-644 |#4|)) (-644 |#4|))) (-15 -2684 ((-644 (-644 |#4|)) (-644 |#4|) (-112))) (-15 -3452 ((-644 (-644 |#4|)) (-644 |#4|) (-644 |#4|))) (-15 -3452 ((-644 (-644 |#4|)) (-644 |#4|) (-644 |#4|) (-112))) (-15 -3452 ((-644 (-644 |#4|)) (-644 |#4|))) (-15 -3452 ((-644 (-644 |#4|)) (-644 |#4|) (-112)))) (-13 (-308) (-147)) (-793) (-850) (-949 |#1| |#2| |#3|)) (T -450)) +((-3452 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *8 (-949 *5 *6 *7)) (-5 *2 (-644 (-644 *8))) (-5 *1 (-450 *5 *6 *7 *8)) (-5 *3 (-644 *8)))) (-3452 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-949 *4 *5 *6)) (-5 *2 (-644 (-644 *7))) (-5 *1 (-450 *4 *5 *6 *7)) (-5 *3 (-644 *7)))) (-3452 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *8 (-949 *5 *6 *7)) (-5 *2 (-644 (-644 *8))) (-5 *1 (-450 *5 *6 *7 *8)) (-5 *3 (-644 *8)))) (-3452 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-949 *4 *5 *6)) (-5 *2 (-644 (-644 *7))) (-5 *1 (-450 *4 *5 *6 *7)) (-5 *3 (-644 *7)))) (-2684 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *8 (-949 *5 *6 *7)) (-5 *2 (-644 (-644 *8))) (-5 *1 (-450 *5 *6 *7 *8)) (-5 *3 (-644 *8)))) (-2684 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-949 *4 *5 *6)) (-5 *2 (-644 (-644 *7))) (-5 *1 (-450 *4 *5 *6 *7)) (-5 *3 (-644 *7))))) +(-10 -7 (-15 -2684 ((-644 (-644 |#4|)) (-644 |#4|))) (-15 -2684 ((-644 (-644 |#4|)) (-644 |#4|) (-112))) (-15 -3452 ((-644 (-644 |#4|)) (-644 |#4|) (-644 |#4|))) (-15 -3452 ((-644 (-644 |#4|)) (-644 |#4|) (-644 |#4|) (-112))) (-15 -3452 ((-644 (-644 |#4|)) (-644 |#4|))) (-15 -3452 ((-644 (-644 |#4|)) (-644 |#4|) (-112)))) +((-2198 (((-771) |#4|) 12)) (-1931 (((-644 (-2 (|:| |totdeg| (-771)) (|:| -2240 |#4|))) |#4| (-771) (-644 (-2 (|:| |totdeg| (-771)) (|:| -2240 |#4|)))) 39)) (-2029 (((-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 51)) (-1770 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 54)) (-4009 ((|#4| |#4| (-644 |#4|)) 56)) (-1866 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-644 |#4|)) 98)) (-1571 (((-1269) |#4|) 61)) (-1699 (((-1269) (-644 |#4|)) 71)) (-1395 (((-566) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-566) (-566) (-566)) 68)) (-2009 (((-1269) (-566)) 113)) (-1774 (((-644 |#4|) (-644 |#4|)) 105)) (-4365 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-771)) (|:| -2240 |#4|)) |#4| (-771)) 31)) (-4125 (((-566) |#4|) 110)) (-2556 ((|#4| |#4|) 37)) (-2242 (((-644 |#4|) (-644 |#4|) (-566) (-566)) 76)) (-3575 (((-566) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-566) (-566) (-566) (-566)) 126)) (-2722 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20)) (-1613 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 80)) (-2538 (((-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 78)) (-1959 (((-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49)) (-2842 (((-112) |#2| |#2|) 77)) (-3669 (((-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 50)) (-3086 (((-112) |#2| |#2| |#2| |#2|) 82)) (-3218 ((|#4| |#4| (-644 |#4|)) 99))) +(((-451 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3218 (|#4| |#4| (-644 |#4|))) (-15 -4009 (|#4| |#4| (-644 |#4|))) (-15 -2242 ((-644 |#4|) (-644 |#4|) (-566) (-566))) (-15 -1613 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2842 ((-112) |#2| |#2|)) (-15 -3086 ((-112) |#2| |#2| |#2| |#2|)) (-15 -3669 ((-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1959 ((-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2538 ((-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1866 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-644 |#4|))) (-15 -2556 (|#4| |#4|)) (-15 -1931 ((-644 (-2 (|:| |totdeg| (-771)) (|:| -2240 |#4|))) |#4| (-771) (-644 (-2 (|:| |totdeg| (-771)) (|:| -2240 |#4|))))) (-15 -1770 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2029 ((-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1774 ((-644 |#4|) (-644 |#4|))) (-15 -4125 ((-566) |#4|)) (-15 -1571 ((-1269) |#4|)) (-15 -1395 ((-566) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-566) (-566) (-566))) (-15 -3575 ((-566) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-566) (-566) (-566) (-566))) (-15 -1699 ((-1269) (-644 |#4|))) (-15 -2009 ((-1269) (-566))) (-15 -2722 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4365 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-771)) (|:| -2240 |#4|)) |#4| (-771))) (-15 -2198 ((-771) |#4|))) (-454) (-793) (-850) (-949 |#1| |#2| |#3|)) (T -451)) +((-2198 (*1 *2 *3) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-771)) (-5 *1 (-451 *4 *5 *6 *3)) (-4 *3 (-949 *4 *5 *6)))) (-4365 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-771)) (|:| -2240 *4))) (-5 *5 (-771)) (-4 *4 (-949 *6 *7 *8)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-451 *6 *7 *8 *4)))) (-2722 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-771)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-793)) (-4 *7 (-949 *4 *5 *6)) (-4 *4 (-454)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-451 *4 *5 *6 *7)))) (-2009 (*1 *2 *3) (-12 (-5 *3 (-566)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-1269)) (-5 *1 (-451 *4 *5 *6 *7)) (-4 *7 (-949 *4 *5 *6)))) (-1699 (*1 *2 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-949 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-1269)) (-5 *1 (-451 *4 *5 *6 *7)))) (-3575 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-566)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-771)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-793)) (-4 *4 (-949 *5 *6 *7)) (-4 *5 (-454)) (-4 *7 (-850)) (-5 *1 (-451 *5 *6 *7 *4)))) (-1395 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-566)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-771)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-793)) (-4 *4 (-949 *5 *6 *7)) (-4 *5 (-454)) (-4 *7 (-850)) (-5 *1 (-451 *5 *6 *7 *4)))) (-1571 (*1 *2 *3) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-1269)) (-5 *1 (-451 *4 *5 *6 *3)) (-4 *3 (-949 *4 *5 *6)))) (-4125 (*1 *2 *3) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-566)) (-5 *1 (-451 *4 *5 *6 *3)) (-4 *3 (-949 *4 *5 *6)))) (-1774 (*1 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-949 *3 *4 *5)) (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-451 *3 *4 *5 *6)))) (-2029 (*1 *2 *2 *2) (-12 (-5 *2 (-644 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-771)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-793)) (-4 *6 (-949 *3 *4 *5)) (-4 *3 (-454)) (-4 *5 (-850)) (-5 *1 (-451 *3 *4 *5 *6)))) (-1770 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-771)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-793)) (-4 *2 (-949 *4 *5 *6)) (-5 *1 (-451 *4 *5 *6 *2)) (-4 *4 (-454)) (-4 *6 (-850)))) (-1931 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-644 (-2 (|:| |totdeg| (-771)) (|:| -2240 *3)))) (-5 *4 (-771)) (-4 *3 (-949 *5 *6 *7)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *1 (-451 *5 *6 *7 *3)))) (-2556 (*1 *2 *2) (-12 (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-451 *3 *4 *5 *2)) (-4 *2 (-949 *3 *4 *5)))) (-1866 (*1 *2 *3 *4) (-12 (-5 *4 (-644 *3)) (-4 *3 (-949 *5 *6 *7)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-451 *5 *6 *7 *3)))) (-2538 (*1 *2 *3 *2) (-12 (-5 *2 (-644 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-771)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-793)) (-4 *6 (-949 *4 *3 *5)) (-4 *4 (-454)) (-4 *5 (-850)) (-5 *1 (-451 *4 *3 *5 *6)))) (-1959 (*1 *2 *2) (-12 (-5 *2 (-644 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-771)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-793)) (-4 *6 (-949 *3 *4 *5)) (-4 *3 (-454)) (-4 *5 (-850)) (-5 *1 (-451 *3 *4 *5 *6)))) (-3669 (*1 *2 *3 *2) (-12 (-5 *2 (-644 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-771)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-793)) (-4 *3 (-949 *4 *5 *6)) (-4 *4 (-454)) (-4 *6 (-850)) (-5 *1 (-451 *4 *5 *6 *3)))) (-3086 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-454)) (-4 *3 (-793)) (-4 *5 (-850)) (-5 *2 (-112)) (-5 *1 (-451 *4 *3 *5 *6)) (-4 *6 (-949 *4 *3 *5)))) (-2842 (*1 *2 *3 *3) (-12 (-4 *4 (-454)) (-4 *3 (-793)) (-4 *5 (-850)) (-5 *2 (-112)) (-5 *1 (-451 *4 *3 *5 *6)) (-4 *6 (-949 *4 *3 *5)))) (-1613 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-771)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-793)) (-4 *7 (-949 *4 *5 *6)) (-4 *4 (-454)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-451 *4 *5 *6 *7)))) (-2242 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-644 *7)) (-5 *3 (-566)) (-4 *7 (-949 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-451 *4 *5 *6 *7)))) (-4009 (*1 *2 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-949 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-451 *4 *5 *6 *2)))) (-3218 (*1 *2 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-949 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-451 *4 *5 *6 *2))))) +(-10 -7 (-15 -3218 (|#4| |#4| (-644 |#4|))) (-15 -4009 (|#4| |#4| (-644 |#4|))) (-15 -2242 ((-644 |#4|) (-644 |#4|) (-566) (-566))) (-15 -1613 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2842 ((-112) |#2| |#2|)) (-15 -3086 ((-112) |#2| |#2| |#2| |#2|)) (-15 -3669 ((-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1959 ((-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2538 ((-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1866 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-644 |#4|))) (-15 -2556 (|#4| |#4|)) (-15 -1931 ((-644 (-2 (|:| |totdeg| (-771)) (|:| -2240 |#4|))) |#4| (-771) (-644 (-2 (|:| |totdeg| (-771)) (|:| -2240 |#4|))))) (-15 -1770 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2029 ((-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1774 ((-644 |#4|) (-644 |#4|))) (-15 -4125 ((-566) |#4|)) (-15 -1571 ((-1269) |#4|)) (-15 -1395 ((-566) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-566) (-566) (-566))) (-15 -3575 ((-566) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-566) (-566) (-566) (-566))) (-15 -1699 ((-1269) (-644 |#4|))) (-15 -2009 ((-1269) (-566))) (-15 -2722 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4365 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-771)) (|:| -2240 |#4|)) |#4| (-771))) (-15 -2198 ((-771) |#4|))) +((-2627 ((|#4| |#4| (-644 |#4|)) 20 (|has| |#1| (-365)))) (-4269 (((-644 |#4|) (-644 |#4|) (-1157) (-1157)) 46) (((-644 |#4|) (-644 |#4|) (-1157)) 45) (((-644 |#4|) (-644 |#4|)) 34))) +(((-452 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4269 ((-644 |#4|) (-644 |#4|))) (-15 -4269 ((-644 |#4|) (-644 |#4|) (-1157))) (-15 -4269 ((-644 |#4|) (-644 |#4|) (-1157) (-1157))) (IF (|has| |#1| (-365)) (-15 -2627 (|#4| |#4| (-644 |#4|))) |%noBranch|)) (-454) (-793) (-850) (-949 |#1| |#2| |#3|)) (T -452)) +((-2627 (*1 *2 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-949 *4 *5 *6)) (-4 *4 (-365)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-452 *4 *5 *6 *2)))) (-4269 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-644 *7)) (-5 *3 (-1157)) (-4 *7 (-949 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-452 *4 *5 *6 *7)))) (-4269 (*1 *2 *2 *3) (-12 (-5 *2 (-644 *7)) (-5 *3 (-1157)) (-4 *7 (-949 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-452 *4 *5 *6 *7)))) (-4269 (*1 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-949 *3 *4 *5)) (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-452 *3 *4 *5 *6))))) +(-10 -7 (-15 -4269 ((-644 |#4|) (-644 |#4|))) (-15 -4269 ((-644 |#4|) (-644 |#4|) (-1157))) (-15 -4269 ((-644 |#4|) (-644 |#4|) (-1157) (-1157))) (IF (|has| |#1| (-365)) (-15 -2627 (|#4| |#4| (-644 |#4|))) |%noBranch|)) +((-2120 (($ $ $) 14) (($ (-644 $)) 21)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) 46)) (-2162 (($ $ $) NIL) (($ (-644 $)) 22))) +(((-453 |#1|) (-10 -8 (-15 -4004 ((-1171 |#1|) (-1171 |#1|) (-1171 |#1|))) (-15 -2120 (|#1| (-644 |#1|))) (-15 -2120 (|#1| |#1| |#1|)) (-15 -2162 (|#1| (-644 |#1|))) (-15 -2162 (|#1| |#1| |#1|))) (-454)) (T -453)) +NIL +(-10 -8 (-15 -4004 ((-1171 |#1|) (-1171 |#1|) (-1171 |#1|))) (-15 -2120 (|#1| (-644 |#1|))) (-15 -2120 (|#1| |#1| |#1|)) (-15 -2162 (|#1| (-644 |#1|))) (-15 -2162 (|#1| |#1| |#1|))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) 47)) (-3087 (($ $) 46)) (-1716 (((-112) $) 44)) (-3174 (((-3 $ "failed") $ $) 20)) (-1811 (($) 18 T CONST)) (-3757 (((-3 $ "failed") $) 37)) (-2264 (((-112) $) 35)) (-2120 (($ $ $) 52) (($ (-644 $)) 51)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-2162 (($ $ $) 54) (($ (-644 $)) 53)) (-2976 (((-3 $ "failed") $ $) 48)) (-2479 (((-862) $) 12) (($ (-566)) 33) (($ $) 49)) (-1558 (((-771)) 32 T CONST)) (-3900 (((-112) $ $) 9)) (-1333 (((-112) $ $) 45)) (-2446 (($) 19 T CONST)) (-2459 (($) 34 T CONST)) (-2952 (((-112) $ $) 6)) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27))) +(((-454) (-140)) (T -454)) +((-2162 (*1 *1 *1 *1) (-4 *1 (-454))) (-2162 (*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-454)))) (-2120 (*1 *1 *1 *1) (-4 *1 (-454))) (-2120 (*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-454)))) (-4004 (*1 *2 *2 *2) (-12 (-5 *2 (-1171 *1)) (-4 *1 (-454))))) +(-13 (-558) (-10 -8 (-15 -2162 ($ $ $)) (-15 -2162 ($ (-644 $))) (-15 -2120 ($ $ $)) (-15 -2120 ($ (-644 $))) (-15 -4004 ((-1171 $) (-1171 $) (-1171 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-616 (-566)) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-291) . T) ((-558) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 $) . T) ((-640 $) . T) ((-717 $) . T) ((-726) . T) ((-1051 $) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-1732 (((-3 $ "failed")) NIL (|has| (-409 (-952 |#1|)) (-558)))) (-3174 (((-3 $ "failed") $ $) NIL)) (-2603 (((-1264 (-689 (-409 (-952 |#1|)))) (-1264 $)) NIL) (((-1264 (-689 (-409 (-952 |#1|))))) NIL)) (-3010 (((-1264 $)) NIL)) (-1811 (($) NIL T CONST)) (-2738 (((-3 (-2 (|:| |particular| $) (|:| -1419 (-644 $))) "failed")) NIL)) (-1690 (((-3 $ "failed")) NIL (|has| (-409 (-952 |#1|)) (-558)))) (-4223 (((-689 (-409 (-952 |#1|))) (-1264 $)) NIL) (((-689 (-409 (-952 |#1|)))) NIL)) (-2935 (((-409 (-952 |#1|)) $) NIL)) (-3030 (((-689 (-409 (-952 |#1|))) $ (-1264 $)) NIL) (((-689 (-409 (-952 |#1|))) $) NIL)) (-4347 (((-3 $ "failed") $) NIL (|has| (-409 (-952 |#1|)) (-558)))) (-4139 (((-1171 (-952 (-409 (-952 |#1|))))) NIL (|has| (-409 (-952 |#1|)) (-365))) (((-1171 (-409 (-952 |#1|)))) 94 (|has| |#1| (-558)))) (-4370 (($ $ (-921)) NIL)) (-2190 (((-409 (-952 |#1|)) $) NIL)) (-3251 (((-1171 (-409 (-952 |#1|))) $) 92 (|has| (-409 (-952 |#1|)) (-558)))) (-1792 (((-409 (-952 |#1|)) (-1264 $)) NIL) (((-409 (-952 |#1|))) NIL)) (-1973 (((-1171 (-409 (-952 |#1|))) $) NIL)) (-3156 (((-112)) NIL)) (-2422 (($ (-1264 (-409 (-952 |#1|))) (-1264 $)) 118) (($ (-1264 (-409 (-952 |#1|)))) NIL)) (-3757 (((-3 $ "failed") $) NIL (|has| (-409 (-952 |#1|)) (-558)))) (-2299 (((-921)) NIL)) (-2116 (((-112)) NIL)) (-1595 (($ $ (-921)) NIL)) (-2895 (((-112)) NIL)) (-2751 (((-112)) NIL)) (-2185 (((-112)) NIL)) (-2784 (((-3 (-2 (|:| |particular| $) (|:| -1419 (-644 $))) "failed")) NIL)) (-4320 (((-3 $ "failed")) NIL (|has| (-409 (-952 |#1|)) (-558)))) (-1434 (((-689 (-409 (-952 |#1|))) (-1264 $)) NIL) (((-689 (-409 (-952 |#1|)))) NIL)) (-1978 (((-409 (-952 |#1|)) $) NIL)) (-1390 (((-689 (-409 (-952 |#1|))) $ (-1264 $)) NIL) (((-689 (-409 (-952 |#1|))) $) NIL)) (-4252 (((-3 $ "failed") $) NIL (|has| (-409 (-952 |#1|)) (-558)))) (-1509 (((-1171 (-952 (-409 (-952 |#1|))))) NIL (|has| (-409 (-952 |#1|)) (-365))) (((-1171 (-409 (-952 |#1|)))) 93 (|has| |#1| (-558)))) (-3681 (($ $ (-921)) NIL)) (-1782 (((-409 (-952 |#1|)) $) NIL)) (-4066 (((-1171 (-409 (-952 |#1|))) $) 87 (|has| (-409 (-952 |#1|)) (-558)))) (-2659 (((-409 (-952 |#1|)) (-1264 $)) NIL) (((-409 (-952 |#1|))) NIL)) (-2899 (((-1171 (-409 (-952 |#1|))) $) NIL)) (-3280 (((-112)) NIL)) (-3151 (((-1157) $) NIL)) (-1698 (((-112)) NIL)) (-2287 (((-112)) NIL)) (-3093 (((-112)) NIL)) (-4059 (((-1119) $) NIL)) (-3605 (((-409 (-952 |#1|)) $ $) 78 (|has| |#1| (-558)))) (-1363 (((-409 (-952 |#1|)) $) 104 (|has| |#1| (-558)))) (-2855 (((-409 (-952 |#1|)) $) 108 (|has| |#1| (-558)))) (-2612 (((-1171 (-409 (-952 |#1|))) $) 98 (|has| |#1| (-558)))) (-2010 (((-409 (-952 |#1|))) 79 (|has| |#1| (-558)))) (-2103 (((-409 (-952 |#1|)) $ $) 71 (|has| |#1| (-558)))) (-3272 (((-409 (-952 |#1|)) $) 103 (|has| |#1| (-558)))) (-3195 (((-409 (-952 |#1|)) $) 107 (|has| |#1| (-558)))) (-2640 (((-1171 (-409 (-952 |#1|))) $) 97 (|has| |#1| (-558)))) (-3120 (((-409 (-952 |#1|))) 75 (|has| |#1| (-558)))) (-1403 (($) 114) (($ (-1175)) 122) (($ (-1264 (-1175))) 121) (($ (-1264 $)) 109) (($ (-1175) (-1264 $)) 120) (($ (-1264 (-1175)) (-1264 $)) 119)) (-3753 (((-112)) NIL)) (-4376 (((-409 (-952 |#1|)) $ (-566)) NIL)) (-3747 (((-1264 (-409 (-952 |#1|))) $ (-1264 $)) 111) (((-689 (-409 (-952 |#1|))) (-1264 $) (-1264 $)) NIL) (((-1264 (-409 (-952 |#1|))) $) 45) (((-689 (-409 (-952 |#1|))) (-1264 $)) NIL)) (-3136 (((-1264 (-409 (-952 |#1|))) $) NIL) (($ (-1264 (-409 (-952 |#1|)))) 42)) (-2880 (((-644 (-952 (-409 (-952 |#1|)))) (-1264 $)) NIL) (((-644 (-952 (-409 (-952 |#1|))))) NIL) (((-644 (-952 |#1|)) (-1264 $)) 112 (|has| |#1| (-558))) (((-644 (-952 |#1|))) 113 (|has| |#1| (-558)))) (-3815 (($ $ $) NIL)) (-3418 (((-112)) NIL)) (-2479 (((-862) $) NIL) (($ (-1264 (-409 (-952 |#1|)))) NIL)) (-3900 (((-112) $ $) NIL)) (-1419 (((-1264 $)) 67)) (-3170 (((-644 (-1264 (-409 (-952 |#1|))))) NIL (|has| (-409 (-952 |#1|)) (-558)))) (-1469 (($ $ $ $) NIL)) (-1429 (((-112)) NIL)) (-4029 (($ (-689 (-409 (-952 |#1|))) $) NIL)) (-1596 (($ $ $) NIL)) (-1478 (((-112)) NIL)) (-3492 (((-112)) NIL)) (-3893 (((-112)) NIL)) (-2446 (($) NIL T CONST)) (-2952 (((-112) $ $) NIL)) (-3065 (($ $) NIL) (($ $ $) 110)) (-3052 (($ $ $) NIL)) (** (($ $ (-921)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 63) (($ $ (-409 (-952 |#1|))) NIL) (($ (-409 (-952 |#1|)) $) NIL) (($ (-1141 |#2| (-409 (-952 |#1|))) $) NIL))) +(((-455 |#1| |#2| |#3| |#4|) (-13 (-419 (-409 (-952 |#1|))) (-648 (-1141 |#2| (-409 (-952 |#1|)))) (-10 -8 (-15 -2479 ($ (-1264 (-409 (-952 |#1|))))) (-15 -2784 ((-3 (-2 (|:| |particular| $) (|:| -1419 (-644 $))) "failed"))) (-15 -2738 ((-3 (-2 (|:| |particular| $) (|:| -1419 (-644 $))) "failed"))) (-15 -1403 ($)) (-15 -1403 ($ (-1175))) (-15 -1403 ($ (-1264 (-1175)))) (-15 -1403 ($ (-1264 $))) (-15 -1403 ($ (-1175) (-1264 $))) (-15 -1403 ($ (-1264 (-1175)) (-1264 $))) (IF (|has| |#1| (-558)) (PROGN (-15 -1509 ((-1171 (-409 (-952 |#1|))))) (-15 -2640 ((-1171 (-409 (-952 |#1|))) $)) (-15 -3272 ((-409 (-952 |#1|)) $)) (-15 -3195 ((-409 (-952 |#1|)) $)) (-15 -4139 ((-1171 (-409 (-952 |#1|))))) (-15 -2612 ((-1171 (-409 (-952 |#1|))) $)) (-15 -1363 ((-409 (-952 |#1|)) $)) (-15 -2855 ((-409 (-952 |#1|)) $)) (-15 -2103 ((-409 (-952 |#1|)) $ $)) (-15 -3120 ((-409 (-952 |#1|)))) (-15 -3605 ((-409 (-952 |#1|)) $ $)) (-15 -2010 ((-409 (-952 |#1|)))) (-15 -2880 ((-644 (-952 |#1|)) (-1264 $))) (-15 -2880 ((-644 (-952 |#1|))))) |%noBranch|))) (-172) (-921) (-644 (-1175)) (-1264 (-689 |#1|))) (T -455)) +((-2479 (*1 *1 *2) (-12 (-5 *2 (-1264 (-409 (-952 *3)))) (-4 *3 (-172)) (-14 *6 (-1264 (-689 *3))) (-5 *1 (-455 *3 *4 *5 *6)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))))) (-2784 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-455 *3 *4 *5 *6)) (|:| -1419 (-644 (-455 *3 *4 *5 *6))))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3))))) (-2738 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-455 *3 *4 *5 *6)) (|:| -1419 (-644 (-455 *3 *4 *5 *6))))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3))))) (-1403 (*1 *1) (-12 (-5 *1 (-455 *2 *3 *4 *5)) (-4 *2 (-172)) (-14 *3 (-921)) (-14 *4 (-644 (-1175))) (-14 *5 (-1264 (-689 *2))))) (-1403 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 *2)) (-14 *6 (-1264 (-689 *3))))) (-1403 (*1 *1 *2) (-12 (-5 *2 (-1264 (-1175))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3))))) (-1403 (*1 *1 *2) (-12 (-5 *2 (-1264 (-455 *3 *4 *5 *6))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3))))) (-1403 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1264 (-455 *4 *5 *6 *7))) (-5 *1 (-455 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-921)) (-14 *6 (-644 *2)) (-14 *7 (-1264 (-689 *4))))) (-1403 (*1 *1 *2 *3) (-12 (-5 *2 (-1264 (-1175))) (-5 *3 (-1264 (-455 *4 *5 *6 *7))) (-5 *1 (-455 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-921)) (-14 *6 (-644 (-1175))) (-14 *7 (-1264 (-689 *4))))) (-1509 (*1 *2) (-12 (-5 *2 (-1171 (-409 (-952 *3)))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3))))) (-2640 (*1 *2 *1) (-12 (-5 *2 (-1171 (-409 (-952 *3)))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3))))) (-3272 (*1 *2 *1) (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3))))) (-3195 (*1 *2 *1) (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3))))) (-4139 (*1 *2) (-12 (-5 *2 (-1171 (-409 (-952 *3)))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3))))) (-2612 (*1 *2 *1) (-12 (-5 *2 (-1171 (-409 (-952 *3)))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3))))) (-1363 (*1 *2 *1) (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3))))) (-2855 (*1 *2 *1) (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3))))) (-2103 (*1 *2 *1 *1) (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3))))) (-3120 (*1 *2) (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3))))) (-3605 (*1 *2 *1 *1) (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3))))) (-2010 (*1 *2) (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3))))) (-2880 (*1 *2 *3) (-12 (-5 *3 (-1264 (-455 *4 *5 *6 *7))) (-5 *2 (-644 (-952 *4))) (-5 *1 (-455 *4 *5 *6 *7)) (-4 *4 (-558)) (-4 *4 (-172)) (-14 *5 (-921)) (-14 *6 (-644 (-1175))) (-14 *7 (-1264 (-689 *4))))) (-2880 (*1 *2) (-12 (-5 *2 (-644 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3)))))) +(-13 (-419 (-409 (-952 |#1|))) (-648 (-1141 |#2| (-409 (-952 |#1|)))) (-10 -8 (-15 -2479 ($ (-1264 (-409 (-952 |#1|))))) (-15 -2784 ((-3 (-2 (|:| |particular| $) (|:| -1419 (-644 $))) "failed"))) (-15 -2738 ((-3 (-2 (|:| |particular| $) (|:| -1419 (-644 $))) "failed"))) (-15 -1403 ($)) (-15 -1403 ($ (-1175))) (-15 -1403 ($ (-1264 (-1175)))) (-15 -1403 ($ (-1264 $))) (-15 -1403 ($ (-1175) (-1264 $))) (-15 -1403 ($ (-1264 (-1175)) (-1264 $))) (IF (|has| |#1| (-558)) (PROGN (-15 -1509 ((-1171 (-409 (-952 |#1|))))) (-15 -2640 ((-1171 (-409 (-952 |#1|))) $)) (-15 -3272 ((-409 (-952 |#1|)) $)) (-15 -3195 ((-409 (-952 |#1|)) $)) (-15 -4139 ((-1171 (-409 (-952 |#1|))))) (-15 -2612 ((-1171 (-409 (-952 |#1|))) $)) (-15 -1363 ((-409 (-952 |#1|)) $)) (-15 -2855 ((-409 (-952 |#1|)) $)) (-15 -2103 ((-409 (-952 |#1|)) $ $)) (-15 -3120 ((-409 (-952 |#1|)))) (-15 -3605 ((-409 (-952 |#1|)) $ $)) (-15 -2010 ((-409 (-952 |#1|)))) (-15 -2880 ((-644 (-952 |#1|)) (-1264 $))) (-15 -2880 ((-644 (-952 |#1|))))) |%noBranch|))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) 18)) (-2485 (((-644 (-864 |#1|)) $) 92)) (-2285 (((-1171 $) $ (-864 |#1|)) 55) (((-1171 |#2|) $) 143)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (|has| |#2| (-558)))) (-3087 (($ $) NIL (|has| |#2| (-558)))) (-1716 (((-112) $) NIL (|has| |#2| (-558)))) (-2917 (((-771) $) 27) (((-771) $ (-644 (-864 |#1|))) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-4058 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-3980 (($ $) NIL (|has| |#2| (-454)))) (-3348 (((-420 $) $) NIL (|has| |#2| (-454)))) (-4262 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-1811 (($) NIL T CONST)) (-2980 (((-3 |#2| "failed") $) 53) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#2| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) NIL (|has| |#2| (-1038 (-566)))) (((-3 (-864 |#1|) "failed") $) NIL)) (-1709 ((|#2| $) 51) (((-409 (-566)) $) NIL (|has| |#2| (-1038 (-409 (-566))))) (((-566) $) NIL (|has| |#2| (-1038 (-566)))) (((-864 |#1|) $) NIL)) (-4343 (($ $ $ (-864 |#1|)) NIL (|has| |#2| (-172)))) (-2972 (($ $ (-644 (-566))) 98)) (-3565 (($ $) 85)) (-2275 (((-689 (-566)) (-689 $)) NIL (|has| |#2| (-639 (-566)))) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| |#2| (-639 (-566)))) (((-2 (|:| -4196 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 $) (-1264 $)) NIL) (((-689 |#2|) (-689 $)) NIL)) (-3757 (((-3 $ "failed") $) NIL)) (-3530 (($ $) NIL (|has| |#2| (-454))) (($ $ (-864 |#1|)) NIL (|has| |#2| (-454)))) (-3551 (((-644 $) $) NIL)) (-4188 (((-112) $) NIL (|has| |#2| (-909)))) (-3995 (($ $ |#2| |#3| $) NIL)) (-1542 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| (-864 |#1|) (-886 (-381))) (|has| |#2| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| (-864 |#1|) (-886 (-566))) (|has| |#2| (-886 (-566)))))) (-2264 (((-112) $) NIL)) (-3486 (((-771) $) 68)) (-2474 (($ (-1171 |#2|) (-864 |#1|)) 148) (($ (-1171 $) (-864 |#1|)) 61)) (-1545 (((-644 $) $) NIL)) (-3989 (((-112) $) 71)) (-2463 (($ |#2| |#3|) 38) (($ $ (-864 |#1|) (-771)) 40) (($ $ (-644 (-864 |#1|)) (-644 (-771))) NIL)) (-2235 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $ (-864 |#1|)) NIL)) (-2584 ((|#3| $) NIL) (((-771) $ (-864 |#1|)) 59) (((-644 (-771)) $ (-644 (-864 |#1|))) 66)) (-3327 (($ (-1 |#3| |#3|) $) NIL)) (-3080 (($ (-1 |#2| |#2|) $) NIL)) (-2673 (((-3 (-864 |#1|) "failed") $) 48)) (-2608 (($ $) NIL)) (-2622 ((|#2| $) 50)) (-2120 (($ (-644 $)) NIL (|has| |#2| (-454))) (($ $ $) NIL (|has| |#2| (-454)))) (-3151 (((-1157) $) NIL)) (-4075 (((-3 (-644 $) "failed") $) NIL)) (-3380 (((-3 (-644 $) "failed") $) NIL)) (-2414 (((-3 (-2 (|:| |var| (-864 |#1|)) (|:| -3631 (-771))) "failed") $) NIL)) (-4059 (((-1119) $) NIL)) (-2587 (((-112) $) 49)) (-2597 ((|#2| $) 141)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#2| (-454)))) (-2162 (($ (-644 $)) NIL (|has| |#2| (-454))) (($ $ $) 154 (|has| |#2| (-454)))) (-1500 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-3917 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-2325 (((-420 $) $) NIL (|has| |#2| (-909)))) (-2976 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-558))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-558)))) (-3297 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-864 |#1|) |#2|) 105) (($ $ (-644 (-864 |#1|)) (-644 |#2|)) 111) (($ $ (-864 |#1|) $) 103) (($ $ (-644 (-864 |#1|)) (-644 $)) 129)) (-3553 (($ $ (-864 |#1|)) NIL (|has| |#2| (-172)))) (-3526 (($ $ (-864 |#1|)) 62) (($ $ (-644 (-864 |#1|))) NIL) (($ $ (-864 |#1|) (-771)) NIL) (($ $ (-644 (-864 |#1|)) (-644 (-771))) NIL)) (-1630 ((|#3| $) 84) (((-771) $ (-864 |#1|)) 45) (((-644 (-771)) $ (-644 (-864 |#1|))) 65)) (-3136 (((-892 (-381)) $) NIL (-12 (|has| (-864 |#1|) (-614 (-892 (-381)))) (|has| |#2| (-614 (-892 (-381)))))) (((-892 (-566)) $) NIL (-12 (|has| (-864 |#1|) (-614 (-892 (-566)))) (|has| |#2| (-614 (-892 (-566)))))) (((-538) $) NIL (-12 (|has| (-864 |#1|) (-614 (-538))) (|has| |#2| (-614 (-538)))))) (-2252 ((|#2| $) 150 (|has| |#2| (-454))) (($ $ (-864 |#1|)) NIL (|has| |#2| (-454)))) (-3233 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-909))))) (-2479 (((-862) $) 179) (($ (-566)) NIL) (($ |#2|) 104) (($ (-864 |#1|)) 42) (($ (-409 (-566))) NIL (-2809 (|has| |#2| (-38 (-409 (-566)))) (|has| |#2| (-1038 (-409 (-566)))))) (($ $) NIL (|has| |#2| (-558)))) (-3866 (((-644 |#2|) $) NIL)) (-3025 ((|#2| $ |#3|) NIL) (($ $ (-864 |#1|) (-771)) NIL) (($ $ (-644 (-864 |#1|)) (-644 (-771))) NIL)) (-2645 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| $ (-145)) (|has| |#2| (-909))) (|has| |#2| (-145))))) (-1558 (((-771)) NIL T CONST)) (-2244 (($ $ $ (-771)) NIL (|has| |#2| (-172)))) (-3900 (((-112) $ $) NIL)) (-1333 (((-112) $ $) NIL (|has| |#2| (-558)))) (-2446 (($) 22 T CONST)) (-2459 (($) 31 T CONST)) (-2834 (($ $ (-864 |#1|)) NIL) (($ $ (-644 (-864 |#1|))) NIL) (($ $ (-864 |#1|) (-771)) NIL) (($ $ (-644 (-864 |#1|)) (-644 (-771))) NIL)) (-2952 (((-112) $ $) NIL)) (-3077 (($ $ |#2|) 81 (|has| |#2| (-365)))) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) 136)) (** (($ $ (-921)) NIL) (($ $ (-771)) 134)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 39) (($ $ (-409 (-566))) NIL (|has| |#2| (-38 (-409 (-566))))) (($ (-409 (-566)) $) NIL (|has| |#2| (-38 (-409 (-566))))) (($ |#2| $) 80) (($ $ |#2|) NIL))) +(((-456 |#1| |#2| |#3|) (-13 (-949 |#2| |#3| (-864 |#1|)) (-10 -8 (-15 -2972 ($ $ (-644 (-566)))))) (-644 (-1175)) (-1049) (-238 (-3002 |#1|) (-771))) (T -456)) +((-2972 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-566))) (-14 *3 (-644 (-1175))) (-5 *1 (-456 *3 *4 *5)) (-4 *4 (-1049)) (-4 *5 (-238 (-3002 *3) (-771)))))) +(-13 (-949 |#2| |#3| (-864 |#1|)) (-10 -8 (-15 -2972 ($ $ (-644 (-566)))))) +((-3873 (((-112) |#1| (-644 |#2|)) 94)) (-3890 (((-3 (-1264 (-644 |#2|)) "failed") (-771) |#1| (-644 |#2|)) 103)) (-3962 (((-3 (-644 |#2|) "failed") |#2| |#1| (-1264 (-644 |#2|))) 105)) (-3772 ((|#2| |#2| |#1|) 35)) (-4237 (((-771) |#2| (-644 |#2|)) 26))) +(((-457 |#1| |#2|) (-10 -7 (-15 -3772 (|#2| |#2| |#1|)) (-15 -4237 ((-771) |#2| (-644 |#2|))) (-15 -3890 ((-3 (-1264 (-644 |#2|)) "failed") (-771) |#1| (-644 |#2|))) (-15 -3962 ((-3 (-644 |#2|) "failed") |#2| |#1| (-1264 (-644 |#2|)))) (-15 -3873 ((-112) |#1| (-644 |#2|)))) (-308) (-1240 |#1|)) (T -457)) +((-3873 (*1 *2 *3 *4) (-12 (-5 *4 (-644 *5)) (-4 *5 (-1240 *3)) (-4 *3 (-308)) (-5 *2 (-112)) (-5 *1 (-457 *3 *5)))) (-3962 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1264 (-644 *3))) (-4 *4 (-308)) (-5 *2 (-644 *3)) (-5 *1 (-457 *4 *3)) (-4 *3 (-1240 *4)))) (-3890 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-771)) (-4 *4 (-308)) (-4 *6 (-1240 *4)) (-5 *2 (-1264 (-644 *6))) (-5 *1 (-457 *4 *6)) (-5 *5 (-644 *6)))) (-4237 (*1 *2 *3 *4) (-12 (-5 *4 (-644 *3)) (-4 *3 (-1240 *5)) (-4 *5 (-308)) (-5 *2 (-771)) (-5 *1 (-457 *5 *3)))) (-3772 (*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-5 *1 (-457 *3 *2)) (-4 *2 (-1240 *3))))) +(-10 -7 (-15 -3772 (|#2| |#2| |#1|)) (-15 -4237 ((-771) |#2| (-644 |#2|))) (-15 -3890 ((-3 (-1264 (-644 |#2|)) "failed") (-771) |#1| (-644 |#2|))) (-15 -3962 ((-3 (-644 |#2|) "failed") |#2| |#1| (-1264 (-644 |#2|)))) (-15 -3873 ((-112) |#1| (-644 |#2|)))) +((-2325 (((-420 |#5|) |#5|) 24))) +(((-458 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2325 ((-420 |#5|) |#5|))) (-13 (-850) (-10 -8 (-15 -3136 ((-1175) $)) (-15 -1338 ((-3 $ "failed") (-1175))))) (-793) (-558) (-558) (-949 |#4| |#2| |#1|)) (T -458)) +((-2325 (*1 *2 *3) (-12 (-4 *4 (-13 (-850) (-10 -8 (-15 -3136 ((-1175) $)) (-15 -1338 ((-3 $ "failed") (-1175)))))) (-4 *5 (-793)) (-4 *7 (-558)) (-5 *2 (-420 *3)) (-5 *1 (-458 *4 *5 *6 *7 *3)) (-4 *6 (-558)) (-4 *3 (-949 *7 *5 *4))))) +(-10 -7 (-15 -2325 ((-420 |#5|) |#5|))) +((-3847 ((|#3|) 40)) (-4004 (((-1171 |#4|) (-1171 |#4|) (-1171 |#4|)) 36))) +(((-459 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4004 ((-1171 |#4|) (-1171 |#4|) (-1171 |#4|))) (-15 -3847 (|#3|))) (-793) (-850) (-909) (-949 |#3| |#1| |#2|)) (T -459)) +((-3847 (*1 *2) (-12 (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-909)) (-5 *1 (-459 *3 *4 *2 *5)) (-4 *5 (-949 *2 *3 *4)))) (-4004 (*1 *2 *2 *2) (-12 (-5 *2 (-1171 *6)) (-4 *6 (-949 *5 *3 *4)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *5 (-909)) (-5 *1 (-459 *3 *4 *5 *6))))) +(-10 -7 (-15 -4004 ((-1171 |#4|) (-1171 |#4|) (-1171 |#4|))) (-15 -3847 (|#3|))) +((-2325 (((-420 (-1171 |#1|)) (-1171 |#1|)) 43))) +(((-460 |#1|) (-10 -7 (-15 -2325 ((-420 (-1171 |#1|)) (-1171 |#1|)))) (-308)) (T -460)) +((-2325 (*1 *2 *3) (-12 (-4 *4 (-308)) (-5 *2 (-420 (-1171 *4))) (-5 *1 (-460 *4)) (-5 *3 (-1171 *4))))) +(-10 -7 (-15 -2325 ((-420 (-1171 |#1|)) (-1171 |#1|)))) +((-2534 (((-52) |#2| (-1175) (-295 |#2|) (-1231 (-771))) 44) (((-52) (-1 |#2| (-566)) (-295 |#2|) (-1231 (-771))) 43) (((-52) |#2| (-1175) (-295 |#2|)) 36) (((-52) (-1 |#2| (-566)) (-295 |#2|)) 29)) (-1882 (((-52) |#2| (-1175) (-295 |#2|) (-1231 (-409 (-566))) (-409 (-566))) 88) (((-52) (-1 |#2| (-409 (-566))) (-295 |#2|) (-1231 (-409 (-566))) (-409 (-566))) 87) (((-52) |#2| (-1175) (-295 |#2|) (-1231 (-566))) 86) (((-52) (-1 |#2| (-566)) (-295 |#2|) (-1231 (-566))) 85) (((-52) |#2| (-1175) (-295 |#2|)) 80) (((-52) (-1 |#2| (-566)) (-295 |#2|)) 79)) (-2557 (((-52) |#2| (-1175) (-295 |#2|) (-1231 (-409 (-566))) (-409 (-566))) 74) (((-52) (-1 |#2| (-409 (-566))) (-295 |#2|) (-1231 (-409 (-566))) (-409 (-566))) 72)) (-2546 (((-52) |#2| (-1175) (-295 |#2|) (-1231 (-566))) 51) (((-52) (-1 |#2| (-566)) (-295 |#2|) (-1231 (-566))) 50))) +(((-461 |#1| |#2|) (-10 -7 (-15 -2534 ((-52) (-1 |#2| (-566)) (-295 |#2|))) (-15 -2534 ((-52) |#2| (-1175) (-295 |#2|))) (-15 -2534 ((-52) (-1 |#2| (-566)) (-295 |#2|) (-1231 (-771)))) (-15 -2534 ((-52) |#2| (-1175) (-295 |#2|) (-1231 (-771)))) (-15 -2546 ((-52) (-1 |#2| (-566)) (-295 |#2|) (-1231 (-566)))) (-15 -2546 ((-52) |#2| (-1175) (-295 |#2|) (-1231 (-566)))) (-15 -2557 ((-52) (-1 |#2| (-409 (-566))) (-295 |#2|) (-1231 (-409 (-566))) (-409 (-566)))) (-15 -2557 ((-52) |#2| (-1175) (-295 |#2|) (-1231 (-409 (-566))) (-409 (-566)))) (-15 -1882 ((-52) (-1 |#2| (-566)) (-295 |#2|))) (-15 -1882 ((-52) |#2| (-1175) (-295 |#2|))) (-15 -1882 ((-52) (-1 |#2| (-566)) (-295 |#2|) (-1231 (-566)))) (-15 -1882 ((-52) |#2| (-1175) (-295 |#2|) (-1231 (-566)))) (-15 -1882 ((-52) (-1 |#2| (-409 (-566))) (-295 |#2|) (-1231 (-409 (-566))) (-409 (-566)))) (-15 -1882 ((-52) |#2| (-1175) (-295 |#2|) (-1231 (-409 (-566))) (-409 (-566))))) (-13 (-558) (-1038 (-566)) (-639 (-566))) (-13 (-27) (-1199) (-432 |#1|))) (T -461)) +((-1882 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1175)) (-5 *5 (-295 *3)) (-5 *6 (-1231 (-409 (-566)))) (-5 *7 (-409 (-566))) (-4 *3 (-13 (-27) (-1199) (-432 *8))) (-4 *8 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-461 *8 *3)))) (-1882 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-409 (-566)))) (-5 *4 (-295 *8)) (-5 *5 (-1231 (-409 (-566)))) (-5 *6 (-409 (-566))) (-4 *8 (-13 (-27) (-1199) (-432 *7))) (-4 *7 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-461 *7 *8)))) (-1882 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1175)) (-5 *5 (-295 *3)) (-5 *6 (-1231 (-566))) (-4 *3 (-13 (-27) (-1199) (-432 *7))) (-4 *7 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-461 *7 *3)))) (-1882 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-566))) (-5 *4 (-295 *7)) (-5 *5 (-1231 (-566))) (-4 *7 (-13 (-27) (-1199) (-432 *6))) (-4 *6 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-461 *6 *7)))) (-1882 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1175)) (-5 *5 (-295 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *6))) (-4 *6 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-461 *6 *3)))) (-1882 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-566))) (-5 *4 (-295 *6)) (-4 *6 (-13 (-27) (-1199) (-432 *5))) (-4 *5 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-461 *5 *6)))) (-2557 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1175)) (-5 *5 (-295 *3)) (-5 *6 (-1231 (-409 (-566)))) (-5 *7 (-409 (-566))) (-4 *3 (-13 (-27) (-1199) (-432 *8))) (-4 *8 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-461 *8 *3)))) (-2557 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-409 (-566)))) (-5 *4 (-295 *8)) (-5 *5 (-1231 (-409 (-566)))) (-5 *6 (-409 (-566))) (-4 *8 (-13 (-27) (-1199) (-432 *7))) (-4 *7 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-461 *7 *8)))) (-2546 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1175)) (-5 *5 (-295 *3)) (-5 *6 (-1231 (-566))) (-4 *3 (-13 (-27) (-1199) (-432 *7))) (-4 *7 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-461 *7 *3)))) (-2546 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-566))) (-5 *4 (-295 *7)) (-5 *5 (-1231 (-566))) (-4 *7 (-13 (-27) (-1199) (-432 *6))) (-4 *6 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-461 *6 *7)))) (-2534 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1175)) (-5 *5 (-295 *3)) (-5 *6 (-1231 (-771))) (-4 *3 (-13 (-27) (-1199) (-432 *7))) (-4 *7 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-461 *7 *3)))) (-2534 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-566))) (-5 *4 (-295 *7)) (-5 *5 (-1231 (-771))) (-4 *7 (-13 (-27) (-1199) (-432 *6))) (-4 *6 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-461 *6 *7)))) (-2534 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1175)) (-5 *5 (-295 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *6))) (-4 *6 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-461 *6 *3)))) (-2534 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-566))) (-5 *4 (-295 *6)) (-4 *6 (-13 (-27) (-1199) (-432 *5))) (-4 *5 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-461 *5 *6))))) +(-10 -7 (-15 -2534 ((-52) (-1 |#2| (-566)) (-295 |#2|))) (-15 -2534 ((-52) |#2| (-1175) (-295 |#2|))) (-15 -2534 ((-52) (-1 |#2| (-566)) (-295 |#2|) (-1231 (-771)))) (-15 -2534 ((-52) |#2| (-1175) (-295 |#2|) (-1231 (-771)))) (-15 -2546 ((-52) (-1 |#2| (-566)) (-295 |#2|) (-1231 (-566)))) (-15 -2546 ((-52) |#2| (-1175) (-295 |#2|) (-1231 (-566)))) (-15 -2557 ((-52) (-1 |#2| (-409 (-566))) (-295 |#2|) (-1231 (-409 (-566))) (-409 (-566)))) (-15 -2557 ((-52) |#2| (-1175) (-295 |#2|) (-1231 (-409 (-566))) (-409 (-566)))) (-15 -1882 ((-52) (-1 |#2| (-566)) (-295 |#2|))) (-15 -1882 ((-52) |#2| (-1175) (-295 |#2|))) (-15 -1882 ((-52) (-1 |#2| (-566)) (-295 |#2|) (-1231 (-566)))) (-15 -1882 ((-52) |#2| (-1175) (-295 |#2|) (-1231 (-566)))) (-15 -1882 ((-52) (-1 |#2| (-409 (-566))) (-295 |#2|) (-1231 (-409 (-566))) (-409 (-566)))) (-15 -1882 ((-52) |#2| (-1175) (-295 |#2|) (-1231 (-409 (-566))) (-409 (-566))))) +((-3772 ((|#2| |#2| |#1|) 15)) (-3335 (((-644 |#2|) |#2| (-644 |#2|) |#1| (-921)) 82)) (-3125 (((-2 (|:| |plist| (-644 |#2|)) (|:| |modulo| |#1|)) |#2| (-644 |#2|) |#1| (-921)) 72))) +(((-462 |#1| |#2|) (-10 -7 (-15 -3125 ((-2 (|:| |plist| (-644 |#2|)) (|:| |modulo| |#1|)) |#2| (-644 |#2|) |#1| (-921))) (-15 -3335 ((-644 |#2|) |#2| (-644 |#2|) |#1| (-921))) (-15 -3772 (|#2| |#2| |#1|))) (-308) (-1240 |#1|)) (T -462)) +((-3772 (*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-5 *1 (-462 *3 *2)) (-4 *2 (-1240 *3)))) (-3335 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-644 *3)) (-5 *5 (-921)) (-4 *3 (-1240 *4)) (-4 *4 (-308)) (-5 *1 (-462 *4 *3)))) (-3125 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-921)) (-4 *5 (-308)) (-4 *3 (-1240 *5)) (-5 *2 (-2 (|:| |plist| (-644 *3)) (|:| |modulo| *5))) (-5 *1 (-462 *5 *3)) (-5 *4 (-644 *3))))) +(-10 -7 (-15 -3125 ((-2 (|:| |plist| (-644 |#2|)) (|:| |modulo| |#1|)) |#2| (-644 |#2|) |#1| (-921))) (-15 -3335 ((-644 |#2|) |#2| (-644 |#2|) |#1| (-921))) (-15 -3772 (|#2| |#2| |#1|))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) 28)) (-2680 (($ |#3|) 25)) (-3174 (((-3 $ "failed") $ $) NIL)) (-1811 (($) NIL T CONST)) (-3565 (($ $) 32)) (-3430 (($ |#2| |#4| $) 33)) (-2463 (($ |#2| (-713 |#3| |#4| |#5|)) 24)) (-2608 (((-713 |#3| |#4| |#5|) $) 15)) (-3471 ((|#3| $) 19)) (-3036 ((|#4| $) 17)) (-2622 ((|#2| $) 29)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) NIL)) (-3790 (($ |#2| |#3| |#4|) 26)) (-3900 (((-112) $ $) NIL)) (-2446 (($) 36 T CONST)) (-2952 (((-112) $ $) NIL)) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) 34)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-463 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-717 |#6|) (-717 |#2|) (-10 -8 (-15 -2622 (|#2| $)) (-15 -2608 ((-713 |#3| |#4| |#5|) $)) (-15 -3036 (|#4| $)) (-15 -3471 (|#3| $)) (-15 -3565 ($ $)) (-15 -2463 ($ |#2| (-713 |#3| |#4| |#5|))) (-15 -2680 ($ |#3|)) (-15 -3790 ($ |#2| |#3| |#4|)) (-15 -3430 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-644 (-1175)) (-172) (-850) (-238 (-3002 |#1|) (-771)) (-1 (-112) (-2 (|:| -2104 |#3|) (|:| -3631 |#4|)) (-2 (|:| -2104 |#3|) (|:| -3631 |#4|))) (-949 |#2| |#4| (-864 |#1|))) (T -463)) +((* (*1 *1 *2 *1) (-12 (-14 *3 (-644 (-1175))) (-4 *4 (-172)) (-4 *6 (-238 (-3002 *3) (-771))) (-14 *7 (-1 (-112) (-2 (|:| -2104 *5) (|:| -3631 *6)) (-2 (|:| -2104 *5) (|:| -3631 *6)))) (-5 *1 (-463 *3 *4 *5 *6 *7 *2)) (-4 *5 (-850)) (-4 *2 (-949 *4 *6 (-864 *3))))) (-2622 (*1 *2 *1) (-12 (-14 *3 (-644 (-1175))) (-4 *5 (-238 (-3002 *3) (-771))) (-14 *6 (-1 (-112) (-2 (|:| -2104 *4) (|:| -3631 *5)) (-2 (|:| -2104 *4) (|:| -3631 *5)))) (-4 *2 (-172)) (-5 *1 (-463 *3 *2 *4 *5 *6 *7)) (-4 *4 (-850)) (-4 *7 (-949 *2 *5 (-864 *3))))) (-2608 (*1 *2 *1) (-12 (-14 *3 (-644 (-1175))) (-4 *4 (-172)) (-4 *6 (-238 (-3002 *3) (-771))) (-14 *7 (-1 (-112) (-2 (|:| -2104 *5) (|:| -3631 *6)) (-2 (|:| -2104 *5) (|:| -3631 *6)))) (-5 *2 (-713 *5 *6 *7)) (-5 *1 (-463 *3 *4 *5 *6 *7 *8)) (-4 *5 (-850)) (-4 *8 (-949 *4 *6 (-864 *3))))) (-3036 (*1 *2 *1) (-12 (-14 *3 (-644 (-1175))) (-4 *4 (-172)) (-14 *6 (-1 (-112) (-2 (|:| -2104 *5) (|:| -3631 *2)) (-2 (|:| -2104 *5) (|:| -3631 *2)))) (-4 *2 (-238 (-3002 *3) (-771))) (-5 *1 (-463 *3 *4 *5 *2 *6 *7)) (-4 *5 (-850)) (-4 *7 (-949 *4 *2 (-864 *3))))) (-3471 (*1 *2 *1) (-12 (-14 *3 (-644 (-1175))) (-4 *4 (-172)) (-4 *5 (-238 (-3002 *3) (-771))) (-14 *6 (-1 (-112) (-2 (|:| -2104 *2) (|:| -3631 *5)) (-2 (|:| -2104 *2) (|:| -3631 *5)))) (-4 *2 (-850)) (-5 *1 (-463 *3 *4 *2 *5 *6 *7)) (-4 *7 (-949 *4 *5 (-864 *3))))) (-3565 (*1 *1 *1) (-12 (-14 *2 (-644 (-1175))) (-4 *3 (-172)) (-4 *5 (-238 (-3002 *2) (-771))) (-14 *6 (-1 (-112) (-2 (|:| -2104 *4) (|:| -3631 *5)) (-2 (|:| -2104 *4) (|:| -3631 *5)))) (-5 *1 (-463 *2 *3 *4 *5 *6 *7)) (-4 *4 (-850)) (-4 *7 (-949 *3 *5 (-864 *2))))) (-2463 (*1 *1 *2 *3) (-12 (-5 *3 (-713 *5 *6 *7)) (-4 *5 (-850)) (-4 *6 (-238 (-3002 *4) (-771))) (-14 *7 (-1 (-112) (-2 (|:| -2104 *5) (|:| -3631 *6)) (-2 (|:| -2104 *5) (|:| -3631 *6)))) (-14 *4 (-644 (-1175))) (-4 *2 (-172)) (-5 *1 (-463 *4 *2 *5 *6 *7 *8)) (-4 *8 (-949 *2 *6 (-864 *4))))) (-2680 (*1 *1 *2) (-12 (-14 *3 (-644 (-1175))) (-4 *4 (-172)) (-4 *5 (-238 (-3002 *3) (-771))) (-14 *6 (-1 (-112) (-2 (|:| -2104 *2) (|:| -3631 *5)) (-2 (|:| -2104 *2) (|:| -3631 *5)))) (-5 *1 (-463 *3 *4 *2 *5 *6 *7)) (-4 *2 (-850)) (-4 *7 (-949 *4 *5 (-864 *3))))) (-3790 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-644 (-1175))) (-4 *2 (-172)) (-4 *4 (-238 (-3002 *5) (-771))) (-14 *6 (-1 (-112) (-2 (|:| -2104 *3) (|:| -3631 *4)) (-2 (|:| -2104 *3) (|:| -3631 *4)))) (-5 *1 (-463 *5 *2 *3 *4 *6 *7)) (-4 *3 (-850)) (-4 *7 (-949 *2 *4 (-864 *5))))) (-3430 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-644 (-1175))) (-4 *2 (-172)) (-4 *3 (-238 (-3002 *4) (-771))) (-14 *6 (-1 (-112) (-2 (|:| -2104 *5) (|:| -3631 *3)) (-2 (|:| -2104 *5) (|:| -3631 *3)))) (-5 *1 (-463 *4 *2 *5 *3 *6 *7)) (-4 *5 (-850)) (-4 *7 (-949 *2 *3 (-864 *4)))))) +(-13 (-717 |#6|) (-717 |#2|) (-10 -8 (-15 -2622 (|#2| $)) (-15 -2608 ((-713 |#3| |#4| |#5|) $)) (-15 -3036 (|#4| $)) (-15 -3471 (|#3| $)) (-15 -3565 ($ $)) (-15 -2463 ($ |#2| (-713 |#3| |#4| |#5|))) (-15 -2680 ($ |#3|)) (-15 -3790 ($ |#2| |#3| |#4|)) (-15 -3430 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) +((-2535 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39))) +(((-464 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2535 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-793) (-850) (-558) (-949 |#3| |#1| |#2|) (-13 (-1038 (-409 (-566))) (-365) (-10 -8 (-15 -2479 ($ |#4|)) (-15 -4157 (|#4| $)) (-15 -4167 (|#4| $))))) (T -464)) +((-2535 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-850)) (-4 *5 (-793)) (-4 *6 (-558)) (-4 *7 (-949 *6 *5 *3)) (-5 *1 (-464 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1038 (-409 (-566))) (-365) (-10 -8 (-15 -2479 ($ *7)) (-15 -4157 (*7 $)) (-15 -4167 (*7 $)))))))) +(-10 -7 (-15 -2535 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) +((-2986 (((-112) $ $) NIL)) (-2485 (((-644 |#3|) $) 41)) (-1489 (((-112) $) NIL)) (-3541 (((-112) $) NIL (|has| |#1| (-558)))) (-1374 (((-2 (|:| |under| $) (|:| -2001 $) (|:| |upper| $)) $ |#3|) NIL)) (-1453 (((-112) $ (-771)) NIL)) (-3543 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4417)))) (-1811 (($) NIL T CONST)) (-4210 (((-112) $) NIL (|has| |#1| (-558)))) (-3050 (((-112) $ $) NIL (|has| |#1| (-558)))) (-1768 (((-112) $ $) NIL (|has| |#1| (-558)))) (-3261 (((-112) $) NIL (|has| |#1| (-558)))) (-2796 (((-644 |#4|) (-644 |#4|) $) NIL (|has| |#1| (-558)))) (-3829 (((-644 |#4|) (-644 |#4|) $) NIL (|has| |#1| (-558)))) (-2980 (((-3 $ "failed") (-644 |#4|)) 49)) (-1709 (($ (-644 |#4|)) NIL)) (-4111 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#4| (-1099))))) (-2628 (($ |#4| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#4| (-1099)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4417)))) (-3131 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-558)))) (-1838 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4417)) (|has| |#4| (-1099)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4417))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4417)))) (-3872 (((-644 |#4|) $) 18 (|has| $ (-6 -4417)))) (-4052 ((|#3| $) 47)) (-2756 (((-112) $ (-771)) NIL)) (-4227 (((-644 |#4|) $) 14 (|has| $ (-6 -4417)))) (-1688 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4417)) (|has| |#4| (-1099))))) (-3708 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#4| |#4|) $) 21)) (-3599 (((-644 |#3|) $) NIL)) (-2884 (((-112) |#3| $) NIL)) (-4106 (((-112) $ (-771)) NIL)) (-3151 (((-1157) $) NIL)) (-1719 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-558)))) (-4059 (((-1119) $) NIL)) (-2688 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3966 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 |#4|) (-644 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-295 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-644 (-295 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))))) (-1844 (((-112) $ $) NIL)) (-2788 (((-112) $) 39)) (-1737 (($) 17)) (-4068 (((-771) |#4| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#4| (-1099)))) (((-771) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4417)))) (-3924 (($ $) 16)) (-3136 (((-538) $) NIL (|has| |#4| (-614 (-538)))) (($ (-644 |#4|)) 51)) (-2489 (($ (-644 |#4|)) 13)) (-1706 (($ $ |#3|) NIL)) (-4234 (($ $ |#3|) NIL)) (-2378 (($ $ |#3|) NIL)) (-2479 (((-862) $) 38) (((-644 |#4|) $) 50)) (-3900 (((-112) $ $) NIL)) (-3667 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4417)))) (-2952 (((-112) $ $) 30)) (-3002 (((-771) $) NIL (|has| $ (-6 -4417))))) +(((-465 |#1| |#2| |#3| |#4|) (-13 (-976 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3136 ($ (-644 |#4|))) (-6 -4417) (-6 -4418))) (-1049) (-793) (-850) (-1064 |#1| |#2| |#3|)) (T -465)) +((-3136 (*1 *1 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-465 *3 *4 *5 *6))))) +(-13 (-976 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3136 ($ (-644 |#4|))) (-6 -4417) (-6 -4418))) +((-2446 (($) 11)) (-2459 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) +(((-466 |#1| |#2| |#3|) (-10 -8 (-15 -2459 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2446 (|#1|))) (-467 |#2| |#3|) (-172) (-23)) (T -466)) +NIL +(-10 -8 (-15 -2459 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2446 (|#1|))) +((-2986 (((-112) $ $) 7)) (-2980 (((-3 |#1| "failed") $) 27)) (-1709 ((|#1| $) 28)) (-1353 (($ $ $) 24)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-1630 ((|#2| $) 20)) (-2479 (((-862) $) 12) (($ |#1|) 26)) (-3900 (((-112) $ $) 9)) (-2446 (($) 19 T CONST)) (-2459 (($) 25 T CONST)) (-2952 (((-112) $ $) 6)) (-3065 (($ $) 16) (($ $ $) 14)) (-3052 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17))) +(((-467 |#1| |#2|) (-140) (-172) (-23)) (T -467)) +((-2459 (*1 *1) (-12 (-4 *1 (-467 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-1353 (*1 *1 *1 *1) (-12 (-4 *1 (-467 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))) +(-13 (-472 |t#1| |t#2|) (-1038 |t#1|) (-10 -8 (-15 (-2459) ($) -1573) (-15 -1353 ($ $ $)))) +(((-102) . T) ((-616 |#1|) . T) ((-613 (-862)) . T) ((-472 |#1| |#2|) . T) ((-1038 |#1|) . T) ((-1099) . T)) +((-1841 (((-1264 (-1264 (-566))) (-1264 (-1264 (-566))) (-921)) 29)) (-3255 (((-1264 (-1264 (-566))) (-921)) 24))) +(((-468) (-10 -7 (-15 -1841 ((-1264 (-1264 (-566))) (-1264 (-1264 (-566))) (-921))) (-15 -3255 ((-1264 (-1264 (-566))) (-921))))) (T -468)) +((-3255 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1264 (-1264 (-566)))) (-5 *1 (-468)))) (-1841 (*1 *2 *2 *3) (-12 (-5 *2 (-1264 (-1264 (-566)))) (-5 *3 (-921)) (-5 *1 (-468))))) +(-10 -7 (-15 -1841 ((-1264 (-1264 (-566))) (-1264 (-1264 (-566))) (-921))) (-15 -3255 ((-1264 (-1264 (-566))) (-921)))) +((-3942 (((-566) (-566)) 32) (((-566)) 24)) (-1367 (((-566) (-566)) 28) (((-566)) 20)) (-1305 (((-566) (-566)) 30) (((-566)) 22)) (-1798 (((-112) (-112)) 14) (((-112)) 12)) (-1912 (((-112) (-112)) 13) (((-112)) 11)) (-2674 (((-112) (-112)) 26) (((-112)) 17))) +(((-469) (-10 -7 (-15 -1912 ((-112))) (-15 -1798 ((-112))) (-15 -1912 ((-112) (-112))) (-15 -1798 ((-112) (-112))) (-15 -2674 ((-112))) (-15 -1305 ((-566))) (-15 -1367 ((-566))) (-15 -3942 ((-566))) (-15 -2674 ((-112) (-112))) (-15 -1305 ((-566) (-566))) (-15 -1367 ((-566) (-566))) (-15 -3942 ((-566) (-566))))) (T -469)) +((-3942 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-469)))) (-1367 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-469)))) (-1305 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-469)))) (-2674 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-469)))) (-3942 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-469)))) (-1367 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-469)))) (-1305 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-469)))) (-2674 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-469)))) (-1798 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-469)))) (-1912 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-469)))) (-1798 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-469)))) (-1912 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-469))))) +(-10 -7 (-15 -1912 ((-112))) (-15 -1798 ((-112))) (-15 -1912 ((-112) (-112))) (-15 -1798 ((-112) (-112))) (-15 -2674 ((-112))) (-15 -1305 ((-566))) (-15 -1367 ((-566))) (-15 -3942 ((-566))) (-15 -2674 ((-112) (-112))) (-15 -1305 ((-566) (-566))) (-15 -1367 ((-566) (-566))) (-15 -3942 ((-566) (-566)))) +((-2986 (((-112) $ $) NIL)) (-3169 (((-644 (-381)) $) 34) (((-644 (-381)) $ (-644 (-381))) 146)) (-3927 (((-644 (-1093 (-381))) $) 16) (((-644 (-1093 (-381))) $ (-644 (-1093 (-381)))) 142)) (-2263 (((-644 (-644 (-943 (-225)))) (-644 (-644 (-943 (-225)))) (-644 (-874))) 58)) (-1426 (((-644 (-644 (-943 (-225)))) $) 137)) (-1848 (((-1269) $ (-943 (-225)) (-874)) 163)) (-2391 (($ $) 136) (($ (-644 (-644 (-943 (-225))))) 149) (($ (-644 (-644 (-943 (-225)))) (-644 (-874)) (-644 (-874)) (-644 (-921))) 148) (($ (-644 (-644 (-943 (-225)))) (-644 (-874)) (-644 (-874)) (-644 (-921)) (-644 (-264))) 150)) (-3151 (((-1157) $) NIL)) (-1928 (((-566) $) 110)) (-4059 (((-1119) $) NIL)) (-2760 (($) 147)) (-2670 (((-644 (-225)) (-644 (-644 (-943 (-225))))) 89)) (-2056 (((-1269) $ (-644 (-943 (-225))) (-874) (-874) (-921)) 155) (((-1269) $ (-943 (-225))) 157) (((-1269) $ (-943 (-225)) (-874) (-874) (-921)) 156)) (-2479 (((-862) $) 169) (($ (-644 (-644 (-943 (-225))))) 164)) (-3900 (((-112) $ $) NIL)) (-2983 (((-1269) $ (-943 (-225))) 162)) (-2952 (((-112) $ $) NIL))) +(((-470) (-13 (-1099) (-10 -8 (-15 -2760 ($)) (-15 -2391 ($ $)) (-15 -2391 ($ (-644 (-644 (-943 (-225)))))) (-15 -2391 ($ (-644 (-644 (-943 (-225)))) (-644 (-874)) (-644 (-874)) (-644 (-921)))) (-15 -2391 ($ (-644 (-644 (-943 (-225)))) (-644 (-874)) (-644 (-874)) (-644 (-921)) (-644 (-264)))) (-15 -1426 ((-644 (-644 (-943 (-225)))) $)) (-15 -1928 ((-566) $)) (-15 -3927 ((-644 (-1093 (-381))) $)) (-15 -3927 ((-644 (-1093 (-381))) $ (-644 (-1093 (-381))))) (-15 -3169 ((-644 (-381)) $)) (-15 -3169 ((-644 (-381)) $ (-644 (-381)))) (-15 -2056 ((-1269) $ (-644 (-943 (-225))) (-874) (-874) (-921))) (-15 -2056 ((-1269) $ (-943 (-225)))) (-15 -2056 ((-1269) $ (-943 (-225)) (-874) (-874) (-921))) (-15 -2983 ((-1269) $ (-943 (-225)))) (-15 -1848 ((-1269) $ (-943 (-225)) (-874))) (-15 -2479 ($ (-644 (-644 (-943 (-225)))))) (-15 -2479 ((-862) $)) (-15 -2263 ((-644 (-644 (-943 (-225)))) (-644 (-644 (-943 (-225)))) (-644 (-874)))) (-15 -2670 ((-644 (-225)) (-644 (-644 (-943 (-225))))))))) (T -470)) +((-2479 (*1 *2 *1) (-12 (-5 *2 (-862)) (-5 *1 (-470)))) (-2760 (*1 *1) (-5 *1 (-470))) (-2391 (*1 *1 *1) (-5 *1 (-470))) (-2391 (*1 *1 *2) (-12 (-5 *2 (-644 (-644 (-943 (-225))))) (-5 *1 (-470)))) (-2391 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-644 (-644 (-943 (-225))))) (-5 *3 (-644 (-874))) (-5 *4 (-644 (-921))) (-5 *1 (-470)))) (-2391 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-644 (-644 (-943 (-225))))) (-5 *3 (-644 (-874))) (-5 *4 (-644 (-921))) (-5 *5 (-644 (-264))) (-5 *1 (-470)))) (-1426 (*1 *2 *1) (-12 (-5 *2 (-644 (-644 (-943 (-225))))) (-5 *1 (-470)))) (-1928 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-470)))) (-3927 (*1 *2 *1) (-12 (-5 *2 (-644 (-1093 (-381)))) (-5 *1 (-470)))) (-3927 (*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1093 (-381)))) (-5 *1 (-470)))) (-3169 (*1 *2 *1) (-12 (-5 *2 (-644 (-381))) (-5 *1 (-470)))) (-3169 (*1 *2 *1 *2) (-12 (-5 *2 (-644 (-381))) (-5 *1 (-470)))) (-2056 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-644 (-943 (-225)))) (-5 *4 (-874)) (-5 *5 (-921)) (-5 *2 (-1269)) (-5 *1 (-470)))) (-2056 (*1 *2 *1 *3) (-12 (-5 *3 (-943 (-225))) (-5 *2 (-1269)) (-5 *1 (-470)))) (-2056 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-943 (-225))) (-5 *4 (-874)) (-5 *5 (-921)) (-5 *2 (-1269)) (-5 *1 (-470)))) (-2983 (*1 *2 *1 *3) (-12 (-5 *3 (-943 (-225))) (-5 *2 (-1269)) (-5 *1 (-470)))) (-1848 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-943 (-225))) (-5 *4 (-874)) (-5 *2 (-1269)) (-5 *1 (-470)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-644 (-644 (-943 (-225))))) (-5 *1 (-470)))) (-2263 (*1 *2 *2 *3) (-12 (-5 *2 (-644 (-644 (-943 (-225))))) (-5 *3 (-644 (-874))) (-5 *1 (-470)))) (-2670 (*1 *2 *3) (-12 (-5 *3 (-644 (-644 (-943 (-225))))) (-5 *2 (-644 (-225))) (-5 *1 (-470))))) +(-13 (-1099) (-10 -8 (-15 -2760 ($)) (-15 -2391 ($ $)) (-15 -2391 ($ (-644 (-644 (-943 (-225)))))) (-15 -2391 ($ (-644 (-644 (-943 (-225)))) (-644 (-874)) (-644 (-874)) (-644 (-921)))) (-15 -2391 ($ (-644 (-644 (-943 (-225)))) (-644 (-874)) (-644 (-874)) (-644 (-921)) (-644 (-264)))) (-15 -1426 ((-644 (-644 (-943 (-225)))) $)) (-15 -1928 ((-566) $)) (-15 -3927 ((-644 (-1093 (-381))) $)) (-15 -3927 ((-644 (-1093 (-381))) $ (-644 (-1093 (-381))))) (-15 -3169 ((-644 (-381)) $)) (-15 -3169 ((-644 (-381)) $ (-644 (-381)))) (-15 -2056 ((-1269) $ (-644 (-943 (-225))) (-874) (-874) (-921))) (-15 -2056 ((-1269) $ (-943 (-225)))) (-15 -2056 ((-1269) $ (-943 (-225)) (-874) (-874) (-921))) (-15 -2983 ((-1269) $ (-943 (-225)))) (-15 -1848 ((-1269) $ (-943 (-225)) (-874))) (-15 -2479 ($ (-644 (-644 (-943 (-225)))))) (-15 -2479 ((-862) $)) (-15 -2263 ((-644 (-644 (-943 (-225)))) (-644 (-644 (-943 (-225)))) (-644 (-874)))) (-15 -2670 ((-644 (-225)) (-644 (-644 (-943 (-225)))))))) +((-3065 (($ $) NIL) (($ $ $) 11))) +(((-471 |#1| |#2| |#3|) (-10 -8 (-15 -3065 (|#1| |#1| |#1|)) (-15 -3065 (|#1| |#1|))) (-472 |#2| |#3|) (-172) (-23)) (T -471)) +NIL +(-10 -8 (-15 -3065 (|#1| |#1| |#1|)) (-15 -3065 (|#1| |#1|))) +((-2986 (((-112) $ $) 7)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-1630 ((|#2| $) 20)) (-2479 (((-862) $) 12)) (-3900 (((-112) $ $) 9)) (-2446 (($) 19 T CONST)) (-2952 (((-112) $ $) 6)) (-3065 (($ $) 16) (($ $ $) 14)) (-3052 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17))) +(((-472 |#1| |#2|) (-140) (-172) (-23)) (T -472)) +((-1630 (*1 *2 *1) (-12 (-4 *1 (-472 *3 *2)) (-4 *3 (-172)) (-4 *2 (-23)))) (-2446 (*1 *1) (-12 (-4 *1 (-472 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-472 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-472 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-3065 (*1 *1 *1) (-12 (-4 *1 (-472 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-3052 (*1 *1 *1 *1) (-12 (-4 *1 (-472 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-3065 (*1 *1 *1 *1) (-12 (-4 *1 (-472 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))) +(-13 (-1099) (-10 -8 (-15 -1630 (|t#2| $)) (-15 (-2446) ($) -1573) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -3065 ($ $)) (-15 -3052 ($ $ $)) (-15 -3065 ($ $ $)))) +(((-102) . T) ((-613 (-862)) . T) ((-1099) . T)) +((-2027 (((-3 (-644 (-483 |#1| |#2|)) "failed") (-644 (-483 |#1| |#2|)) (-644 (-864 |#1|))) 137)) (-4295 (((-644 (-644 (-247 |#1| |#2|))) (-644 (-247 |#1| |#2|)) (-644 (-864 |#1|))) 134)) (-3974 (((-2 (|:| |dpolys| (-644 (-247 |#1| |#2|))) (|:| |coords| (-644 (-566)))) (-644 (-247 |#1| |#2|)) (-644 (-864 |#1|))) 86))) +(((-473 |#1| |#2| |#3|) (-10 -7 (-15 -4295 ((-644 (-644 (-247 |#1| |#2|))) (-644 (-247 |#1| |#2|)) (-644 (-864 |#1|)))) (-15 -2027 ((-3 (-644 (-483 |#1| |#2|)) "failed") (-644 (-483 |#1| |#2|)) (-644 (-864 |#1|)))) (-15 -3974 ((-2 (|:| |dpolys| (-644 (-247 |#1| |#2|))) (|:| |coords| (-644 (-566)))) (-644 (-247 |#1| |#2|)) (-644 (-864 |#1|))))) (-644 (-1175)) (-454) (-454)) (T -473)) +((-3974 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-864 *5))) (-14 *5 (-644 (-1175))) (-4 *6 (-454)) (-5 *2 (-2 (|:| |dpolys| (-644 (-247 *5 *6))) (|:| |coords| (-644 (-566))))) (-5 *1 (-473 *5 *6 *7)) (-5 *3 (-644 (-247 *5 *6))) (-4 *7 (-454)))) (-2027 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-644 (-483 *4 *5))) (-5 *3 (-644 (-864 *4))) (-14 *4 (-644 (-1175))) (-4 *5 (-454)) (-5 *1 (-473 *4 *5 *6)) (-4 *6 (-454)))) (-4295 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-864 *5))) (-14 *5 (-644 (-1175))) (-4 *6 (-454)) (-5 *2 (-644 (-644 (-247 *5 *6)))) (-5 *1 (-473 *5 *6 *7)) (-5 *3 (-644 (-247 *5 *6))) (-4 *7 (-454))))) +(-10 -7 (-15 -4295 ((-644 (-644 (-247 |#1| |#2|))) (-644 (-247 |#1| |#2|)) (-644 (-864 |#1|)))) (-15 -2027 ((-3 (-644 (-483 |#1| |#2|)) "failed") (-644 (-483 |#1| |#2|)) (-644 (-864 |#1|)))) (-15 -3974 ((-2 (|:| |dpolys| (-644 (-247 |#1| |#2|))) (|:| |coords| (-644 (-566)))) (-644 (-247 |#1| |#2|)) (-644 (-864 |#1|))))) +((-3757 (((-3 $ "failed") $) 11)) (-2664 (($ $ $) 23)) (-3815 (($ $ $) 24)) (-3077 (($ $ $) 9)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) 22))) +(((-474 |#1|) (-10 -8 (-15 -3815 (|#1| |#1| |#1|)) (-15 -2664 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-566))) (-15 -3077 (|#1| |#1| |#1|)) (-15 -3757 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-771))) (-15 ** (|#1| |#1| (-921)))) (-475)) (T -474)) +NIL +(-10 -8 (-15 -3815 (|#1| |#1| |#1|)) (-15 -2664 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-566))) (-15 -3077 (|#1| |#1| |#1|)) (-15 -3757 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-771))) (-15 ** (|#1| |#1| (-921)))) +((-2986 (((-112) $ $) 7)) (-1811 (($) 19 T CONST)) (-3757 (((-3 $ "failed") $) 16)) (-2264 (((-112) $) 18)) (-3151 (((-1157) $) 10)) (-2577 (($ $) 25)) (-4059 (((-1119) $) 11)) (-2664 (($ $ $) 22)) (-3815 (($ $ $) 21)) (-2479 (((-862) $) 12)) (-3900 (((-112) $ $) 9)) (-2459 (($) 20 T CONST)) (-2952 (((-112) $ $) 6)) (-3077 (($ $ $) 24)) (** (($ $ (-921)) 14) (($ $ (-771)) 17) (($ $ (-566)) 23)) (* (($ $ $) 15))) +(((-475) (-140)) (T -475)) +((-2577 (*1 *1 *1) (-4 *1 (-475))) (-3077 (*1 *1 *1 *1) (-4 *1 (-475))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-475)) (-5 *2 (-566)))) (-2664 (*1 *1 *1 *1) (-4 *1 (-475))) (-3815 (*1 *1 *1 *1) (-4 *1 (-475)))) +(-13 (-726) (-10 -8 (-15 -2577 ($ $)) (-15 -3077 ($ $ $)) (-15 ** ($ $ (-566))) (-6 -4414) (-15 -2664 ($ $ $)) (-15 -3815 ($ $ $)))) +(((-102) . T) ((-613 (-862)) . T) ((-726) . T) ((-1111) . T) ((-1099) . T)) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-2485 (((-644 (-1081)) $) NIL)) (-1338 (((-1175) $) 18)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-3087 (($ $) NIL (|has| |#1| (-558)))) (-1716 (((-112) $) NIL (|has| |#1| (-558)))) (-3175 (($ $ (-409 (-566))) NIL) (($ $ (-409 (-566)) (-409 (-566))) NIL)) (-1723 (((-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#1|))) $) NIL)) (-3219 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3091 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3174 (((-3 $ "failed") $ $) NIL)) (-3980 (($ $) NIL (|has| |#1| (-365)))) (-3348 (((-420 $) $) NIL (|has| |#1| (-365)))) (-2338 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2761 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3197 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3067 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1882 (($ (-771) (-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#1|)))) NIL)) (-3240 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3115 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1811 (($) NIL T CONST)) (-2925 (($ $ $) NIL (|has| |#1| (-365)))) (-3565 (($ $) NIL)) (-3757 (((-3 $ "failed") $) NIL)) (-2937 (($ $ $) NIL (|has| |#1| (-365)))) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) NIL (|has| |#1| (-365)))) (-4188 (((-112) $) NIL (|has| |#1| (-365)))) (-3088 (((-112) $) NIL)) (-2964 (($) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1802 (((-409 (-566)) $) NIL) (((-409 (-566)) $ (-409 (-566))) NIL)) (-2264 (((-112) $) NIL)) (-3146 (($ $ (-566)) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2383 (($ $ (-921)) NIL) (($ $ (-409 (-566))) NIL)) (-2495 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-3989 (((-112) $) NIL)) (-2463 (($ |#1| (-409 (-566))) NIL) (($ $ (-1081) (-409 (-566))) NIL) (($ $ (-644 (-1081)) (-644 (-409 (-566)))) NIL)) (-3080 (($ (-1 |#1| |#1|) $) 25)) (-3676 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2608 (($ $) NIL)) (-2622 ((|#1| $) NIL)) (-2120 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3151 (((-1157) $) NIL)) (-2577 (($ $) NIL (|has| |#1| (-365)))) (-2390 (($ $) 29 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-1175)) 35 (-2809 (-12 (|has| |#1| (-15 -2390 (|#1| |#1| (-1175)))) (|has| |#1| (-15 -2485 ((-644 (-1175)) |#1|))) (|has| |#1| (-38 (-409 (-566))))) (-12 (|has| |#1| (-29 (-566))) (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-959)) (|has| |#1| (-1199))))) (($ $ (-1260 |#2|)) 30 (|has| |#1| (-38 (-409 (-566)))))) (-4059 (((-1119) $) NIL)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-365)))) (-2162 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2325 (((-420 $) $) NIL (|has| |#1| (-365)))) (-2585 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL (|has| |#1| (-365)))) (-2050 (($ $ (-409 (-566))) NIL)) (-2976 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-2840 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-3571 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3297 (((-1155 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-409 (-566))))))) (-1383 (((-771) $) NIL (|has| |#1| (-365)))) (-4376 ((|#1| $ (-409 (-566))) NIL) (($ $ $) NIL (|has| (-409 (-566)) (-1111)))) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL (|has| |#1| (-365)))) (-3526 (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175)) 28 (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-771)) NIL (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $) 14 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $ (-1260 |#2|)) 16)) (-1630 (((-409 (-566)) $) NIL)) (-3250 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3126 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3227 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3105 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3207 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3079 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4122 (($ $) NIL)) (-2479 (((-862) $) NIL) (($ (-566)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1260 |#2|)) NIL) (($ (-1249 |#1| |#2| |#3|)) 9) (($ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $) NIL (|has| |#1| (-558)))) (-3025 ((|#1| $ (-409 (-566))) NIL)) (-2645 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1558 (((-771)) NIL T CONST)) (-2316 ((|#1| $) 21)) (-3900 (((-112) $ $) NIL)) (-3285 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3157 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1333 (((-112) $ $) NIL (|has| |#1| (-558)))) (-3260 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3135 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3309 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3179 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3649 ((|#1| $ (-409 (-566))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-409 (-566))))) (|has| |#1| (-15 -2479 (|#1| (-1175))))))) (-1861 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3190 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3299 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3168 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3273 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3148 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2446 (($) NIL T CONST)) (-2459 (($) NIL T CONST)) (-2834 (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-771)) NIL (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (-2952 (((-112) $ $) NIL)) (-3077 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3065 (($ $) NIL) (($ $ $) 27)) (-3052 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 26) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))))) +(((-476 |#1| |#2| |#3|) (-13 (-1245 |#1|) (-10 -8 (-15 -2479 ($ (-1260 |#2|))) (-15 -2479 ($ (-1249 |#1| |#2| |#3|))) (-15 -3526 ($ $ (-1260 |#2|))) (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -2390 ($ $ (-1260 |#2|))) |%noBranch|))) (-1049) (-1175) |#1|) (T -476)) +((-2479 (*1 *1 *2) (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-476 *3 *4 *5)) (-4 *3 (-1049)) (-14 *5 *3))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-1249 *3 *4 *5)) (-4 *3 (-1049)) (-14 *4 (-1175)) (-14 *5 *3) (-5 *1 (-476 *3 *4 *5)))) (-3526 (*1 *1 *1 *2) (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-476 *3 *4 *5)) (-4 *3 (-1049)) (-14 *5 *3))) (-2390 (*1 *1 *1 *2) (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-476 *3 *4 *5)) (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-14 *5 *3)))) +(-13 (-1245 |#1|) (-10 -8 (-15 -2479 ($ (-1260 |#2|))) (-15 -2479 ($ (-1249 |#1| |#2| |#3|))) (-15 -3526 ($ $ (-1260 |#2|))) (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -2390 ($ $ (-1260 |#2|))) |%noBranch|))) +((-2986 (((-112) $ $) NIL (-2809 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-4250 (($) NIL) (($ (-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) NIL)) (-2462 (((-1269) $ |#1| |#1|) NIL (|has| $ (-6 -4418)))) (-1453 (((-112) $ (-771)) NIL)) (-3901 ((|#2| $ |#1| |#2|) 18)) (-4364 (($ (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-3543 (($ (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-2377 (((-3 |#2| "failed") |#1| $) 19)) (-1811 (($) NIL T CONST)) (-4111 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099))))) (-2295 (($ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) NIL (|has| $ (-6 -4417))) (($ (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-3 |#2| "failed") |#1| $) 16)) (-2628 (($ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (($ (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-1838 (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) NIL (|has| $ (-6 -4417))) (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-3719 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4418)))) (-3653 ((|#2| $ |#1|) NIL)) (-3872 (((-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-644 |#2|) $) NIL (|has| $ (-6 -4417)))) (-2756 (((-112) $ (-771)) NIL)) (-2755 ((|#1| $) NIL (|has| |#1| (-850)))) (-4227 (((-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-644 |#2|) $) NIL (|has| $ (-6 -4417)))) (-1688 (((-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1099))))) (-3831 ((|#1| $) NIL (|has| |#1| (-850)))) (-3708 (($ (-1 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4418))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4418)))) (-3080 (($ (-1 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4106 (((-112) $ (-771)) NIL)) (-3151 (((-1157) $) NIL (-2809 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-1467 (((-644 |#1|) $) NIL)) (-3983 (((-112) |#1| $) NIL)) (-4255 (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) NIL)) (-4354 (($ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) NIL)) (-3780 (((-644 |#1|) $) NIL)) (-1605 (((-112) |#1| $) NIL)) (-4059 (((-1119) $) NIL (-2809 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-4080 ((|#2| $) NIL (|has| |#1| (-850)))) (-2688 (((-3 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) "failed") (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL)) (-4079 (($ $ |#2|) NIL (|has| $ (-6 -4418)))) (-4097 (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) NIL)) (-3966 (((-112) (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))))) NIL (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (($ $ (-295 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) NIL (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (($ $ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) NIL (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (($ $ (-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) (-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) NIL (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))) (-1844 (((-112) $ $) NIL)) (-2210 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1099))))) (-4185 (((-644 |#2|) $) NIL)) (-2788 (((-112) $) NIL)) (-1737 (($) NIL)) (-4376 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-1797 (($) NIL) (($ (-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) NIL)) (-4068 (((-771) (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-771) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (((-771) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1099)))) (((-771) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417)))) (-3924 (($ $) NIL)) (-3136 (((-538) $) NIL (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-614 (-538))))) (-2489 (($ (-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) NIL)) (-2479 (((-862) $) NIL (-2809 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-613 (-862))) (|has| |#2| (-613 (-862)))))) (-3900 (((-112) $ $) NIL (-2809 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-2471 (($ (-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) NIL)) (-3667 (((-112) (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417)))) (-2952 (((-112) $ $) NIL (-2809 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-3002 (((-771) $) NIL (|has| $ (-6 -4417))))) +(((-477 |#1| |#2| |#3| |#4|) (-1190 |#1| |#2|) (-1099) (-1099) (-1190 |#1| |#2|) |#2|) (T -477)) +NIL +(-1190 |#1| |#2|) +((-2986 (((-112) $ $) NIL)) (-1416 (((-644 (-2 (|:| -1637 $) (|:| -3516 (-644 |#4|)))) (-644 |#4|)) NIL)) (-3295 (((-644 $) (-644 |#4|)) NIL)) (-2485 (((-644 |#3|) $) NIL)) (-1489 (((-112) $) NIL)) (-3541 (((-112) $) NIL (|has| |#1| (-558)))) (-2219 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1922 ((|#4| |#4| $) NIL)) (-1374 (((-2 (|:| |under| $) (|:| -2001 $) (|:| |upper| $)) $ |#3|) NIL)) (-1453 (((-112) $ (-771)) NIL)) (-3543 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4417))) (((-3 |#4| "failed") $ |#3|) NIL)) (-1811 (($) NIL T CONST)) (-4210 (((-112) $) 29 (|has| |#1| (-558)))) (-3050 (((-112) $ $) NIL (|has| |#1| (-558)))) (-1768 (((-112) $ $) NIL (|has| |#1| (-558)))) (-3261 (((-112) $) NIL (|has| |#1| (-558)))) (-3451 (((-644 |#4|) (-644 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2796 (((-644 |#4|) (-644 |#4|) $) NIL (|has| |#1| (-558)))) (-3829 (((-644 |#4|) (-644 |#4|) $) NIL (|has| |#1| (-558)))) (-2980 (((-3 $ "failed") (-644 |#4|)) NIL)) (-1709 (($ (-644 |#4|)) NIL)) (-4091 (((-3 $ "failed") $) 45)) (-3358 ((|#4| |#4| $) NIL)) (-4111 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#4| (-1099))))) (-2628 (($ |#4| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#4| (-1099)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4417)))) (-3131 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-558)))) (-1995 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3326 ((|#4| |#4| $) NIL)) (-1838 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4417)) (|has| |#4| (-1099)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4417))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4417))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1877 (((-2 (|:| -1637 (-644 |#4|)) (|:| -3516 (-644 |#4|))) $) NIL)) (-3872 (((-644 |#4|) $) 18 (|has| $ (-6 -4417)))) (-4297 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4052 ((|#3| $) 38)) (-2756 (((-112) $ (-771)) NIL)) (-4227 (((-644 |#4|) $) 19 (|has| $ (-6 -4417)))) (-1688 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4417)) (|has| |#4| (-1099))))) (-3708 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#4| |#4|) $) 23)) (-3599 (((-644 |#3|) $) NIL)) (-2884 (((-112) |#3| $) NIL)) (-4106 (((-112) $ (-771)) NIL)) (-3151 (((-1157) $) NIL)) (-2651 (((-3 |#4| "failed") $) 42)) (-3707 (((-644 |#4|) $) NIL)) (-4121 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3317 ((|#4| |#4| $) NIL)) (-3730 (((-112) $ $) NIL)) (-1719 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-558)))) (-1695 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3869 ((|#4| |#4| $) NIL)) (-4059 (((-1119) $) NIL)) (-4080 (((-3 |#4| "failed") $) 40)) (-2688 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2293 (((-3 $ "failed") $ |#4|) 58)) (-2050 (($ $ |#4|) NIL)) (-3966 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 |#4|) (-644 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-295 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-644 (-295 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))))) (-1844 (((-112) $ $) NIL)) (-2788 (((-112) $) 17)) (-1737 (($) 14)) (-1630 (((-771) $) NIL)) (-4068 (((-771) |#4| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#4| (-1099)))) (((-771) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4417)))) (-3924 (($ $) 13)) (-3136 (((-538) $) NIL (|has| |#4| (-614 (-538))))) (-2489 (($ (-644 |#4|)) 22)) (-1706 (($ $ |#3|) 52)) (-4234 (($ $ |#3|) 54)) (-4024 (($ $) NIL)) (-2378 (($ $ |#3|) NIL)) (-2479 (((-862) $) 35) (((-644 |#4|) $) 46)) (-2780 (((-771) $) NIL (|has| |#3| (-370)))) (-3900 (((-112) $ $) NIL)) (-2877 (((-3 (-2 (|:| |bas| $) (|:| -3903 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3903 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4265 (((-112) $ (-1 (-112) |#4| (-644 |#4|))) NIL)) (-3667 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4417)))) (-4067 (((-644 |#3|) $) NIL)) (-3132 (((-112) |#3| $) NIL)) (-2952 (((-112) $ $) NIL)) (-3002 (((-771) $) NIL (|has| $ (-6 -4417))))) +(((-478 |#1| |#2| |#3| |#4|) (-1207 |#1| |#2| |#3| |#4|) (-558) (-793) (-850) (-1064 |#1| |#2| |#3|)) (T -478)) +NIL +(-1207 |#1| |#2| |#3| |#4|) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-1716 (((-112) $) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-3980 (($ $) NIL)) (-3348 (((-420 $) $) NIL)) (-2761 (((-112) $ $) NIL)) (-1811 (($) NIL T CONST)) (-2980 (((-3 (-566) "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL)) (-1709 (((-566) $) NIL) (((-409 (-566)) $) NIL)) (-2925 (($ $ $) NIL)) (-3757 (((-3 $ "failed") $) NIL)) (-2937 (($ $ $) NIL)) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) NIL)) (-4188 (((-112) $) NIL)) (-2964 (($) 17)) (-2264 (((-112) $) NIL)) (-2495 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2120 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3151 (((-1157) $) NIL)) (-2577 (($ $) NIL)) (-4059 (((-1119) $) NIL)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2162 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2325 (((-420 $) $) NIL)) (-2585 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2976 (((-3 $ "failed") $ $) NIL)) (-2840 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1383 (((-771) $) NIL)) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL)) (-3136 (((-381) $) 21) (((-225) $) 24) (((-409 (-1171 (-566))) $) 18) (((-538) $) 53)) (-2479 (((-862) $) 51) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL) (((-225) $) 23) (((-381) $) 20)) (-1558 (((-771)) NIL T CONST)) (-3900 (((-112) $ $) NIL)) (-1333 (((-112) $ $) NIL)) (-2446 (($) 37 T CONST)) (-2459 (($) 8 T CONST)) (-2952 (((-112) $ $) NIL)) (-3077 (($ $ $) NIL)) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL))) +(((-479) (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))) (-1022) (-613 (-225)) (-613 (-381)) (-614 (-409 (-1171 (-566)))) (-614 (-538)) (-10 -8 (-15 -2964 ($))))) (T -479)) +((-2964 (*1 *1) (-5 *1 (-479)))) +(-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))) (-1022) (-613 (-225)) (-613 (-381)) (-614 (-409 (-1171 (-566)))) (-614 (-538)) (-10 -8 (-15 -2964 ($)))) +((-2986 (((-112) $ $) NIL)) (-3331 (((-1134) $) 11)) (-3319 (((-1134) $) 9)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) 17) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-480) (-13 (-1082) (-10 -8 (-15 -3319 ((-1134) $)) (-15 -3331 ((-1134) $))))) (T -480)) +((-3319 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-480)))) (-3331 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-480))))) +(-13 (-1082) (-10 -8 (-15 -3319 ((-1134) $)) (-15 -3331 ((-1134) $)))) +((-2986 (((-112) $ $) NIL (-2809 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-4250 (($) NIL) (($ (-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) NIL)) (-2462 (((-1269) $ |#1| |#1|) NIL (|has| $ (-6 -4418)))) (-1453 (((-112) $ (-771)) NIL)) (-3901 ((|#2| $ |#1| |#2|) 16)) (-4364 (($ (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-3543 (($ (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-2377 (((-3 |#2| "failed") |#1| $) 20)) (-1811 (($) NIL T CONST)) (-4111 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099))))) (-2295 (($ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) NIL (|has| $ (-6 -4417))) (($ (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-3 |#2| "failed") |#1| $) 18)) (-2628 (($ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (($ (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-1838 (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) NIL (|has| $ (-6 -4417))) (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-3719 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4418)))) (-3653 ((|#2| $ |#1|) NIL)) (-3872 (((-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-644 |#2|) $) NIL (|has| $ (-6 -4417)))) (-2756 (((-112) $ (-771)) NIL)) (-2755 ((|#1| $) NIL (|has| |#1| (-850)))) (-4227 (((-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-644 |#2|) $) NIL (|has| $ (-6 -4417)))) (-1688 (((-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1099))))) (-3831 ((|#1| $) NIL (|has| |#1| (-850)))) (-3708 (($ (-1 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4418))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4418)))) (-3080 (($ (-1 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4106 (((-112) $ (-771)) NIL)) (-3151 (((-1157) $) NIL (-2809 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-1467 (((-644 |#1|) $) 13)) (-3983 (((-112) |#1| $) NIL)) (-4255 (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) NIL)) (-4354 (($ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) NIL)) (-3780 (((-644 |#1|) $) NIL)) (-1605 (((-112) |#1| $) NIL)) (-4059 (((-1119) $) NIL (-2809 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-4080 ((|#2| $) NIL (|has| |#1| (-850)))) (-2688 (((-3 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) "failed") (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL)) (-4079 (($ $ |#2|) NIL (|has| $ (-6 -4418)))) (-4097 (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) NIL)) (-3966 (((-112) (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))))) NIL (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (($ $ (-295 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) NIL (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (($ $ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) NIL (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (($ $ (-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) (-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) NIL (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))) (-1844 (((-112) $ $) NIL)) (-2210 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1099))))) (-4185 (((-644 |#2|) $) NIL)) (-2788 (((-112) $) NIL)) (-1737 (($) 19)) (-4376 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1797 (($) NIL) (($ (-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) NIL)) (-4068 (((-771) (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-771) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (((-771) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1099)))) (((-771) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417)))) (-3924 (($ $) NIL)) (-3136 (((-538) $) NIL (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-614 (-538))))) (-2489 (($ (-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) NIL)) (-2479 (((-862) $) NIL (-2809 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-613 (-862))) (|has| |#2| (-613 (-862)))))) (-3900 (((-112) $ $) NIL (-2809 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-2471 (($ (-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) NIL)) (-3667 (((-112) (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417)))) (-2952 (((-112) $ $) 11 (-2809 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-3002 (((-771) $) 15 (|has| $ (-6 -4417))))) +(((-481 |#1| |#2| |#3|) (-13 (-1190 |#1| |#2|) (-10 -7 (-6 -4417))) (-1099) (-1099) (-1157)) (T -481)) +NIL +(-13 (-1190 |#1| |#2|) (-10 -7 (-6 -4417))) +((-1404 (((-566) (-566) (-566)) 19)) (-4164 (((-112) (-566) (-566) (-566) (-566)) 28)) (-3473 (((-1264 (-644 (-566))) (-771) (-771)) 44))) +(((-482) (-10 -7 (-15 -1404 ((-566) (-566) (-566))) (-15 -4164 ((-112) (-566) (-566) (-566) (-566))) (-15 -3473 ((-1264 (-644 (-566))) (-771) (-771))))) (T -482)) +((-3473 (*1 *2 *3 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1264 (-644 (-566)))) (-5 *1 (-482)))) (-4164 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-566)) (-5 *2 (-112)) (-5 *1 (-482)))) (-1404 (*1 *2 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-482))))) +(-10 -7 (-15 -1404 ((-566) (-566) (-566))) (-15 -4164 ((-112) (-566) (-566) (-566) (-566))) (-15 -3473 ((-1264 (-644 (-566))) (-771) (-771)))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-2485 (((-644 (-864 |#1|)) $) NIL)) (-2285 (((-1171 $) $ (-864 |#1|)) NIL) (((-1171 |#2|) $) NIL)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (|has| |#2| (-558)))) (-3087 (($ $) NIL (|has| |#2| (-558)))) (-1716 (((-112) $) NIL (|has| |#2| (-558)))) (-2917 (((-771) $) NIL) (((-771) $ (-644 (-864 |#1|))) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-4058 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-3980 (($ $) NIL (|has| |#2| (-454)))) (-3348 (((-420 $) $) NIL (|has| |#2| (-454)))) (-4262 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-1811 (($) NIL T CONST)) (-2980 (((-3 |#2| "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#2| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) NIL (|has| |#2| (-1038 (-566)))) (((-3 (-864 |#1|) "failed") $) NIL)) (-1709 ((|#2| $) NIL) (((-409 (-566)) $) NIL (|has| |#2| (-1038 (-409 (-566))))) (((-566) $) NIL (|has| |#2| (-1038 (-566)))) (((-864 |#1|) $) NIL)) (-4343 (($ $ $ (-864 |#1|)) NIL (|has| |#2| (-172)))) (-2972 (($ $ (-644 (-566))) NIL)) (-3565 (($ $) NIL)) (-2275 (((-689 (-566)) (-689 $)) NIL (|has| |#2| (-639 (-566)))) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| |#2| (-639 (-566)))) (((-2 (|:| -4196 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 $) (-1264 $)) NIL) (((-689 |#2|) (-689 $)) NIL)) (-3757 (((-3 $ "failed") $) NIL)) (-3530 (($ $) NIL (|has| |#2| (-454))) (($ $ (-864 |#1|)) NIL (|has| |#2| (-454)))) (-3551 (((-644 $) $) NIL)) (-4188 (((-112) $) NIL (|has| |#2| (-909)))) (-3995 (($ $ |#2| (-484 (-3002 |#1|) (-771)) $) NIL)) (-1542 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| (-864 |#1|) (-886 (-381))) (|has| |#2| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| (-864 |#1|) (-886 (-566))) (|has| |#2| (-886 (-566)))))) (-2264 (((-112) $) NIL)) (-3486 (((-771) $) NIL)) (-2474 (($ (-1171 |#2|) (-864 |#1|)) NIL) (($ (-1171 $) (-864 |#1|)) NIL)) (-1545 (((-644 $) $) NIL)) (-3989 (((-112) $) NIL)) (-2463 (($ |#2| (-484 (-3002 |#1|) (-771))) NIL) (($ $ (-864 |#1|) (-771)) NIL) (($ $ (-644 (-864 |#1|)) (-644 (-771))) NIL)) (-2235 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $ (-864 |#1|)) NIL)) (-2584 (((-484 (-3002 |#1|) (-771)) $) NIL) (((-771) $ (-864 |#1|)) NIL) (((-644 (-771)) $ (-644 (-864 |#1|))) NIL)) (-3327 (($ (-1 (-484 (-3002 |#1|) (-771)) (-484 (-3002 |#1|) (-771))) $) NIL)) (-3080 (($ (-1 |#2| |#2|) $) NIL)) (-2673 (((-3 (-864 |#1|) "failed") $) NIL)) (-2608 (($ $) NIL)) (-2622 ((|#2| $) NIL)) (-2120 (($ (-644 $)) NIL (|has| |#2| (-454))) (($ $ $) NIL (|has| |#2| (-454)))) (-3151 (((-1157) $) NIL)) (-4075 (((-3 (-644 $) "failed") $) NIL)) (-3380 (((-3 (-644 $) "failed") $) NIL)) (-2414 (((-3 (-2 (|:| |var| (-864 |#1|)) (|:| -3631 (-771))) "failed") $) NIL)) (-4059 (((-1119) $) NIL)) (-2587 (((-112) $) NIL)) (-2597 ((|#2| $) NIL)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#2| (-454)))) (-2162 (($ (-644 $)) NIL (|has| |#2| (-454))) (($ $ $) NIL (|has| |#2| (-454)))) (-1500 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-3917 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-2325 (((-420 $) $) NIL (|has| |#2| (-909)))) (-2976 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-558))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-558)))) (-3297 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-864 |#1|) |#2|) NIL) (($ $ (-644 (-864 |#1|)) (-644 |#2|)) NIL) (($ $ (-864 |#1|) $) NIL) (($ $ (-644 (-864 |#1|)) (-644 $)) NIL)) (-3553 (($ $ (-864 |#1|)) NIL (|has| |#2| (-172)))) (-3526 (($ $ (-864 |#1|)) NIL) (($ $ (-644 (-864 |#1|))) NIL) (($ $ (-864 |#1|) (-771)) NIL) (($ $ (-644 (-864 |#1|)) (-644 (-771))) NIL)) (-1630 (((-484 (-3002 |#1|) (-771)) $) NIL) (((-771) $ (-864 |#1|)) NIL) (((-644 (-771)) $ (-644 (-864 |#1|))) NIL)) (-3136 (((-892 (-381)) $) NIL (-12 (|has| (-864 |#1|) (-614 (-892 (-381)))) (|has| |#2| (-614 (-892 (-381)))))) (((-892 (-566)) $) NIL (-12 (|has| (-864 |#1|) (-614 (-892 (-566)))) (|has| |#2| (-614 (-892 (-566)))))) (((-538) $) NIL (-12 (|has| (-864 |#1|) (-614 (-538))) (|has| |#2| (-614 (-538)))))) (-2252 ((|#2| $) NIL (|has| |#2| (-454))) (($ $ (-864 |#1|)) NIL (|has| |#2| (-454)))) (-3233 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-909))))) (-2479 (((-862) $) NIL) (($ (-566)) NIL) (($ |#2|) NIL) (($ (-864 |#1|)) NIL) (($ (-409 (-566))) NIL (-2809 (|has| |#2| (-38 (-409 (-566)))) (|has| |#2| (-1038 (-409 (-566)))))) (($ $) NIL (|has| |#2| (-558)))) (-3866 (((-644 |#2|) $) NIL)) (-3025 ((|#2| $ (-484 (-3002 |#1|) (-771))) NIL) (($ $ (-864 |#1|) (-771)) NIL) (($ $ (-644 (-864 |#1|)) (-644 (-771))) NIL)) (-2645 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| $ (-145)) (|has| |#2| (-909))) (|has| |#2| (-145))))) (-1558 (((-771)) NIL T CONST)) (-2244 (($ $ $ (-771)) NIL (|has| |#2| (-172)))) (-3900 (((-112) $ $) NIL)) (-1333 (((-112) $ $) NIL (|has| |#2| (-558)))) (-2446 (($) NIL T CONST)) (-2459 (($) NIL T CONST)) (-2834 (($ $ (-864 |#1|)) NIL) (($ $ (-644 (-864 |#1|))) NIL) (($ $ (-864 |#1|) (-771)) NIL) (($ $ (-644 (-864 |#1|)) (-644 (-771))) NIL)) (-2952 (((-112) $ $) NIL)) (-3077 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL (|has| |#2| (-38 (-409 (-566))))) (($ (-409 (-566)) $) NIL (|has| |#2| (-38 (-409 (-566))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-483 |#1| |#2|) (-13 (-949 |#2| (-484 (-3002 |#1|) (-771)) (-864 |#1|)) (-10 -8 (-15 -2972 ($ $ (-644 (-566)))))) (-644 (-1175)) (-1049)) (T -483)) +((-2972 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-483 *3 *4)) (-14 *3 (-644 (-1175))) (-4 *4 (-1049))))) +(-13 (-949 |#2| (-484 (-3002 |#1|) (-771)) (-864 |#1|)) (-10 -8 (-15 -2972 ($ $ (-644 (-566)))))) +((-2986 (((-112) $ $) NIL (|has| |#2| (-1099)))) (-2845 (((-112) $) NIL (|has| |#2| (-131)))) (-2680 (($ (-921)) NIL (|has| |#2| (-1049)))) (-2462 (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4418)))) (-4047 (($ $ $) NIL (|has| |#2| (-793)))) (-3174 (((-3 $ "failed") $ $) NIL (|has| |#2| (-131)))) (-1453 (((-112) $ (-771)) NIL)) (-4049 (((-771)) NIL (|has| |#2| (-370)))) (-2920 (((-566) $) NIL (|has| |#2| (-848)))) (-3901 ((|#2| $ (-566) |#2|) NIL (|has| $ (-6 -4418)))) (-1811 (($) NIL T CONST)) (-2980 (((-3 (-566) "failed") $) NIL (-12 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099)))) (((-3 (-409 (-566)) "failed") $) NIL (-12 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1099)))) (-1709 (((-566) $) NIL (-12 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099)))) (((-409 (-566)) $) NIL (-12 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099)))) ((|#2| $) NIL (|has| |#2| (-1099)))) (-2275 (((-689 (-566)) (-689 $)) NIL (-12 (|has| |#2| (-639 (-566))) (|has| |#2| (-1049)))) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (-12 (|has| |#2| (-639 (-566))) (|has| |#2| (-1049)))) (((-2 (|:| -4196 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 $) (-1264 $)) NIL (|has| |#2| (-1049))) (((-689 |#2|) (-689 $)) NIL (|has| |#2| (-1049)))) (-3757 (((-3 $ "failed") $) NIL (|has| |#2| (-726)))) (-1415 (($) NIL (|has| |#2| (-370)))) (-3719 ((|#2| $ (-566) |#2|) NIL (|has| $ (-6 -4418)))) (-3653 ((|#2| $ (-566)) 15)) (-2133 (((-112) $) NIL (|has| |#2| (-848)))) (-3872 (((-644 |#2|) $) NIL (|has| $ (-6 -4417)))) (-2264 (((-112) $) NIL (|has| |#2| (-726)))) (-3420 (((-112) $) NIL (|has| |#2| (-848)))) (-2756 (((-112) $ (-771)) NIL)) (-2755 (((-566) $) NIL (|has| (-566) (-850)))) (-1920 (($ $ $) NIL (-2809 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-4227 (((-644 |#2|) $) NIL (|has| $ (-6 -4417)))) (-1688 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1099))))) (-3831 (((-566) $) NIL (|has| (-566) (-850)))) (-3038 (($ $ $) NIL (-2809 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-3708 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#2| |#2|) $) NIL)) (-4051 (((-921) $) NIL (|has| |#2| (-370)))) (-4106 (((-112) $ (-771)) NIL)) (-3151 (((-1157) $) NIL (|has| |#2| (-1099)))) (-3780 (((-644 (-566)) $) NIL)) (-1605 (((-112) (-566) $) NIL)) (-2104 (($ (-921)) NIL (|has| |#2| (-370)))) (-4059 (((-1119) $) NIL (|has| |#2| (-1099)))) (-4080 ((|#2| $) NIL (|has| (-566) (-850)))) (-4079 (($ $ |#2|) NIL (|has| $ (-6 -4418)))) (-3966 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))) (-1844 (((-112) $ $) NIL)) (-2210 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1099))))) (-4185 (((-644 |#2|) $) NIL)) (-2788 (((-112) $) NIL)) (-1737 (($) NIL)) (-4376 ((|#2| $ (-566) |#2|) NIL) ((|#2| $ (-566)) NIL)) (-2555 ((|#2| $ $) NIL (|has| |#2| (-1049)))) (-2379 (($ (-1264 |#2|)) NIL)) (-3944 (((-134)) NIL (|has| |#2| (-365)))) (-3526 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1049)))) (($ $ (-771)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1049)))) (($ $ (-1175)) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-1 |#2| |#2|) (-771)) NIL (|has| |#2| (-1049))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1049)))) (-4068 (((-771) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417))) (((-771) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1099))))) (-3924 (($ $) NIL)) (-2479 (((-1264 |#2|) $) NIL) (($ (-566)) NIL (-2809 (-12 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099))) (|has| |#2| (-1049)))) (($ (-409 (-566))) NIL (-12 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099)))) (($ |#2|) NIL (|has| |#2| (-1099))) (((-862) $) NIL (|has| |#2| (-613 (-862))))) (-1558 (((-771)) NIL (|has| |#2| (-1049)) CONST)) (-3900 (((-112) $ $) NIL (|has| |#2| (-1099)))) (-3667 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417)))) (-4298 (($ $) NIL (|has| |#2| (-848)))) (-2446 (($) NIL (|has| |#2| (-131)) CONST)) (-2459 (($) NIL (|has| |#2| (-726)) CONST)) (-2834 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1049)))) (($ $ (-771)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1049)))) (($ $ (-1175)) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-1 |#2| |#2|) (-771)) NIL (|has| |#2| (-1049))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1049)))) (-3019 (((-112) $ $) NIL (-2809 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-2990 (((-112) $ $) NIL (-2809 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-2952 (((-112) $ $) NIL (|has| |#2| (-1099)))) (-3004 (((-112) $ $) NIL (-2809 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-2977 (((-112) $ $) 21 (-2809 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-3077 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3065 (($ $ $) NIL (|has| |#2| (-1049))) (($ $) NIL (|has| |#2| (-1049)))) (-3052 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-771)) NIL (|has| |#2| (-726))) (($ $ (-921)) NIL (|has| |#2| (-726)))) (* (($ (-566) $) NIL (|has| |#2| (-1049))) (($ $ $) NIL (|has| |#2| (-726))) (($ $ |#2|) NIL (|has| |#2| (-726))) (($ |#2| $) NIL (|has| |#2| (-726))) (($ (-771) $) NIL (|has| |#2| (-131))) (($ (-921) $) NIL (|has| |#2| (-25)))) (-3002 (((-771) $) NIL (|has| $ (-6 -4417))))) +(((-484 |#1| |#2|) (-238 |#1| |#2|) (-771) (-793)) (T -484)) NIL (-238 |#1| |#2|) -((-2856 (((-112) $ $) NIL)) (-3477 (((-642 (-506)) $) 14)) (-2493 (((-506) $) 12)) (-1778 (((-1155) $) NIL)) (-2249 (($ (-506) (-642 (-506))) 10)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) 21) (($ (-1178)) NIL) (((-1178) $) NIL)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-483) (-13 (-1080) (-10 -8 (-15 -2249 ($ (-506) (-642 (-506)))) (-15 -2493 ((-506) $)) (-15 -3477 ((-642 (-506)) $))))) (T -483)) -((-2249 (*1 *1 *2 *3) (-12 (-5 *3 (-642 (-506))) (-5 *2 (-506)) (-5 *1 (-483)))) (-2493 (*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-483)))) (-3477 (*1 *2 *1) (-12 (-5 *2 (-642 (-506))) (-5 *1 (-483))))) -(-13 (-1080) (-10 -8 (-15 -2249 ($ (-506) (-642 (-506)))) (-15 -2493 ((-506) $)) (-15 -3477 ((-642 (-506)) $)))) -((-2856 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-3442 (((-112) $ (-769)) NIL)) (-2822 (($) NIL T CONST)) (-2018 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-3769 (((-112) $ (-769)) NIL)) (-4096 (($ $ $) 50)) (-2774 (($ $ $) 49)) (-3541 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2533 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2903 ((|#1| $) 40)) (-1857 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#1| |#1|) $) NIL)) (-4145 (((-112) $ (-769)) NIL)) (-1778 (((-1155) $) NIL (|has| |#1| (-1097)))) (-3220 ((|#1| $) 41)) (-1668 (($ |#1| $) 18)) (-3190 (($ (-642 |#1|)) 19)) (-3999 (((-1117) $) NIL (|has| |#1| (-1097)))) (-4314 ((|#1| $) 34)) (-4094 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-2478 (((-112) $ $) NIL)) (-4109 (((-112) $) NIL)) (-2179 (($) 11)) (-4010 (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-769) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3865 (($ $) NIL)) (-2390 (((-860) $) NIL (|has| |#1| (-611 (-860))))) (-1600 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-4160 (($ (-642 |#1|)) 47)) (-3295 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2821 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2158 (((-769) $) 29 (|has| $ (-6 -4410))))) -(((-484 |#1|) (-13 (-966 |#1|) (-10 -8 (-15 -3190 ($ (-642 |#1|))))) (-848)) (T -484)) -((-3190 (*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-848)) (-5 *1 (-484 *3))))) -(-13 (-966 |#1|) (-10 -8 (-15 -3190 ($ (-642 |#1|))))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-3085 (((-3 $ "failed") $ $) NIL)) (-2822 (($) NIL T CONST)) (-3741 (($ $) 72)) (-4372 (((-112) $) NIL)) (-1778 (((-1155) $) NIL)) (-1574 (((-413 |#2| (-407 |#2|) |#3| |#4|) $) 45)) (-3999 (((-1117) $) NIL)) (-4043 (((-3 |#4| "failed") $) 118)) (-3340 (($ (-413 |#2| (-407 |#2|) |#3| |#4|)) 82) (($ |#4|) 31) (($ |#1| |#1|) 128) (($ |#1| |#1| (-564)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 141)) (-3822 (((-2 (|:| -4200 (-413 |#2| (-407 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47)) (-2390 (((-860) $) 111)) (-1600 (((-112) $ $) NIL)) (-2361 (($) 32 T CONST)) (-2821 (((-112) $ $) 122)) (-2930 (($ $) 78) (($ $ $) NIL)) (-2917 (($ $ $) 73)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 79))) -(((-485 |#1| |#2| |#3| |#4|) (-335 |#1| |#2| |#3| |#4|) (-363) (-1238 |#1|) (-1238 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -485)) -NIL -(-335 |#1| |#2| |#3| |#4|) -((-2798 (((-564) (-642 (-564))) 55)) (-3610 ((|#1| (-642 |#1|)) 97)) (-2982 (((-642 |#1|) (-642 |#1|)) 98)) (-3761 (((-642 |#1|) (-642 |#1|)) 100)) (-2105 ((|#1| (-642 |#1|)) 99)) (-4325 (((-642 (-564)) (-642 |#1|)) 58))) -(((-486 |#1|) (-10 -7 (-15 -2105 (|#1| (-642 |#1|))) (-15 -3610 (|#1| (-642 |#1|))) (-15 -3761 ((-642 |#1|) (-642 |#1|))) (-15 -2982 ((-642 |#1|) (-642 |#1|))) (-15 -4325 ((-642 (-564)) (-642 |#1|))) (-15 -2798 ((-564) (-642 (-564))))) (-1238 (-564))) (T -486)) -((-2798 (*1 *2 *3) (-12 (-5 *3 (-642 (-564))) (-5 *2 (-564)) (-5 *1 (-486 *4)) (-4 *4 (-1238 *2)))) (-4325 (*1 *2 *3) (-12 (-5 *3 (-642 *4)) (-4 *4 (-1238 (-564))) (-5 *2 (-642 (-564))) (-5 *1 (-486 *4)))) (-2982 (*1 *2 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1238 (-564))) (-5 *1 (-486 *3)))) (-3761 (*1 *2 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1238 (-564))) (-5 *1 (-486 *3)))) (-3610 (*1 *2 *3) (-12 (-5 *3 (-642 *2)) (-5 *1 (-486 *2)) (-4 *2 (-1238 (-564))))) (-2105 (*1 *2 *3) (-12 (-5 *3 (-642 *2)) (-5 *1 (-486 *2)) (-4 *2 (-1238 (-564)))))) -(-10 -7 (-15 -2105 (|#1| (-642 |#1|))) (-15 -3610 (|#1| (-642 |#1|))) (-15 -3761 ((-642 |#1|) (-642 |#1|))) (-15 -2982 ((-642 |#1|) (-642 |#1|))) (-15 -4325 ((-642 (-564)) (-642 |#1|))) (-15 -2798 ((-564) (-642 (-564))))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-2905 (((-564) $) NIL (|has| (-564) (-307)))) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-4252 (($ $) NIL)) (-1722 (((-112) $) NIL)) (-3085 (((-3 $ "failed") $ $) NIL)) (-4297 (((-418 (-1169 $)) (-1169 $)) NIL (|has| (-564) (-907)))) (-1993 (($ $) NIL)) (-3282 (((-418 $) $) NIL)) (-3267 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) NIL (|has| (-564) (-907)))) (-2134 (((-112) $ $) NIL)) (-2221 (((-564) $) NIL (|has| (-564) (-818)))) (-2822 (($) NIL T CONST)) (-2849 (((-3 (-564) "failed") $) NIL) (((-3 (-1173) "failed") $) NIL (|has| (-564) (-1036 (-1173)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-564) (-1036 (-564)))) (((-3 (-564) "failed") $) NIL (|has| (-564) (-1036 (-564))))) (-1687 (((-564) $) NIL) (((-1173) $) NIL (|has| (-564) (-1036 (-1173)))) (((-407 (-564)) $) NIL (|has| (-564) (-1036 (-564)))) (((-564) $) NIL (|has| (-564) (-1036 (-564))))) (-2796 (($ $ $) NIL)) (-3330 (((-687 (-564)) (-687 $)) NIL (|has| (-564) (-637 (-564)))) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (|has| (-564) (-637 (-564)))) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL) (((-687 (-564)) (-687 $)) NIL)) (-2675 (((-3 $ "failed") $) NIL)) (-3235 (($) NIL (|has| (-564) (-545)))) (-2808 (($ $ $) NIL)) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) NIL)) (-3552 (((-112) $) NIL)) (-3292 (((-112) $) NIL (|has| (-564) (-818)))) (-1381 (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) NIL (|has| (-564) (-884 (-564)))) (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) NIL (|has| (-564) (-884 (-379))))) (-3163 (((-112) $) NIL)) (-3408 (($ $) NIL)) (-4120 (((-564) $) NIL)) (-4382 (((-3 $ "failed") $) NIL (|has| (-564) (-1148)))) (-2666 (((-112) $) NIL (|has| (-564) (-818)))) (-2709 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-3225 (($ $ $) NIL (|has| (-564) (-848)))) (-2903 (($ $ $) NIL (|has| (-564) (-848)))) (-2947 (($ (-1 (-564) (-564)) $) NIL)) (-2066 (($ $ $) NIL) (($ (-642 $)) NIL)) (-1778 (((-1155) $) NIL)) (-2481 (($ $) NIL)) (-3910 (($) NIL (|has| (-564) (-1148)) CONST)) (-3093 (($ (-407 (-564))) 9)) (-3999 (((-1117) $) NIL)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2105 (($ $ $) NIL) (($ (-642 $)) NIL)) (-1830 (($ $) NIL (|has| (-564) (-307))) (((-407 (-564)) $) NIL)) (-2795 (((-564) $) NIL (|has| (-564) (-545)))) (-3223 (((-418 (-1169 $)) (-1169 $)) NIL (|has| (-564) (-907)))) (-2236 (((-418 (-1169 $)) (-1169 $)) NIL (|has| (-564) (-907)))) (-2254 (((-418 $) $) NIL)) (-1877 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2842 (((-3 $ "failed") $ $) NIL)) (-1483 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-3154 (($ $ (-642 (-564)) (-642 (-564))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-564) (-564)) NIL (|has| (-564) (-309 (-564)))) (($ $ (-294 (-564))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-642 (-294 (-564)))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-642 (-1173)) (-642 (-564))) NIL (|has| (-564) (-514 (-1173) (-564)))) (($ $ (-1173) (-564)) NIL (|has| (-564) (-514 (-1173) (-564))))) (-4274 (((-769) $) NIL)) (-4369 (($ $ (-564)) NIL (|has| (-564) (-286 (-564) (-564))))) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL)) (-2199 (($ $) NIL (|has| (-564) (-233))) (($ $ (-769)) NIL (|has| (-564) (-233))) (($ $ (-1173)) NIL (|has| (-564) (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| (-564) (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| (-564) (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| (-564) (-898 (-1173)))) (($ $ (-1 (-564) (-564)) (-769)) NIL) (($ $ (-1 (-564) (-564))) NIL)) (-3082 (($ $) NIL)) (-4131 (((-564) $) NIL)) (-3003 (((-890 (-564)) $) NIL (|has| (-564) (-612 (-890 (-564))))) (((-890 (-379)) $) NIL (|has| (-564) (-612 (-890 (-379))))) (((-536) $) NIL (|has| (-564) (-612 (-536)))) (((-379) $) NIL (|has| (-564) (-1020))) (((-225) $) NIL (|has| (-564) (-1020)))) (-3556 (((-3 (-1262 $) "failed") (-687 $)) NIL (-12 (|has| $ (-145)) (|has| (-564) (-907))))) (-2390 (((-860) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) 8) (($ (-564)) NIL) (($ (-1173)) NIL (|has| (-564) (-1036 (-1173)))) (((-407 (-564)) $) NIL) (((-1002 16) $) 10)) (-3434 (((-3 $ "failed") $) NIL (-2682 (-12 (|has| $ (-145)) (|has| (-564) (-907))) (|has| (-564) (-145))))) (-3348 (((-769)) NIL T CONST)) (-1378 (((-564) $) NIL (|has| (-564) (-545)))) (-1600 (((-112) $ $) NIL)) (-1594 (((-112) $ $) NIL)) (-1630 (($ $) NIL (|has| (-564) (-818)))) (-2361 (($) NIL T CONST)) (-2371 (($) NIL T CONST)) (-2711 (($ $) NIL (|has| (-564) (-233))) (($ $ (-769)) NIL (|has| (-564) (-233))) (($ $ (-1173)) NIL (|has| (-564) (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| (-564) (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| (-564) (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| (-564) (-898 (-1173)))) (($ $ (-1 (-564) (-564)) (-769)) NIL) (($ $ (-1 (-564) (-564))) NIL)) (-2881 (((-112) $ $) NIL (|has| (-564) (-848)))) (-2857 (((-112) $ $) NIL (|has| (-564) (-848)))) (-2821 (((-112) $ $) NIL)) (-2868 (((-112) $ $) NIL (|has| (-564) (-848)))) (-2844 (((-112) $ $) NIL (|has| (-564) (-848)))) (-2943 (($ $ $) NIL) (($ (-564) (-564)) NIL)) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ (-564) $) NIL) (($ $ (-564)) NIL))) -(((-487) (-13 (-990 (-564)) (-611 (-407 (-564))) (-611 (-1002 16)) (-10 -8 (-15 -1830 ((-407 (-564)) $)) (-15 -3093 ($ (-407 (-564))))))) (T -487)) -((-1830 (*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-487)))) (-3093 (*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-487))))) -(-13 (-990 (-564)) (-611 (-407 (-564))) (-611 (-1002 16)) (-10 -8 (-15 -1830 ((-407 (-564)) $)) (-15 -3093 ($ (-407 (-564)))))) -((-3541 (((-642 |#2|) $) 29)) (-2533 (((-112) |#2| $) 34)) (-4094 (((-112) (-1 (-112) |#2|) $) 24)) (-3154 (($ $ (-642 (-294 |#2|))) 13) (($ $ (-294 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-642 |#2|) (-642 |#2|)) NIL)) (-4010 (((-769) (-1 (-112) |#2|) $) 28) (((-769) |#2| $) 32)) (-2390 (((-860) $) 43)) (-3295 (((-112) (-1 (-112) |#2|) $) 23)) (-2821 (((-112) $ $) 37)) (-2158 (((-769) $) 18))) -(((-488 |#1| |#2|) (-10 -8 (-15 -2390 ((-860) |#1|)) (-15 -2821 ((-112) |#1| |#1|)) (-15 -3154 (|#1| |#1| (-642 |#2|) (-642 |#2|))) (-15 -3154 (|#1| |#1| |#2| |#2|)) (-15 -3154 (|#1| |#1| (-294 |#2|))) (-15 -3154 (|#1| |#1| (-642 (-294 |#2|)))) (-15 -2533 ((-112) |#2| |#1|)) (-15 -4010 ((-769) |#2| |#1|)) (-15 -3541 ((-642 |#2|) |#1|)) (-15 -4010 ((-769) (-1 (-112) |#2|) |#1|)) (-15 -4094 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3295 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2158 ((-769) |#1|))) (-489 |#2|) (-1212)) (T -488)) -NIL -(-10 -8 (-15 -2390 ((-860) |#1|)) (-15 -2821 ((-112) |#1| |#1|)) (-15 -3154 (|#1| |#1| (-642 |#2|) (-642 |#2|))) (-15 -3154 (|#1| |#1| |#2| |#2|)) (-15 -3154 (|#1| |#1| (-294 |#2|))) (-15 -3154 (|#1| |#1| (-642 (-294 |#2|)))) (-15 -2533 ((-112) |#2| |#1|)) (-15 -4010 ((-769) |#2| |#1|)) (-15 -3541 ((-642 |#2|) |#1|)) (-15 -4010 ((-769) (-1 (-112) |#2|) |#1|)) (-15 -4094 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3295 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2158 ((-769) |#1|))) -((-2856 (((-112) $ $) 19 (|has| |#1| (-1097)))) (-3442 (((-112) $ (-769)) 8)) (-2822 (($) 7 T CONST)) (-2018 (((-642 |#1|) $) 31 (|has| $ (-6 -4410)))) (-3769 (((-112) $ (-769)) 9)) (-3541 (((-642 |#1|) $) 30 (|has| $ (-6 -4410)))) (-2533 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-1857 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#1| |#1|) $) 36)) (-4145 (((-112) $ (-769)) 10)) (-1778 (((-1155) $) 22 (|has| |#1| (-1097)))) (-3999 (((-1117) $) 21 (|has| |#1| (-1097)))) (-4094 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-2478 (((-112) $ $) 14)) (-4109 (((-112) $) 11)) (-2179 (($) 12)) (-4010 (((-769) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4410))) (((-769) |#1| $) 29 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3865 (($ $) 13)) (-2390 (((-860) $) 18 (|has| |#1| (-611 (-860))))) (-1600 (((-112) $ $) 23 (|has| |#1| (-1097)))) (-3295 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4410)))) (-2821 (((-112) $ $) 20 (|has| |#1| (-1097)))) (-2158 (((-769) $) 6 (|has| $ (-6 -4410))))) -(((-489 |#1|) (-140) (-1212)) (T -489)) -((-2947 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-489 *3)) (-4 *3 (-1212)))) (-1857 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4411)) (-4 *1 (-489 *3)) (-4 *3 (-1212)))) (-3295 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4410)) (-4 *1 (-489 *4)) (-4 *4 (-1212)) (-5 *2 (-112)))) (-4094 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4410)) (-4 *1 (-489 *4)) (-4 *4 (-1212)) (-5 *2 (-112)))) (-4010 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4410)) (-4 *1 (-489 *4)) (-4 *4 (-1212)) (-5 *2 (-769)))) (-2018 (*1 *2 *1) (-12 (|has| *1 (-6 -4410)) (-4 *1 (-489 *3)) (-4 *3 (-1212)) (-5 *2 (-642 *3)))) (-3541 (*1 *2 *1) (-12 (|has| *1 (-6 -4410)) (-4 *1 (-489 *3)) (-4 *3 (-1212)) (-5 *2 (-642 *3)))) (-4010 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4410)) (-4 *1 (-489 *3)) (-4 *3 (-1212)) (-4 *3 (-1097)) (-5 *2 (-769)))) (-2533 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4410)) (-4 *1 (-489 *3)) (-4 *3 (-1212)) (-4 *3 (-1097)) (-5 *2 (-112))))) -(-13 (-34) (-10 -8 (IF (|has| |t#1| (-611 (-860))) (-6 (-611 (-860))) |%noBranch|) (IF (|has| |t#1| (-1097)) (-6 (-1097)) |%noBranch|) (IF (|has| |t#1| (-1097)) (IF (|has| |t#1| (-309 |t#1|)) (-6 (-309 |t#1|)) |%noBranch|) |%noBranch|) (-15 -2947 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4411)) (-15 -1857 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4410)) (PROGN (-15 -3295 ((-112) (-1 (-112) |t#1|) $)) (-15 -4094 ((-112) (-1 (-112) |t#1|) $)) (-15 -4010 ((-769) (-1 (-112) |t#1|) $)) (-15 -2018 ((-642 |t#1|) $)) (-15 -3541 ((-642 |t#1|) $)) (IF (|has| |t#1| (-1097)) (PROGN (-15 -4010 ((-769) |t#1| $)) (-15 -2533 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1097)) ((-611 (-860)) -2682 (|has| |#1| (-1097)) (|has| |#1| (-611 (-860)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-1097) |has| |#1| (-1097)) ((-1212) . T)) -((-2390 ((|#1| $) 6) (($ |#1|) 9))) -(((-490 |#1|) (-140) (-1212)) (T -490)) -NIL -(-13 (-611 |t#1|) (-614 |t#1|)) -(((-614 |#1|) . T) ((-611 |#1|) . T)) -((-2856 (((-112) $ $) NIL)) (-1778 (((-1155) $) NIL)) (-4032 (($ (-1155)) 8)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) 15) (((-1155) $) 12)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) 11))) -(((-491) (-13 (-1097) (-611 (-1155)) (-10 -8 (-15 -4032 ($ (-1155)))))) (T -491)) -((-4032 (*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-491))))) -(-13 (-1097) (-611 (-1155)) (-10 -8 (-15 -4032 ($ (-1155))))) -((-3087 (($ $) 15)) (-3067 (($ $) 24)) (-3110 (($ $) 12)) (-3120 (($ $) 10)) (-3098 (($ $) 17)) (-3077 (($ $) 22))) -(((-492 |#1|) (-10 -8 (-15 -3077 (|#1| |#1|)) (-15 -3098 (|#1| |#1|)) (-15 -3120 (|#1| |#1|)) (-15 -3110 (|#1| |#1|)) (-15 -3067 (|#1| |#1|)) (-15 -3087 (|#1| |#1|))) (-493)) (T -492)) -NIL -(-10 -8 (-15 -3077 (|#1| |#1|)) (-15 -3098 (|#1| |#1|)) (-15 -3120 (|#1| |#1|)) (-15 -3110 (|#1| |#1|)) (-15 -3067 (|#1| |#1|)) (-15 -3087 (|#1| |#1|))) -((-3087 (($ $) 11)) (-3067 (($ $) 10)) (-3110 (($ $) 9)) (-3120 (($ $) 8)) (-3098 (($ $) 7)) (-3077 (($ $) 6))) -(((-493) (-140)) (T -493)) -((-3087 (*1 *1 *1) (-4 *1 (-493))) (-3067 (*1 *1 *1) (-4 *1 (-493))) (-3110 (*1 *1 *1) (-4 *1 (-493))) (-3120 (*1 *1 *1) (-4 *1 (-493))) (-3098 (*1 *1 *1) (-4 *1 (-493))) (-3077 (*1 *1 *1) (-4 *1 (-493)))) -(-13 (-10 -8 (-15 -3077 ($ $)) (-15 -3098 ($ $)) (-15 -3120 ($ $)) (-15 -3110 ($ $)) (-15 -3067 ($ $)) (-15 -3087 ($ $)))) -((-2254 (((-418 |#4|) |#4| (-1 (-418 |#2|) |#2|)) 54))) -(((-494 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2254 ((-418 |#4|) |#4| (-1 (-418 |#2|) |#2|)))) (-363) (-1238 |#1|) (-13 (-363) (-147) (-722 |#1| |#2|)) (-1238 |#3|)) (T -494)) -((-2254 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1238 *5)) (-4 *5 (-363)) (-4 *7 (-13 (-363) (-147) (-722 *5 *6))) (-5 *2 (-418 *3)) (-5 *1 (-494 *5 *6 *7 *3)) (-4 *3 (-1238 *7))))) -(-10 -7 (-15 -2254 ((-418 |#4|) |#4| (-1 (-418 |#2|) |#2|)))) -((-2856 (((-112) $ $) NIL)) (-2659 (((-642 $) (-1169 $) (-1173)) NIL) (((-642 $) (-1169 $)) NIL) (((-642 $) (-950 $)) NIL)) (-1791 (($ (-1169 $) (-1173)) NIL) (($ (-1169 $)) NIL) (($ (-950 $)) NIL)) (-2950 (((-112) $) 39)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-4252 (($ $) NIL)) (-1722 (((-112) $) NIL)) (-1401 (((-112) $ $) 73)) (-2138 (((-642 (-610 $)) $) 50)) (-3085 (((-3 $ "failed") $ $) NIL)) (-1891 (($ $ (-294 $)) NIL) (($ $ (-642 (-294 $))) NIL) (($ $ (-642 (-610 $)) (-642 $)) NIL)) (-1993 (($ $) NIL)) (-3282 (((-418 $) $) NIL)) (-2264 (($ $) NIL)) (-2134 (((-112) $ $) NIL)) (-2822 (($) NIL T CONST)) (-3008 (((-642 $) (-1169 $) (-1173)) NIL) (((-642 $) (-1169 $)) NIL) (((-642 $) (-950 $)) NIL)) (-2619 (($ (-1169 $) (-1173)) NIL) (($ (-1169 $)) NIL) (($ (-950 $)) NIL)) (-2849 (((-3 (-610 $) "failed") $) NIL) (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL)) (-1687 (((-610 $) $) NIL) (((-564) $) NIL) (((-407 (-564)) $) 55)) (-2796 (($ $ $) NIL)) (-3330 (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL) (((-687 (-564)) (-687 $)) NIL) (((-2 (|:| -3544 (-687 (-407 (-564)))) (|:| |vec| (-1262 (-407 (-564))))) (-687 $) (-1262 $)) NIL) (((-687 (-407 (-564))) (-687 $)) NIL)) (-3741 (($ $) NIL)) (-2675 (((-3 $ "failed") $) NIL)) (-2808 (($ $ $) NIL)) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) NIL)) (-3552 (((-112) $) NIL)) (-2998 (($ $) NIL) (($ (-642 $)) NIL)) (-3986 (((-642 (-114)) $) NIL)) (-3898 (((-114) (-114)) NIL)) (-3163 (((-112) $) 42)) (-2829 (((-112) $) NIL (|has| $ (-1036 (-564))))) (-4120 (((-1122 (-564) (-610 $)) $) 37)) (-2024 (($ $ (-564)) NIL)) (-2573 (((-1169 $) (-1169 $) (-610 $)) 87) (((-1169 $) (-1169 $) (-642 (-610 $))) 62) (($ $ (-610 $)) 76) (($ $ (-642 (-610 $))) 77)) (-2709 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2744 (((-1169 $) (-610 $)) 74 (|has| $ (-1047)))) (-2947 (($ (-1 $ $) (-610 $)) NIL)) (-1543 (((-3 (-610 $) "failed") $) NIL)) (-2066 (($ (-642 $)) NIL) (($ $ $) NIL)) (-1778 (((-1155) $) NIL)) (-2209 (((-642 (-610 $)) $) NIL)) (-2879 (($ (-114) $) NIL) (($ (-114) (-642 $)) NIL)) (-1462 (((-112) $ (-114)) NIL) (((-112) $ (-1173)) NIL)) (-2481 (($ $) NIL)) (-2983 (((-769) $) NIL)) (-3999 (((-1117) $) NIL)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2105 (($ (-642 $)) NIL) (($ $ $) NIL)) (-2908 (((-112) $ $) NIL) (((-112) $ (-1173)) NIL)) (-2254 (((-418 $) $) NIL)) (-1877 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL)) (-2842 (((-3 $ "failed") $ $) NIL)) (-1483 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2211 (((-112) $) NIL (|has| $ (-1036 (-564))))) (-3154 (($ $ (-610 $) $) NIL) (($ $ (-642 (-610 $)) (-642 $)) NIL) (($ $ (-642 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-642 $) (-642 $)) NIL) (($ $ (-642 (-1173)) (-642 (-1 $ $))) NIL) (($ $ (-642 (-1173)) (-642 (-1 $ (-642 $)))) NIL) (($ $ (-1173) (-1 $ (-642 $))) NIL) (($ $ (-1173) (-1 $ $)) NIL) (($ $ (-642 (-114)) (-642 (-1 $ $))) NIL) (($ $ (-642 (-114)) (-642 (-1 $ (-642 $)))) NIL) (($ $ (-114) (-1 $ (-642 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-4274 (((-769) $) NIL)) (-4369 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-642 $)) NIL)) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL)) (-4377 (($ $) NIL) (($ $ $) NIL)) (-2199 (($ $ (-769)) NIL) (($ $) 36)) (-4131 (((-1122 (-564) (-610 $)) $) 20)) (-1361 (($ $) NIL (|has| $ (-1047)))) (-3003 (((-379) $) 101) (((-225) $) 109) (((-169 (-379)) $) 117)) (-2390 (((-860) $) NIL) (($ (-610 $)) NIL) (($ (-407 (-564))) NIL) (($ $) NIL) (($ (-564)) NIL) (($ (-1122 (-564) (-610 $))) 21)) (-3348 (((-769)) NIL T CONST)) (-1899 (($ $) NIL) (($ (-642 $)) NIL)) (-4318 (((-112) (-114)) 93)) (-1600 (((-112) $ $) NIL)) (-1594 (((-112) $ $) NIL)) (-2361 (($) 10 T CONST)) (-2371 (($) 22 T CONST)) (-2711 (($ $ (-769)) NIL) (($ $) NIL)) (-2821 (((-112) $ $) 24)) (-2943 (($ $ $) 44)) (-2930 (($ $ $) NIL) (($ $) NIL)) (-2917 (($ $ $) NIL)) (** (($ $ (-407 (-564))) NIL) (($ $ (-564)) 48) (($ $ (-769)) NIL) (($ $ (-919)) NIL)) (* (($ (-407 (-564)) $) NIL) (($ $ (-407 (-564))) NIL) (($ $ $) 27) (($ (-564) $) NIL) (($ (-769) $) NIL) (($ (-919) $) NIL))) -(((-495) (-13 (-302) (-27) (-1036 (-564)) (-1036 (-407 (-564))) (-637 (-564)) (-1020) (-637 (-407 (-564))) (-147) (-612 (-169 (-379))) (-233) (-10 -8 (-15 -2390 ($ (-1122 (-564) (-610 $)))) (-15 -4120 ((-1122 (-564) (-610 $)) $)) (-15 -4131 ((-1122 (-564) (-610 $)) $)) (-15 -3741 ($ $)) (-15 -1401 ((-112) $ $)) (-15 -2573 ((-1169 $) (-1169 $) (-610 $))) (-15 -2573 ((-1169 $) (-1169 $) (-642 (-610 $)))) (-15 -2573 ($ $ (-610 $))) (-15 -2573 ($ $ (-642 (-610 $))))))) (T -495)) -((-2390 (*1 *1 *2) (-12 (-5 *2 (-1122 (-564) (-610 (-495)))) (-5 *1 (-495)))) (-4120 (*1 *2 *1) (-12 (-5 *2 (-1122 (-564) (-610 (-495)))) (-5 *1 (-495)))) (-4131 (*1 *2 *1) (-12 (-5 *2 (-1122 (-564) (-610 (-495)))) (-5 *1 (-495)))) (-3741 (*1 *1 *1) (-5 *1 (-495))) (-1401 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-495)))) (-2573 (*1 *2 *2 *3) (-12 (-5 *2 (-1169 (-495))) (-5 *3 (-610 (-495))) (-5 *1 (-495)))) (-2573 (*1 *2 *2 *3) (-12 (-5 *2 (-1169 (-495))) (-5 *3 (-642 (-610 (-495)))) (-5 *1 (-495)))) (-2573 (*1 *1 *1 *2) (-12 (-5 *2 (-610 (-495))) (-5 *1 (-495)))) (-2573 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-610 (-495)))) (-5 *1 (-495))))) -(-13 (-302) (-27) (-1036 (-564)) (-1036 (-407 (-564))) (-637 (-564)) (-1020) (-637 (-407 (-564))) (-147) (-612 (-169 (-379))) (-233) (-10 -8 (-15 -2390 ($ (-1122 (-564) (-610 $)))) (-15 -4120 ((-1122 (-564) (-610 $)) $)) (-15 -4131 ((-1122 (-564) (-610 $)) $)) (-15 -3741 ($ $)) (-15 -1401 ((-112) $ $)) (-15 -2573 ((-1169 $) (-1169 $) (-610 $))) (-15 -2573 ((-1169 $) (-1169 $) (-642 (-610 $)))) (-15 -2573 ($ $ (-610 $))) (-15 -2573 ($ $ (-642 (-610 $)))))) -((-2856 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-3633 (((-1267) $ (-564) (-564)) NIL (|has| $ (-6 -4411)))) (-1824 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-848)))) (-3659 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4411))) (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-848))))) (-3191 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-848)))) (-3442 (((-112) $ (-769)) NIL)) (-3841 ((|#1| $ (-564) |#1|) 47 (|has| $ (-6 -4411))) ((|#1| $ (-1229 (-564)) |#1|) NIL (|has| $ (-6 -4411)))) (-3437 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2822 (($) NIL T CONST)) (-1540 (($ $) NIL (|has| $ (-6 -4411)))) (-3817 (($ $) NIL)) (-4067 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2517 (($ |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3741 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4410)))) (-3105 ((|#1| $ (-564) |#1|) 42 (|has| $ (-6 -4411)))) (-1804 ((|#1| $ (-564)) 41)) (-3942 (((-564) (-1 (-112) |#1|) $) NIL) (((-564) |#1| $) NIL (|has| |#1| (-1097))) (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1097)))) (-2018 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-4233 (($ (-769) |#1|) 21)) (-3769 (((-112) $ (-769)) NIL)) (-1802 (((-564) $) 17 (|has| (-564) (-848)))) (-3225 (($ $ $) NIL (|has| |#1| (-848)))) (-2774 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-848)))) (-3541 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2533 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3624 (((-564) $) 44 (|has| (-564) (-848)))) (-2903 (($ $ $) NIL (|has| |#1| (-848)))) (-1857 (($ (-1 |#1| |#1|) $) 32 (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 38)) (-4145 (((-112) $ (-769)) NIL)) (-1778 (((-1155) $) NIL (|has| |#1| (-1097)))) (-4247 (($ |#1| $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-4107 (((-642 (-564)) $) NIL)) (-4207 (((-112) (-564) $) NIL)) (-3999 (((-1117) $) NIL (|has| |#1| (-1097)))) (-4036 ((|#1| $) NIL (|has| (-564) (-848)))) (-3183 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3826 (($ $ |#1|) 15 (|has| $ (-6 -4411)))) (-4094 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-2478 (((-112) $ $) NIL)) (-1643 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3522 (((-642 |#1|) $) NIL)) (-4109 (((-112) $) NIL)) (-2179 (($) 19)) (-4369 ((|#1| $ (-564) |#1|) NIL) ((|#1| $ (-564)) 46) (($ $ (-1229 (-564))) NIL)) (-2083 (($ $ (-564)) NIL) (($ $ (-1229 (-564))) NIL)) (-4010 (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-769) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3301 (($ $ $ (-564)) NIL (|has| $ (-6 -4411)))) (-3865 (($ $) 13)) (-3003 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-2401 (($ (-642 |#1|)) 24)) (-3634 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-642 $)) NIL)) (-2390 (((-860) $) NIL (|has| |#1| (-611 (-860))))) (-1600 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-3295 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2881 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2857 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2821 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2868 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2844 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2158 (((-769) $) 11 (|has| $ (-6 -4410))))) -(((-496 |#1| |#2|) (-19 |#1|) (-1212) (-564)) (T -496)) +((-2986 (((-112) $ $) NIL)) (-1622 (((-644 (-508)) $) 14)) (-2598 (((-508) $) 12)) (-3151 (((-1157) $) NIL)) (-4291 (($ (-508) (-644 (-508))) 10)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) 21) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-485) (-13 (-1082) (-10 -8 (-15 -4291 ($ (-508) (-644 (-508)))) (-15 -2598 ((-508) $)) (-15 -1622 ((-644 (-508)) $))))) (T -485)) +((-4291 (*1 *1 *2 *3) (-12 (-5 *3 (-644 (-508))) (-5 *2 (-508)) (-5 *1 (-485)))) (-2598 (*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-485)))) (-1622 (*1 *2 *1) (-12 (-5 *2 (-644 (-508))) (-5 *1 (-485))))) +(-13 (-1082) (-10 -8 (-15 -4291 ($ (-508) (-644 (-508)))) (-15 -2598 ((-508) $)) (-15 -1622 ((-644 (-508)) $)))) +((-2986 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1453 (((-112) $ (-771)) NIL)) (-1811 (($) NIL T CONST)) (-3872 (((-644 |#1|) $) NIL (|has| $ (-6 -4417)))) (-2756 (((-112) $ (-771)) NIL)) (-3200 (($ $ $) 50)) (-1330 (($ $ $) 49)) (-4227 (((-644 |#1|) $) NIL (|has| $ (-6 -4417)))) (-1688 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-3038 ((|#1| $) 40)) (-3708 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#1| |#1|) $) NIL)) (-4106 (((-112) $ (-771)) NIL)) (-3151 (((-1157) $) NIL (|has| |#1| (-1099)))) (-4255 ((|#1| $) 41)) (-4354 (($ |#1| $) 18)) (-2304 (($ (-644 |#1|)) 19)) (-4059 (((-1119) $) NIL (|has| |#1| (-1099)))) (-4097 ((|#1| $) 34)) (-3966 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1844 (((-112) $ $) NIL)) (-2788 (((-112) $) NIL)) (-1737 (($) 11)) (-4068 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-3924 (($ $) NIL)) (-2479 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-3900 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2471 (($ (-644 |#1|)) 47)) (-3667 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2952 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3002 (((-771) $) 29 (|has| $ (-6 -4417))))) +(((-486 |#1|) (-13 (-968 |#1|) (-10 -8 (-15 -2304 ($ (-644 |#1|))))) (-850)) (T -486)) +((-2304 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-850)) (-5 *1 (-486 *3))))) +(-13 (-968 |#1|) (-10 -8 (-15 -2304 ($ (-644 |#1|))))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-1811 (($) NIL T CONST)) (-1838 (($ $) 72)) (-3158 (((-112) $) NIL)) (-3151 (((-1157) $) NIL)) (-3171 (((-415 |#2| (-409 |#2|) |#3| |#4|) $) 45)) (-4059 (((-1119) $) NIL)) (-4086 (((-3 |#4| "failed") $) 118)) (-2125 (($ (-415 |#2| (-409 |#2|) |#3| |#4|)) 82) (($ |#4|) 31) (($ |#1| |#1|) 128) (($ |#1| |#1| (-566)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 141)) (-3849 (((-2 (|:| -4229 (-415 |#2| (-409 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47)) (-2479 (((-862) $) 111)) (-3900 (((-112) $ $) NIL)) (-2446 (($) 32 T CONST)) (-2952 (((-112) $ $) 122)) (-3065 (($ $) 78) (($ $ $) NIL)) (-3052 (($ $ $) 73)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 79))) +(((-487 |#1| |#2| |#3| |#4|) (-337 |#1| |#2| |#3| |#4|) (-365) (-1240 |#1|) (-1240 (-409 |#2|)) (-344 |#1| |#2| |#3|)) (T -487)) +NIL +(-337 |#1| |#2| |#3| |#4|) +((-1623 (((-566) (-644 (-566))) 55)) (-1745 ((|#1| (-644 |#1|)) 97)) (-3930 (((-644 |#1|) (-644 |#1|)) 98)) (-1320 (((-644 |#1|) (-644 |#1|)) 100)) (-2162 ((|#1| (-644 |#1|)) 99)) (-2252 (((-644 (-566)) (-644 |#1|)) 58))) +(((-488 |#1|) (-10 -7 (-15 -2162 (|#1| (-644 |#1|))) (-15 -1745 (|#1| (-644 |#1|))) (-15 -1320 ((-644 |#1|) (-644 |#1|))) (-15 -3930 ((-644 |#1|) (-644 |#1|))) (-15 -2252 ((-644 (-566)) (-644 |#1|))) (-15 -1623 ((-566) (-644 (-566))))) (-1240 (-566))) (T -488)) +((-1623 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-566)) (-5 *1 (-488 *4)) (-4 *4 (-1240 *2)))) (-2252 (*1 *2 *3) (-12 (-5 *3 (-644 *4)) (-4 *4 (-1240 (-566))) (-5 *2 (-644 (-566))) (-5 *1 (-488 *4)))) (-3930 (*1 *2 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1240 (-566))) (-5 *1 (-488 *3)))) (-1320 (*1 *2 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1240 (-566))) (-5 *1 (-488 *3)))) (-1745 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-5 *1 (-488 *2)) (-4 *2 (-1240 (-566))))) (-2162 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-5 *1 (-488 *2)) (-4 *2 (-1240 (-566)))))) +(-10 -7 (-15 -2162 (|#1| (-644 |#1|))) (-15 -1745 (|#1| (-644 |#1|))) (-15 -1320 ((-644 |#1|) (-644 |#1|))) (-15 -3930 ((-644 |#1|) (-644 |#1|))) (-15 -2252 ((-644 (-566)) (-644 |#1|))) (-15 -1623 ((-566) (-644 (-566))))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-2488 (((-566) $) NIL (|has| (-566) (-308)))) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-1716 (((-112) $) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-4058 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-566) (-909)))) (-3980 (($ $) NIL)) (-3348 (((-420 $) $) NIL)) (-4262 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| (-566) (-909)))) (-2761 (((-112) $ $) NIL)) (-2920 (((-566) $) NIL (|has| (-566) (-820)))) (-1811 (($) NIL T CONST)) (-2980 (((-3 (-566) "failed") $) NIL) (((-3 (-1175) "failed") $) NIL (|has| (-566) (-1038 (-1175)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| (-566) (-1038 (-566)))) (((-3 (-566) "failed") $) NIL (|has| (-566) (-1038 (-566))))) (-1709 (((-566) $) NIL) (((-1175) $) NIL (|has| (-566) (-1038 (-1175)))) (((-409 (-566)) $) NIL (|has| (-566) (-1038 (-566)))) (((-566) $) NIL (|has| (-566) (-1038 (-566))))) (-2925 (($ $ $) NIL)) (-2275 (((-689 (-566)) (-689 $)) NIL (|has| (-566) (-639 (-566)))) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| (-566) (-639 (-566)))) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL) (((-689 (-566)) (-689 $)) NIL)) (-3757 (((-3 $ "failed") $) NIL)) (-1415 (($) NIL (|has| (-566) (-547)))) (-2937 (($ $ $) NIL)) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) NIL)) (-4188 (((-112) $) NIL)) (-2133 (((-112) $) NIL (|has| (-566) (-820)))) (-1542 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (|has| (-566) (-886 (-566)))) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (|has| (-566) (-886 (-381))))) (-2264 (((-112) $) NIL)) (-1579 (($ $) NIL)) (-4157 (((-566) $) NIL)) (-4278 (((-3 $ "failed") $) NIL (|has| (-566) (-1150)))) (-3420 (((-112) $) NIL (|has| (-566) (-820)))) (-2495 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1920 (($ $ $) NIL (|has| (-566) (-850)))) (-3038 (($ $ $) NIL (|has| (-566) (-850)))) (-3080 (($ (-1 (-566) (-566)) $) NIL)) (-2120 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3151 (((-1157) $) NIL)) (-2577 (($ $) NIL)) (-3968 (($) NIL (|has| (-566) (-1150)) CONST)) (-2318 (($ (-409 (-566))) 9)) (-4059 (((-1119) $) NIL)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2162 (($ $ $) NIL) (($ (-644 $)) NIL)) (-4305 (($ $) NIL (|has| (-566) (-308))) (((-409 (-566)) $) NIL)) (-2001 (((-566) $) NIL (|has| (-566) (-547)))) (-1500 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-566) (-909)))) (-3917 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-566) (-909)))) (-2325 (((-420 $) $) NIL)) (-2585 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2976 (((-3 $ "failed") $ $) NIL)) (-2840 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3297 (($ $ (-644 (-566)) (-644 (-566))) NIL (|has| (-566) (-310 (-566)))) (($ $ (-566) (-566)) NIL (|has| (-566) (-310 (-566)))) (($ $ (-295 (-566))) NIL (|has| (-566) (-310 (-566)))) (($ $ (-644 (-295 (-566)))) NIL (|has| (-566) (-310 (-566)))) (($ $ (-644 (-1175)) (-644 (-566))) NIL (|has| (-566) (-516 (-1175) (-566)))) (($ $ (-1175) (-566)) NIL (|has| (-566) (-516 (-1175) (-566))))) (-1383 (((-771) $) NIL)) (-4376 (($ $ (-566)) NIL (|has| (-566) (-287 (-566) (-566))))) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL)) (-3526 (($ $) NIL (|has| (-566) (-233))) (($ $ (-771)) NIL (|has| (-566) (-233))) (($ $ (-1175)) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-1 (-566) (-566)) (-771)) NIL) (($ $ (-1 (-566) (-566))) NIL)) (-1375 (($ $) NIL)) (-4167 (((-566) $) NIL)) (-3136 (((-892 (-566)) $) NIL (|has| (-566) (-614 (-892 (-566))))) (((-892 (-381)) $) NIL (|has| (-566) (-614 (-892 (-381))))) (((-538) $) NIL (|has| (-566) (-614 (-538)))) (((-381) $) NIL (|has| (-566) (-1022))) (((-225) $) NIL (|has| (-566) (-1022)))) (-3233 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| (-566) (-909))))) (-2479 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) 8) (($ (-566)) NIL) (($ (-1175)) NIL (|has| (-566) (-1038 (-1175)))) (((-409 (-566)) $) NIL) (((-1004 16) $) 10)) (-2645 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| $ (-145)) (|has| (-566) (-909))) (|has| (-566) (-145))))) (-1558 (((-771)) NIL T CONST)) (-3908 (((-566) $) NIL (|has| (-566) (-547)))) (-3900 (((-112) $ $) NIL)) (-1333 (((-112) $ $) NIL)) (-4298 (($ $) NIL (|has| (-566) (-820)))) (-2446 (($) NIL T CONST)) (-2459 (($) NIL T CONST)) (-2834 (($ $) NIL (|has| (-566) (-233))) (($ $ (-771)) NIL (|has| (-566) (-233))) (($ $ (-1175)) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-1 (-566) (-566)) (-771)) NIL) (($ $ (-1 (-566) (-566))) NIL)) (-3019 (((-112) $ $) NIL (|has| (-566) (-850)))) (-2990 (((-112) $ $) NIL (|has| (-566) (-850)))) (-2952 (((-112) $ $) NIL)) (-3004 (((-112) $ $) NIL (|has| (-566) (-850)))) (-2977 (((-112) $ $) NIL (|has| (-566) (-850)))) (-3077 (($ $ $) NIL) (($ (-566) (-566)) NIL)) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ (-566) $) NIL) (($ $ (-566)) NIL))) +(((-489) (-13 (-992 (-566)) (-613 (-409 (-566))) (-613 (-1004 16)) (-10 -8 (-15 -4305 ((-409 (-566)) $)) (-15 -2318 ($ (-409 (-566))))))) (T -489)) +((-4305 (*1 *2 *1) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-489)))) (-2318 (*1 *1 *2) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-489))))) +(-13 (-992 (-566)) (-613 (-409 (-566))) (-613 (-1004 16)) (-10 -8 (-15 -4305 ((-409 (-566)) $)) (-15 -2318 ($ (-409 (-566)))))) +((-4227 (((-644 |#2|) $) 29)) (-1688 (((-112) |#2| $) 34)) (-3966 (((-112) (-1 (-112) |#2|) $) 24)) (-3297 (($ $ (-644 (-295 |#2|))) 13) (($ $ (-295 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-644 |#2|) (-644 |#2|)) NIL)) (-4068 (((-771) (-1 (-112) |#2|) $) 28) (((-771) |#2| $) 32)) (-2479 (((-862) $) 43)) (-3667 (((-112) (-1 (-112) |#2|) $) 23)) (-2952 (((-112) $ $) 37)) (-3002 (((-771) $) 18))) +(((-490 |#1| |#2|) (-10 -8 (-15 -2479 ((-862) |#1|)) (-15 -2952 ((-112) |#1| |#1|)) (-15 -3297 (|#1| |#1| (-644 |#2|) (-644 |#2|))) (-15 -3297 (|#1| |#1| |#2| |#2|)) (-15 -3297 (|#1| |#1| (-295 |#2|))) (-15 -3297 (|#1| |#1| (-644 (-295 |#2|)))) (-15 -1688 ((-112) |#2| |#1|)) (-15 -4068 ((-771) |#2| |#1|)) (-15 -4227 ((-644 |#2|) |#1|)) (-15 -4068 ((-771) (-1 (-112) |#2|) |#1|)) (-15 -3966 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3667 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3002 ((-771) |#1|))) (-491 |#2|) (-1214)) (T -490)) +NIL +(-10 -8 (-15 -2479 ((-862) |#1|)) (-15 -2952 ((-112) |#1| |#1|)) (-15 -3297 (|#1| |#1| (-644 |#2|) (-644 |#2|))) (-15 -3297 (|#1| |#1| |#2| |#2|)) (-15 -3297 (|#1| |#1| (-295 |#2|))) (-15 -3297 (|#1| |#1| (-644 (-295 |#2|)))) (-15 -1688 ((-112) |#2| |#1|)) (-15 -4068 ((-771) |#2| |#1|)) (-15 -4227 ((-644 |#2|) |#1|)) (-15 -4068 ((-771) (-1 (-112) |#2|) |#1|)) (-15 -3966 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3667 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3002 ((-771) |#1|))) +((-2986 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-1453 (((-112) $ (-771)) 8)) (-1811 (($) 7 T CONST)) (-3872 (((-644 |#1|) $) 31 (|has| $ (-6 -4417)))) (-2756 (((-112) $ (-771)) 9)) (-4227 (((-644 |#1|) $) 30 (|has| $ (-6 -4417)))) (-1688 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-3708 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#1| |#1|) $) 36)) (-4106 (((-112) $ (-771)) 10)) (-3151 (((-1157) $) 22 (|has| |#1| (-1099)))) (-4059 (((-1119) $) 21 (|has| |#1| (-1099)))) (-3966 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1844 (((-112) $ $) 14)) (-2788 (((-112) $) 11)) (-1737 (($) 12)) (-4068 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4417))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-3924 (($ $) 13)) (-2479 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-3900 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-3667 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4417)))) (-2952 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3002 (((-771) $) 6 (|has| $ (-6 -4417))))) +(((-491 |#1|) (-140) (-1214)) (T -491)) +((-3080 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-491 *3)) (-4 *3 (-1214)))) (-3708 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4418)) (-4 *1 (-491 *3)) (-4 *3 (-1214)))) (-3667 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4417)) (-4 *1 (-491 *4)) (-4 *4 (-1214)) (-5 *2 (-112)))) (-3966 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4417)) (-4 *1 (-491 *4)) (-4 *4 (-1214)) (-5 *2 (-112)))) (-4068 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4417)) (-4 *1 (-491 *4)) (-4 *4 (-1214)) (-5 *2 (-771)))) (-3872 (*1 *2 *1) (-12 (|has| *1 (-6 -4417)) (-4 *1 (-491 *3)) (-4 *3 (-1214)) (-5 *2 (-644 *3)))) (-4227 (*1 *2 *1) (-12 (|has| *1 (-6 -4417)) (-4 *1 (-491 *3)) (-4 *3 (-1214)) (-5 *2 (-644 *3)))) (-4068 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4417)) (-4 *1 (-491 *3)) (-4 *3 (-1214)) (-4 *3 (-1099)) (-5 *2 (-771)))) (-1688 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4417)) (-4 *1 (-491 *3)) (-4 *3 (-1214)) (-4 *3 (-1099)) (-5 *2 (-112))))) +(-13 (-34) (-10 -8 (IF (|has| |t#1| (-613 (-862))) (-6 (-613 (-862))) |%noBranch|) (IF (|has| |t#1| (-1099)) (-6 (-1099)) |%noBranch|) (IF (|has| |t#1| (-1099)) (IF (|has| |t#1| (-310 |t#1|)) (-6 (-310 |t#1|)) |%noBranch|) |%noBranch|) (-15 -3080 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4418)) (-15 -3708 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4417)) (PROGN (-15 -3667 ((-112) (-1 (-112) |t#1|) $)) (-15 -3966 ((-112) (-1 (-112) |t#1|) $)) (-15 -4068 ((-771) (-1 (-112) |t#1|) $)) (-15 -3872 ((-644 |t#1|) $)) (-15 -4227 ((-644 |t#1|) $)) (IF (|has| |t#1| (-1099)) (PROGN (-15 -4068 ((-771) |t#1| $)) (-15 -1688 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2809 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1099) |has| |#1| (-1099)) ((-1214) . T)) +((-2479 ((|#1| $) 6) (($ |#1|) 9))) +(((-492 |#1|) (-140) (-1214)) (T -492)) +NIL +(-13 (-613 |t#1|) (-616 |t#1|)) +(((-616 |#1|) . T) ((-613 |#1|) . T)) +((-2986 (((-112) $ $) NIL)) (-3151 (((-1157) $) NIL)) (-2606 (($ (-1157)) 8)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) 15) (((-1157) $) 12)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 11))) +(((-493) (-13 (-1099) (-613 (-1157)) (-10 -8 (-15 -2606 ($ (-1157)))))) (T -493)) +((-2606 (*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-493))))) +(-13 (-1099) (-613 (-1157)) (-10 -8 (-15 -2606 ($ (-1157))))) +((-3219 (($ $) 15)) (-3197 (($ $) 24)) (-3240 (($ $) 12)) (-3250 (($ $) 10)) (-3227 (($ $) 17)) (-3207 (($ $) 22))) +(((-494 |#1|) (-10 -8 (-15 -3207 (|#1| |#1|)) (-15 -3227 (|#1| |#1|)) (-15 -3250 (|#1| |#1|)) (-15 -3240 (|#1| |#1|)) (-15 -3197 (|#1| |#1|)) (-15 -3219 (|#1| |#1|))) (-495)) (T -494)) +NIL +(-10 -8 (-15 -3207 (|#1| |#1|)) (-15 -3227 (|#1| |#1|)) (-15 -3250 (|#1| |#1|)) (-15 -3240 (|#1| |#1|)) (-15 -3197 (|#1| |#1|)) (-15 -3219 (|#1| |#1|))) +((-3219 (($ $) 11)) (-3197 (($ $) 10)) (-3240 (($ $) 9)) (-3250 (($ $) 8)) (-3227 (($ $) 7)) (-3207 (($ $) 6))) +(((-495) (-140)) (T -495)) +((-3219 (*1 *1 *1) (-4 *1 (-495))) (-3197 (*1 *1 *1) (-4 *1 (-495))) (-3240 (*1 *1 *1) (-4 *1 (-495))) (-3250 (*1 *1 *1) (-4 *1 (-495))) (-3227 (*1 *1 *1) (-4 *1 (-495))) (-3207 (*1 *1 *1) (-4 *1 (-495)))) +(-13 (-10 -8 (-15 -3207 ($ $)) (-15 -3227 ($ $)) (-15 -3250 ($ $)) (-15 -3240 ($ $)) (-15 -3197 ($ $)) (-15 -3219 ($ $)))) +((-2325 (((-420 |#4|) |#4| (-1 (-420 |#2|) |#2|)) 54))) +(((-496 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2325 ((-420 |#4|) |#4| (-1 (-420 |#2|) |#2|)))) (-365) (-1240 |#1|) (-13 (-365) (-147) (-724 |#1| |#2|)) (-1240 |#3|)) (T -496)) +((-2325 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-420 *6) *6)) (-4 *6 (-1240 *5)) (-4 *5 (-365)) (-4 *7 (-13 (-365) (-147) (-724 *5 *6))) (-5 *2 (-420 *3)) (-5 *1 (-496 *5 *6 *7 *3)) (-4 *3 (-1240 *7))))) +(-10 -7 (-15 -2325 ((-420 |#4|) |#4| (-1 (-420 |#2|) |#2|)))) +((-2986 (((-112) $ $) NIL)) (-1498 (((-644 $) (-1171 $) (-1175)) NIL) (((-644 $) (-1171 $)) NIL) (((-644 $) (-952 $)) NIL)) (-1625 (($ (-1171 $) (-1175)) NIL) (($ (-1171 $)) NIL) (($ (-952 $)) NIL)) (-2845 (((-112) $) 39)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-1716 (((-112) $) NIL)) (-1442 (((-112) $ $) 73)) (-2192 (((-644 (-612 $)) $) 50)) (-3174 (((-3 $ "failed") $ $) NIL)) (-3739 (($ $ (-295 $)) NIL) (($ $ (-644 (-295 $))) NIL) (($ $ (-644 (-612 $)) (-644 $)) NIL)) (-3980 (($ $) NIL)) (-3348 (((-420 $) $) NIL)) (-2338 (($ $) NIL)) (-2761 (((-112) $ $) NIL)) (-1811 (($) NIL T CONST)) (-4386 (((-644 $) (-1171 $) (-1175)) NIL) (((-644 $) (-1171 $)) NIL) (((-644 $) (-952 $)) NIL)) (-3388 (($ (-1171 $) (-1175)) NIL) (($ (-1171 $)) NIL) (($ (-952 $)) NIL)) (-2980 (((-3 (-612 $) "failed") $) NIL) (((-3 (-566) "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL)) (-1709 (((-612 $) $) NIL) (((-566) $) NIL) (((-409 (-566)) $) 55)) (-2925 (($ $ $) NIL)) (-2275 (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL) (((-689 (-566)) (-689 $)) NIL) (((-2 (|:| -4196 (-689 (-409 (-566)))) (|:| |vec| (-1264 (-409 (-566))))) (-689 $) (-1264 $)) NIL) (((-689 (-409 (-566))) (-689 $)) NIL)) (-1838 (($ $) NIL)) (-3757 (((-3 $ "failed") $) NIL)) (-2937 (($ $ $) NIL)) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) NIL)) (-4188 (((-112) $) NIL)) (-4218 (($ $) NIL) (($ (-644 $)) NIL)) (-3909 (((-644 (-114)) $) NIL)) (-4272 (((-114) (-114)) NIL)) (-2264 (((-112) $) 42)) (-3400 (((-112) $) NIL (|has| $ (-1038 (-566))))) (-4157 (((-1124 (-566) (-612 $)) $) 37)) (-3146 (($ $ (-566)) NIL)) (-1398 (((-1171 $) (-1171 $) (-612 $)) 87) (((-1171 $) (-1171 $) (-644 (-612 $))) 62) (($ $ (-612 $)) 76) (($ $ (-644 (-612 $))) 77)) (-2495 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3223 (((-1171 $) (-612 $)) 74 (|has| $ (-1049)))) (-3080 (($ (-1 $ $) (-612 $)) NIL)) (-3314 (((-3 (-612 $) "failed") $) NIL)) (-2120 (($ (-644 $)) NIL) (($ $ $) NIL)) (-3151 (((-1157) $) NIL)) (-2272 (((-644 (-612 $)) $) NIL)) (-3018 (($ (-114) $) NIL) (($ (-114) (-644 $)) NIL)) (-1896 (((-112) $ (-114)) NIL) (((-112) $ (-1175)) NIL)) (-2577 (($ $) NIL)) (-3117 (((-771) $) NIL)) (-4059 (((-1119) $) NIL)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2162 (($ (-644 $)) NIL) (($ $ $) NIL)) (-3897 (((-112) $ $) NIL) (((-112) $ (-1175)) NIL)) (-2325 (((-420 $) $) NIL)) (-2585 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL)) (-2976 (((-3 $ "failed") $ $) NIL)) (-2840 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2206 (((-112) $) NIL (|has| $ (-1038 (-566))))) (-3297 (($ $ (-612 $) $) NIL) (($ $ (-644 (-612 $)) (-644 $)) NIL) (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-644 (-1175)) (-644 (-1 $ $))) NIL) (($ $ (-644 (-1175)) (-644 (-1 $ (-644 $)))) NIL) (($ $ (-1175) (-1 $ (-644 $))) NIL) (($ $ (-1175) (-1 $ $)) NIL) (($ $ (-644 (-114)) (-644 (-1 $ $))) NIL) (($ $ (-644 (-114)) (-644 (-1 $ (-644 $)))) NIL) (($ $ (-114) (-1 $ (-644 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-1383 (((-771) $) NIL)) (-4376 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-644 $)) NIL)) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL)) (-3683 (($ $) NIL) (($ $ $) NIL)) (-3526 (($ $ (-771)) NIL) (($ $) 36)) (-4167 (((-1124 (-566) (-612 $)) $) 20)) (-2301 (($ $) NIL (|has| $ (-1049)))) (-3136 (((-381) $) 101) (((-225) $) 109) (((-169 (-381)) $) 117)) (-2479 (((-862) $) NIL) (($ (-612 $)) NIL) (($ (-409 (-566))) NIL) (($ $) NIL) (($ (-566)) NIL) (($ (-1124 (-566) (-612 $))) 21)) (-1558 (((-771)) NIL T CONST)) (-3749 (($ $) NIL) (($ (-644 $)) NIL)) (-1540 (((-112) (-114)) 93)) (-3900 (((-112) $ $) NIL)) (-1333 (((-112) $ $) NIL)) (-2446 (($) 10 T CONST)) (-2459 (($) 22 T CONST)) (-2834 (($ $ (-771)) NIL) (($ $) NIL)) (-2952 (((-112) $ $) 24)) (-3077 (($ $ $) 44)) (-3065 (($ $ $) NIL) (($ $) NIL)) (-3052 (($ $ $) NIL)) (** (($ $ (-409 (-566))) NIL) (($ $ (-566)) 48) (($ $ (-771)) NIL) (($ $ (-921)) NIL)) (* (($ (-409 (-566)) $) NIL) (($ $ (-409 (-566))) NIL) (($ $ $) 27) (($ (-566) $) NIL) (($ (-771) $) NIL) (($ (-921) $) NIL))) +(((-497) (-13 (-303) (-27) (-1038 (-566)) (-1038 (-409 (-566))) (-639 (-566)) (-1022) (-639 (-409 (-566))) (-147) (-614 (-169 (-381))) (-233) (-10 -8 (-15 -2479 ($ (-1124 (-566) (-612 $)))) (-15 -4157 ((-1124 (-566) (-612 $)) $)) (-15 -4167 ((-1124 (-566) (-612 $)) $)) (-15 -1838 ($ $)) (-15 -1442 ((-112) $ $)) (-15 -1398 ((-1171 $) (-1171 $) (-612 $))) (-15 -1398 ((-1171 $) (-1171 $) (-644 (-612 $)))) (-15 -1398 ($ $ (-612 $))) (-15 -1398 ($ $ (-644 (-612 $))))))) (T -497)) +((-2479 (*1 *1 *2) (-12 (-5 *2 (-1124 (-566) (-612 (-497)))) (-5 *1 (-497)))) (-4157 (*1 *2 *1) (-12 (-5 *2 (-1124 (-566) (-612 (-497)))) (-5 *1 (-497)))) (-4167 (*1 *2 *1) (-12 (-5 *2 (-1124 (-566) (-612 (-497)))) (-5 *1 (-497)))) (-1838 (*1 *1 *1) (-5 *1 (-497))) (-1442 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-497)))) (-1398 (*1 *2 *2 *3) (-12 (-5 *2 (-1171 (-497))) (-5 *3 (-612 (-497))) (-5 *1 (-497)))) (-1398 (*1 *2 *2 *3) (-12 (-5 *2 (-1171 (-497))) (-5 *3 (-644 (-612 (-497)))) (-5 *1 (-497)))) (-1398 (*1 *1 *1 *2) (-12 (-5 *2 (-612 (-497))) (-5 *1 (-497)))) (-1398 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-612 (-497)))) (-5 *1 (-497))))) +(-13 (-303) (-27) (-1038 (-566)) (-1038 (-409 (-566))) (-639 (-566)) (-1022) (-639 (-409 (-566))) (-147) (-614 (-169 (-381))) (-233) (-10 -8 (-15 -2479 ($ (-1124 (-566) (-612 $)))) (-15 -4157 ((-1124 (-566) (-612 $)) $)) (-15 -4167 ((-1124 (-566) (-612 $)) $)) (-15 -1838 ($ $)) (-15 -1442 ((-112) $ $)) (-15 -1398 ((-1171 $) (-1171 $) (-612 $))) (-15 -1398 ((-1171 $) (-1171 $) (-644 (-612 $)))) (-15 -1398 ($ $ (-612 $))) (-15 -1398 ($ $ (-644 (-612 $)))))) +((-2986 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2462 (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4418)))) (-4163 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-850)))) (-2893 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4418))) (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-850))))) (-1374 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-850)))) (-1453 (((-112) $ (-771)) NIL)) (-3901 ((|#1| $ (-566) |#1|) 47 (|has| $ (-6 -4418))) ((|#1| $ (-1231 (-566)) |#1|) NIL (|has| $ (-6 -4418)))) (-3543 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-1811 (($) NIL T CONST)) (-2273 (($ $) NIL (|has| $ (-6 -4418)))) (-3877 (($ $) NIL)) (-4111 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-2628 (($ |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-1838 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4417)))) (-3719 ((|#1| $ (-566) |#1|) 42 (|has| $ (-6 -4418)))) (-3653 ((|#1| $ (-566)) 41)) (-4000 (((-566) (-1 (-112) |#1|) $) NIL) (((-566) |#1| $) NIL (|has| |#1| (-1099))) (((-566) |#1| $ (-566)) NIL (|has| |#1| (-1099)))) (-3872 (((-644 |#1|) $) NIL (|has| $ (-6 -4417)))) (-4259 (($ (-771) |#1|) 21)) (-2756 (((-112) $ (-771)) NIL)) (-2755 (((-566) $) 17 (|has| (-566) (-850)))) (-1920 (($ $ $) NIL (|has| |#1| (-850)))) (-1330 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-850)))) (-4227 (((-644 |#1|) $) NIL (|has| $ (-6 -4417)))) (-1688 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-3831 (((-566) $) 44 (|has| (-566) (-850)))) (-3038 (($ $ $) NIL (|has| |#1| (-850)))) (-3708 (($ (-1 |#1| |#1|) $) 32 (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 38)) (-4106 (((-112) $ (-771)) NIL)) (-3151 (((-1157) $) NIL (|has| |#1| (-1099)))) (-4271 (($ |#1| $ (-566)) NIL) (($ $ $ (-566)) NIL)) (-3780 (((-644 (-566)) $) NIL)) (-1605 (((-112) (-566) $) NIL)) (-4059 (((-1119) $) NIL (|has| |#1| (-1099)))) (-4080 ((|#1| $) NIL (|has| (-566) (-850)))) (-2688 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4079 (($ $ |#1|) 15 (|has| $ (-6 -4418)))) (-3966 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1844 (((-112) $ $) NIL)) (-2210 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-4185 (((-644 |#1|) $) NIL)) (-2788 (((-112) $) NIL)) (-1737 (($) 19)) (-4376 ((|#1| $ (-566) |#1|) NIL) ((|#1| $ (-566)) 46) (($ $ (-1231 (-566))) NIL)) (-2139 (($ $ (-566)) NIL) (($ $ (-1231 (-566))) NIL)) (-4068 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-1438 (($ $ $ (-566)) NIL (|has| $ (-6 -4418)))) (-3924 (($ $) 13)) (-3136 (((-538) $) NIL (|has| |#1| (-614 (-538))))) (-2489 (($ (-644 |#1|)) 24)) (-3716 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-644 $)) NIL)) (-2479 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-3900 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3667 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-3019 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2990 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2952 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3004 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-850)))) (-3002 (((-771) $) 11 (|has| $ (-6 -4417))))) +(((-498 |#1| |#2|) (-19 |#1|) (-1214) (-566)) (T -498)) NIL (-19 |#1|) -((-2856 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-3442 (((-112) $ (-769)) NIL)) (-3841 ((|#1| $ (-564) (-564) |#1|) NIL)) (-2279 (($ $ (-564) (-496 |#1| |#3|)) NIL)) (-4184 (($ $ (-564) (-496 |#1| |#2|)) NIL)) (-2822 (($) NIL T CONST)) (-2794 (((-496 |#1| |#3|) $ (-564)) NIL)) (-3105 ((|#1| $ (-564) (-564) |#1|) NIL)) (-1804 ((|#1| $ (-564) (-564)) NIL)) (-2018 (((-642 |#1|) $) NIL)) (-3847 (((-769) $) NIL)) (-4233 (($ (-769) (-769) |#1|) NIL)) (-3857 (((-769) $) NIL)) (-3769 (((-112) $ (-769)) NIL)) (-2570 (((-564) $) NIL)) (-2269 (((-564) $) NIL)) (-3541 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2533 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-4164 (((-564) $) NIL)) (-2720 (((-564) $) NIL)) (-1857 (($ (-1 |#1| |#1|) $) NIL)) (-2947 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4145 (((-112) $ (-769)) NIL)) (-1778 (((-1155) $) NIL (|has| |#1| (-1097)))) (-3999 (((-1117) $) NIL (|has| |#1| (-1097)))) (-3826 (($ $ |#1|) NIL)) (-4094 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-2478 (((-112) $ $) NIL)) (-4109 (((-112) $) NIL)) (-2179 (($) NIL)) (-4369 ((|#1| $ (-564) (-564)) NIL) ((|#1| $ (-564) (-564) |#1|) NIL)) (-4010 (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-769) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3865 (($ $) NIL)) (-4342 (((-496 |#1| |#2|) $ (-564)) NIL)) (-2390 (((-860) $) NIL (|has| |#1| (-611 (-860))))) (-1600 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-3295 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2821 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2158 (((-769) $) NIL (|has| $ (-6 -4410))))) -(((-497 |#1| |#2| |#3|) (-57 |#1| (-496 |#1| |#3|) (-496 |#1| |#2|)) (-1212) (-564) (-564)) (T -497)) -NIL -(-57 |#1| (-496 |#1| |#3|) (-496 |#1| |#2|)) -((-3514 (((-642 (-2 (|:| -2131 (-687 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-687 |#2|)))) (-2 (|:| -2131 (-687 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-687 |#2|))) (-769) (-769)) 33)) (-2395 (((-642 (-1169 |#1|)) |#1| (-769) (-769) (-769)) 43)) (-2320 (((-2 (|:| -2131 (-687 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-687 |#2|))) (-642 |#3|) (-642 (-2 (|:| -2131 (-687 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-687 |#2|)))) (-769)) 111))) -(((-498 |#1| |#2| |#3|) (-10 -7 (-15 -2395 ((-642 (-1169 |#1|)) |#1| (-769) (-769) (-769))) (-15 -3514 ((-642 (-2 (|:| -2131 (-687 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-687 |#2|)))) (-2 (|:| -2131 (-687 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-687 |#2|))) (-769) (-769))) (-15 -2320 ((-2 (|:| -2131 (-687 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-687 |#2|))) (-642 |#3|) (-642 (-2 (|:| -2131 (-687 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-687 |#2|)))) (-769)))) (-349) (-1238 |#1|) (-1238 |#2|)) (T -498)) -((-2320 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-642 *8)) (-5 *4 (-642 (-2 (|:| -2131 (-687 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-687 *7))))) (-5 *5 (-769)) (-4 *8 (-1238 *7)) (-4 *7 (-1238 *6)) (-4 *6 (-349)) (-5 *2 (-2 (|:| -2131 (-687 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-687 *7)))) (-5 *1 (-498 *6 *7 *8)))) (-3514 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-769)) (-4 *5 (-349)) (-4 *6 (-1238 *5)) (-5 *2 (-642 (-2 (|:| -2131 (-687 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-687 *6))))) (-5 *1 (-498 *5 *6 *7)) (-5 *3 (-2 (|:| -2131 (-687 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-687 *6)))) (-4 *7 (-1238 *6)))) (-2395 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-769)) (-4 *3 (-349)) (-4 *5 (-1238 *3)) (-5 *2 (-642 (-1169 *3))) (-5 *1 (-498 *3 *5 *6)) (-4 *6 (-1238 *5))))) -(-10 -7 (-15 -2395 ((-642 (-1169 |#1|)) |#1| (-769) (-769) (-769))) (-15 -3514 ((-642 (-2 (|:| -2131 (-687 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-687 |#2|)))) (-2 (|:| -2131 (-687 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-687 |#2|))) (-769) (-769))) (-15 -2320 ((-2 (|:| -2131 (-687 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-687 |#2|))) (-642 |#3|) (-642 (-2 (|:| -2131 (-687 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-687 |#2|)))) (-769)))) -((-4322 (((-2 (|:| -2131 (-687 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-687 |#1|))) (-2 (|:| -2131 (-687 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-687 |#1|))) (-2 (|:| -2131 (-687 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-687 |#1|)))) 74)) (-2443 ((|#1| (-687 |#1|) |#1| (-769)) 27)) (-1986 (((-769) (-769) (-769)) 36)) (-1853 (((-687 |#1|) (-687 |#1|) (-687 |#1|)) 54)) (-2653 (((-687 |#1|) (-687 |#1|) (-687 |#1|) |#1|) 62) (((-687 |#1|) (-687 |#1|) (-687 |#1|)) 59)) (-3507 ((|#1| (-687 |#1|) (-687 |#1|) |#1| (-564)) 31)) (-1490 ((|#1| (-687 |#1|)) 18))) -(((-499 |#1| |#2| |#3|) (-10 -7 (-15 -1490 (|#1| (-687 |#1|))) (-15 -2443 (|#1| (-687 |#1|) |#1| (-769))) (-15 -3507 (|#1| (-687 |#1|) (-687 |#1|) |#1| (-564))) (-15 -1986 ((-769) (-769) (-769))) (-15 -2653 ((-687 |#1|) (-687 |#1|) (-687 |#1|))) (-15 -2653 ((-687 |#1|) (-687 |#1|) (-687 |#1|) |#1|)) (-15 -1853 ((-687 |#1|) (-687 |#1|) (-687 |#1|))) (-15 -4322 ((-2 (|:| -2131 (-687 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-687 |#1|))) (-2 (|:| -2131 (-687 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-687 |#1|))) (-2 (|:| -2131 (-687 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-687 |#1|)))))) (-13 (-307) (-10 -8 (-15 -3282 ((-418 $) $)))) (-1238 |#1|) (-409 |#1| |#2|)) (T -499)) -((-4322 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2131 (-687 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-687 *3)))) (-4 *3 (-13 (-307) (-10 -8 (-15 -3282 ((-418 $) $))))) (-4 *4 (-1238 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-1853 (*1 *2 *2 *2) (-12 (-5 *2 (-687 *3)) (-4 *3 (-13 (-307) (-10 -8 (-15 -3282 ((-418 $) $))))) (-4 *4 (-1238 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-2653 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-687 *3)) (-4 *3 (-13 (-307) (-10 -8 (-15 -3282 ((-418 $) $))))) (-4 *4 (-1238 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-2653 (*1 *2 *2 *2) (-12 (-5 *2 (-687 *3)) (-4 *3 (-13 (-307) (-10 -8 (-15 -3282 ((-418 $) $))))) (-4 *4 (-1238 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-1986 (*1 *2 *2 *2) (-12 (-5 *2 (-769)) (-4 *3 (-13 (-307) (-10 -8 (-15 -3282 ((-418 $) $))))) (-4 *4 (-1238 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-3507 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-687 *2)) (-5 *4 (-564)) (-4 *2 (-13 (-307) (-10 -8 (-15 -3282 ((-418 $) $))))) (-4 *5 (-1238 *2)) (-5 *1 (-499 *2 *5 *6)) (-4 *6 (-409 *2 *5)))) (-2443 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-687 *2)) (-5 *4 (-769)) (-4 *2 (-13 (-307) (-10 -8 (-15 -3282 ((-418 $) $))))) (-4 *5 (-1238 *2)) (-5 *1 (-499 *2 *5 *6)) (-4 *6 (-409 *2 *5)))) (-1490 (*1 *2 *3) (-12 (-5 *3 (-687 *2)) (-4 *4 (-1238 *2)) (-4 *2 (-13 (-307) (-10 -8 (-15 -3282 ((-418 $) $))))) (-5 *1 (-499 *2 *4 *5)) (-4 *5 (-409 *2 *4))))) -(-10 -7 (-15 -1490 (|#1| (-687 |#1|))) (-15 -2443 (|#1| (-687 |#1|) |#1| (-769))) (-15 -3507 (|#1| (-687 |#1|) (-687 |#1|) |#1| (-564))) (-15 -1986 ((-769) (-769) (-769))) (-15 -2653 ((-687 |#1|) (-687 |#1|) (-687 |#1|))) (-15 -2653 ((-687 |#1|) (-687 |#1|) (-687 |#1|) |#1|)) (-15 -1853 ((-687 |#1|) (-687 |#1|) (-687 |#1|))) (-15 -4322 ((-2 (|:| -2131 (-687 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-687 |#1|))) (-2 (|:| -2131 (-687 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-687 |#1|))) (-2 (|:| -2131 (-687 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-687 |#1|)))))) -((-2856 (((-112) $ $) NIL)) (-2866 (($ $) NIL)) (-2341 (($ $ $) 40)) (-3633 (((-1267) $ (-564) (-564)) NIL (|has| $ (-6 -4411)))) (-1824 (((-112) $) NIL (|has| (-112) (-848))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-3659 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-112) (-848)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4411)))) (-3191 (($ $) NIL (|has| (-112) (-848))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-3442 (((-112) $ (-769)) NIL)) (-3841 (((-112) $ (-1229 (-564)) (-112)) NIL (|has| $ (-6 -4411))) (((-112) $ (-564) (-112)) 42 (|has| $ (-6 -4411)))) (-3437 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4410)))) (-2822 (($) NIL T CONST)) (-1540 (($ $) NIL (|has| $ (-6 -4411)))) (-3817 (($ $) NIL)) (-4067 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-112) (-1097))))) (-2517 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4410))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-112) (-1097))))) (-3741 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4410))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4410))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4410)) (|has| (-112) (-1097))))) (-3105 (((-112) $ (-564) (-112)) NIL (|has| $ (-6 -4411)))) (-1804 (((-112) $ (-564)) NIL)) (-3942 (((-564) (-112) $ (-564)) NIL (|has| (-112) (-1097))) (((-564) (-112) $) NIL (|has| (-112) (-1097))) (((-564) (-1 (-112) (-112)) $) NIL)) (-2018 (((-642 (-112)) $) NIL (|has| $ (-6 -4410)))) (-2329 (($ $ $) 38)) (-2307 (($ $) NIL)) (-2002 (($ $ $) NIL)) (-4233 (($ (-769) (-112)) 27)) (-2159 (($ $ $) NIL)) (-3769 (((-112) $ (-769)) NIL)) (-1802 (((-564) $) 8 (|has| (-564) (-848)))) (-3225 (($ $ $) NIL)) (-2774 (($ $ $) NIL (|has| (-112) (-848))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-3541 (((-642 (-112)) $) NIL (|has| $ (-6 -4410)))) (-2533 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-112) (-1097))))) (-3624 (((-564) $) NIL (|has| (-564) (-848)))) (-2903 (($ $ $) NIL)) (-1857 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4411)))) (-2947 (($ (-1 (-112) (-112) (-112)) $ $) 35) (($ (-1 (-112) (-112)) $) NIL)) (-4145 (((-112) $ (-769)) NIL)) (-1778 (((-1155) $) NIL)) (-4247 (($ $ $ (-564)) NIL) (($ (-112) $ (-564)) NIL)) (-4107 (((-642 (-564)) $) NIL)) (-4207 (((-112) (-564) $) NIL)) (-3999 (((-1117) $) NIL)) (-4036 (((-112) $) NIL (|has| (-564) (-848)))) (-3183 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-3826 (($ $ (-112)) NIL (|has| $ (-6 -4411)))) (-4094 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-112)) (-642 (-112))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1097)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1097)))) (($ $ (-294 (-112))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1097)))) (($ $ (-642 (-294 (-112)))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1097))))) (-2478 (((-112) $ $) NIL)) (-1643 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-112) (-1097))))) (-3522 (((-642 (-112)) $) NIL)) (-4109 (((-112) $) NIL)) (-2179 (($) 28)) (-4369 (($ $ (-1229 (-564))) NIL) (((-112) $ (-564)) 22) (((-112) $ (-564) (-112)) NIL)) (-2083 (($ $ (-1229 (-564))) NIL) (($ $ (-564)) NIL)) (-4010 (((-769) (-112) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-112) (-1097)))) (((-769) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4410)))) (-3301 (($ $ $ (-564)) NIL (|has| $ (-6 -4411)))) (-3865 (($ $) 29)) (-3003 (((-536) $) NIL (|has| (-112) (-612 (-536))))) (-2401 (($ (-642 (-112))) NIL)) (-3634 (($ (-642 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-2390 (((-860) $) 26)) (-1600 (((-112) $ $) NIL)) (-3295 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4410)))) (-2317 (($ $ $) 36)) (-2915 (($ $ $) NIL)) (-2073 (($ $ $) 45)) (-2087 (($ $) 43)) (-2061 (($ $ $) 44)) (-2881 (((-112) $ $) NIL)) (-2857 (((-112) $ $) NIL)) (-2821 (((-112) $ $) 30)) (-2868 (((-112) $ $) NIL)) (-2844 (((-112) $ $) 31)) (-2902 (($ $ $) NIL)) (-2158 (((-769) $) 13 (|has| $ (-6 -4410))))) -(((-500 |#1|) (-13 (-123) (-10 -8 (-15 -2087 ($ $)) (-15 -2073 ($ $ $)) (-15 -2061 ($ $ $)))) (-564)) (T -500)) -((-2087 (*1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-564)))) (-2073 (*1 *1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-564)))) (-2061 (*1 *1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-564))))) -(-13 (-123) (-10 -8 (-15 -2087 ($ $)) (-15 -2073 ($ $ $)) (-15 -2061 ($ $ $)))) -((-3139 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1169 |#4|)) 35)) (-4015 (((-1169 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1169 |#4|)) 22)) (-3824 (((-3 (-687 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-687 (-1169 |#4|))) 49)) (-3066 (((-1169 (-1169 |#4|)) (-1 |#4| |#1|) |#3|) 58))) -(((-501 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4015 (|#2| (-1 |#1| |#4|) (-1169 |#4|))) (-15 -4015 ((-1169 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3139 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1169 |#4|))) (-15 -3824 ((-3 (-687 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-687 (-1169 |#4|)))) (-15 -3066 ((-1169 (-1169 |#4|)) (-1 |#4| |#1|) |#3|))) (-1047) (-1238 |#1|) (-1238 |#2|) (-1047)) (T -501)) -((-3066 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1047)) (-4 *7 (-1047)) (-4 *6 (-1238 *5)) (-5 *2 (-1169 (-1169 *7))) (-5 *1 (-501 *5 *6 *4 *7)) (-4 *4 (-1238 *6)))) (-3824 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-687 (-1169 *8))) (-4 *5 (-1047)) (-4 *8 (-1047)) (-4 *6 (-1238 *5)) (-5 *2 (-687 *6)) (-5 *1 (-501 *5 *6 *7 *8)) (-4 *7 (-1238 *6)))) (-3139 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1169 *7)) (-4 *5 (-1047)) (-4 *7 (-1047)) (-4 *2 (-1238 *5)) (-5 *1 (-501 *5 *2 *6 *7)) (-4 *6 (-1238 *2)))) (-4015 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1047)) (-4 *7 (-1047)) (-4 *4 (-1238 *5)) (-5 *2 (-1169 *7)) (-5 *1 (-501 *5 *4 *6 *7)) (-4 *6 (-1238 *4)))) (-4015 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1169 *7)) (-4 *5 (-1047)) (-4 *7 (-1047)) (-4 *2 (-1238 *5)) (-5 *1 (-501 *5 *2 *6 *7)) (-4 *6 (-1238 *2))))) -(-10 -7 (-15 -4015 (|#2| (-1 |#1| |#4|) (-1169 |#4|))) (-15 -4015 ((-1169 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3139 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1169 |#4|))) (-15 -3824 ((-3 (-687 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-687 (-1169 |#4|)))) (-15 -3066 ((-1169 (-1169 |#4|)) (-1 |#4| |#1|) |#3|))) -((-2856 (((-112) $ $) NIL)) (-3225 (($ $ $) NIL)) (-2903 (($ $ $) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2973 (((-1267) $) 25)) (-4369 (((-1155) $ (-1173)) 30)) (-1639 (((-1267) $) 17)) (-2390 (((-860) $) 27) (($ (-1155)) 26)) (-1600 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL)) (-2857 (((-112) $ $) NIL)) (-2821 (((-112) $ $) 11)) (-2868 (((-112) $ $) NIL)) (-2844 (((-112) $ $) 9))) -(((-502) (-13 (-848) (-10 -8 (-15 -4369 ((-1155) $ (-1173))) (-15 -1639 ((-1267) $)) (-15 -2973 ((-1267) $)) (-15 -2390 ($ (-1155)))))) (T -502)) -((-4369 (*1 *2 *1 *3) (-12 (-5 *3 (-1173)) (-5 *2 (-1155)) (-5 *1 (-502)))) (-1639 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-502)))) (-2973 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-502)))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-502))))) -(-13 (-848) (-10 -8 (-15 -4369 ((-1155) $ (-1173))) (-15 -1639 ((-1267) $)) (-15 -2973 ((-1267) $)) (-15 -2390 ($ (-1155))))) -((-1788 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-3508 ((|#1| |#4|) 10)) (-1581 ((|#3| |#4|) 17))) -(((-503 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3508 (|#1| |#4|)) (-15 -1581 (|#3| |#4|)) (-15 -1788 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-556) (-990 |#1|) (-373 |#1|) (-373 |#2|)) (T -503)) -((-1788 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-990 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-503 *4 *5 *6 *3)) (-4 *6 (-373 *4)) (-4 *3 (-373 *5)))) (-1581 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-990 *4)) (-4 *2 (-373 *4)) (-5 *1 (-503 *4 *5 *2 *3)) (-4 *3 (-373 *5)))) (-3508 (*1 *2 *3) (-12 (-4 *4 (-990 *2)) (-4 *2 (-556)) (-5 *1 (-503 *2 *4 *5 *3)) (-4 *5 (-373 *2)) (-4 *3 (-373 *4))))) -(-10 -7 (-15 -3508 (|#1| |#4|)) (-15 -1581 (|#3| |#4|)) (-15 -1788 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) -((-2856 (((-112) $ $) NIL)) (-4167 (((-112) $ (-642 |#3|)) 126) (((-112) $) 127)) (-2950 (((-112) $) 178)) (-1723 (($ $ |#4|) 117) (($ $ |#4| (-642 |#3|)) 121)) (-2870 (((-1162 (-642 (-950 |#1|)) (-642 (-294 (-950 |#1|)))) (-642 |#4|)) 171 (|has| |#3| (-612 (-1173))))) (-4332 (($ $ $) 105) (($ $ |#4|) 103)) (-3163 (((-112) $) 177)) (-1848 (($ $) 131)) (-1778 (((-1155) $) NIL)) (-2338 (($ $ $) 97) (($ (-642 $)) 99)) (-1499 (((-112) |#4| $) 129)) (-3284 (((-112) $ $) 82)) (-1574 (($ (-642 |#4|)) 104)) (-3999 (((-1117) $) NIL)) (-1394 (($ (-642 |#4|)) 175)) (-1873 (((-112) $) 176)) (-2079 (($ $) 85)) (-3475 (((-642 |#4|) $) 73)) (-3245 (((-2 (|:| |mval| (-687 |#1|)) (|:| |invmval| (-687 |#1|)) (|:| |genIdeal| $)) $ (-642 |#3|)) NIL)) (-2166 (((-112) |#4| $) 89)) (-3677 (((-564) $ (-642 |#3|)) 133) (((-564) $) 134)) (-2390 (((-860) $) 174) (($ (-642 |#4|)) 100)) (-1600 (((-112) $ $) NIL)) (-2064 (($ (-2 (|:| |mval| (-687 |#1|)) (|:| |invmval| (-687 |#1|)) (|:| |genIdeal| $))) NIL)) (-2821 (((-112) $ $) 84)) (-2917 (($ $ $) 107)) (** (($ $ (-769)) 115)) (* (($ $ $) 113))) -(((-504 |#1| |#2| |#3| |#4|) (-13 (-1097) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-769))) (-15 -2917 ($ $ $)) (-15 -3163 ((-112) $)) (-15 -2950 ((-112) $)) (-15 -2166 ((-112) |#4| $)) (-15 -3284 ((-112) $ $)) (-15 -1499 ((-112) |#4| $)) (-15 -4167 ((-112) $ (-642 |#3|))) (-15 -4167 ((-112) $)) (-15 -2338 ($ $ $)) (-15 -2338 ($ (-642 $))) (-15 -4332 ($ $ $)) (-15 -4332 ($ $ |#4|)) (-15 -2079 ($ $)) (-15 -3245 ((-2 (|:| |mval| (-687 |#1|)) (|:| |invmval| (-687 |#1|)) (|:| |genIdeal| $)) $ (-642 |#3|))) (-15 -2064 ($ (-2 (|:| |mval| (-687 |#1|)) (|:| |invmval| (-687 |#1|)) (|:| |genIdeal| $)))) (-15 -3677 ((-564) $ (-642 |#3|))) (-15 -3677 ((-564) $)) (-15 -1848 ($ $)) (-15 -1574 ($ (-642 |#4|))) (-15 -1394 ($ (-642 |#4|))) (-15 -1873 ((-112) $)) (-15 -3475 ((-642 |#4|) $)) (-15 -2390 ($ (-642 |#4|))) (-15 -1723 ($ $ |#4|)) (-15 -1723 ($ $ |#4| (-642 |#3|))) (IF (|has| |#3| (-612 (-1173))) (-15 -2870 ((-1162 (-642 (-950 |#1|)) (-642 (-294 (-950 |#1|)))) (-642 |#4|))) |%noBranch|))) (-363) (-791) (-848) (-947 |#1| |#2| |#3|)) (T -504)) -((* (*1 *1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-791)) (-4 *4 (-848)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-947 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-4 *3 (-363)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-947 *3 *4 *5)))) (-2917 (*1 *1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-791)) (-4 *4 (-848)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-947 *2 *3 *4)))) (-3163 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-112)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-947 *3 *4 *5)))) (-2950 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-112)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-947 *3 *4 *5)))) (-2166 (*1 *2 *3 *1) (-12 (-4 *4 (-363)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112)) (-5 *1 (-504 *4 *5 *6 *3)) (-4 *3 (-947 *4 *5 *6)))) (-3284 (*1 *2 *1 *1) (-12 (-4 *3 (-363)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-112)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-947 *3 *4 *5)))) (-1499 (*1 *2 *3 *1) (-12 (-4 *4 (-363)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112)) (-5 *1 (-504 *4 *5 *6 *3)) (-4 *3 (-947 *4 *5 *6)))) (-4167 (*1 *2 *1 *3) (-12 (-5 *3 (-642 *6)) (-4 *6 (-848)) (-4 *4 (-363)) (-4 *5 (-791)) (-5 *2 (-112)) (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-947 *4 *5 *6)))) (-4167 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-112)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-947 *3 *4 *5)))) (-2338 (*1 *1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-791)) (-4 *4 (-848)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-947 *2 *3 *4)))) (-2338 (*1 *1 *2) (-12 (-5 *2 (-642 (-504 *3 *4 *5 *6))) (-4 *3 (-363)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-947 *3 *4 *5)))) (-4332 (*1 *1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-791)) (-4 *4 (-848)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-947 *2 *3 *4)))) (-4332 (*1 *1 *1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-504 *3 *4 *5 *2)) (-4 *2 (-947 *3 *4 *5)))) (-2079 (*1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-791)) (-4 *4 (-848)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-947 *2 *3 *4)))) (-3245 (*1 *2 *1 *3) (-12 (-5 *3 (-642 *6)) (-4 *6 (-848)) (-4 *4 (-363)) (-4 *5 (-791)) (-5 *2 (-2 (|:| |mval| (-687 *4)) (|:| |invmval| (-687 *4)) (|:| |genIdeal| (-504 *4 *5 *6 *7)))) (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-947 *4 *5 *6)))) (-2064 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-687 *3)) (|:| |invmval| (-687 *3)) (|:| |genIdeal| (-504 *3 *4 *5 *6)))) (-4 *3 (-363)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-947 *3 *4 *5)))) (-3677 (*1 *2 *1 *3) (-12 (-5 *3 (-642 *6)) (-4 *6 (-848)) (-4 *4 (-363)) (-4 *5 (-791)) (-5 *2 (-564)) (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-947 *4 *5 *6)))) (-3677 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-564)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-947 *3 *4 *5)))) (-1848 (*1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-791)) (-4 *4 (-848)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-947 *2 *3 *4)))) (-1574 (*1 *1 *2) (-12 (-5 *2 (-642 *6)) (-4 *6 (-947 *3 *4 *5)) (-4 *3 (-363)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-504 *3 *4 *5 *6)))) (-1394 (*1 *1 *2) (-12 (-5 *2 (-642 *6)) (-4 *6 (-947 *3 *4 *5)) (-4 *3 (-363)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-504 *3 *4 *5 *6)))) (-1873 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-112)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-947 *3 *4 *5)))) (-3475 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-642 *6)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-947 *3 *4 *5)))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-642 *6)) (-4 *6 (-947 *3 *4 *5)) (-4 *3 (-363)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-504 *3 *4 *5 *6)))) (-1723 (*1 *1 *1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-504 *3 *4 *5 *2)) (-4 *2 (-947 *3 *4 *5)))) (-1723 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-642 *6)) (-4 *6 (-848)) (-4 *4 (-363)) (-4 *5 (-791)) (-5 *1 (-504 *4 *5 *6 *2)) (-4 *2 (-947 *4 *5 *6)))) (-2870 (*1 *2 *3) (-12 (-5 *3 (-642 *7)) (-4 *7 (-947 *4 *5 *6)) (-4 *6 (-612 (-1173))) (-4 *4 (-363)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-1162 (-642 (-950 *4)) (-642 (-294 (-950 *4))))) (-5 *1 (-504 *4 *5 *6 *7))))) -(-13 (-1097) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-769))) (-15 -2917 ($ $ $)) (-15 -3163 ((-112) $)) (-15 -2950 ((-112) $)) (-15 -2166 ((-112) |#4| $)) (-15 -3284 ((-112) $ $)) (-15 -1499 ((-112) |#4| $)) (-15 -4167 ((-112) $ (-642 |#3|))) (-15 -4167 ((-112) $)) (-15 -2338 ($ $ $)) (-15 -2338 ($ (-642 $))) (-15 -4332 ($ $ $)) (-15 -4332 ($ $ |#4|)) (-15 -2079 ($ $)) (-15 -3245 ((-2 (|:| |mval| (-687 |#1|)) (|:| |invmval| (-687 |#1|)) (|:| |genIdeal| $)) $ (-642 |#3|))) (-15 -2064 ($ (-2 (|:| |mval| (-687 |#1|)) (|:| |invmval| (-687 |#1|)) (|:| |genIdeal| $)))) (-15 -3677 ((-564) $ (-642 |#3|))) (-15 -3677 ((-564) $)) (-15 -1848 ($ $)) (-15 -1574 ($ (-642 |#4|))) (-15 -1394 ($ (-642 |#4|))) (-15 -1873 ((-112) $)) (-15 -3475 ((-642 |#4|) $)) (-15 -2390 ($ (-642 |#4|))) (-15 -1723 ($ $ |#4|)) (-15 -1723 ($ $ |#4| (-642 |#3|))) (IF (|has| |#3| (-612 (-1173))) (-15 -2870 ((-1162 (-642 (-950 |#1|)) (-642 (-294 (-950 |#1|)))) (-642 |#4|))) |%noBranch|))) -((-2019 (((-112) (-504 (-407 (-564)) (-240 |#2| (-769)) (-862 |#1|) (-247 |#1| (-407 (-564))))) 176)) (-1379 (((-112) (-504 (-407 (-564)) (-240 |#2| (-769)) (-862 |#1|) (-247 |#1| (-407 (-564))))) 177)) (-2591 (((-504 (-407 (-564)) (-240 |#2| (-769)) (-862 |#1|) (-247 |#1| (-407 (-564)))) (-504 (-407 (-564)) (-240 |#2| (-769)) (-862 |#1|) (-247 |#1| (-407 (-564))))) 129)) (-3552 (((-112) (-504 (-407 (-564)) (-240 |#2| (-769)) (-862 |#1|) (-247 |#1| (-407 (-564))))) NIL)) (-2548 (((-642 (-504 (-407 (-564)) (-240 |#2| (-769)) (-862 |#1|) (-247 |#1| (-407 (-564))))) (-504 (-407 (-564)) (-240 |#2| (-769)) (-862 |#1|) (-247 |#1| (-407 (-564))))) 179)) (-1542 (((-504 (-407 (-564)) (-240 |#2| (-769)) (-862 |#1|) (-247 |#1| (-407 (-564)))) (-504 (-407 (-564)) (-240 |#2| (-769)) (-862 |#1|) (-247 |#1| (-407 (-564)))) (-642 (-862 |#1|))) 195))) -(((-505 |#1| |#2|) (-10 -7 (-15 -2019 ((-112) (-504 (-407 (-564)) (-240 |#2| (-769)) (-862 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -1379 ((-112) (-504 (-407 (-564)) (-240 |#2| (-769)) (-862 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -3552 ((-112) (-504 (-407 (-564)) (-240 |#2| (-769)) (-862 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -2591 ((-504 (-407 (-564)) (-240 |#2| (-769)) (-862 |#1|) (-247 |#1| (-407 (-564)))) (-504 (-407 (-564)) (-240 |#2| (-769)) (-862 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -2548 ((-642 (-504 (-407 (-564)) (-240 |#2| (-769)) (-862 |#1|) (-247 |#1| (-407 (-564))))) (-504 (-407 (-564)) (-240 |#2| (-769)) (-862 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -1542 ((-504 (-407 (-564)) (-240 |#2| (-769)) (-862 |#1|) (-247 |#1| (-407 (-564)))) (-504 (-407 (-564)) (-240 |#2| (-769)) (-862 |#1|) (-247 |#1| (-407 (-564)))) (-642 (-862 |#1|))))) (-642 (-1173)) (-769)) (T -505)) -((-1542 (*1 *2 *2 *3) (-12 (-5 *2 (-504 (-407 (-564)) (-240 *5 (-769)) (-862 *4) (-247 *4 (-407 (-564))))) (-5 *3 (-642 (-862 *4))) (-14 *4 (-642 (-1173))) (-14 *5 (-769)) (-5 *1 (-505 *4 *5)))) (-2548 (*1 *2 *3) (-12 (-14 *4 (-642 (-1173))) (-14 *5 (-769)) (-5 *2 (-642 (-504 (-407 (-564)) (-240 *5 (-769)) (-862 *4) (-247 *4 (-407 (-564)))))) (-5 *1 (-505 *4 *5)) (-5 *3 (-504 (-407 (-564)) (-240 *5 (-769)) (-862 *4) (-247 *4 (-407 (-564))))))) (-2591 (*1 *2 *2) (-12 (-5 *2 (-504 (-407 (-564)) (-240 *4 (-769)) (-862 *3) (-247 *3 (-407 (-564))))) (-14 *3 (-642 (-1173))) (-14 *4 (-769)) (-5 *1 (-505 *3 *4)))) (-3552 (*1 *2 *3) (-12 (-5 *3 (-504 (-407 (-564)) (-240 *5 (-769)) (-862 *4) (-247 *4 (-407 (-564))))) (-14 *4 (-642 (-1173))) (-14 *5 (-769)) (-5 *2 (-112)) (-5 *1 (-505 *4 *5)))) (-1379 (*1 *2 *3) (-12 (-5 *3 (-504 (-407 (-564)) (-240 *5 (-769)) (-862 *4) (-247 *4 (-407 (-564))))) (-14 *4 (-642 (-1173))) (-14 *5 (-769)) (-5 *2 (-112)) (-5 *1 (-505 *4 *5)))) (-2019 (*1 *2 *3) (-12 (-5 *3 (-504 (-407 (-564)) (-240 *5 (-769)) (-862 *4) (-247 *4 (-407 (-564))))) (-14 *4 (-642 (-1173))) (-14 *5 (-769)) (-5 *2 (-112)) (-5 *1 (-505 *4 *5))))) -(-10 -7 (-15 -2019 ((-112) (-504 (-407 (-564)) (-240 |#2| (-769)) (-862 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -1379 ((-112) (-504 (-407 (-564)) (-240 |#2| (-769)) (-862 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -3552 ((-112) (-504 (-407 (-564)) (-240 |#2| (-769)) (-862 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -2591 ((-504 (-407 (-564)) (-240 |#2| (-769)) (-862 |#1|) (-247 |#1| (-407 (-564)))) (-504 (-407 (-564)) (-240 |#2| (-769)) (-862 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -2548 ((-642 (-504 (-407 (-564)) (-240 |#2| (-769)) (-862 |#1|) (-247 |#1| (-407 (-564))))) (-504 (-407 (-564)) (-240 |#2| (-769)) (-862 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -1542 ((-504 (-407 (-564)) (-240 |#2| (-769)) (-862 |#1|) (-247 |#1| (-407 (-564)))) (-504 (-407 (-564)) (-240 |#2| (-769)) (-862 |#1|) (-247 |#1| (-407 (-564)))) (-642 (-862 |#1|))))) -((-2856 (((-112) $ $) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-1460 (($) 6)) (-2390 (((-860) $) 12) (((-1173) $) 10)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) 8))) -(((-506) (-13 (-1097) (-611 (-1173)) (-10 -8 (-15 -1460 ($))))) (T -506)) -((-1460 (*1 *1) (-5 *1 (-506)))) -(-13 (-1097) (-611 (-1173)) (-10 -8 (-15 -1460 ($)))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-3085 (((-3 $ "failed") $ $) NIL)) (-2822 (($) NIL T CONST)) (-3459 (($ $) NIL)) (-2374 (($ |#1| |#2|) NIL)) (-2947 (($ (-1 |#1| |#1|) $) NIL)) (-2357 ((|#2| $) NIL)) (-2523 ((|#1| $) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) NIL)) (-1600 (((-112) $ $) NIL)) (-2361 (($) 12 T CONST)) (-2821 (((-112) $ $) NIL)) (-2930 (($ $) 11) (($ $ $) 35)) (-2917 (($ $ $) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 21))) -(((-507 |#1| |#2|) (-13 (-21) (-509 |#1| |#2|)) (-21) (-848)) (T -507)) -NIL -(-13 (-21) (-509 |#1| |#2|)) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) 13)) (-2822 (($) NIL T CONST)) (-3459 (($ $) 41)) (-2374 (($ |#1| |#2|) 38)) (-2947 (($ (-1 |#1| |#1|) $) 40)) (-2357 ((|#2| $) NIL)) (-2523 ((|#1| $) 42)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) NIL)) (-1600 (((-112) $ $) NIL)) (-2361 (($) 10 T CONST)) (-2821 (((-112) $ $) NIL)) (-2917 (($ $ $) 26)) (* (($ (-919) $) NIL) (($ (-769) $) 36))) -(((-508 |#1| |#2|) (-13 (-23) (-509 |#1| |#2|)) (-23) (-848)) (T -508)) -NIL -(-13 (-23) (-509 |#1| |#2|)) -((-2856 (((-112) $ $) 7)) (-3459 (($ $) 14)) (-2374 (($ |#1| |#2|) 17)) (-2947 (($ (-1 |#1| |#1|) $) 18)) (-2357 ((|#2| $) 15)) (-2523 ((|#1| $) 16)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2390 (((-860) $) 12)) (-1600 (((-112) $ $) 9)) (-2821 (((-112) $ $) 6))) -(((-509 |#1| |#2|) (-140) (-1097) (-848)) (T -509)) -((-2947 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-509 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-848)))) (-2374 (*1 *1 *2 *3) (-12 (-4 *1 (-509 *2 *3)) (-4 *2 (-1097)) (-4 *3 (-848)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-509 *2 *3)) (-4 *3 (-848)) (-4 *2 (-1097)))) (-2357 (*1 *2 *1) (-12 (-4 *1 (-509 *3 *2)) (-4 *3 (-1097)) (-4 *2 (-848)))) (-3459 (*1 *1 *1) (-12 (-4 *1 (-509 *2 *3)) (-4 *2 (-1097)) (-4 *3 (-848))))) -(-13 (-1097) (-10 -8 (-15 -2947 ($ (-1 |t#1| |t#1|) $)) (-15 -2374 ($ |t#1| |t#2|)) (-15 -2523 (|t#1| $)) (-15 -2357 (|t#2| $)) (-15 -3459 ($ $)))) -(((-102) . T) ((-611 (-860)) . T) ((-1097) . T)) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-2822 (($) NIL T CONST)) (-3459 (($ $) NIL)) (-2374 (($ |#1| |#2|) NIL)) (-3225 (($ $ $) NIL)) (-2903 (($ $ $) NIL)) (-2947 (($ (-1 |#1| |#1|) $) NIL)) (-2357 ((|#2| $) NIL)) (-2523 ((|#1| $) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) NIL)) (-1600 (((-112) $ $) NIL)) (-2361 (($) NIL T CONST)) (-2881 (((-112) $ $) NIL)) (-2857 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL)) (-2868 (((-112) $ $) NIL)) (-2844 (((-112) $ $) 22)) (-2917 (($ $ $) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL))) -(((-510 |#1| |#2|) (-13 (-790) (-509 |#1| |#2|)) (-790) (-848)) (T -510)) -NIL -(-13 (-790) (-509 |#1| |#2|)) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-2247 (($ $ $) 23)) (-3085 (((-3 $ "failed") $ $) 19)) (-2822 (($) NIL T CONST)) (-3459 (($ $) NIL)) (-2374 (($ |#1| |#2|) NIL)) (-3225 (($ $ $) NIL)) (-2903 (($ $ $) NIL)) (-2947 (($ (-1 |#1| |#1|) $) NIL)) (-2357 ((|#2| $) NIL)) (-2523 ((|#1| $) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) NIL)) (-1600 (((-112) $ $) NIL)) (-2361 (($) NIL T CONST)) (-2881 (((-112) $ $) NIL)) (-2857 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL)) (-2868 (((-112) $ $) NIL)) (-2844 (((-112) $ $) NIL)) (-2917 (($ $ $) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL))) -(((-511 |#1| |#2|) (-13 (-791) (-509 |#1| |#2|)) (-791) (-848)) (T -511)) -NIL -(-13 (-791) (-509 |#1| |#2|)) -((-2856 (((-112) $ $) NIL)) (-3459 (($ $) 32)) (-2374 (($ |#1| |#2|) 28)) (-2947 (($ (-1 |#1| |#1|) $) 30)) (-2357 ((|#2| $) 34)) (-2523 ((|#1| $) 33)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) 27)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) 20))) -(((-512 |#1| |#2|) (-509 |#1| |#2|) (-1097) (-848)) (T -512)) -NIL -(-509 |#1| |#2|) -((-3154 (($ $ (-642 |#2|) (-642 |#3|)) NIL) (($ $ |#2| |#3|) 12))) -(((-513 |#1| |#2| |#3|) (-10 -8 (-15 -3154 (|#1| |#1| |#2| |#3|)) (-15 -3154 (|#1| |#1| (-642 |#2|) (-642 |#3|)))) (-514 |#2| |#3|) (-1097) (-1212)) (T -513)) -NIL -(-10 -8 (-15 -3154 (|#1| |#1| |#2| |#3|)) (-15 -3154 (|#1| |#1| (-642 |#2|) (-642 |#3|)))) -((-3154 (($ $ (-642 |#1|) (-642 |#2|)) 7) (($ $ |#1| |#2|) 6))) -(((-514 |#1| |#2|) (-140) (-1097) (-1212)) (T -514)) -((-3154 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-642 *4)) (-5 *3 (-642 *5)) (-4 *1 (-514 *4 *5)) (-4 *4 (-1097)) (-4 *5 (-1212)))) (-3154 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-514 *2 *3)) (-4 *2 (-1097)) (-4 *3 (-1212))))) -(-13 (-10 -8 (-15 -3154 ($ $ |t#1| |t#2|)) (-15 -3154 ($ $ (-642 |t#1|) (-642 |t#2|))))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) 17)) (-4077 (((-642 (-2 (|:| |gen| |#1|) (|:| -3466 |#2|))) $) 19)) (-3085 (((-3 $ "failed") $ $) NIL)) (-4003 (((-769) $) NIL)) (-2822 (($) NIL T CONST)) (-2849 (((-3 |#1| "failed") $) NIL)) (-1687 ((|#1| $) NIL)) (-3631 ((|#1| $ (-564)) 24)) (-1464 ((|#2| $ (-564)) 22)) (-1860 (($ (-1 |#1| |#1|) $) 48)) (-2705 (($ (-1 |#2| |#2|) $) 45)) (-1778 (((-1155) $) NIL)) (-2470 (($ $ $) 55 (|has| |#2| (-790)))) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) 44) (($ |#1|) NIL)) (-3005 ((|#2| |#1| $) 51)) (-1600 (((-112) $ $) NIL)) (-2361 (($) 11 T CONST)) (-2821 (((-112) $ $) 30)) (-2917 (($ $ $) 28) (($ |#1| $) 26)) (* (($ (-919) $) NIL) (($ (-769) $) 37) (($ |#2| |#1|) 32))) -(((-515 |#1| |#2| |#3|) (-323 |#1| |#2|) (-1097) (-131) |#2|) (T -515)) -NIL -(-323 |#1| |#2|) -((-2856 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-3633 (((-1267) $ (-564) (-564)) NIL (|has| $ (-6 -4411)))) (-1824 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-848)))) (-3659 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4411))) (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-848))))) (-3191 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-848)))) (-3442 (((-112) $ (-769)) NIL)) (-1624 (((-112) (-112)) 32)) (-3841 ((|#1| $ (-564) |#1|) 42 (|has| $ (-6 -4411))) ((|#1| $ (-1229 (-564)) |#1|) NIL (|has| $ (-6 -4411)))) (-2438 (($ (-1 (-112) |#1|) $) 80)) (-3437 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2822 (($) NIL T CONST)) (-1540 (($ $) NIL (|has| $ (-6 -4411)))) (-3817 (($ $) NIL)) (-2324 (($ $) 84 (|has| |#1| (-1097)))) (-4067 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-1927 (($ |#1| $) NIL (|has| |#1| (-1097))) (($ (-1 (-112) |#1|) $) 67)) (-2517 (($ |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3741 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4410)))) (-3105 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4411)))) (-1804 ((|#1| $ (-564)) NIL)) (-3942 (((-564) (-1 (-112) |#1|) $) NIL) (((-564) |#1| $) NIL (|has| |#1| (-1097))) (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1097)))) (-1321 (($ $ (-564)) 19)) (-1909 (((-769) $) 13)) (-2018 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-4233 (($ (-769) |#1|) 31)) (-3769 (((-112) $ (-769)) NIL)) (-1802 (((-564) $) 29 (|has| (-564) (-848)))) (-3225 (($ $ $) NIL (|has| |#1| (-848)))) (-4096 (($ $ $) NIL (|has| |#1| (-848))) (($ (-1 (-112) |#1| |#1|) $ $) 58)) (-2774 (($ (-1 (-112) |#1| |#1|) $ $) 59) (($ $ $) NIL (|has| |#1| (-848)))) (-3541 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2533 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3624 (((-564) $) 28 (|has| (-564) (-848)))) (-2903 (($ $ $) NIL (|has| |#1| (-848)))) (-1857 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4145 (((-112) $ (-769)) NIL)) (-1778 (((-1155) $) NIL (|has| |#1| (-1097)))) (-1668 (($ $ $ (-564)) 76) (($ |#1| $ (-564)) 60)) (-4247 (($ |#1| $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-4107 (((-642 (-564)) $) NIL)) (-4207 (((-112) (-564) $) NIL)) (-3999 (((-1117) $) NIL (|has| |#1| (-1097)))) (-3440 (($ (-642 |#1|)) 43)) (-4036 ((|#1| $) NIL (|has| (-564) (-848)))) (-3183 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3826 (($ $ |#1|) 24 (|has| $ (-6 -4411)))) (-4094 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-2478 (((-112) $ $) 63)) (-1643 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3522 (((-642 |#1|) $) NIL)) (-4109 (((-112) $) NIL)) (-2179 (($) 21)) (-4369 ((|#1| $ (-564) |#1|) NIL) ((|#1| $ (-564)) 56) (($ $ (-1229 (-564))) NIL)) (-1406 (($ $ (-1229 (-564))) 74) (($ $ (-564)) 68)) (-2083 (($ $ (-564)) NIL) (($ $ (-1229 (-564))) NIL)) (-4010 (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-769) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3301 (($ $ $ (-564)) 64 (|has| $ (-6 -4411)))) (-3865 (($ $) 54)) (-3003 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-2401 (($ (-642 |#1|)) NIL)) (-2766 (($ $ $) 65) (($ $ |#1|) 62)) (-3634 (($ $ |#1|) NIL) (($ |#1| $) 61) (($ $ $) NIL) (($ (-642 $)) NIL)) (-2390 (((-860) $) NIL (|has| |#1| (-611 (-860))))) (-1600 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-3295 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2881 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2857 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2821 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2868 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2844 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2158 (((-769) $) 22 (|has| $ (-6 -4410))))) -(((-516 |#1| |#2|) (-13 (-19 |#1|) (-282 |#1|) (-10 -8 (-15 -3440 ($ (-642 |#1|))) (-15 -1909 ((-769) $)) (-15 -1321 ($ $ (-564))) (-15 -1624 ((-112) (-112))))) (-1212) (-564)) (T -516)) -((-3440 (*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1212)) (-5 *1 (-516 *3 *4)) (-14 *4 (-564)))) (-1909 (*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1212)) (-14 *4 (-564)))) (-1321 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1212)) (-14 *4 *2))) (-1624 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1212)) (-14 *4 (-564))))) -(-13 (-19 |#1|) (-282 |#1|) (-10 -8 (-15 -3440 ($ (-642 |#1|))) (-15 -1909 ((-769) $)) (-15 -1321 ($ $ (-564))) (-15 -1624 ((-112) (-112))))) -((-2856 (((-112) $ $) NIL)) (-1325 (((-1132) $) 11)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-3496 (((-1132) $) 13)) (-1539 (((-1132) $) 9)) (-2390 (((-860) $) 19) (($ (-1178)) NIL) (((-1178) $) NIL)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-517) (-13 (-1080) (-10 -8 (-15 -1539 ((-1132) $)) (-15 -1325 ((-1132) $)) (-15 -3496 ((-1132) $))))) (T -517)) -((-1539 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-517)))) (-1325 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-517)))) (-3496 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-517))))) -(-13 (-1080) (-10 -8 (-15 -1539 ((-1132) $)) (-15 -1325 ((-1132) $)) (-15 -3496 ((-1132) $)))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-4252 (($ $) NIL)) (-1722 (((-112) $) NIL)) (-1792 (((-112) $) NIL)) (-1695 (((-769)) NIL)) (-3778 (((-581 |#1|) $) NIL) (($ $ (-919)) NIL (|has| (-581 |#1|) (-368)))) (-3651 (((-1185 (-919) (-769)) (-564)) NIL (|has| (-581 |#1|) (-368)))) (-3085 (((-3 $ "failed") $ $) NIL)) (-1993 (($ $) NIL)) (-3282 (((-418 $) $) NIL)) (-2134 (((-112) $ $) NIL)) (-4003 (((-769)) NIL (|has| (-581 |#1|) (-368)))) (-2822 (($) NIL T CONST)) (-2849 (((-3 (-581 |#1|) "failed") $) NIL)) (-1687 (((-581 |#1|) $) NIL)) (-4087 (($ (-1262 (-581 |#1|))) NIL)) (-2629 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-581 |#1|) (-368)))) (-2796 (($ $ $) NIL)) (-2675 (((-3 $ "failed") $) NIL)) (-3235 (($) NIL (|has| (-581 |#1|) (-368)))) (-2808 (($ $ $) NIL)) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) NIL)) (-1427 (($) NIL (|has| (-581 |#1|) (-368)))) (-4153 (((-112) $) NIL (|has| (-581 |#1|) (-368)))) (-1595 (($ $ (-769)) NIL (-2682 (|has| (-581 |#1|) (-145)) (|has| (-581 |#1|) (-368)))) (($ $) NIL (-2682 (|has| (-581 |#1|) (-145)) (|has| (-581 |#1|) (-368))))) (-3552 (((-112) $) NIL)) (-2408 (((-919) $) NIL (|has| (-581 |#1|) (-368))) (((-831 (-919)) $) NIL (-2682 (|has| (-581 |#1|) (-145)) (|has| (-581 |#1|) (-368))))) (-3163 (((-112) $) NIL)) (-2043 (($) NIL (|has| (-581 |#1|) (-368)))) (-1729 (((-112) $) NIL (|has| (-581 |#1|) (-368)))) (-2573 (((-581 |#1|) $) NIL) (($ $ (-919)) NIL (|has| (-581 |#1|) (-368)))) (-4382 (((-3 $ "failed") $) NIL (|has| (-581 |#1|) (-368)))) (-2709 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2076 (((-1169 (-581 |#1|)) $) NIL) (((-1169 $) $ (-919)) NIL (|has| (-581 |#1|) (-368)))) (-2535 (((-919) $) NIL (|has| (-581 |#1|) (-368)))) (-3607 (((-1169 (-581 |#1|)) $) NIL (|has| (-581 |#1|) (-368)))) (-2480 (((-1169 (-581 |#1|)) $) NIL (|has| (-581 |#1|) (-368))) (((-3 (-1169 (-581 |#1|)) "failed") $ $) NIL (|has| (-581 |#1|) (-368)))) (-2292 (($ $ (-1169 (-581 |#1|))) NIL (|has| (-581 |#1|) (-368)))) (-2066 (($ $ $) NIL) (($ (-642 $)) NIL)) (-1778 (((-1155) $) NIL)) (-2481 (($ $) NIL)) (-3910 (($) NIL (|has| (-581 |#1|) (-368)) CONST)) (-2065 (($ (-919)) NIL (|has| (-581 |#1|) (-368)))) (-1987 (((-112) $) NIL)) (-3999 (((-1117) $) NIL)) (-4043 (($) NIL (|has| (-581 |#1|) (-368)))) (-3464 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2105 (($ $ $) NIL) (($ (-642 $)) NIL)) (-4229 (((-642 (-2 (|:| -2254 (-564)) (|:| -2817 (-564))))) NIL (|has| (-581 |#1|) (-368)))) (-2254 (((-418 $) $) NIL)) (-1878 (((-831 (-919))) NIL) (((-919)) NIL)) (-1877 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2842 (((-3 $ "failed") $ $) NIL)) (-1483 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-4274 (((-769) $) NIL)) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL)) (-1354 (((-769) $) NIL (|has| (-581 |#1|) (-368))) (((-3 (-769) "failed") $ $) NIL (-2682 (|has| (-581 |#1|) (-145)) (|has| (-581 |#1|) (-368))))) (-3677 (((-134)) NIL)) (-2199 (($ $) NIL (|has| (-581 |#1|) (-368))) (($ $ (-769)) NIL (|has| (-581 |#1|) (-368)))) (-3252 (((-831 (-919)) $) NIL) (((-919) $) NIL)) (-1361 (((-1169 (-581 |#1|))) NIL)) (-3553 (($) NIL (|has| (-581 |#1|) (-368)))) (-2911 (($) NIL (|has| (-581 |#1|) (-368)))) (-3719 (((-1262 (-581 |#1|)) $) NIL) (((-687 (-581 |#1|)) (-1262 $)) NIL)) (-3556 (((-3 (-1262 $) "failed") (-687 $)) NIL (|has| (-581 |#1|) (-368)))) (-2390 (((-860) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-581 |#1|)) NIL)) (-3434 (($ $) NIL (|has| (-581 |#1|) (-368))) (((-3 $ "failed") $) NIL (-2682 (|has| (-581 |#1|) (-145)) (|has| (-581 |#1|) (-368))))) (-3348 (((-769)) NIL T CONST)) (-1600 (((-112) $ $) NIL)) (-2131 (((-1262 $)) NIL) (((-1262 $) (-919)) NIL)) (-1594 (((-112) $ $) NIL)) (-4127 (((-112) $) NIL)) (-2361 (($) NIL T CONST)) (-2371 (($) NIL T CONST)) (-1620 (($ $) NIL (|has| (-581 |#1|) (-368))) (($ $ (-769)) NIL (|has| (-581 |#1|) (-368)))) (-2711 (($ $) NIL (|has| (-581 |#1|) (-368))) (($ $ (-769)) NIL (|has| (-581 |#1|) (-368)))) (-2821 (((-112) $ $) NIL)) (-2943 (($ $ $) NIL) (($ $ (-581 |#1|)) NIL)) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ (-581 |#1|)) NIL) (($ (-581 |#1|) $) NIL))) -(((-518 |#1| |#2|) (-329 (-581 |#1|)) (-919) (-919)) (T -518)) -NIL -(-329 (-581 |#1|)) -((-2856 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-3442 (((-112) $ (-769)) NIL)) (-3841 ((|#1| $ (-564) (-564) |#1|) 51)) (-2279 (($ $ (-564) |#4|) NIL)) (-4184 (($ $ (-564) |#5|) NIL)) (-2822 (($) NIL T CONST)) (-2794 ((|#4| $ (-564)) NIL)) (-3105 ((|#1| $ (-564) (-564) |#1|) 50)) (-1804 ((|#1| $ (-564) (-564)) 45)) (-2018 (((-642 |#1|) $) NIL)) (-3847 (((-769) $) 33)) (-4233 (($ (-769) (-769) |#1|) 30)) (-3857 (((-769) $) 38)) (-3769 (((-112) $ (-769)) NIL)) (-2570 (((-564) $) 31)) (-2269 (((-564) $) 32)) (-3541 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2533 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-4164 (((-564) $) 37)) (-2720 (((-564) $) 39)) (-1857 (($ (-1 |#1| |#1|) $) NIL)) (-2947 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4145 (((-112) $ (-769)) NIL)) (-1778 (((-1155) $) 55 (|has| |#1| (-1097)))) (-3999 (((-1117) $) NIL (|has| |#1| (-1097)))) (-3826 (($ $ |#1|) NIL)) (-4094 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-2478 (((-112) $ $) NIL)) (-4109 (((-112) $) 14)) (-2179 (($) 16)) (-4369 ((|#1| $ (-564) (-564)) 48) ((|#1| $ (-564) (-564) |#1|) NIL)) (-4010 (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-769) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3865 (($ $) NIL)) (-4342 ((|#5| $ (-564)) NIL)) (-2390 (((-860) $) NIL (|has| |#1| (-611 (-860))))) (-1600 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-3295 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2821 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2158 (((-769) $) NIL (|has| $ (-6 -4410))))) -(((-519 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1212) (-564) (-564) (-373 |#1|) (-373 |#1|)) (T -519)) +((-2986 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1453 (((-112) $ (-771)) NIL)) (-3901 ((|#1| $ (-566) (-566) |#1|) NIL)) (-1679 (($ $ (-566) (-498 |#1| |#3|)) NIL)) (-2145 (($ $ (-566) (-498 |#1| |#2|)) NIL)) (-1811 (($) NIL T CONST)) (-3395 (((-498 |#1| |#3|) $ (-566)) NIL)) (-3719 ((|#1| $ (-566) (-566) |#1|) NIL)) (-3653 ((|#1| $ (-566) (-566)) NIL)) (-3872 (((-644 |#1|) $) NIL)) (-2541 (((-771) $) NIL)) (-4259 (($ (-771) (-771) |#1|) NIL)) (-2552 (((-771) $) NIL)) (-2756 (((-112) $ (-771)) NIL)) (-3715 (((-566) $) NIL)) (-1359 (((-566) $) NIL)) (-4227 (((-644 |#1|) $) NIL (|has| $ (-6 -4417)))) (-1688 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-3113 (((-566) $) NIL)) (-2701 (((-566) $) NIL)) (-3708 (($ (-1 |#1| |#1|) $) NIL)) (-3080 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4106 (((-112) $ (-771)) NIL)) (-3151 (((-1157) $) NIL (|has| |#1| (-1099)))) (-4059 (((-1119) $) NIL (|has| |#1| (-1099)))) (-4079 (($ $ |#1|) NIL)) (-3966 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1844 (((-112) $ $) NIL)) (-2788 (((-112) $) NIL)) (-1737 (($) NIL)) (-4376 ((|#1| $ (-566) (-566)) NIL) ((|#1| $ (-566) (-566) |#1|) NIL)) (-4068 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-3924 (($ $) NIL)) (-4327 (((-498 |#1| |#2|) $ (-566)) NIL)) (-2479 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-3900 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3667 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2952 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3002 (((-771) $) NIL (|has| $ (-6 -4417))))) +(((-499 |#1| |#2| |#3|) (-57 |#1| (-498 |#1| |#3|) (-498 |#1| |#2|)) (-1214) (-566) (-566)) (T -499)) +NIL +(-57 |#1| (-498 |#1| |#3|) (-498 |#1| |#2|)) +((-3638 (((-644 (-2 (|:| -1419 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|)))) (-2 (|:| -1419 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|))) (-771) (-771)) 33)) (-1448 (((-644 (-1171 |#1|)) |#1| (-771) (-771) (-771)) 43)) (-1300 (((-2 (|:| -1419 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|))) (-644 |#3|) (-644 (-2 (|:| -1419 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|)))) (-771)) 111))) +(((-500 |#1| |#2| |#3|) (-10 -7 (-15 -1448 ((-644 (-1171 |#1|)) |#1| (-771) (-771) (-771))) (-15 -3638 ((-644 (-2 (|:| -1419 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|)))) (-2 (|:| -1419 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|))) (-771) (-771))) (-15 -1300 ((-2 (|:| -1419 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|))) (-644 |#3|) (-644 (-2 (|:| -1419 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|)))) (-771)))) (-351) (-1240 |#1|) (-1240 |#2|)) (T -500)) +((-1300 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 (-2 (|:| -1419 (-689 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-689 *7))))) (-5 *5 (-771)) (-4 *8 (-1240 *7)) (-4 *7 (-1240 *6)) (-4 *6 (-351)) (-5 *2 (-2 (|:| -1419 (-689 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-689 *7)))) (-5 *1 (-500 *6 *7 *8)))) (-3638 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-771)) (-4 *5 (-351)) (-4 *6 (-1240 *5)) (-5 *2 (-644 (-2 (|:| -1419 (-689 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-689 *6))))) (-5 *1 (-500 *5 *6 *7)) (-5 *3 (-2 (|:| -1419 (-689 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-689 *6)))) (-4 *7 (-1240 *6)))) (-1448 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-771)) (-4 *3 (-351)) (-4 *5 (-1240 *3)) (-5 *2 (-644 (-1171 *3))) (-5 *1 (-500 *3 *5 *6)) (-4 *6 (-1240 *5))))) +(-10 -7 (-15 -1448 ((-644 (-1171 |#1|)) |#1| (-771) (-771) (-771))) (-15 -3638 ((-644 (-2 (|:| -1419 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|)))) (-2 (|:| -1419 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|))) (-771) (-771))) (-15 -1300 ((-2 (|:| -1419 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|))) (-644 |#3|) (-644 (-2 (|:| -1419 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|)))) (-771)))) +((-3428 (((-2 (|:| -1419 (-689 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-689 |#1|))) (-2 (|:| -1419 (-689 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-689 |#1|))) (-2 (|:| -1419 (-689 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-689 |#1|)))) 74)) (-2265 ((|#1| (-689 |#1|) |#1| (-771)) 27)) (-1326 (((-771) (-771) (-771)) 36)) (-2148 (((-689 |#1|) (-689 |#1|) (-689 |#1|)) 54)) (-2866 (((-689 |#1|) (-689 |#1|) (-689 |#1|) |#1|) 62) (((-689 |#1|) (-689 |#1|) (-689 |#1|)) 59)) (-3152 ((|#1| (-689 |#1|) (-689 |#1|) |#1| (-566)) 31)) (-4110 ((|#1| (-689 |#1|)) 18))) +(((-501 |#1| |#2| |#3|) (-10 -7 (-15 -4110 (|#1| (-689 |#1|))) (-15 -2265 (|#1| (-689 |#1|) |#1| (-771))) (-15 -3152 (|#1| (-689 |#1|) (-689 |#1|) |#1| (-566))) (-15 -1326 ((-771) (-771) (-771))) (-15 -2866 ((-689 |#1|) (-689 |#1|) (-689 |#1|))) (-15 -2866 ((-689 |#1|) (-689 |#1|) (-689 |#1|) |#1|)) (-15 -2148 ((-689 |#1|) (-689 |#1|) (-689 |#1|))) (-15 -3428 ((-2 (|:| -1419 (-689 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-689 |#1|))) (-2 (|:| -1419 (-689 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-689 |#1|))) (-2 (|:| -1419 (-689 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-689 |#1|)))))) (-13 (-308) (-10 -8 (-15 -3348 ((-420 $) $)))) (-1240 |#1|) (-411 |#1| |#2|)) (T -501)) +((-3428 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -1419 (-689 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-689 *3)))) (-4 *3 (-13 (-308) (-10 -8 (-15 -3348 ((-420 $) $))))) (-4 *4 (-1240 *3)) (-5 *1 (-501 *3 *4 *5)) (-4 *5 (-411 *3 *4)))) (-2148 (*1 *2 *2 *2) (-12 (-5 *2 (-689 *3)) (-4 *3 (-13 (-308) (-10 -8 (-15 -3348 ((-420 $) $))))) (-4 *4 (-1240 *3)) (-5 *1 (-501 *3 *4 *5)) (-4 *5 (-411 *3 *4)))) (-2866 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-689 *3)) (-4 *3 (-13 (-308) (-10 -8 (-15 -3348 ((-420 $) $))))) (-4 *4 (-1240 *3)) (-5 *1 (-501 *3 *4 *5)) (-4 *5 (-411 *3 *4)))) (-2866 (*1 *2 *2 *2) (-12 (-5 *2 (-689 *3)) (-4 *3 (-13 (-308) (-10 -8 (-15 -3348 ((-420 $) $))))) (-4 *4 (-1240 *3)) (-5 *1 (-501 *3 *4 *5)) (-4 *5 (-411 *3 *4)))) (-1326 (*1 *2 *2 *2) (-12 (-5 *2 (-771)) (-4 *3 (-13 (-308) (-10 -8 (-15 -3348 ((-420 $) $))))) (-4 *4 (-1240 *3)) (-5 *1 (-501 *3 *4 *5)) (-4 *5 (-411 *3 *4)))) (-3152 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-689 *2)) (-5 *4 (-566)) (-4 *2 (-13 (-308) (-10 -8 (-15 -3348 ((-420 $) $))))) (-4 *5 (-1240 *2)) (-5 *1 (-501 *2 *5 *6)) (-4 *6 (-411 *2 *5)))) (-2265 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-689 *2)) (-5 *4 (-771)) (-4 *2 (-13 (-308) (-10 -8 (-15 -3348 ((-420 $) $))))) (-4 *5 (-1240 *2)) (-5 *1 (-501 *2 *5 *6)) (-4 *6 (-411 *2 *5)))) (-4110 (*1 *2 *3) (-12 (-5 *3 (-689 *2)) (-4 *4 (-1240 *2)) (-4 *2 (-13 (-308) (-10 -8 (-15 -3348 ((-420 $) $))))) (-5 *1 (-501 *2 *4 *5)) (-4 *5 (-411 *2 *4))))) +(-10 -7 (-15 -4110 (|#1| (-689 |#1|))) (-15 -2265 (|#1| (-689 |#1|) |#1| (-771))) (-15 -3152 (|#1| (-689 |#1|) (-689 |#1|) |#1| (-566))) (-15 -1326 ((-771) (-771) (-771))) (-15 -2866 ((-689 |#1|) (-689 |#1|) (-689 |#1|))) (-15 -2866 ((-689 |#1|) (-689 |#1|) (-689 |#1|) |#1|)) (-15 -2148 ((-689 |#1|) (-689 |#1|) (-689 |#1|))) (-15 -3428 ((-2 (|:| -1419 (-689 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-689 |#1|))) (-2 (|:| -1419 (-689 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-689 |#1|))) (-2 (|:| -1419 (-689 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-689 |#1|)))))) +((-2986 (((-112) $ $) NIL)) (-3014 (($ $) NIL)) (-2426 (($ $ $) 40)) (-2462 (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4418)))) (-4163 (((-112) $) NIL (|has| (-112) (-850))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-2893 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-112) (-850)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4418)))) (-1374 (($ $) NIL (|has| (-112) (-850))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-1453 (((-112) $ (-771)) NIL)) (-3901 (((-112) $ (-1231 (-566)) (-112)) NIL (|has| $ (-6 -4418))) (((-112) $ (-566) (-112)) 42 (|has| $ (-6 -4418)))) (-3543 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4417)))) (-1811 (($) NIL T CONST)) (-2273 (($ $) NIL (|has| $ (-6 -4418)))) (-3877 (($ $) NIL)) (-4111 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-112) (-1099))))) (-2628 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4417))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-112) (-1099))))) (-1838 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4417))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4417))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4417)) (|has| (-112) (-1099))))) (-3719 (((-112) $ (-566) (-112)) NIL (|has| $ (-6 -4418)))) (-3653 (((-112) $ (-566)) NIL)) (-4000 (((-566) (-112) $ (-566)) NIL (|has| (-112) (-1099))) (((-566) (-112) $) NIL (|has| (-112) (-1099))) (((-566) (-1 (-112) (-112)) $) NIL)) (-3872 (((-644 (-112)) $) NIL (|has| $ (-6 -4417)))) (-2415 (($ $ $) 38)) (-2387 (($ $) NIL)) (-4178 (($ $ $) NIL)) (-4259 (($ (-771) (-112)) 27)) (-2371 (($ $ $) NIL)) (-2756 (((-112) $ (-771)) NIL)) (-2755 (((-566) $) 8 (|has| (-566) (-850)))) (-1920 (($ $ $) NIL)) (-1330 (($ $ $) NIL (|has| (-112) (-850))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-4227 (((-644 (-112)) $) NIL (|has| $ (-6 -4417)))) (-1688 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-112) (-1099))))) (-3831 (((-566) $) NIL (|has| (-566) (-850)))) (-3038 (($ $ $) NIL)) (-3708 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4418)))) (-3080 (($ (-1 (-112) (-112) (-112)) $ $) 35) (($ (-1 (-112) (-112)) $) NIL)) (-4106 (((-112) $ (-771)) NIL)) (-3151 (((-1157) $) NIL)) (-4271 (($ $ $ (-566)) NIL) (($ (-112) $ (-566)) NIL)) (-3780 (((-644 (-566)) $) NIL)) (-1605 (((-112) (-566) $) NIL)) (-4059 (((-1119) $) NIL)) (-4080 (((-112) $) NIL (|has| (-566) (-850)))) (-2688 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-4079 (($ $ (-112)) NIL (|has| $ (-6 -4418)))) (-3966 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-112)) (-644 (-112))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1099)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1099)))) (($ $ (-295 (-112))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1099)))) (($ $ (-644 (-295 (-112)))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1099))))) (-1844 (((-112) $ $) NIL)) (-2210 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-112) (-1099))))) (-4185 (((-644 (-112)) $) NIL)) (-2788 (((-112) $) NIL)) (-1737 (($) 28)) (-4376 (($ $ (-1231 (-566))) NIL) (((-112) $ (-566)) 22) (((-112) $ (-566) (-112)) NIL)) (-2139 (($ $ (-1231 (-566))) NIL) (($ $ (-566)) NIL)) (-4068 (((-771) (-112) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-112) (-1099)))) (((-771) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4417)))) (-1438 (($ $ $ (-566)) NIL (|has| $ (-6 -4418)))) (-3924 (($ $) 29)) (-3136 (((-538) $) NIL (|has| (-112) (-614 (-538))))) (-2489 (($ (-644 (-112))) NIL)) (-3716 (($ (-644 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-2479 (((-862) $) 26)) (-3900 (((-112) $ $) NIL)) (-3667 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4417)))) (-2402 (($ $ $) 36)) (-3062 (($ $ $) NIL)) (-2114 (($ $ $) 45)) (-2128 (($ $) 43)) (-2101 (($ $ $) 44)) (-3019 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 30)) (-3004 (((-112) $ $) NIL)) (-2977 (((-112) $ $) 31)) (-3046 (($ $ $) NIL)) (-3002 (((-771) $) 13 (|has| $ (-6 -4417))))) +(((-502 |#1|) (-13 (-123) (-10 -8 (-15 -2128 ($ $)) (-15 -2114 ($ $ $)) (-15 -2101 ($ $ $)))) (-566)) (T -502)) +((-2128 (*1 *1 *1) (-12 (-5 *1 (-502 *2)) (-14 *2 (-566)))) (-2114 (*1 *1 *1 *1) (-12 (-5 *1 (-502 *2)) (-14 *2 (-566)))) (-2101 (*1 *1 *1 *1) (-12 (-5 *1 (-502 *2)) (-14 *2 (-566))))) +(-13 (-123) (-10 -8 (-15 -2128 ($ $)) (-15 -2114 ($ $ $)) (-15 -2101 ($ $ $)))) +((-4118 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1171 |#4|)) 35)) (-3641 (((-1171 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1171 |#4|)) 22)) (-3973 (((-3 (-689 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-689 (-1171 |#4|))) 49)) (-3938 (((-1171 (-1171 |#4|)) (-1 |#4| |#1|) |#3|) 58))) +(((-503 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3641 (|#2| (-1 |#1| |#4|) (-1171 |#4|))) (-15 -3641 ((-1171 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -4118 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1171 |#4|))) (-15 -3973 ((-3 (-689 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-689 (-1171 |#4|)))) (-15 -3938 ((-1171 (-1171 |#4|)) (-1 |#4| |#1|) |#3|))) (-1049) (-1240 |#1|) (-1240 |#2|) (-1049)) (T -503)) +((-3938 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1049)) (-4 *7 (-1049)) (-4 *6 (-1240 *5)) (-5 *2 (-1171 (-1171 *7))) (-5 *1 (-503 *5 *6 *4 *7)) (-4 *4 (-1240 *6)))) (-3973 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-689 (-1171 *8))) (-4 *5 (-1049)) (-4 *8 (-1049)) (-4 *6 (-1240 *5)) (-5 *2 (-689 *6)) (-5 *1 (-503 *5 *6 *7 *8)) (-4 *7 (-1240 *6)))) (-4118 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1171 *7)) (-4 *5 (-1049)) (-4 *7 (-1049)) (-4 *2 (-1240 *5)) (-5 *1 (-503 *5 *2 *6 *7)) (-4 *6 (-1240 *2)))) (-3641 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1049)) (-4 *7 (-1049)) (-4 *4 (-1240 *5)) (-5 *2 (-1171 *7)) (-5 *1 (-503 *5 *4 *6 *7)) (-4 *6 (-1240 *4)))) (-3641 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1171 *7)) (-4 *5 (-1049)) (-4 *7 (-1049)) (-4 *2 (-1240 *5)) (-5 *1 (-503 *5 *2 *6 *7)) (-4 *6 (-1240 *2))))) +(-10 -7 (-15 -3641 (|#2| (-1 |#1| |#4|) (-1171 |#4|))) (-15 -3641 ((-1171 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -4118 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1171 |#4|))) (-15 -3973 ((-3 (-689 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-689 (-1171 |#4|)))) (-15 -3938 ((-1171 (-1171 |#4|)) (-1 |#4| |#1|) |#3|))) +((-2986 (((-112) $ $) NIL)) (-1920 (($ $ $) NIL)) (-3038 (($ $ $) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2559 (((-1269) $) 25)) (-4376 (((-1157) $ (-1175)) 30)) (-1659 (((-1269) $) 17)) (-2479 (((-862) $) 27) (($ (-1157)) 26)) (-3900 (((-112) $ $) NIL)) (-3019 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 11)) (-3004 (((-112) $ $) NIL)) (-2977 (((-112) $ $) 9))) +(((-504) (-13 (-850) (-10 -8 (-15 -4376 ((-1157) $ (-1175))) (-15 -1659 ((-1269) $)) (-15 -2559 ((-1269) $)) (-15 -2479 ($ (-1157)))))) (T -504)) +((-4376 (*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1157)) (-5 *1 (-504)))) (-1659 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-504)))) (-2559 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-504)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-504))))) +(-13 (-850) (-10 -8 (-15 -4376 ((-1157) $ (-1175))) (-15 -1659 ((-1269) $)) (-15 -2559 ((-1269) $)) (-15 -2479 ($ (-1157))))) +((-1402 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-4189 ((|#1| |#4|) 10)) (-3759 ((|#3| |#4|) 17))) +(((-505 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4189 (|#1| |#4|)) (-15 -3759 (|#3| |#4|)) (-15 -1402 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-558) (-992 |#1|) (-375 |#1|) (-375 |#2|)) (T -505)) +((-1402 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-992 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-505 *4 *5 *6 *3)) (-4 *6 (-375 *4)) (-4 *3 (-375 *5)))) (-3759 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-992 *4)) (-4 *2 (-375 *4)) (-5 *1 (-505 *4 *5 *2 *3)) (-4 *3 (-375 *5)))) (-4189 (*1 *2 *3) (-12 (-4 *4 (-992 *2)) (-4 *2 (-558)) (-5 *1 (-505 *2 *4 *5 *3)) (-4 *5 (-375 *2)) (-4 *3 (-375 *4))))) +(-10 -7 (-15 -4189 (|#1| |#4|)) (-15 -3759 (|#3| |#4|)) (-15 -1402 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) +((-2986 (((-112) $ $) NIL)) (-2881 (((-112) $ (-644 |#3|)) 126) (((-112) $) 127)) (-2845 (((-112) $) 178)) (-4281 (($ $ |#4|) 117) (($ $ |#4| (-644 |#3|)) 121)) (-4103 (((-1164 (-644 (-952 |#1|)) (-644 (-295 (-952 |#1|)))) (-644 |#4|)) 171 (|has| |#3| (-614 (-1175))))) (-3371 (($ $ $) 105) (($ $ |#4|) 103)) (-2264 (((-112) $) 177)) (-4013 (($ $) 131)) (-3151 (((-1157) $) NIL)) (-4022 (($ $ $) 97) (($ (-644 $)) 99)) (-4379 (((-112) |#4| $) 129)) (-2166 (((-112) $ $) 82)) (-3171 (($ (-644 |#4|)) 104)) (-4059 (((-1119) $) NIL)) (-1890 (($ (-644 |#4|)) 175)) (-4270 (((-112) $) 176)) (-4269 (($ $) 85)) (-2516 (((-644 |#4|) $) 73)) (-2423 (((-2 (|:| |mval| (-689 |#1|)) (|:| |invmval| (-689 |#1|)) (|:| |genIdeal| $)) $ (-644 |#3|)) NIL)) (-2129 (((-112) |#4| $) 89)) (-3944 (((-566) $ (-644 |#3|)) 133) (((-566) $) 134)) (-2479 (((-862) $) 174) (($ (-644 |#4|)) 100)) (-3900 (((-112) $ $) NIL)) (-1414 (($ (-2 (|:| |mval| (-689 |#1|)) (|:| |invmval| (-689 |#1|)) (|:| |genIdeal| $))) NIL)) (-2952 (((-112) $ $) 84)) (-3052 (($ $ $) 107)) (** (($ $ (-771)) 115)) (* (($ $ $) 113))) +(((-506 |#1| |#2| |#3| |#4|) (-13 (-1099) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-771))) (-15 -3052 ($ $ $)) (-15 -2264 ((-112) $)) (-15 -2845 ((-112) $)) (-15 -2129 ((-112) |#4| $)) (-15 -2166 ((-112) $ $)) (-15 -4379 ((-112) |#4| $)) (-15 -2881 ((-112) $ (-644 |#3|))) (-15 -2881 ((-112) $)) (-15 -4022 ($ $ $)) (-15 -4022 ($ (-644 $))) (-15 -3371 ($ $ $)) (-15 -3371 ($ $ |#4|)) (-15 -4269 ($ $)) (-15 -2423 ((-2 (|:| |mval| (-689 |#1|)) (|:| |invmval| (-689 |#1|)) (|:| |genIdeal| $)) $ (-644 |#3|))) (-15 -1414 ($ (-2 (|:| |mval| (-689 |#1|)) (|:| |invmval| (-689 |#1|)) (|:| |genIdeal| $)))) (-15 -3944 ((-566) $ (-644 |#3|))) (-15 -3944 ((-566) $)) (-15 -4013 ($ $)) (-15 -3171 ($ (-644 |#4|))) (-15 -1890 ($ (-644 |#4|))) (-15 -4270 ((-112) $)) (-15 -2516 ((-644 |#4|) $)) (-15 -2479 ($ (-644 |#4|))) (-15 -4281 ($ $ |#4|)) (-15 -4281 ($ $ |#4| (-644 |#3|))) (IF (|has| |#3| (-614 (-1175))) (-15 -4103 ((-1164 (-644 (-952 |#1|)) (-644 (-295 (-952 |#1|)))) (-644 |#4|))) |%noBranch|))) (-365) (-793) (-850) (-949 |#1| |#2| |#3|)) (T -506)) +((* (*1 *1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-793)) (-4 *4 (-850)) (-5 *1 (-506 *2 *3 *4 *5)) (-4 *5 (-949 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5)))) (-3052 (*1 *1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-793)) (-4 *4 (-850)) (-5 *1 (-506 *2 *3 *4 *5)) (-4 *5 (-949 *2 *3 *4)))) (-2264 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)) (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5)))) (-2845 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)) (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5)))) (-2129 (*1 *2 *3 *1) (-12 (-4 *4 (-365)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-506 *4 *5 *6 *3)) (-4 *3 (-949 *4 *5 *6)))) (-2166 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)) (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5)))) (-4379 (*1 *2 *3 *1) (-12 (-4 *4 (-365)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-506 *4 *5 *6 *3)) (-4 *3 (-949 *4 *5 *6)))) (-2881 (*1 *2 *1 *3) (-12 (-5 *3 (-644 *6)) (-4 *6 (-850)) (-4 *4 (-365)) (-4 *5 (-793)) (-5 *2 (-112)) (-5 *1 (-506 *4 *5 *6 *7)) (-4 *7 (-949 *4 *5 *6)))) (-2881 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)) (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5)))) (-4022 (*1 *1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-793)) (-4 *4 (-850)) (-5 *1 (-506 *2 *3 *4 *5)) (-4 *5 (-949 *2 *3 *4)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-644 (-506 *3 *4 *5 *6))) (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5)))) (-3371 (*1 *1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-793)) (-4 *4 (-850)) (-5 *1 (-506 *2 *3 *4 *5)) (-4 *5 (-949 *2 *3 *4)))) (-3371 (*1 *1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-506 *3 *4 *5 *2)) (-4 *2 (-949 *3 *4 *5)))) (-4269 (*1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-793)) (-4 *4 (-850)) (-5 *1 (-506 *2 *3 *4 *5)) (-4 *5 (-949 *2 *3 *4)))) (-2423 (*1 *2 *1 *3) (-12 (-5 *3 (-644 *6)) (-4 *6 (-850)) (-4 *4 (-365)) (-4 *5 (-793)) (-5 *2 (-2 (|:| |mval| (-689 *4)) (|:| |invmval| (-689 *4)) (|:| |genIdeal| (-506 *4 *5 *6 *7)))) (-5 *1 (-506 *4 *5 *6 *7)) (-4 *7 (-949 *4 *5 *6)))) (-1414 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-689 *3)) (|:| |invmval| (-689 *3)) (|:| |genIdeal| (-506 *3 *4 *5 *6)))) (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5)))) (-3944 (*1 *2 *1 *3) (-12 (-5 *3 (-644 *6)) (-4 *6 (-850)) (-4 *4 (-365)) (-4 *5 (-793)) (-5 *2 (-566)) (-5 *1 (-506 *4 *5 *6 *7)) (-4 *7 (-949 *4 *5 *6)))) (-3944 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-566)) (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5)))) (-4013 (*1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-793)) (-4 *4 (-850)) (-5 *1 (-506 *2 *3 *4 *5)) (-4 *5 (-949 *2 *3 *4)))) (-3171 (*1 *1 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-949 *3 *4 *5)) (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-506 *3 *4 *5 *6)))) (-1890 (*1 *1 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-949 *3 *4 *5)) (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-506 *3 *4 *5 *6)))) (-4270 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)) (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5)))) (-2516 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-644 *6)) (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-949 *3 *4 *5)) (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-506 *3 *4 *5 *6)))) (-4281 (*1 *1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-506 *3 *4 *5 *2)) (-4 *2 (-949 *3 *4 *5)))) (-4281 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-644 *6)) (-4 *6 (-850)) (-4 *4 (-365)) (-4 *5 (-793)) (-5 *1 (-506 *4 *5 *6 *2)) (-4 *2 (-949 *4 *5 *6)))) (-4103 (*1 *2 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-949 *4 *5 *6)) (-4 *6 (-614 (-1175))) (-4 *4 (-365)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-1164 (-644 (-952 *4)) (-644 (-295 (-952 *4))))) (-5 *1 (-506 *4 *5 *6 *7))))) +(-13 (-1099) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-771))) (-15 -3052 ($ $ $)) (-15 -2264 ((-112) $)) (-15 -2845 ((-112) $)) (-15 -2129 ((-112) |#4| $)) (-15 -2166 ((-112) $ $)) (-15 -4379 ((-112) |#4| $)) (-15 -2881 ((-112) $ (-644 |#3|))) (-15 -2881 ((-112) $)) (-15 -4022 ($ $ $)) (-15 -4022 ($ (-644 $))) (-15 -3371 ($ $ $)) (-15 -3371 ($ $ |#4|)) (-15 -4269 ($ $)) (-15 -2423 ((-2 (|:| |mval| (-689 |#1|)) (|:| |invmval| (-689 |#1|)) (|:| |genIdeal| $)) $ (-644 |#3|))) (-15 -1414 ($ (-2 (|:| |mval| (-689 |#1|)) (|:| |invmval| (-689 |#1|)) (|:| |genIdeal| $)))) (-15 -3944 ((-566) $ (-644 |#3|))) (-15 -3944 ((-566) $)) (-15 -4013 ($ $)) (-15 -3171 ($ (-644 |#4|))) (-15 -1890 ($ (-644 |#4|))) (-15 -4270 ((-112) $)) (-15 -2516 ((-644 |#4|) $)) (-15 -2479 ($ (-644 |#4|))) (-15 -4281 ($ $ |#4|)) (-15 -4281 ($ $ |#4| (-644 |#3|))) (IF (|has| |#3| (-614 (-1175))) (-15 -4103 ((-1164 (-644 (-952 |#1|)) (-644 (-295 (-952 |#1|)))) (-644 |#4|))) |%noBranch|))) +((-2767 (((-112) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566))))) 176)) (-3898 (((-112) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566))))) 177)) (-1325 (((-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566))))) 129)) (-4188 (((-112) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566))))) NIL)) (-2465 (((-644 (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566))))) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566))))) 179)) (-2424 (((-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))) (-644 (-864 |#1|))) 195))) +(((-507 |#1| |#2|) (-10 -7 (-15 -2767 ((-112) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))))) (-15 -3898 ((-112) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))))) (-15 -4188 ((-112) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))))) (-15 -1325 ((-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))))) (-15 -2465 ((-644 (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566))))) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))))) (-15 -2424 ((-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))) (-644 (-864 |#1|))))) (-644 (-1175)) (-771)) (T -507)) +((-2424 (*1 *2 *2 *3) (-12 (-5 *2 (-506 (-409 (-566)) (-240 *5 (-771)) (-864 *4) (-247 *4 (-409 (-566))))) (-5 *3 (-644 (-864 *4))) (-14 *4 (-644 (-1175))) (-14 *5 (-771)) (-5 *1 (-507 *4 *5)))) (-2465 (*1 *2 *3) (-12 (-14 *4 (-644 (-1175))) (-14 *5 (-771)) (-5 *2 (-644 (-506 (-409 (-566)) (-240 *5 (-771)) (-864 *4) (-247 *4 (-409 (-566)))))) (-5 *1 (-507 *4 *5)) (-5 *3 (-506 (-409 (-566)) (-240 *5 (-771)) (-864 *4) (-247 *4 (-409 (-566))))))) (-1325 (*1 *2 *2) (-12 (-5 *2 (-506 (-409 (-566)) (-240 *4 (-771)) (-864 *3) (-247 *3 (-409 (-566))))) (-14 *3 (-644 (-1175))) (-14 *4 (-771)) (-5 *1 (-507 *3 *4)))) (-4188 (*1 *2 *3) (-12 (-5 *3 (-506 (-409 (-566)) (-240 *5 (-771)) (-864 *4) (-247 *4 (-409 (-566))))) (-14 *4 (-644 (-1175))) (-14 *5 (-771)) (-5 *2 (-112)) (-5 *1 (-507 *4 *5)))) (-3898 (*1 *2 *3) (-12 (-5 *3 (-506 (-409 (-566)) (-240 *5 (-771)) (-864 *4) (-247 *4 (-409 (-566))))) (-14 *4 (-644 (-1175))) (-14 *5 (-771)) (-5 *2 (-112)) (-5 *1 (-507 *4 *5)))) (-2767 (*1 *2 *3) (-12 (-5 *3 (-506 (-409 (-566)) (-240 *5 (-771)) (-864 *4) (-247 *4 (-409 (-566))))) (-14 *4 (-644 (-1175))) (-14 *5 (-771)) (-5 *2 (-112)) (-5 *1 (-507 *4 *5))))) +(-10 -7 (-15 -2767 ((-112) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))))) (-15 -3898 ((-112) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))))) (-15 -4188 ((-112) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))))) (-15 -1325 ((-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))))) (-15 -2465 ((-644 (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566))))) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))))) (-15 -2424 ((-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))) (-644 (-864 |#1|))))) +((-2986 (((-112) $ $) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2849 (($) 6)) (-2479 (((-862) $) 12) (((-1175) $) 10)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 8))) +(((-508) (-13 (-1099) (-613 (-1175)) (-10 -8 (-15 -2849 ($))))) (T -508)) +((-2849 (*1 *1) (-5 *1 (-508)))) +(-13 (-1099) (-613 (-1175)) (-10 -8 (-15 -2849 ($)))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-1811 (($) NIL T CONST)) (-3565 (($ $) NIL)) (-2463 (($ |#1| |#2|) NIL)) (-3080 (($ (-1 |#1| |#1|) $) NIL)) (-1919 ((|#2| $) NIL)) (-2622 ((|#1| $) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) NIL)) (-3900 (((-112) $ $) NIL)) (-2446 (($) 12 T CONST)) (-2952 (((-112) $ $) NIL)) (-3065 (($ $) 11) (($ $ $) 35)) (-3052 (($ $ $) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 21))) +(((-509 |#1| |#2|) (-13 (-21) (-511 |#1| |#2|)) (-21) (-850)) (T -509)) +NIL +(-13 (-21) (-511 |#1| |#2|)) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) 13)) (-1811 (($) NIL T CONST)) (-3565 (($ $) 41)) (-2463 (($ |#1| |#2|) 38)) (-3080 (($ (-1 |#1| |#1|) $) 40)) (-1919 ((|#2| $) NIL)) (-2622 ((|#1| $) 42)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) NIL)) (-3900 (((-112) $ $) NIL)) (-2446 (($) 10 T CONST)) (-2952 (((-112) $ $) NIL)) (-3052 (($ $ $) 26)) (* (($ (-921) $) NIL) (($ (-771) $) 36))) +(((-510 |#1| |#2|) (-13 (-23) (-511 |#1| |#2|)) (-23) (-850)) (T -510)) +NIL +(-13 (-23) (-511 |#1| |#2|)) +((-2986 (((-112) $ $) 7)) (-3565 (($ $) 14)) (-2463 (($ |#1| |#2|) 17)) (-3080 (($ (-1 |#1| |#1|) $) 18)) (-1919 ((|#2| $) 15)) (-2622 ((|#1| $) 16)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-2479 (((-862) $) 12)) (-3900 (((-112) $ $) 9)) (-2952 (((-112) $ $) 6))) +(((-511 |#1| |#2|) (-140) (-1099) (-850)) (T -511)) +((-3080 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-511 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-850)))) (-2463 (*1 *1 *2 *3) (-12 (-4 *1 (-511 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-850)))) (-2622 (*1 *2 *1) (-12 (-4 *1 (-511 *2 *3)) (-4 *3 (-850)) (-4 *2 (-1099)))) (-1919 (*1 *2 *1) (-12 (-4 *1 (-511 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-850)))) (-3565 (*1 *1 *1) (-12 (-4 *1 (-511 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-850))))) +(-13 (-1099) (-10 -8 (-15 -3080 ($ (-1 |t#1| |t#1|) $)) (-15 -2463 ($ |t#1| |t#2|)) (-15 -2622 (|t#1| $)) (-15 -1919 (|t#2| $)) (-15 -3565 ($ $)))) +(((-102) . T) ((-613 (-862)) . T) ((-1099) . T)) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-1811 (($) NIL T CONST)) (-3565 (($ $) NIL)) (-2463 (($ |#1| |#2|) NIL)) (-1920 (($ $ $) NIL)) (-3038 (($ $ $) NIL)) (-3080 (($ (-1 |#1| |#1|) $) NIL)) (-1919 ((|#2| $) NIL)) (-2622 ((|#1| $) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) NIL)) (-3900 (((-112) $ $) NIL)) (-2446 (($) NIL T CONST)) (-3019 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3004 (((-112) $ $) NIL)) (-2977 (((-112) $ $) 22)) (-3052 (($ $ $) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL))) +(((-512 |#1| |#2|) (-13 (-792) (-511 |#1| |#2|)) (-792) (-850)) (T -512)) +NIL +(-13 (-792) (-511 |#1| |#2|)) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-4047 (($ $ $) 23)) (-3174 (((-3 $ "failed") $ $) 19)) (-1811 (($) NIL T CONST)) (-3565 (($ $) NIL)) (-2463 (($ |#1| |#2|) NIL)) (-1920 (($ $ $) NIL)) (-3038 (($ $ $) NIL)) (-3080 (($ (-1 |#1| |#1|) $) NIL)) (-1919 ((|#2| $) NIL)) (-2622 ((|#1| $) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) NIL)) (-3900 (((-112) $ $) NIL)) (-2446 (($) NIL T CONST)) (-3019 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3004 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-3052 (($ $ $) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL))) +(((-513 |#1| |#2|) (-13 (-793) (-511 |#1| |#2|)) (-793) (-850)) (T -513)) +NIL +(-13 (-793) (-511 |#1| |#2|)) +((-2986 (((-112) $ $) NIL)) (-3565 (($ $) 32)) (-2463 (($ |#1| |#2|) 28)) (-3080 (($ (-1 |#1| |#1|) $) 30)) (-1919 ((|#2| $) 34)) (-2622 ((|#1| $) 33)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) 27)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 20))) +(((-514 |#1| |#2|) (-511 |#1| |#2|) (-1099) (-850)) (T -514)) +NIL +(-511 |#1| |#2|) +((-3297 (($ $ (-644 |#2|) (-644 |#3|)) NIL) (($ $ |#2| |#3|) 12))) +(((-515 |#1| |#2| |#3|) (-10 -8 (-15 -3297 (|#1| |#1| |#2| |#3|)) (-15 -3297 (|#1| |#1| (-644 |#2|) (-644 |#3|)))) (-516 |#2| |#3|) (-1099) (-1214)) (T -515)) +NIL +(-10 -8 (-15 -3297 (|#1| |#1| |#2| |#3|)) (-15 -3297 (|#1| |#1| (-644 |#2|) (-644 |#3|)))) +((-3297 (($ $ (-644 |#1|) (-644 |#2|)) 7) (($ $ |#1| |#2|) 6))) +(((-516 |#1| |#2|) (-140) (-1099) (-1214)) (T -516)) +((-3297 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 *4)) (-5 *3 (-644 *5)) (-4 *1 (-516 *4 *5)) (-4 *4 (-1099)) (-4 *5 (-1214)))) (-3297 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-516 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1214))))) +(-13 (-10 -8 (-15 -3297 ($ $ |t#1| |t#2|)) (-15 -3297 ($ $ (-644 |t#1|) (-644 |t#2|))))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) 17)) (-1723 (((-644 (-2 (|:| |gen| |#1|) (|:| -3571 |#2|))) $) 19)) (-3174 (((-3 $ "failed") $ $) NIL)) (-4049 (((-771) $) NIL)) (-1811 (($) NIL T CONST)) (-2980 (((-3 |#1| "failed") $) NIL)) (-1709 ((|#1| $) NIL)) (-2294 ((|#1| $ (-566)) 24)) (-2480 ((|#2| $ (-566)) 22)) (-1980 (($ (-1 |#1| |#1|) $) 48)) (-2825 (($ (-1 |#2| |#2|) $) 45)) (-3151 (((-1157) $) NIL)) (-2349 (($ $ $) 55 (|has| |#2| (-792)))) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) 44) (($ |#1|) NIL)) (-3025 ((|#2| |#1| $) 51)) (-3900 (((-112) $ $) NIL)) (-2446 (($) 11 T CONST)) (-2952 (((-112) $ $) 30)) (-3052 (($ $ $) 28) (($ |#1| $) 26)) (* (($ (-921) $) NIL) (($ (-771) $) 37) (($ |#2| |#1|) 32))) +(((-517 |#1| |#2| |#3|) (-324 |#1| |#2|) (-1099) (-131) |#2|) (T -517)) +NIL +(-324 |#1| |#2|) +((-2986 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2462 (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4418)))) (-4163 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-850)))) (-2893 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4418))) (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-850))))) (-1374 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-850)))) (-1453 (((-112) $ (-771)) NIL)) (-3315 (((-112) (-112)) 32)) (-3901 ((|#1| $ (-566) |#1|) 42 (|has| $ (-6 -4418))) ((|#1| $ (-1231 (-566)) |#1|) NIL (|has| $ (-6 -4418)))) (-4364 (($ (-1 (-112) |#1|) $) 80)) (-3543 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-1811 (($) NIL T CONST)) (-2273 (($ $) NIL (|has| $ (-6 -4418)))) (-3877 (($ $) NIL)) (-1346 (($ $) 84 (|has| |#1| (-1099)))) (-4111 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-2295 (($ |#1| $) NIL (|has| |#1| (-1099))) (($ (-1 (-112) |#1|) $) 67)) (-2628 (($ |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-1838 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4417)))) (-3719 ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4418)))) (-3653 ((|#1| $ (-566)) NIL)) (-4000 (((-566) (-1 (-112) |#1|) $) NIL) (((-566) |#1| $) NIL (|has| |#1| (-1099))) (((-566) |#1| $ (-566)) NIL (|has| |#1| (-1099)))) (-1559 (($ $ (-566)) 19)) (-3106 (((-771) $) 13)) (-3872 (((-644 |#1|) $) NIL (|has| $ (-6 -4417)))) (-4259 (($ (-771) |#1|) 31)) (-2756 (((-112) $ (-771)) NIL)) (-2755 (((-566) $) 29 (|has| (-566) (-850)))) (-1920 (($ $ $) NIL (|has| |#1| (-850)))) (-3200 (($ $ $) NIL (|has| |#1| (-850))) (($ (-1 (-112) |#1| |#1|) $ $) 58)) (-1330 (($ (-1 (-112) |#1| |#1|) $ $) 59) (($ $ $) NIL (|has| |#1| (-850)))) (-4227 (((-644 |#1|) $) NIL (|has| $ (-6 -4417)))) (-1688 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-3831 (((-566) $) 28 (|has| (-566) (-850)))) (-3038 (($ $ $) NIL (|has| |#1| (-850)))) (-3708 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4106 (((-112) $ (-771)) NIL)) (-3151 (((-1157) $) NIL (|has| |#1| (-1099)))) (-4354 (($ $ $ (-566)) 76) (($ |#1| $ (-566)) 60)) (-4271 (($ |#1| $ (-566)) NIL) (($ $ $ (-566)) NIL)) (-3780 (((-644 (-566)) $) NIL)) (-1605 (((-112) (-566) $) NIL)) (-4059 (((-1119) $) NIL (|has| |#1| (-1099)))) (-2435 (($ (-644 |#1|)) 43)) (-4080 ((|#1| $) NIL (|has| (-566) (-850)))) (-2688 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4079 (($ $ |#1|) 24 (|has| $ (-6 -4418)))) (-3966 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1844 (((-112) $ $) 63)) (-2210 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-4185 (((-644 |#1|) $) NIL)) (-2788 (((-112) $) NIL)) (-1737 (($) 21)) (-4376 ((|#1| $ (-566) |#1|) NIL) ((|#1| $ (-566)) 56) (($ $ (-1231 (-566))) NIL)) (-3139 (($ $ (-1231 (-566))) 74) (($ $ (-566)) 68)) (-2139 (($ $ (-566)) NIL) (($ $ (-1231 (-566))) NIL)) (-4068 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-1438 (($ $ $ (-566)) 64 (|has| $ (-6 -4418)))) (-3924 (($ $) 54)) (-3136 (((-538) $) NIL (|has| |#1| (-614 (-538))))) (-2489 (($ (-644 |#1|)) NIL)) (-1323 (($ $ $) 65) (($ $ |#1|) 62)) (-3716 (($ $ |#1|) NIL) (($ |#1| $) 61) (($ $ $) NIL) (($ (-644 $)) NIL)) (-2479 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-3900 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3667 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-3019 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2990 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2952 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3004 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-850)))) (-3002 (((-771) $) 22 (|has| $ (-6 -4417))))) +(((-518 |#1| |#2|) (-13 (-19 |#1|) (-283 |#1|) (-10 -8 (-15 -2435 ($ (-644 |#1|))) (-15 -3106 ((-771) $)) (-15 -1559 ($ $ (-566))) (-15 -3315 ((-112) (-112))))) (-1214) (-566)) (T -518)) +((-2435 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1214)) (-5 *1 (-518 *3 *4)) (-14 *4 (-566)))) (-3106 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-518 *3 *4)) (-4 *3 (-1214)) (-14 *4 (-566)))) (-1559 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-518 *3 *4)) (-4 *3 (-1214)) (-14 *4 *2))) (-3315 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-518 *3 *4)) (-4 *3 (-1214)) (-14 *4 (-566))))) +(-13 (-19 |#1|) (-283 |#1|) (-10 -8 (-15 -2435 ($ (-644 |#1|))) (-15 -3106 ((-771) $)) (-15 -1559 ($ $ (-566))) (-15 -3315 ((-112) (-112))))) +((-2986 (((-112) $ $) NIL)) (-2999 (((-1134) $) 11)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2961 (((-1134) $) 13)) (-1562 (((-1134) $) 9)) (-2479 (((-862) $) 19) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-519) (-13 (-1082) (-10 -8 (-15 -1562 ((-1134) $)) (-15 -2999 ((-1134) $)) (-15 -2961 ((-1134) $))))) (T -519)) +((-1562 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-519)))) (-2999 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-519)))) (-2961 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-519))))) +(-13 (-1082) (-10 -8 (-15 -1562 ((-1134) $)) (-15 -2999 ((-1134) $)) (-15 -2961 ((-1134) $)))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-1716 (((-112) $) NIL)) (-3017 (((-112) $) NIL)) (-4141 (((-771)) NIL)) (-3837 (((-583 |#1|) $) NIL) (($ $ (-921)) NIL (|has| (-583 |#1|) (-370)))) (-2568 (((-1187 (-921) (-771)) (-566)) NIL (|has| (-583 |#1|) (-370)))) (-3174 (((-3 $ "failed") $ $) NIL)) (-3980 (($ $) NIL)) (-3348 (((-420 $) $) NIL)) (-2761 (((-112) $ $) NIL)) (-4049 (((-771)) NIL (|has| (-583 |#1|) (-370)))) (-1811 (($) NIL T CONST)) (-2980 (((-3 (-583 |#1|) "failed") $) NIL)) (-1709 (((-583 |#1|) $) NIL)) (-2422 (($ (-1264 (-583 |#1|))) NIL)) (-2713 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-583 |#1|) (-370)))) (-2925 (($ $ $) NIL)) (-3757 (((-3 $ "failed") $) NIL)) (-1415 (($) NIL (|has| (-583 |#1|) (-370)))) (-2937 (($ $ $) NIL)) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) NIL)) (-2409 (($) NIL (|has| (-583 |#1|) (-370)))) (-1450 (((-112) $) NIL (|has| (-583 |#1|) (-370)))) (-4202 (($ $ (-771)) NIL (-2809 (|has| (-583 |#1|) (-145)) (|has| (-583 |#1|) (-370)))) (($ $) NIL (-2809 (|has| (-583 |#1|) (-145)) (|has| (-583 |#1|) (-370))))) (-4188 (((-112) $) NIL)) (-1802 (((-921) $) NIL (|has| (-583 |#1|) (-370))) (((-833 (-921)) $) NIL (-2809 (|has| (-583 |#1|) (-145)) (|has| (-583 |#1|) (-370))))) (-2264 (((-112) $) NIL)) (-3254 (($) NIL (|has| (-583 |#1|) (-370)))) (-2111 (((-112) $) NIL (|has| (-583 |#1|) (-370)))) (-1398 (((-583 |#1|) $) NIL) (($ $ (-921)) NIL (|has| (-583 |#1|) (-370)))) (-4278 (((-3 $ "failed") $) NIL (|has| (-583 |#1|) (-370)))) (-2495 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1869 (((-1171 (-583 |#1|)) $) NIL) (((-1171 $) $ (-921)) NIL (|has| (-583 |#1|) (-370)))) (-4051 (((-921) $) NIL (|has| (-583 |#1|) (-370)))) (-3119 (((-1171 (-583 |#1|)) $) NIL (|has| (-583 |#1|) (-370)))) (-1902 (((-1171 (-583 |#1|)) $) NIL (|has| (-583 |#1|) (-370))) (((-3 (-1171 (-583 |#1|)) "failed") $ $) NIL (|has| (-583 |#1|) (-370)))) (-1963 (($ $ (-1171 (-583 |#1|))) NIL (|has| (-583 |#1|) (-370)))) (-2120 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3151 (((-1157) $) NIL)) (-2577 (($ $) NIL)) (-3968 (($) NIL (|has| (-583 |#1|) (-370)) CONST)) (-2104 (($ (-921)) NIL (|has| (-583 |#1|) (-370)))) (-1965 (((-112) $) NIL)) (-4059 (((-1119) $) NIL)) (-4086 (($) NIL (|has| (-583 |#1|) (-370)))) (-4004 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2162 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2816 (((-644 (-2 (|:| -2325 (-566)) (|:| -3631 (-566))))) NIL (|has| (-583 |#1|) (-370)))) (-2325 (((-420 $) $) NIL)) (-1903 (((-833 (-921))) NIL) (((-921)) NIL)) (-2585 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2976 (((-3 $ "failed") $ $) NIL)) (-2840 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1383 (((-771) $) NIL)) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL)) (-4107 (((-771) $) NIL (|has| (-583 |#1|) (-370))) (((-3 (-771) "failed") $ $) NIL (-2809 (|has| (-583 |#1|) (-145)) (|has| (-583 |#1|) (-370))))) (-3944 (((-134)) NIL)) (-3526 (($ $) NIL (|has| (-583 |#1|) (-370))) (($ $ (-771)) NIL (|has| (-583 |#1|) (-370)))) (-1630 (((-833 (-921)) $) NIL) (((-921) $) NIL)) (-2301 (((-1171 (-583 |#1|))) NIL)) (-3648 (($) NIL (|has| (-583 |#1|) (-370)))) (-1743 (($) NIL (|has| (-583 |#1|) (-370)))) (-3747 (((-1264 (-583 |#1|)) $) NIL) (((-689 (-583 |#1|)) (-1264 $)) NIL)) (-3233 (((-3 (-1264 $) "failed") (-689 $)) NIL (|has| (-583 |#1|) (-370)))) (-2479 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL) (($ (-583 |#1|)) NIL)) (-2645 (($ $) NIL (|has| (-583 |#1|) (-370))) (((-3 $ "failed") $) NIL (-2809 (|has| (-583 |#1|) (-145)) (|has| (-583 |#1|) (-370))))) (-1558 (((-771)) NIL T CONST)) (-3900 (((-112) $ $) NIL)) (-1419 (((-1264 $)) NIL) (((-1264 $) (-921)) NIL)) (-1333 (((-112) $ $) NIL)) (-3132 (((-112) $) NIL)) (-2446 (($) NIL T CONST)) (-2459 (($) NIL T CONST)) (-3536 (($ $) NIL (|has| (-583 |#1|) (-370))) (($ $ (-771)) NIL (|has| (-583 |#1|) (-370)))) (-2834 (($ $) NIL (|has| (-583 |#1|) (-370))) (($ $ (-771)) NIL (|has| (-583 |#1|) (-370)))) (-2952 (((-112) $ $) NIL)) (-3077 (($ $ $) NIL) (($ $ (-583 |#1|)) NIL)) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ $ (-583 |#1|)) NIL) (($ (-583 |#1|) $) NIL))) +(((-520 |#1| |#2|) (-330 (-583 |#1|)) (-921) (-921)) (T -520)) +NIL +(-330 (-583 |#1|)) +((-2986 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1453 (((-112) $ (-771)) NIL)) (-3901 ((|#1| $ (-566) (-566) |#1|) 51)) (-1679 (($ $ (-566) |#4|) NIL)) (-2145 (($ $ (-566) |#5|) NIL)) (-1811 (($) NIL T CONST)) (-3395 ((|#4| $ (-566)) NIL)) (-3719 ((|#1| $ (-566) (-566) |#1|) 50)) (-3653 ((|#1| $ (-566) (-566)) 45)) (-3872 (((-644 |#1|) $) NIL)) (-2541 (((-771) $) 33)) (-4259 (($ (-771) (-771) |#1|) 30)) (-2552 (((-771) $) 38)) (-2756 (((-112) $ (-771)) NIL)) (-3715 (((-566) $) 31)) (-1359 (((-566) $) 32)) (-4227 (((-644 |#1|) $) NIL (|has| $ (-6 -4417)))) (-1688 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-3113 (((-566) $) 37)) (-2701 (((-566) $) 39)) (-3708 (($ (-1 |#1| |#1|) $) NIL)) (-3080 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4106 (((-112) $ (-771)) NIL)) (-3151 (((-1157) $) 55 (|has| |#1| (-1099)))) (-4059 (((-1119) $) NIL (|has| |#1| (-1099)))) (-4079 (($ $ |#1|) NIL)) (-3966 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1844 (((-112) $ $) NIL)) (-2788 (((-112) $) 14)) (-1737 (($) 16)) (-4376 ((|#1| $ (-566) (-566)) 48) ((|#1| $ (-566) (-566) |#1|) NIL)) (-4068 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-3924 (($ $) NIL)) (-4327 ((|#5| $ (-566)) NIL)) (-2479 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-3900 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3667 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2952 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3002 (((-771) $) NIL (|has| $ (-6 -4417))))) +(((-521 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1214) (-566) (-566) (-375 |#1|) (-375 |#1|)) (T -521)) NIL (-57 |#1| |#4| |#5|) -((-2856 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2108 ((|#1| $) NIL)) (-3585 ((|#1| $) NIL)) (-3107 (($ $) NIL)) (-3633 (((-1267) $ (-564) (-564)) NIL (|has| $ (-6 -4411)))) (-4083 (($ $ (-564)) 73 (|has| $ (-6 -4411)))) (-1824 (((-112) $) NIL (|has| |#1| (-848))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3659 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-848)))) (($ (-1 (-112) |#1| |#1|) $) 68 (|has| $ (-6 -4411)))) (-3191 (($ $) NIL (|has| |#1| (-848))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3442 (((-112) $ (-769)) NIL)) (-1407 ((|#1| $ |#1|) NIL (|has| $ (-6 -4411)))) (-4277 (($ $ $) 23 (|has| $ (-6 -4411)))) (-4326 ((|#1| $ |#1|) NIL (|has| $ (-6 -4411)))) (-3186 ((|#1| $ |#1|) 21 (|has| $ (-6 -4411)))) (-3841 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4411))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4411))) (($ $ "rest" $) 24 (|has| $ (-6 -4411))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4411))) ((|#1| $ (-1229 (-564)) |#1|) NIL (|has| $ (-6 -4411))) ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4411)))) (-4041 (($ $ (-642 $)) NIL (|has| $ (-6 -4411)))) (-2438 (($ (-1 (-112) |#1|) $) NIL)) (-3437 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3573 ((|#1| $) NIL)) (-2822 (($) NIL T CONST)) (-1540 (($ $) 28 (|has| $ (-6 -4411)))) (-3817 (($ $) 29)) (-4050 (($ $) 18) (($ $ (-769)) 35)) (-2324 (($ $) 66 (|has| |#1| (-1097)))) (-4067 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-1927 (($ |#1| $) NIL (|has| |#1| (-1097))) (($ (-1 (-112) |#1|) $) NIL)) (-2517 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3741 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3105 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4411)))) (-1804 ((|#1| $ (-564)) NIL)) (-3385 (((-112) $) NIL)) (-3942 (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1097))) (((-564) |#1| $) NIL (|has| |#1| (-1097))) (((-564) (-1 (-112) |#1|) $) NIL)) (-2018 (((-642 |#1|) $) 27 (|has| $ (-6 -4410)))) (-1300 (((-642 $) $) NIL)) (-2423 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-4233 (($ (-769) |#1|) NIL)) (-3769 (((-112) $ (-769)) NIL)) (-1802 (((-564) $) 31 (|has| (-564) (-848)))) (-3225 (($ $ $) NIL (|has| |#1| (-848)))) (-4096 (($ $ $) NIL (|has| |#1| (-848))) (($ (-1 (-112) |#1| |#1|) $ $) 69)) (-2774 (($ $ $) NIL (|has| |#1| (-848))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3541 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2533 (((-112) |#1| $) 64 (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3624 (((-564) $) NIL (|has| (-564) (-848)))) (-2903 (($ $ $) NIL (|has| |#1| (-848)))) (-1857 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3902 (($ |#1|) NIL)) (-4145 (((-112) $ (-769)) NIL)) (-2334 (((-642 |#1|) $) NIL)) (-1961 (((-112) $) NIL)) (-1778 (((-1155) $) 62 (|has| |#1| (-1097)))) (-2534 ((|#1| $) NIL) (($ $ (-769)) NIL)) (-1668 (($ $ $ (-564)) NIL) (($ |#1| $ (-564)) NIL)) (-4247 (($ $ $ (-564)) NIL) (($ |#1| $ (-564)) NIL)) (-4107 (((-642 (-564)) $) NIL)) (-4207 (((-112) (-564) $) NIL)) (-3999 (((-1117) $) NIL (|has| |#1| (-1097)))) (-4036 ((|#1| $) 13) (($ $ (-769)) NIL)) (-3183 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3826 (($ $ |#1|) NIL (|has| $ (-6 -4411)))) (-3823 (((-112) $) NIL)) (-4094 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-2478 (((-112) $ $) 12)) (-1643 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3522 (((-642 |#1|) $) NIL)) (-4109 (((-112) $) 17)) (-2179 (($) 16)) (-4369 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1229 (-564))) NIL) ((|#1| $ (-564)) NIL) ((|#1| $ (-564) |#1|) NIL)) (-1743 (((-564) $ $) NIL)) (-1406 (($ $ (-1229 (-564))) NIL) (($ $ (-564)) NIL)) (-2083 (($ $ (-1229 (-564))) NIL) (($ $ (-564)) NIL)) (-1311 (((-112) $) 39)) (-1306 (($ $) NIL)) (-4118 (($ $) NIL (|has| $ (-6 -4411)))) (-3941 (((-769) $) NIL)) (-4376 (($ $) 44)) (-4010 (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-769) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3301 (($ $ $ (-564)) NIL (|has| $ (-6 -4411)))) (-3865 (($ $) 40)) (-3003 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-2401 (($ (-642 |#1|)) 26)) (-2766 (($ $ $) 65) (($ $ |#1|) NIL)) (-3634 (($ $ $) NIL) (($ |#1| $) 10) (($ (-642 $)) NIL) (($ $ |#1|) NIL)) (-2390 (((-860) $) 54 (|has| |#1| (-611 (-860))))) (-4275 (((-642 $) $) NIL)) (-1622 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-1600 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-3295 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2881 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2857 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2821 (((-112) $ $) 58 (|has| |#1| (-1097)))) (-2868 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2844 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2158 (((-769) $) 9 (|has| $ (-6 -4410))))) -(((-520 |#1| |#2|) (-664 |#1|) (-1212) (-564)) (T -520)) -NIL -(-664 |#1|) -((-2389 ((|#4| |#4|) 37)) (-3616 (((-769) |#4|) 45)) (-1974 (((-769) |#4|) 46)) (-2536 (((-642 |#3|) |#4|) 56 (|has| |#3| (-6 -4411)))) (-2895 (((-3 |#4| "failed") |#4|) 70)) (-3776 ((|#4| |#4|) 62)) (-1559 ((|#1| |#4|) 61))) -(((-521 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2389 (|#4| |#4|)) (-15 -3616 ((-769) |#4|)) (-15 -1974 ((-769) |#4|)) (IF (|has| |#3| (-6 -4411)) (-15 -2536 ((-642 |#3|) |#4|)) |%noBranch|) (-15 -1559 (|#1| |#4|)) (-15 -3776 (|#4| |#4|)) (-15 -2895 ((-3 |#4| "failed") |#4|))) (-363) (-373 |#1|) (-373 |#1|) (-685 |#1| |#2| |#3|)) (T -521)) -((-2895 (*1 *2 *2) (|partial| -12 (-4 *3 (-363)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-685 *3 *4 *5)))) (-3776 (*1 *2 *2) (-12 (-4 *3 (-363)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-685 *3 *4 *5)))) (-1559 (*1 *2 *3) (-12 (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-363)) (-5 *1 (-521 *2 *4 *5 *3)) (-4 *3 (-685 *2 *4 *5)))) (-2536 (*1 *2 *3) (-12 (|has| *6 (-6 -4411)) (-4 *4 (-363)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-642 *6)) (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-685 *4 *5 *6)))) (-1974 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-769)) (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-685 *4 *5 *6)))) (-3616 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-769)) (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-685 *4 *5 *6)))) (-2389 (*1 *2 *2) (-12 (-4 *3 (-363)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-685 *3 *4 *5))))) -(-10 -7 (-15 -2389 (|#4| |#4|)) (-15 -3616 ((-769) |#4|)) (-15 -1974 ((-769) |#4|)) (IF (|has| |#3| (-6 -4411)) (-15 -2536 ((-642 |#3|) |#4|)) |%noBranch|) (-15 -1559 (|#1| |#4|)) (-15 -3776 (|#4| |#4|)) (-15 -2895 ((-3 |#4| "failed") |#4|))) -((-2389 ((|#8| |#4|) 20)) (-2536 (((-642 |#3|) |#4|) 29 (|has| |#7| (-6 -4411)))) (-2895 (((-3 |#8| "failed") |#4|) 23))) -(((-522 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2389 (|#8| |#4|)) (-15 -2895 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4411)) (-15 -2536 ((-642 |#3|) |#4|)) |%noBranch|)) (-556) (-373 |#1|) (-373 |#1|) (-685 |#1| |#2| |#3|) (-990 |#1|) (-373 |#5|) (-373 |#5|) (-685 |#5| |#6| |#7|)) (T -522)) -((-2536 (*1 *2 *3) (-12 (|has| *9 (-6 -4411)) (-4 *4 (-556)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-4 *7 (-990 *4)) (-4 *8 (-373 *7)) (-4 *9 (-373 *7)) (-5 *2 (-642 *6)) (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-685 *4 *5 *6)) (-4 *10 (-685 *7 *8 *9)))) (-2895 (*1 *2 *3) (|partial| -12 (-4 *4 (-556)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-4 *7 (-990 *4)) (-4 *2 (-685 *7 *8 *9)) (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-685 *4 *5 *6)) (-4 *8 (-373 *7)) (-4 *9 (-373 *7)))) (-2389 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-4 *7 (-990 *4)) (-4 *2 (-685 *7 *8 *9)) (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-685 *4 *5 *6)) (-4 *8 (-373 *7)) (-4 *9 (-373 *7))))) -(-10 -7 (-15 -2389 (|#8| |#4|)) (-15 -2895 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4411)) (-15 -2536 ((-642 |#3|) |#4|)) |%noBranch|)) -((-2856 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2038 (($ (-769) (-769)) NIL)) (-3083 (($ $ $) NIL)) (-2845 (($ (-600 |#1| |#3|)) NIL) (($ $) NIL)) (-1382 (((-112) $) NIL)) (-4299 (($ $ (-564) (-564)) 21)) (-4115 (($ $ (-564) (-564)) NIL)) (-1619 (($ $ (-564) (-564) (-564) (-564)) NIL)) (-1579 (($ $) NIL)) (-3382 (((-112) $) NIL)) (-3442 (((-112) $ (-769)) NIL)) (-3519 (($ $ (-564) (-564) $) NIL)) (-3841 ((|#1| $ (-564) (-564) |#1|) NIL) (($ $ (-642 (-564)) (-642 (-564)) $) NIL)) (-2279 (($ $ (-564) (-600 |#1| |#3|)) NIL)) (-4184 (($ $ (-564) (-600 |#1| |#2|)) NIL)) (-3859 (($ (-769) |#1|) NIL)) (-2822 (($) NIL T CONST)) (-2389 (($ $) 30 (|has| |#1| (-307)))) (-2794 (((-600 |#1| |#3|) $ (-564)) NIL)) (-3616 (((-769) $) 33 (|has| |#1| (-556)))) (-3105 ((|#1| $ (-564) (-564) |#1|) NIL)) (-1804 ((|#1| $ (-564) (-564)) NIL)) (-2018 (((-642 |#1|) $) NIL)) (-1974 (((-769) $) 35 (|has| |#1| (-556)))) (-2536 (((-642 (-600 |#1| |#2|)) $) 38 (|has| |#1| (-556)))) (-3847 (((-769) $) NIL)) (-4233 (($ (-769) (-769) |#1|) NIL)) (-3857 (((-769) $) NIL)) (-3769 (((-112) $ (-769)) NIL)) (-1446 ((|#1| $) 28 (|has| |#1| (-6 (-4412 "*"))))) (-2570 (((-564) $) 10)) (-2269 (((-564) $) NIL)) (-3541 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2533 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-4164 (((-564) $) 13)) (-2720 (((-564) $) NIL)) (-4117 (($ (-642 (-642 |#1|))) NIL)) (-1857 (($ (-1 |#1| |#1|) $) NIL)) (-2947 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3141 (((-642 (-642 |#1|)) $) NIL)) (-4145 (((-112) $ (-769)) NIL)) (-1778 (((-1155) $) NIL (|has| |#1| (-1097)))) (-2895 (((-3 $ "failed") $) 42 (|has| |#1| (-363)))) (-2708 (($ $ $) NIL)) (-3999 (((-1117) $) NIL (|has| |#1| (-1097)))) (-3826 (($ $ |#1|) NIL)) (-2842 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556)))) (-4094 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-2478 (((-112) $ $) NIL)) (-4109 (((-112) $) NIL)) (-2179 (($) NIL)) (-4369 ((|#1| $ (-564) (-564)) NIL) ((|#1| $ (-564) (-564) |#1|) NIL) (($ $ (-642 (-564)) (-642 (-564))) NIL)) (-4046 (($ (-642 |#1|)) NIL) (($ (-642 $)) NIL)) (-1632 (((-112) $) NIL)) (-1559 ((|#1| $) 26 (|has| |#1| (-6 (-4412 "*"))))) (-4010 (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-769) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3865 (($ $) NIL)) (-4342 (((-600 |#1| |#2|) $ (-564)) NIL)) (-2390 (($ (-600 |#1| |#2|)) NIL) (((-860) $) NIL (|has| |#1| (-611 (-860))))) (-1600 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-3295 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2630 (((-112) $) NIL)) (-2821 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2943 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-2930 (($ $ $) NIL) (($ $) NIL)) (-2917 (($ $ $) NIL)) (** (($ $ (-769)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-564) $) NIL) (((-600 |#1| |#2|) $ (-600 |#1| |#2|)) NIL) (((-600 |#1| |#3|) (-600 |#1| |#3|) $) NIL)) (-2158 (((-769) $) NIL (|has| $ (-6 -4410))))) -(((-523 |#1| |#2| |#3|) (-685 |#1| (-600 |#1| |#3|) (-600 |#1| |#2|)) (-1047) (-564) (-564)) (T -523)) -NIL -(-685 |#1| (-600 |#1| |#3|) (-600 |#1| |#2|)) -((-2856 (((-112) $ $) NIL)) (-1778 (((-1155) $) NIL)) (-2190 (((-642 (-1211)) $) 13)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) 19) (($ (-1178)) NIL) (((-1178) $) NIL) (($ (-642 (-1211))) 11)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-524) (-13 (-1080) (-10 -8 (-15 -2390 ($ (-642 (-1211)))) (-15 -2190 ((-642 (-1211)) $))))) (T -524)) -((-2390 (*1 *1 *2) (-12 (-5 *2 (-642 (-1211))) (-5 *1 (-524)))) (-2190 (*1 *2 *1) (-12 (-5 *2 (-642 (-1211))) (-5 *1 (-524))))) -(-13 (-1080) (-10 -8 (-15 -2390 ($ (-642 (-1211)))) (-15 -2190 ((-642 (-1211)) $)))) -((-2856 (((-112) $ $) NIL)) (-1398 (((-1132) $) 14)) (-1778 (((-1155) $) NIL)) (-4257 (((-506) $) 11)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) 21) (($ (-1178)) NIL) (((-1178) $) NIL)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-525) (-13 (-1080) (-10 -8 (-15 -4257 ((-506) $)) (-15 -1398 ((-1132) $))))) (T -525)) -((-4257 (*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-525)))) (-1398 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-525))))) -(-13 (-1080) (-10 -8 (-15 -4257 ((-506) $)) (-15 -1398 ((-1132) $)))) -((-3998 (((-689 (-1220)) $) 15)) (-2222 (((-689 (-1218)) $) 39)) (-1832 (((-689 (-1217)) $) 30)) (-3157 (((-689 (-549)) $) 12)) (-1340 (((-689 (-547)) $) 43)) (-2698 (((-689 (-546)) $) 34)) (-2778 (((-769) $ (-128)) 55))) -(((-526 |#1|) (-10 -8 (-15 -2778 ((-769) |#1| (-128))) (-15 -2222 ((-689 (-1218)) |#1|)) (-15 -1340 ((-689 (-547)) |#1|)) (-15 -1832 ((-689 (-1217)) |#1|)) (-15 -2698 ((-689 (-546)) |#1|)) (-15 -3998 ((-689 (-1220)) |#1|)) (-15 -3157 ((-689 (-549)) |#1|))) (-527)) (T -526)) -NIL -(-10 -8 (-15 -2778 ((-769) |#1| (-128))) (-15 -2222 ((-689 (-1218)) |#1|)) (-15 -1340 ((-689 (-547)) |#1|)) (-15 -1832 ((-689 (-1217)) |#1|)) (-15 -2698 ((-689 (-546)) |#1|)) (-15 -3998 ((-689 (-1220)) |#1|)) (-15 -3157 ((-689 (-549)) |#1|))) -((-3998 (((-689 (-1220)) $) 12)) (-2222 (((-689 (-1218)) $) 8)) (-1832 (((-689 (-1217)) $) 10)) (-3157 (((-689 (-549)) $) 13)) (-1340 (((-689 (-547)) $) 9)) (-2698 (((-689 (-546)) $) 11)) (-2778 (((-769) $ (-128)) 7)) (-1350 (((-689 (-129)) $) 14)) (-2914 (($ $) 6))) -(((-527) (-140)) (T -527)) -((-1350 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-689 (-129))))) (-3157 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-689 (-549))))) (-3998 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-689 (-1220))))) (-2698 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-689 (-546))))) (-1832 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-689 (-1217))))) (-1340 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-689 (-547))))) (-2222 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-689 (-1218))))) (-2778 (*1 *2 *1 *3) (-12 (-4 *1 (-527)) (-5 *3 (-128)) (-5 *2 (-769))))) -(-13 (-173) (-10 -8 (-15 -1350 ((-689 (-129)) $)) (-15 -3157 ((-689 (-549)) $)) (-15 -3998 ((-689 (-1220)) $)) (-15 -2698 ((-689 (-546)) $)) (-15 -1832 ((-689 (-1217)) $)) (-15 -1340 ((-689 (-547)) $)) (-15 -2222 ((-689 (-1218)) $)) (-15 -2778 ((-769) $ (-128))))) +((-2986 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2153 ((|#1| $) NIL)) (-3673 ((|#1| $) NIL)) (-3238 (($ $) NIL)) (-2462 (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4418)))) (-3427 (($ $ (-566)) 73 (|has| $ (-6 -4418)))) (-4163 (((-112) $) NIL (|has| |#1| (-850))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2893 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-850)))) (($ (-1 (-112) |#1| |#1|) $) 68 (|has| $ (-6 -4418)))) (-1374 (($ $) NIL (|has| |#1| (-850))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1453 (((-112) $ (-771)) NIL)) (-3684 ((|#1| $ |#1|) NIL (|has| $ (-6 -4418)))) (-3494 (($ $ $) 23 (|has| $ (-6 -4418)))) (-2454 ((|#1| $ |#1|) NIL (|has| $ (-6 -4418)))) (-1306 ((|#1| $ |#1|) 21 (|has| $ (-6 -4418)))) (-3901 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4418))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4418))) (($ $ "rest" $) 24 (|has| $ (-6 -4418))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4418))) ((|#1| $ (-1231 (-566)) |#1|) NIL (|has| $ (-6 -4418))) ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4418)))) (-3891 (($ $ (-644 $)) NIL (|has| $ (-6 -4418)))) (-4364 (($ (-1 (-112) |#1|) $) NIL)) (-3543 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-3663 ((|#1| $) NIL)) (-1811 (($) NIL T CONST)) (-2273 (($ $) 28 (|has| $ (-6 -4418)))) (-3877 (($ $) 29)) (-4091 (($ $) 18) (($ $ (-771)) 35)) (-1346 (($ $) 66 (|has| |#1| (-1099)))) (-4111 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-2295 (($ |#1| $) NIL (|has| |#1| (-1099))) (($ (-1 (-112) |#1|) $) NIL)) (-2628 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-1838 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-3719 ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4418)))) (-3653 ((|#1| $ (-566)) NIL)) (-3258 (((-112) $) NIL)) (-4000 (((-566) |#1| $ (-566)) NIL (|has| |#1| (-1099))) (((-566) |#1| $) NIL (|has| |#1| (-1099))) (((-566) (-1 (-112) |#1|) $) NIL)) (-3872 (((-644 |#1|) $) 27 (|has| $ (-6 -4417)))) (-3578 (((-644 $) $) NIL)) (-2778 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-4259 (($ (-771) |#1|) NIL)) (-2756 (((-112) $ (-771)) NIL)) (-2755 (((-566) $) 31 (|has| (-566) (-850)))) (-1920 (($ $ $) NIL (|has| |#1| (-850)))) (-3200 (($ $ $) NIL (|has| |#1| (-850))) (($ (-1 (-112) |#1| |#1|) $ $) 69)) (-1330 (($ $ $) NIL (|has| |#1| (-850))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-4227 (((-644 |#1|) $) NIL (|has| $ (-6 -4417)))) (-1688 (((-112) |#1| $) 64 (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-3831 (((-566) $) NIL (|has| (-566) (-850)))) (-3038 (($ $ $) NIL (|has| |#1| (-850)))) (-3708 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3960 (($ |#1|) NIL)) (-4106 (((-112) $ (-771)) NIL)) (-3658 (((-644 |#1|) $) NIL)) (-1587 (((-112) $) NIL)) (-3151 (((-1157) $) 62 (|has| |#1| (-1099)))) (-2651 ((|#1| $) NIL) (($ $ (-771)) NIL)) (-4354 (($ $ $ (-566)) NIL) (($ |#1| $ (-566)) NIL)) (-4271 (($ $ $ (-566)) NIL) (($ |#1| $ (-566)) NIL)) (-3780 (((-644 (-566)) $) NIL)) (-1605 (((-112) (-566) $) NIL)) (-4059 (((-1119) $) NIL (|has| |#1| (-1099)))) (-4080 ((|#1| $) 13) (($ $ (-771)) NIL)) (-2688 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4079 (($ $ |#1|) NIL (|has| $ (-6 -4418)))) (-3094 (((-112) $) NIL)) (-3966 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1844 (((-112) $ $) 12)) (-2210 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-4185 (((-644 |#1|) $) NIL)) (-2788 (((-112) $) 17)) (-1737 (($) 16)) (-4376 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1231 (-566))) NIL) ((|#1| $ (-566)) NIL) ((|#1| $ (-566) |#1|) NIL)) (-4098 (((-566) $ $) NIL)) (-3139 (($ $ (-1231 (-566))) NIL) (($ $ (-566)) NIL)) (-2139 (($ $ (-1231 (-566))) NIL) (($ $ (-566)) NIL)) (-2636 (((-112) $) 39)) (-3513 (($ $) NIL)) (-2018 (($ $) NIL (|has| $ (-6 -4418)))) (-2804 (((-771) $) NIL)) (-2924 (($ $) 44)) (-4068 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-1438 (($ $ $ (-566)) NIL (|has| $ (-6 -4418)))) (-3924 (($ $) 40)) (-3136 (((-538) $) NIL (|has| |#1| (-614 (-538))))) (-2489 (($ (-644 |#1|)) 26)) (-1323 (($ $ $) 65) (($ $ |#1|) NIL)) (-3716 (($ $ $) NIL) (($ |#1| $) 10) (($ (-644 $)) NIL) (($ $ |#1|) NIL)) (-2479 (((-862) $) 54 (|has| |#1| (-613 (-862))))) (-2156 (((-644 $) $) NIL)) (-3922 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3900 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3667 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-3019 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2990 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2952 (((-112) $ $) 58 (|has| |#1| (-1099)))) (-3004 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-850)))) (-3002 (((-771) $) 9 (|has| $ (-6 -4417))))) +(((-522 |#1| |#2|) (-666 |#1|) (-1214) (-566)) (T -522)) +NIL +(-666 |#1|) +((-3411 ((|#4| |#4|) 37)) (-2299 (((-771) |#4|) 45)) (-2630 (((-771) |#4|) 46)) (-1711 (((-644 |#3|) |#4|) 56 (|has| |#3| (-6 -4418)))) (-1780 (((-3 |#4| "failed") |#4|) 70)) (-3997 ((|#4| |#4|) 62)) (-1636 ((|#1| |#4|) 61))) +(((-523 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3411 (|#4| |#4|)) (-15 -2299 ((-771) |#4|)) (-15 -2630 ((-771) |#4|)) (IF (|has| |#3| (-6 -4418)) (-15 -1711 ((-644 |#3|) |#4|)) |%noBranch|) (-15 -1636 (|#1| |#4|)) (-15 -3997 (|#4| |#4|)) (-15 -1780 ((-3 |#4| "failed") |#4|))) (-365) (-375 |#1|) (-375 |#1|) (-687 |#1| |#2| |#3|)) (T -523)) +((-1780 (*1 *2 *2) (|partial| -12 (-4 *3 (-365)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-523 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5)))) (-3997 (*1 *2 *2) (-12 (-4 *3 (-365)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-523 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5)))) (-1636 (*1 *2 *3) (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-365)) (-5 *1 (-523 *2 *4 *5 *3)) (-4 *3 (-687 *2 *4 *5)))) (-1711 (*1 *2 *3) (-12 (|has| *6 (-6 -4418)) (-4 *4 (-365)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-644 *6)) (-5 *1 (-523 *4 *5 *6 *3)) (-4 *3 (-687 *4 *5 *6)))) (-2630 (*1 *2 *3) (-12 (-4 *4 (-365)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-771)) (-5 *1 (-523 *4 *5 *6 *3)) (-4 *3 (-687 *4 *5 *6)))) (-2299 (*1 *2 *3) (-12 (-4 *4 (-365)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-771)) (-5 *1 (-523 *4 *5 *6 *3)) (-4 *3 (-687 *4 *5 *6)))) (-3411 (*1 *2 *2) (-12 (-4 *3 (-365)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-523 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5))))) +(-10 -7 (-15 -3411 (|#4| |#4|)) (-15 -2299 ((-771) |#4|)) (-15 -2630 ((-771) |#4|)) (IF (|has| |#3| (-6 -4418)) (-15 -1711 ((-644 |#3|) |#4|)) |%noBranch|) (-15 -1636 (|#1| |#4|)) (-15 -3997 (|#4| |#4|)) (-15 -1780 ((-3 |#4| "failed") |#4|))) +((-3411 ((|#8| |#4|) 20)) (-1711 (((-644 |#3|) |#4|) 29 (|has| |#7| (-6 -4418)))) (-1780 (((-3 |#8| "failed") |#4|) 23))) +(((-524 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3411 (|#8| |#4|)) (-15 -1780 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4418)) (-15 -1711 ((-644 |#3|) |#4|)) |%noBranch|)) (-558) (-375 |#1|) (-375 |#1|) (-687 |#1| |#2| |#3|) (-992 |#1|) (-375 |#5|) (-375 |#5|) (-687 |#5| |#6| |#7|)) (T -524)) +((-1711 (*1 *2 *3) (-12 (|has| *9 (-6 -4418)) (-4 *4 (-558)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-4 *7 (-992 *4)) (-4 *8 (-375 *7)) (-4 *9 (-375 *7)) (-5 *2 (-644 *6)) (-5 *1 (-524 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-687 *4 *5 *6)) (-4 *10 (-687 *7 *8 *9)))) (-1780 (*1 *2 *3) (|partial| -12 (-4 *4 (-558)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-4 *7 (-992 *4)) (-4 *2 (-687 *7 *8 *9)) (-5 *1 (-524 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-687 *4 *5 *6)) (-4 *8 (-375 *7)) (-4 *9 (-375 *7)))) (-3411 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-4 *7 (-992 *4)) (-4 *2 (-687 *7 *8 *9)) (-5 *1 (-524 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-687 *4 *5 *6)) (-4 *8 (-375 *7)) (-4 *9 (-375 *7))))) +(-10 -7 (-15 -3411 (|#8| |#4|)) (-15 -1780 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4418)) (-15 -1711 ((-644 |#3|) |#4|)) |%noBranch|)) +((-2986 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2078 (($ (-771) (-771)) NIL)) (-3563 (($ $ $) NIL)) (-2076 (($ (-602 |#1| |#3|)) NIL) (($ $) NIL)) (-3349 (((-112) $) NIL)) (-2003 (($ $ (-566) (-566)) 21)) (-1775 (($ $ (-566) (-566)) NIL)) (-4115 (($ $ (-566) (-566) (-566) (-566)) NIL)) (-1350 (($ $) NIL)) (-3834 (((-112) $) NIL)) (-1453 (((-112) $ (-771)) NIL)) (-1789 (($ $ (-566) (-566) $) NIL)) (-3901 ((|#1| $ (-566) (-566) |#1|) NIL) (($ $ (-644 (-566)) (-644 (-566)) $) NIL)) (-1679 (($ $ (-566) (-602 |#1| |#3|)) NIL)) (-2145 (($ $ (-566) (-602 |#1| |#2|)) NIL)) (-3191 (($ (-771) |#1|) NIL)) (-1811 (($) NIL T CONST)) (-3411 (($ $) 30 (|has| |#1| (-308)))) (-3395 (((-602 |#1| |#3|) $ (-566)) NIL)) (-2299 (((-771) $) 33 (|has| |#1| (-558)))) (-3719 ((|#1| $ (-566) (-566) |#1|) NIL)) (-3653 ((|#1| $ (-566) (-566)) NIL)) (-3872 (((-644 |#1|) $) NIL)) (-2630 (((-771) $) 35 (|has| |#1| (-558)))) (-1711 (((-644 (-602 |#1| |#2|)) $) 38 (|has| |#1| (-558)))) (-2541 (((-771) $) NIL)) (-4259 (($ (-771) (-771) |#1|) NIL)) (-2552 (((-771) $) NIL)) (-2756 (((-112) $ (-771)) NIL)) (-3561 ((|#1| $) 28 (|has| |#1| (-6 (-4419 "*"))))) (-3715 (((-566) $) 10)) (-1359 (((-566) $) NIL)) (-4227 (((-644 |#1|) $) NIL (|has| $ (-6 -4417)))) (-1688 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-3113 (((-566) $) 13)) (-2701 (((-566) $) NIL)) (-4155 (($ (-644 (-644 |#1|))) NIL)) (-3708 (($ (-1 |#1| |#1|) $) NIL)) (-3080 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2337 (((-644 (-644 |#1|)) $) NIL)) (-4106 (((-112) $ (-771)) NIL)) (-3151 (((-1157) $) NIL (|has| |#1| (-1099)))) (-1780 (((-3 $ "failed") $) 42 (|has| |#1| (-365)))) (-4384 (($ $ $) NIL)) (-4059 (((-1119) $) NIL (|has| |#1| (-1099)))) (-4079 (($ $ |#1|) NIL)) (-2976 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558)))) (-3966 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1844 (((-112) $ $) NIL)) (-2788 (((-112) $) NIL)) (-1737 (($) NIL)) (-4376 ((|#1| $ (-566) (-566)) NIL) ((|#1| $ (-566) (-566) |#1|) NIL) (($ $ (-644 (-566)) (-644 (-566))) NIL)) (-3628 (($ (-644 |#1|)) NIL) (($ (-644 $)) NIL)) (-2754 (((-112) $) NIL)) (-1636 ((|#1| $) 26 (|has| |#1| (-6 (-4419 "*"))))) (-4068 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-3924 (($ $) NIL)) (-4327 (((-602 |#1| |#2|) $ (-566)) NIL)) (-2479 (($ (-602 |#1| |#2|)) NIL) (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-3900 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3667 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2126 (((-112) $) NIL)) (-2952 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3077 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3065 (($ $ $) NIL) (($ $) NIL)) (-3052 (($ $ $) NIL)) (** (($ $ (-771)) NIL) (($ $ (-566)) NIL (|has| |#1| (-365)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-566) $) NIL) (((-602 |#1| |#2|) $ (-602 |#1| |#2|)) NIL) (((-602 |#1| |#3|) (-602 |#1| |#3|) $) NIL)) (-3002 (((-771) $) NIL (|has| $ (-6 -4417))))) +(((-525 |#1| |#2| |#3|) (-687 |#1| (-602 |#1| |#3|) (-602 |#1| |#2|)) (-1049) (-566) (-566)) (T -525)) +NIL +(-687 |#1| (-602 |#1| |#3|) (-602 |#1| |#2|)) +((-2986 (((-112) $ $) NIL)) (-3151 (((-1157) $) NIL)) (-2852 (((-644 (-1213)) $) 13)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) 19) (($ (-1180)) NIL) (((-1180) $) NIL) (($ (-644 (-1213))) 11)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-526) (-13 (-1082) (-10 -8 (-15 -2479 ($ (-644 (-1213)))) (-15 -2852 ((-644 (-1213)) $))))) (T -526)) +((-2479 (*1 *1 *2) (-12 (-5 *2 (-644 (-1213))) (-5 *1 (-526)))) (-2852 (*1 *2 *1) (-12 (-5 *2 (-644 (-1213))) (-5 *1 (-526))))) +(-13 (-1082) (-10 -8 (-15 -2479 ($ (-644 (-1213)))) (-15 -2852 ((-644 (-1213)) $)))) +((-2986 (((-112) $ $) NIL)) (-4205 (((-1134) $) 14)) (-3151 (((-1157) $) NIL)) (-2824 (((-508) $) 11)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) 21) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-527) (-13 (-1082) (-10 -8 (-15 -2824 ((-508) $)) (-15 -4205 ((-1134) $))))) (T -527)) +((-2824 (*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-527)))) (-4205 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-527))))) +(-13 (-1082) (-10 -8 (-15 -2824 ((-508) $)) (-15 -4205 ((-1134) $)))) +((-2771 (((-691 (-1222)) $) 15)) (-3185 (((-691 (-1220)) $) 39)) (-1836 (((-691 (-1219)) $) 30)) (-3394 (((-691 (-551)) $) 12)) (-2836 (((-691 (-549)) $) 43)) (-3338 (((-691 (-548)) $) 34)) (-1733 (((-771) $ (-128)) 55))) +(((-528 |#1|) (-10 -8 (-15 -1733 ((-771) |#1| (-128))) (-15 -3185 ((-691 (-1220)) |#1|)) (-15 -2836 ((-691 (-549)) |#1|)) (-15 -1836 ((-691 (-1219)) |#1|)) (-15 -3338 ((-691 (-548)) |#1|)) (-15 -2771 ((-691 (-1222)) |#1|)) (-15 -3394 ((-691 (-551)) |#1|))) (-529)) (T -528)) +NIL +(-10 -8 (-15 -1733 ((-771) |#1| (-128))) (-15 -3185 ((-691 (-1220)) |#1|)) (-15 -2836 ((-691 (-549)) |#1|)) (-15 -1836 ((-691 (-1219)) |#1|)) (-15 -3338 ((-691 (-548)) |#1|)) (-15 -2771 ((-691 (-1222)) |#1|)) (-15 -3394 ((-691 (-551)) |#1|))) +((-2771 (((-691 (-1222)) $) 12)) (-3185 (((-691 (-1220)) $) 8)) (-1836 (((-691 (-1219)) $) 10)) (-3394 (((-691 (-551)) $) 13)) (-2836 (((-691 (-549)) $) 9)) (-3338 (((-691 (-548)) $) 11)) (-1733 (((-771) $ (-128)) 7)) (-2380 (((-691 (-129)) $) 14)) (-2313 (($ $) 6))) +(((-529) (-140)) (T -529)) +((-2380 (*1 *2 *1) (-12 (-4 *1 (-529)) (-5 *2 (-691 (-129))))) (-3394 (*1 *2 *1) (-12 (-4 *1 (-529)) (-5 *2 (-691 (-551))))) (-2771 (*1 *2 *1) (-12 (-4 *1 (-529)) (-5 *2 (-691 (-1222))))) (-3338 (*1 *2 *1) (-12 (-4 *1 (-529)) (-5 *2 (-691 (-548))))) (-1836 (*1 *2 *1) (-12 (-4 *1 (-529)) (-5 *2 (-691 (-1219))))) (-2836 (*1 *2 *1) (-12 (-4 *1 (-529)) (-5 *2 (-691 (-549))))) (-3185 (*1 *2 *1) (-12 (-4 *1 (-529)) (-5 *2 (-691 (-1220))))) (-1733 (*1 *2 *1 *3) (-12 (-4 *1 (-529)) (-5 *3 (-128)) (-5 *2 (-771))))) +(-13 (-173) (-10 -8 (-15 -2380 ((-691 (-129)) $)) (-15 -3394 ((-691 (-551)) $)) (-15 -2771 ((-691 (-1222)) $)) (-15 -3338 ((-691 (-548)) $)) (-15 -1836 ((-691 (-1219)) $)) (-15 -2836 ((-691 (-549)) $)) (-15 -3185 ((-691 (-1220)) $)) (-15 -1733 ((-771) $ (-128))))) (((-173) . T)) -((-3697 (((-1169 |#1|) (-769)) 115)) (-3778 (((-1262 |#1|) (-1262 |#1|) (-919)) 108)) (-2752 (((-1267) (-1262 (-642 (-2 (|:| -2108 |#1|) (|:| -2065 (-1117))))) |#1|) 124)) (-4001 (((-1262 |#1|) (-1262 |#1|) (-769)) 53)) (-3235 (((-1262 |#1|) (-919)) 110)) (-3875 (((-1262 |#1|) (-1262 |#1|) (-564)) 30)) (-2830 (((-1169 |#1|) (-1262 |#1|)) 116)) (-2043 (((-1262 |#1|) (-919)) 137)) (-1729 (((-112) (-1262 |#1|)) 120)) (-2573 (((-1262 |#1|) (-1262 |#1|) (-919)) 100)) (-2076 (((-1169 |#1|) (-1262 |#1|)) 131)) (-2535 (((-919) (-1262 |#1|)) 96)) (-2481 (((-1262 |#1|) (-1262 |#1|)) 38)) (-2065 (((-1262 |#1|) (-919) (-919)) 140)) (-2021 (((-1262 |#1|) (-1262 |#1|) (-1117) (-1117)) 29)) (-4111 (((-1262 |#1|) (-1262 |#1|) (-769) (-1117)) 54)) (-2131 (((-1262 (-1262 |#1|)) (-919)) 136)) (-2943 (((-1262 |#1|) (-1262 |#1|) (-1262 |#1|)) 121)) (** (((-1262 |#1|) (-1262 |#1|) (-564)) 67)) (* (((-1262 |#1|) (-1262 |#1|) (-1262 |#1|)) 31))) -(((-528 |#1|) (-10 -7 (-15 -2752 ((-1267) (-1262 (-642 (-2 (|:| -2108 |#1|) (|:| -2065 (-1117))))) |#1|)) (-15 -3235 ((-1262 |#1|) (-919))) (-15 -2065 ((-1262 |#1|) (-919) (-919))) (-15 -2830 ((-1169 |#1|) (-1262 |#1|))) (-15 -3697 ((-1169 |#1|) (-769))) (-15 -4111 ((-1262 |#1|) (-1262 |#1|) (-769) (-1117))) (-15 -4001 ((-1262 |#1|) (-1262 |#1|) (-769))) (-15 -2021 ((-1262 |#1|) (-1262 |#1|) (-1117) (-1117))) (-15 -3875 ((-1262 |#1|) (-1262 |#1|) (-564))) (-15 ** ((-1262 |#1|) (-1262 |#1|) (-564))) (-15 * ((-1262 |#1|) (-1262 |#1|) (-1262 |#1|))) (-15 -2943 ((-1262 |#1|) (-1262 |#1|) (-1262 |#1|))) (-15 -2573 ((-1262 |#1|) (-1262 |#1|) (-919))) (-15 -3778 ((-1262 |#1|) (-1262 |#1|) (-919))) (-15 -2481 ((-1262 |#1|) (-1262 |#1|))) (-15 -2535 ((-919) (-1262 |#1|))) (-15 -1729 ((-112) (-1262 |#1|))) (-15 -2131 ((-1262 (-1262 |#1|)) (-919))) (-15 -2043 ((-1262 |#1|) (-919))) (-15 -2076 ((-1169 |#1|) (-1262 |#1|)))) (-349)) (T -528)) -((-2076 (*1 *2 *3) (-12 (-5 *3 (-1262 *4)) (-4 *4 (-349)) (-5 *2 (-1169 *4)) (-5 *1 (-528 *4)))) (-2043 (*1 *2 *3) (-12 (-5 *3 (-919)) (-5 *2 (-1262 *4)) (-5 *1 (-528 *4)) (-4 *4 (-349)))) (-2131 (*1 *2 *3) (-12 (-5 *3 (-919)) (-5 *2 (-1262 (-1262 *4))) (-5 *1 (-528 *4)) (-4 *4 (-349)))) (-1729 (*1 *2 *3) (-12 (-5 *3 (-1262 *4)) (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-528 *4)))) (-2535 (*1 *2 *3) (-12 (-5 *3 (-1262 *4)) (-4 *4 (-349)) (-5 *2 (-919)) (-5 *1 (-528 *4)))) (-2481 (*1 *2 *2) (-12 (-5 *2 (-1262 *3)) (-4 *3 (-349)) (-5 *1 (-528 *3)))) (-3778 (*1 *2 *2 *3) (-12 (-5 *2 (-1262 *4)) (-5 *3 (-919)) (-4 *4 (-349)) (-5 *1 (-528 *4)))) (-2573 (*1 *2 *2 *3) (-12 (-5 *2 (-1262 *4)) (-5 *3 (-919)) (-4 *4 (-349)) (-5 *1 (-528 *4)))) (-2943 (*1 *2 *2 *2) (-12 (-5 *2 (-1262 *3)) (-4 *3 (-349)) (-5 *1 (-528 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1262 *3)) (-4 *3 (-349)) (-5 *1 (-528 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1262 *4)) (-5 *3 (-564)) (-4 *4 (-349)) (-5 *1 (-528 *4)))) (-3875 (*1 *2 *2 *3) (-12 (-5 *2 (-1262 *4)) (-5 *3 (-564)) (-4 *4 (-349)) (-5 *1 (-528 *4)))) (-2021 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1262 *4)) (-5 *3 (-1117)) (-4 *4 (-349)) (-5 *1 (-528 *4)))) (-4001 (*1 *2 *2 *3) (-12 (-5 *2 (-1262 *4)) (-5 *3 (-769)) (-4 *4 (-349)) (-5 *1 (-528 *4)))) (-4111 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1262 *5)) (-5 *3 (-769)) (-5 *4 (-1117)) (-4 *5 (-349)) (-5 *1 (-528 *5)))) (-3697 (*1 *2 *3) (-12 (-5 *3 (-769)) (-5 *2 (-1169 *4)) (-5 *1 (-528 *4)) (-4 *4 (-349)))) (-2830 (*1 *2 *3) (-12 (-5 *3 (-1262 *4)) (-4 *4 (-349)) (-5 *2 (-1169 *4)) (-5 *1 (-528 *4)))) (-2065 (*1 *2 *3 *3) (-12 (-5 *3 (-919)) (-5 *2 (-1262 *4)) (-5 *1 (-528 *4)) (-4 *4 (-349)))) (-3235 (*1 *2 *3) (-12 (-5 *3 (-919)) (-5 *2 (-1262 *4)) (-5 *1 (-528 *4)) (-4 *4 (-349)))) (-2752 (*1 *2 *3 *4) (-12 (-5 *3 (-1262 (-642 (-2 (|:| -2108 *4) (|:| -2065 (-1117)))))) (-4 *4 (-349)) (-5 *2 (-1267)) (-5 *1 (-528 *4))))) -(-10 -7 (-15 -2752 ((-1267) (-1262 (-642 (-2 (|:| -2108 |#1|) (|:| -2065 (-1117))))) |#1|)) (-15 -3235 ((-1262 |#1|) (-919))) (-15 -2065 ((-1262 |#1|) (-919) (-919))) (-15 -2830 ((-1169 |#1|) (-1262 |#1|))) (-15 -3697 ((-1169 |#1|) (-769))) (-15 -4111 ((-1262 |#1|) (-1262 |#1|) (-769) (-1117))) (-15 -4001 ((-1262 |#1|) (-1262 |#1|) (-769))) (-15 -2021 ((-1262 |#1|) (-1262 |#1|) (-1117) (-1117))) (-15 -3875 ((-1262 |#1|) (-1262 |#1|) (-564))) (-15 ** ((-1262 |#1|) (-1262 |#1|) (-564))) (-15 * ((-1262 |#1|) (-1262 |#1|) (-1262 |#1|))) (-15 -2943 ((-1262 |#1|) (-1262 |#1|) (-1262 |#1|))) (-15 -2573 ((-1262 |#1|) (-1262 |#1|) (-919))) (-15 -3778 ((-1262 |#1|) (-1262 |#1|) (-919))) (-15 -2481 ((-1262 |#1|) (-1262 |#1|))) (-15 -2535 ((-919) (-1262 |#1|))) (-15 -1729 ((-112) (-1262 |#1|))) (-15 -2131 ((-1262 (-1262 |#1|)) (-919))) (-15 -2043 ((-1262 |#1|) (-919))) (-15 -2076 ((-1169 |#1|) (-1262 |#1|)))) -((-3998 (((-689 (-1220)) $) NIL)) (-2222 (((-689 (-1218)) $) NIL)) (-1832 (((-689 (-1217)) $) NIL)) (-3157 (((-689 (-549)) $) NIL)) (-1340 (((-689 (-547)) $) NIL)) (-2698 (((-689 (-546)) $) NIL)) (-2778 (((-769) $ (-128)) NIL)) (-1350 (((-689 (-129)) $) 26)) (-1346 (((-1117) $ (-1117)) 31)) (-3942 (((-1117) $) 30)) (-3555 (((-112) $) 20)) (-2762 (($ (-388)) 14) (($ (-1155)) 16)) (-2052 (((-112) $) 27)) (-2390 (((-860) $) 34)) (-2914 (($ $) 28))) -(((-529) (-13 (-527) (-611 (-860)) (-10 -8 (-15 -2762 ($ (-388))) (-15 -2762 ($ (-1155))) (-15 -2052 ((-112) $)) (-15 -3555 ((-112) $)) (-15 -3942 ((-1117) $)) (-15 -1346 ((-1117) $ (-1117)))))) (T -529)) -((-2762 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-529)))) (-2762 (*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-529)))) (-2052 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-529)))) (-3555 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-529)))) (-3942 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-529)))) (-1346 (*1 *2 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-529))))) -(-13 (-527) (-611 (-860)) (-10 -8 (-15 -2762 ($ (-388))) (-15 -2762 ($ (-1155))) (-15 -2052 ((-112) $)) (-15 -3555 ((-112) $)) (-15 -3942 ((-1117) $)) (-15 -1346 ((-1117) $ (-1117))))) -((-3384 (((-1 |#1| |#1|) |#1|) 11)) (-1763 (((-1 |#1| |#1|)) 10))) -(((-530 |#1|) (-10 -7 (-15 -1763 ((-1 |#1| |#1|))) (-15 -3384 ((-1 |#1| |#1|) |#1|))) (-13 (-724) (-25))) (T -530)) -((-3384 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-530 *3)) (-4 *3 (-13 (-724) (-25))))) (-1763 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-530 *3)) (-4 *3 (-13 (-724) (-25)))))) -(-10 -7 (-15 -1763 ((-1 |#1| |#1|))) (-15 -3384 ((-1 |#1| |#1|) |#1|))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-2247 (($ $ $) NIL)) (-3085 (((-3 $ "failed") $ $) NIL)) (-2822 (($) NIL T CONST)) (-3459 (($ $) NIL)) (-2374 (($ (-769) |#1|) NIL)) (-3225 (($ $ $) NIL)) (-2903 (($ $ $) NIL)) (-2947 (($ (-1 (-769) (-769)) $) NIL)) (-2357 ((|#1| $) NIL)) (-2523 (((-769) $) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) 27)) (-1600 (((-112) $ $) NIL)) (-2361 (($) NIL T CONST)) (-2881 (((-112) $ $) NIL)) (-2857 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL)) (-2868 (((-112) $ $) NIL)) (-2844 (((-112) $ $) NIL)) (-2917 (($ $ $) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL))) -(((-531 |#1|) (-13 (-791) (-509 (-769) |#1|)) (-848)) (T -531)) -NIL -(-13 (-791) (-509 (-769) |#1|)) -((-4210 (((-642 |#2|) (-1169 |#1|) |#3|) 98)) (-3037 (((-642 (-2 (|:| |outval| |#2|) (|:| |outmult| (-564)) (|:| |outvect| (-642 (-687 |#2|))))) (-687 |#1|) |#3| (-1 (-418 (-1169 |#1|)) (-1169 |#1|))) 114)) (-4268 (((-1169 |#1|) (-687 |#1|)) 110))) -(((-532 |#1| |#2| |#3|) (-10 -7 (-15 -4268 ((-1169 |#1|) (-687 |#1|))) (-15 -4210 ((-642 |#2|) (-1169 |#1|) |#3|)) (-15 -3037 ((-642 (-2 (|:| |outval| |#2|) (|:| |outmult| (-564)) (|:| |outvect| (-642 (-687 |#2|))))) (-687 |#1|) |#3| (-1 (-418 (-1169 |#1|)) (-1169 |#1|))))) (-363) (-363) (-13 (-363) (-846))) (T -532)) -((-3037 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-687 *6)) (-5 *5 (-1 (-418 (-1169 *6)) (-1169 *6))) (-4 *6 (-363)) (-5 *2 (-642 (-2 (|:| |outval| *7) (|:| |outmult| (-564)) (|:| |outvect| (-642 (-687 *7)))))) (-5 *1 (-532 *6 *7 *4)) (-4 *7 (-363)) (-4 *4 (-13 (-363) (-846))))) (-4210 (*1 *2 *3 *4) (-12 (-5 *3 (-1169 *5)) (-4 *5 (-363)) (-5 *2 (-642 *6)) (-5 *1 (-532 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-846))))) (-4268 (*1 *2 *3) (-12 (-5 *3 (-687 *4)) (-4 *4 (-363)) (-5 *2 (-1169 *4)) (-5 *1 (-532 *4 *5 *6)) (-4 *5 (-363)) (-4 *6 (-13 (-363) (-846)))))) -(-10 -7 (-15 -4268 ((-1169 |#1|) (-687 |#1|))) (-15 -4210 ((-642 |#2|) (-1169 |#1|) |#3|)) (-15 -3037 ((-642 (-2 (|:| |outval| |#2|) (|:| |outmult| (-564)) (|:| |outvect| (-642 (-687 |#2|))))) (-687 |#1|) |#3| (-1 (-418 (-1169 |#1|)) (-1169 |#1|))))) -((-1829 (((-689 (-1220)) $ (-1220)) NIL)) (-3578 (((-689 (-549)) $ (-549)) NIL)) (-2505 (((-769) $ (-128)) 41)) (-3900 (((-689 (-129)) $ (-129)) 42)) (-3998 (((-689 (-1220)) $) NIL)) (-2222 (((-689 (-1218)) $) NIL)) (-1832 (((-689 (-1217)) $) NIL)) (-3157 (((-689 (-549)) $) NIL)) (-1340 (((-689 (-547)) $) NIL)) (-2698 (((-689 (-546)) $) NIL)) (-2778 (((-769) $ (-128)) 37)) (-1350 (((-689 (-129)) $) 39)) (-1391 (((-112) $) 29)) (-1336 (((-689 $) (-579) (-952)) 19) (((-689 $) (-491) (-952)) 26)) (-2390 (((-860) $) 49)) (-2914 (($ $) 43))) -(((-533) (-13 (-765 (-579)) (-611 (-860)) (-10 -8 (-15 -1336 ((-689 $) (-491) (-952)))))) (T -533)) -((-1336 (*1 *2 *3 *4) (-12 (-5 *3 (-491)) (-5 *4 (-952)) (-5 *2 (-689 (-533))) (-5 *1 (-533))))) -(-13 (-765 (-579)) (-611 (-860)) (-10 -8 (-15 -1336 ((-689 $) (-491) (-952))))) -((-2772 (((-841 (-564))) 12)) (-2783 (((-841 (-564))) 14)) (-2846 (((-831 (-564))) 9))) -(((-534) (-10 -7 (-15 -2846 ((-831 (-564)))) (-15 -2772 ((-841 (-564)))) (-15 -2783 ((-841 (-564)))))) (T -534)) -((-2783 (*1 *2) (-12 (-5 *2 (-841 (-564))) (-5 *1 (-534)))) (-2772 (*1 *2) (-12 (-5 *2 (-841 (-564))) (-5 *1 (-534)))) (-2846 (*1 *2) (-12 (-5 *2 (-831 (-564))) (-5 *1 (-534))))) -(-10 -7 (-15 -2846 ((-831 (-564)))) (-15 -2772 ((-841 (-564)))) (-15 -2783 ((-841 (-564))))) -((-1480 (((-536) (-1173)) 15)) (-2113 ((|#1| (-536)) 20))) -(((-535 |#1|) (-10 -7 (-15 -1480 ((-536) (-1173))) (-15 -2113 (|#1| (-536)))) (-1212)) (T -535)) -((-2113 (*1 *2 *3) (-12 (-5 *3 (-536)) (-5 *1 (-535 *2)) (-4 *2 (-1212)))) (-1480 (*1 *2 *3) (-12 (-5 *3 (-1173)) (-5 *2 (-536)) (-5 *1 (-535 *4)) (-4 *4 (-1212))))) -(-10 -7 (-15 -1480 ((-536) (-1173))) (-15 -2113 (|#1| (-536)))) -((-2856 (((-112) $ $) NIL)) (-2622 (((-1155) $) 55)) (-2710 (((-112) $) 51)) (-1348 (((-1173) $) 52)) (-3049 (((-112) $) 49)) (-4301 (((-1155) $) 50)) (-1945 (($ (-1155)) 56)) (-3819 (((-112) $) NIL)) (-3115 (((-112) $) NIL)) (-1355 (((-112) $) NIL)) (-1778 (((-1155) $) NIL)) (-1692 (($ $ (-642 (-1173))) 21)) (-2113 (((-52) $) 23)) (-3068 (((-112) $) NIL)) (-1369 (((-564) $) NIL)) (-3999 (((-1117) $) NIL)) (-3129 (($ $ (-642 (-1173)) (-1173)) 73)) (-2250 (((-112) $) NIL)) (-2823 (((-225) $) NIL)) (-3386 (($ $) 44)) (-1305 (((-860) $) NIL)) (-3359 (((-112) $ $) NIL)) (-4369 (($ $ (-564)) NIL) (($ $ (-642 (-564))) NIL)) (-2332 (((-642 $) $) 30)) (-3095 (((-1173) (-642 $)) 57)) (-3003 (($ (-1155)) NIL) (($ (-1173)) 19) (($ (-564)) 8) (($ (-225)) 28) (($ (-860)) NIL) (($ (-642 $)) 65) (((-1101) $) 12) (($ (-1101)) 13)) (-1680 (((-1173) (-1173) (-642 $)) 60)) (-2390 (((-860) $) 54)) (-3924 (($ $) 59)) (-3915 (($ $) 58)) (-2878 (($ $ (-642 $)) 66)) (-1600 (((-112) $ $) NIL)) (-2805 (((-112) $) 29)) (-2361 (($) 9 T CONST)) (-2371 (($) 11 T CONST)) (-2821 (((-112) $ $) 74)) (-2943 (($ $ $) 82)) (-2917 (($ $ $) 75)) (** (($ $ (-769)) 81) (($ $ (-564)) 80)) (* (($ $ $) 76)) (-2158 (((-564) $) NIL))) -(((-536) (-13 (-1100 (-1155) (-1173) (-564) (-225) (-860)) (-612 (-1101)) (-10 -8 (-15 -2113 ((-52) $)) (-15 -3003 ($ (-1101))) (-15 -2878 ($ $ (-642 $))) (-15 -3129 ($ $ (-642 (-1173)) (-1173))) (-15 -1692 ($ $ (-642 (-1173)))) (-15 -2917 ($ $ $)) (-15 * ($ $ $)) (-15 -2943 ($ $ $)) (-15 ** ($ $ (-769))) (-15 ** ($ $ (-564))) (-15 0 ($) -1551) (-15 1 ($) -1551) (-15 -3386 ($ $)) (-15 -2622 ((-1155) $)) (-15 -1945 ($ (-1155))) (-15 -3095 ((-1173) (-642 $))) (-15 -1680 ((-1173) (-1173) (-642 $)))))) (T -536)) -((-2113 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-536)))) (-3003 (*1 *1 *2) (-12 (-5 *2 (-1101)) (-5 *1 (-536)))) (-2878 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-536))) (-5 *1 (-536)))) (-3129 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-642 (-1173))) (-5 *3 (-1173)) (-5 *1 (-536)))) (-1692 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-1173))) (-5 *1 (-536)))) (-2917 (*1 *1 *1 *1) (-5 *1 (-536))) (* (*1 *1 *1 *1) (-5 *1 (-536))) (-2943 (*1 *1 *1 *1) (-5 *1 (-536))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-536)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-536)))) (-2361 (*1 *1) (-5 *1 (-536))) (-2371 (*1 *1) (-5 *1 (-536))) (-3386 (*1 *1 *1) (-5 *1 (-536))) (-2622 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-536)))) (-1945 (*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-536)))) (-3095 (*1 *2 *3) (-12 (-5 *3 (-642 (-536))) (-5 *2 (-1173)) (-5 *1 (-536)))) (-1680 (*1 *2 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-642 (-536))) (-5 *1 (-536))))) -(-13 (-1100 (-1155) (-1173) (-564) (-225) (-860)) (-612 (-1101)) (-10 -8 (-15 -2113 ((-52) $)) (-15 -3003 ($ (-1101))) (-15 -2878 ($ $ (-642 $))) (-15 -3129 ($ $ (-642 (-1173)) (-1173))) (-15 -1692 ($ $ (-642 (-1173)))) (-15 -2917 ($ $ $)) (-15 * ($ $ $)) (-15 -2943 ($ $ $)) (-15 ** ($ $ (-769))) (-15 ** ($ $ (-564))) (-15 (-2361) ($) -1551) (-15 (-2371) ($) -1551) (-15 -3386 ($ $)) (-15 -2622 ((-1155) $)) (-15 -1945 ($ (-1155))) (-15 -3095 ((-1173) (-642 $))) (-15 -1680 ((-1173) (-1173) (-642 $))))) -((-3181 ((|#2| |#2|) 17)) (-1655 ((|#2| |#2|) 13)) (-2537 ((|#2| |#2| (-564) (-564)) 20)) (-1399 ((|#2| |#2|) 15))) -(((-537 |#1| |#2|) (-10 -7 (-15 -1655 (|#2| |#2|)) (-15 -1399 (|#2| |#2|)) (-15 -3181 (|#2| |#2|)) (-15 -2537 (|#2| |#2| (-564) (-564)))) (-13 (-556) (-147)) (-1253 |#1|)) (T -537)) -((-2537 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-564)) (-4 *4 (-13 (-556) (-147))) (-5 *1 (-537 *4 *2)) (-4 *2 (-1253 *4)))) (-3181 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-537 *3 *2)) (-4 *2 (-1253 *3)))) (-1399 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-537 *3 *2)) (-4 *2 (-1253 *3)))) (-1655 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-537 *3 *2)) (-4 *2 (-1253 *3))))) -(-10 -7 (-15 -1655 (|#2| |#2|)) (-15 -1399 (|#2| |#2|)) (-15 -3181 (|#2| |#2|)) (-15 -2537 (|#2| |#2| (-564) (-564)))) -((-3118 (((-642 (-294 (-950 |#2|))) (-642 |#2|) (-642 (-1173))) 32)) (-2854 (((-642 |#2|) (-950 |#1|) |#3|) 54) (((-642 |#2|) (-1169 |#1|) |#3|) 53)) (-1645 (((-642 (-642 |#2|)) (-642 (-950 |#1|)) (-642 (-950 |#1|)) (-642 (-1173)) |#3|) 106))) -(((-538 |#1| |#2| |#3|) (-10 -7 (-15 -2854 ((-642 |#2|) (-1169 |#1|) |#3|)) (-15 -2854 ((-642 |#2|) (-950 |#1|) |#3|)) (-15 -1645 ((-642 (-642 |#2|)) (-642 (-950 |#1|)) (-642 (-950 |#1|)) (-642 (-1173)) |#3|)) (-15 -3118 ((-642 (-294 (-950 |#2|))) (-642 |#2|) (-642 (-1173))))) (-452) (-363) (-13 (-363) (-846))) (T -538)) -((-3118 (*1 *2 *3 *4) (-12 (-5 *3 (-642 *6)) (-5 *4 (-642 (-1173))) (-4 *6 (-363)) (-5 *2 (-642 (-294 (-950 *6)))) (-5 *1 (-538 *5 *6 *7)) (-4 *5 (-452)) (-4 *7 (-13 (-363) (-846))))) (-1645 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-642 (-950 *6))) (-5 *4 (-642 (-1173))) (-4 *6 (-452)) (-5 *2 (-642 (-642 *7))) (-5 *1 (-538 *6 *7 *5)) (-4 *7 (-363)) (-4 *5 (-13 (-363) (-846))))) (-2854 (*1 *2 *3 *4) (-12 (-5 *3 (-950 *5)) (-4 *5 (-452)) (-5 *2 (-642 *6)) (-5 *1 (-538 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-846))))) (-2854 (*1 *2 *3 *4) (-12 (-5 *3 (-1169 *5)) (-4 *5 (-452)) (-5 *2 (-642 *6)) (-5 *1 (-538 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-846)))))) -(-10 -7 (-15 -2854 ((-642 |#2|) (-1169 |#1|) |#3|)) (-15 -2854 ((-642 |#2|) (-950 |#1|) |#3|)) (-15 -1645 ((-642 (-642 |#2|)) (-642 (-950 |#1|)) (-642 (-950 |#1|)) (-642 (-1173)) |#3|)) (-15 -3118 ((-642 (-294 (-950 |#2|))) (-642 |#2|) (-642 (-1173))))) -((-3452 ((|#2| |#2| |#1|) 17)) (-3594 ((|#2| (-642 |#2|)) 31)) (-1875 ((|#2| (-642 |#2|)) 52))) -(((-539 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3594 (|#2| (-642 |#2|))) (-15 -1875 (|#2| (-642 |#2|))) (-15 -3452 (|#2| |#2| |#1|))) (-307) (-1238 |#1|) |#1| (-1 |#1| |#1| (-769))) (T -539)) -((-3452 (*1 *2 *2 *3) (-12 (-4 *3 (-307)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-769))) (-5 *1 (-539 *3 *2 *4 *5)) (-4 *2 (-1238 *3)))) (-1875 (*1 *2 *3) (-12 (-5 *3 (-642 *2)) (-4 *2 (-1238 *4)) (-5 *1 (-539 *4 *2 *5 *6)) (-4 *4 (-307)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-769))))) (-3594 (*1 *2 *3) (-12 (-5 *3 (-642 *2)) (-4 *2 (-1238 *4)) (-5 *1 (-539 *4 *2 *5 *6)) (-4 *4 (-307)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-769)))))) -(-10 -7 (-15 -3594 (|#2| (-642 |#2|))) (-15 -1875 (|#2| (-642 |#2|))) (-15 -3452 (|#2| |#2| |#1|))) -((-2254 (((-418 (-1169 |#4|)) (-1169 |#4|) (-1 (-418 (-1169 |#3|)) (-1169 |#3|))) 89) (((-418 |#4|) |#4| (-1 (-418 (-1169 |#3|)) (-1169 |#3|))) 218))) -(((-540 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2254 ((-418 |#4|) |#4| (-1 (-418 (-1169 |#3|)) (-1169 |#3|)))) (-15 -2254 ((-418 (-1169 |#4|)) (-1169 |#4|) (-1 (-418 (-1169 |#3|)) (-1169 |#3|))))) (-848) (-791) (-13 (-307) (-147)) (-947 |#3| |#2| |#1|)) (T -540)) -((-2254 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-418 (-1169 *7)) (-1169 *7))) (-4 *7 (-13 (-307) (-147))) (-4 *5 (-848)) (-4 *6 (-791)) (-4 *8 (-947 *7 *6 *5)) (-5 *2 (-418 (-1169 *8))) (-5 *1 (-540 *5 *6 *7 *8)) (-5 *3 (-1169 *8)))) (-2254 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-418 (-1169 *7)) (-1169 *7))) (-4 *7 (-13 (-307) (-147))) (-4 *5 (-848)) (-4 *6 (-791)) (-5 *2 (-418 *3)) (-5 *1 (-540 *5 *6 *7 *3)) (-4 *3 (-947 *7 *6 *5))))) -(-10 -7 (-15 -2254 ((-418 |#4|) |#4| (-1 (-418 (-1169 |#3|)) (-1169 |#3|)))) (-15 -2254 ((-418 (-1169 |#4|)) (-1169 |#4|) (-1 (-418 (-1169 |#3|)) (-1169 |#3|))))) -((-3181 ((|#4| |#4|) 74)) (-1655 ((|#4| |#4|) 70)) (-2537 ((|#4| |#4| (-564) (-564)) 76)) (-1399 ((|#4| |#4|) 72))) -(((-541 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1655 (|#4| |#4|)) (-15 -1399 (|#4| |#4|)) (-15 -3181 (|#4| |#4|)) (-15 -2537 (|#4| |#4| (-564) (-564)))) (-13 (-363) (-368) (-612 (-564))) (-1238 |#1|) (-722 |#1| |#2|) (-1253 |#3|)) (T -541)) -((-2537 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-564)) (-4 *4 (-13 (-363) (-368) (-612 *3))) (-4 *5 (-1238 *4)) (-4 *6 (-722 *4 *5)) (-5 *1 (-541 *4 *5 *6 *2)) (-4 *2 (-1253 *6)))) (-3181 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-4 *4 (-1238 *3)) (-4 *5 (-722 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1253 *5)))) (-1399 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-4 *4 (-1238 *3)) (-4 *5 (-722 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1253 *5)))) (-1655 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-4 *4 (-1238 *3)) (-4 *5 (-722 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1253 *5))))) -(-10 -7 (-15 -1655 (|#4| |#4|)) (-15 -1399 (|#4| |#4|)) (-15 -3181 (|#4| |#4|)) (-15 -2537 (|#4| |#4| (-564) (-564)))) -((-3181 ((|#2| |#2|) 27)) (-1655 ((|#2| |#2|) 23)) (-2537 ((|#2| |#2| (-564) (-564)) 29)) (-1399 ((|#2| |#2|) 25))) -(((-542 |#1| |#2|) (-10 -7 (-15 -1655 (|#2| |#2|)) (-15 -1399 (|#2| |#2|)) (-15 -3181 (|#2| |#2|)) (-15 -2537 (|#2| |#2| (-564) (-564)))) (-13 (-363) (-368) (-612 (-564))) (-1253 |#1|)) (T -542)) -((-2537 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-564)) (-4 *4 (-13 (-363) (-368) (-612 *3))) (-5 *1 (-542 *4 *2)) (-4 *2 (-1253 *4)))) (-3181 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-5 *1 (-542 *3 *2)) (-4 *2 (-1253 *3)))) (-1399 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-5 *1 (-542 *3 *2)) (-4 *2 (-1253 *3)))) (-1655 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-5 *1 (-542 *3 *2)) (-4 *2 (-1253 *3))))) -(-10 -7 (-15 -1655 (|#2| |#2|)) (-15 -1399 (|#2| |#2|)) (-15 -3181 (|#2| |#2|)) (-15 -2537 (|#2| |#2| (-564) (-564)))) -((-2552 (((-3 (-564) "failed") |#2| |#1| (-1 (-3 (-564) "failed") |#1|)) 18) (((-3 (-564) "failed") |#2| |#1| (-564) (-1 (-3 (-564) "failed") |#1|)) 14) (((-3 (-564) "failed") |#2| (-564) (-1 (-3 (-564) "failed") |#1|)) 32))) -(((-543 |#1| |#2|) (-10 -7 (-15 -2552 ((-3 (-564) "failed") |#2| (-564) (-1 (-3 (-564) "failed") |#1|))) (-15 -2552 ((-3 (-564) "failed") |#2| |#1| (-564) (-1 (-3 (-564) "failed") |#1|))) (-15 -2552 ((-3 (-564) "failed") |#2| |#1| (-1 (-3 (-564) "failed") |#1|)))) (-1047) (-1238 |#1|)) (T -543)) -((-2552 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-564) "failed") *4)) (-4 *4 (-1047)) (-5 *2 (-564)) (-5 *1 (-543 *4 *3)) (-4 *3 (-1238 *4)))) (-2552 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-564) "failed") *4)) (-4 *4 (-1047)) (-5 *2 (-564)) (-5 *1 (-543 *4 *3)) (-4 *3 (-1238 *4)))) (-2552 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-564) "failed") *5)) (-4 *5 (-1047)) (-5 *2 (-564)) (-5 *1 (-543 *5 *3)) (-4 *3 (-1238 *5))))) -(-10 -7 (-15 -2552 ((-3 (-564) "failed") |#2| (-564) (-1 (-3 (-564) "failed") |#1|))) (-15 -2552 ((-3 (-564) "failed") |#2| |#1| (-564) (-1 (-3 (-564) "failed") |#1|))) (-15 -2552 ((-3 (-564) "failed") |#2| |#1| (-1 (-3 (-564) "failed") |#1|)))) -((-2290 (($ $ $) 84)) (-3282 (((-418 $) $) 52)) (-2849 (((-3 (-564) "failed") $) 64)) (-1687 (((-564) $) 42)) (-3227 (((-3 (-407 (-564)) "failed") $) 79)) (-2929 (((-112) $) 26)) (-3536 (((-407 (-564)) $) 77)) (-3552 (((-112) $) 55)) (-1454 (($ $ $ $) 92)) (-3292 (((-112) $) 17)) (-2641 (($ $ $) 62)) (-1381 (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) 74)) (-4382 (((-3 $ "failed") $) 69)) (-1526 (($ $) 24)) (-3010 (($ $ $) 90)) (-3910 (($) 65)) (-1420 (($ $) 58)) (-2254 (((-418 $) $) 50)) (-2211 (((-112) $) 15)) (-4274 (((-769) $) 32)) (-2199 (($ $ (-769)) NIL) (($ $) 11)) (-3865 (($ $) 18)) (-3003 (((-564) $) NIL) (((-536) $) 41) (((-890 (-564)) $) 45) (((-379) $) 35) (((-225) $) 38)) (-3348 (((-769)) 9)) (-3029 (((-112) $ $) 21)) (-4271 (($ $ $) 60))) -(((-544 |#1|) (-10 -8 (-15 -3010 (|#1| |#1| |#1|)) (-15 -1454 (|#1| |#1| |#1| |#1|)) (-15 -1526 (|#1| |#1|)) (-15 -3865 (|#1| |#1|)) (-15 -3227 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3536 ((-407 (-564)) |#1|)) (-15 -2929 ((-112) |#1|)) (-15 -2290 (|#1| |#1| |#1|)) (-15 -3029 ((-112) |#1| |#1|)) (-15 -2211 ((-112) |#1|)) (-15 -3910 (|#1|)) (-15 -4382 ((-3 |#1| "failed") |#1|)) (-15 -3003 ((-225) |#1|)) (-15 -3003 ((-379) |#1|)) (-15 -2641 (|#1| |#1| |#1|)) (-15 -1420 (|#1| |#1|)) (-15 -4271 (|#1| |#1| |#1|)) (-15 -1381 ((-887 (-564) |#1|) |#1| (-890 (-564)) (-887 (-564) |#1|))) (-15 -3003 ((-890 (-564)) |#1|)) (-15 -3003 ((-536) |#1|)) (-15 -2849 ((-3 (-564) "failed") |#1|)) (-15 -1687 ((-564) |#1|)) (-15 -3003 ((-564) |#1|)) (-15 -2199 (|#1| |#1|)) (-15 -2199 (|#1| |#1| (-769))) (-15 -3292 ((-112) |#1|)) (-15 -4274 ((-769) |#1|)) (-15 -2254 ((-418 |#1|) |#1|)) (-15 -3282 ((-418 |#1|) |#1|)) (-15 -3552 ((-112) |#1|)) (-15 -3348 ((-769)))) (-545)) (T -544)) -((-3348 (*1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-544 *3)) (-4 *3 (-545))))) -(-10 -8 (-15 -3010 (|#1| |#1| |#1|)) (-15 -1454 (|#1| |#1| |#1| |#1|)) (-15 -1526 (|#1| |#1|)) (-15 -3865 (|#1| |#1|)) (-15 -3227 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3536 ((-407 (-564)) |#1|)) (-15 -2929 ((-112) |#1|)) (-15 -2290 (|#1| |#1| |#1|)) (-15 -3029 ((-112) |#1| |#1|)) (-15 -2211 ((-112) |#1|)) (-15 -3910 (|#1|)) (-15 -4382 ((-3 |#1| "failed") |#1|)) (-15 -3003 ((-225) |#1|)) (-15 -3003 ((-379) |#1|)) (-15 -2641 (|#1| |#1| |#1|)) (-15 -1420 (|#1| |#1|)) (-15 -4271 (|#1| |#1| |#1|)) (-15 -1381 ((-887 (-564) |#1|) |#1| (-890 (-564)) (-887 (-564) |#1|))) (-15 -3003 ((-890 (-564)) |#1|)) (-15 -3003 ((-536) |#1|)) (-15 -2849 ((-3 (-564) "failed") |#1|)) (-15 -1687 ((-564) |#1|)) (-15 -3003 ((-564) |#1|)) (-15 -2199 (|#1| |#1|)) (-15 -2199 (|#1| |#1| (-769))) (-15 -3292 ((-112) |#1|)) (-15 -4274 ((-769) |#1|)) (-15 -2254 ((-418 |#1|) |#1|)) (-15 -3282 ((-418 |#1|) |#1|)) (-15 -3552 ((-112) |#1|)) (-15 -3348 ((-769)))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) 47)) (-4252 (($ $) 46)) (-1722 (((-112) $) 44)) (-2290 (($ $ $) 90)) (-3085 (((-3 $ "failed") $ $) 20)) (-4062 (($ $ $ $) 79)) (-1993 (($ $) 57)) (-3282 (((-418 $) $) 58)) (-2134 (((-112) $ $) 130)) (-2221 (((-564) $) 119)) (-2966 (($ $ $) 93)) (-2822 (($) 18 T CONST)) (-2849 (((-3 (-564) "failed") $) 111)) (-1687 (((-564) $) 112)) (-2796 (($ $ $) 134)) (-3330 (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) 109) (((-687 (-564)) (-687 $)) 108)) (-2675 (((-3 $ "failed") $) 37)) (-3227 (((-3 (-407 (-564)) "failed") $) 87)) (-2929 (((-112) $) 89)) (-3536 (((-407 (-564)) $) 88)) (-3235 (($) 86) (($ $) 85)) (-2808 (($ $ $) 133)) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) 128)) (-3552 (((-112) $) 59)) (-1454 (($ $ $ $) 77)) (-2271 (($ $ $) 91)) (-3292 (((-112) $) 121)) (-2641 (($ $ $) 102)) (-1381 (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) 105)) (-3163 (((-112) $) 35)) (-2829 (((-112) $) 97)) (-4382 (((-3 $ "failed") $) 99)) (-2666 (((-112) $) 120)) (-2709 (((-3 (-642 $) "failed") (-642 $) $) 137)) (-1957 (($ $ $ $) 78)) (-3225 (($ $ $) 122)) (-2903 (($ $ $) 123)) (-1526 (($ $) 81)) (-2495 (($ $) 94)) (-2066 (($ $ $) 52) (($ (-642 $)) 51)) (-1778 (((-1155) $) 10)) (-3010 (($ $ $) 76)) (-3910 (($) 98 T CONST)) (-4258 (($ $) 83)) (-3999 (((-1117) $) 11)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) 50)) (-2105 (($ $ $) 54) (($ (-642 $)) 53)) (-1420 (($ $) 103)) (-2254 (((-418 $) $) 56)) (-1877 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 136) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) 135)) (-2842 (((-3 $ "failed") $ $) 48)) (-1483 (((-3 (-642 $) "failed") (-642 $) $) 129)) (-2211 (((-112) $) 96)) (-4274 (((-769) $) 131)) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) 132)) (-2199 (($ $ (-769)) 116) (($ $) 114)) (-1855 (($ $) 82)) (-3865 (($ $) 84)) (-3003 (((-564) $) 113) (((-536) $) 107) (((-890 (-564)) $) 106) (((-379) $) 101) (((-225) $) 100)) (-2390 (((-860) $) 12) (($ (-564)) 33) (($ $) 49) (($ (-564)) 110)) (-3348 (((-769)) 32 T CONST)) (-3029 (((-112) $ $) 92)) (-4271 (($ $ $) 104)) (-1600 (((-112) $ $) 9)) (-1959 (($) 95)) (-1594 (((-112) $ $) 45)) (-3234 (($ $ $ $) 80)) (-1630 (($ $) 118)) (-2361 (($) 19 T CONST)) (-2371 (($) 34 T CONST)) (-2711 (($ $ (-769)) 117) (($ $) 115)) (-2881 (((-112) $ $) 125)) (-2857 (((-112) $ $) 126)) (-2821 (((-112) $ $) 6)) (-2868 (((-112) $ $) 124)) (-2844 (((-112) $ $) 127)) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27))) -(((-545) (-140)) (T -545)) -((-2829 (*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) (-2211 (*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) (-1959 (*1 *1) (-4 *1 (-545))) (-2495 (*1 *1 *1) (-4 *1 (-545))) (-2966 (*1 *1 *1 *1) (-4 *1 (-545))) (-3029 (*1 *2 *1 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) (-2271 (*1 *1 *1 *1) (-4 *1 (-545))) (-2290 (*1 *1 *1 *1) (-4 *1 (-545))) (-2929 (*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) (-3536 (*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-407 (-564))))) (-3227 (*1 *2 *1) (|partial| -12 (-4 *1 (-545)) (-5 *2 (-407 (-564))))) (-3235 (*1 *1) (-4 *1 (-545))) (-3235 (*1 *1 *1) (-4 *1 (-545))) (-3865 (*1 *1 *1) (-4 *1 (-545))) (-4258 (*1 *1 *1) (-4 *1 (-545))) (-1855 (*1 *1 *1) (-4 *1 (-545))) (-1526 (*1 *1 *1) (-4 *1 (-545))) (-3234 (*1 *1 *1 *1 *1) (-4 *1 (-545))) (-4062 (*1 *1 *1 *1 *1) (-4 *1 (-545))) (-1957 (*1 *1 *1 *1 *1) (-4 *1 (-545))) (-1454 (*1 *1 *1 *1 *1) (-4 *1 (-545))) (-3010 (*1 *1 *1 *1) (-4 *1 (-545)))) -(-13 (-1216) (-307) (-818) (-233) (-612 (-564)) (-1036 (-564)) (-637 (-564)) (-612 (-536)) (-612 (-890 (-564))) (-884 (-564)) (-143) (-1020) (-147) (-1148) (-10 -8 (-15 -2829 ((-112) $)) (-15 -2211 ((-112) $)) (-6 -4409) (-15 -1959 ($)) (-15 -2495 ($ $)) (-15 -2966 ($ $ $)) (-15 -3029 ((-112) $ $)) (-15 -2271 ($ $ $)) (-15 -2290 ($ $ $)) (-15 -2929 ((-112) $)) (-15 -3536 ((-407 (-564)) $)) (-15 -3227 ((-3 (-407 (-564)) "failed") $)) (-15 -3235 ($)) (-15 -3235 ($ $)) (-15 -3865 ($ $)) (-15 -4258 ($ $)) (-15 -1855 ($ $)) (-15 -1526 ($ $)) (-15 -3234 ($ $ $ $)) (-15 -4062 ($ $ $ $)) (-15 -1957 ($ $ $ $)) (-15 -1454 ($ $ $ $)) (-15 -3010 ($ $ $)) (-6 -4408))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-860)) . T) ((-143) . T) ((-172) . T) ((-612 (-225)) . T) ((-612 (-379)) . T) ((-612 (-536)) . T) ((-612 (-564)) . T) ((-612 (-890 (-564))) . T) ((-233) . T) ((-290) . T) ((-307) . T) ((-452) . T) ((-556) . T) ((-644 (-564)) . T) ((-644 $) . T) ((-646 $) . T) ((-638 $) . T) ((-637 (-564)) . T) ((-715 $) . T) ((-724) . T) ((-789) . T) ((-790) . T) ((-792) . T) ((-793) . T) ((-818) . T) ((-846) . T) ((-848) . T) ((-884 (-564)) . T) ((-918) . T) ((-1020) . T) ((-1036 (-564)) . T) ((-1049 $) . T) ((-1054 $) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T) ((-1148) . T) ((-1216) . T)) -((-2856 (((-112) $ $) NIL)) (-4003 (((-769)) NIL)) (-2822 (($) NIL T CONST)) (-3235 (($) NIL)) (-3225 (($ $ $) NIL) (($) NIL T CONST)) (-2903 (($ $ $) NIL) (($) NIL T CONST)) (-2535 (((-919) $) NIL)) (-1778 (((-1155) $) NIL)) (-2065 (($ (-919)) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) NIL)) (-1600 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL)) (-2857 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL)) (-2868 (((-112) $ $) NIL)) (-2844 (((-112) $ $) NIL))) -(((-546) (-13 (-842) (-10 -8 (-15 -2822 ($) -1551)))) (T -546)) -((-2822 (*1 *1) (-5 *1 (-546)))) -(-13 (-842) (-10 -8 (-15 -2822 ($) -1551))) -((|Integer|) (NOT (< 16 (INTEGER-LENGTH |#1|)))) -((-2856 (((-112) $ $) NIL)) (-4003 (((-769)) NIL)) (-2822 (($) NIL T CONST)) (-3235 (($) NIL)) (-3225 (($ $ $) NIL) (($) NIL T CONST)) (-2903 (($ $ $) NIL) (($) NIL T CONST)) (-2535 (((-919) $) NIL)) (-1778 (((-1155) $) NIL)) (-2065 (($ (-919)) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) NIL)) (-1600 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL)) (-2857 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL)) (-2868 (((-112) $ $) NIL)) (-2844 (((-112) $ $) NIL))) -(((-547) (-13 (-842) (-10 -8 (-15 -2822 ($) -1551)))) (T -547)) -((-2822 (*1 *1) (-5 *1 (-547)))) -(-13 (-842) (-10 -8 (-15 -2822 ($) -1551))) -((|Integer|) (NOT (< 32 (INTEGER-LENGTH |#1|)))) -((-2856 (((-112) $ $) NIL)) (-4003 (((-769)) NIL)) (-2822 (($) NIL T CONST)) (-3235 (($) NIL)) (-3225 (($ $ $) NIL) (($) NIL T CONST)) (-2903 (($ $ $) NIL) (($) NIL T CONST)) (-2535 (((-919) $) NIL)) (-1778 (((-1155) $) NIL)) (-2065 (($ (-919)) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) NIL)) (-1600 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL)) (-2857 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL)) (-2868 (((-112) $ $) NIL)) (-2844 (((-112) $ $) NIL))) -(((-548) (-13 (-842) (-10 -8 (-15 -2822 ($) -1551)))) (T -548)) -((-2822 (*1 *1) (-5 *1 (-548)))) -(-13 (-842) (-10 -8 (-15 -2822 ($) -1551))) -((|Integer|) (NOT (< 64 (INTEGER-LENGTH |#1|)))) -((-2856 (((-112) $ $) NIL)) (-4003 (((-769)) NIL)) (-2822 (($) NIL T CONST)) (-3235 (($) NIL)) (-3225 (($ $ $) NIL) (($) NIL T CONST)) (-2903 (($ $ $) NIL) (($) NIL T CONST)) (-2535 (((-919) $) NIL)) (-1778 (((-1155) $) NIL)) (-2065 (($ (-919)) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) NIL)) (-1600 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL)) (-2857 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL)) (-2868 (((-112) $ $) NIL)) (-2844 (((-112) $ $) NIL))) -(((-549) (-13 (-842) (-10 -8 (-15 -2822 ($) -1551)))) (T -549)) -((-2822 (*1 *1) (-5 *1 (-549)))) -(-13 (-842) (-10 -8 (-15 -2822 ($) -1551))) -((|Integer|) (NOT (< 8 (INTEGER-LENGTH |#1|)))) -((-2856 (((-112) $ $) NIL (-2682 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-4222 (($) NIL) (($ (-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) NIL)) (-3633 (((-1267) $ |#1| |#1|) NIL (|has| $ (-6 -4411)))) (-3442 (((-112) $ (-769)) NIL)) (-3841 ((|#2| $ |#1| |#2|) NIL)) (-2438 (($ (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-3437 (($ (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-2295 (((-3 |#2| "failed") |#1| $) NIL)) (-2822 (($) NIL T CONST)) (-4067 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097))))) (-1927 (($ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) NIL (|has| $ (-6 -4410))) (($ (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-3 |#2| "failed") |#1| $) NIL)) (-2517 (($ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (($ (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-3741 (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) NIL (|has| $ (-6 -4410))) (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-3105 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4411)))) (-1804 ((|#2| $ |#1|) NIL)) (-2018 (((-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-642 |#2|) $) NIL (|has| $ (-6 -4410)))) (-3769 (((-112) $ (-769)) NIL)) (-1802 ((|#1| $) NIL (|has| |#1| (-848)))) (-3541 (((-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-642 |#2|) $) NIL (|has| $ (-6 -4410)))) (-2533 (((-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097))))) (-3624 ((|#1| $) NIL (|has| |#1| (-848)))) (-1857 (($ (-1 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4411))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4411)))) (-2947 (($ (-1 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4145 (((-112) $ (-769)) NIL)) (-1778 (((-1155) $) NIL (-2682 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-3287 (((-642 |#1|) $) NIL)) (-2145 (((-112) |#1| $) NIL)) (-3220 (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) NIL)) (-1668 (($ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) NIL)) (-4107 (((-642 |#1|) $) NIL)) (-4207 (((-112) |#1| $) NIL)) (-3999 (((-1117) $) NIL (-2682 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-4036 ((|#2| $) NIL (|has| |#1| (-848)))) (-3183 (((-3 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) "failed") (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL)) (-3826 (($ $ |#2|) NIL (|has| $ (-6 -4411)))) (-4314 (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) NIL)) (-4094 (((-112) (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))))) NIL (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (($ $ (-294 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) NIL (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (($ $ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) NIL (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (($ $ (-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) (-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) NIL (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (($ $ (-642 |#2|) (-642 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-642 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))))) (-2478 (((-112) $ $) NIL)) (-1643 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097))))) (-3522 (((-642 |#2|) $) NIL)) (-4109 (((-112) $) NIL)) (-2179 (($) NIL)) (-4369 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2318 (($) NIL) (($ (-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) NIL)) (-4010 (((-769) (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-769) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (((-769) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097)))) (((-769) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410)))) (-3865 (($ $) NIL)) (-3003 (((-536) $) NIL (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-612 (-536))))) (-2401 (($ (-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) NIL)) (-2390 (((-860) $) NIL (-2682 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-611 (-860))) (|has| |#2| (-611 (-860)))))) (-1600 (((-112) $ $) NIL (-2682 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-4160 (($ (-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) NIL)) (-3295 (((-112) (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410)))) (-2821 (((-112) $ $) NIL (-2682 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-2158 (((-769) $) NIL (|has| $ (-6 -4410))))) -(((-550 |#1| |#2| |#3|) (-13 (-1188 |#1| |#2|) (-10 -7 (-6 -4410))) (-1097) (-1097) (-13 (-1188 |#1| |#2|) (-10 -7 (-6 -4410)))) (T -550)) -NIL -(-13 (-1188 |#1| |#2|) (-10 -7 (-6 -4410))) -((-4221 (((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) (-1 (-1169 |#2|) (-1169 |#2|))) 50))) -(((-551 |#1| |#2|) (-10 -7 (-15 -4221 ((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) (-1 (-1169 |#2|) (-1169 |#2|))))) (-556) (-13 (-27) (-430 |#1|))) (T -551)) -((-4221 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-610 *3)) (-5 *5 (-1 (-1169 *3) (-1169 *3))) (-4 *3 (-13 (-27) (-430 *6))) (-4 *6 (-556)) (-5 *2 (-585 *3)) (-5 *1 (-551 *6 *3))))) -(-10 -7 (-15 -4221 ((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) (-1 (-1169 |#2|) (-1169 |#2|))))) -((-3572 (((-585 |#5|) |#5| (-1 |#3| |#3|)) 218)) (-2154 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 214)) (-2941 (((-585 |#5|) |#5| (-1 |#3| |#3|)) 222))) -(((-552 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2941 ((-585 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3572 ((-585 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2154 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-556) (-1036 (-564))) (-13 (-27) (-430 |#1|)) (-1238 |#2|) (-1238 (-407 |#3|)) (-342 |#2| |#3| |#4|)) (T -552)) -((-2154 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1238 *5)) (-4 *5 (-13 (-27) (-430 *4))) (-4 *4 (-13 (-556) (-1036 (-564)))) (-4 *7 (-1238 (-407 *6))) (-5 *1 (-552 *4 *5 *6 *7 *2)) (-4 *2 (-342 *5 *6 *7)))) (-3572 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1238 *6)) (-4 *6 (-13 (-27) (-430 *5))) (-4 *5 (-13 (-556) (-1036 (-564)))) (-4 *8 (-1238 (-407 *7))) (-5 *2 (-585 *3)) (-5 *1 (-552 *5 *6 *7 *8 *3)) (-4 *3 (-342 *6 *7 *8)))) (-2941 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1238 *6)) (-4 *6 (-13 (-27) (-430 *5))) (-4 *5 (-13 (-556) (-1036 (-564)))) (-4 *8 (-1238 (-407 *7))) (-5 *2 (-585 *3)) (-5 *1 (-552 *5 *6 *7 *8 *3)) (-4 *3 (-342 *6 *7 *8))))) -(-10 -7 (-15 -2941 ((-585 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3572 ((-585 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2154 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) -((-3416 (((-112) (-564) (-564)) 12)) (-1718 (((-564) (-564)) 7)) (-3632 (((-564) (-564) (-564)) 10))) -(((-553) (-10 -7 (-15 -1718 ((-564) (-564))) (-15 -3632 ((-564) (-564) (-564))) (-15 -3416 ((-112) (-564) (-564))))) (T -553)) -((-3416 (*1 *2 *3 *3) (-12 (-5 *3 (-564)) (-5 *2 (-112)) (-5 *1 (-553)))) (-3632 (*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-553)))) (-1718 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-553))))) -(-10 -7 (-15 -1718 ((-564) (-564))) (-15 -3632 ((-564) (-564) (-564))) (-15 -3416 ((-112) (-564) (-564)))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-3346 ((|#1| $) 67)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) 47)) (-4252 (($ $) 46)) (-1722 (((-112) $) 44)) (-3087 (($ $) 97)) (-2958 (($ $) 80)) (-2247 ((|#1| $) 68)) (-3085 (((-3 $ "failed") $ $) 20)) (-2264 (($ $) 79)) (-3067 (($ $) 96)) (-2933 (($ $) 81)) (-3110 (($ $) 95)) (-2981 (($ $) 82)) (-2822 (($) 18 T CONST)) (-2849 (((-3 (-564) "failed") $) 75)) (-1687 (((-564) $) 76)) (-2675 (((-3 $ "failed") $) 37)) (-3600 (($ |#1| |#1|) 72)) (-3292 (((-112) $) 66)) (-2833 (($) 107)) (-3163 (((-112) $) 35)) (-2024 (($ $ (-564)) 78)) (-2666 (((-112) $) 65)) (-3225 (($ $ $) 113)) (-2903 (($ $ $) 112)) (-3576 (($ $) 104)) (-2066 (($ $ $) 52) (($ (-642 $)) 51)) (-1778 (((-1155) $) 10)) (-1481 (($ |#1| |#1|) 73) (($ |#1|) 71) (($ (-407 (-564))) 70)) (-3883 ((|#1| $) 69)) (-3999 (((-1117) $) 11)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) 50)) (-2105 (($ $ $) 54) (($ (-642 $)) 53)) (-2842 (((-3 $ "failed") $ $) 48)) (-3466 (($ $) 105)) (-3120 (($ $) 94)) (-2992 (($ $) 83)) (-3098 (($ $) 93)) (-2971 (($ $) 84)) (-3077 (($ $) 92)) (-2946 (($ $) 85)) (-3906 (((-112) $ |#1|) 64)) (-2390 (((-860) $) 12) (($ (-564)) 33) (($ $) 49) (($ (-564)) 74)) (-3348 (((-769)) 32 T CONST)) (-1600 (((-112) $ $) 9)) (-3155 (($ $) 103)) (-3025 (($ $) 91)) (-1594 (((-112) $ $) 45)) (-3131 (($ $) 102)) (-3002 (($ $) 90)) (-3176 (($ $) 101)) (-3047 (($ $) 89)) (-3165 (($ $) 100)) (-3058 (($ $) 88)) (-3168 (($ $) 99)) (-3035 (($ $) 87)) (-3142 (($ $) 98)) (-3014 (($ $) 86)) (-2361 (($) 19 T CONST)) (-2371 (($) 34 T CONST)) (-2881 (((-112) $ $) 110)) (-2857 (((-112) $ $) 109)) (-2821 (((-112) $ $) 6)) (-2868 (((-112) $ $) 111)) (-2844 (((-112) $ $) 108)) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36) (($ $ $) 106) (($ $ (-407 (-564))) 77)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27))) -(((-554 |#1|) (-140) (-13 (-404) (-1197))) (T -554)) -((-1481 (*1 *1 *2 *2) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1197))))) (-3600 (*1 *1 *2 *2) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1197))))) (-1481 (*1 *1 *2) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1197))))) (-1481 (*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-4 *1 (-554 *3)) (-4 *3 (-13 (-404) (-1197))))) (-3883 (*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1197))))) (-2247 (*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1197))))) (-3346 (*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1197))))) (-3292 (*1 *2 *1) (-12 (-4 *1 (-554 *3)) (-4 *3 (-13 (-404) (-1197))) (-5 *2 (-112)))) (-2666 (*1 *2 *1) (-12 (-4 *1 (-554 *3)) (-4 *3 (-13 (-404) (-1197))) (-5 *2 (-112)))) (-3906 (*1 *2 *1 *3) (-12 (-4 *1 (-554 *3)) (-4 *3 (-13 (-404) (-1197))) (-5 *2 (-112))))) -(-13 (-452) (-848) (-1197) (-1000) (-1036 (-564)) (-10 -8 (-6 -3560) (-15 -1481 ($ |t#1| |t#1|)) (-15 -3600 ($ |t#1| |t#1|)) (-15 -1481 ($ |t#1|)) (-15 -1481 ($ (-407 (-564)))) (-15 -3883 (|t#1| $)) (-15 -2247 (|t#1| $)) (-15 -3346 (|t#1| $)) (-15 -3292 ((-112) $)) (-15 -2666 ((-112) $)) (-15 -3906 ((-112) $ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-860)) . T) ((-172) . T) ((-284) . T) ((-290) . T) ((-452) . T) ((-493) . T) ((-556) . T) ((-644 (-564)) . T) ((-644 $) . T) ((-646 $) . T) ((-638 $) . T) ((-715 $) . T) ((-724) . T) ((-848) . T) ((-1000) . T) ((-1036 (-564)) . T) ((-1049 $) . T) ((-1054 $) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T) ((-1197) . T) ((-1200) . T)) -((-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) 9)) (-4252 (($ $) 11)) (-1722 (((-112) $) 20)) (-2675 (((-3 $ "failed") $) 16)) (-1594 (((-112) $ $) 22))) -(((-555 |#1|) (-10 -8 (-15 -1722 ((-112) |#1|)) (-15 -1594 ((-112) |#1| |#1|)) (-15 -4252 (|#1| |#1|)) (-15 -2838 ((-2 (|:| -2660 |#1|) (|:| -4397 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2675 ((-3 |#1| "failed") |#1|))) (-556)) (T -555)) -NIL -(-10 -8 (-15 -1722 ((-112) |#1|)) (-15 -1594 ((-112) |#1| |#1|)) (-15 -4252 (|#1| |#1|)) (-15 -2838 ((-2 (|:| -2660 |#1|) (|:| -4397 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2675 ((-3 |#1| "failed") |#1|))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) 47)) (-4252 (($ $) 46)) (-1722 (((-112) $) 44)) (-3085 (((-3 $ "failed") $ $) 20)) (-2822 (($) 18 T CONST)) (-2675 (((-3 $ "failed") $) 37)) (-3163 (((-112) $) 35)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2842 (((-3 $ "failed") $ $) 48)) (-2390 (((-860) $) 12) (($ (-564)) 33) (($ $) 49)) (-3348 (((-769)) 32 T CONST)) (-1600 (((-112) $ $) 9)) (-1594 (((-112) $ $) 45)) (-2361 (($) 19 T CONST)) (-2371 (($) 34 T CONST)) (-2821 (((-112) $ $) 6)) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27))) -(((-556) (-140)) (T -556)) -((-2842 (*1 *1 *1 *1) (|partial| -4 *1 (-556))) (-2838 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2660 *1) (|:| -4397 *1) (|:| |associate| *1))) (-4 *1 (-556)))) (-4252 (*1 *1 *1) (-4 *1 (-556))) (-1594 (*1 *2 *1 *1) (-12 (-4 *1 (-556)) (-5 *2 (-112)))) (-1722 (*1 *2 *1) (-12 (-4 *1 (-556)) (-5 *2 (-112))))) -(-13 (-172) (-38 $) (-290) (-10 -8 (-15 -2842 ((-3 $ "failed") $ $)) (-15 -2838 ((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $)) (-15 -4252 ($ $)) (-15 -1594 ((-112) $ $)) (-15 -1722 ((-112) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-860)) . T) ((-172) . T) ((-290) . T) ((-644 (-564)) . T) ((-644 $) . T) ((-646 $) . T) ((-638 $) . T) ((-715 $) . T) ((-724) . T) ((-1049 $) . T) ((-1054 $) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T)) -((-4156 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1173) (-642 |#2|)) 38)) (-1384 (((-585 |#2|) |#2| (-1173)) 63)) (-2977 (((-3 |#2| "failed") |#2| (-1173)) 156)) (-3635 (((-3 (-2 (|:| -3872 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1173) (-610 |#2|) (-642 (-610 |#2|))) 159)) (-2045 (((-3 (-2 (|:| -3872 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1173) |#2|) 41))) -(((-557 |#1| |#2|) (-10 -7 (-15 -2045 ((-3 (-2 (|:| -3872 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1173) |#2|)) (-15 -4156 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1173) (-642 |#2|))) (-15 -2977 ((-3 |#2| "failed") |#2| (-1173))) (-15 -1384 ((-585 |#2|) |#2| (-1173))) (-15 -3635 ((-3 (-2 (|:| -3872 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1173) (-610 |#2|) (-642 (-610 |#2|))))) (-13 (-452) (-147) (-1036 (-564)) (-637 (-564))) (-13 (-27) (-1197) (-430 |#1|))) (T -557)) -((-3635 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1173)) (-5 *6 (-642 (-610 *3))) (-5 *5 (-610 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *7))) (-4 *7 (-13 (-452) (-147) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-2 (|:| -3872 *3) (|:| |coeff| *3))) (-5 *1 (-557 *7 *3)))) (-1384 (*1 *2 *3 *4) (-12 (-5 *4 (-1173)) (-4 *5 (-13 (-452) (-147) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-585 *3)) (-5 *1 (-557 *5 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *5))))) (-2977 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1173)) (-4 *4 (-13 (-452) (-147) (-1036 (-564)) (-637 (-564)))) (-5 *1 (-557 *4 *2)) (-4 *2 (-13 (-27) (-1197) (-430 *4))))) (-4156 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1173)) (-5 *5 (-642 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *6))) (-4 *6 (-13 (-452) (-147) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-557 *6 *3)))) (-2045 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1173)) (-4 *5 (-13 (-452) (-147) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-2 (|:| -3872 *3) (|:| |coeff| *3))) (-5 *1 (-557 *5 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *5)))))) -(-10 -7 (-15 -2045 ((-3 (-2 (|:| -3872 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1173) |#2|)) (-15 -4156 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1173) (-642 |#2|))) (-15 -2977 ((-3 |#2| "failed") |#2| (-1173))) (-15 -1384 ((-585 |#2|) |#2| (-1173))) (-15 -3635 ((-3 (-2 (|:| -3872 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1173) (-610 |#2|) (-642 (-610 |#2|))))) -((-3282 (((-418 |#1|) |#1|) 19)) (-2254 (((-418 |#1|) |#1|) 34)) (-3504 (((-3 |#1| "failed") |#1|) 51)) (-3306 (((-418 |#1|) |#1|) 64))) -(((-558 |#1|) (-10 -7 (-15 -2254 ((-418 |#1|) |#1|)) (-15 -3282 ((-418 |#1|) |#1|)) (-15 -3306 ((-418 |#1|) |#1|)) (-15 -3504 ((-3 |#1| "failed") |#1|))) (-545)) (T -558)) -((-3504 (*1 *2 *2) (|partial| -12 (-5 *1 (-558 *2)) (-4 *2 (-545)))) (-3306 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-558 *3)) (-4 *3 (-545)))) (-3282 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-558 *3)) (-4 *3 (-545)))) (-2254 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-558 *3)) (-4 *3 (-545))))) -(-10 -7 (-15 -2254 ((-418 |#1|) |#1|)) (-15 -3282 ((-418 |#1|) |#1|)) (-15 -3306 ((-418 |#1|) |#1|)) (-15 -3504 ((-3 |#1| "failed") |#1|))) -((-1641 (($) 9)) (-2463 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1153 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4138 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 35)) (-3287 (((-642 (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $) 32)) (-1668 (($ (-2 (|:| -1914 (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2683 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1153 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4138 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 29)) (-3723 (($ (-642 (-2 (|:| -1914 (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2683 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1153 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4138 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 27)) (-2683 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1153 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4138 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 39)) (-3522 (((-642 (-2 (|:| -1914 (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2683 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1153 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4138 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 37)) (-3349 (((-1267)) 12))) -(((-559) (-10 -8 (-15 -1641 ($)) (-15 -3349 ((-1267))) (-15 -3287 ((-642 (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -3723 ($ (-642 (-2 (|:| -1914 (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2683 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1153 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4138 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -1668 ($ (-2 (|:| -1914 (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2683 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1153 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4138 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2463 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1153 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4138 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3522 ((-642 (-2 (|:| -1914 (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2683 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1153 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4138 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2683 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1153 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4138 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -559)) -((-2683 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1153 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4138 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-559)))) (-3522 (*1 *2 *1) (-12 (-5 *2 (-642 (-2 (|:| -1914 (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2683 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1153 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4138 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-559)))) (-2463 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1153 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4138 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-559)))) (-1668 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -1914 (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2683 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1153 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4138 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-559)))) (-3723 (*1 *1 *2) (-12 (-5 *2 (-642 (-2 (|:| -1914 (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2683 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1153 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4138 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-559)))) (-3287 (*1 *2 *1) (-12 (-5 *2 (-642 (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-5 *1 (-559)))) (-3349 (*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-559)))) (-1641 (*1 *1) (-5 *1 (-559)))) -(-10 -8 (-15 -1641 ($)) (-15 -3349 ((-1267))) (-15 -3287 ((-642 (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -3723 ($ (-642 (-2 (|:| -1914 (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2683 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1153 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4138 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -1668 ($ (-2 (|:| -1914 (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2683 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1153 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4138 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2463 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1153 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4138 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3522 ((-642 (-2 (|:| -1914 (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2683 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1153 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4138 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2683 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1153 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4138 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) -((-2223 (((-1169 (-407 (-1169 |#2|))) |#2| (-610 |#2|) (-610 |#2|) (-1169 |#2|)) 35)) (-1509 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-642 |#2|) (-610 |#2|) |#2| (-407 (-1169 |#2|))) 105) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-642 |#2|) |#2| (-1169 |#2|)) 115)) (-3955 (((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) (-610 |#2|) |#2| (-407 (-1169 |#2|))) 85) (((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) |#2| (-1169 |#2|)) 55)) (-3236 (((-3 (-2 (|:| -3872 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2| (-610 |#2|) |#2| (-407 (-1169 |#2|))) 92) (((-3 (-2 (|:| -3872 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2| |#2| (-1169 |#2|)) 114)) (-3222 (((-3 |#2| "failed") |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1173)) (-610 |#2|) |#2| (-407 (-1169 |#2|))) 110) (((-3 |#2| "failed") |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1173)) |#2| (-1169 |#2|)) 116)) (-3308 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2131 (-642 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) (-610 |#2|) |#2| (-407 (-1169 |#2|))) 135 (|has| |#3| (-654 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2131 (-642 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) |#2| (-1169 |#2|)) 134 (|has| |#3| (-654 |#2|)))) (-2387 ((|#2| (-1169 (-407 (-1169 |#2|))) (-610 |#2|) |#2|) 53)) (-3730 (((-1169 (-407 (-1169 |#2|))) (-1169 |#2|) (-610 |#2|)) 34))) -(((-560 |#1| |#2| |#3|) (-10 -7 (-15 -3955 ((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) |#2| (-1169 |#2|))) (-15 -3955 ((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) (-610 |#2|) |#2| (-407 (-1169 |#2|)))) (-15 -3236 ((-3 (-2 (|:| -3872 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2| |#2| (-1169 |#2|))) (-15 -3236 ((-3 (-2 (|:| -3872 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2| (-610 |#2|) |#2| (-407 (-1169 |#2|)))) (-15 -1509 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-642 |#2|) |#2| (-1169 |#2|))) (-15 -1509 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-642 |#2|) (-610 |#2|) |#2| (-407 (-1169 |#2|)))) (-15 -3222 ((-3 |#2| "failed") |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1173)) |#2| (-1169 |#2|))) (-15 -3222 ((-3 |#2| "failed") |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1173)) (-610 |#2|) |#2| (-407 (-1169 |#2|)))) (-15 -2223 ((-1169 (-407 (-1169 |#2|))) |#2| (-610 |#2|) (-610 |#2|) (-1169 |#2|))) (-15 -2387 (|#2| (-1169 (-407 (-1169 |#2|))) (-610 |#2|) |#2|)) (-15 -3730 ((-1169 (-407 (-1169 |#2|))) (-1169 |#2|) (-610 |#2|))) (IF (|has| |#3| (-654 |#2|)) (PROGN (-15 -3308 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2131 (-642 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) |#2| (-1169 |#2|))) (-15 -3308 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2131 (-642 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) (-610 |#2|) |#2| (-407 (-1169 |#2|))))) |%noBranch|)) (-13 (-452) (-1036 (-564)) (-147) (-637 (-564))) (-13 (-430 |#1|) (-27) (-1197)) (-1097)) (T -560)) -((-3308 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-610 *4)) (-5 *6 (-407 (-1169 *4))) (-4 *4 (-13 (-430 *7) (-27) (-1197))) (-4 *7 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2131 (-642 *4)))) (-5 *1 (-560 *7 *4 *3)) (-4 *3 (-654 *4)) (-4 *3 (-1097)))) (-3308 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-610 *4)) (-5 *6 (-1169 *4)) (-4 *4 (-13 (-430 *7) (-27) (-1197))) (-4 *7 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2131 (-642 *4)))) (-5 *1 (-560 *7 *4 *3)) (-4 *3 (-654 *4)) (-4 *3 (-1097)))) (-3730 (*1 *2 *3 *4) (-12 (-5 *4 (-610 *6)) (-4 *6 (-13 (-430 *5) (-27) (-1197))) (-4 *5 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564)))) (-5 *2 (-1169 (-407 (-1169 *6)))) (-5 *1 (-560 *5 *6 *7)) (-5 *3 (-1169 *6)) (-4 *7 (-1097)))) (-2387 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1169 (-407 (-1169 *2)))) (-5 *4 (-610 *2)) (-4 *2 (-13 (-430 *5) (-27) (-1197))) (-4 *5 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564)))) (-5 *1 (-560 *5 *2 *6)) (-4 *6 (-1097)))) (-2223 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-610 *3)) (-4 *3 (-13 (-430 *6) (-27) (-1197))) (-4 *6 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564)))) (-5 *2 (-1169 (-407 (-1169 *3)))) (-5 *1 (-560 *6 *3 *7)) (-5 *5 (-1169 *3)) (-4 *7 (-1097)))) (-3222 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-610 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1173))) (-5 *5 (-407 (-1169 *2))) (-4 *2 (-13 (-430 *6) (-27) (-1197))) (-4 *6 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564)))) (-5 *1 (-560 *6 *2 *7)) (-4 *7 (-1097)))) (-3222 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-610 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1173))) (-5 *5 (-1169 *2)) (-4 *2 (-13 (-430 *6) (-27) (-1197))) (-4 *6 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564)))) (-5 *1 (-560 *6 *2 *7)) (-4 *7 (-1097)))) (-1509 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-642 *3)) (-5 *6 (-407 (-1169 *3))) (-4 *3 (-13 (-430 *7) (-27) (-1197))) (-4 *7 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-560 *7 *3 *8)) (-4 *8 (-1097)))) (-1509 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-642 *3)) (-5 *6 (-1169 *3)) (-4 *3 (-13 (-430 *7) (-27) (-1197))) (-4 *7 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-560 *7 *3 *8)) (-4 *8 (-1097)))) (-3236 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-407 (-1169 *3))) (-4 *3 (-13 (-430 *6) (-27) (-1197))) (-4 *6 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| -3872 *3) (|:| |coeff| *3))) (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1097)))) (-3236 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-1169 *3)) (-4 *3 (-13 (-430 *6) (-27) (-1197))) (-4 *6 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| -3872 *3) (|:| |coeff| *3))) (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1097)))) (-3955 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-610 *3)) (-5 *5 (-407 (-1169 *3))) (-4 *3 (-13 (-430 *6) (-27) (-1197))) (-4 *6 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564)))) (-5 *2 (-585 *3)) (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1097)))) (-3955 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-610 *3)) (-5 *5 (-1169 *3)) (-4 *3 (-13 (-430 *6) (-27) (-1197))) (-4 *6 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564)))) (-5 *2 (-585 *3)) (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1097))))) -(-10 -7 (-15 -3955 ((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) |#2| (-1169 |#2|))) (-15 -3955 ((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) (-610 |#2|) |#2| (-407 (-1169 |#2|)))) (-15 -3236 ((-3 (-2 (|:| -3872 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2| |#2| (-1169 |#2|))) (-15 -3236 ((-3 (-2 (|:| -3872 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2| (-610 |#2|) |#2| (-407 (-1169 |#2|)))) (-15 -1509 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-642 |#2|) |#2| (-1169 |#2|))) (-15 -1509 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-642 |#2|) (-610 |#2|) |#2| (-407 (-1169 |#2|)))) (-15 -3222 ((-3 |#2| "failed") |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1173)) |#2| (-1169 |#2|))) (-15 -3222 ((-3 |#2| "failed") |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1173)) (-610 |#2|) |#2| (-407 (-1169 |#2|)))) (-15 -2223 ((-1169 (-407 (-1169 |#2|))) |#2| (-610 |#2|) (-610 |#2|) (-1169 |#2|))) (-15 -2387 (|#2| (-1169 (-407 (-1169 |#2|))) (-610 |#2|) |#2|)) (-15 -3730 ((-1169 (-407 (-1169 |#2|))) (-1169 |#2|) (-610 |#2|))) (IF (|has| |#3| (-654 |#2|)) (PROGN (-15 -3308 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2131 (-642 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) |#2| (-1169 |#2|))) (-15 -3308 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2131 (-642 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) (-610 |#2|) |#2| (-407 (-1169 |#2|))))) |%noBranch|)) -((-1613 (((-564) (-564) (-769)) 90)) (-3027 (((-564) (-564)) 88)) (-3023 (((-564) (-564)) 86)) (-3570 (((-564) (-564)) 92)) (-2047 (((-564) (-564) (-564)) 70)) (-1331 (((-564) (-564) (-564)) 67)) (-1374 (((-407 (-564)) (-564)) 30)) (-3860 (((-564) (-564)) 36)) (-2288 (((-564) (-564)) 79)) (-3962 (((-564) (-564)) 51)) (-2417 (((-642 (-564)) (-564)) 85)) (-2320 (((-564) (-564) (-564) (-564) (-564)) 63)) (-3586 (((-407 (-564)) (-564)) 60))) -(((-561) (-10 -7 (-15 -3586 ((-407 (-564)) (-564))) (-15 -2320 ((-564) (-564) (-564) (-564) (-564))) (-15 -2417 ((-642 (-564)) (-564))) (-15 -3962 ((-564) (-564))) (-15 -2288 ((-564) (-564))) (-15 -3860 ((-564) (-564))) (-15 -1374 ((-407 (-564)) (-564))) (-15 -1331 ((-564) (-564) (-564))) (-15 -2047 ((-564) (-564) (-564))) (-15 -3570 ((-564) (-564))) (-15 -3023 ((-564) (-564))) (-15 -3027 ((-564) (-564))) (-15 -1613 ((-564) (-564) (-769))))) (T -561)) -((-1613 (*1 *2 *2 *3) (-12 (-5 *2 (-564)) (-5 *3 (-769)) (-5 *1 (-561)))) (-3027 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-3023 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-3570 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-2047 (*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-1331 (*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-1374 (*1 *2 *3) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-561)) (-5 *3 (-564)))) (-3860 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-2288 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-3962 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-2417 (*1 *2 *3) (-12 (-5 *2 (-642 (-564))) (-5 *1 (-561)) (-5 *3 (-564)))) (-2320 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-3586 (*1 *2 *3) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-561)) (-5 *3 (-564))))) -(-10 -7 (-15 -3586 ((-407 (-564)) (-564))) (-15 -2320 ((-564) (-564) (-564) (-564) (-564))) (-15 -2417 ((-642 (-564)) (-564))) (-15 -3962 ((-564) (-564))) (-15 -2288 ((-564) (-564))) (-15 -3860 ((-564) (-564))) (-15 -1374 ((-407 (-564)) (-564))) (-15 -1331 ((-564) (-564) (-564))) (-15 -2047 ((-564) (-564) (-564))) (-15 -3570 ((-564) (-564))) (-15 -3023 ((-564) (-564))) (-15 -3027 ((-564) (-564))) (-15 -1613 ((-564) (-564) (-769)))) -((-4091 (((-2 (|:| |answer| |#4|) (|:| -4135 |#4|)) |#4| (-1 |#2| |#2|)) 56))) -(((-562 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4091 ((-2 (|:| |answer| |#4|) (|:| -4135 |#4|)) |#4| (-1 |#2| |#2|)))) (-363) (-1238 |#1|) (-1238 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -562)) -((-4091 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1238 *5)) (-4 *5 (-363)) (-4 *7 (-1238 (-407 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -4135 *3))) (-5 *1 (-562 *5 *6 *7 *3)) (-4 *3 (-342 *5 *6 *7))))) -(-10 -7 (-15 -4091 ((-2 (|:| |answer| |#4|) (|:| -4135 |#4|)) |#4| (-1 |#2| |#2|)))) -((-4091 (((-2 (|:| |answer| (-407 |#2|)) (|:| -4135 (-407 |#2|)) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|)) 18))) -(((-563 |#1| |#2|) (-10 -7 (-15 -4091 ((-2 (|:| |answer| (-407 |#2|)) (|:| -4135 (-407 |#2|)) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|)))) (-363) (-1238 |#1|)) (T -563)) -((-4091 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1238 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |answer| (-407 *6)) (|:| -4135 (-407 *6)) (|:| |specpart| (-407 *6)) (|:| |polypart| *6))) (-5 *1 (-563 *5 *6)) (-5 *3 (-407 *6))))) -(-10 -7 (-15 -4091 ((-2 (|:| |answer| (-407 |#2|)) (|:| -4135 (-407 |#2|)) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|)))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) 30)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) 97)) (-4252 (($ $) 98)) (-1722 (((-112) $) NIL)) (-2290 (($ $ $) NIL)) (-3085 (((-3 $ "failed") $ $) NIL)) (-4062 (($ $ $ $) 52)) (-1993 (($ $) NIL)) (-3282 (((-418 $) $) NIL)) (-2134 (((-112) $ $) NIL)) (-2221 (((-564) $) NIL)) (-2966 (($ $ $) 92)) (-2822 (($) NIL T CONST)) (-2849 (((-3 (-564) "failed") $) NIL)) (-1687 (((-564) $) NIL)) (-2796 (($ $ $) 54)) (-3330 (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) 77) (((-687 (-564)) (-687 $)) 73)) (-2675 (((-3 $ "failed") $) 94)) (-3227 (((-3 (-407 (-564)) "failed") $) NIL)) (-2929 (((-112) $) NIL)) (-3536 (((-407 (-564)) $) NIL)) (-3235 (($) 79) (($ $) 80)) (-2808 (($ $ $) 91)) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) NIL)) (-3552 (((-112) $) NIL)) (-1454 (($ $ $ $) NIL)) (-2271 (($ $ $) 70)) (-3292 (((-112) $) NIL)) (-2641 (($ $ $) NIL)) (-1381 (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) NIL)) (-3163 (((-112) $) 34)) (-2829 (((-112) $) 86)) (-4382 (((-3 $ "failed") $) NIL)) (-2666 (((-112) $) 43)) (-2709 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-1957 (($ $ $ $) 55)) (-3225 (($ $ $) 88)) (-2903 (($ $ $) 87)) (-1526 (($ $) NIL)) (-2495 (($ $) 49)) (-2066 (($ $ $) NIL) (($ (-642 $)) NIL)) (-1778 (((-1155) $) 69)) (-3010 (($ $ $) NIL)) (-3910 (($) NIL T CONST)) (-4258 (($ $) 38)) (-3999 (((-1117) $) 42)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) 129)) (-2105 (($ $ $) 95) (($ (-642 $)) NIL)) (-1420 (($ $) NIL)) (-2254 (((-418 $) $) 115)) (-1877 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL)) (-2842 (((-3 $ "failed") $ $) 113)) (-1483 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2211 (((-112) $) NIL)) (-4274 (((-769) $) NIL)) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) 90)) (-2199 (($ $ (-769)) NIL) (($ $) NIL)) (-1855 (($ $) 40)) (-3865 (($ $) 36)) (-3003 (((-564) $) 48) (((-536) $) 64) (((-890 (-564)) $) NIL) (((-379) $) 58) (((-225) $) 61) (((-1155) $) 66)) (-2390 (((-860) $) 46) (($ (-564)) 47) (($ $) NIL) (($ (-564)) 47)) (-3348 (((-769)) NIL T CONST)) (-3029 (((-112) $ $) NIL)) (-4271 (($ $ $) NIL)) (-1600 (((-112) $ $) NIL)) (-1959 (($) 35)) (-1594 (((-112) $ $) NIL)) (-3234 (($ $ $ $) 51)) (-1630 (($ $) 78)) (-2361 (($) 6 T CONST)) (-2371 (($) 31 T CONST)) (-3816 (((-1155) $) 26) (((-1155) $ (-112)) 27) (((-1267) (-820) $) 28) (((-1267) (-820) $ (-112)) 29)) (-2711 (($ $ (-769)) NIL) (($ $) NIL)) (-2881 (((-112) $ $) 50)) (-2857 (((-112) $ $) 81)) (-2821 (((-112) $ $) 33)) (-2868 (((-112) $ $) 83)) (-2844 (((-112) $ $) 10)) (-2930 (($ $) 16) (($ $ $) 39)) (-2917 (($ $ $) 37)) (** (($ $ (-919)) NIL) (($ $ (-769)) 85)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 84) (($ $ $) 53))) -(((-564) (-13 (-545) (-612 (-1155)) (-826) (-10 -8 (-15 -3235 ($ $)) (-6 -4397) (-6 -4402) (-6 -4398) (-6 -4392)))) (T -564)) -((-3235 (*1 *1 *1) (-5 *1 (-564)))) -(-13 (-545) (-612 (-1155)) (-826) (-10 -8 (-15 -3235 ($ $)) (-6 -4397) (-6 -4402) (-6 -4398) (-6 -4392))) -((-4324 (((-2 (|:| -4324 (-379)) (|:| -2493 (-1155)) (|:| |explanations| (-642 (-1155))) (|:| |extra| (-1033))) (-767) (-1060)) 119) (((-2 (|:| -4324 (-379)) (|:| -2493 (-1155)) (|:| |explanations| (-642 (-1155))) (|:| |extra| (-1033))) (-767)) 121)) (-3703 (((-3 (-1033) "failed") (-316 (-379)) (-1089 (-841 (-379))) (-1173)) 197) (((-3 (-1033) "failed") (-316 (-379)) (-1089 (-841 (-379))) (-1155)) 196) (((-1033) (-316 (-379)) (-642 (-1091 (-841 (-379)))) (-379) (-379) (-1060)) 201) (((-1033) (-316 (-379)) (-642 (-1091 (-841 (-379)))) (-379) (-379)) 202) (((-1033) (-316 (-379)) (-642 (-1091 (-841 (-379)))) (-379)) 203) (((-1033) (-316 (-379)) (-642 (-1091 (-841 (-379))))) 204) (((-1033) (-316 (-379)) (-1091 (-841 (-379)))) 192) (((-1033) (-316 (-379)) (-1091 (-841 (-379))) (-379)) 191) (((-1033) (-316 (-379)) (-1091 (-841 (-379))) (-379) (-379)) 187) (((-1033) (-767)) 179) (((-1033) (-316 (-379)) (-1091 (-841 (-379))) (-379) (-379) (-1060)) 186))) -(((-565) (-10 -7 (-15 -3703 ((-1033) (-316 (-379)) (-1091 (-841 (-379))) (-379) (-379) (-1060))) (-15 -3703 ((-1033) (-767))) (-15 -3703 ((-1033) (-316 (-379)) (-1091 (-841 (-379))) (-379) (-379))) (-15 -3703 ((-1033) (-316 (-379)) (-1091 (-841 (-379))) (-379))) (-15 -3703 ((-1033) (-316 (-379)) (-1091 (-841 (-379))))) (-15 -3703 ((-1033) (-316 (-379)) (-642 (-1091 (-841 (-379)))))) (-15 -3703 ((-1033) (-316 (-379)) (-642 (-1091 (-841 (-379)))) (-379))) (-15 -3703 ((-1033) (-316 (-379)) (-642 (-1091 (-841 (-379)))) (-379) (-379))) (-15 -3703 ((-1033) (-316 (-379)) (-642 (-1091 (-841 (-379)))) (-379) (-379) (-1060))) (-15 -4324 ((-2 (|:| -4324 (-379)) (|:| -2493 (-1155)) (|:| |explanations| (-642 (-1155))) (|:| |extra| (-1033))) (-767))) (-15 -4324 ((-2 (|:| -4324 (-379)) (|:| -2493 (-1155)) (|:| |explanations| (-642 (-1155))) (|:| |extra| (-1033))) (-767) (-1060))) (-15 -3703 ((-3 (-1033) "failed") (-316 (-379)) (-1089 (-841 (-379))) (-1155))) (-15 -3703 ((-3 (-1033) "failed") (-316 (-379)) (-1089 (-841 (-379))) (-1173))))) (T -565)) -((-3703 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-316 (-379))) (-5 *4 (-1089 (-841 (-379)))) (-5 *5 (-1173)) (-5 *2 (-1033)) (-5 *1 (-565)))) (-3703 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-316 (-379))) (-5 *4 (-1089 (-841 (-379)))) (-5 *5 (-1155)) (-5 *2 (-1033)) (-5 *1 (-565)))) (-4324 (*1 *2 *3 *4) (-12 (-5 *3 (-767)) (-5 *4 (-1060)) (-5 *2 (-2 (|:| -4324 (-379)) (|:| -2493 (-1155)) (|:| |explanations| (-642 (-1155))) (|:| |extra| (-1033)))) (-5 *1 (-565)))) (-4324 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-2 (|:| -4324 (-379)) (|:| -2493 (-1155)) (|:| |explanations| (-642 (-1155))) (|:| |extra| (-1033)))) (-5 *1 (-565)))) (-3703 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-642 (-1091 (-841 (-379))))) (-5 *5 (-379)) (-5 *6 (-1060)) (-5 *2 (-1033)) (-5 *1 (-565)))) (-3703 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-642 (-1091 (-841 (-379))))) (-5 *5 (-379)) (-5 *2 (-1033)) (-5 *1 (-565)))) (-3703 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-642 (-1091 (-841 (-379))))) (-5 *5 (-379)) (-5 *2 (-1033)) (-5 *1 (-565)))) (-3703 (*1 *2 *3 *4) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-642 (-1091 (-841 (-379))))) (-5 *2 (-1033)) (-5 *1 (-565)))) (-3703 (*1 *2 *3 *4) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1091 (-841 (-379)))) (-5 *2 (-1033)) (-5 *1 (-565)))) (-3703 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1091 (-841 (-379)))) (-5 *5 (-379)) (-5 *2 (-1033)) (-5 *1 (-565)))) (-3703 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1091 (-841 (-379)))) (-5 *5 (-379)) (-5 *2 (-1033)) (-5 *1 (-565)))) (-3703 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1033)) (-5 *1 (-565)))) (-3703 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1091 (-841 (-379)))) (-5 *5 (-379)) (-5 *6 (-1060)) (-5 *2 (-1033)) (-5 *1 (-565))))) -(-10 -7 (-15 -3703 ((-1033) (-316 (-379)) (-1091 (-841 (-379))) (-379) (-379) (-1060))) (-15 -3703 ((-1033) (-767))) (-15 -3703 ((-1033) (-316 (-379)) (-1091 (-841 (-379))) (-379) (-379))) (-15 -3703 ((-1033) (-316 (-379)) (-1091 (-841 (-379))) (-379))) (-15 -3703 ((-1033) (-316 (-379)) (-1091 (-841 (-379))))) (-15 -3703 ((-1033) (-316 (-379)) (-642 (-1091 (-841 (-379)))))) (-15 -3703 ((-1033) (-316 (-379)) (-642 (-1091 (-841 (-379)))) (-379))) (-15 -3703 ((-1033) (-316 (-379)) (-642 (-1091 (-841 (-379)))) (-379) (-379))) (-15 -3703 ((-1033) (-316 (-379)) (-642 (-1091 (-841 (-379)))) (-379) (-379) (-1060))) (-15 -4324 ((-2 (|:| -4324 (-379)) (|:| -2493 (-1155)) (|:| |explanations| (-642 (-1155))) (|:| |extra| (-1033))) (-767))) (-15 -4324 ((-2 (|:| -4324 (-379)) (|:| -2493 (-1155)) (|:| |explanations| (-642 (-1155))) (|:| |extra| (-1033))) (-767) (-1060))) (-15 -3703 ((-3 (-1033) "failed") (-316 (-379)) (-1089 (-841 (-379))) (-1155))) (-15 -3703 ((-3 (-1033) "failed") (-316 (-379)) (-1089 (-841 (-379))) (-1173)))) -((-3889 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-642 |#2|)) 198)) (-4058 (((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|)) 99)) (-4303 (((-3 (-2 (|:| -3872 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2|) 194)) (-3472 (((-3 |#2| "failed") |#2| |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1173))) 203)) (-2928 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2131 (-642 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) (-1173)) 212 (|has| |#3| (-654 |#2|))))) -(((-566 |#1| |#2| |#3|) (-10 -7 (-15 -4058 ((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|))) (-15 -4303 ((-3 (-2 (|:| -3872 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2|)) (-15 -3889 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-642 |#2|))) (-15 -3472 ((-3 |#2| "failed") |#2| |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1173)))) (IF (|has| |#3| (-654 |#2|)) (-15 -2928 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2131 (-642 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) (-1173))) |%noBranch|)) (-13 (-452) (-1036 (-564)) (-147) (-637 (-564))) (-13 (-430 |#1|) (-27) (-1197)) (-1097)) (T -566)) -((-2928 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-610 *4)) (-5 *6 (-1173)) (-4 *4 (-13 (-430 *7) (-27) (-1197))) (-4 *7 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2131 (-642 *4)))) (-5 *1 (-566 *7 *4 *3)) (-4 *3 (-654 *4)) (-4 *3 (-1097)))) (-3472 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-610 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1173))) (-4 *2 (-13 (-430 *5) (-27) (-1197))) (-4 *5 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564)))) (-5 *1 (-566 *5 *2 *6)) (-4 *6 (-1097)))) (-3889 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-642 *3)) (-4 *3 (-13 (-430 *6) (-27) (-1197))) (-4 *6 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-566 *6 *3 *7)) (-4 *7 (-1097)))) (-4303 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-610 *3)) (-4 *3 (-13 (-430 *5) (-27) (-1197))) (-4 *5 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| -3872 *3) (|:| |coeff| *3))) (-5 *1 (-566 *5 *3 *6)) (-4 *6 (-1097)))) (-4058 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-610 *3)) (-4 *3 (-13 (-430 *5) (-27) (-1197))) (-4 *5 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564)))) (-5 *2 (-585 *3)) (-5 *1 (-566 *5 *3 *6)) (-4 *6 (-1097))))) -(-10 -7 (-15 -4058 ((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|))) (-15 -4303 ((-3 (-2 (|:| -3872 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2|)) (-15 -3889 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-642 |#2|))) (-15 -3472 ((-3 |#2| "failed") |#2| |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1173)))) (IF (|has| |#3| (-654 |#2|)) (-15 -2928 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2131 (-642 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) (-1173))) |%noBranch|)) -((-1360 (((-2 (|:| -3944 |#2|) (|:| |nconst| |#2|)) |#2| (-1173)) 64)) (-3045 (((-3 |#2| "failed") |#2| (-1173) (-841 |#2|) (-841 |#2|)) 175 (-12 (|has| |#2| (-1136)) (|has| |#1| (-612 (-890 (-564)))) (|has| |#1| (-884 (-564))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1173)) 154 (-12 (|has| |#2| (-627)) (|has| |#1| (-612 (-890 (-564)))) (|has| |#1| (-884 (-564)))))) (-2026 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1173)) 156 (-12 (|has| |#2| (-627)) (|has| |#1| (-612 (-890 (-564)))) (|has| |#1| (-884 (-564))))))) -(((-567 |#1| |#2|) (-10 -7 (-15 -1360 ((-2 (|:| -3944 |#2|) (|:| |nconst| |#2|)) |#2| (-1173))) (IF (|has| |#1| (-612 (-890 (-564)))) (IF (|has| |#1| (-884 (-564))) (PROGN (IF (|has| |#2| (-627)) (PROGN (-15 -2026 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1173))) (-15 -3045 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1173)))) |%noBranch|) (IF (|has| |#2| (-1136)) (-15 -3045 ((-3 |#2| "failed") |#2| (-1173) (-841 |#2|) (-841 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-1036 (-564)) (-452) (-637 (-564))) (-13 (-27) (-1197) (-430 |#1|))) (T -567)) -((-3045 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1173)) (-5 *4 (-841 *2)) (-4 *2 (-1136)) (-4 *2 (-13 (-27) (-1197) (-430 *5))) (-4 *5 (-612 (-890 (-564)))) (-4 *5 (-884 (-564))) (-4 *5 (-13 (-1036 (-564)) (-452) (-637 (-564)))) (-5 *1 (-567 *5 *2)))) (-3045 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1173)) (-4 *5 (-612 (-890 (-564)))) (-4 *5 (-884 (-564))) (-4 *5 (-13 (-1036 (-564)) (-452) (-637 (-564)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-567 *5 *3)) (-4 *3 (-627)) (-4 *3 (-13 (-27) (-1197) (-430 *5))))) (-2026 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1173)) (-4 *5 (-612 (-890 (-564)))) (-4 *5 (-884 (-564))) (-4 *5 (-13 (-1036 (-564)) (-452) (-637 (-564)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-567 *5 *3)) (-4 *3 (-627)) (-4 *3 (-13 (-27) (-1197) (-430 *5))))) (-1360 (*1 *2 *3 *4) (-12 (-5 *4 (-1173)) (-4 *5 (-13 (-1036 (-564)) (-452) (-637 (-564)))) (-5 *2 (-2 (|:| -3944 *3) (|:| |nconst| *3))) (-5 *1 (-567 *5 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *5)))))) -(-10 -7 (-15 -1360 ((-2 (|:| -3944 |#2|) (|:| |nconst| |#2|)) |#2| (-1173))) (IF (|has| |#1| (-612 (-890 (-564)))) (IF (|has| |#1| (-884 (-564))) (PROGN (IF (|has| |#2| (-627)) (PROGN (-15 -2026 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1173))) (-15 -3045 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1173)))) |%noBranch|) (IF (|has| |#2| (-1136)) (-15 -3045 ((-3 |#2| "failed") |#2| (-1173) (-841 |#2|) (-841 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-2404 (((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-642 (-407 |#2|))) 41)) (-3703 (((-585 (-407 |#2|)) (-407 |#2|)) 28)) (-2193 (((-3 (-407 |#2|) "failed") (-407 |#2|)) 17)) (-3796 (((-3 (-2 (|:| -3872 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-407 |#2|)) 48))) -(((-568 |#1| |#2|) (-10 -7 (-15 -3703 ((-585 (-407 |#2|)) (-407 |#2|))) (-15 -2193 ((-3 (-407 |#2|) "failed") (-407 |#2|))) (-15 -3796 ((-3 (-2 (|:| -3872 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-407 |#2|))) (-15 -2404 ((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-642 (-407 |#2|))))) (-13 (-363) (-147) (-1036 (-564))) (-1238 |#1|)) (T -568)) -((-2404 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-642 (-407 *6))) (-5 *3 (-407 *6)) (-4 *6 (-1238 *5)) (-4 *5 (-13 (-363) (-147) (-1036 (-564)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-568 *5 *6)))) (-3796 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-363) (-147) (-1036 (-564)))) (-4 *5 (-1238 *4)) (-5 *2 (-2 (|:| -3872 (-407 *5)) (|:| |coeff| (-407 *5)))) (-5 *1 (-568 *4 *5)) (-5 *3 (-407 *5)))) (-2193 (*1 *2 *2) (|partial| -12 (-5 *2 (-407 *4)) (-4 *4 (-1238 *3)) (-4 *3 (-13 (-363) (-147) (-1036 (-564)))) (-5 *1 (-568 *3 *4)))) (-3703 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1036 (-564)))) (-4 *5 (-1238 *4)) (-5 *2 (-585 (-407 *5))) (-5 *1 (-568 *4 *5)) (-5 *3 (-407 *5))))) -(-10 -7 (-15 -3703 ((-585 (-407 |#2|)) (-407 |#2|))) (-15 -2193 ((-3 (-407 |#2|) "failed") (-407 |#2|))) (-15 -3796 ((-3 (-2 (|:| -3872 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-407 |#2|))) (-15 -2404 ((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-642 (-407 |#2|))))) -((-4265 (((-3 (-564) "failed") |#1|) 14)) (-3068 (((-112) |#1|) 13)) (-1369 (((-564) |#1|) 9))) -(((-569 |#1|) (-10 -7 (-15 -1369 ((-564) |#1|)) (-15 -3068 ((-112) |#1|)) (-15 -4265 ((-3 (-564) "failed") |#1|))) (-1036 (-564))) (T -569)) -((-4265 (*1 *2 *3) (|partial| -12 (-5 *2 (-564)) (-5 *1 (-569 *3)) (-4 *3 (-1036 *2)))) (-3068 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-569 *3)) (-4 *3 (-1036 (-564))))) (-1369 (*1 *2 *3) (-12 (-5 *2 (-564)) (-5 *1 (-569 *3)) (-4 *3 (-1036 *2))))) -(-10 -7 (-15 -1369 ((-564) |#1|)) (-15 -3068 ((-112) |#1|)) (-15 -4265 ((-3 (-564) "failed") |#1|))) -((-2963 (((-3 (-2 (|:| |mainpart| (-407 (-950 |#1|))) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| (-407 (-950 |#1|))) (|:| |logand| (-407 (-950 |#1|))))))) "failed") (-407 (-950 |#1|)) (-1173) (-642 (-407 (-950 |#1|)))) 48)) (-2114 (((-585 (-407 (-950 |#1|))) (-407 (-950 |#1|)) (-1173)) 28)) (-2924 (((-3 (-407 (-950 |#1|)) "failed") (-407 (-950 |#1|)) (-1173)) 23)) (-4378 (((-3 (-2 (|:| -3872 (-407 (-950 |#1|))) (|:| |coeff| (-407 (-950 |#1|)))) "failed") (-407 (-950 |#1|)) (-1173) (-407 (-950 |#1|))) 35))) -(((-570 |#1|) (-10 -7 (-15 -2114 ((-585 (-407 (-950 |#1|))) (-407 (-950 |#1|)) (-1173))) (-15 -2924 ((-3 (-407 (-950 |#1|)) "failed") (-407 (-950 |#1|)) (-1173))) (-15 -2963 ((-3 (-2 (|:| |mainpart| (-407 (-950 |#1|))) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| (-407 (-950 |#1|))) (|:| |logand| (-407 (-950 |#1|))))))) "failed") (-407 (-950 |#1|)) (-1173) (-642 (-407 (-950 |#1|))))) (-15 -4378 ((-3 (-2 (|:| -3872 (-407 (-950 |#1|))) (|:| |coeff| (-407 (-950 |#1|)))) "failed") (-407 (-950 |#1|)) (-1173) (-407 (-950 |#1|))))) (-13 (-556) (-1036 (-564)) (-147))) (T -570)) -((-4378 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1173)) (-4 *5 (-13 (-556) (-1036 (-564)) (-147))) (-5 *2 (-2 (|:| -3872 (-407 (-950 *5))) (|:| |coeff| (-407 (-950 *5))))) (-5 *1 (-570 *5)) (-5 *3 (-407 (-950 *5))))) (-2963 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1173)) (-5 *5 (-642 (-407 (-950 *6)))) (-5 *3 (-407 (-950 *6))) (-4 *6 (-13 (-556) (-1036 (-564)) (-147))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-570 *6)))) (-2924 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-407 (-950 *4))) (-5 *3 (-1173)) (-4 *4 (-13 (-556) (-1036 (-564)) (-147))) (-5 *1 (-570 *4)))) (-2114 (*1 *2 *3 *4) (-12 (-5 *4 (-1173)) (-4 *5 (-13 (-556) (-1036 (-564)) (-147))) (-5 *2 (-585 (-407 (-950 *5)))) (-5 *1 (-570 *5)) (-5 *3 (-407 (-950 *5)))))) -(-10 -7 (-15 -2114 ((-585 (-407 (-950 |#1|))) (-407 (-950 |#1|)) (-1173))) (-15 -2924 ((-3 (-407 (-950 |#1|)) "failed") (-407 (-950 |#1|)) (-1173))) (-15 -2963 ((-3 (-2 (|:| |mainpart| (-407 (-950 |#1|))) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| (-407 (-950 |#1|))) (|:| |logand| (-407 (-950 |#1|))))))) "failed") (-407 (-950 |#1|)) (-1173) (-642 (-407 (-950 |#1|))))) (-15 -4378 ((-3 (-2 (|:| -3872 (-407 (-950 |#1|))) (|:| |coeff| (-407 (-950 |#1|)))) "failed") (-407 (-950 |#1|)) (-1173) (-407 (-950 |#1|))))) -((-2856 (((-112) $ $) 75)) (-2950 (((-112) $) 48)) (-3346 ((|#1| $) 39)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-4252 (($ $) NIL)) (-1722 (((-112) $) 79)) (-3087 (($ $) 140)) (-2958 (($ $) 119)) (-2247 ((|#1| $) 37)) (-3085 (((-3 $ "failed") $ $) NIL)) (-2264 (($ $) NIL)) (-3067 (($ $) 142)) (-2933 (($ $) 115)) (-3110 (($ $) 144)) (-2981 (($ $) 123)) (-2822 (($) NIL T CONST)) (-2849 (((-3 (-564) "failed") $) 94)) (-1687 (((-564) $) 96)) (-2675 (((-3 $ "failed") $) 78)) (-3600 (($ |#1| |#1|) 35)) (-3292 (((-112) $) 44)) (-2833 (($) 105)) (-3163 (((-112) $) 55)) (-2024 (($ $ (-564)) NIL)) (-2666 (((-112) $) 45)) (-3225 (($ $ $) NIL)) (-2903 (($ $ $) NIL)) (-3576 (($ $) 107)) (-2066 (($ $ $) NIL) (($ (-642 $)) NIL)) (-1778 (((-1155) $) NIL)) (-1481 (($ |#1| |#1|) 29) (($ |#1|) 34) (($ (-407 (-564))) 93)) (-3883 ((|#1| $) 36)) (-3999 (((-1117) $) NIL)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2105 (($ $ $) 81) (($ (-642 $)) NIL)) (-2842 (((-3 $ "failed") $ $) 80)) (-3466 (($ $) 109)) (-3120 (($ $) 148)) (-2992 (($ $) 121)) (-3098 (($ $) 150)) (-2971 (($ $) 125)) (-3077 (($ $) 146)) (-2946 (($ $) 117)) (-3906 (((-112) $ |#1|) 42)) (-2390 (((-860) $) 101) (($ (-564)) 83) (($ $) NIL) (($ (-564)) 83)) (-3348 (((-769)) 103 T CONST)) (-1600 (((-112) $ $) NIL)) (-3155 (($ $) 162)) (-3025 (($ $) 131)) (-1594 (((-112) $ $) NIL)) (-3131 (($ $) 160)) (-3002 (($ $) 127)) (-3176 (($ $) 158)) (-3047 (($ $) 138)) (-3165 (($ $) 156)) (-3058 (($ $) 136)) (-3168 (($ $) 154)) (-3035 (($ $) 133)) (-3142 (($ $) 152)) (-3014 (($ $) 129)) (-2361 (($) 30 T CONST)) (-2371 (($) 10 T CONST)) (-2881 (((-112) $ $) NIL)) (-2857 (((-112) $ $) NIL)) (-2821 (((-112) $ $) 49)) (-2868 (((-112) $ $) NIL)) (-2844 (((-112) $ $) 47)) (-2930 (($ $) 53) (($ $ $) 54)) (-2917 (($ $ $) 52)) (** (($ $ (-919)) 71) (($ $ (-769)) NIL) (($ $ $) 111) (($ $ (-407 (-564))) 164)) (* (($ (-919) $) 66) (($ (-769) $) NIL) (($ (-564) $) 65) (($ $ $) 61))) -(((-571 |#1|) (-554 |#1|) (-13 (-404) (-1197))) (T -571)) -NIL -(-554 |#1|) -((-3267 (((-3 (-642 (-1169 (-564))) "failed") (-642 (-1169 (-564))) (-1169 (-564))) 27))) -(((-572) (-10 -7 (-15 -3267 ((-3 (-642 (-1169 (-564))) "failed") (-642 (-1169 (-564))) (-1169 (-564)))))) (T -572)) -((-3267 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-642 (-1169 (-564)))) (-5 *3 (-1169 (-564))) (-5 *1 (-572))))) -(-10 -7 (-15 -3267 ((-3 (-642 (-1169 (-564))) "failed") (-642 (-1169 (-564))) (-1169 (-564))))) -((-1468 (((-642 (-610 |#2|)) (-642 (-610 |#2|)) (-1173)) 19)) (-1684 (((-642 (-610 |#2|)) (-642 |#2|) (-1173)) 23)) (-1700 (((-642 (-610 |#2|)) (-642 (-610 |#2|)) (-642 (-610 |#2|))) 11)) (-3930 ((|#2| |#2| (-1173)) 59 (|has| |#1| (-556)))) (-1440 ((|#2| |#2| (-1173)) 87 (-12 (|has| |#2| (-284)) (|has| |#1| (-452))))) (-2820 (((-610 |#2|) (-610 |#2|) (-642 (-610 |#2|)) (-1173)) 25)) (-3487 (((-610 |#2|) (-642 (-610 |#2|))) 24)) (-3256 (((-585 |#2|) |#2| (-1173) (-1 (-585 |#2|) |#2| (-1173)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1173))) 115 (-12 (|has| |#2| (-284)) (|has| |#2| (-627)) (|has| |#2| (-1036 (-1173))) (|has| |#1| (-612 (-890 (-564)))) (|has| |#1| (-452)) (|has| |#1| (-884 (-564))))))) -(((-573 |#1| |#2|) (-10 -7 (-15 -1468 ((-642 (-610 |#2|)) (-642 (-610 |#2|)) (-1173))) (-15 -3487 ((-610 |#2|) (-642 (-610 |#2|)))) (-15 -2820 ((-610 |#2|) (-610 |#2|) (-642 (-610 |#2|)) (-1173))) (-15 -1700 ((-642 (-610 |#2|)) (-642 (-610 |#2|)) (-642 (-610 |#2|)))) (-15 -1684 ((-642 (-610 |#2|)) (-642 |#2|) (-1173))) (IF (|has| |#1| (-556)) (-15 -3930 (|#2| |#2| (-1173))) |%noBranch|) (IF (|has| |#1| (-452)) (IF (|has| |#2| (-284)) (PROGN (-15 -1440 (|#2| |#2| (-1173))) (IF (|has| |#1| (-612 (-890 (-564)))) (IF (|has| |#1| (-884 (-564))) (IF (|has| |#2| (-627)) (IF (|has| |#2| (-1036 (-1173))) (-15 -3256 ((-585 |#2|) |#2| (-1173) (-1 (-585 |#2|) |#2| (-1173)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1173)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1097) (-430 |#1|)) (T -573)) -((-3256 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-585 *3) *3 (-1173))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1173))) (-4 *3 (-284)) (-4 *3 (-627)) (-4 *3 (-1036 *4)) (-4 *3 (-430 *7)) (-5 *4 (-1173)) (-4 *7 (-612 (-890 (-564)))) (-4 *7 (-452)) (-4 *7 (-884 (-564))) (-4 *7 (-1097)) (-5 *2 (-585 *3)) (-5 *1 (-573 *7 *3)))) (-1440 (*1 *2 *2 *3) (-12 (-5 *3 (-1173)) (-4 *4 (-452)) (-4 *4 (-1097)) (-5 *1 (-573 *4 *2)) (-4 *2 (-284)) (-4 *2 (-430 *4)))) (-3930 (*1 *2 *2 *3) (-12 (-5 *3 (-1173)) (-4 *4 (-556)) (-4 *4 (-1097)) (-5 *1 (-573 *4 *2)) (-4 *2 (-430 *4)))) (-1684 (*1 *2 *3 *4) (-12 (-5 *3 (-642 *6)) (-5 *4 (-1173)) (-4 *6 (-430 *5)) (-4 *5 (-1097)) (-5 *2 (-642 (-610 *6))) (-5 *1 (-573 *5 *6)))) (-1700 (*1 *2 *2 *2) (-12 (-5 *2 (-642 (-610 *4))) (-4 *4 (-430 *3)) (-4 *3 (-1097)) (-5 *1 (-573 *3 *4)))) (-2820 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-642 (-610 *6))) (-5 *4 (-1173)) (-5 *2 (-610 *6)) (-4 *6 (-430 *5)) (-4 *5 (-1097)) (-5 *1 (-573 *5 *6)))) (-3487 (*1 *2 *3) (-12 (-5 *3 (-642 (-610 *5))) (-4 *4 (-1097)) (-5 *2 (-610 *5)) (-5 *1 (-573 *4 *5)) (-4 *5 (-430 *4)))) (-1468 (*1 *2 *2 *3) (-12 (-5 *2 (-642 (-610 *5))) (-5 *3 (-1173)) (-4 *5 (-430 *4)) (-4 *4 (-1097)) (-5 *1 (-573 *4 *5))))) -(-10 -7 (-15 -1468 ((-642 (-610 |#2|)) (-642 (-610 |#2|)) (-1173))) (-15 -3487 ((-610 |#2|) (-642 (-610 |#2|)))) (-15 -2820 ((-610 |#2|) (-610 |#2|) (-642 (-610 |#2|)) (-1173))) (-15 -1700 ((-642 (-610 |#2|)) (-642 (-610 |#2|)) (-642 (-610 |#2|)))) (-15 -1684 ((-642 (-610 |#2|)) (-642 |#2|) (-1173))) (IF (|has| |#1| (-556)) (-15 -3930 (|#2| |#2| (-1173))) |%noBranch|) (IF (|has| |#1| (-452)) (IF (|has| |#2| (-284)) (PROGN (-15 -1440 (|#2| |#2| (-1173))) (IF (|has| |#1| (-612 (-890 (-564)))) (IF (|has| |#1| (-884 (-564))) (IF (|has| |#2| (-627)) (IF (|has| |#2| (-1036 (-1173))) (-15 -3256 ((-585 |#2|) |#2| (-1173) (-1 (-585 |#2|) |#2| (-1173)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1173)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-3922 (((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-642 |#1|) "failed") (-564) |#1| |#1|)) 202)) (-3913 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3872 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-642 (-407 |#2|))) 178)) (-3640 (((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-642 (-407 |#2|))) 175)) (-2954 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3872 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 166)) (-4033 (((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3872 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 189)) (-2364 (((-3 (-2 (|:| -3872 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-407 |#2|)) 205)) (-4307 (((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3872 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3872 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-407 |#2|)) 208)) (-1971 (((-2 (|:| |ir| (-585 (-407 |#2|))) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|)) 90)) (-2070 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 102)) (-1614 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4351 |#1|) (|:| |sol?| (-112))) (-564) |#1|) (-642 (-407 |#2|))) 182)) (-3278 (((-3 (-621 |#1| |#2|) "failed") (-621 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4351 |#1|) (|:| |sol?| (-112))) (-564) |#1|)) 170)) (-2471 (((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4351 |#1|) (|:| |sol?| (-112))) (-564) |#1|)) 193)) (-1646 (((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3872 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4351 |#1|) (|:| |sol?| (-112))) (-564) |#1|) (-407 |#2|)) 213))) -(((-574 |#1| |#2|) (-10 -7 (-15 -4033 ((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3872 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2471 ((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4351 |#1|) (|:| |sol?| (-112))) (-564) |#1|))) (-15 -3922 ((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-642 |#1|) "failed") (-564) |#1| |#1|))) (-15 -4307 ((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3872 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3872 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-407 |#2|))) (-15 -1646 ((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3872 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4351 |#1|) (|:| |sol?| (-112))) (-564) |#1|) (-407 |#2|))) (-15 -3913 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3872 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-642 (-407 |#2|)))) (-15 -1614 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4351 |#1|) (|:| |sol?| (-112))) (-564) |#1|) (-642 (-407 |#2|)))) (-15 -2364 ((-3 (-2 (|:| -3872 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-407 |#2|))) (-15 -3640 ((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-642 (-407 |#2|)))) (-15 -2954 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3872 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3278 ((-3 (-621 |#1| |#2|) "failed") (-621 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4351 |#1|) (|:| |sol?| (-112))) (-564) |#1|))) (-15 -1971 ((-2 (|:| |ir| (-585 (-407 |#2|))) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|))) (-15 -2070 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-363) (-1238 |#1|)) (T -574)) -((-2070 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1238 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-574 *5 *3)))) (-1971 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1238 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |ir| (-585 (-407 *6))) (|:| |specpart| (-407 *6)) (|:| |polypart| *6))) (-5 *1 (-574 *5 *6)) (-5 *3 (-407 *6)))) (-3278 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-621 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -4351 *4) (|:| |sol?| (-112))) (-564) *4)) (-4 *4 (-363)) (-4 *5 (-1238 *4)) (-5 *1 (-574 *4 *5)))) (-2954 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -3872 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-363)) (-5 *1 (-574 *4 *2)) (-4 *2 (-1238 *4)))) (-3640 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-642 (-407 *7))) (-4 *7 (-1238 *6)) (-5 *3 (-407 *7)) (-4 *6 (-363)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-574 *6 *7)))) (-2364 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1238 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| -3872 (-407 *6)) (|:| |coeff| (-407 *6)))) (-5 *1 (-574 *5 *6)) (-5 *3 (-407 *6)))) (-1614 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -4351 *7) (|:| |sol?| (-112))) (-564) *7)) (-5 *6 (-642 (-407 *8))) (-4 *7 (-363)) (-4 *8 (-1238 *7)) (-5 *3 (-407 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-574 *7 *8)))) (-3913 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -3872 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-642 (-407 *8))) (-4 *7 (-363)) (-4 *8 (-1238 *7)) (-5 *3 (-407 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-574 *7 *8)))) (-1646 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -4351 *6) (|:| |sol?| (-112))) (-564) *6)) (-4 *6 (-363)) (-4 *7 (-1238 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-407 *7)) (|:| |a0| *6)) (-2 (|:| -3872 (-407 *7)) (|:| |coeff| (-407 *7))) "failed")) (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7)))) (-4307 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3872 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-363)) (-4 *7 (-1238 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-407 *7)) (|:| |a0| *6)) (-2 (|:| -3872 (-407 *7)) (|:| |coeff| (-407 *7))) "failed")) (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7)))) (-3922 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-642 *6) "failed") (-564) *6 *6)) (-4 *6 (-363)) (-4 *7 (-1238 *6)) (-5 *2 (-2 (|:| |answer| (-585 (-407 *7))) (|:| |a0| *6))) (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7)))) (-2471 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -4351 *6) (|:| |sol?| (-112))) (-564) *6)) (-4 *6 (-363)) (-4 *7 (-1238 *6)) (-5 *2 (-2 (|:| |answer| (-585 (-407 *7))) (|:| |a0| *6))) (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7)))) (-4033 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3872 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-363)) (-4 *7 (-1238 *6)) (-5 *2 (-2 (|:| |answer| (-585 (-407 *7))) (|:| |a0| *6))) (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7))))) -(-10 -7 (-15 -4033 ((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3872 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2471 ((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4351 |#1|) (|:| |sol?| (-112))) (-564) |#1|))) (-15 -3922 ((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-642 |#1|) "failed") (-564) |#1| |#1|))) (-15 -4307 ((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3872 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3872 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-407 |#2|))) (-15 -1646 ((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3872 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4351 |#1|) (|:| |sol?| (-112))) (-564) |#1|) (-407 |#2|))) (-15 -3913 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3872 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-642 (-407 |#2|)))) (-15 -1614 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4351 |#1|) (|:| |sol?| (-112))) (-564) |#1|) (-642 (-407 |#2|)))) (-15 -2364 ((-3 (-2 (|:| -3872 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-407 |#2|))) (-15 -3640 ((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-642 (-407 |#2|)))) (-15 -2954 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3872 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3278 ((-3 (-621 |#1| |#2|) "failed") (-621 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4351 |#1|) (|:| |sol?| (-112))) (-564) |#1|))) (-15 -1971 ((-2 (|:| |ir| (-585 (-407 |#2|))) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|))) (-15 -2070 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) -((-2140 (((-3 |#2| "failed") |#2| (-1173) (-1173)) 10))) -(((-575 |#1| |#2|) (-10 -7 (-15 -2140 ((-3 |#2| "failed") |#2| (-1173) (-1173)))) (-13 (-307) (-147) (-1036 (-564)) (-637 (-564))) (-13 (-1197) (-957) (-1136) (-29 |#1|))) (T -575)) -((-2140 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1173)) (-4 *4 (-13 (-307) (-147) (-1036 (-564)) (-637 (-564)))) (-5 *1 (-575 *4 *2)) (-4 *2 (-13 (-1197) (-957) (-1136) (-29 *4)))))) -(-10 -7 (-15 -2140 ((-3 |#2| "failed") |#2| (-1173) (-1173)))) -((-1829 (((-689 (-1220)) $ (-1220)) 26)) (-3578 (((-689 (-549)) $ (-549)) 25)) (-2505 (((-769) $ (-128)) 27)) (-3900 (((-689 (-129)) $ (-129)) 24)) (-3998 (((-689 (-1220)) $) 12)) (-2222 (((-689 (-1218)) $) 8)) (-1832 (((-689 (-1217)) $) 10)) (-3157 (((-689 (-549)) $) 13)) (-1340 (((-689 (-547)) $) 9)) (-2698 (((-689 (-546)) $) 11)) (-2778 (((-769) $ (-128)) 7)) (-1350 (((-689 (-129)) $) 14)) (-2914 (($ $) 6))) -(((-576) (-140)) (T -576)) -NIL -(-13 (-527) (-858)) -(((-173) . T) ((-527) . T) ((-858) . T)) -((-1829 (((-689 (-1220)) $ (-1220)) NIL)) (-3578 (((-689 (-549)) $ (-549)) NIL)) (-2505 (((-769) $ (-128)) NIL)) (-3900 (((-689 (-129)) $ (-129)) NIL)) (-3998 (((-689 (-1220)) $) NIL)) (-2222 (((-689 (-1218)) $) NIL)) (-1832 (((-689 (-1217)) $) NIL)) (-3157 (((-689 (-549)) $) NIL)) (-1340 (((-689 (-547)) $) NIL)) (-2698 (((-689 (-546)) $) NIL)) (-2778 (((-769) $ (-128)) NIL)) (-1350 (((-689 (-129)) $) NIL)) (-3555 (((-112) $) NIL)) (-1570 (($ (-388)) 14) (($ (-1155)) 16)) (-2390 (((-860) $) NIL)) (-2914 (($ $) NIL))) -(((-577) (-13 (-576) (-611 (-860)) (-10 -8 (-15 -1570 ($ (-388))) (-15 -1570 ($ (-1155))) (-15 -3555 ((-112) $))))) (T -577)) -((-1570 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-577)))) (-1570 (*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-577)))) (-3555 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-577))))) -(-13 (-576) (-611 (-860)) (-10 -8 (-15 -1570 ($ (-388))) (-15 -1570 ($ (-1155))) (-15 -3555 ((-112) $)))) -((-2856 (((-112) $ $) NIL)) (-4390 (($) 7 T CONST)) (-1778 (((-1155) $) NIL)) (-1689 (($) 6 T CONST)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) 14)) (-3533 (($) 8 T CONST)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) 10))) -(((-578) (-13 (-1097) (-10 -8 (-15 -1689 ($) -1551) (-15 -4390 ($) -1551) (-15 -3533 ($) -1551)))) (T -578)) -((-1689 (*1 *1) (-5 *1 (-578))) (-4390 (*1 *1) (-5 *1 (-578))) (-3533 (*1 *1) (-5 *1 (-578)))) -(-13 (-1097) (-10 -8 (-15 -1689 ($) -1551) (-15 -4390 ($) -1551) (-15 -3533 ($) -1551))) -((-2856 (((-112) $ $) NIL)) (-2813 (((-689 $) (-491)) 21)) (-1778 (((-1155) $) NIL)) (-2284 (($ (-1155)) 14)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) 34)) (-2327 (((-213 4 (-129)) $) 24)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) 26))) -(((-579) (-13 (-1097) (-10 -8 (-15 -2284 ($ (-1155))) (-15 -2327 ((-213 4 (-129)) $)) (-15 -2813 ((-689 $) (-491)))))) (T -579)) -((-2284 (*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-579)))) (-2327 (*1 *2 *1) (-12 (-5 *2 (-213 4 (-129))) (-5 *1 (-579)))) (-2813 (*1 *2 *3) (-12 (-5 *3 (-491)) (-5 *2 (-689 (-579))) (-5 *1 (-579))))) -(-13 (-1097) (-10 -8 (-15 -2284 ($ (-1155))) (-15 -2327 ((-213 4 (-129)) $)) (-15 -2813 ((-689 $) (-491))))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-4252 (($ $) NIL)) (-1722 (((-112) $) NIL)) (-3085 (((-3 $ "failed") $ $) NIL)) (-2264 (($ $ (-564)) 77)) (-2134 (((-112) $ $) NIL)) (-2822 (($) NIL T CONST)) (-2171 (($ (-1169 (-564)) (-564)) 83)) (-2796 (($ $ $) NIL)) (-2675 (((-3 $ "failed") $) 68)) (-3196 (($ $) 43)) (-2808 (($ $ $) NIL)) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) NIL)) (-2408 (((-769) $) 16)) (-3163 (((-112) $) NIL)) (-2709 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-1380 (((-564)) 37)) (-3418 (((-564) $) 41)) (-2066 (($ $ $) NIL) (($ (-642 $)) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2105 (($ $ $) NIL) (($ (-642 $)) NIL)) (-1877 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2137 (($ $ (-564)) 24)) (-2842 (((-3 $ "failed") $ $) 73)) (-1483 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-4274 (((-769) $) 17)) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) 74)) (-3152 (((-1153 (-564)) $) 19)) (-4189 (($ $) 26)) (-2390 (((-860) $) 104) (($ (-564)) 63) (($ $) NIL)) (-3348 (((-769)) 15 T CONST)) (-1600 (((-112) $ $) NIL)) (-1594 (((-112) $ $) NIL)) (-3560 (((-564) $ (-564)) 46)) (-2361 (($) 44 T CONST)) (-2371 (($) 21 T CONST)) (-2821 (((-112) $ $) 54)) (-2930 (($ $) 62) (($ $ $) 48)) (-2917 (($ $ $) 61)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 64) (($ $ $) 65))) -(((-580 |#1| |#2|) (-867 |#1|) (-564) (-112)) (T -580)) -NIL -(-867 |#1|) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) 30)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-4252 (($ $) NIL)) (-1722 (((-112) $) NIL)) (-1792 (((-112) $) NIL)) (-1695 (((-769)) NIL)) (-3778 (($ $ (-919)) NIL (|has| $ (-368))) (($ $) NIL)) (-3651 (((-1185 (-919) (-769)) (-564)) 59)) (-3085 (((-3 $ "failed") $ $) NIL)) (-1993 (($ $) NIL)) (-3282 (((-418 $) $) NIL)) (-2134 (((-112) $ $) NIL)) (-4003 (((-769)) NIL)) (-2822 (($) NIL T CONST)) (-2849 (((-3 $ "failed") $) 99)) (-1687 (($ $) 98)) (-4087 (($ (-1262 $)) 97)) (-2629 (((-3 "prime" "polynomial" "normal" "cyclic")) 56)) (-2796 (($ $ $) NIL)) (-2675 (((-3 $ "failed") $) 44)) (-3235 (($) NIL)) (-2808 (($ $ $) NIL)) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) NIL)) (-1427 (($) 61)) (-4153 (((-112) $) NIL)) (-1595 (($ $) NIL) (($ $ (-769)) NIL)) (-3552 (((-112) $) NIL)) (-2408 (((-831 (-919)) $) NIL) (((-919) $) NIL)) (-3163 (((-112) $) NIL)) (-2043 (($) 49 (|has| $ (-368)))) (-1729 (((-112) $) NIL (|has| $ (-368)))) (-2573 (($ $ (-919)) NIL (|has| $ (-368))) (($ $) NIL)) (-4382 (((-3 $ "failed") $) NIL)) (-2709 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2076 (((-1169 $) $ (-919)) NIL (|has| $ (-368))) (((-1169 $) $) 108)) (-2535 (((-919) $) 67)) (-3607 (((-1169 $) $) NIL (|has| $ (-368)))) (-2480 (((-3 (-1169 $) "failed") $ $) NIL (|has| $ (-368))) (((-1169 $) $) NIL (|has| $ (-368)))) (-2292 (($ $ (-1169 $)) NIL (|has| $ (-368)))) (-2066 (($ $ $) NIL) (($ (-642 $)) NIL)) (-1778 (((-1155) $) NIL)) (-2481 (($ $) NIL)) (-3910 (($) NIL T CONST)) (-2065 (($ (-919)) 60)) (-1987 (((-112) $) 91)) (-3999 (((-1117) $) NIL)) (-4043 (($) 28 (|has| $ (-368)))) (-3464 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2105 (($ $ $) NIL) (($ (-642 $)) NIL)) (-4229 (((-642 (-2 (|:| -2254 (-564)) (|:| -2817 (-564))))) 54)) (-2254 (((-418 $) $) NIL)) (-1878 (((-919)) 90) (((-831 (-919))) NIL)) (-1877 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2842 (((-3 $ "failed") $ $) NIL)) (-1483 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-4274 (((-769) $) NIL)) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL)) (-1354 (((-3 (-769) "failed") $ $) NIL) (((-769) $) NIL)) (-3677 (((-134)) NIL)) (-2199 (($ $ (-769)) NIL) (($ $) NIL)) (-3252 (((-919) $) 89) (((-831 (-919)) $) NIL)) (-1361 (((-1169 $)) 106)) (-3553 (($) 66)) (-2911 (($) 50 (|has| $ (-368)))) (-3719 (((-687 $) (-1262 $)) NIL) (((-1262 $) $) 95)) (-3003 (((-564) $) 40)) (-3556 (((-3 (-1262 $) "failed") (-687 $)) NIL)) (-2390 (((-860) $) NIL) (($ (-564)) 42) (($ $) NIL) (($ (-407 (-564))) NIL)) (-3434 (((-3 $ "failed") $) NIL) (($ $) 109)) (-3348 (((-769)) 51 T CONST)) (-1600 (((-112) $ $) 111)) (-2131 (((-1262 $) (-919)) 101) (((-1262 $)) 100)) (-1594 (((-112) $ $) NIL)) (-4127 (((-112) $) NIL)) (-2361 (($) 31 T CONST)) (-2371 (($) 27 T CONST)) (-1620 (($ $ (-769)) NIL (|has| $ (-368))) (($ $) NIL (|has| $ (-368)))) (-2711 (($ $ (-769)) NIL) (($ $) NIL)) (-2821 (((-112) $ $) NIL)) (-2943 (($ $ $) NIL)) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) 34)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) 85) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL))) -(((-581 |#1|) (-13 (-349) (-329 $) (-612 (-564))) (-919)) (T -581)) -NIL -(-13 (-349) (-329 $) (-612 (-564))) -((-3273 (((-1267) (-1155)) 10))) -(((-582) (-10 -7 (-15 -3273 ((-1267) (-1155))))) (T -582)) -((-3273 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-582))))) -(-10 -7 (-15 -3273 ((-1267) (-1155)))) -((-2246 (((-585 |#2|) (-585 |#2|)) 42)) (-3398 (((-642 |#2|) (-585 |#2|)) 44)) (-3366 ((|#2| (-585 |#2|)) 50))) -(((-583 |#1| |#2|) (-10 -7 (-15 -2246 ((-585 |#2|) (-585 |#2|))) (-15 -3398 ((-642 |#2|) (-585 |#2|))) (-15 -3366 (|#2| (-585 |#2|)))) (-13 (-452) (-1036 (-564)) (-637 (-564))) (-13 (-29 |#1|) (-1197))) (T -583)) -((-3366 (*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-13 (-29 *4) (-1197))) (-5 *1 (-583 *4 *2)) (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564)))))) (-3398 (*1 *2 *3) (-12 (-5 *3 (-585 *5)) (-4 *5 (-13 (-29 *4) (-1197))) (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-642 *5)) (-5 *1 (-583 *4 *5)))) (-2246 (*1 *2 *2) (-12 (-5 *2 (-585 *4)) (-4 *4 (-13 (-29 *3) (-1197))) (-4 *3 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *1 (-583 *3 *4))))) -(-10 -7 (-15 -2246 ((-585 |#2|) (-585 |#2|))) (-15 -3398 ((-642 |#2|) (-585 |#2|))) (-15 -3366 (|#2| (-585 |#2|)))) -((-2947 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -3872 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3872 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-585 |#2|) (-1 |#2| |#1|) (-585 |#1|)) 30))) -(((-584 |#1| |#2|) (-10 -7 (-15 -2947 ((-585 |#2|) (-1 |#2| |#1|) (-585 |#1|))) (-15 -2947 ((-3 (-2 (|:| -3872 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3872 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2947 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2947 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-363) (-363)) (T -584)) -((-2947 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-363)) (-4 *6 (-363)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-584 *5 *6)))) (-2947 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-363)) (-4 *2 (-363)) (-5 *1 (-584 *5 *2)))) (-2947 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -3872 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-363)) (-4 *6 (-363)) (-5 *2 (-2 (|:| -3872 *6) (|:| |coeff| *6))) (-5 *1 (-584 *5 *6)))) (-2947 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-585 *5)) (-4 *5 (-363)) (-4 *6 (-363)) (-5 *2 (-585 *6)) (-5 *1 (-584 *5 *6))))) -(-10 -7 (-15 -2947 ((-585 |#2|) (-1 |#2| |#1|) (-585 |#1|))) (-15 -2947 ((-3 (-2 (|:| -3872 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3872 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2947 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2947 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-3085 (((-3 $ "failed") $ $) NIL)) (-2822 (($) NIL T CONST)) (-2849 (((-3 |#1| "failed") $) 76)) (-1687 ((|#1| $) NIL)) (-3872 ((|#1| $) 30)) (-3146 (((-642 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32)) (-1820 (($ |#1| (-642 (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1169 |#1|)) (|:| |logand| (-1169 |#1|)))) (-642 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28)) (-4135 (((-642 (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1169 |#1|)) (|:| |logand| (-1169 |#1|)))) $) 31)) (-1778 (((-1155) $) NIL)) (-2696 (($ |#1| |#1|) 38) (($ |#1| (-1173)) 49 (|has| |#1| (-1036 (-1173))))) (-3999 (((-1117) $) NIL)) (-3228 (((-112) $) 35)) (-2199 ((|#1| $ (-1 |#1| |#1|)) 88) ((|#1| $ (-1173)) 89 (|has| |#1| (-898 (-1173))))) (-2390 (((-860) $) 112) (($ |#1|) 29)) (-1600 (((-112) $ $) NIL)) (-2361 (($) 18 T CONST)) (-2821 (((-112) $ $) NIL)) (-2930 (($ $) 17) (($ $ $) NIL)) (-2917 (($ $ $) 85)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 16) (($ (-407 (-564)) $) 41) (($ $ (-407 (-564))) NIL))) -(((-585 |#1|) (-13 (-715 (-407 (-564))) (-1036 |#1|) (-10 -8 (-15 -1820 ($ |#1| (-642 (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1169 |#1|)) (|:| |logand| (-1169 |#1|)))) (-642 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -3872 (|#1| $)) (-15 -4135 ((-642 (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1169 |#1|)) (|:| |logand| (-1169 |#1|)))) $)) (-15 -3146 ((-642 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3228 ((-112) $)) (-15 -2696 ($ |#1| |#1|)) (-15 -2199 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-898 (-1173))) (-15 -2199 (|#1| $ (-1173))) |%noBranch|) (IF (|has| |#1| (-1036 (-1173))) (-15 -2696 ($ |#1| (-1173))) |%noBranch|))) (-363)) (T -585)) -((-1820 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-642 (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1169 *2)) (|:| |logand| (-1169 *2))))) (-5 *4 (-642 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-363)) (-5 *1 (-585 *2)))) (-3872 (*1 *2 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-363)))) (-4135 (*1 *2 *1) (-12 (-5 *2 (-642 (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1169 *3)) (|:| |logand| (-1169 *3))))) (-5 *1 (-585 *3)) (-4 *3 (-363)))) (-3146 (*1 *2 *1) (-12 (-5 *2 (-642 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-585 *3)) (-4 *3 (-363)))) (-3228 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-585 *3)) (-4 *3 (-363)))) (-2696 (*1 *1 *2 *2) (-12 (-5 *1 (-585 *2)) (-4 *2 (-363)))) (-2199 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-585 *2)) (-4 *2 (-363)))) (-2199 (*1 *2 *1 *3) (-12 (-4 *2 (-363)) (-4 *2 (-898 *3)) (-5 *1 (-585 *2)) (-5 *3 (-1173)))) (-2696 (*1 *1 *2 *3) (-12 (-5 *3 (-1173)) (-5 *1 (-585 *2)) (-4 *2 (-1036 *3)) (-4 *2 (-363))))) -(-13 (-715 (-407 (-564))) (-1036 |#1|) (-10 -8 (-15 -1820 ($ |#1| (-642 (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1169 |#1|)) (|:| |logand| (-1169 |#1|)))) (-642 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -3872 (|#1| $)) (-15 -4135 ((-642 (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1169 |#1|)) (|:| |logand| (-1169 |#1|)))) $)) (-15 -3146 ((-642 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3228 ((-112) $)) (-15 -2696 ($ |#1| |#1|)) (-15 -2199 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-898 (-1173))) (-15 -2199 (|#1| $ (-1173))) |%noBranch|) (IF (|has| |#1| (-1036 (-1173))) (-15 -2696 ($ |#1| (-1173))) |%noBranch|))) -((-3052 (((-112) |#1|) 16)) (-3294 (((-3 |#1| "failed") |#1|) 14)) (-2753 (((-2 (|:| -1959 |#1|) (|:| -2817 (-769))) |#1|) 39) (((-3 |#1| "failed") |#1| (-769)) 18)) (-2582 (((-112) |#1| (-769)) 19)) (-2749 ((|#1| |#1|) 43)) (-2679 ((|#1| |#1| (-769)) 46))) -(((-586 |#1|) (-10 -7 (-15 -2582 ((-112) |#1| (-769))) (-15 -2753 ((-3 |#1| "failed") |#1| (-769))) (-15 -2753 ((-2 (|:| -1959 |#1|) (|:| -2817 (-769))) |#1|)) (-15 -2679 (|#1| |#1| (-769))) (-15 -3052 ((-112) |#1|)) (-15 -3294 ((-3 |#1| "failed") |#1|)) (-15 -2749 (|#1| |#1|))) (-545)) (T -586)) -((-2749 (*1 *2 *2) (-12 (-5 *1 (-586 *2)) (-4 *2 (-545)))) (-3294 (*1 *2 *2) (|partial| -12 (-5 *1 (-586 *2)) (-4 *2 (-545)))) (-3052 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-586 *3)) (-4 *3 (-545)))) (-2679 (*1 *2 *2 *3) (-12 (-5 *3 (-769)) (-5 *1 (-586 *2)) (-4 *2 (-545)))) (-2753 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -1959 *3) (|:| -2817 (-769)))) (-5 *1 (-586 *3)) (-4 *3 (-545)))) (-2753 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-769)) (-5 *1 (-586 *2)) (-4 *2 (-545)))) (-2582 (*1 *2 *3 *4) (-12 (-5 *4 (-769)) (-5 *2 (-112)) (-5 *1 (-586 *3)) (-4 *3 (-545))))) -(-10 -7 (-15 -2582 ((-112) |#1| (-769))) (-15 -2753 ((-3 |#1| "failed") |#1| (-769))) (-15 -2753 ((-2 (|:| -1959 |#1|) (|:| -2817 (-769))) |#1|)) (-15 -2679 (|#1| |#1| (-769))) (-15 -3052 ((-112) |#1|)) (-15 -3294 ((-3 |#1| "failed") |#1|)) (-15 -2749 (|#1| |#1|))) -((-2194 (((-1169 |#1|) (-919)) 44))) -(((-587 |#1|) (-10 -7 (-15 -2194 ((-1169 |#1|) (-919)))) (-349)) (T -587)) -((-2194 (*1 *2 *3) (-12 (-5 *3 (-919)) (-5 *2 (-1169 *4)) (-5 *1 (-587 *4)) (-4 *4 (-349))))) -(-10 -7 (-15 -2194 ((-1169 |#1|) (-919)))) -((-2246 (((-585 (-407 (-950 |#1|))) (-585 (-407 (-950 |#1|)))) 27)) (-3703 (((-3 (-316 |#1|) (-642 (-316 |#1|))) (-407 (-950 |#1|)) (-1173)) 34 (|has| |#1| (-147)))) (-3398 (((-642 (-316 |#1|)) (-585 (-407 (-950 |#1|)))) 19)) (-3689 (((-316 |#1|) (-407 (-950 |#1|)) (-1173)) 32 (|has| |#1| (-147)))) (-3366 (((-316 |#1|) (-585 (-407 (-950 |#1|)))) 21))) -(((-588 |#1|) (-10 -7 (-15 -2246 ((-585 (-407 (-950 |#1|))) (-585 (-407 (-950 |#1|))))) (-15 -3398 ((-642 (-316 |#1|)) (-585 (-407 (-950 |#1|))))) (-15 -3366 ((-316 |#1|) (-585 (-407 (-950 |#1|))))) (IF (|has| |#1| (-147)) (PROGN (-15 -3703 ((-3 (-316 |#1|) (-642 (-316 |#1|))) (-407 (-950 |#1|)) (-1173))) (-15 -3689 ((-316 |#1|) (-407 (-950 |#1|)) (-1173)))) |%noBranch|)) (-13 (-452) (-1036 (-564)) (-637 (-564)))) (T -588)) -((-3689 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-950 *5))) (-5 *4 (-1173)) (-4 *5 (-147)) (-4 *5 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-316 *5)) (-5 *1 (-588 *5)))) (-3703 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-950 *5))) (-5 *4 (-1173)) (-4 *5 (-147)) (-4 *5 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-3 (-316 *5) (-642 (-316 *5)))) (-5 *1 (-588 *5)))) (-3366 (*1 *2 *3) (-12 (-5 *3 (-585 (-407 (-950 *4)))) (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-316 *4)) (-5 *1 (-588 *4)))) (-3398 (*1 *2 *3) (-12 (-5 *3 (-585 (-407 (-950 *4)))) (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-642 (-316 *4))) (-5 *1 (-588 *4)))) (-2246 (*1 *2 *2) (-12 (-5 *2 (-585 (-407 (-950 *3)))) (-4 *3 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *1 (-588 *3))))) -(-10 -7 (-15 -2246 ((-585 (-407 (-950 |#1|))) (-585 (-407 (-950 |#1|))))) (-15 -3398 ((-642 (-316 |#1|)) (-585 (-407 (-950 |#1|))))) (-15 -3366 ((-316 |#1|) (-585 (-407 (-950 |#1|))))) (IF (|has| |#1| (-147)) (PROGN (-15 -3703 ((-3 (-316 |#1|) (-642 (-316 |#1|))) (-407 (-950 |#1|)) (-1173))) (-15 -3689 ((-316 |#1|) (-407 (-950 |#1|)) (-1173)))) |%noBranch|)) -((-2569 (((-642 (-687 (-564))) (-642 (-564)) (-642 (-903 (-564)))) 78) (((-642 (-687 (-564))) (-642 (-564))) 79) (((-687 (-564)) (-642 (-564)) (-903 (-564))) 72)) (-3218 (((-769) (-642 (-564))) 69))) -(((-589) (-10 -7 (-15 -3218 ((-769) (-642 (-564)))) (-15 -2569 ((-687 (-564)) (-642 (-564)) (-903 (-564)))) (-15 -2569 ((-642 (-687 (-564))) (-642 (-564)))) (-15 -2569 ((-642 (-687 (-564))) (-642 (-564)) (-642 (-903 (-564))))))) (T -589)) -((-2569 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-564))) (-5 *4 (-642 (-903 (-564)))) (-5 *2 (-642 (-687 (-564)))) (-5 *1 (-589)))) (-2569 (*1 *2 *3) (-12 (-5 *3 (-642 (-564))) (-5 *2 (-642 (-687 (-564)))) (-5 *1 (-589)))) (-2569 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-564))) (-5 *4 (-903 (-564))) (-5 *2 (-687 (-564))) (-5 *1 (-589)))) (-3218 (*1 *2 *3) (-12 (-5 *3 (-642 (-564))) (-5 *2 (-769)) (-5 *1 (-589))))) -(-10 -7 (-15 -3218 ((-769) (-642 (-564)))) (-15 -2569 ((-687 (-564)) (-642 (-564)) (-903 (-564)))) (-15 -2569 ((-642 (-687 (-564))) (-642 (-564)))) (-15 -2569 ((-642 (-687 (-564))) (-642 (-564)) (-642 (-903 (-564)))))) -((-1738 (((-642 |#5|) |#5| (-112)) 100)) (-3580 (((-112) |#5| (-642 |#5|)) 34))) -(((-590 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1738 ((-642 |#5|) |#5| (-112))) (-15 -3580 ((-112) |#5| (-642 |#5|)))) (-13 (-307) (-147)) (-791) (-848) (-1062 |#1| |#2| |#3|) (-1106 |#1| |#2| |#3| |#4|)) (T -590)) -((-3580 (*1 *2 *3 *4) (-12 (-5 *4 (-642 *3)) (-4 *3 (-1106 *5 *6 *7 *8)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *8 (-1062 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-590 *5 *6 *7 *8 *3)))) (-1738 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *8 (-1062 *5 *6 *7)) (-5 *2 (-642 *3)) (-5 *1 (-590 *5 *6 *7 *8 *3)) (-4 *3 (-1106 *5 *6 *7 *8))))) -(-10 -7 (-15 -1738 ((-642 |#5|) |#5| (-112))) (-15 -3580 ((-112) |#5| (-642 |#5|)))) -((-2856 (((-112) $ $) NIL)) (-3199 (((-1132) $) 11)) (-3187 (((-1132) $) 9)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) 17) (($ (-1178)) NIL) (((-1178) $) NIL)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-591) (-13 (-1080) (-10 -8 (-15 -3187 ((-1132) $)) (-15 -3199 ((-1132) $))))) (T -591)) -((-3187 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-591)))) (-3199 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-591))))) -(-13 (-1080) (-10 -8 (-15 -3187 ((-1132) $)) (-15 -3199 ((-1132) $)))) -((-2856 (((-112) $ $) NIL (|has| (-144) (-1097)))) (-4121 (($ $) 38)) (-2000 (($ $) NIL)) (-2624 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-3633 (((-1267) $ (-564) (-564)) NIL (|has| $ (-6 -4411)))) (-3804 (((-112) $ $) 68)) (-3783 (((-112) $ $ (-564)) 62)) (-2246 (((-642 $) $ (-144)) 76) (((-642 $) $ (-141)) 77)) (-1824 (((-112) (-1 (-112) (-144) (-144)) $) NIL) (((-112) $) NIL (|has| (-144) (-848)))) (-3659 (($ (-1 (-112) (-144) (-144)) $) NIL (|has| $ (-6 -4411))) (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-144) (-848))))) (-3191 (($ (-1 (-112) (-144) (-144)) $) NIL) (($ $) NIL (|has| (-144) (-848)))) (-3442 (((-112) $ (-769)) NIL)) (-3841 (((-144) $ (-564) (-144)) 59 (|has| $ (-6 -4411))) (((-144) $ (-1229 (-564)) (-144)) NIL (|has| $ (-6 -4411)))) (-3437 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4410)))) (-2822 (($) NIL T CONST)) (-1553 (($ $ (-144)) 81) (($ $ (-141)) 82)) (-1540 (($ $) NIL (|has| $ (-6 -4411)))) (-3817 (($ $) NIL)) (-3297 (($ $ (-1229 (-564)) $) 57)) (-4067 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-144) (-1097))))) (-2517 (($ (-144) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-144) (-1097)))) (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4410)))) (-3741 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4410)) (|has| (-144) (-1097)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4410))) (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4410)))) (-3105 (((-144) $ (-564) (-144)) NIL (|has| $ (-6 -4411)))) (-1804 (((-144) $ (-564)) NIL)) (-1456 (((-112) $ $) 95)) (-3942 (((-564) (-1 (-112) (-144)) $) NIL) (((-564) (-144) $) NIL (|has| (-144) (-1097))) (((-564) (-144) $ (-564)) 65 (|has| (-144) (-1097))) (((-564) $ $ (-564)) 63) (((-564) (-141) $ (-564)) 67)) (-2018 (((-642 (-144)) $) NIL (|has| $ (-6 -4410)))) (-4233 (($ (-769) (-144)) 9)) (-3769 (((-112) $ (-769)) NIL)) (-1802 (((-564) $) 32 (|has| (-564) (-848)))) (-3225 (($ $ $) NIL (|has| (-144) (-848)))) (-2774 (($ (-1 (-112) (-144) (-144)) $ $) NIL) (($ $ $) NIL (|has| (-144) (-848)))) (-3541 (((-642 (-144)) $) NIL (|has| $ (-6 -4410)))) (-2533 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-144) (-1097))))) (-3624 (((-564) $) 47 (|has| (-564) (-848)))) (-2903 (($ $ $) NIL (|has| (-144) (-848)))) (-3967 (((-112) $ $ (-144)) 96)) (-3897 (((-769) $ $ (-144)) 93)) (-1857 (($ (-1 (-144) (-144)) $) 37 (|has| $ (-6 -4411)))) (-2947 (($ (-1 (-144) (-144)) $) NIL) (($ (-1 (-144) (-144) (-144)) $ $) NIL)) (-3743 (($ $) 41)) (-4086 (($ $) NIL)) (-4145 (((-112) $ (-769)) NIL)) (-1563 (($ $ (-144)) 78) (($ $ (-141)) 79)) (-1778 (((-1155) $) 43 (|has| (-144) (-1097)))) (-4247 (($ (-144) $ (-564)) NIL) (($ $ $ (-564)) 27)) (-4107 (((-642 (-564)) $) NIL)) (-4207 (((-112) (-564) $) NIL)) (-3999 (((-564) $) 92) (((-1117) $) NIL (|has| (-144) (-1097)))) (-4036 (((-144) $) NIL (|has| (-564) (-848)))) (-3183 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-3826 (($ $ (-144)) NIL (|has| $ (-6 -4411)))) (-4094 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 (-144)))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1097)))) (($ $ (-294 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1097)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1097)))) (($ $ (-642 (-144)) (-642 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1097))))) (-2478 (((-112) $ $) NIL)) (-1643 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-144) (-1097))))) (-3522 (((-642 (-144)) $) NIL)) (-4109 (((-112) $) 15)) (-2179 (($) 10)) (-4369 (((-144) $ (-564) (-144)) NIL) (((-144) $ (-564)) 69) (($ $ (-1229 (-564))) 25) (($ $ $) NIL)) (-2083 (($ $ (-564)) NIL) (($ $ (-1229 (-564))) NIL)) (-4010 (((-769) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4410))) (((-769) (-144) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-144) (-1097))))) (-3301 (($ $ $ (-564)) 84 (|has| $ (-6 -4411)))) (-3865 (($ $) 20)) (-3003 (((-536) $) NIL (|has| (-144) (-612 (-536))))) (-2401 (($ (-642 (-144))) NIL)) (-3634 (($ $ (-144)) NIL) (($ (-144) $) NIL) (($ $ $) 19) (($ (-642 $)) 85)) (-2390 (($ (-144)) NIL) (((-860) $) 31 (|has| (-144) (-611 (-860))))) (-1600 (((-112) $ $) NIL (|has| (-144) (-1097)))) (-3295 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4410)))) (-2881 (((-112) $ $) NIL (|has| (-144) (-848)))) (-2857 (((-112) $ $) NIL (|has| (-144) (-848)))) (-2821 (((-112) $ $) 17 (|has| (-144) (-1097)))) (-2868 (((-112) $ $) NIL (|has| (-144) (-848)))) (-2844 (((-112) $ $) 18 (|has| (-144) (-848)))) (-2158 (((-769) $) 16 (|has| $ (-6 -4410))))) -(((-592 |#1|) (-13 (-1141) (-10 -8 (-15 -3999 ((-564) $)))) (-564)) (T -592)) -((-3999 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-592 *3)) (-14 *3 *2)))) -(-13 (-1141) (-10 -8 (-15 -3999 ((-564) $)))) -((-3614 (((-2 (|:| |num| |#4|) (|:| |den| (-564))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-564))) |#4| |#2| (-1091 |#4|)) 32))) -(((-593 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3614 ((-2 (|:| |num| |#4|) (|:| |den| (-564))) |#4| |#2| (-1091 |#4|))) (-15 -3614 ((-2 (|:| |num| |#4|) (|:| |den| (-564))) |#4| |#2|))) (-791) (-848) (-556) (-947 |#3| |#1| |#2|)) (T -593)) -((-3614 (*1 *2 *3 *4) (-12 (-4 *5 (-791)) (-4 *4 (-848)) (-4 *6 (-556)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-564)))) (-5 *1 (-593 *5 *4 *6 *3)) (-4 *3 (-947 *6 *5 *4)))) (-3614 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1091 *3)) (-4 *3 (-947 *7 *6 *4)) (-4 *6 (-791)) (-4 *4 (-848)) (-4 *7 (-556)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-564)))) (-5 *1 (-593 *6 *4 *7 *3))))) -(-10 -7 (-15 -3614 ((-2 (|:| |num| |#4|) (|:| |den| (-564))) |#4| |#2| (-1091 |#4|))) (-15 -3614 ((-2 (|:| |num| |#4|) (|:| |den| (-564))) |#4| |#2|))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) 72)) (-2397 (((-642 (-1079)) $) NIL)) (-1341 (((-1173) $) NIL)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-4252 (($ $) NIL (|has| |#1| (-556)))) (-1722 (((-112) $) NIL (|has| |#1| (-556)))) (-2180 (($ $ (-564)) 58) (($ $ (-564) (-564)) 59)) (-4077 (((-1153 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $) 65)) (-3592 (($ $) 110)) (-3085 (((-3 $ "failed") $ $) NIL)) (-3829 (((-860) (-1153 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) (-1024 (-841 (-564))) (-1173) |#1| (-407 (-564))) 243)) (-3182 (($ (-1153 (-2 (|:| |k| (-564)) (|:| |c| |#1|)))) 36)) (-2822 (($) NIL T CONST)) (-3459 (($ $) NIL)) (-2675 (((-3 $ "failed") $) NIL)) (-2210 (((-112) $) NIL)) (-2408 (((-564) $) 63) (((-564) $ (-564)) 64)) (-3163 (((-112) $) NIL)) (-2157 (($ $ (-919)) 84)) (-2869 (($ (-1 |#1| (-564)) $) 81)) (-3471 (((-112) $) 26)) (-2374 (($ |#1| (-564)) 22) (($ $ (-1079) (-564)) NIL) (($ $ (-642 (-1079)) (-642 (-564))) NIL)) (-2947 (($ (-1 |#1| |#1|) $) 76)) (-4175 (($ (-1024 (-841 (-564))) (-1153 (-2 (|:| |k| (-564)) (|:| |c| |#1|)))) 13)) (-2510 (($ $) NIL)) (-2523 ((|#1| $) NIL)) (-1778 (((-1155) $) NIL)) (-3703 (($ $) 163 (|has| |#1| (-38 (-407 (-564)))))) (-3081 (((-3 $ "failed") $ $ (-112)) 109)) (-2207 (($ $ $) 117)) (-3999 (((-1117) $) NIL)) (-3237 (((-1153 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $) 15)) (-4293 (((-1024 (-841 (-564))) $) 14)) (-2137 (($ $ (-564)) 47)) (-2842 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-3154 (((-1153 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-564)))))) (-4369 ((|#1| $ (-564)) 62) (($ $ $) NIL (|has| (-564) (-1109)))) (-2199 (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-1173) (-769)) NIL (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-642 (-1173))) NIL (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-1173)) NIL (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-769)) NIL (|has| |#1| (-15 * (|#1| (-564) |#1|)))) (($ $) 78 (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (-3252 (((-564) $) NIL)) (-4189 (($ $) 48)) (-2390 (((-860) $) NIL) (($ (-564)) 29) (($ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556))) (($ |#1|) 28 (|has| |#1| (-172)))) (-3005 ((|#1| $ (-564)) 61)) (-3434 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3348 (((-769)) 39 T CONST)) (-2245 ((|#1| $) NIL)) (-3274 (($ $) 201 (|has| |#1| (-38 (-407 (-564)))))) (-1924 (($ $) 171 (|has| |#1| (-38 (-407 (-564)))))) (-1552 (($ $) 205 (|has| |#1| (-38 (-407 (-564)))))) (-2116 (($ $) 176 (|has| |#1| (-38 (-407 (-564)))))) (-1571 (($ $) 204 (|has| |#1| (-38 (-407 (-564)))))) (-3887 (($ $) 175 (|has| |#1| (-38 (-407 (-564)))))) (-2173 (($ $ (-407 (-564))) 179 (|has| |#1| (-38 (-407 (-564)))))) (-4103 (($ $ |#1|) 159 (|has| |#1| (-38 (-407 (-564)))))) (-3848 (($ $) 207 (|has| |#1| (-38 (-407 (-564)))))) (-2167 (($ $) 162 (|has| |#1| (-38 (-407 (-564)))))) (-1773 (($ $) 206 (|has| |#1| (-38 (-407 (-564)))))) (-3203 (($ $) 177 (|has| |#1| (-38 (-407 (-564)))))) (-3447 (($ $) 202 (|has| |#1| (-38 (-407 (-564)))))) (-2267 (($ $) 173 (|has| |#1| (-38 (-407 (-564)))))) (-4280 (($ $) 203 (|has| |#1| (-38 (-407 (-564)))))) (-3992 (($ $) 174 (|has| |#1| (-38 (-407 (-564)))))) (-2444 (($ $) 212 (|has| |#1| (-38 (-407 (-564)))))) (-3920 (($ $) 188 (|has| |#1| (-38 (-407 (-564)))))) (-3855 (($ $) 209 (|has| |#1| (-38 (-407 (-564)))))) (-3914 (($ $) 183 (|has| |#1| (-38 (-407 (-564)))))) (-4002 (($ $) 216 (|has| |#1| (-38 (-407 (-564)))))) (-2147 (($ $) 192 (|has| |#1| (-38 (-407 (-564)))))) (-2677 (($ $) 218 (|has| |#1| (-38 (-407 (-564)))))) (-2109 (($ $) 194 (|has| |#1| (-38 (-407 (-564)))))) (-3509 (($ $) 214 (|has| |#1| (-38 (-407 (-564)))))) (-2368 (($ $) 190 (|has| |#1| (-38 (-407 (-564)))))) (-1767 (($ $) 211 (|has| |#1| (-38 (-407 (-564)))))) (-4199 (($ $) 186 (|has| |#1| (-38 (-407 (-564)))))) (-1600 (((-112) $ $) NIL)) (-1594 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3560 ((|#1| $ (-564)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-564)))) (|has| |#1| (-15 -2390 (|#1| (-1173))))))) (-2361 (($) 30 T CONST)) (-2371 (($) 40 T CONST)) (-2711 (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-1173) (-769)) NIL (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-642 (-1173))) NIL (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-1173)) NIL (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-769)) NIL (|has| |#1| (-15 * (|#1| (-564) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (-2821 (((-112) $ $) 74)) (-2943 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-2930 (($ $) 92) (($ $ $) 73)) (-2917 (($ $ $) 89)) (** (($ $ (-919)) NIL) (($ $ (-769)) 112)) (* (($ (-919) $) 99) (($ (-769) $) 97) (($ (-564) $) 94) (($ $ $) 105) (($ $ |#1|) NIL) (($ |#1| $) 124) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))))) -(((-594 |#1|) (-13 (-1240 |#1| (-564)) (-10 -8 (-15 -4175 ($ (-1024 (-841 (-564))) (-1153 (-2 (|:| |k| (-564)) (|:| |c| |#1|))))) (-15 -4293 ((-1024 (-841 (-564))) $)) (-15 -3237 ((-1153 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $)) (-15 -3182 ($ (-1153 (-2 (|:| |k| (-564)) (|:| |c| |#1|))))) (-15 -3471 ((-112) $)) (-15 -2869 ($ (-1 |#1| (-564)) $)) (-15 -3081 ((-3 $ "failed") $ $ (-112))) (-15 -3592 ($ $)) (-15 -2207 ($ $ $)) (-15 -3829 ((-860) (-1153 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) (-1024 (-841 (-564))) (-1173) |#1| (-407 (-564)))) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -3703 ($ $)) (-15 -4103 ($ $ |#1|)) (-15 -2173 ($ $ (-407 (-564)))) (-15 -2167 ($ $)) (-15 -3848 ($ $)) (-15 -2116 ($ $)) (-15 -3992 ($ $)) (-15 -1924 ($ $)) (-15 -2267 ($ $)) (-15 -3887 ($ $)) (-15 -3203 ($ $)) (-15 -3914 ($ $)) (-15 -4199 ($ $)) (-15 -3920 ($ $)) (-15 -2368 ($ $)) (-15 -2147 ($ $)) (-15 -2109 ($ $)) (-15 -1552 ($ $)) (-15 -4280 ($ $)) (-15 -3274 ($ $)) (-15 -3447 ($ $)) (-15 -1571 ($ $)) (-15 -1773 ($ $)) (-15 -3855 ($ $)) (-15 -1767 ($ $)) (-15 -2444 ($ $)) (-15 -3509 ($ $)) (-15 -4002 ($ $)) (-15 -2677 ($ $))) |%noBranch|))) (-1047)) (T -594)) -((-3471 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-594 *3)) (-4 *3 (-1047)))) (-4175 (*1 *1 *2 *3) (-12 (-5 *2 (-1024 (-841 (-564)))) (-5 *3 (-1153 (-2 (|:| |k| (-564)) (|:| |c| *4)))) (-4 *4 (-1047)) (-5 *1 (-594 *4)))) (-4293 (*1 *2 *1) (-12 (-5 *2 (-1024 (-841 (-564)))) (-5 *1 (-594 *3)) (-4 *3 (-1047)))) (-3237 (*1 *2 *1) (-12 (-5 *2 (-1153 (-2 (|:| |k| (-564)) (|:| |c| *3)))) (-5 *1 (-594 *3)) (-4 *3 (-1047)))) (-3182 (*1 *1 *2) (-12 (-5 *2 (-1153 (-2 (|:| |k| (-564)) (|:| |c| *3)))) (-4 *3 (-1047)) (-5 *1 (-594 *3)))) (-2869 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-564))) (-4 *3 (-1047)) (-5 *1 (-594 *3)))) (-3081 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-594 *3)) (-4 *3 (-1047)))) (-3592 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1047)))) (-2207 (*1 *1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1047)))) (-3829 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1153 (-2 (|:| |k| (-564)) (|:| |c| *6)))) (-5 *4 (-1024 (-841 (-564)))) (-5 *5 (-1173)) (-5 *7 (-407 (-564))) (-4 *6 (-1047)) (-5 *2 (-860)) (-5 *1 (-594 *6)))) (-3703 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))) (-4103 (*1 *1 *1 *2) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))) (-2173 (*1 *1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-594 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1047)))) (-2167 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))) (-3848 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))) (-2116 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))) (-3992 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))) (-1924 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))) (-2267 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))) (-3887 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))) (-3203 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))) (-3914 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))) (-4199 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))) (-3920 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))) (-2368 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))) (-2147 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))) (-2109 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))) (-1552 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))) (-4280 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))) (-3274 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))) (-3447 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))) (-1571 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))) (-1773 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))) (-3855 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))) (-1767 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))) (-2444 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))) (-3509 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))) (-4002 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))) (-2677 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047))))) -(-13 (-1240 |#1| (-564)) (-10 -8 (-15 -4175 ($ (-1024 (-841 (-564))) (-1153 (-2 (|:| |k| (-564)) (|:| |c| |#1|))))) (-15 -4293 ((-1024 (-841 (-564))) $)) (-15 -3237 ((-1153 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $)) (-15 -3182 ($ (-1153 (-2 (|:| |k| (-564)) (|:| |c| |#1|))))) (-15 -3471 ((-112) $)) (-15 -2869 ($ (-1 |#1| (-564)) $)) (-15 -3081 ((-3 $ "failed") $ $ (-112))) (-15 -3592 ($ $)) (-15 -2207 ($ $ $)) (-15 -3829 ((-860) (-1153 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) (-1024 (-841 (-564))) (-1173) |#1| (-407 (-564)))) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -3703 ($ $)) (-15 -4103 ($ $ |#1|)) (-15 -2173 ($ $ (-407 (-564)))) (-15 -2167 ($ $)) (-15 -3848 ($ $)) (-15 -2116 ($ $)) (-15 -3992 ($ $)) (-15 -1924 ($ $)) (-15 -2267 ($ $)) (-15 -3887 ($ $)) (-15 -3203 ($ $)) (-15 -3914 ($ $)) (-15 -4199 ($ $)) (-15 -3920 ($ $)) (-15 -2368 ($ $)) (-15 -2147 ($ $)) (-15 -2109 ($ $)) (-15 -1552 ($ $)) (-15 -4280 ($ $)) (-15 -3274 ($ $)) (-15 -3447 ($ $)) (-15 -1571 ($ $)) (-15 -1773 ($ $)) (-15 -3855 ($ $)) (-15 -1767 ($ $)) (-15 -2444 ($ $)) (-15 -3509 ($ $)) (-15 -4002 ($ $)) (-15 -2677 ($ $))) |%noBranch|))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-4252 (($ $) NIL (|has| |#1| (-556)))) (-1722 (((-112) $) NIL (|has| |#1| (-556)))) (-3085 (((-3 $ "failed") $ $) NIL)) (-3182 (($ (-1153 |#1|)) 9)) (-2822 (($) NIL T CONST)) (-2675 (((-3 $ "failed") $) 48)) (-2210 (((-112) $) 58)) (-2408 (((-769) $) 63) (((-769) $ (-769)) 62)) (-3163 (((-112) $) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2842 (((-3 $ "failed") $ $) 50 (|has| |#1| (-556)))) (-2390 (((-860) $) NIL) (($ (-564)) NIL) (($ $) NIL (|has| |#1| (-556)))) (-2839 (((-1153 |#1|) $) 29)) (-3348 (((-769)) 57 T CONST)) (-1600 (((-112) $ $) NIL)) (-1594 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2361 (($) 10 T CONST)) (-2371 (($) 14 T CONST)) (-2821 (((-112) $ $) 28)) (-2930 (($ $) 36) (($ $ $) 16)) (-2917 (($ $ $) 31)) (** (($ $ (-919)) NIL) (($ $ (-769)) 55)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 40) (($ $ $) 34) (($ |#1| $) 43) (($ $ |#1|) 44) (($ $ (-564)) 42))) -(((-595 |#1|) (-13 (-1047) (-10 -8 (-15 -2839 ((-1153 |#1|) $)) (-15 -3182 ($ (-1153 |#1|))) (-15 -2210 ((-112) $)) (-15 -2408 ((-769) $)) (-15 -2408 ((-769) $ (-769))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-564))) (IF (|has| |#1| (-556)) (-6 (-556)) |%noBranch|))) (-1047)) (T -595)) -((-2839 (*1 *2 *1) (-12 (-5 *2 (-1153 *3)) (-5 *1 (-595 *3)) (-4 *3 (-1047)))) (-3182 (*1 *1 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-595 *3)))) (-2210 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-595 *3)) (-4 *3 (-1047)))) (-2408 (*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-595 *3)) (-4 *3 (-1047)))) (-2408 (*1 *2 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-595 *3)) (-4 *3 (-1047)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-595 *2)) (-4 *2 (-1047)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-595 *2)) (-4 *2 (-1047)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-595 *3)) (-4 *3 (-1047))))) -(-13 (-1047) (-10 -8 (-15 -2839 ((-1153 |#1|) $)) (-15 -3182 ($ (-1153 |#1|))) (-15 -2210 ((-112) $)) (-15 -2408 ((-769) $)) (-15 -2408 ((-769) $ (-769))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-564))) (IF (|has| |#1| (-556)) (-6 (-556)) |%noBranch|))) -((-2947 (((-599 |#2|) (-1 |#2| |#1|) (-599 |#1|)) 15))) -(((-596 |#1| |#2|) (-10 -7 (-15 -2947 ((-599 |#2|) (-1 |#2| |#1|) (-599 |#1|)))) (-1212) (-1212)) (T -596)) -((-2947 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-599 *5)) (-4 *5 (-1212)) (-4 *6 (-1212)) (-5 *2 (-599 *6)) (-5 *1 (-596 *5 *6))))) -(-10 -7 (-15 -2947 ((-599 |#2|) (-1 |#2| |#1|) (-599 |#1|)))) -((-2947 (((-1153 |#3|) (-1 |#3| |#1| |#2|) (-599 |#1|) (-1153 |#2|)) 20) (((-1153 |#3|) (-1 |#3| |#1| |#2|) (-1153 |#1|) (-599 |#2|)) 19) (((-599 |#3|) (-1 |#3| |#1| |#2|) (-599 |#1|) (-599 |#2|)) 18))) -(((-597 |#1| |#2| |#3|) (-10 -7 (-15 -2947 ((-599 |#3|) (-1 |#3| |#1| |#2|) (-599 |#1|) (-599 |#2|))) (-15 -2947 ((-1153 |#3|) (-1 |#3| |#1| |#2|) (-1153 |#1|) (-599 |#2|))) (-15 -2947 ((-1153 |#3|) (-1 |#3| |#1| |#2|) (-599 |#1|) (-1153 |#2|)))) (-1212) (-1212) (-1212)) (T -597)) -((-2947 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-599 *6)) (-5 *5 (-1153 *7)) (-4 *6 (-1212)) (-4 *7 (-1212)) (-4 *8 (-1212)) (-5 *2 (-1153 *8)) (-5 *1 (-597 *6 *7 *8)))) (-2947 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1153 *6)) (-5 *5 (-599 *7)) (-4 *6 (-1212)) (-4 *7 (-1212)) (-4 *8 (-1212)) (-5 *2 (-1153 *8)) (-5 *1 (-597 *6 *7 *8)))) (-2947 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-599 *6)) (-5 *5 (-599 *7)) (-4 *6 (-1212)) (-4 *7 (-1212)) (-4 *8 (-1212)) (-5 *2 (-599 *8)) (-5 *1 (-597 *6 *7 *8))))) -(-10 -7 (-15 -2947 ((-599 |#3|) (-1 |#3| |#1| |#2|) (-599 |#1|) (-599 |#2|))) (-15 -2947 ((-1153 |#3|) (-1 |#3| |#1| |#2|) (-1153 |#1|) (-599 |#2|))) (-15 -2947 ((-1153 |#3|) (-1 |#3| |#1| |#2|) (-599 |#1|) (-1153 |#2|)))) -((-2501 ((|#3| |#3| (-642 (-610 |#3|)) (-642 (-1173))) 57)) (-2464 (((-169 |#2|) |#3|) 121)) (-2662 ((|#3| (-169 |#2|)) 46)) (-2141 ((|#2| |#3|) 21)) (-1795 ((|#3| |#2|) 35))) -(((-598 |#1| |#2| |#3|) (-10 -7 (-15 -2662 (|#3| (-169 |#2|))) (-15 -2141 (|#2| |#3|)) (-15 -1795 (|#3| |#2|)) (-15 -2464 ((-169 |#2|) |#3|)) (-15 -2501 (|#3| |#3| (-642 (-610 |#3|)) (-642 (-1173))))) (-556) (-13 (-430 |#1|) (-1000) (-1197)) (-13 (-430 (-169 |#1|)) (-1000) (-1197))) (T -598)) -((-2501 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-642 (-610 *2))) (-5 *4 (-642 (-1173))) (-4 *2 (-13 (-430 (-169 *5)) (-1000) (-1197))) (-4 *5 (-556)) (-5 *1 (-598 *5 *6 *2)) (-4 *6 (-13 (-430 *5) (-1000) (-1197))))) (-2464 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-169 *5)) (-5 *1 (-598 *4 *5 *3)) (-4 *5 (-13 (-430 *4) (-1000) (-1197))) (-4 *3 (-13 (-430 (-169 *4)) (-1000) (-1197))))) (-1795 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *2 (-13 (-430 (-169 *4)) (-1000) (-1197))) (-5 *1 (-598 *4 *3 *2)) (-4 *3 (-13 (-430 *4) (-1000) (-1197))))) (-2141 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *2 (-13 (-430 *4) (-1000) (-1197))) (-5 *1 (-598 *4 *2 *3)) (-4 *3 (-13 (-430 (-169 *4)) (-1000) (-1197))))) (-2662 (*1 *2 *3) (-12 (-5 *3 (-169 *5)) (-4 *5 (-13 (-430 *4) (-1000) (-1197))) (-4 *4 (-556)) (-4 *2 (-13 (-430 (-169 *4)) (-1000) (-1197))) (-5 *1 (-598 *4 *5 *2))))) -(-10 -7 (-15 -2662 (|#3| (-169 |#2|))) (-15 -2141 (|#2| |#3|)) (-15 -1795 (|#3| |#2|)) (-15 -2464 ((-169 |#2|) |#3|)) (-15 -2501 (|#3| |#3| (-642 (-610 |#3|)) (-642 (-1173))))) -((-3437 (($ (-1 (-112) |#1|) $) 17)) (-2947 (($ (-1 |#1| |#1|) $) NIL)) (-3357 (($ (-1 |#1| |#1|) |#1|) 9)) (-3412 (($ (-1 (-112) |#1|) $) 13)) (-3425 (($ (-1 (-112) |#1|) $) 15)) (-2401 (((-1153 |#1|) $) 18)) (-2390 (((-860) $) NIL))) -(((-599 |#1|) (-13 (-611 (-860)) (-10 -8 (-15 -2947 ($ (-1 |#1| |#1|) $)) (-15 -3412 ($ (-1 (-112) |#1|) $)) (-15 -3425 ($ (-1 (-112) |#1|) $)) (-15 -3437 ($ (-1 (-112) |#1|) $)) (-15 -3357 ($ (-1 |#1| |#1|) |#1|)) (-15 -2401 ((-1153 |#1|) $)))) (-1212)) (T -599)) -((-2947 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1212)) (-5 *1 (-599 *3)))) (-3412 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1212)) (-5 *1 (-599 *3)))) (-3425 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1212)) (-5 *1 (-599 *3)))) (-3437 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1212)) (-5 *1 (-599 *3)))) (-3357 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1212)) (-5 *1 (-599 *3)))) (-2401 (*1 *2 *1) (-12 (-5 *2 (-1153 *3)) (-5 *1 (-599 *3)) (-4 *3 (-1212))))) -(-13 (-611 (-860)) (-10 -8 (-15 -2947 ($ (-1 |#1| |#1|) $)) (-15 -3412 ($ (-1 (-112) |#1|) $)) (-15 -3425 ($ (-1 (-112) |#1|) $)) (-15 -3437 ($ (-1 (-112) |#1|) $)) (-15 -3357 ($ (-1 |#1| |#1|) |#1|)) (-15 -2401 ((-1153 |#1|) $)))) -((-2856 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2038 (($ (-769)) NIL (|has| |#1| (-23)))) (-3633 (((-1267) $ (-564) (-564)) NIL (|has| $ (-6 -4411)))) (-1824 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-848)))) (-3659 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4411))) (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-848))))) (-3191 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-848)))) (-3442 (((-112) $ (-769)) NIL)) (-3841 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4411))) ((|#1| $ (-1229 (-564)) |#1|) NIL (|has| $ (-6 -4411)))) (-3437 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2822 (($) NIL T CONST)) (-1540 (($ $) NIL (|has| $ (-6 -4411)))) (-3817 (($ $) NIL)) (-4067 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2517 (($ |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3741 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4410)))) (-3105 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4411)))) (-1804 ((|#1| $ (-564)) NIL)) (-3942 (((-564) (-1 (-112) |#1|) $) NIL) (((-564) |#1| $) NIL (|has| |#1| (-1097))) (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1097)))) (-2018 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-3500 (((-687 |#1|) $ $) NIL (|has| |#1| (-1047)))) (-4233 (($ (-769) |#1|) NIL)) (-3769 (((-112) $ (-769)) NIL)) (-1802 (((-564) $) NIL (|has| (-564) (-848)))) (-3225 (($ $ $) NIL (|has| |#1| (-848)))) (-2774 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-848)))) (-3541 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2533 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3624 (((-564) $) NIL (|has| (-564) (-848)))) (-2903 (($ $ $) NIL (|has| |#1| (-848)))) (-1857 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1925 ((|#1| $) NIL (-12 (|has| |#1| (-1000)) (|has| |#1| (-1047))))) (-4145 (((-112) $ (-769)) NIL)) (-2495 ((|#1| $) NIL (-12 (|has| |#1| (-1000)) (|has| |#1| (-1047))))) (-1778 (((-1155) $) NIL (|has| |#1| (-1097)))) (-4247 (($ |#1| $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-4107 (((-642 (-564)) $) NIL)) (-4207 (((-112) (-564) $) NIL)) (-3999 (((-1117) $) NIL (|has| |#1| (-1097)))) (-4036 ((|#1| $) NIL (|has| (-564) (-848)))) (-3183 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3826 (($ $ |#1|) NIL (|has| $ (-6 -4411)))) (-4094 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-2478 (((-112) $ $) NIL)) (-1643 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3522 (((-642 |#1|) $) NIL)) (-4109 (((-112) $) NIL)) (-2179 (($) NIL)) (-4369 ((|#1| $ (-564) |#1|) NIL) ((|#1| $ (-564)) NIL) (($ $ (-1229 (-564))) NIL)) (-1976 ((|#1| $ $) NIL (|has| |#1| (-1047)))) (-2083 (($ $ (-564)) NIL) (($ $ (-1229 (-564))) NIL)) (-4215 (($ $ $) NIL (|has| |#1| (-1047)))) (-4010 (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-769) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3301 (($ $ $ (-564)) NIL (|has| $ (-6 -4411)))) (-3865 (($ $) NIL)) (-3003 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-2401 (($ (-642 |#1|)) NIL)) (-3634 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-642 $)) NIL)) (-2390 (((-860) $) NIL (|has| |#1| (-611 (-860))))) (-1600 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-3295 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2881 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2857 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2821 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2868 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2844 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2930 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2917 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-564) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-724))) (($ $ |#1|) NIL (|has| |#1| (-724)))) (-2158 (((-769) $) NIL (|has| $ (-6 -4410))))) -(((-600 |#1| |#2|) (-1260 |#1|) (-1212) (-564)) (T -600)) -NIL -(-1260 |#1|) -((-3633 (((-1267) $ |#2| |#2|) 36)) (-1802 ((|#2| $) 23)) (-3624 ((|#2| $) 21)) (-1857 (($ (-1 |#3| |#3|) $) 32)) (-2947 (($ (-1 |#3| |#3|) $) 30)) (-4036 ((|#3| $) 26)) (-3826 (($ $ |#3|) 33)) (-1643 (((-112) |#3| $) 17)) (-3522 (((-642 |#3|) $) 15)) (-4369 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) -(((-601 |#1| |#2| |#3|) (-10 -8 (-15 -3633 ((-1267) |#1| |#2| |#2|)) (-15 -3826 (|#1| |#1| |#3|)) (-15 -4036 (|#3| |#1|)) (-15 -1802 (|#2| |#1|)) (-15 -3624 (|#2| |#1|)) (-15 -1643 ((-112) |#3| |#1|)) (-15 -3522 ((-642 |#3|) |#1|)) (-15 -4369 (|#3| |#1| |#2|)) (-15 -4369 (|#3| |#1| |#2| |#3|)) (-15 -1857 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2947 (|#1| (-1 |#3| |#3|) |#1|))) (-602 |#2| |#3|) (-1097) (-1212)) (T -601)) -NIL -(-10 -8 (-15 -3633 ((-1267) |#1| |#2| |#2|)) (-15 -3826 (|#1| |#1| |#3|)) (-15 -4036 (|#3| |#1|)) (-15 -1802 (|#2| |#1|)) (-15 -3624 (|#2| |#1|)) (-15 -1643 ((-112) |#3| |#1|)) (-15 -3522 ((-642 |#3|) |#1|)) (-15 -4369 (|#3| |#1| |#2|)) (-15 -4369 (|#3| |#1| |#2| |#3|)) (-15 -1857 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2947 (|#1| (-1 |#3| |#3|) |#1|))) -((-2856 (((-112) $ $) 19 (|has| |#2| (-1097)))) (-3633 (((-1267) $ |#1| |#1|) 41 (|has| $ (-6 -4411)))) (-3442 (((-112) $ (-769)) 8)) (-3841 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4411)))) (-2822 (($) 7 T CONST)) (-3105 ((|#2| $ |#1| |#2|) 54 (|has| $ (-6 -4411)))) (-1804 ((|#2| $ |#1|) 52)) (-2018 (((-642 |#2|) $) 31 (|has| $ (-6 -4410)))) (-3769 (((-112) $ (-769)) 9)) (-1802 ((|#1| $) 44 (|has| |#1| (-848)))) (-3541 (((-642 |#2|) $) 30 (|has| $ (-6 -4410)))) (-2533 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1097)) (|has| $ (-6 -4410))))) (-3624 ((|#1| $) 45 (|has| |#1| (-848)))) (-1857 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#2| |#2|) $) 36)) (-4145 (((-112) $ (-769)) 10)) (-1778 (((-1155) $) 22 (|has| |#2| (-1097)))) (-4107 (((-642 |#1|) $) 47)) (-4207 (((-112) |#1| $) 48)) (-3999 (((-1117) $) 21 (|has| |#2| (-1097)))) (-4036 ((|#2| $) 43 (|has| |#1| (-848)))) (-3826 (($ $ |#2|) 42 (|has| $ (-6 -4411)))) (-4094 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#2|))) 27 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-294 |#2|)) 26 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-642 |#2|) (-642 |#2|)) 24 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))))) (-2478 (((-112) $ $) 14)) (-1643 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097))))) (-3522 (((-642 |#2|) $) 49)) (-4109 (((-112) $) 11)) (-2179 (($) 12)) (-4369 ((|#2| $ |#1| |#2|) 51) ((|#2| $ |#1|) 50)) (-4010 (((-769) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4410))) (((-769) |#2| $) 29 (-12 (|has| |#2| (-1097)) (|has| $ (-6 -4410))))) (-3865 (($ $) 13)) (-2390 (((-860) $) 18 (|has| |#2| (-611 (-860))))) (-1600 (((-112) $ $) 23 (|has| |#2| (-1097)))) (-3295 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4410)))) (-2821 (((-112) $ $) 20 (|has| |#2| (-1097)))) (-2158 (((-769) $) 6 (|has| $ (-6 -4410))))) -(((-602 |#1| |#2|) (-140) (-1097) (-1212)) (T -602)) -((-3522 (*1 *2 *1) (-12 (-4 *1 (-602 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-1212)) (-5 *2 (-642 *4)))) (-4207 (*1 *2 *3 *1) (-12 (-4 *1 (-602 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-1212)) (-5 *2 (-112)))) (-4107 (*1 *2 *1) (-12 (-4 *1 (-602 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-1212)) (-5 *2 (-642 *3)))) (-1643 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4410)) (-4 *1 (-602 *4 *3)) (-4 *4 (-1097)) (-4 *3 (-1212)) (-4 *3 (-1097)) (-5 *2 (-112)))) (-3624 (*1 *2 *1) (-12 (-4 *1 (-602 *2 *3)) (-4 *3 (-1212)) (-4 *2 (-1097)) (-4 *2 (-848)))) (-1802 (*1 *2 *1) (-12 (-4 *1 (-602 *2 *3)) (-4 *3 (-1212)) (-4 *2 (-1097)) (-4 *2 (-848)))) (-4036 (*1 *2 *1) (-12 (-4 *1 (-602 *3 *2)) (-4 *3 (-1097)) (-4 *3 (-848)) (-4 *2 (-1212)))) (-3826 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4411)) (-4 *1 (-602 *3 *2)) (-4 *3 (-1097)) (-4 *2 (-1212)))) (-3633 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4411)) (-4 *1 (-602 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-1212)) (-5 *2 (-1267))))) -(-13 (-489 |t#2|) (-288 |t#1| |t#2|) (-10 -8 (-15 -3522 ((-642 |t#2|) $)) (-15 -4207 ((-112) |t#1| $)) (-15 -4107 ((-642 |t#1|) $)) (IF (|has| |t#2| (-1097)) (IF (|has| $ (-6 -4410)) (-15 -1643 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-848)) (PROGN (-15 -3624 (|t#1| $)) (-15 -1802 (|t#1| $)) (-15 -4036 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4411)) (PROGN (-15 -3826 ($ $ |t#2|)) (-15 -3633 ((-1267) $ |t#1| |t#1|))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#2| (-1097)) ((-611 (-860)) -2682 (|has| |#2| (-1097)) (|has| |#2| (-611 (-860)))) ((-286 |#1| |#2|) . T) ((-288 |#1| |#2|) . T) ((-309 |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))) ((-489 |#2|) . T) ((-514 |#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))) ((-1097) |has| |#2| (-1097)) ((-1212) . T)) -((-2390 (((-860) $) 19) (($ (-129)) 13) (((-129) $) 14))) -(((-603) (-13 (-611 (-860)) (-490 (-129)))) (T -603)) -NIL -(-13 (-611 (-860)) (-490 (-129))) -((-2856 (((-112) $ $) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) NIL) (($ (-1178)) NIL) (((-1178) $) NIL) (((-1211) $) 14) (($ (-642 (-1211))) 13)) (-4163 (((-642 (-1211)) $) 10)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-604) (-13 (-1080) (-611 (-1211)) (-10 -8 (-15 -2390 ($ (-642 (-1211)))) (-15 -4163 ((-642 (-1211)) $))))) (T -604)) -((-2390 (*1 *1 *2) (-12 (-5 *2 (-642 (-1211))) (-5 *1 (-604)))) (-4163 (*1 *2 *1) (-12 (-5 *2 (-642 (-1211))) (-5 *1 (-604))))) -(-13 (-1080) (-611 (-1211)) (-10 -8 (-15 -2390 ($ (-642 (-1211)))) (-15 -4163 ((-642 (-1211)) $)))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-2660 (((-3 $ "failed")) NIL (-2682 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3085 (((-3 $ "failed") $ $) NIL)) (-2816 (((-1262 (-687 |#1|))) NIL (|has| |#2| (-417 |#1|))) (((-1262 (-687 |#1|)) (-1262 $)) NIL (|has| |#2| (-367 |#1|)))) (-3953 (((-1262 $)) NIL (|has| |#2| (-367 |#1|)))) (-2822 (($) NIL T CONST)) (-3378 (((-3 (-2 (|:| |particular| $) (|:| -2131 (-642 $))) "failed")) NIL (-2682 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-1934 (((-3 $ "failed")) NIL (-2682 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3821 (((-687 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-687 |#1|) (-1262 $)) NIL (|has| |#2| (-367 |#1|)))) (-3540 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-1771 (((-687 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-687 |#1|) $ (-1262 $)) NIL (|has| |#2| (-367 |#1|)))) (-3420 (((-3 $ "failed") $) NIL (-2682 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-2016 (((-1169 (-950 |#1|))) NIL (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-363))))) (-3952 (($ $ (-919)) NIL)) (-1732 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-2644 (((-1169 |#1|) $) NIL (-2682 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3521 ((|#1|) NIL (|has| |#2| (-417 |#1|))) ((|#1| (-1262 $)) NIL (|has| |#2| (-367 |#1|)))) (-4246 (((-1169 |#1|) $) NIL (|has| |#2| (-367 |#1|)))) (-2165 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-4087 (($ (-1262 |#1|)) NIL (|has| |#2| (-417 |#1|))) (($ (-1262 |#1|) (-1262 $)) NIL (|has| |#2| (-367 |#1|)))) (-2675 (((-3 $ "failed") $) NIL (-2682 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3616 (((-919)) NIL (|has| |#2| (-367 |#1|)))) (-2927 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-4359 (($ $ (-919)) NIL)) (-3682 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1888 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1693 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1546 (((-3 (-2 (|:| |particular| $) (|:| -2131 (-642 $))) "failed")) NIL (-2682 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-4337 (((-3 $ "failed")) NIL (-2682 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-4289 (((-687 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-687 |#1|) (-1262 $)) NIL (|has| |#2| (-367 |#1|)))) (-1486 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-1672 (((-687 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-687 |#1|) $ (-1262 $)) NIL (|has| |#2| (-367 |#1|)))) (-1339 (((-3 $ "failed") $) NIL (-2682 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-2975 (((-1169 (-950 |#1|))) NIL (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-363))))) (-4204 (($ $ (-919)) NIL)) (-1573 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-2514 (((-1169 |#1|) $) NIL (-2682 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3645 ((|#1|) NIL (|has| |#2| (-417 |#1|))) ((|#1| (-1262 $)) NIL (|has| |#2| (-367 |#1|)))) (-1892 (((-1169 |#1|) $) NIL (|has| |#2| (-367 |#1|)))) (-4216 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1778 (((-1155) $) NIL)) (-2631 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3393 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2399 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3999 (((-1117) $) NIL)) (-2040 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-4369 ((|#1| $ (-564)) NIL (|has| |#2| (-417 |#1|)))) (-3719 (((-687 |#1|) (-1262 $)) NIL (|has| |#2| (-417 |#1|))) (((-1262 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-687 |#1|) (-1262 $) (-1262 $)) NIL (|has| |#2| (-367 |#1|))) (((-1262 |#1|) $ (-1262 $)) NIL (|has| |#2| (-367 |#1|)))) (-3003 (($ (-1262 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-1262 |#1|) $) NIL (|has| |#2| (-417 |#1|)))) (-3584 (((-642 (-950 |#1|))) NIL (|has| |#2| (-417 |#1|))) (((-642 (-950 |#1|)) (-1262 $)) NIL (|has| |#2| (-367 |#1|)))) (-2402 (($ $ $) NIL)) (-2792 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2390 (((-860) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-1600 (((-112) $ $) NIL)) (-2131 (((-1262 $)) NIL (|has| |#2| (-417 |#1|)))) (-1491 (((-642 (-1262 |#1|))) NIL (-2682 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3845 (($ $ $ $) NIL)) (-2715 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3975 (($ (-687 |#1|) $) NIL (|has| |#2| (-417 |#1|)))) (-3106 (($ $ $) NIL)) (-3498 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3394 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2609 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2361 (($) NIL T CONST)) (-2821 (((-112) $ $) NIL)) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) NIL)) (** (($ $ (-919)) 24)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) -(((-605 |#1| |#2|) (-13 (-742 |#1|) (-611 |#2|) (-10 -8 (-15 -2390 ($ |#2|)) (IF (|has| |#2| (-417 |#1|)) (-6 (-417 |#1|)) |%noBranch|) (IF (|has| |#2| (-367 |#1|)) (-6 (-367 |#1|)) |%noBranch|))) (-172) (-742 |#1|)) (T -605)) -((-2390 (*1 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-605 *3 *2)) (-4 *2 (-742 *3))))) -(-13 (-742 |#1|) (-611 |#2|) (-10 -8 (-15 -2390 ($ |#2|)) (IF (|has| |#2| (-417 |#1|)) (-6 (-417 |#1|)) |%noBranch|) (IF (|has| |#2| (-367 |#1|)) (-6 (-367 |#1|)) |%noBranch|))) -((-2856 (((-112) $ $) NIL)) (-1400 (((-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) $ (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|))) 39)) (-4222 (($ (-642 (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)))) NIL) (($) NIL)) (-3633 (((-1267) $ (-1155) (-1155)) NIL (|has| $ (-6 -4411)))) (-3442 (((-112) $ (-769)) NIL)) (-3841 ((|#1| $ (-1155) |#1|) 49)) (-2438 (($ (-1 (-112) (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|))) $) NIL (|has| $ (-6 -4410)))) (-3437 (($ (-1 (-112) (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|))) $) NIL (|has| $ (-6 -4410)))) (-2295 (((-3 |#1| "failed") (-1155) $) 52)) (-2822 (($) NIL T CONST)) (-3343 (($ $ (-1155)) 25)) (-4067 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (-1097))))) (-1927 (((-3 |#1| "failed") (-1155) $) 53) (($ (-1 (-112) (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|))) $) NIL (|has| $ (-6 -4410))) (($ (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) $) NIL (|has| $ (-6 -4410)))) (-2517 (($ (-1 (-112) (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|))) $) NIL (|has| $ (-6 -4410))) (($ (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (-1097))))) (-3741 (((-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (-1 (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|))) $) NIL (|has| $ (-6 -4410))) (((-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (-1 (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|))) $ (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|))) NIL (|has| $ (-6 -4410))) (((-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (-1 (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|))) $ (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|))) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (-1097))))) (-4125 (((-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) $) 38)) (-3105 ((|#1| $ (-1155) |#1|) NIL (|has| $ (-6 -4411)))) (-1804 ((|#1| $ (-1155)) NIL)) (-2018 (((-642 |#1|) $) NIL (|has| $ (-6 -4410))) (((-642 (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|))) $) NIL (|has| $ (-6 -4410)))) (-3874 (($ $) 54)) (-3406 (($ (-388)) 23) (($ (-388) (-1155)) 22)) (-2493 (((-388) $) 40)) (-3769 (((-112) $ (-769)) NIL)) (-1802 (((-1155) $) NIL (|has| (-1155) (-848)))) (-3541 (((-642 |#1|) $) NIL (|has| $ (-6 -4410))) (((-642 (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|))) $) NIL (|has| $ (-6 -4410)))) (-2533 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097)))) (((-112) (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (-1097))))) (-3624 (((-1155) $) NIL (|has| (-1155) (-848)))) (-1857 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4411))) (($ (-1 (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|))) $) NIL (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|))) $) NIL)) (-4145 (((-112) $ (-769)) NIL)) (-1778 (((-1155) $) NIL)) (-3287 (((-642 (-1155)) $) 45)) (-2145 (((-112) (-1155) $) NIL)) (-2281 (((-1155) $) 41)) (-3220 (((-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) $) NIL)) (-1668 (($ (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) $) NIL)) (-4107 (((-642 (-1155)) $) NIL)) (-4207 (((-112) (-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-4036 ((|#1| $) NIL (|has| (-1155) (-848)))) (-3183 (((-3 (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) "failed") (-1 (-112) (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|))) $) NIL)) (-3826 (($ $ |#1|) NIL (|has| $ (-6 -4411)))) (-4314 (((-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) $) NIL)) (-4094 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-112) (-1 (-112) (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|))) $) NIL (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|))) (-642 (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)))) NIL (-12 (|has| (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (-309 (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)))) (|has| (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (-1097)))) (($ $ (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|))) NIL (-12 (|has| (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (-309 (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)))) (|has| (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (-1097)))) (($ $ (-294 (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)))) NIL (-12 (|has| (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (-309 (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)))) (|has| (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (-1097)))) (($ $ (-642 (-294 (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|))))) NIL (-12 (|has| (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (-309 (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)))) (|has| (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (-1097))))) (-2478 (((-112) $ $) NIL)) (-1643 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3522 (((-642 |#1|) $) NIL)) (-4109 (((-112) $) NIL)) (-2179 (($) 43)) (-4369 ((|#1| $ (-1155) |#1|) NIL) ((|#1| $ (-1155)) 48)) (-2318 (($ (-642 (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)))) NIL) (($) NIL)) (-4010 (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-769) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097)))) (((-769) (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (-1097)))) (((-769) (-1 (-112) (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|))) $) NIL (|has| $ (-6 -4410)))) (-3865 (($ $) NIL)) (-3003 (((-536) $) NIL (|has| (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (-612 (-536))))) (-2401 (($ (-642 (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)))) NIL)) (-2390 (((-860) $) 21)) (-2914 (($ $) 26)) (-1600 (((-112) $ $) NIL)) (-4160 (($ (-642 (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)))) NIL)) (-3295 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-112) (-1 (-112) (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|))) $) NIL (|has| $ (-6 -4410)))) (-2821 (((-112) $ $) 20)) (-2158 (((-769) $) 47 (|has| $ (-6 -4410))))) -(((-606 |#1|) (-13 (-364 (-388) (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|))) (-1188 (-1155) |#1|) (-10 -8 (-6 -4410) (-15 -3874 ($ $)))) (-1097)) (T -606)) -((-3874 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-1097))))) -(-13 (-364 (-388) (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|))) (-1188 (-1155) |#1|) (-10 -8 (-6 -4410) (-15 -3874 ($ $)))) -((-2533 (((-112) (-2 (|:| -1914 |#2|) (|:| -2683 |#3|)) $) 16)) (-3287 (((-642 |#2|) $) 20)) (-2145 (((-112) |#2| $) 12))) -(((-607 |#1| |#2| |#3|) (-10 -8 (-15 -3287 ((-642 |#2|) |#1|)) (-15 -2145 ((-112) |#2| |#1|)) (-15 -2533 ((-112) (-2 (|:| -1914 |#2|) (|:| -2683 |#3|)) |#1|))) (-608 |#2| |#3|) (-1097) (-1097)) (T -607)) -NIL -(-10 -8 (-15 -3287 ((-642 |#2|) |#1|)) (-15 -2145 ((-112) |#2| |#1|)) (-15 -2533 ((-112) (-2 (|:| -1914 |#2|) (|:| -2683 |#3|)) |#1|))) -((-2856 (((-112) $ $) 19 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (-3442 (((-112) $ (-769)) 8)) (-2438 (($ (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) 46 (|has| $ (-6 -4410)))) (-3437 (($ (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) 56 (|has| $ (-6 -4410)))) (-2295 (((-3 |#2| "failed") |#1| $) 62)) (-2822 (($) 7 T CONST)) (-4067 (($ $) 59 (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) (|has| $ (-6 -4410))))) (-1927 (($ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) 48 (|has| $ (-6 -4410))) (($ (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) 47 (|has| $ (-6 -4410))) (((-3 |#2| "failed") |#1| $) 63)) (-2517 (($ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) 58 (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) (|has| $ (-6 -4410)))) (($ (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) 55 (|has| $ (-6 -4410)))) (-3741 (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) 57 (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) (|has| $ (-6 -4410)))) (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) 54 (|has| $ (-6 -4410))) (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) 53 (|has| $ (-6 -4410)))) (-2018 (((-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) 31 (|has| $ (-6 -4410)))) (-3769 (((-112) $ (-769)) 9)) (-3541 (((-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) 30 (|has| $ (-6 -4410)))) (-2533 (((-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) 28 (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) (|has| $ (-6 -4410))))) (-1857 (($ (-1 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) 35 (|has| $ (-6 -4411)))) (-2947 (($ (-1 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) 36)) (-4145 (((-112) $ (-769)) 10)) (-1778 (((-1155) $) 22 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (-3287 (((-642 |#1|) $) 64)) (-2145 (((-112) |#1| $) 65)) (-3220 (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) 40)) (-1668 (($ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) 41)) (-3999 (((-1117) $) 21 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (-3183 (((-3 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) "failed") (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) 52)) (-4314 (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) 42)) (-4094 (((-112) (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) 33 (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))))) 27 (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (($ $ (-294 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) 26 (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (($ $ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) 25 (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (($ $ (-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) (-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) 24 (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097))))) (-2478 (((-112) $ $) 14)) (-4109 (((-112) $) 11)) (-2179 (($) 12)) (-2318 (($) 50) (($ (-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) 49)) (-4010 (((-769) (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) 32 (|has| $ (-6 -4410))) (((-769) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) 29 (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) (|has| $ (-6 -4410))))) (-3865 (($ $) 13)) (-3003 (((-536) $) 60 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-612 (-536))))) (-2401 (($ (-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) 51)) (-2390 (((-860) $) 18 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-611 (-860))))) (-1600 (((-112) $ $) 23 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (-4160 (($ (-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) 43)) (-3295 (((-112) (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) 34 (|has| $ (-6 -4410)))) (-2821 (((-112) $ $) 20 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (-2158 (((-769) $) 6 (|has| $ (-6 -4410))))) -(((-608 |#1| |#2|) (-140) (-1097) (-1097)) (T -608)) -((-2145 (*1 *2 *3 *1) (-12 (-4 *1 (-608 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-1097)) (-5 *2 (-112)))) (-3287 (*1 *2 *1) (-12 (-4 *1 (-608 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-1097)) (-5 *2 (-642 *3)))) (-1927 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-608 *3 *2)) (-4 *3 (-1097)) (-4 *2 (-1097)))) (-2295 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-608 *3 *2)) (-4 *3 (-1097)) (-4 *2 (-1097))))) -(-13 (-229 (-2 (|:| -1914 |t#1|) (|:| -2683 |t#2|))) (-10 -8 (-15 -2145 ((-112) |t#1| $)) (-15 -3287 ((-642 |t#1|) $)) (-15 -1927 ((-3 |t#2| "failed") |t#1| $)) (-15 -2295 ((-3 |t#2| "failed") |t#1| $)))) -(((-34) . T) ((-107 #0=(-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) . T) ((-102) |has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) ((-611 (-860)) -2682 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-611 (-860)))) ((-151 #0#) . T) ((-612 (-536)) |has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-612 (-536))) ((-229 #0#) . T) ((-235 #0#) . T) ((-309 #0#) -12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097))) ((-489 #0#) . T) ((-514 #0# #0#) -12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097))) ((-1097) |has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) ((-1212) . T)) -((-3353 (((-610 |#2|) |#1|) 17)) (-4136 (((-3 |#1| "failed") (-610 |#2|)) 21))) -(((-609 |#1| |#2|) (-10 -7 (-15 -3353 ((-610 |#2|) |#1|)) (-15 -4136 ((-3 |#1| "failed") (-610 |#2|)))) (-1097) (-1097)) (T -609)) -((-4136 (*1 *2 *3) (|partial| -12 (-5 *3 (-610 *4)) (-4 *4 (-1097)) (-4 *2 (-1097)) (-5 *1 (-609 *2 *4)))) (-3353 (*1 *2 *3) (-12 (-5 *2 (-610 *4)) (-5 *1 (-609 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-1097))))) -(-10 -7 (-15 -3353 ((-610 |#2|) |#1|)) (-15 -4136 ((-3 |#1| "failed") (-610 |#2|)))) -((-2856 (((-112) $ $) NIL)) (-2755 (((-3 (-1173) "failed") $) 49)) (-3124 (((-1267) $ (-769)) 26)) (-3942 (((-769) $) 25)) (-3898 (((-114) $) 12)) (-2493 (((-1173) $) 20)) (-3225 (($ $ $) NIL)) (-2903 (($ $ $) NIL)) (-1778 (((-1155) $) NIL)) (-2879 (($ (-114) (-642 |#1|) (-769)) 36) (($ (-1173)) 37)) (-1462 (((-112) $ (-114)) 18) (((-112) $ (-1173)) 16)) (-2983 (((-769) $) 22)) (-3999 (((-1117) $) NIL)) (-3003 (((-890 (-564)) $) 97 (|has| |#1| (-612 (-890 (-564))))) (((-890 (-379)) $) 104 (|has| |#1| (-612 (-890 (-379))))) (((-536) $) 90 (|has| |#1| (-612 (-536))))) (-2390 (((-860) $) 74)) (-1600 (((-112) $ $) NIL)) (-3100 (((-642 |#1|) $) 24)) (-2881 (((-112) $ $) NIL)) (-2857 (((-112) $ $) NIL)) (-2821 (((-112) $ $) 53)) (-2868 (((-112) $ $) NIL)) (-2844 (((-112) $ $) 55))) -(((-610 |#1|) (-13 (-132) (-848) (-882 |#1|) (-10 -8 (-15 -2493 ((-1173) $)) (-15 -3898 ((-114) $)) (-15 -3100 ((-642 |#1|) $)) (-15 -2983 ((-769) $)) (-15 -2879 ($ (-114) (-642 |#1|) (-769))) (-15 -2879 ($ (-1173))) (-15 -2755 ((-3 (-1173) "failed") $)) (-15 -1462 ((-112) $ (-114))) (-15 -1462 ((-112) $ (-1173))) (IF (|has| |#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|))) (-1097)) (T -610)) -((-2493 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-610 *3)) (-4 *3 (-1097)))) (-3898 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-610 *3)) (-4 *3 (-1097)))) (-3100 (*1 *2 *1) (-12 (-5 *2 (-642 *3)) (-5 *1 (-610 *3)) (-4 *3 (-1097)))) (-2983 (*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-610 *3)) (-4 *3 (-1097)))) (-2879 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-114)) (-5 *3 (-642 *5)) (-5 *4 (-769)) (-4 *5 (-1097)) (-5 *1 (-610 *5)))) (-2879 (*1 *1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-610 *3)) (-4 *3 (-1097)))) (-2755 (*1 *2 *1) (|partial| -12 (-5 *2 (-1173)) (-5 *1 (-610 *3)) (-4 *3 (-1097)))) (-1462 (*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-610 *4)) (-4 *4 (-1097)))) (-1462 (*1 *2 *1 *3) (-12 (-5 *3 (-1173)) (-5 *2 (-112)) (-5 *1 (-610 *4)) (-4 *4 (-1097))))) -(-13 (-132) (-848) (-882 |#1|) (-10 -8 (-15 -2493 ((-1173) $)) (-15 -3898 ((-114) $)) (-15 -3100 ((-642 |#1|) $)) (-15 -2983 ((-769) $)) (-15 -2879 ($ (-114) (-642 |#1|) (-769))) (-15 -2879 ($ (-1173))) (-15 -2755 ((-3 (-1173) "failed") $)) (-15 -1462 ((-112) $ (-114))) (-15 -1462 ((-112) $ (-1173))) (IF (|has| |#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|))) -((-2390 ((|#1| $) 6))) -(((-611 |#1|) (-140) (-1212)) (T -611)) -((-2390 (*1 *2 *1) (-12 (-4 *1 (-611 *2)) (-4 *2 (-1212))))) -(-13 (-10 -8 (-15 -2390 (|t#1| $)))) -((-3003 ((|#1| $) 6))) -(((-612 |#1|) (-140) (-1212)) (T -612)) -((-3003 (*1 *2 *1) (-12 (-4 *1 (-612 *2)) (-4 *2 (-1212))))) -(-13 (-10 -8 (-15 -3003 (|t#1| $)))) -((-2837 (((-3 (-1169 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 (-418 |#2|) |#2|)) 15) (((-3 (-1169 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|)) 16))) -(((-613 |#1| |#2|) (-10 -7 (-15 -2837 ((-3 (-1169 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|))) (-15 -2837 ((-3 (-1169 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 (-418 |#2|) |#2|)))) (-13 (-147) (-27) (-1036 (-564)) (-1036 (-407 (-564)))) (-1238 |#1|)) (T -613)) -((-2837 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1238 *5)) (-4 *5 (-13 (-147) (-27) (-1036 (-564)) (-1036 (-407 (-564))))) (-5 *2 (-1169 (-407 *6))) (-5 *1 (-613 *5 *6)) (-5 *3 (-407 *6)))) (-2837 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-147) (-27) (-1036 (-564)) (-1036 (-407 (-564))))) (-4 *5 (-1238 *4)) (-5 *2 (-1169 (-407 *5))) (-5 *1 (-613 *4 *5)) (-5 *3 (-407 *5))))) -(-10 -7 (-15 -2837 ((-3 (-1169 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|))) (-15 -2837 ((-3 (-1169 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 (-418 |#2|) |#2|)))) -((-2390 (($ |#1|) 6))) -(((-614 |#1|) (-140) (-1212)) (T -614)) -((-2390 (*1 *1 *2) (-12 (-4 *1 (-614 *2)) (-4 *2 (-1212))))) -(-13 (-10 -8 (-15 -2390 ($ |t#1|)))) -((-2856 (((-112) $ $) NIL)) (-3151 (($) 14 T CONST)) (-3253 (($) 15 T CONST)) (-2329 (($ $ $) 29)) (-2307 (($ $) 27)) (-1778 (((-1155) $) NIL)) (-3109 (($ $ $) 30)) (-3999 (((-1117) $) NIL)) (-2119 (($) 11 T CONST)) (-3884 (($ $ $) 31)) (-2390 (((-860) $) 35)) (-2351 (((-112) $ (|[\|\|]| -2119)) 24) (((-112) $ (|[\|\|]| -3151)) 26) (((-112) $ (|[\|\|]| -3253)) 21)) (-1600 (((-112) $ $) NIL)) (-2317 (($ $ $) 28)) (-2821 (((-112) $ $) 18))) -(((-615) (-13 (-965) (-10 -8 (-15 -3151 ($) -1551) (-15 -2351 ((-112) $ (|[\|\|]| -2119))) (-15 -2351 ((-112) $ (|[\|\|]| -3151))) (-15 -2351 ((-112) $ (|[\|\|]| -3253)))))) (T -615)) -((-3151 (*1 *1) (-5 *1 (-615))) (-2351 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2119)) (-5 *2 (-112)) (-5 *1 (-615)))) (-2351 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3151)) (-5 *2 (-112)) (-5 *1 (-615)))) (-2351 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3253)) (-5 *2 (-112)) (-5 *1 (-615))))) -(-13 (-965) (-10 -8 (-15 -3151 ($) -1551) (-15 -2351 ((-112) $ (|[\|\|]| -2119))) (-15 -2351 ((-112) $ (|[\|\|]| -3151))) (-15 -2351 ((-112) $ (|[\|\|]| -3253))))) -((-3003 (($ |#1|) 6))) -(((-616 |#1|) (-140) (-1212)) (T -616)) -((-3003 (*1 *1 *2) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1212))))) -(-13 (-10 -8 (-15 -3003 ($ |t#1|)))) -((-2390 (((-860) $) NIL) (($ (-564)) NIL) (($ |#2|) 10))) -(((-617 |#1| |#2|) (-10 -8 (-15 -2390 (|#1| |#2|)) (-15 -2390 (|#1| (-564))) (-15 -2390 ((-860) |#1|))) (-618 |#2|) (-1047)) (T -617)) -NIL -(-10 -8 (-15 -2390 (|#1| |#2|)) (-15 -2390 (|#1| (-564))) (-15 -2390 ((-860) |#1|))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-3085 (((-3 $ "failed") $ $) 20)) (-2822 (($) 18 T CONST)) (-2675 (((-3 $ "failed") $) 37)) (-3163 (((-112) $) 35)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2390 (((-860) $) 12) (($ (-564)) 33) (($ |#1|) 41)) (-3348 (((-769)) 32 T CONST)) (-1600 (((-112) $ $) 9)) (-2361 (($) 19 T CONST)) (-2371 (($) 34 T CONST)) (-2821 (((-112) $ $) 6)) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ |#1| $) 42))) -(((-618 |#1|) (-140) (-1047)) (T -618)) -((-2390 (*1 *1 *2) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1047))))) -(-13 (-1047) (-646 |t#1|) (-10 -8 (-15 -2390 ($ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-860)) . T) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-724) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T)) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-3085 (((-3 $ "failed") $ $) NIL)) (-2221 (((-564) $) NIL (|has| |#1| (-846)))) (-2822 (($) NIL T CONST)) (-2675 (((-3 $ "failed") $) NIL)) (-3292 (((-112) $) NIL (|has| |#1| (-846)))) (-3163 (((-112) $) NIL)) (-4120 ((|#1| $) 13)) (-2666 (((-112) $) NIL (|has| |#1| (-846)))) (-3225 (($ $ $) NIL (|has| |#1| (-846)))) (-2903 (($ $ $) NIL (|has| |#1| (-846)))) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-4131 ((|#3| $) 15)) (-2390 (((-860) $) NIL) (($ (-564)) NIL) (($ |#2|) NIL)) (-3348 (((-769)) 20 T CONST)) (-1600 (((-112) $ $) NIL)) (-1630 (($ $) NIL (|has| |#1| (-846)))) (-2361 (($) NIL T CONST)) (-2371 (($) 12 T CONST)) (-2881 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2857 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2821 (((-112) $ $) NIL)) (-2868 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2844 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2943 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-619 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-846)) (-6 (-846)) |%noBranch|) (-15 -2943 ($ $ |#3|)) (-15 -2943 ($ |#1| |#3|)) (-15 -4120 (|#1| $)) (-15 -4131 (|#3| $)))) (-38 |#2|) (-172) (|SubsetCategory| (-724) |#2|)) (T -619)) -((-2943 (*1 *1 *1 *2) (-12 (-4 *4 (-172)) (-5 *1 (-619 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-724) *4)))) (-2943 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-619 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-724) *4)))) (-4120 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-38 *3)) (-5 *1 (-619 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-724) *3)))) (-4131 (*1 *2 *1) (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-724) *4)) (-5 *1 (-619 *3 *4 *2)) (-4 *3 (-38 *4))))) -(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-846)) (-6 (-846)) |%noBranch|) (-15 -2943 ($ $ |#3|)) (-15 -2943 ($ |#1| |#3|)) (-15 -4120 (|#1| $)) (-15 -4131 (|#3| $)))) -((-1607 ((|#2| |#2| (-1173) (-1173)) 16))) -(((-620 |#1| |#2|) (-10 -7 (-15 -1607 (|#2| |#2| (-1173) (-1173)))) (-13 (-307) (-147) (-1036 (-564)) (-637 (-564))) (-13 (-1197) (-957) (-29 |#1|))) (T -620)) -((-1607 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1173)) (-4 *4 (-13 (-307) (-147) (-1036 (-564)) (-637 (-564)))) (-5 *1 (-620 *4 *2)) (-4 *2 (-13 (-1197) (-957) (-29 *4)))))) -(-10 -7 (-15 -1607 (|#2| |#2| (-1173) (-1173)))) -((-2856 (((-112) $ $) 64)) (-2950 (((-112) $) 58)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-4252 (($ $) NIL)) (-1722 (((-112) $) NIL)) (-3018 ((|#1| $) 55)) (-3085 (((-3 $ "failed") $ $) NIL)) (-2134 (((-112) $ $) NIL (|has| |#1| (-363)))) (-2161 (((-2 (|:| -2120 $) (|:| -1297 (-407 |#2|))) (-407 |#2|)) 111 (|has| |#1| (-363)))) (-2822 (($) NIL T CONST)) (-2849 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1036 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1036 (-407 (-564))))) (((-3 |#1| "failed") $) 99) (((-3 |#2| "failed") $) 95)) (-1687 (((-564) $) NIL (|has| |#1| (-1036 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1036 (-407 (-564))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2796 (($ $ $) NIL (|has| |#1| (-363)))) (-3459 (($ $) 27)) (-2675 (((-3 $ "failed") $) 88)) (-2808 (($ $ $) NIL (|has| |#1| (-363)))) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) NIL (|has| |#1| (-363)))) (-2408 (((-564) $) 22)) (-3163 (((-112) $) NIL)) (-2709 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#1| (-363)))) (-3471 (((-112) $) 40)) (-2374 (($ |#1| (-564)) 24)) (-2523 ((|#1| $) 57)) (-2066 (($ (-642 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) NIL (|has| |#1| (-363)))) (-2105 (($ (-642 $)) NIL (|has| |#1| (-363))) (($ $ $) 101 (|has| |#1| (-363)))) (-1877 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 116 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL (|has| |#1| (-363)))) (-2842 (((-3 $ "failed") $ $) 93)) (-1483 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#1| (-363)))) (-4274 (((-769) $) 115 (|has| |#1| (-363)))) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) 114 (|has| |#1| (-363)))) (-2199 (($ $ (-1 |#2| |#2|)) 75) (($ $ (-1 |#2| |#2|) (-769)) NIL) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-1173)) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-769)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-3252 (((-564) $) 38)) (-3003 (((-407 |#2|) $) 47)) (-2390 (((-860) $) 69) (($ (-564)) 35) (($ $) NIL) (($ (-407 (-564))) NIL (|has| |#1| (-1036 (-407 (-564))))) (($ |#1|) 34) (($ |#2|) 25)) (-3005 ((|#1| $ (-564)) 72)) (-3434 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3348 (((-769)) 32 T CONST)) (-1600 (((-112) $ $) NIL)) (-1594 (((-112) $ $) NIL)) (-2361 (($) 9 T CONST)) (-2371 (($) 14 T CONST)) (-2711 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-769)) NIL) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-1173)) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-769)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-2821 (((-112) $ $) 21)) (-2930 (($ $) 51) (($ $ $) NIL)) (-2917 (($ $ $) 90)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 29) (($ $ $) 49))) -(((-621 |#1| |#2|) (-13 (-231 |#2|) (-556) (-612 (-407 |#2|)) (-411 |#1|) (-1036 |#2|) (-10 -8 (-15 -3471 ((-112) $)) (-15 -3252 ((-564) $)) (-15 -2408 ((-564) $)) (-15 -3459 ($ $)) (-15 -2523 (|#1| $)) (-15 -3018 (|#1| $)) (-15 -3005 (|#1| $ (-564))) (-15 -2374 ($ |#1| (-564))) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-6 (-307)) (-15 -2161 ((-2 (|:| -2120 $) (|:| -1297 (-407 |#2|))) (-407 |#2|)))) |%noBranch|))) (-556) (-1238 |#1|)) (T -621)) -((-3471 (*1 *2 *1) (-12 (-4 *3 (-556)) (-5 *2 (-112)) (-5 *1 (-621 *3 *4)) (-4 *4 (-1238 *3)))) (-3252 (*1 *2 *1) (-12 (-4 *3 (-556)) (-5 *2 (-564)) (-5 *1 (-621 *3 *4)) (-4 *4 (-1238 *3)))) (-2408 (*1 *2 *1) (-12 (-4 *3 (-556)) (-5 *2 (-564)) (-5 *1 (-621 *3 *4)) (-4 *4 (-1238 *3)))) (-3459 (*1 *1 *1) (-12 (-4 *2 (-556)) (-5 *1 (-621 *2 *3)) (-4 *3 (-1238 *2)))) (-2523 (*1 *2 *1) (-12 (-4 *2 (-556)) (-5 *1 (-621 *2 *3)) (-4 *3 (-1238 *2)))) (-3018 (*1 *2 *1) (-12 (-4 *2 (-556)) (-5 *1 (-621 *2 *3)) (-4 *3 (-1238 *2)))) (-3005 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *2 (-556)) (-5 *1 (-621 *2 *4)) (-4 *4 (-1238 *2)))) (-2374 (*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-4 *2 (-556)) (-5 *1 (-621 *2 *4)) (-4 *4 (-1238 *2)))) (-2161 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *4 (-556)) (-4 *5 (-1238 *4)) (-5 *2 (-2 (|:| -2120 (-621 *4 *5)) (|:| -1297 (-407 *5)))) (-5 *1 (-621 *4 *5)) (-5 *3 (-407 *5))))) -(-13 (-231 |#2|) (-556) (-612 (-407 |#2|)) (-411 |#1|) (-1036 |#2|) (-10 -8 (-15 -3471 ((-112) $)) (-15 -3252 ((-564) $)) (-15 -2408 ((-564) $)) (-15 -3459 ($ $)) (-15 -2523 (|#1| $)) (-15 -3018 (|#1| $)) (-15 -3005 (|#1| $ (-564))) (-15 -2374 ($ |#1| (-564))) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-6 (-307)) (-15 -2161 ((-2 (|:| -2120 $) (|:| -1297 (-407 |#2|))) (-407 |#2|)))) |%noBranch|))) -((-3076 (((-642 |#6|) (-642 |#4|) (-112)) 54)) (-4365 ((|#6| |#6|) 48))) -(((-622 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4365 (|#6| |#6|)) (-15 -3076 ((-642 |#6|) (-642 |#4|) (-112)))) (-452) (-791) (-848) (-1062 |#1| |#2| |#3|) (-1068 |#1| |#2| |#3| |#4|) (-1106 |#1| |#2| |#3| |#4|)) (T -622)) -((-3076 (*1 *2 *3 *4) (-12 (-5 *3 (-642 *8)) (-5 *4 (-112)) (-4 *8 (-1062 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *2 (-642 *10)) (-5 *1 (-622 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1068 *5 *6 *7 *8)) (-4 *10 (-1106 *5 *6 *7 *8)))) (-4365 (*1 *2 *2) (-12 (-4 *3 (-452)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *1 (-622 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1068 *3 *4 *5 *6)) (-4 *2 (-1106 *3 *4 *5 *6))))) -(-10 -7 (-15 -4365 (|#6| |#6|)) (-15 -3076 ((-642 |#6|) (-642 |#4|) (-112)))) -((-1810 (((-112) |#3| (-769) (-642 |#3|)) 32)) (-2615 (((-3 (-2 (|:| |polfac| (-642 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-642 (-1169 |#3|)))) "failed") |#3| (-642 (-1169 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1569 (-642 (-2 (|:| |irr| |#4|) (|:| -3660 (-564)))))) (-642 |#3|) (-642 |#1|) (-642 |#3|)) 73))) -(((-623 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1810 ((-112) |#3| (-769) (-642 |#3|))) (-15 -2615 ((-3 (-2 (|:| |polfac| (-642 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-642 (-1169 |#3|)))) "failed") |#3| (-642 (-1169 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1569 (-642 (-2 (|:| |irr| |#4|) (|:| -3660 (-564)))))) (-642 |#3|) (-642 |#1|) (-642 |#3|)))) (-848) (-791) (-307) (-947 |#3| |#2| |#1|)) (T -623)) -((-2615 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1569 (-642 (-2 (|:| |irr| *10) (|:| -3660 (-564))))))) (-5 *6 (-642 *3)) (-5 *7 (-642 *8)) (-4 *8 (-848)) (-4 *3 (-307)) (-4 *10 (-947 *3 *9 *8)) (-4 *9 (-791)) (-5 *2 (-2 (|:| |polfac| (-642 *10)) (|:| |correct| *3) (|:| |corrfact| (-642 (-1169 *3))))) (-5 *1 (-623 *8 *9 *3 *10)) (-5 *4 (-642 (-1169 *3))))) (-1810 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-769)) (-5 *5 (-642 *3)) (-4 *3 (-307)) (-4 *6 (-848)) (-4 *7 (-791)) (-5 *2 (-112)) (-5 *1 (-623 *6 *7 *3 *8)) (-4 *8 (-947 *3 *7 *6))))) -(-10 -7 (-15 -1810 ((-112) |#3| (-769) (-642 |#3|))) (-15 -2615 ((-3 (-2 (|:| |polfac| (-642 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-642 (-1169 |#3|)))) "failed") |#3| (-642 (-1169 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1569 (-642 (-2 (|:| |irr| |#4|) (|:| -3660 (-564)))))) (-642 |#3|) (-642 |#1|) (-642 |#3|)))) -((-2856 (((-112) $ $) NIL)) (-3199 (((-1132) $) 11)) (-3187 (((-1132) $) 9)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) 17) (($ (-1178)) NIL) (((-1178) $) NIL)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-624) (-13 (-1080) (-10 -8 (-15 -3187 ((-1132) $)) (-15 -3199 ((-1132) $))))) (T -624)) -((-3187 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-624)))) (-3199 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-624))))) -(-13 (-1080) (-10 -8 (-15 -3187 ((-1132) $)) (-15 -3199 ((-1132) $)))) -((-2856 (((-112) $ $) NIL)) (-1634 (((-642 |#1|) $) NIL)) (-2822 (($) NIL T CONST)) (-2675 (((-3 $ "failed") $) NIL)) (-3163 (((-112) $) NIL)) (-3137 (($ $) 77)) (-3576 (((-662 |#1| |#2|) $) 60)) (-1778 (((-1155) $) NIL)) (-2481 (($ $) 81)) (-1428 (((-642 (-294 |#2|)) $ $) 42)) (-3999 (((-1117) $) NIL)) (-3466 (($ (-662 |#1| |#2|)) 56)) (-1736 (($ $ $) NIL)) (-2402 (($ $ $) NIL)) (-2390 (((-860) $) 66) (((-1277 |#1| |#2|) $) NIL) (((-1282 |#1| |#2|) $) 74)) (-1600 (((-112) $ $) NIL)) (-2371 (($) 61 T CONST)) (-3012 (((-642 (-2 (|:| |k| (-670 |#1|)) (|:| |c| |#2|))) $) 41)) (-2784 (((-642 (-662 |#1| |#2|)) (-642 |#1|)) 73)) (-1429 (((-642 (-2 (|:| |k| (-891 |#1|)) (|:| |c| |#2|))) $) 46)) (-2821 (((-112) $ $) 62)) (-2943 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL)) (* (($ $ $) 52))) -(((-625 |#1| |#2| |#3|) (-13 (-473) (-10 -8 (-15 -3466 ($ (-662 |#1| |#2|))) (-15 -3576 ((-662 |#1| |#2|) $)) (-15 -1429 ((-642 (-2 (|:| |k| (-891 |#1|)) (|:| |c| |#2|))) $)) (-15 -2390 ((-1277 |#1| |#2|) $)) (-15 -2390 ((-1282 |#1| |#2|) $)) (-15 -3137 ($ $)) (-15 -1634 ((-642 |#1|) $)) (-15 -2784 ((-642 (-662 |#1| |#2|)) (-642 |#1|))) (-15 -3012 ((-642 (-2 (|:| |k| (-670 |#1|)) (|:| |c| |#2|))) $)) (-15 -1428 ((-642 (-294 |#2|)) $ $)))) (-848) (-13 (-172) (-715 (-407 (-564)))) (-919)) (T -625)) -((-3466 (*1 *1 *2) (-12 (-5 *2 (-662 *3 *4)) (-4 *3 (-848)) (-4 *4 (-13 (-172) (-715 (-407 (-564))))) (-5 *1 (-625 *3 *4 *5)) (-14 *5 (-919)))) (-3576 (*1 *2 *1) (-12 (-5 *2 (-662 *3 *4)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-848)) (-4 *4 (-13 (-172) (-715 (-407 (-564))))) (-14 *5 (-919)))) (-1429 (*1 *2 *1) (-12 (-5 *2 (-642 (-2 (|:| |k| (-891 *3)) (|:| |c| *4)))) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-848)) (-4 *4 (-13 (-172) (-715 (-407 (-564))))) (-14 *5 (-919)))) (-2390 (*1 *2 *1) (-12 (-5 *2 (-1277 *3 *4)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-848)) (-4 *4 (-13 (-172) (-715 (-407 (-564))))) (-14 *5 (-919)))) (-2390 (*1 *2 *1) (-12 (-5 *2 (-1282 *3 *4)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-848)) (-4 *4 (-13 (-172) (-715 (-407 (-564))))) (-14 *5 (-919)))) (-3137 (*1 *1 *1) (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-848)) (-4 *3 (-13 (-172) (-715 (-407 (-564))))) (-14 *4 (-919)))) (-1634 (*1 *2 *1) (-12 (-5 *2 (-642 *3)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-848)) (-4 *4 (-13 (-172) (-715 (-407 (-564))))) (-14 *5 (-919)))) (-2784 (*1 *2 *3) (-12 (-5 *3 (-642 *4)) (-4 *4 (-848)) (-5 *2 (-642 (-662 *4 *5))) (-5 *1 (-625 *4 *5 *6)) (-4 *5 (-13 (-172) (-715 (-407 (-564))))) (-14 *6 (-919)))) (-3012 (*1 *2 *1) (-12 (-5 *2 (-642 (-2 (|:| |k| (-670 *3)) (|:| |c| *4)))) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-848)) (-4 *4 (-13 (-172) (-715 (-407 (-564))))) (-14 *5 (-919)))) (-1428 (*1 *2 *1 *1) (-12 (-5 *2 (-642 (-294 *4))) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-848)) (-4 *4 (-13 (-172) (-715 (-407 (-564))))) (-14 *5 (-919))))) -(-13 (-473) (-10 -8 (-15 -3466 ($ (-662 |#1| |#2|))) (-15 -3576 ((-662 |#1| |#2|) $)) (-15 -1429 ((-642 (-2 (|:| |k| (-891 |#1|)) (|:| |c| |#2|))) $)) (-15 -2390 ((-1277 |#1| |#2|) $)) (-15 -2390 ((-1282 |#1| |#2|) $)) (-15 -3137 ($ $)) (-15 -1634 ((-642 |#1|) $)) (-15 -2784 ((-642 (-662 |#1| |#2|)) (-642 |#1|))) (-15 -3012 ((-642 (-2 (|:| |k| (-670 |#1|)) (|:| |c| |#2|))) $)) (-15 -1428 ((-642 (-294 |#2|)) $ $)))) -((-3076 (((-642 (-1143 |#1| (-531 (-862 |#2|)) (-862 |#2|) (-778 |#1| (-862 |#2|)))) (-642 (-778 |#1| (-862 |#2|))) (-112)) 103) (((-642 (-1044 |#1| |#2|)) (-642 (-778 |#1| (-862 |#2|))) (-112)) 77)) (-1768 (((-112) (-642 (-778 |#1| (-862 |#2|)))) 26)) (-3160 (((-642 (-1143 |#1| (-531 (-862 |#2|)) (-862 |#2|) (-778 |#1| (-862 |#2|)))) (-642 (-778 |#1| (-862 |#2|))) (-112)) 102)) (-3618 (((-642 (-1044 |#1| |#2|)) (-642 (-778 |#1| (-862 |#2|))) (-112)) 76)) (-2079 (((-642 (-778 |#1| (-862 |#2|))) (-642 (-778 |#1| (-862 |#2|)))) 30)) (-3907 (((-3 (-642 (-778 |#1| (-862 |#2|))) "failed") (-642 (-778 |#1| (-862 |#2|)))) 29))) -(((-626 |#1| |#2|) (-10 -7 (-15 -1768 ((-112) (-642 (-778 |#1| (-862 |#2|))))) (-15 -3907 ((-3 (-642 (-778 |#1| (-862 |#2|))) "failed") (-642 (-778 |#1| (-862 |#2|))))) (-15 -2079 ((-642 (-778 |#1| (-862 |#2|))) (-642 (-778 |#1| (-862 |#2|))))) (-15 -3618 ((-642 (-1044 |#1| |#2|)) (-642 (-778 |#1| (-862 |#2|))) (-112))) (-15 -3160 ((-642 (-1143 |#1| (-531 (-862 |#2|)) (-862 |#2|) (-778 |#1| (-862 |#2|)))) (-642 (-778 |#1| (-862 |#2|))) (-112))) (-15 -3076 ((-642 (-1044 |#1| |#2|)) (-642 (-778 |#1| (-862 |#2|))) (-112))) (-15 -3076 ((-642 (-1143 |#1| (-531 (-862 |#2|)) (-862 |#2|) (-778 |#1| (-862 |#2|)))) (-642 (-778 |#1| (-862 |#2|))) (-112)))) (-452) (-642 (-1173))) (T -626)) -((-3076 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-778 *5 (-862 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) (-14 *6 (-642 (-1173))) (-5 *2 (-642 (-1143 *5 (-531 (-862 *6)) (-862 *6) (-778 *5 (-862 *6))))) (-5 *1 (-626 *5 *6)))) (-3076 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-778 *5 (-862 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) (-14 *6 (-642 (-1173))) (-5 *2 (-642 (-1044 *5 *6))) (-5 *1 (-626 *5 *6)))) (-3160 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-778 *5 (-862 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) (-14 *6 (-642 (-1173))) (-5 *2 (-642 (-1143 *5 (-531 (-862 *6)) (-862 *6) (-778 *5 (-862 *6))))) (-5 *1 (-626 *5 *6)))) (-3618 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-778 *5 (-862 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) (-14 *6 (-642 (-1173))) (-5 *2 (-642 (-1044 *5 *6))) (-5 *1 (-626 *5 *6)))) (-2079 (*1 *2 *2) (-12 (-5 *2 (-642 (-778 *3 (-862 *4)))) (-4 *3 (-452)) (-14 *4 (-642 (-1173))) (-5 *1 (-626 *3 *4)))) (-3907 (*1 *2 *2) (|partial| -12 (-5 *2 (-642 (-778 *3 (-862 *4)))) (-4 *3 (-452)) (-14 *4 (-642 (-1173))) (-5 *1 (-626 *3 *4)))) (-1768 (*1 *2 *3) (-12 (-5 *3 (-642 (-778 *4 (-862 *5)))) (-4 *4 (-452)) (-14 *5 (-642 (-1173))) (-5 *2 (-112)) (-5 *1 (-626 *4 *5))))) -(-10 -7 (-15 -1768 ((-112) (-642 (-778 |#1| (-862 |#2|))))) (-15 -3907 ((-3 (-642 (-778 |#1| (-862 |#2|))) "failed") (-642 (-778 |#1| (-862 |#2|))))) (-15 -2079 ((-642 (-778 |#1| (-862 |#2|))) (-642 (-778 |#1| (-862 |#2|))))) (-15 -3618 ((-642 (-1044 |#1| |#2|)) (-642 (-778 |#1| (-862 |#2|))) (-112))) (-15 -3160 ((-642 (-1143 |#1| (-531 (-862 |#2|)) (-862 |#2|) (-778 |#1| (-862 |#2|)))) (-642 (-778 |#1| (-862 |#2|))) (-112))) (-15 -3076 ((-642 (-1044 |#1| |#2|)) (-642 (-778 |#1| (-862 |#2|))) (-112))) (-15 -3076 ((-642 (-1143 |#1| (-531 (-862 |#2|)) (-862 |#2|) (-778 |#1| (-862 |#2|)))) (-642 (-778 |#1| (-862 |#2|))) (-112)))) -((-3087 (($ $) 38)) (-2958 (($ $) 21)) (-3067 (($ $) 37)) (-2933 (($ $) 22)) (-3110 (($ $) 36)) (-2981 (($ $) 23)) (-2833 (($) 48)) (-3576 (($ $) 45)) (-3208 (($ $) 17)) (-2696 (($ $ (-1089 $)) 7) (($ $ (-1173)) 6)) (-3466 (($ $) 46)) (-2885 (($ $) 15)) (-2920 (($ $) 16)) (-3120 (($ $) 35)) (-2992 (($ $) 24)) (-3098 (($ $) 34)) (-2971 (($ $) 25)) (-3077 (($ $) 33)) (-2946 (($ $) 26)) (-3155 (($ $) 44)) (-3025 (($ $) 32)) (-3131 (($ $) 43)) (-3002 (($ $) 31)) (-3176 (($ $) 42)) (-3047 (($ $) 30)) (-3165 (($ $) 41)) (-3058 (($ $) 29)) (-3168 (($ $) 40)) (-3035 (($ $) 28)) (-3142 (($ $) 39)) (-3014 (($ $) 27)) (-2899 (($ $) 19)) (-1633 (($ $) 20)) (-2128 (($ $) 18)) (** (($ $ $) 47))) -(((-627) (-140)) (T -627)) -((-1633 (*1 *1 *1) (-4 *1 (-627))) (-2899 (*1 *1 *1) (-4 *1 (-627))) (-2128 (*1 *1 *1) (-4 *1 (-627))) (-3208 (*1 *1 *1) (-4 *1 (-627))) (-2920 (*1 *1 *1) (-4 *1 (-627))) (-2885 (*1 *1 *1) (-4 *1 (-627)))) -(-13 (-957) (-1197) (-10 -8 (-15 -1633 ($ $)) (-15 -2899 ($ $)) (-15 -2128 ($ $)) (-15 -3208 ($ $)) (-15 -2920 ($ $)) (-15 -2885 ($ $)))) -(((-35) . T) ((-95) . T) ((-284) . T) ((-493) . T) ((-957) . T) ((-1197) . T) ((-1200) . T)) -((-3898 (((-114) (-114)) 88)) (-3208 ((|#2| |#2|) 28)) (-2696 ((|#2| |#2| (-1089 |#2|)) 84) ((|#2| |#2| (-1173)) 50)) (-2885 ((|#2| |#2|) 27)) (-2920 ((|#2| |#2|) 29)) (-4318 (((-112) (-114)) 33)) (-2899 ((|#2| |#2|) 24)) (-1633 ((|#2| |#2|) 26)) (-2128 ((|#2| |#2|) 25))) -(((-628 |#1| |#2|) (-10 -7 (-15 -4318 ((-112) (-114))) (-15 -3898 ((-114) (-114))) (-15 -1633 (|#2| |#2|)) (-15 -2899 (|#2| |#2|)) (-15 -2128 (|#2| |#2|)) (-15 -3208 (|#2| |#2|)) (-15 -2885 (|#2| |#2|)) (-15 -2920 (|#2| |#2|)) (-15 -2696 (|#2| |#2| (-1173))) (-15 -2696 (|#2| |#2| (-1089 |#2|)))) (-556) (-13 (-430 |#1|) (-1000) (-1197))) (T -628)) -((-2696 (*1 *2 *2 *3) (-12 (-5 *3 (-1089 *2)) (-4 *2 (-13 (-430 *4) (-1000) (-1197))) (-4 *4 (-556)) (-5 *1 (-628 *4 *2)))) (-2696 (*1 *2 *2 *3) (-12 (-5 *3 (-1173)) (-4 *4 (-556)) (-5 *1 (-628 *4 *2)) (-4 *2 (-13 (-430 *4) (-1000) (-1197))))) (-2920 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-628 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000) (-1197))))) (-2885 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-628 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000) (-1197))))) (-3208 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-628 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000) (-1197))))) (-2128 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-628 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000) (-1197))))) (-2899 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-628 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000) (-1197))))) (-1633 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-628 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000) (-1197))))) (-3898 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-556)) (-5 *1 (-628 *3 *4)) (-4 *4 (-13 (-430 *3) (-1000) (-1197))))) (-4318 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-556)) (-5 *2 (-112)) (-5 *1 (-628 *4 *5)) (-4 *5 (-13 (-430 *4) (-1000) (-1197)))))) -(-10 -7 (-15 -4318 ((-112) (-114))) (-15 -3898 ((-114) (-114))) (-15 -1633 (|#2| |#2|)) (-15 -2899 (|#2| |#2|)) (-15 -2128 (|#2| |#2|)) (-15 -3208 (|#2| |#2|)) (-15 -2885 (|#2| |#2|)) (-15 -2920 (|#2| |#2|)) (-15 -2696 (|#2| |#2| (-1173))) (-15 -2696 (|#2| |#2| (-1089 |#2|)))) -((-3426 (((-481 |#1| |#2|) (-247 |#1| |#2|)) 67)) (-3840 (((-642 (-247 |#1| |#2|)) (-642 (-481 |#1| |#2|))) 93)) (-2897 (((-481 |#1| |#2|) (-642 (-481 |#1| |#2|)) (-862 |#1|)) 95) (((-481 |#1| |#2|) (-642 (-481 |#1| |#2|)) (-642 (-481 |#1| |#2|)) (-862 |#1|)) 94)) (-3048 (((-2 (|:| |gblist| (-642 (-247 |#1| |#2|))) (|:| |gvlist| (-642 (-564)))) (-642 (-481 |#1| |#2|))) 138)) (-3321 (((-642 (-481 |#1| |#2|)) (-862 |#1|) (-642 (-481 |#1| |#2|)) (-642 (-481 |#1| |#2|))) 108)) (-1817 (((-2 (|:| |glbase| (-642 (-247 |#1| |#2|))) (|:| |glval| (-642 (-564)))) (-642 (-247 |#1| |#2|))) 148)) (-2651 (((-1262 |#2|) (-481 |#1| |#2|) (-642 (-481 |#1| |#2|))) 72)) (-1363 (((-642 (-481 |#1| |#2|)) (-642 (-481 |#1| |#2|))) 48)) (-3830 (((-247 |#1| |#2|) (-247 |#1| |#2|) (-642 (-247 |#1| |#2|))) 64)) (-2035 (((-247 |#1| |#2|) (-642 |#2|) (-247 |#1| |#2|) (-642 (-247 |#1| |#2|))) 116))) -(((-629 |#1| |#2|) (-10 -7 (-15 -3048 ((-2 (|:| |gblist| (-642 (-247 |#1| |#2|))) (|:| |gvlist| (-642 (-564)))) (-642 (-481 |#1| |#2|)))) (-15 -1817 ((-2 (|:| |glbase| (-642 (-247 |#1| |#2|))) (|:| |glval| (-642 (-564)))) (-642 (-247 |#1| |#2|)))) (-15 -3840 ((-642 (-247 |#1| |#2|)) (-642 (-481 |#1| |#2|)))) (-15 -2897 ((-481 |#1| |#2|) (-642 (-481 |#1| |#2|)) (-642 (-481 |#1| |#2|)) (-862 |#1|))) (-15 -2897 ((-481 |#1| |#2|) (-642 (-481 |#1| |#2|)) (-862 |#1|))) (-15 -1363 ((-642 (-481 |#1| |#2|)) (-642 (-481 |#1| |#2|)))) (-15 -2651 ((-1262 |#2|) (-481 |#1| |#2|) (-642 (-481 |#1| |#2|)))) (-15 -2035 ((-247 |#1| |#2|) (-642 |#2|) (-247 |#1| |#2|) (-642 (-247 |#1| |#2|)))) (-15 -3321 ((-642 (-481 |#1| |#2|)) (-862 |#1|) (-642 (-481 |#1| |#2|)) (-642 (-481 |#1| |#2|)))) (-15 -3830 ((-247 |#1| |#2|) (-247 |#1| |#2|) (-642 (-247 |#1| |#2|)))) (-15 -3426 ((-481 |#1| |#2|) (-247 |#1| |#2|)))) (-642 (-1173)) (-452)) (T -629)) -((-3426 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-642 (-1173))) (-4 *5 (-452)) (-5 *2 (-481 *4 *5)) (-5 *1 (-629 *4 *5)))) (-3830 (*1 *2 *2 *3) (-12 (-5 *3 (-642 (-247 *4 *5))) (-5 *2 (-247 *4 *5)) (-14 *4 (-642 (-1173))) (-4 *5 (-452)) (-5 *1 (-629 *4 *5)))) (-3321 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-642 (-481 *4 *5))) (-5 *3 (-862 *4)) (-14 *4 (-642 (-1173))) (-4 *5 (-452)) (-5 *1 (-629 *4 *5)))) (-2035 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-642 *6)) (-5 *4 (-642 (-247 *5 *6))) (-4 *6 (-452)) (-5 *2 (-247 *5 *6)) (-14 *5 (-642 (-1173))) (-5 *1 (-629 *5 *6)))) (-2651 (*1 *2 *3 *4) (-12 (-5 *4 (-642 (-481 *5 *6))) (-5 *3 (-481 *5 *6)) (-14 *5 (-642 (-1173))) (-4 *6 (-452)) (-5 *2 (-1262 *6)) (-5 *1 (-629 *5 *6)))) (-1363 (*1 *2 *2) (-12 (-5 *2 (-642 (-481 *3 *4))) (-14 *3 (-642 (-1173))) (-4 *4 (-452)) (-5 *1 (-629 *3 *4)))) (-2897 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-481 *5 *6))) (-5 *4 (-862 *5)) (-14 *5 (-642 (-1173))) (-5 *2 (-481 *5 *6)) (-5 *1 (-629 *5 *6)) (-4 *6 (-452)))) (-2897 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-642 (-481 *5 *6))) (-5 *4 (-862 *5)) (-14 *5 (-642 (-1173))) (-5 *2 (-481 *5 *6)) (-5 *1 (-629 *5 *6)) (-4 *6 (-452)))) (-3840 (*1 *2 *3) (-12 (-5 *3 (-642 (-481 *4 *5))) (-14 *4 (-642 (-1173))) (-4 *5 (-452)) (-5 *2 (-642 (-247 *4 *5))) (-5 *1 (-629 *4 *5)))) (-1817 (*1 *2 *3) (-12 (-14 *4 (-642 (-1173))) (-4 *5 (-452)) (-5 *2 (-2 (|:| |glbase| (-642 (-247 *4 *5))) (|:| |glval| (-642 (-564))))) (-5 *1 (-629 *4 *5)) (-5 *3 (-642 (-247 *4 *5))))) (-3048 (*1 *2 *3) (-12 (-5 *3 (-642 (-481 *4 *5))) (-14 *4 (-642 (-1173))) (-4 *5 (-452)) (-5 *2 (-2 (|:| |gblist| (-642 (-247 *4 *5))) (|:| |gvlist| (-642 (-564))))) (-5 *1 (-629 *4 *5))))) -(-10 -7 (-15 -3048 ((-2 (|:| |gblist| (-642 (-247 |#1| |#2|))) (|:| |gvlist| (-642 (-564)))) (-642 (-481 |#1| |#2|)))) (-15 -1817 ((-2 (|:| |glbase| (-642 (-247 |#1| |#2|))) (|:| |glval| (-642 (-564)))) (-642 (-247 |#1| |#2|)))) (-15 -3840 ((-642 (-247 |#1| |#2|)) (-642 (-481 |#1| |#2|)))) (-15 -2897 ((-481 |#1| |#2|) (-642 (-481 |#1| |#2|)) (-642 (-481 |#1| |#2|)) (-862 |#1|))) (-15 -2897 ((-481 |#1| |#2|) (-642 (-481 |#1| |#2|)) (-862 |#1|))) (-15 -1363 ((-642 (-481 |#1| |#2|)) (-642 (-481 |#1| |#2|)))) (-15 -2651 ((-1262 |#2|) (-481 |#1| |#2|) (-642 (-481 |#1| |#2|)))) (-15 -2035 ((-247 |#1| |#2|) (-642 |#2|) (-247 |#1| |#2|) (-642 (-247 |#1| |#2|)))) (-15 -3321 ((-642 (-481 |#1| |#2|)) (-862 |#1|) (-642 (-481 |#1| |#2|)) (-642 (-481 |#1| |#2|)))) (-15 -3830 ((-247 |#1| |#2|) (-247 |#1| |#2|) (-642 (-247 |#1| |#2|)))) (-15 -3426 ((-481 |#1| |#2|) (-247 |#1| |#2|)))) -((-2856 (((-112) $ $) NIL (-2682 (|has| (-52) (-1097)) (|has| (-2 (|:| -1914 (-1155)) (|:| -2683 (-52))) (-1097))))) (-4222 (($) NIL) (($ (-642 (-2 (|:| -1914 (-1155)) (|:| -2683 (-52))))) NIL)) (-3633 (((-1267) $ (-1155) (-1155)) NIL (|has| $ (-6 -4411)))) (-3442 (((-112) $ (-769)) NIL)) (-3841 (((-52) $ (-1155) (-52)) 16) (((-52) $ (-1173) (-52)) 17)) (-2438 (($ (-1 (-112) (-2 (|:| -1914 (-1155)) (|:| -2683 (-52)))) $) NIL (|has| $ (-6 -4410)))) (-3437 (($ (-1 (-112) (-2 (|:| -1914 (-1155)) (|:| -2683 (-52)))) $) NIL (|has| $ (-6 -4410)))) (-2295 (((-3 (-52) "failed") (-1155) $) NIL)) (-2822 (($) NIL T CONST)) (-4067 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1914 (-1155)) (|:| -2683 (-52))) (-1097))))) (-1927 (($ (-2 (|:| -1914 (-1155)) (|:| -2683 (-52))) $) NIL (|has| $ (-6 -4410))) (($ (-1 (-112) (-2 (|:| -1914 (-1155)) (|:| -2683 (-52)))) $) NIL (|has| $ (-6 -4410))) (((-3 (-52) "failed") (-1155) $) NIL)) (-2517 (($ (-2 (|:| -1914 (-1155)) (|:| -2683 (-52))) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1914 (-1155)) (|:| -2683 (-52))) (-1097)))) (($ (-1 (-112) (-2 (|:| -1914 (-1155)) (|:| -2683 (-52)))) $) NIL (|has| $ (-6 -4410)))) (-3741 (((-2 (|:| -1914 (-1155)) (|:| -2683 (-52))) (-1 (-2 (|:| -1914 (-1155)) (|:| -2683 (-52))) (-2 (|:| -1914 (-1155)) (|:| -2683 (-52))) (-2 (|:| -1914 (-1155)) (|:| -2683 (-52)))) $ (-2 (|:| -1914 (-1155)) (|:| -2683 (-52))) (-2 (|:| -1914 (-1155)) (|:| -2683 (-52)))) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1914 (-1155)) (|:| -2683 (-52))) (-1097)))) (((-2 (|:| -1914 (-1155)) (|:| -2683 (-52))) (-1 (-2 (|:| -1914 (-1155)) (|:| -2683 (-52))) (-2 (|:| -1914 (-1155)) (|:| -2683 (-52))) (-2 (|:| -1914 (-1155)) (|:| -2683 (-52)))) $ (-2 (|:| -1914 (-1155)) (|:| -2683 (-52)))) NIL (|has| $ (-6 -4410))) (((-2 (|:| -1914 (-1155)) (|:| -2683 (-52))) (-1 (-2 (|:| -1914 (-1155)) (|:| -2683 (-52))) (-2 (|:| -1914 (-1155)) (|:| -2683 (-52))) (-2 (|:| -1914 (-1155)) (|:| -2683 (-52)))) $) NIL (|has| $ (-6 -4410)))) (-3105 (((-52) $ (-1155) (-52)) NIL (|has| $ (-6 -4411)))) (-1804 (((-52) $ (-1155)) NIL)) (-2018 (((-642 (-2 (|:| -1914 (-1155)) (|:| -2683 (-52)))) $) NIL (|has| $ (-6 -4410))) (((-642 (-52)) $) NIL (|has| $ (-6 -4410)))) (-3874 (($ $) NIL)) (-3769 (((-112) $ (-769)) NIL)) (-1802 (((-1155) $) NIL (|has| (-1155) (-848)))) (-3541 (((-642 (-2 (|:| -1914 (-1155)) (|:| -2683 (-52)))) $) NIL (|has| $ (-6 -4410))) (((-642 (-52)) $) NIL (|has| $ (-6 -4410)))) (-2533 (((-112) (-2 (|:| -1914 (-1155)) (|:| -2683 (-52))) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1914 (-1155)) (|:| -2683 (-52))) (-1097)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-52) (-1097))))) (-3624 (((-1155) $) NIL (|has| (-1155) (-848)))) (-1857 (($ (-1 (-2 (|:| -1914 (-1155)) (|:| -2683 (-52))) (-2 (|:| -1914 (-1155)) (|:| -2683 (-52)))) $) NIL (|has| $ (-6 -4411))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4411)))) (-2947 (($ (-1 (-2 (|:| -1914 (-1155)) (|:| -2683 (-52))) (-2 (|:| -1914 (-1155)) (|:| -2683 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1702 (($ (-388)) 9)) (-4145 (((-112) $ (-769)) NIL)) (-1778 (((-1155) $) NIL (-2682 (|has| (-52) (-1097)) (|has| (-2 (|:| -1914 (-1155)) (|:| -2683 (-52))) (-1097))))) (-3287 (((-642 (-1155)) $) NIL)) (-2145 (((-112) (-1155) $) NIL)) (-3220 (((-2 (|:| -1914 (-1155)) (|:| -2683 (-52))) $) NIL)) (-1668 (($ (-2 (|:| -1914 (-1155)) (|:| -2683 (-52))) $) NIL)) (-4107 (((-642 (-1155)) $) NIL)) (-4207 (((-112) (-1155) $) NIL)) (-3999 (((-1117) $) NIL (-2682 (|has| (-52) (-1097)) (|has| (-2 (|:| -1914 (-1155)) (|:| -2683 (-52))) (-1097))))) (-4036 (((-52) $) NIL (|has| (-1155) (-848)))) (-3183 (((-3 (-2 (|:| -1914 (-1155)) (|:| -2683 (-52))) "failed") (-1 (-112) (-2 (|:| -1914 (-1155)) (|:| -2683 (-52)))) $) NIL)) (-3826 (($ $ (-52)) NIL (|has| $ (-6 -4411)))) (-4314 (((-2 (|:| -1914 (-1155)) (|:| -2683 (-52))) $) NIL)) (-4094 (((-112) (-1 (-112) (-2 (|:| -1914 (-1155)) (|:| -2683 (-52)))) $) NIL (|has| $ (-6 -4410))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 (-2 (|:| -1914 (-1155)) (|:| -2683 (-52)))))) NIL (-12 (|has| (-2 (|:| -1914 (-1155)) (|:| -2683 (-52))) (-309 (-2 (|:| -1914 (-1155)) (|:| -2683 (-52))))) (|has| (-2 (|:| -1914 (-1155)) (|:| -2683 (-52))) (-1097)))) (($ $ (-294 (-2 (|:| -1914 (-1155)) (|:| -2683 (-52))))) NIL (-12 (|has| (-2 (|:| -1914 (-1155)) (|:| -2683 (-52))) (-309 (-2 (|:| -1914 (-1155)) (|:| -2683 (-52))))) (|has| (-2 (|:| -1914 (-1155)) (|:| -2683 (-52))) (-1097)))) (($ $ (-2 (|:| -1914 (-1155)) (|:| -2683 (-52))) (-2 (|:| -1914 (-1155)) (|:| -2683 (-52)))) NIL (-12 (|has| (-2 (|:| -1914 (-1155)) (|:| -2683 (-52))) (-309 (-2 (|:| -1914 (-1155)) (|:| -2683 (-52))))) (|has| (-2 (|:| -1914 (-1155)) (|:| -2683 (-52))) (-1097)))) (($ $ (-642 (-2 (|:| -1914 (-1155)) (|:| -2683 (-52)))) (-642 (-2 (|:| -1914 (-1155)) (|:| -2683 (-52))))) NIL (-12 (|has| (-2 (|:| -1914 (-1155)) (|:| -2683 (-52))) (-309 (-2 (|:| -1914 (-1155)) (|:| -2683 (-52))))) (|has| (-2 (|:| -1914 (-1155)) (|:| -2683 (-52))) (-1097)))) (($ $ (-642 (-52)) (-642 (-52))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1097)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1097)))) (($ $ (-294 (-52))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1097)))) (($ $ (-642 (-294 (-52)))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1097))))) (-2478 (((-112) $ $) NIL)) (-1643 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-52) (-1097))))) (-3522 (((-642 (-52)) $) NIL)) (-4109 (((-112) $) NIL)) (-2179 (($) NIL)) (-4369 (((-52) $ (-1155)) 14) (((-52) $ (-1155) (-52)) NIL) (((-52) $ (-1173)) 15)) (-2318 (($) NIL) (($ (-642 (-2 (|:| -1914 (-1155)) (|:| -2683 (-52))))) NIL)) (-4010 (((-769) (-1 (-112) (-2 (|:| -1914 (-1155)) (|:| -2683 (-52)))) $) NIL (|has| $ (-6 -4410))) (((-769) (-2 (|:| -1914 (-1155)) (|:| -2683 (-52))) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1914 (-1155)) (|:| -2683 (-52))) (-1097)))) (((-769) (-52) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-52) (-1097)))) (((-769) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4410)))) (-3865 (($ $) NIL)) (-3003 (((-536) $) NIL (|has| (-2 (|:| -1914 (-1155)) (|:| -2683 (-52))) (-612 (-536))))) (-2401 (($ (-642 (-2 (|:| -1914 (-1155)) (|:| -2683 (-52))))) NIL)) (-2390 (((-860) $) NIL (-2682 (|has| (-52) (-611 (-860))) (|has| (-2 (|:| -1914 (-1155)) (|:| -2683 (-52))) (-611 (-860)))))) (-1600 (((-112) $ $) NIL (-2682 (|has| (-52) (-1097)) (|has| (-2 (|:| -1914 (-1155)) (|:| -2683 (-52))) (-1097))))) (-4160 (($ (-642 (-2 (|:| -1914 (-1155)) (|:| -2683 (-52))))) NIL)) (-3295 (((-112) (-1 (-112) (-2 (|:| -1914 (-1155)) (|:| -2683 (-52)))) $) NIL (|has| $ (-6 -4410))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4410)))) (-2821 (((-112) $ $) NIL (-2682 (|has| (-52) (-1097)) (|has| (-2 (|:| -1914 (-1155)) (|:| -2683 (-52))) (-1097))))) (-2158 (((-769) $) NIL (|has| $ (-6 -4410))))) -(((-630) (-13 (-1188 (-1155) (-52)) (-10 -8 (-15 -1702 ($ (-388))) (-15 -3874 ($ $)) (-15 -4369 ((-52) $ (-1173))) (-15 -3841 ((-52) $ (-1173) (-52)))))) (T -630)) -((-1702 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-630)))) (-3874 (*1 *1 *1) (-5 *1 (-630))) (-4369 (*1 *2 *1 *3) (-12 (-5 *3 (-1173)) (-5 *2 (-52)) (-5 *1 (-630)))) (-3841 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1173)) (-5 *1 (-630))))) -(-13 (-1188 (-1155) (-52)) (-10 -8 (-15 -1702 ($ (-388))) (-15 -3874 ($ $)) (-15 -4369 ((-52) $ (-1173))) (-15 -3841 ((-52) $ (-1173) (-52))))) -((-2943 (($ $ |#2|) 10))) -(((-631 |#1| |#2|) (-10 -8 (-15 -2943 (|#1| |#1| |#2|))) (-632 |#2|) (-172)) (T -631)) -NIL -(-10 -8 (-15 -2943 (|#1| |#1| |#2|))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-3085 (((-3 $ "failed") $ $) 20)) (-2822 (($) 18 T CONST)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2401 (($ $ $) 34)) (-2390 (((-860) $) 12)) (-1600 (((-112) $ $) 9)) (-2361 (($) 19 T CONST)) (-2821 (((-112) $ $) 6)) (-2943 (($ $ |#1|) 33 (|has| |#1| (-363)))) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) -(((-632 |#1|) (-140) (-172)) (T -632)) -((-2401 (*1 *1 *1 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-172)))) (-2943 (*1 *1 *1 *2) (-12 (-4 *1 (-632 *2)) (-4 *2 (-172)) (-4 *2 (-363))))) -(-13 (-715 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -2401 ($ $ $)) (IF (|has| |t#1| (-363)) (-15 -2943 ($ $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-611 (-860)) . T) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-646 |#1|) . T) ((-638 |#1|) . T) ((-715 |#1|) . T) ((-1049 |#1|) . T) ((-1054 |#1|) . T) ((-1097) . T)) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-2660 (((-3 $ "failed")) NIL (-2682 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3085 (((-3 $ "failed") $ $) NIL)) (-2816 (((-1262 (-687 |#1|))) NIL (|has| |#2| (-417 |#1|))) (((-1262 (-687 |#1|)) (-1262 $)) NIL (|has| |#2| (-367 |#1|)))) (-3953 (((-1262 $)) NIL (|has| |#2| (-367 |#1|)))) (-2822 (($) NIL T CONST)) (-3378 (((-3 (-2 (|:| |particular| $) (|:| -2131 (-642 $))) "failed")) NIL (-2682 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-1934 (((-3 $ "failed")) NIL (-2682 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3821 (((-687 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-687 |#1|) (-1262 $)) NIL (|has| |#2| (-367 |#1|)))) (-3540 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-1771 (((-687 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-687 |#1|) $ (-1262 $)) NIL (|has| |#2| (-367 |#1|)))) (-3420 (((-3 $ "failed") $) NIL (-2682 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-2016 (((-1169 (-950 |#1|))) NIL (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-363))))) (-3952 (($ $ (-919)) NIL)) (-1732 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-2644 (((-1169 |#1|) $) NIL (-2682 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3521 ((|#1|) NIL (|has| |#2| (-417 |#1|))) ((|#1| (-1262 $)) NIL (|has| |#2| (-367 |#1|)))) (-4246 (((-1169 |#1|) $) NIL (|has| |#2| (-367 |#1|)))) (-2165 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-4087 (($ (-1262 |#1|)) NIL (|has| |#2| (-417 |#1|))) (($ (-1262 |#1|) (-1262 $)) NIL (|has| |#2| (-367 |#1|)))) (-2675 (((-3 $ "failed") $) NIL (-2682 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3616 (((-919)) NIL (|has| |#2| (-367 |#1|)))) (-2927 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-4359 (($ $ (-919)) NIL)) (-3682 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1888 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1693 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1546 (((-3 (-2 (|:| |particular| $) (|:| -2131 (-642 $))) "failed")) NIL (-2682 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-4337 (((-3 $ "failed")) NIL (-2682 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-4289 (((-687 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-687 |#1|) (-1262 $)) NIL (|has| |#2| (-367 |#1|)))) (-1486 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-1672 (((-687 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-687 |#1|) $ (-1262 $)) NIL (|has| |#2| (-367 |#1|)))) (-1339 (((-3 $ "failed") $) NIL (-2682 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-2975 (((-1169 (-950 |#1|))) NIL (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-363))))) (-4204 (($ $ (-919)) NIL)) (-1573 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-2514 (((-1169 |#1|) $) NIL (-2682 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3645 ((|#1|) NIL (|has| |#2| (-417 |#1|))) ((|#1| (-1262 $)) NIL (|has| |#2| (-367 |#1|)))) (-1892 (((-1169 |#1|) $) NIL (|has| |#2| (-367 |#1|)))) (-4216 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1778 (((-1155) $) NIL)) (-2631 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3393 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2399 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3999 (((-1117) $) NIL)) (-2040 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-4369 ((|#1| $ (-564)) NIL (|has| |#2| (-417 |#1|)))) (-3719 (((-687 |#1|) (-1262 $)) NIL (|has| |#2| (-417 |#1|))) (((-1262 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-687 |#1|) (-1262 $) (-1262 $)) NIL (|has| |#2| (-367 |#1|))) (((-1262 |#1|) $ (-1262 $)) NIL (|has| |#2| (-367 |#1|)))) (-3003 (($ (-1262 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-1262 |#1|) $) NIL (|has| |#2| (-417 |#1|)))) (-3584 (((-642 (-950 |#1|))) NIL (|has| |#2| (-417 |#1|))) (((-642 (-950 |#1|)) (-1262 $)) NIL (|has| |#2| (-367 |#1|)))) (-2402 (($ $ $) NIL)) (-2792 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2390 (((-860) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-1600 (((-112) $ $) NIL)) (-2131 (((-1262 $)) NIL (|has| |#2| (-417 |#1|)))) (-1491 (((-642 (-1262 |#1|))) NIL (-2682 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3845 (($ $ $ $) NIL)) (-2715 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3975 (($ (-687 |#1|) $) NIL (|has| |#2| (-417 |#1|)))) (-3106 (($ $ $) NIL)) (-3498 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3394 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2609 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2361 (($) 19 T CONST)) (-2821 (((-112) $ $) NIL)) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) NIL)) (** (($ $ (-919)) 20)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-633 |#1| |#2|) (-13 (-742 |#1|) (-611 |#2|) (-10 -8 (-15 -2390 ($ |#2|)) (IF (|has| |#2| (-417 |#1|)) (-6 (-417 |#1|)) |%noBranch|) (IF (|has| |#2| (-367 |#1|)) (-6 (-367 |#1|)) |%noBranch|))) (-172) (-742 |#1|)) (T -633)) -((-2390 (*1 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-633 *3 *2)) (-4 *2 (-742 *3))))) -(-13 (-742 |#1|) (-611 |#2|) (-10 -8 (-15 -2390 ($ |#2|)) (IF (|has| |#2| (-417 |#1|)) (-6 (-417 |#1|)) |%noBranch|) (IF (|has| |#2| (-367 |#1|)) (-6 (-367 |#1|)) |%noBranch|))) -((-3647 (((-3 (-841 |#2|) "failed") |#2| (-294 |#2|) (-1155)) 106) (((-3 (-841 |#2|) (-2 (|:| |leftHandLimit| (-3 (-841 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-841 |#2|) "failed"))) "failed") |#2| (-294 (-841 |#2|))) 131)) (-2213 (((-3 (-831 |#2|) "failed") |#2| (-294 (-831 |#2|))) 136))) -(((-634 |#1| |#2|) (-10 -7 (-15 -3647 ((-3 (-841 |#2|) (-2 (|:| |leftHandLimit| (-3 (-841 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-841 |#2|) "failed"))) "failed") |#2| (-294 (-841 |#2|)))) (-15 -2213 ((-3 (-831 |#2|) "failed") |#2| (-294 (-831 |#2|)))) (-15 -3647 ((-3 (-841 |#2|) "failed") |#2| (-294 |#2|) (-1155)))) (-13 (-452) (-1036 (-564)) (-637 (-564))) (-13 (-27) (-1197) (-430 |#1|))) (T -634)) -((-3647 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-294 *3)) (-5 *5 (-1155)) (-4 *3 (-13 (-27) (-1197) (-430 *6))) (-4 *6 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-841 *3)) (-5 *1 (-634 *6 *3)))) (-2213 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-294 (-831 *3))) (-4 *5 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-831 *3)) (-5 *1 (-634 *5 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *5))))) (-3647 (*1 *2 *3 *4) (-12 (-5 *4 (-294 (-841 *3))) (-4 *3 (-13 (-27) (-1197) (-430 *5))) (-4 *5 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-3 (-841 *3) (-2 (|:| |leftHandLimit| (-3 (-841 *3) "failed")) (|:| |rightHandLimit| (-3 (-841 *3) "failed"))) "failed")) (-5 *1 (-634 *5 *3))))) -(-10 -7 (-15 -3647 ((-3 (-841 |#2|) (-2 (|:| |leftHandLimit| (-3 (-841 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-841 |#2|) "failed"))) "failed") |#2| (-294 (-841 |#2|)))) (-15 -2213 ((-3 (-831 |#2|) "failed") |#2| (-294 (-831 |#2|)))) (-15 -3647 ((-3 (-841 |#2|) "failed") |#2| (-294 |#2|) (-1155)))) -((-3647 (((-3 (-841 (-407 (-950 |#1|))) "failed") (-407 (-950 |#1|)) (-294 (-407 (-950 |#1|))) (-1155)) 86) (((-3 (-841 (-407 (-950 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-841 (-407 (-950 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-841 (-407 (-950 |#1|))) "failed"))) "failed") (-407 (-950 |#1|)) (-294 (-407 (-950 |#1|)))) 20) (((-3 (-841 (-407 (-950 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-841 (-407 (-950 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-841 (-407 (-950 |#1|))) "failed"))) "failed") (-407 (-950 |#1|)) (-294 (-841 (-950 |#1|)))) 35)) (-2213 (((-831 (-407 (-950 |#1|))) (-407 (-950 |#1|)) (-294 (-407 (-950 |#1|)))) 23) (((-831 (-407 (-950 |#1|))) (-407 (-950 |#1|)) (-294 (-831 (-950 |#1|)))) 43))) -(((-635 |#1|) (-10 -7 (-15 -3647 ((-3 (-841 (-407 (-950 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-841 (-407 (-950 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-841 (-407 (-950 |#1|))) "failed"))) "failed") (-407 (-950 |#1|)) (-294 (-841 (-950 |#1|))))) (-15 -3647 ((-3 (-841 (-407 (-950 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-841 (-407 (-950 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-841 (-407 (-950 |#1|))) "failed"))) "failed") (-407 (-950 |#1|)) (-294 (-407 (-950 |#1|))))) (-15 -2213 ((-831 (-407 (-950 |#1|))) (-407 (-950 |#1|)) (-294 (-831 (-950 |#1|))))) (-15 -2213 ((-831 (-407 (-950 |#1|))) (-407 (-950 |#1|)) (-294 (-407 (-950 |#1|))))) (-15 -3647 ((-3 (-841 (-407 (-950 |#1|))) "failed") (-407 (-950 |#1|)) (-294 (-407 (-950 |#1|))) (-1155)))) (-452)) (T -635)) -((-3647 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-294 (-407 (-950 *6)))) (-5 *5 (-1155)) (-5 *3 (-407 (-950 *6))) (-4 *6 (-452)) (-5 *2 (-841 *3)) (-5 *1 (-635 *6)))) (-2213 (*1 *2 *3 *4) (-12 (-5 *4 (-294 (-407 (-950 *5)))) (-5 *3 (-407 (-950 *5))) (-4 *5 (-452)) (-5 *2 (-831 *3)) (-5 *1 (-635 *5)))) (-2213 (*1 *2 *3 *4) (-12 (-5 *4 (-294 (-831 (-950 *5)))) (-4 *5 (-452)) (-5 *2 (-831 (-407 (-950 *5)))) (-5 *1 (-635 *5)) (-5 *3 (-407 (-950 *5))))) (-3647 (*1 *2 *3 *4) (-12 (-5 *4 (-294 (-407 (-950 *5)))) (-5 *3 (-407 (-950 *5))) (-4 *5 (-452)) (-5 *2 (-3 (-841 *3) (-2 (|:| |leftHandLimit| (-3 (-841 *3) "failed")) (|:| |rightHandLimit| (-3 (-841 *3) "failed"))) "failed")) (-5 *1 (-635 *5)))) (-3647 (*1 *2 *3 *4) (-12 (-5 *4 (-294 (-841 (-950 *5)))) (-4 *5 (-452)) (-5 *2 (-3 (-841 (-407 (-950 *5))) (-2 (|:| |leftHandLimit| (-3 (-841 (-407 (-950 *5))) "failed")) (|:| |rightHandLimit| (-3 (-841 (-407 (-950 *5))) "failed"))) "failed")) (-5 *1 (-635 *5)) (-5 *3 (-407 (-950 *5)))))) -(-10 -7 (-15 -3647 ((-3 (-841 (-407 (-950 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-841 (-407 (-950 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-841 (-407 (-950 |#1|))) "failed"))) "failed") (-407 (-950 |#1|)) (-294 (-841 (-950 |#1|))))) (-15 -3647 ((-3 (-841 (-407 (-950 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-841 (-407 (-950 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-841 (-407 (-950 |#1|))) "failed"))) "failed") (-407 (-950 |#1|)) (-294 (-407 (-950 |#1|))))) (-15 -2213 ((-831 (-407 (-950 |#1|))) (-407 (-950 |#1|)) (-294 (-831 (-950 |#1|))))) (-15 -2213 ((-831 (-407 (-950 |#1|))) (-407 (-950 |#1|)) (-294 (-407 (-950 |#1|))))) (-15 -3647 ((-3 (-841 (-407 (-950 |#1|))) "failed") (-407 (-950 |#1|)) (-294 (-407 (-950 |#1|))) (-1155)))) -((-1651 (((-3 (-1262 (-407 |#1|)) "failed") (-1262 |#2|) |#2|) 64 (-2307 (|has| |#1| (-363)))) (((-3 (-1262 |#1|) "failed") (-1262 |#2|) |#2|) 49 (|has| |#1| (-363)))) (-1642 (((-112) (-1262 |#2|)) 33)) (-3490 (((-3 (-1262 |#1|) "failed") (-1262 |#2|)) 40))) -(((-636 |#1| |#2|) (-10 -7 (-15 -1642 ((-112) (-1262 |#2|))) (-15 -3490 ((-3 (-1262 |#1|) "failed") (-1262 |#2|))) (IF (|has| |#1| (-363)) (-15 -1651 ((-3 (-1262 |#1|) "failed") (-1262 |#2|) |#2|)) (-15 -1651 ((-3 (-1262 (-407 |#1|)) "failed") (-1262 |#2|) |#2|)))) (-556) (-637 |#1|)) (T -636)) -((-1651 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1262 *4)) (-4 *4 (-637 *5)) (-2307 (-4 *5 (-363))) (-4 *5 (-556)) (-5 *2 (-1262 (-407 *5))) (-5 *1 (-636 *5 *4)))) (-1651 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1262 *4)) (-4 *4 (-637 *5)) (-4 *5 (-363)) (-4 *5 (-556)) (-5 *2 (-1262 *5)) (-5 *1 (-636 *5 *4)))) (-3490 (*1 *2 *3) (|partial| -12 (-5 *3 (-1262 *5)) (-4 *5 (-637 *4)) (-4 *4 (-556)) (-5 *2 (-1262 *4)) (-5 *1 (-636 *4 *5)))) (-1642 (*1 *2 *3) (-12 (-5 *3 (-1262 *5)) (-4 *5 (-637 *4)) (-4 *4 (-556)) (-5 *2 (-112)) (-5 *1 (-636 *4 *5))))) -(-10 -7 (-15 -1642 ((-112) (-1262 |#2|))) (-15 -3490 ((-3 (-1262 |#1|) "failed") (-1262 |#2|))) (IF (|has| |#1| (-363)) (-15 -1651 ((-3 (-1262 |#1|) "failed") (-1262 |#2|) |#2|)) (-15 -1651 ((-3 (-1262 (-407 |#1|)) "failed") (-1262 |#2|) |#2|)))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-3085 (((-3 $ "failed") $ $) 20)) (-2822 (($) 18 T CONST)) (-3330 (((-687 |#1|) (-687 $)) 40) (((-2 (|:| -3544 (-687 |#1|)) (|:| |vec| (-1262 |#1|))) (-687 $) (-1262 $)) 39)) (-2675 (((-3 $ "failed") $) 37)) (-3163 (((-112) $) 35)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2390 (((-860) $) 12) (($ (-564)) 33)) (-3348 (((-769)) 32 T CONST)) (-1600 (((-112) $ $) 9)) (-2361 (($) 19 T CONST)) (-2371 (($) 34 T CONST)) (-2821 (((-112) $ $) 6)) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27))) -(((-637 |#1|) (-140) (-1047)) (T -637)) -((-3330 (*1 *2 *3) (-12 (-5 *3 (-687 *1)) (-4 *1 (-637 *4)) (-4 *4 (-1047)) (-5 *2 (-687 *4)))) (-3330 (*1 *2 *3 *4) (-12 (-5 *3 (-687 *1)) (-5 *4 (-1262 *1)) (-4 *1 (-637 *5)) (-4 *5 (-1047)) (-5 *2 (-2 (|:| -3544 (-687 *5)) (|:| |vec| (-1262 *5))))))) -(-13 (-1047) (-10 -8 (-15 -3330 ((-687 |t#1|) (-687 $))) (-15 -3330 ((-2 (|:| -3544 (-687 |t#1|)) (|:| |vec| (-1262 |t#1|))) (-687 $) (-1262 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-860)) . T) ((-644 (-564)) . T) ((-644 $) . T) ((-646 $) . T) ((-724) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T)) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 15)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2390 (((-860) $) 12)) (-1600 (((-112) $ $) 9)) (-2361 (($) 16 T CONST)) (-2821 (((-112) $ $) 6)) (* (($ |#1| $) 14) (($ $ |#1|) 19))) -(((-638 |#1|) (-140) (-1055)) (T -638)) -NIL -(-13 (-644 |t#1|) (-1049 |t#1|)) -(((-102) . T) ((-611 (-860)) . T) ((-644 |#1|) . T) ((-1049 |#1|) . T) ((-1097) . T)) -((-3897 ((|#2| (-642 |#1|) (-642 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-642 |#1|) (-642 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-642 |#1|) (-642 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-642 |#1|) (-642 |#2|) |#2|) 17) ((|#2| (-642 |#1|) (-642 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-642 |#1|) (-642 |#2|)) 12))) -(((-639 |#1| |#2|) (-10 -7 (-15 -3897 ((-1 |#2| |#1|) (-642 |#1|) (-642 |#2|))) (-15 -3897 (|#2| (-642 |#1|) (-642 |#2|) |#1|)) (-15 -3897 ((-1 |#2| |#1|) (-642 |#1|) (-642 |#2|) |#2|)) (-15 -3897 (|#2| (-642 |#1|) (-642 |#2|) |#1| |#2|)) (-15 -3897 ((-1 |#2| |#1|) (-642 |#1|) (-642 |#2|) (-1 |#2| |#1|))) (-15 -3897 (|#2| (-642 |#1|) (-642 |#2|) |#1| (-1 |#2| |#1|)))) (-1097) (-1212)) (T -639)) -((-3897 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-642 *5)) (-5 *4 (-642 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1097)) (-4 *2 (-1212)) (-5 *1 (-639 *5 *2)))) (-3897 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-642 *5)) (-5 *4 (-642 *6)) (-4 *5 (-1097)) (-4 *6 (-1212)) (-5 *1 (-639 *5 *6)))) (-3897 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-642 *5)) (-5 *4 (-642 *2)) (-4 *5 (-1097)) (-4 *2 (-1212)) (-5 *1 (-639 *5 *2)))) (-3897 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-642 *6)) (-5 *4 (-642 *5)) (-4 *6 (-1097)) (-4 *5 (-1212)) (-5 *2 (-1 *5 *6)) (-5 *1 (-639 *6 *5)))) (-3897 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-642 *5)) (-5 *4 (-642 *2)) (-4 *5 (-1097)) (-4 *2 (-1212)) (-5 *1 (-639 *5 *2)))) (-3897 (*1 *2 *3 *4) (-12 (-5 *3 (-642 *5)) (-5 *4 (-642 *6)) (-4 *5 (-1097)) (-4 *6 (-1212)) (-5 *2 (-1 *6 *5)) (-5 *1 (-639 *5 *6))))) -(-10 -7 (-15 -3897 ((-1 |#2| |#1|) (-642 |#1|) (-642 |#2|))) (-15 -3897 (|#2| (-642 |#1|) (-642 |#2|) |#1|)) (-15 -3897 ((-1 |#2| |#1|) (-642 |#1|) (-642 |#2|) |#2|)) (-15 -3897 (|#2| (-642 |#1|) (-642 |#2|) |#1| |#2|)) (-15 -3897 ((-1 |#2| |#1|) (-642 |#1|) (-642 |#2|) (-1 |#2| |#1|))) (-15 -3897 (|#2| (-642 |#1|) (-642 |#2|) |#1| (-1 |#2| |#1|)))) -((-2810 (((-642 |#2|) (-1 |#2| |#1| |#2|) (-642 |#1|) |#2|) 16)) (-3741 ((|#2| (-1 |#2| |#1| |#2|) (-642 |#1|) |#2|) 18)) (-2947 (((-642 |#2|) (-1 |#2| |#1|) (-642 |#1|)) 13))) -(((-640 |#1| |#2|) (-10 -7 (-15 -2810 ((-642 |#2|) (-1 |#2| |#1| |#2|) (-642 |#1|) |#2|)) (-15 -3741 (|#2| (-1 |#2| |#1| |#2|) (-642 |#1|) |#2|)) (-15 -2947 ((-642 |#2|) (-1 |#2| |#1|) (-642 |#1|)))) (-1212) (-1212)) (T -640)) -((-2947 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-642 *5)) (-4 *5 (-1212)) (-4 *6 (-1212)) (-5 *2 (-642 *6)) (-5 *1 (-640 *5 *6)))) (-3741 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-642 *5)) (-4 *5 (-1212)) (-4 *2 (-1212)) (-5 *1 (-640 *5 *2)))) (-2810 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-642 *6)) (-4 *6 (-1212)) (-4 *5 (-1212)) (-5 *2 (-642 *5)) (-5 *1 (-640 *6 *5))))) -(-10 -7 (-15 -2810 ((-642 |#2|) (-1 |#2| |#1| |#2|) (-642 |#1|) |#2|)) (-15 -3741 (|#2| (-1 |#2| |#1| |#2|) (-642 |#1|) |#2|)) (-15 -2947 ((-642 |#2|) (-1 |#2| |#1|) (-642 |#1|)))) -((-2947 (((-642 |#3|) (-1 |#3| |#1| |#2|) (-642 |#1|) (-642 |#2|)) 21))) -(((-641 |#1| |#2| |#3|) (-10 -7 (-15 -2947 ((-642 |#3|) (-1 |#3| |#1| |#2|) (-642 |#1|) (-642 |#2|)))) (-1212) (-1212) (-1212)) (T -641)) -((-2947 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-642 *6)) (-5 *5 (-642 *7)) (-4 *6 (-1212)) (-4 *7 (-1212)) (-4 *8 (-1212)) (-5 *2 (-642 *8)) (-5 *1 (-641 *6 *7 *8))))) -(-10 -7 (-15 -2947 ((-642 |#3|) (-1 |#3| |#1| |#2|) (-642 |#1|) (-642 |#2|)))) -((-2856 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2108 ((|#1| $) NIL)) (-3585 ((|#1| $) NIL)) (-3107 (($ $) NIL)) (-3633 (((-1267) $ (-564) (-564)) NIL (|has| $ (-6 -4411)))) (-4083 (($ $ (-564)) NIL (|has| $ (-6 -4411)))) (-1824 (((-112) $) NIL (|has| |#1| (-848))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3659 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-848)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4411)))) (-3191 (($ $) NIL (|has| |#1| (-848))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3442 (((-112) $ (-769)) NIL)) (-1407 ((|#1| $ |#1|) NIL (|has| $ (-6 -4411)))) (-4277 (($ $ $) NIL (|has| $ (-6 -4411)))) (-4326 ((|#1| $ |#1|) NIL (|has| $ (-6 -4411)))) (-3186 ((|#1| $ |#1|) NIL (|has| $ (-6 -4411)))) (-3841 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4411))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4411))) (($ $ "rest" $) NIL (|has| $ (-6 -4411))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4411))) ((|#1| $ (-1229 (-564)) |#1|) NIL (|has| $ (-6 -4411))) ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4411)))) (-4041 (($ $ (-642 $)) NIL (|has| $ (-6 -4411)))) (-3959 (($ $ $) 37 (|has| |#1| (-1097)))) (-3951 (($ $ $) 41 (|has| |#1| (-1097)))) (-3938 (($ $ $) 44 (|has| |#1| (-1097)))) (-2438 (($ (-1 (-112) |#1|) $) NIL)) (-3437 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3573 ((|#1| $) NIL)) (-2822 (($) NIL T CONST)) (-1540 (($ $) NIL (|has| $ (-6 -4411)))) (-3817 (($ $) NIL)) (-4050 (($ $) 23) (($ $ (-769)) NIL)) (-2324 (($ $) NIL (|has| |#1| (-1097)))) (-4067 (($ $) 36 (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-1927 (($ |#1| $) NIL (|has| |#1| (-1097))) (($ (-1 (-112) |#1|) $) NIL)) (-2517 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3741 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3105 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4411)))) (-1804 ((|#1| $ (-564)) NIL)) (-3385 (((-112) $) NIL)) (-3942 (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1097))) (((-564) |#1| $) NIL (|has| |#1| (-1097))) (((-564) (-1 (-112) |#1|) $) NIL)) (-2018 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2296 (((-112) $) 11)) (-1300 (((-642 $) $) NIL)) (-2423 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-3524 (($) 9)) (-4233 (($ (-769) |#1|) NIL)) (-3769 (((-112) $ (-769)) NIL)) (-1802 (((-564) $) NIL (|has| (-564) (-848)))) (-3225 (($ $ $) NIL (|has| |#1| (-848)))) (-4096 (($ $ $) NIL (|has| |#1| (-848))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2774 (($ $ $) NIL (|has| |#1| (-848))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3541 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2533 (((-112) |#1| $) 40 (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3624 (((-564) $) NIL (|has| (-564) (-848)))) (-2903 (($ $ $) NIL (|has| |#1| (-848)))) (-1857 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3902 (($ |#1|) NIL)) (-4145 (((-112) $ (-769)) NIL)) (-2334 (((-642 |#1|) $) NIL)) (-1961 (((-112) $) NIL)) (-1778 (((-1155) $) NIL (|has| |#1| (-1097)))) (-2534 ((|#1| $) NIL) (($ $ (-769)) NIL)) (-1668 (($ $ $ (-564)) NIL) (($ |#1| $ (-564)) NIL)) (-4247 (($ $ $ (-564)) NIL) (($ |#1| $ (-564)) NIL)) (-4107 (((-642 (-564)) $) NIL)) (-4207 (((-112) (-564) $) NIL)) (-3999 (((-1117) $) NIL (|has| |#1| (-1097)))) (-4036 ((|#1| $) 20) (($ $ (-769)) NIL)) (-3183 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3826 (($ $ |#1|) NIL (|has| $ (-6 -4411)))) (-3823 (((-112) $) NIL)) (-4094 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-2478 (((-112) $ $) NIL)) (-1643 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3522 (((-642 |#1|) $) NIL)) (-4109 (((-112) $) 39)) (-2179 (($) 38)) (-4369 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1229 (-564))) NIL) ((|#1| $ (-564)) 42) ((|#1| $ (-564) |#1|) NIL)) (-1743 (((-564) $ $) NIL)) (-1406 (($ $ (-1229 (-564))) NIL) (($ $ (-564)) NIL)) (-2083 (($ $ (-1229 (-564))) NIL) (($ $ (-564)) NIL)) (-1311 (((-112) $) NIL)) (-1306 (($ $) NIL)) (-4118 (($ $) NIL (|has| $ (-6 -4411)))) (-3941 (((-769) $) NIL)) (-4376 (($ $) NIL)) (-4010 (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-769) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3301 (($ $ $ (-564)) NIL (|has| $ (-6 -4411)))) (-3865 (($ $) NIL)) (-3003 (((-536) $) 53 (|has| |#1| (-612 (-536))))) (-2401 (($ (-642 |#1|)) NIL)) (-1746 (($ |#1| $) 12)) (-2766 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3634 (($ $ $) 35) (($ |#1| $) 43) (($ (-642 $)) NIL) (($ $ |#1|) NIL)) (-2390 (((-860) $) NIL (|has| |#1| (-611 (-860))))) (-4275 (((-642 $) $) NIL)) (-1622 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-1600 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2093 (($ $ $) 13)) (-3295 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3816 (((-1155) $) 31 (|has| |#1| (-826))) (((-1155) $ (-112)) 32 (|has| |#1| (-826))) (((-1267) (-820) $) 33 (|has| |#1| (-826))) (((-1267) (-820) $ (-112)) 34 (|has| |#1| (-826)))) (-2881 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2857 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2821 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2868 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2844 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2158 (((-769) $) NIL (|has| $ (-6 -4410))))) -(((-642 |#1|) (-13 (-664 |#1|) (-10 -8 (-15 -3524 ($)) (-15 -2296 ((-112) $)) (-15 -1746 ($ |#1| $)) (-15 -2093 ($ $ $)) (IF (|has| |#1| (-1097)) (PROGN (-15 -3959 ($ $ $)) (-15 -3951 ($ $ $)) (-15 -3938 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-826)) (-6 (-826)) |%noBranch|))) (-1212)) (T -642)) -((-3524 (*1 *1) (-12 (-5 *1 (-642 *2)) (-4 *2 (-1212)))) (-2296 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-642 *3)) (-4 *3 (-1212)))) (-1746 (*1 *1 *2 *1) (-12 (-5 *1 (-642 *2)) (-4 *2 (-1212)))) (-2093 (*1 *1 *1 *1) (-12 (-5 *1 (-642 *2)) (-4 *2 (-1212)))) (-3959 (*1 *1 *1 *1) (-12 (-5 *1 (-642 *2)) (-4 *2 (-1097)) (-4 *2 (-1212)))) (-3951 (*1 *1 *1 *1) (-12 (-5 *1 (-642 *2)) (-4 *2 (-1097)) (-4 *2 (-1212)))) (-3938 (*1 *1 *1 *1) (-12 (-5 *1 (-642 *2)) (-4 *2 (-1097)) (-4 *2 (-1212))))) -(-13 (-664 |#1|) (-10 -8 (-15 -3524 ($)) (-15 -2296 ((-112) $)) (-15 -1746 ($ |#1| $)) (-15 -2093 ($ $ $)) (IF (|has| |#1| (-1097)) (PROGN (-15 -3959 ($ $ $)) (-15 -3951 ($ $ $)) (-15 -3938 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-826)) (-6 (-826)) |%noBranch|))) -((-2856 (((-112) $ $) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) 11) (($ (-1178)) NIL) (((-1178) $) NIL) ((|#1| $) 8)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-643 |#1|) (-13 (-1080) (-611 |#1|)) (-1097)) (T -643)) -NIL -(-13 (-1080) (-611 |#1|)) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 15)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2390 (((-860) $) 12)) (-1600 (((-112) $ $) 9)) (-2361 (($) 16 T CONST)) (-2821 (((-112) $ $) 6)) (* (($ |#1| $) 14))) -(((-644 |#1|) (-140) (-1055)) (T -644)) -((-2361 (*1 *1) (-12 (-4 *1 (-644 *2)) (-4 *2 (-1055)))) (-2950 (*1 *2 *1) (-12 (-4 *1 (-644 *3)) (-4 *3 (-1055)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-644 *2)) (-4 *2 (-1055))))) -(-13 (-1097) (-10 -8 (-15 (-2361) ($) -1551) (-15 -2950 ((-112) $)) (-15 * ($ |t#1| $)))) -(((-102) . T) ((-611 (-860)) . T) ((-1097) . T)) -((-2856 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-4060 (($ |#1| |#1| $) 46)) (-3442 (((-112) $ (-769)) NIL)) (-2438 (($ (-1 (-112) |#1|) $) 62 (|has| $ (-6 -4410)))) (-3437 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2822 (($) NIL T CONST)) (-2324 (($ $) 48)) (-4067 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-1927 (($ |#1| $) 59 (|has| $ (-6 -4410))) (($ (-1 (-112) |#1|) $) 61 (|has| $ (-6 -4410)))) (-2517 (($ |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3741 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4410)))) (-2018 (((-642 |#1|) $) 9 (|has| $ (-6 -4410)))) (-3769 (((-112) $ (-769)) NIL)) (-3541 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2533 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-1857 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#1| |#1|) $) 37)) (-4145 (((-112) $ (-769)) NIL)) (-1778 (((-1155) $) NIL (|has| |#1| (-1097)))) (-3220 ((|#1| $) 50)) (-1668 (($ |#1| $) 29) (($ |#1| $ (-769)) 45)) (-3999 (((-1117) $) NIL (|has| |#1| (-1097)))) (-3183 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4314 ((|#1| $) 53)) (-4094 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-2478 (((-112) $ $) NIL)) (-4109 (((-112) $) 23)) (-2179 (($) 28)) (-4383 (((-112) $) 57)) (-3687 (((-642 (-2 (|:| -2683 |#1|) (|:| -4010 (-769)))) $) 69)) (-2318 (($) 26) (($ (-642 |#1|)) 19)) (-4010 (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-769) |#1| $) 66 (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3865 (($ $) 20)) (-3003 (((-536) $) 34 (|has| |#1| (-612 (-536))))) (-2401 (($ (-642 |#1|)) NIL)) (-2390 (((-860) $) 14 (|has| |#1| (-611 (-860))))) (-1600 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-4160 (($ (-642 |#1|)) 24)) (-3295 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2821 (((-112) $ $) 71 (|has| |#1| (-1097)))) (-2158 (((-769) $) 17 (|has| $ (-6 -4410))))) -(((-645 |#1|) (-13 (-693 |#1|) (-10 -8 (-6 -4410) (-15 -4383 ((-112) $)) (-15 -4060 ($ |#1| |#1| $)))) (-1097)) (T -645)) -((-4383 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-645 *3)) (-4 *3 (-1097)))) (-4060 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1097))))) -(-13 (-693 |#1|) (-10 -8 (-6 -4410) (-15 -4383 ((-112) $)) (-15 -4060 ($ |#1| |#1| $)))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-3085 (((-3 $ "failed") $ $) 20)) (-2822 (($) 18 T CONST)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2390 (((-860) $) 12)) (-1600 (((-112) $ $) 9)) (-2361 (($) 19 T CONST)) (-2821 (((-112) $ $) 6)) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ |#1| $) 27))) -(((-646 |#1|) (-140) (-1055)) (T -646)) -NIL -(-13 (-21) (-644 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-860)) . T) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-1097) . T)) -((-2856 (((-112) $ $) NIL)) (-4003 (((-769) $) 17)) (-3238 (($ $ |#1|) 69)) (-1540 (($ $) 39)) (-3817 (($ $) 37)) (-2849 (((-3 |#1| "failed") $) 61)) (-1687 ((|#1| $) NIL)) (-1765 (($ |#1| |#2| $) 79) (($ $ $) 81)) (-2098 (((-860) $ (-1 (-860) (-860) (-860)) (-1 (-860) (-860) (-860)) (-564)) 56)) (-3631 ((|#1| $ (-564)) 35)) (-3911 ((|#2| $ (-564)) 34)) (-1860 (($ (-1 |#1| |#1|) $) 41)) (-4249 (($ (-1 |#2| |#2|) $) 47)) (-3338 (($) 11)) (-2916 (($ |#1| |#2|) 24)) (-3431 (($ (-642 (-2 (|:| |gen| |#1|) (|:| -3466 |#2|)))) 25)) (-2773 (((-642 (-2 (|:| |gen| |#1|) (|:| -3466 |#2|))) $) 14)) (-4137 (($ |#1| $) 71)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2303 (((-112) $ $) 76)) (-2390 (((-860) $) 21) (($ |#1|) 18)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) 27))) -(((-647 |#1| |#2| |#3|) (-13 (-1097) (-1036 |#1|) (-10 -8 (-15 -2098 ((-860) $ (-1 (-860) (-860) (-860)) (-1 (-860) (-860) (-860)) (-564))) (-15 -2773 ((-642 (-2 (|:| |gen| |#1|) (|:| -3466 |#2|))) $)) (-15 -2916 ($ |#1| |#2|)) (-15 -3431 ($ (-642 (-2 (|:| |gen| |#1|) (|:| -3466 |#2|))))) (-15 -3911 (|#2| $ (-564))) (-15 -3631 (|#1| $ (-564))) (-15 -3817 ($ $)) (-15 -1540 ($ $)) (-15 -4003 ((-769) $)) (-15 -3338 ($)) (-15 -3238 ($ $ |#1|)) (-15 -4137 ($ |#1| $)) (-15 -1765 ($ |#1| |#2| $)) (-15 -1765 ($ $ $)) (-15 -2303 ((-112) $ $)) (-15 -4249 ($ (-1 |#2| |#2|) $)) (-15 -1860 ($ (-1 |#1| |#1|) $)))) (-1097) (-23) |#2|) (T -647)) -((-2098 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-860) (-860) (-860))) (-5 *4 (-564)) (-5 *2 (-860)) (-5 *1 (-647 *5 *6 *7)) (-4 *5 (-1097)) (-4 *6 (-23)) (-14 *7 *6))) (-2773 (*1 *2 *1) (-12 (-5 *2 (-642 (-2 (|:| |gen| *3) (|:| -3466 *4)))) (-5 *1 (-647 *3 *4 *5)) (-4 *3 (-1097)) (-4 *4 (-23)) (-14 *5 *4))) (-2916 (*1 *1 *2 *3) (-12 (-5 *1 (-647 *2 *3 *4)) (-4 *2 (-1097)) (-4 *3 (-23)) (-14 *4 *3))) (-3431 (*1 *1 *2) (-12 (-5 *2 (-642 (-2 (|:| |gen| *3) (|:| -3466 *4)))) (-4 *3 (-1097)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-647 *3 *4 *5)))) (-3911 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *2 (-23)) (-5 *1 (-647 *4 *2 *5)) (-4 *4 (-1097)) (-14 *5 *2))) (-3631 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *2 (-1097)) (-5 *1 (-647 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-3817 (*1 *1 *1) (-12 (-5 *1 (-647 *2 *3 *4)) (-4 *2 (-1097)) (-4 *3 (-23)) (-14 *4 *3))) (-1540 (*1 *1 *1) (-12 (-5 *1 (-647 *2 *3 *4)) (-4 *2 (-1097)) (-4 *3 (-23)) (-14 *4 *3))) (-4003 (*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-647 *3 *4 *5)) (-4 *3 (-1097)) (-4 *4 (-23)) (-14 *5 *4))) (-3338 (*1 *1) (-12 (-5 *1 (-647 *2 *3 *4)) (-4 *2 (-1097)) (-4 *3 (-23)) (-14 *4 *3))) (-3238 (*1 *1 *1 *2) (-12 (-5 *1 (-647 *2 *3 *4)) (-4 *2 (-1097)) (-4 *3 (-23)) (-14 *4 *3))) (-4137 (*1 *1 *2 *1) (-12 (-5 *1 (-647 *2 *3 *4)) (-4 *2 (-1097)) (-4 *3 (-23)) (-14 *4 *3))) (-1765 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-647 *2 *3 *4)) (-4 *2 (-1097)) (-4 *3 (-23)) (-14 *4 *3))) (-1765 (*1 *1 *1 *1) (-12 (-5 *1 (-647 *2 *3 *4)) (-4 *2 (-1097)) (-4 *3 (-23)) (-14 *4 *3))) (-2303 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-647 *3 *4 *5)) (-4 *3 (-1097)) (-4 *4 (-23)) (-14 *5 *4))) (-4249 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-647 *3 *4 *5)) (-4 *3 (-1097)))) (-1860 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1097)) (-5 *1 (-647 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -(-13 (-1097) (-1036 |#1|) (-10 -8 (-15 -2098 ((-860) $ (-1 (-860) (-860) (-860)) (-1 (-860) (-860) (-860)) (-564))) (-15 -2773 ((-642 (-2 (|:| |gen| |#1|) (|:| -3466 |#2|))) $)) (-15 -2916 ($ |#1| |#2|)) (-15 -3431 ($ (-642 (-2 (|:| |gen| |#1|) (|:| -3466 |#2|))))) (-15 -3911 (|#2| $ (-564))) (-15 -3631 (|#1| $ (-564))) (-15 -3817 ($ $)) (-15 -1540 ($ $)) (-15 -4003 ((-769) $)) (-15 -3338 ($)) (-15 -3238 ($ $ |#1|)) (-15 -4137 ($ |#1| $)) (-15 -1765 ($ |#1| |#2| $)) (-15 -1765 ($ $ $)) (-15 -2303 ((-112) $ $)) (-15 -4249 ($ (-1 |#2| |#2|) $)) (-15 -1860 ($ (-1 |#1| |#1|) $)))) -((-3624 (((-564) $) 31)) (-4247 (($ |#2| $ (-564)) 27) (($ $ $ (-564)) NIL)) (-4107 (((-642 (-564)) $) 12)) (-4207 (((-112) (-564) $) 18)) (-3634 (($ $ |#2|) 24) (($ |#2| $) 25) (($ $ $) NIL) (($ (-642 $)) NIL))) -(((-648 |#1| |#2|) (-10 -8 (-15 -4247 (|#1| |#1| |#1| (-564))) (-15 -4247 (|#1| |#2| |#1| (-564))) (-15 -3634 (|#1| (-642 |#1|))) (-15 -3634 (|#1| |#1| |#1|)) (-15 -3634 (|#1| |#2| |#1|)) (-15 -3634 (|#1| |#1| |#2|)) (-15 -3624 ((-564) |#1|)) (-15 -4107 ((-642 (-564)) |#1|)) (-15 -4207 ((-112) (-564) |#1|))) (-649 |#2|) (-1212)) (T -648)) -NIL -(-10 -8 (-15 -4247 (|#1| |#1| |#1| (-564))) (-15 -4247 (|#1| |#2| |#1| (-564))) (-15 -3634 (|#1| (-642 |#1|))) (-15 -3634 (|#1| |#1| |#1|)) (-15 -3634 (|#1| |#2| |#1|)) (-15 -3634 (|#1| |#1| |#2|)) (-15 -3624 ((-564) |#1|)) (-15 -4107 ((-642 (-564)) |#1|)) (-15 -4207 ((-112) (-564) |#1|))) -((-2856 (((-112) $ $) 19 (|has| |#1| (-1097)))) (-3633 (((-1267) $ (-564) (-564)) 41 (|has| $ (-6 -4411)))) (-3442 (((-112) $ (-769)) 8)) (-3841 ((|#1| $ (-564) |#1|) 53 (|has| $ (-6 -4411))) ((|#1| $ (-1229 (-564)) |#1|) 59 (|has| $ (-6 -4411)))) (-3437 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4410)))) (-2822 (($) 7 T CONST)) (-4067 (($ $) 79 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-2517 (($ |#1| $) 78 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4410)))) (-3741 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4410)))) (-3105 ((|#1| $ (-564) |#1|) 54 (|has| $ (-6 -4411)))) (-1804 ((|#1| $ (-564)) 52)) (-2018 (((-642 |#1|) $) 31 (|has| $ (-6 -4410)))) (-4233 (($ (-769) |#1|) 70)) (-3769 (((-112) $ (-769)) 9)) (-1802 (((-564) $) 44 (|has| (-564) (-848)))) (-3541 (((-642 |#1|) $) 30 (|has| $ (-6 -4410)))) (-2533 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3624 (((-564) $) 45 (|has| (-564) (-848)))) (-1857 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4145 (((-112) $ (-769)) 10)) (-1778 (((-1155) $) 22 (|has| |#1| (-1097)))) (-4247 (($ |#1| $ (-564)) 61) (($ $ $ (-564)) 60)) (-4107 (((-642 (-564)) $) 47)) (-4207 (((-112) (-564) $) 48)) (-3999 (((-1117) $) 21 (|has| |#1| (-1097)))) (-4036 ((|#1| $) 43 (|has| (-564) (-848)))) (-3183 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-3826 (($ $ |#1|) 42 (|has| $ (-6 -4411)))) (-4094 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-2478 (((-112) $ $) 14)) (-1643 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3522 (((-642 |#1|) $) 49)) (-4109 (((-112) $) 11)) (-2179 (($) 12)) (-4369 ((|#1| $ (-564) |#1|) 51) ((|#1| $ (-564)) 50) (($ $ (-1229 (-564))) 64)) (-2083 (($ $ (-564)) 63) (($ $ (-1229 (-564))) 62)) (-4010 (((-769) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4410))) (((-769) |#1| $) 29 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3865 (($ $) 13)) (-3003 (((-536) $) 80 (|has| |#1| (-612 (-536))))) (-2401 (($ (-642 |#1|)) 71)) (-3634 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-642 $)) 66)) (-2390 (((-860) $) 18 (|has| |#1| (-611 (-860))))) (-1600 (((-112) $ $) 23 (|has| |#1| (-1097)))) (-3295 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4410)))) (-2821 (((-112) $ $) 20 (|has| |#1| (-1097)))) (-2158 (((-769) $) 6 (|has| $ (-6 -4410))))) -(((-649 |#1|) (-140) (-1212)) (T -649)) -((-4233 (*1 *1 *2 *3) (-12 (-5 *2 (-769)) (-4 *1 (-649 *3)) (-4 *3 (-1212)))) (-3634 (*1 *1 *1 *2) (-12 (-4 *1 (-649 *2)) (-4 *2 (-1212)))) (-3634 (*1 *1 *2 *1) (-12 (-4 *1 (-649 *2)) (-4 *2 (-1212)))) (-3634 (*1 *1 *1 *1) (-12 (-4 *1 (-649 *2)) (-4 *2 (-1212)))) (-3634 (*1 *1 *2) (-12 (-5 *2 (-642 *1)) (-4 *1 (-649 *3)) (-4 *3 (-1212)))) (-2947 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-649 *3)) (-4 *3 (-1212)))) (-4369 (*1 *1 *1 *2) (-12 (-5 *2 (-1229 (-564))) (-4 *1 (-649 *3)) (-4 *3 (-1212)))) (-2083 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-649 *3)) (-4 *3 (-1212)))) (-2083 (*1 *1 *1 *2) (-12 (-5 *2 (-1229 (-564))) (-4 *1 (-649 *3)) (-4 *3 (-1212)))) (-4247 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-649 *2)) (-4 *2 (-1212)))) (-4247 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-649 *3)) (-4 *3 (-1212)))) (-3841 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1229 (-564))) (|has| *1 (-6 -4411)) (-4 *1 (-649 *2)) (-4 *2 (-1212))))) -(-13 (-602 (-564) |t#1|) (-151 |t#1|) (-10 -8 (-15 -4233 ($ (-769) |t#1|)) (-15 -3634 ($ $ |t#1|)) (-15 -3634 ($ |t#1| $)) (-15 -3634 ($ $ $)) (-15 -3634 ($ (-642 $))) (-15 -2947 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -4369 ($ $ (-1229 (-564)))) (-15 -2083 ($ $ (-564))) (-15 -2083 ($ $ (-1229 (-564)))) (-15 -4247 ($ |t#1| $ (-564))) (-15 -4247 ($ $ $ (-564))) (IF (|has| $ (-6 -4411)) (-15 -3841 (|t#1| $ (-1229 (-564)) |t#1|)) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1097)) ((-611 (-860)) -2682 (|has| |#1| (-1097)) (|has| |#1| (-611 (-860)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-1097) |has| |#1| (-1097)) ((-1212) . T)) -((-1577 (((-3 |#2| "failed") |#3| |#2| (-1173) |#2| (-642 |#2|)) 174) (((-3 (-2 (|:| |particular| |#2|) (|:| -2131 (-642 |#2|))) "failed") |#3| |#2| (-1173)) 44))) -(((-650 |#1| |#2| |#3|) (-10 -7 (-15 -1577 ((-3 (-2 (|:| |particular| |#2|) (|:| -2131 (-642 |#2|))) "failed") |#3| |#2| (-1173))) (-15 -1577 ((-3 |#2| "failed") |#3| |#2| (-1173) |#2| (-642 |#2|)))) (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147)) (-13 (-29 |#1|) (-1197) (-957)) (-654 |#2|)) (T -650)) -((-1577 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1173)) (-5 *5 (-642 *2)) (-4 *2 (-13 (-29 *6) (-1197) (-957))) (-4 *6 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147))) (-5 *1 (-650 *6 *2 *3)) (-4 *3 (-654 *2)))) (-1577 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1173)) (-4 *6 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147))) (-4 *4 (-13 (-29 *6) (-1197) (-957))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2131 (-642 *4)))) (-5 *1 (-650 *6 *4 *3)) (-4 *3 (-654 *4))))) -(-10 -7 (-15 -1577 ((-3 (-2 (|:| |particular| |#2|) (|:| -2131 (-642 |#2|))) "failed") |#3| |#2| (-1173))) (-15 -1577 ((-3 |#2| "failed") |#3| |#2| (-1173) |#2| (-642 |#2|)))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-1621 (($ $) NIL (|has| |#1| (-363)))) (-2217 (($ $ $) NIL (|has| |#1| (-363)))) (-2884 (($ $ (-769)) NIL (|has| |#1| (-363)))) (-3085 (((-3 $ "failed") $ $) NIL)) (-2822 (($) NIL T CONST)) (-3436 (($ $ $) NIL (|has| |#1| (-363)))) (-2690 (($ $ $) NIL (|has| |#1| (-363)))) (-3746 (($ $ $) NIL (|has| |#1| (-363)))) (-2610 (($ $ $) NIL (|has| |#1| (-363)))) (-2873 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL (|has| |#1| (-363)))) (-2718 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-2618 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL (|has| |#1| (-363)))) (-2849 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1036 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1036 (-407 (-564))))) (((-3 |#1| "failed") $) NIL)) (-1687 (((-564) $) NIL (|has| |#1| (-1036 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1036 (-407 (-564))))) ((|#1| $) NIL)) (-3459 (($ $) NIL)) (-2675 (((-3 $ "failed") $) NIL)) (-2511 (($ $) NIL (|has| |#1| (-452)))) (-3163 (((-112) $) NIL)) (-2374 (($ |#1| (-769)) NIL)) (-1512 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL (|has| |#1| (-556)))) (-3316 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL (|has| |#1| (-556)))) (-2887 (((-769) $) NIL)) (-2316 (($ $ $) NIL (|has| |#1| (-363)))) (-4282 (($ $ $) NIL (|has| |#1| (-363)))) (-3869 (($ $ $) NIL (|has| |#1| (-363)))) (-3101 (($ $ $) NIL (|has| |#1| (-363)))) (-3638 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL (|has| |#1| (-363)))) (-2764 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-2765 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL (|has| |#1| (-363)))) (-2523 ((|#1| $) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2842 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556)))) (-4369 ((|#1| $ |#1|) NIL)) (-1999 (($ $ $) NIL (|has| |#1| (-363)))) (-3252 (((-769) $) NIL)) (-4325 ((|#1| $) NIL (|has| |#1| (-452)))) (-2390 (((-860) $) NIL) (($ (-564)) NIL) (($ (-407 (-564))) NIL (|has| |#1| (-1036 (-407 (-564))))) (($ |#1|) NIL)) (-2839 (((-642 |#1|) $) NIL)) (-3005 ((|#1| $ (-769)) NIL)) (-3348 (((-769)) NIL T CONST)) (-1600 (((-112) $ $) NIL)) (-3975 ((|#1| $ |#1| |#1|) NIL)) (-2594 (($ $) NIL)) (-2361 (($) NIL T CONST)) (-2371 (($) NIL T CONST)) (-2711 (($) NIL)) (-2821 (((-112) $ $) NIL)) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-651 |#1|) (-654 |#1|) (-233)) (T -651)) -NIL -(-654 |#1|) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-1621 (($ $) NIL (|has| |#1| (-363)))) (-2217 (($ $ $) NIL (|has| |#1| (-363)))) (-2884 (($ $ (-769)) NIL (|has| |#1| (-363)))) (-3085 (((-3 $ "failed") $ $) NIL)) (-2822 (($) NIL T CONST)) (-3436 (($ $ $) NIL (|has| |#1| (-363)))) (-2690 (($ $ $) NIL (|has| |#1| (-363)))) (-3746 (($ $ $) NIL (|has| |#1| (-363)))) (-2610 (($ $ $) NIL (|has| |#1| (-363)))) (-2873 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL (|has| |#1| (-363)))) (-2718 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-2618 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL (|has| |#1| (-363)))) (-2849 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1036 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1036 (-407 (-564))))) (((-3 |#1| "failed") $) NIL)) (-1687 (((-564) $) NIL (|has| |#1| (-1036 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1036 (-407 (-564))))) ((|#1| $) NIL)) (-3459 (($ $) NIL)) (-2675 (((-3 $ "failed") $) NIL)) (-2511 (($ $) NIL (|has| |#1| (-452)))) (-3163 (((-112) $) NIL)) (-2374 (($ |#1| (-769)) NIL)) (-1512 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL (|has| |#1| (-556)))) (-3316 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL (|has| |#1| (-556)))) (-2887 (((-769) $) NIL)) (-2316 (($ $ $) NIL (|has| |#1| (-363)))) (-4282 (($ $ $) NIL (|has| |#1| (-363)))) (-3869 (($ $ $) NIL (|has| |#1| (-363)))) (-3101 (($ $ $) NIL (|has| |#1| (-363)))) (-3638 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL (|has| |#1| (-363)))) (-2764 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-2765 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL (|has| |#1| (-363)))) (-2523 ((|#1| $) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2842 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556)))) (-4369 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-1999 (($ $ $) NIL (|has| |#1| (-363)))) (-3252 (((-769) $) NIL)) (-4325 ((|#1| $) NIL (|has| |#1| (-452)))) (-2390 (((-860) $) NIL) (($ (-564)) NIL) (($ (-407 (-564))) NIL (|has| |#1| (-1036 (-407 (-564))))) (($ |#1|) NIL)) (-2839 (((-642 |#1|) $) NIL)) (-3005 ((|#1| $ (-769)) NIL)) (-3348 (((-769)) NIL T CONST)) (-1600 (((-112) $ $) NIL)) (-3975 ((|#1| $ |#1| |#1|) NIL)) (-2594 (($ $) NIL)) (-2361 (($) NIL T CONST)) (-2371 (($) NIL T CONST)) (-2711 (($) NIL)) (-2821 (((-112) $ $) NIL)) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-652 |#1| |#2|) (-13 (-654 |#1|) (-286 |#2| |#2|)) (-233) (-13 (-646 |#1|) (-10 -8 (-15 -2199 ($ $))))) (T -652)) -NIL -(-13 (-654 |#1|) (-286 |#2| |#2|)) -((-1621 (($ $) 29)) (-2594 (($ $) 27)) (-2711 (($) 13))) -(((-653 |#1| |#2|) (-10 -8 (-15 -1621 (|#1| |#1|)) (-15 -2594 (|#1| |#1|)) (-15 -2711 (|#1|))) (-654 |#2|) (-1047)) (T -653)) -NIL -(-10 -8 (-15 -1621 (|#1| |#1|)) (-15 -2594 (|#1| |#1|)) (-15 -2711 (|#1|))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-1621 (($ $) 87 (|has| |#1| (-363)))) (-2217 (($ $ $) 89 (|has| |#1| (-363)))) (-2884 (($ $ (-769)) 88 (|has| |#1| (-363)))) (-3085 (((-3 $ "failed") $ $) 20)) (-2822 (($) 18 T CONST)) (-3436 (($ $ $) 50 (|has| |#1| (-363)))) (-2690 (($ $ $) 51 (|has| |#1| (-363)))) (-3746 (($ $ $) 53 (|has| |#1| (-363)))) (-2610 (($ $ $) 48 (|has| |#1| (-363)))) (-2873 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) 47 (|has| |#1| (-363)))) (-2718 (((-3 $ "failed") $ $) 49 (|has| |#1| (-363)))) (-2618 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) 52 (|has| |#1| (-363)))) (-2849 (((-3 (-564) "failed") $) 80 (|has| |#1| (-1036 (-564)))) (((-3 (-407 (-564)) "failed") $) 77 (|has| |#1| (-1036 (-407 (-564))))) (((-3 |#1| "failed") $) 74)) (-1687 (((-564) $) 79 (|has| |#1| (-1036 (-564)))) (((-407 (-564)) $) 76 (|has| |#1| (-1036 (-407 (-564))))) ((|#1| $) 75)) (-3459 (($ $) 69)) (-2675 (((-3 $ "failed") $) 37)) (-2511 (($ $) 60 (|has| |#1| (-452)))) (-3163 (((-112) $) 35)) (-2374 (($ |#1| (-769)) 67)) (-1512 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) 62 (|has| |#1| (-556)))) (-3316 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) 63 (|has| |#1| (-556)))) (-2887 (((-769) $) 71)) (-2316 (($ $ $) 57 (|has| |#1| (-363)))) (-4282 (($ $ $) 58 (|has| |#1| (-363)))) (-3869 (($ $ $) 46 (|has| |#1| (-363)))) (-3101 (($ $ $) 55 (|has| |#1| (-363)))) (-3638 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) 54 (|has| |#1| (-363)))) (-2764 (((-3 $ "failed") $ $) 56 (|has| |#1| (-363)))) (-2765 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) 59 (|has| |#1| (-363)))) (-2523 ((|#1| $) 70)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2842 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-556)))) (-4369 ((|#1| $ |#1|) 92)) (-1999 (($ $ $) 86 (|has| |#1| (-363)))) (-3252 (((-769) $) 72)) (-4325 ((|#1| $) 61 (|has| |#1| (-452)))) (-2390 (((-860) $) 12) (($ (-564)) 33) (($ (-407 (-564))) 78 (|has| |#1| (-1036 (-407 (-564))))) (($ |#1|) 73)) (-2839 (((-642 |#1|) $) 66)) (-3005 ((|#1| $ (-769)) 68)) (-3348 (((-769)) 32 T CONST)) (-1600 (((-112) $ $) 9)) (-3975 ((|#1| $ |#1| |#1|) 65)) (-2594 (($ $) 90)) (-2361 (($) 19 T CONST)) (-2371 (($) 34 T CONST)) (-2711 (($) 91)) (-2821 (((-112) $ $) 6)) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81))) -(((-654 |#1|) (-140) (-1047)) (T -654)) -((-2711 (*1 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-1047)))) (-2594 (*1 *1 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-1047)))) (-2217 (*1 *1 *1 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-1047)) (-4 *2 (-363)))) (-2884 (*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-4 *1 (-654 *3)) (-4 *3 (-1047)) (-4 *3 (-363)))) (-1621 (*1 *1 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-1047)) (-4 *2 (-363)))) (-1999 (*1 *1 *1 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-1047)) (-4 *2 (-363))))) -(-13 (-850 |t#1|) (-286 |t#1| |t#1|) (-10 -8 (-15 -2711 ($)) (-15 -2594 ($ $)) (IF (|has| |t#1| (-363)) (PROGN (-15 -2217 ($ $ $)) (-15 -2884 ($ $ (-769))) (-15 -1621 ($ $)) (-15 -1999 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 #0=(-407 (-564))) |has| |#1| (-1036 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-611 (-860)) . T) ((-286 |#1| |#1|) . T) ((-411 |#1|) . T) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-638 |#1|) |has| |#1| (-172)) ((-715 |#1|) |has| |#1| (-172)) ((-724) . T) ((-1036 #0#) |has| |#1| (-1036 (-407 (-564)))) ((-1036 (-564)) |has| |#1| (-1036 (-564))) ((-1036 |#1|) . T) ((-1049 |#1|) . T) ((-1054 |#1|) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T) ((-850 |#1|) . T)) -((-3414 (((-642 (-651 (-407 |#2|))) (-651 (-407 |#2|))) 87 (|has| |#1| (-27)))) (-2254 (((-642 (-651 (-407 |#2|))) (-651 (-407 |#2|))) 86 (|has| |#1| (-27))) (((-642 (-651 (-407 |#2|))) (-651 (-407 |#2|)) (-1 (-642 |#1|) |#2|)) 19))) -(((-655 |#1| |#2|) (-10 -7 (-15 -2254 ((-642 (-651 (-407 |#2|))) (-651 (-407 |#2|)) (-1 (-642 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2254 ((-642 (-651 (-407 |#2|))) (-651 (-407 |#2|)))) (-15 -3414 ((-642 (-651 (-407 |#2|))) (-651 (-407 |#2|))))) |%noBranch|)) (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564)))) (-1238 |#1|)) (T -655)) -((-3414 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564))))) (-4 *5 (-1238 *4)) (-5 *2 (-642 (-651 (-407 *5)))) (-5 *1 (-655 *4 *5)) (-5 *3 (-651 (-407 *5))))) (-2254 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564))))) (-4 *5 (-1238 *4)) (-5 *2 (-642 (-651 (-407 *5)))) (-5 *1 (-655 *4 *5)) (-5 *3 (-651 (-407 *5))))) (-2254 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-642 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564))))) (-4 *6 (-1238 *5)) (-5 *2 (-642 (-651 (-407 *6)))) (-5 *1 (-655 *5 *6)) (-5 *3 (-651 (-407 *6)))))) -(-10 -7 (-15 -2254 ((-642 (-651 (-407 |#2|))) (-651 (-407 |#2|)) (-1 (-642 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2254 ((-642 (-651 (-407 |#2|))) (-651 (-407 |#2|)))) (-15 -3414 ((-642 (-651 (-407 |#2|))) (-651 (-407 |#2|))))) |%noBranch|)) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-1621 (($ $) NIL (|has| |#1| (-363)))) (-2217 (($ $ $) 28 (|has| |#1| (-363)))) (-2884 (($ $ (-769)) 31 (|has| |#1| (-363)))) (-3085 (((-3 $ "failed") $ $) NIL)) (-2822 (($) NIL T CONST)) (-3436 (($ $ $) NIL (|has| |#1| (-363)))) (-2690 (($ $ $) NIL (|has| |#1| (-363)))) (-3746 (($ $ $) NIL (|has| |#1| (-363)))) (-2610 (($ $ $) NIL (|has| |#1| (-363)))) (-2873 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL (|has| |#1| (-363)))) (-2718 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-2618 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL (|has| |#1| (-363)))) (-2849 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1036 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1036 (-407 (-564))))) (((-3 |#1| "failed") $) NIL)) (-1687 (((-564) $) NIL (|has| |#1| (-1036 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1036 (-407 (-564))))) ((|#1| $) NIL)) (-3459 (($ $) NIL)) (-2675 (((-3 $ "failed") $) NIL)) (-2511 (($ $) NIL (|has| |#1| (-452)))) (-3163 (((-112) $) NIL)) (-2374 (($ |#1| (-769)) NIL)) (-1512 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL (|has| |#1| (-556)))) (-3316 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL (|has| |#1| (-556)))) (-2887 (((-769) $) NIL)) (-2316 (($ $ $) NIL (|has| |#1| (-363)))) (-4282 (($ $ $) NIL (|has| |#1| (-363)))) (-3869 (($ $ $) NIL (|has| |#1| (-363)))) (-3101 (($ $ $) NIL (|has| |#1| (-363)))) (-3638 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL (|has| |#1| (-363)))) (-2764 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-2765 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL (|has| |#1| (-363)))) (-2523 ((|#1| $) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2842 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556)))) (-4369 ((|#1| $ |#1|) 24)) (-1999 (($ $ $) 33 (|has| |#1| (-363)))) (-3252 (((-769) $) NIL)) (-4325 ((|#1| $) NIL (|has| |#1| (-452)))) (-2390 (((-860) $) 20) (($ (-564)) NIL) (($ (-407 (-564))) NIL (|has| |#1| (-1036 (-407 (-564))))) (($ |#1|) NIL)) (-2839 (((-642 |#1|) $) NIL)) (-3005 ((|#1| $ (-769)) NIL)) (-3348 (((-769)) NIL T CONST)) (-1600 (((-112) $ $) NIL)) (-3975 ((|#1| $ |#1| |#1|) 23)) (-2594 (($ $) NIL)) (-2361 (($) 21 T CONST)) (-2371 (($) 8 T CONST)) (-2711 (($) NIL)) (-2821 (((-112) $ $) NIL)) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-656 |#1| |#2|) (-654 |#1|) (-1047) (-1 |#1| |#1|)) (T -656)) -NIL -(-654 |#1|) -((-2217 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 70)) (-2884 ((|#2| |#2| (-769) (-1 |#1| |#1|)) 48)) (-1999 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 72))) -(((-657 |#1| |#2|) (-10 -7 (-15 -2217 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2884 (|#2| |#2| (-769) (-1 |#1| |#1|))) (-15 -1999 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-363) (-654 |#1|)) (T -657)) -((-1999 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-363)) (-5 *1 (-657 *4 *2)) (-4 *2 (-654 *4)))) (-2884 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-769)) (-5 *4 (-1 *5 *5)) (-4 *5 (-363)) (-5 *1 (-657 *5 *2)) (-4 *2 (-654 *5)))) (-2217 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-363)) (-5 *1 (-657 *4 *2)) (-4 *2 (-654 *4))))) -(-10 -7 (-15 -2217 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2884 (|#2| |#2| (-769) (-1 |#1| |#1|))) (-15 -1999 (|#2| |#2| |#2| (-1 |#1| |#1|)))) -((-2915 (($ $ $) 9))) -(((-658 |#1|) (-10 -8 (-15 -2915 (|#1| |#1| |#1|))) (-659)) (T -658)) -NIL -(-10 -8 (-15 -2915 (|#1| |#1| |#1|))) -((-2856 (((-112) $ $) 7)) (-2866 (($ $) 10)) (-2915 (($ $ $) 8)) (-2821 (((-112) $ $) 6)) (-2902 (($ $ $) 9))) -(((-659) (-140)) (T -659)) -((-2866 (*1 *1 *1) (-4 *1 (-659))) (-2902 (*1 *1 *1 *1) (-4 *1 (-659))) (-2915 (*1 *1 *1 *1) (-4 *1 (-659)))) -(-13 (-102) (-10 -8 (-15 -2866 ($ $)) (-15 -2902 ($ $ $)) (-15 -2915 ($ $ $)))) +((-2058 (((-1171 |#1|) (-771)) 115)) (-3837 (((-1264 |#1|) (-1264 |#1|) (-921)) 108)) (-3011 (((-1269) (-1264 (-644 (-2 (|:| -2153 |#1|) (|:| -2104 (-1119))))) |#1|) 124)) (-4326 (((-1264 |#1|) (-1264 |#1|) (-771)) 53)) (-1415 (((-1264 |#1|) (-921)) 110)) (-2152 (((-1264 |#1|) (-1264 |#1|) (-566)) 30)) (-2240 (((-1171 |#1|) (-1264 |#1|)) 116)) (-3254 (((-1264 |#1|) (-921)) 137)) (-2111 (((-112) (-1264 |#1|)) 120)) (-1398 (((-1264 |#1|) (-1264 |#1|) (-921)) 100)) (-1869 (((-1171 |#1|) (-1264 |#1|)) 131)) (-4051 (((-921) (-1264 |#1|)) 96)) (-2577 (((-1264 |#1|) (-1264 |#1|)) 38)) (-2104 (((-1264 |#1|) (-921) (-921)) 140)) (-1950 (((-1264 |#1|) (-1264 |#1|) (-1119) (-1119)) 29)) (-1566 (((-1264 |#1|) (-1264 |#1|) (-771) (-1119)) 54)) (-1419 (((-1264 (-1264 |#1|)) (-921)) 136)) (-3077 (((-1264 |#1|) (-1264 |#1|) (-1264 |#1|)) 121)) (** (((-1264 |#1|) (-1264 |#1|) (-566)) 67)) (* (((-1264 |#1|) (-1264 |#1|) (-1264 |#1|)) 31))) +(((-530 |#1|) (-10 -7 (-15 -3011 ((-1269) (-1264 (-644 (-2 (|:| -2153 |#1|) (|:| -2104 (-1119))))) |#1|)) (-15 -1415 ((-1264 |#1|) (-921))) (-15 -2104 ((-1264 |#1|) (-921) (-921))) (-15 -2240 ((-1171 |#1|) (-1264 |#1|))) (-15 -2058 ((-1171 |#1|) (-771))) (-15 -1566 ((-1264 |#1|) (-1264 |#1|) (-771) (-1119))) (-15 -4326 ((-1264 |#1|) (-1264 |#1|) (-771))) (-15 -1950 ((-1264 |#1|) (-1264 |#1|) (-1119) (-1119))) (-15 -2152 ((-1264 |#1|) (-1264 |#1|) (-566))) (-15 ** ((-1264 |#1|) (-1264 |#1|) (-566))) (-15 * ((-1264 |#1|) (-1264 |#1|) (-1264 |#1|))) (-15 -3077 ((-1264 |#1|) (-1264 |#1|) (-1264 |#1|))) (-15 -1398 ((-1264 |#1|) (-1264 |#1|) (-921))) (-15 -3837 ((-1264 |#1|) (-1264 |#1|) (-921))) (-15 -2577 ((-1264 |#1|) (-1264 |#1|))) (-15 -4051 ((-921) (-1264 |#1|))) (-15 -2111 ((-112) (-1264 |#1|))) (-15 -1419 ((-1264 (-1264 |#1|)) (-921))) (-15 -3254 ((-1264 |#1|) (-921))) (-15 -1869 ((-1171 |#1|) (-1264 |#1|)))) (-351)) (T -530)) +((-1869 (*1 *2 *3) (-12 (-5 *3 (-1264 *4)) (-4 *4 (-351)) (-5 *2 (-1171 *4)) (-5 *1 (-530 *4)))) (-3254 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1264 *4)) (-5 *1 (-530 *4)) (-4 *4 (-351)))) (-1419 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1264 (-1264 *4))) (-5 *1 (-530 *4)) (-4 *4 (-351)))) (-2111 (*1 *2 *3) (-12 (-5 *3 (-1264 *4)) (-4 *4 (-351)) (-5 *2 (-112)) (-5 *1 (-530 *4)))) (-4051 (*1 *2 *3) (-12 (-5 *3 (-1264 *4)) (-4 *4 (-351)) (-5 *2 (-921)) (-5 *1 (-530 *4)))) (-2577 (*1 *2 *2) (-12 (-5 *2 (-1264 *3)) (-4 *3 (-351)) (-5 *1 (-530 *3)))) (-3837 (*1 *2 *2 *3) (-12 (-5 *2 (-1264 *4)) (-5 *3 (-921)) (-4 *4 (-351)) (-5 *1 (-530 *4)))) (-1398 (*1 *2 *2 *3) (-12 (-5 *2 (-1264 *4)) (-5 *3 (-921)) (-4 *4 (-351)) (-5 *1 (-530 *4)))) (-3077 (*1 *2 *2 *2) (-12 (-5 *2 (-1264 *3)) (-4 *3 (-351)) (-5 *1 (-530 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1264 *3)) (-4 *3 (-351)) (-5 *1 (-530 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1264 *4)) (-5 *3 (-566)) (-4 *4 (-351)) (-5 *1 (-530 *4)))) (-2152 (*1 *2 *2 *3) (-12 (-5 *2 (-1264 *4)) (-5 *3 (-566)) (-4 *4 (-351)) (-5 *1 (-530 *4)))) (-1950 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1264 *4)) (-5 *3 (-1119)) (-4 *4 (-351)) (-5 *1 (-530 *4)))) (-4326 (*1 *2 *2 *3) (-12 (-5 *2 (-1264 *4)) (-5 *3 (-771)) (-4 *4 (-351)) (-5 *1 (-530 *4)))) (-1566 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1264 *5)) (-5 *3 (-771)) (-5 *4 (-1119)) (-4 *5 (-351)) (-5 *1 (-530 *5)))) (-2058 (*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1171 *4)) (-5 *1 (-530 *4)) (-4 *4 (-351)))) (-2240 (*1 *2 *3) (-12 (-5 *3 (-1264 *4)) (-4 *4 (-351)) (-5 *2 (-1171 *4)) (-5 *1 (-530 *4)))) (-2104 (*1 *2 *3 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1264 *4)) (-5 *1 (-530 *4)) (-4 *4 (-351)))) (-1415 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1264 *4)) (-5 *1 (-530 *4)) (-4 *4 (-351)))) (-3011 (*1 *2 *3 *4) (-12 (-5 *3 (-1264 (-644 (-2 (|:| -2153 *4) (|:| -2104 (-1119)))))) (-4 *4 (-351)) (-5 *2 (-1269)) (-5 *1 (-530 *4))))) +(-10 -7 (-15 -3011 ((-1269) (-1264 (-644 (-2 (|:| -2153 |#1|) (|:| -2104 (-1119))))) |#1|)) (-15 -1415 ((-1264 |#1|) (-921))) (-15 -2104 ((-1264 |#1|) (-921) (-921))) (-15 -2240 ((-1171 |#1|) (-1264 |#1|))) (-15 -2058 ((-1171 |#1|) (-771))) (-15 -1566 ((-1264 |#1|) (-1264 |#1|) (-771) (-1119))) (-15 -4326 ((-1264 |#1|) (-1264 |#1|) (-771))) (-15 -1950 ((-1264 |#1|) (-1264 |#1|) (-1119) (-1119))) (-15 -2152 ((-1264 |#1|) (-1264 |#1|) (-566))) (-15 ** ((-1264 |#1|) (-1264 |#1|) (-566))) (-15 * ((-1264 |#1|) (-1264 |#1|) (-1264 |#1|))) (-15 -3077 ((-1264 |#1|) (-1264 |#1|) (-1264 |#1|))) (-15 -1398 ((-1264 |#1|) (-1264 |#1|) (-921))) (-15 -3837 ((-1264 |#1|) (-1264 |#1|) (-921))) (-15 -2577 ((-1264 |#1|) (-1264 |#1|))) (-15 -4051 ((-921) (-1264 |#1|))) (-15 -2111 ((-112) (-1264 |#1|))) (-15 -1419 ((-1264 (-1264 |#1|)) (-921))) (-15 -3254 ((-1264 |#1|) (-921))) (-15 -1869 ((-1171 |#1|) (-1264 |#1|)))) +((-2771 (((-691 (-1222)) $) NIL)) (-3185 (((-691 (-1220)) $) NIL)) (-1836 (((-691 (-1219)) $) NIL)) (-3394 (((-691 (-551)) $) NIL)) (-2836 (((-691 (-549)) $) NIL)) (-3338 (((-691 (-548)) $) NIL)) (-1733 (((-771) $ (-128)) NIL)) (-2380 (((-691 (-129)) $) 26)) (-4258 (((-1119) $ (-1119)) 31)) (-4000 (((-1119) $) 30)) (-3546 (((-112) $) 20)) (-4367 (($ (-390)) 14) (($ (-1157)) 16)) (-3984 (((-112) $) 27)) (-2479 (((-862) $) 34)) (-2313 (($ $) 28))) +(((-531) (-13 (-529) (-613 (-862)) (-10 -8 (-15 -4367 ($ (-390))) (-15 -4367 ($ (-1157))) (-15 -3984 ((-112) $)) (-15 -3546 ((-112) $)) (-15 -4000 ((-1119) $)) (-15 -4258 ((-1119) $ (-1119)))))) (T -531)) +((-4367 (*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-531)))) (-4367 (*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-531)))) (-3984 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-531)))) (-3546 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-531)))) (-4000 (*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-531)))) (-4258 (*1 *2 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-531))))) +(-13 (-529) (-613 (-862)) (-10 -8 (-15 -4367 ($ (-390))) (-15 -4367 ($ (-1157))) (-15 -3984 ((-112) $)) (-15 -3546 ((-112) $)) (-15 -4000 ((-1119) $)) (-15 -4258 ((-1119) $ (-1119))))) +((-3496 (((-1 |#1| |#1|) |#1|) 11)) (-4159 (((-1 |#1| |#1|)) 10))) +(((-532 |#1|) (-10 -7 (-15 -4159 ((-1 |#1| |#1|))) (-15 -3496 ((-1 |#1| |#1|) |#1|))) (-13 (-726) (-25))) (T -532)) +((-3496 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-532 *3)) (-4 *3 (-13 (-726) (-25))))) (-4159 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-532 *3)) (-4 *3 (-13 (-726) (-25)))))) +(-10 -7 (-15 -4159 ((-1 |#1| |#1|))) (-15 -3496 ((-1 |#1| |#1|) |#1|))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-4047 (($ $ $) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-1811 (($) NIL T CONST)) (-3565 (($ $) NIL)) (-2463 (($ (-771) |#1|) NIL)) (-1920 (($ $ $) NIL)) (-3038 (($ $ $) NIL)) (-3080 (($ (-1 (-771) (-771)) $) NIL)) (-1919 ((|#1| $) NIL)) (-2622 (((-771) $) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) 27)) (-3900 (((-112) $ $) NIL)) (-2446 (($) NIL T CONST)) (-3019 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3004 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-3052 (($ $ $) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL))) +(((-533 |#1|) (-13 (-793) (-511 (-771) |#1|)) (-850)) (T -533)) +NIL +(-13 (-793) (-511 (-771) |#1|)) +((-3443 (((-644 |#2|) (-1171 |#1|) |#3|) 98)) (-1913 (((-644 (-2 (|:| |outval| |#2|) (|:| |outmult| (-566)) (|:| |outvect| (-644 (-689 |#2|))))) (-689 |#1|) |#3| (-1 (-420 (-1171 |#1|)) (-1171 |#1|))) 114)) (-4380 (((-1171 |#1|) (-689 |#1|)) 110))) +(((-534 |#1| |#2| |#3|) (-10 -7 (-15 -4380 ((-1171 |#1|) (-689 |#1|))) (-15 -3443 ((-644 |#2|) (-1171 |#1|) |#3|)) (-15 -1913 ((-644 (-2 (|:| |outval| |#2|) (|:| |outmult| (-566)) (|:| |outvect| (-644 (-689 |#2|))))) (-689 |#1|) |#3| (-1 (-420 (-1171 |#1|)) (-1171 |#1|))))) (-365) (-365) (-13 (-365) (-848))) (T -534)) +((-1913 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-689 *6)) (-5 *5 (-1 (-420 (-1171 *6)) (-1171 *6))) (-4 *6 (-365)) (-5 *2 (-644 (-2 (|:| |outval| *7) (|:| |outmult| (-566)) (|:| |outvect| (-644 (-689 *7)))))) (-5 *1 (-534 *6 *7 *4)) (-4 *7 (-365)) (-4 *4 (-13 (-365) (-848))))) (-3443 (*1 *2 *3 *4) (-12 (-5 *3 (-1171 *5)) (-4 *5 (-365)) (-5 *2 (-644 *6)) (-5 *1 (-534 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-848))))) (-4380 (*1 *2 *3) (-12 (-5 *3 (-689 *4)) (-4 *4 (-365)) (-5 *2 (-1171 *4)) (-5 *1 (-534 *4 *5 *6)) (-4 *5 (-365)) (-4 *6 (-13 (-365) (-848)))))) +(-10 -7 (-15 -4380 ((-1171 |#1|) (-689 |#1|))) (-15 -3443 ((-644 |#2|) (-1171 |#1|) |#3|)) (-15 -1913 ((-644 (-2 (|:| |outval| |#2|) (|:| |outmult| (-566)) (|:| |outvect| (-644 (-689 |#2|))))) (-689 |#1|) |#3| (-1 (-420 (-1171 |#1|)) (-1171 |#1|))))) +((-3354 (((-691 (-1222)) $ (-1222)) NIL)) (-3162 (((-691 (-551)) $ (-551)) NIL)) (-3130 (((-771) $ (-128)) 41)) (-1947 (((-691 (-129)) $ (-129)) 42)) (-2771 (((-691 (-1222)) $) NIL)) (-3185 (((-691 (-1220)) $) NIL)) (-1836 (((-691 (-1219)) $) NIL)) (-3394 (((-691 (-551)) $) NIL)) (-2836 (((-691 (-549)) $) NIL)) (-3338 (((-691 (-548)) $) NIL)) (-1733 (((-771) $ (-128)) 37)) (-2380 (((-691 (-129)) $) 39)) (-3816 (((-112) $) 29)) (-3587 (((-691 $) (-581) (-954)) 19) (((-691 $) (-493) (-954)) 26)) (-2479 (((-862) $) 49)) (-2313 (($ $) 43))) +(((-535) (-13 (-767 (-581)) (-613 (-862)) (-10 -8 (-15 -3587 ((-691 $) (-493) (-954)))))) (T -535)) +((-3587 (*1 *2 *3 *4) (-12 (-5 *3 (-493)) (-5 *4 (-954)) (-5 *2 (-691 (-535))) (-5 *1 (-535))))) +(-13 (-767 (-581)) (-613 (-862)) (-10 -8 (-15 -3587 ((-691 $) (-493) (-954))))) +((-2909 (((-843 (-566))) 12)) (-2921 (((-843 (-566))) 14)) (-2978 (((-833 (-566))) 9))) +(((-536) (-10 -7 (-15 -2978 ((-833 (-566)))) (-15 -2909 ((-843 (-566)))) (-15 -2921 ((-843 (-566)))))) (T -536)) +((-2921 (*1 *2) (-12 (-5 *2 (-843 (-566))) (-5 *1 (-536)))) (-2909 (*1 *2) (-12 (-5 *2 (-843 (-566))) (-5 *1 (-536)))) (-2978 (*1 *2) (-12 (-5 *2 (-833 (-566))) (-5 *1 (-536))))) +(-10 -7 (-15 -2978 ((-833 (-566)))) (-15 -2909 ((-843 (-566)))) (-15 -2921 ((-843 (-566))))) +((-1536 (((-538) (-1175)) 15)) (-2157 ((|#1| (-538)) 20))) +(((-537 |#1|) (-10 -7 (-15 -1536 ((-538) (-1175))) (-15 -2157 (|#1| (-538)))) (-1214)) (T -537)) +((-2157 (*1 *2 *3) (-12 (-5 *3 (-538)) (-5 *1 (-537 *2)) (-4 *2 (-1214)))) (-1536 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-538)) (-5 *1 (-537 *4)) (-4 *4 (-1214))))) +(-10 -7 (-15 -1536 ((-538) (-1175))) (-15 -2157 (|#1| (-538)))) +((-2986 (((-112) $ $) NIL)) (-3414 (((-1157) $) 55)) (-3830 (((-112) $) 51)) (-1347 (((-1175) $) 52)) (-1676 (((-112) $) 49)) (-4315 (((-1157) $) 50)) (-2721 (($ (-1157)) 56)) (-4273 (((-112) $) NIL)) (-1842 (((-112) $) NIL)) (-4363 (((-112) $) NIL)) (-3151 (((-1157) $) NIL)) (-3533 (($ $ (-644 (-1175))) 21)) (-2157 (((-52) $) 23)) (-4168 (((-112) $) NIL)) (-1368 (((-566) $) NIL)) (-4059 (((-1119) $) NIL)) (-3271 (($ $ (-644 (-1175)) (-1175)) 73)) (-3951 (((-112) $) NIL)) (-2965 (((-225) $) NIL)) (-3497 (($ $) 44)) (-1304 (((-862) $) NIL)) (-3477 (((-112) $ $) NIL)) (-4376 (($ $ (-566)) NIL) (($ $ (-644 (-566))) NIL)) (-2418 (((-644 $) $) 30)) (-3225 (((-1175) (-644 $)) 57)) (-3136 (($ (-1157)) NIL) (($ (-1175)) 19) (($ (-566)) 8) (($ (-225)) 28) (($ (-862)) NIL) (($ (-644 $)) 65) (((-1103) $) 12) (($ (-1103)) 13)) (-1700 (((-1175) (-1175) (-644 $)) 60)) (-2479 (((-862) $) 54)) (-3982 (($ $) 59)) (-3972 (($ $) 58)) (-3020 (($ $ (-644 $)) 66)) (-3900 (((-112) $ $) NIL)) (-3248 (((-112) $) 29)) (-2446 (($) 9 T CONST)) (-2459 (($) 11 T CONST)) (-2952 (((-112) $ $) 74)) (-3077 (($ $ $) 82)) (-3052 (($ $ $) 75)) (** (($ $ (-771)) 81) (($ $ (-566)) 80)) (* (($ $ $) 76)) (-3002 (((-566) $) NIL))) +(((-538) (-13 (-1102 (-1157) (-1175) (-566) (-225) (-862)) (-614 (-1103)) (-10 -8 (-15 -2157 ((-52) $)) (-15 -3136 ($ (-1103))) (-15 -3020 ($ $ (-644 $))) (-15 -3271 ($ $ (-644 (-1175)) (-1175))) (-15 -3533 ($ $ (-644 (-1175)))) (-15 -3052 ($ $ $)) (-15 * ($ $ $)) (-15 -3077 ($ $ $)) (-15 ** ($ $ (-771))) (-15 ** ($ $ (-566))) (-15 0 ($) -1573) (-15 1 ($) -1573) (-15 -3497 ($ $)) (-15 -3414 ((-1157) $)) (-15 -2721 ($ (-1157))) (-15 -3225 ((-1175) (-644 $))) (-15 -1700 ((-1175) (-1175) (-644 $)))))) (T -538)) +((-2157 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-538)))) (-3136 (*1 *1 *2) (-12 (-5 *2 (-1103)) (-5 *1 (-538)))) (-3020 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-538))) (-5 *1 (-538)))) (-3271 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-1175))) (-5 *3 (-1175)) (-5 *1 (-538)))) (-3533 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-1175))) (-5 *1 (-538)))) (-3052 (*1 *1 *1 *1) (-5 *1 (-538))) (* (*1 *1 *1 *1) (-5 *1 (-538))) (-3077 (*1 *1 *1 *1) (-5 *1 (-538))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-538)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-538)))) (-2446 (*1 *1) (-5 *1 (-538))) (-2459 (*1 *1) (-5 *1 (-538))) (-3497 (*1 *1 *1) (-5 *1 (-538))) (-3414 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-538)))) (-2721 (*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-538)))) (-3225 (*1 *2 *3) (-12 (-5 *3 (-644 (-538))) (-5 *2 (-1175)) (-5 *1 (-538)))) (-1700 (*1 *2 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-644 (-538))) (-5 *1 (-538))))) +(-13 (-1102 (-1157) (-1175) (-566) (-225) (-862)) (-614 (-1103)) (-10 -8 (-15 -2157 ((-52) $)) (-15 -3136 ($ (-1103))) (-15 -3020 ($ $ (-644 $))) (-15 -3271 ($ $ (-644 (-1175)) (-1175))) (-15 -3533 ($ $ (-644 (-1175)))) (-15 -3052 ($ $ $)) (-15 * ($ $ $)) (-15 -3077 ($ $ $)) (-15 ** ($ $ (-771))) (-15 ** ($ $ (-566))) (-15 (-2446) ($) -1573) (-15 (-2459) ($) -1573) (-15 -3497 ($ $)) (-15 -3414 ((-1157) $)) (-15 -2721 ($ (-1157))) (-15 -3225 ((-1175) (-644 $))) (-15 -1700 ((-1175) (-1175) (-644 $))))) +((-3537 ((|#2| |#2|) 17)) (-1599 ((|#2| |#2|) 13)) (-1497 ((|#2| |#2| (-566) (-566)) 20)) (-2333 ((|#2| |#2|) 15))) +(((-539 |#1| |#2|) (-10 -7 (-15 -1599 (|#2| |#2|)) (-15 -2333 (|#2| |#2|)) (-15 -3537 (|#2| |#2|)) (-15 -1497 (|#2| |#2| (-566) (-566)))) (-13 (-558) (-147)) (-1255 |#1|)) (T -539)) +((-1497 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-566)) (-4 *4 (-13 (-558) (-147))) (-5 *1 (-539 *4 *2)) (-4 *2 (-1255 *4)))) (-3537 (*1 *2 *2) (-12 (-4 *3 (-13 (-558) (-147))) (-5 *1 (-539 *3 *2)) (-4 *2 (-1255 *3)))) (-2333 (*1 *2 *2) (-12 (-4 *3 (-13 (-558) (-147))) (-5 *1 (-539 *3 *2)) (-4 *2 (-1255 *3)))) (-1599 (*1 *2 *2) (-12 (-4 *3 (-13 (-558) (-147))) (-5 *1 (-539 *3 *2)) (-4 *2 (-1255 *3))))) +(-10 -7 (-15 -1599 (|#2| |#2|)) (-15 -2333 (|#2| |#2|)) (-15 -3537 (|#2| |#2|)) (-15 -1497 (|#2| |#2| (-566) (-566)))) +((-2869 (((-644 (-295 (-952 |#2|))) (-644 |#2|) (-644 (-1175))) 32)) (-3534 (((-644 |#2|) (-952 |#1|) |#3|) 54) (((-644 |#2|) (-1171 |#1|) |#3|) 53)) (-3950 (((-644 (-644 |#2|)) (-644 (-952 |#1|)) (-644 (-952 |#1|)) (-644 (-1175)) |#3|) 106))) +(((-540 |#1| |#2| |#3|) (-10 -7 (-15 -3534 ((-644 |#2|) (-1171 |#1|) |#3|)) (-15 -3534 ((-644 |#2|) (-952 |#1|) |#3|)) (-15 -3950 ((-644 (-644 |#2|)) (-644 (-952 |#1|)) (-644 (-952 |#1|)) (-644 (-1175)) |#3|)) (-15 -2869 ((-644 (-295 (-952 |#2|))) (-644 |#2|) (-644 (-1175))))) (-454) (-365) (-13 (-365) (-848))) (T -540)) +((-2869 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *6)) (-5 *4 (-644 (-1175))) (-4 *6 (-365)) (-5 *2 (-644 (-295 (-952 *6)))) (-5 *1 (-540 *5 *6 *7)) (-4 *5 (-454)) (-4 *7 (-13 (-365) (-848))))) (-3950 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-644 (-952 *6))) (-5 *4 (-644 (-1175))) (-4 *6 (-454)) (-5 *2 (-644 (-644 *7))) (-5 *1 (-540 *6 *7 *5)) (-4 *7 (-365)) (-4 *5 (-13 (-365) (-848))))) (-3534 (*1 *2 *3 *4) (-12 (-5 *3 (-952 *5)) (-4 *5 (-454)) (-5 *2 (-644 *6)) (-5 *1 (-540 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-848))))) (-3534 (*1 *2 *3 *4) (-12 (-5 *3 (-1171 *5)) (-4 *5 (-454)) (-5 *2 (-644 *6)) (-5 *1 (-540 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-848)))))) +(-10 -7 (-15 -3534 ((-644 |#2|) (-1171 |#1|) |#3|)) (-15 -3534 ((-644 |#2|) (-952 |#1|) |#3|)) (-15 -3950 ((-644 (-644 |#2|)) (-644 (-952 |#1|)) (-644 (-952 |#1|)) (-644 (-1175)) |#3|)) (-15 -2869 ((-644 (-295 (-952 |#2|))) (-644 |#2|) (-644 (-1175))))) +((-3772 ((|#2| |#2| |#1|) 17)) (-3405 ((|#2| (-644 |#2|)) 31)) (-1944 ((|#2| (-644 |#2|)) 52))) +(((-541 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3405 (|#2| (-644 |#2|))) (-15 -1944 (|#2| (-644 |#2|))) (-15 -3772 (|#2| |#2| |#1|))) (-308) (-1240 |#1|) |#1| (-1 |#1| |#1| (-771))) (T -541)) +((-3772 (*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-771))) (-5 *1 (-541 *3 *2 *4 *5)) (-4 *2 (-1240 *3)))) (-1944 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-1240 *4)) (-5 *1 (-541 *4 *2 *5 *6)) (-4 *4 (-308)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-771))))) (-3405 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-1240 *4)) (-5 *1 (-541 *4 *2 *5 *6)) (-4 *4 (-308)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-771)))))) +(-10 -7 (-15 -3405 (|#2| (-644 |#2|))) (-15 -1944 (|#2| (-644 |#2|))) (-15 -3772 (|#2| |#2| |#1|))) +((-2325 (((-420 (-1171 |#4|)) (-1171 |#4|) (-1 (-420 (-1171 |#3|)) (-1171 |#3|))) 89) (((-420 |#4|) |#4| (-1 (-420 (-1171 |#3|)) (-1171 |#3|))) 218))) +(((-542 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2325 ((-420 |#4|) |#4| (-1 (-420 (-1171 |#3|)) (-1171 |#3|)))) (-15 -2325 ((-420 (-1171 |#4|)) (-1171 |#4|) (-1 (-420 (-1171 |#3|)) (-1171 |#3|))))) (-850) (-793) (-13 (-308) (-147)) (-949 |#3| |#2| |#1|)) (T -542)) +((-2325 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-420 (-1171 *7)) (-1171 *7))) (-4 *7 (-13 (-308) (-147))) (-4 *5 (-850)) (-4 *6 (-793)) (-4 *8 (-949 *7 *6 *5)) (-5 *2 (-420 (-1171 *8))) (-5 *1 (-542 *5 *6 *7 *8)) (-5 *3 (-1171 *8)))) (-2325 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-420 (-1171 *7)) (-1171 *7))) (-4 *7 (-13 (-308) (-147))) (-4 *5 (-850)) (-4 *6 (-793)) (-5 *2 (-420 *3)) (-5 *1 (-542 *5 *6 *7 *3)) (-4 *3 (-949 *7 *6 *5))))) +(-10 -7 (-15 -2325 ((-420 |#4|) |#4| (-1 (-420 (-1171 |#3|)) (-1171 |#3|)))) (-15 -2325 ((-420 (-1171 |#4|)) (-1171 |#4|) (-1 (-420 (-1171 |#3|)) (-1171 |#3|))))) +((-3537 ((|#4| |#4|) 74)) (-1599 ((|#4| |#4|) 70)) (-1497 ((|#4| |#4| (-566) (-566)) 76)) (-2333 ((|#4| |#4|) 72))) +(((-543 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1599 (|#4| |#4|)) (-15 -2333 (|#4| |#4|)) (-15 -3537 (|#4| |#4|)) (-15 -1497 (|#4| |#4| (-566) (-566)))) (-13 (-365) (-370) (-614 (-566))) (-1240 |#1|) (-724 |#1| |#2|) (-1255 |#3|)) (T -543)) +((-1497 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-566)) (-4 *4 (-13 (-365) (-370) (-614 *3))) (-4 *5 (-1240 *4)) (-4 *6 (-724 *4 *5)) (-5 *1 (-543 *4 *5 *6 *2)) (-4 *2 (-1255 *6)))) (-3537 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-614 (-566)))) (-4 *4 (-1240 *3)) (-4 *5 (-724 *3 *4)) (-5 *1 (-543 *3 *4 *5 *2)) (-4 *2 (-1255 *5)))) (-2333 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-614 (-566)))) (-4 *4 (-1240 *3)) (-4 *5 (-724 *3 *4)) (-5 *1 (-543 *3 *4 *5 *2)) (-4 *2 (-1255 *5)))) (-1599 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-614 (-566)))) (-4 *4 (-1240 *3)) (-4 *5 (-724 *3 *4)) (-5 *1 (-543 *3 *4 *5 *2)) (-4 *2 (-1255 *5))))) +(-10 -7 (-15 -1599 (|#4| |#4|)) (-15 -2333 (|#4| |#4|)) (-15 -3537 (|#4| |#4|)) (-15 -1497 (|#4| |#4| (-566) (-566)))) +((-3537 ((|#2| |#2|) 27)) (-1599 ((|#2| |#2|) 23)) (-1497 ((|#2| |#2| (-566) (-566)) 29)) (-2333 ((|#2| |#2|) 25))) +(((-544 |#1| |#2|) (-10 -7 (-15 -1599 (|#2| |#2|)) (-15 -2333 (|#2| |#2|)) (-15 -3537 (|#2| |#2|)) (-15 -1497 (|#2| |#2| (-566) (-566)))) (-13 (-365) (-370) (-614 (-566))) (-1255 |#1|)) (T -544)) +((-1497 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-566)) (-4 *4 (-13 (-365) (-370) (-614 *3))) (-5 *1 (-544 *4 *2)) (-4 *2 (-1255 *4)))) (-3537 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-614 (-566)))) (-5 *1 (-544 *3 *2)) (-4 *2 (-1255 *3)))) (-2333 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-614 (-566)))) (-5 *1 (-544 *3 *2)) (-4 *2 (-1255 *3)))) (-1599 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-614 (-566)))) (-5 *1 (-544 *3 *2)) (-4 *2 (-1255 *3))))) +(-10 -7 (-15 -1599 (|#2| |#2|)) (-15 -2333 (|#2| |#2|)) (-15 -3537 (|#2| |#2|)) (-15 -1497 (|#2| |#2| (-566) (-566)))) +((-2593 (((-3 (-566) "failed") |#2| |#1| (-1 (-3 (-566) "failed") |#1|)) 18) (((-3 (-566) "failed") |#2| |#1| (-566) (-1 (-3 (-566) "failed") |#1|)) 14) (((-3 (-566) "failed") |#2| (-566) (-1 (-3 (-566) "failed") |#1|)) 32))) +(((-545 |#1| |#2|) (-10 -7 (-15 -2593 ((-3 (-566) "failed") |#2| (-566) (-1 (-3 (-566) "failed") |#1|))) (-15 -2593 ((-3 (-566) "failed") |#2| |#1| (-566) (-1 (-3 (-566) "failed") |#1|))) (-15 -2593 ((-3 (-566) "failed") |#2| |#1| (-1 (-3 (-566) "failed") |#1|)))) (-1049) (-1240 |#1|)) (T -545)) +((-2593 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-566) "failed") *4)) (-4 *4 (-1049)) (-5 *2 (-566)) (-5 *1 (-545 *4 *3)) (-4 *3 (-1240 *4)))) (-2593 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-566) "failed") *4)) (-4 *4 (-1049)) (-5 *2 (-566)) (-5 *1 (-545 *4 *3)) (-4 *3 (-1240 *4)))) (-2593 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-566) "failed") *5)) (-4 *5 (-1049)) (-5 *2 (-566)) (-5 *1 (-545 *5 *3)) (-4 *3 (-1240 *5))))) +(-10 -7 (-15 -2593 ((-3 (-566) "failed") |#2| (-566) (-1 (-3 (-566) "failed") |#1|))) (-15 -2593 ((-3 (-566) "failed") |#2| |#1| (-566) (-1 (-3 (-566) "failed") |#1|))) (-15 -2593 ((-3 (-566) "failed") |#2| |#1| (-1 (-3 (-566) "failed") |#1|)))) +((-2590 (($ $ $) 84)) (-3348 (((-420 $) $) 52)) (-2980 (((-3 (-566) "failed") $) 64)) (-1709 (((-566) $) 42)) (-2515 (((-3 (-409 (-566)) "failed") $) 79)) (-2024 (((-112) $) 26)) (-3330 (((-409 (-566)) $) 77)) (-4188 (((-112) $) 55)) (-1328 (($ $ $ $) 92)) (-2133 (((-112) $) 17)) (-1655 (($ $ $) 62)) (-1542 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 74)) (-4278 (((-3 $ "failed") $) 69)) (-1546 (($ $) 24)) (-1432 (($ $ $) 90)) (-3968 (($) 65)) (-2259 (($ $) 58)) (-2325 (((-420 $) $) 50)) (-2206 (((-112) $) 15)) (-1383 (((-771) $) 32)) (-3526 (($ $ (-771)) NIL) (($ $) 11)) (-3924 (($ $) 18)) (-3136 (((-566) $) NIL) (((-538) $) 41) (((-892 (-566)) $) 45) (((-381) $) 35) (((-225) $) 38)) (-1558 (((-771)) 9)) (-3556 (((-112) $ $) 21)) (-1835 (($ $ $) 60))) +(((-546 |#1|) (-10 -8 (-15 -1432 (|#1| |#1| |#1|)) (-15 -1328 (|#1| |#1| |#1| |#1|)) (-15 -1546 (|#1| |#1|)) (-15 -3924 (|#1| |#1|)) (-15 -2515 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -3330 ((-409 (-566)) |#1|)) (-15 -2024 ((-112) |#1|)) (-15 -2590 (|#1| |#1| |#1|)) (-15 -3556 ((-112) |#1| |#1|)) (-15 -2206 ((-112) |#1|)) (-15 -3968 (|#1|)) (-15 -4278 ((-3 |#1| "failed") |#1|)) (-15 -3136 ((-225) |#1|)) (-15 -3136 ((-381) |#1|)) (-15 -1655 (|#1| |#1| |#1|)) (-15 -2259 (|#1| |#1|)) (-15 -1835 (|#1| |#1| |#1|)) (-15 -1542 ((-889 (-566) |#1|) |#1| (-892 (-566)) (-889 (-566) |#1|))) (-15 -3136 ((-892 (-566)) |#1|)) (-15 -3136 ((-538) |#1|)) (-15 -2980 ((-3 (-566) "failed") |#1|)) (-15 -1709 ((-566) |#1|)) (-15 -3136 ((-566) |#1|)) (-15 -3526 (|#1| |#1|)) (-15 -3526 (|#1| |#1| (-771))) (-15 -2133 ((-112) |#1|)) (-15 -1383 ((-771) |#1|)) (-15 -2325 ((-420 |#1|) |#1|)) (-15 -3348 ((-420 |#1|) |#1|)) (-15 -4188 ((-112) |#1|)) (-15 -1558 ((-771)))) (-547)) (T -546)) +((-1558 (*1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-546 *3)) (-4 *3 (-547))))) +(-10 -8 (-15 -1432 (|#1| |#1| |#1|)) (-15 -1328 (|#1| |#1| |#1| |#1|)) (-15 -1546 (|#1| |#1|)) (-15 -3924 (|#1| |#1|)) (-15 -2515 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -3330 ((-409 (-566)) |#1|)) (-15 -2024 ((-112) |#1|)) (-15 -2590 (|#1| |#1| |#1|)) (-15 -3556 ((-112) |#1| |#1|)) (-15 -2206 ((-112) |#1|)) (-15 -3968 (|#1|)) (-15 -4278 ((-3 |#1| "failed") |#1|)) (-15 -3136 ((-225) |#1|)) (-15 -3136 ((-381) |#1|)) (-15 -1655 (|#1| |#1| |#1|)) (-15 -2259 (|#1| |#1|)) (-15 -1835 (|#1| |#1| |#1|)) (-15 -1542 ((-889 (-566) |#1|) |#1| (-892 (-566)) (-889 (-566) |#1|))) (-15 -3136 ((-892 (-566)) |#1|)) (-15 -3136 ((-538) |#1|)) (-15 -2980 ((-3 (-566) "failed") |#1|)) (-15 -1709 ((-566) |#1|)) (-15 -3136 ((-566) |#1|)) (-15 -3526 (|#1| |#1|)) (-15 -3526 (|#1| |#1| (-771))) (-15 -2133 ((-112) |#1|)) (-15 -1383 ((-771) |#1|)) (-15 -2325 ((-420 |#1|) |#1|)) (-15 -3348 ((-420 |#1|) |#1|)) (-15 -4188 ((-112) |#1|)) (-15 -1558 ((-771)))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) 47)) (-3087 (($ $) 46)) (-1716 (((-112) $) 44)) (-2590 (($ $ $) 90)) (-3174 (((-3 $ "failed") $ $) 20)) (-1538 (($ $ $ $) 79)) (-3980 (($ $) 57)) (-3348 (((-420 $) $) 58)) (-2761 (((-112) $ $) 130)) (-2920 (((-566) $) 119)) (-3099 (($ $ $) 93)) (-1811 (($) 18 T CONST)) (-2980 (((-3 (-566) "failed") $) 111)) (-1709 (((-566) $) 112)) (-2925 (($ $ $) 134)) (-2275 (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) 109) (((-689 (-566)) (-689 $)) 108)) (-3757 (((-3 $ "failed") $) 37)) (-2515 (((-3 (-409 (-566)) "failed") $) 87)) (-2024 (((-112) $) 89)) (-3330 (((-409 (-566)) $) 88)) (-1415 (($) 86) (($ $) 85)) (-2937 (($ $ $) 133)) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) 128)) (-4188 (((-112) $) 59)) (-1328 (($ $ $ $) 77)) (-1387 (($ $ $) 91)) (-2133 (((-112) $) 121)) (-1655 (($ $ $) 102)) (-1542 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 105)) (-2264 (((-112) $) 35)) (-3400 (((-112) $) 97)) (-4278 (((-3 $ "failed") $) 99)) (-3420 (((-112) $) 120)) (-2495 (((-3 (-644 $) "failed") (-644 $) $) 137)) (-2731 (($ $ $ $) 78)) (-1920 (($ $ $) 122)) (-3038 (($ $ $) 123)) (-1546 (($ $) 81)) (-4332 (($ $) 94)) (-2120 (($ $ $) 52) (($ (-644 $)) 51)) (-3151 (((-1157) $) 10)) (-1432 (($ $ $) 76)) (-3968 (($) 98 T CONST)) (-4282 (($ $) 83)) (-4059 (((-1119) $) 11)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-2162 (($ $ $) 54) (($ (-644 $)) 53)) (-2259 (($ $) 103)) (-2325 (((-420 $) $) 56)) (-2585 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 136) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) 135)) (-2976 (((-3 $ "failed") $ $) 48)) (-2840 (((-3 (-644 $) "failed") (-644 $) $) 129)) (-2206 (((-112) $) 96)) (-1383 (((-771) $) 131)) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) 132)) (-3526 (($ $ (-771)) 116) (($ $) 114)) (-3166 (($ $) 82)) (-3924 (($ $) 84)) (-3136 (((-566) $) 113) (((-538) $) 107) (((-892 (-566)) $) 106) (((-381) $) 101) (((-225) $) 100)) (-2479 (((-862) $) 12) (($ (-566)) 33) (($ $) 49) (($ (-566)) 110)) (-1558 (((-771)) 32 T CONST)) (-3556 (((-112) $ $) 92)) (-1835 (($ $ $) 104)) (-3900 (((-112) $ $) 9)) (-3810 (($) 95)) (-1333 (((-112) $ $) 45)) (-3751 (($ $ $ $) 80)) (-4298 (($ $) 118)) (-2446 (($) 19 T CONST)) (-2459 (($) 34 T CONST)) (-2834 (($ $ (-771)) 117) (($ $) 115)) (-3019 (((-112) $ $) 125)) (-2990 (((-112) $ $) 126)) (-2952 (((-112) $ $) 6)) (-3004 (((-112) $ $) 124)) (-2977 (((-112) $ $) 127)) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27))) +(((-547) (-140)) (T -547)) +((-3400 (*1 *2 *1) (-12 (-4 *1 (-547)) (-5 *2 (-112)))) (-2206 (*1 *2 *1) (-12 (-4 *1 (-547)) (-5 *2 (-112)))) (-3810 (*1 *1) (-4 *1 (-547))) (-4332 (*1 *1 *1) (-4 *1 (-547))) (-3099 (*1 *1 *1 *1) (-4 *1 (-547))) (-3556 (*1 *2 *1 *1) (-12 (-4 *1 (-547)) (-5 *2 (-112)))) (-1387 (*1 *1 *1 *1) (-4 *1 (-547))) (-2590 (*1 *1 *1 *1) (-4 *1 (-547))) (-2024 (*1 *2 *1) (-12 (-4 *1 (-547)) (-5 *2 (-112)))) (-3330 (*1 *2 *1) (-12 (-4 *1 (-547)) (-5 *2 (-409 (-566))))) (-2515 (*1 *2 *1) (|partial| -12 (-4 *1 (-547)) (-5 *2 (-409 (-566))))) (-1415 (*1 *1) (-4 *1 (-547))) (-1415 (*1 *1 *1) (-4 *1 (-547))) (-3924 (*1 *1 *1) (-4 *1 (-547))) (-4282 (*1 *1 *1) (-4 *1 (-547))) (-3166 (*1 *1 *1) (-4 *1 (-547))) (-1546 (*1 *1 *1) (-4 *1 (-547))) (-3751 (*1 *1 *1 *1 *1) (-4 *1 (-547))) (-1538 (*1 *1 *1 *1 *1) (-4 *1 (-547))) (-2731 (*1 *1 *1 *1 *1) (-4 *1 (-547))) (-1328 (*1 *1 *1 *1 *1) (-4 *1 (-547))) (-1432 (*1 *1 *1 *1) (-4 *1 (-547)))) +(-13 (-1218) (-308) (-820) (-233) (-614 (-566)) (-1038 (-566)) (-639 (-566)) (-614 (-538)) (-614 (-892 (-566))) (-886 (-566)) (-143) (-1022) (-147) (-1150) (-10 -8 (-15 -3400 ((-112) $)) (-15 -2206 ((-112) $)) (-6 -4416) (-15 -3810 ($)) (-15 -4332 ($ $)) (-15 -3099 ($ $ $)) (-15 -3556 ((-112) $ $)) (-15 -1387 ($ $ $)) (-15 -2590 ($ $ $)) (-15 -2024 ((-112) $)) (-15 -3330 ((-409 (-566)) $)) (-15 -2515 ((-3 (-409 (-566)) "failed") $)) (-15 -1415 ($)) (-15 -1415 ($ $)) (-15 -3924 ($ $)) (-15 -4282 ($ $)) (-15 -3166 ($ $)) (-15 -1546 ($ $)) (-15 -3751 ($ $ $ $)) (-15 -1538 ($ $ $ $)) (-15 -2731 ($ $ $ $)) (-15 -1328 ($ $ $ $)) (-15 -1432 ($ $ $)) (-6 -4415))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-616 (-566)) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-143) . T) ((-172) . T) ((-614 (-225)) . T) ((-614 (-381)) . T) ((-614 (-538)) . T) ((-614 (-566)) . T) ((-614 (-892 (-566))) . T) ((-233) . T) ((-291) . T) ((-308) . T) ((-454) . T) ((-558) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 $) . T) ((-640 $) . T) ((-639 (-566)) . T) ((-717 $) . T) ((-726) . T) ((-791) . T) ((-792) . T) ((-794) . T) ((-795) . T) ((-820) . T) ((-848) . T) ((-850) . T) ((-886 (-566)) . T) ((-920) . T) ((-1022) . T) ((-1038 (-566)) . T) ((-1051 $) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1150) . T) ((-1218) . T)) +((-2986 (((-112) $ $) NIL)) (-4049 (((-771)) NIL)) (-1811 (($) NIL T CONST)) (-1415 (($) NIL)) (-1920 (($ $ $) NIL) (($) NIL T CONST)) (-3038 (($ $ $) NIL) (($) NIL T CONST)) (-4051 (((-921) $) NIL)) (-3151 (((-1157) $) NIL)) (-2104 (($ (-921)) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) NIL)) (-3900 (((-112) $ $) NIL)) (-3019 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3004 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL))) +(((-548) (-13 (-844) (-10 -8 (-15 -1811 ($) -1573)))) (T -548)) +((-1811 (*1 *1) (-5 *1 (-548)))) +(-13 (-844) (-10 -8 (-15 -1811 ($) -1573))) +((|Integer|) (NOT (> (INTEGER-LENGTH |#1|) 16))) +((-2986 (((-112) $ $) NIL)) (-4049 (((-771)) NIL)) (-1811 (($) NIL T CONST)) (-1415 (($) NIL)) (-1920 (($ $ $) NIL) (($) NIL T CONST)) (-3038 (($ $ $) NIL) (($) NIL T CONST)) (-4051 (((-921) $) NIL)) (-3151 (((-1157) $) NIL)) (-2104 (($ (-921)) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) NIL)) (-3900 (((-112) $ $) NIL)) (-3019 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3004 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL))) +(((-549) (-13 (-844) (-10 -8 (-15 -1811 ($) -1573)))) (T -549)) +((-1811 (*1 *1) (-5 *1 (-549)))) +(-13 (-844) (-10 -8 (-15 -1811 ($) -1573))) +((|Integer|) (NOT (> (INTEGER-LENGTH |#1|) 32))) +((-2986 (((-112) $ $) NIL)) (-4049 (((-771)) NIL)) (-1811 (($) NIL T CONST)) (-1415 (($) NIL)) (-1920 (($ $ $) NIL) (($) NIL T CONST)) (-3038 (($ $ $) NIL) (($) NIL T CONST)) (-4051 (((-921) $) NIL)) (-3151 (((-1157) $) NIL)) (-2104 (($ (-921)) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) NIL)) (-3900 (((-112) $ $) NIL)) (-3019 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3004 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL))) +(((-550) (-13 (-844) (-10 -8 (-15 -1811 ($) -1573)))) (T -550)) +((-1811 (*1 *1) (-5 *1 (-550)))) +(-13 (-844) (-10 -8 (-15 -1811 ($) -1573))) +((|Integer|) (NOT (> (INTEGER-LENGTH |#1|) 64))) +((-2986 (((-112) $ $) NIL)) (-4049 (((-771)) NIL)) (-1811 (($) NIL T CONST)) (-1415 (($) NIL)) (-1920 (($ $ $) NIL) (($) NIL T CONST)) (-3038 (($ $ $) NIL) (($) NIL T CONST)) (-4051 (((-921) $) NIL)) (-3151 (((-1157) $) NIL)) (-2104 (($ (-921)) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) NIL)) (-3900 (((-112) $ $) NIL)) (-3019 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3004 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL))) +(((-551) (-13 (-844) (-10 -8 (-15 -1811 ($) -1573)))) (T -551)) +((-1811 (*1 *1) (-5 *1 (-551)))) +(-13 (-844) (-10 -8 (-15 -1811 ($) -1573))) +((|Integer|) (NOT (> (INTEGER-LENGTH |#1|) 8))) +((-2986 (((-112) $ $) NIL (-2809 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-4250 (($) NIL) (($ (-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) NIL)) (-2462 (((-1269) $ |#1| |#1|) NIL (|has| $ (-6 -4418)))) (-1453 (((-112) $ (-771)) NIL)) (-3901 ((|#2| $ |#1| |#2|) NIL)) (-4364 (($ (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-3543 (($ (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-2377 (((-3 |#2| "failed") |#1| $) NIL)) (-1811 (($) NIL T CONST)) (-4111 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099))))) (-2295 (($ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) NIL (|has| $ (-6 -4417))) (($ (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-3 |#2| "failed") |#1| $) NIL)) (-2628 (($ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (($ (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-1838 (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) NIL (|has| $ (-6 -4417))) (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-3719 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4418)))) (-3653 ((|#2| $ |#1|) NIL)) (-3872 (((-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-644 |#2|) $) NIL (|has| $ (-6 -4417)))) (-2756 (((-112) $ (-771)) NIL)) (-2755 ((|#1| $) NIL (|has| |#1| (-850)))) (-4227 (((-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-644 |#2|) $) NIL (|has| $ (-6 -4417)))) (-1688 (((-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1099))))) (-3831 ((|#1| $) NIL (|has| |#1| (-850)))) (-3708 (($ (-1 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4418))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4418)))) (-3080 (($ (-1 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4106 (((-112) $ (-771)) NIL)) (-3151 (((-1157) $) NIL (-2809 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-1467 (((-644 |#1|) $) NIL)) (-3983 (((-112) |#1| $) NIL)) (-4255 (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) NIL)) (-4354 (($ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) NIL)) (-3780 (((-644 |#1|) $) NIL)) (-1605 (((-112) |#1| $) NIL)) (-4059 (((-1119) $) NIL (-2809 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-4080 ((|#2| $) NIL (|has| |#1| (-850)))) (-2688 (((-3 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) "failed") (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL)) (-4079 (($ $ |#2|) NIL (|has| $ (-6 -4418)))) (-4097 (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) NIL)) (-3966 (((-112) (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))))) NIL (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (($ $ (-295 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) NIL (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (($ $ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) NIL (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (($ $ (-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) (-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) NIL (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))) (-1844 (((-112) $ $) NIL)) (-2210 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1099))))) (-4185 (((-644 |#2|) $) NIL)) (-2788 (((-112) $) NIL)) (-1737 (($) NIL)) (-4376 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1797 (($) NIL) (($ (-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) NIL)) (-4068 (((-771) (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-771) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (((-771) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1099)))) (((-771) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417)))) (-3924 (($ $) NIL)) (-3136 (((-538) $) NIL (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-614 (-538))))) (-2489 (($ (-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) NIL)) (-2479 (((-862) $) NIL (-2809 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-613 (-862))) (|has| |#2| (-613 (-862)))))) (-3900 (((-112) $ $) NIL (-2809 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-2471 (($ (-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) NIL)) (-3667 (((-112) (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417)))) (-2952 (((-112) $ $) NIL (-2809 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-3002 (((-771) $) NIL (|has| $ (-6 -4417))))) +(((-552 |#1| |#2| |#3|) (-13 (-1190 |#1| |#2|) (-10 -7 (-6 -4417))) (-1099) (-1099) (-13 (-1190 |#1| |#2|) (-10 -7 (-6 -4417)))) (T -552)) +NIL +(-13 (-1190 |#1| |#2|) (-10 -7 (-6 -4417))) +((-4321 (((-587 |#2|) |#2| (-612 |#2|) (-612 |#2|) (-1 (-1171 |#2|) (-1171 |#2|))) 50))) +(((-553 |#1| |#2|) (-10 -7 (-15 -4321 ((-587 |#2|) |#2| (-612 |#2|) (-612 |#2|) (-1 (-1171 |#2|) (-1171 |#2|))))) (-558) (-13 (-27) (-432 |#1|))) (T -553)) +((-4321 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-612 *3)) (-5 *5 (-1 (-1171 *3) (-1171 *3))) (-4 *3 (-13 (-27) (-432 *6))) (-4 *6 (-558)) (-5 *2 (-587 *3)) (-5 *1 (-553 *6 *3))))) +(-10 -7 (-15 -4321 ((-587 |#2|) |#2| (-612 |#2|) (-612 |#2|) (-1 (-1171 |#2|) (-1171 |#2|))))) +((-2064 (((-587 |#5|) |#5| (-1 |#3| |#3|)) 218)) (-1460 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 214)) (-1459 (((-587 |#5|) |#5| (-1 |#3| |#3|)) 222))) +(((-554 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1459 ((-587 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2064 ((-587 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1460 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-558) (-1038 (-566))) (-13 (-27) (-432 |#1|)) (-1240 |#2|) (-1240 (-409 |#3|)) (-344 |#2| |#3| |#4|)) (T -554)) +((-1460 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1240 *5)) (-4 *5 (-13 (-27) (-432 *4))) (-4 *4 (-13 (-558) (-1038 (-566)))) (-4 *7 (-1240 (-409 *6))) (-5 *1 (-554 *4 *5 *6 *7 *2)) (-4 *2 (-344 *5 *6 *7)))) (-2064 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1240 *6)) (-4 *6 (-13 (-27) (-432 *5))) (-4 *5 (-13 (-558) (-1038 (-566)))) (-4 *8 (-1240 (-409 *7))) (-5 *2 (-587 *3)) (-5 *1 (-554 *5 *6 *7 *8 *3)) (-4 *3 (-344 *6 *7 *8)))) (-1459 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1240 *6)) (-4 *6 (-13 (-27) (-432 *5))) (-4 *5 (-13 (-558) (-1038 (-566)))) (-4 *8 (-1240 (-409 *7))) (-5 *2 (-587 *3)) (-5 *1 (-554 *5 *6 *7 *8 *3)) (-4 *3 (-344 *6 *7 *8))))) +(-10 -7 (-15 -1459 ((-587 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2064 ((-587 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1460 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) +((-1812 (((-112) (-566) (-566)) 12)) (-2853 (((-566) (-566)) 7)) (-4294 (((-566) (-566) (-566)) 10))) +(((-555) (-10 -7 (-15 -2853 ((-566) (-566))) (-15 -4294 ((-566) (-566) (-566))) (-15 -1812 ((-112) (-566) (-566))))) (T -555)) +((-1812 (*1 *2 *3 *3) (-12 (-5 *3 (-566)) (-5 *2 (-112)) (-5 *1 (-555)))) (-4294 (*1 *2 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-555)))) (-2853 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-555))))) +(-10 -7 (-15 -2853 ((-566) (-566))) (-15 -4294 ((-566) (-566) (-566))) (-15 -1812 ((-112) (-566) (-566)))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-3467 ((|#1| $) 67)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) 47)) (-3087 (($ $) 46)) (-1716 (((-112) $) 44)) (-3219 (($ $) 97)) (-3091 (($ $) 80)) (-4047 ((|#1| $) 68)) (-3174 (((-3 $ "failed") $ $) 20)) (-2338 (($ $) 79)) (-3197 (($ $) 96)) (-3067 (($ $) 81)) (-3240 (($ $) 95)) (-3115 (($ $) 82)) (-1811 (($) 18 T CONST)) (-2980 (((-3 (-566) "failed") $) 75)) (-1709 (((-566) $) 76)) (-3757 (((-3 $ "failed") $) 37)) (-1953 (($ |#1| |#1|) 72)) (-2133 (((-112) $) 66)) (-2964 (($) 107)) (-2264 (((-112) $) 35)) (-3146 (($ $ (-566)) 78)) (-3420 (((-112) $) 65)) (-1920 (($ $ $) 113)) (-3038 (($ $ $) 112)) (-3676 (($ $) 104)) (-2120 (($ $ $) 52) (($ (-644 $)) 51)) (-3151 (((-1157) $) 10)) (-4345 (($ |#1| |#1|) 73) (($ |#1|) 71) (($ (-409 (-566))) 70)) (-1379 ((|#1| $) 69)) (-4059 (((-1119) $) 11)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-2162 (($ $ $) 54) (($ (-644 $)) 53)) (-2976 (((-3 $ "failed") $ $) 48)) (-3571 (($ $) 105)) (-3250 (($ $) 94)) (-3126 (($ $) 83)) (-3227 (($ $) 93)) (-3105 (($ $) 84)) (-3207 (($ $) 92)) (-3079 (($ $) 85)) (-1754 (((-112) $ |#1|) 64)) (-2479 (((-862) $) 12) (($ (-566)) 33) (($ $) 49) (($ (-566)) 74)) (-1558 (((-771)) 32 T CONST)) (-3900 (((-112) $ $) 9)) (-3285 (($ $) 103)) (-3157 (($ $) 91)) (-1333 (((-112) $ $) 45)) (-3260 (($ $) 102)) (-3135 (($ $) 90)) (-3309 (($ $) 101)) (-3179 (($ $) 89)) (-1861 (($ $) 100)) (-3190 (($ $) 88)) (-3299 (($ $) 99)) (-3168 (($ $) 87)) (-3273 (($ $) 98)) (-3148 (($ $) 86)) (-2446 (($) 19 T CONST)) (-2459 (($) 34 T CONST)) (-3019 (((-112) $ $) 110)) (-2990 (((-112) $ $) 109)) (-2952 (((-112) $ $) 6)) (-3004 (((-112) $ $) 111)) (-2977 (((-112) $ $) 108)) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ $) 106) (($ $ (-409 (-566))) 77)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27))) +(((-556 |#1|) (-140) (-13 (-406) (-1199))) (T -556)) +((-4345 (*1 *1 *2 *2) (-12 (-4 *1 (-556 *2)) (-4 *2 (-13 (-406) (-1199))))) (-1953 (*1 *1 *2 *2) (-12 (-4 *1 (-556 *2)) (-4 *2 (-13 (-406) (-1199))))) (-4345 (*1 *1 *2) (-12 (-4 *1 (-556 *2)) (-4 *2 (-13 (-406) (-1199))))) (-4345 (*1 *1 *2) (-12 (-5 *2 (-409 (-566))) (-4 *1 (-556 *3)) (-4 *3 (-13 (-406) (-1199))))) (-1379 (*1 *2 *1) (-12 (-4 *1 (-556 *2)) (-4 *2 (-13 (-406) (-1199))))) (-4047 (*1 *2 *1) (-12 (-4 *1 (-556 *2)) (-4 *2 (-13 (-406) (-1199))))) (-3467 (*1 *2 *1) (-12 (-4 *1 (-556 *2)) (-4 *2 (-13 (-406) (-1199))))) (-2133 (*1 *2 *1) (-12 (-4 *1 (-556 *3)) (-4 *3 (-13 (-406) (-1199))) (-5 *2 (-112)))) (-3420 (*1 *2 *1) (-12 (-4 *1 (-556 *3)) (-4 *3 (-13 (-406) (-1199))) (-5 *2 (-112)))) (-1754 (*1 *2 *1 *3) (-12 (-4 *1 (-556 *3)) (-4 *3 (-13 (-406) (-1199))) (-5 *2 (-112))))) +(-13 (-454) (-850) (-1199) (-1002) (-1038 (-566)) (-10 -8 (-6 -3649) (-15 -4345 ($ |t#1| |t#1|)) (-15 -1953 ($ |t#1| |t#1|)) (-15 -4345 ($ |t#1|)) (-15 -4345 ($ (-409 (-566)))) (-15 -1379 (|t#1| $)) (-15 -4047 (|t#1| $)) (-15 -3467 (|t#1| $)) (-15 -2133 ((-112) $)) (-15 -3420 ((-112) $)) (-15 -1754 ((-112) $ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-616 (-566)) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-285) . T) ((-291) . T) ((-454) . T) ((-495) . T) ((-558) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 $) . T) ((-640 $) . T) ((-717 $) . T) ((-726) . T) ((-850) . T) ((-1002) . T) ((-1038 (-566)) . T) ((-1051 $) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1199) . T) ((-1202) . T)) +((-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) 9)) (-3087 (($ $) 11)) (-1716 (((-112) $) 20)) (-3757 (((-3 $ "failed") $) 16)) (-1333 (((-112) $ $) 22))) +(((-557 |#1|) (-10 -8 (-15 -1716 ((-112) |#1|)) (-15 -1333 ((-112) |#1| |#1|)) (-15 -3087 (|#1| |#1|)) (-15 -3832 ((-2 (|:| -1732 |#1|) (|:| -4404 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3757 ((-3 |#1| "failed") |#1|))) (-558)) (T -557)) +NIL +(-10 -8 (-15 -1716 ((-112) |#1|)) (-15 -1333 ((-112) |#1| |#1|)) (-15 -3087 (|#1| |#1|)) (-15 -3832 ((-2 (|:| -1732 |#1|) (|:| -4404 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3757 ((-3 |#1| "failed") |#1|))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) 47)) (-3087 (($ $) 46)) (-1716 (((-112) $) 44)) (-3174 (((-3 $ "failed") $ $) 20)) (-1811 (($) 18 T CONST)) (-3757 (((-3 $ "failed") $) 37)) (-2264 (((-112) $) 35)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-2976 (((-3 $ "failed") $ $) 48)) (-2479 (((-862) $) 12) (($ (-566)) 33) (($ $) 49)) (-1558 (((-771)) 32 T CONST)) (-3900 (((-112) $ $) 9)) (-1333 (((-112) $ $) 45)) (-2446 (($) 19 T CONST)) (-2459 (($) 34 T CONST)) (-2952 (((-112) $ $) 6)) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27))) +(((-558) (-140)) (T -558)) +((-2976 (*1 *1 *1 *1) (|partial| -4 *1 (-558))) (-3832 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1732 *1) (|:| -4404 *1) (|:| |associate| *1))) (-4 *1 (-558)))) (-3087 (*1 *1 *1) (-4 *1 (-558))) (-1333 (*1 *2 *1 *1) (-12 (-4 *1 (-558)) (-5 *2 (-112)))) (-1716 (*1 *2 *1) (-12 (-4 *1 (-558)) (-5 *2 (-112))))) +(-13 (-172) (-38 $) (-291) (-10 -8 (-15 -2976 ((-3 $ "failed") $ $)) (-15 -3832 ((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $)) (-15 -3087 ($ $)) (-15 -1333 ((-112) $ $)) (-15 -1716 ((-112) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-616 (-566)) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-291) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 $) . T) ((-640 $) . T) ((-717 $) . T) ((-726) . T) ((-1051 $) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) +((-2007 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1175) (-644 |#2|)) 38)) (-3149 (((-587 |#2|) |#2| (-1175)) 63)) (-2191 (((-3 |#2| "failed") |#2| (-1175)) 156)) (-3659 (((-3 (-2 (|:| -4069 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1175) (-612 |#2|) (-644 (-612 |#2|))) 159)) (-2217 (((-3 (-2 (|:| -4069 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1175) |#2|) 41))) +(((-559 |#1| |#2|) (-10 -7 (-15 -2217 ((-3 (-2 (|:| -4069 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1175) |#2|)) (-15 -2007 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1175) (-644 |#2|))) (-15 -2191 ((-3 |#2| "failed") |#2| (-1175))) (-15 -3149 ((-587 |#2|) |#2| (-1175))) (-15 -3659 ((-3 (-2 (|:| -4069 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1175) (-612 |#2|) (-644 (-612 |#2|))))) (-13 (-454) (-147) (-1038 (-566)) (-639 (-566))) (-13 (-27) (-1199) (-432 |#1|))) (T -559)) +((-3659 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1175)) (-5 *6 (-644 (-612 *3))) (-5 *5 (-612 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *7))) (-4 *7 (-13 (-454) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-2 (|:| -4069 *3) (|:| |coeff| *3))) (-5 *1 (-559 *7 *3)))) (-3149 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-4 *5 (-13 (-454) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-587 *3)) (-5 *1 (-559 *5 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *5))))) (-2191 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1175)) (-4 *4 (-13 (-454) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-559 *4 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *4))))) (-2007 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1175)) (-5 *5 (-644 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *6))) (-4 *6 (-13 (-454) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-559 *6 *3)))) (-2217 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1175)) (-4 *5 (-13 (-454) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-2 (|:| -4069 *3) (|:| |coeff| *3))) (-5 *1 (-559 *5 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *5)))))) +(-10 -7 (-15 -2217 ((-3 (-2 (|:| -4069 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1175) |#2|)) (-15 -2007 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1175) (-644 |#2|))) (-15 -2191 ((-3 |#2| "failed") |#2| (-1175))) (-15 -3149 ((-587 |#2|) |#2| (-1175))) (-15 -3659 ((-3 (-2 (|:| -4069 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1175) (-612 |#2|) (-644 (-612 |#2|))))) +((-3348 (((-420 |#1|) |#1|) 19)) (-2325 (((-420 |#1|) |#1|) 34)) (-2520 (((-3 |#1| "failed") |#1|) 51)) (-3189 (((-420 |#1|) |#1|) 64))) +(((-560 |#1|) (-10 -7 (-15 -2325 ((-420 |#1|) |#1|)) (-15 -3348 ((-420 |#1|) |#1|)) (-15 -3189 ((-420 |#1|) |#1|)) (-15 -2520 ((-3 |#1| "failed") |#1|))) (-547)) (T -560)) +((-2520 (*1 *2 *2) (|partial| -12 (-5 *1 (-560 *2)) (-4 *2 (-547)))) (-3189 (*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-560 *3)) (-4 *3 (-547)))) (-3348 (*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-560 *3)) (-4 *3 (-547)))) (-2325 (*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-560 *3)) (-4 *3 (-547))))) +(-10 -7 (-15 -2325 ((-420 |#1|) |#1|)) (-15 -3348 ((-420 |#1|) |#1|)) (-15 -3189 ((-420 |#1|) |#1|)) (-15 -2520 ((-3 |#1| "failed") |#1|))) +((-2170 (($) 9)) (-2554 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1680 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 35)) (-1467 (((-644 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $) 32)) (-4354 (($ (-2 (|:| -1928 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2806 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1680 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 29)) (-1769 (($ (-644 (-2 (|:| -1928 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2806 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1680 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 27)) (-2806 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1680 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 39)) (-4185 (((-644 (-2 (|:| -1928 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2806 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1680 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 37)) (-2223 (((-1269)) 12))) +(((-561) (-10 -8 (-15 -2170 ($)) (-15 -2223 ((-1269))) (-15 -1467 ((-644 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -1769 ($ (-644 (-2 (|:| -1928 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2806 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1680 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -4354 ($ (-2 (|:| -1928 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2806 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1680 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2554 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1680 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4185 ((-644 (-2 (|:| -1928 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2806 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1680 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2806 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1680 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -561)) +((-2806 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1680 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-561)))) (-4185 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| -1928 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2806 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1680 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-561)))) (-2554 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1680 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-561)))) (-4354 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -1928 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2806 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1680 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-561)))) (-1769 (*1 *1 *2) (-12 (-5 *2 (-644 (-2 (|:| -1928 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2806 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1680 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-561)))) (-1467 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-5 *1 (-561)))) (-2223 (*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-561)))) (-2170 (*1 *1) (-5 *1 (-561)))) +(-10 -8 (-15 -2170 ($)) (-15 -2223 ((-1269))) (-15 -1467 ((-644 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -1769 ($ (-644 (-2 (|:| -1928 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2806 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1680 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -4354 ($ (-2 (|:| -1928 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2806 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1680 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2554 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1680 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4185 ((-644 (-2 (|:| -1928 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2806 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1680 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2806 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1680 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) +((-2285 (((-1171 (-409 (-1171 |#2|))) |#2| (-612 |#2|) (-612 |#2|) (-1171 |#2|)) 35)) (-2014 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-612 |#2|) (-612 |#2|) (-644 |#2|) (-612 |#2|) |#2| (-409 (-1171 |#2|))) 105) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-612 |#2|) (-612 |#2|) (-644 |#2|) |#2| (-1171 |#2|)) 115)) (-4171 (((-587 |#2|) |#2| (-612 |#2|) (-612 |#2|) (-612 |#2|) |#2| (-409 (-1171 |#2|))) 85) (((-587 |#2|) |#2| (-612 |#2|) (-612 |#2|) |#2| (-1171 |#2|)) 55)) (-2305 (((-3 (-2 (|:| -4069 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-612 |#2|) (-612 |#2|) |#2| (-612 |#2|) |#2| (-409 (-1171 |#2|))) 92) (((-3 (-2 (|:| -4069 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-612 |#2|) (-612 |#2|) |#2| |#2| (-1171 |#2|)) 114)) (-1819 (((-3 |#2| "failed") |#2| |#2| (-612 |#2|) (-612 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1175)) (-612 |#2|) |#2| (-409 (-1171 |#2|))) 110) (((-3 |#2| "failed") |#2| |#2| (-612 |#2|) (-612 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1175)) |#2| (-1171 |#2|)) 116)) (-2631 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1419 (-644 |#2|))) |#3| |#2| (-612 |#2|) (-612 |#2|) (-612 |#2|) |#2| (-409 (-1171 |#2|))) 135 (|has| |#3| (-656 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1419 (-644 |#2|))) |#3| |#2| (-612 |#2|) (-612 |#2|) |#2| (-1171 |#2|)) 134 (|has| |#3| (-656 |#2|)))) (-2474 ((|#2| (-1171 (-409 (-1171 |#2|))) (-612 |#2|) |#2|) 53)) (-1829 (((-1171 (-409 (-1171 |#2|))) (-1171 |#2|) (-612 |#2|)) 34))) +(((-562 |#1| |#2| |#3|) (-10 -7 (-15 -4171 ((-587 |#2|) |#2| (-612 |#2|) (-612 |#2|) |#2| (-1171 |#2|))) (-15 -4171 ((-587 |#2|) |#2| (-612 |#2|) (-612 |#2|) (-612 |#2|) |#2| (-409 (-1171 |#2|)))) (-15 -2305 ((-3 (-2 (|:| -4069 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-612 |#2|) (-612 |#2|) |#2| |#2| (-1171 |#2|))) (-15 -2305 ((-3 (-2 (|:| -4069 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-612 |#2|) (-612 |#2|) |#2| (-612 |#2|) |#2| (-409 (-1171 |#2|)))) (-15 -2014 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-612 |#2|) (-612 |#2|) (-644 |#2|) |#2| (-1171 |#2|))) (-15 -2014 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-612 |#2|) (-612 |#2|) (-644 |#2|) (-612 |#2|) |#2| (-409 (-1171 |#2|)))) (-15 -1819 ((-3 |#2| "failed") |#2| |#2| (-612 |#2|) (-612 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1175)) |#2| (-1171 |#2|))) (-15 -1819 ((-3 |#2| "failed") |#2| |#2| (-612 |#2|) (-612 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1175)) (-612 |#2|) |#2| (-409 (-1171 |#2|)))) (-15 -2285 ((-1171 (-409 (-1171 |#2|))) |#2| (-612 |#2|) (-612 |#2|) (-1171 |#2|))) (-15 -2474 (|#2| (-1171 (-409 (-1171 |#2|))) (-612 |#2|) |#2|)) (-15 -1829 ((-1171 (-409 (-1171 |#2|))) (-1171 |#2|) (-612 |#2|))) (IF (|has| |#3| (-656 |#2|)) (PROGN (-15 -2631 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1419 (-644 |#2|))) |#3| |#2| (-612 |#2|) (-612 |#2|) |#2| (-1171 |#2|))) (-15 -2631 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1419 (-644 |#2|))) |#3| |#2| (-612 |#2|) (-612 |#2|) (-612 |#2|) |#2| (-409 (-1171 |#2|))))) |%noBranch|)) (-13 (-454) (-1038 (-566)) (-147) (-639 (-566))) (-13 (-432 |#1|) (-27) (-1199)) (-1099)) (T -562)) +((-2631 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-612 *4)) (-5 *6 (-409 (-1171 *4))) (-4 *4 (-13 (-432 *7) (-27) (-1199))) (-4 *7 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1419 (-644 *4)))) (-5 *1 (-562 *7 *4 *3)) (-4 *3 (-656 *4)) (-4 *3 (-1099)))) (-2631 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-612 *4)) (-5 *6 (-1171 *4)) (-4 *4 (-13 (-432 *7) (-27) (-1199))) (-4 *7 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1419 (-644 *4)))) (-5 *1 (-562 *7 *4 *3)) (-4 *3 (-656 *4)) (-4 *3 (-1099)))) (-1829 (*1 *2 *3 *4) (-12 (-5 *4 (-612 *6)) (-4 *6 (-13 (-432 *5) (-27) (-1199))) (-4 *5 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *2 (-1171 (-409 (-1171 *6)))) (-5 *1 (-562 *5 *6 *7)) (-5 *3 (-1171 *6)) (-4 *7 (-1099)))) (-2474 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1171 (-409 (-1171 *2)))) (-5 *4 (-612 *2)) (-4 *2 (-13 (-432 *5) (-27) (-1199))) (-4 *5 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *1 (-562 *5 *2 *6)) (-4 *6 (-1099)))) (-2285 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-612 *3)) (-4 *3 (-13 (-432 *6) (-27) (-1199))) (-4 *6 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *2 (-1171 (-409 (-1171 *3)))) (-5 *1 (-562 *6 *3 *7)) (-5 *5 (-1171 *3)) (-4 *7 (-1099)))) (-1819 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-612 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1175))) (-5 *5 (-409 (-1171 *2))) (-4 *2 (-13 (-432 *6) (-27) (-1199))) (-4 *6 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *1 (-562 *6 *2 *7)) (-4 *7 (-1099)))) (-1819 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-612 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1175))) (-5 *5 (-1171 *2)) (-4 *2 (-13 (-432 *6) (-27) (-1199))) (-4 *6 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *1 (-562 *6 *2 *7)) (-4 *7 (-1099)))) (-2014 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-612 *3)) (-5 *5 (-644 *3)) (-5 *6 (-409 (-1171 *3))) (-4 *3 (-13 (-432 *7) (-27) (-1199))) (-4 *7 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-562 *7 *3 *8)) (-4 *8 (-1099)))) (-2014 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-612 *3)) (-5 *5 (-644 *3)) (-5 *6 (-1171 *3)) (-4 *3 (-13 (-432 *7) (-27) (-1199))) (-4 *7 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-562 *7 *3 *8)) (-4 *8 (-1099)))) (-2305 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-612 *3)) (-5 *5 (-409 (-1171 *3))) (-4 *3 (-13 (-432 *6) (-27) (-1199))) (-4 *6 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *2 (-2 (|:| -4069 *3) (|:| |coeff| *3))) (-5 *1 (-562 *6 *3 *7)) (-4 *7 (-1099)))) (-2305 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-612 *3)) (-5 *5 (-1171 *3)) (-4 *3 (-13 (-432 *6) (-27) (-1199))) (-4 *6 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *2 (-2 (|:| -4069 *3) (|:| |coeff| *3))) (-5 *1 (-562 *6 *3 *7)) (-4 *7 (-1099)))) (-4171 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-612 *3)) (-5 *5 (-409 (-1171 *3))) (-4 *3 (-13 (-432 *6) (-27) (-1199))) (-4 *6 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *2 (-587 *3)) (-5 *1 (-562 *6 *3 *7)) (-4 *7 (-1099)))) (-4171 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-612 *3)) (-5 *5 (-1171 *3)) (-4 *3 (-13 (-432 *6) (-27) (-1199))) (-4 *6 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *2 (-587 *3)) (-5 *1 (-562 *6 *3 *7)) (-4 *7 (-1099))))) +(-10 -7 (-15 -4171 ((-587 |#2|) |#2| (-612 |#2|) (-612 |#2|) |#2| (-1171 |#2|))) (-15 -4171 ((-587 |#2|) |#2| (-612 |#2|) (-612 |#2|) (-612 |#2|) |#2| (-409 (-1171 |#2|)))) (-15 -2305 ((-3 (-2 (|:| -4069 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-612 |#2|) (-612 |#2|) |#2| |#2| (-1171 |#2|))) (-15 -2305 ((-3 (-2 (|:| -4069 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-612 |#2|) (-612 |#2|) |#2| (-612 |#2|) |#2| (-409 (-1171 |#2|)))) (-15 -2014 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-612 |#2|) (-612 |#2|) (-644 |#2|) |#2| (-1171 |#2|))) (-15 -2014 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-612 |#2|) (-612 |#2|) (-644 |#2|) (-612 |#2|) |#2| (-409 (-1171 |#2|)))) (-15 -1819 ((-3 |#2| "failed") |#2| |#2| (-612 |#2|) (-612 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1175)) |#2| (-1171 |#2|))) (-15 -1819 ((-3 |#2| "failed") |#2| |#2| (-612 |#2|) (-612 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1175)) (-612 |#2|) |#2| (-409 (-1171 |#2|)))) (-15 -2285 ((-1171 (-409 (-1171 |#2|))) |#2| (-612 |#2|) (-612 |#2|) (-1171 |#2|))) (-15 -2474 (|#2| (-1171 (-409 (-1171 |#2|))) (-612 |#2|) |#2|)) (-15 -1829 ((-1171 (-409 (-1171 |#2|))) (-1171 |#2|) (-612 |#2|))) (IF (|has| |#3| (-656 |#2|)) (PROGN (-15 -2631 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1419 (-644 |#2|))) |#3| |#2| (-612 |#2|) (-612 |#2|) |#2| (-1171 |#2|))) (-15 -2631 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1419 (-644 |#2|))) |#3| |#2| (-612 |#2|) (-612 |#2|) (-612 |#2|) |#2| (-409 (-1171 |#2|))))) |%noBranch|)) +((-3385 (((-566) (-566) (-771)) 90)) (-2237 (((-566) (-566)) 88)) (-2860 (((-566) (-566)) 86)) (-1588 (((-566) (-566)) 92)) (-4113 (((-566) (-566) (-566)) 70)) (-1307 (((-566) (-566) (-566)) 67)) (-3916 (((-409 (-566)) (-566)) 30)) (-3012 (((-566) (-566)) 36)) (-3068 (((-566) (-566)) 79)) (-3906 (((-566) (-566)) 51)) (-2539 (((-644 (-566)) (-566)) 85)) (-1300 (((-566) (-566) (-566) (-566) (-566)) 63)) (-4071 (((-409 (-566)) (-566)) 60))) +(((-563) (-10 -7 (-15 -4071 ((-409 (-566)) (-566))) (-15 -1300 ((-566) (-566) (-566) (-566) (-566))) (-15 -2539 ((-644 (-566)) (-566))) (-15 -3906 ((-566) (-566))) (-15 -3068 ((-566) (-566))) (-15 -3012 ((-566) (-566))) (-15 -3916 ((-409 (-566)) (-566))) (-15 -1307 ((-566) (-566) (-566))) (-15 -4113 ((-566) (-566) (-566))) (-15 -1588 ((-566) (-566))) (-15 -2860 ((-566) (-566))) (-15 -2237 ((-566) (-566))) (-15 -3385 ((-566) (-566) (-771))))) (T -563)) +((-3385 (*1 *2 *2 *3) (-12 (-5 *2 (-566)) (-5 *3 (-771)) (-5 *1 (-563)))) (-2237 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563)))) (-2860 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563)))) (-1588 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563)))) (-4113 (*1 *2 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563)))) (-1307 (*1 *2 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563)))) (-3916 (*1 *2 *3) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-563)) (-5 *3 (-566)))) (-3012 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563)))) (-3068 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563)))) (-3906 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563)))) (-2539 (*1 *2 *3) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-563)) (-5 *3 (-566)))) (-1300 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563)))) (-4071 (*1 *2 *3) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-563)) (-5 *3 (-566))))) +(-10 -7 (-15 -4071 ((-409 (-566)) (-566))) (-15 -1300 ((-566) (-566) (-566) (-566) (-566))) (-15 -2539 ((-644 (-566)) (-566))) (-15 -3906 ((-566) (-566))) (-15 -3068 ((-566) (-566))) (-15 -3012 ((-566) (-566))) (-15 -3916 ((-409 (-566)) (-566))) (-15 -1307 ((-566) (-566) (-566))) (-15 -4113 ((-566) (-566) (-566))) (-15 -1588 ((-566) (-566))) (-15 -2860 ((-566) (-566))) (-15 -2237 ((-566) (-566))) (-15 -3385 ((-566) (-566) (-771)))) +((-1650 (((-2 (|:| |answer| |#4|) (|:| -1833 |#4|)) |#4| (-1 |#2| |#2|)) 56))) +(((-564 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1650 ((-2 (|:| |answer| |#4|) (|:| -1833 |#4|)) |#4| (-1 |#2| |#2|)))) (-365) (-1240 |#1|) (-1240 (-409 |#2|)) (-344 |#1| |#2| |#3|)) (T -564)) +((-1650 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1240 *5)) (-4 *5 (-365)) (-4 *7 (-1240 (-409 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -1833 *3))) (-5 *1 (-564 *5 *6 *7 *3)) (-4 *3 (-344 *5 *6 *7))))) +(-10 -7 (-15 -1650 ((-2 (|:| |answer| |#4|) (|:| -1833 |#4|)) |#4| (-1 |#2| |#2|)))) +((-1650 (((-2 (|:| |answer| (-409 |#2|)) (|:| -1833 (-409 |#2|)) (|:| |specpart| (-409 |#2|)) (|:| |polypart| |#2|)) (-409 |#2|) (-1 |#2| |#2|)) 18))) +(((-565 |#1| |#2|) (-10 -7 (-15 -1650 ((-2 (|:| |answer| (-409 |#2|)) (|:| -1833 (-409 |#2|)) (|:| |specpart| (-409 |#2|)) (|:| |polypart| |#2|)) (-409 |#2|) (-1 |#2| |#2|)))) (-365) (-1240 |#1|)) (T -565)) +((-1650 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1240 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |answer| (-409 *6)) (|:| -1833 (-409 *6)) (|:| |specpart| (-409 *6)) (|:| |polypart| *6))) (-5 *1 (-565 *5 *6)) (-5 *3 (-409 *6))))) +(-10 -7 (-15 -1650 ((-2 (|:| |answer| (-409 |#2|)) (|:| -1833 (-409 |#2|)) (|:| |specpart| (-409 |#2|)) (|:| |polypart| |#2|)) (-409 |#2|) (-1 |#2| |#2|)))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) 30)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) 97)) (-3087 (($ $) 98)) (-1716 (((-112) $) NIL)) (-2590 (($ $ $) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-1538 (($ $ $ $) 52)) (-3980 (($ $) NIL)) (-3348 (((-420 $) $) NIL)) (-2761 (((-112) $ $) NIL)) (-2920 (((-566) $) NIL)) (-3099 (($ $ $) 92)) (-1811 (($) NIL T CONST)) (-2980 (((-3 (-566) "failed") $) NIL)) (-1709 (((-566) $) NIL)) (-2925 (($ $ $) 54)) (-2275 (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) 77) (((-689 (-566)) (-689 $)) 73)) (-3757 (((-3 $ "failed") $) 94)) (-2515 (((-3 (-409 (-566)) "failed") $) NIL)) (-2024 (((-112) $) NIL)) (-3330 (((-409 (-566)) $) NIL)) (-1415 (($) 79) (($ $) 80)) (-2937 (($ $ $) 91)) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) NIL)) (-4188 (((-112) $) NIL)) (-1328 (($ $ $ $) NIL)) (-1387 (($ $ $) 70)) (-2133 (((-112) $) NIL)) (-1655 (($ $ $) NIL)) (-1542 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL)) (-2264 (((-112) $) 34)) (-3400 (((-112) $) 86)) (-4278 (((-3 $ "failed") $) NIL)) (-3420 (((-112) $) 43)) (-2495 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2731 (($ $ $ $) 55)) (-1920 (($ $ $) 88)) (-3038 (($ $ $) 87)) (-1546 (($ $) NIL)) (-4332 (($ $) 49)) (-2120 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3151 (((-1157) $) 69)) (-1432 (($ $ $) NIL)) (-3968 (($) NIL T CONST)) (-4282 (($ $) 38)) (-4059 (((-1119) $) 42)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) 129)) (-2162 (($ $ $) 95) (($ (-644 $)) NIL)) (-2259 (($ $) NIL)) (-2325 (((-420 $) $) 115)) (-2585 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL)) (-2976 (((-3 $ "failed") $ $) 113)) (-2840 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2206 (((-112) $) NIL)) (-1383 (((-771) $) NIL)) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) 90)) (-3526 (($ $ (-771)) NIL) (($ $) NIL)) (-3166 (($ $) 40)) (-3924 (($ $) 36)) (-3136 (((-566) $) 48) (((-538) $) 64) (((-892 (-566)) $) NIL) (((-381) $) 58) (((-225) $) 61) (((-1157) $) 66)) (-2479 (((-862) $) 46) (($ (-566)) 47) (($ $) NIL) (($ (-566)) 47)) (-1558 (((-771)) NIL T CONST)) (-3556 (((-112) $ $) NIL)) (-1835 (($ $ $) NIL)) (-3900 (((-112) $ $) NIL)) (-3810 (($) 35)) (-1333 (((-112) $ $) NIL)) (-3751 (($ $ $ $) 51)) (-4298 (($ $) 78)) (-2446 (($) 6 T CONST)) (-2459 (($) 31 T CONST)) (-2835 (((-1157) $) 26) (((-1157) $ (-112)) 27) (((-1269) (-822) $) 28) (((-1269) (-822) $ (-112)) 29)) (-2834 (($ $ (-771)) NIL) (($ $) NIL)) (-3019 (((-112) $ $) 50)) (-2990 (((-112) $ $) 81)) (-2952 (((-112) $ $) 33)) (-3004 (((-112) $ $) 83)) (-2977 (((-112) $ $) 10)) (-3065 (($ $) 16) (($ $ $) 39)) (-3052 (($ $ $) 37)) (** (($ $ (-921)) NIL) (($ $ (-771)) 85)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 84) (($ $ $) 53))) +(((-566) (-13 (-547) (-614 (-1157)) (-828) (-10 -8 (-15 -1415 ($ $)) (-6 -4404) (-6 -4409) (-6 -4405) (-6 -4399)))) (T -566)) +((-1415 (*1 *1 *1) (-5 *1 (-566)))) +(-13 (-547) (-614 (-1157)) (-828) (-10 -8 (-15 -1415 ($ $)) (-6 -4404) (-6 -4409) (-6 -4405) (-6 -4399))) +((-4177 (((-2 (|:| -4177 (-381)) (|:| -2598 (-1157)) (|:| |explanations| (-644 (-1157))) (|:| |extra| (-1035))) (-769) (-1062)) 119) (((-2 (|:| -4177 (-381)) (|:| -2598 (-1157)) (|:| |explanations| (-644 (-1157))) (|:| |extra| (-1035))) (-769)) 121)) (-2390 (((-3 (-1035) "failed") (-317 (-381)) (-1091 (-843 (-381))) (-1175)) 197) (((-3 (-1035) "failed") (-317 (-381)) (-1091 (-843 (-381))) (-1157)) 196) (((-1035) (-317 (-381)) (-644 (-1093 (-843 (-381)))) (-381) (-381) (-1062)) 201) (((-1035) (-317 (-381)) (-644 (-1093 (-843 (-381)))) (-381) (-381)) 202) (((-1035) (-317 (-381)) (-644 (-1093 (-843 (-381)))) (-381)) 203) (((-1035) (-317 (-381)) (-644 (-1093 (-843 (-381))))) 204) (((-1035) (-317 (-381)) (-1093 (-843 (-381)))) 192) (((-1035) (-317 (-381)) (-1093 (-843 (-381))) (-381)) 191) (((-1035) (-317 (-381)) (-1093 (-843 (-381))) (-381) (-381)) 187) (((-1035) (-769)) 179) (((-1035) (-317 (-381)) (-1093 (-843 (-381))) (-381) (-381) (-1062)) 186))) +(((-567) (-10 -7 (-15 -2390 ((-1035) (-317 (-381)) (-1093 (-843 (-381))) (-381) (-381) (-1062))) (-15 -2390 ((-1035) (-769))) (-15 -2390 ((-1035) (-317 (-381)) (-1093 (-843 (-381))) (-381) (-381))) (-15 -2390 ((-1035) (-317 (-381)) (-1093 (-843 (-381))) (-381))) (-15 -2390 ((-1035) (-317 (-381)) (-1093 (-843 (-381))))) (-15 -2390 ((-1035) (-317 (-381)) (-644 (-1093 (-843 (-381)))))) (-15 -2390 ((-1035) (-317 (-381)) (-644 (-1093 (-843 (-381)))) (-381))) (-15 -2390 ((-1035) (-317 (-381)) (-644 (-1093 (-843 (-381)))) (-381) (-381))) (-15 -2390 ((-1035) (-317 (-381)) (-644 (-1093 (-843 (-381)))) (-381) (-381) (-1062))) (-15 -4177 ((-2 (|:| -4177 (-381)) (|:| -2598 (-1157)) (|:| |explanations| (-644 (-1157))) (|:| |extra| (-1035))) (-769))) (-15 -4177 ((-2 (|:| -4177 (-381)) (|:| -2598 (-1157)) (|:| |explanations| (-644 (-1157))) (|:| |extra| (-1035))) (-769) (-1062))) (-15 -2390 ((-3 (-1035) "failed") (-317 (-381)) (-1091 (-843 (-381))) (-1157))) (-15 -2390 ((-3 (-1035) "failed") (-317 (-381)) (-1091 (-843 (-381))) (-1175))))) (T -567)) +((-2390 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-317 (-381))) (-5 *4 (-1091 (-843 (-381)))) (-5 *5 (-1175)) (-5 *2 (-1035)) (-5 *1 (-567)))) (-2390 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-317 (-381))) (-5 *4 (-1091 (-843 (-381)))) (-5 *5 (-1157)) (-5 *2 (-1035)) (-5 *1 (-567)))) (-4177 (*1 *2 *3 *4) (-12 (-5 *3 (-769)) (-5 *4 (-1062)) (-5 *2 (-2 (|:| -4177 (-381)) (|:| -2598 (-1157)) (|:| |explanations| (-644 (-1157))) (|:| |extra| (-1035)))) (-5 *1 (-567)))) (-4177 (*1 *2 *3) (-12 (-5 *3 (-769)) (-5 *2 (-2 (|:| -4177 (-381)) (|:| -2598 (-1157)) (|:| |explanations| (-644 (-1157))) (|:| |extra| (-1035)))) (-5 *1 (-567)))) (-2390 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-644 (-1093 (-843 (-381))))) (-5 *5 (-381)) (-5 *6 (-1062)) (-5 *2 (-1035)) (-5 *1 (-567)))) (-2390 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-644 (-1093 (-843 (-381))))) (-5 *5 (-381)) (-5 *2 (-1035)) (-5 *1 (-567)))) (-2390 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-644 (-1093 (-843 (-381))))) (-5 *5 (-381)) (-5 *2 (-1035)) (-5 *1 (-567)))) (-2390 (*1 *2 *3 *4) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-644 (-1093 (-843 (-381))))) (-5 *2 (-1035)) (-5 *1 (-567)))) (-2390 (*1 *2 *3 *4) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1093 (-843 (-381)))) (-5 *2 (-1035)) (-5 *1 (-567)))) (-2390 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1093 (-843 (-381)))) (-5 *5 (-381)) (-5 *2 (-1035)) (-5 *1 (-567)))) (-2390 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1093 (-843 (-381)))) (-5 *5 (-381)) (-5 *2 (-1035)) (-5 *1 (-567)))) (-2390 (*1 *2 *3) (-12 (-5 *3 (-769)) (-5 *2 (-1035)) (-5 *1 (-567)))) (-2390 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1093 (-843 (-381)))) (-5 *5 (-381)) (-5 *6 (-1062)) (-5 *2 (-1035)) (-5 *1 (-567))))) +(-10 -7 (-15 -2390 ((-1035) (-317 (-381)) (-1093 (-843 (-381))) (-381) (-381) (-1062))) (-15 -2390 ((-1035) (-769))) (-15 -2390 ((-1035) (-317 (-381)) (-1093 (-843 (-381))) (-381) (-381))) (-15 -2390 ((-1035) (-317 (-381)) (-1093 (-843 (-381))) (-381))) (-15 -2390 ((-1035) (-317 (-381)) (-1093 (-843 (-381))))) (-15 -2390 ((-1035) (-317 (-381)) (-644 (-1093 (-843 (-381)))))) (-15 -2390 ((-1035) (-317 (-381)) (-644 (-1093 (-843 (-381)))) (-381))) (-15 -2390 ((-1035) (-317 (-381)) (-644 (-1093 (-843 (-381)))) (-381) (-381))) (-15 -2390 ((-1035) (-317 (-381)) (-644 (-1093 (-843 (-381)))) (-381) (-381) (-1062))) (-15 -4177 ((-2 (|:| -4177 (-381)) (|:| -2598 (-1157)) (|:| |explanations| (-644 (-1157))) (|:| |extra| (-1035))) (-769))) (-15 -4177 ((-2 (|:| -4177 (-381)) (|:| -2598 (-1157)) (|:| |explanations| (-644 (-1157))) (|:| |extra| (-1035))) (-769) (-1062))) (-15 -2390 ((-3 (-1035) "failed") (-317 (-381)) (-1091 (-843 (-381))) (-1157))) (-15 -2390 ((-3 (-1035) "failed") (-317 (-381)) (-1091 (-843 (-381))) (-1175)))) +((-2888 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-612 |#2|) (-612 |#2|) (-644 |#2|)) 198)) (-4287 (((-587 |#2|) |#2| (-612 |#2|) (-612 |#2|)) 99)) (-2863 (((-3 (-2 (|:| -4069 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-612 |#2|) (-612 |#2|) |#2|) 194)) (-3875 (((-3 |#2| "failed") |#2| |#2| |#2| (-612 |#2|) (-612 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1175))) 203)) (-2306 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1419 (-644 |#2|))) |#3| |#2| (-612 |#2|) (-612 |#2|) (-1175)) 212 (|has| |#3| (-656 |#2|))))) +(((-568 |#1| |#2| |#3|) (-10 -7 (-15 -4287 ((-587 |#2|) |#2| (-612 |#2|) (-612 |#2|))) (-15 -2863 ((-3 (-2 (|:| -4069 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-612 |#2|) (-612 |#2|) |#2|)) (-15 -2888 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-612 |#2|) (-612 |#2|) (-644 |#2|))) (-15 -3875 ((-3 |#2| "failed") |#2| |#2| |#2| (-612 |#2|) (-612 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1175)))) (IF (|has| |#3| (-656 |#2|)) (-15 -2306 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1419 (-644 |#2|))) |#3| |#2| (-612 |#2|) (-612 |#2|) (-1175))) |%noBranch|)) (-13 (-454) (-1038 (-566)) (-147) (-639 (-566))) (-13 (-432 |#1|) (-27) (-1199)) (-1099)) (T -568)) +((-2306 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-612 *4)) (-5 *6 (-1175)) (-4 *4 (-13 (-432 *7) (-27) (-1199))) (-4 *7 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1419 (-644 *4)))) (-5 *1 (-568 *7 *4 *3)) (-4 *3 (-656 *4)) (-4 *3 (-1099)))) (-3875 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-612 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1175))) (-4 *2 (-13 (-432 *5) (-27) (-1199))) (-4 *5 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *1 (-568 *5 *2 *6)) (-4 *6 (-1099)))) (-2888 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-612 *3)) (-5 *5 (-644 *3)) (-4 *3 (-13 (-432 *6) (-27) (-1199))) (-4 *6 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-568 *6 *3 *7)) (-4 *7 (-1099)))) (-2863 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-612 *3)) (-4 *3 (-13 (-432 *5) (-27) (-1199))) (-4 *5 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *2 (-2 (|:| -4069 *3) (|:| |coeff| *3))) (-5 *1 (-568 *5 *3 *6)) (-4 *6 (-1099)))) (-4287 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-612 *3)) (-4 *3 (-13 (-432 *5) (-27) (-1199))) (-4 *5 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *2 (-587 *3)) (-5 *1 (-568 *5 *3 *6)) (-4 *6 (-1099))))) +(-10 -7 (-15 -4287 ((-587 |#2|) |#2| (-612 |#2|) (-612 |#2|))) (-15 -2863 ((-3 (-2 (|:| -4069 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-612 |#2|) (-612 |#2|) |#2|)) (-15 -2888 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-612 |#2|) (-612 |#2|) (-644 |#2|))) (-15 -3875 ((-3 |#2| "failed") |#2| |#2| |#2| (-612 |#2|) (-612 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1175)))) (IF (|has| |#3| (-656 |#2|)) (-15 -2306 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1419 (-644 |#2|))) |#3| |#2| (-612 |#2|) (-612 |#2|) (-1175))) |%noBranch|)) +((-3425 (((-2 (|:| -1574 |#2|) (|:| |nconst| |#2|)) |#2| (-1175)) 64)) (-4043 (((-3 |#2| "failed") |#2| (-1175) (-843 |#2|) (-843 |#2|)) 175 (-12 (|has| |#2| (-1138)) (|has| |#1| (-614 (-892 (-566)))) (|has| |#1| (-886 (-566))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1175)) 154 (-12 (|has| |#2| (-629)) (|has| |#1| (-614 (-892 (-566)))) (|has| |#1| (-886 (-566)))))) (-4267 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1175)) 156 (-12 (|has| |#2| (-629)) (|has| |#1| (-614 (-892 (-566)))) (|has| |#1| (-886 (-566))))))) +(((-569 |#1| |#2|) (-10 -7 (-15 -3425 ((-2 (|:| -1574 |#2|) (|:| |nconst| |#2|)) |#2| (-1175))) (IF (|has| |#1| (-614 (-892 (-566)))) (IF (|has| |#1| (-886 (-566))) (PROGN (IF (|has| |#2| (-629)) (PROGN (-15 -4267 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1175))) (-15 -4043 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1175)))) |%noBranch|) (IF (|has| |#2| (-1138)) (-15 -4043 ((-3 |#2| "failed") |#2| (-1175) (-843 |#2|) (-843 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-1038 (-566)) (-454) (-639 (-566))) (-13 (-27) (-1199) (-432 |#1|))) (T -569)) +((-4043 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1175)) (-5 *4 (-843 *2)) (-4 *2 (-1138)) (-4 *2 (-13 (-27) (-1199) (-432 *5))) (-4 *5 (-614 (-892 (-566)))) (-4 *5 (-886 (-566))) (-4 *5 (-13 (-1038 (-566)) (-454) (-639 (-566)))) (-5 *1 (-569 *5 *2)))) (-4043 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1175)) (-4 *5 (-614 (-892 (-566)))) (-4 *5 (-886 (-566))) (-4 *5 (-13 (-1038 (-566)) (-454) (-639 (-566)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-569 *5 *3)) (-4 *3 (-629)) (-4 *3 (-13 (-27) (-1199) (-432 *5))))) (-4267 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1175)) (-4 *5 (-614 (-892 (-566)))) (-4 *5 (-886 (-566))) (-4 *5 (-13 (-1038 (-566)) (-454) (-639 (-566)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-569 *5 *3)) (-4 *3 (-629)) (-4 *3 (-13 (-27) (-1199) (-432 *5))))) (-3425 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-4 *5 (-13 (-1038 (-566)) (-454) (-639 (-566)))) (-5 *2 (-2 (|:| -1574 *3) (|:| |nconst| *3))) (-5 *1 (-569 *5 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *5)))))) +(-10 -7 (-15 -3425 ((-2 (|:| -1574 |#2|) (|:| |nconst| |#2|)) |#2| (-1175))) (IF (|has| |#1| (-614 (-892 (-566)))) (IF (|has| |#1| (-886 (-566))) (PROGN (IF (|has| |#2| (-629)) (PROGN (-15 -4267 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1175))) (-15 -4043 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1175)))) |%noBranch|) (IF (|has| |#2| (-1138)) (-15 -4043 ((-3 |#2| "failed") |#2| (-1175) (-843 |#2|) (-843 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-2865 (((-3 (-2 (|:| |mainpart| (-409 |#2|)) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-409 |#2|)) (|:| |logand| (-409 |#2|)))))) "failed") (-409 |#2|) (-644 (-409 |#2|))) 41)) (-2390 (((-587 (-409 |#2|)) (-409 |#2|)) 28)) (-4181 (((-3 (-409 |#2|) "failed") (-409 |#2|)) 17)) (-1315 (((-3 (-2 (|:| -4069 (-409 |#2|)) (|:| |coeff| (-409 |#2|))) "failed") (-409 |#2|) (-409 |#2|)) 48))) +(((-570 |#1| |#2|) (-10 -7 (-15 -2390 ((-587 (-409 |#2|)) (-409 |#2|))) (-15 -4181 ((-3 (-409 |#2|) "failed") (-409 |#2|))) (-15 -1315 ((-3 (-2 (|:| -4069 (-409 |#2|)) (|:| |coeff| (-409 |#2|))) "failed") (-409 |#2|) (-409 |#2|))) (-15 -2865 ((-3 (-2 (|:| |mainpart| (-409 |#2|)) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-409 |#2|)) (|:| |logand| (-409 |#2|)))))) "failed") (-409 |#2|) (-644 (-409 |#2|))))) (-13 (-365) (-147) (-1038 (-566))) (-1240 |#1|)) (T -570)) +((-2865 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-644 (-409 *6))) (-5 *3 (-409 *6)) (-4 *6 (-1240 *5)) (-4 *5 (-13 (-365) (-147) (-1038 (-566)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-570 *5 *6)))) (-1315 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-365) (-147) (-1038 (-566)))) (-4 *5 (-1240 *4)) (-5 *2 (-2 (|:| -4069 (-409 *5)) (|:| |coeff| (-409 *5)))) (-5 *1 (-570 *4 *5)) (-5 *3 (-409 *5)))) (-4181 (*1 *2 *2) (|partial| -12 (-5 *2 (-409 *4)) (-4 *4 (-1240 *3)) (-4 *3 (-13 (-365) (-147) (-1038 (-566)))) (-5 *1 (-570 *3 *4)))) (-2390 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1038 (-566)))) (-4 *5 (-1240 *4)) (-5 *2 (-587 (-409 *5))) (-5 *1 (-570 *4 *5)) (-5 *3 (-409 *5))))) +(-10 -7 (-15 -2390 ((-587 (-409 |#2|)) (-409 |#2|))) (-15 -4181 ((-3 (-409 |#2|) "failed") (-409 |#2|))) (-15 -1315 ((-3 (-2 (|:| -4069 (-409 |#2|)) (|:| |coeff| (-409 |#2|))) "failed") (-409 |#2|) (-409 |#2|))) (-15 -2865 ((-3 (-2 (|:| |mainpart| (-409 |#2|)) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-409 |#2|)) (|:| |logand| (-409 |#2|)))))) "failed") (-409 |#2|) (-644 (-409 |#2|))))) +((-4296 (((-3 (-566) "failed") |#1|) 14)) (-4168 (((-112) |#1|) 13)) (-1368 (((-566) |#1|) 9))) +(((-571 |#1|) (-10 -7 (-15 -1368 ((-566) |#1|)) (-15 -4168 ((-112) |#1|)) (-15 -4296 ((-3 (-566) "failed") |#1|))) (-1038 (-566))) (T -571)) +((-4296 (*1 *2 *3) (|partial| -12 (-5 *2 (-566)) (-5 *1 (-571 *3)) (-4 *3 (-1038 *2)))) (-4168 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-571 *3)) (-4 *3 (-1038 (-566))))) (-1368 (*1 *2 *3) (-12 (-5 *2 (-566)) (-5 *1 (-571 *3)) (-4 *3 (-1038 *2))))) +(-10 -7 (-15 -1368 ((-566) |#1|)) (-15 -4168 ((-112) |#1|)) (-15 -4296 ((-3 (-566) "failed") |#1|))) +((-3524 (((-3 (-2 (|:| |mainpart| (-409 (-952 |#1|))) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-409 (-952 |#1|))) (|:| |logand| (-409 (-952 |#1|))))))) "failed") (-409 (-952 |#1|)) (-1175) (-644 (-409 (-952 |#1|)))) 48)) (-2787 (((-587 (-409 (-952 |#1|))) (-409 (-952 |#1|)) (-1175)) 28)) (-1893 (((-3 (-409 (-952 |#1|)) "failed") (-409 (-952 |#1|)) (-1175)) 23)) (-2320 (((-3 (-2 (|:| -4069 (-409 (-952 |#1|))) (|:| |coeff| (-409 (-952 |#1|)))) "failed") (-409 (-952 |#1|)) (-1175) (-409 (-952 |#1|))) 35))) +(((-572 |#1|) (-10 -7 (-15 -2787 ((-587 (-409 (-952 |#1|))) (-409 (-952 |#1|)) (-1175))) (-15 -1893 ((-3 (-409 (-952 |#1|)) "failed") (-409 (-952 |#1|)) (-1175))) (-15 -3524 ((-3 (-2 (|:| |mainpart| (-409 (-952 |#1|))) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-409 (-952 |#1|))) (|:| |logand| (-409 (-952 |#1|))))))) "failed") (-409 (-952 |#1|)) (-1175) (-644 (-409 (-952 |#1|))))) (-15 -2320 ((-3 (-2 (|:| -4069 (-409 (-952 |#1|))) (|:| |coeff| (-409 (-952 |#1|)))) "failed") (-409 (-952 |#1|)) (-1175) (-409 (-952 |#1|))))) (-13 (-558) (-1038 (-566)) (-147))) (T -572)) +((-2320 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1175)) (-4 *5 (-13 (-558) (-1038 (-566)) (-147))) (-5 *2 (-2 (|:| -4069 (-409 (-952 *5))) (|:| |coeff| (-409 (-952 *5))))) (-5 *1 (-572 *5)) (-5 *3 (-409 (-952 *5))))) (-3524 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1175)) (-5 *5 (-644 (-409 (-952 *6)))) (-5 *3 (-409 (-952 *6))) (-4 *6 (-13 (-558) (-1038 (-566)) (-147))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-572 *6)))) (-1893 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-409 (-952 *4))) (-5 *3 (-1175)) (-4 *4 (-13 (-558) (-1038 (-566)) (-147))) (-5 *1 (-572 *4)))) (-2787 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-4 *5 (-13 (-558) (-1038 (-566)) (-147))) (-5 *2 (-587 (-409 (-952 *5)))) (-5 *1 (-572 *5)) (-5 *3 (-409 (-952 *5)))))) +(-10 -7 (-15 -2787 ((-587 (-409 (-952 |#1|))) (-409 (-952 |#1|)) (-1175))) (-15 -1893 ((-3 (-409 (-952 |#1|)) "failed") (-409 (-952 |#1|)) (-1175))) (-15 -3524 ((-3 (-2 (|:| |mainpart| (-409 (-952 |#1|))) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-409 (-952 |#1|))) (|:| |logand| (-409 (-952 |#1|))))))) "failed") (-409 (-952 |#1|)) (-1175) (-644 (-409 (-952 |#1|))))) (-15 -2320 ((-3 (-2 (|:| -4069 (-409 (-952 |#1|))) (|:| |coeff| (-409 (-952 |#1|)))) "failed") (-409 (-952 |#1|)) (-1175) (-409 (-952 |#1|))))) +((-2986 (((-112) $ $) 75)) (-2845 (((-112) $) 48)) (-3467 ((|#1| $) 39)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-1716 (((-112) $) 79)) (-3219 (($ $) 140)) (-3091 (($ $) 119)) (-4047 ((|#1| $) 37)) (-3174 (((-3 $ "failed") $ $) NIL)) (-2338 (($ $) NIL)) (-3197 (($ $) 142)) (-3067 (($ $) 115)) (-3240 (($ $) 144)) (-3115 (($ $) 123)) (-1811 (($) NIL T CONST)) (-2980 (((-3 (-566) "failed") $) 94)) (-1709 (((-566) $) 96)) (-3757 (((-3 $ "failed") $) 78)) (-1953 (($ |#1| |#1|) 35)) (-2133 (((-112) $) 44)) (-2964 (($) 105)) (-2264 (((-112) $) 55)) (-3146 (($ $ (-566)) NIL)) (-3420 (((-112) $) 45)) (-1920 (($ $ $) NIL)) (-3038 (($ $ $) NIL)) (-3676 (($ $) 107)) (-2120 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3151 (((-1157) $) NIL)) (-4345 (($ |#1| |#1|) 29) (($ |#1|) 34) (($ (-409 (-566))) 93)) (-1379 ((|#1| $) 36)) (-4059 (((-1119) $) NIL)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2162 (($ $ $) 81) (($ (-644 $)) NIL)) (-2976 (((-3 $ "failed") $ $) 80)) (-3571 (($ $) 109)) (-3250 (($ $) 148)) (-3126 (($ $) 121)) (-3227 (($ $) 150)) (-3105 (($ $) 125)) (-3207 (($ $) 146)) (-3079 (($ $) 117)) (-1754 (((-112) $ |#1|) 42)) (-2479 (((-862) $) 101) (($ (-566)) 83) (($ $) NIL) (($ (-566)) 83)) (-1558 (((-771)) 103 T CONST)) (-3900 (((-112) $ $) NIL)) (-3285 (($ $) 162)) (-3157 (($ $) 131)) (-1333 (((-112) $ $) NIL)) (-3260 (($ $) 160)) (-3135 (($ $) 127)) (-3309 (($ $) 158)) (-3179 (($ $) 138)) (-1861 (($ $) 156)) (-3190 (($ $) 136)) (-3299 (($ $) 154)) (-3168 (($ $) 133)) (-3273 (($ $) 152)) (-3148 (($ $) 129)) (-2446 (($) 30 T CONST)) (-2459 (($) 10 T CONST)) (-3019 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 49)) (-3004 (((-112) $ $) NIL)) (-2977 (((-112) $ $) 47)) (-3065 (($ $) 53) (($ $ $) 54)) (-3052 (($ $ $) 52)) (** (($ $ (-921)) 71) (($ $ (-771)) NIL) (($ $ $) 111) (($ $ (-409 (-566))) 164)) (* (($ (-921) $) 66) (($ (-771) $) NIL) (($ (-566) $) 65) (($ $ $) 61))) +(((-573 |#1|) (-556 |#1|) (-13 (-406) (-1199))) (T -573)) +NIL +(-556 |#1|) +((-4262 (((-3 (-644 (-1171 (-566))) "failed") (-644 (-1171 (-566))) (-1171 (-566))) 27))) +(((-574) (-10 -7 (-15 -4262 ((-3 (-644 (-1171 (-566))) "failed") (-644 (-1171 (-566))) (-1171 (-566)))))) (T -574)) +((-4262 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-644 (-1171 (-566)))) (-5 *3 (-1171 (-566))) (-5 *1 (-574))))) +(-10 -7 (-15 -4262 ((-3 (-644 (-1171 (-566))) "failed") (-644 (-1171 (-566))) (-1171 (-566))))) +((-4206 (((-644 (-612 |#2|)) (-644 (-612 |#2|)) (-1175)) 19)) (-3442 (((-644 (-612 |#2|)) (-644 |#2|) (-1175)) 23)) (-1730 (((-644 (-612 |#2|)) (-644 (-612 |#2|)) (-644 (-612 |#2|))) 11)) (-1342 ((|#2| |#2| (-1175)) 59 (|has| |#1| (-558)))) (-1666 ((|#2| |#2| (-1175)) 87 (-12 (|has| |#2| (-285)) (|has| |#1| (-454))))) (-3003 (((-612 |#2|) (-612 |#2|) (-644 (-612 |#2|)) (-1175)) 25)) (-4136 (((-612 |#2|) (-644 (-612 |#2|))) 24)) (-3462 (((-587 |#2|) |#2| (-1175) (-1 (-587 |#2|) |#2| (-1175)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1175))) 115 (-12 (|has| |#2| (-285)) (|has| |#2| (-629)) (|has| |#2| (-1038 (-1175))) (|has| |#1| (-614 (-892 (-566)))) (|has| |#1| (-454)) (|has| |#1| (-886 (-566))))))) +(((-575 |#1| |#2|) (-10 -7 (-15 -4206 ((-644 (-612 |#2|)) (-644 (-612 |#2|)) (-1175))) (-15 -4136 ((-612 |#2|) (-644 (-612 |#2|)))) (-15 -3003 ((-612 |#2|) (-612 |#2|) (-644 (-612 |#2|)) (-1175))) (-15 -1730 ((-644 (-612 |#2|)) (-644 (-612 |#2|)) (-644 (-612 |#2|)))) (-15 -3442 ((-644 (-612 |#2|)) (-644 |#2|) (-1175))) (IF (|has| |#1| (-558)) (-15 -1342 (|#2| |#2| (-1175))) |%noBranch|) (IF (|has| |#1| (-454)) (IF (|has| |#2| (-285)) (PROGN (-15 -1666 (|#2| |#2| (-1175))) (IF (|has| |#1| (-614 (-892 (-566)))) (IF (|has| |#1| (-886 (-566))) (IF (|has| |#2| (-629)) (IF (|has| |#2| (-1038 (-1175))) (-15 -3462 ((-587 |#2|) |#2| (-1175) (-1 (-587 |#2|) |#2| (-1175)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1175)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1099) (-432 |#1|)) (T -575)) +((-3462 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-587 *3) *3 (-1175))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1175))) (-4 *3 (-285)) (-4 *3 (-629)) (-4 *3 (-1038 *4)) (-4 *3 (-432 *7)) (-5 *4 (-1175)) (-4 *7 (-614 (-892 (-566)))) (-4 *7 (-454)) (-4 *7 (-886 (-566))) (-4 *7 (-1099)) (-5 *2 (-587 *3)) (-5 *1 (-575 *7 *3)))) (-1666 (*1 *2 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-454)) (-4 *4 (-1099)) (-5 *1 (-575 *4 *2)) (-4 *2 (-285)) (-4 *2 (-432 *4)))) (-1342 (*1 *2 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-558)) (-4 *4 (-1099)) (-5 *1 (-575 *4 *2)) (-4 *2 (-432 *4)))) (-3442 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *6)) (-5 *4 (-1175)) (-4 *6 (-432 *5)) (-4 *5 (-1099)) (-5 *2 (-644 (-612 *6))) (-5 *1 (-575 *5 *6)))) (-1730 (*1 *2 *2 *2) (-12 (-5 *2 (-644 (-612 *4))) (-4 *4 (-432 *3)) (-4 *3 (-1099)) (-5 *1 (-575 *3 *4)))) (-3003 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-644 (-612 *6))) (-5 *4 (-1175)) (-5 *2 (-612 *6)) (-4 *6 (-432 *5)) (-4 *5 (-1099)) (-5 *1 (-575 *5 *6)))) (-4136 (*1 *2 *3) (-12 (-5 *3 (-644 (-612 *5))) (-4 *4 (-1099)) (-5 *2 (-612 *5)) (-5 *1 (-575 *4 *5)) (-4 *5 (-432 *4)))) (-4206 (*1 *2 *2 *3) (-12 (-5 *2 (-644 (-612 *5))) (-5 *3 (-1175)) (-4 *5 (-432 *4)) (-4 *4 (-1099)) (-5 *1 (-575 *4 *5))))) +(-10 -7 (-15 -4206 ((-644 (-612 |#2|)) (-644 (-612 |#2|)) (-1175))) (-15 -4136 ((-612 |#2|) (-644 (-612 |#2|)))) (-15 -3003 ((-612 |#2|) (-612 |#2|) (-644 (-612 |#2|)) (-1175))) (-15 -1730 ((-644 (-612 |#2|)) (-644 (-612 |#2|)) (-644 (-612 |#2|)))) (-15 -3442 ((-644 (-612 |#2|)) (-644 |#2|) (-1175))) (IF (|has| |#1| (-558)) (-15 -1342 (|#2| |#2| (-1175))) |%noBranch|) (IF (|has| |#1| (-454)) (IF (|has| |#2| (-285)) (PROGN (-15 -1666 (|#2| |#2| (-1175))) (IF (|has| |#1| (-614 (-892 (-566)))) (IF (|has| |#1| (-886 (-566))) (IF (|has| |#2| (-629)) (IF (|has| |#2| (-1038 (-1175))) (-15 -3462 ((-587 |#2|) |#2| (-1175) (-1 (-587 |#2|) |#2| (-1175)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1175)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-3375 (((-2 (|:| |answer| (-587 (-409 |#2|))) (|:| |a0| |#1|)) (-409 |#2|) (-1 |#2| |#2|) (-1 (-3 (-644 |#1|) "failed") (-566) |#1| |#1|)) 202)) (-1658 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-409 |#2|)) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-409 |#2|)) (|:| |logand| (-409 |#2|))))))) (|:| |a0| |#1|)) "failed") (-409 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4069 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-644 (-409 |#2|))) 178)) (-4211 (((-3 (-2 (|:| |mainpart| (-409 |#2|)) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-409 |#2|)) (|:| |logand| (-409 |#2|)))))) "failed") (-409 |#2|) (-1 |#2| |#2|) (-644 (-409 |#2|))) 175)) (-3123 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -4069 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 166)) (-3932 (((-2 (|:| |answer| (-587 (-409 |#2|))) (|:| |a0| |#1|)) (-409 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4069 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 189)) (-1507 (((-3 (-2 (|:| -4069 (-409 |#2|)) (|:| |coeff| (-409 |#2|))) "failed") (-409 |#2|) (-1 |#2| |#2|) (-409 |#2|)) 205)) (-3978 (((-3 (-2 (|:| |answer| (-409 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -4069 (-409 |#2|)) (|:| |coeff| (-409 |#2|))) "failed") (-409 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4069 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-409 |#2|)) 208)) (-2482 (((-2 (|:| |ir| (-587 (-409 |#2|))) (|:| |specpart| (-409 |#2|)) (|:| |polypart| |#2|)) (-409 |#2|) (-1 |#2| |#2|)) 90)) (-2061 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 102)) (-2232 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-409 |#2|)) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-409 |#2|)) (|:| |logand| (-409 |#2|))))))) (|:| |a0| |#1|)) "failed") (-409 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4361 |#1|) (|:| |sol?| (-112))) (-566) |#1|) (-644 (-409 |#2|))) 182)) (-1718 (((-3 (-623 |#1| |#2|) "failed") (-623 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4361 |#1|) (|:| |sol?| (-112))) (-566) |#1|)) 170)) (-4021 (((-2 (|:| |answer| (-587 (-409 |#2|))) (|:| |a0| |#1|)) (-409 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4361 |#1|) (|:| |sol?| (-112))) (-566) |#1|)) 193)) (-4333 (((-3 (-2 (|:| |answer| (-409 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -4069 (-409 |#2|)) (|:| |coeff| (-409 |#2|))) "failed") (-409 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4361 |#1|) (|:| |sol?| (-112))) (-566) |#1|) (-409 |#2|)) 213))) +(((-576 |#1| |#2|) (-10 -7 (-15 -3932 ((-2 (|:| |answer| (-587 (-409 |#2|))) (|:| |a0| |#1|)) (-409 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4069 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -4021 ((-2 (|:| |answer| (-587 (-409 |#2|))) (|:| |a0| |#1|)) (-409 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4361 |#1|) (|:| |sol?| (-112))) (-566) |#1|))) (-15 -3375 ((-2 (|:| |answer| (-587 (-409 |#2|))) (|:| |a0| |#1|)) (-409 |#2|) (-1 |#2| |#2|) (-1 (-3 (-644 |#1|) "failed") (-566) |#1| |#1|))) (-15 -3978 ((-3 (-2 (|:| |answer| (-409 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -4069 (-409 |#2|)) (|:| |coeff| (-409 |#2|))) "failed") (-409 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4069 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-409 |#2|))) (-15 -4333 ((-3 (-2 (|:| |answer| (-409 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -4069 (-409 |#2|)) (|:| |coeff| (-409 |#2|))) "failed") (-409 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4361 |#1|) (|:| |sol?| (-112))) (-566) |#1|) (-409 |#2|))) (-15 -1658 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-409 |#2|)) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-409 |#2|)) (|:| |logand| (-409 |#2|))))))) (|:| |a0| |#1|)) "failed") (-409 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4069 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-644 (-409 |#2|)))) (-15 -2232 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-409 |#2|)) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-409 |#2|)) (|:| |logand| (-409 |#2|))))))) (|:| |a0| |#1|)) "failed") (-409 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4361 |#1|) (|:| |sol?| (-112))) (-566) |#1|) (-644 (-409 |#2|)))) (-15 -1507 ((-3 (-2 (|:| -4069 (-409 |#2|)) (|:| |coeff| (-409 |#2|))) "failed") (-409 |#2|) (-1 |#2| |#2|) (-409 |#2|))) (-15 -4211 ((-3 (-2 (|:| |mainpart| (-409 |#2|)) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-409 |#2|)) (|:| |logand| (-409 |#2|)))))) "failed") (-409 |#2|) (-1 |#2| |#2|) (-644 (-409 |#2|)))) (-15 -3123 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -4069 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -1718 ((-3 (-623 |#1| |#2|) "failed") (-623 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4361 |#1|) (|:| |sol?| (-112))) (-566) |#1|))) (-15 -2482 ((-2 (|:| |ir| (-587 (-409 |#2|))) (|:| |specpart| (-409 |#2|)) (|:| |polypart| |#2|)) (-409 |#2|) (-1 |#2| |#2|))) (-15 -2061 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-365) (-1240 |#1|)) (T -576)) +((-2061 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1240 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-576 *5 *3)))) (-2482 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1240 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |ir| (-587 (-409 *6))) (|:| |specpart| (-409 *6)) (|:| |polypart| *6))) (-5 *1 (-576 *5 *6)) (-5 *3 (-409 *6)))) (-1718 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-623 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -4361 *4) (|:| |sol?| (-112))) (-566) *4)) (-4 *4 (-365)) (-4 *5 (-1240 *4)) (-5 *1 (-576 *4 *5)))) (-3123 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -4069 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-365)) (-5 *1 (-576 *4 *2)) (-4 *2 (-1240 *4)))) (-4211 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-644 (-409 *7))) (-4 *7 (-1240 *6)) (-5 *3 (-409 *7)) (-4 *6 (-365)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-576 *6 *7)))) (-1507 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1240 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| -4069 (-409 *6)) (|:| |coeff| (-409 *6)))) (-5 *1 (-576 *5 *6)) (-5 *3 (-409 *6)))) (-2232 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -4361 *7) (|:| |sol?| (-112))) (-566) *7)) (-5 *6 (-644 (-409 *8))) (-4 *7 (-365)) (-4 *8 (-1240 *7)) (-5 *3 (-409 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-576 *7 *8)))) (-1658 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -4069 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-644 (-409 *8))) (-4 *7 (-365)) (-4 *8 (-1240 *7)) (-5 *3 (-409 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-576 *7 *8)))) (-4333 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -4361 *6) (|:| |sol?| (-112))) (-566) *6)) (-4 *6 (-365)) (-4 *7 (-1240 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-409 *7)) (|:| |a0| *6)) (-2 (|:| -4069 (-409 *7)) (|:| |coeff| (-409 *7))) "failed")) (-5 *1 (-576 *6 *7)) (-5 *3 (-409 *7)))) (-3978 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -4069 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-365)) (-4 *7 (-1240 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-409 *7)) (|:| |a0| *6)) (-2 (|:| -4069 (-409 *7)) (|:| |coeff| (-409 *7))) "failed")) (-5 *1 (-576 *6 *7)) (-5 *3 (-409 *7)))) (-3375 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-644 *6) "failed") (-566) *6 *6)) (-4 *6 (-365)) (-4 *7 (-1240 *6)) (-5 *2 (-2 (|:| |answer| (-587 (-409 *7))) (|:| |a0| *6))) (-5 *1 (-576 *6 *7)) (-5 *3 (-409 *7)))) (-4021 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -4361 *6) (|:| |sol?| (-112))) (-566) *6)) (-4 *6 (-365)) (-4 *7 (-1240 *6)) (-5 *2 (-2 (|:| |answer| (-587 (-409 *7))) (|:| |a0| *6))) (-5 *1 (-576 *6 *7)) (-5 *3 (-409 *7)))) (-3932 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -4069 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-365)) (-4 *7 (-1240 *6)) (-5 *2 (-2 (|:| |answer| (-587 (-409 *7))) (|:| |a0| *6))) (-5 *1 (-576 *6 *7)) (-5 *3 (-409 *7))))) +(-10 -7 (-15 -3932 ((-2 (|:| |answer| (-587 (-409 |#2|))) (|:| |a0| |#1|)) (-409 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4069 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -4021 ((-2 (|:| |answer| (-587 (-409 |#2|))) (|:| |a0| |#1|)) (-409 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4361 |#1|) (|:| |sol?| (-112))) (-566) |#1|))) (-15 -3375 ((-2 (|:| |answer| (-587 (-409 |#2|))) (|:| |a0| |#1|)) (-409 |#2|) (-1 |#2| |#2|) (-1 (-3 (-644 |#1|) "failed") (-566) |#1| |#1|))) (-15 -3978 ((-3 (-2 (|:| |answer| (-409 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -4069 (-409 |#2|)) (|:| |coeff| (-409 |#2|))) "failed") (-409 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4069 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-409 |#2|))) (-15 -4333 ((-3 (-2 (|:| |answer| (-409 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -4069 (-409 |#2|)) (|:| |coeff| (-409 |#2|))) "failed") (-409 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4361 |#1|) (|:| |sol?| (-112))) (-566) |#1|) (-409 |#2|))) (-15 -1658 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-409 |#2|)) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-409 |#2|)) (|:| |logand| (-409 |#2|))))))) (|:| |a0| |#1|)) "failed") (-409 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4069 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-644 (-409 |#2|)))) (-15 -2232 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-409 |#2|)) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-409 |#2|)) (|:| |logand| (-409 |#2|))))))) (|:| |a0| |#1|)) "failed") (-409 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4361 |#1|) (|:| |sol?| (-112))) (-566) |#1|) (-644 (-409 |#2|)))) (-15 -1507 ((-3 (-2 (|:| -4069 (-409 |#2|)) (|:| |coeff| (-409 |#2|))) "failed") (-409 |#2|) (-1 |#2| |#2|) (-409 |#2|))) (-15 -4211 ((-3 (-2 (|:| |mainpart| (-409 |#2|)) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-409 |#2|)) (|:| |logand| (-409 |#2|)))))) "failed") (-409 |#2|) (-1 |#2| |#2|) (-644 (-409 |#2|)))) (-15 -3123 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -4069 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -1718 ((-3 (-623 |#1| |#2|) "failed") (-623 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4361 |#1|) (|:| |sol?| (-112))) (-566) |#1|))) (-15 -2482 ((-2 (|:| |ir| (-587 (-409 |#2|))) (|:| |specpart| (-409 |#2|)) (|:| |polypart| |#2|)) (-409 |#2|) (-1 |#2| |#2|))) (-15 -2061 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) +((-2963 (((-3 |#2| "failed") |#2| (-1175) (-1175)) 10))) +(((-577 |#1| |#2|) (-10 -7 (-15 -2963 ((-3 |#2| "failed") |#2| (-1175) (-1175)))) (-13 (-308) (-147) (-1038 (-566)) (-639 (-566))) (-13 (-1199) (-959) (-1138) (-29 |#1|))) (T -577)) +((-2963 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1175)) (-4 *4 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-577 *4 *2)) (-4 *2 (-13 (-1199) (-959) (-1138) (-29 *4)))))) +(-10 -7 (-15 -2963 ((-3 |#2| "failed") |#2| (-1175) (-1175)))) +((-3354 (((-691 (-1222)) $ (-1222)) 26)) (-3162 (((-691 (-551)) $ (-551)) 25)) (-3130 (((-771) $ (-128)) 27)) (-1947 (((-691 (-129)) $ (-129)) 24)) (-2771 (((-691 (-1222)) $) 12)) (-3185 (((-691 (-1220)) $) 8)) (-1836 (((-691 (-1219)) $) 10)) (-3394 (((-691 (-551)) $) 13)) (-2836 (((-691 (-549)) $) 9)) (-3338 (((-691 (-548)) $) 11)) (-1733 (((-771) $ (-128)) 7)) (-2380 (((-691 (-129)) $) 14)) (-2313 (($ $) 6))) +(((-578) (-140)) (T -578)) +NIL +(-13 (-529) (-860)) +(((-173) . T) ((-529) . T) ((-860) . T)) +((-3354 (((-691 (-1222)) $ (-1222)) NIL)) (-3162 (((-691 (-551)) $ (-551)) NIL)) (-3130 (((-771) $ (-128)) NIL)) (-1947 (((-691 (-129)) $ (-129)) NIL)) (-2771 (((-691 (-1222)) $) NIL)) (-3185 (((-691 (-1220)) $) NIL)) (-1836 (((-691 (-1219)) $) NIL)) (-3394 (((-691 (-551)) $) NIL)) (-2836 (((-691 (-549)) $) NIL)) (-3338 (((-691 (-548)) $) NIL)) (-1733 (((-771) $ (-128)) NIL)) (-2380 (((-691 (-129)) $) NIL)) (-3546 (((-112) $) NIL)) (-3740 (($ (-390)) 14) (($ (-1157)) 16)) (-2479 (((-862) $) NIL)) (-2313 (($ $) NIL))) +(((-579) (-13 (-578) (-613 (-862)) (-10 -8 (-15 -3740 ($ (-390))) (-15 -3740 ($ (-1157))) (-15 -3546 ((-112) $))))) (T -579)) +((-3740 (*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-579)))) (-3740 (*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-579)))) (-3546 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-579))))) +(-13 (-578) (-613 (-862)) (-10 -8 (-15 -3740 ($ (-390))) (-15 -3740 ($ (-1157))) (-15 -3546 ((-112) $)))) +((-2986 (((-112) $ $) NIL)) (-4397 (($) 7 T CONST)) (-3151 (((-1157) $) NIL)) (-1708 (($) 6 T CONST)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) 14)) (-3288 (($) 8 T CONST)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 10))) +(((-580) (-13 (-1099) (-10 -8 (-15 -1708 ($) -1573) (-15 -4397 ($) -1573) (-15 -3288 ($) -1573)))) (T -580)) +((-1708 (*1 *1) (-5 *1 (-580))) (-4397 (*1 *1) (-5 *1 (-580))) (-3288 (*1 *1) (-5 *1 (-580)))) +(-13 (-1099) (-10 -8 (-15 -1708 ($) -1573) (-15 -4397 ($) -1573) (-15 -3288 ($) -1573))) +((-2986 (((-112) $ $) NIL)) (-2943 (((-691 $) (-493)) 21)) (-3151 (((-1157) $) NIL)) (-3706 (($ (-1157)) 14)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) 34)) (-2398 (((-213 4 (-129)) $) 24)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 26))) +(((-581) (-13 (-1099) (-10 -8 (-15 -3706 ($ (-1157))) (-15 -2398 ((-213 4 (-129)) $)) (-15 -2943 ((-691 $) (-493)))))) (T -581)) +((-3706 (*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-581)))) (-2398 (*1 *2 *1) (-12 (-5 *2 (-213 4 (-129))) (-5 *1 (-581)))) (-2943 (*1 *2 *3) (-12 (-5 *3 (-493)) (-5 *2 (-691 (-581))) (-5 *1 (-581))))) +(-13 (-1099) (-10 -8 (-15 -3706 ($ (-1157))) (-15 -2398 ((-213 4 (-129)) $)) (-15 -2943 ((-691 $) (-493))))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-1716 (((-112) $) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-2338 (($ $ (-566)) 77)) (-2761 (((-112) $ $) NIL)) (-1811 (($) NIL T CONST)) (-4175 (($ (-1171 (-566)) (-566)) 83)) (-2925 (($ $ $) NIL)) (-3757 (((-3 $ "failed") $) 68)) (-2707 (($ $) 43)) (-2937 (($ $ $) NIL)) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) NIL)) (-1802 (((-771) $) 16)) (-2264 (((-112) $) NIL)) (-2495 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2579 (((-566)) 37)) (-1533 (((-566) $) 41)) (-2120 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2162 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2585 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2050 (($ $ (-566)) 24)) (-2976 (((-3 $ "failed") $ $) 73)) (-2840 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1383 (((-771) $) 17)) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) 74)) (-3378 (((-1155 (-566)) $) 19)) (-4122 (($ $) 26)) (-2479 (((-862) $) 104) (($ (-566)) 63) (($ $) NIL)) (-1558 (((-771)) 15 T CONST)) (-3900 (((-112) $ $) NIL)) (-1333 (((-112) $ $) NIL)) (-3649 (((-566) $ (-566)) 46)) (-2446 (($) 44 T CONST)) (-2459 (($) 21 T CONST)) (-2952 (((-112) $ $) 54)) (-3065 (($ $) 62) (($ $ $) 48)) (-3052 (($ $ $) 61)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 64) (($ $ $) 65))) +(((-582 |#1| |#2|) (-869 |#1|) (-566) (-112)) (T -582)) +NIL +(-869 |#1|) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) 30)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-1716 (((-112) $) NIL)) (-3017 (((-112) $) NIL)) (-4141 (((-771)) NIL)) (-3837 (($ $ (-921)) NIL (|has| $ (-370))) (($ $) NIL)) (-2568 (((-1187 (-921) (-771)) (-566)) 59)) (-3174 (((-3 $ "failed") $ $) NIL)) (-3980 (($ $) NIL)) (-3348 (((-420 $) $) NIL)) (-2761 (((-112) $ $) NIL)) (-4049 (((-771)) NIL)) (-1811 (($) NIL T CONST)) (-2980 (((-3 $ "failed") $) 99)) (-1709 (($ $) 98)) (-2422 (($ (-1264 $)) 97)) (-2713 (((-3 "prime" "polynomial" "normal" "cyclic")) 56)) (-2925 (($ $ $) NIL)) (-3757 (((-3 $ "failed") $) 44)) (-1415 (($) NIL)) (-2937 (($ $ $) NIL)) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) NIL)) (-2409 (($) 61)) (-1450 (((-112) $) NIL)) (-4202 (($ $) NIL) (($ $ (-771)) NIL)) (-4188 (((-112) $) NIL)) (-1802 (((-833 (-921)) $) NIL) (((-921) $) NIL)) (-2264 (((-112) $) NIL)) (-3254 (($) 49 (|has| $ (-370)))) (-2111 (((-112) $) NIL (|has| $ (-370)))) (-1398 (($ $ (-921)) NIL (|has| $ (-370))) (($ $) NIL)) (-4278 (((-3 $ "failed") $) NIL)) (-2495 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1869 (((-1171 $) $ (-921)) NIL (|has| $ (-370))) (((-1171 $) $) 108)) (-4051 (((-921) $) 67)) (-3119 (((-1171 $) $) NIL (|has| $ (-370)))) (-1902 (((-3 (-1171 $) "failed") $ $) NIL (|has| $ (-370))) (((-1171 $) $) NIL (|has| $ (-370)))) (-1963 (($ $ (-1171 $)) NIL (|has| $ (-370)))) (-2120 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3151 (((-1157) $) NIL)) (-2577 (($ $) NIL)) (-3968 (($) NIL T CONST)) (-2104 (($ (-921)) 60)) (-1965 (((-112) $) 91)) (-4059 (((-1119) $) NIL)) (-4086 (($) 28 (|has| $ (-370)))) (-4004 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2162 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2816 (((-644 (-2 (|:| -2325 (-566)) (|:| -3631 (-566))))) 54)) (-2325 (((-420 $) $) NIL)) (-1903 (((-921)) 90) (((-833 (-921))) NIL)) (-2585 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2976 (((-3 $ "failed") $ $) NIL)) (-2840 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1383 (((-771) $) NIL)) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL)) (-4107 (((-3 (-771) "failed") $ $) NIL) (((-771) $) NIL)) (-3944 (((-134)) NIL)) (-3526 (($ $ (-771)) NIL) (($ $) NIL)) (-1630 (((-921) $) 89) (((-833 (-921)) $) NIL)) (-2301 (((-1171 $)) 106)) (-3648 (($) 66)) (-1743 (($) 50 (|has| $ (-370)))) (-3747 (((-689 $) (-1264 $)) NIL) (((-1264 $) $) 95)) (-3136 (((-566) $) 40)) (-3233 (((-3 (-1264 $) "failed") (-689 $)) NIL)) (-2479 (((-862) $) NIL) (($ (-566)) 42) (($ $) NIL) (($ (-409 (-566))) NIL)) (-2645 (((-3 $ "failed") $) NIL) (($ $) 109)) (-1558 (((-771)) 51 T CONST)) (-3900 (((-112) $ $) 111)) (-1419 (((-1264 $) (-921)) 101) (((-1264 $)) 100)) (-1333 (((-112) $ $) NIL)) (-3132 (((-112) $) NIL)) (-2446 (($) 31 T CONST)) (-2459 (($) 27 T CONST)) (-3536 (($ $ (-771)) NIL (|has| $ (-370))) (($ $) NIL (|has| $ (-370)))) (-2834 (($ $ (-771)) NIL) (($ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3077 (($ $ $) NIL)) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) 34)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 85) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL))) +(((-583 |#1|) (-13 (-351) (-330 $) (-614 (-566))) (-921)) (T -583)) +NIL +(-13 (-351) (-330 $) (-614 (-566))) +((-3044 (((-1269) (-1157)) 10))) +(((-584) (-10 -7 (-15 -3044 ((-1269) (-1157))))) (T -584)) +((-3044 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-584))))) +(-10 -7 (-15 -3044 ((-1269) (-1157)))) +((-4045 (((-587 |#2|) (-587 |#2|)) 42)) (-3507 (((-644 |#2|) (-587 |#2|)) 44)) (-4025 ((|#2| (-587 |#2|)) 50))) +(((-585 |#1| |#2|) (-10 -7 (-15 -4045 ((-587 |#2|) (-587 |#2|))) (-15 -3507 ((-644 |#2|) (-587 |#2|))) (-15 -4025 (|#2| (-587 |#2|)))) (-13 (-454) (-1038 (-566)) (-639 (-566))) (-13 (-29 |#1|) (-1199))) (T -585)) +((-4025 (*1 *2 *3) (-12 (-5 *3 (-587 *2)) (-4 *2 (-13 (-29 *4) (-1199))) (-5 *1 (-585 *4 *2)) (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))))) (-3507 (*1 *2 *3) (-12 (-5 *3 (-587 *5)) (-4 *5 (-13 (-29 *4) (-1199))) (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-644 *5)) (-5 *1 (-585 *4 *5)))) (-4045 (*1 *2 *2) (-12 (-5 *2 (-587 *4)) (-4 *4 (-13 (-29 *3) (-1199))) (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-585 *3 *4))))) +(-10 -7 (-15 -4045 ((-587 |#2|) (-587 |#2|))) (-15 -3507 ((-644 |#2|) (-587 |#2|))) (-15 -4025 (|#2| (-587 |#2|)))) +((-3080 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -4069 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -4069 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-587 |#2|) (-1 |#2| |#1|) (-587 |#1|)) 30))) +(((-586 |#1| |#2|) (-10 -7 (-15 -3080 ((-587 |#2|) (-1 |#2| |#1|) (-587 |#1|))) (-15 -3080 ((-3 (-2 (|:| -4069 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -4069 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -3080 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -3080 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-365) (-365)) (T -586)) +((-3080 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-365)) (-4 *6 (-365)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-586 *5 *6)))) (-3080 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-365)) (-4 *2 (-365)) (-5 *1 (-586 *5 *2)))) (-3080 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -4069 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-365)) (-4 *6 (-365)) (-5 *2 (-2 (|:| -4069 *6) (|:| |coeff| *6))) (-5 *1 (-586 *5 *6)))) (-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-587 *5)) (-4 *5 (-365)) (-4 *6 (-365)) (-5 *2 (-587 *6)) (-5 *1 (-586 *5 *6))))) +(-10 -7 (-15 -3080 ((-587 |#2|) (-1 |#2| |#1|) (-587 |#1|))) (-15 -3080 ((-3 (-2 (|:| -4069 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -4069 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -3080 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -3080 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-1811 (($) NIL T CONST)) (-2980 (((-3 |#1| "failed") $) 76)) (-1709 ((|#1| $) NIL)) (-4069 ((|#1| $) 30)) (-3027 (((-644 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32)) (-1423 (($ |#1| (-644 (-2 (|:| |scalar| (-409 (-566))) (|:| |coeff| (-1171 |#1|)) (|:| |logand| (-1171 |#1|)))) (-644 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28)) (-1833 (((-644 (-2 (|:| |scalar| (-409 (-566))) (|:| |coeff| (-1171 |#1|)) (|:| |logand| (-1171 |#1|)))) $) 31)) (-3151 (((-1157) $) NIL)) (-1499 (($ |#1| |#1|) 38) (($ |#1| (-1175)) 49 (|has| |#1| (-1038 (-1175))))) (-4059 (((-1119) $) NIL)) (-2932 (((-112) $) 35)) (-3526 ((|#1| $ (-1 |#1| |#1|)) 88) ((|#1| $ (-1175)) 89 (|has| |#1| (-900 (-1175))))) (-2479 (((-862) $) 112) (($ |#1|) 29)) (-3900 (((-112) $ $) NIL)) (-2446 (($) 18 T CONST)) (-2952 (((-112) $ $) NIL)) (-3065 (($ $) 17) (($ $ $) NIL)) (-3052 (($ $ $) 85)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 16) (($ (-409 (-566)) $) 41) (($ $ (-409 (-566))) NIL))) +(((-587 |#1|) (-13 (-717 (-409 (-566))) (-1038 |#1|) (-10 -8 (-15 -1423 ($ |#1| (-644 (-2 (|:| |scalar| (-409 (-566))) (|:| |coeff| (-1171 |#1|)) (|:| |logand| (-1171 |#1|)))) (-644 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -4069 (|#1| $)) (-15 -1833 ((-644 (-2 (|:| |scalar| (-409 (-566))) (|:| |coeff| (-1171 |#1|)) (|:| |logand| (-1171 |#1|)))) $)) (-15 -3027 ((-644 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2932 ((-112) $)) (-15 -1499 ($ |#1| |#1|)) (-15 -3526 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-900 (-1175))) (-15 -3526 (|#1| $ (-1175))) |%noBranch|) (IF (|has| |#1| (-1038 (-1175))) (-15 -1499 ($ |#1| (-1175))) |%noBranch|))) (-365)) (T -587)) +((-1423 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-644 (-2 (|:| |scalar| (-409 (-566))) (|:| |coeff| (-1171 *2)) (|:| |logand| (-1171 *2))))) (-5 *4 (-644 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-365)) (-5 *1 (-587 *2)))) (-4069 (*1 *2 *1) (-12 (-5 *1 (-587 *2)) (-4 *2 (-365)))) (-1833 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |scalar| (-409 (-566))) (|:| |coeff| (-1171 *3)) (|:| |logand| (-1171 *3))))) (-5 *1 (-587 *3)) (-4 *3 (-365)))) (-3027 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-587 *3)) (-4 *3 (-365)))) (-2932 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-587 *3)) (-4 *3 (-365)))) (-1499 (*1 *1 *2 *2) (-12 (-5 *1 (-587 *2)) (-4 *2 (-365)))) (-3526 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-587 *2)) (-4 *2 (-365)))) (-3526 (*1 *2 *1 *3) (-12 (-4 *2 (-365)) (-4 *2 (-900 *3)) (-5 *1 (-587 *2)) (-5 *3 (-1175)))) (-1499 (*1 *1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *1 (-587 *2)) (-4 *2 (-1038 *3)) (-4 *2 (-365))))) +(-13 (-717 (-409 (-566))) (-1038 |#1|) (-10 -8 (-15 -1423 ($ |#1| (-644 (-2 (|:| |scalar| (-409 (-566))) (|:| |coeff| (-1171 |#1|)) (|:| |logand| (-1171 |#1|)))) (-644 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -4069 (|#1| $)) (-15 -1833 ((-644 (-2 (|:| |scalar| (-409 (-566))) (|:| |coeff| (-1171 |#1|)) (|:| |logand| (-1171 |#1|)))) $)) (-15 -3027 ((-644 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2932 ((-112) $)) (-15 -1499 ($ |#1| |#1|)) (-15 -3526 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-900 (-1175))) (-15 -3526 (|#1| $ (-1175))) |%noBranch|) (IF (|has| |#1| (-1038 (-1175))) (-15 -1499 ($ |#1| (-1175))) |%noBranch|))) +((-2749 (((-112) |#1|) 16)) (-2497 (((-3 |#1| "failed") |#1|) 14)) (-1552 (((-2 (|:| -3810 |#1|) (|:| -3631 (-771))) |#1|) 39) (((-3 |#1| "failed") |#1| (-771)) 18)) (-1303 (((-112) |#1| (-771)) 19)) (-2053 ((|#1| |#1|) 43)) (-3720 ((|#1| |#1| (-771)) 46))) +(((-588 |#1|) (-10 -7 (-15 -1303 ((-112) |#1| (-771))) (-15 -1552 ((-3 |#1| "failed") |#1| (-771))) (-15 -1552 ((-2 (|:| -3810 |#1|) (|:| -3631 (-771))) |#1|)) (-15 -3720 (|#1| |#1| (-771))) (-15 -2749 ((-112) |#1|)) (-15 -2497 ((-3 |#1| "failed") |#1|)) (-15 -2053 (|#1| |#1|))) (-547)) (T -588)) +((-2053 (*1 *2 *2) (-12 (-5 *1 (-588 *2)) (-4 *2 (-547)))) (-2497 (*1 *2 *2) (|partial| -12 (-5 *1 (-588 *2)) (-4 *2 (-547)))) (-2749 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-588 *3)) (-4 *3 (-547)))) (-3720 (*1 *2 *2 *3) (-12 (-5 *3 (-771)) (-5 *1 (-588 *2)) (-4 *2 (-547)))) (-1552 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3810 *3) (|:| -3631 (-771)))) (-5 *1 (-588 *3)) (-4 *3 (-547)))) (-1552 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-771)) (-5 *1 (-588 *2)) (-4 *2 (-547)))) (-1303 (*1 *2 *3 *4) (-12 (-5 *4 (-771)) (-5 *2 (-112)) (-5 *1 (-588 *3)) (-4 *3 (-547))))) +(-10 -7 (-15 -1303 ((-112) |#1| (-771))) (-15 -1552 ((-3 |#1| "failed") |#1| (-771))) (-15 -1552 ((-2 (|:| -3810 |#1|) (|:| -3631 (-771))) |#1|)) (-15 -3720 (|#1| |#1| (-771))) (-15 -2749 ((-112) |#1|)) (-15 -2497 ((-3 |#1| "failed") |#1|)) (-15 -2053 (|#1| |#1|))) +((-1486 (((-1171 |#1|) (-921)) 44))) +(((-589 |#1|) (-10 -7 (-15 -1486 ((-1171 |#1|) (-921)))) (-351)) (T -589)) +((-1486 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1171 *4)) (-5 *1 (-589 *4)) (-4 *4 (-351))))) +(-10 -7 (-15 -1486 ((-1171 |#1|) (-921)))) +((-4045 (((-587 (-409 (-952 |#1|))) (-587 (-409 (-952 |#1|)))) 27)) (-2390 (((-3 (-317 |#1|) (-644 (-317 |#1|))) (-409 (-952 |#1|)) (-1175)) 34 (|has| |#1| (-147)))) (-3507 (((-644 (-317 |#1|)) (-587 (-409 (-952 |#1|)))) 19)) (-3621 (((-317 |#1|) (-409 (-952 |#1|)) (-1175)) 32 (|has| |#1| (-147)))) (-4025 (((-317 |#1|) (-587 (-409 (-952 |#1|)))) 21))) +(((-590 |#1|) (-10 -7 (-15 -4045 ((-587 (-409 (-952 |#1|))) (-587 (-409 (-952 |#1|))))) (-15 -3507 ((-644 (-317 |#1|)) (-587 (-409 (-952 |#1|))))) (-15 -4025 ((-317 |#1|) (-587 (-409 (-952 |#1|))))) (IF (|has| |#1| (-147)) (PROGN (-15 -2390 ((-3 (-317 |#1|) (-644 (-317 |#1|))) (-409 (-952 |#1|)) (-1175))) (-15 -3621 ((-317 |#1|) (-409 (-952 |#1|)) (-1175)))) |%noBranch|)) (-13 (-454) (-1038 (-566)) (-639 (-566)))) (T -590)) +((-3621 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-1175)) (-4 *5 (-147)) (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-317 *5)) (-5 *1 (-590 *5)))) (-2390 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-1175)) (-4 *5 (-147)) (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-3 (-317 *5) (-644 (-317 *5)))) (-5 *1 (-590 *5)))) (-4025 (*1 *2 *3) (-12 (-5 *3 (-587 (-409 (-952 *4)))) (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-317 *4)) (-5 *1 (-590 *4)))) (-3507 (*1 *2 *3) (-12 (-5 *3 (-587 (-409 (-952 *4)))) (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-644 (-317 *4))) (-5 *1 (-590 *4)))) (-4045 (*1 *2 *2) (-12 (-5 *2 (-587 (-409 (-952 *3)))) (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-590 *3))))) +(-10 -7 (-15 -4045 ((-587 (-409 (-952 |#1|))) (-587 (-409 (-952 |#1|))))) (-15 -3507 ((-644 (-317 |#1|)) (-587 (-409 (-952 |#1|))))) (-15 -4025 ((-317 |#1|) (-587 (-409 (-952 |#1|))))) (IF (|has| |#1| (-147)) (PROGN (-15 -2390 ((-3 (-317 |#1|) (-644 (-317 |#1|))) (-409 (-952 |#1|)) (-1175))) (-15 -3621 ((-317 |#1|) (-409 (-952 |#1|)) (-1175)))) |%noBranch|)) +((-3579 (((-644 (-689 (-566))) (-644 (-566)) (-644 (-905 (-566)))) 78) (((-644 (-689 (-566))) (-644 (-566))) 79) (((-689 (-566)) (-644 (-566)) (-905 (-566))) 72)) (-2872 (((-771) (-644 (-566))) 69))) +(((-591) (-10 -7 (-15 -2872 ((-771) (-644 (-566)))) (-15 -3579 ((-689 (-566)) (-644 (-566)) (-905 (-566)))) (-15 -3579 ((-644 (-689 (-566))) (-644 (-566)))) (-15 -3579 ((-644 (-689 (-566))) (-644 (-566)) (-644 (-905 (-566))))))) (T -591)) +((-3579 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-566))) (-5 *4 (-644 (-905 (-566)))) (-5 *2 (-644 (-689 (-566)))) (-5 *1 (-591)))) (-3579 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-644 (-689 (-566)))) (-5 *1 (-591)))) (-3579 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-566))) (-5 *4 (-905 (-566))) (-5 *2 (-689 (-566))) (-5 *1 (-591)))) (-2872 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-771)) (-5 *1 (-591))))) +(-10 -7 (-15 -2872 ((-771) (-644 (-566)))) (-15 -3579 ((-689 (-566)) (-644 (-566)) (-905 (-566)))) (-15 -3579 ((-644 (-689 (-566))) (-644 (-566)))) (-15 -3579 ((-644 (-689 (-566))) (-644 (-566)) (-644 (-905 (-566)))))) +((-3737 (((-644 |#5|) |#5| (-112)) 100)) (-3754 (((-112) |#5| (-644 |#5|)) 34))) +(((-592 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3737 ((-644 |#5|) |#5| (-112))) (-15 -3754 ((-112) |#5| (-644 |#5|)))) (-13 (-308) (-147)) (-793) (-850) (-1064 |#1| |#2| |#3|) (-1108 |#1| |#2| |#3| |#4|)) (T -592)) +((-3754 (*1 *2 *3 *4) (-12 (-5 *4 (-644 *3)) (-4 *3 (-1108 *5 *6 *7 *8)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *8 (-1064 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-592 *5 *6 *7 *8 *3)))) (-3737 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *8 (-1064 *5 *6 *7)) (-5 *2 (-644 *3)) (-5 *1 (-592 *5 *6 *7 *8 *3)) (-4 *3 (-1108 *5 *6 *7 *8))))) +(-10 -7 (-15 -3737 ((-644 |#5|) |#5| (-112))) (-15 -3754 ((-112) |#5| (-644 |#5|)))) +((-2986 (((-112) $ $) NIL)) (-3331 (((-1134) $) 11)) (-3319 (((-1134) $) 9)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) 17) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-593) (-13 (-1082) (-10 -8 (-15 -3319 ((-1134) $)) (-15 -3331 ((-1134) $))))) (T -593)) +((-3319 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-593)))) (-3331 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-593))))) +(-13 (-1082) (-10 -8 (-15 -3319 ((-1134) $)) (-15 -3331 ((-1134) $)))) +((-2986 (((-112) $ $) NIL (|has| (-144) (-1099)))) (-4243 (($ $) 38)) (-3037 (($ $) NIL)) (-2571 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-2462 (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4418)))) (-3861 (((-112) $ $) 68)) (-3841 (((-112) $ $ (-566)) 62)) (-4045 (((-644 $) $ (-144)) 76) (((-644 $) $ (-141)) 77)) (-4163 (((-112) (-1 (-112) (-144) (-144)) $) NIL) (((-112) $) NIL (|has| (-144) (-850)))) (-2893 (($ (-1 (-112) (-144) (-144)) $) NIL (|has| $ (-6 -4418))) (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-144) (-850))))) (-1374 (($ (-1 (-112) (-144) (-144)) $) NIL) (($ $) NIL (|has| (-144) (-850)))) (-1453 (((-112) $ (-771)) NIL)) (-3901 (((-144) $ (-566) (-144)) 59 (|has| $ (-6 -4418))) (((-144) $ (-1231 (-566)) (-144)) NIL (|has| $ (-6 -4418)))) (-3543 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4417)))) (-1811 (($) NIL T CONST)) (-1577 (($ $ (-144)) 81) (($ $ (-141)) 82)) (-2273 (($ $) NIL (|has| $ (-6 -4418)))) (-3877 (($ $) NIL)) (-4334 (($ $ (-1231 (-566)) $) 57)) (-4111 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-144) (-1099))))) (-2628 (($ (-144) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-144) (-1099)))) (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4417)))) (-1838 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4417)) (|has| (-144) (-1099)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4417))) (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4417)))) (-3719 (((-144) $ (-566) (-144)) NIL (|has| $ (-6 -4418)))) (-3653 (((-144) $ (-566)) NIL)) (-1470 (((-112) $ $) 95)) (-4000 (((-566) (-1 (-112) (-144)) $) NIL) (((-566) (-144) $) NIL (|has| (-144) (-1099))) (((-566) (-144) $ (-566)) 65 (|has| (-144) (-1099))) (((-566) $ $ (-566)) 63) (((-566) (-141) $ (-566)) 67)) (-3872 (((-644 (-144)) $) NIL (|has| $ (-6 -4417)))) (-4259 (($ (-771) (-144)) 9)) (-2756 (((-112) $ (-771)) NIL)) (-2755 (((-566) $) 32 (|has| (-566) (-850)))) (-1920 (($ $ $) NIL (|has| (-144) (-850)))) (-1330 (($ (-1 (-112) (-144) (-144)) $ $) NIL) (($ $ $) NIL (|has| (-144) (-850)))) (-4227 (((-644 (-144)) $) NIL (|has| $ (-6 -4417)))) (-1688 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-144) (-1099))))) (-3831 (((-566) $) 47 (|has| (-566) (-850)))) (-3038 (($ $ $) NIL (|has| (-144) (-850)))) (-4020 (((-112) $ $ (-144)) 96)) (-3956 (((-771) $ $ (-144)) 93)) (-3708 (($ (-1 (-144) (-144)) $) 37 (|has| $ (-6 -4418)))) (-3080 (($ (-1 (-144) (-144)) $) NIL) (($ (-1 (-144) (-144) (-144)) $ $) NIL)) (-2687 (($ $) 41)) (-4032 (($ $) NIL)) (-4106 (((-112) $ (-771)) NIL)) (-1586 (($ $ (-144)) 78) (($ $ (-141)) 79)) (-3151 (((-1157) $) 43 (|has| (-144) (-1099)))) (-4271 (($ (-144) $ (-566)) NIL) (($ $ $ (-566)) 27)) (-3780 (((-644 (-566)) $) NIL)) (-1605 (((-112) (-566) $) NIL)) (-4059 (((-566) $) 92) (((-1119) $) NIL (|has| (-144) (-1099)))) (-4080 (((-144) $) NIL (|has| (-566) (-850)))) (-2688 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-4079 (($ $ (-144)) NIL (|has| $ (-6 -4418)))) (-3966 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 (-144)))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099)))) (($ $ (-295 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099)))) (($ $ (-644 (-144)) (-644 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099))))) (-1844 (((-112) $ $) NIL)) (-2210 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-144) (-1099))))) (-4185 (((-644 (-144)) $) NIL)) (-2788 (((-112) $) 15)) (-1737 (($) 10)) (-4376 (((-144) $ (-566) (-144)) NIL) (((-144) $ (-566)) 69) (($ $ (-1231 (-566))) 25) (($ $ $) NIL)) (-2139 (($ $ (-566)) NIL) (($ $ (-1231 (-566))) NIL)) (-4068 (((-771) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4417))) (((-771) (-144) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-144) (-1099))))) (-1438 (($ $ $ (-566)) 84 (|has| $ (-6 -4418)))) (-3924 (($ $) 20)) (-3136 (((-538) $) NIL (|has| (-144) (-614 (-538))))) (-2489 (($ (-644 (-144))) NIL)) (-3716 (($ $ (-144)) NIL) (($ (-144) $) NIL) (($ $ $) 19) (($ (-644 $)) 85)) (-2479 (($ (-144)) NIL) (((-862) $) 31 (|has| (-144) (-613 (-862))))) (-3900 (((-112) $ $) NIL (|has| (-144) (-1099)))) (-3667 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4417)))) (-3019 (((-112) $ $) NIL (|has| (-144) (-850)))) (-2990 (((-112) $ $) NIL (|has| (-144) (-850)))) (-2952 (((-112) $ $) 17 (|has| (-144) (-1099)))) (-3004 (((-112) $ $) NIL (|has| (-144) (-850)))) (-2977 (((-112) $ $) 18 (|has| (-144) (-850)))) (-3002 (((-771) $) 16 (|has| $ (-6 -4417))))) +(((-594 |#1|) (-13 (-1143) (-10 -8 (-15 -4059 ((-566) $)))) (-566)) (T -594)) +((-4059 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-594 *3)) (-14 *3 *2)))) +(-13 (-1143) (-10 -8 (-15 -4059 ((-566) $)))) +((-3696 (((-2 (|:| |num| |#4|) (|:| |den| (-566))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-566))) |#4| |#2| (-1093 |#4|)) 32))) +(((-595 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3696 ((-2 (|:| |num| |#4|) (|:| |den| (-566))) |#4| |#2| (-1093 |#4|))) (-15 -3696 ((-2 (|:| |num| |#4|) (|:| |den| (-566))) |#4| |#2|))) (-793) (-850) (-558) (-949 |#3| |#1| |#2|)) (T -595)) +((-3696 (*1 *2 *3 *4) (-12 (-4 *5 (-793)) (-4 *4 (-850)) (-4 *6 (-558)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-566)))) (-5 *1 (-595 *5 *4 *6 *3)) (-4 *3 (-949 *6 *5 *4)))) (-3696 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1093 *3)) (-4 *3 (-949 *7 *6 *4)) (-4 *6 (-793)) (-4 *4 (-850)) (-4 *7 (-558)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-566)))) (-5 *1 (-595 *6 *4 *7 *3))))) +(-10 -7 (-15 -3696 ((-2 (|:| |num| |#4|) (|:| |den| (-566))) |#4| |#2| (-1093 |#4|))) (-15 -3696 ((-2 (|:| |num| |#4|) (|:| |den| (-566))) |#4| |#2|))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) 72)) (-2485 (((-644 (-1081)) $) NIL)) (-1338 (((-1175) $) NIL)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-3087 (($ $) NIL (|has| |#1| (-558)))) (-1716 (((-112) $) NIL (|has| |#1| (-558)))) (-3175 (($ $ (-566)) 58) (($ $ (-566) (-566)) 59)) (-1723 (((-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|))) $) 65)) (-1357 (($ $) 110)) (-3174 (((-3 $ "failed") $ $) NIL)) (-4084 (((-862) (-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|))) (-1026 (-843 (-566))) (-1175) |#1| (-409 (-566))) 243)) (-1882 (($ (-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|)))) 36)) (-1811 (($) NIL T CONST)) (-3565 (($ $) NIL)) (-3757 (((-3 $ "failed") $) NIL)) (-3088 (((-112) $) NIL)) (-1802 (((-566) $) 63) (((-566) $ (-566)) 64)) (-2264 (((-112) $) NIL)) (-2383 (($ $ (-921)) 84)) (-2278 (($ (-1 |#1| (-566)) $) 81)) (-3989 (((-112) $) 26)) (-2463 (($ |#1| (-566)) 22) (($ $ (-1081) (-566)) NIL) (($ $ (-644 (-1081)) (-644 (-566))) NIL)) (-3080 (($ (-1 |#1| |#1|) $) 76)) (-3786 (($ (-1026 (-843 (-566))) (-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|)))) 13)) (-2608 (($ $) NIL)) (-2622 ((|#1| $) NIL)) (-3151 (((-1157) $) NIL)) (-2390 (($ $) 163 (|has| |#1| (-38 (-409 (-566)))))) (-1337 (((-3 $ "failed") $ $ (-112)) 109)) (-3717 (($ $ $) 117)) (-4059 (((-1119) $) NIL)) (-1531 (((-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|))) $) 15)) (-1392 (((-1026 (-843 (-566))) $) 14)) (-2050 (($ $ (-566)) 47)) (-2976 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-3297 (((-1155 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-566)))))) (-4376 ((|#1| $ (-566)) 62) (($ $ $) NIL (|has| (-566) (-1111)))) (-3526 (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-771)) NIL (|has| |#1| (-15 * (|#1| (-566) |#1|)))) (($ $) 78 (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (-1630 (((-566) $) NIL)) (-4122 (($ $) 48)) (-2479 (((-862) $) NIL) (($ (-566)) 29) (($ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $) NIL (|has| |#1| (-558))) (($ |#1|) 28 (|has| |#1| (-172)))) (-3025 ((|#1| $ (-566)) 61)) (-2645 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1558 (((-771)) 39 T CONST)) (-2316 ((|#1| $) NIL)) (-1975 (($ $) 201 (|has| |#1| (-38 (-409 (-566)))))) (-4375 (($ $) 171 (|has| |#1| (-38 (-409 (-566)))))) (-3293 (($ $) 205 (|has| |#1| (-38 (-409 (-566)))))) (-1747 (($ $) 176 (|has| |#1| (-38 (-409 (-566)))))) (-3583 (($ $) 204 (|has| |#1| (-38 (-409 (-566)))))) (-2136 (($ $) 175 (|has| |#1| (-38 (-409 (-566)))))) (-2300 (($ $ (-409 (-566))) 179 (|has| |#1| (-38 (-409 (-566)))))) (-3529 (($ $ |#1|) 159 (|has| |#1| (-38 (-409 (-566)))))) (-4074 (($ $) 207 (|has| |#1| (-38 (-409 (-566)))))) (-1728 (($ $) 162 (|has| |#1| (-38 (-409 (-566)))))) (-4146 (($ $) 206 (|has| |#1| (-38 (-409 (-566)))))) (-2506 (($ $) 177 (|has| |#1| (-38 (-409 (-566)))))) (-1615 (($ $) 202 (|has| |#1| (-38 (-409 (-566)))))) (-3073 (($ $) 173 (|has| |#1| (-38 (-409 (-566)))))) (-4264 (($ $) 203 (|has| |#1| (-38 (-409 (-566)))))) (-4200 (($ $) 174 (|has| |#1| (-38 (-409 (-566)))))) (-3249 (($ $) 212 (|has| |#1| (-38 (-409 (-566)))))) (-1440 (($ $) 188 (|has| |#1| (-38 (-409 (-566)))))) (-4183 (($ $) 209 (|has| |#1| (-38 (-409 (-566)))))) (-3310 (($ $) 183 (|has| |#1| (-38 (-409 (-566)))))) (-4165 (($ $) 216 (|has| |#1| (-38 (-409 (-566)))))) (-4374 (($ $) 192 (|has| |#1| (-38 (-409 (-566)))))) (-2344 (($ $) 218 (|has| |#1| (-38 (-409 (-566)))))) (-2967 (($ $) 194 (|has| |#1| (-38 (-409 (-566)))))) (-3569 (($ $) 214 (|has| |#1| (-38 (-409 (-566)))))) (-1671 (($ $) 190 (|has| |#1| (-38 (-409 (-566)))))) (-3234 (($ $) 211 (|has| |#1| (-38 (-409 (-566)))))) (-1473 (($ $) 186 (|has| |#1| (-38 (-409 (-566)))))) (-3900 (((-112) $ $) NIL)) (-1333 (((-112) $ $) NIL (|has| |#1| (-558)))) (-3649 ((|#1| $ (-566)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-566)))) (|has| |#1| (-15 -2479 (|#1| (-1175))))))) (-2446 (($) 30 T CONST)) (-2459 (($) 40 T CONST)) (-2834 (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-771)) NIL (|has| |#1| (-15 * (|#1| (-566) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (-2952 (((-112) $ $) 74)) (-3077 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3065 (($ $) 92) (($ $ $) 73)) (-3052 (($ $ $) 89)) (** (($ $ (-921)) NIL) (($ $ (-771)) 112)) (* (($ (-921) $) 99) (($ (-771) $) 97) (($ (-566) $) 94) (($ $ $) 105) (($ $ |#1|) NIL) (($ |#1| $) 124) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))))) +(((-596 |#1|) (-13 (-1242 |#1| (-566)) (-10 -8 (-15 -3786 ($ (-1026 (-843 (-566))) (-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|))))) (-15 -1392 ((-1026 (-843 (-566))) $)) (-15 -1531 ((-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|))) $)) (-15 -1882 ($ (-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|))))) (-15 -3989 ((-112) $)) (-15 -2278 ($ (-1 |#1| (-566)) $)) (-15 -1337 ((-3 $ "failed") $ $ (-112))) (-15 -1357 ($ $)) (-15 -3717 ($ $ $)) (-15 -4084 ((-862) (-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|))) (-1026 (-843 (-566))) (-1175) |#1| (-409 (-566)))) (IF (|has| |#1| (-38 (-409 (-566)))) (PROGN (-15 -2390 ($ $)) (-15 -3529 ($ $ |#1|)) (-15 -2300 ($ $ (-409 (-566)))) (-15 -1728 ($ $)) (-15 -4074 ($ $)) (-15 -1747 ($ $)) (-15 -4200 ($ $)) (-15 -4375 ($ $)) (-15 -3073 ($ $)) (-15 -2136 ($ $)) (-15 -2506 ($ $)) (-15 -3310 ($ $)) (-15 -1473 ($ $)) (-15 -1440 ($ $)) (-15 -1671 ($ $)) (-15 -4374 ($ $)) (-15 -2967 ($ $)) (-15 -3293 ($ $)) (-15 -4264 ($ $)) (-15 -1975 ($ $)) (-15 -1615 ($ $)) (-15 -3583 ($ $)) (-15 -4146 ($ $)) (-15 -4183 ($ $)) (-15 -3234 ($ $)) (-15 -3249 ($ $)) (-15 -3569 ($ $)) (-15 -4165 ($ $)) (-15 -2344 ($ $))) |%noBranch|))) (-1049)) (T -596)) +((-3989 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-596 *3)) (-4 *3 (-1049)))) (-3786 (*1 *1 *2 *3) (-12 (-5 *2 (-1026 (-843 (-566)))) (-5 *3 (-1155 (-2 (|:| |k| (-566)) (|:| |c| *4)))) (-4 *4 (-1049)) (-5 *1 (-596 *4)))) (-1392 (*1 *2 *1) (-12 (-5 *2 (-1026 (-843 (-566)))) (-5 *1 (-596 *3)) (-4 *3 (-1049)))) (-1531 (*1 *2 *1) (-12 (-5 *2 (-1155 (-2 (|:| |k| (-566)) (|:| |c| *3)))) (-5 *1 (-596 *3)) (-4 *3 (-1049)))) (-1882 (*1 *1 *2) (-12 (-5 *2 (-1155 (-2 (|:| |k| (-566)) (|:| |c| *3)))) (-4 *3 (-1049)) (-5 *1 (-596 *3)))) (-2278 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-566))) (-4 *3 (-1049)) (-5 *1 (-596 *3)))) (-1337 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-596 *3)) (-4 *3 (-1049)))) (-1357 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-1049)))) (-3717 (*1 *1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-1049)))) (-4084 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1155 (-2 (|:| |k| (-566)) (|:| |c| *6)))) (-5 *4 (-1026 (-843 (-566)))) (-5 *5 (-1175)) (-5 *7 (-409 (-566))) (-4 *6 (-1049)) (-5 *2 (-862)) (-5 *1 (-596 *6)))) (-2390 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-3529 (*1 *1 *1 *2) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-2300 (*1 *1 *1 *2) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-596 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1049)))) (-1728 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-4074 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-1747 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-4200 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-4375 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-3073 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-2136 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-2506 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-3310 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-1473 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-1440 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-1671 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-4374 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-2967 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-3293 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-4264 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-1975 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-1615 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-3583 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-4146 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-4183 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-3234 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-3249 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-3569 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-4165 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-2344 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) +(-13 (-1242 |#1| (-566)) (-10 -8 (-15 -3786 ($ (-1026 (-843 (-566))) (-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|))))) (-15 -1392 ((-1026 (-843 (-566))) $)) (-15 -1531 ((-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|))) $)) (-15 -1882 ($ (-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|))))) (-15 -3989 ((-112) $)) (-15 -2278 ($ (-1 |#1| (-566)) $)) (-15 -1337 ((-3 $ "failed") $ $ (-112))) (-15 -1357 ($ $)) (-15 -3717 ($ $ $)) (-15 -4084 ((-862) (-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|))) (-1026 (-843 (-566))) (-1175) |#1| (-409 (-566)))) (IF (|has| |#1| (-38 (-409 (-566)))) (PROGN (-15 -2390 ($ $)) (-15 -3529 ($ $ |#1|)) (-15 -2300 ($ $ (-409 (-566)))) (-15 -1728 ($ $)) (-15 -4074 ($ $)) (-15 -1747 ($ $)) (-15 -4200 ($ $)) (-15 -4375 ($ $)) (-15 -3073 ($ $)) (-15 -2136 ($ $)) (-15 -2506 ($ $)) (-15 -3310 ($ $)) (-15 -1473 ($ $)) (-15 -1440 ($ $)) (-15 -1671 ($ $)) (-15 -4374 ($ $)) (-15 -2967 ($ $)) (-15 -3293 ($ $)) (-15 -4264 ($ $)) (-15 -1975 ($ $)) (-15 -1615 ($ $)) (-15 -3583 ($ $)) (-15 -4146 ($ $)) (-15 -4183 ($ $)) (-15 -3234 ($ $)) (-15 -3249 ($ $)) (-15 -3569 ($ $)) (-15 -4165 ($ $)) (-15 -2344 ($ $))) |%noBranch|))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-3087 (($ $) NIL (|has| |#1| (-558)))) (-1716 (((-112) $) NIL (|has| |#1| (-558)))) (-3174 (((-3 $ "failed") $ $) NIL)) (-1882 (($ (-1155 |#1|)) 9)) (-1811 (($) NIL T CONST)) (-3757 (((-3 $ "failed") $) 48)) (-3088 (((-112) $) 58)) (-1802 (((-771) $) 63) (((-771) $ (-771)) 62)) (-2264 (((-112) $) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2976 (((-3 $ "failed") $ $) 50 (|has| |#1| (-558)))) (-2479 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL (|has| |#1| (-558)))) (-3866 (((-1155 |#1|) $) 29)) (-1558 (((-771)) 57 T CONST)) (-3900 (((-112) $ $) NIL)) (-1333 (((-112) $ $) NIL (|has| |#1| (-558)))) (-2446 (($) 10 T CONST)) (-2459 (($) 14 T CONST)) (-2952 (((-112) $ $) 28)) (-3065 (($ $) 36) (($ $ $) 16)) (-3052 (($ $ $) 31)) (** (($ $ (-921)) NIL) (($ $ (-771)) 55)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 40) (($ $ $) 34) (($ |#1| $) 43) (($ $ |#1|) 44) (($ $ (-566)) 42))) +(((-597 |#1|) (-13 (-1049) (-10 -8 (-15 -3866 ((-1155 |#1|) $)) (-15 -1882 ($ (-1155 |#1|))) (-15 -3088 ((-112) $)) (-15 -1802 ((-771) $)) (-15 -1802 ((-771) $ (-771))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-566))) (IF (|has| |#1| (-558)) (-6 (-558)) |%noBranch|))) (-1049)) (T -597)) +((-3866 (*1 *2 *1) (-12 (-5 *2 (-1155 *3)) (-5 *1 (-597 *3)) (-4 *3 (-1049)))) (-1882 (*1 *1 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-597 *3)))) (-3088 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-597 *3)) (-4 *3 (-1049)))) (-1802 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-597 *3)) (-4 *3 (-1049)))) (-1802 (*1 *2 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-597 *3)) (-4 *3 (-1049)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-1049)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-597 *2)) (-4 *2 (-1049)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-597 *3)) (-4 *3 (-1049))))) +(-13 (-1049) (-10 -8 (-15 -3866 ((-1155 |#1|) $)) (-15 -1882 ($ (-1155 |#1|))) (-15 -3088 ((-112) $)) (-15 -1802 ((-771) $)) (-15 -1802 ((-771) $ (-771))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-566))) (IF (|has| |#1| (-558)) (-6 (-558)) |%noBranch|))) +((-3080 (((-601 |#2|) (-1 |#2| |#1|) (-601 |#1|)) 15))) +(((-598 |#1| |#2|) (-10 -7 (-15 -3080 ((-601 |#2|) (-1 |#2| |#1|) (-601 |#1|)))) (-1214) (-1214)) (T -598)) +((-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-601 *5)) (-4 *5 (-1214)) (-4 *6 (-1214)) (-5 *2 (-601 *6)) (-5 *1 (-598 *5 *6))))) +(-10 -7 (-15 -3080 ((-601 |#2|) (-1 |#2| |#1|) (-601 |#1|)))) +((-3080 (((-1155 |#3|) (-1 |#3| |#1| |#2|) (-601 |#1|) (-1155 |#2|)) 20) (((-1155 |#3|) (-1 |#3| |#1| |#2|) (-1155 |#1|) (-601 |#2|)) 19) (((-601 |#3|) (-1 |#3| |#1| |#2|) (-601 |#1|) (-601 |#2|)) 18))) +(((-599 |#1| |#2| |#3|) (-10 -7 (-15 -3080 ((-601 |#3|) (-1 |#3| |#1| |#2|) (-601 |#1|) (-601 |#2|))) (-15 -3080 ((-1155 |#3|) (-1 |#3| |#1| |#2|) (-1155 |#1|) (-601 |#2|))) (-15 -3080 ((-1155 |#3|) (-1 |#3| |#1| |#2|) (-601 |#1|) (-1155 |#2|)))) (-1214) (-1214) (-1214)) (T -599)) +((-3080 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-601 *6)) (-5 *5 (-1155 *7)) (-4 *6 (-1214)) (-4 *7 (-1214)) (-4 *8 (-1214)) (-5 *2 (-1155 *8)) (-5 *1 (-599 *6 *7 *8)))) (-3080 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1155 *6)) (-5 *5 (-601 *7)) (-4 *6 (-1214)) (-4 *7 (-1214)) (-4 *8 (-1214)) (-5 *2 (-1155 *8)) (-5 *1 (-599 *6 *7 *8)))) (-3080 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-601 *6)) (-5 *5 (-601 *7)) (-4 *6 (-1214)) (-4 *7 (-1214)) (-4 *8 (-1214)) (-5 *2 (-601 *8)) (-5 *1 (-599 *6 *7 *8))))) +(-10 -7 (-15 -3080 ((-601 |#3|) (-1 |#3| |#1| |#2|) (-601 |#1|) (-601 |#2|))) (-15 -3080 ((-1155 |#3|) (-1 |#3| |#1| |#2|) (-1155 |#1|) (-601 |#2|))) (-15 -3080 ((-1155 |#3|) (-1 |#3| |#1| |#2|) (-601 |#1|) (-1155 |#2|)))) +((-3813 ((|#3| |#3| (-644 (-612 |#3|)) (-644 (-1175))) 57)) (-2876 (((-169 |#2|) |#3|) 121)) (-1713 ((|#3| (-169 |#2|)) 46)) (-2491 ((|#2| |#3|) 21)) (-2827 ((|#3| |#2|) 35))) +(((-600 |#1| |#2| |#3|) (-10 -7 (-15 -1713 (|#3| (-169 |#2|))) (-15 -2491 (|#2| |#3|)) (-15 -2827 (|#3| |#2|)) (-15 -2876 ((-169 |#2|) |#3|)) (-15 -3813 (|#3| |#3| (-644 (-612 |#3|)) (-644 (-1175))))) (-558) (-13 (-432 |#1|) (-1002) (-1199)) (-13 (-432 (-169 |#1|)) (-1002) (-1199))) (T -600)) +((-3813 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-644 (-612 *2))) (-5 *4 (-644 (-1175))) (-4 *2 (-13 (-432 (-169 *5)) (-1002) (-1199))) (-4 *5 (-558)) (-5 *1 (-600 *5 *6 *2)) (-4 *6 (-13 (-432 *5) (-1002) (-1199))))) (-2876 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-169 *5)) (-5 *1 (-600 *4 *5 *3)) (-4 *5 (-13 (-432 *4) (-1002) (-1199))) (-4 *3 (-13 (-432 (-169 *4)) (-1002) (-1199))))) (-2827 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *2 (-13 (-432 (-169 *4)) (-1002) (-1199))) (-5 *1 (-600 *4 *3 *2)) (-4 *3 (-13 (-432 *4) (-1002) (-1199))))) (-2491 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *2 (-13 (-432 *4) (-1002) (-1199))) (-5 *1 (-600 *4 *2 *3)) (-4 *3 (-13 (-432 (-169 *4)) (-1002) (-1199))))) (-1713 (*1 *2 *3) (-12 (-5 *3 (-169 *5)) (-4 *5 (-13 (-432 *4) (-1002) (-1199))) (-4 *4 (-558)) (-4 *2 (-13 (-432 (-169 *4)) (-1002) (-1199))) (-5 *1 (-600 *4 *5 *2))))) +(-10 -7 (-15 -1713 (|#3| (-169 |#2|))) (-15 -2491 (|#2| |#3|)) (-15 -2827 (|#3| |#2|)) (-15 -2876 ((-169 |#2|) |#3|)) (-15 -3813 (|#3| |#3| (-644 (-612 |#3|)) (-644 (-1175))))) +((-3543 (($ (-1 (-112) |#1|) $) 17)) (-3080 (($ (-1 |#1| |#1|) $) NIL)) (-3473 (($ (-1 |#1| |#1|) |#1|) 9)) (-3520 (($ (-1 (-112) |#1|) $) 13)) (-3532 (($ (-1 (-112) |#1|) $) 15)) (-2489 (((-1155 |#1|) $) 18)) (-2479 (((-862) $) NIL))) +(((-601 |#1|) (-13 (-613 (-862)) (-10 -8 (-15 -3080 ($ (-1 |#1| |#1|) $)) (-15 -3520 ($ (-1 (-112) |#1|) $)) (-15 -3532 ($ (-1 (-112) |#1|) $)) (-15 -3543 ($ (-1 (-112) |#1|) $)) (-15 -3473 ($ (-1 |#1| |#1|) |#1|)) (-15 -2489 ((-1155 |#1|) $)))) (-1214)) (T -601)) +((-3080 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1214)) (-5 *1 (-601 *3)))) (-3520 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1214)) (-5 *1 (-601 *3)))) (-3532 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1214)) (-5 *1 (-601 *3)))) (-3543 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1214)) (-5 *1 (-601 *3)))) (-3473 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1214)) (-5 *1 (-601 *3)))) (-2489 (*1 *2 *1) (-12 (-5 *2 (-1155 *3)) (-5 *1 (-601 *3)) (-4 *3 (-1214))))) +(-13 (-613 (-862)) (-10 -8 (-15 -3080 ($ (-1 |#1| |#1|) $)) (-15 -3520 ($ (-1 (-112) |#1|) $)) (-15 -3532 ($ (-1 (-112) |#1|) $)) (-15 -3543 ($ (-1 (-112) |#1|) $)) (-15 -3473 ($ (-1 |#1| |#1|) |#1|)) (-15 -2489 ((-1155 |#1|) $)))) +((-2986 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2078 (($ (-771)) NIL (|has| |#1| (-23)))) (-2462 (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4418)))) (-4163 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-850)))) (-2893 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4418))) (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-850))))) (-1374 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-850)))) (-1453 (((-112) $ (-771)) NIL)) (-3901 ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4418))) ((|#1| $ (-1231 (-566)) |#1|) NIL (|has| $ (-6 -4418)))) (-3543 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-1811 (($) NIL T CONST)) (-2273 (($ $) NIL (|has| $ (-6 -4418)))) (-3877 (($ $) NIL)) (-4111 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-2628 (($ |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-1838 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4417)))) (-3719 ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4418)))) (-3653 ((|#1| $ (-566)) NIL)) (-4000 (((-566) (-1 (-112) |#1|) $) NIL) (((-566) |#1| $) NIL (|has| |#1| (-1099))) (((-566) |#1| $ (-566)) NIL (|has| |#1| (-1099)))) (-3872 (((-644 |#1|) $) NIL (|has| $ (-6 -4417)))) (-3596 (((-689 |#1|) $ $) NIL (|has| |#1| (-1049)))) (-4259 (($ (-771) |#1|) NIL)) (-2756 (((-112) $ (-771)) NIL)) (-2755 (((-566) $) NIL (|has| (-566) (-850)))) (-1920 (($ $ $) NIL (|has| |#1| (-850)))) (-1330 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-850)))) (-4227 (((-644 |#1|) $) NIL (|has| $ (-6 -4417)))) (-1688 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-3831 (((-566) $) NIL (|has| (-566) (-850)))) (-3038 (($ $ $) NIL (|has| |#1| (-850)))) (-3708 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1600 ((|#1| $) NIL (-12 (|has| |#1| (-1002)) (|has| |#1| (-1049))))) (-4106 (((-112) $ (-771)) NIL)) (-4332 ((|#1| $) NIL (-12 (|has| |#1| (-1002)) (|has| |#1| (-1049))))) (-3151 (((-1157) $) NIL (|has| |#1| (-1099)))) (-4271 (($ |#1| $ (-566)) NIL) (($ $ $ (-566)) NIL)) (-3780 (((-644 (-566)) $) NIL)) (-1605 (((-112) (-566) $) NIL)) (-4059 (((-1119) $) NIL (|has| |#1| (-1099)))) (-4080 ((|#1| $) NIL (|has| (-566) (-850)))) (-2688 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4079 (($ $ |#1|) NIL (|has| $ (-6 -4418)))) (-3966 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1844 (((-112) $ $) NIL)) (-2210 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-4185 (((-644 |#1|) $) NIL)) (-2788 (((-112) $) NIL)) (-1737 (($) NIL)) (-4376 ((|#1| $ (-566) |#1|) NIL) ((|#1| $ (-566)) NIL) (($ $ (-1231 (-566))) NIL)) (-2555 ((|#1| $ $) NIL (|has| |#1| (-1049)))) (-2139 (($ $ (-566)) NIL) (($ $ (-1231 (-566))) NIL)) (-2676 (($ $ $) NIL (|has| |#1| (-1049)))) (-4068 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-1438 (($ $ $ (-566)) NIL (|has| $ (-6 -4418)))) (-3924 (($ $) NIL)) (-3136 (((-538) $) NIL (|has| |#1| (-614 (-538))))) (-2489 (($ (-644 |#1|)) NIL)) (-3716 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-644 $)) NIL)) (-2479 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-3900 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3667 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-3019 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2990 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2952 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3004 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-850)))) (-3065 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3052 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-566) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-726))) (($ $ |#1|) NIL (|has| |#1| (-726)))) (-3002 (((-771) $) NIL (|has| $ (-6 -4417))))) +(((-602 |#1| |#2|) (-1262 |#1|) (-1214) (-566)) (T -602)) +NIL +(-1262 |#1|) +((-2462 (((-1269) $ |#2| |#2|) 36)) (-2755 ((|#2| $) 23)) (-3831 ((|#2| $) 21)) (-3708 (($ (-1 |#3| |#3|) $) 32)) (-3080 (($ (-1 |#3| |#3|) $) 30)) (-4080 ((|#3| $) 26)) (-4079 (($ $ |#3|) 33)) (-2210 (((-112) |#3| $) 17)) (-4185 (((-644 |#3|) $) 15)) (-4376 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) +(((-603 |#1| |#2| |#3|) (-10 -8 (-15 -2462 ((-1269) |#1| |#2| |#2|)) (-15 -4079 (|#1| |#1| |#3|)) (-15 -4080 (|#3| |#1|)) (-15 -2755 (|#2| |#1|)) (-15 -3831 (|#2| |#1|)) (-15 -2210 ((-112) |#3| |#1|)) (-15 -4185 ((-644 |#3|) |#1|)) (-15 -4376 (|#3| |#1| |#2|)) (-15 -4376 (|#3| |#1| |#2| |#3|)) (-15 -3708 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3080 (|#1| (-1 |#3| |#3|) |#1|))) (-604 |#2| |#3|) (-1099) (-1214)) (T -603)) +NIL +(-10 -8 (-15 -2462 ((-1269) |#1| |#2| |#2|)) (-15 -4079 (|#1| |#1| |#3|)) (-15 -4080 (|#3| |#1|)) (-15 -2755 (|#2| |#1|)) (-15 -3831 (|#2| |#1|)) (-15 -2210 ((-112) |#3| |#1|)) (-15 -4185 ((-644 |#3|) |#1|)) (-15 -4376 (|#3| |#1| |#2|)) (-15 -4376 (|#3| |#1| |#2| |#3|)) (-15 -3708 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3080 (|#1| (-1 |#3| |#3|) |#1|))) +((-2986 (((-112) $ $) 19 (|has| |#2| (-1099)))) (-2462 (((-1269) $ |#1| |#1|) 41 (|has| $ (-6 -4418)))) (-1453 (((-112) $ (-771)) 8)) (-3901 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4418)))) (-1811 (($) 7 T CONST)) (-3719 ((|#2| $ |#1| |#2|) 54 (|has| $ (-6 -4418)))) (-3653 ((|#2| $ |#1|) 52)) (-3872 (((-644 |#2|) $) 31 (|has| $ (-6 -4417)))) (-2756 (((-112) $ (-771)) 9)) (-2755 ((|#1| $) 44 (|has| |#1| (-850)))) (-4227 (((-644 |#2|) $) 30 (|has| $ (-6 -4417)))) (-1688 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1099)) (|has| $ (-6 -4417))))) (-3831 ((|#1| $) 45 (|has| |#1| (-850)))) (-3708 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#2| |#2|) $) 36)) (-4106 (((-112) $ (-771)) 10)) (-3151 (((-1157) $) 22 (|has| |#2| (-1099)))) (-3780 (((-644 |#1|) $) 47)) (-1605 (((-112) |#1| $) 48)) (-4059 (((-1119) $) 21 (|has| |#2| (-1099)))) (-4080 ((|#2| $) 43 (|has| |#1| (-850)))) (-4079 (($ $ |#2|) 42 (|has| $ (-6 -4418)))) (-3966 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#2|))) 27 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) 26 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) 24 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))) (-1844 (((-112) $ $) 14)) (-2210 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1099))))) (-4185 (((-644 |#2|) $) 49)) (-2788 (((-112) $) 11)) (-1737 (($) 12)) (-4376 ((|#2| $ |#1| |#2|) 51) ((|#2| $ |#1|) 50)) (-4068 (((-771) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4417))) (((-771) |#2| $) 29 (-12 (|has| |#2| (-1099)) (|has| $ (-6 -4417))))) (-3924 (($ $) 13)) (-2479 (((-862) $) 18 (|has| |#2| (-613 (-862))))) (-3900 (((-112) $ $) 23 (|has| |#2| (-1099)))) (-3667 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4417)))) (-2952 (((-112) $ $) 20 (|has| |#2| (-1099)))) (-3002 (((-771) $) 6 (|has| $ (-6 -4417))))) +(((-604 |#1| |#2|) (-140) (-1099) (-1214)) (T -604)) +((-4185 (*1 *2 *1) (-12 (-4 *1 (-604 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1214)) (-5 *2 (-644 *4)))) (-1605 (*1 *2 *3 *1) (-12 (-4 *1 (-604 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1214)) (-5 *2 (-112)))) (-3780 (*1 *2 *1) (-12 (-4 *1 (-604 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1214)) (-5 *2 (-644 *3)))) (-2210 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4417)) (-4 *1 (-604 *4 *3)) (-4 *4 (-1099)) (-4 *3 (-1214)) (-4 *3 (-1099)) (-5 *2 (-112)))) (-3831 (*1 *2 *1) (-12 (-4 *1 (-604 *2 *3)) (-4 *3 (-1214)) (-4 *2 (-1099)) (-4 *2 (-850)))) (-2755 (*1 *2 *1) (-12 (-4 *1 (-604 *2 *3)) (-4 *3 (-1214)) (-4 *2 (-1099)) (-4 *2 (-850)))) (-4080 (*1 *2 *1) (-12 (-4 *1 (-604 *3 *2)) (-4 *3 (-1099)) (-4 *3 (-850)) (-4 *2 (-1214)))) (-4079 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4418)) (-4 *1 (-604 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1214)))) (-2462 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4418)) (-4 *1 (-604 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1214)) (-5 *2 (-1269))))) +(-13 (-491 |t#2|) (-289 |t#1| |t#2|) (-10 -8 (-15 -4185 ((-644 |t#2|) $)) (-15 -1605 ((-112) |t#1| $)) (-15 -3780 ((-644 |t#1|) $)) (IF (|has| |t#2| (-1099)) (IF (|has| $ (-6 -4417)) (-15 -2210 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-850)) (PROGN (-15 -3831 (|t#1| $)) (-15 -2755 (|t#1| $)) (-15 -4080 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4418)) (PROGN (-15 -4079 ($ $ |t#2|)) (-15 -2462 ((-1269) $ |t#1| |t#1|))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#2| (-1099)) ((-613 (-862)) -2809 (|has| |#2| (-1099)) (|has| |#2| (-613 (-862)))) ((-287 |#1| |#2|) . T) ((-289 |#1| |#2|) . T) ((-310 |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) ((-491 |#2|) . T) ((-516 |#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) ((-1099) |has| |#2| (-1099)) ((-1214) . T)) +((-2479 (((-862) $) 19) (($ (-129)) 13) (((-129) $) 14))) +(((-605) (-13 (-613 (-862)) (-492 (-129)))) (T -605)) +NIL +(-13 (-613 (-862)) (-492 (-129))) +((-2986 (((-112) $ $) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) NIL) (($ (-1180)) NIL) (((-1180) $) NIL) (((-1213) $) 14) (($ (-644 (-1213))) 13)) (-4198 (((-644 (-1213)) $) 10)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-606) (-13 (-1082) (-613 (-1213)) (-10 -8 (-15 -2479 ($ (-644 (-1213)))) (-15 -4198 ((-644 (-1213)) $))))) (T -606)) +((-2479 (*1 *1 *2) (-12 (-5 *2 (-644 (-1213))) (-5 *1 (-606)))) (-4198 (*1 *2 *1) (-12 (-5 *2 (-644 (-1213))) (-5 *1 (-606))))) +(-13 (-1082) (-613 (-1213)) (-10 -8 (-15 -2479 ($ (-644 (-1213)))) (-15 -4198 ((-644 (-1213)) $)))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-1732 (((-3 $ "failed")) NIL (-2809 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-3174 (((-3 $ "failed") $ $) NIL)) (-2603 (((-1264 (-689 |#1|))) NIL (|has| |#2| (-419 |#1|))) (((-1264 (-689 |#1|)) (-1264 $)) NIL (|has| |#2| (-369 |#1|)))) (-3010 (((-1264 $)) NIL (|has| |#2| (-369 |#1|)))) (-1811 (($) NIL T CONST)) (-2738 (((-3 (-2 (|:| |particular| $) (|:| -1419 (-644 $))) "failed")) NIL (-2809 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-1690 (((-3 $ "failed")) NIL (-2809 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-4223 (((-689 |#1|)) NIL (|has| |#2| (-419 |#1|))) (((-689 |#1|) (-1264 $)) NIL (|has| |#2| (-369 |#1|)))) (-2935 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-3030 (((-689 |#1|) $) NIL (|has| |#2| (-419 |#1|))) (((-689 |#1|) $ (-1264 $)) NIL (|has| |#2| (-369 |#1|)))) (-4347 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-4139 (((-1171 (-952 |#1|))) NIL (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-365))))) (-4370 (($ $ (-921)) NIL)) (-2190 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-3251 (((-1171 |#1|) $) NIL (-2809 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-1792 ((|#1|) NIL (|has| |#2| (-419 |#1|))) ((|#1| (-1264 $)) NIL (|has| |#2| (-369 |#1|)))) (-1973 (((-1171 |#1|) $) NIL (|has| |#2| (-369 |#1|)))) (-3156 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2422 (($ (-1264 |#1|)) NIL (|has| |#2| (-419 |#1|))) (($ (-1264 |#1|) (-1264 $)) NIL (|has| |#2| (-369 |#1|)))) (-3757 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-2299 (((-921)) NIL (|has| |#2| (-369 |#1|)))) (-2116 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1595 (($ $ (-921)) NIL)) (-2895 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2751 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2185 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2784 (((-3 (-2 (|:| |particular| $) (|:| -1419 (-644 $))) "failed")) NIL (-2809 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-4320 (((-3 $ "failed")) NIL (-2809 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-1434 (((-689 |#1|)) NIL (|has| |#2| (-419 |#1|))) (((-689 |#1|) (-1264 $)) NIL (|has| |#2| (-369 |#1|)))) (-1978 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-1390 (((-689 |#1|) $) NIL (|has| |#2| (-419 |#1|))) (((-689 |#1|) $ (-1264 $)) NIL (|has| |#2| (-369 |#1|)))) (-4252 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-1509 (((-1171 (-952 |#1|))) NIL (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-365))))) (-3681 (($ $ (-921)) NIL)) (-1782 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-4066 (((-1171 |#1|) $) NIL (-2809 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-2659 ((|#1|) NIL (|has| |#2| (-419 |#1|))) ((|#1| (-1264 $)) NIL (|has| |#2| (-369 |#1|)))) (-2899 (((-1171 |#1|) $) NIL (|has| |#2| (-369 |#1|)))) (-3280 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3151 (((-1157) $) NIL)) (-1698 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2287 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3093 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-4059 (((-1119) $) NIL)) (-3753 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-4376 ((|#1| $ (-566)) NIL (|has| |#2| (-419 |#1|)))) (-3747 (((-689 |#1|) (-1264 $)) NIL (|has| |#2| (-419 |#1|))) (((-1264 |#1|) $) NIL (|has| |#2| (-419 |#1|))) (((-689 |#1|) (-1264 $) (-1264 $)) NIL (|has| |#2| (-369 |#1|))) (((-1264 |#1|) $ (-1264 $)) NIL (|has| |#2| (-369 |#1|)))) (-3136 (($ (-1264 |#1|)) NIL (|has| |#2| (-419 |#1|))) (((-1264 |#1|) $) NIL (|has| |#2| (-419 |#1|)))) (-2880 (((-644 (-952 |#1|))) NIL (|has| |#2| (-419 |#1|))) (((-644 (-952 |#1|)) (-1264 $)) NIL (|has| |#2| (-369 |#1|)))) (-3815 (($ $ $) NIL)) (-3418 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2479 (((-862) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-3900 (((-112) $ $) NIL)) (-1419 (((-1264 $)) NIL (|has| |#2| (-419 |#1|)))) (-3170 (((-644 (-1264 |#1|))) NIL (-2809 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-1469 (($ $ $ $) NIL)) (-1429 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-4029 (($ (-689 |#1|) $) NIL (|has| |#2| (-419 |#1|)))) (-1596 (($ $ $) NIL)) (-1478 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3492 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3893 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2446 (($) NIL T CONST)) (-2952 (((-112) $ $) NIL)) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) NIL)) (** (($ $ (-921)) 24)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) +(((-607 |#1| |#2|) (-13 (-744 |#1|) (-613 |#2|) (-10 -8 (-15 -2479 ($ |#2|)) (IF (|has| |#2| (-419 |#1|)) (-6 (-419 |#1|)) |%noBranch|) (IF (|has| |#2| (-369 |#1|)) (-6 (-369 |#1|)) |%noBranch|))) (-172) (-744 |#1|)) (T -607)) +((-2479 (*1 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-607 *3 *2)) (-4 *2 (-744 *3))))) +(-13 (-744 |#1|) (-613 |#2|) (-10 -8 (-15 -2479 ($ |#2|)) (IF (|has| |#2| (-419 |#1|)) (-6 (-419 |#1|)) |%noBranch|) (IF (|has| |#2| (-369 |#1|)) (-6 (-369 |#1|)) |%noBranch|))) +((-2986 (((-112) $ $) NIL)) (-2915 (((-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) $ (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|))) 39)) (-4250 (($ (-644 (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)))) NIL) (($) NIL)) (-2462 (((-1269) $ (-1157) (-1157)) NIL (|has| $ (-6 -4418)))) (-1453 (((-112) $ (-771)) NIL)) (-3901 ((|#1| $ (-1157) |#1|) 49)) (-4364 (($ (-1 (-112) (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|))) $) NIL (|has| $ (-6 -4417)))) (-3543 (($ (-1 (-112) (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|))) $) NIL (|has| $ (-6 -4417)))) (-2377 (((-3 |#1| "failed") (-1157) $) 52)) (-1811 (($) NIL T CONST)) (-2517 (($ $ (-1157)) 25)) (-4111 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (-1099))))) (-2295 (((-3 |#1| "failed") (-1157) $) 53) (($ (-1 (-112) (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|))) $) NIL (|has| $ (-6 -4417))) (($ (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) $) NIL (|has| $ (-6 -4417)))) (-2628 (($ (-1 (-112) (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|))) $) NIL (|has| $ (-6 -4417))) (($ (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (-1099))))) (-1838 (((-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (-1 (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|))) $) NIL (|has| $ (-6 -4417))) (((-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (-1 (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|))) $ (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|))) NIL (|has| $ (-6 -4417))) (((-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (-1 (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|))) $ (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|))) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (-1099))))) (-2052 (((-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) $) 38)) (-3719 ((|#1| $ (-1157) |#1|) NIL (|has| $ (-6 -4418)))) (-3653 ((|#1| $ (-1157)) NIL)) (-3872 (((-644 |#1|) $) NIL (|has| $ (-6 -4417))) (((-644 (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|))) $) NIL (|has| $ (-6 -4417)))) (-2611 (($ $) 54)) (-3516 (($ (-390)) 23) (($ (-390) (-1157)) 22)) (-2598 (((-390) $) 40)) (-2756 (((-112) $ (-771)) NIL)) (-2755 (((-1157) $) NIL (|has| (-1157) (-850)))) (-4227 (((-644 |#1|) $) NIL (|has| $ (-6 -4417))) (((-644 (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|))) $) NIL (|has| $ (-6 -4417)))) (-1688 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099)))) (((-112) (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (-1099))))) (-3831 (((-1157) $) NIL (|has| (-1157) (-850)))) (-3708 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4418))) (($ (-1 (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|))) $) NIL (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|))) $) NIL)) (-4106 (((-112) $ (-771)) NIL)) (-3151 (((-1157) $) NIL)) (-1467 (((-644 (-1157)) $) 45)) (-3983 (((-112) (-1157) $) NIL)) (-3522 (((-1157) $) 41)) (-4255 (((-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) $) NIL)) (-4354 (($ (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) $) NIL)) (-3780 (((-644 (-1157)) $) NIL)) (-1605 (((-112) (-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-4080 ((|#1| $) NIL (|has| (-1157) (-850)))) (-2688 (((-3 (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) "failed") (-1 (-112) (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|))) $) NIL)) (-4079 (($ $ |#1|) NIL (|has| $ (-6 -4418)))) (-4097 (((-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) $) NIL)) (-3966 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-112) (-1 (-112) (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|))) $) NIL (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|))) (-644 (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)))) NIL (-12 (|has| (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (-310 (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)))) (|has| (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (-1099)))) (($ $ (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|))) NIL (-12 (|has| (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (-310 (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)))) (|has| (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (-1099)))) (($ $ (-295 (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)))) NIL (-12 (|has| (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (-310 (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)))) (|has| (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (-1099)))) (($ $ (-644 (-295 (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|))))) NIL (-12 (|has| (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (-310 (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)))) (|has| (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (-1099))))) (-1844 (((-112) $ $) NIL)) (-2210 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-4185 (((-644 |#1|) $) NIL)) (-2788 (((-112) $) NIL)) (-1737 (($) 43)) (-4376 ((|#1| $ (-1157) |#1|) NIL) ((|#1| $ (-1157)) 48)) (-1797 (($ (-644 (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)))) NIL) (($) NIL)) (-4068 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099)))) (((-771) (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (-1099)))) (((-771) (-1 (-112) (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|))) $) NIL (|has| $ (-6 -4417)))) (-3924 (($ $) NIL)) (-3136 (((-538) $) NIL (|has| (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (-614 (-538))))) (-2489 (($ (-644 (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)))) NIL)) (-2479 (((-862) $) 21)) (-2313 (($ $) 26)) (-3900 (((-112) $ $) NIL)) (-2471 (($ (-644 (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)))) NIL)) (-3667 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-112) (-1 (-112) (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|))) $) NIL (|has| $ (-6 -4417)))) (-2952 (((-112) $ $) 20)) (-3002 (((-771) $) 47 (|has| $ (-6 -4417))))) +(((-608 |#1|) (-13 (-366 (-390) (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|))) (-1190 (-1157) |#1|) (-10 -8 (-6 -4417) (-15 -2611 ($ $)))) (-1099)) (T -608)) +((-2611 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-1099))))) +(-13 (-366 (-390) (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|))) (-1190 (-1157) |#1|) (-10 -8 (-6 -4417) (-15 -2611 ($ $)))) +((-1688 (((-112) (-2 (|:| -1928 |#2|) (|:| -2806 |#3|)) $) 16)) (-1467 (((-644 |#2|) $) 20)) (-3983 (((-112) |#2| $) 12))) +(((-609 |#1| |#2| |#3|) (-10 -8 (-15 -1467 ((-644 |#2|) |#1|)) (-15 -3983 ((-112) |#2| |#1|)) (-15 -1688 ((-112) (-2 (|:| -1928 |#2|) (|:| -2806 |#3|)) |#1|))) (-610 |#2| |#3|) (-1099) (-1099)) (T -609)) +NIL +(-10 -8 (-15 -1467 ((-644 |#2|) |#1|)) (-15 -3983 ((-112) |#2| |#1|)) (-15 -1688 ((-112) (-2 (|:| -1928 |#2|) (|:| -2806 |#3|)) |#1|))) +((-2986 (((-112) $ $) 19 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (-1453 (((-112) $ (-771)) 8)) (-4364 (($ (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) 46 (|has| $ (-6 -4417)))) (-3543 (($ (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) 56 (|has| $ (-6 -4417)))) (-2377 (((-3 |#2| "failed") |#1| $) 62)) (-1811 (($) 7 T CONST)) (-4111 (($ $) 59 (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) (|has| $ (-6 -4417))))) (-2295 (($ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) 48 (|has| $ (-6 -4417))) (($ (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) 47 (|has| $ (-6 -4417))) (((-3 |#2| "failed") |#1| $) 63)) (-2628 (($ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) 58 (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) (|has| $ (-6 -4417)))) (($ (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) 55 (|has| $ (-6 -4417)))) (-1838 (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) 57 (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) (|has| $ (-6 -4417)))) (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) 54 (|has| $ (-6 -4417))) (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) 53 (|has| $ (-6 -4417)))) (-3872 (((-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) 31 (|has| $ (-6 -4417)))) (-2756 (((-112) $ (-771)) 9)) (-4227 (((-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) 30 (|has| $ (-6 -4417)))) (-1688 (((-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) 28 (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) (|has| $ (-6 -4417))))) (-3708 (($ (-1 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) 35 (|has| $ (-6 -4418)))) (-3080 (($ (-1 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) 36)) (-4106 (((-112) $ (-771)) 10)) (-3151 (((-1157) $) 22 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (-1467 (((-644 |#1|) $) 64)) (-3983 (((-112) |#1| $) 65)) (-4255 (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) 40)) (-4354 (($ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) 41)) (-4059 (((-1119) $) 21 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (-2688 (((-3 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) "failed") (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) 52)) (-4097 (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) 42)) (-3966 (((-112) (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) 33 (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))))) 27 (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (($ $ (-295 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) 26 (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (($ $ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) 25 (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (($ $ (-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) (-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) 24 (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099))))) (-1844 (((-112) $ $) 14)) (-2788 (((-112) $) 11)) (-1737 (($) 12)) (-1797 (($) 50) (($ (-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) 49)) (-4068 (((-771) (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) 32 (|has| $ (-6 -4417))) (((-771) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) 29 (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) (|has| $ (-6 -4417))))) (-3924 (($ $) 13)) (-3136 (((-538) $) 60 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-614 (-538))))) (-2489 (($ (-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) 51)) (-2479 (((-862) $) 18 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-613 (-862))))) (-3900 (((-112) $ $) 23 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (-2471 (($ (-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) 43)) (-3667 (((-112) (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) 34 (|has| $ (-6 -4417)))) (-2952 (((-112) $ $) 20 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (-3002 (((-771) $) 6 (|has| $ (-6 -4417))))) +(((-610 |#1| |#2|) (-140) (-1099) (-1099)) (T -610)) +((-3983 (*1 *2 *3 *1) (-12 (-4 *1 (-610 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-5 *2 (-112)))) (-1467 (*1 *2 *1) (-12 (-4 *1 (-610 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-5 *2 (-644 *3)))) (-2295 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-610 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1099)))) (-2377 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-610 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1099))))) +(-13 (-229 (-2 (|:| -1928 |t#1|) (|:| -2806 |t#2|))) (-10 -8 (-15 -3983 ((-112) |t#1| $)) (-15 -1467 ((-644 |t#1|) $)) (-15 -2295 ((-3 |t#2| "failed") |t#1| $)) (-15 -2377 ((-3 |t#2| "failed") |t#1| $)))) +(((-34) . T) ((-107 #0=(-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) . T) ((-102) |has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) ((-613 (-862)) -2809 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-613 (-862)))) ((-151 #0#) . T) ((-614 (-538)) |has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-614 (-538))) ((-229 #0#) . T) ((-235 #0#) . T) ((-310 #0#) -12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099))) ((-491 #0#) . T) ((-516 #0# #0#) -12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099))) ((-1099) |has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) ((-1214) . T)) +((-4359 (((-612 |#2|) |#1|) 17)) (-2277 (((-3 |#1| "failed") (-612 |#2|)) 21))) +(((-611 |#1| |#2|) (-10 -7 (-15 -4359 ((-612 |#2|) |#1|)) (-15 -2277 ((-3 |#1| "failed") (-612 |#2|)))) (-1099) (-1099)) (T -611)) +((-2277 (*1 *2 *3) (|partial| -12 (-5 *3 (-612 *4)) (-4 *4 (-1099)) (-4 *2 (-1099)) (-5 *1 (-611 *2 *4)))) (-4359 (*1 *2 *3) (-12 (-5 *2 (-612 *4)) (-5 *1 (-611 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099))))) +(-10 -7 (-15 -4359 ((-612 |#2|) |#1|)) (-15 -2277 ((-3 |#1| "failed") (-612 |#2|)))) +((-2986 (((-112) $ $) NIL)) (-2321 (((-3 (-1175) "failed") $) 49)) (-2102 (((-1269) $ (-771)) 26)) (-4000 (((-771) $) 25)) (-4272 (((-114) $) 12)) (-2598 (((-1175) $) 20)) (-1920 (($ $ $) NIL)) (-3038 (($ $ $) NIL)) (-3151 (((-1157) $) NIL)) (-3018 (($ (-114) (-644 |#1|) (-771)) 36) (($ (-1175)) 37)) (-1896 (((-112) $ (-114)) 18) (((-112) $ (-1175)) 16)) (-3117 (((-771) $) 22)) (-4059 (((-1119) $) NIL)) (-3136 (((-892 (-566)) $) 97 (|has| |#1| (-614 (-892 (-566))))) (((-892 (-381)) $) 104 (|has| |#1| (-614 (-892 (-381))))) (((-538) $) 90 (|has| |#1| (-614 (-538))))) (-2479 (((-862) $) 74)) (-3900 (((-112) $ $) NIL)) (-3624 (((-644 |#1|) $) 24)) (-3019 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 53)) (-3004 (((-112) $ $) NIL)) (-2977 (((-112) $ $) 55))) +(((-612 |#1|) (-13 (-132) (-850) (-884 |#1|) (-10 -8 (-15 -2598 ((-1175) $)) (-15 -4272 ((-114) $)) (-15 -3624 ((-644 |#1|) $)) (-15 -3117 ((-771) $)) (-15 -3018 ($ (-114) (-644 |#1|) (-771))) (-15 -3018 ($ (-1175))) (-15 -2321 ((-3 (-1175) "failed") $)) (-15 -1896 ((-112) $ (-114))) (-15 -1896 ((-112) $ (-1175))) (IF (|has| |#1| (-614 (-538))) (-6 (-614 (-538))) |%noBranch|))) (-1099)) (T -612)) +((-2598 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-612 *3)) (-4 *3 (-1099)))) (-4272 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-612 *3)) (-4 *3 (-1099)))) (-3624 (*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-612 *3)) (-4 *3 (-1099)))) (-3117 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-612 *3)) (-4 *3 (-1099)))) (-3018 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-114)) (-5 *3 (-644 *5)) (-5 *4 (-771)) (-4 *5 (-1099)) (-5 *1 (-612 *5)))) (-3018 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-612 *3)) (-4 *3 (-1099)))) (-2321 (*1 *2 *1) (|partial| -12 (-5 *2 (-1175)) (-5 *1 (-612 *3)) (-4 *3 (-1099)))) (-1896 (*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-612 *4)) (-4 *4 (-1099)))) (-1896 (*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-112)) (-5 *1 (-612 *4)) (-4 *4 (-1099))))) +(-13 (-132) (-850) (-884 |#1|) (-10 -8 (-15 -2598 ((-1175) $)) (-15 -4272 ((-114) $)) (-15 -3624 ((-644 |#1|) $)) (-15 -3117 ((-771) $)) (-15 -3018 ($ (-114) (-644 |#1|) (-771))) (-15 -3018 ($ (-1175))) (-15 -2321 ((-3 (-1175) "failed") $)) (-15 -1896 ((-112) $ (-114))) (-15 -1896 ((-112) $ (-1175))) (IF (|has| |#1| (-614 (-538))) (-6 (-614 (-538))) |%noBranch|))) +((-2479 ((|#1| $) 6))) +(((-613 |#1|) (-140) (-1214)) (T -613)) +((-2479 (*1 *2 *1) (-12 (-4 *1 (-613 *2)) (-4 *2 (-1214))))) +(-13 (-10 -8 (-15 -2479 (|t#1| $)))) +((-3136 ((|#1| $) 6))) +(((-614 |#1|) (-140) (-1214)) (T -614)) +((-3136 (*1 *2 *1) (-12 (-4 *1 (-614 *2)) (-4 *2 (-1214))))) +(-13 (-10 -8 (-15 -3136 (|t#1| $)))) +((-4143 (((-3 (-1171 (-409 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-409 |#2|) (-1 (-420 |#2|) |#2|)) 15) (((-3 (-1171 (-409 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-409 |#2|)) 16))) +(((-615 |#1| |#2|) (-10 -7 (-15 -4143 ((-3 (-1171 (-409 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-409 |#2|))) (-15 -4143 ((-3 (-1171 (-409 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-409 |#2|) (-1 (-420 |#2|) |#2|)))) (-13 (-147) (-27) (-1038 (-566)) (-1038 (-409 (-566)))) (-1240 |#1|)) (T -615)) +((-4143 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-420 *6) *6)) (-4 *6 (-1240 *5)) (-4 *5 (-13 (-147) (-27) (-1038 (-566)) (-1038 (-409 (-566))))) (-5 *2 (-1171 (-409 *6))) (-5 *1 (-615 *5 *6)) (-5 *3 (-409 *6)))) (-4143 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-147) (-27) (-1038 (-566)) (-1038 (-409 (-566))))) (-4 *5 (-1240 *4)) (-5 *2 (-1171 (-409 *5))) (-5 *1 (-615 *4 *5)) (-5 *3 (-409 *5))))) +(-10 -7 (-15 -4143 ((-3 (-1171 (-409 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-409 |#2|))) (-15 -4143 ((-3 (-1171 (-409 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-409 |#2|) (-1 (-420 |#2|) |#2|)))) +((-2479 (($ |#1|) 6))) +(((-616 |#1|) (-140) (-1214)) (T -616)) +((-2479 (*1 *1 *2) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1214))))) +(-13 (-10 -8 (-15 -2479 ($ |t#1|)))) +((-2986 (((-112) $ $) NIL)) (-3282 (($) 14 T CONST)) (-3396 (($) 15 T CONST)) (-2415 (($ $ $) 29)) (-2387 (($ $) 27)) (-3151 (((-1157) $) NIL)) (-1991 (($ $ $) 30)) (-4059 (((-1119) $) NIL)) (-2174 (($) 11 T CONST)) (-2934 (($ $ $) 31)) (-2479 (((-862) $) 35)) (-2438 (((-112) $ (|[\|\|]| -2174)) 24) (((-112) $ (|[\|\|]| -3282)) 26) (((-112) $ (|[\|\|]| -3396)) 21)) (-3900 (((-112) $ $) NIL)) (-2402 (($ $ $) 28)) (-2952 (((-112) $ $) 18))) +(((-617) (-13 (-967) (-10 -8 (-15 -3282 ($) -1573) (-15 -2438 ((-112) $ (|[\|\|]| -2174))) (-15 -2438 ((-112) $ (|[\|\|]| -3282))) (-15 -2438 ((-112) $ (|[\|\|]| -3396)))))) (T -617)) +((-3282 (*1 *1) (-5 *1 (-617))) (-2438 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2174)) (-5 *2 (-112)) (-5 *1 (-617)))) (-2438 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3282)) (-5 *2 (-112)) (-5 *1 (-617)))) (-2438 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3396)) (-5 *2 (-112)) (-5 *1 (-617))))) +(-13 (-967) (-10 -8 (-15 -3282 ($) -1573) (-15 -2438 ((-112) $ (|[\|\|]| -2174))) (-15 -2438 ((-112) $ (|[\|\|]| -3282))) (-15 -2438 ((-112) $ (|[\|\|]| -3396))))) +((-3136 (($ |#1|) 6))) +(((-618 |#1|) (-140) (-1214)) (T -618)) +((-3136 (*1 *1 *2) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1214))))) +(-13 (-10 -8 (-15 -3136 ($ |t#1|)))) +((-2479 (((-862) $) NIL) (($ (-566)) NIL) (($ |#2|) 10))) +(((-619 |#1| |#2|) (-10 -8 (-15 -2479 (|#1| |#2|)) (-15 -2479 (|#1| (-566))) (-15 -2479 ((-862) |#1|))) (-620 |#2|) (-1049)) (T -619)) +NIL +(-10 -8 (-15 -2479 (|#1| |#2|)) (-15 -2479 (|#1| (-566))) (-15 -2479 ((-862) |#1|))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-3174 (((-3 $ "failed") $ $) 20)) (-1811 (($) 18 T CONST)) (-3757 (((-3 $ "failed") $) 37)) (-2264 (((-112) $) 35)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-2479 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 41)) (-1558 (((-771)) 32 T CONST)) (-3900 (((-112) $ $) 9)) (-2446 (($) 19 T CONST)) (-2459 (($) 34 T CONST)) (-2952 (((-112) $ $) 6)) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ |#1| $) 42))) +(((-620 |#1|) (-140) (-1049)) (T -620)) +((-2479 (*1 *1 *2) (-12 (-4 *1 (-620 *2)) (-4 *2 (-1049))))) +(-13 (-1049) (-648 |t#1|) (-10 -8 (-15 -2479 ($ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-616 (-566)) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-726) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-2920 (((-566) $) NIL (|has| |#1| (-848)))) (-1811 (($) NIL T CONST)) (-3757 (((-3 $ "failed") $) NIL)) (-2133 (((-112) $) NIL (|has| |#1| (-848)))) (-2264 (((-112) $) NIL)) (-4157 ((|#1| $) 13)) (-3420 (((-112) $) NIL (|has| |#1| (-848)))) (-1920 (($ $ $) NIL (|has| |#1| (-848)))) (-3038 (($ $ $) NIL (|has| |#1| (-848)))) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-4167 ((|#3| $) 15)) (-2479 (((-862) $) NIL) (($ (-566)) NIL) (($ |#2|) NIL)) (-1558 (((-771)) 20 T CONST)) (-3900 (((-112) $ $) NIL)) (-4298 (($ $) NIL (|has| |#1| (-848)))) (-2446 (($) NIL T CONST)) (-2459 (($) 12 T CONST)) (-3019 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2990 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2952 (((-112) $ $) NIL)) (-3004 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-848)))) (-3077 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-621 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-848)) (-6 (-848)) |%noBranch|) (-15 -3077 ($ $ |#3|)) (-15 -3077 ($ |#1| |#3|)) (-15 -4157 (|#1| $)) (-15 -4167 (|#3| $)))) (-38 |#2|) (-172) (|SubsetCategory| (-726) |#2|)) (T -621)) +((-3077 (*1 *1 *1 *2) (-12 (-4 *4 (-172)) (-5 *1 (-621 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-726) *4)))) (-3077 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-621 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-726) *4)))) (-4157 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-38 *3)) (-5 *1 (-621 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-726) *3)))) (-4167 (*1 *2 *1) (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-726) *4)) (-5 *1 (-621 *3 *4 *2)) (-4 *3 (-38 *4))))) +(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-848)) (-6 (-848)) |%noBranch|) (-15 -3077 ($ $ |#3|)) (-15 -3077 ($ |#1| |#3|)) (-15 -4157 (|#1| $)) (-15 -4167 (|#3| $)))) +((-1407 ((|#2| |#2| (-1175) (-1175)) 16))) +(((-622 |#1| |#2|) (-10 -7 (-15 -1407 (|#2| |#2| (-1175) (-1175)))) (-13 (-308) (-147) (-1038 (-566)) (-639 (-566))) (-13 (-1199) (-959) (-29 |#1|))) (T -622)) +((-1407 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-622 *4 *2)) (-4 *2 (-13 (-1199) (-959) (-29 *4)))))) +(-10 -7 (-15 -1407 (|#2| |#2| (-1175) (-1175)))) +((-2986 (((-112) $ $) 64)) (-2845 (((-112) $) 58)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-1716 (((-112) $) NIL)) (-2704 ((|#1| $) 55)) (-3174 (((-3 $ "failed") $ $) NIL)) (-2761 (((-112) $ $) NIL (|has| |#1| (-365)))) (-2020 (((-2 (|:| -3438 $) (|:| -3501 (-409 |#2|))) (-409 |#2|)) 111 (|has| |#1| (-365)))) (-1811 (($) NIL T CONST)) (-2980 (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) 99) (((-3 |#2| "failed") $) 95)) (-1709 (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2925 (($ $ $) NIL (|has| |#1| (-365)))) (-3565 (($ $) 27)) (-3757 (((-3 $ "failed") $) 88)) (-2937 (($ $ $) NIL (|has| |#1| (-365)))) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) NIL (|has| |#1| (-365)))) (-1802 (((-566) $) 22)) (-2264 (((-112) $) NIL)) (-2495 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-3989 (((-112) $) 40)) (-2463 (($ |#1| (-566)) 24)) (-2622 ((|#1| $) 57)) (-2120 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-365)))) (-2162 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) 101 (|has| |#1| (-365)))) (-2585 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 116 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL (|has| |#1| (-365)))) (-2976 (((-3 $ "failed") $ $) 93)) (-2840 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-1383 (((-771) $) 115 (|has| |#1| (-365)))) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) 114 (|has| |#1| (-365)))) (-3526 (($ $ (-1 |#2| |#2|)) 75) (($ $ (-1 |#2| |#2|) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1175)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-771)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-1630 (((-566) $) 38)) (-3136 (((-409 |#2|) $) 47)) (-2479 (((-862) $) 69) (($ (-566)) 35) (($ $) NIL) (($ (-409 (-566))) NIL (|has| |#1| (-1038 (-409 (-566))))) (($ |#1|) 34) (($ |#2|) 25)) (-3025 ((|#1| $ (-566)) 72)) (-2645 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1558 (((-771)) 32 T CONST)) (-3900 (((-112) $ $) NIL)) (-1333 (((-112) $ $) NIL)) (-2446 (($) 9 T CONST)) (-2459 (($) 14 T CONST)) (-2834 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1175)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-771)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-2952 (((-112) $ $) 21)) (-3065 (($ $) 51) (($ $ $) NIL)) (-3052 (($ $ $) 90)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 29) (($ $ $) 49))) +(((-623 |#1| |#2|) (-13 (-231 |#2|) (-558) (-614 (-409 |#2|)) (-413 |#1|) (-1038 |#2|) (-10 -8 (-15 -3989 ((-112) $)) (-15 -1630 ((-566) $)) (-15 -1802 ((-566) $)) (-15 -3565 ($ $)) (-15 -2622 (|#1| $)) (-15 -2704 (|#1| $)) (-15 -3025 (|#1| $ (-566))) (-15 -2463 ($ |#1| (-566))) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-6 (-308)) (-15 -2020 ((-2 (|:| -3438 $) (|:| -3501 (-409 |#2|))) (-409 |#2|)))) |%noBranch|))) (-558) (-1240 |#1|)) (T -623)) +((-3989 (*1 *2 *1) (-12 (-4 *3 (-558)) (-5 *2 (-112)) (-5 *1 (-623 *3 *4)) (-4 *4 (-1240 *3)))) (-1630 (*1 *2 *1) (-12 (-4 *3 (-558)) (-5 *2 (-566)) (-5 *1 (-623 *3 *4)) (-4 *4 (-1240 *3)))) (-1802 (*1 *2 *1) (-12 (-4 *3 (-558)) (-5 *2 (-566)) (-5 *1 (-623 *3 *4)) (-4 *4 (-1240 *3)))) (-3565 (*1 *1 *1) (-12 (-4 *2 (-558)) (-5 *1 (-623 *2 *3)) (-4 *3 (-1240 *2)))) (-2622 (*1 *2 *1) (-12 (-4 *2 (-558)) (-5 *1 (-623 *2 *3)) (-4 *3 (-1240 *2)))) (-2704 (*1 *2 *1) (-12 (-4 *2 (-558)) (-5 *1 (-623 *2 *3)) (-4 *3 (-1240 *2)))) (-3025 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-4 *2 (-558)) (-5 *1 (-623 *2 *4)) (-4 *4 (-1240 *2)))) (-2463 (*1 *1 *2 *3) (-12 (-5 *3 (-566)) (-4 *2 (-558)) (-5 *1 (-623 *2 *4)) (-4 *4 (-1240 *2)))) (-2020 (*1 *2 *3) (-12 (-4 *4 (-365)) (-4 *4 (-558)) (-4 *5 (-1240 *4)) (-5 *2 (-2 (|:| -3438 (-623 *4 *5)) (|:| -3501 (-409 *5)))) (-5 *1 (-623 *4 *5)) (-5 *3 (-409 *5))))) +(-13 (-231 |#2|) (-558) (-614 (-409 |#2|)) (-413 |#1|) (-1038 |#2|) (-10 -8 (-15 -3989 ((-112) $)) (-15 -1630 ((-566) $)) (-15 -1802 ((-566) $)) (-15 -3565 ($ $)) (-15 -2622 (|#1| $)) (-15 -2704 (|#1| $)) (-15 -3025 (|#1| $ (-566))) (-15 -2463 ($ |#1| (-566))) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-6 (-308)) (-15 -2020 ((-2 (|:| -3438 $) (|:| -3501 (-409 |#2|))) (-409 |#2|)))) |%noBranch|))) +((-3295 (((-644 |#6|) (-644 |#4|) (-112)) 54)) (-3426 ((|#6| |#6|) 48))) +(((-624 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3426 (|#6| |#6|)) (-15 -3295 ((-644 |#6|) (-644 |#4|) (-112)))) (-454) (-793) (-850) (-1064 |#1| |#2| |#3|) (-1070 |#1| |#2| |#3| |#4|) (-1108 |#1| |#2| |#3| |#4|)) (T -624)) +((-3295 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-644 *10)) (-5 *1 (-624 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1070 *5 *6 *7 *8)) (-4 *10 (-1108 *5 *6 *7 *8)))) (-3426 (*1 *2 *2) (-12 (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *1 (-624 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1070 *3 *4 *5 *6)) (-4 *2 (-1108 *3 *4 *5 *6))))) +(-10 -7 (-15 -3426 (|#6| |#6|)) (-15 -3295 ((-644 |#6|) (-644 |#4|) (-112)))) +((-2167 (((-112) |#3| (-771) (-644 |#3|)) 32)) (-2141 (((-3 (-2 (|:| |polfac| (-644 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-644 (-1171 |#3|)))) "failed") |#3| (-644 (-1171 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3445 (-644 (-2 (|:| |irr| |#4|) (|:| -2677 (-566)))))) (-644 |#3|) (-644 |#1|) (-644 |#3|)) 73))) +(((-625 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2167 ((-112) |#3| (-771) (-644 |#3|))) (-15 -2141 ((-3 (-2 (|:| |polfac| (-644 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-644 (-1171 |#3|)))) "failed") |#3| (-644 (-1171 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3445 (-644 (-2 (|:| |irr| |#4|) (|:| -2677 (-566)))))) (-644 |#3|) (-644 |#1|) (-644 |#3|)))) (-850) (-793) (-308) (-949 |#3| |#2| |#1|)) (T -625)) +((-2141 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -3445 (-644 (-2 (|:| |irr| *10) (|:| -2677 (-566))))))) (-5 *6 (-644 *3)) (-5 *7 (-644 *8)) (-4 *8 (-850)) (-4 *3 (-308)) (-4 *10 (-949 *3 *9 *8)) (-4 *9 (-793)) (-5 *2 (-2 (|:| |polfac| (-644 *10)) (|:| |correct| *3) (|:| |corrfact| (-644 (-1171 *3))))) (-5 *1 (-625 *8 *9 *3 *10)) (-5 *4 (-644 (-1171 *3))))) (-2167 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-771)) (-5 *5 (-644 *3)) (-4 *3 (-308)) (-4 *6 (-850)) (-4 *7 (-793)) (-5 *2 (-112)) (-5 *1 (-625 *6 *7 *3 *8)) (-4 *8 (-949 *3 *7 *6))))) +(-10 -7 (-15 -2167 ((-112) |#3| (-771) (-644 |#3|))) (-15 -2141 ((-3 (-2 (|:| |polfac| (-644 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-644 (-1171 |#3|)))) "failed") |#3| (-644 (-1171 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3445 (-644 (-2 (|:| |irr| |#4|) (|:| -2677 (-566)))))) (-644 |#3|) (-644 |#1|) (-644 |#3|)))) +((-2986 (((-112) $ $) NIL)) (-3331 (((-1134) $) 11)) (-3319 (((-1134) $) 9)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) 17) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-626) (-13 (-1082) (-10 -8 (-15 -3319 ((-1134) $)) (-15 -3331 ((-1134) $))))) (T -626)) +((-3319 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-626)))) (-3331 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-626))))) +(-13 (-1082) (-10 -8 (-15 -3319 ((-1134) $)) (-15 -3331 ((-1134) $)))) +((-2986 (((-112) $ $) NIL)) (-1656 (((-644 |#1|) $) NIL)) (-1811 (($) NIL T CONST)) (-3757 (((-3 $ "failed") $) NIL)) (-2264 (((-112) $) NIL)) (-3768 (($ $) 77)) (-3676 (((-664 |#1| |#2|) $) 60)) (-3151 (((-1157) $) NIL)) (-2577 (($ $) 81)) (-3431 (((-644 (-295 |#2|)) $ $) 42)) (-4059 (((-1119) $) NIL)) (-3571 (($ (-664 |#1| |#2|)) 56)) (-2664 (($ $ $) NIL)) (-3815 (($ $ $) NIL)) (-2479 (((-862) $) 66) (((-1279 |#1| |#2|) $) NIL) (((-1284 |#1| |#2|) $) 74)) (-3900 (((-112) $ $) NIL)) (-2459 (($) 61 T CONST)) (-2483 (((-644 (-2 (|:| |k| (-672 |#1|)) (|:| |c| |#2|))) $) 41)) (-4312 (((-644 (-664 |#1| |#2|)) (-644 |#1|)) 73)) (-3585 (((-644 (-2 (|:| |k| (-893 |#1|)) (|:| |c| |#2|))) $) 46)) (-2952 (((-112) $ $) 62)) (-3077 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ $ $) 52))) +(((-627 |#1| |#2| |#3|) (-13 (-475) (-10 -8 (-15 -3571 ($ (-664 |#1| |#2|))) (-15 -3676 ((-664 |#1| |#2|) $)) (-15 -3585 ((-644 (-2 (|:| |k| (-893 |#1|)) (|:| |c| |#2|))) $)) (-15 -2479 ((-1279 |#1| |#2|) $)) (-15 -2479 ((-1284 |#1| |#2|) $)) (-15 -3768 ($ $)) (-15 -1656 ((-644 |#1|) $)) (-15 -4312 ((-644 (-664 |#1| |#2|)) (-644 |#1|))) (-15 -2483 ((-644 (-2 (|:| |k| (-672 |#1|)) (|:| |c| |#2|))) $)) (-15 -3431 ((-644 (-295 |#2|)) $ $)))) (-850) (-13 (-172) (-717 (-409 (-566)))) (-921)) (T -627)) +((-3571 (*1 *1 *2) (-12 (-5 *2 (-664 *3 *4)) (-4 *3 (-850)) (-4 *4 (-13 (-172) (-717 (-409 (-566))))) (-5 *1 (-627 *3 *4 *5)) (-14 *5 (-921)))) (-3676 (*1 *2 *1) (-12 (-5 *2 (-664 *3 *4)) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-850)) (-4 *4 (-13 (-172) (-717 (-409 (-566))))) (-14 *5 (-921)))) (-3585 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |k| (-893 *3)) (|:| |c| *4)))) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-850)) (-4 *4 (-13 (-172) (-717 (-409 (-566))))) (-14 *5 (-921)))) (-2479 (*1 *2 *1) (-12 (-5 *2 (-1279 *3 *4)) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-850)) (-4 *4 (-13 (-172) (-717 (-409 (-566))))) (-14 *5 (-921)))) (-2479 (*1 *2 *1) (-12 (-5 *2 (-1284 *3 *4)) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-850)) (-4 *4 (-13 (-172) (-717 (-409 (-566))))) (-14 *5 (-921)))) (-3768 (*1 *1 *1) (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-850)) (-4 *3 (-13 (-172) (-717 (-409 (-566))))) (-14 *4 (-921)))) (-1656 (*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-850)) (-4 *4 (-13 (-172) (-717 (-409 (-566))))) (-14 *5 (-921)))) (-4312 (*1 *2 *3) (-12 (-5 *3 (-644 *4)) (-4 *4 (-850)) (-5 *2 (-644 (-664 *4 *5))) (-5 *1 (-627 *4 *5 *6)) (-4 *5 (-13 (-172) (-717 (-409 (-566))))) (-14 *6 (-921)))) (-2483 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |k| (-672 *3)) (|:| |c| *4)))) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-850)) (-4 *4 (-13 (-172) (-717 (-409 (-566))))) (-14 *5 (-921)))) (-3431 (*1 *2 *1 *1) (-12 (-5 *2 (-644 (-295 *4))) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-850)) (-4 *4 (-13 (-172) (-717 (-409 (-566))))) (-14 *5 (-921))))) +(-13 (-475) (-10 -8 (-15 -3571 ($ (-664 |#1| |#2|))) (-15 -3676 ((-664 |#1| |#2|) $)) (-15 -3585 ((-644 (-2 (|:| |k| (-893 |#1|)) (|:| |c| |#2|))) $)) (-15 -2479 ((-1279 |#1| |#2|) $)) (-15 -2479 ((-1284 |#1| |#2|) $)) (-15 -3768 ($ $)) (-15 -1656 ((-644 |#1|) $)) (-15 -4312 ((-644 (-664 |#1| |#2|)) (-644 |#1|))) (-15 -2483 ((-644 (-2 (|:| |k| (-672 |#1|)) (|:| |c| |#2|))) $)) (-15 -3431 ((-644 (-295 |#2|)) $ $)))) +((-3295 (((-644 (-1145 |#1| (-533 (-864 |#2|)) (-864 |#2|) (-780 |#1| (-864 |#2|)))) (-644 (-780 |#1| (-864 |#2|))) (-112)) 103) (((-644 (-1046 |#1| |#2|)) (-644 (-780 |#1| (-864 |#2|))) (-112)) 77)) (-3239 (((-112) (-644 (-780 |#1| (-864 |#2|)))) 26)) (-3808 (((-644 (-1145 |#1| (-533 (-864 |#2|)) (-864 |#2|) (-780 |#1| (-864 |#2|)))) (-644 (-780 |#1| (-864 |#2|))) (-112)) 102)) (-2955 (((-644 (-1046 |#1| |#2|)) (-644 (-780 |#1| (-864 |#2|))) (-112)) 76)) (-4269 (((-644 (-780 |#1| (-864 |#2|))) (-644 (-780 |#1| (-864 |#2|)))) 30)) (-3540 (((-3 (-644 (-780 |#1| (-864 |#2|))) "failed") (-644 (-780 |#1| (-864 |#2|)))) 29))) +(((-628 |#1| |#2|) (-10 -7 (-15 -3239 ((-112) (-644 (-780 |#1| (-864 |#2|))))) (-15 -3540 ((-3 (-644 (-780 |#1| (-864 |#2|))) "failed") (-644 (-780 |#1| (-864 |#2|))))) (-15 -4269 ((-644 (-780 |#1| (-864 |#2|))) (-644 (-780 |#1| (-864 |#2|))))) (-15 -2955 ((-644 (-1046 |#1| |#2|)) (-644 (-780 |#1| (-864 |#2|))) (-112))) (-15 -3808 ((-644 (-1145 |#1| (-533 (-864 |#2|)) (-864 |#2|) (-780 |#1| (-864 |#2|)))) (-644 (-780 |#1| (-864 |#2|))) (-112))) (-15 -3295 ((-644 (-1046 |#1| |#2|)) (-644 (-780 |#1| (-864 |#2|))) (-112))) (-15 -3295 ((-644 (-1145 |#1| (-533 (-864 |#2|)) (-864 |#2|) (-780 |#1| (-864 |#2|)))) (-644 (-780 |#1| (-864 |#2|))) (-112)))) (-454) (-644 (-1175))) (T -628)) +((-3295 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-780 *5 (-864 *6)))) (-5 *4 (-112)) (-4 *5 (-454)) (-14 *6 (-644 (-1175))) (-5 *2 (-644 (-1145 *5 (-533 (-864 *6)) (-864 *6) (-780 *5 (-864 *6))))) (-5 *1 (-628 *5 *6)))) (-3295 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-780 *5 (-864 *6)))) (-5 *4 (-112)) (-4 *5 (-454)) (-14 *6 (-644 (-1175))) (-5 *2 (-644 (-1046 *5 *6))) (-5 *1 (-628 *5 *6)))) (-3808 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-780 *5 (-864 *6)))) (-5 *4 (-112)) (-4 *5 (-454)) (-14 *6 (-644 (-1175))) (-5 *2 (-644 (-1145 *5 (-533 (-864 *6)) (-864 *6) (-780 *5 (-864 *6))))) (-5 *1 (-628 *5 *6)))) (-2955 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-780 *5 (-864 *6)))) (-5 *4 (-112)) (-4 *5 (-454)) (-14 *6 (-644 (-1175))) (-5 *2 (-644 (-1046 *5 *6))) (-5 *1 (-628 *5 *6)))) (-4269 (*1 *2 *2) (-12 (-5 *2 (-644 (-780 *3 (-864 *4)))) (-4 *3 (-454)) (-14 *4 (-644 (-1175))) (-5 *1 (-628 *3 *4)))) (-3540 (*1 *2 *2) (|partial| -12 (-5 *2 (-644 (-780 *3 (-864 *4)))) (-4 *3 (-454)) (-14 *4 (-644 (-1175))) (-5 *1 (-628 *3 *4)))) (-3239 (*1 *2 *3) (-12 (-5 *3 (-644 (-780 *4 (-864 *5)))) (-4 *4 (-454)) (-14 *5 (-644 (-1175))) (-5 *2 (-112)) (-5 *1 (-628 *4 *5))))) +(-10 -7 (-15 -3239 ((-112) (-644 (-780 |#1| (-864 |#2|))))) (-15 -3540 ((-3 (-644 (-780 |#1| (-864 |#2|))) "failed") (-644 (-780 |#1| (-864 |#2|))))) (-15 -4269 ((-644 (-780 |#1| (-864 |#2|))) (-644 (-780 |#1| (-864 |#2|))))) (-15 -2955 ((-644 (-1046 |#1| |#2|)) (-644 (-780 |#1| (-864 |#2|))) (-112))) (-15 -3808 ((-644 (-1145 |#1| (-533 (-864 |#2|)) (-864 |#2|) (-780 |#1| (-864 |#2|)))) (-644 (-780 |#1| (-864 |#2|))) (-112))) (-15 -3295 ((-644 (-1046 |#1| |#2|)) (-644 (-780 |#1| (-864 |#2|))) (-112))) (-15 -3295 ((-644 (-1145 |#1| (-533 (-864 |#2|)) (-864 |#2|) (-780 |#1| (-864 |#2|)))) (-644 (-780 |#1| (-864 |#2|))) (-112)))) +((-3219 (($ $) 38)) (-3091 (($ $) 21)) (-3197 (($ $) 37)) (-3067 (($ $) 22)) (-3240 (($ $) 36)) (-3115 (($ $) 23)) (-2964 (($) 48)) (-3676 (($ $) 45)) (-3341 (($ $) 17)) (-1499 (($ $ (-1091 $)) 7) (($ $ (-1175)) 6)) (-3571 (($ $) 46)) (-3021 (($ $) 15)) (-3053 (($ $) 16)) (-3250 (($ $) 35)) (-3126 (($ $) 24)) (-3227 (($ $) 34)) (-3105 (($ $) 25)) (-3207 (($ $) 33)) (-3079 (($ $) 26)) (-3285 (($ $) 44)) (-3157 (($ $) 32)) (-3260 (($ $) 43)) (-3135 (($ $) 31)) (-3309 (($ $) 42)) (-3179 (($ $) 30)) (-1861 (($ $) 41)) (-3190 (($ $) 29)) (-3299 (($ $) 40)) (-3168 (($ $) 28)) (-3273 (($ $) 39)) (-3148 (($ $) 27)) (-2944 (($ $) 19)) (-1344 (($ $) 20)) (-1832 (($ $) 18)) (** (($ $ $) 47))) +(((-629) (-140)) (T -629)) +((-1344 (*1 *1 *1) (-4 *1 (-629))) (-2944 (*1 *1 *1) (-4 *1 (-629))) (-1832 (*1 *1 *1) (-4 *1 (-629))) (-3341 (*1 *1 *1) (-4 *1 (-629))) (-3053 (*1 *1 *1) (-4 *1 (-629))) (-3021 (*1 *1 *1) (-4 *1 (-629)))) +(-13 (-959) (-1199) (-10 -8 (-15 -1344 ($ $)) (-15 -2944 ($ $)) (-15 -1832 ($ $)) (-15 -3341 ($ $)) (-15 -3053 ($ $)) (-15 -3021 ($ $)))) +(((-35) . T) ((-95) . T) ((-285) . T) ((-495) . T) ((-959) . T) ((-1199) . T) ((-1202) . T)) +((-4272 (((-114) (-114)) 88)) (-3341 ((|#2| |#2|) 28)) (-1499 ((|#2| |#2| (-1091 |#2|)) 84) ((|#2| |#2| (-1175)) 50)) (-3021 ((|#2| |#2|) 27)) (-3053 ((|#2| |#2|) 29)) (-1540 (((-112) (-114)) 33)) (-2944 ((|#2| |#2|) 24)) (-1344 ((|#2| |#2|) 26)) (-1832 ((|#2| |#2|) 25))) +(((-630 |#1| |#2|) (-10 -7 (-15 -1540 ((-112) (-114))) (-15 -4272 ((-114) (-114))) (-15 -1344 (|#2| |#2|)) (-15 -2944 (|#2| |#2|)) (-15 -1832 (|#2| |#2|)) (-15 -3341 (|#2| |#2|)) (-15 -3021 (|#2| |#2|)) (-15 -3053 (|#2| |#2|)) (-15 -1499 (|#2| |#2| (-1175))) (-15 -1499 (|#2| |#2| (-1091 |#2|)))) (-558) (-13 (-432 |#1|) (-1002) (-1199))) (T -630)) +((-1499 (*1 *2 *2 *3) (-12 (-5 *3 (-1091 *2)) (-4 *2 (-13 (-432 *4) (-1002) (-1199))) (-4 *4 (-558)) (-5 *1 (-630 *4 *2)))) (-1499 (*1 *2 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-558)) (-5 *1 (-630 *4 *2)) (-4 *2 (-13 (-432 *4) (-1002) (-1199))))) (-3053 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-630 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002) (-1199))))) (-3021 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-630 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002) (-1199))))) (-3341 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-630 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002) (-1199))))) (-1832 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-630 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002) (-1199))))) (-2944 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-630 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002) (-1199))))) (-1344 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-630 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002) (-1199))))) (-4272 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-558)) (-5 *1 (-630 *3 *4)) (-4 *4 (-13 (-432 *3) (-1002) (-1199))))) (-1540 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-558)) (-5 *2 (-112)) (-5 *1 (-630 *4 *5)) (-4 *5 (-13 (-432 *4) (-1002) (-1199)))))) +(-10 -7 (-15 -1540 ((-112) (-114))) (-15 -4272 ((-114) (-114))) (-15 -1344 (|#2| |#2|)) (-15 -2944 (|#2| |#2|)) (-15 -1832 (|#2| |#2|)) (-15 -3341 (|#2| |#2|)) (-15 -3021 (|#2| |#2|)) (-15 -3053 (|#2| |#2|)) (-15 -1499 (|#2| |#2| (-1175))) (-15 -1499 (|#2| |#2| (-1091 |#2|)))) +((-1994 (((-483 |#1| |#2|) (-247 |#1| |#2|)) 67)) (-3054 (((-644 (-247 |#1| |#2|)) (-644 (-483 |#1| |#2|))) 93)) (-1914 (((-483 |#1| |#2|) (-644 (-483 |#1| |#2|)) (-864 |#1|)) 95) (((-483 |#1| |#2|) (-644 (-483 |#1| |#2|)) (-644 (-483 |#1| |#2|)) (-864 |#1|)) 94)) (-2802 (((-2 (|:| |gblist| (-644 (-247 |#1| |#2|))) (|:| |gvlist| (-644 (-566)))) (-644 (-483 |#1| |#2|))) 138)) (-3269 (((-644 (-483 |#1| |#2|)) (-864 |#1|) (-644 (-483 |#1| |#2|)) (-644 (-483 |#1| |#2|))) 108)) (-2340 (((-2 (|:| |glbase| (-644 (-247 |#1| |#2|))) (|:| |glval| (-644 (-566)))) (-644 (-247 |#1| |#2|))) 148)) (-3668 (((-1264 |#2|) (-483 |#1| |#2|) (-644 (-483 |#1| |#2|))) 72)) (-4006 (((-644 (-483 |#1| |#2|)) (-644 (-483 |#1| |#2|))) 48)) (-4038 (((-247 |#1| |#2|) (-247 |#1| |#2|) (-644 (-247 |#1| |#2|))) 64)) (-1894 (((-247 |#1| |#2|) (-644 |#2|) (-247 |#1| |#2|) (-644 (-247 |#1| |#2|))) 116))) +(((-631 |#1| |#2|) (-10 -7 (-15 -2802 ((-2 (|:| |gblist| (-644 (-247 |#1| |#2|))) (|:| |gvlist| (-644 (-566)))) (-644 (-483 |#1| |#2|)))) (-15 -2340 ((-2 (|:| |glbase| (-644 (-247 |#1| |#2|))) (|:| |glval| (-644 (-566)))) (-644 (-247 |#1| |#2|)))) (-15 -3054 ((-644 (-247 |#1| |#2|)) (-644 (-483 |#1| |#2|)))) (-15 -1914 ((-483 |#1| |#2|) (-644 (-483 |#1| |#2|)) (-644 (-483 |#1| |#2|)) (-864 |#1|))) (-15 -1914 ((-483 |#1| |#2|) (-644 (-483 |#1| |#2|)) (-864 |#1|))) (-15 -4006 ((-644 (-483 |#1| |#2|)) (-644 (-483 |#1| |#2|)))) (-15 -3668 ((-1264 |#2|) (-483 |#1| |#2|) (-644 (-483 |#1| |#2|)))) (-15 -1894 ((-247 |#1| |#2|) (-644 |#2|) (-247 |#1| |#2|) (-644 (-247 |#1| |#2|)))) (-15 -3269 ((-644 (-483 |#1| |#2|)) (-864 |#1|) (-644 (-483 |#1| |#2|)) (-644 (-483 |#1| |#2|)))) (-15 -4038 ((-247 |#1| |#2|) (-247 |#1| |#2|) (-644 (-247 |#1| |#2|)))) (-15 -1994 ((-483 |#1| |#2|) (-247 |#1| |#2|)))) (-644 (-1175)) (-454)) (T -631)) +((-1994 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-644 (-1175))) (-4 *5 (-454)) (-5 *2 (-483 *4 *5)) (-5 *1 (-631 *4 *5)))) (-4038 (*1 *2 *2 *3) (-12 (-5 *3 (-644 (-247 *4 *5))) (-5 *2 (-247 *4 *5)) (-14 *4 (-644 (-1175))) (-4 *5 (-454)) (-5 *1 (-631 *4 *5)))) (-3269 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-644 (-483 *4 *5))) (-5 *3 (-864 *4)) (-14 *4 (-644 (-1175))) (-4 *5 (-454)) (-5 *1 (-631 *4 *5)))) (-1894 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-644 *6)) (-5 *4 (-644 (-247 *5 *6))) (-4 *6 (-454)) (-5 *2 (-247 *5 *6)) (-14 *5 (-644 (-1175))) (-5 *1 (-631 *5 *6)))) (-3668 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-483 *5 *6))) (-5 *3 (-483 *5 *6)) (-14 *5 (-644 (-1175))) (-4 *6 (-454)) (-5 *2 (-1264 *6)) (-5 *1 (-631 *5 *6)))) (-4006 (*1 *2 *2) (-12 (-5 *2 (-644 (-483 *3 *4))) (-14 *3 (-644 (-1175))) (-4 *4 (-454)) (-5 *1 (-631 *3 *4)))) (-1914 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-483 *5 *6))) (-5 *4 (-864 *5)) (-14 *5 (-644 (-1175))) (-5 *2 (-483 *5 *6)) (-5 *1 (-631 *5 *6)) (-4 *6 (-454)))) (-1914 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-644 (-483 *5 *6))) (-5 *4 (-864 *5)) (-14 *5 (-644 (-1175))) (-5 *2 (-483 *5 *6)) (-5 *1 (-631 *5 *6)) (-4 *6 (-454)))) (-3054 (*1 *2 *3) (-12 (-5 *3 (-644 (-483 *4 *5))) (-14 *4 (-644 (-1175))) (-4 *5 (-454)) (-5 *2 (-644 (-247 *4 *5))) (-5 *1 (-631 *4 *5)))) (-2340 (*1 *2 *3) (-12 (-14 *4 (-644 (-1175))) (-4 *5 (-454)) (-5 *2 (-2 (|:| |glbase| (-644 (-247 *4 *5))) (|:| |glval| (-644 (-566))))) (-5 *1 (-631 *4 *5)) (-5 *3 (-644 (-247 *4 *5))))) (-2802 (*1 *2 *3) (-12 (-5 *3 (-644 (-483 *4 *5))) (-14 *4 (-644 (-1175))) (-4 *5 (-454)) (-5 *2 (-2 (|:| |gblist| (-644 (-247 *4 *5))) (|:| |gvlist| (-644 (-566))))) (-5 *1 (-631 *4 *5))))) +(-10 -7 (-15 -2802 ((-2 (|:| |gblist| (-644 (-247 |#1| |#2|))) (|:| |gvlist| (-644 (-566)))) (-644 (-483 |#1| |#2|)))) (-15 -2340 ((-2 (|:| |glbase| (-644 (-247 |#1| |#2|))) (|:| |glval| (-644 (-566)))) (-644 (-247 |#1| |#2|)))) (-15 -3054 ((-644 (-247 |#1| |#2|)) (-644 (-483 |#1| |#2|)))) (-15 -1914 ((-483 |#1| |#2|) (-644 (-483 |#1| |#2|)) (-644 (-483 |#1| |#2|)) (-864 |#1|))) (-15 -1914 ((-483 |#1| |#2|) (-644 (-483 |#1| |#2|)) (-864 |#1|))) (-15 -4006 ((-644 (-483 |#1| |#2|)) (-644 (-483 |#1| |#2|)))) (-15 -3668 ((-1264 |#2|) (-483 |#1| |#2|) (-644 (-483 |#1| |#2|)))) (-15 -1894 ((-247 |#1| |#2|) (-644 |#2|) (-247 |#1| |#2|) (-644 (-247 |#1| |#2|)))) (-15 -3269 ((-644 (-483 |#1| |#2|)) (-864 |#1|) (-644 (-483 |#1| |#2|)) (-644 (-483 |#1| |#2|)))) (-15 -4038 ((-247 |#1| |#2|) (-247 |#1| |#2|) (-644 (-247 |#1| |#2|)))) (-15 -1994 ((-483 |#1| |#2|) (-247 |#1| |#2|)))) +((-2986 (((-112) $ $) NIL (-2809 (|has| (-52) (-1099)) (|has| (-2 (|:| -1928 (-1157)) (|:| -2806 (-52))) (-1099))))) (-4250 (($) NIL) (($ (-644 (-2 (|:| -1928 (-1157)) (|:| -2806 (-52))))) NIL)) (-2462 (((-1269) $ (-1157) (-1157)) NIL (|has| $ (-6 -4418)))) (-1453 (((-112) $ (-771)) NIL)) (-3901 (((-52) $ (-1157) (-52)) 16) (((-52) $ (-1175) (-52)) 17)) (-4364 (($ (-1 (-112) (-2 (|:| -1928 (-1157)) (|:| -2806 (-52)))) $) NIL (|has| $ (-6 -4417)))) (-3543 (($ (-1 (-112) (-2 (|:| -1928 (-1157)) (|:| -2806 (-52)))) $) NIL (|has| $ (-6 -4417)))) (-2377 (((-3 (-52) "failed") (-1157) $) NIL)) (-1811 (($) NIL T CONST)) (-4111 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1928 (-1157)) (|:| -2806 (-52))) (-1099))))) (-2295 (($ (-2 (|:| -1928 (-1157)) (|:| -2806 (-52))) $) NIL (|has| $ (-6 -4417))) (($ (-1 (-112) (-2 (|:| -1928 (-1157)) (|:| -2806 (-52)))) $) NIL (|has| $ (-6 -4417))) (((-3 (-52) "failed") (-1157) $) NIL)) (-2628 (($ (-2 (|:| -1928 (-1157)) (|:| -2806 (-52))) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1928 (-1157)) (|:| -2806 (-52))) (-1099)))) (($ (-1 (-112) (-2 (|:| -1928 (-1157)) (|:| -2806 (-52)))) $) NIL (|has| $ (-6 -4417)))) (-1838 (((-2 (|:| -1928 (-1157)) (|:| -2806 (-52))) (-1 (-2 (|:| -1928 (-1157)) (|:| -2806 (-52))) (-2 (|:| -1928 (-1157)) (|:| -2806 (-52))) (-2 (|:| -1928 (-1157)) (|:| -2806 (-52)))) $ (-2 (|:| -1928 (-1157)) (|:| -2806 (-52))) (-2 (|:| -1928 (-1157)) (|:| -2806 (-52)))) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1928 (-1157)) (|:| -2806 (-52))) (-1099)))) (((-2 (|:| -1928 (-1157)) (|:| -2806 (-52))) (-1 (-2 (|:| -1928 (-1157)) (|:| -2806 (-52))) (-2 (|:| -1928 (-1157)) (|:| -2806 (-52))) (-2 (|:| -1928 (-1157)) (|:| -2806 (-52)))) $ (-2 (|:| -1928 (-1157)) (|:| -2806 (-52)))) NIL (|has| $ (-6 -4417))) (((-2 (|:| -1928 (-1157)) (|:| -2806 (-52))) (-1 (-2 (|:| -1928 (-1157)) (|:| -2806 (-52))) (-2 (|:| -1928 (-1157)) (|:| -2806 (-52))) (-2 (|:| -1928 (-1157)) (|:| -2806 (-52)))) $) NIL (|has| $ (-6 -4417)))) (-3719 (((-52) $ (-1157) (-52)) NIL (|has| $ (-6 -4418)))) (-3653 (((-52) $ (-1157)) NIL)) (-3872 (((-644 (-2 (|:| -1928 (-1157)) (|:| -2806 (-52)))) $) NIL (|has| $ (-6 -4417))) (((-644 (-52)) $) NIL (|has| $ (-6 -4417)))) (-2611 (($ $) NIL)) (-2756 (((-112) $ (-771)) NIL)) (-2755 (((-1157) $) NIL (|has| (-1157) (-850)))) (-4227 (((-644 (-2 (|:| -1928 (-1157)) (|:| -2806 (-52)))) $) NIL (|has| $ (-6 -4417))) (((-644 (-52)) $) NIL (|has| $ (-6 -4417)))) (-1688 (((-112) (-2 (|:| -1928 (-1157)) (|:| -2806 (-52))) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1928 (-1157)) (|:| -2806 (-52))) (-1099)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-52) (-1099))))) (-3831 (((-1157) $) NIL (|has| (-1157) (-850)))) (-3708 (($ (-1 (-2 (|:| -1928 (-1157)) (|:| -2806 (-52))) (-2 (|:| -1928 (-1157)) (|:| -2806 (-52)))) $) NIL (|has| $ (-6 -4418))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4418)))) (-3080 (($ (-1 (-2 (|:| -1928 (-1157)) (|:| -2806 (-52))) (-2 (|:| -1928 (-1157)) (|:| -2806 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1720 (($ (-390)) 9)) (-4106 (((-112) $ (-771)) NIL)) (-3151 (((-1157) $) NIL (-2809 (|has| (-52) (-1099)) (|has| (-2 (|:| -1928 (-1157)) (|:| -2806 (-52))) (-1099))))) (-1467 (((-644 (-1157)) $) NIL)) (-3983 (((-112) (-1157) $) NIL)) (-4255 (((-2 (|:| -1928 (-1157)) (|:| -2806 (-52))) $) NIL)) (-4354 (($ (-2 (|:| -1928 (-1157)) (|:| -2806 (-52))) $) NIL)) (-3780 (((-644 (-1157)) $) NIL)) (-1605 (((-112) (-1157) $) NIL)) (-4059 (((-1119) $) NIL (-2809 (|has| (-52) (-1099)) (|has| (-2 (|:| -1928 (-1157)) (|:| -2806 (-52))) (-1099))))) (-4080 (((-52) $) NIL (|has| (-1157) (-850)))) (-2688 (((-3 (-2 (|:| -1928 (-1157)) (|:| -2806 (-52))) "failed") (-1 (-112) (-2 (|:| -1928 (-1157)) (|:| -2806 (-52)))) $) NIL)) (-4079 (($ $ (-52)) NIL (|has| $ (-6 -4418)))) (-4097 (((-2 (|:| -1928 (-1157)) (|:| -2806 (-52))) $) NIL)) (-3966 (((-112) (-1 (-112) (-2 (|:| -1928 (-1157)) (|:| -2806 (-52)))) $) NIL (|has| $ (-6 -4417))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 (-2 (|:| -1928 (-1157)) (|:| -2806 (-52)))))) NIL (-12 (|has| (-2 (|:| -1928 (-1157)) (|:| -2806 (-52))) (-310 (-2 (|:| -1928 (-1157)) (|:| -2806 (-52))))) (|has| (-2 (|:| -1928 (-1157)) (|:| -2806 (-52))) (-1099)))) (($ $ (-295 (-2 (|:| -1928 (-1157)) (|:| -2806 (-52))))) NIL (-12 (|has| (-2 (|:| -1928 (-1157)) (|:| -2806 (-52))) (-310 (-2 (|:| -1928 (-1157)) (|:| -2806 (-52))))) (|has| (-2 (|:| -1928 (-1157)) (|:| -2806 (-52))) (-1099)))) (($ $ (-2 (|:| -1928 (-1157)) (|:| -2806 (-52))) (-2 (|:| -1928 (-1157)) (|:| -2806 (-52)))) NIL (-12 (|has| (-2 (|:| -1928 (-1157)) (|:| -2806 (-52))) (-310 (-2 (|:| -1928 (-1157)) (|:| -2806 (-52))))) (|has| (-2 (|:| -1928 (-1157)) (|:| -2806 (-52))) (-1099)))) (($ $ (-644 (-2 (|:| -1928 (-1157)) (|:| -2806 (-52)))) (-644 (-2 (|:| -1928 (-1157)) (|:| -2806 (-52))))) NIL (-12 (|has| (-2 (|:| -1928 (-1157)) (|:| -2806 (-52))) (-310 (-2 (|:| -1928 (-1157)) (|:| -2806 (-52))))) (|has| (-2 (|:| -1928 (-1157)) (|:| -2806 (-52))) (-1099)))) (($ $ (-644 (-52)) (-644 (-52))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1099)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1099)))) (($ $ (-295 (-52))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1099)))) (($ $ (-644 (-295 (-52)))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1099))))) (-1844 (((-112) $ $) NIL)) (-2210 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-52) (-1099))))) (-4185 (((-644 (-52)) $) NIL)) (-2788 (((-112) $) NIL)) (-1737 (($) NIL)) (-4376 (((-52) $ (-1157)) 14) (((-52) $ (-1157) (-52)) NIL) (((-52) $ (-1175)) 15)) (-1797 (($) NIL) (($ (-644 (-2 (|:| -1928 (-1157)) (|:| -2806 (-52))))) NIL)) (-4068 (((-771) (-1 (-112) (-2 (|:| -1928 (-1157)) (|:| -2806 (-52)))) $) NIL (|has| $ (-6 -4417))) (((-771) (-2 (|:| -1928 (-1157)) (|:| -2806 (-52))) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1928 (-1157)) (|:| -2806 (-52))) (-1099)))) (((-771) (-52) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-52) (-1099)))) (((-771) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4417)))) (-3924 (($ $) NIL)) (-3136 (((-538) $) NIL (|has| (-2 (|:| -1928 (-1157)) (|:| -2806 (-52))) (-614 (-538))))) (-2489 (($ (-644 (-2 (|:| -1928 (-1157)) (|:| -2806 (-52))))) NIL)) (-2479 (((-862) $) NIL (-2809 (|has| (-52) (-613 (-862))) (|has| (-2 (|:| -1928 (-1157)) (|:| -2806 (-52))) (-613 (-862)))))) (-3900 (((-112) $ $) NIL (-2809 (|has| (-52) (-1099)) (|has| (-2 (|:| -1928 (-1157)) (|:| -2806 (-52))) (-1099))))) (-2471 (($ (-644 (-2 (|:| -1928 (-1157)) (|:| -2806 (-52))))) NIL)) (-3667 (((-112) (-1 (-112) (-2 (|:| -1928 (-1157)) (|:| -2806 (-52)))) $) NIL (|has| $ (-6 -4417))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4417)))) (-2952 (((-112) $ $) NIL (-2809 (|has| (-52) (-1099)) (|has| (-2 (|:| -1928 (-1157)) (|:| -2806 (-52))) (-1099))))) (-3002 (((-771) $) NIL (|has| $ (-6 -4417))))) +(((-632) (-13 (-1190 (-1157) (-52)) (-10 -8 (-15 -1720 ($ (-390))) (-15 -2611 ($ $)) (-15 -4376 ((-52) $ (-1175))) (-15 -3901 ((-52) $ (-1175) (-52)))))) (T -632)) +((-1720 (*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-632)))) (-2611 (*1 *1 *1) (-5 *1 (-632))) (-4376 (*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-52)) (-5 *1 (-632)))) (-3901 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1175)) (-5 *1 (-632))))) +(-13 (-1190 (-1157) (-52)) (-10 -8 (-15 -1720 ($ (-390))) (-15 -2611 ($ $)) (-15 -4376 ((-52) $ (-1175))) (-15 -3901 ((-52) $ (-1175) (-52))))) +((-3077 (($ $ |#2|) 10))) +(((-633 |#1| |#2|) (-10 -8 (-15 -3077 (|#1| |#1| |#2|))) (-634 |#2|) (-172)) (T -633)) +NIL +(-10 -8 (-15 -3077 (|#1| |#1| |#2|))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-3174 (((-3 $ "failed") $ $) 20)) (-1811 (($) 18 T CONST)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-2489 (($ $ $) 34)) (-2479 (((-862) $) 12)) (-3900 (((-112) $ $) 9)) (-2446 (($) 19 T CONST)) (-2952 (((-112) $ $) 6)) (-3077 (($ $ |#1|) 33 (|has| |#1| (-365)))) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) +(((-634 |#1|) (-140) (-172)) (T -634)) +((-2489 (*1 *1 *1 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-172)))) (-3077 (*1 *1 *1 *2) (-12 (-4 *1 (-634 *2)) (-4 *2 (-172)) (-4 *2 (-365))))) +(-13 (-717 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -2489 ($ $ $)) (IF (|has| |t#1| (-365)) (-15 -3077 ($ $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-648 |#1|) . T) ((-640 |#1|) . T) ((-717 |#1|) . T) ((-1051 |#1|) . T) ((-1056 |#1|) . T) ((-1099) . T)) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-1732 (((-3 $ "failed")) NIL (-2809 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-3174 (((-3 $ "failed") $ $) NIL)) (-2603 (((-1264 (-689 |#1|))) NIL (|has| |#2| (-419 |#1|))) (((-1264 (-689 |#1|)) (-1264 $)) NIL (|has| |#2| (-369 |#1|)))) (-3010 (((-1264 $)) NIL (|has| |#2| (-369 |#1|)))) (-1811 (($) NIL T CONST)) (-2738 (((-3 (-2 (|:| |particular| $) (|:| -1419 (-644 $))) "failed")) NIL (-2809 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-1690 (((-3 $ "failed")) NIL (-2809 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-4223 (((-689 |#1|)) NIL (|has| |#2| (-419 |#1|))) (((-689 |#1|) (-1264 $)) NIL (|has| |#2| (-369 |#1|)))) (-2935 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-3030 (((-689 |#1|) $) NIL (|has| |#2| (-419 |#1|))) (((-689 |#1|) $ (-1264 $)) NIL (|has| |#2| (-369 |#1|)))) (-4347 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-4139 (((-1171 (-952 |#1|))) NIL (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-365))))) (-4370 (($ $ (-921)) NIL)) (-2190 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-3251 (((-1171 |#1|) $) NIL (-2809 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-1792 ((|#1|) NIL (|has| |#2| (-419 |#1|))) ((|#1| (-1264 $)) NIL (|has| |#2| (-369 |#1|)))) (-1973 (((-1171 |#1|) $) NIL (|has| |#2| (-369 |#1|)))) (-3156 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2422 (($ (-1264 |#1|)) NIL (|has| |#2| (-419 |#1|))) (($ (-1264 |#1|) (-1264 $)) NIL (|has| |#2| (-369 |#1|)))) (-3757 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-2299 (((-921)) NIL (|has| |#2| (-369 |#1|)))) (-2116 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1595 (($ $ (-921)) NIL)) (-2895 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2751 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2185 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2784 (((-3 (-2 (|:| |particular| $) (|:| -1419 (-644 $))) "failed")) NIL (-2809 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-4320 (((-3 $ "failed")) NIL (-2809 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-1434 (((-689 |#1|)) NIL (|has| |#2| (-419 |#1|))) (((-689 |#1|) (-1264 $)) NIL (|has| |#2| (-369 |#1|)))) (-1978 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-1390 (((-689 |#1|) $) NIL (|has| |#2| (-419 |#1|))) (((-689 |#1|) $ (-1264 $)) NIL (|has| |#2| (-369 |#1|)))) (-4252 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-1509 (((-1171 (-952 |#1|))) NIL (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-365))))) (-3681 (($ $ (-921)) NIL)) (-1782 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-4066 (((-1171 |#1|) $) NIL (-2809 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-2659 ((|#1|) NIL (|has| |#2| (-419 |#1|))) ((|#1| (-1264 $)) NIL (|has| |#2| (-369 |#1|)))) (-2899 (((-1171 |#1|) $) NIL (|has| |#2| (-369 |#1|)))) (-3280 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3151 (((-1157) $) NIL)) (-1698 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2287 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3093 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-4059 (((-1119) $) NIL)) (-3753 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-4376 ((|#1| $ (-566)) NIL (|has| |#2| (-419 |#1|)))) (-3747 (((-689 |#1|) (-1264 $)) NIL (|has| |#2| (-419 |#1|))) (((-1264 |#1|) $) NIL (|has| |#2| (-419 |#1|))) (((-689 |#1|) (-1264 $) (-1264 $)) NIL (|has| |#2| (-369 |#1|))) (((-1264 |#1|) $ (-1264 $)) NIL (|has| |#2| (-369 |#1|)))) (-3136 (($ (-1264 |#1|)) NIL (|has| |#2| (-419 |#1|))) (((-1264 |#1|) $) NIL (|has| |#2| (-419 |#1|)))) (-2880 (((-644 (-952 |#1|))) NIL (|has| |#2| (-419 |#1|))) (((-644 (-952 |#1|)) (-1264 $)) NIL (|has| |#2| (-369 |#1|)))) (-3815 (($ $ $) NIL)) (-3418 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2479 (((-862) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-3900 (((-112) $ $) NIL)) (-1419 (((-1264 $)) NIL (|has| |#2| (-419 |#1|)))) (-3170 (((-644 (-1264 |#1|))) NIL (-2809 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-1469 (($ $ $ $) NIL)) (-1429 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-4029 (($ (-689 |#1|) $) NIL (|has| |#2| (-419 |#1|)))) (-1596 (($ $ $) NIL)) (-1478 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3492 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3893 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2446 (($) 19 T CONST)) (-2952 (((-112) $ $) NIL)) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) NIL)) (** (($ $ (-921)) 20)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-635 |#1| |#2|) (-13 (-744 |#1|) (-613 |#2|) (-10 -8 (-15 -2479 ($ |#2|)) (IF (|has| |#2| (-419 |#1|)) (-6 (-419 |#1|)) |%noBranch|) (IF (|has| |#2| (-369 |#1|)) (-6 (-369 |#1|)) |%noBranch|))) (-172) (-744 |#1|)) (T -635)) +((-2479 (*1 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-635 *3 *2)) (-4 *2 (-744 *3))))) +(-13 (-744 |#1|) (-613 |#2|) (-10 -8 (-15 -2479 ($ |#2|)) (IF (|has| |#2| (-419 |#1|)) (-6 (-419 |#1|)) |%noBranch|) (IF (|has| |#2| (-369 |#1|)) (-6 (-369 |#1|)) |%noBranch|))) +((-2208 (((-3 (-843 |#2|) "failed") |#2| (-295 |#2|) (-1157)) 106) (((-3 (-843 |#2|) (-2 (|:| |leftHandLimit| (-3 (-843 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-843 |#2|) "failed"))) "failed") |#2| (-295 (-843 |#2|))) 131)) (-1661 (((-3 (-833 |#2|) "failed") |#2| (-295 (-833 |#2|))) 136))) +(((-636 |#1| |#2|) (-10 -7 (-15 -2208 ((-3 (-843 |#2|) (-2 (|:| |leftHandLimit| (-3 (-843 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-843 |#2|) "failed"))) "failed") |#2| (-295 (-843 |#2|)))) (-15 -1661 ((-3 (-833 |#2|) "failed") |#2| (-295 (-833 |#2|)))) (-15 -2208 ((-3 (-843 |#2|) "failed") |#2| (-295 |#2|) (-1157)))) (-13 (-454) (-1038 (-566)) (-639 (-566))) (-13 (-27) (-1199) (-432 |#1|))) (T -636)) +((-2208 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-295 *3)) (-5 *5 (-1157)) (-4 *3 (-13 (-27) (-1199) (-432 *6))) (-4 *6 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-843 *3)) (-5 *1 (-636 *6 *3)))) (-1661 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-295 (-833 *3))) (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-833 *3)) (-5 *1 (-636 *5 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *5))))) (-2208 (*1 *2 *3 *4) (-12 (-5 *4 (-295 (-843 *3))) (-4 *3 (-13 (-27) (-1199) (-432 *5))) (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-3 (-843 *3) (-2 (|:| |leftHandLimit| (-3 (-843 *3) "failed")) (|:| |rightHandLimit| (-3 (-843 *3) "failed"))) "failed")) (-5 *1 (-636 *5 *3))))) +(-10 -7 (-15 -2208 ((-3 (-843 |#2|) (-2 (|:| |leftHandLimit| (-3 (-843 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-843 |#2|) "failed"))) "failed") |#2| (-295 (-843 |#2|)))) (-15 -1661 ((-3 (-833 |#2|) "failed") |#2| (-295 (-833 |#2|)))) (-15 -2208 ((-3 (-843 |#2|) "failed") |#2| (-295 |#2|) (-1157)))) +((-2208 (((-3 (-843 (-409 (-952 |#1|))) "failed") (-409 (-952 |#1|)) (-295 (-409 (-952 |#1|))) (-1157)) 86) (((-3 (-843 (-409 (-952 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-843 (-409 (-952 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-843 (-409 (-952 |#1|))) "failed"))) "failed") (-409 (-952 |#1|)) (-295 (-409 (-952 |#1|)))) 20) (((-3 (-843 (-409 (-952 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-843 (-409 (-952 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-843 (-409 (-952 |#1|))) "failed"))) "failed") (-409 (-952 |#1|)) (-295 (-843 (-952 |#1|)))) 35)) (-1661 (((-833 (-409 (-952 |#1|))) (-409 (-952 |#1|)) (-295 (-409 (-952 |#1|)))) 23) (((-833 (-409 (-952 |#1|))) (-409 (-952 |#1|)) (-295 (-833 (-952 |#1|)))) 43))) +(((-637 |#1|) (-10 -7 (-15 -2208 ((-3 (-843 (-409 (-952 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-843 (-409 (-952 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-843 (-409 (-952 |#1|))) "failed"))) "failed") (-409 (-952 |#1|)) (-295 (-843 (-952 |#1|))))) (-15 -2208 ((-3 (-843 (-409 (-952 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-843 (-409 (-952 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-843 (-409 (-952 |#1|))) "failed"))) "failed") (-409 (-952 |#1|)) (-295 (-409 (-952 |#1|))))) (-15 -1661 ((-833 (-409 (-952 |#1|))) (-409 (-952 |#1|)) (-295 (-833 (-952 |#1|))))) (-15 -1661 ((-833 (-409 (-952 |#1|))) (-409 (-952 |#1|)) (-295 (-409 (-952 |#1|))))) (-15 -2208 ((-3 (-843 (-409 (-952 |#1|))) "failed") (-409 (-952 |#1|)) (-295 (-409 (-952 |#1|))) (-1157)))) (-454)) (T -637)) +((-2208 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-295 (-409 (-952 *6)))) (-5 *5 (-1157)) (-5 *3 (-409 (-952 *6))) (-4 *6 (-454)) (-5 *2 (-843 *3)) (-5 *1 (-637 *6)))) (-1661 (*1 *2 *3 *4) (-12 (-5 *4 (-295 (-409 (-952 *5)))) (-5 *3 (-409 (-952 *5))) (-4 *5 (-454)) (-5 *2 (-833 *3)) (-5 *1 (-637 *5)))) (-1661 (*1 *2 *3 *4) (-12 (-5 *4 (-295 (-833 (-952 *5)))) (-4 *5 (-454)) (-5 *2 (-833 (-409 (-952 *5)))) (-5 *1 (-637 *5)) (-5 *3 (-409 (-952 *5))))) (-2208 (*1 *2 *3 *4) (-12 (-5 *4 (-295 (-409 (-952 *5)))) (-5 *3 (-409 (-952 *5))) (-4 *5 (-454)) (-5 *2 (-3 (-843 *3) (-2 (|:| |leftHandLimit| (-3 (-843 *3) "failed")) (|:| |rightHandLimit| (-3 (-843 *3) "failed"))) "failed")) (-5 *1 (-637 *5)))) (-2208 (*1 *2 *3 *4) (-12 (-5 *4 (-295 (-843 (-952 *5)))) (-4 *5 (-454)) (-5 *2 (-3 (-843 (-409 (-952 *5))) (-2 (|:| |leftHandLimit| (-3 (-843 (-409 (-952 *5))) "failed")) (|:| |rightHandLimit| (-3 (-843 (-409 (-952 *5))) "failed"))) "failed")) (-5 *1 (-637 *5)) (-5 *3 (-409 (-952 *5)))))) +(-10 -7 (-15 -2208 ((-3 (-843 (-409 (-952 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-843 (-409 (-952 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-843 (-409 (-952 |#1|))) "failed"))) "failed") (-409 (-952 |#1|)) (-295 (-843 (-952 |#1|))))) (-15 -2208 ((-3 (-843 (-409 (-952 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-843 (-409 (-952 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-843 (-409 (-952 |#1|))) "failed"))) "failed") (-409 (-952 |#1|)) (-295 (-409 (-952 |#1|))))) (-15 -1661 ((-833 (-409 (-952 |#1|))) (-409 (-952 |#1|)) (-295 (-833 (-952 |#1|))))) (-15 -1661 ((-833 (-409 (-952 |#1|))) (-409 (-952 |#1|)) (-295 (-409 (-952 |#1|))))) (-15 -2208 ((-3 (-843 (-409 (-952 |#1|))) "failed") (-409 (-952 |#1|)) (-295 (-409 (-952 |#1|))) (-1157)))) +((-3660 (((-3 (-1264 (-409 |#1|)) "failed") (-1264 |#2|) |#2|) 64 (-2387 (|has| |#1| (-365)))) (((-3 (-1264 |#1|) "failed") (-1264 |#2|) |#2|) 49 (|has| |#1| (-365)))) (-1948 (((-112) (-1264 |#2|)) 33)) (-1806 (((-3 (-1264 |#1|) "failed") (-1264 |#2|)) 40))) +(((-638 |#1| |#2|) (-10 -7 (-15 -1948 ((-112) (-1264 |#2|))) (-15 -1806 ((-3 (-1264 |#1|) "failed") (-1264 |#2|))) (IF (|has| |#1| (-365)) (-15 -3660 ((-3 (-1264 |#1|) "failed") (-1264 |#2|) |#2|)) (-15 -3660 ((-3 (-1264 (-409 |#1|)) "failed") (-1264 |#2|) |#2|)))) (-558) (-639 |#1|)) (T -638)) +((-3660 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1264 *4)) (-4 *4 (-639 *5)) (-2387 (-4 *5 (-365))) (-4 *5 (-558)) (-5 *2 (-1264 (-409 *5))) (-5 *1 (-638 *5 *4)))) (-3660 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1264 *4)) (-4 *4 (-639 *5)) (-4 *5 (-365)) (-4 *5 (-558)) (-5 *2 (-1264 *5)) (-5 *1 (-638 *5 *4)))) (-1806 (*1 *2 *3) (|partial| -12 (-5 *3 (-1264 *5)) (-4 *5 (-639 *4)) (-4 *4 (-558)) (-5 *2 (-1264 *4)) (-5 *1 (-638 *4 *5)))) (-1948 (*1 *2 *3) (-12 (-5 *3 (-1264 *5)) (-4 *5 (-639 *4)) (-4 *4 (-558)) (-5 *2 (-112)) (-5 *1 (-638 *4 *5))))) +(-10 -7 (-15 -1948 ((-112) (-1264 |#2|))) (-15 -1806 ((-3 (-1264 |#1|) "failed") (-1264 |#2|))) (IF (|has| |#1| (-365)) (-15 -3660 ((-3 (-1264 |#1|) "failed") (-1264 |#2|) |#2|)) (-15 -3660 ((-3 (-1264 (-409 |#1|)) "failed") (-1264 |#2|) |#2|)))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-3174 (((-3 $ "failed") $ $) 20)) (-1811 (($) 18 T CONST)) (-2275 (((-689 |#1|) (-689 $)) 40) (((-2 (|:| -4196 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) 39)) (-3757 (((-3 $ "failed") $) 37)) (-2264 (((-112) $) 35)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-2479 (((-862) $) 12) (($ (-566)) 33)) (-1558 (((-771)) 32 T CONST)) (-3900 (((-112) $ $) 9)) (-2446 (($) 19 T CONST)) (-2459 (($) 34 T CONST)) (-2952 (((-112) $ $) 6)) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27))) +(((-639 |#1|) (-140) (-1049)) (T -639)) +((-2275 (*1 *2 *3) (-12 (-5 *3 (-689 *1)) (-4 *1 (-639 *4)) (-4 *4 (-1049)) (-5 *2 (-689 *4)))) (-2275 (*1 *2 *3 *4) (-12 (-5 *3 (-689 *1)) (-5 *4 (-1264 *1)) (-4 *1 (-639 *5)) (-4 *5 (-1049)) (-5 *2 (-2 (|:| -4196 (-689 *5)) (|:| |vec| (-1264 *5))))))) +(-13 (-1049) (-10 -8 (-15 -2275 ((-689 |t#1|) (-689 $))) (-15 -2275 ((-2 (|:| -4196 (-689 |t#1|)) (|:| |vec| (-1264 |t#1|))) (-689 $) (-1264 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-616 (-566)) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 $) . T) ((-726) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 15)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-2479 (((-862) $) 12)) (-3900 (((-112) $ $) 9)) (-2446 (($) 16 T CONST)) (-2952 (((-112) $ $) 6)) (* (($ |#1| $) 14) (($ $ |#1|) 19))) +(((-640 |#1|) (-140) (-1057)) (T -640)) +NIL +(-13 (-646 |t#1|) (-1051 |t#1|)) +(((-102) . T) ((-613 (-862)) . T) ((-646 |#1|) . T) ((-1051 |#1|) . T) ((-1099) . T)) +((-3956 ((|#2| (-644 |#1|) (-644 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-644 |#1|) (-644 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-644 |#1|) (-644 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-644 |#1|) (-644 |#2|) |#2|) 17) ((|#2| (-644 |#1|) (-644 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-644 |#1|) (-644 |#2|)) 12))) +(((-641 |#1| |#2|) (-10 -7 (-15 -3956 ((-1 |#2| |#1|) (-644 |#1|) (-644 |#2|))) (-15 -3956 (|#2| (-644 |#1|) (-644 |#2|) |#1|)) (-15 -3956 ((-1 |#2| |#1|) (-644 |#1|) (-644 |#2|) |#2|)) (-15 -3956 (|#2| (-644 |#1|) (-644 |#2|) |#1| |#2|)) (-15 -3956 ((-1 |#2| |#1|) (-644 |#1|) (-644 |#2|) (-1 |#2| |#1|))) (-15 -3956 (|#2| (-644 |#1|) (-644 |#2|) |#1| (-1 |#2| |#1|)))) (-1099) (-1214)) (T -641)) +((-3956 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-644 *5)) (-5 *4 (-644 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1099)) (-4 *2 (-1214)) (-5 *1 (-641 *5 *2)))) (-3956 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-644 *5)) (-5 *4 (-644 *6)) (-4 *5 (-1099)) (-4 *6 (-1214)) (-5 *1 (-641 *5 *6)))) (-3956 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-644 *5)) (-5 *4 (-644 *2)) (-4 *5 (-1099)) (-4 *2 (-1214)) (-5 *1 (-641 *5 *2)))) (-3956 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-644 *6)) (-5 *4 (-644 *5)) (-4 *6 (-1099)) (-4 *5 (-1214)) (-5 *2 (-1 *5 *6)) (-5 *1 (-641 *6 *5)))) (-3956 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-644 *5)) (-5 *4 (-644 *2)) (-4 *5 (-1099)) (-4 *2 (-1214)) (-5 *1 (-641 *5 *2)))) (-3956 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *5)) (-5 *4 (-644 *6)) (-4 *5 (-1099)) (-4 *6 (-1214)) (-5 *2 (-1 *6 *5)) (-5 *1 (-641 *5 *6))))) +(-10 -7 (-15 -3956 ((-1 |#2| |#1|) (-644 |#1|) (-644 |#2|))) (-15 -3956 (|#2| (-644 |#1|) (-644 |#2|) |#1|)) (-15 -3956 ((-1 |#2| |#1|) (-644 |#1|) (-644 |#2|) |#2|)) (-15 -3956 (|#2| (-644 |#1|) (-644 |#2|) |#1| |#2|)) (-15 -3956 ((-1 |#2| |#1|) (-644 |#1|) (-644 |#2|) (-1 |#2| |#1|))) (-15 -3956 (|#2| (-644 |#1|) (-644 |#2|) |#1| (-1 |#2| |#1|)))) +((-2531 (((-644 |#2|) (-1 |#2| |#1| |#2|) (-644 |#1|) |#2|) 16)) (-1838 ((|#2| (-1 |#2| |#1| |#2|) (-644 |#1|) |#2|) 18)) (-3080 (((-644 |#2|) (-1 |#2| |#1|) (-644 |#1|)) 13))) +(((-642 |#1| |#2|) (-10 -7 (-15 -2531 ((-644 |#2|) (-1 |#2| |#1| |#2|) (-644 |#1|) |#2|)) (-15 -1838 (|#2| (-1 |#2| |#1| |#2|) (-644 |#1|) |#2|)) (-15 -3080 ((-644 |#2|) (-1 |#2| |#1|) (-644 |#1|)))) (-1214) (-1214)) (T -642)) +((-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-644 *5)) (-4 *5 (-1214)) (-4 *6 (-1214)) (-5 *2 (-644 *6)) (-5 *1 (-642 *5 *6)))) (-1838 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-644 *5)) (-4 *5 (-1214)) (-4 *2 (-1214)) (-5 *1 (-642 *5 *2)))) (-2531 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-644 *6)) (-4 *6 (-1214)) (-4 *5 (-1214)) (-5 *2 (-644 *5)) (-5 *1 (-642 *6 *5))))) +(-10 -7 (-15 -2531 ((-644 |#2|) (-1 |#2| |#1| |#2|) (-644 |#1|) |#2|)) (-15 -1838 (|#2| (-1 |#2| |#1| |#2|) (-644 |#1|) |#2|)) (-15 -3080 ((-644 |#2|) (-1 |#2| |#1|) (-644 |#1|)))) +((-3080 (((-644 |#3|) (-1 |#3| |#1| |#2|) (-644 |#1|) (-644 |#2|)) 21))) +(((-643 |#1| |#2| |#3|) (-10 -7 (-15 -3080 ((-644 |#3|) (-1 |#3| |#1| |#2|) (-644 |#1|) (-644 |#2|)))) (-1214) (-1214) (-1214)) (T -643)) +((-3080 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-644 *6)) (-5 *5 (-644 *7)) (-4 *6 (-1214)) (-4 *7 (-1214)) (-4 *8 (-1214)) (-5 *2 (-644 *8)) (-5 *1 (-643 *6 *7 *8))))) +(-10 -7 (-15 -3080 ((-644 |#3|) (-1 |#3| |#1| |#2|) (-644 |#1|) (-644 |#2|)))) +((-2986 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2153 ((|#1| $) NIL)) (-3673 ((|#1| $) NIL)) (-3238 (($ $) NIL)) (-2462 (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4418)))) (-3427 (($ $ (-566)) NIL (|has| $ (-6 -4418)))) (-4163 (((-112) $) NIL (|has| |#1| (-850))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2893 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-850)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4418)))) (-1374 (($ $) NIL (|has| |#1| (-850))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1453 (((-112) $ (-771)) NIL)) (-3684 ((|#1| $ |#1|) NIL (|has| $ (-6 -4418)))) (-3494 (($ $ $) NIL (|has| $ (-6 -4418)))) (-2454 ((|#1| $ |#1|) NIL (|has| $ (-6 -4418)))) (-1306 ((|#1| $ |#1|) NIL (|has| $ (-6 -4418)))) (-3901 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4418))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4418))) (($ $ "rest" $) NIL (|has| $ (-6 -4418))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4418))) ((|#1| $ (-1231 (-566)) |#1|) NIL (|has| $ (-6 -4418))) ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4418)))) (-3891 (($ $ (-644 $)) NIL (|has| $ (-6 -4418)))) (-4016 (($ $ $) 37 (|has| |#1| (-1099)))) (-4005 (($ $ $) 41 (|has| |#1| (-1099)))) (-3994 (($ $ $) 44 (|has| |#1| (-1099)))) (-4364 (($ (-1 (-112) |#1|) $) NIL)) (-3543 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-3663 ((|#1| $) NIL)) (-1811 (($) NIL T CONST)) (-2273 (($ $) NIL (|has| $ (-6 -4418)))) (-3877 (($ $) NIL)) (-4091 (($ $) 23) (($ $ (-771)) NIL)) (-1346 (($ $) NIL (|has| |#1| (-1099)))) (-4111 (($ $) 36 (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-2295 (($ |#1| $) NIL (|has| |#1| (-1099))) (($ (-1 (-112) |#1|) $) NIL)) (-2628 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-1838 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-3719 ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4418)))) (-3653 ((|#1| $ (-566)) NIL)) (-3258 (((-112) $) NIL)) (-4000 (((-566) |#1| $ (-566)) NIL (|has| |#1| (-1099))) (((-566) |#1| $) NIL (|has| |#1| (-1099))) (((-566) (-1 (-112) |#1|) $) NIL)) (-3872 (((-644 |#1|) $) NIL (|has| $ (-6 -4417)))) (-2375 (((-112) $) 11)) (-3578 (((-644 $) $) NIL)) (-2778 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3620 (($) 9)) (-4259 (($ (-771) |#1|) NIL)) (-2756 (((-112) $ (-771)) NIL)) (-2755 (((-566) $) NIL (|has| (-566) (-850)))) (-1920 (($ $ $) NIL (|has| |#1| (-850)))) (-3200 (($ $ $) NIL (|has| |#1| (-850))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1330 (($ $ $) NIL (|has| |#1| (-850))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-4227 (((-644 |#1|) $) NIL (|has| $ (-6 -4417)))) (-1688 (((-112) |#1| $) 40 (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-3831 (((-566) $) NIL (|has| (-566) (-850)))) (-3038 (($ $ $) NIL (|has| |#1| (-850)))) (-3708 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3960 (($ |#1|) NIL)) (-4106 (((-112) $ (-771)) NIL)) (-3658 (((-644 |#1|) $) NIL)) (-1587 (((-112) $) NIL)) (-3151 (((-1157) $) NIL (|has| |#1| (-1099)))) (-2651 ((|#1| $) NIL) (($ $ (-771)) NIL)) (-4354 (($ $ $ (-566)) NIL) (($ |#1| $ (-566)) NIL)) (-4271 (($ $ $ (-566)) NIL) (($ |#1| $ (-566)) NIL)) (-3780 (((-644 (-566)) $) NIL)) (-1605 (((-112) (-566) $) NIL)) (-4059 (((-1119) $) NIL (|has| |#1| (-1099)))) (-4080 ((|#1| $) 20) (($ $ (-771)) NIL)) (-2688 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4079 (($ $ |#1|) NIL (|has| $ (-6 -4418)))) (-3094 (((-112) $) NIL)) (-3966 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1844 (((-112) $ $) NIL)) (-2210 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-4185 (((-644 |#1|) $) NIL)) (-2788 (((-112) $) 39)) (-1737 (($) 38)) (-4376 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1231 (-566))) NIL) ((|#1| $ (-566)) 42) ((|#1| $ (-566) |#1|) NIL)) (-4098 (((-566) $ $) NIL)) (-3139 (($ $ (-1231 (-566))) NIL) (($ $ (-566)) NIL)) (-2139 (($ $ (-1231 (-566))) NIL) (($ $ (-566)) NIL)) (-2636 (((-112) $) NIL)) (-3513 (($ $) NIL)) (-2018 (($ $) NIL (|has| $ (-6 -4418)))) (-2804 (((-771) $) NIL)) (-2924 (($ $) NIL)) (-4068 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-1438 (($ $ $ (-566)) NIL (|has| $ (-6 -4418)))) (-3924 (($ $) NIL)) (-3136 (((-538) $) 53 (|has| |#1| (-614 (-538))))) (-2489 (($ (-644 |#1|)) NIL)) (-1765 (($ |#1| $) 12)) (-1323 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3716 (($ $ $) 35) (($ |#1| $) 43) (($ (-644 $)) NIL) (($ $ |#1|) NIL)) (-2479 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-2156 (((-644 $) $) NIL)) (-3922 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3900 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2147 (($ $ $) 13)) (-3667 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2835 (((-1157) $) 31 (|has| |#1| (-828))) (((-1157) $ (-112)) 32 (|has| |#1| (-828))) (((-1269) (-822) $) 33 (|has| |#1| (-828))) (((-1269) (-822) $ (-112)) 34 (|has| |#1| (-828)))) (-3019 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2990 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2952 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3004 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-850)))) (-3002 (((-771) $) NIL (|has| $ (-6 -4417))))) +(((-644 |#1|) (-13 (-666 |#1|) (-10 -8 (-15 -3620 ($)) (-15 -2375 ((-112) $)) (-15 -1765 ($ |#1| $)) (-15 -2147 ($ $ $)) (IF (|has| |#1| (-1099)) (PROGN (-15 -4016 ($ $ $)) (-15 -4005 ($ $ $)) (-15 -3994 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-828)) (-6 (-828)) |%noBranch|))) (-1214)) (T -644)) +((-3620 (*1 *1) (-12 (-5 *1 (-644 *2)) (-4 *2 (-1214)))) (-2375 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-644 *3)) (-4 *3 (-1214)))) (-1765 (*1 *1 *2 *1) (-12 (-5 *1 (-644 *2)) (-4 *2 (-1214)))) (-2147 (*1 *1 *1 *1) (-12 (-5 *1 (-644 *2)) (-4 *2 (-1214)))) (-4016 (*1 *1 *1 *1) (-12 (-5 *1 (-644 *2)) (-4 *2 (-1099)) (-4 *2 (-1214)))) (-4005 (*1 *1 *1 *1) (-12 (-5 *1 (-644 *2)) (-4 *2 (-1099)) (-4 *2 (-1214)))) (-3994 (*1 *1 *1 *1) (-12 (-5 *1 (-644 *2)) (-4 *2 (-1099)) (-4 *2 (-1214))))) +(-13 (-666 |#1|) (-10 -8 (-15 -3620 ($)) (-15 -2375 ((-112) $)) (-15 -1765 ($ |#1| $)) (-15 -2147 ($ $ $)) (IF (|has| |#1| (-1099)) (PROGN (-15 -4016 ($ $ $)) (-15 -4005 ($ $ $)) (-15 -3994 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-828)) (-6 (-828)) |%noBranch|))) +((-2986 (((-112) $ $) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) 11) (($ (-1180)) NIL) (((-1180) $) NIL) ((|#1| $) 8)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-645 |#1|) (-13 (-1082) (-613 |#1|)) (-1099)) (T -645)) +NIL +(-13 (-1082) (-613 |#1|)) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 15)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-2479 (((-862) $) 12)) (-3900 (((-112) $ $) 9)) (-2446 (($) 16 T CONST)) (-2952 (((-112) $ $) 6)) (* (($ |#1| $) 14))) +(((-646 |#1|) (-140) (-1057)) (T -646)) +((-2446 (*1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1057)))) (-2845 (*1 *2 *1) (-12 (-4 *1 (-646 *3)) (-4 *3 (-1057)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1057))))) +(-13 (-1099) (-10 -8 (-15 (-2446) ($) -1573) (-15 -2845 ((-112) $)) (-15 * ($ |t#1| $)))) +(((-102) . T) ((-613 (-862)) . T) ((-1099) . T)) +((-2986 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-4101 (($ |#1| |#1| $) 46)) (-1453 (((-112) $ (-771)) NIL)) (-4364 (($ (-1 (-112) |#1|) $) 62 (|has| $ (-6 -4417)))) (-3543 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-1811 (($) NIL T CONST)) (-1346 (($ $) 48)) (-4111 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-2295 (($ |#1| $) 59 (|has| $ (-6 -4417))) (($ (-1 (-112) |#1|) $) 61 (|has| $ (-6 -4417)))) (-2628 (($ |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-1838 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4417)))) (-3872 (((-644 |#1|) $) 9 (|has| $ (-6 -4417)))) (-2756 (((-112) $ (-771)) NIL)) (-4227 (((-644 |#1|) $) NIL (|has| $ (-6 -4417)))) (-1688 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-3708 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#1| |#1|) $) 37)) (-4106 (((-112) $ (-771)) NIL)) (-3151 (((-1157) $) NIL (|has| |#1| (-1099)))) (-4255 ((|#1| $) 50)) (-4354 (($ |#1| $) 29) (($ |#1| $ (-771)) 45)) (-4059 (((-1119) $) NIL (|has| |#1| (-1099)))) (-2688 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4097 ((|#1| $) 53)) (-3966 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1844 (((-112) $ $) NIL)) (-2788 (((-112) $) 23)) (-1737 (($) 28)) (-1755 (((-112) $) 57)) (-3112 (((-644 (-2 (|:| -2806 |#1|) (|:| -4068 (-771)))) $) 69)) (-1797 (($) 26) (($ (-644 |#1|)) 19)) (-4068 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-771) |#1| $) 66 (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-3924 (($ $) 20)) (-3136 (((-538) $) 34 (|has| |#1| (-614 (-538))))) (-2489 (($ (-644 |#1|)) NIL)) (-2479 (((-862) $) 14 (|has| |#1| (-613 (-862))))) (-3900 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2471 (($ (-644 |#1|)) 24)) (-3667 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2952 (((-112) $ $) 71 (|has| |#1| (-1099)))) (-3002 (((-771) $) 17 (|has| $ (-6 -4417))))) +(((-647 |#1|) (-13 (-695 |#1|) (-10 -8 (-6 -4417) (-15 -1755 ((-112) $)) (-15 -4101 ($ |#1| |#1| $)))) (-1099)) (T -647)) +((-1755 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-647 *3)) (-4 *3 (-1099)))) (-4101 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-647 *2)) (-4 *2 (-1099))))) +(-13 (-695 |#1|) (-10 -8 (-6 -4417) (-15 -1755 ((-112) $)) (-15 -4101 ($ |#1| |#1| $)))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-3174 (((-3 $ "failed") $ $) 20)) (-1811 (($) 18 T CONST)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-2479 (((-862) $) 12)) (-3900 (((-112) $ $) 9)) (-2446 (($) 19 T CONST)) (-2952 (((-112) $ $) 6)) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ |#1| $) 27))) +(((-648 |#1|) (-140) (-1057)) (T -648)) +NIL +(-13 (-21) (-646 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-1099) . T)) +((-2986 (((-112) $ $) NIL)) (-4049 (((-771) $) 17)) (-2229 (($ $ |#1|) 69)) (-2273 (($ $) 39)) (-3877 (($ $) 37)) (-2980 (((-3 |#1| "failed") $) 61)) (-1709 ((|#1| $) NIL)) (-1785 (($ |#1| |#2| $) 79) (($ $ $) 81)) (-3089 (((-862) $ (-1 (-862) (-862) (-862)) (-1 (-862) (-862) (-862)) (-566)) 56)) (-2294 ((|#1| $ (-566)) 35)) (-3198 ((|#2| $ (-566)) 34)) (-1980 (($ (-1 |#1| |#1|) $) 41)) (-4342 (($ (-1 |#2| |#2|) $) 47)) (-3531 (($) 11)) (-2142 (($ |#1| |#2|) 24)) (-2911 (($ (-644 (-2 (|:| |gen| |#1|) (|:| -3571 |#2|)))) 25)) (-1702 (((-644 (-2 (|:| |gen| |#1|) (|:| -3571 |#2|))) $) 14)) (-3560 (($ |#1| $) 71)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2941 (((-112) $ $) 76)) (-2479 (((-862) $) 21) (($ |#1|) 18)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 27))) +(((-649 |#1| |#2| |#3|) (-13 (-1099) (-1038 |#1|) (-10 -8 (-15 -3089 ((-862) $ (-1 (-862) (-862) (-862)) (-1 (-862) (-862) (-862)) (-566))) (-15 -1702 ((-644 (-2 (|:| |gen| |#1|) (|:| -3571 |#2|))) $)) (-15 -2142 ($ |#1| |#2|)) (-15 -2911 ($ (-644 (-2 (|:| |gen| |#1|) (|:| -3571 |#2|))))) (-15 -3198 (|#2| $ (-566))) (-15 -2294 (|#1| $ (-566))) (-15 -3877 ($ $)) (-15 -2273 ($ $)) (-15 -4049 ((-771) $)) (-15 -3531 ($)) (-15 -2229 ($ $ |#1|)) (-15 -3560 ($ |#1| $)) (-15 -1785 ($ |#1| |#2| $)) (-15 -1785 ($ $ $)) (-15 -2941 ((-112) $ $)) (-15 -4342 ($ (-1 |#2| |#2|) $)) (-15 -1980 ($ (-1 |#1| |#1|) $)))) (-1099) (-23) |#2|) (T -649)) +((-3089 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-862) (-862) (-862))) (-5 *4 (-566)) (-5 *2 (-862)) (-5 *1 (-649 *5 *6 *7)) (-4 *5 (-1099)) (-4 *6 (-23)) (-14 *7 *6))) (-1702 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |gen| *3) (|:| -3571 *4)))) (-5 *1 (-649 *3 *4 *5)) (-4 *3 (-1099)) (-4 *4 (-23)) (-14 *5 *4))) (-2142 (*1 *1 *2 *3) (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-1099)) (-4 *3 (-23)) (-14 *4 *3))) (-2911 (*1 *1 *2) (-12 (-5 *2 (-644 (-2 (|:| |gen| *3) (|:| -3571 *4)))) (-4 *3 (-1099)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-649 *3 *4 *5)))) (-3198 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-4 *2 (-23)) (-5 *1 (-649 *4 *2 *5)) (-4 *4 (-1099)) (-14 *5 *2))) (-2294 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-4 *2 (-1099)) (-5 *1 (-649 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-3877 (*1 *1 *1) (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-1099)) (-4 *3 (-23)) (-14 *4 *3))) (-2273 (*1 *1 *1) (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-1099)) (-4 *3 (-23)) (-14 *4 *3))) (-4049 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-649 *3 *4 *5)) (-4 *3 (-1099)) (-4 *4 (-23)) (-14 *5 *4))) (-3531 (*1 *1) (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-1099)) (-4 *3 (-23)) (-14 *4 *3))) (-2229 (*1 *1 *1 *2) (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-1099)) (-4 *3 (-23)) (-14 *4 *3))) (-3560 (*1 *1 *2 *1) (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-1099)) (-4 *3 (-23)) (-14 *4 *3))) (-1785 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-1099)) (-4 *3 (-23)) (-14 *4 *3))) (-1785 (*1 *1 *1 *1) (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-1099)) (-4 *3 (-23)) (-14 *4 *3))) (-2941 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-649 *3 *4 *5)) (-4 *3 (-1099)) (-4 *4 (-23)) (-14 *5 *4))) (-4342 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-649 *3 *4 *5)) (-4 *3 (-1099)))) (-1980 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1099)) (-5 *1 (-649 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) +(-13 (-1099) (-1038 |#1|) (-10 -8 (-15 -3089 ((-862) $ (-1 (-862) (-862) (-862)) (-1 (-862) (-862) (-862)) (-566))) (-15 -1702 ((-644 (-2 (|:| |gen| |#1|) (|:| -3571 |#2|))) $)) (-15 -2142 ($ |#1| |#2|)) (-15 -2911 ($ (-644 (-2 (|:| |gen| |#1|) (|:| -3571 |#2|))))) (-15 -3198 (|#2| $ (-566))) (-15 -2294 (|#1| $ (-566))) (-15 -3877 ($ $)) (-15 -2273 ($ $)) (-15 -4049 ((-771) $)) (-15 -3531 ($)) (-15 -2229 ($ $ |#1|)) (-15 -3560 ($ |#1| $)) (-15 -1785 ($ |#1| |#2| $)) (-15 -1785 ($ $ $)) (-15 -2941 ((-112) $ $)) (-15 -4342 ($ (-1 |#2| |#2|) $)) (-15 -1980 ($ (-1 |#1| |#1|) $)))) +((-3831 (((-566) $) 31)) (-4271 (($ |#2| $ (-566)) 27) (($ $ $ (-566)) NIL)) (-3780 (((-644 (-566)) $) 12)) (-1605 (((-112) (-566) $) 18)) (-3716 (($ $ |#2|) 24) (($ |#2| $) 25) (($ $ $) NIL) (($ (-644 $)) NIL))) +(((-650 |#1| |#2|) (-10 -8 (-15 -4271 (|#1| |#1| |#1| (-566))) (-15 -4271 (|#1| |#2| |#1| (-566))) (-15 -3716 (|#1| (-644 |#1|))) (-15 -3716 (|#1| |#1| |#1|)) (-15 -3716 (|#1| |#2| |#1|)) (-15 -3716 (|#1| |#1| |#2|)) (-15 -3831 ((-566) |#1|)) (-15 -3780 ((-644 (-566)) |#1|)) (-15 -1605 ((-112) (-566) |#1|))) (-651 |#2|) (-1214)) (T -650)) +NIL +(-10 -8 (-15 -4271 (|#1| |#1| |#1| (-566))) (-15 -4271 (|#1| |#2| |#1| (-566))) (-15 -3716 (|#1| (-644 |#1|))) (-15 -3716 (|#1| |#1| |#1|)) (-15 -3716 (|#1| |#2| |#1|)) (-15 -3716 (|#1| |#1| |#2|)) (-15 -3831 ((-566) |#1|)) (-15 -3780 ((-644 (-566)) |#1|)) (-15 -1605 ((-112) (-566) |#1|))) +((-2986 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2462 (((-1269) $ (-566) (-566)) 41 (|has| $ (-6 -4418)))) (-1453 (((-112) $ (-771)) 8)) (-3901 ((|#1| $ (-566) |#1|) 53 (|has| $ (-6 -4418))) ((|#1| $ (-1231 (-566)) |#1|) 59 (|has| $ (-6 -4418)))) (-3543 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4417)))) (-1811 (($) 7 T CONST)) (-4111 (($ $) 79 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-2628 (($ |#1| $) 78 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4417)))) (-1838 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4417)))) (-3719 ((|#1| $ (-566) |#1|) 54 (|has| $ (-6 -4418)))) (-3653 ((|#1| $ (-566)) 52)) (-3872 (((-644 |#1|) $) 31 (|has| $ (-6 -4417)))) (-4259 (($ (-771) |#1|) 70)) (-2756 (((-112) $ (-771)) 9)) (-2755 (((-566) $) 44 (|has| (-566) (-850)))) (-4227 (((-644 |#1|) $) 30 (|has| $ (-6 -4417)))) (-1688 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-3831 (((-566) $) 45 (|has| (-566) (-850)))) (-3708 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4106 (((-112) $ (-771)) 10)) (-3151 (((-1157) $) 22 (|has| |#1| (-1099)))) (-4271 (($ |#1| $ (-566)) 61) (($ $ $ (-566)) 60)) (-3780 (((-644 (-566)) $) 47)) (-1605 (((-112) (-566) $) 48)) (-4059 (((-1119) $) 21 (|has| |#1| (-1099)))) (-4080 ((|#1| $) 43 (|has| (-566) (-850)))) (-2688 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-4079 (($ $ |#1|) 42 (|has| $ (-6 -4418)))) (-3966 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1844 (((-112) $ $) 14)) (-2210 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-4185 (((-644 |#1|) $) 49)) (-2788 (((-112) $) 11)) (-1737 (($) 12)) (-4376 ((|#1| $ (-566) |#1|) 51) ((|#1| $ (-566)) 50) (($ $ (-1231 (-566))) 64)) (-2139 (($ $ (-566)) 63) (($ $ (-1231 (-566))) 62)) (-4068 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4417))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-3924 (($ $) 13)) (-3136 (((-538) $) 80 (|has| |#1| (-614 (-538))))) (-2489 (($ (-644 |#1|)) 71)) (-3716 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-644 $)) 66)) (-2479 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-3900 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-3667 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4417)))) (-2952 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3002 (((-771) $) 6 (|has| $ (-6 -4417))))) +(((-651 |#1|) (-140) (-1214)) (T -651)) +((-4259 (*1 *1 *2 *3) (-12 (-5 *2 (-771)) (-4 *1 (-651 *3)) (-4 *3 (-1214)))) (-3716 (*1 *1 *1 *2) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1214)))) (-3716 (*1 *1 *2 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1214)))) (-3716 (*1 *1 *1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1214)))) (-3716 (*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-651 *3)) (-4 *3 (-1214)))) (-3080 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-651 *3)) (-4 *3 (-1214)))) (-4376 (*1 *1 *1 *2) (-12 (-5 *2 (-1231 (-566))) (-4 *1 (-651 *3)) (-4 *3 (-1214)))) (-2139 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-651 *3)) (-4 *3 (-1214)))) (-2139 (*1 *1 *1 *2) (-12 (-5 *2 (-1231 (-566))) (-4 *1 (-651 *3)) (-4 *3 (-1214)))) (-4271 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-566)) (-4 *1 (-651 *2)) (-4 *2 (-1214)))) (-4271 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-651 *3)) (-4 *3 (-1214)))) (-3901 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1231 (-566))) (|has| *1 (-6 -4418)) (-4 *1 (-651 *2)) (-4 *2 (-1214))))) +(-13 (-604 (-566) |t#1|) (-151 |t#1|) (-10 -8 (-15 -4259 ($ (-771) |t#1|)) (-15 -3716 ($ $ |t#1|)) (-15 -3716 ($ |t#1| $)) (-15 -3716 ($ $ $)) (-15 -3716 ($ (-644 $))) (-15 -3080 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -4376 ($ $ (-1231 (-566)))) (-15 -2139 ($ $ (-566))) (-15 -2139 ($ $ (-1231 (-566)))) (-15 -4271 ($ |t#1| $ (-566))) (-15 -4271 ($ $ $ (-566))) (IF (|has| $ (-6 -4418)) (-15 -3901 (|t#1| $ (-1231 (-566)) |t#1|)) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2809 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-151 |#1|) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-287 #0=(-566) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-604 #0# |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1099) |has| |#1| (-1099)) ((-1214) . T)) +((-1916 (((-3 |#2| "failed") |#3| |#2| (-1175) |#2| (-644 |#2|)) 174) (((-3 (-2 (|:| |particular| |#2|) (|:| -1419 (-644 |#2|))) "failed") |#3| |#2| (-1175)) 44))) +(((-652 |#1| |#2| |#3|) (-10 -7 (-15 -1916 ((-3 (-2 (|:| |particular| |#2|) (|:| -1419 (-644 |#2|))) "failed") |#3| |#2| (-1175))) (-15 -1916 ((-3 |#2| "failed") |#3| |#2| (-1175) |#2| (-644 |#2|)))) (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147)) (-13 (-29 |#1|) (-1199) (-959)) (-656 |#2|)) (T -652)) +((-1916 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1175)) (-5 *5 (-644 *2)) (-4 *2 (-13 (-29 *6) (-1199) (-959))) (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *1 (-652 *6 *2 *3)) (-4 *3 (-656 *2)))) (-1916 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1175)) (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-4 *4 (-13 (-29 *6) (-1199) (-959))) (-5 *2 (-2 (|:| |particular| *4) (|:| -1419 (-644 *4)))) (-5 *1 (-652 *6 *4 *3)) (-4 *3 (-656 *4))))) +(-10 -7 (-15 -1916 ((-3 (-2 (|:| |particular| |#2|) (|:| -1419 (-644 |#2|))) "failed") |#3| |#2| (-1175))) (-15 -1916 ((-3 |#2| "failed") |#3| |#2| (-1175) |#2| (-644 |#2|)))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-2573 (($ $) NIL (|has| |#1| (-365)))) (-3097 (($ $ $) NIL (|has| |#1| (-365)))) (-2548 (($ $ (-771)) NIL (|has| |#1| (-365)))) (-3174 (((-3 $ "failed") $ $) NIL)) (-1811 (($) NIL T CONST)) (-3224 (($ $ $) NIL (|has| |#1| (-365)))) (-2679 (($ $ $) NIL (|has| |#1| (-365)))) (-1482 (($ $ $) NIL (|has| |#1| (-365)))) (-3644 (($ $ $) NIL (|has| |#1| (-365)))) (-3611 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL (|has| |#1| (-365)))) (-1584 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-1629 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL (|has| |#1| (-365)))) (-2980 (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) NIL)) (-1709 (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) NIL)) (-3565 (($ $) NIL)) (-3757 (((-3 $ "failed") $) NIL)) (-3530 (($ $) NIL (|has| |#1| (-454)))) (-2264 (((-112) $) NIL)) (-2463 (($ |#1| (-771)) NIL)) (-3108 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL (|has| |#1| (-558)))) (-2716 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL (|has| |#1| (-558)))) (-2584 (((-771) $) NIL)) (-2069 (($ $ $) NIL (|has| |#1| (-365)))) (-2367 (($ $ $) NIL (|has| |#1| (-365)))) (-3590 (($ $ $) NIL (|has| |#1| (-365)))) (-4274 (($ $ $) NIL (|has| |#1| (-365)))) (-3905 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL (|has| |#1| (-365)))) (-3783 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-3709 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL (|has| |#1| (-365)))) (-2622 ((|#1| $) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2976 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558)))) (-4376 ((|#1| $ |#1|) NIL)) (-3727 (($ $ $) NIL (|has| |#1| (-365)))) (-1630 (((-771) $) NIL)) (-2252 ((|#1| $) NIL (|has| |#1| (-454)))) (-2479 (((-862) $) NIL) (($ (-566)) NIL) (($ (-409 (-566))) NIL (|has| |#1| (-1038 (-409 (-566))))) (($ |#1|) NIL)) (-3866 (((-644 |#1|) $) NIL)) (-3025 ((|#1| $ (-771)) NIL)) (-1558 (((-771)) NIL T CONST)) (-3900 (((-112) $ $) NIL)) (-4029 ((|#1| $ |#1| |#1|) NIL)) (-3228 (($ $) NIL)) (-2446 (($) NIL T CONST)) (-2459 (($) NIL T CONST)) (-2834 (($) NIL)) (-2952 (((-112) $ $) NIL)) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-653 |#1|) (-656 |#1|) (-233)) (T -653)) +NIL +(-656 |#1|) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-2573 (($ $) NIL (|has| |#1| (-365)))) (-3097 (($ $ $) NIL (|has| |#1| (-365)))) (-2548 (($ $ (-771)) NIL (|has| |#1| (-365)))) (-3174 (((-3 $ "failed") $ $) NIL)) (-1811 (($) NIL T CONST)) (-3224 (($ $ $) NIL (|has| |#1| (-365)))) (-2679 (($ $ $) NIL (|has| |#1| (-365)))) (-1482 (($ $ $) NIL (|has| |#1| (-365)))) (-3644 (($ $ $) NIL (|has| |#1| (-365)))) (-3611 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL (|has| |#1| (-365)))) (-1584 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-1629 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL (|has| |#1| (-365)))) (-2980 (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) NIL)) (-1709 (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) NIL)) (-3565 (($ $) NIL)) (-3757 (((-3 $ "failed") $) NIL)) (-3530 (($ $) NIL (|has| |#1| (-454)))) (-2264 (((-112) $) NIL)) (-2463 (($ |#1| (-771)) NIL)) (-3108 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL (|has| |#1| (-558)))) (-2716 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL (|has| |#1| (-558)))) (-2584 (((-771) $) NIL)) (-2069 (($ $ $) NIL (|has| |#1| (-365)))) (-2367 (($ $ $) NIL (|has| |#1| (-365)))) (-3590 (($ $ $) NIL (|has| |#1| (-365)))) (-4274 (($ $ $) NIL (|has| |#1| (-365)))) (-3905 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL (|has| |#1| (-365)))) (-3783 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-3709 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL (|has| |#1| (-365)))) (-2622 ((|#1| $) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2976 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558)))) (-4376 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-3727 (($ $ $) NIL (|has| |#1| (-365)))) (-1630 (((-771) $) NIL)) (-2252 ((|#1| $) NIL (|has| |#1| (-454)))) (-2479 (((-862) $) NIL) (($ (-566)) NIL) (($ (-409 (-566))) NIL (|has| |#1| (-1038 (-409 (-566))))) (($ |#1|) NIL)) (-3866 (((-644 |#1|) $) NIL)) (-3025 ((|#1| $ (-771)) NIL)) (-1558 (((-771)) NIL T CONST)) (-3900 (((-112) $ $) NIL)) (-4029 ((|#1| $ |#1| |#1|) NIL)) (-3228 (($ $) NIL)) (-2446 (($) NIL T CONST)) (-2459 (($) NIL T CONST)) (-2834 (($) NIL)) (-2952 (((-112) $ $) NIL)) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-654 |#1| |#2|) (-13 (-656 |#1|) (-287 |#2| |#2|)) (-233) (-13 (-648 |#1|) (-10 -8 (-15 -3526 ($ $))))) (T -654)) +NIL +(-13 (-656 |#1|) (-287 |#2| |#2|)) +((-2573 (($ $) 29)) (-3228 (($ $) 27)) (-2834 (($) 13))) +(((-655 |#1| |#2|) (-10 -8 (-15 -2573 (|#1| |#1|)) (-15 -3228 (|#1| |#1|)) (-15 -2834 (|#1|))) (-656 |#2|) (-1049)) (T -655)) +NIL +(-10 -8 (-15 -2573 (|#1| |#1|)) (-15 -3228 (|#1| |#1|)) (-15 -2834 (|#1|))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-2573 (($ $) 87 (|has| |#1| (-365)))) (-3097 (($ $ $) 89 (|has| |#1| (-365)))) (-2548 (($ $ (-771)) 88 (|has| |#1| (-365)))) (-3174 (((-3 $ "failed") $ $) 20)) (-1811 (($) 18 T CONST)) (-3224 (($ $ $) 50 (|has| |#1| (-365)))) (-2679 (($ $ $) 51 (|has| |#1| (-365)))) (-1482 (($ $ $) 53 (|has| |#1| (-365)))) (-3644 (($ $ $) 48 (|has| |#1| (-365)))) (-3611 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) 47 (|has| |#1| (-365)))) (-1584 (((-3 $ "failed") $ $) 49 (|has| |#1| (-365)))) (-1629 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) 52 (|has| |#1| (-365)))) (-2980 (((-3 (-566) "failed") $) 80 (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) 77 (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) 74)) (-1709 (((-566) $) 79 (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) 76 (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) 75)) (-3565 (($ $) 69)) (-3757 (((-3 $ "failed") $) 37)) (-3530 (($ $) 60 (|has| |#1| (-454)))) (-2264 (((-112) $) 35)) (-2463 (($ |#1| (-771)) 67)) (-3108 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) 62 (|has| |#1| (-558)))) (-2716 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) 63 (|has| |#1| (-558)))) (-2584 (((-771) $) 71)) (-2069 (($ $ $) 57 (|has| |#1| (-365)))) (-2367 (($ $ $) 58 (|has| |#1| (-365)))) (-3590 (($ $ $) 46 (|has| |#1| (-365)))) (-4274 (($ $ $) 55 (|has| |#1| (-365)))) (-3905 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) 54 (|has| |#1| (-365)))) (-3783 (((-3 $ "failed") $ $) 56 (|has| |#1| (-365)))) (-3709 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) 59 (|has| |#1| (-365)))) (-2622 ((|#1| $) 70)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-2976 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-558)))) (-4376 ((|#1| $ |#1|) 92)) (-3727 (($ $ $) 86 (|has| |#1| (-365)))) (-1630 (((-771) $) 72)) (-2252 ((|#1| $) 61 (|has| |#1| (-454)))) (-2479 (((-862) $) 12) (($ (-566)) 33) (($ (-409 (-566))) 78 (|has| |#1| (-1038 (-409 (-566))))) (($ |#1|) 73)) (-3866 (((-644 |#1|) $) 66)) (-3025 ((|#1| $ (-771)) 68)) (-1558 (((-771)) 32 T CONST)) (-3900 (((-112) $ $) 9)) (-4029 ((|#1| $ |#1| |#1|) 65)) (-3228 (($ $) 90)) (-2446 (($) 19 T CONST)) (-2459 (($) 34 T CONST)) (-2834 (($) 91)) (-2952 (((-112) $ $) 6)) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81))) +(((-656 |#1|) (-140) (-1049)) (T -656)) +((-2834 (*1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1049)))) (-3228 (*1 *1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1049)))) (-3097 (*1 *1 *1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))) (-2548 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-656 *3)) (-4 *3 (-1049)) (-4 *3 (-365)))) (-2573 (*1 *1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))) (-3727 (*1 *1 *1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1049)) (-4 *2 (-365))))) +(-13 (-852 |t#1|) (-287 |t#1| |t#1|) (-10 -8 (-15 -2834 ($)) (-15 -3228 ($ $)) (IF (|has| |t#1| (-365)) (PROGN (-15 -3097 ($ $ $)) (-15 -2548 ($ $ (-771))) (-15 -2573 ($ $)) (-15 -3727 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-616 #0=(-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) ((-616 (-566)) . T) ((-616 |#1|) . T) ((-613 (-862)) . T) ((-287 |#1| |#1|) . T) ((-413 |#1|) . T) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-640 |#1|) |has| |#1| (-172)) ((-717 |#1|) |has| |#1| (-172)) ((-726) . T) ((-1038 #0#) |has| |#1| (-1038 (-409 (-566)))) ((-1038 (-566)) |has| |#1| (-1038 (-566))) ((-1038 |#1|) . T) ((-1051 |#1|) . T) ((-1056 |#1|) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-852 |#1|) . T)) +((-4256 (((-644 (-653 (-409 |#2|))) (-653 (-409 |#2|))) 87 (|has| |#1| (-27)))) (-2325 (((-644 (-653 (-409 |#2|))) (-653 (-409 |#2|))) 86 (|has| |#1| (-27))) (((-644 (-653 (-409 |#2|))) (-653 (-409 |#2|)) (-1 (-644 |#1|) |#2|)) 19))) +(((-657 |#1| |#2|) (-10 -7 (-15 -2325 ((-644 (-653 (-409 |#2|))) (-653 (-409 |#2|)) (-1 (-644 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2325 ((-644 (-653 (-409 |#2|))) (-653 (-409 |#2|)))) (-15 -4256 ((-644 (-653 (-409 |#2|))) (-653 (-409 |#2|))))) |%noBranch|)) (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566)))) (-1240 |#1|)) (T -657)) +((-4256 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-4 *5 (-1240 *4)) (-5 *2 (-644 (-653 (-409 *5)))) (-5 *1 (-657 *4 *5)) (-5 *3 (-653 (-409 *5))))) (-2325 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-4 *5 (-1240 *4)) (-5 *2 (-644 (-653 (-409 *5)))) (-5 *1 (-657 *4 *5)) (-5 *3 (-653 (-409 *5))))) (-2325 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-644 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-4 *6 (-1240 *5)) (-5 *2 (-644 (-653 (-409 *6)))) (-5 *1 (-657 *5 *6)) (-5 *3 (-653 (-409 *6)))))) +(-10 -7 (-15 -2325 ((-644 (-653 (-409 |#2|))) (-653 (-409 |#2|)) (-1 (-644 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2325 ((-644 (-653 (-409 |#2|))) (-653 (-409 |#2|)))) (-15 -4256 ((-644 (-653 (-409 |#2|))) (-653 (-409 |#2|))))) |%noBranch|)) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-2573 (($ $) NIL (|has| |#1| (-365)))) (-3097 (($ $ $) 28 (|has| |#1| (-365)))) (-2548 (($ $ (-771)) 31 (|has| |#1| (-365)))) (-3174 (((-3 $ "failed") $ $) NIL)) (-1811 (($) NIL T CONST)) (-3224 (($ $ $) NIL (|has| |#1| (-365)))) (-2679 (($ $ $) NIL (|has| |#1| (-365)))) (-1482 (($ $ $) NIL (|has| |#1| (-365)))) (-3644 (($ $ $) NIL (|has| |#1| (-365)))) (-3611 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL (|has| |#1| (-365)))) (-1584 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-1629 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL (|has| |#1| (-365)))) (-2980 (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) NIL)) (-1709 (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) NIL)) (-3565 (($ $) NIL)) (-3757 (((-3 $ "failed") $) NIL)) (-3530 (($ $) NIL (|has| |#1| (-454)))) (-2264 (((-112) $) NIL)) (-2463 (($ |#1| (-771)) NIL)) (-3108 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL (|has| |#1| (-558)))) (-2716 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL (|has| |#1| (-558)))) (-2584 (((-771) $) NIL)) (-2069 (($ $ $) NIL (|has| |#1| (-365)))) (-2367 (($ $ $) NIL (|has| |#1| (-365)))) (-3590 (($ $ $) NIL (|has| |#1| (-365)))) (-4274 (($ $ $) NIL (|has| |#1| (-365)))) (-3905 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL (|has| |#1| (-365)))) (-3783 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-3709 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL (|has| |#1| (-365)))) (-2622 ((|#1| $) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2976 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558)))) (-4376 ((|#1| $ |#1|) 24)) (-3727 (($ $ $) 33 (|has| |#1| (-365)))) (-1630 (((-771) $) NIL)) (-2252 ((|#1| $) NIL (|has| |#1| (-454)))) (-2479 (((-862) $) 20) (($ (-566)) NIL) (($ (-409 (-566))) NIL (|has| |#1| (-1038 (-409 (-566))))) (($ |#1|) NIL)) (-3866 (((-644 |#1|) $) NIL)) (-3025 ((|#1| $ (-771)) NIL)) (-1558 (((-771)) NIL T CONST)) (-3900 (((-112) $ $) NIL)) (-4029 ((|#1| $ |#1| |#1|) 23)) (-3228 (($ $) NIL)) (-2446 (($) 21 T CONST)) (-2459 (($) 8 T CONST)) (-2834 (($) NIL)) (-2952 (((-112) $ $) NIL)) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-658 |#1| |#2|) (-656 |#1|) (-1049) (-1 |#1| |#1|)) (T -658)) +NIL +(-656 |#1|) +((-3097 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 70)) (-2548 ((|#2| |#2| (-771) (-1 |#1| |#1|)) 48)) (-3727 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 72))) +(((-659 |#1| |#2|) (-10 -7 (-15 -3097 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2548 (|#2| |#2| (-771) (-1 |#1| |#1|))) (-15 -3727 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-365) (-656 |#1|)) (T -659)) +((-3727 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-365)) (-5 *1 (-659 *4 *2)) (-4 *2 (-656 *4)))) (-2548 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-771)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365)) (-5 *1 (-659 *5 *2)) (-4 *2 (-656 *5)))) (-3097 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-365)) (-5 *1 (-659 *4 *2)) (-4 *2 (-656 *4))))) +(-10 -7 (-15 -3097 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2548 (|#2| |#2| (-771) (-1 |#1| |#1|))) (-15 -3727 (|#2| |#2| |#2| (-1 |#1| |#1|)))) +((-3062 (($ $ $) 9))) +(((-660 |#1|) (-10 -8 (-15 -3062 (|#1| |#1| |#1|))) (-661)) (T -660)) +NIL +(-10 -8 (-15 -3062 (|#1| |#1| |#1|))) +((-2986 (((-112) $ $) 7)) (-3014 (($ $) 10)) (-3062 (($ $ $) 8)) (-2952 (((-112) $ $) 6)) (-3046 (($ $ $) 9))) +(((-661) (-140)) (T -661)) +((-3014 (*1 *1 *1) (-4 *1 (-661))) (-3046 (*1 *1 *1 *1) (-4 *1 (-661))) (-3062 (*1 *1 *1 *1) (-4 *1 (-661)))) +(-13 (-102) (-10 -8 (-15 -3014 ($ $)) (-15 -3046 ($ $ $)) (-15 -3062 ($ $ $)))) (((-102) . T)) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) 15)) (-3085 (((-3 $ "failed") $ $) NIL)) (-2822 (($) NIL T CONST)) (-4120 ((|#1| $) 23)) (-3225 (($ $ $) NIL (|has| |#1| (-789)))) (-2903 (($ $ $) NIL (|has| |#1| (-789)))) (-1778 (((-1155) $) 48)) (-3999 (((-1117) $) NIL)) (-4131 ((|#3| $) 24)) (-2390 (((-860) $) 43)) (-1600 (((-112) $ $) 22)) (-2361 (($) 10 T CONST)) (-2881 (((-112) $ $) NIL (|has| |#1| (-789)))) (-2857 (((-112) $ $) NIL (|has| |#1| (-789)))) (-2821 (((-112) $ $) 20)) (-2868 (((-112) $ $) NIL (|has| |#1| (-789)))) (-2844 (((-112) $ $) 26 (|has| |#1| (-789)))) (-2943 (($ $ |#3|) 36) (($ |#1| |#3|) 37)) (-2930 (($ $) 17) (($ $ $) NIL)) (-2917 (($ $ $) 29)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 32) (($ |#2| $) 34) (($ $ |#2|) NIL))) -(((-660 |#1| |#2| |#3|) (-13 (-715 |#2|) (-10 -8 (IF (|has| |#1| (-789)) (-6 (-789)) |%noBranch|) (-15 -2943 ($ $ |#3|)) (-15 -2943 ($ |#1| |#3|)) (-15 -4120 (|#1| $)) (-15 -4131 (|#3| $)))) (-715 |#2|) (-172) (|SubsetCategory| (-724) |#2|)) (T -660)) -((-2943 (*1 *1 *1 *2) (-12 (-4 *4 (-172)) (-5 *1 (-660 *3 *4 *2)) (-4 *3 (-715 *4)) (-4 *2 (|SubsetCategory| (-724) *4)))) (-2943 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-660 *2 *4 *3)) (-4 *2 (-715 *4)) (-4 *3 (|SubsetCategory| (-724) *4)))) (-4120 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-715 *3)) (-5 *1 (-660 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-724) *3)))) (-4131 (*1 *2 *1) (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-724) *4)) (-5 *1 (-660 *3 *4 *2)) (-4 *3 (-715 *4))))) -(-13 (-715 |#2|) (-10 -8 (IF (|has| |#1| (-789)) (-6 (-789)) |%noBranch|) (-15 -2943 ($ $ |#3|)) (-15 -2943 ($ |#1| |#3|)) (-15 -4120 (|#1| $)) (-15 -4131 (|#3| $)))) -((-3501 (((-3 (-642 (-1169 |#1|)) "failed") (-642 (-1169 |#1|)) (-1169 |#1|)) 33))) -(((-661 |#1|) (-10 -7 (-15 -3501 ((-3 (-642 (-1169 |#1|)) "failed") (-642 (-1169 |#1|)) (-1169 |#1|)))) (-907)) (T -661)) -((-3501 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-642 (-1169 *4))) (-5 *3 (-1169 *4)) (-4 *4 (-907)) (-5 *1 (-661 *4))))) -(-10 -7 (-15 -3501 ((-3 (-642 (-1169 |#1|)) "failed") (-642 (-1169 |#1|)) (-1169 |#1|)))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-1634 (((-642 |#1|) $) 84)) (-3562 (($ $ (-769)) 94)) (-3085 (((-3 $ "failed") $ $) NIL)) (-2822 (($) NIL T CONST)) (-2938 (((-1286 |#1| |#2|) (-1286 |#1| |#2|) $) 50)) (-2849 (((-3 (-670 |#1|) "failed") $) NIL)) (-1687 (((-670 |#1|) $) NIL)) (-3459 (($ $) 93)) (-1904 (((-769) $) NIL)) (-1995 (((-642 $) $) NIL)) (-3471 (((-112) $) NIL)) (-1846 (($ (-670 |#1|) |#2|) 70)) (-3137 (($ $) 89)) (-2947 (($ (-1 |#2| |#2|) $) NIL)) (-1618 (((-1286 |#1| |#2|) (-1286 |#1| |#2|) $) 49)) (-2300 (((-2 (|:| |k| (-670 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2510 (((-670 |#1|) $) NIL)) (-2523 ((|#2| $) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-3154 (($ $ |#1| $) 32) (($ $ (-642 |#1|) (-642 $)) 34)) (-3252 (((-769) $) 91)) (-2401 (($ $ $) 20) (($ (-670 |#1|) (-670 |#1|)) 79) (($ (-670 |#1|) $) 77) (($ $ (-670 |#1|)) 78)) (-2390 (((-860) $) NIL) (($ |#1|) 76) (((-1277 |#1| |#2|) $) 60) (((-1286 |#1| |#2|) $) 43) (($ (-670 |#1|)) 27)) (-2839 (((-642 |#2|) $) NIL)) (-3005 ((|#2| $ (-670 |#1|)) NIL)) (-2968 ((|#2| (-1286 |#1| |#2|) $) 45)) (-1600 (((-112) $ $) NIL)) (-2361 (($) 23 T CONST)) (-1429 (((-642 (-2 (|:| |k| (-670 |#1|)) (|:| |c| |#2|))) $) NIL)) (-4151 (((-3 $ "failed") (-1277 |#1| |#2|)) 62)) (-3071 (($ (-670 |#1|)) 14)) (-2821 (((-112) $ $) 46)) (-2943 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-2930 (($ $) 68) (($ $ $) NIL)) (-2917 (($ $ $) 31)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ |#2| $) 30) (($ $ |#2|) NIL) (($ |#2| (-670 |#1|)) NIL))) -(((-662 |#1| |#2|) (-13 (-374 |#1| |#2|) (-382 |#2| (-670 |#1|)) (-10 -8 (-15 -4151 ((-3 $ "failed") (-1277 |#1| |#2|))) (-15 -2401 ($ (-670 |#1|) (-670 |#1|))) (-15 -2401 ($ (-670 |#1|) $)) (-15 -2401 ($ $ (-670 |#1|))))) (-848) (-172)) (T -662)) -((-4151 (*1 *1 *2) (|partial| -12 (-5 *2 (-1277 *3 *4)) (-4 *3 (-848)) (-4 *4 (-172)) (-5 *1 (-662 *3 *4)))) (-2401 (*1 *1 *2 *2) (-12 (-5 *2 (-670 *3)) (-4 *3 (-848)) (-5 *1 (-662 *3 *4)) (-4 *4 (-172)))) (-2401 (*1 *1 *2 *1) (-12 (-5 *2 (-670 *3)) (-4 *3 (-848)) (-5 *1 (-662 *3 *4)) (-4 *4 (-172)))) (-2401 (*1 *1 *1 *2) (-12 (-5 *2 (-670 *3)) (-4 *3 (-848)) (-5 *1 (-662 *3 *4)) (-4 *4 (-172))))) -(-13 (-374 |#1| |#2|) (-382 |#2| (-670 |#1|)) (-10 -8 (-15 -4151 ((-3 $ "failed") (-1277 |#1| |#2|))) (-15 -2401 ($ (-670 |#1|) (-670 |#1|))) (-15 -2401 ($ (-670 |#1|) $)) (-15 -2401 ($ $ (-670 |#1|))))) -((-1824 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 61)) (-3659 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-2438 (($ (-1 (-112) |#2|) $) 29)) (-1540 (($ $) 67)) (-2324 (($ $) 78)) (-1927 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 43)) (-3741 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 62) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 64)) (-3942 (((-564) |#2| $ (-564)) 75) (((-564) |#2| $) NIL) (((-564) (-1 (-112) |#2|) $) 56)) (-4233 (($ (-769) |#2|) 65)) (-4096 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 31)) (-2774 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-2947 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 66)) (-3902 (($ |#2|) 15)) (-1668 (($ $ $ (-564)) 42) (($ |#2| $ (-564)) 40)) (-3183 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 53)) (-1406 (($ $ (-1229 (-564))) 51) (($ $ (-564)) 44)) (-3301 (($ $ $ (-564)) 74)) (-3865 (($ $) 72)) (-2844 (((-112) $ $) 80))) -(((-663 |#1| |#2|) (-10 -8 (-15 -3902 (|#1| |#2|)) (-15 -1406 (|#1| |#1| (-564))) (-15 -1406 (|#1| |#1| (-1229 (-564)))) (-15 -1927 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1668 (|#1| |#2| |#1| (-564))) (-15 -1668 (|#1| |#1| |#1| (-564))) (-15 -4096 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2438 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1927 (|#1| |#2| |#1|)) (-15 -2324 (|#1| |#1|)) (-15 -4096 (|#1| |#1| |#1|)) (-15 -2774 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1824 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3942 ((-564) (-1 (-112) |#2|) |#1|)) (-15 -3942 ((-564) |#2| |#1|)) (-15 -3942 ((-564) |#2| |#1| (-564))) (-15 -2774 (|#1| |#1| |#1|)) (-15 -1824 ((-112) |#1|)) (-15 -3301 (|#1| |#1| |#1| (-564))) (-15 -1540 (|#1| |#1|)) (-15 -3659 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3659 (|#1| |#1|)) (-15 -2844 ((-112) |#1| |#1|)) (-15 -3741 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3741 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3741 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3183 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4233 (|#1| (-769) |#2|)) (-15 -2947 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2947 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3865 (|#1| |#1|))) (-664 |#2|) (-1212)) (T -663)) -NIL -(-10 -8 (-15 -3902 (|#1| |#2|)) (-15 -1406 (|#1| |#1| (-564))) (-15 -1406 (|#1| |#1| (-1229 (-564)))) (-15 -1927 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1668 (|#1| |#2| |#1| (-564))) (-15 -1668 (|#1| |#1| |#1| (-564))) (-15 -4096 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2438 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1927 (|#1| |#2| |#1|)) (-15 -2324 (|#1| |#1|)) (-15 -4096 (|#1| |#1| |#1|)) (-15 -2774 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1824 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3942 ((-564) (-1 (-112) |#2|) |#1|)) (-15 -3942 ((-564) |#2| |#1|)) (-15 -3942 ((-564) |#2| |#1| (-564))) (-15 -2774 (|#1| |#1| |#1|)) (-15 -1824 ((-112) |#1|)) (-15 -3301 (|#1| |#1| |#1| (-564))) (-15 -1540 (|#1| |#1|)) (-15 -3659 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3659 (|#1| |#1|)) (-15 -2844 ((-112) |#1| |#1|)) (-15 -3741 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3741 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3741 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3183 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4233 (|#1| (-769) |#2|)) (-15 -2947 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2947 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3865 (|#1| |#1|))) -((-2856 (((-112) $ $) 19 (|has| |#1| (-1097)))) (-2108 ((|#1| $) 49)) (-3585 ((|#1| $) 66)) (-3107 (($ $) 68)) (-3633 (((-1267) $ (-564) (-564)) 98 (|has| $ (-6 -4411)))) (-4083 (($ $ (-564)) 53 (|has| $ (-6 -4411)))) (-1824 (((-112) $) 143 (|has| |#1| (-848))) (((-112) (-1 (-112) |#1| |#1|) $) 137)) (-3659 (($ $) 147 (-12 (|has| |#1| (-848)) (|has| $ (-6 -4411)))) (($ (-1 (-112) |#1| |#1|) $) 146 (|has| $ (-6 -4411)))) (-3191 (($ $) 142 (|has| |#1| (-848))) (($ (-1 (-112) |#1| |#1|) $) 136)) (-3442 (((-112) $ (-769)) 8)) (-1407 ((|#1| $ |#1|) 40 (|has| $ (-6 -4411)))) (-4277 (($ $ $) 57 (|has| $ (-6 -4411)))) (-4326 ((|#1| $ |#1|) 55 (|has| $ (-6 -4411)))) (-3186 ((|#1| $ |#1|) 59 (|has| $ (-6 -4411)))) (-3841 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4411))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4411))) (($ $ "rest" $) 56 (|has| $ (-6 -4411))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4411))) ((|#1| $ (-1229 (-564)) |#1|) 118 (|has| $ (-6 -4411))) ((|#1| $ (-564) |#1|) 87 (|has| $ (-6 -4411)))) (-4041 (($ $ (-642 $)) 42 (|has| $ (-6 -4411)))) (-2438 (($ (-1 (-112) |#1|) $) 130)) (-3437 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4410)))) (-3573 ((|#1| $) 67)) (-2822 (($) 7 T CONST)) (-1540 (($ $) 145 (|has| $ (-6 -4411)))) (-3817 (($ $) 135)) (-4050 (($ $) 74) (($ $ (-769)) 72)) (-2324 (($ $) 132 (|has| |#1| (-1097)))) (-4067 (($ $) 100 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-1927 (($ |#1| $) 131 (|has| |#1| (-1097))) (($ (-1 (-112) |#1|) $) 126)) (-2517 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4410))) (($ |#1| $) 101 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3741 ((|#1| (-1 |#1| |#1| |#1|) $) 106 (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 105 (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 102 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3105 ((|#1| $ (-564) |#1|) 86 (|has| $ (-6 -4411)))) (-1804 ((|#1| $ (-564)) 88)) (-3385 (((-112) $) 84)) (-3942 (((-564) |#1| $ (-564)) 140 (|has| |#1| (-1097))) (((-564) |#1| $) 139 (|has| |#1| (-1097))) (((-564) (-1 (-112) |#1|) $) 138)) (-2018 (((-642 |#1|) $) 31 (|has| $ (-6 -4410)))) (-1300 (((-642 $) $) 51)) (-2423 (((-112) $ $) 43 (|has| |#1| (-1097)))) (-4233 (($ (-769) |#1|) 109)) (-3769 (((-112) $ (-769)) 9)) (-1802 (((-564) $) 96 (|has| (-564) (-848)))) (-3225 (($ $ $) 148 (|has| |#1| (-848)))) (-4096 (($ $ $) 133 (|has| |#1| (-848))) (($ (-1 (-112) |#1| |#1|) $ $) 129)) (-2774 (($ $ $) 141 (|has| |#1| (-848))) (($ (-1 (-112) |#1| |#1|) $ $) 134)) (-3541 (((-642 |#1|) $) 30 (|has| $ (-6 -4410)))) (-2533 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3624 (((-564) $) 95 (|has| (-564) (-848)))) (-2903 (($ $ $) 149 (|has| |#1| (-848)))) (-1857 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 112)) (-3902 (($ |#1|) 123)) (-4145 (((-112) $ (-769)) 10)) (-2334 (((-642 |#1|) $) 46)) (-1961 (((-112) $) 50)) (-1778 (((-1155) $) 22 (|has| |#1| (-1097)))) (-2534 ((|#1| $) 71) (($ $ (-769)) 69)) (-1668 (($ $ $ (-564)) 128) (($ |#1| $ (-564)) 127)) (-4247 (($ $ $ (-564)) 117) (($ |#1| $ (-564)) 116)) (-4107 (((-642 (-564)) $) 93)) (-4207 (((-112) (-564) $) 92)) (-3999 (((-1117) $) 21 (|has| |#1| (-1097)))) (-4036 ((|#1| $) 77) (($ $ (-769)) 75)) (-3183 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 107)) (-3826 (($ $ |#1|) 97 (|has| $ (-6 -4411)))) (-3823 (((-112) $) 85)) (-4094 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-2478 (((-112) $ $) 14)) (-1643 (((-112) |#1| $) 94 (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3522 (((-642 |#1|) $) 91)) (-4109 (((-112) $) 11)) (-2179 (($) 12)) (-4369 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1229 (-564))) 113) ((|#1| $ (-564)) 90) ((|#1| $ (-564) |#1|) 89)) (-1743 (((-564) $ $) 45)) (-1406 (($ $ (-1229 (-564))) 125) (($ $ (-564)) 124)) (-2083 (($ $ (-1229 (-564))) 115) (($ $ (-564)) 114)) (-1311 (((-112) $) 47)) (-1306 (($ $) 63)) (-4118 (($ $) 60 (|has| $ (-6 -4411)))) (-3941 (((-769) $) 64)) (-4376 (($ $) 65)) (-4010 (((-769) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4410))) (((-769) |#1| $) 29 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3301 (($ $ $ (-564)) 144 (|has| $ (-6 -4411)))) (-3865 (($ $) 13)) (-3003 (((-536) $) 99 (|has| |#1| (-612 (-536))))) (-2401 (($ (-642 |#1|)) 108)) (-2766 (($ $ $) 62) (($ $ |#1|) 61)) (-3634 (($ $ $) 79) (($ |#1| $) 78) (($ (-642 $)) 111) (($ $ |#1|) 110)) (-2390 (((-860) $) 18 (|has| |#1| (-611 (-860))))) (-4275 (((-642 $) $) 52)) (-1622 (((-112) $ $) 44 (|has| |#1| (-1097)))) (-1600 (((-112) $ $) 23 (|has| |#1| (-1097)))) (-3295 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4410)))) (-2881 (((-112) $ $) 151 (|has| |#1| (-848)))) (-2857 (((-112) $ $) 152 (|has| |#1| (-848)))) (-2821 (((-112) $ $) 20 (|has| |#1| (-1097)))) (-2868 (((-112) $ $) 150 (|has| |#1| (-848)))) (-2844 (((-112) $ $) 153 (|has| |#1| (-848)))) (-2158 (((-769) $) 6 (|has| $ (-6 -4410))))) -(((-664 |#1|) (-140) (-1212)) (T -664)) -((-3902 (*1 *1 *2) (-12 (-4 *1 (-664 *2)) (-4 *2 (-1212))))) -(-13 (-1146 |t#1|) (-373 |t#1|) (-282 |t#1|) (-10 -8 (-15 -3902 ($ |t#1|)))) -(((-34) . T) ((-102) -2682 (|has| |#1| (-1097)) (|has| |#1| (-848))) ((-611 (-860)) -2682 (|has| |#1| (-1097)) (|has| |#1| (-848)) (|has| |#1| (-611 (-860)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-282 |#1|) . T) ((-373 |#1|) . T) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-649 |#1|) . T) ((-848) |has| |#1| (-848)) ((-1008 |#1|) . T) ((-1097) -2682 (|has| |#1| (-1097)) (|has| |#1| (-848))) ((-1146 |#1|) . T) ((-1212) . T) ((-1250 |#1|) . T)) -((-1577 (((-642 (-2 (|:| |particular| (-3 (-1262 |#1|) "failed")) (|:| -2131 (-642 (-1262 |#1|))))) (-642 (-642 |#1|)) (-642 (-1262 |#1|))) 22) (((-642 (-2 (|:| |particular| (-3 (-1262 |#1|) "failed")) (|:| -2131 (-642 (-1262 |#1|))))) (-687 |#1|) (-642 (-1262 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1262 |#1|) "failed")) (|:| -2131 (-642 (-1262 |#1|)))) (-642 (-642 |#1|)) (-1262 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1262 |#1|) "failed")) (|:| -2131 (-642 (-1262 |#1|)))) (-687 |#1|) (-1262 |#1|)) 14)) (-3616 (((-769) (-687 |#1|) (-1262 |#1|)) 30)) (-3339 (((-3 (-1262 |#1|) "failed") (-687 |#1|) (-1262 |#1|)) 24)) (-3735 (((-112) (-687 |#1|) (-1262 |#1|)) 27))) -(((-665 |#1|) (-10 -7 (-15 -1577 ((-2 (|:| |particular| (-3 (-1262 |#1|) "failed")) (|:| -2131 (-642 (-1262 |#1|)))) (-687 |#1|) (-1262 |#1|))) (-15 -1577 ((-2 (|:| |particular| (-3 (-1262 |#1|) "failed")) (|:| -2131 (-642 (-1262 |#1|)))) (-642 (-642 |#1|)) (-1262 |#1|))) (-15 -1577 ((-642 (-2 (|:| |particular| (-3 (-1262 |#1|) "failed")) (|:| -2131 (-642 (-1262 |#1|))))) (-687 |#1|) (-642 (-1262 |#1|)))) (-15 -1577 ((-642 (-2 (|:| |particular| (-3 (-1262 |#1|) "failed")) (|:| -2131 (-642 (-1262 |#1|))))) (-642 (-642 |#1|)) (-642 (-1262 |#1|)))) (-15 -3339 ((-3 (-1262 |#1|) "failed") (-687 |#1|) (-1262 |#1|))) (-15 -3735 ((-112) (-687 |#1|) (-1262 |#1|))) (-15 -3616 ((-769) (-687 |#1|) (-1262 |#1|)))) (-363)) (T -665)) -((-3616 (*1 *2 *3 *4) (-12 (-5 *3 (-687 *5)) (-5 *4 (-1262 *5)) (-4 *5 (-363)) (-5 *2 (-769)) (-5 *1 (-665 *5)))) (-3735 (*1 *2 *3 *4) (-12 (-5 *3 (-687 *5)) (-5 *4 (-1262 *5)) (-4 *5 (-363)) (-5 *2 (-112)) (-5 *1 (-665 *5)))) (-3339 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1262 *4)) (-5 *3 (-687 *4)) (-4 *4 (-363)) (-5 *1 (-665 *4)))) (-1577 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-642 *5))) (-4 *5 (-363)) (-5 *2 (-642 (-2 (|:| |particular| (-3 (-1262 *5) "failed")) (|:| -2131 (-642 (-1262 *5)))))) (-5 *1 (-665 *5)) (-5 *4 (-642 (-1262 *5))))) (-1577 (*1 *2 *3 *4) (-12 (-5 *3 (-687 *5)) (-4 *5 (-363)) (-5 *2 (-642 (-2 (|:| |particular| (-3 (-1262 *5) "failed")) (|:| -2131 (-642 (-1262 *5)))))) (-5 *1 (-665 *5)) (-5 *4 (-642 (-1262 *5))))) (-1577 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-642 *5))) (-4 *5 (-363)) (-5 *2 (-2 (|:| |particular| (-3 (-1262 *5) "failed")) (|:| -2131 (-642 (-1262 *5))))) (-5 *1 (-665 *5)) (-5 *4 (-1262 *5)))) (-1577 (*1 *2 *3 *4) (-12 (-5 *3 (-687 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |particular| (-3 (-1262 *5) "failed")) (|:| -2131 (-642 (-1262 *5))))) (-5 *1 (-665 *5)) (-5 *4 (-1262 *5))))) -(-10 -7 (-15 -1577 ((-2 (|:| |particular| (-3 (-1262 |#1|) "failed")) (|:| -2131 (-642 (-1262 |#1|)))) (-687 |#1|) (-1262 |#1|))) (-15 -1577 ((-2 (|:| |particular| (-3 (-1262 |#1|) "failed")) (|:| -2131 (-642 (-1262 |#1|)))) (-642 (-642 |#1|)) (-1262 |#1|))) (-15 -1577 ((-642 (-2 (|:| |particular| (-3 (-1262 |#1|) "failed")) (|:| -2131 (-642 (-1262 |#1|))))) (-687 |#1|) (-642 (-1262 |#1|)))) (-15 -1577 ((-642 (-2 (|:| |particular| (-3 (-1262 |#1|) "failed")) (|:| -2131 (-642 (-1262 |#1|))))) (-642 (-642 |#1|)) (-642 (-1262 |#1|)))) (-15 -3339 ((-3 (-1262 |#1|) "failed") (-687 |#1|) (-1262 |#1|))) (-15 -3735 ((-112) (-687 |#1|) (-1262 |#1|))) (-15 -3616 ((-769) (-687 |#1|) (-1262 |#1|)))) -((-1577 (((-642 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2131 (-642 |#3|)))) |#4| (-642 |#3|)) 66) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2131 (-642 |#3|))) |#4| |#3|) 60)) (-3616 (((-769) |#4| |#3|) 18)) (-3339 (((-3 |#3| "failed") |#4| |#3|) 21)) (-3735 (((-112) |#4| |#3|) 14))) -(((-666 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1577 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2131 (-642 |#3|))) |#4| |#3|)) (-15 -1577 ((-642 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2131 (-642 |#3|)))) |#4| (-642 |#3|))) (-15 -3339 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3735 ((-112) |#4| |#3|)) (-15 -3616 ((-769) |#4| |#3|))) (-363) (-13 (-373 |#1|) (-10 -7 (-6 -4411))) (-13 (-373 |#1|) (-10 -7 (-6 -4411))) (-685 |#1| |#2| |#3|)) (T -666)) -((-3616 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4411)))) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4411)))) (-5 *2 (-769)) (-5 *1 (-666 *5 *6 *4 *3)) (-4 *3 (-685 *5 *6 *4)))) (-3735 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4411)))) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4411)))) (-5 *2 (-112)) (-5 *1 (-666 *5 *6 *4 *3)) (-4 *3 (-685 *5 *6 *4)))) (-3339 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-363)) (-4 *5 (-13 (-373 *4) (-10 -7 (-6 -4411)))) (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4411)))) (-5 *1 (-666 *4 *5 *2 *3)) (-4 *3 (-685 *4 *5 *2)))) (-1577 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4411)))) (-4 *7 (-13 (-373 *5) (-10 -7 (-6 -4411)))) (-5 *2 (-642 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2131 (-642 *7))))) (-5 *1 (-666 *5 *6 *7 *3)) (-5 *4 (-642 *7)) (-4 *3 (-685 *5 *6 *7)))) (-1577 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4411)))) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4411)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2131 (-642 *4)))) (-5 *1 (-666 *5 *6 *4 *3)) (-4 *3 (-685 *5 *6 *4))))) -(-10 -7 (-15 -1577 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2131 (-642 |#3|))) |#4| |#3|)) (-15 -1577 ((-642 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2131 (-642 |#3|)))) |#4| (-642 |#3|))) (-15 -3339 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3735 ((-112) |#4| |#3|)) (-15 -3616 ((-769) |#4| |#3|))) -((-1800 (((-2 (|:| |particular| (-3 (-1262 (-407 |#4|)) "failed")) (|:| -2131 (-642 (-1262 (-407 |#4|))))) (-642 |#4|) (-642 |#3|)) 52))) -(((-667 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1800 ((-2 (|:| |particular| (-3 (-1262 (-407 |#4|)) "failed")) (|:| -2131 (-642 (-1262 (-407 |#4|))))) (-642 |#4|) (-642 |#3|)))) (-556) (-791) (-848) (-947 |#1| |#2| |#3|)) (T -667)) -((-1800 (*1 *2 *3 *4) (-12 (-5 *3 (-642 *8)) (-5 *4 (-642 *7)) (-4 *7 (-848)) (-4 *8 (-947 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-791)) (-5 *2 (-2 (|:| |particular| (-3 (-1262 (-407 *8)) "failed")) (|:| -2131 (-642 (-1262 (-407 *8)))))) (-5 *1 (-667 *5 *6 *7 *8))))) -(-10 -7 (-15 -1800 ((-2 (|:| |particular| (-3 (-1262 (-407 |#4|)) "failed")) (|:| -2131 (-642 (-1262 (-407 |#4|))))) (-642 |#4|) (-642 |#3|)))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-2660 (((-3 $ "failed")) NIL (|has| |#2| (-556)))) (-3778 ((|#2| $) NIL)) (-1382 (((-112) $) NIL)) (-3085 (((-3 $ "failed") $ $) NIL)) (-2816 (((-1262 (-687 |#2|))) NIL) (((-1262 (-687 |#2|)) (-1262 $)) NIL)) (-3382 (((-112) $) NIL)) (-3953 (((-1262 $)) 44)) (-3442 (((-112) $ (-769)) NIL)) (-3859 (($ |#2|) NIL)) (-2822 (($) NIL T CONST)) (-2389 (($ $) NIL (|has| |#2| (-307)))) (-2794 (((-240 |#1| |#2|) $ (-564)) NIL)) (-3378 (((-3 (-2 (|:| |particular| $) (|:| -2131 (-642 $))) "failed")) NIL (|has| |#2| (-556)))) (-1934 (((-3 $ "failed")) NIL (|has| |#2| (-556)))) (-3821 (((-687 |#2|)) NIL) (((-687 |#2|) (-1262 $)) NIL)) (-3540 ((|#2| $) NIL)) (-1771 (((-687 |#2|) $) NIL) (((-687 |#2|) $ (-1262 $)) NIL)) (-3420 (((-3 $ "failed") $) NIL (|has| |#2| (-556)))) (-2016 (((-1169 (-950 |#2|))) NIL (|has| |#2| (-363)))) (-3952 (($ $ (-919)) NIL)) (-1732 ((|#2| $) NIL)) (-2644 (((-1169 |#2|) $) NIL (|has| |#2| (-556)))) (-3521 ((|#2|) NIL) ((|#2| (-1262 $)) NIL)) (-4246 (((-1169 |#2|) $) NIL)) (-2165 (((-112)) NIL)) (-2849 (((-3 (-564) "failed") $) NIL (|has| |#2| (-1036 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1036 (-407 (-564))))) (((-3 |#2| "failed") $) NIL)) (-1687 (((-564) $) NIL (|has| |#2| (-1036 (-564)))) (((-407 (-564)) $) NIL (|has| |#2| (-1036 (-407 (-564))))) ((|#2| $) NIL)) (-4087 (($ (-1262 |#2|)) NIL) (($ (-1262 |#2|) (-1262 $)) NIL)) (-3330 (((-687 (-564)) (-687 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -3544 (-687 |#2|)) (|:| |vec| (-1262 |#2|))) (-687 $) (-1262 $)) NIL) (((-687 |#2|) (-687 $)) NIL)) (-2675 (((-3 $ "failed") $) NIL)) (-3616 (((-769) $) NIL (|has| |#2| (-556))) (((-919)) 45)) (-1804 ((|#2| $ (-564) (-564)) NIL)) (-2927 (((-112)) NIL)) (-4359 (($ $ (-919)) NIL)) (-2018 (((-642 |#2|) $) NIL (|has| $ (-6 -4410)))) (-3163 (((-112) $) NIL)) (-1974 (((-769) $) NIL (|has| |#2| (-556)))) (-2536 (((-642 (-240 |#1| |#2|)) $) NIL (|has| |#2| (-556)))) (-3847 (((-769) $) NIL)) (-3682 (((-112)) NIL)) (-3857 (((-769) $) NIL)) (-3769 (((-112) $ (-769)) NIL)) (-1446 ((|#2| $) NIL (|has| |#2| (-6 (-4412 "*"))))) (-2570 (((-564) $) NIL)) (-2269 (((-564) $) NIL)) (-3541 (((-642 |#2|) $) NIL (|has| $ (-6 -4410)))) (-2533 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097))))) (-4164 (((-564) $) NIL)) (-2720 (((-564) $) NIL)) (-4117 (($ (-642 (-642 |#2|))) NIL)) (-1857 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3141 (((-642 (-642 |#2|)) $) NIL)) (-1888 (((-112)) NIL)) (-1693 (((-112)) NIL)) (-4145 (((-112) $ (-769)) NIL)) (-1546 (((-3 (-2 (|:| |particular| $) (|:| -2131 (-642 $))) "failed")) NIL (|has| |#2| (-556)))) (-4337 (((-3 $ "failed")) NIL (|has| |#2| (-556)))) (-4289 (((-687 |#2|)) NIL) (((-687 |#2|) (-1262 $)) NIL)) (-1486 ((|#2| $) NIL)) (-1672 (((-687 |#2|) $) NIL) (((-687 |#2|) $ (-1262 $)) NIL)) (-1339 (((-3 $ "failed") $) NIL (|has| |#2| (-556)))) (-2975 (((-1169 (-950 |#2|))) NIL (|has| |#2| (-363)))) (-4204 (($ $ (-919)) NIL)) (-1573 ((|#2| $) NIL)) (-2514 (((-1169 |#2|) $) NIL (|has| |#2| (-556)))) (-3645 ((|#2|) NIL) ((|#2| (-1262 $)) NIL)) (-1892 (((-1169 |#2|) $) NIL)) (-4216 (((-112)) NIL)) (-1778 (((-1155) $) NIL)) (-2631 (((-112)) NIL)) (-3393 (((-112)) NIL)) (-2399 (((-112)) NIL)) (-2895 (((-3 $ "failed") $) NIL (|has| |#2| (-363)))) (-3999 (((-1117) $) NIL)) (-2040 (((-112)) NIL)) (-2842 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556)))) (-4094 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-642 |#2|) (-642 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))))) (-2478 (((-112) $ $) NIL)) (-4109 (((-112) $) NIL)) (-2179 (($) NIL)) (-4369 ((|#2| $ (-564) (-564) |#2|) NIL) ((|#2| $ (-564) (-564)) 30) ((|#2| $ (-564)) NIL)) (-2199 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-769)) NIL) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-1173)) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-769)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-1490 ((|#2| $) NIL)) (-4046 (($ (-642 |#2|)) NIL)) (-1632 (((-112) $) NIL)) (-3752 (((-240 |#1| |#2|) $) NIL)) (-1559 ((|#2| $) NIL (|has| |#2| (-6 (-4412 "*"))))) (-4010 (((-769) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410))) (((-769) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097))))) (-3865 (($ $) NIL)) (-3719 (((-687 |#2|) (-1262 $)) NIL) (((-1262 |#2|) $) NIL) (((-687 |#2|) (-1262 $) (-1262 $)) NIL) (((-1262 |#2|) $ (-1262 $)) 33)) (-3003 (($ (-1262 |#2|)) NIL) (((-1262 |#2|) $) NIL)) (-3584 (((-642 (-950 |#2|))) NIL) (((-642 (-950 |#2|)) (-1262 $)) NIL)) (-2402 (($ $ $) NIL)) (-2792 (((-112)) NIL)) (-4342 (((-240 |#1| |#2|) $ (-564)) NIL)) (-2390 (((-860) $) NIL) (($ (-564)) NIL) (($ (-407 (-564))) NIL (|has| |#2| (-1036 (-407 (-564))))) (($ |#2|) NIL) (((-687 |#2|) $) NIL)) (-3348 (((-769)) NIL T CONST)) (-1600 (((-112) $ $) NIL)) (-2131 (((-1262 $)) 43)) (-1491 (((-642 (-1262 |#2|))) NIL (|has| |#2| (-556)))) (-3845 (($ $ $ $) NIL)) (-2715 (((-112)) NIL)) (-3975 (($ (-687 |#2|) $) NIL)) (-3295 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410)))) (-2630 (((-112) $) NIL)) (-3106 (($ $ $) NIL)) (-3498 (((-112)) NIL)) (-3394 (((-112)) NIL)) (-2609 (((-112)) NIL)) (-2361 (($) NIL T CONST)) (-2371 (($) NIL T CONST)) (-2711 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-769)) NIL) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-1173)) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-769)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-2821 (((-112) $ $) NIL)) (-2943 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL (|has| |#2| (-363)))) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-240 |#1| |#2|) $ (-240 |#1| |#2|)) NIL) (((-240 |#1| |#2|) (-240 |#1| |#2|) $) NIL)) (-2158 (((-769) $) NIL (|has| $ (-6 -4410))))) -(((-668 |#1| |#2|) (-13 (-1120 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-611 (-687 |#2|)) (-417 |#2|)) (-919) (-172)) (T -668)) -NIL -(-13 (-1120 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-611 (-687 |#2|)) (-417 |#2|)) -((-2856 (((-112) $ $) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-1726 (((-642 (-1132)) $) 10)) (-2390 (((-860) $) 16) (($ (-1178)) NIL) (((-1178) $) NIL)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-669) (-13 (-1080) (-10 -8 (-15 -1726 ((-642 (-1132)) $))))) (T -669)) -((-1726 (*1 *2 *1) (-12 (-5 *2 (-642 (-1132))) (-5 *1 (-669))))) -(-13 (-1080) (-10 -8 (-15 -1726 ((-642 (-1132)) $)))) -((-2856 (((-112) $ $) NIL)) (-1634 (((-642 |#1|) $) NIL)) (-4351 (($ $) 67)) (-3629 (((-112) $) NIL)) (-2849 (((-3 |#1| "failed") $) NIL)) (-1687 ((|#1| $) NIL)) (-3225 (($ $ $) NIL)) (-2903 (($ $ $) NIL)) (-3021 (((-3 $ "failed") (-817 |#1|)) 27)) (-3542 (((-112) (-817 |#1|)) 17)) (-4193 (($ (-817 |#1|)) 28)) (-2143 (((-112) $ $) 36)) (-2495 (((-919) $) 43)) (-4341 (($ $) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2254 (((-642 $) (-817 |#1|)) 19)) (-2390 (((-860) $) 51) (($ |#1|) 40) (((-817 |#1|) $) 47) (((-675 |#1|) $) 52)) (-1600 (((-112) $ $) NIL)) (-3395 (((-59 (-642 $)) (-642 |#1|) (-919)) 72)) (-1958 (((-642 $) (-642 |#1|) (-919)) 76)) (-2881 (((-112) $ $) NIL)) (-2857 (((-112) $ $) NIL)) (-2821 (((-112) $ $) 68)) (-2868 (((-112) $ $) NIL)) (-2844 (((-112) $ $) 46))) -(((-670 |#1|) (-13 (-848) (-1036 |#1|) (-10 -8 (-15 -3629 ((-112) $)) (-15 -4341 ($ $)) (-15 -4351 ($ $)) (-15 -2495 ((-919) $)) (-15 -2143 ((-112) $ $)) (-15 -2390 ((-817 |#1|) $)) (-15 -2390 ((-675 |#1|) $)) (-15 -2254 ((-642 $) (-817 |#1|))) (-15 -3542 ((-112) (-817 |#1|))) (-15 -4193 ($ (-817 |#1|))) (-15 -3021 ((-3 $ "failed") (-817 |#1|))) (-15 -1634 ((-642 |#1|) $)) (-15 -3395 ((-59 (-642 $)) (-642 |#1|) (-919))) (-15 -1958 ((-642 $) (-642 |#1|) (-919))))) (-848)) (T -670)) -((-3629 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-670 *3)) (-4 *3 (-848)))) (-4341 (*1 *1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-848)))) (-4351 (*1 *1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-848)))) (-2495 (*1 *2 *1) (-12 (-5 *2 (-919)) (-5 *1 (-670 *3)) (-4 *3 (-848)))) (-2143 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-670 *3)) (-4 *3 (-848)))) (-2390 (*1 *2 *1) (-12 (-5 *2 (-817 *3)) (-5 *1 (-670 *3)) (-4 *3 (-848)))) (-2390 (*1 *2 *1) (-12 (-5 *2 (-675 *3)) (-5 *1 (-670 *3)) (-4 *3 (-848)))) (-2254 (*1 *2 *3) (-12 (-5 *3 (-817 *4)) (-4 *4 (-848)) (-5 *2 (-642 (-670 *4))) (-5 *1 (-670 *4)))) (-3542 (*1 *2 *3) (-12 (-5 *3 (-817 *4)) (-4 *4 (-848)) (-5 *2 (-112)) (-5 *1 (-670 *4)))) (-4193 (*1 *1 *2) (-12 (-5 *2 (-817 *3)) (-4 *3 (-848)) (-5 *1 (-670 *3)))) (-3021 (*1 *1 *2) (|partial| -12 (-5 *2 (-817 *3)) (-4 *3 (-848)) (-5 *1 (-670 *3)))) (-1634 (*1 *2 *1) (-12 (-5 *2 (-642 *3)) (-5 *1 (-670 *3)) (-4 *3 (-848)))) (-3395 (*1 *2 *3 *4) (-12 (-5 *3 (-642 *5)) (-5 *4 (-919)) (-4 *5 (-848)) (-5 *2 (-59 (-642 (-670 *5)))) (-5 *1 (-670 *5)))) (-1958 (*1 *2 *3 *4) (-12 (-5 *3 (-642 *5)) (-5 *4 (-919)) (-4 *5 (-848)) (-5 *2 (-642 (-670 *5))) (-5 *1 (-670 *5))))) -(-13 (-848) (-1036 |#1|) (-10 -8 (-15 -3629 ((-112) $)) (-15 -4341 ($ $)) (-15 -4351 ($ $)) (-15 -2495 ((-919) $)) (-15 -2143 ((-112) $ $)) (-15 -2390 ((-817 |#1|) $)) (-15 -2390 ((-675 |#1|) $)) (-15 -2254 ((-642 $) (-817 |#1|))) (-15 -3542 ((-112) (-817 |#1|))) (-15 -4193 ($ (-817 |#1|))) (-15 -3021 ((-3 $ "failed") (-817 |#1|))) (-15 -1634 ((-642 |#1|) $)) (-15 -3395 ((-59 (-642 $)) (-642 |#1|) (-919))) (-15 -1958 ((-642 $) (-642 |#1|) (-919))))) -((-2108 ((|#2| $) 103)) (-3107 (($ $) 124)) (-3442 (((-112) $ (-769)) 35)) (-4050 (($ $) 112) (($ $ (-769)) 115)) (-3385 (((-112) $) 125)) (-1300 (((-642 $) $) 99)) (-2423 (((-112) $ $) 95)) (-3769 (((-112) $ (-769)) 33)) (-1802 (((-564) $) 69)) (-3624 (((-564) $) 68)) (-4145 (((-112) $ (-769)) 31)) (-1961 (((-112) $) 101)) (-2534 ((|#2| $) 116) (($ $ (-769)) 120)) (-4247 (($ $ $ (-564)) 86) (($ |#2| $ (-564)) 85)) (-4107 (((-642 (-564)) $) 67)) (-4207 (((-112) (-564) $) 61)) (-4036 ((|#2| $) NIL) (($ $ (-769)) 111)) (-2137 (($ $ (-564)) 128)) (-3823 (((-112) $) 127)) (-4094 (((-112) (-1 (-112) |#2|) $) 44)) (-3522 (((-642 |#2|) $) 48)) (-4369 ((|#2| $ "value") NIL) ((|#2| $ "first") 110) (($ $ "rest") 114) ((|#2| $ "last") 123) (($ $ (-1229 (-564))) 82) ((|#2| $ (-564)) 59) ((|#2| $ (-564) |#2|) 60)) (-1743 (((-564) $ $) 94)) (-2083 (($ $ (-1229 (-564))) 81) (($ $ (-564)) 75)) (-1311 (((-112) $) 90)) (-1306 (($ $) 108)) (-3941 (((-769) $) 107)) (-4376 (($ $) 106)) (-2401 (($ (-642 |#2|)) 55)) (-4189 (($ $) 129)) (-4275 (((-642 $) $) 93)) (-1622 (((-112) $ $) 92)) (-3295 (((-112) (-1 (-112) |#2|) $) 43)) (-2821 (((-112) $ $) 20)) (-2158 (((-769) $) 41))) -(((-671 |#1| |#2|) (-10 -8 (-15 -4189 (|#1| |#1|)) (-15 -2137 (|#1| |#1| (-564))) (-15 -3385 ((-112) |#1|)) (-15 -3823 ((-112) |#1|)) (-15 -4369 (|#2| |#1| (-564) |#2|)) (-15 -4369 (|#2| |#1| (-564))) (-15 -3522 ((-642 |#2|) |#1|)) (-15 -4207 ((-112) (-564) |#1|)) (-15 -4107 ((-642 (-564)) |#1|)) (-15 -3624 ((-564) |#1|)) (-15 -1802 ((-564) |#1|)) (-15 -2401 (|#1| (-642 |#2|))) (-15 -4369 (|#1| |#1| (-1229 (-564)))) (-15 -2083 (|#1| |#1| (-564))) (-15 -2083 (|#1| |#1| (-1229 (-564)))) (-15 -4247 (|#1| |#2| |#1| (-564))) (-15 -4247 (|#1| |#1| |#1| (-564))) (-15 -1306 (|#1| |#1|)) (-15 -3941 ((-769) |#1|)) (-15 -4376 (|#1| |#1|)) (-15 -3107 (|#1| |#1|)) (-15 -2534 (|#1| |#1| (-769))) (-15 -4369 (|#2| |#1| "last")) (-15 -2534 (|#2| |#1|)) (-15 -4050 (|#1| |#1| (-769))) (-15 -4369 (|#1| |#1| "rest")) (-15 -4050 (|#1| |#1|)) (-15 -4036 (|#1| |#1| (-769))) (-15 -4369 (|#2| |#1| "first")) (-15 -4036 (|#2| |#1|)) (-15 -2423 ((-112) |#1| |#1|)) (-15 -1622 ((-112) |#1| |#1|)) (-15 -1743 ((-564) |#1| |#1|)) (-15 -1311 ((-112) |#1|)) (-15 -4369 (|#2| |#1| "value")) (-15 -2108 (|#2| |#1|)) (-15 -1961 ((-112) |#1|)) (-15 -1300 ((-642 |#1|) |#1|)) (-15 -4275 ((-642 |#1|) |#1|)) (-15 -2821 ((-112) |#1| |#1|)) (-15 -4094 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3295 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2158 ((-769) |#1|)) (-15 -3442 ((-112) |#1| (-769))) (-15 -3769 ((-112) |#1| (-769))) (-15 -4145 ((-112) |#1| (-769)))) (-672 |#2|) (-1212)) (T -671)) -NIL -(-10 -8 (-15 -4189 (|#1| |#1|)) (-15 -2137 (|#1| |#1| (-564))) (-15 -3385 ((-112) |#1|)) (-15 -3823 ((-112) |#1|)) (-15 -4369 (|#2| |#1| (-564) |#2|)) (-15 -4369 (|#2| |#1| (-564))) (-15 -3522 ((-642 |#2|) |#1|)) (-15 -4207 ((-112) (-564) |#1|)) (-15 -4107 ((-642 (-564)) |#1|)) (-15 -3624 ((-564) |#1|)) (-15 -1802 ((-564) |#1|)) (-15 -2401 (|#1| (-642 |#2|))) (-15 -4369 (|#1| |#1| (-1229 (-564)))) (-15 -2083 (|#1| |#1| (-564))) (-15 -2083 (|#1| |#1| (-1229 (-564)))) (-15 -4247 (|#1| |#2| |#1| (-564))) (-15 -4247 (|#1| |#1| |#1| (-564))) (-15 -1306 (|#1| |#1|)) (-15 -3941 ((-769) |#1|)) (-15 -4376 (|#1| |#1|)) (-15 -3107 (|#1| |#1|)) (-15 -2534 (|#1| |#1| (-769))) (-15 -4369 (|#2| |#1| "last")) (-15 -2534 (|#2| |#1|)) (-15 -4050 (|#1| |#1| (-769))) (-15 -4369 (|#1| |#1| "rest")) (-15 -4050 (|#1| |#1|)) (-15 -4036 (|#1| |#1| (-769))) (-15 -4369 (|#2| |#1| "first")) (-15 -4036 (|#2| |#1|)) (-15 -2423 ((-112) |#1| |#1|)) (-15 -1622 ((-112) |#1| |#1|)) (-15 -1743 ((-564) |#1| |#1|)) (-15 -1311 ((-112) |#1|)) (-15 -4369 (|#2| |#1| "value")) (-15 -2108 (|#2| |#1|)) (-15 -1961 ((-112) |#1|)) (-15 -1300 ((-642 |#1|) |#1|)) (-15 -4275 ((-642 |#1|) |#1|)) (-15 -2821 ((-112) |#1| |#1|)) (-15 -4094 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3295 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2158 ((-769) |#1|)) (-15 -3442 ((-112) |#1| (-769))) (-15 -3769 ((-112) |#1| (-769))) (-15 -4145 ((-112) |#1| (-769)))) -((-2856 (((-112) $ $) 19 (|has| |#1| (-1097)))) (-2108 ((|#1| $) 49)) (-3585 ((|#1| $) 66)) (-3107 (($ $) 68)) (-3633 (((-1267) $ (-564) (-564)) 98 (|has| $ (-6 -4411)))) (-4083 (($ $ (-564)) 53 (|has| $ (-6 -4411)))) (-3442 (((-112) $ (-769)) 8)) (-1407 ((|#1| $ |#1|) 40 (|has| $ (-6 -4411)))) (-4277 (($ $ $) 57 (|has| $ (-6 -4411)))) (-4326 ((|#1| $ |#1|) 55 (|has| $ (-6 -4411)))) (-3186 ((|#1| $ |#1|) 59 (|has| $ (-6 -4411)))) (-3841 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4411))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4411))) (($ $ "rest" $) 56 (|has| $ (-6 -4411))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4411))) ((|#1| $ (-1229 (-564)) |#1|) 118 (|has| $ (-6 -4411))) ((|#1| $ (-564) |#1|) 87 (|has| $ (-6 -4411)))) (-4041 (($ $ (-642 $)) 42 (|has| $ (-6 -4411)))) (-3437 (($ (-1 (-112) |#1|) $) 103)) (-3573 ((|#1| $) 67)) (-2822 (($) 7 T CONST)) (-2326 (($ $) 125)) (-4050 (($ $) 74) (($ $ (-769)) 72)) (-4067 (($ $) 100 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-2517 (($ |#1| $) 101 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410)))) (($ (-1 (-112) |#1|) $) 104)) (-3741 ((|#1| (-1 |#1| |#1| |#1|) $) 106 (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 105 (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 102 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3105 ((|#1| $ (-564) |#1|) 86 (|has| $ (-6 -4411)))) (-1804 ((|#1| $ (-564)) 88)) (-3385 (((-112) $) 84)) (-2018 (((-642 |#1|) $) 31 (|has| $ (-6 -4410)))) (-1585 (((-769) $) 124)) (-1300 (((-642 $) $) 51)) (-2423 (((-112) $ $) 43 (|has| |#1| (-1097)))) (-4233 (($ (-769) |#1|) 109)) (-3769 (((-112) $ (-769)) 9)) (-1802 (((-564) $) 96 (|has| (-564) (-848)))) (-3541 (((-642 |#1|) $) 30 (|has| $ (-6 -4410)))) (-2533 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3624 (((-564) $) 95 (|has| (-564) (-848)))) (-1857 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 112)) (-4145 (((-112) $ (-769)) 10)) (-2334 (((-642 |#1|) $) 46)) (-1961 (((-112) $) 50)) (-2311 (($ $) 127)) (-4173 (((-112) $) 128)) (-1778 (((-1155) $) 22 (|has| |#1| (-1097)))) (-2534 ((|#1| $) 71) (($ $ (-769)) 69)) (-4247 (($ $ $ (-564)) 117) (($ |#1| $ (-564)) 116)) (-4107 (((-642 (-564)) $) 93)) (-4207 (((-112) (-564) $) 92)) (-3999 (((-1117) $) 21 (|has| |#1| (-1097)))) (-3264 ((|#1| $) 126)) (-4036 ((|#1| $) 77) (($ $ (-769)) 75)) (-3183 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 107)) (-3826 (($ $ |#1|) 97 (|has| $ (-6 -4411)))) (-2137 (($ $ (-564)) 123)) (-3823 (((-112) $) 85)) (-1417 (((-112) $) 129)) (-3403 (((-112) $) 130)) (-4094 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-2478 (((-112) $ $) 14)) (-1643 (((-112) |#1| $) 94 (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3522 (((-642 |#1|) $) 91)) (-4109 (((-112) $) 11)) (-2179 (($) 12)) (-4369 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1229 (-564))) 113) ((|#1| $ (-564)) 90) ((|#1| $ (-564) |#1|) 89)) (-1743 (((-564) $ $) 45)) (-2083 (($ $ (-1229 (-564))) 115) (($ $ (-564)) 114)) (-1311 (((-112) $) 47)) (-1306 (($ $) 63)) (-4118 (($ $) 60 (|has| $ (-6 -4411)))) (-3941 (((-769) $) 64)) (-4376 (($ $) 65)) (-4010 (((-769) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4410))) (((-769) |#1| $) 29 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3865 (($ $) 13)) (-3003 (((-536) $) 99 (|has| |#1| (-612 (-536))))) (-2401 (($ (-642 |#1|)) 108)) (-2766 (($ $ $) 62 (|has| $ (-6 -4411))) (($ $ |#1|) 61 (|has| $ (-6 -4411)))) (-3634 (($ $ $) 79) (($ |#1| $) 78) (($ (-642 $)) 111) (($ $ |#1|) 110)) (-4189 (($ $) 122)) (-2390 (((-860) $) 18 (|has| |#1| (-611 (-860))))) (-4275 (((-642 $) $) 52)) (-1622 (((-112) $ $) 44 (|has| |#1| (-1097)))) (-1600 (((-112) $ $) 23 (|has| |#1| (-1097)))) (-3295 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4410)))) (-2821 (((-112) $ $) 20 (|has| |#1| (-1097)))) (-2158 (((-769) $) 6 (|has| $ (-6 -4410))))) -(((-672 |#1|) (-140) (-1212)) (T -672)) -((-2517 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-672 *3)) (-4 *3 (-1212)))) (-3437 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-672 *3)) (-4 *3 (-1212)))) (-3403 (*1 *2 *1) (-12 (-4 *1 (-672 *3)) (-4 *3 (-1212)) (-5 *2 (-112)))) (-1417 (*1 *2 *1) (-12 (-4 *1 (-672 *3)) (-4 *3 (-1212)) (-5 *2 (-112)))) (-4173 (*1 *2 *1) (-12 (-4 *1 (-672 *3)) (-4 *3 (-1212)) (-5 *2 (-112)))) (-2311 (*1 *1 *1) (-12 (-4 *1 (-672 *2)) (-4 *2 (-1212)))) (-3264 (*1 *2 *1) (-12 (-4 *1 (-672 *2)) (-4 *2 (-1212)))) (-2326 (*1 *1 *1) (-12 (-4 *1 (-672 *2)) (-4 *2 (-1212)))) (-1585 (*1 *2 *1) (-12 (-4 *1 (-672 *3)) (-4 *3 (-1212)) (-5 *2 (-769)))) (-2137 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-672 *3)) (-4 *3 (-1212)))) (-4189 (*1 *1 *1) (-12 (-4 *1 (-672 *2)) (-4 *2 (-1212))))) -(-13 (-1146 |t#1|) (-10 -8 (-15 -2517 ($ (-1 (-112) |t#1|) $)) (-15 -3437 ($ (-1 (-112) |t#1|) $)) (-15 -3403 ((-112) $)) (-15 -1417 ((-112) $)) (-15 -4173 ((-112) $)) (-15 -2311 ($ $)) (-15 -3264 (|t#1| $)) (-15 -2326 ($ $)) (-15 -1585 ((-769) $)) (-15 -2137 ($ $ (-564))) (-15 -4189 ($ $)))) -(((-34) . T) ((-102) |has| |#1| (-1097)) ((-611 (-860)) -2682 (|has| |#1| (-1097)) (|has| |#1| (-611 (-860)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-649 |#1|) . T) ((-1008 |#1|) . T) ((-1097) |has| |#1| (-1097)) ((-1146 |#1|) . T) ((-1212) . T) ((-1250 |#1|) . T)) -((-2856 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-4296 (($ (-769) (-769) (-769)) 55 (|has| |#1| (-1047)))) (-3442 (((-112) $ (-769)) NIL)) (-1304 ((|#1| $ (-769) (-769) (-769) |#1|) 49)) (-2822 (($) NIL T CONST)) (-1765 (($ $ $) 60 (|has| |#1| (-1047)))) (-2018 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-3769 (((-112) $ (-769)) NIL)) (-3541 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2533 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3455 (((-1262 (-769)) $) 12)) (-1303 (($ (-1173) $ $) 37)) (-1857 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#1| |#1|) $) NIL)) (-4145 (((-112) $ (-769)) NIL)) (-1778 (((-1155) $) NIL (|has| |#1| (-1097)))) (-1330 (($ (-769)) 57 (|has| |#1| (-1047)))) (-3999 (((-1117) $) NIL (|has| |#1| (-1097)))) (-4094 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-2478 (((-112) $ $) NIL)) (-4109 (((-112) $) NIL)) (-2179 (($) NIL)) (-4369 ((|#1| $ (-769) (-769) (-769)) 46)) (-4010 (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-769) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3865 (($ $) NIL)) (-2401 (($ (-642 (-642 (-642 |#1|)))) 70)) (-2390 (($ (-956 (-956 (-956 |#1|)))) 23) (((-956 (-956 (-956 |#1|))) $) 19) (((-860) $) NIL (|has| |#1| (-611 (-860))))) (-1600 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-3295 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2821 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2158 (((-769) $) NIL (|has| $ (-6 -4410))))) -(((-673 |#1|) (-13 (-489 |#1|) (-10 -8 (IF (|has| |#1| (-1047)) (PROGN (-15 -4296 ($ (-769) (-769) (-769))) (-15 -1330 ($ (-769))) (-15 -1765 ($ $ $))) |%noBranch|) (-15 -2401 ($ (-642 (-642 (-642 |#1|))))) (-15 -4369 (|#1| $ (-769) (-769) (-769))) (-15 -1304 (|#1| $ (-769) (-769) (-769) |#1|)) (-15 -2390 ($ (-956 (-956 (-956 |#1|))))) (-15 -2390 ((-956 (-956 (-956 |#1|))) $)) (-15 -1303 ($ (-1173) $ $)) (-15 -3455 ((-1262 (-769)) $)))) (-1097)) (T -673)) -((-4296 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-769)) (-5 *1 (-673 *3)) (-4 *3 (-1047)) (-4 *3 (-1097)))) (-1330 (*1 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-673 *3)) (-4 *3 (-1047)) (-4 *3 (-1097)))) (-1765 (*1 *1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-1047)) (-4 *2 (-1097)))) (-2401 (*1 *1 *2) (-12 (-5 *2 (-642 (-642 (-642 *3)))) (-4 *3 (-1097)) (-5 *1 (-673 *3)))) (-4369 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-769)) (-5 *1 (-673 *2)) (-4 *2 (-1097)))) (-1304 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-769)) (-5 *1 (-673 *2)) (-4 *2 (-1097)))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-956 (-956 (-956 *3)))) (-4 *3 (-1097)) (-5 *1 (-673 *3)))) (-2390 (*1 *2 *1) (-12 (-5 *2 (-956 (-956 (-956 *3)))) (-5 *1 (-673 *3)) (-4 *3 (-1097)))) (-1303 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-673 *3)) (-4 *3 (-1097)))) (-3455 (*1 *2 *1) (-12 (-5 *2 (-1262 (-769))) (-5 *1 (-673 *3)) (-4 *3 (-1097))))) -(-13 (-489 |#1|) (-10 -8 (IF (|has| |#1| (-1047)) (PROGN (-15 -4296 ($ (-769) (-769) (-769))) (-15 -1330 ($ (-769))) (-15 -1765 ($ $ $))) |%noBranch|) (-15 -2401 ($ (-642 (-642 (-642 |#1|))))) (-15 -4369 (|#1| $ (-769) (-769) (-769))) (-15 -1304 (|#1| $ (-769) (-769) (-769) |#1|)) (-15 -2390 ($ (-956 (-956 (-956 |#1|))))) (-15 -2390 ((-956 (-956 (-956 |#1|))) $)) (-15 -1303 ($ (-1173) $ $)) (-15 -3455 ((-1262 (-769)) $)))) -((-2856 (((-112) $ $) NIL)) (-1778 (((-1155) $) NIL)) (-3332 (((-483) $) 10)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) 19) (($ (-1178)) NIL) (((-1178) $) NIL)) (-2502 (((-1132) $) 12)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-674) (-13 (-1080) (-10 -8 (-15 -3332 ((-483) $)) (-15 -2502 ((-1132) $))))) (T -674)) -((-3332 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-674)))) (-2502 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-674))))) -(-13 (-1080) (-10 -8 (-15 -3332 ((-483) $)) (-15 -2502 ((-1132) $)))) -((-2856 (((-112) $ $) NIL)) (-1634 (((-642 |#1|) $) 15)) (-4351 (($ $) 19)) (-3629 (((-112) $) 20)) (-2849 (((-3 |#1| "failed") $) 23)) (-1687 ((|#1| $) 21)) (-4050 (($ $) 37)) (-3137 (($ $) 25)) (-3225 (($ $ $) NIL)) (-2903 (($ $ $) NIL)) (-2143 (((-112) $ $) 47)) (-2495 (((-919) $) 40)) (-4341 (($ $) 18)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-4036 ((|#1| $) 36)) (-2390 (((-860) $) 32) (($ |#1|) 24) (((-817 |#1|) $) 28)) (-1600 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL)) (-2857 (((-112) $ $) NIL)) (-2821 (((-112) $ $) 13)) (-2868 (((-112) $ $) NIL)) (-2844 (((-112) $ $) 44)) (* (($ $ $) 35))) -(((-675 |#1|) (-13 (-848) (-1036 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2390 ((-817 |#1|) $)) (-15 -4036 (|#1| $)) (-15 -4341 ($ $)) (-15 -2495 ((-919) $)) (-15 -2143 ((-112) $ $)) (-15 -3137 ($ $)) (-15 -4050 ($ $)) (-15 -3629 ((-112) $)) (-15 -4351 ($ $)) (-15 -1634 ((-642 |#1|) $)))) (-848)) (T -675)) -((* (*1 *1 *1 *1) (-12 (-5 *1 (-675 *2)) (-4 *2 (-848)))) (-2390 (*1 *2 *1) (-12 (-5 *2 (-817 *3)) (-5 *1 (-675 *3)) (-4 *3 (-848)))) (-4036 (*1 *2 *1) (-12 (-5 *1 (-675 *2)) (-4 *2 (-848)))) (-4341 (*1 *1 *1) (-12 (-5 *1 (-675 *2)) (-4 *2 (-848)))) (-2495 (*1 *2 *1) (-12 (-5 *2 (-919)) (-5 *1 (-675 *3)) (-4 *3 (-848)))) (-2143 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-675 *3)) (-4 *3 (-848)))) (-3137 (*1 *1 *1) (-12 (-5 *1 (-675 *2)) (-4 *2 (-848)))) (-4050 (*1 *1 *1) (-12 (-5 *1 (-675 *2)) (-4 *2 (-848)))) (-3629 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-675 *3)) (-4 *3 (-848)))) (-4351 (*1 *1 *1) (-12 (-5 *1 (-675 *2)) (-4 *2 (-848)))) (-1634 (*1 *2 *1) (-12 (-5 *2 (-642 *3)) (-5 *1 (-675 *3)) (-4 *3 (-848))))) -(-13 (-848) (-1036 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2390 ((-817 |#1|) $)) (-15 -4036 (|#1| $)) (-15 -4341 ($ $)) (-15 -2495 ((-919) $)) (-15 -2143 ((-112) $ $)) (-15 -3137 ($ $)) (-15 -4050 ($ $)) (-15 -3629 ((-112) $)) (-15 -4351 ($ $)) (-15 -1634 ((-642 |#1|) $)))) -((-2584 ((|#1| (-1 |#1| (-769) |#1|) (-769) |#1|) 14)) (-3373 ((|#1| (-1 |#1| |#1|) (-769) |#1|) 12))) -(((-676 |#1|) (-10 -7 (-15 -3373 (|#1| (-1 |#1| |#1|) (-769) |#1|)) (-15 -2584 (|#1| (-1 |#1| (-769) |#1|) (-769) |#1|))) (-1097)) (T -676)) -((-2584 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-769) *2)) (-5 *4 (-769)) (-4 *2 (-1097)) (-5 *1 (-676 *2)))) (-3373 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-769)) (-4 *2 (-1097)) (-5 *1 (-676 *2))))) -(-10 -7 (-15 -3373 (|#1| (-1 |#1| |#1|) (-769) |#1|)) (-15 -2584 (|#1| (-1 |#1| (-769) |#1|) (-769) |#1|))) -((-3862 ((|#2| |#1| |#2|) 9)) (-3849 ((|#1| |#1| |#2|) 8))) -(((-677 |#1| |#2|) (-10 -7 (-15 -3849 (|#1| |#1| |#2|)) (-15 -3862 (|#2| |#1| |#2|))) (-1097) (-1097)) (T -677)) -((-3862 (*1 *2 *3 *2) (-12 (-5 *1 (-677 *3 *2)) (-4 *3 (-1097)) (-4 *2 (-1097)))) (-3849 (*1 *2 *2 *3) (-12 (-5 *1 (-677 *2 *3)) (-4 *2 (-1097)) (-4 *3 (-1097))))) -(-10 -7 (-15 -3849 (|#1| |#1| |#2|)) (-15 -3862 (|#2| |#1| |#2|))) -((-3858 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) -(((-678 |#1| |#2| |#3|) (-10 -7 (-15 -3858 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1097) (-1097) (-1097)) (T -678)) -((-3858 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *2 (-1097)) (-5 *1 (-678 *5 *6 *2))))) -(-10 -7 (-15 -3858 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) -((-2856 (((-112) $ $) NIL)) (-3775 (((-1211) $) 21)) (-3717 (((-642 (-1211)) $) 19)) (-1935 (($ (-642 (-1211)) (-1211)) 14)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) 29) (($ (-1178)) NIL) (((-1178) $) NIL) (((-1211) $) 22) (($ (-1115)) 10)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-679) (-13 (-1080) (-611 (-1211)) (-10 -8 (-15 -2390 ($ (-1115))) (-15 -1935 ($ (-642 (-1211)) (-1211))) (-15 -3717 ((-642 (-1211)) $)) (-15 -3775 ((-1211) $))))) (T -679)) -((-2390 (*1 *1 *2) (-12 (-5 *2 (-1115)) (-5 *1 (-679)))) (-1935 (*1 *1 *2 *3) (-12 (-5 *2 (-642 (-1211))) (-5 *3 (-1211)) (-5 *1 (-679)))) (-3717 (*1 *2 *1) (-12 (-5 *2 (-642 (-1211))) (-5 *1 (-679)))) (-3775 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-679))))) -(-13 (-1080) (-611 (-1211)) (-10 -8 (-15 -2390 ($ (-1115))) (-15 -1935 ($ (-642 (-1211)) (-1211))) (-15 -3717 ((-642 (-1211)) $)) (-15 -3775 ((-1211) $)))) -((-2584 (((-1 |#1| (-769) |#1|) (-1 |#1| (-769) |#1|)) 29)) (-2011 (((-1 |#1|) |#1|) 8)) (-4200 ((|#1| |#1|) 23)) (-1796 (((-642 |#1|) (-1 (-642 |#1|) (-642 |#1|)) (-564)) 22) ((|#1| (-1 |#1| |#1|)) 11)) (-2390 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-769)) 26))) -(((-680 |#1|) (-10 -7 (-15 -2011 ((-1 |#1|) |#1|)) (-15 -2390 ((-1 |#1|) |#1|)) (-15 -1796 (|#1| (-1 |#1| |#1|))) (-15 -1796 ((-642 |#1|) (-1 (-642 |#1|) (-642 |#1|)) (-564))) (-15 -4200 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-769))) (-15 -2584 ((-1 |#1| (-769) |#1|) (-1 |#1| (-769) |#1|)))) (-1097)) (T -680)) -((-2584 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-769) *3)) (-4 *3 (-1097)) (-5 *1 (-680 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-769)) (-4 *4 (-1097)) (-5 *1 (-680 *4)))) (-4200 (*1 *2 *2) (-12 (-5 *1 (-680 *2)) (-4 *2 (-1097)))) (-1796 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-642 *5) (-642 *5))) (-5 *4 (-564)) (-5 *2 (-642 *5)) (-5 *1 (-680 *5)) (-4 *5 (-1097)))) (-1796 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-680 *2)) (-4 *2 (-1097)))) (-2390 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-680 *3)) (-4 *3 (-1097)))) (-2011 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-680 *3)) (-4 *3 (-1097))))) -(-10 -7 (-15 -2011 ((-1 |#1|) |#1|)) (-15 -2390 ((-1 |#1|) |#1|)) (-15 -1796 (|#1| (-1 |#1| |#1|))) (-15 -1796 ((-642 |#1|) (-1 (-642 |#1|) (-642 |#1|)) (-564))) (-15 -4200 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-769))) (-15 -2584 ((-1 |#1| (-769) |#1|) (-1 |#1| (-769) |#1|)))) -((-3968 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-1529 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-1551 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-3944 (((-1 |#2| |#1|) |#2|) 11))) -(((-681 |#1| |#2|) (-10 -7 (-15 -3944 ((-1 |#2| |#1|) |#2|)) (-15 -1529 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1551 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3968 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1097) (-1097)) (T -681)) -((-3968 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1097)) (-4 *5 (-1097)) (-5 *2 (-1 *5 *4)) (-5 *1 (-681 *4 *5)))) (-1551 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1097)) (-5 *2 (-1 *5 *4)) (-5 *1 (-681 *4 *5)) (-4 *4 (-1097)))) (-1529 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1097)) (-4 *5 (-1097)) (-5 *2 (-1 *5)) (-5 *1 (-681 *4 *5)))) (-3944 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-681 *4 *3)) (-4 *4 (-1097)) (-4 *3 (-1097))))) -(-10 -7 (-15 -3944 ((-1 |#2| |#1|) |#2|)) (-15 -1529 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1551 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3968 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) -((-4027 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-3851 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-3462 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-3839 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-4177 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) -(((-682 |#1| |#2| |#3|) (-10 -7 (-15 -3851 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3462 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3839 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -4177 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -4027 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1097) (-1097) (-1097)) (T -682)) -((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *7 (-1097)) (-5 *2 (-1 *7 *5)) (-5 *1 (-682 *5 *6 *7)))) (-4027 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1097)) (-4 *5 (-1097)) (-4 *6 (-1097)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-682 *4 *5 *6)))) (-4177 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1097)) (-4 *6 (-1097)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-682 *4 *5 *6)) (-4 *4 (-1097)))) (-3839 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1097)) (-4 *6 (-1097)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-682 *4 *5 *6)) (-4 *5 (-1097)))) (-3462 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1097)) (-4 *5 (-1097)) (-4 *6 (-1097)) (-5 *2 (-1 *6 *5)) (-5 *1 (-682 *4 *5 *6)))) (-3851 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1097)) (-4 *4 (-1097)) (-4 *6 (-1097)) (-5 *2 (-1 *6 *5)) (-5 *1 (-682 *5 *4 *6))))) -(-10 -7 (-15 -3851 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3462 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3839 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -4177 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -4027 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) -((-3741 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-2947 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) -(((-683 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2947 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2947 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3741 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1047) (-373 |#1|) (-373 |#1|) (-685 |#1| |#2| |#3|) (-1047) (-373 |#5|) (-373 |#5|) (-685 |#5| |#6| |#7|)) (T -683)) -((-3741 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1047)) (-4 *2 (-1047)) (-4 *6 (-373 *5)) (-4 *7 (-373 *5)) (-4 *8 (-373 *2)) (-4 *9 (-373 *2)) (-5 *1 (-683 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-685 *5 *6 *7)) (-4 *10 (-685 *2 *8 *9)))) (-2947 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1047)) (-4 *8 (-1047)) (-4 *6 (-373 *5)) (-4 *7 (-373 *5)) (-4 *2 (-685 *8 *9 *10)) (-5 *1 (-683 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-685 *5 *6 *7)) (-4 *9 (-373 *8)) (-4 *10 (-373 *8)))) (-2947 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1047)) (-4 *8 (-1047)) (-4 *6 (-373 *5)) (-4 *7 (-373 *5)) (-4 *2 (-685 *8 *9 *10)) (-5 *1 (-683 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-685 *5 *6 *7)) (-4 *9 (-373 *8)) (-4 *10 (-373 *8))))) -(-10 -7 (-15 -2947 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2947 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3741 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) -((-2038 (($ (-769) (-769)) 43)) (-3083 (($ $ $) 71)) (-2845 (($ |#3|) 66) (($ $) 67)) (-1382 (((-112) $) 38)) (-4299 (($ $ (-564) (-564)) 82)) (-4115 (($ $ (-564) (-564)) 83)) (-1619 (($ $ (-564) (-564) (-564) (-564)) 88)) (-1579 (($ $) 69)) (-3382 (((-112) $) 15)) (-3519 (($ $ (-564) (-564) $) 89)) (-3841 ((|#2| $ (-564) (-564) |#2|) NIL) (($ $ (-642 (-564)) (-642 (-564)) $) 87)) (-3859 (($ (-769) |#2|) 53)) (-4117 (($ (-642 (-642 |#2|))) 51)) (-3141 (((-642 (-642 |#2|)) $) 78)) (-2708 (($ $ $) 70)) (-2842 (((-3 $ "failed") $ |#2|) 121)) (-4369 ((|#2| $ (-564) (-564)) NIL) ((|#2| $ (-564) (-564) |#2|) NIL) (($ $ (-642 (-564)) (-642 (-564))) 86)) (-4046 (($ (-642 |#2|)) 54) (($ (-642 $)) 56)) (-1632 (((-112) $) 28)) (-2390 (($ |#4|) 61) (((-860) $) NIL)) (-2630 (((-112) $) 40)) (-2943 (($ $ |#2|) 123)) (-2930 (($ $ $) 93) (($ $) 96)) (-2917 (($ $ $) 91)) (** (($ $ (-769)) 110) (($ $ (-564)) 128)) (* (($ $ $) 102) (($ |#2| $) 98) (($ $ |#2|) 99) (($ (-564) $) 101) ((|#4| $ |#4|) 114) ((|#3| |#3| $) 118))) -(((-684 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2390 ((-860) |#1|)) (-15 ** (|#1| |#1| (-564))) (-15 -2943 (|#1| |#1| |#2|)) (-15 -2842 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-769))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2930 (|#1| |#1|)) (-15 -2930 (|#1| |#1| |#1|)) (-15 -2917 (|#1| |#1| |#1|)) (-15 -3519 (|#1| |#1| (-564) (-564) |#1|)) (-15 -1619 (|#1| |#1| (-564) (-564) (-564) (-564))) (-15 -4115 (|#1| |#1| (-564) (-564))) (-15 -4299 (|#1| |#1| (-564) (-564))) (-15 -3841 (|#1| |#1| (-642 (-564)) (-642 (-564)) |#1|)) (-15 -4369 (|#1| |#1| (-642 (-564)) (-642 (-564)))) (-15 -3141 ((-642 (-642 |#2|)) |#1|)) (-15 -3083 (|#1| |#1| |#1|)) (-15 -2708 (|#1| |#1| |#1|)) (-15 -1579 (|#1| |#1|)) (-15 -2845 (|#1| |#1|)) (-15 -2845 (|#1| |#3|)) (-15 -2390 (|#1| |#4|)) (-15 -4046 (|#1| (-642 |#1|))) (-15 -4046 (|#1| (-642 |#2|))) (-15 -3859 (|#1| (-769) |#2|)) (-15 -4117 (|#1| (-642 (-642 |#2|)))) (-15 -2038 (|#1| (-769) (-769))) (-15 -2630 ((-112) |#1|)) (-15 -1382 ((-112) |#1|)) (-15 -1632 ((-112) |#1|)) (-15 -3382 ((-112) |#1|)) (-15 -3841 (|#2| |#1| (-564) (-564) |#2|)) (-15 -4369 (|#2| |#1| (-564) (-564) |#2|)) (-15 -4369 (|#2| |#1| (-564) (-564)))) (-685 |#2| |#3| |#4|) (-1047) (-373 |#2|) (-373 |#2|)) (T -684)) -NIL -(-10 -8 (-15 -2390 ((-860) |#1|)) (-15 ** (|#1| |#1| (-564))) (-15 -2943 (|#1| |#1| |#2|)) (-15 -2842 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-769))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2930 (|#1| |#1|)) (-15 -2930 (|#1| |#1| |#1|)) (-15 -2917 (|#1| |#1| |#1|)) (-15 -3519 (|#1| |#1| (-564) (-564) |#1|)) (-15 -1619 (|#1| |#1| (-564) (-564) (-564) (-564))) (-15 -4115 (|#1| |#1| (-564) (-564))) (-15 -4299 (|#1| |#1| (-564) (-564))) (-15 -3841 (|#1| |#1| (-642 (-564)) (-642 (-564)) |#1|)) (-15 -4369 (|#1| |#1| (-642 (-564)) (-642 (-564)))) (-15 -3141 ((-642 (-642 |#2|)) |#1|)) (-15 -3083 (|#1| |#1| |#1|)) (-15 -2708 (|#1| |#1| |#1|)) (-15 -1579 (|#1| |#1|)) (-15 -2845 (|#1| |#1|)) (-15 -2845 (|#1| |#3|)) (-15 -2390 (|#1| |#4|)) (-15 -4046 (|#1| (-642 |#1|))) (-15 -4046 (|#1| (-642 |#2|))) (-15 -3859 (|#1| (-769) |#2|)) (-15 -4117 (|#1| (-642 (-642 |#2|)))) (-15 -2038 (|#1| (-769) (-769))) (-15 -2630 ((-112) |#1|)) (-15 -1382 ((-112) |#1|)) (-15 -1632 ((-112) |#1|)) (-15 -3382 ((-112) |#1|)) (-15 -3841 (|#2| |#1| (-564) (-564) |#2|)) (-15 -4369 (|#2| |#1| (-564) (-564) |#2|)) (-15 -4369 (|#2| |#1| (-564) (-564)))) -((-2856 (((-112) $ $) 19 (|has| |#1| (-1097)))) (-2038 (($ (-769) (-769)) 98)) (-3083 (($ $ $) 88)) (-2845 (($ |#2|) 92) (($ $) 91)) (-1382 (((-112) $) 100)) (-4299 (($ $ (-564) (-564)) 84)) (-4115 (($ $ (-564) (-564)) 83)) (-1619 (($ $ (-564) (-564) (-564) (-564)) 82)) (-1579 (($ $) 90)) (-3382 (((-112) $) 102)) (-3442 (((-112) $ (-769)) 8)) (-3519 (($ $ (-564) (-564) $) 81)) (-3841 ((|#1| $ (-564) (-564) |#1|) 45) (($ $ (-642 (-564)) (-642 (-564)) $) 85)) (-2279 (($ $ (-564) |#2|) 43)) (-4184 (($ $ (-564) |#3|) 42)) (-3859 (($ (-769) |#1|) 96)) (-2822 (($) 7 T CONST)) (-2389 (($ $) 68 (|has| |#1| (-307)))) (-2794 ((|#2| $ (-564)) 47)) (-3616 (((-769) $) 67 (|has| |#1| (-556)))) (-3105 ((|#1| $ (-564) (-564) |#1|) 44)) (-1804 ((|#1| $ (-564) (-564)) 49)) (-2018 (((-642 |#1|) $) 31)) (-1974 (((-769) $) 66 (|has| |#1| (-556)))) (-2536 (((-642 |#3|) $) 65 (|has| |#1| (-556)))) (-3847 (((-769) $) 52)) (-4233 (($ (-769) (-769) |#1|) 58)) (-3857 (((-769) $) 51)) (-3769 (((-112) $ (-769)) 9)) (-1446 ((|#1| $) 63 (|has| |#1| (-6 (-4412 "*"))))) (-2570 (((-564) $) 56)) (-2269 (((-564) $) 54)) (-3541 (((-642 |#1|) $) 30 (|has| $ (-6 -4410)))) (-2533 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-4164 (((-564) $) 55)) (-2720 (((-564) $) 53)) (-4117 (($ (-642 (-642 |#1|))) 97)) (-1857 (($ (-1 |#1| |#1|) $) 35)) (-2947 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-3141 (((-642 (-642 |#1|)) $) 87)) (-4145 (((-112) $ (-769)) 10)) (-1778 (((-1155) $) 22 (|has| |#1| (-1097)))) (-2895 (((-3 $ "failed") $) 62 (|has| |#1| (-363)))) (-2708 (($ $ $) 89)) (-3999 (((-1117) $) 21 (|has| |#1| (-1097)))) (-3826 (($ $ |#1|) 57)) (-2842 (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-556)))) (-4094 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-2478 (((-112) $ $) 14)) (-4109 (((-112) $) 11)) (-2179 (($) 12)) (-4369 ((|#1| $ (-564) (-564)) 50) ((|#1| $ (-564) (-564) |#1|) 48) (($ $ (-642 (-564)) (-642 (-564))) 86)) (-4046 (($ (-642 |#1|)) 95) (($ (-642 $)) 94)) (-1632 (((-112) $) 101)) (-1559 ((|#1| $) 64 (|has| |#1| (-6 (-4412 "*"))))) (-4010 (((-769) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4410))) (((-769) |#1| $) 29 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3865 (($ $) 13)) (-4342 ((|#3| $ (-564)) 46)) (-2390 (($ |#3|) 93) (((-860) $) 18 (|has| |#1| (-611 (-860))))) (-1600 (((-112) $ $) 23 (|has| |#1| (-1097)))) (-3295 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4410)))) (-2630 (((-112) $) 99)) (-2821 (((-112) $ $) 20 (|has| |#1| (-1097)))) (-2943 (($ $ |#1|) 69 (|has| |#1| (-363)))) (-2930 (($ $ $) 79) (($ $) 78)) (-2917 (($ $ $) 80)) (** (($ $ (-769)) 71) (($ $ (-564)) 61 (|has| |#1| (-363)))) (* (($ $ $) 77) (($ |#1| $) 76) (($ $ |#1|) 75) (($ (-564) $) 74) ((|#3| $ |#3|) 73) ((|#2| |#2| $) 72)) (-2158 (((-769) $) 6 (|has| $ (-6 -4410))))) -(((-685 |#1| |#2| |#3|) (-140) (-1047) (-373 |t#1|) (-373 |t#1|)) (T -685)) -((-3382 (*1 *2 *1) (-12 (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-112)))) (-1632 (*1 *2 *1) (-12 (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-112)))) (-1382 (*1 *2 *1) (-12 (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-112)))) (-2630 (*1 *2 *1) (-12 (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-112)))) (-2038 (*1 *1 *2 *2) (-12 (-5 *2 (-769)) (-4 *3 (-1047)) (-4 *1 (-685 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-4117 (*1 *1 *2) (-12 (-5 *2 (-642 (-642 *3))) (-4 *3 (-1047)) (-4 *1 (-685 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-3859 (*1 *1 *2 *3) (-12 (-5 *2 (-769)) (-4 *3 (-1047)) (-4 *1 (-685 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-4046 (*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1047)) (-4 *1 (-685 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-4046 (*1 *1 *2) (-12 (-5 *2 (-642 *1)) (-4 *3 (-1047)) (-4 *1 (-685 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-2390 (*1 *1 *2) (-12 (-4 *3 (-1047)) (-4 *1 (-685 *3 *4 *2)) (-4 *4 (-373 *3)) (-4 *2 (-373 *3)))) (-2845 (*1 *1 *2) (-12 (-4 *3 (-1047)) (-4 *1 (-685 *3 *2 *4)) (-4 *2 (-373 *3)) (-4 *4 (-373 *3)))) (-2845 (*1 *1 *1) (-12 (-4 *1 (-685 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-1579 (*1 *1 *1) (-12 (-4 *1 (-685 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-2708 (*1 *1 *1 *1) (-12 (-4 *1 (-685 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-3083 (*1 *1 *1 *1) (-12 (-4 *1 (-685 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-3141 (*1 *2 *1) (-12 (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-642 (-642 *3))))) (-4369 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-642 (-564))) (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-3841 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-642 (-564))) (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-4299 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-564)) (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-4115 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-564)) (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-1619 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-564)) (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-3519 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-564)) (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-2917 (*1 *1 *1 *1) (-12 (-4 *1 (-685 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-2930 (*1 *1 *1 *1) (-12 (-4 *1 (-685 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-2930 (*1 *1 *1) (-12 (-4 *1 (-685 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-685 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-685 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-685 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-564)) (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-685 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-373 *3)) (-4 *2 (-373 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-685 *3 *2 *4)) (-4 *3 (-1047)) (-4 *2 (-373 *3)) (-4 *4 (-373 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-2842 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-685 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (-4 *2 (-556)))) (-2943 (*1 *1 *1 *2) (-12 (-4 *1 (-685 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (-4 *2 (-363)))) (-2389 (*1 *1 *1) (-12 (-4 *1 (-685 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (-4 *2 (-307)))) (-3616 (*1 *2 *1) (-12 (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-4 *3 (-556)) (-5 *2 (-769)))) (-1974 (*1 *2 *1) (-12 (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-4 *3 (-556)) (-5 *2 (-769)))) (-2536 (*1 *2 *1) (-12 (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-4 *3 (-556)) (-5 *2 (-642 *5)))) (-1559 (*1 *2 *1) (-12 (-4 *1 (-685 *2 *3 *4)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (|has| *2 (-6 (-4412 "*"))) (-4 *2 (-1047)))) (-1446 (*1 *2 *1) (-12 (-4 *1 (-685 *2 *3 *4)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (|has| *2 (-6 (-4412 "*"))) (-4 *2 (-1047)))) (-2895 (*1 *1 *1) (|partial| -12 (-4 *1 (-685 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (-4 *2 (-363)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-4 *3 (-363))))) -(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4411) (-6 -4410) (-15 -3382 ((-112) $)) (-15 -1632 ((-112) $)) (-15 -1382 ((-112) $)) (-15 -2630 ((-112) $)) (-15 -2038 ($ (-769) (-769))) (-15 -4117 ($ (-642 (-642 |t#1|)))) (-15 -3859 ($ (-769) |t#1|)) (-15 -4046 ($ (-642 |t#1|))) (-15 -4046 ($ (-642 $))) (-15 -2390 ($ |t#3|)) (-15 -2845 ($ |t#2|)) (-15 -2845 ($ $)) (-15 -1579 ($ $)) (-15 -2708 ($ $ $)) (-15 -3083 ($ $ $)) (-15 -3141 ((-642 (-642 |t#1|)) $)) (-15 -4369 ($ $ (-642 (-564)) (-642 (-564)))) (-15 -3841 ($ $ (-642 (-564)) (-642 (-564)) $)) (-15 -4299 ($ $ (-564) (-564))) (-15 -4115 ($ $ (-564) (-564))) (-15 -1619 ($ $ (-564) (-564) (-564) (-564))) (-15 -3519 ($ $ (-564) (-564) $)) (-15 -2917 ($ $ $)) (-15 -2930 ($ $ $)) (-15 -2930 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-564) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-769))) (IF (|has| |t#1| (-556)) (-15 -2842 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-363)) (-15 -2943 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-307)) (-15 -2389 ($ $)) |%noBranch|) (IF (|has| |t#1| (-556)) (PROGN (-15 -3616 ((-769) $)) (-15 -1974 ((-769) $)) (-15 -2536 ((-642 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4412 "*"))) (PROGN (-15 -1559 (|t#1| $)) (-15 -1446 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-363)) (PROGN (-15 -2895 ((-3 $ "failed") $)) (-15 ** ($ $ (-564)))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1097)) ((-611 (-860)) -2682 (|has| |#1| (-1097)) (|has| |#1| (-611 (-860)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-1097) |has| |#1| (-1097)) ((-57 |#1| |#2| |#3|) . T) ((-1212) . T)) -((-2389 ((|#4| |#4|) 97 (|has| |#1| (-307)))) (-3616 (((-769) |#4|) 125 (|has| |#1| (-556)))) (-1974 (((-769) |#4|) 101 (|has| |#1| (-556)))) (-2536 (((-642 |#3|) |#4|) 108 (|has| |#1| (-556)))) (-4219 (((-2 (|:| -4332 |#1|) (|:| -1992 |#1|)) |#1| |#1|) 140 (|has| |#1| (-307)))) (-1446 ((|#1| |#4|) 57)) (-4092 (((-3 |#4| "failed") |#4|) 89 (|has| |#1| (-556)))) (-2895 (((-3 |#4| "failed") |#4|) 105 (|has| |#1| (-363)))) (-3557 ((|#4| |#4|) 93 (|has| |#1| (-556)))) (-2620 ((|#4| |#4| |#1| (-564) (-564)) 65)) (-1809 ((|#4| |#4| (-564) (-564)) 60)) (-2196 ((|#4| |#4| |#1| (-564) (-564)) 70)) (-1559 ((|#1| |#4|) 103)) (-2594 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 94 (|has| |#1| (-556))))) -(((-686 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1559 (|#1| |#4|)) (-15 -1446 (|#1| |#4|)) (-15 -1809 (|#4| |#4| (-564) (-564))) (-15 -2620 (|#4| |#4| |#1| (-564) (-564))) (-15 -2196 (|#4| |#4| |#1| (-564) (-564))) (IF (|has| |#1| (-556)) (PROGN (-15 -3616 ((-769) |#4|)) (-15 -1974 ((-769) |#4|)) (-15 -2536 ((-642 |#3|) |#4|)) (-15 -3557 (|#4| |#4|)) (-15 -4092 ((-3 |#4| "failed") |#4|)) (-15 -2594 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-307)) (PROGN (-15 -2389 (|#4| |#4|)) (-15 -4219 ((-2 (|:| -4332 |#1|) (|:| -1992 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -2895 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-172) (-373 |#1|) (-373 |#1|) (-685 |#1| |#2| |#3|)) (T -686)) -((-2895 (*1 *2 *2) (|partial| -12 (-4 *3 (-363)) (-4 *3 (-172)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-686 *3 *4 *5 *2)) (-4 *2 (-685 *3 *4 *5)))) (-4219 (*1 *2 *3 *3) (-12 (-4 *3 (-307)) (-4 *3 (-172)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-2 (|:| -4332 *3) (|:| -1992 *3))) (-5 *1 (-686 *3 *4 *5 *6)) (-4 *6 (-685 *3 *4 *5)))) (-2389 (*1 *2 *2) (-12 (-4 *3 (-307)) (-4 *3 (-172)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-686 *3 *4 *5 *2)) (-4 *2 (-685 *3 *4 *5)))) (-2594 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-686 *4 *5 *6 *3)) (-4 *3 (-685 *4 *5 *6)))) (-4092 (*1 *2 *2) (|partial| -12 (-4 *3 (-556)) (-4 *3 (-172)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-686 *3 *4 *5 *2)) (-4 *2 (-685 *3 *4 *5)))) (-3557 (*1 *2 *2) (-12 (-4 *3 (-556)) (-4 *3 (-172)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-686 *3 *4 *5 *2)) (-4 *2 (-685 *3 *4 *5)))) (-2536 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-642 *6)) (-5 *1 (-686 *4 *5 *6 *3)) (-4 *3 (-685 *4 *5 *6)))) (-1974 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-769)) (-5 *1 (-686 *4 *5 *6 *3)) (-4 *3 (-685 *4 *5 *6)))) (-3616 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-769)) (-5 *1 (-686 *4 *5 *6 *3)) (-4 *3 (-685 *4 *5 *6)))) (-2196 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-564)) (-4 *3 (-172)) (-4 *5 (-373 *3)) (-4 *6 (-373 *3)) (-5 *1 (-686 *3 *5 *6 *2)) (-4 *2 (-685 *3 *5 *6)))) (-2620 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-564)) (-4 *3 (-172)) (-4 *5 (-373 *3)) (-4 *6 (-373 *3)) (-5 *1 (-686 *3 *5 *6 *2)) (-4 *2 (-685 *3 *5 *6)))) (-1809 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-564)) (-4 *4 (-172)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *1 (-686 *4 *5 *6 *2)) (-4 *2 (-685 *4 *5 *6)))) (-1446 (*1 *2 *3) (-12 (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-172)) (-5 *1 (-686 *2 *4 *5 *3)) (-4 *3 (-685 *2 *4 *5)))) (-1559 (*1 *2 *3) (-12 (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-172)) (-5 *1 (-686 *2 *4 *5 *3)) (-4 *3 (-685 *2 *4 *5))))) -(-10 -7 (-15 -1559 (|#1| |#4|)) (-15 -1446 (|#1| |#4|)) (-15 -1809 (|#4| |#4| (-564) (-564))) (-15 -2620 (|#4| |#4| |#1| (-564) (-564))) (-15 -2196 (|#4| |#4| |#1| (-564) (-564))) (IF (|has| |#1| (-556)) (PROGN (-15 -3616 ((-769) |#4|)) (-15 -1974 ((-769) |#4|)) (-15 -2536 ((-642 |#3|) |#4|)) (-15 -3557 (|#4| |#4|)) (-15 -4092 ((-3 |#4| "failed") |#4|)) (-15 -2594 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-307)) (PROGN (-15 -2389 (|#4| |#4|)) (-15 -4219 ((-2 (|:| -4332 |#1|) (|:| -1992 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -2895 ((-3 |#4| "failed") |#4|)) |%noBranch|)) -((-2856 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2038 (($ (-769) (-769)) 64)) (-3083 (($ $ $) NIL)) (-2845 (($ (-1262 |#1|)) NIL) (($ $) NIL)) (-1382 (((-112) $) NIL)) (-4299 (($ $ (-564) (-564)) 22)) (-4115 (($ $ (-564) (-564)) NIL)) (-1619 (($ $ (-564) (-564) (-564) (-564)) NIL)) (-1579 (($ $) NIL)) (-3382 (((-112) $) NIL)) (-3442 (((-112) $ (-769)) NIL)) (-3519 (($ $ (-564) (-564) $) NIL)) (-3841 ((|#1| $ (-564) (-564) |#1|) NIL) (($ $ (-642 (-564)) (-642 (-564)) $) NIL)) (-2279 (($ $ (-564) (-1262 |#1|)) NIL)) (-4184 (($ $ (-564) (-1262 |#1|)) NIL)) (-3859 (($ (-769) |#1|) 37)) (-2822 (($) NIL T CONST)) (-2389 (($ $) 46 (|has| |#1| (-307)))) (-2794 (((-1262 |#1|) $ (-564)) NIL)) (-3616 (((-769) $) 48 (|has| |#1| (-556)))) (-3105 ((|#1| $ (-564) (-564) |#1|) 69)) (-1804 ((|#1| $ (-564) (-564)) NIL)) (-2018 (((-642 |#1|) $) NIL)) (-1974 (((-769) $) 50 (|has| |#1| (-556)))) (-2536 (((-642 (-1262 |#1|)) $) 53 (|has| |#1| (-556)))) (-3847 (((-769) $) 32)) (-4233 (($ (-769) (-769) |#1|) 28)) (-3857 (((-769) $) 33)) (-3769 (((-112) $ (-769)) NIL)) (-1446 ((|#1| $) 44 (|has| |#1| (-6 (-4412 "*"))))) (-2570 (((-564) $) 10)) (-2269 (((-564) $) 11)) (-3541 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2533 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-4164 (((-564) $) 14)) (-2720 (((-564) $) 65)) (-4117 (($ (-642 (-642 |#1|))) NIL)) (-1857 (($ (-1 |#1| |#1|) $) NIL)) (-2947 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3141 (((-642 (-642 |#1|)) $) 76)) (-4145 (((-112) $ (-769)) NIL)) (-1778 (((-1155) $) NIL (|has| |#1| (-1097)))) (-2895 (((-3 $ "failed") $) 60 (|has| |#1| (-363)))) (-2708 (($ $ $) NIL)) (-3999 (((-1117) $) NIL (|has| |#1| (-1097)))) (-3826 (($ $ |#1|) NIL)) (-2842 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556)))) (-4094 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-2478 (((-112) $ $) NIL)) (-4109 (((-112) $) NIL)) (-2179 (($) NIL)) (-4369 ((|#1| $ (-564) (-564)) NIL) ((|#1| $ (-564) (-564) |#1|) NIL) (($ $ (-642 (-564)) (-642 (-564))) NIL)) (-4046 (($ (-642 |#1|)) NIL) (($ (-642 $)) NIL) (($ (-1262 |#1|)) 70)) (-1632 (((-112) $) NIL)) (-1559 ((|#1| $) 42 (|has| |#1| (-6 (-4412 "*"))))) (-4010 (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-769) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3865 (($ $) NIL)) (-3003 (((-536) $) 80 (|has| |#1| (-612 (-536))))) (-4342 (((-1262 |#1|) $ (-564)) NIL)) (-2390 (($ (-1262 |#1|)) NIL) (((-860) $) NIL (|has| |#1| (-611 (-860))))) (-1600 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-3295 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2630 (((-112) $) NIL)) (-2821 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2943 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-2930 (($ $ $) NIL) (($ $) NIL)) (-2917 (($ $ $) NIL)) (** (($ $ (-769)) 38) (($ $ (-564)) 62 (|has| |#1| (-363)))) (* (($ $ $) 24) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-564) $) NIL) (((-1262 |#1|) $ (-1262 |#1|)) NIL) (((-1262 |#1|) (-1262 |#1|) $) NIL)) (-2158 (((-769) $) NIL (|has| $ (-6 -4410))))) -(((-687 |#1|) (-13 (-685 |#1| (-1262 |#1|) (-1262 |#1|)) (-10 -8 (-15 -4046 ($ (-1262 |#1|))) (IF (|has| |#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -2895 ((-3 $ "failed") $)) |%noBranch|))) (-1047)) (T -687)) -((-2895 (*1 *1 *1) (|partial| -12 (-5 *1 (-687 *2)) (-4 *2 (-363)) (-4 *2 (-1047)))) (-4046 (*1 *1 *2) (-12 (-5 *2 (-1262 *3)) (-4 *3 (-1047)) (-5 *1 (-687 *3))))) -(-13 (-685 |#1| (-1262 |#1|) (-1262 |#1|)) (-10 -8 (-15 -4046 ($ (-1262 |#1|))) (IF (|has| |#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -2895 ((-3 $ "failed") $)) |%noBranch|))) -((-1733 (((-687 |#1|) (-687 |#1|) (-687 |#1|) (-687 |#1|)) 37)) (-3473 (((-687 |#1|) (-687 |#1|) (-687 |#1|) |#1|) 34)) (-2291 (((-687 |#1|) (-687 |#1|) (-687 |#1|) (-687 |#1|) (-687 |#1|) (-769)) 43)) (-3268 (((-687 |#1|) (-687 |#1|) (-687 |#1|) (-687 |#1|)) 27)) (-4021 (((-687 |#1|) (-687 |#1|) (-687 |#1|) (-687 |#1|)) 31) (((-687 |#1|) (-687 |#1|) (-687 |#1|)) 29)) (-2874 (((-687 |#1|) (-687 |#1|) |#1| (-687 |#1|)) 33)) (-2665 (((-687 |#1|) (-687 |#1|) (-687 |#1|)) 25)) (** (((-687 |#1|) (-687 |#1|) (-769)) 46))) -(((-688 |#1|) (-10 -7 (-15 -2665 ((-687 |#1|) (-687 |#1|) (-687 |#1|))) (-15 -3268 ((-687 |#1|) (-687 |#1|) (-687 |#1|) (-687 |#1|))) (-15 -4021 ((-687 |#1|) (-687 |#1|) (-687 |#1|))) (-15 -4021 ((-687 |#1|) (-687 |#1|) (-687 |#1|) (-687 |#1|))) (-15 -2874 ((-687 |#1|) (-687 |#1|) |#1| (-687 |#1|))) (-15 -3473 ((-687 |#1|) (-687 |#1|) (-687 |#1|) |#1|)) (-15 -1733 ((-687 |#1|) (-687 |#1|) (-687 |#1|) (-687 |#1|))) (-15 -2291 ((-687 |#1|) (-687 |#1|) (-687 |#1|) (-687 |#1|) (-687 |#1|) (-769))) (-15 ** ((-687 |#1|) (-687 |#1|) (-769)))) (-1047)) (T -688)) -((** (*1 *2 *2 *3) (-12 (-5 *2 (-687 *4)) (-5 *3 (-769)) (-4 *4 (-1047)) (-5 *1 (-688 *4)))) (-2291 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-687 *4)) (-5 *3 (-769)) (-4 *4 (-1047)) (-5 *1 (-688 *4)))) (-1733 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-687 *3)) (-4 *3 (-1047)) (-5 *1 (-688 *3)))) (-3473 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-687 *3)) (-4 *3 (-1047)) (-5 *1 (-688 *3)))) (-2874 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-687 *3)) (-4 *3 (-1047)) (-5 *1 (-688 *3)))) (-4021 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-687 *3)) (-4 *3 (-1047)) (-5 *1 (-688 *3)))) (-4021 (*1 *2 *2 *2) (-12 (-5 *2 (-687 *3)) (-4 *3 (-1047)) (-5 *1 (-688 *3)))) (-3268 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-687 *3)) (-4 *3 (-1047)) (-5 *1 (-688 *3)))) (-2665 (*1 *2 *2 *2) (-12 (-5 *2 (-687 *3)) (-4 *3 (-1047)) (-5 *1 (-688 *3))))) -(-10 -7 (-15 -2665 ((-687 |#1|) (-687 |#1|) (-687 |#1|))) (-15 -3268 ((-687 |#1|) (-687 |#1|) (-687 |#1|) (-687 |#1|))) (-15 -4021 ((-687 |#1|) (-687 |#1|) (-687 |#1|))) (-15 -4021 ((-687 |#1|) (-687 |#1|) (-687 |#1|) (-687 |#1|))) (-15 -2874 ((-687 |#1|) (-687 |#1|) |#1| (-687 |#1|))) (-15 -3473 ((-687 |#1|) (-687 |#1|) (-687 |#1|) |#1|)) (-15 -1733 ((-687 |#1|) (-687 |#1|) (-687 |#1|) (-687 |#1|))) (-15 -2291 ((-687 |#1|) (-687 |#1|) (-687 |#1|) (-687 |#1|) (-687 |#1|) (-769))) (-15 ** ((-687 |#1|) (-687 |#1|) (-769)))) -((-2849 (((-3 |#1| "failed") $) 18)) (-1687 ((|#1| $) NIL)) (-3279 (($) 7 T CONST)) (-2391 (($ |#1|) 8)) (-2390 (($ |#1|) 16) (((-860) $) 23)) (-2351 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -3279)) 11)) (-3899 ((|#1| $) 15))) -(((-689 |#1|) (-13 (-1257) (-1036 |#1|) (-611 (-860)) (-10 -8 (-15 -2391 ($ |#1|)) (-15 -2351 ((-112) $ (|[\|\|]| |#1|))) (-15 -2351 ((-112) $ (|[\|\|]| -3279))) (-15 -3899 (|#1| $)) (-15 -3279 ($) -1551))) (-611 (-860))) (T -689)) -((-2391 (*1 *1 *2) (-12 (-5 *1 (-689 *2)) (-4 *2 (-611 (-860))))) (-2351 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-611 (-860))) (-5 *2 (-112)) (-5 *1 (-689 *4)))) (-2351 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3279)) (-5 *2 (-112)) (-5 *1 (-689 *4)) (-4 *4 (-611 (-860))))) (-3899 (*1 *2 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-611 (-860))))) (-3279 (*1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-611 (-860)))))) -(-13 (-1257) (-1036 |#1|) (-611 (-860)) (-10 -8 (-15 -2391 ($ |#1|)) (-15 -2351 ((-112) $ (|[\|\|]| |#1|))) (-15 -2351 ((-112) $ (|[\|\|]| -3279))) (-15 -3899 (|#1| $)) (-15 -3279 ($) -1551))) -((-3543 ((|#2| |#2| |#4|) 33)) (-2926 (((-687 |#2|) |#3| |#4|) 39)) (-3945 (((-687 |#2|) |#2| |#4|) 38)) (-2046 (((-1262 |#2|) |#2| |#4|) 16)) (-4123 ((|#2| |#3| |#4|) 32)) (-1725 (((-687 |#2|) |#3| |#4| (-769) (-769)) 50)) (-2847 (((-687 |#2|) |#2| |#4| (-769)) 49))) -(((-690 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2046 ((-1262 |#2|) |#2| |#4|)) (-15 -4123 (|#2| |#3| |#4|)) (-15 -3543 (|#2| |#2| |#4|)) (-15 -3945 ((-687 |#2|) |#2| |#4|)) (-15 -2847 ((-687 |#2|) |#2| |#4| (-769))) (-15 -2926 ((-687 |#2|) |#3| |#4|)) (-15 -1725 ((-687 |#2|) |#3| |#4| (-769) (-769)))) (-1097) (-898 |#1|) (-373 |#2|) (-13 (-373 |#1|) (-10 -7 (-6 -4410)))) (T -690)) -((-1725 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-769)) (-4 *6 (-1097)) (-4 *7 (-898 *6)) (-5 *2 (-687 *7)) (-5 *1 (-690 *6 *7 *3 *4)) (-4 *3 (-373 *7)) (-4 *4 (-13 (-373 *6) (-10 -7 (-6 -4410)))))) (-2926 (*1 *2 *3 *4) (-12 (-4 *5 (-1097)) (-4 *6 (-898 *5)) (-5 *2 (-687 *6)) (-5 *1 (-690 *5 *6 *3 *4)) (-4 *3 (-373 *6)) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4410)))))) (-2847 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-769)) (-4 *6 (-1097)) (-4 *3 (-898 *6)) (-5 *2 (-687 *3)) (-5 *1 (-690 *6 *3 *7 *4)) (-4 *7 (-373 *3)) (-4 *4 (-13 (-373 *6) (-10 -7 (-6 -4410)))))) (-3945 (*1 *2 *3 *4) (-12 (-4 *5 (-1097)) (-4 *3 (-898 *5)) (-5 *2 (-687 *3)) (-5 *1 (-690 *5 *3 *6 *4)) (-4 *6 (-373 *3)) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4410)))))) (-3543 (*1 *2 *2 *3) (-12 (-4 *4 (-1097)) (-4 *2 (-898 *4)) (-5 *1 (-690 *4 *2 *5 *3)) (-4 *5 (-373 *2)) (-4 *3 (-13 (-373 *4) (-10 -7 (-6 -4410)))))) (-4123 (*1 *2 *3 *4) (-12 (-4 *5 (-1097)) (-4 *2 (-898 *5)) (-5 *1 (-690 *5 *2 *3 *4)) (-4 *3 (-373 *2)) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4410)))))) (-2046 (*1 *2 *3 *4) (-12 (-4 *5 (-1097)) (-4 *3 (-898 *5)) (-5 *2 (-1262 *3)) (-5 *1 (-690 *5 *3 *6 *4)) (-4 *6 (-373 *3)) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4410))))))) -(-10 -7 (-15 -2046 ((-1262 |#2|) |#2| |#4|)) (-15 -4123 (|#2| |#3| |#4|)) (-15 -3543 (|#2| |#2| |#4|)) (-15 -3945 ((-687 |#2|) |#2| |#4|)) (-15 -2847 ((-687 |#2|) |#2| |#4| (-769))) (-15 -2926 ((-687 |#2|) |#3| |#4|)) (-15 -1725 ((-687 |#2|) |#3| |#4| (-769) (-769)))) -((-1788 (((-2 (|:| |num| (-687 |#1|)) (|:| |den| |#1|)) (-687 |#2|)) 20)) (-3508 ((|#1| (-687 |#2|)) 9)) (-1581 (((-687 |#1|) (-687 |#2|)) 18))) -(((-691 |#1| |#2|) (-10 -7 (-15 -3508 (|#1| (-687 |#2|))) (-15 -1581 ((-687 |#1|) (-687 |#2|))) (-15 -1788 ((-2 (|:| |num| (-687 |#1|)) (|:| |den| |#1|)) (-687 |#2|)))) (-556) (-990 |#1|)) (T -691)) -((-1788 (*1 *2 *3) (-12 (-5 *3 (-687 *5)) (-4 *5 (-990 *4)) (-4 *4 (-556)) (-5 *2 (-2 (|:| |num| (-687 *4)) (|:| |den| *4))) (-5 *1 (-691 *4 *5)))) (-1581 (*1 *2 *3) (-12 (-5 *3 (-687 *5)) (-4 *5 (-990 *4)) (-4 *4 (-556)) (-5 *2 (-687 *4)) (-5 *1 (-691 *4 *5)))) (-3508 (*1 *2 *3) (-12 (-5 *3 (-687 *4)) (-4 *4 (-990 *2)) (-4 *2 (-556)) (-5 *1 (-691 *2 *4))))) -(-10 -7 (-15 -3508 (|#1| (-687 |#2|))) (-15 -1581 ((-687 |#1|) (-687 |#2|))) (-15 -1788 ((-2 (|:| |num| (-687 |#1|)) (|:| |den| |#1|)) (-687 |#2|)))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-4252 (($ $) NIL)) (-1722 (((-112) $) NIL)) (-1335 (((-687 (-697))) NIL) (((-687 (-697)) (-1262 $)) NIL)) (-3778 (((-697) $) NIL)) (-3087 (($ $) NIL (|has| (-697) (-1197)))) (-2958 (($ $) NIL (|has| (-697) (-1197)))) (-3651 (((-1185 (-919) (-769)) (-564)) NIL (|has| (-697) (-349)))) (-3085 (((-3 $ "failed") $ $) NIL)) (-4297 (((-418 (-1169 $)) (-1169 $)) NIL (-12 (|has| (-697) (-307)) (|has| (-697) (-907))))) (-1993 (($ $) NIL (-2682 (-12 (|has| (-697) (-307)) (|has| (-697) (-907))) (|has| (-697) (-363))))) (-3282 (((-418 $) $) NIL (-2682 (-12 (|has| (-697) (-307)) (|has| (-697) (-907))) (|has| (-697) (-363))))) (-2264 (($ $) NIL (-12 (|has| (-697) (-1000)) (|has| (-697) (-1197))))) (-3267 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) NIL (-12 (|has| (-697) (-307)) (|has| (-697) (-907))))) (-2134 (((-112) $ $) NIL (|has| (-697) (-307)))) (-4003 (((-769)) NIL (|has| (-697) (-368)))) (-3067 (($ $) NIL (|has| (-697) (-1197)))) (-2933 (($ $) NIL (|has| (-697) (-1197)))) (-3110 (($ $) NIL (|has| (-697) (-1197)))) (-2981 (($ $) NIL (|has| (-697) (-1197)))) (-2822 (($) NIL T CONST)) (-2849 (((-3 (-564) "failed") $) NIL) (((-3 (-697) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-697) (-1036 (-407 (-564)))))) (-1687 (((-564) $) NIL) (((-697) $) NIL) (((-407 (-564)) $) NIL (|has| (-697) (-1036 (-407 (-564)))))) (-4087 (($ (-1262 (-697))) NIL) (($ (-1262 (-697)) (-1262 $)) NIL)) (-2629 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-697) (-349)))) (-2796 (($ $ $) NIL (|has| (-697) (-307)))) (-2330 (((-687 (-697)) $) NIL) (((-687 (-697)) $ (-1262 $)) NIL)) (-3330 (((-687 (-697)) (-687 $)) NIL) (((-2 (|:| -3544 (-687 (-697))) (|:| |vec| (-1262 (-697)))) (-687 $) (-1262 $)) NIL) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (|has| (-697) (-637 (-564)))) (((-687 (-564)) (-687 $)) NIL (|has| (-697) (-637 (-564))))) (-3741 (((-3 $ "failed") (-407 (-1169 (-697)))) NIL (|has| (-697) (-363))) (($ (-1169 (-697))) NIL)) (-2675 (((-3 $ "failed") $) NIL)) (-2275 (((-697) $) 29)) (-3227 (((-3 (-407 (-564)) "failed") $) NIL (|has| (-697) (-545)))) (-2929 (((-112) $) NIL (|has| (-697) (-545)))) (-3536 (((-407 (-564)) $) NIL (|has| (-697) (-545)))) (-3616 (((-919)) NIL)) (-3235 (($) NIL (|has| (-697) (-368)))) (-2808 (($ $ $) NIL (|has| (-697) (-307)))) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) NIL (|has| (-697) (-307)))) (-1427 (($) NIL (|has| (-697) (-349)))) (-4153 (((-112) $) NIL (|has| (-697) (-349)))) (-1595 (($ $) NIL (|has| (-697) (-349))) (($ $ (-769)) NIL (|has| (-697) (-349)))) (-3552 (((-112) $) NIL (-2682 (-12 (|has| (-697) (-307)) (|has| (-697) (-907))) (|has| (-697) (-363))))) (-1583 (((-2 (|:| |r| (-697)) (|:| |phi| (-697))) $) NIL (-12 (|has| (-697) (-1057)) (|has| (-697) (-1197))))) (-2833 (($) NIL (|has| (-697) (-1197)))) (-1381 (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) NIL (|has| (-697) (-884 (-379)))) (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) NIL (|has| (-697) (-884 (-564))))) (-2408 (((-831 (-919)) $) NIL (|has| (-697) (-349))) (((-919) $) NIL (|has| (-697) (-349)))) (-3163 (((-112) $) NIL)) (-2024 (($ $ (-564)) NIL (-12 (|has| (-697) (-1000)) (|has| (-697) (-1197))))) (-2573 (((-697) $) NIL)) (-4382 (((-3 $ "failed") $) NIL (|has| (-697) (-349)))) (-2709 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| (-697) (-307)))) (-2076 (((-1169 (-697)) $) NIL (|has| (-697) (-363)))) (-3225 (($ $ $) NIL)) (-2903 (($ $ $) NIL)) (-2947 (($ (-1 (-697) (-697)) $) NIL)) (-2535 (((-919) $) NIL (|has| (-697) (-368)))) (-3576 (($ $) NIL (|has| (-697) (-1197)))) (-3730 (((-1169 (-697)) $) NIL)) (-2066 (($ (-642 $)) NIL (|has| (-697) (-307))) (($ $ $) NIL (|has| (-697) (-307)))) (-1778 (((-1155) $) NIL)) (-2481 (($ $) NIL (|has| (-697) (-363)))) (-3910 (($) NIL (|has| (-697) (-349)) CONST)) (-2065 (($ (-919)) NIL (|has| (-697) (-368)))) (-4069 (($) NIL)) (-2287 (((-697) $) 31)) (-3999 (((-1117) $) NIL)) (-4043 (($) NIL)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) NIL (|has| (-697) (-307)))) (-2105 (($ (-642 $)) NIL (|has| (-697) (-307))) (($ $ $) NIL (|has| (-697) (-307)))) (-4229 (((-642 (-2 (|:| -2254 (-564)) (|:| -2817 (-564))))) NIL (|has| (-697) (-349)))) (-3223 (((-418 (-1169 $)) (-1169 $)) NIL (-12 (|has| (-697) (-307)) (|has| (-697) (-907))))) (-2236 (((-418 (-1169 $)) (-1169 $)) NIL (-12 (|has| (-697) (-307)) (|has| (-697) (-907))))) (-2254 (((-418 $) $) NIL (-2682 (-12 (|has| (-697) (-307)) (|has| (-697) (-907))) (|has| (-697) (-363))))) (-1877 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-697) (-307))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL (|has| (-697) (-307)))) (-2842 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-697)) NIL (|has| (-697) (-556)))) (-1483 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| (-697) (-307)))) (-3466 (($ $) NIL (|has| (-697) (-1197)))) (-3154 (($ $ (-1173) (-697)) NIL (|has| (-697) (-514 (-1173) (-697)))) (($ $ (-642 (-1173)) (-642 (-697))) NIL (|has| (-697) (-514 (-1173) (-697)))) (($ $ (-642 (-294 (-697)))) NIL (|has| (-697) (-309 (-697)))) (($ $ (-294 (-697))) NIL (|has| (-697) (-309 (-697)))) (($ $ (-697) (-697)) NIL (|has| (-697) (-309 (-697)))) (($ $ (-642 (-697)) (-642 (-697))) NIL (|has| (-697) (-309 (-697))))) (-4274 (((-769) $) NIL (|has| (-697) (-307)))) (-4369 (($ $ (-697)) NIL (|has| (-697) (-286 (-697) (-697))))) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL (|has| (-697) (-307)))) (-2790 (((-697)) NIL) (((-697) (-1262 $)) NIL)) (-1354 (((-3 (-769) "failed") $ $) NIL (|has| (-697) (-349))) (((-769) $) NIL (|has| (-697) (-349)))) (-2199 (($ $ (-1 (-697) (-697))) NIL) (($ $ (-1 (-697) (-697)) (-769)) NIL) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| (-697) (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| (-697) (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| (-697) (-898 (-1173)))) (($ $ (-1173)) NIL (|has| (-697) (-898 (-1173)))) (($ $ (-769)) NIL (|has| (-697) (-233))) (($ $) NIL (|has| (-697) (-233)))) (-2418 (((-687 (-697)) (-1262 $) (-1 (-697) (-697))) NIL (|has| (-697) (-363)))) (-1361 (((-1169 (-697))) NIL)) (-3120 (($ $) NIL (|has| (-697) (-1197)))) (-2992 (($ $) NIL (|has| (-697) (-1197)))) (-3553 (($) NIL (|has| (-697) (-349)))) (-3098 (($ $) NIL (|has| (-697) (-1197)))) (-2971 (($ $) NIL (|has| (-697) (-1197)))) (-3077 (($ $) NIL (|has| (-697) (-1197)))) (-2946 (($ $) NIL (|has| (-697) (-1197)))) (-3719 (((-687 (-697)) (-1262 $)) NIL) (((-1262 (-697)) $) NIL) (((-687 (-697)) (-1262 $) (-1262 $)) NIL) (((-1262 (-697)) $ (-1262 $)) NIL)) (-3003 (((-536) $) NIL (|has| (-697) (-612 (-536)))) (((-169 (-225)) $) NIL (|has| (-697) (-1020))) (((-169 (-379)) $) NIL (|has| (-697) (-1020))) (((-890 (-379)) $) NIL (|has| (-697) (-612 (-890 (-379))))) (((-890 (-564)) $) NIL (|has| (-697) (-612 (-890 (-564))))) (($ (-1169 (-697))) NIL) (((-1169 (-697)) $) NIL) (($ (-1262 (-697))) NIL) (((-1262 (-697)) $) NIL)) (-1736 (($ $) NIL)) (-3556 (((-3 (-1262 $) "failed") (-687 $)) NIL (-2682 (-12 (|has| (-697) (-307)) (|has| $ (-145)) (|has| (-697) (-907))) (|has| (-697) (-349))))) (-3571 (($ (-697) (-697)) 12)) (-2390 (((-860) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-564)) NIL) (($ (-697)) NIL) (($ (-169 (-379))) 13) (($ (-169 (-564))) 19) (($ (-169 (-697))) 28) (($ (-169 (-699))) 25) (((-169 (-379)) $) 33) (($ (-407 (-564))) NIL (-2682 (|has| (-697) (-1036 (-407 (-564)))) (|has| (-697) (-363))))) (-3434 (($ $) NIL (|has| (-697) (-349))) (((-3 $ "failed") $) NIL (-2682 (-12 (|has| (-697) (-307)) (|has| $ (-145)) (|has| (-697) (-907))) (|has| (-697) (-145))))) (-1308 (((-1169 (-697)) $) NIL)) (-3348 (((-769)) NIL T CONST)) (-1600 (((-112) $ $) NIL)) (-2131 (((-1262 $)) NIL)) (-3155 (($ $) NIL (|has| (-697) (-1197)))) (-3025 (($ $) NIL (|has| (-697) (-1197)))) (-1594 (((-112) $ $) NIL)) (-3131 (($ $) NIL (|has| (-697) (-1197)))) (-3002 (($ $) NIL (|has| (-697) (-1197)))) (-3176 (($ $) NIL (|has| (-697) (-1197)))) (-3047 (($ $) NIL (|has| (-697) (-1197)))) (-3100 (((-697) $) NIL (|has| (-697) (-1197)))) (-3165 (($ $) NIL (|has| (-697) (-1197)))) (-3058 (($ $) NIL (|has| (-697) (-1197)))) (-3168 (($ $) NIL (|has| (-697) (-1197)))) (-3035 (($ $) NIL (|has| (-697) (-1197)))) (-3142 (($ $) NIL (|has| (-697) (-1197)))) (-3014 (($ $) NIL (|has| (-697) (-1197)))) (-1630 (($ $) NIL (|has| (-697) (-1057)))) (-2361 (($) NIL T CONST)) (-2371 (($) NIL T CONST)) (-2711 (($ $ (-1 (-697) (-697))) NIL) (($ $ (-1 (-697) (-697)) (-769)) NIL) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| (-697) (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| (-697) (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| (-697) (-898 (-1173)))) (($ $ (-1173)) NIL (|has| (-697) (-898 (-1173)))) (($ $ (-769)) NIL (|has| (-697) (-233))) (($ $) NIL (|has| (-697) (-233)))) (-2881 (((-112) $ $) NIL)) (-2857 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL)) (-2868 (((-112) $ $) NIL)) (-2844 (((-112) $ $) NIL)) (-2943 (($ $ $) NIL (|has| (-697) (-363)))) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ $) NIL (|has| (-697) (-1197))) (($ $ (-407 (-564))) NIL (-12 (|has| (-697) (-1000)) (|has| (-697) (-1197)))) (($ $ (-564)) NIL (|has| (-697) (-363)))) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ (-697) $) NIL) (($ $ (-697)) NIL) (($ (-407 (-564)) $) NIL (|has| (-697) (-363))) (($ $ (-407 (-564))) NIL (|has| (-697) (-363))))) -(((-692) (-13 (-387) (-166 (-697)) (-10 -8 (-15 -2390 ($ (-169 (-379)))) (-15 -2390 ($ (-169 (-564)))) (-15 -2390 ($ (-169 (-697)))) (-15 -2390 ($ (-169 (-699)))) (-15 -2390 ((-169 (-379)) $))))) (T -692)) -((-2390 (*1 *1 *2) (-12 (-5 *2 (-169 (-379))) (-5 *1 (-692)))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-169 (-564))) (-5 *1 (-692)))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-169 (-697))) (-5 *1 (-692)))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-169 (-699))) (-5 *1 (-692)))) (-2390 (*1 *2 *1) (-12 (-5 *2 (-169 (-379))) (-5 *1 (-692))))) -(-13 (-387) (-166 (-697)) (-10 -8 (-15 -2390 ($ (-169 (-379)))) (-15 -2390 ($ (-169 (-564)))) (-15 -2390 ($ (-169 (-697)))) (-15 -2390 ($ (-169 (-699)))) (-15 -2390 ((-169 (-379)) $)))) -((-2856 (((-112) $ $) 19 (|has| |#1| (-1097)))) (-3442 (((-112) $ (-769)) 8)) (-2438 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4410)))) (-3437 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4410)))) (-2822 (($) 7 T CONST)) (-2324 (($ $) 63)) (-4067 (($ $) 59 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-1927 (($ |#1| $) 48 (|has| $ (-6 -4410))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4410)))) (-2517 (($ |#1| $) 58 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4410)))) (-3741 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4410)))) (-2018 (((-642 |#1|) $) 31 (|has| $ (-6 -4410)))) (-3769 (((-112) $ (-769)) 9)) (-3541 (((-642 |#1|) $) 30 (|has| $ (-6 -4410)))) (-2533 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-1857 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#1| |#1|) $) 36)) (-4145 (((-112) $ (-769)) 10)) (-1778 (((-1155) $) 22 (|has| |#1| (-1097)))) (-3220 ((|#1| $) 40)) (-1668 (($ |#1| $) 41) (($ |#1| $ (-769)) 64)) (-3999 (((-1117) $) 21 (|has| |#1| (-1097)))) (-3183 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-4314 ((|#1| $) 42)) (-4094 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-2478 (((-112) $ $) 14)) (-4109 (((-112) $) 11)) (-2179 (($) 12)) (-3687 (((-642 (-2 (|:| -2683 |#1|) (|:| -4010 (-769)))) $) 62)) (-2318 (($) 50) (($ (-642 |#1|)) 49)) (-4010 (((-769) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4410))) (((-769) |#1| $) 29 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3865 (($ $) 13)) (-3003 (((-536) $) 60 (|has| |#1| (-612 (-536))))) (-2401 (($ (-642 |#1|)) 51)) (-2390 (((-860) $) 18 (|has| |#1| (-611 (-860))))) (-1600 (((-112) $ $) 23 (|has| |#1| (-1097)))) (-4160 (($ (-642 |#1|)) 43)) (-3295 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4410)))) (-2821 (((-112) $ $) 20 (|has| |#1| (-1097)))) (-2158 (((-769) $) 6 (|has| $ (-6 -4410))))) -(((-693 |#1|) (-140) (-1097)) (T -693)) -((-1668 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-769)) (-4 *1 (-693 *2)) (-4 *2 (-1097)))) (-2324 (*1 *1 *1) (-12 (-4 *1 (-693 *2)) (-4 *2 (-1097)))) (-3687 (*1 *2 *1) (-12 (-4 *1 (-693 *3)) (-4 *3 (-1097)) (-5 *2 (-642 (-2 (|:| -2683 *3) (|:| -4010 (-769)))))))) -(-13 (-235 |t#1|) (-10 -8 (-15 -1668 ($ |t#1| $ (-769))) (-15 -2324 ($ $)) (-15 -3687 ((-642 (-2 (|:| -2683 |t#1|) (|:| -4010 (-769)))) $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1097)) ((-611 (-860)) -2682 (|has| |#1| (-1097)) (|has| |#1| (-611 (-860)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-235 |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-1097) |has| |#1| (-1097)) ((-1212) . T)) -((-1636 (((-642 |#1|) (-642 (-2 (|:| -2254 |#1|) (|:| -3252 (-564)))) (-564)) 66)) (-3754 ((|#1| |#1| (-564)) 62)) (-2105 ((|#1| |#1| |#1| (-564)) 46)) (-2254 (((-642 |#1|) |#1| (-564)) 49)) (-1915 ((|#1| |#1| (-564) |#1| (-564)) 40)) (-2331 (((-642 (-2 (|:| -2254 |#1|) (|:| -3252 (-564)))) |#1| (-564)) 61))) -(((-694 |#1|) (-10 -7 (-15 -2105 (|#1| |#1| |#1| (-564))) (-15 -3754 (|#1| |#1| (-564))) (-15 -2254 ((-642 |#1|) |#1| (-564))) (-15 -2331 ((-642 (-2 (|:| -2254 |#1|) (|:| -3252 (-564)))) |#1| (-564))) (-15 -1636 ((-642 |#1|) (-642 (-2 (|:| -2254 |#1|) (|:| -3252 (-564)))) (-564))) (-15 -1915 (|#1| |#1| (-564) |#1| (-564)))) (-1238 (-564))) (T -694)) -((-1915 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-694 *2)) (-4 *2 (-1238 *3)))) (-1636 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-2 (|:| -2254 *5) (|:| -3252 (-564))))) (-5 *4 (-564)) (-4 *5 (-1238 *4)) (-5 *2 (-642 *5)) (-5 *1 (-694 *5)))) (-2331 (*1 *2 *3 *4) (-12 (-5 *4 (-564)) (-5 *2 (-642 (-2 (|:| -2254 *3) (|:| -3252 *4)))) (-5 *1 (-694 *3)) (-4 *3 (-1238 *4)))) (-2254 (*1 *2 *3 *4) (-12 (-5 *4 (-564)) (-5 *2 (-642 *3)) (-5 *1 (-694 *3)) (-4 *3 (-1238 *4)))) (-3754 (*1 *2 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-694 *2)) (-4 *2 (-1238 *3)))) (-2105 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-694 *2)) (-4 *2 (-1238 *3))))) -(-10 -7 (-15 -2105 (|#1| |#1| |#1| (-564))) (-15 -3754 (|#1| |#1| (-564))) (-15 -2254 ((-642 |#1|) |#1| (-564))) (-15 -2331 ((-642 (-2 (|:| -2254 |#1|) (|:| -3252 (-564)))) |#1| (-564))) (-15 -1636 ((-642 |#1|) (-642 (-2 (|:| -2254 |#1|) (|:| -3252 (-564)))) (-564))) (-15 -1915 (|#1| |#1| (-564) |#1| (-564)))) -((-4045 (((-1 (-941 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))) 17)) (-1663 (((-1130 (-225)) (-1130 (-225)) (-1 (-941 (-225)) (-225) (-225)) (-1091 (-225)) (-1091 (-225)) (-642 (-263))) 56) (((-1130 (-225)) (-1 (-941 (-225)) (-225) (-225)) (-1091 (-225)) (-1091 (-225)) (-642 (-263))) 58) (((-1130 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1091 (-225)) (-1091 (-225)) (-642 (-263))) 60)) (-4130 (((-1130 (-225)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1091 (-225)) (-642 (-263))) NIL)) (-1906 (((-1130 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1091 (-225)) (-1091 (-225)) (-642 (-263))) 61))) -(((-695) (-10 -7 (-15 -1663 ((-1130 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1091 (-225)) (-1091 (-225)) (-642 (-263)))) (-15 -1663 ((-1130 (-225)) (-1 (-941 (-225)) (-225) (-225)) (-1091 (-225)) (-1091 (-225)) (-642 (-263)))) (-15 -1663 ((-1130 (-225)) (-1130 (-225)) (-1 (-941 (-225)) (-225) (-225)) (-1091 (-225)) (-1091 (-225)) (-642 (-263)))) (-15 -1906 ((-1130 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1091 (-225)) (-1091 (-225)) (-642 (-263)))) (-15 -4130 ((-1130 (-225)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1091 (-225)) (-642 (-263)))) (-15 -4045 ((-1 (-941 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))) (T -695)) -((-4045 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1 (-225) (-225) (-225) (-225))) (-5 *2 (-1 (-941 (-225)) (-225) (-225))) (-5 *1 (-695)))) (-4130 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1091 (-225))) (-5 *6 (-642 (-263))) (-5 *2 (-1130 (-225))) (-5 *1 (-695)))) (-1906 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) (-5 *5 (-1091 (-225))) (-5 *6 (-642 (-263))) (-5 *2 (-1130 (-225))) (-5 *1 (-695)))) (-1663 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1130 (-225))) (-5 *3 (-1 (-941 (-225)) (-225) (-225))) (-5 *4 (-1091 (-225))) (-5 *5 (-642 (-263))) (-5 *1 (-695)))) (-1663 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-941 (-225)) (-225) (-225))) (-5 *4 (-1091 (-225))) (-5 *5 (-642 (-263))) (-5 *2 (-1130 (-225))) (-5 *1 (-695)))) (-1663 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) (-5 *5 (-1091 (-225))) (-5 *6 (-642 (-263))) (-5 *2 (-1130 (-225))) (-5 *1 (-695))))) -(-10 -7 (-15 -1663 ((-1130 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1091 (-225)) (-1091 (-225)) (-642 (-263)))) (-15 -1663 ((-1130 (-225)) (-1 (-941 (-225)) (-225) (-225)) (-1091 (-225)) (-1091 (-225)) (-642 (-263)))) (-15 -1663 ((-1130 (-225)) (-1130 (-225)) (-1 (-941 (-225)) (-225) (-225)) (-1091 (-225)) (-1091 (-225)) (-642 (-263)))) (-15 -1906 ((-1130 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1091 (-225)) (-1091 (-225)) (-642 (-263)))) (-15 -4130 ((-1130 (-225)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1091 (-225)) (-642 (-263)))) (-15 -4045 ((-1 (-941 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))))) -((-2254 (((-418 (-1169 |#4|)) (-1169 |#4|)) 86) (((-418 |#4|) |#4|) 270))) -(((-696 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2254 ((-418 |#4|) |#4|)) (-15 -2254 ((-418 (-1169 |#4|)) (-1169 |#4|)))) (-848) (-791) (-349) (-947 |#3| |#2| |#1|)) (T -696)) -((-2254 (*1 *2 *3) (-12 (-4 *4 (-848)) (-4 *5 (-791)) (-4 *6 (-349)) (-4 *7 (-947 *6 *5 *4)) (-5 *2 (-418 (-1169 *7))) (-5 *1 (-696 *4 *5 *6 *7)) (-5 *3 (-1169 *7)))) (-2254 (*1 *2 *3) (-12 (-4 *4 (-848)) (-4 *5 (-791)) (-4 *6 (-349)) (-5 *2 (-418 *3)) (-5 *1 (-696 *4 *5 *6 *3)) (-4 *3 (-947 *6 *5 *4))))) -(-10 -7 (-15 -2254 ((-418 |#4|) |#4|)) (-15 -2254 ((-418 (-1169 |#4|)) (-1169 |#4|)))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) 100)) (-2905 (((-564) $) 34)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-4252 (($ $) NIL)) (-1722 (((-112) $) NIL)) (-2180 (($ $) NIL)) (-3085 (((-3 $ "failed") $ $) NIL)) (-1993 (($ $) NIL)) (-3282 (((-418 $) $) NIL)) (-2264 (($ $) NIL)) (-2134 (((-112) $ $) NIL)) (-2221 (((-564) $) NIL)) (-2822 (($) NIL T CONST)) (-2293 (($ $) NIL)) (-2849 (((-3 (-564) "failed") $) 89) (((-3 (-407 (-564)) "failed") $) 28) (((-3 (-379) "failed") $) 86)) (-1687 (((-564) $) 91) (((-407 (-564)) $) 83) (((-379) $) 84)) (-2796 (($ $ $) 112)) (-2675 (((-3 $ "failed") $) 103)) (-2808 (($ $ $) 111)) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) NIL)) (-3552 (((-112) $) NIL)) (-2182 (((-919)) 93) (((-919) (-919)) 92)) (-3292 (((-112) $) NIL)) (-1381 (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) NIL)) (-2408 (((-564) $) NIL)) (-3163 (((-112) $) NIL)) (-2024 (($ $ (-564)) NIL)) (-2573 (($ $) NIL)) (-2666 (((-112) $) NIL)) (-2709 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-1567 (((-564) (-564)) 97) (((-564)) 98)) (-3225 (($ $ $) NIL) (($) NIL (-12 (-2307 (|has| $ (-6 -4393))) (-2307 (|has| $ (-6 -4401)))))) (-1590 (((-564) (-564)) 95) (((-564)) 96)) (-2903 (($ $ $) NIL) (($) NIL (-12 (-2307 (|has| $ (-6 -4393))) (-2307 (|has| $ (-6 -4401)))))) (-1664 (((-564) $) 17)) (-2066 (($ $ $) NIL) (($ (-642 $)) NIL)) (-1778 (((-1155) $) NIL)) (-2481 (($ $) 107)) (-3974 (((-919) (-564)) NIL (|has| $ (-6 -4401)))) (-3999 (((-1117) $) NIL)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2105 (($ $ $) NIL) (($ (-642 $)) NIL)) (-1830 (($ $) NIL)) (-2795 (($ $) NIL)) (-2823 (($ (-564) (-564)) NIL) (($ (-564) (-564) (-919)) NIL)) (-2254 (((-418 $) $) NIL)) (-1877 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2842 (((-3 $ "failed") $ $) 108)) (-1483 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2817 (((-564) $) 24)) (-4274 (((-769) $) NIL)) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) 110)) (-3152 (((-919)) NIL) (((-919) (-919)) NIL (|has| $ (-6 -4401)))) (-3520 (((-919) (-564)) NIL (|has| $ (-6 -4401)))) (-3003 (((-379) $) NIL) (((-225) $) NIL) (((-890 (-379)) $) NIL)) (-2390 (((-860) $) 68) (($ (-564)) 79) (($ $) NIL) (($ (-407 (-564))) 82) (($ (-564)) 79) (($ (-407 (-564))) 82) (($ (-379)) 76) (((-379) $) 66) (($ (-699)) 71)) (-3348 (((-769)) 122 T CONST)) (-1872 (($ (-564) (-564) (-919)) 59)) (-1378 (($ $) NIL)) (-1991 (((-919)) NIL) (((-919) (-919)) NIL (|has| $ (-6 -4401)))) (-1600 (((-112) $ $) NIL)) (-1959 (((-919)) 46) (((-919) (-919)) 94)) (-1594 (((-112) $ $) NIL)) (-1630 (($ $) NIL)) (-2361 (($) 37 T CONST)) (-2371 (($) 18 T CONST)) (-2881 (((-112) $ $) NIL)) (-2857 (((-112) $ $) NIL)) (-2821 (((-112) $ $) 99)) (-2868 (((-112) $ $) NIL)) (-2844 (((-112) $ $) 121)) (-2943 (($ $ $) 81)) (-2930 (($ $) 118) (($ $ $) 119)) (-2917 (($ $ $) 117)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL) (($ $ (-407 (-564))) 106)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 113) (($ $ $) 104) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL))) -(((-697) (-13 (-404) (-387) (-363) (-1036 (-379)) (-1036 (-407 (-564))) (-147) (-10 -8 (-15 -2182 ((-919) (-919))) (-15 -2182 ((-919))) (-15 -1959 ((-919) (-919))) (-15 -1590 ((-564) (-564))) (-15 -1590 ((-564))) (-15 -1567 ((-564) (-564))) (-15 -1567 ((-564))) (-15 -2390 ((-379) $)) (-15 -2390 ($ (-699))) (-15 -1664 ((-564) $)) (-15 -2817 ((-564) $)) (-15 -1872 ($ (-564) (-564) (-919)))))) (T -697)) -((-2817 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-697)))) (-1664 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-697)))) (-2182 (*1 *2) (-12 (-5 *2 (-919)) (-5 *1 (-697)))) (-2182 (*1 *2 *2) (-12 (-5 *2 (-919)) (-5 *1 (-697)))) (-1959 (*1 *2 *2) (-12 (-5 *2 (-919)) (-5 *1 (-697)))) (-1590 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-697)))) (-1590 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-697)))) (-1567 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-697)))) (-1567 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-697)))) (-2390 (*1 *2 *1) (-12 (-5 *2 (-379)) (-5 *1 (-697)))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-699)) (-5 *1 (-697)))) (-1872 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-564)) (-5 *3 (-919)) (-5 *1 (-697))))) -(-13 (-404) (-387) (-363) (-1036 (-379)) (-1036 (-407 (-564))) (-147) (-10 -8 (-15 -2182 ((-919) (-919))) (-15 -2182 ((-919))) (-15 -1959 ((-919) (-919))) (-15 -1590 ((-564) (-564))) (-15 -1590 ((-564))) (-15 -1567 ((-564) (-564))) (-15 -1567 ((-564))) (-15 -2390 ((-379) $)) (-15 -2390 ($ (-699))) (-15 -1664 ((-564) $)) (-15 -2817 ((-564) $)) (-15 -1872 ($ (-564) (-564) (-919))))) -((-2150 (((-687 |#1|) (-687 |#1|) |#1| |#1|) 88)) (-2389 (((-687 |#1|) (-687 |#1|) |#1|) 67)) (-3206 (((-687 |#1|) (-687 |#1|) |#1|) 89)) (-1762 (((-687 |#1|) (-687 |#1|)) 68)) (-4219 (((-2 (|:| -4332 |#1|) (|:| -1992 |#1|)) |#1| |#1|) 87))) -(((-698 |#1|) (-10 -7 (-15 -1762 ((-687 |#1|) (-687 |#1|))) (-15 -2389 ((-687 |#1|) (-687 |#1|) |#1|)) (-15 -3206 ((-687 |#1|) (-687 |#1|) |#1|)) (-15 -2150 ((-687 |#1|) (-687 |#1|) |#1| |#1|)) (-15 -4219 ((-2 (|:| -4332 |#1|) (|:| -1992 |#1|)) |#1| |#1|))) (-307)) (T -698)) -((-4219 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -4332 *3) (|:| -1992 *3))) (-5 *1 (-698 *3)) (-4 *3 (-307)))) (-2150 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-687 *3)) (-4 *3 (-307)) (-5 *1 (-698 *3)))) (-3206 (*1 *2 *2 *3) (-12 (-5 *2 (-687 *3)) (-4 *3 (-307)) (-5 *1 (-698 *3)))) (-2389 (*1 *2 *2 *3) (-12 (-5 *2 (-687 *3)) (-4 *3 (-307)) (-5 *1 (-698 *3)))) (-1762 (*1 *2 *2) (-12 (-5 *2 (-687 *3)) (-4 *3 (-307)) (-5 *1 (-698 *3))))) -(-10 -7 (-15 -1762 ((-687 |#1|) (-687 |#1|))) (-15 -2389 ((-687 |#1|) (-687 |#1|) |#1|)) (-15 -3206 ((-687 |#1|) (-687 |#1|) |#1|)) (-15 -2150 ((-687 |#1|) (-687 |#1|) |#1| |#1|)) (-15 -4219 ((-2 (|:| -4332 |#1|) (|:| -1992 |#1|)) |#1| |#1|))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-4252 (($ $) NIL)) (-1722 (((-112) $) NIL)) (-2290 (($ $ $) NIL)) (-3085 (((-3 $ "failed") $ $) NIL)) (-4062 (($ $ $ $) NIL)) (-1993 (($ $) NIL)) (-3282 (((-418 $) $) NIL)) (-2134 (((-112) $ $) NIL)) (-2221 (((-564) $) NIL)) (-2966 (($ $ $) NIL)) (-2822 (($) NIL T CONST)) (-2849 (((-3 (-564) "failed") $) 31)) (-1687 (((-564) $) 29)) (-2796 (($ $ $) NIL)) (-3330 (((-687 (-564)) (-687 $)) NIL) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL)) (-2675 (((-3 $ "failed") $) NIL)) (-3227 (((-3 (-407 (-564)) "failed") $) NIL)) (-2929 (((-112) $) NIL)) (-3536 (((-407 (-564)) $) NIL)) (-3235 (($ $) NIL) (($) NIL)) (-2808 (($ $ $) NIL)) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) NIL)) (-3552 (((-112) $) NIL)) (-1454 (($ $ $ $) NIL)) (-2271 (($ $ $) NIL)) (-3292 (((-112) $) NIL)) (-2641 (($ $ $) NIL)) (-1381 (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) NIL)) (-3163 (((-112) $) NIL)) (-2829 (((-112) $) NIL)) (-4382 (((-3 $ "failed") $) NIL)) (-2666 (((-112) $) NIL)) (-2709 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-1957 (($ $ $ $) NIL)) (-3225 (($ $ $) NIL)) (-4190 (((-919) (-919)) 10) (((-919)) 9)) (-2903 (($ $ $) NIL)) (-1526 (($ $) NIL)) (-2495 (($ $) NIL)) (-2066 (($ (-642 $)) NIL) (($ $ $) NIL)) (-1778 (((-1155) $) NIL)) (-3010 (($ $ $) NIL)) (-3910 (($) NIL T CONST)) (-4258 (($ $) NIL)) (-3999 (((-1117) $) NIL)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2105 (($ (-642 $)) NIL) (($ $ $) NIL)) (-1420 (($ $) NIL)) (-2254 (((-418 $) $) NIL)) (-1877 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2842 (((-3 $ "failed") $ $) NIL)) (-1483 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2211 (((-112) $) NIL)) (-4274 (((-769) $) NIL)) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL)) (-2199 (($ $) NIL) (($ $ (-769)) NIL)) (-1855 (($ $) NIL)) (-3865 (($ $) NIL)) (-3003 (((-225) $) NIL) (((-379) $) NIL) (((-890 (-564)) $) NIL) (((-536) $) NIL) (((-564) $) NIL)) (-2390 (((-860) $) NIL) (($ (-564)) 28) (($ $) NIL) (($ (-564)) 28) (((-316 $) (-316 (-564))) 18)) (-3348 (((-769)) NIL T CONST)) (-3029 (((-112) $ $) NIL)) (-4271 (($ $ $) NIL)) (-1600 (((-112) $ $) NIL)) (-1959 (($) NIL)) (-1594 (((-112) $ $) NIL)) (-3234 (($ $ $ $) NIL)) (-1630 (($ $) NIL)) (-2361 (($) NIL T CONST)) (-2371 (($) NIL T CONST)) (-2711 (($ $) NIL) (($ $ (-769)) NIL)) (-2881 (((-112) $ $) NIL)) (-2857 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL)) (-2868 (((-112) $ $) NIL)) (-2844 (((-112) $ $) NIL)) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL))) -(((-699) (-13 (-387) (-545) (-10 -8 (-15 -4190 ((-919) (-919))) (-15 -4190 ((-919))) (-15 -2390 ((-316 $) (-316 (-564))))))) (T -699)) -((-4190 (*1 *2 *2) (-12 (-5 *2 (-919)) (-5 *1 (-699)))) (-4190 (*1 *2) (-12 (-5 *2 (-919)) (-5 *1 (-699)))) (-2390 (*1 *2 *3) (-12 (-5 *3 (-316 (-564))) (-5 *2 (-316 (-699))) (-5 *1 (-699))))) -(-13 (-387) (-545) (-10 -8 (-15 -4190 ((-919) (-919))) (-15 -4190 ((-919))) (-15 -2390 ((-316 $) (-316 (-564)))))) -((-2496 (((-1 |#4| |#2| |#3|) |#1| (-1173) (-1173)) 19)) (-1465 (((-1 |#4| |#2| |#3|) (-1173)) 12))) -(((-700 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1465 ((-1 |#4| |#2| |#3|) (-1173))) (-15 -2496 ((-1 |#4| |#2| |#3|) |#1| (-1173) (-1173)))) (-612 (-536)) (-1212) (-1212) (-1212)) (T -700)) -((-2496 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1173)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-700 *3 *5 *6 *7)) (-4 *3 (-612 (-536))) (-4 *5 (-1212)) (-4 *6 (-1212)) (-4 *7 (-1212)))) (-1465 (*1 *2 *3) (-12 (-5 *3 (-1173)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-700 *4 *5 *6 *7)) (-4 *4 (-612 (-536))) (-4 *5 (-1212)) (-4 *6 (-1212)) (-4 *7 (-1212))))) -(-10 -7 (-15 -1465 ((-1 |#4| |#2| |#3|) (-1173))) (-15 -2496 ((-1 |#4| |#2| |#3|) |#1| (-1173) (-1173)))) -((-3304 (((-1 (-225) (-225) (-225)) |#1| (-1173) (-1173)) 36) (((-1 (-225) (-225)) |#1| (-1173)) 41))) -(((-701 |#1|) (-10 -7 (-15 -3304 ((-1 (-225) (-225)) |#1| (-1173))) (-15 -3304 ((-1 (-225) (-225) (-225)) |#1| (-1173) (-1173)))) (-612 (-536))) (T -701)) -((-3304 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1173)) (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-701 *3)) (-4 *3 (-612 (-536))))) (-3304 (*1 *2 *3 *4) (-12 (-5 *4 (-1173)) (-5 *2 (-1 (-225) (-225))) (-5 *1 (-701 *3)) (-4 *3 (-612 (-536)))))) -(-10 -7 (-15 -3304 ((-1 (-225) (-225)) |#1| (-1173))) (-15 -3304 ((-1 (-225) (-225) (-225)) |#1| (-1173) (-1173)))) -((-3129 (((-1173) |#1| (-1173) (-642 (-1173))) 10) (((-1173) |#1| (-1173) (-1173) (-1173)) 13) (((-1173) |#1| (-1173) (-1173)) 12) (((-1173) |#1| (-1173)) 11))) -(((-702 |#1|) (-10 -7 (-15 -3129 ((-1173) |#1| (-1173))) (-15 -3129 ((-1173) |#1| (-1173) (-1173))) (-15 -3129 ((-1173) |#1| (-1173) (-1173) (-1173))) (-15 -3129 ((-1173) |#1| (-1173) (-642 (-1173))))) (-612 (-536))) (T -702)) -((-3129 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-642 (-1173))) (-5 *2 (-1173)) (-5 *1 (-702 *3)) (-4 *3 (-612 (-536))))) (-3129 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-702 *3)) (-4 *3 (-612 (-536))))) (-3129 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-702 *3)) (-4 *3 (-612 (-536))))) (-3129 (*1 *2 *3 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-702 *3)) (-4 *3 (-612 (-536)))))) -(-10 -7 (-15 -3129 ((-1173) |#1| (-1173))) (-15 -3129 ((-1173) |#1| (-1173) (-1173))) (-15 -3129 ((-1173) |#1| (-1173) (-1173) (-1173))) (-15 -3129 ((-1173) |#1| (-1173) (-642 (-1173))))) -((-3511 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) -(((-703 |#1| |#2|) (-10 -7 (-15 -3511 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1212) (-1212)) (T -703)) -((-3511 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-703 *3 *4)) (-4 *3 (-1212)) (-4 *4 (-1212))))) -(-10 -7 (-15 -3511 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) -((-2376 (((-1 |#3| |#2|) (-1173)) 11)) (-2496 (((-1 |#3| |#2|) |#1| (-1173)) 21))) -(((-704 |#1| |#2| |#3|) (-10 -7 (-15 -2376 ((-1 |#3| |#2|) (-1173))) (-15 -2496 ((-1 |#3| |#2|) |#1| (-1173)))) (-612 (-536)) (-1212) (-1212)) (T -704)) -((-2496 (*1 *2 *3 *4) (-12 (-5 *4 (-1173)) (-5 *2 (-1 *6 *5)) (-5 *1 (-704 *3 *5 *6)) (-4 *3 (-612 (-536))) (-4 *5 (-1212)) (-4 *6 (-1212)))) (-2376 (*1 *2 *3) (-12 (-5 *3 (-1173)) (-5 *2 (-1 *6 *5)) (-5 *1 (-704 *4 *5 *6)) (-4 *4 (-612 (-536))) (-4 *5 (-1212)) (-4 *6 (-1212))))) -(-10 -7 (-15 -2376 ((-1 |#3| |#2|) (-1173))) (-15 -2496 ((-1 |#3| |#2|) |#1| (-1173)))) -((-1703 (((-3 (-642 (-1169 |#4|)) "failed") (-1169 |#4|) (-642 |#2|) (-642 (-1169 |#4|)) (-642 |#3|) (-642 |#4|) (-642 (-642 (-2 (|:| -3636 (-769)) (|:| |pcoef| |#4|)))) (-642 (-769)) (-1262 (-642 (-1169 |#3|))) |#3|) 95)) (-1946 (((-3 (-642 (-1169 |#4|)) "failed") (-1169 |#4|) (-642 |#2|) (-642 (-1169 |#3|)) (-642 |#3|) (-642 |#4|) (-642 (-769)) |#3|) 113)) (-3896 (((-3 (-642 (-1169 |#4|)) "failed") (-1169 |#4|) (-642 |#2|) (-642 |#3|) (-642 (-769)) (-642 (-1169 |#4|)) (-1262 (-642 (-1169 |#3|))) |#3|) 47))) -(((-705 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3896 ((-3 (-642 (-1169 |#4|)) "failed") (-1169 |#4|) (-642 |#2|) (-642 |#3|) (-642 (-769)) (-642 (-1169 |#4|)) (-1262 (-642 (-1169 |#3|))) |#3|)) (-15 -1946 ((-3 (-642 (-1169 |#4|)) "failed") (-1169 |#4|) (-642 |#2|) (-642 (-1169 |#3|)) (-642 |#3|) (-642 |#4|) (-642 (-769)) |#3|)) (-15 -1703 ((-3 (-642 (-1169 |#4|)) "failed") (-1169 |#4|) (-642 |#2|) (-642 (-1169 |#4|)) (-642 |#3|) (-642 |#4|) (-642 (-642 (-2 (|:| -3636 (-769)) (|:| |pcoef| |#4|)))) (-642 (-769)) (-1262 (-642 (-1169 |#3|))) |#3|))) (-791) (-848) (-307) (-947 |#3| |#1| |#2|)) (T -705)) -((-1703 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-642 (-1169 *13))) (-5 *3 (-1169 *13)) (-5 *4 (-642 *12)) (-5 *5 (-642 *10)) (-5 *6 (-642 *13)) (-5 *7 (-642 (-642 (-2 (|:| -3636 (-769)) (|:| |pcoef| *13))))) (-5 *8 (-642 (-769))) (-5 *9 (-1262 (-642 (-1169 *10)))) (-4 *12 (-848)) (-4 *10 (-307)) (-4 *13 (-947 *10 *11 *12)) (-4 *11 (-791)) (-5 *1 (-705 *11 *12 *10 *13)))) (-1946 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-642 *11)) (-5 *5 (-642 (-1169 *9))) (-5 *6 (-642 *9)) (-5 *7 (-642 *12)) (-5 *8 (-642 (-769))) (-4 *11 (-848)) (-4 *9 (-307)) (-4 *12 (-947 *9 *10 *11)) (-4 *10 (-791)) (-5 *2 (-642 (-1169 *12))) (-5 *1 (-705 *10 *11 *9 *12)) (-5 *3 (-1169 *12)))) (-3896 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-642 (-1169 *11))) (-5 *3 (-1169 *11)) (-5 *4 (-642 *10)) (-5 *5 (-642 *8)) (-5 *6 (-642 (-769))) (-5 *7 (-1262 (-642 (-1169 *8)))) (-4 *10 (-848)) (-4 *8 (-307)) (-4 *11 (-947 *8 *9 *10)) (-4 *9 (-791)) (-5 *1 (-705 *9 *10 *8 *11))))) -(-10 -7 (-15 -3896 ((-3 (-642 (-1169 |#4|)) "failed") (-1169 |#4|) (-642 |#2|) (-642 |#3|) (-642 (-769)) (-642 (-1169 |#4|)) (-1262 (-642 (-1169 |#3|))) |#3|)) (-15 -1946 ((-3 (-642 (-1169 |#4|)) "failed") (-1169 |#4|) (-642 |#2|) (-642 (-1169 |#3|)) (-642 |#3|) (-642 |#4|) (-642 (-769)) |#3|)) (-15 -1703 ((-3 (-642 (-1169 |#4|)) "failed") (-1169 |#4|) (-642 |#2|) (-642 (-1169 |#4|)) (-642 |#3|) (-642 |#4|) (-642 (-642 (-2 (|:| -3636 (-769)) (|:| |pcoef| |#4|)))) (-642 (-769)) (-1262 (-642 (-1169 |#3|))) |#3|))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-3085 (((-3 $ "failed") $ $) 20)) (-2822 (($) 18 T CONST)) (-3459 (($ $) 48)) (-2675 (((-3 $ "failed") $) 37)) (-3163 (((-112) $) 35)) (-2374 (($ |#1| (-769)) 46)) (-2887 (((-769) $) 50)) (-2523 ((|#1| $) 49)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-3252 (((-769) $) 51)) (-2390 (((-860) $) 12) (($ (-564)) 33) (($ |#1|) 45 (|has| |#1| (-172)))) (-3005 ((|#1| $ (-769)) 47)) (-3348 (((-769)) 32 T CONST)) (-1600 (((-112) $ $) 9)) (-2361 (($) 19 T CONST)) (-2371 (($) 34 T CONST)) (-2821 (((-112) $ $) 6)) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ |#1|) 53) (($ |#1| $) 52))) -(((-706 |#1|) (-140) (-1047)) (T -706)) -((-3252 (*1 *2 *1) (-12 (-4 *1 (-706 *3)) (-4 *3 (-1047)) (-5 *2 (-769)))) (-2887 (*1 *2 *1) (-12 (-4 *1 (-706 *3)) (-4 *3 (-1047)) (-5 *2 (-769)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-706 *2)) (-4 *2 (-1047)))) (-3459 (*1 *1 *1) (-12 (-4 *1 (-706 *2)) (-4 *2 (-1047)))) (-3005 (*1 *2 *1 *3) (-12 (-5 *3 (-769)) (-4 *1 (-706 *2)) (-4 *2 (-1047)))) (-2374 (*1 *1 *2 *3) (-12 (-5 *3 (-769)) (-4 *1 (-706 *2)) (-4 *2 (-1047))))) -(-13 (-1047) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -3252 ((-769) $)) (-15 -2887 ((-769) $)) (-15 -2523 (|t#1| $)) (-15 -3459 ($ $)) (-15 -3005 (|t#1| $ (-769))) (-15 -2374 ($ |t#1| (-769))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-611 (-860)) . T) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-638 |#1|) |has| |#1| (-172)) ((-715 |#1|) |has| |#1| (-172)) ((-724) . T) ((-1049 |#1|) . T) ((-1054 |#1|) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T)) -((-2947 ((|#6| (-1 |#4| |#1|) |#3|) 23))) -(((-707 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2947 (|#6| (-1 |#4| |#1|) |#3|))) (-556) (-1238 |#1|) (-1238 (-407 |#2|)) (-556) (-1238 |#4|) (-1238 (-407 |#5|))) (T -707)) -((-2947 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-556)) (-4 *7 (-556)) (-4 *6 (-1238 *5)) (-4 *2 (-1238 (-407 *8))) (-5 *1 (-707 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1238 (-407 *6))) (-4 *8 (-1238 *7))))) -(-10 -7 (-15 -2947 (|#6| (-1 |#4| |#1|) |#3|))) -((-2856 (((-112) $ $) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2526 (((-1155) (-860)) 39)) (-1639 (((-1267) (-1155)) 32)) (-2580 (((-1155) (-860)) 28)) (-1903 (((-1155) (-860)) 29)) (-2390 (((-860) $) NIL) (((-1155) (-860)) 27)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-708) (-13 (-1097) (-10 -7 (-15 -2390 ((-1155) (-860))) (-15 -2580 ((-1155) (-860))) (-15 -1903 ((-1155) (-860))) (-15 -2526 ((-1155) (-860))) (-15 -1639 ((-1267) (-1155)))))) (T -708)) -((-2390 (*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1155)) (-5 *1 (-708)))) (-2580 (*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1155)) (-5 *1 (-708)))) (-1903 (*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1155)) (-5 *1 (-708)))) (-2526 (*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1155)) (-5 *1 (-708)))) (-1639 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-708))))) -(-13 (-1097) (-10 -7 (-15 -2390 ((-1155) (-860))) (-15 -2580 ((-1155) (-860))) (-15 -1903 ((-1155) (-860))) (-15 -2526 ((-1155) (-860))) (-15 -1639 ((-1267) (-1155))))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-4252 (($ $) NIL)) (-1722 (((-112) $) NIL)) (-3085 (((-3 $ "failed") $ $) NIL)) (-1993 (($ $) NIL)) (-3282 (((-418 $) $) NIL)) (-2134 (((-112) $ $) NIL)) (-2822 (($) NIL T CONST)) (-2796 (($ $ $) NIL)) (-3741 (($ |#1| |#2|) NIL)) (-2675 (((-3 $ "failed") $) NIL)) (-2808 (($ $ $) NIL)) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) NIL)) (-3552 (((-112) $) NIL)) (-3163 (((-112) $) NIL)) (-2709 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-1380 ((|#2| $) NIL)) (-2066 (($ $ $) NIL) (($ (-642 $)) NIL)) (-1778 (((-1155) $) NIL)) (-2481 (($ $) NIL)) (-3999 (((-1117) $) NIL)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2105 (($ $ $) NIL) (($ (-642 $)) NIL)) (-2254 (((-418 $) $) NIL)) (-1877 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2842 (((-3 $ "failed") $ $) NIL)) (-1483 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-3381 (((-3 $ "failed") $ $) NIL)) (-4274 (((-769) $) NIL)) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL)) (-2390 (((-860) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) ((|#1| $) NIL)) (-3348 (((-769)) NIL T CONST)) (-1600 (((-112) $ $) NIL)) (-1594 (((-112) $ $) NIL)) (-2361 (($) NIL T CONST)) (-2371 (($) NIL T CONST)) (-2821 (((-112) $ $) NIL)) (-2943 (($ $ $) NIL)) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL))) -(((-709 |#1| |#2| |#3| |#4| |#5|) (-13 (-363) (-10 -8 (-15 -1380 (|#2| $)) (-15 -2390 (|#1| $)) (-15 -3741 ($ |#1| |#2|)) (-15 -3381 ((-3 $ "failed") $ $)))) (-172) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -709)) -((-1380 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-709 *3 *2 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2390 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-709 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3741 (*1 *1 *2 *3) (-12 (-5 *1 (-709 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3381 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-709 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(-13 (-363) (-10 -8 (-15 -1380 (|#2| $)) (-15 -2390 (|#1| $)) (-15 -3741 ($ |#1| |#2|)) (-15 -3381 ((-3 $ "failed") $ $)))) -((-2856 (((-112) $ $) 92)) (-2950 (((-112) $) 36)) (-4020 (((-1262 |#1|) $ (-769)) NIL)) (-2397 (((-642 (-1079)) $) NIL)) (-2865 (($ (-1169 |#1|)) NIL)) (-2223 (((-1169 $) $ (-1079)) NIL) (((-1169 |#1|) $) NIL)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-4252 (($ $) NIL (|has| |#1| (-556)))) (-1722 (((-112) $) NIL (|has| |#1| (-556)))) (-4035 (((-769) $) NIL) (((-769) $ (-642 (-1079))) NIL)) (-3085 (((-3 $ "failed") $ $) NIL)) (-2106 (($ $ $) NIL (|has| |#1| (-556)))) (-4297 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-1993 (($ $) NIL (|has| |#1| (-452)))) (-3282 (((-418 $) $) NIL (|has| |#1| (-452)))) (-3267 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-2134 (((-112) $ $) NIL (|has| |#1| (-363)))) (-4003 (((-769)) 56 (|has| |#1| (-368)))) (-3254 (($ $ (-769)) NIL)) (-3457 (($ $ (-769)) NIL)) (-2036 ((|#2| |#2|) 52)) (-2161 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-452)))) (-2822 (($) NIL T CONST)) (-2849 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1036 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1036 (-564)))) (((-3 (-1079) "failed") $) NIL)) (-1687 ((|#1| $) NIL) (((-407 (-564)) $) NIL (|has| |#1| (-1036 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1036 (-564)))) (((-1079) $) NIL)) (-3710 (($ $ $ (-1079)) NIL (|has| |#1| (-172))) ((|#1| $ $) NIL (|has| |#1| (-172)))) (-2796 (($ $ $) NIL (|has| |#1| (-363)))) (-3459 (($ $) 40)) (-3330 (((-687 (-564)) (-687 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -3544 (-687 |#1|)) (|:| |vec| (-1262 |#1|))) (-687 $) (-1262 $)) NIL) (((-687 |#1|) (-687 $)) NIL)) (-3741 (($ |#2|) 50)) (-2675 (((-3 $ "failed") $) 102)) (-3235 (($) 61 (|has| |#1| (-368)))) (-2808 (($ $ $) NIL (|has| |#1| (-363)))) (-2888 (($ $ $) NIL)) (-2553 (($ $ $) NIL (|has| |#1| (-556)))) (-1555 (((-2 (|:| -2968 |#1|) (|:| -4332 $) (|:| -1992 $)) $ $) NIL (|has| |#1| (-556)))) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) NIL (|has| |#1| (-363)))) (-2511 (($ $) NIL (|has| |#1| (-452))) (($ $ (-1079)) NIL (|has| |#1| (-452)))) (-3446 (((-642 $) $) NIL)) (-3552 (((-112) $) NIL (|has| |#1| (-907)))) (-3660 (((-956 $)) 94)) (-2315 (($ $ |#1| (-769) $) NIL)) (-1381 (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) NIL (-12 (|has| (-1079) (-884 (-379))) (|has| |#1| (-884 (-379))))) (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) NIL (-12 (|has| (-1079) (-884 (-564))) (|has| |#1| (-884 (-564)))))) (-2408 (((-769) $ $) NIL (|has| |#1| (-556)))) (-3163 (((-112) $) NIL)) (-1904 (((-769) $) NIL)) (-4382 (((-3 $ "failed") $) NIL (|has| |#1| (-1148)))) (-2387 (($ (-1169 |#1|) (-1079)) NIL) (($ (-1169 $) (-1079)) NIL)) (-2157 (($ $ (-769)) NIL)) (-2709 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#1| (-363)))) (-1995 (((-642 $) $) NIL)) (-3471 (((-112) $) NIL)) (-2374 (($ |#1| (-769)) 88) (($ $ (-1079) (-769)) NIL) (($ $ (-642 (-1079)) (-642 (-769))) NIL)) (-3312 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $ (-1079)) NIL) (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL)) (-1380 ((|#2|) 53)) (-2887 (((-769) $) NIL) (((-769) $ (-1079)) NIL) (((-642 (-769)) $ (-642 (-1079))) NIL)) (-3879 (($ (-1 (-769) (-769)) $) NIL)) (-2947 (($ (-1 |#1| |#1|) $) NIL)) (-1864 (((-1169 |#1|) $) NIL)) (-1557 (((-3 (-1079) "failed") $) NIL)) (-2535 (((-919) $) NIL (|has| |#1| (-368)))) (-3730 ((|#2| $) 49)) (-2510 (($ $) NIL)) (-2523 ((|#1| $) 34)) (-2066 (($ (-642 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-1778 (((-1155) $) NIL)) (-1930 (((-2 (|:| -4332 $) (|:| -1992 $)) $ (-769)) NIL)) (-3664 (((-3 (-642 $) "failed") $) NIL)) (-4315 (((-3 (-642 $) "failed") $) NIL)) (-3177 (((-3 (-2 (|:| |var| (-1079)) (|:| -2817 (-769))) "failed") $) NIL)) (-3703 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3910 (($) NIL (|has| |#1| (-1148)) CONST)) (-2065 (($ (-919)) NIL (|has| |#1| (-368)))) (-3999 (((-1117) $) NIL)) (-2491 (((-112) $) NIL)) (-2500 ((|#1| $) NIL)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) NIL (|has| |#1| (-452)))) (-2105 (($ (-642 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-2532 (($ $) 93 (|has| |#1| (-349)))) (-3223 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-2236 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-2254 (((-418 $) $) NIL (|has| |#1| (-907)))) (-1877 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL (|has| |#1| (-363)))) (-2842 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) 101 (|has| |#1| (-556)))) (-1483 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#1| (-363)))) (-3154 (($ $ (-642 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-642 $) (-642 $)) NIL) (($ $ (-1079) |#1|) NIL) (($ $ (-642 (-1079)) (-642 |#1|)) NIL) (($ $ (-1079) $) NIL) (($ $ (-642 (-1079)) (-642 $)) NIL)) (-4274 (((-769) $) NIL (|has| |#1| (-363)))) (-4369 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-407 $) (-407 $) (-407 $)) NIL (|has| |#1| (-556))) ((|#1| (-407 $) |#1|) NIL (|has| |#1| (-363))) (((-407 $) $ (-407 $)) NIL (|has| |#1| (-556)))) (-3288 (((-3 $ "failed") $ (-769)) NIL)) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) 103 (|has| |#1| (-363)))) (-2790 (($ $ (-1079)) NIL (|has| |#1| (-172))) ((|#1| $) NIL (|has| |#1| (-172)))) (-2199 (($ $ (-1079)) NIL) (($ $ (-642 (-1079))) NIL) (($ $ (-1079) (-769)) NIL) (($ $ (-642 (-1079)) (-642 (-769))) NIL) (($ $ (-769)) NIL) (($ $) NIL) (($ $ (-1173)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1 |#1| |#1|) (-769)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3252 (((-769) $) 38) (((-769) $ (-1079)) NIL) (((-642 (-769)) $ (-642 (-1079))) NIL)) (-3003 (((-890 (-379)) $) NIL (-12 (|has| (-1079) (-612 (-890 (-379)))) (|has| |#1| (-612 (-890 (-379)))))) (((-890 (-564)) $) NIL (-12 (|has| (-1079) (-612 (-890 (-564)))) (|has| |#1| (-612 (-890 (-564)))))) (((-536) $) NIL (-12 (|has| (-1079) (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-4325 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ (-1079)) NIL (|has| |#1| (-452)))) (-3556 (((-3 (-1262 $) "failed") (-687 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-907))))) (-1307 (((-956 $)) 42)) (-4281 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556))) (((-3 (-407 $) "failed") (-407 $) $) NIL (|has| |#1| (-556)))) (-2390 (((-860) $) 71) (($ (-564)) NIL) (($ |#1|) 68) (($ (-1079)) NIL) (($ |#2|) 78) (($ (-407 (-564))) NIL (-2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1036 (-407 (-564)))))) (($ $) NIL (|has| |#1| (-556)))) (-2839 (((-642 |#1|) $) NIL)) (-3005 ((|#1| $ (-769)) 73) (($ $ (-1079) (-769)) NIL) (($ $ (-642 (-1079)) (-642 (-769))) NIL)) (-3434 (((-3 $ "failed") $) NIL (-2682 (-12 (|has| $ (-145)) (|has| |#1| (-907))) (|has| |#1| (-145))))) (-3348 (((-769)) NIL T CONST)) (-2645 (($ $ $ (-769)) NIL (|has| |#1| (-172)))) (-1600 (((-112) $ $) NIL)) (-1594 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2361 (($) 25 T CONST)) (-1828 (((-1262 |#1|) $) 86)) (-3358 (($ (-1262 |#1|)) 60)) (-2371 (($) 8 T CONST)) (-2711 (($ $ (-1079)) NIL) (($ $ (-642 (-1079))) NIL) (($ $ (-1079) (-769)) NIL) (($ $ (-642 (-1079)) (-642 (-769))) NIL) (($ $ (-769)) NIL) (($ $) NIL) (($ $ (-1173)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1 |#1| |#1|) (-769)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2806 (((-1262 |#1|) $) NIL)) (-2821 (((-112) $ $) 79)) (-2943 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-2930 (($ $) 82) (($ $ $) NIL)) (-2917 (($ $ $) 39)) (** (($ $ (-919)) NIL) (($ $ (-769)) 97)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 67) (($ $ $) 85) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 65) (($ $ |#1|) NIL))) -(((-710 |#1| |#2|) (-13 (-1238 |#1|) (-614 |#2|) (-10 -8 (-15 -2036 (|#2| |#2|)) (-15 -1380 (|#2|)) (-15 -3741 ($ |#2|)) (-15 -3730 (|#2| $)) (-15 -1828 ((-1262 |#1|) $)) (-15 -3358 ($ (-1262 |#1|))) (-15 -2806 ((-1262 |#1|) $)) (-15 -3660 ((-956 $))) (-15 -1307 ((-956 $))) (IF (|has| |#1| (-349)) (-15 -2532 ($ $)) |%noBranch|) (IF (|has| |#1| (-368)) (-6 (-368)) |%noBranch|))) (-1047) (-1238 |#1|)) (T -710)) -((-2036 (*1 *2 *2) (-12 (-4 *3 (-1047)) (-5 *1 (-710 *3 *2)) (-4 *2 (-1238 *3)))) (-1380 (*1 *2) (-12 (-4 *2 (-1238 *3)) (-5 *1 (-710 *3 *2)) (-4 *3 (-1047)))) (-3741 (*1 *1 *2) (-12 (-4 *3 (-1047)) (-5 *1 (-710 *3 *2)) (-4 *2 (-1238 *3)))) (-3730 (*1 *2 *1) (-12 (-4 *2 (-1238 *3)) (-5 *1 (-710 *3 *2)) (-4 *3 (-1047)))) (-1828 (*1 *2 *1) (-12 (-4 *3 (-1047)) (-5 *2 (-1262 *3)) (-5 *1 (-710 *3 *4)) (-4 *4 (-1238 *3)))) (-3358 (*1 *1 *2) (-12 (-5 *2 (-1262 *3)) (-4 *3 (-1047)) (-5 *1 (-710 *3 *4)) (-4 *4 (-1238 *3)))) (-2806 (*1 *2 *1) (-12 (-4 *3 (-1047)) (-5 *2 (-1262 *3)) (-5 *1 (-710 *3 *4)) (-4 *4 (-1238 *3)))) (-3660 (*1 *2) (-12 (-4 *3 (-1047)) (-5 *2 (-956 (-710 *3 *4))) (-5 *1 (-710 *3 *4)) (-4 *4 (-1238 *3)))) (-1307 (*1 *2) (-12 (-4 *3 (-1047)) (-5 *2 (-956 (-710 *3 *4))) (-5 *1 (-710 *3 *4)) (-4 *4 (-1238 *3)))) (-2532 (*1 *1 *1) (-12 (-4 *2 (-349)) (-4 *2 (-1047)) (-5 *1 (-710 *2 *3)) (-4 *3 (-1238 *2))))) -(-13 (-1238 |#1|) (-614 |#2|) (-10 -8 (-15 -2036 (|#2| |#2|)) (-15 -1380 (|#2|)) (-15 -3741 ($ |#2|)) (-15 -3730 (|#2| $)) (-15 -1828 ((-1262 |#1|) $)) (-15 -3358 ($ (-1262 |#1|))) (-15 -2806 ((-1262 |#1|) $)) (-15 -3660 ((-956 $))) (-15 -1307 ((-956 $))) (IF (|has| |#1| (-349)) (-15 -2532 ($ $)) |%noBranch|) (IF (|has| |#1| (-368)) (-6 (-368)) |%noBranch|))) -((-2856 (((-112) $ $) NIL)) (-3225 (($ $ $) NIL)) (-2903 (($ $ $) NIL)) (-1778 (((-1155) $) NIL)) (-2065 ((|#1| $) 13)) (-3999 (((-1117) $) NIL)) (-2817 ((|#2| $) 12)) (-2401 (($ |#1| |#2|) 16)) (-2390 (((-860) $) NIL) (($ (-2 (|:| -2065 |#1|) (|:| -2817 |#2|))) 15) (((-2 (|:| -2065 |#1|) (|:| -2817 |#2|)) $) 14)) (-1600 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL)) (-2857 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL)) (-2868 (((-112) $ $) NIL)) (-2844 (((-112) $ $) 11))) -(((-711 |#1| |#2| |#3|) (-13 (-848) (-490 (-2 (|:| -2065 |#1|) (|:| -2817 |#2|))) (-10 -8 (-15 -2817 (|#2| $)) (-15 -2065 (|#1| $)) (-15 -2401 ($ |#1| |#2|)))) (-848) (-1097) (-1 (-112) (-2 (|:| -2065 |#1|) (|:| -2817 |#2|)) (-2 (|:| -2065 |#1|) (|:| -2817 |#2|)))) (T -711)) -((-2817 (*1 *2 *1) (-12 (-4 *2 (-1097)) (-5 *1 (-711 *3 *2 *4)) (-4 *3 (-848)) (-14 *4 (-1 (-112) (-2 (|:| -2065 *3) (|:| -2817 *2)) (-2 (|:| -2065 *3) (|:| -2817 *2)))))) (-2065 (*1 *2 *1) (-12 (-4 *2 (-848)) (-5 *1 (-711 *2 *3 *4)) (-4 *3 (-1097)) (-14 *4 (-1 (-112) (-2 (|:| -2065 *2) (|:| -2817 *3)) (-2 (|:| -2065 *2) (|:| -2817 *3)))))) (-2401 (*1 *1 *2 *3) (-12 (-5 *1 (-711 *2 *3 *4)) (-4 *2 (-848)) (-4 *3 (-1097)) (-14 *4 (-1 (-112) (-2 (|:| -2065 *2) (|:| -2817 *3)) (-2 (|:| -2065 *2) (|:| -2817 *3))))))) -(-13 (-848) (-490 (-2 (|:| -2065 |#1|) (|:| -2817 |#2|))) (-10 -8 (-15 -2817 (|#2| $)) (-15 -2065 (|#1| $)) (-15 -2401 ($ |#1| |#2|)))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) 66)) (-3085 (((-3 $ "failed") $ $) NIL)) (-2822 (($) NIL T CONST)) (-2849 (((-3 |#1| "failed") $) 105) (((-3 (-114) "failed") $) 111)) (-1687 ((|#1| $) NIL) (((-114) $) 39)) (-2675 (((-3 $ "failed") $) 106)) (-2151 ((|#2| (-114) |#2|) 93)) (-3163 (((-112) $) NIL)) (-2054 (($ |#1| (-361 (-114))) 14)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2601 (($ $ (-1 |#2| |#2|)) 65)) (-3549 (($ $ (-1 |#2| |#2|)) 44)) (-4369 ((|#2| $ |#2|) 33)) (-3709 ((|#1| |#1|) 121 (|has| |#1| (-172)))) (-2390 (((-860) $) 73) (($ (-564)) 18) (($ |#1|) 17) (($ (-114)) 23)) (-3434 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3348 (((-769)) 37 T CONST)) (-1600 (((-112) $ $) NIL)) (-2594 (($ $) 115 (|has| |#1| (-172))) (($ $ $) 119 (|has| |#1| (-172)))) (-2361 (($) 21 T CONST)) (-2371 (($) 9 T CONST)) (-2821 (((-112) $ $) NIL)) (-2930 (($ $) 48) (($ $ $) NIL)) (-2917 (($ $ $) 83)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ (-114) (-564)) NIL) (($ $ (-564)) 64)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 114) (($ $ $) 53) (($ |#1| $) 112 (|has| |#1| (-172))) (($ $ |#1|) 113 (|has| |#1| (-172))))) -(((-712 |#1| |#2|) (-13 (-1047) (-1036 |#1|) (-1036 (-114)) (-286 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -2594 ($ $)) (-15 -2594 ($ $ $)) (-15 -3709 (|#1| |#1|))) |%noBranch|) (-15 -3549 ($ $ (-1 |#2| |#2|))) (-15 -2601 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-564))) (-15 ** ($ $ (-564))) (-15 -2151 (|#2| (-114) |#2|)) (-15 -2054 ($ |#1| (-361 (-114)))))) (-1047) (-646 |#1|)) (T -712)) -((-2594 (*1 *1 *1) (-12 (-4 *2 (-172)) (-4 *2 (-1047)) (-5 *1 (-712 *2 *3)) (-4 *3 (-646 *2)))) (-2594 (*1 *1 *1 *1) (-12 (-4 *2 (-172)) (-4 *2 (-1047)) (-5 *1 (-712 *2 *3)) (-4 *3 (-646 *2)))) (-3709 (*1 *2 *2) (-12 (-4 *2 (-172)) (-4 *2 (-1047)) (-5 *1 (-712 *2 *3)) (-4 *3 (-646 *2)))) (-3549 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-646 *3)) (-4 *3 (-1047)) (-5 *1 (-712 *3 *4)))) (-2601 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-646 *3)) (-4 *3 (-1047)) (-5 *1 (-712 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-564)) (-4 *4 (-1047)) (-5 *1 (-712 *4 *5)) (-4 *5 (-646 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *3 (-1047)) (-5 *1 (-712 *3 *4)) (-4 *4 (-646 *3)))) (-2151 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-4 *4 (-1047)) (-5 *1 (-712 *4 *2)) (-4 *2 (-646 *4)))) (-2054 (*1 *1 *2 *3) (-12 (-5 *3 (-361 (-114))) (-4 *2 (-1047)) (-5 *1 (-712 *2 *4)) (-4 *4 (-646 *2))))) -(-13 (-1047) (-1036 |#1|) (-1036 (-114)) (-286 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -2594 ($ $)) (-15 -2594 ($ $ $)) (-15 -3709 (|#1| |#1|))) |%noBranch|) (-15 -3549 ($ $ (-1 |#2| |#2|))) (-15 -2601 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-564))) (-15 ** ($ $ (-564))) (-15 -2151 (|#2| (-114) |#2|)) (-15 -2054 ($ |#1| (-361 (-114)))))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) 33)) (-3085 (((-3 $ "failed") $ $) NIL)) (-2822 (($) NIL T CONST)) (-3741 (($ |#1| |#2|) 25)) (-2675 (((-3 $ "failed") $) 51)) (-3163 (((-112) $) 35)) (-1380 ((|#2| $) 12)) (-1778 (((-1155) $) NIL)) (-2481 (($ $) 52)) (-3999 (((-1117) $) NIL)) (-3381 (((-3 $ "failed") $ $) 50)) (-2390 (((-860) $) 24) (($ (-564)) 19) ((|#1| $) 13)) (-3348 (((-769)) 28 T CONST)) (-1600 (((-112) $ $) NIL)) (-2361 (($) 16 T CONST)) (-2371 (($) 30 T CONST)) (-2821 (((-112) $ $) 41)) (-2930 (($ $) 46) (($ $ $) 40)) (-2917 (($ $ $) 43)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 21) (($ $ $) 20))) -(((-713 |#1| |#2| |#3| |#4| |#5|) (-13 (-1047) (-10 -8 (-15 -1380 (|#2| $)) (-15 -2390 (|#1| $)) (-15 -3741 ($ |#1| |#2|)) (-15 -3381 ((-3 $ "failed") $ $)) (-15 -2675 ((-3 $ "failed") $)) (-15 -2481 ($ $)))) (-172) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -713)) -((-2675 (*1 *1 *1) (|partial| -12 (-5 *1 (-713 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1380 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-713 *3 *2 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2390 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-713 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3741 (*1 *1 *2 *3) (-12 (-5 *1 (-713 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3381 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-713 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2481 (*1 *1 *1) (-12 (-5 *1 (-713 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(-13 (-1047) (-10 -8 (-15 -1380 (|#2| $)) (-15 -2390 (|#1| $)) (-15 -3741 ($ |#1| |#2|)) (-15 -3381 ((-3 $ "failed") $ $)) (-15 -2675 ((-3 $ "failed") $)) (-15 -2481 ($ $)))) -((* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) -(((-714 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-769) |#1|)) (-15 * (|#1| (-919) |#1|))) (-715 |#2|) (-172)) (T -714)) -NIL -(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-769) |#1|)) (-15 * (|#1| (-919) |#1|))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-3085 (((-3 $ "failed") $ $) 20)) (-2822 (($) 18 T CONST)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2390 (((-860) $) 12)) (-1600 (((-112) $ $) 9)) (-2361 (($) 19 T CONST)) (-2821 (((-112) $ $) 6)) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) -(((-715 |#1|) (-140) (-172)) (T -715)) -NIL -(-13 (-111 |t#1| |t#1|) (-638 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-611 (-860)) . T) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-646 |#1|) . T) ((-638 |#1|) . T) ((-1049 |#1|) . T) ((-1054 |#1|) . T) ((-1097) . T)) -((-2856 (((-112) $ $) NIL)) (-2966 (($ |#1|) 17) (($ $ |#1|) 20)) (-1531 (($ |#1|) 18) (($ $ |#1|) 21)) (-2822 (($) NIL T CONST)) (-2675 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-3163 (((-112) $) NIL)) (-3180 (($ |#1| |#1| |#1| |#1|) 8)) (-1778 (((-1155) $) NIL)) (-2481 (($ $) 16)) (-3999 (((-1117) $) NIL)) (-3154 ((|#1| $ |#1|) 24) (((-831 |#1|) $ (-831 |#1|)) 32)) (-1736 (($ $ $) NIL)) (-2402 (($ $ $) NIL)) (-2390 (((-860) $) 39)) (-1600 (((-112) $ $) NIL)) (-2371 (($) 9 T CONST)) (-2821 (((-112) $ $) 48)) (-2943 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL)) (* (($ $ $) 14))) -(((-716 |#1|) (-13 (-473) (-10 -8 (-15 -3180 ($ |#1| |#1| |#1| |#1|)) (-15 -2966 ($ |#1|)) (-15 -1531 ($ |#1|)) (-15 -2675 ($)) (-15 -2966 ($ $ |#1|)) (-15 -1531 ($ $ |#1|)) (-15 -2675 ($ $)) (-15 -3154 (|#1| $ |#1|)) (-15 -3154 ((-831 |#1|) $ (-831 |#1|))))) (-363)) (T -716)) -((-3180 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-716 *2)) (-4 *2 (-363)))) (-2966 (*1 *1 *2) (-12 (-5 *1 (-716 *2)) (-4 *2 (-363)))) (-1531 (*1 *1 *2) (-12 (-5 *1 (-716 *2)) (-4 *2 (-363)))) (-2675 (*1 *1) (-12 (-5 *1 (-716 *2)) (-4 *2 (-363)))) (-2966 (*1 *1 *1 *2) (-12 (-5 *1 (-716 *2)) (-4 *2 (-363)))) (-1531 (*1 *1 *1 *2) (-12 (-5 *1 (-716 *2)) (-4 *2 (-363)))) (-2675 (*1 *1 *1) (-12 (-5 *1 (-716 *2)) (-4 *2 (-363)))) (-3154 (*1 *2 *1 *2) (-12 (-5 *1 (-716 *2)) (-4 *2 (-363)))) (-3154 (*1 *2 *1 *2) (-12 (-5 *2 (-831 *3)) (-4 *3 (-363)) (-5 *1 (-716 *3))))) -(-13 (-473) (-10 -8 (-15 -3180 ($ |#1| |#1| |#1| |#1|)) (-15 -2966 ($ |#1|)) (-15 -1531 ($ |#1|)) (-15 -2675 ($)) (-15 -2966 ($ $ |#1|)) (-15 -1531 ($ $ |#1|)) (-15 -2675 ($ $)) (-15 -3154 (|#1| $ |#1|)) (-15 -3154 ((-831 |#1|) $ (-831 |#1|))))) -((-3952 (($ $ (-919)) 21)) (-4204 (($ $ (-919)) 22)) (** (($ $ (-919)) 10))) -(((-717 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-919))) (-15 -4204 (|#1| |#1| (-919))) (-15 -3952 (|#1| |#1| (-919)))) (-718)) (T -717)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-919))) (-15 -4204 (|#1| |#1| (-919))) (-15 -3952 (|#1| |#1| (-919)))) -((-2856 (((-112) $ $) 7)) (-3952 (($ $ (-919)) 16)) (-4204 (($ $ (-919)) 15)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2390 (((-860) $) 12)) (-1600 (((-112) $ $) 9)) (-2821 (((-112) $ $) 6)) (** (($ $ (-919)) 14)) (* (($ $ $) 17))) -(((-718) (-140)) (T -718)) -((* (*1 *1 *1 *1) (-4 *1 (-718))) (-3952 (*1 *1 *1 *2) (-12 (-4 *1 (-718)) (-5 *2 (-919)))) (-4204 (*1 *1 *1 *2) (-12 (-4 *1 (-718)) (-5 *2 (-919)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-718)) (-5 *2 (-919))))) -(-13 (-1097) (-10 -8 (-15 * ($ $ $)) (-15 -3952 ($ $ (-919))) (-15 -4204 ($ $ (-919))) (-15 ** ($ $ (-919))))) -(((-102) . T) ((-611 (-860)) . T) ((-1097) . T)) -((-3952 (($ $ (-919)) NIL) (($ $ (-769)) 21)) (-3163 (((-112) $) 10)) (-4204 (($ $ (-919)) NIL) (($ $ (-769)) 22)) (** (($ $ (-919)) NIL) (($ $ (-769)) 16))) -(((-719 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-769))) (-15 -4204 (|#1| |#1| (-769))) (-15 -3952 (|#1| |#1| (-769))) (-15 -3163 ((-112) |#1|)) (-15 ** (|#1| |#1| (-919))) (-15 -4204 (|#1| |#1| (-919))) (-15 -3952 (|#1| |#1| (-919)))) (-720)) (T -719)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-769))) (-15 -4204 (|#1| |#1| (-769))) (-15 -3952 (|#1| |#1| (-769))) (-15 -3163 ((-112) |#1|)) (-15 ** (|#1| |#1| (-919))) (-15 -4204 (|#1| |#1| (-919))) (-15 -3952 (|#1| |#1| (-919)))) -((-2856 (((-112) $ $) 7)) (-3420 (((-3 $ "failed") $) 18)) (-3952 (($ $ (-919)) 16) (($ $ (-769)) 23)) (-2675 (((-3 $ "failed") $) 20)) (-3163 (((-112) $) 24)) (-1339 (((-3 $ "failed") $) 19)) (-4204 (($ $ (-919)) 15) (($ $ (-769)) 22)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2390 (((-860) $) 12)) (-1600 (((-112) $ $) 9)) (-2371 (($) 25 T CONST)) (-2821 (((-112) $ $) 6)) (** (($ $ (-919)) 14) (($ $ (-769)) 21)) (* (($ $ $) 17))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) 15)) (-3174 (((-3 $ "failed") $ $) NIL)) (-1811 (($) NIL T CONST)) (-4157 ((|#1| $) 23)) (-1920 (($ $ $) NIL (|has| |#1| (-791)))) (-3038 (($ $ $) NIL (|has| |#1| (-791)))) (-3151 (((-1157) $) 48)) (-4059 (((-1119) $) NIL)) (-4167 ((|#3| $) 24)) (-2479 (((-862) $) 43)) (-3900 (((-112) $ $) 22)) (-2446 (($) 10 T CONST)) (-3019 (((-112) $ $) NIL (|has| |#1| (-791)))) (-2990 (((-112) $ $) NIL (|has| |#1| (-791)))) (-2952 (((-112) $ $) 20)) (-3004 (((-112) $ $) NIL (|has| |#1| (-791)))) (-2977 (((-112) $ $) 26 (|has| |#1| (-791)))) (-3077 (($ $ |#3|) 36) (($ |#1| |#3|) 37)) (-3065 (($ $) 17) (($ $ $) NIL)) (-3052 (($ $ $) 29)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 32) (($ |#2| $) 34) (($ $ |#2|) NIL))) +(((-662 |#1| |#2| |#3|) (-13 (-717 |#2|) (-10 -8 (IF (|has| |#1| (-791)) (-6 (-791)) |%noBranch|) (-15 -3077 ($ $ |#3|)) (-15 -3077 ($ |#1| |#3|)) (-15 -4157 (|#1| $)) (-15 -4167 (|#3| $)))) (-717 |#2|) (-172) (|SubsetCategory| (-726) |#2|)) (T -662)) +((-3077 (*1 *1 *1 *2) (-12 (-4 *4 (-172)) (-5 *1 (-662 *3 *4 *2)) (-4 *3 (-717 *4)) (-4 *2 (|SubsetCategory| (-726) *4)))) (-3077 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-662 *2 *4 *3)) (-4 *2 (-717 *4)) (-4 *3 (|SubsetCategory| (-726) *4)))) (-4157 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-717 *3)) (-5 *1 (-662 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-726) *3)))) (-4167 (*1 *2 *1) (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-726) *4)) (-5 *1 (-662 *3 *4 *2)) (-4 *3 (-717 *4))))) +(-13 (-717 |#2|) (-10 -8 (IF (|has| |#1| (-791)) (-6 (-791)) |%noBranch|) (-15 -3077 ($ $ |#3|)) (-15 -3077 ($ |#1| |#3|)) (-15 -4157 (|#1| $)) (-15 -4167 (|#3| $)))) +((-3202 (((-3 (-644 (-1171 |#1|)) "failed") (-644 (-1171 |#1|)) (-1171 |#1|)) 33))) +(((-663 |#1|) (-10 -7 (-15 -3202 ((-3 (-644 (-1171 |#1|)) "failed") (-644 (-1171 |#1|)) (-1171 |#1|)))) (-909)) (T -663)) +((-3202 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-644 (-1171 *4))) (-5 *3 (-1171 *4)) (-4 *4 (-909)) (-5 *1 (-663 *4))))) +(-10 -7 (-15 -3202 ((-3 (-644 (-1171 |#1|)) "failed") (-644 (-1171 |#1|)) (-1171 |#1|)))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-1656 (((-644 |#1|) $) 84)) (-3475 (($ $ (-771)) 94)) (-3174 (((-3 $ "failed") $ $) NIL)) (-1811 (($) NIL T CONST)) (-3506 (((-1288 |#1| |#2|) (-1288 |#1| |#2|) $) 50)) (-2980 (((-3 (-672 |#1|) "failed") $) NIL)) (-1709 (((-672 |#1|) $) NIL)) (-3565 (($ $) 93)) (-3486 (((-771) $) NIL)) (-1545 (((-644 $) $) NIL)) (-3989 (((-112) $) NIL)) (-1863 (($ (-672 |#1|) |#2|) 70)) (-3768 (($ $) 89)) (-3080 (($ (-1 |#2| |#2|) $) NIL)) (-4087 (((-1288 |#1| |#2|) (-1288 |#1| |#2|) $) 49)) (-4046 (((-2 (|:| |k| (-672 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2608 (((-672 |#1|) $) NIL)) (-2622 ((|#2| $) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-3297 (($ $ |#1| $) 32) (($ $ (-644 |#1|) (-644 $)) 34)) (-1630 (((-771) $) 91)) (-2489 (($ $ $) 20) (($ (-672 |#1|) (-672 |#1|)) 79) (($ (-672 |#1|) $) 77) (($ $ (-672 |#1|)) 78)) (-2479 (((-862) $) NIL) (($ |#1|) 76) (((-1279 |#1| |#2|) $) 60) (((-1288 |#1| |#2|) $) 43) (($ (-672 |#1|)) 27)) (-3866 (((-644 |#2|) $) NIL)) (-3025 ((|#2| $ (-672 |#1|)) NIL)) (-3103 ((|#2| (-1288 |#1| |#2|) $) 45)) (-3900 (((-112) $ $) NIL)) (-2446 (($) 23 T CONST)) (-3585 (((-644 (-2 (|:| |k| (-672 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1670 (((-3 $ "failed") (-1279 |#1| |#2|)) 62)) (-3180 (($ (-672 |#1|)) 14)) (-2952 (((-112) $ $) 46)) (-3077 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3065 (($ $) 68) (($ $ $) NIL)) (-3052 (($ $ $) 31)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ |#2| $) 30) (($ $ |#2|) NIL) (($ |#2| (-672 |#1|)) NIL))) +(((-664 |#1| |#2|) (-13 (-376 |#1| |#2|) (-384 |#2| (-672 |#1|)) (-10 -8 (-15 -1670 ((-3 $ "failed") (-1279 |#1| |#2|))) (-15 -2489 ($ (-672 |#1|) (-672 |#1|))) (-15 -2489 ($ (-672 |#1|) $)) (-15 -2489 ($ $ (-672 |#1|))))) (-850) (-172)) (T -664)) +((-1670 (*1 *1 *2) (|partial| -12 (-5 *2 (-1279 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)) (-5 *1 (-664 *3 *4)))) (-2489 (*1 *1 *2 *2) (-12 (-5 *2 (-672 *3)) (-4 *3 (-850)) (-5 *1 (-664 *3 *4)) (-4 *4 (-172)))) (-2489 (*1 *1 *2 *1) (-12 (-5 *2 (-672 *3)) (-4 *3 (-850)) (-5 *1 (-664 *3 *4)) (-4 *4 (-172)))) (-2489 (*1 *1 *1 *2) (-12 (-5 *2 (-672 *3)) (-4 *3 (-850)) (-5 *1 (-664 *3 *4)) (-4 *4 (-172))))) +(-13 (-376 |#1| |#2|) (-384 |#2| (-672 |#1|)) (-10 -8 (-15 -1670 ((-3 $ "failed") (-1279 |#1| |#2|))) (-15 -2489 ($ (-672 |#1|) (-672 |#1|))) (-15 -2489 ($ (-672 |#1|) $)) (-15 -2489 ($ $ (-672 |#1|))))) +((-4163 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 61)) (-2893 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-4364 (($ (-1 (-112) |#2|) $) 29)) (-2273 (($ $) 67)) (-1346 (($ $) 78)) (-2295 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 43)) (-1838 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 62) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 64)) (-4000 (((-566) |#2| $ (-566)) 75) (((-566) |#2| $) NIL) (((-566) (-1 (-112) |#2|) $) 56)) (-4259 (($ (-771) |#2|) 65)) (-3200 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 31)) (-1330 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-3080 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 66)) (-3960 (($ |#2|) 15)) (-4354 (($ $ $ (-566)) 42) (($ |#2| $ (-566)) 40)) (-2688 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 53)) (-3139 (($ $ (-1231 (-566))) 51) (($ $ (-566)) 44)) (-1438 (($ $ $ (-566)) 74)) (-3924 (($ $) 72)) (-2977 (((-112) $ $) 80))) +(((-665 |#1| |#2|) (-10 -8 (-15 -3960 (|#1| |#2|)) (-15 -3139 (|#1| |#1| (-566))) (-15 -3139 (|#1| |#1| (-1231 (-566)))) (-15 -2295 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4354 (|#1| |#2| |#1| (-566))) (-15 -4354 (|#1| |#1| |#1| (-566))) (-15 -3200 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4364 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2295 (|#1| |#2| |#1|)) (-15 -1346 (|#1| |#1|)) (-15 -3200 (|#1| |#1| |#1|)) (-15 -1330 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4163 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -4000 ((-566) (-1 (-112) |#2|) |#1|)) (-15 -4000 ((-566) |#2| |#1|)) (-15 -4000 ((-566) |#2| |#1| (-566))) (-15 -1330 (|#1| |#1| |#1|)) (-15 -4163 ((-112) |#1|)) (-15 -1438 (|#1| |#1| |#1| (-566))) (-15 -2273 (|#1| |#1|)) (-15 -2893 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2893 (|#1| |#1|)) (-15 -2977 ((-112) |#1| |#1|)) (-15 -1838 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1838 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1838 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2688 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4259 (|#1| (-771) |#2|)) (-15 -3080 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3080 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3924 (|#1| |#1|))) (-666 |#2|) (-1214)) (T -665)) +NIL +(-10 -8 (-15 -3960 (|#1| |#2|)) (-15 -3139 (|#1| |#1| (-566))) (-15 -3139 (|#1| |#1| (-1231 (-566)))) (-15 -2295 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4354 (|#1| |#2| |#1| (-566))) (-15 -4354 (|#1| |#1| |#1| (-566))) (-15 -3200 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4364 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2295 (|#1| |#2| |#1|)) (-15 -1346 (|#1| |#1|)) (-15 -3200 (|#1| |#1| |#1|)) (-15 -1330 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4163 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -4000 ((-566) (-1 (-112) |#2|) |#1|)) (-15 -4000 ((-566) |#2| |#1|)) (-15 -4000 ((-566) |#2| |#1| (-566))) (-15 -1330 (|#1| |#1| |#1|)) (-15 -4163 ((-112) |#1|)) (-15 -1438 (|#1| |#1| |#1| (-566))) (-15 -2273 (|#1| |#1|)) (-15 -2893 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2893 (|#1| |#1|)) (-15 -2977 ((-112) |#1| |#1|)) (-15 -1838 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1838 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1838 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2688 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4259 (|#1| (-771) |#2|)) (-15 -3080 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3080 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3924 (|#1| |#1|))) +((-2986 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2153 ((|#1| $) 49)) (-3673 ((|#1| $) 66)) (-3238 (($ $) 68)) (-2462 (((-1269) $ (-566) (-566)) 98 (|has| $ (-6 -4418)))) (-3427 (($ $ (-566)) 53 (|has| $ (-6 -4418)))) (-4163 (((-112) $) 143 (|has| |#1| (-850))) (((-112) (-1 (-112) |#1| |#1|) $) 137)) (-2893 (($ $) 147 (-12 (|has| |#1| (-850)) (|has| $ (-6 -4418)))) (($ (-1 (-112) |#1| |#1|) $) 146 (|has| $ (-6 -4418)))) (-1374 (($ $) 142 (|has| |#1| (-850))) (($ (-1 (-112) |#1| |#1|) $) 136)) (-1453 (((-112) $ (-771)) 8)) (-3684 ((|#1| $ |#1|) 40 (|has| $ (-6 -4418)))) (-3494 (($ $ $) 57 (|has| $ (-6 -4418)))) (-2454 ((|#1| $ |#1|) 55 (|has| $ (-6 -4418)))) (-1306 ((|#1| $ |#1|) 59 (|has| $ (-6 -4418)))) (-3901 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4418))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4418))) (($ $ "rest" $) 56 (|has| $ (-6 -4418))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4418))) ((|#1| $ (-1231 (-566)) |#1|) 118 (|has| $ (-6 -4418))) ((|#1| $ (-566) |#1|) 87 (|has| $ (-6 -4418)))) (-3891 (($ $ (-644 $)) 42 (|has| $ (-6 -4418)))) (-4364 (($ (-1 (-112) |#1|) $) 130)) (-3543 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4417)))) (-3663 ((|#1| $) 67)) (-1811 (($) 7 T CONST)) (-2273 (($ $) 145 (|has| $ (-6 -4418)))) (-3877 (($ $) 135)) (-4091 (($ $) 74) (($ $ (-771)) 72)) (-1346 (($ $) 132 (|has| |#1| (-1099)))) (-4111 (($ $) 100 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-2295 (($ |#1| $) 131 (|has| |#1| (-1099))) (($ (-1 (-112) |#1|) $) 126)) (-2628 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4417))) (($ |#1| $) 101 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-1838 ((|#1| (-1 |#1| |#1| |#1|) $) 106 (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 105 (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 102 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-3719 ((|#1| $ (-566) |#1|) 86 (|has| $ (-6 -4418)))) (-3653 ((|#1| $ (-566)) 88)) (-3258 (((-112) $) 84)) (-4000 (((-566) |#1| $ (-566)) 140 (|has| |#1| (-1099))) (((-566) |#1| $) 139 (|has| |#1| (-1099))) (((-566) (-1 (-112) |#1|) $) 138)) (-3872 (((-644 |#1|) $) 31 (|has| $ (-6 -4417)))) (-3578 (((-644 $) $) 51)) (-2778 (((-112) $ $) 43 (|has| |#1| (-1099)))) (-4259 (($ (-771) |#1|) 109)) (-2756 (((-112) $ (-771)) 9)) (-2755 (((-566) $) 96 (|has| (-566) (-850)))) (-1920 (($ $ $) 148 (|has| |#1| (-850)))) (-3200 (($ $ $) 133 (|has| |#1| (-850))) (($ (-1 (-112) |#1| |#1|) $ $) 129)) (-1330 (($ $ $) 141 (|has| |#1| (-850))) (($ (-1 (-112) |#1| |#1|) $ $) 134)) (-4227 (((-644 |#1|) $) 30 (|has| $ (-6 -4417)))) (-1688 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-3831 (((-566) $) 95 (|has| (-566) (-850)))) (-3038 (($ $ $) 149 (|has| |#1| (-850)))) (-3708 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 112)) (-3960 (($ |#1|) 123)) (-4106 (((-112) $ (-771)) 10)) (-3658 (((-644 |#1|) $) 46)) (-1587 (((-112) $) 50)) (-3151 (((-1157) $) 22 (|has| |#1| (-1099)))) (-2651 ((|#1| $) 71) (($ $ (-771)) 69)) (-4354 (($ $ $ (-566)) 128) (($ |#1| $ (-566)) 127)) (-4271 (($ $ $ (-566)) 117) (($ |#1| $ (-566)) 116)) (-3780 (((-644 (-566)) $) 93)) (-1605 (((-112) (-566) $) 92)) (-4059 (((-1119) $) 21 (|has| |#1| (-1099)))) (-4080 ((|#1| $) 77) (($ $ (-771)) 75)) (-2688 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 107)) (-4079 (($ $ |#1|) 97 (|has| $ (-6 -4418)))) (-3094 (((-112) $) 85)) (-3966 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1844 (((-112) $ $) 14)) (-2210 (((-112) |#1| $) 94 (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-4185 (((-644 |#1|) $) 91)) (-2788 (((-112) $) 11)) (-1737 (($) 12)) (-4376 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1231 (-566))) 113) ((|#1| $ (-566)) 90) ((|#1| $ (-566) |#1|) 89)) (-4098 (((-566) $ $) 45)) (-3139 (($ $ (-1231 (-566))) 125) (($ $ (-566)) 124)) (-2139 (($ $ (-1231 (-566))) 115) (($ $ (-566)) 114)) (-2636 (((-112) $) 47)) (-3513 (($ $) 63)) (-2018 (($ $) 60 (|has| $ (-6 -4418)))) (-2804 (((-771) $) 64)) (-2924 (($ $) 65)) (-4068 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4417))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-1438 (($ $ $ (-566)) 144 (|has| $ (-6 -4418)))) (-3924 (($ $) 13)) (-3136 (((-538) $) 99 (|has| |#1| (-614 (-538))))) (-2489 (($ (-644 |#1|)) 108)) (-1323 (($ $ $) 62) (($ $ |#1|) 61)) (-3716 (($ $ $) 79) (($ |#1| $) 78) (($ (-644 $)) 111) (($ $ |#1|) 110)) (-2479 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-2156 (((-644 $) $) 52)) (-3922 (((-112) $ $) 44 (|has| |#1| (-1099)))) (-3900 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-3667 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4417)))) (-3019 (((-112) $ $) 151 (|has| |#1| (-850)))) (-2990 (((-112) $ $) 152 (|has| |#1| (-850)))) (-2952 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3004 (((-112) $ $) 150 (|has| |#1| (-850)))) (-2977 (((-112) $ $) 153 (|has| |#1| (-850)))) (-3002 (((-771) $) 6 (|has| $ (-6 -4417))))) +(((-666 |#1|) (-140) (-1214)) (T -666)) +((-3960 (*1 *1 *2) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1214))))) +(-13 (-1148 |t#1|) (-375 |t#1|) (-283 |t#1|) (-10 -8 (-15 -3960 ($ |t#1|)))) +(((-34) . T) ((-102) -2809 (|has| |#1| (-1099)) (|has| |#1| (-850))) ((-613 (-862)) -2809 (|has| |#1| (-1099)) (|has| |#1| (-850)) (|has| |#1| (-613 (-862)))) ((-151 |#1|) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-287 #0=(-566) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-283 |#1|) . T) ((-375 |#1|) . T) ((-491 |#1|) . T) ((-604 #0# |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-651 |#1|) . T) ((-850) |has| |#1| (-850)) ((-1010 |#1|) . T) ((-1099) -2809 (|has| |#1| (-1099)) (|has| |#1| (-850))) ((-1148 |#1|) . T) ((-1214) . T) ((-1252 |#1|) . T)) +((-1916 (((-644 (-2 (|:| |particular| (-3 (-1264 |#1|) "failed")) (|:| -1419 (-644 (-1264 |#1|))))) (-644 (-644 |#1|)) (-644 (-1264 |#1|))) 22) (((-644 (-2 (|:| |particular| (-3 (-1264 |#1|) "failed")) (|:| -1419 (-644 (-1264 |#1|))))) (-689 |#1|) (-644 (-1264 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1264 |#1|) "failed")) (|:| -1419 (-644 (-1264 |#1|)))) (-644 (-644 |#1|)) (-1264 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1264 |#1|) "failed")) (|:| -1419 (-644 (-1264 |#1|)))) (-689 |#1|) (-1264 |#1|)) 14)) (-2299 (((-771) (-689 |#1|) (-1264 |#1|)) 30)) (-2708 (((-3 (-1264 |#1|) "failed") (-689 |#1|) (-1264 |#1|)) 24)) (-2334 (((-112) (-689 |#1|) (-1264 |#1|)) 27))) +(((-667 |#1|) (-10 -7 (-15 -1916 ((-2 (|:| |particular| (-3 (-1264 |#1|) "failed")) (|:| -1419 (-644 (-1264 |#1|)))) (-689 |#1|) (-1264 |#1|))) (-15 -1916 ((-2 (|:| |particular| (-3 (-1264 |#1|) "failed")) (|:| -1419 (-644 (-1264 |#1|)))) (-644 (-644 |#1|)) (-1264 |#1|))) (-15 -1916 ((-644 (-2 (|:| |particular| (-3 (-1264 |#1|) "failed")) (|:| -1419 (-644 (-1264 |#1|))))) (-689 |#1|) (-644 (-1264 |#1|)))) (-15 -1916 ((-644 (-2 (|:| |particular| (-3 (-1264 |#1|) "failed")) (|:| -1419 (-644 (-1264 |#1|))))) (-644 (-644 |#1|)) (-644 (-1264 |#1|)))) (-15 -2708 ((-3 (-1264 |#1|) "failed") (-689 |#1|) (-1264 |#1|))) (-15 -2334 ((-112) (-689 |#1|) (-1264 |#1|))) (-15 -2299 ((-771) (-689 |#1|) (-1264 |#1|)))) (-365)) (T -667)) +((-2299 (*1 *2 *3 *4) (-12 (-5 *3 (-689 *5)) (-5 *4 (-1264 *5)) (-4 *5 (-365)) (-5 *2 (-771)) (-5 *1 (-667 *5)))) (-2334 (*1 *2 *3 *4) (-12 (-5 *3 (-689 *5)) (-5 *4 (-1264 *5)) (-4 *5 (-365)) (-5 *2 (-112)) (-5 *1 (-667 *5)))) (-2708 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1264 *4)) (-5 *3 (-689 *4)) (-4 *4 (-365)) (-5 *1 (-667 *4)))) (-1916 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-644 *5))) (-4 *5 (-365)) (-5 *2 (-644 (-2 (|:| |particular| (-3 (-1264 *5) "failed")) (|:| -1419 (-644 (-1264 *5)))))) (-5 *1 (-667 *5)) (-5 *4 (-644 (-1264 *5))))) (-1916 (*1 *2 *3 *4) (-12 (-5 *3 (-689 *5)) (-4 *5 (-365)) (-5 *2 (-644 (-2 (|:| |particular| (-3 (-1264 *5) "failed")) (|:| -1419 (-644 (-1264 *5)))))) (-5 *1 (-667 *5)) (-5 *4 (-644 (-1264 *5))))) (-1916 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-644 *5))) (-4 *5 (-365)) (-5 *2 (-2 (|:| |particular| (-3 (-1264 *5) "failed")) (|:| -1419 (-644 (-1264 *5))))) (-5 *1 (-667 *5)) (-5 *4 (-1264 *5)))) (-1916 (*1 *2 *3 *4) (-12 (-5 *3 (-689 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |particular| (-3 (-1264 *5) "failed")) (|:| -1419 (-644 (-1264 *5))))) (-5 *1 (-667 *5)) (-5 *4 (-1264 *5))))) +(-10 -7 (-15 -1916 ((-2 (|:| |particular| (-3 (-1264 |#1|) "failed")) (|:| -1419 (-644 (-1264 |#1|)))) (-689 |#1|) (-1264 |#1|))) (-15 -1916 ((-2 (|:| |particular| (-3 (-1264 |#1|) "failed")) (|:| -1419 (-644 (-1264 |#1|)))) (-644 (-644 |#1|)) (-1264 |#1|))) (-15 -1916 ((-644 (-2 (|:| |particular| (-3 (-1264 |#1|) "failed")) (|:| -1419 (-644 (-1264 |#1|))))) (-689 |#1|) (-644 (-1264 |#1|)))) (-15 -1916 ((-644 (-2 (|:| |particular| (-3 (-1264 |#1|) "failed")) (|:| -1419 (-644 (-1264 |#1|))))) (-644 (-644 |#1|)) (-644 (-1264 |#1|)))) (-15 -2708 ((-3 (-1264 |#1|) "failed") (-689 |#1|) (-1264 |#1|))) (-15 -2334 ((-112) (-689 |#1|) (-1264 |#1|))) (-15 -2299 ((-771) (-689 |#1|) (-1264 |#1|)))) +((-1916 (((-644 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1419 (-644 |#3|)))) |#4| (-644 |#3|)) 66) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1419 (-644 |#3|))) |#4| |#3|) 60)) (-2299 (((-771) |#4| |#3|) 18)) (-2708 (((-3 |#3| "failed") |#4| |#3|) 21)) (-2334 (((-112) |#4| |#3|) 14))) +(((-668 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1916 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1419 (-644 |#3|))) |#4| |#3|)) (-15 -1916 ((-644 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1419 (-644 |#3|)))) |#4| (-644 |#3|))) (-15 -2708 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2334 ((-112) |#4| |#3|)) (-15 -2299 ((-771) |#4| |#3|))) (-365) (-13 (-375 |#1|) (-10 -7 (-6 -4418))) (-13 (-375 |#1|) (-10 -7 (-6 -4418))) (-687 |#1| |#2| |#3|)) (T -668)) +((-2299 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4418)))) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4418)))) (-5 *2 (-771)) (-5 *1 (-668 *5 *6 *4 *3)) (-4 *3 (-687 *5 *6 *4)))) (-2334 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4418)))) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4418)))) (-5 *2 (-112)) (-5 *1 (-668 *5 *6 *4 *3)) (-4 *3 (-687 *5 *6 *4)))) (-2708 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-365)) (-4 *5 (-13 (-375 *4) (-10 -7 (-6 -4418)))) (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4418)))) (-5 *1 (-668 *4 *5 *2 *3)) (-4 *3 (-687 *4 *5 *2)))) (-1916 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4418)))) (-4 *7 (-13 (-375 *5) (-10 -7 (-6 -4418)))) (-5 *2 (-644 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -1419 (-644 *7))))) (-5 *1 (-668 *5 *6 *7 *3)) (-5 *4 (-644 *7)) (-4 *3 (-687 *5 *6 *7)))) (-1916 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4418)))) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4418)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1419 (-644 *4)))) (-5 *1 (-668 *5 *6 *4 *3)) (-4 *3 (-687 *5 *6 *4))))) +(-10 -7 (-15 -1916 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1419 (-644 |#3|))) |#4| |#3|)) (-15 -1916 ((-644 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1419 (-644 |#3|)))) |#4| (-644 |#3|))) (-15 -2708 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2334 ((-112) |#4| |#3|)) (-15 -2299 ((-771) |#4| |#3|))) +((-2084 (((-2 (|:| |particular| (-3 (-1264 (-409 |#4|)) "failed")) (|:| -1419 (-644 (-1264 (-409 |#4|))))) (-644 |#4|) (-644 |#3|)) 52))) +(((-669 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2084 ((-2 (|:| |particular| (-3 (-1264 (-409 |#4|)) "failed")) (|:| -1419 (-644 (-1264 (-409 |#4|))))) (-644 |#4|) (-644 |#3|)))) (-558) (-793) (-850) (-949 |#1| |#2| |#3|)) (T -669)) +((-2084 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 *7)) (-4 *7 (-850)) (-4 *8 (-949 *5 *6 *7)) (-4 *5 (-558)) (-4 *6 (-793)) (-5 *2 (-2 (|:| |particular| (-3 (-1264 (-409 *8)) "failed")) (|:| -1419 (-644 (-1264 (-409 *8)))))) (-5 *1 (-669 *5 *6 *7 *8))))) +(-10 -7 (-15 -2084 ((-2 (|:| |particular| (-3 (-1264 (-409 |#4|)) "failed")) (|:| -1419 (-644 (-1264 (-409 |#4|))))) (-644 |#4|) (-644 |#3|)))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-1732 (((-3 $ "failed")) NIL (|has| |#2| (-558)))) (-3837 ((|#2| $) NIL)) (-3349 (((-112) $) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-2603 (((-1264 (-689 |#2|))) NIL) (((-1264 (-689 |#2|)) (-1264 $)) NIL)) (-3834 (((-112) $) NIL)) (-3010 (((-1264 $)) 44)) (-1453 (((-112) $ (-771)) NIL)) (-3191 (($ |#2|) NIL)) (-1811 (($) NIL T CONST)) (-3411 (($ $) NIL (|has| |#2| (-308)))) (-3395 (((-240 |#1| |#2|) $ (-566)) NIL)) (-2738 (((-3 (-2 (|:| |particular| $) (|:| -1419 (-644 $))) "failed")) NIL (|has| |#2| (-558)))) (-1690 (((-3 $ "failed")) NIL (|has| |#2| (-558)))) (-4223 (((-689 |#2|)) NIL) (((-689 |#2|) (-1264 $)) NIL)) (-2935 ((|#2| $) NIL)) (-3030 (((-689 |#2|) $) NIL) (((-689 |#2|) $ (-1264 $)) NIL)) (-4347 (((-3 $ "failed") $) NIL (|has| |#2| (-558)))) (-4139 (((-1171 (-952 |#2|))) NIL (|has| |#2| (-365)))) (-4370 (($ $ (-921)) NIL)) (-2190 ((|#2| $) NIL)) (-3251 (((-1171 |#2|) $) NIL (|has| |#2| (-558)))) (-1792 ((|#2|) NIL) ((|#2| (-1264 $)) NIL)) (-1973 (((-1171 |#2|) $) NIL)) (-3156 (((-112)) NIL)) (-2980 (((-3 (-566) "failed") $) NIL (|has| |#2| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#2| (-1038 (-409 (-566))))) (((-3 |#2| "failed") $) NIL)) (-1709 (((-566) $) NIL (|has| |#2| (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| |#2| (-1038 (-409 (-566))))) ((|#2| $) NIL)) (-2422 (($ (-1264 |#2|)) NIL) (($ (-1264 |#2|) (-1264 $)) NIL)) (-2275 (((-689 (-566)) (-689 $)) NIL (|has| |#2| (-639 (-566)))) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| |#2| (-639 (-566)))) (((-2 (|:| -4196 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 $) (-1264 $)) NIL) (((-689 |#2|) (-689 $)) NIL)) (-3757 (((-3 $ "failed") $) NIL)) (-2299 (((-771) $) NIL (|has| |#2| (-558))) (((-921)) 45)) (-3653 ((|#2| $ (-566) (-566)) NIL)) (-2116 (((-112)) NIL)) (-1595 (($ $ (-921)) NIL)) (-3872 (((-644 |#2|) $) NIL (|has| $ (-6 -4417)))) (-2264 (((-112) $) NIL)) (-2630 (((-771) $) NIL (|has| |#2| (-558)))) (-1711 (((-644 (-240 |#1| |#2|)) $) NIL (|has| |#2| (-558)))) (-2541 (((-771) $) NIL)) (-2895 (((-112)) NIL)) (-2552 (((-771) $) NIL)) (-2756 (((-112) $ (-771)) NIL)) (-3561 ((|#2| $) NIL (|has| |#2| (-6 (-4419 "*"))))) (-3715 (((-566) $) NIL)) (-1359 (((-566) $) NIL)) (-4227 (((-644 |#2|) $) NIL (|has| $ (-6 -4417)))) (-1688 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1099))))) (-3113 (((-566) $) NIL)) (-2701 (((-566) $) NIL)) (-4155 (($ (-644 (-644 |#2|))) NIL)) (-3708 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2337 (((-644 (-644 |#2|)) $) NIL)) (-2751 (((-112)) NIL)) (-2185 (((-112)) NIL)) (-4106 (((-112) $ (-771)) NIL)) (-2784 (((-3 (-2 (|:| |particular| $) (|:| -1419 (-644 $))) "failed")) NIL (|has| |#2| (-558)))) (-4320 (((-3 $ "failed")) NIL (|has| |#2| (-558)))) (-1434 (((-689 |#2|)) NIL) (((-689 |#2|) (-1264 $)) NIL)) (-1978 ((|#2| $) NIL)) (-1390 (((-689 |#2|) $) NIL) (((-689 |#2|) $ (-1264 $)) NIL)) (-4252 (((-3 $ "failed") $) NIL (|has| |#2| (-558)))) (-1509 (((-1171 (-952 |#2|))) NIL (|has| |#2| (-365)))) (-3681 (($ $ (-921)) NIL)) (-1782 ((|#2| $) NIL)) (-4066 (((-1171 |#2|) $) NIL (|has| |#2| (-558)))) (-2659 ((|#2|) NIL) ((|#2| (-1264 $)) NIL)) (-2899 (((-1171 |#2|) $) NIL)) (-3280 (((-112)) NIL)) (-3151 (((-1157) $) NIL)) (-1698 (((-112)) NIL)) (-2287 (((-112)) NIL)) (-3093 (((-112)) NIL)) (-1780 (((-3 $ "failed") $) NIL (|has| |#2| (-365)))) (-4059 (((-1119) $) NIL)) (-3753 (((-112)) NIL)) (-2976 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-558)))) (-3966 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))) (-1844 (((-112) $ $) NIL)) (-2788 (((-112) $) NIL)) (-1737 (($) NIL)) (-4376 ((|#2| $ (-566) (-566) |#2|) NIL) ((|#2| $ (-566) (-566)) 30) ((|#2| $ (-566)) NIL)) (-3526 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1175)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-771)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-4110 ((|#2| $) NIL)) (-3628 (($ (-644 |#2|)) NIL)) (-2754 (((-112) $) NIL)) (-2657 (((-240 |#1| |#2|) $) NIL)) (-1636 ((|#2| $) NIL (|has| |#2| (-6 (-4419 "*"))))) (-4068 (((-771) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417))) (((-771) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1099))))) (-3924 (($ $) NIL)) (-3747 (((-689 |#2|) (-1264 $)) NIL) (((-1264 |#2|) $) NIL) (((-689 |#2|) (-1264 $) (-1264 $)) NIL) (((-1264 |#2|) $ (-1264 $)) 33)) (-3136 (($ (-1264 |#2|)) NIL) (((-1264 |#2|) $) NIL)) (-2880 (((-644 (-952 |#2|))) NIL) (((-644 (-952 |#2|)) (-1264 $)) NIL)) (-3815 (($ $ $) NIL)) (-3418 (((-112)) NIL)) (-4327 (((-240 |#1| |#2|) $ (-566)) NIL)) (-2479 (((-862) $) NIL) (($ (-566)) NIL) (($ (-409 (-566))) NIL (|has| |#2| (-1038 (-409 (-566))))) (($ |#2|) NIL) (((-689 |#2|) $) NIL)) (-1558 (((-771)) NIL T CONST)) (-3900 (((-112) $ $) NIL)) (-1419 (((-1264 $)) 43)) (-3170 (((-644 (-1264 |#2|))) NIL (|has| |#2| (-558)))) (-1469 (($ $ $ $) NIL)) (-1429 (((-112)) NIL)) (-4029 (($ (-689 |#2|) $) NIL)) (-3667 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417)))) (-2126 (((-112) $) NIL)) (-1596 (($ $ $) NIL)) (-1478 (((-112)) NIL)) (-3492 (((-112)) NIL)) (-3893 (((-112)) NIL)) (-2446 (($) NIL T CONST)) (-2459 (($) NIL T CONST)) (-2834 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1175)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-771)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-2952 (((-112) $ $) NIL)) (-3077 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL (|has| |#2| (-365)))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-240 |#1| |#2|) $ (-240 |#1| |#2|)) NIL) (((-240 |#1| |#2|) (-240 |#1| |#2|) $) NIL)) (-3002 (((-771) $) NIL (|has| $ (-6 -4417))))) +(((-670 |#1| |#2|) (-13 (-1122 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-613 (-689 |#2|)) (-419 |#2|)) (-921) (-172)) (T -670)) +NIL +(-13 (-1122 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-613 (-689 |#2|)) (-419 |#2|)) +((-2986 (((-112) $ $) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-1721 (((-644 (-1134)) $) 10)) (-2479 (((-862) $) 16) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-671) (-13 (-1082) (-10 -8 (-15 -1721 ((-644 (-1134)) $))))) (T -671)) +((-1721 (*1 *2 *1) (-12 (-5 *2 (-644 (-1134))) (-5 *1 (-671))))) +(-13 (-1082) (-10 -8 (-15 -1721 ((-644 (-1134)) $)))) +((-2986 (((-112) $ $) NIL)) (-1656 (((-644 |#1|) $) NIL)) (-4361 (($ $) 67)) (-2205 (((-112) $) NIL)) (-2980 (((-3 |#1| "failed") $) NIL)) (-1709 ((|#1| $) NIL)) (-1920 (($ $ $) NIL)) (-3038 (($ $ $) NIL)) (-3277 (((-3 $ "failed") (-819 |#1|)) 27)) (-1443 (((-112) (-819 |#1|)) 17)) (-2859 (($ (-819 |#1|)) 28)) (-2861 (((-112) $ $) 36)) (-4332 (((-921) $) 43)) (-4351 (($ $) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2325 (((-644 $) (-819 |#1|)) 19)) (-2479 (((-862) $) 51) (($ |#1|) 40) (((-819 |#1|) $) 47) (((-677 |#1|) $) 52)) (-3900 (((-112) $ $) NIL)) (-2085 (((-59 (-644 $)) (-644 |#1|) (-921)) 72)) (-1411 (((-644 $) (-644 |#1|) (-921)) 76)) (-3019 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 68)) (-3004 (((-112) $ $) NIL)) (-2977 (((-112) $ $) 46))) +(((-672 |#1|) (-13 (-850) (-1038 |#1|) (-10 -8 (-15 -2205 ((-112) $)) (-15 -4351 ($ $)) (-15 -4361 ($ $)) (-15 -4332 ((-921) $)) (-15 -2861 ((-112) $ $)) (-15 -2479 ((-819 |#1|) $)) (-15 -2479 ((-677 |#1|) $)) (-15 -2325 ((-644 $) (-819 |#1|))) (-15 -1443 ((-112) (-819 |#1|))) (-15 -2859 ($ (-819 |#1|))) (-15 -3277 ((-3 $ "failed") (-819 |#1|))) (-15 -1656 ((-644 |#1|) $)) (-15 -2085 ((-59 (-644 $)) (-644 |#1|) (-921))) (-15 -1411 ((-644 $) (-644 |#1|) (-921))))) (-850)) (T -672)) +((-2205 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-672 *3)) (-4 *3 (-850)))) (-4351 (*1 *1 *1) (-12 (-5 *1 (-672 *2)) (-4 *2 (-850)))) (-4361 (*1 *1 *1) (-12 (-5 *1 (-672 *2)) (-4 *2 (-850)))) (-4332 (*1 *2 *1) (-12 (-5 *2 (-921)) (-5 *1 (-672 *3)) (-4 *3 (-850)))) (-2861 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-672 *3)) (-4 *3 (-850)))) (-2479 (*1 *2 *1) (-12 (-5 *2 (-819 *3)) (-5 *1 (-672 *3)) (-4 *3 (-850)))) (-2479 (*1 *2 *1) (-12 (-5 *2 (-677 *3)) (-5 *1 (-672 *3)) (-4 *3 (-850)))) (-2325 (*1 *2 *3) (-12 (-5 *3 (-819 *4)) (-4 *4 (-850)) (-5 *2 (-644 (-672 *4))) (-5 *1 (-672 *4)))) (-1443 (*1 *2 *3) (-12 (-5 *3 (-819 *4)) (-4 *4 (-850)) (-5 *2 (-112)) (-5 *1 (-672 *4)))) (-2859 (*1 *1 *2) (-12 (-5 *2 (-819 *3)) (-4 *3 (-850)) (-5 *1 (-672 *3)))) (-3277 (*1 *1 *2) (|partial| -12 (-5 *2 (-819 *3)) (-4 *3 (-850)) (-5 *1 (-672 *3)))) (-1656 (*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-672 *3)) (-4 *3 (-850)))) (-2085 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *5)) (-5 *4 (-921)) (-4 *5 (-850)) (-5 *2 (-59 (-644 (-672 *5)))) (-5 *1 (-672 *5)))) (-1411 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *5)) (-5 *4 (-921)) (-4 *5 (-850)) (-5 *2 (-644 (-672 *5))) (-5 *1 (-672 *5))))) +(-13 (-850) (-1038 |#1|) (-10 -8 (-15 -2205 ((-112) $)) (-15 -4351 ($ $)) (-15 -4361 ($ $)) (-15 -4332 ((-921) $)) (-15 -2861 ((-112) $ $)) (-15 -2479 ((-819 |#1|) $)) (-15 -2479 ((-677 |#1|) $)) (-15 -2325 ((-644 $) (-819 |#1|))) (-15 -1443 ((-112) (-819 |#1|))) (-15 -2859 ($ (-819 |#1|))) (-15 -3277 ((-3 $ "failed") (-819 |#1|))) (-15 -1656 ((-644 |#1|) $)) (-15 -2085 ((-59 (-644 $)) (-644 |#1|) (-921))) (-15 -1411 ((-644 $) (-644 |#1|) (-921))))) +((-2153 ((|#2| $) 103)) (-3238 (($ $) 124)) (-1453 (((-112) $ (-771)) 35)) (-4091 (($ $) 112) (($ $ (-771)) 115)) (-3258 (((-112) $) 125)) (-3578 (((-644 $) $) 99)) (-2778 (((-112) $ $) 95)) (-2756 (((-112) $ (-771)) 33)) (-2755 (((-566) $) 69)) (-3831 (((-566) $) 68)) (-4106 (((-112) $ (-771)) 31)) (-1587 (((-112) $) 101)) (-2651 ((|#2| $) 116) (($ $ (-771)) 120)) (-4271 (($ $ $ (-566)) 86) (($ |#2| $ (-566)) 85)) (-3780 (((-644 (-566)) $) 67)) (-1605 (((-112) (-566) $) 61)) (-4080 ((|#2| $) NIL) (($ $ (-771)) 111)) (-2050 (($ $ (-566)) 128)) (-3094 (((-112) $) 127)) (-3966 (((-112) (-1 (-112) |#2|) $) 44)) (-4185 (((-644 |#2|) $) 48)) (-4376 ((|#2| $ "value") NIL) ((|#2| $ "first") 110) (($ $ "rest") 114) ((|#2| $ "last") 123) (($ $ (-1231 (-566))) 82) ((|#2| $ (-566)) 59) ((|#2| $ (-566) |#2|) 60)) (-4098 (((-566) $ $) 94)) (-2139 (($ $ (-1231 (-566))) 81) (($ $ (-566)) 75)) (-2636 (((-112) $) 90)) (-3513 (($ $) 108)) (-2804 (((-771) $) 107)) (-2924 (($ $) 106)) (-2489 (($ (-644 |#2|)) 55)) (-4122 (($ $) 129)) (-2156 (((-644 $) $) 93)) (-3922 (((-112) $ $) 92)) (-3667 (((-112) (-1 (-112) |#2|) $) 43)) (-2952 (((-112) $ $) 20)) (-3002 (((-771) $) 41))) +(((-673 |#1| |#2|) (-10 -8 (-15 -4122 (|#1| |#1|)) (-15 -2050 (|#1| |#1| (-566))) (-15 -3258 ((-112) |#1|)) (-15 -3094 ((-112) |#1|)) (-15 -4376 (|#2| |#1| (-566) |#2|)) (-15 -4376 (|#2| |#1| (-566))) (-15 -4185 ((-644 |#2|) |#1|)) (-15 -1605 ((-112) (-566) |#1|)) (-15 -3780 ((-644 (-566)) |#1|)) (-15 -3831 ((-566) |#1|)) (-15 -2755 ((-566) |#1|)) (-15 -2489 (|#1| (-644 |#2|))) (-15 -4376 (|#1| |#1| (-1231 (-566)))) (-15 -2139 (|#1| |#1| (-566))) (-15 -2139 (|#1| |#1| (-1231 (-566)))) (-15 -4271 (|#1| |#2| |#1| (-566))) (-15 -4271 (|#1| |#1| |#1| (-566))) (-15 -3513 (|#1| |#1|)) (-15 -2804 ((-771) |#1|)) (-15 -2924 (|#1| |#1|)) (-15 -3238 (|#1| |#1|)) (-15 -2651 (|#1| |#1| (-771))) (-15 -4376 (|#2| |#1| "last")) (-15 -2651 (|#2| |#1|)) (-15 -4091 (|#1| |#1| (-771))) (-15 -4376 (|#1| |#1| "rest")) (-15 -4091 (|#1| |#1|)) (-15 -4080 (|#1| |#1| (-771))) (-15 -4376 (|#2| |#1| "first")) (-15 -4080 (|#2| |#1|)) (-15 -2778 ((-112) |#1| |#1|)) (-15 -3922 ((-112) |#1| |#1|)) (-15 -4098 ((-566) |#1| |#1|)) (-15 -2636 ((-112) |#1|)) (-15 -4376 (|#2| |#1| "value")) (-15 -2153 (|#2| |#1|)) (-15 -1587 ((-112) |#1|)) (-15 -3578 ((-644 |#1|) |#1|)) (-15 -2156 ((-644 |#1|) |#1|)) (-15 -2952 ((-112) |#1| |#1|)) (-15 -3966 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3667 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3002 ((-771) |#1|)) (-15 -1453 ((-112) |#1| (-771))) (-15 -2756 ((-112) |#1| (-771))) (-15 -4106 ((-112) |#1| (-771)))) (-674 |#2|) (-1214)) (T -673)) +NIL +(-10 -8 (-15 -4122 (|#1| |#1|)) (-15 -2050 (|#1| |#1| (-566))) (-15 -3258 ((-112) |#1|)) (-15 -3094 ((-112) |#1|)) (-15 -4376 (|#2| |#1| (-566) |#2|)) (-15 -4376 (|#2| |#1| (-566))) (-15 -4185 ((-644 |#2|) |#1|)) (-15 -1605 ((-112) (-566) |#1|)) (-15 -3780 ((-644 (-566)) |#1|)) (-15 -3831 ((-566) |#1|)) (-15 -2755 ((-566) |#1|)) (-15 -2489 (|#1| (-644 |#2|))) (-15 -4376 (|#1| |#1| (-1231 (-566)))) (-15 -2139 (|#1| |#1| (-566))) (-15 -2139 (|#1| |#1| (-1231 (-566)))) (-15 -4271 (|#1| |#2| |#1| (-566))) (-15 -4271 (|#1| |#1| |#1| (-566))) (-15 -3513 (|#1| |#1|)) (-15 -2804 ((-771) |#1|)) (-15 -2924 (|#1| |#1|)) (-15 -3238 (|#1| |#1|)) (-15 -2651 (|#1| |#1| (-771))) (-15 -4376 (|#2| |#1| "last")) (-15 -2651 (|#2| |#1|)) (-15 -4091 (|#1| |#1| (-771))) (-15 -4376 (|#1| |#1| "rest")) (-15 -4091 (|#1| |#1|)) (-15 -4080 (|#1| |#1| (-771))) (-15 -4376 (|#2| |#1| "first")) (-15 -4080 (|#2| |#1|)) (-15 -2778 ((-112) |#1| |#1|)) (-15 -3922 ((-112) |#1| |#1|)) (-15 -4098 ((-566) |#1| |#1|)) (-15 -2636 ((-112) |#1|)) (-15 -4376 (|#2| |#1| "value")) (-15 -2153 (|#2| |#1|)) (-15 -1587 ((-112) |#1|)) (-15 -3578 ((-644 |#1|) |#1|)) (-15 -2156 ((-644 |#1|) |#1|)) (-15 -2952 ((-112) |#1| |#1|)) (-15 -3966 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3667 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3002 ((-771) |#1|)) (-15 -1453 ((-112) |#1| (-771))) (-15 -2756 ((-112) |#1| (-771))) (-15 -4106 ((-112) |#1| (-771)))) +((-2986 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2153 ((|#1| $) 49)) (-3673 ((|#1| $) 66)) (-3238 (($ $) 68)) (-2462 (((-1269) $ (-566) (-566)) 98 (|has| $ (-6 -4418)))) (-3427 (($ $ (-566)) 53 (|has| $ (-6 -4418)))) (-1453 (((-112) $ (-771)) 8)) (-3684 ((|#1| $ |#1|) 40 (|has| $ (-6 -4418)))) (-3494 (($ $ $) 57 (|has| $ (-6 -4418)))) (-2454 ((|#1| $ |#1|) 55 (|has| $ (-6 -4418)))) (-1306 ((|#1| $ |#1|) 59 (|has| $ (-6 -4418)))) (-3901 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4418))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4418))) (($ $ "rest" $) 56 (|has| $ (-6 -4418))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4418))) ((|#1| $ (-1231 (-566)) |#1|) 118 (|has| $ (-6 -4418))) ((|#1| $ (-566) |#1|) 87 (|has| $ (-6 -4418)))) (-3891 (($ $ (-644 $)) 42 (|has| $ (-6 -4418)))) (-3543 (($ (-1 (-112) |#1|) $) 103)) (-3663 ((|#1| $) 67)) (-1811 (($) 7 T CONST)) (-2783 (($ $) 125)) (-4091 (($ $) 74) (($ $ (-771)) 72)) (-4111 (($ $) 100 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-2628 (($ |#1| $) 101 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417)))) (($ (-1 (-112) |#1|) $) 104)) (-1838 ((|#1| (-1 |#1| |#1| |#1|) $) 106 (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 105 (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 102 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-3719 ((|#1| $ (-566) |#1|) 86 (|has| $ (-6 -4418)))) (-3653 ((|#1| $ (-566)) 88)) (-3258 (((-112) $) 84)) (-3872 (((-644 |#1|) $) 31 (|has| $ (-6 -4417)))) (-1385 (((-771) $) 124)) (-3578 (((-644 $) $) 51)) (-2778 (((-112) $ $) 43 (|has| |#1| (-1099)))) (-4259 (($ (-771) |#1|) 109)) (-2756 (((-112) $ (-771)) 9)) (-2755 (((-566) $) 96 (|has| (-566) (-850)))) (-4227 (((-644 |#1|) $) 30 (|has| $ (-6 -4417)))) (-1688 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-3831 (((-566) $) 95 (|has| (-566) (-850)))) (-3708 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 112)) (-4106 (((-112) $ (-771)) 10)) (-3658 (((-644 |#1|) $) 46)) (-1587 (((-112) $) 50)) (-3345 (($ $) 127)) (-1522 (((-112) $) 128)) (-3151 (((-1157) $) 22 (|has| |#1| (-1099)))) (-2651 ((|#1| $) 71) (($ $ (-771)) 69)) (-4271 (($ $ $ (-566)) 117) (($ |#1| $ (-566)) 116)) (-3780 (((-644 (-566)) $) 93)) (-1605 (((-112) (-566) $) 92)) (-4059 (((-1119) $) 21 (|has| |#1| (-1099)))) (-2477 ((|#1| $) 126)) (-4080 ((|#1| $) 77) (($ $ (-771)) 75)) (-2688 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 107)) (-4079 (($ $ |#1|) 97 (|has| $ (-6 -4418)))) (-2050 (($ $ (-566)) 123)) (-3094 (((-112) $) 85)) (-1361 (((-112) $) 129)) (-4030 (((-112) $) 130)) (-3966 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1844 (((-112) $ $) 14)) (-2210 (((-112) |#1| $) 94 (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-4185 (((-644 |#1|) $) 91)) (-2788 (((-112) $) 11)) (-1737 (($) 12)) (-4376 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1231 (-566))) 113) ((|#1| $ (-566)) 90) ((|#1| $ (-566) |#1|) 89)) (-4098 (((-566) $ $) 45)) (-2139 (($ $ (-1231 (-566))) 115) (($ $ (-566)) 114)) (-2636 (((-112) $) 47)) (-3513 (($ $) 63)) (-2018 (($ $) 60 (|has| $ (-6 -4418)))) (-2804 (((-771) $) 64)) (-2924 (($ $) 65)) (-4068 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4417))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-3924 (($ $) 13)) (-3136 (((-538) $) 99 (|has| |#1| (-614 (-538))))) (-2489 (($ (-644 |#1|)) 108)) (-1323 (($ $ $) 62 (|has| $ (-6 -4418))) (($ $ |#1|) 61 (|has| $ (-6 -4418)))) (-3716 (($ $ $) 79) (($ |#1| $) 78) (($ (-644 $)) 111) (($ $ |#1|) 110)) (-4122 (($ $) 122)) (-2479 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-2156 (((-644 $) $) 52)) (-3922 (((-112) $ $) 44 (|has| |#1| (-1099)))) (-3900 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-3667 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4417)))) (-2952 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3002 (((-771) $) 6 (|has| $ (-6 -4417))))) +(((-674 |#1|) (-140) (-1214)) (T -674)) +((-2628 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-674 *3)) (-4 *3 (-1214)))) (-3543 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-674 *3)) (-4 *3 (-1214)))) (-4030 (*1 *2 *1) (-12 (-4 *1 (-674 *3)) (-4 *3 (-1214)) (-5 *2 (-112)))) (-1361 (*1 *2 *1) (-12 (-4 *1 (-674 *3)) (-4 *3 (-1214)) (-5 *2 (-112)))) (-1522 (*1 *2 *1) (-12 (-4 *1 (-674 *3)) (-4 *3 (-1214)) (-5 *2 (-112)))) (-3345 (*1 *1 *1) (-12 (-4 *1 (-674 *2)) (-4 *2 (-1214)))) (-2477 (*1 *2 *1) (-12 (-4 *1 (-674 *2)) (-4 *2 (-1214)))) (-2783 (*1 *1 *1) (-12 (-4 *1 (-674 *2)) (-4 *2 (-1214)))) (-1385 (*1 *2 *1) (-12 (-4 *1 (-674 *3)) (-4 *3 (-1214)) (-5 *2 (-771)))) (-2050 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-674 *3)) (-4 *3 (-1214)))) (-4122 (*1 *1 *1) (-12 (-4 *1 (-674 *2)) (-4 *2 (-1214))))) +(-13 (-1148 |t#1|) (-10 -8 (-15 -2628 ($ (-1 (-112) |t#1|) $)) (-15 -3543 ($ (-1 (-112) |t#1|) $)) (-15 -4030 ((-112) $)) (-15 -1361 ((-112) $)) (-15 -1522 ((-112) $)) (-15 -3345 ($ $)) (-15 -2477 (|t#1| $)) (-15 -2783 ($ $)) (-15 -1385 ((-771) $)) (-15 -2050 ($ $ (-566))) (-15 -4122 ($ $)))) +(((-34) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2809 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-151 |#1|) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-287 #0=(-566) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-604 #0# |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-651 |#1|) . T) ((-1010 |#1|) . T) ((-1099) |has| |#1| (-1099)) ((-1148 |#1|) . T) ((-1214) . T) ((-1252 |#1|) . T)) +((-2986 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2985 (($ (-771) (-771) (-771)) 55 (|has| |#1| (-1049)))) (-1453 (((-112) $ (-771)) NIL)) (-1631 ((|#1| $ (-771) (-771) (-771) |#1|) 49)) (-1811 (($) NIL T CONST)) (-1785 (($ $ $) 60 (|has| |#1| (-1049)))) (-3872 (((-644 |#1|) $) NIL (|has| $ (-6 -4417)))) (-2756 (((-112) $ (-771)) NIL)) (-4227 (((-644 |#1|) $) NIL (|has| $ (-6 -4417)))) (-1688 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-1692 (((-1264 (-771)) $) 12)) (-1490 (($ (-1175) $ $) 37)) (-3708 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#1| |#1|) $) NIL)) (-4106 (((-112) $ (-771)) NIL)) (-3151 (((-1157) $) NIL (|has| |#1| (-1099)))) (-2838 (($ (-771)) 57 (|has| |#1| (-1049)))) (-4059 (((-1119) $) NIL (|has| |#1| (-1099)))) (-3966 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1844 (((-112) $ $) NIL)) (-2788 (((-112) $) NIL)) (-1737 (($) NIL)) (-4376 ((|#1| $ (-771) (-771) (-771)) 46)) (-4068 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-3924 (($ $) NIL)) (-2489 (($ (-644 (-644 (-644 |#1|)))) 70)) (-2479 (($ (-958 (-958 (-958 |#1|)))) 23) (((-958 (-958 (-958 |#1|))) $) 19) (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-3900 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3667 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2952 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3002 (((-771) $) NIL (|has| $ (-6 -4417))))) +(((-675 |#1|) (-13 (-491 |#1|) (-10 -8 (IF (|has| |#1| (-1049)) (PROGN (-15 -2985 ($ (-771) (-771) (-771))) (-15 -2838 ($ (-771))) (-15 -1785 ($ $ $))) |%noBranch|) (-15 -2489 ($ (-644 (-644 (-644 |#1|))))) (-15 -4376 (|#1| $ (-771) (-771) (-771))) (-15 -1631 (|#1| $ (-771) (-771) (-771) |#1|)) (-15 -2479 ($ (-958 (-958 (-958 |#1|))))) (-15 -2479 ((-958 (-958 (-958 |#1|))) $)) (-15 -1490 ($ (-1175) $ $)) (-15 -1692 ((-1264 (-771)) $)))) (-1099)) (T -675)) +((-2985 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-771)) (-5 *1 (-675 *3)) (-4 *3 (-1049)) (-4 *3 (-1099)))) (-2838 (*1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-675 *3)) (-4 *3 (-1049)) (-4 *3 (-1099)))) (-1785 (*1 *1 *1 *1) (-12 (-5 *1 (-675 *2)) (-4 *2 (-1049)) (-4 *2 (-1099)))) (-2489 (*1 *1 *2) (-12 (-5 *2 (-644 (-644 (-644 *3)))) (-4 *3 (-1099)) (-5 *1 (-675 *3)))) (-4376 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-771)) (-5 *1 (-675 *2)) (-4 *2 (-1099)))) (-1631 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-771)) (-5 *1 (-675 *2)) (-4 *2 (-1099)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-958 (-958 (-958 *3)))) (-4 *3 (-1099)) (-5 *1 (-675 *3)))) (-2479 (*1 *2 *1) (-12 (-5 *2 (-958 (-958 (-958 *3)))) (-5 *1 (-675 *3)) (-4 *3 (-1099)))) (-1490 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-675 *3)) (-4 *3 (-1099)))) (-1692 (*1 *2 *1) (-12 (-5 *2 (-1264 (-771))) (-5 *1 (-675 *3)) (-4 *3 (-1099))))) +(-13 (-491 |#1|) (-10 -8 (IF (|has| |#1| (-1049)) (PROGN (-15 -2985 ($ (-771) (-771) (-771))) (-15 -2838 ($ (-771))) (-15 -1785 ($ $ $))) |%noBranch|) (-15 -2489 ($ (-644 (-644 (-644 |#1|))))) (-15 -4376 (|#1| $ (-771) (-771) (-771))) (-15 -1631 (|#1| $ (-771) (-771) (-771) |#1|)) (-15 -2479 ($ (-958 (-958 (-958 |#1|))))) (-15 -2479 ((-958 (-958 (-958 |#1|))) $)) (-15 -1490 ($ (-1175) $ $)) (-15 -1692 ((-1264 (-771)) $)))) +((-2986 (((-112) $ $) NIL)) (-3151 (((-1157) $) NIL)) (-2154 (((-485) $) 10)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) 19) (($ (-1180)) NIL) (((-1180) $) NIL)) (-2610 (((-1134) $) 12)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-676) (-13 (-1082) (-10 -8 (-15 -2154 ((-485) $)) (-15 -2610 ((-1134) $))))) (T -676)) +((-2154 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-676)))) (-2610 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-676))))) +(-13 (-1082) (-10 -8 (-15 -2154 ((-485) $)) (-15 -2610 ((-1134) $)))) +((-2986 (((-112) $ $) NIL)) (-1656 (((-644 |#1|) $) 15)) (-4361 (($ $) 19)) (-2205 (((-112) $) 20)) (-2980 (((-3 |#1| "failed") $) 23)) (-1709 ((|#1| $) 21)) (-4091 (($ $) 37)) (-3768 (($ $) 25)) (-1920 (($ $ $) NIL)) (-3038 (($ $ $) NIL)) (-2861 (((-112) $ $) 47)) (-4332 (((-921) $) 40)) (-4351 (($ $) 18)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-4080 ((|#1| $) 36)) (-2479 (((-862) $) 32) (($ |#1|) 24) (((-819 |#1|) $) 28)) (-3900 (((-112) $ $) NIL)) (-3019 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 13)) (-3004 (((-112) $ $) NIL)) (-2977 (((-112) $ $) 44)) (* (($ $ $) 35))) +(((-677 |#1|) (-13 (-850) (-1038 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2479 ((-819 |#1|) $)) (-15 -4080 (|#1| $)) (-15 -4351 ($ $)) (-15 -4332 ((-921) $)) (-15 -2861 ((-112) $ $)) (-15 -3768 ($ $)) (-15 -4091 ($ $)) (-15 -2205 ((-112) $)) (-15 -4361 ($ $)) (-15 -1656 ((-644 |#1|) $)))) (-850)) (T -677)) +((* (*1 *1 *1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-850)))) (-2479 (*1 *2 *1) (-12 (-5 *2 (-819 *3)) (-5 *1 (-677 *3)) (-4 *3 (-850)))) (-4080 (*1 *2 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-850)))) (-4351 (*1 *1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-850)))) (-4332 (*1 *2 *1) (-12 (-5 *2 (-921)) (-5 *1 (-677 *3)) (-4 *3 (-850)))) (-2861 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-677 *3)) (-4 *3 (-850)))) (-3768 (*1 *1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-850)))) (-4091 (*1 *1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-850)))) (-2205 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-677 *3)) (-4 *3 (-850)))) (-4361 (*1 *1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-850)))) (-1656 (*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-677 *3)) (-4 *3 (-850))))) +(-13 (-850) (-1038 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2479 ((-819 |#1|) $)) (-15 -4080 (|#1| $)) (-15 -4351 ($ $)) (-15 -4332 ((-921) $)) (-15 -2861 ((-112) $ $)) (-15 -3768 ($ $)) (-15 -4091 ($ $)) (-15 -2205 ((-112) $)) (-15 -4361 ($ $)) (-15 -1656 ((-644 |#1|) $)))) +((-1815 ((|#1| (-1 |#1| (-771) |#1|) (-771) |#1|) 14)) (-3484 ((|#1| (-1 |#1| |#1|) (-771) |#1|) 12))) +(((-678 |#1|) (-10 -7 (-15 -3484 (|#1| (-1 |#1| |#1|) (-771) |#1|)) (-15 -1815 (|#1| (-1 |#1| (-771) |#1|) (-771) |#1|))) (-1099)) (T -678)) +((-1815 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-771) *2)) (-5 *4 (-771)) (-4 *2 (-1099)) (-5 *1 (-678 *2)))) (-3484 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-771)) (-4 *2 (-1099)) (-5 *1 (-678 *2))))) +(-10 -7 (-15 -3484 (|#1| (-1 |#1| |#1|) (-771) |#1|)) (-15 -1815 (|#1| (-1 |#1| (-771) |#1|) (-771) |#1|))) +((-3921 ((|#2| |#1| |#2|) 9)) (-3911 ((|#1| |#1| |#2|) 8))) +(((-679 |#1| |#2|) (-10 -7 (-15 -3911 (|#1| |#1| |#2|)) (-15 -3921 (|#2| |#1| |#2|))) (-1099) (-1099)) (T -679)) +((-3921 (*1 *2 *3 *2) (-12 (-5 *1 (-679 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1099)))) (-3911 (*1 *2 *2 *3) (-12 (-5 *1 (-679 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099))))) +(-10 -7 (-15 -3911 (|#1| |#1| |#2|)) (-15 -3921 (|#2| |#1| |#2|))) +((-3919 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) +(((-680 |#1| |#2| |#3|) (-10 -7 (-15 -3919 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1099) (-1099) (-1099)) (T -680)) +((-3919 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *2 (-1099)) (-5 *1 (-680 *5 *6 *2))))) +(-10 -7 (-15 -3919 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) +((-2986 (((-112) $ $) NIL)) (-3835 (((-1213) $) 21)) (-3785 (((-644 (-1213)) $) 19)) (-3289 (($ (-644 (-1213)) (-1213)) 14)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) 29) (($ (-1180)) NIL) (((-1180) $) NIL) (((-1213) $) 22) (($ (-1117)) 10)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-681) (-13 (-1082) (-613 (-1213)) (-10 -8 (-15 -2479 ($ (-1117))) (-15 -3289 ($ (-644 (-1213)) (-1213))) (-15 -3785 ((-644 (-1213)) $)) (-15 -3835 ((-1213) $))))) (T -681)) +((-2479 (*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-681)))) (-3289 (*1 *1 *2 *3) (-12 (-5 *2 (-644 (-1213))) (-5 *3 (-1213)) (-5 *1 (-681)))) (-3785 (*1 *2 *1) (-12 (-5 *2 (-644 (-1213))) (-5 *1 (-681)))) (-3835 (*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-681))))) +(-13 (-1082) (-613 (-1213)) (-10 -8 (-15 -2479 ($ (-1117))) (-15 -3289 ($ (-644 (-1213)) (-1213))) (-15 -3785 ((-644 (-1213)) $)) (-15 -3835 ((-1213) $)))) +((-1815 (((-1 |#1| (-771) |#1|) (-1 |#1| (-771) |#1|)) 29)) (-2227 (((-1 |#1|) |#1|) 8)) (-4229 ((|#1| |#1|) 23)) (-2347 (((-644 |#1|) (-1 (-644 |#1|) (-644 |#1|)) (-566)) 22) ((|#1| (-1 |#1| |#1|)) 11)) (-2479 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-771)) 26))) +(((-682 |#1|) (-10 -7 (-15 -2227 ((-1 |#1|) |#1|)) (-15 -2479 ((-1 |#1|) |#1|)) (-15 -2347 (|#1| (-1 |#1| |#1|))) (-15 -2347 ((-644 |#1|) (-1 (-644 |#1|) (-644 |#1|)) (-566))) (-15 -4229 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-771))) (-15 -1815 ((-1 |#1| (-771) |#1|) (-1 |#1| (-771) |#1|)))) (-1099)) (T -682)) +((-1815 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-771) *3)) (-4 *3 (-1099)) (-5 *1 (-682 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-771)) (-4 *4 (-1099)) (-5 *1 (-682 *4)))) (-4229 (*1 *2 *2) (-12 (-5 *1 (-682 *2)) (-4 *2 (-1099)))) (-2347 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-644 *5) (-644 *5))) (-5 *4 (-566)) (-5 *2 (-644 *5)) (-5 *1 (-682 *5)) (-4 *5 (-1099)))) (-2347 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-682 *2)) (-4 *2 (-1099)))) (-2479 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-682 *3)) (-4 *3 (-1099)))) (-2227 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-682 *3)) (-4 *3 (-1099))))) +(-10 -7 (-15 -2227 ((-1 |#1|) |#1|)) (-15 -2479 ((-1 |#1|) |#1|)) (-15 -2347 (|#1| (-1 |#1| |#1|))) (-15 -2347 ((-644 |#1|) (-1 (-644 |#1|) (-644 |#1|)) (-566))) (-15 -4229 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-771))) (-15 -1815 ((-1 |#1| (-771) |#1|) (-1 |#1| (-771) |#1|)))) +((-1575 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-3964 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-1573 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-1574 (((-1 |#2| |#1|) |#2|) 11))) +(((-683 |#1| |#2|) (-10 -7 (-15 -1574 ((-1 |#2| |#1|) |#2|)) (-15 -3964 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1573 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -1575 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1099) (-1099)) (T -683)) +((-1575 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-5 *2 (-1 *5 *4)) (-5 *1 (-683 *4 *5)))) (-1573 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1099)) (-5 *2 (-1 *5 *4)) (-5 *1 (-683 *4 *5)) (-4 *4 (-1099)))) (-3964 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-5 *2 (-1 *5)) (-5 *1 (-683 *4 *5)))) (-1574 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-683 *4 *3)) (-4 *4 (-1099)) (-4 *3 (-1099))))) +(-10 -7 (-15 -1574 ((-1 |#2| |#1|) |#2|)) (-15 -3964 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1573 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -1575 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) +((-2436 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-1372 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-3550 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-2456 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-3598 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) +(((-684 |#1| |#2| |#3|) (-10 -7 (-15 -1372 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3550 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2456 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -3598 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2436 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1099) (-1099) (-1099)) (T -684)) +((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-1 *7 *5)) (-5 *1 (-684 *5 *6 *7)))) (-2436 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-684 *4 *5 *6)))) (-3598 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-684 *4 *5 *6)) (-4 *4 (-1099)))) (-2456 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1099)) (-4 *6 (-1099)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-684 *4 *5 *6)) (-4 *5 (-1099)))) (-3550 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-5 *2 (-1 *6 *5)) (-5 *1 (-684 *4 *5 *6)))) (-1372 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1099)) (-4 *4 (-1099)) (-4 *6 (-1099)) (-5 *2 (-1 *6 *5)) (-5 *1 (-684 *5 *4 *6))))) +(-10 -7 (-15 -1372 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3550 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2456 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -3598 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2436 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) +((-1838 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-3080 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) +(((-685 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3080 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3080 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -1838 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1049) (-375 |#1|) (-375 |#1|) (-687 |#1| |#2| |#3|) (-1049) (-375 |#5|) (-375 |#5|) (-687 |#5| |#6| |#7|)) (T -685)) +((-1838 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1049)) (-4 *2 (-1049)) (-4 *6 (-375 *5)) (-4 *7 (-375 *5)) (-4 *8 (-375 *2)) (-4 *9 (-375 *2)) (-5 *1 (-685 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-687 *5 *6 *7)) (-4 *10 (-687 *2 *8 *9)))) (-3080 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1049)) (-4 *8 (-1049)) (-4 *6 (-375 *5)) (-4 *7 (-375 *5)) (-4 *2 (-687 *8 *9 *10)) (-5 *1 (-685 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-687 *5 *6 *7)) (-4 *9 (-375 *8)) (-4 *10 (-375 *8)))) (-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1049)) (-4 *8 (-1049)) (-4 *6 (-375 *5)) (-4 *7 (-375 *5)) (-4 *2 (-687 *8 *9 *10)) (-5 *1 (-685 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-687 *5 *6 *7)) (-4 *9 (-375 *8)) (-4 *10 (-375 *8))))) +(-10 -7 (-15 -3080 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3080 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -1838 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) +((-2078 (($ (-771) (-771)) 43)) (-3563 (($ $ $) 71)) (-2076 (($ |#3|) 66) (($ $) 67)) (-3349 (((-112) $) 38)) (-2003 (($ $ (-566) (-566)) 82)) (-1775 (($ $ (-566) (-566)) 83)) (-4115 (($ $ (-566) (-566) (-566) (-566)) 88)) (-1350 (($ $) 69)) (-3834 (((-112) $) 15)) (-1789 (($ $ (-566) (-566) $) 89)) (-3901 ((|#2| $ (-566) (-566) |#2|) NIL) (($ $ (-644 (-566)) (-644 (-566)) $) 87)) (-3191 (($ (-771) |#2|) 53)) (-4155 (($ (-644 (-644 |#2|))) 51)) (-2337 (((-644 (-644 |#2|)) $) 78)) (-4384 (($ $ $) 70)) (-2976 (((-3 $ "failed") $ |#2|) 121)) (-4376 ((|#2| $ (-566) (-566)) NIL) ((|#2| $ (-566) (-566) |#2|) NIL) (($ $ (-644 (-566)) (-644 (-566))) 86)) (-3628 (($ (-644 |#2|)) 54) (($ (-644 $)) 56)) (-2754 (((-112) $) 28)) (-2479 (($ |#4|) 61) (((-862) $) NIL)) (-2126 (((-112) $) 40)) (-3077 (($ $ |#2|) 123)) (-3065 (($ $ $) 93) (($ $) 96)) (-3052 (($ $ $) 91)) (** (($ $ (-771)) 110) (($ $ (-566)) 128)) (* (($ $ $) 102) (($ |#2| $) 98) (($ $ |#2|) 99) (($ (-566) $) 101) ((|#4| $ |#4|) 114) ((|#3| |#3| $) 118))) +(((-686 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2479 ((-862) |#1|)) (-15 ** (|#1| |#1| (-566))) (-15 -3077 (|#1| |#1| |#2|)) (-15 -2976 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-771))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3065 (|#1| |#1|)) (-15 -3065 (|#1| |#1| |#1|)) (-15 -3052 (|#1| |#1| |#1|)) (-15 -1789 (|#1| |#1| (-566) (-566) |#1|)) (-15 -4115 (|#1| |#1| (-566) (-566) (-566) (-566))) (-15 -1775 (|#1| |#1| (-566) (-566))) (-15 -2003 (|#1| |#1| (-566) (-566))) (-15 -3901 (|#1| |#1| (-644 (-566)) (-644 (-566)) |#1|)) (-15 -4376 (|#1| |#1| (-644 (-566)) (-644 (-566)))) (-15 -2337 ((-644 (-644 |#2|)) |#1|)) (-15 -3563 (|#1| |#1| |#1|)) (-15 -4384 (|#1| |#1| |#1|)) (-15 -1350 (|#1| |#1|)) (-15 -2076 (|#1| |#1|)) (-15 -2076 (|#1| |#3|)) (-15 -2479 (|#1| |#4|)) (-15 -3628 (|#1| (-644 |#1|))) (-15 -3628 (|#1| (-644 |#2|))) (-15 -3191 (|#1| (-771) |#2|)) (-15 -4155 (|#1| (-644 (-644 |#2|)))) (-15 -2078 (|#1| (-771) (-771))) (-15 -2126 ((-112) |#1|)) (-15 -3349 ((-112) |#1|)) (-15 -2754 ((-112) |#1|)) (-15 -3834 ((-112) |#1|)) (-15 -3901 (|#2| |#1| (-566) (-566) |#2|)) (-15 -4376 (|#2| |#1| (-566) (-566) |#2|)) (-15 -4376 (|#2| |#1| (-566) (-566)))) (-687 |#2| |#3| |#4|) (-1049) (-375 |#2|) (-375 |#2|)) (T -686)) +NIL +(-10 -8 (-15 -2479 ((-862) |#1|)) (-15 ** (|#1| |#1| (-566))) (-15 -3077 (|#1| |#1| |#2|)) (-15 -2976 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-771))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3065 (|#1| |#1|)) (-15 -3065 (|#1| |#1| |#1|)) (-15 -3052 (|#1| |#1| |#1|)) (-15 -1789 (|#1| |#1| (-566) (-566) |#1|)) (-15 -4115 (|#1| |#1| (-566) (-566) (-566) (-566))) (-15 -1775 (|#1| |#1| (-566) (-566))) (-15 -2003 (|#1| |#1| (-566) (-566))) (-15 -3901 (|#1| |#1| (-644 (-566)) (-644 (-566)) |#1|)) (-15 -4376 (|#1| |#1| (-644 (-566)) (-644 (-566)))) (-15 -2337 ((-644 (-644 |#2|)) |#1|)) (-15 -3563 (|#1| |#1| |#1|)) (-15 -4384 (|#1| |#1| |#1|)) (-15 -1350 (|#1| |#1|)) (-15 -2076 (|#1| |#1|)) (-15 -2076 (|#1| |#3|)) (-15 -2479 (|#1| |#4|)) (-15 -3628 (|#1| (-644 |#1|))) (-15 -3628 (|#1| (-644 |#2|))) (-15 -3191 (|#1| (-771) |#2|)) (-15 -4155 (|#1| (-644 (-644 |#2|)))) (-15 -2078 (|#1| (-771) (-771))) (-15 -2126 ((-112) |#1|)) (-15 -3349 ((-112) |#1|)) (-15 -2754 ((-112) |#1|)) (-15 -3834 ((-112) |#1|)) (-15 -3901 (|#2| |#1| (-566) (-566) |#2|)) (-15 -4376 (|#2| |#1| (-566) (-566) |#2|)) (-15 -4376 (|#2| |#1| (-566) (-566)))) +((-2986 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2078 (($ (-771) (-771)) 98)) (-3563 (($ $ $) 88)) (-2076 (($ |#2|) 92) (($ $) 91)) (-3349 (((-112) $) 100)) (-2003 (($ $ (-566) (-566)) 84)) (-1775 (($ $ (-566) (-566)) 83)) (-4115 (($ $ (-566) (-566) (-566) (-566)) 82)) (-1350 (($ $) 90)) (-3834 (((-112) $) 102)) (-1453 (((-112) $ (-771)) 8)) (-1789 (($ $ (-566) (-566) $) 81)) (-3901 ((|#1| $ (-566) (-566) |#1|) 45) (($ $ (-644 (-566)) (-644 (-566)) $) 85)) (-1679 (($ $ (-566) |#2|) 43)) (-2145 (($ $ (-566) |#3|) 42)) (-3191 (($ (-771) |#1|) 96)) (-1811 (($) 7 T CONST)) (-3411 (($ $) 68 (|has| |#1| (-308)))) (-3395 ((|#2| $ (-566)) 47)) (-2299 (((-771) $) 67 (|has| |#1| (-558)))) (-3719 ((|#1| $ (-566) (-566) |#1|) 44)) (-3653 ((|#1| $ (-566) (-566)) 49)) (-3872 (((-644 |#1|) $) 31)) (-2630 (((-771) $) 66 (|has| |#1| (-558)))) (-1711 (((-644 |#3|) $) 65 (|has| |#1| (-558)))) (-2541 (((-771) $) 52)) (-4259 (($ (-771) (-771) |#1|) 58)) (-2552 (((-771) $) 51)) (-2756 (((-112) $ (-771)) 9)) (-3561 ((|#1| $) 63 (|has| |#1| (-6 (-4419 "*"))))) (-3715 (((-566) $) 56)) (-1359 (((-566) $) 54)) (-4227 (((-644 |#1|) $) 30 (|has| $ (-6 -4417)))) (-1688 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-3113 (((-566) $) 55)) (-2701 (((-566) $) 53)) (-4155 (($ (-644 (-644 |#1|))) 97)) (-3708 (($ (-1 |#1| |#1|) $) 35)) (-3080 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-2337 (((-644 (-644 |#1|)) $) 87)) (-4106 (((-112) $ (-771)) 10)) (-3151 (((-1157) $) 22 (|has| |#1| (-1099)))) (-1780 (((-3 $ "failed") $) 62 (|has| |#1| (-365)))) (-4384 (($ $ $) 89)) (-4059 (((-1119) $) 21 (|has| |#1| (-1099)))) (-4079 (($ $ |#1|) 57)) (-2976 (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-558)))) (-3966 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1844 (((-112) $ $) 14)) (-2788 (((-112) $) 11)) (-1737 (($) 12)) (-4376 ((|#1| $ (-566) (-566)) 50) ((|#1| $ (-566) (-566) |#1|) 48) (($ $ (-644 (-566)) (-644 (-566))) 86)) (-3628 (($ (-644 |#1|)) 95) (($ (-644 $)) 94)) (-2754 (((-112) $) 101)) (-1636 ((|#1| $) 64 (|has| |#1| (-6 (-4419 "*"))))) (-4068 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4417))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-3924 (($ $) 13)) (-4327 ((|#3| $ (-566)) 46)) (-2479 (($ |#3|) 93) (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-3900 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-3667 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4417)))) (-2126 (((-112) $) 99)) (-2952 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3077 (($ $ |#1|) 69 (|has| |#1| (-365)))) (-3065 (($ $ $) 79) (($ $) 78)) (-3052 (($ $ $) 80)) (** (($ $ (-771)) 71) (($ $ (-566)) 61 (|has| |#1| (-365)))) (* (($ $ $) 77) (($ |#1| $) 76) (($ $ |#1|) 75) (($ (-566) $) 74) ((|#3| $ |#3|) 73) ((|#2| |#2| $) 72)) (-3002 (((-771) $) 6 (|has| $ (-6 -4417))))) +(((-687 |#1| |#2| |#3|) (-140) (-1049) (-375 |t#1|) (-375 |t#1|)) (T -687)) +((-3834 (*1 *2 *1) (-12 (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-112)))) (-2754 (*1 *2 *1) (-12 (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-112)))) (-3349 (*1 *2 *1) (-12 (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-112)))) (-2126 (*1 *2 *1) (-12 (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-112)))) (-2078 (*1 *1 *2 *2) (-12 (-5 *2 (-771)) (-4 *3 (-1049)) (-4 *1 (-687 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-4155 (*1 *1 *2) (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-1049)) (-4 *1 (-687 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3191 (*1 *1 *2 *3) (-12 (-5 *2 (-771)) (-4 *3 (-1049)) (-4 *1 (-687 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3628 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1049)) (-4 *1 (-687 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3628 (*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *3 (-1049)) (-4 *1 (-687 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-2479 (*1 *1 *2) (-12 (-4 *3 (-1049)) (-4 *1 (-687 *3 *4 *2)) (-4 *4 (-375 *3)) (-4 *2 (-375 *3)))) (-2076 (*1 *1 *2) (-12 (-4 *3 (-1049)) (-4 *1 (-687 *3 *2 *4)) (-4 *2 (-375 *3)) (-4 *4 (-375 *3)))) (-2076 (*1 *1 *1) (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-1350 (*1 *1 *1) (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-4384 (*1 *1 *1 *1) (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-3563 (*1 *1 *1 *1) (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-2337 (*1 *2 *1) (-12 (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-644 (-644 *3))))) (-4376 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-644 (-566))) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3901 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-644 (-566))) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-2003 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-566)) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-1775 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-566)) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-4115 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-566)) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-1789 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-566)) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3052 (*1 *1 *1 *1) (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-3065 (*1 *1 *1 *1) (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-3065 (*1 *1 *1) (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-566)) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-687 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *2 (-375 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-687 *3 *2 *4)) (-4 *3 (-1049)) (-4 *2 (-375 *3)) (-4 *4 (-375 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-2976 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-558)))) (-3077 (*1 *1 *1 *2) (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-365)))) (-3411 (*1 *1 *1) (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-308)))) (-2299 (*1 *2 *1) (-12 (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-4 *3 (-558)) (-5 *2 (-771)))) (-2630 (*1 *2 *1) (-12 (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-4 *3 (-558)) (-5 *2 (-771)))) (-1711 (*1 *2 *1) (-12 (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-4 *3 (-558)) (-5 *2 (-644 *5)))) (-1636 (*1 *2 *1) (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (|has| *2 (-6 (-4419 "*"))) (-4 *2 (-1049)))) (-3561 (*1 *2 *1) (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (|has| *2 (-6 (-4419 "*"))) (-4 *2 (-1049)))) (-1780 (*1 *1 *1) (|partial| -12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-365)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-4 *3 (-365))))) +(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4418) (-6 -4417) (-15 -3834 ((-112) $)) (-15 -2754 ((-112) $)) (-15 -3349 ((-112) $)) (-15 -2126 ((-112) $)) (-15 -2078 ($ (-771) (-771))) (-15 -4155 ($ (-644 (-644 |t#1|)))) (-15 -3191 ($ (-771) |t#1|)) (-15 -3628 ($ (-644 |t#1|))) (-15 -3628 ($ (-644 $))) (-15 -2479 ($ |t#3|)) (-15 -2076 ($ |t#2|)) (-15 -2076 ($ $)) (-15 -1350 ($ $)) (-15 -4384 ($ $ $)) (-15 -3563 ($ $ $)) (-15 -2337 ((-644 (-644 |t#1|)) $)) (-15 -4376 ($ $ (-644 (-566)) (-644 (-566)))) (-15 -3901 ($ $ (-644 (-566)) (-644 (-566)) $)) (-15 -2003 ($ $ (-566) (-566))) (-15 -1775 ($ $ (-566) (-566))) (-15 -4115 ($ $ (-566) (-566) (-566) (-566))) (-15 -1789 ($ $ (-566) (-566) $)) (-15 -3052 ($ $ $)) (-15 -3065 ($ $ $)) (-15 -3065 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-566) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-771))) (IF (|has| |t#1| (-558)) (-15 -2976 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-365)) (-15 -3077 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-308)) (-15 -3411 ($ $)) |%noBranch|) (IF (|has| |t#1| (-558)) (PROGN (-15 -2299 ((-771) $)) (-15 -2630 ((-771) $)) (-15 -1711 ((-644 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4419 "*"))) (PROGN (-15 -1636 (|t#1| $)) (-15 -3561 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-365)) (PROGN (-15 -1780 ((-3 $ "failed") $)) (-15 ** ($ $ (-566)))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2809 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1099) |has| |#1| (-1099)) ((-57 |#1| |#2| |#3|) . T) ((-1214) . T)) +((-3411 ((|#4| |#4|) 97 (|has| |#1| (-308)))) (-2299 (((-771) |#4|) 125 (|has| |#1| (-558)))) (-2630 (((-771) |#4|) 101 (|has| |#1| (-558)))) (-1711 (((-644 |#3|) |#4|) 108 (|has| |#1| (-558)))) (-2923 (((-2 (|:| -3371 |#1|) (|:| -3131 |#1|)) |#1| |#1|) 140 (|has| |#1| (-308)))) (-3561 ((|#1| |#4|) 57)) (-3642 (((-3 |#4| "failed") |#4|) 89 (|has| |#1| (-558)))) (-1780 (((-3 |#4| "failed") |#4|) 105 (|has| |#1| (-365)))) (-3107 ((|#4| |#4|) 93 (|has| |#1| (-558)))) (-1465 ((|#4| |#4| |#1| (-566) (-566)) 65)) (-2655 ((|#4| |#4| (-566) (-566)) 60)) (-2848 ((|#4| |#4| |#1| (-566) (-566)) 70)) (-1636 ((|#1| |#4|) 103)) (-3228 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 94 (|has| |#1| (-558))))) +(((-688 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1636 (|#1| |#4|)) (-15 -3561 (|#1| |#4|)) (-15 -2655 (|#4| |#4| (-566) (-566))) (-15 -1465 (|#4| |#4| |#1| (-566) (-566))) (-15 -2848 (|#4| |#4| |#1| (-566) (-566))) (IF (|has| |#1| (-558)) (PROGN (-15 -2299 ((-771) |#4|)) (-15 -2630 ((-771) |#4|)) (-15 -1711 ((-644 |#3|) |#4|)) (-15 -3107 (|#4| |#4|)) (-15 -3642 ((-3 |#4| "failed") |#4|)) (-15 -3228 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-308)) (PROGN (-15 -3411 (|#4| |#4|)) (-15 -2923 ((-2 (|:| -3371 |#1|) (|:| -3131 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -1780 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-172) (-375 |#1|) (-375 |#1|) (-687 |#1| |#2| |#3|)) (T -688)) +((-1780 (*1 *2 *2) (|partial| -12 (-4 *3 (-365)) (-4 *3 (-172)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-688 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5)))) (-2923 (*1 *2 *3 *3) (-12 (-4 *3 (-308)) (-4 *3 (-172)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-2 (|:| -3371 *3) (|:| -3131 *3))) (-5 *1 (-688 *3 *4 *5 *6)) (-4 *6 (-687 *3 *4 *5)))) (-3411 (*1 *2 *2) (-12 (-4 *3 (-308)) (-4 *3 (-172)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-688 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5)))) (-3228 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *4 (-172)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-688 *4 *5 *6 *3)) (-4 *3 (-687 *4 *5 *6)))) (-3642 (*1 *2 *2) (|partial| -12 (-4 *3 (-558)) (-4 *3 (-172)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-688 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5)))) (-3107 (*1 *2 *2) (-12 (-4 *3 (-558)) (-4 *3 (-172)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-688 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5)))) (-1711 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *4 (-172)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-644 *6)) (-5 *1 (-688 *4 *5 *6 *3)) (-4 *3 (-687 *4 *5 *6)))) (-2630 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *4 (-172)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-771)) (-5 *1 (-688 *4 *5 *6 *3)) (-4 *3 (-687 *4 *5 *6)))) (-2299 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *4 (-172)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-771)) (-5 *1 (-688 *4 *5 *6 *3)) (-4 *3 (-687 *4 *5 *6)))) (-2848 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-566)) (-4 *3 (-172)) (-4 *5 (-375 *3)) (-4 *6 (-375 *3)) (-5 *1 (-688 *3 *5 *6 *2)) (-4 *2 (-687 *3 *5 *6)))) (-1465 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-566)) (-4 *3 (-172)) (-4 *5 (-375 *3)) (-4 *6 (-375 *3)) (-5 *1 (-688 *3 *5 *6 *2)) (-4 *2 (-687 *3 *5 *6)))) (-2655 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-566)) (-4 *4 (-172)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *1 (-688 *4 *5 *6 *2)) (-4 *2 (-687 *4 *5 *6)))) (-3561 (*1 *2 *3) (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-172)) (-5 *1 (-688 *2 *4 *5 *3)) (-4 *3 (-687 *2 *4 *5)))) (-1636 (*1 *2 *3) (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-172)) (-5 *1 (-688 *2 *4 *5 *3)) (-4 *3 (-687 *2 *4 *5))))) +(-10 -7 (-15 -1636 (|#1| |#4|)) (-15 -3561 (|#1| |#4|)) (-15 -2655 (|#4| |#4| (-566) (-566))) (-15 -1465 (|#4| |#4| |#1| (-566) (-566))) (-15 -2848 (|#4| |#4| |#1| (-566) (-566))) (IF (|has| |#1| (-558)) (PROGN (-15 -2299 ((-771) |#4|)) (-15 -2630 ((-771) |#4|)) (-15 -1711 ((-644 |#3|) |#4|)) (-15 -3107 (|#4| |#4|)) (-15 -3642 ((-3 |#4| "failed") |#4|)) (-15 -3228 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-308)) (PROGN (-15 -3411 (|#4| |#4|)) (-15 -2923 ((-2 (|:| -3371 |#1|) (|:| -3131 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -1780 ((-3 |#4| "failed") |#4|)) |%noBranch|)) +((-2986 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2078 (($ (-771) (-771)) 64)) (-3563 (($ $ $) NIL)) (-2076 (($ (-1264 |#1|)) NIL) (($ $) NIL)) (-3349 (((-112) $) NIL)) (-2003 (($ $ (-566) (-566)) 22)) (-1775 (($ $ (-566) (-566)) NIL)) (-4115 (($ $ (-566) (-566) (-566) (-566)) NIL)) (-1350 (($ $) NIL)) (-3834 (((-112) $) NIL)) (-1453 (((-112) $ (-771)) NIL)) (-1789 (($ $ (-566) (-566) $) NIL)) (-3901 ((|#1| $ (-566) (-566) |#1|) NIL) (($ $ (-644 (-566)) (-644 (-566)) $) NIL)) (-1679 (($ $ (-566) (-1264 |#1|)) NIL)) (-2145 (($ $ (-566) (-1264 |#1|)) NIL)) (-3191 (($ (-771) |#1|) 37)) (-1811 (($) NIL T CONST)) (-3411 (($ $) 46 (|has| |#1| (-308)))) (-3395 (((-1264 |#1|) $ (-566)) NIL)) (-2299 (((-771) $) 48 (|has| |#1| (-558)))) (-3719 ((|#1| $ (-566) (-566) |#1|) 69)) (-3653 ((|#1| $ (-566) (-566)) NIL)) (-3872 (((-644 |#1|) $) NIL)) (-2630 (((-771) $) 50 (|has| |#1| (-558)))) (-1711 (((-644 (-1264 |#1|)) $) 53 (|has| |#1| (-558)))) (-2541 (((-771) $) 32)) (-4259 (($ (-771) (-771) |#1|) 28)) (-2552 (((-771) $) 33)) (-2756 (((-112) $ (-771)) NIL)) (-3561 ((|#1| $) 44 (|has| |#1| (-6 (-4419 "*"))))) (-3715 (((-566) $) 10)) (-1359 (((-566) $) 11)) (-4227 (((-644 |#1|) $) NIL (|has| $ (-6 -4417)))) (-1688 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-3113 (((-566) $) 14)) (-2701 (((-566) $) 65)) (-4155 (($ (-644 (-644 |#1|))) NIL)) (-3708 (($ (-1 |#1| |#1|) $) NIL)) (-3080 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2337 (((-644 (-644 |#1|)) $) 76)) (-4106 (((-112) $ (-771)) NIL)) (-3151 (((-1157) $) NIL (|has| |#1| (-1099)))) (-1780 (((-3 $ "failed") $) 60 (|has| |#1| (-365)))) (-4384 (($ $ $) NIL)) (-4059 (((-1119) $) NIL (|has| |#1| (-1099)))) (-4079 (($ $ |#1|) NIL)) (-2976 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558)))) (-3966 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1844 (((-112) $ $) NIL)) (-2788 (((-112) $) NIL)) (-1737 (($) NIL)) (-4376 ((|#1| $ (-566) (-566)) NIL) ((|#1| $ (-566) (-566) |#1|) NIL) (($ $ (-644 (-566)) (-644 (-566))) NIL)) (-3628 (($ (-644 |#1|)) NIL) (($ (-644 $)) NIL) (($ (-1264 |#1|)) 70)) (-2754 (((-112) $) NIL)) (-1636 ((|#1| $) 42 (|has| |#1| (-6 (-4419 "*"))))) (-4068 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-3924 (($ $) NIL)) (-3136 (((-538) $) 80 (|has| |#1| (-614 (-538))))) (-4327 (((-1264 |#1|) $ (-566)) NIL)) (-2479 (($ (-1264 |#1|)) NIL) (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-3900 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3667 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2126 (((-112) $) NIL)) (-2952 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3077 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3065 (($ $ $) NIL) (($ $) NIL)) (-3052 (($ $ $) NIL)) (** (($ $ (-771)) 38) (($ $ (-566)) 62 (|has| |#1| (-365)))) (* (($ $ $) 24) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-566) $) NIL) (((-1264 |#1|) $ (-1264 |#1|)) NIL) (((-1264 |#1|) (-1264 |#1|) $) NIL)) (-3002 (((-771) $) NIL (|has| $ (-6 -4417))))) +(((-689 |#1|) (-13 (-687 |#1| (-1264 |#1|) (-1264 |#1|)) (-10 -8 (-15 -3628 ($ (-1264 |#1|))) (IF (|has| |#1| (-614 (-538))) (-6 (-614 (-538))) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -1780 ((-3 $ "failed") $)) |%noBranch|))) (-1049)) (T -689)) +((-1780 (*1 *1 *1) (|partial| -12 (-5 *1 (-689 *2)) (-4 *2 (-365)) (-4 *2 (-1049)))) (-3628 (*1 *1 *2) (-12 (-5 *2 (-1264 *3)) (-4 *3 (-1049)) (-5 *1 (-689 *3))))) +(-13 (-687 |#1| (-1264 |#1|) (-1264 |#1|)) (-10 -8 (-15 -3628 ($ (-1264 |#1|))) (IF (|has| |#1| (-614 (-538))) (-6 (-614 (-538))) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -1780 ((-3 $ "failed") $)) |%noBranch|))) +((-1377 (((-689 |#1|) (-689 |#1|) (-689 |#1|) (-689 |#1|)) 37)) (-2429 (((-689 |#1|) (-689 |#1|) (-689 |#1|) |#1|) 34)) (-2960 (((-689 |#1|) (-689 |#1|) (-689 |#1|) (-689 |#1|) (-689 |#1|) (-771)) 43)) (-1619 (((-689 |#1|) (-689 |#1|) (-689 |#1|) (-689 |#1|)) 27)) (-3465 (((-689 |#1|) (-689 |#1|) (-689 |#1|) (-689 |#1|)) 31) (((-689 |#1|) (-689 |#1|) (-689 |#1|)) 29)) (-3213 (((-689 |#1|) (-689 |#1|) |#1| (-689 |#1|)) 33)) (-3383 (((-689 |#1|) (-689 |#1|) (-689 |#1|)) 25)) (** (((-689 |#1|) (-689 |#1|) (-771)) 46))) +(((-690 |#1|) (-10 -7 (-15 -3383 ((-689 |#1|) (-689 |#1|) (-689 |#1|))) (-15 -1619 ((-689 |#1|) (-689 |#1|) (-689 |#1|) (-689 |#1|))) (-15 -3465 ((-689 |#1|) (-689 |#1|) (-689 |#1|))) (-15 -3465 ((-689 |#1|) (-689 |#1|) (-689 |#1|) (-689 |#1|))) (-15 -3213 ((-689 |#1|) (-689 |#1|) |#1| (-689 |#1|))) (-15 -2429 ((-689 |#1|) (-689 |#1|) (-689 |#1|) |#1|)) (-15 -1377 ((-689 |#1|) (-689 |#1|) (-689 |#1|) (-689 |#1|))) (-15 -2960 ((-689 |#1|) (-689 |#1|) (-689 |#1|) (-689 |#1|) (-689 |#1|) (-771))) (-15 ** ((-689 |#1|) (-689 |#1|) (-771)))) (-1049)) (T -690)) +((** (*1 *2 *2 *3) (-12 (-5 *2 (-689 *4)) (-5 *3 (-771)) (-4 *4 (-1049)) (-5 *1 (-690 *4)))) (-2960 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-689 *4)) (-5 *3 (-771)) (-4 *4 (-1049)) (-5 *1 (-690 *4)))) (-1377 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-690 *3)))) (-2429 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-690 *3)))) (-3213 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-690 *3)))) (-3465 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-690 *3)))) (-3465 (*1 *2 *2 *2) (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-690 *3)))) (-1619 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-690 *3)))) (-3383 (*1 *2 *2 *2) (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-690 *3))))) +(-10 -7 (-15 -3383 ((-689 |#1|) (-689 |#1|) (-689 |#1|))) (-15 -1619 ((-689 |#1|) (-689 |#1|) (-689 |#1|) (-689 |#1|))) (-15 -3465 ((-689 |#1|) (-689 |#1|) (-689 |#1|))) (-15 -3465 ((-689 |#1|) (-689 |#1|) (-689 |#1|) (-689 |#1|))) (-15 -3213 ((-689 |#1|) (-689 |#1|) |#1| (-689 |#1|))) (-15 -2429 ((-689 |#1|) (-689 |#1|) (-689 |#1|) |#1|)) (-15 -1377 ((-689 |#1|) (-689 |#1|) (-689 |#1|) (-689 |#1|))) (-15 -2960 ((-689 |#1|) (-689 |#1|) (-689 |#1|) (-689 |#1|) (-689 |#1|) (-771))) (-15 ** ((-689 |#1|) (-689 |#1|) (-771)))) +((-2980 (((-3 |#1| "failed") $) 18)) (-1709 ((|#1| $) NIL)) (-3409 (($) 7 T CONST)) (-3275 (($ |#1|) 8)) (-2479 (($ |#1|) 16) (((-862) $) 23)) (-2438 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -3409)) 11)) (-3955 ((|#1| $) 15))) +(((-691 |#1|) (-13 (-1259) (-1038 |#1|) (-613 (-862)) (-10 -8 (-15 -3275 ($ |#1|)) (-15 -2438 ((-112) $ (|[\|\|]| |#1|))) (-15 -2438 ((-112) $ (|[\|\|]| -3409))) (-15 -3955 (|#1| $)) (-15 -3409 ($) -1573))) (-613 (-862))) (T -691)) +((-3275 (*1 *1 *2) (-12 (-5 *1 (-691 *2)) (-4 *2 (-613 (-862))))) (-2438 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-613 (-862))) (-5 *2 (-112)) (-5 *1 (-691 *4)))) (-2438 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3409)) (-5 *2 (-112)) (-5 *1 (-691 *4)) (-4 *4 (-613 (-862))))) (-3955 (*1 *2 *1) (-12 (-5 *1 (-691 *2)) (-4 *2 (-613 (-862))))) (-3409 (*1 *1) (-12 (-5 *1 (-691 *2)) (-4 *2 (-613 (-862)))))) +(-13 (-1259) (-1038 |#1|) (-613 (-862)) (-10 -8 (-15 -3275 ($ |#1|)) (-15 -2438 ((-112) $ (|[\|\|]| |#1|))) (-15 -2438 ((-112) $ (|[\|\|]| -3409))) (-15 -3955 (|#1| $)) (-15 -3409 ($) -1573))) +((-2689 ((|#2| |#2| |#4|) 33)) (-4329 (((-689 |#2|) |#3| |#4|) 39)) (-4044 (((-689 |#2|) |#2| |#4|) 38)) (-2837 (((-1264 |#2|) |#2| |#4|) 16)) (-3144 ((|#2| |#3| |#4|) 32)) (-3854 (((-689 |#2|) |#3| |#4| (-771) (-771)) 50)) (-2496 (((-689 |#2|) |#2| |#4| (-771)) 49))) +(((-692 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2837 ((-1264 |#2|) |#2| |#4|)) (-15 -3144 (|#2| |#3| |#4|)) (-15 -2689 (|#2| |#2| |#4|)) (-15 -4044 ((-689 |#2|) |#2| |#4|)) (-15 -2496 ((-689 |#2|) |#2| |#4| (-771))) (-15 -4329 ((-689 |#2|) |#3| |#4|)) (-15 -3854 ((-689 |#2|) |#3| |#4| (-771) (-771)))) (-1099) (-900 |#1|) (-375 |#2|) (-13 (-375 |#1|) (-10 -7 (-6 -4417)))) (T -692)) +((-3854 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-771)) (-4 *6 (-1099)) (-4 *7 (-900 *6)) (-5 *2 (-689 *7)) (-5 *1 (-692 *6 *7 *3 *4)) (-4 *3 (-375 *7)) (-4 *4 (-13 (-375 *6) (-10 -7 (-6 -4417)))))) (-4329 (*1 *2 *3 *4) (-12 (-4 *5 (-1099)) (-4 *6 (-900 *5)) (-5 *2 (-689 *6)) (-5 *1 (-692 *5 *6 *3 *4)) (-4 *3 (-375 *6)) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4417)))))) (-2496 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-771)) (-4 *6 (-1099)) (-4 *3 (-900 *6)) (-5 *2 (-689 *3)) (-5 *1 (-692 *6 *3 *7 *4)) (-4 *7 (-375 *3)) (-4 *4 (-13 (-375 *6) (-10 -7 (-6 -4417)))))) (-4044 (*1 *2 *3 *4) (-12 (-4 *5 (-1099)) (-4 *3 (-900 *5)) (-5 *2 (-689 *3)) (-5 *1 (-692 *5 *3 *6 *4)) (-4 *6 (-375 *3)) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4417)))))) (-2689 (*1 *2 *2 *3) (-12 (-4 *4 (-1099)) (-4 *2 (-900 *4)) (-5 *1 (-692 *4 *2 *5 *3)) (-4 *5 (-375 *2)) (-4 *3 (-13 (-375 *4) (-10 -7 (-6 -4417)))))) (-3144 (*1 *2 *3 *4) (-12 (-4 *5 (-1099)) (-4 *2 (-900 *5)) (-5 *1 (-692 *5 *2 *3 *4)) (-4 *3 (-375 *2)) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4417)))))) (-2837 (*1 *2 *3 *4) (-12 (-4 *5 (-1099)) (-4 *3 (-900 *5)) (-5 *2 (-1264 *3)) (-5 *1 (-692 *5 *3 *6 *4)) (-4 *6 (-375 *3)) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4417))))))) +(-10 -7 (-15 -2837 ((-1264 |#2|) |#2| |#4|)) (-15 -3144 (|#2| |#3| |#4|)) (-15 -2689 (|#2| |#2| |#4|)) (-15 -4044 ((-689 |#2|) |#2| |#4|)) (-15 -2496 ((-689 |#2|) |#2| |#4| (-771))) (-15 -4329 ((-689 |#2|) |#3| |#4|)) (-15 -3854 ((-689 |#2|) |#3| |#4| (-771) (-771)))) +((-1402 (((-2 (|:| |num| (-689 |#1|)) (|:| |den| |#1|)) (-689 |#2|)) 20)) (-4189 ((|#1| (-689 |#2|)) 9)) (-3759 (((-689 |#1|) (-689 |#2|)) 18))) +(((-693 |#1| |#2|) (-10 -7 (-15 -4189 (|#1| (-689 |#2|))) (-15 -3759 ((-689 |#1|) (-689 |#2|))) (-15 -1402 ((-2 (|:| |num| (-689 |#1|)) (|:| |den| |#1|)) (-689 |#2|)))) (-558) (-992 |#1|)) (T -693)) +((-1402 (*1 *2 *3) (-12 (-5 *3 (-689 *5)) (-4 *5 (-992 *4)) (-4 *4 (-558)) (-5 *2 (-2 (|:| |num| (-689 *4)) (|:| |den| *4))) (-5 *1 (-693 *4 *5)))) (-3759 (*1 *2 *3) (-12 (-5 *3 (-689 *5)) (-4 *5 (-992 *4)) (-4 *4 (-558)) (-5 *2 (-689 *4)) (-5 *1 (-693 *4 *5)))) (-4189 (*1 *2 *3) (-12 (-5 *3 (-689 *4)) (-4 *4 (-992 *2)) (-4 *2 (-558)) (-5 *1 (-693 *2 *4))))) +(-10 -7 (-15 -4189 (|#1| (-689 |#2|))) (-15 -3759 ((-689 |#1|) (-689 |#2|))) (-15 -1402 ((-2 (|:| |num| (-689 |#1|)) (|:| |den| |#1|)) (-689 |#2|)))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-1716 (((-112) $) NIL)) (-1321 (((-689 (-699))) NIL) (((-689 (-699)) (-1264 $)) NIL)) (-3837 (((-699) $) NIL)) (-3219 (($ $) NIL (|has| (-699) (-1199)))) (-3091 (($ $) NIL (|has| (-699) (-1199)))) (-2568 (((-1187 (-921) (-771)) (-566)) NIL (|has| (-699) (-351)))) (-3174 (((-3 $ "failed") $ $) NIL)) (-4058 (((-420 (-1171 $)) (-1171 $)) NIL (-12 (|has| (-699) (-308)) (|has| (-699) (-909))))) (-3980 (($ $) NIL (-2809 (-12 (|has| (-699) (-308)) (|has| (-699) (-909))) (|has| (-699) (-365))))) (-3348 (((-420 $) $) NIL (-2809 (-12 (|has| (-699) (-308)) (|has| (-699) (-909))) (|has| (-699) (-365))))) (-2338 (($ $) NIL (-12 (|has| (-699) (-1002)) (|has| (-699) (-1199))))) (-4262 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (-12 (|has| (-699) (-308)) (|has| (-699) (-909))))) (-2761 (((-112) $ $) NIL (|has| (-699) (-308)))) (-4049 (((-771)) NIL (|has| (-699) (-370)))) (-3197 (($ $) NIL (|has| (-699) (-1199)))) (-3067 (($ $) NIL (|has| (-699) (-1199)))) (-3240 (($ $) NIL (|has| (-699) (-1199)))) (-3115 (($ $) NIL (|has| (-699) (-1199)))) (-1811 (($) NIL T CONST)) (-2980 (((-3 (-566) "failed") $) NIL) (((-3 (-699) "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL (|has| (-699) (-1038 (-409 (-566)))))) (-1709 (((-566) $) NIL) (((-699) $) NIL) (((-409 (-566)) $) NIL (|has| (-699) (-1038 (-409 (-566)))))) (-2422 (($ (-1264 (-699))) NIL) (($ (-1264 (-699)) (-1264 $)) NIL)) (-2713 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-699) (-351)))) (-2925 (($ $ $) NIL (|has| (-699) (-308)))) (-2087 (((-689 (-699)) $) NIL) (((-689 (-699)) $ (-1264 $)) NIL)) (-2275 (((-689 (-699)) (-689 $)) NIL) (((-2 (|:| -4196 (-689 (-699))) (|:| |vec| (-1264 (-699)))) (-689 $) (-1264 $)) NIL) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| (-699) (-639 (-566)))) (((-689 (-566)) (-689 $)) NIL (|has| (-699) (-639 (-566))))) (-1838 (((-3 $ "failed") (-409 (-1171 (-699)))) NIL (|has| (-699) (-365))) (($ (-1171 (-699))) NIL)) (-3757 (((-3 $ "failed") $) NIL)) (-2352 (((-699) $) 29)) (-2515 (((-3 (-409 (-566)) "failed") $) NIL (|has| (-699) (-547)))) (-2024 (((-112) $) NIL (|has| (-699) (-547)))) (-3330 (((-409 (-566)) $) NIL (|has| (-699) (-547)))) (-2299 (((-921)) NIL)) (-1415 (($) NIL (|has| (-699) (-370)))) (-2937 (($ $ $) NIL (|has| (-699) (-308)))) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) NIL (|has| (-699) (-308)))) (-2409 (($) NIL (|has| (-699) (-351)))) (-1450 (((-112) $) NIL (|has| (-699) (-351)))) (-4202 (($ $) NIL (|has| (-699) (-351))) (($ $ (-771)) NIL (|has| (-699) (-351)))) (-4188 (((-112) $) NIL (-2809 (-12 (|has| (-699) (-308)) (|has| (-699) (-909))) (|has| (-699) (-365))))) (-2885 (((-2 (|:| |r| (-699)) (|:| |phi| (-699))) $) NIL (-12 (|has| (-699) (-1059)) (|has| (-699) (-1199))))) (-2964 (($) NIL (|has| (-699) (-1199)))) (-1542 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (|has| (-699) (-886 (-381)))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (|has| (-699) (-886 (-566))))) (-1802 (((-833 (-921)) $) NIL (|has| (-699) (-351))) (((-921) $) NIL (|has| (-699) (-351)))) (-2264 (((-112) $) NIL)) (-3146 (($ $ (-566)) NIL (-12 (|has| (-699) (-1002)) (|has| (-699) (-1199))))) (-1398 (((-699) $) NIL)) (-4278 (((-3 $ "failed") $) NIL (|has| (-699) (-351)))) (-2495 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| (-699) (-308)))) (-1869 (((-1171 (-699)) $) NIL (|has| (-699) (-365)))) (-1920 (($ $ $) NIL)) (-3038 (($ $ $) NIL)) (-3080 (($ (-1 (-699) (-699)) $) NIL)) (-4051 (((-921) $) NIL (|has| (-699) (-370)))) (-3676 (($ $) NIL (|has| (-699) (-1199)))) (-1829 (((-1171 (-699)) $) NIL)) (-2120 (($ (-644 $)) NIL (|has| (-699) (-308))) (($ $ $) NIL (|has| (-699) (-308)))) (-3151 (((-1157) $) NIL)) (-2577 (($ $) NIL (|has| (-699) (-365)))) (-3968 (($) NIL (|has| (-699) (-351)) CONST)) (-2104 (($ (-921)) NIL (|has| (-699) (-370)))) (-2023 (($) NIL)) (-2365 (((-699) $) 31)) (-4059 (((-1119) $) NIL)) (-4086 (($) NIL)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| (-699) (-308)))) (-2162 (($ (-644 $)) NIL (|has| (-699) (-308))) (($ $ $) NIL (|has| (-699) (-308)))) (-2816 (((-644 (-2 (|:| -2325 (-566)) (|:| -3631 (-566))))) NIL (|has| (-699) (-351)))) (-1500 (((-420 (-1171 $)) (-1171 $)) NIL (-12 (|has| (-699) (-308)) (|has| (-699) (-909))))) (-3917 (((-420 (-1171 $)) (-1171 $)) NIL (-12 (|has| (-699) (-308)) (|has| (-699) (-909))))) (-2325 (((-420 $) $) NIL (-2809 (-12 (|has| (-699) (-308)) (|has| (-699) (-909))) (|has| (-699) (-365))))) (-2585 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-699) (-308))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL (|has| (-699) (-308)))) (-2976 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-699)) NIL (|has| (-699) (-558)))) (-2840 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| (-699) (-308)))) (-3571 (($ $) NIL (|has| (-699) (-1199)))) (-3297 (($ $ (-1175) (-699)) NIL (|has| (-699) (-516 (-1175) (-699)))) (($ $ (-644 (-1175)) (-644 (-699))) NIL (|has| (-699) (-516 (-1175) (-699)))) (($ $ (-644 (-295 (-699)))) NIL (|has| (-699) (-310 (-699)))) (($ $ (-295 (-699))) NIL (|has| (-699) (-310 (-699)))) (($ $ (-699) (-699)) NIL (|has| (-699) (-310 (-699)))) (($ $ (-644 (-699)) (-644 (-699))) NIL (|has| (-699) (-310 (-699))))) (-1383 (((-771) $) NIL (|has| (-699) (-308)))) (-4376 (($ $ (-699)) NIL (|has| (-699) (-287 (-699) (-699))))) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL (|has| (-699) (-308)))) (-3553 (((-699)) NIL) (((-699) (-1264 $)) NIL)) (-4107 (((-3 (-771) "failed") $ $) NIL (|has| (-699) (-351))) (((-771) $) NIL (|has| (-699) (-351)))) (-3526 (($ $ (-1 (-699) (-699))) NIL) (($ $ (-1 (-699) (-699)) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| (-699) (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| (-699) (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| (-699) (-900 (-1175)))) (($ $ (-1175)) NIL (|has| (-699) (-900 (-1175)))) (($ $ (-771)) NIL (|has| (-699) (-233))) (($ $) NIL (|has| (-699) (-233)))) (-3098 (((-689 (-699)) (-1264 $) (-1 (-699) (-699))) NIL (|has| (-699) (-365)))) (-2301 (((-1171 (-699))) NIL)) (-3250 (($ $) NIL (|has| (-699) (-1199)))) (-3126 (($ $) NIL (|has| (-699) (-1199)))) (-3648 (($) NIL (|has| (-699) (-351)))) (-3227 (($ $) NIL (|has| (-699) (-1199)))) (-3105 (($ $) NIL (|has| (-699) (-1199)))) (-3207 (($ $) NIL (|has| (-699) (-1199)))) (-3079 (($ $) NIL (|has| (-699) (-1199)))) (-3747 (((-689 (-699)) (-1264 $)) NIL) (((-1264 (-699)) $) NIL) (((-689 (-699)) (-1264 $) (-1264 $)) NIL) (((-1264 (-699)) $ (-1264 $)) NIL)) (-3136 (((-538) $) NIL (|has| (-699) (-614 (-538)))) (((-169 (-225)) $) NIL (|has| (-699) (-1022))) (((-169 (-381)) $) NIL (|has| (-699) (-1022))) (((-892 (-381)) $) NIL (|has| (-699) (-614 (-892 (-381))))) (((-892 (-566)) $) NIL (|has| (-699) (-614 (-892 (-566))))) (($ (-1171 (-699))) NIL) (((-1171 (-699)) $) NIL) (($ (-1264 (-699))) NIL) (((-1264 (-699)) $) NIL)) (-2664 (($ $) NIL)) (-3233 (((-3 (-1264 $) "failed") (-689 $)) NIL (-2809 (-12 (|has| (-699) (-308)) (|has| $ (-145)) (|has| (-699) (-909))) (|has| (-699) (-351))))) (-3657 (($ (-699) (-699)) 12)) (-2479 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-566)) NIL) (($ (-699)) NIL) (($ (-169 (-381))) 13) (($ (-169 (-566))) 19) (($ (-169 (-699))) 28) (($ (-169 (-701))) 25) (((-169 (-381)) $) 33) (($ (-409 (-566))) NIL (-2809 (|has| (-699) (-1038 (-409 (-566)))) (|has| (-699) (-365))))) (-2645 (($ $) NIL (|has| (-699) (-351))) (((-3 $ "failed") $) NIL (-2809 (-12 (|has| (-699) (-308)) (|has| $ (-145)) (|has| (-699) (-909))) (|has| (-699) (-145))))) (-3728 (((-1171 (-699)) $) NIL)) (-1558 (((-771)) NIL T CONST)) (-3900 (((-112) $ $) NIL)) (-1419 (((-1264 $)) NIL)) (-3285 (($ $) NIL (|has| (-699) (-1199)))) (-3157 (($ $) NIL (|has| (-699) (-1199)))) (-1333 (((-112) $ $) NIL)) (-3260 (($ $) NIL (|has| (-699) (-1199)))) (-3135 (($ $) NIL (|has| (-699) (-1199)))) (-3309 (($ $) NIL (|has| (-699) (-1199)))) (-3179 (($ $) NIL (|has| (-699) (-1199)))) (-3624 (((-699) $) NIL (|has| (-699) (-1199)))) (-1861 (($ $) NIL (|has| (-699) (-1199)))) (-3190 (($ $) NIL (|has| (-699) (-1199)))) (-3299 (($ $) NIL (|has| (-699) (-1199)))) (-3168 (($ $) NIL (|has| (-699) (-1199)))) (-3273 (($ $) NIL (|has| (-699) (-1199)))) (-3148 (($ $) NIL (|has| (-699) (-1199)))) (-4298 (($ $) NIL (|has| (-699) (-1059)))) (-2446 (($) NIL T CONST)) (-2459 (($) NIL T CONST)) (-2834 (($ $ (-1 (-699) (-699))) NIL) (($ $ (-1 (-699) (-699)) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| (-699) (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| (-699) (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| (-699) (-900 (-1175)))) (($ $ (-1175)) NIL (|has| (-699) (-900 (-1175)))) (($ $ (-771)) NIL (|has| (-699) (-233))) (($ $) NIL (|has| (-699) (-233)))) (-3019 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3004 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-3077 (($ $ $) NIL (|has| (-699) (-365)))) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ $) NIL (|has| (-699) (-1199))) (($ $ (-409 (-566))) NIL (-12 (|has| (-699) (-1002)) (|has| (-699) (-1199)))) (($ $ (-566)) NIL (|has| (-699) (-365)))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ (-699) $) NIL) (($ $ (-699)) NIL) (($ (-409 (-566)) $) NIL (|has| (-699) (-365))) (($ $ (-409 (-566))) NIL (|has| (-699) (-365))))) +(((-694) (-13 (-389) (-166 (-699)) (-10 -8 (-15 -2479 ($ (-169 (-381)))) (-15 -2479 ($ (-169 (-566)))) (-15 -2479 ($ (-169 (-699)))) (-15 -2479 ($ (-169 (-701)))) (-15 -2479 ((-169 (-381)) $))))) (T -694)) +((-2479 (*1 *1 *2) (-12 (-5 *2 (-169 (-381))) (-5 *1 (-694)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-169 (-566))) (-5 *1 (-694)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-169 (-699))) (-5 *1 (-694)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-169 (-701))) (-5 *1 (-694)))) (-2479 (*1 *2 *1) (-12 (-5 *2 (-169 (-381))) (-5 *1 (-694))))) +(-13 (-389) (-166 (-699)) (-10 -8 (-15 -2479 ($ (-169 (-381)))) (-15 -2479 ($ (-169 (-566)))) (-15 -2479 ($ (-169 (-699)))) (-15 -2479 ($ (-169 (-701)))) (-15 -2479 ((-169 (-381)) $)))) +((-2986 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-1453 (((-112) $ (-771)) 8)) (-4364 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4417)))) (-3543 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4417)))) (-1811 (($) 7 T CONST)) (-1346 (($ $) 63)) (-4111 (($ $) 59 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-2295 (($ |#1| $) 48 (|has| $ (-6 -4417))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4417)))) (-2628 (($ |#1| $) 58 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4417)))) (-1838 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4417)))) (-3872 (((-644 |#1|) $) 31 (|has| $ (-6 -4417)))) (-2756 (((-112) $ (-771)) 9)) (-4227 (((-644 |#1|) $) 30 (|has| $ (-6 -4417)))) (-1688 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-3708 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#1| |#1|) $) 36)) (-4106 (((-112) $ (-771)) 10)) (-3151 (((-1157) $) 22 (|has| |#1| (-1099)))) (-4255 ((|#1| $) 40)) (-4354 (($ |#1| $) 41) (($ |#1| $ (-771)) 64)) (-4059 (((-1119) $) 21 (|has| |#1| (-1099)))) (-2688 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-4097 ((|#1| $) 42)) (-3966 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1844 (((-112) $ $) 14)) (-2788 (((-112) $) 11)) (-1737 (($) 12)) (-3112 (((-644 (-2 (|:| -2806 |#1|) (|:| -4068 (-771)))) $) 62)) (-1797 (($) 50) (($ (-644 |#1|)) 49)) (-4068 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4417))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-3924 (($ $) 13)) (-3136 (((-538) $) 60 (|has| |#1| (-614 (-538))))) (-2489 (($ (-644 |#1|)) 51)) (-2479 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-3900 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-2471 (($ (-644 |#1|)) 43)) (-3667 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4417)))) (-2952 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3002 (((-771) $) 6 (|has| $ (-6 -4417))))) +(((-695 |#1|) (-140) (-1099)) (T -695)) +((-4354 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-771)) (-4 *1 (-695 *2)) (-4 *2 (-1099)))) (-1346 (*1 *1 *1) (-12 (-4 *1 (-695 *2)) (-4 *2 (-1099)))) (-3112 (*1 *2 *1) (-12 (-4 *1 (-695 *3)) (-4 *3 (-1099)) (-5 *2 (-644 (-2 (|:| -2806 *3) (|:| -4068 (-771)))))))) +(-13 (-235 |t#1|) (-10 -8 (-15 -4354 ($ |t#1| $ (-771))) (-15 -1346 ($ $)) (-15 -3112 ((-644 (-2 (|:| -2806 |t#1|) (|:| -4068 (-771)))) $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2809 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-151 |#1|) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-235 |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1099) |has| |#1| (-1099)) ((-1214) . T)) +((-3455 (((-644 |#1|) (-644 (-2 (|:| -2325 |#1|) (|:| -1630 (-566)))) (-566)) 66)) (-4390 ((|#1| |#1| (-566)) 62)) (-2162 ((|#1| |#1| |#1| (-566)) 46)) (-2325 (((-644 |#1|) |#1| (-566)) 49)) (-3188 ((|#1| |#1| (-566) |#1| (-566)) 40)) (-3940 (((-644 (-2 (|:| -2325 |#1|) (|:| -1630 (-566)))) |#1| (-566)) 61))) +(((-696 |#1|) (-10 -7 (-15 -2162 (|#1| |#1| |#1| (-566))) (-15 -4390 (|#1| |#1| (-566))) (-15 -2325 ((-644 |#1|) |#1| (-566))) (-15 -3940 ((-644 (-2 (|:| -2325 |#1|) (|:| -1630 (-566)))) |#1| (-566))) (-15 -3455 ((-644 |#1|) (-644 (-2 (|:| -2325 |#1|) (|:| -1630 (-566)))) (-566))) (-15 -3188 (|#1| |#1| (-566) |#1| (-566)))) (-1240 (-566))) (T -696)) +((-3188 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-566)) (-5 *1 (-696 *2)) (-4 *2 (-1240 *3)))) (-3455 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-2 (|:| -2325 *5) (|:| -1630 (-566))))) (-5 *4 (-566)) (-4 *5 (-1240 *4)) (-5 *2 (-644 *5)) (-5 *1 (-696 *5)))) (-3940 (*1 *2 *3 *4) (-12 (-5 *4 (-566)) (-5 *2 (-644 (-2 (|:| -2325 *3) (|:| -1630 *4)))) (-5 *1 (-696 *3)) (-4 *3 (-1240 *4)))) (-2325 (*1 *2 *3 *4) (-12 (-5 *4 (-566)) (-5 *2 (-644 *3)) (-5 *1 (-696 *3)) (-4 *3 (-1240 *4)))) (-4390 (*1 *2 *2 *3) (-12 (-5 *3 (-566)) (-5 *1 (-696 *2)) (-4 *2 (-1240 *3)))) (-2162 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-566)) (-5 *1 (-696 *2)) (-4 *2 (-1240 *3))))) +(-10 -7 (-15 -2162 (|#1| |#1| |#1| (-566))) (-15 -4390 (|#1| |#1| (-566))) (-15 -2325 ((-644 |#1|) |#1| (-566))) (-15 -3940 ((-644 (-2 (|:| -2325 |#1|) (|:| -1630 (-566)))) |#1| (-566))) (-15 -3455 ((-644 |#1|) (-644 (-2 (|:| -2325 |#1|) (|:| -1630 (-566)))) (-566))) (-15 -3188 (|#1| |#1| (-566) |#1| (-566)))) +((-3518 (((-1 (-943 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))) 17)) (-2810 (((-1132 (-225)) (-1132 (-225)) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-225)) (-1093 (-225)) (-644 (-264))) 56) (((-1132 (-225)) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-225)) (-1093 (-225)) (-644 (-264))) 58) (((-1132 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1093 (-225)) (-1093 (-225)) (-644 (-264))) 60)) (-1685 (((-1132 (-225)) (-317 (-566)) (-317 (-566)) (-317 (-566)) (-1 (-225) (-225)) (-1093 (-225)) (-644 (-264))) NIL)) (-1441 (((-1132 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1093 (-225)) (-1093 (-225)) (-644 (-264))) 61))) +(((-697) (-10 -7 (-15 -2810 ((-1132 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1093 (-225)) (-1093 (-225)) (-644 (-264)))) (-15 -2810 ((-1132 (-225)) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-225)) (-1093 (-225)) (-644 (-264)))) (-15 -2810 ((-1132 (-225)) (-1132 (-225)) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-225)) (-1093 (-225)) (-644 (-264)))) (-15 -1441 ((-1132 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1093 (-225)) (-1093 (-225)) (-644 (-264)))) (-15 -1685 ((-1132 (-225)) (-317 (-566)) (-317 (-566)) (-317 (-566)) (-1 (-225) (-225)) (-1093 (-225)) (-644 (-264)))) (-15 -3518 ((-1 (-943 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))) (T -697)) +((-3518 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1 (-225) (-225) (-225) (-225))) (-5 *2 (-1 (-943 (-225)) (-225) (-225))) (-5 *1 (-697)))) (-1685 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-317 (-566))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1093 (-225))) (-5 *6 (-644 (-264))) (-5 *2 (-1132 (-225))) (-5 *1 (-697)))) (-1441 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) (-5 *5 (-1093 (-225))) (-5 *6 (-644 (-264))) (-5 *2 (-1132 (-225))) (-5 *1 (-697)))) (-2810 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1132 (-225))) (-5 *3 (-1 (-943 (-225)) (-225) (-225))) (-5 *4 (-1093 (-225))) (-5 *5 (-644 (-264))) (-5 *1 (-697)))) (-2810 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-943 (-225)) (-225) (-225))) (-5 *4 (-1093 (-225))) (-5 *5 (-644 (-264))) (-5 *2 (-1132 (-225))) (-5 *1 (-697)))) (-2810 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) (-5 *5 (-1093 (-225))) (-5 *6 (-644 (-264))) (-5 *2 (-1132 (-225))) (-5 *1 (-697))))) +(-10 -7 (-15 -2810 ((-1132 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1093 (-225)) (-1093 (-225)) (-644 (-264)))) (-15 -2810 ((-1132 (-225)) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-225)) (-1093 (-225)) (-644 (-264)))) (-15 -2810 ((-1132 (-225)) (-1132 (-225)) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-225)) (-1093 (-225)) (-644 (-264)))) (-15 -1441 ((-1132 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1093 (-225)) (-1093 (-225)) (-644 (-264)))) (-15 -1685 ((-1132 (-225)) (-317 (-566)) (-317 (-566)) (-317 (-566)) (-1 (-225) (-225)) (-1093 (-225)) (-644 (-264)))) (-15 -3518 ((-1 (-943 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))))) +((-2325 (((-420 (-1171 |#4|)) (-1171 |#4|)) 86) (((-420 |#4|) |#4|) 270))) +(((-698 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2325 ((-420 |#4|) |#4|)) (-15 -2325 ((-420 (-1171 |#4|)) (-1171 |#4|)))) (-850) (-793) (-351) (-949 |#3| |#2| |#1|)) (T -698)) +((-2325 (*1 *2 *3) (-12 (-4 *4 (-850)) (-4 *5 (-793)) (-4 *6 (-351)) (-4 *7 (-949 *6 *5 *4)) (-5 *2 (-420 (-1171 *7))) (-5 *1 (-698 *4 *5 *6 *7)) (-5 *3 (-1171 *7)))) (-2325 (*1 *2 *3) (-12 (-4 *4 (-850)) (-4 *5 (-793)) (-4 *6 (-351)) (-5 *2 (-420 *3)) (-5 *1 (-698 *4 *5 *6 *3)) (-4 *3 (-949 *6 *5 *4))))) +(-10 -7 (-15 -2325 ((-420 |#4|) |#4|)) (-15 -2325 ((-420 (-1171 |#4|)) (-1171 |#4|)))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) 100)) (-2488 (((-566) $) 34)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-1716 (((-112) $) NIL)) (-3175 (($ $) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-3980 (($ $) NIL)) (-3348 (((-420 $) $) NIL)) (-2338 (($ $) NIL)) (-2761 (((-112) $ $) NIL)) (-2920 (((-566) $) NIL)) (-1811 (($) NIL T CONST)) (-1505 (($ $) NIL)) (-2980 (((-3 (-566) "failed") $) 89) (((-3 (-409 (-566)) "failed") $) 28) (((-3 (-381) "failed") $) 86)) (-1709 (((-566) $) 91) (((-409 (-566)) $) 83) (((-381) $) 84)) (-2925 (($ $ $) 112)) (-3757 (((-3 $ "failed") $) 103)) (-2937 (($ $ $) 111)) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) NIL)) (-4188 (((-112) $) NIL)) (-4039 (((-921)) 93) (((-921) (-921)) 92)) (-2133 (((-112) $) NIL)) (-1542 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL)) (-1802 (((-566) $) NIL)) (-2264 (((-112) $) NIL)) (-3146 (($ $ (-566)) NIL)) (-1398 (($ $) NIL)) (-3420 (((-112) $) NIL)) (-2495 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2867 (((-566) (-566)) 97) (((-566)) 98)) (-1920 (($ $ $) NIL) (($) NIL (-12 (-2387 (|has| $ (-6 -4400))) (-2387 (|has| $ (-6 -4408)))))) (-2607 (((-566) (-566)) 95) (((-566)) 96)) (-3038 (($ $ $) NIL) (($) NIL (-12 (-2387 (|has| $ (-6 -4400))) (-2387 (|has| $ (-6 -4408)))))) (-1687 (((-566) $) 17)) (-2120 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3151 (((-1157) $) NIL)) (-2577 (($ $) 107)) (-4148 (((-921) (-566)) NIL (|has| $ (-6 -4408)))) (-4059 (((-1119) $) NIL)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2162 (($ $ $) NIL) (($ (-644 $)) NIL)) (-4305 (($ $) NIL)) (-2001 (($ $) NIL)) (-2965 (($ (-566) (-566)) NIL) (($ (-566) (-566) (-921)) NIL)) (-2325 (((-420 $) $) NIL)) (-2585 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2976 (((-3 $ "failed") $ $) 108)) (-2840 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3631 (((-566) $) 24)) (-1383 (((-771) $) NIL)) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) 110)) (-3378 (((-921)) NIL) (((-921) (-921)) NIL (|has| $ (-6 -4408)))) (-1999 (((-921) (-566)) NIL (|has| $ (-6 -4408)))) (-3136 (((-381) $) NIL) (((-225) $) NIL) (((-892 (-381)) $) NIL)) (-2479 (((-862) $) 68) (($ (-566)) 79) (($ $) NIL) (($ (-409 (-566))) 82) (($ (-566)) 79) (($ (-409 (-566))) 82) (($ (-381)) 76) (((-381) $) 66) (($ (-701)) 71)) (-1558 (((-771)) 122 T CONST)) (-2090 (($ (-566) (-566) (-921)) 59)) (-3908 (($ $) NIL)) (-3143 (((-921)) NIL) (((-921) (-921)) NIL (|has| $ (-6 -4408)))) (-3900 (((-112) $ $) NIL)) (-3810 (((-921)) 46) (((-921) (-921)) 94)) (-1333 (((-112) $ $) NIL)) (-4298 (($ $) NIL)) (-2446 (($) 37 T CONST)) (-2459 (($) 18 T CONST)) (-3019 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 99)) (-3004 (((-112) $ $) NIL)) (-2977 (((-112) $ $) 121)) (-3077 (($ $ $) 81)) (-3065 (($ $) 118) (($ $ $) 119)) (-3052 (($ $ $) 117)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL) (($ $ (-409 (-566))) 106)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 113) (($ $ $) 104) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL))) +(((-699) (-13 (-406) (-389) (-365) (-1038 (-381)) (-1038 (-409 (-566))) (-147) (-10 -8 (-15 -4039 ((-921) (-921))) (-15 -4039 ((-921))) (-15 -3810 ((-921) (-921))) (-15 -2607 ((-566) (-566))) (-15 -2607 ((-566))) (-15 -2867 ((-566) (-566))) (-15 -2867 ((-566))) (-15 -2479 ((-381) $)) (-15 -2479 ($ (-701))) (-15 -1687 ((-566) $)) (-15 -3631 ((-566) $)) (-15 -2090 ($ (-566) (-566) (-921)))))) (T -699)) +((-3631 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-699)))) (-1687 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-699)))) (-4039 (*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-699)))) (-4039 (*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-699)))) (-3810 (*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-699)))) (-2607 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-699)))) (-2607 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-699)))) (-2867 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-699)))) (-2867 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-699)))) (-2479 (*1 *2 *1) (-12 (-5 *2 (-381)) (-5 *1 (-699)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-699)))) (-2090 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-566)) (-5 *3 (-921)) (-5 *1 (-699))))) +(-13 (-406) (-389) (-365) (-1038 (-381)) (-1038 (-409 (-566))) (-147) (-10 -8 (-15 -4039 ((-921) (-921))) (-15 -4039 ((-921))) (-15 -3810 ((-921) (-921))) (-15 -2607 ((-566) (-566))) (-15 -2607 ((-566))) (-15 -2867 ((-566) (-566))) (-15 -2867 ((-566))) (-15 -2479 ((-381) $)) (-15 -2479 ($ (-701))) (-15 -1687 ((-566) $)) (-15 -3631 ((-566) $)) (-15 -2090 ($ (-566) (-566) (-921))))) +((-2171 (((-689 |#1|) (-689 |#1|) |#1| |#1|) 88)) (-3411 (((-689 |#1|) (-689 |#1|) |#1|) 67)) (-3999 (((-689 |#1|) (-689 |#1|) |#1|) 89)) (-2132 (((-689 |#1|) (-689 |#1|)) 68)) (-2923 (((-2 (|:| -3371 |#1|) (|:| -3131 |#1|)) |#1| |#1|) 87))) +(((-700 |#1|) (-10 -7 (-15 -2132 ((-689 |#1|) (-689 |#1|))) (-15 -3411 ((-689 |#1|) (-689 |#1|) |#1|)) (-15 -3999 ((-689 |#1|) (-689 |#1|) |#1|)) (-15 -2171 ((-689 |#1|) (-689 |#1|) |#1| |#1|)) (-15 -2923 ((-2 (|:| -3371 |#1|) (|:| -3131 |#1|)) |#1| |#1|))) (-308)) (T -700)) +((-2923 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -3371 *3) (|:| -3131 *3))) (-5 *1 (-700 *3)) (-4 *3 (-308)))) (-2171 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-689 *3)) (-4 *3 (-308)) (-5 *1 (-700 *3)))) (-3999 (*1 *2 *2 *3) (-12 (-5 *2 (-689 *3)) (-4 *3 (-308)) (-5 *1 (-700 *3)))) (-3411 (*1 *2 *2 *3) (-12 (-5 *2 (-689 *3)) (-4 *3 (-308)) (-5 *1 (-700 *3)))) (-2132 (*1 *2 *2) (-12 (-5 *2 (-689 *3)) (-4 *3 (-308)) (-5 *1 (-700 *3))))) +(-10 -7 (-15 -2132 ((-689 |#1|) (-689 |#1|))) (-15 -3411 ((-689 |#1|) (-689 |#1|) |#1|)) (-15 -3999 ((-689 |#1|) (-689 |#1|) |#1|)) (-15 -2171 ((-689 |#1|) (-689 |#1|) |#1| |#1|)) (-15 -2923 ((-2 (|:| -3371 |#1|) (|:| -3131 |#1|)) |#1| |#1|))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-1716 (((-112) $) NIL)) (-2590 (($ $ $) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-1538 (($ $ $ $) NIL)) (-3980 (($ $) NIL)) (-3348 (((-420 $) $) NIL)) (-2761 (((-112) $ $) NIL)) (-2920 (((-566) $) NIL)) (-3099 (($ $ $) NIL)) (-1811 (($) NIL T CONST)) (-2980 (((-3 (-566) "failed") $) 31)) (-1709 (((-566) $) 29)) (-2925 (($ $ $) NIL)) (-2275 (((-689 (-566)) (-689 $)) NIL) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL)) (-3757 (((-3 $ "failed") $) NIL)) (-2515 (((-3 (-409 (-566)) "failed") $) NIL)) (-2024 (((-112) $) NIL)) (-3330 (((-409 (-566)) $) NIL)) (-1415 (($ $) NIL) (($) NIL)) (-2937 (($ $ $) NIL)) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) NIL)) (-4188 (((-112) $) NIL)) (-1328 (($ $ $ $) NIL)) (-1387 (($ $ $) NIL)) (-2133 (((-112) $) NIL)) (-1655 (($ $ $) NIL)) (-1542 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL)) (-2264 (((-112) $) NIL)) (-3400 (((-112) $) NIL)) (-4278 (((-3 $ "failed") $) NIL)) (-3420 (((-112) $) NIL)) (-2495 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2731 (($ $ $ $) NIL)) (-1920 (($ $ $) NIL)) (-3483 (((-921) (-921)) 10) (((-921)) 9)) (-3038 (($ $ $) NIL)) (-1546 (($ $) NIL)) (-4332 (($ $) NIL)) (-2120 (($ (-644 $)) NIL) (($ $ $) NIL)) (-3151 (((-1157) $) NIL)) (-1432 (($ $ $) NIL)) (-3968 (($) NIL T CONST)) (-4282 (($ $) NIL)) (-4059 (((-1119) $) NIL)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2162 (($ (-644 $)) NIL) (($ $ $) NIL)) (-2259 (($ $) NIL)) (-2325 (((-420 $) $) NIL)) (-2585 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2976 (((-3 $ "failed") $ $) NIL)) (-2840 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2206 (((-112) $) NIL)) (-1383 (((-771) $) NIL)) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL)) (-3526 (($ $) NIL) (($ $ (-771)) NIL)) (-3166 (($ $) NIL)) (-3924 (($ $) NIL)) (-3136 (((-225) $) NIL) (((-381) $) NIL) (((-892 (-566)) $) NIL) (((-538) $) NIL) (((-566) $) NIL)) (-2479 (((-862) $) NIL) (($ (-566)) 28) (($ $) NIL) (($ (-566)) 28) (((-317 $) (-317 (-566))) 18)) (-1558 (((-771)) NIL T CONST)) (-3556 (((-112) $ $) NIL)) (-1835 (($ $ $) NIL)) (-3900 (((-112) $ $) NIL)) (-3810 (($) NIL)) (-1333 (((-112) $ $) NIL)) (-3751 (($ $ $ $) NIL)) (-4298 (($ $) NIL)) (-2446 (($) NIL T CONST)) (-2459 (($) NIL T CONST)) (-2834 (($ $) NIL) (($ $ (-771)) NIL)) (-3019 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3004 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL))) +(((-701) (-13 (-389) (-547) (-10 -8 (-15 -3483 ((-921) (-921))) (-15 -3483 ((-921))) (-15 -2479 ((-317 $) (-317 (-566))))))) (T -701)) +((-3483 (*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-701)))) (-3483 (*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-701)))) (-2479 (*1 *2 *3) (-12 (-5 *3 (-317 (-566))) (-5 *2 (-317 (-701))) (-5 *1 (-701))))) +(-13 (-389) (-547) (-10 -8 (-15 -3483 ((-921) (-921))) (-15 -3483 ((-921))) (-15 -2479 ((-317 $) (-317 (-566)))))) +((-1431 (((-1 |#4| |#2| |#3|) |#1| (-1175) (-1175)) 19)) (-2565 (((-1 |#4| |#2| |#3|) (-1175)) 12))) +(((-702 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2565 ((-1 |#4| |#2| |#3|) (-1175))) (-15 -1431 ((-1 |#4| |#2| |#3|) |#1| (-1175) (-1175)))) (-614 (-538)) (-1214) (-1214) (-1214)) (T -702)) +((-1431 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1175)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-702 *3 *5 *6 *7)) (-4 *3 (-614 (-538))) (-4 *5 (-1214)) (-4 *6 (-1214)) (-4 *7 (-1214)))) (-2565 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-702 *4 *5 *6 *7)) (-4 *4 (-614 (-538))) (-4 *5 (-1214)) (-4 *6 (-1214)) (-4 *7 (-1214))))) +(-10 -7 (-15 -2565 ((-1 |#4| |#2| |#3|) (-1175))) (-15 -1431 ((-1 |#4| |#2| |#3|) |#1| (-1175) (-1175)))) +((-2671 (((-1 (-225) (-225) (-225)) |#1| (-1175) (-1175)) 36) (((-1 (-225) (-225)) |#1| (-1175)) 41))) +(((-703 |#1|) (-10 -7 (-15 -2671 ((-1 (-225) (-225)) |#1| (-1175))) (-15 -2671 ((-1 (-225) (-225) (-225)) |#1| (-1175) (-1175)))) (-614 (-538))) (T -703)) +((-2671 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1175)) (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-703 *3)) (-4 *3 (-614 (-538))))) (-2671 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-5 *2 (-1 (-225) (-225))) (-5 *1 (-703 *3)) (-4 *3 (-614 (-538)))))) +(-10 -7 (-15 -2671 ((-1 (-225) (-225)) |#1| (-1175))) (-15 -2671 ((-1 (-225) (-225) (-225)) |#1| (-1175) (-1175)))) +((-3271 (((-1175) |#1| (-1175) (-644 (-1175))) 10) (((-1175) |#1| (-1175) (-1175) (-1175)) 13) (((-1175) |#1| (-1175) (-1175)) 12) (((-1175) |#1| (-1175)) 11))) +(((-704 |#1|) (-10 -7 (-15 -3271 ((-1175) |#1| (-1175))) (-15 -3271 ((-1175) |#1| (-1175) (-1175))) (-15 -3271 ((-1175) |#1| (-1175) (-1175) (-1175))) (-15 -3271 ((-1175) |#1| (-1175) (-644 (-1175))))) (-614 (-538))) (T -704)) +((-3271 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-644 (-1175))) (-5 *2 (-1175)) (-5 *1 (-704 *3)) (-4 *3 (-614 (-538))))) (-3271 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-704 *3)) (-4 *3 (-614 (-538))))) (-3271 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-704 *3)) (-4 *3 (-614 (-538))))) (-3271 (*1 *2 *3 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-704 *3)) (-4 *3 (-614 (-538)))))) +(-10 -7 (-15 -3271 ((-1175) |#1| (-1175))) (-15 -3271 ((-1175) |#1| (-1175) (-1175))) (-15 -3271 ((-1175) |#1| (-1175) (-1175) (-1175))) (-15 -3271 ((-1175) |#1| (-1175) (-644 (-1175))))) +((-3606 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) +(((-705 |#1| |#2|) (-10 -7 (-15 -3606 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1214) (-1214)) (T -705)) +((-3606 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-705 *3 *4)) (-4 *3 (-1214)) (-4 *4 (-1214))))) +(-10 -7 (-15 -3606 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) +((-3508 (((-1 |#3| |#2|) (-1175)) 11)) (-1431 (((-1 |#3| |#2|) |#1| (-1175)) 21))) +(((-706 |#1| |#2| |#3|) (-10 -7 (-15 -3508 ((-1 |#3| |#2|) (-1175))) (-15 -1431 ((-1 |#3| |#2|) |#1| (-1175)))) (-614 (-538)) (-1214) (-1214)) (T -706)) +((-1431 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-5 *2 (-1 *6 *5)) (-5 *1 (-706 *3 *5 *6)) (-4 *3 (-614 (-538))) (-4 *5 (-1214)) (-4 *6 (-1214)))) (-3508 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1 *6 *5)) (-5 *1 (-706 *4 *5 *6)) (-4 *4 (-614 (-538))) (-4 *5 (-1214)) (-4 *6 (-1214))))) +(-10 -7 (-15 -3508 ((-1 |#3| |#2|) (-1175))) (-15 -1431 ((-1 |#3| |#2|) |#1| (-1175)))) +((-1393 (((-3 (-644 (-1171 |#4|)) "failed") (-1171 |#4|) (-644 |#2|) (-644 (-1171 |#4|)) (-644 |#3|) (-644 |#4|) (-644 (-644 (-2 (|:| -1933 (-771)) (|:| |pcoef| |#4|)))) (-644 (-771)) (-1264 (-644 (-1171 |#3|))) |#3|) 95)) (-2913 (((-3 (-644 (-1171 |#4|)) "failed") (-1171 |#4|) (-644 |#2|) (-644 (-1171 |#3|)) (-644 |#3|) (-644 |#4|) (-644 (-771)) |#3|) 113)) (-3392 (((-3 (-644 (-1171 |#4|)) "failed") (-1171 |#4|) (-644 |#2|) (-644 |#3|) (-644 (-771)) (-644 (-1171 |#4|)) (-1264 (-644 (-1171 |#3|))) |#3|) 47))) +(((-707 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3392 ((-3 (-644 (-1171 |#4|)) "failed") (-1171 |#4|) (-644 |#2|) (-644 |#3|) (-644 (-771)) (-644 (-1171 |#4|)) (-1264 (-644 (-1171 |#3|))) |#3|)) (-15 -2913 ((-3 (-644 (-1171 |#4|)) "failed") (-1171 |#4|) (-644 |#2|) (-644 (-1171 |#3|)) (-644 |#3|) (-644 |#4|) (-644 (-771)) |#3|)) (-15 -1393 ((-3 (-644 (-1171 |#4|)) "failed") (-1171 |#4|) (-644 |#2|) (-644 (-1171 |#4|)) (-644 |#3|) (-644 |#4|) (-644 (-644 (-2 (|:| -1933 (-771)) (|:| |pcoef| |#4|)))) (-644 (-771)) (-1264 (-644 (-1171 |#3|))) |#3|))) (-793) (-850) (-308) (-949 |#3| |#1| |#2|)) (T -707)) +((-1393 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-644 (-1171 *13))) (-5 *3 (-1171 *13)) (-5 *4 (-644 *12)) (-5 *5 (-644 *10)) (-5 *6 (-644 *13)) (-5 *7 (-644 (-644 (-2 (|:| -1933 (-771)) (|:| |pcoef| *13))))) (-5 *8 (-644 (-771))) (-5 *9 (-1264 (-644 (-1171 *10)))) (-4 *12 (-850)) (-4 *10 (-308)) (-4 *13 (-949 *10 *11 *12)) (-4 *11 (-793)) (-5 *1 (-707 *11 *12 *10 *13)))) (-2913 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-644 *11)) (-5 *5 (-644 (-1171 *9))) (-5 *6 (-644 *9)) (-5 *7 (-644 *12)) (-5 *8 (-644 (-771))) (-4 *11 (-850)) (-4 *9 (-308)) (-4 *12 (-949 *9 *10 *11)) (-4 *10 (-793)) (-5 *2 (-644 (-1171 *12))) (-5 *1 (-707 *10 *11 *9 *12)) (-5 *3 (-1171 *12)))) (-3392 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-644 (-1171 *11))) (-5 *3 (-1171 *11)) (-5 *4 (-644 *10)) (-5 *5 (-644 *8)) (-5 *6 (-644 (-771))) (-5 *7 (-1264 (-644 (-1171 *8)))) (-4 *10 (-850)) (-4 *8 (-308)) (-4 *11 (-949 *8 *9 *10)) (-4 *9 (-793)) (-5 *1 (-707 *9 *10 *8 *11))))) +(-10 -7 (-15 -3392 ((-3 (-644 (-1171 |#4|)) "failed") (-1171 |#4|) (-644 |#2|) (-644 |#3|) (-644 (-771)) (-644 (-1171 |#4|)) (-1264 (-644 (-1171 |#3|))) |#3|)) (-15 -2913 ((-3 (-644 (-1171 |#4|)) "failed") (-1171 |#4|) (-644 |#2|) (-644 (-1171 |#3|)) (-644 |#3|) (-644 |#4|) (-644 (-771)) |#3|)) (-15 -1393 ((-3 (-644 (-1171 |#4|)) "failed") (-1171 |#4|) (-644 |#2|) (-644 (-1171 |#4|)) (-644 |#3|) (-644 |#4|) (-644 (-644 (-2 (|:| -1933 (-771)) (|:| |pcoef| |#4|)))) (-644 (-771)) (-1264 (-644 (-1171 |#3|))) |#3|))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-3174 (((-3 $ "failed") $ $) 20)) (-1811 (($) 18 T CONST)) (-3565 (($ $) 48)) (-3757 (((-3 $ "failed") $) 37)) (-2264 (((-112) $) 35)) (-2463 (($ |#1| (-771)) 46)) (-2584 (((-771) $) 50)) (-2622 ((|#1| $) 49)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-1630 (((-771) $) 51)) (-2479 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 45 (|has| |#1| (-172)))) (-3025 ((|#1| $ (-771)) 47)) (-1558 (((-771)) 32 T CONST)) (-3900 (((-112) $ $) 9)) (-2446 (($) 19 T CONST)) (-2459 (($) 34 T CONST)) (-2952 (((-112) $ $) 6)) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 53) (($ |#1| $) 52))) +(((-708 |#1|) (-140) (-1049)) (T -708)) +((-1630 (*1 *2 *1) (-12 (-4 *1 (-708 *3)) (-4 *3 (-1049)) (-5 *2 (-771)))) (-2584 (*1 *2 *1) (-12 (-4 *1 (-708 *3)) (-4 *3 (-1049)) (-5 *2 (-771)))) (-2622 (*1 *2 *1) (-12 (-4 *1 (-708 *2)) (-4 *2 (-1049)))) (-3565 (*1 *1 *1) (-12 (-4 *1 (-708 *2)) (-4 *2 (-1049)))) (-3025 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-4 *1 (-708 *2)) (-4 *2 (-1049)))) (-2463 (*1 *1 *2 *3) (-12 (-5 *3 (-771)) (-4 *1 (-708 *2)) (-4 *2 (-1049))))) +(-13 (-1049) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -1630 ((-771) $)) (-15 -2584 ((-771) $)) (-15 -2622 (|t#1| $)) (-15 -3565 ($ $)) (-15 -3025 (|t#1| $ (-771))) (-15 -2463 ($ |t#1| (-771))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-616 (-566)) . T) ((-616 |#1|) |has| |#1| (-172)) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-640 |#1|) |has| |#1| (-172)) ((-717 |#1|) |has| |#1| (-172)) ((-726) . T) ((-1051 |#1|) . T) ((-1056 |#1|) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) +((-3080 ((|#6| (-1 |#4| |#1|) |#3|) 23))) +(((-709 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3080 (|#6| (-1 |#4| |#1|) |#3|))) (-558) (-1240 |#1|) (-1240 (-409 |#2|)) (-558) (-1240 |#4|) (-1240 (-409 |#5|))) (T -709)) +((-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-558)) (-4 *7 (-558)) (-4 *6 (-1240 *5)) (-4 *2 (-1240 (-409 *8))) (-5 *1 (-709 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1240 (-409 *6))) (-4 *8 (-1240 *7))))) +(-10 -7 (-15 -3080 (|#6| (-1 |#4| |#1|) |#3|))) +((-2986 (((-112) $ $) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-3593 (((-1157) (-862)) 39)) (-1659 (((-1269) (-1157)) 32)) (-2605 (((-1157) (-862)) 28)) (-3247 (((-1157) (-862)) 29)) (-2479 (((-862) $) NIL) (((-1157) (-862)) 27)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-710) (-13 (-1099) (-10 -7 (-15 -2479 ((-1157) (-862))) (-15 -2605 ((-1157) (-862))) (-15 -3247 ((-1157) (-862))) (-15 -3593 ((-1157) (-862))) (-15 -1659 ((-1269) (-1157)))))) (T -710)) +((-2479 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1157)) (-5 *1 (-710)))) (-2605 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1157)) (-5 *1 (-710)))) (-3247 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1157)) (-5 *1 (-710)))) (-3593 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1157)) (-5 *1 (-710)))) (-1659 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-710))))) +(-13 (-1099) (-10 -7 (-15 -2479 ((-1157) (-862))) (-15 -2605 ((-1157) (-862))) (-15 -3247 ((-1157) (-862))) (-15 -3593 ((-1157) (-862))) (-15 -1659 ((-1269) (-1157))))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-1716 (((-112) $) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-3980 (($ $) NIL)) (-3348 (((-420 $) $) NIL)) (-2761 (((-112) $ $) NIL)) (-1811 (($) NIL T CONST)) (-2925 (($ $ $) NIL)) (-1838 (($ |#1| |#2|) NIL)) (-3757 (((-3 $ "failed") $) NIL)) (-2937 (($ $ $) NIL)) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) NIL)) (-4188 (((-112) $) NIL)) (-2264 (((-112) $) NIL)) (-2495 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2579 ((|#2| $) NIL)) (-2120 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3151 (((-1157) $) NIL)) (-2577 (($ $) NIL)) (-4059 (((-1119) $) NIL)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2162 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2325 (((-420 $) $) NIL)) (-2585 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2976 (((-3 $ "failed") $ $) NIL)) (-2840 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2204 (((-3 $ "failed") $ $) NIL)) (-1383 (((-771) $) NIL)) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL)) (-2479 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL) ((|#1| $) NIL)) (-1558 (((-771)) NIL T CONST)) (-3900 (((-112) $ $) NIL)) (-1333 (((-112) $ $) NIL)) (-2446 (($) NIL T CONST)) (-2459 (($) NIL T CONST)) (-2952 (((-112) $ $) NIL)) (-3077 (($ $ $) NIL)) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL))) +(((-711 |#1| |#2| |#3| |#4| |#5|) (-13 (-365) (-10 -8 (-15 -2579 (|#2| $)) (-15 -2479 (|#1| $)) (-15 -1838 ($ |#1| |#2|)) (-15 -2204 ((-3 $ "failed") $ $)))) (-172) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -711)) +((-2579 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-711 *3 *2 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2479 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1838 (*1 *1 *2 *3) (-12 (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2204 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(-13 (-365) (-10 -8 (-15 -2579 (|#2| $)) (-15 -2479 (|#1| $)) (-15 -1838 ($ |#1| |#2|)) (-15 -2204 ((-3 $ "failed") $ $)))) +((-2986 (((-112) $ $) 92)) (-2845 (((-112) $) 36)) (-1825 (((-1264 |#1|) $ (-771)) NIL)) (-2485 (((-644 (-1081)) $) NIL)) (-3778 (($ (-1171 |#1|)) NIL)) (-2285 (((-1171 $) $ (-1081)) NIL) (((-1171 |#1|) $) NIL)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-3087 (($ $) NIL (|has| |#1| (-558)))) (-1716 (((-112) $) NIL (|has| |#1| (-558)))) (-2917 (((-771) $) NIL) (((-771) $ (-644 (-1081))) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-2113 (($ $ $) NIL (|has| |#1| (-558)))) (-4058 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-3980 (($ $) NIL (|has| |#1| (-454)))) (-3348 (((-420 $) $) NIL (|has| |#1| (-454)))) (-4262 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-2761 (((-112) $ $) NIL (|has| |#1| (-365)))) (-4049 (((-771)) 56 (|has| |#1| (-370)))) (-3336 (($ $ (-771)) NIL)) (-1634 (($ $ (-771)) NIL)) (-2523 ((|#2| |#2|) 52)) (-2020 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-454)))) (-1811 (($) NIL T CONST)) (-2980 (((-3 |#1| "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-1081) "failed") $) NIL)) (-1709 ((|#1| $) NIL) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-1081) $) NIL)) (-4343 (($ $ $ (-1081)) NIL (|has| |#1| (-172))) ((|#1| $ $) NIL (|has| |#1| (-172)))) (-2925 (($ $ $) NIL (|has| |#1| (-365)))) (-3565 (($ $) 40)) (-2275 (((-689 (-566)) (-689 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -4196 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) NIL) (((-689 |#1|) (-689 $)) NIL)) (-1838 (($ |#2|) 50)) (-3757 (((-3 $ "failed") $) 102)) (-1415 (($) 61 (|has| |#1| (-370)))) (-2937 (($ $ $) NIL (|has| |#1| (-365)))) (-1731 (($ $ $) NIL)) (-2348 (($ $ $) NIL (|has| |#1| (-558)))) (-3920 (((-2 (|:| -3103 |#1|) (|:| -3371 $) (|:| -3131 $)) $ $) NIL (|has| |#1| (-558)))) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) NIL (|has| |#1| (-365)))) (-3530 (($ $) NIL (|has| |#1| (-454))) (($ $ (-1081)) NIL (|has| |#1| (-454)))) (-3551 (((-644 $) $) NIL)) (-4188 (((-112) $) NIL (|has| |#1| (-909)))) (-2677 (((-958 $)) 94)) (-3995 (($ $ |#1| (-771) $) NIL)) (-1542 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| (-1081) (-886 (-381))) (|has| |#1| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| (-1081) (-886 (-566))) (|has| |#1| (-886 (-566)))))) (-1802 (((-771) $ $) NIL (|has| |#1| (-558)))) (-2264 (((-112) $) NIL)) (-3486 (((-771) $) NIL)) (-4278 (((-3 $ "failed") $) NIL (|has| |#1| (-1150)))) (-2474 (($ (-1171 |#1|) (-1081)) NIL) (($ (-1171 $) (-1081)) NIL)) (-2383 (($ $ (-771)) NIL)) (-2495 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-1545 (((-644 $) $) NIL)) (-3989 (((-112) $) NIL)) (-2463 (($ |#1| (-771)) 88) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL)) (-2235 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $ (-1081)) NIL) (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL)) (-2579 ((|#2|) 53)) (-2584 (((-771) $) NIL) (((-771) $ (-1081)) NIL) (((-644 (-771)) $ (-644 (-1081))) NIL)) (-3327 (($ (-1 (-771) (-771)) $) NIL)) (-3080 (($ (-1 |#1| |#1|) $) NIL)) (-2800 (((-1171 |#1|) $) NIL)) (-2673 (((-3 (-1081) "failed") $) NIL)) (-4051 (((-921) $) NIL (|has| |#1| (-370)))) (-1829 ((|#2| $) 49)) (-2608 (($ $) NIL)) (-2622 ((|#1| $) 34)) (-2120 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-3151 (((-1157) $) NIL)) (-3333 (((-2 (|:| -3371 $) (|:| -3131 $)) $ (-771)) NIL)) (-4075 (((-3 (-644 $) "failed") $) NIL)) (-3380 (((-3 (-644 $) "failed") $) NIL)) (-2414 (((-3 (-2 (|:| |var| (-1081)) (|:| -3631 (-771))) "failed") $) NIL)) (-2390 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3968 (($) NIL (|has| |#1| (-1150)) CONST)) (-2104 (($ (-921)) NIL (|has| |#1| (-370)))) (-4059 (((-1119) $) NIL)) (-2587 (((-112) $) NIL)) (-2597 ((|#1| $) NIL)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-454)))) (-2162 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-3554 (($ $) 93 (|has| |#1| (-351)))) (-1500 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-3917 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-2325 (((-420 $) $) NIL (|has| |#1| (-909)))) (-2585 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL (|has| |#1| (-365)))) (-2976 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558))) (((-3 $ "failed") $ $) 101 (|has| |#1| (-558)))) (-2840 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-3297 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-1081) |#1|) NIL) (($ $ (-644 (-1081)) (-644 |#1|)) NIL) (($ $ (-1081) $) NIL) (($ $ (-644 (-1081)) (-644 $)) NIL)) (-1383 (((-771) $) NIL (|has| |#1| (-365)))) (-4376 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-409 $) (-409 $) (-409 $)) NIL (|has| |#1| (-558))) ((|#1| (-409 $) |#1|) NIL (|has| |#1| (-365))) (((-409 $) $ (-409 $)) NIL (|has| |#1| (-558)))) (-3070 (((-3 $ "failed") $ (-771)) NIL)) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) 103 (|has| |#1| (-365)))) (-3553 (($ $ (-1081)) NIL (|has| |#1| (-172))) ((|#1| $) NIL (|has| |#1| (-172)))) (-3526 (($ $ (-1081)) NIL) (($ $ (-644 (-1081))) NIL) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL) (($ $ (-771)) NIL) (($ $) NIL) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-1630 (((-771) $) 38) (((-771) $ (-1081)) NIL) (((-644 (-771)) $ (-644 (-1081))) NIL)) (-3136 (((-892 (-381)) $) NIL (-12 (|has| (-1081) (-614 (-892 (-381)))) (|has| |#1| (-614 (-892 (-381)))))) (((-892 (-566)) $) NIL (-12 (|has| (-1081) (-614 (-892 (-566)))) (|has| |#1| (-614 (-892 (-566)))))) (((-538) $) NIL (-12 (|has| (-1081) (-614 (-538))) (|has| |#1| (-614 (-538)))))) (-2252 ((|#1| $) NIL (|has| |#1| (-454))) (($ $ (-1081)) NIL (|has| |#1| (-454)))) (-3233 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-909))))) (-1662 (((-958 $)) 42)) (-3918 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558))) (((-3 (-409 $) "failed") (-409 $) $) NIL (|has| |#1| (-558)))) (-2479 (((-862) $) 71) (($ (-566)) NIL) (($ |#1|) 68) (($ (-1081)) NIL) (($ |#2|) 78) (($ (-409 (-566))) NIL (-2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566)))))) (($ $) NIL (|has| |#1| (-558)))) (-3866 (((-644 |#1|) $) NIL)) (-3025 ((|#1| $ (-771)) 73) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL)) (-2645 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| $ (-145)) (|has| |#1| (-909))) (|has| |#1| (-145))))) (-1558 (((-771)) NIL T CONST)) (-2244 (($ $ $ (-771)) NIL (|has| |#1| (-172)))) (-3900 (((-112) $ $) NIL)) (-1333 (((-112) $ $) NIL (|has| |#1| (-558)))) (-2446 (($) 25 T CONST)) (-3291 (((-1264 |#1|) $) 86)) (-4007 (($ (-1264 |#1|)) 60)) (-2459 (($) 8 T CONST)) (-2834 (($ $ (-1081)) NIL) (($ $ (-644 (-1081))) NIL) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL) (($ $ (-771)) NIL) (($ $) NIL) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2672 (((-1264 |#1|) $) NIL)) (-2952 (((-112) $ $) 79)) (-3077 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3065 (($ $) 82) (($ $ $) NIL)) (-3052 (($ $ $) 39)) (** (($ $ (-921)) NIL) (($ $ (-771)) 97)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 67) (($ $ $) 85) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ |#1| $) 65) (($ $ |#1|) NIL))) +(((-712 |#1| |#2|) (-13 (-1240 |#1|) (-616 |#2|) (-10 -8 (-15 -2523 (|#2| |#2|)) (-15 -2579 (|#2|)) (-15 -1838 ($ |#2|)) (-15 -1829 (|#2| $)) (-15 -3291 ((-1264 |#1|) $)) (-15 -4007 ($ (-1264 |#1|))) (-15 -2672 ((-1264 |#1|) $)) (-15 -2677 ((-958 $))) (-15 -1662 ((-958 $))) (IF (|has| |#1| (-351)) (-15 -3554 ($ $)) |%noBranch|) (IF (|has| |#1| (-370)) (-6 (-370)) |%noBranch|))) (-1049) (-1240 |#1|)) (T -712)) +((-2523 (*1 *2 *2) (-12 (-4 *3 (-1049)) (-5 *1 (-712 *3 *2)) (-4 *2 (-1240 *3)))) (-2579 (*1 *2) (-12 (-4 *2 (-1240 *3)) (-5 *1 (-712 *3 *2)) (-4 *3 (-1049)))) (-1838 (*1 *1 *2) (-12 (-4 *3 (-1049)) (-5 *1 (-712 *3 *2)) (-4 *2 (-1240 *3)))) (-1829 (*1 *2 *1) (-12 (-4 *2 (-1240 *3)) (-5 *1 (-712 *3 *2)) (-4 *3 (-1049)))) (-3291 (*1 *2 *1) (-12 (-4 *3 (-1049)) (-5 *2 (-1264 *3)) (-5 *1 (-712 *3 *4)) (-4 *4 (-1240 *3)))) (-4007 (*1 *1 *2) (-12 (-5 *2 (-1264 *3)) (-4 *3 (-1049)) (-5 *1 (-712 *3 *4)) (-4 *4 (-1240 *3)))) (-2672 (*1 *2 *1) (-12 (-4 *3 (-1049)) (-5 *2 (-1264 *3)) (-5 *1 (-712 *3 *4)) (-4 *4 (-1240 *3)))) (-2677 (*1 *2) (-12 (-4 *3 (-1049)) (-5 *2 (-958 (-712 *3 *4))) (-5 *1 (-712 *3 *4)) (-4 *4 (-1240 *3)))) (-1662 (*1 *2) (-12 (-4 *3 (-1049)) (-5 *2 (-958 (-712 *3 *4))) (-5 *1 (-712 *3 *4)) (-4 *4 (-1240 *3)))) (-3554 (*1 *1 *1) (-12 (-4 *2 (-351)) (-4 *2 (-1049)) (-5 *1 (-712 *2 *3)) (-4 *3 (-1240 *2))))) +(-13 (-1240 |#1|) (-616 |#2|) (-10 -8 (-15 -2523 (|#2| |#2|)) (-15 -2579 (|#2|)) (-15 -1838 ($ |#2|)) (-15 -1829 (|#2| $)) (-15 -3291 ((-1264 |#1|) $)) (-15 -4007 ($ (-1264 |#1|))) (-15 -2672 ((-1264 |#1|) $)) (-15 -2677 ((-958 $))) (-15 -1662 ((-958 $))) (IF (|has| |#1| (-351)) (-15 -3554 ($ $)) |%noBranch|) (IF (|has| |#1| (-370)) (-6 (-370)) |%noBranch|))) +((-2986 (((-112) $ $) NIL)) (-1920 (($ $ $) NIL)) (-3038 (($ $ $) NIL)) (-3151 (((-1157) $) NIL)) (-2104 ((|#1| $) 13)) (-4059 (((-1119) $) NIL)) (-3631 ((|#2| $) 12)) (-2489 (($ |#1| |#2|) 16)) (-2479 (((-862) $) NIL) (($ (-2 (|:| -2104 |#1|) (|:| -3631 |#2|))) 15) (((-2 (|:| -2104 |#1|) (|:| -3631 |#2|)) $) 14)) (-3900 (((-112) $ $) NIL)) (-3019 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3004 (((-112) $ $) NIL)) (-2977 (((-112) $ $) 11))) +(((-713 |#1| |#2| |#3|) (-13 (-850) (-492 (-2 (|:| -2104 |#1|) (|:| -3631 |#2|))) (-10 -8 (-15 -3631 (|#2| $)) (-15 -2104 (|#1| $)) (-15 -2489 ($ |#1| |#2|)))) (-850) (-1099) (-1 (-112) (-2 (|:| -2104 |#1|) (|:| -3631 |#2|)) (-2 (|:| -2104 |#1|) (|:| -3631 |#2|)))) (T -713)) +((-3631 (*1 *2 *1) (-12 (-4 *2 (-1099)) (-5 *1 (-713 *3 *2 *4)) (-4 *3 (-850)) (-14 *4 (-1 (-112) (-2 (|:| -2104 *3) (|:| -3631 *2)) (-2 (|:| -2104 *3) (|:| -3631 *2)))))) (-2104 (*1 *2 *1) (-12 (-4 *2 (-850)) (-5 *1 (-713 *2 *3 *4)) (-4 *3 (-1099)) (-14 *4 (-1 (-112) (-2 (|:| -2104 *2) (|:| -3631 *3)) (-2 (|:| -2104 *2) (|:| -3631 *3)))))) (-2489 (*1 *1 *2 *3) (-12 (-5 *1 (-713 *2 *3 *4)) (-4 *2 (-850)) (-4 *3 (-1099)) (-14 *4 (-1 (-112) (-2 (|:| -2104 *2) (|:| -3631 *3)) (-2 (|:| -2104 *2) (|:| -3631 *3))))))) +(-13 (-850) (-492 (-2 (|:| -2104 |#1|) (|:| -3631 |#2|))) (-10 -8 (-15 -3631 (|#2| $)) (-15 -2104 (|#1| $)) (-15 -2489 ($ |#1| |#2|)))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) 66)) (-3174 (((-3 $ "failed") $ $) NIL)) (-1811 (($) NIL T CONST)) (-2980 (((-3 |#1| "failed") $) 105) (((-3 (-114) "failed") $) 111)) (-1709 ((|#1| $) NIL) (((-114) $) 39)) (-3757 (((-3 $ "failed") $) 106)) (-2140 ((|#2| (-114) |#2|) 93)) (-2264 (((-112) $) NIL)) (-2753 (($ |#1| (-363 (-114))) 14)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-1339 (($ $ (-1 |#2| |#2|)) 65)) (-1425 (($ $ (-1 |#2| |#2|)) 44)) (-4376 ((|#2| $ |#2|) 33)) (-3677 ((|#1| |#1|) 121 (|has| |#1| (-172)))) (-2479 (((-862) $) 73) (($ (-566)) 18) (($ |#1|) 17) (($ (-114)) 23)) (-2645 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1558 (((-771)) 37 T CONST)) (-3900 (((-112) $ $) NIL)) (-3228 (($ $) 115 (|has| |#1| (-172))) (($ $ $) 119 (|has| |#1| (-172)))) (-2446 (($) 21 T CONST)) (-2459 (($) 9 T CONST)) (-2952 (((-112) $ $) NIL)) (-3065 (($ $) 48) (($ $ $) NIL)) (-3052 (($ $ $) 83)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ (-114) (-566)) NIL) (($ $ (-566)) 64)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 114) (($ $ $) 53) (($ |#1| $) 112 (|has| |#1| (-172))) (($ $ |#1|) 113 (|has| |#1| (-172))))) +(((-714 |#1| |#2|) (-13 (-1049) (-1038 |#1|) (-1038 (-114)) (-287 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -3228 ($ $)) (-15 -3228 ($ $ $)) (-15 -3677 (|#1| |#1|))) |%noBranch|) (-15 -1425 ($ $ (-1 |#2| |#2|))) (-15 -1339 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-566))) (-15 ** ($ $ (-566))) (-15 -2140 (|#2| (-114) |#2|)) (-15 -2753 ($ |#1| (-363 (-114)))))) (-1049) (-648 |#1|)) (T -714)) +((-3228 (*1 *1 *1) (-12 (-4 *2 (-172)) (-4 *2 (-1049)) (-5 *1 (-714 *2 *3)) (-4 *3 (-648 *2)))) (-3228 (*1 *1 *1 *1) (-12 (-4 *2 (-172)) (-4 *2 (-1049)) (-5 *1 (-714 *2 *3)) (-4 *3 (-648 *2)))) (-3677 (*1 *2 *2) (-12 (-4 *2 (-172)) (-4 *2 (-1049)) (-5 *1 (-714 *2 *3)) (-4 *3 (-648 *2)))) (-1425 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-648 *3)) (-4 *3 (-1049)) (-5 *1 (-714 *3 *4)))) (-1339 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-648 *3)) (-4 *3 (-1049)) (-5 *1 (-714 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-566)) (-4 *4 (-1049)) (-5 *1 (-714 *4 *5)) (-4 *5 (-648 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-4 *3 (-1049)) (-5 *1 (-714 *3 *4)) (-4 *4 (-648 *3)))) (-2140 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-4 *4 (-1049)) (-5 *1 (-714 *4 *2)) (-4 *2 (-648 *4)))) (-2753 (*1 *1 *2 *3) (-12 (-5 *3 (-363 (-114))) (-4 *2 (-1049)) (-5 *1 (-714 *2 *4)) (-4 *4 (-648 *2))))) +(-13 (-1049) (-1038 |#1|) (-1038 (-114)) (-287 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -3228 ($ $)) (-15 -3228 ($ $ $)) (-15 -3677 (|#1| |#1|))) |%noBranch|) (-15 -1425 ($ $ (-1 |#2| |#2|))) (-15 -1339 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-566))) (-15 ** ($ $ (-566))) (-15 -2140 (|#2| (-114) |#2|)) (-15 -2753 ($ |#1| (-363 (-114)))))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) 33)) (-3174 (((-3 $ "failed") $ $) NIL)) (-1811 (($) NIL T CONST)) (-1838 (($ |#1| |#2|) 25)) (-3757 (((-3 $ "failed") $) 51)) (-2264 (((-112) $) 35)) (-2579 ((|#2| $) 12)) (-3151 (((-1157) $) NIL)) (-2577 (($ $) 52)) (-4059 (((-1119) $) NIL)) (-2204 (((-3 $ "failed") $ $) 50)) (-2479 (((-862) $) 24) (($ (-566)) 19) ((|#1| $) 13)) (-1558 (((-771)) 28 T CONST)) (-3900 (((-112) $ $) NIL)) (-2446 (($) 16 T CONST)) (-2459 (($) 30 T CONST)) (-2952 (((-112) $ $) 41)) (-3065 (($ $) 46) (($ $ $) 40)) (-3052 (($ $ $) 43)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 21) (($ $ $) 20))) +(((-715 |#1| |#2| |#3| |#4| |#5|) (-13 (-1049) (-10 -8 (-15 -2579 (|#2| $)) (-15 -2479 (|#1| $)) (-15 -1838 ($ |#1| |#2|)) (-15 -2204 ((-3 $ "failed") $ $)) (-15 -3757 ((-3 $ "failed") $)) (-15 -2577 ($ $)))) (-172) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -715)) +((-3757 (*1 *1 *1) (|partial| -12 (-5 *1 (-715 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2579 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-715 *3 *2 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2479 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-715 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1838 (*1 *1 *2 *3) (-12 (-5 *1 (-715 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2204 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-715 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2577 (*1 *1 *1) (-12 (-5 *1 (-715 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(-13 (-1049) (-10 -8 (-15 -2579 (|#2| $)) (-15 -2479 (|#1| $)) (-15 -1838 ($ |#1| |#2|)) (-15 -2204 ((-3 $ "failed") $ $)) (-15 -3757 ((-3 $ "failed") $)) (-15 -2577 ($ $)))) +((* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) +(((-716 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 * (|#1| (-921) |#1|))) (-717 |#2|) (-172)) (T -716)) +NIL +(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 * (|#1| (-921) |#1|))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-3174 (((-3 $ "failed") $ $) 20)) (-1811 (($) 18 T CONST)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-2479 (((-862) $) 12)) (-3900 (((-112) $ $) 9)) (-2446 (($) 19 T CONST)) (-2952 (((-112) $ $) 6)) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) +(((-717 |#1|) (-140) (-172)) (T -717)) +NIL +(-13 (-111 |t#1| |t#1|) (-640 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-648 |#1|) . T) ((-640 |#1|) . T) ((-1051 |#1|) . T) ((-1056 |#1|) . T) ((-1099) . T)) +((-2986 (((-112) $ $) NIL)) (-3099 (($ |#1|) 17) (($ $ |#1|) 20)) (-2504 (($ |#1|) 18) (($ $ |#1|) 21)) (-1811 (($) NIL T CONST)) (-3757 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-2264 (((-112) $) NIL)) (-3133 (($ |#1| |#1| |#1| |#1|) 8)) (-3151 (((-1157) $) NIL)) (-2577 (($ $) 16)) (-4059 (((-1119) $) NIL)) (-3297 ((|#1| $ |#1|) 24) (((-833 |#1|) $ (-833 |#1|)) 32)) (-2664 (($ $ $) NIL)) (-3815 (($ $ $) NIL)) (-2479 (((-862) $) 39)) (-3900 (((-112) $ $) NIL)) (-2459 (($) 9 T CONST)) (-2952 (((-112) $ $) 48)) (-3077 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ $ $) 14))) +(((-718 |#1|) (-13 (-475) (-10 -8 (-15 -3133 ($ |#1| |#1| |#1| |#1|)) (-15 -3099 ($ |#1|)) (-15 -2504 ($ |#1|)) (-15 -3757 ($)) (-15 -3099 ($ $ |#1|)) (-15 -2504 ($ $ |#1|)) (-15 -3757 ($ $)) (-15 -3297 (|#1| $ |#1|)) (-15 -3297 ((-833 |#1|) $ (-833 |#1|))))) (-365)) (T -718)) +((-3133 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-718 *2)) (-4 *2 (-365)))) (-3099 (*1 *1 *2) (-12 (-5 *1 (-718 *2)) (-4 *2 (-365)))) (-2504 (*1 *1 *2) (-12 (-5 *1 (-718 *2)) (-4 *2 (-365)))) (-3757 (*1 *1) (-12 (-5 *1 (-718 *2)) (-4 *2 (-365)))) (-3099 (*1 *1 *1 *2) (-12 (-5 *1 (-718 *2)) (-4 *2 (-365)))) (-2504 (*1 *1 *1 *2) (-12 (-5 *1 (-718 *2)) (-4 *2 (-365)))) (-3757 (*1 *1 *1) (-12 (-5 *1 (-718 *2)) (-4 *2 (-365)))) (-3297 (*1 *2 *1 *2) (-12 (-5 *1 (-718 *2)) (-4 *2 (-365)))) (-3297 (*1 *2 *1 *2) (-12 (-5 *2 (-833 *3)) (-4 *3 (-365)) (-5 *1 (-718 *3))))) +(-13 (-475) (-10 -8 (-15 -3133 ($ |#1| |#1| |#1| |#1|)) (-15 -3099 ($ |#1|)) (-15 -2504 ($ |#1|)) (-15 -3757 ($)) (-15 -3099 ($ $ |#1|)) (-15 -2504 ($ $ |#1|)) (-15 -3757 ($ $)) (-15 -3297 (|#1| $ |#1|)) (-15 -3297 ((-833 |#1|) $ (-833 |#1|))))) +((-4370 (($ $ (-921)) 21)) (-3681 (($ $ (-921)) 22)) (** (($ $ (-921)) 10))) +(((-719 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-921))) (-15 -3681 (|#1| |#1| (-921))) (-15 -4370 (|#1| |#1| (-921)))) (-720)) (T -719)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-921))) (-15 -3681 (|#1| |#1| (-921))) (-15 -4370 (|#1| |#1| (-921)))) +((-2986 (((-112) $ $) 7)) (-4370 (($ $ (-921)) 16)) (-3681 (($ $ (-921)) 15)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-2479 (((-862) $) 12)) (-3900 (((-112) $ $) 9)) (-2952 (((-112) $ $) 6)) (** (($ $ (-921)) 14)) (* (($ $ $) 17))) (((-720) (-140)) (T -720)) -((-2371 (*1 *1) (-4 *1 (-720))) (-3163 (*1 *2 *1) (-12 (-4 *1 (-720)) (-5 *2 (-112)))) (-3952 (*1 *1 *1 *2) (-12 (-4 *1 (-720)) (-5 *2 (-769)))) (-4204 (*1 *1 *1 *2) (-12 (-4 *1 (-720)) (-5 *2 (-769)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-720)) (-5 *2 (-769)))) (-2675 (*1 *1 *1) (|partial| -4 *1 (-720))) (-1339 (*1 *1 *1) (|partial| -4 *1 (-720))) (-3420 (*1 *1 *1) (|partial| -4 *1 (-720)))) -(-13 (-718) (-10 -8 (-15 (-2371) ($) -1551) (-15 -3163 ((-112) $)) (-15 -3952 ($ $ (-769))) (-15 -4204 ($ $ (-769))) (-15 ** ($ $ (-769))) (-15 -2675 ((-3 $ "failed") $)) (-15 -1339 ((-3 $ "failed") $)) (-15 -3420 ((-3 $ "failed") $)))) -(((-102) . T) ((-611 (-860)) . T) ((-718) . T) ((-1097) . T)) -((-4003 (((-769)) 42)) (-2849 (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 |#2| "failed") $) 26)) (-1687 (((-564) $) NIL) (((-407 (-564)) $) NIL) ((|#2| $) 23)) (-3741 (($ |#3|) NIL) (((-3 $ "failed") (-407 |#3|)) 53)) (-2675 (((-3 $ "failed") $) 73)) (-3235 (($) 47)) (-2573 ((|#2| $) 21)) (-4043 (($) 18)) (-2199 (($ $ (-1 |#2| |#2|) (-769)) NIL) (($ $ (-1 |#2| |#2|)) 61) (($ $ (-642 (-1173)) (-642 (-769))) NIL) (($ $ (-1173) (-769)) NIL) (($ $ (-642 (-1173))) NIL) (($ $ (-1173)) NIL) (($ $ (-769)) NIL) (($ $) NIL)) (-2418 (((-687 |#2|) (-1262 $) (-1 |#2| |#2|)) 68)) (-3003 (((-1262 |#2|) $) NIL) (($ (-1262 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-1308 ((|#3| $) 39)) (-2131 (((-1262 $)) 36))) -(((-721 |#1| |#2| |#3|) (-10 -8 (-15 -2199 (|#1| |#1|)) (-15 -2199 (|#1| |#1| (-769))) (-15 -2199 (|#1| |#1| (-1173))) (-15 -2199 (|#1| |#1| (-642 (-1173)))) (-15 -2199 (|#1| |#1| (-1173) (-769))) (-15 -2199 (|#1| |#1| (-642 (-1173)) (-642 (-769)))) (-15 -3235 (|#1|)) (-15 -4003 ((-769))) (-15 -2199 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2199 (|#1| |#1| (-1 |#2| |#2|) (-769))) (-15 -2418 ((-687 |#2|) (-1262 |#1|) (-1 |#2| |#2|))) (-15 -3741 ((-3 |#1| "failed") (-407 |#3|))) (-15 -3003 (|#1| |#3|)) (-15 -3741 (|#1| |#3|)) (-15 -4043 (|#1|)) (-15 -2849 ((-3 |#2| "failed") |#1|)) (-15 -1687 (|#2| |#1|)) (-15 -1687 ((-407 (-564)) |#1|)) (-15 -2849 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -1687 ((-564) |#1|)) (-15 -2849 ((-3 (-564) "failed") |#1|)) (-15 -3003 (|#3| |#1|)) (-15 -3003 (|#1| (-1262 |#2|))) (-15 -3003 ((-1262 |#2|) |#1|)) (-15 -2131 ((-1262 |#1|))) (-15 -1308 (|#3| |#1|)) (-15 -2573 (|#2| |#1|)) (-15 -2675 ((-3 |#1| "failed") |#1|))) (-722 |#2| |#3|) (-172) (-1238 |#2|)) (T -721)) -((-4003 (*1 *2) (-12 (-4 *4 (-172)) (-4 *5 (-1238 *4)) (-5 *2 (-769)) (-5 *1 (-721 *3 *4 *5)) (-4 *3 (-722 *4 *5))))) -(-10 -8 (-15 -2199 (|#1| |#1|)) (-15 -2199 (|#1| |#1| (-769))) (-15 -2199 (|#1| |#1| (-1173))) (-15 -2199 (|#1| |#1| (-642 (-1173)))) (-15 -2199 (|#1| |#1| (-1173) (-769))) (-15 -2199 (|#1| |#1| (-642 (-1173)) (-642 (-769)))) (-15 -3235 (|#1|)) (-15 -4003 ((-769))) (-15 -2199 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2199 (|#1| |#1| (-1 |#2| |#2|) (-769))) (-15 -2418 ((-687 |#2|) (-1262 |#1|) (-1 |#2| |#2|))) (-15 -3741 ((-3 |#1| "failed") (-407 |#3|))) (-15 -3003 (|#1| |#3|)) (-15 -3741 (|#1| |#3|)) (-15 -4043 (|#1|)) (-15 -2849 ((-3 |#2| "failed") |#1|)) (-15 -1687 (|#2| |#1|)) (-15 -1687 ((-407 (-564)) |#1|)) (-15 -2849 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -1687 ((-564) |#1|)) (-15 -2849 ((-3 (-564) "failed") |#1|)) (-15 -3003 (|#3| |#1|)) (-15 -3003 (|#1| (-1262 |#2|))) (-15 -3003 ((-1262 |#2|) |#1|)) (-15 -2131 ((-1262 |#1|))) (-15 -1308 (|#3| |#1|)) (-15 -2573 (|#2| |#1|)) (-15 -2675 ((-3 |#1| "failed") |#1|))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) 102 (|has| |#1| (-363)))) (-4252 (($ $) 103 (|has| |#1| (-363)))) (-1722 (((-112) $) 105 (|has| |#1| (-363)))) (-1335 (((-687 |#1|) (-1262 $)) 53) (((-687 |#1|)) 68)) (-3778 ((|#1| $) 59)) (-3651 (((-1185 (-919) (-769)) (-564)) 155 (|has| |#1| (-349)))) (-3085 (((-3 $ "failed") $ $) 20)) (-1993 (($ $) 122 (|has| |#1| (-363)))) (-3282 (((-418 $) $) 123 (|has| |#1| (-363)))) (-2134 (((-112) $ $) 113 (|has| |#1| (-363)))) (-4003 (((-769)) 96 (|has| |#1| (-368)))) (-2822 (($) 18 T CONST)) (-2849 (((-3 (-564) "failed") $) 178 (|has| |#1| (-1036 (-564)))) (((-3 (-407 (-564)) "failed") $) 176 (|has| |#1| (-1036 (-407 (-564))))) (((-3 |#1| "failed") $) 173)) (-1687 (((-564) $) 177 (|has| |#1| (-1036 (-564)))) (((-407 (-564)) $) 175 (|has| |#1| (-1036 (-407 (-564))))) ((|#1| $) 174)) (-4087 (($ (-1262 |#1|) (-1262 $)) 55) (($ (-1262 |#1|)) 71)) (-2629 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| |#1| (-349)))) (-2796 (($ $ $) 117 (|has| |#1| (-363)))) (-2330 (((-687 |#1|) $ (-1262 $)) 60) (((-687 |#1|) $) 66)) (-3330 (((-687 (-564)) (-687 $)) 172 (|has| |#1| (-637 (-564)))) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) 171 (|has| |#1| (-637 (-564)))) (((-2 (|:| -3544 (-687 |#1|)) (|:| |vec| (-1262 |#1|))) (-687 $) (-1262 $)) 170) (((-687 |#1|) (-687 $)) 169)) (-3741 (($ |#2|) 166) (((-3 $ "failed") (-407 |#2|)) 163 (|has| |#1| (-363)))) (-2675 (((-3 $ "failed") $) 37)) (-3616 (((-919)) 61)) (-3235 (($) 99 (|has| |#1| (-368)))) (-2808 (($ $ $) 116 (|has| |#1| (-363)))) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) 111 (|has| |#1| (-363)))) (-1427 (($) 157 (|has| |#1| (-349)))) (-4153 (((-112) $) 158 (|has| |#1| (-349)))) (-1595 (($ $ (-769)) 149 (|has| |#1| (-349))) (($ $) 148 (|has| |#1| (-349)))) (-3552 (((-112) $) 124 (|has| |#1| (-363)))) (-2408 (((-919) $) 160 (|has| |#1| (-349))) (((-831 (-919)) $) 146 (|has| |#1| (-349)))) (-3163 (((-112) $) 35)) (-2573 ((|#1| $) 58)) (-4382 (((-3 $ "failed") $) 150 (|has| |#1| (-349)))) (-2709 (((-3 (-642 $) "failed") (-642 $) $) 120 (|has| |#1| (-363)))) (-2076 ((|#2| $) 51 (|has| |#1| (-363)))) (-2535 (((-919) $) 98 (|has| |#1| (-368)))) (-3730 ((|#2| $) 164)) (-2066 (($ (-642 $)) 109 (|has| |#1| (-363))) (($ $ $) 108 (|has| |#1| (-363)))) (-1778 (((-1155) $) 10)) (-2481 (($ $) 125 (|has| |#1| (-363)))) (-3910 (($) 151 (|has| |#1| (-349)) CONST)) (-2065 (($ (-919)) 97 (|has| |#1| (-368)))) (-3999 (((-1117) $) 11)) (-4043 (($) 168)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) 110 (|has| |#1| (-363)))) (-2105 (($ (-642 $)) 107 (|has| |#1| (-363))) (($ $ $) 106 (|has| |#1| (-363)))) (-4229 (((-642 (-2 (|:| -2254 (-564)) (|:| -2817 (-564))))) 154 (|has| |#1| (-349)))) (-2254 (((-418 $) $) 121 (|has| |#1| (-363)))) (-1877 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) 118 (|has| |#1| (-363)))) (-2842 (((-3 $ "failed") $ $) 101 (|has| |#1| (-363)))) (-1483 (((-3 (-642 $) "failed") (-642 $) $) 112 (|has| |#1| (-363)))) (-4274 (((-769) $) 114 (|has| |#1| (-363)))) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) 115 (|has| |#1| (-363)))) (-2790 ((|#1| (-1262 $)) 54) ((|#1|) 67)) (-1354 (((-769) $) 159 (|has| |#1| (-349))) (((-3 (-769) "failed") $ $) 147 (|has| |#1| (-349)))) (-2199 (($ $) 145 (-2682 (-2317 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-769)) 143 (-2682 (-2317 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-1173)) 141 (-2317 (|has| |#1| (-898 (-1173))) (|has| |#1| (-363)))) (($ $ (-642 (-1173))) 140 (-2317 (|has| |#1| (-898 (-1173))) (|has| |#1| (-363)))) (($ $ (-1173) (-769)) 139 (-2317 (|has| |#1| (-898 (-1173))) (|has| |#1| (-363)))) (($ $ (-642 (-1173)) (-642 (-769))) 138 (-2317 (|has| |#1| (-898 (-1173))) (|has| |#1| (-363)))) (($ $ (-1 |#1| |#1|) (-769)) 131 (|has| |#1| (-363))) (($ $ (-1 |#1| |#1|)) 130 (|has| |#1| (-363)))) (-2418 (((-687 |#1|) (-1262 $) (-1 |#1| |#1|)) 162 (|has| |#1| (-363)))) (-1361 ((|#2|) 167)) (-3553 (($) 156 (|has| |#1| (-349)))) (-3719 (((-1262 |#1|) $ (-1262 $)) 57) (((-687 |#1|) (-1262 $) (-1262 $)) 56) (((-1262 |#1|) $) 73) (((-687 |#1|) (-1262 $)) 72)) (-3003 (((-1262 |#1|) $) 70) (($ (-1262 |#1|)) 69) ((|#2| $) 179) (($ |#2|) 165)) (-3556 (((-3 (-1262 $) "failed") (-687 $)) 153 (|has| |#1| (-349)))) (-2390 (((-860) $) 12) (($ (-564)) 33) (($ |#1|) 44) (($ $) 100 (|has| |#1| (-363))) (($ (-407 (-564))) 95 (-2682 (|has| |#1| (-363)) (|has| |#1| (-1036 (-407 (-564))))))) (-3434 (($ $) 152 (|has| |#1| (-349))) (((-3 $ "failed") $) 50 (|has| |#1| (-145)))) (-1308 ((|#2| $) 52)) (-3348 (((-769)) 32 T CONST)) (-1600 (((-112) $ $) 9)) (-2131 (((-1262 $)) 74)) (-1594 (((-112) $ $) 104 (|has| |#1| (-363)))) (-2361 (($) 19 T CONST)) (-2371 (($) 34 T CONST)) (-2711 (($ $) 144 (-2682 (-2317 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-769)) 142 (-2682 (-2317 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-1173)) 137 (-2317 (|has| |#1| (-898 (-1173))) (|has| |#1| (-363)))) (($ $ (-642 (-1173))) 136 (-2317 (|has| |#1| (-898 (-1173))) (|has| |#1| (-363)))) (($ $ (-1173) (-769)) 135 (-2317 (|has| |#1| (-898 (-1173))) (|has| |#1| (-363)))) (($ $ (-642 (-1173)) (-642 (-769))) 134 (-2317 (|has| |#1| (-898 (-1173))) (|has| |#1| (-363)))) (($ $ (-1 |#1| |#1|) (-769)) 133 (|has| |#1| (-363))) (($ $ (-1 |#1| |#1|)) 132 (|has| |#1| (-363)))) (-2821 (((-112) $ $) 6)) (-2943 (($ $ $) 129 (|has| |#1| (-363)))) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36) (($ $ (-564)) 126 (|has| |#1| (-363)))) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-407 (-564)) $) 128 (|has| |#1| (-363))) (($ $ (-407 (-564))) 127 (|has| |#1| (-363))))) -(((-722 |#1| |#2|) (-140) (-172) (-1238 |t#1|)) (T -722)) -((-4043 (*1 *1) (-12 (-4 *2 (-172)) (-4 *1 (-722 *2 *3)) (-4 *3 (-1238 *2)))) (-1361 (*1 *2) (-12 (-4 *1 (-722 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1238 *3)))) (-3741 (*1 *1 *2) (-12 (-4 *3 (-172)) (-4 *1 (-722 *3 *2)) (-4 *2 (-1238 *3)))) (-3003 (*1 *1 *2) (-12 (-4 *3 (-172)) (-4 *1 (-722 *3 *2)) (-4 *2 (-1238 *3)))) (-3730 (*1 *2 *1) (-12 (-4 *1 (-722 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1238 *3)))) (-3741 (*1 *1 *2) (|partial| -12 (-5 *2 (-407 *4)) (-4 *4 (-1238 *3)) (-4 *3 (-363)) (-4 *3 (-172)) (-4 *1 (-722 *3 *4)))) (-2418 (*1 *2 *3 *4) (-12 (-5 *3 (-1262 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-363)) (-4 *1 (-722 *5 *6)) (-4 *5 (-172)) (-4 *6 (-1238 *5)) (-5 *2 (-687 *5))))) -(-13 (-409 |t#1| |t#2|) (-172) (-612 |t#2|) (-411 |t#1|) (-377 |t#1|) (-10 -8 (-15 -4043 ($)) (-15 -1361 (|t#2|)) (-15 -3741 ($ |t#2|)) (-15 -3003 ($ |t#2|)) (-15 -3730 (|t#2| $)) (IF (|has| |t#1| (-368)) (-6 (-368)) |%noBranch|) (IF (|has| |t#1| (-363)) (PROGN (-6 (-363)) (-6 (-231 |t#1|)) (-15 -3741 ((-3 $ "failed") (-407 |t#2|))) (-15 -2418 ((-687 |t#1|) (-1262 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-349)) (-6 (-349)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) -2682 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-38 |#1|) . T) ((-38 $) -2682 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-102) . T) ((-111 #0# #0#) -2682 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2682 (|has| |#1| (-349)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-614 #0#) -2682 (|has| |#1| (-1036 (-407 (-564)))) (|has| |#1| (-349)) (|has| |#1| (-363))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-614 $) -2682 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-611 (-860)) . T) ((-172) . T) ((-612 |#2|) . T) ((-231 |#1|) |has| |#1| (-363)) ((-233) -2682 (|has| |#1| (-349)) (-12 (|has| |#1| (-233)) (|has| |#1| (-363)))) ((-243) -2682 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-290) -2682 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-307) -2682 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-363) -2682 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-402) |has| |#1| (-349)) ((-368) -2682 (|has| |#1| (-368)) (|has| |#1| (-349))) ((-349) |has| |#1| (-349)) ((-370 |#1| |#2|) . T) ((-409 |#1| |#2|) . T) ((-377 |#1|) . T) ((-411 |#1|) . T) ((-452) -2682 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-556) -2682 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-644 #0#) -2682 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-646 #0#) -2682 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-646 |#1|) . T) ((-646 $) . T) ((-638 #0#) -2682 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-638 |#1|) . T) ((-638 $) -2682 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-715 #0#) -2682 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-715 |#1|) . T) ((-715 $) -2682 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-724) . T) ((-898 (-1173)) -12 (|has| |#1| (-363)) (|has| |#1| (-898 (-1173)))) ((-918) -2682 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-1036 (-407 (-564))) |has| |#1| (-1036 (-407 (-564)))) ((-1036 (-564)) |has| |#1| (-1036 (-564))) ((-1036 |#1|) . T) ((-1049 #0#) -2682 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-1049 |#1|) . T) ((-1049 $) . T) ((-1054 #0#) -2682 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-1054 |#1|) . T) ((-1054 $) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T) ((-1148) |has| |#1| (-349)) ((-1216) -2682 (|has| |#1| (-349)) (|has| |#1| (-363)))) -((-2822 (($) 11)) (-2675 (((-3 $ "failed") $) 14)) (-3163 (((-112) $) 10)) (** (($ $ (-919)) NIL) (($ $ (-769)) 20))) -(((-723 |#1|) (-10 -8 (-15 -2675 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-769))) (-15 -3163 ((-112) |#1|)) (-15 -2822 (|#1|)) (-15 ** (|#1| |#1| (-919)))) (-724)) (T -723)) -NIL -(-10 -8 (-15 -2675 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-769))) (-15 -3163 ((-112) |#1|)) (-15 -2822 (|#1|)) (-15 ** (|#1| |#1| (-919)))) -((-2856 (((-112) $ $) 7)) (-2822 (($) 19 T CONST)) (-2675 (((-3 $ "failed") $) 16)) (-3163 (((-112) $) 18)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2390 (((-860) $) 12)) (-1600 (((-112) $ $) 9)) (-2371 (($) 20 T CONST)) (-2821 (((-112) $ $) 6)) (** (($ $ (-919)) 14) (($ $ (-769)) 17)) (* (($ $ $) 15))) -(((-724) (-140)) (T -724)) -((-2371 (*1 *1) (-4 *1 (-724))) (-2822 (*1 *1) (-4 *1 (-724))) (-3163 (*1 *2 *1) (-12 (-4 *1 (-724)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-724)) (-5 *2 (-769)))) (-2675 (*1 *1 *1) (|partial| -4 *1 (-724)))) -(-13 (-1109) (-10 -8 (-15 (-2371) ($) -1551) (-15 -2822 ($) -1551) (-15 -3163 ((-112) $)) (-15 ** ($ $ (-769))) (-15 -2675 ((-3 $ "failed") $)))) -(((-102) . T) ((-611 (-860)) . T) ((-1109) . T) ((-1097) . T)) -((-3885 (((-2 (|:| -3691 (-418 |#2|)) (|:| |special| (-418 |#2|))) |#2| (-1 |#2| |#2|)) 39)) (-2246 (((-2 (|:| -3691 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-1591 ((|#2| (-407 |#2|) (-1 |#2| |#2|)) 13)) (-3822 (((-2 (|:| |poly| |#2|) (|:| -3691 (-407 |#2|)) (|:| |special| (-407 |#2|))) (-407 |#2|) (-1 |#2| |#2|)) 48))) -(((-725 |#1| |#2|) (-10 -7 (-15 -2246 ((-2 (|:| -3691 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3885 ((-2 (|:| -3691 (-418 |#2|)) (|:| |special| (-418 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -1591 (|#2| (-407 |#2|) (-1 |#2| |#2|))) (-15 -3822 ((-2 (|:| |poly| |#2|) (|:| -3691 (-407 |#2|)) (|:| |special| (-407 |#2|))) (-407 |#2|) (-1 |#2| |#2|)))) (-363) (-1238 |#1|)) (T -725)) -((-3822 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1238 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3691 (-407 *6)) (|:| |special| (-407 *6)))) (-5 *1 (-725 *5 *6)) (-5 *3 (-407 *6)))) (-1591 (*1 *2 *3 *4) (-12 (-5 *3 (-407 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1238 *5)) (-5 *1 (-725 *5 *2)) (-4 *5 (-363)))) (-3885 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1238 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| -3691 (-418 *3)) (|:| |special| (-418 *3)))) (-5 *1 (-725 *5 *3)))) (-2246 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1238 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| -3691 *3) (|:| |special| *3))) (-5 *1 (-725 *5 *3))))) -(-10 -7 (-15 -2246 ((-2 (|:| -3691 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3885 ((-2 (|:| -3691 (-418 |#2|)) (|:| |special| (-418 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -1591 (|#2| (-407 |#2|) (-1 |#2| |#2|))) (-15 -3822 ((-2 (|:| |poly| |#2|) (|:| -3691 (-407 |#2|)) (|:| |special| (-407 |#2|))) (-407 |#2|) (-1 |#2| |#2|)))) -((-3827 ((|#7| (-642 |#5|) |#6|) NIL)) (-2947 ((|#7| (-1 |#5| |#4|) |#6|) 27))) -(((-726 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2947 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3827 (|#7| (-642 |#5|) |#6|))) (-848) (-791) (-791) (-1047) (-1047) (-947 |#4| |#2| |#1|) (-947 |#5| |#3| |#1|)) (T -726)) -((-3827 (*1 *2 *3 *4) (-12 (-5 *3 (-642 *9)) (-4 *9 (-1047)) (-4 *5 (-848)) (-4 *6 (-791)) (-4 *8 (-1047)) (-4 *2 (-947 *9 *7 *5)) (-5 *1 (-726 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-791)) (-4 *4 (-947 *8 *6 *5)))) (-2947 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1047)) (-4 *9 (-1047)) (-4 *5 (-848)) (-4 *6 (-791)) (-4 *2 (-947 *9 *7 *5)) (-5 *1 (-726 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-791)) (-4 *4 (-947 *8 *6 *5))))) -(-10 -7 (-15 -2947 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3827 (|#7| (-642 |#5|) |#6|))) -((-2947 ((|#7| (-1 |#2| |#1|) |#6|) 28))) -(((-727 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2947 (|#7| (-1 |#2| |#1|) |#6|))) (-848) (-848) (-791) (-791) (-1047) (-947 |#5| |#3| |#1|) (-947 |#5| |#4| |#2|)) (T -727)) -((-2947 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-848)) (-4 *6 (-848)) (-4 *7 (-791)) (-4 *9 (-1047)) (-4 *2 (-947 *9 *8 *6)) (-5 *1 (-727 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-791)) (-4 *4 (-947 *9 *7 *5))))) -(-10 -7 (-15 -2947 (|#7| (-1 |#2| |#1|) |#6|))) -((-2254 (((-418 |#4|) |#4|) 42))) -(((-728 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2254 ((-418 |#4|) |#4|))) (-791) (-13 (-848) (-10 -8 (-15 -3003 ((-1173) $)) (-15 -1341 ((-3 $ "failed") (-1173))))) (-307) (-947 (-950 |#3|) |#1| |#2|)) (T -728)) -((-2254 (*1 *2 *3) (-12 (-4 *4 (-791)) (-4 *5 (-13 (-848) (-10 -8 (-15 -3003 ((-1173) $)) (-15 -1341 ((-3 $ "failed") (-1173)))))) (-4 *6 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-728 *4 *5 *6 *3)) (-4 *3 (-947 (-950 *6) *4 *5))))) -(-10 -7 (-15 -2254 ((-418 |#4|) |#4|))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-2397 (((-642 (-862 |#1|)) $) NIL)) (-2223 (((-1169 $) $ (-862 |#1|)) NIL) (((-1169 |#2|) $) NIL)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (|has| |#2| (-556)))) (-4252 (($ $) NIL (|has| |#2| (-556)))) (-1722 (((-112) $) NIL (|has| |#2| (-556)))) (-4035 (((-769) $) NIL) (((-769) $ (-642 (-862 |#1|))) NIL)) (-3085 (((-3 $ "failed") $ $) NIL)) (-4297 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#2| (-907)))) (-1993 (($ $) NIL (|has| |#2| (-452)))) (-3282 (((-418 $) $) NIL (|has| |#2| (-452)))) (-3267 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) NIL (|has| |#2| (-907)))) (-2822 (($) NIL T CONST)) (-2849 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1036 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#2| (-1036 (-564)))) (((-3 (-862 |#1|) "failed") $) NIL)) (-1687 ((|#2| $) NIL) (((-407 (-564)) $) NIL (|has| |#2| (-1036 (-407 (-564))))) (((-564) $) NIL (|has| |#2| (-1036 (-564)))) (((-862 |#1|) $) NIL)) (-3710 (($ $ $ (-862 |#1|)) NIL (|has| |#2| (-172)))) (-3459 (($ $) NIL)) (-3330 (((-687 (-564)) (-687 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -3544 (-687 |#2|)) (|:| |vec| (-1262 |#2|))) (-687 $) (-1262 $)) NIL) (((-687 |#2|) (-687 $)) NIL)) (-2675 (((-3 $ "failed") $) NIL)) (-2511 (($ $) NIL (|has| |#2| (-452))) (($ $ (-862 |#1|)) NIL (|has| |#2| (-452)))) (-3446 (((-642 $) $) NIL)) (-3552 (((-112) $) NIL (|has| |#2| (-907)))) (-2315 (($ $ |#2| (-531 (-862 |#1|)) $) NIL)) (-1381 (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) NIL (-12 (|has| (-862 |#1|) (-884 (-379))) (|has| |#2| (-884 (-379))))) (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) NIL (-12 (|has| (-862 |#1|) (-884 (-564))) (|has| |#2| (-884 (-564)))))) (-3163 (((-112) $) NIL)) (-1904 (((-769) $) NIL)) (-2387 (($ (-1169 |#2|) (-862 |#1|)) NIL) (($ (-1169 $) (-862 |#1|)) NIL)) (-1995 (((-642 $) $) NIL)) (-3471 (((-112) $) NIL)) (-2374 (($ |#2| (-531 (-862 |#1|))) NIL) (($ $ (-862 |#1|) (-769)) NIL) (($ $ (-642 (-862 |#1|)) (-642 (-769))) NIL)) (-3312 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $ (-862 |#1|)) NIL)) (-2887 (((-531 (-862 |#1|)) $) NIL) (((-769) $ (-862 |#1|)) NIL) (((-642 (-769)) $ (-642 (-862 |#1|))) NIL)) (-3879 (($ (-1 (-531 (-862 |#1|)) (-531 (-862 |#1|))) $) NIL)) (-2947 (($ (-1 |#2| |#2|) $) NIL)) (-1557 (((-3 (-862 |#1|) "failed") $) NIL)) (-2510 (($ $) NIL)) (-2523 ((|#2| $) NIL)) (-2066 (($ (-642 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-1778 (((-1155) $) NIL)) (-3664 (((-3 (-642 $) "failed") $) NIL)) (-4315 (((-3 (-642 $) "failed") $) NIL)) (-3177 (((-3 (-2 (|:| |var| (-862 |#1|)) (|:| -2817 (-769))) "failed") $) NIL)) (-3999 (((-1117) $) NIL)) (-2491 (((-112) $) NIL)) (-2500 ((|#2| $) NIL)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) NIL (|has| |#2| (-452)))) (-2105 (($ (-642 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-3223 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#2| (-907)))) (-2236 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#2| (-907)))) (-2254 (((-418 $) $) NIL (|has| |#2| (-907)))) (-2842 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-556)))) (-3154 (($ $ (-642 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-642 $) (-642 $)) NIL) (($ $ (-862 |#1|) |#2|) NIL) (($ $ (-642 (-862 |#1|)) (-642 |#2|)) NIL) (($ $ (-862 |#1|) $) NIL) (($ $ (-642 (-862 |#1|)) (-642 $)) NIL)) (-2790 (($ $ (-862 |#1|)) NIL (|has| |#2| (-172)))) (-2199 (($ $ (-862 |#1|)) NIL) (($ $ (-642 (-862 |#1|))) NIL) (($ $ (-862 |#1|) (-769)) NIL) (($ $ (-642 (-862 |#1|)) (-642 (-769))) NIL)) (-3252 (((-531 (-862 |#1|)) $) NIL) (((-769) $ (-862 |#1|)) NIL) (((-642 (-769)) $ (-642 (-862 |#1|))) NIL)) (-3003 (((-890 (-379)) $) NIL (-12 (|has| (-862 |#1|) (-612 (-890 (-379)))) (|has| |#2| (-612 (-890 (-379)))))) (((-890 (-564)) $) NIL (-12 (|has| (-862 |#1|) (-612 (-890 (-564)))) (|has| |#2| (-612 (-890 (-564)))))) (((-536) $) NIL (-12 (|has| (-862 |#1|) (-612 (-536))) (|has| |#2| (-612 (-536)))))) (-4325 ((|#2| $) NIL (|has| |#2| (-452))) (($ $ (-862 |#1|)) NIL (|has| |#2| (-452)))) (-3556 (((-3 (-1262 $) "failed") (-687 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-907))))) (-2390 (((-860) $) NIL) (($ (-564)) NIL) (($ |#2|) NIL) (($ (-862 |#1|)) NIL) (($ $) NIL (|has| |#2| (-556))) (($ (-407 (-564))) NIL (-2682 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1036 (-407 (-564))))))) (-2839 (((-642 |#2|) $) NIL)) (-3005 ((|#2| $ (-531 (-862 |#1|))) NIL) (($ $ (-862 |#1|) (-769)) NIL) (($ $ (-642 (-862 |#1|)) (-642 (-769))) NIL)) (-3434 (((-3 $ "failed") $) NIL (-2682 (-12 (|has| $ (-145)) (|has| |#2| (-907))) (|has| |#2| (-145))))) (-3348 (((-769)) NIL T CONST)) (-2645 (($ $ $ (-769)) NIL (|has| |#2| (-172)))) (-1600 (((-112) $ $) NIL)) (-1594 (((-112) $ $) NIL (|has| |#2| (-556)))) (-2361 (($) NIL T CONST)) (-2371 (($) NIL T CONST)) (-2711 (($ $ (-862 |#1|)) NIL) (($ $ (-642 (-862 |#1|))) NIL) (($ $ (-862 |#1|) (-769)) NIL) (($ $ (-642 (-862 |#1|)) (-642 (-769))) NIL)) (-2821 (((-112) $ $) NIL)) (-2943 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#2| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#2| (-38 (-407 (-564))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-729 |#1| |#2|) (-947 |#2| (-531 (-862 |#1|)) (-862 |#1|)) (-642 (-1173)) (-1047)) (T -729)) -NIL -(-947 |#2| (-531 (-862 |#1|)) (-862 |#1|)) -((-3802 (((-2 (|:| -2247 (-950 |#3|)) (|:| -3883 (-950 |#3|))) |#4|) 14)) (-4152 ((|#4| |#4| |#2|) 33)) (-2434 ((|#4| (-407 (-950 |#3|)) |#2|) 64)) (-2487 ((|#4| (-1169 (-950 |#3|)) |#2|) 77)) (-4088 ((|#4| (-1169 |#4|) |#2|) 51)) (-1474 ((|#4| |#4| |#2|) 54)) (-2254 (((-418 |#4|) |#4|) 40))) -(((-730 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3802 ((-2 (|:| -2247 (-950 |#3|)) (|:| -3883 (-950 |#3|))) |#4|)) (-15 -1474 (|#4| |#4| |#2|)) (-15 -4088 (|#4| (-1169 |#4|) |#2|)) (-15 -4152 (|#4| |#4| |#2|)) (-15 -2487 (|#4| (-1169 (-950 |#3|)) |#2|)) (-15 -2434 (|#4| (-407 (-950 |#3|)) |#2|)) (-15 -2254 ((-418 |#4|) |#4|))) (-791) (-13 (-848) (-10 -8 (-15 -3003 ((-1173) $)))) (-556) (-947 (-407 (-950 |#3|)) |#1| |#2|)) (T -730)) -((-2254 (*1 *2 *3) (-12 (-4 *4 (-791)) (-4 *5 (-13 (-848) (-10 -8 (-15 -3003 ((-1173) $))))) (-4 *6 (-556)) (-5 *2 (-418 *3)) (-5 *1 (-730 *4 *5 *6 *3)) (-4 *3 (-947 (-407 (-950 *6)) *4 *5)))) (-2434 (*1 *2 *3 *4) (-12 (-4 *6 (-556)) (-4 *2 (-947 *3 *5 *4)) (-5 *1 (-730 *5 *4 *6 *2)) (-5 *3 (-407 (-950 *6))) (-4 *5 (-791)) (-4 *4 (-13 (-848) (-10 -8 (-15 -3003 ((-1173) $))))))) (-2487 (*1 *2 *3 *4) (-12 (-5 *3 (-1169 (-950 *6))) (-4 *6 (-556)) (-4 *2 (-947 (-407 (-950 *6)) *5 *4)) (-5 *1 (-730 *5 *4 *6 *2)) (-4 *5 (-791)) (-4 *4 (-13 (-848) (-10 -8 (-15 -3003 ((-1173) $))))))) (-4152 (*1 *2 *2 *3) (-12 (-4 *4 (-791)) (-4 *3 (-13 (-848) (-10 -8 (-15 -3003 ((-1173) $))))) (-4 *5 (-556)) (-5 *1 (-730 *4 *3 *5 *2)) (-4 *2 (-947 (-407 (-950 *5)) *4 *3)))) (-4088 (*1 *2 *3 *4) (-12 (-5 *3 (-1169 *2)) (-4 *2 (-947 (-407 (-950 *6)) *5 *4)) (-5 *1 (-730 *5 *4 *6 *2)) (-4 *5 (-791)) (-4 *4 (-13 (-848) (-10 -8 (-15 -3003 ((-1173) $))))) (-4 *6 (-556)))) (-1474 (*1 *2 *2 *3) (-12 (-4 *4 (-791)) (-4 *3 (-13 (-848) (-10 -8 (-15 -3003 ((-1173) $))))) (-4 *5 (-556)) (-5 *1 (-730 *4 *3 *5 *2)) (-4 *2 (-947 (-407 (-950 *5)) *4 *3)))) (-3802 (*1 *2 *3) (-12 (-4 *4 (-791)) (-4 *5 (-13 (-848) (-10 -8 (-15 -3003 ((-1173) $))))) (-4 *6 (-556)) (-5 *2 (-2 (|:| -2247 (-950 *6)) (|:| -3883 (-950 *6)))) (-5 *1 (-730 *4 *5 *6 *3)) (-4 *3 (-947 (-407 (-950 *6)) *4 *5))))) -(-10 -7 (-15 -3802 ((-2 (|:| -2247 (-950 |#3|)) (|:| -3883 (-950 |#3|))) |#4|)) (-15 -1474 (|#4| |#4| |#2|)) (-15 -4088 (|#4| (-1169 |#4|) |#2|)) (-15 -4152 (|#4| |#4| |#2|)) (-15 -2487 (|#4| (-1169 (-950 |#3|)) |#2|)) (-15 -2434 (|#4| (-407 (-950 |#3|)) |#2|)) (-15 -2254 ((-418 |#4|) |#4|))) -((-2254 (((-418 |#4|) |#4|) 54))) -(((-731 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2254 ((-418 |#4|) |#4|))) (-791) (-848) (-13 (-307) (-147)) (-947 (-407 |#3|) |#1| |#2|)) (T -731)) -((-2254 (*1 *2 *3) (-12 (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-13 (-307) (-147))) (-5 *2 (-418 *3)) (-5 *1 (-731 *4 *5 *6 *3)) (-4 *3 (-947 (-407 *6) *4 *5))))) -(-10 -7 (-15 -2254 ((-418 |#4|) |#4|))) -((-2947 (((-733 |#2| |#3|) (-1 |#2| |#1|) (-733 |#1| |#3|)) 18))) -(((-732 |#1| |#2| |#3|) (-10 -7 (-15 -2947 ((-733 |#2| |#3|) (-1 |#2| |#1|) (-733 |#1| |#3|)))) (-1047) (-1047) (-724)) (T -732)) -((-2947 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-733 *5 *7)) (-4 *5 (-1047)) (-4 *6 (-1047)) (-4 *7 (-724)) (-5 *2 (-733 *6 *7)) (-5 *1 (-732 *5 *6 *7))))) -(-10 -7 (-15 -2947 ((-733 |#2| |#3|) (-1 |#2| |#1|) (-733 |#1| |#3|)))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) 38)) (-4077 (((-642 (-2 (|:| -2968 |#1|) (|:| -1846 |#2|))) $) 39)) (-3085 (((-3 $ "failed") $ $) NIL)) (-4003 (((-769)) 22 (-12 (|has| |#2| (-368)) (|has| |#1| (-368))))) (-2822 (($) NIL T CONST)) (-2849 (((-3 |#2| "failed") $) 78) (((-3 |#1| "failed") $) 81)) (-1687 ((|#2| $) NIL) ((|#1| $) NIL)) (-3459 (($ $) 104 (|has| |#2| (-848)))) (-2675 (((-3 $ "failed") $) 87)) (-3235 (($) 50 (-12 (|has| |#2| (-368)) (|has| |#1| (-368))))) (-3163 (((-112) $) NIL)) (-1904 (((-769) $) 72)) (-1995 (((-642 $) $) 54)) (-3471 (((-112) $) NIL)) (-2374 (($ |#1| |#2|) 17)) (-2947 (($ (-1 |#1| |#1|) $) 70)) (-2535 (((-919) $) 45 (-12 (|has| |#2| (-368)) (|has| |#1| (-368))))) (-2510 ((|#2| $) 103 (|has| |#2| (-848)))) (-2523 ((|#1| $) 102 (|has| |#2| (-848)))) (-1778 (((-1155) $) NIL)) (-2065 (($ (-919)) 37 (-12 (|has| |#2| (-368)) (|has| |#1| (-368))))) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) 101) (($ (-564)) 61) (($ |#2|) 57) (($ |#1|) 58) (($ (-642 (-2 (|:| -2968 |#1|) (|:| -1846 |#2|)))) 11)) (-2839 (((-642 |#1|) $) 56)) (-3005 ((|#1| $ |#2|) 117)) (-3434 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3348 (((-769)) NIL T CONST)) (-1600 (((-112) $ $) NIL)) (-2361 (($) 12 T CONST)) (-2371 (($) 46 T CONST)) (-2821 (((-112) $ $) 107)) (-2930 (($ $) 63) (($ $ $) NIL)) (-2917 (($ $ $) 35)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 68) (($ $ $) 120) (($ |#1| $) 65 (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))))) -(((-733 |#1| |#2|) (-13 (-1047) (-1036 |#2|) (-1036 |#1|) (-10 -8 (-15 -2374 ($ |#1| |#2|)) (-15 -3005 (|#1| $ |#2|)) (-15 -2390 ($ (-642 (-2 (|:| -2968 |#1|) (|:| -1846 |#2|))))) (-15 -4077 ((-642 (-2 (|:| -2968 |#1|) (|:| -1846 |#2|))) $)) (-15 -2947 ($ (-1 |#1| |#1|) $)) (-15 -3471 ((-112) $)) (-15 -2839 ((-642 |#1|) $)) (-15 -1995 ((-642 $) $)) (-15 -1904 ((-769) $)) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-368)) (IF (|has| |#2| (-368)) (-6 (-368)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-848)) (PROGN (-15 -2510 (|#2| $)) (-15 -2523 (|#1| $)) (-15 -3459 ($ $))) |%noBranch|))) (-1047) (-724)) (T -733)) -((-2374 (*1 *1 *2 *3) (-12 (-5 *1 (-733 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-724)))) (-3005 (*1 *2 *1 *3) (-12 (-4 *2 (-1047)) (-5 *1 (-733 *2 *3)) (-4 *3 (-724)))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-642 (-2 (|:| -2968 *3) (|:| -1846 *4)))) (-4 *3 (-1047)) (-4 *4 (-724)) (-5 *1 (-733 *3 *4)))) (-4077 (*1 *2 *1) (-12 (-5 *2 (-642 (-2 (|:| -2968 *3) (|:| -1846 *4)))) (-5 *1 (-733 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-724)))) (-2947 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1047)) (-5 *1 (-733 *3 *4)) (-4 *4 (-724)))) (-3471 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-733 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-724)))) (-2839 (*1 *2 *1) (-12 (-5 *2 (-642 *3)) (-5 *1 (-733 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-724)))) (-1995 (*1 *2 *1) (-12 (-5 *2 (-642 (-733 *3 *4))) (-5 *1 (-733 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-724)))) (-1904 (*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-733 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-724)))) (-2510 (*1 *2 *1) (-12 (-4 *2 (-724)) (-4 *2 (-848)) (-5 *1 (-733 *3 *2)) (-4 *3 (-1047)))) (-2523 (*1 *2 *1) (-12 (-4 *2 (-1047)) (-5 *1 (-733 *2 *3)) (-4 *3 (-848)) (-4 *3 (-724)))) (-3459 (*1 *1 *1) (-12 (-5 *1 (-733 *2 *3)) (-4 *3 (-848)) (-4 *2 (-1047)) (-4 *3 (-724))))) -(-13 (-1047) (-1036 |#2|) (-1036 |#1|) (-10 -8 (-15 -2374 ($ |#1| |#2|)) (-15 -3005 (|#1| $ |#2|)) (-15 -2390 ($ (-642 (-2 (|:| -2968 |#1|) (|:| -1846 |#2|))))) (-15 -4077 ((-642 (-2 (|:| -2968 |#1|) (|:| -1846 |#2|))) $)) (-15 -2947 ($ (-1 |#1| |#1|) $)) (-15 -3471 ((-112) $)) (-15 -2839 ((-642 |#1|) $)) (-15 -1995 ((-642 $) $)) (-15 -1904 ((-769) $)) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-368)) (IF (|has| |#2| (-368)) (-6 (-368)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-848)) (PROGN (-15 -2510 (|#2| $)) (-15 -2523 (|#1| $)) (-15 -3459 ($ $))) |%noBranch|))) -((-2856 (((-112) $ $) 19)) (-1700 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-3011 (($ $ $) 73)) (-2460 (((-112) $ $) 74)) (-3442 (((-112) $ (-769)) 8)) (-1740 (($ (-642 |#1|)) 69) (($) 68)) (-2438 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4410)))) (-3437 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4410)))) (-2822 (($) 7 T CONST)) (-2324 (($ $) 63)) (-4067 (($ $) 59 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-1927 (($ |#1| $) 48 (|has| $ (-6 -4410))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4410)))) (-2517 (($ |#1| $) 58 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4410)))) (-3741 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4410)))) (-2018 (((-642 |#1|) $) 31 (|has| $ (-6 -4410)))) (-1309 (((-112) $ $) 65)) (-3769 (((-112) $ (-769)) 9)) (-3541 (((-642 |#1|) $) 30 (|has| $ (-6 -4410)))) (-2533 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-1857 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#1| |#1|) $) 36)) (-4145 (((-112) $ (-769)) 10)) (-1778 (((-1155) $) 22)) (-2338 (($ $ $) 70)) (-3220 ((|#1| $) 40)) (-1668 (($ |#1| $) 41) (($ |#1| $ (-769)) 64)) (-3999 (((-1117) $) 21)) (-3183 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-4314 ((|#1| $) 42)) (-4094 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-2478 (((-112) $ $) 14)) (-4109 (((-112) $) 11)) (-2179 (($) 12)) (-3687 (((-642 (-2 (|:| -2683 |#1|) (|:| -4010 (-769)))) $) 62)) (-1411 (($ $ |#1|) 72) (($ $ $) 71)) (-2318 (($) 50) (($ (-642 |#1|)) 49)) (-4010 (((-769) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4410))) (((-769) |#1| $) 29 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3865 (($ $) 13)) (-3003 (((-536) $) 60 (|has| |#1| (-612 (-536))))) (-2401 (($ (-642 |#1|)) 51)) (-2390 (((-860) $) 18)) (-2321 (($ (-642 |#1|)) 67) (($) 66)) (-1600 (((-112) $ $) 23)) (-4160 (($ (-642 |#1|)) 43)) (-3295 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4410)))) (-2821 (((-112) $ $) 20)) (-2158 (((-769) $) 6 (|has| $ (-6 -4410))))) -(((-734 |#1|) (-140) (-1097)) (T -734)) -NIL -(-13 (-693 |t#1|) (-1095 |t#1|)) -(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-611 (-860)) . T) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-235 |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-693 |#1|) . T) ((-1095 |#1|) . T) ((-1097) . T) ((-1212) . T)) -((-2856 (((-112) $ $) NIL)) (-1700 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 95)) (-3011 (($ $ $) 99)) (-2460 (((-112) $ $) 107)) (-3442 (((-112) $ (-769)) NIL)) (-1740 (($ (-642 |#1|)) 26) (($) 17)) (-2438 (($ (-1 (-112) |#1|) $) 83 (|has| $ (-6 -4410)))) (-3437 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2822 (($) NIL T CONST)) (-2324 (($ $) 85)) (-4067 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-1927 (($ |#1| $) 70 (|has| $ (-6 -4410))) (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4410))) (($ |#1| $ (-564)) 75) (($ (-1 (-112) |#1|) $ (-564)) 78)) (-2517 (($ |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (($ |#1| $ (-564)) 80) (($ (-1 (-112) |#1|) $ (-564)) 81)) (-3741 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4410)))) (-2018 (((-642 |#1|) $) 32 (|has| $ (-6 -4410)))) (-1309 (((-112) $ $) 106)) (-3767 (($) 15) (($ |#1|) 28) (($ (-642 |#1|)) 23)) (-3769 (((-112) $ (-769)) NIL)) (-3541 (((-642 |#1|) $) 38)) (-2533 (((-112) |#1| $) 65 (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-1857 (($ (-1 |#1| |#1|) $) 88 (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#1| |#1|) $) 89)) (-4145 (((-112) $ (-769)) NIL)) (-1778 (((-1155) $) NIL)) (-2338 (($ $ $) 97)) (-3220 ((|#1| $) 62)) (-1668 (($ |#1| $) 63) (($ |#1| $ (-769)) 86)) (-3999 (((-1117) $) NIL)) (-3183 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4314 ((|#1| $) 61)) (-4094 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-2478 (((-112) $ $) NIL)) (-4109 (((-112) $) 56)) (-2179 (($) 14)) (-3687 (((-642 (-2 (|:| -2683 |#1|) (|:| -4010 (-769)))) $) 55)) (-1411 (($ $ |#1|) NIL) (($ $ $) 98)) (-2318 (($) 16) (($ (-642 |#1|)) 25)) (-4010 (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-769) |#1| $) 68 (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3865 (($ $) 79)) (-3003 (((-536) $) 36 (|has| |#1| (-612 (-536))))) (-2401 (($ (-642 |#1|)) 22)) (-2390 (((-860) $) 49)) (-2321 (($ (-642 |#1|)) 27) (($) 18)) (-1600 (((-112) $ $) NIL)) (-4160 (($ (-642 |#1|)) 24)) (-3295 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2821 (((-112) $ $) 103)) (-2158 (((-769) $) 67 (|has| $ (-6 -4410))))) -(((-735 |#1|) (-13 (-734 |#1|) (-10 -8 (-6 -4410) (-6 -4411) (-15 -3767 ($)) (-15 -3767 ($ |#1|)) (-15 -3767 ($ (-642 |#1|))) (-15 -3541 ((-642 |#1|) $)) (-15 -2517 ($ |#1| $ (-564))) (-15 -2517 ($ (-1 (-112) |#1|) $ (-564))) (-15 -1927 ($ |#1| $ (-564))) (-15 -1927 ($ (-1 (-112) |#1|) $ (-564))))) (-1097)) (T -735)) -((-3767 (*1 *1) (-12 (-5 *1 (-735 *2)) (-4 *2 (-1097)))) (-3767 (*1 *1 *2) (-12 (-5 *1 (-735 *2)) (-4 *2 (-1097)))) (-3767 (*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1097)) (-5 *1 (-735 *3)))) (-3541 (*1 *2 *1) (-12 (-5 *2 (-642 *3)) (-5 *1 (-735 *3)) (-4 *3 (-1097)))) (-2517 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-735 *2)) (-4 *2 (-1097)))) (-2517 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-564)) (-4 *4 (-1097)) (-5 *1 (-735 *4)))) (-1927 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-735 *2)) (-4 *2 (-1097)))) (-1927 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-564)) (-4 *4 (-1097)) (-5 *1 (-735 *4))))) -(-13 (-734 |#1|) (-10 -8 (-6 -4410) (-6 -4411) (-15 -3767 ($)) (-15 -3767 ($ |#1|)) (-15 -3767 ($ (-642 |#1|))) (-15 -3541 ((-642 |#1|) $)) (-15 -2517 ($ |#1| $ (-564))) (-15 -2517 ($ (-1 (-112) |#1|) $ (-564))) (-15 -1927 ($ |#1| $ (-564))) (-15 -1927 ($ (-1 (-112) |#1|) $ (-564))))) -((-3654 (((-1267) (-1155)) 8))) -(((-736) (-10 -7 (-15 -3654 ((-1267) (-1155))))) (T -736)) -((-3654 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-736))))) -(-10 -7 (-15 -3654 ((-1267) (-1155)))) -((-2208 (((-642 |#1|) (-642 |#1|) (-642 |#1|)) 15))) -(((-737 |#1|) (-10 -7 (-15 -2208 ((-642 |#1|) (-642 |#1|) (-642 |#1|)))) (-848)) (T -737)) -((-2208 (*1 *2 *2 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-848)) (-5 *1 (-737 *3))))) -(-10 -7 (-15 -2208 ((-642 |#1|) (-642 |#1|) (-642 |#1|)))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-2397 (((-642 |#2|) $) 148)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) 141 (|has| |#1| (-556)))) (-4252 (($ $) 140 (|has| |#1| (-556)))) (-1722 (((-112) $) 138 (|has| |#1| (-556)))) (-3087 (($ $) 97 (|has| |#1| (-38 (-407 (-564)))))) (-2958 (($ $) 80 (|has| |#1| (-38 (-407 (-564)))))) (-3085 (((-3 $ "failed") $ $) 20)) (-2264 (($ $) 79 (|has| |#1| (-38 (-407 (-564)))))) (-3067 (($ $) 96 (|has| |#1| (-38 (-407 (-564)))))) (-2933 (($ $) 81 (|has| |#1| (-38 (-407 (-564)))))) (-3110 (($ $) 95 (|has| |#1| (-38 (-407 (-564)))))) (-2981 (($ $) 82 (|has| |#1| (-38 (-407 (-564)))))) (-2822 (($) 18 T CONST)) (-3459 (($ $) 132)) (-2675 (((-3 $ "failed") $) 37)) (-2437 (((-950 |#1|) $ (-769)) 110) (((-950 |#1|) $ (-769) (-769)) 109)) (-2210 (((-112) $) 149)) (-2833 (($) 107 (|has| |#1| (-38 (-407 (-564)))))) (-2408 (((-769) $ |#2|) 112) (((-769) $ |#2| (-769)) 111)) (-3163 (((-112) $) 35)) (-2024 (($ $ (-564)) 78 (|has| |#1| (-38 (-407 (-564)))))) (-3471 (((-112) $) 130)) (-2374 (($ $ (-642 |#2|) (-642 (-531 |#2|))) 147) (($ $ |#2| (-531 |#2|)) 146) (($ |#1| (-531 |#2|)) 131) (($ $ |#2| (-769)) 114) (($ $ (-642 |#2|) (-642 (-769))) 113)) (-2947 (($ (-1 |#1| |#1|) $) 129)) (-3576 (($ $) 104 (|has| |#1| (-38 (-407 (-564)))))) (-2510 (($ $) 127)) (-2523 ((|#1| $) 126)) (-1778 (((-1155) $) 10)) (-3703 (($ $ |#2|) 108 (|has| |#1| (-38 (-407 (-564)))))) (-3999 (((-1117) $) 11)) (-2137 (($ $ (-769)) 115)) (-2842 (((-3 $ "failed") $ $) 142 (|has| |#1| (-556)))) (-3466 (($ $) 105 (|has| |#1| (-38 (-407 (-564)))))) (-3154 (($ $ |#2| $) 123) (($ $ (-642 |#2|) (-642 $)) 122) (($ $ (-642 (-294 $))) 121) (($ $ (-294 $)) 120) (($ $ $ $) 119) (($ $ (-642 $) (-642 $)) 118)) (-2199 (($ $ |#2|) 46) (($ $ (-642 |#2|)) 45) (($ $ |#2| (-769)) 44) (($ $ (-642 |#2|) (-642 (-769))) 43)) (-3252 (((-531 |#2|) $) 128)) (-3120 (($ $) 94 (|has| |#1| (-38 (-407 (-564)))))) (-2992 (($ $) 83 (|has| |#1| (-38 (-407 (-564)))))) (-3098 (($ $) 93 (|has| |#1| (-38 (-407 (-564)))))) (-2971 (($ $) 84 (|has| |#1| (-38 (-407 (-564)))))) (-3077 (($ $) 92 (|has| |#1| (-38 (-407 (-564)))))) (-2946 (($ $) 85 (|has| |#1| (-38 (-407 (-564)))))) (-4189 (($ $) 150)) (-2390 (((-860) $) 12) (($ (-564)) 33) (($ |#1|) 145 (|has| |#1| (-172))) (($ $) 143 (|has| |#1| (-556))) (($ (-407 (-564))) 135 (|has| |#1| (-38 (-407 (-564)))))) (-3005 ((|#1| $ (-531 |#2|)) 133) (($ $ |#2| (-769)) 117) (($ $ (-642 |#2|) (-642 (-769))) 116)) (-3434 (((-3 $ "failed") $) 144 (|has| |#1| (-145)))) (-3348 (((-769)) 32 T CONST)) (-1600 (((-112) $ $) 9)) (-3155 (($ $) 103 (|has| |#1| (-38 (-407 (-564)))))) (-3025 (($ $) 91 (|has| |#1| (-38 (-407 (-564)))))) (-1594 (((-112) $ $) 139 (|has| |#1| (-556)))) (-3131 (($ $) 102 (|has| |#1| (-38 (-407 (-564)))))) (-3002 (($ $) 90 (|has| |#1| (-38 (-407 (-564)))))) (-3176 (($ $) 101 (|has| |#1| (-38 (-407 (-564)))))) (-3047 (($ $) 89 (|has| |#1| (-38 (-407 (-564)))))) (-3165 (($ $) 100 (|has| |#1| (-38 (-407 (-564)))))) (-3058 (($ $) 88 (|has| |#1| (-38 (-407 (-564)))))) (-3168 (($ $) 99 (|has| |#1| (-38 (-407 (-564)))))) (-3035 (($ $) 87 (|has| |#1| (-38 (-407 (-564)))))) (-3142 (($ $) 98 (|has| |#1| (-38 (-407 (-564)))))) (-3014 (($ $) 86 (|has| |#1| (-38 (-407 (-564)))))) (-2361 (($) 19 T CONST)) (-2371 (($) 34 T CONST)) (-2711 (($ $ |#2|) 42) (($ $ (-642 |#2|)) 41) (($ $ |#2| (-769)) 40) (($ $ (-642 |#2|) (-642 (-769))) 39)) (-2821 (((-112) $ $) 6)) (-2943 (($ $ |#1|) 134 (|has| |#1| (-363)))) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36) (($ $ $) 106 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 77 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ (-407 (-564))) 137 (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) 136 (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 125) (($ $ |#1|) 124))) -(((-738 |#1| |#2|) (-140) (-1047) (-848)) (T -738)) -((-3005 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-769)) (-4 *1 (-738 *4 *2)) (-4 *4 (-1047)) (-4 *2 (-848)))) (-3005 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-642 *5)) (-5 *3 (-642 (-769))) (-4 *1 (-738 *4 *5)) (-4 *4 (-1047)) (-4 *5 (-848)))) (-2137 (*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-4 *1 (-738 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-848)))) (-2374 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-769)) (-4 *1 (-738 *4 *2)) (-4 *4 (-1047)) (-4 *2 (-848)))) (-2374 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-642 *5)) (-5 *3 (-642 (-769))) (-4 *1 (-738 *4 *5)) (-4 *4 (-1047)) (-4 *5 (-848)))) (-2408 (*1 *2 *1 *3) (-12 (-4 *1 (-738 *4 *3)) (-4 *4 (-1047)) (-4 *3 (-848)) (-5 *2 (-769)))) (-2408 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-769)) (-4 *1 (-738 *4 *3)) (-4 *4 (-1047)) (-4 *3 (-848)))) (-2437 (*1 *2 *1 *3) (-12 (-5 *3 (-769)) (-4 *1 (-738 *4 *5)) (-4 *4 (-1047)) (-4 *5 (-848)) (-5 *2 (-950 *4)))) (-2437 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-769)) (-4 *1 (-738 *4 *5)) (-4 *4 (-1047)) (-4 *5 (-848)) (-5 *2 (-950 *4)))) (-3703 (*1 *1 *1 *2) (-12 (-4 *1 (-738 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-848)) (-4 *3 (-38 (-407 (-564))))))) -(-13 (-898 |t#2|) (-971 |t#1| (-531 |t#2|) |t#2|) (-514 |t#2| $) (-309 $) (-10 -8 (-15 -3005 ($ $ |t#2| (-769))) (-15 -3005 ($ $ (-642 |t#2|) (-642 (-769)))) (-15 -2137 ($ $ (-769))) (-15 -2374 ($ $ |t#2| (-769))) (-15 -2374 ($ $ (-642 |t#2|) (-642 (-769)))) (-15 -2408 ((-769) $ |t#2|)) (-15 -2408 ((-769) $ |t#2| (-769))) (-15 -2437 ((-950 |t#1|) $ (-769))) (-15 -2437 ((-950 |t#1|) $ (-769) (-769))) (IF (|has| |t#1| (-38 (-407 (-564)))) (PROGN (-15 -3703 ($ $ |t#2|)) (-6 (-1000)) (-6 (-1197))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-531 |#2|)) . T) ((-25) . T) ((-38 #1=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-556)) ((-35) |has| |#1| (-38 (-407 (-564)))) ((-95) |has| |#1| (-38 (-407 (-564)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2682 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #1#) |has| |#1| (-38 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-614 $) |has| |#1| (-556)) ((-611 (-860)) . T) ((-172) -2682 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-284) |has| |#1| (-38 (-407 (-564)))) ((-290) |has| |#1| (-556)) ((-309 $) . T) ((-493) |has| |#1| (-38 (-407 (-564)))) ((-514 |#2| $) . T) ((-514 $ $) . T) ((-556) |has| |#1| (-556)) ((-644 #1#) |has| |#1| (-38 (-407 (-564)))) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-646 #1#) |has| |#1| (-38 (-407 (-564)))) ((-646 |#1|) . T) ((-646 $) . T) ((-638 #1#) |has| |#1| (-38 (-407 (-564)))) ((-638 |#1|) |has| |#1| (-172)) ((-638 $) |has| |#1| (-556)) ((-715 #1#) |has| |#1| (-38 (-407 (-564)))) ((-715 |#1|) |has| |#1| (-172)) ((-715 $) |has| |#1| (-556)) ((-724) . T) ((-898 |#2|) . T) ((-971 |#1| #0# |#2|) . T) ((-1000) |has| |#1| (-38 (-407 (-564)))) ((-1049 #1#) |has| |#1| (-38 (-407 (-564)))) ((-1049 |#1|) . T) ((-1049 $) -2682 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-1054 #1#) |has| |#1| (-38 (-407 (-564)))) ((-1054 |#1|) . T) ((-1054 $) -2682 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T) ((-1197) |has| |#1| (-38 (-407 (-564)))) ((-1200) |has| |#1| (-38 (-407 (-564))))) -((-2254 (((-418 (-1169 |#4|)) (-1169 |#4|)) 30) (((-418 |#4|) |#4|) 26))) -(((-739 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2254 ((-418 |#4|) |#4|)) (-15 -2254 ((-418 (-1169 |#4|)) (-1169 |#4|)))) (-848) (-791) (-13 (-307) (-147)) (-947 |#3| |#2| |#1|)) (T -739)) -((-2254 (*1 *2 *3) (-12 (-4 *4 (-848)) (-4 *5 (-791)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-947 *6 *5 *4)) (-5 *2 (-418 (-1169 *7))) (-5 *1 (-739 *4 *5 *6 *7)) (-5 *3 (-1169 *7)))) (-2254 (*1 *2 *3) (-12 (-4 *4 (-848)) (-4 *5 (-791)) (-4 *6 (-13 (-307) (-147))) (-5 *2 (-418 *3)) (-5 *1 (-739 *4 *5 *6 *3)) (-4 *3 (-947 *6 *5 *4))))) -(-10 -7 (-15 -2254 ((-418 |#4|) |#4|)) (-15 -2254 ((-418 (-1169 |#4|)) (-1169 |#4|)))) -((-3331 (((-418 |#4|) |#4| |#2|) 142)) (-3415 (((-418 |#4|) |#4|) NIL)) (-3282 (((-418 (-1169 |#4|)) (-1169 |#4|)) 127) (((-418 |#4|) |#4|) 52)) (-3558 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-642 (-2 (|:| -2254 (-1169 |#4|)) (|:| -2817 (-564)))))) (-1169 |#4|) (-642 |#2|) (-642 (-642 |#3|))) 81)) (-2122 (((-1169 |#3|) (-1169 |#3|) (-564)) 168)) (-2890 (((-642 (-769)) (-1169 |#4|) (-642 |#2|) (-769)) 75)) (-3730 (((-3 (-642 (-1169 |#4|)) "failed") (-1169 |#4|) (-1169 |#3|) (-1169 |#3|) |#4| (-642 |#2|) (-642 (-769)) (-642 |#3|)) 79)) (-4049 (((-2 (|:| |upol| (-1169 |#3|)) (|:| |Lval| (-642 |#3|)) (|:| |Lfact| (-642 (-2 (|:| -2254 (-1169 |#3|)) (|:| -2817 (-564))))) (|:| |ctpol| |#3|)) (-1169 |#4|) (-642 |#2|) (-642 (-642 |#3|))) 27)) (-1472 (((-2 (|:| -2830 (-1169 |#4|)) (|:| |polval| (-1169 |#3|))) (-1169 |#4|) (-1169 |#3|) (-564)) 72)) (-2589 (((-564) (-642 (-2 (|:| -2254 (-1169 |#3|)) (|:| -2817 (-564))))) 164)) (-4370 ((|#4| (-564) (-418 |#4|)) 73)) (-2457 (((-112) (-642 (-2 (|:| -2254 (-1169 |#3|)) (|:| -2817 (-564)))) (-642 (-2 (|:| -2254 (-1169 |#3|)) (|:| -2817 (-564))))) NIL))) -(((-740 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3282 ((-418 |#4|) |#4|)) (-15 -3282 ((-418 (-1169 |#4|)) (-1169 |#4|))) (-15 -3415 ((-418 |#4|) |#4|)) (-15 -2589 ((-564) (-642 (-2 (|:| -2254 (-1169 |#3|)) (|:| -2817 (-564)))))) (-15 -3331 ((-418 |#4|) |#4| |#2|)) (-15 -1472 ((-2 (|:| -2830 (-1169 |#4|)) (|:| |polval| (-1169 |#3|))) (-1169 |#4|) (-1169 |#3|) (-564))) (-15 -3558 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-642 (-2 (|:| -2254 (-1169 |#4|)) (|:| -2817 (-564)))))) (-1169 |#4|) (-642 |#2|) (-642 (-642 |#3|)))) (-15 -4049 ((-2 (|:| |upol| (-1169 |#3|)) (|:| |Lval| (-642 |#3|)) (|:| |Lfact| (-642 (-2 (|:| -2254 (-1169 |#3|)) (|:| -2817 (-564))))) (|:| |ctpol| |#3|)) (-1169 |#4|) (-642 |#2|) (-642 (-642 |#3|)))) (-15 -4370 (|#4| (-564) (-418 |#4|))) (-15 -2457 ((-112) (-642 (-2 (|:| -2254 (-1169 |#3|)) (|:| -2817 (-564)))) (-642 (-2 (|:| -2254 (-1169 |#3|)) (|:| -2817 (-564)))))) (-15 -3730 ((-3 (-642 (-1169 |#4|)) "failed") (-1169 |#4|) (-1169 |#3|) (-1169 |#3|) |#4| (-642 |#2|) (-642 (-769)) (-642 |#3|))) (-15 -2890 ((-642 (-769)) (-1169 |#4|) (-642 |#2|) (-769))) (-15 -2122 ((-1169 |#3|) (-1169 |#3|) (-564)))) (-791) (-848) (-307) (-947 |#3| |#1| |#2|)) (T -740)) -((-2122 (*1 *2 *2 *3) (-12 (-5 *2 (-1169 *6)) (-5 *3 (-564)) (-4 *6 (-307)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-740 *4 *5 *6 *7)) (-4 *7 (-947 *6 *4 *5)))) (-2890 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1169 *9)) (-5 *4 (-642 *7)) (-4 *7 (-848)) (-4 *9 (-947 *8 *6 *7)) (-4 *6 (-791)) (-4 *8 (-307)) (-5 *2 (-642 (-769))) (-5 *1 (-740 *6 *7 *8 *9)) (-5 *5 (-769)))) (-3730 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1169 *11)) (-5 *6 (-642 *10)) (-5 *7 (-642 (-769))) (-5 *8 (-642 *11)) (-4 *10 (-848)) (-4 *11 (-307)) (-4 *9 (-791)) (-4 *5 (-947 *11 *9 *10)) (-5 *2 (-642 (-1169 *5))) (-5 *1 (-740 *9 *10 *11 *5)) (-5 *3 (-1169 *5)))) (-2457 (*1 *2 *3 *3) (-12 (-5 *3 (-642 (-2 (|:| -2254 (-1169 *6)) (|:| -2817 (-564))))) (-4 *6 (-307)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-112)) (-5 *1 (-740 *4 *5 *6 *7)) (-4 *7 (-947 *6 *4 *5)))) (-4370 (*1 *2 *3 *4) (-12 (-5 *3 (-564)) (-5 *4 (-418 *2)) (-4 *2 (-947 *7 *5 *6)) (-5 *1 (-740 *5 *6 *7 *2)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-307)))) (-4049 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1169 *9)) (-5 *4 (-642 *7)) (-5 *5 (-642 (-642 *8))) (-4 *7 (-848)) (-4 *8 (-307)) (-4 *9 (-947 *8 *6 *7)) (-4 *6 (-791)) (-5 *2 (-2 (|:| |upol| (-1169 *8)) (|:| |Lval| (-642 *8)) (|:| |Lfact| (-642 (-2 (|:| -2254 (-1169 *8)) (|:| -2817 (-564))))) (|:| |ctpol| *8))) (-5 *1 (-740 *6 *7 *8 *9)))) (-3558 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-642 *7)) (-5 *5 (-642 (-642 *8))) (-4 *7 (-848)) (-4 *8 (-307)) (-4 *6 (-791)) (-4 *9 (-947 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-642 (-2 (|:| -2254 (-1169 *9)) (|:| -2817 (-564))))))) (-5 *1 (-740 *6 *7 *8 *9)) (-5 *3 (-1169 *9)))) (-1472 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-564)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *8 (-307)) (-4 *9 (-947 *8 *6 *7)) (-5 *2 (-2 (|:| -2830 (-1169 *9)) (|:| |polval| (-1169 *8)))) (-5 *1 (-740 *6 *7 *8 *9)) (-5 *3 (-1169 *9)) (-5 *4 (-1169 *8)))) (-3331 (*1 *2 *3 *4) (-12 (-4 *5 (-791)) (-4 *4 (-848)) (-4 *6 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-740 *5 *4 *6 *3)) (-4 *3 (-947 *6 *5 *4)))) (-2589 (*1 *2 *3) (-12 (-5 *3 (-642 (-2 (|:| -2254 (-1169 *6)) (|:| -2817 (-564))))) (-4 *6 (-307)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-564)) (-5 *1 (-740 *4 *5 *6 *7)) (-4 *7 (-947 *6 *4 *5)))) (-3415 (*1 *2 *3) (-12 (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-740 *4 *5 *6 *3)) (-4 *3 (-947 *6 *4 *5)))) (-3282 (*1 *2 *3) (-12 (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-307)) (-4 *7 (-947 *6 *4 *5)) (-5 *2 (-418 (-1169 *7))) (-5 *1 (-740 *4 *5 *6 *7)) (-5 *3 (-1169 *7)))) (-3282 (*1 *2 *3) (-12 (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-740 *4 *5 *6 *3)) (-4 *3 (-947 *6 *4 *5))))) -(-10 -7 (-15 -3282 ((-418 |#4|) |#4|)) (-15 -3282 ((-418 (-1169 |#4|)) (-1169 |#4|))) (-15 -3415 ((-418 |#4|) |#4|)) (-15 -2589 ((-564) (-642 (-2 (|:| -2254 (-1169 |#3|)) (|:| -2817 (-564)))))) (-15 -3331 ((-418 |#4|) |#4| |#2|)) (-15 -1472 ((-2 (|:| -2830 (-1169 |#4|)) (|:| |polval| (-1169 |#3|))) (-1169 |#4|) (-1169 |#3|) (-564))) (-15 -3558 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-642 (-2 (|:| -2254 (-1169 |#4|)) (|:| -2817 (-564)))))) (-1169 |#4|) (-642 |#2|) (-642 (-642 |#3|)))) (-15 -4049 ((-2 (|:| |upol| (-1169 |#3|)) (|:| |Lval| (-642 |#3|)) (|:| |Lfact| (-642 (-2 (|:| -2254 (-1169 |#3|)) (|:| -2817 (-564))))) (|:| |ctpol| |#3|)) (-1169 |#4|) (-642 |#2|) (-642 (-642 |#3|)))) (-15 -4370 (|#4| (-564) (-418 |#4|))) (-15 -2457 ((-112) (-642 (-2 (|:| -2254 (-1169 |#3|)) (|:| -2817 (-564)))) (-642 (-2 (|:| -2254 (-1169 |#3|)) (|:| -2817 (-564)))))) (-15 -3730 ((-3 (-642 (-1169 |#4|)) "failed") (-1169 |#4|) (-1169 |#3|) (-1169 |#3|) |#4| (-642 |#2|) (-642 (-769)) (-642 |#3|))) (-15 -2890 ((-642 (-769)) (-1169 |#4|) (-642 |#2|) (-769))) (-15 -2122 ((-1169 |#3|) (-1169 |#3|) (-564)))) -((-4359 (($ $ (-919)) 17))) -(((-741 |#1| |#2|) (-10 -8 (-15 -4359 (|#1| |#1| (-919)))) (-742 |#2|) (-172)) (T -741)) -NIL -(-10 -8 (-15 -4359 (|#1| |#1| (-919)))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-3085 (((-3 $ "failed") $ $) 20)) (-2822 (($) 18 T CONST)) (-3952 (($ $ (-919)) 31)) (-4359 (($ $ (-919)) 38)) (-4204 (($ $ (-919)) 32)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2402 (($ $ $) 28)) (-2390 (((-860) $) 12)) (-1600 (((-112) $ $) 9)) (-3845 (($ $ $ $) 29)) (-3106 (($ $ $) 27)) (-2361 (($) 19 T CONST)) (-2821 (((-112) $ $) 6)) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 33)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) -(((-742 |#1|) (-140) (-172)) (T -742)) -((-4359 (*1 *1 *1 *2) (-12 (-5 *2 (-919)) (-4 *1 (-742 *3)) (-4 *3 (-172))))) -(-13 (-759) (-715 |t#1|) (-10 -8 (-15 -4359 ($ $ (-919))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-611 (-860)) . T) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-646 |#1|) . T) ((-638 |#1|) . T) ((-715 |#1|) . T) ((-718) . T) ((-759) . T) ((-1049 |#1|) . T) ((-1054 |#1|) . T) ((-1097) . T)) -((-4357 (((-1033) (-687 (-225)) (-564) (-112) (-564)) 25)) (-3985 (((-1033) (-687 (-225)) (-564) (-112) (-564)) 24))) -(((-743) (-10 -7 (-15 -3985 ((-1033) (-687 (-225)) (-564) (-112) (-564))) (-15 -4357 ((-1033) (-687 (-225)) (-564) (-112) (-564))))) (T -743)) -((-4357 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-687 (-225))) (-5 *4 (-564)) (-5 *5 (-112)) (-5 *2 (-1033)) (-5 *1 (-743)))) (-3985 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-687 (-225))) (-5 *4 (-564)) (-5 *5 (-112)) (-5 *2 (-1033)) (-5 *1 (-743))))) -(-10 -7 (-15 -3985 ((-1033) (-687 (-225)) (-564) (-112) (-564))) (-15 -4357 ((-1033) (-687 (-225)) (-564) (-112) (-564)))) -((-3680 (((-1033) (-564) (-564) (-564) (-687 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-74 FCN)))) 43)) (-3626 (((-1033) (-564) (-564) (-687 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-81 FCN)))) 39)) (-3469 (((-1033) (-225) (-225) (-225) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2266)))) 32))) -(((-744) (-10 -7 (-15 -3469 ((-1033) (-225) (-225) (-225) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2266))))) (-15 -3626 ((-1033) (-564) (-564) (-687 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-81 FCN))))) (-15 -3680 ((-1033) (-564) (-564) (-564) (-687 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-74 FCN))))))) (T -744)) -((-3680 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1033)) (-5 *1 (-744)))) (-3626 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1033)) (-5 *1 (-744)))) (-3469 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2266)))) (-5 *2 (-1033)) (-5 *1 (-744))))) -(-10 -7 (-15 -3469 ((-1033) (-225) (-225) (-225) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2266))))) (-15 -3626 ((-1033) (-564) (-564) (-687 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-81 FCN))))) (-15 -3680 ((-1033) (-564) (-564) (-564) (-687 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-74 FCN)))))) -((-4148 (((-1033) (-564) (-564) (-687 (-225)) (-564)) 34)) (-1950 (((-1033) (-564) (-564) (-687 (-225)) (-564)) 33)) (-3043 (((-1033) (-564) (-687 (-225)) (-564)) 32)) (-2771 (((-1033) (-564) (-687 (-225)) (-564)) 31)) (-4144 (((-1033) (-564) (-564) (-1155) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564)) 30)) (-3302 (((-1033) (-564) (-564) (-1155) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564)) 29)) (-3559 (((-1033) (-564) (-564) (-1155) (-687 (-225)) (-687 (-225)) (-564)) 28)) (-3221 (((-1033) (-564) (-564) (-1155) (-687 (-225)) (-687 (-225)) (-564)) 27)) (-2135 (((-1033) (-564) (-564) (-687 (-225)) (-687 (-225)) (-564)) 24)) (-2059 (((-1033) (-564) (-687 (-225)) (-687 (-225)) (-564)) 23)) (-1737 (((-1033) (-564) (-687 (-225)) (-564)) 22)) (-3022 (((-1033) (-564) (-687 (-225)) (-564)) 21))) -(((-745) (-10 -7 (-15 -3022 ((-1033) (-564) (-687 (-225)) (-564))) (-15 -1737 ((-1033) (-564) (-687 (-225)) (-564))) (-15 -2059 ((-1033) (-564) (-687 (-225)) (-687 (-225)) (-564))) (-15 -2135 ((-1033) (-564) (-564) (-687 (-225)) (-687 (-225)) (-564))) (-15 -3221 ((-1033) (-564) (-564) (-1155) (-687 (-225)) (-687 (-225)) (-564))) (-15 -3559 ((-1033) (-564) (-564) (-1155) (-687 (-225)) (-687 (-225)) (-564))) (-15 -3302 ((-1033) (-564) (-564) (-1155) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564))) (-15 -4144 ((-1033) (-564) (-564) (-1155) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564))) (-15 -2771 ((-1033) (-564) (-687 (-225)) (-564))) (-15 -3043 ((-1033) (-564) (-687 (-225)) (-564))) (-15 -1950 ((-1033) (-564) (-564) (-687 (-225)) (-564))) (-15 -4148 ((-1033) (-564) (-564) (-687 (-225)) (-564))))) (T -745)) -((-4148 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-745)))) (-1950 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-745)))) (-3043 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-745)))) (-2771 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-745)))) (-4144 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-1155)) (-5 *5 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-745)))) (-3302 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-1155)) (-5 *5 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-745)))) (-3559 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-1155)) (-5 *5 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-745)))) (-3221 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-1155)) (-5 *5 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-745)))) (-2135 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-745)))) (-2059 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-745)))) (-1737 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-745)))) (-3022 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-745))))) -(-10 -7 (-15 -3022 ((-1033) (-564) (-687 (-225)) (-564))) (-15 -1737 ((-1033) (-564) (-687 (-225)) (-564))) (-15 -2059 ((-1033) (-564) (-687 (-225)) (-687 (-225)) (-564))) (-15 -2135 ((-1033) (-564) (-564) (-687 (-225)) (-687 (-225)) (-564))) (-15 -3221 ((-1033) (-564) (-564) (-1155) (-687 (-225)) (-687 (-225)) (-564))) (-15 -3559 ((-1033) (-564) (-564) (-1155) (-687 (-225)) (-687 (-225)) (-564))) (-15 -3302 ((-1033) (-564) (-564) (-1155) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564))) (-15 -4144 ((-1033) (-564) (-564) (-1155) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564))) (-15 -2771 ((-1033) (-564) (-687 (-225)) (-564))) (-15 -3043 ((-1033) (-564) (-687 (-225)) (-564))) (-15 -1950 ((-1033) (-564) (-564) (-687 (-225)) (-564))) (-15 -4148 ((-1033) (-564) (-564) (-687 (-225)) (-564)))) -((-2458 (((-1033) (-564) (-687 (-225)) (-687 (-225)) (-564) (-225) (-564) (-564) (-687 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN)))) 52)) (-3548 (((-1033) (-687 (-225)) (-687 (-225)) (-564) (-564)) 51)) (-2598 (((-1033) (-564) (-687 (-225)) (-687 (-225)) (-564) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN)))) 50)) (-2628 (((-1033) (-225) (-225) (-564) (-564) (-564) (-564)) 46)) (-3568 (((-1033) (-225) (-225) (-564) (-225) (-564) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) 45)) (-2850 (((-1033) (-225) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) 44)) (-1372 (((-1033) (-225) (-225) (-225) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) 43)) (-3535 (((-1033) (-225) (-225) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) 42)) (-3611 (((-1033) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2266)))) 38)) (-3320 (((-1033) (-225) (-225) (-564) (-687 (-225)) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2266)))) 37)) (-1356 (((-1033) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2266)))) 33)) (-4030 (((-1033) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2266)))) 32))) -(((-746) (-10 -7 (-15 -4030 ((-1033) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2266))))) (-15 -1356 ((-1033) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2266))))) (-15 -3320 ((-1033) (-225) (-225) (-564) (-687 (-225)) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2266))))) (-15 -3611 ((-1033) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2266))))) (-15 -3535 ((-1033) (-225) (-225) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -1372 ((-1033) (-225) (-225) (-225) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -2850 ((-1033) (-225) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -3568 ((-1033) (-225) (-225) (-564) (-225) (-564) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -2628 ((-1033) (-225) (-225) (-564) (-564) (-564) (-564))) (-15 -2598 ((-1033) (-564) (-687 (-225)) (-687 (-225)) (-564) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN))))) (-15 -3548 ((-1033) (-687 (-225)) (-687 (-225)) (-564) (-564))) (-15 -2458 ((-1033) (-564) (-687 (-225)) (-687 (-225)) (-564) (-225) (-564) (-564) (-687 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN))))))) (T -746)) -((-2458 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1033)) (-5 *1 (-746)))) (-3548 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-687 (-225))) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-746)))) (-2598 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1033)) (-5 *1 (-746)))) (-2628 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-746)))) (-3568 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1033)) (-5 *1 (-746)))) (-2850 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1033)) (-5 *1 (-746)))) (-1372 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1033)) (-5 *1 (-746)))) (-3535 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1033)) (-5 *1 (-746)))) (-3611 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2266)))) (-5 *2 (-1033)) (-5 *1 (-746)))) (-3320 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-564)) (-5 *5 (-687 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2266)))) (-5 *3 (-225)) (-5 *2 (-1033)) (-5 *1 (-746)))) (-1356 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2266)))) (-5 *2 (-1033)) (-5 *1 (-746)))) (-4030 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2266)))) (-5 *2 (-1033)) (-5 *1 (-746))))) -(-10 -7 (-15 -4030 ((-1033) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2266))))) (-15 -1356 ((-1033) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2266))))) (-15 -3320 ((-1033) (-225) (-225) (-564) (-687 (-225)) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2266))))) (-15 -3611 ((-1033) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2266))))) (-15 -3535 ((-1033) (-225) (-225) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -1372 ((-1033) (-225) (-225) (-225) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -2850 ((-1033) (-225) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -3568 ((-1033) (-225) (-225) (-564) (-225) (-564) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -2628 ((-1033) (-225) (-225) (-564) (-564) (-564) (-564))) (-15 -2598 ((-1033) (-564) (-687 (-225)) (-687 (-225)) (-564) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN))))) (-15 -3548 ((-1033) (-687 (-225)) (-687 (-225)) (-564) (-564))) (-15 -2458 ((-1033) (-564) (-687 (-225)) (-687 (-225)) (-564) (-225) (-564) (-564) (-687 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN)))))) -((-1838 (((-1033) (-564) (-564) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-388)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76)) (-3249 (((-1033) (-687 (-225)) (-564) (-564) (-225) (-564) (-564) (-225) (-225) (-687 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL))) (-388) (-388)) 69) (((-1033) (-687 (-225)) (-564) (-564) (-225) (-564) (-564) (-225) (-225) (-687 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL)))) 68)) (-1713 (((-1033) (-225) (-225) (-564) (-225) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-85 FCNG)))) 57)) (-1511 (((-1033) (-687 (-225)) (-687 (-225)) (-564) (-225) (-225) (-225) (-564) (-564) (-564) (-687 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) 50)) (-3738 (((-1033) (-225) (-564) (-564) (-1155) (-564) (-225) (-687 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) 49)) (-2590 (((-1033) (-225) (-564) (-564) (-225) (-1155) (-225) (-687 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) 45)) (-3582 (((-1033) (-225) (-564) (-564) (-225) (-225) (-687 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) 42)) (-3940 (((-1033) (-225) (-564) (-564) (-564) (-225) (-687 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) 38))) -(((-747) (-10 -7 (-15 -3940 ((-1033) (-225) (-564) (-564) (-564) (-225) (-687 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))) (-15 -3582 ((-1033) (-225) (-564) (-564) (-225) (-225) (-687 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))))) (-15 -2590 ((-1033) (-225) (-564) (-564) (-225) (-1155) (-225) (-687 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))) (-15 -3738 ((-1033) (-225) (-564) (-564) (-1155) (-564) (-225) (-687 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))) (-15 -1511 ((-1033) (-687 (-225)) (-687 (-225)) (-564) (-225) (-225) (-225) (-564) (-564) (-564) (-687 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))))) (-15 -1713 ((-1033) (-225) (-225) (-564) (-225) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-85 FCNG))))) (-15 -3249 ((-1033) (-687 (-225)) (-564) (-564) (-225) (-564) (-564) (-225) (-225) (-687 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL))))) (-15 -3249 ((-1033) (-687 (-225)) (-564) (-564) (-225) (-564) (-564) (-225) (-225) (-687 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL))) (-388) (-388))) (-15 -1838 ((-1033) (-564) (-564) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-388)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -747)) -((-1838 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-564)) (-5 *5 (-687 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-225)) (-5 *2 (-1033)) (-5 *1 (-747)))) (-3249 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-687 (-225))) (-5 *4 (-564)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-388)) (-5 *2 (-1033)) (-5 *1 (-747)))) (-3249 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-687 (-225))) (-5 *4 (-564)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1033)) (-5 *1 (-747)))) (-1713 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-564)) (-5 *5 (-687 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-225)) (-5 *2 (-1033)) (-5 *1 (-747)))) (-1511 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-687 (-225))) (-5 *4 (-564)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1033)) (-5 *1 (-747)))) (-3738 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-564)) (-5 *5 (-1155)) (-5 *6 (-687 (-225))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1033)) (-5 *1 (-747)))) (-2590 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-564)) (-5 *5 (-1155)) (-5 *6 (-687 (-225))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1033)) (-5 *1 (-747)))) (-3582 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-564)) (-5 *5 (-687 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *3 (-225)) (-5 *2 (-1033)) (-5 *1 (-747)))) (-3940 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-564)) (-5 *5 (-687 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1033)) (-5 *1 (-747))))) -(-10 -7 (-15 -3940 ((-1033) (-225) (-564) (-564) (-564) (-225) (-687 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))) (-15 -3582 ((-1033) (-225) (-564) (-564) (-225) (-225) (-687 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))))) (-15 -2590 ((-1033) (-225) (-564) (-564) (-225) (-1155) (-225) (-687 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))) (-15 -3738 ((-1033) (-225) (-564) (-564) (-1155) (-564) (-225) (-687 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))) (-15 -1511 ((-1033) (-687 (-225)) (-687 (-225)) (-564) (-225) (-225) (-225) (-564) (-564) (-564) (-687 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))))) (-15 -1713 ((-1033) (-225) (-225) (-564) (-225) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-85 FCNG))))) (-15 -3249 ((-1033) (-687 (-225)) (-564) (-564) (-225) (-564) (-564) (-225) (-225) (-687 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL))))) (-15 -3249 ((-1033) (-687 (-225)) (-564) (-564) (-225) (-564) (-564) (-225) (-225) (-687 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL))) (-388) (-388))) (-15 -1838 ((-1033) (-564) (-564) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-388)) (|:| |fp| (-76 G JACOBG JACGEP)))))) -((-1627 (((-1033) (-225) (-225) (-564) (-564) (-687 (-225)) (-687 (-225)) (-225) (-225) (-564) (-564) (-687 (-225)) (-687 (-225)) (-225) (-225) (-564) (-564) (-687 (-225)) (-687 (-225)) (-225) (-564) (-564) (-564) (-673 (-225)) (-564)) 45)) (-2426 (((-1033) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-1155) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-83 BNDY)))) 41)) (-2170 (((-1033) (-564) (-564) (-564) (-564) (-225) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564)) 23))) -(((-748) (-10 -7 (-15 -2170 ((-1033) (-564) (-564) (-564) (-564) (-225) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564))) (-15 -2426 ((-1033) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-1155) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-83 BNDY))))) (-15 -1627 ((-1033) (-225) (-225) (-564) (-564) (-687 (-225)) (-687 (-225)) (-225) (-225) (-564) (-564) (-687 (-225)) (-687 (-225)) (-225) (-225) (-564) (-564) (-687 (-225)) (-687 (-225)) (-225) (-564) (-564) (-564) (-673 (-225)) (-564))))) (T -748)) -((-1627 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-564)) (-5 *5 (-687 (-225))) (-5 *6 (-673 (-225))) (-5 *3 (-225)) (-5 *2 (-1033)) (-5 *1 (-748)))) (-2426 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-1155)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1033)) (-5 *1 (-748)))) (-2170 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *5 (-687 (-225))) (-5 *4 (-225)) (-5 *2 (-1033)) (-5 *1 (-748))))) -(-10 -7 (-15 -2170 ((-1033) (-564) (-564) (-564) (-564) (-225) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564))) (-15 -2426 ((-1033) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-1155) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-83 BNDY))))) (-15 -1627 ((-1033) (-225) (-225) (-564) (-564) (-687 (-225)) (-687 (-225)) (-225) (-225) (-564) (-564) (-687 (-225)) (-687 (-225)) (-225) (-225) (-564) (-564) (-687 (-225)) (-687 (-225)) (-225) (-564) (-564) (-564) (-673 (-225)) (-564)))) -((-4171 (((-1033) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-225) (-687 (-225)) (-225) (-225) (-564)) 35)) (-2407 (((-1033) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564) (-564) (-225) (-225) (-564)) 34)) (-4336 (((-1033) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-564)) (-687 (-225)) (-225) (-225) (-564)) 33)) (-1572 (((-1033) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564)) 29)) (-1919 (((-1033) (-564) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564)) 28)) (-4217 (((-1033) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-225) (-225) (-564)) 27)) (-2703 (((-1033) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564) (-687 (-225)) (-564)) 24)) (-3140 (((-1033) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564) (-687 (-225)) (-564)) 23)) (-4038 (((-1033) (-564) (-687 (-225)) (-687 (-225)) (-564)) 22)) (-1963 (((-1033) (-564) (-687 (-225)) (-687 (-225)) (-564) (-564) (-564)) 21))) -(((-749) (-10 -7 (-15 -1963 ((-1033) (-564) (-687 (-225)) (-687 (-225)) (-564) (-564) (-564))) (-15 -4038 ((-1033) (-564) (-687 (-225)) (-687 (-225)) (-564))) (-15 -3140 ((-1033) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564) (-687 (-225)) (-564))) (-15 -2703 ((-1033) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564) (-687 (-225)) (-564))) (-15 -4217 ((-1033) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-225) (-225) (-564))) (-15 -1919 ((-1033) (-564) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564))) (-15 -1572 ((-1033) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564))) (-15 -4336 ((-1033) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-564)) (-687 (-225)) (-225) (-225) (-564))) (-15 -2407 ((-1033) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564) (-564) (-225) (-225) (-564))) (-15 -4171 ((-1033) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-225) (-687 (-225)) (-225) (-225) (-564))))) (T -749)) -((-4171 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *5 (-225)) (-5 *2 (-1033)) (-5 *1 (-749)))) (-2407 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *5 (-225)) (-5 *2 (-1033)) (-5 *1 (-749)))) (-4336 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-687 (-225))) (-5 *5 (-687 (-564))) (-5 *6 (-225)) (-5 *3 (-564)) (-5 *2 (-1033)) (-5 *1 (-749)))) (-1572 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-749)))) (-1919 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-749)))) (-4217 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *5 (-225)) (-5 *2 (-1033)) (-5 *1 (-749)))) (-2703 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-749)))) (-3140 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-749)))) (-4038 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-749)))) (-1963 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-749))))) -(-10 -7 (-15 -1963 ((-1033) (-564) (-687 (-225)) (-687 (-225)) (-564) (-564) (-564))) (-15 -4038 ((-1033) (-564) (-687 (-225)) (-687 (-225)) (-564))) (-15 -3140 ((-1033) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564) (-687 (-225)) (-564))) (-15 -2703 ((-1033) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564) (-687 (-225)) (-564))) (-15 -4217 ((-1033) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-225) (-225) (-564))) (-15 -1919 ((-1033) (-564) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564))) (-15 -1572 ((-1033) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564))) (-15 -4336 ((-1033) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-564)) (-687 (-225)) (-225) (-225) (-564))) (-15 -2407 ((-1033) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564) (-564) (-225) (-225) (-564))) (-15 -4171 ((-1033) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-225) (-687 (-225)) (-225) (-225) (-564)))) -((-1895 (((-1033) (-564) (-564) (-687 (-225)) (-687 (-225)) (-564) (-687 (-225)) (-687 (-225)) (-564) (-564) (-564)) 45)) (-2566 (((-1033) (-564) (-564) (-564) (-225) (-687 (-225)) (-687 (-225)) (-564)) 44)) (-4016 (((-1033) (-564) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564) (-564) (-564)) 43)) (-4290 (((-1033) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564)) 42)) (-2149 (((-1033) (-1155) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-225) (-564) (-564) (-564) (-564) (-564) (-687 (-225)) (-564) (-687 (-225)) (-687 (-225)) (-564)) 41)) (-2336 (((-1033) (-1155) (-564) (-687 (-225)) (-564) (-687 (-225)) (-687 (-225)) (-225) (-564) (-564) (-564) (-564) (-564) (-687 (-225)) (-564) (-687 (-225)) (-687 (-225)) (-687 (-564)) (-564)) 40)) (-2297 (((-1033) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-564)) (-564) (-564) (-564) (-225) (-687 (-225)) (-564)) 39)) (-3350 (((-1033) (-1155) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-225) (-564) (-564) (-564) (-687 (-225)) (-564) (-687 (-225)) (-687 (-564))) 38)) (-3960 (((-1033) (-564) (-687 (-225)) (-687 (-225)) (-564)) 35)) (-1461 (((-1033) (-564) (-687 (-225)) (-687 (-225)) (-225) (-564) (-564)) 34)) (-2614 (((-1033) (-564) (-687 (-225)) (-687 (-225)) (-225) (-564)) 33)) (-1779 (((-1033) (-564) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564)) 32)) (-3351 (((-1033) (-564) (-225) (-225) (-687 (-225)) (-564) (-564) (-225) (-564)) 31)) (-1850 (((-1033) (-564) (-225) (-225) (-687 (-225)) (-564) (-564) (-225) (-564) (-564) (-564)) 30)) (-3069 (((-1033) (-564) (-225) (-225) (-687 (-225)) (-564) (-564) (-564) (-564) (-564)) 29)) (-2588 (((-1033) (-564) (-564) (-564) (-225) (-225) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564) (-687 (-225)) (-687 (-225)) (-564) (-687 (-564)) (-564) (-564) (-564)) 28)) (-2184 (((-1033) (-564) (-687 (-225)) (-225) (-564)) 24)) (-1665 (((-1033) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564)) 21))) -(((-750) (-10 -7 (-15 -1665 ((-1033) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564))) (-15 -2184 ((-1033) (-564) (-687 (-225)) (-225) (-564))) (-15 -2588 ((-1033) (-564) (-564) (-564) (-225) (-225) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564) (-687 (-225)) (-687 (-225)) (-564) (-687 (-564)) (-564) (-564) (-564))) (-15 -3069 ((-1033) (-564) (-225) (-225) (-687 (-225)) (-564) (-564) (-564) (-564) (-564))) (-15 -1850 ((-1033) (-564) (-225) (-225) (-687 (-225)) (-564) (-564) (-225) (-564) (-564) (-564))) (-15 -3351 ((-1033) (-564) (-225) (-225) (-687 (-225)) (-564) (-564) (-225) (-564))) (-15 -1779 ((-1033) (-564) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564))) (-15 -2614 ((-1033) (-564) (-687 (-225)) (-687 (-225)) (-225) (-564))) (-15 -1461 ((-1033) (-564) (-687 (-225)) (-687 (-225)) (-225) (-564) (-564))) (-15 -3960 ((-1033) (-564) (-687 (-225)) (-687 (-225)) (-564))) (-15 -3350 ((-1033) (-1155) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-225) (-564) (-564) (-564) (-687 (-225)) (-564) (-687 (-225)) (-687 (-564)))) (-15 -2297 ((-1033) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-564)) (-564) (-564) (-564) (-225) (-687 (-225)) (-564))) (-15 -2336 ((-1033) (-1155) (-564) (-687 (-225)) (-564) (-687 (-225)) (-687 (-225)) (-225) (-564) (-564) (-564) (-564) (-564) (-687 (-225)) (-564) (-687 (-225)) (-687 (-225)) (-687 (-564)) (-564))) (-15 -2149 ((-1033) (-1155) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-225) (-564) (-564) (-564) (-564) (-564) (-687 (-225)) (-564) (-687 (-225)) (-687 (-225)) (-564))) (-15 -4290 ((-1033) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564))) (-15 -4016 ((-1033) (-564) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564) (-564) (-564))) (-15 -2566 ((-1033) (-564) (-564) (-564) (-225) (-687 (-225)) (-687 (-225)) (-564))) (-15 -1895 ((-1033) (-564) (-564) (-687 (-225)) (-687 (-225)) (-564) (-687 (-225)) (-687 (-225)) (-564) (-564) (-564))))) (T -750)) -((-1895 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-750)))) (-2566 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *5 (-687 (-225))) (-5 *4 (-225)) (-5 *2 (-1033)) (-5 *1 (-750)))) (-4016 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-750)))) (-4290 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-750)))) (-2149 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1155)) (-5 *4 (-564)) (-5 *5 (-687 (-225))) (-5 *6 (-225)) (-5 *2 (-1033)) (-5 *1 (-750)))) (-2336 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1155)) (-5 *5 (-687 (-225))) (-5 *6 (-225)) (-5 *7 (-687 (-564))) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-750)))) (-2297 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-687 (-225))) (-5 *5 (-687 (-564))) (-5 *6 (-225)) (-5 *3 (-564)) (-5 *2 (-1033)) (-5 *1 (-750)))) (-3350 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1155)) (-5 *5 (-687 (-225))) (-5 *6 (-225)) (-5 *7 (-687 (-564))) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-750)))) (-3960 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-750)))) (-1461 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *5 (-225)) (-5 *2 (-1033)) (-5 *1 (-750)))) (-2614 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *5 (-225)) (-5 *2 (-1033)) (-5 *1 (-750)))) (-1779 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-750)))) (-3351 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *5 (-687 (-225))) (-5 *4 (-225)) (-5 *2 (-1033)) (-5 *1 (-750)))) (-1850 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-564)) (-5 *5 (-687 (-225))) (-5 *4 (-225)) (-5 *2 (-1033)) (-5 *1 (-750)))) (-3069 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-564)) (-5 *5 (-687 (-225))) (-5 *4 (-225)) (-5 *2 (-1033)) (-5 *1 (-750)))) (-2588 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-687 (-225))) (-5 *6 (-687 (-564))) (-5 *3 (-564)) (-5 *4 (-225)) (-5 *2 (-1033)) (-5 *1 (-750)))) (-2184 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *5 (-225)) (-5 *2 (-1033)) (-5 *1 (-750)))) (-1665 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-750))))) -(-10 -7 (-15 -1665 ((-1033) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564))) (-15 -2184 ((-1033) (-564) (-687 (-225)) (-225) (-564))) (-15 -2588 ((-1033) (-564) (-564) (-564) (-225) (-225) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564) (-687 (-225)) (-687 (-225)) (-564) (-687 (-564)) (-564) (-564) (-564))) (-15 -3069 ((-1033) (-564) (-225) (-225) (-687 (-225)) (-564) (-564) (-564) (-564) (-564))) (-15 -1850 ((-1033) (-564) (-225) (-225) (-687 (-225)) (-564) (-564) (-225) (-564) (-564) (-564))) (-15 -3351 ((-1033) (-564) (-225) (-225) (-687 (-225)) (-564) (-564) (-225) (-564))) (-15 -1779 ((-1033) (-564) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564))) (-15 -2614 ((-1033) (-564) (-687 (-225)) (-687 (-225)) (-225) (-564))) (-15 -1461 ((-1033) (-564) (-687 (-225)) (-687 (-225)) (-225) (-564) (-564))) (-15 -3960 ((-1033) (-564) (-687 (-225)) (-687 (-225)) (-564))) (-15 -3350 ((-1033) (-1155) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-225) (-564) (-564) (-564) (-687 (-225)) (-564) (-687 (-225)) (-687 (-564)))) (-15 -2297 ((-1033) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-564)) (-564) (-564) (-564) (-225) (-687 (-225)) (-564))) (-15 -2336 ((-1033) (-1155) (-564) (-687 (-225)) (-564) (-687 (-225)) (-687 (-225)) (-225) (-564) (-564) (-564) (-564) (-564) (-687 (-225)) (-564) (-687 (-225)) (-687 (-225)) (-687 (-564)) (-564))) (-15 -2149 ((-1033) (-1155) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-225) (-564) (-564) (-564) (-564) (-564) (-687 (-225)) (-564) (-687 (-225)) (-687 (-225)) (-564))) (-15 -4290 ((-1033) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564))) (-15 -4016 ((-1033) (-564) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564) (-564) (-564))) (-15 -2566 ((-1033) (-564) (-564) (-564) (-225) (-687 (-225)) (-687 (-225)) (-564))) (-15 -1895 ((-1033) (-564) (-564) (-687 (-225)) (-687 (-225)) (-564) (-687 (-225)) (-687 (-225)) (-564) (-564) (-564)))) -((-1789 (((-1033) (-564) (-564) (-564) (-225) (-687 (-225)) (-564) (-687 (-225)) (-564)) 63)) (-3364 (((-1033) (-564) (-564) (-564) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564) (-564) (-112) (-225) (-564) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-564) (-564) (-564) (-564) (-564) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-564) (-687 (-564)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN)))) 62)) (-1774 (((-1033) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-225) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-112) (-112) (-112) (-564) (-564) (-687 (-225)) (-687 (-564)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-65 QPHESS)))) 58)) (-4306 (((-1033) (-564) (-564) (-564) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-112) (-564) (-564) (-687 (-225)) (-564)) 51)) (-4366 (((-1033) (-564) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-66 FUNCT1)))) 50)) (-4355 (((-1033) (-564) (-564) (-564) (-564) (-687 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-63 LSFUN2)))) 46)) (-1898 (((-1033) (-564) (-564) (-564) (-564) (-687 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-79 LSFUN1)))) 42)) (-3044 (((-1033) (-564) (-225) (-225) (-564) (-225) (-112) (-225) (-225) (-564) (-564) (-564) (-564) (-687 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN)))) 38))) -(((-751) (-10 -7 (-15 -3044 ((-1033) (-564) (-225) (-225) (-564) (-225) (-112) (-225) (-225) (-564) (-564) (-564) (-564) (-687 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN))))) (-15 -1898 ((-1033) (-564) (-564) (-564) (-564) (-687 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-79 LSFUN1))))) (-15 -4355 ((-1033) (-564) (-564) (-564) (-564) (-687 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-63 LSFUN2))))) (-15 -4366 ((-1033) (-564) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-66 FUNCT1))))) (-15 -4306 ((-1033) (-564) (-564) (-564) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-112) (-564) (-564) (-687 (-225)) (-564))) (-15 -1774 ((-1033) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-225) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-112) (-112) (-112) (-564) (-564) (-687 (-225)) (-687 (-564)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-65 QPHESS))))) (-15 -3364 ((-1033) (-564) (-564) (-564) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564) (-564) (-112) (-225) (-564) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-564) (-564) (-564) (-564) (-564) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-564) (-687 (-564)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN))))) (-15 -1789 ((-1033) (-564) (-564) (-564) (-225) (-687 (-225)) (-564) (-687 (-225)) (-564))))) (T -751)) -((-1789 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-564)) (-5 *5 (-687 (-225))) (-5 *4 (-225)) (-5 *2 (-1033)) (-5 *1 (-751)))) (-3364 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-687 (-225))) (-5 *5 (-112)) (-5 *6 (-225)) (-5 *7 (-687 (-564))) (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-564)) (-5 *2 (-1033)) (-5 *1 (-751)))) (-1774 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-687 (-225))) (-5 *6 (-112)) (-5 *7 (-687 (-564))) (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-564)) (-5 *4 (-225)) (-5 *2 (-1033)) (-5 *1 (-751)))) (-4306 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *5 (-112)) (-5 *2 (-1033)) (-5 *1 (-751)))) (-4366 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1033)) (-5 *1 (-751)))) (-4355 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1033)) (-5 *1 (-751)))) (-1898 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1033)) (-5 *1 (-751)))) (-3044 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-564)) (-5 *5 (-112)) (-5 *6 (-687 (-225))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-225)) (-5 *2 (-1033)) (-5 *1 (-751))))) -(-10 -7 (-15 -3044 ((-1033) (-564) (-225) (-225) (-564) (-225) (-112) (-225) (-225) (-564) (-564) (-564) (-564) (-687 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN))))) (-15 -1898 ((-1033) (-564) (-564) (-564) (-564) (-687 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-79 LSFUN1))))) (-15 -4355 ((-1033) (-564) (-564) (-564) (-564) (-687 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-63 LSFUN2))))) (-15 -4366 ((-1033) (-564) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-66 FUNCT1))))) (-15 -4306 ((-1033) (-564) (-564) (-564) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-112) (-564) (-564) (-687 (-225)) (-564))) (-15 -1774 ((-1033) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-225) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-112) (-112) (-112) (-564) (-564) (-687 (-225)) (-687 (-564)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-65 QPHESS))))) (-15 -3364 ((-1033) (-564) (-564) (-564) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564) (-564) (-112) (-225) (-564) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-564) (-564) (-564) (-564) (-564) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-564) (-687 (-564)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN))))) (-15 -1789 ((-1033) (-564) (-564) (-564) (-225) (-687 (-225)) (-564) (-687 (-225)) (-564)))) -((-3876 (((-1033) (-1155) (-564) (-564) (-564) (-564) (-687 (-169 (-225))) (-687 (-169 (-225))) (-564)) 47)) (-1488 (((-1033) (-1155) (-1155) (-564) (-564) (-687 (-169 (-225))) (-564) (-687 (-169 (-225))) (-564) (-564) (-687 (-169 (-225))) (-564)) 46)) (-1658 (((-1033) (-564) (-564) (-564) (-687 (-169 (-225))) (-564)) 45)) (-1434 (((-1033) (-1155) (-564) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-564)) 40)) (-3102 (((-1033) (-1155) (-1155) (-564) (-564) (-687 (-225)) (-564) (-687 (-225)) (-564) (-564) (-687 (-225)) (-564)) 39)) (-2020 (((-1033) (-564) (-564) (-564) (-687 (-225)) (-564)) 36)) (-4304 (((-1033) (-564) (-687 (-225)) (-564) (-687 (-564)) (-564)) 35)) (-1694 (((-1033) (-564) (-564) (-564) (-564) (-642 (-112)) (-687 (-225)) (-687 (-564)) (-687 (-564)) (-225) (-225) (-564)) 34)) (-3554 (((-1033) (-564) (-564) (-564) (-687 (-564)) (-687 (-564)) (-687 (-564)) (-687 (-564)) (-112) (-225) (-112) (-687 (-564)) (-687 (-225)) (-564)) 33)) (-2200 (((-1033) (-564) (-564) (-564) (-564) (-225) (-112) (-112) (-642 (-112)) (-687 (-225)) (-687 (-564)) (-687 (-564)) (-564)) 32))) -(((-752) (-10 -7 (-15 -2200 ((-1033) (-564) (-564) (-564) (-564) (-225) (-112) (-112) (-642 (-112)) (-687 (-225)) (-687 (-564)) (-687 (-564)) (-564))) (-15 -3554 ((-1033) (-564) (-564) (-564) (-687 (-564)) (-687 (-564)) (-687 (-564)) (-687 (-564)) (-112) (-225) (-112) (-687 (-564)) (-687 (-225)) (-564))) (-15 -1694 ((-1033) (-564) (-564) (-564) (-564) (-642 (-112)) (-687 (-225)) (-687 (-564)) (-687 (-564)) (-225) (-225) (-564))) (-15 -4304 ((-1033) (-564) (-687 (-225)) (-564) (-687 (-564)) (-564))) (-15 -2020 ((-1033) (-564) (-564) (-564) (-687 (-225)) (-564))) (-15 -3102 ((-1033) (-1155) (-1155) (-564) (-564) (-687 (-225)) (-564) (-687 (-225)) (-564) (-564) (-687 (-225)) (-564))) (-15 -1434 ((-1033) (-1155) (-564) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-564))) (-15 -1658 ((-1033) (-564) (-564) (-564) (-687 (-169 (-225))) (-564))) (-15 -1488 ((-1033) (-1155) (-1155) (-564) (-564) (-687 (-169 (-225))) (-564) (-687 (-169 (-225))) (-564) (-564) (-687 (-169 (-225))) (-564))) (-15 -3876 ((-1033) (-1155) (-564) (-564) (-564) (-564) (-687 (-169 (-225))) (-687 (-169 (-225))) (-564))))) (T -752)) -((-3876 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1155)) (-5 *4 (-564)) (-5 *5 (-687 (-169 (-225)))) (-5 *2 (-1033)) (-5 *1 (-752)))) (-1488 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1155)) (-5 *4 (-564)) (-5 *5 (-687 (-169 (-225)))) (-5 *2 (-1033)) (-5 *1 (-752)))) (-1658 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-169 (-225)))) (-5 *2 (-1033)) (-5 *1 (-752)))) (-1434 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1155)) (-5 *4 (-564)) (-5 *5 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-752)))) (-3102 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1155)) (-5 *4 (-564)) (-5 *5 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-752)))) (-2020 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-752)))) (-4304 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-687 (-225))) (-5 *5 (-687 (-564))) (-5 *3 (-564)) (-5 *2 (-1033)) (-5 *1 (-752)))) (-1694 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-642 (-112))) (-5 *5 (-687 (-225))) (-5 *6 (-687 (-564))) (-5 *7 (-225)) (-5 *3 (-564)) (-5 *2 (-1033)) (-5 *1 (-752)))) (-3554 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-687 (-564))) (-5 *5 (-112)) (-5 *7 (-687 (-225))) (-5 *3 (-564)) (-5 *6 (-225)) (-5 *2 (-1033)) (-5 *1 (-752)))) (-2200 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-642 (-112))) (-5 *7 (-687 (-225))) (-5 *8 (-687 (-564))) (-5 *3 (-564)) (-5 *4 (-225)) (-5 *5 (-112)) (-5 *2 (-1033)) (-5 *1 (-752))))) -(-10 -7 (-15 -2200 ((-1033) (-564) (-564) (-564) (-564) (-225) (-112) (-112) (-642 (-112)) (-687 (-225)) (-687 (-564)) (-687 (-564)) (-564))) (-15 -3554 ((-1033) (-564) (-564) (-564) (-687 (-564)) (-687 (-564)) (-687 (-564)) (-687 (-564)) (-112) (-225) (-112) (-687 (-564)) (-687 (-225)) (-564))) (-15 -1694 ((-1033) (-564) (-564) (-564) (-564) (-642 (-112)) (-687 (-225)) (-687 (-564)) (-687 (-564)) (-225) (-225) (-564))) (-15 -4304 ((-1033) (-564) (-687 (-225)) (-564) (-687 (-564)) (-564))) (-15 -2020 ((-1033) (-564) (-564) (-564) (-687 (-225)) (-564))) (-15 -3102 ((-1033) (-1155) (-1155) (-564) (-564) (-687 (-225)) (-564) (-687 (-225)) (-564) (-564) (-687 (-225)) (-564))) (-15 -1434 ((-1033) (-1155) (-564) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-564))) (-15 -1658 ((-1033) (-564) (-564) (-564) (-687 (-169 (-225))) (-564))) (-15 -1488 ((-1033) (-1155) (-1155) (-564) (-564) (-687 (-169 (-225))) (-564) (-687 (-169 (-225))) (-564) (-564) (-687 (-169 (-225))) (-564))) (-15 -3876 ((-1033) (-1155) (-564) (-564) (-564) (-564) (-687 (-169 (-225))) (-687 (-169 (-225))) (-564)))) -((-3770 (((-1033) (-564) (-564) (-564) (-564) (-564) (-112) (-564) (-112) (-564) (-687 (-169 (-225))) (-687 (-169 (-225))) (-564)) 80)) (-1596 (((-1033) (-564) (-564) (-564) (-564) (-564) (-112) (-564) (-112) (-564) (-687 (-225)) (-687 (-225)) (-564)) 69)) (-4211 (((-1033) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-687 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE))) (-388)) 56) (((-1033) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-687 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE)))) 55)) (-1327 (((-1033) (-564) (-564) (-564) (-225) (-112) (-564) (-687 (-225)) (-687 (-225)) (-564)) 37)) (-2244 (((-1033) (-564) (-564) (-225) (-225) (-564) (-564) (-687 (-225)) (-564)) 33)) (-2003 (((-1033) (-687 (-225)) (-564) (-687 (-225)) (-564) (-564) (-564) (-564) (-564)) 30)) (-2031 (((-1033) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-564)) 29)) (-3362 (((-1033) (-564) (-564) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-564)) 28)) (-3964 (((-1033) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-564)) 27)) (-4124 (((-1033) (-564) (-564) (-564) (-564) (-687 (-225)) (-564)) 26)) (-1704 (((-1033) (-564) (-564) (-687 (-225)) (-564)) 25)) (-1661 (((-1033) (-564) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-564)) 24)) (-3663 (((-1033) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-564)) 23)) (-4302 (((-1033) (-687 (-225)) (-564) (-564) (-564) (-564)) 22)) (-4168 (((-1033) (-564) (-564) (-687 (-225)) (-564)) 21))) -(((-753) (-10 -7 (-15 -4168 ((-1033) (-564) (-564) (-687 (-225)) (-564))) (-15 -4302 ((-1033) (-687 (-225)) (-564) (-564) (-564) (-564))) (-15 -3663 ((-1033) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-564))) (-15 -1661 ((-1033) (-564) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-564))) (-15 -1704 ((-1033) (-564) (-564) (-687 (-225)) (-564))) (-15 -4124 ((-1033) (-564) (-564) (-564) (-564) (-687 (-225)) (-564))) (-15 -3964 ((-1033) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-564))) (-15 -3362 ((-1033) (-564) (-564) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-564))) (-15 -2031 ((-1033) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-564))) (-15 -2003 ((-1033) (-687 (-225)) (-564) (-687 (-225)) (-564) (-564) (-564) (-564) (-564))) (-15 -2244 ((-1033) (-564) (-564) (-225) (-225) (-564) (-564) (-687 (-225)) (-564))) (-15 -1327 ((-1033) (-564) (-564) (-564) (-225) (-112) (-564) (-687 (-225)) (-687 (-225)) (-564))) (-15 -4211 ((-1033) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-687 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE))))) (-15 -4211 ((-1033) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-687 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE))) (-388))) (-15 -1596 ((-1033) (-564) (-564) (-564) (-564) (-564) (-112) (-564) (-112) (-564) (-687 (-225)) (-687 (-225)) (-564))) (-15 -3770 ((-1033) (-564) (-564) (-564) (-564) (-564) (-112) (-564) (-112) (-564) (-687 (-169 (-225))) (-687 (-169 (-225))) (-564))))) (T -753)) -((-3770 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-112)) (-5 *5 (-687 (-169 (-225)))) (-5 *2 (-1033)) (-5 *1 (-753)))) (-1596 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-112)) (-5 *5 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-753)))) (-4211 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-564)) (-5 *5 (-687 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-388)) (-5 *4 (-225)) (-5 *2 (-1033)) (-5 *1 (-753)))) (-4211 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-564)) (-5 *5 (-687 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-225)) (-5 *2 (-1033)) (-5 *1 (-753)))) (-1327 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-564)) (-5 *5 (-112)) (-5 *6 (-687 (-225))) (-5 *4 (-225)) (-5 *2 (-1033)) (-5 *1 (-753)))) (-2244 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-564)) (-5 *5 (-687 (-225))) (-5 *4 (-225)) (-5 *2 (-1033)) (-5 *1 (-753)))) (-2003 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-687 (-225))) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-753)))) (-2031 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-753)))) (-3362 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-753)))) (-3964 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-753)))) (-4124 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-753)))) (-1704 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-753)))) (-1661 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-753)))) (-3663 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-753)))) (-4302 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-687 (-225))) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-753)))) (-4168 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-753))))) -(-10 -7 (-15 -4168 ((-1033) (-564) (-564) (-687 (-225)) (-564))) (-15 -4302 ((-1033) (-687 (-225)) (-564) (-564) (-564) (-564))) (-15 -3663 ((-1033) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-564))) (-15 -1661 ((-1033) (-564) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-564))) (-15 -1704 ((-1033) (-564) (-564) (-687 (-225)) (-564))) (-15 -4124 ((-1033) (-564) (-564) (-564) (-564) (-687 (-225)) (-564))) (-15 -3964 ((-1033) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-564))) (-15 -3362 ((-1033) (-564) (-564) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-564))) (-15 -2031 ((-1033) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-564))) (-15 -2003 ((-1033) (-687 (-225)) (-564) (-687 (-225)) (-564) (-564) (-564) (-564) (-564))) (-15 -2244 ((-1033) (-564) (-564) (-225) (-225) (-564) (-564) (-687 (-225)) (-564))) (-15 -1327 ((-1033) (-564) (-564) (-564) (-225) (-112) (-564) (-687 (-225)) (-687 (-225)) (-564))) (-15 -4211 ((-1033) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-687 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE))))) (-15 -4211 ((-1033) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-687 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE))) (-388))) (-15 -1596 ((-1033) (-564) (-564) (-564) (-564) (-564) (-112) (-564) (-112) (-564) (-687 (-225)) (-687 (-225)) (-564))) (-15 -3770 ((-1033) (-564) (-564) (-564) (-564) (-564) (-112) (-564) (-112) (-564) (-687 (-169 (-225))) (-687 (-169 (-225))) (-564)))) -((-4327 (((-1033) (-564) (-564) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-687 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-70 APROD)))) 64)) (-3396 (((-1033) (-564) (-687 (-225)) (-564) (-687 (-225)) (-687 (-564)) (-564) (-687 (-225)) (-564) (-564) (-564) (-564)) 60)) (-1494 (((-1033) (-564) (-687 (-225)) (-112) (-225) (-564) (-564) (-564) (-564) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-388)) (|:| |fp| (-73 MSOLVE)))) 59)) (-1874 (((-1033) (-564) (-564) (-687 (-225)) (-564) (-687 (-564)) (-564) (-687 (-564)) (-687 (-225)) (-687 (-564)) (-687 (-564)) (-687 (-225)) (-687 (-225)) (-687 (-564)) (-564)) 37)) (-1880 (((-1033) (-564) (-564) (-564) (-225) (-564) (-687 (-225)) (-687 (-225)) (-564)) 36)) (-2285 (((-1033) (-564) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564)) 33)) (-4250 (((-1033) (-564) (-687 (-225)) (-564) (-687 (-564)) (-687 (-564)) (-564) (-687 (-564)) (-687 (-225))) 32)) (-1717 (((-1033) (-687 (-225)) (-564) (-687 (-225)) (-564) (-564) (-564)) 28)) (-2428 (((-1033) (-564) (-687 (-225)) (-564) (-687 (-225)) (-564)) 27)) (-1463 (((-1033) (-564) (-687 (-225)) (-564) (-687 (-225)) (-564)) 26)) (-3324 (((-1033) (-564) (-687 (-169 (-225))) (-564) (-564) (-564) (-564) (-687 (-169 (-225))) (-564)) 22))) -(((-754) (-10 -7 (-15 -3324 ((-1033) (-564) (-687 (-169 (-225))) (-564) (-564) (-564) (-564) (-687 (-169 (-225))) (-564))) (-15 -1463 ((-1033) (-564) (-687 (-225)) (-564) (-687 (-225)) (-564))) (-15 -2428 ((-1033) (-564) (-687 (-225)) (-564) (-687 (-225)) (-564))) (-15 -1717 ((-1033) (-687 (-225)) (-564) (-687 (-225)) (-564) (-564) (-564))) (-15 -4250 ((-1033) (-564) (-687 (-225)) (-564) (-687 (-564)) (-687 (-564)) (-564) (-687 (-564)) (-687 (-225)))) (-15 -2285 ((-1033) (-564) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564))) (-15 -1880 ((-1033) (-564) (-564) (-564) (-225) (-564) (-687 (-225)) (-687 (-225)) (-564))) (-15 -1874 ((-1033) (-564) (-564) (-687 (-225)) (-564) (-687 (-564)) (-564) (-687 (-564)) (-687 (-225)) (-687 (-564)) (-687 (-564)) (-687 (-225)) (-687 (-225)) (-687 (-564)) (-564))) (-15 -1494 ((-1033) (-564) (-687 (-225)) (-112) (-225) (-564) (-564) (-564) (-564) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-388)) (|:| |fp| (-73 MSOLVE))))) (-15 -3396 ((-1033) (-564) (-687 (-225)) (-564) (-687 (-225)) (-687 (-564)) (-564) (-687 (-225)) (-564) (-564) (-564) (-564))) (-15 -4327 ((-1033) (-564) (-564) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-687 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-70 APROD))))))) (T -754)) -((-4327 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-564)) (-5 *5 (-687 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-70 APROD)))) (-5 *4 (-225)) (-5 *2 (-1033)) (-5 *1 (-754)))) (-3396 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-687 (-225))) (-5 *5 (-687 (-564))) (-5 *3 (-564)) (-5 *2 (-1033)) (-5 *1 (-754)))) (-1494 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *5 (-112)) (-5 *6 (-225)) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1033)) (-5 *1 (-754)))) (-1874 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-687 (-225))) (-5 *5 (-687 (-564))) (-5 *3 (-564)) (-5 *2 (-1033)) (-5 *1 (-754)))) (-1880 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *5 (-687 (-225))) (-5 *4 (-225)) (-5 *2 (-1033)) (-5 *1 (-754)))) (-2285 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-754)))) (-4250 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-687 (-225))) (-5 *5 (-687 (-564))) (-5 *3 (-564)) (-5 *2 (-1033)) (-5 *1 (-754)))) (-1717 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-687 (-225))) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-754)))) (-2428 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-754)))) (-1463 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-754)))) (-3324 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-169 (-225)))) (-5 *2 (-1033)) (-5 *1 (-754))))) -(-10 -7 (-15 -3324 ((-1033) (-564) (-687 (-169 (-225))) (-564) (-564) (-564) (-564) (-687 (-169 (-225))) (-564))) (-15 -1463 ((-1033) (-564) (-687 (-225)) (-564) (-687 (-225)) (-564))) (-15 -2428 ((-1033) (-564) (-687 (-225)) (-564) (-687 (-225)) (-564))) (-15 -1717 ((-1033) (-687 (-225)) (-564) (-687 (-225)) (-564) (-564) (-564))) (-15 -4250 ((-1033) (-564) (-687 (-225)) (-564) (-687 (-564)) (-687 (-564)) (-564) (-687 (-564)) (-687 (-225)))) (-15 -2285 ((-1033) (-564) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564))) (-15 -1880 ((-1033) (-564) (-564) (-564) (-225) (-564) (-687 (-225)) (-687 (-225)) (-564))) (-15 -1874 ((-1033) (-564) (-564) (-687 (-225)) (-564) (-687 (-564)) (-564) (-687 (-564)) (-687 (-225)) (-687 (-564)) (-687 (-564)) (-687 (-225)) (-687 (-225)) (-687 (-564)) (-564))) (-15 -1494 ((-1033) (-564) (-687 (-225)) (-112) (-225) (-564) (-564) (-564) (-564) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-388)) (|:| |fp| (-73 MSOLVE))))) (-15 -3396 ((-1033) (-564) (-687 (-225)) (-564) (-687 (-225)) (-687 (-564)) (-564) (-687 (-225)) (-564) (-564) (-564) (-564))) (-15 -4327 ((-1033) (-564) (-564) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-687 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-70 APROD)))))) -((-2900 (((-1033) (-1155) (-564) (-564) (-687 (-225)) (-564) (-564) (-687 (-225))) 29)) (-4019 (((-1033) (-1155) (-564) (-564) (-687 (-225))) 28)) (-2751 (((-1033) (-1155) (-564) (-564) (-687 (-225)) (-564) (-687 (-564)) (-564) (-687 (-225))) 27)) (-3444 (((-1033) (-564) (-564) (-564) (-687 (-225))) 21))) -(((-755) (-10 -7 (-15 -3444 ((-1033) (-564) (-564) (-564) (-687 (-225)))) (-15 -2751 ((-1033) (-1155) (-564) (-564) (-687 (-225)) (-564) (-687 (-564)) (-564) (-687 (-225)))) (-15 -4019 ((-1033) (-1155) (-564) (-564) (-687 (-225)))) (-15 -2900 ((-1033) (-1155) (-564) (-564) (-687 (-225)) (-564) (-564) (-687 (-225)))))) (T -755)) -((-2900 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1155)) (-5 *4 (-564)) (-5 *5 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-755)))) (-4019 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1155)) (-5 *4 (-564)) (-5 *5 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-755)))) (-2751 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1155)) (-5 *5 (-687 (-225))) (-5 *6 (-687 (-564))) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-755)))) (-3444 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-755))))) -(-10 -7 (-15 -3444 ((-1033) (-564) (-564) (-564) (-687 (-225)))) (-15 -2751 ((-1033) (-1155) (-564) (-564) (-687 (-225)) (-564) (-687 (-564)) (-564) (-687 (-225)))) (-15 -4019 ((-1033) (-1155) (-564) (-564) (-687 (-225)))) (-15 -2900 ((-1033) (-1155) (-564) (-564) (-687 (-225)) (-564) (-564) (-687 (-225))))) -((-1822 (((-1033) (-225) (-225) (-225) (-225) (-564)) 62)) (-2974 (((-1033) (-225) (-225) (-225) (-564)) 61)) (-1608 (((-1033) (-225) (-225) (-225) (-564)) 60)) (-2643 (((-1033) (-225) (-225) (-564)) 59)) (-2585 (((-1033) (-225) (-564)) 58)) (-3032 (((-1033) (-225) (-564)) 57)) (-4063 (((-1033) (-225) (-564)) 56)) (-3286 (((-1033) (-225) (-564)) 55)) (-3929 (((-1033) (-225) (-564)) 54)) (-4097 (((-1033) (-225) (-564)) 53)) (-1357 (((-1033) (-225) (-169 (-225)) (-564) (-1155) (-564)) 52)) (-2004 (((-1033) (-225) (-169 (-225)) (-564) (-1155) (-564)) 51)) (-3422 (((-1033) (-225) (-564)) 50)) (-4055 (((-1033) (-225) (-564)) 49)) (-1918 (((-1033) (-225) (-564)) 48)) (-2542 (((-1033) (-225) (-564)) 47)) (-3322 (((-1033) (-564) (-225) (-169 (-225)) (-564) (-1155) (-564)) 46)) (-1854 (((-1033) (-1155) (-169 (-225)) (-1155) (-564)) 45)) (-3016 (((-1033) (-1155) (-169 (-225)) (-1155) (-564)) 44)) (-4053 (((-1033) (-225) (-169 (-225)) (-564) (-1155) (-564)) 43)) (-2392 (((-1033) (-225) (-169 (-225)) (-564) (-1155) (-564)) 42)) (-4347 (((-1033) (-225) (-564)) 39)) (-2479 (((-1033) (-225) (-564)) 38)) (-2032 (((-1033) (-225) (-564)) 37)) (-2549 (((-1033) (-225) (-564)) 36)) (-1996 (((-1033) (-225) (-564)) 35)) (-2231 (((-1033) (-225) (-564)) 34)) (-3529 (((-1033) (-225) (-564)) 33)) (-1554 (((-1033) (-225) (-564)) 32)) (-2386 (((-1033) (-225) (-564)) 31)) (-1783 (((-1033) (-225) (-564)) 30)) (-2240 (((-1033) (-225) (-225) (-225) (-564)) 29)) (-2146 (((-1033) (-225) (-564)) 28)) (-3073 (((-1033) (-225) (-564)) 27)) (-2125 (((-1033) (-225) (-564)) 26)) (-1576 (((-1033) (-225) (-564)) 25)) (-4012 (((-1033) (-225) (-564)) 24)) (-1422 (((-1033) (-169 (-225)) (-564)) 21))) -(((-756) (-10 -7 (-15 -1422 ((-1033) (-169 (-225)) (-564))) (-15 -4012 ((-1033) (-225) (-564))) (-15 -1576 ((-1033) (-225) (-564))) (-15 -2125 ((-1033) (-225) (-564))) (-15 -3073 ((-1033) (-225) (-564))) (-15 -2146 ((-1033) (-225) (-564))) (-15 -2240 ((-1033) (-225) (-225) (-225) (-564))) (-15 -1783 ((-1033) (-225) (-564))) (-15 -2386 ((-1033) (-225) (-564))) (-15 -1554 ((-1033) (-225) (-564))) (-15 -3529 ((-1033) (-225) (-564))) (-15 -2231 ((-1033) (-225) (-564))) (-15 -1996 ((-1033) (-225) (-564))) (-15 -2549 ((-1033) (-225) (-564))) (-15 -2032 ((-1033) (-225) (-564))) (-15 -2479 ((-1033) (-225) (-564))) (-15 -4347 ((-1033) (-225) (-564))) (-15 -2392 ((-1033) (-225) (-169 (-225)) (-564) (-1155) (-564))) (-15 -4053 ((-1033) (-225) (-169 (-225)) (-564) (-1155) (-564))) (-15 -3016 ((-1033) (-1155) (-169 (-225)) (-1155) (-564))) (-15 -1854 ((-1033) (-1155) (-169 (-225)) (-1155) (-564))) (-15 -3322 ((-1033) (-564) (-225) (-169 (-225)) (-564) (-1155) (-564))) (-15 -2542 ((-1033) (-225) (-564))) (-15 -1918 ((-1033) (-225) (-564))) (-15 -4055 ((-1033) (-225) (-564))) (-15 -3422 ((-1033) (-225) (-564))) (-15 -2004 ((-1033) (-225) (-169 (-225)) (-564) (-1155) (-564))) (-15 -1357 ((-1033) (-225) (-169 (-225)) (-564) (-1155) (-564))) (-15 -4097 ((-1033) (-225) (-564))) (-15 -3929 ((-1033) (-225) (-564))) (-15 -3286 ((-1033) (-225) (-564))) (-15 -4063 ((-1033) (-225) (-564))) (-15 -3032 ((-1033) (-225) (-564))) (-15 -2585 ((-1033) (-225) (-564))) (-15 -2643 ((-1033) (-225) (-225) (-564))) (-15 -1608 ((-1033) (-225) (-225) (-225) (-564))) (-15 -2974 ((-1033) (-225) (-225) (-225) (-564))) (-15 -1822 ((-1033) (-225) (-225) (-225) (-225) (-564))))) (T -756)) -((-1822 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-2974 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-1608 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-2643 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-2585 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-3032 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-4063 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-3286 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-3929 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-4097 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-1357 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *6 (-1155)) (-5 *3 (-225)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-2004 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *6 (-1155)) (-5 *3 (-225)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-3422 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-4055 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-1918 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-2542 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-3322 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-564)) (-5 *5 (-169 (-225))) (-5 *6 (-1155)) (-5 *4 (-225)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-1854 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1155)) (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-3016 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1155)) (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-4053 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *6 (-1155)) (-5 *3 (-225)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-2392 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *6 (-1155)) (-5 *3 (-225)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-4347 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-2479 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-2032 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-2549 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-2231 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-3529 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-1554 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-2386 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-1783 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-2240 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-2146 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-3073 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-2125 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-1576 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-4012 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-1422 (*1 *2 *3 *4) (-12 (-5 *3 (-169 (-225))) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756))))) -(-10 -7 (-15 -1422 ((-1033) (-169 (-225)) (-564))) (-15 -4012 ((-1033) (-225) (-564))) (-15 -1576 ((-1033) (-225) (-564))) (-15 -2125 ((-1033) (-225) (-564))) (-15 -3073 ((-1033) (-225) (-564))) (-15 -2146 ((-1033) (-225) (-564))) (-15 -2240 ((-1033) (-225) (-225) (-225) (-564))) (-15 -1783 ((-1033) (-225) (-564))) (-15 -2386 ((-1033) (-225) (-564))) (-15 -1554 ((-1033) (-225) (-564))) (-15 -3529 ((-1033) (-225) (-564))) (-15 -2231 ((-1033) (-225) (-564))) (-15 -1996 ((-1033) (-225) (-564))) (-15 -2549 ((-1033) (-225) (-564))) (-15 -2032 ((-1033) (-225) (-564))) (-15 -2479 ((-1033) (-225) (-564))) (-15 -4347 ((-1033) (-225) (-564))) (-15 -2392 ((-1033) (-225) (-169 (-225)) (-564) (-1155) (-564))) (-15 -4053 ((-1033) (-225) (-169 (-225)) (-564) (-1155) (-564))) (-15 -3016 ((-1033) (-1155) (-169 (-225)) (-1155) (-564))) (-15 -1854 ((-1033) (-1155) (-169 (-225)) (-1155) (-564))) (-15 -3322 ((-1033) (-564) (-225) (-169 (-225)) (-564) (-1155) (-564))) (-15 -2542 ((-1033) (-225) (-564))) (-15 -1918 ((-1033) (-225) (-564))) (-15 -4055 ((-1033) (-225) (-564))) (-15 -3422 ((-1033) (-225) (-564))) (-15 -2004 ((-1033) (-225) (-169 (-225)) (-564) (-1155) (-564))) (-15 -1357 ((-1033) (-225) (-169 (-225)) (-564) (-1155) (-564))) (-15 -4097 ((-1033) (-225) (-564))) (-15 -3929 ((-1033) (-225) (-564))) (-15 -3286 ((-1033) (-225) (-564))) (-15 -4063 ((-1033) (-225) (-564))) (-15 -3032 ((-1033) (-225) (-564))) (-15 -2585 ((-1033) (-225) (-564))) (-15 -2643 ((-1033) (-225) (-225) (-564))) (-15 -1608 ((-1033) (-225) (-225) (-225) (-564))) (-15 -2974 ((-1033) (-225) (-225) (-225) (-564))) (-15 -1822 ((-1033) (-225) (-225) (-225) (-225) (-564)))) -((-3443 (((-1267)) 21)) (-3825 (((-1155)) 32)) (-2282 (((-1155)) 31)) (-3525 (((-1101) (-1173) (-687 (-564))) 46) (((-1101) (-1173) (-687 (-225))) 42)) (-3451 (((-112)) 19)) (-2832 (((-1155) (-1155)) 35))) -(((-757) (-10 -7 (-15 -2282 ((-1155))) (-15 -3825 ((-1155))) (-15 -2832 ((-1155) (-1155))) (-15 -3525 ((-1101) (-1173) (-687 (-225)))) (-15 -3525 ((-1101) (-1173) (-687 (-564)))) (-15 -3451 ((-112))) (-15 -3443 ((-1267))))) (T -757)) -((-3443 (*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-757)))) (-3451 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-757)))) (-3525 (*1 *2 *3 *4) (-12 (-5 *3 (-1173)) (-5 *4 (-687 (-564))) (-5 *2 (-1101)) (-5 *1 (-757)))) (-3525 (*1 *2 *3 *4) (-12 (-5 *3 (-1173)) (-5 *4 (-687 (-225))) (-5 *2 (-1101)) (-5 *1 (-757)))) (-2832 (*1 *2 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-757)))) (-3825 (*1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-757)))) (-2282 (*1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-757))))) -(-10 -7 (-15 -2282 ((-1155))) (-15 -3825 ((-1155))) (-15 -2832 ((-1155) (-1155))) (-15 -3525 ((-1101) (-1173) (-687 (-225)))) (-15 -3525 ((-1101) (-1173) (-687 (-564)))) (-15 -3451 ((-112))) (-15 -3443 ((-1267)))) -((-2402 (($ $ $) 10)) (-3845 (($ $ $ $) 9)) (-3106 (($ $ $) 12))) -(((-758 |#1|) (-10 -8 (-15 -3106 (|#1| |#1| |#1|)) (-15 -2402 (|#1| |#1| |#1|)) (-15 -3845 (|#1| |#1| |#1| |#1|))) (-759)) (T -758)) -NIL -(-10 -8 (-15 -3106 (|#1| |#1| |#1|)) (-15 -2402 (|#1| |#1| |#1|)) (-15 -3845 (|#1| |#1| |#1| |#1|))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-3085 (((-3 $ "failed") $ $) 20)) (-2822 (($) 18 T CONST)) (-3952 (($ $ (-919)) 31)) (-4204 (($ $ (-919)) 32)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2402 (($ $ $) 28)) (-2390 (((-860) $) 12)) (-1600 (((-112) $ $) 9)) (-3845 (($ $ $ $) 29)) (-3106 (($ $ $) 27)) (-2361 (($) 19 T CONST)) (-2821 (((-112) $ $) 6)) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 33)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 30))) -(((-759) (-140)) (T -759)) -((-3845 (*1 *1 *1 *1 *1) (-4 *1 (-759))) (-2402 (*1 *1 *1 *1) (-4 *1 (-759))) (-3106 (*1 *1 *1 *1) (-4 *1 (-759)))) -(-13 (-21) (-718) (-10 -8 (-15 -3845 ($ $ $ $)) (-15 -2402 ($ $ $)) (-15 -3106 ($ $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-860)) . T) ((-644 (-564)) . T) ((-718) . T) ((-1097) . T)) -((-2390 (((-860) $) NIL) (($ (-564)) 10))) -(((-760 |#1|) (-10 -8 (-15 -2390 (|#1| (-564))) (-15 -2390 ((-860) |#1|))) (-761)) (T -760)) -NIL -(-10 -8 (-15 -2390 (|#1| (-564))) (-15 -2390 ((-860) |#1|))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-3085 (((-3 $ "failed") $ $) 20)) (-2822 (($) 18 T CONST)) (-3420 (((-3 $ "failed") $) 43)) (-3952 (($ $ (-919)) 31) (($ $ (-769)) 38)) (-2675 (((-3 $ "failed") $) 41)) (-3163 (((-112) $) 37)) (-1339 (((-3 $ "failed") $) 42)) (-4204 (($ $ (-919)) 32) (($ $ (-769)) 39)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2402 (($ $ $) 28)) (-2390 (((-860) $) 12) (($ (-564)) 34)) (-3348 (((-769)) 35 T CONST)) (-1600 (((-112) $ $) 9)) (-3845 (($ $ $ $) 29)) (-3106 (($ $ $) 27)) (-2361 (($) 19 T CONST)) (-2371 (($) 36 T CONST)) (-2821 (((-112) $ $) 6)) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 33) (($ $ (-769)) 40)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 30))) +((* (*1 *1 *1 *1) (-4 *1 (-720))) (-4370 (*1 *1 *1 *2) (-12 (-4 *1 (-720)) (-5 *2 (-921)))) (-3681 (*1 *1 *1 *2) (-12 (-4 *1 (-720)) (-5 *2 (-921)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-720)) (-5 *2 (-921))))) +(-13 (-1099) (-10 -8 (-15 * ($ $ $)) (-15 -4370 ($ $ (-921))) (-15 -3681 ($ $ (-921))) (-15 ** ($ $ (-921))))) +(((-102) . T) ((-613 (-862)) . T) ((-1099) . T)) +((-4370 (($ $ (-921)) NIL) (($ $ (-771)) 21)) (-2264 (((-112) $) 10)) (-3681 (($ $ (-921)) NIL) (($ $ (-771)) 22)) (** (($ $ (-921)) NIL) (($ $ (-771)) 16))) +(((-721 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-771))) (-15 -3681 (|#1| |#1| (-771))) (-15 -4370 (|#1| |#1| (-771))) (-15 -2264 ((-112) |#1|)) (-15 ** (|#1| |#1| (-921))) (-15 -3681 (|#1| |#1| (-921))) (-15 -4370 (|#1| |#1| (-921)))) (-722)) (T -721)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-771))) (-15 -3681 (|#1| |#1| (-771))) (-15 -4370 (|#1| |#1| (-771))) (-15 -2264 ((-112) |#1|)) (-15 ** (|#1| |#1| (-921))) (-15 -3681 (|#1| |#1| (-921))) (-15 -4370 (|#1| |#1| (-921)))) +((-2986 (((-112) $ $) 7)) (-4347 (((-3 $ "failed") $) 18)) (-4370 (($ $ (-921)) 16) (($ $ (-771)) 23)) (-3757 (((-3 $ "failed") $) 20)) (-2264 (((-112) $) 24)) (-4252 (((-3 $ "failed") $) 19)) (-3681 (($ $ (-921)) 15) (($ $ (-771)) 22)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-2479 (((-862) $) 12)) (-3900 (((-112) $ $) 9)) (-2459 (($) 25 T CONST)) (-2952 (((-112) $ $) 6)) (** (($ $ (-921)) 14) (($ $ (-771)) 21)) (* (($ $ $) 17))) +(((-722) (-140)) (T -722)) +((-2459 (*1 *1) (-4 *1 (-722))) (-2264 (*1 *2 *1) (-12 (-4 *1 (-722)) (-5 *2 (-112)))) (-4370 (*1 *1 *1 *2) (-12 (-4 *1 (-722)) (-5 *2 (-771)))) (-3681 (*1 *1 *1 *2) (-12 (-4 *1 (-722)) (-5 *2 (-771)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-722)) (-5 *2 (-771)))) (-3757 (*1 *1 *1) (|partial| -4 *1 (-722))) (-4252 (*1 *1 *1) (|partial| -4 *1 (-722))) (-4347 (*1 *1 *1) (|partial| -4 *1 (-722)))) +(-13 (-720) (-10 -8 (-15 (-2459) ($) -1573) (-15 -2264 ((-112) $)) (-15 -4370 ($ $ (-771))) (-15 -3681 ($ $ (-771))) (-15 ** ($ $ (-771))) (-15 -3757 ((-3 $ "failed") $)) (-15 -4252 ((-3 $ "failed") $)) (-15 -4347 ((-3 $ "failed") $)))) +(((-102) . T) ((-613 (-862)) . T) ((-720) . T) ((-1099) . T)) +((-4049 (((-771)) 42)) (-2980 (((-3 (-566) "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL) (((-3 |#2| "failed") $) 26)) (-1709 (((-566) $) NIL) (((-409 (-566)) $) NIL) ((|#2| $) 23)) (-1838 (($ |#3|) NIL) (((-3 $ "failed") (-409 |#3|)) 53)) (-3757 (((-3 $ "failed") $) 73)) (-1415 (($) 47)) (-1398 ((|#2| $) 21)) (-4086 (($) 18)) (-3526 (($ $ (-1 |#2| |#2|) (-771)) NIL) (($ $ (-1 |#2| |#2|)) 61) (($ $ (-644 (-1175)) (-644 (-771))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175)) NIL) (($ $ (-771)) NIL) (($ $) NIL)) (-3098 (((-689 |#2|) (-1264 $) (-1 |#2| |#2|)) 68)) (-3136 (((-1264 |#2|) $) NIL) (($ (-1264 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-3728 ((|#3| $) 39)) (-1419 (((-1264 $)) 36))) +(((-723 |#1| |#2| |#3|) (-10 -8 (-15 -3526 (|#1| |#1|)) (-15 -3526 (|#1| |#1| (-771))) (-15 -3526 (|#1| |#1| (-1175))) (-15 -3526 (|#1| |#1| (-644 (-1175)))) (-15 -3526 (|#1| |#1| (-1175) (-771))) (-15 -3526 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -1415 (|#1|)) (-15 -4049 ((-771))) (-15 -3526 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3526 (|#1| |#1| (-1 |#2| |#2|) (-771))) (-15 -3098 ((-689 |#2|) (-1264 |#1|) (-1 |#2| |#2|))) (-15 -1838 ((-3 |#1| "failed") (-409 |#3|))) (-15 -3136 (|#1| |#3|)) (-15 -1838 (|#1| |#3|)) (-15 -4086 (|#1|)) (-15 -2980 ((-3 |#2| "failed") |#1|)) (-15 -1709 (|#2| |#1|)) (-15 -1709 ((-409 (-566)) |#1|)) (-15 -2980 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -1709 ((-566) |#1|)) (-15 -2980 ((-3 (-566) "failed") |#1|)) (-15 -3136 (|#3| |#1|)) (-15 -3136 (|#1| (-1264 |#2|))) (-15 -3136 ((-1264 |#2|) |#1|)) (-15 -1419 ((-1264 |#1|))) (-15 -3728 (|#3| |#1|)) (-15 -1398 (|#2| |#1|)) (-15 -3757 ((-3 |#1| "failed") |#1|))) (-724 |#2| |#3|) (-172) (-1240 |#2|)) (T -723)) +((-4049 (*1 *2) (-12 (-4 *4 (-172)) (-4 *5 (-1240 *4)) (-5 *2 (-771)) (-5 *1 (-723 *3 *4 *5)) (-4 *3 (-724 *4 *5))))) +(-10 -8 (-15 -3526 (|#1| |#1|)) (-15 -3526 (|#1| |#1| (-771))) (-15 -3526 (|#1| |#1| (-1175))) (-15 -3526 (|#1| |#1| (-644 (-1175)))) (-15 -3526 (|#1| |#1| (-1175) (-771))) (-15 -3526 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -1415 (|#1|)) (-15 -4049 ((-771))) (-15 -3526 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3526 (|#1| |#1| (-1 |#2| |#2|) (-771))) (-15 -3098 ((-689 |#2|) (-1264 |#1|) (-1 |#2| |#2|))) (-15 -1838 ((-3 |#1| "failed") (-409 |#3|))) (-15 -3136 (|#1| |#3|)) (-15 -1838 (|#1| |#3|)) (-15 -4086 (|#1|)) (-15 -2980 ((-3 |#2| "failed") |#1|)) (-15 -1709 (|#2| |#1|)) (-15 -1709 ((-409 (-566)) |#1|)) (-15 -2980 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -1709 ((-566) |#1|)) (-15 -2980 ((-3 (-566) "failed") |#1|)) (-15 -3136 (|#3| |#1|)) (-15 -3136 (|#1| (-1264 |#2|))) (-15 -3136 ((-1264 |#2|) |#1|)) (-15 -1419 ((-1264 |#1|))) (-15 -3728 (|#3| |#1|)) (-15 -1398 (|#2| |#1|)) (-15 -3757 ((-3 |#1| "failed") |#1|))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) 102 (|has| |#1| (-365)))) (-3087 (($ $) 103 (|has| |#1| (-365)))) (-1716 (((-112) $) 105 (|has| |#1| (-365)))) (-1321 (((-689 |#1|) (-1264 $)) 53) (((-689 |#1|)) 68)) (-3837 ((|#1| $) 59)) (-2568 (((-1187 (-921) (-771)) (-566)) 155 (|has| |#1| (-351)))) (-3174 (((-3 $ "failed") $ $) 20)) (-3980 (($ $) 122 (|has| |#1| (-365)))) (-3348 (((-420 $) $) 123 (|has| |#1| (-365)))) (-2761 (((-112) $ $) 113 (|has| |#1| (-365)))) (-4049 (((-771)) 96 (|has| |#1| (-370)))) (-1811 (($) 18 T CONST)) (-2980 (((-3 (-566) "failed") $) 178 (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) 176 (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) 173)) (-1709 (((-566) $) 177 (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) 175 (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) 174)) (-2422 (($ (-1264 |#1|) (-1264 $)) 55) (($ (-1264 |#1|)) 71)) (-2713 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| |#1| (-351)))) (-2925 (($ $ $) 117 (|has| |#1| (-365)))) (-2087 (((-689 |#1|) $ (-1264 $)) 60) (((-689 |#1|) $) 66)) (-2275 (((-689 (-566)) (-689 $)) 172 (|has| |#1| (-639 (-566)))) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) 171 (|has| |#1| (-639 (-566)))) (((-2 (|:| -4196 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) 170) (((-689 |#1|) (-689 $)) 169)) (-1838 (($ |#2|) 166) (((-3 $ "failed") (-409 |#2|)) 163 (|has| |#1| (-365)))) (-3757 (((-3 $ "failed") $) 37)) (-2299 (((-921)) 61)) (-1415 (($) 99 (|has| |#1| (-370)))) (-2937 (($ $ $) 116 (|has| |#1| (-365)))) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) 111 (|has| |#1| (-365)))) (-2409 (($) 157 (|has| |#1| (-351)))) (-1450 (((-112) $) 158 (|has| |#1| (-351)))) (-4202 (($ $ (-771)) 149 (|has| |#1| (-351))) (($ $) 148 (|has| |#1| (-351)))) (-4188 (((-112) $) 124 (|has| |#1| (-365)))) (-1802 (((-921) $) 160 (|has| |#1| (-351))) (((-833 (-921)) $) 146 (|has| |#1| (-351)))) (-2264 (((-112) $) 35)) (-1398 ((|#1| $) 58)) (-4278 (((-3 $ "failed") $) 150 (|has| |#1| (-351)))) (-2495 (((-3 (-644 $) "failed") (-644 $) $) 120 (|has| |#1| (-365)))) (-1869 ((|#2| $) 51 (|has| |#1| (-365)))) (-4051 (((-921) $) 98 (|has| |#1| (-370)))) (-1829 ((|#2| $) 164)) (-2120 (($ (-644 $)) 109 (|has| |#1| (-365))) (($ $ $) 108 (|has| |#1| (-365)))) (-3151 (((-1157) $) 10)) (-2577 (($ $) 125 (|has| |#1| (-365)))) (-3968 (($) 151 (|has| |#1| (-351)) CONST)) (-2104 (($ (-921)) 97 (|has| |#1| (-370)))) (-4059 (((-1119) $) 11)) (-4086 (($) 168)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) 110 (|has| |#1| (-365)))) (-2162 (($ (-644 $)) 107 (|has| |#1| (-365))) (($ $ $) 106 (|has| |#1| (-365)))) (-2816 (((-644 (-2 (|:| -2325 (-566)) (|:| -3631 (-566))))) 154 (|has| |#1| (-351)))) (-2325 (((-420 $) $) 121 (|has| |#1| (-365)))) (-2585 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) 118 (|has| |#1| (-365)))) (-2976 (((-3 $ "failed") $ $) 101 (|has| |#1| (-365)))) (-2840 (((-3 (-644 $) "failed") (-644 $) $) 112 (|has| |#1| (-365)))) (-1383 (((-771) $) 114 (|has| |#1| (-365)))) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) 115 (|has| |#1| (-365)))) (-3553 ((|#1| (-1264 $)) 54) ((|#1|) 67)) (-4107 (((-771) $) 159 (|has| |#1| (-351))) (((-3 (-771) "failed") $ $) 147 (|has| |#1| (-351)))) (-3526 (($ $) 145 (-2809 (-2402 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-771)) 143 (-2809 (-2402 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-1175)) 141 (-2402 (|has| |#1| (-900 (-1175))) (|has| |#1| (-365)))) (($ $ (-644 (-1175))) 140 (-2402 (|has| |#1| (-900 (-1175))) (|has| |#1| (-365)))) (($ $ (-1175) (-771)) 139 (-2402 (|has| |#1| (-900 (-1175))) (|has| |#1| (-365)))) (($ $ (-644 (-1175)) (-644 (-771))) 138 (-2402 (|has| |#1| (-900 (-1175))) (|has| |#1| (-365)))) (($ $ (-1 |#1| |#1|) (-771)) 131 (|has| |#1| (-365))) (($ $ (-1 |#1| |#1|)) 130 (|has| |#1| (-365)))) (-3098 (((-689 |#1|) (-1264 $) (-1 |#1| |#1|)) 162 (|has| |#1| (-365)))) (-2301 ((|#2|) 167)) (-3648 (($) 156 (|has| |#1| (-351)))) (-3747 (((-1264 |#1|) $ (-1264 $)) 57) (((-689 |#1|) (-1264 $) (-1264 $)) 56) (((-1264 |#1|) $) 73) (((-689 |#1|) (-1264 $)) 72)) (-3136 (((-1264 |#1|) $) 70) (($ (-1264 |#1|)) 69) ((|#2| $) 179) (($ |#2|) 165)) (-3233 (((-3 (-1264 $) "failed") (-689 $)) 153 (|has| |#1| (-351)))) (-2479 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 44) (($ $) 100 (|has| |#1| (-365))) (($ (-409 (-566))) 95 (-2809 (|has| |#1| (-365)) (|has| |#1| (-1038 (-409 (-566))))))) (-2645 (($ $) 152 (|has| |#1| (-351))) (((-3 $ "failed") $) 50 (|has| |#1| (-145)))) (-3728 ((|#2| $) 52)) (-1558 (((-771)) 32 T CONST)) (-3900 (((-112) $ $) 9)) (-1419 (((-1264 $)) 74)) (-1333 (((-112) $ $) 104 (|has| |#1| (-365)))) (-2446 (($) 19 T CONST)) (-2459 (($) 34 T CONST)) (-2834 (($ $) 144 (-2809 (-2402 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-771)) 142 (-2809 (-2402 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-1175)) 137 (-2402 (|has| |#1| (-900 (-1175))) (|has| |#1| (-365)))) (($ $ (-644 (-1175))) 136 (-2402 (|has| |#1| (-900 (-1175))) (|has| |#1| (-365)))) (($ $ (-1175) (-771)) 135 (-2402 (|has| |#1| (-900 (-1175))) (|has| |#1| (-365)))) (($ $ (-644 (-1175)) (-644 (-771))) 134 (-2402 (|has| |#1| (-900 (-1175))) (|has| |#1| (-365)))) (($ $ (-1 |#1| |#1|) (-771)) 133 (|has| |#1| (-365))) (($ $ (-1 |#1| |#1|)) 132 (|has| |#1| (-365)))) (-2952 (((-112) $ $) 6)) (-3077 (($ $ $) 129 (|has| |#1| (-365)))) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 126 (|has| |#1| (-365)))) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-409 (-566)) $) 128 (|has| |#1| (-365))) (($ $ (-409 (-566))) 127 (|has| |#1| (-365))))) +(((-724 |#1| |#2|) (-140) (-172) (-1240 |t#1|)) (T -724)) +((-4086 (*1 *1) (-12 (-4 *2 (-172)) (-4 *1 (-724 *2 *3)) (-4 *3 (-1240 *2)))) (-2301 (*1 *2) (-12 (-4 *1 (-724 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1240 *3)))) (-1838 (*1 *1 *2) (-12 (-4 *3 (-172)) (-4 *1 (-724 *3 *2)) (-4 *2 (-1240 *3)))) (-3136 (*1 *1 *2) (-12 (-4 *3 (-172)) (-4 *1 (-724 *3 *2)) (-4 *2 (-1240 *3)))) (-1829 (*1 *2 *1) (-12 (-4 *1 (-724 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1240 *3)))) (-1838 (*1 *1 *2) (|partial| -12 (-5 *2 (-409 *4)) (-4 *4 (-1240 *3)) (-4 *3 (-365)) (-4 *3 (-172)) (-4 *1 (-724 *3 *4)))) (-3098 (*1 *2 *3 *4) (-12 (-5 *3 (-1264 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365)) (-4 *1 (-724 *5 *6)) (-4 *5 (-172)) (-4 *6 (-1240 *5)) (-5 *2 (-689 *5))))) +(-13 (-411 |t#1| |t#2|) (-172) (-614 |t#2|) (-413 |t#1|) (-379 |t#1|) (-10 -8 (-15 -4086 ($)) (-15 -2301 (|t#2|)) (-15 -1838 ($ |t#2|)) (-15 -3136 ($ |t#2|)) (-15 -1829 (|t#2| $)) (IF (|has| |t#1| (-370)) (-6 (-370)) |%noBranch|) (IF (|has| |t#1| (-365)) (PROGN (-6 (-365)) (-6 (-231 |t#1|)) (-15 -1838 ((-3 $ "failed") (-409 |t#2|))) (-15 -3098 ((-689 |t#1|) (-1264 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-351)) (-6 (-351)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-409 (-566))) -2809 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-38 |#1|) . T) ((-38 $) -2809 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-102) . T) ((-111 #0# #0#) -2809 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2809 (|has| |#1| (-351)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-616 #0#) -2809 (|has| |#1| (-1038 (-409 (-566)))) (|has| |#1| (-351)) (|has| |#1| (-365))) ((-616 (-566)) . T) ((-616 |#1|) . T) ((-616 $) -2809 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-613 (-862)) . T) ((-172) . T) ((-614 |#2|) . T) ((-231 |#1|) |has| |#1| (-365)) ((-233) -2809 (|has| |#1| (-351)) (-12 (|has| |#1| (-233)) (|has| |#1| (-365)))) ((-243) -2809 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-291) -2809 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-308) -2809 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-365) -2809 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-404) |has| |#1| (-351)) ((-370) -2809 (|has| |#1| (-370)) (|has| |#1| (-351))) ((-351) |has| |#1| (-351)) ((-372 |#1| |#2|) . T) ((-411 |#1| |#2|) . T) ((-379 |#1|) . T) ((-413 |#1|) . T) ((-454) -2809 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-558) -2809 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-646 #0#) -2809 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #0#) -2809 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #0#) -2809 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-640 |#1|) . T) ((-640 $) -2809 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-639 (-566)) |has| |#1| (-639 (-566))) ((-639 |#1|) . T) ((-717 #0#) -2809 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-717 |#1|) . T) ((-717 $) -2809 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-726) . T) ((-900 (-1175)) -12 (|has| |#1| (-365)) (|has| |#1| (-900 (-1175)))) ((-920) -2809 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-1038 (-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) ((-1038 (-566)) |has| |#1| (-1038 (-566))) ((-1038 |#1|) . T) ((-1051 #0#) -2809 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-1051 |#1|) . T) ((-1051 $) . T) ((-1056 #0#) -2809 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-1056 |#1|) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1150) |has| |#1| (-351)) ((-1218) -2809 (|has| |#1| (-351)) (|has| |#1| (-365)))) +((-1811 (($) 11)) (-3757 (((-3 $ "failed") $) 14)) (-2264 (((-112) $) 10)) (** (($ $ (-921)) NIL) (($ $ (-771)) 20))) +(((-725 |#1|) (-10 -8 (-15 -3757 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-771))) (-15 -2264 ((-112) |#1|)) (-15 -1811 (|#1|)) (-15 ** (|#1| |#1| (-921)))) (-726)) (T -725)) +NIL +(-10 -8 (-15 -3757 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-771))) (-15 -2264 ((-112) |#1|)) (-15 -1811 (|#1|)) (-15 ** (|#1| |#1| (-921)))) +((-2986 (((-112) $ $) 7)) (-1811 (($) 19 T CONST)) (-3757 (((-3 $ "failed") $) 16)) (-2264 (((-112) $) 18)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-2479 (((-862) $) 12)) (-3900 (((-112) $ $) 9)) (-2459 (($) 20 T CONST)) (-2952 (((-112) $ $) 6)) (** (($ $ (-921)) 14) (($ $ (-771)) 17)) (* (($ $ $) 15))) +(((-726) (-140)) (T -726)) +((-2459 (*1 *1) (-4 *1 (-726))) (-1811 (*1 *1) (-4 *1 (-726))) (-2264 (*1 *2 *1) (-12 (-4 *1 (-726)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-726)) (-5 *2 (-771)))) (-3757 (*1 *1 *1) (|partial| -4 *1 (-726)))) +(-13 (-1111) (-10 -8 (-15 (-2459) ($) -1573) (-15 -1811 ($) -1573) (-15 -2264 ((-112) $)) (-15 ** ($ $ (-771))) (-15 -3757 ((-3 $ "failed") $)))) +(((-102) . T) ((-613 (-862)) . T) ((-1111) . T) ((-1099) . T)) +((-2464 (((-2 (|:| -3764 (-420 |#2|)) (|:| |special| (-420 |#2|))) |#2| (-1 |#2| |#2|)) 39)) (-4045 (((-2 (|:| -3764 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-1518 ((|#2| (-409 |#2|) (-1 |#2| |#2|)) 13)) (-3849 (((-2 (|:| |poly| |#2|) (|:| -3764 (-409 |#2|)) (|:| |special| (-409 |#2|))) (-409 |#2|) (-1 |#2| |#2|)) 48))) +(((-727 |#1| |#2|) (-10 -7 (-15 -4045 ((-2 (|:| -3764 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2464 ((-2 (|:| -3764 (-420 |#2|)) (|:| |special| (-420 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -1518 (|#2| (-409 |#2|) (-1 |#2| |#2|))) (-15 -3849 ((-2 (|:| |poly| |#2|) (|:| -3764 (-409 |#2|)) (|:| |special| (-409 |#2|))) (-409 |#2|) (-1 |#2| |#2|)))) (-365) (-1240 |#1|)) (T -727)) +((-3849 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1240 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3764 (-409 *6)) (|:| |special| (-409 *6)))) (-5 *1 (-727 *5 *6)) (-5 *3 (-409 *6)))) (-1518 (*1 *2 *3 *4) (-12 (-5 *3 (-409 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1240 *5)) (-5 *1 (-727 *5 *2)) (-4 *5 (-365)))) (-2464 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1240 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| -3764 (-420 *3)) (|:| |special| (-420 *3)))) (-5 *1 (-727 *5 *3)))) (-4045 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1240 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| -3764 *3) (|:| |special| *3))) (-5 *1 (-727 *5 *3))))) +(-10 -7 (-15 -4045 ((-2 (|:| -3764 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2464 ((-2 (|:| -3764 (-420 |#2|)) (|:| |special| (-420 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -1518 (|#2| (-409 |#2|) (-1 |#2| |#2|))) (-15 -3849 ((-2 (|:| |poly| |#2|) (|:| -3764 (-409 |#2|)) (|:| |special| (-409 |#2|))) (-409 |#2|) (-1 |#2| |#2|)))) +((-3882 ((|#7| (-644 |#5|) |#6|) NIL)) (-3080 ((|#7| (-1 |#5| |#4|) |#6|) 27))) +(((-728 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3080 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3882 (|#7| (-644 |#5|) |#6|))) (-850) (-793) (-793) (-1049) (-1049) (-949 |#4| |#2| |#1|) (-949 |#5| |#3| |#1|)) (T -728)) +((-3882 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *9)) (-4 *9 (-1049)) (-4 *5 (-850)) (-4 *6 (-793)) (-4 *8 (-1049)) (-4 *2 (-949 *9 *7 *5)) (-5 *1 (-728 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-793)) (-4 *4 (-949 *8 *6 *5)))) (-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1049)) (-4 *9 (-1049)) (-4 *5 (-850)) (-4 *6 (-793)) (-4 *2 (-949 *9 *7 *5)) (-5 *1 (-728 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-793)) (-4 *4 (-949 *8 *6 *5))))) +(-10 -7 (-15 -3080 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3882 (|#7| (-644 |#5|) |#6|))) +((-3080 ((|#7| (-1 |#2| |#1|) |#6|) 28))) +(((-729 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3080 (|#7| (-1 |#2| |#1|) |#6|))) (-850) (-850) (-793) (-793) (-1049) (-949 |#5| |#3| |#1|) (-949 |#5| |#4| |#2|)) (T -729)) +((-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-850)) (-4 *6 (-850)) (-4 *7 (-793)) (-4 *9 (-1049)) (-4 *2 (-949 *9 *8 *6)) (-5 *1 (-729 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-793)) (-4 *4 (-949 *9 *7 *5))))) +(-10 -7 (-15 -3080 (|#7| (-1 |#2| |#1|) |#6|))) +((-2325 (((-420 |#4|) |#4|) 42))) +(((-730 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2325 ((-420 |#4|) |#4|))) (-793) (-13 (-850) (-10 -8 (-15 -3136 ((-1175) $)) (-15 -1338 ((-3 $ "failed") (-1175))))) (-308) (-949 (-952 |#3|) |#1| |#2|)) (T -730)) +((-2325 (*1 *2 *3) (-12 (-4 *4 (-793)) (-4 *5 (-13 (-850) (-10 -8 (-15 -3136 ((-1175) $)) (-15 -1338 ((-3 $ "failed") (-1175)))))) (-4 *6 (-308)) (-5 *2 (-420 *3)) (-5 *1 (-730 *4 *5 *6 *3)) (-4 *3 (-949 (-952 *6) *4 *5))))) +(-10 -7 (-15 -2325 ((-420 |#4|) |#4|))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-2485 (((-644 (-864 |#1|)) $) NIL)) (-2285 (((-1171 $) $ (-864 |#1|)) NIL) (((-1171 |#2|) $) NIL)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (|has| |#2| (-558)))) (-3087 (($ $) NIL (|has| |#2| (-558)))) (-1716 (((-112) $) NIL (|has| |#2| (-558)))) (-2917 (((-771) $) NIL) (((-771) $ (-644 (-864 |#1|))) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-4058 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-3980 (($ $) NIL (|has| |#2| (-454)))) (-3348 (((-420 $) $) NIL (|has| |#2| (-454)))) (-4262 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-1811 (($) NIL T CONST)) (-2980 (((-3 |#2| "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#2| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) NIL (|has| |#2| (-1038 (-566)))) (((-3 (-864 |#1|) "failed") $) NIL)) (-1709 ((|#2| $) NIL) (((-409 (-566)) $) NIL (|has| |#2| (-1038 (-409 (-566))))) (((-566) $) NIL (|has| |#2| (-1038 (-566)))) (((-864 |#1|) $) NIL)) (-4343 (($ $ $ (-864 |#1|)) NIL (|has| |#2| (-172)))) (-3565 (($ $) NIL)) (-2275 (((-689 (-566)) (-689 $)) NIL (|has| |#2| (-639 (-566)))) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| |#2| (-639 (-566)))) (((-2 (|:| -4196 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 $) (-1264 $)) NIL) (((-689 |#2|) (-689 $)) NIL)) (-3757 (((-3 $ "failed") $) NIL)) (-3530 (($ $) NIL (|has| |#2| (-454))) (($ $ (-864 |#1|)) NIL (|has| |#2| (-454)))) (-3551 (((-644 $) $) NIL)) (-4188 (((-112) $) NIL (|has| |#2| (-909)))) (-3995 (($ $ |#2| (-533 (-864 |#1|)) $) NIL)) (-1542 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| (-864 |#1|) (-886 (-381))) (|has| |#2| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| (-864 |#1|) (-886 (-566))) (|has| |#2| (-886 (-566)))))) (-2264 (((-112) $) NIL)) (-3486 (((-771) $) NIL)) (-2474 (($ (-1171 |#2|) (-864 |#1|)) NIL) (($ (-1171 $) (-864 |#1|)) NIL)) (-1545 (((-644 $) $) NIL)) (-3989 (((-112) $) NIL)) (-2463 (($ |#2| (-533 (-864 |#1|))) NIL) (($ $ (-864 |#1|) (-771)) NIL) (($ $ (-644 (-864 |#1|)) (-644 (-771))) NIL)) (-2235 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $ (-864 |#1|)) NIL)) (-2584 (((-533 (-864 |#1|)) $) NIL) (((-771) $ (-864 |#1|)) NIL) (((-644 (-771)) $ (-644 (-864 |#1|))) NIL)) (-3327 (($ (-1 (-533 (-864 |#1|)) (-533 (-864 |#1|))) $) NIL)) (-3080 (($ (-1 |#2| |#2|) $) NIL)) (-2673 (((-3 (-864 |#1|) "failed") $) NIL)) (-2608 (($ $) NIL)) (-2622 ((|#2| $) NIL)) (-2120 (($ (-644 $)) NIL (|has| |#2| (-454))) (($ $ $) NIL (|has| |#2| (-454)))) (-3151 (((-1157) $) NIL)) (-4075 (((-3 (-644 $) "failed") $) NIL)) (-3380 (((-3 (-644 $) "failed") $) NIL)) (-2414 (((-3 (-2 (|:| |var| (-864 |#1|)) (|:| -3631 (-771))) "failed") $) NIL)) (-4059 (((-1119) $) NIL)) (-2587 (((-112) $) NIL)) (-2597 ((|#2| $) NIL)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#2| (-454)))) (-2162 (($ (-644 $)) NIL (|has| |#2| (-454))) (($ $ $) NIL (|has| |#2| (-454)))) (-1500 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-3917 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-2325 (((-420 $) $) NIL (|has| |#2| (-909)))) (-2976 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-558))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-558)))) (-3297 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-864 |#1|) |#2|) NIL) (($ $ (-644 (-864 |#1|)) (-644 |#2|)) NIL) (($ $ (-864 |#1|) $) NIL) (($ $ (-644 (-864 |#1|)) (-644 $)) NIL)) (-3553 (($ $ (-864 |#1|)) NIL (|has| |#2| (-172)))) (-3526 (($ $ (-864 |#1|)) NIL) (($ $ (-644 (-864 |#1|))) NIL) (($ $ (-864 |#1|) (-771)) NIL) (($ $ (-644 (-864 |#1|)) (-644 (-771))) NIL)) (-1630 (((-533 (-864 |#1|)) $) NIL) (((-771) $ (-864 |#1|)) NIL) (((-644 (-771)) $ (-644 (-864 |#1|))) NIL)) (-3136 (((-892 (-381)) $) NIL (-12 (|has| (-864 |#1|) (-614 (-892 (-381)))) (|has| |#2| (-614 (-892 (-381)))))) (((-892 (-566)) $) NIL (-12 (|has| (-864 |#1|) (-614 (-892 (-566)))) (|has| |#2| (-614 (-892 (-566)))))) (((-538) $) NIL (-12 (|has| (-864 |#1|) (-614 (-538))) (|has| |#2| (-614 (-538)))))) (-2252 ((|#2| $) NIL (|has| |#2| (-454))) (($ $ (-864 |#1|)) NIL (|has| |#2| (-454)))) (-3233 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-909))))) (-2479 (((-862) $) NIL) (($ (-566)) NIL) (($ |#2|) NIL) (($ (-864 |#1|)) NIL) (($ $) NIL (|has| |#2| (-558))) (($ (-409 (-566))) NIL (-2809 (|has| |#2| (-38 (-409 (-566)))) (|has| |#2| (-1038 (-409 (-566))))))) (-3866 (((-644 |#2|) $) NIL)) (-3025 ((|#2| $ (-533 (-864 |#1|))) NIL) (($ $ (-864 |#1|) (-771)) NIL) (($ $ (-644 (-864 |#1|)) (-644 (-771))) NIL)) (-2645 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| $ (-145)) (|has| |#2| (-909))) (|has| |#2| (-145))))) (-1558 (((-771)) NIL T CONST)) (-2244 (($ $ $ (-771)) NIL (|has| |#2| (-172)))) (-3900 (((-112) $ $) NIL)) (-1333 (((-112) $ $) NIL (|has| |#2| (-558)))) (-2446 (($) NIL T CONST)) (-2459 (($) NIL T CONST)) (-2834 (($ $ (-864 |#1|)) NIL) (($ $ (-644 (-864 |#1|))) NIL) (($ $ (-864 |#1|) (-771)) NIL) (($ $ (-644 (-864 |#1|)) (-644 (-771))) NIL)) (-2952 (((-112) $ $) NIL)) (-3077 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL (|has| |#2| (-38 (-409 (-566))))) (($ (-409 (-566)) $) NIL (|has| |#2| (-38 (-409 (-566))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-731 |#1| |#2|) (-949 |#2| (-533 (-864 |#1|)) (-864 |#1|)) (-644 (-1175)) (-1049)) (T -731)) +NIL +(-949 |#2| (-533 (-864 |#1|)) (-864 |#1|)) +((-2499 (((-2 (|:| -4047 (-952 |#3|)) (|:| -1379 (-952 |#3|))) |#4|) 14)) (-1477 ((|#4| |#4| |#2|) 33)) (-2945 ((|#4| (-409 (-952 |#3|)) |#2|) 64)) (-4391 ((|#4| (-1171 (-952 |#3|)) |#2|) 77)) (-4040 ((|#4| (-1171 |#4|) |#2|) 51)) (-4035 ((|#4| |#4| |#2|) 54)) (-2325 (((-420 |#4|) |#4|) 40))) +(((-732 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2499 ((-2 (|:| -4047 (-952 |#3|)) (|:| -1379 (-952 |#3|))) |#4|)) (-15 -4035 (|#4| |#4| |#2|)) (-15 -4040 (|#4| (-1171 |#4|) |#2|)) (-15 -1477 (|#4| |#4| |#2|)) (-15 -4391 (|#4| (-1171 (-952 |#3|)) |#2|)) (-15 -2945 (|#4| (-409 (-952 |#3|)) |#2|)) (-15 -2325 ((-420 |#4|) |#4|))) (-793) (-13 (-850) (-10 -8 (-15 -3136 ((-1175) $)))) (-558) (-949 (-409 (-952 |#3|)) |#1| |#2|)) (T -732)) +((-2325 (*1 *2 *3) (-12 (-4 *4 (-793)) (-4 *5 (-13 (-850) (-10 -8 (-15 -3136 ((-1175) $))))) (-4 *6 (-558)) (-5 *2 (-420 *3)) (-5 *1 (-732 *4 *5 *6 *3)) (-4 *3 (-949 (-409 (-952 *6)) *4 *5)))) (-2945 (*1 *2 *3 *4) (-12 (-4 *6 (-558)) (-4 *2 (-949 *3 *5 *4)) (-5 *1 (-732 *5 *4 *6 *2)) (-5 *3 (-409 (-952 *6))) (-4 *5 (-793)) (-4 *4 (-13 (-850) (-10 -8 (-15 -3136 ((-1175) $))))))) (-4391 (*1 *2 *3 *4) (-12 (-5 *3 (-1171 (-952 *6))) (-4 *6 (-558)) (-4 *2 (-949 (-409 (-952 *6)) *5 *4)) (-5 *1 (-732 *5 *4 *6 *2)) (-4 *5 (-793)) (-4 *4 (-13 (-850) (-10 -8 (-15 -3136 ((-1175) $))))))) (-1477 (*1 *2 *2 *3) (-12 (-4 *4 (-793)) (-4 *3 (-13 (-850) (-10 -8 (-15 -3136 ((-1175) $))))) (-4 *5 (-558)) (-5 *1 (-732 *4 *3 *5 *2)) (-4 *2 (-949 (-409 (-952 *5)) *4 *3)))) (-4040 (*1 *2 *3 *4) (-12 (-5 *3 (-1171 *2)) (-4 *2 (-949 (-409 (-952 *6)) *5 *4)) (-5 *1 (-732 *5 *4 *6 *2)) (-4 *5 (-793)) (-4 *4 (-13 (-850) (-10 -8 (-15 -3136 ((-1175) $))))) (-4 *6 (-558)))) (-4035 (*1 *2 *2 *3) (-12 (-4 *4 (-793)) (-4 *3 (-13 (-850) (-10 -8 (-15 -3136 ((-1175) $))))) (-4 *5 (-558)) (-5 *1 (-732 *4 *3 *5 *2)) (-4 *2 (-949 (-409 (-952 *5)) *4 *3)))) (-2499 (*1 *2 *3) (-12 (-4 *4 (-793)) (-4 *5 (-13 (-850) (-10 -8 (-15 -3136 ((-1175) $))))) (-4 *6 (-558)) (-5 *2 (-2 (|:| -4047 (-952 *6)) (|:| -1379 (-952 *6)))) (-5 *1 (-732 *4 *5 *6 *3)) (-4 *3 (-949 (-409 (-952 *6)) *4 *5))))) +(-10 -7 (-15 -2499 ((-2 (|:| -4047 (-952 |#3|)) (|:| -1379 (-952 |#3|))) |#4|)) (-15 -4035 (|#4| |#4| |#2|)) (-15 -4040 (|#4| (-1171 |#4|) |#2|)) (-15 -1477 (|#4| |#4| |#2|)) (-15 -4391 (|#4| (-1171 (-952 |#3|)) |#2|)) (-15 -2945 (|#4| (-409 (-952 |#3|)) |#2|)) (-15 -2325 ((-420 |#4|) |#4|))) +((-2325 (((-420 |#4|) |#4|) 54))) +(((-733 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2325 ((-420 |#4|) |#4|))) (-793) (-850) (-13 (-308) (-147)) (-949 (-409 |#3|) |#1| |#2|)) (T -733)) +((-2325 (*1 *2 *3) (-12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-13 (-308) (-147))) (-5 *2 (-420 *3)) (-5 *1 (-733 *4 *5 *6 *3)) (-4 *3 (-949 (-409 *6) *4 *5))))) +(-10 -7 (-15 -2325 ((-420 |#4|) |#4|))) +((-3080 (((-735 |#2| |#3|) (-1 |#2| |#1|) (-735 |#1| |#3|)) 18))) +(((-734 |#1| |#2| |#3|) (-10 -7 (-15 -3080 ((-735 |#2| |#3|) (-1 |#2| |#1|) (-735 |#1| |#3|)))) (-1049) (-1049) (-726)) (T -734)) +((-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-735 *5 *7)) (-4 *5 (-1049)) (-4 *6 (-1049)) (-4 *7 (-726)) (-5 *2 (-735 *6 *7)) (-5 *1 (-734 *5 *6 *7))))) +(-10 -7 (-15 -3080 ((-735 |#2| |#3|) (-1 |#2| |#1|) (-735 |#1| |#3|)))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) 38)) (-1723 (((-644 (-2 (|:| -3103 |#1|) (|:| -1863 |#2|))) $) 39)) (-3174 (((-3 $ "failed") $ $) NIL)) (-4049 (((-771)) 22 (-12 (|has| |#2| (-370)) (|has| |#1| (-370))))) (-1811 (($) NIL T CONST)) (-2980 (((-3 |#2| "failed") $) 78) (((-3 |#1| "failed") $) 81)) (-1709 ((|#2| $) NIL) ((|#1| $) NIL)) (-3565 (($ $) 104 (|has| |#2| (-850)))) (-3757 (((-3 $ "failed") $) 87)) (-1415 (($) 50 (-12 (|has| |#2| (-370)) (|has| |#1| (-370))))) (-2264 (((-112) $) NIL)) (-3486 (((-771) $) 72)) (-1545 (((-644 $) $) 54)) (-3989 (((-112) $) NIL)) (-2463 (($ |#1| |#2|) 17)) (-3080 (($ (-1 |#1| |#1|) $) 70)) (-4051 (((-921) $) 45 (-12 (|has| |#2| (-370)) (|has| |#1| (-370))))) (-2608 ((|#2| $) 103 (|has| |#2| (-850)))) (-2622 ((|#1| $) 102 (|has| |#2| (-850)))) (-3151 (((-1157) $) NIL)) (-2104 (($ (-921)) 37 (-12 (|has| |#2| (-370)) (|has| |#1| (-370))))) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) 101) (($ (-566)) 61) (($ |#2|) 57) (($ |#1|) 58) (($ (-644 (-2 (|:| -3103 |#1|) (|:| -1863 |#2|)))) 11)) (-3866 (((-644 |#1|) $) 56)) (-3025 ((|#1| $ |#2|) 117)) (-2645 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1558 (((-771)) NIL T CONST)) (-3900 (((-112) $ $) NIL)) (-2446 (($) 12 T CONST)) (-2459 (($) 46 T CONST)) (-2952 (((-112) $ $) 107)) (-3065 (($ $) 63) (($ $ $) NIL)) (-3052 (($ $ $) 35)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 68) (($ $ $) 120) (($ |#1| $) 65 (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))))) +(((-735 |#1| |#2|) (-13 (-1049) (-1038 |#2|) (-1038 |#1|) (-10 -8 (-15 -2463 ($ |#1| |#2|)) (-15 -3025 (|#1| $ |#2|)) (-15 -2479 ($ (-644 (-2 (|:| -3103 |#1|) (|:| -1863 |#2|))))) (-15 -1723 ((-644 (-2 (|:| -3103 |#1|) (|:| -1863 |#2|))) $)) (-15 -3080 ($ (-1 |#1| |#1|) $)) (-15 -3989 ((-112) $)) (-15 -3866 ((-644 |#1|) $)) (-15 -1545 ((-644 $) $)) (-15 -3486 ((-771) $)) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-370)) (IF (|has| |#2| (-370)) (-6 (-370)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-850)) (PROGN (-15 -2608 (|#2| $)) (-15 -2622 (|#1| $)) (-15 -3565 ($ $))) |%noBranch|))) (-1049) (-726)) (T -735)) +((-2463 (*1 *1 *2 *3) (-12 (-5 *1 (-735 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-726)))) (-3025 (*1 *2 *1 *3) (-12 (-4 *2 (-1049)) (-5 *1 (-735 *2 *3)) (-4 *3 (-726)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-644 (-2 (|:| -3103 *3) (|:| -1863 *4)))) (-4 *3 (-1049)) (-4 *4 (-726)) (-5 *1 (-735 *3 *4)))) (-1723 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| -3103 *3) (|:| -1863 *4)))) (-5 *1 (-735 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-726)))) (-3080 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1049)) (-5 *1 (-735 *3 *4)) (-4 *4 (-726)))) (-3989 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-735 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-726)))) (-3866 (*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-735 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-726)))) (-1545 (*1 *2 *1) (-12 (-5 *2 (-644 (-735 *3 *4))) (-5 *1 (-735 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-726)))) (-3486 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-735 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-726)))) (-2608 (*1 *2 *1) (-12 (-4 *2 (-726)) (-4 *2 (-850)) (-5 *1 (-735 *3 *2)) (-4 *3 (-1049)))) (-2622 (*1 *2 *1) (-12 (-4 *2 (-1049)) (-5 *1 (-735 *2 *3)) (-4 *3 (-850)) (-4 *3 (-726)))) (-3565 (*1 *1 *1) (-12 (-5 *1 (-735 *2 *3)) (-4 *3 (-850)) (-4 *2 (-1049)) (-4 *3 (-726))))) +(-13 (-1049) (-1038 |#2|) (-1038 |#1|) (-10 -8 (-15 -2463 ($ |#1| |#2|)) (-15 -3025 (|#1| $ |#2|)) (-15 -2479 ($ (-644 (-2 (|:| -3103 |#1|) (|:| -1863 |#2|))))) (-15 -1723 ((-644 (-2 (|:| -3103 |#1|) (|:| -1863 |#2|))) $)) (-15 -3080 ($ (-1 |#1| |#1|) $)) (-15 -3989 ((-112) $)) (-15 -3866 ((-644 |#1|) $)) (-15 -1545 ((-644 $) $)) (-15 -3486 ((-771) $)) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-370)) (IF (|has| |#2| (-370)) (-6 (-370)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-850)) (PROGN (-15 -2608 (|#2| $)) (-15 -2622 (|#1| $)) (-15 -3565 ($ $))) |%noBranch|))) +((-2986 (((-112) $ $) 19)) (-1730 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-2591 (($ $ $) 73)) (-2025 (((-112) $ $) 74)) (-1453 (((-112) $ (-771)) 8)) (-1759 (($ (-644 |#1|)) 69) (($) 68)) (-4364 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4417)))) (-3543 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4417)))) (-1811 (($) 7 T CONST)) (-1346 (($ $) 63)) (-4111 (($ $) 59 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-2295 (($ |#1| $) 48 (|has| $ (-6 -4417))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4417)))) (-2628 (($ |#1| $) 58 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4417)))) (-1838 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4417)))) (-3872 (((-644 |#1|) $) 31 (|has| $ (-6 -4417)))) (-3963 (((-112) $ $) 65)) (-2756 (((-112) $ (-771)) 9)) (-4227 (((-644 |#1|) $) 30 (|has| $ (-6 -4417)))) (-1688 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-3708 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#1| |#1|) $) 36)) (-4106 (((-112) $ (-771)) 10)) (-3151 (((-1157) $) 22)) (-4022 (($ $ $) 70)) (-4255 ((|#1| $) 40)) (-4354 (($ |#1| $) 41) (($ |#1| $ (-771)) 64)) (-4059 (((-1119) $) 21)) (-2688 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-4097 ((|#1| $) 42)) (-3966 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1844 (((-112) $ $) 14)) (-2788 (((-112) $) 11)) (-1737 (($) 12)) (-3112 (((-644 (-2 (|:| -2806 |#1|) (|:| -4068 (-771)))) $) 62)) (-1369 (($ $ |#1|) 72) (($ $ $) 71)) (-1797 (($) 50) (($ (-644 |#1|)) 49)) (-4068 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4417))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-3924 (($ $) 13)) (-3136 (((-538) $) 60 (|has| |#1| (-614 (-538))))) (-2489 (($ (-644 |#1|)) 51)) (-2479 (((-862) $) 18)) (-2405 (($ (-644 |#1|)) 67) (($) 66)) (-3900 (((-112) $ $) 23)) (-2471 (($ (-644 |#1|)) 43)) (-3667 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4417)))) (-2952 (((-112) $ $) 20)) (-3002 (((-771) $) 6 (|has| $ (-6 -4417))))) +(((-736 |#1|) (-140) (-1099)) (T -736)) +NIL +(-13 (-695 |t#1|) (-1097 |t#1|)) +(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-613 (-862)) . T) ((-151 |#1|) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-235 |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-695 |#1|) . T) ((-1097 |#1|) . T) ((-1099) . T) ((-1214) . T)) +((-2986 (((-112) $ $) NIL)) (-1730 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 95)) (-2591 (($ $ $) 99)) (-2025 (((-112) $ $) 107)) (-1453 (((-112) $ (-771)) NIL)) (-1759 (($ (-644 |#1|)) 26) (($) 17)) (-4364 (($ (-1 (-112) |#1|) $) 83 (|has| $ (-6 -4417)))) (-3543 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-1811 (($) NIL T CONST)) (-1346 (($ $) 85)) (-4111 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-2295 (($ |#1| $) 70 (|has| $ (-6 -4417))) (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4417))) (($ |#1| $ (-566)) 75) (($ (-1 (-112) |#1|) $ (-566)) 78)) (-2628 (($ |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (($ |#1| $ (-566)) 80) (($ (-1 (-112) |#1|) $ (-566)) 81)) (-1838 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4417)))) (-3872 (((-644 |#1|) $) 32 (|has| $ (-6 -4417)))) (-3963 (((-112) $ $) 106)) (-1561 (($) 15) (($ |#1|) 28) (($ (-644 |#1|)) 23)) (-2756 (((-112) $ (-771)) NIL)) (-4227 (((-644 |#1|) $) 38)) (-1688 (((-112) |#1| $) 65 (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-3708 (($ (-1 |#1| |#1|) $) 88 (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#1| |#1|) $) 89)) (-4106 (((-112) $ (-771)) NIL)) (-3151 (((-1157) $) NIL)) (-4022 (($ $ $) 97)) (-4255 ((|#1| $) 62)) (-4354 (($ |#1| $) 63) (($ |#1| $ (-771)) 86)) (-4059 (((-1119) $) NIL)) (-2688 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4097 ((|#1| $) 61)) (-3966 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1844 (((-112) $ $) NIL)) (-2788 (((-112) $) 56)) (-1737 (($) 14)) (-3112 (((-644 (-2 (|:| -2806 |#1|) (|:| -4068 (-771)))) $) 55)) (-1369 (($ $ |#1|) NIL) (($ $ $) 98)) (-1797 (($) 16) (($ (-644 |#1|)) 25)) (-4068 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-771) |#1| $) 68 (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-3924 (($ $) 79)) (-3136 (((-538) $) 36 (|has| |#1| (-614 (-538))))) (-2489 (($ (-644 |#1|)) 22)) (-2479 (((-862) $) 49)) (-2405 (($ (-644 |#1|)) 27) (($) 18)) (-3900 (((-112) $ $) NIL)) (-2471 (($ (-644 |#1|)) 24)) (-3667 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2952 (((-112) $ $) 103)) (-3002 (((-771) $) 67 (|has| $ (-6 -4417))))) +(((-737 |#1|) (-13 (-736 |#1|) (-10 -8 (-6 -4417) (-6 -4418) (-15 -1561 ($)) (-15 -1561 ($ |#1|)) (-15 -1561 ($ (-644 |#1|))) (-15 -4227 ((-644 |#1|) $)) (-15 -2628 ($ |#1| $ (-566))) (-15 -2628 ($ (-1 (-112) |#1|) $ (-566))) (-15 -2295 ($ |#1| $ (-566))) (-15 -2295 ($ (-1 (-112) |#1|) $ (-566))))) (-1099)) (T -737)) +((-1561 (*1 *1) (-12 (-5 *1 (-737 *2)) (-4 *2 (-1099)))) (-1561 (*1 *1 *2) (-12 (-5 *1 (-737 *2)) (-4 *2 (-1099)))) (-1561 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-5 *1 (-737 *3)))) (-4227 (*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-737 *3)) (-4 *3 (-1099)))) (-2628 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *1 (-737 *2)) (-4 *2 (-1099)))) (-2628 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-566)) (-4 *4 (-1099)) (-5 *1 (-737 *4)))) (-2295 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *1 (-737 *2)) (-4 *2 (-1099)))) (-2295 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-566)) (-4 *4 (-1099)) (-5 *1 (-737 *4))))) +(-13 (-736 |#1|) (-10 -8 (-6 -4417) (-6 -4418) (-15 -1561 ($)) (-15 -1561 ($ |#1|)) (-15 -1561 ($ (-644 |#1|))) (-15 -4227 ((-644 |#1|) $)) (-15 -2628 ($ |#1| $ (-566))) (-15 -2628 ($ (-1 (-112) |#1|) $ (-566))) (-15 -2295 ($ |#1| $ (-566))) (-15 -2295 ($ (-1 (-112) |#1|) $ (-566))))) +((-3731 (((-1269) (-1157)) 8))) +(((-738) (-10 -7 (-15 -3731 ((-1269) (-1157))))) (T -738)) +((-3731 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-738))))) +(-10 -7 (-15 -3731 ((-1269) (-1157)))) +((-3670 (((-644 |#1|) (-644 |#1|) (-644 |#1|)) 15))) +(((-739 |#1|) (-10 -7 (-15 -3670 ((-644 |#1|) (-644 |#1|) (-644 |#1|)))) (-850)) (T -739)) +((-3670 (*1 *2 *2 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-850)) (-5 *1 (-739 *3))))) +(-10 -7 (-15 -3670 ((-644 |#1|) (-644 |#1|) (-644 |#1|)))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-2485 (((-644 |#2|) $) 148)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) 141 (|has| |#1| (-558)))) (-3087 (($ $) 140 (|has| |#1| (-558)))) (-1716 (((-112) $) 138 (|has| |#1| (-558)))) (-3219 (($ $) 97 (|has| |#1| (-38 (-409 (-566)))))) (-3091 (($ $) 80 (|has| |#1| (-38 (-409 (-566)))))) (-3174 (((-3 $ "failed") $ $) 20)) (-2338 (($ $) 79 (|has| |#1| (-38 (-409 (-566)))))) (-3197 (($ $) 96 (|has| |#1| (-38 (-409 (-566)))))) (-3067 (($ $) 81 (|has| |#1| (-38 (-409 (-566)))))) (-3240 (($ $) 95 (|has| |#1| (-38 (-409 (-566)))))) (-3115 (($ $) 82 (|has| |#1| (-38 (-409 (-566)))))) (-1811 (($) 18 T CONST)) (-3565 (($ $) 132)) (-3757 (((-3 $ "failed") $) 37)) (-2388 (((-952 |#1|) $ (-771)) 110) (((-952 |#1|) $ (-771) (-771)) 109)) (-3088 (((-112) $) 149)) (-2964 (($) 107 (|has| |#1| (-38 (-409 (-566)))))) (-1802 (((-771) $ |#2|) 112) (((-771) $ |#2| (-771)) 111)) (-2264 (((-112) $) 35)) (-3146 (($ $ (-566)) 78 (|has| |#1| (-38 (-409 (-566)))))) (-3989 (((-112) $) 130)) (-2463 (($ $ (-644 |#2|) (-644 (-533 |#2|))) 147) (($ $ |#2| (-533 |#2|)) 146) (($ |#1| (-533 |#2|)) 131) (($ $ |#2| (-771)) 114) (($ $ (-644 |#2|) (-644 (-771))) 113)) (-3080 (($ (-1 |#1| |#1|) $) 129)) (-3676 (($ $) 104 (|has| |#1| (-38 (-409 (-566)))))) (-2608 (($ $) 127)) (-2622 ((|#1| $) 126)) (-3151 (((-1157) $) 10)) (-2390 (($ $ |#2|) 108 (|has| |#1| (-38 (-409 (-566)))))) (-4059 (((-1119) $) 11)) (-2050 (($ $ (-771)) 115)) (-2976 (((-3 $ "failed") $ $) 142 (|has| |#1| (-558)))) (-3571 (($ $) 105 (|has| |#1| (-38 (-409 (-566)))))) (-3297 (($ $ |#2| $) 123) (($ $ (-644 |#2|) (-644 $)) 122) (($ $ (-644 (-295 $))) 121) (($ $ (-295 $)) 120) (($ $ $ $) 119) (($ $ (-644 $) (-644 $)) 118)) (-3526 (($ $ |#2|) 46) (($ $ (-644 |#2|)) 45) (($ $ |#2| (-771)) 44) (($ $ (-644 |#2|) (-644 (-771))) 43)) (-1630 (((-533 |#2|) $) 128)) (-3250 (($ $) 94 (|has| |#1| (-38 (-409 (-566)))))) (-3126 (($ $) 83 (|has| |#1| (-38 (-409 (-566)))))) (-3227 (($ $) 93 (|has| |#1| (-38 (-409 (-566)))))) (-3105 (($ $) 84 (|has| |#1| (-38 (-409 (-566)))))) (-3207 (($ $) 92 (|has| |#1| (-38 (-409 (-566)))))) (-3079 (($ $) 85 (|has| |#1| (-38 (-409 (-566)))))) (-4122 (($ $) 150)) (-2479 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 145 (|has| |#1| (-172))) (($ $) 143 (|has| |#1| (-558))) (($ (-409 (-566))) 135 (|has| |#1| (-38 (-409 (-566)))))) (-3025 ((|#1| $ (-533 |#2|)) 133) (($ $ |#2| (-771)) 117) (($ $ (-644 |#2|) (-644 (-771))) 116)) (-2645 (((-3 $ "failed") $) 144 (|has| |#1| (-145)))) (-1558 (((-771)) 32 T CONST)) (-3900 (((-112) $ $) 9)) (-3285 (($ $) 103 (|has| |#1| (-38 (-409 (-566)))))) (-3157 (($ $) 91 (|has| |#1| (-38 (-409 (-566)))))) (-1333 (((-112) $ $) 139 (|has| |#1| (-558)))) (-3260 (($ $) 102 (|has| |#1| (-38 (-409 (-566)))))) (-3135 (($ $) 90 (|has| |#1| (-38 (-409 (-566)))))) (-3309 (($ $) 101 (|has| |#1| (-38 (-409 (-566)))))) (-3179 (($ $) 89 (|has| |#1| (-38 (-409 (-566)))))) (-1861 (($ $) 100 (|has| |#1| (-38 (-409 (-566)))))) (-3190 (($ $) 88 (|has| |#1| (-38 (-409 (-566)))))) (-3299 (($ $) 99 (|has| |#1| (-38 (-409 (-566)))))) (-3168 (($ $) 87 (|has| |#1| (-38 (-409 (-566)))))) (-3273 (($ $) 98 (|has| |#1| (-38 (-409 (-566)))))) (-3148 (($ $) 86 (|has| |#1| (-38 (-409 (-566)))))) (-2446 (($) 19 T CONST)) (-2459 (($) 34 T CONST)) (-2834 (($ $ |#2|) 42) (($ $ (-644 |#2|)) 41) (($ $ |#2| (-771)) 40) (($ $ (-644 |#2|) (-644 (-771))) 39)) (-2952 (((-112) $ $) 6)) (-3077 (($ $ |#1|) 134 (|has| |#1| (-365)))) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ $) 106 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 77 (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ (-409 (-566))) 137 (|has| |#1| (-38 (-409 (-566))))) (($ (-409 (-566)) $) 136 (|has| |#1| (-38 (-409 (-566))))) (($ |#1| $) 125) (($ $ |#1|) 124))) +(((-740 |#1| |#2|) (-140) (-1049) (-850)) (T -740)) +((-3025 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-771)) (-4 *1 (-740 *4 *2)) (-4 *4 (-1049)) (-4 *2 (-850)))) (-3025 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 *5)) (-5 *3 (-644 (-771))) (-4 *1 (-740 *4 *5)) (-4 *4 (-1049)) (-4 *5 (-850)))) (-2050 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-740 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-850)))) (-2463 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-771)) (-4 *1 (-740 *4 *2)) (-4 *4 (-1049)) (-4 *2 (-850)))) (-2463 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 *5)) (-5 *3 (-644 (-771))) (-4 *1 (-740 *4 *5)) (-4 *4 (-1049)) (-4 *5 (-850)))) (-1802 (*1 *2 *1 *3) (-12 (-4 *1 (-740 *4 *3)) (-4 *4 (-1049)) (-4 *3 (-850)) (-5 *2 (-771)))) (-1802 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-771)) (-4 *1 (-740 *4 *3)) (-4 *4 (-1049)) (-4 *3 (-850)))) (-2388 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-4 *1 (-740 *4 *5)) (-4 *4 (-1049)) (-4 *5 (-850)) (-5 *2 (-952 *4)))) (-2388 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-771)) (-4 *1 (-740 *4 *5)) (-4 *4 (-1049)) (-4 *5 (-850)) (-5 *2 (-952 *4)))) (-2390 (*1 *1 *1 *2) (-12 (-4 *1 (-740 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-850)) (-4 *3 (-38 (-409 (-566))))))) +(-13 (-900 |t#2|) (-973 |t#1| (-533 |t#2|) |t#2|) (-516 |t#2| $) (-310 $) (-10 -8 (-15 -3025 ($ $ |t#2| (-771))) (-15 -3025 ($ $ (-644 |t#2|) (-644 (-771)))) (-15 -2050 ($ $ (-771))) (-15 -2463 ($ $ |t#2| (-771))) (-15 -2463 ($ $ (-644 |t#2|) (-644 (-771)))) (-15 -1802 ((-771) $ |t#2|)) (-15 -1802 ((-771) $ |t#2| (-771))) (-15 -2388 ((-952 |t#1|) $ (-771))) (-15 -2388 ((-952 |t#1|) $ (-771) (-771))) (IF (|has| |t#1| (-38 (-409 (-566)))) (PROGN (-15 -2390 ($ $ |t#2|)) (-6 (-1002)) (-6 (-1199))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-533 |#2|)) . T) ((-25) . T) ((-38 #1=(-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-558)) ((-35) |has| |#1| (-38 (-409 (-566)))) ((-95) |has| |#1| (-38 (-409 (-566)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-409 (-566)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2809 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #1#) |has| |#1| (-38 (-409 (-566)))) ((-616 (-566)) . T) ((-616 |#1|) |has| |#1| (-172)) ((-616 $) |has| |#1| (-558)) ((-613 (-862)) . T) ((-172) -2809 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-285) |has| |#1| (-38 (-409 (-566)))) ((-291) |has| |#1| (-558)) ((-310 $) . T) ((-495) |has| |#1| (-38 (-409 (-566)))) ((-516 |#2| $) . T) ((-516 $ $) . T) ((-558) |has| |#1| (-558)) ((-646 #1#) |has| |#1| (-38 (-409 (-566)))) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #1#) |has| |#1| (-38 (-409 (-566)))) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #1#) |has| |#1| (-38 (-409 (-566)))) ((-640 |#1|) |has| |#1| (-172)) ((-640 $) |has| |#1| (-558)) ((-717 #1#) |has| |#1| (-38 (-409 (-566)))) ((-717 |#1|) |has| |#1| (-172)) ((-717 $) |has| |#1| (-558)) ((-726) . T) ((-900 |#2|) . T) ((-973 |#1| #0# |#2|) . T) ((-1002) |has| |#1| (-38 (-409 (-566)))) ((-1051 #1#) |has| |#1| (-38 (-409 (-566)))) ((-1051 |#1|) . T) ((-1051 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-1056 #1#) |has| |#1| (-38 (-409 (-566)))) ((-1056 |#1|) . T) ((-1056 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1199) |has| |#1| (-38 (-409 (-566)))) ((-1202) |has| |#1| (-38 (-409 (-566))))) +((-2325 (((-420 (-1171 |#4|)) (-1171 |#4|)) 30) (((-420 |#4|) |#4|) 26))) +(((-741 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2325 ((-420 |#4|) |#4|)) (-15 -2325 ((-420 (-1171 |#4|)) (-1171 |#4|)))) (-850) (-793) (-13 (-308) (-147)) (-949 |#3| |#2| |#1|)) (T -741)) +((-2325 (*1 *2 *3) (-12 (-4 *4 (-850)) (-4 *5 (-793)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-949 *6 *5 *4)) (-5 *2 (-420 (-1171 *7))) (-5 *1 (-741 *4 *5 *6 *7)) (-5 *3 (-1171 *7)))) (-2325 (*1 *2 *3) (-12 (-4 *4 (-850)) (-4 *5 (-793)) (-4 *6 (-13 (-308) (-147))) (-5 *2 (-420 *3)) (-5 *1 (-741 *4 *5 *6 *3)) (-4 *3 (-949 *6 *5 *4))))) +(-10 -7 (-15 -2325 ((-420 |#4|) |#4|)) (-15 -2325 ((-420 (-1171 |#4|)) (-1171 |#4|)))) +((-1979 (((-420 |#4|) |#4| |#2|) 142)) (-2195 (((-420 |#4|) |#4|) NIL)) (-3348 (((-420 (-1171 |#4|)) (-1171 |#4|)) 127) (((-420 |#4|) |#4|) 52)) (-2182 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-644 (-2 (|:| -2325 (-1171 |#4|)) (|:| -3631 (-566)))))) (-1171 |#4|) (-644 |#2|) (-644 (-644 |#3|))) 81)) (-3124 (((-1171 |#3|) (-1171 |#3|) (-566)) 168)) (-3643 (((-644 (-771)) (-1171 |#4|) (-644 |#2|) (-771)) 75)) (-1829 (((-3 (-644 (-1171 |#4|)) "failed") (-1171 |#4|) (-1171 |#3|) (-1171 |#3|) |#4| (-644 |#2|) (-644 (-771)) (-644 |#3|)) 79)) (-1523 (((-2 (|:| |upol| (-1171 |#3|)) (|:| |Lval| (-644 |#3|)) (|:| |Lfact| (-644 (-2 (|:| -2325 (-1171 |#3|)) (|:| -3631 (-566))))) (|:| |ctpol| |#3|)) (-1171 |#4|) (-644 |#2|) (-644 (-644 |#3|))) 27)) (-3008 (((-2 (|:| -2240 (-1171 |#4|)) (|:| |polval| (-1171 |#3|))) (-1171 |#4|) (-1171 |#3|) (-566)) 72)) (-2773 (((-566) (-644 (-2 (|:| -2325 (-1171 |#3|)) (|:| -3631 (-566))))) 164)) (-4169 ((|#4| (-566) (-420 |#4|)) 73)) (-3069 (((-112) (-644 (-2 (|:| -2325 (-1171 |#3|)) (|:| -3631 (-566)))) (-644 (-2 (|:| -2325 (-1171 |#3|)) (|:| -3631 (-566))))) NIL))) +(((-742 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3348 ((-420 |#4|) |#4|)) (-15 -3348 ((-420 (-1171 |#4|)) (-1171 |#4|))) (-15 -2195 ((-420 |#4|) |#4|)) (-15 -2773 ((-566) (-644 (-2 (|:| -2325 (-1171 |#3|)) (|:| -3631 (-566)))))) (-15 -1979 ((-420 |#4|) |#4| |#2|)) (-15 -3008 ((-2 (|:| -2240 (-1171 |#4|)) (|:| |polval| (-1171 |#3|))) (-1171 |#4|) (-1171 |#3|) (-566))) (-15 -2182 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-644 (-2 (|:| -2325 (-1171 |#4|)) (|:| -3631 (-566)))))) (-1171 |#4|) (-644 |#2|) (-644 (-644 |#3|)))) (-15 -1523 ((-2 (|:| |upol| (-1171 |#3|)) (|:| |Lval| (-644 |#3|)) (|:| |Lfact| (-644 (-2 (|:| -2325 (-1171 |#3|)) (|:| -3631 (-566))))) (|:| |ctpol| |#3|)) (-1171 |#4|) (-644 |#2|) (-644 (-644 |#3|)))) (-15 -4169 (|#4| (-566) (-420 |#4|))) (-15 -3069 ((-112) (-644 (-2 (|:| -2325 (-1171 |#3|)) (|:| -3631 (-566)))) (-644 (-2 (|:| -2325 (-1171 |#3|)) (|:| -3631 (-566)))))) (-15 -1829 ((-3 (-644 (-1171 |#4|)) "failed") (-1171 |#4|) (-1171 |#3|) (-1171 |#3|) |#4| (-644 |#2|) (-644 (-771)) (-644 |#3|))) (-15 -3643 ((-644 (-771)) (-1171 |#4|) (-644 |#2|) (-771))) (-15 -3124 ((-1171 |#3|) (-1171 |#3|) (-566)))) (-793) (-850) (-308) (-949 |#3| |#1| |#2|)) (T -742)) +((-3124 (*1 *2 *2 *3) (-12 (-5 *2 (-1171 *6)) (-5 *3 (-566)) (-4 *6 (-308)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-742 *4 *5 *6 *7)) (-4 *7 (-949 *6 *4 *5)))) (-3643 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1171 *9)) (-5 *4 (-644 *7)) (-4 *7 (-850)) (-4 *9 (-949 *8 *6 *7)) (-4 *6 (-793)) (-4 *8 (-308)) (-5 *2 (-644 (-771))) (-5 *1 (-742 *6 *7 *8 *9)) (-5 *5 (-771)))) (-1829 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1171 *11)) (-5 *6 (-644 *10)) (-5 *7 (-644 (-771))) (-5 *8 (-644 *11)) (-4 *10 (-850)) (-4 *11 (-308)) (-4 *9 (-793)) (-4 *5 (-949 *11 *9 *10)) (-5 *2 (-644 (-1171 *5))) (-5 *1 (-742 *9 *10 *11 *5)) (-5 *3 (-1171 *5)))) (-3069 (*1 *2 *3 *3) (-12 (-5 *3 (-644 (-2 (|:| -2325 (-1171 *6)) (|:| -3631 (-566))))) (-4 *6 (-308)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)) (-5 *1 (-742 *4 *5 *6 *7)) (-4 *7 (-949 *6 *4 *5)))) (-4169 (*1 *2 *3 *4) (-12 (-5 *3 (-566)) (-5 *4 (-420 *2)) (-4 *2 (-949 *7 *5 *6)) (-5 *1 (-742 *5 *6 *7 *2)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-308)))) (-1523 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1171 *9)) (-5 *4 (-644 *7)) (-5 *5 (-644 (-644 *8))) (-4 *7 (-850)) (-4 *8 (-308)) (-4 *9 (-949 *8 *6 *7)) (-4 *6 (-793)) (-5 *2 (-2 (|:| |upol| (-1171 *8)) (|:| |Lval| (-644 *8)) (|:| |Lfact| (-644 (-2 (|:| -2325 (-1171 *8)) (|:| -3631 (-566))))) (|:| |ctpol| *8))) (-5 *1 (-742 *6 *7 *8 *9)))) (-2182 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-644 *7)) (-5 *5 (-644 (-644 *8))) (-4 *7 (-850)) (-4 *8 (-308)) (-4 *6 (-793)) (-4 *9 (-949 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-644 (-2 (|:| -2325 (-1171 *9)) (|:| -3631 (-566))))))) (-5 *1 (-742 *6 *7 *8 *9)) (-5 *3 (-1171 *9)))) (-3008 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-566)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *8 (-308)) (-4 *9 (-949 *8 *6 *7)) (-5 *2 (-2 (|:| -2240 (-1171 *9)) (|:| |polval| (-1171 *8)))) (-5 *1 (-742 *6 *7 *8 *9)) (-5 *3 (-1171 *9)) (-5 *4 (-1171 *8)))) (-1979 (*1 *2 *3 *4) (-12 (-4 *5 (-793)) (-4 *4 (-850)) (-4 *6 (-308)) (-5 *2 (-420 *3)) (-5 *1 (-742 *5 *4 *6 *3)) (-4 *3 (-949 *6 *5 *4)))) (-2773 (*1 *2 *3) (-12 (-5 *3 (-644 (-2 (|:| -2325 (-1171 *6)) (|:| -3631 (-566))))) (-4 *6 (-308)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-566)) (-5 *1 (-742 *4 *5 *6 *7)) (-4 *7 (-949 *6 *4 *5)))) (-2195 (*1 *2 *3) (-12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-308)) (-5 *2 (-420 *3)) (-5 *1 (-742 *4 *5 *6 *3)) (-4 *3 (-949 *6 *4 *5)))) (-3348 (*1 *2 *3) (-12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-308)) (-4 *7 (-949 *6 *4 *5)) (-5 *2 (-420 (-1171 *7))) (-5 *1 (-742 *4 *5 *6 *7)) (-5 *3 (-1171 *7)))) (-3348 (*1 *2 *3) (-12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-308)) (-5 *2 (-420 *3)) (-5 *1 (-742 *4 *5 *6 *3)) (-4 *3 (-949 *6 *4 *5))))) +(-10 -7 (-15 -3348 ((-420 |#4|) |#4|)) (-15 -3348 ((-420 (-1171 |#4|)) (-1171 |#4|))) (-15 -2195 ((-420 |#4|) |#4|)) (-15 -2773 ((-566) (-644 (-2 (|:| -2325 (-1171 |#3|)) (|:| -3631 (-566)))))) (-15 -1979 ((-420 |#4|) |#4| |#2|)) (-15 -3008 ((-2 (|:| -2240 (-1171 |#4|)) (|:| |polval| (-1171 |#3|))) (-1171 |#4|) (-1171 |#3|) (-566))) (-15 -2182 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-644 (-2 (|:| -2325 (-1171 |#4|)) (|:| -3631 (-566)))))) (-1171 |#4|) (-644 |#2|) (-644 (-644 |#3|)))) (-15 -1523 ((-2 (|:| |upol| (-1171 |#3|)) (|:| |Lval| (-644 |#3|)) (|:| |Lfact| (-644 (-2 (|:| -2325 (-1171 |#3|)) (|:| -3631 (-566))))) (|:| |ctpol| |#3|)) (-1171 |#4|) (-644 |#2|) (-644 (-644 |#3|)))) (-15 -4169 (|#4| (-566) (-420 |#4|))) (-15 -3069 ((-112) (-644 (-2 (|:| -2325 (-1171 |#3|)) (|:| -3631 (-566)))) (-644 (-2 (|:| -2325 (-1171 |#3|)) (|:| -3631 (-566)))))) (-15 -1829 ((-3 (-644 (-1171 |#4|)) "failed") (-1171 |#4|) (-1171 |#3|) (-1171 |#3|) |#4| (-644 |#2|) (-644 (-771)) (-644 |#3|))) (-15 -3643 ((-644 (-771)) (-1171 |#4|) (-644 |#2|) (-771))) (-15 -3124 ((-1171 |#3|) (-1171 |#3|) (-566)))) +((-1595 (($ $ (-921)) 17))) +(((-743 |#1| |#2|) (-10 -8 (-15 -1595 (|#1| |#1| (-921)))) (-744 |#2|) (-172)) (T -743)) +NIL +(-10 -8 (-15 -1595 (|#1| |#1| (-921)))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-3174 (((-3 $ "failed") $ $) 20)) (-1811 (($) 18 T CONST)) (-4370 (($ $ (-921)) 31)) (-1595 (($ $ (-921)) 38)) (-3681 (($ $ (-921)) 32)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-3815 (($ $ $) 28)) (-2479 (((-862) $) 12)) (-3900 (((-112) $ $) 9)) (-1469 (($ $ $ $) 29)) (-1596 (($ $ $) 27)) (-2446 (($) 19 T CONST)) (-2952 (((-112) $ $) 6)) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 33)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) +(((-744 |#1|) (-140) (-172)) (T -744)) +((-1595 (*1 *1 *1 *2) (-12 (-5 *2 (-921)) (-4 *1 (-744 *3)) (-4 *3 (-172))))) +(-13 (-761) (-717 |t#1|) (-10 -8 (-15 -1595 ($ $ (-921))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-648 |#1|) . T) ((-640 |#1|) . T) ((-717 |#1|) . T) ((-720) . T) ((-761) . T) ((-1051 |#1|) . T) ((-1056 |#1|) . T) ((-1099) . T)) +((-1549 (((-1035) (-689 (-225)) (-566) (-112) (-566)) 25)) (-2812 (((-1035) (-689 (-225)) (-566) (-112) (-566)) 24))) +(((-745) (-10 -7 (-15 -2812 ((-1035) (-689 (-225)) (-566) (-112) (-566))) (-15 -1549 ((-1035) (-689 (-225)) (-566) (-112) (-566))))) (T -745)) +((-1549 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *5 (-112)) (-5 *2 (-1035)) (-5 *1 (-745)))) (-2812 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *5 (-112)) (-5 *2 (-1035)) (-5 *1 (-745))))) +(-10 -7 (-15 -2812 ((-1035) (-689 (-225)) (-566) (-112) (-566))) (-15 -1549 ((-1035) (-689 (-225)) (-566) (-112) (-566)))) +((-3863 (((-1035) (-566) (-566) (-566) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-74 FCN)))) 43)) (-4212 (((-1035) (-566) (-566) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-81 FCN)))) 39)) (-2875 (((-1035) (-225) (-225) (-225) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2341)))) 32))) +(((-746) (-10 -7 (-15 -2875 ((-1035) (-225) (-225) (-225) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2341))))) (-15 -4212 ((-1035) (-566) (-566) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-81 FCN))))) (-15 -3863 ((-1035) (-566) (-566) (-566) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-74 FCN))))))) (T -746)) +((-3863 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1035)) (-5 *1 (-746)))) (-4212 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1035)) (-5 *1 (-746)))) (-2875 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2341)))) (-5 *2 (-1035)) (-5 *1 (-746))))) +(-10 -7 (-15 -2875 ((-1035) (-225) (-225) (-225) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2341))))) (-15 -4212 ((-1035) (-566) (-566) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-81 FCN))))) (-15 -3863 ((-1035) (-566) (-566) (-566) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-74 FCN)))))) +((-2791 (((-1035) (-566) (-566) (-689 (-225)) (-566)) 34)) (-4395 (((-1035) (-566) (-566) (-689 (-225)) (-566)) 33)) (-2221 (((-1035) (-566) (-689 (-225)) (-566)) 32)) (-1564 (((-1035) (-566) (-689 (-225)) (-566)) 31)) (-3403 (((-1035) (-566) (-566) (-1157) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566)) 30)) (-3523 (((-1035) (-566) (-566) (-1157) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566)) 29)) (-3084 (((-1035) (-566) (-566) (-1157) (-689 (-225)) (-689 (-225)) (-566)) 28)) (-3732 (((-1035) (-566) (-566) (-1157) (-689 (-225)) (-689 (-225)) (-566)) 27)) (-2794 (((-1035) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566)) 24)) (-3539 (((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566)) 23)) (-2648 (((-1035) (-566) (-689 (-225)) (-566)) 22)) (-1519 (((-1035) (-566) (-689 (-225)) (-566)) 21))) +(((-747) (-10 -7 (-15 -1519 ((-1035) (-566) (-689 (-225)) (-566))) (-15 -2648 ((-1035) (-566) (-689 (-225)) (-566))) (-15 -3539 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -2794 ((-1035) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -3732 ((-1035) (-566) (-566) (-1157) (-689 (-225)) (-689 (-225)) (-566))) (-15 -3084 ((-1035) (-566) (-566) (-1157) (-689 (-225)) (-689 (-225)) (-566))) (-15 -3523 ((-1035) (-566) (-566) (-1157) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -3403 ((-1035) (-566) (-566) (-1157) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -1564 ((-1035) (-566) (-689 (-225)) (-566))) (-15 -2221 ((-1035) (-566) (-689 (-225)) (-566))) (-15 -4395 ((-1035) (-566) (-566) (-689 (-225)) (-566))) (-15 -2791 ((-1035) (-566) (-566) (-689 (-225)) (-566))))) (T -747)) +((-2791 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-747)))) (-4395 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-747)))) (-2221 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-747)))) (-1564 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-747)))) (-3403 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-566)) (-5 *4 (-1157)) (-5 *5 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-747)))) (-3523 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-566)) (-5 *4 (-1157)) (-5 *5 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-747)))) (-3084 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-566)) (-5 *4 (-1157)) (-5 *5 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-747)))) (-3732 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-566)) (-5 *4 (-1157)) (-5 *5 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-747)))) (-2794 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-747)))) (-3539 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-747)))) (-2648 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-747)))) (-1519 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-747))))) +(-10 -7 (-15 -1519 ((-1035) (-566) (-689 (-225)) (-566))) (-15 -2648 ((-1035) (-566) (-689 (-225)) (-566))) (-15 -3539 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -2794 ((-1035) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -3732 ((-1035) (-566) (-566) (-1157) (-689 (-225)) (-689 (-225)) (-566))) (-15 -3084 ((-1035) (-566) (-566) (-1157) (-689 (-225)) (-689 (-225)) (-566))) (-15 -3523 ((-1035) (-566) (-566) (-1157) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -3403 ((-1035) (-566) (-566) (-1157) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -1564 ((-1035) (-566) (-689 (-225)) (-566))) (-15 -2221 ((-1035) (-566) (-689 (-225)) (-566))) (-15 -4395 ((-1035) (-566) (-566) (-689 (-225)) (-566))) (-15 -2791 ((-1035) (-566) (-566) (-689 (-225)) (-566)))) +((-2526 (((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566) (-225) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-78 FUNCTN)))) 52)) (-3761 (((-1035) (-689 (-225)) (-689 (-225)) (-566) (-566)) 51)) (-2015 (((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-78 FUNCTN)))) 50)) (-4011 (((-1035) (-225) (-225) (-566) (-566) (-566) (-566)) 46)) (-3886 (((-1035) (-225) (-225) (-566) (-225) (-566) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G)))) 45)) (-1960 (((-1035) (-225) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G)))) 44)) (-3990 (((-1035) (-225) (-225) (-225) (-225) (-566) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G)))) 43)) (-3998 (((-1035) (-225) (-225) (-225) (-566) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G)))) 42)) (-3823 (((-1035) (-225) (-566) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2341)))) 38)) (-3047 (((-1035) (-225) (-225) (-566) (-689 (-225)) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2341)))) 37)) (-2430 (((-1035) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2341)))) 33)) (-1356 (((-1035) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2341)))) 32))) +(((-748) (-10 -7 (-15 -1356 ((-1035) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2341))))) (-15 -2430 ((-1035) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2341))))) (-15 -3047 ((-1035) (-225) (-225) (-566) (-689 (-225)) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2341))))) (-15 -3823 ((-1035) (-225) (-566) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2341))))) (-15 -3998 ((-1035) (-225) (-225) (-225) (-566) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G))))) (-15 -3990 ((-1035) (-225) (-225) (-225) (-225) (-566) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G))))) (-15 -1960 ((-1035) (-225) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G))))) (-15 -3886 ((-1035) (-225) (-225) (-566) (-225) (-566) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G))))) (-15 -4011 ((-1035) (-225) (-225) (-566) (-566) (-566) (-566))) (-15 -2015 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-78 FUNCTN))))) (-15 -3761 ((-1035) (-689 (-225)) (-689 (-225)) (-566) (-566))) (-15 -2526 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566) (-225) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-78 FUNCTN))))))) (T -748)) +((-2526 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1035)) (-5 *1 (-748)))) (-3761 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-748)))) (-2015 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1035)) (-5 *1 (-748)))) (-4011 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-748)))) (-3886 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G)))) (-5 *2 (-1035)) (-5 *1 (-748)))) (-1960 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G)))) (-5 *2 (-1035)) (-5 *1 (-748)))) (-3990 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G)))) (-5 *2 (-1035)) (-5 *1 (-748)))) (-3998 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G)))) (-5 *2 (-1035)) (-5 *1 (-748)))) (-3823 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2341)))) (-5 *2 (-1035)) (-5 *1 (-748)))) (-3047 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-566)) (-5 *5 (-689 (-225))) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2341)))) (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-748)))) (-2430 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2341)))) (-5 *2 (-1035)) (-5 *1 (-748)))) (-1356 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2341)))) (-5 *2 (-1035)) (-5 *1 (-748))))) +(-10 -7 (-15 -1356 ((-1035) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2341))))) (-15 -2430 ((-1035) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2341))))) (-15 -3047 ((-1035) (-225) (-225) (-566) (-689 (-225)) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2341))))) (-15 -3823 ((-1035) (-225) (-566) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2341))))) (-15 -3998 ((-1035) (-225) (-225) (-225) (-566) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G))))) (-15 -3990 ((-1035) (-225) (-225) (-225) (-225) (-566) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G))))) (-15 -1960 ((-1035) (-225) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G))))) (-15 -3886 ((-1035) (-225) (-225) (-566) (-225) (-566) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G))))) (-15 -4011 ((-1035) (-225) (-225) (-566) (-566) (-566) (-566))) (-15 -2015 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-78 FUNCTN))))) (-15 -3761 ((-1035) (-689 (-225)) (-689 (-225)) (-566) (-566))) (-15 -2526 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566) (-225) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-78 FUNCTN)))))) +((-4230 (((-1035) (-566) (-566) (-566) (-566) (-225) (-566) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-390)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76)) (-1729 (((-1035) (-689 (-225)) (-566) (-566) (-225) (-566) (-566) (-225) (-225) (-689 (-225)) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-87 BDYVAL))) (-390) (-390)) 69) (((-1035) (-689 (-225)) (-566) (-566) (-225) (-566) (-566) (-225) (-225) (-689 (-225)) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-87 BDYVAL)))) 68)) (-3220 (((-1035) (-225) (-225) (-566) (-225) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-390)) (|:| |fp| (-85 FCNG)))) 57)) (-1643 (((-1035) (-689 (-225)) (-689 (-225)) (-566) (-225) (-225) (-225) (-566) (-566) (-566) (-689 (-225)) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN)))) 50)) (-1837 (((-1035) (-225) (-566) (-566) (-1157) (-566) (-225) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-390)) (|:| |fp| (-88 OUTPUT)))) 49)) (-3603 (((-1035) (-225) (-566) (-566) (-225) (-1157) (-225) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-88 OUTPUT)))) 45)) (-1804 (((-1035) (-225) (-566) (-566) (-225) (-225) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN)))) 42)) (-2484 (((-1035) (-225) (-566) (-566) (-566) (-225) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-88 OUTPUT)))) 38))) +(((-749) (-10 -7 (-15 -2484 ((-1035) (-225) (-566) (-566) (-566) (-225) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-88 OUTPUT))))) (-15 -1804 ((-1035) (-225) (-566) (-566) (-225) (-225) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN))))) (-15 -3603 ((-1035) (-225) (-566) (-566) (-225) (-1157) (-225) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-88 OUTPUT))))) (-15 -1837 ((-1035) (-225) (-566) (-566) (-1157) (-566) (-225) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-390)) (|:| |fp| (-88 OUTPUT))))) (-15 -1643 ((-1035) (-689 (-225)) (-689 (-225)) (-566) (-225) (-225) (-225) (-566) (-566) (-566) (-689 (-225)) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN))))) (-15 -3220 ((-1035) (-225) (-225) (-566) (-225) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-390)) (|:| |fp| (-85 FCNG))))) (-15 -1729 ((-1035) (-689 (-225)) (-566) (-566) (-225) (-566) (-566) (-225) (-225) (-689 (-225)) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-87 BDYVAL))))) (-15 -1729 ((-1035) (-689 (-225)) (-566) (-566) (-225) (-566) (-566) (-225) (-225) (-689 (-225)) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-87 BDYVAL))) (-390) (-390))) (-15 -4230 ((-1035) (-566) (-566) (-566) (-566) (-225) (-566) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-390)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -749)) +((-4230 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-749)))) (-1729 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-390)) (-5 *2 (-1035)) (-5 *1 (-749)))) (-1729 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1035)) (-5 *1 (-749)))) (-3220 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-566)) (-5 *5 (-689 (-225))) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-749)))) (-1643 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1035)) (-5 *1 (-749)))) (-1837 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-566)) (-5 *5 (-1157)) (-5 *6 (-689 (-225))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-390)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-390)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-749)))) (-3603 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-566)) (-5 *5 (-1157)) (-5 *6 (-689 (-225))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-390)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-749)))) (-1804 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-566)) (-5 *5 (-689 (-225))) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN)))) (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-749)))) (-2484 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-566)) (-5 *5 (-689 (-225))) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN)))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-749))))) +(-10 -7 (-15 -2484 ((-1035) (-225) (-566) (-566) (-566) (-225) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-88 OUTPUT))))) (-15 -1804 ((-1035) (-225) (-566) (-566) (-225) (-225) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN))))) (-15 -3603 ((-1035) (-225) (-566) (-566) (-225) (-1157) (-225) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-88 OUTPUT))))) (-15 -1837 ((-1035) (-225) (-566) (-566) (-1157) (-566) (-225) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-390)) (|:| |fp| (-88 OUTPUT))))) (-15 -1643 ((-1035) (-689 (-225)) (-689 (-225)) (-566) (-225) (-225) (-225) (-566) (-566) (-566) (-689 (-225)) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN))))) (-15 -3220 ((-1035) (-225) (-225) (-566) (-225) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-390)) (|:| |fp| (-85 FCNG))))) (-15 -1729 ((-1035) (-689 (-225)) (-566) (-566) (-225) (-566) (-566) (-225) (-225) (-689 (-225)) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-87 BDYVAL))))) (-15 -1729 ((-1035) (-689 (-225)) (-566) (-566) (-225) (-566) (-566) (-225) (-225) (-689 (-225)) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-87 BDYVAL))) (-390) (-390))) (-15 -4230 ((-1035) (-566) (-566) (-566) (-566) (-225) (-566) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-390)) (|:| |fp| (-76 G JACOBG JACGEP)))))) +((-3366 (((-1035) (-225) (-225) (-566) (-566) (-689 (-225)) (-689 (-225)) (-225) (-225) (-566) (-566) (-689 (-225)) (-689 (-225)) (-225) (-225) (-566) (-566) (-689 (-225)) (-689 (-225)) (-225) (-566) (-566) (-566) (-675 (-225)) (-566)) 45)) (-3064 (((-1035) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-1157) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-390)) (|:| |fp| (-83 BNDY)))) 41)) (-3857 (((-1035) (-566) (-566) (-566) (-566) (-225) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566)) 23))) +(((-750) (-10 -7 (-15 -3857 ((-1035) (-566) (-566) (-566) (-566) (-225) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -3064 ((-1035) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-1157) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-390)) (|:| |fp| (-83 BNDY))))) (-15 -3366 ((-1035) (-225) (-225) (-566) (-566) (-689 (-225)) (-689 (-225)) (-225) (-225) (-566) (-566) (-689 (-225)) (-689 (-225)) (-225) (-225) (-566) (-566) (-689 (-225)) (-689 (-225)) (-225) (-566) (-566) (-566) (-675 (-225)) (-566))))) (T -750)) +((-3366 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-566)) (-5 *5 (-689 (-225))) (-5 *6 (-675 (-225))) (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-750)))) (-3064 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *5 (-1157)) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1035)) (-5 *1 (-750)))) (-3857 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-750))))) +(-10 -7 (-15 -3857 ((-1035) (-566) (-566) (-566) (-566) (-225) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -3064 ((-1035) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-1157) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-390)) (|:| |fp| (-83 BNDY))))) (-15 -3366 ((-1035) (-225) (-225) (-566) (-566) (-689 (-225)) (-689 (-225)) (-225) (-225) (-566) (-566) (-689 (-225)) (-689 (-225)) (-225) (-225) (-566) (-566) (-689 (-225)) (-689 (-225)) (-225) (-566) (-566) (-566) (-675 (-225)) (-566)))) +((-2247 (((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-225) (-689 (-225)) (-225) (-225) (-566)) 35)) (-4309 (((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-566) (-225) (-225) (-566)) 34)) (-2308 (((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-566)) (-689 (-225)) (-225) (-225) (-566)) 33)) (-4314 (((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566)) 29)) (-4299 (((-1035) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566)) 28)) (-1568 (((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-225) (-225) (-566)) 27)) (-2623 (((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-689 (-225)) (-566)) 24)) (-1388 (((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-689 (-225)) (-566)) 23)) (-4018 (((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566)) 22)) (-1581 (((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566) (-566) (-566)) 21))) +(((-751) (-10 -7 (-15 -1581 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566) (-566) (-566))) (-15 -4018 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -1388 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-689 (-225)) (-566))) (-15 -2623 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-689 (-225)) (-566))) (-15 -1568 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-225) (-225) (-566))) (-15 -4299 ((-1035) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -4314 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -2308 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-566)) (-689 (-225)) (-225) (-225) (-566))) (-15 -4309 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-566) (-225) (-225) (-566))) (-15 -2247 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-225) (-689 (-225)) (-225) (-225) (-566))))) (T -751)) +((-2247 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) (-5 *2 (-1035)) (-5 *1 (-751)))) (-4309 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) (-5 *2 (-1035)) (-5 *1 (-751)))) (-2308 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-689 (-225))) (-5 *5 (-689 (-566))) (-5 *6 (-225)) (-5 *3 (-566)) (-5 *2 (-1035)) (-5 *1 (-751)))) (-4314 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-751)))) (-4299 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-751)))) (-1568 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) (-5 *2 (-1035)) (-5 *1 (-751)))) (-2623 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-751)))) (-1388 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-751)))) (-4018 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-751)))) (-1581 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-751))))) +(-10 -7 (-15 -1581 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566) (-566) (-566))) (-15 -4018 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -1388 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-689 (-225)) (-566))) (-15 -2623 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-689 (-225)) (-566))) (-15 -1568 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-225) (-225) (-566))) (-15 -4299 ((-1035) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -4314 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -2308 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-566)) (-689 (-225)) (-225) (-225) (-566))) (-15 -4309 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-566) (-225) (-225) (-566))) (-15 -2247 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-225) (-689 (-225)) (-225) (-225) (-566)))) +((-2315 (((-1035) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566) (-689 (-225)) (-689 (-225)) (-566) (-566) (-566)) 45)) (-2288 (((-1035) (-566) (-566) (-566) (-225) (-689 (-225)) (-689 (-225)) (-566)) 44)) (-3270 (((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-566) (-566)) 43)) (-1608 (((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566)) 42)) (-2936 (((-1035) (-1157) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-225) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-689 (-225)) (-689 (-225)) (-566)) 41)) (-4316 (((-1035) (-1157) (-566) (-689 (-225)) (-566) (-689 (-225)) (-689 (-225)) (-225) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-689 (-225)) (-689 (-225)) (-689 (-566)) (-566)) 40)) (-2149 (((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-566)) (-566) (-566) (-566) (-225) (-689 (-225)) (-566)) 39)) (-4061 (((-1035) (-1157) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-225) (-566) (-566) (-566) (-689 (-225)) (-566) (-689 (-225)) (-689 (-566))) 38)) (-2637 (((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566)) 35)) (-4037 (((-1035) (-566) (-689 (-225)) (-689 (-225)) (-225) (-566) (-566)) 34)) (-2624 (((-1035) (-566) (-689 (-225)) (-689 (-225)) (-225) (-566)) 33)) (-3797 (((-1035) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566)) 32)) (-2815 (((-1035) (-566) (-225) (-225) (-689 (-225)) (-566) (-566) (-225) (-566)) 31)) (-2661 (((-1035) (-566) (-225) (-225) (-689 (-225)) (-566) (-566) (-225) (-566) (-566) (-566)) 30)) (-2902 (((-1035) (-566) (-225) (-225) (-689 (-225)) (-566) (-566) (-566) (-566) (-566)) 29)) (-3229 (((-1035) (-566) (-566) (-566) (-225) (-225) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-689 (-225)) (-689 (-225)) (-566) (-689 (-566)) (-566) (-566) (-566)) 28)) (-2896 (((-1035) (-566) (-689 (-225)) (-225) (-566)) 24)) (-2675 (((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566)) 21))) +(((-752) (-10 -7 (-15 -2675 ((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -2896 ((-1035) (-566) (-689 (-225)) (-225) (-566))) (-15 -3229 ((-1035) (-566) (-566) (-566) (-225) (-225) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-689 (-225)) (-689 (-225)) (-566) (-689 (-566)) (-566) (-566) (-566))) (-15 -2902 ((-1035) (-566) (-225) (-225) (-689 (-225)) (-566) (-566) (-566) (-566) (-566))) (-15 -2661 ((-1035) (-566) (-225) (-225) (-689 (-225)) (-566) (-566) (-225) (-566) (-566) (-566))) (-15 -2815 ((-1035) (-566) (-225) (-225) (-689 (-225)) (-566) (-566) (-225) (-566))) (-15 -3797 ((-1035) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -2624 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-225) (-566))) (-15 -4037 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-225) (-566) (-566))) (-15 -2637 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -4061 ((-1035) (-1157) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-225) (-566) (-566) (-566) (-689 (-225)) (-566) (-689 (-225)) (-689 (-566)))) (-15 -2149 ((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-566)) (-566) (-566) (-566) (-225) (-689 (-225)) (-566))) (-15 -4316 ((-1035) (-1157) (-566) (-689 (-225)) (-566) (-689 (-225)) (-689 (-225)) (-225) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-689 (-225)) (-689 (-225)) (-689 (-566)) (-566))) (-15 -2936 ((-1035) (-1157) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-225) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -1608 ((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -3270 ((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-566) (-566))) (-15 -2288 ((-1035) (-566) (-566) (-566) (-225) (-689 (-225)) (-689 (-225)) (-566))) (-15 -2315 ((-1035) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566) (-689 (-225)) (-689 (-225)) (-566) (-566) (-566))))) (T -752)) +((-2315 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-752)))) (-2288 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-752)))) (-3270 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-752)))) (-1608 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-752)))) (-2936 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1157)) (-5 *4 (-566)) (-5 *5 (-689 (-225))) (-5 *6 (-225)) (-5 *2 (-1035)) (-5 *1 (-752)))) (-4316 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1157)) (-5 *5 (-689 (-225))) (-5 *6 (-225)) (-5 *7 (-689 (-566))) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-752)))) (-2149 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-689 (-225))) (-5 *5 (-689 (-566))) (-5 *6 (-225)) (-5 *3 (-566)) (-5 *2 (-1035)) (-5 *1 (-752)))) (-4061 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1157)) (-5 *5 (-689 (-225))) (-5 *6 (-225)) (-5 *7 (-689 (-566))) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-752)))) (-2637 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-752)))) (-4037 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) (-5 *2 (-1035)) (-5 *1 (-752)))) (-2624 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) (-5 *2 (-1035)) (-5 *1 (-752)))) (-3797 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-752)))) (-2815 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-752)))) (-2661 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-752)))) (-2902 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-752)))) (-3229 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-689 (-225))) (-5 *6 (-689 (-566))) (-5 *3 (-566)) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-752)))) (-2896 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) (-5 *2 (-1035)) (-5 *1 (-752)))) (-2675 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-752))))) +(-10 -7 (-15 -2675 ((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -2896 ((-1035) (-566) (-689 (-225)) (-225) (-566))) (-15 -3229 ((-1035) (-566) (-566) (-566) (-225) (-225) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-689 (-225)) (-689 (-225)) (-566) (-689 (-566)) (-566) (-566) (-566))) (-15 -2902 ((-1035) (-566) (-225) (-225) (-689 (-225)) (-566) (-566) (-566) (-566) (-566))) (-15 -2661 ((-1035) (-566) (-225) (-225) (-689 (-225)) (-566) (-566) (-225) (-566) (-566) (-566))) (-15 -2815 ((-1035) (-566) (-225) (-225) (-689 (-225)) (-566) (-566) (-225) (-566))) (-15 -3797 ((-1035) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -2624 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-225) (-566))) (-15 -4037 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-225) (-566) (-566))) (-15 -2637 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -4061 ((-1035) (-1157) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-225) (-566) (-566) (-566) (-689 (-225)) (-566) (-689 (-225)) (-689 (-566)))) (-15 -2149 ((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-566)) (-566) (-566) (-566) (-225) (-689 (-225)) (-566))) (-15 -4316 ((-1035) (-1157) (-566) (-689 (-225)) (-566) (-689 (-225)) (-689 (-225)) (-225) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-689 (-225)) (-689 (-225)) (-689 (-566)) (-566))) (-15 -2936 ((-1035) (-1157) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-225) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -1608 ((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -3270 ((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-566) (-566))) (-15 -2288 ((-1035) (-566) (-566) (-566) (-225) (-689 (-225)) (-689 (-225)) (-566))) (-15 -2315 ((-1035) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566) (-689 (-225)) (-689 (-225)) (-566) (-566) (-566)))) +((-2364 (((-1035) (-566) (-566) (-566) (-225) (-689 (-225)) (-566) (-689 (-225)) (-566)) 63)) (-3246 (((-1035) (-566) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-566) (-112) (-225) (-566) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-566) (-566) (-566) (-566) (-566) (-225) (-225) (-225) (-566) (-566) (-566) (-566) (-566) (-689 (-566)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-77 OBJFUN)))) 62)) (-4088 (((-1035) (-566) (-566) (-566) (-566) (-566) (-566) (-566) (-566) (-225) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-112) (-112) (-112) (-566) (-566) (-689 (-225)) (-689 (-566)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-65 QPHESS)))) 58)) (-1410 (((-1035) (-566) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-112) (-566) (-566) (-689 (-225)) (-566)) 51)) (-2765 (((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-66 FUNCT1)))) 50)) (-3226 (((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-63 LSFUN2)))) 46)) (-2017 (((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-79 LSFUN1)))) 42)) (-2851 (((-1035) (-566) (-225) (-225) (-566) (-225) (-112) (-225) (-225) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-77 OBJFUN)))) 38))) +(((-753) (-10 -7 (-15 -2851 ((-1035) (-566) (-225) (-225) (-566) (-225) (-112) (-225) (-225) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-77 OBJFUN))))) (-15 -2017 ((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-79 LSFUN1))))) (-15 -3226 ((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-63 LSFUN2))))) (-15 -2765 ((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-66 FUNCT1))))) (-15 -1410 ((-1035) (-566) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-112) (-566) (-566) (-689 (-225)) (-566))) (-15 -4088 ((-1035) (-566) (-566) (-566) (-566) (-566) (-566) (-566) (-566) (-225) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-112) (-112) (-112) (-566) (-566) (-689 (-225)) (-689 (-566)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-65 QPHESS))))) (-15 -3246 ((-1035) (-566) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-566) (-112) (-225) (-566) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-566) (-566) (-566) (-566) (-566) (-225) (-225) (-225) (-566) (-566) (-566) (-566) (-566) (-689 (-566)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-77 OBJFUN))))) (-15 -2364 ((-1035) (-566) (-566) (-566) (-225) (-689 (-225)) (-566) (-689 (-225)) (-566))))) (T -753)) +((-2364 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-753)))) (-3246 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-689 (-225))) (-5 *5 (-112)) (-5 *6 (-225)) (-5 *7 (-689 (-566))) (-5 *8 (-3 (|:| |fn| (-390)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-390)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-566)) (-5 *2 (-1035)) (-5 *1 (-753)))) (-4088 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-689 (-225))) (-5 *6 (-112)) (-5 *7 (-689 (-566))) (-5 *8 (-3 (|:| |fn| (-390)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-566)) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-753)))) (-1410 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-112)) (-5 *2 (-1035)) (-5 *1 (-753)))) (-2765 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1035)) (-5 *1 (-753)))) (-3226 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1035)) (-5 *1 (-753)))) (-2017 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1035)) (-5 *1 (-753)))) (-2851 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-566)) (-5 *5 (-112)) (-5 *6 (-689 (-225))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-753))))) +(-10 -7 (-15 -2851 ((-1035) (-566) (-225) (-225) (-566) (-225) (-112) (-225) (-225) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-77 OBJFUN))))) (-15 -2017 ((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-79 LSFUN1))))) (-15 -3226 ((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-63 LSFUN2))))) (-15 -2765 ((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-66 FUNCT1))))) (-15 -1410 ((-1035) (-566) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-112) (-566) (-566) (-689 (-225)) (-566))) (-15 -4088 ((-1035) (-566) (-566) (-566) (-566) (-566) (-566) (-566) (-566) (-225) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-112) (-112) (-112) (-566) (-566) (-689 (-225)) (-689 (-566)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-65 QPHESS))))) (-15 -3246 ((-1035) (-566) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-566) (-112) (-225) (-566) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-566) (-566) (-566) (-566) (-566) (-225) (-225) (-225) (-566) (-566) (-566) (-566) (-566) (-689 (-566)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-77 OBJFUN))))) (-15 -2364 ((-1035) (-566) (-566) (-566) (-225) (-689 (-225)) (-566) (-689 (-225)) (-566)))) +((-3661 (((-1035) (-1157) (-566) (-566) (-566) (-566) (-689 (-169 (-225))) (-689 (-169 (-225))) (-566)) 47)) (-1451 (((-1035) (-1157) (-1157) (-566) (-566) (-689 (-169 (-225))) (-566) (-689 (-169 (-225))) (-566) (-566) (-689 (-169 (-225))) (-566)) 46)) (-4166 (((-1035) (-566) (-566) (-566) (-689 (-169 (-225))) (-566)) 45)) (-2096 (((-1035) (-1157) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566)) 40)) (-2583 (((-1035) (-1157) (-1157) (-566) (-566) (-689 (-225)) (-566) (-689 (-225)) (-566) (-566) (-689 (-225)) (-566)) 39)) (-3216 (((-1035) (-566) (-566) (-566) (-689 (-225)) (-566)) 36)) (-1682 (((-1035) (-566) (-689 (-225)) (-566) (-689 (-566)) (-566)) 35)) (-4124 (((-1035) (-566) (-566) (-566) (-566) (-644 (-112)) (-689 (-225)) (-689 (-566)) (-689 (-566)) (-225) (-225) (-566)) 34)) (-3416 (((-1035) (-566) (-566) (-566) (-689 (-566)) (-689 (-566)) (-689 (-566)) (-689 (-566)) (-112) (-225) (-112) (-689 (-566)) (-689 (-225)) (-566)) 33)) (-3756 (((-1035) (-566) (-566) (-566) (-566) (-225) (-112) (-112) (-644 (-112)) (-689 (-225)) (-689 (-566)) (-689 (-566)) (-566)) 32))) +(((-754) (-10 -7 (-15 -3756 ((-1035) (-566) (-566) (-566) (-566) (-225) (-112) (-112) (-644 (-112)) (-689 (-225)) (-689 (-566)) (-689 (-566)) (-566))) (-15 -3416 ((-1035) (-566) (-566) (-566) (-689 (-566)) (-689 (-566)) (-689 (-566)) (-689 (-566)) (-112) (-225) (-112) (-689 (-566)) (-689 (-225)) (-566))) (-15 -4124 ((-1035) (-566) (-566) (-566) (-566) (-644 (-112)) (-689 (-225)) (-689 (-566)) (-689 (-566)) (-225) (-225) (-566))) (-15 -1682 ((-1035) (-566) (-689 (-225)) (-566) (-689 (-566)) (-566))) (-15 -3216 ((-1035) (-566) (-566) (-566) (-689 (-225)) (-566))) (-15 -2583 ((-1035) (-1157) (-1157) (-566) (-566) (-689 (-225)) (-566) (-689 (-225)) (-566) (-566) (-689 (-225)) (-566))) (-15 -2096 ((-1035) (-1157) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -4166 ((-1035) (-566) (-566) (-566) (-689 (-169 (-225))) (-566))) (-15 -1451 ((-1035) (-1157) (-1157) (-566) (-566) (-689 (-169 (-225))) (-566) (-689 (-169 (-225))) (-566) (-566) (-689 (-169 (-225))) (-566))) (-15 -3661 ((-1035) (-1157) (-566) (-566) (-566) (-566) (-689 (-169 (-225))) (-689 (-169 (-225))) (-566))))) (T -754)) +((-3661 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1157)) (-5 *4 (-566)) (-5 *5 (-689 (-169 (-225)))) (-5 *2 (-1035)) (-5 *1 (-754)))) (-1451 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1157)) (-5 *4 (-566)) (-5 *5 (-689 (-169 (-225)))) (-5 *2 (-1035)) (-5 *1 (-754)))) (-4166 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-169 (-225)))) (-5 *2 (-1035)) (-5 *1 (-754)))) (-2096 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1157)) (-5 *4 (-566)) (-5 *5 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-754)))) (-2583 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1157)) (-5 *4 (-566)) (-5 *5 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-754)))) (-3216 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-754)))) (-1682 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-689 (-225))) (-5 *5 (-689 (-566))) (-5 *3 (-566)) (-5 *2 (-1035)) (-5 *1 (-754)))) (-4124 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-644 (-112))) (-5 *5 (-689 (-225))) (-5 *6 (-689 (-566))) (-5 *7 (-225)) (-5 *3 (-566)) (-5 *2 (-1035)) (-5 *1 (-754)))) (-3416 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-689 (-566))) (-5 *5 (-112)) (-5 *7 (-689 (-225))) (-5 *3 (-566)) (-5 *6 (-225)) (-5 *2 (-1035)) (-5 *1 (-754)))) (-3756 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-644 (-112))) (-5 *7 (-689 (-225))) (-5 *8 (-689 (-566))) (-5 *3 (-566)) (-5 *4 (-225)) (-5 *5 (-112)) (-5 *2 (-1035)) (-5 *1 (-754))))) +(-10 -7 (-15 -3756 ((-1035) (-566) (-566) (-566) (-566) (-225) (-112) (-112) (-644 (-112)) (-689 (-225)) (-689 (-566)) (-689 (-566)) (-566))) (-15 -3416 ((-1035) (-566) (-566) (-566) (-689 (-566)) (-689 (-566)) (-689 (-566)) (-689 (-566)) (-112) (-225) (-112) (-689 (-566)) (-689 (-225)) (-566))) (-15 -4124 ((-1035) (-566) (-566) (-566) (-566) (-644 (-112)) (-689 (-225)) (-689 (-566)) (-689 (-566)) (-225) (-225) (-566))) (-15 -1682 ((-1035) (-566) (-689 (-225)) (-566) (-689 (-566)) (-566))) (-15 -3216 ((-1035) (-566) (-566) (-566) (-689 (-225)) (-566))) (-15 -2583 ((-1035) (-1157) (-1157) (-566) (-566) (-689 (-225)) (-566) (-689 (-225)) (-566) (-566) (-689 (-225)) (-566))) (-15 -2096 ((-1035) (-1157) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -4166 ((-1035) (-566) (-566) (-566) (-689 (-169 (-225))) (-566))) (-15 -1451 ((-1035) (-1157) (-1157) (-566) (-566) (-689 (-169 (-225))) (-566) (-689 (-169 (-225))) (-566) (-566) (-689 (-169 (-225))) (-566))) (-15 -3661 ((-1035) (-1157) (-566) (-566) (-566) (-566) (-689 (-169 (-225))) (-689 (-169 (-225))) (-566)))) +((-2355 (((-1035) (-566) (-566) (-566) (-566) (-566) (-112) (-566) (-112) (-566) (-689 (-169 (-225))) (-689 (-169 (-225))) (-566)) 80)) (-4152 (((-1035) (-566) (-566) (-566) (-566) (-566) (-112) (-566) (-112) (-566) (-689 (-225)) (-689 (-225)) (-566)) 69)) (-3760 (((-1035) (-566) (-566) (-225) (-566) (-566) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-390)) (|:| |fp| (-68 IMAGE))) (-390)) 56) (((-1035) (-566) (-566) (-225) (-566) (-566) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-390)) (|:| |fp| (-68 IMAGE)))) 55)) (-1937 (((-1035) (-566) (-566) (-566) (-225) (-112) (-566) (-689 (-225)) (-689 (-225)) (-566)) 37)) (-3368 (((-1035) (-566) (-566) (-225) (-225) (-566) (-566) (-689 (-225)) (-566)) 33)) (-2353 (((-1035) (-689 (-225)) (-566) (-689 (-225)) (-566) (-566) (-566) (-566) (-566)) 30)) (-1378 (((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566)) 29)) (-4135 (((-1035) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566)) 28)) (-2260 (((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566)) 27)) (-1886 (((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-566)) 26)) (-3478 (((-1035) (-566) (-566) (-689 (-225)) (-566)) 25)) (-3542 (((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566)) 24)) (-2681 (((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566)) 23)) (-1516 (((-1035) (-689 (-225)) (-566) (-566) (-566) (-566)) 22)) (-4317 (((-1035) (-566) (-566) (-689 (-225)) (-566)) 21))) +(((-755) (-10 -7 (-15 -4317 ((-1035) (-566) (-566) (-689 (-225)) (-566))) (-15 -1516 ((-1035) (-689 (-225)) (-566) (-566) (-566) (-566))) (-15 -2681 ((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -3542 ((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -3478 ((-1035) (-566) (-566) (-689 (-225)) (-566))) (-15 -1886 ((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-566))) (-15 -2260 ((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -4135 ((-1035) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -1378 ((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -2353 ((-1035) (-689 (-225)) (-566) (-689 (-225)) (-566) (-566) (-566) (-566) (-566))) (-15 -3368 ((-1035) (-566) (-566) (-225) (-225) (-566) (-566) (-689 (-225)) (-566))) (-15 -1937 ((-1035) (-566) (-566) (-566) (-225) (-112) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -3760 ((-1035) (-566) (-566) (-225) (-566) (-566) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-390)) (|:| |fp| (-68 IMAGE))))) (-15 -3760 ((-1035) (-566) (-566) (-225) (-566) (-566) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-390)) (|:| |fp| (-68 IMAGE))) (-390))) (-15 -4152 ((-1035) (-566) (-566) (-566) (-566) (-566) (-112) (-566) (-112) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -2355 ((-1035) (-566) (-566) (-566) (-566) (-566) (-112) (-566) (-112) (-566) (-689 (-169 (-225))) (-689 (-169 (-225))) (-566))))) (T -755)) +((-2355 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-566)) (-5 *4 (-112)) (-5 *5 (-689 (-169 (-225)))) (-5 *2 (-1035)) (-5 *1 (-755)))) (-4152 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-566)) (-5 *4 (-112)) (-5 *5 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-755)))) (-3760 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-390)) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-755)))) (-3760 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-755)))) (-1937 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-566)) (-5 *5 (-112)) (-5 *6 (-689 (-225))) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-755)))) (-3368 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-755)))) (-2353 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-755)))) (-1378 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-755)))) (-4135 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-755)))) (-2260 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-755)))) (-1886 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-755)))) (-3478 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-755)))) (-3542 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-755)))) (-2681 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-755)))) (-1516 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-755)))) (-4317 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-755))))) +(-10 -7 (-15 -4317 ((-1035) (-566) (-566) (-689 (-225)) (-566))) (-15 -1516 ((-1035) (-689 (-225)) (-566) (-566) (-566) (-566))) (-15 -2681 ((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -3542 ((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -3478 ((-1035) (-566) (-566) (-689 (-225)) (-566))) (-15 -1886 ((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-566))) (-15 -2260 ((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -4135 ((-1035) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -1378 ((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -2353 ((-1035) (-689 (-225)) (-566) (-689 (-225)) (-566) (-566) (-566) (-566) (-566))) (-15 -3368 ((-1035) (-566) (-566) (-225) (-225) (-566) (-566) (-689 (-225)) (-566))) (-15 -1937 ((-1035) (-566) (-566) (-566) (-225) (-112) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -3760 ((-1035) (-566) (-566) (-225) (-566) (-566) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-390)) (|:| |fp| (-68 IMAGE))))) (-15 -3760 ((-1035) (-566) (-566) (-225) (-566) (-566) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-390)) (|:| |fp| (-68 IMAGE))) (-390))) (-15 -4152 ((-1035) (-566) (-566) (-566) (-566) (-566) (-112) (-566) (-112) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -2355 ((-1035) (-566) (-566) (-566) (-566) (-566) (-112) (-566) (-112) (-566) (-689 (-169 (-225))) (-689 (-169 (-225))) (-566)))) +((-2472 (((-1035) (-566) (-566) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-70 APROD)))) 64)) (-3691 (((-1035) (-566) (-689 (-225)) (-566) (-689 (-225)) (-689 (-566)) (-566) (-689 (-225)) (-566) (-566) (-566) (-566)) 60)) (-3791 (((-1035) (-566) (-689 (-225)) (-112) (-225) (-566) (-566) (-566) (-566) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-390)) (|:| |fp| (-73 MSOLVE)))) 59)) (-1992 (((-1035) (-566) (-566) (-689 (-225)) (-566) (-689 (-566)) (-566) (-689 (-566)) (-689 (-225)) (-689 (-566)) (-689 (-566)) (-689 (-225)) (-689 (-225)) (-689 (-566)) (-566)) 37)) (-3040 (((-1035) (-566) (-566) (-566) (-225) (-566) (-689 (-225)) (-689 (-225)) (-566)) 36)) (-2089 (((-1035) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566)) 33)) (-4207 (((-1035) (-566) (-689 (-225)) (-566) (-689 (-566)) (-689 (-566)) (-566) (-689 (-566)) (-689 (-225))) 32)) (-3762 (((-1035) (-689 (-225)) (-566) (-689 (-225)) (-566) (-566) (-566)) 28)) (-2735 (((-1035) (-566) (-689 (-225)) (-566) (-689 (-225)) (-566)) 27)) (-3860 (((-1035) (-566) (-689 (-225)) (-566) (-689 (-225)) (-566)) 26)) (-2268 (((-1035) (-566) (-689 (-169 (-225))) (-566) (-566) (-566) (-566) (-689 (-169 (-225))) (-566)) 22))) +(((-756) (-10 -7 (-15 -2268 ((-1035) (-566) (-689 (-169 (-225))) (-566) (-566) (-566) (-566) (-689 (-169 (-225))) (-566))) (-15 -3860 ((-1035) (-566) (-689 (-225)) (-566) (-689 (-225)) (-566))) (-15 -2735 ((-1035) (-566) (-689 (-225)) (-566) (-689 (-225)) (-566))) (-15 -3762 ((-1035) (-689 (-225)) (-566) (-689 (-225)) (-566) (-566) (-566))) (-15 -4207 ((-1035) (-566) (-689 (-225)) (-566) (-689 (-566)) (-689 (-566)) (-566) (-689 (-566)) (-689 (-225)))) (-15 -2089 ((-1035) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -3040 ((-1035) (-566) (-566) (-566) (-225) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -1992 ((-1035) (-566) (-566) (-689 (-225)) (-566) (-689 (-566)) (-566) (-689 (-566)) (-689 (-225)) (-689 (-566)) (-689 (-566)) (-689 (-225)) (-689 (-225)) (-689 (-566)) (-566))) (-15 -3791 ((-1035) (-566) (-689 (-225)) (-112) (-225) (-566) (-566) (-566) (-566) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-390)) (|:| |fp| (-73 MSOLVE))))) (-15 -3691 ((-1035) (-566) (-689 (-225)) (-566) (-689 (-225)) (-689 (-566)) (-566) (-689 (-225)) (-566) (-566) (-566) (-566))) (-15 -2472 ((-1035) (-566) (-566) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-70 APROD))))))) (T -756)) +((-2472 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-70 APROD)))) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-756)))) (-3691 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-689 (-225))) (-5 *5 (-689 (-566))) (-5 *3 (-566)) (-5 *2 (-1035)) (-5 *1 (-756)))) (-3791 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-112)) (-5 *6 (-225)) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-390)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1035)) (-5 *1 (-756)))) (-1992 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-689 (-225))) (-5 *5 (-689 (-566))) (-5 *3 (-566)) (-5 *2 (-1035)) (-5 *1 (-756)))) (-3040 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-756)))) (-2089 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-756)))) (-4207 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-689 (-225))) (-5 *5 (-689 (-566))) (-5 *3 (-566)) (-5 *2 (-1035)) (-5 *1 (-756)))) (-3762 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-756)))) (-2735 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-756)))) (-3860 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-756)))) (-2268 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-169 (-225)))) (-5 *2 (-1035)) (-5 *1 (-756))))) +(-10 -7 (-15 -2268 ((-1035) (-566) (-689 (-169 (-225))) (-566) (-566) (-566) (-566) (-689 (-169 (-225))) (-566))) (-15 -3860 ((-1035) (-566) (-689 (-225)) (-566) (-689 (-225)) (-566))) (-15 -2735 ((-1035) (-566) (-689 (-225)) (-566) (-689 (-225)) (-566))) (-15 -3762 ((-1035) (-689 (-225)) (-566) (-689 (-225)) (-566) (-566) (-566))) (-15 -4207 ((-1035) (-566) (-689 (-225)) (-566) (-689 (-566)) (-689 (-566)) (-566) (-689 (-566)) (-689 (-225)))) (-15 -2089 ((-1035) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -3040 ((-1035) (-566) (-566) (-566) (-225) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -1992 ((-1035) (-566) (-566) (-689 (-225)) (-566) (-689 (-566)) (-566) (-689 (-566)) (-689 (-225)) (-689 (-566)) (-689 (-566)) (-689 (-225)) (-689 (-225)) (-689 (-566)) (-566))) (-15 -3791 ((-1035) (-566) (-689 (-225)) (-112) (-225) (-566) (-566) (-566) (-566) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-390)) (|:| |fp| (-73 MSOLVE))))) (-15 -3691 ((-1035) (-566) (-689 (-225)) (-566) (-689 (-225)) (-689 (-566)) (-566) (-689 (-225)) (-566) (-566) (-566) (-566))) (-15 -2472 ((-1035) (-566) (-566) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-70 APROD)))))) +((-4292 (((-1035) (-1157) (-566) (-566) (-689 (-225)) (-566) (-566) (-689 (-225))) 29)) (-3487 (((-1035) (-1157) (-566) (-566) (-689 (-225))) 28)) (-2298 (((-1035) (-1157) (-566) (-566) (-689 (-225)) (-566) (-689 (-566)) (-566) (-689 (-225))) 27)) (-2376 (((-1035) (-566) (-566) (-566) (-689 (-225))) 21))) +(((-757) (-10 -7 (-15 -2376 ((-1035) (-566) (-566) (-566) (-689 (-225)))) (-15 -2298 ((-1035) (-1157) (-566) (-566) (-689 (-225)) (-566) (-689 (-566)) (-566) (-689 (-225)))) (-15 -3487 ((-1035) (-1157) (-566) (-566) (-689 (-225)))) (-15 -4292 ((-1035) (-1157) (-566) (-566) (-689 (-225)) (-566) (-566) (-689 (-225)))))) (T -757)) +((-4292 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1157)) (-5 *4 (-566)) (-5 *5 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-757)))) (-3487 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1157)) (-5 *4 (-566)) (-5 *5 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-757)))) (-2298 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1157)) (-5 *5 (-689 (-225))) (-5 *6 (-689 (-566))) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-757)))) (-2376 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-757))))) +(-10 -7 (-15 -2376 ((-1035) (-566) (-566) (-566) (-689 (-225)))) (-15 -2298 ((-1035) (-1157) (-566) (-566) (-689 (-225)) (-566) (-689 (-566)) (-566) (-689 (-225)))) (-15 -3487 ((-1035) (-1157) (-566) (-566) (-689 (-225)))) (-15 -4292 ((-1035) (-1157) (-566) (-566) (-689 (-225)) (-566) (-566) (-689 (-225))))) +((-3692 (((-1035) (-225) (-225) (-225) (-225) (-566)) 62)) (-1311 (((-1035) (-225) (-225) (-225) (-566)) 61)) (-3150 (((-1035) (-225) (-225) (-225) (-566)) 60)) (-3634 (((-1035) (-225) (-225) (-566)) 59)) (-3024 (((-1035) (-225) (-566)) 58)) (-3564 (((-1035) (-225) (-566)) 57)) (-1851 (((-1035) (-225) (-566)) 56)) (-3671 (((-1035) (-225) (-566)) 55)) (-4147 (((-1035) (-225) (-566)) 54)) (-3584 (((-1035) (-225) (-566)) 53)) (-1899 (((-1035) (-225) (-169 (-225)) (-566) (-1157) (-566)) 52)) (-3682 (((-1035) (-225) (-169 (-225)) (-566) (-1157) (-566)) 51)) (-1334 (((-1035) (-225) (-566)) 50)) (-2075 (((-1035) (-225) (-566)) 49)) (-3996 (((-1035) (-225) (-566)) 48)) (-2399 (((-1035) (-225) (-566)) 47)) (-1794 (((-1035) (-566) (-225) (-169 (-225)) (-566) (-1157) (-566)) 46)) (-3601 (((-1035) (-1157) (-169 (-225)) (-1157) (-566)) 45)) (-1932 (((-1035) (-1157) (-169 (-225)) (-1157) (-566)) 44)) (-2392 (((-1035) (-225) (-169 (-225)) (-566) (-1157) (-566)) 43)) (-2736 (((-1035) (-225) (-169 (-225)) (-566) (-1157) (-566)) 42)) (-2243 (((-1035) (-225) (-566)) 39)) (-3128 (((-1035) (-225) (-566)) 38)) (-2270 (((-1035) (-225) (-566)) 37)) (-3435 (((-1035) (-225) (-566)) 36)) (-3262 (((-1035) (-225) (-566)) 35)) (-2588 (((-1035) (-225) (-566)) 34)) (-2092 (((-1035) (-225) (-566)) 33)) (-3447 (((-1035) (-225) (-566)) 32)) (-4220 (((-1035) (-225) (-566)) 31)) (-2928 (((-1035) (-225) (-566)) 30)) (-1560 (((-1035) (-225) (-225) (-225) (-566)) 29)) (-4215 (((-1035) (-225) (-566)) 28)) (-2828 (((-1035) (-225) (-566)) 27)) (-3846 (((-1035) (-225) (-566)) 26)) (-1881 (((-1035) (-225) (-566)) 25)) (-4003 (((-1035) (-225) (-566)) 24)) (-2720 (((-1035) (-169 (-225)) (-566)) 21))) +(((-758) (-10 -7 (-15 -2720 ((-1035) (-169 (-225)) (-566))) (-15 -4003 ((-1035) (-225) (-566))) (-15 -1881 ((-1035) (-225) (-566))) (-15 -3846 ((-1035) (-225) (-566))) (-15 -2828 ((-1035) (-225) (-566))) (-15 -4215 ((-1035) (-225) (-566))) (-15 -1560 ((-1035) (-225) (-225) (-225) (-566))) (-15 -2928 ((-1035) (-225) (-566))) (-15 -4220 ((-1035) (-225) (-566))) (-15 -3447 ((-1035) (-225) (-566))) (-15 -2092 ((-1035) (-225) (-566))) (-15 -2588 ((-1035) (-225) (-566))) (-15 -3262 ((-1035) (-225) (-566))) (-15 -3435 ((-1035) (-225) (-566))) (-15 -2270 ((-1035) (-225) (-566))) (-15 -3128 ((-1035) (-225) (-566))) (-15 -2243 ((-1035) (-225) (-566))) (-15 -2736 ((-1035) (-225) (-169 (-225)) (-566) (-1157) (-566))) (-15 -2392 ((-1035) (-225) (-169 (-225)) (-566) (-1157) (-566))) (-15 -1932 ((-1035) (-1157) (-169 (-225)) (-1157) (-566))) (-15 -3601 ((-1035) (-1157) (-169 (-225)) (-1157) (-566))) (-15 -1794 ((-1035) (-566) (-225) (-169 (-225)) (-566) (-1157) (-566))) (-15 -2399 ((-1035) (-225) (-566))) (-15 -3996 ((-1035) (-225) (-566))) (-15 -2075 ((-1035) (-225) (-566))) (-15 -1334 ((-1035) (-225) (-566))) (-15 -3682 ((-1035) (-225) (-169 (-225)) (-566) (-1157) (-566))) (-15 -1899 ((-1035) (-225) (-169 (-225)) (-566) (-1157) (-566))) (-15 -3584 ((-1035) (-225) (-566))) (-15 -4147 ((-1035) (-225) (-566))) (-15 -3671 ((-1035) (-225) (-566))) (-15 -1851 ((-1035) (-225) (-566))) (-15 -3564 ((-1035) (-225) (-566))) (-15 -3024 ((-1035) (-225) (-566))) (-15 -3634 ((-1035) (-225) (-225) (-566))) (-15 -3150 ((-1035) (-225) (-225) (-225) (-566))) (-15 -1311 ((-1035) (-225) (-225) (-225) (-566))) (-15 -3692 ((-1035) (-225) (-225) (-225) (-225) (-566))))) (T -758)) +((-3692 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-1311 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-3150 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-3634 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-3024 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-3564 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-1851 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-3671 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-4147 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-3584 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-1899 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-566)) (-5 *6 (-1157)) (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-3682 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-566)) (-5 *6 (-1157)) (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-1334 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-2075 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-3996 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-2399 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-1794 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-566)) (-5 *5 (-169 (-225))) (-5 *6 (-1157)) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-3601 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1157)) (-5 *4 (-169 (-225))) (-5 *5 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-1932 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1157)) (-5 *4 (-169 (-225))) (-5 *5 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-2392 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-566)) (-5 *6 (-1157)) (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-2736 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-566)) (-5 *6 (-1157)) (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-2243 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-3128 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-2270 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-3435 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-3262 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-2588 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-2092 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-3447 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-4220 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-2928 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-1560 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-4215 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-2828 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-1881 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-4003 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-2720 (*1 *2 *3 *4) (-12 (-5 *3 (-169 (-225))) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) +(-10 -7 (-15 -2720 ((-1035) (-169 (-225)) (-566))) (-15 -4003 ((-1035) (-225) (-566))) (-15 -1881 ((-1035) (-225) (-566))) (-15 -3846 ((-1035) (-225) (-566))) (-15 -2828 ((-1035) (-225) (-566))) (-15 -4215 ((-1035) (-225) (-566))) (-15 -1560 ((-1035) (-225) (-225) (-225) (-566))) (-15 -2928 ((-1035) (-225) (-566))) (-15 -4220 ((-1035) (-225) (-566))) (-15 -3447 ((-1035) (-225) (-566))) (-15 -2092 ((-1035) (-225) (-566))) (-15 -2588 ((-1035) (-225) (-566))) (-15 -3262 ((-1035) (-225) (-566))) (-15 -3435 ((-1035) (-225) (-566))) (-15 -2270 ((-1035) (-225) (-566))) (-15 -3128 ((-1035) (-225) (-566))) (-15 -2243 ((-1035) (-225) (-566))) (-15 -2736 ((-1035) (-225) (-169 (-225)) (-566) (-1157) (-566))) (-15 -2392 ((-1035) (-225) (-169 (-225)) (-566) (-1157) (-566))) (-15 -1932 ((-1035) (-1157) (-169 (-225)) (-1157) (-566))) (-15 -3601 ((-1035) (-1157) (-169 (-225)) (-1157) (-566))) (-15 -1794 ((-1035) (-566) (-225) (-169 (-225)) (-566) (-1157) (-566))) (-15 -2399 ((-1035) (-225) (-566))) (-15 -3996 ((-1035) (-225) (-566))) (-15 -2075 ((-1035) (-225) (-566))) (-15 -1334 ((-1035) (-225) (-566))) (-15 -3682 ((-1035) (-225) (-169 (-225)) (-566) (-1157) (-566))) (-15 -1899 ((-1035) (-225) (-169 (-225)) (-566) (-1157) (-566))) (-15 -3584 ((-1035) (-225) (-566))) (-15 -4147 ((-1035) (-225) (-566))) (-15 -3671 ((-1035) (-225) (-566))) (-15 -1851 ((-1035) (-225) (-566))) (-15 -3564 ((-1035) (-225) (-566))) (-15 -3024 ((-1035) (-225) (-566))) (-15 -3634 ((-1035) (-225) (-225) (-566))) (-15 -3150 ((-1035) (-225) (-225) (-225) (-566))) (-15 -1311 ((-1035) (-225) (-225) (-225) (-566))) (-15 -3692 ((-1035) (-225) (-225) (-225) (-225) (-566)))) +((-3858 (((-1269)) 21)) (-2691 (((-1157)) 32)) (-3481 (((-1157)) 31)) (-3666 (((-1103) (-1175) (-689 (-566))) 46) (((-1103) (-1175) (-689 (-225))) 42)) (-3557 (((-112)) 19)) (-3705 (((-1157) (-1157)) 35))) +(((-759) (-10 -7 (-15 -3481 ((-1157))) (-15 -2691 ((-1157))) (-15 -3705 ((-1157) (-1157))) (-15 -3666 ((-1103) (-1175) (-689 (-225)))) (-15 -3666 ((-1103) (-1175) (-689 (-566)))) (-15 -3557 ((-112))) (-15 -3858 ((-1269))))) (T -759)) +((-3858 (*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-759)))) (-3557 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-759)))) (-3666 (*1 *2 *3 *4) (-12 (-5 *3 (-1175)) (-5 *4 (-689 (-566))) (-5 *2 (-1103)) (-5 *1 (-759)))) (-3666 (*1 *2 *3 *4) (-12 (-5 *3 (-1175)) (-5 *4 (-689 (-225))) (-5 *2 (-1103)) (-5 *1 (-759)))) (-3705 (*1 *2 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-759)))) (-2691 (*1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-759)))) (-3481 (*1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-759))))) +(-10 -7 (-15 -3481 ((-1157))) (-15 -2691 ((-1157))) (-15 -3705 ((-1157) (-1157))) (-15 -3666 ((-1103) (-1175) (-689 (-225)))) (-15 -3666 ((-1103) (-1175) (-689 (-566)))) (-15 -3557 ((-112))) (-15 -3858 ((-1269)))) +((-3815 (($ $ $) 10)) (-1469 (($ $ $ $) 9)) (-1596 (($ $ $) 12))) +(((-760 |#1|) (-10 -8 (-15 -1596 (|#1| |#1| |#1|)) (-15 -3815 (|#1| |#1| |#1|)) (-15 -1469 (|#1| |#1| |#1| |#1|))) (-761)) (T -760)) +NIL +(-10 -8 (-15 -1596 (|#1| |#1| |#1|)) (-15 -3815 (|#1| |#1| |#1|)) (-15 -1469 (|#1| |#1| |#1| |#1|))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-3174 (((-3 $ "failed") $ $) 20)) (-1811 (($) 18 T CONST)) (-4370 (($ $ (-921)) 31)) (-3681 (($ $ (-921)) 32)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-3815 (($ $ $) 28)) (-2479 (((-862) $) 12)) (-3900 (((-112) $ $) 9)) (-1469 (($ $ $ $) 29)) (-1596 (($ $ $) 27)) (-2446 (($) 19 T CONST)) (-2952 (((-112) $ $) 6)) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 33)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 30))) (((-761) (-140)) (T -761)) -((-3348 (*1 *2) (-12 (-4 *1 (-761)) (-5 *2 (-769)))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-761))))) -(-13 (-759) (-720) (-10 -8 (-15 -3348 ((-769)) -1551) (-15 -2390 ($ (-564))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-860)) . T) ((-644 (-564)) . T) ((-718) . T) ((-720) . T) ((-759) . T) ((-1097) . T)) -((-2235 (((-642 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-564)) (|:| |outvect| (-642 (-687 (-169 |#1|)))))) (-687 (-169 (-407 (-564)))) |#1|) 33)) (-4348 (((-642 (-169 |#1|)) (-687 (-169 (-407 (-564)))) |#1|) 23)) (-1308 (((-950 (-169 (-407 (-564)))) (-687 (-169 (-407 (-564)))) (-1173)) 20) (((-950 (-169 (-407 (-564)))) (-687 (-169 (-407 (-564))))) 19))) -(((-762 |#1|) (-10 -7 (-15 -1308 ((-950 (-169 (-407 (-564)))) (-687 (-169 (-407 (-564)))))) (-15 -1308 ((-950 (-169 (-407 (-564)))) (-687 (-169 (-407 (-564)))) (-1173))) (-15 -4348 ((-642 (-169 |#1|)) (-687 (-169 (-407 (-564)))) |#1|)) (-15 -2235 ((-642 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-564)) (|:| |outvect| (-642 (-687 (-169 |#1|)))))) (-687 (-169 (-407 (-564)))) |#1|))) (-13 (-363) (-846))) (T -762)) -((-2235 (*1 *2 *3 *4) (-12 (-5 *3 (-687 (-169 (-407 (-564))))) (-5 *2 (-642 (-2 (|:| |outval| (-169 *4)) (|:| |outmult| (-564)) (|:| |outvect| (-642 (-687 (-169 *4))))))) (-5 *1 (-762 *4)) (-4 *4 (-13 (-363) (-846))))) (-4348 (*1 *2 *3 *4) (-12 (-5 *3 (-687 (-169 (-407 (-564))))) (-5 *2 (-642 (-169 *4))) (-5 *1 (-762 *4)) (-4 *4 (-13 (-363) (-846))))) (-1308 (*1 *2 *3 *4) (-12 (-5 *3 (-687 (-169 (-407 (-564))))) (-5 *4 (-1173)) (-5 *2 (-950 (-169 (-407 (-564))))) (-5 *1 (-762 *5)) (-4 *5 (-13 (-363) (-846))))) (-1308 (*1 *2 *3) (-12 (-5 *3 (-687 (-169 (-407 (-564))))) (-5 *2 (-950 (-169 (-407 (-564))))) (-5 *1 (-762 *4)) (-4 *4 (-13 (-363) (-846)))))) -(-10 -7 (-15 -1308 ((-950 (-169 (-407 (-564)))) (-687 (-169 (-407 (-564)))))) (-15 -1308 ((-950 (-169 (-407 (-564)))) (-687 (-169 (-407 (-564)))) (-1173))) (-15 -4348 ((-642 (-169 |#1|)) (-687 (-169 (-407 (-564)))) |#1|)) (-15 -2235 ((-642 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-564)) (|:| |outvect| (-642 (-687 (-169 |#1|)))))) (-687 (-169 (-407 (-564)))) |#1|))) -((-2202 (((-174 (-564)) |#1|) 27))) -(((-763 |#1|) (-10 -7 (-15 -2202 ((-174 (-564)) |#1|))) (-404)) (T -763)) -((-2202 (*1 *2 *3) (-12 (-5 *2 (-174 (-564))) (-5 *1 (-763 *3)) (-4 *3 (-404))))) -(-10 -7 (-15 -2202 ((-174 (-564)) |#1|))) -((-2316 ((|#1| |#1| |#1|) 28)) (-4282 ((|#1| |#1| |#1|) 27)) (-3869 ((|#1| |#1| |#1|) 38)) (-3101 ((|#1| |#1| |#1|) 34)) (-2764 (((-3 |#1| "failed") |#1| |#1|) 31)) (-2765 (((-2 (|:| -4332 |#1|) (|:| -1992 |#1|)) |#1| |#1|) 26))) -(((-764 |#1| |#2|) (-10 -7 (-15 -2765 ((-2 (|:| -4332 |#1|) (|:| -1992 |#1|)) |#1| |#1|)) (-15 -4282 (|#1| |#1| |#1|)) (-15 -2316 (|#1| |#1| |#1|)) (-15 -2764 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3101 (|#1| |#1| |#1|)) (-15 -3869 (|#1| |#1| |#1|))) (-706 |#2|) (-363)) (T -764)) -((-3869 (*1 *2 *2 *2) (-12 (-4 *3 (-363)) (-5 *1 (-764 *2 *3)) (-4 *2 (-706 *3)))) (-3101 (*1 *2 *2 *2) (-12 (-4 *3 (-363)) (-5 *1 (-764 *2 *3)) (-4 *2 (-706 *3)))) (-2764 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-363)) (-5 *1 (-764 *2 *3)) (-4 *2 (-706 *3)))) (-2316 (*1 *2 *2 *2) (-12 (-4 *3 (-363)) (-5 *1 (-764 *2 *3)) (-4 *2 (-706 *3)))) (-4282 (*1 *2 *2 *2) (-12 (-4 *3 (-363)) (-5 *1 (-764 *2 *3)) (-4 *2 (-706 *3)))) (-2765 (*1 *2 *3 *3) (-12 (-4 *4 (-363)) (-5 *2 (-2 (|:| -4332 *3) (|:| -1992 *3))) (-5 *1 (-764 *3 *4)) (-4 *3 (-706 *4))))) -(-10 -7 (-15 -2765 ((-2 (|:| -4332 |#1|) (|:| -1992 |#1|)) |#1| |#1|)) (-15 -4282 (|#1| |#1| |#1|)) (-15 -2316 (|#1| |#1| |#1|)) (-15 -2764 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3101 (|#1| |#1| |#1|)) (-15 -3869 (|#1| |#1| |#1|))) -((-1829 (((-689 (-1220)) $ (-1220)) 26)) (-3578 (((-689 (-549)) $ (-549)) 25)) (-2505 (((-769) $ (-128)) 27)) (-3900 (((-689 (-129)) $ (-129)) 24)) (-3998 (((-689 (-1220)) $) 12)) (-2222 (((-689 (-1218)) $) 8)) (-1832 (((-689 (-1217)) $) 10)) (-3157 (((-689 (-549)) $) 13)) (-1340 (((-689 (-547)) $) 9)) (-2698 (((-689 (-546)) $) 11)) (-2778 (((-769) $ (-128)) 7)) (-1350 (((-689 (-129)) $) 14)) (-1391 (((-112) $) 31)) (-1336 (((-689 $) |#1| (-952)) 32)) (-2914 (($ $) 6))) -(((-765 |#1|) (-140) (-1097)) (T -765)) -((-1336 (*1 *2 *3 *4) (-12 (-5 *4 (-952)) (-4 *3 (-1097)) (-5 *2 (-689 *1)) (-4 *1 (-765 *3)))) (-1391 (*1 *2 *1) (-12 (-4 *1 (-765 *3)) (-4 *3 (-1097)) (-5 *2 (-112))))) -(-13 (-576) (-10 -8 (-15 -1336 ((-689 $) |t#1| (-952))) (-15 -1391 ((-112) $)))) -(((-173) . T) ((-527) . T) ((-576) . T) ((-858) . T)) -((-1806 (((-2 (|:| -2131 (-687 (-564))) (|:| |basisDen| (-564)) (|:| |basisInv| (-687 (-564)))) (-564)) 71)) (-1315 (((-2 (|:| -2131 (-687 (-564))) (|:| |basisDen| (-564)) (|:| |basisInv| (-687 (-564))))) 69)) (-2790 (((-564)) 85))) -(((-766 |#1| |#2|) (-10 -7 (-15 -2790 ((-564))) (-15 -1315 ((-2 (|:| -2131 (-687 (-564))) (|:| |basisDen| (-564)) (|:| |basisInv| (-687 (-564)))))) (-15 -1806 ((-2 (|:| -2131 (-687 (-564))) (|:| |basisDen| (-564)) (|:| |basisInv| (-687 (-564)))) (-564)))) (-1238 (-564)) (-409 (-564) |#1|)) (T -766)) -((-1806 (*1 *2 *3) (-12 (-5 *3 (-564)) (-4 *4 (-1238 *3)) (-5 *2 (-2 (|:| -2131 (-687 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-687 *3)))) (-5 *1 (-766 *4 *5)) (-4 *5 (-409 *3 *4)))) (-1315 (*1 *2) (-12 (-4 *3 (-1238 (-564))) (-5 *2 (-2 (|:| -2131 (-687 (-564))) (|:| |basisDen| (-564)) (|:| |basisInv| (-687 (-564))))) (-5 *1 (-766 *3 *4)) (-4 *4 (-409 (-564) *3)))) (-2790 (*1 *2) (-12 (-4 *3 (-1238 *2)) (-5 *2 (-564)) (-5 *1 (-766 *3 *4)) (-4 *4 (-409 *2 *3))))) -(-10 -7 (-15 -2790 ((-564))) (-15 -1315 ((-2 (|:| -2131 (-687 (-564))) (|:| |basisDen| (-564)) (|:| |basisInv| (-687 (-564)))))) (-15 -1806 ((-2 (|:| -2131 (-687 (-564))) (|:| |basisDen| (-564)) (|:| |basisInv| (-687 (-564)))) (-564)))) -((-2856 (((-112) $ $) NIL)) (-1687 (((-3 (|:| |nia| (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -4138 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $) 21)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) 20) (($ (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 13) (($ (-2 (|:| |fn| (-316 (-225))) (|:| -4138 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -4138 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) 18)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-767) (-13 (-1097) (-10 -8 (-15 -2390 ($ (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2390 ($ (-2 (|:| |fn| (-316 (-225))) (|:| -4138 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2390 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -4138 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (-15 -1687 ((-3 (|:| |nia| (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -4138 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $))))) (T -767)) -((-2390 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-767)))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-316 (-225))) (|:| -4138 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-767)))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -4138 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-5 *1 (-767)))) (-1687 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -4138 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-5 *1 (-767))))) -(-13 (-1097) (-10 -8 (-15 -2390 ($ (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2390 ($ (-2 (|:| |fn| (-316 (-225))) (|:| -4138 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2390 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -4138 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (-15 -1687 ((-3 (|:| |nia| (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -4138 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $)))) -((-4013 (((-642 (-642 (-294 (-407 (-950 |#1|))))) (-642 (-950 |#1|))) 18) (((-642 (-642 (-294 (-407 (-950 |#1|))))) (-642 (-950 |#1|)) (-642 (-1173))) 17)) (-1577 (((-642 (-642 (-294 (-407 (-950 |#1|))))) (-642 (-950 |#1|))) 20) (((-642 (-642 (-294 (-407 (-950 |#1|))))) (-642 (-950 |#1|)) (-642 (-1173))) 19))) -(((-768 |#1|) (-10 -7 (-15 -4013 ((-642 (-642 (-294 (-407 (-950 |#1|))))) (-642 (-950 |#1|)) (-642 (-1173)))) (-15 -4013 ((-642 (-642 (-294 (-407 (-950 |#1|))))) (-642 (-950 |#1|)))) (-15 -1577 ((-642 (-642 (-294 (-407 (-950 |#1|))))) (-642 (-950 |#1|)) (-642 (-1173)))) (-15 -1577 ((-642 (-642 (-294 (-407 (-950 |#1|))))) (-642 (-950 |#1|))))) (-556)) (T -768)) -((-1577 (*1 *2 *3) (-12 (-5 *3 (-642 (-950 *4))) (-4 *4 (-556)) (-5 *2 (-642 (-642 (-294 (-407 (-950 *4)))))) (-5 *1 (-768 *4)))) (-1577 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-950 *5))) (-5 *4 (-642 (-1173))) (-4 *5 (-556)) (-5 *2 (-642 (-642 (-294 (-407 (-950 *5)))))) (-5 *1 (-768 *5)))) (-4013 (*1 *2 *3) (-12 (-5 *3 (-642 (-950 *4))) (-4 *4 (-556)) (-5 *2 (-642 (-642 (-294 (-407 (-950 *4)))))) (-5 *1 (-768 *4)))) (-4013 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-950 *5))) (-5 *4 (-642 (-1173))) (-4 *5 (-556)) (-5 *2 (-642 (-642 (-294 (-407 (-950 *5)))))) (-5 *1 (-768 *5))))) -(-10 -7 (-15 -4013 ((-642 (-642 (-294 (-407 (-950 |#1|))))) (-642 (-950 |#1|)) (-642 (-1173)))) (-15 -4013 ((-642 (-642 (-294 (-407 (-950 |#1|))))) (-642 (-950 |#1|)))) (-15 -1577 ((-642 (-642 (-294 (-407 (-950 |#1|))))) (-642 (-950 |#1|)) (-642 (-1173)))) (-15 -1577 ((-642 (-642 (-294 (-407 (-950 |#1|))))) (-642 (-950 |#1|))))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-2247 (($ $ $) 10)) (-3085 (((-3 $ "failed") $ $) 15)) (-2966 (($ $ (-564)) 11)) (-2822 (($) NIL T CONST)) (-2796 (($ $ $) NIL)) (-2675 (((-3 $ "failed") $) NIL)) (-3235 (($ $) NIL)) (-2808 (($ $ $) NIL)) (-3163 (((-112) $) NIL)) (-3225 (($ $ $) NIL)) (-2903 (($ $ $) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2105 (($ $ $) NIL)) (-2842 (((-3 $ "failed") $ $) NIL)) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL)) (-2390 (((-860) $) NIL)) (-1600 (((-112) $ $) NIL)) (-2361 (($) 6 T CONST)) (-2371 (($) NIL T CONST)) (-2881 (((-112) $ $) NIL)) (-2857 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL)) (-2868 (((-112) $ $) NIL)) (-2844 (((-112) $ $) NIL)) (-2917 (($ $ $) NIL)) (** (($ $ (-769)) NIL) (($ $ (-919)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ $ $) NIL))) -(((-769) (-13 (-791) (-724) (-10 -8 (-15 -2808 ($ $ $)) (-15 -2796 ($ $ $)) (-15 -2105 ($ $ $)) (-15 -2999 ((-2 (|:| -4332 $) (|:| -1992 $)) $ $)) (-15 -2842 ((-3 $ "failed") $ $)) (-15 -2966 ($ $ (-564))) (-15 -3235 ($ $)) (-6 (-4412 "*"))))) (T -769)) -((-2808 (*1 *1 *1 *1) (-5 *1 (-769))) (-2796 (*1 *1 *1 *1) (-5 *1 (-769))) (-2105 (*1 *1 *1 *1) (-5 *1 (-769))) (-2999 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4332 (-769)) (|:| -1992 (-769)))) (-5 *1 (-769)))) (-2842 (*1 *1 *1 *1) (|partial| -5 *1 (-769))) (-2966 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-769)))) (-3235 (*1 *1 *1) (-5 *1 (-769)))) -(-13 (-791) (-724) (-10 -8 (-15 -2808 ($ $ $)) (-15 -2796 ($ $ $)) (-15 -2105 ($ $ $)) (-15 -2999 ((-2 (|:| -4332 $) (|:| -1992 $)) $ $)) (-15 -2842 ((-3 $ "failed") $ $)) (-15 -2966 ($ $ (-564))) (-15 -3235 ($ $)) (-6 (-4412 "*")))) +((-1469 (*1 *1 *1 *1 *1) (-4 *1 (-761))) (-3815 (*1 *1 *1 *1) (-4 *1 (-761))) (-1596 (*1 *1 *1 *1) (-4 *1 (-761)))) +(-13 (-21) (-720) (-10 -8 (-15 -1469 ($ $ $ $)) (-15 -3815 ($ $ $)) (-15 -1596 ($ $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-720) . T) ((-1099) . T)) +((-2479 (((-862) $) NIL) (($ (-566)) 10))) +(((-762 |#1|) (-10 -8 (-15 -2479 (|#1| (-566))) (-15 -2479 ((-862) |#1|))) (-763)) (T -762)) +NIL +(-10 -8 (-15 -2479 (|#1| (-566))) (-15 -2479 ((-862) |#1|))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-3174 (((-3 $ "failed") $ $) 20)) (-1811 (($) 18 T CONST)) (-4347 (((-3 $ "failed") $) 43)) (-4370 (($ $ (-921)) 31) (($ $ (-771)) 38)) (-3757 (((-3 $ "failed") $) 41)) (-2264 (((-112) $) 37)) (-4252 (((-3 $ "failed") $) 42)) (-3681 (($ $ (-921)) 32) (($ $ (-771)) 39)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-3815 (($ $ $) 28)) (-2479 (((-862) $) 12) (($ (-566)) 34)) (-1558 (((-771)) 35 T CONST)) (-3900 (((-112) $ $) 9)) (-1469 (($ $ $ $) 29)) (-1596 (($ $ $) 27)) (-2446 (($) 19 T CONST)) (-2459 (($) 36 T CONST)) (-2952 (((-112) $ $) 6)) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 33) (($ $ (-771)) 40)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 30))) +(((-763) (-140)) (T -763)) +((-1558 (*1 *2) (-12 (-4 *1 (-763)) (-5 *2 (-771)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-763))))) +(-13 (-761) (-722) (-10 -8 (-15 -1558 ((-771)) -1573) (-15 -2479 ($ (-566))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-720) . T) ((-722) . T) ((-761) . T) ((-1099) . T)) +((-2775 (((-644 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-566)) (|:| |outvect| (-644 (-689 (-169 |#1|)))))) (-689 (-169 (-409 (-566)))) |#1|) 33)) (-4209 (((-644 (-169 |#1|)) (-689 (-169 (-409 (-566)))) |#1|) 23)) (-3728 (((-952 (-169 (-409 (-566)))) (-689 (-169 (-409 (-566)))) (-1175)) 20) (((-952 (-169 (-409 (-566)))) (-689 (-169 (-409 (-566))))) 19))) +(((-764 |#1|) (-10 -7 (-15 -3728 ((-952 (-169 (-409 (-566)))) (-689 (-169 (-409 (-566)))))) (-15 -3728 ((-952 (-169 (-409 (-566)))) (-689 (-169 (-409 (-566)))) (-1175))) (-15 -4209 ((-644 (-169 |#1|)) (-689 (-169 (-409 (-566)))) |#1|)) (-15 -2775 ((-644 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-566)) (|:| |outvect| (-644 (-689 (-169 |#1|)))))) (-689 (-169 (-409 (-566)))) |#1|))) (-13 (-365) (-848))) (T -764)) +((-2775 (*1 *2 *3 *4) (-12 (-5 *3 (-689 (-169 (-409 (-566))))) (-5 *2 (-644 (-2 (|:| |outval| (-169 *4)) (|:| |outmult| (-566)) (|:| |outvect| (-644 (-689 (-169 *4))))))) (-5 *1 (-764 *4)) (-4 *4 (-13 (-365) (-848))))) (-4209 (*1 *2 *3 *4) (-12 (-5 *3 (-689 (-169 (-409 (-566))))) (-5 *2 (-644 (-169 *4))) (-5 *1 (-764 *4)) (-4 *4 (-13 (-365) (-848))))) (-3728 (*1 *2 *3 *4) (-12 (-5 *3 (-689 (-169 (-409 (-566))))) (-5 *4 (-1175)) (-5 *2 (-952 (-169 (-409 (-566))))) (-5 *1 (-764 *5)) (-4 *5 (-13 (-365) (-848))))) (-3728 (*1 *2 *3) (-12 (-5 *3 (-689 (-169 (-409 (-566))))) (-5 *2 (-952 (-169 (-409 (-566))))) (-5 *1 (-764 *4)) (-4 *4 (-13 (-365) (-848)))))) +(-10 -7 (-15 -3728 ((-952 (-169 (-409 (-566)))) (-689 (-169 (-409 (-566)))))) (-15 -3728 ((-952 (-169 (-409 (-566)))) (-689 (-169 (-409 (-566)))) (-1175))) (-15 -4209 ((-644 (-169 |#1|)) (-689 (-169 (-409 (-566)))) |#1|)) (-15 -2775 ((-644 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-566)) (|:| |outvect| (-644 (-689 (-169 |#1|)))))) (-689 (-169 (-409 (-566)))) |#1|))) +((-3253 (((-174 (-566)) |#1|) 27))) +(((-765 |#1|) (-10 -7 (-15 -3253 ((-174 (-566)) |#1|))) (-406)) (T -765)) +((-3253 (*1 *2 *3) (-12 (-5 *2 (-174 (-566))) (-5 *1 (-765 *3)) (-4 *3 (-406))))) +(-10 -7 (-15 -3253 ((-174 (-566)) |#1|))) +((-2069 ((|#1| |#1| |#1|) 28)) (-2367 ((|#1| |#1| |#1|) 27)) (-3590 ((|#1| |#1| |#1|) 38)) (-4274 ((|#1| |#1| |#1|) 34)) (-3783 (((-3 |#1| "failed") |#1| |#1|) 31)) (-3709 (((-2 (|:| -3371 |#1|) (|:| -3131 |#1|)) |#1| |#1|) 26))) +(((-766 |#1| |#2|) (-10 -7 (-15 -3709 ((-2 (|:| -3371 |#1|) (|:| -3131 |#1|)) |#1| |#1|)) (-15 -2367 (|#1| |#1| |#1|)) (-15 -2069 (|#1| |#1| |#1|)) (-15 -3783 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4274 (|#1| |#1| |#1|)) (-15 -3590 (|#1| |#1| |#1|))) (-708 |#2|) (-365)) (T -766)) +((-3590 (*1 *2 *2 *2) (-12 (-4 *3 (-365)) (-5 *1 (-766 *2 *3)) (-4 *2 (-708 *3)))) (-4274 (*1 *2 *2 *2) (-12 (-4 *3 (-365)) (-5 *1 (-766 *2 *3)) (-4 *2 (-708 *3)))) (-3783 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-365)) (-5 *1 (-766 *2 *3)) (-4 *2 (-708 *3)))) (-2069 (*1 *2 *2 *2) (-12 (-4 *3 (-365)) (-5 *1 (-766 *2 *3)) (-4 *2 (-708 *3)))) (-2367 (*1 *2 *2 *2) (-12 (-4 *3 (-365)) (-5 *1 (-766 *2 *3)) (-4 *2 (-708 *3)))) (-3709 (*1 *2 *3 *3) (-12 (-4 *4 (-365)) (-5 *2 (-2 (|:| -3371 *3) (|:| -3131 *3))) (-5 *1 (-766 *3 *4)) (-4 *3 (-708 *4))))) +(-10 -7 (-15 -3709 ((-2 (|:| -3371 |#1|) (|:| -3131 |#1|)) |#1| |#1|)) (-15 -2367 (|#1| |#1| |#1|)) (-15 -2069 (|#1| |#1| |#1|)) (-15 -3783 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4274 (|#1| |#1| |#1|)) (-15 -3590 (|#1| |#1| |#1|))) +((-3354 (((-691 (-1222)) $ (-1222)) 26)) (-3162 (((-691 (-551)) $ (-551)) 25)) (-3130 (((-771) $ (-128)) 27)) (-1947 (((-691 (-129)) $ (-129)) 24)) (-2771 (((-691 (-1222)) $) 12)) (-3185 (((-691 (-1220)) $) 8)) (-1836 (((-691 (-1219)) $) 10)) (-3394 (((-691 (-551)) $) 13)) (-2836 (((-691 (-549)) $) 9)) (-3338 (((-691 (-548)) $) 11)) (-1733 (((-771) $ (-128)) 7)) (-2380 (((-691 (-129)) $) 14)) (-3816 (((-112) $) 31)) (-3587 (((-691 $) |#1| (-954)) 32)) (-2313 (($ $) 6))) +(((-767 |#1|) (-140) (-1099)) (T -767)) +((-3587 (*1 *2 *3 *4) (-12 (-5 *4 (-954)) (-4 *3 (-1099)) (-5 *2 (-691 *1)) (-4 *1 (-767 *3)))) (-3816 (*1 *2 *1) (-12 (-4 *1 (-767 *3)) (-4 *3 (-1099)) (-5 *2 (-112))))) +(-13 (-578) (-10 -8 (-15 -3587 ((-691 $) |t#1| (-954))) (-15 -3816 ((-112) $)))) +(((-173) . T) ((-529) . T) ((-578) . T) ((-860) . T)) +((-3459 (((-2 (|:| -1419 (-689 (-566))) (|:| |basisDen| (-566)) (|:| |basisInv| (-689 (-566)))) (-566)) 71)) (-2500 (((-2 (|:| -1419 (-689 (-566))) (|:| |basisDen| (-566)) (|:| |basisInv| (-689 (-566))))) 69)) (-3553 (((-566)) 85))) +(((-768 |#1| |#2|) (-10 -7 (-15 -3553 ((-566))) (-15 -2500 ((-2 (|:| -1419 (-689 (-566))) (|:| |basisDen| (-566)) (|:| |basisInv| (-689 (-566)))))) (-15 -3459 ((-2 (|:| -1419 (-689 (-566))) (|:| |basisDen| (-566)) (|:| |basisInv| (-689 (-566)))) (-566)))) (-1240 (-566)) (-411 (-566) |#1|)) (T -768)) +((-3459 (*1 *2 *3) (-12 (-5 *3 (-566)) (-4 *4 (-1240 *3)) (-5 *2 (-2 (|:| -1419 (-689 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-689 *3)))) (-5 *1 (-768 *4 *5)) (-4 *5 (-411 *3 *4)))) (-2500 (*1 *2) (-12 (-4 *3 (-1240 (-566))) (-5 *2 (-2 (|:| -1419 (-689 (-566))) (|:| |basisDen| (-566)) (|:| |basisInv| (-689 (-566))))) (-5 *1 (-768 *3 *4)) (-4 *4 (-411 (-566) *3)))) (-3553 (*1 *2) (-12 (-4 *3 (-1240 *2)) (-5 *2 (-566)) (-5 *1 (-768 *3 *4)) (-4 *4 (-411 *2 *3))))) +(-10 -7 (-15 -3553 ((-566))) (-15 -2500 ((-2 (|:| -1419 (-689 (-566))) (|:| |basisDen| (-566)) (|:| |basisInv| (-689 (-566)))))) (-15 -3459 ((-2 (|:| -1419 (-689 (-566))) (|:| |basisDen| (-566)) (|:| |basisInv| (-689 (-566)))) (-566)))) +((-2986 (((-112) $ $) NIL)) (-1709 (((-3 (|:| |nia| (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -1680 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $) 21)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) 20) (($ (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 13) (($ (-2 (|:| |fn| (-317 (-225))) (|:| -1680 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -1680 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) 18)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-769) (-13 (-1099) (-10 -8 (-15 -2479 ($ (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2479 ($ (-2 (|:| |fn| (-317 (-225))) (|:| -1680 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2479 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -1680 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (-15 -1709 ((-3 (|:| |nia| (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -1680 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $))))) (T -769)) +((-2479 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-769)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-317 (-225))) (|:| -1680 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-769)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -1680 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-5 *1 (-769)))) (-1709 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -1680 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-5 *1 (-769))))) +(-13 (-1099) (-10 -8 (-15 -2479 ($ (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2479 ($ (-2 (|:| |fn| (-317 (-225))) (|:| -1680 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2479 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -1680 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (-15 -1709 ((-3 (|:| |nia| (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -1680 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $)))) +((-4350 (((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-952 |#1|))) 18) (((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-952 |#1|)) (-644 (-1175))) 17)) (-1916 (((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-952 |#1|))) 20) (((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-952 |#1|)) (-644 (-1175))) 19))) +(((-770 |#1|) (-10 -7 (-15 -4350 ((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-952 |#1|)) (-644 (-1175)))) (-15 -4350 ((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-952 |#1|)))) (-15 -1916 ((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-952 |#1|)) (-644 (-1175)))) (-15 -1916 ((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-952 |#1|))))) (-558)) (T -770)) +((-1916 (*1 *2 *3) (-12 (-5 *3 (-644 (-952 *4))) (-4 *4 (-558)) (-5 *2 (-644 (-644 (-295 (-409 (-952 *4)))))) (-5 *1 (-770 *4)))) (-1916 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-644 (-1175))) (-4 *5 (-558)) (-5 *2 (-644 (-644 (-295 (-409 (-952 *5)))))) (-5 *1 (-770 *5)))) (-4350 (*1 *2 *3) (-12 (-5 *3 (-644 (-952 *4))) (-4 *4 (-558)) (-5 *2 (-644 (-644 (-295 (-409 (-952 *4)))))) (-5 *1 (-770 *4)))) (-4350 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-644 (-1175))) (-4 *5 (-558)) (-5 *2 (-644 (-644 (-295 (-409 (-952 *5)))))) (-5 *1 (-770 *5))))) +(-10 -7 (-15 -4350 ((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-952 |#1|)) (-644 (-1175)))) (-15 -4350 ((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-952 |#1|)))) (-15 -1916 ((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-952 |#1|)) (-644 (-1175)))) (-15 -1916 ((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-952 |#1|))))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-4047 (($ $ $) 10)) (-3174 (((-3 $ "failed") $ $) 15)) (-3099 (($ $ (-566)) 11)) (-1811 (($) NIL T CONST)) (-2925 (($ $ $) NIL)) (-3757 (((-3 $ "failed") $) NIL)) (-1415 (($ $) NIL)) (-2937 (($ $ $) NIL)) (-2264 (((-112) $) NIL)) (-1920 (($ $ $) NIL)) (-3038 (($ $ $) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2162 (($ $ $) NIL)) (-2976 (((-3 $ "failed") $ $) NIL)) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL)) (-2479 (((-862) $) NIL)) (-3900 (((-112) $ $) NIL)) (-2446 (($) 6 T CONST)) (-2459 (($) NIL T CONST)) (-3019 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3004 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-3052 (($ $ $) NIL)) (** (($ $ (-771)) NIL) (($ $ (-921)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ $ $) NIL))) +(((-771) (-13 (-793) (-726) (-10 -8 (-15 -2937 ($ $ $)) (-15 -2925 ($ $ $)) (-15 -2162 ($ $ $)) (-15 -1510 ((-2 (|:| -3371 $) (|:| -3131 $)) $ $)) (-15 -2976 ((-3 $ "failed") $ $)) (-15 -3099 ($ $ (-566))) (-15 -1415 ($ $)) (-6 (-4419 "*"))))) (T -771)) +((-2937 (*1 *1 *1 *1) (-5 *1 (-771))) (-2925 (*1 *1 *1 *1) (-5 *1 (-771))) (-2162 (*1 *1 *1 *1) (-5 *1 (-771))) (-1510 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3371 (-771)) (|:| -3131 (-771)))) (-5 *1 (-771)))) (-2976 (*1 *1 *1 *1) (|partial| -5 *1 (-771))) (-3099 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-771)))) (-1415 (*1 *1 *1) (-5 *1 (-771)))) +(-13 (-793) (-726) (-10 -8 (-15 -2937 ($ $ $)) (-15 -2925 ($ $ $)) (-15 -2162 ($ $ $)) (-15 -1510 ((-2 (|:| -3371 $) (|:| -3131 $)) $ $)) (-15 -2976 ((-3 $ "failed") $ $)) (-15 -3099 ($ $ (-566))) (-15 -1415 ($ $)) (-6 (-4419 "*")))) ((|Integer|) (>= |#1| 0)) -((-1577 (((-3 |#2| "failed") |#2| |#2| (-114) (-1173)) 37))) -(((-770 |#1| |#2|) (-10 -7 (-15 -1577 ((-3 |#2| "failed") |#2| |#2| (-114) (-1173)))) (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147)) (-13 (-29 |#1|) (-1197) (-957))) (T -770)) -((-1577 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1173)) (-4 *5 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147))) (-5 *1 (-770 *5 *2)) (-4 *2 (-13 (-29 *5) (-1197) (-957)))))) -(-10 -7 (-15 -1577 ((-3 |#2| "failed") |#2| |#2| (-114) (-1173)))) -((-2390 (((-772) |#1|) 8))) -(((-771 |#1|) (-10 -7 (-15 -2390 ((-772) |#1|))) (-1212)) (T -771)) -((-2390 (*1 *2 *3) (-12 (-5 *2 (-772)) (-5 *1 (-771 *3)) (-4 *3 (-1212))))) -(-10 -7 (-15 -2390 ((-772) |#1|))) -((-2856 (((-112) $ $) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) 7)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) 9))) -(((-772) (-1097)) (T -772)) -NIL -(-1097) -((-2573 ((|#2| |#4|) 35))) -(((-773 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2573 (|#2| |#4|))) (-452) (-1238 |#1|) (-722 |#1| |#2|) (-1238 |#3|)) (T -773)) -((-2573 (*1 *2 *3) (-12 (-4 *4 (-452)) (-4 *5 (-722 *4 *2)) (-4 *2 (-1238 *4)) (-5 *1 (-773 *4 *2 *5 *3)) (-4 *3 (-1238 *5))))) -(-10 -7 (-15 -2573 (|#2| |#4|))) -((-2675 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57)) (-3026 (((-1267) (-1155) (-1155) |#4| |#5|) 33)) (-1337 ((|#4| |#4| |#5|) 74)) (-2867 (((-642 (-2 (|:| |val| |#4|) (|:| -2138 |#5|))) |#4| |#5|) 79)) (-3958 (((-642 (-2 (|:| |val| (-112)) (|:| -2138 |#5|))) |#4| |#5|) 16))) -(((-774 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2675 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -1337 (|#4| |#4| |#5|)) (-15 -2867 ((-642 (-2 (|:| |val| |#4|) (|:| -2138 |#5|))) |#4| |#5|)) (-15 -3026 ((-1267) (-1155) (-1155) |#4| |#5|)) (-15 -3958 ((-642 (-2 (|:| |val| (-112)) (|:| -2138 |#5|))) |#4| |#5|))) (-452) (-791) (-848) (-1062 |#1| |#2| |#3|) (-1068 |#1| |#2| |#3| |#4|)) (T -774)) -((-3958 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-642 (-2 (|:| |val| (-112)) (|:| -2138 *4)))) (-5 *1 (-774 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))) (-3026 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1155)) (-4 *6 (-452)) (-4 *7 (-791)) (-4 *8 (-848)) (-4 *4 (-1062 *6 *7 *8)) (-5 *2 (-1267)) (-5 *1 (-774 *6 *7 *8 *4 *5)) (-4 *5 (-1068 *6 *7 *8 *4)))) (-2867 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-642 (-2 (|:| |val| *3) (|:| -2138 *4)))) (-5 *1 (-774 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))) (-1337 (*1 *2 *2 *3) (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *2 (-1062 *4 *5 *6)) (-5 *1 (-774 *4 *5 *6 *2 *3)) (-4 *3 (-1068 *4 *5 *6 *2)))) (-2675 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-774 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3))))) -(-10 -7 (-15 -2675 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -1337 (|#4| |#4| |#5|)) (-15 -2867 ((-642 (-2 (|:| |val| |#4|) (|:| -2138 |#5|))) |#4| |#5|)) (-15 -3026 ((-1267) (-1155) (-1155) |#4| |#5|)) (-15 -3958 ((-642 (-2 (|:| |val| (-112)) (|:| -2138 |#5|))) |#4| |#5|))) -((-2849 (((-3 (-1169 (-1169 |#1|)) "failed") |#4|) 53)) (-1956 (((-642 |#4|) |#4|) 24)) (-1620 ((|#4| |#4|) 19))) -(((-775 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1956 ((-642 |#4|) |#4|)) (-15 -2849 ((-3 (-1169 (-1169 |#1|)) "failed") |#4|)) (-15 -1620 (|#4| |#4|))) (-349) (-329 |#1|) (-1238 |#2|) (-1238 |#3|) (-919)) (T -775)) -((-1620 (*1 *2 *2) (-12 (-4 *3 (-349)) (-4 *4 (-329 *3)) (-4 *5 (-1238 *4)) (-5 *1 (-775 *3 *4 *5 *2 *6)) (-4 *2 (-1238 *5)) (-14 *6 (-919)))) (-2849 (*1 *2 *3) (|partial| -12 (-4 *4 (-349)) (-4 *5 (-329 *4)) (-4 *6 (-1238 *5)) (-5 *2 (-1169 (-1169 *4))) (-5 *1 (-775 *4 *5 *6 *3 *7)) (-4 *3 (-1238 *6)) (-14 *7 (-919)))) (-1956 (*1 *2 *3) (-12 (-4 *4 (-349)) (-4 *5 (-329 *4)) (-4 *6 (-1238 *5)) (-5 *2 (-642 *3)) (-5 *1 (-775 *4 *5 *6 *3 *7)) (-4 *3 (-1238 *6)) (-14 *7 (-919))))) -(-10 -7 (-15 -1956 ((-642 |#4|) |#4|)) (-15 -2849 ((-3 (-1169 (-1169 |#1|)) "failed") |#4|)) (-15 -1620 (|#4| |#4|))) -((-3706 (((-2 (|:| |deter| (-642 (-1169 |#5|))) (|:| |dterm| (-642 (-642 (-2 (|:| -3636 (-769)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-642 |#1|)) (|:| |nlead| (-642 |#5|))) (-1169 |#5|) (-642 |#1|) (-642 |#5|)) 75)) (-1705 (((-642 (-769)) |#1|) 20))) -(((-776 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3706 ((-2 (|:| |deter| (-642 (-1169 |#5|))) (|:| |dterm| (-642 (-642 (-2 (|:| -3636 (-769)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-642 |#1|)) (|:| |nlead| (-642 |#5|))) (-1169 |#5|) (-642 |#1|) (-642 |#5|))) (-15 -1705 ((-642 (-769)) |#1|))) (-1238 |#4|) (-791) (-848) (-307) (-947 |#4| |#2| |#3|)) (T -776)) -((-1705 (*1 *2 *3) (-12 (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-307)) (-5 *2 (-642 (-769))) (-5 *1 (-776 *3 *4 *5 *6 *7)) (-4 *3 (-1238 *6)) (-4 *7 (-947 *6 *4 *5)))) (-3706 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1238 *9)) (-4 *7 (-791)) (-4 *8 (-848)) (-4 *9 (-307)) (-4 *10 (-947 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-642 (-1169 *10))) (|:| |dterm| (-642 (-642 (-2 (|:| -3636 (-769)) (|:| |pcoef| *10))))) (|:| |nfacts| (-642 *6)) (|:| |nlead| (-642 *10)))) (-5 *1 (-776 *6 *7 *8 *9 *10)) (-5 *3 (-1169 *10)) (-5 *4 (-642 *6)) (-5 *5 (-642 *10))))) -(-10 -7 (-15 -3706 ((-2 (|:| |deter| (-642 (-1169 |#5|))) (|:| |dterm| (-642 (-642 (-2 (|:| -3636 (-769)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-642 |#1|)) (|:| |nlead| (-642 |#5|))) (-1169 |#5|) (-642 |#1|) (-642 |#5|))) (-15 -1705 ((-642 (-769)) |#1|))) -((-2976 (((-642 (-2 (|:| |outval| |#1|) (|:| |outmult| (-564)) (|:| |outvect| (-642 (-687 |#1|))))) (-687 (-407 (-564))) |#1|) 31)) (-3747 (((-642 |#1|) (-687 (-407 (-564))) |#1|) 21)) (-1308 (((-950 (-407 (-564))) (-687 (-407 (-564))) (-1173)) 18) (((-950 (-407 (-564))) (-687 (-407 (-564)))) 17))) -(((-777 |#1|) (-10 -7 (-15 -1308 ((-950 (-407 (-564))) (-687 (-407 (-564))))) (-15 -1308 ((-950 (-407 (-564))) (-687 (-407 (-564))) (-1173))) (-15 -3747 ((-642 |#1|) (-687 (-407 (-564))) |#1|)) (-15 -2976 ((-642 (-2 (|:| |outval| |#1|) (|:| |outmult| (-564)) (|:| |outvect| (-642 (-687 |#1|))))) (-687 (-407 (-564))) |#1|))) (-13 (-363) (-846))) (T -777)) -((-2976 (*1 *2 *3 *4) (-12 (-5 *3 (-687 (-407 (-564)))) (-5 *2 (-642 (-2 (|:| |outval| *4) (|:| |outmult| (-564)) (|:| |outvect| (-642 (-687 *4)))))) (-5 *1 (-777 *4)) (-4 *4 (-13 (-363) (-846))))) (-3747 (*1 *2 *3 *4) (-12 (-5 *3 (-687 (-407 (-564)))) (-5 *2 (-642 *4)) (-5 *1 (-777 *4)) (-4 *4 (-13 (-363) (-846))))) (-1308 (*1 *2 *3 *4) (-12 (-5 *3 (-687 (-407 (-564)))) (-5 *4 (-1173)) (-5 *2 (-950 (-407 (-564)))) (-5 *1 (-777 *5)) (-4 *5 (-13 (-363) (-846))))) (-1308 (*1 *2 *3) (-12 (-5 *3 (-687 (-407 (-564)))) (-5 *2 (-950 (-407 (-564)))) (-5 *1 (-777 *4)) (-4 *4 (-13 (-363) (-846)))))) -(-10 -7 (-15 -1308 ((-950 (-407 (-564))) (-687 (-407 (-564))))) (-15 -1308 ((-950 (-407 (-564))) (-687 (-407 (-564))) (-1173))) (-15 -3747 ((-642 |#1|) (-687 (-407 (-564))) |#1|)) (-15 -2976 ((-642 (-2 (|:| |outval| |#1|) (|:| |outmult| (-564)) (|:| |outvect| (-642 (-687 |#1|))))) (-687 (-407 (-564))) |#1|))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) 36)) (-2397 (((-642 |#2|) $) NIL)) (-2223 (((-1169 $) $ |#2|) NIL) (((-1169 |#1|) $) NIL)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-4252 (($ $) NIL (|has| |#1| (-556)))) (-1722 (((-112) $) NIL (|has| |#1| (-556)))) (-4035 (((-769) $) NIL) (((-769) $ (-642 |#2|)) NIL)) (-3107 (($ $) 30)) (-3835 (((-112) $ $) NIL)) (-3085 (((-3 $ "failed") $ $) NIL)) (-2106 (($ $ $) 110 (|has| |#1| (-556)))) (-2557 (((-642 $) $ $) 123 (|has| |#1| (-556)))) (-4297 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-1993 (($ $) NIL (|has| |#1| (-452)))) (-3282 (((-418 $) $) NIL (|has| |#1| (-452)))) (-3267 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-2822 (($) NIL T CONST)) (-2849 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1036 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1036 (-564)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-950 (-407 (-564)))) NIL (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#2| (-612 (-1173))))) (((-3 $ "failed") (-950 (-564))) NIL (-2682 (-12 (|has| |#1| (-38 (-564))) (|has| |#2| (-612 (-1173))) (-2307 (|has| |#1| (-38 (-407 (-564)))))) (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#2| (-612 (-1173)))))) (((-3 $ "failed") (-950 |#1|)) NIL (-2682 (-12 (|has| |#2| (-612 (-1173))) (-2307 (|has| |#1| (-38 (-407 (-564))))) (-2307 (|has| |#1| (-38 (-564))))) (-12 (|has| |#1| (-38 (-564))) (|has| |#2| (-612 (-1173))) (-2307 (|has| |#1| (-38 (-407 (-564))))) (-2307 (|has| |#1| (-545)))) (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#2| (-612 (-1173))) (-2307 (|has| |#1| (-990 (-564))))))) (((-3 (-1122 |#1| |#2|) "failed") $) 21)) (-1687 ((|#1| $) NIL) (((-407 (-564)) $) NIL (|has| |#1| (-1036 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1036 (-564)))) ((|#2| $) NIL) (($ (-950 (-407 (-564)))) NIL (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#2| (-612 (-1173))))) (($ (-950 (-564))) NIL (-2682 (-12 (|has| |#1| (-38 (-564))) (|has| |#2| (-612 (-1173))) (-2307 (|has| |#1| (-38 (-407 (-564)))))) (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#2| (-612 (-1173)))))) (($ (-950 |#1|)) NIL (-2682 (-12 (|has| |#2| (-612 (-1173))) (-2307 (|has| |#1| (-38 (-407 (-564))))) (-2307 (|has| |#1| (-38 (-564))))) (-12 (|has| |#1| (-38 (-564))) (|has| |#2| (-612 (-1173))) (-2307 (|has| |#1| (-38 (-407 (-564))))) (-2307 (|has| |#1| (-545)))) (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#2| (-612 (-1173))) (-2307 (|has| |#1| (-990 (-564))))))) (((-1122 |#1| |#2|) $) NIL)) (-3710 (($ $ $ |#2|) NIL (|has| |#1| (-172))) (($ $ $) 121 (|has| |#1| (-556)))) (-3459 (($ $) NIL) (($ $ |#2|) NIL)) (-3330 (((-687 (-564)) (-687 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -3544 (-687 |#1|)) (|:| |vec| (-1262 |#1|))) (-687 $) (-1262 $)) NIL) (((-687 |#1|) (-687 $)) NIL)) (-3762 (((-112) $ $) NIL) (((-112) $ (-642 $)) NIL)) (-2675 (((-3 $ "failed") $) NIL)) (-1471 (((-112) $) NIL)) (-1555 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) 81)) (-1922 (($ $) 136 (|has| |#1| (-452)))) (-2511 (($ $) NIL (|has| |#1| (-452))) (($ $ |#2|) NIL (|has| |#1| (-452)))) (-3446 (((-642 $) $) NIL)) (-3552 (((-112) $) NIL (|has| |#1| (-907)))) (-2375 (($ $) NIL (|has| |#1| (-556)))) (-1965 (($ $) NIL (|has| |#1| (-556)))) (-3262 (($ $ $) 76) (($ $ $ |#2|) NIL)) (-2882 (($ $ $) 79) (($ $ $ |#2|) NIL)) (-2315 (($ $ |#1| (-531 |#2|) $) NIL)) (-1381 (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) NIL (-12 (|has| |#1| (-884 (-379))) (|has| |#2| (-884 (-379))))) (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) NIL (-12 (|has| |#1| (-884 (-564))) (|has| |#2| (-884 (-564)))))) (-3163 (((-112) $) 57)) (-1904 (((-769) $) NIL)) (-3303 (((-112) $ $) NIL) (((-112) $ (-642 $)) NIL)) (-2252 (($ $ $ $ $) 107 (|has| |#1| (-556)))) (-1715 ((|#2| $) 22)) (-2387 (($ (-1169 |#1|) |#2|) NIL) (($ (-1169 $) |#2|) NIL)) (-1995 (((-642 $) $) NIL)) (-3471 (((-112) $) NIL)) (-2374 (($ |#1| (-531 |#2|)) NIL) (($ $ |#2| (-769)) 38) (($ $ (-642 |#2|) (-642 (-769))) NIL)) (-4146 (($ $ $) 63)) (-3312 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $ |#2|) NIL)) (-3113 (((-112) $) NIL)) (-2887 (((-531 |#2|) $) NIL) (((-769) $ |#2|) NIL) (((-642 (-769)) $ (-642 |#2|)) NIL)) (-3200 (((-769) $) 23)) (-3879 (($ (-1 (-531 |#2|) (-531 |#2|)) $) NIL)) (-2947 (($ (-1 |#1| |#1|) $) NIL)) (-1557 (((-3 |#2| "failed") $) NIL)) (-2447 (($ $) NIL (|has| |#1| (-452)))) (-1443 (($ $) NIL (|has| |#1| (-452)))) (-2894 (((-642 $) $) NIL)) (-3015 (($ $) 39)) (-3377 (($ $) NIL (|has| |#1| (-452)))) (-3161 (((-642 $) $) 43)) (-3479 (($ $) 41)) (-2510 (($ $) NIL)) (-2523 ((|#1| $) NIL) (($ $ |#2|) 48)) (-2066 (($ (-642 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-4102 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2604 (-769))) $ $) 96)) (-2039 (((-2 (|:| -2968 $) (|:| |gap| (-769)) (|:| -4332 $) (|:| -1992 $)) $ $) 78) (((-2 (|:| -2968 $) (|:| |gap| (-769)) (|:| -4332 $) (|:| -1992 $)) $ $ |#2|) NIL)) (-3905 (((-2 (|:| -2968 $) (|:| |gap| (-769)) (|:| -1992 $)) $ $) NIL) (((-2 (|:| -2968 $) (|:| |gap| (-769)) (|:| -1992 $)) $ $ |#2|) NIL)) (-2053 (($ $ $) 83) (($ $ $ |#2|) NIL)) (-4364 (($ $ $) 86) (($ $ $ |#2|) NIL)) (-1778 (((-1155) $) NIL)) (-2224 (($ $ $) 125 (|has| |#1| (-556)))) (-3976 (((-642 $) $) 32)) (-3664 (((-3 (-642 $) "failed") $) NIL)) (-4315 (((-3 (-642 $) "failed") $) NIL)) (-3177 (((-3 (-2 (|:| |var| |#2|) (|:| -2817 (-769))) "failed") $) NIL)) (-3673 (((-112) $ $) NIL) (((-112) $ (-642 $)) NIL)) (-4090 (($ $ $) NIL)) (-3910 (($ $) 24)) (-3119 (((-112) $ $) NIL)) (-4354 (((-112) $ $) NIL) (((-112) $ (-642 $)) NIL)) (-3750 (($ $ $) NIL)) (-3332 (($ $) 26)) (-3999 (((-1117) $) NIL)) (-1856 (((-2 (|:| -2105 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-556)))) (-1849 (((-2 (|:| -2105 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-556)))) (-2491 (((-112) $) 56)) (-2500 ((|#1| $) 58)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) NIL (|has| |#1| (-452)))) (-2105 ((|#1| |#1| $) 133 (|has| |#1| (-452))) (($ (-642 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3223 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-2236 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-2254 (((-418 $) $) NIL (|has| |#1| (-907)))) (-2445 (((-2 (|:| -2105 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-556)))) (-2842 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) 98 (|has| |#1| (-556)))) (-4389 (($ $ |#1|) 129 (|has| |#1| (-556))) (($ $ $) NIL (|has| |#1| (-556)))) (-2595 (($ $ |#1|) 128 (|has| |#1| (-556))) (($ $ $) NIL (|has| |#1| (-556)))) (-3154 (($ $ (-642 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-642 $) (-642 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-642 |#2|) (-642 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-642 |#2|) (-642 $)) NIL)) (-2790 (($ $ |#2|) NIL (|has| |#1| (-172)))) (-2199 (($ $ |#2|) NIL) (($ $ (-642 |#2|)) NIL) (($ $ |#2| (-769)) NIL) (($ $ (-642 |#2|) (-642 (-769))) NIL)) (-3252 (((-531 |#2|) $) NIL) (((-769) $ |#2|) 45) (((-642 (-769)) $ (-642 |#2|)) NIL)) (-1405 (($ $) NIL)) (-4147 (($ $) 35)) (-3003 (((-890 (-379)) $) NIL (-12 (|has| |#1| (-612 (-890 (-379)))) (|has| |#2| (-612 (-890 (-379)))))) (((-890 (-564)) $) NIL (-12 (|has| |#1| (-612 (-890 (-564)))) (|has| |#2| (-612 (-890 (-564)))))) (((-536) $) NIL (-12 (|has| |#1| (-612 (-536))) (|has| |#2| (-612 (-536))))) (($ (-950 (-407 (-564)))) NIL (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#2| (-612 (-1173))))) (($ (-950 (-564))) NIL (-2682 (-12 (|has| |#1| (-38 (-564))) (|has| |#2| (-612 (-1173))) (-2307 (|has| |#1| (-38 (-407 (-564)))))) (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#2| (-612 (-1173)))))) (($ (-950 |#1|)) NIL (|has| |#2| (-612 (-1173)))) (((-1155) $) NIL (-12 (|has| |#1| (-1036 (-564))) (|has| |#2| (-612 (-1173))))) (((-950 |#1|) $) NIL (|has| |#2| (-612 (-1173))))) (-4325 ((|#1| $) 132 (|has| |#1| (-452))) (($ $ |#2|) NIL (|has| |#1| (-452)))) (-3556 (((-3 (-1262 $) "failed") (-687 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-907))))) (-2390 (((-860) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-950 |#1|) $) NIL (|has| |#2| (-612 (-1173)))) (((-1122 |#1| |#2|) $) 18) (($ (-1122 |#1| |#2|)) 19) (($ (-407 (-564))) NIL (-2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1036 (-407 (-564)))))) (($ $) NIL (|has| |#1| (-556)))) (-2839 (((-642 |#1|) $) NIL)) (-3005 ((|#1| $ (-531 |#2|)) NIL) (($ $ |#2| (-769)) 47) (($ $ (-642 |#2|) (-642 (-769))) NIL)) (-3434 (((-3 $ "failed") $) NIL (-2682 (-12 (|has| $ (-145)) (|has| |#1| (-907))) (|has| |#1| (-145))))) (-3348 (((-769)) NIL T CONST)) (-2645 (($ $ $ (-769)) NIL (|has| |#1| (-172)))) (-1600 (((-112) $ $) NIL)) (-1594 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2361 (($) 13 T CONST)) (-3534 (((-3 (-112) "failed") $ $) NIL)) (-2371 (($) 37 T CONST)) (-3171 (($ $ $ $ (-769)) 105 (|has| |#1| (-556)))) (-4313 (($ $ $ (-769)) 104 (|has| |#1| (-556)))) (-2711 (($ $ |#2|) NIL) (($ $ (-642 |#2|)) NIL) (($ $ |#2| (-769)) NIL) (($ $ (-642 |#2|) (-642 (-769))) NIL)) (-2821 (((-112) $ $) NIL)) (-2943 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-2930 (($ $) NIL) (($ $ $) 75)) (-2917 (($ $ $) 85)) (** (($ $ (-919)) NIL) (($ $ (-769)) 70)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) 62) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 61) (($ $ |#1|) NIL))) -(((-778 |#1| |#2|) (-13 (-1062 |#1| (-531 |#2|) |#2|) (-611 (-1122 |#1| |#2|)) (-1036 (-1122 |#1| |#2|))) (-1047) (-848)) (T -778)) -NIL -(-13 (-1062 |#1| (-531 |#2|) |#2|) (-611 (-1122 |#1| |#2|)) (-1036 (-1122 |#1| |#2|))) -((-2947 (((-780 |#2|) (-1 |#2| |#1|) (-780 |#1|)) 13))) -(((-779 |#1| |#2|) (-10 -7 (-15 -2947 ((-780 |#2|) (-1 |#2| |#1|) (-780 |#1|)))) (-1047) (-1047)) (T -779)) -((-2947 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-780 *5)) (-4 *5 (-1047)) (-4 *6 (-1047)) (-5 *2 (-780 *6)) (-5 *1 (-779 *5 *6))))) -(-10 -7 (-15 -2947 ((-780 |#2|) (-1 |#2| |#1|) (-780 |#1|)))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) 12)) (-4020 (((-1262 |#1|) $ (-769)) NIL)) (-2397 (((-642 (-1079)) $) NIL)) (-2865 (($ (-1169 |#1|)) NIL)) (-2223 (((-1169 $) $ (-1079)) NIL) (((-1169 |#1|) $) NIL)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-4252 (($ $) NIL (|has| |#1| (-556)))) (-1722 (((-112) $) NIL (|has| |#1| (-556)))) (-4035 (((-769) $) NIL) (((-769) $ (-642 (-1079))) NIL)) (-3085 (((-3 $ "failed") $ $) NIL)) (-3984 (((-642 $) $ $) 54 (|has| |#1| (-556)))) (-2106 (($ $ $) 50 (|has| |#1| (-556)))) (-4297 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-1993 (($ $) NIL (|has| |#1| (-452)))) (-3282 (((-418 $) $) NIL (|has| |#1| (-452)))) (-3267 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-2134 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3254 (($ $ (-769)) NIL)) (-3457 (($ $ (-769)) NIL)) (-2161 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-452)))) (-2822 (($) NIL T CONST)) (-2849 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1036 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1036 (-564)))) (((-3 (-1079) "failed") $) NIL) (((-3 (-1169 |#1|) "failed") $) 10)) (-1687 ((|#1| $) NIL) (((-407 (-564)) $) NIL (|has| |#1| (-1036 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1036 (-564)))) (((-1079) $) NIL) (((-1169 |#1|) $) NIL)) (-3710 (($ $ $ (-1079)) NIL (|has| |#1| (-172))) ((|#1| $ $) 58 (|has| |#1| (-172)))) (-2796 (($ $ $) NIL (|has| |#1| (-363)))) (-3459 (($ $) NIL)) (-3330 (((-687 (-564)) (-687 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -3544 (-687 |#1|)) (|:| |vec| (-1262 |#1|))) (-687 $) (-1262 $)) NIL) (((-687 |#1|) (-687 $)) NIL)) (-2675 (((-3 $ "failed") $) NIL)) (-2808 (($ $ $) NIL (|has| |#1| (-363)))) (-2888 (($ $ $) NIL)) (-2553 (($ $ $) 87 (|has| |#1| (-556)))) (-1555 (((-2 (|:| -2968 |#1|) (|:| -4332 $) (|:| -1992 $)) $ $) 86 (|has| |#1| (-556)))) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) NIL (|has| |#1| (-363)))) (-2511 (($ $) NIL (|has| |#1| (-452))) (($ $ (-1079)) NIL (|has| |#1| (-452)))) (-3446 (((-642 $) $) NIL)) (-3552 (((-112) $) NIL (|has| |#1| (-907)))) (-2315 (($ $ |#1| (-769) $) NIL)) (-1381 (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) NIL (-12 (|has| (-1079) (-884 (-379))) (|has| |#1| (-884 (-379))))) (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) NIL (-12 (|has| (-1079) (-884 (-564))) (|has| |#1| (-884 (-564)))))) (-2408 (((-769) $ $) NIL (|has| |#1| (-556)))) (-3163 (((-112) $) NIL)) (-1904 (((-769) $) NIL)) (-4382 (((-3 $ "failed") $) NIL (|has| |#1| (-1148)))) (-2387 (($ (-1169 |#1|) (-1079)) NIL) (($ (-1169 $) (-1079)) NIL)) (-2157 (($ $ (-769)) NIL)) (-2709 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#1| (-363)))) (-1995 (((-642 $) $) NIL)) (-3471 (((-112) $) NIL)) (-2374 (($ |#1| (-769)) NIL) (($ $ (-1079) (-769)) NIL) (($ $ (-642 (-1079)) (-642 (-769))) NIL)) (-4146 (($ $ $) 27)) (-3312 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $ (-1079)) NIL) (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL)) (-2887 (((-769) $) NIL) (((-769) $ (-1079)) NIL) (((-642 (-769)) $ (-642 (-1079))) NIL)) (-3879 (($ (-1 (-769) (-769)) $) NIL)) (-2947 (($ (-1 |#1| |#1|) $) NIL)) (-1864 (((-1169 |#1|) $) NIL)) (-1557 (((-3 (-1079) "failed") $) NIL)) (-2510 (($ $) NIL)) (-2523 ((|#1| $) NIL)) (-2066 (($ (-642 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-4102 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2604 (-769))) $ $) 37)) (-2988 (($ $ $) 41)) (-4178 (($ $ $) 47)) (-2039 (((-2 (|:| -2968 |#1|) (|:| |gap| (-769)) (|:| -4332 $) (|:| -1992 $)) $ $) 46)) (-1778 (((-1155) $) NIL)) (-2224 (($ $ $) 56 (|has| |#1| (-556)))) (-1930 (((-2 (|:| -4332 $) (|:| -1992 $)) $ (-769)) NIL)) (-3664 (((-3 (-642 $) "failed") $) NIL)) (-4315 (((-3 (-642 $) "failed") $) NIL)) (-3177 (((-3 (-2 (|:| |var| (-1079)) (|:| -2817 (-769))) "failed") $) NIL)) (-3703 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3910 (($) NIL (|has| |#1| (-1148)) CONST)) (-3999 (((-1117) $) NIL)) (-1856 (((-2 (|:| -2105 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-556)))) (-1849 (((-2 (|:| -2105 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-556)))) (-2037 (((-2 (|:| -3710 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-556)))) (-3712 (((-2 (|:| -3710 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-556)))) (-2491 (((-112) $) 13)) (-2500 ((|#1| $) NIL)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) NIL (|has| |#1| (-452)))) (-2105 (($ (-642 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3411 (($ $ (-769) |#1| $) 26)) (-3223 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-2236 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-2254 (((-418 $) $) NIL (|has| |#1| (-907)))) (-2445 (((-2 (|:| -2105 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-556)))) (-2400 (((-2 (|:| -3710 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-556)))) (-1877 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL (|has| |#1| (-363)))) (-2842 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-1483 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#1| (-363)))) (-3154 (($ $ (-642 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-642 $) (-642 $)) NIL) (($ $ (-1079) |#1|) NIL) (($ $ (-642 (-1079)) (-642 |#1|)) NIL) (($ $ (-1079) $) NIL) (($ $ (-642 (-1079)) (-642 $)) NIL)) (-4274 (((-769) $) NIL (|has| |#1| (-363)))) (-4369 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-407 $) (-407 $) (-407 $)) NIL (|has| |#1| (-556))) ((|#1| (-407 $) |#1|) NIL (|has| |#1| (-363))) (((-407 $) $ (-407 $)) NIL (|has| |#1| (-556)))) (-3288 (((-3 $ "failed") $ (-769)) NIL)) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL (|has| |#1| (-363)))) (-2790 (($ $ (-1079)) NIL (|has| |#1| (-172))) ((|#1| $) NIL (|has| |#1| (-172)))) (-2199 (($ $ (-1079)) NIL) (($ $ (-642 (-1079))) NIL) (($ $ (-1079) (-769)) NIL) (($ $ (-642 (-1079)) (-642 (-769))) NIL) (($ $ (-769)) NIL) (($ $) NIL) (($ $ (-1173)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1 |#1| |#1|) (-769)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3252 (((-769) $) NIL) (((-769) $ (-1079)) NIL) (((-642 (-769)) $ (-642 (-1079))) NIL)) (-3003 (((-890 (-379)) $) NIL (-12 (|has| (-1079) (-612 (-890 (-379)))) (|has| |#1| (-612 (-890 (-379)))))) (((-890 (-564)) $) NIL (-12 (|has| (-1079) (-612 (-890 (-564)))) (|has| |#1| (-612 (-890 (-564)))))) (((-536) $) NIL (-12 (|has| (-1079) (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-4325 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ (-1079)) NIL (|has| |#1| (-452)))) (-3556 (((-3 (-1262 $) "failed") (-687 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-907))))) (-4281 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556))) (((-3 (-407 $) "failed") (-407 $) $) NIL (|has| |#1| (-556)))) (-2390 (((-860) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-1079)) NIL) (((-1169 |#1|) $) 7) (($ (-1169 |#1|)) 8) (($ (-407 (-564))) NIL (-2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1036 (-407 (-564)))))) (($ $) NIL (|has| |#1| (-556)))) (-2839 (((-642 |#1|) $) NIL)) (-3005 ((|#1| $ (-769)) NIL) (($ $ (-1079) (-769)) NIL) (($ $ (-642 (-1079)) (-642 (-769))) NIL)) (-3434 (((-3 $ "failed") $) NIL (-2682 (-12 (|has| $ (-145)) (|has| |#1| (-907))) (|has| |#1| (-145))))) (-3348 (((-769)) NIL T CONST)) (-2645 (($ $ $ (-769)) NIL (|has| |#1| (-172)))) (-1600 (((-112) $ $) NIL)) (-1594 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2361 (($) 28 T CONST)) (-2371 (($) 32 T CONST)) (-2711 (($ $ (-1079)) NIL) (($ $ (-642 (-1079))) NIL) (($ $ (-1079) (-769)) NIL) (($ $ (-642 (-1079)) (-642 (-769))) NIL) (($ $ (-769)) NIL) (($ $) NIL) (($ $ (-1173)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1 |#1| |#1|) (-769)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2821 (((-112) $ $) NIL)) (-2943 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-2930 (($ $) 40) (($ $ $) NIL)) (-2917 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 31) (($ $ |#1|) NIL))) -(((-780 |#1|) (-13 (-1238 |#1|) (-611 (-1169 |#1|)) (-1036 (-1169 |#1|)) (-10 -8 (-15 -3411 ($ $ (-769) |#1| $)) (-15 -4146 ($ $ $)) (-15 -4102 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2604 (-769))) $ $)) (-15 -2988 ($ $ $)) (-15 -2039 ((-2 (|:| -2968 |#1|) (|:| |gap| (-769)) (|:| -4332 $) (|:| -1992 $)) $ $)) (-15 -4178 ($ $ $)) (IF (|has| |#1| (-556)) (PROGN (-15 -3984 ((-642 $) $ $)) (-15 -2224 ($ $ $)) (-15 -2445 ((-2 (|:| -2105 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1849 ((-2 (|:| -2105 $) (|:| |coef1| $)) $ $)) (-15 -1856 ((-2 (|:| -2105 $) (|:| |coef2| $)) $ $)) (-15 -2400 ((-2 (|:| -3710 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3712 ((-2 (|:| -3710 |#1|) (|:| |coef1| $)) $ $)) (-15 -2037 ((-2 (|:| -3710 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1047)) (T -780)) -((-3411 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-769)) (-5 *1 (-780 *3)) (-4 *3 (-1047)))) (-4146 (*1 *1 *1 *1) (-12 (-5 *1 (-780 *2)) (-4 *2 (-1047)))) (-4102 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-780 *3)) (|:| |polden| *3) (|:| -2604 (-769)))) (-5 *1 (-780 *3)) (-4 *3 (-1047)))) (-2988 (*1 *1 *1 *1) (-12 (-5 *1 (-780 *2)) (-4 *2 (-1047)))) (-2039 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2968 *3) (|:| |gap| (-769)) (|:| -4332 (-780 *3)) (|:| -1992 (-780 *3)))) (-5 *1 (-780 *3)) (-4 *3 (-1047)))) (-4178 (*1 *1 *1 *1) (-12 (-5 *1 (-780 *2)) (-4 *2 (-1047)))) (-3984 (*1 *2 *1 *1) (-12 (-5 *2 (-642 (-780 *3))) (-5 *1 (-780 *3)) (-4 *3 (-556)) (-4 *3 (-1047)))) (-2224 (*1 *1 *1 *1) (-12 (-5 *1 (-780 *2)) (-4 *2 (-556)) (-4 *2 (-1047)))) (-2445 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2105 (-780 *3)) (|:| |coef1| (-780 *3)) (|:| |coef2| (-780 *3)))) (-5 *1 (-780 *3)) (-4 *3 (-556)) (-4 *3 (-1047)))) (-1849 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2105 (-780 *3)) (|:| |coef1| (-780 *3)))) (-5 *1 (-780 *3)) (-4 *3 (-556)) (-4 *3 (-1047)))) (-1856 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2105 (-780 *3)) (|:| |coef2| (-780 *3)))) (-5 *1 (-780 *3)) (-4 *3 (-556)) (-4 *3 (-1047)))) (-2400 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3710 *3) (|:| |coef1| (-780 *3)) (|:| |coef2| (-780 *3)))) (-5 *1 (-780 *3)) (-4 *3 (-556)) (-4 *3 (-1047)))) (-3712 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3710 *3) (|:| |coef1| (-780 *3)))) (-5 *1 (-780 *3)) (-4 *3 (-556)) (-4 *3 (-1047)))) (-2037 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3710 *3) (|:| |coef2| (-780 *3)))) (-5 *1 (-780 *3)) (-4 *3 (-556)) (-4 *3 (-1047))))) -(-13 (-1238 |#1|) (-611 (-1169 |#1|)) (-1036 (-1169 |#1|)) (-10 -8 (-15 -3411 ($ $ (-769) |#1| $)) (-15 -4146 ($ $ $)) (-15 -4102 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2604 (-769))) $ $)) (-15 -2988 ($ $ $)) (-15 -2039 ((-2 (|:| -2968 |#1|) (|:| |gap| (-769)) (|:| -4332 $) (|:| -1992 $)) $ $)) (-15 -4178 ($ $ $)) (IF (|has| |#1| (-556)) (PROGN (-15 -3984 ((-642 $) $ $)) (-15 -2224 ($ $ $)) (-15 -2445 ((-2 (|:| -2105 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1849 ((-2 (|:| -2105 $) (|:| |coef1| $)) $ $)) (-15 -1856 ((-2 (|:| -2105 $) (|:| |coef2| $)) $ $)) (-15 -2400 ((-2 (|:| -3710 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3712 ((-2 (|:| -3710 |#1|) (|:| |coef1| $)) $ $)) (-15 -2037 ((-2 (|:| -3710 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) -((-1772 ((|#1| (-769) |#1|) 33 (|has| |#1| (-38 (-407 (-564)))))) (-3516 ((|#1| (-769) |#1|) 23)) (-3648 ((|#1| (-769) |#1|) 35 (|has| |#1| (-38 (-407 (-564))))))) -(((-781 |#1|) (-10 -7 (-15 -3516 (|#1| (-769) |#1|)) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -3648 (|#1| (-769) |#1|)) (-15 -1772 (|#1| (-769) |#1|))) |%noBranch|)) (-172)) (T -781)) -((-1772 (*1 *2 *3 *2) (-12 (-5 *3 (-769)) (-5 *1 (-781 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-172)))) (-3648 (*1 *2 *3 *2) (-12 (-5 *3 (-769)) (-5 *1 (-781 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-172)))) (-3516 (*1 *2 *3 *2) (-12 (-5 *3 (-769)) (-5 *1 (-781 *2)) (-4 *2 (-172))))) -(-10 -7 (-15 -3516 (|#1| (-769) |#1|)) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -3648 (|#1| (-769) |#1|)) (-15 -1772 (|#1| (-769) |#1|))) |%noBranch|)) -((-2856 (((-112) $ $) 7)) (-1466 (((-642 (-2 (|:| -1616 $) (|:| -3406 (-642 |#4|)))) (-642 |#4|)) 86)) (-3076 (((-642 $) (-642 |#4|)) 87) (((-642 $) (-642 |#4|) (-112)) 112)) (-2397 (((-642 |#3|) $) 34)) (-3646 (((-112) $) 27)) (-4074 (((-112) $) 18 (|has| |#1| (-556)))) (-4334 (((-112) |#4| $) 102) (((-112) $) 98)) (-2937 ((|#4| |#4| $) 93)) (-1993 (((-642 (-2 (|:| |val| |#4|) (|:| -2138 $))) |#4| $) 127)) (-3191 (((-2 (|:| |under| $) (|:| -2795 $) (|:| |upper| $)) $ |#3|) 28)) (-3442 (((-112) $ (-769)) 45)) (-3437 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4410))) (((-3 |#4| "failed") $ |#3|) 80)) (-2822 (($) 46 T CONST)) (-3013 (((-112) $) 23 (|has| |#1| (-556)))) (-3936 (((-112) $ $) 25 (|has| |#1| (-556)))) (-2133 (((-112) $ $) 24 (|has| |#1| (-556)))) (-2967 (((-112) $) 26 (|has| |#1| (-556)))) (-3720 (((-642 |#4|) (-642 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2632 (((-642 |#4|) (-642 |#4|) $) 19 (|has| |#1| (-556)))) (-1419 (((-642 |#4|) (-642 |#4|) $) 20 (|has| |#1| (-556)))) (-2849 (((-3 $ "failed") (-642 |#4|)) 37)) (-1687 (($ (-642 |#4|)) 36)) (-4050 (((-3 $ "failed") $) 83)) (-2398 ((|#4| |#4| $) 90)) (-4067 (($ $) 69 (-12 (|has| |#4| (-1097)) (|has| $ (-6 -4410))))) (-2517 (($ |#4| $) 68 (-12 (|has| |#4| (-1097)) (|has| $ (-6 -4410)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4410)))) (-1992 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-556)))) (-3762 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3978 ((|#4| |#4| $) 88)) (-3741 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1097)) (|has| $ (-6 -4410)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4410))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4410))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1750 (((-2 (|:| -1616 (-642 |#4|)) (|:| -3406 (-642 |#4|))) $) 106)) (-2104 (((-112) |#4| $) 137)) (-4141 (((-112) |#4| $) 134)) (-3188 (((-112) |#4| $) 138) (((-112) $) 135)) (-2018 (((-642 |#4|) $) 53 (|has| $ (-6 -4410)))) (-3303 (((-112) |#4| $) 105) (((-112) $) 104)) (-1715 ((|#3| $) 35)) (-3769 (((-112) $ (-769)) 44)) (-3541 (((-642 |#4|) $) 54 (|has| $ (-6 -4410)))) (-2533 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1097)) (|has| $ (-6 -4410))))) (-1857 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#4| |#4|) $) 48)) (-1896 (((-642 |#3|) $) 33)) (-3935 (((-112) |#3| $) 32)) (-4145 (((-112) $ (-769)) 43)) (-1778 (((-1155) $) 10)) (-3843 (((-3 |#4| (-642 $)) |#4| |#4| $) 129)) (-2224 (((-642 (-2 (|:| |val| |#4|) (|:| -2138 $))) |#4| |#4| $) 128)) (-2534 (((-3 |#4| "failed") $) 84)) (-2163 (((-642 $) |#4| $) 130)) (-2328 (((-3 (-112) (-642 $)) |#4| $) 133)) (-4023 (((-642 (-2 (|:| |val| (-112)) (|:| -2138 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-2338 (((-642 $) |#4| $) 126) (((-642 $) (-642 |#4|) $) 125) (((-642 $) (-642 |#4|) (-642 $)) 124) (((-642 $) |#4| (-642 $)) 123)) (-2415 (($ |#4| $) 118) (($ (-642 |#4|) $) 117)) (-2206 (((-642 |#4|) $) 108)) (-3673 (((-112) |#4| $) 100) (((-112) $) 96)) (-4090 ((|#4| |#4| $) 91)) (-3119 (((-112) $ $) 111)) (-1699 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-556)))) (-4354 (((-112) |#4| $) 101) (((-112) $) 97)) (-3750 ((|#4| |#4| $) 92)) (-3999 (((-1117) $) 11)) (-4036 (((-3 |#4| "failed") $) 85)) (-3183 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2465 (((-3 $ "failed") $ |#4|) 79)) (-2137 (($ $ |#4|) 78) (((-642 $) |#4| $) 116) (((-642 $) |#4| (-642 $)) 115) (((-642 $) (-642 |#4|) $) 114) (((-642 $) (-642 |#4|) (-642 $)) 113)) (-4094 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 |#4|) (-642 |#4|)) 60 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ (-294 |#4|)) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ (-642 (-294 |#4|))) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097))))) (-2478 (((-112) $ $) 39)) (-4109 (((-112) $) 42)) (-2179 (($) 41)) (-3252 (((-769) $) 107)) (-4010 (((-769) |#4| $) 55 (-12 (|has| |#4| (-1097)) (|has| $ (-6 -4410)))) (((-769) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4410)))) (-3865 (($ $) 40)) (-3003 (((-536) $) 70 (|has| |#4| (-612 (-536))))) (-2401 (($ (-642 |#4|)) 61)) (-2942 (($ $ |#3|) 29)) (-1710 (($ $ |#3|) 31)) (-2204 (($ $) 89)) (-4283 (($ $ |#3|) 30)) (-2390 (((-860) $) 12) (((-642 |#4|) $) 38)) (-2621 (((-769) $) 77 (|has| |#3| (-368)))) (-1600 (((-112) $ $) 9)) (-4150 (((-3 (-2 (|:| |bas| $) (|:| -3844 (-642 |#4|))) "failed") (-642 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3844 (-642 |#4|))) "failed") (-642 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2205 (((-112) $ (-1 (-112) |#4| (-642 |#4|))) 99)) (-3204 (((-642 $) |#4| $) 122) (((-642 $) |#4| (-642 $)) 121) (((-642 $) (-642 |#4|) $) 120) (((-642 $) (-642 |#4|) (-642 $)) 119)) (-3295 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4410)))) (-1644 (((-642 |#3|) $) 82)) (-1837 (((-112) |#4| $) 136)) (-4127 (((-112) |#3| $) 81)) (-2821 (((-112) $ $) 6)) (-2158 (((-769) $) 47 (|has| $ (-6 -4410))))) -(((-782 |#1| |#2| |#3| |#4|) (-140) (-452) (-791) (-848) (-1062 |t#1| |t#2| |t#3|)) (T -782)) -NIL -(-13 (-1068 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-102) . T) ((-611 (-642 |#4|)) . T) ((-611 (-860)) . T) ((-151 |#4|) . T) ((-612 (-536)) |has| |#4| (-612 (-536))) ((-309 |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097))) ((-489 |#4|) . T) ((-514 |#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097))) ((-974 |#1| |#2| |#3| |#4|) . T) ((-1068 |#1| |#2| |#3| |#4|) . T) ((-1097) . T) ((-1205 |#1| |#2| |#3| |#4|) . T) ((-1212) . T)) -((-1862 (((-3 (-379) "failed") (-316 |#1|) (-919)) 62 (-12 (|has| |#1| (-556)) (|has| |#1| (-848)))) (((-3 (-379) "failed") (-316 |#1|)) 54 (-12 (|has| |#1| (-556)) (|has| |#1| (-848)))) (((-3 (-379) "failed") (-407 (-950 |#1|)) (-919)) 41 (|has| |#1| (-556))) (((-3 (-379) "failed") (-407 (-950 |#1|))) 40 (|has| |#1| (-556))) (((-3 (-379) "failed") (-950 |#1|) (-919)) 31 (|has| |#1| (-1047))) (((-3 (-379) "failed") (-950 |#1|)) 30 (|has| |#1| (-1047)))) (-2583 (((-379) (-316 |#1|) (-919)) 99 (-12 (|has| |#1| (-556)) (|has| |#1| (-848)))) (((-379) (-316 |#1|)) 94 (-12 (|has| |#1| (-556)) (|has| |#1| (-848)))) (((-379) (-407 (-950 |#1|)) (-919)) 91 (|has| |#1| (-556))) (((-379) (-407 (-950 |#1|))) 90 (|has| |#1| (-556))) (((-379) (-950 |#1|) (-919)) 86 (|has| |#1| (-1047))) (((-379) (-950 |#1|)) 85 (|has| |#1| (-1047))) (((-379) |#1| (-919)) 76) (((-379) |#1|) 22)) (-3961 (((-3 (-169 (-379)) "failed") (-316 (-169 |#1|)) (-919)) 71 (-12 (|has| |#1| (-556)) (|has| |#1| (-848)))) (((-3 (-169 (-379)) "failed") (-316 (-169 |#1|))) 70 (-12 (|has| |#1| (-556)) (|has| |#1| (-848)))) (((-3 (-169 (-379)) "failed") (-316 |#1|) (-919)) 63 (-12 (|has| |#1| (-556)) (|has| |#1| (-848)))) (((-3 (-169 (-379)) "failed") (-316 |#1|)) 61 (-12 (|has| |#1| (-556)) (|has| |#1| (-848)))) (((-3 (-169 (-379)) "failed") (-407 (-950 (-169 |#1|))) (-919)) 46 (|has| |#1| (-556))) (((-3 (-169 (-379)) "failed") (-407 (-950 (-169 |#1|)))) 45 (|has| |#1| (-556))) (((-3 (-169 (-379)) "failed") (-407 (-950 |#1|)) (-919)) 39 (|has| |#1| (-556))) (((-3 (-169 (-379)) "failed") (-407 (-950 |#1|))) 38 (|has| |#1| (-556))) (((-3 (-169 (-379)) "failed") (-950 |#1|) (-919)) 28 (|has| |#1| (-1047))) (((-3 (-169 (-379)) "failed") (-950 |#1|)) 26 (|has| |#1| (-1047))) (((-3 (-169 (-379)) "failed") (-950 (-169 |#1|)) (-919)) 18 (|has| |#1| (-172))) (((-3 (-169 (-379)) "failed") (-950 (-169 |#1|))) 15 (|has| |#1| (-172)))) (-2191 (((-169 (-379)) (-316 (-169 |#1|)) (-919)) 102 (-12 (|has| |#1| (-556)) (|has| |#1| (-848)))) (((-169 (-379)) (-316 (-169 |#1|))) 101 (-12 (|has| |#1| (-556)) (|has| |#1| (-848)))) (((-169 (-379)) (-316 |#1|) (-919)) 100 (-12 (|has| |#1| (-556)) (|has| |#1| (-848)))) (((-169 (-379)) (-316 |#1|)) 98 (-12 (|has| |#1| (-556)) (|has| |#1| (-848)))) (((-169 (-379)) (-407 (-950 (-169 |#1|))) (-919)) 93 (|has| |#1| (-556))) (((-169 (-379)) (-407 (-950 (-169 |#1|)))) 92 (|has| |#1| (-556))) (((-169 (-379)) (-407 (-950 |#1|)) (-919)) 89 (|has| |#1| (-556))) (((-169 (-379)) (-407 (-950 |#1|))) 88 (|has| |#1| (-556))) (((-169 (-379)) (-950 |#1|) (-919)) 84 (|has| |#1| (-1047))) (((-169 (-379)) (-950 |#1|)) 83 (|has| |#1| (-1047))) (((-169 (-379)) (-950 (-169 |#1|)) (-919)) 78 (|has| |#1| (-172))) (((-169 (-379)) (-950 (-169 |#1|))) 77 (|has| |#1| (-172))) (((-169 (-379)) (-169 |#1|) (-919)) 80 (|has| |#1| (-172))) (((-169 (-379)) (-169 |#1|)) 79 (|has| |#1| (-172))) (((-169 (-379)) |#1| (-919)) 27) (((-169 (-379)) |#1|) 25))) -(((-783 |#1|) (-10 -7 (-15 -2583 ((-379) |#1|)) (-15 -2583 ((-379) |#1| (-919))) (-15 -2191 ((-169 (-379)) |#1|)) (-15 -2191 ((-169 (-379)) |#1| (-919))) (IF (|has| |#1| (-172)) (PROGN (-15 -2191 ((-169 (-379)) (-169 |#1|))) (-15 -2191 ((-169 (-379)) (-169 |#1|) (-919))) (-15 -2191 ((-169 (-379)) (-950 (-169 |#1|)))) (-15 -2191 ((-169 (-379)) (-950 (-169 |#1|)) (-919)))) |%noBranch|) (IF (|has| |#1| (-1047)) (PROGN (-15 -2583 ((-379) (-950 |#1|))) (-15 -2583 ((-379) (-950 |#1|) (-919))) (-15 -2191 ((-169 (-379)) (-950 |#1|))) (-15 -2191 ((-169 (-379)) (-950 |#1|) (-919)))) |%noBranch|) (IF (|has| |#1| (-556)) (PROGN (-15 -2583 ((-379) (-407 (-950 |#1|)))) (-15 -2583 ((-379) (-407 (-950 |#1|)) (-919))) (-15 -2191 ((-169 (-379)) (-407 (-950 |#1|)))) (-15 -2191 ((-169 (-379)) (-407 (-950 |#1|)) (-919))) (-15 -2191 ((-169 (-379)) (-407 (-950 (-169 |#1|))))) (-15 -2191 ((-169 (-379)) (-407 (-950 (-169 |#1|))) (-919))) (IF (|has| |#1| (-848)) (PROGN (-15 -2583 ((-379) (-316 |#1|))) (-15 -2583 ((-379) (-316 |#1|) (-919))) (-15 -2191 ((-169 (-379)) (-316 |#1|))) (-15 -2191 ((-169 (-379)) (-316 |#1|) (-919))) (-15 -2191 ((-169 (-379)) (-316 (-169 |#1|)))) (-15 -2191 ((-169 (-379)) (-316 (-169 |#1|)) (-919)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-15 -3961 ((-3 (-169 (-379)) "failed") (-950 (-169 |#1|)))) (-15 -3961 ((-3 (-169 (-379)) "failed") (-950 (-169 |#1|)) (-919)))) |%noBranch|) (IF (|has| |#1| (-1047)) (PROGN (-15 -1862 ((-3 (-379) "failed") (-950 |#1|))) (-15 -1862 ((-3 (-379) "failed") (-950 |#1|) (-919))) (-15 -3961 ((-3 (-169 (-379)) "failed") (-950 |#1|))) (-15 -3961 ((-3 (-169 (-379)) "failed") (-950 |#1|) (-919)))) |%noBranch|) (IF (|has| |#1| (-556)) (PROGN (-15 -1862 ((-3 (-379) "failed") (-407 (-950 |#1|)))) (-15 -1862 ((-3 (-379) "failed") (-407 (-950 |#1|)) (-919))) (-15 -3961 ((-3 (-169 (-379)) "failed") (-407 (-950 |#1|)))) (-15 -3961 ((-3 (-169 (-379)) "failed") (-407 (-950 |#1|)) (-919))) (-15 -3961 ((-3 (-169 (-379)) "failed") (-407 (-950 (-169 |#1|))))) (-15 -3961 ((-3 (-169 (-379)) "failed") (-407 (-950 (-169 |#1|))) (-919))) (IF (|has| |#1| (-848)) (PROGN (-15 -1862 ((-3 (-379) "failed") (-316 |#1|))) (-15 -1862 ((-3 (-379) "failed") (-316 |#1|) (-919))) (-15 -3961 ((-3 (-169 (-379)) "failed") (-316 |#1|))) (-15 -3961 ((-3 (-169 (-379)) "failed") (-316 |#1|) (-919))) (-15 -3961 ((-3 (-169 (-379)) "failed") (-316 (-169 |#1|)))) (-15 -3961 ((-3 (-169 (-379)) "failed") (-316 (-169 |#1|)) (-919)))) |%noBranch|)) |%noBranch|)) (-612 (-379))) (T -783)) -((-3961 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-316 (-169 *5))) (-5 *4 (-919)) (-4 *5 (-556)) (-4 *5 (-848)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *5)))) (-3961 (*1 *2 *3) (|partial| -12 (-5 *3 (-316 (-169 *4))) (-4 *4 (-556)) (-4 *4 (-848)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *4)))) (-3961 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-316 *5)) (-5 *4 (-919)) (-4 *5 (-556)) (-4 *5 (-848)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *5)))) (-3961 (*1 *2 *3) (|partial| -12 (-5 *3 (-316 *4)) (-4 *4 (-556)) (-4 *4 (-848)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *4)))) (-1862 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-316 *5)) (-5 *4 (-919)) (-4 *5 (-556)) (-4 *5 (-848)) (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-783 *5)))) (-1862 (*1 *2 *3) (|partial| -12 (-5 *3 (-316 *4)) (-4 *4 (-556)) (-4 *4 (-848)) (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-783 *4)))) (-3961 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-407 (-950 (-169 *5)))) (-5 *4 (-919)) (-4 *5 (-556)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *5)))) (-3961 (*1 *2 *3) (|partial| -12 (-5 *3 (-407 (-950 (-169 *4)))) (-4 *4 (-556)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *4)))) (-3961 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-407 (-950 *5))) (-5 *4 (-919)) (-4 *5 (-556)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *5)))) (-3961 (*1 *2 *3) (|partial| -12 (-5 *3 (-407 (-950 *4))) (-4 *4 (-556)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *4)))) (-1862 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-407 (-950 *5))) (-5 *4 (-919)) (-4 *5 (-556)) (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-783 *5)))) (-1862 (*1 *2 *3) (|partial| -12 (-5 *3 (-407 (-950 *4))) (-4 *4 (-556)) (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-783 *4)))) (-3961 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-950 *5)) (-5 *4 (-919)) (-4 *5 (-1047)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *5)))) (-3961 (*1 *2 *3) (|partial| -12 (-5 *3 (-950 *4)) (-4 *4 (-1047)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *4)))) (-1862 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-950 *5)) (-5 *4 (-919)) (-4 *5 (-1047)) (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-783 *5)))) (-1862 (*1 *2 *3) (|partial| -12 (-5 *3 (-950 *4)) (-4 *4 (-1047)) (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-783 *4)))) (-3961 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-950 (-169 *5))) (-5 *4 (-919)) (-4 *5 (-172)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *5)))) (-3961 (*1 *2 *3) (|partial| -12 (-5 *3 (-950 (-169 *4))) (-4 *4 (-172)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *4)))) (-2191 (*1 *2 *3 *4) (-12 (-5 *3 (-316 (-169 *5))) (-5 *4 (-919)) (-4 *5 (-556)) (-4 *5 (-848)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *5)))) (-2191 (*1 *2 *3) (-12 (-5 *3 (-316 (-169 *4))) (-4 *4 (-556)) (-4 *4 (-848)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *4)))) (-2191 (*1 *2 *3 *4) (-12 (-5 *3 (-316 *5)) (-5 *4 (-919)) (-4 *5 (-556)) (-4 *5 (-848)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *5)))) (-2191 (*1 *2 *3) (-12 (-5 *3 (-316 *4)) (-4 *4 (-556)) (-4 *4 (-848)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *4)))) (-2583 (*1 *2 *3 *4) (-12 (-5 *3 (-316 *5)) (-5 *4 (-919)) (-4 *5 (-556)) (-4 *5 (-848)) (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-783 *5)))) (-2583 (*1 *2 *3) (-12 (-5 *3 (-316 *4)) (-4 *4 (-556)) (-4 *4 (-848)) (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-783 *4)))) (-2191 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-950 (-169 *5)))) (-5 *4 (-919)) (-4 *5 (-556)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *5)))) (-2191 (*1 *2 *3) (-12 (-5 *3 (-407 (-950 (-169 *4)))) (-4 *4 (-556)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *4)))) (-2191 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-950 *5))) (-5 *4 (-919)) (-4 *5 (-556)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *5)))) (-2191 (*1 *2 *3) (-12 (-5 *3 (-407 (-950 *4))) (-4 *4 (-556)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *4)))) (-2583 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-950 *5))) (-5 *4 (-919)) (-4 *5 (-556)) (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-783 *5)))) (-2583 (*1 *2 *3) (-12 (-5 *3 (-407 (-950 *4))) (-4 *4 (-556)) (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-783 *4)))) (-2191 (*1 *2 *3 *4) (-12 (-5 *3 (-950 *5)) (-5 *4 (-919)) (-4 *5 (-1047)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *5)))) (-2191 (*1 *2 *3) (-12 (-5 *3 (-950 *4)) (-4 *4 (-1047)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *4)))) (-2583 (*1 *2 *3 *4) (-12 (-5 *3 (-950 *5)) (-5 *4 (-919)) (-4 *5 (-1047)) (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-783 *5)))) (-2583 (*1 *2 *3) (-12 (-5 *3 (-950 *4)) (-4 *4 (-1047)) (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-783 *4)))) (-2191 (*1 *2 *3 *4) (-12 (-5 *3 (-950 (-169 *5))) (-5 *4 (-919)) (-4 *5 (-172)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *5)))) (-2191 (*1 *2 *3) (-12 (-5 *3 (-950 (-169 *4))) (-4 *4 (-172)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *4)))) (-2191 (*1 *2 *3 *4) (-12 (-5 *3 (-169 *5)) (-5 *4 (-919)) (-4 *5 (-172)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *5)))) (-2191 (*1 *2 *3) (-12 (-5 *3 (-169 *4)) (-4 *4 (-172)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *4)))) (-2191 (*1 *2 *3 *4) (-12 (-5 *4 (-919)) (-5 *2 (-169 (-379))) (-5 *1 (-783 *3)) (-4 *3 (-612 (-379))))) (-2191 (*1 *2 *3) (-12 (-5 *2 (-169 (-379))) (-5 *1 (-783 *3)) (-4 *3 (-612 (-379))))) (-2583 (*1 *2 *3 *4) (-12 (-5 *4 (-919)) (-5 *2 (-379)) (-5 *1 (-783 *3)) (-4 *3 (-612 *2)))) (-2583 (*1 *2 *3) (-12 (-5 *2 (-379)) (-5 *1 (-783 *3)) (-4 *3 (-612 *2))))) -(-10 -7 (-15 -2583 ((-379) |#1|)) (-15 -2583 ((-379) |#1| (-919))) (-15 -2191 ((-169 (-379)) |#1|)) (-15 -2191 ((-169 (-379)) |#1| (-919))) (IF (|has| |#1| (-172)) (PROGN (-15 -2191 ((-169 (-379)) (-169 |#1|))) (-15 -2191 ((-169 (-379)) (-169 |#1|) (-919))) (-15 -2191 ((-169 (-379)) (-950 (-169 |#1|)))) (-15 -2191 ((-169 (-379)) (-950 (-169 |#1|)) (-919)))) |%noBranch|) (IF (|has| |#1| (-1047)) (PROGN (-15 -2583 ((-379) (-950 |#1|))) (-15 -2583 ((-379) (-950 |#1|) (-919))) (-15 -2191 ((-169 (-379)) (-950 |#1|))) (-15 -2191 ((-169 (-379)) (-950 |#1|) (-919)))) |%noBranch|) (IF (|has| |#1| (-556)) (PROGN (-15 -2583 ((-379) (-407 (-950 |#1|)))) (-15 -2583 ((-379) (-407 (-950 |#1|)) (-919))) (-15 -2191 ((-169 (-379)) (-407 (-950 |#1|)))) (-15 -2191 ((-169 (-379)) (-407 (-950 |#1|)) (-919))) (-15 -2191 ((-169 (-379)) (-407 (-950 (-169 |#1|))))) (-15 -2191 ((-169 (-379)) (-407 (-950 (-169 |#1|))) (-919))) (IF (|has| |#1| (-848)) (PROGN (-15 -2583 ((-379) (-316 |#1|))) (-15 -2583 ((-379) (-316 |#1|) (-919))) (-15 -2191 ((-169 (-379)) (-316 |#1|))) (-15 -2191 ((-169 (-379)) (-316 |#1|) (-919))) (-15 -2191 ((-169 (-379)) (-316 (-169 |#1|)))) (-15 -2191 ((-169 (-379)) (-316 (-169 |#1|)) (-919)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-15 -3961 ((-3 (-169 (-379)) "failed") (-950 (-169 |#1|)))) (-15 -3961 ((-3 (-169 (-379)) "failed") (-950 (-169 |#1|)) (-919)))) |%noBranch|) (IF (|has| |#1| (-1047)) (PROGN (-15 -1862 ((-3 (-379) "failed") (-950 |#1|))) (-15 -1862 ((-3 (-379) "failed") (-950 |#1|) (-919))) (-15 -3961 ((-3 (-169 (-379)) "failed") (-950 |#1|))) (-15 -3961 ((-3 (-169 (-379)) "failed") (-950 |#1|) (-919)))) |%noBranch|) (IF (|has| |#1| (-556)) (PROGN (-15 -1862 ((-3 (-379) "failed") (-407 (-950 |#1|)))) (-15 -1862 ((-3 (-379) "failed") (-407 (-950 |#1|)) (-919))) (-15 -3961 ((-3 (-169 (-379)) "failed") (-407 (-950 |#1|)))) (-15 -3961 ((-3 (-169 (-379)) "failed") (-407 (-950 |#1|)) (-919))) (-15 -3961 ((-3 (-169 (-379)) "failed") (-407 (-950 (-169 |#1|))))) (-15 -3961 ((-3 (-169 (-379)) "failed") (-407 (-950 (-169 |#1|))) (-919))) (IF (|has| |#1| (-848)) (PROGN (-15 -1862 ((-3 (-379) "failed") (-316 |#1|))) (-15 -1862 ((-3 (-379) "failed") (-316 |#1|) (-919))) (-15 -3961 ((-3 (-169 (-379)) "failed") (-316 |#1|))) (-15 -3961 ((-3 (-169 (-379)) "failed") (-316 |#1|) (-919))) (-15 -3961 ((-3 (-169 (-379)) "failed") (-316 (-169 |#1|)))) (-15 -3961 ((-3 (-169 (-379)) "failed") (-316 (-169 |#1|)) (-919)))) |%noBranch|)) |%noBranch|)) -((-3643 (((-919) (-1155)) 92)) (-3280 (((-3 (-379) "failed") (-1155)) 36)) (-2969 (((-379) (-1155)) 34)) (-3996 (((-919) (-1155)) 63)) (-3132 (((-1155) (-919)) 75)) (-1841 (((-1155) (-919)) 62))) -(((-784) (-10 -7 (-15 -1841 ((-1155) (-919))) (-15 -3996 ((-919) (-1155))) (-15 -3132 ((-1155) (-919))) (-15 -3643 ((-919) (-1155))) (-15 -2969 ((-379) (-1155))) (-15 -3280 ((-3 (-379) "failed") (-1155))))) (T -784)) -((-3280 (*1 *2 *3) (|partial| -12 (-5 *3 (-1155)) (-5 *2 (-379)) (-5 *1 (-784)))) (-2969 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-379)) (-5 *1 (-784)))) (-3643 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-919)) (-5 *1 (-784)))) (-3132 (*1 *2 *3) (-12 (-5 *3 (-919)) (-5 *2 (-1155)) (-5 *1 (-784)))) (-3996 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-919)) (-5 *1 (-784)))) (-1841 (*1 *2 *3) (-12 (-5 *3 (-919)) (-5 *2 (-1155)) (-5 *1 (-784))))) -(-10 -7 (-15 -1841 ((-1155) (-919))) (-15 -3996 ((-919) (-1155))) (-15 -3132 ((-1155) (-919))) (-15 -3643 ((-919) (-1155))) (-15 -2969 ((-379) (-1155))) (-15 -3280 ((-3 (-379) "failed") (-1155)))) -((-2856 (((-112) $ $) 7)) (-4353 (((-1033) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1033)) 16) (((-1033) (-2 (|:| |fn| (-316 (-225))) (|:| -4138 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1033)) 14)) (-4324 (((-2 (|:| -4324 (-379)) (|:| |explanations| (-1155)) (|:| |extra| (-1033))) (-1060) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 17) (((-2 (|:| -4324 (-379)) (|:| |explanations| (-1155)) (|:| |extra| (-1033))) (-1060) (-2 (|:| |fn| (-316 (-225))) (|:| -4138 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 15)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2390 (((-860) $) 12)) (-1600 (((-112) $ $) 9)) (-2821 (((-112) $ $) 6))) -(((-785) (-140)) (T -785)) -((-4324 (*1 *2 *3 *4) (-12 (-4 *1 (-785)) (-5 *3 (-1060)) (-5 *4 (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -4324 (-379)) (|:| |explanations| (-1155)) (|:| |extra| (-1033)))))) (-4353 (*1 *2 *3 *2) (-12 (-4 *1 (-785)) (-5 *2 (-1033)) (-5 *3 (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-4324 (*1 *2 *3 *4) (-12 (-4 *1 (-785)) (-5 *3 (-1060)) (-5 *4 (-2 (|:| |fn| (-316 (-225))) (|:| -4138 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -4324 (-379)) (|:| |explanations| (-1155)) (|:| |extra| (-1033)))))) (-4353 (*1 *2 *3 *2) (-12 (-4 *1 (-785)) (-5 *2 (-1033)) (-5 *3 (-2 (|:| |fn| (-316 (-225))) (|:| -4138 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) -(-13 (-1097) (-10 -7 (-15 -4324 ((-2 (|:| -4324 (-379)) (|:| |explanations| (-1155)) (|:| |extra| (-1033))) (-1060) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4353 ((-1033) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1033))) (-15 -4324 ((-2 (|:| -4324 (-379)) (|:| |explanations| (-1155)) (|:| |extra| (-1033))) (-1060) (-2 (|:| |fn| (-316 (-225))) (|:| -4138 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4353 ((-1033) (-2 (|:| |fn| (-316 (-225))) (|:| -4138 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1033))))) -(((-102) . T) ((-611 (-860)) . T) ((-1097) . T)) -((-3538 (((-1267) (-1262 (-379)) (-564) (-379) (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -3800 (-379))) (-379) (-1262 (-379)) (-1 (-1267) (-1262 (-379)) (-1262 (-379)) (-379)) (-1262 (-379)) (-1262 (-379)) (-1262 (-379)) (-1262 (-379)) (-1262 (-379)) (-1262 (-379)) (-1262 (-379))) 55) (((-1267) (-1262 (-379)) (-564) (-379) (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -3800 (-379))) (-379) (-1262 (-379)) (-1 (-1267) (-1262 (-379)) (-1262 (-379)) (-379))) 52)) (-2280 (((-1267) (-1262 (-379)) (-564) (-379) (-379) (-564) (-1 (-1267) (-1262 (-379)) (-1262 (-379)) (-379))) 61)) (-3360 (((-1267) (-1262 (-379)) (-564) (-379) (-379) (-379) (-379) (-564) (-1 (-1267) (-1262 (-379)) (-1262 (-379)) (-379))) 50)) (-1544 (((-1267) (-1262 (-379)) (-564) (-379) (-379) (-1 (-1267) (-1262 (-379)) (-1262 (-379)) (-379)) (-1262 (-379)) (-1262 (-379)) (-1262 (-379)) (-1262 (-379))) 63) (((-1267) (-1262 (-379)) (-564) (-379) (-379) (-1 (-1267) (-1262 (-379)) (-1262 (-379)) (-379))) 62))) -(((-786) (-10 -7 (-15 -1544 ((-1267) (-1262 (-379)) (-564) (-379) (-379) (-1 (-1267) (-1262 (-379)) (-1262 (-379)) (-379)))) (-15 -1544 ((-1267) (-1262 (-379)) (-564) (-379) (-379) (-1 (-1267) (-1262 (-379)) (-1262 (-379)) (-379)) (-1262 (-379)) (-1262 (-379)) (-1262 (-379)) (-1262 (-379)))) (-15 -3360 ((-1267) (-1262 (-379)) (-564) (-379) (-379) (-379) (-379) (-564) (-1 (-1267) (-1262 (-379)) (-1262 (-379)) (-379)))) (-15 -3538 ((-1267) (-1262 (-379)) (-564) (-379) (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -3800 (-379))) (-379) (-1262 (-379)) (-1 (-1267) (-1262 (-379)) (-1262 (-379)) (-379)))) (-15 -3538 ((-1267) (-1262 (-379)) (-564) (-379) (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -3800 (-379))) (-379) (-1262 (-379)) (-1 (-1267) (-1262 (-379)) (-1262 (-379)) (-379)) (-1262 (-379)) (-1262 (-379)) (-1262 (-379)) (-1262 (-379)) (-1262 (-379)) (-1262 (-379)) (-1262 (-379)))) (-15 -2280 ((-1267) (-1262 (-379)) (-564) (-379) (-379) (-564) (-1 (-1267) (-1262 (-379)) (-1262 (-379)) (-379)))))) (T -786)) -((-2280 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-564)) (-5 *6 (-1 (-1267) (-1262 *5) (-1262 *5) (-379))) (-5 *3 (-1262 (-379))) (-5 *5 (-379)) (-5 *2 (-1267)) (-5 *1 (-786)))) (-3538 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-564)) (-5 *6 (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -3800 (-379)))) (-5 *7 (-1 (-1267) (-1262 *5) (-1262 *5) (-379))) (-5 *3 (-1262 (-379))) (-5 *5 (-379)) (-5 *2 (-1267)) (-5 *1 (-786)))) (-3538 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-564)) (-5 *6 (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -3800 (-379)))) (-5 *7 (-1 (-1267) (-1262 *5) (-1262 *5) (-379))) (-5 *3 (-1262 (-379))) (-5 *5 (-379)) (-5 *2 (-1267)) (-5 *1 (-786)))) (-3360 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-564)) (-5 *6 (-1 (-1267) (-1262 *5) (-1262 *5) (-379))) (-5 *3 (-1262 (-379))) (-5 *5 (-379)) (-5 *2 (-1267)) (-5 *1 (-786)))) (-1544 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-564)) (-5 *6 (-1 (-1267) (-1262 *5) (-1262 *5) (-379))) (-5 *3 (-1262 (-379))) (-5 *5 (-379)) (-5 *2 (-1267)) (-5 *1 (-786)))) (-1544 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-564)) (-5 *6 (-1 (-1267) (-1262 *5) (-1262 *5) (-379))) (-5 *3 (-1262 (-379))) (-5 *5 (-379)) (-5 *2 (-1267)) (-5 *1 (-786))))) -(-10 -7 (-15 -1544 ((-1267) (-1262 (-379)) (-564) (-379) (-379) (-1 (-1267) (-1262 (-379)) (-1262 (-379)) (-379)))) (-15 -1544 ((-1267) (-1262 (-379)) (-564) (-379) (-379) (-1 (-1267) (-1262 (-379)) (-1262 (-379)) (-379)) (-1262 (-379)) (-1262 (-379)) (-1262 (-379)) (-1262 (-379)))) (-15 -3360 ((-1267) (-1262 (-379)) (-564) (-379) (-379) (-379) (-379) (-564) (-1 (-1267) (-1262 (-379)) (-1262 (-379)) (-379)))) (-15 -3538 ((-1267) (-1262 (-379)) (-564) (-379) (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -3800 (-379))) (-379) (-1262 (-379)) (-1 (-1267) (-1262 (-379)) (-1262 (-379)) (-379)))) (-15 -3538 ((-1267) (-1262 (-379)) (-564) (-379) (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -3800 (-379))) (-379) (-1262 (-379)) (-1 (-1267) (-1262 (-379)) (-1262 (-379)) (-379)) (-1262 (-379)) (-1262 (-379)) (-1262 (-379)) (-1262 (-379)) (-1262 (-379)) (-1262 (-379)) (-1262 (-379)))) (-15 -2280 ((-1267) (-1262 (-379)) (-564) (-379) (-379) (-564) (-1 (-1267) (-1262 (-379)) (-1262 (-379)) (-379))))) -((-2986 (((-2 (|:| -2108 (-379)) (|:| -1437 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564)) 66)) (-2730 (((-2 (|:| -2108 (-379)) (|:| -1437 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564)) 42)) (-1766 (((-2 (|:| -2108 (-379)) (|:| -1437 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564)) 65)) (-3057 (((-2 (|:| -2108 (-379)) (|:| -1437 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564)) 40)) (-1776 (((-2 (|:| -2108 (-379)) (|:| -1437 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564)) 64)) (-3639 (((-2 (|:| -2108 (-379)) (|:| -1437 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564)) 26)) (-2358 (((-2 (|:| -2108 (-379)) (|:| -1437 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564)) 43)) (-2592 (((-2 (|:| -2108 (-379)) (|:| -1437 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564)) 41)) (-3766 (((-2 (|:| -2108 (-379)) (|:| -1437 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564)) 39))) -(((-787) (-10 -7 (-15 -3766 ((-2 (|:| -2108 (-379)) (|:| -1437 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564))) (-15 -2592 ((-2 (|:| -2108 (-379)) (|:| -1437 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564))) (-15 -2358 ((-2 (|:| -2108 (-379)) (|:| -1437 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564))) (-15 -3639 ((-2 (|:| -2108 (-379)) (|:| -1437 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -3057 ((-2 (|:| -2108 (-379)) (|:| -1437 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -2730 ((-2 (|:| -2108 (-379)) (|:| -1437 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -1776 ((-2 (|:| -2108 (-379)) (|:| -1437 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -1766 ((-2 (|:| -2108 (-379)) (|:| -1437 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -2986 ((-2 (|:| -2108 (-379)) (|:| -1437 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))))) (T -787)) -((-2986 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -2108 *4) (|:| -1437 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-787)) (-5 *5 (-564)))) (-1766 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -2108 *4) (|:| -1437 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-787)) (-5 *5 (-564)))) (-1776 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -2108 *4) (|:| -1437 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-787)) (-5 *5 (-564)))) (-2730 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -2108 *4) (|:| -1437 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-787)) (-5 *5 (-564)))) (-3057 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -2108 *4) (|:| -1437 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-787)) (-5 *5 (-564)))) (-3639 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -2108 *4) (|:| -1437 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-787)) (-5 *5 (-564)))) (-2358 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -2108 *4) (|:| -1437 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-787)) (-5 *5 (-564)))) (-2592 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -2108 *4) (|:| -1437 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-787)) (-5 *5 (-564)))) (-3766 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -2108 *4) (|:| -1437 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-787)) (-5 *5 (-564))))) -(-10 -7 (-15 -3766 ((-2 (|:| -2108 (-379)) (|:| -1437 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564))) (-15 -2592 ((-2 (|:| -2108 (-379)) (|:| -1437 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564))) (-15 -2358 ((-2 (|:| -2108 (-379)) (|:| -1437 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564))) (-15 -3639 ((-2 (|:| -2108 (-379)) (|:| -1437 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -3057 ((-2 (|:| -2108 (-379)) (|:| -1437 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -2730 ((-2 (|:| -2108 (-379)) (|:| -1437 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -1776 ((-2 (|:| -2108 (-379)) (|:| -1437 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -1766 ((-2 (|:| -2108 (-379)) (|:| -1437 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -2986 ((-2 (|:| -2108 (-379)) (|:| -1437 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564)))) -((-2612 (((-1207 |#1|) |#1| (-225) (-564)) 69))) -(((-788 |#1|) (-10 -7 (-15 -2612 ((-1207 |#1|) |#1| (-225) (-564)))) (-972)) (T -788)) -((-2612 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-225)) (-5 *5 (-564)) (-5 *2 (-1207 *3)) (-5 *1 (-788 *3)) (-4 *3 (-972))))) -(-10 -7 (-15 -2612 ((-1207 |#1|) |#1| (-225) (-564)))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 25)) (-3085 (((-3 $ "failed") $ $) 27)) (-2822 (($) 24 T CONST)) (-3225 (($ $ $) 14)) (-2903 (($ $ $) 15)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2390 (((-860) $) 12)) (-1600 (((-112) $ $) 9)) (-2361 (($) 23 T CONST)) (-2881 (((-112) $ $) 17)) (-2857 (((-112) $ $) 18)) (-2821 (((-112) $ $) 6)) (-2868 (((-112) $ $) 16)) (-2844 (((-112) $ $) 19)) (-2930 (($ $ $) 31) (($ $) 30)) (-2917 (($ $ $) 21)) (* (($ (-919) $) 22) (($ (-769) $) 26) (($ (-564) $) 29))) -(((-789) (-140)) (T -789)) -NIL -(-13 (-793) (-21)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-860)) . T) ((-644 (-564)) . T) ((-790) . T) ((-792) . T) ((-793) . T) ((-848) . T) ((-1097) . T)) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 25)) (-2822 (($) 24 T CONST)) (-3225 (($ $ $) 14)) (-2903 (($ $ $) 15)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2390 (((-860) $) 12)) (-1600 (((-112) $ $) 9)) (-2361 (($) 23 T CONST)) (-2881 (((-112) $ $) 17)) (-2857 (((-112) $ $) 18)) (-2821 (((-112) $ $) 6)) (-2868 (((-112) $ $) 16)) (-2844 (((-112) $ $) 19)) (-2917 (($ $ $) 21)) (* (($ (-919) $) 22) (($ (-769) $) 26))) -(((-790) (-140)) (T -790)) -NIL -(-13 (-792) (-23)) -(((-23) . T) ((-25) . T) ((-102) . T) ((-611 (-860)) . T) ((-792) . T) ((-848) . T) ((-1097) . T)) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 25)) (-2247 (($ $ $) 28)) (-3085 (((-3 $ "failed") $ $) 27)) (-2822 (($) 24 T CONST)) (-3225 (($ $ $) 14)) (-2903 (($ $ $) 15)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2390 (((-860) $) 12)) (-1600 (((-112) $ $) 9)) (-2361 (($) 23 T CONST)) (-2881 (((-112) $ $) 17)) (-2857 (((-112) $ $) 18)) (-2821 (((-112) $ $) 6)) (-2868 (((-112) $ $) 16)) (-2844 (((-112) $ $) 19)) (-2917 (($ $ $) 21)) (* (($ (-919) $) 22) (($ (-769) $) 26))) +((-1916 (((-3 |#2| "failed") |#2| |#2| (-114) (-1175)) 37))) +(((-772 |#1| |#2|) (-10 -7 (-15 -1916 ((-3 |#2| "failed") |#2| |#2| (-114) (-1175)))) (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147)) (-13 (-29 |#1|) (-1199) (-959))) (T -772)) +((-1916 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1175)) (-4 *5 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *1 (-772 *5 *2)) (-4 *2 (-13 (-29 *5) (-1199) (-959)))))) +(-10 -7 (-15 -1916 ((-3 |#2| "failed") |#2| |#2| (-114) (-1175)))) +((-2479 (((-774) |#1|) 8))) +(((-773 |#1|) (-10 -7 (-15 -2479 ((-774) |#1|))) (-1214)) (T -773)) +((-2479 (*1 *2 *3) (-12 (-5 *2 (-774)) (-5 *1 (-773 *3)) (-4 *3 (-1214))))) +(-10 -7 (-15 -2479 ((-774) |#1|))) +((-2986 (((-112) $ $) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) 7)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 9))) +(((-774) (-1099)) (T -774)) +NIL +(-1099) +((-1398 ((|#2| |#4|) 35))) +(((-775 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1398 (|#2| |#4|))) (-454) (-1240 |#1|) (-724 |#1| |#2|) (-1240 |#3|)) (T -775)) +((-1398 (*1 *2 *3) (-12 (-4 *4 (-454)) (-4 *5 (-724 *4 *2)) (-4 *2 (-1240 *4)) (-5 *1 (-775 *4 *2 *5 *3)) (-4 *3 (-1240 *5))))) +(-10 -7 (-15 -1398 (|#2| |#4|))) +((-3757 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57)) (-2560 (((-1269) (-1157) (-1157) |#4| |#5|) 33)) (-3630 ((|#4| |#4| |#5|) 74)) (-2172 (((-644 (-2 (|:| |val| |#4|) (|:| -2192 |#5|))) |#4| |#5|) 79)) (-2696 (((-644 (-2 (|:| |val| (-112)) (|:| -2192 |#5|))) |#4| |#5|) 16))) +(((-776 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3757 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3630 (|#4| |#4| |#5|)) (-15 -2172 ((-644 (-2 (|:| |val| |#4|) (|:| -2192 |#5|))) |#4| |#5|)) (-15 -2560 ((-1269) (-1157) (-1157) |#4| |#5|)) (-15 -2696 ((-644 (-2 (|:| |val| (-112)) (|:| -2192 |#5|))) |#4| |#5|))) (-454) (-793) (-850) (-1064 |#1| |#2| |#3|) (-1070 |#1| |#2| |#3| |#4|)) (T -776)) +((-2696 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| (-112)) (|:| -2192 *4)))) (-5 *1 (-776 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-2560 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1157)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) (-4 *4 (-1064 *6 *7 *8)) (-5 *2 (-1269)) (-5 *1 (-776 *6 *7 *8 *4 *5)) (-4 *5 (-1070 *6 *7 *8 *4)))) (-2172 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -2192 *4)))) (-5 *1 (-776 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-3630 (*1 *2 *2 *3) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *2 (-1064 *4 *5 *6)) (-5 *1 (-776 *4 *5 *6 *2 *3)) (-4 *3 (-1070 *4 *5 *6 *2)))) (-3757 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-776 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3))))) +(-10 -7 (-15 -3757 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3630 (|#4| |#4| |#5|)) (-15 -2172 ((-644 (-2 (|:| |val| |#4|) (|:| -2192 |#5|))) |#4| |#5|)) (-15 -2560 ((-1269) (-1157) (-1157) |#4| |#5|)) (-15 -2696 ((-644 (-2 (|:| |val| (-112)) (|:| -2192 |#5|))) |#4| |#5|))) +((-2980 (((-3 (-1171 (-1171 |#1|)) "failed") |#4|) 53)) (-2248 (((-644 |#4|) |#4|) 24)) (-3536 ((|#4| |#4|) 19))) +(((-777 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2248 ((-644 |#4|) |#4|)) (-15 -2980 ((-3 (-1171 (-1171 |#1|)) "failed") |#4|)) (-15 -3536 (|#4| |#4|))) (-351) (-330 |#1|) (-1240 |#2|) (-1240 |#3|) (-921)) (T -777)) +((-3536 (*1 *2 *2) (-12 (-4 *3 (-351)) (-4 *4 (-330 *3)) (-4 *5 (-1240 *4)) (-5 *1 (-777 *3 *4 *5 *2 *6)) (-4 *2 (-1240 *5)) (-14 *6 (-921)))) (-2980 (*1 *2 *3) (|partial| -12 (-4 *4 (-351)) (-4 *5 (-330 *4)) (-4 *6 (-1240 *5)) (-5 *2 (-1171 (-1171 *4))) (-5 *1 (-777 *4 *5 *6 *3 *7)) (-4 *3 (-1240 *6)) (-14 *7 (-921)))) (-2248 (*1 *2 *3) (-12 (-4 *4 (-351)) (-4 *5 (-330 *4)) (-4 *6 (-1240 *5)) (-5 *2 (-644 *3)) (-5 *1 (-777 *4 *5 *6 *3 *7)) (-4 *3 (-1240 *6)) (-14 *7 (-921))))) +(-10 -7 (-15 -2248 ((-644 |#4|) |#4|)) (-15 -2980 ((-3 (-1171 (-1171 |#1|)) "failed") |#4|)) (-15 -3536 (|#4| |#4|))) +((-3782 (((-2 (|:| |deter| (-644 (-1171 |#5|))) (|:| |dterm| (-644 (-644 (-2 (|:| -1933 (-771)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-644 |#1|)) (|:| |nlead| (-644 |#5|))) (-1171 |#5|) (-644 |#1|) (-644 |#5|)) 75)) (-4328 (((-644 (-771)) |#1|) 20))) +(((-778 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3782 ((-2 (|:| |deter| (-644 (-1171 |#5|))) (|:| |dterm| (-644 (-644 (-2 (|:| -1933 (-771)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-644 |#1|)) (|:| |nlead| (-644 |#5|))) (-1171 |#5|) (-644 |#1|) (-644 |#5|))) (-15 -4328 ((-644 (-771)) |#1|))) (-1240 |#4|) (-793) (-850) (-308) (-949 |#4| |#2| |#3|)) (T -778)) +((-4328 (*1 *2 *3) (-12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-308)) (-5 *2 (-644 (-771))) (-5 *1 (-778 *3 *4 *5 *6 *7)) (-4 *3 (-1240 *6)) (-4 *7 (-949 *6 *4 *5)))) (-3782 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1240 *9)) (-4 *7 (-793)) (-4 *8 (-850)) (-4 *9 (-308)) (-4 *10 (-949 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-644 (-1171 *10))) (|:| |dterm| (-644 (-644 (-2 (|:| -1933 (-771)) (|:| |pcoef| *10))))) (|:| |nfacts| (-644 *6)) (|:| |nlead| (-644 *10)))) (-5 *1 (-778 *6 *7 *8 *9 *10)) (-5 *3 (-1171 *10)) (-5 *4 (-644 *6)) (-5 *5 (-644 *10))))) +(-10 -7 (-15 -3782 ((-2 (|:| |deter| (-644 (-1171 |#5|))) (|:| |dterm| (-644 (-644 (-2 (|:| -1933 (-771)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-644 |#1|)) (|:| |nlead| (-644 |#5|))) (-1171 |#5|) (-644 |#1|) (-644 |#5|))) (-15 -4328 ((-644 (-771)) |#1|))) +((-2062 (((-644 (-2 (|:| |outval| |#1|) (|:| |outmult| (-566)) (|:| |outvect| (-644 (-689 |#1|))))) (-689 (-409 (-566))) |#1|) 31)) (-2109 (((-644 |#1|) (-689 (-409 (-566))) |#1|) 21)) (-3728 (((-952 (-409 (-566))) (-689 (-409 (-566))) (-1175)) 18) (((-952 (-409 (-566))) (-689 (-409 (-566)))) 17))) +(((-779 |#1|) (-10 -7 (-15 -3728 ((-952 (-409 (-566))) (-689 (-409 (-566))))) (-15 -3728 ((-952 (-409 (-566))) (-689 (-409 (-566))) (-1175))) (-15 -2109 ((-644 |#1|) (-689 (-409 (-566))) |#1|)) (-15 -2062 ((-644 (-2 (|:| |outval| |#1|) (|:| |outmult| (-566)) (|:| |outvect| (-644 (-689 |#1|))))) (-689 (-409 (-566))) |#1|))) (-13 (-365) (-848))) (T -779)) +((-2062 (*1 *2 *3 *4) (-12 (-5 *3 (-689 (-409 (-566)))) (-5 *2 (-644 (-2 (|:| |outval| *4) (|:| |outmult| (-566)) (|:| |outvect| (-644 (-689 *4)))))) (-5 *1 (-779 *4)) (-4 *4 (-13 (-365) (-848))))) (-2109 (*1 *2 *3 *4) (-12 (-5 *3 (-689 (-409 (-566)))) (-5 *2 (-644 *4)) (-5 *1 (-779 *4)) (-4 *4 (-13 (-365) (-848))))) (-3728 (*1 *2 *3 *4) (-12 (-5 *3 (-689 (-409 (-566)))) (-5 *4 (-1175)) (-5 *2 (-952 (-409 (-566)))) (-5 *1 (-779 *5)) (-4 *5 (-13 (-365) (-848))))) (-3728 (*1 *2 *3) (-12 (-5 *3 (-689 (-409 (-566)))) (-5 *2 (-952 (-409 (-566)))) (-5 *1 (-779 *4)) (-4 *4 (-13 (-365) (-848)))))) +(-10 -7 (-15 -3728 ((-952 (-409 (-566))) (-689 (-409 (-566))))) (-15 -3728 ((-952 (-409 (-566))) (-689 (-409 (-566))) (-1175))) (-15 -2109 ((-644 |#1|) (-689 (-409 (-566))) |#1|)) (-15 -2062 ((-644 (-2 (|:| |outval| |#1|) (|:| |outmult| (-566)) (|:| |outvect| (-644 (-689 |#1|))))) (-689 (-409 (-566))) |#1|))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) 36)) (-2485 (((-644 |#2|) $) NIL)) (-2285 (((-1171 $) $ |#2|) NIL) (((-1171 |#1|) $) NIL)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-3087 (($ $) NIL (|has| |#1| (-558)))) (-1716 (((-112) $) NIL (|has| |#1| (-558)))) (-2917 (((-771) $) NIL) (((-771) $ (-644 |#2|)) NIL)) (-3238 (($ $) 30)) (-3559 (((-112) $ $) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-2113 (($ $ $) 110 (|has| |#1| (-558)))) (-4389 (((-644 $) $ $) 123 (|has| |#1| (-558)))) (-4058 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-3980 (($ $) NIL (|has| |#1| (-454)))) (-3348 (((-420 $) $) NIL (|has| |#1| (-454)))) (-4262 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-1811 (($) NIL T CONST)) (-2980 (((-3 |#1| "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-952 (-409 (-566)))) NIL (-12 (|has| |#1| (-38 (-409 (-566)))) (|has| |#2| (-614 (-1175))))) (((-3 $ "failed") (-952 (-566))) NIL (-2809 (-12 (|has| |#1| (-38 (-566))) (|has| |#2| (-614 (-1175))) (-2387 (|has| |#1| (-38 (-409 (-566)))))) (-12 (|has| |#1| (-38 (-409 (-566)))) (|has| |#2| (-614 (-1175)))))) (((-3 $ "failed") (-952 |#1|)) NIL (-2809 (-12 (|has| |#2| (-614 (-1175))) (-2387 (|has| |#1| (-38 (-409 (-566))))) (-2387 (|has| |#1| (-38 (-566))))) (-12 (|has| |#1| (-38 (-566))) (|has| |#2| (-614 (-1175))) (-2387 (|has| |#1| (-38 (-409 (-566))))) (-2387 (|has| |#1| (-547)))) (-12 (|has| |#1| (-38 (-409 (-566)))) (|has| |#2| (-614 (-1175))) (-2387 (|has| |#1| (-992 (-566))))))) (((-3 (-1124 |#1| |#2|) "failed") $) 21)) (-1709 ((|#1| $) NIL) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-566) $) NIL (|has| |#1| (-1038 (-566)))) ((|#2| $) NIL) (($ (-952 (-409 (-566)))) NIL (-12 (|has| |#1| (-38 (-409 (-566)))) (|has| |#2| (-614 (-1175))))) (($ (-952 (-566))) NIL (-2809 (-12 (|has| |#1| (-38 (-566))) (|has| |#2| (-614 (-1175))) (-2387 (|has| |#1| (-38 (-409 (-566)))))) (-12 (|has| |#1| (-38 (-409 (-566)))) (|has| |#2| (-614 (-1175)))))) (($ (-952 |#1|)) NIL (-2809 (-12 (|has| |#2| (-614 (-1175))) (-2387 (|has| |#1| (-38 (-409 (-566))))) (-2387 (|has| |#1| (-38 (-566))))) (-12 (|has| |#1| (-38 (-566))) (|has| |#2| (-614 (-1175))) (-2387 (|has| |#1| (-38 (-409 (-566))))) (-2387 (|has| |#1| (-547)))) (-12 (|has| |#1| (-38 (-409 (-566)))) (|has| |#2| (-614 (-1175))) (-2387 (|has| |#1| (-992 (-566))))))) (((-1124 |#1| |#2|) $) NIL)) (-4343 (($ $ $ |#2|) NIL (|has| |#1| (-172))) (($ $ $) 121 (|has| |#1| (-558)))) (-3565 (($ $) NIL) (($ $ |#2|) NIL)) (-2275 (((-689 (-566)) (-689 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -4196 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) NIL) (((-689 |#1|) (-689 $)) NIL)) (-1995 (((-112) $ $) NIL) (((-112) $ (-644 $)) NIL)) (-3757 (((-3 $ "failed") $) NIL)) (-1408 (((-112) $) NIL)) (-3920 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) 81)) (-1447 (($ $) 136 (|has| |#1| (-454)))) (-3530 (($ $) NIL (|has| |#1| (-454))) (($ $ |#2|) NIL (|has| |#1| (-454)))) (-3551 (((-644 $) $) NIL)) (-4188 (((-112) $) NIL (|has| |#1| (-909)))) (-1567 (($ $) NIL (|has| |#1| (-558)))) (-2890 (($ $) NIL (|has| |#1| (-558)))) (-1457 (($ $ $) 76) (($ $ $ |#2|) NIL)) (-4254 (($ $ $) 79) (($ $ $ |#2|) NIL)) (-3995 (($ $ |#1| (-533 |#2|) $) NIL)) (-1542 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| |#1| (-886 (-381))) (|has| |#2| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| |#1| (-886 (-566))) (|has| |#2| (-886 (-566)))))) (-2264 (((-112) $) 57)) (-3486 (((-771) $) NIL)) (-4297 (((-112) $ $) NIL) (((-112) $ (-644 $)) NIL)) (-2567 (($ $ $ $ $) 107 (|has| |#1| (-558)))) (-4052 ((|#2| $) 22)) (-2474 (($ (-1171 |#1|) |#2|) NIL) (($ (-1171 $) |#2|) NIL)) (-1545 (((-644 $) $) NIL)) (-3989 (((-112) $) NIL)) (-2463 (($ |#1| (-533 |#2|)) NIL) (($ $ |#2| (-771)) 38) (($ $ (-644 |#2|) (-644 (-771))) NIL)) (-3914 (($ $ $) 63)) (-2235 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $ |#2|) NIL)) (-4090 (((-112) $) NIL)) (-2584 (((-533 |#2|) $) NIL) (((-771) $ |#2|) NIL) (((-644 (-771)) $ (-644 |#2|)) NIL)) (-2578 (((-771) $) 23)) (-3327 (($ (-1 (-533 |#2|) (-533 |#2|)) $) NIL)) (-3080 (($ (-1 |#1| |#1|) $) NIL)) (-2673 (((-3 |#2| "failed") $) NIL)) (-1683 (($ $) NIL (|has| |#1| (-454)))) (-3460 (($ $) NIL (|has| |#1| (-454)))) (-4145 (((-644 $) $) NIL)) (-1892 (($ $) 39)) (-3679 (($ $) NIL (|has| |#1| (-454)))) (-1332 (((-644 $) $) 43)) (-4303 (($ $) 41)) (-2608 (($ $) NIL)) (-2622 ((|#1| $) NIL) (($ $ |#2|) 48)) (-2120 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-2233 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3061 (-771))) $ $) 96)) (-2991 (((-2 (|:| -3103 $) (|:| |gap| (-771)) (|:| -3371 $) (|:| -3131 $)) $ $) 78) (((-2 (|:| -3103 $) (|:| |gap| (-771)) (|:| -3371 $) (|:| -3131 $)) $ $ |#2|) NIL)) (-1891 (((-2 (|:| -3103 $) (|:| |gap| (-771)) (|:| -3131 $)) $ $) NIL) (((-2 (|:| -3103 $) (|:| |gap| (-771)) (|:| -3131 $)) $ $ |#2|) NIL)) (-1345 (($ $ $) 83) (($ $ $ |#2|) NIL)) (-2478 (($ $ $) 86) (($ $ $ |#2|) NIL)) (-3151 (((-1157) $) NIL)) (-3723 (($ $ $) 125 (|has| |#1| (-558)))) (-2847 (((-644 $) $) 32)) (-4075 (((-3 (-644 $) "failed") $) NIL)) (-3380 (((-3 (-644 $) "failed") $) NIL)) (-2414 (((-3 (-2 (|:| |var| |#2|) (|:| -3631 (-771))) "failed") $) NIL)) (-4121 (((-112) $ $) NIL) (((-112) $ (-644 $)) NIL)) (-3317 (($ $ $) NIL)) (-3968 (($ $) 24)) (-3730 (((-112) $ $) NIL)) (-1695 (((-112) $ $) NIL) (((-112) $ (-644 $)) NIL)) (-3869 (($ $ $) NIL)) (-2154 (($ $) 26)) (-4059 (((-1119) $) NIL)) (-3616 (((-2 (|:| -2162 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-558)))) (-3827 (((-2 (|:| -2162 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-558)))) (-2587 (((-112) $) 56)) (-2597 ((|#1| $) 58)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-454)))) (-2162 ((|#1| |#1| $) 133 (|has| |#1| (-454))) (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-1500 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-3917 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-2325 (((-420 $) $) NIL (|has| |#1| (-909)))) (-2039 (((-2 (|:| -2162 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-558)))) (-2976 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558))) (((-3 $ "failed") $ $) 98 (|has| |#1| (-558)))) (-2508 (($ $ |#1|) 129 (|has| |#1| (-558))) (($ $ $) NIL (|has| |#1| (-558)))) (-1843 (($ $ |#1|) 128 (|has| |#1| (-558))) (($ $ $) NIL (|has| |#1| (-558)))) (-3297 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-644 |#2|) (-644 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-644 |#2|) (-644 $)) NIL)) (-3553 (($ $ |#2|) NIL (|has| |#1| (-172)))) (-3526 (($ $ |#2|) NIL) (($ $ (-644 |#2|)) NIL) (($ $ |#2| (-771)) NIL) (($ $ (-644 |#2|) (-644 (-771))) NIL)) (-1630 (((-533 |#2|) $) NIL) (((-771) $ |#2|) 45) (((-644 (-771)) $ (-644 |#2|)) NIL)) (-2938 (($ $) NIL)) (-1926 (($ $) 35)) (-3136 (((-892 (-381)) $) NIL (-12 (|has| |#1| (-614 (-892 (-381)))) (|has| |#2| (-614 (-892 (-381)))))) (((-892 (-566)) $) NIL (-12 (|has| |#1| (-614 (-892 (-566)))) (|has| |#2| (-614 (-892 (-566)))))) (((-538) $) NIL (-12 (|has| |#1| (-614 (-538))) (|has| |#2| (-614 (-538))))) (($ (-952 (-409 (-566)))) NIL (-12 (|has| |#1| (-38 (-409 (-566)))) (|has| |#2| (-614 (-1175))))) (($ (-952 (-566))) NIL (-2809 (-12 (|has| |#1| (-38 (-566))) (|has| |#2| (-614 (-1175))) (-2387 (|has| |#1| (-38 (-409 (-566)))))) (-12 (|has| |#1| (-38 (-409 (-566)))) (|has| |#2| (-614 (-1175)))))) (($ (-952 |#1|)) NIL (|has| |#2| (-614 (-1175)))) (((-1157) $) NIL (-12 (|has| |#1| (-1038 (-566))) (|has| |#2| (-614 (-1175))))) (((-952 |#1|) $) NIL (|has| |#2| (-614 (-1175))))) (-2252 ((|#1| $) 132 (|has| |#1| (-454))) (($ $ |#2|) NIL (|has| |#1| (-454)))) (-3233 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-909))))) (-2479 (((-862) $) NIL) (($ (-566)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-952 |#1|) $) NIL (|has| |#2| (-614 (-1175)))) (((-1124 |#1| |#2|) $) 18) (($ (-1124 |#1| |#2|)) 19) (($ (-409 (-566))) NIL (-2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566)))))) (($ $) NIL (|has| |#1| (-558)))) (-3866 (((-644 |#1|) $) NIL)) (-3025 ((|#1| $ (-533 |#2|)) NIL) (($ $ |#2| (-771)) 47) (($ $ (-644 |#2|) (-644 (-771))) NIL)) (-2645 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| $ (-145)) (|has| |#1| (-909))) (|has| |#1| (-145))))) (-1558 (((-771)) NIL T CONST)) (-2244 (($ $ $ (-771)) NIL (|has| |#1| (-172)))) (-3900 (((-112) $ $) NIL)) (-1333 (((-112) $ $) NIL (|has| |#1| (-558)))) (-2446 (($) 13 T CONST)) (-4313 (((-3 (-112) "failed") $ $) NIL)) (-2459 (($) 37 T CONST)) (-3284 (($ $ $ $ (-771)) 105 (|has| |#1| (-558)))) (-2898 (($ $ $ (-771)) 104 (|has| |#1| (-558)))) (-2834 (($ $ |#2|) NIL) (($ $ (-644 |#2|)) NIL) (($ $ |#2| (-771)) NIL) (($ $ (-644 |#2|) (-644 (-771))) NIL)) (-2952 (((-112) $ $) NIL)) (-3077 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3065 (($ $) NIL) (($ $ $) 75)) (-3052 (($ $ $) 85)) (** (($ $ (-921)) NIL) (($ $ (-771)) 70)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 62) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ |#1| $) 61) (($ $ |#1|) NIL))) +(((-780 |#1| |#2|) (-13 (-1064 |#1| (-533 |#2|) |#2|) (-613 (-1124 |#1| |#2|)) (-1038 (-1124 |#1| |#2|))) (-1049) (-850)) (T -780)) +NIL +(-13 (-1064 |#1| (-533 |#2|) |#2|) (-613 (-1124 |#1| |#2|)) (-1038 (-1124 |#1| |#2|))) +((-3080 (((-782 |#2|) (-1 |#2| |#1|) (-782 |#1|)) 13))) +(((-781 |#1| |#2|) (-10 -7 (-15 -3080 ((-782 |#2|) (-1 |#2| |#1|) (-782 |#1|)))) (-1049) (-1049)) (T -781)) +((-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-782 *5)) (-4 *5 (-1049)) (-4 *6 (-1049)) (-5 *2 (-782 *6)) (-5 *1 (-781 *5 *6))))) +(-10 -7 (-15 -3080 ((-782 |#2|) (-1 |#2| |#1|) (-782 |#1|)))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) 12)) (-1825 (((-1264 |#1|) $ (-771)) NIL)) (-2485 (((-644 (-1081)) $) NIL)) (-3778 (($ (-1171 |#1|)) NIL)) (-2285 (((-1171 $) $ (-1081)) NIL) (((-1171 |#1|) $) NIL)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-3087 (($ $) NIL (|has| |#1| (-558)))) (-1716 (((-112) $) NIL (|has| |#1| (-558)))) (-2917 (((-771) $) NIL) (((-771) $ (-644 (-1081))) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-4076 (((-644 $) $ $) 54 (|has| |#1| (-558)))) (-2113 (($ $ $) 50 (|has| |#1| (-558)))) (-4058 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-3980 (($ $) NIL (|has| |#1| (-454)))) (-3348 (((-420 $) $) NIL (|has| |#1| (-454)))) (-4262 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-2761 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3336 (($ $ (-771)) NIL)) (-1634 (($ $ (-771)) NIL)) (-2020 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-454)))) (-1811 (($) NIL T CONST)) (-2980 (((-3 |#1| "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-1081) "failed") $) NIL) (((-3 (-1171 |#1|) "failed") $) 10)) (-1709 ((|#1| $) NIL) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-1081) $) NIL) (((-1171 |#1|) $) NIL)) (-4343 (($ $ $ (-1081)) NIL (|has| |#1| (-172))) ((|#1| $ $) 58 (|has| |#1| (-172)))) (-2925 (($ $ $) NIL (|has| |#1| (-365)))) (-3565 (($ $) NIL)) (-2275 (((-689 (-566)) (-689 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -4196 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) NIL) (((-689 |#1|) (-689 $)) NIL)) (-3757 (((-3 $ "failed") $) NIL)) (-2937 (($ $ $) NIL (|has| |#1| (-365)))) (-1731 (($ $ $) NIL)) (-2348 (($ $ $) 87 (|has| |#1| (-558)))) (-3920 (((-2 (|:| -3103 |#1|) (|:| -3371 $) (|:| -3131 $)) $ $) 86 (|has| |#1| (-558)))) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) NIL (|has| |#1| (-365)))) (-3530 (($ $) NIL (|has| |#1| (-454))) (($ $ (-1081)) NIL (|has| |#1| (-454)))) (-3551 (((-644 $) $) NIL)) (-4188 (((-112) $) NIL (|has| |#1| (-909)))) (-3995 (($ $ |#1| (-771) $) NIL)) (-1542 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| (-1081) (-886 (-381))) (|has| |#1| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| (-1081) (-886 (-566))) (|has| |#1| (-886 (-566)))))) (-1802 (((-771) $ $) NIL (|has| |#1| (-558)))) (-2264 (((-112) $) NIL)) (-3486 (((-771) $) NIL)) (-4278 (((-3 $ "failed") $) NIL (|has| |#1| (-1150)))) (-2474 (($ (-1171 |#1|) (-1081)) NIL) (($ (-1171 $) (-1081)) NIL)) (-2383 (($ $ (-771)) NIL)) (-2495 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-1545 (((-644 $) $) NIL)) (-3989 (((-112) $) NIL)) (-2463 (($ |#1| (-771)) NIL) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL)) (-3914 (($ $ $) 27)) (-2235 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $ (-1081)) NIL) (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL)) (-2584 (((-771) $) NIL) (((-771) $ (-1081)) NIL) (((-644 (-771)) $ (-644 (-1081))) NIL)) (-3327 (($ (-1 (-771) (-771)) $) NIL)) (-3080 (($ (-1 |#1| |#1|) $) NIL)) (-2800 (((-1171 |#1|) $) NIL)) (-2673 (((-3 (-1081) "failed") $) NIL)) (-2608 (($ $) NIL)) (-2622 ((|#1| $) NIL)) (-2120 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-2233 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3061 (-771))) $ $) 37)) (-2558 (($ $ $) 41)) (-2951 (($ $ $) 47)) (-2991 (((-2 (|:| -3103 |#1|) (|:| |gap| (-771)) (|:| -3371 $) (|:| -3131 $)) $ $) 46)) (-3151 (((-1157) $) NIL)) (-3723 (($ $ $) 56 (|has| |#1| (-558)))) (-3333 (((-2 (|:| -3371 $) (|:| -3131 $)) $ (-771)) NIL)) (-4075 (((-3 (-644 $) "failed") $) NIL)) (-3380 (((-3 (-644 $) "failed") $) NIL)) (-2414 (((-3 (-2 (|:| |var| (-1081)) (|:| -3631 (-771))) "failed") $) NIL)) (-2390 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3968 (($) NIL (|has| |#1| (-1150)) CONST)) (-4059 (((-1119) $) NIL)) (-3616 (((-2 (|:| -2162 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-558)))) (-3827 (((-2 (|:| -2162 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-558)))) (-2705 (((-2 (|:| -4343 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-558)))) (-2176 (((-2 (|:| -4343 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-558)))) (-2587 (((-112) $) 13)) (-2597 ((|#1| $) NIL)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-454)))) (-2162 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-2790 (($ $ (-771) |#1| $) 26)) (-1500 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-3917 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-2325 (((-420 $) $) NIL (|has| |#1| (-909)))) (-2039 (((-2 (|:| -2162 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-558)))) (-1783 (((-2 (|:| -4343 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-558)))) (-2585 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL (|has| |#1| (-365)))) (-2976 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-2840 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-3297 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-1081) |#1|) NIL) (($ $ (-644 (-1081)) (-644 |#1|)) NIL) (($ $ (-1081) $) NIL) (($ $ (-644 (-1081)) (-644 $)) NIL)) (-1383 (((-771) $) NIL (|has| |#1| (-365)))) (-4376 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-409 $) (-409 $) (-409 $)) NIL (|has| |#1| (-558))) ((|#1| (-409 $) |#1|) NIL (|has| |#1| (-365))) (((-409 $) $ (-409 $)) NIL (|has| |#1| (-558)))) (-3070 (((-3 $ "failed") $ (-771)) NIL)) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL (|has| |#1| (-365)))) (-3553 (($ $ (-1081)) NIL (|has| |#1| (-172))) ((|#1| $) NIL (|has| |#1| (-172)))) (-3526 (($ $ (-1081)) NIL) (($ $ (-644 (-1081))) NIL) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL) (($ $ (-771)) NIL) (($ $) NIL) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-1630 (((-771) $) NIL) (((-771) $ (-1081)) NIL) (((-644 (-771)) $ (-644 (-1081))) NIL)) (-3136 (((-892 (-381)) $) NIL (-12 (|has| (-1081) (-614 (-892 (-381)))) (|has| |#1| (-614 (-892 (-381)))))) (((-892 (-566)) $) NIL (-12 (|has| (-1081) (-614 (-892 (-566)))) (|has| |#1| (-614 (-892 (-566)))))) (((-538) $) NIL (-12 (|has| (-1081) (-614 (-538))) (|has| |#1| (-614 (-538)))))) (-2252 ((|#1| $) NIL (|has| |#1| (-454))) (($ $ (-1081)) NIL (|has| |#1| (-454)))) (-3233 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-909))))) (-3918 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558))) (((-3 (-409 $) "failed") (-409 $) $) NIL (|has| |#1| (-558)))) (-2479 (((-862) $) NIL) (($ (-566)) NIL) (($ |#1|) NIL) (($ (-1081)) NIL) (((-1171 |#1|) $) 7) (($ (-1171 |#1|)) 8) (($ (-409 (-566))) NIL (-2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566)))))) (($ $) NIL (|has| |#1| (-558)))) (-3866 (((-644 |#1|) $) NIL)) (-3025 ((|#1| $ (-771)) NIL) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL)) (-2645 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| $ (-145)) (|has| |#1| (-909))) (|has| |#1| (-145))))) (-1558 (((-771)) NIL T CONST)) (-2244 (($ $ $ (-771)) NIL (|has| |#1| (-172)))) (-3900 (((-112) $ $) NIL)) (-1333 (((-112) $ $) NIL (|has| |#1| (-558)))) (-2446 (($) 28 T CONST)) (-2459 (($) 32 T CONST)) (-2834 (($ $ (-1081)) NIL) (($ $ (-644 (-1081))) NIL) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL) (($ $ (-771)) NIL) (($ $) NIL) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2952 (((-112) $ $) NIL)) (-3077 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3065 (($ $) 40) (($ $ $) NIL)) (-3052 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ |#1| $) 31) (($ $ |#1|) NIL))) +(((-782 |#1|) (-13 (-1240 |#1|) (-613 (-1171 |#1|)) (-1038 (-1171 |#1|)) (-10 -8 (-15 -2790 ($ $ (-771) |#1| $)) (-15 -3914 ($ $ $)) (-15 -2233 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3061 (-771))) $ $)) (-15 -2558 ($ $ $)) (-15 -2991 ((-2 (|:| -3103 |#1|) (|:| |gap| (-771)) (|:| -3371 $) (|:| -3131 $)) $ $)) (-15 -2951 ($ $ $)) (IF (|has| |#1| (-558)) (PROGN (-15 -4076 ((-644 $) $ $)) (-15 -3723 ($ $ $)) (-15 -2039 ((-2 (|:| -2162 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3827 ((-2 (|:| -2162 $) (|:| |coef1| $)) $ $)) (-15 -3616 ((-2 (|:| -2162 $) (|:| |coef2| $)) $ $)) (-15 -1783 ((-2 (|:| -4343 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2176 ((-2 (|:| -4343 |#1|) (|:| |coef1| $)) $ $)) (-15 -2705 ((-2 (|:| -4343 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1049)) (T -782)) +((-2790 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-771)) (-5 *1 (-782 *3)) (-4 *3 (-1049)))) (-3914 (*1 *1 *1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-1049)))) (-2233 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-782 *3)) (|:| |polden| *3) (|:| -3061 (-771)))) (-5 *1 (-782 *3)) (-4 *3 (-1049)))) (-2558 (*1 *1 *1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-1049)))) (-2991 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3103 *3) (|:| |gap| (-771)) (|:| -3371 (-782 *3)) (|:| -3131 (-782 *3)))) (-5 *1 (-782 *3)) (-4 *3 (-1049)))) (-2951 (*1 *1 *1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-1049)))) (-4076 (*1 *2 *1 *1) (-12 (-5 *2 (-644 (-782 *3))) (-5 *1 (-782 *3)) (-4 *3 (-558)) (-4 *3 (-1049)))) (-3723 (*1 *1 *1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-558)) (-4 *2 (-1049)))) (-2039 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2162 (-782 *3)) (|:| |coef1| (-782 *3)) (|:| |coef2| (-782 *3)))) (-5 *1 (-782 *3)) (-4 *3 (-558)) (-4 *3 (-1049)))) (-3827 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2162 (-782 *3)) (|:| |coef1| (-782 *3)))) (-5 *1 (-782 *3)) (-4 *3 (-558)) (-4 *3 (-1049)))) (-3616 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2162 (-782 *3)) (|:| |coef2| (-782 *3)))) (-5 *1 (-782 *3)) (-4 *3 (-558)) (-4 *3 (-1049)))) (-1783 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4343 *3) (|:| |coef1| (-782 *3)) (|:| |coef2| (-782 *3)))) (-5 *1 (-782 *3)) (-4 *3 (-558)) (-4 *3 (-1049)))) (-2176 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4343 *3) (|:| |coef1| (-782 *3)))) (-5 *1 (-782 *3)) (-4 *3 (-558)) (-4 *3 (-1049)))) (-2705 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4343 *3) (|:| |coef2| (-782 *3)))) (-5 *1 (-782 *3)) (-4 *3 (-558)) (-4 *3 (-1049))))) +(-13 (-1240 |#1|) (-613 (-1171 |#1|)) (-1038 (-1171 |#1|)) (-10 -8 (-15 -2790 ($ $ (-771) |#1| $)) (-15 -3914 ($ $ $)) (-15 -2233 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3061 (-771))) $ $)) (-15 -2558 ($ $ $)) (-15 -2991 ((-2 (|:| -3103 |#1|) (|:| |gap| (-771)) (|:| -3371 $) (|:| -3131 $)) $ $)) (-15 -2951 ($ $ $)) (IF (|has| |#1| (-558)) (PROGN (-15 -4076 ((-644 $) $ $)) (-15 -3723 ($ $ $)) (-15 -2039 ((-2 (|:| -2162 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3827 ((-2 (|:| -2162 $) (|:| |coef1| $)) $ $)) (-15 -3616 ((-2 (|:| -2162 $) (|:| |coef2| $)) $ $)) (-15 -1783 ((-2 (|:| -4343 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2176 ((-2 (|:| -4343 |#1|) (|:| |coef1| $)) $ $)) (-15 -2705 ((-2 (|:| -4343 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) +((-1389 ((|#1| (-771) |#1|) 33 (|has| |#1| (-38 (-409 (-566)))))) (-2224 ((|#1| (-771) |#1|) 23)) (-3464 ((|#1| (-771) |#1|) 35 (|has| |#1| (-38 (-409 (-566))))))) +(((-783 |#1|) (-10 -7 (-15 -2224 (|#1| (-771) |#1|)) (IF (|has| |#1| (-38 (-409 (-566)))) (PROGN (-15 -3464 (|#1| (-771) |#1|)) (-15 -1389 (|#1| (-771) |#1|))) |%noBranch|)) (-172)) (T -783)) +((-1389 (*1 *2 *3 *2) (-12 (-5 *3 (-771)) (-5 *1 (-783 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-172)))) (-3464 (*1 *2 *3 *2) (-12 (-5 *3 (-771)) (-5 *1 (-783 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-172)))) (-2224 (*1 *2 *3 *2) (-12 (-5 *3 (-771)) (-5 *1 (-783 *2)) (-4 *2 (-172))))) +(-10 -7 (-15 -2224 (|#1| (-771) |#1|)) (IF (|has| |#1| (-38 (-409 (-566)))) (PROGN (-15 -3464 (|#1| (-771) |#1|)) (-15 -1389 (|#1| (-771) |#1|))) |%noBranch|)) +((-2986 (((-112) $ $) 7)) (-1416 (((-644 (-2 (|:| -1637 $) (|:| -3516 (-644 |#4|)))) (-644 |#4|)) 86)) (-3295 (((-644 $) (-644 |#4|)) 87) (((-644 $) (-644 |#4|) (-112)) 112)) (-2485 (((-644 |#3|) $) 34)) (-1489 (((-112) $) 27)) (-3541 (((-112) $) 18 (|has| |#1| (-558)))) (-2219 (((-112) |#4| $) 102) (((-112) $) 98)) (-1922 ((|#4| |#4| $) 93)) (-3980 (((-644 (-2 (|:| |val| |#4|) (|:| -2192 $))) |#4| $) 127)) (-1374 (((-2 (|:| |under| $) (|:| -2001 $) (|:| |upper| $)) $ |#3|) 28)) (-1453 (((-112) $ (-771)) 45)) (-3543 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4417))) (((-3 |#4| "failed") $ |#3|) 80)) (-1811 (($) 46 T CONST)) (-4210 (((-112) $) 23 (|has| |#1| (-558)))) (-3050 (((-112) $ $) 25 (|has| |#1| (-558)))) (-1768 (((-112) $ $) 24 (|has| |#1| (-558)))) (-3261 (((-112) $) 26 (|has| |#1| (-558)))) (-3451 (((-644 |#4|) (-644 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2796 (((-644 |#4|) (-644 |#4|) $) 19 (|has| |#1| (-558)))) (-3829 (((-644 |#4|) (-644 |#4|) $) 20 (|has| |#1| (-558)))) (-2980 (((-3 $ "failed") (-644 |#4|)) 37)) (-1709 (($ (-644 |#4|)) 36)) (-4091 (((-3 $ "failed") $) 83)) (-3358 ((|#4| |#4| $) 90)) (-4111 (($ $) 69 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4417))))) (-2628 (($ |#4| $) 68 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4417)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4417)))) (-3131 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-558)))) (-1995 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3326 ((|#4| |#4| $) 88)) (-1838 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4417)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4417))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4417))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1877 (((-2 (|:| -1637 (-644 |#4|)) (|:| -3516 (-644 |#4|))) $) 106)) (-2281 (((-112) |#4| $) 137)) (-1646 (((-112) |#4| $) 134)) (-3433 (((-112) |#4| $) 138) (((-112) $) 135)) (-3872 (((-644 |#4|) $) 53 (|has| $ (-6 -4417)))) (-4297 (((-112) |#4| $) 105) (((-112) $) 104)) (-4052 ((|#3| $) 35)) (-2756 (((-112) $ (-771)) 44)) (-4227 (((-644 |#4|) $) 54 (|has| $ (-6 -4417)))) (-1688 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4417))))) (-3708 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#4| |#4|) $) 48)) (-3599 (((-644 |#3|) $) 33)) (-2884 (((-112) |#3| $) 32)) (-4106 (((-112) $ (-771)) 43)) (-3151 (((-1157) $) 10)) (-3421 (((-3 |#4| (-644 $)) |#4| |#4| $) 129)) (-3723 (((-644 (-2 (|:| |val| |#4|) (|:| -2192 $))) |#4| |#4| $) 128)) (-2651 (((-3 |#4| "failed") $) 84)) (-3391 (((-644 $) |#4| $) 130)) (-3680 (((-3 (-112) (-644 $)) |#4| $) 133)) (-3325 (((-644 (-2 (|:| |val| (-112)) (|:| -2192 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-4022 (((-644 $) |#4| $) 126) (((-644 $) (-644 |#4|) $) 125) (((-644 $) (-644 |#4|) (-644 $)) 124) (((-644 $) |#4| (-644 $)) 123)) (-2047 (($ |#4| $) 118) (($ (-644 |#4|) $) 117)) (-3707 (((-644 |#4|) $) 108)) (-4121 (((-112) |#4| $) 100) (((-112) $) 96)) (-3317 ((|#4| |#4| $) 91)) (-3730 (((-112) $ $) 111)) (-1719 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-558)))) (-1695 (((-112) |#4| $) 101) (((-112) $) 97)) (-3869 ((|#4| |#4| $) 92)) (-4059 (((-1119) $) 11)) (-4080 (((-3 |#4| "failed") $) 85)) (-2688 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2293 (((-3 $ "failed") $ |#4|) 79)) (-2050 (($ $ |#4|) 78) (((-644 $) |#4| $) 116) (((-644 $) |#4| (-644 $)) 115) (((-644 $) (-644 |#4|) $) 114) (((-644 $) (-644 |#4|) (-644 $)) 113)) (-3966 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 |#4|) (-644 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-295 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-644 (-295 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))))) (-1844 (((-112) $ $) 39)) (-2788 (((-112) $) 42)) (-1737 (($) 41)) (-1630 (((-771) $) 107)) (-4068 (((-771) |#4| $) 55 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4417)))) (((-771) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4417)))) (-3924 (($ $) 40)) (-3136 (((-538) $) 70 (|has| |#4| (-614 (-538))))) (-2489 (($ (-644 |#4|)) 61)) (-1706 (($ $ |#3|) 29)) (-4234 (($ $ |#3|) 31)) (-4024 (($ $) 89)) (-2378 (($ $ |#3|) 30)) (-2479 (((-862) $) 12) (((-644 |#4|) $) 38)) (-2780 (((-771) $) 77 (|has| |#3| (-370)))) (-3900 (((-112) $ $) 9)) (-2877 (((-3 (-2 (|:| |bas| $) (|:| -3903 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3903 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-4265 (((-112) $ (-1 (-112) |#4| (-644 |#4|))) 99)) (-3437 (((-644 $) |#4| $) 122) (((-644 $) |#4| (-644 $)) 121) (((-644 $) (-644 |#4|) $) 120) (((-644 $) (-644 |#4|) (-644 $)) 119)) (-3667 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4417)))) (-4067 (((-644 |#3|) $) 82)) (-3183 (((-112) |#4| $) 136)) (-3132 (((-112) |#3| $) 81)) (-2952 (((-112) $ $) 6)) (-3002 (((-771) $) 47 (|has| $ (-6 -4417))))) +(((-784 |#1| |#2| |#3| |#4|) (-140) (-454) (-793) (-850) (-1064 |t#1| |t#2| |t#3|)) (T -784)) +NIL +(-13 (-1070 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-102) . T) ((-613 (-644 |#4|)) . T) ((-613 (-862)) . T) ((-151 |#4|) . T) ((-614 (-538)) |has| |#4| (-614 (-538))) ((-310 |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))) ((-491 |#4|) . T) ((-516 |#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))) ((-976 |#1| |#2| |#3| |#4|) . T) ((-1070 |#1| |#2| |#3| |#4|) . T) ((-1099) . T) ((-1207 |#1| |#2| |#3| |#4|) . T) ((-1214) . T)) +((-3892 (((-3 (-381) "failed") (-317 |#1|) (-921)) 62 (-12 (|has| |#1| (-558)) (|has| |#1| (-850)))) (((-3 (-381) "failed") (-317 |#1|)) 54 (-12 (|has| |#1| (-558)) (|has| |#1| (-850)))) (((-3 (-381) "failed") (-409 (-952 |#1|)) (-921)) 41 (|has| |#1| (-558))) (((-3 (-381) "failed") (-409 (-952 |#1|))) 40 (|has| |#1| (-558))) (((-3 (-381) "failed") (-952 |#1|) (-921)) 31 (|has| |#1| (-1049))) (((-3 (-381) "failed") (-952 |#1|)) 30 (|has| |#1| (-1049)))) (-1316 (((-381) (-317 |#1|) (-921)) 99 (-12 (|has| |#1| (-558)) (|has| |#1| (-850)))) (((-381) (-317 |#1|)) 94 (-12 (|has| |#1| (-558)) (|has| |#1| (-850)))) (((-381) (-409 (-952 |#1|)) (-921)) 91 (|has| |#1| (-558))) (((-381) (-409 (-952 |#1|))) 90 (|has| |#1| (-558))) (((-381) (-952 |#1|) (-921)) 86 (|has| |#1| (-1049))) (((-381) (-952 |#1|)) 85 (|has| |#1| (-1049))) (((-381) |#1| (-921)) 76) (((-381) |#1|) 22)) (-2889 (((-3 (-169 (-381)) "failed") (-317 (-169 |#1|)) (-921)) 71 (-12 (|has| |#1| (-558)) (|has| |#1| (-850)))) (((-3 (-169 (-381)) "failed") (-317 (-169 |#1|))) 70 (-12 (|has| |#1| (-558)) (|has| |#1| (-850)))) (((-3 (-169 (-381)) "failed") (-317 |#1|) (-921)) 63 (-12 (|has| |#1| (-558)) (|has| |#1| (-850)))) (((-3 (-169 (-381)) "failed") (-317 |#1|)) 61 (-12 (|has| |#1| (-558)) (|has| |#1| (-850)))) (((-3 (-169 (-381)) "failed") (-409 (-952 (-169 |#1|))) (-921)) 46 (|has| |#1| (-558))) (((-3 (-169 (-381)) "failed") (-409 (-952 (-169 |#1|)))) 45 (|has| |#1| (-558))) (((-3 (-169 (-381)) "failed") (-409 (-952 |#1|)) (-921)) 39 (|has| |#1| (-558))) (((-3 (-169 (-381)) "failed") (-409 (-952 |#1|))) 38 (|has| |#1| (-558))) (((-3 (-169 (-381)) "failed") (-952 |#1|) (-921)) 28 (|has| |#1| (-1049))) (((-3 (-169 (-381)) "failed") (-952 |#1|)) 26 (|has| |#1| (-1049))) (((-3 (-169 (-381)) "failed") (-952 (-169 |#1|)) (-921)) 18 (|has| |#1| (-172))) (((-3 (-169 (-381)) "failed") (-952 (-169 |#1|))) 15 (|has| |#1| (-172)))) (-2249 (((-169 (-381)) (-317 (-169 |#1|)) (-921)) 102 (-12 (|has| |#1| (-558)) (|has| |#1| (-850)))) (((-169 (-381)) (-317 (-169 |#1|))) 101 (-12 (|has| |#1| (-558)) (|has| |#1| (-850)))) (((-169 (-381)) (-317 |#1|) (-921)) 100 (-12 (|has| |#1| (-558)) (|has| |#1| (-850)))) (((-169 (-381)) (-317 |#1|)) 98 (-12 (|has| |#1| (-558)) (|has| |#1| (-850)))) (((-169 (-381)) (-409 (-952 (-169 |#1|))) (-921)) 93 (|has| |#1| (-558))) (((-169 (-381)) (-409 (-952 (-169 |#1|)))) 92 (|has| |#1| (-558))) (((-169 (-381)) (-409 (-952 |#1|)) (-921)) 89 (|has| |#1| (-558))) (((-169 (-381)) (-409 (-952 |#1|))) 88 (|has| |#1| (-558))) (((-169 (-381)) (-952 |#1|) (-921)) 84 (|has| |#1| (-1049))) (((-169 (-381)) (-952 |#1|)) 83 (|has| |#1| (-1049))) (((-169 (-381)) (-952 (-169 |#1|)) (-921)) 78 (|has| |#1| (-172))) (((-169 (-381)) (-952 (-169 |#1|))) 77 (|has| |#1| (-172))) (((-169 (-381)) (-169 |#1|) (-921)) 80 (|has| |#1| (-172))) (((-169 (-381)) (-169 |#1|)) 79 (|has| |#1| (-172))) (((-169 (-381)) |#1| (-921)) 27) (((-169 (-381)) |#1|) 25))) +(((-785 |#1|) (-10 -7 (-15 -1316 ((-381) |#1|)) (-15 -1316 ((-381) |#1| (-921))) (-15 -2249 ((-169 (-381)) |#1|)) (-15 -2249 ((-169 (-381)) |#1| (-921))) (IF (|has| |#1| (-172)) (PROGN (-15 -2249 ((-169 (-381)) (-169 |#1|))) (-15 -2249 ((-169 (-381)) (-169 |#1|) (-921))) (-15 -2249 ((-169 (-381)) (-952 (-169 |#1|)))) (-15 -2249 ((-169 (-381)) (-952 (-169 |#1|)) (-921)))) |%noBranch|) (IF (|has| |#1| (-1049)) (PROGN (-15 -1316 ((-381) (-952 |#1|))) (-15 -1316 ((-381) (-952 |#1|) (-921))) (-15 -2249 ((-169 (-381)) (-952 |#1|))) (-15 -2249 ((-169 (-381)) (-952 |#1|) (-921)))) |%noBranch|) (IF (|has| |#1| (-558)) (PROGN (-15 -1316 ((-381) (-409 (-952 |#1|)))) (-15 -1316 ((-381) (-409 (-952 |#1|)) (-921))) (-15 -2249 ((-169 (-381)) (-409 (-952 |#1|)))) (-15 -2249 ((-169 (-381)) (-409 (-952 |#1|)) (-921))) (-15 -2249 ((-169 (-381)) (-409 (-952 (-169 |#1|))))) (-15 -2249 ((-169 (-381)) (-409 (-952 (-169 |#1|))) (-921))) (IF (|has| |#1| (-850)) (PROGN (-15 -1316 ((-381) (-317 |#1|))) (-15 -1316 ((-381) (-317 |#1|) (-921))) (-15 -2249 ((-169 (-381)) (-317 |#1|))) (-15 -2249 ((-169 (-381)) (-317 |#1|) (-921))) (-15 -2249 ((-169 (-381)) (-317 (-169 |#1|)))) (-15 -2249 ((-169 (-381)) (-317 (-169 |#1|)) (-921)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-15 -2889 ((-3 (-169 (-381)) "failed") (-952 (-169 |#1|)))) (-15 -2889 ((-3 (-169 (-381)) "failed") (-952 (-169 |#1|)) (-921)))) |%noBranch|) (IF (|has| |#1| (-1049)) (PROGN (-15 -3892 ((-3 (-381) "failed") (-952 |#1|))) (-15 -3892 ((-3 (-381) "failed") (-952 |#1|) (-921))) (-15 -2889 ((-3 (-169 (-381)) "failed") (-952 |#1|))) (-15 -2889 ((-3 (-169 (-381)) "failed") (-952 |#1|) (-921)))) |%noBranch|) (IF (|has| |#1| (-558)) (PROGN (-15 -3892 ((-3 (-381) "failed") (-409 (-952 |#1|)))) (-15 -3892 ((-3 (-381) "failed") (-409 (-952 |#1|)) (-921))) (-15 -2889 ((-3 (-169 (-381)) "failed") (-409 (-952 |#1|)))) (-15 -2889 ((-3 (-169 (-381)) "failed") (-409 (-952 |#1|)) (-921))) (-15 -2889 ((-3 (-169 (-381)) "failed") (-409 (-952 (-169 |#1|))))) (-15 -2889 ((-3 (-169 (-381)) "failed") (-409 (-952 (-169 |#1|))) (-921))) (IF (|has| |#1| (-850)) (PROGN (-15 -3892 ((-3 (-381) "failed") (-317 |#1|))) (-15 -3892 ((-3 (-381) "failed") (-317 |#1|) (-921))) (-15 -2889 ((-3 (-169 (-381)) "failed") (-317 |#1|))) (-15 -2889 ((-3 (-169 (-381)) "failed") (-317 |#1|) (-921))) (-15 -2889 ((-3 (-169 (-381)) "failed") (-317 (-169 |#1|)))) (-15 -2889 ((-3 (-169 (-381)) "failed") (-317 (-169 |#1|)) (-921)))) |%noBranch|)) |%noBranch|)) (-614 (-381))) (T -785)) +((-2889 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-317 (-169 *5))) (-5 *4 (-921)) (-4 *5 (-558)) (-4 *5 (-850)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) (-2889 (*1 *2 *3) (|partial| -12 (-5 *3 (-317 (-169 *4))) (-4 *4 (-558)) (-4 *4 (-850)) (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) (-2889 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-317 *5)) (-5 *4 (-921)) (-4 *5 (-558)) (-4 *5 (-850)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) (-2889 (*1 *2 *3) (|partial| -12 (-5 *3 (-317 *4)) (-4 *4 (-558)) (-4 *4 (-850)) (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) (-3892 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-317 *5)) (-5 *4 (-921)) (-4 *5 (-558)) (-4 *5 (-850)) (-4 *5 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *5)))) (-3892 (*1 *2 *3) (|partial| -12 (-5 *3 (-317 *4)) (-4 *4 (-558)) (-4 *4 (-850)) (-4 *4 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *4)))) (-2889 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-409 (-952 (-169 *5)))) (-5 *4 (-921)) (-4 *5 (-558)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) (-2889 (*1 *2 *3) (|partial| -12 (-5 *3 (-409 (-952 (-169 *4)))) (-4 *4 (-558)) (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) (-2889 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-921)) (-4 *5 (-558)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) (-2889 (*1 *2 *3) (|partial| -12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-558)) (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) (-3892 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-921)) (-4 *5 (-558)) (-4 *5 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *5)))) (-3892 (*1 *2 *3) (|partial| -12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-558)) (-4 *4 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *4)))) (-2889 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-952 *5)) (-5 *4 (-921)) (-4 *5 (-1049)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) (-2889 (*1 *2 *3) (|partial| -12 (-5 *3 (-952 *4)) (-4 *4 (-1049)) (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) (-3892 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-952 *5)) (-5 *4 (-921)) (-4 *5 (-1049)) (-4 *5 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *5)))) (-3892 (*1 *2 *3) (|partial| -12 (-5 *3 (-952 *4)) (-4 *4 (-1049)) (-4 *4 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *4)))) (-2889 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-952 (-169 *5))) (-5 *4 (-921)) (-4 *5 (-172)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) (-2889 (*1 *2 *3) (|partial| -12 (-5 *3 (-952 (-169 *4))) (-4 *4 (-172)) (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) (-2249 (*1 *2 *3 *4) (-12 (-5 *3 (-317 (-169 *5))) (-5 *4 (-921)) (-4 *5 (-558)) (-4 *5 (-850)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) (-2249 (*1 *2 *3) (-12 (-5 *3 (-317 (-169 *4))) (-4 *4 (-558)) (-4 *4 (-850)) (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) (-2249 (*1 *2 *3 *4) (-12 (-5 *3 (-317 *5)) (-5 *4 (-921)) (-4 *5 (-558)) (-4 *5 (-850)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) (-2249 (*1 *2 *3) (-12 (-5 *3 (-317 *4)) (-4 *4 (-558)) (-4 *4 (-850)) (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) (-1316 (*1 *2 *3 *4) (-12 (-5 *3 (-317 *5)) (-5 *4 (-921)) (-4 *5 (-558)) (-4 *5 (-850)) (-4 *5 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *5)))) (-1316 (*1 *2 *3) (-12 (-5 *3 (-317 *4)) (-4 *4 (-558)) (-4 *4 (-850)) (-4 *4 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *4)))) (-2249 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-952 (-169 *5)))) (-5 *4 (-921)) (-4 *5 (-558)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) (-2249 (*1 *2 *3) (-12 (-5 *3 (-409 (-952 (-169 *4)))) (-4 *4 (-558)) (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) (-2249 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-921)) (-4 *5 (-558)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) (-2249 (*1 *2 *3) (-12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-558)) (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) (-1316 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-921)) (-4 *5 (-558)) (-4 *5 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *5)))) (-1316 (*1 *2 *3) (-12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-558)) (-4 *4 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *4)))) (-2249 (*1 *2 *3 *4) (-12 (-5 *3 (-952 *5)) (-5 *4 (-921)) (-4 *5 (-1049)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) (-2249 (*1 *2 *3) (-12 (-5 *3 (-952 *4)) (-4 *4 (-1049)) (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) (-1316 (*1 *2 *3 *4) (-12 (-5 *3 (-952 *5)) (-5 *4 (-921)) (-4 *5 (-1049)) (-4 *5 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *5)))) (-1316 (*1 *2 *3) (-12 (-5 *3 (-952 *4)) (-4 *4 (-1049)) (-4 *4 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *4)))) (-2249 (*1 *2 *3 *4) (-12 (-5 *3 (-952 (-169 *5))) (-5 *4 (-921)) (-4 *5 (-172)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) (-2249 (*1 *2 *3) (-12 (-5 *3 (-952 (-169 *4))) (-4 *4 (-172)) (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) (-2249 (*1 *2 *3 *4) (-12 (-5 *3 (-169 *5)) (-5 *4 (-921)) (-4 *5 (-172)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) (-2249 (*1 *2 *3) (-12 (-5 *3 (-169 *4)) (-4 *4 (-172)) (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) (-2249 (*1 *2 *3 *4) (-12 (-5 *4 (-921)) (-5 *2 (-169 (-381))) (-5 *1 (-785 *3)) (-4 *3 (-614 (-381))))) (-2249 (*1 *2 *3) (-12 (-5 *2 (-169 (-381))) (-5 *1 (-785 *3)) (-4 *3 (-614 (-381))))) (-1316 (*1 *2 *3 *4) (-12 (-5 *4 (-921)) (-5 *2 (-381)) (-5 *1 (-785 *3)) (-4 *3 (-614 *2)))) (-1316 (*1 *2 *3) (-12 (-5 *2 (-381)) (-5 *1 (-785 *3)) (-4 *3 (-614 *2))))) +(-10 -7 (-15 -1316 ((-381) |#1|)) (-15 -1316 ((-381) |#1| (-921))) (-15 -2249 ((-169 (-381)) |#1|)) (-15 -2249 ((-169 (-381)) |#1| (-921))) (IF (|has| |#1| (-172)) (PROGN (-15 -2249 ((-169 (-381)) (-169 |#1|))) (-15 -2249 ((-169 (-381)) (-169 |#1|) (-921))) (-15 -2249 ((-169 (-381)) (-952 (-169 |#1|)))) (-15 -2249 ((-169 (-381)) (-952 (-169 |#1|)) (-921)))) |%noBranch|) (IF (|has| |#1| (-1049)) (PROGN (-15 -1316 ((-381) (-952 |#1|))) (-15 -1316 ((-381) (-952 |#1|) (-921))) (-15 -2249 ((-169 (-381)) (-952 |#1|))) (-15 -2249 ((-169 (-381)) (-952 |#1|) (-921)))) |%noBranch|) (IF (|has| |#1| (-558)) (PROGN (-15 -1316 ((-381) (-409 (-952 |#1|)))) (-15 -1316 ((-381) (-409 (-952 |#1|)) (-921))) (-15 -2249 ((-169 (-381)) (-409 (-952 |#1|)))) (-15 -2249 ((-169 (-381)) (-409 (-952 |#1|)) (-921))) (-15 -2249 ((-169 (-381)) (-409 (-952 (-169 |#1|))))) (-15 -2249 ((-169 (-381)) (-409 (-952 (-169 |#1|))) (-921))) (IF (|has| |#1| (-850)) (PROGN (-15 -1316 ((-381) (-317 |#1|))) (-15 -1316 ((-381) (-317 |#1|) (-921))) (-15 -2249 ((-169 (-381)) (-317 |#1|))) (-15 -2249 ((-169 (-381)) (-317 |#1|) (-921))) (-15 -2249 ((-169 (-381)) (-317 (-169 |#1|)))) (-15 -2249 ((-169 (-381)) (-317 (-169 |#1|)) (-921)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-15 -2889 ((-3 (-169 (-381)) "failed") (-952 (-169 |#1|)))) (-15 -2889 ((-3 (-169 (-381)) "failed") (-952 (-169 |#1|)) (-921)))) |%noBranch|) (IF (|has| |#1| (-1049)) (PROGN (-15 -3892 ((-3 (-381) "failed") (-952 |#1|))) (-15 -3892 ((-3 (-381) "failed") (-952 |#1|) (-921))) (-15 -2889 ((-3 (-169 (-381)) "failed") (-952 |#1|))) (-15 -2889 ((-3 (-169 (-381)) "failed") (-952 |#1|) (-921)))) |%noBranch|) (IF (|has| |#1| (-558)) (PROGN (-15 -3892 ((-3 (-381) "failed") (-409 (-952 |#1|)))) (-15 -3892 ((-3 (-381) "failed") (-409 (-952 |#1|)) (-921))) (-15 -2889 ((-3 (-169 (-381)) "failed") (-409 (-952 |#1|)))) (-15 -2889 ((-3 (-169 (-381)) "failed") (-409 (-952 |#1|)) (-921))) (-15 -2889 ((-3 (-169 (-381)) "failed") (-409 (-952 (-169 |#1|))))) (-15 -2889 ((-3 (-169 (-381)) "failed") (-409 (-952 (-169 |#1|))) (-921))) (IF (|has| |#1| (-850)) (PROGN (-15 -3892 ((-3 (-381) "failed") (-317 |#1|))) (-15 -3892 ((-3 (-381) "failed") (-317 |#1|) (-921))) (-15 -2889 ((-3 (-169 (-381)) "failed") (-317 |#1|))) (-15 -2889 ((-3 (-169 (-381)) "failed") (-317 |#1|) (-921))) (-15 -2889 ((-3 (-169 (-381)) "failed") (-317 (-169 |#1|)))) (-15 -2889 ((-3 (-169 (-381)) "failed") (-317 (-169 |#1|)) (-921)))) |%noBranch|)) |%noBranch|)) +((-3961 (((-921) (-1157)) 92)) (-4232 (((-3 (-381) "failed") (-1157)) 36)) (-2410 (((-381) (-1157)) 34)) (-2276 (((-921) (-1157)) 63)) (-3141 (((-1157) (-921)) 75)) (-3685 (((-1157) (-921)) 62))) +(((-786) (-10 -7 (-15 -3685 ((-1157) (-921))) (-15 -2276 ((-921) (-1157))) (-15 -3141 ((-1157) (-921))) (-15 -3961 ((-921) (-1157))) (-15 -2410 ((-381) (-1157))) (-15 -4232 ((-3 (-381) "failed") (-1157))))) (T -786)) +((-4232 (*1 *2 *3) (|partial| -12 (-5 *3 (-1157)) (-5 *2 (-381)) (-5 *1 (-786)))) (-2410 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-381)) (-5 *1 (-786)))) (-3961 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-921)) (-5 *1 (-786)))) (-3141 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1157)) (-5 *1 (-786)))) (-2276 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-921)) (-5 *1 (-786)))) (-3685 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1157)) (-5 *1 (-786))))) +(-10 -7 (-15 -3685 ((-1157) (-921))) (-15 -2276 ((-921) (-1157))) (-15 -3141 ((-1157) (-921))) (-15 -3961 ((-921) (-1157))) (-15 -2410 ((-381) (-1157))) (-15 -4232 ((-3 (-381) "failed") (-1157)))) +((-2986 (((-112) $ $) 7)) (-2807 (((-1035) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) 16) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -1680 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) 14)) (-4177 (((-2 (|:| -4177 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 17) (((-2 (|:| -4177 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -1680 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 15)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-2479 (((-862) $) 12)) (-3900 (((-112) $ $) 9)) (-2952 (((-112) $ $) 6))) +(((-787) (-140)) (T -787)) +((-4177 (*1 *2 *3 *4) (-12 (-4 *1 (-787)) (-5 *3 (-1062)) (-5 *4 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -4177 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035)))))) (-2807 (*1 *2 *3 *2) (-12 (-4 *1 (-787)) (-5 *2 (-1035)) (-5 *3 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-4177 (*1 *2 *3 *4) (-12 (-4 *1 (-787)) (-5 *3 (-1062)) (-5 *4 (-2 (|:| |fn| (-317 (-225))) (|:| -1680 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -4177 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035)))))) (-2807 (*1 *2 *3 *2) (-12 (-4 *1 (-787)) (-5 *2 (-1035)) (-5 *3 (-2 (|:| |fn| (-317 (-225))) (|:| -1680 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) +(-13 (-1099) (-10 -7 (-15 -4177 ((-2 (|:| -4177 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2807 ((-1035) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035))) (-15 -4177 ((-2 (|:| -4177 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -1680 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2807 ((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -1680 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035))))) +(((-102) . T) ((-613 (-862)) . T) ((-1099) . T)) +((-2762 (((-1269) (-1264 (-381)) (-566) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3856 (-381))) (-381) (-1264 (-381)) (-1 (-1269) (-1264 (-381)) (-1264 (-381)) (-381)) (-1264 (-381)) (-1264 (-381)) (-1264 (-381)) (-1264 (-381)) (-1264 (-381)) (-1264 (-381)) (-1264 (-381))) 55) (((-1269) (-1264 (-381)) (-566) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3856 (-381))) (-381) (-1264 (-381)) (-1 (-1269) (-1264 (-381)) (-1264 (-381)) (-381))) 52)) (-4176 (((-1269) (-1264 (-381)) (-566) (-381) (-381) (-566) (-1 (-1269) (-1264 (-381)) (-1264 (-381)) (-381))) 61)) (-1396 (((-1269) (-1264 (-381)) (-566) (-381) (-381) (-381) (-381) (-566) (-1 (-1269) (-1264 (-381)) (-1264 (-381)) (-381))) 50)) (-2073 (((-1269) (-1264 (-381)) (-566) (-381) (-381) (-1 (-1269) (-1264 (-381)) (-1264 (-381)) (-381)) (-1264 (-381)) (-1264 (-381)) (-1264 (-381)) (-1264 (-381))) 63) (((-1269) (-1264 (-381)) (-566) (-381) (-381) (-1 (-1269) (-1264 (-381)) (-1264 (-381)) (-381))) 62))) +(((-788) (-10 -7 (-15 -2073 ((-1269) (-1264 (-381)) (-566) (-381) (-381) (-1 (-1269) (-1264 (-381)) (-1264 (-381)) (-381)))) (-15 -2073 ((-1269) (-1264 (-381)) (-566) (-381) (-381) (-1 (-1269) (-1264 (-381)) (-1264 (-381)) (-381)) (-1264 (-381)) (-1264 (-381)) (-1264 (-381)) (-1264 (-381)))) (-15 -1396 ((-1269) (-1264 (-381)) (-566) (-381) (-381) (-381) (-381) (-566) (-1 (-1269) (-1264 (-381)) (-1264 (-381)) (-381)))) (-15 -2762 ((-1269) (-1264 (-381)) (-566) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3856 (-381))) (-381) (-1264 (-381)) (-1 (-1269) (-1264 (-381)) (-1264 (-381)) (-381)))) (-15 -2762 ((-1269) (-1264 (-381)) (-566) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3856 (-381))) (-381) (-1264 (-381)) (-1 (-1269) (-1264 (-381)) (-1264 (-381)) (-381)) (-1264 (-381)) (-1264 (-381)) (-1264 (-381)) (-1264 (-381)) (-1264 (-381)) (-1264 (-381)) (-1264 (-381)))) (-15 -4176 ((-1269) (-1264 (-381)) (-566) (-381) (-381) (-566) (-1 (-1269) (-1264 (-381)) (-1264 (-381)) (-381)))))) (T -788)) +((-4176 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-566)) (-5 *6 (-1 (-1269) (-1264 *5) (-1264 *5) (-381))) (-5 *3 (-1264 (-381))) (-5 *5 (-381)) (-5 *2 (-1269)) (-5 *1 (-788)))) (-2762 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-566)) (-5 *6 (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3856 (-381)))) (-5 *7 (-1 (-1269) (-1264 *5) (-1264 *5) (-381))) (-5 *3 (-1264 (-381))) (-5 *5 (-381)) (-5 *2 (-1269)) (-5 *1 (-788)))) (-2762 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-566)) (-5 *6 (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3856 (-381)))) (-5 *7 (-1 (-1269) (-1264 *5) (-1264 *5) (-381))) (-5 *3 (-1264 (-381))) (-5 *5 (-381)) (-5 *2 (-1269)) (-5 *1 (-788)))) (-1396 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-566)) (-5 *6 (-1 (-1269) (-1264 *5) (-1264 *5) (-381))) (-5 *3 (-1264 (-381))) (-5 *5 (-381)) (-5 *2 (-1269)) (-5 *1 (-788)))) (-2073 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-566)) (-5 *6 (-1 (-1269) (-1264 *5) (-1264 *5) (-381))) (-5 *3 (-1264 (-381))) (-5 *5 (-381)) (-5 *2 (-1269)) (-5 *1 (-788)))) (-2073 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-566)) (-5 *6 (-1 (-1269) (-1264 *5) (-1264 *5) (-381))) (-5 *3 (-1264 (-381))) (-5 *5 (-381)) (-5 *2 (-1269)) (-5 *1 (-788))))) +(-10 -7 (-15 -2073 ((-1269) (-1264 (-381)) (-566) (-381) (-381) (-1 (-1269) (-1264 (-381)) (-1264 (-381)) (-381)))) (-15 -2073 ((-1269) (-1264 (-381)) (-566) (-381) (-381) (-1 (-1269) (-1264 (-381)) (-1264 (-381)) (-381)) (-1264 (-381)) (-1264 (-381)) (-1264 (-381)) (-1264 (-381)))) (-15 -1396 ((-1269) (-1264 (-381)) (-566) (-381) (-381) (-381) (-381) (-566) (-1 (-1269) (-1264 (-381)) (-1264 (-381)) (-381)))) (-15 -2762 ((-1269) (-1264 (-381)) (-566) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3856 (-381))) (-381) (-1264 (-381)) (-1 (-1269) (-1264 (-381)) (-1264 (-381)) (-381)))) (-15 -2762 ((-1269) (-1264 (-381)) (-566) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3856 (-381))) (-381) (-1264 (-381)) (-1 (-1269) (-1264 (-381)) (-1264 (-381)) (-381)) (-1264 (-381)) (-1264 (-381)) (-1264 (-381)) (-1264 (-381)) (-1264 (-381)) (-1264 (-381)) (-1264 (-381)))) (-15 -4176 ((-1269) (-1264 (-381)) (-566) (-381) (-381) (-566) (-1 (-1269) (-1264 (-381)) (-1264 (-381)) (-381))))) +((-1717 (((-2 (|:| -2153 (-381)) (|:| -1452 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566)) 66)) (-3159 (((-2 (|:| -2153 (-381)) (|:| -1452 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566)) 42)) (-2350 (((-2 (|:| -2153 (-381)) (|:| -1452 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566)) 65)) (-1990 (((-2 (|:| -2153 (-381)) (|:| -1452 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566)) 40)) (-2466 (((-2 (|:| -2153 (-381)) (|:| -1452 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566)) 64)) (-1454 (((-2 (|:| -2153 (-381)) (|:| -1452 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566)) 26)) (-2632 (((-2 (|:| -2153 (-381)) (|:| -1452 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566) (-566)) 43)) (-2279 (((-2 (|:| -2153 (-381)) (|:| -1452 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566) (-566)) 41)) (-2445 (((-2 (|:| -2153 (-381)) (|:| -1452 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566) (-566)) 39))) +(((-789) (-10 -7 (-15 -2445 ((-2 (|:| -2153 (-381)) (|:| -1452 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566) (-566))) (-15 -2279 ((-2 (|:| -2153 (-381)) (|:| -1452 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566) (-566))) (-15 -2632 ((-2 (|:| -2153 (-381)) (|:| -1452 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566) (-566))) (-15 -1454 ((-2 (|:| -2153 (-381)) (|:| -1452 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566))) (-15 -1990 ((-2 (|:| -2153 (-381)) (|:| -1452 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566))) (-15 -3159 ((-2 (|:| -2153 (-381)) (|:| -1452 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566))) (-15 -2466 ((-2 (|:| -2153 (-381)) (|:| -1452 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566))) (-15 -2350 ((-2 (|:| -2153 (-381)) (|:| -1452 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566))) (-15 -1717 ((-2 (|:| -2153 (-381)) (|:| -1452 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566))))) (T -789)) +((-1717 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -2153 *4) (|:| -1452 *4) (|:| |totalpts| (-566)) (|:| |success| (-112)))) (-5 *1 (-789)) (-5 *5 (-566)))) (-2350 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -2153 *4) (|:| -1452 *4) (|:| |totalpts| (-566)) (|:| |success| (-112)))) (-5 *1 (-789)) (-5 *5 (-566)))) (-2466 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -2153 *4) (|:| -1452 *4) (|:| |totalpts| (-566)) (|:| |success| (-112)))) (-5 *1 (-789)) (-5 *5 (-566)))) (-3159 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -2153 *4) (|:| -1452 *4) (|:| |totalpts| (-566)) (|:| |success| (-112)))) (-5 *1 (-789)) (-5 *5 (-566)))) (-1990 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -2153 *4) (|:| -1452 *4) (|:| |totalpts| (-566)) (|:| |success| (-112)))) (-5 *1 (-789)) (-5 *5 (-566)))) (-1454 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -2153 *4) (|:| -1452 *4) (|:| |totalpts| (-566)) (|:| |success| (-112)))) (-5 *1 (-789)) (-5 *5 (-566)))) (-2632 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -2153 *4) (|:| -1452 *4) (|:| |totalpts| (-566)) (|:| |success| (-112)))) (-5 *1 (-789)) (-5 *5 (-566)))) (-2279 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -2153 *4) (|:| -1452 *4) (|:| |totalpts| (-566)) (|:| |success| (-112)))) (-5 *1 (-789)) (-5 *5 (-566)))) (-2445 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -2153 *4) (|:| -1452 *4) (|:| |totalpts| (-566)) (|:| |success| (-112)))) (-5 *1 (-789)) (-5 *5 (-566))))) +(-10 -7 (-15 -2445 ((-2 (|:| -2153 (-381)) (|:| -1452 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566) (-566))) (-15 -2279 ((-2 (|:| -2153 (-381)) (|:| -1452 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566) (-566))) (-15 -2632 ((-2 (|:| -2153 (-381)) (|:| -1452 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566) (-566))) (-15 -1454 ((-2 (|:| -2153 (-381)) (|:| -1452 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566))) (-15 -1990 ((-2 (|:| -2153 (-381)) (|:| -1452 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566))) (-15 -3159 ((-2 (|:| -2153 (-381)) (|:| -1452 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566))) (-15 -2466 ((-2 (|:| -2153 (-381)) (|:| -1452 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566))) (-15 -2350 ((-2 (|:| -2153 (-381)) (|:| -1452 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566))) (-15 -1717 ((-2 (|:| -2153 (-381)) (|:| -1452 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566)))) +((-1722 (((-1209 |#1|) |#1| (-225) (-566)) 69))) +(((-790 |#1|) (-10 -7 (-15 -1722 ((-1209 |#1|) |#1| (-225) (-566)))) (-974)) (T -790)) +((-1722 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-225)) (-5 *5 (-566)) (-5 *2 (-1209 *3)) (-5 *1 (-790 *3)) (-4 *3 (-974))))) +(-10 -7 (-15 -1722 ((-1209 |#1|) |#1| (-225) (-566)))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 25)) (-3174 (((-3 $ "failed") $ $) 27)) (-1811 (($) 24 T CONST)) (-1920 (($ $ $) 14)) (-3038 (($ $ $) 15)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-2479 (((-862) $) 12)) (-3900 (((-112) $ $) 9)) (-2446 (($) 23 T CONST)) (-3019 (((-112) $ $) 17)) (-2990 (((-112) $ $) 18)) (-2952 (((-112) $ $) 6)) (-3004 (((-112) $ $) 16)) (-2977 (((-112) $ $) 19)) (-3065 (($ $ $) 31) (($ $) 30)) (-3052 (($ $ $) 21)) (* (($ (-921) $) 22) (($ (-771) $) 26) (($ (-566) $) 29))) (((-791) (-140)) (T -791)) -((-2247 (*1 *1 *1 *1) (-4 *1 (-791)))) -(-13 (-793) (-10 -8 (-15 -2247 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-860)) . T) ((-790) . T) ((-792) . T) ((-793) . T) ((-848) . T) ((-1097) . T)) -((-2856 (((-112) $ $) 7)) (-3225 (($ $ $) 14)) (-2903 (($ $ $) 15)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2390 (((-860) $) 12)) (-1600 (((-112) $ $) 9)) (-2881 (((-112) $ $) 17)) (-2857 (((-112) $ $) 18)) (-2821 (((-112) $ $) 6)) (-2868 (((-112) $ $) 16)) (-2844 (((-112) $ $) 19)) (-2917 (($ $ $) 21)) (* (($ (-919) $) 22))) +NIL +(-13 (-795) (-21)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-792) . T) ((-794) . T) ((-795) . T) ((-850) . T) ((-1099) . T)) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 25)) (-1811 (($) 24 T CONST)) (-1920 (($ $ $) 14)) (-3038 (($ $ $) 15)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-2479 (((-862) $) 12)) (-3900 (((-112) $ $) 9)) (-2446 (($) 23 T CONST)) (-3019 (((-112) $ $) 17)) (-2990 (((-112) $ $) 18)) (-2952 (((-112) $ $) 6)) (-3004 (((-112) $ $) 16)) (-2977 (((-112) $ $) 19)) (-3052 (($ $ $) 21)) (* (($ (-921) $) 22) (($ (-771) $) 26))) (((-792) (-140)) (T -792)) NIL -(-13 (-848) (-25)) -(((-25) . T) ((-102) . T) ((-611 (-860)) . T) ((-848) . T) ((-1097) . T)) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 25)) (-3085 (((-3 $ "failed") $ $) 27)) (-2822 (($) 24 T CONST)) (-3225 (($ $ $) 14)) (-2903 (($ $ $) 15)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2390 (((-860) $) 12)) (-1600 (((-112) $ $) 9)) (-2361 (($) 23 T CONST)) (-2881 (((-112) $ $) 17)) (-2857 (((-112) $ $) 18)) (-2821 (((-112) $ $) 6)) (-2868 (((-112) $ $) 16)) (-2844 (((-112) $ $) 19)) (-2917 (($ $ $) 21)) (* (($ (-919) $) 22) (($ (-769) $) 26))) +(-13 (-794) (-23)) +(((-23) . T) ((-25) . T) ((-102) . T) ((-613 (-862)) . T) ((-794) . T) ((-850) . T) ((-1099) . T)) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 25)) (-4047 (($ $ $) 28)) (-3174 (((-3 $ "failed") $ $) 27)) (-1811 (($) 24 T CONST)) (-1920 (($ $ $) 14)) (-3038 (($ $ $) 15)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-2479 (((-862) $) 12)) (-3900 (((-112) $ $) 9)) (-2446 (($) 23 T CONST)) (-3019 (((-112) $ $) 17)) (-2990 (((-112) $ $) 18)) (-2952 (((-112) $ $) 6)) (-3004 (((-112) $ $) 16)) (-2977 (((-112) $ $) 19)) (-3052 (($ $ $) 21)) (* (($ (-921) $) 22) (($ (-771) $) 26))) (((-793) (-140)) (T -793)) -NIL -(-13 (-790) (-131)) -(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-860)) . T) ((-790) . T) ((-792) . T) ((-848) . T) ((-1097) . T)) -((-2950 (((-112) $) 42)) (-2849 (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-1687 (((-564) $) NIL) (((-407 (-564)) $) NIL) ((|#2| $) 43)) (-3227 (((-3 (-407 (-564)) "failed") $) 78)) (-2929 (((-112) $) 72)) (-3536 (((-407 (-564)) $) 76)) (-2573 ((|#2| $) 26)) (-2947 (($ (-1 |#2| |#2|) $) 23)) (-2481 (($ $) 58)) (-3003 (((-536) $) 67)) (-1736 (($ $) 21)) (-2390 (((-860) $) 53) (($ (-564)) 40) (($ |#2|) 38) (($ (-407 (-564))) NIL)) (-3348 (((-769)) 10)) (-1630 ((|#2| $) 71)) (-2821 (((-112) $ $) 30)) (-2844 (((-112) $ $) 69)) (-2930 (($ $) 32) (($ $ $) NIL)) (-2917 (($ $ $) 31)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 36) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 33))) -(((-794 |#1| |#2|) (-10 -8 (-15 -2844 ((-112) |#1| |#1|)) (-15 -3003 ((-536) |#1|)) (-15 -2481 (|#1| |#1|)) (-15 -3227 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3536 ((-407 (-564)) |#1|)) (-15 -2929 ((-112) |#1|)) (-15 -1630 (|#2| |#1|)) (-15 -2573 (|#2| |#1|)) (-15 -1736 (|#1| |#1|)) (-15 -2947 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2849 ((-3 |#2| "failed") |#1|)) (-15 -1687 (|#2| |#1|)) (-15 -1687 ((-407 (-564)) |#1|)) (-15 -2849 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2390 (|#1| (-407 (-564)))) (-15 -1687 ((-564) |#1|)) (-15 -2849 ((-3 (-564) "failed") |#1|)) (-15 -2390 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3348 ((-769))) (-15 -2390 (|#1| (-564))) (-15 * (|#1| |#1| |#1|)) (-15 -2930 (|#1| |#1| |#1|)) (-15 -2930 (|#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-769) |#1|)) (-15 -2950 ((-112) |#1|)) (-15 * (|#1| (-919) |#1|)) (-15 -2917 (|#1| |#1| |#1|)) (-15 -2390 ((-860) |#1|)) (-15 -2821 ((-112) |#1| |#1|))) (-795 |#2|) (-172)) (T -794)) -((-3348 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-769)) (-5 *1 (-794 *3 *4)) (-4 *3 (-795 *4))))) -(-10 -8 (-15 -2844 ((-112) |#1| |#1|)) (-15 -3003 ((-536) |#1|)) (-15 -2481 (|#1| |#1|)) (-15 -3227 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3536 ((-407 (-564)) |#1|)) (-15 -2929 ((-112) |#1|)) (-15 -1630 (|#2| |#1|)) (-15 -2573 (|#2| |#1|)) (-15 -1736 (|#1| |#1|)) (-15 -2947 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2849 ((-3 |#2| "failed") |#1|)) (-15 -1687 (|#2| |#1|)) (-15 -1687 ((-407 (-564)) |#1|)) (-15 -2849 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2390 (|#1| (-407 (-564)))) (-15 -1687 ((-564) |#1|)) (-15 -2849 ((-3 (-564) "failed") |#1|)) (-15 -2390 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3348 ((-769))) (-15 -2390 (|#1| (-564))) (-15 * (|#1| |#1| |#1|)) (-15 -2930 (|#1| |#1| |#1|)) (-15 -2930 (|#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-769) |#1|)) (-15 -2950 ((-112) |#1|)) (-15 * (|#1| (-919) |#1|)) (-15 -2917 (|#1| |#1| |#1|)) (-15 -2390 ((-860) |#1|)) (-15 -2821 ((-112) |#1| |#1|))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-3085 (((-3 $ "failed") $ $) 20)) (-4003 (((-769)) 58 (|has| |#1| (-368)))) (-2822 (($) 18 T CONST)) (-2849 (((-3 (-564) "failed") $) 100 (|has| |#1| (-1036 (-564)))) (((-3 (-407 (-564)) "failed") $) 97 (|has| |#1| (-1036 (-407 (-564))))) (((-3 |#1| "failed") $) 94)) (-1687 (((-564) $) 99 (|has| |#1| (-1036 (-564)))) (((-407 (-564)) $) 96 (|has| |#1| (-1036 (-407 (-564))))) ((|#1| $) 95)) (-2675 (((-3 $ "failed") $) 37)) (-2275 ((|#1| $) 84)) (-3227 (((-3 (-407 (-564)) "failed") $) 71 (|has| |#1| (-545)))) (-2929 (((-112) $) 73 (|has| |#1| (-545)))) (-3536 (((-407 (-564)) $) 72 (|has| |#1| (-545)))) (-3235 (($) 61 (|has| |#1| (-368)))) (-3163 (((-112) $) 35)) (-3965 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 75)) (-2573 ((|#1| $) 76)) (-3225 (($ $ $) 67 (|has| |#1| (-848)))) (-2903 (($ $ $) 66 (|has| |#1| (-848)))) (-2947 (($ (-1 |#1| |#1|) $) 86)) (-2535 (((-919) $) 60 (|has| |#1| (-368)))) (-1778 (((-1155) $) 10)) (-2481 (($ $) 70 (|has| |#1| (-363)))) (-2065 (($ (-919)) 59 (|has| |#1| (-368)))) (-3850 ((|#1| $) 81)) (-1423 ((|#1| $) 82)) (-1541 ((|#1| $) 83)) (-2695 ((|#1| $) 77)) (-3468 ((|#1| $) 78)) (-1707 ((|#1| $) 79)) (-4349 ((|#1| $) 80)) (-3999 (((-1117) $) 11)) (-3154 (($ $ (-642 |#1|) (-642 |#1|)) 92 (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) 91 (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) 90 (|has| |#1| (-309 |#1|))) (($ $ (-642 (-294 |#1|))) 89 (|has| |#1| (-309 |#1|))) (($ $ (-642 (-1173)) (-642 |#1|)) 88 (|has| |#1| (-514 (-1173) |#1|))) (($ $ (-1173) |#1|) 87 (|has| |#1| (-514 (-1173) |#1|)))) (-4369 (($ $ |#1|) 93 (|has| |#1| (-286 |#1| |#1|)))) (-3003 (((-536) $) 68 (|has| |#1| (-612 (-536))))) (-1736 (($ $) 85)) (-2390 (((-860) $) 12) (($ (-564)) 33) (($ |#1|) 44) (($ (-407 (-564))) 98 (|has| |#1| (-1036 (-407 (-564)))))) (-3434 (((-3 $ "failed") $) 69 (|has| |#1| (-145)))) (-3348 (((-769)) 32 T CONST)) (-1600 (((-112) $ $) 9)) (-1630 ((|#1| $) 74 (|has| |#1| (-1057)))) (-2361 (($) 19 T CONST)) (-2371 (($) 34 T CONST)) (-2881 (((-112) $ $) 64 (|has| |#1| (-848)))) (-2857 (((-112) $ $) 63 (|has| |#1| (-848)))) (-2821 (((-112) $ $) 6)) (-2868 (((-112) $ $) 65 (|has| |#1| (-848)))) (-2844 (((-112) $ $) 62 (|has| |#1| (-848)))) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) -(((-795 |#1|) (-140) (-172)) (T -795)) -((-1736 (*1 *1 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-172)))) (-2275 (*1 *2 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-172)))) (-1541 (*1 *2 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-172)))) (-1423 (*1 *2 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-172)))) (-3850 (*1 *2 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-172)))) (-4349 (*1 *2 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-172)))) (-1707 (*1 *2 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-172)))) (-3468 (*1 *2 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-172)))) (-2695 (*1 *2 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-172)))) (-2573 (*1 *2 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-172)))) (-3965 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-795 *2)) (-4 *2 (-172)))) (-1630 (*1 *2 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-172)) (-4 *2 (-1057)))) (-2929 (*1 *2 *1) (-12 (-4 *1 (-795 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112)))) (-3536 (*1 *2 *1) (-12 (-4 *1 (-795 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-564))))) (-3227 (*1 *2 *1) (|partial| -12 (-4 *1 (-795 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-564))))) (-2481 (*1 *1 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-172)) (-4 *2 (-363))))) -(-13 (-38 |t#1|) (-411 |t#1|) (-338 |t#1|) (-10 -8 (-15 -1736 ($ $)) (-15 -2275 (|t#1| $)) (-15 -1541 (|t#1| $)) (-15 -1423 (|t#1| $)) (-15 -3850 (|t#1| $)) (-15 -4349 (|t#1| $)) (-15 -1707 (|t#1| $)) (-15 -3468 (|t#1| $)) (-15 -2695 (|t#1| $)) (-15 -2573 (|t#1| $)) (-15 -3965 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-368)) (-6 (-368)) |%noBranch|) (IF (|has| |t#1| (-848)) (-6 (-848)) |%noBranch|) (IF (|has| |t#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1057)) (-15 -1630 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-545)) (PROGN (-15 -2929 ((-112) $)) (-15 -3536 ((-407 (-564)) $)) (-15 -3227 ((-3 (-407 (-564)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-363)) (-15 -2481 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0=(-407 (-564))) |has| |#1| (-1036 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-611 (-860)) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 |#1| $) |has| |#1| (-286 |#1| |#1|)) ((-309 |#1|) |has| |#1| (-309 |#1|)) ((-368) |has| |#1| (-368)) ((-338 |#1|) . T) ((-411 |#1|) . T) ((-514 (-1173) |#1|) |has| |#1| (-514 (-1173) |#1|)) ((-514 |#1| |#1|) |has| |#1| (-309 |#1|)) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-638 |#1|) . T) ((-715 |#1|) . T) ((-724) . T) ((-848) |has| |#1| (-848)) ((-1036 #0#) |has| |#1| (-1036 (-407 (-564)))) ((-1036 (-564)) |has| |#1| (-1036 (-564))) ((-1036 |#1|) . T) ((-1049 |#1|) . T) ((-1054 |#1|) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T)) -((-2947 ((|#3| (-1 |#4| |#2|) |#1|) 20))) -(((-796 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2947 (|#3| (-1 |#4| |#2|) |#1|))) (-795 |#2|) (-172) (-795 |#4|) (-172)) (T -796)) -((-2947 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-795 *6)) (-5 *1 (-796 *4 *5 *2 *6)) (-4 *4 (-795 *5))))) -(-10 -7 (-15 -2947 (|#3| (-1 |#4| |#2|) |#1|))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-3085 (((-3 $ "failed") $ $) NIL)) (-4003 (((-769)) NIL (|has| |#1| (-368)))) (-2822 (($) NIL T CONST)) (-2849 (((-3 |#1| "failed") $) NIL) (((-3 (-997 |#1|) "failed") $) 35) (((-3 (-564) "failed") $) NIL (-2682 (|has| (-997 |#1|) (-1036 (-564))) (|has| |#1| (-1036 (-564))))) (((-3 (-407 (-564)) "failed") $) NIL (-2682 (|has| (-997 |#1|) (-1036 (-407 (-564)))) (|has| |#1| (-1036 (-407 (-564))))))) (-1687 ((|#1| $) NIL) (((-997 |#1|) $) 33) (((-564) $) NIL (-2682 (|has| (-997 |#1|) (-1036 (-564))) (|has| |#1| (-1036 (-564))))) (((-407 (-564)) $) NIL (-2682 (|has| (-997 |#1|) (-1036 (-407 (-564)))) (|has| |#1| (-1036 (-407 (-564))))))) (-2675 (((-3 $ "failed") $) NIL)) (-2275 ((|#1| $) 16)) (-3227 (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-545)))) (-2929 (((-112) $) NIL (|has| |#1| (-545)))) (-3536 (((-407 (-564)) $) NIL (|has| |#1| (-545)))) (-3235 (($) NIL (|has| |#1| (-368)))) (-3163 (((-112) $) NIL)) (-3965 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-997 |#1|) (-997 |#1|)) 29)) (-2573 ((|#1| $) NIL)) (-3225 (($ $ $) NIL (|has| |#1| (-848)))) (-2903 (($ $ $) NIL (|has| |#1| (-848)))) (-2947 (($ (-1 |#1| |#1|) $) NIL)) (-2535 (((-919) $) NIL (|has| |#1| (-368)))) (-1778 (((-1155) $) NIL)) (-2481 (($ $) NIL (|has| |#1| (-363)))) (-2065 (($ (-919)) NIL (|has| |#1| (-368)))) (-3850 ((|#1| $) 22)) (-1423 ((|#1| $) 20)) (-1541 ((|#1| $) 18)) (-2695 ((|#1| $) 26)) (-3468 ((|#1| $) 25)) (-1707 ((|#1| $) 24)) (-4349 ((|#1| $) 23)) (-3999 (((-1117) $) NIL)) (-3154 (($ $ (-642 |#1|) (-642 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ (-642 (-294 |#1|))) NIL (|has| |#1| (-309 |#1|))) (($ $ (-642 (-1173)) (-642 |#1|)) NIL (|has| |#1| (-514 (-1173) |#1|))) (($ $ (-1173) |#1|) NIL (|has| |#1| (-514 (-1173) |#1|)))) (-4369 (($ $ |#1|) NIL (|has| |#1| (-286 |#1| |#1|)))) (-3003 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-1736 (($ $) NIL)) (-2390 (((-860) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-997 |#1|)) 30) (($ (-407 (-564))) NIL (-2682 (|has| (-997 |#1|) (-1036 (-407 (-564)))) (|has| |#1| (-1036 (-407 (-564))))))) (-3434 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3348 (((-769)) NIL T CONST)) (-1600 (((-112) $ $) NIL)) (-1630 ((|#1| $) NIL (|has| |#1| (-1057)))) (-2361 (($) 8 T CONST)) (-2371 (($) 12 T CONST)) (-2881 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2857 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2821 (((-112) $ $) NIL)) (-2868 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2844 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-797 |#1|) (-13 (-795 |#1|) (-411 (-997 |#1|)) (-10 -8 (-15 -3965 ($ (-997 |#1|) (-997 |#1|))))) (-172)) (T -797)) -((-3965 (*1 *1 *2 *2) (-12 (-5 *2 (-997 *3)) (-4 *3 (-172)) (-5 *1 (-797 *3))))) -(-13 (-795 |#1|) (-411 (-997 |#1|)) (-10 -8 (-15 -3965 ($ (-997 |#1|) (-997 |#1|))))) -((-2856 (((-112) $ $) 7)) (-4324 (((-2 (|:| -4324 (-379)) (|:| |explanations| (-1155))) (-1060) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 15)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2390 (((-860) $) 12)) (-1600 (((-112) $ $) 9)) (-2339 (((-1033) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 14)) (-2821 (((-112) $ $) 6))) -(((-798) (-140)) (T -798)) -((-4324 (*1 *2 *3 *4) (-12 (-4 *1 (-798)) (-5 *3 (-1060)) (-5 *4 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -4324 (-379)) (|:| |explanations| (-1155)))))) (-2339 (*1 *2 *3) (-12 (-4 *1 (-798)) (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-1033))))) -(-13 (-1097) (-10 -7 (-15 -4324 ((-2 (|:| -4324 (-379)) (|:| |explanations| (-1155))) (-1060) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2339 ((-1033) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) -(((-102) . T) ((-611 (-860)) . T) ((-1097) . T)) -((-3344 (((-2 (|:| |particular| |#2|) (|:| -2131 (-642 |#2|))) |#3| |#2| (-1173)) 19))) -(((-799 |#1| |#2| |#3|) (-10 -7 (-15 -3344 ((-2 (|:| |particular| |#2|) (|:| -2131 (-642 |#2|))) |#3| |#2| (-1173)))) (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147)) (-13 (-29 |#1|) (-1197) (-957)) (-654 |#2|)) (T -799)) -((-3344 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1173)) (-4 *6 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147))) (-4 *4 (-13 (-29 *6) (-1197) (-957))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2131 (-642 *4)))) (-5 *1 (-799 *6 *4 *3)) (-4 *3 (-654 *4))))) -(-10 -7 (-15 -3344 ((-2 (|:| |particular| |#2|) (|:| -2131 (-642 |#2|))) |#3| |#2| (-1173)))) -((-1577 (((-3 |#2| "failed") |#2| (-114) (-294 |#2|) (-642 |#2|)) 28) (((-3 |#2| "failed") (-294 |#2|) (-114) (-294 |#2|) (-642 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -2131 (-642 |#2|))) |#2| "failed") |#2| (-114) (-1173)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -2131 (-642 |#2|))) |#2| "failed") (-294 |#2|) (-114) (-1173)) 18) (((-3 (-2 (|:| |particular| (-1262 |#2|)) (|:| -2131 (-642 (-1262 |#2|)))) "failed") (-642 |#2|) (-642 (-114)) (-1173)) 24) (((-3 (-2 (|:| |particular| (-1262 |#2|)) (|:| -2131 (-642 (-1262 |#2|)))) "failed") (-642 (-294 |#2|)) (-642 (-114)) (-1173)) 26) (((-3 (-642 (-1262 |#2|)) "failed") (-687 |#2|) (-1173)) 37) (((-3 (-2 (|:| |particular| (-1262 |#2|)) (|:| -2131 (-642 (-1262 |#2|)))) "failed") (-687 |#2|) (-1262 |#2|) (-1173)) 35))) -(((-800 |#1| |#2|) (-10 -7 (-15 -1577 ((-3 (-2 (|:| |particular| (-1262 |#2|)) (|:| -2131 (-642 (-1262 |#2|)))) "failed") (-687 |#2|) (-1262 |#2|) (-1173))) (-15 -1577 ((-3 (-642 (-1262 |#2|)) "failed") (-687 |#2|) (-1173))) (-15 -1577 ((-3 (-2 (|:| |particular| (-1262 |#2|)) (|:| -2131 (-642 (-1262 |#2|)))) "failed") (-642 (-294 |#2|)) (-642 (-114)) (-1173))) (-15 -1577 ((-3 (-2 (|:| |particular| (-1262 |#2|)) (|:| -2131 (-642 (-1262 |#2|)))) "failed") (-642 |#2|) (-642 (-114)) (-1173))) (-15 -1577 ((-3 (-2 (|:| |particular| |#2|) (|:| -2131 (-642 |#2|))) |#2| "failed") (-294 |#2|) (-114) (-1173))) (-15 -1577 ((-3 (-2 (|:| |particular| |#2|) (|:| -2131 (-642 |#2|))) |#2| "failed") |#2| (-114) (-1173))) (-15 -1577 ((-3 |#2| "failed") (-294 |#2|) (-114) (-294 |#2|) (-642 |#2|))) (-15 -1577 ((-3 |#2| "failed") |#2| (-114) (-294 |#2|) (-642 |#2|)))) (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147)) (-13 (-29 |#1|) (-1197) (-957))) (T -800)) -((-1577 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-294 *2)) (-5 *5 (-642 *2)) (-4 *2 (-13 (-29 *6) (-1197) (-957))) (-4 *6 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147))) (-5 *1 (-800 *6 *2)))) (-1577 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-294 *2)) (-5 *4 (-114)) (-5 *5 (-642 *2)) (-4 *2 (-13 (-29 *6) (-1197) (-957))) (-5 *1 (-800 *6 *2)) (-4 *6 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147))))) (-1577 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-114)) (-5 *5 (-1173)) (-4 *6 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2131 (-642 *3))) *3 "failed")) (-5 *1 (-800 *6 *3)) (-4 *3 (-13 (-29 *6) (-1197) (-957))))) (-1577 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-294 *7)) (-5 *4 (-114)) (-5 *5 (-1173)) (-4 *7 (-13 (-29 *6) (-1197) (-957))) (-4 *6 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2131 (-642 *7))) *7 "failed")) (-5 *1 (-800 *6 *7)))) (-1577 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-642 *7)) (-5 *4 (-642 (-114))) (-5 *5 (-1173)) (-4 *7 (-13 (-29 *6) (-1197) (-957))) (-4 *6 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147))) (-5 *2 (-2 (|:| |particular| (-1262 *7)) (|:| -2131 (-642 (-1262 *7))))) (-5 *1 (-800 *6 *7)))) (-1577 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-642 (-294 *7))) (-5 *4 (-642 (-114))) (-5 *5 (-1173)) (-4 *7 (-13 (-29 *6) (-1197) (-957))) (-4 *6 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147))) (-5 *2 (-2 (|:| |particular| (-1262 *7)) (|:| -2131 (-642 (-1262 *7))))) (-5 *1 (-800 *6 *7)))) (-1577 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-687 *6)) (-5 *4 (-1173)) (-4 *6 (-13 (-29 *5) (-1197) (-957))) (-4 *5 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147))) (-5 *2 (-642 (-1262 *6))) (-5 *1 (-800 *5 *6)))) (-1577 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-687 *7)) (-5 *5 (-1173)) (-4 *7 (-13 (-29 *6) (-1197) (-957))) (-4 *6 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147))) (-5 *2 (-2 (|:| |particular| (-1262 *7)) (|:| -2131 (-642 (-1262 *7))))) (-5 *1 (-800 *6 *7)) (-5 *4 (-1262 *7))))) -(-10 -7 (-15 -1577 ((-3 (-2 (|:| |particular| (-1262 |#2|)) (|:| -2131 (-642 (-1262 |#2|)))) "failed") (-687 |#2|) (-1262 |#2|) (-1173))) (-15 -1577 ((-3 (-642 (-1262 |#2|)) "failed") (-687 |#2|) (-1173))) (-15 -1577 ((-3 (-2 (|:| |particular| (-1262 |#2|)) (|:| -2131 (-642 (-1262 |#2|)))) "failed") (-642 (-294 |#2|)) (-642 (-114)) (-1173))) (-15 -1577 ((-3 (-2 (|:| |particular| (-1262 |#2|)) (|:| -2131 (-642 (-1262 |#2|)))) "failed") (-642 |#2|) (-642 (-114)) (-1173))) (-15 -1577 ((-3 (-2 (|:| |particular| |#2|) (|:| -2131 (-642 |#2|))) |#2| "failed") (-294 |#2|) (-114) (-1173))) (-15 -1577 ((-3 (-2 (|:| |particular| |#2|) (|:| -2131 (-642 |#2|))) |#2| "failed") |#2| (-114) (-1173))) (-15 -1577 ((-3 |#2| "failed") (-294 |#2|) (-114) (-294 |#2|) (-642 |#2|))) (-15 -1577 ((-3 |#2| "failed") |#2| (-114) (-294 |#2|) (-642 |#2|)))) -((-2111 (($) 9)) (-3979 (((-3 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 31)) (-3287 (((-642 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $) 28)) (-1668 (($ (-2 (|:| -1914 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2683 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))))) 25)) (-1648 (($ (-642 (-2 (|:| -1914 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2683 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))))) 23)) (-2724 (((-1267)) 12))) -(((-801) (-10 -8 (-15 -2111 ($)) (-15 -2724 ((-1267))) (-15 -3287 ((-642 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -1648 ($ (-642 (-2 (|:| -1914 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2683 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))))))) (-15 -1668 ($ (-2 (|:| -1914 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2683 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))))) (-15 -3979 ((-3 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -801)) -((-3979 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))) (-5 *1 (-801)))) (-1668 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -1914 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2683 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))))) (-5 *1 (-801)))) (-1648 (*1 *1 *2) (-12 (-5 *2 (-642 (-2 (|:| -1914 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2683 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))))) (-5 *1 (-801)))) (-3287 (*1 *2 *1) (-12 (-5 *2 (-642 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-5 *1 (-801)))) (-2724 (*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-801)))) (-2111 (*1 *1) (-5 *1 (-801)))) -(-10 -8 (-15 -2111 ($)) (-15 -2724 ((-1267))) (-15 -3287 ((-642 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -1648 ($ (-642 (-2 (|:| -1914 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2683 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))))))) (-15 -1668 ($ (-2 (|:| -1914 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2683 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))))) (-15 -3979 ((-3 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) -((-3891 ((|#2| |#2| (-1173)) 17)) (-2649 ((|#2| |#2| (-1173)) 56)) (-1611 (((-1 |#2| |#2|) (-1173)) 11))) -(((-802 |#1| |#2|) (-10 -7 (-15 -3891 (|#2| |#2| (-1173))) (-15 -2649 (|#2| |#2| (-1173))) (-15 -1611 ((-1 |#2| |#2|) (-1173)))) (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147)) (-13 (-29 |#1|) (-1197) (-957))) (T -802)) -((-1611 (*1 *2 *3) (-12 (-5 *3 (-1173)) (-4 *4 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147))) (-5 *2 (-1 *5 *5)) (-5 *1 (-802 *4 *5)) (-4 *5 (-13 (-29 *4) (-1197) (-957))))) (-2649 (*1 *2 *2 *3) (-12 (-5 *3 (-1173)) (-4 *4 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147))) (-5 *1 (-802 *4 *2)) (-4 *2 (-13 (-29 *4) (-1197) (-957))))) (-3891 (*1 *2 *2 *3) (-12 (-5 *3 (-1173)) (-4 *4 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147))) (-5 *1 (-802 *4 *2)) (-4 *2 (-13 (-29 *4) (-1197) (-957)))))) -(-10 -7 (-15 -3891 (|#2| |#2| (-1173))) (-15 -2649 (|#2| |#2| (-1173))) (-15 -1611 ((-1 |#2| |#2|) (-1173)))) -((-1577 (((-1033) (-1262 (-316 (-379))) (-379) (-379) (-642 (-379)) (-316 (-379)) (-642 (-379)) (-379) (-379)) 131) (((-1033) (-1262 (-316 (-379))) (-379) (-379) (-642 (-379)) (-316 (-379)) (-642 (-379)) (-379)) 132) (((-1033) (-1262 (-316 (-379))) (-379) (-379) (-642 (-379)) (-642 (-379)) (-379)) 134) (((-1033) (-1262 (-316 (-379))) (-379) (-379) (-642 (-379)) (-316 (-379)) (-379)) 136) (((-1033) (-1262 (-316 (-379))) (-379) (-379) (-642 (-379)) (-379)) 137) (((-1033) (-1262 (-316 (-379))) (-379) (-379) (-642 (-379))) 139) (((-1033) (-806) (-1060)) 123) (((-1033) (-806)) 124)) (-4324 (((-2 (|:| -4324 (-379)) (|:| -2493 (-1155)) (|:| |explanations| (-642 (-1155)))) (-806) (-1060)) 83) (((-2 (|:| -4324 (-379)) (|:| -2493 (-1155)) (|:| |explanations| (-642 (-1155)))) (-806)) 85))) -(((-803) (-10 -7 (-15 -1577 ((-1033) (-806))) (-15 -1577 ((-1033) (-806) (-1060))) (-15 -1577 ((-1033) (-1262 (-316 (-379))) (-379) (-379) (-642 (-379)))) (-15 -1577 ((-1033) (-1262 (-316 (-379))) (-379) (-379) (-642 (-379)) (-379))) (-15 -1577 ((-1033) (-1262 (-316 (-379))) (-379) (-379) (-642 (-379)) (-316 (-379)) (-379))) (-15 -1577 ((-1033) (-1262 (-316 (-379))) (-379) (-379) (-642 (-379)) (-642 (-379)) (-379))) (-15 -1577 ((-1033) (-1262 (-316 (-379))) (-379) (-379) (-642 (-379)) (-316 (-379)) (-642 (-379)) (-379))) (-15 -1577 ((-1033) (-1262 (-316 (-379))) (-379) (-379) (-642 (-379)) (-316 (-379)) (-642 (-379)) (-379) (-379))) (-15 -4324 ((-2 (|:| -4324 (-379)) (|:| -2493 (-1155)) (|:| |explanations| (-642 (-1155)))) (-806))) (-15 -4324 ((-2 (|:| -4324 (-379)) (|:| -2493 (-1155)) (|:| |explanations| (-642 (-1155)))) (-806) (-1060))))) (T -803)) -((-4324 (*1 *2 *3 *4) (-12 (-5 *3 (-806)) (-5 *4 (-1060)) (-5 *2 (-2 (|:| -4324 (-379)) (|:| -2493 (-1155)) (|:| |explanations| (-642 (-1155))))) (-5 *1 (-803)))) (-4324 (*1 *2 *3) (-12 (-5 *3 (-806)) (-5 *2 (-2 (|:| -4324 (-379)) (|:| -2493 (-1155)) (|:| |explanations| (-642 (-1155))))) (-5 *1 (-803)))) (-1577 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1262 (-316 *4))) (-5 *5 (-642 (-379))) (-5 *6 (-316 (-379))) (-5 *4 (-379)) (-5 *2 (-1033)) (-5 *1 (-803)))) (-1577 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1262 (-316 *4))) (-5 *5 (-642 (-379))) (-5 *6 (-316 (-379))) (-5 *4 (-379)) (-5 *2 (-1033)) (-5 *1 (-803)))) (-1577 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1262 (-316 (-379)))) (-5 *4 (-379)) (-5 *5 (-642 *4)) (-5 *2 (-1033)) (-5 *1 (-803)))) (-1577 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1262 (-316 *4))) (-5 *5 (-642 (-379))) (-5 *6 (-316 (-379))) (-5 *4 (-379)) (-5 *2 (-1033)) (-5 *1 (-803)))) (-1577 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1262 (-316 (-379)))) (-5 *4 (-379)) (-5 *5 (-642 *4)) (-5 *2 (-1033)) (-5 *1 (-803)))) (-1577 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1262 (-316 (-379)))) (-5 *4 (-379)) (-5 *5 (-642 *4)) (-5 *2 (-1033)) (-5 *1 (-803)))) (-1577 (*1 *2 *3 *4) (-12 (-5 *3 (-806)) (-5 *4 (-1060)) (-5 *2 (-1033)) (-5 *1 (-803)))) (-1577 (*1 *2 *3) (-12 (-5 *3 (-806)) (-5 *2 (-1033)) (-5 *1 (-803))))) -(-10 -7 (-15 -1577 ((-1033) (-806))) (-15 -1577 ((-1033) (-806) (-1060))) (-15 -1577 ((-1033) (-1262 (-316 (-379))) (-379) (-379) (-642 (-379)))) (-15 -1577 ((-1033) (-1262 (-316 (-379))) (-379) (-379) (-642 (-379)) (-379))) (-15 -1577 ((-1033) (-1262 (-316 (-379))) (-379) (-379) (-642 (-379)) (-316 (-379)) (-379))) (-15 -1577 ((-1033) (-1262 (-316 (-379))) (-379) (-379) (-642 (-379)) (-642 (-379)) (-379))) (-15 -1577 ((-1033) (-1262 (-316 (-379))) (-379) (-379) (-642 (-379)) (-316 (-379)) (-642 (-379)) (-379))) (-15 -1577 ((-1033) (-1262 (-316 (-379))) (-379) (-379) (-642 (-379)) (-316 (-379)) (-642 (-379)) (-379) (-379))) (-15 -4324 ((-2 (|:| -4324 (-379)) (|:| -2493 (-1155)) (|:| |explanations| (-642 (-1155)))) (-806))) (-15 -4324 ((-2 (|:| -4324 (-379)) (|:| -2493 (-1155)) (|:| |explanations| (-642 (-1155)))) (-806) (-1060)))) -((-2678 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2131 (-642 |#4|))) (-651 |#4|) |#4|) 35))) -(((-804 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2678 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2131 (-642 |#4|))) (-651 |#4|) |#4|))) (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564)))) (-1238 |#1|) (-1238 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -804)) -((-2678 (*1 *2 *3 *4) (-12 (-5 *3 (-651 *4)) (-4 *4 (-342 *5 *6 *7)) (-4 *5 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564))))) (-4 *6 (-1238 *5)) (-4 *7 (-1238 (-407 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2131 (-642 *4)))) (-5 *1 (-804 *5 *6 *7 *4))))) -(-10 -7 (-15 -2678 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2131 (-642 |#4|))) (-651 |#4|) |#4|))) -((-1788 (((-2 (|:| -3359 |#3|) (|:| |rh| (-642 (-407 |#2|)))) |#4| (-642 (-407 |#2|))) 53)) (-1502 (((-642 (-2 (|:| -2245 |#2|) (|:| -1977 |#2|))) |#4| |#2|) 62) (((-642 (-2 (|:| -2245 |#2|) (|:| -1977 |#2|))) |#4|) 61) (((-642 (-2 (|:| -2245 |#2|) (|:| -1977 |#2|))) |#3| |#2|) 20) (((-642 (-2 (|:| -2245 |#2|) (|:| -1977 |#2|))) |#3|) 21)) (-1886 ((|#2| |#4| |#1|) 63) ((|#2| |#3| |#1|) 28)) (-2734 ((|#2| |#3| (-642 (-407 |#2|))) 113) (((-3 |#2| "failed") |#3| (-407 |#2|)) 109))) -(((-805 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2734 ((-3 |#2| "failed") |#3| (-407 |#2|))) (-15 -2734 (|#2| |#3| (-642 (-407 |#2|)))) (-15 -1502 ((-642 (-2 (|:| -2245 |#2|) (|:| -1977 |#2|))) |#3|)) (-15 -1502 ((-642 (-2 (|:| -2245 |#2|) (|:| -1977 |#2|))) |#3| |#2|)) (-15 -1886 (|#2| |#3| |#1|)) (-15 -1502 ((-642 (-2 (|:| -2245 |#2|) (|:| -1977 |#2|))) |#4|)) (-15 -1502 ((-642 (-2 (|:| -2245 |#2|) (|:| -1977 |#2|))) |#4| |#2|)) (-15 -1886 (|#2| |#4| |#1|)) (-15 -1788 ((-2 (|:| -3359 |#3|) (|:| |rh| (-642 (-407 |#2|)))) |#4| (-642 (-407 |#2|))))) (-13 (-363) (-147) (-1036 (-407 (-564)))) (-1238 |#1|) (-654 |#2|) (-654 (-407 |#2|))) (T -805)) -((-1788 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-363) (-147) (-1036 (-407 (-564))))) (-4 *6 (-1238 *5)) (-5 *2 (-2 (|:| -3359 *7) (|:| |rh| (-642 (-407 *6))))) (-5 *1 (-805 *5 *6 *7 *3)) (-5 *4 (-642 (-407 *6))) (-4 *7 (-654 *6)) (-4 *3 (-654 (-407 *6))))) (-1886 (*1 *2 *3 *4) (-12 (-4 *2 (-1238 *4)) (-5 *1 (-805 *4 *2 *5 *3)) (-4 *4 (-13 (-363) (-147) (-1036 (-407 (-564))))) (-4 *5 (-654 *2)) (-4 *3 (-654 (-407 *2))))) (-1502 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-363) (-147) (-1036 (-407 (-564))))) (-4 *4 (-1238 *5)) (-5 *2 (-642 (-2 (|:| -2245 *4) (|:| -1977 *4)))) (-5 *1 (-805 *5 *4 *6 *3)) (-4 *6 (-654 *4)) (-4 *3 (-654 (-407 *4))))) (-1502 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1036 (-407 (-564))))) (-4 *5 (-1238 *4)) (-5 *2 (-642 (-2 (|:| -2245 *5) (|:| -1977 *5)))) (-5 *1 (-805 *4 *5 *6 *3)) (-4 *6 (-654 *5)) (-4 *3 (-654 (-407 *5))))) (-1886 (*1 *2 *3 *4) (-12 (-4 *2 (-1238 *4)) (-5 *1 (-805 *4 *2 *3 *5)) (-4 *4 (-13 (-363) (-147) (-1036 (-407 (-564))))) (-4 *3 (-654 *2)) (-4 *5 (-654 (-407 *2))))) (-1502 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-363) (-147) (-1036 (-407 (-564))))) (-4 *4 (-1238 *5)) (-5 *2 (-642 (-2 (|:| -2245 *4) (|:| -1977 *4)))) (-5 *1 (-805 *5 *4 *3 *6)) (-4 *3 (-654 *4)) (-4 *6 (-654 (-407 *4))))) (-1502 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1036 (-407 (-564))))) (-4 *5 (-1238 *4)) (-5 *2 (-642 (-2 (|:| -2245 *5) (|:| -1977 *5)))) (-5 *1 (-805 *4 *5 *3 *6)) (-4 *3 (-654 *5)) (-4 *6 (-654 (-407 *5))))) (-2734 (*1 *2 *3 *4) (-12 (-5 *4 (-642 (-407 *2))) (-4 *2 (-1238 *5)) (-5 *1 (-805 *5 *2 *3 *6)) (-4 *5 (-13 (-363) (-147) (-1036 (-407 (-564))))) (-4 *3 (-654 *2)) (-4 *6 (-654 (-407 *2))))) (-2734 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-407 *2)) (-4 *2 (-1238 *5)) (-5 *1 (-805 *5 *2 *3 *6)) (-4 *5 (-13 (-363) (-147) (-1036 (-407 (-564))))) (-4 *3 (-654 *2)) (-4 *6 (-654 *4))))) -(-10 -7 (-15 -2734 ((-3 |#2| "failed") |#3| (-407 |#2|))) (-15 -2734 (|#2| |#3| (-642 (-407 |#2|)))) (-15 -1502 ((-642 (-2 (|:| -2245 |#2|) (|:| -1977 |#2|))) |#3|)) (-15 -1502 ((-642 (-2 (|:| -2245 |#2|) (|:| -1977 |#2|))) |#3| |#2|)) (-15 -1886 (|#2| |#3| |#1|)) (-15 -1502 ((-642 (-2 (|:| -2245 |#2|) (|:| -1977 |#2|))) |#4|)) (-15 -1502 ((-642 (-2 (|:| -2245 |#2|) (|:| -1977 |#2|))) |#4| |#2|)) (-15 -1886 (|#2| |#4| |#1|)) (-15 -1788 ((-2 (|:| -3359 |#3|) (|:| |rh| (-642 (-407 |#2|)))) |#4| (-642 (-407 |#2|))))) -((-2856 (((-112) $ $) NIL)) (-1687 (((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $) 13)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) 15) (($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 12)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-806) (-13 (-1097) (-10 -8 (-15 -2390 ($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1687 ((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $))))) (T -806)) -((-2390 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-806)))) (-1687 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-806))))) -(-13 (-1097) (-10 -8 (-15 -2390 ($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1687 ((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $)))) -((-1861 (((-642 (-2 (|:| |frac| (-407 |#2|)) (|:| -3359 |#3|))) |#3| (-1 (-642 |#2|) |#2| (-1169 |#2|)) (-1 (-418 |#2|) |#2|)) 157)) (-3231 (((-642 (-2 (|:| |poly| |#2|) (|:| -3359 |#3|))) |#3| (-1 (-642 |#1|) |#2|)) 56)) (-1298 (((-642 (-2 (|:| |deg| (-769)) (|:| -3359 |#2|))) |#3|) 127)) (-2875 ((|#2| |#3|) 45)) (-3565 (((-642 (-2 (|:| -1551 |#1|) (|:| -3359 |#3|))) |#3| (-1 (-642 |#1|) |#2|)) 105)) (-1982 ((|#3| |#3| (-407 |#2|)) 76) ((|#3| |#3| |#2|) 102))) -(((-807 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2875 (|#2| |#3|)) (-15 -1298 ((-642 (-2 (|:| |deg| (-769)) (|:| -3359 |#2|))) |#3|)) (-15 -3565 ((-642 (-2 (|:| -1551 |#1|) (|:| -3359 |#3|))) |#3| (-1 (-642 |#1|) |#2|))) (-15 -3231 ((-642 (-2 (|:| |poly| |#2|) (|:| -3359 |#3|))) |#3| (-1 (-642 |#1|) |#2|))) (-15 -1861 ((-642 (-2 (|:| |frac| (-407 |#2|)) (|:| -3359 |#3|))) |#3| (-1 (-642 |#2|) |#2| (-1169 |#2|)) (-1 (-418 |#2|) |#2|))) (-15 -1982 (|#3| |#3| |#2|)) (-15 -1982 (|#3| |#3| (-407 |#2|)))) (-13 (-363) (-147) (-1036 (-407 (-564)))) (-1238 |#1|) (-654 |#2|) (-654 (-407 |#2|))) (T -807)) -((-1982 (*1 *2 *2 *3) (-12 (-5 *3 (-407 *5)) (-4 *4 (-13 (-363) (-147) (-1036 (-407 (-564))))) (-4 *5 (-1238 *4)) (-5 *1 (-807 *4 *5 *2 *6)) (-4 *2 (-654 *5)) (-4 *6 (-654 *3)))) (-1982 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1036 (-407 (-564))))) (-4 *3 (-1238 *4)) (-5 *1 (-807 *4 *3 *2 *5)) (-4 *2 (-654 *3)) (-4 *5 (-654 (-407 *3))))) (-1861 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-642 *7) *7 (-1169 *7))) (-5 *5 (-1 (-418 *7) *7)) (-4 *7 (-1238 *6)) (-4 *6 (-13 (-363) (-147) (-1036 (-407 (-564))))) (-5 *2 (-642 (-2 (|:| |frac| (-407 *7)) (|:| -3359 *3)))) (-5 *1 (-807 *6 *7 *3 *8)) (-4 *3 (-654 *7)) (-4 *8 (-654 (-407 *7))))) (-3231 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-642 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1036 (-407 (-564))))) (-4 *6 (-1238 *5)) (-5 *2 (-642 (-2 (|:| |poly| *6) (|:| -3359 *3)))) (-5 *1 (-807 *5 *6 *3 *7)) (-4 *3 (-654 *6)) (-4 *7 (-654 (-407 *6))))) (-3565 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-642 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1036 (-407 (-564))))) (-4 *6 (-1238 *5)) (-5 *2 (-642 (-2 (|:| -1551 *5) (|:| -3359 *3)))) (-5 *1 (-807 *5 *6 *3 *7)) (-4 *3 (-654 *6)) (-4 *7 (-654 (-407 *6))))) (-1298 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1036 (-407 (-564))))) (-4 *5 (-1238 *4)) (-5 *2 (-642 (-2 (|:| |deg| (-769)) (|:| -3359 *5)))) (-5 *1 (-807 *4 *5 *3 *6)) (-4 *3 (-654 *5)) (-4 *6 (-654 (-407 *5))))) (-2875 (*1 *2 *3) (-12 (-4 *2 (-1238 *4)) (-5 *1 (-807 *4 *2 *3 *5)) (-4 *4 (-13 (-363) (-147) (-1036 (-407 (-564))))) (-4 *3 (-654 *2)) (-4 *5 (-654 (-407 *2)))))) -(-10 -7 (-15 -2875 (|#2| |#3|)) (-15 -1298 ((-642 (-2 (|:| |deg| (-769)) (|:| -3359 |#2|))) |#3|)) (-15 -3565 ((-642 (-2 (|:| -1551 |#1|) (|:| -3359 |#3|))) |#3| (-1 (-642 |#1|) |#2|))) (-15 -3231 ((-642 (-2 (|:| |poly| |#2|) (|:| -3359 |#3|))) |#3| (-1 (-642 |#1|) |#2|))) (-15 -1861 ((-642 (-2 (|:| |frac| (-407 |#2|)) (|:| -3359 |#3|))) |#3| (-1 (-642 |#2|) |#2| (-1169 |#2|)) (-1 (-418 |#2|) |#2|))) (-15 -1982 (|#3| |#3| |#2|)) (-15 -1982 (|#3| |#3| (-407 |#2|)))) -((-2484 (((-2 (|:| -2131 (-642 (-407 |#2|))) (|:| -3544 (-687 |#1|))) (-652 |#2| (-407 |#2|)) (-642 (-407 |#2|))) 149) (((-2 (|:| |particular| (-3 (-407 |#2|) "failed")) (|:| -2131 (-642 (-407 |#2|)))) (-652 |#2| (-407 |#2|)) (-407 |#2|)) 148) (((-2 (|:| -2131 (-642 (-407 |#2|))) (|:| -3544 (-687 |#1|))) (-651 (-407 |#2|)) (-642 (-407 |#2|))) 143) (((-2 (|:| |particular| (-3 (-407 |#2|) "failed")) (|:| -2131 (-642 (-407 |#2|)))) (-651 (-407 |#2|)) (-407 |#2|)) 141)) (-1869 ((|#2| (-652 |#2| (-407 |#2|))) 89) ((|#2| (-651 (-407 |#2|))) 92))) -(((-808 |#1| |#2|) (-10 -7 (-15 -2484 ((-2 (|:| |particular| (-3 (-407 |#2|) "failed")) (|:| -2131 (-642 (-407 |#2|)))) (-651 (-407 |#2|)) (-407 |#2|))) (-15 -2484 ((-2 (|:| -2131 (-642 (-407 |#2|))) (|:| -3544 (-687 |#1|))) (-651 (-407 |#2|)) (-642 (-407 |#2|)))) (-15 -2484 ((-2 (|:| |particular| (-3 (-407 |#2|) "failed")) (|:| -2131 (-642 (-407 |#2|)))) (-652 |#2| (-407 |#2|)) (-407 |#2|))) (-15 -2484 ((-2 (|:| -2131 (-642 (-407 |#2|))) (|:| -3544 (-687 |#1|))) (-652 |#2| (-407 |#2|)) (-642 (-407 |#2|)))) (-15 -1869 (|#2| (-651 (-407 |#2|)))) (-15 -1869 (|#2| (-652 |#2| (-407 |#2|))))) (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564)))) (-1238 |#1|)) (T -808)) -((-1869 (*1 *2 *3) (-12 (-5 *3 (-652 *2 (-407 *2))) (-4 *2 (-1238 *4)) (-5 *1 (-808 *4 *2)) (-4 *4 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564))))))) (-1869 (*1 *2 *3) (-12 (-5 *3 (-651 (-407 *2))) (-4 *2 (-1238 *4)) (-5 *1 (-808 *4 *2)) (-4 *4 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564))))))) (-2484 (*1 *2 *3 *4) (-12 (-5 *3 (-652 *6 (-407 *6))) (-4 *6 (-1238 *5)) (-4 *5 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564))))) (-5 *2 (-2 (|:| -2131 (-642 (-407 *6))) (|:| -3544 (-687 *5)))) (-5 *1 (-808 *5 *6)) (-5 *4 (-642 (-407 *6))))) (-2484 (*1 *2 *3 *4) (-12 (-5 *3 (-652 *6 (-407 *6))) (-5 *4 (-407 *6)) (-4 *6 (-1238 *5)) (-4 *5 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2131 (-642 *4)))) (-5 *1 (-808 *5 *6)))) (-2484 (*1 *2 *3 *4) (-12 (-5 *3 (-651 (-407 *6))) (-4 *6 (-1238 *5)) (-4 *5 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564))))) (-5 *2 (-2 (|:| -2131 (-642 (-407 *6))) (|:| -3544 (-687 *5)))) (-5 *1 (-808 *5 *6)) (-5 *4 (-642 (-407 *6))))) (-2484 (*1 *2 *3 *4) (-12 (-5 *3 (-651 (-407 *6))) (-5 *4 (-407 *6)) (-4 *6 (-1238 *5)) (-4 *5 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2131 (-642 *4)))) (-5 *1 (-808 *5 *6))))) -(-10 -7 (-15 -2484 ((-2 (|:| |particular| (-3 (-407 |#2|) "failed")) (|:| -2131 (-642 (-407 |#2|)))) (-651 (-407 |#2|)) (-407 |#2|))) (-15 -2484 ((-2 (|:| -2131 (-642 (-407 |#2|))) (|:| -3544 (-687 |#1|))) (-651 (-407 |#2|)) (-642 (-407 |#2|)))) (-15 -2484 ((-2 (|:| |particular| (-3 (-407 |#2|) "failed")) (|:| -2131 (-642 (-407 |#2|)))) (-652 |#2| (-407 |#2|)) (-407 |#2|))) (-15 -2484 ((-2 (|:| -2131 (-642 (-407 |#2|))) (|:| -3544 (-687 |#1|))) (-652 |#2| (-407 |#2|)) (-642 (-407 |#2|)))) (-15 -1869 (|#2| (-651 (-407 |#2|)))) (-15 -1869 (|#2| (-652 |#2| (-407 |#2|))))) -((-3667 (((-2 (|:| -3544 (-687 |#2|)) (|:| |vec| (-1262 |#1|))) |#5| |#4|) 52))) -(((-809 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3667 ((-2 (|:| -3544 (-687 |#2|)) (|:| |vec| (-1262 |#1|))) |#5| |#4|))) (-363) (-654 |#1|) (-1238 |#1|) (-722 |#1| |#3|) (-654 |#4|)) (T -809)) -((-3667 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *7 (-1238 *5)) (-4 *4 (-722 *5 *7)) (-5 *2 (-2 (|:| -3544 (-687 *6)) (|:| |vec| (-1262 *5)))) (-5 *1 (-809 *5 *6 *7 *4 *3)) (-4 *6 (-654 *5)) (-4 *3 (-654 *4))))) -(-10 -7 (-15 -3667 ((-2 (|:| -3544 (-687 |#2|)) (|:| |vec| (-1262 |#1|))) |#5| |#4|))) -((-1861 (((-642 (-2 (|:| |frac| (-407 |#2|)) (|:| -3359 (-652 |#2| (-407 |#2|))))) (-652 |#2| (-407 |#2|)) (-1 (-418 |#2|) |#2|)) 47)) (-3801 (((-642 (-407 |#2|)) (-652 |#2| (-407 |#2|)) (-1 (-418 |#2|) |#2|)) 171 (|has| |#1| (-27))) (((-642 (-407 |#2|)) (-652 |#2| (-407 |#2|))) 168 (|has| |#1| (-27))) (((-642 (-407 |#2|)) (-651 (-407 |#2|)) (-1 (-418 |#2|) |#2|)) 172 (|has| |#1| (-27))) (((-642 (-407 |#2|)) (-651 (-407 |#2|))) 170 (|has| |#1| (-27))) (((-642 (-407 |#2|)) (-652 |#2| (-407 |#2|)) (-1 (-642 |#1|) |#2|) (-1 (-418 |#2|) |#2|)) 38) (((-642 (-407 |#2|)) (-652 |#2| (-407 |#2|)) (-1 (-642 |#1|) |#2|)) 39) (((-642 (-407 |#2|)) (-651 (-407 |#2|)) (-1 (-642 |#1|) |#2|) (-1 (-418 |#2|) |#2|)) 36) (((-642 (-407 |#2|)) (-651 (-407 |#2|)) (-1 (-642 |#1|) |#2|)) 37)) (-3231 (((-642 (-2 (|:| |poly| |#2|) (|:| -3359 (-652 |#2| (-407 |#2|))))) (-652 |#2| (-407 |#2|)) (-1 (-642 |#1|) |#2|)) 99))) -(((-810 |#1| |#2|) (-10 -7 (-15 -3801 ((-642 (-407 |#2|)) (-651 (-407 |#2|)) (-1 (-642 |#1|) |#2|))) (-15 -3801 ((-642 (-407 |#2|)) (-651 (-407 |#2|)) (-1 (-642 |#1|) |#2|) (-1 (-418 |#2|) |#2|))) (-15 -3801 ((-642 (-407 |#2|)) (-652 |#2| (-407 |#2|)) (-1 (-642 |#1|) |#2|))) (-15 -3801 ((-642 (-407 |#2|)) (-652 |#2| (-407 |#2|)) (-1 (-642 |#1|) |#2|) (-1 (-418 |#2|) |#2|))) (-15 -1861 ((-642 (-2 (|:| |frac| (-407 |#2|)) (|:| -3359 (-652 |#2| (-407 |#2|))))) (-652 |#2| (-407 |#2|)) (-1 (-418 |#2|) |#2|))) (-15 -3231 ((-642 (-2 (|:| |poly| |#2|) (|:| -3359 (-652 |#2| (-407 |#2|))))) (-652 |#2| (-407 |#2|)) (-1 (-642 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3801 ((-642 (-407 |#2|)) (-651 (-407 |#2|)))) (-15 -3801 ((-642 (-407 |#2|)) (-651 (-407 |#2|)) (-1 (-418 |#2|) |#2|))) (-15 -3801 ((-642 (-407 |#2|)) (-652 |#2| (-407 |#2|)))) (-15 -3801 ((-642 (-407 |#2|)) (-652 |#2| (-407 |#2|)) (-1 (-418 |#2|) |#2|)))) |%noBranch|)) (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564)))) (-1238 |#1|)) (T -810)) -((-3801 (*1 *2 *3 *4) (-12 (-5 *3 (-652 *6 (-407 *6))) (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1238 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564))))) (-5 *2 (-642 (-407 *6))) (-5 *1 (-810 *5 *6)))) (-3801 (*1 *2 *3) (-12 (-5 *3 (-652 *5 (-407 *5))) (-4 *5 (-1238 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564))))) (-5 *2 (-642 (-407 *5))) (-5 *1 (-810 *4 *5)))) (-3801 (*1 *2 *3 *4) (-12 (-5 *3 (-651 (-407 *6))) (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1238 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564))))) (-5 *2 (-642 (-407 *6))) (-5 *1 (-810 *5 *6)))) (-3801 (*1 *2 *3) (-12 (-5 *3 (-651 (-407 *5))) (-4 *5 (-1238 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564))))) (-5 *2 (-642 (-407 *5))) (-5 *1 (-810 *4 *5)))) (-3231 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-642 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564))))) (-4 *6 (-1238 *5)) (-5 *2 (-642 (-2 (|:| |poly| *6) (|:| -3359 (-652 *6 (-407 *6)))))) (-5 *1 (-810 *5 *6)) (-5 *3 (-652 *6 (-407 *6))))) (-1861 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1238 *5)) (-4 *5 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564))))) (-5 *2 (-642 (-2 (|:| |frac| (-407 *6)) (|:| -3359 (-652 *6 (-407 *6)))))) (-5 *1 (-810 *5 *6)) (-5 *3 (-652 *6 (-407 *6))))) (-3801 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-652 *7 (-407 *7))) (-5 *4 (-1 (-642 *6) *7)) (-5 *5 (-1 (-418 *7) *7)) (-4 *6 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564))))) (-4 *7 (-1238 *6)) (-5 *2 (-642 (-407 *7))) (-5 *1 (-810 *6 *7)))) (-3801 (*1 *2 *3 *4) (-12 (-5 *3 (-652 *6 (-407 *6))) (-5 *4 (-1 (-642 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564))))) (-4 *6 (-1238 *5)) (-5 *2 (-642 (-407 *6))) (-5 *1 (-810 *5 *6)))) (-3801 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-651 (-407 *7))) (-5 *4 (-1 (-642 *6) *7)) (-5 *5 (-1 (-418 *7) *7)) (-4 *6 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564))))) (-4 *7 (-1238 *6)) (-5 *2 (-642 (-407 *7))) (-5 *1 (-810 *6 *7)))) (-3801 (*1 *2 *3 *4) (-12 (-5 *3 (-651 (-407 *6))) (-5 *4 (-1 (-642 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564))))) (-4 *6 (-1238 *5)) (-5 *2 (-642 (-407 *6))) (-5 *1 (-810 *5 *6))))) -(-10 -7 (-15 -3801 ((-642 (-407 |#2|)) (-651 (-407 |#2|)) (-1 (-642 |#1|) |#2|))) (-15 -3801 ((-642 (-407 |#2|)) (-651 (-407 |#2|)) (-1 (-642 |#1|) |#2|) (-1 (-418 |#2|) |#2|))) (-15 -3801 ((-642 (-407 |#2|)) (-652 |#2| (-407 |#2|)) (-1 (-642 |#1|) |#2|))) (-15 -3801 ((-642 (-407 |#2|)) (-652 |#2| (-407 |#2|)) (-1 (-642 |#1|) |#2|) (-1 (-418 |#2|) |#2|))) (-15 -1861 ((-642 (-2 (|:| |frac| (-407 |#2|)) (|:| -3359 (-652 |#2| (-407 |#2|))))) (-652 |#2| (-407 |#2|)) (-1 (-418 |#2|) |#2|))) (-15 -3231 ((-642 (-2 (|:| |poly| |#2|) (|:| -3359 (-652 |#2| (-407 |#2|))))) (-652 |#2| (-407 |#2|)) (-1 (-642 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3801 ((-642 (-407 |#2|)) (-651 (-407 |#2|)))) (-15 -3801 ((-642 (-407 |#2|)) (-651 (-407 |#2|)) (-1 (-418 |#2|) |#2|))) (-15 -3801 ((-642 (-407 |#2|)) (-652 |#2| (-407 |#2|)))) (-15 -3801 ((-642 (-407 |#2|)) (-652 |#2| (-407 |#2|)) (-1 (-418 |#2|) |#2|)))) |%noBranch|)) -((-3545 (((-2 (|:| -3544 (-687 |#2|)) (|:| |vec| (-1262 |#1|))) (-687 |#2|) (-1262 |#1|)) 110) (((-2 (|:| A (-687 |#1|)) (|:| |eqs| (-642 (-2 (|:| C (-687 |#1|)) (|:| |g| (-1262 |#1|)) (|:| -3359 |#2|) (|:| |rh| |#1|))))) (-687 |#1|) (-1262 |#1|)) 15)) (-4013 (((-2 (|:| |particular| (-3 (-1262 |#1|) "failed")) (|:| -2131 (-642 (-1262 |#1|)))) (-687 |#2|) (-1262 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2131 (-642 |#1|))) |#2| |#1|)) 116)) (-1577 (((-3 (-2 (|:| |particular| (-1262 |#1|)) (|:| -2131 (-687 |#1|))) "failed") (-687 |#1|) (-1262 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2131 (-642 |#1|))) "failed") |#2| |#1|)) 52))) -(((-811 |#1| |#2|) (-10 -7 (-15 -3545 ((-2 (|:| A (-687 |#1|)) (|:| |eqs| (-642 (-2 (|:| C (-687 |#1|)) (|:| |g| (-1262 |#1|)) (|:| -3359 |#2|) (|:| |rh| |#1|))))) (-687 |#1|) (-1262 |#1|))) (-15 -3545 ((-2 (|:| -3544 (-687 |#2|)) (|:| |vec| (-1262 |#1|))) (-687 |#2|) (-1262 |#1|))) (-15 -1577 ((-3 (-2 (|:| |particular| (-1262 |#1|)) (|:| -2131 (-687 |#1|))) "failed") (-687 |#1|) (-1262 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2131 (-642 |#1|))) "failed") |#2| |#1|))) (-15 -4013 ((-2 (|:| |particular| (-3 (-1262 |#1|) "failed")) (|:| -2131 (-642 (-1262 |#1|)))) (-687 |#2|) (-1262 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2131 (-642 |#1|))) |#2| |#1|)))) (-363) (-654 |#1|)) (T -811)) -((-4013 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-687 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2131 (-642 *6))) *7 *6)) (-4 *6 (-363)) (-4 *7 (-654 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1262 *6) "failed")) (|:| -2131 (-642 (-1262 *6))))) (-5 *1 (-811 *6 *7)) (-5 *4 (-1262 *6)))) (-1577 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2131 (-642 *6))) "failed") *7 *6)) (-4 *6 (-363)) (-4 *7 (-654 *6)) (-5 *2 (-2 (|:| |particular| (-1262 *6)) (|:| -2131 (-687 *6)))) (-5 *1 (-811 *6 *7)) (-5 *3 (-687 *6)) (-5 *4 (-1262 *6)))) (-3545 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *6 (-654 *5)) (-5 *2 (-2 (|:| -3544 (-687 *6)) (|:| |vec| (-1262 *5)))) (-5 *1 (-811 *5 *6)) (-5 *3 (-687 *6)) (-5 *4 (-1262 *5)))) (-3545 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-5 *2 (-2 (|:| A (-687 *5)) (|:| |eqs| (-642 (-2 (|:| C (-687 *5)) (|:| |g| (-1262 *5)) (|:| -3359 *6) (|:| |rh| *5)))))) (-5 *1 (-811 *5 *6)) (-5 *3 (-687 *5)) (-5 *4 (-1262 *5)) (-4 *6 (-654 *5))))) -(-10 -7 (-15 -3545 ((-2 (|:| A (-687 |#1|)) (|:| |eqs| (-642 (-2 (|:| C (-687 |#1|)) (|:| |g| (-1262 |#1|)) (|:| -3359 |#2|) (|:| |rh| |#1|))))) (-687 |#1|) (-1262 |#1|))) (-15 -3545 ((-2 (|:| -3544 (-687 |#2|)) (|:| |vec| (-1262 |#1|))) (-687 |#2|) (-1262 |#1|))) (-15 -1577 ((-3 (-2 (|:| |particular| (-1262 |#1|)) (|:| -2131 (-687 |#1|))) "failed") (-687 |#1|) (-1262 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2131 (-642 |#1|))) "failed") |#2| |#1|))) (-15 -4013 ((-2 (|:| |particular| (-3 (-1262 |#1|) "failed")) (|:| -2131 (-642 (-1262 |#1|)))) (-687 |#2|) (-1262 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2131 (-642 |#1|))) |#2| |#1|)))) -((-3453 (((-687 |#1|) (-642 |#1|) (-769)) 14) (((-687 |#1|) (-642 |#1|)) 15)) (-2186 (((-3 (-1262 |#1|) "failed") |#2| |#1| (-642 |#1|)) 39)) (-3339 (((-3 |#1| "failed") |#2| |#1| (-642 |#1|) (-1 |#1| |#1|)) 46))) -(((-812 |#1| |#2|) (-10 -7 (-15 -3453 ((-687 |#1|) (-642 |#1|))) (-15 -3453 ((-687 |#1|) (-642 |#1|) (-769))) (-15 -2186 ((-3 (-1262 |#1|) "failed") |#2| |#1| (-642 |#1|))) (-15 -3339 ((-3 |#1| "failed") |#2| |#1| (-642 |#1|) (-1 |#1| |#1|)))) (-363) (-654 |#1|)) (T -812)) -((-3339 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-642 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-363)) (-5 *1 (-812 *2 *3)) (-4 *3 (-654 *2)))) (-2186 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-642 *4)) (-4 *4 (-363)) (-5 *2 (-1262 *4)) (-5 *1 (-812 *4 *3)) (-4 *3 (-654 *4)))) (-3453 (*1 *2 *3 *4) (-12 (-5 *3 (-642 *5)) (-5 *4 (-769)) (-4 *5 (-363)) (-5 *2 (-687 *5)) (-5 *1 (-812 *5 *6)) (-4 *6 (-654 *5)))) (-3453 (*1 *2 *3) (-12 (-5 *3 (-642 *4)) (-4 *4 (-363)) (-5 *2 (-687 *4)) (-5 *1 (-812 *4 *5)) (-4 *5 (-654 *4))))) -(-10 -7 (-15 -3453 ((-687 |#1|) (-642 |#1|))) (-15 -3453 ((-687 |#1|) (-642 |#1|) (-769))) (-15 -2186 ((-3 (-1262 |#1|) "failed") |#2| |#1| (-642 |#1|))) (-15 -3339 ((-3 |#1| "failed") |#2| |#1| (-642 |#1|) (-1 |#1| |#1|)))) -((-2856 (((-112) $ $) NIL (|has| |#2| (-1097)))) (-2950 (((-112) $) NIL (|has| |#2| (-131)))) (-2072 (($ (-919)) NIL (|has| |#2| (-1047)))) (-3633 (((-1267) $ (-564) (-564)) NIL (|has| $ (-6 -4411)))) (-2247 (($ $ $) NIL (|has| |#2| (-791)))) (-3085 (((-3 $ "failed") $ $) NIL (|has| |#2| (-131)))) (-3442 (((-112) $ (-769)) NIL)) (-4003 (((-769)) NIL (|has| |#2| (-368)))) (-2221 (((-564) $) NIL (|has| |#2| (-846)))) (-3841 ((|#2| $ (-564) |#2|) NIL (|has| $ (-6 -4411)))) (-2822 (($) NIL T CONST)) (-2849 (((-3 (-564) "failed") $) NIL (-12 (|has| |#2| (-1036 (-564))) (|has| |#2| (-1097)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| |#2| (-1036 (-407 (-564)))) (|has| |#2| (-1097)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1097)))) (-1687 (((-564) $) NIL (-12 (|has| |#2| (-1036 (-564))) (|has| |#2| (-1097)))) (((-407 (-564)) $) NIL (-12 (|has| |#2| (-1036 (-407 (-564)))) (|has| |#2| (-1097)))) ((|#2| $) NIL (|has| |#2| (-1097)))) (-3330 (((-687 (-564)) (-687 $)) NIL (-12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1047)))) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (-12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1047)))) (((-2 (|:| -3544 (-687 |#2|)) (|:| |vec| (-1262 |#2|))) (-687 $) (-1262 $)) NIL (|has| |#2| (-1047))) (((-687 |#2|) (-687 $)) NIL (|has| |#2| (-1047)))) (-2675 (((-3 $ "failed") $) NIL (|has| |#2| (-724)))) (-3235 (($) NIL (|has| |#2| (-368)))) (-3105 ((|#2| $ (-564) |#2|) NIL (|has| $ (-6 -4411)))) (-1804 ((|#2| $ (-564)) NIL)) (-3292 (((-112) $) NIL (|has| |#2| (-846)))) (-2018 (((-642 |#2|) $) NIL (|has| $ (-6 -4410)))) (-3163 (((-112) $) NIL (|has| |#2| (-724)))) (-2666 (((-112) $) NIL (|has| |#2| (-846)))) (-3769 (((-112) $ (-769)) NIL)) (-1802 (((-564) $) NIL (|has| (-564) (-848)))) (-3225 (($ $ $) NIL (-2682 (|has| |#2| (-791)) (|has| |#2| (-846))))) (-3541 (((-642 |#2|) $) NIL (|has| $ (-6 -4410)))) (-2533 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097))))) (-3624 (((-564) $) NIL (|has| (-564) (-848)))) (-2903 (($ $ $) NIL (-2682 (|has| |#2| (-791)) (|has| |#2| (-846))))) (-1857 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#2| |#2|) $) NIL)) (-2535 (((-919) $) NIL (|has| |#2| (-368)))) (-4145 (((-112) $ (-769)) NIL)) (-1778 (((-1155) $) NIL (|has| |#2| (-1097)))) (-4107 (((-642 (-564)) $) NIL)) (-4207 (((-112) (-564) $) NIL)) (-2065 (($ (-919)) NIL (|has| |#2| (-368)))) (-3999 (((-1117) $) NIL (|has| |#2| (-1097)))) (-4036 ((|#2| $) NIL (|has| (-564) (-848)))) (-3826 (($ $ |#2|) NIL (|has| $ (-6 -4411)))) (-4094 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-642 |#2|) (-642 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))))) (-2478 (((-112) $ $) NIL)) (-1643 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097))))) (-3522 (((-642 |#2|) $) NIL)) (-4109 (((-112) $) NIL)) (-2179 (($) NIL)) (-4369 ((|#2| $ (-564) |#2|) NIL) ((|#2| $ (-564)) NIL)) (-1976 ((|#2| $ $) NIL (|has| |#2| (-1047)))) (-2299 (($ (-1262 |#2|)) NIL)) (-3677 (((-134)) NIL (|has| |#2| (-363)))) (-2199 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1047)))) (($ $ (-769)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1047)))) (($ $ (-1173)) NIL (-12 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) (($ $ (-642 (-1173))) NIL (-12 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) (($ $ (-1173) (-769)) NIL (-12 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) (($ $ (-1 |#2| |#2|) (-769)) NIL (|has| |#2| (-1047))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1047)))) (-4010 (((-769) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410))) (((-769) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097))))) (-3865 (($ $) NIL)) (-2390 (((-1262 |#2|) $) NIL) (($ (-564)) NIL (-2682 (-12 (|has| |#2| (-1036 (-564))) (|has| |#2| (-1097))) (|has| |#2| (-1047)))) (($ (-407 (-564))) NIL (-12 (|has| |#2| (-1036 (-407 (-564)))) (|has| |#2| (-1097)))) (($ |#2|) NIL (|has| |#2| (-1097))) (((-860) $) NIL (|has| |#2| (-611 (-860))))) (-3348 (((-769)) NIL (|has| |#2| (-1047)) CONST)) (-1600 (((-112) $ $) NIL (|has| |#2| (-1097)))) (-3295 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410)))) (-1630 (($ $) NIL (|has| |#2| (-846)))) (-2361 (($) NIL (|has| |#2| (-131)) CONST)) (-2371 (($) NIL (|has| |#2| (-724)) CONST)) (-2711 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1047)))) (($ $ (-769)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1047)))) (($ $ (-1173)) NIL (-12 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) (($ $ (-642 (-1173))) NIL (-12 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) (($ $ (-1173) (-769)) NIL (-12 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) (($ $ (-1 |#2| |#2|) (-769)) NIL (|has| |#2| (-1047))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1047)))) (-2881 (((-112) $ $) NIL (-2682 (|has| |#2| (-791)) (|has| |#2| (-846))))) (-2857 (((-112) $ $) NIL (-2682 (|has| |#2| (-791)) (|has| |#2| (-846))))) (-2821 (((-112) $ $) NIL (|has| |#2| (-1097)))) (-2868 (((-112) $ $) NIL (-2682 (|has| |#2| (-791)) (|has| |#2| (-846))))) (-2844 (((-112) $ $) 11 (-2682 (|has| |#2| (-791)) (|has| |#2| (-846))))) (-2943 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-2930 (($ $ $) NIL (|has| |#2| (-1047))) (($ $) NIL (|has| |#2| (-1047)))) (-2917 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-769)) NIL (|has| |#2| (-724))) (($ $ (-919)) NIL (|has| |#2| (-724)))) (* (($ (-564) $) NIL (|has| |#2| (-1047))) (($ $ $) NIL (|has| |#2| (-724))) (($ $ |#2|) NIL (|has| |#2| (-724))) (($ |#2| $) NIL (|has| |#2| (-724))) (($ (-769) $) NIL (|has| |#2| (-131))) (($ (-919) $) NIL (|has| |#2| (-25)))) (-2158 (((-769) $) NIL (|has| $ (-6 -4410))))) -(((-813 |#1| |#2| |#3|) (-238 |#1| |#2|) (-769) (-791) (-1 (-112) (-1262 |#2|) (-1262 |#2|))) (T -813)) +((-4047 (*1 *1 *1 *1) (-4 *1 (-793)))) +(-13 (-795) (-10 -8 (-15 -4047 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-862)) . T) ((-792) . T) ((-794) . T) ((-795) . T) ((-850) . T) ((-1099) . T)) +((-2986 (((-112) $ $) 7)) (-1920 (($ $ $) 14)) (-3038 (($ $ $) 15)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-2479 (((-862) $) 12)) (-3900 (((-112) $ $) 9)) (-3019 (((-112) $ $) 17)) (-2990 (((-112) $ $) 18)) (-2952 (((-112) $ $) 6)) (-3004 (((-112) $ $) 16)) (-2977 (((-112) $ $) 19)) (-3052 (($ $ $) 21)) (* (($ (-921) $) 22))) +(((-794) (-140)) (T -794)) +NIL +(-13 (-850) (-25)) +(((-25) . T) ((-102) . T) ((-613 (-862)) . T) ((-850) . T) ((-1099) . T)) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 25)) (-3174 (((-3 $ "failed") $ $) 27)) (-1811 (($) 24 T CONST)) (-1920 (($ $ $) 14)) (-3038 (($ $ $) 15)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-2479 (((-862) $) 12)) (-3900 (((-112) $ $) 9)) (-2446 (($) 23 T CONST)) (-3019 (((-112) $ $) 17)) (-2990 (((-112) $ $) 18)) (-2952 (((-112) $ $) 6)) (-3004 (((-112) $ $) 16)) (-2977 (((-112) $ $) 19)) (-3052 (($ $ $) 21)) (* (($ (-921) $) 22) (($ (-771) $) 26))) +(((-795) (-140)) (T -795)) +NIL +(-13 (-792) (-131)) +(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-862)) . T) ((-792) . T) ((-794) . T) ((-850) . T) ((-1099) . T)) +((-2845 (((-112) $) 42)) (-2980 (((-3 (-566) "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-1709 (((-566) $) NIL) (((-409 (-566)) $) NIL) ((|#2| $) 43)) (-2515 (((-3 (-409 (-566)) "failed") $) 78)) (-2024 (((-112) $) 72)) (-3330 (((-409 (-566)) $) 76)) (-1398 ((|#2| $) 26)) (-3080 (($ (-1 |#2| |#2|) $) 23)) (-2577 (($ $) 58)) (-3136 (((-538) $) 67)) (-2664 (($ $) 21)) (-2479 (((-862) $) 53) (($ (-566)) 40) (($ |#2|) 38) (($ (-409 (-566))) NIL)) (-1558 (((-771)) 10)) (-4298 ((|#2| $) 71)) (-2952 (((-112) $ $) 30)) (-2977 (((-112) $ $) 69)) (-3065 (($ $) 32) (($ $ $) NIL)) (-3052 (($ $ $) 31)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 36) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 33))) +(((-796 |#1| |#2|) (-10 -8 (-15 -2977 ((-112) |#1| |#1|)) (-15 -3136 ((-538) |#1|)) (-15 -2577 (|#1| |#1|)) (-15 -2515 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -3330 ((-409 (-566)) |#1|)) (-15 -2024 ((-112) |#1|)) (-15 -4298 (|#2| |#1|)) (-15 -1398 (|#2| |#1|)) (-15 -2664 (|#1| |#1|)) (-15 -3080 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2980 ((-3 |#2| "failed") |#1|)) (-15 -1709 (|#2| |#1|)) (-15 -1709 ((-409 (-566)) |#1|)) (-15 -2980 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -2479 (|#1| (-409 (-566)))) (-15 -1709 ((-566) |#1|)) (-15 -2980 ((-3 (-566) "failed") |#1|)) (-15 -2479 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1558 ((-771))) (-15 -2479 (|#1| (-566))) (-15 * (|#1| |#1| |#1|)) (-15 -3065 (|#1| |#1| |#1|)) (-15 -3065 (|#1| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 -2845 ((-112) |#1|)) (-15 * (|#1| (-921) |#1|)) (-15 -3052 (|#1| |#1| |#1|)) (-15 -2479 ((-862) |#1|)) (-15 -2952 ((-112) |#1| |#1|))) (-797 |#2|) (-172)) (T -796)) +((-1558 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-771)) (-5 *1 (-796 *3 *4)) (-4 *3 (-797 *4))))) +(-10 -8 (-15 -2977 ((-112) |#1| |#1|)) (-15 -3136 ((-538) |#1|)) (-15 -2577 (|#1| |#1|)) (-15 -2515 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -3330 ((-409 (-566)) |#1|)) (-15 -2024 ((-112) |#1|)) (-15 -4298 (|#2| |#1|)) (-15 -1398 (|#2| |#1|)) (-15 -2664 (|#1| |#1|)) (-15 -3080 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2980 ((-3 |#2| "failed") |#1|)) (-15 -1709 (|#2| |#1|)) (-15 -1709 ((-409 (-566)) |#1|)) (-15 -2980 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -2479 (|#1| (-409 (-566)))) (-15 -1709 ((-566) |#1|)) (-15 -2980 ((-3 (-566) "failed") |#1|)) (-15 -2479 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1558 ((-771))) (-15 -2479 (|#1| (-566))) (-15 * (|#1| |#1| |#1|)) (-15 -3065 (|#1| |#1| |#1|)) (-15 -3065 (|#1| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 -2845 ((-112) |#1|)) (-15 * (|#1| (-921) |#1|)) (-15 -3052 (|#1| |#1| |#1|)) (-15 -2479 ((-862) |#1|)) (-15 -2952 ((-112) |#1| |#1|))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-3174 (((-3 $ "failed") $ $) 20)) (-4049 (((-771)) 58 (|has| |#1| (-370)))) (-1811 (($) 18 T CONST)) (-2980 (((-3 (-566) "failed") $) 100 (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) 97 (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) 94)) (-1709 (((-566) $) 99 (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) 96 (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) 95)) (-3757 (((-3 $ "failed") $) 37)) (-2352 ((|#1| $) 84)) (-2515 (((-3 (-409 (-566)) "failed") $) 71 (|has| |#1| (-547)))) (-2024 (((-112) $) 73 (|has| |#1| (-547)))) (-3330 (((-409 (-566)) $) 72 (|has| |#1| (-547)))) (-1415 (($) 61 (|has| |#1| (-370)))) (-2264 (((-112) $) 35)) (-2968 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 75)) (-1398 ((|#1| $) 76)) (-1920 (($ $ $) 67 (|has| |#1| (-850)))) (-3038 (($ $ $) 66 (|has| |#1| (-850)))) (-3080 (($ (-1 |#1| |#1|) $) 86)) (-4051 (((-921) $) 60 (|has| |#1| (-370)))) (-3151 (((-1157) $) 10)) (-2577 (($ $) 70 (|has| |#1| (-365)))) (-2104 (($ (-921)) 59 (|has| |#1| (-370)))) (-3987 ((|#1| $) 81)) (-2016 ((|#1| $) 82)) (-3807 ((|#1| $) 83)) (-2730 ((|#1| $) 77)) (-2513 ((|#1| $) 78)) (-2226 ((|#1| $) 79)) (-2228 ((|#1| $) 80)) (-4059 (((-1119) $) 11)) (-3297 (($ $ (-644 |#1|) (-644 |#1|)) 92 (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) 91 (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) 90 (|has| |#1| (-310 |#1|))) (($ $ (-644 (-295 |#1|))) 89 (|has| |#1| (-310 |#1|))) (($ $ (-644 (-1175)) (-644 |#1|)) 88 (|has| |#1| (-516 (-1175) |#1|))) (($ $ (-1175) |#1|) 87 (|has| |#1| (-516 (-1175) |#1|)))) (-4376 (($ $ |#1|) 93 (|has| |#1| (-287 |#1| |#1|)))) (-3136 (((-538) $) 68 (|has| |#1| (-614 (-538))))) (-2664 (($ $) 85)) (-2479 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 44) (($ (-409 (-566))) 98 (|has| |#1| (-1038 (-409 (-566)))))) (-2645 (((-3 $ "failed") $) 69 (|has| |#1| (-145)))) (-1558 (((-771)) 32 T CONST)) (-3900 (((-112) $ $) 9)) (-4298 ((|#1| $) 74 (|has| |#1| (-1059)))) (-2446 (($) 19 T CONST)) (-2459 (($) 34 T CONST)) (-3019 (((-112) $ $) 64 (|has| |#1| (-850)))) (-2990 (((-112) $ $) 63 (|has| |#1| (-850)))) (-2952 (((-112) $ $) 6)) (-3004 (((-112) $ $) 65 (|has| |#1| (-850)))) (-2977 (((-112) $ $) 62 (|has| |#1| (-850)))) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) +(((-797 |#1|) (-140) (-172)) (T -797)) +((-2664 (*1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))) (-2352 (*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))) (-3807 (*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))) (-2016 (*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))) (-3987 (*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))) (-2228 (*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))) (-2226 (*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))) (-2513 (*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))) (-2730 (*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))) (-1398 (*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))) (-2968 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))) (-4298 (*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)) (-4 *2 (-1059)))) (-2024 (*1 *2 *1) (-12 (-4 *1 (-797 *3)) (-4 *3 (-172)) (-4 *3 (-547)) (-5 *2 (-112)))) (-3330 (*1 *2 *1) (-12 (-4 *1 (-797 *3)) (-4 *3 (-172)) (-4 *3 (-547)) (-5 *2 (-409 (-566))))) (-2515 (*1 *2 *1) (|partial| -12 (-4 *1 (-797 *3)) (-4 *3 (-172)) (-4 *3 (-547)) (-5 *2 (-409 (-566))))) (-2577 (*1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)) (-4 *2 (-365))))) +(-13 (-38 |t#1|) (-413 |t#1|) (-340 |t#1|) (-10 -8 (-15 -2664 ($ $)) (-15 -2352 (|t#1| $)) (-15 -3807 (|t#1| $)) (-15 -2016 (|t#1| $)) (-15 -3987 (|t#1| $)) (-15 -2228 (|t#1| $)) (-15 -2226 (|t#1| $)) (-15 -2513 (|t#1| $)) (-15 -2730 (|t#1| $)) (-15 -1398 (|t#1| $)) (-15 -2968 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-370)) (-6 (-370)) |%noBranch|) (IF (|has| |t#1| (-850)) (-6 (-850)) |%noBranch|) (IF (|has| |t#1| (-614 (-538))) (-6 (-614 (-538))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1059)) (-15 -4298 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-547)) (PROGN (-15 -2024 ((-112) $)) (-15 -3330 ((-409 (-566)) $)) (-15 -2515 ((-3 (-409 (-566)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-365)) (-15 -2577 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #0=(-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) ((-616 (-566)) . T) ((-616 |#1|) . T) ((-613 (-862)) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-287 |#1| $) |has| |#1| (-287 |#1| |#1|)) ((-310 |#1|) |has| |#1| (-310 |#1|)) ((-370) |has| |#1| (-370)) ((-340 |#1|) . T) ((-413 |#1|) . T) ((-516 (-1175) |#1|) |has| |#1| (-516 (-1175) |#1|)) ((-516 |#1| |#1|) |has| |#1| (-310 |#1|)) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-640 |#1|) . T) ((-717 |#1|) . T) ((-726) . T) ((-850) |has| |#1| (-850)) ((-1038 #0#) |has| |#1| (-1038 (-409 (-566)))) ((-1038 (-566)) |has| |#1| (-1038 (-566))) ((-1038 |#1|) . T) ((-1051 |#1|) . T) ((-1056 |#1|) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) +((-3080 ((|#3| (-1 |#4| |#2|) |#1|) 20))) +(((-798 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3080 (|#3| (-1 |#4| |#2|) |#1|))) (-797 |#2|) (-172) (-797 |#4|) (-172)) (T -798)) +((-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-797 *6)) (-5 *1 (-798 *4 *5 *2 *6)) (-4 *4 (-797 *5))))) +(-10 -7 (-15 -3080 (|#3| (-1 |#4| |#2|) |#1|))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-4049 (((-771)) NIL (|has| |#1| (-370)))) (-1811 (($) NIL T CONST)) (-2980 (((-3 |#1| "failed") $) NIL) (((-3 (-999 |#1|) "failed") $) 35) (((-3 (-566) "failed") $) NIL (-2809 (|has| (-999 |#1|) (-1038 (-566))) (|has| |#1| (-1038 (-566))))) (((-3 (-409 (-566)) "failed") $) NIL (-2809 (|has| (-999 |#1|) (-1038 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566))))))) (-1709 ((|#1| $) NIL) (((-999 |#1|) $) 33) (((-566) $) NIL (-2809 (|has| (-999 |#1|) (-1038 (-566))) (|has| |#1| (-1038 (-566))))) (((-409 (-566)) $) NIL (-2809 (|has| (-999 |#1|) (-1038 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566))))))) (-3757 (((-3 $ "failed") $) NIL)) (-2352 ((|#1| $) 16)) (-2515 (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-547)))) (-2024 (((-112) $) NIL (|has| |#1| (-547)))) (-3330 (((-409 (-566)) $) NIL (|has| |#1| (-547)))) (-1415 (($) NIL (|has| |#1| (-370)))) (-2264 (((-112) $) NIL)) (-2968 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-999 |#1|) (-999 |#1|)) 29)) (-1398 ((|#1| $) NIL)) (-1920 (($ $ $) NIL (|has| |#1| (-850)))) (-3038 (($ $ $) NIL (|has| |#1| (-850)))) (-3080 (($ (-1 |#1| |#1|) $) NIL)) (-4051 (((-921) $) NIL (|has| |#1| (-370)))) (-3151 (((-1157) $) NIL)) (-2577 (($ $) NIL (|has| |#1| (-365)))) (-2104 (($ (-921)) NIL (|has| |#1| (-370)))) (-3987 ((|#1| $) 22)) (-2016 ((|#1| $) 20)) (-3807 ((|#1| $) 18)) (-2730 ((|#1| $) 26)) (-2513 ((|#1| $) 25)) (-2226 ((|#1| $) 24)) (-2228 ((|#1| $) 23)) (-4059 (((-1119) $) NIL)) (-3297 (($ $ (-644 |#1|) (-644 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ (-644 (-295 |#1|))) NIL (|has| |#1| (-310 |#1|))) (($ $ (-644 (-1175)) (-644 |#1|)) NIL (|has| |#1| (-516 (-1175) |#1|))) (($ $ (-1175) |#1|) NIL (|has| |#1| (-516 (-1175) |#1|)))) (-4376 (($ $ |#1|) NIL (|has| |#1| (-287 |#1| |#1|)))) (-3136 (((-538) $) NIL (|has| |#1| (-614 (-538))))) (-2664 (($ $) NIL)) (-2479 (((-862) $) NIL) (($ (-566)) NIL) (($ |#1|) NIL) (($ (-999 |#1|)) 30) (($ (-409 (-566))) NIL (-2809 (|has| (-999 |#1|) (-1038 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566))))))) (-2645 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1558 (((-771)) NIL T CONST)) (-3900 (((-112) $ $) NIL)) (-4298 ((|#1| $) NIL (|has| |#1| (-1059)))) (-2446 (($) 8 T CONST)) (-2459 (($) 12 T CONST)) (-3019 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2990 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2952 (((-112) $ $) NIL)) (-3004 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-850)))) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-799 |#1|) (-13 (-797 |#1|) (-413 (-999 |#1|)) (-10 -8 (-15 -2968 ($ (-999 |#1|) (-999 |#1|))))) (-172)) (T -799)) +((-2968 (*1 *1 *2 *2) (-12 (-5 *2 (-999 *3)) (-4 *3 (-172)) (-5 *1 (-799 *3))))) +(-13 (-797 |#1|) (-413 (-999 |#1|)) (-10 -8 (-15 -2968 ($ (-999 |#1|) (-999 |#1|))))) +((-2986 (((-112) $ $) 7)) (-4177 (((-2 (|:| -4177 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 15)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-2479 (((-862) $) 12)) (-3900 (((-112) $ $) 9)) (-2544 (((-1035) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 14)) (-2952 (((-112) $ $) 6))) +(((-800) (-140)) (T -800)) +((-4177 (*1 *2 *3 *4) (-12 (-4 *1 (-800)) (-5 *3 (-1062)) (-5 *4 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -4177 (-381)) (|:| |explanations| (-1157)))))) (-2544 (*1 *2 *3) (-12 (-4 *1 (-800)) (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-1035))))) +(-13 (-1099) (-10 -7 (-15 -4177 ((-2 (|:| -4177 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2544 ((-1035) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) +(((-102) . T) ((-613 (-862)) . T) ((-1099) . T)) +((-4247 (((-2 (|:| |particular| |#2|) (|:| -1419 (-644 |#2|))) |#3| |#2| (-1175)) 19))) +(((-801 |#1| |#2| |#3|) (-10 -7 (-15 -4247 ((-2 (|:| |particular| |#2|) (|:| -1419 (-644 |#2|))) |#3| |#2| (-1175)))) (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147)) (-13 (-29 |#1|) (-1199) (-959)) (-656 |#2|)) (T -801)) +((-4247 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1175)) (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-4 *4 (-13 (-29 *6) (-1199) (-959))) (-5 *2 (-2 (|:| |particular| *4) (|:| -1419 (-644 *4)))) (-5 *1 (-801 *6 *4 *3)) (-4 *3 (-656 *4))))) +(-10 -7 (-15 -4247 ((-2 (|:| |particular| |#2|) (|:| -1419 (-644 |#2|))) |#3| |#2| (-1175)))) +((-1916 (((-3 |#2| "failed") |#2| (-114) (-295 |#2|) (-644 |#2|)) 28) (((-3 |#2| "failed") (-295 |#2|) (-114) (-295 |#2|) (-644 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -1419 (-644 |#2|))) |#2| "failed") |#2| (-114) (-1175)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -1419 (-644 |#2|))) |#2| "failed") (-295 |#2|) (-114) (-1175)) 18) (((-3 (-2 (|:| |particular| (-1264 |#2|)) (|:| -1419 (-644 (-1264 |#2|)))) "failed") (-644 |#2|) (-644 (-114)) (-1175)) 24) (((-3 (-2 (|:| |particular| (-1264 |#2|)) (|:| -1419 (-644 (-1264 |#2|)))) "failed") (-644 (-295 |#2|)) (-644 (-114)) (-1175)) 26) (((-3 (-644 (-1264 |#2|)) "failed") (-689 |#2|) (-1175)) 37) (((-3 (-2 (|:| |particular| (-1264 |#2|)) (|:| -1419 (-644 (-1264 |#2|)))) "failed") (-689 |#2|) (-1264 |#2|) (-1175)) 35))) +(((-802 |#1| |#2|) (-10 -7 (-15 -1916 ((-3 (-2 (|:| |particular| (-1264 |#2|)) (|:| -1419 (-644 (-1264 |#2|)))) "failed") (-689 |#2|) (-1264 |#2|) (-1175))) (-15 -1916 ((-3 (-644 (-1264 |#2|)) "failed") (-689 |#2|) (-1175))) (-15 -1916 ((-3 (-2 (|:| |particular| (-1264 |#2|)) (|:| -1419 (-644 (-1264 |#2|)))) "failed") (-644 (-295 |#2|)) (-644 (-114)) (-1175))) (-15 -1916 ((-3 (-2 (|:| |particular| (-1264 |#2|)) (|:| -1419 (-644 (-1264 |#2|)))) "failed") (-644 |#2|) (-644 (-114)) (-1175))) (-15 -1916 ((-3 (-2 (|:| |particular| |#2|) (|:| -1419 (-644 |#2|))) |#2| "failed") (-295 |#2|) (-114) (-1175))) (-15 -1916 ((-3 (-2 (|:| |particular| |#2|) (|:| -1419 (-644 |#2|))) |#2| "failed") |#2| (-114) (-1175))) (-15 -1916 ((-3 |#2| "failed") (-295 |#2|) (-114) (-295 |#2|) (-644 |#2|))) (-15 -1916 ((-3 |#2| "failed") |#2| (-114) (-295 |#2|) (-644 |#2|)))) (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147)) (-13 (-29 |#1|) (-1199) (-959))) (T -802)) +((-1916 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-295 *2)) (-5 *5 (-644 *2)) (-4 *2 (-13 (-29 *6) (-1199) (-959))) (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *1 (-802 *6 *2)))) (-1916 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-295 *2)) (-5 *4 (-114)) (-5 *5 (-644 *2)) (-4 *2 (-13 (-29 *6) (-1199) (-959))) (-5 *1 (-802 *6 *2)) (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))))) (-1916 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-114)) (-5 *5 (-1175)) (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -1419 (-644 *3))) *3 "failed")) (-5 *1 (-802 *6 *3)) (-4 *3 (-13 (-29 *6) (-1199) (-959))))) (-1916 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-295 *7)) (-5 *4 (-114)) (-5 *5 (-1175)) (-4 *7 (-13 (-29 *6) (-1199) (-959))) (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -1419 (-644 *7))) *7 "failed")) (-5 *1 (-802 *6 *7)))) (-1916 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-644 *7)) (-5 *4 (-644 (-114))) (-5 *5 (-1175)) (-4 *7 (-13 (-29 *6) (-1199) (-959))) (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *2 (-2 (|:| |particular| (-1264 *7)) (|:| -1419 (-644 (-1264 *7))))) (-5 *1 (-802 *6 *7)))) (-1916 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-644 (-295 *7))) (-5 *4 (-644 (-114))) (-5 *5 (-1175)) (-4 *7 (-13 (-29 *6) (-1199) (-959))) (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *2 (-2 (|:| |particular| (-1264 *7)) (|:| -1419 (-644 (-1264 *7))))) (-5 *1 (-802 *6 *7)))) (-1916 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-689 *6)) (-5 *4 (-1175)) (-4 *6 (-13 (-29 *5) (-1199) (-959))) (-4 *5 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *2 (-644 (-1264 *6))) (-5 *1 (-802 *5 *6)))) (-1916 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-689 *7)) (-5 *5 (-1175)) (-4 *7 (-13 (-29 *6) (-1199) (-959))) (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *2 (-2 (|:| |particular| (-1264 *7)) (|:| -1419 (-644 (-1264 *7))))) (-5 *1 (-802 *6 *7)) (-5 *4 (-1264 *7))))) +(-10 -7 (-15 -1916 ((-3 (-2 (|:| |particular| (-1264 |#2|)) (|:| -1419 (-644 (-1264 |#2|)))) "failed") (-689 |#2|) (-1264 |#2|) (-1175))) (-15 -1916 ((-3 (-644 (-1264 |#2|)) "failed") (-689 |#2|) (-1175))) (-15 -1916 ((-3 (-2 (|:| |particular| (-1264 |#2|)) (|:| -1419 (-644 (-1264 |#2|)))) "failed") (-644 (-295 |#2|)) (-644 (-114)) (-1175))) (-15 -1916 ((-3 (-2 (|:| |particular| (-1264 |#2|)) (|:| -1419 (-644 (-1264 |#2|)))) "failed") (-644 |#2|) (-644 (-114)) (-1175))) (-15 -1916 ((-3 (-2 (|:| |particular| |#2|) (|:| -1419 (-644 |#2|))) |#2| "failed") (-295 |#2|) (-114) (-1175))) (-15 -1916 ((-3 (-2 (|:| |particular| |#2|) (|:| -1419 (-644 |#2|))) |#2| "failed") |#2| (-114) (-1175))) (-15 -1916 ((-3 |#2| "failed") (-295 |#2|) (-114) (-295 |#2|) (-644 |#2|))) (-15 -1916 ((-3 |#2| "failed") |#2| (-114) (-295 |#2|) (-644 |#2|)))) +((-3022 (($) 9)) (-2473 (((-3 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 31)) (-1467 (((-644 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $) 28)) (-4354 (($ (-2 (|:| -1928 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2806 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))))) 25)) (-1826 (($ (-644 (-2 (|:| -1928 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2806 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))))) 23)) (-2326 (((-1269)) 12))) +(((-803) (-10 -8 (-15 -3022 ($)) (-15 -2326 ((-1269))) (-15 -1467 ((-644 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -1826 ($ (-644 (-2 (|:| -1928 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2806 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))))))) (-15 -4354 ($ (-2 (|:| -1928 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2806 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))))) (-15 -2473 ((-3 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -803)) +((-2473 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))) (-5 *1 (-803)))) (-4354 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -1928 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2806 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))))) (-5 *1 (-803)))) (-1826 (*1 *1 *2) (-12 (-5 *2 (-644 (-2 (|:| -1928 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2806 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))))) (-5 *1 (-803)))) (-1467 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-5 *1 (-803)))) (-2326 (*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-803)))) (-3022 (*1 *1) (-5 *1 (-803)))) +(-10 -8 (-15 -3022 ($)) (-15 -2326 ((-1269))) (-15 -1467 ((-644 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -1826 ($ (-644 (-2 (|:| -1928 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2806 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))))))) (-15 -4354 ($ (-2 (|:| -1928 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2806 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))))) (-15 -2473 ((-3 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) +((-1989 ((|#2| |#2| (-1175)) 17)) (-2625 ((|#2| |#2| (-1175)) 56)) (-2215 (((-1 |#2| |#2|) (-1175)) 11))) +(((-804 |#1| |#2|) (-10 -7 (-15 -1989 (|#2| |#2| (-1175))) (-15 -2625 (|#2| |#2| (-1175))) (-15 -2215 ((-1 |#2| |#2|) (-1175)))) (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147)) (-13 (-29 |#1|) (-1199) (-959))) (T -804)) +((-2215 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *2 (-1 *5 *5)) (-5 *1 (-804 *4 *5)) (-4 *5 (-13 (-29 *4) (-1199) (-959))))) (-2625 (*1 *2 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *1 (-804 *4 *2)) (-4 *2 (-13 (-29 *4) (-1199) (-959))))) (-1989 (*1 *2 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *1 (-804 *4 *2)) (-4 *2 (-13 (-29 *4) (-1199) (-959)))))) +(-10 -7 (-15 -1989 (|#2| |#2| (-1175))) (-15 -2625 (|#2| |#2| (-1175))) (-15 -2215 ((-1 |#2| |#2|) (-1175)))) +((-1916 (((-1035) (-1264 (-317 (-381))) (-381) (-381) (-644 (-381)) (-317 (-381)) (-644 (-381)) (-381) (-381)) 131) (((-1035) (-1264 (-317 (-381))) (-381) (-381) (-644 (-381)) (-317 (-381)) (-644 (-381)) (-381)) 132) (((-1035) (-1264 (-317 (-381))) (-381) (-381) (-644 (-381)) (-644 (-381)) (-381)) 134) (((-1035) (-1264 (-317 (-381))) (-381) (-381) (-644 (-381)) (-317 (-381)) (-381)) 136) (((-1035) (-1264 (-317 (-381))) (-381) (-381) (-644 (-381)) (-381)) 137) (((-1035) (-1264 (-317 (-381))) (-381) (-381) (-644 (-381))) 139) (((-1035) (-808) (-1062)) 123) (((-1035) (-808)) 124)) (-4177 (((-2 (|:| -4177 (-381)) (|:| -2598 (-1157)) (|:| |explanations| (-644 (-1157)))) (-808) (-1062)) 83) (((-2 (|:| -4177 (-381)) (|:| -2598 (-1157)) (|:| |explanations| (-644 (-1157)))) (-808)) 85))) +(((-805) (-10 -7 (-15 -1916 ((-1035) (-808))) (-15 -1916 ((-1035) (-808) (-1062))) (-15 -1916 ((-1035) (-1264 (-317 (-381))) (-381) (-381) (-644 (-381)))) (-15 -1916 ((-1035) (-1264 (-317 (-381))) (-381) (-381) (-644 (-381)) (-381))) (-15 -1916 ((-1035) (-1264 (-317 (-381))) (-381) (-381) (-644 (-381)) (-317 (-381)) (-381))) (-15 -1916 ((-1035) (-1264 (-317 (-381))) (-381) (-381) (-644 (-381)) (-644 (-381)) (-381))) (-15 -1916 ((-1035) (-1264 (-317 (-381))) (-381) (-381) (-644 (-381)) (-317 (-381)) (-644 (-381)) (-381))) (-15 -1916 ((-1035) (-1264 (-317 (-381))) (-381) (-381) (-644 (-381)) (-317 (-381)) (-644 (-381)) (-381) (-381))) (-15 -4177 ((-2 (|:| -4177 (-381)) (|:| -2598 (-1157)) (|:| |explanations| (-644 (-1157)))) (-808))) (-15 -4177 ((-2 (|:| -4177 (-381)) (|:| -2598 (-1157)) (|:| |explanations| (-644 (-1157)))) (-808) (-1062))))) (T -805)) +((-4177 (*1 *2 *3 *4) (-12 (-5 *3 (-808)) (-5 *4 (-1062)) (-5 *2 (-2 (|:| -4177 (-381)) (|:| -2598 (-1157)) (|:| |explanations| (-644 (-1157))))) (-5 *1 (-805)))) (-4177 (*1 *2 *3) (-12 (-5 *3 (-808)) (-5 *2 (-2 (|:| -4177 (-381)) (|:| -2598 (-1157)) (|:| |explanations| (-644 (-1157))))) (-5 *1 (-805)))) (-1916 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1264 (-317 *4))) (-5 *5 (-644 (-381))) (-5 *6 (-317 (-381))) (-5 *4 (-381)) (-5 *2 (-1035)) (-5 *1 (-805)))) (-1916 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1264 (-317 *4))) (-5 *5 (-644 (-381))) (-5 *6 (-317 (-381))) (-5 *4 (-381)) (-5 *2 (-1035)) (-5 *1 (-805)))) (-1916 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1264 (-317 (-381)))) (-5 *4 (-381)) (-5 *5 (-644 *4)) (-5 *2 (-1035)) (-5 *1 (-805)))) (-1916 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1264 (-317 *4))) (-5 *5 (-644 (-381))) (-5 *6 (-317 (-381))) (-5 *4 (-381)) (-5 *2 (-1035)) (-5 *1 (-805)))) (-1916 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1264 (-317 (-381)))) (-5 *4 (-381)) (-5 *5 (-644 *4)) (-5 *2 (-1035)) (-5 *1 (-805)))) (-1916 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1264 (-317 (-381)))) (-5 *4 (-381)) (-5 *5 (-644 *4)) (-5 *2 (-1035)) (-5 *1 (-805)))) (-1916 (*1 *2 *3 *4) (-12 (-5 *3 (-808)) (-5 *4 (-1062)) (-5 *2 (-1035)) (-5 *1 (-805)))) (-1916 (*1 *2 *3) (-12 (-5 *3 (-808)) (-5 *2 (-1035)) (-5 *1 (-805))))) +(-10 -7 (-15 -1916 ((-1035) (-808))) (-15 -1916 ((-1035) (-808) (-1062))) (-15 -1916 ((-1035) (-1264 (-317 (-381))) (-381) (-381) (-644 (-381)))) (-15 -1916 ((-1035) (-1264 (-317 (-381))) (-381) (-381) (-644 (-381)) (-381))) (-15 -1916 ((-1035) (-1264 (-317 (-381))) (-381) (-381) (-644 (-381)) (-317 (-381)) (-381))) (-15 -1916 ((-1035) (-1264 (-317 (-381))) (-381) (-381) (-644 (-381)) (-644 (-381)) (-381))) (-15 -1916 ((-1035) (-1264 (-317 (-381))) (-381) (-381) (-644 (-381)) (-317 (-381)) (-644 (-381)) (-381))) (-15 -1916 ((-1035) (-1264 (-317 (-381))) (-381) (-381) (-644 (-381)) (-317 (-381)) (-644 (-381)) (-381) (-381))) (-15 -4177 ((-2 (|:| -4177 (-381)) (|:| -2598 (-1157)) (|:| |explanations| (-644 (-1157)))) (-808))) (-15 -4177 ((-2 (|:| -4177 (-381)) (|:| -2598 (-1157)) (|:| |explanations| (-644 (-1157)))) (-808) (-1062)))) +((-1544 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1419 (-644 |#4|))) (-653 |#4|) |#4|) 35))) +(((-806 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1544 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1419 (-644 |#4|))) (-653 |#4|) |#4|))) (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566)))) (-1240 |#1|) (-1240 (-409 |#2|)) (-344 |#1| |#2| |#3|)) (T -806)) +((-1544 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *4)) (-4 *4 (-344 *5 *6 *7)) (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-4 *6 (-1240 *5)) (-4 *7 (-1240 (-409 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1419 (-644 *4)))) (-5 *1 (-806 *5 *6 *7 *4))))) +(-10 -7 (-15 -1544 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1419 (-644 |#4|))) (-653 |#4|) |#4|))) +((-1402 (((-2 (|:| -3477 |#3|) (|:| |rh| (-644 (-409 |#2|)))) |#4| (-644 (-409 |#2|))) 53)) (-2618 (((-644 (-2 (|:| -2316 |#2|) (|:| -2008 |#2|))) |#4| |#2|) 62) (((-644 (-2 (|:| -2316 |#2|) (|:| -2008 |#2|))) |#4|) 61) (((-644 (-2 (|:| -2316 |#2|) (|:| -2008 |#2|))) |#3| |#2|) 20) (((-644 (-2 (|:| -2316 |#2|) (|:| -2008 |#2|))) |#3|) 21)) (-2112 ((|#2| |#4| |#1|) 63) ((|#2| |#3| |#1|) 28)) (-3160 ((|#2| |#3| (-644 (-409 |#2|))) 113) (((-3 |#2| "failed") |#3| (-409 |#2|)) 109))) +(((-807 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3160 ((-3 |#2| "failed") |#3| (-409 |#2|))) (-15 -3160 (|#2| |#3| (-644 (-409 |#2|)))) (-15 -2618 ((-644 (-2 (|:| -2316 |#2|) (|:| -2008 |#2|))) |#3|)) (-15 -2618 ((-644 (-2 (|:| -2316 |#2|) (|:| -2008 |#2|))) |#3| |#2|)) (-15 -2112 (|#2| |#3| |#1|)) (-15 -2618 ((-644 (-2 (|:| -2316 |#2|) (|:| -2008 |#2|))) |#4|)) (-15 -2618 ((-644 (-2 (|:| -2316 |#2|) (|:| -2008 |#2|))) |#4| |#2|)) (-15 -2112 (|#2| |#4| |#1|)) (-15 -1402 ((-2 (|:| -3477 |#3|) (|:| |rh| (-644 (-409 |#2|)))) |#4| (-644 (-409 |#2|))))) (-13 (-365) (-147) (-1038 (-409 (-566)))) (-1240 |#1|) (-656 |#2|) (-656 (-409 |#2|))) (T -807)) +((-1402 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *6 (-1240 *5)) (-5 *2 (-2 (|:| -3477 *7) (|:| |rh| (-644 (-409 *6))))) (-5 *1 (-807 *5 *6 *7 *3)) (-5 *4 (-644 (-409 *6))) (-4 *7 (-656 *6)) (-4 *3 (-656 (-409 *6))))) (-2112 (*1 *2 *3 *4) (-12 (-4 *2 (-1240 *4)) (-5 *1 (-807 *4 *2 *5 *3)) (-4 *4 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *5 (-656 *2)) (-4 *3 (-656 (-409 *2))))) (-2618 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *4 (-1240 *5)) (-5 *2 (-644 (-2 (|:| -2316 *4) (|:| -2008 *4)))) (-5 *1 (-807 *5 *4 *6 *3)) (-4 *6 (-656 *4)) (-4 *3 (-656 (-409 *4))))) (-2618 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *5 (-1240 *4)) (-5 *2 (-644 (-2 (|:| -2316 *5) (|:| -2008 *5)))) (-5 *1 (-807 *4 *5 *6 *3)) (-4 *6 (-656 *5)) (-4 *3 (-656 (-409 *5))))) (-2112 (*1 *2 *3 *4) (-12 (-4 *2 (-1240 *4)) (-5 *1 (-807 *4 *2 *3 *5)) (-4 *4 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *3 (-656 *2)) (-4 *5 (-656 (-409 *2))))) (-2618 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *4 (-1240 *5)) (-5 *2 (-644 (-2 (|:| -2316 *4) (|:| -2008 *4)))) (-5 *1 (-807 *5 *4 *3 *6)) (-4 *3 (-656 *4)) (-4 *6 (-656 (-409 *4))))) (-2618 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *5 (-1240 *4)) (-5 *2 (-644 (-2 (|:| -2316 *5) (|:| -2008 *5)))) (-5 *1 (-807 *4 *5 *3 *6)) (-4 *3 (-656 *5)) (-4 *6 (-656 (-409 *5))))) (-3160 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-409 *2))) (-4 *2 (-1240 *5)) (-5 *1 (-807 *5 *2 *3 *6)) (-4 *5 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *3 (-656 *2)) (-4 *6 (-656 (-409 *2))))) (-3160 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-409 *2)) (-4 *2 (-1240 *5)) (-5 *1 (-807 *5 *2 *3 *6)) (-4 *5 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *3 (-656 *2)) (-4 *6 (-656 *4))))) +(-10 -7 (-15 -3160 ((-3 |#2| "failed") |#3| (-409 |#2|))) (-15 -3160 (|#2| |#3| (-644 (-409 |#2|)))) (-15 -2618 ((-644 (-2 (|:| -2316 |#2|) (|:| -2008 |#2|))) |#3|)) (-15 -2618 ((-644 (-2 (|:| -2316 |#2|) (|:| -2008 |#2|))) |#3| |#2|)) (-15 -2112 (|#2| |#3| |#1|)) (-15 -2618 ((-644 (-2 (|:| -2316 |#2|) (|:| -2008 |#2|))) |#4|)) (-15 -2618 ((-644 (-2 (|:| -2316 |#2|) (|:| -2008 |#2|))) |#4| |#2|)) (-15 -2112 (|#2| |#4| |#1|)) (-15 -1402 ((-2 (|:| -3477 |#3|) (|:| |rh| (-644 (-409 |#2|)))) |#4| (-644 (-409 |#2|))))) +((-2986 (((-112) $ $) NIL)) (-1709 (((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $) 13)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) 15) (($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 12)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-808) (-13 (-1099) (-10 -8 (-15 -2479 ($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1709 ((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $))))) (T -808)) +((-2479 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-808)))) (-1709 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-808))))) +(-13 (-1099) (-10 -8 (-15 -2479 ($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1709 ((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $)))) +((-2177 (((-644 (-2 (|:| |frac| (-409 |#2|)) (|:| -3477 |#3|))) |#3| (-1 (-644 |#2|) |#2| (-1171 |#2|)) (-1 (-420 |#2|) |#2|)) 157)) (-2879 (((-644 (-2 (|:| |poly| |#2|) (|:| -3477 |#3|))) |#3| (-1 (-644 |#1|) |#2|)) 56)) (-2507 (((-644 (-2 (|:| |deg| (-771)) (|:| -3477 |#2|))) |#3|) 127)) (-3032 ((|#2| |#3|) 45)) (-2715 (((-644 (-2 (|:| -1573 |#1|) (|:| -3477 |#3|))) |#3| (-1 (-644 |#1|) |#2|)) 105)) (-4289 ((|#3| |#3| (-409 |#2|)) 76) ((|#3| |#3| |#2|) 102))) +(((-809 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3032 (|#2| |#3|)) (-15 -2507 ((-644 (-2 (|:| |deg| (-771)) (|:| -3477 |#2|))) |#3|)) (-15 -2715 ((-644 (-2 (|:| -1573 |#1|) (|:| -3477 |#3|))) |#3| (-1 (-644 |#1|) |#2|))) (-15 -2879 ((-644 (-2 (|:| |poly| |#2|) (|:| -3477 |#3|))) |#3| (-1 (-644 |#1|) |#2|))) (-15 -2177 ((-644 (-2 (|:| |frac| (-409 |#2|)) (|:| -3477 |#3|))) |#3| (-1 (-644 |#2|) |#2| (-1171 |#2|)) (-1 (-420 |#2|) |#2|))) (-15 -4289 (|#3| |#3| |#2|)) (-15 -4289 (|#3| |#3| (-409 |#2|)))) (-13 (-365) (-147) (-1038 (-409 (-566)))) (-1240 |#1|) (-656 |#2|) (-656 (-409 |#2|))) (T -809)) +((-4289 (*1 *2 *2 *3) (-12 (-5 *3 (-409 *5)) (-4 *4 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *5 (-1240 *4)) (-5 *1 (-809 *4 *5 *2 *6)) (-4 *2 (-656 *5)) (-4 *6 (-656 *3)))) (-4289 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *3 (-1240 *4)) (-5 *1 (-809 *4 *3 *2 *5)) (-4 *2 (-656 *3)) (-4 *5 (-656 (-409 *3))))) (-2177 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-644 *7) *7 (-1171 *7))) (-5 *5 (-1 (-420 *7) *7)) (-4 *7 (-1240 *6)) (-4 *6 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-5 *2 (-644 (-2 (|:| |frac| (-409 *7)) (|:| -3477 *3)))) (-5 *1 (-809 *6 *7 *3 *8)) (-4 *3 (-656 *7)) (-4 *8 (-656 (-409 *7))))) (-2879 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-644 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *6 (-1240 *5)) (-5 *2 (-644 (-2 (|:| |poly| *6) (|:| -3477 *3)))) (-5 *1 (-809 *5 *6 *3 *7)) (-4 *3 (-656 *6)) (-4 *7 (-656 (-409 *6))))) (-2715 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-644 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *6 (-1240 *5)) (-5 *2 (-644 (-2 (|:| -1573 *5) (|:| -3477 *3)))) (-5 *1 (-809 *5 *6 *3 *7)) (-4 *3 (-656 *6)) (-4 *7 (-656 (-409 *6))))) (-2507 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *5 (-1240 *4)) (-5 *2 (-644 (-2 (|:| |deg| (-771)) (|:| -3477 *5)))) (-5 *1 (-809 *4 *5 *3 *6)) (-4 *3 (-656 *5)) (-4 *6 (-656 (-409 *5))))) (-3032 (*1 *2 *3) (-12 (-4 *2 (-1240 *4)) (-5 *1 (-809 *4 *2 *3 *5)) (-4 *4 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *3 (-656 *2)) (-4 *5 (-656 (-409 *2)))))) +(-10 -7 (-15 -3032 (|#2| |#3|)) (-15 -2507 ((-644 (-2 (|:| |deg| (-771)) (|:| -3477 |#2|))) |#3|)) (-15 -2715 ((-644 (-2 (|:| -1573 |#1|) (|:| -3477 |#3|))) |#3| (-1 (-644 |#1|) |#2|))) (-15 -2879 ((-644 (-2 (|:| |poly| |#2|) (|:| -3477 |#3|))) |#3| (-1 (-644 |#1|) |#2|))) (-15 -2177 ((-644 (-2 (|:| |frac| (-409 |#2|)) (|:| -3477 |#3|))) |#3| (-1 (-644 |#2|) |#2| (-1171 |#2|)) (-1 (-420 |#2|) |#2|))) (-15 -4289 (|#3| |#3| |#2|)) (-15 -4289 (|#3| |#3| (-409 |#2|)))) +((-2712 (((-2 (|:| -1419 (-644 (-409 |#2|))) (|:| -4196 (-689 |#1|))) (-654 |#2| (-409 |#2|)) (-644 (-409 |#2|))) 149) (((-2 (|:| |particular| (-3 (-409 |#2|) "failed")) (|:| -1419 (-644 (-409 |#2|)))) (-654 |#2| (-409 |#2|)) (-409 |#2|)) 148) (((-2 (|:| -1419 (-644 (-409 |#2|))) (|:| -4196 (-689 |#1|))) (-653 (-409 |#2|)) (-644 (-409 |#2|))) 143) (((-2 (|:| |particular| (-3 (-409 |#2|) "failed")) (|:| -1419 (-644 (-409 |#2|)))) (-653 (-409 |#2|)) (-409 |#2|)) 141)) (-2179 ((|#2| (-654 |#2| (-409 |#2|))) 89) ((|#2| (-653 (-409 |#2|))) 92))) +(((-810 |#1| |#2|) (-10 -7 (-15 -2712 ((-2 (|:| |particular| (-3 (-409 |#2|) "failed")) (|:| -1419 (-644 (-409 |#2|)))) (-653 (-409 |#2|)) (-409 |#2|))) (-15 -2712 ((-2 (|:| -1419 (-644 (-409 |#2|))) (|:| -4196 (-689 |#1|))) (-653 (-409 |#2|)) (-644 (-409 |#2|)))) (-15 -2712 ((-2 (|:| |particular| (-3 (-409 |#2|) "failed")) (|:| -1419 (-644 (-409 |#2|)))) (-654 |#2| (-409 |#2|)) (-409 |#2|))) (-15 -2712 ((-2 (|:| -1419 (-644 (-409 |#2|))) (|:| -4196 (-689 |#1|))) (-654 |#2| (-409 |#2|)) (-644 (-409 |#2|)))) (-15 -2179 (|#2| (-653 (-409 |#2|)))) (-15 -2179 (|#2| (-654 |#2| (-409 |#2|))))) (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566)))) (-1240 |#1|)) (T -810)) +((-2179 (*1 *2 *3) (-12 (-5 *3 (-654 *2 (-409 *2))) (-4 *2 (-1240 *4)) (-5 *1 (-810 *4 *2)) (-4 *4 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))))) (-2179 (*1 *2 *3) (-12 (-5 *3 (-653 (-409 *2))) (-4 *2 (-1240 *4)) (-5 *1 (-810 *4 *2)) (-4 *4 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))))) (-2712 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *6 (-409 *6))) (-4 *6 (-1240 *5)) (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-5 *2 (-2 (|:| -1419 (-644 (-409 *6))) (|:| -4196 (-689 *5)))) (-5 *1 (-810 *5 *6)) (-5 *4 (-644 (-409 *6))))) (-2712 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *6 (-409 *6))) (-5 *4 (-409 *6)) (-4 *6 (-1240 *5)) (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1419 (-644 *4)))) (-5 *1 (-810 *5 *6)))) (-2712 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-409 *6))) (-4 *6 (-1240 *5)) (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-5 *2 (-2 (|:| -1419 (-644 (-409 *6))) (|:| -4196 (-689 *5)))) (-5 *1 (-810 *5 *6)) (-5 *4 (-644 (-409 *6))))) (-2712 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-409 *6))) (-5 *4 (-409 *6)) (-4 *6 (-1240 *5)) (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1419 (-644 *4)))) (-5 *1 (-810 *5 *6))))) +(-10 -7 (-15 -2712 ((-2 (|:| |particular| (-3 (-409 |#2|) "failed")) (|:| -1419 (-644 (-409 |#2|)))) (-653 (-409 |#2|)) (-409 |#2|))) (-15 -2712 ((-2 (|:| -1419 (-644 (-409 |#2|))) (|:| -4196 (-689 |#1|))) (-653 (-409 |#2|)) (-644 (-409 |#2|)))) (-15 -2712 ((-2 (|:| |particular| (-3 (-409 |#2|) "failed")) (|:| -1419 (-644 (-409 |#2|)))) (-654 |#2| (-409 |#2|)) (-409 |#2|))) (-15 -2712 ((-2 (|:| -1419 (-644 (-409 |#2|))) (|:| -4196 (-689 |#1|))) (-654 |#2| (-409 |#2|)) (-644 (-409 |#2|)))) (-15 -2179 (|#2| (-653 (-409 |#2|)))) (-15 -2179 (|#2| (-654 |#2| (-409 |#2|))))) +((-1645 (((-2 (|:| -4196 (-689 |#2|)) (|:| |vec| (-1264 |#1|))) |#5| |#4|) 52))) +(((-811 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1645 ((-2 (|:| -4196 (-689 |#2|)) (|:| |vec| (-1264 |#1|))) |#5| |#4|))) (-365) (-656 |#1|) (-1240 |#1|) (-724 |#1| |#3|) (-656 |#4|)) (T -811)) +((-1645 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *7 (-1240 *5)) (-4 *4 (-724 *5 *7)) (-5 *2 (-2 (|:| -4196 (-689 *6)) (|:| |vec| (-1264 *5)))) (-5 *1 (-811 *5 *6 *7 *4 *3)) (-4 *6 (-656 *5)) (-4 *3 (-656 *4))))) +(-10 -7 (-15 -1645 ((-2 (|:| -4196 (-689 |#2|)) (|:| |vec| (-1264 |#1|))) |#5| |#4|))) +((-2177 (((-644 (-2 (|:| |frac| (-409 |#2|)) (|:| -3477 (-654 |#2| (-409 |#2|))))) (-654 |#2| (-409 |#2|)) (-1 (-420 |#2|) |#2|)) 47)) (-3035 (((-644 (-409 |#2|)) (-654 |#2| (-409 |#2|)) (-1 (-420 |#2|) |#2|)) 171 (|has| |#1| (-27))) (((-644 (-409 |#2|)) (-654 |#2| (-409 |#2|))) 168 (|has| |#1| (-27))) (((-644 (-409 |#2|)) (-653 (-409 |#2|)) (-1 (-420 |#2|) |#2|)) 172 (|has| |#1| (-27))) (((-644 (-409 |#2|)) (-653 (-409 |#2|))) 170 (|has| |#1| (-27))) (((-644 (-409 |#2|)) (-654 |#2| (-409 |#2|)) (-1 (-644 |#1|) |#2|) (-1 (-420 |#2|) |#2|)) 38) (((-644 (-409 |#2|)) (-654 |#2| (-409 |#2|)) (-1 (-644 |#1|) |#2|)) 39) (((-644 (-409 |#2|)) (-653 (-409 |#2|)) (-1 (-644 |#1|) |#2|) (-1 (-420 |#2|) |#2|)) 36) (((-644 (-409 |#2|)) (-653 (-409 |#2|)) (-1 (-644 |#1|) |#2|)) 37)) (-2879 (((-644 (-2 (|:| |poly| |#2|) (|:| -3477 (-654 |#2| (-409 |#2|))))) (-654 |#2| (-409 |#2|)) (-1 (-644 |#1|) |#2|)) 99))) +(((-812 |#1| |#2|) (-10 -7 (-15 -3035 ((-644 (-409 |#2|)) (-653 (-409 |#2|)) (-1 (-644 |#1|) |#2|))) (-15 -3035 ((-644 (-409 |#2|)) (-653 (-409 |#2|)) (-1 (-644 |#1|) |#2|) (-1 (-420 |#2|) |#2|))) (-15 -3035 ((-644 (-409 |#2|)) (-654 |#2| (-409 |#2|)) (-1 (-644 |#1|) |#2|))) (-15 -3035 ((-644 (-409 |#2|)) (-654 |#2| (-409 |#2|)) (-1 (-644 |#1|) |#2|) (-1 (-420 |#2|) |#2|))) (-15 -2177 ((-644 (-2 (|:| |frac| (-409 |#2|)) (|:| -3477 (-654 |#2| (-409 |#2|))))) (-654 |#2| (-409 |#2|)) (-1 (-420 |#2|) |#2|))) (-15 -2879 ((-644 (-2 (|:| |poly| |#2|) (|:| -3477 (-654 |#2| (-409 |#2|))))) (-654 |#2| (-409 |#2|)) (-1 (-644 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3035 ((-644 (-409 |#2|)) (-653 (-409 |#2|)))) (-15 -3035 ((-644 (-409 |#2|)) (-653 (-409 |#2|)) (-1 (-420 |#2|) |#2|))) (-15 -3035 ((-644 (-409 |#2|)) (-654 |#2| (-409 |#2|)))) (-15 -3035 ((-644 (-409 |#2|)) (-654 |#2| (-409 |#2|)) (-1 (-420 |#2|) |#2|)))) |%noBranch|)) (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566)))) (-1240 |#1|)) (T -812)) +((-3035 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *6 (-409 *6))) (-5 *4 (-1 (-420 *6) *6)) (-4 *6 (-1240 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-5 *2 (-644 (-409 *6))) (-5 *1 (-812 *5 *6)))) (-3035 (*1 *2 *3) (-12 (-5 *3 (-654 *5 (-409 *5))) (-4 *5 (-1240 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-5 *2 (-644 (-409 *5))) (-5 *1 (-812 *4 *5)))) (-3035 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-409 *6))) (-5 *4 (-1 (-420 *6) *6)) (-4 *6 (-1240 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-5 *2 (-644 (-409 *6))) (-5 *1 (-812 *5 *6)))) (-3035 (*1 *2 *3) (-12 (-5 *3 (-653 (-409 *5))) (-4 *5 (-1240 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-5 *2 (-644 (-409 *5))) (-5 *1 (-812 *4 *5)))) (-2879 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-644 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-4 *6 (-1240 *5)) (-5 *2 (-644 (-2 (|:| |poly| *6) (|:| -3477 (-654 *6 (-409 *6)))))) (-5 *1 (-812 *5 *6)) (-5 *3 (-654 *6 (-409 *6))))) (-2177 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-420 *6) *6)) (-4 *6 (-1240 *5)) (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-5 *2 (-644 (-2 (|:| |frac| (-409 *6)) (|:| -3477 (-654 *6 (-409 *6)))))) (-5 *1 (-812 *5 *6)) (-5 *3 (-654 *6 (-409 *6))))) (-3035 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 *7 (-409 *7))) (-5 *4 (-1 (-644 *6) *7)) (-5 *5 (-1 (-420 *7) *7)) (-4 *6 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-4 *7 (-1240 *6)) (-5 *2 (-644 (-409 *7))) (-5 *1 (-812 *6 *7)))) (-3035 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *6 (-409 *6))) (-5 *4 (-1 (-644 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-4 *6 (-1240 *5)) (-5 *2 (-644 (-409 *6))) (-5 *1 (-812 *5 *6)))) (-3035 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-653 (-409 *7))) (-5 *4 (-1 (-644 *6) *7)) (-5 *5 (-1 (-420 *7) *7)) (-4 *6 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-4 *7 (-1240 *6)) (-5 *2 (-644 (-409 *7))) (-5 *1 (-812 *6 *7)))) (-3035 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-409 *6))) (-5 *4 (-1 (-644 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-4 *6 (-1240 *5)) (-5 *2 (-644 (-409 *6))) (-5 *1 (-812 *5 *6))))) +(-10 -7 (-15 -3035 ((-644 (-409 |#2|)) (-653 (-409 |#2|)) (-1 (-644 |#1|) |#2|))) (-15 -3035 ((-644 (-409 |#2|)) (-653 (-409 |#2|)) (-1 (-644 |#1|) |#2|) (-1 (-420 |#2|) |#2|))) (-15 -3035 ((-644 (-409 |#2|)) (-654 |#2| (-409 |#2|)) (-1 (-644 |#1|) |#2|))) (-15 -3035 ((-644 (-409 |#2|)) (-654 |#2| (-409 |#2|)) (-1 (-644 |#1|) |#2|) (-1 (-420 |#2|) |#2|))) (-15 -2177 ((-644 (-2 (|:| |frac| (-409 |#2|)) (|:| -3477 (-654 |#2| (-409 |#2|))))) (-654 |#2| (-409 |#2|)) (-1 (-420 |#2|) |#2|))) (-15 -2879 ((-644 (-2 (|:| |poly| |#2|) (|:| -3477 (-654 |#2| (-409 |#2|))))) (-654 |#2| (-409 |#2|)) (-1 (-644 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3035 ((-644 (-409 |#2|)) (-653 (-409 |#2|)))) (-15 -3035 ((-644 (-409 |#2|)) (-653 (-409 |#2|)) (-1 (-420 |#2|) |#2|))) (-15 -3035 ((-644 (-409 |#2|)) (-654 |#2| (-409 |#2|)))) (-15 -3035 ((-644 (-409 |#2|)) (-654 |#2| (-409 |#2|)) (-1 (-420 |#2|) |#2|)))) |%noBranch|)) +((-4339 (((-2 (|:| -4196 (-689 |#2|)) (|:| |vec| (-1264 |#1|))) (-689 |#2|) (-1264 |#1|)) 110) (((-2 (|:| A (-689 |#1|)) (|:| |eqs| (-644 (-2 (|:| C (-689 |#1|)) (|:| |g| (-1264 |#1|)) (|:| -3477 |#2|) (|:| |rh| |#1|))))) (-689 |#1|) (-1264 |#1|)) 15)) (-4350 (((-2 (|:| |particular| (-3 (-1264 |#1|) "failed")) (|:| -1419 (-644 (-1264 |#1|)))) (-689 |#2|) (-1264 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1419 (-644 |#1|))) |#2| |#1|)) 116)) (-1916 (((-3 (-2 (|:| |particular| (-1264 |#1|)) (|:| -1419 (-689 |#1|))) "failed") (-689 |#1|) (-1264 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1419 (-644 |#1|))) "failed") |#2| |#1|)) 52))) +(((-813 |#1| |#2|) (-10 -7 (-15 -4339 ((-2 (|:| A (-689 |#1|)) (|:| |eqs| (-644 (-2 (|:| C (-689 |#1|)) (|:| |g| (-1264 |#1|)) (|:| -3477 |#2|) (|:| |rh| |#1|))))) (-689 |#1|) (-1264 |#1|))) (-15 -4339 ((-2 (|:| -4196 (-689 |#2|)) (|:| |vec| (-1264 |#1|))) (-689 |#2|) (-1264 |#1|))) (-15 -1916 ((-3 (-2 (|:| |particular| (-1264 |#1|)) (|:| -1419 (-689 |#1|))) "failed") (-689 |#1|) (-1264 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1419 (-644 |#1|))) "failed") |#2| |#1|))) (-15 -4350 ((-2 (|:| |particular| (-3 (-1264 |#1|) "failed")) (|:| -1419 (-644 (-1264 |#1|)))) (-689 |#2|) (-1264 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1419 (-644 |#1|))) |#2| |#1|)))) (-365) (-656 |#1|)) (T -813)) +((-4350 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-689 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -1419 (-644 *6))) *7 *6)) (-4 *6 (-365)) (-4 *7 (-656 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1264 *6) "failed")) (|:| -1419 (-644 (-1264 *6))))) (-5 *1 (-813 *6 *7)) (-5 *4 (-1264 *6)))) (-1916 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -1419 (-644 *6))) "failed") *7 *6)) (-4 *6 (-365)) (-4 *7 (-656 *6)) (-5 *2 (-2 (|:| |particular| (-1264 *6)) (|:| -1419 (-689 *6)))) (-5 *1 (-813 *6 *7)) (-5 *3 (-689 *6)) (-5 *4 (-1264 *6)))) (-4339 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-656 *5)) (-5 *2 (-2 (|:| -4196 (-689 *6)) (|:| |vec| (-1264 *5)))) (-5 *1 (-813 *5 *6)) (-5 *3 (-689 *6)) (-5 *4 (-1264 *5)))) (-4339 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-5 *2 (-2 (|:| A (-689 *5)) (|:| |eqs| (-644 (-2 (|:| C (-689 *5)) (|:| |g| (-1264 *5)) (|:| -3477 *6) (|:| |rh| *5)))))) (-5 *1 (-813 *5 *6)) (-5 *3 (-689 *5)) (-5 *4 (-1264 *5)) (-4 *6 (-656 *5))))) +(-10 -7 (-15 -4339 ((-2 (|:| A (-689 |#1|)) (|:| |eqs| (-644 (-2 (|:| C (-689 |#1|)) (|:| |g| (-1264 |#1|)) (|:| -3477 |#2|) (|:| |rh| |#1|))))) (-689 |#1|) (-1264 |#1|))) (-15 -4339 ((-2 (|:| -4196 (-689 |#2|)) (|:| |vec| (-1264 |#1|))) (-689 |#2|) (-1264 |#1|))) (-15 -1916 ((-3 (-2 (|:| |particular| (-1264 |#1|)) (|:| -1419 (-689 |#1|))) "failed") (-689 |#1|) (-1264 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1419 (-644 |#1|))) "failed") |#2| |#1|))) (-15 -4350 ((-2 (|:| |particular| (-3 (-1264 |#1|) "failed")) (|:| -1419 (-644 (-1264 |#1|)))) (-689 |#2|) (-1264 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1419 (-644 |#1|))) |#2| |#1|)))) +((-4330 (((-689 |#1|) (-644 |#1|) (-771)) 14) (((-689 |#1|) (-644 |#1|)) 15)) (-2067 (((-3 (-1264 |#1|) "failed") |#2| |#1| (-644 |#1|)) 39)) (-2708 (((-3 |#1| "failed") |#2| |#1| (-644 |#1|) (-1 |#1| |#1|)) 46))) +(((-814 |#1| |#2|) (-10 -7 (-15 -4330 ((-689 |#1|) (-644 |#1|))) (-15 -4330 ((-689 |#1|) (-644 |#1|) (-771))) (-15 -2067 ((-3 (-1264 |#1|) "failed") |#2| |#1| (-644 |#1|))) (-15 -2708 ((-3 |#1| "failed") |#2| |#1| (-644 |#1|) (-1 |#1| |#1|)))) (-365) (-656 |#1|)) (T -814)) +((-2708 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-644 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-365)) (-5 *1 (-814 *2 *3)) (-4 *3 (-656 *2)))) (-2067 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-644 *4)) (-4 *4 (-365)) (-5 *2 (-1264 *4)) (-5 *1 (-814 *4 *3)) (-4 *3 (-656 *4)))) (-4330 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *5)) (-5 *4 (-771)) (-4 *5 (-365)) (-5 *2 (-689 *5)) (-5 *1 (-814 *5 *6)) (-4 *6 (-656 *5)))) (-4330 (*1 *2 *3) (-12 (-5 *3 (-644 *4)) (-4 *4 (-365)) (-5 *2 (-689 *4)) (-5 *1 (-814 *4 *5)) (-4 *5 (-656 *4))))) +(-10 -7 (-15 -4330 ((-689 |#1|) (-644 |#1|))) (-15 -4330 ((-689 |#1|) (-644 |#1|) (-771))) (-15 -2067 ((-3 (-1264 |#1|) "failed") |#2| |#1| (-644 |#1|))) (-15 -2708 ((-3 |#1| "failed") |#2| |#1| (-644 |#1|) (-1 |#1| |#1|)))) +((-2986 (((-112) $ $) NIL (|has| |#2| (-1099)))) (-2845 (((-112) $) NIL (|has| |#2| (-131)))) (-2680 (($ (-921)) NIL (|has| |#2| (-1049)))) (-2462 (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4418)))) (-4047 (($ $ $) NIL (|has| |#2| (-793)))) (-3174 (((-3 $ "failed") $ $) NIL (|has| |#2| (-131)))) (-1453 (((-112) $ (-771)) NIL)) (-4049 (((-771)) NIL (|has| |#2| (-370)))) (-2920 (((-566) $) NIL (|has| |#2| (-848)))) (-3901 ((|#2| $ (-566) |#2|) NIL (|has| $ (-6 -4418)))) (-1811 (($) NIL T CONST)) (-2980 (((-3 (-566) "failed") $) NIL (-12 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099)))) (((-3 (-409 (-566)) "failed") $) NIL (-12 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1099)))) (-1709 (((-566) $) NIL (-12 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099)))) (((-409 (-566)) $) NIL (-12 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099)))) ((|#2| $) NIL (|has| |#2| (-1099)))) (-2275 (((-689 (-566)) (-689 $)) NIL (-12 (|has| |#2| (-639 (-566))) (|has| |#2| (-1049)))) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (-12 (|has| |#2| (-639 (-566))) (|has| |#2| (-1049)))) (((-2 (|:| -4196 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 $) (-1264 $)) NIL (|has| |#2| (-1049))) (((-689 |#2|) (-689 $)) NIL (|has| |#2| (-1049)))) (-3757 (((-3 $ "failed") $) NIL (|has| |#2| (-726)))) (-1415 (($) NIL (|has| |#2| (-370)))) (-3719 ((|#2| $ (-566) |#2|) NIL (|has| $ (-6 -4418)))) (-3653 ((|#2| $ (-566)) NIL)) (-2133 (((-112) $) NIL (|has| |#2| (-848)))) (-3872 (((-644 |#2|) $) NIL (|has| $ (-6 -4417)))) (-2264 (((-112) $) NIL (|has| |#2| (-726)))) (-3420 (((-112) $) NIL (|has| |#2| (-848)))) (-2756 (((-112) $ (-771)) NIL)) (-2755 (((-566) $) NIL (|has| (-566) (-850)))) (-1920 (($ $ $) NIL (-2809 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-4227 (((-644 |#2|) $) NIL (|has| $ (-6 -4417)))) (-1688 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1099))))) (-3831 (((-566) $) NIL (|has| (-566) (-850)))) (-3038 (($ $ $) NIL (-2809 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-3708 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#2| |#2|) $) NIL)) (-4051 (((-921) $) NIL (|has| |#2| (-370)))) (-4106 (((-112) $ (-771)) NIL)) (-3151 (((-1157) $) NIL (|has| |#2| (-1099)))) (-3780 (((-644 (-566)) $) NIL)) (-1605 (((-112) (-566) $) NIL)) (-2104 (($ (-921)) NIL (|has| |#2| (-370)))) (-4059 (((-1119) $) NIL (|has| |#2| (-1099)))) (-4080 ((|#2| $) NIL (|has| (-566) (-850)))) (-4079 (($ $ |#2|) NIL (|has| $ (-6 -4418)))) (-3966 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))) (-1844 (((-112) $ $) NIL)) (-2210 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1099))))) (-4185 (((-644 |#2|) $) NIL)) (-2788 (((-112) $) NIL)) (-1737 (($) NIL)) (-4376 ((|#2| $ (-566) |#2|) NIL) ((|#2| $ (-566)) NIL)) (-2555 ((|#2| $ $) NIL (|has| |#2| (-1049)))) (-2379 (($ (-1264 |#2|)) NIL)) (-3944 (((-134)) NIL (|has| |#2| (-365)))) (-3526 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1049)))) (($ $ (-771)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1049)))) (($ $ (-1175)) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-1 |#2| |#2|) (-771)) NIL (|has| |#2| (-1049))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1049)))) (-4068 (((-771) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417))) (((-771) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1099))))) (-3924 (($ $) NIL)) (-2479 (((-1264 |#2|) $) NIL) (($ (-566)) NIL (-2809 (-12 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099))) (|has| |#2| (-1049)))) (($ (-409 (-566))) NIL (-12 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099)))) (($ |#2|) NIL (|has| |#2| (-1099))) (((-862) $) NIL (|has| |#2| (-613 (-862))))) (-1558 (((-771)) NIL (|has| |#2| (-1049)) CONST)) (-3900 (((-112) $ $) NIL (|has| |#2| (-1099)))) (-3667 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417)))) (-4298 (($ $) NIL (|has| |#2| (-848)))) (-2446 (($) NIL (|has| |#2| (-131)) CONST)) (-2459 (($) NIL (|has| |#2| (-726)) CONST)) (-2834 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1049)))) (($ $ (-771)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1049)))) (($ $ (-1175)) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-1 |#2| |#2|) (-771)) NIL (|has| |#2| (-1049))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1049)))) (-3019 (((-112) $ $) NIL (-2809 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-2990 (((-112) $ $) NIL (-2809 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-2952 (((-112) $ $) NIL (|has| |#2| (-1099)))) (-3004 (((-112) $ $) NIL (-2809 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-2977 (((-112) $ $) 11 (-2809 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-3077 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3065 (($ $ $) NIL (|has| |#2| (-1049))) (($ $) NIL (|has| |#2| (-1049)))) (-3052 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-771)) NIL (|has| |#2| (-726))) (($ $ (-921)) NIL (|has| |#2| (-726)))) (* (($ (-566) $) NIL (|has| |#2| (-1049))) (($ $ $) NIL (|has| |#2| (-726))) (($ $ |#2|) NIL (|has| |#2| (-726))) (($ |#2| $) NIL (|has| |#2| (-726))) (($ (-771) $) NIL (|has| |#2| (-131))) (($ (-921) $) NIL (|has| |#2| (-25)))) (-3002 (((-771) $) NIL (|has| $ (-6 -4417))))) +(((-815 |#1| |#2| |#3|) (-238 |#1| |#2|) (-771) (-793) (-1 (-112) (-1264 |#2|) (-1264 |#2|))) (T -815)) NIL (-238 |#1| |#2|) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-3728 (((-642 (-769)) $) NIL) (((-642 (-769)) $ (-1173)) NIL)) (-3059 (((-769) $) NIL) (((-769) $ (-1173)) NIL)) (-2397 (((-642 (-816 (-1173))) $) NIL)) (-2223 (((-1169 $) $ (-816 (-1173))) NIL) (((-1169 |#1|) $) NIL)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-4252 (($ $) NIL (|has| |#1| (-556)))) (-1722 (((-112) $) NIL (|has| |#1| (-556)))) (-4035 (((-769) $) NIL) (((-769) $ (-642 (-816 (-1173)))) NIL)) (-3085 (((-3 $ "failed") $ $) NIL)) (-4297 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-1993 (($ $) NIL (|has| |#1| (-452)))) (-3282 (((-418 $) $) NIL (|has| |#1| (-452)))) (-3267 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-3365 (($ $) NIL)) (-2822 (($) NIL T CONST)) (-2849 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1036 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1036 (-564)))) (((-3 (-816 (-1173)) "failed") $) NIL) (((-3 (-1173) "failed") $) NIL) (((-3 (-1122 |#1| (-1173)) "failed") $) NIL)) (-1687 ((|#1| $) NIL) (((-407 (-564)) $) NIL (|has| |#1| (-1036 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1036 (-564)))) (((-816 (-1173)) $) NIL) (((-1173) $) NIL) (((-1122 |#1| (-1173)) $) NIL)) (-3710 (($ $ $ (-816 (-1173))) NIL (|has| |#1| (-172)))) (-3459 (($ $) NIL)) (-3330 (((-687 (-564)) (-687 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -3544 (-687 |#1|)) (|:| |vec| (-1262 |#1|))) (-687 $) (-1262 $)) NIL) (((-687 |#1|) (-687 $)) NIL)) (-2675 (((-3 $ "failed") $) NIL)) (-2511 (($ $) NIL (|has| |#1| (-452))) (($ $ (-816 (-1173))) NIL (|has| |#1| (-452)))) (-3446 (((-642 $) $) NIL)) (-3552 (((-112) $) NIL (|has| |#1| (-907)))) (-2315 (($ $ |#1| (-531 (-816 (-1173))) $) NIL)) (-1381 (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) NIL (-12 (|has| (-816 (-1173)) (-884 (-379))) (|has| |#1| (-884 (-379))))) (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) NIL (-12 (|has| (-816 (-1173)) (-884 (-564))) (|has| |#1| (-884 (-564)))))) (-2408 (((-769) $ (-1173)) NIL) (((-769) $) NIL)) (-3163 (((-112) $) NIL)) (-1904 (((-769) $) NIL)) (-2387 (($ (-1169 |#1|) (-816 (-1173))) NIL) (($ (-1169 $) (-816 (-1173))) NIL)) (-1995 (((-642 $) $) NIL)) (-3471 (((-112) $) NIL)) (-2374 (($ |#1| (-531 (-816 (-1173)))) NIL) (($ $ (-816 (-1173)) (-769)) NIL) (($ $ (-642 (-816 (-1173))) (-642 (-769))) NIL)) (-3312 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $ (-816 (-1173))) NIL)) (-2887 (((-531 (-816 (-1173))) $) NIL) (((-769) $ (-816 (-1173))) NIL) (((-642 (-769)) $ (-642 (-816 (-1173)))) NIL)) (-3879 (($ (-1 (-531 (-816 (-1173))) (-531 (-816 (-1173)))) $) NIL)) (-2947 (($ (-1 |#1| |#1|) $) NIL)) (-3657 (((-1 $ (-769)) (-1173)) NIL) (((-1 $ (-769)) $) NIL (|has| |#1| (-233)))) (-1557 (((-3 (-816 (-1173)) "failed") $) NIL)) (-2510 (($ $) NIL)) (-2523 ((|#1| $) NIL)) (-3162 (((-816 (-1173)) $) NIL)) (-2066 (($ (-642 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-1778 (((-1155) $) NIL)) (-4009 (((-112) $) NIL)) (-3664 (((-3 (-642 $) "failed") $) NIL)) (-4315 (((-3 (-642 $) "failed") $) NIL)) (-3177 (((-3 (-2 (|:| |var| (-816 (-1173))) (|:| -2817 (-769))) "failed") $) NIL)) (-1808 (($ $) NIL)) (-3999 (((-1117) $) NIL)) (-2491 (((-112) $) NIL)) (-2500 ((|#1| $) NIL)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) NIL (|has| |#1| (-452)))) (-2105 (($ (-642 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3223 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-2236 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-2254 (((-418 $) $) NIL (|has| |#1| (-907)))) (-2842 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-3154 (($ $ (-642 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-642 $) (-642 $)) NIL) (($ $ (-816 (-1173)) |#1|) NIL) (($ $ (-642 (-816 (-1173))) (-642 |#1|)) NIL) (($ $ (-816 (-1173)) $) NIL) (($ $ (-642 (-816 (-1173))) (-642 $)) NIL) (($ $ (-1173) $) NIL (|has| |#1| (-233))) (($ $ (-642 (-1173)) (-642 $)) NIL (|has| |#1| (-233))) (($ $ (-1173) |#1|) NIL (|has| |#1| (-233))) (($ $ (-642 (-1173)) (-642 |#1|)) NIL (|has| |#1| (-233)))) (-2790 (($ $ (-816 (-1173))) NIL (|has| |#1| (-172)))) (-2199 (($ $ (-816 (-1173))) NIL) (($ $ (-642 (-816 (-1173)))) NIL) (($ $ (-816 (-1173)) (-769)) NIL) (($ $ (-642 (-816 (-1173))) (-642 (-769))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-769)) NIL (|has| |#1| (-233))) (($ $ (-1173)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1 |#1| |#1|) (-769)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3189 (((-642 (-1173)) $) NIL)) (-3252 (((-531 (-816 (-1173))) $) NIL) (((-769) $ (-816 (-1173))) NIL) (((-642 (-769)) $ (-642 (-816 (-1173)))) NIL) (((-769) $ (-1173)) NIL)) (-3003 (((-890 (-379)) $) NIL (-12 (|has| (-816 (-1173)) (-612 (-890 (-379)))) (|has| |#1| (-612 (-890 (-379)))))) (((-890 (-564)) $) NIL (-12 (|has| (-816 (-1173)) (-612 (-890 (-564)))) (|has| |#1| (-612 (-890 (-564)))))) (((-536) $) NIL (-12 (|has| (-816 (-1173)) (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-4325 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ (-816 (-1173))) NIL (|has| |#1| (-452)))) (-3556 (((-3 (-1262 $) "failed") (-687 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-907))))) (-2390 (((-860) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-816 (-1173))) NIL) (($ (-1173)) NIL) (($ (-1122 |#1| (-1173))) NIL) (($ (-407 (-564))) NIL (-2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1036 (-407 (-564)))))) (($ $) NIL (|has| |#1| (-556)))) (-2839 (((-642 |#1|) $) NIL)) (-3005 ((|#1| $ (-531 (-816 (-1173)))) NIL) (($ $ (-816 (-1173)) (-769)) NIL) (($ $ (-642 (-816 (-1173))) (-642 (-769))) NIL)) (-3434 (((-3 $ "failed") $) NIL (-2682 (-12 (|has| $ (-145)) (|has| |#1| (-907))) (|has| |#1| (-145))))) (-3348 (((-769)) NIL T CONST)) (-2645 (($ $ $ (-769)) NIL (|has| |#1| (-172)))) (-1600 (((-112) $ $) NIL)) (-1594 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2361 (($) NIL T CONST)) (-2371 (($) NIL T CONST)) (-2711 (($ $ (-816 (-1173))) NIL) (($ $ (-642 (-816 (-1173)))) NIL) (($ $ (-816 (-1173)) (-769)) NIL) (($ $ (-642 (-816 (-1173))) (-642 (-769))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-769)) NIL (|has| |#1| (-233))) (($ $ (-1173)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1 |#1| |#1|) (-769)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2821 (((-112) $ $) NIL)) (-2943 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-814 |#1|) (-13 (-253 |#1| (-1173) (-816 (-1173)) (-531 (-816 (-1173)))) (-1036 (-1122 |#1| (-1173)))) (-1047)) (T -814)) -NIL -(-13 (-253 |#1| (-1173) (-816 (-1173)) (-531 (-816 (-1173)))) (-1036 (-1122 |#1| (-1173)))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (|has| |#2| (-363)))) (-4252 (($ $) NIL (|has| |#2| (-363)))) (-1722 (((-112) $) NIL (|has| |#2| (-363)))) (-3085 (((-3 $ "failed") $ $) NIL)) (-1993 (($ $) NIL (|has| |#2| (-363)))) (-3282 (((-418 $) $) NIL (|has| |#2| (-363)))) (-2134 (((-112) $ $) NIL (|has| |#2| (-363)))) (-2822 (($) NIL T CONST)) (-2796 (($ $ $) NIL (|has| |#2| (-363)))) (-2675 (((-3 $ "failed") $) NIL)) (-2808 (($ $ $) NIL (|has| |#2| (-363)))) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) NIL (|has| |#2| (-363)))) (-3552 (((-112) $) NIL (|has| |#2| (-363)))) (-3163 (((-112) $) NIL)) (-2709 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#2| (-363)))) (-2066 (($ (-642 $)) NIL (|has| |#2| (-363))) (($ $ $) NIL (|has| |#2| (-363)))) (-1778 (((-1155) $) NIL)) (-2481 (($ $) 20 (|has| |#2| (-363)))) (-3999 (((-1117) $) NIL)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) NIL (|has| |#2| (-363)))) (-2105 (($ (-642 $)) NIL (|has| |#2| (-363))) (($ $ $) NIL (|has| |#2| (-363)))) (-2254 (((-418 $) $) NIL (|has| |#2| (-363)))) (-1877 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL (|has| |#2| (-363)))) (-2842 (((-3 $ "failed") $ $) NIL (|has| |#2| (-363)))) (-1483 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#2| (-363)))) (-4274 (((-769) $) NIL (|has| |#2| (-363)))) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL (|has| |#2| (-363)))) (-2199 (($ $ (-769)) NIL) (($ $) 13)) (-2390 (((-860) $) NIL) (($ (-564)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-407 (-564))) NIL (|has| |#2| (-363))) (($ $) NIL (|has| |#2| (-363)))) (-3348 (((-769)) NIL T CONST)) (-1600 (((-112) $ $) NIL)) (-1594 (((-112) $ $) NIL (|has| |#2| (-363)))) (-2361 (($) NIL T CONST)) (-2371 (($) NIL T CONST)) (-2711 (($ $ (-769)) NIL) (($ $) NIL)) (-2821 (((-112) $ $) NIL)) (-2943 (($ $ $) 15 (|has| |#2| (-363)))) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) NIL)) (** (($ $ (-769)) NIL) (($ $ (-919)) NIL) (($ $ (-564)) 18 (|has| |#2| (-363)))) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-407 (-564)) $) NIL (|has| |#2| (-363))) (($ $ (-407 (-564))) NIL (|has| |#2| (-363))))) -(((-815 |#1| |#2| |#3|) (-13 (-111 $ $) (-233) (-490 |#2|) (-10 -7 (IF (|has| |#2| (-363)) (-6 (-363)) |%noBranch|))) (-1097) (-898 |#1|) |#1|) (T -815)) -NIL -(-13 (-111 $ $) (-233) (-490 |#2|) (-10 -7 (IF (|has| |#2| (-363)) (-6 (-363)) |%noBranch|))) -((-2856 (((-112) $ $) NIL)) (-3059 (((-769) $) NIL)) (-1341 ((|#1| $) 10)) (-2849 (((-3 |#1| "failed") $) NIL)) (-1687 ((|#1| $) NIL)) (-2408 (((-769) $) 11)) (-3225 (($ $ $) NIL)) (-2903 (($ $ $) NIL)) (-3657 (($ |#1| (-769)) 9)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2199 (($ $) NIL) (($ $ (-769)) NIL)) (-2390 (((-860) $) NIL) (($ |#1|) NIL)) (-1600 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL)) (-2857 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL)) (-2868 (((-112) $ $) NIL)) (-2844 (((-112) $ $) NIL))) -(((-816 |#1|) (-266 |#1|) (-848)) (T -816)) -NIL -(-266 |#1|) -((-2856 (((-112) $ $) NIL)) (-1634 (((-642 |#1|) $) 38)) (-4003 (((-769) $) NIL)) (-2822 (($) NIL T CONST)) (-2938 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 28)) (-2849 (((-3 |#1| "failed") $) NIL)) (-1687 ((|#1| $) NIL)) (-4050 (($ $) 42)) (-2675 (((-3 $ "failed") $) NIL)) (-2970 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-3163 (((-112) $) NIL)) (-3631 ((|#1| $ (-564)) NIL)) (-3911 (((-769) $ (-564)) NIL)) (-3137 (($ $) 54)) (-3225 (($ $ $) NIL)) (-2903 (($ $ $) NIL)) (-1618 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 25)) (-2143 (((-112) $ $) 51)) (-2495 (((-769) $) 34)) (-1778 (((-1155) $) NIL)) (-3019 (($ $ $) NIL)) (-1884 (($ $ $) NIL)) (-3999 (((-1117) $) NIL)) (-4036 ((|#1| $) 41)) (-1569 (((-642 (-2 (|:| |gen| |#1|) (|:| -3466 (-769)))) $) NIL)) (-2831 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2390 (((-860) $) NIL) (($ |#1|) NIL)) (-1600 (((-112) $ $) NIL)) (-2371 (($) 20 T CONST)) (-2881 (((-112) $ $) NIL)) (-2857 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL)) (-2868 (((-112) $ $) NIL)) (-2844 (((-112) $ $) 53)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ |#1| (-769)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-817 |#1|) (-13 (-844) (-1036 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-769))) (-15 -4036 (|#1| $)) (-15 -4050 ($ $)) (-15 -3137 ($ $)) (-15 -2143 ((-112) $ $)) (-15 -1884 ($ $ $)) (-15 -3019 ($ $ $)) (-15 -1618 ((-3 $ "failed") $ $)) (-15 -2938 ((-3 $ "failed") $ $)) (-15 -1618 ((-3 $ "failed") $ |#1|)) (-15 -2938 ((-3 $ "failed") $ |#1|)) (-15 -2831 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2970 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -4003 ((-769) $)) (-15 -3911 ((-769) $ (-564))) (-15 -3631 (|#1| $ (-564))) (-15 -1569 ((-642 (-2 (|:| |gen| |#1|) (|:| -3466 (-769)))) $)) (-15 -2495 ((-769) $)) (-15 -1634 ((-642 |#1|) $)))) (-848)) (T -817)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-817 *2)) (-4 *2 (-848)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-817 *2)) (-4 *2 (-848)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-769)) (-5 *1 (-817 *2)) (-4 *2 (-848)))) (-4036 (*1 *2 *1) (-12 (-5 *1 (-817 *2)) (-4 *2 (-848)))) (-4050 (*1 *1 *1) (-12 (-5 *1 (-817 *2)) (-4 *2 (-848)))) (-3137 (*1 *1 *1) (-12 (-5 *1 (-817 *2)) (-4 *2 (-848)))) (-2143 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-817 *3)) (-4 *3 (-848)))) (-1884 (*1 *1 *1 *1) (-12 (-5 *1 (-817 *2)) (-4 *2 (-848)))) (-3019 (*1 *1 *1 *1) (-12 (-5 *1 (-817 *2)) (-4 *2 (-848)))) (-1618 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-817 *2)) (-4 *2 (-848)))) (-2938 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-817 *2)) (-4 *2 (-848)))) (-1618 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-817 *2)) (-4 *2 (-848)))) (-2938 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-817 *2)) (-4 *2 (-848)))) (-2831 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-817 *3)) (|:| |rm| (-817 *3)))) (-5 *1 (-817 *3)) (-4 *3 (-848)))) (-2970 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-817 *3)) (|:| |mm| (-817 *3)) (|:| |rm| (-817 *3)))) (-5 *1 (-817 *3)) (-4 *3 (-848)))) (-4003 (*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-817 *3)) (-4 *3 (-848)))) (-3911 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-769)) (-5 *1 (-817 *4)) (-4 *4 (-848)))) (-3631 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-817 *2)) (-4 *2 (-848)))) (-1569 (*1 *2 *1) (-12 (-5 *2 (-642 (-2 (|:| |gen| *3) (|:| -3466 (-769))))) (-5 *1 (-817 *3)) (-4 *3 (-848)))) (-2495 (*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-817 *3)) (-4 *3 (-848)))) (-1634 (*1 *2 *1) (-12 (-5 *2 (-642 *3)) (-5 *1 (-817 *3)) (-4 *3 (-848))))) -(-13 (-844) (-1036 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-769))) (-15 -4036 (|#1| $)) (-15 -4050 ($ $)) (-15 -3137 ($ $)) (-15 -2143 ((-112) $ $)) (-15 -1884 ($ $ $)) (-15 -3019 ($ $ $)) (-15 -1618 ((-3 $ "failed") $ $)) (-15 -2938 ((-3 $ "failed") $ $)) (-15 -1618 ((-3 $ "failed") $ |#1|)) (-15 -2938 ((-3 $ "failed") $ |#1|)) (-15 -2831 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2970 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -4003 ((-769) $)) (-15 -3911 ((-769) $ (-564))) (-15 -3631 (|#1| $ (-564))) (-15 -1569 ((-642 (-2 (|:| |gen| |#1|) (|:| -3466 (-769)))) $)) (-15 -2495 ((-769) $)) (-15 -1634 ((-642 |#1|) $)))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) 47)) (-4252 (($ $) 46)) (-1722 (((-112) $) 44)) (-3085 (((-3 $ "failed") $ $) 20)) (-2221 (((-564) $) 59)) (-2822 (($) 18 T CONST)) (-2675 (((-3 $ "failed") $) 37)) (-3292 (((-112) $) 57)) (-3163 (((-112) $) 35)) (-2666 (((-112) $) 58)) (-3225 (($ $ $) 56)) (-2903 (($ $ $) 55)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2842 (((-3 $ "failed") $ $) 48)) (-2390 (((-860) $) 12) (($ (-564)) 33) (($ $) 49)) (-3348 (((-769)) 32 T CONST)) (-1600 (((-112) $ $) 9)) (-1594 (((-112) $ $) 45)) (-1630 (($ $) 60)) (-2361 (($) 19 T CONST)) (-2371 (($) 34 T CONST)) (-2881 (((-112) $ $) 53)) (-2857 (((-112) $ $) 52)) (-2821 (((-112) $ $) 6)) (-2868 (((-112) $ $) 54)) (-2844 (((-112) $ $) 51)) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27))) -(((-818) (-140)) (T -818)) -NIL -(-13 (-556) (-846)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-860)) . T) ((-172) . T) ((-290) . T) ((-556) . T) ((-644 (-564)) . T) ((-644 $) . T) ((-646 $) . T) ((-638 $) . T) ((-715 $) . T) ((-724) . T) ((-789) . T) ((-790) . T) ((-792) . T) ((-793) . T) ((-846) . T) ((-848) . T) ((-1049 $) . T) ((-1054 $) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T)) -((-3834 (($ (-1117)) 7)) (-2985 (((-112) $ (-1155) (-1117)) 15)) (-1496 (((-820) $) 12)) (-3482 (((-820) $) 11)) (-1328 (((-1267) $) 9)) (-3121 (((-112) $ (-1117)) 16))) -(((-819) (-10 -8 (-15 -3834 ($ (-1117))) (-15 -1328 ((-1267) $)) (-15 -3482 ((-820) $)) (-15 -1496 ((-820) $)) (-15 -2985 ((-112) $ (-1155) (-1117))) (-15 -3121 ((-112) $ (-1117))))) (T -819)) -((-3121 (*1 *2 *1 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-112)) (-5 *1 (-819)))) (-2985 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1155)) (-5 *4 (-1117)) (-5 *2 (-112)) (-5 *1 (-819)))) (-1496 (*1 *2 *1) (-12 (-5 *2 (-820)) (-5 *1 (-819)))) (-3482 (*1 *2 *1) (-12 (-5 *2 (-820)) (-5 *1 (-819)))) (-1328 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-819)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-819))))) -(-10 -8 (-15 -3834 ($ (-1117))) (-15 -1328 ((-1267) $)) (-15 -3482 ((-820) $)) (-15 -1496 ((-820) $)) (-15 -2985 ((-112) $ (-1155) (-1117))) (-15 -3121 ((-112) $ (-1117)))) -((-2564 (((-1267) $ (-821)) 12)) (-3903 (((-1267) $ (-1173)) 32)) (-1562 (((-1267) $ (-1155) (-1155)) 34)) (-1448 (((-1267) $ (-1155)) 33)) (-2513 (((-1267) $) 19)) (-2948 (((-1267) $ (-564)) 28)) (-3478 (((-1267) $ (-225)) 30)) (-4113 (((-1267) $) 18)) (-4169 (((-1267) $) 26)) (-3079 (((-1267) $) 25)) (-3216 (((-1267) $) 23)) (-1334 (((-1267) $) 24)) (-4101 (((-1267) $) 22)) (-2498 (((-1267) $) 21)) (-1757 (((-1267) $) 20)) (-4255 (((-1267) $) 16)) (-2892 (((-1267) $) 17)) (-2169 (((-1267) $) 15)) (-2516 (((-1267) $) 14)) (-3931 (((-1267) $) 13)) (-2664 (($ (-1155) (-821)) 9)) (-2110 (($ (-1155) (-1155) (-821)) 8)) (-3861 (((-1173) $) 51)) (-3740 (((-1173) $) 55)) (-3637 (((-2 (|:| |cd| (-1155)) (|:| -2493 (-1155))) $) 54)) (-1967 (((-1155) $) 52)) (-3793 (((-1267) $) 41)) (-3598 (((-564) $) 49)) (-3601 (((-225) $) 50)) (-3863 (((-1267) $) 40)) (-3143 (((-1267) $) 48)) (-3397 (((-1267) $) 47)) (-2060 (((-1267) $) 45)) (-4333 (((-1267) $) 46)) (-1532 (((-1267) $) 44)) (-3641 (((-1267) $) 43)) (-3577 (((-1267) $) 42)) (-4039 (((-1267) $) 38)) (-2782 (((-1267) $) 39)) (-1503 (((-1267) $) 37)) (-4248 (((-1267) $) 36)) (-3994 (((-1267) $) 35)) (-1588 (((-1267) $) 11))) -(((-820) (-10 -8 (-15 -2110 ($ (-1155) (-1155) (-821))) (-15 -2664 ($ (-1155) (-821))) (-15 -1588 ((-1267) $)) (-15 -2564 ((-1267) $ (-821))) (-15 -3931 ((-1267) $)) (-15 -2516 ((-1267) $)) (-15 -2169 ((-1267) $)) (-15 -4255 ((-1267) $)) (-15 -2892 ((-1267) $)) (-15 -4113 ((-1267) $)) (-15 -2513 ((-1267) $)) (-15 -1757 ((-1267) $)) (-15 -2498 ((-1267) $)) (-15 -4101 ((-1267) $)) (-15 -3216 ((-1267) $)) (-15 -1334 ((-1267) $)) (-15 -3079 ((-1267) $)) (-15 -4169 ((-1267) $)) (-15 -2948 ((-1267) $ (-564))) (-15 -3478 ((-1267) $ (-225))) (-15 -3903 ((-1267) $ (-1173))) (-15 -1448 ((-1267) $ (-1155))) (-15 -1562 ((-1267) $ (-1155) (-1155))) (-15 -3994 ((-1267) $)) (-15 -4248 ((-1267) $)) (-15 -1503 ((-1267) $)) (-15 -4039 ((-1267) $)) (-15 -2782 ((-1267) $)) (-15 -3863 ((-1267) $)) (-15 -3793 ((-1267) $)) (-15 -3577 ((-1267) $)) (-15 -3641 ((-1267) $)) (-15 -1532 ((-1267) $)) (-15 -2060 ((-1267) $)) (-15 -4333 ((-1267) $)) (-15 -3397 ((-1267) $)) (-15 -3143 ((-1267) $)) (-15 -3598 ((-564) $)) (-15 -3601 ((-225) $)) (-15 -3861 ((-1173) $)) (-15 -1967 ((-1155) $)) (-15 -3637 ((-2 (|:| |cd| (-1155)) (|:| -2493 (-1155))) $)) (-15 -3740 ((-1173) $)))) (T -820)) -((-3740 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-820)))) (-3637 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1155)) (|:| -2493 (-1155)))) (-5 *1 (-820)))) (-1967 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-820)))) (-3861 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-820)))) (-3601 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-820)))) (-3598 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-820)))) (-3143 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))) (-3397 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))) (-4333 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))) (-2060 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))) (-1532 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))) (-3641 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))) (-3577 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))) (-3793 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))) (-3863 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))) (-2782 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))) (-4039 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))) (-1503 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))) (-4248 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))) (-3994 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))) (-1562 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-820)))) (-1448 (*1 *2 *1 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-820)))) (-3903 (*1 *2 *1 *3) (-12 (-5 *3 (-1173)) (-5 *2 (-1267)) (-5 *1 (-820)))) (-3478 (*1 *2 *1 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1267)) (-5 *1 (-820)))) (-2948 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1267)) (-5 *1 (-820)))) (-4169 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))) (-3079 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))) (-1334 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))) (-3216 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))) (-4101 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))) (-2498 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))) (-1757 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))) (-2513 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))) (-4113 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))) (-2892 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))) (-4255 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))) (-2169 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))) (-2516 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))) (-3931 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))) (-2564 (*1 *2 *1 *3) (-12 (-5 *3 (-821)) (-5 *2 (-1267)) (-5 *1 (-820)))) (-1588 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))) (-2664 (*1 *1 *2 *3) (-12 (-5 *2 (-1155)) (-5 *3 (-821)) (-5 *1 (-820)))) (-2110 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1155)) (-5 *3 (-821)) (-5 *1 (-820))))) -(-10 -8 (-15 -2110 ($ (-1155) (-1155) (-821))) (-15 -2664 ($ (-1155) (-821))) (-15 -1588 ((-1267) $)) (-15 -2564 ((-1267) $ (-821))) (-15 -3931 ((-1267) $)) (-15 -2516 ((-1267) $)) (-15 -2169 ((-1267) $)) (-15 -4255 ((-1267) $)) (-15 -2892 ((-1267) $)) (-15 -4113 ((-1267) $)) (-15 -2513 ((-1267) $)) (-15 -1757 ((-1267) $)) (-15 -2498 ((-1267) $)) (-15 -4101 ((-1267) $)) (-15 -3216 ((-1267) $)) (-15 -1334 ((-1267) $)) (-15 -3079 ((-1267) $)) (-15 -4169 ((-1267) $)) (-15 -2948 ((-1267) $ (-564))) (-15 -3478 ((-1267) $ (-225))) (-15 -3903 ((-1267) $ (-1173))) (-15 -1448 ((-1267) $ (-1155))) (-15 -1562 ((-1267) $ (-1155) (-1155))) (-15 -3994 ((-1267) $)) (-15 -4248 ((-1267) $)) (-15 -1503 ((-1267) $)) (-15 -4039 ((-1267) $)) (-15 -2782 ((-1267) $)) (-15 -3863 ((-1267) $)) (-15 -3793 ((-1267) $)) (-15 -3577 ((-1267) $)) (-15 -3641 ((-1267) $)) (-15 -1532 ((-1267) $)) (-15 -2060 ((-1267) $)) (-15 -4333 ((-1267) $)) (-15 -3397 ((-1267) $)) (-15 -3143 ((-1267) $)) (-15 -3598 ((-564) $)) (-15 -3601 ((-225) $)) (-15 -3861 ((-1173) $)) (-15 -1967 ((-1155) $)) (-15 -3637 ((-2 (|:| |cd| (-1155)) (|:| -2493 (-1155))) $)) (-15 -3740 ((-1173) $))) -((-2856 (((-112) $ $) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) 13)) (-1600 (((-112) $ $) NIL)) (-1973 (($) 16)) (-1635 (($) 14)) (-2365 (($) 17)) (-3041 (($) 15)) (-2821 (((-112) $ $) 9))) -(((-821) (-13 (-1097) (-10 -8 (-15 -1635 ($)) (-15 -1973 ($)) (-15 -2365 ($)) (-15 -3041 ($))))) (T -821)) -((-1635 (*1 *1) (-5 *1 (-821))) (-1973 (*1 *1) (-5 *1 (-821))) (-2365 (*1 *1) (-5 *1 (-821))) (-3041 (*1 *1) (-5 *1 (-821)))) -(-13 (-1097) (-10 -8 (-15 -1635 ($)) (-15 -1973 ($)) (-15 -2365 ($)) (-15 -3041 ($)))) -((-2856 (((-112) $ $) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) 23) (($ (-1173)) 19)) (-1600 (((-112) $ $) NIL)) (-4379 (((-112) $) 10)) (-1752 (((-112) $) 9)) (-2115 (((-112) $) 11)) (-2379 (((-112) $) 8)) (-2821 (((-112) $ $) 21))) -(((-822) (-13 (-1097) (-10 -8 (-15 -2390 ($ (-1173))) (-15 -2379 ((-112) $)) (-15 -1752 ((-112) $)) (-15 -4379 ((-112) $)) (-15 -2115 ((-112) $))))) (T -822)) -((-2390 (*1 *1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-822)))) (-2379 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-822)))) (-1752 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-822)))) (-4379 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-822)))) (-2115 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-822))))) -(-13 (-1097) (-10 -8 (-15 -2390 ($ (-1173))) (-15 -2379 ((-112) $)) (-15 -1752 ((-112) $)) (-15 -4379 ((-112) $)) (-15 -2115 ((-112) $)))) -((-2856 (((-112) $ $) NIL)) (-4122 (($ (-822) (-642 (-1173))) 32)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2394 (((-822) $) 33)) (-1681 (((-642 (-1173)) $) 34)) (-2390 (((-860) $) 31)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-823) (-13 (-1097) (-10 -8 (-15 -2394 ((-822) $)) (-15 -1681 ((-642 (-1173)) $)) (-15 -4122 ($ (-822) (-642 (-1173))))))) (T -823)) -((-2394 (*1 *2 *1) (-12 (-5 *2 (-822)) (-5 *1 (-823)))) (-1681 (*1 *2 *1) (-12 (-5 *2 (-642 (-1173))) (-5 *1 (-823)))) (-4122 (*1 *1 *2 *3) (-12 (-5 *2 (-822)) (-5 *3 (-642 (-1173))) (-5 *1 (-823))))) -(-13 (-1097) (-10 -8 (-15 -2394 ((-822) $)) (-15 -1681 ((-642 (-1173)) $)) (-15 -4122 ($ (-822) (-642 (-1173)))))) -((-3816 (((-1267) (-820) (-316 |#1|) (-112)) 24) (((-1267) (-820) (-316 |#1|)) 90) (((-1155) (-316 |#1|) (-112)) 89) (((-1155) (-316 |#1|)) 88))) -(((-824 |#1|) (-10 -7 (-15 -3816 ((-1155) (-316 |#1|))) (-15 -3816 ((-1155) (-316 |#1|) (-112))) (-15 -3816 ((-1267) (-820) (-316 |#1|))) (-15 -3816 ((-1267) (-820) (-316 |#1|) (-112)))) (-13 (-826) (-1047))) (T -824)) -((-3816 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-820)) (-5 *4 (-316 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-826) (-1047))) (-5 *2 (-1267)) (-5 *1 (-824 *6)))) (-3816 (*1 *2 *3 *4) (-12 (-5 *3 (-820)) (-5 *4 (-316 *5)) (-4 *5 (-13 (-826) (-1047))) (-5 *2 (-1267)) (-5 *1 (-824 *5)))) (-3816 (*1 *2 *3 *4) (-12 (-5 *3 (-316 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-826) (-1047))) (-5 *2 (-1155)) (-5 *1 (-824 *5)))) (-3816 (*1 *2 *3) (-12 (-5 *3 (-316 *4)) (-4 *4 (-13 (-826) (-1047))) (-5 *2 (-1155)) (-5 *1 (-824 *4))))) -(-10 -7 (-15 -3816 ((-1155) (-316 |#1|))) (-15 -3816 ((-1155) (-316 |#1|) (-112))) (-15 -3816 ((-1267) (-820) (-316 |#1|))) (-15 -3816 ((-1267) (-820) (-316 |#1|) (-112)))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-3085 (((-3 $ "failed") $ $) NIL)) (-2822 (($) NIL T CONST)) (-3459 (($ $) NIL)) (-2675 (((-3 $ "failed") $) NIL)) (-3619 ((|#1| $) 10)) (-1637 (($ |#1|) 9)) (-3163 (((-112) $) NIL)) (-2374 (($ |#2| (-769)) NIL)) (-2887 (((-769) $) NIL)) (-2523 ((|#2| $) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2199 (($ $ (-769)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-3252 (((-769) $) NIL)) (-2390 (((-860) $) 17) (($ (-564)) NIL) (($ |#2|) NIL (|has| |#2| (-172)))) (-3005 ((|#2| $ (-769)) NIL)) (-3348 (((-769)) NIL T CONST)) (-1600 (((-112) $ $) NIL)) (-2361 (($) NIL T CONST)) (-2371 (($) NIL T CONST)) (-2711 (($ $ (-769)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-2821 (((-112) $ $) NIL)) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-825 |#1| |#2|) (-13 (-706 |#2|) (-10 -8 (IF (|has| |#1| (-233)) (-6 (-233)) |%noBranch|) (-15 -1637 ($ |#1|)) (-15 -3619 (|#1| $)))) (-706 |#2|) (-1047)) (T -825)) -((-1637 (*1 *1 *2) (-12 (-4 *3 (-1047)) (-5 *1 (-825 *2 *3)) (-4 *2 (-706 *3)))) (-3619 (*1 *2 *1) (-12 (-4 *2 (-706 *3)) (-5 *1 (-825 *2 *3)) (-4 *3 (-1047))))) -(-13 (-706 |#2|) (-10 -8 (IF (|has| |#1| (-233)) (-6 (-233)) |%noBranch|) (-15 -1637 ($ |#1|)) (-15 -3619 (|#1| $)))) -((-3816 (((-1267) (-820) $ (-112)) 9) (((-1267) (-820) $) 8) (((-1155) $ (-112)) 7) (((-1155) $) 6))) -(((-826) (-140)) (T -826)) -((-3816 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-826)) (-5 *3 (-820)) (-5 *4 (-112)) (-5 *2 (-1267)))) (-3816 (*1 *2 *3 *1) (-12 (-4 *1 (-826)) (-5 *3 (-820)) (-5 *2 (-1267)))) (-3816 (*1 *2 *1 *3) (-12 (-4 *1 (-826)) (-5 *3 (-112)) (-5 *2 (-1155)))) (-3816 (*1 *2 *1) (-12 (-4 *1 (-826)) (-5 *2 (-1155))))) -(-13 (-10 -8 (-15 -3816 ((-1155) $)) (-15 -3816 ((-1155) $ (-112))) (-15 -3816 ((-1267) (-820) $)) (-15 -3816 ((-1267) (-820) $ (-112))))) -((-1455 (((-312) (-1155) (-1155)) 12)) (-2518 (((-112) (-1155) (-1155)) 34)) (-3147 (((-112) (-1155)) 33)) (-1556 (((-52) (-1155)) 25)) (-3699 (((-52) (-1155)) 23)) (-1537 (((-52) (-820)) 17)) (-2901 (((-642 (-1155)) (-1155)) 28)) (-1836 (((-642 (-1155))) 27))) -(((-827) (-10 -7 (-15 -1537 ((-52) (-820))) (-15 -3699 ((-52) (-1155))) (-15 -1556 ((-52) (-1155))) (-15 -1836 ((-642 (-1155)))) (-15 -2901 ((-642 (-1155)) (-1155))) (-15 -3147 ((-112) (-1155))) (-15 -2518 ((-112) (-1155) (-1155))) (-15 -1455 ((-312) (-1155) (-1155))))) (T -827)) -((-1455 (*1 *2 *3 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-312)) (-5 *1 (-827)))) (-2518 (*1 *2 *3 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-112)) (-5 *1 (-827)))) (-3147 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-112)) (-5 *1 (-827)))) (-2901 (*1 *2 *3) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-827)) (-5 *3 (-1155)))) (-1836 (*1 *2) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-827)))) (-1556 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-52)) (-5 *1 (-827)))) (-3699 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-52)) (-5 *1 (-827)))) (-1537 (*1 *2 *3) (-12 (-5 *3 (-820)) (-5 *2 (-52)) (-5 *1 (-827))))) -(-10 -7 (-15 -1537 ((-52) (-820))) (-15 -3699 ((-52) (-1155))) (-15 -1556 ((-52) (-1155))) (-15 -1836 ((-642 (-1155)))) (-15 -2901 ((-642 (-1155)) (-1155))) (-15 -3147 ((-112) (-1155))) (-15 -2518 ((-112) (-1155) (-1155))) (-15 -1455 ((-312) (-1155) (-1155)))) -((-2856 (((-112) $ $) 19)) (-1700 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-3011 (($ $ $) 73)) (-2460 (((-112) $ $) 74)) (-3442 (((-112) $ (-769)) 8)) (-1740 (($ (-642 |#1|)) 69) (($) 68)) (-2438 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4410)))) (-3437 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4410)))) (-2822 (($) 7 T CONST)) (-2324 (($ $) 63)) (-4067 (($ $) 59 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-1927 (($ |#1| $) 48 (|has| $ (-6 -4410))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4410)))) (-2517 (($ |#1| $) 58 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4410)))) (-3741 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4410)))) (-2018 (((-642 |#1|) $) 31 (|has| $ (-6 -4410)))) (-1309 (((-112) $ $) 65)) (-3769 (((-112) $ (-769)) 9)) (-3225 ((|#1| $) 79)) (-4096 (($ $ $) 82)) (-2774 (($ $ $) 81)) (-3541 (((-642 |#1|) $) 30 (|has| $ (-6 -4410)))) (-2533 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-2903 ((|#1| $) 80)) (-1857 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#1| |#1|) $) 36)) (-4145 (((-112) $ (-769)) 10)) (-1778 (((-1155) $) 22)) (-2338 (($ $ $) 70)) (-3220 ((|#1| $) 40)) (-1668 (($ |#1| $) 41) (($ |#1| $ (-769)) 64)) (-3999 (((-1117) $) 21)) (-3183 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-4314 ((|#1| $) 42)) (-4094 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-2478 (((-112) $ $) 14)) (-4109 (((-112) $) 11)) (-2179 (($) 12)) (-3687 (((-642 (-2 (|:| -2683 |#1|) (|:| -4010 (-769)))) $) 62)) (-1411 (($ $ |#1|) 72) (($ $ $) 71)) (-2318 (($) 50) (($ (-642 |#1|)) 49)) (-4010 (((-769) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4410))) (((-769) |#1| $) 29 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3865 (($ $) 13)) (-3003 (((-536) $) 60 (|has| |#1| (-612 (-536))))) (-2401 (($ (-642 |#1|)) 51)) (-2390 (((-860) $) 18)) (-2321 (($ (-642 |#1|)) 67) (($) 66)) (-1600 (((-112) $ $) 23)) (-4160 (($ (-642 |#1|)) 43)) (-3295 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4410)))) (-2821 (((-112) $ $) 20)) (-2158 (((-769) $) 6 (|has| $ (-6 -4410))))) -(((-828 |#1|) (-140) (-848)) (T -828)) -((-3225 (*1 *2 *1) (-12 (-4 *1 (-828 *2)) (-4 *2 (-848))))) -(-13 (-734 |t#1|) (-966 |t#1|) (-10 -8 (-15 -3225 (|t#1| $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-611 (-860)) . T) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-235 |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-693 |#1|) . T) ((-734 |#1|) . T) ((-966 |#1|) . T) ((-1095 |#1|) . T) ((-1097) . T) ((-1212) . T)) -((-1344 (((-1267) (-1117) (-1117)) 48)) (-1801 (((-1267) (-819) (-52)) 45)) (-2062 (((-52) (-819)) 16))) -(((-829) (-10 -7 (-15 -2062 ((-52) (-819))) (-15 -1801 ((-1267) (-819) (-52))) (-15 -1344 ((-1267) (-1117) (-1117))))) (T -829)) -((-1344 (*1 *2 *3 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-1267)) (-5 *1 (-829)))) (-1801 (*1 *2 *3 *4) (-12 (-5 *3 (-819)) (-5 *4 (-52)) (-5 *2 (-1267)) (-5 *1 (-829)))) (-2062 (*1 *2 *3) (-12 (-5 *3 (-819)) (-5 *2 (-52)) (-5 *1 (-829))))) -(-10 -7 (-15 -2062 ((-52) (-819))) (-15 -1801 ((-1267) (-819) (-52))) (-15 -1344 ((-1267) (-1117) (-1117)))) -((-2947 (((-831 |#2|) (-1 |#2| |#1|) (-831 |#1|) (-831 |#2|)) 12) (((-831 |#2|) (-1 |#2| |#1|) (-831 |#1|)) 13))) -(((-830 |#1| |#2|) (-10 -7 (-15 -2947 ((-831 |#2|) (-1 |#2| |#1|) (-831 |#1|))) (-15 -2947 ((-831 |#2|) (-1 |#2| |#1|) (-831 |#1|) (-831 |#2|)))) (-1097) (-1097)) (T -830)) -((-2947 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-831 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-831 *5)) (-4 *5 (-1097)) (-4 *6 (-1097)) (-5 *1 (-830 *5 *6)))) (-2947 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-831 *5)) (-4 *5 (-1097)) (-4 *6 (-1097)) (-5 *2 (-831 *6)) (-5 *1 (-830 *5 *6))))) -(-10 -7 (-15 -2947 ((-831 |#2|) (-1 |#2| |#1|) (-831 |#1|))) (-15 -2947 ((-831 |#2|) (-1 |#2| |#1|) (-831 |#1|) (-831 |#2|)))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL (|has| |#1| (-21)))) (-3085 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2221 (((-564) $) NIL (|has| |#1| (-846)))) (-2822 (($) NIL (|has| |#1| (-21)) CONST)) (-2849 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1036 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1036 (-407 (-564))))) (((-3 |#1| "failed") $) 15)) (-1687 (((-564) $) NIL (|has| |#1| (-1036 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1036 (-407 (-564))))) ((|#1| $) 9)) (-2675 (((-3 $ "failed") $) 42 (|has| |#1| (-846)))) (-3227 (((-3 (-407 (-564)) "failed") $) 52 (|has| |#1| (-545)))) (-2929 (((-112) $) 46 (|has| |#1| (-545)))) (-3536 (((-407 (-564)) $) 49 (|has| |#1| (-545)))) (-3292 (((-112) $) NIL (|has| |#1| (-846)))) (-3163 (((-112) $) NIL (|has| |#1| (-846)))) (-2666 (((-112) $) NIL (|has| |#1| (-846)))) (-3225 (($ $ $) NIL (|has| |#1| (-846)))) (-2903 (($ $ $) NIL (|has| |#1| (-846)))) (-1778 (((-1155) $) NIL)) (-2846 (($) 13)) (-3318 (((-112) $) 12)) (-3999 (((-1117) $) NIL)) (-3334 (((-112) $) 11)) (-2390 (((-860) $) 18) (($ (-407 (-564))) NIL (|has| |#1| (-1036 (-407 (-564))))) (($ |#1|) 8) (($ (-564)) NIL (-2682 (|has| |#1| (-846)) (|has| |#1| (-1036 (-564)))))) (-3348 (((-769)) 36 (|has| |#1| (-846)) CONST)) (-1600 (((-112) $ $) 54)) (-1630 (($ $) NIL (|has| |#1| (-846)))) (-2361 (($) 23 (|has| |#1| (-21)) CONST)) (-2371 (($) 33 (|has| |#1| (-846)) CONST)) (-2881 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2857 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2821 (((-112) $ $) 21)) (-2868 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2844 (((-112) $ $) 45 (|has| |#1| (-846)))) (-2930 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 29 (|has| |#1| (-21)))) (-2917 (($ $ $) 31 (|has| |#1| (-21)))) (** (($ $ (-919)) NIL (|has| |#1| (-846))) (($ $ (-769)) NIL (|has| |#1| (-846)))) (* (($ $ $) 39 (|has| |#1| (-846))) (($ (-564) $) 27 (|has| |#1| (-21))) (($ (-769) $) NIL (|has| |#1| (-21))) (($ (-919) $) NIL (|has| |#1| (-21))))) -(((-831 |#1|) (-13 (-1097) (-411 |#1|) (-10 -8 (-15 -2846 ($)) (-15 -3334 ((-112) $)) (-15 -3318 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-846)) (-6 (-846)) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -2929 ((-112) $)) (-15 -3536 ((-407 (-564)) $)) (-15 -3227 ((-3 (-407 (-564)) "failed") $))) |%noBranch|))) (-1097)) (T -831)) -((-2846 (*1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-1097)))) (-3334 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-831 *3)) (-4 *3 (-1097)))) (-3318 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-831 *3)) (-4 *3 (-1097)))) (-2929 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-831 *3)) (-4 *3 (-545)) (-4 *3 (-1097)))) (-3536 (*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-831 *3)) (-4 *3 (-545)) (-4 *3 (-1097)))) (-3227 (*1 *2 *1) (|partial| -12 (-5 *2 (-407 (-564))) (-5 *1 (-831 *3)) (-4 *3 (-545)) (-4 *3 (-1097))))) -(-13 (-1097) (-411 |#1|) (-10 -8 (-15 -2846 ($)) (-15 -3334 ((-112) $)) (-15 -3318 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-846)) (-6 (-846)) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -2929 ((-112) $)) (-15 -3536 ((-407 (-564)) $)) (-15 -3227 ((-3 (-407 (-564)) "failed") $))) |%noBranch|))) -((-1462 (((-112) $ |#2|) 14)) (-2390 (((-860) $) 11))) -(((-832 |#1| |#2|) (-10 -8 (-15 -1462 ((-112) |#1| |#2|)) (-15 -2390 ((-860) |#1|))) (-833 |#2|) (-1097)) (T -832)) -NIL -(-10 -8 (-15 -1462 ((-112) |#1| |#2|)) (-15 -2390 ((-860) |#1|))) -((-2856 (((-112) $ $) 7)) (-2493 ((|#1| $) 16)) (-1778 (((-1155) $) 10)) (-1462 (((-112) $ |#1|) 14)) (-3999 (((-1117) $) 11)) (-2390 (((-860) $) 12)) (-1600 (((-112) $ $) 9)) (-2634 (((-55) $) 15)) (-2821 (((-112) $ $) 6))) -(((-833 |#1|) (-140) (-1097)) (T -833)) -((-2493 (*1 *2 *1) (-12 (-4 *1 (-833 *2)) (-4 *2 (-1097)))) (-2634 (*1 *2 *1) (-12 (-4 *1 (-833 *3)) (-4 *3 (-1097)) (-5 *2 (-55)))) (-1462 (*1 *2 *1 *3) (-12 (-4 *1 (-833 *3)) (-4 *3 (-1097)) (-5 *2 (-112))))) -(-13 (-1097) (-10 -8 (-15 -2493 (|t#1| $)) (-15 -2634 ((-55) $)) (-15 -1462 ((-112) $ |t#1|)))) -(((-102) . T) ((-611 (-860)) . T) ((-1097) . T)) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-3085 (((-3 $ "failed") $ $) NIL)) (-2822 (($) NIL T CONST)) (-2849 (((-3 |#1| "failed") $) NIL) (((-3 (-114) "failed") $) NIL)) (-1687 ((|#1| $) NIL) (((-114) $) NIL)) (-2675 (((-3 $ "failed") $) NIL)) (-2151 ((|#1| (-114) |#1|) NIL)) (-3163 (((-112) $) NIL)) (-2054 (($ |#1| (-361 (-114))) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2601 (($ $ (-1 |#1| |#1|)) NIL)) (-3549 (($ $ (-1 |#1| |#1|)) NIL)) (-4369 ((|#1| $ |#1|) NIL)) (-3709 ((|#1| |#1|) NIL (|has| |#1| (-172)))) (-2390 (((-860) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-114)) NIL)) (-3434 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3348 (((-769)) NIL T CONST)) (-1600 (((-112) $ $) NIL)) (-2594 (($ $) NIL (|has| |#1| (-172))) (($ $ $) NIL (|has| |#1| (-172)))) (-2361 (($) NIL T CONST)) (-2371 (($) NIL T CONST)) (-2821 (((-112) $ $) NIL)) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ (-114) (-564)) NIL) (($ $ (-564)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))))) -(((-834 |#1|) (-13 (-1047) (-1036 |#1|) (-1036 (-114)) (-286 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -2594 ($ $)) (-15 -2594 ($ $ $)) (-15 -3709 (|#1| |#1|))) |%noBranch|) (-15 -3549 ($ $ (-1 |#1| |#1|))) (-15 -2601 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-564))) (-15 ** ($ $ (-564))) (-15 -2151 (|#1| (-114) |#1|)) (-15 -2054 ($ |#1| (-361 (-114)))))) (-1047)) (T -834)) -((-2594 (*1 *1 *1) (-12 (-5 *1 (-834 *2)) (-4 *2 (-172)) (-4 *2 (-1047)))) (-2594 (*1 *1 *1 *1) (-12 (-5 *1 (-834 *2)) (-4 *2 (-172)) (-4 *2 (-1047)))) (-3709 (*1 *2 *2) (-12 (-5 *1 (-834 *2)) (-4 *2 (-172)) (-4 *2 (-1047)))) (-3549 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1047)) (-5 *1 (-834 *3)))) (-2601 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1047)) (-5 *1 (-834 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-564)) (-5 *1 (-834 *4)) (-4 *4 (-1047)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-834 *3)) (-4 *3 (-1047)))) (-2151 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-834 *2)) (-4 *2 (-1047)))) (-2054 (*1 *1 *2 *3) (-12 (-5 *3 (-361 (-114))) (-5 *1 (-834 *2)) (-4 *2 (-1047))))) -(-13 (-1047) (-1036 |#1|) (-1036 (-114)) (-286 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -2594 ($ $)) (-15 -2594 ($ $ $)) (-15 -3709 (|#1| |#1|))) |%noBranch|) (-15 -3549 ($ $ (-1 |#1| |#1|))) (-15 -2601 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-564))) (-15 ** ($ $ (-564))) (-15 -2151 (|#1| (-114) |#1|)) (-15 -2054 ($ |#1| (-361 (-114)))))) -((-2686 (((-214 (-502)) (-1155)) 9))) -(((-835) (-10 -7 (-15 -2686 ((-214 (-502)) (-1155))))) (T -835)) -((-2686 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-214 (-502))) (-5 *1 (-835))))) -(-10 -7 (-15 -2686 ((-214 (-502)) (-1155)))) -((-2856 (((-112) $ $) NIL)) (-2880 (((-1115) $) 10)) (-2493 (((-506) $) 9)) (-1778 (((-1155) $) NIL)) (-1462 (((-112) $ (-506)) NIL)) (-3999 (((-1117) $) NIL)) (-2401 (($ (-506) (-1115)) 8)) (-2390 (((-860) $) 25)) (-1600 (((-112) $ $) NIL)) (-2634 (((-55) $) 20)) (-2821 (((-112) $ $) 12))) -(((-836) (-13 (-833 (-506)) (-10 -8 (-15 -2880 ((-1115) $)) (-15 -2401 ($ (-506) (-1115)))))) (T -836)) -((-2880 (*1 *2 *1) (-12 (-5 *2 (-1115)) (-5 *1 (-836)))) (-2401 (*1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-1115)) (-5 *1 (-836))))) -(-13 (-833 (-506)) (-10 -8 (-15 -2880 ((-1115) $)) (-15 -2401 ($ (-506) (-1115))))) -((-2856 (((-112) $ $) 7)) (-1657 (((-1033) (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3910 (-642 (-225))))) 15) (((-1033) (-2 (|:| |fn| (-316 (-225))) (|:| -3910 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) 14)) (-4324 (((-2 (|:| -4324 (-379)) (|:| |explanations| (-1155))) (-1060) (-2 (|:| |fn| (-316 (-225))) (|:| -3910 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) 17) (((-2 (|:| -4324 (-379)) (|:| |explanations| (-1155))) (-1060) (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3910 (-642 (-225))))) 16)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2390 (((-860) $) 12)) (-1600 (((-112) $ $) 9)) (-2821 (((-112) $ $) 6))) -(((-837) (-140)) (T -837)) -((-4324 (*1 *2 *3 *4) (-12 (-4 *1 (-837)) (-5 *3 (-1060)) (-5 *4 (-2 (|:| |fn| (-316 (-225))) (|:| -3910 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) (-5 *2 (-2 (|:| -4324 (-379)) (|:| |explanations| (-1155)))))) (-4324 (*1 *2 *3 *4) (-12 (-4 *1 (-837)) (-5 *3 (-1060)) (-5 *4 (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3910 (-642 (-225))))) (-5 *2 (-2 (|:| -4324 (-379)) (|:| |explanations| (-1155)))))) (-1657 (*1 *2 *3) (-12 (-4 *1 (-837)) (-5 *3 (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3910 (-642 (-225))))) (-5 *2 (-1033)))) (-1657 (*1 *2 *3) (-12 (-4 *1 (-837)) (-5 *3 (-2 (|:| |fn| (-316 (-225))) (|:| -3910 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) (-5 *2 (-1033))))) -(-13 (-1097) (-10 -7 (-15 -4324 ((-2 (|:| -4324 (-379)) (|:| |explanations| (-1155))) (-1060) (-2 (|:| |fn| (-316 (-225))) (|:| -3910 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225))))))) (-15 -4324 ((-2 (|:| -4324 (-379)) (|:| |explanations| (-1155))) (-1060) (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3910 (-642 (-225)))))) (-15 -1657 ((-1033) (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3910 (-642 (-225)))))) (-15 -1657 ((-1033) (-2 (|:| |fn| (-316 (-225))) (|:| -3910 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225))))))))) -(((-102) . T) ((-611 (-860)) . T) ((-1097) . T)) -((-1839 (((-1033) (-642 (-316 (-379))) (-642 (-379))) 169) (((-1033) (-316 (-379)) (-642 (-379))) 167) (((-1033) (-316 (-379)) (-642 (-379)) (-642 (-841 (-379))) (-642 (-841 (-379)))) 165) (((-1033) (-316 (-379)) (-642 (-379)) (-642 (-841 (-379))) (-642 (-316 (-379))) (-642 (-841 (-379)))) 163) (((-1033) (-839)) 128) (((-1033) (-839) (-1060)) 127)) (-4324 (((-2 (|:| -4324 (-379)) (|:| -2493 (-1155)) (|:| |explanations| (-642 (-1155)))) (-839) (-1060)) 88) (((-2 (|:| -4324 (-379)) (|:| -2493 (-1155)) (|:| |explanations| (-642 (-1155)))) (-839)) 90)) (-1473 (((-1033) (-642 (-316 (-379))) (-642 (-379))) 170) (((-1033) (-839)) 153))) -(((-838) (-10 -7 (-15 -4324 ((-2 (|:| -4324 (-379)) (|:| -2493 (-1155)) (|:| |explanations| (-642 (-1155)))) (-839))) (-15 -4324 ((-2 (|:| -4324 (-379)) (|:| -2493 (-1155)) (|:| |explanations| (-642 (-1155)))) (-839) (-1060))) (-15 -1839 ((-1033) (-839) (-1060))) (-15 -1839 ((-1033) (-839))) (-15 -1473 ((-1033) (-839))) (-15 -1839 ((-1033) (-316 (-379)) (-642 (-379)) (-642 (-841 (-379))) (-642 (-316 (-379))) (-642 (-841 (-379))))) (-15 -1839 ((-1033) (-316 (-379)) (-642 (-379)) (-642 (-841 (-379))) (-642 (-841 (-379))))) (-15 -1839 ((-1033) (-316 (-379)) (-642 (-379)))) (-15 -1839 ((-1033) (-642 (-316 (-379))) (-642 (-379)))) (-15 -1473 ((-1033) (-642 (-316 (-379))) (-642 (-379)))))) (T -838)) -((-1473 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-316 (-379)))) (-5 *4 (-642 (-379))) (-5 *2 (-1033)) (-5 *1 (-838)))) (-1839 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-316 (-379)))) (-5 *4 (-642 (-379))) (-5 *2 (-1033)) (-5 *1 (-838)))) (-1839 (*1 *2 *3 *4) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-642 (-379))) (-5 *2 (-1033)) (-5 *1 (-838)))) (-1839 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-642 (-379))) (-5 *5 (-642 (-841 (-379)))) (-5 *2 (-1033)) (-5 *1 (-838)))) (-1839 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-642 (-379))) (-5 *5 (-642 (-841 (-379)))) (-5 *6 (-642 (-316 (-379)))) (-5 *3 (-316 (-379))) (-5 *2 (-1033)) (-5 *1 (-838)))) (-1473 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1033)) (-5 *1 (-838)))) (-1839 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1033)) (-5 *1 (-838)))) (-1839 (*1 *2 *3 *4) (-12 (-5 *3 (-839)) (-5 *4 (-1060)) (-5 *2 (-1033)) (-5 *1 (-838)))) (-4324 (*1 *2 *3 *4) (-12 (-5 *3 (-839)) (-5 *4 (-1060)) (-5 *2 (-2 (|:| -4324 (-379)) (|:| -2493 (-1155)) (|:| |explanations| (-642 (-1155))))) (-5 *1 (-838)))) (-4324 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-2 (|:| -4324 (-379)) (|:| -2493 (-1155)) (|:| |explanations| (-642 (-1155))))) (-5 *1 (-838))))) -(-10 -7 (-15 -4324 ((-2 (|:| -4324 (-379)) (|:| -2493 (-1155)) (|:| |explanations| (-642 (-1155)))) (-839))) (-15 -4324 ((-2 (|:| -4324 (-379)) (|:| -2493 (-1155)) (|:| |explanations| (-642 (-1155)))) (-839) (-1060))) (-15 -1839 ((-1033) (-839) (-1060))) (-15 -1839 ((-1033) (-839))) (-15 -1473 ((-1033) (-839))) (-15 -1839 ((-1033) (-316 (-379)) (-642 (-379)) (-642 (-841 (-379))) (-642 (-316 (-379))) (-642 (-841 (-379))))) (-15 -1839 ((-1033) (-316 (-379)) (-642 (-379)) (-642 (-841 (-379))) (-642 (-841 (-379))))) (-15 -1839 ((-1033) (-316 (-379)) (-642 (-379)))) (-15 -1839 ((-1033) (-642 (-316 (-379))) (-642 (-379)))) (-15 -1473 ((-1033) (-642 (-316 (-379))) (-642 (-379))))) -((-2856 (((-112) $ $) NIL)) (-1687 (((-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3910 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3910 (-642 (-225)))))) $) 21)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) 20) (($ (-2 (|:| |fn| (-316 (-225))) (|:| -3910 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) 14) (($ (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3910 (-642 (-225))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3910 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3910 (-642 (-225))))))) 18)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-839) (-13 (-1097) (-10 -8 (-15 -2390 ($ (-2 (|:| |fn| (-316 (-225))) (|:| -3910 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225))))))) (-15 -2390 ($ (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3910 (-642 (-225)))))) (-15 -2390 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3910 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3910 (-642 (-225)))))))) (-15 -1687 ((-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3910 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3910 (-642 (-225)))))) $))))) (T -839)) -((-2390 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-316 (-225))) (|:| -3910 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) (-5 *1 (-839)))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3910 (-642 (-225))))) (-5 *1 (-839)))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3910 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3910 (-642 (-225))))))) (-5 *1 (-839)))) (-1687 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3910 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3910 (-642 (-225))))))) (-5 *1 (-839))))) -(-13 (-1097) (-10 -8 (-15 -2390 ($ (-2 (|:| |fn| (-316 (-225))) (|:| -3910 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225))))))) (-15 -2390 ($ (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3910 (-642 (-225)))))) (-15 -2390 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3910 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3910 (-642 (-225)))))))) (-15 -1687 ((-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3910 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3910 (-642 (-225)))))) $)))) -((-2947 (((-841 |#2|) (-1 |#2| |#1|) (-841 |#1|) (-841 |#2|) (-841 |#2|)) 13) (((-841 |#2|) (-1 |#2| |#1|) (-841 |#1|)) 14))) -(((-840 |#1| |#2|) (-10 -7 (-15 -2947 ((-841 |#2|) (-1 |#2| |#1|) (-841 |#1|))) (-15 -2947 ((-841 |#2|) (-1 |#2| |#1|) (-841 |#1|) (-841 |#2|) (-841 |#2|)))) (-1097) (-1097)) (T -840)) -((-2947 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-841 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-841 *5)) (-4 *5 (-1097)) (-4 *6 (-1097)) (-5 *1 (-840 *5 *6)))) (-2947 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-841 *5)) (-4 *5 (-1097)) (-4 *6 (-1097)) (-5 *2 (-841 *6)) (-5 *1 (-840 *5 *6))))) -(-10 -7 (-15 -2947 ((-841 |#2|) (-1 |#2| |#1|) (-841 |#1|))) (-15 -2947 ((-841 |#2|) (-1 |#2| |#1|) (-841 |#1|) (-841 |#2|) (-841 |#2|)))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL (|has| |#1| (-21)))) (-1769 (((-1117) $) 31)) (-3085 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2221 (((-564) $) NIL (|has| |#1| (-846)))) (-2822 (($) NIL (|has| |#1| (-21)) CONST)) (-2849 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1036 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1036 (-407 (-564))))) (((-3 |#1| "failed") $) 18)) (-1687 (((-564) $) NIL (|has| |#1| (-1036 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1036 (-407 (-564))))) ((|#1| $) 9)) (-2675 (((-3 $ "failed") $) 58 (|has| |#1| (-846)))) (-3227 (((-3 (-407 (-564)) "failed") $) 65 (|has| |#1| (-545)))) (-2929 (((-112) $) 60 (|has| |#1| (-545)))) (-3536 (((-407 (-564)) $) 63 (|has| |#1| (-545)))) (-3292 (((-112) $) NIL (|has| |#1| (-846)))) (-2772 (($) 14)) (-3163 (((-112) $) NIL (|has| |#1| (-846)))) (-2666 (((-112) $) NIL (|has| |#1| (-846)))) (-2783 (($) 16)) (-3225 (($ $ $) NIL (|has| |#1| (-846)))) (-2903 (($ $ $) NIL (|has| |#1| (-846)))) (-1778 (((-1155) $) NIL)) (-3318 (((-112) $) 12)) (-3999 (((-1117) $) NIL)) (-3334 (((-112) $) 11)) (-2390 (((-860) $) 24) (($ (-407 (-564))) NIL (|has| |#1| (-1036 (-407 (-564))))) (($ |#1|) 8) (($ (-564)) NIL (-2682 (|has| |#1| (-846)) (|has| |#1| (-1036 (-564)))))) (-3348 (((-769)) 51 (|has| |#1| (-846)) CONST)) (-1600 (((-112) $ $) NIL)) (-1630 (($ $) NIL (|has| |#1| (-846)))) (-2361 (($) 37 (|has| |#1| (-21)) CONST)) (-2371 (($) 48 (|has| |#1| (-846)) CONST)) (-2881 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2857 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2821 (((-112) $ $) 35)) (-2868 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2844 (((-112) $ $) 59 (|has| |#1| (-846)))) (-2930 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 44 (|has| |#1| (-21)))) (-2917 (($ $ $) 46 (|has| |#1| (-21)))) (** (($ $ (-919)) NIL (|has| |#1| (-846))) (($ $ (-769)) NIL (|has| |#1| (-846)))) (* (($ $ $) 55 (|has| |#1| (-846))) (($ (-564) $) 42 (|has| |#1| (-21))) (($ (-769) $) NIL (|has| |#1| (-21))) (($ (-919) $) NIL (|has| |#1| (-21))))) -(((-841 |#1|) (-13 (-1097) (-411 |#1|) (-10 -8 (-15 -2772 ($)) (-15 -2783 ($)) (-15 -3334 ((-112) $)) (-15 -3318 ((-112) $)) (-15 -1769 ((-1117) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-846)) (-6 (-846)) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -2929 ((-112) $)) (-15 -3536 ((-407 (-564)) $)) (-15 -3227 ((-3 (-407 (-564)) "failed") $))) |%noBranch|))) (-1097)) (T -841)) -((-2772 (*1 *1) (-12 (-5 *1 (-841 *2)) (-4 *2 (-1097)))) (-2783 (*1 *1) (-12 (-5 *1 (-841 *2)) (-4 *2 (-1097)))) (-3334 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-841 *3)) (-4 *3 (-1097)))) (-3318 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-841 *3)) (-4 *3 (-1097)))) (-1769 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-841 *3)) (-4 *3 (-1097)))) (-2929 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-841 *3)) (-4 *3 (-545)) (-4 *3 (-1097)))) (-3536 (*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-841 *3)) (-4 *3 (-545)) (-4 *3 (-1097)))) (-3227 (*1 *2 *1) (|partial| -12 (-5 *2 (-407 (-564))) (-5 *1 (-841 *3)) (-4 *3 (-545)) (-4 *3 (-1097))))) -(-13 (-1097) (-411 |#1|) (-10 -8 (-15 -2772 ($)) (-15 -2783 ($)) (-15 -3334 ((-112) $)) (-15 -3318 ((-112) $)) (-15 -1769 ((-1117) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-846)) (-6 (-846)) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -2929 ((-112) $)) (-15 -3536 ((-407 (-564)) $)) (-15 -3227 ((-3 (-407 (-564)) "failed") $))) |%noBranch|))) -((-2856 (((-112) $ $) 7)) (-4003 (((-769)) 23)) (-3235 (($) 26)) (-3225 (($ $ $) 14) (($) 22 T CONST)) (-2903 (($ $ $) 15) (($) 21 T CONST)) (-2535 (((-919) $) 25)) (-1778 (((-1155) $) 10)) (-2065 (($ (-919)) 24)) (-3999 (((-1117) $) 11)) (-2390 (((-860) $) 12)) (-1600 (((-112) $ $) 9)) (-2881 (((-112) $ $) 17)) (-2857 (((-112) $ $) 18)) (-2821 (((-112) $ $) 6)) (-2868 (((-112) $ $) 16)) (-2844 (((-112) $ $) 19))) -(((-842) (-140)) (T -842)) -((-3225 (*1 *1) (-4 *1 (-842))) (-2903 (*1 *1) (-4 *1 (-842)))) -(-13 (-848) (-368) (-10 -8 (-15 -3225 ($) -1551) (-15 -2903 ($) -1551))) -(((-102) . T) ((-611 (-860)) . T) ((-368) . T) ((-848) . T) ((-1097) . T)) -((-2455 (((-112) (-1262 |#2|) (-1262 |#2|)) 23)) (-3367 (((-112) (-1262 |#2|) (-1262 |#2|)) 24)) (-4165 (((-112) (-1262 |#2|) (-1262 |#2|)) 20))) -(((-843 |#1| |#2|) (-10 -7 (-15 -4165 ((-112) (-1262 |#2|) (-1262 |#2|))) (-15 -2455 ((-112) (-1262 |#2|) (-1262 |#2|))) (-15 -3367 ((-112) (-1262 |#2|) (-1262 |#2|)))) (-769) (-790)) (T -843)) -((-3367 (*1 *2 *3 *3) (-12 (-5 *3 (-1262 *5)) (-4 *5 (-790)) (-5 *2 (-112)) (-5 *1 (-843 *4 *5)) (-14 *4 (-769)))) (-2455 (*1 *2 *3 *3) (-12 (-5 *3 (-1262 *5)) (-4 *5 (-790)) (-5 *2 (-112)) (-5 *1 (-843 *4 *5)) (-14 *4 (-769)))) (-4165 (*1 *2 *3 *3) (-12 (-5 *3 (-1262 *5)) (-4 *5 (-790)) (-5 *2 (-112)) (-5 *1 (-843 *4 *5)) (-14 *4 (-769))))) -(-10 -7 (-15 -4165 ((-112) (-1262 |#2|) (-1262 |#2|))) (-15 -2455 ((-112) (-1262 |#2|) (-1262 |#2|))) (-15 -3367 ((-112) (-1262 |#2|) (-1262 |#2|)))) -((-2856 (((-112) $ $) 7)) (-2822 (($) 24 T CONST)) (-2675 (((-3 $ "failed") $) 27)) (-3163 (((-112) $) 25)) (-3225 (($ $ $) 14)) (-2903 (($ $ $) 15)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2390 (((-860) $) 12)) (-1600 (((-112) $ $) 9)) (-2371 (($) 23 T CONST)) (-2881 (((-112) $ $) 17)) (-2857 (((-112) $ $) 18)) (-2821 (((-112) $ $) 6)) (-2868 (((-112) $ $) 16)) (-2844 (((-112) $ $) 19)) (** (($ $ (-919)) 22) (($ $ (-769)) 26)) (* (($ $ $) 21))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-1787 (((-644 (-771)) $) NIL) (((-644 (-771)) $ (-1175)) NIL)) (-2639 (((-771) $) NIL) (((-771) $ (-1175)) NIL)) (-2485 (((-644 (-818 (-1175))) $) NIL)) (-2285 (((-1171 $) $ (-818 (-1175))) NIL) (((-1171 |#1|) $) NIL)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-3087 (($ $) NIL (|has| |#1| (-558)))) (-1716 (((-112) $) NIL (|has| |#1| (-558)))) (-2917 (((-771) $) NIL) (((-771) $ (-644 (-818 (-1175)))) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-4058 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-3980 (($ $) NIL (|has| |#1| (-454)))) (-3348 (((-420 $) $) NIL (|has| |#1| (-454)))) (-4262 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-1364 (($ $) NIL)) (-1811 (($) NIL T CONST)) (-2980 (((-3 |#1| "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-818 (-1175)) "failed") $) NIL) (((-3 (-1175) "failed") $) NIL) (((-3 (-1124 |#1| (-1175)) "failed") $) NIL)) (-1709 ((|#1| $) NIL) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-818 (-1175)) $) NIL) (((-1175) $) NIL) (((-1124 |#1| (-1175)) $) NIL)) (-4343 (($ $ $ (-818 (-1175))) NIL (|has| |#1| (-172)))) (-3565 (($ $) NIL)) (-2275 (((-689 (-566)) (-689 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -4196 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) NIL) (((-689 |#1|) (-689 $)) NIL)) (-3757 (((-3 $ "failed") $) NIL)) (-3530 (($ $) NIL (|has| |#1| (-454))) (($ $ (-818 (-1175))) NIL (|has| |#1| (-454)))) (-3551 (((-644 $) $) NIL)) (-4188 (((-112) $) NIL (|has| |#1| (-909)))) (-3995 (($ $ |#1| (-533 (-818 (-1175))) $) NIL)) (-1542 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| (-818 (-1175)) (-886 (-381))) (|has| |#1| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| (-818 (-1175)) (-886 (-566))) (|has| |#1| (-886 (-566)))))) (-1802 (((-771) $ (-1175)) NIL) (((-771) $) NIL)) (-2264 (((-112) $) NIL)) (-3486 (((-771) $) NIL)) (-2474 (($ (-1171 |#1|) (-818 (-1175))) NIL) (($ (-1171 $) (-818 (-1175))) NIL)) (-1545 (((-644 $) $) NIL)) (-3989 (((-112) $) NIL)) (-2463 (($ |#1| (-533 (-818 (-1175)))) NIL) (($ $ (-818 (-1175)) (-771)) NIL) (($ $ (-644 (-818 (-1175))) (-644 (-771))) NIL)) (-2235 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $ (-818 (-1175))) NIL)) (-2584 (((-533 (-818 (-1175))) $) NIL) (((-771) $ (-818 (-1175))) NIL) (((-644 (-771)) $ (-644 (-818 (-1175)))) NIL)) (-3327 (($ (-1 (-533 (-818 (-1175))) (-533 (-818 (-1175)))) $) NIL)) (-3080 (($ (-1 |#1| |#1|) $) NIL)) (-1859 (((-1 $ (-771)) (-1175)) NIL) (((-1 $ (-771)) $) NIL (|has| |#1| (-233)))) (-2673 (((-3 (-818 (-1175)) "failed") $) NIL)) (-2608 (($ $) NIL)) (-2622 ((|#1| $) NIL)) (-3292 (((-818 (-1175)) $) NIL)) (-2120 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-3151 (((-1157) $) NIL)) (-4277 (((-112) $) NIL)) (-4075 (((-3 (-644 $) "failed") $) NIL)) (-3380 (((-3 (-644 $) "failed") $) NIL)) (-2414 (((-3 (-2 (|:| |var| (-818 (-1175))) (|:| -3631 (-771))) "failed") $) NIL)) (-1823 (($ $) NIL)) (-4059 (((-1119) $) NIL)) (-2587 (((-112) $) NIL)) (-2597 ((|#1| $) NIL)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-454)))) (-2162 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-1500 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-3917 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-2325 (((-420 $) $) NIL (|has| |#1| (-909)))) (-2976 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-3297 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-818 (-1175)) |#1|) NIL) (($ $ (-644 (-818 (-1175))) (-644 |#1|)) NIL) (($ $ (-818 (-1175)) $) NIL) (($ $ (-644 (-818 (-1175))) (-644 $)) NIL) (($ $ (-1175) $) NIL (|has| |#1| (-233))) (($ $ (-644 (-1175)) (-644 $)) NIL (|has| |#1| (-233))) (($ $ (-1175) |#1|) NIL (|has| |#1| (-233))) (($ $ (-644 (-1175)) (-644 |#1|)) NIL (|has| |#1| (-233)))) (-3553 (($ $ (-818 (-1175))) NIL (|has| |#1| (-172)))) (-3526 (($ $ (-818 (-1175))) NIL) (($ $ (-644 (-818 (-1175)))) NIL) (($ $ (-818 (-1175)) (-771)) NIL) (($ $ (-644 (-818 (-1175))) (-644 (-771))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-771)) NIL (|has| |#1| (-233))) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3007 (((-644 (-1175)) $) NIL)) (-1630 (((-533 (-818 (-1175))) $) NIL) (((-771) $ (-818 (-1175))) NIL) (((-644 (-771)) $ (-644 (-818 (-1175)))) NIL) (((-771) $ (-1175)) NIL)) (-3136 (((-892 (-381)) $) NIL (-12 (|has| (-818 (-1175)) (-614 (-892 (-381)))) (|has| |#1| (-614 (-892 (-381)))))) (((-892 (-566)) $) NIL (-12 (|has| (-818 (-1175)) (-614 (-892 (-566)))) (|has| |#1| (-614 (-892 (-566)))))) (((-538) $) NIL (-12 (|has| (-818 (-1175)) (-614 (-538))) (|has| |#1| (-614 (-538)))))) (-2252 ((|#1| $) NIL (|has| |#1| (-454))) (($ $ (-818 (-1175))) NIL (|has| |#1| (-454)))) (-3233 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-909))))) (-2479 (((-862) $) NIL) (($ (-566)) NIL) (($ |#1|) NIL) (($ (-818 (-1175))) NIL) (($ (-1175)) NIL) (($ (-1124 |#1| (-1175))) NIL) (($ (-409 (-566))) NIL (-2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566)))))) (($ $) NIL (|has| |#1| (-558)))) (-3866 (((-644 |#1|) $) NIL)) (-3025 ((|#1| $ (-533 (-818 (-1175)))) NIL) (($ $ (-818 (-1175)) (-771)) NIL) (($ $ (-644 (-818 (-1175))) (-644 (-771))) NIL)) (-2645 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| $ (-145)) (|has| |#1| (-909))) (|has| |#1| (-145))))) (-1558 (((-771)) NIL T CONST)) (-2244 (($ $ $ (-771)) NIL (|has| |#1| (-172)))) (-3900 (((-112) $ $) NIL)) (-1333 (((-112) $ $) NIL (|has| |#1| (-558)))) (-2446 (($) NIL T CONST)) (-2459 (($) NIL T CONST)) (-2834 (($ $ (-818 (-1175))) NIL) (($ $ (-644 (-818 (-1175)))) NIL) (($ $ (-818 (-1175)) (-771)) NIL) (($ $ (-644 (-818 (-1175))) (-644 (-771))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-771)) NIL (|has| |#1| (-233))) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2952 (((-112) $ $) NIL)) (-3077 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-816 |#1|) (-13 (-254 |#1| (-1175) (-818 (-1175)) (-533 (-818 (-1175)))) (-1038 (-1124 |#1| (-1175)))) (-1049)) (T -816)) +NIL +(-13 (-254 |#1| (-1175) (-818 (-1175)) (-533 (-818 (-1175)))) (-1038 (-1124 |#1| (-1175)))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (|has| |#2| (-365)))) (-3087 (($ $) NIL (|has| |#2| (-365)))) (-1716 (((-112) $) NIL (|has| |#2| (-365)))) (-3174 (((-3 $ "failed") $ $) NIL)) (-3980 (($ $) NIL (|has| |#2| (-365)))) (-3348 (((-420 $) $) NIL (|has| |#2| (-365)))) (-2761 (((-112) $ $) NIL (|has| |#2| (-365)))) (-1811 (($) NIL T CONST)) (-2925 (($ $ $) NIL (|has| |#2| (-365)))) (-3757 (((-3 $ "failed") $) NIL)) (-2937 (($ $ $) NIL (|has| |#2| (-365)))) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) NIL (|has| |#2| (-365)))) (-4188 (((-112) $) NIL (|has| |#2| (-365)))) (-2264 (((-112) $) NIL)) (-2495 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#2| (-365)))) (-2120 (($ (-644 $)) NIL (|has| |#2| (-365))) (($ $ $) NIL (|has| |#2| (-365)))) (-3151 (((-1157) $) NIL)) (-2577 (($ $) 20 (|has| |#2| (-365)))) (-4059 (((-1119) $) NIL)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#2| (-365)))) (-2162 (($ (-644 $)) NIL (|has| |#2| (-365))) (($ $ $) NIL (|has| |#2| (-365)))) (-2325 (((-420 $) $) NIL (|has| |#2| (-365)))) (-2585 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL (|has| |#2| (-365)))) (-2976 (((-3 $ "failed") $ $) NIL (|has| |#2| (-365)))) (-2840 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#2| (-365)))) (-1383 (((-771) $) NIL (|has| |#2| (-365)))) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL (|has| |#2| (-365)))) (-3526 (($ $ (-771)) NIL) (($ $) 13)) (-2479 (((-862) $) NIL) (($ (-566)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-409 (-566))) NIL (|has| |#2| (-365))) (($ $) NIL (|has| |#2| (-365)))) (-1558 (((-771)) NIL T CONST)) (-3900 (((-112) $ $) NIL)) (-1333 (((-112) $ $) NIL (|has| |#2| (-365)))) (-2446 (($) NIL T CONST)) (-2459 (($) NIL T CONST)) (-2834 (($ $ (-771)) NIL) (($ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3077 (($ $ $) 15 (|has| |#2| (-365)))) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) NIL)) (** (($ $ (-771)) NIL) (($ $ (-921)) NIL) (($ $ (-566)) 18 (|has| |#2| (-365)))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-409 (-566)) $) NIL (|has| |#2| (-365))) (($ $ (-409 (-566))) NIL (|has| |#2| (-365))))) +(((-817 |#1| |#2| |#3|) (-13 (-111 $ $) (-233) (-492 |#2|) (-10 -7 (IF (|has| |#2| (-365)) (-6 (-365)) |%noBranch|))) (-1099) (-900 |#1|) |#1|) (T -817)) +NIL +(-13 (-111 $ $) (-233) (-492 |#2|) (-10 -7 (IF (|has| |#2| (-365)) (-6 (-365)) |%noBranch|))) +((-2986 (((-112) $ $) NIL)) (-2639 (((-771) $) NIL)) (-1338 ((|#1| $) 10)) (-2980 (((-3 |#1| "failed") $) NIL)) (-1709 ((|#1| $) NIL)) (-1802 (((-771) $) 11)) (-1920 (($ $ $) NIL)) (-3038 (($ $ $) NIL)) (-1859 (($ |#1| (-771)) 9)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-3526 (($ $) NIL) (($ $ (-771)) NIL)) (-2479 (((-862) $) NIL) (($ |#1|) NIL)) (-3900 (((-112) $ $) NIL)) (-3019 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3004 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL))) +(((-818 |#1|) (-267 |#1|) (-850)) (T -818)) +NIL +(-267 |#1|) +((-2986 (((-112) $ $) NIL)) (-1656 (((-644 |#1|) $) 38)) (-4049 (((-771) $) NIL)) (-1811 (($) NIL T CONST)) (-3506 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 28)) (-2980 (((-3 |#1| "failed") $) NIL)) (-1709 ((|#1| $) NIL)) (-4091 (($ $) 42)) (-3757 (((-3 $ "failed") $) NIL)) (-4089 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-2264 (((-112) $) NIL)) (-2294 ((|#1| $ (-566)) NIL)) (-3198 (((-771) $ (-566)) NIL)) (-3768 (($ $) 54)) (-1920 (($ $ $) NIL)) (-3038 (($ $ $) NIL)) (-4087 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 25)) (-2861 (((-112) $ $) 51)) (-4332 (((-771) $) 34)) (-3151 (((-1157) $) NIL)) (-1641 (($ $ $) NIL)) (-2662 (($ $ $) NIL)) (-4059 (((-1119) $) NIL)) (-4080 ((|#1| $) 41)) (-3445 (((-644 (-2 (|:| |gen| |#1|) (|:| -3571 (-771)))) $) NIL)) (-2962 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2479 (((-862) $) NIL) (($ |#1|) NIL)) (-3900 (((-112) $ $) NIL)) (-2459 (($) 20 T CONST)) (-3019 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3004 (((-112) $ $) NIL)) (-2977 (((-112) $ $) 53)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ |#1| (-771)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-819 |#1|) (-13 (-846) (-1038 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-771))) (-15 -4080 (|#1| $)) (-15 -4091 ($ $)) (-15 -3768 ($ $)) (-15 -2861 ((-112) $ $)) (-15 -2662 ($ $ $)) (-15 -1641 ($ $ $)) (-15 -4087 ((-3 $ "failed") $ $)) (-15 -3506 ((-3 $ "failed") $ $)) (-15 -4087 ((-3 $ "failed") $ |#1|)) (-15 -3506 ((-3 $ "failed") $ |#1|)) (-15 -2962 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4089 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -4049 ((-771) $)) (-15 -3198 ((-771) $ (-566))) (-15 -2294 (|#1| $ (-566))) (-15 -3445 ((-644 (-2 (|:| |gen| |#1|) (|:| -3571 (-771)))) $)) (-15 -4332 ((-771) $)) (-15 -1656 ((-644 |#1|) $)))) (-850)) (T -819)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-771)) (-5 *1 (-819 *2)) (-4 *2 (-850)))) (-4080 (*1 *2 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) (-4091 (*1 *1 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) (-3768 (*1 *1 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) (-2861 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-819 *3)) (-4 *3 (-850)))) (-2662 (*1 *1 *1 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) (-1641 (*1 *1 *1 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) (-4087 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) (-3506 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) (-4087 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) (-3506 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) (-2962 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-819 *3)) (|:| |rm| (-819 *3)))) (-5 *1 (-819 *3)) (-4 *3 (-850)))) (-4089 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-819 *3)) (|:| |mm| (-819 *3)) (|:| |rm| (-819 *3)))) (-5 *1 (-819 *3)) (-4 *3 (-850)))) (-4049 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-819 *3)) (-4 *3 (-850)))) (-3198 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *2 (-771)) (-5 *1 (-819 *4)) (-4 *4 (-850)))) (-2294 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *1 (-819 *2)) (-4 *2 (-850)))) (-3445 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |gen| *3) (|:| -3571 (-771))))) (-5 *1 (-819 *3)) (-4 *3 (-850)))) (-4332 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-819 *3)) (-4 *3 (-850)))) (-1656 (*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-819 *3)) (-4 *3 (-850))))) +(-13 (-846) (-1038 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-771))) (-15 -4080 (|#1| $)) (-15 -4091 ($ $)) (-15 -3768 ($ $)) (-15 -2861 ((-112) $ $)) (-15 -2662 ($ $ $)) (-15 -1641 ($ $ $)) (-15 -4087 ((-3 $ "failed") $ $)) (-15 -3506 ((-3 $ "failed") $ $)) (-15 -4087 ((-3 $ "failed") $ |#1|)) (-15 -3506 ((-3 $ "failed") $ |#1|)) (-15 -2962 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4089 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -4049 ((-771) $)) (-15 -3198 ((-771) $ (-566))) (-15 -2294 (|#1| $ (-566))) (-15 -3445 ((-644 (-2 (|:| |gen| |#1|) (|:| -3571 (-771)))) $)) (-15 -4332 ((-771) $)) (-15 -1656 ((-644 |#1|) $)))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) 47)) (-3087 (($ $) 46)) (-1716 (((-112) $) 44)) (-3174 (((-3 $ "failed") $ $) 20)) (-2920 (((-566) $) 59)) (-1811 (($) 18 T CONST)) (-3757 (((-3 $ "failed") $) 37)) (-2133 (((-112) $) 57)) (-2264 (((-112) $) 35)) (-3420 (((-112) $) 58)) (-1920 (($ $ $) 56)) (-3038 (($ $ $) 55)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-2976 (((-3 $ "failed") $ $) 48)) (-2479 (((-862) $) 12) (($ (-566)) 33) (($ $) 49)) (-1558 (((-771)) 32 T CONST)) (-3900 (((-112) $ $) 9)) (-1333 (((-112) $ $) 45)) (-4298 (($ $) 60)) (-2446 (($) 19 T CONST)) (-2459 (($) 34 T CONST)) (-3019 (((-112) $ $) 53)) (-2990 (((-112) $ $) 52)) (-2952 (((-112) $ $) 6)) (-3004 (((-112) $ $) 54)) (-2977 (((-112) $ $) 51)) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27))) +(((-820) (-140)) (T -820)) +NIL +(-13 (-558) (-848)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-616 (-566)) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-291) . T) ((-558) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 $) . T) ((-640 $) . T) ((-717 $) . T) ((-726) . T) ((-791) . T) ((-792) . T) ((-794) . T) ((-795) . T) ((-848) . T) ((-850) . T) ((-1051 $) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) +((-1314 (($ (-1119)) 7)) (-2194 (((-112) $ (-1157) (-1119)) 15)) (-2996 (((-822) $) 12)) (-1714 (((-822) $) 11)) (-2432 (((-1269) $) 9)) (-2973 (((-112) $ (-1119)) 16))) +(((-821) (-10 -8 (-15 -1314 ($ (-1119))) (-15 -2432 ((-1269) $)) (-15 -1714 ((-822) $)) (-15 -2996 ((-822) $)) (-15 -2194 ((-112) $ (-1157) (-1119))) (-15 -2973 ((-112) $ (-1119))))) (T -821)) +((-2973 (*1 *2 *1 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-112)) (-5 *1 (-821)))) (-2194 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1157)) (-5 *4 (-1119)) (-5 *2 (-112)) (-5 *1 (-821)))) (-2996 (*1 *2 *1) (-12 (-5 *2 (-822)) (-5 *1 (-821)))) (-1714 (*1 *2 *1) (-12 (-5 *2 (-822)) (-5 *1 (-821)))) (-2432 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-821)))) (-1314 (*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-821))))) +(-10 -8 (-15 -1314 ($ (-1119))) (-15 -2432 ((-1269) $)) (-15 -1714 ((-822) $)) (-15 -2996 ((-822) $)) (-15 -2194 ((-112) $ (-1157) (-1119))) (-15 -2973 ((-112) $ (-1119)))) +((-1951 (((-1269) $ (-823)) 12)) (-1491 (((-1269) $ (-1175)) 32)) (-3450 (((-1269) $ (-1157) (-1157)) 34)) (-3055 (((-1269) $ (-1157)) 33)) (-3581 (((-1269) $) 19)) (-3241 (((-1269) $ (-566)) 28)) (-1302 (((-1269) $ (-225)) 30)) (-1301 (((-1269) $) 18)) (-1365 (((-1269) $) 26)) (-1839 (((-1269) $) 25)) (-4026 (((-1269) $) 23)) (-4302 (((-1269) $) 24)) (-1394 (((-1269) $) 22)) (-1740 (((-1269) $) 21)) (-1635 (((-1269) $) 20)) (-1753 (((-1269) $) 16)) (-2420 (((-1269) $) 17)) (-2022 (((-1269) $) 15)) (-2005 (((-1269) $) 14)) (-1966 (((-1269) $) 13)) (-3210 (($ (-1157) (-823)) 9)) (-3063 (($ (-1157) (-1157) (-823)) 8)) (-3811 (((-1175) $) 51)) (-3614 (((-1175) $) 55)) (-3457 (((-2 (|:| |cd| (-1157)) (|:| -2598 (-1157))) $) 54)) (-4246 (((-1157) $) 52)) (-1970 (((-1269) $) 41)) (-1336 (((-566) $) 49)) (-2118 (((-225) $) 50)) (-2897 (((-1269) $) 40)) (-2629 (((-1269) $) 48)) (-2505 (((-1269) $) 47)) (-3081 (((-1269) $) 45)) (-4173 (((-1269) $) 46)) (-3821 (((-1269) $) 44)) (-4352 (((-1269) $) 43)) (-1329 (((-1269) $) 42)) (-3777 (((-1269) $) 38)) (-2230 (((-1269) $) 39)) (-4180 (((-1269) $) 37)) (-2330 (((-1269) $) 36)) (-3675 (((-1269) $) 35)) (-2130 (((-1269) $) 11))) +(((-822) (-10 -8 (-15 -3063 ($ (-1157) (-1157) (-823))) (-15 -3210 ($ (-1157) (-823))) (-15 -2130 ((-1269) $)) (-15 -1951 ((-1269) $ (-823))) (-15 -1966 ((-1269) $)) (-15 -2005 ((-1269) $)) (-15 -2022 ((-1269) $)) (-15 -1753 ((-1269) $)) (-15 -2420 ((-1269) $)) (-15 -1301 ((-1269) $)) (-15 -3581 ((-1269) $)) (-15 -1635 ((-1269) $)) (-15 -1740 ((-1269) $)) (-15 -1394 ((-1269) $)) (-15 -4026 ((-1269) $)) (-15 -4302 ((-1269) $)) (-15 -1839 ((-1269) $)) (-15 -1365 ((-1269) $)) (-15 -3241 ((-1269) $ (-566))) (-15 -1302 ((-1269) $ (-225))) (-15 -1491 ((-1269) $ (-1175))) (-15 -3055 ((-1269) $ (-1157))) (-15 -3450 ((-1269) $ (-1157) (-1157))) (-15 -3675 ((-1269) $)) (-15 -2330 ((-1269) $)) (-15 -4180 ((-1269) $)) (-15 -3777 ((-1269) $)) (-15 -2230 ((-1269) $)) (-15 -2897 ((-1269) $)) (-15 -1970 ((-1269) $)) (-15 -1329 ((-1269) $)) (-15 -4352 ((-1269) $)) (-15 -3821 ((-1269) $)) (-15 -3081 ((-1269) $)) (-15 -4173 ((-1269) $)) (-15 -2505 ((-1269) $)) (-15 -2629 ((-1269) $)) (-15 -1336 ((-566) $)) (-15 -2118 ((-225) $)) (-15 -3811 ((-1175) $)) (-15 -4246 ((-1157) $)) (-15 -3457 ((-2 (|:| |cd| (-1157)) (|:| -2598 (-1157))) $)) (-15 -3614 ((-1175) $)))) (T -822)) +((-3614 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-822)))) (-3457 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1157)) (|:| -2598 (-1157)))) (-5 *1 (-822)))) (-4246 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-822)))) (-3811 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-822)))) (-2118 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-822)))) (-1336 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-822)))) (-2629 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-2505 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-4173 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-3081 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-3821 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-4352 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-1329 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-1970 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-2897 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-2230 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-3777 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-4180 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-2330 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-3675 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-3450 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-822)))) (-3055 (*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-822)))) (-1491 (*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1269)) (-5 *1 (-822)))) (-1302 (*1 *2 *1 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1269)) (-5 *1 (-822)))) (-3241 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *2 (-1269)) (-5 *1 (-822)))) (-1365 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-1839 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-4302 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-4026 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-1394 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-1740 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-1635 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-3581 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-1301 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-2420 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-1753 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-2022 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-2005 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-1966 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-1951 (*1 *2 *1 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1269)) (-5 *1 (-822)))) (-2130 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-3210 (*1 *1 *2 *3) (-12 (-5 *2 (-1157)) (-5 *3 (-823)) (-5 *1 (-822)))) (-3063 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1157)) (-5 *3 (-823)) (-5 *1 (-822))))) +(-10 -8 (-15 -3063 ($ (-1157) (-1157) (-823))) (-15 -3210 ($ (-1157) (-823))) (-15 -2130 ((-1269) $)) (-15 -1951 ((-1269) $ (-823))) (-15 -1966 ((-1269) $)) (-15 -2005 ((-1269) $)) (-15 -2022 ((-1269) $)) (-15 -1753 ((-1269) $)) (-15 -2420 ((-1269) $)) (-15 -1301 ((-1269) $)) (-15 -3581 ((-1269) $)) (-15 -1635 ((-1269) $)) (-15 -1740 ((-1269) $)) (-15 -1394 ((-1269) $)) (-15 -4026 ((-1269) $)) (-15 -4302 ((-1269) $)) (-15 -1839 ((-1269) $)) (-15 -1365 ((-1269) $)) (-15 -3241 ((-1269) $ (-566))) (-15 -1302 ((-1269) $ (-225))) (-15 -1491 ((-1269) $ (-1175))) (-15 -3055 ((-1269) $ (-1157))) (-15 -3450 ((-1269) $ (-1157) (-1157))) (-15 -3675 ((-1269) $)) (-15 -2330 ((-1269) $)) (-15 -4180 ((-1269) $)) (-15 -3777 ((-1269) $)) (-15 -2230 ((-1269) $)) (-15 -2897 ((-1269) $)) (-15 -1970 ((-1269) $)) (-15 -1329 ((-1269) $)) (-15 -4352 ((-1269) $)) (-15 -3821 ((-1269) $)) (-15 -3081 ((-1269) $)) (-15 -4173 ((-1269) $)) (-15 -2505 ((-1269) $)) (-15 -2629 ((-1269) $)) (-15 -1336 ((-566) $)) (-15 -2118 ((-225) $)) (-15 -3811 ((-1175) $)) (-15 -4246 ((-1157) $)) (-15 -3457 ((-2 (|:| |cd| (-1157)) (|:| -2598 (-1157))) $)) (-15 -3614 ((-1175) $))) +((-2986 (((-112) $ $) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) 13)) (-3900 (((-112) $ $) NIL)) (-1513 (($) 16)) (-2594 (($) 14)) (-1371 (($) 17)) (-3265 (($) 15)) (-2952 (((-112) $ $) 9))) +(((-823) (-13 (-1099) (-10 -8 (-15 -2594 ($)) (-15 -1513 ($)) (-15 -1371 ($)) (-15 -3265 ($))))) (T -823)) +((-2594 (*1 *1) (-5 *1 (-823))) (-1513 (*1 *1) (-5 *1 (-823))) (-1371 (*1 *1) (-5 *1 (-823))) (-3265 (*1 *1) (-5 *1 (-823)))) +(-13 (-1099) (-10 -8 (-15 -2594 ($)) (-15 -1513 ($)) (-15 -1371 ($)) (-15 -3265 ($)))) +((-2986 (((-112) $ $) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) 23) (($ (-1175)) 19)) (-3900 (((-112) $ $) NIL)) (-2789 (((-112) $) 10)) (-1592 (((-112) $) 9)) (-2183 (((-112) $) 11)) (-3387 (((-112) $) 8)) (-2952 (((-112) $ $) 21))) +(((-824) (-13 (-1099) (-10 -8 (-15 -2479 ($ (-1175))) (-15 -3387 ((-112) $)) (-15 -1592 ((-112) $)) (-15 -2789 ((-112) $)) (-15 -2183 ((-112) $))))) (T -824)) +((-2479 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-824)))) (-3387 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-824)))) (-1592 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-824)))) (-2789 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-824)))) (-2183 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-824))))) +(-13 (-1099) (-10 -8 (-15 -2479 ($ (-1175))) (-15 -3387 ((-112) $)) (-15 -1592 ((-112) $)) (-15 -2789 ((-112) $)) (-15 -2183 ((-112) $)))) +((-2986 (((-112) $ $) NIL)) (-2619 (($ (-824) (-644 (-1175))) 32)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2566 (((-824) $) 33)) (-1487 (((-644 (-1175)) $) 34)) (-2479 (((-862) $) 31)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-825) (-13 (-1099) (-10 -8 (-15 -2566 ((-824) $)) (-15 -1487 ((-644 (-1175)) $)) (-15 -2619 ($ (-824) (-644 (-1175))))))) (T -825)) +((-2566 (*1 *2 *1) (-12 (-5 *2 (-824)) (-5 *1 (-825)))) (-1487 (*1 *2 *1) (-12 (-5 *2 (-644 (-1175))) (-5 *1 (-825)))) (-2619 (*1 *1 *2 *3) (-12 (-5 *2 (-824)) (-5 *3 (-644 (-1175))) (-5 *1 (-825))))) +(-13 (-1099) (-10 -8 (-15 -2566 ((-824) $)) (-15 -1487 ((-644 (-1175)) $)) (-15 -2619 ($ (-824) (-644 (-1175)))))) +((-2835 (((-1269) (-822) (-317 |#1|) (-112)) 24) (((-1269) (-822) (-317 |#1|)) 90) (((-1157) (-317 |#1|) (-112)) 89) (((-1157) (-317 |#1|)) 88))) +(((-826 |#1|) (-10 -7 (-15 -2835 ((-1157) (-317 |#1|))) (-15 -2835 ((-1157) (-317 |#1|) (-112))) (-15 -2835 ((-1269) (-822) (-317 |#1|))) (-15 -2835 ((-1269) (-822) (-317 |#1|) (-112)))) (-13 (-828) (-1049))) (T -826)) +((-2835 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-822)) (-5 *4 (-317 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-828) (-1049))) (-5 *2 (-1269)) (-5 *1 (-826 *6)))) (-2835 (*1 *2 *3 *4) (-12 (-5 *3 (-822)) (-5 *4 (-317 *5)) (-4 *5 (-13 (-828) (-1049))) (-5 *2 (-1269)) (-5 *1 (-826 *5)))) (-2835 (*1 *2 *3 *4) (-12 (-5 *3 (-317 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-828) (-1049))) (-5 *2 (-1157)) (-5 *1 (-826 *5)))) (-2835 (*1 *2 *3) (-12 (-5 *3 (-317 *4)) (-4 *4 (-13 (-828) (-1049))) (-5 *2 (-1157)) (-5 *1 (-826 *4))))) +(-10 -7 (-15 -2835 ((-1157) (-317 |#1|))) (-15 -2835 ((-1157) (-317 |#1|) (-112))) (-15 -2835 ((-1269) (-822) (-317 |#1|))) (-15 -2835 ((-1269) (-822) (-317 |#1|) (-112)))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-1811 (($) NIL T CONST)) (-3565 (($ $) NIL)) (-3757 (((-3 $ "failed") $) NIL)) (-1739 ((|#1| $) 10)) (-1668 (($ |#1|) 9)) (-2264 (((-112) $) NIL)) (-2463 (($ |#2| (-771)) NIL)) (-2584 (((-771) $) NIL)) (-2622 ((|#2| $) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-3526 (($ $ (-771)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-1630 (((-771) $) NIL)) (-2479 (((-862) $) 17) (($ (-566)) NIL) (($ |#2|) NIL (|has| |#2| (-172)))) (-3025 ((|#2| $ (-771)) NIL)) (-1558 (((-771)) NIL T CONST)) (-3900 (((-112) $ $) NIL)) (-2446 (($) NIL T CONST)) (-2459 (($) NIL T CONST)) (-2834 (($ $ (-771)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-2952 (((-112) $ $) NIL)) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-827 |#1| |#2|) (-13 (-708 |#2|) (-10 -8 (IF (|has| |#1| (-233)) (-6 (-233)) |%noBranch|) (-15 -1668 ($ |#1|)) (-15 -1739 (|#1| $)))) (-708 |#2|) (-1049)) (T -827)) +((-1668 (*1 *1 *2) (-12 (-4 *3 (-1049)) (-5 *1 (-827 *2 *3)) (-4 *2 (-708 *3)))) (-1739 (*1 *2 *1) (-12 (-4 *2 (-708 *3)) (-5 *1 (-827 *2 *3)) (-4 *3 (-1049))))) +(-13 (-708 |#2|) (-10 -8 (IF (|has| |#1| (-233)) (-6 (-233)) |%noBranch|) (-15 -1668 ($ |#1|)) (-15 -1739 (|#1| $)))) +((-2835 (((-1269) (-822) $ (-112)) 9) (((-1269) (-822) $) 8) (((-1157) $ (-112)) 7) (((-1157) $) 6))) +(((-828) (-140)) (T -828)) +((-2835 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-828)) (-5 *3 (-822)) (-5 *4 (-112)) (-5 *2 (-1269)))) (-2835 (*1 *2 *3 *1) (-12 (-4 *1 (-828)) (-5 *3 (-822)) (-5 *2 (-1269)))) (-2835 (*1 *2 *1 *3) (-12 (-4 *1 (-828)) (-5 *3 (-112)) (-5 *2 (-1157)))) (-2835 (*1 *2 *1) (-12 (-4 *1 (-828)) (-5 *2 (-1157))))) +(-13 (-10 -8 (-15 -2835 ((-1157) $)) (-15 -2835 ((-1157) $ (-112))) (-15 -2835 ((-1269) (-822) $)) (-15 -2835 ((-1269) (-822) $ (-112))))) +((-1938 (((-313) (-1157) (-1157)) 12)) (-1748 (((-112) (-1157) (-1157)) 34)) (-3118 (((-112) (-1157)) 33)) (-2400 (((-52) (-1157)) 25)) (-2035 (((-52) (-1157)) 23)) (-1808 (((-52) (-822)) 17)) (-4300 (((-644 (-1157)) (-1157)) 28)) (-1778 (((-644 (-1157))) 27))) +(((-829) (-10 -7 (-15 -1808 ((-52) (-822))) (-15 -2035 ((-52) (-1157))) (-15 -2400 ((-52) (-1157))) (-15 -1778 ((-644 (-1157)))) (-15 -4300 ((-644 (-1157)) (-1157))) (-15 -3118 ((-112) (-1157))) (-15 -1748 ((-112) (-1157) (-1157))) (-15 -1938 ((-313) (-1157) (-1157))))) (T -829)) +((-1938 (*1 *2 *3 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-313)) (-5 *1 (-829)))) (-1748 (*1 *2 *3 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-112)) (-5 *1 (-829)))) (-3118 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-112)) (-5 *1 (-829)))) (-4300 (*1 *2 *3) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-829)) (-5 *3 (-1157)))) (-1778 (*1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-829)))) (-2400 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-52)) (-5 *1 (-829)))) (-2035 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-52)) (-5 *1 (-829)))) (-1808 (*1 *2 *3) (-12 (-5 *3 (-822)) (-5 *2 (-52)) (-5 *1 (-829))))) +(-10 -7 (-15 -1808 ((-52) (-822))) (-15 -2035 ((-52) (-1157))) (-15 -2400 ((-52) (-1157))) (-15 -1778 ((-644 (-1157)))) (-15 -4300 ((-644 (-1157)) (-1157))) (-15 -3118 ((-112) (-1157))) (-15 -1748 ((-112) (-1157) (-1157))) (-15 -1938 ((-313) (-1157) (-1157)))) +((-2986 (((-112) $ $) 19)) (-1730 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-2591 (($ $ $) 73)) (-2025 (((-112) $ $) 74)) (-1453 (((-112) $ (-771)) 8)) (-1759 (($ (-644 |#1|)) 69) (($) 68)) (-4364 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4417)))) (-3543 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4417)))) (-1811 (($) 7 T CONST)) (-1346 (($ $) 63)) (-4111 (($ $) 59 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-2295 (($ |#1| $) 48 (|has| $ (-6 -4417))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4417)))) (-2628 (($ |#1| $) 58 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4417)))) (-1838 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4417)))) (-3872 (((-644 |#1|) $) 31 (|has| $ (-6 -4417)))) (-3963 (((-112) $ $) 65)) (-2756 (((-112) $ (-771)) 9)) (-1920 ((|#1| $) 79)) (-3200 (($ $ $) 82)) (-1330 (($ $ $) 81)) (-4227 (((-644 |#1|) $) 30 (|has| $ (-6 -4417)))) (-1688 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-3038 ((|#1| $) 80)) (-3708 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#1| |#1|) $) 36)) (-4106 (((-112) $ (-771)) 10)) (-3151 (((-1157) $) 22)) (-4022 (($ $ $) 70)) (-4255 ((|#1| $) 40)) (-4354 (($ |#1| $) 41) (($ |#1| $ (-771)) 64)) (-4059 (((-1119) $) 21)) (-2688 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-4097 ((|#1| $) 42)) (-3966 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1844 (((-112) $ $) 14)) (-2788 (((-112) $) 11)) (-1737 (($) 12)) (-3112 (((-644 (-2 (|:| -2806 |#1|) (|:| -4068 (-771)))) $) 62)) (-1369 (($ $ |#1|) 72) (($ $ $) 71)) (-1797 (($) 50) (($ (-644 |#1|)) 49)) (-4068 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4417))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-3924 (($ $) 13)) (-3136 (((-538) $) 60 (|has| |#1| (-614 (-538))))) (-2489 (($ (-644 |#1|)) 51)) (-2479 (((-862) $) 18)) (-2405 (($ (-644 |#1|)) 67) (($) 66)) (-3900 (((-112) $ $) 23)) (-2471 (($ (-644 |#1|)) 43)) (-3667 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4417)))) (-2952 (((-112) $ $) 20)) (-3002 (((-771) $) 6 (|has| $ (-6 -4417))))) +(((-830 |#1|) (-140) (-850)) (T -830)) +((-1920 (*1 *2 *1) (-12 (-4 *1 (-830 *2)) (-4 *2 (-850))))) +(-13 (-736 |t#1|) (-968 |t#1|) (-10 -8 (-15 -1920 (|t#1| $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-613 (-862)) . T) ((-151 |#1|) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-235 |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-695 |#1|) . T) ((-736 |#1|) . T) ((-968 |#1|) . T) ((-1097 |#1|) . T) ((-1099) . T) ((-1214) . T)) +((-2758 (((-1269) (-1119) (-1119)) 48)) (-4192 (((-1269) (-821) (-52)) 45)) (-1936 (((-52) (-821)) 16))) +(((-831) (-10 -7 (-15 -1936 ((-52) (-821))) (-15 -4192 ((-1269) (-821) (-52))) (-15 -2758 ((-1269) (-1119) (-1119))))) (T -831)) +((-2758 (*1 *2 *3 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-1269)) (-5 *1 (-831)))) (-4192 (*1 *2 *3 *4) (-12 (-5 *3 (-821)) (-5 *4 (-52)) (-5 *2 (-1269)) (-5 *1 (-831)))) (-1936 (*1 *2 *3) (-12 (-5 *3 (-821)) (-5 *2 (-52)) (-5 *1 (-831))))) +(-10 -7 (-15 -1936 ((-52) (-821))) (-15 -4192 ((-1269) (-821) (-52))) (-15 -2758 ((-1269) (-1119) (-1119)))) +((-3080 (((-833 |#2|) (-1 |#2| |#1|) (-833 |#1|) (-833 |#2|)) 12) (((-833 |#2|) (-1 |#2| |#1|) (-833 |#1|)) 13))) +(((-832 |#1| |#2|) (-10 -7 (-15 -3080 ((-833 |#2|) (-1 |#2| |#1|) (-833 |#1|))) (-15 -3080 ((-833 |#2|) (-1 |#2| |#1|) (-833 |#1|) (-833 |#2|)))) (-1099) (-1099)) (T -832)) +((-3080 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-833 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-833 *5)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-5 *1 (-832 *5 *6)))) (-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-833 *5)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-5 *2 (-833 *6)) (-5 *1 (-832 *5 *6))))) +(-10 -7 (-15 -3080 ((-833 |#2|) (-1 |#2| |#1|) (-833 |#1|))) (-15 -3080 ((-833 |#2|) (-1 |#2| |#1|) (-833 |#1|) (-833 |#2|)))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL (|has| |#1| (-21)))) (-3174 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2920 (((-566) $) NIL (|has| |#1| (-848)))) (-1811 (($) NIL (|has| |#1| (-21)) CONST)) (-2980 (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) 15)) (-1709 (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) 9)) (-3757 (((-3 $ "failed") $) 42 (|has| |#1| (-848)))) (-2515 (((-3 (-409 (-566)) "failed") $) 52 (|has| |#1| (-547)))) (-2024 (((-112) $) 46 (|has| |#1| (-547)))) (-3330 (((-409 (-566)) $) 49 (|has| |#1| (-547)))) (-2133 (((-112) $) NIL (|has| |#1| (-848)))) (-2264 (((-112) $) NIL (|has| |#1| (-848)))) (-3420 (((-112) $) NIL (|has| |#1| (-848)))) (-1920 (($ $ $) NIL (|has| |#1| (-848)))) (-3038 (($ $ $) NIL (|has| |#1| (-848)))) (-3151 (((-1157) $) NIL)) (-2978 (($) 13)) (-4010 (((-112) $) 12)) (-4059 (((-1119) $) NIL)) (-1864 (((-112) $) 11)) (-2479 (((-862) $) 18) (($ (-409 (-566))) NIL (|has| |#1| (-1038 (-409 (-566))))) (($ |#1|) 8) (($ (-566)) NIL (-2809 (|has| |#1| (-848)) (|has| |#1| (-1038 (-566)))))) (-1558 (((-771)) 36 (|has| |#1| (-848)) CONST)) (-3900 (((-112) $ $) 54)) (-4298 (($ $) NIL (|has| |#1| (-848)))) (-2446 (($) 23 (|has| |#1| (-21)) CONST)) (-2459 (($) 33 (|has| |#1| (-848)) CONST)) (-3019 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2990 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2952 (((-112) $ $) 21)) (-3004 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2977 (((-112) $ $) 45 (|has| |#1| (-848)))) (-3065 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 29 (|has| |#1| (-21)))) (-3052 (($ $ $) 31 (|has| |#1| (-21)))) (** (($ $ (-921)) NIL (|has| |#1| (-848))) (($ $ (-771)) NIL (|has| |#1| (-848)))) (* (($ $ $) 39 (|has| |#1| (-848))) (($ (-566) $) 27 (|has| |#1| (-21))) (($ (-771) $) NIL (|has| |#1| (-21))) (($ (-921) $) NIL (|has| |#1| (-21))))) +(((-833 |#1|) (-13 (-1099) (-413 |#1|) (-10 -8 (-15 -2978 ($)) (-15 -1864 ((-112) $)) (-15 -4010 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-848)) (-6 (-848)) |%noBranch|) (IF (|has| |#1| (-547)) (PROGN (-15 -2024 ((-112) $)) (-15 -3330 ((-409 (-566)) $)) (-15 -2515 ((-3 (-409 (-566)) "failed") $))) |%noBranch|))) (-1099)) (T -833)) +((-2978 (*1 *1) (-12 (-5 *1 (-833 *2)) (-4 *2 (-1099)))) (-1864 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-833 *3)) (-4 *3 (-1099)))) (-4010 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-833 *3)) (-4 *3 (-1099)))) (-2024 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-833 *3)) (-4 *3 (-547)) (-4 *3 (-1099)))) (-3330 (*1 *2 *1) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-833 *3)) (-4 *3 (-547)) (-4 *3 (-1099)))) (-2515 (*1 *2 *1) (|partial| -12 (-5 *2 (-409 (-566))) (-5 *1 (-833 *3)) (-4 *3 (-547)) (-4 *3 (-1099))))) +(-13 (-1099) (-413 |#1|) (-10 -8 (-15 -2978 ($)) (-15 -1864 ((-112) $)) (-15 -4010 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-848)) (-6 (-848)) |%noBranch|) (IF (|has| |#1| (-547)) (PROGN (-15 -2024 ((-112) $)) (-15 -3330 ((-409 (-566)) $)) (-15 -2515 ((-3 (-409 (-566)) "failed") $))) |%noBranch|))) +((-1896 (((-112) $ |#2|) 14)) (-2479 (((-862) $) 11))) +(((-834 |#1| |#2|) (-10 -8 (-15 -1896 ((-112) |#1| |#2|)) (-15 -2479 ((-862) |#1|))) (-835 |#2|) (-1099)) (T -834)) +NIL +(-10 -8 (-15 -1896 ((-112) |#1| |#2|)) (-15 -2479 ((-862) |#1|))) +((-2986 (((-112) $ $) 7)) (-2598 ((|#1| $) 16)) (-3151 (((-1157) $) 10)) (-1896 (((-112) $ |#1|) 14)) (-4059 (((-1119) $) 11)) (-2479 (((-862) $) 12)) (-3900 (((-112) $ $) 9)) (-3864 (((-55) $) 15)) (-2952 (((-112) $ $) 6))) +(((-835 |#1|) (-140) (-1099)) (T -835)) +((-2598 (*1 *2 *1) (-12 (-4 *1 (-835 *2)) (-4 *2 (-1099)))) (-3864 (*1 *2 *1) (-12 (-4 *1 (-835 *3)) (-4 *3 (-1099)) (-5 *2 (-55)))) (-1896 (*1 *2 *1 *3) (-12 (-4 *1 (-835 *3)) (-4 *3 (-1099)) (-5 *2 (-112))))) +(-13 (-1099) (-10 -8 (-15 -2598 (|t#1| $)) (-15 -3864 ((-55) $)) (-15 -1896 ((-112) $ |t#1|)))) +(((-102) . T) ((-613 (-862)) . T) ((-1099) . T)) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-1811 (($) NIL T CONST)) (-2980 (((-3 |#1| "failed") $) NIL) (((-3 (-114) "failed") $) NIL)) (-1709 ((|#1| $) NIL) (((-114) $) NIL)) (-3757 (((-3 $ "failed") $) NIL)) (-2140 ((|#1| (-114) |#1|) NIL)) (-2264 (((-112) $) NIL)) (-2753 (($ |#1| (-363 (-114))) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-1339 (($ $ (-1 |#1| |#1|)) NIL)) (-1425 (($ $ (-1 |#1| |#1|)) NIL)) (-4376 ((|#1| $ |#1|) NIL)) (-3677 ((|#1| |#1|) NIL (|has| |#1| (-172)))) (-2479 (((-862) $) NIL) (($ (-566)) NIL) (($ |#1|) NIL) (($ (-114)) NIL)) (-2645 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1558 (((-771)) NIL T CONST)) (-3900 (((-112) $ $) NIL)) (-3228 (($ $) NIL (|has| |#1| (-172))) (($ $ $) NIL (|has| |#1| (-172)))) (-2446 (($) NIL T CONST)) (-2459 (($) NIL T CONST)) (-2952 (((-112) $ $) NIL)) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ (-114) (-566)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))))) +(((-836 |#1|) (-13 (-1049) (-1038 |#1|) (-1038 (-114)) (-287 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -3228 ($ $)) (-15 -3228 ($ $ $)) (-15 -3677 (|#1| |#1|))) |%noBranch|) (-15 -1425 ($ $ (-1 |#1| |#1|))) (-15 -1339 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-566))) (-15 ** ($ $ (-566))) (-15 -2140 (|#1| (-114) |#1|)) (-15 -2753 ($ |#1| (-363 (-114)))))) (-1049)) (T -836)) +((-3228 (*1 *1 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-172)) (-4 *2 (-1049)))) (-3228 (*1 *1 *1 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-172)) (-4 *2 (-1049)))) (-3677 (*1 *2 *2) (-12 (-5 *1 (-836 *2)) (-4 *2 (-172)) (-4 *2 (-1049)))) (-1425 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1049)) (-5 *1 (-836 *3)))) (-1339 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1049)) (-5 *1 (-836 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-566)) (-5 *1 (-836 *4)) (-4 *4 (-1049)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-836 *3)) (-4 *3 (-1049)))) (-2140 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-836 *2)) (-4 *2 (-1049)))) (-2753 (*1 *1 *2 *3) (-12 (-5 *3 (-363 (-114))) (-5 *1 (-836 *2)) (-4 *2 (-1049))))) +(-13 (-1049) (-1038 |#1|) (-1038 (-114)) (-287 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -3228 ($ $)) (-15 -3228 ($ $ $)) (-15 -3677 (|#1| |#1|))) |%noBranch|) (-15 -1425 ($ $ (-1 |#1| |#1|))) (-15 -1339 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-566))) (-15 ** ($ $ (-566))) (-15 -2140 (|#1| (-114) |#1|)) (-15 -2753 ($ |#1| (-363 (-114)))))) +((-1401 (((-214 (-504)) (-1157)) 9))) +(((-837) (-10 -7 (-15 -1401 ((-214 (-504)) (-1157))))) (T -837)) +((-1401 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-214 (-504))) (-5 *1 (-837))))) +(-10 -7 (-15 -1401 ((-214 (-504)) (-1157)))) +((-2986 (((-112) $ $) NIL)) (-3015 (((-1117) $) 10)) (-2598 (((-508) $) 9)) (-3151 (((-1157) $) NIL)) (-1896 (((-112) $ (-508)) NIL)) (-4059 (((-1119) $) NIL)) (-2489 (($ (-508) (-1117)) 8)) (-2479 (((-862) $) 25)) (-3900 (((-112) $ $) NIL)) (-3864 (((-55) $) 20)) (-2952 (((-112) $ $) 12))) +(((-838) (-13 (-835 (-508)) (-10 -8 (-15 -3015 ((-1117) $)) (-15 -2489 ($ (-508) (-1117)))))) (T -838)) +((-3015 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-838)))) (-2489 (*1 *1 *2 *3) (-12 (-5 *2 (-508)) (-5 *3 (-1117)) (-5 *1 (-838))))) +(-13 (-835 (-508)) (-10 -8 (-15 -3015 ((-1117) $)) (-15 -2489 ($ (-508) (-1117))))) +((-2986 (((-112) $ $) 7)) (-4377 (((-1035) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3968 (-644 (-225))))) 15) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -3968 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 14)) (-4177 (((-2 (|:| -4177 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -3968 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 17) (((-2 (|:| -4177 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3968 (-644 (-225))))) 16)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-2479 (((-862) $) 12)) (-3900 (((-112) $ $) 9)) (-2952 (((-112) $ $) 6))) +(((-839) (-140)) (T -839)) +((-4177 (*1 *2 *3 *4) (-12 (-4 *1 (-839)) (-5 *3 (-1062)) (-5 *4 (-2 (|:| |fn| (-317 (-225))) (|:| -3968 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (-5 *2 (-2 (|:| -4177 (-381)) (|:| |explanations| (-1157)))))) (-4177 (*1 *2 *3 *4) (-12 (-4 *1 (-839)) (-5 *3 (-1062)) (-5 *4 (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3968 (-644 (-225))))) (-5 *2 (-2 (|:| -4177 (-381)) (|:| |explanations| (-1157)))))) (-4377 (*1 *2 *3) (-12 (-4 *1 (-839)) (-5 *3 (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3968 (-644 (-225))))) (-5 *2 (-1035)))) (-4377 (*1 *2 *3) (-12 (-4 *1 (-839)) (-5 *3 (-2 (|:| |fn| (-317 (-225))) (|:| -3968 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (-5 *2 (-1035))))) +(-13 (-1099) (-10 -7 (-15 -4177 ((-2 (|:| -4177 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -3968 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225))))))) (-15 -4177 ((-2 (|:| -4177 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3968 (-644 (-225)))))) (-15 -4377 ((-1035) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3968 (-644 (-225)))))) (-15 -4377 ((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -3968 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225))))))))) +(((-102) . T) ((-613 (-862)) . T) ((-1099) . T)) +((-1854 (((-1035) (-644 (-317 (-381))) (-644 (-381))) 169) (((-1035) (-317 (-381)) (-644 (-381))) 167) (((-1035) (-317 (-381)) (-644 (-381)) (-644 (-843 (-381))) (-644 (-843 (-381)))) 165) (((-1035) (-317 (-381)) (-644 (-381)) (-644 (-843 (-381))) (-644 (-317 (-381))) (-644 (-843 (-381)))) 163) (((-1035) (-841)) 128) (((-1035) (-841) (-1062)) 127)) (-4177 (((-2 (|:| -4177 (-381)) (|:| -2598 (-1157)) (|:| |explanations| (-644 (-1157)))) (-841) (-1062)) 88) (((-2 (|:| -4177 (-381)) (|:| -2598 (-1157)) (|:| |explanations| (-644 (-1157)))) (-841)) 90)) (-3981 (((-1035) (-644 (-317 (-381))) (-644 (-381))) 170) (((-1035) (-841)) 153))) +(((-840) (-10 -7 (-15 -4177 ((-2 (|:| -4177 (-381)) (|:| -2598 (-1157)) (|:| |explanations| (-644 (-1157)))) (-841))) (-15 -4177 ((-2 (|:| -4177 (-381)) (|:| -2598 (-1157)) (|:| |explanations| (-644 (-1157)))) (-841) (-1062))) (-15 -1854 ((-1035) (-841) (-1062))) (-15 -1854 ((-1035) (-841))) (-15 -3981 ((-1035) (-841))) (-15 -1854 ((-1035) (-317 (-381)) (-644 (-381)) (-644 (-843 (-381))) (-644 (-317 (-381))) (-644 (-843 (-381))))) (-15 -1854 ((-1035) (-317 (-381)) (-644 (-381)) (-644 (-843 (-381))) (-644 (-843 (-381))))) (-15 -1854 ((-1035) (-317 (-381)) (-644 (-381)))) (-15 -1854 ((-1035) (-644 (-317 (-381))) (-644 (-381)))) (-15 -3981 ((-1035) (-644 (-317 (-381))) (-644 (-381)))))) (T -840)) +((-3981 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-317 (-381)))) (-5 *4 (-644 (-381))) (-5 *2 (-1035)) (-5 *1 (-840)))) (-1854 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-317 (-381)))) (-5 *4 (-644 (-381))) (-5 *2 (-1035)) (-5 *1 (-840)))) (-1854 (*1 *2 *3 *4) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-644 (-381))) (-5 *2 (-1035)) (-5 *1 (-840)))) (-1854 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-644 (-381))) (-5 *5 (-644 (-843 (-381)))) (-5 *2 (-1035)) (-5 *1 (-840)))) (-1854 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-644 (-381))) (-5 *5 (-644 (-843 (-381)))) (-5 *6 (-644 (-317 (-381)))) (-5 *3 (-317 (-381))) (-5 *2 (-1035)) (-5 *1 (-840)))) (-3981 (*1 *2 *3) (-12 (-5 *3 (-841)) (-5 *2 (-1035)) (-5 *1 (-840)))) (-1854 (*1 *2 *3) (-12 (-5 *3 (-841)) (-5 *2 (-1035)) (-5 *1 (-840)))) (-1854 (*1 *2 *3 *4) (-12 (-5 *3 (-841)) (-5 *4 (-1062)) (-5 *2 (-1035)) (-5 *1 (-840)))) (-4177 (*1 *2 *3 *4) (-12 (-5 *3 (-841)) (-5 *4 (-1062)) (-5 *2 (-2 (|:| -4177 (-381)) (|:| -2598 (-1157)) (|:| |explanations| (-644 (-1157))))) (-5 *1 (-840)))) (-4177 (*1 *2 *3) (-12 (-5 *3 (-841)) (-5 *2 (-2 (|:| -4177 (-381)) (|:| -2598 (-1157)) (|:| |explanations| (-644 (-1157))))) (-5 *1 (-840))))) +(-10 -7 (-15 -4177 ((-2 (|:| -4177 (-381)) (|:| -2598 (-1157)) (|:| |explanations| (-644 (-1157)))) (-841))) (-15 -4177 ((-2 (|:| -4177 (-381)) (|:| -2598 (-1157)) (|:| |explanations| (-644 (-1157)))) (-841) (-1062))) (-15 -1854 ((-1035) (-841) (-1062))) (-15 -1854 ((-1035) (-841))) (-15 -3981 ((-1035) (-841))) (-15 -1854 ((-1035) (-317 (-381)) (-644 (-381)) (-644 (-843 (-381))) (-644 (-317 (-381))) (-644 (-843 (-381))))) (-15 -1854 ((-1035) (-317 (-381)) (-644 (-381)) (-644 (-843 (-381))) (-644 (-843 (-381))))) (-15 -1854 ((-1035) (-317 (-381)) (-644 (-381)))) (-15 -1854 ((-1035) (-644 (-317 (-381))) (-644 (-381)))) (-15 -3981 ((-1035) (-644 (-317 (-381))) (-644 (-381))))) +((-2986 (((-112) $ $) NIL)) (-1709 (((-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -3968 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3968 (-644 (-225)))))) $) 21)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) 20) (($ (-2 (|:| |fn| (-317 (-225))) (|:| -3968 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 14) (($ (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3968 (-644 (-225))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -3968 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3968 (-644 (-225))))))) 18)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-841) (-13 (-1099) (-10 -8 (-15 -2479 ($ (-2 (|:| |fn| (-317 (-225))) (|:| -3968 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225))))))) (-15 -2479 ($ (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3968 (-644 (-225)))))) (-15 -2479 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -3968 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3968 (-644 (-225)))))))) (-15 -1709 ((-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -3968 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3968 (-644 (-225)))))) $))))) (T -841)) +((-2479 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-317 (-225))) (|:| -3968 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (-5 *1 (-841)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3968 (-644 (-225))))) (-5 *1 (-841)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -3968 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3968 (-644 (-225))))))) (-5 *1 (-841)))) (-1709 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -3968 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3968 (-644 (-225))))))) (-5 *1 (-841))))) +(-13 (-1099) (-10 -8 (-15 -2479 ($ (-2 (|:| |fn| (-317 (-225))) (|:| -3968 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225))))))) (-15 -2479 ($ (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3968 (-644 (-225)))))) (-15 -2479 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -3968 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3968 (-644 (-225)))))))) (-15 -1709 ((-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -3968 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3968 (-644 (-225)))))) $)))) +((-3080 (((-843 |#2|) (-1 |#2| |#1|) (-843 |#1|) (-843 |#2|) (-843 |#2|)) 13) (((-843 |#2|) (-1 |#2| |#1|) (-843 |#1|)) 14))) +(((-842 |#1| |#2|) (-10 -7 (-15 -3080 ((-843 |#2|) (-1 |#2| |#1|) (-843 |#1|))) (-15 -3080 ((-843 |#2|) (-1 |#2| |#1|) (-843 |#1|) (-843 |#2|) (-843 |#2|)))) (-1099) (-1099)) (T -842)) +((-3080 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-843 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-843 *5)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-5 *1 (-842 *5 *6)))) (-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-843 *5)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-5 *2 (-843 *6)) (-5 *1 (-842 *5 *6))))) +(-10 -7 (-15 -3080 ((-843 |#2|) (-1 |#2| |#1|) (-843 |#1|))) (-15 -3080 ((-843 |#2|) (-1 |#2| |#1|) (-843 |#1|) (-843 |#2|) (-843 |#2|)))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL (|has| |#1| (-21)))) (-4268 (((-1119) $) 31)) (-3174 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2920 (((-566) $) NIL (|has| |#1| (-848)))) (-1811 (($) NIL (|has| |#1| (-21)) CONST)) (-2980 (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) 18)) (-1709 (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) 9)) (-3757 (((-3 $ "failed") $) 58 (|has| |#1| (-848)))) (-2515 (((-3 (-409 (-566)) "failed") $) 65 (|has| |#1| (-547)))) (-2024 (((-112) $) 60 (|has| |#1| (-547)))) (-3330 (((-409 (-566)) $) 63 (|has| |#1| (-547)))) (-2133 (((-112) $) NIL (|has| |#1| (-848)))) (-2909 (($) 14)) (-2264 (((-112) $) NIL (|has| |#1| (-848)))) (-3420 (((-112) $) NIL (|has| |#1| (-848)))) (-2921 (($) 16)) (-1920 (($ $ $) NIL (|has| |#1| (-848)))) (-3038 (($ $ $) NIL (|has| |#1| (-848)))) (-3151 (((-1157) $) NIL)) (-4010 (((-112) $) 12)) (-4059 (((-1119) $) NIL)) (-1864 (((-112) $) 11)) (-2479 (((-862) $) 24) (($ (-409 (-566))) NIL (|has| |#1| (-1038 (-409 (-566))))) (($ |#1|) 8) (($ (-566)) NIL (-2809 (|has| |#1| (-848)) (|has| |#1| (-1038 (-566)))))) (-1558 (((-771)) 51 (|has| |#1| (-848)) CONST)) (-3900 (((-112) $ $) NIL)) (-4298 (($ $) NIL (|has| |#1| (-848)))) (-2446 (($) 37 (|has| |#1| (-21)) CONST)) (-2459 (($) 48 (|has| |#1| (-848)) CONST)) (-3019 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2990 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2952 (((-112) $ $) 35)) (-3004 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2977 (((-112) $ $) 59 (|has| |#1| (-848)))) (-3065 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 44 (|has| |#1| (-21)))) (-3052 (($ $ $) 46 (|has| |#1| (-21)))) (** (($ $ (-921)) NIL (|has| |#1| (-848))) (($ $ (-771)) NIL (|has| |#1| (-848)))) (* (($ $ $) 55 (|has| |#1| (-848))) (($ (-566) $) 42 (|has| |#1| (-21))) (($ (-771) $) NIL (|has| |#1| (-21))) (($ (-921) $) NIL (|has| |#1| (-21))))) +(((-843 |#1|) (-13 (-1099) (-413 |#1|) (-10 -8 (-15 -2909 ($)) (-15 -2921 ($)) (-15 -1864 ((-112) $)) (-15 -4010 ((-112) $)) (-15 -4268 ((-1119) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-848)) (-6 (-848)) |%noBranch|) (IF (|has| |#1| (-547)) (PROGN (-15 -2024 ((-112) $)) (-15 -3330 ((-409 (-566)) $)) (-15 -2515 ((-3 (-409 (-566)) "failed") $))) |%noBranch|))) (-1099)) (T -843)) +((-2909 (*1 *1) (-12 (-5 *1 (-843 *2)) (-4 *2 (-1099)))) (-2921 (*1 *1) (-12 (-5 *1 (-843 *2)) (-4 *2 (-1099)))) (-1864 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-843 *3)) (-4 *3 (-1099)))) (-4010 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-843 *3)) (-4 *3 (-1099)))) (-4268 (*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-843 *3)) (-4 *3 (-1099)))) (-2024 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-843 *3)) (-4 *3 (-547)) (-4 *3 (-1099)))) (-3330 (*1 *2 *1) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-843 *3)) (-4 *3 (-547)) (-4 *3 (-1099)))) (-2515 (*1 *2 *1) (|partial| -12 (-5 *2 (-409 (-566))) (-5 *1 (-843 *3)) (-4 *3 (-547)) (-4 *3 (-1099))))) +(-13 (-1099) (-413 |#1|) (-10 -8 (-15 -2909 ($)) (-15 -2921 ($)) (-15 -1864 ((-112) $)) (-15 -4010 ((-112) $)) (-15 -4268 ((-1119) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-848)) (-6 (-848)) |%noBranch|) (IF (|has| |#1| (-547)) (PROGN (-15 -2024 ((-112) $)) (-15 -3330 ((-409 (-566)) $)) (-15 -2515 ((-3 (-409 (-566)) "failed") $))) |%noBranch|))) +((-2986 (((-112) $ $) 7)) (-4049 (((-771)) 23)) (-1415 (($) 26)) (-1920 (($ $ $) 14) (($) 22 T CONST)) (-3038 (($ $ $) 15) (($) 21 T CONST)) (-4051 (((-921) $) 25)) (-3151 (((-1157) $) 10)) (-2104 (($ (-921)) 24)) (-4059 (((-1119) $) 11)) (-2479 (((-862) $) 12)) (-3900 (((-112) $ $) 9)) (-3019 (((-112) $ $) 17)) (-2990 (((-112) $ $) 18)) (-2952 (((-112) $ $) 6)) (-3004 (((-112) $ $) 16)) (-2977 (((-112) $ $) 19))) (((-844) (-140)) (T -844)) +((-1920 (*1 *1) (-4 *1 (-844))) (-3038 (*1 *1) (-4 *1 (-844)))) +(-13 (-850) (-370) (-10 -8 (-15 -1920 ($) -1573) (-15 -3038 ($) -1573))) +(((-102) . T) ((-613 (-862)) . T) ((-370) . T) ((-850) . T) ((-1099) . T)) +((-1405 (((-112) (-1264 |#2|) (-1264 |#2|)) 23)) (-3899 (((-112) (-1264 |#2|) (-1264 |#2|)) 24)) (-1502 (((-112) (-1264 |#2|) (-1264 |#2|)) 20))) +(((-845 |#1| |#2|) (-10 -7 (-15 -1502 ((-112) (-1264 |#2|) (-1264 |#2|))) (-15 -1405 ((-112) (-1264 |#2|) (-1264 |#2|))) (-15 -3899 ((-112) (-1264 |#2|) (-1264 |#2|)))) (-771) (-792)) (T -845)) +((-3899 (*1 *2 *3 *3) (-12 (-5 *3 (-1264 *5)) (-4 *5 (-792)) (-5 *2 (-112)) (-5 *1 (-845 *4 *5)) (-14 *4 (-771)))) (-1405 (*1 *2 *3 *3) (-12 (-5 *3 (-1264 *5)) (-4 *5 (-792)) (-5 *2 (-112)) (-5 *1 (-845 *4 *5)) (-14 *4 (-771)))) (-1502 (*1 *2 *3 *3) (-12 (-5 *3 (-1264 *5)) (-4 *5 (-792)) (-5 *2 (-112)) (-5 *1 (-845 *4 *5)) (-14 *4 (-771))))) +(-10 -7 (-15 -1502 ((-112) (-1264 |#2|) (-1264 |#2|))) (-15 -1405 ((-112) (-1264 |#2|) (-1264 |#2|))) (-15 -3899 ((-112) (-1264 |#2|) (-1264 |#2|)))) +((-2986 (((-112) $ $) 7)) (-1811 (($) 24 T CONST)) (-3757 (((-3 $ "failed") $) 27)) (-2264 (((-112) $) 25)) (-1920 (($ $ $) 14)) (-3038 (($ $ $) 15)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-2479 (((-862) $) 12)) (-3900 (((-112) $ $) 9)) (-2459 (($) 23 T CONST)) (-3019 (((-112) $ $) 17)) (-2990 (((-112) $ $) 18)) (-2952 (((-112) $ $) 6)) (-3004 (((-112) $ $) 16)) (-2977 (((-112) $ $) 19)) (** (($ $ (-921)) 22) (($ $ (-771)) 26)) (* (($ $ $) 21))) +(((-846) (-140)) (T -846)) NIL -(-13 (-855) (-724)) -(((-102) . T) ((-611 (-860)) . T) ((-724) . T) ((-855) . T) ((-848) . T) ((-1109) . T) ((-1097) . T)) -((-2221 (((-564) $) 21)) (-3292 (((-112) $) 10)) (-2666 (((-112) $) 12)) (-1630 (($ $) 23))) -(((-845 |#1|) (-10 -8 (-15 -1630 (|#1| |#1|)) (-15 -2221 ((-564) |#1|)) (-15 -2666 ((-112) |#1|)) (-15 -3292 ((-112) |#1|))) (-846)) (T -845)) +(-13 (-857) (-726)) +(((-102) . T) ((-613 (-862)) . T) ((-726) . T) ((-857) . T) ((-850) . T) ((-1111) . T) ((-1099) . T)) +((-2920 (((-566) $) 21)) (-2133 (((-112) $) 10)) (-3420 (((-112) $) 12)) (-4298 (($ $) 23))) +(((-847 |#1|) (-10 -8 (-15 -4298 (|#1| |#1|)) (-15 -2920 ((-566) |#1|)) (-15 -3420 ((-112) |#1|)) (-15 -2133 ((-112) |#1|))) (-848)) (T -847)) NIL -(-10 -8 (-15 -1630 (|#1| |#1|)) (-15 -2221 ((-564) |#1|)) (-15 -2666 ((-112) |#1|)) (-15 -3292 ((-112) |#1|))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 25)) (-3085 (((-3 $ "failed") $ $) 27)) (-2221 (((-564) $) 37)) (-2822 (($) 24 T CONST)) (-2675 (((-3 $ "failed") $) 42)) (-3292 (((-112) $) 39)) (-3163 (((-112) $) 44)) (-2666 (((-112) $) 38)) (-3225 (($ $ $) 14)) (-2903 (($ $ $) 15)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2390 (((-860) $) 12) (($ (-564)) 46)) (-3348 (((-769)) 47 T CONST)) (-1600 (((-112) $ $) 9)) (-1630 (($ $) 36)) (-2361 (($) 23 T CONST)) (-2371 (($) 45 T CONST)) (-2881 (((-112) $ $) 17)) (-2857 (((-112) $ $) 18)) (-2821 (((-112) $ $) 6)) (-2868 (((-112) $ $) 16)) (-2844 (((-112) $ $) 19)) (-2930 (($ $ $) 31) (($ $) 30)) (-2917 (($ $ $) 21)) (** (($ $ (-769)) 43) (($ $ (-919)) 40)) (* (($ (-919) $) 22) (($ (-769) $) 26) (($ (-564) $) 29) (($ $ $) 41))) -(((-846) (-140)) (T -846)) -((-3292 (*1 *2 *1) (-12 (-4 *1 (-846)) (-5 *2 (-112)))) (-2666 (*1 *2 *1) (-12 (-4 *1 (-846)) (-5 *2 (-112)))) (-2221 (*1 *2 *1) (-12 (-4 *1 (-846)) (-5 *2 (-564)))) (-1630 (*1 *1 *1) (-4 *1 (-846)))) -(-13 (-789) (-1047) (-724) (-10 -8 (-15 -3292 ((-112) $)) (-15 -2666 ((-112) $)) (-15 -2221 ((-564) $)) (-15 -1630 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-860)) . T) ((-644 (-564)) . T) ((-644 $) . T) ((-646 $) . T) ((-724) . T) ((-789) . T) ((-790) . T) ((-792) . T) ((-793) . T) ((-848) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T)) -((-3225 (($ $ $) 12)) (-2903 (($ $ $) 11)) (-1600 (((-112) $ $) 9)) (-2881 (((-112) $ $) 15)) (-2857 (((-112) $ $) 13)) (-2868 (((-112) $ $) 16))) -(((-847 |#1|) (-10 -8 (-15 -3225 (|#1| |#1| |#1|)) (-15 -2903 (|#1| |#1| |#1|)) (-15 -2868 ((-112) |#1| |#1|)) (-15 -2881 ((-112) |#1| |#1|)) (-15 -2857 ((-112) |#1| |#1|)) (-15 -1600 ((-112) |#1| |#1|))) (-848)) (T -847)) -NIL -(-10 -8 (-15 -3225 (|#1| |#1| |#1|)) (-15 -2903 (|#1| |#1| |#1|)) (-15 -2868 ((-112) |#1| |#1|)) (-15 -2881 ((-112) |#1| |#1|)) (-15 -2857 ((-112) |#1| |#1|)) (-15 -1600 ((-112) |#1| |#1|))) -((-2856 (((-112) $ $) 7)) (-3225 (($ $ $) 14)) (-2903 (($ $ $) 15)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2390 (((-860) $) 12)) (-1600 (((-112) $ $) 9)) (-2881 (((-112) $ $) 17)) (-2857 (((-112) $ $) 18)) (-2821 (((-112) $ $) 6)) (-2868 (((-112) $ $) 16)) (-2844 (((-112) $ $) 19))) +(-10 -8 (-15 -4298 (|#1| |#1|)) (-15 -2920 ((-566) |#1|)) (-15 -3420 ((-112) |#1|)) (-15 -2133 ((-112) |#1|))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 25)) (-3174 (((-3 $ "failed") $ $) 27)) (-2920 (((-566) $) 37)) (-1811 (($) 24 T CONST)) (-3757 (((-3 $ "failed") $) 42)) (-2133 (((-112) $) 39)) (-2264 (((-112) $) 44)) (-3420 (((-112) $) 38)) (-1920 (($ $ $) 14)) (-3038 (($ $ $) 15)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-2479 (((-862) $) 12) (($ (-566)) 46)) (-1558 (((-771)) 47 T CONST)) (-3900 (((-112) $ $) 9)) (-4298 (($ $) 36)) (-2446 (($) 23 T CONST)) (-2459 (($) 45 T CONST)) (-3019 (((-112) $ $) 17)) (-2990 (((-112) $ $) 18)) (-2952 (((-112) $ $) 6)) (-3004 (((-112) $ $) 16)) (-2977 (((-112) $ $) 19)) (-3065 (($ $ $) 31) (($ $) 30)) (-3052 (($ $ $) 21)) (** (($ $ (-771)) 43) (($ $ (-921)) 40)) (* (($ (-921) $) 22) (($ (-771) $) 26) (($ (-566) $) 29) (($ $ $) 41))) (((-848) (-140)) (T -848)) -((-2844 (*1 *2 *1 *1) (-12 (-4 *1 (-848)) (-5 *2 (-112)))) (-2857 (*1 *2 *1 *1) (-12 (-4 *1 (-848)) (-5 *2 (-112)))) (-2881 (*1 *2 *1 *1) (-12 (-4 *1 (-848)) (-5 *2 (-112)))) (-2868 (*1 *2 *1 *1) (-12 (-4 *1 (-848)) (-5 *2 (-112)))) (-2903 (*1 *1 *1 *1) (-4 *1 (-848))) (-3225 (*1 *1 *1 *1) (-4 *1 (-848)))) -(-13 (-1097) (-10 -8 (-15 -2844 ((-112) $ $)) (-15 -2857 ((-112) $ $)) (-15 -2881 ((-112) $ $)) (-15 -2868 ((-112) $ $)) (-15 -2903 ($ $ $)) (-15 -3225 ($ $ $)))) -(((-102) . T) ((-611 (-860)) . T) ((-1097) . T)) -((-3436 (($ $ $) 49)) (-2690 (($ $ $) 48)) (-3746 (($ $ $) 46)) (-2610 (($ $ $) 55)) (-2873 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) 50)) (-2718 (((-3 $ "failed") $ $) 53)) (-2849 (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 |#2| "failed") $) 29)) (-2511 (($ $) 39)) (-2316 (($ $ $) 43)) (-4282 (($ $ $) 42)) (-3869 (($ $ $) 51)) (-3101 (($ $ $) 57)) (-3638 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) 45)) (-2764 (((-3 $ "failed") $ $) 52)) (-2842 (((-3 $ "failed") $ |#2|) 32)) (-4325 ((|#2| $) 36)) (-2390 (((-860) $) NIL) (($ (-564)) NIL) (($ (-407 (-564))) NIL) (($ |#2|) 13)) (-2839 (((-642 |#2|) $) 21)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 25))) -(((-849 |#1| |#2|) (-10 -8 (-15 -3869 (|#1| |#1| |#1|)) (-15 -2873 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4043 |#1|)) |#1| |#1|)) (-15 -2610 (|#1| |#1| |#1|)) (-15 -2718 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3436 (|#1| |#1| |#1|)) (-15 -2690 (|#1| |#1| |#1|)) (-15 -3746 (|#1| |#1| |#1|)) (-15 -3638 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4043 |#1|)) |#1| |#1|)) (-15 -3101 (|#1| |#1| |#1|)) (-15 -2764 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2316 (|#1| |#1| |#1|)) (-15 -4282 (|#1| |#1| |#1|)) (-15 -2511 (|#1| |#1|)) (-15 -4325 (|#2| |#1|)) (-15 -2842 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2839 ((-642 |#2|) |#1|)) (-15 -2390 (|#1| |#2|)) (-15 -2849 ((-3 |#2| "failed") |#1|)) (-15 -2849 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2390 (|#1| (-407 (-564)))) (-15 -2849 ((-3 (-564) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2390 (|#1| (-564))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-769) |#1|)) (-15 * (|#1| (-919) |#1|)) (-15 -2390 ((-860) |#1|))) (-850 |#2|) (-1047)) (T -849)) -NIL -(-10 -8 (-15 -3869 (|#1| |#1| |#1|)) (-15 -2873 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4043 |#1|)) |#1| |#1|)) (-15 -2610 (|#1| |#1| |#1|)) (-15 -2718 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3436 (|#1| |#1| |#1|)) (-15 -2690 (|#1| |#1| |#1|)) (-15 -3746 (|#1| |#1| |#1|)) (-15 -3638 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4043 |#1|)) |#1| |#1|)) (-15 -3101 (|#1| |#1| |#1|)) (-15 -2764 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2316 (|#1| |#1| |#1|)) (-15 -4282 (|#1| |#1| |#1|)) (-15 -2511 (|#1| |#1|)) (-15 -4325 (|#2| |#1|)) (-15 -2842 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2839 ((-642 |#2|) |#1|)) (-15 -2390 (|#1| |#2|)) (-15 -2849 ((-3 |#2| "failed") |#1|)) (-15 -2849 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2390 (|#1| (-407 (-564)))) (-15 -2849 ((-3 (-564) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2390 (|#1| (-564))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-769) |#1|)) (-15 * (|#1| (-919) |#1|)) (-15 -2390 ((-860) |#1|))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-3085 (((-3 $ "failed") $ $) 20)) (-2822 (($) 18 T CONST)) (-3436 (($ $ $) 50 (|has| |#1| (-363)))) (-2690 (($ $ $) 51 (|has| |#1| (-363)))) (-3746 (($ $ $) 53 (|has| |#1| (-363)))) (-2610 (($ $ $) 48 (|has| |#1| (-363)))) (-2873 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) 47 (|has| |#1| (-363)))) (-2718 (((-3 $ "failed") $ $) 49 (|has| |#1| (-363)))) (-2618 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) 52 (|has| |#1| (-363)))) (-2849 (((-3 (-564) "failed") $) 80 (|has| |#1| (-1036 (-564)))) (((-3 (-407 (-564)) "failed") $) 77 (|has| |#1| (-1036 (-407 (-564))))) (((-3 |#1| "failed") $) 74)) (-1687 (((-564) $) 79 (|has| |#1| (-1036 (-564)))) (((-407 (-564)) $) 76 (|has| |#1| (-1036 (-407 (-564))))) ((|#1| $) 75)) (-3459 (($ $) 69)) (-2675 (((-3 $ "failed") $) 37)) (-2511 (($ $) 60 (|has| |#1| (-452)))) (-3163 (((-112) $) 35)) (-2374 (($ |#1| (-769)) 67)) (-1512 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) 62 (|has| |#1| (-556)))) (-3316 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) 63 (|has| |#1| (-556)))) (-2887 (((-769) $) 71)) (-2316 (($ $ $) 57 (|has| |#1| (-363)))) (-4282 (($ $ $) 58 (|has| |#1| (-363)))) (-3869 (($ $ $) 46 (|has| |#1| (-363)))) (-3101 (($ $ $) 55 (|has| |#1| (-363)))) (-3638 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) 54 (|has| |#1| (-363)))) (-2764 (((-3 $ "failed") $ $) 56 (|has| |#1| (-363)))) (-2765 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) 59 (|has| |#1| (-363)))) (-2523 ((|#1| $) 70)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2842 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-556)))) (-3252 (((-769) $) 72)) (-4325 ((|#1| $) 61 (|has| |#1| (-452)))) (-2390 (((-860) $) 12) (($ (-564)) 33) (($ (-407 (-564))) 78 (|has| |#1| (-1036 (-407 (-564))))) (($ |#1|) 73)) (-2839 (((-642 |#1|) $) 66)) (-3005 ((|#1| $ (-769)) 68)) (-3348 (((-769)) 32 T CONST)) (-1600 (((-112) $ $) 9)) (-3975 ((|#1| $ |#1| |#1|) 65)) (-2361 (($) 19 T CONST)) (-2371 (($) 34 T CONST)) (-2821 (((-112) $ $) 6)) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81))) -(((-850 |#1|) (-140) (-1047)) (T -850)) -((-3252 (*1 *2 *1) (-12 (-4 *1 (-850 *3)) (-4 *3 (-1047)) (-5 *2 (-769)))) (-2887 (*1 *2 *1) (-12 (-4 *1 (-850 *3)) (-4 *3 (-1047)) (-5 *2 (-769)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-850 *2)) (-4 *2 (-1047)))) (-3459 (*1 *1 *1) (-12 (-4 *1 (-850 *2)) (-4 *2 (-1047)))) (-3005 (*1 *2 *1 *3) (-12 (-5 *3 (-769)) (-4 *1 (-850 *2)) (-4 *2 (-1047)))) (-2374 (*1 *1 *2 *3) (-12 (-5 *3 (-769)) (-4 *1 (-850 *2)) (-4 *2 (-1047)))) (-2839 (*1 *2 *1) (-12 (-4 *1 (-850 *3)) (-4 *3 (-1047)) (-5 *2 (-642 *3)))) (-3975 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-850 *2)) (-4 *2 (-1047)))) (-2842 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-850 *2)) (-4 *2 (-1047)) (-4 *2 (-556)))) (-3316 (*1 *2 *1 *1) (-12 (-4 *3 (-556)) (-4 *3 (-1047)) (-5 *2 (-2 (|:| -4332 *1) (|:| -1992 *1))) (-4 *1 (-850 *3)))) (-1512 (*1 *2 *1 *1) (-12 (-4 *3 (-556)) (-4 *3 (-1047)) (-5 *2 (-2 (|:| -4332 *1) (|:| -1992 *1))) (-4 *1 (-850 *3)))) (-4325 (*1 *2 *1) (-12 (-4 *1 (-850 *2)) (-4 *2 (-1047)) (-4 *2 (-452)))) (-2511 (*1 *1 *1) (-12 (-4 *1 (-850 *2)) (-4 *2 (-1047)) (-4 *2 (-452)))) (-2765 (*1 *2 *1 *1) (-12 (-4 *3 (-363)) (-4 *3 (-1047)) (-5 *2 (-2 (|:| -4332 *1) (|:| -1992 *1))) (-4 *1 (-850 *3)))) (-4282 (*1 *1 *1 *1) (-12 (-4 *1 (-850 *2)) (-4 *2 (-1047)) (-4 *2 (-363)))) (-2316 (*1 *1 *1 *1) (-12 (-4 *1 (-850 *2)) (-4 *2 (-1047)) (-4 *2 (-363)))) (-2764 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-850 *2)) (-4 *2 (-1047)) (-4 *2 (-363)))) (-3101 (*1 *1 *1 *1) (-12 (-4 *1 (-850 *2)) (-4 *2 (-1047)) (-4 *2 (-363)))) (-3638 (*1 *2 *1 *1) (-12 (-4 *3 (-363)) (-4 *3 (-1047)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4043 *1))) (-4 *1 (-850 *3)))) (-3746 (*1 *1 *1 *1) (-12 (-4 *1 (-850 *2)) (-4 *2 (-1047)) (-4 *2 (-363)))) (-2618 (*1 *2 *1 *1) (-12 (-4 *3 (-363)) (-4 *3 (-1047)) (-5 *2 (-2 (|:| -4332 *1) (|:| -1992 *1))) (-4 *1 (-850 *3)))) (-2690 (*1 *1 *1 *1) (-12 (-4 *1 (-850 *2)) (-4 *2 (-1047)) (-4 *2 (-363)))) (-3436 (*1 *1 *1 *1) (-12 (-4 *1 (-850 *2)) (-4 *2 (-1047)) (-4 *2 (-363)))) (-2718 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-850 *2)) (-4 *2 (-1047)) (-4 *2 (-363)))) (-2610 (*1 *1 *1 *1) (-12 (-4 *1 (-850 *2)) (-4 *2 (-1047)) (-4 *2 (-363)))) (-2873 (*1 *2 *1 *1) (-12 (-4 *3 (-363)) (-4 *3 (-1047)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4043 *1))) (-4 *1 (-850 *3)))) (-3869 (*1 *1 *1 *1) (-12 (-4 *1 (-850 *2)) (-4 *2 (-1047)) (-4 *2 (-363))))) -(-13 (-1047) (-111 |t#1| |t#1|) (-411 |t#1|) (-10 -8 (-15 -3252 ((-769) $)) (-15 -2887 ((-769) $)) (-15 -2523 (|t#1| $)) (-15 -3459 ($ $)) (-15 -3005 (|t#1| $ (-769))) (-15 -2374 ($ |t#1| (-769))) (-15 -2839 ((-642 |t#1|) $)) (-15 -3975 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-556)) (PROGN (-15 -2842 ((-3 $ "failed") $ |t#1|)) (-15 -3316 ((-2 (|:| -4332 $) (|:| -1992 $)) $ $)) (-15 -1512 ((-2 (|:| -4332 $) (|:| -1992 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-452)) (PROGN (-15 -4325 (|t#1| $)) (-15 -2511 ($ $))) |%noBranch|) (IF (|has| |t#1| (-363)) (PROGN (-15 -2765 ((-2 (|:| -4332 $) (|:| -1992 $)) $ $)) (-15 -4282 ($ $ $)) (-15 -2316 ($ $ $)) (-15 -2764 ((-3 $ "failed") $ $)) (-15 -3101 ($ $ $)) (-15 -3638 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $)) (-15 -3746 ($ $ $)) (-15 -2618 ((-2 (|:| -4332 $) (|:| -1992 $)) $ $)) (-15 -2690 ($ $ $)) (-15 -3436 ($ $ $)) (-15 -2718 ((-3 $ "failed") $ $)) (-15 -2610 ($ $ $)) (-15 -2873 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $)) (-15 -3869 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 #0=(-407 (-564))) |has| |#1| (-1036 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-611 (-860)) . T) ((-411 |#1|) . T) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-638 |#1|) |has| |#1| (-172)) ((-715 |#1|) |has| |#1| (-172)) ((-724) . T) ((-1036 #0#) |has| |#1| (-1036 (-407 (-564)))) ((-1036 (-564)) |has| |#1| (-1036 (-564))) ((-1036 |#1|) . T) ((-1049 |#1|) . T) ((-1054 |#1|) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T)) -((-1803 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-2618 (((-2 (|:| -4332 |#2|) (|:| -1992 |#2|)) |#2| |#2| (-99 |#1|)) 49 (|has| |#1| (-363)))) (-1512 (((-2 (|:| -4332 |#2|) (|:| -1992 |#2|)) |#2| |#2| (-99 |#1|)) 46 (|has| |#1| (-556)))) (-3316 (((-2 (|:| -4332 |#2|) (|:| -1992 |#2|)) |#2| |#2| (-99 |#1|)) 45 (|has| |#1| (-556)))) (-2765 (((-2 (|:| -4332 |#2|) (|:| -1992 |#2|)) |#2| |#2| (-99 |#1|)) 48 (|has| |#1| (-363)))) (-3975 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 36))) -(((-851 |#1| |#2|) (-10 -7 (-15 -1803 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -3975 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-556)) (PROGN (-15 -3316 ((-2 (|:| -4332 |#2|) (|:| -1992 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -1512 ((-2 (|:| -4332 |#2|) (|:| -1992 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -2765 ((-2 (|:| -4332 |#2|) (|:| -1992 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2618 ((-2 (|:| -4332 |#2|) (|:| -1992 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1047) (-850 |#1|)) (T -851)) -((-2618 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-363)) (-4 *5 (-1047)) (-5 *2 (-2 (|:| -4332 *3) (|:| -1992 *3))) (-5 *1 (-851 *5 *3)) (-4 *3 (-850 *5)))) (-2765 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-363)) (-4 *5 (-1047)) (-5 *2 (-2 (|:| -4332 *3) (|:| -1992 *3))) (-5 *1 (-851 *5 *3)) (-4 *3 (-850 *5)))) (-1512 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-556)) (-4 *5 (-1047)) (-5 *2 (-2 (|:| -4332 *3) (|:| -1992 *3))) (-5 *1 (-851 *5 *3)) (-4 *3 (-850 *5)))) (-3316 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-556)) (-4 *5 (-1047)) (-5 *2 (-2 (|:| -4332 *3) (|:| -1992 *3))) (-5 *1 (-851 *5 *3)) (-4 *3 (-850 *5)))) (-3975 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1047)) (-5 *1 (-851 *2 *3)) (-4 *3 (-850 *2)))) (-1803 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1047)) (-5 *1 (-851 *5 *2)) (-4 *2 (-850 *5))))) -(-10 -7 (-15 -1803 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -3975 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-556)) (PROGN (-15 -3316 ((-2 (|:| -4332 |#2|) (|:| -1992 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -1512 ((-2 (|:| -4332 |#2|) (|:| -1992 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -2765 ((-2 (|:| -4332 |#2|) (|:| -1992 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2618 ((-2 (|:| -4332 |#2|) (|:| -1992 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-3085 (((-3 $ "failed") $ $) NIL)) (-2822 (($) NIL T CONST)) (-3436 (($ $ $) NIL (|has| |#1| (-363)))) (-2690 (($ $ $) NIL (|has| |#1| (-363)))) (-3746 (($ $ $) NIL (|has| |#1| (-363)))) (-2610 (($ $ $) NIL (|has| |#1| (-363)))) (-2873 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL (|has| |#1| (-363)))) (-2718 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-2618 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) 34 (|has| |#1| (-363)))) (-2849 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1036 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1036 (-407 (-564))))) (((-3 |#1| "failed") $) NIL)) (-1687 (((-564) $) NIL (|has| |#1| (-1036 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1036 (-407 (-564))))) ((|#1| $) NIL)) (-3459 (($ $) NIL)) (-2675 (((-3 $ "failed") $) NIL)) (-2511 (($ $) NIL (|has| |#1| (-452)))) (-2098 (((-860) $ (-860)) NIL)) (-3163 (((-112) $) NIL)) (-2374 (($ |#1| (-769)) NIL)) (-1512 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) 30 (|has| |#1| (-556)))) (-3316 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) 28 (|has| |#1| (-556)))) (-2887 (((-769) $) NIL)) (-2316 (($ $ $) NIL (|has| |#1| (-363)))) (-4282 (($ $ $) NIL (|has| |#1| (-363)))) (-3869 (($ $ $) NIL (|has| |#1| (-363)))) (-3101 (($ $ $) NIL (|has| |#1| (-363)))) (-3638 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL (|has| |#1| (-363)))) (-2764 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-2765 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) 32 (|has| |#1| (-363)))) (-2523 ((|#1| $) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2842 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556)))) (-3252 (((-769) $) NIL)) (-4325 ((|#1| $) NIL (|has| |#1| (-452)))) (-2390 (((-860) $) NIL) (($ (-564)) NIL) (($ (-407 (-564))) NIL (|has| |#1| (-1036 (-407 (-564))))) (($ |#1|) NIL)) (-2839 (((-642 |#1|) $) NIL)) (-3005 ((|#1| $ (-769)) NIL)) (-3348 (((-769)) NIL T CONST)) (-1600 (((-112) $ $) NIL)) (-3975 ((|#1| $ |#1| |#1|) 15)) (-2361 (($) NIL T CONST)) (-2371 (($) 23 T CONST)) (-2821 (((-112) $ $) NIL)) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) NIL)) (** (($ $ (-919)) 19) (($ $ (-769)) 24)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-852 |#1| |#2| |#3|) (-13 (-850 |#1|) (-10 -8 (-15 -2098 ((-860) $ (-860))))) (-1047) (-99 |#1|) (-1 |#1| |#1|)) (T -852)) -((-2098 (*1 *2 *1 *2) (-12 (-5 *2 (-860)) (-5 *1 (-852 *3 *4 *5)) (-4 *3 (-1047)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))) -(-13 (-850 |#1|) (-10 -8 (-15 -2098 ((-860) $ (-860))))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-3085 (((-3 $ "failed") $ $) NIL)) (-2822 (($) NIL T CONST)) (-3436 (($ $ $) NIL (|has| |#2| (-363)))) (-2690 (($ $ $) NIL (|has| |#2| (-363)))) (-3746 (($ $ $) NIL (|has| |#2| (-363)))) (-2610 (($ $ $) NIL (|has| |#2| (-363)))) (-2873 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL (|has| |#2| (-363)))) (-2718 (((-3 $ "failed") $ $) NIL (|has| |#2| (-363)))) (-2618 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL (|has| |#2| (-363)))) (-2849 (((-3 (-564) "failed") $) NIL (|has| |#2| (-1036 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1036 (-407 (-564))))) (((-3 |#2| "failed") $) NIL)) (-1687 (((-564) $) NIL (|has| |#2| (-1036 (-564)))) (((-407 (-564)) $) NIL (|has| |#2| (-1036 (-407 (-564))))) ((|#2| $) NIL)) (-3459 (($ $) NIL)) (-2675 (((-3 $ "failed") $) NIL)) (-2511 (($ $) NIL (|has| |#2| (-452)))) (-3163 (((-112) $) NIL)) (-2374 (($ |#2| (-769)) 17)) (-1512 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL (|has| |#2| (-556)))) (-3316 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL (|has| |#2| (-556)))) (-2887 (((-769) $) NIL)) (-2316 (($ $ $) NIL (|has| |#2| (-363)))) (-4282 (($ $ $) NIL (|has| |#2| (-363)))) (-3869 (($ $ $) NIL (|has| |#2| (-363)))) (-3101 (($ $ $) NIL (|has| |#2| (-363)))) (-3638 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL (|has| |#2| (-363)))) (-2764 (((-3 $ "failed") $ $) NIL (|has| |#2| (-363)))) (-2765 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL (|has| |#2| (-363)))) (-2523 ((|#2| $) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2842 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556)))) (-3252 (((-769) $) NIL)) (-4325 ((|#2| $) NIL (|has| |#2| (-452)))) (-2390 (((-860) $) 24) (($ (-564)) NIL) (($ (-407 (-564))) NIL (|has| |#2| (-1036 (-407 (-564))))) (($ |#2|) NIL) (($ (-1258 |#1|)) 19)) (-2839 (((-642 |#2|) $) NIL)) (-3005 ((|#2| $ (-769)) NIL)) (-3348 (((-769)) NIL T CONST)) (-1600 (((-112) $ $) NIL)) (-3975 ((|#2| $ |#2| |#2|) NIL)) (-2361 (($) NIL T CONST)) (-2371 (($) 13 T CONST)) (-2821 (((-112) $ $) NIL)) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-853 |#1| |#2| |#3| |#4|) (-13 (-850 |#2|) (-614 (-1258 |#1|))) (-1173) (-1047) (-99 |#2|) (-1 |#2| |#2|)) (T -853)) -NIL -(-13 (-850 |#2|) (-614 (-1258 |#1|))) -((-3307 ((|#1| (-769) |#1|) 48 (|has| |#1| (-38 (-407 (-564)))))) (-3956 ((|#1| (-769) (-769) |#1|) 39) ((|#1| (-769) |#1|) 27)) (-3842 ((|#1| (-769) |#1|) 43)) (-3587 ((|#1| (-769) |#1|) 41)) (-1631 ((|#1| (-769) |#1|) 40))) -(((-854 |#1|) (-10 -7 (-15 -1631 (|#1| (-769) |#1|)) (-15 -3587 (|#1| (-769) |#1|)) (-15 -3842 (|#1| (-769) |#1|)) (-15 -3956 (|#1| (-769) |#1|)) (-15 -3956 (|#1| (-769) (-769) |#1|)) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3307 (|#1| (-769) |#1|)) |%noBranch|)) (-172)) (T -854)) -((-3307 (*1 *2 *3 *2) (-12 (-5 *3 (-769)) (-5 *1 (-854 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-172)))) (-3956 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-769)) (-5 *1 (-854 *2)) (-4 *2 (-172)))) (-3956 (*1 *2 *3 *2) (-12 (-5 *3 (-769)) (-5 *1 (-854 *2)) (-4 *2 (-172)))) (-3842 (*1 *2 *3 *2) (-12 (-5 *3 (-769)) (-5 *1 (-854 *2)) (-4 *2 (-172)))) (-3587 (*1 *2 *3 *2) (-12 (-5 *3 (-769)) (-5 *1 (-854 *2)) (-4 *2 (-172)))) (-1631 (*1 *2 *3 *2) (-12 (-5 *3 (-769)) (-5 *1 (-854 *2)) (-4 *2 (-172))))) -(-10 -7 (-15 -1631 (|#1| (-769) |#1|)) (-15 -3587 (|#1| (-769) |#1|)) (-15 -3842 (|#1| (-769) |#1|)) (-15 -3956 (|#1| (-769) |#1|)) (-15 -3956 (|#1| (-769) (-769) |#1|)) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3307 (|#1| (-769) |#1|)) |%noBranch|)) -((-2856 (((-112) $ $) 7)) (-3225 (($ $ $) 14)) (-2903 (($ $ $) 15)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2390 (((-860) $) 12)) (-1600 (((-112) $ $) 9)) (-2881 (((-112) $ $) 17)) (-2857 (((-112) $ $) 18)) (-2821 (((-112) $ $) 6)) (-2868 (((-112) $ $) 16)) (-2844 (((-112) $ $) 19)) (** (($ $ (-919)) 22)) (* (($ $ $) 21))) -(((-855) (-140)) (T -855)) -NIL -(-13 (-848) (-1109)) -(((-102) . T) ((-611 (-860)) . T) ((-848) . T) ((-1109) . T) ((-1097) . T)) -((-2856 (((-112) $ $) NIL)) (-2108 (((-564) $) 14)) (-3225 (($ $ $) NIL)) (-2903 (($ $ $) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) 20) (($ (-564)) 13)) (-1600 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL)) (-2857 (((-112) $ $) NIL)) (-2821 (((-112) $ $) 9)) (-2868 (((-112) $ $) NIL)) (-2844 (((-112) $ $) 11))) -(((-856) (-13 (-848) (-10 -8 (-15 -2390 ($ (-564))) (-15 -2108 ((-564) $))))) (T -856)) -((-2390 (*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-856)))) (-2108 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-856))))) -(-13 (-848) (-10 -8 (-15 -2390 ($ (-564))) (-15 -2108 ((-564) $)))) -((-1829 (((-689 (-1220)) $ (-1220)) 15)) (-3578 (((-689 (-549)) $ (-549)) 12)) (-2505 (((-769) $ (-128)) 30))) -(((-857 |#1|) (-10 -8 (-15 -2505 ((-769) |#1| (-128))) (-15 -1829 ((-689 (-1220)) |#1| (-1220))) (-15 -3578 ((-689 (-549)) |#1| (-549)))) (-858)) (T -857)) -NIL -(-10 -8 (-15 -2505 ((-769) |#1| (-128))) (-15 -1829 ((-689 (-1220)) |#1| (-1220))) (-15 -3578 ((-689 (-549)) |#1| (-549)))) -((-1829 (((-689 (-1220)) $ (-1220)) 8)) (-3578 (((-689 (-549)) $ (-549)) 9)) (-2505 (((-769) $ (-128)) 7)) (-3900 (((-689 (-129)) $ (-129)) 10)) (-2914 (($ $) 6))) -(((-858) (-140)) (T -858)) -((-3900 (*1 *2 *1 *3) (-12 (-4 *1 (-858)) (-5 *2 (-689 (-129))) (-5 *3 (-129)))) (-3578 (*1 *2 *1 *3) (-12 (-4 *1 (-858)) (-5 *2 (-689 (-549))) (-5 *3 (-549)))) (-1829 (*1 *2 *1 *3) (-12 (-4 *1 (-858)) (-5 *2 (-689 (-1220))) (-5 *3 (-1220)))) (-2505 (*1 *2 *1 *3) (-12 (-4 *1 (-858)) (-5 *3 (-128)) (-5 *2 (-769))))) -(-13 (-173) (-10 -8 (-15 -3900 ((-689 (-129)) $ (-129))) (-15 -3578 ((-689 (-549)) $ (-549))) (-15 -1829 ((-689 (-1220)) $ (-1220))) (-15 -2505 ((-769) $ (-128))))) +((-2133 (*1 *2 *1) (-12 (-4 *1 (-848)) (-5 *2 (-112)))) (-3420 (*1 *2 *1) (-12 (-4 *1 (-848)) (-5 *2 (-112)))) (-2920 (*1 *2 *1) (-12 (-4 *1 (-848)) (-5 *2 (-566)))) (-4298 (*1 *1 *1) (-4 *1 (-848)))) +(-13 (-791) (-1049) (-726) (-10 -8 (-15 -2133 ((-112) $)) (-15 -3420 ((-112) $)) (-15 -2920 ((-566) $)) (-15 -4298 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-616 (-566)) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 $) . T) ((-726) . T) ((-791) . T) ((-792) . T) ((-794) . T) ((-795) . T) ((-850) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) +((-1920 (($ $ $) 12)) (-3038 (($ $ $) 11)) (-3900 (((-112) $ $) 9)) (-3019 (((-112) $ $) 15)) (-2990 (((-112) $ $) 13)) (-3004 (((-112) $ $) 16))) +(((-849 |#1|) (-10 -8 (-15 -1920 (|#1| |#1| |#1|)) (-15 -3038 (|#1| |#1| |#1|)) (-15 -3004 ((-112) |#1| |#1|)) (-15 -3019 ((-112) |#1| |#1|)) (-15 -2990 ((-112) |#1| |#1|)) (-15 -3900 ((-112) |#1| |#1|))) (-850)) (T -849)) +NIL +(-10 -8 (-15 -1920 (|#1| |#1| |#1|)) (-15 -3038 (|#1| |#1| |#1|)) (-15 -3004 ((-112) |#1| |#1|)) (-15 -3019 ((-112) |#1| |#1|)) (-15 -2990 ((-112) |#1| |#1|)) (-15 -3900 ((-112) |#1| |#1|))) +((-2986 (((-112) $ $) 7)) (-1920 (($ $ $) 14)) (-3038 (($ $ $) 15)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-2479 (((-862) $) 12)) (-3900 (((-112) $ $) 9)) (-3019 (((-112) $ $) 17)) (-2990 (((-112) $ $) 18)) (-2952 (((-112) $ $) 6)) (-3004 (((-112) $ $) 16)) (-2977 (((-112) $ $) 19))) +(((-850) (-140)) (T -850)) +((-2977 (*1 *2 *1 *1) (-12 (-4 *1 (-850)) (-5 *2 (-112)))) (-2990 (*1 *2 *1 *1) (-12 (-4 *1 (-850)) (-5 *2 (-112)))) (-3019 (*1 *2 *1 *1) (-12 (-4 *1 (-850)) (-5 *2 (-112)))) (-3004 (*1 *2 *1 *1) (-12 (-4 *1 (-850)) (-5 *2 (-112)))) (-3038 (*1 *1 *1 *1) (-4 *1 (-850))) (-1920 (*1 *1 *1 *1) (-4 *1 (-850)))) +(-13 (-1099) (-10 -8 (-15 -2977 ((-112) $ $)) (-15 -2990 ((-112) $ $)) (-15 -3019 ((-112) $ $)) (-15 -3004 ((-112) $ $)) (-15 -3038 ($ $ $)) (-15 -1920 ($ $ $)))) +(((-102) . T) ((-613 (-862)) . T) ((-1099) . T)) +((-3224 (($ $ $) 49)) (-2679 (($ $ $) 48)) (-1482 (($ $ $) 46)) (-3644 (($ $ $) 55)) (-3611 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) 50)) (-1584 (((-3 $ "failed") $ $) 53)) (-2980 (((-3 (-566) "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL) (((-3 |#2| "failed") $) 29)) (-3530 (($ $) 39)) (-2069 (($ $ $) 43)) (-2367 (($ $ $) 42)) (-3590 (($ $ $) 51)) (-4274 (($ $ $) 57)) (-3905 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) 45)) (-3783 (((-3 $ "failed") $ $) 52)) (-2976 (((-3 $ "failed") $ |#2|) 32)) (-2252 ((|#2| $) 36)) (-2479 (((-862) $) NIL) (($ (-566)) NIL) (($ (-409 (-566))) NIL) (($ |#2|) 13)) (-3866 (((-644 |#2|) $) 21)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 25))) +(((-851 |#1| |#2|) (-10 -8 (-15 -3590 (|#1| |#1| |#1|)) (-15 -3611 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4086 |#1|)) |#1| |#1|)) (-15 -3644 (|#1| |#1| |#1|)) (-15 -1584 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3224 (|#1| |#1| |#1|)) (-15 -2679 (|#1| |#1| |#1|)) (-15 -1482 (|#1| |#1| |#1|)) (-15 -3905 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4086 |#1|)) |#1| |#1|)) (-15 -4274 (|#1| |#1| |#1|)) (-15 -3783 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2069 (|#1| |#1| |#1|)) (-15 -2367 (|#1| |#1| |#1|)) (-15 -3530 (|#1| |#1|)) (-15 -2252 (|#2| |#1|)) (-15 -2976 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3866 ((-644 |#2|) |#1|)) (-15 -2479 (|#1| |#2|)) (-15 -2980 ((-3 |#2| "failed") |#1|)) (-15 -2980 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -2479 (|#1| (-409 (-566)))) (-15 -2980 ((-3 (-566) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2479 (|#1| (-566))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 * (|#1| (-921) |#1|)) (-15 -2479 ((-862) |#1|))) (-852 |#2|) (-1049)) (T -851)) +NIL +(-10 -8 (-15 -3590 (|#1| |#1| |#1|)) (-15 -3611 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4086 |#1|)) |#1| |#1|)) (-15 -3644 (|#1| |#1| |#1|)) (-15 -1584 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3224 (|#1| |#1| |#1|)) (-15 -2679 (|#1| |#1| |#1|)) (-15 -1482 (|#1| |#1| |#1|)) (-15 -3905 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4086 |#1|)) |#1| |#1|)) (-15 -4274 (|#1| |#1| |#1|)) (-15 -3783 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2069 (|#1| |#1| |#1|)) (-15 -2367 (|#1| |#1| |#1|)) (-15 -3530 (|#1| |#1|)) (-15 -2252 (|#2| |#1|)) (-15 -2976 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3866 ((-644 |#2|) |#1|)) (-15 -2479 (|#1| |#2|)) (-15 -2980 ((-3 |#2| "failed") |#1|)) (-15 -2980 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -2479 (|#1| (-409 (-566)))) (-15 -2980 ((-3 (-566) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2479 (|#1| (-566))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 * (|#1| (-921) |#1|)) (-15 -2479 ((-862) |#1|))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-3174 (((-3 $ "failed") $ $) 20)) (-1811 (($) 18 T CONST)) (-3224 (($ $ $) 50 (|has| |#1| (-365)))) (-2679 (($ $ $) 51 (|has| |#1| (-365)))) (-1482 (($ $ $) 53 (|has| |#1| (-365)))) (-3644 (($ $ $) 48 (|has| |#1| (-365)))) (-3611 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) 47 (|has| |#1| (-365)))) (-1584 (((-3 $ "failed") $ $) 49 (|has| |#1| (-365)))) (-1629 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) 52 (|has| |#1| (-365)))) (-2980 (((-3 (-566) "failed") $) 80 (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) 77 (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) 74)) (-1709 (((-566) $) 79 (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) 76 (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) 75)) (-3565 (($ $) 69)) (-3757 (((-3 $ "failed") $) 37)) (-3530 (($ $) 60 (|has| |#1| (-454)))) (-2264 (((-112) $) 35)) (-2463 (($ |#1| (-771)) 67)) (-3108 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) 62 (|has| |#1| (-558)))) (-2716 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) 63 (|has| |#1| (-558)))) (-2584 (((-771) $) 71)) (-2069 (($ $ $) 57 (|has| |#1| (-365)))) (-2367 (($ $ $) 58 (|has| |#1| (-365)))) (-3590 (($ $ $) 46 (|has| |#1| (-365)))) (-4274 (($ $ $) 55 (|has| |#1| (-365)))) (-3905 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) 54 (|has| |#1| (-365)))) (-3783 (((-3 $ "failed") $ $) 56 (|has| |#1| (-365)))) (-3709 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) 59 (|has| |#1| (-365)))) (-2622 ((|#1| $) 70)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-2976 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-558)))) (-1630 (((-771) $) 72)) (-2252 ((|#1| $) 61 (|has| |#1| (-454)))) (-2479 (((-862) $) 12) (($ (-566)) 33) (($ (-409 (-566))) 78 (|has| |#1| (-1038 (-409 (-566))))) (($ |#1|) 73)) (-3866 (((-644 |#1|) $) 66)) (-3025 ((|#1| $ (-771)) 68)) (-1558 (((-771)) 32 T CONST)) (-3900 (((-112) $ $) 9)) (-4029 ((|#1| $ |#1| |#1|) 65)) (-2446 (($) 19 T CONST)) (-2459 (($) 34 T CONST)) (-2952 (((-112) $ $) 6)) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81))) +(((-852 |#1|) (-140) (-1049)) (T -852)) +((-1630 (*1 *2 *1) (-12 (-4 *1 (-852 *3)) (-4 *3 (-1049)) (-5 *2 (-771)))) (-2584 (*1 *2 *1) (-12 (-4 *1 (-852 *3)) (-4 *3 (-1049)) (-5 *2 (-771)))) (-2622 (*1 *2 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)))) (-3565 (*1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)))) (-3025 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-4 *1 (-852 *2)) (-4 *2 (-1049)))) (-2463 (*1 *1 *2 *3) (-12 (-5 *3 (-771)) (-4 *1 (-852 *2)) (-4 *2 (-1049)))) (-3866 (*1 *2 *1) (-12 (-4 *1 (-852 *3)) (-4 *3 (-1049)) (-5 *2 (-644 *3)))) (-4029 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)))) (-2976 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-558)))) (-2716 (*1 *2 *1 *1) (-12 (-4 *3 (-558)) (-4 *3 (-1049)) (-5 *2 (-2 (|:| -3371 *1) (|:| -3131 *1))) (-4 *1 (-852 *3)))) (-3108 (*1 *2 *1 *1) (-12 (-4 *3 (-558)) (-4 *3 (-1049)) (-5 *2 (-2 (|:| -3371 *1) (|:| -3131 *1))) (-4 *1 (-852 *3)))) (-2252 (*1 *2 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-454)))) (-3530 (*1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-454)))) (-3709 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *3 (-1049)) (-5 *2 (-2 (|:| -3371 *1) (|:| -3131 *1))) (-4 *1 (-852 *3)))) (-2367 (*1 *1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))) (-2069 (*1 *1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))) (-3783 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))) (-4274 (*1 *1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))) (-3905 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *3 (-1049)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4086 *1))) (-4 *1 (-852 *3)))) (-1482 (*1 *1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))) (-1629 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *3 (-1049)) (-5 *2 (-2 (|:| -3371 *1) (|:| -3131 *1))) (-4 *1 (-852 *3)))) (-2679 (*1 *1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))) (-3224 (*1 *1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))) (-1584 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))) (-3644 (*1 *1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))) (-3611 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *3 (-1049)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4086 *1))) (-4 *1 (-852 *3)))) (-3590 (*1 *1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365))))) +(-13 (-1049) (-111 |t#1| |t#1|) (-413 |t#1|) (-10 -8 (-15 -1630 ((-771) $)) (-15 -2584 ((-771) $)) (-15 -2622 (|t#1| $)) (-15 -3565 ($ $)) (-15 -3025 (|t#1| $ (-771))) (-15 -2463 ($ |t#1| (-771))) (-15 -3866 ((-644 |t#1|) $)) (-15 -4029 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-558)) (PROGN (-15 -2976 ((-3 $ "failed") $ |t#1|)) (-15 -2716 ((-2 (|:| -3371 $) (|:| -3131 $)) $ $)) (-15 -3108 ((-2 (|:| -3371 $) (|:| -3131 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-454)) (PROGN (-15 -2252 (|t#1| $)) (-15 -3530 ($ $))) |%noBranch|) (IF (|has| |t#1| (-365)) (PROGN (-15 -3709 ((-2 (|:| -3371 $) (|:| -3131 $)) $ $)) (-15 -2367 ($ $ $)) (-15 -2069 ($ $ $)) (-15 -3783 ((-3 $ "failed") $ $)) (-15 -4274 ($ $ $)) (-15 -3905 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $)) (-15 -1482 ($ $ $)) (-15 -1629 ((-2 (|:| -3371 $) (|:| -3131 $)) $ $)) (-15 -2679 ($ $ $)) (-15 -3224 ($ $ $)) (-15 -1584 ((-3 $ "failed") $ $)) (-15 -3644 ($ $ $)) (-15 -3611 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $)) (-15 -3590 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-616 #0=(-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) ((-616 (-566)) . T) ((-616 |#1|) . T) ((-613 (-862)) . T) ((-413 |#1|) . T) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-640 |#1|) |has| |#1| (-172)) ((-717 |#1|) |has| |#1| (-172)) ((-726) . T) ((-1038 #0#) |has| |#1| (-1038 (-409 (-566)))) ((-1038 (-566)) |has| |#1| (-1038 (-566))) ((-1038 |#1|) . T) ((-1051 |#1|) . T) ((-1056 |#1|) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) +((-1820 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-1629 (((-2 (|:| -3371 |#2|) (|:| -3131 |#2|)) |#2| |#2| (-99 |#1|)) 49 (|has| |#1| (-365)))) (-3108 (((-2 (|:| -3371 |#2|) (|:| -3131 |#2|)) |#2| |#2| (-99 |#1|)) 46 (|has| |#1| (-558)))) (-2716 (((-2 (|:| -3371 |#2|) (|:| -3131 |#2|)) |#2| |#2| (-99 |#1|)) 45 (|has| |#1| (-558)))) (-3709 (((-2 (|:| -3371 |#2|) (|:| -3131 |#2|)) |#2| |#2| (-99 |#1|)) 48 (|has| |#1| (-365)))) (-4029 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 36))) +(((-853 |#1| |#2|) (-10 -7 (-15 -1820 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -4029 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-558)) (PROGN (-15 -2716 ((-2 (|:| -3371 |#2|) (|:| -3131 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3108 ((-2 (|:| -3371 |#2|) (|:| -3131 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -3709 ((-2 (|:| -3371 |#2|) (|:| -3131 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -1629 ((-2 (|:| -3371 |#2|) (|:| -3131 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1049) (-852 |#1|)) (T -853)) +((-1629 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-365)) (-4 *5 (-1049)) (-5 *2 (-2 (|:| -3371 *3) (|:| -3131 *3))) (-5 *1 (-853 *5 *3)) (-4 *3 (-852 *5)))) (-3709 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-365)) (-4 *5 (-1049)) (-5 *2 (-2 (|:| -3371 *3) (|:| -3131 *3))) (-5 *1 (-853 *5 *3)) (-4 *3 (-852 *5)))) (-3108 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-558)) (-4 *5 (-1049)) (-5 *2 (-2 (|:| -3371 *3) (|:| -3131 *3))) (-5 *1 (-853 *5 *3)) (-4 *3 (-852 *5)))) (-2716 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-558)) (-4 *5 (-1049)) (-5 *2 (-2 (|:| -3371 *3) (|:| -3131 *3))) (-5 *1 (-853 *5 *3)) (-4 *3 (-852 *5)))) (-4029 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1049)) (-5 *1 (-853 *2 *3)) (-4 *3 (-852 *2)))) (-1820 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1049)) (-5 *1 (-853 *5 *2)) (-4 *2 (-852 *5))))) +(-10 -7 (-15 -1820 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -4029 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-558)) (PROGN (-15 -2716 ((-2 (|:| -3371 |#2|) (|:| -3131 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3108 ((-2 (|:| -3371 |#2|) (|:| -3131 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -3709 ((-2 (|:| -3371 |#2|) (|:| -3131 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -1629 ((-2 (|:| -3371 |#2|) (|:| -3131 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-1811 (($) NIL T CONST)) (-3224 (($ $ $) NIL (|has| |#1| (-365)))) (-2679 (($ $ $) NIL (|has| |#1| (-365)))) (-1482 (($ $ $) NIL (|has| |#1| (-365)))) (-3644 (($ $ $) NIL (|has| |#1| (-365)))) (-3611 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL (|has| |#1| (-365)))) (-1584 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-1629 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) 34 (|has| |#1| (-365)))) (-2980 (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) NIL)) (-1709 (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) NIL)) (-3565 (($ $) NIL)) (-3757 (((-3 $ "failed") $) NIL)) (-3530 (($ $) NIL (|has| |#1| (-454)))) (-3089 (((-862) $ (-862)) NIL)) (-2264 (((-112) $) NIL)) (-2463 (($ |#1| (-771)) NIL)) (-3108 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) 30 (|has| |#1| (-558)))) (-2716 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) 28 (|has| |#1| (-558)))) (-2584 (((-771) $) NIL)) (-2069 (($ $ $) NIL (|has| |#1| (-365)))) (-2367 (($ $ $) NIL (|has| |#1| (-365)))) (-3590 (($ $ $) NIL (|has| |#1| (-365)))) (-4274 (($ $ $) NIL (|has| |#1| (-365)))) (-3905 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL (|has| |#1| (-365)))) (-3783 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-3709 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) 32 (|has| |#1| (-365)))) (-2622 ((|#1| $) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2976 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558)))) (-1630 (((-771) $) NIL)) (-2252 ((|#1| $) NIL (|has| |#1| (-454)))) (-2479 (((-862) $) NIL) (($ (-566)) NIL) (($ (-409 (-566))) NIL (|has| |#1| (-1038 (-409 (-566))))) (($ |#1|) NIL)) (-3866 (((-644 |#1|) $) NIL)) (-3025 ((|#1| $ (-771)) NIL)) (-1558 (((-771)) NIL T CONST)) (-3900 (((-112) $ $) NIL)) (-4029 ((|#1| $ |#1| |#1|) 15)) (-2446 (($) NIL T CONST)) (-2459 (($) 23 T CONST)) (-2952 (((-112) $ $) NIL)) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) NIL)) (** (($ $ (-921)) 19) (($ $ (-771)) 24)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-854 |#1| |#2| |#3|) (-13 (-852 |#1|) (-10 -8 (-15 -3089 ((-862) $ (-862))))) (-1049) (-99 |#1|) (-1 |#1| |#1|)) (T -854)) +((-3089 (*1 *2 *1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-854 *3 *4 *5)) (-4 *3 (-1049)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))) +(-13 (-852 |#1|) (-10 -8 (-15 -3089 ((-862) $ (-862))))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-1811 (($) NIL T CONST)) (-3224 (($ $ $) NIL (|has| |#2| (-365)))) (-2679 (($ $ $) NIL (|has| |#2| (-365)))) (-1482 (($ $ $) NIL (|has| |#2| (-365)))) (-3644 (($ $ $) NIL (|has| |#2| (-365)))) (-3611 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL (|has| |#2| (-365)))) (-1584 (((-3 $ "failed") $ $) NIL (|has| |#2| (-365)))) (-1629 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL (|has| |#2| (-365)))) (-2980 (((-3 (-566) "failed") $) NIL (|has| |#2| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#2| (-1038 (-409 (-566))))) (((-3 |#2| "failed") $) NIL)) (-1709 (((-566) $) NIL (|has| |#2| (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| |#2| (-1038 (-409 (-566))))) ((|#2| $) NIL)) (-3565 (($ $) NIL)) (-3757 (((-3 $ "failed") $) NIL)) (-3530 (($ $) NIL (|has| |#2| (-454)))) (-2264 (((-112) $) NIL)) (-2463 (($ |#2| (-771)) 17)) (-3108 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL (|has| |#2| (-558)))) (-2716 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL (|has| |#2| (-558)))) (-2584 (((-771) $) NIL)) (-2069 (($ $ $) NIL (|has| |#2| (-365)))) (-2367 (($ $ $) NIL (|has| |#2| (-365)))) (-3590 (($ $ $) NIL (|has| |#2| (-365)))) (-4274 (($ $ $) NIL (|has| |#2| (-365)))) (-3905 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL (|has| |#2| (-365)))) (-3783 (((-3 $ "failed") $ $) NIL (|has| |#2| (-365)))) (-3709 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL (|has| |#2| (-365)))) (-2622 ((|#2| $) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2976 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-558)))) (-1630 (((-771) $) NIL)) (-2252 ((|#2| $) NIL (|has| |#2| (-454)))) (-2479 (((-862) $) 24) (($ (-566)) NIL) (($ (-409 (-566))) NIL (|has| |#2| (-1038 (-409 (-566))))) (($ |#2|) NIL) (($ (-1260 |#1|)) 19)) (-3866 (((-644 |#2|) $) NIL)) (-3025 ((|#2| $ (-771)) NIL)) (-1558 (((-771)) NIL T CONST)) (-3900 (((-112) $ $) NIL)) (-4029 ((|#2| $ |#2| |#2|) NIL)) (-2446 (($) NIL T CONST)) (-2459 (($) 13 T CONST)) (-2952 (((-112) $ $) NIL)) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-855 |#1| |#2| |#3| |#4|) (-13 (-852 |#2|) (-616 (-1260 |#1|))) (-1175) (-1049) (-99 |#2|) (-1 |#2| |#2|)) (T -855)) +NIL +(-13 (-852 |#2|) (-616 (-1260 |#1|))) +((-1934 ((|#1| (-771) |#1|) 48 (|has| |#1| (-38 (-409 (-566)))))) (-2772 ((|#1| (-771) (-771) |#1|) 39) ((|#1| (-771) |#1|) 27)) (-3608 ((|#1| (-771) |#1|) 43)) (-2146 ((|#1| (-771) |#1|) 41)) (-1867 ((|#1| (-771) |#1|) 40))) +(((-856 |#1|) (-10 -7 (-15 -1867 (|#1| (-771) |#1|)) (-15 -2146 (|#1| (-771) |#1|)) (-15 -3608 (|#1| (-771) |#1|)) (-15 -2772 (|#1| (-771) |#1|)) (-15 -2772 (|#1| (-771) (-771) |#1|)) (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -1934 (|#1| (-771) |#1|)) |%noBranch|)) (-172)) (T -856)) +((-1934 (*1 *2 *3 *2) (-12 (-5 *3 (-771)) (-5 *1 (-856 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-172)))) (-2772 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-771)) (-5 *1 (-856 *2)) (-4 *2 (-172)))) (-2772 (*1 *2 *3 *2) (-12 (-5 *3 (-771)) (-5 *1 (-856 *2)) (-4 *2 (-172)))) (-3608 (*1 *2 *3 *2) (-12 (-5 *3 (-771)) (-5 *1 (-856 *2)) (-4 *2 (-172)))) (-2146 (*1 *2 *3 *2) (-12 (-5 *3 (-771)) (-5 *1 (-856 *2)) (-4 *2 (-172)))) (-1867 (*1 *2 *3 *2) (-12 (-5 *3 (-771)) (-5 *1 (-856 *2)) (-4 *2 (-172))))) +(-10 -7 (-15 -1867 (|#1| (-771) |#1|)) (-15 -2146 (|#1| (-771) |#1|)) (-15 -3608 (|#1| (-771) |#1|)) (-15 -2772 (|#1| (-771) |#1|)) (-15 -2772 (|#1| (-771) (-771) |#1|)) (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -1934 (|#1| (-771) |#1|)) |%noBranch|)) +((-2986 (((-112) $ $) 7)) (-1920 (($ $ $) 14)) (-3038 (($ $ $) 15)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-2479 (((-862) $) 12)) (-3900 (((-112) $ $) 9)) (-3019 (((-112) $ $) 17)) (-2990 (((-112) $ $) 18)) (-2952 (((-112) $ $) 6)) (-3004 (((-112) $ $) 16)) (-2977 (((-112) $ $) 19)) (** (($ $ (-921)) 22)) (* (($ $ $) 21))) +(((-857) (-140)) (T -857)) +NIL +(-13 (-850) (-1111)) +(((-102) . T) ((-613 (-862)) . T) ((-850) . T) ((-1111) . T) ((-1099) . T)) +((-2986 (((-112) $ $) NIL)) (-2153 (((-566) $) 14)) (-1920 (($ $ $) NIL)) (-3038 (($ $ $) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) 20) (($ (-566)) 13)) (-3900 (((-112) $ $) NIL)) (-3019 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 9)) (-3004 (((-112) $ $) NIL)) (-2977 (((-112) $ $) 11))) +(((-858) (-13 (-850) (-10 -8 (-15 -2479 ($ (-566))) (-15 -2153 ((-566) $))))) (T -858)) +((-2479 (*1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-858)))) (-2153 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-858))))) +(-13 (-850) (-10 -8 (-15 -2479 ($ (-566))) (-15 -2153 ((-566) $)))) +((-3354 (((-691 (-1222)) $ (-1222)) 15)) (-3162 (((-691 (-551)) $ (-551)) 12)) (-3130 (((-771) $ (-128)) 30))) +(((-859 |#1|) (-10 -8 (-15 -3130 ((-771) |#1| (-128))) (-15 -3354 ((-691 (-1222)) |#1| (-1222))) (-15 -3162 ((-691 (-551)) |#1| (-551)))) (-860)) (T -859)) +NIL +(-10 -8 (-15 -3130 ((-771) |#1| (-128))) (-15 -3354 ((-691 (-1222)) |#1| (-1222))) (-15 -3162 ((-691 (-551)) |#1| (-551)))) +((-3354 (((-691 (-1222)) $ (-1222)) 8)) (-3162 (((-691 (-551)) $ (-551)) 9)) (-3130 (((-771) $ (-128)) 7)) (-1947 (((-691 (-129)) $ (-129)) 10)) (-2313 (($ $) 6))) +(((-860) (-140)) (T -860)) +((-1947 (*1 *2 *1 *3) (-12 (-4 *1 (-860)) (-5 *2 (-691 (-129))) (-5 *3 (-129)))) (-3162 (*1 *2 *1 *3) (-12 (-4 *1 (-860)) (-5 *2 (-691 (-551))) (-5 *3 (-551)))) (-3354 (*1 *2 *1 *3) (-12 (-4 *1 (-860)) (-5 *2 (-691 (-1222))) (-5 *3 (-1222)))) (-3130 (*1 *2 *1 *3) (-12 (-4 *1 (-860)) (-5 *3 (-128)) (-5 *2 (-771))))) +(-13 (-173) (-10 -8 (-15 -1947 ((-691 (-129)) $ (-129))) (-15 -3162 ((-691 (-551)) $ (-551))) (-15 -3354 ((-691 (-1222)) $ (-1222))) (-15 -3130 ((-771) $ (-128))))) (((-173) . T)) -((-1829 (((-689 (-1220)) $ (-1220)) NIL)) (-3578 (((-689 (-549)) $ (-549)) NIL)) (-2505 (((-769) $ (-128)) NIL)) (-3900 (((-689 (-129)) $ (-129)) 22)) (-3427 (($ (-388)) 12) (($ (-1155)) 14)) (-3555 (((-112) $) 19)) (-2390 (((-860) $) 26)) (-2914 (($ $) 23))) -(((-859) (-13 (-858) (-611 (-860)) (-10 -8 (-15 -3427 ($ (-388))) (-15 -3427 ($ (-1155))) (-15 -3555 ((-112) $))))) (T -859)) -((-3427 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-859)))) (-3427 (*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-859)))) (-3555 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-859))))) -(-13 (-858) (-611 (-860)) (-10 -8 (-15 -3427 ($ (-388))) (-15 -3427 ($ (-1155))) (-15 -3555 ((-112) $)))) -((-2856 (((-112) $ $) NIL) (($ $ $) 85)) (-3991 (($ $ $) 125)) (-3346 (((-564) $) 31) (((-564)) 36)) (-2934 (($ (-564)) 53)) (-2785 (($ $ $) 54) (($ (-642 $)) 84)) (-1538 (($ $ (-642 $)) 82)) (-1625 (((-564) $) 34)) (-1385 (($ $ $) 73)) (-3614 (($ $) 140) (($ $ $) 141) (($ $ $ $) 142)) (-3060 (((-564) $) 33)) (-1949 (($ $ $) 72)) (-4301 (($ $) 114)) (-3846 (($ $ $) 129)) (-3649 (($ (-642 $)) 61)) (-2504 (($ $ (-642 $)) 79)) (-3053 (($ (-564) (-564)) 55)) (-2171 (($ $) 126) (($ $ $) 127)) (-4351 (($ $ (-564)) 43) (($ $) 46)) (-2796 (($ $ $) 97)) (-3296 (($ $ $) 132)) (-2304 (($ $) 115)) (-2808 (($ $ $) 98)) (-2918 (($ $) 143) (($ $ $) 144) (($ $ $ $) 145)) (-2801 (((-1267) $) 10)) (-2652 (($ $) 118) (($ $ (-769)) 122)) (-1387 (($ $ $) 75)) (-3325 (($ $ $) 74)) (-3376 (($ $ (-642 $)) 110)) (-1396 (($ $ $) 113)) (-4162 (($ (-642 $)) 59)) (-2998 (($ $) 70) (($ (-642 $)) 71)) (-3797 (($ $ $) 123)) (-1943 (($ $) 116)) (-2507 (($ $ $) 128)) (-2098 (($ (-564)) 21) (($ (-1173)) 23) (($ (-1155)) 30) (($ (-225)) 25)) (-2329 (($ $ $) 101)) (-2307 (($ $) 102)) (-2195 (((-1267) (-1155)) 15)) (-1690 (($ (-1155)) 14)) (-4117 (($ (-642 (-642 $))) 58)) (-4341 (($ $ (-564)) 42) (($ $) 45)) (-1778 (((-1155) $) NIL)) (-1435 (($ $ $) 131)) (-3891 (($ $) 146) (($ $ $) 147) (($ $ $ $) 148)) (-1515 (((-112) $) 108)) (-1720 (($ $ (-642 $)) 111) (($ $ $ $) 112)) (-2346 (($ (-564)) 39)) (-2983 (((-564) $) 32) (((-564)) 35)) (-2997 (($ $ $) 40) (($ (-642 $)) 83)) (-3999 (((-1117) $) NIL)) (-2842 (($ $ $) 99)) (-2179 (($) 13)) (-4369 (($ $ (-642 $)) 109)) (-2148 (((-1155) (-1155)) 8)) (-1976 (($ $) 117) (($ $ (-769)) 121)) (-2831 (($ $ $) 96)) (-2199 (($ $ (-769)) 139)) (-3277 (($ (-642 $)) 60)) (-2390 (((-860) $) 19)) (-2245 (($ $ (-564)) 41) (($ $) 44)) (-2348 (($ $) 68) (($ (-642 $)) 69)) (-2321 (($ $) 66) (($ (-642 $)) 67)) (-1899 (($ $) 124)) (-2314 (($ (-642 $)) 65)) (-4271 (($ $ $) 105)) (-1600 (((-112) $ $) NIL)) (-2370 (($ $ $) 130)) (-2317 (($ $ $) 100)) (-3532 (($ $ $) 103) (($ $) 104)) (-2881 (($ $ $) 89)) (-2857 (($ $ $) 87)) (-2821 (((-112) $ $) 16) (($ $ $) 17)) (-2868 (($ $ $) 88)) (-2844 (($ $ $) 86)) (-2943 (($ $ $) 94)) (-2930 (($ $ $) 91) (($ $) 92)) (-2917 (($ $ $) 90)) (** (($ $ $) 95)) (* (($ $ $) 93))) -(((-860) (-13 (-1097) (-10 -8 (-15 -2801 ((-1267) $)) (-15 -1690 ($ (-1155))) (-15 -2195 ((-1267) (-1155))) (-15 -2098 ($ (-564))) (-15 -2098 ($ (-1173))) (-15 -2098 ($ (-1155))) (-15 -2098 ($ (-225))) (-15 -2179 ($)) (-15 -2148 ((-1155) (-1155))) (-15 -3346 ((-564) $)) (-15 -2983 ((-564) $)) (-15 -3346 ((-564))) (-15 -2983 ((-564))) (-15 -3060 ((-564) $)) (-15 -1625 ((-564) $)) (-15 -2346 ($ (-564))) (-15 -2934 ($ (-564))) (-15 -3053 ($ (-564) (-564))) (-15 -4341 ($ $ (-564))) (-15 -4351 ($ $ (-564))) (-15 -2245 ($ $ (-564))) (-15 -4341 ($ $)) (-15 -4351 ($ $)) (-15 -2245 ($ $)) (-15 -2997 ($ $ $)) (-15 -2785 ($ $ $)) (-15 -2997 ($ (-642 $))) (-15 -2785 ($ (-642 $))) (-15 -3376 ($ $ (-642 $))) (-15 -1720 ($ $ (-642 $))) (-15 -1720 ($ $ $ $)) (-15 -1396 ($ $ $)) (-15 -1515 ((-112) $)) (-15 -4369 ($ $ (-642 $))) (-15 -4301 ($ $)) (-15 -1435 ($ $ $)) (-15 -1899 ($ $)) (-15 -4117 ($ (-642 (-642 $)))) (-15 -3991 ($ $ $)) (-15 -2171 ($ $)) (-15 -2171 ($ $ $)) (-15 -2507 ($ $ $)) (-15 -3846 ($ $ $)) (-15 -2370 ($ $ $)) (-15 -3296 ($ $ $)) (-15 -2199 ($ $ (-769))) (-15 -4271 ($ $ $)) (-15 -1949 ($ $ $)) (-15 -1385 ($ $ $)) (-15 -3325 ($ $ $)) (-15 -1387 ($ $ $)) (-15 -2504 ($ $ (-642 $))) (-15 -1538 ($ $ (-642 $))) (-15 -2304 ($ $)) (-15 -1976 ($ $)) (-15 -1976 ($ $ (-769))) (-15 -2652 ($ $)) (-15 -2652 ($ $ (-769))) (-15 -1943 ($ $)) (-15 -3797 ($ $ $)) (-15 -3614 ($ $)) (-15 -3614 ($ $ $)) (-15 -3614 ($ $ $ $)) (-15 -2918 ($ $)) (-15 -2918 ($ $ $)) (-15 -2918 ($ $ $ $)) (-15 -3891 ($ $)) (-15 -3891 ($ $ $)) (-15 -3891 ($ $ $ $)) (-15 -2321 ($ $)) (-15 -2321 ($ (-642 $))) (-15 -2348 ($ $)) (-15 -2348 ($ (-642 $))) (-15 -2998 ($ $)) (-15 -2998 ($ (-642 $))) (-15 -4162 ($ (-642 $))) (-15 -3277 ($ (-642 $))) (-15 -3649 ($ (-642 $))) (-15 -2314 ($ (-642 $))) (-15 -2821 ($ $ $)) (-15 -2856 ($ $ $)) (-15 -2844 ($ $ $)) (-15 -2857 ($ $ $)) (-15 -2868 ($ $ $)) (-15 -2881 ($ $ $)) (-15 -2917 ($ $ $)) (-15 -2930 ($ $ $)) (-15 -2930 ($ $)) (-15 * ($ $ $)) (-15 -2943 ($ $ $)) (-15 ** ($ $ $)) (-15 -2831 ($ $ $)) (-15 -2796 ($ $ $)) (-15 -2808 ($ $ $)) (-15 -2842 ($ $ $)) (-15 -2317 ($ $ $)) (-15 -2329 ($ $ $)) (-15 -2307 ($ $)) (-15 -3532 ($ $ $)) (-15 -3532 ($ $))))) (T -860)) -((-2801 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-860)))) (-1690 (*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-860)))) (-2195 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-860)))) (-2098 (*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-860)))) (-2098 (*1 *1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-860)))) (-2098 (*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-860)))) (-2098 (*1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-860)))) (-2179 (*1 *1) (-5 *1 (-860))) (-2148 (*1 *2 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-860)))) (-3346 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-860)))) (-2983 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-860)))) (-3346 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-860)))) (-2983 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-860)))) (-3060 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-860)))) (-1625 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-860)))) (-2346 (*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-860)))) (-2934 (*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-860)))) (-3053 (*1 *1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-860)))) (-4341 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-860)))) (-4351 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-860)))) (-2245 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-860)))) (-4341 (*1 *1 *1) (-5 *1 (-860))) (-4351 (*1 *1 *1) (-5 *1 (-860))) (-2245 (*1 *1 *1) (-5 *1 (-860))) (-2997 (*1 *1 *1 *1) (-5 *1 (-860))) (-2785 (*1 *1 *1 *1) (-5 *1 (-860))) (-2997 (*1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-860)))) (-2785 (*1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-860)))) (-3376 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-860)))) (-1720 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-860)))) (-1720 (*1 *1 *1 *1 *1) (-5 *1 (-860))) (-1396 (*1 *1 *1 *1) (-5 *1 (-860))) (-1515 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-860)))) (-4369 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-860)))) (-4301 (*1 *1 *1) (-5 *1 (-860))) (-1435 (*1 *1 *1 *1) (-5 *1 (-860))) (-1899 (*1 *1 *1) (-5 *1 (-860))) (-4117 (*1 *1 *2) (-12 (-5 *2 (-642 (-642 (-860)))) (-5 *1 (-860)))) (-3991 (*1 *1 *1 *1) (-5 *1 (-860))) (-2171 (*1 *1 *1) (-5 *1 (-860))) (-2171 (*1 *1 *1 *1) (-5 *1 (-860))) (-2507 (*1 *1 *1 *1) (-5 *1 (-860))) (-3846 (*1 *1 *1 *1) (-5 *1 (-860))) (-2370 (*1 *1 *1 *1) (-5 *1 (-860))) (-3296 (*1 *1 *1 *1) (-5 *1 (-860))) (-2199 (*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-860)))) (-4271 (*1 *1 *1 *1) (-5 *1 (-860))) (-1949 (*1 *1 *1 *1) (-5 *1 (-860))) (-1385 (*1 *1 *1 *1) (-5 *1 (-860))) (-3325 (*1 *1 *1 *1) (-5 *1 (-860))) (-1387 (*1 *1 *1 *1) (-5 *1 (-860))) (-2504 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-860)))) (-1538 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-860)))) (-2304 (*1 *1 *1) (-5 *1 (-860))) (-1976 (*1 *1 *1) (-5 *1 (-860))) (-1976 (*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-860)))) (-2652 (*1 *1 *1) (-5 *1 (-860))) (-2652 (*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-860)))) (-1943 (*1 *1 *1) (-5 *1 (-860))) (-3797 (*1 *1 *1 *1) (-5 *1 (-860))) (-3614 (*1 *1 *1) (-5 *1 (-860))) (-3614 (*1 *1 *1 *1) (-5 *1 (-860))) (-3614 (*1 *1 *1 *1 *1) (-5 *1 (-860))) (-2918 (*1 *1 *1) (-5 *1 (-860))) (-2918 (*1 *1 *1 *1) (-5 *1 (-860))) (-2918 (*1 *1 *1 *1 *1) (-5 *1 (-860))) (-3891 (*1 *1 *1) (-5 *1 (-860))) (-3891 (*1 *1 *1 *1) (-5 *1 (-860))) (-3891 (*1 *1 *1 *1 *1) (-5 *1 (-860))) (-2321 (*1 *1 *1) (-5 *1 (-860))) (-2321 (*1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-860)))) (-2348 (*1 *1 *1) (-5 *1 (-860))) (-2348 (*1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-860)))) (-2998 (*1 *1 *1) (-5 *1 (-860))) (-2998 (*1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-860)))) (-4162 (*1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-860)))) (-3277 (*1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-860)))) (-3649 (*1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-860)))) (-2314 (*1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-860)))) (-2821 (*1 *1 *1 *1) (-5 *1 (-860))) (-2856 (*1 *1 *1 *1) (-5 *1 (-860))) (-2844 (*1 *1 *1 *1) (-5 *1 (-860))) (-2857 (*1 *1 *1 *1) (-5 *1 (-860))) (-2868 (*1 *1 *1 *1) (-5 *1 (-860))) (-2881 (*1 *1 *1 *1) (-5 *1 (-860))) (-2917 (*1 *1 *1 *1) (-5 *1 (-860))) (-2930 (*1 *1 *1 *1) (-5 *1 (-860))) (-2930 (*1 *1 *1) (-5 *1 (-860))) (* (*1 *1 *1 *1) (-5 *1 (-860))) (-2943 (*1 *1 *1 *1) (-5 *1 (-860))) (** (*1 *1 *1 *1) (-5 *1 (-860))) (-2831 (*1 *1 *1 *1) (-5 *1 (-860))) (-2796 (*1 *1 *1 *1) (-5 *1 (-860))) (-2808 (*1 *1 *1 *1) (-5 *1 (-860))) (-2842 (*1 *1 *1 *1) (-5 *1 (-860))) (-2317 (*1 *1 *1 *1) (-5 *1 (-860))) (-2329 (*1 *1 *1 *1) (-5 *1 (-860))) (-2307 (*1 *1 *1) (-5 *1 (-860))) (-3532 (*1 *1 *1 *1) (-5 *1 (-860))) (-3532 (*1 *1 *1) (-5 *1 (-860)))) -(-13 (-1097) (-10 -8 (-15 -2801 ((-1267) $)) (-15 -1690 ($ (-1155))) (-15 -2195 ((-1267) (-1155))) (-15 -2098 ($ (-564))) (-15 -2098 ($ (-1173))) (-15 -2098 ($ (-1155))) (-15 -2098 ($ (-225))) (-15 -2179 ($)) (-15 -2148 ((-1155) (-1155))) (-15 -3346 ((-564) $)) (-15 -2983 ((-564) $)) (-15 -3346 ((-564))) (-15 -2983 ((-564))) (-15 -3060 ((-564) $)) (-15 -1625 ((-564) $)) (-15 -2346 ($ (-564))) (-15 -2934 ($ (-564))) (-15 -3053 ($ (-564) (-564))) (-15 -4341 ($ $ (-564))) (-15 -4351 ($ $ (-564))) (-15 -2245 ($ $ (-564))) (-15 -4341 ($ $)) (-15 -4351 ($ $)) (-15 -2245 ($ $)) (-15 -2997 ($ $ $)) (-15 -2785 ($ $ $)) (-15 -2997 ($ (-642 $))) (-15 -2785 ($ (-642 $))) (-15 -3376 ($ $ (-642 $))) (-15 -1720 ($ $ (-642 $))) (-15 -1720 ($ $ $ $)) (-15 -1396 ($ $ $)) (-15 -1515 ((-112) $)) (-15 -4369 ($ $ (-642 $))) (-15 -4301 ($ $)) (-15 -1435 ($ $ $)) (-15 -1899 ($ $)) (-15 -4117 ($ (-642 (-642 $)))) (-15 -3991 ($ $ $)) (-15 -2171 ($ $)) (-15 -2171 ($ $ $)) (-15 -2507 ($ $ $)) (-15 -3846 ($ $ $)) (-15 -2370 ($ $ $)) (-15 -3296 ($ $ $)) (-15 -2199 ($ $ (-769))) (-15 -4271 ($ $ $)) (-15 -1949 ($ $ $)) (-15 -1385 ($ $ $)) (-15 -3325 ($ $ $)) (-15 -1387 ($ $ $)) (-15 -2504 ($ $ (-642 $))) (-15 -1538 ($ $ (-642 $))) (-15 -2304 ($ $)) (-15 -1976 ($ $)) (-15 -1976 ($ $ (-769))) (-15 -2652 ($ $)) (-15 -2652 ($ $ (-769))) (-15 -1943 ($ $)) (-15 -3797 ($ $ $)) (-15 -3614 ($ $)) (-15 -3614 ($ $ $)) (-15 -3614 ($ $ $ $)) (-15 -2918 ($ $)) (-15 -2918 ($ $ $)) (-15 -2918 ($ $ $ $)) (-15 -3891 ($ $)) (-15 -3891 ($ $ $)) (-15 -3891 ($ $ $ $)) (-15 -2321 ($ $)) (-15 -2321 ($ (-642 $))) (-15 -2348 ($ $)) (-15 -2348 ($ (-642 $))) (-15 -2998 ($ $)) (-15 -2998 ($ (-642 $))) (-15 -4162 ($ (-642 $))) (-15 -3277 ($ (-642 $))) (-15 -3649 ($ (-642 $))) (-15 -2314 ($ (-642 $))) (-15 -2821 ($ $ $)) (-15 -2856 ($ $ $)) (-15 -2844 ($ $ $)) (-15 -2857 ($ $ $)) (-15 -2868 ($ $ $)) (-15 -2881 ($ $ $)) (-15 -2917 ($ $ $)) (-15 -2930 ($ $ $)) (-15 -2930 ($ $)) (-15 * ($ $ $)) (-15 -2943 ($ $ $)) (-15 ** ($ $ $)) (-15 -2831 ($ $ $)) (-15 -2796 ($ $ $)) (-15 -2808 ($ $ $)) (-15 -2842 ($ $ $)) (-15 -2317 ($ $ $)) (-15 -2329 ($ $ $)) (-15 -2307 ($ $)) (-15 -3532 ($ $ $)) (-15 -3532 ($ $)))) -((-3133 (((-1267) (-642 (-52))) 24)) (-4390 (((-1267) (-1155) (-860)) 14) (((-1267) (-860)) 9) (((-1267) (-1155)) 11))) -(((-861) (-10 -7 (-15 -4390 ((-1267) (-1155))) (-15 -4390 ((-1267) (-860))) (-15 -4390 ((-1267) (-1155) (-860))) (-15 -3133 ((-1267) (-642 (-52)))))) (T -861)) -((-3133 (*1 *2 *3) (-12 (-5 *3 (-642 (-52))) (-5 *2 (-1267)) (-5 *1 (-861)))) (-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1155)) (-5 *4 (-860)) (-5 *2 (-1267)) (-5 *1 (-861)))) (-4390 (*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1267)) (-5 *1 (-861)))) (-4390 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-861))))) -(-10 -7 (-15 -4390 ((-1267) (-1155))) (-15 -4390 ((-1267) (-860))) (-15 -4390 ((-1267) (-1155) (-860))) (-15 -3133 ((-1267) (-642 (-52))))) -((-2856 (((-112) $ $) NIL)) (-1341 (((-3 $ "failed") (-1173)) 39)) (-4003 (((-769)) 32)) (-3235 (($) NIL)) (-3225 (($ $ $) NIL) (($) NIL T CONST)) (-2903 (($ $ $) NIL) (($) NIL T CONST)) (-2535 (((-919) $) 29)) (-1778 (((-1155) $) 46)) (-2065 (($ (-919)) 28)) (-3999 (((-1117) $) NIL)) (-3003 (((-1173) $) 13) (((-536) $) 19) (((-890 (-379)) $) 26) (((-890 (-564)) $) 22)) (-2390 (((-860) $) 16)) (-1600 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL)) (-2857 (((-112) $ $) NIL)) (-2821 (((-112) $ $) 43)) (-2868 (((-112) $ $) NIL)) (-2844 (((-112) $ $) 41))) -(((-862 |#1|) (-13 (-842) (-612 (-1173)) (-612 (-536)) (-612 (-890 (-379))) (-612 (-890 (-564))) (-10 -8 (-15 -1341 ((-3 $ "failed") (-1173))))) (-642 (-1173))) (T -862)) -((-1341 (*1 *1 *2) (|partial| -12 (-5 *2 (-1173)) (-5 *1 (-862 *3)) (-14 *3 (-642 *2))))) -(-13 (-842) (-612 (-1173)) (-612 (-536)) (-612 (-890 (-379))) (-612 (-890 (-564))) (-10 -8 (-15 -1341 ((-3 $ "failed") (-1173))))) -((-2856 (((-112) $ $) NIL)) (-2493 (((-506) $) 9)) (-3541 (((-642 (-439)) $) 13)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) 21)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) 16))) -(((-863) (-13 (-1097) (-10 -8 (-15 -2493 ((-506) $)) (-15 -3541 ((-642 (-439)) $))))) (T -863)) -((-2493 (*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-863)))) (-3541 (*1 *2 *1) (-12 (-5 *2 (-642 (-439))) (-5 *1 (-863))))) -(-13 (-1097) (-10 -8 (-15 -2493 ((-506) $)) (-15 -3541 ((-642 (-439)) $)))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-3085 (((-3 $ "failed") $ $) NIL)) (-2822 (($) NIL T CONST)) (-2675 (((-3 $ "failed") $) NIL)) (-3163 (((-112) $) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) NIL) (($ (-564)) NIL) (($ (-950 |#1|)) NIL) (((-950 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-172)))) (-3348 (((-769)) NIL T CONST)) (-3255 (((-1267) (-769)) NIL)) (-1600 (((-112) $ $) NIL)) (-2361 (($) NIL T CONST)) (-2371 (($) NIL T CONST)) (-2821 (((-112) $ $) NIL)) (-2943 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))))) -(((-864 |#1| |#2| |#3| |#4|) (-13 (-1047) (-490 (-950 |#1|)) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -2943 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3255 ((-1267) (-769))))) (-1047) (-642 (-1173)) (-642 (-769)) (-769)) (T -864)) -((-2943 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-864 *2 *3 *4 *5)) (-4 *2 (-363)) (-4 *2 (-1047)) (-14 *3 (-642 (-1173))) (-14 *4 (-642 (-769))) (-14 *5 (-769)))) (-3255 (*1 *2 *3) (-12 (-5 *3 (-769)) (-5 *2 (-1267)) (-5 *1 (-864 *4 *5 *6 *7)) (-4 *4 (-1047)) (-14 *5 (-642 (-1173))) (-14 *6 (-642 *3)) (-14 *7 *3)))) -(-13 (-1047) (-490 (-950 |#1|)) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -2943 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3255 ((-1267) (-769))))) -((-1495 (((-3 (-174 |#3|) "failed") (-769) (-769) |#2| |#2|) 43)) (-2909 (((-3 (-407 |#3|) "failed") (-769) (-769) |#2| |#2|) 34))) -(((-865 |#1| |#2| |#3|) (-10 -7 (-15 -2909 ((-3 (-407 |#3|) "failed") (-769) (-769) |#2| |#2|)) (-15 -1495 ((-3 (-174 |#3|) "failed") (-769) (-769) |#2| |#2|))) (-363) (-1253 |#1|) (-1238 |#1|)) (T -865)) -((-1495 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-769)) (-4 *5 (-363)) (-5 *2 (-174 *6)) (-5 *1 (-865 *5 *4 *6)) (-4 *4 (-1253 *5)) (-4 *6 (-1238 *5)))) (-2909 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-769)) (-4 *5 (-363)) (-5 *2 (-407 *6)) (-5 *1 (-865 *5 *4 *6)) (-4 *4 (-1253 *5)) (-4 *6 (-1238 *5))))) -(-10 -7 (-15 -2909 ((-3 (-407 |#3|) "failed") (-769) (-769) |#2| |#2|)) (-15 -1495 ((-3 (-174 |#3|) "failed") (-769) (-769) |#2| |#2|))) -((-2909 (((-3 (-407 (-1235 |#2| |#1|)) "failed") (-769) (-769) (-1254 |#1| |#2| |#3|)) 30) (((-3 (-407 (-1235 |#2| |#1|)) "failed") (-769) (-769) (-1254 |#1| |#2| |#3|) (-1254 |#1| |#2| |#3|)) 28))) -(((-866 |#1| |#2| |#3|) (-10 -7 (-15 -2909 ((-3 (-407 (-1235 |#2| |#1|)) "failed") (-769) (-769) (-1254 |#1| |#2| |#3|) (-1254 |#1| |#2| |#3|))) (-15 -2909 ((-3 (-407 (-1235 |#2| |#1|)) "failed") (-769) (-769) (-1254 |#1| |#2| |#3|)))) (-363) (-1173) |#1|) (T -866)) -((-2909 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-769)) (-5 *4 (-1254 *5 *6 *7)) (-4 *5 (-363)) (-14 *6 (-1173)) (-14 *7 *5) (-5 *2 (-407 (-1235 *6 *5))) (-5 *1 (-866 *5 *6 *7)))) (-2909 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-769)) (-5 *4 (-1254 *5 *6 *7)) (-4 *5 (-363)) (-14 *6 (-1173)) (-14 *7 *5) (-5 *2 (-407 (-1235 *6 *5))) (-5 *1 (-866 *5 *6 *7))))) -(-10 -7 (-15 -2909 ((-3 (-407 (-1235 |#2| |#1|)) "failed") (-769) (-769) (-1254 |#1| |#2| |#3|) (-1254 |#1| |#2| |#3|))) (-15 -2909 ((-3 (-407 (-1235 |#2| |#1|)) "failed") (-769) (-769) (-1254 |#1| |#2| |#3|)))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) 47)) (-4252 (($ $) 46)) (-1722 (((-112) $) 44)) (-3085 (((-3 $ "failed") $ $) 20)) (-2264 (($ $ (-564)) 68)) (-2134 (((-112) $ $) 65)) (-2822 (($) 18 T CONST)) (-2171 (($ (-1169 (-564)) (-564)) 67)) (-2796 (($ $ $) 61)) (-2675 (((-3 $ "failed") $) 37)) (-3196 (($ $) 70)) (-2808 (($ $ $) 62)) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) 57)) (-2408 (((-769) $) 75)) (-3163 (((-112) $) 35)) (-2709 (((-3 (-642 $) "failed") (-642 $) $) 58)) (-1380 (((-564)) 72)) (-3418 (((-564) $) 71)) (-2066 (($ $ $) 52) (($ (-642 $)) 51)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) 50)) (-2105 (($ $ $) 54) (($ (-642 $)) 53)) (-1877 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2137 (($ $ (-564)) 74)) (-2842 (((-3 $ "failed") $ $) 48)) (-1483 (((-3 (-642 $) "failed") (-642 $) $) 56)) (-4274 (((-769) $) 64)) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) 63)) (-3152 (((-1153 (-564)) $) 76)) (-4189 (($ $) 73)) (-2390 (((-860) $) 12) (($ (-564)) 33) (($ $) 49)) (-3348 (((-769)) 32 T CONST)) (-1600 (((-112) $ $) 9)) (-1594 (((-112) $ $) 45)) (-3560 (((-564) $ (-564)) 69)) (-2361 (($) 19 T CONST)) (-2371 (($) 34 T CONST)) (-2821 (((-112) $ $) 6)) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27))) -(((-867 |#1|) (-140) (-564)) (T -867)) -((-3152 (*1 *2 *1) (-12 (-4 *1 (-867 *3)) (-5 *2 (-1153 (-564))))) (-2408 (*1 *2 *1) (-12 (-4 *1 (-867 *3)) (-5 *2 (-769)))) (-2137 (*1 *1 *1 *2) (-12 (-4 *1 (-867 *3)) (-5 *2 (-564)))) (-4189 (*1 *1 *1) (-4 *1 (-867 *2))) (-1380 (*1 *2) (-12 (-4 *1 (-867 *3)) (-5 *2 (-564)))) (-3418 (*1 *2 *1) (-12 (-4 *1 (-867 *3)) (-5 *2 (-564)))) (-3196 (*1 *1 *1) (-4 *1 (-867 *2))) (-3560 (*1 *2 *1 *2) (-12 (-4 *1 (-867 *3)) (-5 *2 (-564)))) (-2264 (*1 *1 *1 *2) (-12 (-4 *1 (-867 *3)) (-5 *2 (-564)))) (-2171 (*1 *1 *2 *3) (-12 (-5 *2 (-1169 (-564))) (-5 *3 (-564)) (-4 *1 (-867 *4))))) -(-13 (-307) (-147) (-10 -8 (-15 -3152 ((-1153 (-564)) $)) (-15 -2408 ((-769) $)) (-15 -2137 ($ $ (-564))) (-15 -4189 ($ $)) (-15 -1380 ((-564))) (-15 -3418 ((-564) $)) (-15 -3196 ($ $)) (-15 -3560 ((-564) $ (-564))) (-15 -2264 ($ $ (-564))) (-15 -2171 ($ (-1169 (-564)) (-564))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-860)) . T) ((-172) . T) ((-290) . T) ((-307) . T) ((-452) . T) ((-556) . T) ((-644 (-564)) . T) ((-644 $) . T) ((-646 $) . T) ((-638 $) . T) ((-715 $) . T) ((-724) . T) ((-918) . T) ((-1049 $) . T) ((-1054 $) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T)) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-4252 (($ $) NIL)) (-1722 (((-112) $) NIL)) (-3085 (((-3 $ "failed") $ $) NIL)) (-2264 (($ $ (-564)) NIL)) (-2134 (((-112) $ $) NIL)) (-2822 (($) NIL T CONST)) (-2171 (($ (-1169 (-564)) (-564)) NIL)) (-2796 (($ $ $) NIL)) (-2675 (((-3 $ "failed") $) NIL)) (-3196 (($ $) NIL)) (-2808 (($ $ $) NIL)) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) NIL)) (-2408 (((-769) $) NIL)) (-3163 (((-112) $) NIL)) (-2709 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-1380 (((-564)) NIL)) (-3418 (((-564) $) NIL)) (-2066 (($ $ $) NIL) (($ (-642 $)) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2105 (($ $ $) NIL) (($ (-642 $)) NIL)) (-1877 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2137 (($ $ (-564)) NIL)) (-2842 (((-3 $ "failed") $ $) NIL)) (-1483 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-4274 (((-769) $) NIL)) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL)) (-3152 (((-1153 (-564)) $) NIL)) (-4189 (($ $) NIL)) (-2390 (((-860) $) NIL) (($ (-564)) NIL) (($ $) NIL)) (-3348 (((-769)) NIL T CONST)) (-1600 (((-112) $ $) NIL)) (-1594 (((-112) $ $) NIL)) (-3560 (((-564) $ (-564)) NIL)) (-2361 (($) NIL T CONST)) (-2371 (($) NIL T CONST)) (-2821 (((-112) $ $) NIL)) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL))) -(((-868 |#1|) (-867 |#1|) (-564)) (T -868)) -NIL -(-867 |#1|) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-2905 (((-868 |#1|) $) NIL (|has| (-868 |#1|) (-307)))) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-4252 (($ $) NIL)) (-1722 (((-112) $) NIL)) (-3085 (((-3 $ "failed") $ $) NIL)) (-4297 (((-418 (-1169 $)) (-1169 $)) NIL (|has| (-868 |#1|) (-907)))) (-1993 (($ $) NIL)) (-3282 (((-418 $) $) NIL)) (-3267 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) NIL (|has| (-868 |#1|) (-907)))) (-2134 (((-112) $ $) NIL)) (-2221 (((-564) $) NIL (|has| (-868 |#1|) (-818)))) (-2822 (($) NIL T CONST)) (-2849 (((-3 (-868 |#1|) "failed") $) NIL) (((-3 (-1173) "failed") $) NIL (|has| (-868 |#1|) (-1036 (-1173)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-868 |#1|) (-1036 (-564)))) (((-3 (-564) "failed") $) NIL (|has| (-868 |#1|) (-1036 (-564))))) (-1687 (((-868 |#1|) $) NIL) (((-1173) $) NIL (|has| (-868 |#1|) (-1036 (-1173)))) (((-407 (-564)) $) NIL (|has| (-868 |#1|) (-1036 (-564)))) (((-564) $) NIL (|has| (-868 |#1|) (-1036 (-564))))) (-1506 (($ $) NIL) (($ (-564) $) NIL)) (-2796 (($ $ $) NIL)) (-3330 (((-687 (-564)) (-687 $)) NIL (|has| (-868 |#1|) (-637 (-564)))) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (|has| (-868 |#1|) (-637 (-564)))) (((-2 (|:| -3544 (-687 (-868 |#1|))) (|:| |vec| (-1262 (-868 |#1|)))) (-687 $) (-1262 $)) NIL) (((-687 (-868 |#1|)) (-687 $)) NIL)) (-2675 (((-3 $ "failed") $) NIL)) (-3235 (($) NIL (|has| (-868 |#1|) (-545)))) (-2808 (($ $ $) NIL)) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) NIL)) (-3552 (((-112) $) NIL)) (-3292 (((-112) $) NIL (|has| (-868 |#1|) (-818)))) (-1381 (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) NIL (|has| (-868 |#1|) (-884 (-564)))) (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) NIL (|has| (-868 |#1|) (-884 (-379))))) (-3163 (((-112) $) NIL)) (-3408 (($ $) NIL)) (-4120 (((-868 |#1|) $) NIL)) (-4382 (((-3 $ "failed") $) NIL (|has| (-868 |#1|) (-1148)))) (-2666 (((-112) $) NIL (|has| (-868 |#1|) (-818)))) (-2709 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-3225 (($ $ $) NIL (|has| (-868 |#1|) (-848)))) (-2903 (($ $ $) NIL (|has| (-868 |#1|) (-848)))) (-2947 (($ (-1 (-868 |#1|) (-868 |#1|)) $) NIL)) (-2066 (($ $ $) NIL) (($ (-642 $)) NIL)) (-1778 (((-1155) $) NIL)) (-2481 (($ $) NIL)) (-3910 (($) NIL (|has| (-868 |#1|) (-1148)) CONST)) (-3999 (((-1117) $) NIL)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2105 (($ $ $) NIL) (($ (-642 $)) NIL)) (-1830 (($ $) NIL (|has| (-868 |#1|) (-307)))) (-2795 (((-868 |#1|) $) NIL (|has| (-868 |#1|) (-545)))) (-3223 (((-418 (-1169 $)) (-1169 $)) NIL (|has| (-868 |#1|) (-907)))) (-2236 (((-418 (-1169 $)) (-1169 $)) NIL (|has| (-868 |#1|) (-907)))) (-2254 (((-418 $) $) NIL)) (-1877 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2842 (((-3 $ "failed") $ $) NIL)) (-1483 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-3154 (($ $ (-642 (-868 |#1|)) (-642 (-868 |#1|))) NIL (|has| (-868 |#1|) (-309 (-868 |#1|)))) (($ $ (-868 |#1|) (-868 |#1|)) NIL (|has| (-868 |#1|) (-309 (-868 |#1|)))) (($ $ (-294 (-868 |#1|))) NIL (|has| (-868 |#1|) (-309 (-868 |#1|)))) (($ $ (-642 (-294 (-868 |#1|)))) NIL (|has| (-868 |#1|) (-309 (-868 |#1|)))) (($ $ (-642 (-1173)) (-642 (-868 |#1|))) NIL (|has| (-868 |#1|) (-514 (-1173) (-868 |#1|)))) (($ $ (-1173) (-868 |#1|)) NIL (|has| (-868 |#1|) (-514 (-1173) (-868 |#1|))))) (-4274 (((-769) $) NIL)) (-4369 (($ $ (-868 |#1|)) NIL (|has| (-868 |#1|) (-286 (-868 |#1|) (-868 |#1|))))) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL)) (-2199 (($ $) NIL (|has| (-868 |#1|) (-233))) (($ $ (-769)) NIL (|has| (-868 |#1|) (-233))) (($ $ (-1173)) NIL (|has| (-868 |#1|) (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| (-868 |#1|) (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| (-868 |#1|) (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| (-868 |#1|) (-898 (-1173)))) (($ $ (-1 (-868 |#1|) (-868 |#1|)) (-769)) NIL) (($ $ (-1 (-868 |#1|) (-868 |#1|))) NIL)) (-3082 (($ $) NIL)) (-4131 (((-868 |#1|) $) NIL)) (-3003 (((-890 (-564)) $) NIL (|has| (-868 |#1|) (-612 (-890 (-564))))) (((-890 (-379)) $) NIL (|has| (-868 |#1|) (-612 (-890 (-379))))) (((-536) $) NIL (|has| (-868 |#1|) (-612 (-536)))) (((-379) $) NIL (|has| (-868 |#1|) (-1020))) (((-225) $) NIL (|has| (-868 |#1|) (-1020)))) (-2202 (((-174 (-407 (-564))) $) NIL)) (-3556 (((-3 (-1262 $) "failed") (-687 $)) NIL (-12 (|has| $ (-145)) (|has| (-868 |#1|) (-907))))) (-2390 (((-860) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-868 |#1|)) NIL) (($ (-1173)) NIL (|has| (-868 |#1|) (-1036 (-1173))))) (-3434 (((-3 $ "failed") $) NIL (-2682 (-12 (|has| $ (-145)) (|has| (-868 |#1|) (-907))) (|has| (-868 |#1|) (-145))))) (-3348 (((-769)) NIL T CONST)) (-1378 (((-868 |#1|) $) NIL (|has| (-868 |#1|) (-545)))) (-1600 (((-112) $ $) NIL)) (-1594 (((-112) $ $) NIL)) (-3560 (((-407 (-564)) $ (-564)) NIL)) (-1630 (($ $) NIL (|has| (-868 |#1|) (-818)))) (-2361 (($) NIL T CONST)) (-2371 (($) NIL T CONST)) (-2711 (($ $) NIL (|has| (-868 |#1|) (-233))) (($ $ (-769)) NIL (|has| (-868 |#1|) (-233))) (($ $ (-1173)) NIL (|has| (-868 |#1|) (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| (-868 |#1|) (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| (-868 |#1|) (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| (-868 |#1|) (-898 (-1173)))) (($ $ (-1 (-868 |#1|) (-868 |#1|)) (-769)) NIL) (($ $ (-1 (-868 |#1|) (-868 |#1|))) NIL)) (-2881 (((-112) $ $) NIL (|has| (-868 |#1|) (-848)))) (-2857 (((-112) $ $) NIL (|has| (-868 |#1|) (-848)))) (-2821 (((-112) $ $) NIL)) (-2868 (((-112) $ $) NIL (|has| (-868 |#1|) (-848)))) (-2844 (((-112) $ $) NIL (|has| (-868 |#1|) (-848)))) (-2943 (($ $ $) NIL) (($ (-868 |#1|) (-868 |#1|)) NIL)) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ (-868 |#1|) $) NIL) (($ $ (-868 |#1|)) NIL))) -(((-869 |#1|) (-13 (-990 (-868 |#1|)) (-10 -8 (-15 -3560 ((-407 (-564)) $ (-564))) (-15 -2202 ((-174 (-407 (-564))) $)) (-15 -1506 ($ $)) (-15 -1506 ($ (-564) $)))) (-564)) (T -869)) -((-3560 (*1 *2 *1 *3) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-869 *4)) (-14 *4 *3) (-5 *3 (-564)))) (-2202 (*1 *2 *1) (-12 (-5 *2 (-174 (-407 (-564)))) (-5 *1 (-869 *3)) (-14 *3 (-564)))) (-1506 (*1 *1 *1) (-12 (-5 *1 (-869 *2)) (-14 *2 (-564)))) (-1506 (*1 *1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-869 *3)) (-14 *3 *2)))) -(-13 (-990 (-868 |#1|)) (-10 -8 (-15 -3560 ((-407 (-564)) $ (-564))) (-15 -2202 ((-174 (-407 (-564))) $)) (-15 -1506 ($ $)) (-15 -1506 ($ (-564) $)))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-2905 ((|#2| $) NIL (|has| |#2| (-307)))) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-4252 (($ $) NIL)) (-1722 (((-112) $) NIL)) (-3085 (((-3 $ "failed") $ $) NIL)) (-4297 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#2| (-907)))) (-1993 (($ $) NIL)) (-3282 (((-418 $) $) NIL)) (-3267 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) NIL (|has| |#2| (-907)))) (-2134 (((-112) $ $) NIL)) (-2221 (((-564) $) NIL (|has| |#2| (-818)))) (-2822 (($) NIL T CONST)) (-2849 (((-3 |#2| "failed") $) NIL) (((-3 (-1173) "failed") $) NIL (|has| |#2| (-1036 (-1173)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1036 (-564)))) (((-3 (-564) "failed") $) NIL (|has| |#2| (-1036 (-564))))) (-1687 ((|#2| $) NIL) (((-1173) $) NIL (|has| |#2| (-1036 (-1173)))) (((-407 (-564)) $) NIL (|has| |#2| (-1036 (-564)))) (((-564) $) NIL (|has| |#2| (-1036 (-564))))) (-1506 (($ $) 35) (($ (-564) $) 38)) (-2796 (($ $ $) NIL)) (-3330 (((-687 (-564)) (-687 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -3544 (-687 |#2|)) (|:| |vec| (-1262 |#2|))) (-687 $) (-1262 $)) NIL) (((-687 |#2|) (-687 $)) NIL)) (-2675 (((-3 $ "failed") $) 64)) (-3235 (($) NIL (|has| |#2| (-545)))) (-2808 (($ $ $) NIL)) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) NIL)) (-3552 (((-112) $) NIL)) (-3292 (((-112) $) NIL (|has| |#2| (-818)))) (-1381 (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) NIL (|has| |#2| (-884 (-564)))) (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) NIL (|has| |#2| (-884 (-379))))) (-3163 (((-112) $) NIL)) (-3408 (($ $) NIL)) (-4120 ((|#2| $) NIL)) (-4382 (((-3 $ "failed") $) NIL (|has| |#2| (-1148)))) (-2666 (((-112) $) NIL (|has| |#2| (-818)))) (-2709 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-3225 (($ $ $) NIL (|has| |#2| (-848)))) (-2903 (($ $ $) NIL (|has| |#2| (-848)))) (-2947 (($ (-1 |#2| |#2|) $) NIL)) (-2066 (($ $ $) NIL) (($ (-642 $)) NIL)) (-1778 (((-1155) $) NIL)) (-2481 (($ $) 60)) (-3910 (($) NIL (|has| |#2| (-1148)) CONST)) (-3999 (((-1117) $) NIL)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2105 (($ $ $) NIL) (($ (-642 $)) NIL)) (-1830 (($ $) NIL (|has| |#2| (-307)))) (-2795 ((|#2| $) NIL (|has| |#2| (-545)))) (-3223 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#2| (-907)))) (-2236 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#2| (-907)))) (-2254 (((-418 $) $) NIL)) (-1877 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2842 (((-3 $ "failed") $ $) NIL)) (-1483 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-3154 (($ $ (-642 |#2|) (-642 |#2|)) NIL (|has| |#2| (-309 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-309 |#2|))) (($ $ (-294 |#2|)) NIL (|has| |#2| (-309 |#2|))) (($ $ (-642 (-294 |#2|))) NIL (|has| |#2| (-309 |#2|))) (($ $ (-642 (-1173)) (-642 |#2|)) NIL (|has| |#2| (-514 (-1173) |#2|))) (($ $ (-1173) |#2|) NIL (|has| |#2| (-514 (-1173) |#2|)))) (-4274 (((-769) $) NIL)) (-4369 (($ $ |#2|) NIL (|has| |#2| (-286 |#2| |#2|)))) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL)) (-2199 (($ $) NIL (|has| |#2| (-233))) (($ $ (-769)) NIL (|has| |#2| (-233))) (($ $ (-1173)) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-1 |#2| |#2|) (-769)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3082 (($ $) NIL)) (-4131 ((|#2| $) NIL)) (-3003 (((-890 (-564)) $) NIL (|has| |#2| (-612 (-890 (-564))))) (((-890 (-379)) $) NIL (|has| |#2| (-612 (-890 (-379))))) (((-536) $) NIL (|has| |#2| (-612 (-536)))) (((-379) $) NIL (|has| |#2| (-1020))) (((-225) $) NIL (|has| |#2| (-1020)))) (-2202 (((-174 (-407 (-564))) $) 78)) (-3556 (((-3 (-1262 $) "failed") (-687 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-907))))) (-2390 (((-860) $) 108) (($ (-564)) 20) (($ $) NIL) (($ (-407 (-564))) 25) (($ |#2|) 19) (($ (-1173)) NIL (|has| |#2| (-1036 (-1173))))) (-3434 (((-3 $ "failed") $) NIL (-2682 (-12 (|has| $ (-145)) (|has| |#2| (-907))) (|has| |#2| (-145))))) (-3348 (((-769)) NIL T CONST)) (-1378 ((|#2| $) NIL (|has| |#2| (-545)))) (-1600 (((-112) $ $) NIL)) (-1594 (((-112) $ $) NIL)) (-3560 (((-407 (-564)) $ (-564)) 71)) (-1630 (($ $) NIL (|has| |#2| (-818)))) (-2361 (($) 15 T CONST)) (-2371 (($) 17 T CONST)) (-2711 (($ $) NIL (|has| |#2| (-233))) (($ $ (-769)) NIL (|has| |#2| (-233))) (($ $ (-1173)) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-1 |#2| |#2|) (-769)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2881 (((-112) $ $) NIL (|has| |#2| (-848)))) (-2857 (((-112) $ $) NIL (|has| |#2| (-848)))) (-2821 (((-112) $ $) 46)) (-2868 (((-112) $ $) NIL (|has| |#2| (-848)))) (-2844 (((-112) $ $) NIL (|has| |#2| (-848)))) (-2943 (($ $ $) 24) (($ |#2| |#2|) 65)) (-2930 (($ $) 50) (($ $ $) 52)) (-2917 (($ $ $) 48)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) 61)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 53) (($ $ $) 55) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ |#2| $) 66) (($ $ |#2|) NIL))) -(((-870 |#1| |#2|) (-13 (-990 |#2|) (-10 -8 (-15 -3560 ((-407 (-564)) $ (-564))) (-15 -2202 ((-174 (-407 (-564))) $)) (-15 -1506 ($ $)) (-15 -1506 ($ (-564) $)))) (-564) (-867 |#1|)) (T -870)) -((-3560 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-407 (-564))) (-5 *1 (-870 *4 *5)) (-5 *3 (-564)) (-4 *5 (-867 *4)))) (-2202 (*1 *2 *1) (-12 (-14 *3 (-564)) (-5 *2 (-174 (-407 (-564)))) (-5 *1 (-870 *3 *4)) (-4 *4 (-867 *3)))) (-1506 (*1 *1 *1) (-12 (-14 *2 (-564)) (-5 *1 (-870 *2 *3)) (-4 *3 (-867 *2)))) (-1506 (*1 *1 *2 *1) (-12 (-5 *2 (-564)) (-14 *3 *2) (-5 *1 (-870 *3 *4)) (-4 *4 (-867 *3))))) -(-13 (-990 |#2|) (-10 -8 (-15 -3560 ((-407 (-564)) $ (-564))) (-15 -2202 ((-174 (-407 (-564))) $)) (-15 -1506 ($ $)) (-15 -1506 ($ (-564) $)))) -((-2856 (((-112) $ $) NIL (-12 (|has| |#1| (-1097)) (|has| |#2| (-1097))))) (-3573 ((|#2| $) 12)) (-2101 (($ |#1| |#2|) 9)) (-1778 (((-1155) $) NIL (-12 (|has| |#1| (-1097)) (|has| |#2| (-1097))))) (-3999 (((-1117) $) NIL (-12 (|has| |#1| (-1097)) (|has| |#2| (-1097))))) (-4036 ((|#1| $) 11)) (-2401 (($ |#1| |#2|) 10)) (-2390 (((-860) $) 18 (-2682 (-12 (|has| |#1| (-611 (-860))) (|has| |#2| (-611 (-860)))) (-12 (|has| |#1| (-1097)) (|has| |#2| (-1097)))))) (-1600 (((-112) $ $) NIL (-12 (|has| |#1| (-1097)) (|has| |#2| (-1097))))) (-2821 (((-112) $ $) 23 (-12 (|has| |#1| (-1097)) (|has| |#2| (-1097)))))) -(((-871 |#1| |#2|) (-13 (-1212) (-10 -8 (IF (|has| |#1| (-611 (-860))) (IF (|has| |#2| (-611 (-860))) (-6 (-611 (-860))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1097)) (IF (|has| |#2| (-1097)) (-6 (-1097)) |%noBranch|) |%noBranch|) (-15 -2101 ($ |#1| |#2|)) (-15 -2401 ($ |#1| |#2|)) (-15 -4036 (|#1| $)) (-15 -3573 (|#2| $)))) (-1212) (-1212)) (T -871)) -((-2101 (*1 *1 *2 *3) (-12 (-5 *1 (-871 *2 *3)) (-4 *2 (-1212)) (-4 *3 (-1212)))) (-2401 (*1 *1 *2 *3) (-12 (-5 *1 (-871 *2 *3)) (-4 *2 (-1212)) (-4 *3 (-1212)))) (-4036 (*1 *2 *1) (-12 (-4 *2 (-1212)) (-5 *1 (-871 *2 *3)) (-4 *3 (-1212)))) (-3573 (*1 *2 *1) (-12 (-4 *2 (-1212)) (-5 *1 (-871 *3 *2)) (-4 *3 (-1212))))) -(-13 (-1212) (-10 -8 (IF (|has| |#1| (-611 (-860))) (IF (|has| |#2| (-611 (-860))) (-6 (-611 (-860))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1097)) (IF (|has| |#2| (-1097)) (-6 (-1097)) |%noBranch|) |%noBranch|) (-15 -2101 ($ |#1| |#2|)) (-15 -2401 ($ |#1| |#2|)) (-15 -4036 (|#1| $)) (-15 -3573 (|#2| $)))) -((-2856 (((-112) $ $) NIL)) (-2258 (((-564) $) 16)) (-2214 (($ (-157)) 13)) (-3497 (($ (-157)) 14)) (-1778 (((-1155) $) NIL)) (-4065 (((-157) $) 15)) (-3999 (((-1117) $) NIL)) (-2162 (($ (-157)) 11)) (-3368 (($ (-157)) 10)) (-2390 (((-860) $) 24) (($ (-157)) 17)) (-3091 (($ (-157)) 12)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-872) (-13 (-1097) (-10 -8 (-15 -3368 ($ (-157))) (-15 -2162 ($ (-157))) (-15 -3091 ($ (-157))) (-15 -2214 ($ (-157))) (-15 -3497 ($ (-157))) (-15 -4065 ((-157) $)) (-15 -2258 ((-564) $)) (-15 -2390 ($ (-157)))))) (T -872)) -((-3368 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-872)))) (-2162 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-872)))) (-3091 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-872)))) (-2214 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-872)))) (-3497 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-872)))) (-4065 (*1 *2 *1) (-12 (-5 *2 (-157)) (-5 *1 (-872)))) (-2258 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-872)))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-872))))) -(-13 (-1097) (-10 -8 (-15 -3368 ($ (-157))) (-15 -2162 ($ (-157))) (-15 -3091 ($ (-157))) (-15 -2214 ($ (-157))) (-15 -3497 ($ (-157))) (-15 -4065 ((-157) $)) (-15 -2258 ((-564) $)) (-15 -2390 ($ (-157))))) -((-2390 (((-316 (-564)) (-407 (-950 (-48)))) 23) (((-316 (-564)) (-950 (-48))) 18))) -(((-873) (-10 -7 (-15 -2390 ((-316 (-564)) (-950 (-48)))) (-15 -2390 ((-316 (-564)) (-407 (-950 (-48))))))) (T -873)) -((-2390 (*1 *2 *3) (-12 (-5 *3 (-407 (-950 (-48)))) (-5 *2 (-316 (-564))) (-5 *1 (-873)))) (-2390 (*1 *2 *3) (-12 (-5 *3 (-950 (-48))) (-5 *2 (-316 (-564))) (-5 *1 (-873))))) -(-10 -7 (-15 -2390 ((-316 (-564)) (-950 (-48)))) (-15 -2390 ((-316 (-564)) (-407 (-950 (-48)))))) -((-2947 (((-875 |#2|) (-1 |#2| |#1|) (-875 |#1|)) 15))) -(((-874 |#1| |#2|) (-10 -7 (-15 -2947 ((-875 |#2|) (-1 |#2| |#1|) (-875 |#1|)))) (-1212) (-1212)) (T -874)) -((-2947 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-875 *5)) (-4 *5 (-1212)) (-4 *6 (-1212)) (-5 *2 (-875 *6)) (-5 *1 (-874 *5 *6))))) -(-10 -7 (-15 -2947 ((-875 |#2|) (-1 |#2| |#1|) (-875 |#1|)))) -((-2452 (($ |#1| |#1|) 8)) (-3449 ((|#1| $ (-769)) 15))) -(((-875 |#1|) (-10 -8 (-15 -2452 ($ |#1| |#1|)) (-15 -3449 (|#1| $ (-769)))) (-1212)) (T -875)) -((-3449 (*1 *2 *1 *3) (-12 (-5 *3 (-769)) (-5 *1 (-875 *2)) (-4 *2 (-1212)))) (-2452 (*1 *1 *2 *2) (-12 (-5 *1 (-875 *2)) (-4 *2 (-1212))))) -(-10 -8 (-15 -2452 ($ |#1| |#1|)) (-15 -3449 (|#1| $ (-769)))) -((-2947 (((-877 |#2|) (-1 |#2| |#1|) (-877 |#1|)) 15))) -(((-876 |#1| |#2|) (-10 -7 (-15 -2947 ((-877 |#2|) (-1 |#2| |#1|) (-877 |#1|)))) (-1212) (-1212)) (T -876)) -((-2947 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-877 *5)) (-4 *5 (-1212)) (-4 *6 (-1212)) (-5 *2 (-877 *6)) (-5 *1 (-876 *5 *6))))) -(-10 -7 (-15 -2947 ((-877 |#2|) (-1 |#2| |#1|) (-877 |#1|)))) -((-2452 (($ |#1| |#1| |#1|) 8)) (-3449 ((|#1| $ (-769)) 15))) -(((-877 |#1|) (-10 -8 (-15 -2452 ($ |#1| |#1| |#1|)) (-15 -3449 (|#1| $ (-769)))) (-1212)) (T -877)) -((-3449 (*1 *2 *1 *3) (-12 (-5 *3 (-769)) (-5 *1 (-877 *2)) (-4 *2 (-1212)))) (-2452 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1212))))) -(-10 -8 (-15 -2452 ($ |#1| |#1| |#1|)) (-15 -3449 (|#1| $ (-769)))) -((-2430 (((-642 (-1178)) (-1155)) 9))) -(((-878) (-10 -7 (-15 -2430 ((-642 (-1178)) (-1155))))) (T -878)) -((-2430 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-642 (-1178))) (-5 *1 (-878))))) -(-10 -7 (-15 -2430 ((-642 (-1178)) (-1155)))) -((-2947 (((-880 |#2|) (-1 |#2| |#1|) (-880 |#1|)) 15))) -(((-879 |#1| |#2|) (-10 -7 (-15 -2947 ((-880 |#2|) (-1 |#2| |#1|) (-880 |#1|)))) (-1212) (-1212)) (T -879)) -((-2947 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-880 *5)) (-4 *5 (-1212)) (-4 *6 (-1212)) (-5 *2 (-880 *6)) (-5 *1 (-879 *5 *6))))) -(-10 -7 (-15 -2947 ((-880 |#2|) (-1 |#2| |#1|) (-880 |#1|)))) -((-2449 (($ |#1| |#1| |#1|) 8)) (-3449 ((|#1| $ (-769)) 15))) -(((-880 |#1|) (-10 -8 (-15 -2449 ($ |#1| |#1| |#1|)) (-15 -3449 (|#1| $ (-769)))) (-1212)) (T -880)) -((-3449 (*1 *2 *1 *3) (-12 (-5 *3 (-769)) (-5 *1 (-880 *2)) (-4 *2 (-1212)))) (-2449 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-880 *2)) (-4 *2 (-1212))))) -(-10 -8 (-15 -2449 ($ |#1| |#1| |#1|)) (-15 -3449 (|#1| $ (-769)))) -((-3456 (((-1153 (-642 (-564))) (-642 (-564)) (-1153 (-642 (-564)))) 48)) (-1865 (((-1153 (-642 (-564))) (-642 (-564)) (-642 (-564))) 44)) (-2776 (((-1153 (-642 (-564))) (-642 (-564))) 58) (((-1153 (-642 (-564))) (-642 (-564)) (-642 (-564))) 56)) (-2075 (((-1153 (-642 (-564))) (-564)) 59)) (-2843 (((-1153 (-642 (-564))) (-564) (-564)) 34) (((-1153 (-642 (-564))) (-564)) 23) (((-1153 (-642 (-564))) (-564) (-564) (-564)) 19)) (-1332 (((-1153 (-642 (-564))) (-1153 (-642 (-564)))) 42)) (-1736 (((-642 (-564)) (-642 (-564))) 41))) -(((-881) (-10 -7 (-15 -2843 ((-1153 (-642 (-564))) (-564) (-564) (-564))) (-15 -2843 ((-1153 (-642 (-564))) (-564))) (-15 -2843 ((-1153 (-642 (-564))) (-564) (-564))) (-15 -1736 ((-642 (-564)) (-642 (-564)))) (-15 -1332 ((-1153 (-642 (-564))) (-1153 (-642 (-564))))) (-15 -1865 ((-1153 (-642 (-564))) (-642 (-564)) (-642 (-564)))) (-15 -3456 ((-1153 (-642 (-564))) (-642 (-564)) (-1153 (-642 (-564))))) (-15 -2776 ((-1153 (-642 (-564))) (-642 (-564)) (-642 (-564)))) (-15 -2776 ((-1153 (-642 (-564))) (-642 (-564)))) (-15 -2075 ((-1153 (-642 (-564))) (-564))))) (T -881)) -((-2075 (*1 *2 *3) (-12 (-5 *2 (-1153 (-642 (-564)))) (-5 *1 (-881)) (-5 *3 (-564)))) (-2776 (*1 *2 *3) (-12 (-5 *2 (-1153 (-642 (-564)))) (-5 *1 (-881)) (-5 *3 (-642 (-564))))) (-2776 (*1 *2 *3 *3) (-12 (-5 *2 (-1153 (-642 (-564)))) (-5 *1 (-881)) (-5 *3 (-642 (-564))))) (-3456 (*1 *2 *3 *2) (-12 (-5 *2 (-1153 (-642 (-564)))) (-5 *3 (-642 (-564))) (-5 *1 (-881)))) (-1865 (*1 *2 *3 *3) (-12 (-5 *2 (-1153 (-642 (-564)))) (-5 *1 (-881)) (-5 *3 (-642 (-564))))) (-1332 (*1 *2 *2) (-12 (-5 *2 (-1153 (-642 (-564)))) (-5 *1 (-881)))) (-1736 (*1 *2 *2) (-12 (-5 *2 (-642 (-564))) (-5 *1 (-881)))) (-2843 (*1 *2 *3 *3) (-12 (-5 *2 (-1153 (-642 (-564)))) (-5 *1 (-881)) (-5 *3 (-564)))) (-2843 (*1 *2 *3) (-12 (-5 *2 (-1153 (-642 (-564)))) (-5 *1 (-881)) (-5 *3 (-564)))) (-2843 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1153 (-642 (-564)))) (-5 *1 (-881)) (-5 *3 (-564))))) -(-10 -7 (-15 -2843 ((-1153 (-642 (-564))) (-564) (-564) (-564))) (-15 -2843 ((-1153 (-642 (-564))) (-564))) (-15 -2843 ((-1153 (-642 (-564))) (-564) (-564))) (-15 -1736 ((-642 (-564)) (-642 (-564)))) (-15 -1332 ((-1153 (-642 (-564))) (-1153 (-642 (-564))))) (-15 -1865 ((-1153 (-642 (-564))) (-642 (-564)) (-642 (-564)))) (-15 -3456 ((-1153 (-642 (-564))) (-642 (-564)) (-1153 (-642 (-564))))) (-15 -2776 ((-1153 (-642 (-564))) (-642 (-564)) (-642 (-564)))) (-15 -2776 ((-1153 (-642 (-564))) (-642 (-564)))) (-15 -2075 ((-1153 (-642 (-564))) (-564)))) -((-3003 (((-890 (-379)) $) 9 (|has| |#1| (-612 (-890 (-379))))) (((-890 (-564)) $) 8 (|has| |#1| (-612 (-890 (-564))))))) -(((-882 |#1|) (-140) (-1212)) (T -882)) -NIL -(-13 (-10 -7 (IF (|has| |t#1| (-612 (-890 (-564)))) (-6 (-612 (-890 (-564)))) |%noBranch|) (IF (|has| |t#1| (-612 (-890 (-379)))) (-6 (-612 (-890 (-379)))) |%noBranch|))) -(((-612 (-890 (-379))) |has| |#1| (-612 (-890 (-379)))) ((-612 (-890 (-564))) |has| |#1| (-612 (-890 (-564))))) -((-2856 (((-112) $ $) NIL)) (-4233 (($) 14)) (-3563 (($ (-887 |#1| |#2|) (-887 |#1| |#3|)) 28)) (-3700 (((-887 |#1| |#3|) $) 16)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2886 (((-112) $) 22)) (-3136 (($) 19)) (-2390 (((-860) $) 31)) (-1600 (((-112) $ $) NIL)) (-3341 (((-887 |#1| |#2|) $) 15)) (-2821 (((-112) $ $) 26))) -(((-883 |#1| |#2| |#3|) (-13 (-1097) (-10 -8 (-15 -2886 ((-112) $)) (-15 -3136 ($)) (-15 -4233 ($)) (-15 -3563 ($ (-887 |#1| |#2|) (-887 |#1| |#3|))) (-15 -3341 ((-887 |#1| |#2|) $)) (-15 -3700 ((-887 |#1| |#3|) $)))) (-1097) (-1097) (-664 |#2|)) (T -883)) -((-2886 (*1 *2 *1) (-12 (-4 *4 (-1097)) (-5 *2 (-112)) (-5 *1 (-883 *3 *4 *5)) (-4 *3 (-1097)) (-4 *5 (-664 *4)))) (-3136 (*1 *1) (-12 (-4 *3 (-1097)) (-5 *1 (-883 *2 *3 *4)) (-4 *2 (-1097)) (-4 *4 (-664 *3)))) (-4233 (*1 *1) (-12 (-4 *3 (-1097)) (-5 *1 (-883 *2 *3 *4)) (-4 *2 (-1097)) (-4 *4 (-664 *3)))) (-3563 (*1 *1 *2 *3) (-12 (-5 *2 (-887 *4 *5)) (-5 *3 (-887 *4 *6)) (-4 *4 (-1097)) (-4 *5 (-1097)) (-4 *6 (-664 *5)) (-5 *1 (-883 *4 *5 *6)))) (-3341 (*1 *2 *1) (-12 (-4 *4 (-1097)) (-5 *2 (-887 *3 *4)) (-5 *1 (-883 *3 *4 *5)) (-4 *3 (-1097)) (-4 *5 (-664 *4)))) (-3700 (*1 *2 *1) (-12 (-4 *4 (-1097)) (-5 *2 (-887 *3 *5)) (-5 *1 (-883 *3 *4 *5)) (-4 *3 (-1097)) (-4 *5 (-664 *4))))) -(-13 (-1097) (-10 -8 (-15 -2886 ((-112) $)) (-15 -3136 ($)) (-15 -4233 ($)) (-15 -3563 ($ (-887 |#1| |#2|) (-887 |#1| |#3|))) (-15 -3341 ((-887 |#1| |#2|) $)) (-15 -3700 ((-887 |#1| |#3|) $)))) -((-2856 (((-112) $ $) 7)) (-1381 (((-887 |#1| $) $ (-890 |#1|) (-887 |#1| $)) 14)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2390 (((-860) $) 12)) (-1600 (((-112) $ $) 9)) (-2821 (((-112) $ $) 6))) -(((-884 |#1|) (-140) (-1097)) (T -884)) -((-1381 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-887 *4 *1)) (-5 *3 (-890 *4)) (-4 *1 (-884 *4)) (-4 *4 (-1097))))) -(-13 (-1097) (-10 -8 (-15 -1381 ((-887 |t#1| $) $ (-890 |t#1|) (-887 |t#1| $))))) -(((-102) . T) ((-611 (-860)) . T) ((-1097) . T)) -((-1462 (((-112) (-642 |#2|) |#3|) 23) (((-112) |#2| |#3|) 18)) (-1770 (((-887 |#1| |#2|) |#2| |#3|) 45 (-12 (-2307 (|has| |#2| (-1036 (-1173)))) (-2307 (|has| |#2| (-1047))))) (((-642 (-294 (-950 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-1047)) (-2307 (|has| |#2| (-1036 (-1173)))))) (((-642 (-294 |#2|)) |#2| |#3|) 36 (|has| |#2| (-1036 (-1173)))) (((-883 |#1| |#2| (-642 |#2|)) (-642 |#2|) |#3|) 21))) -(((-885 |#1| |#2| |#3|) (-10 -7 (-15 -1462 ((-112) |#2| |#3|)) (-15 -1462 ((-112) (-642 |#2|) |#3|)) (-15 -1770 ((-883 |#1| |#2| (-642 |#2|)) (-642 |#2|) |#3|)) (IF (|has| |#2| (-1036 (-1173))) (-15 -1770 ((-642 (-294 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1047)) (-15 -1770 ((-642 (-294 (-950 |#2|))) |#2| |#3|)) (-15 -1770 ((-887 |#1| |#2|) |#2| |#3|))))) (-1097) (-884 |#1|) (-612 (-890 |#1|))) (T -885)) -((-1770 (*1 *2 *3 *4) (-12 (-4 *5 (-1097)) (-5 *2 (-887 *5 *3)) (-5 *1 (-885 *5 *3 *4)) (-2307 (-4 *3 (-1036 (-1173)))) (-2307 (-4 *3 (-1047))) (-4 *3 (-884 *5)) (-4 *4 (-612 (-890 *5))))) (-1770 (*1 *2 *3 *4) (-12 (-4 *5 (-1097)) (-5 *2 (-642 (-294 (-950 *3)))) (-5 *1 (-885 *5 *3 *4)) (-4 *3 (-1047)) (-2307 (-4 *3 (-1036 (-1173)))) (-4 *3 (-884 *5)) (-4 *4 (-612 (-890 *5))))) (-1770 (*1 *2 *3 *4) (-12 (-4 *5 (-1097)) (-5 *2 (-642 (-294 *3))) (-5 *1 (-885 *5 *3 *4)) (-4 *3 (-1036 (-1173))) (-4 *3 (-884 *5)) (-4 *4 (-612 (-890 *5))))) (-1770 (*1 *2 *3 *4) (-12 (-4 *5 (-1097)) (-4 *6 (-884 *5)) (-5 *2 (-883 *5 *6 (-642 *6))) (-5 *1 (-885 *5 *6 *4)) (-5 *3 (-642 *6)) (-4 *4 (-612 (-890 *5))))) (-1462 (*1 *2 *3 *4) (-12 (-5 *3 (-642 *6)) (-4 *6 (-884 *5)) (-4 *5 (-1097)) (-5 *2 (-112)) (-5 *1 (-885 *5 *6 *4)) (-4 *4 (-612 (-890 *5))))) (-1462 (*1 *2 *3 *4) (-12 (-4 *5 (-1097)) (-5 *2 (-112)) (-5 *1 (-885 *5 *3 *4)) (-4 *3 (-884 *5)) (-4 *4 (-612 (-890 *5)))))) -(-10 -7 (-15 -1462 ((-112) |#2| |#3|)) (-15 -1462 ((-112) (-642 |#2|) |#3|)) (-15 -1770 ((-883 |#1| |#2| (-642 |#2|)) (-642 |#2|) |#3|)) (IF (|has| |#2| (-1036 (-1173))) (-15 -1770 ((-642 (-294 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1047)) (-15 -1770 ((-642 (-294 (-950 |#2|))) |#2| |#3|)) (-15 -1770 ((-887 |#1| |#2|) |#2| |#3|))))) -((-2947 (((-887 |#1| |#3|) (-1 |#3| |#2|) (-887 |#1| |#2|)) 22))) -(((-886 |#1| |#2| |#3|) (-10 -7 (-15 -2947 ((-887 |#1| |#3|) (-1 |#3| |#2|) (-887 |#1| |#2|)))) (-1097) (-1097) (-1097)) (T -886)) -((-2947 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-887 *5 *6)) (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *7 (-1097)) (-5 *2 (-887 *5 *7)) (-5 *1 (-886 *5 *6 *7))))) -(-10 -7 (-15 -2947 ((-887 |#1| |#3|) (-1 |#3| |#2|) (-887 |#1| |#2|)))) -((-2856 (((-112) $ $) NIL)) (-1700 (($ $ $) 40)) (-4112 (((-3 (-112) "failed") $ (-890 |#1|)) 37)) (-4233 (($) 12)) (-1778 (((-1155) $) NIL)) (-3768 (($ (-890 |#1|) |#2| $) 20)) (-3999 (((-1117) $) NIL)) (-2469 (((-3 |#2| "failed") (-890 |#1|) $) 51)) (-2886 (((-112) $) 15)) (-3136 (($) 13)) (-2332 (((-642 (-2 (|:| -1914 (-1173)) (|:| -2683 |#2|))) $) 25)) (-2401 (($ (-642 (-2 (|:| -1914 (-1173)) (|:| -2683 |#2|)))) 23)) (-2390 (((-860) $) 45)) (-1600 (((-112) $ $) NIL)) (-2033 (($ (-890 |#1|) |#2| $ |#2|) 49)) (-3103 (($ (-890 |#1|) |#2| $) 48)) (-2821 (((-112) $ $) 42))) -(((-887 |#1| |#2|) (-13 (-1097) (-10 -8 (-15 -2886 ((-112) $)) (-15 -3136 ($)) (-15 -4233 ($)) (-15 -1700 ($ $ $)) (-15 -2469 ((-3 |#2| "failed") (-890 |#1|) $)) (-15 -3103 ($ (-890 |#1|) |#2| $)) (-15 -3768 ($ (-890 |#1|) |#2| $)) (-15 -2033 ($ (-890 |#1|) |#2| $ |#2|)) (-15 -2332 ((-642 (-2 (|:| -1914 (-1173)) (|:| -2683 |#2|))) $)) (-15 -2401 ($ (-642 (-2 (|:| -1914 (-1173)) (|:| -2683 |#2|))))) (-15 -4112 ((-3 (-112) "failed") $ (-890 |#1|))))) (-1097) (-1097)) (T -887)) -((-2886 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-887 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-1097)))) (-3136 (*1 *1) (-12 (-5 *1 (-887 *2 *3)) (-4 *2 (-1097)) (-4 *3 (-1097)))) (-4233 (*1 *1) (-12 (-5 *1 (-887 *2 *3)) (-4 *2 (-1097)) (-4 *3 (-1097)))) (-1700 (*1 *1 *1 *1) (-12 (-5 *1 (-887 *2 *3)) (-4 *2 (-1097)) (-4 *3 (-1097)))) (-2469 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-890 *4)) (-4 *4 (-1097)) (-4 *2 (-1097)) (-5 *1 (-887 *4 *2)))) (-3103 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-890 *4)) (-4 *4 (-1097)) (-5 *1 (-887 *4 *3)) (-4 *3 (-1097)))) (-3768 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-890 *4)) (-4 *4 (-1097)) (-5 *1 (-887 *4 *3)) (-4 *3 (-1097)))) (-2033 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-890 *4)) (-4 *4 (-1097)) (-5 *1 (-887 *4 *3)) (-4 *3 (-1097)))) (-2332 (*1 *2 *1) (-12 (-5 *2 (-642 (-2 (|:| -1914 (-1173)) (|:| -2683 *4)))) (-5 *1 (-887 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-1097)))) (-2401 (*1 *1 *2) (-12 (-5 *2 (-642 (-2 (|:| -1914 (-1173)) (|:| -2683 *4)))) (-4 *4 (-1097)) (-5 *1 (-887 *3 *4)) (-4 *3 (-1097)))) (-4112 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-890 *4)) (-4 *4 (-1097)) (-5 *2 (-112)) (-5 *1 (-887 *4 *5)) (-4 *5 (-1097))))) -(-13 (-1097) (-10 -8 (-15 -2886 ((-112) $)) (-15 -3136 ($)) (-15 -4233 ($)) (-15 -1700 ($ $ $)) (-15 -2469 ((-3 |#2| "failed") (-890 |#1|) $)) (-15 -3103 ($ (-890 |#1|) |#2| $)) (-15 -3768 ($ (-890 |#1|) |#2| $)) (-15 -2033 ($ (-890 |#1|) |#2| $ |#2|)) (-15 -2332 ((-642 (-2 (|:| -1914 (-1173)) (|:| -2683 |#2|))) $)) (-15 -2401 ($ (-642 (-2 (|:| -1914 (-1173)) (|:| -2683 |#2|))))) (-15 -4112 ((-3 (-112) "failed") $ (-890 |#1|))))) -((-2081 (((-890 |#1|) (-890 |#1|) (-642 (-1173)) (-1 (-112) (-642 |#2|))) 32) (((-890 |#1|) (-890 |#1|) (-642 (-1 (-112) |#2|))) 46) (((-890 |#1|) (-890 |#1|) (-1 (-112) |#2|)) 35)) (-4112 (((-112) (-642 |#2|) (-890 |#1|)) 42) (((-112) |#2| (-890 |#1|)) 36)) (-3371 (((-1 (-112) |#2|) (-890 |#1|)) 16)) (-3401 (((-642 |#2|) (-890 |#1|)) 24)) (-2704 (((-890 |#1|) (-890 |#1|) |#2|) 20))) -(((-888 |#1| |#2|) (-10 -7 (-15 -2081 ((-890 |#1|) (-890 |#1|) (-1 (-112) |#2|))) (-15 -2081 ((-890 |#1|) (-890 |#1|) (-642 (-1 (-112) |#2|)))) (-15 -2081 ((-890 |#1|) (-890 |#1|) (-642 (-1173)) (-1 (-112) (-642 |#2|)))) (-15 -3371 ((-1 (-112) |#2|) (-890 |#1|))) (-15 -4112 ((-112) |#2| (-890 |#1|))) (-15 -4112 ((-112) (-642 |#2|) (-890 |#1|))) (-15 -2704 ((-890 |#1|) (-890 |#1|) |#2|)) (-15 -3401 ((-642 |#2|) (-890 |#1|)))) (-1097) (-1212)) (T -888)) -((-3401 (*1 *2 *3) (-12 (-5 *3 (-890 *4)) (-4 *4 (-1097)) (-5 *2 (-642 *5)) (-5 *1 (-888 *4 *5)) (-4 *5 (-1212)))) (-2704 (*1 *2 *2 *3) (-12 (-5 *2 (-890 *4)) (-4 *4 (-1097)) (-5 *1 (-888 *4 *3)) (-4 *3 (-1212)))) (-4112 (*1 *2 *3 *4) (-12 (-5 *3 (-642 *6)) (-5 *4 (-890 *5)) (-4 *5 (-1097)) (-4 *6 (-1212)) (-5 *2 (-112)) (-5 *1 (-888 *5 *6)))) (-4112 (*1 *2 *3 *4) (-12 (-5 *4 (-890 *5)) (-4 *5 (-1097)) (-5 *2 (-112)) (-5 *1 (-888 *5 *3)) (-4 *3 (-1212)))) (-3371 (*1 *2 *3) (-12 (-5 *3 (-890 *4)) (-4 *4 (-1097)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-888 *4 *5)) (-4 *5 (-1212)))) (-2081 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-890 *5)) (-5 *3 (-642 (-1173))) (-5 *4 (-1 (-112) (-642 *6))) (-4 *5 (-1097)) (-4 *6 (-1212)) (-5 *1 (-888 *5 *6)))) (-2081 (*1 *2 *2 *3) (-12 (-5 *2 (-890 *4)) (-5 *3 (-642 (-1 (-112) *5))) (-4 *4 (-1097)) (-4 *5 (-1212)) (-5 *1 (-888 *4 *5)))) (-2081 (*1 *2 *2 *3) (-12 (-5 *2 (-890 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1097)) (-4 *5 (-1212)) (-5 *1 (-888 *4 *5))))) -(-10 -7 (-15 -2081 ((-890 |#1|) (-890 |#1|) (-1 (-112) |#2|))) (-15 -2081 ((-890 |#1|) (-890 |#1|) (-642 (-1 (-112) |#2|)))) (-15 -2081 ((-890 |#1|) (-890 |#1|) (-642 (-1173)) (-1 (-112) (-642 |#2|)))) (-15 -3371 ((-1 (-112) |#2|) (-890 |#1|))) (-15 -4112 ((-112) |#2| (-890 |#1|))) (-15 -4112 ((-112) (-642 |#2|) (-890 |#1|))) (-15 -2704 ((-890 |#1|) (-890 |#1|) |#2|)) (-15 -3401 ((-642 |#2|) (-890 |#1|)))) -((-2947 (((-890 |#2|) (-1 |#2| |#1|) (-890 |#1|)) 19))) -(((-889 |#1| |#2|) (-10 -7 (-15 -2947 ((-890 |#2|) (-1 |#2| |#1|) (-890 |#1|)))) (-1097) (-1097)) (T -889)) -((-2947 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-890 *5)) (-4 *5 (-1097)) (-4 *6 (-1097)) (-5 *2 (-890 *6)) (-5 *1 (-889 *5 *6))))) -(-10 -7 (-15 -2947 ((-890 |#2|) (-1 |#2| |#1|) (-890 |#1|)))) -((-2856 (((-112) $ $) NIL)) (-4346 (($ $ (-642 (-52))) 74)) (-2397 (((-642 $) $) 138)) (-2815 (((-2 (|:| |var| (-642 (-1173))) (|:| |pred| (-52))) $) 30)) (-2710 (((-112) $) 35)) (-1373 (($ $ (-642 (-1173)) (-52)) 31)) (-1375 (($ $ (-642 (-52))) 73)) (-2849 (((-3 |#1| "failed") $) 71) (((-3 (-1173) "failed") $) 162)) (-1687 ((|#1| $) 68) (((-1173) $) NIL)) (-2826 (($ $) 126)) (-2103 (((-112) $) 55)) (-2433 (((-642 (-52)) $) 50)) (-1667 (($ (-1173) (-112) (-112) (-112)) 75)) (-1983 (((-3 (-642 $) "failed") (-642 $)) 82)) (-1580 (((-112) $) 58)) (-2355 (((-112) $) 57)) (-1778 (((-1155) $) NIL)) (-3664 (((-3 (-642 $) "failed") $) 41)) (-2922 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 48)) (-1459 (((-3 (-2 (|:| |val| $) (|:| -2817 $)) "failed") $) 97)) (-4315 (((-3 (-642 $) "failed") $) 40)) (-3034 (((-3 (-642 $) "failed") $ (-114)) 124) (((-3 (-2 (|:| -1637 (-114)) (|:| |arg| (-642 $))) "failed") $) 107)) (-1885 (((-3 (-642 $) "failed") $) 42)) (-3177 (((-3 (-2 (|:| |val| $) (|:| -2817 (-769))) "failed") $) 45)) (-3410 (((-112) $) 34)) (-3999 (((-1117) $) NIL)) (-2726 (((-112) $) 28)) (-1347 (((-112) $) 52)) (-3214 (((-642 (-52)) $) 130)) (-4278 (((-112) $) 56)) (-4369 (($ (-114) (-642 $)) 104)) (-2085 (((-769) $) 33)) (-3865 (($ $) 72)) (-3003 (($ (-642 $)) 69)) (-2602 (((-112) $) 32)) (-2390 (((-860) $) 63) (($ |#1|) 23) (($ (-1173)) 76)) (-1600 (((-112) $ $) NIL)) (-2704 (($ $ (-52)) 129)) (-2361 (($) 103 T CONST)) (-2371 (($) 83 T CONST)) (-2821 (((-112) $ $) 93)) (-2943 (($ $ $) 117)) (-2917 (($ $ $) 121)) (** (($ $ (-769)) 115) (($ $ $) 64)) (* (($ $ $) 122))) -(((-890 |#1|) (-13 (-1097) (-1036 |#1|) (-1036 (-1173)) (-10 -8 (-15 0 ($) -1551) (-15 1 ($) -1551) (-15 -4315 ((-3 (-642 $) "failed") $)) (-15 -3664 ((-3 (-642 $) "failed") $)) (-15 -3034 ((-3 (-642 $) "failed") $ (-114))) (-15 -3034 ((-3 (-2 (|:| -1637 (-114)) (|:| |arg| (-642 $))) "failed") $)) (-15 -3177 ((-3 (-2 (|:| |val| $) (|:| -2817 (-769))) "failed") $)) (-15 -2922 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -1885 ((-3 (-642 $) "failed") $)) (-15 -1459 ((-3 (-2 (|:| |val| $) (|:| -2817 $)) "failed") $)) (-15 -4369 ($ (-114) (-642 $))) (-15 -2917 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-769))) (-15 ** ($ $ $)) (-15 -2943 ($ $ $)) (-15 -2085 ((-769) $)) (-15 -3003 ($ (-642 $))) (-15 -3865 ($ $)) (-15 -3410 ((-112) $)) (-15 -2103 ((-112) $)) (-15 -2710 ((-112) $)) (-15 -2602 ((-112) $)) (-15 -4278 ((-112) $)) (-15 -2355 ((-112) $)) (-15 -1580 ((-112) $)) (-15 -1347 ((-112) $)) (-15 -2433 ((-642 (-52)) $)) (-15 -1375 ($ $ (-642 (-52)))) (-15 -4346 ($ $ (-642 (-52)))) (-15 -1667 ($ (-1173) (-112) (-112) (-112))) (-15 -1373 ($ $ (-642 (-1173)) (-52))) (-15 -2815 ((-2 (|:| |var| (-642 (-1173))) (|:| |pred| (-52))) $)) (-15 -2726 ((-112) $)) (-15 -2826 ($ $)) (-15 -2704 ($ $ (-52))) (-15 -3214 ((-642 (-52)) $)) (-15 -2397 ((-642 $) $)) (-15 -1983 ((-3 (-642 $) "failed") (-642 $))))) (-1097)) (T -890)) -((-2361 (*1 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-1097)))) (-2371 (*1 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-1097)))) (-4315 (*1 *2 *1) (|partial| -12 (-5 *2 (-642 (-890 *3))) (-5 *1 (-890 *3)) (-4 *3 (-1097)))) (-3664 (*1 *2 *1) (|partial| -12 (-5 *2 (-642 (-890 *3))) (-5 *1 (-890 *3)) (-4 *3 (-1097)))) (-3034 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-642 (-890 *4))) (-5 *1 (-890 *4)) (-4 *4 (-1097)))) (-3034 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -1637 (-114)) (|:| |arg| (-642 (-890 *3))))) (-5 *1 (-890 *3)) (-4 *3 (-1097)))) (-3177 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-890 *3)) (|:| -2817 (-769)))) (-5 *1 (-890 *3)) (-4 *3 (-1097)))) (-2922 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-890 *3)) (|:| |den| (-890 *3)))) (-5 *1 (-890 *3)) (-4 *3 (-1097)))) (-1885 (*1 *2 *1) (|partial| -12 (-5 *2 (-642 (-890 *3))) (-5 *1 (-890 *3)) (-4 *3 (-1097)))) (-1459 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-890 *3)) (|:| -2817 (-890 *3)))) (-5 *1 (-890 *3)) (-4 *3 (-1097)))) (-4369 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-642 (-890 *4))) (-5 *1 (-890 *4)) (-4 *4 (-1097)))) (-2917 (*1 *1 *1 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-1097)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-1097)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-890 *3)) (-4 *3 (-1097)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-1097)))) (-2943 (*1 *1 *1 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-1097)))) (-2085 (*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-890 *3)) (-4 *3 (-1097)))) (-3003 (*1 *1 *2) (-12 (-5 *2 (-642 (-890 *3))) (-5 *1 (-890 *3)) (-4 *3 (-1097)))) (-3865 (*1 *1 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-1097)))) (-3410 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-890 *3)) (-4 *3 (-1097)))) (-2103 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-890 *3)) (-4 *3 (-1097)))) (-2710 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-890 *3)) (-4 *3 (-1097)))) (-2602 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-890 *3)) (-4 *3 (-1097)))) (-4278 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-890 *3)) (-4 *3 (-1097)))) (-2355 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-890 *3)) (-4 *3 (-1097)))) (-1580 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-890 *3)) (-4 *3 (-1097)))) (-1347 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-890 *3)) (-4 *3 (-1097)))) (-2433 (*1 *2 *1) (-12 (-5 *2 (-642 (-52))) (-5 *1 (-890 *3)) (-4 *3 (-1097)))) (-1375 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-52))) (-5 *1 (-890 *3)) (-4 *3 (-1097)))) (-4346 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-52))) (-5 *1 (-890 *3)) (-4 *3 (-1097)))) (-1667 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-112)) (-5 *1 (-890 *4)) (-4 *4 (-1097)))) (-1373 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-642 (-1173))) (-5 *3 (-52)) (-5 *1 (-890 *4)) (-4 *4 (-1097)))) (-2815 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-642 (-1173))) (|:| |pred| (-52)))) (-5 *1 (-890 *3)) (-4 *3 (-1097)))) (-2726 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-890 *3)) (-4 *3 (-1097)))) (-2826 (*1 *1 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-1097)))) (-2704 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-890 *3)) (-4 *3 (-1097)))) (-3214 (*1 *2 *1) (-12 (-5 *2 (-642 (-52))) (-5 *1 (-890 *3)) (-4 *3 (-1097)))) (-2397 (*1 *2 *1) (-12 (-5 *2 (-642 (-890 *3))) (-5 *1 (-890 *3)) (-4 *3 (-1097)))) (-1983 (*1 *2 *2) (|partial| -12 (-5 *2 (-642 (-890 *3))) (-5 *1 (-890 *3)) (-4 *3 (-1097))))) -(-13 (-1097) (-1036 |#1|) (-1036 (-1173)) (-10 -8 (-15 (-2361) ($) -1551) (-15 (-2371) ($) -1551) (-15 -4315 ((-3 (-642 $) "failed") $)) (-15 -3664 ((-3 (-642 $) "failed") $)) (-15 -3034 ((-3 (-642 $) "failed") $ (-114))) (-15 -3034 ((-3 (-2 (|:| -1637 (-114)) (|:| |arg| (-642 $))) "failed") $)) (-15 -3177 ((-3 (-2 (|:| |val| $) (|:| -2817 (-769))) "failed") $)) (-15 -2922 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -1885 ((-3 (-642 $) "failed") $)) (-15 -1459 ((-3 (-2 (|:| |val| $) (|:| -2817 $)) "failed") $)) (-15 -4369 ($ (-114) (-642 $))) (-15 -2917 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-769))) (-15 ** ($ $ $)) (-15 -2943 ($ $ $)) (-15 -2085 ((-769) $)) (-15 -3003 ($ (-642 $))) (-15 -3865 ($ $)) (-15 -3410 ((-112) $)) (-15 -2103 ((-112) $)) (-15 -2710 ((-112) $)) (-15 -2602 ((-112) $)) (-15 -4278 ((-112) $)) (-15 -2355 ((-112) $)) (-15 -1580 ((-112) $)) (-15 -1347 ((-112) $)) (-15 -2433 ((-642 (-52)) $)) (-15 -1375 ($ $ (-642 (-52)))) (-15 -4346 ($ $ (-642 (-52)))) (-15 -1667 ($ (-1173) (-112) (-112) (-112))) (-15 -1373 ($ $ (-642 (-1173)) (-52))) (-15 -2815 ((-2 (|:| |var| (-642 (-1173))) (|:| |pred| (-52))) $)) (-15 -2726 ((-112) $)) (-15 -2826 ($ $)) (-15 -2704 ($ $ (-52))) (-15 -3214 ((-642 (-52)) $)) (-15 -2397 ((-642 $) $)) (-15 -1983 ((-3 (-642 $) "failed") (-642 $))))) -((-2856 (((-112) $ $) NIL)) (-1634 (((-642 |#1|) $) 19)) (-3629 (((-112) $) 49)) (-2849 (((-3 (-670 |#1|) "failed") $) 56)) (-1687 (((-670 |#1|) $) 54)) (-4050 (($ $) 23)) (-3225 (($ $ $) NIL)) (-2903 (($ $ $) NIL)) (-2495 (((-769) $) 61)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-4036 (((-670 |#1|) $) 21)) (-2390 (((-860) $) 47) (($ (-670 |#1|)) 26) (((-817 |#1|) $) 36) (($ |#1|) 25)) (-1600 (((-112) $ $) NIL)) (-2371 (($) 9 T CONST)) (-1429 (((-642 (-670 |#1|)) $) 28)) (-2881 (((-112) $ $) NIL)) (-2857 (((-112) $ $) NIL)) (-2821 (((-112) $ $) 12)) (-2868 (((-112) $ $) NIL)) (-2844 (((-112) $ $) 67))) -(((-891 |#1|) (-13 (-848) (-1036 (-670 |#1|)) (-10 -8 (-15 1 ($) -1551) (-15 -2390 ((-817 |#1|) $)) (-15 -2390 ($ |#1|)) (-15 -4036 ((-670 |#1|) $)) (-15 -2495 ((-769) $)) (-15 -1429 ((-642 (-670 |#1|)) $)) (-15 -4050 ($ $)) (-15 -3629 ((-112) $)) (-15 -1634 ((-642 |#1|) $)))) (-848)) (T -891)) -((-2371 (*1 *1) (-12 (-5 *1 (-891 *2)) (-4 *2 (-848)))) (-2390 (*1 *2 *1) (-12 (-5 *2 (-817 *3)) (-5 *1 (-891 *3)) (-4 *3 (-848)))) (-2390 (*1 *1 *2) (-12 (-5 *1 (-891 *2)) (-4 *2 (-848)))) (-4036 (*1 *2 *1) (-12 (-5 *2 (-670 *3)) (-5 *1 (-891 *3)) (-4 *3 (-848)))) (-2495 (*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-891 *3)) (-4 *3 (-848)))) (-1429 (*1 *2 *1) (-12 (-5 *2 (-642 (-670 *3))) (-5 *1 (-891 *3)) (-4 *3 (-848)))) (-4050 (*1 *1 *1) (-12 (-5 *1 (-891 *2)) (-4 *2 (-848)))) (-3629 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-891 *3)) (-4 *3 (-848)))) (-1634 (*1 *2 *1) (-12 (-5 *2 (-642 *3)) (-5 *1 (-891 *3)) (-4 *3 (-848))))) -(-13 (-848) (-1036 (-670 |#1|)) (-10 -8 (-15 (-2371) ($) -1551) (-15 -2390 ((-817 |#1|) $)) (-15 -2390 ($ |#1|)) (-15 -4036 ((-670 |#1|) $)) (-15 -2495 ((-769) $)) (-15 -1429 ((-642 (-670 |#1|)) $)) (-15 -4050 ($ $)) (-15 -3629 ((-112) $)) (-15 -1634 ((-642 |#1|) $)))) -((-2403 ((|#1| |#1| |#1|) 19))) -(((-892 |#1| |#2|) (-10 -7 (-15 -2403 (|#1| |#1| |#1|))) (-1238 |#2|) (-1047)) (T -892)) -((-2403 (*1 *2 *2 *2) (-12 (-4 *3 (-1047)) (-5 *1 (-892 *2 *3)) (-4 *2 (-1238 *3))))) -(-10 -7 (-15 -2403 (|#1| |#1| |#1|))) -((-2856 (((-112) $ $) 7)) (-4324 (((-2 (|:| -4324 (-379)) (|:| |explanations| (-1155))) (-1060) (-2 (|:| |pde| (-642 (-316 (-225)))) (|:| |constraints| (-642 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-769)) (|:| |boundaryType| (-564)) (|:| |dStart| (-687 (-225))) (|:| |dFinish| (-687 (-225)))))) (|:| |f| (-642 (-642 (-316 (-225))))) (|:| |st| (-1155)) (|:| |tol| (-225)))) 15)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2390 (((-860) $) 12)) (-1600 (((-112) $ $) 9)) (-2013 (((-1033) (-2 (|:| |pde| (-642 (-316 (-225)))) (|:| |constraints| (-642 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-769)) (|:| |boundaryType| (-564)) (|:| |dStart| (-687 (-225))) (|:| |dFinish| (-687 (-225)))))) (|:| |f| (-642 (-642 (-316 (-225))))) (|:| |st| (-1155)) (|:| |tol| (-225)))) 14)) (-2821 (((-112) $ $) 6))) -(((-893) (-140)) (T -893)) -((-4324 (*1 *2 *3 *4) (-12 (-4 *1 (-893)) (-5 *3 (-1060)) (-5 *4 (-2 (|:| |pde| (-642 (-316 (-225)))) (|:| |constraints| (-642 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-769)) (|:| |boundaryType| (-564)) (|:| |dStart| (-687 (-225))) (|:| |dFinish| (-687 (-225)))))) (|:| |f| (-642 (-642 (-316 (-225))))) (|:| |st| (-1155)) (|:| |tol| (-225)))) (-5 *2 (-2 (|:| -4324 (-379)) (|:| |explanations| (-1155)))))) (-2013 (*1 *2 *3) (-12 (-4 *1 (-893)) (-5 *3 (-2 (|:| |pde| (-642 (-316 (-225)))) (|:| |constraints| (-642 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-769)) (|:| |boundaryType| (-564)) (|:| |dStart| (-687 (-225))) (|:| |dFinish| (-687 (-225)))))) (|:| |f| (-642 (-642 (-316 (-225))))) (|:| |st| (-1155)) (|:| |tol| (-225)))) (-5 *2 (-1033))))) -(-13 (-1097) (-10 -7 (-15 -4324 ((-2 (|:| -4324 (-379)) (|:| |explanations| (-1155))) (-1060) (-2 (|:| |pde| (-642 (-316 (-225)))) (|:| |constraints| (-642 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-769)) (|:| |boundaryType| (-564)) (|:| |dStart| (-687 (-225))) (|:| |dFinish| (-687 (-225)))))) (|:| |f| (-642 (-642 (-316 (-225))))) (|:| |st| (-1155)) (|:| |tol| (-225))))) (-15 -2013 ((-1033) (-2 (|:| |pde| (-642 (-316 (-225)))) (|:| |constraints| (-642 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-769)) (|:| |boundaryType| (-564)) (|:| |dStart| (-687 (-225))) (|:| |dFinish| (-687 (-225)))))) (|:| |f| (-642 (-642 (-316 (-225))))) (|:| |st| (-1155)) (|:| |tol| (-225))))))) -(((-102) . T) ((-611 (-860)) . T) ((-1097) . T)) -((-2014 ((|#1| |#1| (-769)) 29)) (-2699 (((-3 |#1| "failed") |#1| |#1|) 26)) (-3822 (((-3 (-2 (|:| -4341 |#1|) (|:| -4351 |#1|)) "failed") |#1| (-769) (-769)) 32) (((-642 |#1|) |#1|) 39))) -(((-894 |#1| |#2|) (-10 -7 (-15 -3822 ((-642 |#1|) |#1|)) (-15 -3822 ((-3 (-2 (|:| -4341 |#1|) (|:| -4351 |#1|)) "failed") |#1| (-769) (-769))) (-15 -2699 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2014 (|#1| |#1| (-769)))) (-1238 |#2|) (-363)) (T -894)) -((-2014 (*1 *2 *2 *3) (-12 (-5 *3 (-769)) (-4 *4 (-363)) (-5 *1 (-894 *2 *4)) (-4 *2 (-1238 *4)))) (-2699 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-363)) (-5 *1 (-894 *2 *3)) (-4 *2 (-1238 *3)))) (-3822 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-769)) (-4 *5 (-363)) (-5 *2 (-2 (|:| -4341 *3) (|:| -4351 *3))) (-5 *1 (-894 *3 *5)) (-4 *3 (-1238 *5)))) (-3822 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-642 *3)) (-5 *1 (-894 *3 *4)) (-4 *3 (-1238 *4))))) -(-10 -7 (-15 -3822 ((-642 |#1|) |#1|)) (-15 -3822 ((-3 (-2 (|:| -4341 |#1|) (|:| -4351 |#1|)) "failed") |#1| (-769) (-769))) (-15 -2699 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2014 (|#1| |#1| (-769)))) -((-1577 (((-1033) (-379) (-379) (-379) (-379) (-769) (-769) (-642 (-316 (-379))) (-642 (-642 (-316 (-379)))) (-1155)) 106) (((-1033) (-379) (-379) (-379) (-379) (-769) (-769) (-642 (-316 (-379))) (-642 (-642 (-316 (-379)))) (-1155) (-225)) 102) (((-1033) (-896) (-1060)) 94) (((-1033) (-896)) 95)) (-4324 (((-2 (|:| -4324 (-379)) (|:| -2493 (-1155)) (|:| |explanations| (-642 (-1155)))) (-896) (-1060)) 65) (((-2 (|:| -4324 (-379)) (|:| -2493 (-1155)) (|:| |explanations| (-642 (-1155)))) (-896)) 67))) -(((-895) (-10 -7 (-15 -1577 ((-1033) (-896))) (-15 -1577 ((-1033) (-896) (-1060))) (-15 -1577 ((-1033) (-379) (-379) (-379) (-379) (-769) (-769) (-642 (-316 (-379))) (-642 (-642 (-316 (-379)))) (-1155) (-225))) (-15 -1577 ((-1033) (-379) (-379) (-379) (-379) (-769) (-769) (-642 (-316 (-379))) (-642 (-642 (-316 (-379)))) (-1155))) (-15 -4324 ((-2 (|:| -4324 (-379)) (|:| -2493 (-1155)) (|:| |explanations| (-642 (-1155)))) (-896))) (-15 -4324 ((-2 (|:| -4324 (-379)) (|:| -2493 (-1155)) (|:| |explanations| (-642 (-1155)))) (-896) (-1060))))) (T -895)) -((-4324 (*1 *2 *3 *4) (-12 (-5 *3 (-896)) (-5 *4 (-1060)) (-5 *2 (-2 (|:| -4324 (-379)) (|:| -2493 (-1155)) (|:| |explanations| (-642 (-1155))))) (-5 *1 (-895)))) (-4324 (*1 *2 *3) (-12 (-5 *3 (-896)) (-5 *2 (-2 (|:| -4324 (-379)) (|:| -2493 (-1155)) (|:| |explanations| (-642 (-1155))))) (-5 *1 (-895)))) (-1577 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-769)) (-5 *6 (-642 (-642 (-316 *3)))) (-5 *7 (-1155)) (-5 *5 (-642 (-316 (-379)))) (-5 *3 (-379)) (-5 *2 (-1033)) (-5 *1 (-895)))) (-1577 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-769)) (-5 *6 (-642 (-642 (-316 *3)))) (-5 *7 (-1155)) (-5 *8 (-225)) (-5 *5 (-642 (-316 (-379)))) (-5 *3 (-379)) (-5 *2 (-1033)) (-5 *1 (-895)))) (-1577 (*1 *2 *3 *4) (-12 (-5 *3 (-896)) (-5 *4 (-1060)) (-5 *2 (-1033)) (-5 *1 (-895)))) (-1577 (*1 *2 *3) (-12 (-5 *3 (-896)) (-5 *2 (-1033)) (-5 *1 (-895))))) -(-10 -7 (-15 -1577 ((-1033) (-896))) (-15 -1577 ((-1033) (-896) (-1060))) (-15 -1577 ((-1033) (-379) (-379) (-379) (-379) (-769) (-769) (-642 (-316 (-379))) (-642 (-642 (-316 (-379)))) (-1155) (-225))) (-15 -1577 ((-1033) (-379) (-379) (-379) (-379) (-769) (-769) (-642 (-316 (-379))) (-642 (-642 (-316 (-379)))) (-1155))) (-15 -4324 ((-2 (|:| -4324 (-379)) (|:| -2493 (-1155)) (|:| |explanations| (-642 (-1155)))) (-896))) (-15 -4324 ((-2 (|:| -4324 (-379)) (|:| -2493 (-1155)) (|:| |explanations| (-642 (-1155)))) (-896) (-1060)))) -((-2856 (((-112) $ $) NIL)) (-1687 (((-2 (|:| |pde| (-642 (-316 (-225)))) (|:| |constraints| (-642 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-769)) (|:| |boundaryType| (-564)) (|:| |dStart| (-687 (-225))) (|:| |dFinish| (-687 (-225)))))) (|:| |f| (-642 (-642 (-316 (-225))))) (|:| |st| (-1155)) (|:| |tol| (-225))) $) 19)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) 21) (($ (-2 (|:| |pde| (-642 (-316 (-225)))) (|:| |constraints| (-642 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-769)) (|:| |boundaryType| (-564)) (|:| |dStart| (-687 (-225))) (|:| |dFinish| (-687 (-225)))))) (|:| |f| (-642 (-642 (-316 (-225))))) (|:| |st| (-1155)) (|:| |tol| (-225)))) 18)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-896) (-13 (-1097) (-10 -8 (-15 -2390 ($ (-2 (|:| |pde| (-642 (-316 (-225)))) (|:| |constraints| (-642 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-769)) (|:| |boundaryType| (-564)) (|:| |dStart| (-687 (-225))) (|:| |dFinish| (-687 (-225)))))) (|:| |f| (-642 (-642 (-316 (-225))))) (|:| |st| (-1155)) (|:| |tol| (-225))))) (-15 -1687 ((-2 (|:| |pde| (-642 (-316 (-225)))) (|:| |constraints| (-642 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-769)) (|:| |boundaryType| (-564)) (|:| |dStart| (-687 (-225))) (|:| |dFinish| (-687 (-225)))))) (|:| |f| (-642 (-642 (-316 (-225))))) (|:| |st| (-1155)) (|:| |tol| (-225))) $))))) (T -896)) -((-2390 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-642 (-316 (-225)))) (|:| |constraints| (-642 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-769)) (|:| |boundaryType| (-564)) (|:| |dStart| (-687 (-225))) (|:| |dFinish| (-687 (-225)))))) (|:| |f| (-642 (-642 (-316 (-225))))) (|:| |st| (-1155)) (|:| |tol| (-225)))) (-5 *1 (-896)))) (-1687 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-642 (-316 (-225)))) (|:| |constraints| (-642 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-769)) (|:| |boundaryType| (-564)) (|:| |dStart| (-687 (-225))) (|:| |dFinish| (-687 (-225)))))) (|:| |f| (-642 (-642 (-316 (-225))))) (|:| |st| (-1155)) (|:| |tol| (-225)))) (-5 *1 (-896))))) -(-13 (-1097) (-10 -8 (-15 -2390 ($ (-2 (|:| |pde| (-642 (-316 (-225)))) (|:| |constraints| (-642 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-769)) (|:| |boundaryType| (-564)) (|:| |dStart| (-687 (-225))) (|:| |dFinish| (-687 (-225)))))) (|:| |f| (-642 (-642 (-316 (-225))))) (|:| |st| (-1155)) (|:| |tol| (-225))))) (-15 -1687 ((-2 (|:| |pde| (-642 (-316 (-225)))) (|:| |constraints| (-642 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-769)) (|:| |boundaryType| (-564)) (|:| |dStart| (-687 (-225))) (|:| |dFinish| (-687 (-225)))))) (|:| |f| (-642 (-642 (-316 (-225))))) (|:| |st| (-1155)) (|:| |tol| (-225))) $)))) -((-2199 (($ $ |#2|) NIL) (($ $ (-642 |#2|)) 10) (($ $ |#2| (-769)) 15) (($ $ (-642 |#2|) (-642 (-769))) 18)) (-2711 (($ $ |#2|) 19) (($ $ (-642 |#2|)) 21) (($ $ |#2| (-769)) 22) (($ $ (-642 |#2|) (-642 (-769))) 24))) -(((-897 |#1| |#2|) (-10 -8 (-15 -2711 (|#1| |#1| (-642 |#2|) (-642 (-769)))) (-15 -2711 (|#1| |#1| |#2| (-769))) (-15 -2711 (|#1| |#1| (-642 |#2|))) (-15 -2711 (|#1| |#1| |#2|)) (-15 -2199 (|#1| |#1| (-642 |#2|) (-642 (-769)))) (-15 -2199 (|#1| |#1| |#2| (-769))) (-15 -2199 (|#1| |#1| (-642 |#2|))) (-15 -2199 (|#1| |#1| |#2|))) (-898 |#2|) (-1097)) (T -897)) -NIL -(-10 -8 (-15 -2711 (|#1| |#1| (-642 |#2|) (-642 (-769)))) (-15 -2711 (|#1| |#1| |#2| (-769))) (-15 -2711 (|#1| |#1| (-642 |#2|))) (-15 -2711 (|#1| |#1| |#2|)) (-15 -2199 (|#1| |#1| (-642 |#2|) (-642 (-769)))) (-15 -2199 (|#1| |#1| |#2| (-769))) (-15 -2199 (|#1| |#1| (-642 |#2|))) (-15 -2199 (|#1| |#1| |#2|))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-3085 (((-3 $ "failed") $ $) 20)) (-2822 (($) 18 T CONST)) (-2675 (((-3 $ "failed") $) 37)) (-3163 (((-112) $) 35)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2199 (($ $ |#1|) 46) (($ $ (-642 |#1|)) 45) (($ $ |#1| (-769)) 44) (($ $ (-642 |#1|) (-642 (-769))) 43)) (-2390 (((-860) $) 12) (($ (-564)) 33)) (-3348 (((-769)) 32 T CONST)) (-1600 (((-112) $ $) 9)) (-2361 (($) 19 T CONST)) (-2371 (($) 34 T CONST)) (-2711 (($ $ |#1|) 42) (($ $ (-642 |#1|)) 41) (($ $ |#1| (-769)) 40) (($ $ (-642 |#1|) (-642 (-769))) 39)) (-2821 (((-112) $ $) 6)) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27))) -(((-898 |#1|) (-140) (-1097)) (T -898)) -((-2199 (*1 *1 *1 *2) (-12 (-4 *1 (-898 *2)) (-4 *2 (-1097)))) (-2199 (*1 *1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *1 (-898 *3)) (-4 *3 (-1097)))) (-2199 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-769)) (-4 *1 (-898 *2)) (-4 *2 (-1097)))) (-2199 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-642 *4)) (-5 *3 (-642 (-769))) (-4 *1 (-898 *4)) (-4 *4 (-1097)))) (-2711 (*1 *1 *1 *2) (-12 (-4 *1 (-898 *2)) (-4 *2 (-1097)))) (-2711 (*1 *1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *1 (-898 *3)) (-4 *3 (-1097)))) (-2711 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-769)) (-4 *1 (-898 *2)) (-4 *2 (-1097)))) (-2711 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-642 *4)) (-5 *3 (-642 (-769))) (-4 *1 (-898 *4)) (-4 *4 (-1097))))) -(-13 (-1047) (-10 -8 (-15 -2199 ($ $ |t#1|)) (-15 -2199 ($ $ (-642 |t#1|))) (-15 -2199 ($ $ |t#1| (-769))) (-15 -2199 ($ $ (-642 |t#1|) (-642 (-769)))) (-15 -2711 ($ $ |t#1|)) (-15 -2711 ($ $ (-642 |t#1|))) (-15 -2711 ($ $ |t#1| (-769))) (-15 -2711 ($ $ (-642 |t#1|) (-642 (-769)))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-860)) . T) ((-644 (-564)) . T) ((-644 $) . T) ((-646 $) . T) ((-724) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T)) -((-2856 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2108 ((|#1| $) 26)) (-3442 (((-112) $ (-769)) NIL)) (-1407 ((|#1| $ |#1|) NIL (|has| $ (-6 -4411)))) (-2503 (($ $ $) NIL (|has| $ (-6 -4411)))) (-4006 (($ $ $) NIL (|has| $ (-6 -4411)))) (-3841 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4411))) (($ $ "left" $) NIL (|has| $ (-6 -4411))) (($ $ "right" $) NIL (|has| $ (-6 -4411)))) (-4041 (($ $ (-642 $)) NIL (|has| $ (-6 -4411)))) (-2822 (($) NIL T CONST)) (-4351 (($ $) 25)) (-2876 (($ |#1|) 12) (($ $ $) 17)) (-2018 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-1300 (((-642 $) $) NIL)) (-2423 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-3769 (((-112) $ (-769)) NIL)) (-3541 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2533 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-1857 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#1| |#1|) $) NIL)) (-4145 (((-112) $ (-769)) NIL)) (-4341 (($ $) 23)) (-2334 (((-642 |#1|) $) NIL)) (-1961 (((-112) $) 20)) (-1778 (((-1155) $) NIL (|has| |#1| (-1097)))) (-3999 (((-1117) $) NIL (|has| |#1| (-1097)))) (-4094 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-2478 (((-112) $ $) NIL)) (-4109 (((-112) $) NIL)) (-2179 (($) NIL)) (-4369 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1743 (((-564) $ $) NIL)) (-1311 (((-112) $) NIL)) (-4010 (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-769) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3865 (($ $) NIL)) (-2390 (((-1198 |#1|) $) 9) (((-860) $) 29 (|has| |#1| (-611 (-860))))) (-4275 (((-642 $) $) NIL)) (-1622 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-1600 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-3295 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2821 (((-112) $ $) 21 (|has| |#1| (-1097)))) (-2158 (((-769) $) NIL (|has| $ (-6 -4410))))) -(((-899 |#1|) (-13 (-119 |#1|) (-611 (-1198 |#1|)) (-10 -8 (-15 -2876 ($ |#1|)) (-15 -2876 ($ $ $)))) (-1097)) (T -899)) -((-2876 (*1 *1 *2) (-12 (-5 *1 (-899 *2)) (-4 *2 (-1097)))) (-2876 (*1 *1 *1 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-1097))))) -(-13 (-119 |#1|) (-611 (-1198 |#1|)) (-10 -8 (-15 -2876 ($ |#1|)) (-15 -2876 ($ $ $)))) -((-4191 ((|#2| (-1139 |#1| |#2|)) 53))) -(((-900 |#1| |#2|) (-10 -7 (-15 -4191 (|#2| (-1139 |#1| |#2|)))) (-919) (-13 (-1047) (-10 -7 (-6 (-4412 "*"))))) (T -900)) -((-4191 (*1 *2 *3) (-12 (-5 *3 (-1139 *4 *2)) (-14 *4 (-919)) (-4 *2 (-13 (-1047) (-10 -7 (-6 (-4412 "*"))))) (-5 *1 (-900 *4 *2))))) -(-10 -7 (-15 -4191 (|#2| (-1139 |#1| |#2|)))) -((-2856 (((-112) $ $) 7)) (-2822 (($) 19 T CONST)) (-2675 (((-3 $ "failed") $) 16)) (-4251 (((-1099 |#1|) $ |#1|) 33)) (-3163 (((-112) $) 18)) (-3225 (($ $ $) 31 (-2682 (|has| |#1| (-848)) (|has| |#1| (-368))))) (-2903 (($ $ $) 30 (-2682 (|has| |#1| (-848)) (|has| |#1| (-368))))) (-1778 (((-1155) $) 10)) (-2481 (($ $) 25)) (-3999 (((-1117) $) 11)) (-3154 ((|#1| $ |#1|) 35)) (-4369 ((|#1| $ |#1|) 34)) (-2787 (($ (-642 (-642 |#1|))) 36)) (-3966 (($ (-642 |#1|)) 37)) (-1736 (($ $ $) 22)) (-2402 (($ $ $) 21)) (-2390 (((-860) $) 12)) (-1600 (((-112) $ $) 9)) (-2371 (($) 20 T CONST)) (-2881 (((-112) $ $) 28 (-2682 (|has| |#1| (-848)) (|has| |#1| (-368))))) (-2857 (((-112) $ $) 27 (-2682 (|has| |#1| (-848)) (|has| |#1| (-368))))) (-2821 (((-112) $ $) 6)) (-2868 (((-112) $ $) 29 (-2682 (|has| |#1| (-848)) (|has| |#1| (-368))))) (-2844 (((-112) $ $) 32)) (-2943 (($ $ $) 24)) (** (($ $ (-919)) 14) (($ $ (-769)) 17) (($ $ (-564)) 23)) (* (($ $ $) 15))) -(((-901 |#1|) (-140) (-1097)) (T -901)) -((-3966 (*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1097)) (-4 *1 (-901 *3)))) (-2787 (*1 *1 *2) (-12 (-5 *2 (-642 (-642 *3))) (-4 *3 (-1097)) (-4 *1 (-901 *3)))) (-3154 (*1 *2 *1 *2) (-12 (-4 *1 (-901 *2)) (-4 *2 (-1097)))) (-4369 (*1 *2 *1 *2) (-12 (-4 *1 (-901 *2)) (-4 *2 (-1097)))) (-4251 (*1 *2 *1 *3) (-12 (-4 *1 (-901 *3)) (-4 *3 (-1097)) (-5 *2 (-1099 *3)))) (-2844 (*1 *2 *1 *1) (-12 (-4 *1 (-901 *3)) (-4 *3 (-1097)) (-5 *2 (-112))))) -(-13 (-473) (-10 -8 (-15 -3966 ($ (-642 |t#1|))) (-15 -2787 ($ (-642 (-642 |t#1|)))) (-15 -3154 (|t#1| $ |t#1|)) (-15 -4369 (|t#1| $ |t#1|)) (-15 -4251 ((-1099 |t#1|) $ |t#1|)) (-15 -2844 ((-112) $ $)) (IF (|has| |t#1| (-848)) (-6 (-848)) |%noBranch|) (IF (|has| |t#1| (-368)) (-6 (-848)) |%noBranch|))) -(((-102) . T) ((-611 (-860)) . T) ((-473) . T) ((-724) . T) ((-848) -2682 (|has| |#1| (-848)) (|has| |#1| (-368))) ((-1109) . T) ((-1097) . T)) -((-2856 (((-112) $ $) NIL)) (-2198 (((-642 (-642 (-769))) $) 165)) (-3313 (((-642 (-769)) (-903 |#1|) $) 193)) (-2136 (((-642 (-769)) (-903 |#1|) $) 194)) (-2668 (((-642 (-903 |#1|)) $) 154)) (-3235 (((-903 |#1|) $ (-564)) 159) (((-903 |#1|) $) 160)) (-2439 (($ (-642 (-903 |#1|))) 167)) (-2408 (((-769) $) 161)) (-3463 (((-1099 (-1099 |#1|)) $) 191)) (-4251 (((-1099 |#1|) $ |#1|) 182) (((-1099 (-1099 |#1|)) $ (-1099 |#1|)) 202) (((-1099 (-642 |#1|)) $ (-642 |#1|)) 205)) (-2722 (((-1099 |#1|) $) 157)) (-2533 (((-112) (-903 |#1|) $) 143)) (-1778 (((-1155) $) NIL)) (-2421 (((-1267) $) 147) (((-1267) $ (-564) (-564)) 206)) (-3999 (((-1117) $) NIL)) (-3475 (((-642 (-903 |#1|)) $) 148)) (-4369 (((-903 |#1|) $ (-769)) 155)) (-3252 (((-769) $) 162)) (-2390 (((-860) $) 179) (((-642 (-903 |#1|)) $) 28) (($ (-642 (-903 |#1|))) 166)) (-1600 (((-112) $ $) NIL)) (-1959 (((-642 |#1|) $) 164)) (-2821 (((-112) $ $) 199)) (-2868 (((-112) $ $) 197)) (-2844 (((-112) $ $) 196))) -(((-902 |#1|) (-13 (-1097) (-10 -8 (-15 -2390 ((-642 (-903 |#1|)) $)) (-15 -3475 ((-642 (-903 |#1|)) $)) (-15 -4369 ((-903 |#1|) $ (-769))) (-15 -3235 ((-903 |#1|) $ (-564))) (-15 -3235 ((-903 |#1|) $)) (-15 -2408 ((-769) $)) (-15 -3252 ((-769) $)) (-15 -1959 ((-642 |#1|) $)) (-15 -2668 ((-642 (-903 |#1|)) $)) (-15 -2198 ((-642 (-642 (-769))) $)) (-15 -2390 ($ (-642 (-903 |#1|)))) (-15 -2439 ($ (-642 (-903 |#1|)))) (-15 -4251 ((-1099 |#1|) $ |#1|)) (-15 -3463 ((-1099 (-1099 |#1|)) $)) (-15 -4251 ((-1099 (-1099 |#1|)) $ (-1099 |#1|))) (-15 -4251 ((-1099 (-642 |#1|)) $ (-642 |#1|))) (-15 -2533 ((-112) (-903 |#1|) $)) (-15 -3313 ((-642 (-769)) (-903 |#1|) $)) (-15 -2136 ((-642 (-769)) (-903 |#1|) $)) (-15 -2722 ((-1099 |#1|) $)) (-15 -2844 ((-112) $ $)) (-15 -2868 ((-112) $ $)) (-15 -2421 ((-1267) $)) (-15 -2421 ((-1267) $ (-564) (-564))))) (-1097)) (T -902)) -((-2390 (*1 *2 *1) (-12 (-5 *2 (-642 (-903 *3))) (-5 *1 (-902 *3)) (-4 *3 (-1097)))) (-3475 (*1 *2 *1) (-12 (-5 *2 (-642 (-903 *3))) (-5 *1 (-902 *3)) (-4 *3 (-1097)))) (-4369 (*1 *2 *1 *3) (-12 (-5 *3 (-769)) (-5 *2 (-903 *4)) (-5 *1 (-902 *4)) (-4 *4 (-1097)))) (-3235 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-903 *4)) (-5 *1 (-902 *4)) (-4 *4 (-1097)))) (-3235 (*1 *2 *1) (-12 (-5 *2 (-903 *3)) (-5 *1 (-902 *3)) (-4 *3 (-1097)))) (-2408 (*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-902 *3)) (-4 *3 (-1097)))) (-3252 (*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-902 *3)) (-4 *3 (-1097)))) (-1959 (*1 *2 *1) (-12 (-5 *2 (-642 *3)) (-5 *1 (-902 *3)) (-4 *3 (-1097)))) (-2668 (*1 *2 *1) (-12 (-5 *2 (-642 (-903 *3))) (-5 *1 (-902 *3)) (-4 *3 (-1097)))) (-2198 (*1 *2 *1) (-12 (-5 *2 (-642 (-642 (-769)))) (-5 *1 (-902 *3)) (-4 *3 (-1097)))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-642 (-903 *3))) (-4 *3 (-1097)) (-5 *1 (-902 *3)))) (-2439 (*1 *1 *2) (-12 (-5 *2 (-642 (-903 *3))) (-4 *3 (-1097)) (-5 *1 (-902 *3)))) (-4251 (*1 *2 *1 *3) (-12 (-5 *2 (-1099 *3)) (-5 *1 (-902 *3)) (-4 *3 (-1097)))) (-3463 (*1 *2 *1) (-12 (-5 *2 (-1099 (-1099 *3))) (-5 *1 (-902 *3)) (-4 *3 (-1097)))) (-4251 (*1 *2 *1 *3) (-12 (-4 *4 (-1097)) (-5 *2 (-1099 (-1099 *4))) (-5 *1 (-902 *4)) (-5 *3 (-1099 *4)))) (-4251 (*1 *2 *1 *3) (-12 (-4 *4 (-1097)) (-5 *2 (-1099 (-642 *4))) (-5 *1 (-902 *4)) (-5 *3 (-642 *4)))) (-2533 (*1 *2 *3 *1) (-12 (-5 *3 (-903 *4)) (-4 *4 (-1097)) (-5 *2 (-112)) (-5 *1 (-902 *4)))) (-3313 (*1 *2 *3 *1) (-12 (-5 *3 (-903 *4)) (-4 *4 (-1097)) (-5 *2 (-642 (-769))) (-5 *1 (-902 *4)))) (-2136 (*1 *2 *3 *1) (-12 (-5 *3 (-903 *4)) (-4 *4 (-1097)) (-5 *2 (-642 (-769))) (-5 *1 (-902 *4)))) (-2722 (*1 *2 *1) (-12 (-5 *2 (-1099 *3)) (-5 *1 (-902 *3)) (-4 *3 (-1097)))) (-2844 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3)) (-4 *3 (-1097)))) (-2868 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3)) (-4 *3 (-1097)))) (-2421 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-902 *3)) (-4 *3 (-1097)))) (-2421 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1267)) (-5 *1 (-902 *4)) (-4 *4 (-1097))))) -(-13 (-1097) (-10 -8 (-15 -2390 ((-642 (-903 |#1|)) $)) (-15 -3475 ((-642 (-903 |#1|)) $)) (-15 -4369 ((-903 |#1|) $ (-769))) (-15 -3235 ((-903 |#1|) $ (-564))) (-15 -3235 ((-903 |#1|) $)) (-15 -2408 ((-769) $)) (-15 -3252 ((-769) $)) (-15 -1959 ((-642 |#1|) $)) (-15 -2668 ((-642 (-903 |#1|)) $)) (-15 -2198 ((-642 (-642 (-769))) $)) (-15 -2390 ($ (-642 (-903 |#1|)))) (-15 -2439 ($ (-642 (-903 |#1|)))) (-15 -4251 ((-1099 |#1|) $ |#1|)) (-15 -3463 ((-1099 (-1099 |#1|)) $)) (-15 -4251 ((-1099 (-1099 |#1|)) $ (-1099 |#1|))) (-15 -4251 ((-1099 (-642 |#1|)) $ (-642 |#1|))) (-15 -2533 ((-112) (-903 |#1|) $)) (-15 -3313 ((-642 (-769)) (-903 |#1|) $)) (-15 -2136 ((-642 (-769)) (-903 |#1|) $)) (-15 -2722 ((-1099 |#1|) $)) (-15 -2844 ((-112) $ $)) (-15 -2868 ((-112) $ $)) (-15 -2421 ((-1267) $)) (-15 -2421 ((-1267) $ (-564) (-564))))) -((-2856 (((-112) $ $) NIL)) (-3191 (((-642 $) (-642 $)) 105)) (-2221 (((-564) $) 86)) (-2822 (($) NIL T CONST)) (-2675 (((-3 $ "failed") $) NIL)) (-2408 (((-769) $) 83)) (-4251 (((-1099 |#1|) $ |#1|) 74)) (-3163 (((-112) $) NIL)) (-2829 (((-112) $) 90)) (-2735 (((-769) $) 87)) (-2722 (((-1099 |#1|) $) 63)) (-3225 (($ $ $) NIL (-2682 (|has| |#1| (-368)) (|has| |#1| (-848))))) (-2903 (($ $ $) NIL (-2682 (|has| |#1| (-368)) (|has| |#1| (-848))))) (-2706 (((-2 (|:| |preimage| (-642 |#1|)) (|:| |image| (-642 |#1|))) $) 58)) (-1778 (((-1155) $) NIL)) (-2481 (($ $) 133)) (-3999 (((-1117) $) NIL)) (-3175 (((-1099 |#1|) $) 141 (|has| |#1| (-368)))) (-2211 (((-112) $) 84)) (-3154 ((|#1| $ |#1|) 72)) (-4369 ((|#1| $ |#1|) 135)) (-3252 (((-769) $) 65)) (-2787 (($ (-642 (-642 |#1|))) 120)) (-1900 (((-969) $) 78)) (-3966 (($ (-642 |#1|)) 35)) (-1736 (($ $ $) NIL)) (-2402 (($ $ $) NIL)) (-2639 (($ (-642 (-642 |#1|))) 60)) (-3803 (($ (-642 (-642 |#1|))) 125)) (-3926 (($ (-642 |#1|)) 137)) (-2390 (((-860) $) 119) (($ (-642 (-642 |#1|))) 93) (($ (-642 |#1|)) 94)) (-1600 (((-112) $ $) NIL)) (-2371 (($) 27 T CONST)) (-2881 (((-112) $ $) NIL (-2682 (|has| |#1| (-368)) (|has| |#1| (-848))))) (-2857 (((-112) $ $) NIL (-2682 (|has| |#1| (-368)) (|has| |#1| (-848))))) (-2821 (((-112) $ $) 70)) (-2868 (((-112) $ $) NIL (-2682 (|has| |#1| (-368)) (|has| |#1| (-848))))) (-2844 (((-112) $ $) 92)) (-2943 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL)) (* (($ $ $) 36))) -(((-903 |#1|) (-13 (-901 |#1|) (-10 -8 (-15 -2706 ((-2 (|:| |preimage| (-642 |#1|)) (|:| |image| (-642 |#1|))) $)) (-15 -2639 ($ (-642 (-642 |#1|)))) (-15 -2390 ($ (-642 (-642 |#1|)))) (-15 -2390 ($ (-642 |#1|))) (-15 -3803 ($ (-642 (-642 |#1|)))) (-15 -3252 ((-769) $)) (-15 -2722 ((-1099 |#1|) $)) (-15 -1900 ((-969) $)) (-15 -2408 ((-769) $)) (-15 -2735 ((-769) $)) (-15 -2221 ((-564) $)) (-15 -2211 ((-112) $)) (-15 -2829 ((-112) $)) (-15 -3191 ((-642 $) (-642 $))) (IF (|has| |#1| (-368)) (-15 -3175 ((-1099 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-545)) (-15 -3926 ($ (-642 |#1|))) (IF (|has| |#1| (-368)) (-15 -3926 ($ (-642 |#1|))) |%noBranch|)))) (-1097)) (T -903)) -((-2706 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-642 *3)) (|:| |image| (-642 *3)))) (-5 *1 (-903 *3)) (-4 *3 (-1097)))) (-2639 (*1 *1 *2) (-12 (-5 *2 (-642 (-642 *3))) (-4 *3 (-1097)) (-5 *1 (-903 *3)))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-642 (-642 *3))) (-4 *3 (-1097)) (-5 *1 (-903 *3)))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1097)) (-5 *1 (-903 *3)))) (-3803 (*1 *1 *2) (-12 (-5 *2 (-642 (-642 *3))) (-4 *3 (-1097)) (-5 *1 (-903 *3)))) (-3252 (*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-903 *3)) (-4 *3 (-1097)))) (-2722 (*1 *2 *1) (-12 (-5 *2 (-1099 *3)) (-5 *1 (-903 *3)) (-4 *3 (-1097)))) (-1900 (*1 *2 *1) (-12 (-5 *2 (-969)) (-5 *1 (-903 *3)) (-4 *3 (-1097)))) (-2408 (*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-903 *3)) (-4 *3 (-1097)))) (-2735 (*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-903 *3)) (-4 *3 (-1097)))) (-2221 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-903 *3)) (-4 *3 (-1097)))) (-2211 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1097)))) (-2829 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1097)))) (-3191 (*1 *2 *2) (-12 (-5 *2 (-642 (-903 *3))) (-5 *1 (-903 *3)) (-4 *3 (-1097)))) (-3175 (*1 *2 *1) (-12 (-5 *2 (-1099 *3)) (-5 *1 (-903 *3)) (-4 *3 (-368)) (-4 *3 (-1097)))) (-3926 (*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1097)) (-5 *1 (-903 *3))))) -(-13 (-901 |#1|) (-10 -8 (-15 -2706 ((-2 (|:| |preimage| (-642 |#1|)) (|:| |image| (-642 |#1|))) $)) (-15 -2639 ($ (-642 (-642 |#1|)))) (-15 -2390 ($ (-642 (-642 |#1|)))) (-15 -2390 ($ (-642 |#1|))) (-15 -3803 ($ (-642 (-642 |#1|)))) (-15 -3252 ((-769) $)) (-15 -2722 ((-1099 |#1|) $)) (-15 -1900 ((-969) $)) (-15 -2408 ((-769) $)) (-15 -2735 ((-769) $)) (-15 -2221 ((-564) $)) (-15 -2211 ((-112) $)) (-15 -2829 ((-112) $)) (-15 -3191 ((-642 $) (-642 $))) (IF (|has| |#1| (-368)) (-15 -3175 ((-1099 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-545)) (-15 -3926 ($ (-642 |#1|))) (IF (|has| |#1| (-368)) (-15 -3926 ($ (-642 |#1|))) |%noBranch|)))) -((-2508 (((-3 (-642 (-1169 |#4|)) "failed") (-642 (-1169 |#4|)) (-1169 |#4|)) 159)) (-2694 ((|#1|) 97)) (-2419 (((-418 (-1169 |#4|)) (-1169 |#4|)) 168)) (-3705 (((-418 (-1169 |#4|)) (-642 |#3|) (-1169 |#4|)) 84)) (-4279 (((-418 (-1169 |#4|)) (-1169 |#4|)) 178)) (-1397 (((-3 (-642 (-1169 |#4|)) "failed") (-642 (-1169 |#4|)) (-1169 |#4|) |#3|) 113))) -(((-904 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2508 ((-3 (-642 (-1169 |#4|)) "failed") (-642 (-1169 |#4|)) (-1169 |#4|))) (-15 -4279 ((-418 (-1169 |#4|)) (-1169 |#4|))) (-15 -2419 ((-418 (-1169 |#4|)) (-1169 |#4|))) (-15 -2694 (|#1|)) (-15 -1397 ((-3 (-642 (-1169 |#4|)) "failed") (-642 (-1169 |#4|)) (-1169 |#4|) |#3|)) (-15 -3705 ((-418 (-1169 |#4|)) (-642 |#3|) (-1169 |#4|)))) (-907) (-791) (-848) (-947 |#1| |#2| |#3|)) (T -904)) -((-3705 (*1 *2 *3 *4) (-12 (-5 *3 (-642 *7)) (-4 *7 (-848)) (-4 *5 (-907)) (-4 *6 (-791)) (-4 *8 (-947 *5 *6 *7)) (-5 *2 (-418 (-1169 *8))) (-5 *1 (-904 *5 *6 *7 *8)) (-5 *4 (-1169 *8)))) (-1397 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-642 (-1169 *7))) (-5 *3 (-1169 *7)) (-4 *7 (-947 *5 *6 *4)) (-4 *5 (-907)) (-4 *6 (-791)) (-4 *4 (-848)) (-5 *1 (-904 *5 *6 *4 *7)))) (-2694 (*1 *2) (-12 (-4 *3 (-791)) (-4 *4 (-848)) (-4 *2 (-907)) (-5 *1 (-904 *2 *3 *4 *5)) (-4 *5 (-947 *2 *3 *4)))) (-2419 (*1 *2 *3) (-12 (-4 *4 (-907)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-947 *4 *5 *6)) (-5 *2 (-418 (-1169 *7))) (-5 *1 (-904 *4 *5 *6 *7)) (-5 *3 (-1169 *7)))) (-4279 (*1 *2 *3) (-12 (-4 *4 (-907)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-947 *4 *5 *6)) (-5 *2 (-418 (-1169 *7))) (-5 *1 (-904 *4 *5 *6 *7)) (-5 *3 (-1169 *7)))) (-2508 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-642 (-1169 *7))) (-5 *3 (-1169 *7)) (-4 *7 (-947 *4 *5 *6)) (-4 *4 (-907)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *1 (-904 *4 *5 *6 *7))))) -(-10 -7 (-15 -2508 ((-3 (-642 (-1169 |#4|)) "failed") (-642 (-1169 |#4|)) (-1169 |#4|))) (-15 -4279 ((-418 (-1169 |#4|)) (-1169 |#4|))) (-15 -2419 ((-418 (-1169 |#4|)) (-1169 |#4|))) (-15 -2694 (|#1|)) (-15 -1397 ((-3 (-642 (-1169 |#4|)) "failed") (-642 (-1169 |#4|)) (-1169 |#4|) |#3|)) (-15 -3705 ((-418 (-1169 |#4|)) (-642 |#3|) (-1169 |#4|)))) -((-2508 (((-3 (-642 (-1169 |#2|)) "failed") (-642 (-1169 |#2|)) (-1169 |#2|)) 41)) (-2694 ((|#1|) 75)) (-2419 (((-418 (-1169 |#2|)) (-1169 |#2|)) 124)) (-3705 (((-418 (-1169 |#2|)) (-1169 |#2|)) 108)) (-4279 (((-418 (-1169 |#2|)) (-1169 |#2|)) 135))) -(((-905 |#1| |#2|) (-10 -7 (-15 -2508 ((-3 (-642 (-1169 |#2|)) "failed") (-642 (-1169 |#2|)) (-1169 |#2|))) (-15 -4279 ((-418 (-1169 |#2|)) (-1169 |#2|))) (-15 -2419 ((-418 (-1169 |#2|)) (-1169 |#2|))) (-15 -2694 (|#1|)) (-15 -3705 ((-418 (-1169 |#2|)) (-1169 |#2|)))) (-907) (-1238 |#1|)) (T -905)) -((-3705 (*1 *2 *3) (-12 (-4 *4 (-907)) (-4 *5 (-1238 *4)) (-5 *2 (-418 (-1169 *5))) (-5 *1 (-905 *4 *5)) (-5 *3 (-1169 *5)))) (-2694 (*1 *2) (-12 (-4 *2 (-907)) (-5 *1 (-905 *2 *3)) (-4 *3 (-1238 *2)))) (-2419 (*1 *2 *3) (-12 (-4 *4 (-907)) (-4 *5 (-1238 *4)) (-5 *2 (-418 (-1169 *5))) (-5 *1 (-905 *4 *5)) (-5 *3 (-1169 *5)))) (-4279 (*1 *2 *3) (-12 (-4 *4 (-907)) (-4 *5 (-1238 *4)) (-5 *2 (-418 (-1169 *5))) (-5 *1 (-905 *4 *5)) (-5 *3 (-1169 *5)))) (-2508 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-642 (-1169 *5))) (-5 *3 (-1169 *5)) (-4 *5 (-1238 *4)) (-4 *4 (-907)) (-5 *1 (-905 *4 *5))))) -(-10 -7 (-15 -2508 ((-3 (-642 (-1169 |#2|)) "failed") (-642 (-1169 |#2|)) (-1169 |#2|))) (-15 -4279 ((-418 (-1169 |#2|)) (-1169 |#2|))) (-15 -2419 ((-418 (-1169 |#2|)) (-1169 |#2|))) (-15 -2694 (|#1|)) (-15 -3705 ((-418 (-1169 |#2|)) (-1169 |#2|)))) -((-3267 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) 42)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) 18)) (-3434 (((-3 $ "failed") $) 36))) -(((-906 |#1|) (-10 -8 (-15 -3434 ((-3 |#1| "failed") |#1|)) (-15 -3267 ((-3 (-642 (-1169 |#1|)) "failed") (-642 (-1169 |#1|)) (-1169 |#1|))) (-15 -3464 ((-1169 |#1|) (-1169 |#1|) (-1169 |#1|)))) (-907)) (T -906)) -NIL -(-10 -8 (-15 -3434 ((-3 |#1| "failed") |#1|)) (-15 -3267 ((-3 (-642 (-1169 |#1|)) "failed") (-642 (-1169 |#1|)) (-1169 |#1|))) (-15 -3464 ((-1169 |#1|) (-1169 |#1|) (-1169 |#1|)))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) 47)) (-4252 (($ $) 46)) (-1722 (((-112) $) 44)) (-3085 (((-3 $ "failed") $ $) 20)) (-4297 (((-418 (-1169 $)) (-1169 $)) 66)) (-1993 (($ $) 57)) (-3282 (((-418 $) $) 58)) (-3267 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) 63)) (-2822 (($) 18 T CONST)) (-2675 (((-3 $ "failed") $) 37)) (-3552 (((-112) $) 59)) (-3163 (((-112) $) 35)) (-2066 (($ $ $) 52) (($ (-642 $)) 51)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) 50)) (-2105 (($ $ $) 54) (($ (-642 $)) 53)) (-3223 (((-418 (-1169 $)) (-1169 $)) 64)) (-2236 (((-418 (-1169 $)) (-1169 $)) 65)) (-2254 (((-418 $) $) 56)) (-2842 (((-3 $ "failed") $ $) 48)) (-3556 (((-3 (-1262 $) "failed") (-687 $)) 62 (|has| $ (-145)))) (-2390 (((-860) $) 12) (($ (-564)) 33) (($ $) 49)) (-3434 (((-3 $ "failed") $) 61 (|has| $ (-145)))) (-3348 (((-769)) 32 T CONST)) (-1600 (((-112) $ $) 9)) (-1594 (((-112) $ $) 45)) (-2361 (($) 19 T CONST)) (-2371 (($) 34 T CONST)) (-2821 (((-112) $ $) 6)) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27))) -(((-907) (-140)) (T -907)) -((-3464 (*1 *2 *2 *2) (-12 (-5 *2 (-1169 *1)) (-4 *1 (-907)))) (-4297 (*1 *2 *3) (-12 (-4 *1 (-907)) (-5 *2 (-418 (-1169 *1))) (-5 *3 (-1169 *1)))) (-2236 (*1 *2 *3) (-12 (-4 *1 (-907)) (-5 *2 (-418 (-1169 *1))) (-5 *3 (-1169 *1)))) (-3223 (*1 *2 *3) (-12 (-4 *1 (-907)) (-5 *2 (-418 (-1169 *1))) (-5 *3 (-1169 *1)))) (-3267 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-642 (-1169 *1))) (-5 *3 (-1169 *1)) (-4 *1 (-907)))) (-3556 (*1 *2 *3) (|partial| -12 (-5 *3 (-687 *1)) (-4 *1 (-145)) (-4 *1 (-907)) (-5 *2 (-1262 *1)))) (-3434 (*1 *1 *1) (|partial| -12 (-4 *1 (-145)) (-4 *1 (-907))))) -(-13 (-1216) (-10 -8 (-15 -4297 ((-418 (-1169 $)) (-1169 $))) (-15 -2236 ((-418 (-1169 $)) (-1169 $))) (-15 -3223 ((-418 (-1169 $)) (-1169 $))) (-15 -3464 ((-1169 $) (-1169 $) (-1169 $))) (-15 -3267 ((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $))) (IF (|has| $ (-145)) (PROGN (-15 -3556 ((-3 (-1262 $) "failed") (-687 $))) (-15 -3434 ((-3 $ "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-860)) . T) ((-172) . T) ((-290) . T) ((-452) . T) ((-556) . T) ((-644 (-564)) . T) ((-644 $) . T) ((-646 $) . T) ((-638 $) . T) ((-715 $) . T) ((-724) . T) ((-1049 $) . T) ((-1054 $) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T) ((-1216) . T)) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-4252 (($ $) NIL)) (-1722 (((-112) $) NIL)) (-1792 (((-112) $) NIL)) (-1695 (((-769)) NIL)) (-3778 (($ $ (-919)) NIL (|has| $ (-368))) (($ $) NIL)) (-3651 (((-1185 (-919) (-769)) (-564)) NIL)) (-3085 (((-3 $ "failed") $ $) NIL)) (-1993 (($ $) NIL)) (-3282 (((-418 $) $) NIL)) (-2134 (((-112) $ $) NIL)) (-4003 (((-769)) NIL)) (-2822 (($) NIL T CONST)) (-2849 (((-3 $ "failed") $) NIL)) (-1687 (($ $) NIL)) (-4087 (($ (-1262 $)) NIL)) (-2629 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2796 (($ $ $) NIL)) (-2675 (((-3 $ "failed") $) NIL)) (-3235 (($) NIL)) (-2808 (($ $ $) NIL)) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) NIL)) (-1427 (($) NIL)) (-4153 (((-112) $) NIL)) (-1595 (($ $) NIL) (($ $ (-769)) NIL)) (-3552 (((-112) $) NIL)) (-2408 (((-831 (-919)) $) NIL) (((-919) $) NIL)) (-3163 (((-112) $) NIL)) (-2043 (($) NIL (|has| $ (-368)))) (-1729 (((-112) $) NIL (|has| $ (-368)))) (-2573 (($ $ (-919)) NIL (|has| $ (-368))) (($ $) NIL)) (-4382 (((-3 $ "failed") $) NIL)) (-2709 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2076 (((-1169 $) $ (-919)) NIL (|has| $ (-368))) (((-1169 $) $) NIL)) (-2535 (((-919) $) NIL)) (-3607 (((-1169 $) $) NIL (|has| $ (-368)))) (-2480 (((-3 (-1169 $) "failed") $ $) NIL (|has| $ (-368))) (((-1169 $) $) NIL (|has| $ (-368)))) (-2292 (($ $ (-1169 $)) NIL (|has| $ (-368)))) (-2066 (($ $ $) NIL) (($ (-642 $)) NIL)) (-1778 (((-1155) $) NIL)) (-2481 (($ $) NIL)) (-3910 (($) NIL T CONST)) (-2065 (($ (-919)) NIL)) (-1987 (((-112) $) NIL)) (-3999 (((-1117) $) NIL)) (-4043 (($) NIL (|has| $ (-368)))) (-3464 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2105 (($ $ $) NIL) (($ (-642 $)) NIL)) (-4229 (((-642 (-2 (|:| -2254 (-564)) (|:| -2817 (-564))))) NIL)) (-2254 (((-418 $) $) NIL)) (-1878 (((-919)) NIL) (((-831 (-919))) NIL)) (-1877 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2842 (((-3 $ "failed") $ $) NIL)) (-1483 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-4274 (((-769) $) NIL)) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL)) (-1354 (((-3 (-769) "failed") $ $) NIL) (((-769) $) NIL)) (-3677 (((-134)) NIL)) (-2199 (($ $ (-769)) NIL) (($ $) NIL)) (-3252 (((-919) $) NIL) (((-831 (-919)) $) NIL)) (-1361 (((-1169 $)) NIL)) (-3553 (($) NIL)) (-2911 (($) NIL (|has| $ (-368)))) (-3719 (((-687 $) (-1262 $)) NIL) (((-1262 $) $) NIL)) (-3003 (((-564) $) NIL)) (-3556 (((-3 (-1262 $) "failed") (-687 $)) NIL)) (-2390 (((-860) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL)) (-3434 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-3348 (((-769)) NIL T CONST)) (-1600 (((-112) $ $) NIL)) (-2131 (((-1262 $) (-919)) NIL) (((-1262 $)) NIL)) (-1594 (((-112) $ $) NIL)) (-4127 (((-112) $) NIL)) (-2361 (($) NIL T CONST)) (-2371 (($) NIL T CONST)) (-1620 (($ $ (-769)) NIL (|has| $ (-368))) (($ $) NIL (|has| $ (-368)))) (-2711 (($ $ (-769)) NIL) (($ $) NIL)) (-2821 (((-112) $ $) NIL)) (-2943 (($ $ $) NIL)) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL))) -(((-908 |#1|) (-13 (-349) (-329 $) (-612 (-564))) (-919)) (T -908)) -NIL -(-13 (-349) (-329 $) (-612 (-564))) -((-1910 (((-3 (-2 (|:| -2408 (-769)) (|:| -3129 |#5|)) "failed") (-336 |#2| |#3| |#4| |#5|)) 77)) (-2814 (((-112) (-336 |#2| |#3| |#4| |#5|)) 17)) (-2408 (((-3 (-769) "failed") (-336 |#2| |#3| |#4| |#5|)) 15))) -(((-909 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2408 ((-3 (-769) "failed") (-336 |#2| |#3| |#4| |#5|))) (-15 -2814 ((-112) (-336 |#2| |#3| |#4| |#5|))) (-15 -1910 ((-3 (-2 (|:| -2408 (-769)) (|:| -3129 |#5|)) "failed") (-336 |#2| |#3| |#4| |#5|)))) (-13 (-556) (-1036 (-564))) (-430 |#1|) (-1238 |#2|) (-1238 (-407 |#3|)) (-342 |#2| |#3| |#4|)) (T -909)) -((-1910 (*1 *2 *3) (|partial| -12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-430 *4)) (-4 *6 (-1238 *5)) (-4 *7 (-1238 (-407 *6))) (-4 *8 (-342 *5 *6 *7)) (-4 *4 (-13 (-556) (-1036 (-564)))) (-5 *2 (-2 (|:| -2408 (-769)) (|:| -3129 *8))) (-5 *1 (-909 *4 *5 *6 *7 *8)))) (-2814 (*1 *2 *3) (-12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-430 *4)) (-4 *6 (-1238 *5)) (-4 *7 (-1238 (-407 *6))) (-4 *8 (-342 *5 *6 *7)) (-4 *4 (-13 (-556) (-1036 (-564)))) (-5 *2 (-112)) (-5 *1 (-909 *4 *5 *6 *7 *8)))) (-2408 (*1 *2 *3) (|partial| -12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-430 *4)) (-4 *6 (-1238 *5)) (-4 *7 (-1238 (-407 *6))) (-4 *8 (-342 *5 *6 *7)) (-4 *4 (-13 (-556) (-1036 (-564)))) (-5 *2 (-769)) (-5 *1 (-909 *4 *5 *6 *7 *8))))) -(-10 -7 (-15 -2408 ((-3 (-769) "failed") (-336 |#2| |#3| |#4| |#5|))) (-15 -2814 ((-112) (-336 |#2| |#3| |#4| |#5|))) (-15 -1910 ((-3 (-2 (|:| -2408 (-769)) (|:| -3129 |#5|)) "failed") (-336 |#2| |#3| |#4| |#5|)))) -((-1910 (((-3 (-2 (|:| -2408 (-769)) (|:| -3129 |#3|)) "failed") (-336 (-407 (-564)) |#1| |#2| |#3|)) 64)) (-2814 (((-112) (-336 (-407 (-564)) |#1| |#2| |#3|)) 16)) (-2408 (((-3 (-769) "failed") (-336 (-407 (-564)) |#1| |#2| |#3|)) 14))) -(((-910 |#1| |#2| |#3|) (-10 -7 (-15 -2408 ((-3 (-769) "failed") (-336 (-407 (-564)) |#1| |#2| |#3|))) (-15 -2814 ((-112) (-336 (-407 (-564)) |#1| |#2| |#3|))) (-15 -1910 ((-3 (-2 (|:| -2408 (-769)) (|:| -3129 |#3|)) "failed") (-336 (-407 (-564)) |#1| |#2| |#3|)))) (-1238 (-407 (-564))) (-1238 (-407 |#1|)) (-342 (-407 (-564)) |#1| |#2|)) (T -910)) -((-1910 (*1 *2 *3) (|partial| -12 (-5 *3 (-336 (-407 (-564)) *4 *5 *6)) (-4 *4 (-1238 (-407 (-564)))) (-4 *5 (-1238 (-407 *4))) (-4 *6 (-342 (-407 (-564)) *4 *5)) (-5 *2 (-2 (|:| -2408 (-769)) (|:| -3129 *6))) (-5 *1 (-910 *4 *5 *6)))) (-2814 (*1 *2 *3) (-12 (-5 *3 (-336 (-407 (-564)) *4 *5 *6)) (-4 *4 (-1238 (-407 (-564)))) (-4 *5 (-1238 (-407 *4))) (-4 *6 (-342 (-407 (-564)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-910 *4 *5 *6)))) (-2408 (*1 *2 *3) (|partial| -12 (-5 *3 (-336 (-407 (-564)) *4 *5 *6)) (-4 *4 (-1238 (-407 (-564)))) (-4 *5 (-1238 (-407 *4))) (-4 *6 (-342 (-407 (-564)) *4 *5)) (-5 *2 (-769)) (-5 *1 (-910 *4 *5 *6))))) -(-10 -7 (-15 -2408 ((-3 (-769) "failed") (-336 (-407 (-564)) |#1| |#2| |#3|))) (-15 -2814 ((-112) (-336 (-407 (-564)) |#1| |#2| |#3|))) (-15 -1910 ((-3 (-2 (|:| -2408 (-769)) (|:| -3129 |#3|)) "failed") (-336 (-407 (-564)) |#1| |#2| |#3|)))) -((-4270 ((|#2| |#2|) 26)) (-1905 (((-564) (-642 (-2 (|:| |den| (-564)) (|:| |gcdnum| (-564))))) 15)) (-2748 (((-919) (-564)) 38)) (-2912 (((-564) |#2|) 45)) (-2793 (((-564) |#2|) 21) (((-2 (|:| |den| (-564)) (|:| |gcdnum| (-564))) |#1|) 20))) -(((-911 |#1| |#2|) (-10 -7 (-15 -2748 ((-919) (-564))) (-15 -2793 ((-2 (|:| |den| (-564)) (|:| |gcdnum| (-564))) |#1|)) (-15 -2793 ((-564) |#2|)) (-15 -1905 ((-564) (-642 (-2 (|:| |den| (-564)) (|:| |gcdnum| (-564)))))) (-15 -2912 ((-564) |#2|)) (-15 -4270 (|#2| |#2|))) (-1238 (-407 (-564))) (-1238 (-407 |#1|))) (T -911)) -((-4270 (*1 *2 *2) (-12 (-4 *3 (-1238 (-407 (-564)))) (-5 *1 (-911 *3 *2)) (-4 *2 (-1238 (-407 *3))))) (-2912 (*1 *2 *3) (-12 (-4 *4 (-1238 (-407 *2))) (-5 *2 (-564)) (-5 *1 (-911 *4 *3)) (-4 *3 (-1238 (-407 *4))))) (-1905 (*1 *2 *3) (-12 (-5 *3 (-642 (-2 (|:| |den| (-564)) (|:| |gcdnum| (-564))))) (-4 *4 (-1238 (-407 *2))) (-5 *2 (-564)) (-5 *1 (-911 *4 *5)) (-4 *5 (-1238 (-407 *4))))) (-2793 (*1 *2 *3) (-12 (-4 *4 (-1238 (-407 *2))) (-5 *2 (-564)) (-5 *1 (-911 *4 *3)) (-4 *3 (-1238 (-407 *4))))) (-2793 (*1 *2 *3) (-12 (-4 *3 (-1238 (-407 (-564)))) (-5 *2 (-2 (|:| |den| (-564)) (|:| |gcdnum| (-564)))) (-5 *1 (-911 *3 *4)) (-4 *4 (-1238 (-407 *3))))) (-2748 (*1 *2 *3) (-12 (-5 *3 (-564)) (-4 *4 (-1238 (-407 *3))) (-5 *2 (-919)) (-5 *1 (-911 *4 *5)) (-4 *5 (-1238 (-407 *4)))))) -(-10 -7 (-15 -2748 ((-919) (-564))) (-15 -2793 ((-2 (|:| |den| (-564)) (|:| |gcdnum| (-564))) |#1|)) (-15 -2793 ((-564) |#2|)) (-15 -1905 ((-564) (-642 (-2 (|:| |den| (-564)) (|:| |gcdnum| (-564)))))) (-15 -2912 ((-564) |#2|)) (-15 -4270 (|#2| |#2|))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-2905 ((|#1| $) 100)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-4252 (($ $) NIL)) (-1722 (((-112) $) NIL)) (-3085 (((-3 $ "failed") $ $) NIL)) (-1993 (($ $) NIL)) (-3282 (((-418 $) $) NIL)) (-2134 (((-112) $ $) NIL)) (-2822 (($) NIL T CONST)) (-2796 (($ $ $) NIL)) (-2675 (((-3 $ "failed") $) 94)) (-2808 (($ $ $) NIL)) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) NIL)) (-3552 (((-112) $) NIL)) (-3257 (($ |#1| (-418 |#1|)) 92)) (-2337 (((-1169 |#1|) |#1| |#1|) 53)) (-1367 (($ $) 61)) (-3163 (((-112) $) NIL)) (-2818 (((-564) $) 97)) (-1952 (($ $ (-564)) 99)) (-2709 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2066 (($ $ $) NIL) (($ (-642 $)) NIL)) (-1778 (((-1155) $) NIL)) (-2481 (($ $) NIL)) (-3999 (((-1117) $) NIL)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2105 (($ $ $) NIL) (($ (-642 $)) NIL)) (-3676 ((|#1| $) 96)) (-3977 (((-418 |#1|) $) 95)) (-2254 (((-418 $) $) NIL)) (-1877 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2842 (((-3 $ "failed") $ $) 93)) (-1483 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-4274 (((-769) $) NIL)) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL)) (-3574 (($ $) 50)) (-2390 (((-860) $) 124) (($ (-564)) 73) (($ $) NIL) (($ (-407 (-564))) NIL) (($ |#1|) 41) (((-407 |#1|) $) 78) (($ (-407 (-418 |#1|))) 86)) (-3348 (((-769)) 71 T CONST)) (-1600 (((-112) $ $) NIL)) (-1594 (((-112) $ $) NIL)) (-2361 (($) 26 T CONST)) (-2371 (($) 15 T CONST)) (-2821 (((-112) $ $) 87)) (-2943 (($ $ $) NIL)) (-2930 (($ $) 108) (($ $ $) NIL)) (-2917 (($ $ $) 49)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 110) (($ $ $) 48) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ |#1| $) 109) (($ $ |#1|) NIL))) -(((-912 |#1|) (-13 (-363) (-38 |#1|) (-10 -8 (-15 -2390 ((-407 |#1|) $)) (-15 -2390 ($ (-407 (-418 |#1|)))) (-15 -3574 ($ $)) (-15 -3977 ((-418 |#1|) $)) (-15 -3676 (|#1| $)) (-15 -1952 ($ $ (-564))) (-15 -2818 ((-564) $)) (-15 -2337 ((-1169 |#1|) |#1| |#1|)) (-15 -1367 ($ $)) (-15 -3257 ($ |#1| (-418 |#1|))) (-15 -2905 (|#1| $)))) (-307)) (T -912)) -((-2390 (*1 *2 *1) (-12 (-5 *2 (-407 *3)) (-5 *1 (-912 *3)) (-4 *3 (-307)))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-407 (-418 *3))) (-4 *3 (-307)) (-5 *1 (-912 *3)))) (-3574 (*1 *1 *1) (-12 (-5 *1 (-912 *2)) (-4 *2 (-307)))) (-3977 (*1 *2 *1) (-12 (-5 *2 (-418 *3)) (-5 *1 (-912 *3)) (-4 *3 (-307)))) (-3676 (*1 *2 *1) (-12 (-5 *1 (-912 *2)) (-4 *2 (-307)))) (-1952 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-912 *3)) (-4 *3 (-307)))) (-2818 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-912 *3)) (-4 *3 (-307)))) (-2337 (*1 *2 *3 *3) (-12 (-5 *2 (-1169 *3)) (-5 *1 (-912 *3)) (-4 *3 (-307)))) (-1367 (*1 *1 *1) (-12 (-5 *1 (-912 *2)) (-4 *2 (-307)))) (-3257 (*1 *1 *2 *3) (-12 (-5 *3 (-418 *2)) (-4 *2 (-307)) (-5 *1 (-912 *2)))) (-2905 (*1 *2 *1) (-12 (-5 *1 (-912 *2)) (-4 *2 (-307))))) -(-13 (-363) (-38 |#1|) (-10 -8 (-15 -2390 ((-407 |#1|) $)) (-15 -2390 ($ (-407 (-418 |#1|)))) (-15 -3574 ($ $)) (-15 -3977 ((-418 |#1|) $)) (-15 -3676 (|#1| $)) (-15 -1952 ($ $ (-564))) (-15 -2818 ((-564) $)) (-15 -2337 ((-1169 |#1|) |#1| |#1|)) (-15 -1367 ($ $)) (-15 -3257 ($ |#1| (-418 |#1|))) (-15 -2905 (|#1| $)))) -((-3257 (((-52) (-950 |#1|) (-418 (-950 |#1|)) (-1173)) 17) (((-52) (-407 (-950 |#1|)) (-1173)) 18))) -(((-913 |#1|) (-10 -7 (-15 -3257 ((-52) (-407 (-950 |#1|)) (-1173))) (-15 -3257 ((-52) (-950 |#1|) (-418 (-950 |#1|)) (-1173)))) (-13 (-307) (-147))) (T -913)) -((-3257 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-418 (-950 *6))) (-5 *5 (-1173)) (-5 *3 (-950 *6)) (-4 *6 (-13 (-307) (-147))) (-5 *2 (-52)) (-5 *1 (-913 *6)))) (-3257 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-950 *5))) (-5 *4 (-1173)) (-4 *5 (-13 (-307) (-147))) (-5 *2 (-52)) (-5 *1 (-913 *5))))) -(-10 -7 (-15 -3257 ((-52) (-407 (-950 |#1|)) (-1173))) (-15 -3257 ((-52) (-950 |#1|) (-418 (-950 |#1|)) (-1173)))) -((-2185 ((|#4| (-642 |#4|)) 149) (((-1169 |#4|) (-1169 |#4|) (-1169 |#4|)) 86) ((|#4| |#4| |#4|) 148)) (-2105 (((-1169 |#4|) (-642 (-1169 |#4|))) 142) (((-1169 |#4|) (-1169 |#4|) (-1169 |#4|)) 63) ((|#4| (-642 |#4|)) 71) ((|#4| |#4| |#4|) 109))) -(((-914 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2105 (|#4| |#4| |#4|)) (-15 -2105 (|#4| (-642 |#4|))) (-15 -2105 ((-1169 |#4|) (-1169 |#4|) (-1169 |#4|))) (-15 -2105 ((-1169 |#4|) (-642 (-1169 |#4|)))) (-15 -2185 (|#4| |#4| |#4|)) (-15 -2185 ((-1169 |#4|) (-1169 |#4|) (-1169 |#4|))) (-15 -2185 (|#4| (-642 |#4|)))) (-791) (-848) (-307) (-947 |#3| |#1| |#2|)) (T -914)) -((-2185 (*1 *2 *3) (-12 (-5 *3 (-642 *2)) (-4 *2 (-947 *6 *4 *5)) (-5 *1 (-914 *4 *5 *6 *2)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-307)))) (-2185 (*1 *2 *2 *2) (-12 (-5 *2 (-1169 *6)) (-4 *6 (-947 *5 *3 *4)) (-4 *3 (-791)) (-4 *4 (-848)) (-4 *5 (-307)) (-5 *1 (-914 *3 *4 *5 *6)))) (-2185 (*1 *2 *2 *2) (-12 (-4 *3 (-791)) (-4 *4 (-848)) (-4 *5 (-307)) (-5 *1 (-914 *3 *4 *5 *2)) (-4 *2 (-947 *5 *3 *4)))) (-2105 (*1 *2 *3) (-12 (-5 *3 (-642 (-1169 *7))) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-307)) (-5 *2 (-1169 *7)) (-5 *1 (-914 *4 *5 *6 *7)) (-4 *7 (-947 *6 *4 *5)))) (-2105 (*1 *2 *2 *2) (-12 (-5 *2 (-1169 *6)) (-4 *6 (-947 *5 *3 *4)) (-4 *3 (-791)) (-4 *4 (-848)) (-4 *5 (-307)) (-5 *1 (-914 *3 *4 *5 *6)))) (-2105 (*1 *2 *3) (-12 (-5 *3 (-642 *2)) (-4 *2 (-947 *6 *4 *5)) (-5 *1 (-914 *4 *5 *6 *2)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-307)))) (-2105 (*1 *2 *2 *2) (-12 (-4 *3 (-791)) (-4 *4 (-848)) (-4 *5 (-307)) (-5 *1 (-914 *3 *4 *5 *2)) (-4 *2 (-947 *5 *3 *4))))) -(-10 -7 (-15 -2105 (|#4| |#4| |#4|)) (-15 -2105 (|#4| (-642 |#4|))) (-15 -2105 ((-1169 |#4|) (-1169 |#4|) (-1169 |#4|))) (-15 -2105 ((-1169 |#4|) (-642 (-1169 |#4|)))) (-15 -2185 (|#4| |#4| |#4|)) (-15 -2185 ((-1169 |#4|) (-1169 |#4|) (-1169 |#4|))) (-15 -2185 (|#4| (-642 |#4|)))) -((-3275 (((-902 (-564)) (-969)) 38) (((-902 (-564)) (-642 (-564))) 35)) (-3988 (((-902 (-564)) (-642 (-564))) 70) (((-902 (-564)) (-919)) 71)) (-3028 (((-902 (-564))) 39)) (-1749 (((-902 (-564))) 55) (((-902 (-564)) (-642 (-564))) 54)) (-1893 (((-902 (-564))) 53) (((-902 (-564)) (-642 (-564))) 52)) (-1834 (((-902 (-564))) 51) (((-902 (-564)) (-642 (-564))) 50)) (-4114 (((-902 (-564))) 49) (((-902 (-564)) (-642 (-564))) 48)) (-3000 (((-902 (-564))) 47) (((-902 (-564)) (-642 (-564))) 46)) (-2482 (((-902 (-564))) 57) (((-902 (-564)) (-642 (-564))) 56)) (-3164 (((-902 (-564)) (-642 (-564))) 75) (((-902 (-564)) (-919)) 77)) (-2979 (((-902 (-564)) (-642 (-564))) 72) (((-902 (-564)) (-919)) 73)) (-2949 (((-902 (-564)) (-642 (-564))) 68) (((-902 (-564)) (-919)) 69)) (-3061 (((-902 (-564)) (-642 (-919))) 60))) -(((-915) (-10 -7 (-15 -3988 ((-902 (-564)) (-919))) (-15 -3988 ((-902 (-564)) (-642 (-564)))) (-15 -2949 ((-902 (-564)) (-919))) (-15 -2949 ((-902 (-564)) (-642 (-564)))) (-15 -3061 ((-902 (-564)) (-642 (-919)))) (-15 -2979 ((-902 (-564)) (-919))) (-15 -2979 ((-902 (-564)) (-642 (-564)))) (-15 -3164 ((-902 (-564)) (-919))) (-15 -3164 ((-902 (-564)) (-642 (-564)))) (-15 -3000 ((-902 (-564)) (-642 (-564)))) (-15 -3000 ((-902 (-564)))) (-15 -4114 ((-902 (-564)) (-642 (-564)))) (-15 -4114 ((-902 (-564)))) (-15 -1834 ((-902 (-564)) (-642 (-564)))) (-15 -1834 ((-902 (-564)))) (-15 -1893 ((-902 (-564)) (-642 (-564)))) (-15 -1893 ((-902 (-564)))) (-15 -1749 ((-902 (-564)) (-642 (-564)))) (-15 -1749 ((-902 (-564)))) (-15 -2482 ((-902 (-564)) (-642 (-564)))) (-15 -2482 ((-902 (-564)))) (-15 -3028 ((-902 (-564)))) (-15 -3275 ((-902 (-564)) (-642 (-564)))) (-15 -3275 ((-902 (-564)) (-969))))) (T -915)) -((-3275 (*1 *2 *3) (-12 (-5 *3 (-969)) (-5 *2 (-902 (-564))) (-5 *1 (-915)))) (-3275 (*1 *2 *3) (-12 (-5 *3 (-642 (-564))) (-5 *2 (-902 (-564))) (-5 *1 (-915)))) (-3028 (*1 *2) (-12 (-5 *2 (-902 (-564))) (-5 *1 (-915)))) (-2482 (*1 *2) (-12 (-5 *2 (-902 (-564))) (-5 *1 (-915)))) (-2482 (*1 *2 *3) (-12 (-5 *3 (-642 (-564))) (-5 *2 (-902 (-564))) (-5 *1 (-915)))) (-1749 (*1 *2) (-12 (-5 *2 (-902 (-564))) (-5 *1 (-915)))) (-1749 (*1 *2 *3) (-12 (-5 *3 (-642 (-564))) (-5 *2 (-902 (-564))) (-5 *1 (-915)))) (-1893 (*1 *2) (-12 (-5 *2 (-902 (-564))) (-5 *1 (-915)))) (-1893 (*1 *2 *3) (-12 (-5 *3 (-642 (-564))) (-5 *2 (-902 (-564))) (-5 *1 (-915)))) (-1834 (*1 *2) (-12 (-5 *2 (-902 (-564))) (-5 *1 (-915)))) (-1834 (*1 *2 *3) (-12 (-5 *3 (-642 (-564))) (-5 *2 (-902 (-564))) (-5 *1 (-915)))) (-4114 (*1 *2) (-12 (-5 *2 (-902 (-564))) (-5 *1 (-915)))) (-4114 (*1 *2 *3) (-12 (-5 *3 (-642 (-564))) (-5 *2 (-902 (-564))) (-5 *1 (-915)))) (-3000 (*1 *2) (-12 (-5 *2 (-902 (-564))) (-5 *1 (-915)))) (-3000 (*1 *2 *3) (-12 (-5 *3 (-642 (-564))) (-5 *2 (-902 (-564))) (-5 *1 (-915)))) (-3164 (*1 *2 *3) (-12 (-5 *3 (-642 (-564))) (-5 *2 (-902 (-564))) (-5 *1 (-915)))) (-3164 (*1 *2 *3) (-12 (-5 *3 (-919)) (-5 *2 (-902 (-564))) (-5 *1 (-915)))) (-2979 (*1 *2 *3) (-12 (-5 *3 (-642 (-564))) (-5 *2 (-902 (-564))) (-5 *1 (-915)))) (-2979 (*1 *2 *3) (-12 (-5 *3 (-919)) (-5 *2 (-902 (-564))) (-5 *1 (-915)))) (-3061 (*1 *2 *3) (-12 (-5 *3 (-642 (-919))) (-5 *2 (-902 (-564))) (-5 *1 (-915)))) (-2949 (*1 *2 *3) (-12 (-5 *3 (-642 (-564))) (-5 *2 (-902 (-564))) (-5 *1 (-915)))) (-2949 (*1 *2 *3) (-12 (-5 *3 (-919)) (-5 *2 (-902 (-564))) (-5 *1 (-915)))) (-3988 (*1 *2 *3) (-12 (-5 *3 (-642 (-564))) (-5 *2 (-902 (-564))) (-5 *1 (-915)))) (-3988 (*1 *2 *3) (-12 (-5 *3 (-919)) (-5 *2 (-902 (-564))) (-5 *1 (-915))))) -(-10 -7 (-15 -3988 ((-902 (-564)) (-919))) (-15 -3988 ((-902 (-564)) (-642 (-564)))) (-15 -2949 ((-902 (-564)) (-919))) (-15 -2949 ((-902 (-564)) (-642 (-564)))) (-15 -3061 ((-902 (-564)) (-642 (-919)))) (-15 -2979 ((-902 (-564)) (-919))) (-15 -2979 ((-902 (-564)) (-642 (-564)))) (-15 -3164 ((-902 (-564)) (-919))) (-15 -3164 ((-902 (-564)) (-642 (-564)))) (-15 -3000 ((-902 (-564)) (-642 (-564)))) (-15 -3000 ((-902 (-564)))) (-15 -4114 ((-902 (-564)) (-642 (-564)))) (-15 -4114 ((-902 (-564)))) (-15 -1834 ((-902 (-564)) (-642 (-564)))) (-15 -1834 ((-902 (-564)))) (-15 -1893 ((-902 (-564)) (-642 (-564)))) (-15 -1893 ((-902 (-564)))) (-15 -1749 ((-902 (-564)) (-642 (-564)))) (-15 -1749 ((-902 (-564)))) (-15 -2482 ((-902 (-564)) (-642 (-564)))) (-15 -2482 ((-902 (-564)))) (-15 -3028 ((-902 (-564)))) (-15 -3275 ((-902 (-564)) (-642 (-564)))) (-15 -3275 ((-902 (-564)) (-969)))) -((-1392 (((-642 (-950 |#1|)) (-642 (-950 |#1|)) (-642 (-1173))) 14)) (-3505 (((-642 (-950 |#1|)) (-642 (-950 |#1|)) (-642 (-1173))) 13))) -(((-916 |#1|) (-10 -7 (-15 -3505 ((-642 (-950 |#1|)) (-642 (-950 |#1|)) (-642 (-1173)))) (-15 -1392 ((-642 (-950 |#1|)) (-642 (-950 |#1|)) (-642 (-1173))))) (-452)) (T -916)) -((-1392 (*1 *2 *2 *3) (-12 (-5 *2 (-642 (-950 *4))) (-5 *3 (-642 (-1173))) (-4 *4 (-452)) (-5 *1 (-916 *4)))) (-3505 (*1 *2 *2 *3) (-12 (-5 *2 (-642 (-950 *4))) (-5 *3 (-642 (-1173))) (-4 *4 (-452)) (-5 *1 (-916 *4))))) -(-10 -7 (-15 -3505 ((-642 (-950 |#1|)) (-642 (-950 |#1|)) (-642 (-1173)))) (-15 -1392 ((-642 (-950 |#1|)) (-642 (-950 |#1|)) (-642 (-1173))))) -((-2390 (((-316 |#1|) (-477)) 16))) -(((-917 |#1|) (-10 -7 (-15 -2390 ((-316 |#1|) (-477)))) (-556)) (T -917)) -((-2390 (*1 *2 *3) (-12 (-5 *3 (-477)) (-5 *2 (-316 *4)) (-5 *1 (-917 *4)) (-4 *4 (-556))))) -(-10 -7 (-15 -2390 ((-316 |#1|) (-477)))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) 47)) (-4252 (($ $) 46)) (-1722 (((-112) $) 44)) (-3085 (((-3 $ "failed") $ $) 20)) (-2822 (($) 18 T CONST)) (-2675 (((-3 $ "failed") $) 37)) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) 57)) (-3163 (((-112) $) 35)) (-2066 (($ $ $) 52) (($ (-642 $)) 51)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) 50)) (-2105 (($ $ $) 54) (($ (-642 $)) 53)) (-2842 (((-3 $ "failed") $ $) 48)) (-1483 (((-3 (-642 $) "failed") (-642 $) $) 56)) (-2390 (((-860) $) 12) (($ (-564)) 33) (($ $) 49)) (-3348 (((-769)) 32 T CONST)) (-1600 (((-112) $ $) 9)) (-1594 (((-112) $ $) 45)) (-2361 (($) 19 T CONST)) (-2371 (($) 34 T CONST)) (-2821 (((-112) $ $) 6)) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27))) -(((-918) (-140)) (T -918)) -((-4159 (*1 *2 *3) (-12 (-4 *1 (-918)) (-5 *2 (-2 (|:| -2968 (-642 *1)) (|:| -4043 *1))) (-5 *3 (-642 *1)))) (-1483 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-642 *1)) (-4 *1 (-918))))) -(-13 (-452) (-10 -8 (-15 -4159 ((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $))) (-15 -1483 ((-3 (-642 $) "failed") (-642 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-860)) . T) ((-172) . T) ((-290) . T) ((-452) . T) ((-556) . T) ((-644 (-564)) . T) ((-644 $) . T) ((-646 $) . T) ((-638 $) . T) ((-715 $) . T) ((-724) . T) ((-1049 $) . T) ((-1054 $) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T)) -((-2856 (((-112) $ $) NIL)) (-2822 (($) NIL T CONST)) (-2675 (((-3 $ "failed") $) NIL)) (-3163 (((-112) $) NIL)) (-3225 (($ $ $) NIL)) (-2903 (($ $ $) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2105 (($ $ $) NIL)) (-2390 (((-860) $) NIL)) (-1600 (((-112) $ $) NIL)) (-2371 (($) NIL T CONST)) (-2881 (((-112) $ $) NIL)) (-2857 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL)) (-2868 (((-112) $ $) NIL)) (-2844 (((-112) $ $) NIL)) (-2917 (($ $ $) NIL)) (** (($ $ (-769)) NIL) (($ $ (-919)) NIL)) (* (($ (-919) $) NIL) (($ $ $) NIL))) -(((-919) (-13 (-792) (-724) (-10 -8 (-15 -2105 ($ $ $)) (-6 (-4412 "*"))))) (T -919)) -((-2105 (*1 *1 *1 *1) (-5 *1 (-919)))) -(-13 (-792) (-724) (-10 -8 (-15 -2105 ($ $ $)) (-6 (-4412 "*")))) +((-3354 (((-691 (-1222)) $ (-1222)) NIL)) (-3162 (((-691 (-551)) $ (-551)) NIL)) (-3130 (((-771) $ (-128)) NIL)) (-1947 (((-691 (-129)) $ (-129)) 22)) (-3456 (($ (-390)) 12) (($ (-1157)) 14)) (-3546 (((-112) $) 19)) (-2479 (((-862) $) 26)) (-2313 (($ $) 23))) +(((-861) (-13 (-860) (-613 (-862)) (-10 -8 (-15 -3456 ($ (-390))) (-15 -3456 ($ (-1157))) (-15 -3546 ((-112) $))))) (T -861)) +((-3456 (*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-861)))) (-3456 (*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-861)))) (-3546 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861))))) +(-13 (-860) (-613 (-862)) (-10 -8 (-15 -3456 ($ (-390))) (-15 -3456 ($ (-1157))) (-15 -3546 ((-112) $)))) +((-2986 (((-112) $ $) NIL) (($ $ $) 85)) (-2458 (($ $ $) 125)) (-3467 (((-566) $) 31) (((-566)) 36)) (-4174 (($ (-566)) 53)) (-1929 (($ $ $) 54) (($ (-644 $)) 84)) (-3595 (($ $ (-644 $)) 82)) (-2187 (((-566) $) 34)) (-2642 (($ $ $) 73)) (-3696 (($ $) 140) (($ $ $) 141) (($ $ $ $) 142)) (-3485 (((-566) $) 33)) (-2245 (($ $ $) 72)) (-4315 (($ $) 114)) (-3627 (($ $ $) 129)) (-1585 (($ (-644 $)) 61)) (-4341 (($ $ (-644 $)) 79)) (-2524 (($ (-566) (-566)) 55)) (-4175 (($ $) 126) (($ $ $) 127)) (-4361 (($ $ (-566)) 43) (($ $) 46)) (-2925 (($ $ $) 97)) (-1628 (($ $ $) 132)) (-3324 (($ $) 115)) (-2937 (($ $ $) 98)) (-4383 (($ $) 143) (($ $ $) 144) (($ $ $ $) 145)) (-2930 (((-1269) $) 10)) (-3393 (($ $) 118) (($ $ (-771)) 122)) (-2752 (($ $ $) 75)) (-1466 (($ $ $) 74)) (-3490 (($ $ (-644 $)) 110)) (-1663 (($ $ $) 113)) (-2080 (($ (-644 $)) 59)) (-4218 (($ $) 70) (($ (-644 $)) 71)) (-2702 (($ $ $) 123)) (-1621 (($ $) 116)) (-2635 (($ $ $) 128)) (-3089 (($ (-566)) 21) (($ (-1175)) 23) (($ (-1157)) 30) (($ (-225)) 25)) (-2415 (($ $ $) 101)) (-2387 (($ $) 102)) (-3381 (((-1269) (-1157)) 15)) (-1710 (($ (-1157)) 14)) (-4155 (($ (-644 (-644 $))) 58)) (-4351 (($ $ (-566)) 42) (($ $) 45)) (-3151 (((-1157) $) NIL)) (-1446 (($ $ $) 131)) (-1989 (($ $) 146) (($ $ $) 147) (($ $ $ $) 148)) (-1534 (((-112) $) 108)) (-2811 (($ $ (-644 $)) 111) (($ $ $ $) 112)) (-3639 (($ (-566)) 39)) (-3117 (((-566) $) 32) (((-566)) 35)) (-3121 (($ $ $) 40) (($ (-644 $)) 83)) (-4059 (((-1119) $) NIL)) (-2976 (($ $ $) 99)) (-1737 (($) 13)) (-4376 (($ $ (-644 $)) 109)) (-3134 (((-1157) (-1157)) 8)) (-2555 (($ $) 117) (($ $ (-771)) 121)) (-2962 (($ $ $) 96)) (-3526 (($ $ (-771)) 139)) (-4019 (($ (-644 $)) 60)) (-2479 (((-862) $) 19)) (-2316 (($ $ (-566)) 41) (($ $) 44)) (-1529 (($ $) 68) (($ (-644 $)) 69)) (-2405 (($ $) 66) (($ (-644 $)) 67)) (-3749 (($ $) 124)) (-4201 (($ (-644 $)) 65)) (-1835 (($ $ $) 105)) (-3900 (((-112) $ $) NIL)) (-2335 (($ $ $) 130)) (-2402 (($ $ $) 100)) (-3626 (($ $ $) 103) (($ $) 104)) (-3019 (($ $ $) 89)) (-2990 (($ $ $) 87)) (-2952 (((-112) $ $) 16) (($ $ $) 17)) (-3004 (($ $ $) 88)) (-2977 (($ $ $) 86)) (-3077 (($ $ $) 94)) (-3065 (($ $ $) 91) (($ $) 92)) (-3052 (($ $ $) 90)) (** (($ $ $) 95)) (* (($ $ $) 93))) +(((-862) (-13 (-1099) (-10 -8 (-15 -2930 ((-1269) $)) (-15 -1710 ($ (-1157))) (-15 -3381 ((-1269) (-1157))) (-15 -3089 ($ (-566))) (-15 -3089 ($ (-1175))) (-15 -3089 ($ (-1157))) (-15 -3089 ($ (-225))) (-15 -1737 ($)) (-15 -3134 ((-1157) (-1157))) (-15 -3467 ((-566) $)) (-15 -3117 ((-566) $)) (-15 -3467 ((-566))) (-15 -3117 ((-566))) (-15 -3485 ((-566) $)) (-15 -2187 ((-566) $)) (-15 -3639 ($ (-566))) (-15 -4174 ($ (-566))) (-15 -2524 ($ (-566) (-566))) (-15 -4351 ($ $ (-566))) (-15 -4361 ($ $ (-566))) (-15 -2316 ($ $ (-566))) (-15 -4351 ($ $)) (-15 -4361 ($ $)) (-15 -2316 ($ $)) (-15 -3121 ($ $ $)) (-15 -1929 ($ $ $)) (-15 -3121 ($ (-644 $))) (-15 -1929 ($ (-644 $))) (-15 -3490 ($ $ (-644 $))) (-15 -2811 ($ $ (-644 $))) (-15 -2811 ($ $ $ $)) (-15 -1663 ($ $ $)) (-15 -1534 ((-112) $)) (-15 -4376 ($ $ (-644 $))) (-15 -4315 ($ $)) (-15 -1446 ($ $ $)) (-15 -3749 ($ $)) (-15 -4155 ($ (-644 (-644 $)))) (-15 -2458 ($ $ $)) (-15 -4175 ($ $)) (-15 -4175 ($ $ $)) (-15 -2635 ($ $ $)) (-15 -3627 ($ $ $)) (-15 -2335 ($ $ $)) (-15 -1628 ($ $ $)) (-15 -3526 ($ $ (-771))) (-15 -1835 ($ $ $)) (-15 -2245 ($ $ $)) (-15 -2642 ($ $ $)) (-15 -1466 ($ $ $)) (-15 -2752 ($ $ $)) (-15 -4341 ($ $ (-644 $))) (-15 -3595 ($ $ (-644 $))) (-15 -3324 ($ $)) (-15 -2555 ($ $)) (-15 -2555 ($ $ (-771))) (-15 -3393 ($ $)) (-15 -3393 ($ $ (-771))) (-15 -1621 ($ $)) (-15 -2702 ($ $ $)) (-15 -3696 ($ $)) (-15 -3696 ($ $ $)) (-15 -3696 ($ $ $ $)) (-15 -4383 ($ $)) (-15 -4383 ($ $ $)) (-15 -4383 ($ $ $ $)) (-15 -1989 ($ $)) (-15 -1989 ($ $ $)) (-15 -1989 ($ $ $ $)) (-15 -2405 ($ $)) (-15 -2405 ($ (-644 $))) (-15 -1529 ($ $)) (-15 -1529 ($ (-644 $))) (-15 -4218 ($ $)) (-15 -4218 ($ (-644 $))) (-15 -2080 ($ (-644 $))) (-15 -4019 ($ (-644 $))) (-15 -1585 ($ (-644 $))) (-15 -4201 ($ (-644 $))) (-15 -2952 ($ $ $)) (-15 -2986 ($ $ $)) (-15 -2977 ($ $ $)) (-15 -2990 ($ $ $)) (-15 -3004 ($ $ $)) (-15 -3019 ($ $ $)) (-15 -3052 ($ $ $)) (-15 -3065 ($ $ $)) (-15 -3065 ($ $)) (-15 * ($ $ $)) (-15 -3077 ($ $ $)) (-15 ** ($ $ $)) (-15 -2962 ($ $ $)) (-15 -2925 ($ $ $)) (-15 -2937 ($ $ $)) (-15 -2976 ($ $ $)) (-15 -2402 ($ $ $)) (-15 -2415 ($ $ $)) (-15 -2387 ($ $)) (-15 -3626 ($ $ $)) (-15 -3626 ($ $))))) (T -862)) +((-2930 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-862)))) (-1710 (*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-862)))) (-3381 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-862)))) (-3089 (*1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) (-3089 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-862)))) (-3089 (*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-862)))) (-3089 (*1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-862)))) (-1737 (*1 *1) (-5 *1 (-862))) (-3134 (*1 *2 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-862)))) (-3467 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) (-3117 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) (-3467 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) (-3117 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) (-3485 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) (-2187 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) (-3639 (*1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) (-4174 (*1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) (-2524 (*1 *1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) (-4351 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) (-4361 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) (-2316 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) (-4351 (*1 *1 *1) (-5 *1 (-862))) (-4361 (*1 *1 *1) (-5 *1 (-862))) (-2316 (*1 *1 *1) (-5 *1 (-862))) (-3121 (*1 *1 *1 *1) (-5 *1 (-862))) (-1929 (*1 *1 *1 *1) (-5 *1 (-862))) (-3121 (*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) (-1929 (*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) (-3490 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) (-2811 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) (-2811 (*1 *1 *1 *1 *1) (-5 *1 (-862))) (-1663 (*1 *1 *1 *1) (-5 *1 (-862))) (-1534 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-862)))) (-4376 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) (-4315 (*1 *1 *1) (-5 *1 (-862))) (-1446 (*1 *1 *1 *1) (-5 *1 (-862))) (-3749 (*1 *1 *1) (-5 *1 (-862))) (-4155 (*1 *1 *2) (-12 (-5 *2 (-644 (-644 (-862)))) (-5 *1 (-862)))) (-2458 (*1 *1 *1 *1) (-5 *1 (-862))) (-4175 (*1 *1 *1) (-5 *1 (-862))) (-4175 (*1 *1 *1 *1) (-5 *1 (-862))) (-2635 (*1 *1 *1 *1) (-5 *1 (-862))) (-3627 (*1 *1 *1 *1) (-5 *1 (-862))) (-2335 (*1 *1 *1 *1) (-5 *1 (-862))) (-1628 (*1 *1 *1 *1) (-5 *1 (-862))) (-3526 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-862)))) (-1835 (*1 *1 *1 *1) (-5 *1 (-862))) (-2245 (*1 *1 *1 *1) (-5 *1 (-862))) (-2642 (*1 *1 *1 *1) (-5 *1 (-862))) (-1466 (*1 *1 *1 *1) (-5 *1 (-862))) (-2752 (*1 *1 *1 *1) (-5 *1 (-862))) (-4341 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) (-3595 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) (-3324 (*1 *1 *1) (-5 *1 (-862))) (-2555 (*1 *1 *1) (-5 *1 (-862))) (-2555 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-862)))) (-3393 (*1 *1 *1) (-5 *1 (-862))) (-3393 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-862)))) (-1621 (*1 *1 *1) (-5 *1 (-862))) (-2702 (*1 *1 *1 *1) (-5 *1 (-862))) (-3696 (*1 *1 *1) (-5 *1 (-862))) (-3696 (*1 *1 *1 *1) (-5 *1 (-862))) (-3696 (*1 *1 *1 *1 *1) (-5 *1 (-862))) (-4383 (*1 *1 *1) (-5 *1 (-862))) (-4383 (*1 *1 *1 *1) (-5 *1 (-862))) (-4383 (*1 *1 *1 *1 *1) (-5 *1 (-862))) (-1989 (*1 *1 *1) (-5 *1 (-862))) (-1989 (*1 *1 *1 *1) (-5 *1 (-862))) (-1989 (*1 *1 *1 *1 *1) (-5 *1 (-862))) (-2405 (*1 *1 *1) (-5 *1 (-862))) (-2405 (*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) (-1529 (*1 *1 *1) (-5 *1 (-862))) (-1529 (*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) (-4218 (*1 *1 *1) (-5 *1 (-862))) (-4218 (*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) (-2080 (*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) (-4019 (*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) (-1585 (*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) (-4201 (*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) (-2952 (*1 *1 *1 *1) (-5 *1 (-862))) (-2986 (*1 *1 *1 *1) (-5 *1 (-862))) (-2977 (*1 *1 *1 *1) (-5 *1 (-862))) (-2990 (*1 *1 *1 *1) (-5 *1 (-862))) (-3004 (*1 *1 *1 *1) (-5 *1 (-862))) (-3019 (*1 *1 *1 *1) (-5 *1 (-862))) (-3052 (*1 *1 *1 *1) (-5 *1 (-862))) (-3065 (*1 *1 *1 *1) (-5 *1 (-862))) (-3065 (*1 *1 *1) (-5 *1 (-862))) (* (*1 *1 *1 *1) (-5 *1 (-862))) (-3077 (*1 *1 *1 *1) (-5 *1 (-862))) (** (*1 *1 *1 *1) (-5 *1 (-862))) (-2962 (*1 *1 *1 *1) (-5 *1 (-862))) (-2925 (*1 *1 *1 *1) (-5 *1 (-862))) (-2937 (*1 *1 *1 *1) (-5 *1 (-862))) (-2976 (*1 *1 *1 *1) (-5 *1 (-862))) (-2402 (*1 *1 *1 *1) (-5 *1 (-862))) (-2415 (*1 *1 *1 *1) (-5 *1 (-862))) (-2387 (*1 *1 *1) (-5 *1 (-862))) (-3626 (*1 *1 *1 *1) (-5 *1 (-862))) (-3626 (*1 *1 *1) (-5 *1 (-862)))) +(-13 (-1099) (-10 -8 (-15 -2930 ((-1269) $)) (-15 -1710 ($ (-1157))) (-15 -3381 ((-1269) (-1157))) (-15 -3089 ($ (-566))) (-15 -3089 ($ (-1175))) (-15 -3089 ($ (-1157))) (-15 -3089 ($ (-225))) (-15 -1737 ($)) (-15 -3134 ((-1157) (-1157))) (-15 -3467 ((-566) $)) (-15 -3117 ((-566) $)) (-15 -3467 ((-566))) (-15 -3117 ((-566))) (-15 -3485 ((-566) $)) (-15 -2187 ((-566) $)) (-15 -3639 ($ (-566))) (-15 -4174 ($ (-566))) (-15 -2524 ($ (-566) (-566))) (-15 -4351 ($ $ (-566))) (-15 -4361 ($ $ (-566))) (-15 -2316 ($ $ (-566))) (-15 -4351 ($ $)) (-15 -4361 ($ $)) (-15 -2316 ($ $)) (-15 -3121 ($ $ $)) (-15 -1929 ($ $ $)) (-15 -3121 ($ (-644 $))) (-15 -1929 ($ (-644 $))) (-15 -3490 ($ $ (-644 $))) (-15 -2811 ($ $ (-644 $))) (-15 -2811 ($ $ $ $)) (-15 -1663 ($ $ $)) (-15 -1534 ((-112) $)) (-15 -4376 ($ $ (-644 $))) (-15 -4315 ($ $)) (-15 -1446 ($ $ $)) (-15 -3749 ($ $)) (-15 -4155 ($ (-644 (-644 $)))) (-15 -2458 ($ $ $)) (-15 -4175 ($ $)) (-15 -4175 ($ $ $)) (-15 -2635 ($ $ $)) (-15 -3627 ($ $ $)) (-15 -2335 ($ $ $)) (-15 -1628 ($ $ $)) (-15 -3526 ($ $ (-771))) (-15 -1835 ($ $ $)) (-15 -2245 ($ $ $)) (-15 -2642 ($ $ $)) (-15 -1466 ($ $ $)) (-15 -2752 ($ $ $)) (-15 -4341 ($ $ (-644 $))) (-15 -3595 ($ $ (-644 $))) (-15 -3324 ($ $)) (-15 -2555 ($ $)) (-15 -2555 ($ $ (-771))) (-15 -3393 ($ $)) (-15 -3393 ($ $ (-771))) (-15 -1621 ($ $)) (-15 -2702 ($ $ $)) (-15 -3696 ($ $)) (-15 -3696 ($ $ $)) (-15 -3696 ($ $ $ $)) (-15 -4383 ($ $)) (-15 -4383 ($ $ $)) (-15 -4383 ($ $ $ $)) (-15 -1989 ($ $)) (-15 -1989 ($ $ $)) (-15 -1989 ($ $ $ $)) (-15 -2405 ($ $)) (-15 -2405 ($ (-644 $))) (-15 -1529 ($ $)) (-15 -1529 ($ (-644 $))) (-15 -4218 ($ $)) (-15 -4218 ($ (-644 $))) (-15 -2080 ($ (-644 $))) (-15 -4019 ($ (-644 $))) (-15 -1585 ($ (-644 $))) (-15 -4201 ($ (-644 $))) (-15 -2952 ($ $ $)) (-15 -2986 ($ $ $)) (-15 -2977 ($ $ $)) (-15 -2990 ($ $ $)) (-15 -3004 ($ $ $)) (-15 -3019 ($ $ $)) (-15 -3052 ($ $ $)) (-15 -3065 ($ $ $)) (-15 -3065 ($ $)) (-15 * ($ $ $)) (-15 -3077 ($ $ $)) (-15 ** ($ $ $)) (-15 -2962 ($ $ $)) (-15 -2925 ($ $ $)) (-15 -2937 ($ $ $)) (-15 -2976 ($ $ $)) (-15 -2402 ($ $ $)) (-15 -2415 ($ $ $)) (-15 -2387 ($ $)) (-15 -3626 ($ $ $)) (-15 -3626 ($ $)))) +((-3263 (((-1269) (-644 (-52))) 24)) (-4397 (((-1269) (-1157) (-862)) 14) (((-1269) (-862)) 9) (((-1269) (-1157)) 11))) +(((-863) (-10 -7 (-15 -4397 ((-1269) (-1157))) (-15 -4397 ((-1269) (-862))) (-15 -4397 ((-1269) (-1157) (-862))) (-15 -3263 ((-1269) (-644 (-52)))))) (T -863)) +((-3263 (*1 *2 *3) (-12 (-5 *3 (-644 (-52))) (-5 *2 (-1269)) (-5 *1 (-863)))) (-4397 (*1 *2 *3 *4) (-12 (-5 *3 (-1157)) (-5 *4 (-862)) (-5 *2 (-1269)) (-5 *1 (-863)))) (-4397 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1269)) (-5 *1 (-863)))) (-4397 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-863))))) +(-10 -7 (-15 -4397 ((-1269) (-1157))) (-15 -4397 ((-1269) (-862))) (-15 -4397 ((-1269) (-1157) (-862))) (-15 -3263 ((-1269) (-644 (-52))))) +((-2986 (((-112) $ $) NIL)) (-1338 (((-3 $ "failed") (-1175)) 39)) (-4049 (((-771)) 32)) (-1415 (($) NIL)) (-1920 (($ $ $) NIL) (($) NIL T CONST)) (-3038 (($ $ $) NIL) (($) NIL T CONST)) (-4051 (((-921) $) 29)) (-3151 (((-1157) $) 46)) (-2104 (($ (-921)) 28)) (-4059 (((-1119) $) NIL)) (-3136 (((-1175) $) 13) (((-538) $) 19) (((-892 (-381)) $) 26) (((-892 (-566)) $) 22)) (-2479 (((-862) $) 16)) (-3900 (((-112) $ $) NIL)) (-3019 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 43)) (-3004 (((-112) $ $) NIL)) (-2977 (((-112) $ $) 41))) +(((-864 |#1|) (-13 (-844) (-614 (-1175)) (-614 (-538)) (-614 (-892 (-381))) (-614 (-892 (-566))) (-10 -8 (-15 -1338 ((-3 $ "failed") (-1175))))) (-644 (-1175))) (T -864)) +((-1338 (*1 *1 *2) (|partial| -12 (-5 *2 (-1175)) (-5 *1 (-864 *3)) (-14 *3 (-644 *2))))) +(-13 (-844) (-614 (-1175)) (-614 (-538)) (-614 (-892 (-381))) (-614 (-892 (-566))) (-10 -8 (-15 -1338 ((-3 $ "failed") (-1175))))) +((-2986 (((-112) $ $) NIL)) (-2598 (((-508) $) 9)) (-4227 (((-644 (-441)) $) 13)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) 21)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 16))) +(((-865) (-13 (-1099) (-10 -8 (-15 -2598 ((-508) $)) (-15 -4227 ((-644 (-441)) $))))) (T -865)) +((-2598 (*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-865)))) (-4227 (*1 *2 *1) (-12 (-5 *2 (-644 (-441))) (-5 *1 (-865))))) +(-13 (-1099) (-10 -8 (-15 -2598 ((-508) $)) (-15 -4227 ((-644 (-441)) $)))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-1811 (($) NIL T CONST)) (-3757 (((-3 $ "failed") $) NIL)) (-2264 (((-112) $) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) NIL) (($ (-566)) NIL) (($ (-952 |#1|)) NIL) (((-952 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-172)))) (-1558 (((-771)) NIL T CONST)) (-2580 (((-1269) (-771)) NIL)) (-3900 (((-112) $ $) NIL)) (-2446 (($) NIL T CONST)) (-2459 (($) NIL T CONST)) (-2952 (((-112) $ $) NIL)) (-3077 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))))) +(((-866 |#1| |#2| |#3| |#4|) (-13 (-1049) (-492 (-952 |#1|)) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -3077 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2580 ((-1269) (-771))))) (-1049) (-644 (-1175)) (-644 (-771)) (-771)) (T -866)) +((-3077 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-866 *2 *3 *4 *5)) (-4 *2 (-365)) (-4 *2 (-1049)) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-771))) (-14 *5 (-771)))) (-2580 (*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1269)) (-5 *1 (-866 *4 *5 *6 *7)) (-4 *4 (-1049)) (-14 *5 (-644 (-1175))) (-14 *6 (-644 *3)) (-14 *7 *3)))) +(-13 (-1049) (-492 (-952 |#1|)) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -3077 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2580 ((-1269) (-771))))) +((-3164 (((-3 (-174 |#3|) "failed") (-771) (-771) |#2| |#2|) 43)) (-2795 (((-3 (-409 |#3|) "failed") (-771) (-771) |#2| |#2|) 34))) +(((-867 |#1| |#2| |#3|) (-10 -7 (-15 -2795 ((-3 (-409 |#3|) "failed") (-771) (-771) |#2| |#2|)) (-15 -3164 ((-3 (-174 |#3|) "failed") (-771) (-771) |#2| |#2|))) (-365) (-1255 |#1|) (-1240 |#1|)) (T -867)) +((-3164 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-771)) (-4 *5 (-365)) (-5 *2 (-174 *6)) (-5 *1 (-867 *5 *4 *6)) (-4 *4 (-1255 *5)) (-4 *6 (-1240 *5)))) (-2795 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-771)) (-4 *5 (-365)) (-5 *2 (-409 *6)) (-5 *1 (-867 *5 *4 *6)) (-4 *4 (-1255 *5)) (-4 *6 (-1240 *5))))) +(-10 -7 (-15 -2795 ((-3 (-409 |#3|) "failed") (-771) (-771) |#2| |#2|)) (-15 -3164 ((-3 (-174 |#3|) "failed") (-771) (-771) |#2| |#2|))) +((-2795 (((-3 (-409 (-1237 |#2| |#1|)) "failed") (-771) (-771) (-1256 |#1| |#2| |#3|)) 30) (((-3 (-409 (-1237 |#2| |#1|)) "failed") (-771) (-771) (-1256 |#1| |#2| |#3|) (-1256 |#1| |#2| |#3|)) 28))) +(((-868 |#1| |#2| |#3|) (-10 -7 (-15 -2795 ((-3 (-409 (-1237 |#2| |#1|)) "failed") (-771) (-771) (-1256 |#1| |#2| |#3|) (-1256 |#1| |#2| |#3|))) (-15 -2795 ((-3 (-409 (-1237 |#2| |#1|)) "failed") (-771) (-771) (-1256 |#1| |#2| |#3|)))) (-365) (-1175) |#1|) (T -868)) +((-2795 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-771)) (-5 *4 (-1256 *5 *6 *7)) (-4 *5 (-365)) (-14 *6 (-1175)) (-14 *7 *5) (-5 *2 (-409 (-1237 *6 *5))) (-5 *1 (-868 *5 *6 *7)))) (-2795 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-771)) (-5 *4 (-1256 *5 *6 *7)) (-4 *5 (-365)) (-14 *6 (-1175)) (-14 *7 *5) (-5 *2 (-409 (-1237 *6 *5))) (-5 *1 (-868 *5 *6 *7))))) +(-10 -7 (-15 -2795 ((-3 (-409 (-1237 |#2| |#1|)) "failed") (-771) (-771) (-1256 |#1| |#2| |#3|) (-1256 |#1| |#2| |#3|))) (-15 -2795 ((-3 (-409 (-1237 |#2| |#1|)) "failed") (-771) (-771) (-1256 |#1| |#2| |#3|)))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) 47)) (-3087 (($ $) 46)) (-1716 (((-112) $) 44)) (-3174 (((-3 $ "failed") $ $) 20)) (-2338 (($ $ (-566)) 68)) (-2761 (((-112) $ $) 65)) (-1811 (($) 18 T CONST)) (-4175 (($ (-1171 (-566)) (-566)) 67)) (-2925 (($ $ $) 61)) (-3757 (((-3 $ "failed") $) 37)) (-2707 (($ $) 70)) (-2937 (($ $ $) 62)) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) 57)) (-1802 (((-771) $) 75)) (-2264 (((-112) $) 35)) (-2495 (((-3 (-644 $) "failed") (-644 $) $) 58)) (-2579 (((-566)) 72)) (-1533 (((-566) $) 71)) (-2120 (($ $ $) 52) (($ (-644 $)) 51)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-2162 (($ $ $) 54) (($ (-644 $)) 53)) (-2585 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2050 (($ $ (-566)) 74)) (-2976 (((-3 $ "failed") $ $) 48)) (-2840 (((-3 (-644 $) "failed") (-644 $) $) 56)) (-1383 (((-771) $) 64)) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) 63)) (-3378 (((-1155 (-566)) $) 76)) (-4122 (($ $) 73)) (-2479 (((-862) $) 12) (($ (-566)) 33) (($ $) 49)) (-1558 (((-771)) 32 T CONST)) (-3900 (((-112) $ $) 9)) (-1333 (((-112) $ $) 45)) (-3649 (((-566) $ (-566)) 69)) (-2446 (($) 19 T CONST)) (-2459 (($) 34 T CONST)) (-2952 (((-112) $ $) 6)) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27))) +(((-869 |#1|) (-140) (-566)) (T -869)) +((-3378 (*1 *2 *1) (-12 (-4 *1 (-869 *3)) (-5 *2 (-1155 (-566))))) (-1802 (*1 *2 *1) (-12 (-4 *1 (-869 *3)) (-5 *2 (-771)))) (-2050 (*1 *1 *1 *2) (-12 (-4 *1 (-869 *3)) (-5 *2 (-566)))) (-4122 (*1 *1 *1) (-4 *1 (-869 *2))) (-2579 (*1 *2) (-12 (-4 *1 (-869 *3)) (-5 *2 (-566)))) (-1533 (*1 *2 *1) (-12 (-4 *1 (-869 *3)) (-5 *2 (-566)))) (-2707 (*1 *1 *1) (-4 *1 (-869 *2))) (-3649 (*1 *2 *1 *2) (-12 (-4 *1 (-869 *3)) (-5 *2 (-566)))) (-2338 (*1 *1 *1 *2) (-12 (-4 *1 (-869 *3)) (-5 *2 (-566)))) (-4175 (*1 *1 *2 *3) (-12 (-5 *2 (-1171 (-566))) (-5 *3 (-566)) (-4 *1 (-869 *4))))) +(-13 (-308) (-147) (-10 -8 (-15 -3378 ((-1155 (-566)) $)) (-15 -1802 ((-771) $)) (-15 -2050 ($ $ (-566))) (-15 -4122 ($ $)) (-15 -2579 ((-566))) (-15 -1533 ((-566) $)) (-15 -2707 ($ $)) (-15 -3649 ((-566) $ (-566))) (-15 -2338 ($ $ (-566))) (-15 -4175 ($ (-1171 (-566)) (-566))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-616 (-566)) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-291) . T) ((-308) . T) ((-454) . T) ((-558) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 $) . T) ((-640 $) . T) ((-717 $) . T) ((-726) . T) ((-920) . T) ((-1051 $) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-1716 (((-112) $) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-2338 (($ $ (-566)) NIL)) (-2761 (((-112) $ $) NIL)) (-1811 (($) NIL T CONST)) (-4175 (($ (-1171 (-566)) (-566)) NIL)) (-2925 (($ $ $) NIL)) (-3757 (((-3 $ "failed") $) NIL)) (-2707 (($ $) NIL)) (-2937 (($ $ $) NIL)) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) NIL)) (-1802 (((-771) $) NIL)) (-2264 (((-112) $) NIL)) (-2495 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2579 (((-566)) NIL)) (-1533 (((-566) $) NIL)) (-2120 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2162 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2585 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2050 (($ $ (-566)) NIL)) (-2976 (((-3 $ "failed") $ $) NIL)) (-2840 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1383 (((-771) $) NIL)) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL)) (-3378 (((-1155 (-566)) $) NIL)) (-4122 (($ $) NIL)) (-2479 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL)) (-1558 (((-771)) NIL T CONST)) (-3900 (((-112) $ $) NIL)) (-1333 (((-112) $ $) NIL)) (-3649 (((-566) $ (-566)) NIL)) (-2446 (($) NIL T CONST)) (-2459 (($) NIL T CONST)) (-2952 (((-112) $ $) NIL)) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL))) +(((-870 |#1|) (-869 |#1|) (-566)) (T -870)) +NIL +(-869 |#1|) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-2488 (((-870 |#1|) $) NIL (|has| (-870 |#1|) (-308)))) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-1716 (((-112) $) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-4058 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-870 |#1|) (-909)))) (-3980 (($ $) NIL)) (-3348 (((-420 $) $) NIL)) (-4262 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| (-870 |#1|) (-909)))) (-2761 (((-112) $ $) NIL)) (-2920 (((-566) $) NIL (|has| (-870 |#1|) (-820)))) (-1811 (($) NIL T CONST)) (-2980 (((-3 (-870 |#1|) "failed") $) NIL) (((-3 (-1175) "failed") $) NIL (|has| (-870 |#1|) (-1038 (-1175)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| (-870 |#1|) (-1038 (-566)))) (((-3 (-566) "failed") $) NIL (|has| (-870 |#1|) (-1038 (-566))))) (-1709 (((-870 |#1|) $) NIL) (((-1175) $) NIL (|has| (-870 |#1|) (-1038 (-1175)))) (((-409 (-566)) $) NIL (|has| (-870 |#1|) (-1038 (-566)))) (((-566) $) NIL (|has| (-870 |#1|) (-1038 (-566))))) (-3967 (($ $) NIL) (($ (-566) $) NIL)) (-2925 (($ $ $) NIL)) (-2275 (((-689 (-566)) (-689 $)) NIL (|has| (-870 |#1|) (-639 (-566)))) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| (-870 |#1|) (-639 (-566)))) (((-2 (|:| -4196 (-689 (-870 |#1|))) (|:| |vec| (-1264 (-870 |#1|)))) (-689 $) (-1264 $)) NIL) (((-689 (-870 |#1|)) (-689 $)) NIL)) (-3757 (((-3 $ "failed") $) NIL)) (-1415 (($) NIL (|has| (-870 |#1|) (-547)))) (-2937 (($ $ $) NIL)) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) NIL)) (-4188 (((-112) $) NIL)) (-2133 (((-112) $) NIL (|has| (-870 |#1|) (-820)))) (-1542 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (|has| (-870 |#1|) (-886 (-566)))) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (|has| (-870 |#1|) (-886 (-381))))) (-2264 (((-112) $) NIL)) (-1579 (($ $) NIL)) (-4157 (((-870 |#1|) $) NIL)) (-4278 (((-3 $ "failed") $) NIL (|has| (-870 |#1|) (-1150)))) (-3420 (((-112) $) NIL (|has| (-870 |#1|) (-820)))) (-2495 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1920 (($ $ $) NIL (|has| (-870 |#1|) (-850)))) (-3038 (($ $ $) NIL (|has| (-870 |#1|) (-850)))) (-3080 (($ (-1 (-870 |#1|) (-870 |#1|)) $) NIL)) (-2120 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3151 (((-1157) $) NIL)) (-2577 (($ $) NIL)) (-3968 (($) NIL (|has| (-870 |#1|) (-1150)) CONST)) (-4059 (((-1119) $) NIL)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2162 (($ $ $) NIL) (($ (-644 $)) NIL)) (-4305 (($ $) NIL (|has| (-870 |#1|) (-308)))) (-2001 (((-870 |#1|) $) NIL (|has| (-870 |#1|) (-547)))) (-1500 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-870 |#1|) (-909)))) (-3917 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-870 |#1|) (-909)))) (-2325 (((-420 $) $) NIL)) (-2585 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2976 (((-3 $ "failed") $ $) NIL)) (-2840 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3297 (($ $ (-644 (-870 |#1|)) (-644 (-870 |#1|))) NIL (|has| (-870 |#1|) (-310 (-870 |#1|)))) (($ $ (-870 |#1|) (-870 |#1|)) NIL (|has| (-870 |#1|) (-310 (-870 |#1|)))) (($ $ (-295 (-870 |#1|))) NIL (|has| (-870 |#1|) (-310 (-870 |#1|)))) (($ $ (-644 (-295 (-870 |#1|)))) NIL (|has| (-870 |#1|) (-310 (-870 |#1|)))) (($ $ (-644 (-1175)) (-644 (-870 |#1|))) NIL (|has| (-870 |#1|) (-516 (-1175) (-870 |#1|)))) (($ $ (-1175) (-870 |#1|)) NIL (|has| (-870 |#1|) (-516 (-1175) (-870 |#1|))))) (-1383 (((-771) $) NIL)) (-4376 (($ $ (-870 |#1|)) NIL (|has| (-870 |#1|) (-287 (-870 |#1|) (-870 |#1|))))) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL)) (-3526 (($ $) NIL (|has| (-870 |#1|) (-233))) (($ $ (-771)) NIL (|has| (-870 |#1|) (-233))) (($ $ (-1175)) NIL (|has| (-870 |#1|) (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| (-870 |#1|) (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| (-870 |#1|) (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| (-870 |#1|) (-900 (-1175)))) (($ $ (-1 (-870 |#1|) (-870 |#1|)) (-771)) NIL) (($ $ (-1 (-870 |#1|) (-870 |#1|))) NIL)) (-1375 (($ $) NIL)) (-4167 (((-870 |#1|) $) NIL)) (-3136 (((-892 (-566)) $) NIL (|has| (-870 |#1|) (-614 (-892 (-566))))) (((-892 (-381)) $) NIL (|has| (-870 |#1|) (-614 (-892 (-381))))) (((-538) $) NIL (|has| (-870 |#1|) (-614 (-538)))) (((-381) $) NIL (|has| (-870 |#1|) (-1022))) (((-225) $) NIL (|has| (-870 |#1|) (-1022)))) (-3253 (((-174 (-409 (-566))) $) NIL)) (-3233 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| (-870 |#1|) (-909))))) (-2479 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL) (($ (-870 |#1|)) NIL) (($ (-1175)) NIL (|has| (-870 |#1|) (-1038 (-1175))))) (-2645 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| $ (-145)) (|has| (-870 |#1|) (-909))) (|has| (-870 |#1|) (-145))))) (-1558 (((-771)) NIL T CONST)) (-3908 (((-870 |#1|) $) NIL (|has| (-870 |#1|) (-547)))) (-3900 (((-112) $ $) NIL)) (-1333 (((-112) $ $) NIL)) (-3649 (((-409 (-566)) $ (-566)) NIL)) (-4298 (($ $) NIL (|has| (-870 |#1|) (-820)))) (-2446 (($) NIL T CONST)) (-2459 (($) NIL T CONST)) (-2834 (($ $) NIL (|has| (-870 |#1|) (-233))) (($ $ (-771)) NIL (|has| (-870 |#1|) (-233))) (($ $ (-1175)) NIL (|has| (-870 |#1|) (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| (-870 |#1|) (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| (-870 |#1|) (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| (-870 |#1|) (-900 (-1175)))) (($ $ (-1 (-870 |#1|) (-870 |#1|)) (-771)) NIL) (($ $ (-1 (-870 |#1|) (-870 |#1|))) NIL)) (-3019 (((-112) $ $) NIL (|has| (-870 |#1|) (-850)))) (-2990 (((-112) $ $) NIL (|has| (-870 |#1|) (-850)))) (-2952 (((-112) $ $) NIL)) (-3004 (((-112) $ $) NIL (|has| (-870 |#1|) (-850)))) (-2977 (((-112) $ $) NIL (|has| (-870 |#1|) (-850)))) (-3077 (($ $ $) NIL) (($ (-870 |#1|) (-870 |#1|)) NIL)) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ (-870 |#1|) $) NIL) (($ $ (-870 |#1|)) NIL))) +(((-871 |#1|) (-13 (-992 (-870 |#1|)) (-10 -8 (-15 -3649 ((-409 (-566)) $ (-566))) (-15 -3253 ((-174 (-409 (-566))) $)) (-15 -3967 ($ $)) (-15 -3967 ($ (-566) $)))) (-566)) (T -871)) +((-3649 (*1 *2 *1 *3) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-871 *4)) (-14 *4 *3) (-5 *3 (-566)))) (-3253 (*1 *2 *1) (-12 (-5 *2 (-174 (-409 (-566)))) (-5 *1 (-871 *3)) (-14 *3 (-566)))) (-3967 (*1 *1 *1) (-12 (-5 *1 (-871 *2)) (-14 *2 (-566)))) (-3967 (*1 *1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-871 *3)) (-14 *3 *2)))) +(-13 (-992 (-870 |#1|)) (-10 -8 (-15 -3649 ((-409 (-566)) $ (-566))) (-15 -3253 ((-174 (-409 (-566))) $)) (-15 -3967 ($ $)) (-15 -3967 ($ (-566) $)))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-2488 ((|#2| $) NIL (|has| |#2| (-308)))) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-1716 (((-112) $) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-4058 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-3980 (($ $) NIL)) (-3348 (((-420 $) $) NIL)) (-4262 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-2761 (((-112) $ $) NIL)) (-2920 (((-566) $) NIL (|has| |#2| (-820)))) (-1811 (($) NIL T CONST)) (-2980 (((-3 |#2| "failed") $) NIL) (((-3 (-1175) "failed") $) NIL (|has| |#2| (-1038 (-1175)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#2| (-1038 (-566)))) (((-3 (-566) "failed") $) NIL (|has| |#2| (-1038 (-566))))) (-1709 ((|#2| $) NIL) (((-1175) $) NIL (|has| |#2| (-1038 (-1175)))) (((-409 (-566)) $) NIL (|has| |#2| (-1038 (-566)))) (((-566) $) NIL (|has| |#2| (-1038 (-566))))) (-3967 (($ $) 35) (($ (-566) $) 38)) (-2925 (($ $ $) NIL)) (-2275 (((-689 (-566)) (-689 $)) NIL (|has| |#2| (-639 (-566)))) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| |#2| (-639 (-566)))) (((-2 (|:| -4196 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 $) (-1264 $)) NIL) (((-689 |#2|) (-689 $)) NIL)) (-3757 (((-3 $ "failed") $) 64)) (-1415 (($) NIL (|has| |#2| (-547)))) (-2937 (($ $ $) NIL)) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) NIL)) (-4188 (((-112) $) NIL)) (-2133 (((-112) $) NIL (|has| |#2| (-820)))) (-1542 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (|has| |#2| (-886 (-566)))) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (|has| |#2| (-886 (-381))))) (-2264 (((-112) $) NIL)) (-1579 (($ $) NIL)) (-4157 ((|#2| $) NIL)) (-4278 (((-3 $ "failed") $) NIL (|has| |#2| (-1150)))) (-3420 (((-112) $) NIL (|has| |#2| (-820)))) (-2495 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1920 (($ $ $) NIL (|has| |#2| (-850)))) (-3038 (($ $ $) NIL (|has| |#2| (-850)))) (-3080 (($ (-1 |#2| |#2|) $) NIL)) (-2120 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3151 (((-1157) $) NIL)) (-2577 (($ $) 60)) (-3968 (($) NIL (|has| |#2| (-1150)) CONST)) (-4059 (((-1119) $) NIL)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2162 (($ $ $) NIL) (($ (-644 $)) NIL)) (-4305 (($ $) NIL (|has| |#2| (-308)))) (-2001 ((|#2| $) NIL (|has| |#2| (-547)))) (-1500 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-3917 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-2325 (((-420 $) $) NIL)) (-2585 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2976 (((-3 $ "failed") $ $) NIL)) (-2840 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3297 (($ $ (-644 |#2|) (-644 |#2|)) NIL (|has| |#2| (-310 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-310 |#2|))) (($ $ (-295 |#2|)) NIL (|has| |#2| (-310 |#2|))) (($ $ (-644 (-295 |#2|))) NIL (|has| |#2| (-310 |#2|))) (($ $ (-644 (-1175)) (-644 |#2|)) NIL (|has| |#2| (-516 (-1175) |#2|))) (($ $ (-1175) |#2|) NIL (|has| |#2| (-516 (-1175) |#2|)))) (-1383 (((-771) $) NIL)) (-4376 (($ $ |#2|) NIL (|has| |#2| (-287 |#2| |#2|)))) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL)) (-3526 (($ $) NIL (|has| |#2| (-233))) (($ $ (-771)) NIL (|has| |#2| (-233))) (($ $ (-1175)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1 |#2| |#2|) (-771)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1375 (($ $) NIL)) (-4167 ((|#2| $) NIL)) (-3136 (((-892 (-566)) $) NIL (|has| |#2| (-614 (-892 (-566))))) (((-892 (-381)) $) NIL (|has| |#2| (-614 (-892 (-381))))) (((-538) $) NIL (|has| |#2| (-614 (-538)))) (((-381) $) NIL (|has| |#2| (-1022))) (((-225) $) NIL (|has| |#2| (-1022)))) (-3253 (((-174 (-409 (-566))) $) 78)) (-3233 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-909))))) (-2479 (((-862) $) 108) (($ (-566)) 20) (($ $) NIL) (($ (-409 (-566))) 25) (($ |#2|) 19) (($ (-1175)) NIL (|has| |#2| (-1038 (-1175))))) (-2645 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| $ (-145)) (|has| |#2| (-909))) (|has| |#2| (-145))))) (-1558 (((-771)) NIL T CONST)) (-3908 ((|#2| $) NIL (|has| |#2| (-547)))) (-3900 (((-112) $ $) NIL)) (-1333 (((-112) $ $) NIL)) (-3649 (((-409 (-566)) $ (-566)) 71)) (-4298 (($ $) NIL (|has| |#2| (-820)))) (-2446 (($) 15 T CONST)) (-2459 (($) 17 T CONST)) (-2834 (($ $) NIL (|has| |#2| (-233))) (($ $ (-771)) NIL (|has| |#2| (-233))) (($ $ (-1175)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1 |#2| |#2|) (-771)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3019 (((-112) $ $) NIL (|has| |#2| (-850)))) (-2990 (((-112) $ $) NIL (|has| |#2| (-850)))) (-2952 (((-112) $ $) 46)) (-3004 (((-112) $ $) NIL (|has| |#2| (-850)))) (-2977 (((-112) $ $) NIL (|has| |#2| (-850)))) (-3077 (($ $ $) 24) (($ |#2| |#2|) 65)) (-3065 (($ $) 50) (($ $ $) 52)) (-3052 (($ $ $) 48)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) 61)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 53) (($ $ $) 55) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ |#2| $) 66) (($ $ |#2|) NIL))) +(((-872 |#1| |#2|) (-13 (-992 |#2|) (-10 -8 (-15 -3649 ((-409 (-566)) $ (-566))) (-15 -3253 ((-174 (-409 (-566))) $)) (-15 -3967 ($ $)) (-15 -3967 ($ (-566) $)))) (-566) (-869 |#1|)) (T -872)) +((-3649 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-409 (-566))) (-5 *1 (-872 *4 *5)) (-5 *3 (-566)) (-4 *5 (-869 *4)))) (-3253 (*1 *2 *1) (-12 (-14 *3 (-566)) (-5 *2 (-174 (-409 (-566)))) (-5 *1 (-872 *3 *4)) (-4 *4 (-869 *3)))) (-3967 (*1 *1 *1) (-12 (-14 *2 (-566)) (-5 *1 (-872 *2 *3)) (-4 *3 (-869 *2)))) (-3967 (*1 *1 *2 *1) (-12 (-5 *2 (-566)) (-14 *3 *2) (-5 *1 (-872 *3 *4)) (-4 *4 (-869 *3))))) +(-13 (-992 |#2|) (-10 -8 (-15 -3649 ((-409 (-566)) $ (-566))) (-15 -3253 ((-174 (-409 (-566))) $)) (-15 -3967 ($ $)) (-15 -3967 ($ (-566) $)))) +((-2986 (((-112) $ $) NIL (-12 (|has| |#1| (-1099)) (|has| |#2| (-1099))))) (-3663 ((|#2| $) 12)) (-2143 (($ |#1| |#2|) 9)) (-3151 (((-1157) $) NIL (-12 (|has| |#1| (-1099)) (|has| |#2| (-1099))))) (-4059 (((-1119) $) NIL (-12 (|has| |#1| (-1099)) (|has| |#2| (-1099))))) (-4080 ((|#1| $) 11)) (-2489 (($ |#1| |#2|) 10)) (-2479 (((-862) $) 18 (-2809 (-12 (|has| |#1| (-613 (-862))) (|has| |#2| (-613 (-862)))) (-12 (|has| |#1| (-1099)) (|has| |#2| (-1099)))))) (-3900 (((-112) $ $) NIL (-12 (|has| |#1| (-1099)) (|has| |#2| (-1099))))) (-2952 (((-112) $ $) 23 (-12 (|has| |#1| (-1099)) (|has| |#2| (-1099)))))) +(((-873 |#1| |#2|) (-13 (-1214) (-10 -8 (IF (|has| |#1| (-613 (-862))) (IF (|has| |#2| (-613 (-862))) (-6 (-613 (-862))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1099)) (IF (|has| |#2| (-1099)) (-6 (-1099)) |%noBranch|) |%noBranch|) (-15 -2143 ($ |#1| |#2|)) (-15 -2489 ($ |#1| |#2|)) (-15 -4080 (|#1| $)) (-15 -3663 (|#2| $)))) (-1214) (-1214)) (T -873)) +((-2143 (*1 *1 *2 *3) (-12 (-5 *1 (-873 *2 *3)) (-4 *2 (-1214)) (-4 *3 (-1214)))) (-2489 (*1 *1 *2 *3) (-12 (-5 *1 (-873 *2 *3)) (-4 *2 (-1214)) (-4 *3 (-1214)))) (-4080 (*1 *2 *1) (-12 (-4 *2 (-1214)) (-5 *1 (-873 *2 *3)) (-4 *3 (-1214)))) (-3663 (*1 *2 *1) (-12 (-4 *2 (-1214)) (-5 *1 (-873 *3 *2)) (-4 *3 (-1214))))) +(-13 (-1214) (-10 -8 (IF (|has| |#1| (-613 (-862))) (IF (|has| |#2| (-613 (-862))) (-6 (-613 (-862))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1099)) (IF (|has| |#2| (-1099)) (-6 (-1099)) |%noBranch|) |%noBranch|) (-15 -2143 ($ |#1| |#2|)) (-15 -2489 ($ |#1| |#2|)) (-15 -4080 (|#1| $)) (-15 -3663 (|#2| $)))) +((-2986 (((-112) $ $) NIL)) (-3472 (((-566) $) 16)) (-4132 (($ (-157)) 13)) (-3787 (($ (-157)) 14)) (-3151 (((-1157) $) NIL)) (-2059 (((-157) $) 15)) (-4059 (((-1119) $) NIL)) (-2216 (($ (-157)) 11)) (-1840 (($ (-157)) 10)) (-2479 (((-862) $) 24) (($ (-157)) 17)) (-3232 (($ (-157)) 12)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-874) (-13 (-1099) (-10 -8 (-15 -1840 ($ (-157))) (-15 -2216 ($ (-157))) (-15 -3232 ($ (-157))) (-15 -4132 ($ (-157))) (-15 -3787 ($ (-157))) (-15 -2059 ((-157) $)) (-15 -3472 ((-566) $)) (-15 -2479 ($ (-157)))))) (T -874)) +((-1840 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-874)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-874)))) (-3232 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-874)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-874)))) (-3787 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-874)))) (-2059 (*1 *2 *1) (-12 (-5 *2 (-157)) (-5 *1 (-874)))) (-3472 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-874)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-874))))) +(-13 (-1099) (-10 -8 (-15 -1840 ($ (-157))) (-15 -2216 ($ (-157))) (-15 -3232 ($ (-157))) (-15 -4132 ($ (-157))) (-15 -3787 ($ (-157))) (-15 -2059 ((-157) $)) (-15 -3472 ((-566) $)) (-15 -2479 ($ (-157))))) +((-2479 (((-317 (-566)) (-409 (-952 (-48)))) 23) (((-317 (-566)) (-952 (-48))) 18))) +(((-875) (-10 -7 (-15 -2479 ((-317 (-566)) (-952 (-48)))) (-15 -2479 ((-317 (-566)) (-409 (-952 (-48))))))) (T -875)) +((-2479 (*1 *2 *3) (-12 (-5 *3 (-409 (-952 (-48)))) (-5 *2 (-317 (-566))) (-5 *1 (-875)))) (-2479 (*1 *2 *3) (-12 (-5 *3 (-952 (-48))) (-5 *2 (-317 (-566))) (-5 *1 (-875))))) +(-10 -7 (-15 -2479 ((-317 (-566)) (-952 (-48)))) (-15 -2479 ((-317 (-566)) (-409 (-952 (-48)))))) +((-3080 (((-877 |#2|) (-1 |#2| |#1|) (-877 |#1|)) 15))) +(((-876 |#1| |#2|) (-10 -7 (-15 -3080 ((-877 |#2|) (-1 |#2| |#1|) (-877 |#1|)))) (-1214) (-1214)) (T -876)) +((-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-877 *5)) (-4 *5 (-1214)) (-4 *6 (-1214)) (-5 *2 (-877 *6)) (-5 *1 (-876 *5 *6))))) +(-10 -7 (-15 -3080 ((-877 |#2|) (-1 |#2| |#1|) (-877 |#1|)))) +((-2269 (($ |#1| |#1|) 8)) (-3745 ((|#1| $ (-771)) 15))) +(((-877 |#1|) (-10 -8 (-15 -2269 ($ |#1| |#1|)) (-15 -3745 (|#1| $ (-771)))) (-1214)) (T -877)) +((-3745 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-5 *1 (-877 *2)) (-4 *2 (-1214)))) (-2269 (*1 *1 *2 *2) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1214))))) +(-10 -8 (-15 -2269 ($ |#1| |#1|)) (-15 -3745 (|#1| $ (-771)))) +((-3080 (((-879 |#2|) (-1 |#2| |#1|) (-879 |#1|)) 15))) +(((-878 |#1| |#2|) (-10 -7 (-15 -3080 ((-879 |#2|) (-1 |#2| |#1|) (-879 |#1|)))) (-1214) (-1214)) (T -878)) +((-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-879 *5)) (-4 *5 (-1214)) (-4 *6 (-1214)) (-5 *2 (-879 *6)) (-5 *1 (-878 *5 *6))))) +(-10 -7 (-15 -3080 ((-879 |#2|) (-1 |#2| |#1|) (-879 |#1|)))) +((-2269 (($ |#1| |#1| |#1|) 8)) (-3745 ((|#1| $ (-771)) 15))) +(((-879 |#1|) (-10 -8 (-15 -2269 ($ |#1| |#1| |#1|)) (-15 -3745 (|#1| $ (-771)))) (-1214)) (T -879)) +((-3745 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-5 *1 (-879 *2)) (-4 *2 (-1214)))) (-2269 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-879 *2)) (-4 *2 (-1214))))) +(-10 -8 (-15 -2269 ($ |#1| |#1| |#1|)) (-15 -3745 (|#1| $ (-771)))) +((-3016 (((-644 (-1180)) (-1157)) 9))) +(((-880) (-10 -7 (-15 -3016 ((-644 (-1180)) (-1157))))) (T -880)) +((-3016 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-644 (-1180))) (-5 *1 (-880))))) +(-10 -7 (-15 -3016 ((-644 (-1180)) (-1157)))) +((-3080 (((-882 |#2|) (-1 |#2| |#1|) (-882 |#1|)) 15))) +(((-881 |#1| |#2|) (-10 -7 (-15 -3080 ((-882 |#2|) (-1 |#2| |#1|) (-882 |#1|)))) (-1214) (-1214)) (T -881)) +((-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-882 *5)) (-4 *5 (-1214)) (-4 *6 (-1214)) (-5 *2 (-882 *6)) (-5 *1 (-881 *5 *6))))) +(-10 -7 (-15 -3080 ((-882 |#2|) (-1 |#2| |#1|) (-882 |#1|)))) +((-3743 (($ |#1| |#1| |#1|) 8)) (-3745 ((|#1| $ (-771)) 15))) +(((-882 |#1|) (-10 -8 (-15 -3743 ($ |#1| |#1| |#1|)) (-15 -3745 (|#1| $ (-771)))) (-1214)) (T -882)) +((-3745 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-5 *1 (-882 *2)) (-4 *2 (-1214)))) (-3743 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-882 *2)) (-4 *2 (-1214))))) +(-10 -8 (-15 -3743 ($ |#1| |#1| |#1|)) (-15 -3745 (|#1| $ (-771)))) +((-1817 (((-1155 (-644 (-566))) (-644 (-566)) (-1155 (-644 (-566)))) 48)) (-2357 (((-1155 (-644 (-566))) (-644 (-566)) (-644 (-566))) 44)) (-3735 (((-1155 (-644 (-566))) (-644 (-566))) 58) (((-1155 (-644 (-566))) (-644 (-566)) (-644 (-566))) 56)) (-2401 (((-1155 (-644 (-566))) (-566)) 59)) (-1548 (((-1155 (-644 (-566))) (-566) (-566)) 34) (((-1155 (-644 (-566))) (-566)) 23) (((-1155 (-644 (-566))) (-566) (-566) (-566)) 19)) (-1790 (((-1155 (-644 (-566))) (-1155 (-644 (-566)))) 42)) (-2664 (((-644 (-566)) (-644 (-566))) 41))) +(((-883) (-10 -7 (-15 -1548 ((-1155 (-644 (-566))) (-566) (-566) (-566))) (-15 -1548 ((-1155 (-644 (-566))) (-566))) (-15 -1548 ((-1155 (-644 (-566))) (-566) (-566))) (-15 -2664 ((-644 (-566)) (-644 (-566)))) (-15 -1790 ((-1155 (-644 (-566))) (-1155 (-644 (-566))))) (-15 -2357 ((-1155 (-644 (-566))) (-644 (-566)) (-644 (-566)))) (-15 -1817 ((-1155 (-644 (-566))) (-644 (-566)) (-1155 (-644 (-566))))) (-15 -3735 ((-1155 (-644 (-566))) (-644 (-566)) (-644 (-566)))) (-15 -3735 ((-1155 (-644 (-566))) (-644 (-566)))) (-15 -2401 ((-1155 (-644 (-566))) (-566))))) (T -883)) +((-2401 (*1 *2 *3) (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *1 (-883)) (-5 *3 (-566)))) (-3735 (*1 *2 *3) (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *1 (-883)) (-5 *3 (-644 (-566))))) (-3735 (*1 *2 *3 *3) (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *1 (-883)) (-5 *3 (-644 (-566))))) (-1817 (*1 *2 *3 *2) (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *3 (-644 (-566))) (-5 *1 (-883)))) (-2357 (*1 *2 *3 *3) (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *1 (-883)) (-5 *3 (-644 (-566))))) (-1790 (*1 *2 *2) (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *1 (-883)))) (-2664 (*1 *2 *2) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-883)))) (-1548 (*1 *2 *3 *3) (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *1 (-883)) (-5 *3 (-566)))) (-1548 (*1 *2 *3) (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *1 (-883)) (-5 *3 (-566)))) (-1548 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *1 (-883)) (-5 *3 (-566))))) +(-10 -7 (-15 -1548 ((-1155 (-644 (-566))) (-566) (-566) (-566))) (-15 -1548 ((-1155 (-644 (-566))) (-566))) (-15 -1548 ((-1155 (-644 (-566))) (-566) (-566))) (-15 -2664 ((-644 (-566)) (-644 (-566)))) (-15 -1790 ((-1155 (-644 (-566))) (-1155 (-644 (-566))))) (-15 -2357 ((-1155 (-644 (-566))) (-644 (-566)) (-644 (-566)))) (-15 -1817 ((-1155 (-644 (-566))) (-644 (-566)) (-1155 (-644 (-566))))) (-15 -3735 ((-1155 (-644 (-566))) (-644 (-566)) (-644 (-566)))) (-15 -3735 ((-1155 (-644 (-566))) (-644 (-566)))) (-15 -2401 ((-1155 (-644 (-566))) (-566)))) +((-3136 (((-892 (-381)) $) 9 (|has| |#1| (-614 (-892 (-381))))) (((-892 (-566)) $) 8 (|has| |#1| (-614 (-892 (-566))))))) +(((-884 |#1|) (-140) (-1214)) (T -884)) +NIL +(-13 (-10 -7 (IF (|has| |t#1| (-614 (-892 (-566)))) (-6 (-614 (-892 (-566)))) |%noBranch|) (IF (|has| |t#1| (-614 (-892 (-381)))) (-6 (-614 (-892 (-381)))) |%noBranch|))) +(((-614 (-892 (-381))) |has| |#1| (-614 (-892 (-381)))) ((-614 (-892 (-566))) |has| |#1| (-614 (-892 (-566))))) +((-2986 (((-112) $ $) NIL)) (-4259 (($) 14)) (-1340 (($ (-889 |#1| |#2|) (-889 |#1| |#3|)) 28)) (-2394 (((-889 |#1| |#3|) $) 16)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-4190 (((-112) $) 22)) (-3266 (($) 19)) (-2479 (((-862) $) 31)) (-3900 (((-112) $ $) NIL)) (-2745 (((-889 |#1| |#2|) $) 15)) (-2952 (((-112) $ $) 26))) +(((-885 |#1| |#2| |#3|) (-13 (-1099) (-10 -8 (-15 -4190 ((-112) $)) (-15 -3266 ($)) (-15 -4259 ($)) (-15 -1340 ($ (-889 |#1| |#2|) (-889 |#1| |#3|))) (-15 -2745 ((-889 |#1| |#2|) $)) (-15 -2394 ((-889 |#1| |#3|) $)))) (-1099) (-1099) (-666 |#2|)) (T -885)) +((-4190 (*1 *2 *1) (-12 (-4 *4 (-1099)) (-5 *2 (-112)) (-5 *1 (-885 *3 *4 *5)) (-4 *3 (-1099)) (-4 *5 (-666 *4)))) (-3266 (*1 *1) (-12 (-4 *3 (-1099)) (-5 *1 (-885 *2 *3 *4)) (-4 *2 (-1099)) (-4 *4 (-666 *3)))) (-4259 (*1 *1) (-12 (-4 *3 (-1099)) (-5 *1 (-885 *2 *3 *4)) (-4 *2 (-1099)) (-4 *4 (-666 *3)))) (-1340 (*1 *1 *2 *3) (-12 (-5 *2 (-889 *4 *5)) (-5 *3 (-889 *4 *6)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-666 *5)) (-5 *1 (-885 *4 *5 *6)))) (-2745 (*1 *2 *1) (-12 (-4 *4 (-1099)) (-5 *2 (-889 *3 *4)) (-5 *1 (-885 *3 *4 *5)) (-4 *3 (-1099)) (-4 *5 (-666 *4)))) (-2394 (*1 *2 *1) (-12 (-4 *4 (-1099)) (-5 *2 (-889 *3 *5)) (-5 *1 (-885 *3 *4 *5)) (-4 *3 (-1099)) (-4 *5 (-666 *4))))) +(-13 (-1099) (-10 -8 (-15 -4190 ((-112) $)) (-15 -3266 ($)) (-15 -4259 ($)) (-15 -1340 ($ (-889 |#1| |#2|) (-889 |#1| |#3|))) (-15 -2745 ((-889 |#1| |#2|) $)) (-15 -2394 ((-889 |#1| |#3|) $)))) +((-2986 (((-112) $ $) 7)) (-1542 (((-889 |#1| $) $ (-892 |#1|) (-889 |#1| $)) 14)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-2479 (((-862) $) 12)) (-3900 (((-112) $ $) 9)) (-2952 (((-112) $ $) 6))) +(((-886 |#1|) (-140) (-1099)) (T -886)) +((-1542 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-889 *4 *1)) (-5 *3 (-892 *4)) (-4 *1 (-886 *4)) (-4 *4 (-1099))))) +(-13 (-1099) (-10 -8 (-15 -1542 ((-889 |t#1| $) $ (-892 |t#1|) (-889 |t#1| $))))) +(((-102) . T) ((-613 (-862)) . T) ((-1099) . T)) +((-1896 (((-112) (-644 |#2|) |#3|) 23) (((-112) |#2| |#3|) 18)) (-4104 (((-889 |#1| |#2|) |#2| |#3|) 45 (-12 (-2387 (|has| |#2| (-1038 (-1175)))) (-2387 (|has| |#2| (-1049))))) (((-644 (-295 (-952 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-1049)) (-2387 (|has| |#2| (-1038 (-1175)))))) (((-644 (-295 |#2|)) |#2| |#3|) 36 (|has| |#2| (-1038 (-1175)))) (((-885 |#1| |#2| (-644 |#2|)) (-644 |#2|) |#3|) 21))) +(((-887 |#1| |#2| |#3|) (-10 -7 (-15 -1896 ((-112) |#2| |#3|)) (-15 -1896 ((-112) (-644 |#2|) |#3|)) (-15 -4104 ((-885 |#1| |#2| (-644 |#2|)) (-644 |#2|) |#3|)) (IF (|has| |#2| (-1038 (-1175))) (-15 -4104 ((-644 (-295 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1049)) (-15 -4104 ((-644 (-295 (-952 |#2|))) |#2| |#3|)) (-15 -4104 ((-889 |#1| |#2|) |#2| |#3|))))) (-1099) (-886 |#1|) (-614 (-892 |#1|))) (T -887)) +((-4104 (*1 *2 *3 *4) (-12 (-4 *5 (-1099)) (-5 *2 (-889 *5 *3)) (-5 *1 (-887 *5 *3 *4)) (-2387 (-4 *3 (-1038 (-1175)))) (-2387 (-4 *3 (-1049))) (-4 *3 (-886 *5)) (-4 *4 (-614 (-892 *5))))) (-4104 (*1 *2 *3 *4) (-12 (-4 *5 (-1099)) (-5 *2 (-644 (-295 (-952 *3)))) (-5 *1 (-887 *5 *3 *4)) (-4 *3 (-1049)) (-2387 (-4 *3 (-1038 (-1175)))) (-4 *3 (-886 *5)) (-4 *4 (-614 (-892 *5))))) (-4104 (*1 *2 *3 *4) (-12 (-4 *5 (-1099)) (-5 *2 (-644 (-295 *3))) (-5 *1 (-887 *5 *3 *4)) (-4 *3 (-1038 (-1175))) (-4 *3 (-886 *5)) (-4 *4 (-614 (-892 *5))))) (-4104 (*1 *2 *3 *4) (-12 (-4 *5 (-1099)) (-4 *6 (-886 *5)) (-5 *2 (-885 *5 *6 (-644 *6))) (-5 *1 (-887 *5 *6 *4)) (-5 *3 (-644 *6)) (-4 *4 (-614 (-892 *5))))) (-1896 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *6)) (-4 *6 (-886 *5)) (-4 *5 (-1099)) (-5 *2 (-112)) (-5 *1 (-887 *5 *6 *4)) (-4 *4 (-614 (-892 *5))))) (-1896 (*1 *2 *3 *4) (-12 (-4 *5 (-1099)) (-5 *2 (-112)) (-5 *1 (-887 *5 *3 *4)) (-4 *3 (-886 *5)) (-4 *4 (-614 (-892 *5)))))) +(-10 -7 (-15 -1896 ((-112) |#2| |#3|)) (-15 -1896 ((-112) (-644 |#2|) |#3|)) (-15 -4104 ((-885 |#1| |#2| (-644 |#2|)) (-644 |#2|) |#3|)) (IF (|has| |#2| (-1038 (-1175))) (-15 -4104 ((-644 (-295 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1049)) (-15 -4104 ((-644 (-295 (-952 |#2|))) |#2| |#3|)) (-15 -4104 ((-889 |#1| |#2|) |#2| |#3|))))) +((-3080 (((-889 |#1| |#3|) (-1 |#3| |#2|) (-889 |#1| |#2|)) 22))) +(((-888 |#1| |#2| |#3|) (-10 -7 (-15 -3080 ((-889 |#1| |#3|) (-1 |#3| |#2|) (-889 |#1| |#2|)))) (-1099) (-1099) (-1099)) (T -888)) +((-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-889 *5 *6)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-889 *5 *7)) (-5 *1 (-888 *5 *6 *7))))) +(-10 -7 (-15 -3080 ((-889 |#1| |#3|) (-1 |#3| |#2|) (-889 |#1| |#2|)))) +((-2986 (((-112) $ $) NIL)) (-1730 (($ $ $) 40)) (-3954 (((-3 (-112) "failed") $ (-892 |#1|)) 37)) (-4259 (($) 12)) (-3151 (((-1157) $) NIL)) (-2404 (($ (-892 |#1|) |#2| $) 20)) (-4059 (((-1119) $) NIL)) (-2431 (((-3 |#2| "failed") (-892 |#1|) $) 51)) (-4190 (((-112) $) 15)) (-3266 (($) 13)) (-2418 (((-644 (-2 (|:| -1928 (-1175)) (|:| -2806 |#2|))) $) 25)) (-2489 (($ (-644 (-2 (|:| -1928 (-1175)) (|:| -2806 |#2|)))) 23)) (-2479 (((-862) $) 45)) (-3900 (((-112) $ $) NIL)) (-1883 (($ (-892 |#1|) |#2| $ |#2|) 49)) (-3567 (($ (-892 |#1|) |#2| $) 48)) (-2952 (((-112) $ $) 42))) +(((-889 |#1| |#2|) (-13 (-1099) (-10 -8 (-15 -4190 ((-112) $)) (-15 -3266 ($)) (-15 -4259 ($)) (-15 -1730 ($ $ $)) (-15 -2431 ((-3 |#2| "failed") (-892 |#1|) $)) (-15 -3567 ($ (-892 |#1|) |#2| $)) (-15 -2404 ($ (-892 |#1|) |#2| $)) (-15 -1883 ($ (-892 |#1|) |#2| $ |#2|)) (-15 -2418 ((-644 (-2 (|:| -1928 (-1175)) (|:| -2806 |#2|))) $)) (-15 -2489 ($ (-644 (-2 (|:| -1928 (-1175)) (|:| -2806 |#2|))))) (-15 -3954 ((-3 (-112) "failed") $ (-892 |#1|))))) (-1099) (-1099)) (T -889)) +((-4190 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)))) (-3266 (*1 *1) (-12 (-5 *1 (-889 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099)))) (-4259 (*1 *1) (-12 (-5 *1 (-889 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099)))) (-1730 (*1 *1 *1 *1) (-12 (-5 *1 (-889 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099)))) (-2431 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-892 *4)) (-4 *4 (-1099)) (-4 *2 (-1099)) (-5 *1 (-889 *4 *2)))) (-3567 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-892 *4)) (-4 *4 (-1099)) (-5 *1 (-889 *4 *3)) (-4 *3 (-1099)))) (-2404 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-892 *4)) (-4 *4 (-1099)) (-5 *1 (-889 *4 *3)) (-4 *3 (-1099)))) (-1883 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-892 *4)) (-4 *4 (-1099)) (-5 *1 (-889 *4 *3)) (-4 *3 (-1099)))) (-2418 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| -1928 (-1175)) (|:| -2806 *4)))) (-5 *1 (-889 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)))) (-2489 (*1 *1 *2) (-12 (-5 *2 (-644 (-2 (|:| -1928 (-1175)) (|:| -2806 *4)))) (-4 *4 (-1099)) (-5 *1 (-889 *3 *4)) (-4 *3 (-1099)))) (-3954 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-892 *4)) (-4 *4 (-1099)) (-5 *2 (-112)) (-5 *1 (-889 *4 *5)) (-4 *5 (-1099))))) +(-13 (-1099) (-10 -8 (-15 -4190 ((-112) $)) (-15 -3266 ($)) (-15 -4259 ($)) (-15 -1730 ($ $ $)) (-15 -2431 ((-3 |#2| "failed") (-892 |#1|) $)) (-15 -3567 ($ (-892 |#1|) |#2| $)) (-15 -2404 ($ (-892 |#1|) |#2| $)) (-15 -1883 ($ (-892 |#1|) |#2| $ |#2|)) (-15 -2418 ((-644 (-2 (|:| -1928 (-1175)) (|:| -2806 |#2|))) $)) (-15 -2489 ($ (-644 (-2 (|:| -1928 (-1175)) (|:| -2806 |#2|))))) (-15 -3954 ((-3 (-112) "failed") $ (-892 |#1|))))) +((-2122 (((-892 |#1|) (-892 |#1|) (-644 (-1175)) (-1 (-112) (-644 |#2|))) 32) (((-892 |#1|) (-892 |#1|) (-644 (-1 (-112) |#2|))) 46) (((-892 |#1|) (-892 |#1|) (-1 (-112) |#2|)) 35)) (-3954 (((-112) (-644 |#2|) (-892 |#1|)) 42) (((-112) |#2| (-892 |#1|)) 36)) (-1541 (((-1 (-112) |#2|) (-892 |#1|)) 16)) (-1945 (((-644 |#2|) (-892 |#1|)) 24)) (-3833 (((-892 |#1|) (-892 |#1|) |#2|) 20))) +(((-890 |#1| |#2|) (-10 -7 (-15 -2122 ((-892 |#1|) (-892 |#1|) (-1 (-112) |#2|))) (-15 -2122 ((-892 |#1|) (-892 |#1|) (-644 (-1 (-112) |#2|)))) (-15 -2122 ((-892 |#1|) (-892 |#1|) (-644 (-1175)) (-1 (-112) (-644 |#2|)))) (-15 -1541 ((-1 (-112) |#2|) (-892 |#1|))) (-15 -3954 ((-112) |#2| (-892 |#1|))) (-15 -3954 ((-112) (-644 |#2|) (-892 |#1|))) (-15 -3833 ((-892 |#1|) (-892 |#1|) |#2|)) (-15 -1945 ((-644 |#2|) (-892 |#1|)))) (-1099) (-1214)) (T -890)) +((-1945 (*1 *2 *3) (-12 (-5 *3 (-892 *4)) (-4 *4 (-1099)) (-5 *2 (-644 *5)) (-5 *1 (-890 *4 *5)) (-4 *5 (-1214)))) (-3833 (*1 *2 *2 *3) (-12 (-5 *2 (-892 *4)) (-4 *4 (-1099)) (-5 *1 (-890 *4 *3)) (-4 *3 (-1214)))) (-3954 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *6)) (-5 *4 (-892 *5)) (-4 *5 (-1099)) (-4 *6 (-1214)) (-5 *2 (-112)) (-5 *1 (-890 *5 *6)))) (-3954 (*1 *2 *3 *4) (-12 (-5 *4 (-892 *5)) (-4 *5 (-1099)) (-5 *2 (-112)) (-5 *1 (-890 *5 *3)) (-4 *3 (-1214)))) (-1541 (*1 *2 *3) (-12 (-5 *3 (-892 *4)) (-4 *4 (-1099)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-890 *4 *5)) (-4 *5 (-1214)))) (-2122 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-892 *5)) (-5 *3 (-644 (-1175))) (-5 *4 (-1 (-112) (-644 *6))) (-4 *5 (-1099)) (-4 *6 (-1214)) (-5 *1 (-890 *5 *6)))) (-2122 (*1 *2 *2 *3) (-12 (-5 *2 (-892 *4)) (-5 *3 (-644 (-1 (-112) *5))) (-4 *4 (-1099)) (-4 *5 (-1214)) (-5 *1 (-890 *4 *5)))) (-2122 (*1 *2 *2 *3) (-12 (-5 *2 (-892 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1099)) (-4 *5 (-1214)) (-5 *1 (-890 *4 *5))))) +(-10 -7 (-15 -2122 ((-892 |#1|) (-892 |#1|) (-1 (-112) |#2|))) (-15 -2122 ((-892 |#1|) (-892 |#1|) (-644 (-1 (-112) |#2|)))) (-15 -2122 ((-892 |#1|) (-892 |#1|) (-644 (-1175)) (-1 (-112) (-644 |#2|)))) (-15 -1541 ((-1 (-112) |#2|) (-892 |#1|))) (-15 -3954 ((-112) |#2| (-892 |#1|))) (-15 -3954 ((-112) (-644 |#2|) (-892 |#1|))) (-15 -3833 ((-892 |#1|) (-892 |#1|) |#2|)) (-15 -1945 ((-644 |#2|) (-892 |#1|)))) +((-3080 (((-892 |#2|) (-1 |#2| |#1|) (-892 |#1|)) 19))) +(((-891 |#1| |#2|) (-10 -7 (-15 -3080 ((-892 |#2|) (-1 |#2| |#1|) (-892 |#1|)))) (-1099) (-1099)) (T -891)) +((-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-892 *5)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-5 *2 (-892 *6)) (-5 *1 (-891 *5 *6))))) +(-10 -7 (-15 -3080 ((-892 |#2|) (-1 |#2| |#1|) (-892 |#1|)))) +((-2986 (((-112) $ $) NIL)) (-3602 (($ $ (-644 (-52))) 74)) (-2485 (((-644 $) $) 138)) (-3176 (((-2 (|:| |var| (-644 (-1175))) (|:| |pred| (-52))) $) 30)) (-3830 (((-112) $) 35)) (-1906 (($ $ (-644 (-1175)) (-52)) 31)) (-3636 (($ $ (-644 (-52))) 73)) (-2980 (((-3 |#1| "failed") $) 71) (((-3 (-1175) "failed") $) 162)) (-1709 ((|#1| $) 68) (((-1175) $) NIL)) (-3637 (($ $) 126)) (-3939 (((-112) $) 55)) (-2682 (((-644 (-52)) $) 50)) (-4368 (($ (-1175) (-112) (-112) (-112)) 75)) (-3214 (((-3 (-644 $) "failed") (-644 $)) 82)) (-2362 (((-112) $) 58)) (-2368 (((-112) $) 57)) (-3151 (((-1157) $) NIL)) (-4075 (((-3 (-644 $) "failed") $) 41)) (-3057 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 48)) (-4092 (((-3 (-2 (|:| |val| $) (|:| -3631 $)) "failed") $) 97)) (-3380 (((-3 (-644 $) "failed") $) 40)) (-2919 (((-3 (-644 $) "failed") $ (-114)) 124) (((-3 (-2 (|:| -1668 (-114)) (|:| |arg| (-644 $))) "failed") $) 107)) (-2604 (((-3 (-644 $) "failed") $) 42)) (-2414 (((-3 (-2 (|:| |val| $) (|:| -3631 (-771))) "failed") $) 45)) (-3895 (((-112) $) 34)) (-4059 (((-1119) $) NIL)) (-3302 (((-112) $) 28)) (-4396 (((-112) $) 52)) (-2830 (((-644 (-52)) $) 130)) (-2665 (((-112) $) 56)) (-4376 (($ (-114) (-644 $)) 104)) (-3410 (((-771) $) 33)) (-3924 (($ $) 72)) (-3136 (($ (-644 $)) 69)) (-1878 (((-112) $) 32)) (-2479 (((-862) $) 63) (($ |#1|) 23) (($ (-1175)) 76)) (-3900 (((-112) $ $) NIL)) (-3833 (($ $ (-52)) 129)) (-2446 (($) 103 T CONST)) (-2459 (($) 83 T CONST)) (-2952 (((-112) $ $) 93)) (-3077 (($ $ $) 117)) (-3052 (($ $ $) 121)) (** (($ $ (-771)) 115) (($ $ $) 64)) (* (($ $ $) 122))) +(((-892 |#1|) (-13 (-1099) (-1038 |#1|) (-1038 (-1175)) (-10 -8 (-15 0 ($) -1573) (-15 1 ($) -1573) (-15 -3380 ((-3 (-644 $) "failed") $)) (-15 -4075 ((-3 (-644 $) "failed") $)) (-15 -2919 ((-3 (-644 $) "failed") $ (-114))) (-15 -2919 ((-3 (-2 (|:| -1668 (-114)) (|:| |arg| (-644 $))) "failed") $)) (-15 -2414 ((-3 (-2 (|:| |val| $) (|:| -3631 (-771))) "failed") $)) (-15 -3057 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2604 ((-3 (-644 $) "failed") $)) (-15 -4092 ((-3 (-2 (|:| |val| $) (|:| -3631 $)) "failed") $)) (-15 -4376 ($ (-114) (-644 $))) (-15 -3052 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-771))) (-15 ** ($ $ $)) (-15 -3077 ($ $ $)) (-15 -3410 ((-771) $)) (-15 -3136 ($ (-644 $))) (-15 -3924 ($ $)) (-15 -3895 ((-112) $)) (-15 -3939 ((-112) $)) (-15 -3830 ((-112) $)) (-15 -1878 ((-112) $)) (-15 -2665 ((-112) $)) (-15 -2368 ((-112) $)) (-15 -2362 ((-112) $)) (-15 -4396 ((-112) $)) (-15 -2682 ((-644 (-52)) $)) (-15 -3636 ($ $ (-644 (-52)))) (-15 -3602 ($ $ (-644 (-52)))) (-15 -4368 ($ (-1175) (-112) (-112) (-112))) (-15 -1906 ($ $ (-644 (-1175)) (-52))) (-15 -3176 ((-2 (|:| |var| (-644 (-1175))) (|:| |pred| (-52))) $)) (-15 -3302 ((-112) $)) (-15 -3637 ($ $)) (-15 -3833 ($ $ (-52))) (-15 -2830 ((-644 (-52)) $)) (-15 -2485 ((-644 $) $)) (-15 -3214 ((-3 (-644 $) "failed") (-644 $))))) (-1099)) (T -892)) +((-2446 (*1 *1) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1099)))) (-2459 (*1 *1) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1099)))) (-3380 (*1 *2 *1) (|partial| -12 (-5 *2 (-644 (-892 *3))) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-4075 (*1 *2 *1) (|partial| -12 (-5 *2 (-644 (-892 *3))) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-2919 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-644 (-892 *4))) (-5 *1 (-892 *4)) (-4 *4 (-1099)))) (-2919 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -1668 (-114)) (|:| |arg| (-644 (-892 *3))))) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-2414 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-892 *3)) (|:| -3631 (-771)))) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-3057 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-892 *3)) (|:| |den| (-892 *3)))) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-2604 (*1 *2 *1) (|partial| -12 (-5 *2 (-644 (-892 *3))) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-4092 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-892 *3)) (|:| -3631 (-892 *3)))) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-4376 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-644 (-892 *4))) (-5 *1 (-892 *4)) (-4 *4 (-1099)))) (-3052 (*1 *1 *1 *1) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1099)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1099)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1099)))) (-3077 (*1 *1 *1 *1) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1099)))) (-3410 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-3136 (*1 *1 *2) (-12 (-5 *2 (-644 (-892 *3))) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-3924 (*1 *1 *1) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1099)))) (-3895 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-3939 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-3830 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-1878 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-2665 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-2368 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-2362 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-4396 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-2682 (*1 *2 *1) (-12 (-5 *2 (-644 (-52))) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-3636 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-52))) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-3602 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-52))) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-4368 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-112)) (-5 *1 (-892 *4)) (-4 *4 (-1099)))) (-1906 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-1175))) (-5 *3 (-52)) (-5 *1 (-892 *4)) (-4 *4 (-1099)))) (-3176 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-644 (-1175))) (|:| |pred| (-52)))) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-3302 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-3637 (*1 *1 *1) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1099)))) (-3833 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-2830 (*1 *2 *1) (-12 (-5 *2 (-644 (-52))) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-2485 (*1 *2 *1) (-12 (-5 *2 (-644 (-892 *3))) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-3214 (*1 *2 *2) (|partial| -12 (-5 *2 (-644 (-892 *3))) (-5 *1 (-892 *3)) (-4 *3 (-1099))))) +(-13 (-1099) (-1038 |#1|) (-1038 (-1175)) (-10 -8 (-15 (-2446) ($) -1573) (-15 (-2459) ($) -1573) (-15 -3380 ((-3 (-644 $) "failed") $)) (-15 -4075 ((-3 (-644 $) "failed") $)) (-15 -2919 ((-3 (-644 $) "failed") $ (-114))) (-15 -2919 ((-3 (-2 (|:| -1668 (-114)) (|:| |arg| (-644 $))) "failed") $)) (-15 -2414 ((-3 (-2 (|:| |val| $) (|:| -3631 (-771))) "failed") $)) (-15 -3057 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2604 ((-3 (-644 $) "failed") $)) (-15 -4092 ((-3 (-2 (|:| |val| $) (|:| -3631 $)) "failed") $)) (-15 -4376 ($ (-114) (-644 $))) (-15 -3052 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-771))) (-15 ** ($ $ $)) (-15 -3077 ($ $ $)) (-15 -3410 ((-771) $)) (-15 -3136 ($ (-644 $))) (-15 -3924 ($ $)) (-15 -3895 ((-112) $)) (-15 -3939 ((-112) $)) (-15 -3830 ((-112) $)) (-15 -1878 ((-112) $)) (-15 -2665 ((-112) $)) (-15 -2368 ((-112) $)) (-15 -2362 ((-112) $)) (-15 -4396 ((-112) $)) (-15 -2682 ((-644 (-52)) $)) (-15 -3636 ($ $ (-644 (-52)))) (-15 -3602 ($ $ (-644 (-52)))) (-15 -4368 ($ (-1175) (-112) (-112) (-112))) (-15 -1906 ($ $ (-644 (-1175)) (-52))) (-15 -3176 ((-2 (|:| |var| (-644 (-1175))) (|:| |pred| (-52))) $)) (-15 -3302 ((-112) $)) (-15 -3637 ($ $)) (-15 -3833 ($ $ (-52))) (-15 -2830 ((-644 (-52)) $)) (-15 -2485 ((-644 $) $)) (-15 -3214 ((-3 (-644 $) "failed") (-644 $))))) +((-2986 (((-112) $ $) NIL)) (-1656 (((-644 |#1|) $) 19)) (-2205 (((-112) $) 49)) (-2980 (((-3 (-672 |#1|) "failed") $) 56)) (-1709 (((-672 |#1|) $) 54)) (-4091 (($ $) 23)) (-1920 (($ $ $) NIL)) (-3038 (($ $ $) NIL)) (-4332 (((-771) $) 61)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-4080 (((-672 |#1|) $) 21)) (-2479 (((-862) $) 47) (($ (-672 |#1|)) 26) (((-819 |#1|) $) 36) (($ |#1|) 25)) (-3900 (((-112) $ $) NIL)) (-2459 (($) 9 T CONST)) (-3585 (((-644 (-672 |#1|)) $) 28)) (-3019 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 12)) (-3004 (((-112) $ $) NIL)) (-2977 (((-112) $ $) 67))) +(((-893 |#1|) (-13 (-850) (-1038 (-672 |#1|)) (-10 -8 (-15 1 ($) -1573) (-15 -2479 ((-819 |#1|) $)) (-15 -2479 ($ |#1|)) (-15 -4080 ((-672 |#1|) $)) (-15 -4332 ((-771) $)) (-15 -3585 ((-644 (-672 |#1|)) $)) (-15 -4091 ($ $)) (-15 -2205 ((-112) $)) (-15 -1656 ((-644 |#1|) $)))) (-850)) (T -893)) +((-2459 (*1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-850)))) (-2479 (*1 *2 *1) (-12 (-5 *2 (-819 *3)) (-5 *1 (-893 *3)) (-4 *3 (-850)))) (-2479 (*1 *1 *2) (-12 (-5 *1 (-893 *2)) (-4 *2 (-850)))) (-4080 (*1 *2 *1) (-12 (-5 *2 (-672 *3)) (-5 *1 (-893 *3)) (-4 *3 (-850)))) (-4332 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-893 *3)) (-4 *3 (-850)))) (-3585 (*1 *2 *1) (-12 (-5 *2 (-644 (-672 *3))) (-5 *1 (-893 *3)) (-4 *3 (-850)))) (-4091 (*1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-850)))) (-2205 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-850)))) (-1656 (*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-893 *3)) (-4 *3 (-850))))) +(-13 (-850) (-1038 (-672 |#1|)) (-10 -8 (-15 (-2459) ($) -1573) (-15 -2479 ((-819 |#1|) $)) (-15 -2479 ($ |#1|)) (-15 -4080 ((-672 |#1|) $)) (-15 -4332 ((-771) $)) (-15 -3585 ((-644 (-672 |#1|)) $)) (-15 -4091 ($ $)) (-15 -2205 ((-112) $)) (-15 -1656 ((-644 |#1|) $)))) +((-3521 ((|#1| |#1| |#1|) 19))) +(((-894 |#1| |#2|) (-10 -7 (-15 -3521 (|#1| |#1| |#1|))) (-1240 |#2|) (-1049)) (T -894)) +((-3521 (*1 *2 *2 *2) (-12 (-4 *3 (-1049)) (-5 *1 (-894 *2 *3)) (-4 *2 (-1240 *3))))) +(-10 -7 (-15 -3521 (|#1| |#1| |#1|))) +((-2986 (((-112) $ $) 7)) (-4177 (((-2 (|:| -4177 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225)))) 15)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-2479 (((-862) $) 12)) (-3900 (((-112) $ $) 9)) (-3703 (((-1035) (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225)))) 14)) (-2952 (((-112) $ $) 6))) +(((-895) (-140)) (T -895)) +((-4177 (*1 *2 *3 *4) (-12 (-4 *1 (-895)) (-5 *3 (-1062)) (-5 *4 (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225)))) (-5 *2 (-2 (|:| -4177 (-381)) (|:| |explanations| (-1157)))))) (-3703 (*1 *2 *3) (-12 (-4 *1 (-895)) (-5 *3 (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225)))) (-5 *2 (-1035))))) +(-13 (-1099) (-10 -7 (-15 -4177 ((-2 (|:| -4177 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225))))) (-15 -3703 ((-1035) (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225))))))) +(((-102) . T) ((-613 (-862)) . T) ((-1099) . T)) +((-2173 ((|#1| |#1| (-771)) 29)) (-2393 (((-3 |#1| "failed") |#1| |#1|) 26)) (-3849 (((-3 (-2 (|:| -4351 |#1|) (|:| -4361 |#1|)) "failed") |#1| (-771) (-771)) 32) (((-644 |#1|) |#1|) 39))) +(((-896 |#1| |#2|) (-10 -7 (-15 -3849 ((-644 |#1|) |#1|)) (-15 -3849 ((-3 (-2 (|:| -4351 |#1|) (|:| -4361 |#1|)) "failed") |#1| (-771) (-771))) (-15 -2393 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2173 (|#1| |#1| (-771)))) (-1240 |#2|) (-365)) (T -896)) +((-2173 (*1 *2 *2 *3) (-12 (-5 *3 (-771)) (-4 *4 (-365)) (-5 *1 (-896 *2 *4)) (-4 *2 (-1240 *4)))) (-2393 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-365)) (-5 *1 (-896 *2 *3)) (-4 *2 (-1240 *3)))) (-3849 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-771)) (-4 *5 (-365)) (-5 *2 (-2 (|:| -4351 *3) (|:| -4361 *3))) (-5 *1 (-896 *3 *5)) (-4 *3 (-1240 *5)))) (-3849 (*1 *2 *3) (-12 (-4 *4 (-365)) (-5 *2 (-644 *3)) (-5 *1 (-896 *3 *4)) (-4 *3 (-1240 *4))))) +(-10 -7 (-15 -3849 ((-644 |#1|) |#1|)) (-15 -3849 ((-3 (-2 (|:| -4351 |#1|) (|:| -4361 |#1|)) "failed") |#1| (-771) (-771))) (-15 -2393 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2173 (|#1| |#1| (-771)))) +((-1916 (((-1035) (-381) (-381) (-381) (-381) (-771) (-771) (-644 (-317 (-381))) (-644 (-644 (-317 (-381)))) (-1157)) 106) (((-1035) (-381) (-381) (-381) (-381) (-771) (-771) (-644 (-317 (-381))) (-644 (-644 (-317 (-381)))) (-1157) (-225)) 102) (((-1035) (-898) (-1062)) 94) (((-1035) (-898)) 95)) (-4177 (((-2 (|:| -4177 (-381)) (|:| -2598 (-1157)) (|:| |explanations| (-644 (-1157)))) (-898) (-1062)) 65) (((-2 (|:| -4177 (-381)) (|:| -2598 (-1157)) (|:| |explanations| (-644 (-1157)))) (-898)) 67))) +(((-897) (-10 -7 (-15 -1916 ((-1035) (-898))) (-15 -1916 ((-1035) (-898) (-1062))) (-15 -1916 ((-1035) (-381) (-381) (-381) (-381) (-771) (-771) (-644 (-317 (-381))) (-644 (-644 (-317 (-381)))) (-1157) (-225))) (-15 -1916 ((-1035) (-381) (-381) (-381) (-381) (-771) (-771) (-644 (-317 (-381))) (-644 (-644 (-317 (-381)))) (-1157))) (-15 -4177 ((-2 (|:| -4177 (-381)) (|:| -2598 (-1157)) (|:| |explanations| (-644 (-1157)))) (-898))) (-15 -4177 ((-2 (|:| -4177 (-381)) (|:| -2598 (-1157)) (|:| |explanations| (-644 (-1157)))) (-898) (-1062))))) (T -897)) +((-4177 (*1 *2 *3 *4) (-12 (-5 *3 (-898)) (-5 *4 (-1062)) (-5 *2 (-2 (|:| -4177 (-381)) (|:| -2598 (-1157)) (|:| |explanations| (-644 (-1157))))) (-5 *1 (-897)))) (-4177 (*1 *2 *3) (-12 (-5 *3 (-898)) (-5 *2 (-2 (|:| -4177 (-381)) (|:| -2598 (-1157)) (|:| |explanations| (-644 (-1157))))) (-5 *1 (-897)))) (-1916 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-771)) (-5 *6 (-644 (-644 (-317 *3)))) (-5 *7 (-1157)) (-5 *5 (-644 (-317 (-381)))) (-5 *3 (-381)) (-5 *2 (-1035)) (-5 *1 (-897)))) (-1916 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-771)) (-5 *6 (-644 (-644 (-317 *3)))) (-5 *7 (-1157)) (-5 *8 (-225)) (-5 *5 (-644 (-317 (-381)))) (-5 *3 (-381)) (-5 *2 (-1035)) (-5 *1 (-897)))) (-1916 (*1 *2 *3 *4) (-12 (-5 *3 (-898)) (-5 *4 (-1062)) (-5 *2 (-1035)) (-5 *1 (-897)))) (-1916 (*1 *2 *3) (-12 (-5 *3 (-898)) (-5 *2 (-1035)) (-5 *1 (-897))))) +(-10 -7 (-15 -1916 ((-1035) (-898))) (-15 -1916 ((-1035) (-898) (-1062))) (-15 -1916 ((-1035) (-381) (-381) (-381) (-381) (-771) (-771) (-644 (-317 (-381))) (-644 (-644 (-317 (-381)))) (-1157) (-225))) (-15 -1916 ((-1035) (-381) (-381) (-381) (-381) (-771) (-771) (-644 (-317 (-381))) (-644 (-644 (-317 (-381)))) (-1157))) (-15 -4177 ((-2 (|:| -4177 (-381)) (|:| -2598 (-1157)) (|:| |explanations| (-644 (-1157)))) (-898))) (-15 -4177 ((-2 (|:| -4177 (-381)) (|:| -2598 (-1157)) (|:| |explanations| (-644 (-1157)))) (-898) (-1062)))) +((-2986 (((-112) $ $) NIL)) (-1709 (((-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225))) $) 19)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) 21) (($ (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225)))) 18)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-898) (-13 (-1099) (-10 -8 (-15 -2479 ($ (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225))))) (-15 -1709 ((-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225))) $))))) (T -898)) +((-2479 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225)))) (-5 *1 (-898)))) (-1709 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225)))) (-5 *1 (-898))))) +(-13 (-1099) (-10 -8 (-15 -2479 ($ (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225))))) (-15 -1709 ((-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225))) $)))) +((-3526 (($ $ |#2|) NIL) (($ $ (-644 |#2|)) 10) (($ $ |#2| (-771)) 15) (($ $ (-644 |#2|) (-644 (-771))) 18)) (-2834 (($ $ |#2|) 19) (($ $ (-644 |#2|)) 21) (($ $ |#2| (-771)) 22) (($ $ (-644 |#2|) (-644 (-771))) 24))) +(((-899 |#1| |#2|) (-10 -8 (-15 -2834 (|#1| |#1| (-644 |#2|) (-644 (-771)))) (-15 -2834 (|#1| |#1| |#2| (-771))) (-15 -2834 (|#1| |#1| (-644 |#2|))) (-15 -2834 (|#1| |#1| |#2|)) (-15 -3526 (|#1| |#1| (-644 |#2|) (-644 (-771)))) (-15 -3526 (|#1| |#1| |#2| (-771))) (-15 -3526 (|#1| |#1| (-644 |#2|))) (-15 -3526 (|#1| |#1| |#2|))) (-900 |#2|) (-1099)) (T -899)) +NIL +(-10 -8 (-15 -2834 (|#1| |#1| (-644 |#2|) (-644 (-771)))) (-15 -2834 (|#1| |#1| |#2| (-771))) (-15 -2834 (|#1| |#1| (-644 |#2|))) (-15 -2834 (|#1| |#1| |#2|)) (-15 -3526 (|#1| |#1| (-644 |#2|) (-644 (-771)))) (-15 -3526 (|#1| |#1| |#2| (-771))) (-15 -3526 (|#1| |#1| (-644 |#2|))) (-15 -3526 (|#1| |#1| |#2|))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-3174 (((-3 $ "failed") $ $) 20)) (-1811 (($) 18 T CONST)) (-3757 (((-3 $ "failed") $) 37)) (-2264 (((-112) $) 35)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-3526 (($ $ |#1|) 46) (($ $ (-644 |#1|)) 45) (($ $ |#1| (-771)) 44) (($ $ (-644 |#1|) (-644 (-771))) 43)) (-2479 (((-862) $) 12) (($ (-566)) 33)) (-1558 (((-771)) 32 T CONST)) (-3900 (((-112) $ $) 9)) (-2446 (($) 19 T CONST)) (-2459 (($) 34 T CONST)) (-2834 (($ $ |#1|) 42) (($ $ (-644 |#1|)) 41) (($ $ |#1| (-771)) 40) (($ $ (-644 |#1|) (-644 (-771))) 39)) (-2952 (((-112) $ $) 6)) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27))) +(((-900 |#1|) (-140) (-1099)) (T -900)) +((-3526 (*1 *1 *1 *2) (-12 (-4 *1 (-900 *2)) (-4 *2 (-1099)))) (-3526 (*1 *1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *1 (-900 *3)) (-4 *3 (-1099)))) (-3526 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-771)) (-4 *1 (-900 *2)) (-4 *2 (-1099)))) (-3526 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 *4)) (-5 *3 (-644 (-771))) (-4 *1 (-900 *4)) (-4 *4 (-1099)))) (-2834 (*1 *1 *1 *2) (-12 (-4 *1 (-900 *2)) (-4 *2 (-1099)))) (-2834 (*1 *1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *1 (-900 *3)) (-4 *3 (-1099)))) (-2834 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-771)) (-4 *1 (-900 *2)) (-4 *2 (-1099)))) (-2834 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 *4)) (-5 *3 (-644 (-771))) (-4 *1 (-900 *4)) (-4 *4 (-1099))))) +(-13 (-1049) (-10 -8 (-15 -3526 ($ $ |t#1|)) (-15 -3526 ($ $ (-644 |t#1|))) (-15 -3526 ($ $ |t#1| (-771))) (-15 -3526 ($ $ (-644 |t#1|) (-644 (-771)))) (-15 -2834 ($ $ |t#1|)) (-15 -2834 ($ $ (-644 |t#1|))) (-15 -2834 ($ $ |t#1| (-771))) (-15 -2834 ($ $ (-644 |t#1|) (-644 (-771)))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-616 (-566)) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 $) . T) ((-726) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) +((-2986 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2153 ((|#1| $) 26)) (-1453 (((-112) $ (-771)) NIL)) (-3684 ((|#1| $ |#1|) NIL (|has| $ (-6 -4418)))) (-1343 (($ $ $) NIL (|has| $ (-6 -4418)))) (-2906 (($ $ $) NIL (|has| $ (-6 -4418)))) (-3901 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4418))) (($ $ "left" $) NIL (|has| $ (-6 -4418))) (($ $ "right" $) NIL (|has| $ (-6 -4418)))) (-3891 (($ $ (-644 $)) NIL (|has| $ (-6 -4418)))) (-1811 (($) NIL T CONST)) (-4361 (($ $) 25)) (-3013 (($ |#1|) 12) (($ $ $) 17)) (-3872 (((-644 |#1|) $) NIL (|has| $ (-6 -4417)))) (-3578 (((-644 $) $) NIL)) (-2778 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2756 (((-112) $ (-771)) NIL)) (-4227 (((-644 |#1|) $) NIL (|has| $ (-6 -4417)))) (-1688 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-3708 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#1| |#1|) $) NIL)) (-4106 (((-112) $ (-771)) NIL)) (-4351 (($ $) 23)) (-3658 (((-644 |#1|) $) NIL)) (-1587 (((-112) $) 20)) (-3151 (((-1157) $) NIL (|has| |#1| (-1099)))) (-4059 (((-1119) $) NIL (|has| |#1| (-1099)))) (-3966 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1844 (((-112) $ $) NIL)) (-2788 (((-112) $) NIL)) (-1737 (($) NIL)) (-4376 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4098 (((-566) $ $) NIL)) (-2636 (((-112) $) NIL)) (-4068 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-3924 (($ $) NIL)) (-2479 (((-1200 |#1|) $) 9) (((-862) $) 29 (|has| |#1| (-613 (-862))))) (-2156 (((-644 $) $) NIL)) (-3922 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3900 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3667 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2952 (((-112) $ $) 21 (|has| |#1| (-1099)))) (-3002 (((-771) $) NIL (|has| $ (-6 -4417))))) +(((-901 |#1|) (-13 (-119 |#1|) (-613 (-1200 |#1|)) (-10 -8 (-15 -3013 ($ |#1|)) (-15 -3013 ($ $ $)))) (-1099)) (T -901)) +((-3013 (*1 *1 *2) (-12 (-5 *1 (-901 *2)) (-4 *2 (-1099)))) (-3013 (*1 *1 *1 *1) (-12 (-5 *1 (-901 *2)) (-4 *2 (-1099))))) +(-13 (-119 |#1|) (-613 (-1200 |#1|)) (-10 -8 (-15 -3013 ($ |#1|)) (-15 -3013 ($ $ $)))) +((-3257 ((|#2| (-1141 |#1| |#2|)) 53))) +(((-902 |#1| |#2|) (-10 -7 (-15 -3257 (|#2| (-1141 |#1| |#2|)))) (-921) (-13 (-1049) (-10 -7 (-6 (-4419 "*"))))) (T -902)) +((-3257 (*1 *2 *3) (-12 (-5 *3 (-1141 *4 *2)) (-14 *4 (-921)) (-4 *2 (-13 (-1049) (-10 -7 (-6 (-4419 "*"))))) (-5 *1 (-902 *4 *2))))) +(-10 -7 (-15 -3257 (|#2| (-1141 |#1| |#2|)))) +((-2986 (((-112) $ $) 7)) (-1811 (($) 19 T CONST)) (-3757 (((-3 $ "failed") $) 16)) (-1971 (((-1101 |#1|) $ |#1|) 33)) (-2264 (((-112) $) 18)) (-1920 (($ $ $) 31 (-2809 (|has| |#1| (-850)) (|has| |#1| (-370))))) (-3038 (($ $ $) 30 (-2809 (|has| |#1| (-850)) (|has| |#1| (-370))))) (-3151 (((-1157) $) 10)) (-2577 (($ $) 25)) (-4059 (((-1119) $) 11)) (-3297 ((|#1| $ |#1|) 35)) (-4376 ((|#1| $ |#1|) 34)) (-2437 (($ (-644 (-644 |#1|))) 36)) (-2886 (($ (-644 |#1|)) 37)) (-2664 (($ $ $) 22)) (-3815 (($ $ $) 21)) (-2479 (((-862) $) 12)) (-3900 (((-112) $ $) 9)) (-2459 (($) 20 T CONST)) (-3019 (((-112) $ $) 28 (-2809 (|has| |#1| (-850)) (|has| |#1| (-370))))) (-2990 (((-112) $ $) 27 (-2809 (|has| |#1| (-850)) (|has| |#1| (-370))))) (-2952 (((-112) $ $) 6)) (-3004 (((-112) $ $) 29 (-2809 (|has| |#1| (-850)) (|has| |#1| (-370))))) (-2977 (((-112) $ $) 32)) (-3077 (($ $ $) 24)) (** (($ $ (-921)) 14) (($ $ (-771)) 17) (($ $ (-566)) 23)) (* (($ $ $) 15))) +(((-903 |#1|) (-140) (-1099)) (T -903)) +((-2886 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-4 *1 (-903 *3)))) (-2437 (*1 *1 *2) (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-1099)) (-4 *1 (-903 *3)))) (-3297 (*1 *2 *1 *2) (-12 (-4 *1 (-903 *2)) (-4 *2 (-1099)))) (-4376 (*1 *2 *1 *2) (-12 (-4 *1 (-903 *2)) (-4 *2 (-1099)))) (-1971 (*1 *2 *1 *3) (-12 (-4 *1 (-903 *3)) (-4 *3 (-1099)) (-5 *2 (-1101 *3)))) (-2977 (*1 *2 *1 *1) (-12 (-4 *1 (-903 *3)) (-4 *3 (-1099)) (-5 *2 (-112))))) +(-13 (-475) (-10 -8 (-15 -2886 ($ (-644 |t#1|))) (-15 -2437 ($ (-644 (-644 |t#1|)))) (-15 -3297 (|t#1| $ |t#1|)) (-15 -4376 (|t#1| $ |t#1|)) (-15 -1971 ((-1101 |t#1|) $ |t#1|)) (-15 -2977 ((-112) $ $)) (IF (|has| |t#1| (-850)) (-6 (-850)) |%noBranch|) (IF (|has| |t#1| (-370)) (-6 (-850)) |%noBranch|))) +(((-102) . T) ((-613 (-862)) . T) ((-475) . T) ((-726) . T) ((-850) -2809 (|has| |#1| (-850)) (|has| |#1| (-370))) ((-1111) . T) ((-1099) . T)) +((-2986 (((-112) $ $) NIL)) (-2070 (((-644 (-644 (-771))) $) 165)) (-4126 (((-644 (-771)) (-905 |#1|) $) 193)) (-4131 (((-644 (-771)) (-905 |#1|) $) 194)) (-4008 (((-644 (-905 |#1|)) $) 154)) (-1415 (((-905 |#1|) $ (-566)) 159) (((-905 |#1|) $) 160)) (-2832 (($ (-644 (-905 |#1|))) 167)) (-1802 (((-771) $) 161)) (-3318 (((-1101 (-1101 |#1|)) $) 191)) (-1971 (((-1101 |#1|) $ |#1|) 182) (((-1101 (-1101 |#1|)) $ (-1101 |#1|)) 202) (((-1101 (-644 |#1|)) $ (-644 |#1|)) 205)) (-2150 (((-1101 |#1|) $) 157)) (-1688 (((-112) (-905 |#1|) $) 143)) (-3151 (((-1157) $) NIL)) (-3647 (((-1269) $) 147) (((-1269) $ (-566) (-566)) 206)) (-4059 (((-1119) $) NIL)) (-2516 (((-644 (-905 |#1|)) $) 148)) (-4376 (((-905 |#1|) $ (-771)) 155)) (-1630 (((-771) $) 162)) (-2479 (((-862) $) 179) (((-644 (-905 |#1|)) $) 28) (($ (-644 (-905 |#1|))) 166)) (-3900 (((-112) $ $) NIL)) (-3810 (((-644 |#1|) $) 164)) (-2952 (((-112) $ $) 199)) (-3004 (((-112) $ $) 197)) (-2977 (((-112) $ $) 196))) +(((-904 |#1|) (-13 (-1099) (-10 -8 (-15 -2479 ((-644 (-905 |#1|)) $)) (-15 -2516 ((-644 (-905 |#1|)) $)) (-15 -4376 ((-905 |#1|) $ (-771))) (-15 -1415 ((-905 |#1|) $ (-566))) (-15 -1415 ((-905 |#1|) $)) (-15 -1802 ((-771) $)) (-15 -1630 ((-771) $)) (-15 -3810 ((-644 |#1|) $)) (-15 -4008 ((-644 (-905 |#1|)) $)) (-15 -2070 ((-644 (-644 (-771))) $)) (-15 -2479 ($ (-644 (-905 |#1|)))) (-15 -2832 ($ (-644 (-905 |#1|)))) (-15 -1971 ((-1101 |#1|) $ |#1|)) (-15 -3318 ((-1101 (-1101 |#1|)) $)) (-15 -1971 ((-1101 (-1101 |#1|)) $ (-1101 |#1|))) (-15 -1971 ((-1101 (-644 |#1|)) $ (-644 |#1|))) (-15 -1688 ((-112) (-905 |#1|) $)) (-15 -4126 ((-644 (-771)) (-905 |#1|) $)) (-15 -4131 ((-644 (-771)) (-905 |#1|) $)) (-15 -2150 ((-1101 |#1|) $)) (-15 -2977 ((-112) $ $)) (-15 -3004 ((-112) $ $)) (-15 -3647 ((-1269) $)) (-15 -3647 ((-1269) $ (-566) (-566))))) (-1099)) (T -904)) +((-2479 (*1 *2 *1) (-12 (-5 *2 (-644 (-905 *3))) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) (-2516 (*1 *2 *1) (-12 (-5 *2 (-644 (-905 *3))) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) (-4376 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-5 *2 (-905 *4)) (-5 *1 (-904 *4)) (-4 *4 (-1099)))) (-1415 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *2 (-905 *4)) (-5 *1 (-904 *4)) (-4 *4 (-1099)))) (-1415 (*1 *2 *1) (-12 (-5 *2 (-905 *3)) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) (-1802 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) (-1630 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) (-3810 (*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) (-4008 (*1 *2 *1) (-12 (-5 *2 (-644 (-905 *3))) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) (-2070 (*1 *2 *1) (-12 (-5 *2 (-644 (-644 (-771)))) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-644 (-905 *3))) (-4 *3 (-1099)) (-5 *1 (-904 *3)))) (-2832 (*1 *1 *2) (-12 (-5 *2 (-644 (-905 *3))) (-4 *3 (-1099)) (-5 *1 (-904 *3)))) (-1971 (*1 *2 *1 *3) (-12 (-5 *2 (-1101 *3)) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) (-3318 (*1 *2 *1) (-12 (-5 *2 (-1101 (-1101 *3))) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) (-1971 (*1 *2 *1 *3) (-12 (-4 *4 (-1099)) (-5 *2 (-1101 (-1101 *4))) (-5 *1 (-904 *4)) (-5 *3 (-1101 *4)))) (-1971 (*1 *2 *1 *3) (-12 (-4 *4 (-1099)) (-5 *2 (-1101 (-644 *4))) (-5 *1 (-904 *4)) (-5 *3 (-644 *4)))) (-1688 (*1 *2 *3 *1) (-12 (-5 *3 (-905 *4)) (-4 *4 (-1099)) (-5 *2 (-112)) (-5 *1 (-904 *4)))) (-4126 (*1 *2 *3 *1) (-12 (-5 *3 (-905 *4)) (-4 *4 (-1099)) (-5 *2 (-644 (-771))) (-5 *1 (-904 *4)))) (-4131 (*1 *2 *3 *1) (-12 (-5 *3 (-905 *4)) (-4 *4 (-1099)) (-5 *2 (-644 (-771))) (-5 *1 (-904 *4)))) (-2150 (*1 *2 *1) (-12 (-5 *2 (-1101 *3)) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) (-2977 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) (-3004 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) (-3647 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) (-3647 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-566)) (-5 *2 (-1269)) (-5 *1 (-904 *4)) (-4 *4 (-1099))))) +(-13 (-1099) (-10 -8 (-15 -2479 ((-644 (-905 |#1|)) $)) (-15 -2516 ((-644 (-905 |#1|)) $)) (-15 -4376 ((-905 |#1|) $ (-771))) (-15 -1415 ((-905 |#1|) $ (-566))) (-15 -1415 ((-905 |#1|) $)) (-15 -1802 ((-771) $)) (-15 -1630 ((-771) $)) (-15 -3810 ((-644 |#1|) $)) (-15 -4008 ((-644 (-905 |#1|)) $)) (-15 -2070 ((-644 (-644 (-771))) $)) (-15 -2479 ($ (-644 (-905 |#1|)))) (-15 -2832 ($ (-644 (-905 |#1|)))) (-15 -1971 ((-1101 |#1|) $ |#1|)) (-15 -3318 ((-1101 (-1101 |#1|)) $)) (-15 -1971 ((-1101 (-1101 |#1|)) $ (-1101 |#1|))) (-15 -1971 ((-1101 (-644 |#1|)) $ (-644 |#1|))) (-15 -1688 ((-112) (-905 |#1|) $)) (-15 -4126 ((-644 (-771)) (-905 |#1|) $)) (-15 -4131 ((-644 (-771)) (-905 |#1|) $)) (-15 -2150 ((-1101 |#1|) $)) (-15 -2977 ((-112) $ $)) (-15 -3004 ((-112) $ $)) (-15 -3647 ((-1269) $)) (-15 -3647 ((-1269) $ (-566) (-566))))) +((-2986 (((-112) $ $) NIL)) (-1374 (((-644 $) (-644 $)) 105)) (-2920 (((-566) $) 86)) (-1811 (($) NIL T CONST)) (-3757 (((-3 $ "failed") $) NIL)) (-1802 (((-771) $) 83)) (-1971 (((-1101 |#1|) $ |#1|) 74)) (-2264 (((-112) $) NIL)) (-3400 (((-112) $) 90)) (-3453 (((-771) $) 87)) (-2150 (((-1101 |#1|) $) 63)) (-1920 (($ $ $) NIL (-2809 (|has| |#1| (-370)) (|has| |#1| (-850))))) (-3038 (($ $ $) NIL (-2809 (|has| |#1| (-370)) (|has| |#1| (-850))))) (-3850 (((-2 (|:| |preimage| (-644 |#1|)) (|:| |image| (-644 |#1|))) $) 58)) (-3151 (((-1157) $) NIL)) (-2577 (($ $) 133)) (-4059 (((-1119) $) NIL)) (-3390 (((-1101 |#1|) $) 141 (|has| |#1| (-370)))) (-2206 (((-112) $) 84)) (-3297 ((|#1| $ |#1|) 72)) (-4376 ((|#1| $ |#1|) 135)) (-1630 (((-771) $) 65)) (-2437 (($ (-644 (-644 |#1|))) 120)) (-2214 (((-971) $) 78)) (-2886 (($ (-644 |#1|)) 35)) (-2664 (($ $ $) NIL)) (-3815 (($ $ $) NIL)) (-2599 (($ (-644 (-644 |#1|))) 60)) (-4158 (($ (-644 (-644 |#1|))) 125)) (-2987 (($ (-644 |#1|)) 137)) (-2479 (((-862) $) 119) (($ (-644 (-644 |#1|))) 93) (($ (-644 |#1|)) 94)) (-3900 (((-112) $ $) NIL)) (-2459 (($) 27 T CONST)) (-3019 (((-112) $ $) NIL (-2809 (|has| |#1| (-370)) (|has| |#1| (-850))))) (-2990 (((-112) $ $) NIL (-2809 (|has| |#1| (-370)) (|has| |#1| (-850))))) (-2952 (((-112) $ $) 70)) (-3004 (((-112) $ $) NIL (-2809 (|has| |#1| (-370)) (|has| |#1| (-850))))) (-2977 (((-112) $ $) 92)) (-3077 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ $ $) 36))) +(((-905 |#1|) (-13 (-903 |#1|) (-10 -8 (-15 -3850 ((-2 (|:| |preimage| (-644 |#1|)) (|:| |image| (-644 |#1|))) $)) (-15 -2599 ($ (-644 (-644 |#1|)))) (-15 -2479 ($ (-644 (-644 |#1|)))) (-15 -2479 ($ (-644 |#1|))) (-15 -4158 ($ (-644 (-644 |#1|)))) (-15 -1630 ((-771) $)) (-15 -2150 ((-1101 |#1|) $)) (-15 -2214 ((-971) $)) (-15 -1802 ((-771) $)) (-15 -3453 ((-771) $)) (-15 -2920 ((-566) $)) (-15 -2206 ((-112) $)) (-15 -3400 ((-112) $)) (-15 -1374 ((-644 $) (-644 $))) (IF (|has| |#1| (-370)) (-15 -3390 ((-1101 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-547)) (-15 -2987 ($ (-644 |#1|))) (IF (|has| |#1| (-370)) (-15 -2987 ($ (-644 |#1|))) |%noBranch|)))) (-1099)) (T -905)) +((-3850 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-644 *3)) (|:| |image| (-644 *3)))) (-5 *1 (-905 *3)) (-4 *3 (-1099)))) (-2599 (*1 *1 *2) (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-1099)) (-5 *1 (-905 *3)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-1099)) (-5 *1 (-905 *3)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-5 *1 (-905 *3)))) (-4158 (*1 *1 *2) (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-1099)) (-5 *1 (-905 *3)))) (-1630 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-905 *3)) (-4 *3 (-1099)))) (-2150 (*1 *2 *1) (-12 (-5 *2 (-1101 *3)) (-5 *1 (-905 *3)) (-4 *3 (-1099)))) (-2214 (*1 *2 *1) (-12 (-5 *2 (-971)) (-5 *1 (-905 *3)) (-4 *3 (-1099)))) (-1802 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-905 *3)) (-4 *3 (-1099)))) (-3453 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-905 *3)) (-4 *3 (-1099)))) (-2920 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-905 *3)) (-4 *3 (-1099)))) (-2206 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1099)))) (-3400 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1099)))) (-1374 (*1 *2 *2) (-12 (-5 *2 (-644 (-905 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1099)))) (-3390 (*1 *2 *1) (-12 (-5 *2 (-1101 *3)) (-5 *1 (-905 *3)) (-4 *3 (-370)) (-4 *3 (-1099)))) (-2987 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-5 *1 (-905 *3))))) +(-13 (-903 |#1|) (-10 -8 (-15 -3850 ((-2 (|:| |preimage| (-644 |#1|)) (|:| |image| (-644 |#1|))) $)) (-15 -2599 ($ (-644 (-644 |#1|)))) (-15 -2479 ($ (-644 (-644 |#1|)))) (-15 -2479 ($ (-644 |#1|))) (-15 -4158 ($ (-644 (-644 |#1|)))) (-15 -1630 ((-771) $)) (-15 -2150 ((-1101 |#1|) $)) (-15 -2214 ((-971) $)) (-15 -1802 ((-771) $)) (-15 -3453 ((-771) $)) (-15 -2920 ((-566) $)) (-15 -2206 ((-112) $)) (-15 -3400 ((-112) $)) (-15 -1374 ((-644 $) (-644 $))) (IF (|has| |#1| (-370)) (-15 -3390 ((-1101 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-547)) (-15 -2987 ($ (-644 |#1|))) (IF (|has| |#1| (-370)) (-15 -2987 ($ (-644 |#1|))) |%noBranch|)))) +((-1532 (((-3 (-644 (-1171 |#4|)) "failed") (-644 (-1171 |#4|)) (-1171 |#4|)) 159)) (-3847 ((|#1|) 97)) (-3612 (((-420 (-1171 |#4|)) (-1171 |#4|)) 168)) (-2946 (((-420 (-1171 |#4|)) (-644 |#3|) (-1171 |#4|)) 84)) (-2461 (((-420 (-1171 |#4|)) (-1171 |#4|)) 178)) (-1772 (((-3 (-644 (-1171 |#4|)) "failed") (-644 (-1171 |#4|)) (-1171 |#4|) |#3|) 113))) +(((-906 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1532 ((-3 (-644 (-1171 |#4|)) "failed") (-644 (-1171 |#4|)) (-1171 |#4|))) (-15 -2461 ((-420 (-1171 |#4|)) (-1171 |#4|))) (-15 -3612 ((-420 (-1171 |#4|)) (-1171 |#4|))) (-15 -3847 (|#1|)) (-15 -1772 ((-3 (-644 (-1171 |#4|)) "failed") (-644 (-1171 |#4|)) (-1171 |#4|) |#3|)) (-15 -2946 ((-420 (-1171 |#4|)) (-644 |#3|) (-1171 |#4|)))) (-909) (-793) (-850) (-949 |#1| |#2| |#3|)) (T -906)) +((-2946 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *7)) (-4 *7 (-850)) (-4 *5 (-909)) (-4 *6 (-793)) (-4 *8 (-949 *5 *6 *7)) (-5 *2 (-420 (-1171 *8))) (-5 *1 (-906 *5 *6 *7 *8)) (-5 *4 (-1171 *8)))) (-1772 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-644 (-1171 *7))) (-5 *3 (-1171 *7)) (-4 *7 (-949 *5 *6 *4)) (-4 *5 (-909)) (-4 *6 (-793)) (-4 *4 (-850)) (-5 *1 (-906 *5 *6 *4 *7)))) (-3847 (*1 *2) (-12 (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-909)) (-5 *1 (-906 *2 *3 *4 *5)) (-4 *5 (-949 *2 *3 *4)))) (-3612 (*1 *2 *3) (-12 (-4 *4 (-909)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-949 *4 *5 *6)) (-5 *2 (-420 (-1171 *7))) (-5 *1 (-906 *4 *5 *6 *7)) (-5 *3 (-1171 *7)))) (-2461 (*1 *2 *3) (-12 (-4 *4 (-909)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-949 *4 *5 *6)) (-5 *2 (-420 (-1171 *7))) (-5 *1 (-906 *4 *5 *6 *7)) (-5 *3 (-1171 *7)))) (-1532 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-644 (-1171 *7))) (-5 *3 (-1171 *7)) (-4 *7 (-949 *4 *5 *6)) (-4 *4 (-909)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-906 *4 *5 *6 *7))))) +(-10 -7 (-15 -1532 ((-3 (-644 (-1171 |#4|)) "failed") (-644 (-1171 |#4|)) (-1171 |#4|))) (-15 -2461 ((-420 (-1171 |#4|)) (-1171 |#4|))) (-15 -3612 ((-420 (-1171 |#4|)) (-1171 |#4|))) (-15 -3847 (|#1|)) (-15 -1772 ((-3 (-644 (-1171 |#4|)) "failed") (-644 (-1171 |#4|)) (-1171 |#4|) |#3|)) (-15 -2946 ((-420 (-1171 |#4|)) (-644 |#3|) (-1171 |#4|)))) +((-1532 (((-3 (-644 (-1171 |#2|)) "failed") (-644 (-1171 |#2|)) (-1171 |#2|)) 41)) (-3847 ((|#1|) 75)) (-3612 (((-420 (-1171 |#2|)) (-1171 |#2|)) 124)) (-2946 (((-420 (-1171 |#2|)) (-1171 |#2|)) 108)) (-2461 (((-420 (-1171 |#2|)) (-1171 |#2|)) 135))) +(((-907 |#1| |#2|) (-10 -7 (-15 -1532 ((-3 (-644 (-1171 |#2|)) "failed") (-644 (-1171 |#2|)) (-1171 |#2|))) (-15 -2461 ((-420 (-1171 |#2|)) (-1171 |#2|))) (-15 -3612 ((-420 (-1171 |#2|)) (-1171 |#2|))) (-15 -3847 (|#1|)) (-15 -2946 ((-420 (-1171 |#2|)) (-1171 |#2|)))) (-909) (-1240 |#1|)) (T -907)) +((-2946 (*1 *2 *3) (-12 (-4 *4 (-909)) (-4 *5 (-1240 *4)) (-5 *2 (-420 (-1171 *5))) (-5 *1 (-907 *4 *5)) (-5 *3 (-1171 *5)))) (-3847 (*1 *2) (-12 (-4 *2 (-909)) (-5 *1 (-907 *2 *3)) (-4 *3 (-1240 *2)))) (-3612 (*1 *2 *3) (-12 (-4 *4 (-909)) (-4 *5 (-1240 *4)) (-5 *2 (-420 (-1171 *5))) (-5 *1 (-907 *4 *5)) (-5 *3 (-1171 *5)))) (-2461 (*1 *2 *3) (-12 (-4 *4 (-909)) (-4 *5 (-1240 *4)) (-5 *2 (-420 (-1171 *5))) (-5 *1 (-907 *4 *5)) (-5 *3 (-1171 *5)))) (-1532 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-644 (-1171 *5))) (-5 *3 (-1171 *5)) (-4 *5 (-1240 *4)) (-4 *4 (-909)) (-5 *1 (-907 *4 *5))))) +(-10 -7 (-15 -1532 ((-3 (-644 (-1171 |#2|)) "failed") (-644 (-1171 |#2|)) (-1171 |#2|))) (-15 -2461 ((-420 (-1171 |#2|)) (-1171 |#2|))) (-15 -3612 ((-420 (-1171 |#2|)) (-1171 |#2|))) (-15 -3847 (|#1|)) (-15 -2946 ((-420 (-1171 |#2|)) (-1171 |#2|)))) +((-4262 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) 42)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) 18)) (-2645 (((-3 $ "failed") $) 36))) +(((-908 |#1|) (-10 -8 (-15 -2645 ((-3 |#1| "failed") |#1|)) (-15 -4262 ((-3 (-644 (-1171 |#1|)) "failed") (-644 (-1171 |#1|)) (-1171 |#1|))) (-15 -4004 ((-1171 |#1|) (-1171 |#1|) (-1171 |#1|)))) (-909)) (T -908)) +NIL +(-10 -8 (-15 -2645 ((-3 |#1| "failed") |#1|)) (-15 -4262 ((-3 (-644 (-1171 |#1|)) "failed") (-644 (-1171 |#1|)) (-1171 |#1|))) (-15 -4004 ((-1171 |#1|) (-1171 |#1|) (-1171 |#1|)))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) 47)) (-3087 (($ $) 46)) (-1716 (((-112) $) 44)) (-3174 (((-3 $ "failed") $ $) 20)) (-4058 (((-420 (-1171 $)) (-1171 $)) 66)) (-3980 (($ $) 57)) (-3348 (((-420 $) $) 58)) (-4262 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) 63)) (-1811 (($) 18 T CONST)) (-3757 (((-3 $ "failed") $) 37)) (-4188 (((-112) $) 59)) (-2264 (((-112) $) 35)) (-2120 (($ $ $) 52) (($ (-644 $)) 51)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-2162 (($ $ $) 54) (($ (-644 $)) 53)) (-1500 (((-420 (-1171 $)) (-1171 $)) 64)) (-3917 (((-420 (-1171 $)) (-1171 $)) 65)) (-2325 (((-420 $) $) 56)) (-2976 (((-3 $ "failed") $ $) 48)) (-3233 (((-3 (-1264 $) "failed") (-689 $)) 62 (|has| $ (-145)))) (-2479 (((-862) $) 12) (($ (-566)) 33) (($ $) 49)) (-2645 (((-3 $ "failed") $) 61 (|has| $ (-145)))) (-1558 (((-771)) 32 T CONST)) (-3900 (((-112) $ $) 9)) (-1333 (((-112) $ $) 45)) (-2446 (($) 19 T CONST)) (-2459 (($) 34 T CONST)) (-2952 (((-112) $ $) 6)) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27))) +(((-909) (-140)) (T -909)) +((-4004 (*1 *2 *2 *2) (-12 (-5 *2 (-1171 *1)) (-4 *1 (-909)))) (-4058 (*1 *2 *3) (-12 (-4 *1 (-909)) (-5 *2 (-420 (-1171 *1))) (-5 *3 (-1171 *1)))) (-3917 (*1 *2 *3) (-12 (-4 *1 (-909)) (-5 *2 (-420 (-1171 *1))) (-5 *3 (-1171 *1)))) (-1500 (*1 *2 *3) (-12 (-4 *1 (-909)) (-5 *2 (-420 (-1171 *1))) (-5 *3 (-1171 *1)))) (-4262 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-644 (-1171 *1))) (-5 *3 (-1171 *1)) (-4 *1 (-909)))) (-3233 (*1 *2 *3) (|partial| -12 (-5 *3 (-689 *1)) (-4 *1 (-145)) (-4 *1 (-909)) (-5 *2 (-1264 *1)))) (-2645 (*1 *1 *1) (|partial| -12 (-4 *1 (-145)) (-4 *1 (-909))))) +(-13 (-1218) (-10 -8 (-15 -4058 ((-420 (-1171 $)) (-1171 $))) (-15 -3917 ((-420 (-1171 $)) (-1171 $))) (-15 -1500 ((-420 (-1171 $)) (-1171 $))) (-15 -4004 ((-1171 $) (-1171 $) (-1171 $))) (-15 -4262 ((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $))) (IF (|has| $ (-145)) (PROGN (-15 -3233 ((-3 (-1264 $) "failed") (-689 $))) (-15 -2645 ((-3 $ "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-616 (-566)) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-291) . T) ((-454) . T) ((-558) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 $) . T) ((-640 $) . T) ((-717 $) . T) ((-726) . T) ((-1051 $) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1218) . T)) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-1716 (((-112) $) NIL)) (-3017 (((-112) $) NIL)) (-4141 (((-771)) NIL)) (-3837 (($ $ (-921)) NIL (|has| $ (-370))) (($ $) NIL)) (-2568 (((-1187 (-921) (-771)) (-566)) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-3980 (($ $) NIL)) (-3348 (((-420 $) $) NIL)) (-2761 (((-112) $ $) NIL)) (-4049 (((-771)) NIL)) (-1811 (($) NIL T CONST)) (-2980 (((-3 $ "failed") $) NIL)) (-1709 (($ $) NIL)) (-2422 (($ (-1264 $)) NIL)) (-2713 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2925 (($ $ $) NIL)) (-3757 (((-3 $ "failed") $) NIL)) (-1415 (($) NIL)) (-2937 (($ $ $) NIL)) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) NIL)) (-2409 (($) NIL)) (-1450 (((-112) $) NIL)) (-4202 (($ $) NIL) (($ $ (-771)) NIL)) (-4188 (((-112) $) NIL)) (-1802 (((-833 (-921)) $) NIL) (((-921) $) NIL)) (-2264 (((-112) $) NIL)) (-3254 (($) NIL (|has| $ (-370)))) (-2111 (((-112) $) NIL (|has| $ (-370)))) (-1398 (($ $ (-921)) NIL (|has| $ (-370))) (($ $) NIL)) (-4278 (((-3 $ "failed") $) NIL)) (-2495 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1869 (((-1171 $) $ (-921)) NIL (|has| $ (-370))) (((-1171 $) $) NIL)) (-4051 (((-921) $) NIL)) (-3119 (((-1171 $) $) NIL (|has| $ (-370)))) (-1902 (((-3 (-1171 $) "failed") $ $) NIL (|has| $ (-370))) (((-1171 $) $) NIL (|has| $ (-370)))) (-1963 (($ $ (-1171 $)) NIL (|has| $ (-370)))) (-2120 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3151 (((-1157) $) NIL)) (-2577 (($ $) NIL)) (-3968 (($) NIL T CONST)) (-2104 (($ (-921)) NIL)) (-1965 (((-112) $) NIL)) (-4059 (((-1119) $) NIL)) (-4086 (($) NIL (|has| $ (-370)))) (-4004 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2162 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2816 (((-644 (-2 (|:| -2325 (-566)) (|:| -3631 (-566))))) NIL)) (-2325 (((-420 $) $) NIL)) (-1903 (((-921)) NIL) (((-833 (-921))) NIL)) (-2585 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2976 (((-3 $ "failed") $ $) NIL)) (-2840 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1383 (((-771) $) NIL)) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL)) (-4107 (((-3 (-771) "failed") $ $) NIL) (((-771) $) NIL)) (-3944 (((-134)) NIL)) (-3526 (($ $ (-771)) NIL) (($ $) NIL)) (-1630 (((-921) $) NIL) (((-833 (-921)) $) NIL)) (-2301 (((-1171 $)) NIL)) (-3648 (($) NIL)) (-1743 (($) NIL (|has| $ (-370)))) (-3747 (((-689 $) (-1264 $)) NIL) (((-1264 $) $) NIL)) (-3136 (((-566) $) NIL)) (-3233 (((-3 (-1264 $) "failed") (-689 $)) NIL)) (-2479 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL)) (-2645 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-1558 (((-771)) NIL T CONST)) (-3900 (((-112) $ $) NIL)) (-1419 (((-1264 $) (-921)) NIL) (((-1264 $)) NIL)) (-1333 (((-112) $ $) NIL)) (-3132 (((-112) $) NIL)) (-2446 (($) NIL T CONST)) (-2459 (($) NIL T CONST)) (-3536 (($ $ (-771)) NIL (|has| $ (-370))) (($ $) NIL (|has| $ (-370)))) (-2834 (($ $ (-771)) NIL) (($ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3077 (($ $ $) NIL)) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL))) +(((-910 |#1|) (-13 (-351) (-330 $) (-614 (-566))) (-921)) (T -910)) +NIL +(-13 (-351) (-330 $) (-614 (-566))) +((-2158 (((-3 (-2 (|:| -1802 (-771)) (|:| -3271 |#5|)) "failed") (-338 |#2| |#3| |#4| |#5|)) 77)) (-2858 (((-112) (-338 |#2| |#3| |#4| |#5|)) 17)) (-1802 (((-3 (-771) "failed") (-338 |#2| |#3| |#4| |#5|)) 15))) +(((-911 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1802 ((-3 (-771) "failed") (-338 |#2| |#3| |#4| |#5|))) (-15 -2858 ((-112) (-338 |#2| |#3| |#4| |#5|))) (-15 -2158 ((-3 (-2 (|:| -1802 (-771)) (|:| -3271 |#5|)) "failed") (-338 |#2| |#3| |#4| |#5|)))) (-13 (-558) (-1038 (-566))) (-432 |#1|) (-1240 |#2|) (-1240 (-409 |#3|)) (-344 |#2| |#3| |#4|)) (T -911)) +((-2158 (*1 *2 *3) (|partial| -12 (-5 *3 (-338 *5 *6 *7 *8)) (-4 *5 (-432 *4)) (-4 *6 (-1240 *5)) (-4 *7 (-1240 (-409 *6))) (-4 *8 (-344 *5 *6 *7)) (-4 *4 (-13 (-558) (-1038 (-566)))) (-5 *2 (-2 (|:| -1802 (-771)) (|:| -3271 *8))) (-5 *1 (-911 *4 *5 *6 *7 *8)))) (-2858 (*1 *2 *3) (-12 (-5 *3 (-338 *5 *6 *7 *8)) (-4 *5 (-432 *4)) (-4 *6 (-1240 *5)) (-4 *7 (-1240 (-409 *6))) (-4 *8 (-344 *5 *6 *7)) (-4 *4 (-13 (-558) (-1038 (-566)))) (-5 *2 (-112)) (-5 *1 (-911 *4 *5 *6 *7 *8)))) (-1802 (*1 *2 *3) (|partial| -12 (-5 *3 (-338 *5 *6 *7 *8)) (-4 *5 (-432 *4)) (-4 *6 (-1240 *5)) (-4 *7 (-1240 (-409 *6))) (-4 *8 (-344 *5 *6 *7)) (-4 *4 (-13 (-558) (-1038 (-566)))) (-5 *2 (-771)) (-5 *1 (-911 *4 *5 *6 *7 *8))))) +(-10 -7 (-15 -1802 ((-3 (-771) "failed") (-338 |#2| |#3| |#4| |#5|))) (-15 -2858 ((-112) (-338 |#2| |#3| |#4| |#5|))) (-15 -2158 ((-3 (-2 (|:| -1802 (-771)) (|:| -3271 |#5|)) "failed") (-338 |#2| |#3| |#4| |#5|)))) +((-2158 (((-3 (-2 (|:| -1802 (-771)) (|:| -3271 |#3|)) "failed") (-338 (-409 (-566)) |#1| |#2| |#3|)) 64)) (-2858 (((-112) (-338 (-409 (-566)) |#1| |#2| |#3|)) 16)) (-1802 (((-3 (-771) "failed") (-338 (-409 (-566)) |#1| |#2| |#3|)) 14))) +(((-912 |#1| |#2| |#3|) (-10 -7 (-15 -1802 ((-3 (-771) "failed") (-338 (-409 (-566)) |#1| |#2| |#3|))) (-15 -2858 ((-112) (-338 (-409 (-566)) |#1| |#2| |#3|))) (-15 -2158 ((-3 (-2 (|:| -1802 (-771)) (|:| -3271 |#3|)) "failed") (-338 (-409 (-566)) |#1| |#2| |#3|)))) (-1240 (-409 (-566))) (-1240 (-409 |#1|)) (-344 (-409 (-566)) |#1| |#2|)) (T -912)) +((-2158 (*1 *2 *3) (|partial| -12 (-5 *3 (-338 (-409 (-566)) *4 *5 *6)) (-4 *4 (-1240 (-409 (-566)))) (-4 *5 (-1240 (-409 *4))) (-4 *6 (-344 (-409 (-566)) *4 *5)) (-5 *2 (-2 (|:| -1802 (-771)) (|:| -3271 *6))) (-5 *1 (-912 *4 *5 *6)))) (-2858 (*1 *2 *3) (-12 (-5 *3 (-338 (-409 (-566)) *4 *5 *6)) (-4 *4 (-1240 (-409 (-566)))) (-4 *5 (-1240 (-409 *4))) (-4 *6 (-344 (-409 (-566)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-912 *4 *5 *6)))) (-1802 (*1 *2 *3) (|partial| -12 (-5 *3 (-338 (-409 (-566)) *4 *5 *6)) (-4 *4 (-1240 (-409 (-566)))) (-4 *5 (-1240 (-409 *4))) (-4 *6 (-344 (-409 (-566)) *4 *5)) (-5 *2 (-771)) (-5 *1 (-912 *4 *5 *6))))) +(-10 -7 (-15 -1802 ((-3 (-771) "failed") (-338 (-409 (-566)) |#1| |#2| |#3|))) (-15 -2858 ((-112) (-338 (-409 (-566)) |#1| |#2| |#3|))) (-15 -2158 ((-3 (-2 (|:| -1802 (-771)) (|:| -3271 |#3|)) "failed") (-338 (-409 (-566)) |#1| |#2| |#3|)))) +((-2586 ((|#2| |#2|) 26)) (-2975 (((-566) (-644 (-2 (|:| |den| (-566)) (|:| |gcdnum| (-566))))) 15)) (-4137 (((-921) (-566)) 38)) (-3028 (((-566) |#2|) 45)) (-2159 (((-566) |#2|) 21) (((-2 (|:| |den| (-566)) (|:| |gcdnum| (-566))) |#1|) 20))) +(((-913 |#1| |#2|) (-10 -7 (-15 -4137 ((-921) (-566))) (-15 -2159 ((-2 (|:| |den| (-566)) (|:| |gcdnum| (-566))) |#1|)) (-15 -2159 ((-566) |#2|)) (-15 -2975 ((-566) (-644 (-2 (|:| |den| (-566)) (|:| |gcdnum| (-566)))))) (-15 -3028 ((-566) |#2|)) (-15 -2586 (|#2| |#2|))) (-1240 (-409 (-566))) (-1240 (-409 |#1|))) (T -913)) +((-2586 (*1 *2 *2) (-12 (-4 *3 (-1240 (-409 (-566)))) (-5 *1 (-913 *3 *2)) (-4 *2 (-1240 (-409 *3))))) (-3028 (*1 *2 *3) (-12 (-4 *4 (-1240 (-409 *2))) (-5 *2 (-566)) (-5 *1 (-913 *4 *3)) (-4 *3 (-1240 (-409 *4))))) (-2975 (*1 *2 *3) (-12 (-5 *3 (-644 (-2 (|:| |den| (-566)) (|:| |gcdnum| (-566))))) (-4 *4 (-1240 (-409 *2))) (-5 *2 (-566)) (-5 *1 (-913 *4 *5)) (-4 *5 (-1240 (-409 *4))))) (-2159 (*1 *2 *3) (-12 (-4 *4 (-1240 (-409 *2))) (-5 *2 (-566)) (-5 *1 (-913 *4 *3)) (-4 *3 (-1240 (-409 *4))))) (-2159 (*1 *2 *3) (-12 (-4 *3 (-1240 (-409 (-566)))) (-5 *2 (-2 (|:| |den| (-566)) (|:| |gcdnum| (-566)))) (-5 *1 (-913 *3 *4)) (-4 *4 (-1240 (-409 *3))))) (-4137 (*1 *2 *3) (-12 (-5 *3 (-566)) (-4 *4 (-1240 (-409 *3))) (-5 *2 (-921)) (-5 *1 (-913 *4 *5)) (-4 *5 (-1240 (-409 *4)))))) +(-10 -7 (-15 -4137 ((-921) (-566))) (-15 -2159 ((-2 (|:| |den| (-566)) (|:| |gcdnum| (-566))) |#1|)) (-15 -2159 ((-566) |#2|)) (-15 -2975 ((-566) (-644 (-2 (|:| |den| (-566)) (|:| |gcdnum| (-566)))))) (-15 -3028 ((-566) |#2|)) (-15 -2586 (|#2| |#2|))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-2488 ((|#1| $) 100)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-1716 (((-112) $) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-3980 (($ $) NIL)) (-3348 (((-420 $) $) NIL)) (-2761 (((-112) $ $) NIL)) (-1811 (($) NIL T CONST)) (-2925 (($ $ $) NIL)) (-3757 (((-3 $ "failed") $) 94)) (-2937 (($ $ $) NIL)) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) NIL)) (-4188 (((-112) $) NIL)) (-1373 (($ |#1| (-420 |#1|)) 92)) (-4195 (((-1171 |#1|) |#1| |#1|) 53)) (-3883 (($ $) 61)) (-2264 (((-112) $) NIL)) (-2040 (((-566) $) 97)) (-2119 (($ $ (-566)) 99)) (-2495 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2120 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3151 (((-1157) $) NIL)) (-2577 (($ $) NIL)) (-4059 (((-1119) $) NIL)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2162 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2868 ((|#1| $) 96)) (-3884 (((-420 |#1|) $) 95)) (-2325 (((-420 $) $) NIL)) (-2585 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2976 (((-3 $ "failed") $ $) 93)) (-2840 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1383 (((-771) $) NIL)) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL)) (-2186 (($ $) 50)) (-2479 (((-862) $) 124) (($ (-566)) 73) (($ $) NIL) (($ (-409 (-566))) NIL) (($ |#1|) 41) (((-409 |#1|) $) 78) (($ (-409 (-420 |#1|))) 86)) (-1558 (((-771)) 71 T CONST)) (-3900 (((-112) $ $) NIL)) (-1333 (((-112) $ $) NIL)) (-2446 (($) 26 T CONST)) (-2459 (($) 15 T CONST)) (-2952 (((-112) $ $) 87)) (-3077 (($ $ $) NIL)) (-3065 (($ $) 108) (($ $ $) NIL)) (-3052 (($ $ $) 49)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 110) (($ $ $) 48) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ |#1| $) 109) (($ $ |#1|) NIL))) +(((-914 |#1|) (-13 (-365) (-38 |#1|) (-10 -8 (-15 -2479 ((-409 |#1|) $)) (-15 -2479 ($ (-409 (-420 |#1|)))) (-15 -2186 ($ $)) (-15 -3884 ((-420 |#1|) $)) (-15 -2868 (|#1| $)) (-15 -2119 ($ $ (-566))) (-15 -2040 ((-566) $)) (-15 -4195 ((-1171 |#1|) |#1| |#1|)) (-15 -3883 ($ $)) (-15 -1373 ($ |#1| (-420 |#1|))) (-15 -2488 (|#1| $)))) (-308)) (T -914)) +((-2479 (*1 *2 *1) (-12 (-5 *2 (-409 *3)) (-5 *1 (-914 *3)) (-4 *3 (-308)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-409 (-420 *3))) (-4 *3 (-308)) (-5 *1 (-914 *3)))) (-2186 (*1 *1 *1) (-12 (-5 *1 (-914 *2)) (-4 *2 (-308)))) (-3884 (*1 *2 *1) (-12 (-5 *2 (-420 *3)) (-5 *1 (-914 *3)) (-4 *3 (-308)))) (-2868 (*1 *2 *1) (-12 (-5 *1 (-914 *2)) (-4 *2 (-308)))) (-2119 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-914 *3)) (-4 *3 (-308)))) (-2040 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-914 *3)) (-4 *3 (-308)))) (-4195 (*1 *2 *3 *3) (-12 (-5 *2 (-1171 *3)) (-5 *1 (-914 *3)) (-4 *3 (-308)))) (-3883 (*1 *1 *1) (-12 (-5 *1 (-914 *2)) (-4 *2 (-308)))) (-1373 (*1 *1 *2 *3) (-12 (-5 *3 (-420 *2)) (-4 *2 (-308)) (-5 *1 (-914 *2)))) (-2488 (*1 *2 *1) (-12 (-5 *1 (-914 *2)) (-4 *2 (-308))))) +(-13 (-365) (-38 |#1|) (-10 -8 (-15 -2479 ((-409 |#1|) $)) (-15 -2479 ($ (-409 (-420 |#1|)))) (-15 -2186 ($ $)) (-15 -3884 ((-420 |#1|) $)) (-15 -2868 (|#1| $)) (-15 -2119 ($ $ (-566))) (-15 -2040 ((-566) $)) (-15 -4195 ((-1171 |#1|) |#1| |#1|)) (-15 -3883 ($ $)) (-15 -1373 ($ |#1| (-420 |#1|))) (-15 -2488 (|#1| $)))) +((-1373 (((-52) (-952 |#1|) (-420 (-952 |#1|)) (-1175)) 17) (((-52) (-409 (-952 |#1|)) (-1175)) 18))) +(((-915 |#1|) (-10 -7 (-15 -1373 ((-52) (-409 (-952 |#1|)) (-1175))) (-15 -1373 ((-52) (-952 |#1|) (-420 (-952 |#1|)) (-1175)))) (-13 (-308) (-147))) (T -915)) +((-1373 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-420 (-952 *6))) (-5 *5 (-1175)) (-5 *3 (-952 *6)) (-4 *6 (-13 (-308) (-147))) (-5 *2 (-52)) (-5 *1 (-915 *6)))) (-1373 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-1175)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-52)) (-5 *1 (-915 *5))))) +(-10 -7 (-15 -1373 ((-52) (-409 (-952 |#1|)) (-1175))) (-15 -1373 ((-52) (-952 |#1|) (-420 (-952 |#1|)) (-1175)))) +((-4073 ((|#4| (-644 |#4|)) 149) (((-1171 |#4|) (-1171 |#4|) (-1171 |#4|)) 86) ((|#4| |#4| |#4|) 148)) (-2162 (((-1171 |#4|) (-644 (-1171 |#4|))) 142) (((-1171 |#4|) (-1171 |#4|) (-1171 |#4|)) 63) ((|#4| (-644 |#4|)) 71) ((|#4| |#4| |#4|) 109))) +(((-916 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2162 (|#4| |#4| |#4|)) (-15 -2162 (|#4| (-644 |#4|))) (-15 -2162 ((-1171 |#4|) (-1171 |#4|) (-1171 |#4|))) (-15 -2162 ((-1171 |#4|) (-644 (-1171 |#4|)))) (-15 -4073 (|#4| |#4| |#4|)) (-15 -4073 ((-1171 |#4|) (-1171 |#4|) (-1171 |#4|))) (-15 -4073 (|#4| (-644 |#4|)))) (-793) (-850) (-308) (-949 |#3| |#1| |#2|)) (T -916)) +((-4073 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-949 *6 *4 *5)) (-5 *1 (-916 *4 *5 *6 *2)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-308)))) (-4073 (*1 *2 *2 *2) (-12 (-5 *2 (-1171 *6)) (-4 *6 (-949 *5 *3 *4)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *5 (-308)) (-5 *1 (-916 *3 *4 *5 *6)))) (-4073 (*1 *2 *2 *2) (-12 (-4 *3 (-793)) (-4 *4 (-850)) (-4 *5 (-308)) (-5 *1 (-916 *3 *4 *5 *2)) (-4 *2 (-949 *5 *3 *4)))) (-2162 (*1 *2 *3) (-12 (-5 *3 (-644 (-1171 *7))) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-308)) (-5 *2 (-1171 *7)) (-5 *1 (-916 *4 *5 *6 *7)) (-4 *7 (-949 *6 *4 *5)))) (-2162 (*1 *2 *2 *2) (-12 (-5 *2 (-1171 *6)) (-4 *6 (-949 *5 *3 *4)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *5 (-308)) (-5 *1 (-916 *3 *4 *5 *6)))) (-2162 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-949 *6 *4 *5)) (-5 *1 (-916 *4 *5 *6 *2)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-308)))) (-2162 (*1 *2 *2 *2) (-12 (-4 *3 (-793)) (-4 *4 (-850)) (-4 *5 (-308)) (-5 *1 (-916 *3 *4 *5 *2)) (-4 *2 (-949 *5 *3 *4))))) +(-10 -7 (-15 -2162 (|#4| |#4| |#4|)) (-15 -2162 (|#4| (-644 |#4|))) (-15 -2162 ((-1171 |#4|) (-1171 |#4|) (-1171 |#4|))) (-15 -2162 ((-1171 |#4|) (-644 (-1171 |#4|)))) (-15 -4073 (|#4| |#4| |#4|)) (-15 -4073 ((-1171 |#4|) (-1171 |#4|) (-1171 |#4|))) (-15 -4073 (|#4| (-644 |#4|)))) +((-1786 (((-904 (-566)) (-971)) 38) (((-904 (-566)) (-644 (-566))) 35)) (-2725 (((-904 (-566)) (-644 (-566))) 70) (((-904 (-566)) (-921)) 71)) (-1458 (((-904 (-566))) 39)) (-2209 (((-904 (-566))) 55) (((-904 (-566)) (-644 (-566))) 54)) (-2251 (((-904 (-566))) 53) (((-904 (-566)) (-644 (-566))) 52)) (-3844 (((-904 (-566))) 51) (((-904 (-566)) (-644 (-566))) 50)) (-3212 (((-904 (-566))) 49) (((-904 (-566)) (-644 (-566))) 48)) (-1964 (((-904 (-566))) 47) (((-904 (-566)) (-644 (-566))) 46)) (-2723 (((-904 (-566))) 57) (((-904 (-566)) (-644 (-566))) 56)) (-1856 (((-904 (-566)) (-644 (-566))) 75) (((-904 (-566)) (-921)) 77)) (-3222 (((-904 (-566)) (-644 (-566))) 72) (((-904 (-566)) (-921)) 73)) (-1468 (((-904 (-566)) (-644 (-566))) 68) (((-904 (-566)) (-921)) 69)) (-1420 (((-904 (-566)) (-644 (-921))) 60))) +(((-917) (-10 -7 (-15 -2725 ((-904 (-566)) (-921))) (-15 -2725 ((-904 (-566)) (-644 (-566)))) (-15 -1468 ((-904 (-566)) (-921))) (-15 -1468 ((-904 (-566)) (-644 (-566)))) (-15 -1420 ((-904 (-566)) (-644 (-921)))) (-15 -3222 ((-904 (-566)) (-921))) (-15 -3222 ((-904 (-566)) (-644 (-566)))) (-15 -1856 ((-904 (-566)) (-921))) (-15 -1856 ((-904 (-566)) (-644 (-566)))) (-15 -1964 ((-904 (-566)) (-644 (-566)))) (-15 -1964 ((-904 (-566)))) (-15 -3212 ((-904 (-566)) (-644 (-566)))) (-15 -3212 ((-904 (-566)))) (-15 -3844 ((-904 (-566)) (-644 (-566)))) (-15 -3844 ((-904 (-566)))) (-15 -2251 ((-904 (-566)) (-644 (-566)))) (-15 -2251 ((-904 (-566)))) (-15 -2209 ((-904 (-566)) (-644 (-566)))) (-15 -2209 ((-904 (-566)))) (-15 -2723 ((-904 (-566)) (-644 (-566)))) (-15 -2723 ((-904 (-566)))) (-15 -1458 ((-904 (-566)))) (-15 -1786 ((-904 (-566)) (-644 (-566)))) (-15 -1786 ((-904 (-566)) (-971))))) (T -917)) +((-1786 (*1 *2 *3) (-12 (-5 *3 (-971)) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-1786 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-1458 (*1 *2) (-12 (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-2723 (*1 *2) (-12 (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-2723 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-2209 (*1 *2) (-12 (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-2209 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-2251 (*1 *2) (-12 (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-2251 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-3844 (*1 *2) (-12 (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-3844 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-3212 (*1 *2) (-12 (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-3212 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-1964 (*1 *2) (-12 (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-1964 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-1856 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-1856 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-3222 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-3222 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-1420 (*1 *2 *3) (-12 (-5 *3 (-644 (-921))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-1468 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-1468 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-2725 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-2725 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-904 (-566))) (-5 *1 (-917))))) +(-10 -7 (-15 -2725 ((-904 (-566)) (-921))) (-15 -2725 ((-904 (-566)) (-644 (-566)))) (-15 -1468 ((-904 (-566)) (-921))) (-15 -1468 ((-904 (-566)) (-644 (-566)))) (-15 -1420 ((-904 (-566)) (-644 (-921)))) (-15 -3222 ((-904 (-566)) (-921))) (-15 -3222 ((-904 (-566)) (-644 (-566)))) (-15 -1856 ((-904 (-566)) (-921))) (-15 -1856 ((-904 (-566)) (-644 (-566)))) (-15 -1964 ((-904 (-566)) (-644 (-566)))) (-15 -1964 ((-904 (-566)))) (-15 -3212 ((-904 (-566)) (-644 (-566)))) (-15 -3212 ((-904 (-566)))) (-15 -3844 ((-904 (-566)) (-644 (-566)))) (-15 -3844 ((-904 (-566)))) (-15 -2251 ((-904 (-566)) (-644 (-566)))) (-15 -2251 ((-904 (-566)))) (-15 -2209 ((-904 (-566)) (-644 (-566)))) (-15 -2209 ((-904 (-566)))) (-15 -2723 ((-904 (-566)) (-644 (-566)))) (-15 -2723 ((-904 (-566)))) (-15 -1458 ((-904 (-566)))) (-15 -1786 ((-904 (-566)) (-644 (-566)))) (-15 -1786 ((-904 (-566)) (-971)))) +((-2188 (((-644 (-952 |#1|)) (-644 (-952 |#1|)) (-644 (-1175))) 14)) (-3181 (((-644 (-952 |#1|)) (-644 (-952 |#1|)) (-644 (-1175))) 13))) +(((-918 |#1|) (-10 -7 (-15 -3181 ((-644 (-952 |#1|)) (-644 (-952 |#1|)) (-644 (-1175)))) (-15 -2188 ((-644 (-952 |#1|)) (-644 (-952 |#1|)) (-644 (-1175))))) (-454)) (T -918)) +((-2188 (*1 *2 *2 *3) (-12 (-5 *2 (-644 (-952 *4))) (-5 *3 (-644 (-1175))) (-4 *4 (-454)) (-5 *1 (-918 *4)))) (-3181 (*1 *2 *2 *3) (-12 (-5 *2 (-644 (-952 *4))) (-5 *3 (-644 (-1175))) (-4 *4 (-454)) (-5 *1 (-918 *4))))) +(-10 -7 (-15 -3181 ((-644 (-952 |#1|)) (-644 (-952 |#1|)) (-644 (-1175)))) (-15 -2188 ((-644 (-952 |#1|)) (-644 (-952 |#1|)) (-644 (-1175))))) +((-2479 (((-317 |#1|) (-479)) 16))) +(((-919 |#1|) (-10 -7 (-15 -2479 ((-317 |#1|) (-479)))) (-558)) (T -919)) +((-2479 (*1 *2 *3) (-12 (-5 *3 (-479)) (-5 *2 (-317 *4)) (-5 *1 (-919 *4)) (-4 *4 (-558))))) +(-10 -7 (-15 -2479 ((-317 |#1|) (-479)))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) 47)) (-3087 (($ $) 46)) (-1716 (((-112) $) 44)) (-3174 (((-3 $ "failed") $ $) 20)) (-1811 (($) 18 T CONST)) (-3757 (((-3 $ "failed") $) 37)) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) 57)) (-2264 (((-112) $) 35)) (-2120 (($ $ $) 52) (($ (-644 $)) 51)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-2162 (($ $ $) 54) (($ (-644 $)) 53)) (-2976 (((-3 $ "failed") $ $) 48)) (-2840 (((-3 (-644 $) "failed") (-644 $) $) 56)) (-2479 (((-862) $) 12) (($ (-566)) 33) (($ $) 49)) (-1558 (((-771)) 32 T CONST)) (-3900 (((-112) $ $) 9)) (-1333 (((-112) $ $) 45)) (-2446 (($) 19 T CONST)) (-2459 (($) 34 T CONST)) (-2952 (((-112) $ $) 6)) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27))) +(((-920) (-140)) (T -920)) +((-1793 (*1 *2 *3) (-12 (-4 *1 (-920)) (-5 *2 (-2 (|:| -3103 (-644 *1)) (|:| -4086 *1))) (-5 *3 (-644 *1)))) (-2840 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-644 *1)) (-4 *1 (-920))))) +(-13 (-454) (-10 -8 (-15 -1793 ((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $))) (-15 -2840 ((-3 (-644 $) "failed") (-644 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-616 (-566)) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-291) . T) ((-454) . T) ((-558) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 $) . T) ((-640 $) . T) ((-717 $) . T) ((-726) . T) ((-1051 $) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) +((-2986 (((-112) $ $) NIL)) (-1811 (($) NIL T CONST)) (-3757 (((-3 $ "failed") $) NIL)) (-2264 (((-112) $) NIL)) (-1920 (($ $ $) NIL)) (-3038 (($ $ $) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2162 (($ $ $) NIL)) (-2479 (((-862) $) NIL)) (-3900 (((-112) $ $) NIL)) (-2459 (($) NIL T CONST)) (-3019 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3004 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-3052 (($ $ $) NIL)) (** (($ $ (-771)) NIL) (($ $ (-921)) NIL)) (* (($ (-921) $) NIL) (($ $ $) NIL))) +(((-921) (-13 (-794) (-726) (-10 -8 (-15 -2162 ($ $ $)) (-6 (-4419 "*"))))) (T -921)) +((-2162 (*1 *1 *1 *1) (-5 *1 (-921)))) +(-13 (-794) (-726) (-10 -8 (-15 -2162 ($ $ $)) (-6 (-4419 "*")))) ((|NonNegativeInteger|) (> |#1| 0)) -((-1851 ((|#2| (-642 |#1|) (-642 |#1|)) 29))) -(((-920 |#1| |#2|) (-10 -7 (-15 -1851 (|#2| (-642 |#1|) (-642 |#1|)))) (-363) (-1238 |#1|)) (T -920)) -((-1851 (*1 *2 *3 *3) (-12 (-5 *3 (-642 *4)) (-4 *4 (-363)) (-4 *2 (-1238 *4)) (-5 *1 (-920 *4 *2))))) -(-10 -7 (-15 -1851 (|#2| (-642 |#1|) (-642 |#1|)))) -((-4363 (((-1169 |#2|) (-642 |#2|) (-642 |#2|)) 17) (((-1235 |#1| |#2|) (-1235 |#1| |#2|) (-642 |#2|) (-642 |#2|)) 13))) -(((-921 |#1| |#2|) (-10 -7 (-15 -4363 ((-1235 |#1| |#2|) (-1235 |#1| |#2|) (-642 |#2|) (-642 |#2|))) (-15 -4363 ((-1169 |#2|) (-642 |#2|) (-642 |#2|)))) (-1173) (-363)) (T -921)) -((-4363 (*1 *2 *3 *3) (-12 (-5 *3 (-642 *5)) (-4 *5 (-363)) (-5 *2 (-1169 *5)) (-5 *1 (-921 *4 *5)) (-14 *4 (-1173)))) (-4363 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1235 *4 *5)) (-5 *3 (-642 *5)) (-14 *4 (-1173)) (-4 *5 (-363)) (-5 *1 (-921 *4 *5))))) -(-10 -7 (-15 -4363 ((-1235 |#1| |#2|) (-1235 |#1| |#2|) (-642 |#2|) (-642 |#2|))) (-15 -4363 ((-1169 |#2|) (-642 |#2|) (-642 |#2|)))) -((-1933 (((-564) (-642 (-2 (|:| |eqzro| (-642 |#4|)) (|:| |neqzro| (-642 |#4|)) (|:| |wcond| (-642 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -2131 (-642 (-1262 (-407 (-950 |#1|))))))))) (-1155)) 177)) (-3281 ((|#4| |#4|) 196)) (-4319 (((-642 (-407 (-950 |#1|))) (-642 (-1173))) 149)) (-3852 (((-2 (|:| |eqzro| (-642 |#4|)) (|:| |neqzro| (-642 |#4|)) (|:| |wcond| (-642 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -2131 (-642 (-1262 (-407 (-950 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-642 (-564))) (|:| |cols| (-642 (-564)))) (-687 |#4|) (-642 (-407 (-950 |#1|))) (-642 (-642 |#4|)) (-769) (-769) (-564)) 88)) (-3250 (((-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -2131 (-642 (-1262 (-407 (-950 |#1|)))))) (-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -2131 (-642 (-1262 (-407 (-950 |#1|)))))) (-642 |#4|)) 69)) (-3428 (((-687 |#4|) (-687 |#4|) (-642 |#4|)) 65)) (-3167 (((-642 (-2 (|:| |eqzro| (-642 |#4|)) (|:| |neqzro| (-642 |#4|)) (|:| |wcond| (-642 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -2131 (-642 (-1262 (-407 (-950 |#1|))))))))) (-1155)) 189)) (-4047 (((-564) (-687 |#4|) (-919) (-1155)) 169) (((-564) (-687 |#4|) (-642 (-1173)) (-919) (-1155)) 168) (((-564) (-687 |#4|) (-642 |#4|) (-919) (-1155)) 167) (((-564) (-687 |#4|) (-1155)) 157) (((-564) (-687 |#4|) (-642 (-1173)) (-1155)) 156) (((-564) (-687 |#4|) (-642 |#4|) (-1155)) 155) (((-642 (-2 (|:| |eqzro| (-642 |#4|)) (|:| |neqzro| (-642 |#4|)) (|:| |wcond| (-642 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -2131 (-642 (-1262 (-407 (-950 |#1|))))))))) (-687 |#4|) (-919)) 154) (((-642 (-2 (|:| |eqzro| (-642 |#4|)) (|:| |neqzro| (-642 |#4|)) (|:| |wcond| (-642 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -2131 (-642 (-1262 (-407 (-950 |#1|))))))))) (-687 |#4|) (-642 (-1173)) (-919)) 153) (((-642 (-2 (|:| |eqzro| (-642 |#4|)) (|:| |neqzro| (-642 |#4|)) (|:| |wcond| (-642 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -2131 (-642 (-1262 (-407 (-950 |#1|))))))))) (-687 |#4|) (-642 |#4|) (-919)) 152) (((-642 (-2 (|:| |eqzro| (-642 |#4|)) (|:| |neqzro| (-642 |#4|)) (|:| |wcond| (-642 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -2131 (-642 (-1262 (-407 (-950 |#1|))))))))) (-687 |#4|)) 151) (((-642 (-2 (|:| |eqzro| (-642 |#4|)) (|:| |neqzro| (-642 |#4|)) (|:| |wcond| (-642 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -2131 (-642 (-1262 (-407 (-950 |#1|))))))))) (-687 |#4|) (-642 (-1173))) 150) (((-642 (-2 (|:| |eqzro| (-642 |#4|)) (|:| |neqzro| (-642 |#4|)) (|:| |wcond| (-642 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -2131 (-642 (-1262 (-407 (-950 |#1|))))))))) (-687 |#4|) (-642 |#4|)) 146)) (-2218 ((|#4| (-950 |#1|)) 80)) (-1826 (((-112) (-642 |#4|) (-642 (-642 |#4|))) 193)) (-3790 (((-642 (-642 (-564))) (-564) (-564)) 162)) (-4203 (((-642 (-642 |#4|)) (-642 (-642 |#4|))) 107)) (-3970 (((-769) (-642 (-2 (|:| -3616 (-769)) (|:| |eqns| (-642 (-2 (|:| |det| |#4|) (|:| |rows| (-642 (-564))) (|:| |cols| (-642 (-564)))))) (|:| |fgb| (-642 |#4|))))) 102)) (-2102 (((-769) (-642 (-2 (|:| -3616 (-769)) (|:| |eqns| (-642 (-2 (|:| |det| |#4|) (|:| |rows| (-642 (-564))) (|:| |cols| (-642 (-564)))))) (|:| |fgb| (-642 |#4|))))) 101)) (-3678 (((-112) (-642 (-950 |#1|))) 19) (((-112) (-642 |#4|)) 15)) (-1358 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-642 |#4|)) (|:| |n0| (-642 |#4|))) (-642 |#4|) (-642 |#4|)) 84)) (-1758 (((-642 |#4|) |#4|) 57)) (-3832 (((-642 (-407 (-950 |#1|))) (-642 |#4|)) 145) (((-687 (-407 (-950 |#1|))) (-687 |#4|)) 66) (((-407 (-950 |#1|)) |#4|) 142)) (-3627 (((-2 (|:| |rgl| (-642 (-2 (|:| |eqzro| (-642 |#4|)) (|:| |neqzro| (-642 |#4|)) (|:| |wcond| (-642 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -2131 (-642 (-1262 (-407 (-950 |#1|)))))))))) (|:| |rgsz| (-564))) (-687 |#4|) (-642 (-407 (-950 |#1|))) (-769) (-1155) (-564)) 113)) (-3721 (((-642 (-2 (|:| -3616 (-769)) (|:| |eqns| (-642 (-2 (|:| |det| |#4|) (|:| |rows| (-642 (-564))) (|:| |cols| (-642 (-564)))))) (|:| |fgb| (-642 |#4|)))) (-687 |#4|) (-769)) 100)) (-3733 (((-642 (-2 (|:| |det| |#4|) (|:| |rows| (-642 (-564))) (|:| |cols| (-642 (-564))))) (-687 |#4|) (-769)) 124)) (-3246 (((-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -2131 (-642 (-1262 (-407 (-950 |#1|)))))) (-2 (|:| -3544 (-687 (-407 (-950 |#1|)))) (|:| |vec| (-642 (-407 (-950 |#1|)))) (|:| -3616 (-769)) (|:| |rows| (-642 (-564))) (|:| |cols| (-642 (-564))))) 56))) -(((-922 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4047 ((-642 (-2 (|:| |eqzro| (-642 |#4|)) (|:| |neqzro| (-642 |#4|)) (|:| |wcond| (-642 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -2131 (-642 (-1262 (-407 (-950 |#1|))))))))) (-687 |#4|) (-642 |#4|))) (-15 -4047 ((-642 (-2 (|:| |eqzro| (-642 |#4|)) (|:| |neqzro| (-642 |#4|)) (|:| |wcond| (-642 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -2131 (-642 (-1262 (-407 (-950 |#1|))))))))) (-687 |#4|) (-642 (-1173)))) (-15 -4047 ((-642 (-2 (|:| |eqzro| (-642 |#4|)) (|:| |neqzro| (-642 |#4|)) (|:| |wcond| (-642 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -2131 (-642 (-1262 (-407 (-950 |#1|))))))))) (-687 |#4|))) (-15 -4047 ((-642 (-2 (|:| |eqzro| (-642 |#4|)) (|:| |neqzro| (-642 |#4|)) (|:| |wcond| (-642 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -2131 (-642 (-1262 (-407 (-950 |#1|))))))))) (-687 |#4|) (-642 |#4|) (-919))) (-15 -4047 ((-642 (-2 (|:| |eqzro| (-642 |#4|)) (|:| |neqzro| (-642 |#4|)) (|:| |wcond| (-642 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -2131 (-642 (-1262 (-407 (-950 |#1|))))))))) (-687 |#4|) (-642 (-1173)) (-919))) (-15 -4047 ((-642 (-2 (|:| |eqzro| (-642 |#4|)) (|:| |neqzro| (-642 |#4|)) (|:| |wcond| (-642 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -2131 (-642 (-1262 (-407 (-950 |#1|))))))))) (-687 |#4|) (-919))) (-15 -4047 ((-564) (-687 |#4|) (-642 |#4|) (-1155))) (-15 -4047 ((-564) (-687 |#4|) (-642 (-1173)) (-1155))) (-15 -4047 ((-564) (-687 |#4|) (-1155))) (-15 -4047 ((-564) (-687 |#4|) (-642 |#4|) (-919) (-1155))) (-15 -4047 ((-564) (-687 |#4|) (-642 (-1173)) (-919) (-1155))) (-15 -4047 ((-564) (-687 |#4|) (-919) (-1155))) (-15 -1933 ((-564) (-642 (-2 (|:| |eqzro| (-642 |#4|)) (|:| |neqzro| (-642 |#4|)) (|:| |wcond| (-642 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -2131 (-642 (-1262 (-407 (-950 |#1|))))))))) (-1155))) (-15 -3167 ((-642 (-2 (|:| |eqzro| (-642 |#4|)) (|:| |neqzro| (-642 |#4|)) (|:| |wcond| (-642 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -2131 (-642 (-1262 (-407 (-950 |#1|))))))))) (-1155))) (-15 -3627 ((-2 (|:| |rgl| (-642 (-2 (|:| |eqzro| (-642 |#4|)) (|:| |neqzro| (-642 |#4|)) (|:| |wcond| (-642 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -2131 (-642 (-1262 (-407 (-950 |#1|)))))))))) (|:| |rgsz| (-564))) (-687 |#4|) (-642 (-407 (-950 |#1|))) (-769) (-1155) (-564))) (-15 -3832 ((-407 (-950 |#1|)) |#4|)) (-15 -3832 ((-687 (-407 (-950 |#1|))) (-687 |#4|))) (-15 -3832 ((-642 (-407 (-950 |#1|))) (-642 |#4|))) (-15 -4319 ((-642 (-407 (-950 |#1|))) (-642 (-1173)))) (-15 -2218 (|#4| (-950 |#1|))) (-15 -1358 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-642 |#4|)) (|:| |n0| (-642 |#4|))) (-642 |#4|) (-642 |#4|))) (-15 -3721 ((-642 (-2 (|:| -3616 (-769)) (|:| |eqns| (-642 (-2 (|:| |det| |#4|) (|:| |rows| (-642 (-564))) (|:| |cols| (-642 (-564)))))) (|:| |fgb| (-642 |#4|)))) (-687 |#4|) (-769))) (-15 -3250 ((-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -2131 (-642 (-1262 (-407 (-950 |#1|)))))) (-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -2131 (-642 (-1262 (-407 (-950 |#1|)))))) (-642 |#4|))) (-15 -3246 ((-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -2131 (-642 (-1262 (-407 (-950 |#1|)))))) (-2 (|:| -3544 (-687 (-407 (-950 |#1|)))) (|:| |vec| (-642 (-407 (-950 |#1|)))) (|:| -3616 (-769)) (|:| |rows| (-642 (-564))) (|:| |cols| (-642 (-564)))))) (-15 -1758 ((-642 |#4|) |#4|)) (-15 -2102 ((-769) (-642 (-2 (|:| -3616 (-769)) (|:| |eqns| (-642 (-2 (|:| |det| |#4|) (|:| |rows| (-642 (-564))) (|:| |cols| (-642 (-564)))))) (|:| |fgb| (-642 |#4|)))))) (-15 -3970 ((-769) (-642 (-2 (|:| -3616 (-769)) (|:| |eqns| (-642 (-2 (|:| |det| |#4|) (|:| |rows| (-642 (-564))) (|:| |cols| (-642 (-564)))))) (|:| |fgb| (-642 |#4|)))))) (-15 -4203 ((-642 (-642 |#4|)) (-642 (-642 |#4|)))) (-15 -3790 ((-642 (-642 (-564))) (-564) (-564))) (-15 -1826 ((-112) (-642 |#4|) (-642 (-642 |#4|)))) (-15 -3733 ((-642 (-2 (|:| |det| |#4|) (|:| |rows| (-642 (-564))) (|:| |cols| (-642 (-564))))) (-687 |#4|) (-769))) (-15 -3428 ((-687 |#4|) (-687 |#4|) (-642 |#4|))) (-15 -3852 ((-2 (|:| |eqzro| (-642 |#4|)) (|:| |neqzro| (-642 |#4|)) (|:| |wcond| (-642 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -2131 (-642 (-1262 (-407 (-950 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-642 (-564))) (|:| |cols| (-642 (-564)))) (-687 |#4|) (-642 (-407 (-950 |#1|))) (-642 (-642 |#4|)) (-769) (-769) (-564))) (-15 -3281 (|#4| |#4|)) (-15 -3678 ((-112) (-642 |#4|))) (-15 -3678 ((-112) (-642 (-950 |#1|))))) (-13 (-307) (-147)) (-13 (-848) (-612 (-1173))) (-791) (-947 |#1| |#3| |#2|)) (T -922)) -((-3678 (*1 *2 *3) (-12 (-5 *3 (-642 (-950 *4))) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-848) (-612 (-1173)))) (-4 *6 (-791)) (-5 *2 (-112)) (-5 *1 (-922 *4 *5 *6 *7)) (-4 *7 (-947 *4 *6 *5)))) (-3678 (*1 *2 *3) (-12 (-5 *3 (-642 *7)) (-4 *7 (-947 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-848) (-612 (-1173)))) (-4 *6 (-791)) (-5 *2 (-112)) (-5 *1 (-922 *4 *5 *6 *7)))) (-3281 (*1 *2 *2) (-12 (-4 *3 (-13 (-307) (-147))) (-4 *4 (-13 (-848) (-612 (-1173)))) (-4 *5 (-791)) (-5 *1 (-922 *3 *4 *5 *2)) (-4 *2 (-947 *3 *5 *4)))) (-3852 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-642 (-564))) (|:| |cols| (-642 (-564))))) (-5 *4 (-687 *12)) (-5 *5 (-642 (-407 (-950 *9)))) (-5 *6 (-642 (-642 *12))) (-5 *7 (-769)) (-5 *8 (-564)) (-4 *9 (-13 (-307) (-147))) (-4 *12 (-947 *9 *11 *10)) (-4 *10 (-13 (-848) (-612 (-1173)))) (-4 *11 (-791)) (-5 *2 (-2 (|:| |eqzro| (-642 *12)) (|:| |neqzro| (-642 *12)) (|:| |wcond| (-642 (-950 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 *9)))) (|:| -2131 (-642 (-1262 (-407 (-950 *9))))))))) (-5 *1 (-922 *9 *10 *11 *12)))) (-3428 (*1 *2 *2 *3) (-12 (-5 *2 (-687 *7)) (-5 *3 (-642 *7)) (-4 *7 (-947 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-848) (-612 (-1173)))) (-4 *6 (-791)) (-5 *1 (-922 *4 *5 *6 *7)))) (-3733 (*1 *2 *3 *4) (-12 (-5 *3 (-687 *8)) (-5 *4 (-769)) (-4 *8 (-947 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-848) (-612 (-1173)))) (-4 *7 (-791)) (-5 *2 (-642 (-2 (|:| |det| *8) (|:| |rows| (-642 (-564))) (|:| |cols| (-642 (-564)))))) (-5 *1 (-922 *5 *6 *7 *8)))) (-1826 (*1 *2 *3 *4) (-12 (-5 *4 (-642 (-642 *8))) (-5 *3 (-642 *8)) (-4 *8 (-947 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-848) (-612 (-1173)))) (-4 *7 (-791)) (-5 *2 (-112)) (-5 *1 (-922 *5 *6 *7 *8)))) (-3790 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-848) (-612 (-1173)))) (-4 *6 (-791)) (-5 *2 (-642 (-642 (-564)))) (-5 *1 (-922 *4 *5 *6 *7)) (-5 *3 (-564)) (-4 *7 (-947 *4 *6 *5)))) (-4203 (*1 *2 *2) (-12 (-5 *2 (-642 (-642 *6))) (-4 *6 (-947 *3 *5 *4)) (-4 *3 (-13 (-307) (-147))) (-4 *4 (-13 (-848) (-612 (-1173)))) (-4 *5 (-791)) (-5 *1 (-922 *3 *4 *5 *6)))) (-3970 (*1 *2 *3) (-12 (-5 *3 (-642 (-2 (|:| -3616 (-769)) (|:| |eqns| (-642 (-2 (|:| |det| *7) (|:| |rows| (-642 (-564))) (|:| |cols| (-642 (-564)))))) (|:| |fgb| (-642 *7))))) (-4 *7 (-947 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-848) (-612 (-1173)))) (-4 *6 (-791)) (-5 *2 (-769)) (-5 *1 (-922 *4 *5 *6 *7)))) (-2102 (*1 *2 *3) (-12 (-5 *3 (-642 (-2 (|:| -3616 (-769)) (|:| |eqns| (-642 (-2 (|:| |det| *7) (|:| |rows| (-642 (-564))) (|:| |cols| (-642 (-564)))))) (|:| |fgb| (-642 *7))))) (-4 *7 (-947 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-848) (-612 (-1173)))) (-4 *6 (-791)) (-5 *2 (-769)) (-5 *1 (-922 *4 *5 *6 *7)))) (-1758 (*1 *2 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-848) (-612 (-1173)))) (-4 *6 (-791)) (-5 *2 (-642 *3)) (-5 *1 (-922 *4 *5 *6 *3)) (-4 *3 (-947 *4 *6 *5)))) (-3246 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3544 (-687 (-407 (-950 *4)))) (|:| |vec| (-642 (-407 (-950 *4)))) (|:| -3616 (-769)) (|:| |rows| (-642 (-564))) (|:| |cols| (-642 (-564))))) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-848) (-612 (-1173)))) (-4 *6 (-791)) (-5 *2 (-2 (|:| |partsol| (-1262 (-407 (-950 *4)))) (|:| -2131 (-642 (-1262 (-407 (-950 *4))))))) (-5 *1 (-922 *4 *5 *6 *7)) (-4 *7 (-947 *4 *6 *5)))) (-3250 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1262 (-407 (-950 *4)))) (|:| -2131 (-642 (-1262 (-407 (-950 *4))))))) (-5 *3 (-642 *7)) (-4 *4 (-13 (-307) (-147))) (-4 *7 (-947 *4 *6 *5)) (-4 *5 (-13 (-848) (-612 (-1173)))) (-4 *6 (-791)) (-5 *1 (-922 *4 *5 *6 *7)))) (-3721 (*1 *2 *3 *4) (-12 (-5 *3 (-687 *8)) (-4 *8 (-947 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-848) (-612 (-1173)))) (-4 *7 (-791)) (-5 *2 (-642 (-2 (|:| -3616 (-769)) (|:| |eqns| (-642 (-2 (|:| |det| *8) (|:| |rows| (-642 (-564))) (|:| |cols| (-642 (-564)))))) (|:| |fgb| (-642 *8))))) (-5 *1 (-922 *5 *6 *7 *8)) (-5 *4 (-769)))) (-1358 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-848) (-612 (-1173)))) (-4 *6 (-791)) (-4 *7 (-947 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-642 *7)) (|:| |n0| (-642 *7)))) (-5 *1 (-922 *4 *5 *6 *7)) (-5 *3 (-642 *7)))) (-2218 (*1 *2 *3) (-12 (-5 *3 (-950 *4)) (-4 *4 (-13 (-307) (-147))) (-4 *2 (-947 *4 *6 *5)) (-5 *1 (-922 *4 *5 *6 *2)) (-4 *5 (-13 (-848) (-612 (-1173)))) (-4 *6 (-791)))) (-4319 (*1 *2 *3) (-12 (-5 *3 (-642 (-1173))) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-848) (-612 (-1173)))) (-4 *6 (-791)) (-5 *2 (-642 (-407 (-950 *4)))) (-5 *1 (-922 *4 *5 *6 *7)) (-4 *7 (-947 *4 *6 *5)))) (-3832 (*1 *2 *3) (-12 (-5 *3 (-642 *7)) (-4 *7 (-947 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-848) (-612 (-1173)))) (-4 *6 (-791)) (-5 *2 (-642 (-407 (-950 *4)))) (-5 *1 (-922 *4 *5 *6 *7)))) (-3832 (*1 *2 *3) (-12 (-5 *3 (-687 *7)) (-4 *7 (-947 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-848) (-612 (-1173)))) (-4 *6 (-791)) (-5 *2 (-687 (-407 (-950 *4)))) (-5 *1 (-922 *4 *5 *6 *7)))) (-3832 (*1 *2 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-848) (-612 (-1173)))) (-4 *6 (-791)) (-5 *2 (-407 (-950 *4))) (-5 *1 (-922 *4 *5 *6 *3)) (-4 *3 (-947 *4 *6 *5)))) (-3627 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-687 *11)) (-5 *4 (-642 (-407 (-950 *8)))) (-5 *5 (-769)) (-5 *6 (-1155)) (-4 *8 (-13 (-307) (-147))) (-4 *11 (-947 *8 *10 *9)) (-4 *9 (-13 (-848) (-612 (-1173)))) (-4 *10 (-791)) (-5 *2 (-2 (|:| |rgl| (-642 (-2 (|:| |eqzro| (-642 *11)) (|:| |neqzro| (-642 *11)) (|:| |wcond| (-642 (-950 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 *8)))) (|:| -2131 (-642 (-1262 (-407 (-950 *8)))))))))) (|:| |rgsz| (-564)))) (-5 *1 (-922 *8 *9 *10 *11)) (-5 *7 (-564)))) (-3167 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-848) (-612 (-1173)))) (-4 *6 (-791)) (-5 *2 (-642 (-2 (|:| |eqzro| (-642 *7)) (|:| |neqzro| (-642 *7)) (|:| |wcond| (-642 (-950 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 *4)))) (|:| -2131 (-642 (-1262 (-407 (-950 *4)))))))))) (-5 *1 (-922 *4 *5 *6 *7)) (-4 *7 (-947 *4 *6 *5)))) (-1933 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-2 (|:| |eqzro| (-642 *8)) (|:| |neqzro| (-642 *8)) (|:| |wcond| (-642 (-950 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 *5)))) (|:| -2131 (-642 (-1262 (-407 (-950 *5)))))))))) (-5 *4 (-1155)) (-4 *5 (-13 (-307) (-147))) (-4 *8 (-947 *5 *7 *6)) (-4 *6 (-13 (-848) (-612 (-1173)))) (-4 *7 (-791)) (-5 *2 (-564)) (-5 *1 (-922 *5 *6 *7 *8)))) (-4047 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-687 *9)) (-5 *4 (-919)) (-5 *5 (-1155)) (-4 *9 (-947 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-848) (-612 (-1173)))) (-4 *8 (-791)) (-5 *2 (-564)) (-5 *1 (-922 *6 *7 *8 *9)))) (-4047 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-687 *10)) (-5 *4 (-642 (-1173))) (-5 *5 (-919)) (-5 *6 (-1155)) (-4 *10 (-947 *7 *9 *8)) (-4 *7 (-13 (-307) (-147))) (-4 *8 (-13 (-848) (-612 (-1173)))) (-4 *9 (-791)) (-5 *2 (-564)) (-5 *1 (-922 *7 *8 *9 *10)))) (-4047 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-687 *10)) (-5 *4 (-642 *10)) (-5 *5 (-919)) (-5 *6 (-1155)) (-4 *10 (-947 *7 *9 *8)) (-4 *7 (-13 (-307) (-147))) (-4 *8 (-13 (-848) (-612 (-1173)))) (-4 *9 (-791)) (-5 *2 (-564)) (-5 *1 (-922 *7 *8 *9 *10)))) (-4047 (*1 *2 *3 *4) (-12 (-5 *3 (-687 *8)) (-5 *4 (-1155)) (-4 *8 (-947 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-848) (-612 (-1173)))) (-4 *7 (-791)) (-5 *2 (-564)) (-5 *1 (-922 *5 *6 *7 *8)))) (-4047 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-687 *9)) (-5 *4 (-642 (-1173))) (-5 *5 (-1155)) (-4 *9 (-947 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-848) (-612 (-1173)))) (-4 *8 (-791)) (-5 *2 (-564)) (-5 *1 (-922 *6 *7 *8 *9)))) (-4047 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-687 *9)) (-5 *4 (-642 *9)) (-5 *5 (-1155)) (-4 *9 (-947 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-848) (-612 (-1173)))) (-4 *8 (-791)) (-5 *2 (-564)) (-5 *1 (-922 *6 *7 *8 *9)))) (-4047 (*1 *2 *3 *4) (-12 (-5 *3 (-687 *8)) (-5 *4 (-919)) (-4 *8 (-947 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-848) (-612 (-1173)))) (-4 *7 (-791)) (-5 *2 (-642 (-2 (|:| |eqzro| (-642 *8)) (|:| |neqzro| (-642 *8)) (|:| |wcond| (-642 (-950 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 *5)))) (|:| -2131 (-642 (-1262 (-407 (-950 *5)))))))))) (-5 *1 (-922 *5 *6 *7 *8)))) (-4047 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-687 *9)) (-5 *4 (-642 (-1173))) (-5 *5 (-919)) (-4 *9 (-947 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-848) (-612 (-1173)))) (-4 *8 (-791)) (-5 *2 (-642 (-2 (|:| |eqzro| (-642 *9)) (|:| |neqzro| (-642 *9)) (|:| |wcond| (-642 (-950 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 *6)))) (|:| -2131 (-642 (-1262 (-407 (-950 *6)))))))))) (-5 *1 (-922 *6 *7 *8 *9)))) (-4047 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-687 *9)) (-5 *5 (-919)) (-4 *9 (-947 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-848) (-612 (-1173)))) (-4 *8 (-791)) (-5 *2 (-642 (-2 (|:| |eqzro| (-642 *9)) (|:| |neqzro| (-642 *9)) (|:| |wcond| (-642 (-950 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 *6)))) (|:| -2131 (-642 (-1262 (-407 (-950 *6)))))))))) (-5 *1 (-922 *6 *7 *8 *9)) (-5 *4 (-642 *9)))) (-4047 (*1 *2 *3) (-12 (-5 *3 (-687 *7)) (-4 *7 (-947 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-848) (-612 (-1173)))) (-4 *6 (-791)) (-5 *2 (-642 (-2 (|:| |eqzro| (-642 *7)) (|:| |neqzro| (-642 *7)) (|:| |wcond| (-642 (-950 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 *4)))) (|:| -2131 (-642 (-1262 (-407 (-950 *4)))))))))) (-5 *1 (-922 *4 *5 *6 *7)))) (-4047 (*1 *2 *3 *4) (-12 (-5 *3 (-687 *8)) (-5 *4 (-642 (-1173))) (-4 *8 (-947 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-848) (-612 (-1173)))) (-4 *7 (-791)) (-5 *2 (-642 (-2 (|:| |eqzro| (-642 *8)) (|:| |neqzro| (-642 *8)) (|:| |wcond| (-642 (-950 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 *5)))) (|:| -2131 (-642 (-1262 (-407 (-950 *5)))))))))) (-5 *1 (-922 *5 *6 *7 *8)))) (-4047 (*1 *2 *3 *4) (-12 (-5 *3 (-687 *8)) (-4 *8 (-947 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-848) (-612 (-1173)))) (-4 *7 (-791)) (-5 *2 (-642 (-2 (|:| |eqzro| (-642 *8)) (|:| |neqzro| (-642 *8)) (|:| |wcond| (-642 (-950 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 *5)))) (|:| -2131 (-642 (-1262 (-407 (-950 *5)))))))))) (-5 *1 (-922 *5 *6 *7 *8)) (-5 *4 (-642 *8))))) -(-10 -7 (-15 -4047 ((-642 (-2 (|:| |eqzro| (-642 |#4|)) (|:| |neqzro| (-642 |#4|)) (|:| |wcond| (-642 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -2131 (-642 (-1262 (-407 (-950 |#1|))))))))) (-687 |#4|) (-642 |#4|))) (-15 -4047 ((-642 (-2 (|:| |eqzro| (-642 |#4|)) (|:| |neqzro| (-642 |#4|)) (|:| |wcond| (-642 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -2131 (-642 (-1262 (-407 (-950 |#1|))))))))) (-687 |#4|) (-642 (-1173)))) (-15 -4047 ((-642 (-2 (|:| |eqzro| (-642 |#4|)) (|:| |neqzro| (-642 |#4|)) (|:| |wcond| (-642 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -2131 (-642 (-1262 (-407 (-950 |#1|))))))))) (-687 |#4|))) (-15 -4047 ((-642 (-2 (|:| |eqzro| (-642 |#4|)) (|:| |neqzro| (-642 |#4|)) (|:| |wcond| (-642 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -2131 (-642 (-1262 (-407 (-950 |#1|))))))))) (-687 |#4|) (-642 |#4|) (-919))) (-15 -4047 ((-642 (-2 (|:| |eqzro| (-642 |#4|)) (|:| |neqzro| (-642 |#4|)) (|:| |wcond| (-642 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -2131 (-642 (-1262 (-407 (-950 |#1|))))))))) (-687 |#4|) (-642 (-1173)) (-919))) (-15 -4047 ((-642 (-2 (|:| |eqzro| (-642 |#4|)) (|:| |neqzro| (-642 |#4|)) (|:| |wcond| (-642 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -2131 (-642 (-1262 (-407 (-950 |#1|))))))))) (-687 |#4|) (-919))) (-15 -4047 ((-564) (-687 |#4|) (-642 |#4|) (-1155))) (-15 -4047 ((-564) (-687 |#4|) (-642 (-1173)) (-1155))) (-15 -4047 ((-564) (-687 |#4|) (-1155))) (-15 -4047 ((-564) (-687 |#4|) (-642 |#4|) (-919) (-1155))) (-15 -4047 ((-564) (-687 |#4|) (-642 (-1173)) (-919) (-1155))) (-15 -4047 ((-564) (-687 |#4|) (-919) (-1155))) (-15 -1933 ((-564) (-642 (-2 (|:| |eqzro| (-642 |#4|)) (|:| |neqzro| (-642 |#4|)) (|:| |wcond| (-642 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -2131 (-642 (-1262 (-407 (-950 |#1|))))))))) (-1155))) (-15 -3167 ((-642 (-2 (|:| |eqzro| (-642 |#4|)) (|:| |neqzro| (-642 |#4|)) (|:| |wcond| (-642 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -2131 (-642 (-1262 (-407 (-950 |#1|))))))))) (-1155))) (-15 -3627 ((-2 (|:| |rgl| (-642 (-2 (|:| |eqzro| (-642 |#4|)) (|:| |neqzro| (-642 |#4|)) (|:| |wcond| (-642 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -2131 (-642 (-1262 (-407 (-950 |#1|)))))))))) (|:| |rgsz| (-564))) (-687 |#4|) (-642 (-407 (-950 |#1|))) (-769) (-1155) (-564))) (-15 -3832 ((-407 (-950 |#1|)) |#4|)) (-15 -3832 ((-687 (-407 (-950 |#1|))) (-687 |#4|))) (-15 -3832 ((-642 (-407 (-950 |#1|))) (-642 |#4|))) (-15 -4319 ((-642 (-407 (-950 |#1|))) (-642 (-1173)))) (-15 -2218 (|#4| (-950 |#1|))) (-15 -1358 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-642 |#4|)) (|:| |n0| (-642 |#4|))) (-642 |#4|) (-642 |#4|))) (-15 -3721 ((-642 (-2 (|:| -3616 (-769)) (|:| |eqns| (-642 (-2 (|:| |det| |#4|) (|:| |rows| (-642 (-564))) (|:| |cols| (-642 (-564)))))) (|:| |fgb| (-642 |#4|)))) (-687 |#4|) (-769))) (-15 -3250 ((-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -2131 (-642 (-1262 (-407 (-950 |#1|)))))) (-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -2131 (-642 (-1262 (-407 (-950 |#1|)))))) (-642 |#4|))) (-15 -3246 ((-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -2131 (-642 (-1262 (-407 (-950 |#1|)))))) (-2 (|:| -3544 (-687 (-407 (-950 |#1|)))) (|:| |vec| (-642 (-407 (-950 |#1|)))) (|:| -3616 (-769)) (|:| |rows| (-642 (-564))) (|:| |cols| (-642 (-564)))))) (-15 -1758 ((-642 |#4|) |#4|)) (-15 -2102 ((-769) (-642 (-2 (|:| -3616 (-769)) (|:| |eqns| (-642 (-2 (|:| |det| |#4|) (|:| |rows| (-642 (-564))) (|:| |cols| (-642 (-564)))))) (|:| |fgb| (-642 |#4|)))))) (-15 -3970 ((-769) (-642 (-2 (|:| -3616 (-769)) (|:| |eqns| (-642 (-2 (|:| |det| |#4|) (|:| |rows| (-642 (-564))) (|:| |cols| (-642 (-564)))))) (|:| |fgb| (-642 |#4|)))))) (-15 -4203 ((-642 (-642 |#4|)) (-642 (-642 |#4|)))) (-15 -3790 ((-642 (-642 (-564))) (-564) (-564))) (-15 -1826 ((-112) (-642 |#4|) (-642 (-642 |#4|)))) (-15 -3733 ((-642 (-2 (|:| |det| |#4|) (|:| |rows| (-642 (-564))) (|:| |cols| (-642 (-564))))) (-687 |#4|) (-769))) (-15 -3428 ((-687 |#4|) (-687 |#4|) (-642 |#4|))) (-15 -3852 ((-2 (|:| |eqzro| (-642 |#4|)) (|:| |neqzro| (-642 |#4|)) (|:| |wcond| (-642 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -2131 (-642 (-1262 (-407 (-950 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-642 (-564))) (|:| |cols| (-642 (-564)))) (-687 |#4|) (-642 (-407 (-950 |#1|))) (-642 (-642 |#4|)) (-769) (-769) (-564))) (-15 -3281 (|#4| |#4|)) (-15 -3678 ((-112) (-642 |#4|))) (-15 -3678 ((-112) (-642 (-950 |#1|))))) -((-2529 (((-925) |#1| (-1173)) 17) (((-925) |#1| (-1173) (-1091 (-225))) 21)) (-3880 (((-925) |#1| |#1| (-1173) (-1091 (-225))) 19) (((-925) |#1| (-1173) (-1091 (-225))) 15))) -(((-923 |#1|) (-10 -7 (-15 -3880 ((-925) |#1| (-1173) (-1091 (-225)))) (-15 -3880 ((-925) |#1| |#1| (-1173) (-1091 (-225)))) (-15 -2529 ((-925) |#1| (-1173) (-1091 (-225)))) (-15 -2529 ((-925) |#1| (-1173)))) (-612 (-536))) (T -923)) -((-2529 (*1 *2 *3 *4) (-12 (-5 *4 (-1173)) (-5 *2 (-925)) (-5 *1 (-923 *3)) (-4 *3 (-612 (-536))))) (-2529 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1173)) (-5 *5 (-1091 (-225))) (-5 *2 (-925)) (-5 *1 (-923 *3)) (-4 *3 (-612 (-536))))) (-3880 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1173)) (-5 *5 (-1091 (-225))) (-5 *2 (-925)) (-5 *1 (-923 *3)) (-4 *3 (-612 (-536))))) (-3880 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1173)) (-5 *5 (-1091 (-225))) (-5 *2 (-925)) (-5 *1 (-923 *3)) (-4 *3 (-612 (-536)))))) -(-10 -7 (-15 -3880 ((-925) |#1| (-1173) (-1091 (-225)))) (-15 -3880 ((-925) |#1| |#1| (-1173) (-1091 (-225)))) (-15 -2529 ((-925) |#1| (-1173) (-1091 (-225)))) (-15 -2529 ((-925) |#1| (-1173)))) -((-1921 (($ $ (-1091 (-225)) (-1091 (-225)) (-1091 (-225))) 123)) (-1847 (((-1091 (-225)) $) 64)) (-1835 (((-1091 (-225)) $) 63)) (-1825 (((-1091 (-225)) $) 62)) (-2527 (((-642 (-642 (-225))) $) 69)) (-1894 (((-1091 (-225)) $) 65)) (-2732 (((-564) (-564)) 57)) (-4343 (((-564) (-564)) 52)) (-4139 (((-564) (-564)) 55)) (-3788 (((-112) (-112)) 59)) (-2593 (((-564)) 56)) (-2354 (($ $ (-1091 (-225))) 126) (($ $) 127)) (-2851 (($ (-1 (-941 (-225)) (-225)) (-1091 (-225))) 133) (($ (-1 (-941 (-225)) (-225)) (-1091 (-225)) (-1091 (-225)) (-1091 (-225)) (-1091 (-225))) 134)) (-3880 (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1091 (-225))) 136) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1091 (-225)) (-1091 (-225)) (-1091 (-225)) (-1091 (-225))) 137) (($ $ (-1091 (-225))) 129)) (-2576 (((-564)) 60)) (-3502 (((-564)) 50)) (-2274 (((-564)) 53)) (-3112 (((-642 (-642 (-941 (-225)))) $) 153)) (-2800 (((-112) (-112)) 61)) (-2390 (((-860) $) 151)) (-4098 (((-112)) 58))) -(((-924) (-13 (-972) (-10 -8 (-15 -2851 ($ (-1 (-941 (-225)) (-225)) (-1091 (-225)))) (-15 -2851 ($ (-1 (-941 (-225)) (-225)) (-1091 (-225)) (-1091 (-225)) (-1091 (-225)) (-1091 (-225)))) (-15 -3880 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1091 (-225)))) (-15 -3880 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1091 (-225)) (-1091 (-225)) (-1091 (-225)) (-1091 (-225)))) (-15 -3880 ($ $ (-1091 (-225)))) (-15 -1921 ($ $ (-1091 (-225)) (-1091 (-225)) (-1091 (-225)))) (-15 -2354 ($ $ (-1091 (-225)))) (-15 -2354 ($ $)) (-15 -1894 ((-1091 (-225)) $)) (-15 -2527 ((-642 (-642 (-225))) $)) (-15 -3502 ((-564))) (-15 -4343 ((-564) (-564))) (-15 -2274 ((-564))) (-15 -4139 ((-564) (-564))) (-15 -2593 ((-564))) (-15 -2732 ((-564) (-564))) (-15 -4098 ((-112))) (-15 -3788 ((-112) (-112))) (-15 -2576 ((-564))) (-15 -2800 ((-112) (-112)))))) (T -924)) -((-2851 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-941 (-225)) (-225))) (-5 *3 (-1091 (-225))) (-5 *1 (-924)))) (-2851 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-941 (-225)) (-225))) (-5 *3 (-1091 (-225))) (-5 *1 (-924)))) (-3880 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1091 (-225))) (-5 *1 (-924)))) (-3880 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1091 (-225))) (-5 *1 (-924)))) (-3880 (*1 *1 *1 *2) (-12 (-5 *2 (-1091 (-225))) (-5 *1 (-924)))) (-1921 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1091 (-225))) (-5 *1 (-924)))) (-2354 (*1 *1 *1 *2) (-12 (-5 *2 (-1091 (-225))) (-5 *1 (-924)))) (-2354 (*1 *1 *1) (-5 *1 (-924))) (-1894 (*1 *2 *1) (-12 (-5 *2 (-1091 (-225))) (-5 *1 (-924)))) (-2527 (*1 *2 *1) (-12 (-5 *2 (-642 (-642 (-225)))) (-5 *1 (-924)))) (-3502 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924)))) (-4343 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924)))) (-2274 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924)))) (-4139 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924)))) (-2593 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924)))) (-2732 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924)))) (-4098 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-924)))) (-3788 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-924)))) (-2576 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924)))) (-2800 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-924))))) -(-13 (-972) (-10 -8 (-15 -2851 ($ (-1 (-941 (-225)) (-225)) (-1091 (-225)))) (-15 -2851 ($ (-1 (-941 (-225)) (-225)) (-1091 (-225)) (-1091 (-225)) (-1091 (-225)) (-1091 (-225)))) (-15 -3880 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1091 (-225)))) (-15 -3880 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1091 (-225)) (-1091 (-225)) (-1091 (-225)) (-1091 (-225)))) (-15 -3880 ($ $ (-1091 (-225)))) (-15 -1921 ($ $ (-1091 (-225)) (-1091 (-225)) (-1091 (-225)))) (-15 -2354 ($ $ (-1091 (-225)))) (-15 -2354 ($ $)) (-15 -1894 ((-1091 (-225)) $)) (-15 -2527 ((-642 (-642 (-225))) $)) (-15 -3502 ((-564))) (-15 -4343 ((-564) (-564))) (-15 -2274 ((-564))) (-15 -4139 ((-564) (-564))) (-15 -2593 ((-564))) (-15 -2732 ((-564) (-564))) (-15 -4098 ((-112))) (-15 -3788 ((-112) (-112))) (-15 -2576 ((-564))) (-15 -2800 ((-112) (-112))))) -((-1921 (($ $ (-1091 (-225))) 124) (($ $ (-1091 (-225)) (-1091 (-225))) 125)) (-1835 (((-1091 (-225)) $) 73)) (-1825 (((-1091 (-225)) $) 72)) (-1894 (((-1091 (-225)) $) 74)) (-4263 (((-564) (-564)) 66)) (-1784 (((-564) (-564)) 61)) (-3702 (((-564) (-564)) 64)) (-3575 (((-112) (-112)) 68)) (-2048 (((-564)) 65)) (-2354 (($ $ (-1091 (-225))) 128) (($ $) 129)) (-2851 (($ (-1 (-941 (-225)) (-225)) (-1091 (-225))) 143) (($ (-1 (-941 (-225)) (-225)) (-1091 (-225)) (-1091 (-225)) (-1091 (-225))) 144)) (-2529 (($ (-1 (-225) (-225)) (-1091 (-225))) 151) (($ (-1 (-225) (-225))) 155)) (-3880 (($ (-1 (-225) (-225)) (-1091 (-225))) 139) (($ (-1 (-225) (-225)) (-1091 (-225)) (-1091 (-225))) 140) (($ (-642 (-1 (-225) (-225))) (-1091 (-225))) 148) (($ (-642 (-1 (-225) (-225))) (-1091 (-225)) (-1091 (-225))) 149) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1091 (-225))) 141) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1091 (-225)) (-1091 (-225)) (-1091 (-225))) 142) (($ $ (-1091 (-225))) 130)) (-1604 (((-112) $) 69)) (-2509 (((-564)) 70)) (-4071 (((-564)) 59)) (-3374 (((-564)) 62)) (-3112 (((-642 (-642 (-941 (-225)))) $) 35)) (-4011 (((-112) (-112)) 71)) (-2390 (((-860) $) 169)) (-3665 (((-112)) 67))) -(((-925) (-13 (-953) (-10 -8 (-15 -3880 ($ (-1 (-225) (-225)) (-1091 (-225)))) (-15 -3880 ($ (-1 (-225) (-225)) (-1091 (-225)) (-1091 (-225)))) (-15 -3880 ($ (-642 (-1 (-225) (-225))) (-1091 (-225)))) (-15 -3880 ($ (-642 (-1 (-225) (-225))) (-1091 (-225)) (-1091 (-225)))) (-15 -3880 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1091 (-225)))) (-15 -3880 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1091 (-225)) (-1091 (-225)) (-1091 (-225)))) (-15 -2851 ($ (-1 (-941 (-225)) (-225)) (-1091 (-225)))) (-15 -2851 ($ (-1 (-941 (-225)) (-225)) (-1091 (-225)) (-1091 (-225)) (-1091 (-225)))) (-15 -2529 ($ (-1 (-225) (-225)) (-1091 (-225)))) (-15 -2529 ($ (-1 (-225) (-225)))) (-15 -3880 ($ $ (-1091 (-225)))) (-15 -1604 ((-112) $)) (-15 -1921 ($ $ (-1091 (-225)))) (-15 -1921 ($ $ (-1091 (-225)) (-1091 (-225)))) (-15 -2354 ($ $ (-1091 (-225)))) (-15 -2354 ($ $)) (-15 -1894 ((-1091 (-225)) $)) (-15 -4071 ((-564))) (-15 -1784 ((-564) (-564))) (-15 -3374 ((-564))) (-15 -3702 ((-564) (-564))) (-15 -2048 ((-564))) (-15 -4263 ((-564) (-564))) (-15 -3665 ((-112))) (-15 -3575 ((-112) (-112))) (-15 -2509 ((-564))) (-15 -4011 ((-112) (-112)))))) (T -925)) -((-3880 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1091 (-225))) (-5 *1 (-925)))) (-3880 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1091 (-225))) (-5 *1 (-925)))) (-3880 (*1 *1 *2 *3) (-12 (-5 *2 (-642 (-1 (-225) (-225)))) (-5 *3 (-1091 (-225))) (-5 *1 (-925)))) (-3880 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-642 (-1 (-225) (-225)))) (-5 *3 (-1091 (-225))) (-5 *1 (-925)))) (-3880 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1091 (-225))) (-5 *1 (-925)))) (-3880 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1091 (-225))) (-5 *1 (-925)))) (-2851 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-941 (-225)) (-225))) (-5 *3 (-1091 (-225))) (-5 *1 (-925)))) (-2851 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-941 (-225)) (-225))) (-5 *3 (-1091 (-225))) (-5 *1 (-925)))) (-2529 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1091 (-225))) (-5 *1 (-925)))) (-2529 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-925)))) (-3880 (*1 *1 *1 *2) (-12 (-5 *2 (-1091 (-225))) (-5 *1 (-925)))) (-1604 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-925)))) (-1921 (*1 *1 *1 *2) (-12 (-5 *2 (-1091 (-225))) (-5 *1 (-925)))) (-1921 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1091 (-225))) (-5 *1 (-925)))) (-2354 (*1 *1 *1 *2) (-12 (-5 *2 (-1091 (-225))) (-5 *1 (-925)))) (-2354 (*1 *1 *1) (-5 *1 (-925))) (-1894 (*1 *2 *1) (-12 (-5 *2 (-1091 (-225))) (-5 *1 (-925)))) (-4071 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-925)))) (-1784 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-925)))) (-3374 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-925)))) (-3702 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-925)))) (-2048 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-925)))) (-4263 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-925)))) (-3665 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-925)))) (-3575 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-925)))) (-2509 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-925)))) (-4011 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-925))))) -(-13 (-953) (-10 -8 (-15 -3880 ($ (-1 (-225) (-225)) (-1091 (-225)))) (-15 -3880 ($ (-1 (-225) (-225)) (-1091 (-225)) (-1091 (-225)))) (-15 -3880 ($ (-642 (-1 (-225) (-225))) (-1091 (-225)))) (-15 -3880 ($ (-642 (-1 (-225) (-225))) (-1091 (-225)) (-1091 (-225)))) (-15 -3880 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1091 (-225)))) (-15 -3880 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1091 (-225)) (-1091 (-225)) (-1091 (-225)))) (-15 -2851 ($ (-1 (-941 (-225)) (-225)) (-1091 (-225)))) (-15 -2851 ($ (-1 (-941 (-225)) (-225)) (-1091 (-225)) (-1091 (-225)) (-1091 (-225)))) (-15 -2529 ($ (-1 (-225) (-225)) (-1091 (-225)))) (-15 -2529 ($ (-1 (-225) (-225)))) (-15 -3880 ($ $ (-1091 (-225)))) (-15 -1604 ((-112) $)) (-15 -1921 ($ $ (-1091 (-225)))) (-15 -1921 ($ $ (-1091 (-225)) (-1091 (-225)))) (-15 -2354 ($ $ (-1091 (-225)))) (-15 -2354 ($ $)) (-15 -1894 ((-1091 (-225)) $)) (-15 -4071 ((-564))) (-15 -1784 ((-564) (-564))) (-15 -3374 ((-564))) (-15 -3702 ((-564) (-564))) (-15 -2048 ((-564))) (-15 -4263 ((-564) (-564))) (-15 -3665 ((-112))) (-15 -3575 ((-112) (-112))) (-15 -2509 ((-564))) (-15 -4011 ((-112) (-112))))) -((-3007 (((-642 (-1091 (-225))) (-642 (-642 (-941 (-225))))) 34))) -(((-926) (-10 -7 (-15 -3007 ((-642 (-1091 (-225))) (-642 (-642 (-941 (-225)))))))) (T -926)) -((-3007 (*1 *2 *3) (-12 (-5 *3 (-642 (-642 (-941 (-225))))) (-5 *2 (-642 (-1091 (-225)))) (-5 *1 (-926))))) -(-10 -7 (-15 -3007 ((-642 (-1091 (-225))) (-642 (-642 (-941 (-225))))))) -((-3441 ((|#2| |#2|) 28)) (-3198 ((|#2| |#2|) 29)) (-1551 ((|#2| |#2|) 27)) (-1447 ((|#2| |#2| (-506)) 26))) -(((-927 |#1| |#2|) (-10 -7 (-15 -1447 (|#2| |#2| (-506))) (-15 -1551 (|#2| |#2|)) (-15 -3441 (|#2| |#2|)) (-15 -3198 (|#2| |#2|))) (-1097) (-430 |#1|)) (T -927)) -((-3198 (*1 *2 *2) (-12 (-4 *3 (-1097)) (-5 *1 (-927 *3 *2)) (-4 *2 (-430 *3)))) (-3441 (*1 *2 *2) (-12 (-4 *3 (-1097)) (-5 *1 (-927 *3 *2)) (-4 *2 (-430 *3)))) (-1551 (*1 *2 *2) (-12 (-4 *3 (-1097)) (-5 *1 (-927 *3 *2)) (-4 *2 (-430 *3)))) (-1447 (*1 *2 *2 *3) (-12 (-5 *3 (-506)) (-4 *4 (-1097)) (-5 *1 (-927 *4 *2)) (-4 *2 (-430 *4))))) -(-10 -7 (-15 -1447 (|#2| |#2| (-506))) (-15 -1551 (|#2| |#2|)) (-15 -3441 (|#2| |#2|)) (-15 -3198 (|#2| |#2|))) -((-3441 (((-316 (-564)) (-1173)) 16)) (-3198 (((-316 (-564)) (-1173)) 14)) (-1551 (((-316 (-564)) (-1173)) 12)) (-1447 (((-316 (-564)) (-1173) (-506)) 19))) -(((-928) (-10 -7 (-15 -1447 ((-316 (-564)) (-1173) (-506))) (-15 -1551 ((-316 (-564)) (-1173))) (-15 -3441 ((-316 (-564)) (-1173))) (-15 -3198 ((-316 (-564)) (-1173))))) (T -928)) -((-3198 (*1 *2 *3) (-12 (-5 *3 (-1173)) (-5 *2 (-316 (-564))) (-5 *1 (-928)))) (-3441 (*1 *2 *3) (-12 (-5 *3 (-1173)) (-5 *2 (-316 (-564))) (-5 *1 (-928)))) (-1551 (*1 *2 *3) (-12 (-5 *3 (-1173)) (-5 *2 (-316 (-564))) (-5 *1 (-928)))) (-1447 (*1 *2 *3 *4) (-12 (-5 *3 (-1173)) (-5 *4 (-506)) (-5 *2 (-316 (-564))) (-5 *1 (-928))))) -(-10 -7 (-15 -1447 ((-316 (-564)) (-1173) (-506))) (-15 -1551 ((-316 (-564)) (-1173))) (-15 -3441 ((-316 (-564)) (-1173))) (-15 -3198 ((-316 (-564)) (-1173)))) -((-1381 (((-887 |#1| |#3|) |#2| (-890 |#1|) (-887 |#1| |#3|)) 25)) (-1351 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13))) -(((-929 |#1| |#2| |#3|) (-10 -7 (-15 -1351 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -1381 ((-887 |#1| |#3|) |#2| (-890 |#1|) (-887 |#1| |#3|)))) (-1097) (-884 |#1|) (-13 (-1097) (-1036 |#2|))) (T -929)) -((-1381 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-887 *5 *6)) (-5 *4 (-890 *5)) (-4 *5 (-1097)) (-4 *6 (-13 (-1097) (-1036 *3))) (-4 *3 (-884 *5)) (-5 *1 (-929 *5 *3 *6)))) (-1351 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1097) (-1036 *5))) (-4 *5 (-884 *4)) (-4 *4 (-1097)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-929 *4 *5 *6))))) -(-10 -7 (-15 -1351 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -1381 ((-887 |#1| |#3|) |#2| (-890 |#1|) (-887 |#1| |#3|)))) -((-1381 (((-887 |#1| |#3|) |#3| (-890 |#1|) (-887 |#1| |#3|)) 30))) -(((-930 |#1| |#2| |#3|) (-10 -7 (-15 -1381 ((-887 |#1| |#3|) |#3| (-890 |#1|) (-887 |#1| |#3|)))) (-1097) (-13 (-556) (-884 |#1|)) (-13 (-430 |#2|) (-612 (-890 |#1|)) (-884 |#1|) (-1036 (-610 $)))) (T -930)) -((-1381 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-887 *5 *3)) (-4 *5 (-1097)) (-4 *3 (-13 (-430 *6) (-612 *4) (-884 *5) (-1036 (-610 $)))) (-5 *4 (-890 *5)) (-4 *6 (-13 (-556) (-884 *5))) (-5 *1 (-930 *5 *6 *3))))) -(-10 -7 (-15 -1381 ((-887 |#1| |#3|) |#3| (-890 |#1|) (-887 |#1| |#3|)))) -((-1381 (((-887 (-564) |#1|) |#1| (-890 (-564)) (-887 (-564) |#1|)) 13))) -(((-931 |#1|) (-10 -7 (-15 -1381 ((-887 (-564) |#1|) |#1| (-890 (-564)) (-887 (-564) |#1|)))) (-545)) (T -931)) -((-1381 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-887 (-564) *3)) (-5 *4 (-890 (-564))) (-4 *3 (-545)) (-5 *1 (-931 *3))))) -(-10 -7 (-15 -1381 ((-887 (-564) |#1|) |#1| (-890 (-564)) (-887 (-564) |#1|)))) -((-1381 (((-887 |#1| |#2|) (-610 |#2|) (-890 |#1|) (-887 |#1| |#2|)) 57))) -(((-932 |#1| |#2|) (-10 -7 (-15 -1381 ((-887 |#1| |#2|) (-610 |#2|) (-890 |#1|) (-887 |#1| |#2|)))) (-1097) (-13 (-1097) (-1036 (-610 $)) (-612 (-890 |#1|)) (-884 |#1|))) (T -932)) -((-1381 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-887 *5 *6)) (-5 *3 (-610 *6)) (-4 *5 (-1097)) (-4 *6 (-13 (-1097) (-1036 (-610 $)) (-612 *4) (-884 *5))) (-5 *4 (-890 *5)) (-5 *1 (-932 *5 *6))))) -(-10 -7 (-15 -1381 ((-887 |#1| |#2|) (-610 |#2|) (-890 |#1|) (-887 |#1| |#2|)))) -((-1381 (((-883 |#1| |#2| |#3|) |#3| (-890 |#1|) (-883 |#1| |#2| |#3|)) 17))) -(((-933 |#1| |#2| |#3|) (-10 -7 (-15 -1381 ((-883 |#1| |#2| |#3|) |#3| (-890 |#1|) (-883 |#1| |#2| |#3|)))) (-1097) (-884 |#1|) (-664 |#2|)) (T -933)) -((-1381 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-883 *5 *6 *3)) (-5 *4 (-890 *5)) (-4 *5 (-1097)) (-4 *6 (-884 *5)) (-4 *3 (-664 *6)) (-5 *1 (-933 *5 *6 *3))))) -(-10 -7 (-15 -1381 ((-883 |#1| |#2| |#3|) |#3| (-890 |#1|) (-883 |#1| |#2| |#3|)))) -((-1381 (((-887 |#1| |#5|) |#5| (-890 |#1|) (-887 |#1| |#5|)) 17 (|has| |#3| (-884 |#1|))) (((-887 |#1| |#5|) |#5| (-890 |#1|) (-887 |#1| |#5|) (-1 (-887 |#1| |#5|) |#3| (-890 |#1|) (-887 |#1| |#5|))) 16))) -(((-934 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1381 ((-887 |#1| |#5|) |#5| (-890 |#1|) (-887 |#1| |#5|) (-1 (-887 |#1| |#5|) |#3| (-890 |#1|) (-887 |#1| |#5|)))) (IF (|has| |#3| (-884 |#1|)) (-15 -1381 ((-887 |#1| |#5|) |#5| (-890 |#1|) (-887 |#1| |#5|))) |%noBranch|)) (-1097) (-791) (-848) (-13 (-1047) (-884 |#1|)) (-13 (-947 |#4| |#2| |#3|) (-612 (-890 |#1|)))) (T -934)) -((-1381 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-887 *5 *3)) (-4 *5 (-1097)) (-4 *3 (-13 (-947 *8 *6 *7) (-612 *4))) (-5 *4 (-890 *5)) (-4 *7 (-884 *5)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *8 (-13 (-1047) (-884 *5))) (-5 *1 (-934 *5 *6 *7 *8 *3)))) (-1381 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-887 *6 *3) *8 (-890 *6) (-887 *6 *3))) (-4 *8 (-848)) (-5 *2 (-887 *6 *3)) (-5 *4 (-890 *6)) (-4 *6 (-1097)) (-4 *3 (-13 (-947 *9 *7 *8) (-612 *4))) (-4 *7 (-791)) (-4 *9 (-13 (-1047) (-884 *6))) (-5 *1 (-934 *6 *7 *8 *9 *3))))) -(-10 -7 (-15 -1381 ((-887 |#1| |#5|) |#5| (-890 |#1|) (-887 |#1| |#5|) (-1 (-887 |#1| |#5|) |#3| (-890 |#1|) (-887 |#1| |#5|)))) (IF (|has| |#3| (-884 |#1|)) (-15 -1381 ((-887 |#1| |#5|) |#5| (-890 |#1|) (-887 |#1| |#5|))) |%noBranch|)) -((-2081 ((|#2| |#2| (-642 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13))) -(((-935 |#1| |#2| |#3|) (-10 -7 (-15 -2081 (|#2| |#2| (-1 (-112) |#3|))) (-15 -2081 (|#2| |#2| (-642 (-1 (-112) |#3|))))) (-1097) (-430 |#1|) (-1212)) (T -935)) -((-2081 (*1 *2 *2 *3) (-12 (-5 *3 (-642 (-1 (-112) *5))) (-4 *5 (-1212)) (-4 *4 (-1097)) (-5 *1 (-935 *4 *2 *5)) (-4 *2 (-430 *4)))) (-2081 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1212)) (-4 *4 (-1097)) (-5 *1 (-935 *4 *2 *5)) (-4 *2 (-430 *4))))) -(-10 -7 (-15 -2081 (|#2| |#2| (-1 (-112) |#3|))) (-15 -2081 (|#2| |#2| (-642 (-1 (-112) |#3|))))) -((-2081 (((-316 (-564)) (-1173) (-642 (-1 (-112) |#1|))) 18) (((-316 (-564)) (-1173) (-1 (-112) |#1|)) 15))) -(((-936 |#1|) (-10 -7 (-15 -2081 ((-316 (-564)) (-1173) (-1 (-112) |#1|))) (-15 -2081 ((-316 (-564)) (-1173) (-642 (-1 (-112) |#1|))))) (-1212)) (T -936)) -((-2081 (*1 *2 *3 *4) (-12 (-5 *3 (-1173)) (-5 *4 (-642 (-1 (-112) *5))) (-4 *5 (-1212)) (-5 *2 (-316 (-564))) (-5 *1 (-936 *5)))) (-2081 (*1 *2 *3 *4) (-12 (-5 *3 (-1173)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1212)) (-5 *2 (-316 (-564))) (-5 *1 (-936 *5))))) -(-10 -7 (-15 -2081 ((-316 (-564)) (-1173) (-1 (-112) |#1|))) (-15 -2081 ((-316 (-564)) (-1173) (-642 (-1 (-112) |#1|))))) -((-1381 (((-887 |#1| |#3|) |#3| (-890 |#1|) (-887 |#1| |#3|)) 25))) -(((-937 |#1| |#2| |#3|) (-10 -7 (-15 -1381 ((-887 |#1| |#3|) |#3| (-890 |#1|) (-887 |#1| |#3|)))) (-1097) (-13 (-556) (-884 |#1|) (-612 (-890 |#1|))) (-990 |#2|)) (T -937)) -((-1381 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-887 *5 *3)) (-4 *5 (-1097)) (-4 *3 (-990 *6)) (-4 *6 (-13 (-556) (-884 *5) (-612 *4))) (-5 *4 (-890 *5)) (-5 *1 (-937 *5 *6 *3))))) -(-10 -7 (-15 -1381 ((-887 |#1| |#3|) |#3| (-890 |#1|) (-887 |#1| |#3|)))) -((-1381 (((-887 |#1| (-1173)) (-1173) (-890 |#1|) (-887 |#1| (-1173))) 18))) -(((-938 |#1|) (-10 -7 (-15 -1381 ((-887 |#1| (-1173)) (-1173) (-890 |#1|) (-887 |#1| (-1173))))) (-1097)) (T -938)) -((-1381 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-887 *5 (-1173))) (-5 *3 (-1173)) (-5 *4 (-890 *5)) (-4 *5 (-1097)) (-5 *1 (-938 *5))))) -(-10 -7 (-15 -1381 ((-887 |#1| (-1173)) (-1173) (-890 |#1|) (-887 |#1| (-1173))))) -((-1701 (((-887 |#1| |#3|) (-642 |#3|) (-642 (-890 |#1|)) (-887 |#1| |#3|) (-1 (-887 |#1| |#3|) |#3| (-890 |#1|) (-887 |#1| |#3|))) 34)) (-1381 (((-887 |#1| |#3|) (-642 |#3|) (-642 (-890 |#1|)) (-1 |#3| (-642 |#3|)) (-887 |#1| |#3|) (-1 (-887 |#1| |#3|) |#3| (-890 |#1|) (-887 |#1| |#3|))) 33))) -(((-939 |#1| |#2| |#3|) (-10 -7 (-15 -1381 ((-887 |#1| |#3|) (-642 |#3|) (-642 (-890 |#1|)) (-1 |#3| (-642 |#3|)) (-887 |#1| |#3|) (-1 (-887 |#1| |#3|) |#3| (-890 |#1|) (-887 |#1| |#3|)))) (-15 -1701 ((-887 |#1| |#3|) (-642 |#3|) (-642 (-890 |#1|)) (-887 |#1| |#3|) (-1 (-887 |#1| |#3|) |#3| (-890 |#1|) (-887 |#1| |#3|))))) (-1097) (-1047) (-13 (-1047) (-612 (-890 |#1|)) (-1036 |#2|))) (T -939)) -((-1701 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-642 *8)) (-5 *4 (-642 (-890 *6))) (-5 *5 (-1 (-887 *6 *8) *8 (-890 *6) (-887 *6 *8))) (-4 *6 (-1097)) (-4 *8 (-13 (-1047) (-612 (-890 *6)) (-1036 *7))) (-5 *2 (-887 *6 *8)) (-4 *7 (-1047)) (-5 *1 (-939 *6 *7 *8)))) (-1381 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-642 (-890 *7))) (-5 *5 (-1 *9 (-642 *9))) (-5 *6 (-1 (-887 *7 *9) *9 (-890 *7) (-887 *7 *9))) (-4 *7 (-1097)) (-4 *9 (-13 (-1047) (-612 (-890 *7)) (-1036 *8))) (-5 *2 (-887 *7 *9)) (-5 *3 (-642 *9)) (-4 *8 (-1047)) (-5 *1 (-939 *7 *8 *9))))) -(-10 -7 (-15 -1381 ((-887 |#1| |#3|) (-642 |#3|) (-642 (-890 |#1|)) (-1 |#3| (-642 |#3|)) (-887 |#1| |#3|) (-1 (-887 |#1| |#3|) |#3| (-890 |#1|) (-887 |#1| |#3|)))) (-15 -1701 ((-887 |#1| |#3|) (-642 |#3|) (-642 (-890 |#1|)) (-887 |#1| |#3|) (-1 (-887 |#1| |#3|) |#3| (-890 |#1|) (-887 |#1| |#3|))))) -((-2047 (((-1169 (-407 (-564))) (-564)) 81)) (-2450 (((-1169 (-564)) (-564)) 84)) (-3774 (((-1169 (-564)) (-564)) 78)) (-2312 (((-564) (-1169 (-564))) 74)) (-3962 (((-1169 (-407 (-564))) (-564)) 65)) (-3516 (((-1169 (-564)) (-564)) 49)) (-3587 (((-1169 (-564)) (-564)) 86)) (-1631 (((-1169 (-564)) (-564)) 85)) (-3586 (((-1169 (-407 (-564))) (-564)) 67))) -(((-940) (-10 -7 (-15 -3586 ((-1169 (-407 (-564))) (-564))) (-15 -1631 ((-1169 (-564)) (-564))) (-15 -3587 ((-1169 (-564)) (-564))) (-15 -3516 ((-1169 (-564)) (-564))) (-15 -3962 ((-1169 (-407 (-564))) (-564))) (-15 -2312 ((-564) (-1169 (-564)))) (-15 -3774 ((-1169 (-564)) (-564))) (-15 -2450 ((-1169 (-564)) (-564))) (-15 -2047 ((-1169 (-407 (-564))) (-564))))) (T -940)) -((-2047 (*1 *2 *3) (-12 (-5 *2 (-1169 (-407 (-564)))) (-5 *1 (-940)) (-5 *3 (-564)))) (-2450 (*1 *2 *3) (-12 (-5 *2 (-1169 (-564))) (-5 *1 (-940)) (-5 *3 (-564)))) (-3774 (*1 *2 *3) (-12 (-5 *2 (-1169 (-564))) (-5 *1 (-940)) (-5 *3 (-564)))) (-2312 (*1 *2 *3) (-12 (-5 *3 (-1169 (-564))) (-5 *2 (-564)) (-5 *1 (-940)))) (-3962 (*1 *2 *3) (-12 (-5 *2 (-1169 (-407 (-564)))) (-5 *1 (-940)) (-5 *3 (-564)))) (-3516 (*1 *2 *3) (-12 (-5 *2 (-1169 (-564))) (-5 *1 (-940)) (-5 *3 (-564)))) (-3587 (*1 *2 *3) (-12 (-5 *2 (-1169 (-564))) (-5 *1 (-940)) (-5 *3 (-564)))) (-1631 (*1 *2 *3) (-12 (-5 *2 (-1169 (-564))) (-5 *1 (-940)) (-5 *3 (-564)))) (-3586 (*1 *2 *3) (-12 (-5 *2 (-1169 (-407 (-564)))) (-5 *1 (-940)) (-5 *3 (-564))))) -(-10 -7 (-15 -3586 ((-1169 (-407 (-564))) (-564))) (-15 -1631 ((-1169 (-564)) (-564))) (-15 -3587 ((-1169 (-564)) (-564))) (-15 -3516 ((-1169 (-564)) (-564))) (-15 -3962 ((-1169 (-407 (-564))) (-564))) (-15 -2312 ((-564) (-1169 (-564)))) (-15 -3774 ((-1169 (-564)) (-564))) (-15 -2450 ((-1169 (-564)) (-564))) (-15 -2047 ((-1169 (-407 (-564))) (-564)))) -((-2856 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2038 (($ (-769)) NIL (|has| |#1| (-23)))) (-3633 (((-1267) $ (-564) (-564)) NIL (|has| $ (-6 -4411)))) (-1824 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-848)))) (-3659 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4411))) (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-848))))) (-3191 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-848)))) (-3442 (((-112) $ (-769)) NIL)) (-3841 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4411))) ((|#1| $ (-1229 (-564)) |#1|) NIL (|has| $ (-6 -4411)))) (-3437 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2822 (($) NIL T CONST)) (-1540 (($ $) NIL (|has| $ (-6 -4411)))) (-3817 (($ $) NIL)) (-4067 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2517 (($ |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3741 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4410)))) (-3105 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4411)))) (-1804 ((|#1| $ (-564)) NIL)) (-3942 (((-564) (-1 (-112) |#1|) $) NIL) (((-564) |#1| $) NIL (|has| |#1| (-1097))) (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1097)))) (-3148 (($ (-642 |#1|)) 9)) (-2018 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-3500 (((-687 |#1|) $ $) NIL (|has| |#1| (-1047)))) (-4233 (($ (-769) |#1|) NIL)) (-3769 (((-112) $ (-769)) NIL)) (-1802 (((-564) $) NIL (|has| (-564) (-848)))) (-3225 (($ $ $) NIL (|has| |#1| (-848)))) (-2774 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-848)))) (-3541 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2533 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3624 (((-564) $) NIL (|has| (-564) (-848)))) (-2903 (($ $ $) NIL (|has| |#1| (-848)))) (-1857 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1925 ((|#1| $) NIL (-12 (|has| |#1| (-1000)) (|has| |#1| (-1047))))) (-4145 (((-112) $ (-769)) NIL)) (-2495 ((|#1| $) NIL (-12 (|has| |#1| (-1000)) (|has| |#1| (-1047))))) (-1778 (((-1155) $) NIL (|has| |#1| (-1097)))) (-4247 (($ |#1| $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-4107 (((-642 (-564)) $) NIL)) (-4207 (((-112) (-564) $) NIL)) (-3999 (((-1117) $) NIL (|has| |#1| (-1097)))) (-4036 ((|#1| $) NIL (|has| (-564) (-848)))) (-3183 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3826 (($ $ |#1|) NIL (|has| $ (-6 -4411)))) (-2137 (($ $ (-642 |#1|)) 25)) (-4094 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-2478 (((-112) $ $) NIL)) (-1643 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3522 (((-642 |#1|) $) NIL)) (-4109 (((-112) $) NIL)) (-2179 (($) NIL)) (-4369 ((|#1| $ (-564) |#1|) NIL) ((|#1| $ (-564)) 18) (($ $ (-1229 (-564))) NIL)) (-1976 ((|#1| $ $) NIL (|has| |#1| (-1047)))) (-3677 (((-919) $) 13)) (-2083 (($ $ (-564)) NIL) (($ $ (-1229 (-564))) NIL)) (-4215 (($ $ $) 23)) (-4010 (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-769) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3301 (($ $ $ (-564)) NIL (|has| $ (-6 -4411)))) (-3865 (($ $) NIL)) (-3003 (((-536) $) NIL (|has| |#1| (-612 (-536)))) (($ (-642 |#1|)) 14)) (-2401 (($ (-642 |#1|)) NIL)) (-3634 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 24) (($ (-642 $)) NIL)) (-2390 (((-860) $) NIL (|has| |#1| (-611 (-860))))) (-1600 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-3295 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2881 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2857 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2821 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2868 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2844 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2930 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2917 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-564) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-724))) (($ $ |#1|) NIL (|has| |#1| (-724)))) (-2158 (((-769) $) 11 (|has| $ (-6 -4410))))) -(((-941 |#1|) (-978 |#1|) (-1047)) (T -941)) -NIL -(-978 |#1|) -((-3589 (((-481 |#1| |#2|) (-950 |#2|)) 22)) (-3309 (((-247 |#1| |#2|) (-950 |#2|)) 35)) (-2178 (((-950 |#2|) (-481 |#1| |#2|)) 27)) (-3149 (((-247 |#1| |#2|) (-481 |#1| |#2|)) 57)) (-3097 (((-950 |#2|) (-247 |#1| |#2|)) 32)) (-1870 (((-481 |#1| |#2|) (-247 |#1| |#2|)) 48))) -(((-942 |#1| |#2|) (-10 -7 (-15 -1870 ((-481 |#1| |#2|) (-247 |#1| |#2|))) (-15 -3149 ((-247 |#1| |#2|) (-481 |#1| |#2|))) (-15 -3589 ((-481 |#1| |#2|) (-950 |#2|))) (-15 -2178 ((-950 |#2|) (-481 |#1| |#2|))) (-15 -3097 ((-950 |#2|) (-247 |#1| |#2|))) (-15 -3309 ((-247 |#1| |#2|) (-950 |#2|)))) (-642 (-1173)) (-1047)) (T -942)) -((-3309 (*1 *2 *3) (-12 (-5 *3 (-950 *5)) (-4 *5 (-1047)) (-5 *2 (-247 *4 *5)) (-5 *1 (-942 *4 *5)) (-14 *4 (-642 (-1173))))) (-3097 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-642 (-1173))) (-4 *5 (-1047)) (-5 *2 (-950 *5)) (-5 *1 (-942 *4 *5)))) (-2178 (*1 *2 *3) (-12 (-5 *3 (-481 *4 *5)) (-14 *4 (-642 (-1173))) (-4 *5 (-1047)) (-5 *2 (-950 *5)) (-5 *1 (-942 *4 *5)))) (-3589 (*1 *2 *3) (-12 (-5 *3 (-950 *5)) (-4 *5 (-1047)) (-5 *2 (-481 *4 *5)) (-5 *1 (-942 *4 *5)) (-14 *4 (-642 (-1173))))) (-3149 (*1 *2 *3) (-12 (-5 *3 (-481 *4 *5)) (-14 *4 (-642 (-1173))) (-4 *5 (-1047)) (-5 *2 (-247 *4 *5)) (-5 *1 (-942 *4 *5)))) (-1870 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-642 (-1173))) (-4 *5 (-1047)) (-5 *2 (-481 *4 *5)) (-5 *1 (-942 *4 *5))))) -(-10 -7 (-15 -1870 ((-481 |#1| |#2|) (-247 |#1| |#2|))) (-15 -3149 ((-247 |#1| |#2|) (-481 |#1| |#2|))) (-15 -3589 ((-481 |#1| |#2|) (-950 |#2|))) (-15 -2178 ((-950 |#2|) (-481 |#1| |#2|))) (-15 -3097 ((-950 |#2|) (-247 |#1| |#2|))) (-15 -3309 ((-247 |#1| |#2|) (-950 |#2|)))) -((-1470 (((-642 |#2|) |#2| |#2|) 10)) (-1968 (((-769) (-642 |#1|)) 48 (|has| |#1| (-846)))) (-3561 (((-642 |#2|) |#2|) 11)) (-2841 (((-769) (-642 |#1|) (-564) (-564)) 52 (|has| |#1| (-846)))) (-1819 ((|#1| |#2|) 38 (|has| |#1| (-846))))) -(((-943 |#1| |#2|) (-10 -7 (-15 -1470 ((-642 |#2|) |#2| |#2|)) (-15 -3561 ((-642 |#2|) |#2|)) (IF (|has| |#1| (-846)) (PROGN (-15 -1819 (|#1| |#2|)) (-15 -1968 ((-769) (-642 |#1|))) (-15 -2841 ((-769) (-642 |#1|) (-564) (-564)))) |%noBranch|)) (-363) (-1238 |#1|)) (T -943)) -((-2841 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-642 *5)) (-5 *4 (-564)) (-4 *5 (-846)) (-4 *5 (-363)) (-5 *2 (-769)) (-5 *1 (-943 *5 *6)) (-4 *6 (-1238 *5)))) (-1968 (*1 *2 *3) (-12 (-5 *3 (-642 *4)) (-4 *4 (-846)) (-4 *4 (-363)) (-5 *2 (-769)) (-5 *1 (-943 *4 *5)) (-4 *5 (-1238 *4)))) (-1819 (*1 *2 *3) (-12 (-4 *2 (-363)) (-4 *2 (-846)) (-5 *1 (-943 *2 *3)) (-4 *3 (-1238 *2)))) (-3561 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-642 *3)) (-5 *1 (-943 *4 *3)) (-4 *3 (-1238 *4)))) (-1470 (*1 *2 *3 *3) (-12 (-4 *4 (-363)) (-5 *2 (-642 *3)) (-5 *1 (-943 *4 *3)) (-4 *3 (-1238 *4))))) -(-10 -7 (-15 -1470 ((-642 |#2|) |#2| |#2|)) (-15 -3561 ((-642 |#2|) |#2|)) (IF (|has| |#1| (-846)) (PROGN (-15 -1819 (|#1| |#2|)) (-15 -1968 ((-769) (-642 |#1|))) (-15 -2841 ((-769) (-642 |#1|) (-564) (-564)))) |%noBranch|)) -((-2947 (((-950 |#2|) (-1 |#2| |#1|) (-950 |#1|)) 19))) -(((-944 |#1| |#2|) (-10 -7 (-15 -2947 ((-950 |#2|) (-1 |#2| |#1|) (-950 |#1|)))) (-1047) (-1047)) (T -944)) -((-2947 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-950 *5)) (-4 *5 (-1047)) (-4 *6 (-1047)) (-5 *2 (-950 *6)) (-5 *1 (-944 *5 *6))))) -(-10 -7 (-15 -2947 ((-950 |#2|) (-1 |#2| |#1|) (-950 |#1|)))) -((-2223 (((-1235 |#1| (-950 |#2|)) (-950 |#2|) (-1258 |#1|)) 18))) -(((-945 |#1| |#2|) (-10 -7 (-15 -2223 ((-1235 |#1| (-950 |#2|)) (-950 |#2|) (-1258 |#1|)))) (-1173) (-1047)) (T -945)) -((-2223 (*1 *2 *3 *4) (-12 (-5 *4 (-1258 *5)) (-14 *5 (-1173)) (-4 *6 (-1047)) (-5 *2 (-1235 *5 (-950 *6))) (-5 *1 (-945 *5 *6)) (-5 *3 (-950 *6))))) -(-10 -7 (-15 -2223 ((-1235 |#1| (-950 |#2|)) (-950 |#2|) (-1258 |#1|)))) -((-4035 (((-769) $) 88) (((-769) $ (-642 |#4|)) 93)) (-1993 (($ $) 203)) (-3282 (((-418 $) $) 195)) (-3267 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) 141)) (-2849 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 (-564) "failed") $) NIL) (((-3 |#4| "failed") $) 74)) (-1687 ((|#2| $) NIL) (((-407 (-564)) $) NIL) (((-564) $) NIL) ((|#4| $) 73)) (-3710 (($ $ $ |#4|) 95)) (-3330 (((-687 (-564)) (-687 $)) NIL) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL) (((-2 (|:| -3544 (-687 |#2|)) (|:| |vec| (-1262 |#2|))) (-687 $) (-1262 $)) 131) (((-687 |#2|) (-687 $)) 121)) (-2511 (($ $) 210) (($ $ |#4|) 213)) (-3446 (((-642 $) $) 77)) (-1381 (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) 229) (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) 222)) (-1995 (((-642 $) $) 34)) (-2374 (($ |#2| |#3|) NIL) (($ $ |#4| (-769)) NIL) (($ $ (-642 |#4|) (-642 (-769))) 71)) (-3312 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $ |#4|) 192)) (-3664 (((-3 (-642 $) "failed") $) 52)) (-4315 (((-3 (-642 $) "failed") $) 39)) (-3177 (((-3 (-2 (|:| |var| |#4|) (|:| -2817 (-769))) "failed") $) 57)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) 134)) (-3223 (((-418 (-1169 $)) (-1169 $)) 147)) (-2236 (((-418 (-1169 $)) (-1169 $)) 145)) (-2254 (((-418 $) $) 165)) (-3154 (($ $ (-642 (-294 $))) 24) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-642 $) (-642 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-642 |#4|) (-642 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-642 |#4|) (-642 $)) NIL)) (-2790 (($ $ |#4|) 97)) (-3003 (((-890 (-379)) $) 243) (((-890 (-564)) $) 236) (((-536) $) 251)) (-4325 ((|#2| $) NIL) (($ $ |#4|) 205)) (-3556 (((-3 (-1262 $) "failed") (-687 $)) 184)) (-3005 ((|#2| $ |#3|) NIL) (($ $ |#4| (-769)) 62) (($ $ (-642 |#4|) (-642 (-769))) 69)) (-3434 (((-3 $ "failed") $) 186)) (-1600 (((-112) $ $) 216))) -(((-946 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3464 ((-1169 |#1|) (-1169 |#1|) (-1169 |#1|))) (-15 -3282 ((-418 |#1|) |#1|)) (-15 -1993 (|#1| |#1|)) (-15 -3434 ((-3 |#1| "failed") |#1|)) (-15 -3003 ((-536) |#1|)) (-15 -3003 ((-890 (-564)) |#1|)) (-15 -3003 ((-890 (-379)) |#1|)) (-15 -1381 ((-887 (-564) |#1|) |#1| (-890 (-564)) (-887 (-564) |#1|))) (-15 -1381 ((-887 (-379) |#1|) |#1| (-890 (-379)) (-887 (-379) |#1|))) (-15 -2254 ((-418 |#1|) |#1|)) (-15 -2236 ((-418 (-1169 |#1|)) (-1169 |#1|))) (-15 -3223 ((-418 (-1169 |#1|)) (-1169 |#1|))) (-15 -3267 ((-3 (-642 (-1169 |#1|)) "failed") (-642 (-1169 |#1|)) (-1169 |#1|))) (-15 -3556 ((-3 (-1262 |#1|) "failed") (-687 |#1|))) (-15 -2511 (|#1| |#1| |#4|)) (-15 -4325 (|#1| |#1| |#4|)) (-15 -2790 (|#1| |#1| |#4|)) (-15 -3710 (|#1| |#1| |#1| |#4|)) (-15 -3446 ((-642 |#1|) |#1|)) (-15 -4035 ((-769) |#1| (-642 |#4|))) (-15 -4035 ((-769) |#1|)) (-15 -3177 ((-3 (-2 (|:| |var| |#4|) (|:| -2817 (-769))) "failed") |#1|)) (-15 -3664 ((-3 (-642 |#1|) "failed") |#1|)) (-15 -4315 ((-3 (-642 |#1|) "failed") |#1|)) (-15 -2374 (|#1| |#1| (-642 |#4|) (-642 (-769)))) (-15 -2374 (|#1| |#1| |#4| (-769))) (-15 -3312 ((-2 (|:| -4332 |#1|) (|:| -1992 |#1|)) |#1| |#1| |#4|)) (-15 -1995 ((-642 |#1|) |#1|)) (-15 -3005 (|#1| |#1| (-642 |#4|) (-642 (-769)))) (-15 -3005 (|#1| |#1| |#4| (-769))) (-15 -3330 ((-687 |#2|) (-687 |#1|))) (-15 -3330 ((-2 (|:| -3544 (-687 |#2|)) (|:| |vec| (-1262 |#2|))) (-687 |#1|) (-1262 |#1|))) (-15 -3330 ((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 |#1|) (-1262 |#1|))) (-15 -3330 ((-687 (-564)) (-687 |#1|))) (-15 -2849 ((-3 |#4| "failed") |#1|)) (-15 -1687 (|#4| |#1|)) (-15 -3154 (|#1| |#1| (-642 |#4|) (-642 |#1|))) (-15 -3154 (|#1| |#1| |#4| |#1|)) (-15 -3154 (|#1| |#1| (-642 |#4|) (-642 |#2|))) (-15 -3154 (|#1| |#1| |#4| |#2|)) (-15 -3154 (|#1| |#1| (-642 |#1|) (-642 |#1|))) (-15 -3154 (|#1| |#1| |#1| |#1|)) (-15 -3154 (|#1| |#1| (-294 |#1|))) (-15 -3154 (|#1| |#1| (-642 (-294 |#1|)))) (-15 -2374 (|#1| |#2| |#3|)) (-15 -3005 (|#2| |#1| |#3|)) (-15 -2849 ((-3 (-564) "failed") |#1|)) (-15 -1687 ((-564) |#1|)) (-15 -2849 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -1687 ((-407 (-564)) |#1|)) (-15 -1687 (|#2| |#1|)) (-15 -2849 ((-3 |#2| "failed") |#1|)) (-15 -4325 (|#2| |#1|)) (-15 -2511 (|#1| |#1|)) (-15 -1600 ((-112) |#1| |#1|))) (-947 |#2| |#3| |#4|) (-1047) (-791) (-848)) (T -946)) -NIL -(-10 -8 (-15 -3464 ((-1169 |#1|) (-1169 |#1|) (-1169 |#1|))) (-15 -3282 ((-418 |#1|) |#1|)) (-15 -1993 (|#1| |#1|)) (-15 -3434 ((-3 |#1| "failed") |#1|)) (-15 -3003 ((-536) |#1|)) (-15 -3003 ((-890 (-564)) |#1|)) (-15 -3003 ((-890 (-379)) |#1|)) (-15 -1381 ((-887 (-564) |#1|) |#1| (-890 (-564)) (-887 (-564) |#1|))) (-15 -1381 ((-887 (-379) |#1|) |#1| (-890 (-379)) (-887 (-379) |#1|))) (-15 -2254 ((-418 |#1|) |#1|)) (-15 -2236 ((-418 (-1169 |#1|)) (-1169 |#1|))) (-15 -3223 ((-418 (-1169 |#1|)) (-1169 |#1|))) (-15 -3267 ((-3 (-642 (-1169 |#1|)) "failed") (-642 (-1169 |#1|)) (-1169 |#1|))) (-15 -3556 ((-3 (-1262 |#1|) "failed") (-687 |#1|))) (-15 -2511 (|#1| |#1| |#4|)) (-15 -4325 (|#1| |#1| |#4|)) (-15 -2790 (|#1| |#1| |#4|)) (-15 -3710 (|#1| |#1| |#1| |#4|)) (-15 -3446 ((-642 |#1|) |#1|)) (-15 -4035 ((-769) |#1| (-642 |#4|))) (-15 -4035 ((-769) |#1|)) (-15 -3177 ((-3 (-2 (|:| |var| |#4|) (|:| -2817 (-769))) "failed") |#1|)) (-15 -3664 ((-3 (-642 |#1|) "failed") |#1|)) (-15 -4315 ((-3 (-642 |#1|) "failed") |#1|)) (-15 -2374 (|#1| |#1| (-642 |#4|) (-642 (-769)))) (-15 -2374 (|#1| |#1| |#4| (-769))) (-15 -3312 ((-2 (|:| -4332 |#1|) (|:| -1992 |#1|)) |#1| |#1| |#4|)) (-15 -1995 ((-642 |#1|) |#1|)) (-15 -3005 (|#1| |#1| (-642 |#4|) (-642 (-769)))) (-15 -3005 (|#1| |#1| |#4| (-769))) (-15 -3330 ((-687 |#2|) (-687 |#1|))) (-15 -3330 ((-2 (|:| -3544 (-687 |#2|)) (|:| |vec| (-1262 |#2|))) (-687 |#1|) (-1262 |#1|))) (-15 -3330 ((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 |#1|) (-1262 |#1|))) (-15 -3330 ((-687 (-564)) (-687 |#1|))) (-15 -2849 ((-3 |#4| "failed") |#1|)) (-15 -1687 (|#4| |#1|)) (-15 -3154 (|#1| |#1| (-642 |#4|) (-642 |#1|))) (-15 -3154 (|#1| |#1| |#4| |#1|)) (-15 -3154 (|#1| |#1| (-642 |#4|) (-642 |#2|))) (-15 -3154 (|#1| |#1| |#4| |#2|)) (-15 -3154 (|#1| |#1| (-642 |#1|) (-642 |#1|))) (-15 -3154 (|#1| |#1| |#1| |#1|)) (-15 -3154 (|#1| |#1| (-294 |#1|))) (-15 -3154 (|#1| |#1| (-642 (-294 |#1|)))) (-15 -2374 (|#1| |#2| |#3|)) (-15 -3005 (|#2| |#1| |#3|)) (-15 -2849 ((-3 (-564) "failed") |#1|)) (-15 -1687 ((-564) |#1|)) (-15 -2849 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -1687 ((-407 (-564)) |#1|)) (-15 -1687 (|#2| |#1|)) (-15 -2849 ((-3 |#2| "failed") |#1|)) (-15 -4325 (|#2| |#1|)) (-15 -2511 (|#1| |#1|)) (-15 -1600 ((-112) |#1| |#1|))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-2397 (((-642 |#3|) $) 112)) (-2223 (((-1169 $) $ |#3|) 127) (((-1169 |#1|) $) 126)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) 89 (|has| |#1| (-556)))) (-4252 (($ $) 90 (|has| |#1| (-556)))) (-1722 (((-112) $) 92 (|has| |#1| (-556)))) (-4035 (((-769) $) 114) (((-769) $ (-642 |#3|)) 113)) (-3085 (((-3 $ "failed") $ $) 20)) (-4297 (((-418 (-1169 $)) (-1169 $)) 102 (|has| |#1| (-907)))) (-1993 (($ $) 100 (|has| |#1| (-452)))) (-3282 (((-418 $) $) 99 (|has| |#1| (-452)))) (-3267 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) 105 (|has| |#1| (-907)))) (-2822 (($) 18 T CONST)) (-2849 (((-3 |#1| "failed") $) 166) (((-3 (-407 (-564)) "failed") $) 163 (|has| |#1| (-1036 (-407 (-564))))) (((-3 (-564) "failed") $) 161 (|has| |#1| (-1036 (-564)))) (((-3 |#3| "failed") $) 138)) (-1687 ((|#1| $) 165) (((-407 (-564)) $) 164 (|has| |#1| (-1036 (-407 (-564))))) (((-564) $) 162 (|has| |#1| (-1036 (-564)))) ((|#3| $) 139)) (-3710 (($ $ $ |#3|) 110 (|has| |#1| (-172)))) (-3459 (($ $) 156)) (-3330 (((-687 (-564)) (-687 $)) 136 (|has| |#1| (-637 (-564)))) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) 135 (|has| |#1| (-637 (-564)))) (((-2 (|:| -3544 (-687 |#1|)) (|:| |vec| (-1262 |#1|))) (-687 $) (-1262 $)) 134) (((-687 |#1|) (-687 $)) 133)) (-2675 (((-3 $ "failed") $) 37)) (-2511 (($ $) 178 (|has| |#1| (-452))) (($ $ |#3|) 107 (|has| |#1| (-452)))) (-3446 (((-642 $) $) 111)) (-3552 (((-112) $) 98 (|has| |#1| (-907)))) (-2315 (($ $ |#1| |#2| $) 174)) (-1381 (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) 86 (-12 (|has| |#3| (-884 (-379))) (|has| |#1| (-884 (-379))))) (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) 85 (-12 (|has| |#3| (-884 (-564))) (|has| |#1| (-884 (-564)))))) (-3163 (((-112) $) 35)) (-1904 (((-769) $) 171)) (-2387 (($ (-1169 |#1|) |#3|) 119) (($ (-1169 $) |#3|) 118)) (-1995 (((-642 $) $) 128)) (-3471 (((-112) $) 154)) (-2374 (($ |#1| |#2|) 155) (($ $ |#3| (-769)) 121) (($ $ (-642 |#3|) (-642 (-769))) 120)) (-3312 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $ |#3|) 122)) (-2887 ((|#2| $) 172) (((-769) $ |#3|) 124) (((-642 (-769)) $ (-642 |#3|)) 123)) (-3879 (($ (-1 |#2| |#2|) $) 173)) (-2947 (($ (-1 |#1| |#1|) $) 153)) (-1557 (((-3 |#3| "failed") $) 125)) (-2510 (($ $) 151)) (-2523 ((|#1| $) 150)) (-2066 (($ (-642 $)) 96 (|has| |#1| (-452))) (($ $ $) 95 (|has| |#1| (-452)))) (-1778 (((-1155) $) 10)) (-3664 (((-3 (-642 $) "failed") $) 116)) (-4315 (((-3 (-642 $) "failed") $) 117)) (-3177 (((-3 (-2 (|:| |var| |#3|) (|:| -2817 (-769))) "failed") $) 115)) (-3999 (((-1117) $) 11)) (-2491 (((-112) $) 168)) (-2500 ((|#1| $) 169)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) 97 (|has| |#1| (-452)))) (-2105 (($ (-642 $)) 94 (|has| |#1| (-452))) (($ $ $) 93 (|has| |#1| (-452)))) (-3223 (((-418 (-1169 $)) (-1169 $)) 104 (|has| |#1| (-907)))) (-2236 (((-418 (-1169 $)) (-1169 $)) 103 (|has| |#1| (-907)))) (-2254 (((-418 $) $) 101 (|has| |#1| (-907)))) (-2842 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-556))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-556)))) (-3154 (($ $ (-642 (-294 $))) 147) (($ $ (-294 $)) 146) (($ $ $ $) 145) (($ $ (-642 $) (-642 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-642 |#3|) (-642 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-642 |#3|) (-642 $)) 140)) (-2790 (($ $ |#3|) 109 (|has| |#1| (-172)))) (-2199 (($ $ |#3|) 46) (($ $ (-642 |#3|)) 45) (($ $ |#3| (-769)) 44) (($ $ (-642 |#3|) (-642 (-769))) 43)) (-3252 ((|#2| $) 152) (((-769) $ |#3|) 132) (((-642 (-769)) $ (-642 |#3|)) 131)) (-3003 (((-890 (-379)) $) 84 (-12 (|has| |#3| (-612 (-890 (-379)))) (|has| |#1| (-612 (-890 (-379)))))) (((-890 (-564)) $) 83 (-12 (|has| |#3| (-612 (-890 (-564)))) (|has| |#1| (-612 (-890 (-564)))))) (((-536) $) 82 (-12 (|has| |#3| (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-4325 ((|#1| $) 177 (|has| |#1| (-452))) (($ $ |#3|) 108 (|has| |#1| (-452)))) (-3556 (((-3 (-1262 $) "failed") (-687 $)) 106 (-2317 (|has| $ (-145)) (|has| |#1| (-907))))) (-2390 (((-860) $) 12) (($ (-564)) 33) (($ |#1|) 167) (($ |#3|) 137) (($ $) 87 (|has| |#1| (-556))) (($ (-407 (-564))) 80 (-2682 (|has| |#1| (-1036 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564))))))) (-2839 (((-642 |#1|) $) 170)) (-3005 ((|#1| $ |#2|) 157) (($ $ |#3| (-769)) 130) (($ $ (-642 |#3|) (-642 (-769))) 129)) (-3434 (((-3 $ "failed") $) 81 (-2682 (-2317 (|has| $ (-145)) (|has| |#1| (-907))) (|has| |#1| (-145))))) (-3348 (((-769)) 32 T CONST)) (-2645 (($ $ $ (-769)) 175 (|has| |#1| (-172)))) (-1600 (((-112) $ $) 9)) (-1594 (((-112) $ $) 91 (|has| |#1| (-556)))) (-2361 (($) 19 T CONST)) (-2371 (($) 34 T CONST)) (-2711 (($ $ |#3|) 42) (($ $ (-642 |#3|)) 41) (($ $ |#3| (-769)) 40) (($ $ (-642 |#3|) (-642 (-769))) 39)) (-2821 (((-112) $ $) 6)) (-2943 (($ $ |#1|) 158 (|has| |#1| (-363)))) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ (-407 (-564))) 160 (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) 159 (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 149) (($ $ |#1|) 148))) -(((-947 |#1| |#2| |#3|) (-140) (-1047) (-791) (-848)) (T -947)) -((-2511 (*1 *1 *1) (-12 (-4 *1 (-947 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) (-4 *4 (-848)) (-4 *2 (-452)))) (-3252 (*1 *2 *1 *3) (-12 (-4 *1 (-947 *4 *5 *3)) (-4 *4 (-1047)) (-4 *5 (-791)) (-4 *3 (-848)) (-5 *2 (-769)))) (-3252 (*1 *2 *1 *3) (-12 (-5 *3 (-642 *6)) (-4 *1 (-947 *4 *5 *6)) (-4 *4 (-1047)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-642 (-769))))) (-3005 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-769)) (-4 *1 (-947 *4 *5 *2)) (-4 *4 (-1047)) (-4 *5 (-791)) (-4 *2 (-848)))) (-3005 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-642 *6)) (-5 *3 (-642 (-769))) (-4 *1 (-947 *4 *5 *6)) (-4 *4 (-1047)) (-4 *5 (-791)) (-4 *6 (-848)))) (-1995 (*1 *2 *1) (-12 (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-642 *1)) (-4 *1 (-947 *3 *4 *5)))) (-2223 (*1 *2 *1 *3) (-12 (-4 *4 (-1047)) (-4 *5 (-791)) (-4 *3 (-848)) (-5 *2 (-1169 *1)) (-4 *1 (-947 *4 *5 *3)))) (-2223 (*1 *2 *1) (-12 (-4 *1 (-947 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-1169 *3)))) (-1557 (*1 *2 *1) (|partial| -12 (-4 *1 (-947 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *2 (-848)))) (-2887 (*1 *2 *1 *3) (-12 (-4 *1 (-947 *4 *5 *3)) (-4 *4 (-1047)) (-4 *5 (-791)) (-4 *3 (-848)) (-5 *2 (-769)))) (-2887 (*1 *2 *1 *3) (-12 (-5 *3 (-642 *6)) (-4 *1 (-947 *4 *5 *6)) (-4 *4 (-1047)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-642 (-769))))) (-3312 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1047)) (-4 *5 (-791)) (-4 *3 (-848)) (-5 *2 (-2 (|:| -4332 *1) (|:| -1992 *1))) (-4 *1 (-947 *4 *5 *3)))) (-2374 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-769)) (-4 *1 (-947 *4 *5 *2)) (-4 *4 (-1047)) (-4 *5 (-791)) (-4 *2 (-848)))) (-2374 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-642 *6)) (-5 *3 (-642 (-769))) (-4 *1 (-947 *4 *5 *6)) (-4 *4 (-1047)) (-4 *5 (-791)) (-4 *6 (-848)))) (-2387 (*1 *1 *2 *3) (-12 (-5 *2 (-1169 *4)) (-4 *4 (-1047)) (-4 *1 (-947 *4 *5 *3)) (-4 *5 (-791)) (-4 *3 (-848)))) (-2387 (*1 *1 *2 *3) (-12 (-5 *2 (-1169 *1)) (-4 *1 (-947 *4 *5 *3)) (-4 *4 (-1047)) (-4 *5 (-791)) (-4 *3 (-848)))) (-4315 (*1 *2 *1) (|partial| -12 (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-642 *1)) (-4 *1 (-947 *3 *4 *5)))) (-3664 (*1 *2 *1) (|partial| -12 (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-642 *1)) (-4 *1 (-947 *3 *4 *5)))) (-3177 (*1 *2 *1) (|partial| -12 (-4 *1 (-947 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-2 (|:| |var| *5) (|:| -2817 (-769)))))) (-4035 (*1 *2 *1) (-12 (-4 *1 (-947 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-769)))) (-4035 (*1 *2 *1 *3) (-12 (-5 *3 (-642 *6)) (-4 *1 (-947 *4 *5 *6)) (-4 *4 (-1047)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-769)))) (-2397 (*1 *2 *1) (-12 (-4 *1 (-947 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-642 *5)))) (-3446 (*1 *2 *1) (-12 (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-642 *1)) (-4 *1 (-947 *3 *4 *5)))) (-3710 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-947 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *2 (-848)) (-4 *3 (-172)))) (-2790 (*1 *1 *1 *2) (-12 (-4 *1 (-947 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *2 (-848)) (-4 *3 (-172)))) (-4325 (*1 *1 *1 *2) (-12 (-4 *1 (-947 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *2 (-848)) (-4 *3 (-452)))) (-2511 (*1 *1 *1 *2) (-12 (-4 *1 (-947 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *2 (-848)) (-4 *3 (-452)))) (-1993 (*1 *1 *1) (-12 (-4 *1 (-947 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) (-4 *4 (-848)) (-4 *2 (-452)))) (-3282 (*1 *2 *1) (-12 (-4 *3 (-452)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-418 *1)) (-4 *1 (-947 *3 *4 *5))))) -(-13 (-898 |t#3|) (-326 |t#1| |t#2|) (-309 $) (-514 |t#3| |t#1|) (-514 |t#3| $) (-1036 |t#3|) (-377 |t#1|) (-10 -8 (-15 -3252 ((-769) $ |t#3|)) (-15 -3252 ((-642 (-769)) $ (-642 |t#3|))) (-15 -3005 ($ $ |t#3| (-769))) (-15 -3005 ($ $ (-642 |t#3|) (-642 (-769)))) (-15 -1995 ((-642 $) $)) (-15 -2223 ((-1169 $) $ |t#3|)) (-15 -2223 ((-1169 |t#1|) $)) (-15 -1557 ((-3 |t#3| "failed") $)) (-15 -2887 ((-769) $ |t#3|)) (-15 -2887 ((-642 (-769)) $ (-642 |t#3|))) (-15 -3312 ((-2 (|:| -4332 $) (|:| -1992 $)) $ $ |t#3|)) (-15 -2374 ($ $ |t#3| (-769))) (-15 -2374 ($ $ (-642 |t#3|) (-642 (-769)))) (-15 -2387 ($ (-1169 |t#1|) |t#3|)) (-15 -2387 ($ (-1169 $) |t#3|)) (-15 -4315 ((-3 (-642 $) "failed") $)) (-15 -3664 ((-3 (-642 $) "failed") $)) (-15 -3177 ((-3 (-2 (|:| |var| |t#3|) (|:| -2817 (-769))) "failed") $)) (-15 -4035 ((-769) $)) (-15 -4035 ((-769) $ (-642 |t#3|))) (-15 -2397 ((-642 |t#3|) $)) (-15 -3446 ((-642 $) $)) (IF (|has| |t#1| (-612 (-536))) (IF (|has| |t#3| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-612 (-890 (-564)))) (IF (|has| |t#3| (-612 (-890 (-564)))) (-6 (-612 (-890 (-564)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-612 (-890 (-379)))) (IF (|has| |t#3| (-612 (-890 (-379)))) (-6 (-612 (-890 (-379)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-884 (-564))) (IF (|has| |t#3| (-884 (-564))) (-6 (-884 (-564))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-884 (-379))) (IF (|has| |t#3| (-884 (-379))) (-6 (-884 (-379))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-15 -3710 ($ $ $ |t#3|)) (-15 -2790 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-452)) (PROGN (-6 (-452)) (-15 -4325 ($ $ |t#3|)) (-15 -2511 ($ $)) (-15 -2511 ($ $ |t#3|)) (-15 -3282 ((-418 $) $)) (-15 -1993 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4408)) (-6 -4408) |%noBranch|) (IF (|has| |t#1| (-907)) (-6 (-907)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2682 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2682 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) -2682 (|has| |#1| (-1036 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-614 |#3|) . T) ((-614 $) -2682 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-611 (-860)) . T) ((-172) -2682 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-612 (-536)) -12 (|has| |#1| (-612 (-536))) (|has| |#3| (-612 (-536)))) ((-612 (-890 (-379))) -12 (|has| |#1| (-612 (-890 (-379)))) (|has| |#3| (-612 (-890 (-379))))) ((-612 (-890 (-564))) -12 (|has| |#1| (-612 (-890 (-564)))) (|has| |#3| (-612 (-890 (-564))))) ((-290) -2682 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-309 $) . T) ((-326 |#1| |#2|) . T) ((-377 |#1|) . T) ((-411 |#1|) . T) ((-452) -2682 (|has| |#1| (-907)) (|has| |#1| (-452))) ((-514 |#3| |#1|) . T) ((-514 |#3| $) . T) ((-514 $ $) . T) ((-556) -2682 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-644 #0#) |has| |#1| (-38 (-407 (-564)))) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-646 #0#) |has| |#1| (-38 (-407 (-564)))) ((-646 |#1|) . T) ((-646 $) . T) ((-638 #0#) |has| |#1| (-38 (-407 (-564)))) ((-638 |#1|) |has| |#1| (-172)) ((-638 $) -2682 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-715 #0#) |has| |#1| (-38 (-407 (-564)))) ((-715 |#1|) |has| |#1| (-172)) ((-715 $) -2682 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-724) . T) ((-898 |#3|) . T) ((-884 (-379)) -12 (|has| |#1| (-884 (-379))) (|has| |#3| (-884 (-379)))) ((-884 (-564)) -12 (|has| |#1| (-884 (-564))) (|has| |#3| (-884 (-564)))) ((-907) |has| |#1| (-907)) ((-1036 (-407 (-564))) |has| |#1| (-1036 (-407 (-564)))) ((-1036 (-564)) |has| |#1| (-1036 (-564))) ((-1036 |#1|) . T) ((-1036 |#3|) . T) ((-1049 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1049 |#1|) . T) ((-1049 $) -2682 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-1054 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1054 |#1|) . T) ((-1054 $) -2682 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T) ((-1216) |has| |#1| (-907))) -((-2397 (((-642 |#2|) |#5|) 40)) (-2223 (((-1169 |#5|) |#5| |#2| (-1169 |#5|)) 23) (((-407 (-1169 |#5|)) |#5| |#2|) 16)) (-2387 ((|#5| (-407 (-1169 |#5|)) |#2|) 30)) (-1557 (((-3 |#2| "failed") |#5|) 71)) (-3664 (((-3 (-642 |#5|) "failed") |#5|) 65)) (-1459 (((-3 (-2 (|:| |val| |#5|) (|:| -2817 (-564))) "failed") |#5|) 53)) (-4315 (((-3 (-642 |#5|) "failed") |#5|) 67)) (-3177 (((-3 (-2 (|:| |var| |#2|) (|:| -2817 (-564))) "failed") |#5|) 57))) -(((-948 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2397 ((-642 |#2|) |#5|)) (-15 -1557 ((-3 |#2| "failed") |#5|)) (-15 -2223 ((-407 (-1169 |#5|)) |#5| |#2|)) (-15 -2387 (|#5| (-407 (-1169 |#5|)) |#2|)) (-15 -2223 ((-1169 |#5|) |#5| |#2| (-1169 |#5|))) (-15 -4315 ((-3 (-642 |#5|) "failed") |#5|)) (-15 -3664 ((-3 (-642 |#5|) "failed") |#5|)) (-15 -3177 ((-3 (-2 (|:| |var| |#2|) (|:| -2817 (-564))) "failed") |#5|)) (-15 -1459 ((-3 (-2 (|:| |val| |#5|) (|:| -2817 (-564))) "failed") |#5|))) (-791) (-848) (-1047) (-947 |#3| |#1| |#2|) (-13 (-363) (-10 -8 (-15 -2390 ($ |#4|)) (-15 -4120 (|#4| $)) (-15 -4131 (|#4| $))))) (T -948)) -((-1459 (*1 *2 *3) (|partial| -12 (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1047)) (-4 *7 (-947 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2817 (-564)))) (-5 *1 (-948 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -2390 ($ *7)) (-15 -4120 (*7 $)) (-15 -4131 (*7 $))))))) (-3177 (*1 *2 *3) (|partial| -12 (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1047)) (-4 *7 (-947 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2817 (-564)))) (-5 *1 (-948 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -2390 ($ *7)) (-15 -4120 (*7 $)) (-15 -4131 (*7 $))))))) (-3664 (*1 *2 *3) (|partial| -12 (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1047)) (-4 *7 (-947 *6 *4 *5)) (-5 *2 (-642 *3)) (-5 *1 (-948 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -2390 ($ *7)) (-15 -4120 (*7 $)) (-15 -4131 (*7 $))))))) (-4315 (*1 *2 *3) (|partial| -12 (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1047)) (-4 *7 (-947 *6 *4 *5)) (-5 *2 (-642 *3)) (-5 *1 (-948 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -2390 ($ *7)) (-15 -4120 (*7 $)) (-15 -4131 (*7 $))))))) (-2223 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -2390 ($ *7)) (-15 -4120 (*7 $)) (-15 -4131 (*7 $))))) (-4 *7 (-947 *6 *5 *4)) (-4 *5 (-791)) (-4 *4 (-848)) (-4 *6 (-1047)) (-5 *1 (-948 *5 *4 *6 *7 *3)))) (-2387 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-1169 *2))) (-4 *5 (-791)) (-4 *4 (-848)) (-4 *6 (-1047)) (-4 *2 (-13 (-363) (-10 -8 (-15 -2390 ($ *7)) (-15 -4120 (*7 $)) (-15 -4131 (*7 $))))) (-5 *1 (-948 *5 *4 *6 *7 *2)) (-4 *7 (-947 *6 *5 *4)))) (-2223 (*1 *2 *3 *4) (-12 (-4 *5 (-791)) (-4 *4 (-848)) (-4 *6 (-1047)) (-4 *7 (-947 *6 *5 *4)) (-5 *2 (-407 (-1169 *3))) (-5 *1 (-948 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -2390 ($ *7)) (-15 -4120 (*7 $)) (-15 -4131 (*7 $))))))) (-1557 (*1 *2 *3) (|partial| -12 (-4 *4 (-791)) (-4 *5 (-1047)) (-4 *6 (-947 *5 *4 *2)) (-4 *2 (-848)) (-5 *1 (-948 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -2390 ($ *6)) (-15 -4120 (*6 $)) (-15 -4131 (*6 $))))))) (-2397 (*1 *2 *3) (-12 (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1047)) (-4 *7 (-947 *6 *4 *5)) (-5 *2 (-642 *5)) (-5 *1 (-948 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -2390 ($ *7)) (-15 -4120 (*7 $)) (-15 -4131 (*7 $)))))))) -(-10 -7 (-15 -2397 ((-642 |#2|) |#5|)) (-15 -1557 ((-3 |#2| "failed") |#5|)) (-15 -2223 ((-407 (-1169 |#5|)) |#5| |#2|)) (-15 -2387 (|#5| (-407 (-1169 |#5|)) |#2|)) (-15 -2223 ((-1169 |#5|) |#5| |#2| (-1169 |#5|))) (-15 -4315 ((-3 (-642 |#5|) "failed") |#5|)) (-15 -3664 ((-3 (-642 |#5|) "failed") |#5|)) (-15 -3177 ((-3 (-2 (|:| |var| |#2|) (|:| -2817 (-564))) "failed") |#5|)) (-15 -1459 ((-3 (-2 (|:| |val| |#5|) (|:| -2817 (-564))) "failed") |#5|))) -((-2947 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24))) -(((-949 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2947 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-791) (-848) (-1047) (-947 |#3| |#1| |#2|) (-13 (-1097) (-10 -8 (-15 -2917 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-769)))))) (T -949)) -((-2947 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-848)) (-4 *8 (-1047)) (-4 *6 (-791)) (-4 *2 (-13 (-1097) (-10 -8 (-15 -2917 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-769)))))) (-5 *1 (-949 *6 *7 *8 *5 *2)) (-4 *5 (-947 *8 *6 *7))))) -(-10 -7 (-15 -2947 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-2397 (((-642 (-1173)) $) 16)) (-2223 (((-1169 $) $ (-1173)) 21) (((-1169 |#1|) $) NIL)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-4252 (($ $) NIL (|has| |#1| (-556)))) (-1722 (((-112) $) NIL (|has| |#1| (-556)))) (-4035 (((-769) $) NIL) (((-769) $ (-642 (-1173))) NIL)) (-3085 (((-3 $ "failed") $ $) NIL)) (-4297 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-1993 (($ $) NIL (|has| |#1| (-452)))) (-3282 (((-418 $) $) NIL (|has| |#1| (-452)))) (-3267 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-2822 (($) NIL T CONST)) (-2849 (((-3 |#1| "failed") $) 8) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1036 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1036 (-564)))) (((-3 (-1173) "failed") $) NIL)) (-1687 ((|#1| $) NIL) (((-407 (-564)) $) NIL (|has| |#1| (-1036 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1036 (-564)))) (((-1173) $) NIL)) (-3710 (($ $ $ (-1173)) NIL (|has| |#1| (-172)))) (-3459 (($ $) NIL)) (-3330 (((-687 (-564)) (-687 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -3544 (-687 |#1|)) (|:| |vec| (-1262 |#1|))) (-687 $) (-1262 $)) NIL) (((-687 |#1|) (-687 $)) NIL)) (-2675 (((-3 $ "failed") $) NIL)) (-2511 (($ $) NIL (|has| |#1| (-452))) (($ $ (-1173)) NIL (|has| |#1| (-452)))) (-3446 (((-642 $) $) NIL)) (-3552 (((-112) $) NIL (|has| |#1| (-907)))) (-2315 (($ $ |#1| (-531 (-1173)) $) NIL)) (-1381 (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) NIL (-12 (|has| (-1173) (-884 (-379))) (|has| |#1| (-884 (-379))))) (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) NIL (-12 (|has| (-1173) (-884 (-564))) (|has| |#1| (-884 (-564)))))) (-3163 (((-112) $) NIL)) (-1904 (((-769) $) NIL)) (-2387 (($ (-1169 |#1|) (-1173)) NIL) (($ (-1169 $) (-1173)) NIL)) (-1995 (((-642 $) $) NIL)) (-3471 (((-112) $) NIL)) (-2374 (($ |#1| (-531 (-1173))) NIL) (($ $ (-1173) (-769)) NIL) (($ $ (-642 (-1173)) (-642 (-769))) NIL)) (-3312 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $ (-1173)) NIL)) (-2887 (((-531 (-1173)) $) NIL) (((-769) $ (-1173)) NIL) (((-642 (-769)) $ (-642 (-1173))) NIL)) (-3879 (($ (-1 (-531 (-1173)) (-531 (-1173))) $) NIL)) (-2947 (($ (-1 |#1| |#1|) $) NIL)) (-1557 (((-3 (-1173) "failed") $) 19)) (-2510 (($ $) NIL)) (-2523 ((|#1| $) NIL)) (-2066 (($ (-642 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-1778 (((-1155) $) NIL)) (-3664 (((-3 (-642 $) "failed") $) NIL)) (-4315 (((-3 (-642 $) "failed") $) NIL)) (-3177 (((-3 (-2 (|:| |var| (-1173)) (|:| -2817 (-769))) "failed") $) NIL)) (-3703 (($ $ (-1173)) 29 (|has| |#1| (-38 (-407 (-564)))))) (-3999 (((-1117) $) NIL)) (-2491 (((-112) $) NIL)) (-2500 ((|#1| $) NIL)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) NIL (|has| |#1| (-452)))) (-2105 (($ (-642 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3223 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-2236 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-2254 (((-418 $) $) NIL (|has| |#1| (-907)))) (-2842 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-3154 (($ $ (-642 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-642 $) (-642 $)) NIL) (($ $ (-1173) |#1|) NIL) (($ $ (-642 (-1173)) (-642 |#1|)) NIL) (($ $ (-1173) $) NIL) (($ $ (-642 (-1173)) (-642 $)) NIL)) (-2790 (($ $ (-1173)) NIL (|has| |#1| (-172)))) (-2199 (($ $ (-1173)) NIL) (($ $ (-642 (-1173))) NIL) (($ $ (-1173) (-769)) NIL) (($ $ (-642 (-1173)) (-642 (-769))) NIL)) (-3252 (((-531 (-1173)) $) NIL) (((-769) $ (-1173)) NIL) (((-642 (-769)) $ (-642 (-1173))) NIL)) (-3003 (((-890 (-379)) $) NIL (-12 (|has| (-1173) (-612 (-890 (-379)))) (|has| |#1| (-612 (-890 (-379)))))) (((-890 (-564)) $) NIL (-12 (|has| (-1173) (-612 (-890 (-564)))) (|has| |#1| (-612 (-890 (-564)))))) (((-536) $) NIL (-12 (|has| (-1173) (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-4325 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ (-1173)) NIL (|has| |#1| (-452)))) (-3556 (((-3 (-1262 $) "failed") (-687 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-907))))) (-2390 (((-860) $) 25) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-1173)) 27) (($ (-407 (-564))) NIL (-2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1036 (-407 (-564)))))) (($ $) NIL (|has| |#1| (-556)))) (-2839 (((-642 |#1|) $) NIL)) (-3005 ((|#1| $ (-531 (-1173))) NIL) (($ $ (-1173) (-769)) NIL) (($ $ (-642 (-1173)) (-642 (-769))) NIL)) (-3434 (((-3 $ "failed") $) NIL (-2682 (-12 (|has| $ (-145)) (|has| |#1| (-907))) (|has| |#1| (-145))))) (-3348 (((-769)) NIL T CONST)) (-2645 (($ $ $ (-769)) NIL (|has| |#1| (-172)))) (-1600 (((-112) $ $) NIL)) (-1594 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2361 (($) NIL T CONST)) (-2371 (($) NIL T CONST)) (-2711 (($ $ (-1173)) NIL) (($ $ (-642 (-1173))) NIL) (($ $ (-1173) (-769)) NIL) (($ $ (-642 (-1173)) (-642 (-769))) NIL)) (-2821 (((-112) $ $) NIL)) (-2943 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-950 |#1|) (-13 (-947 |#1| (-531 (-1173)) (-1173)) (-10 -8 (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3703 ($ $ (-1173))) |%noBranch|))) (-1047)) (T -950)) -((-3703 (*1 *1 *1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-950 *3)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1047))))) -(-13 (-947 |#1| (-531 (-1173)) (-1173)) (-10 -8 (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3703 ($ $ (-1173))) |%noBranch|))) -((-4026 (((-2 (|:| -2817 (-769)) (|:| -2968 |#5|) (|:| |radicand| |#5|)) |#3| (-769)) 49)) (-1972 (((-2 (|:| -2817 (-769)) (|:| -2968 |#5|) (|:| |radicand| |#5|)) (-407 (-564)) (-769)) 44)) (-2257 (((-2 (|:| -2817 (-769)) (|:| -2968 |#4|) (|:| |radicand| (-642 |#4|))) |#4| (-769)) 65)) (-1754 (((-2 (|:| -2817 (-769)) (|:| -2968 |#5|) (|:| |radicand| |#5|)) |#5| (-769)) 74 (|has| |#3| (-452))))) -(((-951 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4026 ((-2 (|:| -2817 (-769)) (|:| -2968 |#5|) (|:| |radicand| |#5|)) |#3| (-769))) (-15 -1972 ((-2 (|:| -2817 (-769)) (|:| -2968 |#5|) (|:| |radicand| |#5|)) (-407 (-564)) (-769))) (IF (|has| |#3| (-452)) (-15 -1754 ((-2 (|:| -2817 (-769)) (|:| -2968 |#5|) (|:| |radicand| |#5|)) |#5| (-769))) |%noBranch|) (-15 -2257 ((-2 (|:| -2817 (-769)) (|:| -2968 |#4|) (|:| |radicand| (-642 |#4|))) |#4| (-769)))) (-791) (-848) (-556) (-947 |#3| |#1| |#2|) (-13 (-363) (-10 -8 (-15 -2390 ($ |#4|)) (-15 -4120 (|#4| $)) (-15 -4131 (|#4| $))))) (T -951)) -((-2257 (*1 *2 *3 *4) (-12 (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-556)) (-4 *3 (-947 *7 *5 *6)) (-5 *2 (-2 (|:| -2817 (-769)) (|:| -2968 *3) (|:| |radicand| (-642 *3)))) (-5 *1 (-951 *5 *6 *7 *3 *8)) (-5 *4 (-769)) (-4 *8 (-13 (-363) (-10 -8 (-15 -2390 ($ *3)) (-15 -4120 (*3 $)) (-15 -4131 (*3 $))))))) (-1754 (*1 *2 *3 *4) (-12 (-4 *7 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-556)) (-4 *8 (-947 *7 *5 *6)) (-5 *2 (-2 (|:| -2817 (-769)) (|:| -2968 *3) (|:| |radicand| *3))) (-5 *1 (-951 *5 *6 *7 *8 *3)) (-5 *4 (-769)) (-4 *3 (-13 (-363) (-10 -8 (-15 -2390 ($ *8)) (-15 -4120 (*8 $)) (-15 -4131 (*8 $))))))) (-1972 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-564))) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-556)) (-4 *8 (-947 *7 *5 *6)) (-5 *2 (-2 (|:| -2817 (-769)) (|:| -2968 *9) (|:| |radicand| *9))) (-5 *1 (-951 *5 *6 *7 *8 *9)) (-5 *4 (-769)) (-4 *9 (-13 (-363) (-10 -8 (-15 -2390 ($ *8)) (-15 -4120 (*8 $)) (-15 -4131 (*8 $))))))) (-4026 (*1 *2 *3 *4) (-12 (-4 *5 (-791)) (-4 *6 (-848)) (-4 *3 (-556)) (-4 *7 (-947 *3 *5 *6)) (-5 *2 (-2 (|:| -2817 (-769)) (|:| -2968 *8) (|:| |radicand| *8))) (-5 *1 (-951 *5 *6 *3 *7 *8)) (-5 *4 (-769)) (-4 *8 (-13 (-363) (-10 -8 (-15 -2390 ($ *7)) (-15 -4120 (*7 $)) (-15 -4131 (*7 $)))))))) -(-10 -7 (-15 -4026 ((-2 (|:| -2817 (-769)) (|:| -2968 |#5|) (|:| |radicand| |#5|)) |#3| (-769))) (-15 -1972 ((-2 (|:| -2817 (-769)) (|:| -2968 |#5|) (|:| |radicand| |#5|)) (-407 (-564)) (-769))) (IF (|has| |#3| (-452)) (-15 -1754 ((-2 (|:| -2817 (-769)) (|:| -2968 |#5|) (|:| |radicand| |#5|)) |#5| (-769))) |%noBranch|) (-15 -2257 ((-2 (|:| -2817 (-769)) (|:| -2968 |#4|) (|:| |radicand| (-642 |#4|))) |#4| (-769)))) -((-2856 (((-112) $ $) NIL)) (-1404 (($ (-1117)) 8)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) 15) (((-1117) $) 12)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) 11))) -(((-952) (-13 (-1097) (-611 (-1117)) (-10 -8 (-15 -1404 ($ (-1117)))))) (T -952)) -((-1404 (*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-952))))) -(-13 (-1097) (-611 (-1117)) (-10 -8 (-15 -1404 ($ (-1117))))) -((-1835 (((-1091 (-225)) $) 8)) (-1825 (((-1091 (-225)) $) 9)) (-3112 (((-642 (-642 (-941 (-225)))) $) 10)) (-2390 (((-860) $) 6))) -(((-953) (-140)) (T -953)) -((-3112 (*1 *2 *1) (-12 (-4 *1 (-953)) (-5 *2 (-642 (-642 (-941 (-225))))))) (-1825 (*1 *2 *1) (-12 (-4 *1 (-953)) (-5 *2 (-1091 (-225))))) (-1835 (*1 *2 *1) (-12 (-4 *1 (-953)) (-5 *2 (-1091 (-225)))))) -(-13 (-611 (-860)) (-10 -8 (-15 -3112 ((-642 (-642 (-941 (-225)))) $)) (-15 -1825 ((-1091 (-225)) $)) (-15 -1835 ((-1091 (-225)) $)))) -(((-611 (-860)) . T)) -((-4320 (((-3 (-687 |#1|) "failed") |#2| (-919)) 18))) -(((-954 |#1| |#2|) (-10 -7 (-15 -4320 ((-3 (-687 |#1|) "failed") |#2| (-919)))) (-556) (-654 |#1|)) (T -954)) -((-4320 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-919)) (-4 *5 (-556)) (-5 *2 (-687 *5)) (-5 *1 (-954 *5 *3)) (-4 *3 (-654 *5))))) -(-10 -7 (-15 -4320 ((-3 (-687 |#1|) "failed") |#2| (-919)))) -((-2810 (((-956 |#2|) (-1 |#2| |#1| |#2|) (-956 |#1|) |#2|) 16)) (-3741 ((|#2| (-1 |#2| |#1| |#2|) (-956 |#1|) |#2|) 18)) (-2947 (((-956 |#2|) (-1 |#2| |#1|) (-956 |#1|)) 13))) -(((-955 |#1| |#2|) (-10 -7 (-15 -2810 ((-956 |#2|) (-1 |#2| |#1| |#2|) (-956 |#1|) |#2|)) (-15 -3741 (|#2| (-1 |#2| |#1| |#2|) (-956 |#1|) |#2|)) (-15 -2947 ((-956 |#2|) (-1 |#2| |#1|) (-956 |#1|)))) (-1212) (-1212)) (T -955)) -((-2947 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-956 *5)) (-4 *5 (-1212)) (-4 *6 (-1212)) (-5 *2 (-956 *6)) (-5 *1 (-955 *5 *6)))) (-3741 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-956 *5)) (-4 *5 (-1212)) (-4 *2 (-1212)) (-5 *1 (-955 *5 *2)))) (-2810 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-956 *6)) (-4 *6 (-1212)) (-4 *5 (-1212)) (-5 *2 (-956 *5)) (-5 *1 (-955 *6 *5))))) -(-10 -7 (-15 -2810 ((-956 |#2|) (-1 |#2| |#1| |#2|) (-956 |#1|) |#2|)) (-15 -3741 (|#2| (-1 |#2| |#1| |#2|) (-956 |#1|) |#2|)) (-15 -2947 ((-956 |#2|) (-1 |#2| |#1|) (-956 |#1|)))) -((-2856 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-3633 (((-1267) $ (-564) (-564)) NIL (|has| $ (-6 -4411)))) (-1824 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-848)))) (-3659 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4411))) (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-848))))) (-3191 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-848)))) (-3442 (((-112) $ (-769)) NIL)) (-3841 ((|#1| $ (-564) |#1|) 19 (|has| $ (-6 -4411))) ((|#1| $ (-1229 (-564)) |#1|) NIL (|has| $ (-6 -4411)))) (-3437 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2822 (($) NIL T CONST)) (-1540 (($ $) NIL (|has| $ (-6 -4411)))) (-3817 (($ $) NIL)) (-4067 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2517 (($ |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3741 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4410)))) (-3105 ((|#1| $ (-564) |#1|) 18 (|has| $ (-6 -4411)))) (-1804 ((|#1| $ (-564)) 16)) (-3942 (((-564) (-1 (-112) |#1|) $) NIL) (((-564) |#1| $) NIL (|has| |#1| (-1097))) (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1097)))) (-2018 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-4233 (($ (-769) |#1|) 15)) (-3769 (((-112) $ (-769)) NIL)) (-1802 (((-564) $) 11 (|has| (-564) (-848)))) (-3225 (($ $ $) NIL (|has| |#1| (-848)))) (-2774 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-848)))) (-3541 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2533 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3624 (((-564) $) NIL (|has| (-564) (-848)))) (-2903 (($ $ $) NIL (|has| |#1| (-848)))) (-1857 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4145 (((-112) $ (-769)) NIL)) (-1778 (((-1155) $) NIL (|has| |#1| (-1097)))) (-4247 (($ |#1| $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-4107 (((-642 (-564)) $) NIL)) (-4207 (((-112) (-564) $) NIL)) (-3999 (((-1117) $) NIL (|has| |#1| (-1097)))) (-4036 ((|#1| $) NIL (|has| (-564) (-848)))) (-3183 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3826 (($ $ |#1|) 20 (|has| $ (-6 -4411)))) (-4094 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-2478 (((-112) $ $) NIL)) (-1643 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3522 (((-642 |#1|) $) NIL)) (-4109 (((-112) $) NIL)) (-2179 (($) 12)) (-4369 ((|#1| $ (-564) |#1|) NIL) ((|#1| $ (-564)) 17) (($ $ (-1229 (-564))) NIL)) (-2083 (($ $ (-564)) NIL) (($ $ (-1229 (-564))) NIL)) (-4010 (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-769) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3301 (($ $ $ (-564)) NIL (|has| $ (-6 -4411)))) (-3865 (($ $) 21)) (-3003 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-2401 (($ (-642 |#1|)) 14)) (-3634 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-642 $)) NIL)) (-2390 (((-860) $) NIL (|has| |#1| (-611 (-860))))) (-1600 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-3295 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2881 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2857 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2821 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2868 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2844 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2158 (((-769) $) 8 (|has| $ (-6 -4410))))) -(((-956 |#1|) (-19 |#1|) (-1212)) (T -956)) +((-1956 ((|#2| (-644 |#1|) (-644 |#1|)) 29))) +(((-922 |#1| |#2|) (-10 -7 (-15 -1956 (|#2| (-644 |#1|) (-644 |#1|)))) (-365) (-1240 |#1|)) (T -922)) +((-1956 (*1 *2 *3 *3) (-12 (-5 *3 (-644 *4)) (-4 *4 (-365)) (-4 *2 (-1240 *4)) (-5 *1 (-922 *4 *2))))) +(-10 -7 (-15 -1956 (|#2| (-644 |#1|) (-644 |#1|)))) +((-3281 (((-1171 |#2|) (-644 |#2|) (-644 |#2|)) 17) (((-1237 |#1| |#2|) (-1237 |#1| |#2|) (-644 |#2|) (-644 |#2|)) 13))) +(((-923 |#1| |#2|) (-10 -7 (-15 -3281 ((-1237 |#1| |#2|) (-1237 |#1| |#2|) (-644 |#2|) (-644 |#2|))) (-15 -3281 ((-1171 |#2|) (-644 |#2|) (-644 |#2|)))) (-1175) (-365)) (T -923)) +((-3281 (*1 *2 *3 *3) (-12 (-5 *3 (-644 *5)) (-4 *5 (-365)) (-5 *2 (-1171 *5)) (-5 *1 (-923 *4 *5)) (-14 *4 (-1175)))) (-3281 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1237 *4 *5)) (-5 *3 (-644 *5)) (-14 *4 (-1175)) (-4 *5 (-365)) (-5 *1 (-923 *4 *5))))) +(-10 -7 (-15 -3281 ((-1237 |#1| |#2|) (-1237 |#1| |#2|) (-644 |#2|) (-644 |#2|))) (-15 -3281 ((-1171 |#2|) (-644 |#2|) (-644 |#2|)))) +((-1508 (((-566) (-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -1419 (-644 (-1264 (-409 (-952 |#1|))))))))) (-1157)) 177)) (-1556 ((|#4| |#4|) 196)) (-2074 (((-644 (-409 (-952 |#1|))) (-644 (-1175))) 149)) (-3977 (((-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -1419 (-644 (-1264 (-409 (-952 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))) (-689 |#4|) (-644 (-409 (-952 |#1|))) (-644 (-644 |#4|)) (-771) (-771) (-566)) 88)) (-1930 (((-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -1419 (-644 (-1264 (-409 (-952 |#1|)))))) (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -1419 (-644 (-1264 (-409 (-952 |#1|)))))) (-644 |#4|)) 69)) (-2905 (((-689 |#4|) (-689 |#4|) (-644 |#4|)) 65)) (-3686 (((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -1419 (-644 (-1264 (-409 (-952 |#1|))))))))) (-1157)) 189)) (-2683 (((-566) (-689 |#4|) (-921) (-1157)) 169) (((-566) (-689 |#4|) (-644 (-1175)) (-921) (-1157)) 168) (((-566) (-689 |#4|) (-644 |#4|) (-921) (-1157)) 167) (((-566) (-689 |#4|) (-1157)) 157) (((-566) (-689 |#4|) (-644 (-1175)) (-1157)) 156) (((-566) (-689 |#4|) (-644 |#4|) (-1157)) 155) (((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -1419 (-644 (-1264 (-409 (-952 |#1|))))))))) (-689 |#4|) (-921)) 154) (((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -1419 (-644 (-1264 (-409 (-952 |#1|))))))))) (-689 |#4|) (-644 (-1175)) (-921)) 153) (((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -1419 (-644 (-1264 (-409 (-952 |#1|))))))))) (-689 |#4|) (-644 |#4|) (-921)) 152) (((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -1419 (-644 (-1264 (-409 (-952 |#1|))))))))) (-689 |#4|)) 151) (((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -1419 (-644 (-1264 (-409 (-952 |#1|))))))))) (-689 |#4|) (-644 (-1175))) 150) (((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -1419 (-644 (-1264 (-409 (-952 |#1|))))))))) (-689 |#4|) (-644 |#4|)) 146)) (-3702 ((|#4| (-952 |#1|)) 80)) (-3502 (((-112) (-644 |#4|) (-644 (-644 |#4|))) 193)) (-4253 (((-644 (-644 (-566))) (-566) (-566)) 162)) (-1900 (((-644 (-644 |#4|)) (-644 (-644 |#4|))) 107)) (-2582 (((-771) (-644 (-2 (|:| -2299 (-771)) (|:| |eqns| (-644 (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))))) (|:| |fgb| (-644 |#4|))))) 102)) (-2382 (((-771) (-644 (-2 (|:| -2299 (-771)) (|:| |eqns| (-644 (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))))) (|:| |fgb| (-644 |#4|))))) 101)) (-3851 (((-112) (-644 (-952 |#1|))) 19) (((-112) (-644 |#4|)) 15)) (-3775 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-644 |#4|)) (|:| |n0| (-644 |#4|))) (-644 |#4|) (-644 |#4|)) 84)) (-2441 (((-644 |#4|) |#4|) 57)) (-3826 (((-644 (-409 (-952 |#1|))) (-644 |#4|)) 145) (((-689 (-409 (-952 |#1|))) (-689 |#4|)) 66) (((-409 (-952 |#1|)) |#4|) 142)) (-1409 (((-2 (|:| |rgl| (-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -1419 (-644 (-1264 (-409 (-952 |#1|)))))))))) (|:| |rgsz| (-566))) (-689 |#4|) (-644 (-409 (-952 |#1|))) (-771) (-1157) (-566)) 113)) (-2799 (((-644 (-2 (|:| -2299 (-771)) (|:| |eqns| (-644 (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))))) (|:| |fgb| (-644 |#4|)))) (-689 |#4|) (-771)) 100)) (-3738 (((-644 (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566))))) (-689 |#4|) (-771)) 124)) (-2933 (((-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -1419 (-644 (-1264 (-409 (-952 |#1|)))))) (-2 (|:| -4196 (-689 (-409 (-952 |#1|)))) (|:| |vec| (-644 (-409 (-952 |#1|)))) (|:| -2299 (-771)) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566))))) 56))) +(((-924 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2683 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -1419 (-644 (-1264 (-409 (-952 |#1|))))))))) (-689 |#4|) (-644 |#4|))) (-15 -2683 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -1419 (-644 (-1264 (-409 (-952 |#1|))))))))) (-689 |#4|) (-644 (-1175)))) (-15 -2683 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -1419 (-644 (-1264 (-409 (-952 |#1|))))))))) (-689 |#4|))) (-15 -2683 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -1419 (-644 (-1264 (-409 (-952 |#1|))))))))) (-689 |#4|) (-644 |#4|) (-921))) (-15 -2683 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -1419 (-644 (-1264 (-409 (-952 |#1|))))))))) (-689 |#4|) (-644 (-1175)) (-921))) (-15 -2683 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -1419 (-644 (-1264 (-409 (-952 |#1|))))))))) (-689 |#4|) (-921))) (-15 -2683 ((-566) (-689 |#4|) (-644 |#4|) (-1157))) (-15 -2683 ((-566) (-689 |#4|) (-644 (-1175)) (-1157))) (-15 -2683 ((-566) (-689 |#4|) (-1157))) (-15 -2683 ((-566) (-689 |#4|) (-644 |#4|) (-921) (-1157))) (-15 -2683 ((-566) (-689 |#4|) (-644 (-1175)) (-921) (-1157))) (-15 -2683 ((-566) (-689 |#4|) (-921) (-1157))) (-15 -1508 ((-566) (-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -1419 (-644 (-1264 (-409 (-952 |#1|))))))))) (-1157))) (-15 -3686 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -1419 (-644 (-1264 (-409 (-952 |#1|))))))))) (-1157))) (-15 -1409 ((-2 (|:| |rgl| (-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -1419 (-644 (-1264 (-409 (-952 |#1|)))))))))) (|:| |rgsz| (-566))) (-689 |#4|) (-644 (-409 (-952 |#1|))) (-771) (-1157) (-566))) (-15 -3826 ((-409 (-952 |#1|)) |#4|)) (-15 -3826 ((-689 (-409 (-952 |#1|))) (-689 |#4|))) (-15 -3826 ((-644 (-409 (-952 |#1|))) (-644 |#4|))) (-15 -2074 ((-644 (-409 (-952 |#1|))) (-644 (-1175)))) (-15 -3702 (|#4| (-952 |#1|))) (-15 -3775 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-644 |#4|)) (|:| |n0| (-644 |#4|))) (-644 |#4|) (-644 |#4|))) (-15 -2799 ((-644 (-2 (|:| -2299 (-771)) (|:| |eqns| (-644 (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))))) (|:| |fgb| (-644 |#4|)))) (-689 |#4|) (-771))) (-15 -1930 ((-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -1419 (-644 (-1264 (-409 (-952 |#1|)))))) (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -1419 (-644 (-1264 (-409 (-952 |#1|)))))) (-644 |#4|))) (-15 -2933 ((-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -1419 (-644 (-1264 (-409 (-952 |#1|)))))) (-2 (|:| -4196 (-689 (-409 (-952 |#1|)))) (|:| |vec| (-644 (-409 (-952 |#1|)))) (|:| -2299 (-771)) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))))) (-15 -2441 ((-644 |#4|) |#4|)) (-15 -2382 ((-771) (-644 (-2 (|:| -2299 (-771)) (|:| |eqns| (-644 (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))))) (|:| |fgb| (-644 |#4|)))))) (-15 -2582 ((-771) (-644 (-2 (|:| -2299 (-771)) (|:| |eqns| (-644 (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))))) (|:| |fgb| (-644 |#4|)))))) (-15 -1900 ((-644 (-644 |#4|)) (-644 (-644 |#4|)))) (-15 -4253 ((-644 (-644 (-566))) (-566) (-566))) (-15 -3502 ((-112) (-644 |#4|) (-644 (-644 |#4|)))) (-15 -3738 ((-644 (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566))))) (-689 |#4|) (-771))) (-15 -2905 ((-689 |#4|) (-689 |#4|) (-644 |#4|))) (-15 -3977 ((-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -1419 (-644 (-1264 (-409 (-952 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))) (-689 |#4|) (-644 (-409 (-952 |#1|))) (-644 (-644 |#4|)) (-771) (-771) (-566))) (-15 -1556 (|#4| |#4|)) (-15 -3851 ((-112) (-644 |#4|))) (-15 -3851 ((-112) (-644 (-952 |#1|))))) (-13 (-308) (-147)) (-13 (-850) (-614 (-1175))) (-793) (-949 |#1| |#3| |#2|)) (T -924)) +((-3851 (*1 *2 *3) (-12 (-5 *3 (-644 (-952 *4))) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *2 (-112)) (-5 *1 (-924 *4 *5 *6 *7)) (-4 *7 (-949 *4 *6 *5)))) (-3851 (*1 *2 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-949 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *2 (-112)) (-5 *1 (-924 *4 *5 *6 *7)))) (-1556 (*1 *2 *2) (-12 (-4 *3 (-13 (-308) (-147))) (-4 *4 (-13 (-850) (-614 (-1175)))) (-4 *5 (-793)) (-5 *1 (-924 *3 *4 *5 *2)) (-4 *2 (-949 *3 *5 *4)))) (-3977 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566))))) (-5 *4 (-689 *12)) (-5 *5 (-644 (-409 (-952 *9)))) (-5 *6 (-644 (-644 *12))) (-5 *7 (-771)) (-5 *8 (-566)) (-4 *9 (-13 (-308) (-147))) (-4 *12 (-949 *9 *11 *10)) (-4 *10 (-13 (-850) (-614 (-1175)))) (-4 *11 (-793)) (-5 *2 (-2 (|:| |eqzro| (-644 *12)) (|:| |neqzro| (-644 *12)) (|:| |wcond| (-644 (-952 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 *9)))) (|:| -1419 (-644 (-1264 (-409 (-952 *9))))))))) (-5 *1 (-924 *9 *10 *11 *12)))) (-2905 (*1 *2 *2 *3) (-12 (-5 *2 (-689 *7)) (-5 *3 (-644 *7)) (-4 *7 (-949 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *1 (-924 *4 *5 *6 *7)))) (-3738 (*1 *2 *3 *4) (-12 (-5 *3 (-689 *8)) (-5 *4 (-771)) (-4 *8 (-949 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-850) (-614 (-1175)))) (-4 *7 (-793)) (-5 *2 (-644 (-2 (|:| |det| *8) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))))) (-5 *1 (-924 *5 *6 *7 *8)))) (-3502 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-644 *8))) (-5 *3 (-644 *8)) (-4 *8 (-949 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-850) (-614 (-1175)))) (-4 *7 (-793)) (-5 *2 (-112)) (-5 *1 (-924 *5 *6 *7 *8)))) (-4253 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *2 (-644 (-644 (-566)))) (-5 *1 (-924 *4 *5 *6 *7)) (-5 *3 (-566)) (-4 *7 (-949 *4 *6 *5)))) (-1900 (*1 *2 *2) (-12 (-5 *2 (-644 (-644 *6))) (-4 *6 (-949 *3 *5 *4)) (-4 *3 (-13 (-308) (-147))) (-4 *4 (-13 (-850) (-614 (-1175)))) (-4 *5 (-793)) (-5 *1 (-924 *3 *4 *5 *6)))) (-2582 (*1 *2 *3) (-12 (-5 *3 (-644 (-2 (|:| -2299 (-771)) (|:| |eqns| (-644 (-2 (|:| |det| *7) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))))) (|:| |fgb| (-644 *7))))) (-4 *7 (-949 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *2 (-771)) (-5 *1 (-924 *4 *5 *6 *7)))) (-2382 (*1 *2 *3) (-12 (-5 *3 (-644 (-2 (|:| -2299 (-771)) (|:| |eqns| (-644 (-2 (|:| |det| *7) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))))) (|:| |fgb| (-644 *7))))) (-4 *7 (-949 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *2 (-771)) (-5 *1 (-924 *4 *5 *6 *7)))) (-2441 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *2 (-644 *3)) (-5 *1 (-924 *4 *5 *6 *3)) (-4 *3 (-949 *4 *6 *5)))) (-2933 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4196 (-689 (-409 (-952 *4)))) (|:| |vec| (-644 (-409 (-952 *4)))) (|:| -2299 (-771)) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566))))) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *2 (-2 (|:| |partsol| (-1264 (-409 (-952 *4)))) (|:| -1419 (-644 (-1264 (-409 (-952 *4))))))) (-5 *1 (-924 *4 *5 *6 *7)) (-4 *7 (-949 *4 *6 *5)))) (-1930 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1264 (-409 (-952 *4)))) (|:| -1419 (-644 (-1264 (-409 (-952 *4))))))) (-5 *3 (-644 *7)) (-4 *4 (-13 (-308) (-147))) (-4 *7 (-949 *4 *6 *5)) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *1 (-924 *4 *5 *6 *7)))) (-2799 (*1 *2 *3 *4) (-12 (-5 *3 (-689 *8)) (-4 *8 (-949 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-850) (-614 (-1175)))) (-4 *7 (-793)) (-5 *2 (-644 (-2 (|:| -2299 (-771)) (|:| |eqns| (-644 (-2 (|:| |det| *8) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))))) (|:| |fgb| (-644 *8))))) (-5 *1 (-924 *5 *6 *7 *8)) (-5 *4 (-771)))) (-3775 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-4 *7 (-949 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-644 *7)) (|:| |n0| (-644 *7)))) (-5 *1 (-924 *4 *5 *6 *7)) (-5 *3 (-644 *7)))) (-3702 (*1 *2 *3) (-12 (-5 *3 (-952 *4)) (-4 *4 (-13 (-308) (-147))) (-4 *2 (-949 *4 *6 *5)) (-5 *1 (-924 *4 *5 *6 *2)) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)))) (-2074 (*1 *2 *3) (-12 (-5 *3 (-644 (-1175))) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *2 (-644 (-409 (-952 *4)))) (-5 *1 (-924 *4 *5 *6 *7)) (-4 *7 (-949 *4 *6 *5)))) (-3826 (*1 *2 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-949 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *2 (-644 (-409 (-952 *4)))) (-5 *1 (-924 *4 *5 *6 *7)))) (-3826 (*1 *2 *3) (-12 (-5 *3 (-689 *7)) (-4 *7 (-949 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *2 (-689 (-409 (-952 *4)))) (-5 *1 (-924 *4 *5 *6 *7)))) (-3826 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *2 (-409 (-952 *4))) (-5 *1 (-924 *4 *5 *6 *3)) (-4 *3 (-949 *4 *6 *5)))) (-1409 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-689 *11)) (-5 *4 (-644 (-409 (-952 *8)))) (-5 *5 (-771)) (-5 *6 (-1157)) (-4 *8 (-13 (-308) (-147))) (-4 *11 (-949 *8 *10 *9)) (-4 *9 (-13 (-850) (-614 (-1175)))) (-4 *10 (-793)) (-5 *2 (-2 (|:| |rgl| (-644 (-2 (|:| |eqzro| (-644 *11)) (|:| |neqzro| (-644 *11)) (|:| |wcond| (-644 (-952 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 *8)))) (|:| -1419 (-644 (-1264 (-409 (-952 *8)))))))))) (|:| |rgsz| (-566)))) (-5 *1 (-924 *8 *9 *10 *11)) (-5 *7 (-566)))) (-3686 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *2 (-644 (-2 (|:| |eqzro| (-644 *7)) (|:| |neqzro| (-644 *7)) (|:| |wcond| (-644 (-952 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 *4)))) (|:| -1419 (-644 (-1264 (-409 (-952 *4)))))))))) (-5 *1 (-924 *4 *5 *6 *7)) (-4 *7 (-949 *4 *6 *5)))) (-1508 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-2 (|:| |eqzro| (-644 *8)) (|:| |neqzro| (-644 *8)) (|:| |wcond| (-644 (-952 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 *5)))) (|:| -1419 (-644 (-1264 (-409 (-952 *5)))))))))) (-5 *4 (-1157)) (-4 *5 (-13 (-308) (-147))) (-4 *8 (-949 *5 *7 *6)) (-4 *6 (-13 (-850) (-614 (-1175)))) (-4 *7 (-793)) (-5 *2 (-566)) (-5 *1 (-924 *5 *6 *7 *8)))) (-2683 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-689 *9)) (-5 *4 (-921)) (-5 *5 (-1157)) (-4 *9 (-949 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-850) (-614 (-1175)))) (-4 *8 (-793)) (-5 *2 (-566)) (-5 *1 (-924 *6 *7 *8 *9)))) (-2683 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-689 *10)) (-5 *4 (-644 (-1175))) (-5 *5 (-921)) (-5 *6 (-1157)) (-4 *10 (-949 *7 *9 *8)) (-4 *7 (-13 (-308) (-147))) (-4 *8 (-13 (-850) (-614 (-1175)))) (-4 *9 (-793)) (-5 *2 (-566)) (-5 *1 (-924 *7 *8 *9 *10)))) (-2683 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-689 *10)) (-5 *4 (-644 *10)) (-5 *5 (-921)) (-5 *6 (-1157)) (-4 *10 (-949 *7 *9 *8)) (-4 *7 (-13 (-308) (-147))) (-4 *8 (-13 (-850) (-614 (-1175)))) (-4 *9 (-793)) (-5 *2 (-566)) (-5 *1 (-924 *7 *8 *9 *10)))) (-2683 (*1 *2 *3 *4) (-12 (-5 *3 (-689 *8)) (-5 *4 (-1157)) (-4 *8 (-949 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-850) (-614 (-1175)))) (-4 *7 (-793)) (-5 *2 (-566)) (-5 *1 (-924 *5 *6 *7 *8)))) (-2683 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-689 *9)) (-5 *4 (-644 (-1175))) (-5 *5 (-1157)) (-4 *9 (-949 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-850) (-614 (-1175)))) (-4 *8 (-793)) (-5 *2 (-566)) (-5 *1 (-924 *6 *7 *8 *9)))) (-2683 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-689 *9)) (-5 *4 (-644 *9)) (-5 *5 (-1157)) (-4 *9 (-949 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-850) (-614 (-1175)))) (-4 *8 (-793)) (-5 *2 (-566)) (-5 *1 (-924 *6 *7 *8 *9)))) (-2683 (*1 *2 *3 *4) (-12 (-5 *3 (-689 *8)) (-5 *4 (-921)) (-4 *8 (-949 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-850) (-614 (-1175)))) (-4 *7 (-793)) (-5 *2 (-644 (-2 (|:| |eqzro| (-644 *8)) (|:| |neqzro| (-644 *8)) (|:| |wcond| (-644 (-952 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 *5)))) (|:| -1419 (-644 (-1264 (-409 (-952 *5)))))))))) (-5 *1 (-924 *5 *6 *7 *8)))) (-2683 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-689 *9)) (-5 *4 (-644 (-1175))) (-5 *5 (-921)) (-4 *9 (-949 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-850) (-614 (-1175)))) (-4 *8 (-793)) (-5 *2 (-644 (-2 (|:| |eqzro| (-644 *9)) (|:| |neqzro| (-644 *9)) (|:| |wcond| (-644 (-952 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 *6)))) (|:| -1419 (-644 (-1264 (-409 (-952 *6)))))))))) (-5 *1 (-924 *6 *7 *8 *9)))) (-2683 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-689 *9)) (-5 *5 (-921)) (-4 *9 (-949 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-850) (-614 (-1175)))) (-4 *8 (-793)) (-5 *2 (-644 (-2 (|:| |eqzro| (-644 *9)) (|:| |neqzro| (-644 *9)) (|:| |wcond| (-644 (-952 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 *6)))) (|:| -1419 (-644 (-1264 (-409 (-952 *6)))))))))) (-5 *1 (-924 *6 *7 *8 *9)) (-5 *4 (-644 *9)))) (-2683 (*1 *2 *3) (-12 (-5 *3 (-689 *7)) (-4 *7 (-949 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *2 (-644 (-2 (|:| |eqzro| (-644 *7)) (|:| |neqzro| (-644 *7)) (|:| |wcond| (-644 (-952 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 *4)))) (|:| -1419 (-644 (-1264 (-409 (-952 *4)))))))))) (-5 *1 (-924 *4 *5 *6 *7)))) (-2683 (*1 *2 *3 *4) (-12 (-5 *3 (-689 *8)) (-5 *4 (-644 (-1175))) (-4 *8 (-949 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-850) (-614 (-1175)))) (-4 *7 (-793)) (-5 *2 (-644 (-2 (|:| |eqzro| (-644 *8)) (|:| |neqzro| (-644 *8)) (|:| |wcond| (-644 (-952 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 *5)))) (|:| -1419 (-644 (-1264 (-409 (-952 *5)))))))))) (-5 *1 (-924 *5 *6 *7 *8)))) (-2683 (*1 *2 *3 *4) (-12 (-5 *3 (-689 *8)) (-4 *8 (-949 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-850) (-614 (-1175)))) (-4 *7 (-793)) (-5 *2 (-644 (-2 (|:| |eqzro| (-644 *8)) (|:| |neqzro| (-644 *8)) (|:| |wcond| (-644 (-952 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 *5)))) (|:| -1419 (-644 (-1264 (-409 (-952 *5)))))))))) (-5 *1 (-924 *5 *6 *7 *8)) (-5 *4 (-644 *8))))) +(-10 -7 (-15 -2683 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -1419 (-644 (-1264 (-409 (-952 |#1|))))))))) (-689 |#4|) (-644 |#4|))) (-15 -2683 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -1419 (-644 (-1264 (-409 (-952 |#1|))))))))) (-689 |#4|) (-644 (-1175)))) (-15 -2683 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -1419 (-644 (-1264 (-409 (-952 |#1|))))))))) (-689 |#4|))) (-15 -2683 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -1419 (-644 (-1264 (-409 (-952 |#1|))))))))) (-689 |#4|) (-644 |#4|) (-921))) (-15 -2683 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -1419 (-644 (-1264 (-409 (-952 |#1|))))))))) (-689 |#4|) (-644 (-1175)) (-921))) (-15 -2683 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -1419 (-644 (-1264 (-409 (-952 |#1|))))))))) (-689 |#4|) (-921))) (-15 -2683 ((-566) (-689 |#4|) (-644 |#4|) (-1157))) (-15 -2683 ((-566) (-689 |#4|) (-644 (-1175)) (-1157))) (-15 -2683 ((-566) (-689 |#4|) (-1157))) (-15 -2683 ((-566) (-689 |#4|) (-644 |#4|) (-921) (-1157))) (-15 -2683 ((-566) (-689 |#4|) (-644 (-1175)) (-921) (-1157))) (-15 -2683 ((-566) (-689 |#4|) (-921) (-1157))) (-15 -1508 ((-566) (-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -1419 (-644 (-1264 (-409 (-952 |#1|))))))))) (-1157))) (-15 -3686 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -1419 (-644 (-1264 (-409 (-952 |#1|))))))))) (-1157))) (-15 -1409 ((-2 (|:| |rgl| (-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -1419 (-644 (-1264 (-409 (-952 |#1|)))))))))) (|:| |rgsz| (-566))) (-689 |#4|) (-644 (-409 (-952 |#1|))) (-771) (-1157) (-566))) (-15 -3826 ((-409 (-952 |#1|)) |#4|)) (-15 -3826 ((-689 (-409 (-952 |#1|))) (-689 |#4|))) (-15 -3826 ((-644 (-409 (-952 |#1|))) (-644 |#4|))) (-15 -2074 ((-644 (-409 (-952 |#1|))) (-644 (-1175)))) (-15 -3702 (|#4| (-952 |#1|))) (-15 -3775 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-644 |#4|)) (|:| |n0| (-644 |#4|))) (-644 |#4|) (-644 |#4|))) (-15 -2799 ((-644 (-2 (|:| -2299 (-771)) (|:| |eqns| (-644 (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))))) (|:| |fgb| (-644 |#4|)))) (-689 |#4|) (-771))) (-15 -1930 ((-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -1419 (-644 (-1264 (-409 (-952 |#1|)))))) (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -1419 (-644 (-1264 (-409 (-952 |#1|)))))) (-644 |#4|))) (-15 -2933 ((-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -1419 (-644 (-1264 (-409 (-952 |#1|)))))) (-2 (|:| -4196 (-689 (-409 (-952 |#1|)))) (|:| |vec| (-644 (-409 (-952 |#1|)))) (|:| -2299 (-771)) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))))) (-15 -2441 ((-644 |#4|) |#4|)) (-15 -2382 ((-771) (-644 (-2 (|:| -2299 (-771)) (|:| |eqns| (-644 (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))))) (|:| |fgb| (-644 |#4|)))))) (-15 -2582 ((-771) (-644 (-2 (|:| -2299 (-771)) (|:| |eqns| (-644 (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))))) (|:| |fgb| (-644 |#4|)))))) (-15 -1900 ((-644 (-644 |#4|)) (-644 (-644 |#4|)))) (-15 -4253 ((-644 (-644 (-566))) (-566) (-566))) (-15 -3502 ((-112) (-644 |#4|) (-644 (-644 |#4|)))) (-15 -3738 ((-644 (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566))))) (-689 |#4|) (-771))) (-15 -2905 ((-689 |#4|) (-689 |#4|) (-644 |#4|))) (-15 -3977 ((-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -1419 (-644 (-1264 (-409 (-952 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))) (-689 |#4|) (-644 (-409 (-952 |#1|))) (-644 (-644 |#4|)) (-771) (-771) (-566))) (-15 -1556 (|#4| |#4|)) (-15 -3851 ((-112) (-644 |#4|))) (-15 -3851 ((-112) (-644 (-952 |#1|))))) +((-2189 (((-927) |#1| (-1175)) 17) (((-927) |#1| (-1175) (-1093 (-225))) 21)) (-3896 (((-927) |#1| |#1| (-1175) (-1093 (-225))) 19) (((-927) |#1| (-1175) (-1093 (-225))) 15))) +(((-925 |#1|) (-10 -7 (-15 -3896 ((-927) |#1| (-1175) (-1093 (-225)))) (-15 -3896 ((-927) |#1| |#1| (-1175) (-1093 (-225)))) (-15 -2189 ((-927) |#1| (-1175) (-1093 (-225)))) (-15 -2189 ((-927) |#1| (-1175)))) (-614 (-538))) (T -925)) +((-2189 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-5 *2 (-927)) (-5 *1 (-925 *3)) (-4 *3 (-614 (-538))))) (-2189 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1175)) (-5 *5 (-1093 (-225))) (-5 *2 (-927)) (-5 *1 (-925 *3)) (-4 *3 (-614 (-538))))) (-3896 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1175)) (-5 *5 (-1093 (-225))) (-5 *2 (-927)) (-5 *1 (-925 *3)) (-4 *3 (-614 (-538))))) (-3896 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1175)) (-5 *5 (-1093 (-225))) (-5 *2 (-927)) (-5 *1 (-925 *3)) (-4 *3 (-614 (-538)))))) +(-10 -7 (-15 -3896 ((-927) |#1| (-1175) (-1093 (-225)))) (-15 -3896 ((-927) |#1| |#1| (-1175) (-1093 (-225)))) (-15 -2189 ((-927) |#1| (-1175) (-1093 (-225)))) (-15 -2189 ((-927) |#1| (-1175)))) +((-2685 (($ $ (-1093 (-225)) (-1093 (-225)) (-1093 (-225))) 123)) (-3698 (((-1093 (-225)) $) 64)) (-3688 (((-1093 (-225)) $) 63)) (-3678 (((-1093 (-225)) $) 62)) (-1681 (((-644 (-644 (-225))) $) 69)) (-3618 (((-1093 (-225)) $) 65)) (-3923 (((-566) (-566)) 57)) (-1961 (((-566) (-566)) 52)) (-1471 (((-566) (-566)) 55)) (-3237 (((-112) (-112)) 59)) (-2384 (((-566)) 56)) (-3991 (($ $ (-1093 (-225))) 126) (($ $) 127)) (-3182 (($ (-1 (-943 (-225)) (-225)) (-1093 (-225))) 133) (($ (-1 (-943 (-225)) (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225))) 134)) (-3896 (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1093 (-225))) 136) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225))) 137) (($ $ (-1093 (-225))) 129)) (-2164 (((-566)) 60)) (-4184 (((-566)) 50)) (-2953 (((-566)) 53)) (-3379 (((-644 (-644 (-943 (-225)))) $) 153)) (-3509 (((-112) (-112)) 61)) (-2479 (((-862) $) 151)) (-3466 (((-112)) 58))) +(((-926) (-13 (-974) (-10 -8 (-15 -3182 ($ (-1 (-943 (-225)) (-225)) (-1093 (-225)))) (-15 -3182 ($ (-1 (-943 (-225)) (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225)))) (-15 -3896 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1093 (-225)))) (-15 -3896 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225)))) (-15 -3896 ($ $ (-1093 (-225)))) (-15 -2685 ($ $ (-1093 (-225)) (-1093 (-225)) (-1093 (-225)))) (-15 -3991 ($ $ (-1093 (-225)))) (-15 -3991 ($ $)) (-15 -3618 ((-1093 (-225)) $)) (-15 -1681 ((-644 (-644 (-225))) $)) (-15 -4184 ((-566))) (-15 -1961 ((-566) (-566))) (-15 -2953 ((-566))) (-15 -1471 ((-566) (-566))) (-15 -2384 ((-566))) (-15 -3923 ((-566) (-566))) (-15 -3466 ((-112))) (-15 -3237 ((-112) (-112))) (-15 -2164 ((-566))) (-15 -3509 ((-112) (-112)))))) (T -926)) +((-3182 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-943 (-225)) (-225))) (-5 *3 (-1093 (-225))) (-5 *1 (-926)))) (-3182 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-943 (-225)) (-225))) (-5 *3 (-1093 (-225))) (-5 *1 (-926)))) (-3896 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1093 (-225))) (-5 *1 (-926)))) (-3896 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1093 (-225))) (-5 *1 (-926)))) (-3896 (*1 *1 *1 *2) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-926)))) (-2685 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-926)))) (-3991 (*1 *1 *1 *2) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-926)))) (-3991 (*1 *1 *1) (-5 *1 (-926))) (-3618 (*1 *2 *1) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-926)))) (-1681 (*1 *2 *1) (-12 (-5 *2 (-644 (-644 (-225)))) (-5 *1 (-926)))) (-4184 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-926)))) (-1961 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-926)))) (-2953 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-926)))) (-1471 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-926)))) (-2384 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-926)))) (-3923 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-926)))) (-3466 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-926)))) (-3237 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-926)))) (-2164 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-926)))) (-3509 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-926))))) +(-13 (-974) (-10 -8 (-15 -3182 ($ (-1 (-943 (-225)) (-225)) (-1093 (-225)))) (-15 -3182 ($ (-1 (-943 (-225)) (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225)))) (-15 -3896 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1093 (-225)))) (-15 -3896 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225)))) (-15 -3896 ($ $ (-1093 (-225)))) (-15 -2685 ($ $ (-1093 (-225)) (-1093 (-225)) (-1093 (-225)))) (-15 -3991 ($ $ (-1093 (-225)))) (-15 -3991 ($ $)) (-15 -3618 ((-1093 (-225)) $)) (-15 -1681 ((-644 (-644 (-225))) $)) (-15 -4184 ((-566))) (-15 -1961 ((-566) (-566))) (-15 -2953 ((-566))) (-15 -1471 ((-566) (-566))) (-15 -2384 ((-566))) (-15 -3923 ((-566) (-566))) (-15 -3466 ((-112))) (-15 -3237 ((-112) (-112))) (-15 -2164 ((-566))) (-15 -3509 ((-112) (-112))))) +((-2685 (($ $ (-1093 (-225))) 124) (($ $ (-1093 (-225)) (-1093 (-225))) 125)) (-3688 (((-1093 (-225)) $) 73)) (-3678 (((-1093 (-225)) $) 72)) (-3618 (((-1093 (-225)) $) 74)) (-3652 (((-566) (-566)) 66)) (-4144 (((-566) (-566)) 61)) (-2086 (((-566) (-566)) 64)) (-4042 (((-112) (-112)) 68)) (-3942 (((-566)) 65)) (-3991 (($ $ (-1093 (-225))) 128) (($ $) 129)) (-3182 (($ (-1 (-943 (-225)) (-225)) (-1093 (-225))) 143) (($ (-1 (-943 (-225)) (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225))) 144)) (-2189 (($ (-1 (-225) (-225)) (-1093 (-225))) 151) (($ (-1 (-225) (-225))) 155)) (-3896 (($ (-1 (-225) (-225)) (-1093 (-225))) 139) (($ (-1 (-225) (-225)) (-1093 (-225)) (-1093 (-225))) 140) (($ (-644 (-1 (-225) (-225))) (-1093 (-225))) 148) (($ (-644 (-1 (-225) (-225))) (-1093 (-225)) (-1093 (-225))) 149) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1093 (-225))) 141) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225))) 142) (($ $ (-1093 (-225))) 130)) (-2981 (((-112) $) 69)) (-3048 (((-566)) 70)) (-1367 (((-566)) 59)) (-1305 (((-566)) 62)) (-3379 (((-644 (-644 (-943 (-225)))) $) 35)) (-4057 (((-112) (-112)) 71)) (-2479 (((-862) $) 169)) (-2093 (((-112)) 67))) +(((-927) (-13 (-955) (-10 -8 (-15 -3896 ($ (-1 (-225) (-225)) (-1093 (-225)))) (-15 -3896 ($ (-1 (-225) (-225)) (-1093 (-225)) (-1093 (-225)))) (-15 -3896 ($ (-644 (-1 (-225) (-225))) (-1093 (-225)))) (-15 -3896 ($ (-644 (-1 (-225) (-225))) (-1093 (-225)) (-1093 (-225)))) (-15 -3896 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1093 (-225)))) (-15 -3896 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225)))) (-15 -3182 ($ (-1 (-943 (-225)) (-225)) (-1093 (-225)))) (-15 -3182 ($ (-1 (-943 (-225)) (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225)))) (-15 -2189 ($ (-1 (-225) (-225)) (-1093 (-225)))) (-15 -2189 ($ (-1 (-225) (-225)))) (-15 -3896 ($ $ (-1093 (-225)))) (-15 -2981 ((-112) $)) (-15 -2685 ($ $ (-1093 (-225)))) (-15 -2685 ($ $ (-1093 (-225)) (-1093 (-225)))) (-15 -3991 ($ $ (-1093 (-225)))) (-15 -3991 ($ $)) (-15 -3618 ((-1093 (-225)) $)) (-15 -1367 ((-566))) (-15 -4144 ((-566) (-566))) (-15 -1305 ((-566))) (-15 -2086 ((-566) (-566))) (-15 -3942 ((-566))) (-15 -3652 ((-566) (-566))) (-15 -2093 ((-112))) (-15 -4042 ((-112) (-112))) (-15 -3048 ((-566))) (-15 -4057 ((-112) (-112)))))) (T -927)) +((-3896 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1093 (-225))) (-5 *1 (-927)))) (-3896 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1093 (-225))) (-5 *1 (-927)))) (-3896 (*1 *1 *2 *3) (-12 (-5 *2 (-644 (-1 (-225) (-225)))) (-5 *3 (-1093 (-225))) (-5 *1 (-927)))) (-3896 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-644 (-1 (-225) (-225)))) (-5 *3 (-1093 (-225))) (-5 *1 (-927)))) (-3896 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1093 (-225))) (-5 *1 (-927)))) (-3896 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1093 (-225))) (-5 *1 (-927)))) (-3182 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-943 (-225)) (-225))) (-5 *3 (-1093 (-225))) (-5 *1 (-927)))) (-3182 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-943 (-225)) (-225))) (-5 *3 (-1093 (-225))) (-5 *1 (-927)))) (-2189 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1093 (-225))) (-5 *1 (-927)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-927)))) (-3896 (*1 *1 *1 *2) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-927)))) (-2981 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-927)))) (-2685 (*1 *1 *1 *2) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-927)))) (-2685 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-927)))) (-3991 (*1 *1 *1 *2) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-927)))) (-3991 (*1 *1 *1) (-5 *1 (-927))) (-3618 (*1 *2 *1) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-927)))) (-1367 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-927)))) (-4144 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-927)))) (-1305 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-927)))) (-2086 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-927)))) (-3942 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-927)))) (-3652 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-927)))) (-2093 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-927)))) (-4042 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-927)))) (-3048 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-927)))) (-4057 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-927))))) +(-13 (-955) (-10 -8 (-15 -3896 ($ (-1 (-225) (-225)) (-1093 (-225)))) (-15 -3896 ($ (-1 (-225) (-225)) (-1093 (-225)) (-1093 (-225)))) (-15 -3896 ($ (-644 (-1 (-225) (-225))) (-1093 (-225)))) (-15 -3896 ($ (-644 (-1 (-225) (-225))) (-1093 (-225)) (-1093 (-225)))) (-15 -3896 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1093 (-225)))) (-15 -3896 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225)))) (-15 -3182 ($ (-1 (-943 (-225)) (-225)) (-1093 (-225)))) (-15 -3182 ($ (-1 (-943 (-225)) (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225)))) (-15 -2189 ($ (-1 (-225) (-225)) (-1093 (-225)))) (-15 -2189 ($ (-1 (-225) (-225)))) (-15 -3896 ($ $ (-1093 (-225)))) (-15 -2981 ((-112) $)) (-15 -2685 ($ $ (-1093 (-225)))) (-15 -2685 ($ $ (-1093 (-225)) (-1093 (-225)))) (-15 -3991 ($ $ (-1093 (-225)))) (-15 -3991 ($ $)) (-15 -3618 ((-1093 (-225)) $)) (-15 -1367 ((-566))) (-15 -4144 ((-566) (-566))) (-15 -1305 ((-566))) (-15 -2086 ((-566) (-566))) (-15 -3942 ((-566))) (-15 -3652 ((-566) (-566))) (-15 -2093 ((-112))) (-15 -4042 ((-112) (-112))) (-15 -3048 ((-566))) (-15 -4057 ((-112) (-112))))) +((-2386 (((-644 (-1093 (-225))) (-644 (-644 (-943 (-225))))) 34))) +(((-928) (-10 -7 (-15 -2386 ((-644 (-1093 (-225))) (-644 (-644 (-943 (-225)))))))) (T -928)) +((-2386 (*1 *2 *3) (-12 (-5 *3 (-644 (-644 (-943 (-225))))) (-5 *2 (-644 (-1093 (-225)))) (-5 *1 (-928))))) +(-10 -7 (-15 -2386 ((-644 (-1093 (-225))) (-644 (-644 (-943 (-225))))))) +((-3548 ((|#2| |#2|) 28)) (-3329 ((|#2| |#2|) 29)) (-1573 ((|#2| |#2|) 27)) (-1463 ((|#2| |#2| (-508)) 26))) +(((-929 |#1| |#2|) (-10 -7 (-15 -1463 (|#2| |#2| (-508))) (-15 -1573 (|#2| |#2|)) (-15 -3548 (|#2| |#2|)) (-15 -3329 (|#2| |#2|))) (-1099) (-432 |#1|)) (T -929)) +((-3329 (*1 *2 *2) (-12 (-4 *3 (-1099)) (-5 *1 (-929 *3 *2)) (-4 *2 (-432 *3)))) (-3548 (*1 *2 *2) (-12 (-4 *3 (-1099)) (-5 *1 (-929 *3 *2)) (-4 *2 (-432 *3)))) (-1573 (*1 *2 *2) (-12 (-4 *3 (-1099)) (-5 *1 (-929 *3 *2)) (-4 *2 (-432 *3)))) (-1463 (*1 *2 *2 *3) (-12 (-5 *3 (-508)) (-4 *4 (-1099)) (-5 *1 (-929 *4 *2)) (-4 *2 (-432 *4))))) +(-10 -7 (-15 -1463 (|#2| |#2| (-508))) (-15 -1573 (|#2| |#2|)) (-15 -3548 (|#2| |#2|)) (-15 -3329 (|#2| |#2|))) +((-3548 (((-317 (-566)) (-1175)) 16)) (-3329 (((-317 (-566)) (-1175)) 14)) (-1573 (((-317 (-566)) (-1175)) 12)) (-1463 (((-317 (-566)) (-1175) (-508)) 19))) +(((-930) (-10 -7 (-15 -1463 ((-317 (-566)) (-1175) (-508))) (-15 -1573 ((-317 (-566)) (-1175))) (-15 -3548 ((-317 (-566)) (-1175))) (-15 -3329 ((-317 (-566)) (-1175))))) (T -930)) +((-3329 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-317 (-566))) (-5 *1 (-930)))) (-3548 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-317 (-566))) (-5 *1 (-930)))) (-1573 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-317 (-566))) (-5 *1 (-930)))) (-1463 (*1 *2 *3 *4) (-12 (-5 *3 (-1175)) (-5 *4 (-508)) (-5 *2 (-317 (-566))) (-5 *1 (-930))))) +(-10 -7 (-15 -1463 ((-317 (-566)) (-1175) (-508))) (-15 -1573 ((-317 (-566)) (-1175))) (-15 -3548 ((-317 (-566)) (-1175))) (-15 -3329 ((-317 (-566)) (-1175)))) +((-1542 (((-889 |#1| |#3|) |#2| (-892 |#1|) (-889 |#1| |#3|)) 25)) (-2870 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13))) +(((-931 |#1| |#2| |#3|) (-10 -7 (-15 -2870 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -1542 ((-889 |#1| |#3|) |#2| (-892 |#1|) (-889 |#1| |#3|)))) (-1099) (-886 |#1|) (-13 (-1099) (-1038 |#2|))) (T -931)) +((-1542 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-889 *5 *6)) (-5 *4 (-892 *5)) (-4 *5 (-1099)) (-4 *6 (-13 (-1099) (-1038 *3))) (-4 *3 (-886 *5)) (-5 *1 (-931 *5 *3 *6)))) (-2870 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1099) (-1038 *5))) (-4 *5 (-886 *4)) (-4 *4 (-1099)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-931 *4 *5 *6))))) +(-10 -7 (-15 -2870 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -1542 ((-889 |#1| |#3|) |#2| (-892 |#1|) (-889 |#1| |#3|)))) +((-1542 (((-889 |#1| |#3|) |#3| (-892 |#1|) (-889 |#1| |#3|)) 30))) +(((-932 |#1| |#2| |#3|) (-10 -7 (-15 -1542 ((-889 |#1| |#3|) |#3| (-892 |#1|) (-889 |#1| |#3|)))) (-1099) (-13 (-558) (-886 |#1|)) (-13 (-432 |#2|) (-614 (-892 |#1|)) (-886 |#1|) (-1038 (-612 $)))) (T -932)) +((-1542 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-889 *5 *3)) (-4 *5 (-1099)) (-4 *3 (-13 (-432 *6) (-614 *4) (-886 *5) (-1038 (-612 $)))) (-5 *4 (-892 *5)) (-4 *6 (-13 (-558) (-886 *5))) (-5 *1 (-932 *5 *6 *3))))) +(-10 -7 (-15 -1542 ((-889 |#1| |#3|) |#3| (-892 |#1|) (-889 |#1| |#3|)))) +((-1542 (((-889 (-566) |#1|) |#1| (-892 (-566)) (-889 (-566) |#1|)) 13))) +(((-933 |#1|) (-10 -7 (-15 -1542 ((-889 (-566) |#1|) |#1| (-892 (-566)) (-889 (-566) |#1|)))) (-547)) (T -933)) +((-1542 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-889 (-566) *3)) (-5 *4 (-892 (-566))) (-4 *3 (-547)) (-5 *1 (-933 *3))))) +(-10 -7 (-15 -1542 ((-889 (-566) |#1|) |#1| (-892 (-566)) (-889 (-566) |#1|)))) +((-1542 (((-889 |#1| |#2|) (-612 |#2|) (-892 |#1|) (-889 |#1| |#2|)) 57))) +(((-934 |#1| |#2|) (-10 -7 (-15 -1542 ((-889 |#1| |#2|) (-612 |#2|) (-892 |#1|) (-889 |#1| |#2|)))) (-1099) (-13 (-1099) (-1038 (-612 $)) (-614 (-892 |#1|)) (-886 |#1|))) (T -934)) +((-1542 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-889 *5 *6)) (-5 *3 (-612 *6)) (-4 *5 (-1099)) (-4 *6 (-13 (-1099) (-1038 (-612 $)) (-614 *4) (-886 *5))) (-5 *4 (-892 *5)) (-5 *1 (-934 *5 *6))))) +(-10 -7 (-15 -1542 ((-889 |#1| |#2|) (-612 |#2|) (-892 |#1|) (-889 |#1| |#2|)))) +((-1542 (((-885 |#1| |#2| |#3|) |#3| (-892 |#1|) (-885 |#1| |#2| |#3|)) 17))) +(((-935 |#1| |#2| |#3|) (-10 -7 (-15 -1542 ((-885 |#1| |#2| |#3|) |#3| (-892 |#1|) (-885 |#1| |#2| |#3|)))) (-1099) (-886 |#1|) (-666 |#2|)) (T -935)) +((-1542 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-885 *5 *6 *3)) (-5 *4 (-892 *5)) (-4 *5 (-1099)) (-4 *6 (-886 *5)) (-4 *3 (-666 *6)) (-5 *1 (-935 *5 *6 *3))))) +(-10 -7 (-15 -1542 ((-885 |#1| |#2| |#3|) |#3| (-892 |#1|) (-885 |#1| |#2| |#3|)))) +((-1542 (((-889 |#1| |#5|) |#5| (-892 |#1|) (-889 |#1| |#5|)) 17 (|has| |#3| (-886 |#1|))) (((-889 |#1| |#5|) |#5| (-892 |#1|) (-889 |#1| |#5|) (-1 (-889 |#1| |#5|) |#3| (-892 |#1|) (-889 |#1| |#5|))) 16))) +(((-936 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1542 ((-889 |#1| |#5|) |#5| (-892 |#1|) (-889 |#1| |#5|) (-1 (-889 |#1| |#5|) |#3| (-892 |#1|) (-889 |#1| |#5|)))) (IF (|has| |#3| (-886 |#1|)) (-15 -1542 ((-889 |#1| |#5|) |#5| (-892 |#1|) (-889 |#1| |#5|))) |%noBranch|)) (-1099) (-793) (-850) (-13 (-1049) (-886 |#1|)) (-13 (-949 |#4| |#2| |#3|) (-614 (-892 |#1|)))) (T -936)) +((-1542 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-889 *5 *3)) (-4 *5 (-1099)) (-4 *3 (-13 (-949 *8 *6 *7) (-614 *4))) (-5 *4 (-892 *5)) (-4 *7 (-886 *5)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *8 (-13 (-1049) (-886 *5))) (-5 *1 (-936 *5 *6 *7 *8 *3)))) (-1542 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-889 *6 *3) *8 (-892 *6) (-889 *6 *3))) (-4 *8 (-850)) (-5 *2 (-889 *6 *3)) (-5 *4 (-892 *6)) (-4 *6 (-1099)) (-4 *3 (-13 (-949 *9 *7 *8) (-614 *4))) (-4 *7 (-793)) (-4 *9 (-13 (-1049) (-886 *6))) (-5 *1 (-936 *6 *7 *8 *9 *3))))) +(-10 -7 (-15 -1542 ((-889 |#1| |#5|) |#5| (-892 |#1|) (-889 |#1| |#5|) (-1 (-889 |#1| |#5|) |#3| (-892 |#1|) (-889 |#1| |#5|)))) (IF (|has| |#3| (-886 |#1|)) (-15 -1542 ((-889 |#1| |#5|) |#5| (-892 |#1|) (-889 |#1| |#5|))) |%noBranch|)) +((-2122 ((|#2| |#2| (-644 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13))) +(((-937 |#1| |#2| |#3|) (-10 -7 (-15 -2122 (|#2| |#2| (-1 (-112) |#3|))) (-15 -2122 (|#2| |#2| (-644 (-1 (-112) |#3|))))) (-1099) (-432 |#1|) (-1214)) (T -937)) +((-2122 (*1 *2 *2 *3) (-12 (-5 *3 (-644 (-1 (-112) *5))) (-4 *5 (-1214)) (-4 *4 (-1099)) (-5 *1 (-937 *4 *2 *5)) (-4 *2 (-432 *4)))) (-2122 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1214)) (-4 *4 (-1099)) (-5 *1 (-937 *4 *2 *5)) (-4 *2 (-432 *4))))) +(-10 -7 (-15 -2122 (|#2| |#2| (-1 (-112) |#3|))) (-15 -2122 (|#2| |#2| (-644 (-1 (-112) |#3|))))) +((-2122 (((-317 (-566)) (-1175) (-644 (-1 (-112) |#1|))) 18) (((-317 (-566)) (-1175) (-1 (-112) |#1|)) 15))) +(((-938 |#1|) (-10 -7 (-15 -2122 ((-317 (-566)) (-1175) (-1 (-112) |#1|))) (-15 -2122 ((-317 (-566)) (-1175) (-644 (-1 (-112) |#1|))))) (-1214)) (T -938)) +((-2122 (*1 *2 *3 *4) (-12 (-5 *3 (-1175)) (-5 *4 (-644 (-1 (-112) *5))) (-4 *5 (-1214)) (-5 *2 (-317 (-566))) (-5 *1 (-938 *5)))) (-2122 (*1 *2 *3 *4) (-12 (-5 *3 (-1175)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1214)) (-5 *2 (-317 (-566))) (-5 *1 (-938 *5))))) +(-10 -7 (-15 -2122 ((-317 (-566)) (-1175) (-1 (-112) |#1|))) (-15 -2122 ((-317 (-566)) (-1175) (-644 (-1 (-112) |#1|))))) +((-1542 (((-889 |#1| |#3|) |#3| (-892 |#1|) (-889 |#1| |#3|)) 25))) +(((-939 |#1| |#2| |#3|) (-10 -7 (-15 -1542 ((-889 |#1| |#3|) |#3| (-892 |#1|) (-889 |#1| |#3|)))) (-1099) (-13 (-558) (-886 |#1|) (-614 (-892 |#1|))) (-992 |#2|)) (T -939)) +((-1542 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-889 *5 *3)) (-4 *5 (-1099)) (-4 *3 (-992 *6)) (-4 *6 (-13 (-558) (-886 *5) (-614 *4))) (-5 *4 (-892 *5)) (-5 *1 (-939 *5 *6 *3))))) +(-10 -7 (-15 -1542 ((-889 |#1| |#3|) |#3| (-892 |#1|) (-889 |#1| |#3|)))) +((-1542 (((-889 |#1| (-1175)) (-1175) (-892 |#1|) (-889 |#1| (-1175))) 18))) +(((-940 |#1|) (-10 -7 (-15 -1542 ((-889 |#1| (-1175)) (-1175) (-892 |#1|) (-889 |#1| (-1175))))) (-1099)) (T -940)) +((-1542 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-889 *5 (-1175))) (-5 *3 (-1175)) (-5 *4 (-892 *5)) (-4 *5 (-1099)) (-5 *1 (-940 *5))))) +(-10 -7 (-15 -1542 ((-889 |#1| (-1175)) (-1175) (-892 |#1|) (-889 |#1| (-1175))))) +((-2031 (((-889 |#1| |#3|) (-644 |#3|) (-644 (-892 |#1|)) (-889 |#1| |#3|) (-1 (-889 |#1| |#3|) |#3| (-892 |#1|) (-889 |#1| |#3|))) 34)) (-1542 (((-889 |#1| |#3|) (-644 |#3|) (-644 (-892 |#1|)) (-1 |#3| (-644 |#3|)) (-889 |#1| |#3|) (-1 (-889 |#1| |#3|) |#3| (-892 |#1|) (-889 |#1| |#3|))) 33))) +(((-941 |#1| |#2| |#3|) (-10 -7 (-15 -1542 ((-889 |#1| |#3|) (-644 |#3|) (-644 (-892 |#1|)) (-1 |#3| (-644 |#3|)) (-889 |#1| |#3|) (-1 (-889 |#1| |#3|) |#3| (-892 |#1|) (-889 |#1| |#3|)))) (-15 -2031 ((-889 |#1| |#3|) (-644 |#3|) (-644 (-892 |#1|)) (-889 |#1| |#3|) (-1 (-889 |#1| |#3|) |#3| (-892 |#1|) (-889 |#1| |#3|))))) (-1099) (-1049) (-13 (-1049) (-614 (-892 |#1|)) (-1038 |#2|))) (T -941)) +((-2031 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 (-892 *6))) (-5 *5 (-1 (-889 *6 *8) *8 (-892 *6) (-889 *6 *8))) (-4 *6 (-1099)) (-4 *8 (-13 (-1049) (-614 (-892 *6)) (-1038 *7))) (-5 *2 (-889 *6 *8)) (-4 *7 (-1049)) (-5 *1 (-941 *6 *7 *8)))) (-1542 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-644 (-892 *7))) (-5 *5 (-1 *9 (-644 *9))) (-5 *6 (-1 (-889 *7 *9) *9 (-892 *7) (-889 *7 *9))) (-4 *7 (-1099)) (-4 *9 (-13 (-1049) (-614 (-892 *7)) (-1038 *8))) (-5 *2 (-889 *7 *9)) (-5 *3 (-644 *9)) (-4 *8 (-1049)) (-5 *1 (-941 *7 *8 *9))))) +(-10 -7 (-15 -1542 ((-889 |#1| |#3|) (-644 |#3|) (-644 (-892 |#1|)) (-1 |#3| (-644 |#3|)) (-889 |#1| |#3|) (-1 (-889 |#1| |#3|) |#3| (-892 |#1|) (-889 |#1| |#3|)))) (-15 -2031 ((-889 |#1| |#3|) (-644 |#3|) (-644 (-892 |#1|)) (-889 |#1| |#3|) (-1 (-889 |#1| |#3|) |#3| (-892 |#1|) (-889 |#1| |#3|))))) +((-4113 (((-1171 (-409 (-566))) (-566)) 81)) (-3975 (((-1171 (-566)) (-566)) 84)) (-2406 (((-1171 (-566)) (-566)) 78)) (-3588 (((-566) (-1171 (-566))) 74)) (-3906 (((-1171 (-409 (-566))) (-566)) 65)) (-2224 (((-1171 (-566)) (-566)) 49)) (-2146 (((-1171 (-566)) (-566)) 86)) (-1867 (((-1171 (-566)) (-566)) 85)) (-4071 (((-1171 (-409 (-566))) (-566)) 67))) +(((-942) (-10 -7 (-15 -4071 ((-1171 (-409 (-566))) (-566))) (-15 -1867 ((-1171 (-566)) (-566))) (-15 -2146 ((-1171 (-566)) (-566))) (-15 -2224 ((-1171 (-566)) (-566))) (-15 -3906 ((-1171 (-409 (-566))) (-566))) (-15 -3588 ((-566) (-1171 (-566)))) (-15 -2406 ((-1171 (-566)) (-566))) (-15 -3975 ((-1171 (-566)) (-566))) (-15 -4113 ((-1171 (-409 (-566))) (-566))))) (T -942)) +((-4113 (*1 *2 *3) (-12 (-5 *2 (-1171 (-409 (-566)))) (-5 *1 (-942)) (-5 *3 (-566)))) (-3975 (*1 *2 *3) (-12 (-5 *2 (-1171 (-566))) (-5 *1 (-942)) (-5 *3 (-566)))) (-2406 (*1 *2 *3) (-12 (-5 *2 (-1171 (-566))) (-5 *1 (-942)) (-5 *3 (-566)))) (-3588 (*1 *2 *3) (-12 (-5 *3 (-1171 (-566))) (-5 *2 (-566)) (-5 *1 (-942)))) (-3906 (*1 *2 *3) (-12 (-5 *2 (-1171 (-409 (-566)))) (-5 *1 (-942)) (-5 *3 (-566)))) (-2224 (*1 *2 *3) (-12 (-5 *2 (-1171 (-566))) (-5 *1 (-942)) (-5 *3 (-566)))) (-2146 (*1 *2 *3) (-12 (-5 *2 (-1171 (-566))) (-5 *1 (-942)) (-5 *3 (-566)))) (-1867 (*1 *2 *3) (-12 (-5 *2 (-1171 (-566))) (-5 *1 (-942)) (-5 *3 (-566)))) (-4071 (*1 *2 *3) (-12 (-5 *2 (-1171 (-409 (-566)))) (-5 *1 (-942)) (-5 *3 (-566))))) +(-10 -7 (-15 -4071 ((-1171 (-409 (-566))) (-566))) (-15 -1867 ((-1171 (-566)) (-566))) (-15 -2146 ((-1171 (-566)) (-566))) (-15 -2224 ((-1171 (-566)) (-566))) (-15 -3906 ((-1171 (-409 (-566))) (-566))) (-15 -3588 ((-566) (-1171 (-566)))) (-15 -2406 ((-1171 (-566)) (-566))) (-15 -3975 ((-1171 (-566)) (-566))) (-15 -4113 ((-1171 (-409 (-566))) (-566)))) +((-2986 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2078 (($ (-771)) NIL (|has| |#1| (-23)))) (-2462 (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4418)))) (-4163 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-850)))) (-2893 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4418))) (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-850))))) (-1374 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-850)))) (-1453 (((-112) $ (-771)) NIL)) (-3901 ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4418))) ((|#1| $ (-1231 (-566)) |#1|) NIL (|has| $ (-6 -4418)))) (-3543 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-1811 (($) NIL T CONST)) (-2273 (($ $) NIL (|has| $ (-6 -4418)))) (-3877 (($ $) NIL)) (-4111 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-2628 (($ |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-1838 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4417)))) (-3719 ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4418)))) (-3653 ((|#1| $ (-566)) NIL)) (-4000 (((-566) (-1 (-112) |#1|) $) NIL) (((-566) |#1| $) NIL (|has| |#1| (-1099))) (((-566) |#1| $ (-566)) NIL (|has| |#1| (-1099)))) (-1848 (($ (-644 |#1|)) 9)) (-3872 (((-644 |#1|) $) NIL (|has| $ (-6 -4417)))) (-3596 (((-689 |#1|) $ $) NIL (|has| |#1| (-1049)))) (-4259 (($ (-771) |#1|) NIL)) (-2756 (((-112) $ (-771)) NIL)) (-2755 (((-566) $) NIL (|has| (-566) (-850)))) (-1920 (($ $ $) NIL (|has| |#1| (-850)))) (-1330 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-850)))) (-4227 (((-644 |#1|) $) NIL (|has| $ (-6 -4417)))) (-1688 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-3831 (((-566) $) NIL (|has| (-566) (-850)))) (-3038 (($ $ $) NIL (|has| |#1| (-850)))) (-3708 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1600 ((|#1| $) NIL (-12 (|has| |#1| (-1002)) (|has| |#1| (-1049))))) (-4106 (((-112) $ (-771)) NIL)) (-4332 ((|#1| $) NIL (-12 (|has| |#1| (-1002)) (|has| |#1| (-1049))))) (-3151 (((-1157) $) NIL (|has| |#1| (-1099)))) (-4271 (($ |#1| $ (-566)) NIL) (($ $ $ (-566)) NIL)) (-3780 (((-644 (-566)) $) NIL)) (-1605 (((-112) (-566) $) NIL)) (-4059 (((-1119) $) NIL (|has| |#1| (-1099)))) (-4080 ((|#1| $) NIL (|has| (-566) (-850)))) (-2688 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4079 (($ $ |#1|) NIL (|has| $ (-6 -4418)))) (-2050 (($ $ (-644 |#1|)) 25)) (-3966 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1844 (((-112) $ $) NIL)) (-2210 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-4185 (((-644 |#1|) $) NIL)) (-2788 (((-112) $) NIL)) (-1737 (($) NIL)) (-4376 ((|#1| $ (-566) |#1|) NIL) ((|#1| $ (-566)) 18) (($ $ (-1231 (-566))) NIL)) (-2555 ((|#1| $ $) NIL (|has| |#1| (-1049)))) (-3944 (((-921) $) 13)) (-2139 (($ $ (-566)) NIL) (($ $ (-1231 (-566))) NIL)) (-2676 (($ $ $) 23)) (-4068 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-1438 (($ $ $ (-566)) NIL (|has| $ (-6 -4418)))) (-3924 (($ $) NIL)) (-3136 (((-538) $) NIL (|has| |#1| (-614 (-538)))) (($ (-644 |#1|)) 14)) (-2489 (($ (-644 |#1|)) NIL)) (-3716 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 24) (($ (-644 $)) NIL)) (-2479 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-3900 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3667 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-3019 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2990 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2952 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3004 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-850)))) (-3065 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3052 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-566) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-726))) (($ $ |#1|) NIL (|has| |#1| (-726)))) (-3002 (((-771) $) 11 (|has| $ (-6 -4417))))) +(((-943 |#1|) (-980 |#1|) (-1049)) (T -943)) +NIL +(-980 |#1|) +((-2470 (((-483 |#1| |#2|) (-952 |#2|)) 22)) (-3369 (((-247 |#1| |#2|) (-952 |#2|)) 35)) (-2649 (((-952 |#2|) (-483 |#1| |#2|)) 27)) (-1488 (((-247 |#1| |#2|) (-483 |#1| |#2|)) 57)) (-1318 (((-952 |#2|) (-247 |#1| |#2|)) 32)) (-2302 (((-483 |#1| |#2|) (-247 |#1| |#2|)) 48))) +(((-944 |#1| |#2|) (-10 -7 (-15 -2302 ((-483 |#1| |#2|) (-247 |#1| |#2|))) (-15 -1488 ((-247 |#1| |#2|) (-483 |#1| |#2|))) (-15 -2470 ((-483 |#1| |#2|) (-952 |#2|))) (-15 -2649 ((-952 |#2|) (-483 |#1| |#2|))) (-15 -1318 ((-952 |#2|) (-247 |#1| |#2|))) (-15 -3369 ((-247 |#1| |#2|) (-952 |#2|)))) (-644 (-1175)) (-1049)) (T -944)) +((-3369 (*1 *2 *3) (-12 (-5 *3 (-952 *5)) (-4 *5 (-1049)) (-5 *2 (-247 *4 *5)) (-5 *1 (-944 *4 *5)) (-14 *4 (-644 (-1175))))) (-1318 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-644 (-1175))) (-4 *5 (-1049)) (-5 *2 (-952 *5)) (-5 *1 (-944 *4 *5)))) (-2649 (*1 *2 *3) (-12 (-5 *3 (-483 *4 *5)) (-14 *4 (-644 (-1175))) (-4 *5 (-1049)) (-5 *2 (-952 *5)) (-5 *1 (-944 *4 *5)))) (-2470 (*1 *2 *3) (-12 (-5 *3 (-952 *5)) (-4 *5 (-1049)) (-5 *2 (-483 *4 *5)) (-5 *1 (-944 *4 *5)) (-14 *4 (-644 (-1175))))) (-1488 (*1 *2 *3) (-12 (-5 *3 (-483 *4 *5)) (-14 *4 (-644 (-1175))) (-4 *5 (-1049)) (-5 *2 (-247 *4 *5)) (-5 *1 (-944 *4 *5)))) (-2302 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-644 (-1175))) (-4 *5 (-1049)) (-5 *2 (-483 *4 *5)) (-5 *1 (-944 *4 *5))))) +(-10 -7 (-15 -2302 ((-483 |#1| |#2|) (-247 |#1| |#2|))) (-15 -1488 ((-247 |#1| |#2|) (-483 |#1| |#2|))) (-15 -2470 ((-483 |#1| |#2|) (-952 |#2|))) (-15 -2649 ((-952 |#2|) (-483 |#1| |#2|))) (-15 -1318 ((-952 |#2|) (-247 |#1| |#2|))) (-15 -3369 ((-247 |#1| |#2|) (-952 |#2|)))) +((-2487 (((-644 |#2|) |#2| |#2|) 10)) (-1309 (((-771) (-644 |#1|)) 48 (|has| |#1| (-848)))) (-1976 (((-644 |#2|) |#2|) 11)) (-4369 (((-771) (-644 |#1|) (-566) (-566)) 52 (|has| |#1| (-848)))) (-3862 ((|#1| |#2|) 38 (|has| |#1| (-848))))) +(((-945 |#1| |#2|) (-10 -7 (-15 -2487 ((-644 |#2|) |#2| |#2|)) (-15 -1976 ((-644 |#2|) |#2|)) (IF (|has| |#1| (-848)) (PROGN (-15 -3862 (|#1| |#2|)) (-15 -1309 ((-771) (-644 |#1|))) (-15 -4369 ((-771) (-644 |#1|) (-566) (-566)))) |%noBranch|)) (-365) (-1240 |#1|)) (T -945)) +((-4369 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-644 *5)) (-5 *4 (-566)) (-4 *5 (-848)) (-4 *5 (-365)) (-5 *2 (-771)) (-5 *1 (-945 *5 *6)) (-4 *6 (-1240 *5)))) (-1309 (*1 *2 *3) (-12 (-5 *3 (-644 *4)) (-4 *4 (-848)) (-4 *4 (-365)) (-5 *2 (-771)) (-5 *1 (-945 *4 *5)) (-4 *5 (-1240 *4)))) (-3862 (*1 *2 *3) (-12 (-4 *2 (-365)) (-4 *2 (-848)) (-5 *1 (-945 *2 *3)) (-4 *3 (-1240 *2)))) (-1976 (*1 *2 *3) (-12 (-4 *4 (-365)) (-5 *2 (-644 *3)) (-5 *1 (-945 *4 *3)) (-4 *3 (-1240 *4)))) (-2487 (*1 *2 *3 *3) (-12 (-4 *4 (-365)) (-5 *2 (-644 *3)) (-5 *1 (-945 *4 *3)) (-4 *3 (-1240 *4))))) +(-10 -7 (-15 -2487 ((-644 |#2|) |#2| |#2|)) (-15 -1976 ((-644 |#2|) |#2|)) (IF (|has| |#1| (-848)) (PROGN (-15 -3862 (|#1| |#2|)) (-15 -1309 ((-771) (-644 |#1|))) (-15 -4369 ((-771) (-644 |#1|) (-566) (-566)))) |%noBranch|)) +((-3080 (((-952 |#2|) (-1 |#2| |#1|) (-952 |#1|)) 19))) +(((-946 |#1| |#2|) (-10 -7 (-15 -3080 ((-952 |#2|) (-1 |#2| |#1|) (-952 |#1|)))) (-1049) (-1049)) (T -946)) +((-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-952 *5)) (-4 *5 (-1049)) (-4 *6 (-1049)) (-5 *2 (-952 *6)) (-5 *1 (-946 *5 *6))))) +(-10 -7 (-15 -3080 ((-952 |#2|) (-1 |#2| |#1|) (-952 |#1|)))) +((-2285 (((-1237 |#1| (-952 |#2|)) (-952 |#2|) (-1260 |#1|)) 18))) +(((-947 |#1| |#2|) (-10 -7 (-15 -2285 ((-1237 |#1| (-952 |#2|)) (-952 |#2|) (-1260 |#1|)))) (-1175) (-1049)) (T -947)) +((-2285 (*1 *2 *3 *4) (-12 (-5 *4 (-1260 *5)) (-14 *5 (-1175)) (-4 *6 (-1049)) (-5 *2 (-1237 *5 (-952 *6))) (-5 *1 (-947 *5 *6)) (-5 *3 (-952 *6))))) +(-10 -7 (-15 -2285 ((-1237 |#1| (-952 |#2|)) (-952 |#2|) (-1260 |#1|)))) +((-2917 (((-771) $) 88) (((-771) $ (-644 |#4|)) 93)) (-3980 (($ $) 203)) (-3348 (((-420 $) $) 195)) (-4262 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) 141)) (-2980 (((-3 |#2| "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL) (((-3 (-566) "failed") $) NIL) (((-3 |#4| "failed") $) 74)) (-1709 ((|#2| $) NIL) (((-409 (-566)) $) NIL) (((-566) $) NIL) ((|#4| $) 73)) (-4343 (($ $ $ |#4|) 95)) (-2275 (((-689 (-566)) (-689 $)) NIL) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL) (((-2 (|:| -4196 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 $) (-1264 $)) 131) (((-689 |#2|) (-689 $)) 121)) (-3530 (($ $) 210) (($ $ |#4|) 213)) (-3551 (((-644 $) $) 77)) (-1542 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 229) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 222)) (-1545 (((-644 $) $) 34)) (-2463 (($ |#2| |#3|) NIL) (($ $ |#4| (-771)) NIL) (($ $ (-644 |#4|) (-644 (-771))) 71)) (-2235 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $ |#4|) 192)) (-4075 (((-3 (-644 $) "failed") $) 52)) (-3380 (((-3 (-644 $) "failed") $) 39)) (-2414 (((-3 (-2 (|:| |var| |#4|) (|:| -3631 (-771))) "failed") $) 57)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) 134)) (-1500 (((-420 (-1171 $)) (-1171 $)) 147)) (-3917 (((-420 (-1171 $)) (-1171 $)) 145)) (-2325 (((-420 $) $) 165)) (-3297 (($ $ (-644 (-295 $))) 24) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-644 |#4|) (-644 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-644 |#4|) (-644 $)) NIL)) (-3553 (($ $ |#4|) 97)) (-3136 (((-892 (-381)) $) 243) (((-892 (-566)) $) 236) (((-538) $) 251)) (-2252 ((|#2| $) NIL) (($ $ |#4|) 205)) (-3233 (((-3 (-1264 $) "failed") (-689 $)) 184)) (-3025 ((|#2| $ |#3|) NIL) (($ $ |#4| (-771)) 62) (($ $ (-644 |#4|) (-644 (-771))) 69)) (-2645 (((-3 $ "failed") $) 186)) (-3900 (((-112) $ $) 216))) +(((-948 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4004 ((-1171 |#1|) (-1171 |#1|) (-1171 |#1|))) (-15 -3348 ((-420 |#1|) |#1|)) (-15 -3980 (|#1| |#1|)) (-15 -2645 ((-3 |#1| "failed") |#1|)) (-15 -3136 ((-538) |#1|)) (-15 -3136 ((-892 (-566)) |#1|)) (-15 -3136 ((-892 (-381)) |#1|)) (-15 -1542 ((-889 (-566) |#1|) |#1| (-892 (-566)) (-889 (-566) |#1|))) (-15 -1542 ((-889 (-381) |#1|) |#1| (-892 (-381)) (-889 (-381) |#1|))) (-15 -2325 ((-420 |#1|) |#1|)) (-15 -3917 ((-420 (-1171 |#1|)) (-1171 |#1|))) (-15 -1500 ((-420 (-1171 |#1|)) (-1171 |#1|))) (-15 -4262 ((-3 (-644 (-1171 |#1|)) "failed") (-644 (-1171 |#1|)) (-1171 |#1|))) (-15 -3233 ((-3 (-1264 |#1|) "failed") (-689 |#1|))) (-15 -3530 (|#1| |#1| |#4|)) (-15 -2252 (|#1| |#1| |#4|)) (-15 -3553 (|#1| |#1| |#4|)) (-15 -4343 (|#1| |#1| |#1| |#4|)) (-15 -3551 ((-644 |#1|) |#1|)) (-15 -2917 ((-771) |#1| (-644 |#4|))) (-15 -2917 ((-771) |#1|)) (-15 -2414 ((-3 (-2 (|:| |var| |#4|) (|:| -3631 (-771))) "failed") |#1|)) (-15 -4075 ((-3 (-644 |#1|) "failed") |#1|)) (-15 -3380 ((-3 (-644 |#1|) "failed") |#1|)) (-15 -2463 (|#1| |#1| (-644 |#4|) (-644 (-771)))) (-15 -2463 (|#1| |#1| |#4| (-771))) (-15 -2235 ((-2 (|:| -3371 |#1|) (|:| -3131 |#1|)) |#1| |#1| |#4|)) (-15 -1545 ((-644 |#1|) |#1|)) (-15 -3025 (|#1| |#1| (-644 |#4|) (-644 (-771)))) (-15 -3025 (|#1| |#1| |#4| (-771))) (-15 -2275 ((-689 |#2|) (-689 |#1|))) (-15 -2275 ((-2 (|:| -4196 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 |#1|) (-1264 |#1|))) (-15 -2275 ((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 |#1|) (-1264 |#1|))) (-15 -2275 ((-689 (-566)) (-689 |#1|))) (-15 -2980 ((-3 |#4| "failed") |#1|)) (-15 -1709 (|#4| |#1|)) (-15 -3297 (|#1| |#1| (-644 |#4|) (-644 |#1|))) (-15 -3297 (|#1| |#1| |#4| |#1|)) (-15 -3297 (|#1| |#1| (-644 |#4|) (-644 |#2|))) (-15 -3297 (|#1| |#1| |#4| |#2|)) (-15 -3297 (|#1| |#1| (-644 |#1|) (-644 |#1|))) (-15 -3297 (|#1| |#1| |#1| |#1|)) (-15 -3297 (|#1| |#1| (-295 |#1|))) (-15 -3297 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -2463 (|#1| |#2| |#3|)) (-15 -3025 (|#2| |#1| |#3|)) (-15 -2980 ((-3 (-566) "failed") |#1|)) (-15 -1709 ((-566) |#1|)) (-15 -2980 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -1709 ((-409 (-566)) |#1|)) (-15 -1709 (|#2| |#1|)) (-15 -2980 ((-3 |#2| "failed") |#1|)) (-15 -2252 (|#2| |#1|)) (-15 -3530 (|#1| |#1|)) (-15 -3900 ((-112) |#1| |#1|))) (-949 |#2| |#3| |#4|) (-1049) (-793) (-850)) (T -948)) +NIL +(-10 -8 (-15 -4004 ((-1171 |#1|) (-1171 |#1|) (-1171 |#1|))) (-15 -3348 ((-420 |#1|) |#1|)) (-15 -3980 (|#1| |#1|)) (-15 -2645 ((-3 |#1| "failed") |#1|)) (-15 -3136 ((-538) |#1|)) (-15 -3136 ((-892 (-566)) |#1|)) (-15 -3136 ((-892 (-381)) |#1|)) (-15 -1542 ((-889 (-566) |#1|) |#1| (-892 (-566)) (-889 (-566) |#1|))) (-15 -1542 ((-889 (-381) |#1|) |#1| (-892 (-381)) (-889 (-381) |#1|))) (-15 -2325 ((-420 |#1|) |#1|)) (-15 -3917 ((-420 (-1171 |#1|)) (-1171 |#1|))) (-15 -1500 ((-420 (-1171 |#1|)) (-1171 |#1|))) (-15 -4262 ((-3 (-644 (-1171 |#1|)) "failed") (-644 (-1171 |#1|)) (-1171 |#1|))) (-15 -3233 ((-3 (-1264 |#1|) "failed") (-689 |#1|))) (-15 -3530 (|#1| |#1| |#4|)) (-15 -2252 (|#1| |#1| |#4|)) (-15 -3553 (|#1| |#1| |#4|)) (-15 -4343 (|#1| |#1| |#1| |#4|)) (-15 -3551 ((-644 |#1|) |#1|)) (-15 -2917 ((-771) |#1| (-644 |#4|))) (-15 -2917 ((-771) |#1|)) (-15 -2414 ((-3 (-2 (|:| |var| |#4|) (|:| -3631 (-771))) "failed") |#1|)) (-15 -4075 ((-3 (-644 |#1|) "failed") |#1|)) (-15 -3380 ((-3 (-644 |#1|) "failed") |#1|)) (-15 -2463 (|#1| |#1| (-644 |#4|) (-644 (-771)))) (-15 -2463 (|#1| |#1| |#4| (-771))) (-15 -2235 ((-2 (|:| -3371 |#1|) (|:| -3131 |#1|)) |#1| |#1| |#4|)) (-15 -1545 ((-644 |#1|) |#1|)) (-15 -3025 (|#1| |#1| (-644 |#4|) (-644 (-771)))) (-15 -3025 (|#1| |#1| |#4| (-771))) (-15 -2275 ((-689 |#2|) (-689 |#1|))) (-15 -2275 ((-2 (|:| -4196 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 |#1|) (-1264 |#1|))) (-15 -2275 ((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 |#1|) (-1264 |#1|))) (-15 -2275 ((-689 (-566)) (-689 |#1|))) (-15 -2980 ((-3 |#4| "failed") |#1|)) (-15 -1709 (|#4| |#1|)) (-15 -3297 (|#1| |#1| (-644 |#4|) (-644 |#1|))) (-15 -3297 (|#1| |#1| |#4| |#1|)) (-15 -3297 (|#1| |#1| (-644 |#4|) (-644 |#2|))) (-15 -3297 (|#1| |#1| |#4| |#2|)) (-15 -3297 (|#1| |#1| (-644 |#1|) (-644 |#1|))) (-15 -3297 (|#1| |#1| |#1| |#1|)) (-15 -3297 (|#1| |#1| (-295 |#1|))) (-15 -3297 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -2463 (|#1| |#2| |#3|)) (-15 -3025 (|#2| |#1| |#3|)) (-15 -2980 ((-3 (-566) "failed") |#1|)) (-15 -1709 ((-566) |#1|)) (-15 -2980 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -1709 ((-409 (-566)) |#1|)) (-15 -1709 (|#2| |#1|)) (-15 -2980 ((-3 |#2| "failed") |#1|)) (-15 -2252 (|#2| |#1|)) (-15 -3530 (|#1| |#1|)) (-15 -3900 ((-112) |#1| |#1|))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-2485 (((-644 |#3|) $) 112)) (-2285 (((-1171 $) $ |#3|) 127) (((-1171 |#1|) $) 126)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) 89 (|has| |#1| (-558)))) (-3087 (($ $) 90 (|has| |#1| (-558)))) (-1716 (((-112) $) 92 (|has| |#1| (-558)))) (-2917 (((-771) $) 114) (((-771) $ (-644 |#3|)) 113)) (-3174 (((-3 $ "failed") $ $) 20)) (-4058 (((-420 (-1171 $)) (-1171 $)) 102 (|has| |#1| (-909)))) (-3980 (($ $) 100 (|has| |#1| (-454)))) (-3348 (((-420 $) $) 99 (|has| |#1| (-454)))) (-4262 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) 105 (|has| |#1| (-909)))) (-1811 (($) 18 T CONST)) (-2980 (((-3 |#1| "failed") $) 166) (((-3 (-409 (-566)) "failed") $) 163 (|has| |#1| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) 161 (|has| |#1| (-1038 (-566)))) (((-3 |#3| "failed") $) 138)) (-1709 ((|#1| $) 165) (((-409 (-566)) $) 164 (|has| |#1| (-1038 (-409 (-566))))) (((-566) $) 162 (|has| |#1| (-1038 (-566)))) ((|#3| $) 139)) (-4343 (($ $ $ |#3|) 110 (|has| |#1| (-172)))) (-3565 (($ $) 156)) (-2275 (((-689 (-566)) (-689 $)) 136 (|has| |#1| (-639 (-566)))) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) 135 (|has| |#1| (-639 (-566)))) (((-2 (|:| -4196 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) 134) (((-689 |#1|) (-689 $)) 133)) (-3757 (((-3 $ "failed") $) 37)) (-3530 (($ $) 178 (|has| |#1| (-454))) (($ $ |#3|) 107 (|has| |#1| (-454)))) (-3551 (((-644 $) $) 111)) (-4188 (((-112) $) 98 (|has| |#1| (-909)))) (-3995 (($ $ |#1| |#2| $) 174)) (-1542 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 86 (-12 (|has| |#3| (-886 (-381))) (|has| |#1| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 85 (-12 (|has| |#3| (-886 (-566))) (|has| |#1| (-886 (-566)))))) (-2264 (((-112) $) 35)) (-3486 (((-771) $) 171)) (-2474 (($ (-1171 |#1|) |#3|) 119) (($ (-1171 $) |#3|) 118)) (-1545 (((-644 $) $) 128)) (-3989 (((-112) $) 154)) (-2463 (($ |#1| |#2|) 155) (($ $ |#3| (-771)) 121) (($ $ (-644 |#3|) (-644 (-771))) 120)) (-2235 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $ |#3|) 122)) (-2584 ((|#2| $) 172) (((-771) $ |#3|) 124) (((-644 (-771)) $ (-644 |#3|)) 123)) (-3327 (($ (-1 |#2| |#2|) $) 173)) (-3080 (($ (-1 |#1| |#1|) $) 153)) (-2673 (((-3 |#3| "failed") $) 125)) (-2608 (($ $) 151)) (-2622 ((|#1| $) 150)) (-2120 (($ (-644 $)) 96 (|has| |#1| (-454))) (($ $ $) 95 (|has| |#1| (-454)))) (-3151 (((-1157) $) 10)) (-4075 (((-3 (-644 $) "failed") $) 116)) (-3380 (((-3 (-644 $) "failed") $) 117)) (-2414 (((-3 (-2 (|:| |var| |#3|) (|:| -3631 (-771))) "failed") $) 115)) (-4059 (((-1119) $) 11)) (-2587 (((-112) $) 168)) (-2597 ((|#1| $) 169)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) 97 (|has| |#1| (-454)))) (-2162 (($ (-644 $)) 94 (|has| |#1| (-454))) (($ $ $) 93 (|has| |#1| (-454)))) (-1500 (((-420 (-1171 $)) (-1171 $)) 104 (|has| |#1| (-909)))) (-3917 (((-420 (-1171 $)) (-1171 $)) 103 (|has| |#1| (-909)))) (-2325 (((-420 $) $) 101 (|has| |#1| (-909)))) (-2976 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-558))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-558)))) (-3297 (($ $ (-644 (-295 $))) 147) (($ $ (-295 $)) 146) (($ $ $ $) 145) (($ $ (-644 $) (-644 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-644 |#3|) (-644 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-644 |#3|) (-644 $)) 140)) (-3553 (($ $ |#3|) 109 (|has| |#1| (-172)))) (-3526 (($ $ |#3|) 46) (($ $ (-644 |#3|)) 45) (($ $ |#3| (-771)) 44) (($ $ (-644 |#3|) (-644 (-771))) 43)) (-1630 ((|#2| $) 152) (((-771) $ |#3|) 132) (((-644 (-771)) $ (-644 |#3|)) 131)) (-3136 (((-892 (-381)) $) 84 (-12 (|has| |#3| (-614 (-892 (-381)))) (|has| |#1| (-614 (-892 (-381)))))) (((-892 (-566)) $) 83 (-12 (|has| |#3| (-614 (-892 (-566)))) (|has| |#1| (-614 (-892 (-566)))))) (((-538) $) 82 (-12 (|has| |#3| (-614 (-538))) (|has| |#1| (-614 (-538)))))) (-2252 ((|#1| $) 177 (|has| |#1| (-454))) (($ $ |#3|) 108 (|has| |#1| (-454)))) (-3233 (((-3 (-1264 $) "failed") (-689 $)) 106 (-2402 (|has| $ (-145)) (|has| |#1| (-909))))) (-2479 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 167) (($ |#3|) 137) (($ $) 87 (|has| |#1| (-558))) (($ (-409 (-566))) 80 (-2809 (|has| |#1| (-1038 (-409 (-566)))) (|has| |#1| (-38 (-409 (-566))))))) (-3866 (((-644 |#1|) $) 170)) (-3025 ((|#1| $ |#2|) 157) (($ $ |#3| (-771)) 130) (($ $ (-644 |#3|) (-644 (-771))) 129)) (-2645 (((-3 $ "failed") $) 81 (-2809 (-2402 (|has| $ (-145)) (|has| |#1| (-909))) (|has| |#1| (-145))))) (-1558 (((-771)) 32 T CONST)) (-2244 (($ $ $ (-771)) 175 (|has| |#1| (-172)))) (-3900 (((-112) $ $) 9)) (-1333 (((-112) $ $) 91 (|has| |#1| (-558)))) (-2446 (($) 19 T CONST)) (-2459 (($) 34 T CONST)) (-2834 (($ $ |#3|) 42) (($ $ (-644 |#3|)) 41) (($ $ |#3| (-771)) 40) (($ $ (-644 |#3|) (-644 (-771))) 39)) (-2952 (((-112) $ $) 6)) (-3077 (($ $ |#1|) 158 (|has| |#1| (-365)))) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ (-409 (-566))) 160 (|has| |#1| (-38 (-409 (-566))))) (($ (-409 (-566)) $) 159 (|has| |#1| (-38 (-409 (-566))))) (($ |#1| $) 149) (($ $ |#1|) 148))) +(((-949 |#1| |#2| |#3|) (-140) (-1049) (-793) (-850)) (T -949)) +((-3530 (*1 *1 *1) (-12 (-4 *1 (-949 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-454)))) (-1630 (*1 *2 *1 *3) (-12 (-4 *1 (-949 *4 *5 *3)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *3 (-850)) (-5 *2 (-771)))) (-1630 (*1 *2 *1 *3) (-12 (-5 *3 (-644 *6)) (-4 *1 (-949 *4 *5 *6)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 (-771))))) (-3025 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-771)) (-4 *1 (-949 *4 *5 *2)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *2 (-850)))) (-3025 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 *6)) (-5 *3 (-644 (-771))) (-4 *1 (-949 *4 *5 *6)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *6 (-850)))) (-1545 (*1 *2 *1) (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-644 *1)) (-4 *1 (-949 *3 *4 *5)))) (-2285 (*1 *2 *1 *3) (-12 (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *3 (-850)) (-5 *2 (-1171 *1)) (-4 *1 (-949 *4 *5 *3)))) (-2285 (*1 *2 *1) (-12 (-4 *1 (-949 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-1171 *3)))) (-2673 (*1 *2 *1) (|partial| -12 (-4 *1 (-949 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *2 (-850)))) (-2584 (*1 *2 *1 *3) (-12 (-4 *1 (-949 *4 *5 *3)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *3 (-850)) (-5 *2 (-771)))) (-2584 (*1 *2 *1 *3) (-12 (-5 *3 (-644 *6)) (-4 *1 (-949 *4 *5 *6)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 (-771))))) (-2235 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *3 (-850)) (-5 *2 (-2 (|:| -3371 *1) (|:| -3131 *1))) (-4 *1 (-949 *4 *5 *3)))) (-2463 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-771)) (-4 *1 (-949 *4 *5 *2)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *2 (-850)))) (-2463 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 *6)) (-5 *3 (-644 (-771))) (-4 *1 (-949 *4 *5 *6)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *6 (-850)))) (-2474 (*1 *1 *2 *3) (-12 (-5 *2 (-1171 *4)) (-4 *4 (-1049)) (-4 *1 (-949 *4 *5 *3)) (-4 *5 (-793)) (-4 *3 (-850)))) (-2474 (*1 *1 *2 *3) (-12 (-5 *2 (-1171 *1)) (-4 *1 (-949 *4 *5 *3)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *3 (-850)))) (-3380 (*1 *2 *1) (|partial| -12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-644 *1)) (-4 *1 (-949 *3 *4 *5)))) (-4075 (*1 *2 *1) (|partial| -12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-644 *1)) (-4 *1 (-949 *3 *4 *5)))) (-2414 (*1 *2 *1) (|partial| -12 (-4 *1 (-949 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-2 (|:| |var| *5) (|:| -3631 (-771)))))) (-2917 (*1 *2 *1) (-12 (-4 *1 (-949 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-771)))) (-2917 (*1 *2 *1 *3) (-12 (-5 *3 (-644 *6)) (-4 *1 (-949 *4 *5 *6)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-771)))) (-2485 (*1 *2 *1) (-12 (-4 *1 (-949 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-644 *5)))) (-3551 (*1 *2 *1) (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-644 *1)) (-4 *1 (-949 *3 *4 *5)))) (-4343 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-949 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *2 (-850)) (-4 *3 (-172)))) (-3553 (*1 *1 *1 *2) (-12 (-4 *1 (-949 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *2 (-850)) (-4 *3 (-172)))) (-2252 (*1 *1 *1 *2) (-12 (-4 *1 (-949 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *2 (-850)) (-4 *3 (-454)))) (-3530 (*1 *1 *1 *2) (-12 (-4 *1 (-949 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *2 (-850)) (-4 *3 (-454)))) (-3980 (*1 *1 *1) (-12 (-4 *1 (-949 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-454)))) (-3348 (*1 *2 *1) (-12 (-4 *3 (-454)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-420 *1)) (-4 *1 (-949 *3 *4 *5))))) +(-13 (-900 |t#3|) (-327 |t#1| |t#2|) (-310 $) (-516 |t#3| |t#1|) (-516 |t#3| $) (-1038 |t#3|) (-379 |t#1|) (-10 -8 (-15 -1630 ((-771) $ |t#3|)) (-15 -1630 ((-644 (-771)) $ (-644 |t#3|))) (-15 -3025 ($ $ |t#3| (-771))) (-15 -3025 ($ $ (-644 |t#3|) (-644 (-771)))) (-15 -1545 ((-644 $) $)) (-15 -2285 ((-1171 $) $ |t#3|)) (-15 -2285 ((-1171 |t#1|) $)) (-15 -2673 ((-3 |t#3| "failed") $)) (-15 -2584 ((-771) $ |t#3|)) (-15 -2584 ((-644 (-771)) $ (-644 |t#3|))) (-15 -2235 ((-2 (|:| -3371 $) (|:| -3131 $)) $ $ |t#3|)) (-15 -2463 ($ $ |t#3| (-771))) (-15 -2463 ($ $ (-644 |t#3|) (-644 (-771)))) (-15 -2474 ($ (-1171 |t#1|) |t#3|)) (-15 -2474 ($ (-1171 $) |t#3|)) (-15 -3380 ((-3 (-644 $) "failed") $)) (-15 -4075 ((-3 (-644 $) "failed") $)) (-15 -2414 ((-3 (-2 (|:| |var| |t#3|) (|:| -3631 (-771))) "failed") $)) (-15 -2917 ((-771) $)) (-15 -2917 ((-771) $ (-644 |t#3|))) (-15 -2485 ((-644 |t#3|) $)) (-15 -3551 ((-644 $) $)) (IF (|has| |t#1| (-614 (-538))) (IF (|has| |t#3| (-614 (-538))) (-6 (-614 (-538))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-614 (-892 (-566)))) (IF (|has| |t#3| (-614 (-892 (-566)))) (-6 (-614 (-892 (-566)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-614 (-892 (-381)))) (IF (|has| |t#3| (-614 (-892 (-381)))) (-6 (-614 (-892 (-381)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-886 (-566))) (IF (|has| |t#3| (-886 (-566))) (-6 (-886 (-566))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-886 (-381))) (IF (|has| |t#3| (-886 (-381))) (-6 (-886 (-381))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-15 -4343 ($ $ $ |t#3|)) (-15 -3553 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-454)) (PROGN (-6 (-454)) (-15 -2252 ($ $ |t#3|)) (-15 -3530 ($ $)) (-15 -3530 ($ $ |t#3|)) (-15 -3348 ((-420 $) $)) (-15 -3980 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4415)) (-6 -4415) |%noBranch|) (IF (|has| |t#1| (-909)) (-6 (-909)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-409 (-566)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #0#) -2809 (|has| |#1| (-1038 (-409 (-566)))) (|has| |#1| (-38 (-409 (-566))))) ((-616 (-566)) . T) ((-616 |#1|) . T) ((-616 |#3|) . T) ((-616 $) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-613 (-862)) . T) ((-172) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-172))) ((-614 (-538)) -12 (|has| |#1| (-614 (-538))) (|has| |#3| (-614 (-538)))) ((-614 (-892 (-381))) -12 (|has| |#1| (-614 (-892 (-381)))) (|has| |#3| (-614 (-892 (-381))))) ((-614 (-892 (-566))) -12 (|has| |#1| (-614 (-892 (-566)))) (|has| |#3| (-614 (-892 (-566))))) ((-291) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-310 $) . T) ((-327 |#1| |#2|) . T) ((-379 |#1|) . T) ((-413 |#1|) . T) ((-454) -2809 (|has| |#1| (-909)) (|has| |#1| (-454))) ((-516 |#3| |#1|) . T) ((-516 |#3| $) . T) ((-516 $ $) . T) ((-558) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-646 #0#) |has| |#1| (-38 (-409 (-566)))) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #0#) |has| |#1| (-38 (-409 (-566)))) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #0#) |has| |#1| (-38 (-409 (-566)))) ((-640 |#1|) |has| |#1| (-172)) ((-640 $) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-639 (-566)) |has| |#1| (-639 (-566))) ((-639 |#1|) . T) ((-717 #0#) |has| |#1| (-38 (-409 (-566)))) ((-717 |#1|) |has| |#1| (-172)) ((-717 $) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-726) . T) ((-900 |#3|) . T) ((-886 (-381)) -12 (|has| |#1| (-886 (-381))) (|has| |#3| (-886 (-381)))) ((-886 (-566)) -12 (|has| |#1| (-886 (-566))) (|has| |#3| (-886 (-566)))) ((-909) |has| |#1| (-909)) ((-1038 (-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) ((-1038 (-566)) |has| |#1| (-1038 (-566))) ((-1038 |#1|) . T) ((-1038 |#3|) . T) ((-1051 #0#) |has| |#1| (-38 (-409 (-566)))) ((-1051 |#1|) . T) ((-1051 $) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-172))) ((-1056 #0#) |has| |#1| (-38 (-409 (-566)))) ((-1056 |#1|) . T) ((-1056 $) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-172))) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1218) |has| |#1| (-909))) +((-2485 (((-644 |#2|) |#5|) 40)) (-2285 (((-1171 |#5|) |#5| |#2| (-1171 |#5|)) 23) (((-409 (-1171 |#5|)) |#5| |#2|) 16)) (-2474 ((|#5| (-409 (-1171 |#5|)) |#2|) 30)) (-2673 (((-3 |#2| "failed") |#5|) 71)) (-4075 (((-3 (-644 |#5|) "failed") |#5|) 65)) (-4092 (((-3 (-2 (|:| |val| |#5|) (|:| -3631 (-566))) "failed") |#5|) 53)) (-3380 (((-3 (-644 |#5|) "failed") |#5|) 67)) (-2414 (((-3 (-2 (|:| |var| |#2|) (|:| -3631 (-566))) "failed") |#5|) 57))) +(((-950 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2485 ((-644 |#2|) |#5|)) (-15 -2673 ((-3 |#2| "failed") |#5|)) (-15 -2285 ((-409 (-1171 |#5|)) |#5| |#2|)) (-15 -2474 (|#5| (-409 (-1171 |#5|)) |#2|)) (-15 -2285 ((-1171 |#5|) |#5| |#2| (-1171 |#5|))) (-15 -3380 ((-3 (-644 |#5|) "failed") |#5|)) (-15 -4075 ((-3 (-644 |#5|) "failed") |#5|)) (-15 -2414 ((-3 (-2 (|:| |var| |#2|) (|:| -3631 (-566))) "failed") |#5|)) (-15 -4092 ((-3 (-2 (|:| |val| |#5|) (|:| -3631 (-566))) "failed") |#5|))) (-793) (-850) (-1049) (-949 |#3| |#1| |#2|) (-13 (-365) (-10 -8 (-15 -2479 ($ |#4|)) (-15 -4157 (|#4| $)) (-15 -4167 (|#4| $))))) (T -950)) +((-4092 (*1 *2 *3) (|partial| -12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1049)) (-4 *7 (-949 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -3631 (-566)))) (-5 *1 (-950 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -2479 ($ *7)) (-15 -4157 (*7 $)) (-15 -4167 (*7 $))))))) (-2414 (*1 *2 *3) (|partial| -12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1049)) (-4 *7 (-949 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -3631 (-566)))) (-5 *1 (-950 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -2479 ($ *7)) (-15 -4157 (*7 $)) (-15 -4167 (*7 $))))))) (-4075 (*1 *2 *3) (|partial| -12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1049)) (-4 *7 (-949 *6 *4 *5)) (-5 *2 (-644 *3)) (-5 *1 (-950 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -2479 ($ *7)) (-15 -4157 (*7 $)) (-15 -4167 (*7 $))))))) (-3380 (*1 *2 *3) (|partial| -12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1049)) (-4 *7 (-949 *6 *4 *5)) (-5 *2 (-644 *3)) (-5 *1 (-950 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -2479 ($ *7)) (-15 -4157 (*7 $)) (-15 -4167 (*7 $))))))) (-2285 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1171 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -2479 ($ *7)) (-15 -4157 (*7 $)) (-15 -4167 (*7 $))))) (-4 *7 (-949 *6 *5 *4)) (-4 *5 (-793)) (-4 *4 (-850)) (-4 *6 (-1049)) (-5 *1 (-950 *5 *4 *6 *7 *3)))) (-2474 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-1171 *2))) (-4 *5 (-793)) (-4 *4 (-850)) (-4 *6 (-1049)) (-4 *2 (-13 (-365) (-10 -8 (-15 -2479 ($ *7)) (-15 -4157 (*7 $)) (-15 -4167 (*7 $))))) (-5 *1 (-950 *5 *4 *6 *7 *2)) (-4 *7 (-949 *6 *5 *4)))) (-2285 (*1 *2 *3 *4) (-12 (-4 *5 (-793)) (-4 *4 (-850)) (-4 *6 (-1049)) (-4 *7 (-949 *6 *5 *4)) (-5 *2 (-409 (-1171 *3))) (-5 *1 (-950 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -2479 ($ *7)) (-15 -4157 (*7 $)) (-15 -4167 (*7 $))))))) (-2673 (*1 *2 *3) (|partial| -12 (-4 *4 (-793)) (-4 *5 (-1049)) (-4 *6 (-949 *5 *4 *2)) (-4 *2 (-850)) (-5 *1 (-950 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -2479 ($ *6)) (-15 -4157 (*6 $)) (-15 -4167 (*6 $))))))) (-2485 (*1 *2 *3) (-12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1049)) (-4 *7 (-949 *6 *4 *5)) (-5 *2 (-644 *5)) (-5 *1 (-950 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -2479 ($ *7)) (-15 -4157 (*7 $)) (-15 -4167 (*7 $)))))))) +(-10 -7 (-15 -2485 ((-644 |#2|) |#5|)) (-15 -2673 ((-3 |#2| "failed") |#5|)) (-15 -2285 ((-409 (-1171 |#5|)) |#5| |#2|)) (-15 -2474 (|#5| (-409 (-1171 |#5|)) |#2|)) (-15 -2285 ((-1171 |#5|) |#5| |#2| (-1171 |#5|))) (-15 -3380 ((-3 (-644 |#5|) "failed") |#5|)) (-15 -4075 ((-3 (-644 |#5|) "failed") |#5|)) (-15 -2414 ((-3 (-2 (|:| |var| |#2|) (|:| -3631 (-566))) "failed") |#5|)) (-15 -4092 ((-3 (-2 (|:| |val| |#5|) (|:| -3631 (-566))) "failed") |#5|))) +((-3080 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24))) +(((-951 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3080 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-793) (-850) (-1049) (-949 |#3| |#1| |#2|) (-13 (-1099) (-10 -8 (-15 -3052 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-771)))))) (T -951)) +((-3080 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-850)) (-4 *8 (-1049)) (-4 *6 (-793)) (-4 *2 (-13 (-1099) (-10 -8 (-15 -3052 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-771)))))) (-5 *1 (-951 *6 *7 *8 *5 *2)) (-4 *5 (-949 *8 *6 *7))))) +(-10 -7 (-15 -3080 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-2485 (((-644 (-1175)) $) 16)) (-2285 (((-1171 $) $ (-1175)) 21) (((-1171 |#1|) $) NIL)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-3087 (($ $) NIL (|has| |#1| (-558)))) (-1716 (((-112) $) NIL (|has| |#1| (-558)))) (-2917 (((-771) $) NIL) (((-771) $ (-644 (-1175))) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-4058 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-3980 (($ $) NIL (|has| |#1| (-454)))) (-3348 (((-420 $) $) NIL (|has| |#1| (-454)))) (-4262 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-1811 (($) NIL T CONST)) (-2980 (((-3 |#1| "failed") $) 8) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-1175) "failed") $) NIL)) (-1709 ((|#1| $) NIL) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-1175) $) NIL)) (-4343 (($ $ $ (-1175)) NIL (|has| |#1| (-172)))) (-3565 (($ $) NIL)) (-2275 (((-689 (-566)) (-689 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -4196 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) NIL) (((-689 |#1|) (-689 $)) NIL)) (-3757 (((-3 $ "failed") $) NIL)) (-3530 (($ $) NIL (|has| |#1| (-454))) (($ $ (-1175)) NIL (|has| |#1| (-454)))) (-3551 (((-644 $) $) NIL)) (-4188 (((-112) $) NIL (|has| |#1| (-909)))) (-3995 (($ $ |#1| (-533 (-1175)) $) NIL)) (-1542 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| (-1175) (-886 (-381))) (|has| |#1| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| (-1175) (-886 (-566))) (|has| |#1| (-886 (-566)))))) (-2264 (((-112) $) NIL)) (-3486 (((-771) $) NIL)) (-2474 (($ (-1171 |#1|) (-1175)) NIL) (($ (-1171 $) (-1175)) NIL)) (-1545 (((-644 $) $) NIL)) (-3989 (((-112) $) NIL)) (-2463 (($ |#1| (-533 (-1175))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL)) (-2235 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $ (-1175)) NIL)) (-2584 (((-533 (-1175)) $) NIL) (((-771) $ (-1175)) NIL) (((-644 (-771)) $ (-644 (-1175))) NIL)) (-3327 (($ (-1 (-533 (-1175)) (-533 (-1175))) $) NIL)) (-3080 (($ (-1 |#1| |#1|) $) NIL)) (-2673 (((-3 (-1175) "failed") $) 19)) (-2608 (($ $) NIL)) (-2622 ((|#1| $) NIL)) (-2120 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-3151 (((-1157) $) NIL)) (-4075 (((-3 (-644 $) "failed") $) NIL)) (-3380 (((-3 (-644 $) "failed") $) NIL)) (-2414 (((-3 (-2 (|:| |var| (-1175)) (|:| -3631 (-771))) "failed") $) NIL)) (-2390 (($ $ (-1175)) 29 (|has| |#1| (-38 (-409 (-566)))))) (-4059 (((-1119) $) NIL)) (-2587 (((-112) $) NIL)) (-2597 ((|#1| $) NIL)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-454)))) (-2162 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-1500 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-3917 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-2325 (((-420 $) $) NIL (|has| |#1| (-909)))) (-2976 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-3297 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-1175) |#1|) NIL) (($ $ (-644 (-1175)) (-644 |#1|)) NIL) (($ $ (-1175) $) NIL) (($ $ (-644 (-1175)) (-644 $)) NIL)) (-3553 (($ $ (-1175)) NIL (|has| |#1| (-172)))) (-3526 (($ $ (-1175)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL)) (-1630 (((-533 (-1175)) $) NIL) (((-771) $ (-1175)) NIL) (((-644 (-771)) $ (-644 (-1175))) NIL)) (-3136 (((-892 (-381)) $) NIL (-12 (|has| (-1175) (-614 (-892 (-381)))) (|has| |#1| (-614 (-892 (-381)))))) (((-892 (-566)) $) NIL (-12 (|has| (-1175) (-614 (-892 (-566)))) (|has| |#1| (-614 (-892 (-566)))))) (((-538) $) NIL (-12 (|has| (-1175) (-614 (-538))) (|has| |#1| (-614 (-538)))))) (-2252 ((|#1| $) NIL (|has| |#1| (-454))) (($ $ (-1175)) NIL (|has| |#1| (-454)))) (-3233 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-909))))) (-2479 (((-862) $) 25) (($ (-566)) NIL) (($ |#1|) NIL) (($ (-1175)) 27) (($ (-409 (-566))) NIL (-2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566)))))) (($ $) NIL (|has| |#1| (-558)))) (-3866 (((-644 |#1|) $) NIL)) (-3025 ((|#1| $ (-533 (-1175))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL)) (-2645 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| $ (-145)) (|has| |#1| (-909))) (|has| |#1| (-145))))) (-1558 (((-771)) NIL T CONST)) (-2244 (($ $ $ (-771)) NIL (|has| |#1| (-172)))) (-3900 (((-112) $ $) NIL)) (-1333 (((-112) $ $) NIL (|has| |#1| (-558)))) (-2446 (($) NIL T CONST)) (-2459 (($) NIL T CONST)) (-2834 (($ $ (-1175)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL)) (-2952 (((-112) $ $) NIL)) (-3077 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-952 |#1|) (-13 (-949 |#1| (-533 (-1175)) (-1175)) (-10 -8 (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -2390 ($ $ (-1175))) |%noBranch|))) (-1049)) (T -952)) +((-2390 (*1 *1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-952 *3)) (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049))))) +(-13 (-949 |#1| (-533 (-1175)) (-1175)) (-10 -8 (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -2390 ($ $ (-1175))) |%noBranch|))) +((-4344 (((-2 (|:| -3631 (-771)) (|:| -3103 |#5|) (|:| |radicand| |#5|)) |#3| (-771)) 49)) (-3589 (((-2 (|:| -3631 (-771)) (|:| -3103 |#5|) (|:| |radicand| |#5|)) (-409 (-566)) (-771)) 44)) (-2286 (((-2 (|:| -3631 (-771)) (|:| -3103 |#4|) (|:| |radicand| (-644 |#4|))) |#4| (-771)) 65)) (-2821 (((-2 (|:| -3631 (-771)) (|:| -3103 |#5|) (|:| |radicand| |#5|)) |#5| (-771)) 74 (|has| |#3| (-454))))) +(((-953 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4344 ((-2 (|:| -3631 (-771)) (|:| -3103 |#5|) (|:| |radicand| |#5|)) |#3| (-771))) (-15 -3589 ((-2 (|:| -3631 (-771)) (|:| -3103 |#5|) (|:| |radicand| |#5|)) (-409 (-566)) (-771))) (IF (|has| |#3| (-454)) (-15 -2821 ((-2 (|:| -3631 (-771)) (|:| -3103 |#5|) (|:| |radicand| |#5|)) |#5| (-771))) |%noBranch|) (-15 -2286 ((-2 (|:| -3631 (-771)) (|:| -3103 |#4|) (|:| |radicand| (-644 |#4|))) |#4| (-771)))) (-793) (-850) (-558) (-949 |#3| |#1| |#2|) (-13 (-365) (-10 -8 (-15 -2479 ($ |#4|)) (-15 -4157 (|#4| $)) (-15 -4167 (|#4| $))))) (T -953)) +((-2286 (*1 *2 *3 *4) (-12 (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-558)) (-4 *3 (-949 *7 *5 *6)) (-5 *2 (-2 (|:| -3631 (-771)) (|:| -3103 *3) (|:| |radicand| (-644 *3)))) (-5 *1 (-953 *5 *6 *7 *3 *8)) (-5 *4 (-771)) (-4 *8 (-13 (-365) (-10 -8 (-15 -2479 ($ *3)) (-15 -4157 (*3 $)) (-15 -4167 (*3 $))))))) (-2821 (*1 *2 *3 *4) (-12 (-4 *7 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-558)) (-4 *8 (-949 *7 *5 *6)) (-5 *2 (-2 (|:| -3631 (-771)) (|:| -3103 *3) (|:| |radicand| *3))) (-5 *1 (-953 *5 *6 *7 *8 *3)) (-5 *4 (-771)) (-4 *3 (-13 (-365) (-10 -8 (-15 -2479 ($ *8)) (-15 -4157 (*8 $)) (-15 -4167 (*8 $))))))) (-3589 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-566))) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-558)) (-4 *8 (-949 *7 *5 *6)) (-5 *2 (-2 (|:| -3631 (-771)) (|:| -3103 *9) (|:| |radicand| *9))) (-5 *1 (-953 *5 *6 *7 *8 *9)) (-5 *4 (-771)) (-4 *9 (-13 (-365) (-10 -8 (-15 -2479 ($ *8)) (-15 -4157 (*8 $)) (-15 -4167 (*8 $))))))) (-4344 (*1 *2 *3 *4) (-12 (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-558)) (-4 *7 (-949 *3 *5 *6)) (-5 *2 (-2 (|:| -3631 (-771)) (|:| -3103 *8) (|:| |radicand| *8))) (-5 *1 (-953 *5 *6 *3 *7 *8)) (-5 *4 (-771)) (-4 *8 (-13 (-365) (-10 -8 (-15 -2479 ($ *7)) (-15 -4157 (*7 $)) (-15 -4167 (*7 $)))))))) +(-10 -7 (-15 -4344 ((-2 (|:| -3631 (-771)) (|:| -3103 |#5|) (|:| |radicand| |#5|)) |#3| (-771))) (-15 -3589 ((-2 (|:| -3631 (-771)) (|:| -3103 |#5|) (|:| |radicand| |#5|)) (-409 (-566)) (-771))) (IF (|has| |#3| (-454)) (-15 -2821 ((-2 (|:| -3631 (-771)) (|:| -3103 |#5|) (|:| |radicand| |#5|)) |#5| (-771))) |%noBranch|) (-15 -2286 ((-2 (|:| -3631 (-771)) (|:| -3103 |#4|) (|:| |radicand| (-644 |#4|))) |#4| (-771)))) +((-2986 (((-112) $ $) NIL)) (-1422 (($ (-1119)) 8)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) 15) (((-1119) $) 12)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 11))) +(((-954) (-13 (-1099) (-613 (-1119)) (-10 -8 (-15 -1422 ($ (-1119)))))) (T -954)) +((-1422 (*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-954))))) +(-13 (-1099) (-613 (-1119)) (-10 -8 (-15 -1422 ($ (-1119))))) +((-3688 (((-1093 (-225)) $) 8)) (-3678 (((-1093 (-225)) $) 9)) (-3379 (((-644 (-644 (-943 (-225)))) $) 10)) (-2479 (((-862) $) 6))) +(((-955) (-140)) (T -955)) +((-3379 (*1 *2 *1) (-12 (-4 *1 (-955)) (-5 *2 (-644 (-644 (-943 (-225))))))) (-3678 (*1 *2 *1) (-12 (-4 *1 (-955)) (-5 *2 (-1093 (-225))))) (-3688 (*1 *2 *1) (-12 (-4 *1 (-955)) (-5 *2 (-1093 (-225)))))) +(-13 (-613 (-862)) (-10 -8 (-15 -3379 ((-644 (-644 (-943 (-225)))) $)) (-15 -3678 ((-1093 (-225)) $)) (-15 -3688 ((-1093 (-225)) $)))) +(((-613 (-862)) . T)) +((-3140 (((-3 (-689 |#1|) "failed") |#2| (-921)) 18))) +(((-956 |#1| |#2|) (-10 -7 (-15 -3140 ((-3 (-689 |#1|) "failed") |#2| (-921)))) (-558) (-656 |#1|)) (T -956)) +((-3140 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-921)) (-4 *5 (-558)) (-5 *2 (-689 *5)) (-5 *1 (-956 *5 *3)) (-4 *3 (-656 *5))))) +(-10 -7 (-15 -3140 ((-3 (-689 |#1|) "failed") |#2| (-921)))) +((-2531 (((-958 |#2|) (-1 |#2| |#1| |#2|) (-958 |#1|) |#2|) 16)) (-1838 ((|#2| (-1 |#2| |#1| |#2|) (-958 |#1|) |#2|) 18)) (-3080 (((-958 |#2|) (-1 |#2| |#1|) (-958 |#1|)) 13))) +(((-957 |#1| |#2|) (-10 -7 (-15 -2531 ((-958 |#2|) (-1 |#2| |#1| |#2|) (-958 |#1|) |#2|)) (-15 -1838 (|#2| (-1 |#2| |#1| |#2|) (-958 |#1|) |#2|)) (-15 -3080 ((-958 |#2|) (-1 |#2| |#1|) (-958 |#1|)))) (-1214) (-1214)) (T -957)) +((-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-958 *5)) (-4 *5 (-1214)) (-4 *6 (-1214)) (-5 *2 (-958 *6)) (-5 *1 (-957 *5 *6)))) (-1838 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-958 *5)) (-4 *5 (-1214)) (-4 *2 (-1214)) (-5 *1 (-957 *5 *2)))) (-2531 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-958 *6)) (-4 *6 (-1214)) (-4 *5 (-1214)) (-5 *2 (-958 *5)) (-5 *1 (-957 *6 *5))))) +(-10 -7 (-15 -2531 ((-958 |#2|) (-1 |#2| |#1| |#2|) (-958 |#1|) |#2|)) (-15 -1838 (|#2| (-1 |#2| |#1| |#2|) (-958 |#1|) |#2|)) (-15 -3080 ((-958 |#2|) (-1 |#2| |#1|) (-958 |#1|)))) +((-2986 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2462 (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4418)))) (-4163 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-850)))) (-2893 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4418))) (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-850))))) (-1374 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-850)))) (-1453 (((-112) $ (-771)) NIL)) (-3901 ((|#1| $ (-566) |#1|) 19 (|has| $ (-6 -4418))) ((|#1| $ (-1231 (-566)) |#1|) NIL (|has| $ (-6 -4418)))) (-3543 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-1811 (($) NIL T CONST)) (-2273 (($ $) NIL (|has| $ (-6 -4418)))) (-3877 (($ $) NIL)) (-4111 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-2628 (($ |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-1838 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4417)))) (-3719 ((|#1| $ (-566) |#1|) 18 (|has| $ (-6 -4418)))) (-3653 ((|#1| $ (-566)) 16)) (-4000 (((-566) (-1 (-112) |#1|) $) NIL) (((-566) |#1| $) NIL (|has| |#1| (-1099))) (((-566) |#1| $ (-566)) NIL (|has| |#1| (-1099)))) (-3872 (((-644 |#1|) $) NIL (|has| $ (-6 -4417)))) (-4259 (($ (-771) |#1|) 15)) (-2756 (((-112) $ (-771)) NIL)) (-2755 (((-566) $) 11 (|has| (-566) (-850)))) (-1920 (($ $ $) NIL (|has| |#1| (-850)))) (-1330 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-850)))) (-4227 (((-644 |#1|) $) NIL (|has| $ (-6 -4417)))) (-1688 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-3831 (((-566) $) NIL (|has| (-566) (-850)))) (-3038 (($ $ $) NIL (|has| |#1| (-850)))) (-3708 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4106 (((-112) $ (-771)) NIL)) (-3151 (((-1157) $) NIL (|has| |#1| (-1099)))) (-4271 (($ |#1| $ (-566)) NIL) (($ $ $ (-566)) NIL)) (-3780 (((-644 (-566)) $) NIL)) (-1605 (((-112) (-566) $) NIL)) (-4059 (((-1119) $) NIL (|has| |#1| (-1099)))) (-4080 ((|#1| $) NIL (|has| (-566) (-850)))) (-2688 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4079 (($ $ |#1|) 20 (|has| $ (-6 -4418)))) (-3966 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1844 (((-112) $ $) NIL)) (-2210 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-4185 (((-644 |#1|) $) NIL)) (-2788 (((-112) $) NIL)) (-1737 (($) 12)) (-4376 ((|#1| $ (-566) |#1|) NIL) ((|#1| $ (-566)) 17) (($ $ (-1231 (-566))) NIL)) (-2139 (($ $ (-566)) NIL) (($ $ (-1231 (-566))) NIL)) (-4068 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-1438 (($ $ $ (-566)) NIL (|has| $ (-6 -4418)))) (-3924 (($ $) 21)) (-3136 (((-538) $) NIL (|has| |#1| (-614 (-538))))) (-2489 (($ (-644 |#1|)) 14)) (-3716 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-644 $)) NIL)) (-2479 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-3900 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3667 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-3019 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2990 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2952 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3004 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-850)))) (-3002 (((-771) $) 8 (|has| $ (-6 -4417))))) +(((-958 |#1|) (-19 |#1|) (-1214)) (T -958)) NIL (-19 |#1|) -((-2696 (($ $ (-1089 $)) 7) (($ $ (-1173)) 6))) -(((-957) (-140)) (T -957)) -((-2696 (*1 *1 *1 *2) (-12 (-5 *2 (-1089 *1)) (-4 *1 (-957)))) (-2696 (*1 *1 *1 *2) (-12 (-4 *1 (-957)) (-5 *2 (-1173))))) -(-13 (-10 -8 (-15 -2696 ($ $ (-1173))) (-15 -2696 ($ $ (-1089 $))))) -((-1427 (((-2 (|:| -2968 (-642 (-564))) (|:| |poly| (-642 (-1169 |#1|))) (|:| |prim| (-1169 |#1|))) (-642 (-950 |#1|)) (-642 (-1173)) (-1173)) 30) (((-2 (|:| -2968 (-642 (-564))) (|:| |poly| (-642 (-1169 |#1|))) (|:| |prim| (-1169 |#1|))) (-642 (-950 |#1|)) (-642 (-1173))) 31) (((-2 (|:| |coef1| (-564)) (|:| |coef2| (-564)) (|:| |prim| (-1169 |#1|))) (-950 |#1|) (-1173) (-950 |#1|) (-1173)) 49))) -(((-958 |#1|) (-10 -7 (-15 -1427 ((-2 (|:| |coef1| (-564)) (|:| |coef2| (-564)) (|:| |prim| (-1169 |#1|))) (-950 |#1|) (-1173) (-950 |#1|) (-1173))) (-15 -1427 ((-2 (|:| -2968 (-642 (-564))) (|:| |poly| (-642 (-1169 |#1|))) (|:| |prim| (-1169 |#1|))) (-642 (-950 |#1|)) (-642 (-1173)))) (-15 -1427 ((-2 (|:| -2968 (-642 (-564))) (|:| |poly| (-642 (-1169 |#1|))) (|:| |prim| (-1169 |#1|))) (-642 (-950 |#1|)) (-642 (-1173)) (-1173)))) (-13 (-363) (-147))) (T -958)) -((-1427 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-642 (-950 *6))) (-5 *4 (-642 (-1173))) (-5 *5 (-1173)) (-4 *6 (-13 (-363) (-147))) (-5 *2 (-2 (|:| -2968 (-642 (-564))) (|:| |poly| (-642 (-1169 *6))) (|:| |prim| (-1169 *6)))) (-5 *1 (-958 *6)))) (-1427 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-950 *5))) (-5 *4 (-642 (-1173))) (-4 *5 (-13 (-363) (-147))) (-5 *2 (-2 (|:| -2968 (-642 (-564))) (|:| |poly| (-642 (-1169 *5))) (|:| |prim| (-1169 *5)))) (-5 *1 (-958 *5)))) (-1427 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-950 *5)) (-5 *4 (-1173)) (-4 *5 (-13 (-363) (-147))) (-5 *2 (-2 (|:| |coef1| (-564)) (|:| |coef2| (-564)) (|:| |prim| (-1169 *5)))) (-5 *1 (-958 *5))))) -(-10 -7 (-15 -1427 ((-2 (|:| |coef1| (-564)) (|:| |coef2| (-564)) (|:| |prim| (-1169 |#1|))) (-950 |#1|) (-1173) (-950 |#1|) (-1173))) (-15 -1427 ((-2 (|:| -2968 (-642 (-564))) (|:| |poly| (-642 (-1169 |#1|))) (|:| |prim| (-1169 |#1|))) (-642 (-950 |#1|)) (-642 (-1173)))) (-15 -1427 ((-2 (|:| -2968 (-642 (-564))) (|:| |poly| (-642 (-1169 |#1|))) (|:| |prim| (-1169 |#1|))) (-642 (-950 |#1|)) (-642 (-1173)) (-1173)))) -((-2132 (((-642 |#1|) |#1| |#1|) 47)) (-3552 (((-112) |#1|) 44)) (-1797 ((|#1| |#1|) 82)) (-3038 ((|#1| |#1|) 81))) -(((-959 |#1|) (-10 -7 (-15 -3552 ((-112) |#1|)) (-15 -3038 (|#1| |#1|)) (-15 -1797 (|#1| |#1|)) (-15 -2132 ((-642 |#1|) |#1| |#1|))) (-545)) (T -959)) -((-2132 (*1 *2 *3 *3) (-12 (-5 *2 (-642 *3)) (-5 *1 (-959 *3)) (-4 *3 (-545)))) (-1797 (*1 *2 *2) (-12 (-5 *1 (-959 *2)) (-4 *2 (-545)))) (-3038 (*1 *2 *2) (-12 (-5 *1 (-959 *2)) (-4 *2 (-545)))) (-3552 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-959 *3)) (-4 *3 (-545))))) -(-10 -7 (-15 -3552 ((-112) |#1|)) (-15 -3038 (|#1| |#1|)) (-15 -1797 (|#1| |#1|)) (-15 -2132 ((-642 |#1|) |#1| |#1|))) -((-2801 (((-1267) (-860)) 9))) -(((-960) (-10 -7 (-15 -2801 ((-1267) (-860))))) (T -960)) -((-2801 (*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1267)) (-5 *1 (-960))))) -(-10 -7 (-15 -2801 ((-1267) (-860)))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) 78 (|has| |#1| (-556)))) (-4252 (($ $) 79 (|has| |#1| (-556)))) (-1722 (((-112) $) NIL (|has| |#1| (-556)))) (-3085 (((-3 $ "failed") $ $) NIL)) (-2822 (($) NIL T CONST)) (-2849 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1036 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1036 (-407 (-564))))) (((-3 |#1| "failed") $) 34)) (-1687 (((-564) $) NIL (|has| |#1| (-1036 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1036 (-407 (-564))))) ((|#1| $) NIL)) (-3459 (($ $) 31)) (-2675 (((-3 $ "failed") $) 42)) (-2511 (($ $) NIL (|has| |#1| (-452)))) (-2315 (($ $ |#1| |#2| $) 62)) (-3163 (((-112) $) NIL)) (-1904 (((-769) $) 17)) (-3471 (((-112) $) NIL)) (-2374 (($ |#1| |#2|) NIL)) (-2887 ((|#2| $) 24)) (-3879 (($ (-1 |#2| |#2|) $) NIL)) (-2947 (($ (-1 |#1| |#1|) $) NIL)) (-2510 (($ $) 28)) (-2523 ((|#1| $) 26)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2491 (((-112) $) 51)) (-2500 ((|#1| $) NIL)) (-3411 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-131)) (|has| |#1| (-556))))) (-2842 (((-3 $ "failed") $ $) 91 (|has| |#1| (-556))) (((-3 $ "failed") $ |#1|) 85 (|has| |#1| (-556)))) (-3252 ((|#2| $) 22)) (-4325 ((|#1| $) NIL (|has| |#1| (-452)))) (-2390 (((-860) $) NIL) (($ (-564)) 46) (($ $) NIL (|has| |#1| (-556))) (($ |#1|) 41) (($ (-407 (-564))) NIL (-2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1036 (-407 (-564))))))) (-2839 (((-642 |#1|) $) NIL)) (-3005 ((|#1| $ |#2|) 37)) (-3434 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3348 (((-769)) 15 T CONST)) (-2645 (($ $ $ (-769)) 74 (|has| |#1| (-172)))) (-1600 (((-112) $ $) NIL)) (-1594 (((-112) $ $) 84 (|has| |#1| (-556)))) (-2361 (($) 27 T CONST)) (-2371 (($) 12 T CONST)) (-2821 (((-112) $ $) 83)) (-2943 (($ $ |#1|) 92 (|has| |#1| (-363)))) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) NIL)) (** (($ $ (-919)) 69) (($ $ (-769)) 67)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) 66) (($ $ |#1|) 64) (($ |#1| $) 63) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))))) -(((-961 |#1| |#2|) (-13 (-326 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-556)) (IF (|has| |#2| (-131)) (-15 -3411 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4408)) (-6 -4408) |%noBranch|))) (-1047) (-790)) (T -961)) -((-3411 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-961 *3 *2)) (-4 *2 (-131)) (-4 *3 (-556)) (-4 *3 (-1047)) (-4 *2 (-790))))) -(-13 (-326 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-556)) (IF (|has| |#2| (-131)) (-15 -3411 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4408)) (-6 -4408) |%noBranch|))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL (-2682 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-791)) (|has| |#2| (-791)))))) (-2247 (($ $ $) 65 (-12 (|has| |#1| (-791)) (|has| |#2| (-791))))) (-3085 (((-3 $ "failed") $ $) 52 (-2682 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-791)) (|has| |#2| (-791)))))) (-4003 (((-769)) 36 (-12 (|has| |#1| (-368)) (|has| |#2| (-368))))) (-3001 ((|#2| $) 22)) (-2574 ((|#1| $) 21)) (-2822 (($) NIL (-2682 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-724)) (|has| |#2| (-724))) (-12 (|has| |#1| (-791)) (|has| |#2| (-791)))) CONST)) (-2675 (((-3 $ "failed") $) NIL (-2682 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-724)) (|has| |#2| (-724)))))) (-3235 (($) NIL (-12 (|has| |#1| (-368)) (|has| |#2| (-368))))) (-3163 (((-112) $) NIL (-2682 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-724)) (|has| |#2| (-724)))))) (-3225 (($ $ $) NIL (-2682 (-12 (|has| |#1| (-791)) (|has| |#2| (-791))) (-12 (|has| |#1| (-848)) (|has| |#2| (-848)))))) (-2903 (($ $ $) NIL (-2682 (-12 (|has| |#1| (-791)) (|has| |#2| (-791))) (-12 (|has| |#1| (-848)) (|has| |#2| (-848)))))) (-3474 (($ |#1| |#2|) 20)) (-2535 (((-919) $) NIL (-12 (|has| |#1| (-368)) (|has| |#2| (-368))))) (-1778 (((-1155) $) NIL)) (-2481 (($ $) 39 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))))) (-2065 (($ (-919)) NIL (-12 (|has| |#1| (-368)) (|has| |#2| (-368))))) (-3999 (((-1117) $) NIL)) (-1736 (($ $ $) NIL (-12 (|has| |#1| (-473)) (|has| |#2| (-473))))) (-2402 (($ $ $) NIL (-12 (|has| |#1| (-473)) (|has| |#2| (-473))))) (-2390 (((-860) $) 14)) (-1600 (((-112) $ $) NIL)) (-2361 (($) 42 (-2682 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-791)) (|has| |#2| (-791)))) CONST)) (-2371 (($) 25 (-2682 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-724)) (|has| |#2| (-724)))) CONST)) (-2881 (((-112) $ $) NIL (-2682 (-12 (|has| |#1| (-791)) (|has| |#2| (-791))) (-12 (|has| |#1| (-848)) (|has| |#2| (-848)))))) (-2857 (((-112) $ $) NIL (-2682 (-12 (|has| |#1| (-791)) (|has| |#2| (-791))) (-12 (|has| |#1| (-848)) (|has| |#2| (-848)))))) (-2821 (((-112) $ $) 19)) (-2868 (((-112) $ $) NIL (-2682 (-12 (|has| |#1| (-791)) (|has| |#2| (-791))) (-12 (|has| |#1| (-848)) (|has| |#2| (-848)))))) (-2844 (((-112) $ $) 69 (-2682 (-12 (|has| |#1| (-791)) (|has| |#2| (-791))) (-12 (|has| |#1| (-848)) (|has| |#2| (-848)))))) (-2943 (($ $ $) NIL (-12 (|has| |#1| (-473)) (|has| |#2| (-473))))) (-2930 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-2917 (($ $ $) 45 (-2682 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-791)) (|has| |#2| (-791)))))) (** (($ $ (-564)) NIL (-12 (|has| |#1| (-473)) (|has| |#2| (-473)))) (($ $ (-769)) 32 (-2682 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-724)) (|has| |#2| (-724))))) (($ $ (-919)) NIL (-2682 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-724)) (|has| |#2| (-724)))))) (* (($ (-564) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-769) $) 48 (-2682 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-791)) (|has| |#2| (-791))))) (($ (-919) $) NIL (-2682 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-791)) (|has| |#2| (-791))))) (($ $ $) 28 (-2682 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-724)) (|has| |#2| (-724))))))) -(((-962 |#1| |#2|) (-13 (-1097) (-10 -8 (IF (|has| |#1| (-368)) (IF (|has| |#2| (-368)) (-6 (-368)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-724)) (IF (|has| |#2| (-724)) (-6 (-724)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-131)) (IF (|has| |#2| (-131)) (-6 (-131)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-473)) (IF (|has| |#2| (-473)) (-6 (-473)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-791)) (IF (|has| |#2| (-791)) (-6 (-791)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-848)) (IF (|has| |#2| (-848)) (-6 (-848)) |%noBranch|) |%noBranch|) (-15 -3474 ($ |#1| |#2|)) (-15 -2574 (|#1| $)) (-15 -3001 (|#2| $)))) (-1097) (-1097)) (T -962)) -((-3474 (*1 *1 *2 *3) (-12 (-5 *1 (-962 *2 *3)) (-4 *2 (-1097)) (-4 *3 (-1097)))) (-2574 (*1 *2 *1) (-12 (-4 *2 (-1097)) (-5 *1 (-962 *2 *3)) (-4 *3 (-1097)))) (-3001 (*1 *2 *1) (-12 (-4 *2 (-1097)) (-5 *1 (-962 *3 *2)) (-4 *3 (-1097))))) -(-13 (-1097) (-10 -8 (IF (|has| |#1| (-368)) (IF (|has| |#2| (-368)) (-6 (-368)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-724)) (IF (|has| |#2| (-724)) (-6 (-724)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-131)) (IF (|has| |#2| (-131)) (-6 (-131)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-473)) (IF (|has| |#2| (-473)) (-6 (-473)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-791)) (IF (|has| |#2| (-791)) (-6 (-791)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-848)) (IF (|has| |#2| (-848)) (-6 (-848)) |%noBranch|) |%noBranch|) (-15 -3474 ($ |#1| |#2|)) (-15 -2574 (|#1| $)) (-15 -3001 (|#2| $)))) -((-2108 (((-1101) $) 12)) (-3004 (($ (-506) (-1101)) 14)) (-2493 (((-506) $) 9)) (-2390 (((-860) $) 26))) -(((-963) (-13 (-611 (-860)) (-10 -8 (-15 -2493 ((-506) $)) (-15 -2108 ((-1101) $)) (-15 -3004 ($ (-506) (-1101)))))) (T -963)) -((-2493 (*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-963)))) (-2108 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-963)))) (-3004 (*1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-1101)) (-5 *1 (-963))))) -(-13 (-611 (-860)) (-10 -8 (-15 -2493 ((-506) $)) (-15 -2108 ((-1101) $)) (-15 -3004 ($ (-506) (-1101))))) -((-2856 (((-112) $ $) NIL)) (-3253 (($) NIL T CONST)) (-2329 (($ $ $) 11)) (-2307 (($ $) 9)) (-1778 (((-1155) $) NIL)) (-3178 (((-689 |#1|) $) 24)) (-1785 (((-689 (-871 $ $)) $) 36)) (-3683 (((-689 $) $) 29)) (-4298 (((-689 (-871 $ $)) $) 37)) (-1964 (((-689 (-871 $ $)) $) 38)) (-3184 (((-689 (-871 $ $)) $) 35)) (-3109 (($ $ $) 12)) (-3999 (((-1117) $) NIL)) (-2119 (($) 17 T CONST)) (-3884 (($ $ $) 13)) (-2390 (((-860) $) 40) (($ |#1|) 8)) (-1600 (((-112) $ $) NIL)) (-2317 (($ $ $) 10)) (-2821 (((-112) $ $) NIL))) -(((-964 |#1|) (-13 (-965) (-614 |#1|) (-10 -8 (-15 -3178 ((-689 |#1|) $)) (-15 -3683 ((-689 $) $)) (-15 -3184 ((-689 (-871 $ $)) $)) (-15 -1785 ((-689 (-871 $ $)) $)) (-15 -4298 ((-689 (-871 $ $)) $)) (-15 -1964 ((-689 (-871 $ $)) $)))) (-1097)) (T -964)) -((-3178 (*1 *2 *1) (-12 (-5 *2 (-689 *3)) (-5 *1 (-964 *3)) (-4 *3 (-1097)))) (-3683 (*1 *2 *1) (-12 (-5 *2 (-689 (-964 *3))) (-5 *1 (-964 *3)) (-4 *3 (-1097)))) (-3184 (*1 *2 *1) (-12 (-5 *2 (-689 (-871 (-964 *3) (-964 *3)))) (-5 *1 (-964 *3)) (-4 *3 (-1097)))) (-1785 (*1 *2 *1) (-12 (-5 *2 (-689 (-871 (-964 *3) (-964 *3)))) (-5 *1 (-964 *3)) (-4 *3 (-1097)))) (-4298 (*1 *2 *1) (-12 (-5 *2 (-689 (-871 (-964 *3) (-964 *3)))) (-5 *1 (-964 *3)) (-4 *3 (-1097)))) (-1964 (*1 *2 *1) (-12 (-5 *2 (-689 (-871 (-964 *3) (-964 *3)))) (-5 *1 (-964 *3)) (-4 *3 (-1097))))) -(-13 (-965) (-614 |#1|) (-10 -8 (-15 -3178 ((-689 |#1|) $)) (-15 -3683 ((-689 $) $)) (-15 -3184 ((-689 (-871 $ $)) $)) (-15 -1785 ((-689 (-871 $ $)) $)) (-15 -4298 ((-689 (-871 $ $)) $)) (-15 -1964 ((-689 (-871 $ $)) $)))) -((-2856 (((-112) $ $) 7)) (-3253 (($) 20 T CONST)) (-2329 (($ $ $) 16)) (-2307 (($ $) 18)) (-1778 (((-1155) $) 10)) (-3109 (($ $ $) 15)) (-3999 (((-1117) $) 11)) (-2119 (($) 19 T CONST)) (-3884 (($ $ $) 14)) (-2390 (((-860) $) 12)) (-1600 (((-112) $ $) 9)) (-2317 (($ $ $) 17)) (-2821 (((-112) $ $) 6))) -(((-965) (-140)) (T -965)) -((-3253 (*1 *1) (-4 *1 (-965))) (-2119 (*1 *1) (-4 *1 (-965))) (-2307 (*1 *1 *1) (-4 *1 (-965))) (-2317 (*1 *1 *1 *1) (-4 *1 (-965))) (-2329 (*1 *1 *1 *1) (-4 *1 (-965))) (-3109 (*1 *1 *1 *1) (-4 *1 (-965))) (-3884 (*1 *1 *1 *1) (-4 *1 (-965)))) -(-13 (-1097) (-10 -8 (-15 -3253 ($) -1551) (-15 -2119 ($) -1551) (-15 -2307 ($ $)) (-15 -2317 ($ $ $)) (-15 -2329 ($ $ $)) (-15 -3109 ($ $ $)) (-15 -3884 ($ $ $)))) -(((-102) . T) ((-611 (-860)) . T) ((-1097) . T)) -((-2856 (((-112) $ $) 19 (|has| |#1| (-1097)))) (-3442 (((-112) $ (-769)) 8)) (-2822 (($) 7 T CONST)) (-2018 (((-642 |#1|) $) 31 (|has| $ (-6 -4410)))) (-3769 (((-112) $ (-769)) 9)) (-4096 (($ $ $) 44)) (-2774 (($ $ $) 45)) (-3541 (((-642 |#1|) $) 30 (|has| $ (-6 -4410)))) (-2533 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-2903 ((|#1| $) 46)) (-1857 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#1| |#1|) $) 36)) (-4145 (((-112) $ (-769)) 10)) (-1778 (((-1155) $) 22 (|has| |#1| (-1097)))) (-3220 ((|#1| $) 40)) (-1668 (($ |#1| $) 41)) (-3999 (((-1117) $) 21 (|has| |#1| (-1097)))) (-4314 ((|#1| $) 42)) (-4094 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-2478 (((-112) $ $) 14)) (-4109 (((-112) $) 11)) (-2179 (($) 12)) (-4010 (((-769) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4410))) (((-769) |#1| $) 29 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3865 (($ $) 13)) (-2390 (((-860) $) 18 (|has| |#1| (-611 (-860))))) (-1600 (((-112) $ $) 23 (|has| |#1| (-1097)))) (-4160 (($ (-642 |#1|)) 43)) (-3295 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4410)))) (-2821 (((-112) $ $) 20 (|has| |#1| (-1097)))) (-2158 (((-769) $) 6 (|has| $ (-6 -4410))))) -(((-966 |#1|) (-140) (-848)) (T -966)) -((-2903 (*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-848)))) (-2774 (*1 *1 *1 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-848)))) (-4096 (*1 *1 *1 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-848))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4410) (-15 -2903 (|t#1| $)) (-15 -2774 ($ $ $)) (-15 -4096 ($ $ $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1097)) ((-611 (-860)) -2682 (|has| |#1| (-1097)) (|has| |#1| (-611 (-860)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-1097) |has| |#1| (-1097)) ((-1212) . T)) -((-2494 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2105 |#2|)) |#2| |#2|) 106)) (-2106 ((|#2| |#2| |#2|) 104)) (-3685 (((-2 (|:| |coef2| |#2|) (|:| -2105 |#2|)) |#2| |#2|) 108)) (-1916 (((-2 (|:| |coef1| |#2|) (|:| -2105 |#2|)) |#2| |#2|) 110)) (-2030 (((-2 (|:| |coef2| |#2|) (|:| -3782 |#1|)) |#2| |#2|) 132 (|has| |#1| (-452)))) (-1609 (((-2 (|:| |coef2| |#2|) (|:| -3710 |#1|)) |#2| |#2|) 56)) (-1671 (((-2 (|:| |coef2| |#2|) (|:| -3710 |#1|)) |#2| |#2|) 81)) (-2936 (((-2 (|:| |coef1| |#2|) (|:| -3710 |#1|)) |#2| |#2|) 83)) (-3030 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 97)) (-3484 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-769)) 90)) (-3062 (((-2 (|:| |coef2| |#2|) (|:| -2790 |#1|)) |#2|) 122)) (-2068 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-769)) 93)) (-4286 (((-642 (-769)) |#2| |#2|) 103)) (-1821 ((|#1| |#2| |#2|) 50)) (-1912 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3782 |#1|)) |#2| |#2|) 130 (|has| |#1| (-452)))) (-3782 ((|#1| |#2| |#2|) 128 (|has| |#1| (-452)))) (-4004 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3710 |#1|)) |#2| |#2|) 54)) (-4228 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3710 |#1|)) |#2| |#2|) 80)) (-3710 ((|#1| |#2| |#2|) 77)) (-1555 (((-2 (|:| -2968 |#1|) (|:| -4332 |#2|) (|:| -1992 |#2|)) |#2| |#2|) 41)) (-2563 ((|#2| |#2| |#2| |#2| |#1|) 67)) (-1388 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 95)) (-2224 ((|#2| |#2| |#2|) 94)) (-1790 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-769)) 88)) (-3655 ((|#2| |#2| |#2| (-769)) 86)) (-2105 ((|#2| |#2| |#2|) 136 (|has| |#1| (-452)))) (-2842 (((-1262 |#2|) (-1262 |#2|) |#1|) 22)) (-2999 (((-2 (|:| -4332 |#2|) (|:| -1992 |#2|)) |#2| |#2|) 46)) (-1928 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2790 |#1|)) |#2|) 120)) (-2790 ((|#1| |#2|) 117)) (-4051 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-769)) 92)) (-3780 ((|#2| |#2| |#2| (-769)) 91)) (-1799 (((-642 |#2|) |#2| |#2|) 100)) (-2565 ((|#2| |#2| |#1| |#1| (-769)) 62)) (-4017 ((|#1| |#1| |#1| (-769)) 61)) (* (((-1262 |#2|) |#1| (-1262 |#2|)) 17))) -(((-967 |#1| |#2|) (-10 -7 (-15 -3710 (|#1| |#2| |#2|)) (-15 -4228 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3710 |#1|)) |#2| |#2|)) (-15 -1671 ((-2 (|:| |coef2| |#2|) (|:| -3710 |#1|)) |#2| |#2|)) (-15 -2936 ((-2 (|:| |coef1| |#2|) (|:| -3710 |#1|)) |#2| |#2|)) (-15 -3655 (|#2| |#2| |#2| (-769))) (-15 -1790 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-769))) (-15 -3484 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-769))) (-15 -3780 (|#2| |#2| |#2| (-769))) (-15 -4051 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-769))) (-15 -2068 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-769))) (-15 -2224 (|#2| |#2| |#2|)) (-15 -1388 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3030 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2106 (|#2| |#2| |#2|)) (-15 -2494 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2105 |#2|)) |#2| |#2|)) (-15 -3685 ((-2 (|:| |coef2| |#2|) (|:| -2105 |#2|)) |#2| |#2|)) (-15 -1916 ((-2 (|:| |coef1| |#2|) (|:| -2105 |#2|)) |#2| |#2|)) (-15 -2790 (|#1| |#2|)) (-15 -1928 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2790 |#1|)) |#2|)) (-15 -3062 ((-2 (|:| |coef2| |#2|) (|:| -2790 |#1|)) |#2|)) (-15 -1799 ((-642 |#2|) |#2| |#2|)) (-15 -4286 ((-642 (-769)) |#2| |#2|)) (IF (|has| |#1| (-452)) (PROGN (-15 -3782 (|#1| |#2| |#2|)) (-15 -1912 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3782 |#1|)) |#2| |#2|)) (-15 -2030 ((-2 (|:| |coef2| |#2|) (|:| -3782 |#1|)) |#2| |#2|)) (-15 -2105 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1262 |#2|) |#1| (-1262 |#2|))) (-15 -2842 ((-1262 |#2|) (-1262 |#2|) |#1|)) (-15 -1555 ((-2 (|:| -2968 |#1|) (|:| -4332 |#2|) (|:| -1992 |#2|)) |#2| |#2|)) (-15 -2999 ((-2 (|:| -4332 |#2|) (|:| -1992 |#2|)) |#2| |#2|)) (-15 -4017 (|#1| |#1| |#1| (-769))) (-15 -2565 (|#2| |#2| |#1| |#1| (-769))) (-15 -2563 (|#2| |#2| |#2| |#2| |#1|)) (-15 -1821 (|#1| |#2| |#2|)) (-15 -4004 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3710 |#1|)) |#2| |#2|)) (-15 -1609 ((-2 (|:| |coef2| |#2|) (|:| -3710 |#1|)) |#2| |#2|))) (-556) (-1238 |#1|)) (T -967)) -((-1609 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3710 *4))) (-5 *1 (-967 *4 *3)) (-4 *3 (-1238 *4)))) (-4004 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3710 *4))) (-5 *1 (-967 *4 *3)) (-4 *3 (-1238 *4)))) (-1821 (*1 *2 *3 *3) (-12 (-4 *2 (-556)) (-5 *1 (-967 *2 *3)) (-4 *3 (-1238 *2)))) (-2563 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-556)) (-5 *1 (-967 *3 *2)) (-4 *2 (-1238 *3)))) (-2565 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-769)) (-4 *3 (-556)) (-5 *1 (-967 *3 *2)) (-4 *2 (-1238 *3)))) (-4017 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-769)) (-4 *2 (-556)) (-5 *1 (-967 *2 *4)) (-4 *4 (-1238 *2)))) (-2999 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| -4332 *3) (|:| -1992 *3))) (-5 *1 (-967 *4 *3)) (-4 *3 (-1238 *4)))) (-1555 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| -2968 *4) (|:| -4332 *3) (|:| -1992 *3))) (-5 *1 (-967 *4 *3)) (-4 *3 (-1238 *4)))) (-2842 (*1 *2 *2 *3) (-12 (-5 *2 (-1262 *4)) (-4 *4 (-1238 *3)) (-4 *3 (-556)) (-5 *1 (-967 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1262 *4)) (-4 *4 (-1238 *3)) (-4 *3 (-556)) (-5 *1 (-967 *3 *4)))) (-2105 (*1 *2 *2 *2) (-12 (-4 *3 (-452)) (-4 *3 (-556)) (-5 *1 (-967 *3 *2)) (-4 *2 (-1238 *3)))) (-2030 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3782 *4))) (-5 *1 (-967 *4 *3)) (-4 *3 (-1238 *4)))) (-1912 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3782 *4))) (-5 *1 (-967 *4 *3)) (-4 *3 (-1238 *4)))) (-3782 (*1 *2 *3 *3) (-12 (-4 *2 (-556)) (-4 *2 (-452)) (-5 *1 (-967 *2 *3)) (-4 *3 (-1238 *2)))) (-4286 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-642 (-769))) (-5 *1 (-967 *4 *3)) (-4 *3 (-1238 *4)))) (-1799 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-642 *3)) (-5 *1 (-967 *4 *3)) (-4 *3 (-1238 *4)))) (-3062 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2790 *4))) (-5 *1 (-967 *4 *3)) (-4 *3 (-1238 *4)))) (-1928 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2790 *4))) (-5 *1 (-967 *4 *3)) (-4 *3 (-1238 *4)))) (-2790 (*1 *2 *3) (-12 (-4 *2 (-556)) (-5 *1 (-967 *2 *3)) (-4 *3 (-1238 *2)))) (-1916 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2105 *3))) (-5 *1 (-967 *4 *3)) (-4 *3 (-1238 *4)))) (-3685 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2105 *3))) (-5 *1 (-967 *4 *3)) (-4 *3 (-1238 *4)))) (-2494 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2105 *3))) (-5 *1 (-967 *4 *3)) (-4 *3 (-1238 *4)))) (-2106 (*1 *2 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-967 *3 *2)) (-4 *2 (-1238 *3)))) (-3030 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-967 *4 *3)) (-4 *3 (-1238 *4)))) (-1388 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-967 *4 *3)) (-4 *3 (-1238 *4)))) (-2224 (*1 *2 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-967 *3 *2)) (-4 *2 (-1238 *3)))) (-2068 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-769)) (-4 *5 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-967 *5 *3)) (-4 *3 (-1238 *5)))) (-4051 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-769)) (-4 *5 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-967 *5 *3)) (-4 *3 (-1238 *5)))) (-3780 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-769)) (-4 *4 (-556)) (-5 *1 (-967 *4 *2)) (-4 *2 (-1238 *4)))) (-3484 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-769)) (-4 *5 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-967 *5 *3)) (-4 *3 (-1238 *5)))) (-1790 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-769)) (-4 *5 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-967 *5 *3)) (-4 *3 (-1238 *5)))) (-3655 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-769)) (-4 *4 (-556)) (-5 *1 (-967 *4 *2)) (-4 *2 (-1238 *4)))) (-2936 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3710 *4))) (-5 *1 (-967 *4 *3)) (-4 *3 (-1238 *4)))) (-1671 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3710 *4))) (-5 *1 (-967 *4 *3)) (-4 *3 (-1238 *4)))) (-4228 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3710 *4))) (-5 *1 (-967 *4 *3)) (-4 *3 (-1238 *4)))) (-3710 (*1 *2 *3 *3) (-12 (-4 *2 (-556)) (-5 *1 (-967 *2 *3)) (-4 *3 (-1238 *2))))) -(-10 -7 (-15 -3710 (|#1| |#2| |#2|)) (-15 -4228 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3710 |#1|)) |#2| |#2|)) (-15 -1671 ((-2 (|:| |coef2| |#2|) (|:| -3710 |#1|)) |#2| |#2|)) (-15 -2936 ((-2 (|:| |coef1| |#2|) (|:| -3710 |#1|)) |#2| |#2|)) (-15 -3655 (|#2| |#2| |#2| (-769))) (-15 -1790 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-769))) (-15 -3484 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-769))) (-15 -3780 (|#2| |#2| |#2| (-769))) (-15 -4051 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-769))) (-15 -2068 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-769))) (-15 -2224 (|#2| |#2| |#2|)) (-15 -1388 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3030 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2106 (|#2| |#2| |#2|)) (-15 -2494 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2105 |#2|)) |#2| |#2|)) (-15 -3685 ((-2 (|:| |coef2| |#2|) (|:| -2105 |#2|)) |#2| |#2|)) (-15 -1916 ((-2 (|:| |coef1| |#2|) (|:| -2105 |#2|)) |#2| |#2|)) (-15 -2790 (|#1| |#2|)) (-15 -1928 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2790 |#1|)) |#2|)) (-15 -3062 ((-2 (|:| |coef2| |#2|) (|:| -2790 |#1|)) |#2|)) (-15 -1799 ((-642 |#2|) |#2| |#2|)) (-15 -4286 ((-642 (-769)) |#2| |#2|)) (IF (|has| |#1| (-452)) (PROGN (-15 -3782 (|#1| |#2| |#2|)) (-15 -1912 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3782 |#1|)) |#2| |#2|)) (-15 -2030 ((-2 (|:| |coef2| |#2|) (|:| -3782 |#1|)) |#2| |#2|)) (-15 -2105 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1262 |#2|) |#1| (-1262 |#2|))) (-15 -2842 ((-1262 |#2|) (-1262 |#2|) |#1|)) (-15 -1555 ((-2 (|:| -2968 |#1|) (|:| -4332 |#2|) (|:| -1992 |#2|)) |#2| |#2|)) (-15 -2999 ((-2 (|:| -4332 |#2|) (|:| -1992 |#2|)) |#2| |#2|)) (-15 -4017 (|#1| |#1| |#1| (-769))) (-15 -2565 (|#2| |#2| |#1| |#1| (-769))) (-15 -2563 (|#2| |#2| |#2| |#2| |#1|)) (-15 -1821 (|#1| |#2| |#2|)) (-15 -4004 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3710 |#1|)) |#2| |#2|)) (-15 -1609 ((-2 (|:| |coef2| |#2|) (|:| -3710 |#1|)) |#2| |#2|))) -((-2856 (((-112) $ $) NIL)) (-3775 (((-1211) $) 13)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-1359 (((-1132) $) 10)) (-2390 (((-860) $) 20) (($ (-1178)) NIL) (((-1178) $) NIL)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-968) (-13 (-1080) (-10 -8 (-15 -1359 ((-1132) $)) (-15 -3775 ((-1211) $))))) (T -968)) -((-1359 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-968)))) (-3775 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-968))))) -(-13 (-1080) (-10 -8 (-15 -1359 ((-1132) $)) (-15 -3775 ((-1211) $)))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-3085 (((-3 $ "failed") $ $) 39)) (-2822 (($) NIL T CONST)) (-1424 (((-642 (-642 (-564))) (-642 (-564))) 48)) (-2069 (((-564) $) 72)) (-2684 (($ (-642 (-564))) 18)) (-3225 (($ $ $) NIL)) (-2903 (($ $ $) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-3003 (((-642 (-564)) $) 13)) (-1736 (($ $) 52)) (-2390 (((-860) $) 68) (((-642 (-564)) $) 11)) (-1600 (((-112) $ $) NIL)) (-2361 (($) 8 T CONST)) (-2881 (((-112) $ $) NIL)) (-2857 (((-112) $ $) NIL)) (-2821 (((-112) $ $) 26)) (-2868 (((-112) $ $) NIL)) (-2844 (((-112) $ $) 25)) (-2917 (($ $ $) 28)) (* (($ (-919) $) NIL) (($ (-769) $) 37))) -(((-969) (-13 (-793) (-612 (-642 (-564))) (-611 (-642 (-564))) (-10 -8 (-15 -2684 ($ (-642 (-564)))) (-15 -1424 ((-642 (-642 (-564))) (-642 (-564)))) (-15 -2069 ((-564) $)) (-15 -1736 ($ $))))) (T -969)) -((-2684 (*1 *1 *2) (-12 (-5 *2 (-642 (-564))) (-5 *1 (-969)))) (-1424 (*1 *2 *3) (-12 (-5 *2 (-642 (-642 (-564)))) (-5 *1 (-969)) (-5 *3 (-642 (-564))))) (-2069 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-969)))) (-1736 (*1 *1 *1) (-5 *1 (-969)))) -(-13 (-793) (-612 (-642 (-564))) (-611 (-642 (-564))) (-10 -8 (-15 -2684 ($ (-642 (-564)))) (-15 -1424 ((-642 (-642 (-564))) (-642 (-564)))) (-15 -2069 ((-564) $)) (-15 -1736 ($ $)))) -((-2943 (($ $ |#2|) 31)) (-2930 (($ $) 23) (($ $ $) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 17) (($ $ $) NIL) (($ $ |#2|) 21) (($ |#2| $) 20) (($ (-407 (-564)) $) 27) (($ $ (-407 (-564))) 29))) -(((-970 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 -2943 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -2930 (|#1| |#1| |#1|)) (-15 -2930 (|#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-769) |#1|)) (-15 * (|#1| (-919) |#1|))) (-971 |#2| |#3| |#4|) (-1047) (-790) (-848)) (T -970)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 -2943 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -2930 (|#1| |#1| |#1|)) (-15 -2930 (|#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-769) |#1|)) (-15 * (|#1| (-919) |#1|))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-2397 (((-642 |#3|) $) 86)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) 63 (|has| |#1| (-556)))) (-4252 (($ $) 64 (|has| |#1| (-556)))) (-1722 (((-112) $) 66 (|has| |#1| (-556)))) (-3085 (((-3 $ "failed") $ $) 20)) (-2822 (($) 18 T CONST)) (-3459 (($ $) 72)) (-2675 (((-3 $ "failed") $) 37)) (-2210 (((-112) $) 85)) (-3163 (((-112) $) 35)) (-3471 (((-112) $) 74)) (-2374 (($ |#1| |#2|) 73) (($ $ |#3| |#2|) 88) (($ $ (-642 |#3|) (-642 |#2|)) 87)) (-2947 (($ (-1 |#1| |#1|) $) 75)) (-2510 (($ $) 77)) (-2523 ((|#1| $) 78)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2842 (((-3 $ "failed") $ $) 62 (|has| |#1| (-556)))) (-3252 ((|#2| $) 76)) (-4189 (($ $) 84)) (-2390 (((-860) $) 12) (($ (-564)) 33) (($ (-407 (-564))) 69 (|has| |#1| (-38 (-407 (-564))))) (($ $) 61 (|has| |#1| (-556))) (($ |#1|) 59 (|has| |#1| (-172)))) (-3005 ((|#1| $ |#2|) 71)) (-3434 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-3348 (((-769)) 32 T CONST)) (-1600 (((-112) $ $) 9)) (-1594 (((-112) $ $) 65 (|has| |#1| (-556)))) (-2361 (($) 19 T CONST)) (-2371 (($) 34 T CONST)) (-2821 (((-112) $ $) 6)) (-2943 (($ $ |#1|) 70 (|has| |#1| (-363)))) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-407 (-564)) $) 68 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 67 (|has| |#1| (-38 (-407 (-564))))))) -(((-971 |#1| |#2| |#3|) (-140) (-1047) (-790) (-848)) (T -971)) -((-2523 (*1 *2 *1) (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *3 (-790)) (-4 *4 (-848)) (-4 *2 (-1047)))) (-2510 (*1 *1 *1) (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-790)) (-4 *4 (-848)))) (-3252 (*1 *2 *1) (-12 (-4 *1 (-971 *3 *2 *4)) (-4 *3 (-1047)) (-4 *4 (-848)) (-4 *2 (-790)))) (-2374 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-971 *4 *3 *2)) (-4 *4 (-1047)) (-4 *3 (-790)) (-4 *2 (-848)))) (-2374 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-642 *6)) (-5 *3 (-642 *5)) (-4 *1 (-971 *4 *5 *6)) (-4 *4 (-1047)) (-4 *5 (-790)) (-4 *6 (-848)))) (-2397 (*1 *2 *1) (-12 (-4 *1 (-971 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-790)) (-4 *5 (-848)) (-5 *2 (-642 *5)))) (-2210 (*1 *2 *1) (-12 (-4 *1 (-971 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-790)) (-4 *5 (-848)) (-5 *2 (-112)))) (-4189 (*1 *1 *1) (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-790)) (-4 *4 (-848))))) -(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -2374 ($ $ |t#3| |t#2|)) (-15 -2374 ($ $ (-642 |t#3|) (-642 |t#2|))) (-15 -2510 ($ $)) (-15 -2523 (|t#1| $)) (-15 -3252 (|t#2| $)) (-15 -2397 ((-642 |t#3|) $)) (-15 -2210 ((-112) $)) (-15 -4189 ($ $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-556)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2682 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) |has| |#1| (-38 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-614 $) |has| |#1| (-556)) ((-611 (-860)) . T) ((-172) -2682 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-290) |has| |#1| (-556)) ((-556) |has| |#1| (-556)) ((-644 #0#) |has| |#1| (-38 (-407 (-564)))) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-646 #0#) |has| |#1| (-38 (-407 (-564)))) ((-646 |#1|) . T) ((-646 $) . T) ((-638 #0#) |has| |#1| (-38 (-407 (-564)))) ((-638 |#1|) |has| |#1| (-172)) ((-638 $) |has| |#1| (-556)) ((-715 #0#) |has| |#1| (-38 (-407 (-564)))) ((-715 |#1|) |has| |#1| (-172)) ((-715 $) |has| |#1| (-556)) ((-724) . T) ((-1049 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1049 |#1|) . T) ((-1049 $) -2682 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-1054 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1054 |#1|) . T) ((-1054 $) -2682 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T)) -((-1847 (((-1091 (-225)) $) 8)) (-1835 (((-1091 (-225)) $) 9)) (-1825 (((-1091 (-225)) $) 10)) (-3112 (((-642 (-642 (-941 (-225)))) $) 11)) (-2390 (((-860) $) 6))) -(((-972) (-140)) (T -972)) -((-3112 (*1 *2 *1) (-12 (-4 *1 (-972)) (-5 *2 (-642 (-642 (-941 (-225))))))) (-1825 (*1 *2 *1) (-12 (-4 *1 (-972)) (-5 *2 (-1091 (-225))))) (-1835 (*1 *2 *1) (-12 (-4 *1 (-972)) (-5 *2 (-1091 (-225))))) (-1847 (*1 *2 *1) (-12 (-4 *1 (-972)) (-5 *2 (-1091 (-225)))))) -(-13 (-611 (-860)) (-10 -8 (-15 -3112 ((-642 (-642 (-941 (-225)))) $)) (-15 -1825 ((-1091 (-225)) $)) (-15 -1835 ((-1091 (-225)) $)) (-15 -1847 ((-1091 (-225)) $)))) -(((-611 (-860)) . T)) -((-2397 (((-642 |#4|) $) 23)) (-3646 (((-112) $) 55)) (-4074 (((-112) $) 54)) (-3191 (((-2 (|:| |under| $) (|:| -2795 $) (|:| |upper| $)) $ |#4|) 42)) (-3013 (((-112) $) 56)) (-3936 (((-112) $ $) 62)) (-2133 (((-112) $ $) 65)) (-2967 (((-112) $) 60)) (-2632 (((-642 |#5|) (-642 |#5|) $) 98)) (-1419 (((-642 |#5|) (-642 |#5|) $) 95)) (-1992 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88)) (-1896 (((-642 |#4|) $) 27)) (-3935 (((-112) |#4| $) 34)) (-1699 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-2942 (($ $ |#4|) 39)) (-1710 (($ $ |#4|) 38)) (-4283 (($ $ |#4|) 40)) (-2821 (((-112) $ $) 46))) -(((-973 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4074 ((-112) |#1|)) (-15 -2632 ((-642 |#5|) (-642 |#5|) |#1|)) (-15 -1419 ((-642 |#5|) (-642 |#5|) |#1|)) (-15 -1992 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1699 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3013 ((-112) |#1|)) (-15 -2133 ((-112) |#1| |#1|)) (-15 -3936 ((-112) |#1| |#1|)) (-15 -2967 ((-112) |#1|)) (-15 -3646 ((-112) |#1|)) (-15 -3191 ((-2 (|:| |under| |#1|) (|:| -2795 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2942 (|#1| |#1| |#4|)) (-15 -4283 (|#1| |#1| |#4|)) (-15 -1710 (|#1| |#1| |#4|)) (-15 -3935 ((-112) |#4| |#1|)) (-15 -1896 ((-642 |#4|) |#1|)) (-15 -2397 ((-642 |#4|) |#1|)) (-15 -2821 ((-112) |#1| |#1|))) (-974 |#2| |#3| |#4| |#5|) (-1047) (-791) (-848) (-1062 |#2| |#3| |#4|)) (T -973)) -NIL -(-10 -8 (-15 -4074 ((-112) |#1|)) (-15 -2632 ((-642 |#5|) (-642 |#5|) |#1|)) (-15 -1419 ((-642 |#5|) (-642 |#5|) |#1|)) (-15 -1992 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1699 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3013 ((-112) |#1|)) (-15 -2133 ((-112) |#1| |#1|)) (-15 -3936 ((-112) |#1| |#1|)) (-15 -2967 ((-112) |#1|)) (-15 -3646 ((-112) |#1|)) (-15 -3191 ((-2 (|:| |under| |#1|) (|:| -2795 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2942 (|#1| |#1| |#4|)) (-15 -4283 (|#1| |#1| |#4|)) (-15 -1710 (|#1| |#1| |#4|)) (-15 -3935 ((-112) |#4| |#1|)) (-15 -1896 ((-642 |#4|) |#1|)) (-15 -2397 ((-642 |#4|) |#1|)) (-15 -2821 ((-112) |#1| |#1|))) -((-2856 (((-112) $ $) 7)) (-2397 (((-642 |#3|) $) 34)) (-3646 (((-112) $) 27)) (-4074 (((-112) $) 18 (|has| |#1| (-556)))) (-3191 (((-2 (|:| |under| $) (|:| -2795 $) (|:| |upper| $)) $ |#3|) 28)) (-3442 (((-112) $ (-769)) 45)) (-3437 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4410)))) (-2822 (($) 46 T CONST)) (-3013 (((-112) $) 23 (|has| |#1| (-556)))) (-3936 (((-112) $ $) 25 (|has| |#1| (-556)))) (-2133 (((-112) $ $) 24 (|has| |#1| (-556)))) (-2967 (((-112) $) 26 (|has| |#1| (-556)))) (-2632 (((-642 |#4|) (-642 |#4|) $) 19 (|has| |#1| (-556)))) (-1419 (((-642 |#4|) (-642 |#4|) $) 20 (|has| |#1| (-556)))) (-2849 (((-3 $ "failed") (-642 |#4|)) 37)) (-1687 (($ (-642 |#4|)) 36)) (-4067 (($ $) 69 (-12 (|has| |#4| (-1097)) (|has| $ (-6 -4410))))) (-2517 (($ |#4| $) 68 (-12 (|has| |#4| (-1097)) (|has| $ (-6 -4410)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4410)))) (-1992 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-556)))) (-3741 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1097)) (|has| $ (-6 -4410)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4410))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4410)))) (-2018 (((-642 |#4|) $) 53 (|has| $ (-6 -4410)))) (-1715 ((|#3| $) 35)) (-3769 (((-112) $ (-769)) 44)) (-3541 (((-642 |#4|) $) 54 (|has| $ (-6 -4410)))) (-2533 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1097)) (|has| $ (-6 -4410))))) (-1857 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#4| |#4|) $) 48)) (-1896 (((-642 |#3|) $) 33)) (-3935 (((-112) |#3| $) 32)) (-4145 (((-112) $ (-769)) 43)) (-1778 (((-1155) $) 10)) (-1699 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-556)))) (-3999 (((-1117) $) 11)) (-3183 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-4094 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 |#4|) (-642 |#4|)) 60 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ (-294 |#4|)) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ (-642 (-294 |#4|))) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097))))) (-2478 (((-112) $ $) 39)) (-4109 (((-112) $) 42)) (-2179 (($) 41)) (-4010 (((-769) |#4| $) 55 (-12 (|has| |#4| (-1097)) (|has| $ (-6 -4410)))) (((-769) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4410)))) (-3865 (($ $) 40)) (-3003 (((-536) $) 70 (|has| |#4| (-612 (-536))))) (-2401 (($ (-642 |#4|)) 61)) (-2942 (($ $ |#3|) 29)) (-1710 (($ $ |#3|) 31)) (-4283 (($ $ |#3|) 30)) (-2390 (((-860) $) 12) (((-642 |#4|) $) 38)) (-1600 (((-112) $ $) 9)) (-3295 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4410)))) (-2821 (((-112) $ $) 6)) (-2158 (((-769) $) 47 (|has| $ (-6 -4410))))) -(((-974 |#1| |#2| |#3| |#4|) (-140) (-1047) (-791) (-848) (-1062 |t#1| |t#2| |t#3|)) (T -974)) -((-2849 (*1 *1 *2) (|partial| -12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *1 (-974 *3 *4 *5 *6)))) (-1687 (*1 *1 *2) (-12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *1 (-974 *3 *4 *5 *6)))) (-1715 (*1 *2 *1) (-12 (-4 *1 (-974 *3 *4 *2 *5)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-1062 *3 *4 *2)) (-4 *2 (-848)))) (-2397 (*1 *2 *1) (-12 (-4 *1 (-974 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-642 *5)))) (-1896 (*1 *2 *1) (-12 (-4 *1 (-974 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-642 *5)))) (-3935 (*1 *2 *3 *1) (-12 (-4 *1 (-974 *4 *5 *3 *6)) (-4 *4 (-1047)) (-4 *5 (-791)) (-4 *3 (-848)) (-4 *6 (-1062 *4 *5 *3)) (-5 *2 (-112)))) (-1710 (*1 *1 *1 *2) (-12 (-4 *1 (-974 *3 *4 *2 *5)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *2 (-848)) (-4 *5 (-1062 *3 *4 *2)))) (-4283 (*1 *1 *1 *2) (-12 (-4 *1 (-974 *3 *4 *2 *5)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *2 (-848)) (-4 *5 (-1062 *3 *4 *2)))) (-2942 (*1 *1 *1 *2) (-12 (-4 *1 (-974 *3 *4 *2 *5)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *2 (-848)) (-4 *5 (-1062 *3 *4 *2)))) (-3191 (*1 *2 *1 *3) (-12 (-4 *4 (-1047)) (-4 *5 (-791)) (-4 *3 (-848)) (-4 *6 (-1062 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -2795 *1) (|:| |upper| *1))) (-4 *1 (-974 *4 *5 *3 *6)))) (-3646 (*1 *2 *1) (-12 (-4 *1 (-974 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-112)))) (-2967 (*1 *2 *1) (-12 (-4 *1 (-974 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-556)) (-5 *2 (-112)))) (-3936 (*1 *2 *1 *1) (-12 (-4 *1 (-974 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-556)) (-5 *2 (-112)))) (-2133 (*1 *2 *1 *1) (-12 (-4 *1 (-974 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-556)) (-5 *2 (-112)))) (-3013 (*1 *2 *1) (-12 (-4 *1 (-974 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-556)) (-5 *2 (-112)))) (-1699 (*1 *2 *3 *1) (-12 (-4 *1 (-974 *4 *5 *6 *3)) (-4 *4 (-1047)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)) (-4 *4 (-556)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-1992 (*1 *2 *3 *1) (-12 (-4 *1 (-974 *4 *5 *6 *3)) (-4 *4 (-1047)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)) (-4 *4 (-556)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-1419 (*1 *2 *2 *1) (-12 (-5 *2 (-642 *6)) (-4 *1 (-974 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-556)))) (-2632 (*1 *2 *2 *1) (-12 (-5 *2 (-642 *6)) (-4 *1 (-974 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-556)))) (-4074 (*1 *2 *1) (-12 (-4 *1 (-974 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-556)) (-5 *2 (-112))))) -(-13 (-1097) (-151 |t#4|) (-611 (-642 |t#4|)) (-10 -8 (-6 -4410) (-15 -2849 ((-3 $ "failed") (-642 |t#4|))) (-15 -1687 ($ (-642 |t#4|))) (-15 -1715 (|t#3| $)) (-15 -2397 ((-642 |t#3|) $)) (-15 -1896 ((-642 |t#3|) $)) (-15 -3935 ((-112) |t#3| $)) (-15 -1710 ($ $ |t#3|)) (-15 -4283 ($ $ |t#3|)) (-15 -2942 ($ $ |t#3|)) (-15 -3191 ((-2 (|:| |under| $) (|:| -2795 $) (|:| |upper| $)) $ |t#3|)) (-15 -3646 ((-112) $)) (IF (|has| |t#1| (-556)) (PROGN (-15 -2967 ((-112) $)) (-15 -3936 ((-112) $ $)) (-15 -2133 ((-112) $ $)) (-15 -3013 ((-112) $)) (-15 -1699 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -1992 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -1419 ((-642 |t#4|) (-642 |t#4|) $)) (-15 -2632 ((-642 |t#4|) (-642 |t#4|) $)) (-15 -4074 ((-112) $))) |%noBranch|))) -(((-34) . T) ((-102) . T) ((-611 (-642 |#4|)) . T) ((-611 (-860)) . T) ((-151 |#4|) . T) ((-612 (-536)) |has| |#4| (-612 (-536))) ((-309 |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097))) ((-489 |#4|) . T) ((-514 |#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097))) ((-1097) . T) ((-1212) . T)) -((-1777 (((-642 |#4|) |#4| |#4|) 136)) (-3232 (((-642 |#4|) (-642 |#4|) (-112)) 125 (|has| |#1| (-452))) (((-642 |#4|) (-642 |#4|)) 126 (|has| |#1| (-452)))) (-3732 (((-2 (|:| |goodPols| (-642 |#4|)) (|:| |badPols| (-642 |#4|))) (-642 |#4|)) 44)) (-3725 (((-112) |#4|) 43)) (-2904 (((-642 |#4|) |#4|) 121 (|has| |#1| (-452)))) (-1942 (((-2 (|:| |goodPols| (-642 |#4|)) (|:| |badPols| (-642 |#4|))) (-1 (-112) |#4|) (-642 |#4|)) 24)) (-4240 (((-2 (|:| |goodPols| (-642 |#4|)) (|:| |badPols| (-642 |#4|))) (-642 (-1 (-112) |#4|)) (-642 |#4|)) 30)) (-3674 (((-2 (|:| |goodPols| (-642 |#4|)) (|:| |badPols| (-642 |#4|))) (-642 (-1 (-112) |#4|)) (-642 |#4|)) 31)) (-1449 (((-3 (-2 (|:| |bas| (-476 |#1| |#2| |#3| |#4|)) (|:| -3844 (-642 |#4|))) "failed") (-642 |#4|)) 90)) (-3684 (((-642 |#4|) (-642 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103)) (-3837 (((-642 |#4|) (-642 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 129)) (-2084 (((-642 |#4|) (-642 |#4|)) 128)) (-4340 (((-642 |#4|) (-642 |#4|) (-642 |#4|) (-112)) 59) (((-642 |#4|) (-642 |#4|) (-642 |#4|)) 61)) (-2298 ((|#4| |#4| (-642 |#4|)) 60)) (-3476 (((-642 |#4|) (-642 |#4|) (-642 |#4|)) 132 (|has| |#1| (-452)))) (-1395 (((-642 |#4|) (-642 |#4|) (-642 |#4|)) 135 (|has| |#1| (-452)))) (-4158 (((-642 |#4|) (-642 |#4|) (-642 |#4|)) 134 (|has| |#1| (-452)))) (-3323 (((-642 |#4|) (-642 |#4|) (-642 |#4|) (-1 (-642 |#4|) (-642 |#4|))) 105) (((-642 |#4|) (-642 |#4|) (-642 |#4|)) 107) (((-642 |#4|) (-642 |#4|) |#4|) 141) (((-642 |#4|) |#4| |#4|) 137) (((-642 |#4|) (-642 |#4|)) 106)) (-2077 (((-642 |#4|) (-642 |#4|) (-642 |#4|)) 118 (-12 (|has| |#1| (-147)) (|has| |#1| (-307))))) (-4076 (((-2 (|:| |goodPols| (-642 |#4|)) (|:| |badPols| (-642 |#4|))) (-642 |#4|)) 52)) (-3523 (((-112) (-642 |#4|)) 79)) (-2955 (((-112) (-642 |#4|) (-642 (-642 |#4|))) 67)) (-3335 (((-2 (|:| |goodPols| (-642 |#4|)) (|:| |badPols| (-642 |#4|))) (-642 |#4|)) 37)) (-2007 (((-112) |#4|) 36)) (-4075 (((-642 |#4|) (-642 |#4|)) 116 (-12 (|has| |#1| (-147)) (|has| |#1| (-307))))) (-4194 (((-642 |#4|) (-642 |#4|)) 117 (-12 (|has| |#1| (-147)) (|has| |#1| (-307))))) (-1408 (((-642 |#4|) (-642 |#4|)) 83)) (-2993 (((-642 |#4|) (-642 |#4|)) 97)) (-3407 (((-112) (-642 |#4|) (-642 |#4|)) 65)) (-4242 (((-2 (|:| |goodPols| (-642 |#4|)) (|:| |badPols| (-642 |#4|))) (-642 |#4|)) 50)) (-4231 (((-112) |#4|) 45))) -(((-975 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3323 ((-642 |#4|) (-642 |#4|))) (-15 -3323 ((-642 |#4|) |#4| |#4|)) (-15 -2084 ((-642 |#4|) (-642 |#4|))) (-15 -1777 ((-642 |#4|) |#4| |#4|)) (-15 -3323 ((-642 |#4|) (-642 |#4|) |#4|)) (-15 -3323 ((-642 |#4|) (-642 |#4|) (-642 |#4|))) (-15 -3323 ((-642 |#4|) (-642 |#4|) (-642 |#4|) (-1 (-642 |#4|) (-642 |#4|)))) (-15 -3407 ((-112) (-642 |#4|) (-642 |#4|))) (-15 -2955 ((-112) (-642 |#4|) (-642 (-642 |#4|)))) (-15 -3523 ((-112) (-642 |#4|))) (-15 -1942 ((-2 (|:| |goodPols| (-642 |#4|)) (|:| |badPols| (-642 |#4|))) (-1 (-112) |#4|) (-642 |#4|))) (-15 -4240 ((-2 (|:| |goodPols| (-642 |#4|)) (|:| |badPols| (-642 |#4|))) (-642 (-1 (-112) |#4|)) (-642 |#4|))) (-15 -3674 ((-2 (|:| |goodPols| (-642 |#4|)) (|:| |badPols| (-642 |#4|))) (-642 (-1 (-112) |#4|)) (-642 |#4|))) (-15 -4076 ((-2 (|:| |goodPols| (-642 |#4|)) (|:| |badPols| (-642 |#4|))) (-642 |#4|))) (-15 -3725 ((-112) |#4|)) (-15 -3732 ((-2 (|:| |goodPols| (-642 |#4|)) (|:| |badPols| (-642 |#4|))) (-642 |#4|))) (-15 -2007 ((-112) |#4|)) (-15 -3335 ((-2 (|:| |goodPols| (-642 |#4|)) (|:| |badPols| (-642 |#4|))) (-642 |#4|))) (-15 -4231 ((-112) |#4|)) (-15 -4242 ((-2 (|:| |goodPols| (-642 |#4|)) (|:| |badPols| (-642 |#4|))) (-642 |#4|))) (-15 -4340 ((-642 |#4|) (-642 |#4|) (-642 |#4|))) (-15 -4340 ((-642 |#4|) (-642 |#4|) (-642 |#4|) (-112))) (-15 -2298 (|#4| |#4| (-642 |#4|))) (-15 -1408 ((-642 |#4|) (-642 |#4|))) (-15 -1449 ((-3 (-2 (|:| |bas| (-476 |#1| |#2| |#3| |#4|)) (|:| -3844 (-642 |#4|))) "failed") (-642 |#4|))) (-15 -2993 ((-642 |#4|) (-642 |#4|))) (-15 -3684 ((-642 |#4|) (-642 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3837 ((-642 |#4|) (-642 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-452)) (PROGN (-15 -2904 ((-642 |#4|) |#4|)) (-15 -3232 ((-642 |#4|) (-642 |#4|))) (-15 -3232 ((-642 |#4|) (-642 |#4|) (-112))) (-15 -3476 ((-642 |#4|) (-642 |#4|) (-642 |#4|))) (-15 -4158 ((-642 |#4|) (-642 |#4|) (-642 |#4|))) (-15 -1395 ((-642 |#4|) (-642 |#4|) (-642 |#4|)))) |%noBranch|) (IF (|has| |#1| (-307)) (IF (|has| |#1| (-147)) (PROGN (-15 -4194 ((-642 |#4|) (-642 |#4|))) (-15 -4075 ((-642 |#4|) (-642 |#4|))) (-15 -2077 ((-642 |#4|) (-642 |#4|) (-642 |#4|)))) |%noBranch|) |%noBranch|)) (-556) (-791) (-848) (-1062 |#1| |#2| |#3|)) (T -975)) -((-2077 (*1 *2 *2 *2) (-12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-307)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-975 *3 *4 *5 *6)))) (-4075 (*1 *2 *2) (-12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-307)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-975 *3 *4 *5 *6)))) (-4194 (*1 *2 *2) (-12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-307)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-975 *3 *4 *5 *6)))) (-1395 (*1 *2 *2 *2) (-12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-452)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-975 *3 *4 *5 *6)))) (-4158 (*1 *2 *2 *2) (-12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-452)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-975 *3 *4 *5 *6)))) (-3476 (*1 *2 *2 *2) (-12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-452)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-975 *3 *4 *5 *6)))) (-3232 (*1 *2 *2 *3) (-12 (-5 *2 (-642 *7)) (-5 *3 (-112)) (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-452)) (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *1 (-975 *4 *5 *6 *7)))) (-3232 (*1 *2 *2) (-12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-452)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-975 *3 *4 *5 *6)))) (-2904 (*1 *2 *3) (-12 (-4 *4 (-452)) (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-642 *3)) (-5 *1 (-975 *4 *5 *6 *3)) (-4 *3 (-1062 *4 *5 *6)))) (-3837 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-642 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1062 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *1 (-975 *5 *6 *7 *8)))) (-3684 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-642 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1062 *6 *7 *8)) (-4 *6 (-556)) (-4 *7 (-791)) (-4 *8 (-848)) (-5 *1 (-975 *6 *7 *8 *9)))) (-2993 (*1 *2 *2) (-12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-975 *3 *4 *5 *6)))) (-1449 (*1 *2 *3) (|partial| -12 (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-476 *4 *5 *6 *7)) (|:| -3844 (-642 *7)))) (-5 *1 (-975 *4 *5 *6 *7)) (-5 *3 (-642 *7)))) (-1408 (*1 *2 *2) (-12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-975 *3 *4 *5 *6)))) (-2298 (*1 *2 *2 *3) (-12 (-5 *3 (-642 *2)) (-4 *2 (-1062 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *1 (-975 *4 *5 *6 *2)))) (-4340 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-642 *7)) (-5 *3 (-112)) (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *1 (-975 *4 *5 *6 *7)))) (-4340 (*1 *2 *2 *2) (-12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-975 *3 *4 *5 *6)))) (-4242 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-642 *7)) (|:| |badPols| (-642 *7)))) (-5 *1 (-975 *4 *5 *6 *7)) (-5 *3 (-642 *7)))) (-4231 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112)) (-5 *1 (-975 *4 *5 *6 *3)) (-4 *3 (-1062 *4 *5 *6)))) (-3335 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-642 *7)) (|:| |badPols| (-642 *7)))) (-5 *1 (-975 *4 *5 *6 *7)) (-5 *3 (-642 *7)))) (-2007 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112)) (-5 *1 (-975 *4 *5 *6 *3)) (-4 *3 (-1062 *4 *5 *6)))) (-3732 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-642 *7)) (|:| |badPols| (-642 *7)))) (-5 *1 (-975 *4 *5 *6 *7)) (-5 *3 (-642 *7)))) (-3725 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112)) (-5 *1 (-975 *4 *5 *6 *3)) (-4 *3 (-1062 *4 *5 *6)))) (-4076 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-642 *7)) (|:| |badPols| (-642 *7)))) (-5 *1 (-975 *4 *5 *6 *7)) (-5 *3 (-642 *7)))) (-3674 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-1 (-112) *8))) (-4 *8 (-1062 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *2 (-2 (|:| |goodPols| (-642 *8)) (|:| |badPols| (-642 *8)))) (-5 *1 (-975 *5 *6 *7 *8)) (-5 *4 (-642 *8)))) (-4240 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-1 (-112) *8))) (-4 *8 (-1062 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *2 (-2 (|:| |goodPols| (-642 *8)) (|:| |badPols| (-642 *8)))) (-5 *1 (-975 *5 *6 *7 *8)) (-5 *4 (-642 *8)))) (-1942 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1062 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *2 (-2 (|:| |goodPols| (-642 *8)) (|:| |badPols| (-642 *8)))) (-5 *1 (-975 *5 *6 *7 *8)) (-5 *4 (-642 *8)))) (-3523 (*1 *2 *3) (-12 (-5 *3 (-642 *7)) (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112)) (-5 *1 (-975 *4 *5 *6 *7)))) (-2955 (*1 *2 *3 *4) (-12 (-5 *4 (-642 (-642 *8))) (-5 *3 (-642 *8)) (-4 *8 (-1062 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *2 (-112)) (-5 *1 (-975 *5 *6 *7 *8)))) (-3407 (*1 *2 *3 *3) (-12 (-5 *3 (-642 *7)) (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112)) (-5 *1 (-975 *4 *5 *6 *7)))) (-3323 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-642 *7) (-642 *7))) (-5 *2 (-642 *7)) (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *1 (-975 *4 *5 *6 *7)))) (-3323 (*1 *2 *2 *2) (-12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-975 *3 *4 *5 *6)))) (-3323 (*1 *2 *2 *3) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1062 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *1 (-975 *4 *5 *6 *3)))) (-1777 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-642 *3)) (-5 *1 (-975 *4 *5 *6 *3)) (-4 *3 (-1062 *4 *5 *6)))) (-2084 (*1 *2 *2) (-12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-975 *3 *4 *5 *6)))) (-3323 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-642 *3)) (-5 *1 (-975 *4 *5 *6 *3)) (-4 *3 (-1062 *4 *5 *6)))) (-3323 (*1 *2 *2) (-12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-975 *3 *4 *5 *6))))) -(-10 -7 (-15 -3323 ((-642 |#4|) (-642 |#4|))) (-15 -3323 ((-642 |#4|) |#4| |#4|)) (-15 -2084 ((-642 |#4|) (-642 |#4|))) (-15 -1777 ((-642 |#4|) |#4| |#4|)) (-15 -3323 ((-642 |#4|) (-642 |#4|) |#4|)) (-15 -3323 ((-642 |#4|) (-642 |#4|) (-642 |#4|))) (-15 -3323 ((-642 |#4|) (-642 |#4|) (-642 |#4|) (-1 (-642 |#4|) (-642 |#4|)))) (-15 -3407 ((-112) (-642 |#4|) (-642 |#4|))) (-15 -2955 ((-112) (-642 |#4|) (-642 (-642 |#4|)))) (-15 -3523 ((-112) (-642 |#4|))) (-15 -1942 ((-2 (|:| |goodPols| (-642 |#4|)) (|:| |badPols| (-642 |#4|))) (-1 (-112) |#4|) (-642 |#4|))) (-15 -4240 ((-2 (|:| |goodPols| (-642 |#4|)) (|:| |badPols| (-642 |#4|))) (-642 (-1 (-112) |#4|)) (-642 |#4|))) (-15 -3674 ((-2 (|:| |goodPols| (-642 |#4|)) (|:| |badPols| (-642 |#4|))) (-642 (-1 (-112) |#4|)) (-642 |#4|))) (-15 -4076 ((-2 (|:| |goodPols| (-642 |#4|)) (|:| |badPols| (-642 |#4|))) (-642 |#4|))) (-15 -3725 ((-112) |#4|)) (-15 -3732 ((-2 (|:| |goodPols| (-642 |#4|)) (|:| |badPols| (-642 |#4|))) (-642 |#4|))) (-15 -2007 ((-112) |#4|)) (-15 -3335 ((-2 (|:| |goodPols| (-642 |#4|)) (|:| |badPols| (-642 |#4|))) (-642 |#4|))) (-15 -4231 ((-112) |#4|)) (-15 -4242 ((-2 (|:| |goodPols| (-642 |#4|)) (|:| |badPols| (-642 |#4|))) (-642 |#4|))) (-15 -4340 ((-642 |#4|) (-642 |#4|) (-642 |#4|))) (-15 -4340 ((-642 |#4|) (-642 |#4|) (-642 |#4|) (-112))) (-15 -2298 (|#4| |#4| (-642 |#4|))) (-15 -1408 ((-642 |#4|) (-642 |#4|))) (-15 -1449 ((-3 (-2 (|:| |bas| (-476 |#1| |#2| |#3| |#4|)) (|:| -3844 (-642 |#4|))) "failed") (-642 |#4|))) (-15 -2993 ((-642 |#4|) (-642 |#4|))) (-15 -3684 ((-642 |#4|) (-642 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3837 ((-642 |#4|) (-642 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-452)) (PROGN (-15 -2904 ((-642 |#4|) |#4|)) (-15 -3232 ((-642 |#4|) (-642 |#4|))) (-15 -3232 ((-642 |#4|) (-642 |#4|) (-112))) (-15 -3476 ((-642 |#4|) (-642 |#4|) (-642 |#4|))) (-15 -4158 ((-642 |#4|) (-642 |#4|) (-642 |#4|))) (-15 -1395 ((-642 |#4|) (-642 |#4|) (-642 |#4|)))) |%noBranch|) (IF (|has| |#1| (-307)) (IF (|has| |#1| (-147)) (PROGN (-15 -4194 ((-642 |#4|) (-642 |#4|))) (-15 -4075 ((-642 |#4|) (-642 |#4|))) (-15 -2077 ((-642 |#4|) (-642 |#4|) (-642 |#4|)))) |%noBranch|) |%noBranch|)) -((-2571 (((-2 (|:| R (-687 |#1|)) (|:| A (-687 |#1|)) (|:| |Ainv| (-687 |#1|))) (-687 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-3326 (((-642 (-2 (|:| C (-687 |#1|)) (|:| |g| (-1262 |#1|)))) (-687 |#1|) (-1262 |#1|)) 44)) (-1872 (((-687 |#1|) (-687 |#1|) (-687 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16))) -(((-976 |#1|) (-10 -7 (-15 -2571 ((-2 (|:| R (-687 |#1|)) (|:| A (-687 |#1|)) (|:| |Ainv| (-687 |#1|))) (-687 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -1872 ((-687 |#1|) (-687 |#1|) (-687 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3326 ((-642 (-2 (|:| C (-687 |#1|)) (|:| |g| (-1262 |#1|)))) (-687 |#1|) (-1262 |#1|)))) (-363)) (T -976)) -((-3326 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-5 *2 (-642 (-2 (|:| C (-687 *5)) (|:| |g| (-1262 *5))))) (-5 *1 (-976 *5)) (-5 *3 (-687 *5)) (-5 *4 (-1262 *5)))) (-1872 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-687 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-363)) (-5 *1 (-976 *5)))) (-2571 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-363)) (-5 *2 (-2 (|:| R (-687 *6)) (|:| A (-687 *6)) (|:| |Ainv| (-687 *6)))) (-5 *1 (-976 *6)) (-5 *3 (-687 *6))))) -(-10 -7 (-15 -2571 ((-2 (|:| R (-687 |#1|)) (|:| A (-687 |#1|)) (|:| |Ainv| (-687 |#1|))) (-687 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -1872 ((-687 |#1|) (-687 |#1|) (-687 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3326 ((-642 (-2 (|:| C (-687 |#1|)) (|:| |g| (-1262 |#1|)))) (-687 |#1|) (-1262 |#1|)))) -((-3282 (((-418 |#4|) |#4|) 56))) -(((-977 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3282 ((-418 |#4|) |#4|))) (-848) (-791) (-452) (-947 |#3| |#2| |#1|)) (T -977)) -((-3282 (*1 *2 *3) (-12 (-4 *4 (-848)) (-4 *5 (-791)) (-4 *6 (-452)) (-5 *2 (-418 *3)) (-5 *1 (-977 *4 *5 *6 *3)) (-4 *3 (-947 *6 *5 *4))))) -(-10 -7 (-15 -3282 ((-418 |#4|) |#4|))) -((-2856 (((-112) $ $) 19 (|has| |#1| (-1097)))) (-2038 (($ (-769)) 113 (|has| |#1| (-23)))) (-3633 (((-1267) $ (-564) (-564)) 41 (|has| $ (-6 -4411)))) (-1824 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-848)))) (-3659 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4411))) (($ $) 89 (-12 (|has| |#1| (-848)) (|has| $ (-6 -4411))))) (-3191 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-848)))) (-3442 (((-112) $ (-769)) 8)) (-3841 ((|#1| $ (-564) |#1|) 53 (|has| $ (-6 -4411))) ((|#1| $ (-1229 (-564)) |#1|) 59 (|has| $ (-6 -4411)))) (-3437 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4410)))) (-2822 (($) 7 T CONST)) (-1540 (($ $) 91 (|has| $ (-6 -4411)))) (-3817 (($ $) 101)) (-4067 (($ $) 79 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-2517 (($ |#1| $) 78 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4410)))) (-3741 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4410)))) (-3105 ((|#1| $ (-564) |#1|) 54 (|has| $ (-6 -4411)))) (-1804 ((|#1| $ (-564)) 52)) (-3942 (((-564) (-1 (-112) |#1|) $) 98) (((-564) |#1| $) 97 (|has| |#1| (-1097))) (((-564) |#1| $ (-564)) 96 (|has| |#1| (-1097)))) (-3148 (($ (-642 |#1|)) 119)) (-2018 (((-642 |#1|) $) 31 (|has| $ (-6 -4410)))) (-3500 (((-687 |#1|) $ $) 106 (|has| |#1| (-1047)))) (-4233 (($ (-769) |#1|) 70)) (-3769 (((-112) $ (-769)) 9)) (-1802 (((-564) $) 44 (|has| (-564) (-848)))) (-3225 (($ $ $) 88 (|has| |#1| (-848)))) (-2774 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-848)))) (-3541 (((-642 |#1|) $) 30 (|has| $ (-6 -4410)))) (-2533 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3624 (((-564) $) 45 (|has| (-564) (-848)))) (-2903 (($ $ $) 87 (|has| |#1| (-848)))) (-1857 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1925 ((|#1| $) 103 (-12 (|has| |#1| (-1047)) (|has| |#1| (-1000))))) (-4145 (((-112) $ (-769)) 10)) (-2495 ((|#1| $) 104 (-12 (|has| |#1| (-1047)) (|has| |#1| (-1000))))) (-1778 (((-1155) $) 22 (|has| |#1| (-1097)))) (-4247 (($ |#1| $ (-564)) 61) (($ $ $ (-564)) 60)) (-4107 (((-642 (-564)) $) 47)) (-4207 (((-112) (-564) $) 48)) (-3999 (((-1117) $) 21 (|has| |#1| (-1097)))) (-4036 ((|#1| $) 43 (|has| (-564) (-848)))) (-3183 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-3826 (($ $ |#1|) 42 (|has| $ (-6 -4411)))) (-2137 (($ $ (-642 |#1|)) 117)) (-4094 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-2478 (((-112) $ $) 14)) (-1643 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3522 (((-642 |#1|) $) 49)) (-4109 (((-112) $) 11)) (-2179 (($) 12)) (-4369 ((|#1| $ (-564) |#1|) 51) ((|#1| $ (-564)) 50) (($ $ (-1229 (-564))) 64)) (-1976 ((|#1| $ $) 107 (|has| |#1| (-1047)))) (-3677 (((-919) $) 118)) (-2083 (($ $ (-564)) 63) (($ $ (-1229 (-564))) 62)) (-4215 (($ $ $) 105)) (-4010 (((-769) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4410))) (((-769) |#1| $) 29 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3301 (($ $ $ (-564)) 92 (|has| $ (-6 -4411)))) (-3865 (($ $) 13)) (-3003 (((-536) $) 80 (|has| |#1| (-612 (-536)))) (($ (-642 |#1|)) 120)) (-2401 (($ (-642 |#1|)) 71)) (-3634 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-642 $)) 66)) (-2390 (((-860) $) 18 (|has| |#1| (-611 (-860))))) (-1600 (((-112) $ $) 23 (|has| |#1| (-1097)))) (-3295 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4410)))) (-2881 (((-112) $ $) 85 (|has| |#1| (-848)))) (-2857 (((-112) $ $) 84 (|has| |#1| (-848)))) (-2821 (((-112) $ $) 20 (|has| |#1| (-1097)))) (-2868 (((-112) $ $) 86 (|has| |#1| (-848)))) (-2844 (((-112) $ $) 83 (|has| |#1| (-848)))) (-2930 (($ $) 112 (|has| |#1| (-21))) (($ $ $) 111 (|has| |#1| (-21)))) (-2917 (($ $ $) 114 (|has| |#1| (-25)))) (* (($ (-564) $) 110 (|has| |#1| (-21))) (($ |#1| $) 109 (|has| |#1| (-724))) (($ $ |#1|) 108 (|has| |#1| (-724)))) (-2158 (((-769) $) 6 (|has| $ (-6 -4410))))) -(((-978 |#1|) (-140) (-1047)) (T -978)) -((-3148 (*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1047)) (-4 *1 (-978 *3)))) (-3677 (*1 *2 *1) (-12 (-4 *1 (-978 *3)) (-4 *3 (-1047)) (-5 *2 (-919)))) (-4215 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2)) (-4 *2 (-1047)))) (-2137 (*1 *1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *1 (-978 *3)) (-4 *3 (-1047))))) -(-13 (-1260 |t#1|) (-616 (-642 |t#1|)) (-10 -8 (-15 -3148 ($ (-642 |t#1|))) (-15 -3677 ((-919) $)) (-15 -4215 ($ $ $)) (-15 -2137 ($ $ (-642 |t#1|))))) -(((-34) . T) ((-102) -2682 (|has| |#1| (-1097)) (|has| |#1| (-848))) ((-611 (-860)) -2682 (|has| |#1| (-1097)) (|has| |#1| (-848)) (|has| |#1| (-611 (-860)))) ((-151 |#1|) . T) ((-616 (-642 |#1|)) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-373 |#1|) . T) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-649 |#1|) . T) ((-19 |#1|) . T) ((-848) |has| |#1| (-848)) ((-1097) -2682 (|has| |#1| (-1097)) (|has| |#1| (-848))) ((-1212) . T) ((-1260 |#1|) . T)) -((-2947 (((-941 |#2|) (-1 |#2| |#1|) (-941 |#1|)) 17))) -(((-979 |#1| |#2|) (-10 -7 (-15 -2947 ((-941 |#2|) (-1 |#2| |#1|) (-941 |#1|)))) (-1047) (-1047)) (T -979)) -((-2947 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-941 *5)) (-4 *5 (-1047)) (-4 *6 (-1047)) (-5 *2 (-941 *6)) (-5 *1 (-979 *5 *6))))) -(-10 -7 (-15 -2947 ((-941 |#2|) (-1 |#2| |#1|) (-941 |#1|)))) -((-2309 ((|#1| (-941 |#1|)) 14)) (-1866 ((|#1| (-941 |#1|)) 13)) (-4182 ((|#1| (-941 |#1|)) 12)) (-2096 ((|#1| (-941 |#1|)) 16)) (-2258 ((|#1| (-941 |#1|)) 24)) (-3604 ((|#1| (-941 |#1|)) 15)) (-3194 ((|#1| (-941 |#1|)) 17)) (-4065 ((|#1| (-941 |#1|)) 23)) (-3818 ((|#1| (-941 |#1|)) 22))) -(((-980 |#1|) (-10 -7 (-15 -4182 (|#1| (-941 |#1|))) (-15 -1866 (|#1| (-941 |#1|))) (-15 -2309 (|#1| (-941 |#1|))) (-15 -3604 (|#1| (-941 |#1|))) (-15 -2096 (|#1| (-941 |#1|))) (-15 -3194 (|#1| (-941 |#1|))) (-15 -3818 (|#1| (-941 |#1|))) (-15 -4065 (|#1| (-941 |#1|))) (-15 -2258 (|#1| (-941 |#1|)))) (-1047)) (T -980)) -((-2258 (*1 *2 *3) (-12 (-5 *3 (-941 *2)) (-5 *1 (-980 *2)) (-4 *2 (-1047)))) (-4065 (*1 *2 *3) (-12 (-5 *3 (-941 *2)) (-5 *1 (-980 *2)) (-4 *2 (-1047)))) (-3818 (*1 *2 *3) (-12 (-5 *3 (-941 *2)) (-5 *1 (-980 *2)) (-4 *2 (-1047)))) (-3194 (*1 *2 *3) (-12 (-5 *3 (-941 *2)) (-5 *1 (-980 *2)) (-4 *2 (-1047)))) (-2096 (*1 *2 *3) (-12 (-5 *3 (-941 *2)) (-5 *1 (-980 *2)) (-4 *2 (-1047)))) (-3604 (*1 *2 *3) (-12 (-5 *3 (-941 *2)) (-5 *1 (-980 *2)) (-4 *2 (-1047)))) (-2309 (*1 *2 *3) (-12 (-5 *3 (-941 *2)) (-5 *1 (-980 *2)) (-4 *2 (-1047)))) (-1866 (*1 *2 *3) (-12 (-5 *3 (-941 *2)) (-5 *1 (-980 *2)) (-4 *2 (-1047)))) (-4182 (*1 *2 *3) (-12 (-5 *3 (-941 *2)) (-5 *1 (-980 *2)) (-4 *2 (-1047))))) -(-10 -7 (-15 -4182 (|#1| (-941 |#1|))) (-15 -1866 (|#1| (-941 |#1|))) (-15 -2309 (|#1| (-941 |#1|))) (-15 -3604 (|#1| (-941 |#1|))) (-15 -2096 (|#1| (-941 |#1|))) (-15 -3194 (|#1| (-941 |#1|))) (-15 -3818 (|#1| (-941 |#1|))) (-15 -4065 (|#1| (-941 |#1|))) (-15 -2258 (|#1| (-941 |#1|)))) -((-1524 (((-3 |#1| "failed") |#1|) 18)) (-2436 (((-3 |#1| "failed") |#1|) 6)) (-1299 (((-3 |#1| "failed") |#1|) 16)) (-3159 (((-3 |#1| "failed") |#1|) 4)) (-3716 (((-3 |#1| "failed") |#1|) 20)) (-4007 (((-3 |#1| "failed") |#1|) 8)) (-2308 (((-3 |#1| "failed") |#1| (-769)) 1)) (-2530 (((-3 |#1| "failed") |#1|) 3)) (-3347 (((-3 |#1| "failed") |#1|) 2)) (-1786 (((-3 |#1| "failed") |#1|) 21)) (-3226 (((-3 |#1| "failed") |#1|) 9)) (-1759 (((-3 |#1| "failed") |#1|) 19)) (-2025 (((-3 |#1| "failed") |#1|) 7)) (-3491 (((-3 |#1| "failed") |#1|) 17)) (-1477 (((-3 |#1| "failed") |#1|) 5)) (-1416 (((-3 |#1| "failed") |#1|) 24)) (-1296 (((-3 |#1| "failed") |#1|) 12)) (-4386 (((-3 |#1| "failed") |#1|) 22)) (-3916 (((-3 |#1| "failed") |#1|) 10)) (-2558 (((-3 |#1| "failed") |#1|) 26)) (-3369 (((-3 |#1| "failed") |#1|) 14)) (-2009 (((-3 |#1| "failed") |#1|) 27)) (-3764 (((-3 |#1| "failed") |#1|) 15)) (-3150 (((-3 |#1| "failed") |#1|) 25)) (-1605 (((-3 |#1| "failed") |#1|) 13)) (-1842 (((-3 |#1| "failed") |#1|) 23)) (-4288 (((-3 |#1| "failed") |#1|) 11))) -(((-981 |#1|) (-140) (-1197)) (T -981)) -((-2009 (*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))) (-2558 (*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))) (-3150 (*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))) (-1416 (*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))) (-1842 (*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))) (-4386 (*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))) (-1786 (*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))) (-3716 (*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))) (-1759 (*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))) (-1524 (*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))) (-3491 (*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))) (-1299 (*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))) (-3764 (*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))) (-3369 (*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))) (-1605 (*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))) (-1296 (*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))) (-4288 (*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))) (-3916 (*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))) (-3226 (*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))) (-4007 (*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))) (-2025 (*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))) (-2436 (*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))) (-1477 (*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))) (-3159 (*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))) (-2530 (*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))) (-3347 (*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))) (-2308 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-769)) (-4 *1 (-981 *2)) (-4 *2 (-1197))))) -(-13 (-10 -7 (-15 -2308 ((-3 |t#1| "failed") |t#1| (-769))) (-15 -3347 ((-3 |t#1| "failed") |t#1|)) (-15 -2530 ((-3 |t#1| "failed") |t#1|)) (-15 -3159 ((-3 |t#1| "failed") |t#1|)) (-15 -1477 ((-3 |t#1| "failed") |t#1|)) (-15 -2436 ((-3 |t#1| "failed") |t#1|)) (-15 -2025 ((-3 |t#1| "failed") |t#1|)) (-15 -4007 ((-3 |t#1| "failed") |t#1|)) (-15 -3226 ((-3 |t#1| "failed") |t#1|)) (-15 -3916 ((-3 |t#1| "failed") |t#1|)) (-15 -4288 ((-3 |t#1| "failed") |t#1|)) (-15 -1296 ((-3 |t#1| "failed") |t#1|)) (-15 -1605 ((-3 |t#1| "failed") |t#1|)) (-15 -3369 ((-3 |t#1| "failed") |t#1|)) (-15 -3764 ((-3 |t#1| "failed") |t#1|)) (-15 -1299 ((-3 |t#1| "failed") |t#1|)) (-15 -3491 ((-3 |t#1| "failed") |t#1|)) (-15 -1524 ((-3 |t#1| "failed") |t#1|)) (-15 -1759 ((-3 |t#1| "failed") |t#1|)) (-15 -3716 ((-3 |t#1| "failed") |t#1|)) (-15 -1786 ((-3 |t#1| "failed") |t#1|)) (-15 -4386 ((-3 |t#1| "failed") |t#1|)) (-15 -1842 ((-3 |t#1| "failed") |t#1|)) (-15 -1416 ((-3 |t#1| "failed") |t#1|)) (-15 -3150 ((-3 |t#1| "failed") |t#1|)) (-15 -2558 ((-3 |t#1| "failed") |t#1|)) (-15 -2009 ((-3 |t#1| "failed") |t#1|)))) -((-4152 ((|#4| |#4| (-642 |#3|)) 57) ((|#4| |#4| |#3|) 56)) (-1474 ((|#4| |#4| (-642 |#3|)) 24) ((|#4| |#4| |#3|) 20)) (-2947 ((|#4| (-1 |#4| (-950 |#1|)) |#4|) 31))) -(((-982 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1474 (|#4| |#4| |#3|)) (-15 -1474 (|#4| |#4| (-642 |#3|))) (-15 -4152 (|#4| |#4| |#3|)) (-15 -4152 (|#4| |#4| (-642 |#3|))) (-15 -2947 (|#4| (-1 |#4| (-950 |#1|)) |#4|))) (-1047) (-791) (-13 (-848) (-10 -8 (-15 -3003 ((-1173) $)) (-15 -1341 ((-3 $ "failed") (-1173))))) (-947 (-950 |#1|) |#2| |#3|)) (T -982)) -((-2947 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-950 *4))) (-4 *4 (-1047)) (-4 *2 (-947 (-950 *4) *5 *6)) (-4 *5 (-791)) (-4 *6 (-13 (-848) (-10 -8 (-15 -3003 ((-1173) $)) (-15 -1341 ((-3 $ "failed") (-1173)))))) (-5 *1 (-982 *4 *5 *6 *2)))) (-4152 (*1 *2 *2 *3) (-12 (-5 *3 (-642 *6)) (-4 *6 (-13 (-848) (-10 -8 (-15 -3003 ((-1173) $)) (-15 -1341 ((-3 $ "failed") (-1173)))))) (-4 *4 (-1047)) (-4 *5 (-791)) (-5 *1 (-982 *4 *5 *6 *2)) (-4 *2 (-947 (-950 *4) *5 *6)))) (-4152 (*1 *2 *2 *3) (-12 (-4 *4 (-1047)) (-4 *5 (-791)) (-4 *3 (-13 (-848) (-10 -8 (-15 -3003 ((-1173) $)) (-15 -1341 ((-3 $ "failed") (-1173)))))) (-5 *1 (-982 *4 *5 *3 *2)) (-4 *2 (-947 (-950 *4) *5 *3)))) (-1474 (*1 *2 *2 *3) (-12 (-5 *3 (-642 *6)) (-4 *6 (-13 (-848) (-10 -8 (-15 -3003 ((-1173) $)) (-15 -1341 ((-3 $ "failed") (-1173)))))) (-4 *4 (-1047)) (-4 *5 (-791)) (-5 *1 (-982 *4 *5 *6 *2)) (-4 *2 (-947 (-950 *4) *5 *6)))) (-1474 (*1 *2 *2 *3) (-12 (-4 *4 (-1047)) (-4 *5 (-791)) (-4 *3 (-13 (-848) (-10 -8 (-15 -3003 ((-1173) $)) (-15 -1341 ((-3 $ "failed") (-1173)))))) (-5 *1 (-982 *4 *5 *3 *2)) (-4 *2 (-947 (-950 *4) *5 *3))))) -(-10 -7 (-15 -1474 (|#4| |#4| |#3|)) (-15 -1474 (|#4| |#4| (-642 |#3|))) (-15 -4152 (|#4| |#4| |#3|)) (-15 -4152 (|#4| |#4| (-642 |#3|))) (-15 -2947 (|#4| (-1 |#4| (-950 |#1|)) |#4|))) -((-2663 ((|#2| |#3|) 35)) (-1806 (((-2 (|:| -2131 (-687 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-687 |#2|))) |#2|) 83)) (-1315 (((-2 (|:| -2131 (-687 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-687 |#2|)))) 103))) -(((-983 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1315 ((-2 (|:| -2131 (-687 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-687 |#2|))))) (-15 -1806 ((-2 (|:| -2131 (-687 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-687 |#2|))) |#2|)) (-15 -2663 (|#2| |#3|))) (-349) (-1238 |#1|) (-1238 |#2|) (-722 |#2| |#3|)) (T -983)) -((-2663 (*1 *2 *3) (-12 (-4 *3 (-1238 *2)) (-4 *2 (-1238 *4)) (-5 *1 (-983 *4 *2 *3 *5)) (-4 *4 (-349)) (-4 *5 (-722 *2 *3)))) (-1806 (*1 *2 *3) (-12 (-4 *4 (-349)) (-4 *3 (-1238 *4)) (-4 *5 (-1238 *3)) (-5 *2 (-2 (|:| -2131 (-687 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-687 *3)))) (-5 *1 (-983 *4 *3 *5 *6)) (-4 *6 (-722 *3 *5)))) (-1315 (*1 *2) (-12 (-4 *3 (-349)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 *4)) (-5 *2 (-2 (|:| -2131 (-687 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-687 *4)))) (-5 *1 (-983 *3 *4 *5 *6)) (-4 *6 (-722 *4 *5))))) -(-10 -7 (-15 -1315 ((-2 (|:| -2131 (-687 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-687 |#2|))))) (-15 -1806 ((-2 (|:| -2131 (-687 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-687 |#2|))) |#2|)) (-15 -2663 (|#2| |#3|))) -((-2506 (((-985 (-407 (-564)) (-862 |#1|) (-240 |#2| (-769)) (-247 |#1| (-407 (-564)))) (-985 (-407 (-564)) (-862 |#1|) (-240 |#2| (-769)) (-247 |#1| (-407 (-564))))) 84))) -(((-984 |#1| |#2|) (-10 -7 (-15 -2506 ((-985 (-407 (-564)) (-862 |#1|) (-240 |#2| (-769)) (-247 |#1| (-407 (-564)))) (-985 (-407 (-564)) (-862 |#1|) (-240 |#2| (-769)) (-247 |#1| (-407 (-564))))))) (-642 (-1173)) (-769)) (T -984)) -((-2506 (*1 *2 *2) (-12 (-5 *2 (-985 (-407 (-564)) (-862 *3) (-240 *4 (-769)) (-247 *3 (-407 (-564))))) (-14 *3 (-642 (-1173))) (-14 *4 (-769)) (-5 *1 (-984 *3 *4))))) -(-10 -7 (-15 -2506 ((-985 (-407 (-564)) (-862 |#1|) (-240 |#2| (-769)) (-247 |#1| (-407 (-564)))) (-985 (-407 (-564)) (-862 |#1|) (-240 |#2| (-769)) (-247 |#1| (-407 (-564))))))) -((-2856 (((-112) $ $) NIL)) (-2277 (((-3 (-112) "failed") $) 71)) (-3430 (($ $) 36 (-12 (|has| |#1| (-147)) (|has| |#1| (-307))))) (-3599 (($ $ (-3 (-112) "failed")) 72)) (-3853 (($ (-642 |#4|) |#4|) 25)) (-1778 (((-1155) $) NIL)) (-1805 (($ $) 69)) (-3999 (((-1117) $) NIL)) (-4109 (((-112) $) 70)) (-2179 (($) 30)) (-3448 ((|#4| $) 74)) (-2522 (((-642 |#4|) $) 73)) (-2390 (((-860) $) 68)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-985 |#1| |#2| |#3| |#4|) (-13 (-1097) (-611 (-860)) (-10 -8 (-15 -2179 ($)) (-15 -3853 ($ (-642 |#4|) |#4|)) (-15 -2277 ((-3 (-112) "failed") $)) (-15 -3599 ($ $ (-3 (-112) "failed"))) (-15 -4109 ((-112) $)) (-15 -2522 ((-642 |#4|) $)) (-15 -3448 (|#4| $)) (-15 -1805 ($ $)) (IF (|has| |#1| (-307)) (IF (|has| |#1| (-147)) (-15 -3430 ($ $)) |%noBranch|) |%noBranch|))) (-452) (-848) (-791) (-947 |#1| |#3| |#2|)) (T -985)) -((-2179 (*1 *1) (-12 (-4 *2 (-452)) (-4 *3 (-848)) (-4 *4 (-791)) (-5 *1 (-985 *2 *3 *4 *5)) (-4 *5 (-947 *2 *4 *3)))) (-3853 (*1 *1 *2 *3) (-12 (-5 *2 (-642 *3)) (-4 *3 (-947 *4 *6 *5)) (-4 *4 (-452)) (-4 *5 (-848)) (-4 *6 (-791)) (-5 *1 (-985 *4 *5 *6 *3)))) (-2277 (*1 *2 *1) (|partial| -12 (-4 *3 (-452)) (-4 *4 (-848)) (-4 *5 (-791)) (-5 *2 (-112)) (-5 *1 (-985 *3 *4 *5 *6)) (-4 *6 (-947 *3 *5 *4)))) (-3599 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-452)) (-4 *4 (-848)) (-4 *5 (-791)) (-5 *1 (-985 *3 *4 *5 *6)) (-4 *6 (-947 *3 *5 *4)))) (-4109 (*1 *2 *1) (-12 (-4 *3 (-452)) (-4 *4 (-848)) (-4 *5 (-791)) (-5 *2 (-112)) (-5 *1 (-985 *3 *4 *5 *6)) (-4 *6 (-947 *3 *5 *4)))) (-2522 (*1 *2 *1) (-12 (-4 *3 (-452)) (-4 *4 (-848)) (-4 *5 (-791)) (-5 *2 (-642 *6)) (-5 *1 (-985 *3 *4 *5 *6)) (-4 *6 (-947 *3 *5 *4)))) (-3448 (*1 *2 *1) (-12 (-4 *2 (-947 *3 *5 *4)) (-5 *1 (-985 *3 *4 *5 *2)) (-4 *3 (-452)) (-4 *4 (-848)) (-4 *5 (-791)))) (-1805 (*1 *1 *1) (-12 (-4 *2 (-452)) (-4 *3 (-848)) (-4 *4 (-791)) (-5 *1 (-985 *2 *3 *4 *5)) (-4 *5 (-947 *2 *4 *3)))) (-3430 (*1 *1 *1) (-12 (-4 *2 (-147)) (-4 *2 (-307)) (-4 *2 (-452)) (-4 *3 (-848)) (-4 *4 (-791)) (-5 *1 (-985 *2 *3 *4 *5)) (-4 *5 (-947 *2 *4 *3))))) -(-13 (-1097) (-611 (-860)) (-10 -8 (-15 -2179 ($)) (-15 -3853 ($ (-642 |#4|) |#4|)) (-15 -2277 ((-3 (-112) "failed") $)) (-15 -3599 ($ $ (-3 (-112) "failed"))) (-15 -4109 ((-112) $)) (-15 -2522 ((-642 |#4|) $)) (-15 -3448 (|#4| $)) (-15 -1805 ($ $)) (IF (|has| |#1| (-307)) (IF (|has| |#1| (-147)) (-15 -3430 ($ $)) |%noBranch|) |%noBranch|))) -((-2578 (((-112) |#5| |#5|) 45)) (-4106 (((-112) |#5| |#5|) 60)) (-3291 (((-112) |#5| (-642 |#5|)) 82) (((-112) |#5| |#5|) 69)) (-2642 (((-112) (-642 |#4|) (-642 |#4|)) 66)) (-3046 (((-112) (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|)) (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))) 71)) (-1868 (((-1267)) 33)) (-2635 (((-1267) (-1155) (-1155) (-1155)) 29)) (-3363 (((-642 |#5|) (-642 |#5|)) 101)) (-2409 (((-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))) (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|)))) 93)) (-1953 (((-642 (-2 (|:| -3359 (-642 |#4|)) (|:| -2138 |#5|) (|:| |ineq| (-642 |#4|)))) (-642 |#4|) (-642 |#5|) (-112) (-112)) 123)) (-2559 (((-112) |#5| |#5|) 54)) (-4172 (((-3 (-112) "failed") |#5| |#5|) 79)) (-1688 (((-112) (-642 |#4|) (-642 |#4|)) 65)) (-3211 (((-112) (-642 |#4|) (-642 |#4|)) 67)) (-3119 (((-112) (-642 |#4|) (-642 |#4|)) 68)) (-3625 (((-3 (-2 (|:| -3359 (-642 |#4|)) (|:| -2138 |#5|) (|:| |ineq| (-642 |#4|))) "failed") (-642 |#4|) |#5| (-642 |#4|) (-112) (-112) (-112) (-112) (-112)) 118)) (-2543 (((-642 |#5|) (-642 |#5|)) 50))) -(((-986 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2635 ((-1267) (-1155) (-1155) (-1155))) (-15 -1868 ((-1267))) (-15 -2578 ((-112) |#5| |#5|)) (-15 -2543 ((-642 |#5|) (-642 |#5|))) (-15 -2559 ((-112) |#5| |#5|)) (-15 -4106 ((-112) |#5| |#5|)) (-15 -2642 ((-112) (-642 |#4|) (-642 |#4|))) (-15 -1688 ((-112) (-642 |#4|) (-642 |#4|))) (-15 -3211 ((-112) (-642 |#4|) (-642 |#4|))) (-15 -3119 ((-112) (-642 |#4|) (-642 |#4|))) (-15 -4172 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3291 ((-112) |#5| |#5|)) (-15 -3291 ((-112) |#5| (-642 |#5|))) (-15 -3363 ((-642 |#5|) (-642 |#5|))) (-15 -3046 ((-112) (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|)) (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|)))) (-15 -2409 ((-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))) (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))))) (-15 -1953 ((-642 (-2 (|:| -3359 (-642 |#4|)) (|:| -2138 |#5|) (|:| |ineq| (-642 |#4|)))) (-642 |#4|) (-642 |#5|) (-112) (-112))) (-15 -3625 ((-3 (-2 (|:| -3359 (-642 |#4|)) (|:| -2138 |#5|) (|:| |ineq| (-642 |#4|))) "failed") (-642 |#4|) |#5| (-642 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-452) (-791) (-848) (-1062 |#1| |#2| |#3|) (-1068 |#1| |#2| |#3| |#4|)) (T -986)) -((-3625 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-791)) (-4 *8 (-848)) (-4 *9 (-1062 *6 *7 *8)) (-5 *2 (-2 (|:| -3359 (-642 *9)) (|:| -2138 *4) (|:| |ineq| (-642 *9)))) (-5 *1 (-986 *6 *7 *8 *9 *4)) (-5 *3 (-642 *9)) (-4 *4 (-1068 *6 *7 *8 *9)))) (-1953 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-642 *10)) (-5 *5 (-112)) (-4 *10 (-1068 *6 *7 *8 *9)) (-4 *6 (-452)) (-4 *7 (-791)) (-4 *8 (-848)) (-4 *9 (-1062 *6 *7 *8)) (-5 *2 (-642 (-2 (|:| -3359 (-642 *9)) (|:| -2138 *10) (|:| |ineq| (-642 *9))))) (-5 *1 (-986 *6 *7 *8 *9 *10)) (-5 *3 (-642 *9)))) (-2409 (*1 *2 *2) (-12 (-5 *2 (-642 (-2 (|:| |val| (-642 *6)) (|:| -2138 *7)))) (-4 *6 (-1062 *3 *4 *5)) (-4 *7 (-1068 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-986 *3 *4 *5 *6 *7)))) (-3046 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-642 *7)) (|:| -2138 *8))) (-4 *7 (-1062 *4 *5 *6)) (-4 *8 (-1068 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112)) (-5 *1 (-986 *4 *5 *6 *7 *8)))) (-3363 (*1 *2 *2) (-12 (-5 *2 (-642 *7)) (-4 *7 (-1068 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *1 (-986 *3 *4 *5 *6 *7)))) (-3291 (*1 *2 *3 *4) (-12 (-5 *4 (-642 *3)) (-4 *3 (-1068 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *8 (-1062 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-986 *5 *6 *7 *8 *3)))) (-3291 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-986 *4 *5 *6 *7 *3)) (-4 *3 (-1068 *4 *5 *6 *7)))) (-4172 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-986 *4 *5 *6 *7 *3)) (-4 *3 (-1068 *4 *5 *6 *7)))) (-3119 (*1 *2 *3 *3) (-12 (-5 *3 (-642 *7)) (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112)) (-5 *1 (-986 *4 *5 *6 *7 *8)) (-4 *8 (-1068 *4 *5 *6 *7)))) (-3211 (*1 *2 *3 *3) (-12 (-5 *3 (-642 *7)) (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112)) (-5 *1 (-986 *4 *5 *6 *7 *8)) (-4 *8 (-1068 *4 *5 *6 *7)))) (-1688 (*1 *2 *3 *3) (-12 (-5 *3 (-642 *7)) (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112)) (-5 *1 (-986 *4 *5 *6 *7 *8)) (-4 *8 (-1068 *4 *5 *6 *7)))) (-2642 (*1 *2 *3 *3) (-12 (-5 *3 (-642 *7)) (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112)) (-5 *1 (-986 *4 *5 *6 *7 *8)) (-4 *8 (-1068 *4 *5 *6 *7)))) (-4106 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-986 *4 *5 *6 *7 *3)) (-4 *3 (-1068 *4 *5 *6 *7)))) (-2559 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-986 *4 *5 *6 *7 *3)) (-4 *3 (-1068 *4 *5 *6 *7)))) (-2543 (*1 *2 *2) (-12 (-5 *2 (-642 *7)) (-4 *7 (-1068 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *1 (-986 *3 *4 *5 *6 *7)))) (-2578 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-986 *4 *5 *6 *7 *3)) (-4 *3 (-1068 *4 *5 *6 *7)))) (-1868 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-1267)) (-5 *1 (-986 *3 *4 *5 *6 *7)) (-4 *7 (-1068 *3 *4 *5 *6)))) (-2635 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1155)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-1267)) (-5 *1 (-986 *4 *5 *6 *7 *8)) (-4 *8 (-1068 *4 *5 *6 *7))))) -(-10 -7 (-15 -2635 ((-1267) (-1155) (-1155) (-1155))) (-15 -1868 ((-1267))) (-15 -2578 ((-112) |#5| |#5|)) (-15 -2543 ((-642 |#5|) (-642 |#5|))) (-15 -2559 ((-112) |#5| |#5|)) (-15 -4106 ((-112) |#5| |#5|)) (-15 -2642 ((-112) (-642 |#4|) (-642 |#4|))) (-15 -1688 ((-112) (-642 |#4|) (-642 |#4|))) (-15 -3211 ((-112) (-642 |#4|) (-642 |#4|))) (-15 -3119 ((-112) (-642 |#4|) (-642 |#4|))) (-15 -4172 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3291 ((-112) |#5| |#5|)) (-15 -3291 ((-112) |#5| (-642 |#5|))) (-15 -3363 ((-642 |#5|) (-642 |#5|))) (-15 -3046 ((-112) (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|)) (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|)))) (-15 -2409 ((-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))) (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))))) (-15 -1953 ((-642 (-2 (|:| -3359 (-642 |#4|)) (|:| -2138 |#5|) (|:| |ineq| (-642 |#4|)))) (-642 |#4|) (-642 |#5|) (-112) (-112))) (-15 -3625 ((-3 (-2 (|:| -3359 (-642 |#4|)) (|:| -2138 |#5|) (|:| |ineq| (-642 |#4|))) "failed") (-642 |#4|) |#5| (-642 |#4|) (-112) (-112) (-112) (-112) (-112)))) -((-1341 (((-1173) $) 15)) (-2108 (((-1155) $) 16)) (-1977 (($ (-1173) (-1155)) 14)) (-2390 (((-860) $) 13))) -(((-987) (-13 (-611 (-860)) (-10 -8 (-15 -1977 ($ (-1173) (-1155))) (-15 -1341 ((-1173) $)) (-15 -2108 ((-1155) $))))) (T -987)) -((-1977 (*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-1155)) (-5 *1 (-987)))) (-1341 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-987)))) (-2108 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-987))))) -(-13 (-611 (-860)) (-10 -8 (-15 -1977 ($ (-1173) (-1155))) (-15 -1341 ((-1173) $)) (-15 -2108 ((-1155) $)))) -((-2947 ((|#4| (-1 |#2| |#1|) |#3|) 14))) -(((-988 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2947 (|#4| (-1 |#2| |#1|) |#3|))) (-556) (-556) (-990 |#1|) (-990 |#2|)) (T -988)) -((-2947 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-556)) (-4 *6 (-556)) (-4 *2 (-990 *6)) (-5 *1 (-988 *5 *6 *4 *2)) (-4 *4 (-990 *5))))) -(-10 -7 (-15 -2947 (|#4| (-1 |#2| |#1|) |#3|))) -((-2849 (((-3 |#2| "failed") $) NIL) (((-3 (-1173) "failed") $) 66) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 (-564) "failed") $) 96)) (-1687 ((|#2| $) NIL) (((-1173) $) 61) (((-407 (-564)) $) NIL) (((-564) $) 93)) (-3330 (((-687 (-564)) (-687 $)) NIL) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL) (((-2 (|:| -3544 (-687 |#2|)) (|:| |vec| (-1262 |#2|))) (-687 $) (-1262 $)) 115) (((-687 |#2|) (-687 $)) 28)) (-3235 (($) 99)) (-1381 (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) 76) (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) 85)) (-3408 (($ $) 10)) (-4382 (((-3 $ "failed") $) 20)) (-2947 (($ (-1 |#2| |#2|) $) 22)) (-3910 (($) 16)) (-1830 (($ $) 55)) (-2199 (($ $) NIL) (($ $ (-769)) NIL) (($ $ (-1173)) NIL) (($ $ (-642 (-1173))) NIL) (($ $ (-1173) (-769)) NIL) (($ $ (-642 (-1173)) (-642 (-769))) NIL) (($ $ (-1 |#2| |#2|) (-769)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-3082 (($ $) 12)) (-3003 (((-890 (-564)) $) 71) (((-890 (-379)) $) 80) (((-536) $) 40) (((-379) $) 44) (((-225) $) 48)) (-2390 (((-860) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) 91) (($ |#2|) NIL) (($ (-1173)) 58)) (-3348 (((-769)) 31)) (-2844 (((-112) $ $) 51))) -(((-989 |#1| |#2|) (-10 -8 (-15 -2844 ((-112) |#1| |#1|)) (-15 -3910 (|#1|)) (-15 -4382 ((-3 |#1| "failed") |#1|)) (-15 -2849 ((-3 (-564) "failed") |#1|)) (-15 -1687 ((-564) |#1|)) (-15 -2849 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -1687 ((-407 (-564)) |#1|)) (-15 -3003 ((-225) |#1|)) (-15 -3003 ((-379) |#1|)) (-15 -3003 ((-536) |#1|)) (-15 -2390 (|#1| (-1173))) (-15 -2849 ((-3 (-1173) "failed") |#1|)) (-15 -1687 ((-1173) |#1|)) (-15 -3235 (|#1|)) (-15 -1830 (|#1| |#1|)) (-15 -3082 (|#1| |#1|)) (-15 -3408 (|#1| |#1|)) (-15 -1381 ((-887 (-379) |#1|) |#1| (-890 (-379)) (-887 (-379) |#1|))) (-15 -1381 ((-887 (-564) |#1|) |#1| (-890 (-564)) (-887 (-564) |#1|))) (-15 -3003 ((-890 (-379)) |#1|)) (-15 -3003 ((-890 (-564)) |#1|)) (-15 -3330 ((-687 |#2|) (-687 |#1|))) (-15 -3330 ((-2 (|:| -3544 (-687 |#2|)) (|:| |vec| (-1262 |#2|))) (-687 |#1|) (-1262 |#1|))) (-15 -3330 ((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 |#1|) (-1262 |#1|))) (-15 -3330 ((-687 (-564)) (-687 |#1|))) (-15 -2199 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2199 (|#1| |#1| (-1 |#2| |#2|) (-769))) (-15 -2199 (|#1| |#1| (-642 (-1173)) (-642 (-769)))) (-15 -2199 (|#1| |#1| (-1173) (-769))) (-15 -2199 (|#1| |#1| (-642 (-1173)))) (-15 -2199 (|#1| |#1| (-1173))) (-15 -2199 (|#1| |#1| (-769))) (-15 -2199 (|#1| |#1|)) (-15 -2947 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2849 ((-3 |#2| "failed") |#1|)) (-15 -1687 (|#2| |#1|)) (-15 -2390 (|#1| |#2|)) (-15 -2390 (|#1| (-407 (-564)))) (-15 -2390 (|#1| |#1|)) (-15 -3348 ((-769))) (-15 -2390 (|#1| (-564))) (-15 -2390 ((-860) |#1|))) (-990 |#2|) (-556)) (T -989)) -((-3348 (*1 *2) (-12 (-4 *4 (-556)) (-5 *2 (-769)) (-5 *1 (-989 *3 *4)) (-4 *3 (-990 *4))))) -(-10 -8 (-15 -2844 ((-112) |#1| |#1|)) (-15 -3910 (|#1|)) (-15 -4382 ((-3 |#1| "failed") |#1|)) (-15 -2849 ((-3 (-564) "failed") |#1|)) (-15 -1687 ((-564) |#1|)) (-15 -2849 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -1687 ((-407 (-564)) |#1|)) (-15 -3003 ((-225) |#1|)) (-15 -3003 ((-379) |#1|)) (-15 -3003 ((-536) |#1|)) (-15 -2390 (|#1| (-1173))) (-15 -2849 ((-3 (-1173) "failed") |#1|)) (-15 -1687 ((-1173) |#1|)) (-15 -3235 (|#1|)) (-15 -1830 (|#1| |#1|)) (-15 -3082 (|#1| |#1|)) (-15 -3408 (|#1| |#1|)) (-15 -1381 ((-887 (-379) |#1|) |#1| (-890 (-379)) (-887 (-379) |#1|))) (-15 -1381 ((-887 (-564) |#1|) |#1| (-890 (-564)) (-887 (-564) |#1|))) (-15 -3003 ((-890 (-379)) |#1|)) (-15 -3003 ((-890 (-564)) |#1|)) (-15 -3330 ((-687 |#2|) (-687 |#1|))) (-15 -3330 ((-2 (|:| -3544 (-687 |#2|)) (|:| |vec| (-1262 |#2|))) (-687 |#1|) (-1262 |#1|))) (-15 -3330 ((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 |#1|) (-1262 |#1|))) (-15 -3330 ((-687 (-564)) (-687 |#1|))) (-15 -2199 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2199 (|#1| |#1| (-1 |#2| |#2|) (-769))) (-15 -2199 (|#1| |#1| (-642 (-1173)) (-642 (-769)))) (-15 -2199 (|#1| |#1| (-1173) (-769))) (-15 -2199 (|#1| |#1| (-642 (-1173)))) (-15 -2199 (|#1| |#1| (-1173))) (-15 -2199 (|#1| |#1| (-769))) (-15 -2199 (|#1| |#1|)) (-15 -2947 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2849 ((-3 |#2| "failed") |#1|)) (-15 -1687 (|#2| |#1|)) (-15 -2390 (|#1| |#2|)) (-15 -2390 (|#1| (-407 (-564)))) (-15 -2390 (|#1| |#1|)) (-15 -3348 ((-769))) (-15 -2390 (|#1| (-564))) (-15 -2390 ((-860) |#1|))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-2905 ((|#1| $) 147 (|has| |#1| (-307)))) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) 47)) (-4252 (($ $) 46)) (-1722 (((-112) $) 44)) (-3085 (((-3 $ "failed") $ $) 20)) (-4297 (((-418 (-1169 $)) (-1169 $)) 138 (|has| |#1| (-907)))) (-1993 (($ $) 81)) (-3282 (((-418 $) $) 80)) (-3267 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) 141 (|has| |#1| (-907)))) (-2134 (((-112) $ $) 65)) (-2221 (((-564) $) 128 (|has| |#1| (-818)))) (-2822 (($) 18 T CONST)) (-2849 (((-3 |#1| "failed") $) 185) (((-3 (-1173) "failed") $) 136 (|has| |#1| (-1036 (-1173)))) (((-3 (-407 (-564)) "failed") $) 119 (|has| |#1| (-1036 (-564)))) (((-3 (-564) "failed") $) 117 (|has| |#1| (-1036 (-564))))) (-1687 ((|#1| $) 186) (((-1173) $) 137 (|has| |#1| (-1036 (-1173)))) (((-407 (-564)) $) 120 (|has| |#1| (-1036 (-564)))) (((-564) $) 118 (|has| |#1| (-1036 (-564))))) (-2796 (($ $ $) 61)) (-3330 (((-687 (-564)) (-687 $)) 160 (|has| |#1| (-637 (-564)))) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) 159 (|has| |#1| (-637 (-564)))) (((-2 (|:| -3544 (-687 |#1|)) (|:| |vec| (-1262 |#1|))) (-687 $) (-1262 $)) 158) (((-687 |#1|) (-687 $)) 157)) (-2675 (((-3 $ "failed") $) 37)) (-3235 (($) 145 (|has| |#1| (-545)))) (-2808 (($ $ $) 62)) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) 57)) (-3552 (((-112) $) 79)) (-3292 (((-112) $) 130 (|has| |#1| (-818)))) (-1381 (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) 154 (|has| |#1| (-884 (-564)))) (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) 153 (|has| |#1| (-884 (-379))))) (-3163 (((-112) $) 35)) (-3408 (($ $) 149)) (-4120 ((|#1| $) 151)) (-4382 (((-3 $ "failed") $) 116 (|has| |#1| (-1148)))) (-2666 (((-112) $) 129 (|has| |#1| (-818)))) (-2709 (((-3 (-642 $) "failed") (-642 $) $) 58)) (-3225 (($ $ $) 126 (|has| |#1| (-848)))) (-2903 (($ $ $) 125 (|has| |#1| (-848)))) (-2947 (($ (-1 |#1| |#1|) $) 177)) (-2066 (($ $ $) 52) (($ (-642 $)) 51)) (-1778 (((-1155) $) 10)) (-2481 (($ $) 78)) (-3910 (($) 115 (|has| |#1| (-1148)) CONST)) (-3999 (((-1117) $) 11)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) 50)) (-2105 (($ $ $) 54) (($ (-642 $)) 53)) (-1830 (($ $) 146 (|has| |#1| (-307)))) (-2795 ((|#1| $) 143 (|has| |#1| (-545)))) (-3223 (((-418 (-1169 $)) (-1169 $)) 140 (|has| |#1| (-907)))) (-2236 (((-418 (-1169 $)) (-1169 $)) 139 (|has| |#1| (-907)))) (-2254 (((-418 $) $) 82)) (-1877 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2842 (((-3 $ "failed") $ $) 48)) (-1483 (((-3 (-642 $) "failed") (-642 $) $) 56)) (-3154 (($ $ (-642 |#1|) (-642 |#1|)) 183 (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) 182 (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) 181 (|has| |#1| (-309 |#1|))) (($ $ (-642 (-294 |#1|))) 180 (|has| |#1| (-309 |#1|))) (($ $ (-642 (-1173)) (-642 |#1|)) 179 (|has| |#1| (-514 (-1173) |#1|))) (($ $ (-1173) |#1|) 178 (|has| |#1| (-514 (-1173) |#1|)))) (-4274 (((-769) $) 64)) (-4369 (($ $ |#1|) 184 (|has| |#1| (-286 |#1| |#1|)))) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) 63)) (-2199 (($ $) 176 (|has| |#1| (-233))) (($ $ (-769)) 174 (|has| |#1| (-233))) (($ $ (-1173)) 172 (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) 171 (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) 170 (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) 169 (|has| |#1| (-898 (-1173)))) (($ $ (-1 |#1| |#1|) (-769)) 162) (($ $ (-1 |#1| |#1|)) 161)) (-3082 (($ $) 148)) (-4131 ((|#1| $) 150)) (-3003 (((-890 (-564)) $) 156 (|has| |#1| (-612 (-890 (-564))))) (((-890 (-379)) $) 155 (|has| |#1| (-612 (-890 (-379))))) (((-536) $) 133 (|has| |#1| (-612 (-536)))) (((-379) $) 132 (|has| |#1| (-1020))) (((-225) $) 131 (|has| |#1| (-1020)))) (-3556 (((-3 (-1262 $) "failed") (-687 $)) 142 (-2317 (|has| $ (-145)) (|has| |#1| (-907))))) (-2390 (((-860) $) 12) (($ (-564)) 33) (($ $) 49) (($ (-407 (-564))) 74) (($ |#1|) 189) (($ (-1173)) 135 (|has| |#1| (-1036 (-1173))))) (-3434 (((-3 $ "failed") $) 134 (-2682 (|has| |#1| (-145)) (-2317 (|has| $ (-145)) (|has| |#1| (-907)))))) (-3348 (((-769)) 32 T CONST)) (-1378 ((|#1| $) 144 (|has| |#1| (-545)))) (-1600 (((-112) $ $) 9)) (-1594 (((-112) $ $) 45)) (-1630 (($ $) 127 (|has| |#1| (-818)))) (-2361 (($) 19 T CONST)) (-2371 (($) 34 T CONST)) (-2711 (($ $) 175 (|has| |#1| (-233))) (($ $ (-769)) 173 (|has| |#1| (-233))) (($ $ (-1173)) 168 (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) 167 (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) 166 (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) 165 (|has| |#1| (-898 (-1173)))) (($ $ (-1 |#1| |#1|) (-769)) 164) (($ $ (-1 |#1| |#1|)) 163)) (-2881 (((-112) $ $) 123 (|has| |#1| (-848)))) (-2857 (((-112) $ $) 122 (|has| |#1| (-848)))) (-2821 (((-112) $ $) 6)) (-2868 (((-112) $ $) 124 (|has| |#1| (-848)))) (-2844 (((-112) $ $) 121 (|has| |#1| (-848)))) (-2943 (($ $ $) 73) (($ |#1| |#1|) 152)) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36) (($ $ (-564)) 77)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ (-407 (-564))) 76) (($ (-407 (-564)) $) 75) (($ |#1| $) 188) (($ $ |#1|) 187))) -(((-990 |#1|) (-140) (-556)) (T -990)) -((-2943 (*1 *1 *2 *2) (-12 (-4 *1 (-990 *2)) (-4 *2 (-556)))) (-4120 (*1 *2 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-556)))) (-4131 (*1 *2 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-556)))) (-3408 (*1 *1 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-556)))) (-3082 (*1 *1 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-556)))) (-2905 (*1 *2 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-556)) (-4 *2 (-307)))) (-1830 (*1 *1 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-556)) (-4 *2 (-307)))) (-3235 (*1 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-545)) (-4 *2 (-556)))) (-1378 (*1 *2 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-556)) (-4 *2 (-545)))) (-2795 (*1 *2 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-556)) (-4 *2 (-545))))) -(-13 (-363) (-38 |t#1|) (-1036 |t#1|) (-338 |t#1|) (-231 |t#1|) (-377 |t#1|) (-882 |t#1|) (-400 |t#1|) (-10 -8 (-15 -2943 ($ |t#1| |t#1|)) (-15 -4120 (|t#1| $)) (-15 -4131 (|t#1| $)) (-15 -3408 ($ $)) (-15 -3082 ($ $)) (IF (|has| |t#1| (-1148)) (-6 (-1148)) |%noBranch|) (IF (|has| |t#1| (-1036 (-564))) (PROGN (-6 (-1036 (-564))) (-6 (-1036 (-407 (-564))))) |%noBranch|) (IF (|has| |t#1| (-848)) (-6 (-848)) |%noBranch|) (IF (|has| |t#1| (-818)) (-6 (-818)) |%noBranch|) (IF (|has| |t#1| (-1020)) (-6 (-1020)) |%noBranch|) (IF (|has| |t#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1036 (-1173))) (-6 (-1036 (-1173))) |%noBranch|) (IF (|has| |t#1| (-307)) (PROGN (-15 -2905 (|t#1| $)) (-15 -1830 ($ $))) |%noBranch|) (IF (|has| |t#1| (-545)) (PROGN (-15 -3235 ($)) (-15 -1378 (|t#1| $)) (-15 -2795 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-907)) (-6 (-907)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 #1=(-1173)) |has| |#1| (-1036 (-1173))) ((-614 |#1|) . T) ((-614 $) . T) ((-611 (-860)) . T) ((-172) . T) ((-612 (-225)) |has| |#1| (-1020)) ((-612 (-379)) |has| |#1| (-1020)) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-612 (-890 (-379))) |has| |#1| (-612 (-890 (-379)))) ((-612 (-890 (-564))) |has| |#1| (-612 (-890 (-564)))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-243) . T) ((-286 |#1| $) |has| |#1| (-286 |#1| |#1|)) ((-290) . T) ((-307) . T) ((-309 |#1|) |has| |#1| (-309 |#1|)) ((-363) . T) ((-338 |#1|) . T) ((-377 |#1|) . T) ((-400 |#1|) . T) ((-452) . T) ((-514 (-1173) |#1|) |has| |#1| (-514 (-1173) |#1|)) ((-514 |#1| |#1|) |has| |#1| (-309 |#1|)) ((-556) . T) ((-644 #0#) . T) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-646 #0#) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-638 #0#) . T) ((-638 |#1|) . T) ((-638 $) . T) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-715 #0#) . T) ((-715 |#1|) . T) ((-715 $) . T) ((-724) . T) ((-789) |has| |#1| (-818)) ((-790) |has| |#1| (-818)) ((-792) |has| |#1| (-818)) ((-793) |has| |#1| (-818)) ((-818) |has| |#1| (-818)) ((-846) |has| |#1| (-818)) ((-848) -2682 (|has| |#1| (-848)) (|has| |#1| (-818))) ((-898 (-1173)) |has| |#1| (-898 (-1173))) ((-884 (-379)) |has| |#1| (-884 (-379))) ((-884 (-564)) |has| |#1| (-884 (-564))) ((-882 |#1|) . T) ((-907) |has| |#1| (-907)) ((-918) . T) ((-1020) |has| |#1| (-1020)) ((-1036 (-407 (-564))) |has| |#1| (-1036 (-564))) ((-1036 (-564)) |has| |#1| (-1036 (-564))) ((-1036 #1#) |has| |#1| (-1036 (-1173))) ((-1036 |#1|) . T) ((-1049 #0#) . T) ((-1049 |#1|) . T) ((-1049 $) . T) ((-1054 #0#) . T) ((-1054 |#1|) . T) ((-1054 $) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T) ((-1148) |has| |#1| (-1148)) ((-1212) . T) ((-1216) . T)) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-3085 (((-3 $ "failed") $ $) NIL)) (-2822 (($) NIL T CONST)) (-2804 (($ (-1139 |#1| |#2|)) 11)) (-4117 (((-1139 |#1| |#2|) $) 12)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-4369 ((|#2| $ (-240 |#1| |#2|)) 16)) (-2390 (((-860) $) NIL)) (-1600 (((-112) $ $) NIL)) (-2361 (($) NIL T CONST)) (-2821 (((-112) $ $) NIL)) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL))) -(((-991 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -2804 ($ (-1139 |#1| |#2|))) (-15 -4117 ((-1139 |#1| |#2|) $)) (-15 -4369 (|#2| $ (-240 |#1| |#2|))))) (-919) (-363)) (T -991)) -((-2804 (*1 *1 *2) (-12 (-5 *2 (-1139 *3 *4)) (-14 *3 (-919)) (-4 *4 (-363)) (-5 *1 (-991 *3 *4)))) (-4117 (*1 *2 *1) (-12 (-5 *2 (-1139 *3 *4)) (-5 *1 (-991 *3 *4)) (-14 *3 (-919)) (-4 *4 (-363)))) (-4369 (*1 *2 *1 *3) (-12 (-5 *3 (-240 *4 *2)) (-14 *4 (-919)) (-4 *2 (-363)) (-5 *1 (-991 *4 *2))))) -(-13 (-21) (-10 -8 (-15 -2804 ($ (-1139 |#1| |#2|))) (-15 -4117 ((-1139 |#1| |#2|) $)) (-15 -4369 (|#2| $ (-240 |#1| |#2|))))) -((-2856 (((-112) $ $) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-1359 (((-1132) $) 9)) (-2390 (((-860) $) 15) (($ (-1178)) NIL) (((-1178) $) NIL)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-992) (-13 (-1080) (-10 -8 (-15 -1359 ((-1132) $))))) (T -992)) -((-1359 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-992))))) -(-13 (-1080) (-10 -8 (-15 -1359 ((-1132) $)))) -((-2856 (((-112) $ $) 19 (|has| |#1| (-1097)))) (-3442 (((-112) $ (-769)) 8)) (-2822 (($) 7 T CONST)) (-3311 (($ $) 47)) (-2018 (((-642 |#1|) $) 31 (|has| $ (-6 -4410)))) (-3769 (((-112) $ (-769)) 9)) (-3541 (((-642 |#1|) $) 30 (|has| $ (-6 -4410)))) (-2533 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-1857 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#1| |#1|) $) 36)) (-4145 (((-112) $ (-769)) 10)) (-2495 (((-769) $) 46)) (-1778 (((-1155) $) 22 (|has| |#1| (-1097)))) (-3220 ((|#1| $) 40)) (-1668 (($ |#1| $) 41)) (-3999 (((-1117) $) 21 (|has| |#1| (-1097)))) (-4108 ((|#1| $) 45)) (-4314 ((|#1| $) 42)) (-4094 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-2478 (((-112) $ $) 14)) (-2080 ((|#1| |#1| $) 49)) (-4109 (((-112) $) 11)) (-2179 (($) 12)) (-2519 ((|#1| $) 48)) (-4010 (((-769) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4410))) (((-769) |#1| $) 29 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3865 (($ $) 13)) (-2390 (((-860) $) 18 (|has| |#1| (-611 (-860))))) (-1600 (((-112) $ $) 23 (|has| |#1| (-1097)))) (-4160 (($ (-642 |#1|)) 43)) (-4052 ((|#1| $) 44)) (-3295 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4410)))) (-2821 (((-112) $ $) 20 (|has| |#1| (-1097)))) (-2158 (((-769) $) 6 (|has| $ (-6 -4410))))) -(((-993 |#1|) (-140) (-1212)) (T -993)) -((-2080 (*1 *2 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-1212)))) (-2519 (*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-1212)))) (-3311 (*1 *1 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-1212)))) (-2495 (*1 *2 *1) (-12 (-4 *1 (-993 *3)) (-4 *3 (-1212)) (-5 *2 (-769)))) (-4108 (*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-1212)))) (-4052 (*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-1212))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4410) (-15 -2080 (|t#1| |t#1| $)) (-15 -2519 (|t#1| $)) (-15 -3311 ($ $)) (-15 -2495 ((-769) $)) (-15 -4108 (|t#1| $)) (-15 -4052 (|t#1| $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1097)) ((-611 (-860)) -2682 (|has| |#1| (-1097)) (|has| |#1| (-611 (-860)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-1097) |has| |#1| (-1097)) ((-1212) . T)) -((-2950 (((-112) $) 43)) (-2849 (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 |#2| "failed") $) 46)) (-1687 (((-564) $) NIL) (((-407 (-564)) $) NIL) ((|#2| $) 44)) (-3227 (((-3 (-407 (-564)) "failed") $) 78)) (-2929 (((-112) $) 72)) (-3536 (((-407 (-564)) $) 76)) (-3163 (((-112) $) 42)) (-2573 ((|#2| $) 22)) (-2947 (($ (-1 |#2| |#2|) $) 19)) (-2481 (($ $) 58)) (-2199 (($ $) NIL) (($ $ (-769)) NIL) (($ $ (-1173)) NIL) (($ $ (-642 (-1173))) NIL) (($ $ (-1173) (-769)) NIL) (($ $ (-642 (-1173)) (-642 (-769))) NIL) (($ $ (-1 |#2| |#2|) (-769)) NIL) (($ $ (-1 |#2| |#2|)) 35)) (-3003 (((-536) $) 67)) (-1736 (($ $) 17)) (-2390 (((-860) $) 53) (($ (-564)) 39) (($ |#2|) 37) (($ (-407 (-564))) NIL)) (-3348 (((-769)) 10)) (-1630 ((|#2| $) 71)) (-2821 (((-112) $ $) 26)) (-2844 (((-112) $ $) 69)) (-2930 (($ $) 30) (($ $ $) 29)) (-2917 (($ $ $) 27)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 34) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 31) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL))) -(((-994 |#1| |#2|) (-10 -8 (-15 -2390 (|#1| (-407 (-564)))) (-15 -2844 ((-112) |#1| |#1|)) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 * (|#1| |#1| (-407 (-564)))) (-15 -2481 (|#1| |#1|)) (-15 -3003 ((-536) |#1|)) (-15 -3227 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3536 ((-407 (-564)) |#1|)) (-15 -2929 ((-112) |#1|)) (-15 -1630 (|#2| |#1|)) (-15 -2573 (|#2| |#1|)) (-15 -1736 (|#1| |#1|)) (-15 -2947 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2199 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2199 (|#1| |#1| (-1 |#2| |#2|) (-769))) (-15 -2199 (|#1| |#1| (-642 (-1173)) (-642 (-769)))) (-15 -2199 (|#1| |#1| (-1173) (-769))) (-15 -2199 (|#1| |#1| (-642 (-1173)))) (-15 -2199 (|#1| |#1| (-1173))) (-15 -2199 (|#1| |#1| (-769))) (-15 -2199 (|#1| |#1|)) (-15 -2849 ((-3 |#2| "failed") |#1|)) (-15 -1687 (|#2| |#1|)) (-15 -1687 ((-407 (-564)) |#1|)) (-15 -2849 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -1687 ((-564) |#1|)) (-15 -2849 ((-3 (-564) "failed") |#1|)) (-15 -2390 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3348 ((-769))) (-15 -2390 (|#1| (-564))) (-15 -3163 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2930 (|#1| |#1| |#1|)) (-15 -2930 (|#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-769) |#1|)) (-15 -2950 ((-112) |#1|)) (-15 * (|#1| (-919) |#1|)) (-15 -2917 (|#1| |#1| |#1|)) (-15 -2390 ((-860) |#1|)) (-15 -2821 ((-112) |#1| |#1|))) (-995 |#2|) (-172)) (T -994)) -((-3348 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-769)) (-5 *1 (-994 *3 *4)) (-4 *3 (-995 *4))))) -(-10 -8 (-15 -2390 (|#1| (-407 (-564)))) (-15 -2844 ((-112) |#1| |#1|)) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 * (|#1| |#1| (-407 (-564)))) (-15 -2481 (|#1| |#1|)) (-15 -3003 ((-536) |#1|)) (-15 -3227 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3536 ((-407 (-564)) |#1|)) (-15 -2929 ((-112) |#1|)) (-15 -1630 (|#2| |#1|)) (-15 -2573 (|#2| |#1|)) (-15 -1736 (|#1| |#1|)) (-15 -2947 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2199 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2199 (|#1| |#1| (-1 |#2| |#2|) (-769))) (-15 -2199 (|#1| |#1| (-642 (-1173)) (-642 (-769)))) (-15 -2199 (|#1| |#1| (-1173) (-769))) (-15 -2199 (|#1| |#1| (-642 (-1173)))) (-15 -2199 (|#1| |#1| (-1173))) (-15 -2199 (|#1| |#1| (-769))) (-15 -2199 (|#1| |#1|)) (-15 -2849 ((-3 |#2| "failed") |#1|)) (-15 -1687 (|#2| |#1|)) (-15 -1687 ((-407 (-564)) |#1|)) (-15 -2849 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -1687 ((-564) |#1|)) (-15 -2849 ((-3 (-564) "failed") |#1|)) (-15 -2390 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3348 ((-769))) (-15 -2390 (|#1| (-564))) (-15 -3163 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2930 (|#1| |#1| |#1|)) (-15 -2930 (|#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-769) |#1|)) (-15 -2950 ((-112) |#1|)) (-15 * (|#1| (-919) |#1|)) (-15 -2917 (|#1| |#1| |#1|)) (-15 -2390 ((-860) |#1|)) (-15 -2821 ((-112) |#1| |#1|))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-3085 (((-3 $ "failed") $ $) 20)) (-2822 (($) 18 T CONST)) (-2849 (((-3 (-564) "failed") $) 127 (|has| |#1| (-1036 (-564)))) (((-3 (-407 (-564)) "failed") $) 125 (|has| |#1| (-1036 (-407 (-564))))) (((-3 |#1| "failed") $) 122)) (-1687 (((-564) $) 126 (|has| |#1| (-1036 (-564)))) (((-407 (-564)) $) 124 (|has| |#1| (-1036 (-407 (-564))))) ((|#1| $) 123)) (-3330 (((-687 (-564)) (-687 $)) 97 (|has| |#1| (-637 (-564)))) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) 96 (|has| |#1| (-637 (-564)))) (((-2 (|:| -3544 (-687 |#1|)) (|:| |vec| (-1262 |#1|))) (-687 $) (-1262 $)) 95) (((-687 |#1|) (-687 $)) 94)) (-2675 (((-3 $ "failed") $) 37)) (-2275 ((|#1| $) 87)) (-3227 (((-3 (-407 (-564)) "failed") $) 83 (|has| |#1| (-545)))) (-2929 (((-112) $) 85 (|has| |#1| (-545)))) (-3536 (((-407 (-564)) $) 84 (|has| |#1| (-545)))) (-2671 (($ |#1| |#1| |#1| |#1|) 88)) (-3163 (((-112) $) 35)) (-2573 ((|#1| $) 89)) (-3225 (($ $ $) 76 (|has| |#1| (-848)))) (-2903 (($ $ $) 75 (|has| |#1| (-848)))) (-2947 (($ (-1 |#1| |#1|) $) 98)) (-1778 (((-1155) $) 10)) (-2481 (($ $) 80 (|has| |#1| (-363)))) (-2695 ((|#1| $) 90)) (-3468 ((|#1| $) 91)) (-1707 ((|#1| $) 92)) (-3999 (((-1117) $) 11)) (-3154 (($ $ (-642 |#1|) (-642 |#1|)) 104 (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) 103 (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) 102 (|has| |#1| (-309 |#1|))) (($ $ (-642 (-294 |#1|))) 101 (|has| |#1| (-309 |#1|))) (($ $ (-642 (-1173)) (-642 |#1|)) 100 (|has| |#1| (-514 (-1173) |#1|))) (($ $ (-1173) |#1|) 99 (|has| |#1| (-514 (-1173) |#1|)))) (-4369 (($ $ |#1|) 105 (|has| |#1| (-286 |#1| |#1|)))) (-2199 (($ $) 121 (|has| |#1| (-233))) (($ $ (-769)) 119 (|has| |#1| (-233))) (($ $ (-1173)) 117 (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) 116 (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) 115 (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) 114 (|has| |#1| (-898 (-1173)))) (($ $ (-1 |#1| |#1|) (-769)) 107) (($ $ (-1 |#1| |#1|)) 106)) (-3003 (((-536) $) 81 (|has| |#1| (-612 (-536))))) (-1736 (($ $) 93)) (-2390 (((-860) $) 12) (($ (-564)) 33) (($ |#1|) 44) (($ (-407 (-564))) 70 (-2682 (|has| |#1| (-363)) (|has| |#1| (-1036 (-407 (-564))))))) (-3434 (((-3 $ "failed") $) 82 (|has| |#1| (-145)))) (-3348 (((-769)) 32 T CONST)) (-1600 (((-112) $ $) 9)) (-1630 ((|#1| $) 86 (|has| |#1| (-1057)))) (-2361 (($) 19 T CONST)) (-2371 (($) 34 T CONST)) (-2711 (($ $) 120 (|has| |#1| (-233))) (($ $ (-769)) 118 (|has| |#1| (-233))) (($ $ (-1173)) 113 (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) 112 (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) 111 (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) 110 (|has| |#1| (-898 (-1173)))) (($ $ (-1 |#1| |#1|) (-769)) 109) (($ $ (-1 |#1| |#1|)) 108)) (-2881 (((-112) $ $) 73 (|has| |#1| (-848)))) (-2857 (((-112) $ $) 72 (|has| |#1| (-848)))) (-2821 (((-112) $ $) 6)) (-2868 (((-112) $ $) 74 (|has| |#1| (-848)))) (-2844 (((-112) $ $) 71 (|has| |#1| (-848)))) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36) (($ $ (-564)) 79 (|has| |#1| (-363)))) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ $ (-407 (-564))) 78 (|has| |#1| (-363))) (($ (-407 (-564)) $) 77 (|has| |#1| (-363))))) -(((-995 |#1|) (-140) (-172)) (T -995)) -((-1736 (*1 *1 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-172)))) (-1707 (*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-172)))) (-3468 (*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-172)))) (-2695 (*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-172)))) (-2573 (*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-172)))) (-2671 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-995 *2)) (-4 *2 (-172)))) (-2275 (*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-172)))) (-1630 (*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-172)) (-4 *2 (-1057)))) (-2929 (*1 *2 *1) (-12 (-4 *1 (-995 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112)))) (-3536 (*1 *2 *1) (-12 (-4 *1 (-995 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-564))))) (-3227 (*1 *2 *1) (|partial| -12 (-4 *1 (-995 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-564)))))) -(-13 (-38 |t#1|) (-411 |t#1|) (-231 |t#1|) (-338 |t#1|) (-377 |t#1|) (-10 -8 (-15 -1736 ($ $)) (-15 -1707 (|t#1| $)) (-15 -3468 (|t#1| $)) (-15 -2695 (|t#1| $)) (-15 -2573 (|t#1| $)) (-15 -2671 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -2275 (|t#1| $)) (IF (|has| |t#1| (-290)) (-6 (-290)) |%noBranch|) (IF (|has| |t#1| (-848)) (-6 (-848)) |%noBranch|) (IF (|has| |t#1| (-363)) (-6 (-243)) |%noBranch|) (IF (|has| |t#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1057)) (-15 -1630 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-545)) (PROGN (-15 -2929 ((-112) $)) (-15 -3536 ((-407 (-564)) $)) (-15 -3227 ((-3 (-407 (-564)) "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) |has| |#1| (-363)) ((-38 |#1|) . T) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-363)) ((-111 |#1| |#1|) . T) ((-111 $ $) -2682 (|has| |#1| (-363)) (|has| |#1| (-290))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) -2682 (|has| |#1| (-1036 (-407 (-564)))) (|has| |#1| (-363))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-611 (-860)) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-243) |has| |#1| (-363)) ((-286 |#1| $) |has| |#1| (-286 |#1| |#1|)) ((-290) -2682 (|has| |#1| (-363)) (|has| |#1| (-290))) ((-309 |#1|) |has| |#1| (-309 |#1|)) ((-338 |#1|) . T) ((-377 |#1|) . T) ((-411 |#1|) . T) ((-514 (-1173) |#1|) |has| |#1| (-514 (-1173) |#1|)) ((-514 |#1| |#1|) |has| |#1| (-309 |#1|)) ((-644 #0#) |has| |#1| (-363)) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-646 #0#) |has| |#1| (-363)) ((-646 |#1|) . T) ((-646 $) . T) ((-638 #0#) |has| |#1| (-363)) ((-638 |#1|) . T) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-715 #0#) |has| |#1| (-363)) ((-715 |#1|) . T) ((-724) . T) ((-848) |has| |#1| (-848)) ((-898 (-1173)) |has| |#1| (-898 (-1173))) ((-1036 (-407 (-564))) |has| |#1| (-1036 (-407 (-564)))) ((-1036 (-564)) |has| |#1| (-1036 (-564))) ((-1036 |#1|) . T) ((-1049 #0#) |has| |#1| (-363)) ((-1049 |#1|) . T) ((-1049 $) -2682 (|has| |#1| (-363)) (|has| |#1| (-290))) ((-1054 #0#) |has| |#1| (-363)) ((-1054 |#1|) . T) ((-1054 $) -2682 (|has| |#1| (-363)) (|has| |#1| (-290))) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T)) -((-2947 ((|#3| (-1 |#4| |#2|) |#1|) 16))) -(((-996 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2947 (|#3| (-1 |#4| |#2|) |#1|))) (-995 |#2|) (-172) (-995 |#4|) (-172)) (T -996)) -((-2947 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-995 *6)) (-5 *1 (-996 *4 *5 *2 *6)) (-4 *4 (-995 *5))))) -(-10 -7 (-15 -2947 (|#3| (-1 |#4| |#2|) |#1|))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-3085 (((-3 $ "failed") $ $) NIL)) (-2822 (($) NIL T CONST)) (-2849 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1036 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1036 (-407 (-564))))) (((-3 |#1| "failed") $) NIL)) (-1687 (((-564) $) NIL (|has| |#1| (-1036 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1036 (-407 (-564))))) ((|#1| $) NIL)) (-3330 (((-687 (-564)) (-687 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -3544 (-687 |#1|)) (|:| |vec| (-1262 |#1|))) (-687 $) (-1262 $)) NIL) (((-687 |#1|) (-687 $)) NIL)) (-2675 (((-3 $ "failed") $) NIL)) (-2275 ((|#1| $) 12)) (-3227 (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-545)))) (-2929 (((-112) $) NIL (|has| |#1| (-545)))) (-3536 (((-407 (-564)) $) NIL (|has| |#1| (-545)))) (-2671 (($ |#1| |#1| |#1| |#1|) 16)) (-3163 (((-112) $) NIL)) (-2573 ((|#1| $) NIL)) (-3225 (($ $ $) NIL (|has| |#1| (-848)))) (-2903 (($ $ $) NIL (|has| |#1| (-848)))) (-2947 (($ (-1 |#1| |#1|) $) NIL)) (-1778 (((-1155) $) NIL)) (-2481 (($ $) NIL (|has| |#1| (-363)))) (-2695 ((|#1| $) 15)) (-3468 ((|#1| $) 14)) (-1707 ((|#1| $) 13)) (-3999 (((-1117) $) NIL)) (-3154 (($ $ (-642 |#1|) (-642 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ (-642 (-294 |#1|))) NIL (|has| |#1| (-309 |#1|))) (($ $ (-642 (-1173)) (-642 |#1|)) NIL (|has| |#1| (-514 (-1173) |#1|))) (($ $ (-1173) |#1|) NIL (|has| |#1| (-514 (-1173) |#1|)))) (-4369 (($ $ |#1|) NIL (|has| |#1| (-286 |#1| |#1|)))) (-2199 (($ $) NIL (|has| |#1| (-233))) (($ $ (-769)) NIL (|has| |#1| (-233))) (($ $ (-1173)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1 |#1| |#1|) (-769)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3003 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-1736 (($ $) NIL)) (-2390 (((-860) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-407 (-564))) NIL (-2682 (|has| |#1| (-363)) (|has| |#1| (-1036 (-407 (-564))))))) (-3434 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3348 (((-769)) NIL T CONST)) (-1600 (((-112) $ $) NIL)) (-1630 ((|#1| $) NIL (|has| |#1| (-1057)))) (-2361 (($) 8 T CONST)) (-2371 (($) 10 T CONST)) (-2711 (($ $) NIL (|has| |#1| (-233))) (($ $ (-769)) NIL (|has| |#1| (-233))) (($ $ (-1173)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1 |#1| |#1|) (-769)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2881 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2857 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2821 (((-112) $ $) NIL)) (-2868 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2844 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363)))) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-407 (-564))) NIL (|has| |#1| (-363))) (($ (-407 (-564)) $) NIL (|has| |#1| (-363))))) -(((-997 |#1|) (-995 |#1|) (-172)) (T -997)) -NIL -(-995 |#1|) -((-2856 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-3442 (((-112) $ (-769)) NIL)) (-2822 (($) NIL T CONST)) (-3311 (($ $) 23)) (-1947 (($ (-642 |#1|)) 33)) (-2018 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-3769 (((-112) $ (-769)) NIL)) (-3541 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2533 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-1857 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#1| |#1|) $) NIL)) (-4145 (((-112) $ (-769)) NIL)) (-2495 (((-769) $) 26)) (-1778 (((-1155) $) NIL (|has| |#1| (-1097)))) (-3220 ((|#1| $) 28)) (-1668 (($ |#1| $) 17)) (-3999 (((-1117) $) NIL (|has| |#1| (-1097)))) (-4108 ((|#1| $) 27)) (-4314 ((|#1| $) 22)) (-4094 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-2478 (((-112) $ $) NIL)) (-2080 ((|#1| |#1| $) 16)) (-4109 (((-112) $) 18)) (-2179 (($) NIL)) (-2519 ((|#1| $) 21)) (-4010 (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-769) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3865 (($ $) NIL)) (-2390 (((-860) $) NIL (|has| |#1| (-611 (-860))))) (-1600 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-4160 (($ (-642 |#1|)) NIL)) (-4052 ((|#1| $) 30)) (-3295 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2821 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2158 (((-769) $) NIL (|has| $ (-6 -4410))))) -(((-998 |#1|) (-13 (-993 |#1|) (-10 -8 (-15 -1947 ($ (-642 |#1|))))) (-1097)) (T -998)) -((-1947 (*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1097)) (-5 *1 (-998 *3))))) -(-13 (-993 |#1|) (-10 -8 (-15 -1947 ($ (-642 |#1|))))) -((-2264 (($ $) 12)) (-2024 (($ $ (-564)) 13))) -(((-999 |#1|) (-10 -8 (-15 -2264 (|#1| |#1|)) (-15 -2024 (|#1| |#1| (-564)))) (-1000)) (T -999)) -NIL -(-10 -8 (-15 -2264 (|#1| |#1|)) (-15 -2024 (|#1| |#1| (-564)))) -((-2264 (($ $) 6)) (-2024 (($ $ (-564)) 7)) (** (($ $ (-407 (-564))) 8))) -(((-1000) (-140)) (T -1000)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-1000)) (-5 *2 (-407 (-564))))) (-2024 (*1 *1 *1 *2) (-12 (-4 *1 (-1000)) (-5 *2 (-564)))) (-2264 (*1 *1 *1) (-4 *1 (-1000)))) -(-13 (-10 -8 (-15 -2264 ($ $)) (-15 -2024 ($ $ (-564))) (-15 ** ($ $ (-407 (-564)))))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-2572 (((-2 (|:| |num| (-1262 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (|has| (-407 |#2|) (-363)))) (-4252 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-1722 (((-112) $) NIL (|has| (-407 |#2|) (-363)))) (-1335 (((-687 (-407 |#2|)) (-1262 $)) NIL) (((-687 (-407 |#2|))) NIL)) (-3778 (((-407 |#2|) $) NIL)) (-3651 (((-1185 (-919) (-769)) (-564)) NIL (|has| (-407 |#2|) (-349)))) (-3085 (((-3 $ "failed") $ $) NIL)) (-1993 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-3282 (((-418 $) $) NIL (|has| (-407 |#2|) (-363)))) (-2134 (((-112) $ $) NIL (|has| (-407 |#2|) (-363)))) (-4003 (((-769)) NIL (|has| (-407 |#2|) (-368)))) (-2883 (((-112)) NIL)) (-4310 (((-112) |#1|) 173) (((-112) |#2|) 177)) (-2822 (($) NIL T CONST)) (-2849 (((-3 (-564) "failed") $) NIL (|has| (-407 |#2|) (-1036 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-407 |#2|) (-1036 (-407 (-564))))) (((-3 (-407 |#2|) "failed") $) NIL)) (-1687 (((-564) $) NIL (|has| (-407 |#2|) (-1036 (-564)))) (((-407 (-564)) $) NIL (|has| (-407 |#2|) (-1036 (-407 (-564))))) (((-407 |#2|) $) NIL)) (-4087 (($ (-1262 (-407 |#2|)) (-1262 $)) NIL) (($ (-1262 (-407 |#2|))) 81) (($ (-1262 |#2|) |#2|) NIL)) (-2629 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-407 |#2|) (-349)))) (-2796 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-2330 (((-687 (-407 |#2|)) $ (-1262 $)) NIL) (((-687 (-407 |#2|)) $) NIL)) (-3330 (((-687 (-564)) (-687 $)) NIL (|has| (-407 |#2|) (-637 (-564)))) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (|has| (-407 |#2|) (-637 (-564)))) (((-2 (|:| -3544 (-687 (-407 |#2|))) (|:| |vec| (-1262 (-407 |#2|)))) (-687 $) (-1262 $)) NIL) (((-687 (-407 |#2|)) (-687 $)) NIL)) (-1431 (((-1262 $) (-1262 $)) NIL)) (-3741 (($ |#3|) 75) (((-3 $ "failed") (-407 |#3|)) NIL (|has| (-407 |#2|) (-363)))) (-2675 (((-3 $ "failed") $) NIL)) (-1954 (((-642 (-642 |#1|))) NIL (|has| |#1| (-368)))) (-2453 (((-112) |#1| |#1|) NIL)) (-3616 (((-919)) NIL)) (-3235 (($) NIL (|has| (-407 |#2|) (-368)))) (-3597 (((-112)) NIL)) (-3904 (((-112) |#1|) 61) (((-112) |#2|) 175)) (-2808 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) NIL (|has| (-407 |#2|) (-363)))) (-2511 (($ $) NIL)) (-1427 (($) NIL (|has| (-407 |#2|) (-349)))) (-4153 (((-112) $) NIL (|has| (-407 |#2|) (-349)))) (-1595 (($ $ (-769)) NIL (|has| (-407 |#2|) (-349))) (($ $) NIL (|has| (-407 |#2|) (-349)))) (-3552 (((-112) $) NIL (|has| (-407 |#2|) (-363)))) (-2408 (((-919) $) NIL (|has| (-407 |#2|) (-349))) (((-831 (-919)) $) NIL (|has| (-407 |#2|) (-349)))) (-3163 (((-112) $) NIL)) (-2454 (((-769)) NIL)) (-4206 (((-1262 $) (-1262 $)) NIL)) (-2573 (((-407 |#2|) $) NIL)) (-1319 (((-642 (-950 |#1|)) (-1173)) NIL (|has| |#1| (-363)))) (-4382 (((-3 $ "failed") $) NIL (|has| (-407 |#2|) (-349)))) (-2709 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| (-407 |#2|) (-363)))) (-2076 ((|#3| $) NIL (|has| (-407 |#2|) (-363)))) (-2535 (((-919) $) NIL (|has| (-407 |#2|) (-368)))) (-3730 ((|#3| $) NIL)) (-2066 (($ (-642 $)) NIL (|has| (-407 |#2|) (-363))) (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-1778 (((-1155) $) NIL)) (-2058 (((-687 (-407 |#2|))) 57)) (-2723 (((-687 (-407 |#2|))) 56)) (-2481 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-3116 (($ (-1262 |#2|) |#2|) 82)) (-2263 (((-687 (-407 |#2|))) 55)) (-1654 (((-687 (-407 |#2|))) 54)) (-2127 (((-2 (|:| |num| (-687 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 97)) (-1545 (((-2 (|:| |num| (-1262 |#2|)) (|:| |den| |#2|)) $) 88)) (-2474 (((-1262 $)) 51)) (-1315 (((-1262 $)) 50)) (-2781 (((-112) $) NIL)) (-2633 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3910 (($) NIL (|has| (-407 |#2|) (-349)) CONST)) (-2065 (($ (-919)) NIL (|has| (-407 |#2|) (-368)))) (-3919 (((-3 |#2| "failed")) 70)) (-3999 (((-1117) $) NIL)) (-1913 (((-769)) NIL)) (-4043 (($) NIL)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) NIL (|has| (-407 |#2|) (-363)))) (-2105 (($ (-642 $)) NIL (|has| (-407 |#2|) (-363))) (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-4229 (((-642 (-2 (|:| -2254 (-564)) (|:| -2817 (-564))))) NIL (|has| (-407 |#2|) (-349)))) (-2254 (((-418 $) $) NIL (|has| (-407 |#2|) (-363)))) (-1877 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-407 |#2|) (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL (|has| (-407 |#2|) (-363)))) (-2842 (((-3 $ "failed") $ $) NIL (|has| (-407 |#2|) (-363)))) (-1483 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| (-407 |#2|) (-363)))) (-4274 (((-769) $) NIL (|has| (-407 |#2|) (-363)))) (-4369 ((|#1| $ |#1| |#1|) NIL)) (-3169 (((-3 |#2| "failed")) 68)) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL (|has| (-407 |#2|) (-363)))) (-2790 (((-407 |#2|) (-1262 $)) NIL) (((-407 |#2|)) 47)) (-1354 (((-769) $) NIL (|has| (-407 |#2|) (-349))) (((-3 (-769) "failed") $ $) NIL (|has| (-407 |#2|) (-349)))) (-2199 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-769)) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-898 (-1173))))) (($ $ (-1173) (-769)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-898 (-1173))))) (($ $ (-642 (-1173))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-898 (-1173))))) (($ $ (-1173)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-898 (-1173))))) (($ $ (-769)) NIL (-2682 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349)))) (($ $) NIL (-2682 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349))))) (-2418 (((-687 (-407 |#2|)) (-1262 $) (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363)))) (-1361 ((|#3|) 58)) (-3553 (($) NIL (|has| (-407 |#2|) (-349)))) (-3719 (((-1262 (-407 |#2|)) $ (-1262 $)) NIL) (((-687 (-407 |#2|)) (-1262 $) (-1262 $)) NIL) (((-1262 (-407 |#2|)) $) 83) (((-687 (-407 |#2|)) (-1262 $)) NIL)) (-3003 (((-1262 (-407 |#2|)) $) NIL) (($ (-1262 (-407 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3556 (((-3 (-1262 $) "failed") (-687 $)) NIL (|has| (-407 |#2|) (-349)))) (-4140 (((-1262 $) (-1262 $)) NIL)) (-2390 (((-860) $) NIL) (($ (-564)) NIL) (($ (-407 |#2|)) NIL) (($ (-407 (-564))) NIL (-2682 (|has| (-407 |#2|) (-1036 (-407 (-564)))) (|has| (-407 |#2|) (-363)))) (($ $) NIL (|has| (-407 |#2|) (-363)))) (-3434 (($ $) NIL (|has| (-407 |#2|) (-349))) (((-3 $ "failed") $) NIL (|has| (-407 |#2|) (-145)))) (-1308 ((|#3| $) NIL)) (-3348 (((-769)) NIL T CONST)) (-2994 (((-112)) 65)) (-1314 (((-112) |#1|) 178) (((-112) |#2|) 179)) (-1600 (((-112) $ $) NIL)) (-2131 (((-1262 $)) 143)) (-1594 (((-112) $ $) NIL (|has| (-407 |#2|) (-363)))) (-4018 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1426 (((-112)) NIL)) (-2361 (($) 109 T CONST)) (-2371 (($) NIL T CONST)) (-2711 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-769)) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-898 (-1173))))) (($ $ (-1173) (-769)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-898 (-1173))))) (($ $ (-642 (-1173))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-898 (-1173))))) (($ $ (-1173)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-898 (-1173))))) (($ $ (-769)) NIL (-2682 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349)))) (($ $) NIL (-2682 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349))))) (-2821 (((-112) $ $) NIL)) (-2943 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL (|has| (-407 |#2|) (-363)))) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 |#2|)) NIL) (($ (-407 |#2|) $) NIL) (($ (-407 (-564)) $) NIL (|has| (-407 |#2|) (-363))) (($ $ (-407 (-564))) NIL (|has| (-407 |#2|) (-363))))) -(((-1001 |#1| |#2| |#3| |#4| |#5|) (-342 |#1| |#2| |#3|) (-1216) (-1238 |#1|) (-1238 (-407 |#2|)) (-407 |#2|) (-769)) (T -1001)) -NIL -(-342 |#1| |#2| |#3|) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-3791 (((-642 (-564)) $) 73)) (-2055 (($ (-642 (-564))) 81)) (-2905 (((-564) $) 48 (|has| (-564) (-307)))) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-4252 (($ $) NIL)) (-1722 (((-112) $) NIL)) (-3085 (((-3 $ "failed") $ $) NIL)) (-4297 (((-418 (-1169 $)) (-1169 $)) NIL (|has| (-564) (-907)))) (-1993 (($ $) NIL)) (-3282 (((-418 $) $) NIL)) (-3267 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) NIL (|has| (-564) (-907)))) (-2134 (((-112) $ $) NIL)) (-2221 (((-564) $) NIL (|has| (-564) (-818)))) (-2822 (($) NIL T CONST)) (-2849 (((-3 (-564) "failed") $) 60) (((-3 (-1173) "failed") $) NIL (|has| (-564) (-1036 (-1173)))) (((-3 (-407 (-564)) "failed") $) 57 (|has| (-564) (-1036 (-564)))) (((-3 (-564) "failed") $) 60 (|has| (-564) (-1036 (-564))))) (-1687 (((-564) $) NIL) (((-1173) $) NIL (|has| (-564) (-1036 (-1173)))) (((-407 (-564)) $) NIL (|has| (-564) (-1036 (-564)))) (((-564) $) NIL (|has| (-564) (-1036 (-564))))) (-2796 (($ $ $) NIL)) (-3330 (((-687 (-564)) (-687 $)) NIL (|has| (-564) (-637 (-564)))) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (|has| (-564) (-637 (-564)))) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL) (((-687 (-564)) (-687 $)) NIL)) (-2675 (((-3 $ "failed") $) NIL)) (-3235 (($) NIL (|has| (-564) (-545)))) (-2808 (($ $ $) NIL)) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) NIL)) (-3552 (((-112) $) NIL)) (-2972 (((-642 (-564)) $) 79)) (-3292 (((-112) $) NIL (|has| (-564) (-818)))) (-1381 (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) NIL (|has| (-564) (-884 (-564)))) (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) NIL (|has| (-564) (-884 (-379))))) (-3163 (((-112) $) NIL)) (-3408 (($ $) NIL)) (-4120 (((-564) $) 45)) (-4382 (((-3 $ "failed") $) NIL (|has| (-564) (-1148)))) (-2666 (((-112) $) NIL (|has| (-564) (-818)))) (-2709 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-3225 (($ $ $) NIL (|has| (-564) (-848)))) (-2903 (($ $ $) NIL (|has| (-564) (-848)))) (-2947 (($ (-1 (-564) (-564)) $) NIL)) (-2066 (($ $ $) NIL) (($ (-642 $)) NIL)) (-1778 (((-1155) $) NIL)) (-2481 (($ $) NIL)) (-3910 (($) NIL (|has| (-564) (-1148)) CONST)) (-3999 (((-1117) $) NIL)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2105 (($ $ $) NIL) (($ (-642 $)) NIL)) (-1830 (($ $) NIL (|has| (-564) (-307))) (((-407 (-564)) $) 50)) (-3923 (((-1153 (-564)) $) 78)) (-3921 (($ (-642 (-564)) (-642 (-564))) 82)) (-2795 (((-564) $) 64 (|has| (-564) (-545)))) (-3223 (((-418 (-1169 $)) (-1169 $)) NIL (|has| (-564) (-907)))) (-2236 (((-418 (-1169 $)) (-1169 $)) NIL (|has| (-564) (-907)))) (-2254 (((-418 $) $) NIL)) (-1877 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2842 (((-3 $ "failed") $ $) NIL)) (-1483 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-3154 (($ $ (-642 (-564)) (-642 (-564))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-564) (-564)) NIL (|has| (-564) (-309 (-564)))) (($ $ (-294 (-564))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-642 (-294 (-564)))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-642 (-1173)) (-642 (-564))) NIL (|has| (-564) (-514 (-1173) (-564)))) (($ $ (-1173) (-564)) NIL (|has| (-564) (-514 (-1173) (-564))))) (-4274 (((-769) $) NIL)) (-4369 (($ $ (-564)) NIL (|has| (-564) (-286 (-564) (-564))))) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL)) (-2199 (($ $) 15 (|has| (-564) (-233))) (($ $ (-769)) NIL (|has| (-564) (-233))) (($ $ (-1173)) NIL (|has| (-564) (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| (-564) (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| (-564) (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| (-564) (-898 (-1173)))) (($ $ (-1 (-564) (-564)) (-769)) NIL) (($ $ (-1 (-564) (-564))) NIL)) (-3082 (($ $) NIL)) (-4131 (((-564) $) 47)) (-4294 (((-642 (-564)) $) 80)) (-3003 (((-890 (-564)) $) NIL (|has| (-564) (-612 (-890 (-564))))) (((-890 (-379)) $) NIL (|has| (-564) (-612 (-890 (-379))))) (((-536) $) NIL (|has| (-564) (-612 (-536)))) (((-379) $) NIL (|has| (-564) (-1020))) (((-225) $) NIL (|has| (-564) (-1020)))) (-3556 (((-3 (-1262 $) "failed") (-687 $)) NIL (-12 (|has| $ (-145)) (|has| (-564) (-907))))) (-2390 (((-860) $) 107) (($ (-564)) 51) (($ $) NIL) (($ (-407 (-564))) 27) (($ (-564)) 51) (($ (-1173)) NIL (|has| (-564) (-1036 (-1173)))) (((-407 (-564)) $) 25)) (-3434 (((-3 $ "failed") $) NIL (-2682 (-12 (|has| $ (-145)) (|has| (-564) (-907))) (|has| (-564) (-145))))) (-3348 (((-769)) 13 T CONST)) (-1378 (((-564) $) 62 (|has| (-564) (-545)))) (-1600 (((-112) $ $) NIL)) (-1594 (((-112) $ $) NIL)) (-1630 (($ $) NIL (|has| (-564) (-818)))) (-2361 (($) 14 T CONST)) (-2371 (($) 17 T CONST)) (-2711 (($ $) NIL (|has| (-564) (-233))) (($ $ (-769)) NIL (|has| (-564) (-233))) (($ $ (-1173)) NIL (|has| (-564) (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| (-564) (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| (-564) (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| (-564) (-898 (-1173)))) (($ $ (-1 (-564) (-564)) (-769)) NIL) (($ $ (-1 (-564) (-564))) NIL)) (-2881 (((-112) $ $) NIL (|has| (-564) (-848)))) (-2857 (((-112) $ $) NIL (|has| (-564) (-848)))) (-2821 (((-112) $ $) 21)) (-2868 (((-112) $ $) NIL (|has| (-564) (-848)))) (-2844 (((-112) $ $) 40 (|has| (-564) (-848)))) (-2943 (($ $ $) 36) (($ (-564) (-564)) 38)) (-2930 (($ $) 23) (($ $ $) 30)) (-2917 (($ $ $) 28)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 32) (($ $ $) 34) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ (-564) $) 32) (($ $ (-564)) NIL))) -(((-1002 |#1|) (-13 (-990 (-564)) (-611 (-407 (-564))) (-10 -8 (-15 -1830 ((-407 (-564)) $)) (-15 -3791 ((-642 (-564)) $)) (-15 -3923 ((-1153 (-564)) $)) (-15 -2972 ((-642 (-564)) $)) (-15 -4294 ((-642 (-564)) $)) (-15 -2055 ($ (-642 (-564)))) (-15 -3921 ($ (-642 (-564)) (-642 (-564)))))) (-564)) (T -1002)) -((-1830 (*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-1002 *3)) (-14 *3 (-564)))) (-3791 (*1 *2 *1) (-12 (-5 *2 (-642 (-564))) (-5 *1 (-1002 *3)) (-14 *3 (-564)))) (-3923 (*1 *2 *1) (-12 (-5 *2 (-1153 (-564))) (-5 *1 (-1002 *3)) (-14 *3 (-564)))) (-2972 (*1 *2 *1) (-12 (-5 *2 (-642 (-564))) (-5 *1 (-1002 *3)) (-14 *3 (-564)))) (-4294 (*1 *2 *1) (-12 (-5 *2 (-642 (-564))) (-5 *1 (-1002 *3)) (-14 *3 (-564)))) (-2055 (*1 *1 *2) (-12 (-5 *2 (-642 (-564))) (-5 *1 (-1002 *3)) (-14 *3 (-564)))) (-3921 (*1 *1 *2 *2) (-12 (-5 *2 (-642 (-564))) (-5 *1 (-1002 *3)) (-14 *3 (-564))))) -(-13 (-990 (-564)) (-611 (-407 (-564))) (-10 -8 (-15 -1830 ((-407 (-564)) $)) (-15 -3791 ((-642 (-564)) $)) (-15 -3923 ((-1153 (-564)) $)) (-15 -2972 ((-642 (-564)) $)) (-15 -4294 ((-642 (-564)) $)) (-15 -2055 ($ (-642 (-564)))) (-15 -3921 ($ (-642 (-564)) (-642 (-564)))))) -((-2187 (((-52) (-407 (-564)) (-564)) 9))) -(((-1003) (-10 -7 (-15 -2187 ((-52) (-407 (-564)) (-564))))) (T -1003)) -((-2187 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-564))) (-5 *4 (-564)) (-5 *2 (-52)) (-5 *1 (-1003))))) -(-10 -7 (-15 -2187 ((-52) (-407 (-564)) (-564)))) -((-4003 (((-564)) 23)) (-3901 (((-564)) 28)) (-3423 (((-1267) (-564)) 26)) (-3207 (((-564) (-564)) 29) (((-564)) 22))) -(((-1004) (-10 -7 (-15 -3207 ((-564))) (-15 -4003 ((-564))) (-15 -3207 ((-564) (-564))) (-15 -3423 ((-1267) (-564))) (-15 -3901 ((-564))))) (T -1004)) -((-3901 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1004)))) (-3423 (*1 *2 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1267)) (-5 *1 (-1004)))) (-3207 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1004)))) (-4003 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1004)))) (-3207 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1004))))) -(-10 -7 (-15 -3207 ((-564))) (-15 -4003 ((-564))) (-15 -3207 ((-564) (-564))) (-15 -3423 ((-1267) (-564))) (-15 -3901 ((-564)))) -((-1683 (((-418 |#1|) |#1|) 43)) (-2254 (((-418 |#1|) |#1|) 41))) -(((-1005 |#1|) (-10 -7 (-15 -2254 ((-418 |#1|) |#1|)) (-15 -1683 ((-418 |#1|) |#1|))) (-1238 (-407 (-564)))) (T -1005)) -((-1683 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-1005 *3)) (-4 *3 (-1238 (-407 (-564)))))) (-2254 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-1005 *3)) (-4 *3 (-1238 (-407 (-564))))))) -(-10 -7 (-15 -2254 ((-418 |#1|) |#1|)) (-15 -1683 ((-418 |#1|) |#1|))) -((-3227 (((-3 (-407 (-564)) "failed") |#1|) 15)) (-2929 (((-112) |#1|) 14)) (-3536 (((-407 (-564)) |#1|) 10))) -(((-1006 |#1|) (-10 -7 (-15 -3536 ((-407 (-564)) |#1|)) (-15 -2929 ((-112) |#1|)) (-15 -3227 ((-3 (-407 (-564)) "failed") |#1|))) (-1036 (-407 (-564)))) (T -1006)) -((-3227 (*1 *2 *3) (|partial| -12 (-5 *2 (-407 (-564))) (-5 *1 (-1006 *3)) (-4 *3 (-1036 *2)))) (-2929 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1006 *3)) (-4 *3 (-1036 (-407 (-564)))))) (-3536 (*1 *2 *3) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-1006 *3)) (-4 *3 (-1036 *2))))) -(-10 -7 (-15 -3536 ((-407 (-564)) |#1|)) (-15 -2929 ((-112) |#1|)) (-15 -3227 ((-3 (-407 (-564)) "failed") |#1|))) -((-3841 ((|#2| $ "value" |#2|) 12)) (-4369 ((|#2| $ "value") 10)) (-1622 (((-112) $ $) 18))) -(((-1007 |#1| |#2|) (-10 -8 (-15 -3841 (|#2| |#1| "value" |#2|)) (-15 -1622 ((-112) |#1| |#1|)) (-15 -4369 (|#2| |#1| "value"))) (-1008 |#2|) (-1212)) (T -1007)) -NIL -(-10 -8 (-15 -3841 (|#2| |#1| "value" |#2|)) (-15 -1622 ((-112) |#1| |#1|)) (-15 -4369 (|#2| |#1| "value"))) -((-2856 (((-112) $ $) 19 (|has| |#1| (-1097)))) (-2108 ((|#1| $) 49)) (-3442 (((-112) $ (-769)) 8)) (-1407 ((|#1| $ |#1|) 40 (|has| $ (-6 -4411)))) (-3841 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4411)))) (-4041 (($ $ (-642 $)) 42 (|has| $ (-6 -4411)))) (-2822 (($) 7 T CONST)) (-2018 (((-642 |#1|) $) 31 (|has| $ (-6 -4410)))) (-1300 (((-642 $) $) 51)) (-2423 (((-112) $ $) 43 (|has| |#1| (-1097)))) (-3769 (((-112) $ (-769)) 9)) (-3541 (((-642 |#1|) $) 30 (|has| $ (-6 -4410)))) (-2533 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-1857 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#1| |#1|) $) 36)) (-4145 (((-112) $ (-769)) 10)) (-2334 (((-642 |#1|) $) 46)) (-1961 (((-112) $) 50)) (-1778 (((-1155) $) 22 (|has| |#1| (-1097)))) (-3999 (((-1117) $) 21 (|has| |#1| (-1097)))) (-4094 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-2478 (((-112) $ $) 14)) (-4109 (((-112) $) 11)) (-2179 (($) 12)) (-4369 ((|#1| $ "value") 48)) (-1743 (((-564) $ $) 45)) (-1311 (((-112) $) 47)) (-4010 (((-769) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4410))) (((-769) |#1| $) 29 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3865 (($ $) 13)) (-2390 (((-860) $) 18 (|has| |#1| (-611 (-860))))) (-4275 (((-642 $) $) 52)) (-1622 (((-112) $ $) 44 (|has| |#1| (-1097)))) (-1600 (((-112) $ $) 23 (|has| |#1| (-1097)))) (-3295 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4410)))) (-2821 (((-112) $ $) 20 (|has| |#1| (-1097)))) (-2158 (((-769) $) 6 (|has| $ (-6 -4410))))) -(((-1008 |#1|) (-140) (-1212)) (T -1008)) -((-4275 (*1 *2 *1) (-12 (-4 *3 (-1212)) (-5 *2 (-642 *1)) (-4 *1 (-1008 *3)))) (-1300 (*1 *2 *1) (-12 (-4 *3 (-1212)) (-5 *2 (-642 *1)) (-4 *1 (-1008 *3)))) (-1961 (*1 *2 *1) (-12 (-4 *1 (-1008 *3)) (-4 *3 (-1212)) (-5 *2 (-112)))) (-2108 (*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1212)))) (-4369 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1008 *2)) (-4 *2 (-1212)))) (-1311 (*1 *2 *1) (-12 (-4 *1 (-1008 *3)) (-4 *3 (-1212)) (-5 *2 (-112)))) (-2334 (*1 *2 *1) (-12 (-4 *1 (-1008 *3)) (-4 *3 (-1212)) (-5 *2 (-642 *3)))) (-1743 (*1 *2 *1 *1) (-12 (-4 *1 (-1008 *3)) (-4 *3 (-1212)) (-5 *2 (-564)))) (-1622 (*1 *2 *1 *1) (-12 (-4 *1 (-1008 *3)) (-4 *3 (-1212)) (-4 *3 (-1097)) (-5 *2 (-112)))) (-2423 (*1 *2 *1 *1) (-12 (-4 *1 (-1008 *3)) (-4 *3 (-1212)) (-4 *3 (-1097)) (-5 *2 (-112)))) (-4041 (*1 *1 *1 *2) (-12 (-5 *2 (-642 *1)) (|has| *1 (-6 -4411)) (-4 *1 (-1008 *3)) (-4 *3 (-1212)))) (-3841 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4411)) (-4 *1 (-1008 *2)) (-4 *2 (-1212)))) (-1407 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4411)) (-4 *1 (-1008 *2)) (-4 *2 (-1212))))) -(-13 (-489 |t#1|) (-10 -8 (-15 -4275 ((-642 $) $)) (-15 -1300 ((-642 $) $)) (-15 -1961 ((-112) $)) (-15 -2108 (|t#1| $)) (-15 -4369 (|t#1| $ "value")) (-15 -1311 ((-112) $)) (-15 -2334 ((-642 |t#1|) $)) (-15 -1743 ((-564) $ $)) (IF (|has| |t#1| (-1097)) (PROGN (-15 -1622 ((-112) $ $)) (-15 -2423 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4411)) (PROGN (-15 -4041 ($ $ (-642 $))) (-15 -3841 (|t#1| $ "value" |t#1|)) (-15 -1407 (|t#1| $ |t#1|))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1097)) ((-611 (-860)) -2682 (|has| |#1| (-1097)) (|has| |#1| (-611 (-860)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-1097) |has| |#1| (-1097)) ((-1212) . T)) -((-2264 (($ $) 9) (($ $ (-919)) 49) (($ (-407 (-564))) 13) (($ (-564)) 15)) (-2619 (((-3 $ "failed") (-1169 $) (-919) (-860)) 24) (((-3 $ "failed") (-1169 $) (-919)) 32)) (-2024 (($ $ (-564)) 58)) (-3348 (((-769)) 18)) (-3873 (((-642 $) (-1169 $)) NIL) (((-642 $) (-1169 (-407 (-564)))) 63) (((-642 $) (-1169 (-564))) 68) (((-642 $) (-950 $)) 72) (((-642 $) (-950 (-407 (-564)))) 76) (((-642 $) (-950 (-564))) 80)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL) (($ $ (-407 (-564))) 53))) -(((-1009 |#1|) (-10 -8 (-15 -2264 (|#1| (-564))) (-15 -2264 (|#1| (-407 (-564)))) (-15 -2264 (|#1| |#1| (-919))) (-15 -3873 ((-642 |#1|) (-950 (-564)))) (-15 -3873 ((-642 |#1|) (-950 (-407 (-564))))) (-15 -3873 ((-642 |#1|) (-950 |#1|))) (-15 -3873 ((-642 |#1|) (-1169 (-564)))) (-15 -3873 ((-642 |#1|) (-1169 (-407 (-564))))) (-15 -3873 ((-642 |#1|) (-1169 |#1|))) (-15 -2619 ((-3 |#1| "failed") (-1169 |#1|) (-919))) (-15 -2619 ((-3 |#1| "failed") (-1169 |#1|) (-919) (-860))) (-15 ** (|#1| |#1| (-407 (-564)))) (-15 -2024 (|#1| |#1| (-564))) (-15 -2264 (|#1| |#1|)) (-15 ** (|#1| |#1| (-564))) (-15 -3348 ((-769))) (-15 ** (|#1| |#1| (-769))) (-15 ** (|#1| |#1| (-919)))) (-1010)) (T -1009)) -((-3348 (*1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-1009 *3)) (-4 *3 (-1010))))) -(-10 -8 (-15 -2264 (|#1| (-564))) (-15 -2264 (|#1| (-407 (-564)))) (-15 -2264 (|#1| |#1| (-919))) (-15 -3873 ((-642 |#1|) (-950 (-564)))) (-15 -3873 ((-642 |#1|) (-950 (-407 (-564))))) (-15 -3873 ((-642 |#1|) (-950 |#1|))) (-15 -3873 ((-642 |#1|) (-1169 (-564)))) (-15 -3873 ((-642 |#1|) (-1169 (-407 (-564))))) (-15 -3873 ((-642 |#1|) (-1169 |#1|))) (-15 -2619 ((-3 |#1| "failed") (-1169 |#1|) (-919))) (-15 -2619 ((-3 |#1| "failed") (-1169 |#1|) (-919) (-860))) (-15 ** (|#1| |#1| (-407 (-564)))) (-15 -2024 (|#1| |#1| (-564))) (-15 -2264 (|#1| |#1|)) (-15 ** (|#1| |#1| (-564))) (-15 -3348 ((-769))) (-15 ** (|#1| |#1| (-769))) (-15 ** (|#1| |#1| (-919)))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) 102)) (-4252 (($ $) 103)) (-1722 (((-112) $) 105)) (-3085 (((-3 $ "failed") $ $) 20)) (-1993 (($ $) 122)) (-3282 (((-418 $) $) 123)) (-2264 (($ $) 86) (($ $ (-919)) 72) (($ (-407 (-564))) 71) (($ (-564)) 70)) (-2134 (((-112) $ $) 113)) (-2221 (((-564) $) 139)) (-2822 (($) 18 T CONST)) (-2619 (((-3 $ "failed") (-1169 $) (-919) (-860)) 80) (((-3 $ "failed") (-1169 $) (-919)) 79)) (-2849 (((-3 (-564) "failed") $) 99 (|has| (-407 (-564)) (-1036 (-564)))) (((-3 (-407 (-564)) "failed") $) 97 (|has| (-407 (-564)) (-1036 (-407 (-564))))) (((-3 (-407 (-564)) "failed") $) 94)) (-1687 (((-564) $) 98 (|has| (-407 (-564)) (-1036 (-564)))) (((-407 (-564)) $) 96 (|has| (-407 (-564)) (-1036 (-407 (-564))))) (((-407 (-564)) $) 95)) (-3621 (($ $ (-860)) 69)) (-4367 (($ $ (-860)) 68)) (-2796 (($ $ $) 117)) (-2675 (((-3 $ "failed") $) 37)) (-2808 (($ $ $) 116)) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) 111)) (-3552 (((-112) $) 124)) (-3292 (((-112) $) 137)) (-3163 (((-112) $) 35)) (-2024 (($ $ (-564)) 85)) (-2666 (((-112) $) 138)) (-2709 (((-3 (-642 $) "failed") (-642 $) $) 120)) (-3225 (($ $ $) 136)) (-2903 (($ $ $) 135)) (-2952 (((-3 (-1169 $) "failed") $) 81)) (-4104 (((-3 (-860) "failed") $) 83)) (-2174 (((-3 (-1169 $) "failed") $) 82)) (-2066 (($ (-642 $)) 109) (($ $ $) 108)) (-1778 (((-1155) $) 10)) (-2481 (($ $) 125)) (-3999 (((-1117) $) 11)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) 110)) (-2105 (($ (-642 $)) 107) (($ $ $) 106)) (-2254 (((-418 $) $) 121)) (-1877 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) 118)) (-2842 (((-3 $ "failed") $ $) 101)) (-1483 (((-3 (-642 $) "failed") (-642 $) $) 112)) (-4274 (((-769) $) 114)) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) 115)) (-2390 (((-860) $) 12) (($ (-564)) 33) (($ (-407 (-564))) 129) (($ $) 100) (($ (-407 (-564))) 93) (($ (-564)) 92) (($ (-407 (-564))) 89)) (-3348 (((-769)) 32 T CONST)) (-1600 (((-112) $ $) 9)) (-1594 (((-112) $ $) 104)) (-3560 (((-407 (-564)) $ $) 67)) (-3873 (((-642 $) (-1169 $)) 78) (((-642 $) (-1169 (-407 (-564)))) 77) (((-642 $) (-1169 (-564))) 76) (((-642 $) (-950 $)) 75) (((-642 $) (-950 (-407 (-564)))) 74) (((-642 $) (-950 (-564))) 73)) (-1630 (($ $) 140)) (-2361 (($) 19 T CONST)) (-2371 (($) 34 T CONST)) (-2881 (((-112) $ $) 133)) (-2857 (((-112) $ $) 132)) (-2821 (((-112) $ $) 6)) (-2868 (((-112) $ $) 134)) (-2844 (((-112) $ $) 131)) (-2943 (($ $ $) 130)) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36) (($ $ (-564)) 126) (($ $ (-407 (-564))) 84)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ (-407 (-564)) $) 128) (($ $ (-407 (-564))) 127) (($ (-564) $) 91) (($ $ (-564)) 90) (($ (-407 (-564)) $) 88) (($ $ (-407 (-564))) 87))) -(((-1010) (-140)) (T -1010)) -((-2264 (*1 *1 *1) (-4 *1 (-1010))) (-4104 (*1 *2 *1) (|partial| -12 (-4 *1 (-1010)) (-5 *2 (-860)))) (-2174 (*1 *2 *1) (|partial| -12 (-5 *2 (-1169 *1)) (-4 *1 (-1010)))) (-2952 (*1 *2 *1) (|partial| -12 (-5 *2 (-1169 *1)) (-4 *1 (-1010)))) (-2619 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1169 *1)) (-5 *3 (-919)) (-5 *4 (-860)) (-4 *1 (-1010)))) (-2619 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1169 *1)) (-5 *3 (-919)) (-4 *1 (-1010)))) (-3873 (*1 *2 *3) (-12 (-5 *3 (-1169 *1)) (-4 *1 (-1010)) (-5 *2 (-642 *1)))) (-3873 (*1 *2 *3) (-12 (-5 *3 (-1169 (-407 (-564)))) (-5 *2 (-642 *1)) (-4 *1 (-1010)))) (-3873 (*1 *2 *3) (-12 (-5 *3 (-1169 (-564))) (-5 *2 (-642 *1)) (-4 *1 (-1010)))) (-3873 (*1 *2 *3) (-12 (-5 *3 (-950 *1)) (-4 *1 (-1010)) (-5 *2 (-642 *1)))) (-3873 (*1 *2 *3) (-12 (-5 *3 (-950 (-407 (-564)))) (-5 *2 (-642 *1)) (-4 *1 (-1010)))) (-3873 (*1 *2 *3) (-12 (-5 *3 (-950 (-564))) (-5 *2 (-642 *1)) (-4 *1 (-1010)))) (-2264 (*1 *1 *1 *2) (-12 (-4 *1 (-1010)) (-5 *2 (-919)))) (-2264 (*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-4 *1 (-1010)))) (-2264 (*1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-1010)))) (-3621 (*1 *1 *1 *2) (-12 (-4 *1 (-1010)) (-5 *2 (-860)))) (-4367 (*1 *1 *1 *2) (-12 (-4 *1 (-1010)) (-5 *2 (-860)))) (-3560 (*1 *2 *1 *1) (-12 (-4 *1 (-1010)) (-5 *2 (-407 (-564)))))) -(-13 (-147) (-846) (-172) (-363) (-411 (-407 (-564))) (-38 (-564)) (-38 (-407 (-564))) (-1000) (-10 -8 (-15 -4104 ((-3 (-860) "failed") $)) (-15 -2174 ((-3 (-1169 $) "failed") $)) (-15 -2952 ((-3 (-1169 $) "failed") $)) (-15 -2619 ((-3 $ "failed") (-1169 $) (-919) (-860))) (-15 -2619 ((-3 $ "failed") (-1169 $) (-919))) (-15 -3873 ((-642 $) (-1169 $))) (-15 -3873 ((-642 $) (-1169 (-407 (-564))))) (-15 -3873 ((-642 $) (-1169 (-564)))) (-15 -3873 ((-642 $) (-950 $))) (-15 -3873 ((-642 $) (-950 (-407 (-564))))) (-15 -3873 ((-642 $) (-950 (-564)))) (-15 -2264 ($ $ (-919))) (-15 -2264 ($ $)) (-15 -2264 ($ (-407 (-564)))) (-15 -2264 ($ (-564))) (-15 -3621 ($ $ (-860))) (-15 -4367 ($ $ (-860))) (-15 -3560 ((-407 (-564)) $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 #1=(-564)) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-860)) . T) ((-172) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-411 (-407 (-564))) . T) ((-452) . T) ((-556) . T) ((-644 #0#) . T) ((-644 (-564)) . T) ((-644 $) . T) ((-646 #0#) . T) ((-646 #1#) . T) ((-646 $) . T) ((-638 #0#) . T) ((-638 #1#) . T) ((-638 $) . T) ((-715 #0#) . T) ((-715 #1#) . T) ((-715 $) . T) ((-724) . T) ((-789) . T) ((-790) . T) ((-792) . T) ((-793) . T) ((-846) . T) ((-848) . T) ((-918) . T) ((-1000) . T) ((-1036 (-407 (-564))) . T) ((-1036 (-564)) |has| (-407 (-564)) (-1036 (-564))) ((-1049 #0#) . T) ((-1049 #1#) . T) ((-1049 $) . T) ((-1054 #0#) . T) ((-1054 #1#) . T) ((-1054 $) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T) ((-1216) . T)) -((-1734 (((-2 (|:| |ans| |#2|) (|:| -4351 |#2|) (|:| |sol?| (-112))) (-564) |#2| |#2| (-1173) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-642 |#2|)) (-1 (-3 (-2 (|:| -3872 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 67))) -(((-1011 |#1| |#2|) (-10 -7 (-15 -1734 ((-2 (|:| |ans| |#2|) (|:| -4351 |#2|) (|:| |sol?| (-112))) (-564) |#2| |#2| (-1173) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-642 |#2|)) (-1 (-3 (-2 (|:| -3872 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-452) (-147) (-1036 (-564)) (-637 (-564))) (-13 (-1197) (-27) (-430 |#1|))) (T -1011)) -((-1734 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1173)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-642 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3872 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1197) (-27) (-430 *8))) (-4 *8 (-13 (-452) (-147) (-1036 *3) (-637 *3))) (-5 *3 (-564)) (-5 *2 (-2 (|:| |ans| *4) (|:| -4351 *4) (|:| |sol?| (-112)))) (-5 *1 (-1011 *8 *4))))) -(-10 -7 (-15 -1734 ((-2 (|:| |ans| |#2|) (|:| -4351 |#2|) (|:| |sol?| (-112))) (-564) |#2| |#2| (-1173) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-642 |#2|)) (-1 (-3 (-2 (|:| -3872 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-1550 (((-3 (-642 |#2|) "failed") (-564) |#2| |#2| |#2| (-1173) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-642 |#2|)) (-1 (-3 (-2 (|:| -3872 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 55))) -(((-1012 |#1| |#2|) (-10 -7 (-15 -1550 ((-3 (-642 |#2|) "failed") (-564) |#2| |#2| |#2| (-1173) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-642 |#2|)) (-1 (-3 (-2 (|:| -3872 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-452) (-147) (-1036 (-564)) (-637 (-564))) (-13 (-1197) (-27) (-430 |#1|))) (T -1012)) -((-1550 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1173)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-642 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3872 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1197) (-27) (-430 *8))) (-4 *8 (-13 (-452) (-147) (-1036 *3) (-637 *3))) (-5 *3 (-564)) (-5 *2 (-642 *4)) (-5 *1 (-1012 *8 *4))))) -(-10 -7 (-15 -1550 ((-3 (-642 |#2|) "failed") (-564) |#2| |#2| |#2| (-1173) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-642 |#2|)) (-1 (-3 (-2 (|:| -3872 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-2691 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3359 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-564)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-564) (-1 |#2| |#2|)) 41)) (-1871 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |c| (-407 |#2|)) (|:| -1425 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|)) 71)) (-3305 (((-2 (|:| |ans| (-407 |#2|)) (|:| |nosol| (-112))) (-407 |#2|) (-407 |#2|)) 76))) -(((-1013 |#1| |#2|) (-10 -7 (-15 -1871 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |c| (-407 |#2|)) (|:| -1425 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|))) (-15 -3305 ((-2 (|:| |ans| (-407 |#2|)) (|:| |nosol| (-112))) (-407 |#2|) (-407 |#2|))) (-15 -2691 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3359 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-564)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-564) (-1 |#2| |#2|)))) (-13 (-363) (-147) (-1036 (-564))) (-1238 |#1|)) (T -1013)) -((-2691 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1238 *6)) (-4 *6 (-13 (-363) (-147) (-1036 *4))) (-5 *4 (-564)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -3359 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1013 *6 *3)))) (-3305 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1036 (-564)))) (-4 *5 (-1238 *4)) (-5 *2 (-2 (|:| |ans| (-407 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1013 *4 *5)) (-5 *3 (-407 *5)))) (-1871 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1238 *5)) (-4 *5 (-13 (-363) (-147) (-1036 (-564)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-407 *6)) (|:| |c| (-407 *6)) (|:| -1425 *6))) (-5 *1 (-1013 *5 *6)) (-5 *3 (-407 *6))))) -(-10 -7 (-15 -1871 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |c| (-407 |#2|)) (|:| -1425 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|))) (-15 -3305 ((-2 (|:| |ans| (-407 |#2|)) (|:| |nosol| (-112))) (-407 |#2|) (-407 |#2|))) (-15 -2691 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3359 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-564)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-564) (-1 |#2| |#2|)))) -((-2265 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |h| |#2|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| -1425 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|)) 22)) (-3251 (((-3 (-642 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|)) 34))) -(((-1014 |#1| |#2|) (-10 -7 (-15 -2265 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |h| |#2|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| -1425 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|))) (-15 -3251 ((-3 (-642 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|)))) (-13 (-363) (-147) (-1036 (-564))) (-1238 |#1|)) (T -1014)) -((-3251 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-363) (-147) (-1036 (-564)))) (-4 *5 (-1238 *4)) (-5 *2 (-642 (-407 *5))) (-5 *1 (-1014 *4 *5)) (-5 *3 (-407 *5)))) (-2265 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1238 *5)) (-4 *5 (-13 (-363) (-147) (-1036 (-564)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-407 *6)) (|:| |h| *6) (|:| |c1| (-407 *6)) (|:| |c2| (-407 *6)) (|:| -1425 *6))) (-5 *1 (-1014 *5 *6)) (-5 *3 (-407 *6))))) -(-10 -7 (-15 -2265 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |h| |#2|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| -1425 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|))) (-15 -3251 ((-3 (-642 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|)))) -((-1997 (((-1 |#1|) (-642 (-2 (|:| -2108 |#1|) (|:| -3059 (-564))))) 37)) (-2702 (((-1 |#1|) (-1099 |#1|)) 45)) (-1323 (((-1 |#1|) (-1262 |#1|) (-1262 (-564)) (-564)) 34))) -(((-1015 |#1|) (-10 -7 (-15 -2702 ((-1 |#1|) (-1099 |#1|))) (-15 -1997 ((-1 |#1|) (-642 (-2 (|:| -2108 |#1|) (|:| -3059 (-564)))))) (-15 -1323 ((-1 |#1|) (-1262 |#1|) (-1262 (-564)) (-564)))) (-1097)) (T -1015)) -((-1323 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1262 *6)) (-5 *4 (-1262 (-564))) (-5 *5 (-564)) (-4 *6 (-1097)) (-5 *2 (-1 *6)) (-5 *1 (-1015 *6)))) (-1997 (*1 *2 *3) (-12 (-5 *3 (-642 (-2 (|:| -2108 *4) (|:| -3059 (-564))))) (-4 *4 (-1097)) (-5 *2 (-1 *4)) (-5 *1 (-1015 *4)))) (-2702 (*1 *2 *3) (-12 (-5 *3 (-1099 *4)) (-4 *4 (-1097)) (-5 *2 (-1 *4)) (-5 *1 (-1015 *4))))) -(-10 -7 (-15 -2702 ((-1 |#1|) (-1099 |#1|))) (-15 -1997 ((-1 |#1|) (-642 (-2 (|:| -2108 |#1|) (|:| -3059 (-564)))))) (-15 -1323 ((-1 |#1|) (-1262 |#1|) (-1262 (-564)) (-564)))) -((-2408 (((-769) (-336 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) -(((-1016 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2408 ((-769) (-336 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-363) (-1238 |#1|) (-1238 (-407 |#2|)) (-342 |#1| |#2| |#3|) (-13 (-368) (-363))) (T -1016)) -((-2408 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-336 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-363)) (-4 *7 (-1238 *6)) (-4 *4 (-1238 (-407 *7))) (-4 *8 (-342 *6 *7 *4)) (-4 *9 (-13 (-368) (-363))) (-5 *2 (-769)) (-5 *1 (-1016 *6 *7 *4 *8 *9))))) -(-10 -7 (-15 -2408 ((-769) (-336 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) -((-2856 (((-112) $ $) NIL)) (-3898 (((-1132) $) 9)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) NIL) (($ (-1178)) NIL) (((-1178) $) NIL)) (-2502 (((-1132) $) 11)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-1017) (-13 (-1080) (-10 -8 (-15 -3898 ((-1132) $)) (-15 -2502 ((-1132) $))))) (T -1017)) -((-3898 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-1017)))) (-2502 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-1017))))) -(-13 (-1080) (-10 -8 (-15 -3898 ((-1132) $)) (-15 -2502 ((-1132) $)))) -((-2354 (((-3 (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564)))) "failed") |#1| (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564)))) (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564))))) 32) (((-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564)))) |#1| (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564)))) (-407 (-564))) 29)) (-2812 (((-642 (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564))))) |#1| (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564)))) (-407 (-564))) 34) (((-642 (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564))))) |#1| (-407 (-564))) 30) (((-642 (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564))))) |#1| (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564))))) 33) (((-642 (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564))))) |#1|) 28)) (-3389 (((-642 (-407 (-564))) (-642 (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564)))))) 20)) (-1371 (((-407 (-564)) (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564))))) 17))) -(((-1018 |#1|) (-10 -7 (-15 -2812 ((-642 (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564))))) |#1|)) (-15 -2812 ((-642 (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564))))) |#1| (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564)))))) (-15 -2812 ((-642 (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564))))) |#1| (-407 (-564)))) (-15 -2812 ((-642 (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564))))) |#1| (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564)))) (-407 (-564)))) (-15 -2354 ((-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564)))) |#1| (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564)))) (-407 (-564)))) (-15 -2354 ((-3 (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564)))) "failed") |#1| (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564)))) (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564)))))) (-15 -1371 ((-407 (-564)) (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564)))))) (-15 -3389 ((-642 (-407 (-564))) (-642 (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564)))))))) (-1238 (-564))) (T -1018)) -((-3389 (*1 *2 *3) (-12 (-5 *3 (-642 (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564)))))) (-5 *2 (-642 (-407 (-564)))) (-5 *1 (-1018 *4)) (-4 *4 (-1238 (-564))))) (-1371 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564))))) (-5 *2 (-407 (-564))) (-5 *1 (-1018 *4)) (-4 *4 (-1238 (-564))))) (-2354 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564))))) (-5 *1 (-1018 *3)) (-4 *3 (-1238 (-564))))) (-2354 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564))))) (-5 *4 (-407 (-564))) (-5 *1 (-1018 *3)) (-4 *3 (-1238 (-564))))) (-2812 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-407 (-564))) (-5 *2 (-642 (-2 (|:| -4341 *5) (|:| -4351 *5)))) (-5 *1 (-1018 *3)) (-4 *3 (-1238 (-564))) (-5 *4 (-2 (|:| -4341 *5) (|:| -4351 *5))))) (-2812 (*1 *2 *3 *4) (-12 (-5 *2 (-642 (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564)))))) (-5 *1 (-1018 *3)) (-4 *3 (-1238 (-564))) (-5 *4 (-407 (-564))))) (-2812 (*1 *2 *3 *4) (-12 (-5 *2 (-642 (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564)))))) (-5 *1 (-1018 *3)) (-4 *3 (-1238 (-564))) (-5 *4 (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564))))))) (-2812 (*1 *2 *3) (-12 (-5 *2 (-642 (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564)))))) (-5 *1 (-1018 *3)) (-4 *3 (-1238 (-564)))))) -(-10 -7 (-15 -2812 ((-642 (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564))))) |#1|)) (-15 -2812 ((-642 (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564))))) |#1| (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564)))))) (-15 -2812 ((-642 (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564))))) |#1| (-407 (-564)))) (-15 -2812 ((-642 (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564))))) |#1| (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564)))) (-407 (-564)))) (-15 -2354 ((-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564)))) |#1| (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564)))) (-407 (-564)))) (-15 -2354 ((-3 (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564)))) "failed") |#1| (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564)))) (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564)))))) (-15 -1371 ((-407 (-564)) (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564)))))) (-15 -3389 ((-642 (-407 (-564))) (-642 (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564)))))))) -((-2354 (((-3 (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564)))) "failed") |#1| (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564)))) (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564))))) 35) (((-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564)))) |#1| (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564)))) (-407 (-564))) 32)) (-2812 (((-642 (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564))))) |#1| (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564)))) (-407 (-564))) 30) (((-642 (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564))))) |#1| (-407 (-564))) 26) (((-642 (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564))))) |#1| (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564))))) 28) (((-642 (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564))))) |#1|) 24))) -(((-1019 |#1|) (-10 -7 (-15 -2812 ((-642 (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564))))) |#1|)) (-15 -2812 ((-642 (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564))))) |#1| (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564)))))) (-15 -2812 ((-642 (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564))))) |#1| (-407 (-564)))) (-15 -2812 ((-642 (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564))))) |#1| (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564)))) (-407 (-564)))) (-15 -2354 ((-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564)))) |#1| (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564)))) (-407 (-564)))) (-15 -2354 ((-3 (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564)))) "failed") |#1| (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564)))) (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564))))))) (-1238 (-407 (-564)))) (T -1019)) -((-2354 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564))))) (-5 *1 (-1019 *3)) (-4 *3 (-1238 (-407 (-564)))))) (-2354 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564))))) (-5 *4 (-407 (-564))) (-5 *1 (-1019 *3)) (-4 *3 (-1238 *4)))) (-2812 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-407 (-564))) (-5 *2 (-642 (-2 (|:| -4341 *5) (|:| -4351 *5)))) (-5 *1 (-1019 *3)) (-4 *3 (-1238 *5)) (-5 *4 (-2 (|:| -4341 *5) (|:| -4351 *5))))) (-2812 (*1 *2 *3 *4) (-12 (-5 *4 (-407 (-564))) (-5 *2 (-642 (-2 (|:| -4341 *4) (|:| -4351 *4)))) (-5 *1 (-1019 *3)) (-4 *3 (-1238 *4)))) (-2812 (*1 *2 *3 *4) (-12 (-5 *2 (-642 (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564)))))) (-5 *1 (-1019 *3)) (-4 *3 (-1238 (-407 (-564)))) (-5 *4 (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564))))))) (-2812 (*1 *2 *3) (-12 (-5 *2 (-642 (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564)))))) (-5 *1 (-1019 *3)) (-4 *3 (-1238 (-407 (-564))))))) -(-10 -7 (-15 -2812 ((-642 (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564))))) |#1|)) (-15 -2812 ((-642 (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564))))) |#1| (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564)))))) (-15 -2812 ((-642 (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564))))) |#1| (-407 (-564)))) (-15 -2812 ((-642 (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564))))) |#1| (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564)))) (-407 (-564)))) (-15 -2354 ((-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564)))) |#1| (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564)))) (-407 (-564)))) (-15 -2354 ((-3 (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564)))) "failed") |#1| (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564)))) (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564))))))) -((-3003 (((-225) $) 6) (((-379) $) 9))) -(((-1020) (-140)) (T -1020)) -NIL -(-13 (-612 (-225)) (-612 (-379))) -(((-612 (-225)) . T) ((-612 (-379)) . T)) -((-1577 (((-642 (-379)) (-950 (-564)) (-379)) 28) (((-642 (-379)) (-950 (-407 (-564))) (-379)) 27)) (-2396 (((-642 (-642 (-379))) (-642 (-950 (-564))) (-642 (-1173)) (-379)) 37))) -(((-1021) (-10 -7 (-15 -1577 ((-642 (-379)) (-950 (-407 (-564))) (-379))) (-15 -1577 ((-642 (-379)) (-950 (-564)) (-379))) (-15 -2396 ((-642 (-642 (-379))) (-642 (-950 (-564))) (-642 (-1173)) (-379))))) (T -1021)) -((-2396 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-642 (-950 (-564)))) (-5 *4 (-642 (-1173))) (-5 *2 (-642 (-642 (-379)))) (-5 *1 (-1021)) (-5 *5 (-379)))) (-1577 (*1 *2 *3 *4) (-12 (-5 *3 (-950 (-564))) (-5 *2 (-642 (-379))) (-5 *1 (-1021)) (-5 *4 (-379)))) (-1577 (*1 *2 *3 *4) (-12 (-5 *3 (-950 (-407 (-564)))) (-5 *2 (-642 (-379))) (-5 *1 (-1021)) (-5 *4 (-379))))) -(-10 -7 (-15 -1577 ((-642 (-379)) (-950 (-407 (-564))) (-379))) (-15 -1577 ((-642 (-379)) (-950 (-564)) (-379))) (-15 -2396 ((-642 (-642 (-379))) (-642 (-950 (-564))) (-642 (-1173)) (-379)))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) 75)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-4252 (($ $) NIL)) (-1722 (((-112) $) NIL)) (-3085 (((-3 $ "failed") $ $) NIL)) (-1993 (($ $) NIL)) (-3282 (((-418 $) $) NIL)) (-2264 (($ $) NIL) (($ $ (-919)) NIL) (($ (-407 (-564))) NIL) (($ (-564)) NIL)) (-2134 (((-112) $ $) NIL)) (-2221 (((-564) $) 70)) (-2822 (($) NIL T CONST)) (-2619 (((-3 $ "failed") (-1169 $) (-919) (-860)) NIL) (((-3 $ "failed") (-1169 $) (-919)) 55)) (-2849 (((-3 (-407 (-564)) "failed") $) NIL (|has| (-407 (-564)) (-1036 (-407 (-564))))) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 |#1| "failed") $) 116) (((-3 (-564) "failed") $) NIL (-2682 (|has| (-407 (-564)) (-1036 (-564))) (|has| |#1| (-1036 (-564)))))) (-1687 (((-407 (-564)) $) 17 (|has| (-407 (-564)) (-1036 (-407 (-564))))) (((-407 (-564)) $) 17) ((|#1| $) 117) (((-564) $) NIL (-2682 (|has| (-407 (-564)) (-1036 (-564))) (|has| |#1| (-1036 (-564)))))) (-3621 (($ $ (-860)) 47)) (-4367 (($ $ (-860)) 48)) (-2796 (($ $ $) NIL)) (-3925 (((-407 (-564)) $ $) 21)) (-2675 (((-3 $ "failed") $) 88)) (-2808 (($ $ $) NIL)) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) NIL)) (-3552 (((-112) $) NIL)) (-3292 (((-112) $) 66)) (-3163 (((-112) $) NIL)) (-2024 (($ $ (-564)) NIL)) (-2666 (((-112) $) 69)) (-2709 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-3225 (($ $ $) NIL)) (-2903 (($ $ $) NIL)) (-2952 (((-3 (-1169 $) "failed") $) 83)) (-4104 (((-3 (-860) "failed") $) 82)) (-2174 (((-3 (-1169 $) "failed") $) 80)) (-1518 (((-3 (-1058 $ (-1169 $)) "failed") $) 78)) (-2066 (($ (-642 $)) NIL) (($ $ $) NIL)) (-1778 (((-1155) $) NIL)) (-2481 (($ $) 89)) (-3999 (((-1117) $) NIL)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2105 (($ (-642 $)) NIL) (($ $ $) NIL)) (-2254 (((-418 $) $) NIL)) (-1877 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL)) (-2842 (((-3 $ "failed") $ $) NIL)) (-1483 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-4274 (((-769) $) NIL)) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL)) (-2390 (((-860) $) 87) (($ (-564)) NIL) (($ (-407 (-564))) NIL) (($ $) 63) (($ (-407 (-564))) NIL) (($ (-564)) NIL) (($ (-407 (-564))) NIL) (($ |#1|) 119)) (-3348 (((-769)) NIL T CONST)) (-1600 (((-112) $ $) NIL)) (-1594 (((-112) $ $) NIL)) (-3560 (((-407 (-564)) $ $) 27)) (-3873 (((-642 $) (-1169 $)) 61) (((-642 $) (-1169 (-407 (-564)))) NIL) (((-642 $) (-1169 (-564))) NIL) (((-642 $) (-950 $)) NIL) (((-642 $) (-950 (-407 (-564)))) NIL) (((-642 $) (-950 (-564))) NIL)) (-1650 (($ (-1058 $ (-1169 $)) (-860)) 46)) (-1630 (($ $) 22)) (-2361 (($) 32 T CONST)) (-2371 (($) 39 T CONST)) (-2881 (((-112) $ $) NIL)) (-2857 (((-112) $ $) NIL)) (-2821 (((-112) $ $) 76)) (-2868 (((-112) $ $) NIL)) (-2844 (((-112) $ $) 24)) (-2943 (($ $ $) 37)) (-2930 (($ $) 38) (($ $ $) 74)) (-2917 (($ $ $) 112)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL) (($ $ (-407 (-564))) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 98) (($ $ $) 104) (($ (-407 (-564)) $) NIL) (($ $ (-407 (-564))) NIL) (($ (-564) $) 98) (($ $ (-564)) NIL) (($ (-407 (-564)) $) NIL) (($ $ (-407 (-564))) NIL) (($ |#1| $) 102) (($ $ |#1|) NIL))) -(((-1022 |#1|) (-13 (-1010) (-411 |#1|) (-38 |#1|) (-10 -8 (-15 -1650 ($ (-1058 $ (-1169 $)) (-860))) (-15 -1518 ((-3 (-1058 $ (-1169 $)) "failed") $)) (-15 -3925 ((-407 (-564)) $ $)))) (-13 (-846) (-363) (-1020))) (T -1022)) -((-1650 (*1 *1 *2 *3) (-12 (-5 *2 (-1058 (-1022 *4) (-1169 (-1022 *4)))) (-5 *3 (-860)) (-5 *1 (-1022 *4)) (-4 *4 (-13 (-846) (-363) (-1020))))) (-1518 (*1 *2 *1) (|partial| -12 (-5 *2 (-1058 (-1022 *3) (-1169 (-1022 *3)))) (-5 *1 (-1022 *3)) (-4 *3 (-13 (-846) (-363) (-1020))))) (-3925 (*1 *2 *1 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-1022 *3)) (-4 *3 (-13 (-846) (-363) (-1020)))))) -(-13 (-1010) (-411 |#1|) (-38 |#1|) (-10 -8 (-15 -1650 ($ (-1058 $ (-1169 $)) (-860))) (-15 -1518 ((-3 (-1058 $ (-1169 $)) "failed") $)) (-15 -3925 ((-407 (-564)) $ $)))) -((-4183 (((-2 (|:| -3359 |#2|) (|:| -1637 (-642 |#1|))) |#2| (-642 |#1|)) 32) ((|#2| |#2| |#1|) 27))) -(((-1023 |#1| |#2|) (-10 -7 (-15 -4183 (|#2| |#2| |#1|)) (-15 -4183 ((-2 (|:| -3359 |#2|) (|:| -1637 (-642 |#1|))) |#2| (-642 |#1|)))) (-363) (-654 |#1|)) (T -1023)) -((-4183 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-5 *2 (-2 (|:| -3359 *3) (|:| -1637 (-642 *5)))) (-5 *1 (-1023 *5 *3)) (-5 *4 (-642 *5)) (-4 *3 (-654 *5)))) (-4183 (*1 *2 *2 *3) (-12 (-4 *3 (-363)) (-5 *1 (-1023 *3 *2)) (-4 *2 (-654 *3))))) -(-10 -7 (-15 -4183 (|#2| |#2| |#1|)) (-15 -4183 ((-2 (|:| -3359 |#2|) (|:| -1637 (-642 |#1|))) |#2| (-642 |#1|)))) -((-2856 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-4116 ((|#1| $ |#1|) 14)) (-3841 ((|#1| $ |#1|) 12)) (-3812 (($ |#1|) 10)) (-1778 (((-1155) $) NIL (|has| |#1| (-1097)))) (-3999 (((-1117) $) NIL (|has| |#1| (-1097)))) (-4369 ((|#1| $) 11)) (-2489 ((|#1| $) 13)) (-2390 (((-860) $) 21 (|has| |#1| (-1097)))) (-1600 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2821 (((-112) $ $) 9))) -(((-1024 |#1|) (-13 (-1212) (-10 -8 (-15 -3812 ($ |#1|)) (-15 -4369 (|#1| $)) (-15 -3841 (|#1| $ |#1|)) (-15 -2489 (|#1| $)) (-15 -4116 (|#1| $ |#1|)) (-15 -2821 ((-112) $ $)) (IF (|has| |#1| (-1097)) (-6 (-1097)) |%noBranch|))) (-1212)) (T -1024)) -((-3812 (*1 *1 *2) (-12 (-5 *1 (-1024 *2)) (-4 *2 (-1212)))) (-4369 (*1 *2 *1) (-12 (-5 *1 (-1024 *2)) (-4 *2 (-1212)))) (-3841 (*1 *2 *1 *2) (-12 (-5 *1 (-1024 *2)) (-4 *2 (-1212)))) (-2489 (*1 *2 *1) (-12 (-5 *1 (-1024 *2)) (-4 *2 (-1212)))) (-4116 (*1 *2 *1 *2) (-12 (-5 *1 (-1024 *2)) (-4 *2 (-1212)))) (-2821 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1024 *3)) (-4 *3 (-1212))))) -(-13 (-1212) (-10 -8 (-15 -3812 ($ |#1|)) (-15 -4369 (|#1| $)) (-15 -3841 (|#1| $ |#1|)) (-15 -2489 (|#1| $)) (-15 -4116 (|#1| $ |#1|)) (-15 -2821 ((-112) $ $)) (IF (|has| |#1| (-1097)) (-6 (-1097)) |%noBranch|))) -((-2856 (((-112) $ $) NIL)) (-1466 (((-642 (-2 (|:| -1616 $) (|:| -3406 (-642 |#4|)))) (-642 |#4|)) NIL)) (-3076 (((-642 $) (-642 |#4|)) 118) (((-642 $) (-642 |#4|) (-112)) 119) (((-642 $) (-642 |#4|) (-112) (-112)) 117) (((-642 $) (-642 |#4|) (-112) (-112) (-112) (-112)) 120)) (-2397 (((-642 |#3|) $) NIL)) (-3646 (((-112) $) NIL)) (-4074 (((-112) $) NIL (|has| |#1| (-556)))) (-4334 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2937 ((|#4| |#4| $) NIL)) (-1993 (((-642 (-2 (|:| |val| |#4|) (|:| -2138 $))) |#4| $) 112)) (-3191 (((-2 (|:| |under| $) (|:| -2795 $) (|:| |upper| $)) $ |#3|) NIL)) (-3442 (((-112) $ (-769)) NIL)) (-3437 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4410))) (((-3 |#4| "failed") $ |#3|) 66)) (-2822 (($) NIL T CONST)) (-3013 (((-112) $) 29 (|has| |#1| (-556)))) (-3936 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2133 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2967 (((-112) $) NIL (|has| |#1| (-556)))) (-3720 (((-642 |#4|) (-642 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2632 (((-642 |#4|) (-642 |#4|) $) NIL (|has| |#1| (-556)))) (-1419 (((-642 |#4|) (-642 |#4|) $) NIL (|has| |#1| (-556)))) (-2849 (((-3 $ "failed") (-642 |#4|)) NIL)) (-1687 (($ (-642 |#4|)) NIL)) (-4050 (((-3 $ "failed") $) 45)) (-2398 ((|#4| |#4| $) 69)) (-4067 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#4| (-1097))))) (-2517 (($ |#4| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#4| (-1097)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4410)))) (-1992 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 85 (|has| |#1| (-556)))) (-3762 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3978 ((|#4| |#4| $) NIL)) (-3741 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4410)) (|has| |#4| (-1097)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4410))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4410))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1750 (((-2 (|:| -1616 (-642 |#4|)) (|:| -3406 (-642 |#4|))) $) NIL)) (-2104 (((-112) |#4| $) NIL)) (-4141 (((-112) |#4| $) NIL)) (-3188 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1739 (((-2 (|:| |val| (-642 |#4|)) (|:| |towers| (-642 $))) (-642 |#4|) (-112) (-112)) 133)) (-2018 (((-642 |#4|) $) 18 (|has| $ (-6 -4410)))) (-3303 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1715 ((|#3| $) 38)) (-3769 (((-112) $ (-769)) NIL)) (-3541 (((-642 |#4|) $) 19 (|has| $ (-6 -4410)))) (-2533 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4410)) (|has| |#4| (-1097))))) (-1857 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#4| |#4|) $) 23)) (-1896 (((-642 |#3|) $) NIL)) (-3935 (((-112) |#3| $) NIL)) (-4145 (((-112) $ (-769)) NIL)) (-1778 (((-1155) $) NIL)) (-3843 (((-3 |#4| (-642 $)) |#4| |#4| $) NIL)) (-2224 (((-642 (-2 (|:| |val| |#4|) (|:| -2138 $))) |#4| |#4| $) 110)) (-2534 (((-3 |#4| "failed") $) 42)) (-2163 (((-642 $) |#4| $) 93)) (-2328 (((-3 (-112) (-642 $)) |#4| $) NIL)) (-4023 (((-642 (-2 (|:| |val| (-112)) (|:| -2138 $))) |#4| $) 103) (((-112) |#4| $) 64)) (-2338 (((-642 $) |#4| $) 115) (((-642 $) (-642 |#4|) $) NIL) (((-642 $) (-642 |#4|) (-642 $)) 116) (((-642 $) |#4| (-642 $)) NIL)) (-2636 (((-642 $) (-642 |#4|) (-112) (-112) (-112)) 128)) (-2415 (($ |#4| $) 82) (($ (-642 |#4|) $) 83) (((-642 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 79)) (-2206 (((-642 |#4|) $) NIL)) (-3673 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4090 ((|#4| |#4| $) NIL)) (-3119 (((-112) $ $) NIL)) (-1699 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-4354 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3750 ((|#4| |#4| $) NIL)) (-3999 (((-1117) $) NIL)) (-4036 (((-3 |#4| "failed") $) 40)) (-3183 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2465 (((-3 $ "failed") $ |#4|) 59)) (-2137 (($ $ |#4|) NIL) (((-642 $) |#4| $) 95) (((-642 $) |#4| (-642 $)) NIL) (((-642 $) (-642 |#4|) $) NIL) (((-642 $) (-642 |#4|) (-642 $)) 89)) (-4094 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 |#4|) (-642 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ (-642 (-294 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097))))) (-2478 (((-112) $ $) NIL)) (-4109 (((-112) $) 17)) (-2179 (($) 14)) (-3252 (((-769) $) NIL)) (-4010 (((-769) |#4| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#4| (-1097)))) (((-769) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4410)))) (-3865 (($ $) 13)) (-3003 (((-536) $) NIL (|has| |#4| (-612 (-536))))) (-2401 (($ (-642 |#4|)) 22)) (-2942 (($ $ |#3|) 52)) (-1710 (($ $ |#3|) 54)) (-2204 (($ $) NIL)) (-4283 (($ $ |#3|) NIL)) (-2390 (((-860) $) 35) (((-642 |#4|) $) 46)) (-2621 (((-769) $) NIL (|has| |#3| (-368)))) (-1600 (((-112) $ $) NIL)) (-4150 (((-3 (-2 (|:| |bas| $) (|:| -3844 (-642 |#4|))) "failed") (-642 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3844 (-642 |#4|))) "failed") (-642 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2205 (((-112) $ (-1 (-112) |#4| (-642 |#4|))) NIL)) (-3204 (((-642 $) |#4| $) 92) (((-642 $) |#4| (-642 $)) NIL) (((-642 $) (-642 |#4|) $) NIL) (((-642 $) (-642 |#4|) (-642 $)) NIL)) (-3295 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4410)))) (-1644 (((-642 |#3|) $) NIL)) (-1837 (((-112) |#4| $) NIL)) (-4127 (((-112) |#3| $) 65)) (-2821 (((-112) $ $) NIL)) (-2158 (((-769) $) NIL (|has| $ (-6 -4410))))) -(((-1025 |#1| |#2| |#3| |#4|) (-13 (-1068 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2415 ((-642 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3076 ((-642 $) (-642 |#4|) (-112) (-112))) (-15 -3076 ((-642 $) (-642 |#4|) (-112) (-112) (-112) (-112))) (-15 -2636 ((-642 $) (-642 |#4|) (-112) (-112) (-112))) (-15 -1739 ((-2 (|:| |val| (-642 |#4|)) (|:| |towers| (-642 $))) (-642 |#4|) (-112) (-112))))) (-452) (-791) (-848) (-1062 |#1| |#2| |#3|)) (T -1025)) -((-2415 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *2 (-642 (-1025 *5 *6 *7 *3))) (-5 *1 (-1025 *5 *6 *7 *3)) (-4 *3 (-1062 *5 *6 *7)))) (-3076 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-642 *8)) (-5 *4 (-112)) (-4 *8 (-1062 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *2 (-642 (-1025 *5 *6 *7 *8))) (-5 *1 (-1025 *5 *6 *7 *8)))) (-3076 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-642 *8)) (-5 *4 (-112)) (-4 *8 (-1062 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *2 (-642 (-1025 *5 *6 *7 *8))) (-5 *1 (-1025 *5 *6 *7 *8)))) (-2636 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-642 *8)) (-5 *4 (-112)) (-4 *8 (-1062 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *2 (-642 (-1025 *5 *6 *7 *8))) (-5 *1 (-1025 *5 *6 *7 *8)))) (-1739 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *8 (-1062 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-642 *8)) (|:| |towers| (-642 (-1025 *5 *6 *7 *8))))) (-5 *1 (-1025 *5 *6 *7 *8)) (-5 *3 (-642 *8))))) -(-13 (-1068 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2415 ((-642 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3076 ((-642 $) (-642 |#4|) (-112) (-112))) (-15 -3076 ((-642 $) (-642 |#4|) (-112) (-112) (-112) (-112))) (-15 -2636 ((-642 $) (-642 |#4|) (-112) (-112) (-112))) (-15 -1739 ((-2 (|:| |val| (-642 |#4|)) (|:| |towers| (-642 $))) (-642 |#4|) (-112) (-112))))) -((-2160 (((-642 (-687 |#1|)) (-642 (-687 |#1|))) 73) (((-687 |#1|) (-687 |#1|)) 72) (((-642 (-687 |#1|)) (-642 (-687 |#1|)) (-642 (-687 |#1|))) 71) (((-687 |#1|) (-687 |#1|) (-687 |#1|)) 68)) (-3642 (((-642 (-687 |#1|)) (-642 (-687 |#1|)) (-919)) 66) (((-687 |#1|) (-687 |#1|) (-919)) 65)) (-4166 (((-642 (-687 (-564))) (-642 (-642 (-564)))) 84) (((-642 (-687 (-564))) (-642 (-903 (-564))) (-564)) 83) (((-687 (-564)) (-642 (-564))) 80) (((-687 (-564)) (-903 (-564)) (-564)) 78)) (-2197 (((-687 (-950 |#1|)) (-769)) 98)) (-2228 (((-642 (-687 |#1|)) (-642 (-687 |#1|)) (-919)) 52 (|has| |#1| (-6 (-4412 "*")))) (((-687 |#1|) (-687 |#1|) (-919)) 50 (|has| |#1| (-6 (-4412 "*")))))) -(((-1026 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4412 "*"))) (-15 -2228 ((-687 |#1|) (-687 |#1|) (-919))) |%noBranch|) (IF (|has| |#1| (-6 (-4412 "*"))) (-15 -2228 ((-642 (-687 |#1|)) (-642 (-687 |#1|)) (-919))) |%noBranch|) (-15 -2197 ((-687 (-950 |#1|)) (-769))) (-15 -3642 ((-687 |#1|) (-687 |#1|) (-919))) (-15 -3642 ((-642 (-687 |#1|)) (-642 (-687 |#1|)) (-919))) (-15 -2160 ((-687 |#1|) (-687 |#1|) (-687 |#1|))) (-15 -2160 ((-642 (-687 |#1|)) (-642 (-687 |#1|)) (-642 (-687 |#1|)))) (-15 -2160 ((-687 |#1|) (-687 |#1|))) (-15 -2160 ((-642 (-687 |#1|)) (-642 (-687 |#1|)))) (-15 -4166 ((-687 (-564)) (-903 (-564)) (-564))) (-15 -4166 ((-687 (-564)) (-642 (-564)))) (-15 -4166 ((-642 (-687 (-564))) (-642 (-903 (-564))) (-564))) (-15 -4166 ((-642 (-687 (-564))) (-642 (-642 (-564)))))) (-1047)) (T -1026)) -((-4166 (*1 *2 *3) (-12 (-5 *3 (-642 (-642 (-564)))) (-5 *2 (-642 (-687 (-564)))) (-5 *1 (-1026 *4)) (-4 *4 (-1047)))) (-4166 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-903 (-564)))) (-5 *4 (-564)) (-5 *2 (-642 (-687 *4))) (-5 *1 (-1026 *5)) (-4 *5 (-1047)))) (-4166 (*1 *2 *3) (-12 (-5 *3 (-642 (-564))) (-5 *2 (-687 (-564))) (-5 *1 (-1026 *4)) (-4 *4 (-1047)))) (-4166 (*1 *2 *3 *4) (-12 (-5 *3 (-903 (-564))) (-5 *4 (-564)) (-5 *2 (-687 *4)) (-5 *1 (-1026 *5)) (-4 *5 (-1047)))) (-2160 (*1 *2 *2) (-12 (-5 *2 (-642 (-687 *3))) (-4 *3 (-1047)) (-5 *1 (-1026 *3)))) (-2160 (*1 *2 *2) (-12 (-5 *2 (-687 *3)) (-4 *3 (-1047)) (-5 *1 (-1026 *3)))) (-2160 (*1 *2 *2 *2) (-12 (-5 *2 (-642 (-687 *3))) (-4 *3 (-1047)) (-5 *1 (-1026 *3)))) (-2160 (*1 *2 *2 *2) (-12 (-5 *2 (-687 *3)) (-4 *3 (-1047)) (-5 *1 (-1026 *3)))) (-3642 (*1 *2 *2 *3) (-12 (-5 *2 (-642 (-687 *4))) (-5 *3 (-919)) (-4 *4 (-1047)) (-5 *1 (-1026 *4)))) (-3642 (*1 *2 *2 *3) (-12 (-5 *2 (-687 *4)) (-5 *3 (-919)) (-4 *4 (-1047)) (-5 *1 (-1026 *4)))) (-2197 (*1 *2 *3) (-12 (-5 *3 (-769)) (-5 *2 (-687 (-950 *4))) (-5 *1 (-1026 *4)) (-4 *4 (-1047)))) (-2228 (*1 *2 *2 *3) (-12 (-5 *2 (-642 (-687 *4))) (-5 *3 (-919)) (|has| *4 (-6 (-4412 "*"))) (-4 *4 (-1047)) (-5 *1 (-1026 *4)))) (-2228 (*1 *2 *2 *3) (-12 (-5 *2 (-687 *4)) (-5 *3 (-919)) (|has| *4 (-6 (-4412 "*"))) (-4 *4 (-1047)) (-5 *1 (-1026 *4))))) -(-10 -7 (IF (|has| |#1| (-6 (-4412 "*"))) (-15 -2228 ((-687 |#1|) (-687 |#1|) (-919))) |%noBranch|) (IF (|has| |#1| (-6 (-4412 "*"))) (-15 -2228 ((-642 (-687 |#1|)) (-642 (-687 |#1|)) (-919))) |%noBranch|) (-15 -2197 ((-687 (-950 |#1|)) (-769))) (-15 -3642 ((-687 |#1|) (-687 |#1|) (-919))) (-15 -3642 ((-642 (-687 |#1|)) (-642 (-687 |#1|)) (-919))) (-15 -2160 ((-687 |#1|) (-687 |#1|) (-687 |#1|))) (-15 -2160 ((-642 (-687 |#1|)) (-642 (-687 |#1|)) (-642 (-687 |#1|)))) (-15 -2160 ((-687 |#1|) (-687 |#1|))) (-15 -2160 ((-642 (-687 |#1|)) (-642 (-687 |#1|)))) (-15 -4166 ((-687 (-564)) (-903 (-564)) (-564))) (-15 -4166 ((-687 (-564)) (-642 (-564)))) (-15 -4166 ((-642 (-687 (-564))) (-642 (-903 (-564))) (-564))) (-15 -4166 ((-642 (-687 (-564))) (-642 (-642 (-564)))))) -((-1755 (((-687 |#1|) (-642 (-687 |#1|)) (-1262 |#1|)) 71 (|has| |#1| (-307)))) (-2246 (((-642 (-642 (-687 |#1|))) (-642 (-687 |#1|)) (-1262 (-1262 |#1|))) 112 (|has| |#1| (-363))) (((-642 (-642 (-687 |#1|))) (-642 (-687 |#1|)) (-1262 |#1|)) 119 (|has| |#1| (-363)))) (-1812 (((-1262 |#1|) (-642 (-1262 |#1|)) (-564)) 137 (-12 (|has| |#1| (-363)) (|has| |#1| (-368))))) (-3094 (((-642 (-642 (-687 |#1|))) (-642 (-687 |#1|)) (-919)) 125 (-12 (|has| |#1| (-363)) (|has| |#1| (-368)))) (((-642 (-642 (-687 |#1|))) (-642 (-687 |#1|)) (-112)) 124 (-12 (|has| |#1| (-363)) (|has| |#1| (-368)))) (((-642 (-642 (-687 |#1|))) (-642 (-687 |#1|))) 123 (-12 (|has| |#1| (-363)) (|has| |#1| (-368)))) (((-642 (-642 (-687 |#1|))) (-642 (-687 |#1|)) (-112) (-564) (-564)) 122 (-12 (|has| |#1| (-363)) (|has| |#1| (-368))))) (-1601 (((-112) (-642 (-687 |#1|))) 105 (|has| |#1| (-363))) (((-112) (-642 (-687 |#1|)) (-564)) 108 (|has| |#1| (-363)))) (-4029 (((-1262 (-1262 |#1|)) (-642 (-687 |#1|)) (-1262 |#1|)) 68 (|has| |#1| (-307)))) (-3686 (((-687 |#1|) (-642 (-687 |#1|)) (-687 |#1|)) 48)) (-3759 (((-687 |#1|) (-1262 (-1262 |#1|))) 41)) (-2931 (((-687 |#1|) (-642 (-687 |#1|)) (-642 (-687 |#1|)) (-564)) 96 (|has| |#1| (-363))) (((-687 |#1|) (-642 (-687 |#1|)) (-642 (-687 |#1|))) 95 (|has| |#1| (-363))) (((-687 |#1|) (-642 (-687 |#1|)) (-642 (-687 |#1|)) (-112) (-564)) 103 (|has| |#1| (-363))))) -(((-1027 |#1|) (-10 -7 (-15 -3759 ((-687 |#1|) (-1262 (-1262 |#1|)))) (-15 -3686 ((-687 |#1|) (-642 (-687 |#1|)) (-687 |#1|))) (IF (|has| |#1| (-307)) (PROGN (-15 -4029 ((-1262 (-1262 |#1|)) (-642 (-687 |#1|)) (-1262 |#1|))) (-15 -1755 ((-687 |#1|) (-642 (-687 |#1|)) (-1262 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -2931 ((-687 |#1|) (-642 (-687 |#1|)) (-642 (-687 |#1|)) (-112) (-564))) (-15 -2931 ((-687 |#1|) (-642 (-687 |#1|)) (-642 (-687 |#1|)))) (-15 -2931 ((-687 |#1|) (-642 (-687 |#1|)) (-642 (-687 |#1|)) (-564))) (-15 -1601 ((-112) (-642 (-687 |#1|)) (-564))) (-15 -1601 ((-112) (-642 (-687 |#1|)))) (-15 -2246 ((-642 (-642 (-687 |#1|))) (-642 (-687 |#1|)) (-1262 |#1|))) (-15 -2246 ((-642 (-642 (-687 |#1|))) (-642 (-687 |#1|)) (-1262 (-1262 |#1|))))) |%noBranch|) (IF (|has| |#1| (-368)) (IF (|has| |#1| (-363)) (PROGN (-15 -3094 ((-642 (-642 (-687 |#1|))) (-642 (-687 |#1|)) (-112) (-564) (-564))) (-15 -3094 ((-642 (-642 (-687 |#1|))) (-642 (-687 |#1|)))) (-15 -3094 ((-642 (-642 (-687 |#1|))) (-642 (-687 |#1|)) (-112))) (-15 -3094 ((-642 (-642 (-687 |#1|))) (-642 (-687 |#1|)) (-919))) (-15 -1812 ((-1262 |#1|) (-642 (-1262 |#1|)) (-564)))) |%noBranch|) |%noBranch|)) (-1047)) (T -1027)) -((-1812 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-1262 *5))) (-5 *4 (-564)) (-5 *2 (-1262 *5)) (-5 *1 (-1027 *5)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1047)))) (-3094 (*1 *2 *3 *4) (-12 (-5 *4 (-919)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1047)) (-5 *2 (-642 (-642 (-687 *5)))) (-5 *1 (-1027 *5)) (-5 *3 (-642 (-687 *5))))) (-3094 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1047)) (-5 *2 (-642 (-642 (-687 *5)))) (-5 *1 (-1027 *5)) (-5 *3 (-642 (-687 *5))))) (-3094 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *4 (-368)) (-4 *4 (-1047)) (-5 *2 (-642 (-642 (-687 *4)))) (-5 *1 (-1027 *4)) (-5 *3 (-642 (-687 *4))))) (-3094 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-564)) (-4 *6 (-363)) (-4 *6 (-368)) (-4 *6 (-1047)) (-5 *2 (-642 (-642 (-687 *6)))) (-5 *1 (-1027 *6)) (-5 *3 (-642 (-687 *6))))) (-2246 (*1 *2 *3 *4) (-12 (-5 *4 (-1262 (-1262 *5))) (-4 *5 (-363)) (-4 *5 (-1047)) (-5 *2 (-642 (-642 (-687 *5)))) (-5 *1 (-1027 *5)) (-5 *3 (-642 (-687 *5))))) (-2246 (*1 *2 *3 *4) (-12 (-5 *4 (-1262 *5)) (-4 *5 (-363)) (-4 *5 (-1047)) (-5 *2 (-642 (-642 (-687 *5)))) (-5 *1 (-1027 *5)) (-5 *3 (-642 (-687 *5))))) (-1601 (*1 *2 *3) (-12 (-5 *3 (-642 (-687 *4))) (-4 *4 (-363)) (-4 *4 (-1047)) (-5 *2 (-112)) (-5 *1 (-1027 *4)))) (-1601 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-687 *5))) (-5 *4 (-564)) (-4 *5 (-363)) (-4 *5 (-1047)) (-5 *2 (-112)) (-5 *1 (-1027 *5)))) (-2931 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-642 (-687 *5))) (-5 *4 (-564)) (-5 *2 (-687 *5)) (-5 *1 (-1027 *5)) (-4 *5 (-363)) (-4 *5 (-1047)))) (-2931 (*1 *2 *3 *3) (-12 (-5 *3 (-642 (-687 *4))) (-5 *2 (-687 *4)) (-5 *1 (-1027 *4)) (-4 *4 (-363)) (-4 *4 (-1047)))) (-2931 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-642 (-687 *6))) (-5 *4 (-112)) (-5 *5 (-564)) (-5 *2 (-687 *6)) (-5 *1 (-1027 *6)) (-4 *6 (-363)) (-4 *6 (-1047)))) (-1755 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-687 *5))) (-5 *4 (-1262 *5)) (-4 *5 (-307)) (-4 *5 (-1047)) (-5 *2 (-687 *5)) (-5 *1 (-1027 *5)))) (-4029 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-687 *5))) (-4 *5 (-307)) (-4 *5 (-1047)) (-5 *2 (-1262 (-1262 *5))) (-5 *1 (-1027 *5)) (-5 *4 (-1262 *5)))) (-3686 (*1 *2 *3 *2) (-12 (-5 *3 (-642 (-687 *4))) (-5 *2 (-687 *4)) (-4 *4 (-1047)) (-5 *1 (-1027 *4)))) (-3759 (*1 *2 *3) (-12 (-5 *3 (-1262 (-1262 *4))) (-4 *4 (-1047)) (-5 *2 (-687 *4)) (-5 *1 (-1027 *4))))) -(-10 -7 (-15 -3759 ((-687 |#1|) (-1262 (-1262 |#1|)))) (-15 -3686 ((-687 |#1|) (-642 (-687 |#1|)) (-687 |#1|))) (IF (|has| |#1| (-307)) (PROGN (-15 -4029 ((-1262 (-1262 |#1|)) (-642 (-687 |#1|)) (-1262 |#1|))) (-15 -1755 ((-687 |#1|) (-642 (-687 |#1|)) (-1262 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -2931 ((-687 |#1|) (-642 (-687 |#1|)) (-642 (-687 |#1|)) (-112) (-564))) (-15 -2931 ((-687 |#1|) (-642 (-687 |#1|)) (-642 (-687 |#1|)))) (-15 -2931 ((-687 |#1|) (-642 (-687 |#1|)) (-642 (-687 |#1|)) (-564))) (-15 -1601 ((-112) (-642 (-687 |#1|)) (-564))) (-15 -1601 ((-112) (-642 (-687 |#1|)))) (-15 -2246 ((-642 (-642 (-687 |#1|))) (-642 (-687 |#1|)) (-1262 |#1|))) (-15 -2246 ((-642 (-642 (-687 |#1|))) (-642 (-687 |#1|)) (-1262 (-1262 |#1|))))) |%noBranch|) (IF (|has| |#1| (-368)) (IF (|has| |#1| (-363)) (PROGN (-15 -3094 ((-642 (-642 (-687 |#1|))) (-642 (-687 |#1|)) (-112) (-564) (-564))) (-15 -3094 ((-642 (-642 (-687 |#1|))) (-642 (-687 |#1|)))) (-15 -3094 ((-642 (-642 (-687 |#1|))) (-642 (-687 |#1|)) (-112))) (-15 -3094 ((-642 (-642 (-687 |#1|))) (-642 (-687 |#1|)) (-919))) (-15 -1812 ((-1262 |#1|) (-642 (-1262 |#1|)) (-564)))) |%noBranch|) |%noBranch|)) -((-3242 ((|#1| (-919) |#1|) 18))) -(((-1028 |#1|) (-10 -7 (-15 -3242 (|#1| (-919) |#1|))) (-13 (-1097) (-10 -8 (-15 -2917 ($ $ $))))) (T -1028)) -((-3242 (*1 *2 *3 *2) (-12 (-5 *3 (-919)) (-5 *1 (-1028 *2)) (-4 *2 (-13 (-1097) (-10 -8 (-15 -2917 ($ $ $)))))))) -(-10 -7 (-15 -3242 (|#1| (-919) |#1|))) -((-4316 (((-642 (-2 (|:| |radval| (-316 (-564))) (|:| |radmult| (-564)) (|:| |radvect| (-642 (-687 (-316 (-564))))))) (-687 (-407 (-950 (-564))))) 67)) (-3510 (((-642 (-687 (-316 (-564)))) (-316 (-564)) (-687 (-407 (-950 (-564))))) 52)) (-2568 (((-642 (-316 (-564))) (-687 (-407 (-950 (-564))))) 45)) (-3265 (((-642 (-687 (-316 (-564)))) (-687 (-407 (-950 (-564))))) 88)) (-2721 (((-687 (-316 (-564))) (-687 (-316 (-564)))) 38)) (-3483 (((-642 (-687 (-316 (-564)))) (-642 (-687 (-316 (-564))))) 76)) (-3668 (((-3 (-687 (-316 (-564))) "failed") (-687 (-407 (-950 (-564))))) 85))) -(((-1029) (-10 -7 (-15 -4316 ((-642 (-2 (|:| |radval| (-316 (-564))) (|:| |radmult| (-564)) (|:| |radvect| (-642 (-687 (-316 (-564))))))) (-687 (-407 (-950 (-564)))))) (-15 -3510 ((-642 (-687 (-316 (-564)))) (-316 (-564)) (-687 (-407 (-950 (-564)))))) (-15 -2568 ((-642 (-316 (-564))) (-687 (-407 (-950 (-564)))))) (-15 -3668 ((-3 (-687 (-316 (-564))) "failed") (-687 (-407 (-950 (-564)))))) (-15 -2721 ((-687 (-316 (-564))) (-687 (-316 (-564))))) (-15 -3483 ((-642 (-687 (-316 (-564)))) (-642 (-687 (-316 (-564)))))) (-15 -3265 ((-642 (-687 (-316 (-564)))) (-687 (-407 (-950 (-564)))))))) (T -1029)) -((-3265 (*1 *2 *3) (-12 (-5 *3 (-687 (-407 (-950 (-564))))) (-5 *2 (-642 (-687 (-316 (-564))))) (-5 *1 (-1029)))) (-3483 (*1 *2 *2) (-12 (-5 *2 (-642 (-687 (-316 (-564))))) (-5 *1 (-1029)))) (-2721 (*1 *2 *2) (-12 (-5 *2 (-687 (-316 (-564)))) (-5 *1 (-1029)))) (-3668 (*1 *2 *3) (|partial| -12 (-5 *3 (-687 (-407 (-950 (-564))))) (-5 *2 (-687 (-316 (-564)))) (-5 *1 (-1029)))) (-2568 (*1 *2 *3) (-12 (-5 *3 (-687 (-407 (-950 (-564))))) (-5 *2 (-642 (-316 (-564)))) (-5 *1 (-1029)))) (-3510 (*1 *2 *3 *4) (-12 (-5 *4 (-687 (-407 (-950 (-564))))) (-5 *2 (-642 (-687 (-316 (-564))))) (-5 *1 (-1029)) (-5 *3 (-316 (-564))))) (-4316 (*1 *2 *3) (-12 (-5 *3 (-687 (-407 (-950 (-564))))) (-5 *2 (-642 (-2 (|:| |radval| (-316 (-564))) (|:| |radmult| (-564)) (|:| |radvect| (-642 (-687 (-316 (-564)))))))) (-5 *1 (-1029))))) -(-10 -7 (-15 -4316 ((-642 (-2 (|:| |radval| (-316 (-564))) (|:| |radmult| (-564)) (|:| |radvect| (-642 (-687 (-316 (-564))))))) (-687 (-407 (-950 (-564)))))) (-15 -3510 ((-642 (-687 (-316 (-564)))) (-316 (-564)) (-687 (-407 (-950 (-564)))))) (-15 -2568 ((-642 (-316 (-564))) (-687 (-407 (-950 (-564)))))) (-15 -3668 ((-3 (-687 (-316 (-564))) "failed") (-687 (-407 (-950 (-564)))))) (-15 -2721 ((-687 (-316 (-564))) (-687 (-316 (-564))))) (-15 -3483 ((-642 (-687 (-316 (-564)))) (-642 (-687 (-316 (-564)))))) (-15 -3265 ((-642 (-687 (-316 (-564)))) (-687 (-407 (-950 (-564))))))) -((-3636 ((|#1| |#1| (-919)) 18))) -(((-1030 |#1|) (-10 -7 (-15 -3636 (|#1| |#1| (-919)))) (-13 (-1097) (-10 -8 (-15 * ($ $ $))))) (T -1030)) -((-3636 (*1 *2 *2 *3) (-12 (-5 *3 (-919)) (-5 *1 (-1030 *2)) (-4 *2 (-13 (-1097) (-10 -8 (-15 * ($ $ $)))))))) -(-10 -7 (-15 -3636 (|#1| |#1| (-919)))) -((-2390 ((|#1| (-312)) 11) (((-1267) |#1|) 9))) -(((-1031 |#1|) (-10 -7 (-15 -2390 ((-1267) |#1|)) (-15 -2390 (|#1| (-312)))) (-1212)) (T -1031)) -((-2390 (*1 *2 *3) (-12 (-5 *3 (-312)) (-5 *1 (-1031 *2)) (-4 *2 (-1212)))) (-2390 (*1 *2 *3) (-12 (-5 *2 (-1267)) (-5 *1 (-1031 *3)) (-4 *3 (-1212))))) -(-10 -7 (-15 -2390 ((-1267) |#1|)) (-15 -2390 (|#1| (-312)))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-3085 (((-3 $ "failed") $ $) NIL)) (-2822 (($) NIL T CONST)) (-3741 (($ |#4|) 25)) (-2675 (((-3 $ "failed") $) NIL)) (-3163 (((-112) $) NIL)) (-3730 ((|#4| $) 27)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) 46) (($ (-564)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-3348 (((-769)) 43 T CONST)) (-1600 (((-112) $ $) NIL)) (-2361 (($) 21 T CONST)) (-2371 (($) 23 T CONST)) (-2821 (((-112) $ $) 40)) (-2930 (($ $) 31) (($ $ $) NIL)) (-2917 (($ $ $) 29)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) -(((-1032 |#1| |#2| |#3| |#4| |#5|) (-13 (-172) (-38 |#1|) (-10 -8 (-15 -3741 ($ |#4|)) (-15 -2390 ($ |#4|)) (-15 -3730 (|#4| $)))) (-363) (-791) (-848) (-947 |#1| |#2| |#3|) (-642 |#4|)) (T -1032)) -((-3741 (*1 *1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-1032 *3 *4 *5 *2 *6)) (-4 *2 (-947 *3 *4 *5)) (-14 *6 (-642 *2)))) (-2390 (*1 *1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-1032 *3 *4 *5 *2 *6)) (-4 *2 (-947 *3 *4 *5)) (-14 *6 (-642 *2)))) (-3730 (*1 *2 *1) (-12 (-4 *2 (-947 *3 *4 *5)) (-5 *1 (-1032 *3 *4 *5 *2 *6)) (-4 *3 (-363)) (-4 *4 (-791)) (-4 *5 (-848)) (-14 *6 (-642 *2))))) -(-13 (-172) (-38 |#1|) (-10 -8 (-15 -3741 ($ |#4|)) (-15 -2390 ($ |#4|)) (-15 -3730 (|#4| $)))) -((-2856 (((-112) $ $) NIL (-2682 (|has| (-52) (-1097)) (|has| (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-1097))))) (-4222 (($) NIL) (($ (-642 (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))))) NIL)) (-3633 (((-1267) $ (-1173) (-1173)) NIL (|has| $ (-6 -4411)))) (-3442 (((-112) $ (-769)) NIL)) (-3564 (((-112) (-112)) 43)) (-3696 (((-112) (-112)) 42)) (-3841 (((-52) $ (-1173) (-52)) NIL)) (-2438 (($ (-1 (-112) (-2 (|:| -1914 (-1173)) (|:| -2683 (-52)))) $) NIL (|has| $ (-6 -4410)))) (-3437 (($ (-1 (-112) (-2 (|:| -1914 (-1173)) (|:| -2683 (-52)))) $) NIL (|has| $ (-6 -4410)))) (-2295 (((-3 (-52) "failed") (-1173) $) NIL)) (-2822 (($) NIL T CONST)) (-4067 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-1097))))) (-1927 (($ (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) $) NIL (|has| $ (-6 -4410))) (($ (-1 (-112) (-2 (|:| -1914 (-1173)) (|:| -2683 (-52)))) $) NIL (|has| $ (-6 -4410))) (((-3 (-52) "failed") (-1173) $) NIL)) (-2517 (($ (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-1097)))) (($ (-1 (-112) (-2 (|:| -1914 (-1173)) (|:| -2683 (-52)))) $) NIL (|has| $ (-6 -4410)))) (-3741 (((-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-1 (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-2 (|:| -1914 (-1173)) (|:| -2683 (-52)))) $ (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-2 (|:| -1914 (-1173)) (|:| -2683 (-52)))) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-1097)))) (((-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-1 (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-2 (|:| -1914 (-1173)) (|:| -2683 (-52)))) $ (-2 (|:| -1914 (-1173)) (|:| -2683 (-52)))) NIL (|has| $ (-6 -4410))) (((-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-1 (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-2 (|:| -1914 (-1173)) (|:| -2683 (-52)))) $) NIL (|has| $ (-6 -4410)))) (-3105 (((-52) $ (-1173) (-52)) NIL (|has| $ (-6 -4411)))) (-1804 (((-52) $ (-1173)) NIL)) (-2018 (((-642 (-2 (|:| -1914 (-1173)) (|:| -2683 (-52)))) $) NIL (|has| $ (-6 -4410))) (((-642 (-52)) $) NIL (|has| $ (-6 -4410)))) (-3769 (((-112) $ (-769)) NIL)) (-1802 (((-1173) $) NIL (|has| (-1173) (-848)))) (-3541 (((-642 (-2 (|:| -1914 (-1173)) (|:| -2683 (-52)))) $) NIL (|has| $ (-6 -4410))) (((-642 (-52)) $) NIL (|has| $ (-6 -4410)))) (-2533 (((-112) (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-1097)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-52) (-1097))))) (-3624 (((-1173) $) NIL (|has| (-1173) (-848)))) (-1857 (($ (-1 (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-2 (|:| -1914 (-1173)) (|:| -2683 (-52)))) $) NIL (|has| $ (-6 -4411))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4411)))) (-2947 (($ (-1 (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-2 (|:| -1914 (-1173)) (|:| -2683 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-4145 (((-112) $ (-769)) NIL)) (-1778 (((-1155) $) NIL (-2682 (|has| (-52) (-1097)) (|has| (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-1097))))) (-3287 (((-642 (-1173)) $) 37)) (-2145 (((-112) (-1173) $) NIL)) (-3220 (((-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) $) NIL)) (-1668 (($ (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) $) NIL)) (-4107 (((-642 (-1173)) $) NIL)) (-4207 (((-112) (-1173) $) NIL)) (-3999 (((-1117) $) NIL (-2682 (|has| (-52) (-1097)) (|has| (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-1097))))) (-4036 (((-52) $) NIL (|has| (-1173) (-848)))) (-3183 (((-3 (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) "failed") (-1 (-112) (-2 (|:| -1914 (-1173)) (|:| -2683 (-52)))) $) NIL)) (-3826 (($ $ (-52)) NIL (|has| $ (-6 -4411)))) (-4314 (((-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) $) NIL)) (-4094 (((-112) (-1 (-112) (-2 (|:| -1914 (-1173)) (|:| -2683 (-52)))) $) NIL (|has| $ (-6 -4410))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 (-2 (|:| -1914 (-1173)) (|:| -2683 (-52)))))) NIL (-12 (|has| (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-309 (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))))) (|has| (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-1097)))) (($ $ (-294 (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))))) NIL (-12 (|has| (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-309 (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))))) (|has| (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-1097)))) (($ $ (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-2 (|:| -1914 (-1173)) (|:| -2683 (-52)))) NIL (-12 (|has| (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-309 (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))))) (|has| (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-1097)))) (($ $ (-642 (-2 (|:| -1914 (-1173)) (|:| -2683 (-52)))) (-642 (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))))) NIL (-12 (|has| (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-309 (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))))) (|has| (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-1097)))) (($ $ (-642 (-52)) (-642 (-52))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1097)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1097)))) (($ $ (-294 (-52))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1097)))) (($ $ (-642 (-294 (-52)))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1097))))) (-2478 (((-112) $ $) NIL)) (-1643 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-52) (-1097))))) (-3522 (((-642 (-52)) $) NIL)) (-4109 (((-112) $) NIL)) (-2179 (($) NIL)) (-4369 (((-52) $ (-1173)) 39) (((-52) $ (-1173) (-52)) NIL)) (-2318 (($) NIL) (($ (-642 (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))))) NIL)) (-4010 (((-769) (-1 (-112) (-2 (|:| -1914 (-1173)) (|:| -2683 (-52)))) $) NIL (|has| $ (-6 -4410))) (((-769) (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-1097)))) (((-769) (-52) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-52) (-1097)))) (((-769) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4410)))) (-3865 (($ $) NIL)) (-3003 (((-536) $) NIL (|has| (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-612 (-536))))) (-2401 (($ (-642 (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))))) NIL)) (-2390 (((-860) $) 41 (-2682 (|has| (-52) (-611 (-860))) (|has| (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-611 (-860)))))) (-1600 (((-112) $ $) NIL (-2682 (|has| (-52) (-1097)) (|has| (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-1097))))) (-4160 (($ (-642 (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))))) NIL)) (-3295 (((-112) (-1 (-112) (-2 (|:| -1914 (-1173)) (|:| -2683 (-52)))) $) NIL (|has| $ (-6 -4410))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4410)))) (-2821 (((-112) $ $) NIL (-2682 (|has| (-52) (-1097)) (|has| (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-1097))))) (-2158 (((-769) $) NIL (|has| $ (-6 -4410))))) -(((-1033) (-13 (-1188 (-1173) (-52)) (-10 -7 (-15 -3564 ((-112) (-112))) (-15 -3696 ((-112) (-112))) (-6 -4410)))) (T -1033)) -((-3564 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1033)))) (-3696 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1033))))) -(-13 (-1188 (-1173) (-52)) (-10 -7 (-15 -3564 ((-112) (-112))) (-15 -3696 ((-112) (-112))) (-6 -4410))) -((-2856 (((-112) $ $) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-1359 (((-1132) $) 9)) (-2390 (((-860) $) 15) (($ (-1178)) NIL) (((-1178) $) NIL)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-1034) (-13 (-1080) (-10 -8 (-15 -1359 ((-1132) $))))) (T -1034)) -((-1359 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-1034))))) -(-13 (-1080) (-10 -8 (-15 -1359 ((-1132) $)))) -((-1687 ((|#2| $) 10))) -(((-1035 |#1| |#2|) (-10 -8 (-15 -1687 (|#2| |#1|))) (-1036 |#2|) (-1212)) (T -1035)) -NIL -(-10 -8 (-15 -1687 (|#2| |#1|))) -((-2849 (((-3 |#1| "failed") $) 9)) (-1687 ((|#1| $) 8)) (-2390 (($ |#1|) 6))) -(((-1036 |#1|) (-140) (-1212)) (T -1036)) -((-2849 (*1 *2 *1) (|partial| -12 (-4 *1 (-1036 *2)) (-4 *2 (-1212)))) (-1687 (*1 *2 *1) (-12 (-4 *1 (-1036 *2)) (-4 *2 (-1212))))) -(-13 (-614 |t#1|) (-10 -8 (-15 -2849 ((-3 |t#1| "failed") $)) (-15 -1687 (|t#1| $)))) -(((-614 |#1|) . T)) -((-1902 (((-642 (-642 (-294 (-407 (-950 |#2|))))) (-642 (-950 |#2|)) (-642 (-1173))) 38))) -(((-1037 |#1| |#2|) (-10 -7 (-15 -1902 ((-642 (-642 (-294 (-407 (-950 |#2|))))) (-642 (-950 |#2|)) (-642 (-1173))))) (-556) (-13 (-556) (-1036 |#1|))) (T -1037)) -((-1902 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-950 *6))) (-5 *4 (-642 (-1173))) (-4 *6 (-13 (-556) (-1036 *5))) (-4 *5 (-556)) (-5 *2 (-642 (-642 (-294 (-407 (-950 *6)))))) (-5 *1 (-1037 *5 *6))))) -(-10 -7 (-15 -1902 ((-642 (-642 (-294 (-407 (-950 |#2|))))) (-642 (-950 |#2|)) (-642 (-1173))))) -((-3798 (((-379)) 17)) (-2702 (((-1 (-379)) (-379) (-379)) 22)) (-1425 (((-1 (-379)) (-769)) 50)) (-4066 (((-379)) 37)) (-3691 (((-1 (-379)) (-379) (-379)) 38)) (-2126 (((-379)) 29)) (-1858 (((-1 (-379)) (-379)) 30)) (-3084 (((-379) (-769)) 45)) (-3773 (((-1 (-379)) (-769)) 46)) (-2266 (((-1 (-379)) (-769) (-769)) 49)) (-3197 (((-1 (-379)) (-769) (-769)) 47))) -(((-1038) (-10 -7 (-15 -3798 ((-379))) (-15 -4066 ((-379))) (-15 -2126 ((-379))) (-15 -3084 ((-379) (-769))) (-15 -2702 ((-1 (-379)) (-379) (-379))) (-15 -3691 ((-1 (-379)) (-379) (-379))) (-15 -1858 ((-1 (-379)) (-379))) (-15 -3773 ((-1 (-379)) (-769))) (-15 -3197 ((-1 (-379)) (-769) (-769))) (-15 -2266 ((-1 (-379)) (-769) (-769))) (-15 -1425 ((-1 (-379)) (-769))))) (T -1038)) -((-1425 (*1 *2 *3) (-12 (-5 *3 (-769)) (-5 *2 (-1 (-379))) (-5 *1 (-1038)))) (-2266 (*1 *2 *3 *3) (-12 (-5 *3 (-769)) (-5 *2 (-1 (-379))) (-5 *1 (-1038)))) (-3197 (*1 *2 *3 *3) (-12 (-5 *3 (-769)) (-5 *2 (-1 (-379))) (-5 *1 (-1038)))) (-3773 (*1 *2 *3) (-12 (-5 *3 (-769)) (-5 *2 (-1 (-379))) (-5 *1 (-1038)))) (-1858 (*1 *2 *3) (-12 (-5 *2 (-1 (-379))) (-5 *1 (-1038)) (-5 *3 (-379)))) (-3691 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-379))) (-5 *1 (-1038)) (-5 *3 (-379)))) (-2702 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-379))) (-5 *1 (-1038)) (-5 *3 (-379)))) (-3084 (*1 *2 *3) (-12 (-5 *3 (-769)) (-5 *2 (-379)) (-5 *1 (-1038)))) (-2126 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1038)))) (-4066 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1038)))) (-3798 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1038))))) -(-10 -7 (-15 -3798 ((-379))) (-15 -4066 ((-379))) (-15 -2126 ((-379))) (-15 -3084 ((-379) (-769))) (-15 -2702 ((-1 (-379)) (-379) (-379))) (-15 -3691 ((-1 (-379)) (-379) (-379))) (-15 -1858 ((-1 (-379)) (-379))) (-15 -3773 ((-1 (-379)) (-769))) (-15 -3197 ((-1 (-379)) (-769) (-769))) (-15 -2266 ((-1 (-379)) (-769) (-769))) (-15 -1425 ((-1 (-379)) (-769)))) -((-2254 (((-418 |#1|) |#1|) 33))) -(((-1039 |#1|) (-10 -7 (-15 -2254 ((-418 |#1|) |#1|))) (-1238 (-407 (-950 (-564))))) (T -1039)) -((-2254 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-1039 *3)) (-4 *3 (-1238 (-407 (-950 (-564)))))))) -(-10 -7 (-15 -2254 ((-418 |#1|) |#1|))) -((-4082 (((-407 (-418 (-950 |#1|))) (-407 (-950 |#1|))) 14))) -(((-1040 |#1|) (-10 -7 (-15 -4082 ((-407 (-418 (-950 |#1|))) (-407 (-950 |#1|))))) (-307)) (T -1040)) -((-4082 (*1 *2 *3) (-12 (-5 *3 (-407 (-950 *4))) (-4 *4 (-307)) (-5 *2 (-407 (-418 (-950 *4)))) (-5 *1 (-1040 *4))))) -(-10 -7 (-15 -4082 ((-407 (-418 (-950 |#1|))) (-407 (-950 |#1|))))) -((-2397 (((-642 (-1173)) (-407 (-950 |#1|))) 17)) (-2223 (((-407 (-1169 (-407 (-950 |#1|)))) (-407 (-950 |#1|)) (-1173)) 24)) (-2387 (((-407 (-950 |#1|)) (-407 (-1169 (-407 (-950 |#1|)))) (-1173)) 26)) (-1557 (((-3 (-1173) "failed") (-407 (-950 |#1|))) 20)) (-3154 (((-407 (-950 |#1|)) (-407 (-950 |#1|)) (-642 (-294 (-407 (-950 |#1|))))) 32) (((-407 (-950 |#1|)) (-407 (-950 |#1|)) (-294 (-407 (-950 |#1|)))) 33) (((-407 (-950 |#1|)) (-407 (-950 |#1|)) (-642 (-1173)) (-642 (-407 (-950 |#1|)))) 28) (((-407 (-950 |#1|)) (-407 (-950 |#1|)) (-1173) (-407 (-950 |#1|))) 29)) (-2390 (((-407 (-950 |#1|)) |#1|) 11))) -(((-1041 |#1|) (-10 -7 (-15 -2397 ((-642 (-1173)) (-407 (-950 |#1|)))) (-15 -1557 ((-3 (-1173) "failed") (-407 (-950 |#1|)))) (-15 -2223 ((-407 (-1169 (-407 (-950 |#1|)))) (-407 (-950 |#1|)) (-1173))) (-15 -2387 ((-407 (-950 |#1|)) (-407 (-1169 (-407 (-950 |#1|)))) (-1173))) (-15 -3154 ((-407 (-950 |#1|)) (-407 (-950 |#1|)) (-1173) (-407 (-950 |#1|)))) (-15 -3154 ((-407 (-950 |#1|)) (-407 (-950 |#1|)) (-642 (-1173)) (-642 (-407 (-950 |#1|))))) (-15 -3154 ((-407 (-950 |#1|)) (-407 (-950 |#1|)) (-294 (-407 (-950 |#1|))))) (-15 -3154 ((-407 (-950 |#1|)) (-407 (-950 |#1|)) (-642 (-294 (-407 (-950 |#1|)))))) (-15 -2390 ((-407 (-950 |#1|)) |#1|))) (-556)) (T -1041)) -((-2390 (*1 *2 *3) (-12 (-5 *2 (-407 (-950 *3))) (-5 *1 (-1041 *3)) (-4 *3 (-556)))) (-3154 (*1 *2 *2 *3) (-12 (-5 *3 (-642 (-294 (-407 (-950 *4))))) (-5 *2 (-407 (-950 *4))) (-4 *4 (-556)) (-5 *1 (-1041 *4)))) (-3154 (*1 *2 *2 *3) (-12 (-5 *3 (-294 (-407 (-950 *4)))) (-5 *2 (-407 (-950 *4))) (-4 *4 (-556)) (-5 *1 (-1041 *4)))) (-3154 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-642 (-1173))) (-5 *4 (-642 (-407 (-950 *5)))) (-5 *2 (-407 (-950 *5))) (-4 *5 (-556)) (-5 *1 (-1041 *5)))) (-3154 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-407 (-950 *4))) (-5 *3 (-1173)) (-4 *4 (-556)) (-5 *1 (-1041 *4)))) (-2387 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-1169 (-407 (-950 *5))))) (-5 *4 (-1173)) (-5 *2 (-407 (-950 *5))) (-5 *1 (-1041 *5)) (-4 *5 (-556)))) (-2223 (*1 *2 *3 *4) (-12 (-5 *4 (-1173)) (-4 *5 (-556)) (-5 *2 (-407 (-1169 (-407 (-950 *5))))) (-5 *1 (-1041 *5)) (-5 *3 (-407 (-950 *5))))) (-1557 (*1 *2 *3) (|partial| -12 (-5 *3 (-407 (-950 *4))) (-4 *4 (-556)) (-5 *2 (-1173)) (-5 *1 (-1041 *4)))) (-2397 (*1 *2 *3) (-12 (-5 *3 (-407 (-950 *4))) (-4 *4 (-556)) (-5 *2 (-642 (-1173))) (-5 *1 (-1041 *4))))) -(-10 -7 (-15 -2397 ((-642 (-1173)) (-407 (-950 |#1|)))) (-15 -1557 ((-3 (-1173) "failed") (-407 (-950 |#1|)))) (-15 -2223 ((-407 (-1169 (-407 (-950 |#1|)))) (-407 (-950 |#1|)) (-1173))) (-15 -2387 ((-407 (-950 |#1|)) (-407 (-1169 (-407 (-950 |#1|)))) (-1173))) (-15 -3154 ((-407 (-950 |#1|)) (-407 (-950 |#1|)) (-1173) (-407 (-950 |#1|)))) (-15 -3154 ((-407 (-950 |#1|)) (-407 (-950 |#1|)) (-642 (-1173)) (-642 (-407 (-950 |#1|))))) (-15 -3154 ((-407 (-950 |#1|)) (-407 (-950 |#1|)) (-294 (-407 (-950 |#1|))))) (-15 -3154 ((-407 (-950 |#1|)) (-407 (-950 |#1|)) (-642 (-294 (-407 (-950 |#1|)))))) (-15 -2390 ((-407 (-950 |#1|)) |#1|))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-2822 (($) 18 T CONST)) (-3266 ((|#1| $) 23)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2071 ((|#1| $) 22)) (-3595 ((|#1|) 20 T CONST)) (-2390 (((-860) $) 12)) (-3153 ((|#1| $) 21)) (-1600 (((-112) $ $) 9)) (-2361 (($) 19 T CONST)) (-2821 (((-112) $ $) 6)) (-2917 (($ $ $) 15)) (* (($ (-919) $) 14) (($ (-769) $) 16))) -(((-1042 |#1|) (-140) (-23)) (T -1042)) -((-3266 (*1 *2 *1) (-12 (-4 *1 (-1042 *2)) (-4 *2 (-23)))) (-2071 (*1 *2 *1) (-12 (-4 *1 (-1042 *2)) (-4 *2 (-23)))) (-3153 (*1 *2 *1) (-12 (-4 *1 (-1042 *2)) (-4 *2 (-23)))) (-3595 (*1 *2) (-12 (-4 *1 (-1042 *2)) (-4 *2 (-23))))) -(-13 (-23) (-10 -8 (-15 -3266 (|t#1| $)) (-15 -2071 (|t#1| $)) (-15 -3153 (|t#1| $)) (-15 -3595 (|t#1|) -1551))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-611 (-860)) . T) ((-1097) . T)) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-4338 (($) 25 T CONST)) (-2822 (($) 18 T CONST)) (-3266 ((|#1| $) 23)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2071 ((|#1| $) 22)) (-3595 ((|#1|) 20 T CONST)) (-2390 (((-860) $) 12)) (-3153 ((|#1| $) 21)) (-1600 (((-112) $ $) 9)) (-2361 (($) 19 T CONST)) (-2821 (((-112) $ $) 6)) (-2917 (($ $ $) 15)) (* (($ (-919) $) 14) (($ (-769) $) 16))) -(((-1043 |#1|) (-140) (-23)) (T -1043)) -((-4338 (*1 *1) (-12 (-4 *1 (-1043 *2)) (-4 *2 (-23))))) -(-13 (-1042 |t#1|) (-10 -8 (-15 -4338 ($) -1551))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-611 (-860)) . T) ((-1042 |#1|) . T) ((-1097) . T)) -((-2856 (((-112) $ $) NIL)) (-1466 (((-642 (-2 (|:| -1616 $) (|:| -3406 (-642 (-778 |#1| (-862 |#2|)))))) (-642 (-778 |#1| (-862 |#2|)))) NIL)) (-3076 (((-642 $) (-642 (-778 |#1| (-862 |#2|)))) NIL) (((-642 $) (-642 (-778 |#1| (-862 |#2|))) (-112)) NIL) (((-642 $) (-642 (-778 |#1| (-862 |#2|))) (-112) (-112)) NIL)) (-2397 (((-642 (-862 |#2|)) $) NIL)) (-3646 (((-112) $) NIL)) (-4074 (((-112) $) NIL (|has| |#1| (-556)))) (-4334 (((-112) (-778 |#1| (-862 |#2|)) $) NIL) (((-112) $) NIL)) (-2937 (((-778 |#1| (-862 |#2|)) (-778 |#1| (-862 |#2|)) $) NIL)) (-1993 (((-642 (-2 (|:| |val| (-778 |#1| (-862 |#2|))) (|:| -2138 $))) (-778 |#1| (-862 |#2|)) $) NIL)) (-3191 (((-2 (|:| |under| $) (|:| -2795 $) (|:| |upper| $)) $ (-862 |#2|)) NIL)) (-3442 (((-112) $ (-769)) NIL)) (-3437 (($ (-1 (-112) (-778 |#1| (-862 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-3 (-778 |#1| (-862 |#2|)) "failed") $ (-862 |#2|)) NIL)) (-2822 (($) NIL T CONST)) (-3013 (((-112) $) NIL (|has| |#1| (-556)))) (-3936 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2133 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2967 (((-112) $) NIL (|has| |#1| (-556)))) (-3720 (((-642 (-778 |#1| (-862 |#2|))) (-642 (-778 |#1| (-862 |#2|))) $ (-1 (-778 |#1| (-862 |#2|)) (-778 |#1| (-862 |#2|)) (-778 |#1| (-862 |#2|))) (-1 (-112) (-778 |#1| (-862 |#2|)) (-778 |#1| (-862 |#2|)))) NIL)) (-2632 (((-642 (-778 |#1| (-862 |#2|))) (-642 (-778 |#1| (-862 |#2|))) $) NIL (|has| |#1| (-556)))) (-1419 (((-642 (-778 |#1| (-862 |#2|))) (-642 (-778 |#1| (-862 |#2|))) $) NIL (|has| |#1| (-556)))) (-2849 (((-3 $ "failed") (-642 (-778 |#1| (-862 |#2|)))) NIL)) (-1687 (($ (-642 (-778 |#1| (-862 |#2|)))) NIL)) (-4050 (((-3 $ "failed") $) NIL)) (-2398 (((-778 |#1| (-862 |#2|)) (-778 |#1| (-862 |#2|)) $) NIL)) (-4067 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-778 |#1| (-862 |#2|)) (-1097))))) (-2517 (($ (-778 |#1| (-862 |#2|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-778 |#1| (-862 |#2|)) (-1097)))) (($ (-1 (-112) (-778 |#1| (-862 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-1992 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-778 |#1| (-862 |#2|))) (|:| |den| |#1|)) (-778 |#1| (-862 |#2|)) $) NIL (|has| |#1| (-556)))) (-3762 (((-112) (-778 |#1| (-862 |#2|)) $ (-1 (-112) (-778 |#1| (-862 |#2|)) (-778 |#1| (-862 |#2|)))) NIL)) (-3978 (((-778 |#1| (-862 |#2|)) (-778 |#1| (-862 |#2|)) $) NIL)) (-3741 (((-778 |#1| (-862 |#2|)) (-1 (-778 |#1| (-862 |#2|)) (-778 |#1| (-862 |#2|)) (-778 |#1| (-862 |#2|))) $ (-778 |#1| (-862 |#2|)) (-778 |#1| (-862 |#2|))) NIL (-12 (|has| $ (-6 -4410)) (|has| (-778 |#1| (-862 |#2|)) (-1097)))) (((-778 |#1| (-862 |#2|)) (-1 (-778 |#1| (-862 |#2|)) (-778 |#1| (-862 |#2|)) (-778 |#1| (-862 |#2|))) $ (-778 |#1| (-862 |#2|))) NIL (|has| $ (-6 -4410))) (((-778 |#1| (-862 |#2|)) (-1 (-778 |#1| (-862 |#2|)) (-778 |#1| (-862 |#2|)) (-778 |#1| (-862 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-778 |#1| (-862 |#2|)) (-778 |#1| (-862 |#2|)) $ (-1 (-778 |#1| (-862 |#2|)) (-778 |#1| (-862 |#2|)) (-778 |#1| (-862 |#2|))) (-1 (-112) (-778 |#1| (-862 |#2|)) (-778 |#1| (-862 |#2|)))) NIL)) (-1750 (((-2 (|:| -1616 (-642 (-778 |#1| (-862 |#2|)))) (|:| -3406 (-642 (-778 |#1| (-862 |#2|))))) $) NIL)) (-2104 (((-112) (-778 |#1| (-862 |#2|)) $) NIL)) (-4141 (((-112) (-778 |#1| (-862 |#2|)) $) NIL)) (-3188 (((-112) (-778 |#1| (-862 |#2|)) $) NIL) (((-112) $) NIL)) (-2018 (((-642 (-778 |#1| (-862 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-3303 (((-112) (-778 |#1| (-862 |#2|)) $) NIL) (((-112) $) NIL)) (-1715 (((-862 |#2|) $) NIL)) (-3769 (((-112) $ (-769)) NIL)) (-3541 (((-642 (-778 |#1| (-862 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-2533 (((-112) (-778 |#1| (-862 |#2|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-778 |#1| (-862 |#2|)) (-1097))))) (-1857 (($ (-1 (-778 |#1| (-862 |#2|)) (-778 |#1| (-862 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-2947 (($ (-1 (-778 |#1| (-862 |#2|)) (-778 |#1| (-862 |#2|))) $) NIL)) (-1896 (((-642 (-862 |#2|)) $) NIL)) (-3935 (((-112) (-862 |#2|) $) NIL)) (-4145 (((-112) $ (-769)) NIL)) (-1778 (((-1155) $) NIL)) (-3843 (((-3 (-778 |#1| (-862 |#2|)) (-642 $)) (-778 |#1| (-862 |#2|)) (-778 |#1| (-862 |#2|)) $) NIL)) (-2224 (((-642 (-2 (|:| |val| (-778 |#1| (-862 |#2|))) (|:| -2138 $))) (-778 |#1| (-862 |#2|)) (-778 |#1| (-862 |#2|)) $) NIL)) (-2534 (((-3 (-778 |#1| (-862 |#2|)) "failed") $) NIL)) (-2163 (((-642 $) (-778 |#1| (-862 |#2|)) $) NIL)) (-2328 (((-3 (-112) (-642 $)) (-778 |#1| (-862 |#2|)) $) NIL)) (-4023 (((-642 (-2 (|:| |val| (-112)) (|:| -2138 $))) (-778 |#1| (-862 |#2|)) $) NIL) (((-112) (-778 |#1| (-862 |#2|)) $) NIL)) (-2338 (((-642 $) (-778 |#1| (-862 |#2|)) $) NIL) (((-642 $) (-642 (-778 |#1| (-862 |#2|))) $) NIL) (((-642 $) (-642 (-778 |#1| (-862 |#2|))) (-642 $)) NIL) (((-642 $) (-778 |#1| (-862 |#2|)) (-642 $)) NIL)) (-2415 (($ (-778 |#1| (-862 |#2|)) $) NIL) (($ (-642 (-778 |#1| (-862 |#2|))) $) NIL)) (-2206 (((-642 (-778 |#1| (-862 |#2|))) $) NIL)) (-3673 (((-112) (-778 |#1| (-862 |#2|)) $) NIL) (((-112) $) NIL)) (-4090 (((-778 |#1| (-862 |#2|)) (-778 |#1| (-862 |#2|)) $) NIL)) (-3119 (((-112) $ $) NIL)) (-1699 (((-2 (|:| |num| (-778 |#1| (-862 |#2|))) (|:| |den| |#1|)) (-778 |#1| (-862 |#2|)) $) NIL (|has| |#1| (-556)))) (-4354 (((-112) (-778 |#1| (-862 |#2|)) $) NIL) (((-112) $) NIL)) (-3750 (((-778 |#1| (-862 |#2|)) (-778 |#1| (-862 |#2|)) $) NIL)) (-3999 (((-1117) $) NIL)) (-4036 (((-3 (-778 |#1| (-862 |#2|)) "failed") $) NIL)) (-3183 (((-3 (-778 |#1| (-862 |#2|)) "failed") (-1 (-112) (-778 |#1| (-862 |#2|))) $) NIL)) (-2465 (((-3 $ "failed") $ (-778 |#1| (-862 |#2|))) NIL)) (-2137 (($ $ (-778 |#1| (-862 |#2|))) NIL) (((-642 $) (-778 |#1| (-862 |#2|)) $) NIL) (((-642 $) (-778 |#1| (-862 |#2|)) (-642 $)) NIL) (((-642 $) (-642 (-778 |#1| (-862 |#2|))) $) NIL) (((-642 $) (-642 (-778 |#1| (-862 |#2|))) (-642 $)) NIL)) (-4094 (((-112) (-1 (-112) (-778 |#1| (-862 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-778 |#1| (-862 |#2|))) (-642 (-778 |#1| (-862 |#2|)))) NIL (-12 (|has| (-778 |#1| (-862 |#2|)) (-309 (-778 |#1| (-862 |#2|)))) (|has| (-778 |#1| (-862 |#2|)) (-1097)))) (($ $ (-778 |#1| (-862 |#2|)) (-778 |#1| (-862 |#2|))) NIL (-12 (|has| (-778 |#1| (-862 |#2|)) (-309 (-778 |#1| (-862 |#2|)))) (|has| (-778 |#1| (-862 |#2|)) (-1097)))) (($ $ (-294 (-778 |#1| (-862 |#2|)))) NIL (-12 (|has| (-778 |#1| (-862 |#2|)) (-309 (-778 |#1| (-862 |#2|)))) (|has| (-778 |#1| (-862 |#2|)) (-1097)))) (($ $ (-642 (-294 (-778 |#1| (-862 |#2|))))) NIL (-12 (|has| (-778 |#1| (-862 |#2|)) (-309 (-778 |#1| (-862 |#2|)))) (|has| (-778 |#1| (-862 |#2|)) (-1097))))) (-2478 (((-112) $ $) NIL)) (-4109 (((-112) $) NIL)) (-2179 (($) NIL)) (-3252 (((-769) $) NIL)) (-4010 (((-769) (-778 |#1| (-862 |#2|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-778 |#1| (-862 |#2|)) (-1097)))) (((-769) (-1 (-112) (-778 |#1| (-862 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-3865 (($ $) NIL)) (-3003 (((-536) $) NIL (|has| (-778 |#1| (-862 |#2|)) (-612 (-536))))) (-2401 (($ (-642 (-778 |#1| (-862 |#2|)))) NIL)) (-2942 (($ $ (-862 |#2|)) NIL)) (-1710 (($ $ (-862 |#2|)) NIL)) (-2204 (($ $) NIL)) (-4283 (($ $ (-862 |#2|)) NIL)) (-2390 (((-860) $) NIL) (((-642 (-778 |#1| (-862 |#2|))) $) NIL)) (-2621 (((-769) $) NIL (|has| (-862 |#2|) (-368)))) (-1600 (((-112) $ $) NIL)) (-4150 (((-3 (-2 (|:| |bas| $) (|:| -3844 (-642 (-778 |#1| (-862 |#2|))))) "failed") (-642 (-778 |#1| (-862 |#2|))) (-1 (-112) (-778 |#1| (-862 |#2|)) (-778 |#1| (-862 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3844 (-642 (-778 |#1| (-862 |#2|))))) "failed") (-642 (-778 |#1| (-862 |#2|))) (-1 (-112) (-778 |#1| (-862 |#2|))) (-1 (-112) (-778 |#1| (-862 |#2|)) (-778 |#1| (-862 |#2|)))) NIL)) (-2205 (((-112) $ (-1 (-112) (-778 |#1| (-862 |#2|)) (-642 (-778 |#1| (-862 |#2|))))) NIL)) (-3204 (((-642 $) (-778 |#1| (-862 |#2|)) $) NIL) (((-642 $) (-778 |#1| (-862 |#2|)) (-642 $)) NIL) (((-642 $) (-642 (-778 |#1| (-862 |#2|))) $) NIL) (((-642 $) (-642 (-778 |#1| (-862 |#2|))) (-642 $)) NIL)) (-3295 (((-112) (-1 (-112) (-778 |#1| (-862 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-1644 (((-642 (-862 |#2|)) $) NIL)) (-1837 (((-112) (-778 |#1| (-862 |#2|)) $) NIL)) (-4127 (((-112) (-862 |#2|) $) NIL)) (-2821 (((-112) $ $) NIL)) (-2158 (((-769) $) NIL (|has| $ (-6 -4410))))) -(((-1044 |#1| |#2|) (-13 (-1068 |#1| (-531 (-862 |#2|)) (-862 |#2|) (-778 |#1| (-862 |#2|))) (-10 -8 (-15 -3076 ((-642 $) (-642 (-778 |#1| (-862 |#2|))) (-112) (-112))))) (-452) (-642 (-1173))) (T -1044)) -((-3076 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-642 (-778 *5 (-862 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) (-14 *6 (-642 (-1173))) (-5 *2 (-642 (-1044 *5 *6))) (-5 *1 (-1044 *5 *6))))) -(-13 (-1068 |#1| (-531 (-862 |#2|)) (-862 |#2|) (-778 |#1| (-862 |#2|))) (-10 -8 (-15 -3076 ((-642 $) (-642 (-778 |#1| (-862 |#2|))) (-112) (-112))))) -((-2702 (((-1 (-564)) (-1091 (-564))) 32)) (-2256 (((-564) (-564) (-564) (-564) (-564)) 29)) (-3892 (((-1 (-564)) |RationalNumber|) NIL)) (-2192 (((-1 (-564)) |RationalNumber|) NIL)) (-4271 (((-1 (-564)) (-564) |RationalNumber|) NIL))) -(((-1045) (-10 -7 (-15 -2702 ((-1 (-564)) (-1091 (-564)))) (-15 -4271 ((-1 (-564)) (-564) |RationalNumber|)) (-15 -3892 ((-1 (-564)) |RationalNumber|)) (-15 -2192 ((-1 (-564)) |RationalNumber|)) (-15 -2256 ((-564) (-564) (-564) (-564) (-564))))) (T -1045)) -((-2256 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1045)))) (-2192 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-564))) (-5 *1 (-1045)))) (-3892 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-564))) (-5 *1 (-1045)))) (-4271 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-564))) (-5 *1 (-1045)) (-5 *3 (-564)))) (-2702 (*1 *2 *3) (-12 (-5 *3 (-1091 (-564))) (-5 *2 (-1 (-564))) (-5 *1 (-1045))))) -(-10 -7 (-15 -2702 ((-1 (-564)) (-1091 (-564)))) (-15 -4271 ((-1 (-564)) (-564) |RationalNumber|)) (-15 -3892 ((-1 (-564)) |RationalNumber|)) (-15 -2192 ((-1 (-564)) |RationalNumber|)) (-15 -2256 ((-564) (-564) (-564) (-564) (-564)))) -((-2390 (((-860) $) NIL) (($ (-564)) 10))) -(((-1046 |#1|) (-10 -8 (-15 -2390 (|#1| (-564))) (-15 -2390 ((-860) |#1|))) (-1047)) (T -1046)) -NIL -(-10 -8 (-15 -2390 (|#1| (-564))) (-15 -2390 ((-860) |#1|))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-3085 (((-3 $ "failed") $ $) 20)) (-2822 (($) 18 T CONST)) (-2675 (((-3 $ "failed") $) 37)) (-3163 (((-112) $) 35)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2390 (((-860) $) 12) (($ (-564)) 33)) (-3348 (((-769)) 32 T CONST)) (-1600 (((-112) $ $) 9)) (-2361 (($) 19 T CONST)) (-2371 (($) 34 T CONST)) (-2821 (((-112) $ $) 6)) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27))) -(((-1047) (-140)) (T -1047)) -((-3348 (*1 *2) (-12 (-4 *1 (-1047)) (-5 *2 (-769))))) -(-13 (-1055) (-724) (-646 $) (-614 (-564)) (-10 -7 (-15 -3348 ((-769)) -1551) (-6 -4407))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-860)) . T) ((-644 (-564)) . T) ((-644 $) . T) ((-646 $) . T) ((-724) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T)) -((-4363 (((-407 (-950 |#2|)) (-642 |#2|) (-642 |#2|) (-769) (-769)) 60))) -(((-1048 |#1| |#2|) (-10 -7 (-15 -4363 ((-407 (-950 |#2|)) (-642 |#2|) (-642 |#2|) (-769) (-769)))) (-1173) (-363)) (T -1048)) -((-4363 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-642 *6)) (-5 *4 (-769)) (-4 *6 (-363)) (-5 *2 (-407 (-950 *6))) (-5 *1 (-1048 *5 *6)) (-14 *5 (-1173))))) -(-10 -7 (-15 -4363 ((-407 (-950 |#2|)) (-642 |#2|) (-642 |#2|) (-769) (-769)))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 15)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2390 (((-860) $) 12)) (-1600 (((-112) $ $) 9)) (-2361 (($) 16 T CONST)) (-2821 (((-112) $ $) 6)) (* (($ $ |#1|) 14))) -(((-1049 |#1|) (-140) (-1055)) (T -1049)) -((-2361 (*1 *1) (-12 (-4 *1 (-1049 *2)) (-4 *2 (-1055)))) (-2950 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-1055)) (-5 *2 (-112)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1049 *2)) (-4 *2 (-1055))))) -(-13 (-1097) (-10 -8 (-15 (-2361) ($) -1551) (-15 -2950 ((-112) $)) (-15 * ($ $ |t#1|)))) -(((-102) . T) ((-611 (-860)) . T) ((-1097) . T)) -((-1382 (((-112) $) 40)) (-3382 (((-112) $) 17)) (-3847 (((-769) $) 13)) (-3857 (((-769) $) 14)) (-1632 (((-112) $) 30)) (-2630 (((-112) $) 42))) -(((-1050 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -3857 ((-769) |#1|)) (-15 -3847 ((-769) |#1|)) (-15 -2630 ((-112) |#1|)) (-15 -1382 ((-112) |#1|)) (-15 -1632 ((-112) |#1|)) (-15 -3382 ((-112) |#1|))) (-1051 |#2| |#3| |#4| |#5| |#6|) (-769) (-769) (-1047) (-238 |#3| |#4|) (-238 |#2| |#4|)) (T -1050)) -NIL -(-10 -8 (-15 -3857 ((-769) |#1|)) (-15 -3847 ((-769) |#1|)) (-15 -2630 ((-112) |#1|)) (-15 -1382 ((-112) |#1|)) (-15 -1632 ((-112) |#1|)) (-15 -3382 ((-112) |#1|))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-1382 (((-112) $) 56)) (-3085 (((-3 $ "failed") $ $) 20)) (-3382 (((-112) $) 58)) (-3442 (((-112) $ (-769)) 66)) (-2822 (($) 18 T CONST)) (-2389 (($ $) 39 (|has| |#3| (-307)))) (-2794 ((|#4| $ (-564)) 44)) (-3616 (((-769) $) 38 (|has| |#3| (-556)))) (-1804 ((|#3| $ (-564) (-564)) 46)) (-2018 (((-642 |#3|) $) 73 (|has| $ (-6 -4410)))) (-1974 (((-769) $) 37 (|has| |#3| (-556)))) (-2536 (((-642 |#5|) $) 36 (|has| |#3| (-556)))) (-3847 (((-769) $) 50)) (-3857 (((-769) $) 49)) (-3769 (((-112) $ (-769)) 65)) (-2570 (((-564) $) 54)) (-2269 (((-564) $) 52)) (-3541 (((-642 |#3|) $) 74 (|has| $ (-6 -4410)))) (-2533 (((-112) |#3| $) 76 (-12 (|has| |#3| (-1097)) (|has| $ (-6 -4410))))) (-4164 (((-564) $) 53)) (-2720 (((-564) $) 51)) (-4117 (($ (-642 (-642 |#3|))) 59)) (-1857 (($ (-1 |#3| |#3|) $) 69 (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#3| |#3|) $) 68) (($ (-1 |#3| |#3| |#3|) $ $) 42)) (-3141 (((-642 (-642 |#3|)) $) 48)) (-4145 (((-112) $ (-769)) 64)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2842 (((-3 $ "failed") $ |#3|) 41 (|has| |#3| (-556)))) (-4094 (((-112) (-1 (-112) |#3|) $) 71 (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 |#3|) (-642 |#3|)) 80 (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1097)))) (($ $ |#3| |#3|) 79 (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1097)))) (($ $ (-294 |#3|)) 78 (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1097)))) (($ $ (-642 (-294 |#3|))) 77 (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1097))))) (-2478 (((-112) $ $) 60)) (-4109 (((-112) $) 63)) (-2179 (($) 62)) (-4369 ((|#3| $ (-564) (-564)) 47) ((|#3| $ (-564) (-564) |#3|) 45)) (-1632 (((-112) $) 57)) (-4010 (((-769) |#3| $) 75 (-12 (|has| |#3| (-1097)) (|has| $ (-6 -4410)))) (((-769) (-1 (-112) |#3|) $) 72 (|has| $ (-6 -4410)))) (-3865 (($ $) 61)) (-4342 ((|#5| $ (-564)) 43)) (-2390 (((-860) $) 12)) (-1600 (((-112) $ $) 9)) (-3295 (((-112) (-1 (-112) |#3|) $) 70 (|has| $ (-6 -4410)))) (-2630 (((-112) $) 55)) (-2361 (($) 19 T CONST)) (-2821 (((-112) $ $) 6)) (-2943 (($ $ |#3|) 40 (|has| |#3| (-363)))) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ |#3| $) 27) (($ $ |#3|) 31)) (-2158 (((-769) $) 67 (|has| $ (-6 -4410))))) -(((-1051 |#1| |#2| |#3| |#4| |#5|) (-140) (-769) (-769) (-1047) (-238 |t#2| |t#3|) (-238 |t#1| |t#3|)) (T -1051)) -((-2947 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-4117 (*1 *1 *2) (-12 (-5 *2 (-642 (-642 *5))) (-4 *5 (-1047)) (-4 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-3382 (*1 *2 *1) (-12 (-4 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-1632 (*1 *2 *1) (-12 (-4 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-1382 (*1 *2 *1) (-12 (-4 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-2630 (*1 *2 *1) (-12 (-4 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-2570 (*1 *2 *1) (-12 (-4 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-564)))) (-4164 (*1 *2 *1) (-12 (-4 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-564)))) (-2269 (*1 *2 *1) (-12 (-4 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-564)))) (-2720 (*1 *2 *1) (-12 (-4 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-564)))) (-3847 (*1 *2 *1) (-12 (-4 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-769)))) (-3857 (*1 *2 *1) (-12 (-4 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-769)))) (-3141 (*1 *2 *1) (-12 (-4 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-642 (-642 *5))))) (-4369 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-564)) (-4 *1 (-1051 *4 *5 *2 *6 *7)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1047)))) (-1804 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-564)) (-4 *1 (-1051 *4 *5 *2 *6 *7)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1047)))) (-4369 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-564)) (-4 *1 (-1051 *4 *5 *2 *6 *7)) (-4 *2 (-1047)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)))) (-2794 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-1051 *4 *5 *6 *2 *7)) (-4 *6 (-1047)) (-4 *7 (-238 *4 *6)) (-4 *2 (-238 *5 *6)))) (-4342 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-1051 *4 *5 *6 *7 *2)) (-4 *6 (-1047)) (-4 *7 (-238 *5 *6)) (-4 *2 (-238 *4 *6)))) (-2947 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-2842 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1051 *3 *4 *2 *5 *6)) (-4 *2 (-1047)) (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-556)))) (-2943 (*1 *1 *1 *2) (-12 (-4 *1 (-1051 *3 *4 *2 *5 *6)) (-4 *2 (-1047)) (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-363)))) (-2389 (*1 *1 *1) (-12 (-4 *1 (-1051 *2 *3 *4 *5 *6)) (-4 *4 (-1047)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *2 *4)) (-4 *4 (-307)))) (-3616 (*1 *2 *1) (-12 (-4 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-556)) (-5 *2 (-769)))) (-1974 (*1 *2 *1) (-12 (-4 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-556)) (-5 *2 (-769)))) (-2536 (*1 *2 *1) (-12 (-4 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-556)) (-5 *2 (-642 *7))))) -(-13 (-111 |t#3| |t#3|) (-489 |t#3|) (-10 -8 (-6 -4410) (IF (|has| |t#3| (-172)) (-6 (-715 |t#3|)) |%noBranch|) (-15 -4117 ($ (-642 (-642 |t#3|)))) (-15 -3382 ((-112) $)) (-15 -1632 ((-112) $)) (-15 -1382 ((-112) $)) (-15 -2630 ((-112) $)) (-15 -2570 ((-564) $)) (-15 -4164 ((-564) $)) (-15 -2269 ((-564) $)) (-15 -2720 ((-564) $)) (-15 -3847 ((-769) $)) (-15 -3857 ((-769) $)) (-15 -3141 ((-642 (-642 |t#3|)) $)) (-15 -4369 (|t#3| $ (-564) (-564))) (-15 -1804 (|t#3| $ (-564) (-564))) (-15 -4369 (|t#3| $ (-564) (-564) |t#3|)) (-15 -2794 (|t#4| $ (-564))) (-15 -4342 (|t#5| $ (-564))) (-15 -2947 ($ (-1 |t#3| |t#3|) $)) (-15 -2947 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-556)) (-15 -2842 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-363)) (-15 -2943 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-307)) (-15 -2389 ($ $)) |%noBranch|) (IF (|has| |t#3| (-556)) (PROGN (-15 -3616 ((-769) $)) (-15 -1974 ((-769) $)) (-15 -2536 ((-642 |t#5|) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-131) . T) ((-611 (-860)) . T) ((-309 |#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1097))) ((-489 |#3|) . T) ((-514 |#3| |#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1097))) ((-644 (-564)) . T) ((-644 |#3|) . T) ((-646 |#3|) . T) ((-638 |#3|) |has| |#3| (-172)) ((-715 |#3|) |has| |#3| (-172)) ((-1049 |#3|) . T) ((-1054 |#3|) . T) ((-1097) . T) ((-1212) . T)) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-1382 (((-112) $) NIL)) (-3085 (((-3 $ "failed") $ $) NIL)) (-3382 (((-112) $) NIL)) (-3442 (((-112) $ (-769)) NIL)) (-2822 (($) NIL T CONST)) (-2389 (($ $) 47 (|has| |#3| (-307)))) (-2794 (((-240 |#2| |#3|) $ (-564)) 36)) (-2028 (($ (-687 |#3|)) 45)) (-3616 (((-769) $) 49 (|has| |#3| (-556)))) (-1804 ((|#3| $ (-564) (-564)) NIL)) (-2018 (((-642 |#3|) $) NIL (|has| $ (-6 -4410)))) (-1974 (((-769) $) 51 (|has| |#3| (-556)))) (-2536 (((-642 (-240 |#1| |#3|)) $) 55 (|has| |#3| (-556)))) (-3847 (((-769) $) NIL)) (-3857 (((-769) $) NIL)) (-3769 (((-112) $ (-769)) NIL)) (-2570 (((-564) $) NIL)) (-2269 (((-564) $) NIL)) (-3541 (((-642 |#3|) $) NIL (|has| $ (-6 -4410)))) (-2533 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#3| (-1097))))) (-4164 (((-564) $) NIL)) (-2720 (((-564) $) NIL)) (-4117 (($ (-642 (-642 |#3|))) 31)) (-1857 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-3141 (((-642 (-642 |#3|)) $) NIL)) (-4145 (((-112) $ (-769)) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2842 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-556)))) (-4094 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 |#3|) (-642 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1097)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1097)))) (($ $ (-294 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1097)))) (($ $ (-642 (-294 |#3|))) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1097))))) (-2478 (((-112) $ $) NIL)) (-4109 (((-112) $) NIL)) (-2179 (($) NIL)) (-4369 ((|#3| $ (-564) (-564)) NIL) ((|#3| $ (-564) (-564) |#3|) NIL)) (-3677 (((-134)) 59 (|has| |#3| (-363)))) (-1632 (((-112) $) NIL)) (-4010 (((-769) |#3| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#3| (-1097)))) (((-769) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4410)))) (-3865 (($ $) NIL)) (-3003 (((-536) $) 65 (|has| |#3| (-612 (-536))))) (-4342 (((-240 |#1| |#3|) $ (-564)) 40)) (-2390 (((-860) $) 19) (((-687 |#3|) $) 42)) (-1600 (((-112) $ $) NIL)) (-3295 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4410)))) (-2630 (((-112) $) NIL)) (-2361 (($) 16 T CONST)) (-2821 (((-112) $ $) NIL)) (-2943 (($ $ |#3|) NIL (|has| |#3| (-363)))) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-2158 (((-769) $) NIL (|has| $ (-6 -4410))))) -(((-1052 |#1| |#2| |#3|) (-13 (-1051 |#1| |#2| |#3| (-240 |#2| |#3|) (-240 |#1| |#3|)) (-611 (-687 |#3|)) (-10 -8 (IF (|has| |#3| (-363)) (-6 (-1269 |#3|)) |%noBranch|) (IF (|has| |#3| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (-15 -2028 ($ (-687 |#3|))))) (-769) (-769) (-1047)) (T -1052)) -((-2028 (*1 *1 *2) (-12 (-5 *2 (-687 *5)) (-4 *5 (-1047)) (-5 *1 (-1052 *3 *4 *5)) (-14 *3 (-769)) (-14 *4 (-769))))) -(-13 (-1051 |#1| |#2| |#3| (-240 |#2| |#3|) (-240 |#1| |#3|)) (-611 (-687 |#3|)) (-10 -8 (IF (|has| |#3| (-363)) (-6 (-1269 |#3|)) |%noBranch|) (IF (|has| |#3| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (-15 -2028 ($ (-687 |#3|))))) -((-3741 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36)) (-2947 ((|#10| (-1 |#7| |#3|) |#6|) 34))) -(((-1053 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -2947 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3741 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-769) (-769) (-1047) (-238 |#2| |#3|) (-238 |#1| |#3|) (-1051 |#1| |#2| |#3| |#4| |#5|) (-1047) (-238 |#2| |#7|) (-238 |#1| |#7|) (-1051 |#1| |#2| |#7| |#8| |#9|)) (T -1053)) -((-3741 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1047)) (-4 *2 (-1047)) (-14 *5 (-769)) (-14 *6 (-769)) (-4 *8 (-238 *6 *7)) (-4 *9 (-238 *5 *7)) (-4 *10 (-238 *6 *2)) (-4 *11 (-238 *5 *2)) (-5 *1 (-1053 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1051 *5 *6 *7 *8 *9)) (-4 *12 (-1051 *5 *6 *2 *10 *11)))) (-2947 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1047)) (-4 *10 (-1047)) (-14 *5 (-769)) (-14 *6 (-769)) (-4 *8 (-238 *6 *7)) (-4 *9 (-238 *5 *7)) (-4 *2 (-1051 *5 *6 *10 *11 *12)) (-5 *1 (-1053 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1051 *5 *6 *7 *8 *9)) (-4 *11 (-238 *6 *10)) (-4 *12 (-238 *5 *10))))) -(-10 -7 (-15 -2947 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3741 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-3085 (((-3 $ "failed") $ $) 20)) (-2822 (($) 18 T CONST)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2390 (((-860) $) 12)) (-1600 (((-112) $ $) 9)) (-2361 (($) 19 T CONST)) (-2821 (((-112) $ $) 6)) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ |#1|) 27))) -(((-1054 |#1|) (-140) (-1055)) (T -1054)) -NIL -(-13 (-21) (-1049 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-860)) . T) ((-644 (-564)) . T) ((-1049 |#1|) . T) ((-1097) . T)) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-3085 (((-3 $ "failed") $ $) 20)) (-2822 (($) 18 T CONST)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2390 (((-860) $) 12)) (-1600 (((-112) $ $) 9)) (-2361 (($) 19 T CONST)) (-2821 (((-112) $ $) 6)) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 28)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27))) -(((-1055) (-140)) (T -1055)) -NIL -(-13 (-21) (-1109)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-860)) . T) ((-644 (-564)) . T) ((-1109) . T) ((-1097) . T)) -((-2180 (($ $) 17)) (-2293 (($ $) 25)) (-1381 (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) 55)) (-2573 (($ $) 27)) (-1830 (($ $) 12)) (-2795 (($ $) 43)) (-3003 (((-379) $) NIL) (((-225) $) NIL) (((-890 (-379)) $) 36)) (-2390 (((-860) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) 31) (($ (-564)) NIL) (($ (-407 (-564))) 31)) (-3348 (((-769)) 9)) (-1378 (($ $) 45))) -(((-1056 |#1|) (-10 -8 (-15 -2293 (|#1| |#1|)) (-15 -2180 (|#1| |#1|)) (-15 -1830 (|#1| |#1|)) (-15 -2795 (|#1| |#1|)) (-15 -1378 (|#1| |#1|)) (-15 -2573 (|#1| |#1|)) (-15 -1381 ((-887 (-379) |#1|) |#1| (-890 (-379)) (-887 (-379) |#1|))) (-15 -3003 ((-890 (-379)) |#1|)) (-15 -2390 (|#1| (-407 (-564)))) (-15 -2390 (|#1| (-564))) (-15 -3003 ((-225) |#1|)) (-15 -3003 ((-379) |#1|)) (-15 -2390 (|#1| (-407 (-564)))) (-15 -2390 (|#1| |#1|)) (-15 -3348 ((-769))) (-15 -2390 (|#1| (-564))) (-15 -2390 ((-860) |#1|))) (-1057)) (T -1056)) -((-3348 (*1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-1056 *3)) (-4 *3 (-1057))))) -(-10 -8 (-15 -2293 (|#1| |#1|)) (-15 -2180 (|#1| |#1|)) (-15 -1830 (|#1| |#1|)) (-15 -2795 (|#1| |#1|)) (-15 -1378 (|#1| |#1|)) (-15 -2573 (|#1| |#1|)) (-15 -1381 ((-887 (-379) |#1|) |#1| (-890 (-379)) (-887 (-379) |#1|))) (-15 -3003 ((-890 (-379)) |#1|)) (-15 -2390 (|#1| (-407 (-564)))) (-15 -2390 (|#1| (-564))) (-15 -3003 ((-225) |#1|)) (-15 -3003 ((-379) |#1|)) (-15 -2390 (|#1| (-407 (-564)))) (-15 -2390 (|#1| |#1|)) (-15 -3348 ((-769))) (-15 -2390 (|#1| (-564))) (-15 -2390 ((-860) |#1|))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-2905 (((-564) $) 97)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) 47)) (-4252 (($ $) 46)) (-1722 (((-112) $) 44)) (-2180 (($ $) 95)) (-3085 (((-3 $ "failed") $ $) 20)) (-1993 (($ $) 81)) (-3282 (((-418 $) $) 80)) (-2264 (($ $) 105)) (-2134 (((-112) $ $) 65)) (-2221 (((-564) $) 122)) (-2822 (($) 18 T CONST)) (-2293 (($ $) 94)) (-2849 (((-3 (-564) "failed") $) 110) (((-3 (-407 (-564)) "failed") $) 107)) (-1687 (((-564) $) 111) (((-407 (-564)) $) 108)) (-2796 (($ $ $) 61)) (-2675 (((-3 $ "failed") $) 37)) (-2808 (($ $ $) 62)) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) 57)) (-3552 (((-112) $) 79)) (-3292 (((-112) $) 120)) (-1381 (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) 101)) (-3163 (((-112) $) 35)) (-2024 (($ $ (-564)) 104)) (-2573 (($ $) 100)) (-2666 (((-112) $) 121)) (-2709 (((-3 (-642 $) "failed") (-642 $) $) 58)) (-3225 (($ $ $) 119)) (-2903 (($ $ $) 118)) (-2066 (($ $ $) 52) (($ (-642 $)) 51)) (-1778 (((-1155) $) 10)) (-2481 (($ $) 78)) (-3999 (((-1117) $) 11)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) 50)) (-2105 (($ $ $) 54) (($ (-642 $)) 53)) (-1830 (($ $) 96)) (-2795 (($ $) 98)) (-2254 (((-418 $) $) 82)) (-1877 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2842 (((-3 $ "failed") $ $) 48)) (-1483 (((-3 (-642 $) "failed") (-642 $) $) 56)) (-4274 (((-769) $) 64)) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) 63)) (-3003 (((-379) $) 113) (((-225) $) 112) (((-890 (-379)) $) 102)) (-2390 (((-860) $) 12) (($ (-564)) 33) (($ $) 49) (($ (-407 (-564))) 74) (($ (-564)) 109) (($ (-407 (-564))) 106)) (-3348 (((-769)) 32 T CONST)) (-1378 (($ $) 99)) (-1600 (((-112) $ $) 9)) (-1594 (((-112) $ $) 45)) (-1630 (($ $) 123)) (-2361 (($) 19 T CONST)) (-2371 (($) 34 T CONST)) (-2881 (((-112) $ $) 116)) (-2857 (((-112) $ $) 115)) (-2821 (((-112) $ $) 6)) (-2868 (((-112) $ $) 117)) (-2844 (((-112) $ $) 114)) (-2943 (($ $ $) 73)) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36) (($ $ (-564)) 77) (($ $ (-407 (-564))) 103)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ (-407 (-564))) 76) (($ (-407 (-564)) $) 75))) +((-1499 (($ $ (-1091 $)) 7) (($ $ (-1175)) 6))) +(((-959) (-140)) (T -959)) +((-1499 (*1 *1 *1 *2) (-12 (-5 *2 (-1091 *1)) (-4 *1 (-959)))) (-1499 (*1 *1 *1 *2) (-12 (-4 *1 (-959)) (-5 *2 (-1175))))) +(-13 (-10 -8 (-15 -1499 ($ $ (-1175))) (-15 -1499 ($ $ (-1091 $))))) +((-2409 (((-2 (|:| -3103 (-644 (-566))) (|:| |poly| (-644 (-1171 |#1|))) (|:| |prim| (-1171 |#1|))) (-644 (-952 |#1|)) (-644 (-1175)) (-1175)) 30) (((-2 (|:| -3103 (-644 (-566))) (|:| |poly| (-644 (-1171 |#1|))) (|:| |prim| (-1171 |#1|))) (-644 (-952 |#1|)) (-644 (-1175))) 31) (((-2 (|:| |coef1| (-566)) (|:| |coef2| (-566)) (|:| |prim| (-1171 |#1|))) (-952 |#1|) (-1175) (-952 |#1|) (-1175)) 49))) +(((-960 |#1|) (-10 -7 (-15 -2409 ((-2 (|:| |coef1| (-566)) (|:| |coef2| (-566)) (|:| |prim| (-1171 |#1|))) (-952 |#1|) (-1175) (-952 |#1|) (-1175))) (-15 -2409 ((-2 (|:| -3103 (-644 (-566))) (|:| |poly| (-644 (-1171 |#1|))) (|:| |prim| (-1171 |#1|))) (-644 (-952 |#1|)) (-644 (-1175)))) (-15 -2409 ((-2 (|:| -3103 (-644 (-566))) (|:| |poly| (-644 (-1171 |#1|))) (|:| |prim| (-1171 |#1|))) (-644 (-952 |#1|)) (-644 (-1175)) (-1175)))) (-13 (-365) (-147))) (T -960)) +((-2409 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-644 (-952 *6))) (-5 *4 (-644 (-1175))) (-5 *5 (-1175)) (-4 *6 (-13 (-365) (-147))) (-5 *2 (-2 (|:| -3103 (-644 (-566))) (|:| |poly| (-644 (-1171 *6))) (|:| |prim| (-1171 *6)))) (-5 *1 (-960 *6)))) (-2409 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-644 (-1175))) (-4 *5 (-13 (-365) (-147))) (-5 *2 (-2 (|:| -3103 (-644 (-566))) (|:| |poly| (-644 (-1171 *5))) (|:| |prim| (-1171 *5)))) (-5 *1 (-960 *5)))) (-2409 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-952 *5)) (-5 *4 (-1175)) (-4 *5 (-13 (-365) (-147))) (-5 *2 (-2 (|:| |coef1| (-566)) (|:| |coef2| (-566)) (|:| |prim| (-1171 *5)))) (-5 *1 (-960 *5))))) +(-10 -7 (-15 -2409 ((-2 (|:| |coef1| (-566)) (|:| |coef2| (-566)) (|:| |prim| (-1171 |#1|))) (-952 |#1|) (-1175) (-952 |#1|) (-1175))) (-15 -2409 ((-2 (|:| -3103 (-644 (-566))) (|:| |poly| (-644 (-1171 |#1|))) (|:| |prim| (-1171 |#1|))) (-644 (-952 |#1|)) (-644 (-1175)))) (-15 -2409 ((-2 (|:| -3103 (-644 (-566))) (|:| |poly| (-644 (-1171 |#1|))) (|:| |prim| (-1171 |#1|))) (-644 (-952 |#1|)) (-644 (-1175)) (-1175)))) +((-4318 (((-644 |#1|) |#1| |#1|) 47)) (-4188 (((-112) |#1|) 44)) (-4129 ((|#1| |#1|) 82)) (-1876 ((|#1| |#1|) 81))) +(((-961 |#1|) (-10 -7 (-15 -4188 ((-112) |#1|)) (-15 -1876 (|#1| |#1|)) (-15 -4129 (|#1| |#1|)) (-15 -4318 ((-644 |#1|) |#1| |#1|))) (-547)) (T -961)) +((-4318 (*1 *2 *3 *3) (-12 (-5 *2 (-644 *3)) (-5 *1 (-961 *3)) (-4 *3 (-547)))) (-4129 (*1 *2 *2) (-12 (-5 *1 (-961 *2)) (-4 *2 (-547)))) (-1876 (*1 *2 *2) (-12 (-5 *1 (-961 *2)) (-4 *2 (-547)))) (-4188 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-961 *3)) (-4 *3 (-547))))) +(-10 -7 (-15 -4188 ((-112) |#1|)) (-15 -1876 (|#1| |#1|)) (-15 -4129 (|#1| |#1|)) (-15 -4318 ((-644 |#1|) |#1| |#1|))) +((-2930 (((-1269) (-862)) 9))) +(((-962) (-10 -7 (-15 -2930 ((-1269) (-862))))) (T -962)) +((-2930 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1269)) (-5 *1 (-962))))) +(-10 -7 (-15 -2930 ((-1269) (-862)))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) 78 (|has| |#1| (-558)))) (-3087 (($ $) 79 (|has| |#1| (-558)))) (-1716 (((-112) $) NIL (|has| |#1| (-558)))) (-3174 (((-3 $ "failed") $ $) NIL)) (-1811 (($) NIL T CONST)) (-2980 (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) 34)) (-1709 (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) NIL)) (-3565 (($ $) 31)) (-3757 (((-3 $ "failed") $) 42)) (-3530 (($ $) NIL (|has| |#1| (-454)))) (-3995 (($ $ |#1| |#2| $) 62)) (-2264 (((-112) $) NIL)) (-3486 (((-771) $) 17)) (-3989 (((-112) $) NIL)) (-2463 (($ |#1| |#2|) NIL)) (-2584 ((|#2| $) 24)) (-3327 (($ (-1 |#2| |#2|) $) NIL)) (-3080 (($ (-1 |#1| |#1|) $) NIL)) (-2608 (($ $) 28)) (-2622 ((|#1| $) 26)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2587 (((-112) $) 51)) (-2597 ((|#1| $) NIL)) (-2790 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-131)) (|has| |#1| (-558))))) (-2976 (((-3 $ "failed") $ $) 91 (|has| |#1| (-558))) (((-3 $ "failed") $ |#1|) 85 (|has| |#1| (-558)))) (-1630 ((|#2| $) 22)) (-2252 ((|#1| $) NIL (|has| |#1| (-454)))) (-2479 (((-862) $) NIL) (($ (-566)) 46) (($ $) NIL (|has| |#1| (-558))) (($ |#1|) 41) (($ (-409 (-566))) NIL (-2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566))))))) (-3866 (((-644 |#1|) $) NIL)) (-3025 ((|#1| $ |#2|) 37)) (-2645 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1558 (((-771)) 15 T CONST)) (-2244 (($ $ $ (-771)) 74 (|has| |#1| (-172)))) (-3900 (((-112) $ $) NIL)) (-1333 (((-112) $ $) 84 (|has| |#1| (-558)))) (-2446 (($) 27 T CONST)) (-2459 (($) 12 T CONST)) (-2952 (((-112) $ $) 83)) (-3077 (($ $ |#1|) 92 (|has| |#1| (-365)))) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) NIL)) (** (($ $ (-921)) 69) (($ $ (-771)) 67)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 66) (($ $ |#1|) 64) (($ |#1| $) 63) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))))) +(((-963 |#1| |#2|) (-13 (-327 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-558)) (IF (|has| |#2| (-131)) (-15 -2790 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4415)) (-6 -4415) |%noBranch|))) (-1049) (-792)) (T -963)) +((-2790 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-963 *3 *2)) (-4 *2 (-131)) (-4 *3 (-558)) (-4 *3 (-1049)) (-4 *2 (-792))))) +(-13 (-327 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-558)) (IF (|has| |#2| (-131)) (-15 -2790 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4415)) (-6 -4415) |%noBranch|))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL (-2809 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-793)) (|has| |#2| (-793)))))) (-4047 (($ $ $) 65 (-12 (|has| |#1| (-793)) (|has| |#2| (-793))))) (-3174 (((-3 $ "failed") $ $) 52 (-2809 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-793)) (|has| |#2| (-793)))))) (-4049 (((-771)) 36 (-12 (|has| |#1| (-370)) (|has| |#2| (-370))))) (-1550 ((|#2| $) 22)) (-3904 ((|#1| $) 21)) (-1811 (($) NIL (-2809 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-475)) (|has| |#2| (-475))) (-12 (|has| |#1| (-726)) (|has| |#2| (-726))) (-12 (|has| |#1| (-793)) (|has| |#2| (-793)))) CONST)) (-3757 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| |#1| (-475)) (|has| |#2| (-475))) (-12 (|has| |#1| (-726)) (|has| |#2| (-726)))))) (-1415 (($) NIL (-12 (|has| |#1| (-370)) (|has| |#2| (-370))))) (-2264 (((-112) $) NIL (-2809 (-12 (|has| |#1| (-475)) (|has| |#2| (-475))) (-12 (|has| |#1| (-726)) (|has| |#2| (-726)))))) (-1920 (($ $ $) NIL (-2809 (-12 (|has| |#1| (-793)) (|has| |#2| (-793))) (-12 (|has| |#1| (-850)) (|has| |#2| (-850)))))) (-3038 (($ $ $) NIL (-2809 (-12 (|has| |#1| (-793)) (|has| |#2| (-793))) (-12 (|has| |#1| (-850)) (|has| |#2| (-850)))))) (-1734 (($ |#1| |#2|) 20)) (-4051 (((-921) $) NIL (-12 (|has| |#1| (-370)) (|has| |#2| (-370))))) (-3151 (((-1157) $) NIL)) (-2577 (($ $) 39 (-12 (|has| |#1| (-475)) (|has| |#2| (-475))))) (-2104 (($ (-921)) NIL (-12 (|has| |#1| (-370)) (|has| |#2| (-370))))) (-4059 (((-1119) $) NIL)) (-2664 (($ $ $) NIL (-12 (|has| |#1| (-475)) (|has| |#2| (-475))))) (-3815 (($ $ $) NIL (-12 (|has| |#1| (-475)) (|has| |#2| (-475))))) (-2479 (((-862) $) 14)) (-3900 (((-112) $ $) NIL)) (-2446 (($) 42 (-2809 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-793)) (|has| |#2| (-793)))) CONST)) (-2459 (($) 25 (-2809 (-12 (|has| |#1| (-475)) (|has| |#2| (-475))) (-12 (|has| |#1| (-726)) (|has| |#2| (-726)))) CONST)) (-3019 (((-112) $ $) NIL (-2809 (-12 (|has| |#1| (-793)) (|has| |#2| (-793))) (-12 (|has| |#1| (-850)) (|has| |#2| (-850)))))) (-2990 (((-112) $ $) NIL (-2809 (-12 (|has| |#1| (-793)) (|has| |#2| (-793))) (-12 (|has| |#1| (-850)) (|has| |#2| (-850)))))) (-2952 (((-112) $ $) 19)) (-3004 (((-112) $ $) NIL (-2809 (-12 (|has| |#1| (-793)) (|has| |#2| (-793))) (-12 (|has| |#1| (-850)) (|has| |#2| (-850)))))) (-2977 (((-112) $ $) 69 (-2809 (-12 (|has| |#1| (-793)) (|has| |#2| (-793))) (-12 (|has| |#1| (-850)) (|has| |#2| (-850)))))) (-3077 (($ $ $) NIL (-12 (|has| |#1| (-475)) (|has| |#2| (-475))))) (-3065 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-3052 (($ $ $) 45 (-2809 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-793)) (|has| |#2| (-793)))))) (** (($ $ (-566)) NIL (-12 (|has| |#1| (-475)) (|has| |#2| (-475)))) (($ $ (-771)) 32 (-2809 (-12 (|has| |#1| (-475)) (|has| |#2| (-475))) (-12 (|has| |#1| (-726)) (|has| |#2| (-726))))) (($ $ (-921)) NIL (-2809 (-12 (|has| |#1| (-475)) (|has| |#2| (-475))) (-12 (|has| |#1| (-726)) (|has| |#2| (-726)))))) (* (($ (-566) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-771) $) 48 (-2809 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-793)) (|has| |#2| (-793))))) (($ (-921) $) NIL (-2809 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-793)) (|has| |#2| (-793))))) (($ $ $) 28 (-2809 (-12 (|has| |#1| (-475)) (|has| |#2| (-475))) (-12 (|has| |#1| (-726)) (|has| |#2| (-726))))))) +(((-964 |#1| |#2|) (-13 (-1099) (-10 -8 (IF (|has| |#1| (-370)) (IF (|has| |#2| (-370)) (-6 (-370)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-726)) (IF (|has| |#2| (-726)) (-6 (-726)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-131)) (IF (|has| |#2| (-131)) (-6 (-131)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-475)) (IF (|has| |#2| (-475)) (-6 (-475)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-793)) (IF (|has| |#2| (-793)) (-6 (-793)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-850)) (IF (|has| |#2| (-850)) (-6 (-850)) |%noBranch|) |%noBranch|) (-15 -1734 ($ |#1| |#2|)) (-15 -3904 (|#1| $)) (-15 -1550 (|#2| $)))) (-1099) (-1099)) (T -964)) +((-1734 (*1 *1 *2 *3) (-12 (-5 *1 (-964 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099)))) (-3904 (*1 *2 *1) (-12 (-4 *2 (-1099)) (-5 *1 (-964 *2 *3)) (-4 *3 (-1099)))) (-1550 (*1 *2 *1) (-12 (-4 *2 (-1099)) (-5 *1 (-964 *3 *2)) (-4 *3 (-1099))))) +(-13 (-1099) (-10 -8 (IF (|has| |#1| (-370)) (IF (|has| |#2| (-370)) (-6 (-370)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-726)) (IF (|has| |#2| (-726)) (-6 (-726)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-131)) (IF (|has| |#2| (-131)) (-6 (-131)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-475)) (IF (|has| |#2| (-475)) (-6 (-475)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-793)) (IF (|has| |#2| (-793)) (-6 (-793)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-850)) (IF (|has| |#2| (-850)) (-6 (-850)) |%noBranch|) |%noBranch|) (-15 -1734 ($ |#1| |#2|)) (-15 -3904 (|#1| $)) (-15 -1550 (|#2| $)))) +((-2153 (((-1103) $) 12)) (-3138 (($ (-508) (-1103)) 14)) (-2598 (((-508) $) 9)) (-2479 (((-862) $) 26))) +(((-965) (-13 (-613 (-862)) (-10 -8 (-15 -2598 ((-508) $)) (-15 -2153 ((-1103) $)) (-15 -3138 ($ (-508) (-1103)))))) (T -965)) +((-2598 (*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-965)))) (-2153 (*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-965)))) (-3138 (*1 *1 *2 *3) (-12 (-5 *2 (-508)) (-5 *3 (-1103)) (-5 *1 (-965))))) +(-13 (-613 (-862)) (-10 -8 (-15 -2598 ((-508) $)) (-15 -2153 ((-1103) $)) (-15 -3138 ($ (-508) (-1103))))) +((-2986 (((-112) $ $) NIL)) (-3396 (($) NIL T CONST)) (-2415 (($ $ $) 11)) (-2387 (($ $) 9)) (-3151 (((-1157) $) NIL)) (-1830 (((-691 |#1|) $) 24)) (-3468 (((-691 (-873 $ $)) $) 36)) (-2575 (((-691 $) $) 29)) (-3722 (((-691 (-873 $ $)) $) 37)) (-2494 (((-691 (-873 $ $)) $) 38)) (-2498 (((-691 (-873 $ $)) $) 35)) (-1991 (($ $ $) 12)) (-4059 (((-1119) $) NIL)) (-2174 (($) 17 T CONST)) (-2934 (($ $ $) 13)) (-2479 (((-862) $) 40) (($ |#1|) 8)) (-3900 (((-112) $ $) NIL)) (-2402 (($ $ $) 10)) (-2952 (((-112) $ $) NIL))) +(((-966 |#1|) (-13 (-967) (-616 |#1|) (-10 -8 (-15 -1830 ((-691 |#1|) $)) (-15 -2575 ((-691 $) $)) (-15 -2498 ((-691 (-873 $ $)) $)) (-15 -3468 ((-691 (-873 $ $)) $)) (-15 -3722 ((-691 (-873 $ $)) $)) (-15 -2494 ((-691 (-873 $ $)) $)))) (-1099)) (T -966)) +((-1830 (*1 *2 *1) (-12 (-5 *2 (-691 *3)) (-5 *1 (-966 *3)) (-4 *3 (-1099)))) (-2575 (*1 *2 *1) (-12 (-5 *2 (-691 (-966 *3))) (-5 *1 (-966 *3)) (-4 *3 (-1099)))) (-2498 (*1 *2 *1) (-12 (-5 *2 (-691 (-873 (-966 *3) (-966 *3)))) (-5 *1 (-966 *3)) (-4 *3 (-1099)))) (-3468 (*1 *2 *1) (-12 (-5 *2 (-691 (-873 (-966 *3) (-966 *3)))) (-5 *1 (-966 *3)) (-4 *3 (-1099)))) (-3722 (*1 *2 *1) (-12 (-5 *2 (-691 (-873 (-966 *3) (-966 *3)))) (-5 *1 (-966 *3)) (-4 *3 (-1099)))) (-2494 (*1 *2 *1) (-12 (-5 *2 (-691 (-873 (-966 *3) (-966 *3)))) (-5 *1 (-966 *3)) (-4 *3 (-1099))))) +(-13 (-967) (-616 |#1|) (-10 -8 (-15 -1830 ((-691 |#1|) $)) (-15 -2575 ((-691 $) $)) (-15 -2498 ((-691 (-873 $ $)) $)) (-15 -3468 ((-691 (-873 $ $)) $)) (-15 -3722 ((-691 (-873 $ $)) $)) (-15 -2494 ((-691 (-873 $ $)) $)))) +((-2986 (((-112) $ $) 7)) (-3396 (($) 20 T CONST)) (-2415 (($ $ $) 16)) (-2387 (($ $) 18)) (-3151 (((-1157) $) 10)) (-1991 (($ $ $) 15)) (-4059 (((-1119) $) 11)) (-2174 (($) 19 T CONST)) (-2934 (($ $ $) 14)) (-2479 (((-862) $) 12)) (-3900 (((-112) $ $) 9)) (-2402 (($ $ $) 17)) (-2952 (((-112) $ $) 6))) +(((-967) (-140)) (T -967)) +((-3396 (*1 *1) (-4 *1 (-967))) (-2174 (*1 *1) (-4 *1 (-967))) (-2387 (*1 *1 *1) (-4 *1 (-967))) (-2402 (*1 *1 *1 *1) (-4 *1 (-967))) (-2415 (*1 *1 *1 *1) (-4 *1 (-967))) (-1991 (*1 *1 *1 *1) (-4 *1 (-967))) (-2934 (*1 *1 *1 *1) (-4 *1 (-967)))) +(-13 (-1099) (-10 -8 (-15 -3396 ($) -1573) (-15 -2174 ($) -1573) (-15 -2387 ($ $)) (-15 -2402 ($ $ $)) (-15 -2415 ($ $ $)) (-15 -1991 ($ $ $)) (-15 -2934 ($ $ $)))) +(((-102) . T) ((-613 (-862)) . T) ((-1099) . T)) +((-2986 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-1453 (((-112) $ (-771)) 8)) (-1811 (($) 7 T CONST)) (-3872 (((-644 |#1|) $) 31 (|has| $ (-6 -4417)))) (-2756 (((-112) $ (-771)) 9)) (-3200 (($ $ $) 44)) (-1330 (($ $ $) 45)) (-4227 (((-644 |#1|) $) 30 (|has| $ (-6 -4417)))) (-1688 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-3038 ((|#1| $) 46)) (-3708 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#1| |#1|) $) 36)) (-4106 (((-112) $ (-771)) 10)) (-3151 (((-1157) $) 22 (|has| |#1| (-1099)))) (-4255 ((|#1| $) 40)) (-4354 (($ |#1| $) 41)) (-4059 (((-1119) $) 21 (|has| |#1| (-1099)))) (-4097 ((|#1| $) 42)) (-3966 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1844 (((-112) $ $) 14)) (-2788 (((-112) $) 11)) (-1737 (($) 12)) (-4068 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4417))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-3924 (($ $) 13)) (-2479 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-3900 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-2471 (($ (-644 |#1|)) 43)) (-3667 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4417)))) (-2952 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3002 (((-771) $) 6 (|has| $ (-6 -4417))))) +(((-968 |#1|) (-140) (-850)) (T -968)) +((-3038 (*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-850)))) (-1330 (*1 *1 *1 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-850)))) (-3200 (*1 *1 *1 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-850))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4417) (-15 -3038 (|t#1| $)) (-15 -1330 ($ $ $)) (-15 -3200 ($ $ $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2809 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1099) |has| |#1| (-1099)) ((-1214) . T)) +((-3039 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2162 |#2|)) |#2| |#2|) 106)) (-2113 ((|#2| |#2| |#2|) 104)) (-2660 (((-2 (|:| |coef2| |#2|) (|:| -2162 |#2|)) |#2| |#2|) 108)) (-3267 (((-2 (|:| |coef1| |#2|) (|:| -2162 |#2|)) |#2| |#2|) 110)) (-1762 (((-2 (|:| |coef2| |#2|) (|:| -3888 |#1|)) |#2| |#2|) 132 (|has| |#1| (-454)))) (-1982 (((-2 (|:| |coef2| |#2|) (|:| -4343 |#1|)) |#2| |#2|) 56)) (-1849 (((-2 (|:| |coef2| |#2|) (|:| -4343 |#1|)) |#2| |#2|) 81)) (-3000 (((-2 (|:| |coef1| |#2|) (|:| -4343 |#1|)) |#2| |#2|) 83)) (-1987 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 97)) (-2254 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-771)) 90)) (-3855 (((-2 (|:| |coef2| |#2|) (|:| -3553 |#1|)) |#2|) 122)) (-2843 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-771)) 93)) (-2397 (((-644 (-771)) |#2| |#2|) 103)) (-2939 ((|#1| |#2| |#2|) 50)) (-2750 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3888 |#1|)) |#2| |#2|) 130 (|has| |#1| (-454)))) (-3888 ((|#1| |#2| |#2|) 128 (|has| |#1| (-454)))) (-2717 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4343 |#1|)) |#2| |#2|) 54)) (-2950 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4343 |#1|)) |#2| |#2|) 80)) (-4343 ((|#1| |#2| |#2|) 77)) (-3920 (((-2 (|:| -3103 |#1|) (|:| -3371 |#2|) (|:| -3131 |#2|)) |#2| |#2|) 41)) (-2781 ((|#2| |#2| |#2| |#2| |#1|) 67)) (-1771 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 95)) (-3723 ((|#2| |#2| |#2|) 94)) (-1382 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-771)) 88)) (-3887 ((|#2| |#2| |#2| (-771)) 86)) (-2162 ((|#2| |#2| |#2|) 136 (|has| |#1| (-454)))) (-2976 (((-1264 |#2|) (-1264 |#2|) |#1|) 22)) (-1510 (((-2 (|:| -3371 |#2|) (|:| -3131 |#2|)) |#2| |#2|) 46)) (-2322 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3553 |#1|)) |#2|) 120)) (-3553 ((|#1| |#2|) 117)) (-2739 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-771)) 92)) (-2663 ((|#2| |#2| |#2| (-771)) 91)) (-1496 (((-644 |#2|) |#2| |#2|) 100)) (-3714 ((|#2| |#2| |#1| |#1| (-771)) 62)) (-2669 ((|#1| |#1| |#1| (-771)) 61)) (* (((-1264 |#2|) |#1| (-1264 |#2|)) 17))) +(((-969 |#1| |#2|) (-10 -7 (-15 -4343 (|#1| |#2| |#2|)) (-15 -2950 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4343 |#1|)) |#2| |#2|)) (-15 -1849 ((-2 (|:| |coef2| |#2|) (|:| -4343 |#1|)) |#2| |#2|)) (-15 -3000 ((-2 (|:| |coef1| |#2|) (|:| -4343 |#1|)) |#2| |#2|)) (-15 -3887 (|#2| |#2| |#2| (-771))) (-15 -1382 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-771))) (-15 -2254 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-771))) (-15 -2663 (|#2| |#2| |#2| (-771))) (-15 -2739 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-771))) (-15 -2843 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-771))) (-15 -3723 (|#2| |#2| |#2|)) (-15 -1771 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1987 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2113 (|#2| |#2| |#2|)) (-15 -3039 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2162 |#2|)) |#2| |#2|)) (-15 -2660 ((-2 (|:| |coef2| |#2|) (|:| -2162 |#2|)) |#2| |#2|)) (-15 -3267 ((-2 (|:| |coef1| |#2|) (|:| -2162 |#2|)) |#2| |#2|)) (-15 -3553 (|#1| |#2|)) (-15 -2322 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3553 |#1|)) |#2|)) (-15 -3855 ((-2 (|:| |coef2| |#2|) (|:| -3553 |#1|)) |#2|)) (-15 -1496 ((-644 |#2|) |#2| |#2|)) (-15 -2397 ((-644 (-771)) |#2| |#2|)) (IF (|has| |#1| (-454)) (PROGN (-15 -3888 (|#1| |#2| |#2|)) (-15 -2750 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3888 |#1|)) |#2| |#2|)) (-15 -1762 ((-2 (|:| |coef2| |#2|) (|:| -3888 |#1|)) |#2| |#2|)) (-15 -2162 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1264 |#2|) |#1| (-1264 |#2|))) (-15 -2976 ((-1264 |#2|) (-1264 |#2|) |#1|)) (-15 -3920 ((-2 (|:| -3103 |#1|) (|:| -3371 |#2|) (|:| -3131 |#2|)) |#2| |#2|)) (-15 -1510 ((-2 (|:| -3371 |#2|) (|:| -3131 |#2|)) |#2| |#2|)) (-15 -2669 (|#1| |#1| |#1| (-771))) (-15 -3714 (|#2| |#2| |#1| |#1| (-771))) (-15 -2781 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2939 (|#1| |#2| |#2|)) (-15 -2717 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4343 |#1|)) |#2| |#2|)) (-15 -1982 ((-2 (|:| |coef2| |#2|) (|:| -4343 |#1|)) |#2| |#2|))) (-558) (-1240 |#1|)) (T -969)) +((-1982 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4343 *4))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4)))) (-2717 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4343 *4))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4)))) (-2939 (*1 *2 *3 *3) (-12 (-4 *2 (-558)) (-5 *1 (-969 *2 *3)) (-4 *3 (-1240 *2)))) (-2781 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-558)) (-5 *1 (-969 *3 *2)) (-4 *2 (-1240 *3)))) (-3714 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-771)) (-4 *3 (-558)) (-5 *1 (-969 *3 *2)) (-4 *2 (-1240 *3)))) (-2669 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-771)) (-4 *2 (-558)) (-5 *1 (-969 *2 *4)) (-4 *4 (-1240 *2)))) (-1510 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| -3371 *3) (|:| -3131 *3))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4)))) (-3920 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| -3103 *4) (|:| -3371 *3) (|:| -3131 *3))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4)))) (-2976 (*1 *2 *2 *3) (-12 (-5 *2 (-1264 *4)) (-4 *4 (-1240 *3)) (-4 *3 (-558)) (-5 *1 (-969 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1264 *4)) (-4 *4 (-1240 *3)) (-4 *3 (-558)) (-5 *1 (-969 *3 *4)))) (-2162 (*1 *2 *2 *2) (-12 (-4 *3 (-454)) (-4 *3 (-558)) (-5 *1 (-969 *3 *2)) (-4 *2 (-1240 *3)))) (-1762 (*1 *2 *3 *3) (-12 (-4 *4 (-454)) (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3888 *4))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4)))) (-2750 (*1 *2 *3 *3) (-12 (-4 *4 (-454)) (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3888 *4))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4)))) (-3888 (*1 *2 *3 *3) (-12 (-4 *2 (-558)) (-4 *2 (-454)) (-5 *1 (-969 *2 *3)) (-4 *3 (-1240 *2)))) (-2397 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-644 (-771))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4)))) (-1496 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-644 *3)) (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4)))) (-3855 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3553 *4))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4)))) (-2322 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3553 *4))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4)))) (-3553 (*1 *2 *3) (-12 (-4 *2 (-558)) (-5 *1 (-969 *2 *3)) (-4 *3 (-1240 *2)))) (-3267 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2162 *3))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4)))) (-2660 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2162 *3))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4)))) (-3039 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2162 *3))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4)))) (-2113 (*1 *2 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-969 *3 *2)) (-4 *2 (-1240 *3)))) (-1987 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4)))) (-1771 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4)))) (-3723 (*1 *2 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-969 *3 *2)) (-4 *2 (-1240 *3)))) (-2843 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-771)) (-4 *5 (-558)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-969 *5 *3)) (-4 *3 (-1240 *5)))) (-2739 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-771)) (-4 *5 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-969 *5 *3)) (-4 *3 (-1240 *5)))) (-2663 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-771)) (-4 *4 (-558)) (-5 *1 (-969 *4 *2)) (-4 *2 (-1240 *4)))) (-2254 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-771)) (-4 *5 (-558)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-969 *5 *3)) (-4 *3 (-1240 *5)))) (-1382 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-771)) (-4 *5 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-969 *5 *3)) (-4 *3 (-1240 *5)))) (-3887 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-771)) (-4 *4 (-558)) (-5 *1 (-969 *4 *2)) (-4 *2 (-1240 *4)))) (-3000 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4343 *4))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4)))) (-1849 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4343 *4))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4)))) (-2950 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4343 *4))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4)))) (-4343 (*1 *2 *3 *3) (-12 (-4 *2 (-558)) (-5 *1 (-969 *2 *3)) (-4 *3 (-1240 *2))))) +(-10 -7 (-15 -4343 (|#1| |#2| |#2|)) (-15 -2950 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4343 |#1|)) |#2| |#2|)) (-15 -1849 ((-2 (|:| |coef2| |#2|) (|:| -4343 |#1|)) |#2| |#2|)) (-15 -3000 ((-2 (|:| |coef1| |#2|) (|:| -4343 |#1|)) |#2| |#2|)) (-15 -3887 (|#2| |#2| |#2| (-771))) (-15 -1382 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-771))) (-15 -2254 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-771))) (-15 -2663 (|#2| |#2| |#2| (-771))) (-15 -2739 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-771))) (-15 -2843 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-771))) (-15 -3723 (|#2| |#2| |#2|)) (-15 -1771 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1987 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2113 (|#2| |#2| |#2|)) (-15 -3039 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2162 |#2|)) |#2| |#2|)) (-15 -2660 ((-2 (|:| |coef2| |#2|) (|:| -2162 |#2|)) |#2| |#2|)) (-15 -3267 ((-2 (|:| |coef1| |#2|) (|:| -2162 |#2|)) |#2| |#2|)) (-15 -3553 (|#1| |#2|)) (-15 -2322 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3553 |#1|)) |#2|)) (-15 -3855 ((-2 (|:| |coef2| |#2|) (|:| -3553 |#1|)) |#2|)) (-15 -1496 ((-644 |#2|) |#2| |#2|)) (-15 -2397 ((-644 (-771)) |#2| |#2|)) (IF (|has| |#1| (-454)) (PROGN (-15 -3888 (|#1| |#2| |#2|)) (-15 -2750 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3888 |#1|)) |#2| |#2|)) (-15 -1762 ((-2 (|:| |coef2| |#2|) (|:| -3888 |#1|)) |#2| |#2|)) (-15 -2162 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1264 |#2|) |#1| (-1264 |#2|))) (-15 -2976 ((-1264 |#2|) (-1264 |#2|) |#1|)) (-15 -3920 ((-2 (|:| -3103 |#1|) (|:| -3371 |#2|) (|:| -3131 |#2|)) |#2| |#2|)) (-15 -1510 ((-2 (|:| -3371 |#2|) (|:| -3131 |#2|)) |#2| |#2|)) (-15 -2669 (|#1| |#1| |#1| (-771))) (-15 -3714 (|#2| |#2| |#1| |#1| (-771))) (-15 -2781 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2939 (|#1| |#2| |#2|)) (-15 -2717 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4343 |#1|)) |#2| |#2|)) (-15 -1982 ((-2 (|:| |coef2| |#2|) (|:| -4343 |#1|)) |#2| |#2|))) +((-2986 (((-112) $ $) NIL)) (-3835 (((-1213) $) 13)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-1358 (((-1134) $) 10)) (-2479 (((-862) $) 20) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-970) (-13 (-1082) (-10 -8 (-15 -1358 ((-1134) $)) (-15 -3835 ((-1213) $))))) (T -970)) +((-1358 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-970)))) (-3835 (*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-970))))) +(-13 (-1082) (-10 -8 (-15 -1358 ((-1134) $)) (-15 -3835 ((-1213) $)))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-3174 (((-3 $ "failed") $ $) 39)) (-1811 (($) NIL T CONST)) (-2841 (((-644 (-644 (-566))) (-644 (-566))) 48)) (-1749 (((-566) $) 72)) (-3632 (($ (-644 (-566))) 18)) (-1920 (($ $ $) NIL)) (-3038 (($ $ $) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-3136 (((-644 (-566)) $) 13)) (-2664 (($ $) 52)) (-2479 (((-862) $) 68) (((-644 (-566)) $) 11)) (-3900 (((-112) $ $) NIL)) (-2446 (($) 8 T CONST)) (-3019 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 26)) (-3004 (((-112) $ $) NIL)) (-2977 (((-112) $ $) 25)) (-3052 (($ $ $) 28)) (* (($ (-921) $) NIL) (($ (-771) $) 37))) +(((-971) (-13 (-795) (-614 (-644 (-566))) (-613 (-644 (-566))) (-10 -8 (-15 -3632 ($ (-644 (-566)))) (-15 -2841 ((-644 (-644 (-566))) (-644 (-566)))) (-15 -1749 ((-566) $)) (-15 -2664 ($ $))))) (T -971)) +((-3632 (*1 *1 *2) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-971)))) (-2841 (*1 *2 *3) (-12 (-5 *2 (-644 (-644 (-566)))) (-5 *1 (-971)) (-5 *3 (-644 (-566))))) (-1749 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-971)))) (-2664 (*1 *1 *1) (-5 *1 (-971)))) +(-13 (-795) (-614 (-644 (-566))) (-613 (-644 (-566))) (-10 -8 (-15 -3632 ($ (-644 (-566)))) (-15 -2841 ((-644 (-644 (-566))) (-644 (-566)))) (-15 -1749 ((-566) $)) (-15 -2664 ($ $)))) +((-3077 (($ $ |#2|) 31)) (-3065 (($ $) 23) (($ $ $) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 17) (($ $ $) NIL) (($ $ |#2|) 21) (($ |#2| $) 20) (($ (-409 (-566)) $) 27) (($ $ (-409 (-566))) 29))) +(((-972 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-409 (-566)))) (-15 * (|#1| (-409 (-566)) |#1|)) (-15 -3077 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3065 (|#1| |#1| |#1|)) (-15 -3065 (|#1| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 * (|#1| (-921) |#1|))) (-973 |#2| |#3| |#4|) (-1049) (-792) (-850)) (T -972)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-409 (-566)))) (-15 * (|#1| (-409 (-566)) |#1|)) (-15 -3077 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3065 (|#1| |#1| |#1|)) (-15 -3065 (|#1| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 * (|#1| (-921) |#1|))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-2485 (((-644 |#3|) $) 86)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) 63 (|has| |#1| (-558)))) (-3087 (($ $) 64 (|has| |#1| (-558)))) (-1716 (((-112) $) 66 (|has| |#1| (-558)))) (-3174 (((-3 $ "failed") $ $) 20)) (-1811 (($) 18 T CONST)) (-3565 (($ $) 72)) (-3757 (((-3 $ "failed") $) 37)) (-3088 (((-112) $) 85)) (-2264 (((-112) $) 35)) (-3989 (((-112) $) 74)) (-2463 (($ |#1| |#2|) 73) (($ $ |#3| |#2|) 88) (($ $ (-644 |#3|) (-644 |#2|)) 87)) (-3080 (($ (-1 |#1| |#1|) $) 75)) (-2608 (($ $) 77)) (-2622 ((|#1| $) 78)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-2976 (((-3 $ "failed") $ $) 62 (|has| |#1| (-558)))) (-1630 ((|#2| $) 76)) (-4122 (($ $) 84)) (-2479 (((-862) $) 12) (($ (-566)) 33) (($ (-409 (-566))) 69 (|has| |#1| (-38 (-409 (-566))))) (($ $) 61 (|has| |#1| (-558))) (($ |#1|) 59 (|has| |#1| (-172)))) (-3025 ((|#1| $ |#2|) 71)) (-2645 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-1558 (((-771)) 32 T CONST)) (-3900 (((-112) $ $) 9)) (-1333 (((-112) $ $) 65 (|has| |#1| (-558)))) (-2446 (($) 19 T CONST)) (-2459 (($) 34 T CONST)) (-2952 (((-112) $ $) 6)) (-3077 (($ $ |#1|) 70 (|has| |#1| (-365)))) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-409 (-566)) $) 68 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 67 (|has| |#1| (-38 (-409 (-566))))))) +(((-973 |#1| |#2| |#3|) (-140) (-1049) (-792) (-850)) (T -973)) +((-2622 (*1 *2 *1) (-12 (-4 *1 (-973 *2 *3 *4)) (-4 *3 (-792)) (-4 *4 (-850)) (-4 *2 (-1049)))) (-2608 (*1 *1 *1) (-12 (-4 *1 (-973 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-792)) (-4 *4 (-850)))) (-1630 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *2 *4)) (-4 *3 (-1049)) (-4 *4 (-850)) (-4 *2 (-792)))) (-2463 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-973 *4 *3 *2)) (-4 *4 (-1049)) (-4 *3 (-792)) (-4 *2 (-850)))) (-2463 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 *6)) (-5 *3 (-644 *5)) (-4 *1 (-973 *4 *5 *6)) (-4 *4 (-1049)) (-4 *5 (-792)) (-4 *6 (-850)))) (-2485 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-792)) (-4 *5 (-850)) (-5 *2 (-644 *5)))) (-3088 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-792)) (-4 *5 (-850)) (-5 *2 (-112)))) (-4122 (*1 *1 *1) (-12 (-4 *1 (-973 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-792)) (-4 *4 (-850))))) +(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -2463 ($ $ |t#3| |t#2|)) (-15 -2463 ($ $ (-644 |t#3|) (-644 |t#2|))) (-15 -2608 ($ $)) (-15 -2622 (|t#1| $)) (-15 -1630 (|t#2| $)) (-15 -2485 ((-644 |t#3|) $)) (-15 -3088 ((-112) $)) (-15 -4122 ($ $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-558)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-409 (-566)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2809 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #0#) |has| |#1| (-38 (-409 (-566)))) ((-616 (-566)) . T) ((-616 |#1|) |has| |#1| (-172)) ((-616 $) |has| |#1| (-558)) ((-613 (-862)) . T) ((-172) -2809 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-291) |has| |#1| (-558)) ((-558) |has| |#1| (-558)) ((-646 #0#) |has| |#1| (-38 (-409 (-566)))) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #0#) |has| |#1| (-38 (-409 (-566)))) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #0#) |has| |#1| (-38 (-409 (-566)))) ((-640 |#1|) |has| |#1| (-172)) ((-640 $) |has| |#1| (-558)) ((-717 #0#) |has| |#1| (-38 (-409 (-566)))) ((-717 |#1|) |has| |#1| (-172)) ((-717 $) |has| |#1| (-558)) ((-726) . T) ((-1051 #0#) |has| |#1| (-38 (-409 (-566)))) ((-1051 |#1|) . T) ((-1051 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-1056 #0#) |has| |#1| (-38 (-409 (-566)))) ((-1056 |#1|) . T) ((-1056 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) +((-3698 (((-1093 (-225)) $) 8)) (-3688 (((-1093 (-225)) $) 9)) (-3678 (((-1093 (-225)) $) 10)) (-3379 (((-644 (-644 (-943 (-225)))) $) 11)) (-2479 (((-862) $) 6))) +(((-974) (-140)) (T -974)) +((-3379 (*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-644 (-644 (-943 (-225))))))) (-3678 (*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-1093 (-225))))) (-3688 (*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-1093 (-225))))) (-3698 (*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-1093 (-225)))))) +(-13 (-613 (-862)) (-10 -8 (-15 -3379 ((-644 (-644 (-943 (-225)))) $)) (-15 -3678 ((-1093 (-225)) $)) (-15 -3688 ((-1093 (-225)) $)) (-15 -3698 ((-1093 (-225)) $)))) +(((-613 (-862)) . T)) +((-2485 (((-644 |#4|) $) 23)) (-1489 (((-112) $) 55)) (-3541 (((-112) $) 54)) (-1374 (((-2 (|:| |under| $) (|:| -2001 $) (|:| |upper| $)) $ |#4|) 42)) (-4210 (((-112) $) 56)) (-3050 (((-112) $ $) 62)) (-1768 (((-112) $ $) 65)) (-3261 (((-112) $) 60)) (-2796 (((-644 |#5|) (-644 |#5|) $) 98)) (-3829 (((-644 |#5|) (-644 |#5|) $) 95)) (-3131 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88)) (-3599 (((-644 |#4|) $) 27)) (-2884 (((-112) |#4| $) 34)) (-1719 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-1706 (($ $ |#4|) 39)) (-4234 (($ $ |#4|) 38)) (-2378 (($ $ |#4|) 40)) (-2952 (((-112) $ $) 46))) +(((-975 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3541 ((-112) |#1|)) (-15 -2796 ((-644 |#5|) (-644 |#5|) |#1|)) (-15 -3829 ((-644 |#5|) (-644 |#5|) |#1|)) (-15 -3131 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1719 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -4210 ((-112) |#1|)) (-15 -1768 ((-112) |#1| |#1|)) (-15 -3050 ((-112) |#1| |#1|)) (-15 -3261 ((-112) |#1|)) (-15 -1489 ((-112) |#1|)) (-15 -1374 ((-2 (|:| |under| |#1|) (|:| -2001 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -1706 (|#1| |#1| |#4|)) (-15 -2378 (|#1| |#1| |#4|)) (-15 -4234 (|#1| |#1| |#4|)) (-15 -2884 ((-112) |#4| |#1|)) (-15 -3599 ((-644 |#4|) |#1|)) (-15 -2485 ((-644 |#4|) |#1|)) (-15 -2952 ((-112) |#1| |#1|))) (-976 |#2| |#3| |#4| |#5|) (-1049) (-793) (-850) (-1064 |#2| |#3| |#4|)) (T -975)) +NIL +(-10 -8 (-15 -3541 ((-112) |#1|)) (-15 -2796 ((-644 |#5|) (-644 |#5|) |#1|)) (-15 -3829 ((-644 |#5|) (-644 |#5|) |#1|)) (-15 -3131 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1719 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -4210 ((-112) |#1|)) (-15 -1768 ((-112) |#1| |#1|)) (-15 -3050 ((-112) |#1| |#1|)) (-15 -3261 ((-112) |#1|)) (-15 -1489 ((-112) |#1|)) (-15 -1374 ((-2 (|:| |under| |#1|) (|:| -2001 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -1706 (|#1| |#1| |#4|)) (-15 -2378 (|#1| |#1| |#4|)) (-15 -4234 (|#1| |#1| |#4|)) (-15 -2884 ((-112) |#4| |#1|)) (-15 -3599 ((-644 |#4|) |#1|)) (-15 -2485 ((-644 |#4|) |#1|)) (-15 -2952 ((-112) |#1| |#1|))) +((-2986 (((-112) $ $) 7)) (-2485 (((-644 |#3|) $) 34)) (-1489 (((-112) $) 27)) (-3541 (((-112) $) 18 (|has| |#1| (-558)))) (-1374 (((-2 (|:| |under| $) (|:| -2001 $) (|:| |upper| $)) $ |#3|) 28)) (-1453 (((-112) $ (-771)) 45)) (-3543 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4417)))) (-1811 (($) 46 T CONST)) (-4210 (((-112) $) 23 (|has| |#1| (-558)))) (-3050 (((-112) $ $) 25 (|has| |#1| (-558)))) (-1768 (((-112) $ $) 24 (|has| |#1| (-558)))) (-3261 (((-112) $) 26 (|has| |#1| (-558)))) (-2796 (((-644 |#4|) (-644 |#4|) $) 19 (|has| |#1| (-558)))) (-3829 (((-644 |#4|) (-644 |#4|) $) 20 (|has| |#1| (-558)))) (-2980 (((-3 $ "failed") (-644 |#4|)) 37)) (-1709 (($ (-644 |#4|)) 36)) (-4111 (($ $) 69 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4417))))) (-2628 (($ |#4| $) 68 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4417)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4417)))) (-3131 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-558)))) (-1838 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4417)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4417))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4417)))) (-3872 (((-644 |#4|) $) 53 (|has| $ (-6 -4417)))) (-4052 ((|#3| $) 35)) (-2756 (((-112) $ (-771)) 44)) (-4227 (((-644 |#4|) $) 54 (|has| $ (-6 -4417)))) (-1688 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4417))))) (-3708 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#4| |#4|) $) 48)) (-3599 (((-644 |#3|) $) 33)) (-2884 (((-112) |#3| $) 32)) (-4106 (((-112) $ (-771)) 43)) (-3151 (((-1157) $) 10)) (-1719 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-558)))) (-4059 (((-1119) $) 11)) (-2688 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3966 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 |#4|) (-644 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-295 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-644 (-295 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))))) (-1844 (((-112) $ $) 39)) (-2788 (((-112) $) 42)) (-1737 (($) 41)) (-4068 (((-771) |#4| $) 55 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4417)))) (((-771) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4417)))) (-3924 (($ $) 40)) (-3136 (((-538) $) 70 (|has| |#4| (-614 (-538))))) (-2489 (($ (-644 |#4|)) 61)) (-1706 (($ $ |#3|) 29)) (-4234 (($ $ |#3|) 31)) (-2378 (($ $ |#3|) 30)) (-2479 (((-862) $) 12) (((-644 |#4|) $) 38)) (-3900 (((-112) $ $) 9)) (-3667 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4417)))) (-2952 (((-112) $ $) 6)) (-3002 (((-771) $) 47 (|has| $ (-6 -4417))))) +(((-976 |#1| |#2| |#3| |#4|) (-140) (-1049) (-793) (-850) (-1064 |t#1| |t#2| |t#3|)) (T -976)) +((-2980 (*1 *1 *2) (|partial| -12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *1 (-976 *3 *4 *5 *6)))) (-1709 (*1 *1 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *1 (-976 *3 *4 *5 *6)))) (-4052 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *2 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-1064 *3 *4 *2)) (-4 *2 (-850)))) (-2485 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-644 *5)))) (-3599 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-644 *5)))) (-2884 (*1 *2 *3 *1) (-12 (-4 *1 (-976 *4 *5 *3 *6)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *3 (-850)) (-4 *6 (-1064 *4 *5 *3)) (-5 *2 (-112)))) (-4234 (*1 *1 *1 *2) (-12 (-4 *1 (-976 *3 *4 *2 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *2 (-850)) (-4 *5 (-1064 *3 *4 *2)))) (-2378 (*1 *1 *1 *2) (-12 (-4 *1 (-976 *3 *4 *2 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *2 (-850)) (-4 *5 (-1064 *3 *4 *2)))) (-1706 (*1 *1 *1 *2) (-12 (-4 *1 (-976 *3 *4 *2 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *2 (-850)) (-4 *5 (-1064 *3 *4 *2)))) (-1374 (*1 *2 *1 *3) (-12 (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *3 (-850)) (-4 *6 (-1064 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -2001 *1) (|:| |upper| *1))) (-4 *1 (-976 *4 *5 *3 *6)))) (-1489 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-112)))) (-3261 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) (-5 *2 (-112)))) (-3050 (*1 *2 *1 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) (-5 *2 (-112)))) (-1768 (*1 *2 *1 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) (-5 *2 (-112)))) (-4210 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) (-5 *2 (-112)))) (-1719 (*1 *2 *3 *1) (-12 (-4 *1 (-976 *4 *5 *6 *3)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-4 *4 (-558)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3131 (*1 *2 *3 *1) (-12 (-4 *1 (-976 *4 *5 *6 *3)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-4 *4 (-558)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-3829 (*1 *2 *2 *1) (-12 (-5 *2 (-644 *6)) (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)))) (-2796 (*1 *2 *2 *1) (-12 (-5 *2 (-644 *6)) (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)))) (-3541 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) (-5 *2 (-112))))) +(-13 (-1099) (-151 |t#4|) (-613 (-644 |t#4|)) (-10 -8 (-6 -4417) (-15 -2980 ((-3 $ "failed") (-644 |t#4|))) (-15 -1709 ($ (-644 |t#4|))) (-15 -4052 (|t#3| $)) (-15 -2485 ((-644 |t#3|) $)) (-15 -3599 ((-644 |t#3|) $)) (-15 -2884 ((-112) |t#3| $)) (-15 -4234 ($ $ |t#3|)) (-15 -2378 ($ $ |t#3|)) (-15 -1706 ($ $ |t#3|)) (-15 -1374 ((-2 (|:| |under| $) (|:| -2001 $) (|:| |upper| $)) $ |t#3|)) (-15 -1489 ((-112) $)) (IF (|has| |t#1| (-558)) (PROGN (-15 -3261 ((-112) $)) (-15 -3050 ((-112) $ $)) (-15 -1768 ((-112) $ $)) (-15 -4210 ((-112) $)) (-15 -1719 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3131 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3829 ((-644 |t#4|) (-644 |t#4|) $)) (-15 -2796 ((-644 |t#4|) (-644 |t#4|) $)) (-15 -3541 ((-112) $))) |%noBranch|))) +(((-34) . T) ((-102) . T) ((-613 (-644 |#4|)) . T) ((-613 (-862)) . T) ((-151 |#4|) . T) ((-614 (-538)) |has| |#4| (-614 (-538))) ((-310 |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))) ((-491 |#4|) . T) ((-516 |#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))) ((-1099) . T) ((-1214) . T)) +((-4149 (((-644 |#4|) |#4| |#4|) 136)) (-1633 (((-644 |#4|) (-644 |#4|) (-112)) 125 (|has| |#1| (-454))) (((-644 |#4|) (-644 |#4|)) 126 (|has| |#1| (-454)))) (-2768 (((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 |#4|)) 44)) (-1958 (((-112) |#4|) 43)) (-1324 (((-644 |#4|) |#4|) 121 (|has| |#1| (-454)))) (-2036 (((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-1 (-112) |#4|) (-644 |#4|)) 24)) (-2184 (((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 (-1 (-112) |#4|)) (-644 |#4|)) 30)) (-1763 (((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 (-1 (-112) |#4|)) (-644 |#4|)) 31)) (-4225 (((-3 (-2 (|:| |bas| (-478 |#1| |#2| |#3| |#4|)) (|:| -3903 (-644 |#4|))) "failed") (-644 |#4|)) 90)) (-2425 (((-644 |#4|) (-644 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103)) (-2974 (((-644 |#4|) (-644 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 129)) (-2561 (((-644 |#4|) (-644 |#4|)) 128)) (-4239 (((-644 |#4|) (-644 |#4|) (-644 |#4|) (-112)) 59) (((-644 |#4|) (-644 |#4|) (-644 |#4|)) 61)) (-1888 ((|#4| |#4| (-644 |#4|)) 60)) (-3362 (((-644 |#4|) (-644 |#4|) (-644 |#4|)) 132 (|has| |#1| (-454)))) (-1796 (((-644 |#4|) (-644 |#4|) (-644 |#4|)) 135 (|has| |#1| (-454)))) (-1504 (((-644 |#4|) (-644 |#4|) (-644 |#4|)) 134 (|has| |#1| (-454)))) (-4381 (((-644 |#4|) (-644 |#4|) (-644 |#4|) (-1 (-644 |#4|) (-644 |#4|))) 105) (((-644 |#4|) (-644 |#4|) (-644 |#4|)) 107) (((-644 |#4|) (-644 |#4|) |#4|) 141) (((-644 |#4|) |#4| |#4|) 137) (((-644 |#4|) (-644 |#4|)) 106)) (-3512 (((-644 |#4|) (-644 |#4|) (-644 |#4|)) 118 (-12 (|has| |#1| (-147)) (|has| |#1| (-308))))) (-2997 (((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 |#4|)) 52)) (-3758 (((-112) (-644 |#4|)) 79)) (-1870 (((-112) (-644 |#4|) (-644 (-644 |#4|))) 67)) (-4081 (((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 |#4|)) 37)) (-3076 (((-112) |#4|) 36)) (-2931 (((-644 |#4|) (-644 |#4|)) 116 (-12 (|has| |#1| (-147)) (|has| |#1| (-308))))) (-4105 (((-644 |#4|) (-644 |#4|)) 117 (-12 (|has| |#1| (-147)) (|has| |#1| (-308))))) (-3724 (((-644 |#4|) (-644 |#4|)) 83)) (-2766 (((-644 |#4|) (-644 |#4|)) 97)) (-1974 (((-112) (-644 |#4|) (-644 |#4|)) 65)) (-4360 (((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 |#4|)) 50)) (-1941 (((-112) |#4|) 45))) +(((-977 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4381 ((-644 |#4|) (-644 |#4|))) (-15 -4381 ((-644 |#4|) |#4| |#4|)) (-15 -2561 ((-644 |#4|) (-644 |#4|))) (-15 -4149 ((-644 |#4|) |#4| |#4|)) (-15 -4381 ((-644 |#4|) (-644 |#4|) |#4|)) (-15 -4381 ((-644 |#4|) (-644 |#4|) (-644 |#4|))) (-15 -4381 ((-644 |#4|) (-644 |#4|) (-644 |#4|) (-1 (-644 |#4|) (-644 |#4|)))) (-15 -1974 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -1870 ((-112) (-644 |#4|) (-644 (-644 |#4|)))) (-15 -3758 ((-112) (-644 |#4|))) (-15 -2036 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-1 (-112) |#4|) (-644 |#4|))) (-15 -2184 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 (-1 (-112) |#4|)) (-644 |#4|))) (-15 -1763 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 (-1 (-112) |#4|)) (-644 |#4|))) (-15 -2997 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 |#4|))) (-15 -1958 ((-112) |#4|)) (-15 -2768 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 |#4|))) (-15 -3076 ((-112) |#4|)) (-15 -4081 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 |#4|))) (-15 -1941 ((-112) |#4|)) (-15 -4360 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 |#4|))) (-15 -4239 ((-644 |#4|) (-644 |#4|) (-644 |#4|))) (-15 -4239 ((-644 |#4|) (-644 |#4|) (-644 |#4|) (-112))) (-15 -1888 (|#4| |#4| (-644 |#4|))) (-15 -3724 ((-644 |#4|) (-644 |#4|))) (-15 -4225 ((-3 (-2 (|:| |bas| (-478 |#1| |#2| |#3| |#4|)) (|:| -3903 (-644 |#4|))) "failed") (-644 |#4|))) (-15 -2766 ((-644 |#4|) (-644 |#4|))) (-15 -2425 ((-644 |#4|) (-644 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2974 ((-644 |#4|) (-644 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-454)) (PROGN (-15 -1324 ((-644 |#4|) |#4|)) (-15 -1633 ((-644 |#4|) (-644 |#4|))) (-15 -1633 ((-644 |#4|) (-644 |#4|) (-112))) (-15 -3362 ((-644 |#4|) (-644 |#4|) (-644 |#4|))) (-15 -1504 ((-644 |#4|) (-644 |#4|) (-644 |#4|))) (-15 -1796 ((-644 |#4|) (-644 |#4|) (-644 |#4|)))) |%noBranch|) (IF (|has| |#1| (-308)) (IF (|has| |#1| (-147)) (PROGN (-15 -4105 ((-644 |#4|) (-644 |#4|))) (-15 -2931 ((-644 |#4|) (-644 |#4|))) (-15 -3512 ((-644 |#4|) (-644 |#4|) (-644 |#4|)))) |%noBranch|) |%noBranch|)) (-558) (-793) (-850) (-1064 |#1| |#2| |#3|)) (T -977)) +((-3512 (*1 *2 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-308)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6)))) (-2931 (*1 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-308)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6)))) (-4105 (*1 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-308)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6)))) (-1796 (*1 *2 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-454)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6)))) (-1504 (*1 *2 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-454)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6)))) (-3362 (*1 *2 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-454)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6)))) (-1633 (*1 *2 *2 *3) (-12 (-5 *2 (-644 *7)) (-5 *3 (-112)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-977 *4 *5 *6 *7)))) (-1633 (*1 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-454)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6)))) (-1324 (*1 *2 *3) (-12 (-4 *4 (-454)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 *3)) (-5 *1 (-977 *4 *5 *6 *3)) (-4 *3 (-1064 *4 *5 *6)))) (-2974 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-644 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-558)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *1 (-977 *5 *6 *7 *8)))) (-2425 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-644 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1064 *6 *7 *8)) (-4 *6 (-558)) (-4 *7 (-793)) (-4 *8 (-850)) (-5 *1 (-977 *6 *7 *8 *9)))) (-2766 (*1 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6)))) (-4225 (*1 *2 *3) (|partial| -12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-478 *4 *5 *6 *7)) (|:| -3903 (-644 *7)))) (-5 *1 (-977 *4 *5 *6 *7)) (-5 *3 (-644 *7)))) (-3724 (*1 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6)))) (-1888 (*1 *2 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-1064 *4 *5 *6)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-977 *4 *5 *6 *2)))) (-4239 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-644 *7)) (-5 *3 (-112)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-977 *4 *5 *6 *7)))) (-4239 (*1 *2 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6)))) (-4360 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-644 *7)) (|:| |badPols| (-644 *7)))) (-5 *1 (-977 *4 *5 *6 *7)) (-5 *3 (-644 *7)))) (-1941 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-977 *4 *5 *6 *3)) (-4 *3 (-1064 *4 *5 *6)))) (-4081 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-644 *7)) (|:| |badPols| (-644 *7)))) (-5 *1 (-977 *4 *5 *6 *7)) (-5 *3 (-644 *7)))) (-3076 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-977 *4 *5 *6 *3)) (-4 *3 (-1064 *4 *5 *6)))) (-2768 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-644 *7)) (|:| |badPols| (-644 *7)))) (-5 *1 (-977 *4 *5 *6 *7)) (-5 *3 (-644 *7)))) (-1958 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-977 *4 *5 *6 *3)) (-4 *3 (-1064 *4 *5 *6)))) (-2997 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-644 *7)) (|:| |badPols| (-644 *7)))) (-5 *1 (-977 *4 *5 *6 *7)) (-5 *3 (-644 *7)))) (-1763 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-1 (-112) *8))) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-558)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-2 (|:| |goodPols| (-644 *8)) (|:| |badPols| (-644 *8)))) (-5 *1 (-977 *5 *6 *7 *8)) (-5 *4 (-644 *8)))) (-2184 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-1 (-112) *8))) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-558)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-2 (|:| |goodPols| (-644 *8)) (|:| |badPols| (-644 *8)))) (-5 *1 (-977 *5 *6 *7 *8)) (-5 *4 (-644 *8)))) (-2036 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-558)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-2 (|:| |goodPols| (-644 *8)) (|:| |badPols| (-644 *8)))) (-5 *1 (-977 *5 *6 *7 *8)) (-5 *4 (-644 *8)))) (-3758 (*1 *2 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-977 *4 *5 *6 *7)))) (-1870 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-644 *8))) (-5 *3 (-644 *8)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-558)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-112)) (-5 *1 (-977 *5 *6 *7 *8)))) (-1974 (*1 *2 *3 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-977 *4 *5 *6 *7)))) (-4381 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-644 *7) (-644 *7))) (-5 *2 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-977 *4 *5 *6 *7)))) (-4381 (*1 *2 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6)))) (-4381 (*1 *2 *2 *3) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1064 *4 *5 *6)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-977 *4 *5 *6 *3)))) (-4149 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 *3)) (-5 *1 (-977 *4 *5 *6 *3)) (-4 *3 (-1064 *4 *5 *6)))) (-2561 (*1 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6)))) (-4381 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 *3)) (-5 *1 (-977 *4 *5 *6 *3)) (-4 *3 (-1064 *4 *5 *6)))) (-4381 (*1 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6))))) +(-10 -7 (-15 -4381 ((-644 |#4|) (-644 |#4|))) (-15 -4381 ((-644 |#4|) |#4| |#4|)) (-15 -2561 ((-644 |#4|) (-644 |#4|))) (-15 -4149 ((-644 |#4|) |#4| |#4|)) (-15 -4381 ((-644 |#4|) (-644 |#4|) |#4|)) (-15 -4381 ((-644 |#4|) (-644 |#4|) (-644 |#4|))) (-15 -4381 ((-644 |#4|) (-644 |#4|) (-644 |#4|) (-1 (-644 |#4|) (-644 |#4|)))) (-15 -1974 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -1870 ((-112) (-644 |#4|) (-644 (-644 |#4|)))) (-15 -3758 ((-112) (-644 |#4|))) (-15 -2036 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-1 (-112) |#4|) (-644 |#4|))) (-15 -2184 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 (-1 (-112) |#4|)) (-644 |#4|))) (-15 -1763 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 (-1 (-112) |#4|)) (-644 |#4|))) (-15 -2997 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 |#4|))) (-15 -1958 ((-112) |#4|)) (-15 -2768 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 |#4|))) (-15 -3076 ((-112) |#4|)) (-15 -4081 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 |#4|))) (-15 -1941 ((-112) |#4|)) (-15 -4360 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 |#4|))) (-15 -4239 ((-644 |#4|) (-644 |#4|) (-644 |#4|))) (-15 -4239 ((-644 |#4|) (-644 |#4|) (-644 |#4|) (-112))) (-15 -1888 (|#4| |#4| (-644 |#4|))) (-15 -3724 ((-644 |#4|) (-644 |#4|))) (-15 -4225 ((-3 (-2 (|:| |bas| (-478 |#1| |#2| |#3| |#4|)) (|:| -3903 (-644 |#4|))) "failed") (-644 |#4|))) (-15 -2766 ((-644 |#4|) (-644 |#4|))) (-15 -2425 ((-644 |#4|) (-644 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2974 ((-644 |#4|) (-644 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-454)) (PROGN (-15 -1324 ((-644 |#4|) |#4|)) (-15 -1633 ((-644 |#4|) (-644 |#4|))) (-15 -1633 ((-644 |#4|) (-644 |#4|) (-112))) (-15 -3362 ((-644 |#4|) (-644 |#4|) (-644 |#4|))) (-15 -1504 ((-644 |#4|) (-644 |#4|) (-644 |#4|))) (-15 -1796 ((-644 |#4|) (-644 |#4|) (-644 |#4|)))) |%noBranch|) (IF (|has| |#1| (-308)) (IF (|has| |#1| (-147)) (PROGN (-15 -4105 ((-644 |#4|) (-644 |#4|))) (-15 -2931 ((-644 |#4|) (-644 |#4|))) (-15 -3512 ((-644 |#4|) (-644 |#4|) (-644 |#4|)))) |%noBranch|) |%noBranch|)) +((-2627 (((-2 (|:| R (-689 |#1|)) (|:| A (-689 |#1|)) (|:| |Ainv| (-689 |#1|))) (-689 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-3096 (((-644 (-2 (|:| C (-689 |#1|)) (|:| |g| (-1264 |#1|)))) (-689 |#1|) (-1264 |#1|)) 44)) (-2090 (((-689 |#1|) (-689 |#1|) (-689 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16))) +(((-978 |#1|) (-10 -7 (-15 -2627 ((-2 (|:| R (-689 |#1|)) (|:| A (-689 |#1|)) (|:| |Ainv| (-689 |#1|))) (-689 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2090 ((-689 |#1|) (-689 |#1|) (-689 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3096 ((-644 (-2 (|:| C (-689 |#1|)) (|:| |g| (-1264 |#1|)))) (-689 |#1|) (-1264 |#1|)))) (-365)) (T -978)) +((-3096 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-5 *2 (-644 (-2 (|:| C (-689 *5)) (|:| |g| (-1264 *5))))) (-5 *1 (-978 *5)) (-5 *3 (-689 *5)) (-5 *4 (-1264 *5)))) (-2090 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-689 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365)) (-5 *1 (-978 *5)))) (-2627 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-365)) (-5 *2 (-2 (|:| R (-689 *6)) (|:| A (-689 *6)) (|:| |Ainv| (-689 *6)))) (-5 *1 (-978 *6)) (-5 *3 (-689 *6))))) +(-10 -7 (-15 -2627 ((-2 (|:| R (-689 |#1|)) (|:| A (-689 |#1|)) (|:| |Ainv| (-689 |#1|))) (-689 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2090 ((-689 |#1|) (-689 |#1|) (-689 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3096 ((-644 (-2 (|:| C (-689 |#1|)) (|:| |g| (-1264 |#1|)))) (-689 |#1|) (-1264 |#1|)))) +((-3348 (((-420 |#4|) |#4|) 56))) +(((-979 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3348 ((-420 |#4|) |#4|))) (-850) (-793) (-454) (-949 |#3| |#2| |#1|)) (T -979)) +((-3348 (*1 *2 *3) (-12 (-4 *4 (-850)) (-4 *5 (-793)) (-4 *6 (-454)) (-5 *2 (-420 *3)) (-5 *1 (-979 *4 *5 *6 *3)) (-4 *3 (-949 *6 *5 *4))))) +(-10 -7 (-15 -3348 ((-420 |#4|) |#4|))) +((-2986 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2078 (($ (-771)) 113 (|has| |#1| (-23)))) (-2462 (((-1269) $ (-566) (-566)) 41 (|has| $ (-6 -4418)))) (-4163 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-850)))) (-2893 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4418))) (($ $) 89 (-12 (|has| |#1| (-850)) (|has| $ (-6 -4418))))) (-1374 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-850)))) (-1453 (((-112) $ (-771)) 8)) (-3901 ((|#1| $ (-566) |#1|) 53 (|has| $ (-6 -4418))) ((|#1| $ (-1231 (-566)) |#1|) 59 (|has| $ (-6 -4418)))) (-3543 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4417)))) (-1811 (($) 7 T CONST)) (-2273 (($ $) 91 (|has| $ (-6 -4418)))) (-3877 (($ $) 101)) (-4111 (($ $) 79 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-2628 (($ |#1| $) 78 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4417)))) (-1838 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4417)))) (-3719 ((|#1| $ (-566) |#1|) 54 (|has| $ (-6 -4418)))) (-3653 ((|#1| $ (-566)) 52)) (-4000 (((-566) (-1 (-112) |#1|) $) 98) (((-566) |#1| $) 97 (|has| |#1| (-1099))) (((-566) |#1| $ (-566)) 96 (|has| |#1| (-1099)))) (-1848 (($ (-644 |#1|)) 119)) (-3872 (((-644 |#1|) $) 31 (|has| $ (-6 -4417)))) (-3596 (((-689 |#1|) $ $) 106 (|has| |#1| (-1049)))) (-4259 (($ (-771) |#1|) 70)) (-2756 (((-112) $ (-771)) 9)) (-2755 (((-566) $) 44 (|has| (-566) (-850)))) (-1920 (($ $ $) 88 (|has| |#1| (-850)))) (-1330 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-850)))) (-4227 (((-644 |#1|) $) 30 (|has| $ (-6 -4417)))) (-1688 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-3831 (((-566) $) 45 (|has| (-566) (-850)))) (-3038 (($ $ $) 87 (|has| |#1| (-850)))) (-3708 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1600 ((|#1| $) 103 (-12 (|has| |#1| (-1049)) (|has| |#1| (-1002))))) (-4106 (((-112) $ (-771)) 10)) (-4332 ((|#1| $) 104 (-12 (|has| |#1| (-1049)) (|has| |#1| (-1002))))) (-3151 (((-1157) $) 22 (|has| |#1| (-1099)))) (-4271 (($ |#1| $ (-566)) 61) (($ $ $ (-566)) 60)) (-3780 (((-644 (-566)) $) 47)) (-1605 (((-112) (-566) $) 48)) (-4059 (((-1119) $) 21 (|has| |#1| (-1099)))) (-4080 ((|#1| $) 43 (|has| (-566) (-850)))) (-2688 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-4079 (($ $ |#1|) 42 (|has| $ (-6 -4418)))) (-2050 (($ $ (-644 |#1|)) 117)) (-3966 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1844 (((-112) $ $) 14)) (-2210 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-4185 (((-644 |#1|) $) 49)) (-2788 (((-112) $) 11)) (-1737 (($) 12)) (-4376 ((|#1| $ (-566) |#1|) 51) ((|#1| $ (-566)) 50) (($ $ (-1231 (-566))) 64)) (-2555 ((|#1| $ $) 107 (|has| |#1| (-1049)))) (-3944 (((-921) $) 118)) (-2139 (($ $ (-566)) 63) (($ $ (-1231 (-566))) 62)) (-2676 (($ $ $) 105)) (-4068 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4417))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-1438 (($ $ $ (-566)) 92 (|has| $ (-6 -4418)))) (-3924 (($ $) 13)) (-3136 (((-538) $) 80 (|has| |#1| (-614 (-538)))) (($ (-644 |#1|)) 120)) (-2489 (($ (-644 |#1|)) 71)) (-3716 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-644 $)) 66)) (-2479 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-3900 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-3667 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4417)))) (-3019 (((-112) $ $) 85 (|has| |#1| (-850)))) (-2990 (((-112) $ $) 84 (|has| |#1| (-850)))) (-2952 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3004 (((-112) $ $) 86 (|has| |#1| (-850)))) (-2977 (((-112) $ $) 83 (|has| |#1| (-850)))) (-3065 (($ $) 112 (|has| |#1| (-21))) (($ $ $) 111 (|has| |#1| (-21)))) (-3052 (($ $ $) 114 (|has| |#1| (-25)))) (* (($ (-566) $) 110 (|has| |#1| (-21))) (($ |#1| $) 109 (|has| |#1| (-726))) (($ $ |#1|) 108 (|has| |#1| (-726)))) (-3002 (((-771) $) 6 (|has| $ (-6 -4417))))) +(((-980 |#1|) (-140) (-1049)) (T -980)) +((-1848 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1049)) (-4 *1 (-980 *3)))) (-3944 (*1 *2 *1) (-12 (-4 *1 (-980 *3)) (-4 *3 (-1049)) (-5 *2 (-921)))) (-2676 (*1 *1 *1 *1) (-12 (-4 *1 (-980 *2)) (-4 *2 (-1049)))) (-2050 (*1 *1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *1 (-980 *3)) (-4 *3 (-1049))))) +(-13 (-1262 |t#1|) (-618 (-644 |t#1|)) (-10 -8 (-15 -1848 ($ (-644 |t#1|))) (-15 -3944 ((-921) $)) (-15 -2676 ($ $ $)) (-15 -2050 ($ $ (-644 |t#1|))))) +(((-34) . T) ((-102) -2809 (|has| |#1| (-1099)) (|has| |#1| (-850))) ((-613 (-862)) -2809 (|has| |#1| (-1099)) (|has| |#1| (-850)) (|has| |#1| (-613 (-862)))) ((-151 |#1|) . T) ((-618 (-644 |#1|)) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-287 #0=(-566) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-375 |#1|) . T) ((-491 |#1|) . T) ((-604 #0# |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-651 |#1|) . T) ((-19 |#1|) . T) ((-850) |has| |#1| (-850)) ((-1099) -2809 (|has| |#1| (-1099)) (|has| |#1| (-850))) ((-1214) . T) ((-1262 |#1|) . T)) +((-3080 (((-943 |#2|) (-1 |#2| |#1|) (-943 |#1|)) 17))) +(((-981 |#1| |#2|) (-10 -7 (-15 -3080 ((-943 |#2|) (-1 |#2| |#1|) (-943 |#1|)))) (-1049) (-1049)) (T -981)) +((-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-943 *5)) (-4 *5 (-1049)) (-4 *6 (-1049)) (-5 *2 (-943 *6)) (-5 *1 (-981 *5 *6))))) +(-10 -7 (-15 -3080 ((-943 |#2|) (-1 |#2| |#1|) (-943 |#1|)))) +((-3482 ((|#1| (-943 |#1|)) 14)) (-3725 ((|#1| (-943 |#1|)) 13)) (-3852 ((|#1| (-943 |#1|)) 12)) (-4385 ((|#1| (-943 |#1|)) 16)) (-3472 ((|#1| (-943 |#1|)) 24)) (-2131 ((|#1| (-943 |#1|)) 15)) (-4323 ((|#1| (-943 |#1|)) 17)) (-2059 ((|#1| (-943 |#1|)) 23)) (-3100 ((|#1| (-943 |#1|)) 22))) +(((-982 |#1|) (-10 -7 (-15 -3852 (|#1| (-943 |#1|))) (-15 -3725 (|#1| (-943 |#1|))) (-15 -3482 (|#1| (-943 |#1|))) (-15 -2131 (|#1| (-943 |#1|))) (-15 -4385 (|#1| (-943 |#1|))) (-15 -4323 (|#1| (-943 |#1|))) (-15 -3100 (|#1| (-943 |#1|))) (-15 -2059 (|#1| (-943 |#1|))) (-15 -3472 (|#1| (-943 |#1|)))) (-1049)) (T -982)) +((-3472 (*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049)))) (-2059 (*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049)))) (-3100 (*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049)))) (-4323 (*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049)))) (-4385 (*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049)))) (-2131 (*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049)))) (-3482 (*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049)))) (-3725 (*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049)))) (-3852 (*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049))))) +(-10 -7 (-15 -3852 (|#1| (-943 |#1|))) (-15 -3725 (|#1| (-943 |#1|))) (-15 -3482 (|#1| (-943 |#1|))) (-15 -2131 (|#1| (-943 |#1|))) (-15 -4385 (|#1| (-943 |#1|))) (-15 -4323 (|#1| (-943 |#1|))) (-15 -3100 (|#1| (-943 |#1|))) (-15 -2059 (|#1| (-943 |#1|))) (-15 -3472 (|#1| (-943 |#1|)))) +((-3771 (((-3 |#1| "failed") |#1|) 18)) (-3479 (((-3 |#1| "failed") |#1|) 6)) (-1736 (((-3 |#1| "failed") |#1|) 16)) (-2912 (((-3 |#1| "failed") |#1|) 4)) (-3346 (((-3 |#1| "failed") |#1|) 20)) (-2653 (((-3 |#1| "failed") |#1|) 8)) (-1715 (((-3 |#1| "failed") |#1| (-771)) 1)) (-2261 (((-3 |#1| "failed") |#1|) 3)) (-3594 (((-3 |#1| "failed") |#1|) 2)) (-3622 (((-3 |#1| "failed") |#1|) 21)) (-2063 (((-3 |#1| "failed") |#1|) 9)) (-2703 (((-3 |#1| "failed") |#1|) 19)) (-4366 (((-3 |#1| "failed") |#1|) 7)) (-2314 (((-3 |#1| "failed") |#1|) 17)) (-2312 (((-3 |#1| "failed") |#1|) 5)) (-1480 (((-3 |#1| "failed") |#1|) 24)) (-3552 (((-3 |#1| "failed") |#1|) 12)) (-1689 (((-3 |#1| "failed") |#1|) 22)) (-4199 (((-3 |#1| "failed") |#1|) 10)) (-3221 (((-3 |#1| "failed") |#1|) 26)) (-3874 (((-3 |#1| "failed") |#1|) 14)) (-2319 (((-3 |#1| "failed") |#1|) 27)) (-4394 (((-3 |#1| "failed") |#1|) 15)) (-3001 (((-3 |#1| "failed") |#1|) 25)) (-3701 (((-3 |#1| "failed") |#1|) 13)) (-2733 (((-3 |#1| "failed") |#1|) 23)) (-2255 (((-3 |#1| "failed") |#1|) 11))) +(((-983 |#1|) (-140) (-1199)) (T -983)) +((-2319 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-3221 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-3001 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-1480 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-2733 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-1689 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-3622 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-3346 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-2703 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-3771 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-2314 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-1736 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-4394 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-3874 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-3701 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-3552 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-2255 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-4199 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-2063 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-2653 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-4366 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-3479 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-2312 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-2912 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-2261 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-3594 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-1715 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-771)) (-4 *1 (-983 *2)) (-4 *2 (-1199))))) +(-13 (-10 -7 (-15 -1715 ((-3 |t#1| "failed") |t#1| (-771))) (-15 -3594 ((-3 |t#1| "failed") |t#1|)) (-15 -2261 ((-3 |t#1| "failed") |t#1|)) (-15 -2912 ((-3 |t#1| "failed") |t#1|)) (-15 -2312 ((-3 |t#1| "failed") |t#1|)) (-15 -3479 ((-3 |t#1| "failed") |t#1|)) (-15 -4366 ((-3 |t#1| "failed") |t#1|)) (-15 -2653 ((-3 |t#1| "failed") |t#1|)) (-15 -2063 ((-3 |t#1| "failed") |t#1|)) (-15 -4199 ((-3 |t#1| "failed") |t#1|)) (-15 -2255 ((-3 |t#1| "failed") |t#1|)) (-15 -3552 ((-3 |t#1| "failed") |t#1|)) (-15 -3701 ((-3 |t#1| "failed") |t#1|)) (-15 -3874 ((-3 |t#1| "failed") |t#1|)) (-15 -4394 ((-3 |t#1| "failed") |t#1|)) (-15 -1736 ((-3 |t#1| "failed") |t#1|)) (-15 -2314 ((-3 |t#1| "failed") |t#1|)) (-15 -3771 ((-3 |t#1| "failed") |t#1|)) (-15 -2703 ((-3 |t#1| "failed") |t#1|)) (-15 -3346 ((-3 |t#1| "failed") |t#1|)) (-15 -3622 ((-3 |t#1| "failed") |t#1|)) (-15 -1689 ((-3 |t#1| "failed") |t#1|)) (-15 -2733 ((-3 |t#1| "failed") |t#1|)) (-15 -1480 ((-3 |t#1| "failed") |t#1|)) (-15 -3001 ((-3 |t#1| "failed") |t#1|)) (-15 -3221 ((-3 |t#1| "failed") |t#1|)) (-15 -2319 ((-3 |t#1| "failed") |t#1|)))) +((-1477 ((|#4| |#4| (-644 |#3|)) 57) ((|#4| |#4| |#3|) 56)) (-4035 ((|#4| |#4| (-644 |#3|)) 24) ((|#4| |#4| |#3|) 20)) (-3080 ((|#4| (-1 |#4| (-952 |#1|)) |#4|) 31))) +(((-984 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4035 (|#4| |#4| |#3|)) (-15 -4035 (|#4| |#4| (-644 |#3|))) (-15 -1477 (|#4| |#4| |#3|)) (-15 -1477 (|#4| |#4| (-644 |#3|))) (-15 -3080 (|#4| (-1 |#4| (-952 |#1|)) |#4|))) (-1049) (-793) (-13 (-850) (-10 -8 (-15 -3136 ((-1175) $)) (-15 -1338 ((-3 $ "failed") (-1175))))) (-949 (-952 |#1|) |#2| |#3|)) (T -984)) +((-3080 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-952 *4))) (-4 *4 (-1049)) (-4 *2 (-949 (-952 *4) *5 *6)) (-4 *5 (-793)) (-4 *6 (-13 (-850) (-10 -8 (-15 -3136 ((-1175) $)) (-15 -1338 ((-3 $ "failed") (-1175)))))) (-5 *1 (-984 *4 *5 *6 *2)))) (-1477 (*1 *2 *2 *3) (-12 (-5 *3 (-644 *6)) (-4 *6 (-13 (-850) (-10 -8 (-15 -3136 ((-1175) $)) (-15 -1338 ((-3 $ "failed") (-1175)))))) (-4 *4 (-1049)) (-4 *5 (-793)) (-5 *1 (-984 *4 *5 *6 *2)) (-4 *2 (-949 (-952 *4) *5 *6)))) (-1477 (*1 *2 *2 *3) (-12 (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *3 (-13 (-850) (-10 -8 (-15 -3136 ((-1175) $)) (-15 -1338 ((-3 $ "failed") (-1175)))))) (-5 *1 (-984 *4 *5 *3 *2)) (-4 *2 (-949 (-952 *4) *5 *3)))) (-4035 (*1 *2 *2 *3) (-12 (-5 *3 (-644 *6)) (-4 *6 (-13 (-850) (-10 -8 (-15 -3136 ((-1175) $)) (-15 -1338 ((-3 $ "failed") (-1175)))))) (-4 *4 (-1049)) (-4 *5 (-793)) (-5 *1 (-984 *4 *5 *6 *2)) (-4 *2 (-949 (-952 *4) *5 *6)))) (-4035 (*1 *2 *2 *3) (-12 (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *3 (-13 (-850) (-10 -8 (-15 -3136 ((-1175) $)) (-15 -1338 ((-3 $ "failed") (-1175)))))) (-5 *1 (-984 *4 *5 *3 *2)) (-4 *2 (-949 (-952 *4) *5 *3))))) +(-10 -7 (-15 -4035 (|#4| |#4| |#3|)) (-15 -4035 (|#4| |#4| (-644 |#3|))) (-15 -1477 (|#4| |#4| |#3|)) (-15 -1477 (|#4| |#4| (-644 |#3|))) (-15 -3080 (|#4| (-1 |#4| (-952 |#1|)) |#4|))) +((-1461 ((|#2| |#3|) 35)) (-3459 (((-2 (|:| -1419 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|))) |#2|) 83)) (-2500 (((-2 (|:| -1419 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|)))) 103))) +(((-985 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2500 ((-2 (|:| -1419 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|))))) (-15 -3459 ((-2 (|:| -1419 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|))) |#2|)) (-15 -1461 (|#2| |#3|))) (-351) (-1240 |#1|) (-1240 |#2|) (-724 |#2| |#3|)) (T -985)) +((-1461 (*1 *2 *3) (-12 (-4 *3 (-1240 *2)) (-4 *2 (-1240 *4)) (-5 *1 (-985 *4 *2 *3 *5)) (-4 *4 (-351)) (-4 *5 (-724 *2 *3)))) (-3459 (*1 *2 *3) (-12 (-4 *4 (-351)) (-4 *3 (-1240 *4)) (-4 *5 (-1240 *3)) (-5 *2 (-2 (|:| -1419 (-689 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-689 *3)))) (-5 *1 (-985 *4 *3 *5 *6)) (-4 *6 (-724 *3 *5)))) (-2500 (*1 *2) (-12 (-4 *3 (-351)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 *4)) (-5 *2 (-2 (|:| -1419 (-689 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-689 *4)))) (-5 *1 (-985 *3 *4 *5 *6)) (-4 *6 (-724 *4 *5))))) +(-10 -7 (-15 -2500 ((-2 (|:| -1419 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|))))) (-15 -3459 ((-2 (|:| -1419 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|))) |#2|)) (-15 -1461 (|#2| |#3|))) +((-3694 (((-987 (-409 (-566)) (-864 |#1|) (-240 |#2| (-771)) (-247 |#1| (-409 (-566)))) (-987 (-409 (-566)) (-864 |#1|) (-240 |#2| (-771)) (-247 |#1| (-409 (-566))))) 84))) +(((-986 |#1| |#2|) (-10 -7 (-15 -3694 ((-987 (-409 (-566)) (-864 |#1|) (-240 |#2| (-771)) (-247 |#1| (-409 (-566)))) (-987 (-409 (-566)) (-864 |#1|) (-240 |#2| (-771)) (-247 |#1| (-409 (-566))))))) (-644 (-1175)) (-771)) (T -986)) +((-3694 (*1 *2 *2) (-12 (-5 *2 (-987 (-409 (-566)) (-864 *3) (-240 *4 (-771)) (-247 *3 (-409 (-566))))) (-14 *3 (-644 (-1175))) (-14 *4 (-771)) (-5 *1 (-986 *3 *4))))) +(-10 -7 (-15 -3694 ((-987 (-409 (-566)) (-864 |#1|) (-240 |#2| (-771)) (-247 |#1| (-409 (-566)))) (-987 (-409 (-566)) (-864 |#1|) (-240 |#2| (-771)) (-247 |#1| (-409 (-566))))))) +((-2986 (((-112) $ $) NIL)) (-2354 (((-3 (-112) "failed") $) 71)) (-3370 (($ $) 36 (-12 (|has| |#1| (-147)) (|has| |#1| (-308))))) (-1809 (($ $ (-3 (-112) "failed")) 72)) (-2525 (($ (-644 |#4|) |#4|) 25)) (-3151 (((-1157) $) NIL)) (-2695 (($ $) 69)) (-4059 (((-1119) $) NIL)) (-2788 (((-112) $) 70)) (-1737 (($) 30)) (-1791 ((|#4| $) 74)) (-3489 (((-644 |#4|) $) 73)) (-2479 (((-862) $) 68)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-987 |#1| |#2| |#3| |#4|) (-13 (-1099) (-613 (-862)) (-10 -8 (-15 -1737 ($)) (-15 -2525 ($ (-644 |#4|) |#4|)) (-15 -2354 ((-3 (-112) "failed") $)) (-15 -1809 ($ $ (-3 (-112) "failed"))) (-15 -2788 ((-112) $)) (-15 -3489 ((-644 |#4|) $)) (-15 -1791 (|#4| $)) (-15 -2695 ($ $)) (IF (|has| |#1| (-308)) (IF (|has| |#1| (-147)) (-15 -3370 ($ $)) |%noBranch|) |%noBranch|))) (-454) (-850) (-793) (-949 |#1| |#3| |#2|)) (T -987)) +((-1737 (*1 *1) (-12 (-4 *2 (-454)) (-4 *3 (-850)) (-4 *4 (-793)) (-5 *1 (-987 *2 *3 *4 *5)) (-4 *5 (-949 *2 *4 *3)))) (-2525 (*1 *1 *2 *3) (-12 (-5 *2 (-644 *3)) (-4 *3 (-949 *4 *6 *5)) (-4 *4 (-454)) (-4 *5 (-850)) (-4 *6 (-793)) (-5 *1 (-987 *4 *5 *6 *3)))) (-2354 (*1 *2 *1) (|partial| -12 (-4 *3 (-454)) (-4 *4 (-850)) (-4 *5 (-793)) (-5 *2 (-112)) (-5 *1 (-987 *3 *4 *5 *6)) (-4 *6 (-949 *3 *5 *4)))) (-1809 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-454)) (-4 *4 (-850)) (-4 *5 (-793)) (-5 *1 (-987 *3 *4 *5 *6)) (-4 *6 (-949 *3 *5 *4)))) (-2788 (*1 *2 *1) (-12 (-4 *3 (-454)) (-4 *4 (-850)) (-4 *5 (-793)) (-5 *2 (-112)) (-5 *1 (-987 *3 *4 *5 *6)) (-4 *6 (-949 *3 *5 *4)))) (-3489 (*1 *2 *1) (-12 (-4 *3 (-454)) (-4 *4 (-850)) (-4 *5 (-793)) (-5 *2 (-644 *6)) (-5 *1 (-987 *3 *4 *5 *6)) (-4 *6 (-949 *3 *5 *4)))) (-1791 (*1 *2 *1) (-12 (-4 *2 (-949 *3 *5 *4)) (-5 *1 (-987 *3 *4 *5 *2)) (-4 *3 (-454)) (-4 *4 (-850)) (-4 *5 (-793)))) (-2695 (*1 *1 *1) (-12 (-4 *2 (-454)) (-4 *3 (-850)) (-4 *4 (-793)) (-5 *1 (-987 *2 *3 *4 *5)) (-4 *5 (-949 *2 *4 *3)))) (-3370 (*1 *1 *1) (-12 (-4 *2 (-147)) (-4 *2 (-308)) (-4 *2 (-454)) (-4 *3 (-850)) (-4 *4 (-793)) (-5 *1 (-987 *2 *3 *4 *5)) (-4 *5 (-949 *2 *4 *3))))) +(-13 (-1099) (-613 (-862)) (-10 -8 (-15 -1737 ($)) (-15 -2525 ($ (-644 |#4|) |#4|)) (-15 -2354 ((-3 (-112) "failed") $)) (-15 -1809 ($ $ (-3 (-112) "failed"))) (-15 -2788 ((-112) $)) (-15 -3489 ((-644 |#4|) $)) (-15 -1791 (|#4| $)) (-15 -2695 ($ $)) (IF (|has| |#1| (-308)) (IF (|has| |#1| (-147)) (-15 -3370 ($ $)) |%noBranch|) |%noBranch|))) +((-2613 (((-112) |#5| |#5|) 45)) (-2046 (((-112) |#5| |#5|) 60)) (-1514 (((-112) |#5| (-644 |#5|)) 82) (((-112) |#5| |#5|) 69)) (-1997 (((-112) (-644 |#4|) (-644 |#4|)) 66)) (-1942 (((-112) (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|)) (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))) 71)) (-2537 (((-1269)) 33)) (-3419 (((-1269) (-1157) (-1157) (-1157)) 29)) (-2234 (((-644 |#5|) (-644 |#5|)) 101)) (-2514 (((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|)))) 93)) (-4208 (((-644 (-2 (|:| -3477 (-644 |#4|)) (|:| -2192 |#5|) (|:| |ineq| (-644 |#4|)))) (-644 |#4|) (-644 |#5|) (-112) (-112)) 123)) (-3767 (((-112) |#5| |#5|) 54)) (-2211 (((-3 (-112) "failed") |#5| |#5|) 79)) (-3752 (((-112) (-644 |#4|) (-644 |#4|)) 65)) (-3031 (((-112) (-644 |#4|) (-644 |#4|)) 67)) (-3730 (((-112) (-644 |#4|) (-644 |#4|)) 68)) (-2289 (((-3 (-2 (|:| -3477 (-644 |#4|)) (|:| -2192 |#5|) (|:| |ineq| (-644 |#4|))) "failed") (-644 |#4|) |#5| (-644 |#4|) (-112) (-112) (-112) (-112) (-112)) 118)) (-1949 (((-644 |#5|) (-644 |#5|)) 50))) +(((-988 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3419 ((-1269) (-1157) (-1157) (-1157))) (-15 -2537 ((-1269))) (-15 -2613 ((-112) |#5| |#5|)) (-15 -1949 ((-644 |#5|) (-644 |#5|))) (-15 -3767 ((-112) |#5| |#5|)) (-15 -2046 ((-112) |#5| |#5|)) (-15 -1997 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -3752 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -3031 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -3730 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -2211 ((-3 (-112) "failed") |#5| |#5|)) (-15 -1514 ((-112) |#5| |#5|)) (-15 -1514 ((-112) |#5| (-644 |#5|))) (-15 -2234 ((-644 |#5|) (-644 |#5|))) (-15 -1942 ((-112) (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|)) (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|)))) (-15 -2514 ((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))))) (-15 -4208 ((-644 (-2 (|:| -3477 (-644 |#4|)) (|:| -2192 |#5|) (|:| |ineq| (-644 |#4|)))) (-644 |#4|) (-644 |#5|) (-112) (-112))) (-15 -2289 ((-3 (-2 (|:| -3477 (-644 |#4|)) (|:| -2192 |#5|) (|:| |ineq| (-644 |#4|))) "failed") (-644 |#4|) |#5| (-644 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-454) (-793) (-850) (-1064 |#1| |#2| |#3|) (-1070 |#1| |#2| |#3| |#4|)) (T -988)) +((-2289 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) (-4 *9 (-1064 *6 *7 *8)) (-5 *2 (-2 (|:| -3477 (-644 *9)) (|:| -2192 *4) (|:| |ineq| (-644 *9)))) (-5 *1 (-988 *6 *7 *8 *9 *4)) (-5 *3 (-644 *9)) (-4 *4 (-1070 *6 *7 *8 *9)))) (-4208 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-644 *10)) (-5 *5 (-112)) (-4 *10 (-1070 *6 *7 *8 *9)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) (-4 *9 (-1064 *6 *7 *8)) (-5 *2 (-644 (-2 (|:| -3477 (-644 *9)) (|:| -2192 *10) (|:| |ineq| (-644 *9))))) (-5 *1 (-988 *6 *7 *8 *9 *10)) (-5 *3 (-644 *9)))) (-2514 (*1 *2 *2) (-12 (-5 *2 (-644 (-2 (|:| |val| (-644 *6)) (|:| -2192 *7)))) (-4 *6 (-1064 *3 *4 *5)) (-4 *7 (-1070 *3 *4 *5 *6)) (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-988 *3 *4 *5 *6 *7)))) (-1942 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-644 *7)) (|:| -2192 *8))) (-4 *7 (-1064 *4 *5 *6)) (-4 *8 (-1070 *4 *5 *6 *7)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-988 *4 *5 *6 *7 *8)))) (-2234 (*1 *2 *2) (-12 (-5 *2 (-644 *7)) (-4 *7 (-1070 *3 *4 *5 *6)) (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *1 (-988 *3 *4 *5 *6 *7)))) (-1514 (*1 *2 *3 *4) (-12 (-5 *4 (-644 *3)) (-4 *3 (-1070 *5 *6 *7 *8)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *8 (-1064 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-988 *5 *6 *7 *8 *3)))) (-1514 (*1 *2 *3 *3) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-988 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7)))) (-2211 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-988 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7)))) (-3730 (*1 *2 *3 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-988 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))) (-3031 (*1 *2 *3 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-988 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))) (-3752 (*1 *2 *3 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-988 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))) (-1997 (*1 *2 *3 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-988 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))) (-2046 (*1 *2 *3 *3) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-988 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7)))) (-3767 (*1 *2 *3 *3) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-988 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7)))) (-1949 (*1 *2 *2) (-12 (-5 *2 (-644 *7)) (-4 *7 (-1070 *3 *4 *5 *6)) (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *1 (-988 *3 *4 *5 *6 *7)))) (-2613 (*1 *2 *3 *3) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-988 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7)))) (-2537 (*1 *2) (-12 (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-1269)) (-5 *1 (-988 *3 *4 *5 *6 *7)) (-4 *7 (-1070 *3 *4 *5 *6)))) (-3419 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1157)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-1269)) (-5 *1 (-988 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7))))) +(-10 -7 (-15 -3419 ((-1269) (-1157) (-1157) (-1157))) (-15 -2537 ((-1269))) (-15 -2613 ((-112) |#5| |#5|)) (-15 -1949 ((-644 |#5|) (-644 |#5|))) (-15 -3767 ((-112) |#5| |#5|)) (-15 -2046 ((-112) |#5| |#5|)) (-15 -1997 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -3752 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -3031 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -3730 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -2211 ((-3 (-112) "failed") |#5| |#5|)) (-15 -1514 ((-112) |#5| |#5|)) (-15 -1514 ((-112) |#5| (-644 |#5|))) (-15 -2234 ((-644 |#5|) (-644 |#5|))) (-15 -1942 ((-112) (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|)) (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|)))) (-15 -2514 ((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))))) (-15 -4208 ((-644 (-2 (|:| -3477 (-644 |#4|)) (|:| -2192 |#5|) (|:| |ineq| (-644 |#4|)))) (-644 |#4|) (-644 |#5|) (-112) (-112))) (-15 -2289 ((-3 (-2 (|:| -3477 (-644 |#4|)) (|:| -2192 |#5|) (|:| |ineq| (-644 |#4|))) "failed") (-644 |#4|) |#5| (-644 |#4|) (-112) (-112) (-112) (-112) (-112)))) +((-1338 (((-1175) $) 15)) (-2153 (((-1157) $) 16)) (-2008 (($ (-1175) (-1157)) 14)) (-2479 (((-862) $) 13))) +(((-989) (-13 (-613 (-862)) (-10 -8 (-15 -2008 ($ (-1175) (-1157))) (-15 -1338 ((-1175) $)) (-15 -2153 ((-1157) $))))) (T -989)) +((-2008 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1157)) (-5 *1 (-989)))) (-1338 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-989)))) (-2153 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-989))))) +(-13 (-613 (-862)) (-10 -8 (-15 -2008 ($ (-1175) (-1157))) (-15 -1338 ((-1175) $)) (-15 -2153 ((-1157) $)))) +((-3080 ((|#4| (-1 |#2| |#1|) |#3|) 14))) +(((-990 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3080 (|#4| (-1 |#2| |#1|) |#3|))) (-558) (-558) (-992 |#1|) (-992 |#2|)) (T -990)) +((-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-558)) (-4 *6 (-558)) (-4 *2 (-992 *6)) (-5 *1 (-990 *5 *6 *4 *2)) (-4 *4 (-992 *5))))) +(-10 -7 (-15 -3080 (|#4| (-1 |#2| |#1|) |#3|))) +((-2980 (((-3 |#2| "failed") $) NIL) (((-3 (-1175) "failed") $) 66) (((-3 (-409 (-566)) "failed") $) NIL) (((-3 (-566) "failed") $) 96)) (-1709 ((|#2| $) NIL) (((-1175) $) 61) (((-409 (-566)) $) NIL) (((-566) $) 93)) (-2275 (((-689 (-566)) (-689 $)) NIL) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL) (((-2 (|:| -4196 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 $) (-1264 $)) 115) (((-689 |#2|) (-689 $)) 28)) (-1415 (($) 99)) (-1542 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 76) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 85)) (-1579 (($ $) 10)) (-4278 (((-3 $ "failed") $) 20)) (-3080 (($ (-1 |#2| |#2|) $) 22)) (-3968 (($) 16)) (-4305 (($ $) 55)) (-3526 (($ $) NIL) (($ $ (-771)) NIL) (($ $ (-1175)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL) (($ $ (-1 |#2| |#2|) (-771)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-1375 (($ $) 12)) (-3136 (((-892 (-566)) $) 71) (((-892 (-381)) $) 80) (((-538) $) 40) (((-381) $) 44) (((-225) $) 48)) (-2479 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) 91) (($ |#2|) NIL) (($ (-1175)) 58)) (-1558 (((-771)) 31)) (-2977 (((-112) $ $) 51))) +(((-991 |#1| |#2|) (-10 -8 (-15 -2977 ((-112) |#1| |#1|)) (-15 -3968 (|#1|)) (-15 -4278 ((-3 |#1| "failed") |#1|)) (-15 -2980 ((-3 (-566) "failed") |#1|)) (-15 -1709 ((-566) |#1|)) (-15 -2980 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -1709 ((-409 (-566)) |#1|)) (-15 -3136 ((-225) |#1|)) (-15 -3136 ((-381) |#1|)) (-15 -3136 ((-538) |#1|)) (-15 -2479 (|#1| (-1175))) (-15 -2980 ((-3 (-1175) "failed") |#1|)) (-15 -1709 ((-1175) |#1|)) (-15 -1415 (|#1|)) (-15 -4305 (|#1| |#1|)) (-15 -1375 (|#1| |#1|)) (-15 -1579 (|#1| |#1|)) (-15 -1542 ((-889 (-381) |#1|) |#1| (-892 (-381)) (-889 (-381) |#1|))) (-15 -1542 ((-889 (-566) |#1|) |#1| (-892 (-566)) (-889 (-566) |#1|))) (-15 -3136 ((-892 (-381)) |#1|)) (-15 -3136 ((-892 (-566)) |#1|)) (-15 -2275 ((-689 |#2|) (-689 |#1|))) (-15 -2275 ((-2 (|:| -4196 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 |#1|) (-1264 |#1|))) (-15 -2275 ((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 |#1|) (-1264 |#1|))) (-15 -2275 ((-689 (-566)) (-689 |#1|))) (-15 -3526 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3526 (|#1| |#1| (-1 |#2| |#2|) (-771))) (-15 -3526 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -3526 (|#1| |#1| (-1175) (-771))) (-15 -3526 (|#1| |#1| (-644 (-1175)))) (-15 -3526 (|#1| |#1| (-1175))) (-15 -3526 (|#1| |#1| (-771))) (-15 -3526 (|#1| |#1|)) (-15 -3080 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2980 ((-3 |#2| "failed") |#1|)) (-15 -1709 (|#2| |#1|)) (-15 -2479 (|#1| |#2|)) (-15 -2479 (|#1| (-409 (-566)))) (-15 -2479 (|#1| |#1|)) (-15 -1558 ((-771))) (-15 -2479 (|#1| (-566))) (-15 -2479 ((-862) |#1|))) (-992 |#2|) (-558)) (T -991)) +((-1558 (*1 *2) (-12 (-4 *4 (-558)) (-5 *2 (-771)) (-5 *1 (-991 *3 *4)) (-4 *3 (-992 *4))))) +(-10 -8 (-15 -2977 ((-112) |#1| |#1|)) (-15 -3968 (|#1|)) (-15 -4278 ((-3 |#1| "failed") |#1|)) (-15 -2980 ((-3 (-566) "failed") |#1|)) (-15 -1709 ((-566) |#1|)) (-15 -2980 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -1709 ((-409 (-566)) |#1|)) (-15 -3136 ((-225) |#1|)) (-15 -3136 ((-381) |#1|)) (-15 -3136 ((-538) |#1|)) (-15 -2479 (|#1| (-1175))) (-15 -2980 ((-3 (-1175) "failed") |#1|)) (-15 -1709 ((-1175) |#1|)) (-15 -1415 (|#1|)) (-15 -4305 (|#1| |#1|)) (-15 -1375 (|#1| |#1|)) (-15 -1579 (|#1| |#1|)) (-15 -1542 ((-889 (-381) |#1|) |#1| (-892 (-381)) (-889 (-381) |#1|))) (-15 -1542 ((-889 (-566) |#1|) |#1| (-892 (-566)) (-889 (-566) |#1|))) (-15 -3136 ((-892 (-381)) |#1|)) (-15 -3136 ((-892 (-566)) |#1|)) (-15 -2275 ((-689 |#2|) (-689 |#1|))) (-15 -2275 ((-2 (|:| -4196 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 |#1|) (-1264 |#1|))) (-15 -2275 ((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 |#1|) (-1264 |#1|))) (-15 -2275 ((-689 (-566)) (-689 |#1|))) (-15 -3526 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3526 (|#1| |#1| (-1 |#2| |#2|) (-771))) (-15 -3526 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -3526 (|#1| |#1| (-1175) (-771))) (-15 -3526 (|#1| |#1| (-644 (-1175)))) (-15 -3526 (|#1| |#1| (-1175))) (-15 -3526 (|#1| |#1| (-771))) (-15 -3526 (|#1| |#1|)) (-15 -3080 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2980 ((-3 |#2| "failed") |#1|)) (-15 -1709 (|#2| |#1|)) (-15 -2479 (|#1| |#2|)) (-15 -2479 (|#1| (-409 (-566)))) (-15 -2479 (|#1| |#1|)) (-15 -1558 ((-771))) (-15 -2479 (|#1| (-566))) (-15 -2479 ((-862) |#1|))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-2488 ((|#1| $) 147 (|has| |#1| (-308)))) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) 47)) (-3087 (($ $) 46)) (-1716 (((-112) $) 44)) (-3174 (((-3 $ "failed") $ $) 20)) (-4058 (((-420 (-1171 $)) (-1171 $)) 138 (|has| |#1| (-909)))) (-3980 (($ $) 81)) (-3348 (((-420 $) $) 80)) (-4262 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) 141 (|has| |#1| (-909)))) (-2761 (((-112) $ $) 65)) (-2920 (((-566) $) 128 (|has| |#1| (-820)))) (-1811 (($) 18 T CONST)) (-2980 (((-3 |#1| "failed") $) 185) (((-3 (-1175) "failed") $) 136 (|has| |#1| (-1038 (-1175)))) (((-3 (-409 (-566)) "failed") $) 119 (|has| |#1| (-1038 (-566)))) (((-3 (-566) "failed") $) 117 (|has| |#1| (-1038 (-566))))) (-1709 ((|#1| $) 186) (((-1175) $) 137 (|has| |#1| (-1038 (-1175)))) (((-409 (-566)) $) 120 (|has| |#1| (-1038 (-566)))) (((-566) $) 118 (|has| |#1| (-1038 (-566))))) (-2925 (($ $ $) 61)) (-2275 (((-689 (-566)) (-689 $)) 160 (|has| |#1| (-639 (-566)))) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) 159 (|has| |#1| (-639 (-566)))) (((-2 (|:| -4196 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) 158) (((-689 |#1|) (-689 $)) 157)) (-3757 (((-3 $ "failed") $) 37)) (-1415 (($) 145 (|has| |#1| (-547)))) (-2937 (($ $ $) 62)) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) 57)) (-4188 (((-112) $) 79)) (-2133 (((-112) $) 130 (|has| |#1| (-820)))) (-1542 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 154 (|has| |#1| (-886 (-566)))) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 153 (|has| |#1| (-886 (-381))))) (-2264 (((-112) $) 35)) (-1579 (($ $) 149)) (-4157 ((|#1| $) 151)) (-4278 (((-3 $ "failed") $) 116 (|has| |#1| (-1150)))) (-3420 (((-112) $) 129 (|has| |#1| (-820)))) (-2495 (((-3 (-644 $) "failed") (-644 $) $) 58)) (-1920 (($ $ $) 126 (|has| |#1| (-850)))) (-3038 (($ $ $) 125 (|has| |#1| (-850)))) (-3080 (($ (-1 |#1| |#1|) $) 177)) (-2120 (($ $ $) 52) (($ (-644 $)) 51)) (-3151 (((-1157) $) 10)) (-2577 (($ $) 78)) (-3968 (($) 115 (|has| |#1| (-1150)) CONST)) (-4059 (((-1119) $) 11)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-2162 (($ $ $) 54) (($ (-644 $)) 53)) (-4305 (($ $) 146 (|has| |#1| (-308)))) (-2001 ((|#1| $) 143 (|has| |#1| (-547)))) (-1500 (((-420 (-1171 $)) (-1171 $)) 140 (|has| |#1| (-909)))) (-3917 (((-420 (-1171 $)) (-1171 $)) 139 (|has| |#1| (-909)))) (-2325 (((-420 $) $) 82)) (-2585 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2976 (((-3 $ "failed") $ $) 48)) (-2840 (((-3 (-644 $) "failed") (-644 $) $) 56)) (-3297 (($ $ (-644 |#1|) (-644 |#1|)) 183 (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) 182 (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) 181 (|has| |#1| (-310 |#1|))) (($ $ (-644 (-295 |#1|))) 180 (|has| |#1| (-310 |#1|))) (($ $ (-644 (-1175)) (-644 |#1|)) 179 (|has| |#1| (-516 (-1175) |#1|))) (($ $ (-1175) |#1|) 178 (|has| |#1| (-516 (-1175) |#1|)))) (-1383 (((-771) $) 64)) (-4376 (($ $ |#1|) 184 (|has| |#1| (-287 |#1| |#1|)))) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) 63)) (-3526 (($ $) 176 (|has| |#1| (-233))) (($ $ (-771)) 174 (|has| |#1| (-233))) (($ $ (-1175)) 172 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) 171 (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) 170 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) 169 (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) 162) (($ $ (-1 |#1| |#1|)) 161)) (-1375 (($ $) 148)) (-4167 ((|#1| $) 150)) (-3136 (((-892 (-566)) $) 156 (|has| |#1| (-614 (-892 (-566))))) (((-892 (-381)) $) 155 (|has| |#1| (-614 (-892 (-381))))) (((-538) $) 133 (|has| |#1| (-614 (-538)))) (((-381) $) 132 (|has| |#1| (-1022))) (((-225) $) 131 (|has| |#1| (-1022)))) (-3233 (((-3 (-1264 $) "failed") (-689 $)) 142 (-2402 (|has| $ (-145)) (|has| |#1| (-909))))) (-2479 (((-862) $) 12) (($ (-566)) 33) (($ $) 49) (($ (-409 (-566))) 74) (($ |#1|) 189) (($ (-1175)) 135 (|has| |#1| (-1038 (-1175))))) (-2645 (((-3 $ "failed") $) 134 (-2809 (|has| |#1| (-145)) (-2402 (|has| $ (-145)) (|has| |#1| (-909)))))) (-1558 (((-771)) 32 T CONST)) (-3908 ((|#1| $) 144 (|has| |#1| (-547)))) (-3900 (((-112) $ $) 9)) (-1333 (((-112) $ $) 45)) (-4298 (($ $) 127 (|has| |#1| (-820)))) (-2446 (($) 19 T CONST)) (-2459 (($) 34 T CONST)) (-2834 (($ $) 175 (|has| |#1| (-233))) (($ $ (-771)) 173 (|has| |#1| (-233))) (($ $ (-1175)) 168 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) 167 (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) 166 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) 165 (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) 164) (($ $ (-1 |#1| |#1|)) 163)) (-3019 (((-112) $ $) 123 (|has| |#1| (-850)))) (-2990 (((-112) $ $) 122 (|has| |#1| (-850)))) (-2952 (((-112) $ $) 6)) (-3004 (((-112) $ $) 124 (|has| |#1| (-850)))) (-2977 (((-112) $ $) 121 (|has| |#1| (-850)))) (-3077 (($ $ $) 73) (($ |#1| |#1|) 152)) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 77)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ (-409 (-566))) 76) (($ (-409 (-566)) $) 75) (($ |#1| $) 188) (($ $ |#1|) 187))) +(((-992 |#1|) (-140) (-558)) (T -992)) +((-3077 (*1 *1 *2 *2) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558)))) (-4157 (*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558)))) (-4167 (*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558)))) (-1579 (*1 *1 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558)))) (-1375 (*1 *1 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558)))) (-2488 (*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558)) (-4 *2 (-308)))) (-4305 (*1 *1 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558)) (-4 *2 (-308)))) (-1415 (*1 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-547)) (-4 *2 (-558)))) (-3908 (*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558)) (-4 *2 (-547)))) (-2001 (*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558)) (-4 *2 (-547))))) +(-13 (-365) (-38 |t#1|) (-1038 |t#1|) (-340 |t#1|) (-231 |t#1|) (-379 |t#1|) (-884 |t#1|) (-402 |t#1|) (-10 -8 (-15 -3077 ($ |t#1| |t#1|)) (-15 -4157 (|t#1| $)) (-15 -4167 (|t#1| $)) (-15 -1579 ($ $)) (-15 -1375 ($ $)) (IF (|has| |t#1| (-1150)) (-6 (-1150)) |%noBranch|) (IF (|has| |t#1| (-1038 (-566))) (PROGN (-6 (-1038 (-566))) (-6 (-1038 (-409 (-566))))) |%noBranch|) (IF (|has| |t#1| (-850)) (-6 (-850)) |%noBranch|) (IF (|has| |t#1| (-820)) (-6 (-820)) |%noBranch|) (IF (|has| |t#1| (-1022)) (-6 (-1022)) |%noBranch|) (IF (|has| |t#1| (-614 (-538))) (-6 (-614 (-538))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1038 (-1175))) (-6 (-1038 (-1175))) |%noBranch|) (IF (|has| |t#1| (-308)) (PROGN (-15 -2488 (|t#1| $)) (-15 -4305 ($ $))) |%noBranch|) (IF (|has| |t#1| (-547)) (PROGN (-15 -1415 ($)) (-15 -3908 (|t#1| $)) (-15 -2001 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-909)) (-6 (-909)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-409 (-566))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #0#) . T) ((-616 (-566)) . T) ((-616 #1=(-1175)) |has| |#1| (-1038 (-1175))) ((-616 |#1|) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-614 (-225)) |has| |#1| (-1022)) ((-614 (-381)) |has| |#1| (-1022)) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-614 (-892 (-381))) |has| |#1| (-614 (-892 (-381)))) ((-614 (-892 (-566))) |has| |#1| (-614 (-892 (-566)))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-243) . T) ((-287 |#1| $) |has| |#1| (-287 |#1| |#1|)) ((-291) . T) ((-308) . T) ((-310 |#1|) |has| |#1| (-310 |#1|)) ((-365) . T) ((-340 |#1|) . T) ((-379 |#1|) . T) ((-402 |#1|) . T) ((-454) . T) ((-516 (-1175) |#1|) |has| |#1| (-516 (-1175) |#1|)) ((-516 |#1| |#1|) |has| |#1| (-310 |#1|)) ((-558) . T) ((-646 #0#) . T) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #0#) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #0#) . T) ((-640 |#1|) . T) ((-640 $) . T) ((-639 (-566)) |has| |#1| (-639 (-566))) ((-639 |#1|) . T) ((-717 #0#) . T) ((-717 |#1|) . T) ((-717 $) . T) ((-726) . T) ((-791) |has| |#1| (-820)) ((-792) |has| |#1| (-820)) ((-794) |has| |#1| (-820)) ((-795) |has| |#1| (-820)) ((-820) |has| |#1| (-820)) ((-848) |has| |#1| (-820)) ((-850) -2809 (|has| |#1| (-850)) (|has| |#1| (-820))) ((-900 (-1175)) |has| |#1| (-900 (-1175))) ((-886 (-381)) |has| |#1| (-886 (-381))) ((-886 (-566)) |has| |#1| (-886 (-566))) ((-884 |#1|) . T) ((-909) |has| |#1| (-909)) ((-920) . T) ((-1022) |has| |#1| (-1022)) ((-1038 (-409 (-566))) |has| |#1| (-1038 (-566))) ((-1038 (-566)) |has| |#1| (-1038 (-566))) ((-1038 #1#) |has| |#1| (-1038 (-1175))) ((-1038 |#1|) . T) ((-1051 #0#) . T) ((-1051 |#1|) . T) ((-1051 $) . T) ((-1056 #0#) . T) ((-1056 |#1|) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1150) |has| |#1| (-1150)) ((-1214) . T) ((-1218) . T)) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-1811 (($) NIL T CONST)) (-1444 (($ (-1141 |#1| |#2|)) 11)) (-4155 (((-1141 |#1| |#2|) $) 12)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-4376 ((|#2| $ (-240 |#1| |#2|)) 16)) (-2479 (((-862) $) NIL)) (-3900 (((-112) $ $) NIL)) (-2446 (($) NIL T CONST)) (-2952 (((-112) $ $) NIL)) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL))) +(((-993 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -1444 ($ (-1141 |#1| |#2|))) (-15 -4155 ((-1141 |#1| |#2|) $)) (-15 -4376 (|#2| $ (-240 |#1| |#2|))))) (-921) (-365)) (T -993)) +((-1444 (*1 *1 *2) (-12 (-5 *2 (-1141 *3 *4)) (-14 *3 (-921)) (-4 *4 (-365)) (-5 *1 (-993 *3 *4)))) (-4155 (*1 *2 *1) (-12 (-5 *2 (-1141 *3 *4)) (-5 *1 (-993 *3 *4)) (-14 *3 (-921)) (-4 *4 (-365)))) (-4376 (*1 *2 *1 *3) (-12 (-5 *3 (-240 *4 *2)) (-14 *4 (-921)) (-4 *2 (-365)) (-5 *1 (-993 *4 *2))))) +(-13 (-21) (-10 -8 (-15 -1444 ($ (-1141 |#1| |#2|))) (-15 -4155 ((-1141 |#1| |#2|) $)) (-15 -4376 (|#2| $ (-240 |#1| |#2|))))) +((-2986 (((-112) $ $) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-1358 (((-1134) $) 9)) (-2479 (((-862) $) 15) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-994) (-13 (-1082) (-10 -8 (-15 -1358 ((-1134) $))))) (T -994)) +((-1358 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-994))))) +(-13 (-1082) (-10 -8 (-15 -1358 ((-1134) $)))) +((-2986 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-1453 (((-112) $ (-771)) 8)) (-1811 (($) 7 T CONST)) (-3591 (($ $) 47)) (-3872 (((-644 |#1|) $) 31 (|has| $ (-6 -4417)))) (-2756 (((-112) $ (-771)) 9)) (-4227 (((-644 |#1|) $) 30 (|has| $ (-6 -4417)))) (-1688 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-3708 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#1| |#1|) $) 36)) (-4106 (((-112) $ (-771)) 10)) (-4332 (((-771) $) 46)) (-3151 (((-1157) $) 22 (|has| |#1| (-1099)))) (-4255 ((|#1| $) 40)) (-4354 (($ |#1| $) 41)) (-4059 (((-1119) $) 21 (|has| |#1| (-1099)))) (-1312 ((|#1| $) 45)) (-4097 ((|#1| $) 42)) (-3966 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1844 (((-112) $ $) 14)) (-3408 ((|#1| |#1| $) 49)) (-2788 (((-112) $) 11)) (-1737 (($) 12)) (-1921 ((|#1| $) 48)) (-4068 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4417))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-3924 (($ $) 13)) (-2479 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-3900 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-2471 (($ (-644 |#1|)) 43)) (-2071 ((|#1| $) 44)) (-3667 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4417)))) (-2952 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3002 (((-771) $) 6 (|has| $ (-6 -4417))))) +(((-995 |#1|) (-140) (-1214)) (T -995)) +((-3408 (*1 *2 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1214)))) (-1921 (*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1214)))) (-3591 (*1 *1 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1214)))) (-4332 (*1 *2 *1) (-12 (-4 *1 (-995 *3)) (-4 *3 (-1214)) (-5 *2 (-771)))) (-1312 (*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1214)))) (-2071 (*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1214))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4417) (-15 -3408 (|t#1| |t#1| $)) (-15 -1921 (|t#1| $)) (-15 -3591 ($ $)) (-15 -4332 ((-771) $)) (-15 -1312 (|t#1| $)) (-15 -2071 (|t#1| $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2809 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1099) |has| |#1| (-1099)) ((-1214) . T)) +((-2845 (((-112) $) 43)) (-2980 (((-3 (-566) "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL) (((-3 |#2| "failed") $) 46)) (-1709 (((-566) $) NIL) (((-409 (-566)) $) NIL) ((|#2| $) 44)) (-2515 (((-3 (-409 (-566)) "failed") $) 78)) (-2024 (((-112) $) 72)) (-3330 (((-409 (-566)) $) 76)) (-2264 (((-112) $) 42)) (-1398 ((|#2| $) 22)) (-3080 (($ (-1 |#2| |#2|) $) 19)) (-2577 (($ $) 58)) (-3526 (($ $) NIL) (($ $ (-771)) NIL) (($ $ (-1175)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL) (($ $ (-1 |#2| |#2|) (-771)) NIL) (($ $ (-1 |#2| |#2|)) 35)) (-3136 (((-538) $) 67)) (-2664 (($ $) 17)) (-2479 (((-862) $) 53) (($ (-566)) 39) (($ |#2|) 37) (($ (-409 (-566))) NIL)) (-1558 (((-771)) 10)) (-4298 ((|#2| $) 71)) (-2952 (((-112) $ $) 26)) (-2977 (((-112) $ $) 69)) (-3065 (($ $) 30) (($ $ $) 29)) (-3052 (($ $ $) 27)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 34) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 31) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL))) +(((-996 |#1| |#2|) (-10 -8 (-15 -2479 (|#1| (-409 (-566)))) (-15 -2977 ((-112) |#1| |#1|)) (-15 * (|#1| (-409 (-566)) |#1|)) (-15 * (|#1| |#1| (-409 (-566)))) (-15 -2577 (|#1| |#1|)) (-15 -3136 ((-538) |#1|)) (-15 -2515 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -3330 ((-409 (-566)) |#1|)) (-15 -2024 ((-112) |#1|)) (-15 -4298 (|#2| |#1|)) (-15 -1398 (|#2| |#1|)) (-15 -2664 (|#1| |#1|)) (-15 -3080 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3526 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3526 (|#1| |#1| (-1 |#2| |#2|) (-771))) (-15 -3526 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -3526 (|#1| |#1| (-1175) (-771))) (-15 -3526 (|#1| |#1| (-644 (-1175)))) (-15 -3526 (|#1| |#1| (-1175))) (-15 -3526 (|#1| |#1| (-771))) (-15 -3526 (|#1| |#1|)) (-15 -2980 ((-3 |#2| "failed") |#1|)) (-15 -1709 (|#2| |#1|)) (-15 -1709 ((-409 (-566)) |#1|)) (-15 -2980 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -1709 ((-566) |#1|)) (-15 -2980 ((-3 (-566) "failed") |#1|)) (-15 -2479 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1558 ((-771))) (-15 -2479 (|#1| (-566))) (-15 -2264 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3065 (|#1| |#1| |#1|)) (-15 -3065 (|#1| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 -2845 ((-112) |#1|)) (-15 * (|#1| (-921) |#1|)) (-15 -3052 (|#1| |#1| |#1|)) (-15 -2479 ((-862) |#1|)) (-15 -2952 ((-112) |#1| |#1|))) (-997 |#2|) (-172)) (T -996)) +((-1558 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-771)) (-5 *1 (-996 *3 *4)) (-4 *3 (-997 *4))))) +(-10 -8 (-15 -2479 (|#1| (-409 (-566)))) (-15 -2977 ((-112) |#1| |#1|)) (-15 * (|#1| (-409 (-566)) |#1|)) (-15 * (|#1| |#1| (-409 (-566)))) (-15 -2577 (|#1| |#1|)) (-15 -3136 ((-538) |#1|)) (-15 -2515 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -3330 ((-409 (-566)) |#1|)) (-15 -2024 ((-112) |#1|)) (-15 -4298 (|#2| |#1|)) (-15 -1398 (|#2| |#1|)) (-15 -2664 (|#1| |#1|)) (-15 -3080 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3526 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3526 (|#1| |#1| (-1 |#2| |#2|) (-771))) (-15 -3526 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -3526 (|#1| |#1| (-1175) (-771))) (-15 -3526 (|#1| |#1| (-644 (-1175)))) (-15 -3526 (|#1| |#1| (-1175))) (-15 -3526 (|#1| |#1| (-771))) (-15 -3526 (|#1| |#1|)) (-15 -2980 ((-3 |#2| "failed") |#1|)) (-15 -1709 (|#2| |#1|)) (-15 -1709 ((-409 (-566)) |#1|)) (-15 -2980 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -1709 ((-566) |#1|)) (-15 -2980 ((-3 (-566) "failed") |#1|)) (-15 -2479 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1558 ((-771))) (-15 -2479 (|#1| (-566))) (-15 -2264 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3065 (|#1| |#1| |#1|)) (-15 -3065 (|#1| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 -2845 ((-112) |#1|)) (-15 * (|#1| (-921) |#1|)) (-15 -3052 (|#1| |#1| |#1|)) (-15 -2479 ((-862) |#1|)) (-15 -2952 ((-112) |#1| |#1|))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-3174 (((-3 $ "failed") $ $) 20)) (-1811 (($) 18 T CONST)) (-2980 (((-3 (-566) "failed") $) 127 (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) 125 (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) 122)) (-1709 (((-566) $) 126 (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) 124 (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) 123)) (-2275 (((-689 (-566)) (-689 $)) 97 (|has| |#1| (-639 (-566)))) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) 96 (|has| |#1| (-639 (-566)))) (((-2 (|:| -4196 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) 95) (((-689 |#1|) (-689 $)) 94)) (-3757 (((-3 $ "failed") $) 37)) (-2352 ((|#1| $) 87)) (-2515 (((-3 (-409 (-566)) "failed") $) 83 (|has| |#1| (-547)))) (-2024 (((-112) $) 85 (|has| |#1| (-547)))) (-3330 (((-409 (-566)) $) 84 (|has| |#1| (-547)))) (-1449 (($ |#1| |#1| |#1| |#1|) 88)) (-2264 (((-112) $) 35)) (-1398 ((|#1| $) 89)) (-1920 (($ $ $) 76 (|has| |#1| (-850)))) (-3038 (($ $ $) 75 (|has| |#1| (-850)))) (-3080 (($ (-1 |#1| |#1|) $) 98)) (-3151 (((-1157) $) 10)) (-2577 (($ $) 80 (|has| |#1| (-365)))) (-2730 ((|#1| $) 90)) (-2513 ((|#1| $) 91)) (-2226 ((|#1| $) 92)) (-4059 (((-1119) $) 11)) (-3297 (($ $ (-644 |#1|) (-644 |#1|)) 104 (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) 103 (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) 102 (|has| |#1| (-310 |#1|))) (($ $ (-644 (-295 |#1|))) 101 (|has| |#1| (-310 |#1|))) (($ $ (-644 (-1175)) (-644 |#1|)) 100 (|has| |#1| (-516 (-1175) |#1|))) (($ $ (-1175) |#1|) 99 (|has| |#1| (-516 (-1175) |#1|)))) (-4376 (($ $ |#1|) 105 (|has| |#1| (-287 |#1| |#1|)))) (-3526 (($ $) 121 (|has| |#1| (-233))) (($ $ (-771)) 119 (|has| |#1| (-233))) (($ $ (-1175)) 117 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) 116 (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) 115 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) 114 (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) 107) (($ $ (-1 |#1| |#1|)) 106)) (-3136 (((-538) $) 81 (|has| |#1| (-614 (-538))))) (-2664 (($ $) 93)) (-2479 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 44) (($ (-409 (-566))) 70 (-2809 (|has| |#1| (-365)) (|has| |#1| (-1038 (-409 (-566))))))) (-2645 (((-3 $ "failed") $) 82 (|has| |#1| (-145)))) (-1558 (((-771)) 32 T CONST)) (-3900 (((-112) $ $) 9)) (-4298 ((|#1| $) 86 (|has| |#1| (-1059)))) (-2446 (($) 19 T CONST)) (-2459 (($) 34 T CONST)) (-2834 (($ $) 120 (|has| |#1| (-233))) (($ $ (-771)) 118 (|has| |#1| (-233))) (($ $ (-1175)) 113 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) 112 (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) 111 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) 110 (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) 109) (($ $ (-1 |#1| |#1|)) 108)) (-3019 (((-112) $ $) 73 (|has| |#1| (-850)))) (-2990 (((-112) $ $) 72 (|has| |#1| (-850)))) (-2952 (((-112) $ $) 6)) (-3004 (((-112) $ $) 74 (|has| |#1| (-850)))) (-2977 (((-112) $ $) 71 (|has| |#1| (-850)))) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 79 (|has| |#1| (-365)))) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ $ (-409 (-566))) 78 (|has| |#1| (-365))) (($ (-409 (-566)) $) 77 (|has| |#1| (-365))))) +(((-997 |#1|) (-140) (-172)) (T -997)) +((-2664 (*1 *1 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172)))) (-2226 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172)))) (-2513 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172)))) (-2730 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172)))) (-1398 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172)))) (-1449 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172)))) (-2352 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172)))) (-4298 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172)) (-4 *2 (-1059)))) (-2024 (*1 *2 *1) (-12 (-4 *1 (-997 *3)) (-4 *3 (-172)) (-4 *3 (-547)) (-5 *2 (-112)))) (-3330 (*1 *2 *1) (-12 (-4 *1 (-997 *3)) (-4 *3 (-172)) (-4 *3 (-547)) (-5 *2 (-409 (-566))))) (-2515 (*1 *2 *1) (|partial| -12 (-4 *1 (-997 *3)) (-4 *3 (-172)) (-4 *3 (-547)) (-5 *2 (-409 (-566)))))) +(-13 (-38 |t#1|) (-413 |t#1|) (-231 |t#1|) (-340 |t#1|) (-379 |t#1|) (-10 -8 (-15 -2664 ($ $)) (-15 -2226 (|t#1| $)) (-15 -2513 (|t#1| $)) (-15 -2730 (|t#1| $)) (-15 -1398 (|t#1| $)) (-15 -1449 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -2352 (|t#1| $)) (IF (|has| |t#1| (-291)) (-6 (-291)) |%noBranch|) (IF (|has| |t#1| (-850)) (-6 (-850)) |%noBranch|) (IF (|has| |t#1| (-365)) (-6 (-243)) |%noBranch|) (IF (|has| |t#1| (-614 (-538))) (-6 (-614 (-538))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1059)) (-15 -4298 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-547)) (PROGN (-15 -2024 ((-112) $)) (-15 -3330 ((-409 (-566)) $)) (-15 -2515 ((-3 (-409 (-566)) "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-409 (-566))) |has| |#1| (-365)) ((-38 |#1|) . T) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-365)) ((-111 |#1| |#1|) . T) ((-111 $ $) -2809 (|has| |#1| (-365)) (|has| |#1| (-291))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #0#) -2809 (|has| |#1| (-1038 (-409 (-566)))) (|has| |#1| (-365))) ((-616 (-566)) . T) ((-616 |#1|) . T) ((-613 (-862)) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-243) |has| |#1| (-365)) ((-287 |#1| $) |has| |#1| (-287 |#1| |#1|)) ((-291) -2809 (|has| |#1| (-365)) (|has| |#1| (-291))) ((-310 |#1|) |has| |#1| (-310 |#1|)) ((-340 |#1|) . T) ((-379 |#1|) . T) ((-413 |#1|) . T) ((-516 (-1175) |#1|) |has| |#1| (-516 (-1175) |#1|)) ((-516 |#1| |#1|) |has| |#1| (-310 |#1|)) ((-646 #0#) |has| |#1| (-365)) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #0#) |has| |#1| (-365)) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #0#) |has| |#1| (-365)) ((-640 |#1|) . T) ((-639 (-566)) |has| |#1| (-639 (-566))) ((-639 |#1|) . T) ((-717 #0#) |has| |#1| (-365)) ((-717 |#1|) . T) ((-726) . T) ((-850) |has| |#1| (-850)) ((-900 (-1175)) |has| |#1| (-900 (-1175))) ((-1038 (-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) ((-1038 (-566)) |has| |#1| (-1038 (-566))) ((-1038 |#1|) . T) ((-1051 #0#) |has| |#1| (-365)) ((-1051 |#1|) . T) ((-1051 $) -2809 (|has| |#1| (-365)) (|has| |#1| (-291))) ((-1056 #0#) |has| |#1| (-365)) ((-1056 |#1|) . T) ((-1056 $) -2809 (|has| |#1| (-365)) (|has| |#1| (-291))) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) +((-3080 ((|#3| (-1 |#4| |#2|) |#1|) 16))) +(((-998 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3080 (|#3| (-1 |#4| |#2|) |#1|))) (-997 |#2|) (-172) (-997 |#4|) (-172)) (T -998)) +((-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-997 *6)) (-5 *1 (-998 *4 *5 *2 *6)) (-4 *4 (-997 *5))))) +(-10 -7 (-15 -3080 (|#3| (-1 |#4| |#2|) |#1|))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-1811 (($) NIL T CONST)) (-2980 (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) NIL)) (-1709 (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) NIL)) (-2275 (((-689 (-566)) (-689 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -4196 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) NIL) (((-689 |#1|) (-689 $)) NIL)) (-3757 (((-3 $ "failed") $) NIL)) (-2352 ((|#1| $) 12)) (-2515 (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-547)))) (-2024 (((-112) $) NIL (|has| |#1| (-547)))) (-3330 (((-409 (-566)) $) NIL (|has| |#1| (-547)))) (-1449 (($ |#1| |#1| |#1| |#1|) 16)) (-2264 (((-112) $) NIL)) (-1398 ((|#1| $) NIL)) (-1920 (($ $ $) NIL (|has| |#1| (-850)))) (-3038 (($ $ $) NIL (|has| |#1| (-850)))) (-3080 (($ (-1 |#1| |#1|) $) NIL)) (-3151 (((-1157) $) NIL)) (-2577 (($ $) NIL (|has| |#1| (-365)))) (-2730 ((|#1| $) 15)) (-2513 ((|#1| $) 14)) (-2226 ((|#1| $) 13)) (-4059 (((-1119) $) NIL)) (-3297 (($ $ (-644 |#1|) (-644 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ (-644 (-295 |#1|))) NIL (|has| |#1| (-310 |#1|))) (($ $ (-644 (-1175)) (-644 |#1|)) NIL (|has| |#1| (-516 (-1175) |#1|))) (($ $ (-1175) |#1|) NIL (|has| |#1| (-516 (-1175) |#1|)))) (-4376 (($ $ |#1|) NIL (|has| |#1| (-287 |#1| |#1|)))) (-3526 (($ $) NIL (|has| |#1| (-233))) (($ $ (-771)) NIL (|has| |#1| (-233))) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3136 (((-538) $) NIL (|has| |#1| (-614 (-538))))) (-2664 (($ $) NIL)) (-2479 (((-862) $) NIL) (($ (-566)) NIL) (($ |#1|) NIL) (($ (-409 (-566))) NIL (-2809 (|has| |#1| (-365)) (|has| |#1| (-1038 (-409 (-566))))))) (-2645 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1558 (((-771)) NIL T CONST)) (-3900 (((-112) $ $) NIL)) (-4298 ((|#1| $) NIL (|has| |#1| (-1059)))) (-2446 (($) 8 T CONST)) (-2459 (($) 10 T CONST)) (-2834 (($ $) NIL (|has| |#1| (-233))) (($ $ (-771)) NIL (|has| |#1| (-233))) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3019 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2990 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2952 (((-112) $ $) NIL)) (-3004 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-850)))) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL (|has| |#1| (-365)))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-409 (-566))) NIL (|has| |#1| (-365))) (($ (-409 (-566)) $) NIL (|has| |#1| (-365))))) +(((-999 |#1|) (-997 |#1|) (-172)) (T -999)) +NIL +(-997 |#1|) +((-2986 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1453 (((-112) $ (-771)) NIL)) (-1811 (($) NIL T CONST)) (-3591 (($ $) 23)) (-3615 (($ (-644 |#1|)) 33)) (-3872 (((-644 |#1|) $) NIL (|has| $ (-6 -4417)))) (-2756 (((-112) $ (-771)) NIL)) (-4227 (((-644 |#1|) $) NIL (|has| $ (-6 -4417)))) (-1688 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-3708 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#1| |#1|) $) NIL)) (-4106 (((-112) $ (-771)) NIL)) (-4332 (((-771) $) 26)) (-3151 (((-1157) $) NIL (|has| |#1| (-1099)))) (-4255 ((|#1| $) 28)) (-4354 (($ |#1| $) 17)) (-4059 (((-1119) $) NIL (|has| |#1| (-1099)))) (-1312 ((|#1| $) 27)) (-4097 ((|#1| $) 22)) (-3966 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1844 (((-112) $ $) NIL)) (-3408 ((|#1| |#1| $) 16)) (-2788 (((-112) $) 18)) (-1737 (($) NIL)) (-1921 ((|#1| $) 21)) (-4068 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-3924 (($ $) NIL)) (-2479 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-3900 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2471 (($ (-644 |#1|)) NIL)) (-2071 ((|#1| $) 30)) (-3667 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2952 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3002 (((-771) $) NIL (|has| $ (-6 -4417))))) +(((-1000 |#1|) (-13 (-995 |#1|) (-10 -8 (-15 -3615 ($ (-644 |#1|))))) (-1099)) (T -1000)) +((-3615 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-5 *1 (-1000 *3))))) +(-13 (-995 |#1|) (-10 -8 (-15 -3615 ($ (-644 |#1|))))) +((-2338 (($ $) 12)) (-3146 (($ $ (-566)) 13))) +(((-1001 |#1|) (-10 -8 (-15 -2338 (|#1| |#1|)) (-15 -3146 (|#1| |#1| (-566)))) (-1002)) (T -1001)) +NIL +(-10 -8 (-15 -2338 (|#1| |#1|)) (-15 -3146 (|#1| |#1| (-566)))) +((-2338 (($ $) 6)) (-3146 (($ $ (-566)) 7)) (** (($ $ (-409 (-566))) 8))) +(((-1002) (-140)) (T -1002)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-1002)) (-5 *2 (-409 (-566))))) (-3146 (*1 *1 *1 *2) (-12 (-4 *1 (-1002)) (-5 *2 (-566)))) (-2338 (*1 *1 *1) (-4 *1 (-1002)))) +(-13 (-10 -8 (-15 -2338 ($ $)) (-15 -3146 ($ $ (-566))) (-15 ** ($ $ (-409 (-566)))))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-4072 (((-2 (|:| |num| (-1264 |#2|)) (|:| |den| |#2|)) $) NIL)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (|has| (-409 |#2|) (-365)))) (-3087 (($ $) NIL (|has| (-409 |#2|) (-365)))) (-1716 (((-112) $) NIL (|has| (-409 |#2|) (-365)))) (-1321 (((-689 (-409 |#2|)) (-1264 $)) NIL) (((-689 (-409 |#2|))) NIL)) (-3837 (((-409 |#2|) $) NIL)) (-2568 (((-1187 (-921) (-771)) (-566)) NIL (|has| (-409 |#2|) (-351)))) (-3174 (((-3 $ "failed") $ $) NIL)) (-3980 (($ $) NIL (|has| (-409 |#2|) (-365)))) (-3348 (((-420 $) $) NIL (|has| (-409 |#2|) (-365)))) (-2761 (((-112) $ $) NIL (|has| (-409 |#2|) (-365)))) (-4049 (((-771)) NIL (|has| (-409 |#2|) (-370)))) (-3651 (((-112)) NIL)) (-2892 (((-112) |#1|) 173) (((-112) |#2|) 177)) (-1811 (($) NIL T CONST)) (-2980 (((-3 (-566) "failed") $) NIL (|has| (-409 |#2|) (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| (-409 |#2|) (-1038 (-409 (-566))))) (((-3 (-409 |#2|) "failed") $) NIL)) (-1709 (((-566) $) NIL (|has| (-409 |#2|) (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| (-409 |#2|) (-1038 (-409 (-566))))) (((-409 |#2|) $) NIL)) (-2422 (($ (-1264 (-409 |#2|)) (-1264 $)) NIL) (($ (-1264 (-409 |#2|))) 81) (($ (-1264 |#2|) |#2|) NIL)) (-2713 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-409 |#2|) (-351)))) (-2925 (($ $ $) NIL (|has| (-409 |#2|) (-365)))) (-2087 (((-689 (-409 |#2|)) $ (-1264 $)) NIL) (((-689 (-409 |#2|)) $) NIL)) (-2275 (((-689 (-566)) (-689 $)) NIL (|has| (-409 |#2|) (-639 (-566)))) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| (-409 |#2|) (-639 (-566)))) (((-2 (|:| -4196 (-689 (-409 |#2|))) (|:| |vec| (-1264 (-409 |#2|)))) (-689 $) (-1264 $)) NIL) (((-689 (-409 |#2|)) (-689 $)) NIL)) (-2225 (((-1264 $) (-1264 $)) NIL)) (-1838 (($ |#3|) 75) (((-3 $ "failed") (-409 |#3|)) NIL (|has| (-409 |#2|) (-365)))) (-3757 (((-3 $ "failed") $) NIL)) (-2502 (((-644 (-644 |#1|))) NIL (|has| |#1| (-370)))) (-2317 (((-112) |#1| |#1|) NIL)) (-2299 (((-921)) NIL)) (-1415 (($) NIL (|has| (-409 |#2|) (-370)))) (-3043 (((-112)) NIL)) (-3343 (((-112) |#1|) 61) (((-112) |#2|) 175)) (-2937 (($ $ $) NIL (|has| (-409 |#2|) (-365)))) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) NIL (|has| (-409 |#2|) (-365)))) (-3530 (($ $) NIL)) (-2409 (($) NIL (|has| (-409 |#2|) (-351)))) (-1450 (((-112) $) NIL (|has| (-409 |#2|) (-351)))) (-4202 (($ $ (-771)) NIL (|has| (-409 |#2|) (-351))) (($ $) NIL (|has| (-409 |#2|) (-351)))) (-4188 (((-112) $) NIL (|has| (-409 |#2|) (-365)))) (-1802 (((-921) $) NIL (|has| (-409 |#2|) (-351))) (((-833 (-921)) $) NIL (|has| (-409 |#2|) (-351)))) (-2264 (((-112) $) NIL)) (-4053 (((-771)) NIL)) (-3154 (((-1264 $) (-1264 $)) NIL)) (-1398 (((-409 |#2|) $) NIL)) (-2904 (((-644 (-952 |#1|)) (-1175)) NIL (|has| |#1| (-365)))) (-4278 (((-3 $ "failed") $) NIL (|has| (-409 |#2|) (-351)))) (-2495 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| (-409 |#2|) (-365)))) (-1869 ((|#3| $) NIL (|has| (-409 |#2|) (-365)))) (-4051 (((-921) $) NIL (|has| (-409 |#2|) (-370)))) (-1829 ((|#3| $) NIL)) (-2120 (($ (-644 $)) NIL (|has| (-409 |#2|) (-365))) (($ $ $) NIL (|has| (-409 |#2|) (-365)))) (-3151 (((-1157) $) NIL)) (-3274 (((-689 (-409 |#2|))) 57)) (-3907 (((-689 (-409 |#2|))) 56)) (-2577 (($ $) NIL (|has| (-409 |#2|) (-365)))) (-1677 (($ (-1264 |#2|) |#2|) 82)) (-2236 (((-689 (-409 |#2|))) 55)) (-3033 (((-689 (-409 |#2|))) 54)) (-3825 (((-2 (|:| |num| (-689 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 97)) (-2942 (((-2 (|:| |num| (-1264 |#2|)) (|:| |den| |#2|)) $) 88)) (-1985 (((-1264 $)) 51)) (-2500 (((-1264 $)) 50)) (-2747 (((-112) $) NIL)) (-3796 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3968 (($) NIL (|has| (-409 |#2|) (-351)) CONST)) (-2104 (($ (-921)) NIL (|has| (-409 |#2|) (-370)))) (-1824 (((-3 |#2| "failed")) 70)) (-4059 (((-1119) $) NIL)) (-3436 (((-771)) NIL)) (-4086 (($) NIL)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| (-409 |#2|) (-365)))) (-2162 (($ (-644 $)) NIL (|has| (-409 |#2|) (-365))) (($ $ $) NIL (|has| (-409 |#2|) (-365)))) (-2816 (((-644 (-2 (|:| -2325 (-566)) (|:| -3631 (-566))))) NIL (|has| (-409 |#2|) (-351)))) (-2325 (((-420 $) $) NIL (|has| (-409 |#2|) (-365)))) (-2585 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-409 |#2|) (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL (|has| (-409 |#2|) (-365)))) (-2976 (((-3 $ "failed") $ $) NIL (|has| (-409 |#2|) (-365)))) (-2840 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| (-409 |#2|) (-365)))) (-1383 (((-771) $) NIL (|has| (-409 |#2|) (-365)))) (-4376 ((|#1| $ |#1| |#1|) NIL)) (-3535 (((-3 |#2| "failed")) 68)) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL (|has| (-409 |#2|) (-365)))) (-3553 (((-409 |#2|) (-1264 $)) NIL) (((-409 |#2|)) 47)) (-4107 (((-771) $) NIL (|has| (-409 |#2|) (-351))) (((-3 (-771) "failed") $ $) NIL (|has| (-409 |#2|) (-351)))) (-3526 (($ $ (-1 (-409 |#2|) (-409 |#2|)) (-771)) NIL (|has| (-409 |#2|) (-365))) (($ $ (-1 (-409 |#2|) (-409 |#2|))) NIL (|has| (-409 |#2|) (-365))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175))))) (($ $ (-771)) NIL (-2809 (-12 (|has| (-409 |#2|) (-233)) (|has| (-409 |#2|) (-365))) (|has| (-409 |#2|) (-351)))) (($ $) NIL (-2809 (-12 (|has| (-409 |#2|) (-233)) (|has| (-409 |#2|) (-365))) (|has| (-409 |#2|) (-351))))) (-3098 (((-689 (-409 |#2|)) (-1264 $) (-1 (-409 |#2|) (-409 |#2|))) NIL (|has| (-409 |#2|) (-365)))) (-2301 ((|#3|) 58)) (-3648 (($) NIL (|has| (-409 |#2|) (-351)))) (-3747 (((-1264 (-409 |#2|)) $ (-1264 $)) NIL) (((-689 (-409 |#2|)) (-1264 $) (-1264 $)) NIL) (((-1264 (-409 |#2|)) $) 83) (((-689 (-409 |#2|)) (-1264 $)) NIL)) (-3136 (((-1264 (-409 |#2|)) $) NIL) (($ (-1264 (-409 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3233 (((-3 (-1264 $) "failed") (-689 $)) NIL (|has| (-409 |#2|) (-351)))) (-3404 (((-1264 $) (-1264 $)) NIL)) (-2479 (((-862) $) NIL) (($ (-566)) NIL) (($ (-409 |#2|)) NIL) (($ (-409 (-566))) NIL (-2809 (|has| (-409 |#2|) (-1038 (-409 (-566)))) (|has| (-409 |#2|) (-365)))) (($ $) NIL (|has| (-409 |#2|) (-365)))) (-2645 (($ $) NIL (|has| (-409 |#2|) (-351))) (((-3 $ "failed") $) NIL (|has| (-409 |#2|) (-145)))) (-3728 ((|#3| $) NIL)) (-1558 (((-771)) NIL T CONST)) (-2998 (((-112)) 65)) (-2995 (((-112) |#1|) 178) (((-112) |#2|) 179)) (-3900 (((-112) $ $) NIL)) (-1419 (((-1264 $)) 143)) (-1333 (((-112) $ $) NIL (|has| (-409 |#2|) (-365)))) (-1756 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-4304 (((-112)) NIL)) (-2446 (($) 109 T CONST)) (-2459 (($) NIL T CONST)) (-2834 (($ $ (-1 (-409 |#2|) (-409 |#2|)) (-771)) NIL (|has| (-409 |#2|) (-365))) (($ $ (-1 (-409 |#2|) (-409 |#2|))) NIL (|has| (-409 |#2|) (-365))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175))))) (($ $ (-771)) NIL (-2809 (-12 (|has| (-409 |#2|) (-233)) (|has| (-409 |#2|) (-365))) (|has| (-409 |#2|) (-351)))) (($ $) NIL (-2809 (-12 (|has| (-409 |#2|) (-233)) (|has| (-409 |#2|) (-365))) (|has| (-409 |#2|) (-351))))) (-2952 (((-112) $ $) NIL)) (-3077 (($ $ $) NIL (|has| (-409 |#2|) (-365)))) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL (|has| (-409 |#2|) (-365)))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 |#2|)) NIL) (($ (-409 |#2|) $) NIL) (($ (-409 (-566)) $) NIL (|has| (-409 |#2|) (-365))) (($ $ (-409 (-566))) NIL (|has| (-409 |#2|) (-365))))) +(((-1003 |#1| |#2| |#3| |#4| |#5|) (-344 |#1| |#2| |#3|) (-1218) (-1240 |#1|) (-1240 (-409 |#2|)) (-409 |#2|) (-771)) (T -1003)) +NIL +(-344 |#1| |#2| |#3|) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-3305 (((-644 (-566)) $) 73)) (-2193 (($ (-644 (-566))) 81)) (-2488 (((-566) $) 48 (|has| (-566) (-308)))) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-1716 (((-112) $) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-4058 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-566) (-909)))) (-3980 (($ $) NIL)) (-3348 (((-420 $) $) NIL)) (-4262 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| (-566) (-909)))) (-2761 (((-112) $ $) NIL)) (-2920 (((-566) $) NIL (|has| (-566) (-820)))) (-1811 (($) NIL T CONST)) (-2980 (((-3 (-566) "failed") $) 60) (((-3 (-1175) "failed") $) NIL (|has| (-566) (-1038 (-1175)))) (((-3 (-409 (-566)) "failed") $) 57 (|has| (-566) (-1038 (-566)))) (((-3 (-566) "failed") $) 60 (|has| (-566) (-1038 (-566))))) (-1709 (((-566) $) NIL) (((-1175) $) NIL (|has| (-566) (-1038 (-1175)))) (((-409 (-566)) $) NIL (|has| (-566) (-1038 (-566)))) (((-566) $) NIL (|has| (-566) (-1038 (-566))))) (-2925 (($ $ $) NIL)) (-2275 (((-689 (-566)) (-689 $)) NIL (|has| (-566) (-639 (-566)))) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| (-566) (-639 (-566)))) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL) (((-689 (-566)) (-689 $)) NIL)) (-3757 (((-3 $ "failed") $) NIL)) (-1415 (($) NIL (|has| (-566) (-547)))) (-2937 (($ $ $) NIL)) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) NIL)) (-4188 (((-112) $) NIL)) (-1475 (((-644 (-566)) $) 79)) (-2133 (((-112) $) NIL (|has| (-566) (-820)))) (-1542 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (|has| (-566) (-886 (-566)))) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (|has| (-566) (-886 (-381))))) (-2264 (((-112) $) NIL)) (-1579 (($ $) NIL)) (-4157 (((-566) $) 45)) (-4278 (((-3 $ "failed") $) NIL (|has| (-566) (-1150)))) (-3420 (((-112) $) NIL (|has| (-566) (-820)))) (-2495 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1920 (($ $ $) NIL (|has| (-566) (-850)))) (-3038 (($ $ $) NIL (|has| (-566) (-850)))) (-3080 (($ (-1 (-566) (-566)) $) NIL)) (-2120 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3151 (((-1157) $) NIL)) (-2577 (($ $) NIL)) (-3968 (($) NIL (|has| (-566) (-1150)) CONST)) (-4059 (((-1119) $) NIL)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2162 (($ $ $) NIL) (($ (-644 $)) NIL)) (-4305 (($ $) NIL (|has| (-566) (-308))) (((-409 (-566)) $) 50)) (-2542 (((-1155 (-566)) $) 78)) (-4231 (($ (-644 (-566)) (-644 (-566))) 82)) (-2001 (((-566) $) 64 (|has| (-566) (-547)))) (-1500 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-566) (-909)))) (-3917 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-566) (-909)))) (-2325 (((-420 $) $) NIL)) (-2585 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2976 (((-3 $ "failed") $ $) NIL)) (-2840 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3297 (($ $ (-644 (-566)) (-644 (-566))) NIL (|has| (-566) (-310 (-566)))) (($ $ (-566) (-566)) NIL (|has| (-566) (-310 (-566)))) (($ $ (-295 (-566))) NIL (|has| (-566) (-310 (-566)))) (($ $ (-644 (-295 (-566)))) NIL (|has| (-566) (-310 (-566)))) (($ $ (-644 (-1175)) (-644 (-566))) NIL (|has| (-566) (-516 (-1175) (-566)))) (($ $ (-1175) (-566)) NIL (|has| (-566) (-516 (-1175) (-566))))) (-1383 (((-771) $) NIL)) (-4376 (($ $ (-566)) NIL (|has| (-566) (-287 (-566) (-566))))) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL)) (-3526 (($ $) 15 (|has| (-566) (-233))) (($ $ (-771)) NIL (|has| (-566) (-233))) (($ $ (-1175)) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-1 (-566) (-566)) (-771)) NIL) (($ $ (-1 (-566) (-566))) NIL)) (-1375 (($ $) NIL)) (-4167 (((-566) $) 47)) (-2356 (((-644 (-566)) $) 80)) (-3136 (((-892 (-566)) $) NIL (|has| (-566) (-614 (-892 (-566))))) (((-892 (-381)) $) NIL (|has| (-566) (-614 (-892 (-381))))) (((-538) $) NIL (|has| (-566) (-614 (-538)))) (((-381) $) NIL (|has| (-566) (-1022))) (((-225) $) NIL (|has| (-566) (-1022)))) (-3233 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| (-566) (-909))))) (-2479 (((-862) $) 107) (($ (-566)) 51) (($ $) NIL) (($ (-409 (-566))) 27) (($ (-566)) 51) (($ (-1175)) NIL (|has| (-566) (-1038 (-1175)))) (((-409 (-566)) $) 25)) (-2645 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| $ (-145)) (|has| (-566) (-909))) (|has| (-566) (-145))))) (-1558 (((-771)) 13 T CONST)) (-3908 (((-566) $) 62 (|has| (-566) (-547)))) (-3900 (((-112) $ $) NIL)) (-1333 (((-112) $ $) NIL)) (-4298 (($ $) NIL (|has| (-566) (-820)))) (-2446 (($) 14 T CONST)) (-2459 (($) 17 T CONST)) (-2834 (($ $) NIL (|has| (-566) (-233))) (($ $ (-771)) NIL (|has| (-566) (-233))) (($ $ (-1175)) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-1 (-566) (-566)) (-771)) NIL) (($ $ (-1 (-566) (-566))) NIL)) (-3019 (((-112) $ $) NIL (|has| (-566) (-850)))) (-2990 (((-112) $ $) NIL (|has| (-566) (-850)))) (-2952 (((-112) $ $) 21)) (-3004 (((-112) $ $) NIL (|has| (-566) (-850)))) (-2977 (((-112) $ $) 40 (|has| (-566) (-850)))) (-3077 (($ $ $) 36) (($ (-566) (-566)) 38)) (-3065 (($ $) 23) (($ $ $) 30)) (-3052 (($ $ $) 28)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 32) (($ $ $) 34) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ (-566) $) 32) (($ $ (-566)) NIL))) +(((-1004 |#1|) (-13 (-992 (-566)) (-613 (-409 (-566))) (-10 -8 (-15 -4305 ((-409 (-566)) $)) (-15 -3305 ((-644 (-566)) $)) (-15 -2542 ((-1155 (-566)) $)) (-15 -1475 ((-644 (-566)) $)) (-15 -2356 ((-644 (-566)) $)) (-15 -2193 ($ (-644 (-566)))) (-15 -4231 ($ (-644 (-566)) (-644 (-566)))))) (-566)) (T -1004)) +((-4305 (*1 *2 *1) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-1004 *3)) (-14 *3 (-566)))) (-3305 (*1 *2 *1) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-1004 *3)) (-14 *3 (-566)))) (-2542 (*1 *2 *1) (-12 (-5 *2 (-1155 (-566))) (-5 *1 (-1004 *3)) (-14 *3 (-566)))) (-1475 (*1 *2 *1) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-1004 *3)) (-14 *3 (-566)))) (-2356 (*1 *2 *1) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-1004 *3)) (-14 *3 (-566)))) (-2193 (*1 *1 *2) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-1004 *3)) (-14 *3 (-566)))) (-4231 (*1 *1 *2 *2) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-1004 *3)) (-14 *3 (-566))))) +(-13 (-992 (-566)) (-613 (-409 (-566))) (-10 -8 (-15 -4305 ((-409 (-566)) $)) (-15 -3305 ((-644 (-566)) $)) (-15 -2542 ((-1155 (-566)) $)) (-15 -1475 ((-644 (-566)) $)) (-15 -2356 ((-644 (-566)) $)) (-15 -2193 ($ (-644 (-566)))) (-15 -4231 ($ (-644 (-566)) (-644 (-566)))))) +((-2200 (((-52) (-409 (-566)) (-566)) 9))) +(((-1005) (-10 -7 (-15 -2200 ((-52) (-409 (-566)) (-566))))) (T -1005)) +((-2200 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-566))) (-5 *4 (-566)) (-5 *2 (-52)) (-5 *1 (-1005))))) +(-10 -7 (-15 -2200 ((-52) (-409 (-566)) (-566)))) +((-4049 (((-566)) 23)) (-2358 (((-566)) 28)) (-3340 (((-1269) (-566)) 26)) (-3155 (((-566) (-566)) 29) (((-566)) 22))) +(((-1006) (-10 -7 (-15 -3155 ((-566))) (-15 -4049 ((-566))) (-15 -3155 ((-566) (-566))) (-15 -3340 ((-1269) (-566))) (-15 -2358 ((-566))))) (T -1006)) +((-2358 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-1006)))) (-3340 (*1 *2 *3) (-12 (-5 *3 (-566)) (-5 *2 (-1269)) (-5 *1 (-1006)))) (-3155 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-1006)))) (-4049 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-1006)))) (-3155 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-1006))))) +(-10 -7 (-15 -3155 ((-566))) (-15 -4049 ((-566))) (-15 -3155 ((-566) (-566))) (-15 -3340 ((-1269) (-566))) (-15 -2358 ((-566)))) +((-3957 (((-420 |#1|) |#1|) 43)) (-2325 (((-420 |#1|) |#1|) 41))) +(((-1007 |#1|) (-10 -7 (-15 -2325 ((-420 |#1|) |#1|)) (-15 -3957 ((-420 |#1|) |#1|))) (-1240 (-409 (-566)))) (T -1007)) +((-3957 (*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-1007 *3)) (-4 *3 (-1240 (-409 (-566)))))) (-2325 (*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-1007 *3)) (-4 *3 (-1240 (-409 (-566))))))) +(-10 -7 (-15 -2325 ((-420 |#1|) |#1|)) (-15 -3957 ((-420 |#1|) |#1|))) +((-2515 (((-3 (-409 (-566)) "failed") |#1|) 15)) (-2024 (((-112) |#1|) 14)) (-3330 (((-409 (-566)) |#1|) 10))) +(((-1008 |#1|) (-10 -7 (-15 -3330 ((-409 (-566)) |#1|)) (-15 -2024 ((-112) |#1|)) (-15 -2515 ((-3 (-409 (-566)) "failed") |#1|))) (-1038 (-409 (-566)))) (T -1008)) +((-2515 (*1 *2 *3) (|partial| -12 (-5 *2 (-409 (-566))) (-5 *1 (-1008 *3)) (-4 *3 (-1038 *2)))) (-2024 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1008 *3)) (-4 *3 (-1038 (-409 (-566)))))) (-3330 (*1 *2 *3) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-1008 *3)) (-4 *3 (-1038 *2))))) +(-10 -7 (-15 -3330 ((-409 (-566)) |#1|)) (-15 -2024 ((-112) |#1|)) (-15 -2515 ((-3 (-409 (-566)) "failed") |#1|))) +((-3901 ((|#2| $ "value" |#2|) 12)) (-4376 ((|#2| $ "value") 10)) (-3922 (((-112) $ $) 18))) +(((-1009 |#1| |#2|) (-10 -8 (-15 -3901 (|#2| |#1| "value" |#2|)) (-15 -3922 ((-112) |#1| |#1|)) (-15 -4376 (|#2| |#1| "value"))) (-1010 |#2|) (-1214)) (T -1009)) +NIL +(-10 -8 (-15 -3901 (|#2| |#1| "value" |#2|)) (-15 -3922 ((-112) |#1| |#1|)) (-15 -4376 (|#2| |#1| "value"))) +((-2986 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2153 ((|#1| $) 49)) (-1453 (((-112) $ (-771)) 8)) (-3684 ((|#1| $ |#1|) 40 (|has| $ (-6 -4418)))) (-3901 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4418)))) (-3891 (($ $ (-644 $)) 42 (|has| $ (-6 -4418)))) (-1811 (($) 7 T CONST)) (-3872 (((-644 |#1|) $) 31 (|has| $ (-6 -4417)))) (-3578 (((-644 $) $) 51)) (-2778 (((-112) $ $) 43 (|has| |#1| (-1099)))) (-2756 (((-112) $ (-771)) 9)) (-4227 (((-644 |#1|) $) 30 (|has| $ (-6 -4417)))) (-1688 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-3708 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#1| |#1|) $) 36)) (-4106 (((-112) $ (-771)) 10)) (-3658 (((-644 |#1|) $) 46)) (-1587 (((-112) $) 50)) (-3151 (((-1157) $) 22 (|has| |#1| (-1099)))) (-4059 (((-1119) $) 21 (|has| |#1| (-1099)))) (-3966 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1844 (((-112) $ $) 14)) (-2788 (((-112) $) 11)) (-1737 (($) 12)) (-4376 ((|#1| $ "value") 48)) (-4098 (((-566) $ $) 45)) (-2636 (((-112) $) 47)) (-4068 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4417))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-3924 (($ $) 13)) (-2479 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-2156 (((-644 $) $) 52)) (-3922 (((-112) $ $) 44 (|has| |#1| (-1099)))) (-3900 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-3667 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4417)))) (-2952 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3002 (((-771) $) 6 (|has| $ (-6 -4417))))) +(((-1010 |#1|) (-140) (-1214)) (T -1010)) +((-2156 (*1 *2 *1) (-12 (-4 *3 (-1214)) (-5 *2 (-644 *1)) (-4 *1 (-1010 *3)))) (-3578 (*1 *2 *1) (-12 (-4 *3 (-1214)) (-5 *2 (-644 *1)) (-4 *1 (-1010 *3)))) (-1587 (*1 *2 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1214)) (-5 *2 (-112)))) (-2153 (*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1214)))) (-4376 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1010 *2)) (-4 *2 (-1214)))) (-2636 (*1 *2 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1214)) (-5 *2 (-112)))) (-3658 (*1 *2 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1214)) (-5 *2 (-644 *3)))) (-4098 (*1 *2 *1 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1214)) (-5 *2 (-566)))) (-3922 (*1 *2 *1 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1214)) (-4 *3 (-1099)) (-5 *2 (-112)))) (-2778 (*1 *2 *1 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1214)) (-4 *3 (-1099)) (-5 *2 (-112)))) (-3891 (*1 *1 *1 *2) (-12 (-5 *2 (-644 *1)) (|has| *1 (-6 -4418)) (-4 *1 (-1010 *3)) (-4 *3 (-1214)))) (-3901 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4418)) (-4 *1 (-1010 *2)) (-4 *2 (-1214)))) (-3684 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4418)) (-4 *1 (-1010 *2)) (-4 *2 (-1214))))) +(-13 (-491 |t#1|) (-10 -8 (-15 -2156 ((-644 $) $)) (-15 -3578 ((-644 $) $)) (-15 -1587 ((-112) $)) (-15 -2153 (|t#1| $)) (-15 -4376 (|t#1| $ "value")) (-15 -2636 ((-112) $)) (-15 -3658 ((-644 |t#1|) $)) (-15 -4098 ((-566) $ $)) (IF (|has| |t#1| (-1099)) (PROGN (-15 -3922 ((-112) $ $)) (-15 -2778 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4418)) (PROGN (-15 -3891 ($ $ (-644 $))) (-15 -3901 (|t#1| $ "value" |t#1|)) (-15 -3684 (|t#1| $ |t#1|))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2809 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1099) |has| |#1| (-1099)) ((-1214) . T)) +((-2338 (($ $) 9) (($ $ (-921)) 49) (($ (-409 (-566))) 13) (($ (-566)) 15)) (-3388 (((-3 $ "failed") (-1171 $) (-921) (-862)) 24) (((-3 $ "failed") (-1171 $) (-921)) 32)) (-3146 (($ $ (-566)) 58)) (-1558 (((-771)) 18)) (-2081 (((-644 $) (-1171 $)) NIL) (((-644 $) (-1171 (-409 (-566)))) 63) (((-644 $) (-1171 (-566))) 68) (((-644 $) (-952 $)) 72) (((-644 $) (-952 (-409 (-566)))) 76) (((-644 $) (-952 (-566))) 80)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL) (($ $ (-409 (-566))) 53))) +(((-1011 |#1|) (-10 -8 (-15 -2338 (|#1| (-566))) (-15 -2338 (|#1| (-409 (-566)))) (-15 -2338 (|#1| |#1| (-921))) (-15 -2081 ((-644 |#1|) (-952 (-566)))) (-15 -2081 ((-644 |#1|) (-952 (-409 (-566))))) (-15 -2081 ((-644 |#1|) (-952 |#1|))) (-15 -2081 ((-644 |#1|) (-1171 (-566)))) (-15 -2081 ((-644 |#1|) (-1171 (-409 (-566))))) (-15 -2081 ((-644 |#1|) (-1171 |#1|))) (-15 -3388 ((-3 |#1| "failed") (-1171 |#1|) (-921))) (-15 -3388 ((-3 |#1| "failed") (-1171 |#1|) (-921) (-862))) (-15 ** (|#1| |#1| (-409 (-566)))) (-15 -3146 (|#1| |#1| (-566))) (-15 -2338 (|#1| |#1|)) (-15 ** (|#1| |#1| (-566))) (-15 -1558 ((-771))) (-15 ** (|#1| |#1| (-771))) (-15 ** (|#1| |#1| (-921)))) (-1012)) (T -1011)) +((-1558 (*1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-1011 *3)) (-4 *3 (-1012))))) +(-10 -8 (-15 -2338 (|#1| (-566))) (-15 -2338 (|#1| (-409 (-566)))) (-15 -2338 (|#1| |#1| (-921))) (-15 -2081 ((-644 |#1|) (-952 (-566)))) (-15 -2081 ((-644 |#1|) (-952 (-409 (-566))))) (-15 -2081 ((-644 |#1|) (-952 |#1|))) (-15 -2081 ((-644 |#1|) (-1171 (-566)))) (-15 -2081 ((-644 |#1|) (-1171 (-409 (-566))))) (-15 -2081 ((-644 |#1|) (-1171 |#1|))) (-15 -3388 ((-3 |#1| "failed") (-1171 |#1|) (-921))) (-15 -3388 ((-3 |#1| "failed") (-1171 |#1|) (-921) (-862))) (-15 ** (|#1| |#1| (-409 (-566)))) (-15 -3146 (|#1| |#1| (-566))) (-15 -2338 (|#1| |#1|)) (-15 ** (|#1| |#1| (-566))) (-15 -1558 ((-771))) (-15 ** (|#1| |#1| (-771))) (-15 ** (|#1| |#1| (-921)))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) 102)) (-3087 (($ $) 103)) (-1716 (((-112) $) 105)) (-3174 (((-3 $ "failed") $ $) 20)) (-3980 (($ $) 122)) (-3348 (((-420 $) $) 123)) (-2338 (($ $) 86) (($ $ (-921)) 72) (($ (-409 (-566))) 71) (($ (-566)) 70)) (-2761 (((-112) $ $) 113)) (-2920 (((-566) $) 139)) (-1811 (($) 18 T CONST)) (-3388 (((-3 $ "failed") (-1171 $) (-921) (-862)) 80) (((-3 $ "failed") (-1171 $) (-921)) 79)) (-2980 (((-3 (-566) "failed") $) 99 (|has| (-409 (-566)) (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) 97 (|has| (-409 (-566)) (-1038 (-409 (-566))))) (((-3 (-409 (-566)) "failed") $) 94)) (-1709 (((-566) $) 98 (|has| (-409 (-566)) (-1038 (-566)))) (((-409 (-566)) $) 96 (|has| (-409 (-566)) (-1038 (-409 (-566))))) (((-409 (-566)) $) 95)) (-2857 (($ $ (-862)) 69)) (-1889 (($ $ (-862)) 68)) (-2925 (($ $ $) 117)) (-3757 (((-3 $ "failed") $) 37)) (-2937 (($ $ $) 116)) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) 111)) (-4188 (((-112) $) 124)) (-2133 (((-112) $) 137)) (-2264 (((-112) $) 35)) (-3146 (($ $ (-566)) 85)) (-3420 (((-112) $) 138)) (-2495 (((-3 (-644 $) "failed") (-644 $) $) 120)) (-1920 (($ $ $) 136)) (-3038 (($ $ $) 135)) (-4102 (((-3 (-1171 $) "failed") $) 81)) (-3736 (((-3 (-862) "failed") $) 83)) (-3313 (((-3 (-1171 $) "failed") $) 82)) (-2120 (($ (-644 $)) 109) (($ $ $) 108)) (-3151 (((-1157) $) 10)) (-2577 (($ $) 125)) (-4059 (((-1119) $) 11)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) 110)) (-2162 (($ (-644 $)) 107) (($ $ $) 106)) (-2325 (((-420 $) $) 121)) (-2585 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) 118)) (-2976 (((-3 $ "failed") $ $) 101)) (-2840 (((-3 (-644 $) "failed") (-644 $) $) 112)) (-1383 (((-771) $) 114)) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) 115)) (-2479 (((-862) $) 12) (($ (-566)) 33) (($ (-409 (-566))) 129) (($ $) 100) (($ (-409 (-566))) 93) (($ (-566)) 92) (($ (-409 (-566))) 89)) (-1558 (((-771)) 32 T CONST)) (-3900 (((-112) $ $) 9)) (-1333 (((-112) $ $) 104)) (-3649 (((-409 (-566)) $ $) 67)) (-2081 (((-644 $) (-1171 $)) 78) (((-644 $) (-1171 (-409 (-566)))) 77) (((-644 $) (-1171 (-566))) 76) (((-644 $) (-952 $)) 75) (((-644 $) (-952 (-409 (-566)))) 74) (((-644 $) (-952 (-566))) 73)) (-4298 (($ $) 140)) (-2446 (($) 19 T CONST)) (-2459 (($) 34 T CONST)) (-3019 (((-112) $ $) 133)) (-2990 (((-112) $ $) 132)) (-2952 (((-112) $ $) 6)) (-3004 (((-112) $ $) 134)) (-2977 (((-112) $ $) 131)) (-3077 (($ $ $) 130)) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 126) (($ $ (-409 (-566))) 84)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ (-409 (-566)) $) 128) (($ $ (-409 (-566))) 127) (($ (-566) $) 91) (($ $ (-566)) 90) (($ (-409 (-566)) $) 88) (($ $ (-409 (-566))) 87))) +(((-1012) (-140)) (T -1012)) +((-2338 (*1 *1 *1) (-4 *1 (-1012))) (-3736 (*1 *2 *1) (|partial| -12 (-4 *1 (-1012)) (-5 *2 (-862)))) (-3313 (*1 *2 *1) (|partial| -12 (-5 *2 (-1171 *1)) (-4 *1 (-1012)))) (-4102 (*1 *2 *1) (|partial| -12 (-5 *2 (-1171 *1)) (-4 *1 (-1012)))) (-3388 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1171 *1)) (-5 *3 (-921)) (-5 *4 (-862)) (-4 *1 (-1012)))) (-3388 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1171 *1)) (-5 *3 (-921)) (-4 *1 (-1012)))) (-2081 (*1 *2 *3) (-12 (-5 *3 (-1171 *1)) (-4 *1 (-1012)) (-5 *2 (-644 *1)))) (-2081 (*1 *2 *3) (-12 (-5 *3 (-1171 (-409 (-566)))) (-5 *2 (-644 *1)) (-4 *1 (-1012)))) (-2081 (*1 *2 *3) (-12 (-5 *3 (-1171 (-566))) (-5 *2 (-644 *1)) (-4 *1 (-1012)))) (-2081 (*1 *2 *3) (-12 (-5 *3 (-952 *1)) (-4 *1 (-1012)) (-5 *2 (-644 *1)))) (-2081 (*1 *2 *3) (-12 (-5 *3 (-952 (-409 (-566)))) (-5 *2 (-644 *1)) (-4 *1 (-1012)))) (-2081 (*1 *2 *3) (-12 (-5 *3 (-952 (-566))) (-5 *2 (-644 *1)) (-4 *1 (-1012)))) (-2338 (*1 *1 *1 *2) (-12 (-4 *1 (-1012)) (-5 *2 (-921)))) (-2338 (*1 *1 *2) (-12 (-5 *2 (-409 (-566))) (-4 *1 (-1012)))) (-2338 (*1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-1012)))) (-2857 (*1 *1 *1 *2) (-12 (-4 *1 (-1012)) (-5 *2 (-862)))) (-1889 (*1 *1 *1 *2) (-12 (-4 *1 (-1012)) (-5 *2 (-862)))) (-3649 (*1 *2 *1 *1) (-12 (-4 *1 (-1012)) (-5 *2 (-409 (-566)))))) +(-13 (-147) (-848) (-172) (-365) (-413 (-409 (-566))) (-38 (-566)) (-38 (-409 (-566))) (-1002) (-10 -8 (-15 -3736 ((-3 (-862) "failed") $)) (-15 -3313 ((-3 (-1171 $) "failed") $)) (-15 -4102 ((-3 (-1171 $) "failed") $)) (-15 -3388 ((-3 $ "failed") (-1171 $) (-921) (-862))) (-15 -3388 ((-3 $ "failed") (-1171 $) (-921))) (-15 -2081 ((-644 $) (-1171 $))) (-15 -2081 ((-644 $) (-1171 (-409 (-566))))) (-15 -2081 ((-644 $) (-1171 (-566)))) (-15 -2081 ((-644 $) (-952 $))) (-15 -2081 ((-644 $) (-952 (-409 (-566))))) (-15 -2081 ((-644 $) (-952 (-566)))) (-15 -2338 ($ $ (-921))) (-15 -2338 ($ $)) (-15 -2338 ($ (-409 (-566)))) (-15 -2338 ($ (-566))) (-15 -2857 ($ $ (-862))) (-15 -1889 ($ $ (-862))) (-15 -3649 ((-409 (-566)) $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-409 (-566))) . T) ((-38 #1=(-566)) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-616 #0#) . T) ((-616 (-566)) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-413 (-409 (-566))) . T) ((-454) . T) ((-558) . T) ((-646 #0#) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 #0#) . T) ((-648 #1#) . T) ((-648 $) . T) ((-640 #0#) . T) ((-640 #1#) . T) ((-640 $) . T) ((-717 #0#) . T) ((-717 #1#) . T) ((-717 $) . T) ((-726) . T) ((-791) . T) ((-792) . T) ((-794) . T) ((-795) . T) ((-848) . T) ((-850) . T) ((-920) . T) ((-1002) . T) ((-1038 (-409 (-566))) . T) ((-1038 (-566)) |has| (-409 (-566)) (-1038 (-566))) ((-1051 #0#) . T) ((-1051 #1#) . T) ((-1051 $) . T) ((-1056 #0#) . T) ((-1056 #1#) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1218) . T)) +((-3625 (((-2 (|:| |ans| |#2|) (|:| -4361 |#2|) (|:| |sol?| (-112))) (-566) |#2| |#2| (-1175) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-644 |#2|)) (-1 (-3 (-2 (|:| -4069 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 67))) +(((-1013 |#1| |#2|) (-10 -7 (-15 -3625 ((-2 (|:| |ans| |#2|) (|:| -4361 |#2|) (|:| |sol?| (-112))) (-566) |#2| |#2| (-1175) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-644 |#2|)) (-1 (-3 (-2 (|:| -4069 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-454) (-147) (-1038 (-566)) (-639 (-566))) (-13 (-1199) (-27) (-432 |#1|))) (T -1013)) +((-3625 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1175)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-644 *4))) (-5 *7 (-1 (-3 (-2 (|:| -4069 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1199) (-27) (-432 *8))) (-4 *8 (-13 (-454) (-147) (-1038 *3) (-639 *3))) (-5 *3 (-566)) (-5 *2 (-2 (|:| |ans| *4) (|:| -4361 *4) (|:| |sol?| (-112)))) (-5 *1 (-1013 *8 *4))))) +(-10 -7 (-15 -3625 ((-2 (|:| |ans| |#2|) (|:| -4361 |#2|) (|:| |sol?| (-112))) (-566) |#2| |#2| (-1175) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-644 |#2|)) (-1 (-3 (-2 (|:| -4069 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-3868 (((-3 (-644 |#2|) "failed") (-566) |#2| |#2| |#2| (-1175) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-644 |#2|)) (-1 (-3 (-2 (|:| -4069 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 55))) +(((-1014 |#1| |#2|) (-10 -7 (-15 -3868 ((-3 (-644 |#2|) "failed") (-566) |#2| |#2| |#2| (-1175) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-644 |#2|)) (-1 (-3 (-2 (|:| -4069 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-454) (-147) (-1038 (-566)) (-639 (-566))) (-13 (-1199) (-27) (-432 |#1|))) (T -1014)) +((-3868 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1175)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-644 *4))) (-5 *7 (-1 (-3 (-2 (|:| -4069 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1199) (-27) (-432 *8))) (-4 *8 (-13 (-454) (-147) (-1038 *3) (-639 *3))) (-5 *3 (-566)) (-5 *2 (-644 *4)) (-5 *1 (-1014 *8 *4))))) +(-10 -7 (-15 -3868 ((-3 (-644 |#2|) "failed") (-566) |#2| |#2| |#2| (-1175) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-644 |#2|)) (-1 (-3 (-2 (|:| -4069 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-2452 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3477 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-566)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-566) (-1 |#2| |#2|)) 41)) (-2284 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-409 |#2|)) (|:| |c| (-409 |#2|)) (|:| -1445 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-1 |#2| |#2|)) 71)) (-3798 (((-2 (|:| |ans| (-409 |#2|)) (|:| |nosol| (-112))) (-409 |#2|) (-409 |#2|)) 76))) +(((-1015 |#1| |#2|) (-10 -7 (-15 -2284 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-409 |#2|)) (|:| |c| (-409 |#2|)) (|:| -1445 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-1 |#2| |#2|))) (-15 -3798 ((-2 (|:| |ans| (-409 |#2|)) (|:| |nosol| (-112))) (-409 |#2|) (-409 |#2|))) (-15 -2452 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3477 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-566)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-566) (-1 |#2| |#2|)))) (-13 (-365) (-147) (-1038 (-566))) (-1240 |#1|)) (T -1015)) +((-2452 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1240 *6)) (-4 *6 (-13 (-365) (-147) (-1038 *4))) (-5 *4 (-566)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -3477 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1015 *6 *3)))) (-3798 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1038 (-566)))) (-4 *5 (-1240 *4)) (-5 *2 (-2 (|:| |ans| (-409 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1015 *4 *5)) (-5 *3 (-409 *5)))) (-2284 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1240 *5)) (-4 *5 (-13 (-365) (-147) (-1038 (-566)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-409 *6)) (|:| |c| (-409 *6)) (|:| -1445 *6))) (-5 *1 (-1015 *5 *6)) (-5 *3 (-409 *6))))) +(-10 -7 (-15 -2284 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-409 |#2|)) (|:| |c| (-409 |#2|)) (|:| -1445 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-1 |#2| |#2|))) (-15 -3798 ((-2 (|:| |ans| (-409 |#2|)) (|:| |nosol| (-112))) (-409 |#2|) (-409 |#2|))) (-15 -2452 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3477 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-566)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-566) (-1 |#2| |#2|)))) +((-1887 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-409 |#2|)) (|:| |h| |#2|) (|:| |c1| (-409 |#2|)) (|:| |c2| (-409 |#2|)) (|:| -1445 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-409 |#2|) (-1 |#2| |#2|)) 22)) (-3321 (((-3 (-644 (-409 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-409 |#2|)) 34))) +(((-1016 |#1| |#2|) (-10 -7 (-15 -1887 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-409 |#2|)) (|:| |h| |#2|) (|:| |c1| (-409 |#2|)) (|:| |c2| (-409 |#2|)) (|:| -1445 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-409 |#2|) (-1 |#2| |#2|))) (-15 -3321 ((-3 (-644 (-409 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-409 |#2|)))) (-13 (-365) (-147) (-1038 (-566))) (-1240 |#1|)) (T -1016)) +((-3321 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-365) (-147) (-1038 (-566)))) (-4 *5 (-1240 *4)) (-5 *2 (-644 (-409 *5))) (-5 *1 (-1016 *4 *5)) (-5 *3 (-409 *5)))) (-1887 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1240 *5)) (-4 *5 (-13 (-365) (-147) (-1038 (-566)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-409 *6)) (|:| |h| *6) (|:| |c1| (-409 *6)) (|:| |c2| (-409 *6)) (|:| -1445 *6))) (-5 *1 (-1016 *5 *6)) (-5 *3 (-409 *6))))) +(-10 -7 (-15 -1887 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-409 |#2|)) (|:| |h| |#2|) (|:| |c1| (-409 |#2|)) (|:| |c2| (-409 |#2|)) (|:| -1445 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-409 |#2|) (-1 |#2| |#2|))) (-15 -3321 ((-3 (-644 (-409 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-409 |#2|)))) +((-1904 (((-1 |#1|) (-644 (-2 (|:| -2153 |#1|) (|:| -2639 (-566))))) 37)) (-2759 (((-1 |#1|) (-1101 |#1|)) 45)) (-2280 (((-1 |#1|) (-1264 |#1|) (-1264 (-566)) (-566)) 34))) +(((-1017 |#1|) (-10 -7 (-15 -2759 ((-1 |#1|) (-1101 |#1|))) (-15 -1904 ((-1 |#1|) (-644 (-2 (|:| -2153 |#1|) (|:| -2639 (-566)))))) (-15 -2280 ((-1 |#1|) (-1264 |#1|) (-1264 (-566)) (-566)))) (-1099)) (T -1017)) +((-2280 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1264 *6)) (-5 *4 (-1264 (-566))) (-5 *5 (-566)) (-4 *6 (-1099)) (-5 *2 (-1 *6)) (-5 *1 (-1017 *6)))) (-1904 (*1 *2 *3) (-12 (-5 *3 (-644 (-2 (|:| -2153 *4) (|:| -2639 (-566))))) (-4 *4 (-1099)) (-5 *2 (-1 *4)) (-5 *1 (-1017 *4)))) (-2759 (*1 *2 *3) (-12 (-5 *3 (-1101 *4)) (-4 *4 (-1099)) (-5 *2 (-1 *4)) (-5 *1 (-1017 *4))))) +(-10 -7 (-15 -2759 ((-1 |#1|) (-1101 |#1|))) (-15 -1904 ((-1 |#1|) (-644 (-2 (|:| -2153 |#1|) (|:| -2639 (-566)))))) (-15 -2280 ((-1 |#1|) (-1264 |#1|) (-1264 (-566)) (-566)))) +((-1802 (((-771) (-338 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) +(((-1018 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1802 ((-771) (-338 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-365) (-1240 |#1|) (-1240 (-409 |#2|)) (-344 |#1| |#2| |#3|) (-13 (-370) (-365))) (T -1018)) +((-1802 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-338 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-365)) (-4 *7 (-1240 *6)) (-4 *4 (-1240 (-409 *7))) (-4 *8 (-344 *6 *7 *4)) (-4 *9 (-13 (-370) (-365))) (-5 *2 (-771)) (-5 *1 (-1018 *6 *7 *4 *8 *9))))) +(-10 -7 (-15 -1802 ((-771) (-338 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) +((-2986 (((-112) $ $) NIL)) (-4272 (((-1134) $) 9)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) NIL) (($ (-1180)) NIL) (((-1180) $) NIL)) (-2610 (((-1134) $) 11)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-1019) (-13 (-1082) (-10 -8 (-15 -4272 ((-1134) $)) (-15 -2610 ((-1134) $))))) (T -1019)) +((-4272 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1019)))) (-2610 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1019))))) +(-13 (-1082) (-10 -8 (-15 -4272 ((-1134) $)) (-15 -2610 ((-1134) $)))) +((-3991 (((-3 (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566)))) "failed") |#1| (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566)))) (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566))))) 32) (((-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566)))) |#1| (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566)))) (-409 (-566))) 29)) (-2088 (((-644 (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566))))) |#1| (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566)))) (-409 (-566))) 34) (((-644 (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566))))) |#1| (-409 (-566))) 30) (((-644 (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566))))) |#1| (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566))))) 33) (((-644 (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566))))) |#1|) 28)) (-3101 (((-644 (-409 (-566))) (-644 (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566)))))) 20)) (-3902 (((-409 (-566)) (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566))))) 17))) +(((-1020 |#1|) (-10 -7 (-15 -2088 ((-644 (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566))))) |#1|)) (-15 -2088 ((-644 (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566))))) |#1| (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566)))))) (-15 -2088 ((-644 (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566))))) |#1| (-409 (-566)))) (-15 -2088 ((-644 (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566))))) |#1| (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566)))) (-409 (-566)))) (-15 -3991 ((-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566)))) |#1| (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566)))) (-409 (-566)))) (-15 -3991 ((-3 (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566)))) "failed") |#1| (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566)))) (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566)))))) (-15 -3902 ((-409 (-566)) (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566)))))) (-15 -3101 ((-644 (-409 (-566))) (-644 (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566)))))))) (-1240 (-566))) (T -1020)) +((-3101 (*1 *2 *3) (-12 (-5 *3 (-644 (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566)))))) (-5 *2 (-644 (-409 (-566)))) (-5 *1 (-1020 *4)) (-4 *4 (-1240 (-566))))) (-3902 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566))))) (-5 *2 (-409 (-566))) (-5 *1 (-1020 *4)) (-4 *4 (-1240 (-566))))) (-3991 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566))))) (-5 *1 (-1020 *3)) (-4 *3 (-1240 (-566))))) (-3991 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566))))) (-5 *4 (-409 (-566))) (-5 *1 (-1020 *3)) (-4 *3 (-1240 (-566))))) (-2088 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-409 (-566))) (-5 *2 (-644 (-2 (|:| -4351 *5) (|:| -4361 *5)))) (-5 *1 (-1020 *3)) (-4 *3 (-1240 (-566))) (-5 *4 (-2 (|:| -4351 *5) (|:| -4361 *5))))) (-2088 (*1 *2 *3 *4) (-12 (-5 *2 (-644 (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566)))))) (-5 *1 (-1020 *3)) (-4 *3 (-1240 (-566))) (-5 *4 (-409 (-566))))) (-2088 (*1 *2 *3 *4) (-12 (-5 *2 (-644 (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566)))))) (-5 *1 (-1020 *3)) (-4 *3 (-1240 (-566))) (-5 *4 (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566))))))) (-2088 (*1 *2 *3) (-12 (-5 *2 (-644 (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566)))))) (-5 *1 (-1020 *3)) (-4 *3 (-1240 (-566)))))) +(-10 -7 (-15 -2088 ((-644 (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566))))) |#1|)) (-15 -2088 ((-644 (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566))))) |#1| (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566)))))) (-15 -2088 ((-644 (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566))))) |#1| (-409 (-566)))) (-15 -2088 ((-644 (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566))))) |#1| (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566)))) (-409 (-566)))) (-15 -3991 ((-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566)))) |#1| (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566)))) (-409 (-566)))) (-15 -3991 ((-3 (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566)))) "failed") |#1| (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566)))) (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566)))))) (-15 -3902 ((-409 (-566)) (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566)))))) (-15 -3101 ((-644 (-409 (-566))) (-644 (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566)))))))) +((-3991 (((-3 (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566)))) "failed") |#1| (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566)))) (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566))))) 35) (((-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566)))) |#1| (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566)))) (-409 (-566))) 32)) (-2088 (((-644 (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566))))) |#1| (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566)))) (-409 (-566))) 30) (((-644 (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566))))) |#1| (-409 (-566))) 26) (((-644 (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566))))) |#1| (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566))))) 28) (((-644 (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566))))) |#1|) 24))) +(((-1021 |#1|) (-10 -7 (-15 -2088 ((-644 (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566))))) |#1|)) (-15 -2088 ((-644 (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566))))) |#1| (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566)))))) (-15 -2088 ((-644 (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566))))) |#1| (-409 (-566)))) (-15 -2088 ((-644 (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566))))) |#1| (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566)))) (-409 (-566)))) (-15 -3991 ((-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566)))) |#1| (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566)))) (-409 (-566)))) (-15 -3991 ((-3 (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566)))) "failed") |#1| (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566)))) (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566))))))) (-1240 (-409 (-566)))) (T -1021)) +((-3991 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566))))) (-5 *1 (-1021 *3)) (-4 *3 (-1240 (-409 (-566)))))) (-3991 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566))))) (-5 *4 (-409 (-566))) (-5 *1 (-1021 *3)) (-4 *3 (-1240 *4)))) (-2088 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-409 (-566))) (-5 *2 (-644 (-2 (|:| -4351 *5) (|:| -4361 *5)))) (-5 *1 (-1021 *3)) (-4 *3 (-1240 *5)) (-5 *4 (-2 (|:| -4351 *5) (|:| -4361 *5))))) (-2088 (*1 *2 *3 *4) (-12 (-5 *4 (-409 (-566))) (-5 *2 (-644 (-2 (|:| -4351 *4) (|:| -4361 *4)))) (-5 *1 (-1021 *3)) (-4 *3 (-1240 *4)))) (-2088 (*1 *2 *3 *4) (-12 (-5 *2 (-644 (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566)))))) (-5 *1 (-1021 *3)) (-4 *3 (-1240 (-409 (-566)))) (-5 *4 (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566))))))) (-2088 (*1 *2 *3) (-12 (-5 *2 (-644 (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566)))))) (-5 *1 (-1021 *3)) (-4 *3 (-1240 (-409 (-566))))))) +(-10 -7 (-15 -2088 ((-644 (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566))))) |#1|)) (-15 -2088 ((-644 (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566))))) |#1| (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566)))))) (-15 -2088 ((-644 (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566))))) |#1| (-409 (-566)))) (-15 -2088 ((-644 (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566))))) |#1| (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566)))) (-409 (-566)))) (-15 -3991 ((-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566)))) |#1| (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566)))) (-409 (-566)))) (-15 -3991 ((-3 (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566)))) "failed") |#1| (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566)))) (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566))))))) +((-3136 (((-225) $) 6) (((-381) $) 9))) +(((-1022) (-140)) (T -1022)) +NIL +(-13 (-614 (-225)) (-614 (-381))) +(((-614 (-225)) . T) ((-614 (-381)) . T)) +((-1916 (((-644 (-381)) (-952 (-566)) (-381)) 28) (((-644 (-381)) (-952 (-409 (-566))) (-381)) 27)) (-3876 (((-644 (-644 (-381))) (-644 (-952 (-566))) (-644 (-1175)) (-381)) 37))) +(((-1023) (-10 -7 (-15 -1916 ((-644 (-381)) (-952 (-409 (-566))) (-381))) (-15 -1916 ((-644 (-381)) (-952 (-566)) (-381))) (-15 -3876 ((-644 (-644 (-381))) (-644 (-952 (-566))) (-644 (-1175)) (-381))))) (T -1023)) +((-3876 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-644 (-952 (-566)))) (-5 *4 (-644 (-1175))) (-5 *2 (-644 (-644 (-381)))) (-5 *1 (-1023)) (-5 *5 (-381)))) (-1916 (*1 *2 *3 *4) (-12 (-5 *3 (-952 (-566))) (-5 *2 (-644 (-381))) (-5 *1 (-1023)) (-5 *4 (-381)))) (-1916 (*1 *2 *3 *4) (-12 (-5 *3 (-952 (-409 (-566)))) (-5 *2 (-644 (-381))) (-5 *1 (-1023)) (-5 *4 (-381))))) +(-10 -7 (-15 -1916 ((-644 (-381)) (-952 (-409 (-566))) (-381))) (-15 -1916 ((-644 (-381)) (-952 (-566)) (-381))) (-15 -3876 ((-644 (-644 (-381))) (-644 (-952 (-566))) (-644 (-1175)) (-381)))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) 75)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-1716 (((-112) $) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-3980 (($ $) NIL)) (-3348 (((-420 $) $) NIL)) (-2338 (($ $) NIL) (($ $ (-921)) NIL) (($ (-409 (-566))) NIL) (($ (-566)) NIL)) (-2761 (((-112) $ $) NIL)) (-2920 (((-566) $) 70)) (-1811 (($) NIL T CONST)) (-3388 (((-3 $ "failed") (-1171 $) (-921) (-862)) NIL) (((-3 $ "failed") (-1171 $) (-921)) 55)) (-2980 (((-3 (-409 (-566)) "failed") $) NIL (|has| (-409 (-566)) (-1038 (-409 (-566))))) (((-3 (-409 (-566)) "failed") $) NIL) (((-3 |#1| "failed") $) 116) (((-3 (-566) "failed") $) NIL (-2809 (|has| (-409 (-566)) (-1038 (-566))) (|has| |#1| (-1038 (-566)))))) (-1709 (((-409 (-566)) $) 17 (|has| (-409 (-566)) (-1038 (-409 (-566))))) (((-409 (-566)) $) 17) ((|#1| $) 117) (((-566) $) NIL (-2809 (|has| (-409 (-566)) (-1038 (-566))) (|has| |#1| (-1038 (-566)))))) (-2857 (($ $ (-862)) 47)) (-1889 (($ $ (-862)) 48)) (-2925 (($ $ $) NIL)) (-2168 (((-409 (-566)) $ $) 21)) (-3757 (((-3 $ "failed") $) 88)) (-2937 (($ $ $) NIL)) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) NIL)) (-4188 (((-112) $) NIL)) (-2133 (((-112) $) 66)) (-2264 (((-112) $) NIL)) (-3146 (($ $ (-566)) NIL)) (-3420 (((-112) $) 69)) (-2495 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1920 (($ $ $) NIL)) (-3038 (($ $ $) NIL)) (-4102 (((-3 (-1171 $) "failed") $) 83)) (-3736 (((-3 (-862) "failed") $) 82)) (-3313 (((-3 (-1171 $) "failed") $) 80)) (-2732 (((-3 (-1060 $ (-1171 $)) "failed") $) 78)) (-2120 (($ (-644 $)) NIL) (($ $ $) NIL)) (-3151 (((-1157) $) NIL)) (-2577 (($ $) 89)) (-4059 (((-1119) $) NIL)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2162 (($ (-644 $)) NIL) (($ $ $) NIL)) (-2325 (((-420 $) $) NIL)) (-2585 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL)) (-2976 (((-3 $ "failed") $ $) NIL)) (-2840 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1383 (((-771) $) NIL)) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL)) (-2479 (((-862) $) 87) (($ (-566)) NIL) (($ (-409 (-566))) NIL) (($ $) 63) (($ (-409 (-566))) NIL) (($ (-566)) NIL) (($ (-409 (-566))) NIL) (($ |#1|) 119)) (-1558 (((-771)) NIL T CONST)) (-3900 (((-112) $ $) NIL)) (-1333 (((-112) $ $) NIL)) (-3649 (((-409 (-566)) $ $) 27)) (-2081 (((-644 $) (-1171 $)) 61) (((-644 $) (-1171 (-409 (-566)))) NIL) (((-644 $) (-1171 (-566))) NIL) (((-644 $) (-952 $)) NIL) (((-644 $) (-952 (-409 (-566)))) NIL) (((-644 $) (-952 (-566))) NIL)) (-4083 (($ (-1060 $ (-1171 $)) (-862)) 46)) (-4298 (($ $) 22)) (-2446 (($) 32 T CONST)) (-2459 (($) 39 T CONST)) (-3019 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 76)) (-3004 (((-112) $ $) NIL)) (-2977 (((-112) $ $) 24)) (-3077 (($ $ $) 37)) (-3065 (($ $) 38) (($ $ $) 74)) (-3052 (($ $ $) 112)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL) (($ $ (-409 (-566))) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 98) (($ $ $) 104) (($ (-409 (-566)) $) NIL) (($ $ (-409 (-566))) NIL) (($ (-566) $) 98) (($ $ (-566)) NIL) (($ (-409 (-566)) $) NIL) (($ $ (-409 (-566))) NIL) (($ |#1| $) 102) (($ $ |#1|) NIL))) +(((-1024 |#1|) (-13 (-1012) (-413 |#1|) (-38 |#1|) (-10 -8 (-15 -4083 ($ (-1060 $ (-1171 $)) (-862))) (-15 -2732 ((-3 (-1060 $ (-1171 $)) "failed") $)) (-15 -2168 ((-409 (-566)) $ $)))) (-13 (-848) (-365) (-1022))) (T -1024)) +((-4083 (*1 *1 *2 *3) (-12 (-5 *2 (-1060 (-1024 *4) (-1171 (-1024 *4)))) (-5 *3 (-862)) (-5 *1 (-1024 *4)) (-4 *4 (-13 (-848) (-365) (-1022))))) (-2732 (*1 *2 *1) (|partial| -12 (-5 *2 (-1060 (-1024 *3) (-1171 (-1024 *3)))) (-5 *1 (-1024 *3)) (-4 *3 (-13 (-848) (-365) (-1022))))) (-2168 (*1 *2 *1 *1) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-1024 *3)) (-4 *3 (-13 (-848) (-365) (-1022)))))) +(-13 (-1012) (-413 |#1|) (-38 |#1|) (-10 -8 (-15 -4083 ($ (-1060 $ (-1171 $)) (-862))) (-15 -2732 ((-3 (-1060 $ (-1171 $)) "failed") $)) (-15 -2168 ((-409 (-566)) $ $)))) +((-2609 (((-2 (|:| -3477 |#2|) (|:| -1668 (-644 |#1|))) |#2| (-644 |#1|)) 32) ((|#2| |#2| |#1|) 27))) +(((-1025 |#1| |#2|) (-10 -7 (-15 -2609 (|#2| |#2| |#1|)) (-15 -2609 ((-2 (|:| -3477 |#2|) (|:| -1668 (-644 |#1|))) |#2| (-644 |#1|)))) (-365) (-656 |#1|)) (T -1025)) +((-2609 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-5 *2 (-2 (|:| -3477 *3) (|:| -1668 (-644 *5)))) (-5 *1 (-1025 *5 *3)) (-5 *4 (-644 *5)) (-4 *3 (-656 *5)))) (-2609 (*1 *2 *2 *3) (-12 (-4 *3 (-365)) (-5 *1 (-1025 *3 *2)) (-4 *2 (-656 *3))))) +(-10 -7 (-15 -2609 (|#2| |#2| |#1|)) (-15 -2609 ((-2 (|:| -3477 |#2|) (|:| -1668 (-644 |#1|))) |#2| (-644 |#1|)))) +((-2986 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3009 ((|#1| $ |#1|) 14)) (-3901 ((|#1| $ |#1|) 12)) (-4251 (($ |#1|) 10)) (-3151 (((-1157) $) NIL (|has| |#1| (-1099)))) (-4059 (((-1119) $) NIL (|has| |#1| (-1099)))) (-4376 ((|#1| $) 11)) (-2844 ((|#1| $) 13)) (-2479 (((-862) $) 21 (|has| |#1| (-1099)))) (-3900 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2952 (((-112) $ $) 9))) +(((-1026 |#1|) (-13 (-1214) (-10 -8 (-15 -4251 ($ |#1|)) (-15 -4376 (|#1| $)) (-15 -3901 (|#1| $ |#1|)) (-15 -2844 (|#1| $)) (-15 -3009 (|#1| $ |#1|)) (-15 -2952 ((-112) $ $)) (IF (|has| |#1| (-1099)) (-6 (-1099)) |%noBranch|))) (-1214)) (T -1026)) +((-4251 (*1 *1 *2) (-12 (-5 *1 (-1026 *2)) (-4 *2 (-1214)))) (-4376 (*1 *2 *1) (-12 (-5 *1 (-1026 *2)) (-4 *2 (-1214)))) (-3901 (*1 *2 *1 *2) (-12 (-5 *1 (-1026 *2)) (-4 *2 (-1214)))) (-2844 (*1 *2 *1) (-12 (-5 *1 (-1026 *2)) (-4 *2 (-1214)))) (-3009 (*1 *2 *1 *2) (-12 (-5 *1 (-1026 *2)) (-4 *2 (-1214)))) (-2952 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1026 *3)) (-4 *3 (-1214))))) +(-13 (-1214) (-10 -8 (-15 -4251 ($ |#1|)) (-15 -4376 (|#1| $)) (-15 -3901 (|#1| $ |#1|)) (-15 -2844 (|#1| $)) (-15 -3009 (|#1| $ |#1|)) (-15 -2952 ((-112) $ $)) (IF (|has| |#1| (-1099)) (-6 (-1099)) |%noBranch|))) +((-2986 (((-112) $ $) NIL)) (-1416 (((-644 (-2 (|:| -1637 $) (|:| -3516 (-644 |#4|)))) (-644 |#4|)) NIL)) (-3295 (((-644 $) (-644 |#4|)) 118) (((-644 $) (-644 |#4|) (-112)) 119) (((-644 $) (-644 |#4|) (-112) (-112)) 117) (((-644 $) (-644 |#4|) (-112) (-112) (-112) (-112)) 120)) (-2485 (((-644 |#3|) $) NIL)) (-1489 (((-112) $) NIL)) (-3541 (((-112) $) NIL (|has| |#1| (-558)))) (-2219 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1922 ((|#4| |#4| $) NIL)) (-3980 (((-644 (-2 (|:| |val| |#4|) (|:| -2192 $))) |#4| $) 112)) (-1374 (((-2 (|:| |under| $) (|:| -2001 $) (|:| |upper| $)) $ |#3|) NIL)) (-1453 (((-112) $ (-771)) NIL)) (-3543 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4417))) (((-3 |#4| "failed") $ |#3|) 66)) (-1811 (($) NIL T CONST)) (-4210 (((-112) $) 29 (|has| |#1| (-558)))) (-3050 (((-112) $ $) NIL (|has| |#1| (-558)))) (-1768 (((-112) $ $) NIL (|has| |#1| (-558)))) (-3261 (((-112) $) NIL (|has| |#1| (-558)))) (-3451 (((-644 |#4|) (-644 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2796 (((-644 |#4|) (-644 |#4|) $) NIL (|has| |#1| (-558)))) (-3829 (((-644 |#4|) (-644 |#4|) $) NIL (|has| |#1| (-558)))) (-2980 (((-3 $ "failed") (-644 |#4|)) NIL)) (-1709 (($ (-644 |#4|)) NIL)) (-4091 (((-3 $ "failed") $) 45)) (-3358 ((|#4| |#4| $) 69)) (-4111 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#4| (-1099))))) (-2628 (($ |#4| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#4| (-1099)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4417)))) (-3131 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 85 (|has| |#1| (-558)))) (-1995 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3326 ((|#4| |#4| $) NIL)) (-1838 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4417)) (|has| |#4| (-1099)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4417))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4417))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1877 (((-2 (|:| -1637 (-644 |#4|)) (|:| -3516 (-644 |#4|))) $) NIL)) (-2281 (((-112) |#4| $) NIL)) (-1646 (((-112) |#4| $) NIL)) (-3433 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3547 (((-2 (|:| |val| (-644 |#4|)) (|:| |towers| (-644 $))) (-644 |#4|) (-112) (-112)) 133)) (-3872 (((-644 |#4|) $) 18 (|has| $ (-6 -4417)))) (-4297 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4052 ((|#3| $) 38)) (-2756 (((-112) $ (-771)) NIL)) (-4227 (((-644 |#4|) $) 19 (|has| $ (-6 -4417)))) (-1688 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4417)) (|has| |#4| (-1099))))) (-3708 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#4| |#4|) $) 23)) (-3599 (((-644 |#3|) $) NIL)) (-2884 (((-112) |#3| $) NIL)) (-4106 (((-112) $ (-771)) NIL)) (-3151 (((-1157) $) NIL)) (-3421 (((-3 |#4| (-644 $)) |#4| |#4| $) NIL)) (-3723 (((-644 (-2 (|:| |val| |#4|) (|:| -2192 $))) |#4| |#4| $) 110)) (-2651 (((-3 |#4| "failed") $) 42)) (-3391 (((-644 $) |#4| $) 93)) (-3680 (((-3 (-112) (-644 $)) |#4| $) NIL)) (-3325 (((-644 (-2 (|:| |val| (-112)) (|:| -2192 $))) |#4| $) 103) (((-112) |#4| $) 64)) (-4022 (((-644 $) |#4| $) 115) (((-644 $) (-644 |#4|) $) NIL) (((-644 $) (-644 |#4|) (-644 $)) 116) (((-644 $) |#4| (-644 $)) NIL)) (-3268 (((-644 $) (-644 |#4|) (-112) (-112) (-112)) 128)) (-2047 (($ |#4| $) 82) (($ (-644 |#4|) $) 83) (((-644 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 79)) (-3707 (((-644 |#4|) $) NIL)) (-4121 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3317 ((|#4| |#4| $) NIL)) (-3730 (((-112) $ $) NIL)) (-1719 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-558)))) (-1695 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3869 ((|#4| |#4| $) NIL)) (-4059 (((-1119) $) NIL)) (-4080 (((-3 |#4| "failed") $) 40)) (-2688 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2293 (((-3 $ "failed") $ |#4|) 59)) (-2050 (($ $ |#4|) NIL) (((-644 $) |#4| $) 95) (((-644 $) |#4| (-644 $)) NIL) (((-644 $) (-644 |#4|) $) NIL) (((-644 $) (-644 |#4|) (-644 $)) 89)) (-3966 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 |#4|) (-644 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-295 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-644 (-295 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))))) (-1844 (((-112) $ $) NIL)) (-2788 (((-112) $) 17)) (-1737 (($) 14)) (-1630 (((-771) $) NIL)) (-4068 (((-771) |#4| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#4| (-1099)))) (((-771) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4417)))) (-3924 (($ $) 13)) (-3136 (((-538) $) NIL (|has| |#4| (-614 (-538))))) (-2489 (($ (-644 |#4|)) 22)) (-1706 (($ $ |#3|) 52)) (-4234 (($ $ |#3|) 54)) (-4024 (($ $) NIL)) (-2378 (($ $ |#3|) NIL)) (-2479 (((-862) $) 35) (((-644 |#4|) $) 46)) (-2780 (((-771) $) NIL (|has| |#3| (-370)))) (-3900 (((-112) $ $) NIL)) (-2877 (((-3 (-2 (|:| |bas| $) (|:| -3903 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3903 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4265 (((-112) $ (-1 (-112) |#4| (-644 |#4|))) NIL)) (-3437 (((-644 $) |#4| $) 92) (((-644 $) |#4| (-644 $)) NIL) (((-644 $) (-644 |#4|) $) NIL) (((-644 $) (-644 |#4|) (-644 $)) NIL)) (-3667 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4417)))) (-4067 (((-644 |#3|) $) NIL)) (-3183 (((-112) |#4| $) NIL)) (-3132 (((-112) |#3| $) 65)) (-2952 (((-112) $ $) NIL)) (-3002 (((-771) $) NIL (|has| $ (-6 -4417))))) +(((-1027 |#1| |#2| |#3| |#4|) (-13 (-1070 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2047 ((-644 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3295 ((-644 $) (-644 |#4|) (-112) (-112))) (-15 -3295 ((-644 $) (-644 |#4|) (-112) (-112) (-112) (-112))) (-15 -3268 ((-644 $) (-644 |#4|) (-112) (-112) (-112))) (-15 -3547 ((-2 (|:| |val| (-644 |#4|)) (|:| |towers| (-644 $))) (-644 |#4|) (-112) (-112))))) (-454) (-793) (-850) (-1064 |#1| |#2| |#3|)) (T -1027)) +((-2047 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-644 (-1027 *5 *6 *7 *3))) (-5 *1 (-1027 *5 *6 *7 *3)) (-4 *3 (-1064 *5 *6 *7)))) (-3295 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-644 (-1027 *5 *6 *7 *8))) (-5 *1 (-1027 *5 *6 *7 *8)))) (-3295 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-644 (-1027 *5 *6 *7 *8))) (-5 *1 (-1027 *5 *6 *7 *8)))) (-3268 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-644 (-1027 *5 *6 *7 *8))) (-5 *1 (-1027 *5 *6 *7 *8)))) (-3547 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *8 (-1064 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-644 *8)) (|:| |towers| (-644 (-1027 *5 *6 *7 *8))))) (-5 *1 (-1027 *5 *6 *7 *8)) (-5 *3 (-644 *8))))) +(-13 (-1070 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2047 ((-644 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3295 ((-644 $) (-644 |#4|) (-112) (-112))) (-15 -3295 ((-644 $) (-644 |#4|) (-112) (-112) (-112) (-112))) (-15 -3268 ((-644 $) (-644 |#4|) (-112) (-112) (-112))) (-15 -3547 ((-2 (|:| |val| (-644 |#4|)) (|:| |towers| (-644 $))) (-644 |#4|) (-112) (-112))))) +((-4214 (((-644 (-689 |#1|)) (-644 (-689 |#1|))) 73) (((-689 |#1|) (-689 |#1|)) 72) (((-644 (-689 |#1|)) (-644 (-689 |#1|)) (-644 (-689 |#1|))) 71) (((-689 |#1|) (-689 |#1|) (-689 |#1|)) 68)) (-1376 (((-644 (-689 |#1|)) (-644 (-689 |#1|)) (-921)) 66) (((-689 |#1|) (-689 |#1|) (-921)) 65)) (-3493 (((-644 (-689 (-566))) (-644 (-644 (-566)))) 84) (((-644 (-689 (-566))) (-644 (-905 (-566))) (-566)) 83) (((-689 (-566)) (-644 (-566))) 80) (((-689 (-566)) (-905 (-566)) (-566)) 78)) (-2779 (((-689 (-952 |#1|)) (-771)) 98)) (-2650 (((-644 (-689 |#1|)) (-644 (-689 |#1|)) (-921)) 52 (|has| |#1| (-6 (-4419 "*")))) (((-689 |#1|) (-689 |#1|) (-921)) 50 (|has| |#1| (-6 (-4419 "*")))))) +(((-1028 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4419 "*"))) (-15 -2650 ((-689 |#1|) (-689 |#1|) (-921))) |%noBranch|) (IF (|has| |#1| (-6 (-4419 "*"))) (-15 -2650 ((-644 (-689 |#1|)) (-644 (-689 |#1|)) (-921))) |%noBranch|) (-15 -2779 ((-689 (-952 |#1|)) (-771))) (-15 -1376 ((-689 |#1|) (-689 |#1|) (-921))) (-15 -1376 ((-644 (-689 |#1|)) (-644 (-689 |#1|)) (-921))) (-15 -4214 ((-689 |#1|) (-689 |#1|) (-689 |#1|))) (-15 -4214 ((-644 (-689 |#1|)) (-644 (-689 |#1|)) (-644 (-689 |#1|)))) (-15 -4214 ((-689 |#1|) (-689 |#1|))) (-15 -4214 ((-644 (-689 |#1|)) (-644 (-689 |#1|)))) (-15 -3493 ((-689 (-566)) (-905 (-566)) (-566))) (-15 -3493 ((-689 (-566)) (-644 (-566)))) (-15 -3493 ((-644 (-689 (-566))) (-644 (-905 (-566))) (-566))) (-15 -3493 ((-644 (-689 (-566))) (-644 (-644 (-566)))))) (-1049)) (T -1028)) +((-3493 (*1 *2 *3) (-12 (-5 *3 (-644 (-644 (-566)))) (-5 *2 (-644 (-689 (-566)))) (-5 *1 (-1028 *4)) (-4 *4 (-1049)))) (-3493 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-905 (-566)))) (-5 *4 (-566)) (-5 *2 (-644 (-689 *4))) (-5 *1 (-1028 *5)) (-4 *5 (-1049)))) (-3493 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-689 (-566))) (-5 *1 (-1028 *4)) (-4 *4 (-1049)))) (-3493 (*1 *2 *3 *4) (-12 (-5 *3 (-905 (-566))) (-5 *4 (-566)) (-5 *2 (-689 *4)) (-5 *1 (-1028 *5)) (-4 *5 (-1049)))) (-4214 (*1 *2 *2) (-12 (-5 *2 (-644 (-689 *3))) (-4 *3 (-1049)) (-5 *1 (-1028 *3)))) (-4214 (*1 *2 *2) (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-1028 *3)))) (-4214 (*1 *2 *2 *2) (-12 (-5 *2 (-644 (-689 *3))) (-4 *3 (-1049)) (-5 *1 (-1028 *3)))) (-4214 (*1 *2 *2 *2) (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-1028 *3)))) (-1376 (*1 *2 *2 *3) (-12 (-5 *2 (-644 (-689 *4))) (-5 *3 (-921)) (-4 *4 (-1049)) (-5 *1 (-1028 *4)))) (-1376 (*1 *2 *2 *3) (-12 (-5 *2 (-689 *4)) (-5 *3 (-921)) (-4 *4 (-1049)) (-5 *1 (-1028 *4)))) (-2779 (*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-689 (-952 *4))) (-5 *1 (-1028 *4)) (-4 *4 (-1049)))) (-2650 (*1 *2 *2 *3) (-12 (-5 *2 (-644 (-689 *4))) (-5 *3 (-921)) (|has| *4 (-6 (-4419 "*"))) (-4 *4 (-1049)) (-5 *1 (-1028 *4)))) (-2650 (*1 *2 *2 *3) (-12 (-5 *2 (-689 *4)) (-5 *3 (-921)) (|has| *4 (-6 (-4419 "*"))) (-4 *4 (-1049)) (-5 *1 (-1028 *4))))) +(-10 -7 (IF (|has| |#1| (-6 (-4419 "*"))) (-15 -2650 ((-689 |#1|) (-689 |#1|) (-921))) |%noBranch|) (IF (|has| |#1| (-6 (-4419 "*"))) (-15 -2650 ((-644 (-689 |#1|)) (-644 (-689 |#1|)) (-921))) |%noBranch|) (-15 -2779 ((-689 (-952 |#1|)) (-771))) (-15 -1376 ((-689 |#1|) (-689 |#1|) (-921))) (-15 -1376 ((-644 (-689 |#1|)) (-644 (-689 |#1|)) (-921))) (-15 -4214 ((-689 |#1|) (-689 |#1|) (-689 |#1|))) (-15 -4214 ((-644 (-689 |#1|)) (-644 (-689 |#1|)) (-644 (-689 |#1|)))) (-15 -4214 ((-689 |#1|) (-689 |#1|))) (-15 -4214 ((-644 (-689 |#1|)) (-644 (-689 |#1|)))) (-15 -3493 ((-689 (-566)) (-905 (-566)) (-566))) (-15 -3493 ((-689 (-566)) (-644 (-566)))) (-15 -3493 ((-644 (-689 (-566))) (-644 (-905 (-566))) (-566))) (-15 -3493 ((-644 (-689 (-566))) (-644 (-644 (-566)))))) +((-2124 (((-689 |#1|) (-644 (-689 |#1|)) (-1264 |#1|)) 71 (|has| |#1| (-308)))) (-4045 (((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)) (-1264 (-1264 |#1|))) 112 (|has| |#1| (-365))) (((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)) (-1264 |#1|)) 119 (|has| |#1| (-365)))) (-3848 (((-1264 |#1|) (-644 (-1264 |#1|)) (-566)) 137 (-12 (|has| |#1| (-365)) (|has| |#1| (-370))))) (-3662 (((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)) (-921)) 125 (-12 (|has| |#1| (-365)) (|has| |#1| (-370)))) (((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)) (-112)) 124 (-12 (|has| |#1| (-365)) (|has| |#1| (-370)))) (((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|))) 123 (-12 (|has| |#1| (-365)) (|has| |#1| (-370)))) (((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)) (-112) (-566) (-566)) 122 (-12 (|has| |#1| (-365)) (|has| |#1| (-370))))) (-3328 (((-112) (-644 (-689 |#1|))) 105 (|has| |#1| (-365))) (((-112) (-644 (-689 |#1|)) (-566)) 108 (|has| |#1| (-365)))) (-4382 (((-1264 (-1264 |#1|)) (-644 (-689 |#1|)) (-1264 |#1|)) 68 (|has| |#1| (-308)))) (-1590 (((-689 |#1|) (-644 (-689 |#1|)) (-689 |#1|)) 48)) (-1885 (((-689 |#1|) (-1264 (-1264 |#1|))) 41)) (-3500 (((-689 |#1|) (-644 (-689 |#1|)) (-644 (-689 |#1|)) (-566)) 96 (|has| |#1| (-365))) (((-689 |#1|) (-644 (-689 |#1|)) (-644 (-689 |#1|))) 95 (|has| |#1| (-365))) (((-689 |#1|) (-644 (-689 |#1|)) (-644 (-689 |#1|)) (-112) (-566)) 103 (|has| |#1| (-365))))) +(((-1029 |#1|) (-10 -7 (-15 -1885 ((-689 |#1|) (-1264 (-1264 |#1|)))) (-15 -1590 ((-689 |#1|) (-644 (-689 |#1|)) (-689 |#1|))) (IF (|has| |#1| (-308)) (PROGN (-15 -4382 ((-1264 (-1264 |#1|)) (-644 (-689 |#1|)) (-1264 |#1|))) (-15 -2124 ((-689 |#1|) (-644 (-689 |#1|)) (-1264 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -3500 ((-689 |#1|) (-644 (-689 |#1|)) (-644 (-689 |#1|)) (-112) (-566))) (-15 -3500 ((-689 |#1|) (-644 (-689 |#1|)) (-644 (-689 |#1|)))) (-15 -3500 ((-689 |#1|) (-644 (-689 |#1|)) (-644 (-689 |#1|)) (-566))) (-15 -3328 ((-112) (-644 (-689 |#1|)) (-566))) (-15 -3328 ((-112) (-644 (-689 |#1|)))) (-15 -4045 ((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)) (-1264 |#1|))) (-15 -4045 ((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)) (-1264 (-1264 |#1|))))) |%noBranch|) (IF (|has| |#1| (-370)) (IF (|has| |#1| (-365)) (PROGN (-15 -3662 ((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)) (-112) (-566) (-566))) (-15 -3662 ((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)))) (-15 -3662 ((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)) (-112))) (-15 -3662 ((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)) (-921))) (-15 -3848 ((-1264 |#1|) (-644 (-1264 |#1|)) (-566)))) |%noBranch|) |%noBranch|)) (-1049)) (T -1029)) +((-3848 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-1264 *5))) (-5 *4 (-566)) (-5 *2 (-1264 *5)) (-5 *1 (-1029 *5)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1049)))) (-3662 (*1 *2 *3 *4) (-12 (-5 *4 (-921)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1049)) (-5 *2 (-644 (-644 (-689 *5)))) (-5 *1 (-1029 *5)) (-5 *3 (-644 (-689 *5))))) (-3662 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1049)) (-5 *2 (-644 (-644 (-689 *5)))) (-5 *1 (-1029 *5)) (-5 *3 (-644 (-689 *5))))) (-3662 (*1 *2 *3) (-12 (-4 *4 (-365)) (-4 *4 (-370)) (-4 *4 (-1049)) (-5 *2 (-644 (-644 (-689 *4)))) (-5 *1 (-1029 *4)) (-5 *3 (-644 (-689 *4))))) (-3662 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-566)) (-4 *6 (-365)) (-4 *6 (-370)) (-4 *6 (-1049)) (-5 *2 (-644 (-644 (-689 *6)))) (-5 *1 (-1029 *6)) (-5 *3 (-644 (-689 *6))))) (-4045 (*1 *2 *3 *4) (-12 (-5 *4 (-1264 (-1264 *5))) (-4 *5 (-365)) (-4 *5 (-1049)) (-5 *2 (-644 (-644 (-689 *5)))) (-5 *1 (-1029 *5)) (-5 *3 (-644 (-689 *5))))) (-4045 (*1 *2 *3 *4) (-12 (-5 *4 (-1264 *5)) (-4 *5 (-365)) (-4 *5 (-1049)) (-5 *2 (-644 (-644 (-689 *5)))) (-5 *1 (-1029 *5)) (-5 *3 (-644 (-689 *5))))) (-3328 (*1 *2 *3) (-12 (-5 *3 (-644 (-689 *4))) (-4 *4 (-365)) (-4 *4 (-1049)) (-5 *2 (-112)) (-5 *1 (-1029 *4)))) (-3328 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-689 *5))) (-5 *4 (-566)) (-4 *5 (-365)) (-4 *5 (-1049)) (-5 *2 (-112)) (-5 *1 (-1029 *5)))) (-3500 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-644 (-689 *5))) (-5 *4 (-566)) (-5 *2 (-689 *5)) (-5 *1 (-1029 *5)) (-4 *5 (-365)) (-4 *5 (-1049)))) (-3500 (*1 *2 *3 *3) (-12 (-5 *3 (-644 (-689 *4))) (-5 *2 (-689 *4)) (-5 *1 (-1029 *4)) (-4 *4 (-365)) (-4 *4 (-1049)))) (-3500 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-644 (-689 *6))) (-5 *4 (-112)) (-5 *5 (-566)) (-5 *2 (-689 *6)) (-5 *1 (-1029 *6)) (-4 *6 (-365)) (-4 *6 (-1049)))) (-2124 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-689 *5))) (-5 *4 (-1264 *5)) (-4 *5 (-308)) (-4 *5 (-1049)) (-5 *2 (-689 *5)) (-5 *1 (-1029 *5)))) (-4382 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-689 *5))) (-4 *5 (-308)) (-4 *5 (-1049)) (-5 *2 (-1264 (-1264 *5))) (-5 *1 (-1029 *5)) (-5 *4 (-1264 *5)))) (-1590 (*1 *2 *3 *2) (-12 (-5 *3 (-644 (-689 *4))) (-5 *2 (-689 *4)) (-4 *4 (-1049)) (-5 *1 (-1029 *4)))) (-1885 (*1 *2 *3) (-12 (-5 *3 (-1264 (-1264 *4))) (-4 *4 (-1049)) (-5 *2 (-689 *4)) (-5 *1 (-1029 *4))))) +(-10 -7 (-15 -1885 ((-689 |#1|) (-1264 (-1264 |#1|)))) (-15 -1590 ((-689 |#1|) (-644 (-689 |#1|)) (-689 |#1|))) (IF (|has| |#1| (-308)) (PROGN (-15 -4382 ((-1264 (-1264 |#1|)) (-644 (-689 |#1|)) (-1264 |#1|))) (-15 -2124 ((-689 |#1|) (-644 (-689 |#1|)) (-1264 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -3500 ((-689 |#1|) (-644 (-689 |#1|)) (-644 (-689 |#1|)) (-112) (-566))) (-15 -3500 ((-689 |#1|) (-644 (-689 |#1|)) (-644 (-689 |#1|)))) (-15 -3500 ((-689 |#1|) (-644 (-689 |#1|)) (-644 (-689 |#1|)) (-566))) (-15 -3328 ((-112) (-644 (-689 |#1|)) (-566))) (-15 -3328 ((-112) (-644 (-689 |#1|)))) (-15 -4045 ((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)) (-1264 |#1|))) (-15 -4045 ((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)) (-1264 (-1264 |#1|))))) |%noBranch|) (IF (|has| |#1| (-370)) (IF (|has| |#1| (-365)) (PROGN (-15 -3662 ((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)) (-112) (-566) (-566))) (-15 -3662 ((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)))) (-15 -3662 ((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)) (-112))) (-15 -3662 ((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)) (-921))) (-15 -3848 ((-1264 |#1|) (-644 (-1264 |#1|)) (-566)))) |%noBranch|) |%noBranch|)) +((-3377 ((|#1| (-921) |#1|) 18))) +(((-1030 |#1|) (-10 -7 (-15 -3377 (|#1| (-921) |#1|))) (-13 (-1099) (-10 -8 (-15 -3052 ($ $ $))))) (T -1030)) +((-3377 (*1 *2 *3 *2) (-12 (-5 *3 (-921)) (-5 *1 (-1030 *2)) (-4 *2 (-13 (-1099) (-10 -8 (-15 -3052 ($ $ $)))))))) +(-10 -7 (-15 -3377 (|#1| (-921) |#1|))) +((-3773 (((-644 (-2 (|:| |radval| (-317 (-566))) (|:| |radmult| (-566)) (|:| |radvect| (-644 (-689 (-317 (-566))))))) (-689 (-409 (-952 (-566))))) 67)) (-3965 (((-644 (-689 (-317 (-566)))) (-317 (-566)) (-689 (-409 (-952 (-566))))) 52)) (-1897 (((-644 (-317 (-566))) (-689 (-409 (-952 (-566))))) 45)) (-2969 (((-644 (-689 (-317 (-566)))) (-689 (-409 (-952 (-566))))) 88)) (-4325 (((-689 (-317 (-566))) (-689 (-317 (-566)))) 38)) (-2910 (((-644 (-689 (-317 (-566)))) (-644 (-689 (-317 (-566))))) 76)) (-1871 (((-3 (-689 (-317 (-566))) "failed") (-689 (-409 (-952 (-566))))) 85))) +(((-1031) (-10 -7 (-15 -3773 ((-644 (-2 (|:| |radval| (-317 (-566))) (|:| |radmult| (-566)) (|:| |radvect| (-644 (-689 (-317 (-566))))))) (-689 (-409 (-952 (-566)))))) (-15 -3965 ((-644 (-689 (-317 (-566)))) (-317 (-566)) (-689 (-409 (-952 (-566)))))) (-15 -1897 ((-644 (-317 (-566))) (-689 (-409 (-952 (-566)))))) (-15 -1871 ((-3 (-689 (-317 (-566))) "failed") (-689 (-409 (-952 (-566)))))) (-15 -4325 ((-689 (-317 (-566))) (-689 (-317 (-566))))) (-15 -2910 ((-644 (-689 (-317 (-566)))) (-644 (-689 (-317 (-566)))))) (-15 -2969 ((-644 (-689 (-317 (-566)))) (-689 (-409 (-952 (-566)))))))) (T -1031)) +((-2969 (*1 *2 *3) (-12 (-5 *3 (-689 (-409 (-952 (-566))))) (-5 *2 (-644 (-689 (-317 (-566))))) (-5 *1 (-1031)))) (-2910 (*1 *2 *2) (-12 (-5 *2 (-644 (-689 (-317 (-566))))) (-5 *1 (-1031)))) (-4325 (*1 *2 *2) (-12 (-5 *2 (-689 (-317 (-566)))) (-5 *1 (-1031)))) (-1871 (*1 *2 *3) (|partial| -12 (-5 *3 (-689 (-409 (-952 (-566))))) (-5 *2 (-689 (-317 (-566)))) (-5 *1 (-1031)))) (-1897 (*1 *2 *3) (-12 (-5 *3 (-689 (-409 (-952 (-566))))) (-5 *2 (-644 (-317 (-566)))) (-5 *1 (-1031)))) (-3965 (*1 *2 *3 *4) (-12 (-5 *4 (-689 (-409 (-952 (-566))))) (-5 *2 (-644 (-689 (-317 (-566))))) (-5 *1 (-1031)) (-5 *3 (-317 (-566))))) (-3773 (*1 *2 *3) (-12 (-5 *3 (-689 (-409 (-952 (-566))))) (-5 *2 (-644 (-2 (|:| |radval| (-317 (-566))) (|:| |radmult| (-566)) (|:| |radvect| (-644 (-689 (-317 (-566)))))))) (-5 *1 (-1031))))) +(-10 -7 (-15 -3773 ((-644 (-2 (|:| |radval| (-317 (-566))) (|:| |radmult| (-566)) (|:| |radvect| (-644 (-689 (-317 (-566))))))) (-689 (-409 (-952 (-566)))))) (-15 -3965 ((-644 (-689 (-317 (-566)))) (-317 (-566)) (-689 (-409 (-952 (-566)))))) (-15 -1897 ((-644 (-317 (-566))) (-689 (-409 (-952 (-566)))))) (-15 -1871 ((-3 (-689 (-317 (-566))) "failed") (-689 (-409 (-952 (-566)))))) (-15 -4325 ((-689 (-317 (-566))) (-689 (-317 (-566))))) (-15 -2910 ((-644 (-689 (-317 (-566)))) (-644 (-689 (-317 (-566)))))) (-15 -2969 ((-644 (-689 (-317 (-566)))) (-689 (-409 (-952 (-566))))))) +((-1933 ((|#1| |#1| (-921)) 18))) +(((-1032 |#1|) (-10 -7 (-15 -1933 (|#1| |#1| (-921)))) (-13 (-1099) (-10 -8 (-15 * ($ $ $))))) (T -1032)) +((-1933 (*1 *2 *2 *3) (-12 (-5 *3 (-921)) (-5 *1 (-1032 *2)) (-4 *2 (-13 (-1099) (-10 -8 (-15 * ($ $ $)))))))) +(-10 -7 (-15 -1933 (|#1| |#1| (-921)))) +((-2479 ((|#1| (-313)) 11) (((-1269) |#1|) 9))) +(((-1033 |#1|) (-10 -7 (-15 -2479 ((-1269) |#1|)) (-15 -2479 (|#1| (-313)))) (-1214)) (T -1033)) +((-2479 (*1 *2 *3) (-12 (-5 *3 (-313)) (-5 *1 (-1033 *2)) (-4 *2 (-1214)))) (-2479 (*1 *2 *3) (-12 (-5 *2 (-1269)) (-5 *1 (-1033 *3)) (-4 *3 (-1214))))) +(-10 -7 (-15 -2479 ((-1269) |#1|)) (-15 -2479 (|#1| (-313)))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-1811 (($) NIL T CONST)) (-1838 (($ |#4|) 25)) (-3757 (((-3 $ "failed") $) NIL)) (-2264 (((-112) $) NIL)) (-1829 ((|#4| $) 27)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) 46) (($ (-566)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-1558 (((-771)) 43 T CONST)) (-3900 (((-112) $ $) NIL)) (-2446 (($) 21 T CONST)) (-2459 (($) 23 T CONST)) (-2952 (((-112) $ $) 40)) (-3065 (($ $) 31) (($ $ $) NIL)) (-3052 (($ $ $) 29)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) +(((-1034 |#1| |#2| |#3| |#4| |#5|) (-13 (-172) (-38 |#1|) (-10 -8 (-15 -1838 ($ |#4|)) (-15 -2479 ($ |#4|)) (-15 -1829 (|#4| $)))) (-365) (-793) (-850) (-949 |#1| |#2| |#3|) (-644 |#4|)) (T -1034)) +((-1838 (*1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-1034 *3 *4 *5 *2 *6)) (-4 *2 (-949 *3 *4 *5)) (-14 *6 (-644 *2)))) (-2479 (*1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-1034 *3 *4 *5 *2 *6)) (-4 *2 (-949 *3 *4 *5)) (-14 *6 (-644 *2)))) (-1829 (*1 *2 *1) (-12 (-4 *2 (-949 *3 *4 *5)) (-5 *1 (-1034 *3 *4 *5 *2 *6)) (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-14 *6 (-644 *2))))) +(-13 (-172) (-38 |#1|) (-10 -8 (-15 -1838 ($ |#4|)) (-15 -2479 ($ |#4|)) (-15 -1829 (|#4| $)))) +((-2986 (((-112) $ $) NIL (-2809 (|has| (-52) (-1099)) (|has| (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-1099))))) (-4250 (($) NIL) (($ (-644 (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))))) NIL)) (-2462 (((-1269) $ (-1175) (-1175)) NIL (|has| $ (-6 -4418)))) (-1453 (((-112) $ (-771)) NIL)) (-1807 (((-112) (-112)) 43)) (-1384 (((-112) (-112)) 42)) (-3901 (((-52) $ (-1175) (-52)) NIL)) (-4364 (($ (-1 (-112) (-2 (|:| -1928 (-1175)) (|:| -2806 (-52)))) $) NIL (|has| $ (-6 -4417)))) (-3543 (($ (-1 (-112) (-2 (|:| -1928 (-1175)) (|:| -2806 (-52)))) $) NIL (|has| $ (-6 -4417)))) (-2377 (((-3 (-52) "failed") (-1175) $) NIL)) (-1811 (($) NIL T CONST)) (-4111 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-1099))))) (-2295 (($ (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) $) NIL (|has| $ (-6 -4417))) (($ (-1 (-112) (-2 (|:| -1928 (-1175)) (|:| -2806 (-52)))) $) NIL (|has| $ (-6 -4417))) (((-3 (-52) "failed") (-1175) $) NIL)) (-2628 (($ (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-1099)))) (($ (-1 (-112) (-2 (|:| -1928 (-1175)) (|:| -2806 (-52)))) $) NIL (|has| $ (-6 -4417)))) (-1838 (((-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-1 (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-2 (|:| -1928 (-1175)) (|:| -2806 (-52)))) $ (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-2 (|:| -1928 (-1175)) (|:| -2806 (-52)))) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-1099)))) (((-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-1 (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-2 (|:| -1928 (-1175)) (|:| -2806 (-52)))) $ (-2 (|:| -1928 (-1175)) (|:| -2806 (-52)))) NIL (|has| $ (-6 -4417))) (((-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-1 (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-2 (|:| -1928 (-1175)) (|:| -2806 (-52)))) $) NIL (|has| $ (-6 -4417)))) (-3719 (((-52) $ (-1175) (-52)) NIL (|has| $ (-6 -4418)))) (-3653 (((-52) $ (-1175)) NIL)) (-3872 (((-644 (-2 (|:| -1928 (-1175)) (|:| -2806 (-52)))) $) NIL (|has| $ (-6 -4417))) (((-644 (-52)) $) NIL (|has| $ (-6 -4417)))) (-2756 (((-112) $ (-771)) NIL)) (-2755 (((-1175) $) NIL (|has| (-1175) (-850)))) (-4227 (((-644 (-2 (|:| -1928 (-1175)) (|:| -2806 (-52)))) $) NIL (|has| $ (-6 -4417))) (((-644 (-52)) $) NIL (|has| $ (-6 -4417)))) (-1688 (((-112) (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-1099)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-52) (-1099))))) (-3831 (((-1175) $) NIL (|has| (-1175) (-850)))) (-3708 (($ (-1 (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-2 (|:| -1928 (-1175)) (|:| -2806 (-52)))) $) NIL (|has| $ (-6 -4418))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4418)))) (-3080 (($ (-1 (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-2 (|:| -1928 (-1175)) (|:| -2806 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-4106 (((-112) $ (-771)) NIL)) (-3151 (((-1157) $) NIL (-2809 (|has| (-52) (-1099)) (|has| (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-1099))))) (-1467 (((-644 (-1175)) $) 37)) (-3983 (((-112) (-1175) $) NIL)) (-4255 (((-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) $) NIL)) (-4354 (($ (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) $) NIL)) (-3780 (((-644 (-1175)) $) NIL)) (-1605 (((-112) (-1175) $) NIL)) (-4059 (((-1119) $) NIL (-2809 (|has| (-52) (-1099)) (|has| (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-1099))))) (-4080 (((-52) $) NIL (|has| (-1175) (-850)))) (-2688 (((-3 (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) "failed") (-1 (-112) (-2 (|:| -1928 (-1175)) (|:| -2806 (-52)))) $) NIL)) (-4079 (($ $ (-52)) NIL (|has| $ (-6 -4418)))) (-4097 (((-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) $) NIL)) (-3966 (((-112) (-1 (-112) (-2 (|:| -1928 (-1175)) (|:| -2806 (-52)))) $) NIL (|has| $ (-6 -4417))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 (-2 (|:| -1928 (-1175)) (|:| -2806 (-52)))))) NIL (-12 (|has| (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-310 (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))))) (|has| (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-1099)))) (($ $ (-295 (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))))) NIL (-12 (|has| (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-310 (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))))) (|has| (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-1099)))) (($ $ (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-2 (|:| -1928 (-1175)) (|:| -2806 (-52)))) NIL (-12 (|has| (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-310 (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))))) (|has| (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-1099)))) (($ $ (-644 (-2 (|:| -1928 (-1175)) (|:| -2806 (-52)))) (-644 (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))))) NIL (-12 (|has| (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-310 (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))))) (|has| (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-1099)))) (($ $ (-644 (-52)) (-644 (-52))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1099)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1099)))) (($ $ (-295 (-52))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1099)))) (($ $ (-644 (-295 (-52)))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1099))))) (-1844 (((-112) $ $) NIL)) (-2210 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-52) (-1099))))) (-4185 (((-644 (-52)) $) NIL)) (-2788 (((-112) $) NIL)) (-1737 (($) NIL)) (-4376 (((-52) $ (-1175)) 39) (((-52) $ (-1175) (-52)) NIL)) (-1797 (($) NIL) (($ (-644 (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))))) NIL)) (-4068 (((-771) (-1 (-112) (-2 (|:| -1928 (-1175)) (|:| -2806 (-52)))) $) NIL (|has| $ (-6 -4417))) (((-771) (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-1099)))) (((-771) (-52) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-52) (-1099)))) (((-771) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4417)))) (-3924 (($ $) NIL)) (-3136 (((-538) $) NIL (|has| (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-614 (-538))))) (-2489 (($ (-644 (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))))) NIL)) (-2479 (((-862) $) 41 (-2809 (|has| (-52) (-613 (-862))) (|has| (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-613 (-862)))))) (-3900 (((-112) $ $) NIL (-2809 (|has| (-52) (-1099)) (|has| (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-1099))))) (-2471 (($ (-644 (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))))) NIL)) (-3667 (((-112) (-1 (-112) (-2 (|:| -1928 (-1175)) (|:| -2806 (-52)))) $) NIL (|has| $ (-6 -4417))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4417)))) (-2952 (((-112) $ $) NIL (-2809 (|has| (-52) (-1099)) (|has| (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-1099))))) (-3002 (((-771) $) NIL (|has| $ (-6 -4417))))) +(((-1035) (-13 (-1190 (-1175) (-52)) (-10 -7 (-15 -1807 ((-112) (-112))) (-15 -1384 ((-112) (-112))) (-6 -4417)))) (T -1035)) +((-1807 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1035)))) (-1384 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1035))))) +(-13 (-1190 (-1175) (-52)) (-10 -7 (-15 -1807 ((-112) (-112))) (-15 -1384 ((-112) (-112))) (-6 -4417))) +((-2986 (((-112) $ $) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-1358 (((-1134) $) 9)) (-2479 (((-862) $) 15) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-1036) (-13 (-1082) (-10 -8 (-15 -1358 ((-1134) $))))) (T -1036)) +((-1358 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1036))))) +(-13 (-1082) (-10 -8 (-15 -1358 ((-1134) $)))) +((-1709 ((|#2| $) 10))) +(((-1037 |#1| |#2|) (-10 -8 (-15 -1709 (|#2| |#1|))) (-1038 |#2|) (-1214)) (T -1037)) +NIL +(-10 -8 (-15 -1709 (|#2| |#1|))) +((-2980 (((-3 |#1| "failed") $) 9)) (-1709 ((|#1| $) 8)) (-2479 (($ |#1|) 6))) +(((-1038 |#1|) (-140) (-1214)) (T -1038)) +((-2980 (*1 *2 *1) (|partial| -12 (-4 *1 (-1038 *2)) (-4 *2 (-1214)))) (-1709 (*1 *2 *1) (-12 (-4 *1 (-1038 *2)) (-4 *2 (-1214))))) +(-13 (-616 |t#1|) (-10 -8 (-15 -2980 ((-3 |t#1| "failed") $)) (-15 -1709 (|t#1| $)))) +(((-616 |#1|) . T)) +((-3840 (((-644 (-644 (-295 (-409 (-952 |#2|))))) (-644 (-952 |#2|)) (-644 (-1175))) 38))) +(((-1039 |#1| |#2|) (-10 -7 (-15 -3840 ((-644 (-644 (-295 (-409 (-952 |#2|))))) (-644 (-952 |#2|)) (-644 (-1175))))) (-558) (-13 (-558) (-1038 |#1|))) (T -1039)) +((-3840 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-952 *6))) (-5 *4 (-644 (-1175))) (-4 *6 (-13 (-558) (-1038 *5))) (-4 *5 (-558)) (-5 *2 (-644 (-644 (-295 (-409 (-952 *6)))))) (-5 *1 (-1039 *5 *6))))) +(-10 -7 (-15 -3840 ((-644 (-644 (-295 (-409 (-952 |#2|))))) (-644 (-952 |#2|)) (-644 (-1175))))) +((-2727 (((-381)) 17)) (-2759 (((-1 (-381)) (-381) (-381)) 22)) (-1445 (((-1 (-381)) (-771)) 50)) (-3085 (((-381)) 37)) (-3764 (((-1 (-381)) (-381) (-381)) 38)) (-3979 (((-381)) 29)) (-2207 (((-1 (-381)) (-381)) 30)) (-2329 (((-381) (-771)) 45)) (-1776 (((-1 (-381)) (-771)) 46)) (-2341 (((-1 (-381)) (-771) (-771)) 49)) (-1795 (((-1 (-381)) (-771) (-771)) 47))) +(((-1040) (-10 -7 (-15 -2727 ((-381))) (-15 -3085 ((-381))) (-15 -3979 ((-381))) (-15 -2329 ((-381) (-771))) (-15 -2759 ((-1 (-381)) (-381) (-381))) (-15 -3764 ((-1 (-381)) (-381) (-381))) (-15 -2207 ((-1 (-381)) (-381))) (-15 -1776 ((-1 (-381)) (-771))) (-15 -1795 ((-1 (-381)) (-771) (-771))) (-15 -2341 ((-1 (-381)) (-771) (-771))) (-15 -1445 ((-1 (-381)) (-771))))) (T -1040)) +((-1445 (*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1 (-381))) (-5 *1 (-1040)))) (-2341 (*1 *2 *3 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1 (-381))) (-5 *1 (-1040)))) (-1795 (*1 *2 *3 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1 (-381))) (-5 *1 (-1040)))) (-1776 (*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1 (-381))) (-5 *1 (-1040)))) (-2207 (*1 *2 *3) (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1040)) (-5 *3 (-381)))) (-3764 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1040)) (-5 *3 (-381)))) (-2759 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1040)) (-5 *3 (-381)))) (-2329 (*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-381)) (-5 *1 (-1040)))) (-3979 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1040)))) (-3085 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1040)))) (-2727 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1040))))) +(-10 -7 (-15 -2727 ((-381))) (-15 -3085 ((-381))) (-15 -3979 ((-381))) (-15 -2329 ((-381) (-771))) (-15 -2759 ((-1 (-381)) (-381) (-381))) (-15 -3764 ((-1 (-381)) (-381) (-381))) (-15 -2207 ((-1 (-381)) (-381))) (-15 -1776 ((-1 (-381)) (-771))) (-15 -1795 ((-1 (-381)) (-771) (-771))) (-15 -2341 ((-1 (-381)) (-771) (-771))) (-15 -1445 ((-1 (-381)) (-771)))) +((-2325 (((-420 |#1|) |#1|) 33))) +(((-1041 |#1|) (-10 -7 (-15 -2325 ((-420 |#1|) |#1|))) (-1240 (-409 (-952 (-566))))) (T -1041)) +((-2325 (*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-1041 *3)) (-4 *3 (-1240 (-409 (-952 (-566)))))))) +(-10 -7 (-15 -2325 ((-420 |#1|) |#1|))) +((-4335 (((-409 (-420 (-952 |#1|))) (-409 (-952 |#1|))) 14))) +(((-1042 |#1|) (-10 -7 (-15 -4335 ((-409 (-420 (-952 |#1|))) (-409 (-952 |#1|))))) (-308)) (T -1042)) +((-4335 (*1 *2 *3) (-12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-308)) (-5 *2 (-409 (-420 (-952 *4)))) (-5 *1 (-1042 *4))))) +(-10 -7 (-15 -4335 ((-409 (-420 (-952 |#1|))) (-409 (-952 |#1|))))) +((-2485 (((-644 (-1175)) (-409 (-952 |#1|))) 17)) (-2285 (((-409 (-1171 (-409 (-952 |#1|)))) (-409 (-952 |#1|)) (-1175)) 24)) (-2474 (((-409 (-952 |#1|)) (-409 (-1171 (-409 (-952 |#1|)))) (-1175)) 26)) (-2673 (((-3 (-1175) "failed") (-409 (-952 |#1|))) 20)) (-3297 (((-409 (-952 |#1|)) (-409 (-952 |#1|)) (-644 (-295 (-409 (-952 |#1|))))) 32) (((-409 (-952 |#1|)) (-409 (-952 |#1|)) (-295 (-409 (-952 |#1|)))) 33) (((-409 (-952 |#1|)) (-409 (-952 |#1|)) (-644 (-1175)) (-644 (-409 (-952 |#1|)))) 28) (((-409 (-952 |#1|)) (-409 (-952 |#1|)) (-1175) (-409 (-952 |#1|))) 29)) (-2479 (((-409 (-952 |#1|)) |#1|) 11))) +(((-1043 |#1|) (-10 -7 (-15 -2485 ((-644 (-1175)) (-409 (-952 |#1|)))) (-15 -2673 ((-3 (-1175) "failed") (-409 (-952 |#1|)))) (-15 -2285 ((-409 (-1171 (-409 (-952 |#1|)))) (-409 (-952 |#1|)) (-1175))) (-15 -2474 ((-409 (-952 |#1|)) (-409 (-1171 (-409 (-952 |#1|)))) (-1175))) (-15 -3297 ((-409 (-952 |#1|)) (-409 (-952 |#1|)) (-1175) (-409 (-952 |#1|)))) (-15 -3297 ((-409 (-952 |#1|)) (-409 (-952 |#1|)) (-644 (-1175)) (-644 (-409 (-952 |#1|))))) (-15 -3297 ((-409 (-952 |#1|)) (-409 (-952 |#1|)) (-295 (-409 (-952 |#1|))))) (-15 -3297 ((-409 (-952 |#1|)) (-409 (-952 |#1|)) (-644 (-295 (-409 (-952 |#1|)))))) (-15 -2479 ((-409 (-952 |#1|)) |#1|))) (-558)) (T -1043)) +((-2479 (*1 *2 *3) (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-1043 *3)) (-4 *3 (-558)))) (-3297 (*1 *2 *2 *3) (-12 (-5 *3 (-644 (-295 (-409 (-952 *4))))) (-5 *2 (-409 (-952 *4))) (-4 *4 (-558)) (-5 *1 (-1043 *4)))) (-3297 (*1 *2 *2 *3) (-12 (-5 *3 (-295 (-409 (-952 *4)))) (-5 *2 (-409 (-952 *4))) (-4 *4 (-558)) (-5 *1 (-1043 *4)))) (-3297 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-644 (-1175))) (-5 *4 (-644 (-409 (-952 *5)))) (-5 *2 (-409 (-952 *5))) (-4 *5 (-558)) (-5 *1 (-1043 *5)))) (-3297 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-409 (-952 *4))) (-5 *3 (-1175)) (-4 *4 (-558)) (-5 *1 (-1043 *4)))) (-2474 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-1171 (-409 (-952 *5))))) (-5 *4 (-1175)) (-5 *2 (-409 (-952 *5))) (-5 *1 (-1043 *5)) (-4 *5 (-558)))) (-2285 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-4 *5 (-558)) (-5 *2 (-409 (-1171 (-409 (-952 *5))))) (-5 *1 (-1043 *5)) (-5 *3 (-409 (-952 *5))))) (-2673 (*1 *2 *3) (|partial| -12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-558)) (-5 *2 (-1175)) (-5 *1 (-1043 *4)))) (-2485 (*1 *2 *3) (-12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-558)) (-5 *2 (-644 (-1175))) (-5 *1 (-1043 *4))))) +(-10 -7 (-15 -2485 ((-644 (-1175)) (-409 (-952 |#1|)))) (-15 -2673 ((-3 (-1175) "failed") (-409 (-952 |#1|)))) (-15 -2285 ((-409 (-1171 (-409 (-952 |#1|)))) (-409 (-952 |#1|)) (-1175))) (-15 -2474 ((-409 (-952 |#1|)) (-409 (-1171 (-409 (-952 |#1|)))) (-1175))) (-15 -3297 ((-409 (-952 |#1|)) (-409 (-952 |#1|)) (-1175) (-409 (-952 |#1|)))) (-15 -3297 ((-409 (-952 |#1|)) (-409 (-952 |#1|)) (-644 (-1175)) (-644 (-409 (-952 |#1|))))) (-15 -3297 ((-409 (-952 |#1|)) (-409 (-952 |#1|)) (-295 (-409 (-952 |#1|))))) (-15 -3297 ((-409 (-952 |#1|)) (-409 (-952 |#1|)) (-644 (-295 (-409 (-952 |#1|)))))) (-15 -2479 ((-409 (-952 |#1|)) |#1|))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-1811 (($) 18 T CONST)) (-3664 ((|#1| $) 23)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-2641 ((|#1| $) 22)) (-2714 ((|#1|) 20 T CONST)) (-2479 (((-862) $) 12)) (-2043 ((|#1| $) 21)) (-3900 (((-112) $ $) 9)) (-2446 (($) 19 T CONST)) (-2952 (((-112) $ $) 6)) (-3052 (($ $ $) 15)) (* (($ (-921) $) 14) (($ (-771) $) 16))) +(((-1044 |#1|) (-140) (-23)) (T -1044)) +((-3664 (*1 *2 *1) (-12 (-4 *1 (-1044 *2)) (-4 *2 (-23)))) (-2641 (*1 *2 *1) (-12 (-4 *1 (-1044 *2)) (-4 *2 (-23)))) (-2043 (*1 *2 *1) (-12 (-4 *1 (-1044 *2)) (-4 *2 (-23)))) (-2714 (*1 *2) (-12 (-4 *1 (-1044 *2)) (-4 *2 (-23))))) +(-13 (-23) (-10 -8 (-15 -3664 (|t#1| $)) (-15 -2641 (|t#1| $)) (-15 -2043 (|t#1| $)) (-15 -2714 (|t#1|) -1573))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-613 (-862)) . T) ((-1099) . T)) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-1435 (($) 25 T CONST)) (-1811 (($) 18 T CONST)) (-3664 ((|#1| $) 23)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-2641 ((|#1| $) 22)) (-2714 ((|#1|) 20 T CONST)) (-2479 (((-862) $) 12)) (-2043 ((|#1| $) 21)) (-3900 (((-112) $ $) 9)) (-2446 (($) 19 T CONST)) (-2952 (((-112) $ $) 6)) (-3052 (($ $ $) 15)) (* (($ (-921) $) 14) (($ (-771) $) 16))) +(((-1045 |#1|) (-140) (-23)) (T -1045)) +((-1435 (*1 *1) (-12 (-4 *1 (-1045 *2)) (-4 *2 (-23))))) +(-13 (-1044 |t#1|) (-10 -8 (-15 -1435 ($) -1573))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-613 (-862)) . T) ((-1044 |#1|) . T) ((-1099) . T)) +((-2986 (((-112) $ $) NIL)) (-1416 (((-644 (-2 (|:| -1637 $) (|:| -3516 (-644 (-780 |#1| (-864 |#2|)))))) (-644 (-780 |#1| (-864 |#2|)))) NIL)) (-3295 (((-644 $) (-644 (-780 |#1| (-864 |#2|)))) NIL) (((-644 $) (-644 (-780 |#1| (-864 |#2|))) (-112)) NIL) (((-644 $) (-644 (-780 |#1| (-864 |#2|))) (-112) (-112)) NIL)) (-2485 (((-644 (-864 |#2|)) $) NIL)) (-1489 (((-112) $) NIL)) (-3541 (((-112) $) NIL (|has| |#1| (-558)))) (-2219 (((-112) (-780 |#1| (-864 |#2|)) $) NIL) (((-112) $) NIL)) (-1922 (((-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)) $) NIL)) (-3980 (((-644 (-2 (|:| |val| (-780 |#1| (-864 |#2|))) (|:| -2192 $))) (-780 |#1| (-864 |#2|)) $) NIL)) (-1374 (((-2 (|:| |under| $) (|:| -2001 $) (|:| |upper| $)) $ (-864 |#2|)) NIL)) (-1453 (((-112) $ (-771)) NIL)) (-3543 (($ (-1 (-112) (-780 |#1| (-864 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-3 (-780 |#1| (-864 |#2|)) "failed") $ (-864 |#2|)) NIL)) (-1811 (($) NIL T CONST)) (-4210 (((-112) $) NIL (|has| |#1| (-558)))) (-3050 (((-112) $ $) NIL (|has| |#1| (-558)))) (-1768 (((-112) $ $) NIL (|has| |#1| (-558)))) (-3261 (((-112) $) NIL (|has| |#1| (-558)))) (-3451 (((-644 (-780 |#1| (-864 |#2|))) (-644 (-780 |#1| (-864 |#2|))) $ (-1 (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|))) (-1 (-112) (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)))) NIL)) (-2796 (((-644 (-780 |#1| (-864 |#2|))) (-644 (-780 |#1| (-864 |#2|))) $) NIL (|has| |#1| (-558)))) (-3829 (((-644 (-780 |#1| (-864 |#2|))) (-644 (-780 |#1| (-864 |#2|))) $) NIL (|has| |#1| (-558)))) (-2980 (((-3 $ "failed") (-644 (-780 |#1| (-864 |#2|)))) NIL)) (-1709 (($ (-644 (-780 |#1| (-864 |#2|)))) NIL)) (-4091 (((-3 $ "failed") $) NIL)) (-3358 (((-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)) $) NIL)) (-4111 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-780 |#1| (-864 |#2|)) (-1099))))) (-2628 (($ (-780 |#1| (-864 |#2|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-780 |#1| (-864 |#2|)) (-1099)))) (($ (-1 (-112) (-780 |#1| (-864 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-3131 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-780 |#1| (-864 |#2|))) (|:| |den| |#1|)) (-780 |#1| (-864 |#2|)) $) NIL (|has| |#1| (-558)))) (-1995 (((-112) (-780 |#1| (-864 |#2|)) $ (-1 (-112) (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)))) NIL)) (-3326 (((-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)) $) NIL)) (-1838 (((-780 |#1| (-864 |#2|)) (-1 (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|))) $ (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|))) NIL (-12 (|has| $ (-6 -4417)) (|has| (-780 |#1| (-864 |#2|)) (-1099)))) (((-780 |#1| (-864 |#2|)) (-1 (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|))) $ (-780 |#1| (-864 |#2|))) NIL (|has| $ (-6 -4417))) (((-780 |#1| (-864 |#2|)) (-1 (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)) $ (-1 (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|))) (-1 (-112) (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)))) NIL)) (-1877 (((-2 (|:| -1637 (-644 (-780 |#1| (-864 |#2|)))) (|:| -3516 (-644 (-780 |#1| (-864 |#2|))))) $) NIL)) (-2281 (((-112) (-780 |#1| (-864 |#2|)) $) NIL)) (-1646 (((-112) (-780 |#1| (-864 |#2|)) $) NIL)) (-3433 (((-112) (-780 |#1| (-864 |#2|)) $) NIL) (((-112) $) NIL)) (-3872 (((-644 (-780 |#1| (-864 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-4297 (((-112) (-780 |#1| (-864 |#2|)) $) NIL) (((-112) $) NIL)) (-4052 (((-864 |#2|) $) NIL)) (-2756 (((-112) $ (-771)) NIL)) (-4227 (((-644 (-780 |#1| (-864 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-1688 (((-112) (-780 |#1| (-864 |#2|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-780 |#1| (-864 |#2|)) (-1099))))) (-3708 (($ (-1 (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-3080 (($ (-1 (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|))) $) NIL)) (-3599 (((-644 (-864 |#2|)) $) NIL)) (-2884 (((-112) (-864 |#2|) $) NIL)) (-4106 (((-112) $ (-771)) NIL)) (-3151 (((-1157) $) NIL)) (-3421 (((-3 (-780 |#1| (-864 |#2|)) (-644 $)) (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)) $) NIL)) (-3723 (((-644 (-2 (|:| |val| (-780 |#1| (-864 |#2|))) (|:| -2192 $))) (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)) $) NIL)) (-2651 (((-3 (-780 |#1| (-864 |#2|)) "failed") $) NIL)) (-3391 (((-644 $) (-780 |#1| (-864 |#2|)) $) NIL)) (-3680 (((-3 (-112) (-644 $)) (-780 |#1| (-864 |#2|)) $) NIL)) (-3325 (((-644 (-2 (|:| |val| (-112)) (|:| -2192 $))) (-780 |#1| (-864 |#2|)) $) NIL) (((-112) (-780 |#1| (-864 |#2|)) $) NIL)) (-4022 (((-644 $) (-780 |#1| (-864 |#2|)) $) NIL) (((-644 $) (-644 (-780 |#1| (-864 |#2|))) $) NIL) (((-644 $) (-644 (-780 |#1| (-864 |#2|))) (-644 $)) NIL) (((-644 $) (-780 |#1| (-864 |#2|)) (-644 $)) NIL)) (-2047 (($ (-780 |#1| (-864 |#2|)) $) NIL) (($ (-644 (-780 |#1| (-864 |#2|))) $) NIL)) (-3707 (((-644 (-780 |#1| (-864 |#2|))) $) NIL)) (-4121 (((-112) (-780 |#1| (-864 |#2|)) $) NIL) (((-112) $) NIL)) (-3317 (((-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)) $) NIL)) (-3730 (((-112) $ $) NIL)) (-1719 (((-2 (|:| |num| (-780 |#1| (-864 |#2|))) (|:| |den| |#1|)) (-780 |#1| (-864 |#2|)) $) NIL (|has| |#1| (-558)))) (-1695 (((-112) (-780 |#1| (-864 |#2|)) $) NIL) (((-112) $) NIL)) (-3869 (((-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)) $) NIL)) (-4059 (((-1119) $) NIL)) (-4080 (((-3 (-780 |#1| (-864 |#2|)) "failed") $) NIL)) (-2688 (((-3 (-780 |#1| (-864 |#2|)) "failed") (-1 (-112) (-780 |#1| (-864 |#2|))) $) NIL)) (-2293 (((-3 $ "failed") $ (-780 |#1| (-864 |#2|))) NIL)) (-2050 (($ $ (-780 |#1| (-864 |#2|))) NIL) (((-644 $) (-780 |#1| (-864 |#2|)) $) NIL) (((-644 $) (-780 |#1| (-864 |#2|)) (-644 $)) NIL) (((-644 $) (-644 (-780 |#1| (-864 |#2|))) $) NIL) (((-644 $) (-644 (-780 |#1| (-864 |#2|))) (-644 $)) NIL)) (-3966 (((-112) (-1 (-112) (-780 |#1| (-864 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-780 |#1| (-864 |#2|))) (-644 (-780 |#1| (-864 |#2|)))) NIL (-12 (|has| (-780 |#1| (-864 |#2|)) (-310 (-780 |#1| (-864 |#2|)))) (|has| (-780 |#1| (-864 |#2|)) (-1099)))) (($ $ (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|))) NIL (-12 (|has| (-780 |#1| (-864 |#2|)) (-310 (-780 |#1| (-864 |#2|)))) (|has| (-780 |#1| (-864 |#2|)) (-1099)))) (($ $ (-295 (-780 |#1| (-864 |#2|)))) NIL (-12 (|has| (-780 |#1| (-864 |#2|)) (-310 (-780 |#1| (-864 |#2|)))) (|has| (-780 |#1| (-864 |#2|)) (-1099)))) (($ $ (-644 (-295 (-780 |#1| (-864 |#2|))))) NIL (-12 (|has| (-780 |#1| (-864 |#2|)) (-310 (-780 |#1| (-864 |#2|)))) (|has| (-780 |#1| (-864 |#2|)) (-1099))))) (-1844 (((-112) $ $) NIL)) (-2788 (((-112) $) NIL)) (-1737 (($) NIL)) (-1630 (((-771) $) NIL)) (-4068 (((-771) (-780 |#1| (-864 |#2|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-780 |#1| (-864 |#2|)) (-1099)))) (((-771) (-1 (-112) (-780 |#1| (-864 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-3924 (($ $) NIL)) (-3136 (((-538) $) NIL (|has| (-780 |#1| (-864 |#2|)) (-614 (-538))))) (-2489 (($ (-644 (-780 |#1| (-864 |#2|)))) NIL)) (-1706 (($ $ (-864 |#2|)) NIL)) (-4234 (($ $ (-864 |#2|)) NIL)) (-4024 (($ $) NIL)) (-2378 (($ $ (-864 |#2|)) NIL)) (-2479 (((-862) $) NIL) (((-644 (-780 |#1| (-864 |#2|))) $) NIL)) (-2780 (((-771) $) NIL (|has| (-864 |#2|) (-370)))) (-3900 (((-112) $ $) NIL)) (-2877 (((-3 (-2 (|:| |bas| $) (|:| -3903 (-644 (-780 |#1| (-864 |#2|))))) "failed") (-644 (-780 |#1| (-864 |#2|))) (-1 (-112) (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3903 (-644 (-780 |#1| (-864 |#2|))))) "failed") (-644 (-780 |#1| (-864 |#2|))) (-1 (-112) (-780 |#1| (-864 |#2|))) (-1 (-112) (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)))) NIL)) (-4265 (((-112) $ (-1 (-112) (-780 |#1| (-864 |#2|)) (-644 (-780 |#1| (-864 |#2|))))) NIL)) (-3437 (((-644 $) (-780 |#1| (-864 |#2|)) $) NIL) (((-644 $) (-780 |#1| (-864 |#2|)) (-644 $)) NIL) (((-644 $) (-644 (-780 |#1| (-864 |#2|))) $) NIL) (((-644 $) (-644 (-780 |#1| (-864 |#2|))) (-644 $)) NIL)) (-3667 (((-112) (-1 (-112) (-780 |#1| (-864 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-4067 (((-644 (-864 |#2|)) $) NIL)) (-3183 (((-112) (-780 |#1| (-864 |#2|)) $) NIL)) (-3132 (((-112) (-864 |#2|) $) NIL)) (-2952 (((-112) $ $) NIL)) (-3002 (((-771) $) NIL (|has| $ (-6 -4417))))) +(((-1046 |#1| |#2|) (-13 (-1070 |#1| (-533 (-864 |#2|)) (-864 |#2|) (-780 |#1| (-864 |#2|))) (-10 -8 (-15 -3295 ((-644 $) (-644 (-780 |#1| (-864 |#2|))) (-112) (-112))))) (-454) (-644 (-1175))) (T -1046)) +((-3295 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-644 (-780 *5 (-864 *6)))) (-5 *4 (-112)) (-4 *5 (-454)) (-14 *6 (-644 (-1175))) (-5 *2 (-644 (-1046 *5 *6))) (-5 *1 (-1046 *5 *6))))) +(-13 (-1070 |#1| (-533 (-864 |#2|)) (-864 |#2|) (-780 |#1| (-864 |#2|))) (-10 -8 (-15 -3295 ((-644 $) (-644 (-780 |#1| (-864 |#2|))) (-112) (-112))))) +((-2759 (((-1 (-566)) (-1093 (-566))) 32)) (-3859 (((-566) (-566) (-566) (-566) (-566)) 29)) (-3045 (((-1 (-566)) |RationalNumber|) NIL)) (-4034 (((-1 (-566)) |RationalNumber|) NIL)) (-1835 (((-1 (-566)) (-566) |RationalNumber|) NIL))) +(((-1047) (-10 -7 (-15 -2759 ((-1 (-566)) (-1093 (-566)))) (-15 -1835 ((-1 (-566)) (-566) |RationalNumber|)) (-15 -3045 ((-1 (-566)) |RationalNumber|)) (-15 -4034 ((-1 (-566)) |RationalNumber|)) (-15 -3859 ((-566) (-566) (-566) (-566) (-566))))) (T -1047)) +((-3859 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-1047)))) (-4034 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-566))) (-5 *1 (-1047)))) (-3045 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-566))) (-5 *1 (-1047)))) (-1835 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-566))) (-5 *1 (-1047)) (-5 *3 (-566)))) (-2759 (*1 *2 *3) (-12 (-5 *3 (-1093 (-566))) (-5 *2 (-1 (-566))) (-5 *1 (-1047))))) +(-10 -7 (-15 -2759 ((-1 (-566)) (-1093 (-566)))) (-15 -1835 ((-1 (-566)) (-566) |RationalNumber|)) (-15 -3045 ((-1 (-566)) |RationalNumber|)) (-15 -4034 ((-1 (-566)) |RationalNumber|)) (-15 -3859 ((-566) (-566) (-566) (-566) (-566)))) +((-2479 (((-862) $) NIL) (($ (-566)) 10))) +(((-1048 |#1|) (-10 -8 (-15 -2479 (|#1| (-566))) (-15 -2479 ((-862) |#1|))) (-1049)) (T -1048)) +NIL +(-10 -8 (-15 -2479 (|#1| (-566))) (-15 -2479 ((-862) |#1|))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-3174 (((-3 $ "failed") $ $) 20)) (-1811 (($) 18 T CONST)) (-3757 (((-3 $ "failed") $) 37)) (-2264 (((-112) $) 35)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-2479 (((-862) $) 12) (($ (-566)) 33)) (-1558 (((-771)) 32 T CONST)) (-3900 (((-112) $ $) 9)) (-2446 (($) 19 T CONST)) (-2459 (($) 34 T CONST)) (-2952 (((-112) $ $) 6)) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27))) +(((-1049) (-140)) (T -1049)) +((-1558 (*1 *2) (-12 (-4 *1 (-1049)) (-5 *2 (-771))))) +(-13 (-1057) (-726) (-648 $) (-616 (-566)) (-10 -7 (-15 -1558 ((-771)) -1573) (-6 -4414))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-616 (-566)) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 $) . T) ((-726) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) +((-3281 (((-409 (-952 |#2|)) (-644 |#2|) (-644 |#2|) (-771) (-771)) 60))) +(((-1050 |#1| |#2|) (-10 -7 (-15 -3281 ((-409 (-952 |#2|)) (-644 |#2|) (-644 |#2|) (-771) (-771)))) (-1175) (-365)) (T -1050)) +((-3281 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-644 *6)) (-5 *4 (-771)) (-4 *6 (-365)) (-5 *2 (-409 (-952 *6))) (-5 *1 (-1050 *5 *6)) (-14 *5 (-1175))))) +(-10 -7 (-15 -3281 ((-409 (-952 |#2|)) (-644 |#2|) (-644 |#2|) (-771) (-771)))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 15)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-2479 (((-862) $) 12)) (-3900 (((-112) $ $) 9)) (-2446 (($) 16 T CONST)) (-2952 (((-112) $ $) 6)) (* (($ $ |#1|) 14))) +(((-1051 |#1|) (-140) (-1057)) (T -1051)) +((-2446 (*1 *1) (-12 (-4 *1 (-1051 *2)) (-4 *2 (-1057)))) (-2845 (*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-1057)) (-5 *2 (-112)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1051 *2)) (-4 *2 (-1057))))) +(-13 (-1099) (-10 -8 (-15 (-2446) ($) -1573) (-15 -2845 ((-112) $)) (-15 * ($ $ |t#1|)))) +(((-102) . T) ((-613 (-862)) . T) ((-1099) . T)) +((-3349 (((-112) $) 40)) (-3834 (((-112) $) 17)) (-2541 (((-771) $) 13)) (-2552 (((-771) $) 14)) (-2754 (((-112) $) 30)) (-2126 (((-112) $) 42))) +(((-1052 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -2552 ((-771) |#1|)) (-15 -2541 ((-771) |#1|)) (-15 -2126 ((-112) |#1|)) (-15 -3349 ((-112) |#1|)) (-15 -2754 ((-112) |#1|)) (-15 -3834 ((-112) |#1|))) (-1053 |#2| |#3| |#4| |#5| |#6|) (-771) (-771) (-1049) (-238 |#3| |#4|) (-238 |#2| |#4|)) (T -1052)) +NIL +(-10 -8 (-15 -2552 ((-771) |#1|)) (-15 -2541 ((-771) |#1|)) (-15 -2126 ((-112) |#1|)) (-15 -3349 ((-112) |#1|)) (-15 -2754 ((-112) |#1|)) (-15 -3834 ((-112) |#1|))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-3349 (((-112) $) 56)) (-3174 (((-3 $ "failed") $ $) 20)) (-3834 (((-112) $) 58)) (-1453 (((-112) $ (-771)) 66)) (-1811 (($) 18 T CONST)) (-3411 (($ $) 39 (|has| |#3| (-308)))) (-3395 ((|#4| $ (-566)) 44)) (-2299 (((-771) $) 38 (|has| |#3| (-558)))) (-3653 ((|#3| $ (-566) (-566)) 46)) (-3872 (((-644 |#3|) $) 73 (|has| $ (-6 -4417)))) (-2630 (((-771) $) 37 (|has| |#3| (-558)))) (-1711 (((-644 |#5|) $) 36 (|has| |#3| (-558)))) (-2541 (((-771) $) 50)) (-2552 (((-771) $) 49)) (-2756 (((-112) $ (-771)) 65)) (-3715 (((-566) $) 54)) (-1359 (((-566) $) 52)) (-4227 (((-644 |#3|) $) 74 (|has| $ (-6 -4417)))) (-1688 (((-112) |#3| $) 76 (-12 (|has| |#3| (-1099)) (|has| $ (-6 -4417))))) (-3113 (((-566) $) 53)) (-2701 (((-566) $) 51)) (-4155 (($ (-644 (-644 |#3|))) 59)) (-3708 (($ (-1 |#3| |#3|) $) 69 (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#3| |#3|) $) 68) (($ (-1 |#3| |#3| |#3|) $ $) 42)) (-2337 (((-644 (-644 |#3|)) $) 48)) (-4106 (((-112) $ (-771)) 64)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-2976 (((-3 $ "failed") $ |#3|) 41 (|has| |#3| (-558)))) (-3966 (((-112) (-1 (-112) |#3|) $) 71 (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 |#3|) (-644 |#3|)) 80 (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099)))) (($ $ |#3| |#3|) 79 (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099)))) (($ $ (-295 |#3|)) 78 (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099)))) (($ $ (-644 (-295 |#3|))) 77 (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099))))) (-1844 (((-112) $ $) 60)) (-2788 (((-112) $) 63)) (-1737 (($) 62)) (-4376 ((|#3| $ (-566) (-566)) 47) ((|#3| $ (-566) (-566) |#3|) 45)) (-2754 (((-112) $) 57)) (-4068 (((-771) |#3| $) 75 (-12 (|has| |#3| (-1099)) (|has| $ (-6 -4417)))) (((-771) (-1 (-112) |#3|) $) 72 (|has| $ (-6 -4417)))) (-3924 (($ $) 61)) (-4327 ((|#5| $ (-566)) 43)) (-2479 (((-862) $) 12)) (-3900 (((-112) $ $) 9)) (-3667 (((-112) (-1 (-112) |#3|) $) 70 (|has| $ (-6 -4417)))) (-2126 (((-112) $) 55)) (-2446 (($) 19 T CONST)) (-2952 (((-112) $ $) 6)) (-3077 (($ $ |#3|) 40 (|has| |#3| (-365)))) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ |#3| $) 27) (($ $ |#3|) 31)) (-3002 (((-771) $) 67 (|has| $ (-6 -4417))))) +(((-1053 |#1| |#2| |#3| |#4| |#5|) (-140) (-771) (-771) (-1049) (-238 |t#2| |t#3|) (-238 |t#1| |t#3|)) (T -1053)) +((-3080 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-4155 (*1 *1 *2) (-12 (-5 *2 (-644 (-644 *5))) (-4 *5 (-1049)) (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-3834 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-2754 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-3349 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-2126 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-3715 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-566)))) (-3113 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-566)))) (-1359 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-566)))) (-2701 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-566)))) (-2541 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-771)))) (-2552 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-771)))) (-2337 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-644 (-644 *5))))) (-4376 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-566)) (-4 *1 (-1053 *4 *5 *2 *6 *7)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1049)))) (-3653 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-566)) (-4 *1 (-1053 *4 *5 *2 *6 *7)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1049)))) (-4376 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-566)) (-4 *1 (-1053 *4 *5 *2 *6 *7)) (-4 *2 (-1049)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)))) (-3395 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-4 *1 (-1053 *4 *5 *6 *2 *7)) (-4 *6 (-1049)) (-4 *7 (-238 *4 *6)) (-4 *2 (-238 *5 *6)))) (-4327 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-4 *1 (-1053 *4 *5 *6 *7 *2)) (-4 *6 (-1049)) (-4 *7 (-238 *5 *6)) (-4 *2 (-238 *4 *6)))) (-3080 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-2976 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1053 *3 *4 *2 *5 *6)) (-4 *2 (-1049)) (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-558)))) (-3077 (*1 *1 *1 *2) (-12 (-4 *1 (-1053 *3 *4 *2 *5 *6)) (-4 *2 (-1049)) (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-365)))) (-3411 (*1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4 *5 *6)) (-4 *4 (-1049)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *2 *4)) (-4 *4 (-308)))) (-2299 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-558)) (-5 *2 (-771)))) (-2630 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-558)) (-5 *2 (-771)))) (-1711 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-558)) (-5 *2 (-644 *7))))) +(-13 (-111 |t#3| |t#3|) (-491 |t#3|) (-10 -8 (-6 -4417) (IF (|has| |t#3| (-172)) (-6 (-717 |t#3|)) |%noBranch|) (-15 -4155 ($ (-644 (-644 |t#3|)))) (-15 -3834 ((-112) $)) (-15 -2754 ((-112) $)) (-15 -3349 ((-112) $)) (-15 -2126 ((-112) $)) (-15 -3715 ((-566) $)) (-15 -3113 ((-566) $)) (-15 -1359 ((-566) $)) (-15 -2701 ((-566) $)) (-15 -2541 ((-771) $)) (-15 -2552 ((-771) $)) (-15 -2337 ((-644 (-644 |t#3|)) $)) (-15 -4376 (|t#3| $ (-566) (-566))) (-15 -3653 (|t#3| $ (-566) (-566))) (-15 -4376 (|t#3| $ (-566) (-566) |t#3|)) (-15 -3395 (|t#4| $ (-566))) (-15 -4327 (|t#5| $ (-566))) (-15 -3080 ($ (-1 |t#3| |t#3|) $)) (-15 -3080 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-558)) (-15 -2976 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-365)) (-15 -3077 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-308)) (-15 -3411 ($ $)) |%noBranch|) (IF (|has| |t#3| (-558)) (PROGN (-15 -2299 ((-771) $)) (-15 -2630 ((-771) $)) (-15 -1711 ((-644 |t#5|) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-131) . T) ((-613 (-862)) . T) ((-310 |#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099))) ((-491 |#3|) . T) ((-516 |#3| |#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099))) ((-646 (-566)) . T) ((-646 |#3|) . T) ((-648 |#3|) . T) ((-640 |#3|) |has| |#3| (-172)) ((-717 |#3|) |has| |#3| (-172)) ((-1051 |#3|) . T) ((-1056 |#3|) . T) ((-1099) . T) ((-1214) . T)) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-3349 (((-112) $) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-3834 (((-112) $) NIL)) (-1453 (((-112) $ (-771)) NIL)) (-1811 (($) NIL T CONST)) (-3411 (($ $) 47 (|has| |#3| (-308)))) (-3395 (((-240 |#2| |#3|) $ (-566)) 36)) (-3580 (($ (-689 |#3|)) 45)) (-2299 (((-771) $) 49 (|has| |#3| (-558)))) (-3653 ((|#3| $ (-566) (-566)) NIL)) (-3872 (((-644 |#3|) $) NIL (|has| $ (-6 -4417)))) (-2630 (((-771) $) 51 (|has| |#3| (-558)))) (-1711 (((-644 (-240 |#1| |#3|)) $) 55 (|has| |#3| (-558)))) (-2541 (((-771) $) NIL)) (-2552 (((-771) $) NIL)) (-2756 (((-112) $ (-771)) NIL)) (-3715 (((-566) $) NIL)) (-1359 (((-566) $) NIL)) (-4227 (((-644 |#3|) $) NIL (|has| $ (-6 -4417)))) (-1688 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#3| (-1099))))) (-3113 (((-566) $) NIL)) (-2701 (((-566) $) NIL)) (-4155 (($ (-644 (-644 |#3|))) 31)) (-3708 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-2337 (((-644 (-644 |#3|)) $) NIL)) (-4106 (((-112) $ (-771)) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2976 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-558)))) (-3966 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 |#3|) (-644 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099)))) (($ $ (-295 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099)))) (($ $ (-644 (-295 |#3|))) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099))))) (-1844 (((-112) $ $) NIL)) (-2788 (((-112) $) NIL)) (-1737 (($) NIL)) (-4376 ((|#3| $ (-566) (-566)) NIL) ((|#3| $ (-566) (-566) |#3|) NIL)) (-3944 (((-134)) 59 (|has| |#3| (-365)))) (-2754 (((-112) $) NIL)) (-4068 (((-771) |#3| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#3| (-1099)))) (((-771) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4417)))) (-3924 (($ $) NIL)) (-3136 (((-538) $) 65 (|has| |#3| (-614 (-538))))) (-4327 (((-240 |#1| |#3|) $ (-566)) 40)) (-2479 (((-862) $) 19) (((-689 |#3|) $) 42)) (-3900 (((-112) $ $) NIL)) (-3667 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4417)))) (-2126 (((-112) $) NIL)) (-2446 (($) 16 T CONST)) (-2952 (((-112) $ $) NIL)) (-3077 (($ $ |#3|) NIL (|has| |#3| (-365)))) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-3002 (((-771) $) NIL (|has| $ (-6 -4417))))) +(((-1054 |#1| |#2| |#3|) (-13 (-1053 |#1| |#2| |#3| (-240 |#2| |#3|) (-240 |#1| |#3|)) (-613 (-689 |#3|)) (-10 -8 (IF (|has| |#3| (-365)) (-6 (-1271 |#3|)) |%noBranch|) (IF (|has| |#3| (-614 (-538))) (-6 (-614 (-538))) |%noBranch|) (-15 -3580 ($ (-689 |#3|))))) (-771) (-771) (-1049)) (T -1054)) +((-3580 (*1 *1 *2) (-12 (-5 *2 (-689 *5)) (-4 *5 (-1049)) (-5 *1 (-1054 *3 *4 *5)) (-14 *3 (-771)) (-14 *4 (-771))))) +(-13 (-1053 |#1| |#2| |#3| (-240 |#2| |#3|) (-240 |#1| |#3|)) (-613 (-689 |#3|)) (-10 -8 (IF (|has| |#3| (-365)) (-6 (-1271 |#3|)) |%noBranch|) (IF (|has| |#3| (-614 (-538))) (-6 (-614 (-538))) |%noBranch|) (-15 -3580 ($ (-689 |#3|))))) +((-1838 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36)) (-3080 ((|#10| (-1 |#7| |#3|) |#6|) 34))) +(((-1055 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -3080 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -1838 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-771) (-771) (-1049) (-238 |#2| |#3|) (-238 |#1| |#3|) (-1053 |#1| |#2| |#3| |#4| |#5|) (-1049) (-238 |#2| |#7|) (-238 |#1| |#7|) (-1053 |#1| |#2| |#7| |#8| |#9|)) (T -1055)) +((-1838 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1049)) (-4 *2 (-1049)) (-14 *5 (-771)) (-14 *6 (-771)) (-4 *8 (-238 *6 *7)) (-4 *9 (-238 *5 *7)) (-4 *10 (-238 *6 *2)) (-4 *11 (-238 *5 *2)) (-5 *1 (-1055 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1053 *5 *6 *7 *8 *9)) (-4 *12 (-1053 *5 *6 *2 *10 *11)))) (-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1049)) (-4 *10 (-1049)) (-14 *5 (-771)) (-14 *6 (-771)) (-4 *8 (-238 *6 *7)) (-4 *9 (-238 *5 *7)) (-4 *2 (-1053 *5 *6 *10 *11 *12)) (-5 *1 (-1055 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1053 *5 *6 *7 *8 *9)) (-4 *11 (-238 *6 *10)) (-4 *12 (-238 *5 *10))))) +(-10 -7 (-15 -3080 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -1838 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-3174 (((-3 $ "failed") $ $) 20)) (-1811 (($) 18 T CONST)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-2479 (((-862) $) 12)) (-3900 (((-112) $ $) 9)) (-2446 (($) 19 T CONST)) (-2952 (((-112) $ $) 6)) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ |#1|) 27))) +(((-1056 |#1|) (-140) (-1057)) (T -1056)) +NIL +(-13 (-21) (-1051 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-1051 |#1|) . T) ((-1099) . T)) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-3174 (((-3 $ "failed") $ $) 20)) (-1811 (($) 18 T CONST)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-2479 (((-862) $) 12)) (-3900 (((-112) $ $) 9)) (-2446 (($) 19 T CONST)) (-2952 (((-112) $ $) 6)) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 28)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27))) (((-1057) (-140)) (T -1057)) -((-1630 (*1 *1 *1) (-4 *1 (-1057))) (-2573 (*1 *1 *1) (-4 *1 (-1057))) (-1378 (*1 *1 *1) (-4 *1 (-1057))) (-2795 (*1 *1 *1) (-4 *1 (-1057))) (-2905 (*1 *2 *1) (-12 (-4 *1 (-1057)) (-5 *2 (-564)))) (-1830 (*1 *1 *1) (-4 *1 (-1057))) (-2180 (*1 *1 *1) (-4 *1 (-1057))) (-2293 (*1 *1 *1) (-4 *1 (-1057)))) -(-13 (-363) (-846) (-1020) (-1036 (-564)) (-1036 (-407 (-564))) (-1000) (-612 (-890 (-379))) (-884 (-379)) (-147) (-10 -8 (-15 -2573 ($ $)) (-15 -1378 ($ $)) (-15 -2795 ($ $)) (-15 -2905 ((-564) $)) (-15 -1830 ($ $)) (-15 -2180 ($ $)) (-15 -2293 ($ $)) (-15 -1630 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-860)) . T) ((-172) . T) ((-612 (-225)) . T) ((-612 (-379)) . T) ((-612 (-890 (-379))) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-452) . T) ((-556) . T) ((-644 #0#) . T) ((-644 (-564)) . T) ((-644 $) . T) ((-646 #0#) . T) ((-646 $) . T) ((-638 #0#) . T) ((-638 $) . T) ((-715 #0#) . T) ((-715 $) . T) ((-724) . T) ((-789) . T) ((-790) . T) ((-792) . T) ((-793) . T) ((-846) . T) ((-848) . T) ((-884 (-379)) . T) ((-918) . T) ((-1000) . T) ((-1020) . T) ((-1036 (-407 (-564))) . T) ((-1036 (-564)) . T) ((-1049 #0#) . T) ((-1049 $) . T) ((-1054 #0#) . T) ((-1054 $) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T) ((-1216) . T)) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) |#2| $) 26)) (-4003 ((|#1| $) 10)) (-2221 (((-564) |#2| $) 116)) (-2619 (((-3 $ "failed") |#2| (-919)) 75)) (-4351 ((|#1| $) 31)) (-3925 ((|#1| |#2| $ |#1|) 40)) (-2354 (($ $) 28)) (-2675 (((-3 |#2| "failed") |#2| $) 111)) (-3292 (((-112) |#2| $) NIL)) (-2666 (((-112) |#2| $) NIL)) (-2385 (((-112) |#2| $) 27)) (-2669 ((|#1| $) 117)) (-4341 ((|#1| $) 30)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-1361 ((|#2| $) 102)) (-2390 (((-860) $) 92)) (-1600 (((-112) $ $) NIL)) (-3560 ((|#1| |#2| $ |#1|) 41)) (-3873 (((-642 $) |#2|) 77)) (-2821 (((-112) $ $) 97))) -(((-1058 |#1| |#2|) (-13 (-1065 |#1| |#2|) (-10 -8 (-15 -4341 (|#1| $)) (-15 -4351 (|#1| $)) (-15 -4003 (|#1| $)) (-15 -2669 (|#1| $)) (-15 -2354 ($ $)) (-15 -2385 ((-112) |#2| $)) (-15 -3925 (|#1| |#2| $ |#1|)))) (-13 (-846) (-363)) (-1238 |#1|)) (T -1058)) -((-3925 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-846) (-363))) (-5 *1 (-1058 *2 *3)) (-4 *3 (-1238 *2)))) (-4341 (*1 *2 *1) (-12 (-4 *2 (-13 (-846) (-363))) (-5 *1 (-1058 *2 *3)) (-4 *3 (-1238 *2)))) (-4351 (*1 *2 *1) (-12 (-4 *2 (-13 (-846) (-363))) (-5 *1 (-1058 *2 *3)) (-4 *3 (-1238 *2)))) (-4003 (*1 *2 *1) (-12 (-4 *2 (-13 (-846) (-363))) (-5 *1 (-1058 *2 *3)) (-4 *3 (-1238 *2)))) (-2669 (*1 *2 *1) (-12 (-4 *2 (-13 (-846) (-363))) (-5 *1 (-1058 *2 *3)) (-4 *3 (-1238 *2)))) (-2354 (*1 *1 *1) (-12 (-4 *2 (-13 (-846) (-363))) (-5 *1 (-1058 *2 *3)) (-4 *3 (-1238 *2)))) (-2385 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-846) (-363))) (-5 *2 (-112)) (-5 *1 (-1058 *4 *3)) (-4 *3 (-1238 *4))))) -(-13 (-1065 |#1| |#2|) (-10 -8 (-15 -4341 (|#1| $)) (-15 -4351 (|#1| $)) (-15 -4003 (|#1| $)) (-15 -2669 (|#1| $)) (-15 -2354 ($ $)) (-15 -2385 ((-112) |#2| $)) (-15 -3925 (|#1| |#2| $ |#1|)))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-4252 (($ $) NIL)) (-1722 (((-112) $) NIL)) (-2290 (($ $ $) NIL)) (-3085 (((-3 $ "failed") $ $) NIL)) (-4062 (($ $ $ $) NIL)) (-1993 (($ $) NIL)) (-3282 (((-418 $) $) NIL)) (-2134 (((-112) $ $) NIL)) (-2221 (((-564) $) NIL)) (-2966 (($ $ $) NIL)) (-2822 (($) NIL T CONST)) (-3539 (($ (-1173)) 10) (($ (-564)) 7)) (-2849 (((-3 (-564) "failed") $) NIL)) (-1687 (((-564) $) NIL)) (-2796 (($ $ $) NIL)) (-3330 (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL) (((-687 (-564)) (-687 $)) NIL)) (-2675 (((-3 $ "failed") $) NIL)) (-3227 (((-3 (-407 (-564)) "failed") $) NIL)) (-2929 (((-112) $) NIL)) (-3536 (((-407 (-564)) $) NIL)) (-3235 (($) NIL) (($ $) NIL)) (-2808 (($ $ $) NIL)) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) NIL)) (-3552 (((-112) $) NIL)) (-1454 (($ $ $ $) NIL)) (-2271 (($ $ $) NIL)) (-3292 (((-112) $) NIL)) (-2641 (($ $ $) NIL)) (-1381 (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) NIL)) (-3163 (((-112) $) NIL)) (-2829 (((-112) $) NIL)) (-4382 (((-3 $ "failed") $) NIL)) (-2666 (((-112) $) NIL)) (-2709 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-1957 (($ $ $ $) NIL)) (-3225 (($ $ $) NIL)) (-2903 (($ $ $) NIL)) (-1526 (($ $) NIL)) (-2495 (($ $) NIL)) (-2066 (($ $ $) NIL) (($ (-642 $)) NIL)) (-1778 (((-1155) $) NIL)) (-3010 (($ $ $) NIL)) (-3910 (($) NIL T CONST)) (-4258 (($ $) NIL)) (-3999 (((-1117) $) NIL)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2105 (($ $ $) NIL) (($ (-642 $)) NIL)) (-1420 (($ $) NIL)) (-2254 (((-418 $) $) NIL)) (-1877 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL)) (-2842 (((-3 $ "failed") $ $) NIL)) (-1483 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2211 (((-112) $) NIL)) (-4274 (((-769) $) NIL)) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL)) (-2199 (($ $ (-769)) NIL) (($ $) NIL)) (-1855 (($ $) NIL)) (-3865 (($ $) NIL)) (-3003 (((-564) $) 16) (((-536) $) NIL) (((-890 (-564)) $) NIL) (((-379) $) NIL) (((-225) $) NIL) (($ (-1173)) 9)) (-2390 (((-860) $) 23) (($ (-564)) 6) (($ $) NIL) (($ (-564)) 6)) (-3348 (((-769)) NIL T CONST)) (-3029 (((-112) $ $) NIL)) (-4271 (($ $ $) NIL)) (-1600 (((-112) $ $) NIL)) (-1959 (($) NIL)) (-1594 (((-112) $ $) NIL)) (-3234 (($ $ $ $) NIL)) (-1630 (($ $) NIL)) (-2361 (($) NIL T CONST)) (-2371 (($) NIL T CONST)) (-2711 (($ $ (-769)) NIL) (($ $) NIL)) (-2881 (((-112) $ $) NIL)) (-2857 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL)) (-2868 (((-112) $ $) NIL)) (-2844 (((-112) $ $) NIL)) (-2930 (($ $) 22) (($ $ $) NIL)) (-2917 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL))) -(((-1059) (-13 (-545) (-616 (-1173)) (-10 -8 (-6 -4397) (-6 -4402) (-6 -4398) (-15 -3539 ($ (-1173))) (-15 -3539 ($ (-564)))))) (T -1059)) -((-3539 (*1 *1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-1059)))) (-3539 (*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1059))))) -(-13 (-545) (-616 (-1173)) (-10 -8 (-6 -4397) (-6 -4402) (-6 -4398) (-15 -3539 ($ (-1173))) (-15 -3539 ($ (-564))))) -((-2856 (((-112) $ $) NIL (-2682 (|has| (-52) (-1097)) (|has| (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-1097))))) (-4222 (($) NIL) (($ (-642 (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))))) NIL)) (-3633 (((-1267) $ (-1173) (-1173)) NIL (|has| $ (-6 -4411)))) (-3442 (((-112) $ (-769)) NIL)) (-3836 (($) 9)) (-3841 (((-52) $ (-1173) (-52)) NIL)) (-3123 (($ $) 32)) (-2241 (($ $) 30)) (-2168 (($ $) 29)) (-1827 (($ $) 31)) (-2746 (($ $) 35)) (-1652 (($ $) 36)) (-1587 (($ $) 28)) (-1823 (($ $) 33)) (-2438 (($ (-1 (-112) (-2 (|:| -1914 (-1173)) (|:| -2683 (-52)))) $) NIL (|has| $ (-6 -4410)))) (-3437 (($ (-1 (-112) (-2 (|:| -1914 (-1173)) (|:| -2683 (-52)))) $) 27 (|has| $ (-6 -4410)))) (-2295 (((-3 (-52) "failed") (-1173) $) 43)) (-2822 (($) NIL T CONST)) (-1793 (($) 7)) (-4067 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-1097))))) (-1927 (($ (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) $) 53 (|has| $ (-6 -4410))) (($ (-1 (-112) (-2 (|:| -1914 (-1173)) (|:| -2683 (-52)))) $) NIL (|has| $ (-6 -4410))) (((-3 (-52) "failed") (-1173) $) NIL)) (-2517 (($ (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-1097)))) (($ (-1 (-112) (-2 (|:| -1914 (-1173)) (|:| -2683 (-52)))) $) NIL (|has| $ (-6 -4410)))) (-3741 (((-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-1 (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-2 (|:| -1914 (-1173)) (|:| -2683 (-52)))) $ (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-2 (|:| -1914 (-1173)) (|:| -2683 (-52)))) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-1097)))) (((-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-1 (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-2 (|:| -1914 (-1173)) (|:| -2683 (-52)))) $ (-2 (|:| -1914 (-1173)) (|:| -2683 (-52)))) NIL (|has| $ (-6 -4410))) (((-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-1 (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-2 (|:| -1914 (-1173)) (|:| -2683 (-52)))) $) NIL (|has| $ (-6 -4410)))) (-1745 (((-3 (-1155) "failed") $ (-1155) (-564)) 74)) (-3105 (((-52) $ (-1173) (-52)) NIL (|has| $ (-6 -4411)))) (-1804 (((-52) $ (-1173)) NIL)) (-2018 (((-642 (-2 (|:| -1914 (-1173)) (|:| -2683 (-52)))) $) NIL (|has| $ (-6 -4410))) (((-642 (-52)) $) NIL (|has| $ (-6 -4410)))) (-3769 (((-112) $ (-769)) NIL)) (-1802 (((-1173) $) NIL (|has| (-1173) (-848)))) (-3541 (((-642 (-2 (|:| -1914 (-1173)) (|:| -2683 (-52)))) $) 38 (|has| $ (-6 -4410))) (((-642 (-52)) $) NIL (|has| $ (-6 -4410)))) (-2533 (((-112) (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-1097)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-52) (-1097))))) (-3624 (((-1173) $) NIL (|has| (-1173) (-848)))) (-1857 (($ (-1 (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-2 (|:| -1914 (-1173)) (|:| -2683 (-52)))) $) NIL (|has| $ (-6 -4411))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4411)))) (-2947 (($ (-1 (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-2 (|:| -1914 (-1173)) (|:| -2683 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-4145 (((-112) $ (-769)) NIL)) (-1778 (((-1155) $) NIL (-2682 (|has| (-52) (-1097)) (|has| (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-1097))))) (-3287 (((-642 (-1173)) $) NIL)) (-2145 (((-112) (-1173) $) NIL)) (-3220 (((-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) $) NIL)) (-1668 (($ (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) $) 46)) (-4107 (((-642 (-1173)) $) NIL)) (-4207 (((-112) (-1173) $) NIL)) (-3999 (((-1117) $) NIL (-2682 (|has| (-52) (-1097)) (|has| (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-1097))))) (-2745 (((-379) $ (-1173)) 52)) (-4100 (((-642 (-1155)) $ (-1155)) 76)) (-4036 (((-52) $) NIL (|has| (-1173) (-848)))) (-3183 (((-3 (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) "failed") (-1 (-112) (-2 (|:| -1914 (-1173)) (|:| -2683 (-52)))) $) NIL)) (-3826 (($ $ (-52)) NIL (|has| $ (-6 -4411)))) (-4314 (((-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) $) NIL)) (-4094 (((-112) (-1 (-112) (-2 (|:| -1914 (-1173)) (|:| -2683 (-52)))) $) NIL (|has| $ (-6 -4410))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 (-2 (|:| -1914 (-1173)) (|:| -2683 (-52)))))) NIL (-12 (|has| (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-309 (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))))) (|has| (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-1097)))) (($ $ (-294 (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))))) NIL (-12 (|has| (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-309 (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))))) (|has| (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-1097)))) (($ $ (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-2 (|:| -1914 (-1173)) (|:| -2683 (-52)))) NIL (-12 (|has| (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-309 (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))))) (|has| (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-1097)))) (($ $ (-642 (-2 (|:| -1914 (-1173)) (|:| -2683 (-52)))) (-642 (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))))) NIL (-12 (|has| (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-309 (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))))) (|has| (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-1097)))) (($ $ (-642 (-52)) (-642 (-52))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1097)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1097)))) (($ $ (-294 (-52))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1097)))) (($ $ (-642 (-294 (-52)))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1097))))) (-2478 (((-112) $ $) NIL)) (-1643 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-52) (-1097))))) (-3522 (((-642 (-52)) $) NIL)) (-4109 (((-112) $) NIL)) (-2179 (($) NIL)) (-4369 (((-52) $ (-1173)) NIL) (((-52) $ (-1173) (-52)) NIL)) (-2318 (($) NIL) (($ (-642 (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))))) NIL)) (-2432 (($ $ (-1173)) 54)) (-4010 (((-769) (-1 (-112) (-2 (|:| -1914 (-1173)) (|:| -2683 (-52)))) $) NIL (|has| $ (-6 -4410))) (((-769) (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-1097)))) (((-769) (-52) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-52) (-1097)))) (((-769) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4410)))) (-3865 (($ $) NIL)) (-3003 (((-536) $) NIL (|has| (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-612 (-536))))) (-2401 (($ (-642 (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))))) 40)) (-3634 (($ $ $) 41)) (-2390 (((-860) $) NIL (-2682 (|has| (-52) (-611 (-860))) (|has| (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-611 (-860)))))) (-1376 (($ $ (-1173) (-379)) 50)) (-2727 (($ $ (-1173) (-379)) 51)) (-1600 (((-112) $ $) NIL (-2682 (|has| (-52) (-1097)) (|has| (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-1097))))) (-4160 (($ (-642 (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))))) NIL)) (-3295 (((-112) (-1 (-112) (-2 (|:| -1914 (-1173)) (|:| -2683 (-52)))) $) NIL (|has| $ (-6 -4410))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4410)))) (-2821 (((-112) $ $) NIL (-2682 (|has| (-52) (-1097)) (|has| (-2 (|:| -1914 (-1173)) (|:| -2683 (-52))) (-1097))))) (-2158 (((-769) $) NIL (|has| $ (-6 -4410))))) -(((-1060) (-13 (-1188 (-1173) (-52)) (-10 -8 (-15 -3634 ($ $ $)) (-15 -1793 ($)) (-15 -1587 ($ $)) (-15 -2168 ($ $)) (-15 -2241 ($ $)) (-15 -1827 ($ $)) (-15 -1823 ($ $)) (-15 -3123 ($ $)) (-15 -2746 ($ $)) (-15 -1652 ($ $)) (-15 -1376 ($ $ (-1173) (-379))) (-15 -2727 ($ $ (-1173) (-379))) (-15 -2745 ((-379) $ (-1173))) (-15 -4100 ((-642 (-1155)) $ (-1155))) (-15 -2432 ($ $ (-1173))) (-15 -3836 ($)) (-15 -1745 ((-3 (-1155) "failed") $ (-1155) (-564))) (-6 -4410)))) (T -1060)) -((-3634 (*1 *1 *1 *1) (-5 *1 (-1060))) (-1793 (*1 *1) (-5 *1 (-1060))) (-1587 (*1 *1 *1) (-5 *1 (-1060))) (-2168 (*1 *1 *1) (-5 *1 (-1060))) (-2241 (*1 *1 *1) (-5 *1 (-1060))) (-1827 (*1 *1 *1) (-5 *1 (-1060))) (-1823 (*1 *1 *1) (-5 *1 (-1060))) (-3123 (*1 *1 *1) (-5 *1 (-1060))) (-2746 (*1 *1 *1) (-5 *1 (-1060))) (-1652 (*1 *1 *1) (-5 *1 (-1060))) (-1376 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-379)) (-5 *1 (-1060)))) (-2727 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-379)) (-5 *1 (-1060)))) (-2745 (*1 *2 *1 *3) (-12 (-5 *3 (-1173)) (-5 *2 (-379)) (-5 *1 (-1060)))) (-4100 (*1 *2 *1 *3) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-1060)) (-5 *3 (-1155)))) (-2432 (*1 *1 *1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-1060)))) (-3836 (*1 *1) (-5 *1 (-1060))) (-1745 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1155)) (-5 *3 (-564)) (-5 *1 (-1060))))) -(-13 (-1188 (-1173) (-52)) (-10 -8 (-15 -3634 ($ $ $)) (-15 -1793 ($)) (-15 -1587 ($ $)) (-15 -2168 ($ $)) (-15 -2241 ($ $)) (-15 -1827 ($ $)) (-15 -1823 ($ $)) (-15 -3123 ($ $)) (-15 -2746 ($ $)) (-15 -1652 ($ $)) (-15 -1376 ($ $ (-1173) (-379))) (-15 -2727 ($ $ (-1173) (-379))) (-15 -2745 ((-379) $ (-1173))) (-15 -4100 ((-642 (-1155)) $ (-1155))) (-15 -2432 ($ $ (-1173))) (-15 -3836 ($)) (-15 -1745 ((-3 (-1155) "failed") $ (-1155) (-564))) (-6 -4410))) -((-3107 (($ $) 46)) (-3835 (((-112) $ $) 82)) (-2849 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 (-564) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-950 (-407 (-564)))) 253) (((-3 $ "failed") (-950 (-564))) 252) (((-3 $ "failed") (-950 |#2|)) 255)) (-1687 ((|#2| $) NIL) (((-407 (-564)) $) NIL) (((-564) $) NIL) ((|#4| $) NIL) (($ (-950 (-407 (-564)))) 241) (($ (-950 (-564))) 237) (($ (-950 |#2|)) 257)) (-3459 (($ $) NIL) (($ $ |#4|) 44)) (-3762 (((-112) $ $) 131) (((-112) $ (-642 $)) 135)) (-1471 (((-112) $) 60)) (-1555 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) 125)) (-1922 (($ $) 160)) (-2375 (($ $) 156)) (-1965 (($ $) 155)) (-3262 (($ $ $) 87) (($ $ $ |#4|) 92)) (-2882 (($ $ $) 90) (($ $ $ |#4|) 94)) (-3303 (((-112) $ $) 143) (((-112) $ (-642 $)) 144)) (-1715 ((|#4| $) 32)) (-4146 (($ $ $) 128)) (-3113 (((-112) $) 59)) (-3200 (((-769) $) 35)) (-2447 (($ $) 174)) (-1443 (($ $) 171)) (-2894 (((-642 $) $) 72)) (-3015 (($ $) 62)) (-3377 (($ $) 167)) (-3161 (((-642 $) $) 69)) (-3479 (($ $) 64)) (-2523 ((|#2| $) NIL) (($ $ |#4|) 39)) (-4102 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2604 (-769))) $ $) 130)) (-2039 (((-2 (|:| -2968 $) (|:| |gap| (-769)) (|:| -4332 $) (|:| -1992 $)) $ $) 126) (((-2 (|:| -2968 $) (|:| |gap| (-769)) (|:| -4332 $) (|:| -1992 $)) $ $ |#4|) 127)) (-3905 (((-2 (|:| -2968 $) (|:| |gap| (-769)) (|:| -1992 $)) $ $) 121) (((-2 (|:| -2968 $) (|:| |gap| (-769)) (|:| -1992 $)) $ $ |#4|) 123)) (-2053 (($ $ $) 97) (($ $ $ |#4|) 106)) (-4364 (($ $ $) 98) (($ $ $ |#4|) 107)) (-3976 (((-642 $) $) 54)) (-3673 (((-112) $ $) 140) (((-112) $ (-642 $)) 141)) (-4090 (($ $ $) 116)) (-3910 (($ $) 37)) (-3119 (((-112) $ $) 80)) (-4354 (((-112) $ $) 136) (((-112) $ (-642 $)) 138)) (-3750 (($ $ $) 112)) (-3332 (($ $) 41)) (-2105 ((|#2| |#2| $) 164) (($ (-642 $)) NIL) (($ $ $) NIL)) (-4389 (($ $ |#2|) NIL) (($ $ $) 153)) (-2595 (($ $ |#2|) 148) (($ $ $) 151)) (-1405 (($ $) 49)) (-4147 (($ $) 55)) (-3003 (((-890 (-379)) $) NIL) (((-890 (-564)) $) NIL) (((-536) $) NIL) (($ (-950 (-407 (-564)))) 243) (($ (-950 (-564))) 239) (($ (-950 |#2|)) 254) (((-1155) $) 281) (((-950 |#2|) $) 184)) (-2390 (((-860) $) 29) (($ (-564)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-950 |#2|) $) 185) (($ (-407 (-564))) NIL) (($ $) NIL)) (-3534 (((-3 (-112) "failed") $ $) 79))) -(((-1061 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2390 (|#1| |#1|)) (-15 -2105 (|#1| |#1| |#1|)) (-15 -2105 (|#1| (-642 |#1|))) (-15 -2390 (|#1| (-407 (-564)))) (-15 -2390 ((-950 |#2|) |#1|)) (-15 -3003 ((-950 |#2|) |#1|)) (-15 -3003 ((-1155) |#1|)) (-15 -2447 (|#1| |#1|)) (-15 -1443 (|#1| |#1|)) (-15 -3377 (|#1| |#1|)) (-15 -1922 (|#1| |#1|)) (-15 -2105 (|#2| |#2| |#1|)) (-15 -4389 (|#1| |#1| |#1|)) (-15 -2595 (|#1| |#1| |#1|)) (-15 -4389 (|#1| |#1| |#2|)) (-15 -2595 (|#1| |#1| |#2|)) (-15 -2375 (|#1| |#1|)) (-15 -1965 (|#1| |#1|)) (-15 -3003 (|#1| (-950 |#2|))) (-15 -1687 (|#1| (-950 |#2|))) (-15 -2849 ((-3 |#1| "failed") (-950 |#2|))) (-15 -3003 (|#1| (-950 (-564)))) (-15 -1687 (|#1| (-950 (-564)))) (-15 -2849 ((-3 |#1| "failed") (-950 (-564)))) (-15 -3003 (|#1| (-950 (-407 (-564))))) (-15 -1687 (|#1| (-950 (-407 (-564))))) (-15 -2849 ((-3 |#1| "failed") (-950 (-407 (-564))))) (-15 -4090 (|#1| |#1| |#1|)) (-15 -3750 (|#1| |#1| |#1|)) (-15 -4102 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -2604 (-769))) |#1| |#1|)) (-15 -4146 (|#1| |#1| |#1|)) (-15 -1555 ((-2 (|:| -4332 |#1|) (|:| -1992 |#1|)) |#1| |#1|)) (-15 -2039 ((-2 (|:| -2968 |#1|) (|:| |gap| (-769)) (|:| -4332 |#1|) (|:| -1992 |#1|)) |#1| |#1| |#4|)) (-15 -2039 ((-2 (|:| -2968 |#1|) (|:| |gap| (-769)) (|:| -4332 |#1|) (|:| -1992 |#1|)) |#1| |#1|)) (-15 -3905 ((-2 (|:| -2968 |#1|) (|:| |gap| (-769)) (|:| -1992 |#1|)) |#1| |#1| |#4|)) (-15 -3905 ((-2 (|:| -2968 |#1|) (|:| |gap| (-769)) (|:| -1992 |#1|)) |#1| |#1|)) (-15 -4364 (|#1| |#1| |#1| |#4|)) (-15 -2053 (|#1| |#1| |#1| |#4|)) (-15 -4364 (|#1| |#1| |#1|)) (-15 -2053 (|#1| |#1| |#1|)) (-15 -2882 (|#1| |#1| |#1| |#4|)) (-15 -3262 (|#1| |#1| |#1| |#4|)) (-15 -2882 (|#1| |#1| |#1|)) (-15 -3262 (|#1| |#1| |#1|)) (-15 -3303 ((-112) |#1| (-642 |#1|))) (-15 -3303 ((-112) |#1| |#1|)) (-15 -3673 ((-112) |#1| (-642 |#1|))) (-15 -3673 ((-112) |#1| |#1|)) (-15 -4354 ((-112) |#1| (-642 |#1|))) (-15 -4354 ((-112) |#1| |#1|)) (-15 -3762 ((-112) |#1| (-642 |#1|))) (-15 -3762 ((-112) |#1| |#1|)) (-15 -3835 ((-112) |#1| |#1|)) (-15 -3119 ((-112) |#1| |#1|)) (-15 -3534 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2894 ((-642 |#1|) |#1|)) (-15 -3161 ((-642 |#1|) |#1|)) (-15 -3479 (|#1| |#1|)) (-15 -3015 (|#1| |#1|)) (-15 -1471 ((-112) |#1|)) (-15 -3113 ((-112) |#1|)) (-15 -3459 (|#1| |#1| |#4|)) (-15 -2523 (|#1| |#1| |#4|)) (-15 -4147 (|#1| |#1|)) (-15 -3976 ((-642 |#1|) |#1|)) (-15 -1405 (|#1| |#1|)) (-15 -3107 (|#1| |#1|)) (-15 -3332 (|#1| |#1|)) (-15 -3910 (|#1| |#1|)) (-15 -3200 ((-769) |#1|)) (-15 -1715 (|#4| |#1|)) (-15 -3003 ((-536) |#1|)) (-15 -3003 ((-890 (-564)) |#1|)) (-15 -3003 ((-890 (-379)) |#1|)) (-15 -2390 (|#1| |#4|)) (-15 -2849 ((-3 |#4| "failed") |#1|)) (-15 -1687 (|#4| |#1|)) (-15 -2523 (|#2| |#1|)) (-15 -3459 (|#1| |#1|)) (-15 -2849 ((-3 (-564) "failed") |#1|)) (-15 -1687 ((-564) |#1|)) (-15 -2849 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -1687 ((-407 (-564)) |#1|)) (-15 -1687 (|#2| |#1|)) (-15 -2849 ((-3 |#2| "failed") |#1|)) (-15 -2390 (|#1| |#2|)) (-15 -2390 (|#1| (-564))) (-15 -2390 ((-860) |#1|))) (-1062 |#2| |#3| |#4|) (-1047) (-791) (-848)) (T -1061)) -NIL -(-10 -8 (-15 -2390 (|#1| |#1|)) (-15 -2105 (|#1| |#1| |#1|)) (-15 -2105 (|#1| (-642 |#1|))) (-15 -2390 (|#1| (-407 (-564)))) (-15 -2390 ((-950 |#2|) |#1|)) (-15 -3003 ((-950 |#2|) |#1|)) (-15 -3003 ((-1155) |#1|)) (-15 -2447 (|#1| |#1|)) (-15 -1443 (|#1| |#1|)) (-15 -3377 (|#1| |#1|)) (-15 -1922 (|#1| |#1|)) (-15 -2105 (|#2| |#2| |#1|)) (-15 -4389 (|#1| |#1| |#1|)) (-15 -2595 (|#1| |#1| |#1|)) (-15 -4389 (|#1| |#1| |#2|)) (-15 -2595 (|#1| |#1| |#2|)) (-15 -2375 (|#1| |#1|)) (-15 -1965 (|#1| |#1|)) (-15 -3003 (|#1| (-950 |#2|))) (-15 -1687 (|#1| (-950 |#2|))) (-15 -2849 ((-3 |#1| "failed") (-950 |#2|))) (-15 -3003 (|#1| (-950 (-564)))) (-15 -1687 (|#1| (-950 (-564)))) (-15 -2849 ((-3 |#1| "failed") (-950 (-564)))) (-15 -3003 (|#1| (-950 (-407 (-564))))) (-15 -1687 (|#1| (-950 (-407 (-564))))) (-15 -2849 ((-3 |#1| "failed") (-950 (-407 (-564))))) (-15 -4090 (|#1| |#1| |#1|)) (-15 -3750 (|#1| |#1| |#1|)) (-15 -4102 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -2604 (-769))) |#1| |#1|)) (-15 -4146 (|#1| |#1| |#1|)) (-15 -1555 ((-2 (|:| -4332 |#1|) (|:| -1992 |#1|)) |#1| |#1|)) (-15 -2039 ((-2 (|:| -2968 |#1|) (|:| |gap| (-769)) (|:| -4332 |#1|) (|:| -1992 |#1|)) |#1| |#1| |#4|)) (-15 -2039 ((-2 (|:| -2968 |#1|) (|:| |gap| (-769)) (|:| -4332 |#1|) (|:| -1992 |#1|)) |#1| |#1|)) (-15 -3905 ((-2 (|:| -2968 |#1|) (|:| |gap| (-769)) (|:| -1992 |#1|)) |#1| |#1| |#4|)) (-15 -3905 ((-2 (|:| -2968 |#1|) (|:| |gap| (-769)) (|:| -1992 |#1|)) |#1| |#1|)) (-15 -4364 (|#1| |#1| |#1| |#4|)) (-15 -2053 (|#1| |#1| |#1| |#4|)) (-15 -4364 (|#1| |#1| |#1|)) (-15 -2053 (|#1| |#1| |#1|)) (-15 -2882 (|#1| |#1| |#1| |#4|)) (-15 -3262 (|#1| |#1| |#1| |#4|)) (-15 -2882 (|#1| |#1| |#1|)) (-15 -3262 (|#1| |#1| |#1|)) (-15 -3303 ((-112) |#1| (-642 |#1|))) (-15 -3303 ((-112) |#1| |#1|)) (-15 -3673 ((-112) |#1| (-642 |#1|))) (-15 -3673 ((-112) |#1| |#1|)) (-15 -4354 ((-112) |#1| (-642 |#1|))) (-15 -4354 ((-112) |#1| |#1|)) (-15 -3762 ((-112) |#1| (-642 |#1|))) (-15 -3762 ((-112) |#1| |#1|)) (-15 -3835 ((-112) |#1| |#1|)) (-15 -3119 ((-112) |#1| |#1|)) (-15 -3534 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2894 ((-642 |#1|) |#1|)) (-15 -3161 ((-642 |#1|) |#1|)) (-15 -3479 (|#1| |#1|)) (-15 -3015 (|#1| |#1|)) (-15 -1471 ((-112) |#1|)) (-15 -3113 ((-112) |#1|)) (-15 -3459 (|#1| |#1| |#4|)) (-15 -2523 (|#1| |#1| |#4|)) (-15 -4147 (|#1| |#1|)) (-15 -3976 ((-642 |#1|) |#1|)) (-15 -1405 (|#1| |#1|)) (-15 -3107 (|#1| |#1|)) (-15 -3332 (|#1| |#1|)) (-15 -3910 (|#1| |#1|)) (-15 -3200 ((-769) |#1|)) (-15 -1715 (|#4| |#1|)) (-15 -3003 ((-536) |#1|)) (-15 -3003 ((-890 (-564)) |#1|)) (-15 -3003 ((-890 (-379)) |#1|)) (-15 -2390 (|#1| |#4|)) (-15 -2849 ((-3 |#4| "failed") |#1|)) (-15 -1687 (|#4| |#1|)) (-15 -2523 (|#2| |#1|)) (-15 -3459 (|#1| |#1|)) (-15 -2849 ((-3 (-564) "failed") |#1|)) (-15 -1687 ((-564) |#1|)) (-15 -2849 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -1687 ((-407 (-564)) |#1|)) (-15 -1687 (|#2| |#1|)) (-15 -2849 ((-3 |#2| "failed") |#1|)) (-15 -2390 (|#1| |#2|)) (-15 -2390 (|#1| (-564))) (-15 -2390 ((-860) |#1|))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-2397 (((-642 |#3|) $) 112)) (-2223 (((-1169 $) $ |#3|) 127) (((-1169 |#1|) $) 126)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) 89 (|has| |#1| (-556)))) (-4252 (($ $) 90 (|has| |#1| (-556)))) (-1722 (((-112) $) 92 (|has| |#1| (-556)))) (-4035 (((-769) $) 114) (((-769) $ (-642 |#3|)) 113)) (-3107 (($ $) 273)) (-3835 (((-112) $ $) 259)) (-3085 (((-3 $ "failed") $ $) 20)) (-2106 (($ $ $) 218 (|has| |#1| (-556)))) (-2557 (((-642 $) $ $) 213 (|has| |#1| (-556)))) (-4297 (((-418 (-1169 $)) (-1169 $)) 102 (|has| |#1| (-907)))) (-1993 (($ $) 100 (|has| |#1| (-452)))) (-3282 (((-418 $) $) 99 (|has| |#1| (-452)))) (-3267 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) 105 (|has| |#1| (-907)))) (-2822 (($) 18 T CONST)) (-2849 (((-3 |#1| "failed") $) 166) (((-3 (-407 (-564)) "failed") $) 163 (|has| |#1| (-1036 (-407 (-564))))) (((-3 (-564) "failed") $) 161 (|has| |#1| (-1036 (-564)))) (((-3 |#3| "failed") $) 138) (((-3 $ "failed") (-950 (-407 (-564)))) 233 (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#3| (-612 (-1173))))) (((-3 $ "failed") (-950 (-564))) 230 (-2682 (-12 (-2307 (|has| |#1| (-38 (-407 (-564))))) (|has| |#1| (-38 (-564))) (|has| |#3| (-612 (-1173)))) (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#3| (-612 (-1173)))))) (((-3 $ "failed") (-950 |#1|)) 227 (-2682 (-12 (-2307 (|has| |#1| (-38 (-407 (-564))))) (-2307 (|has| |#1| (-38 (-564)))) (|has| |#3| (-612 (-1173)))) (-12 (-2307 (|has| |#1| (-545))) (-2307 (|has| |#1| (-38 (-407 (-564))))) (|has| |#1| (-38 (-564))) (|has| |#3| (-612 (-1173)))) (-12 (-2307 (|has| |#1| (-990 (-564)))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#3| (-612 (-1173))))))) (-1687 ((|#1| $) 165) (((-407 (-564)) $) 164 (|has| |#1| (-1036 (-407 (-564))))) (((-564) $) 162 (|has| |#1| (-1036 (-564)))) ((|#3| $) 139) (($ (-950 (-407 (-564)))) 232 (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#3| (-612 (-1173))))) (($ (-950 (-564))) 229 (-2682 (-12 (-2307 (|has| |#1| (-38 (-407 (-564))))) (|has| |#1| (-38 (-564))) (|has| |#3| (-612 (-1173)))) (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#3| (-612 (-1173)))))) (($ (-950 |#1|)) 226 (-2682 (-12 (-2307 (|has| |#1| (-38 (-407 (-564))))) (-2307 (|has| |#1| (-38 (-564)))) (|has| |#3| (-612 (-1173)))) (-12 (-2307 (|has| |#1| (-545))) (-2307 (|has| |#1| (-38 (-407 (-564))))) (|has| |#1| (-38 (-564))) (|has| |#3| (-612 (-1173)))) (-12 (-2307 (|has| |#1| (-990 (-564)))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#3| (-612 (-1173))))))) (-3710 (($ $ $ |#3|) 110 (|has| |#1| (-172))) (($ $ $) 214 (|has| |#1| (-556)))) (-3459 (($ $) 156) (($ $ |#3|) 268)) (-3330 (((-687 (-564)) (-687 $)) 136 (|has| |#1| (-637 (-564)))) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) 135 (|has| |#1| (-637 (-564)))) (((-2 (|:| -3544 (-687 |#1|)) (|:| |vec| (-1262 |#1|))) (-687 $) (-1262 $)) 134) (((-687 |#1|) (-687 $)) 133)) (-3762 (((-112) $ $) 258) (((-112) $ (-642 $)) 257)) (-2675 (((-3 $ "failed") $) 37)) (-1471 (((-112) $) 266)) (-1555 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) 238)) (-1922 (($ $) 207 (|has| |#1| (-452)))) (-2511 (($ $) 178 (|has| |#1| (-452))) (($ $ |#3|) 107 (|has| |#1| (-452)))) (-3446 (((-642 $) $) 111)) (-3552 (((-112) $) 98 (|has| |#1| (-907)))) (-2375 (($ $) 223 (|has| |#1| (-556)))) (-1965 (($ $) 224 (|has| |#1| (-556)))) (-3262 (($ $ $) 250) (($ $ $ |#3|) 248)) (-2882 (($ $ $) 249) (($ $ $ |#3|) 247)) (-2315 (($ $ |#1| |#2| $) 174)) (-1381 (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) 86 (-12 (|has| |#3| (-884 (-379))) (|has| |#1| (-884 (-379))))) (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) 85 (-12 (|has| |#3| (-884 (-564))) (|has| |#1| (-884 (-564)))))) (-3163 (((-112) $) 35)) (-1904 (((-769) $) 171)) (-3303 (((-112) $ $) 252) (((-112) $ (-642 $)) 251)) (-2252 (($ $ $ $ $) 209 (|has| |#1| (-556)))) (-1715 ((|#3| $) 277)) (-2387 (($ (-1169 |#1|) |#3|) 119) (($ (-1169 $) |#3|) 118)) (-1995 (((-642 $) $) 128)) (-3471 (((-112) $) 154)) (-2374 (($ |#1| |#2|) 155) (($ $ |#3| (-769)) 121) (($ $ (-642 |#3|) (-642 (-769))) 120)) (-4146 (($ $ $) 237)) (-3312 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $ |#3|) 122)) (-3113 (((-112) $) 267)) (-2887 ((|#2| $) 172) (((-769) $ |#3|) 124) (((-642 (-769)) $ (-642 |#3|)) 123)) (-3200 (((-769) $) 276)) (-3879 (($ (-1 |#2| |#2|) $) 173)) (-2947 (($ (-1 |#1| |#1|) $) 153)) (-1557 (((-3 |#3| "failed") $) 125)) (-2447 (($ $) 204 (|has| |#1| (-452)))) (-1443 (($ $) 205 (|has| |#1| (-452)))) (-2894 (((-642 $) $) 262)) (-3015 (($ $) 265)) (-3377 (($ $) 206 (|has| |#1| (-452)))) (-3161 (((-642 $) $) 263)) (-3479 (($ $) 264)) (-2510 (($ $) 151)) (-2523 ((|#1| $) 150) (($ $ |#3|) 269)) (-2066 (($ (-642 $)) 96 (|has| |#1| (-452))) (($ $ $) 95 (|has| |#1| (-452)))) (-4102 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2604 (-769))) $ $) 236)) (-2039 (((-2 (|:| -2968 $) (|:| |gap| (-769)) (|:| -4332 $) (|:| -1992 $)) $ $) 240) (((-2 (|:| -2968 $) (|:| |gap| (-769)) (|:| -4332 $) (|:| -1992 $)) $ $ |#3|) 239)) (-3905 (((-2 (|:| -2968 $) (|:| |gap| (-769)) (|:| -1992 $)) $ $) 242) (((-2 (|:| -2968 $) (|:| |gap| (-769)) (|:| -1992 $)) $ $ |#3|) 241)) (-2053 (($ $ $) 246) (($ $ $ |#3|) 244)) (-4364 (($ $ $) 245) (($ $ $ |#3|) 243)) (-1778 (((-1155) $) 10)) (-2224 (($ $ $) 212 (|has| |#1| (-556)))) (-3976 (((-642 $) $) 271)) (-3664 (((-3 (-642 $) "failed") $) 116)) (-4315 (((-3 (-642 $) "failed") $) 117)) (-3177 (((-3 (-2 (|:| |var| |#3|) (|:| -2817 (-769))) "failed") $) 115)) (-3673 (((-112) $ $) 254) (((-112) $ (-642 $)) 253)) (-4090 (($ $ $) 234)) (-3910 (($ $) 275)) (-3119 (((-112) $ $) 260)) (-4354 (((-112) $ $) 256) (((-112) $ (-642 $)) 255)) (-3750 (($ $ $) 235)) (-3332 (($ $) 274)) (-3999 (((-1117) $) 11)) (-1856 (((-2 (|:| -2105 $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-556)))) (-1849 (((-2 (|:| -2105 $) (|:| |coef1| $)) $ $) 216 (|has| |#1| (-556)))) (-2491 (((-112) $) 168)) (-2500 ((|#1| $) 169)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) 97 (|has| |#1| (-452)))) (-2105 ((|#1| |#1| $) 208 (|has| |#1| (-452))) (($ (-642 $)) 94 (|has| |#1| (-452))) (($ $ $) 93 (|has| |#1| (-452)))) (-3223 (((-418 (-1169 $)) (-1169 $)) 104 (|has| |#1| (-907)))) (-2236 (((-418 (-1169 $)) (-1169 $)) 103 (|has| |#1| (-907)))) (-2254 (((-418 $) $) 101 (|has| |#1| (-907)))) (-2445 (((-2 (|:| -2105 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 217 (|has| |#1| (-556)))) (-2842 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-556))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-556)))) (-4389 (($ $ |#1|) 221 (|has| |#1| (-556))) (($ $ $) 219 (|has| |#1| (-556)))) (-2595 (($ $ |#1|) 222 (|has| |#1| (-556))) (($ $ $) 220 (|has| |#1| (-556)))) (-3154 (($ $ (-642 (-294 $))) 147) (($ $ (-294 $)) 146) (($ $ $ $) 145) (($ $ (-642 $) (-642 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-642 |#3|) (-642 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-642 |#3|) (-642 $)) 140)) (-2790 (($ $ |#3|) 109 (|has| |#1| (-172)))) (-2199 (($ $ |#3|) 46) (($ $ (-642 |#3|)) 45) (($ $ |#3| (-769)) 44) (($ $ (-642 |#3|) (-642 (-769))) 43)) (-3252 ((|#2| $) 152) (((-769) $ |#3|) 132) (((-642 (-769)) $ (-642 |#3|)) 131)) (-1405 (($ $) 272)) (-4147 (($ $) 270)) (-3003 (((-890 (-379)) $) 84 (-12 (|has| |#3| (-612 (-890 (-379)))) (|has| |#1| (-612 (-890 (-379)))))) (((-890 (-564)) $) 83 (-12 (|has| |#3| (-612 (-890 (-564)))) (|has| |#1| (-612 (-890 (-564)))))) (((-536) $) 82 (-12 (|has| |#3| (-612 (-536))) (|has| |#1| (-612 (-536))))) (($ (-950 (-407 (-564)))) 231 (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#3| (-612 (-1173))))) (($ (-950 (-564))) 228 (-2682 (-12 (-2307 (|has| |#1| (-38 (-407 (-564))))) (|has| |#1| (-38 (-564))) (|has| |#3| (-612 (-1173)))) (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#3| (-612 (-1173)))))) (($ (-950 |#1|)) 225 (|has| |#3| (-612 (-1173)))) (((-1155) $) 203 (-12 (|has| |#1| (-1036 (-564))) (|has| |#3| (-612 (-1173))))) (((-950 |#1|) $) 202 (|has| |#3| (-612 (-1173))))) (-4325 ((|#1| $) 177 (|has| |#1| (-452))) (($ $ |#3|) 108 (|has| |#1| (-452)))) (-3556 (((-3 (-1262 $) "failed") (-687 $)) 106 (-2317 (|has| $ (-145)) (|has| |#1| (-907))))) (-2390 (((-860) $) 12) (($ (-564)) 33) (($ |#1|) 167) (($ |#3|) 137) (((-950 |#1|) $) 201 (|has| |#3| (-612 (-1173)))) (($ (-407 (-564))) 80 (-2682 (|has| |#1| (-1036 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564)))))) (($ $) 87 (|has| |#1| (-556)))) (-2839 (((-642 |#1|) $) 170)) (-3005 ((|#1| $ |#2|) 157) (($ $ |#3| (-769)) 130) (($ $ (-642 |#3|) (-642 (-769))) 129)) (-3434 (((-3 $ "failed") $) 81 (-2682 (-2317 (|has| $ (-145)) (|has| |#1| (-907))) (|has| |#1| (-145))))) (-3348 (((-769)) 32 T CONST)) (-2645 (($ $ $ (-769)) 175 (|has| |#1| (-172)))) (-1600 (((-112) $ $) 9)) (-1594 (((-112) $ $) 91 (|has| |#1| (-556)))) (-2361 (($) 19 T CONST)) (-3534 (((-3 (-112) "failed") $ $) 261)) (-2371 (($) 34 T CONST)) (-3171 (($ $ $ $ (-769)) 210 (|has| |#1| (-556)))) (-4313 (($ $ $ (-769)) 211 (|has| |#1| (-556)))) (-2711 (($ $ |#3|) 42) (($ $ (-642 |#3|)) 41) (($ $ |#3| (-769)) 40) (($ $ (-642 |#3|) (-642 (-769))) 39)) (-2821 (((-112) $ $) 6)) (-2943 (($ $ |#1|) 158 (|has| |#1| (-363)))) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ (-407 (-564))) 160 (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) 159 (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 149) (($ $ |#1|) 148))) -(((-1062 |#1| |#2| |#3|) (-140) (-1047) (-791) (-848)) (T -1062)) -((-1715 (*1 *2 *1) (-12 (-4 *1 (-1062 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *2 (-848)))) (-3200 (*1 *2 *1) (-12 (-4 *1 (-1062 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-769)))) (-3910 (*1 *1 *1) (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) (-4 *4 (-848)))) (-3332 (*1 *1 *1) (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) (-4 *4 (-848)))) (-3107 (*1 *1 *1) (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) (-4 *4 (-848)))) (-1405 (*1 *1 *1) (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) (-4 *4 (-848)))) (-3976 (*1 *2 *1) (-12 (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-642 *1)) (-4 *1 (-1062 *3 *4 *5)))) (-4147 (*1 *1 *1) (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) (-4 *4 (-848)))) (-2523 (*1 *1 *1 *2) (-12 (-4 *1 (-1062 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *2 (-848)))) (-3459 (*1 *1 *1 *2) (-12 (-4 *1 (-1062 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *2 (-848)))) (-3113 (*1 *2 *1) (-12 (-4 *1 (-1062 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-112)))) (-1471 (*1 *2 *1) (-12 (-4 *1 (-1062 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-112)))) (-3015 (*1 *1 *1) (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) (-4 *4 (-848)))) (-3479 (*1 *1 *1) (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) (-4 *4 (-848)))) (-3161 (*1 *2 *1) (-12 (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-642 *1)) (-4 *1 (-1062 *3 *4 *5)))) (-2894 (*1 *2 *1) (-12 (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-642 *1)) (-4 *1 (-1062 *3 *4 *5)))) (-3534 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1062 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-112)))) (-3119 (*1 *2 *1 *1) (-12 (-4 *1 (-1062 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-112)))) (-3835 (*1 *2 *1 *1) (-12 (-4 *1 (-1062 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-112)))) (-3762 (*1 *2 *1 *1) (-12 (-4 *1 (-1062 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-112)))) (-3762 (*1 *2 *1 *3) (-12 (-5 *3 (-642 *1)) (-4 *1 (-1062 *4 *5 *6)) (-4 *4 (-1047)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112)))) (-4354 (*1 *2 *1 *1) (-12 (-4 *1 (-1062 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-112)))) (-4354 (*1 *2 *1 *3) (-12 (-5 *3 (-642 *1)) (-4 *1 (-1062 *4 *5 *6)) (-4 *4 (-1047)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112)))) (-3673 (*1 *2 *1 *1) (-12 (-4 *1 (-1062 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-112)))) (-3673 (*1 *2 *1 *3) (-12 (-5 *3 (-642 *1)) (-4 *1 (-1062 *4 *5 *6)) (-4 *4 (-1047)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112)))) (-3303 (*1 *2 *1 *1) (-12 (-4 *1 (-1062 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-112)))) (-3303 (*1 *2 *1 *3) (-12 (-5 *3 (-642 *1)) (-4 *1 (-1062 *4 *5 *6)) (-4 *4 (-1047)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112)))) (-3262 (*1 *1 *1 *1) (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) (-4 *4 (-848)))) (-2882 (*1 *1 *1 *1) (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) (-4 *4 (-848)))) (-3262 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1062 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *2 (-848)))) (-2882 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1062 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *2 (-848)))) (-2053 (*1 *1 *1 *1) (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) (-4 *4 (-848)))) (-4364 (*1 *1 *1 *1) (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) (-4 *4 (-848)))) (-2053 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1062 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *2 (-848)))) (-4364 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1062 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *2 (-848)))) (-3905 (*1 *2 *1 *1) (-12 (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-2 (|:| -2968 *1) (|:| |gap| (-769)) (|:| -1992 *1))) (-4 *1 (-1062 *3 *4 *5)))) (-3905 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1047)) (-4 *5 (-791)) (-4 *3 (-848)) (-5 *2 (-2 (|:| -2968 *1) (|:| |gap| (-769)) (|:| -1992 *1))) (-4 *1 (-1062 *4 *5 *3)))) (-2039 (*1 *2 *1 *1) (-12 (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-2 (|:| -2968 *1) (|:| |gap| (-769)) (|:| -4332 *1) (|:| -1992 *1))) (-4 *1 (-1062 *3 *4 *5)))) (-2039 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1047)) (-4 *5 (-791)) (-4 *3 (-848)) (-5 *2 (-2 (|:| -2968 *1) (|:| |gap| (-769)) (|:| -4332 *1) (|:| -1992 *1))) (-4 *1 (-1062 *4 *5 *3)))) (-1555 (*1 *2 *1 *1) (-12 (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-2 (|:| -4332 *1) (|:| -1992 *1))) (-4 *1 (-1062 *3 *4 *5)))) (-4146 (*1 *1 *1 *1) (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) (-4 *4 (-848)))) (-4102 (*1 *2 *1 *1) (-12 (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -2604 (-769)))) (-4 *1 (-1062 *3 *4 *5)))) (-3750 (*1 *1 *1 *1) (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) (-4 *4 (-848)))) (-4090 (*1 *1 *1 *1) (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) (-4 *4 (-848)))) (-2849 (*1 *1 *2) (|partial| -12 (-5 *2 (-950 (-407 (-564)))) (-4 *1 (-1062 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1173))) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)))) (-1687 (*1 *1 *2) (-12 (-5 *2 (-950 (-407 (-564)))) (-4 *1 (-1062 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1173))) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)))) (-3003 (*1 *1 *2) (-12 (-5 *2 (-950 (-407 (-564)))) (-4 *1 (-1062 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1173))) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)))) (-2849 (*1 *1 *2) (|partial| -2682 (-12 (-5 *2 (-950 (-564))) (-4 *1 (-1062 *3 *4 *5)) (-12 (-2307 (-4 *3 (-38 (-407 (-564))))) (-4 *3 (-38 (-564))) (-4 *5 (-612 (-1173)))) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848))) (-12 (-5 *2 (-950 (-564))) (-4 *1 (-1062 *3 *4 *5)) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1173)))) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848))))) (-1687 (*1 *1 *2) (-2682 (-12 (-5 *2 (-950 (-564))) (-4 *1 (-1062 *3 *4 *5)) (-12 (-2307 (-4 *3 (-38 (-407 (-564))))) (-4 *3 (-38 (-564))) (-4 *5 (-612 (-1173)))) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848))) (-12 (-5 *2 (-950 (-564))) (-4 *1 (-1062 *3 *4 *5)) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1173)))) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848))))) (-3003 (*1 *1 *2) (-2682 (-12 (-5 *2 (-950 (-564))) (-4 *1 (-1062 *3 *4 *5)) (-12 (-2307 (-4 *3 (-38 (-407 (-564))))) (-4 *3 (-38 (-564))) (-4 *5 (-612 (-1173)))) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848))) (-12 (-5 *2 (-950 (-564))) (-4 *1 (-1062 *3 *4 *5)) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1173)))) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848))))) (-2849 (*1 *1 *2) (|partial| -2682 (-12 (-5 *2 (-950 *3)) (-12 (-2307 (-4 *3 (-38 (-407 (-564))))) (-2307 (-4 *3 (-38 (-564)))) (-4 *5 (-612 (-1173)))) (-4 *3 (-1047)) (-4 *1 (-1062 *3 *4 *5)) (-4 *4 (-791)) (-4 *5 (-848))) (-12 (-5 *2 (-950 *3)) (-12 (-2307 (-4 *3 (-545))) (-2307 (-4 *3 (-38 (-407 (-564))))) (-4 *3 (-38 (-564))) (-4 *5 (-612 (-1173)))) (-4 *3 (-1047)) (-4 *1 (-1062 *3 *4 *5)) (-4 *4 (-791)) (-4 *5 (-848))) (-12 (-5 *2 (-950 *3)) (-12 (-2307 (-4 *3 (-990 (-564)))) (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1173)))) (-4 *3 (-1047)) (-4 *1 (-1062 *3 *4 *5)) (-4 *4 (-791)) (-4 *5 (-848))))) (-1687 (*1 *1 *2) (-2682 (-12 (-5 *2 (-950 *3)) (-12 (-2307 (-4 *3 (-38 (-407 (-564))))) (-2307 (-4 *3 (-38 (-564)))) (-4 *5 (-612 (-1173)))) (-4 *3 (-1047)) (-4 *1 (-1062 *3 *4 *5)) (-4 *4 (-791)) (-4 *5 (-848))) (-12 (-5 *2 (-950 *3)) (-12 (-2307 (-4 *3 (-545))) (-2307 (-4 *3 (-38 (-407 (-564))))) (-4 *3 (-38 (-564))) (-4 *5 (-612 (-1173)))) (-4 *3 (-1047)) (-4 *1 (-1062 *3 *4 *5)) (-4 *4 (-791)) (-4 *5 (-848))) (-12 (-5 *2 (-950 *3)) (-12 (-2307 (-4 *3 (-990 (-564)))) (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1173)))) (-4 *3 (-1047)) (-4 *1 (-1062 *3 *4 *5)) (-4 *4 (-791)) (-4 *5 (-848))))) (-3003 (*1 *1 *2) (-12 (-5 *2 (-950 *3)) (-4 *3 (-1047)) (-4 *1 (-1062 *3 *4 *5)) (-4 *5 (-612 (-1173))) (-4 *4 (-791)) (-4 *5 (-848)))) (-1965 (*1 *1 *1) (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) (-4 *4 (-848)) (-4 *2 (-556)))) (-2375 (*1 *1 *1) (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) (-4 *4 (-848)) (-4 *2 (-556)))) (-2595 (*1 *1 *1 *2) (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) (-4 *4 (-848)) (-4 *2 (-556)))) (-4389 (*1 *1 *1 *2) (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) (-4 *4 (-848)) (-4 *2 (-556)))) (-2595 (*1 *1 *1 *1) (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) (-4 *4 (-848)) (-4 *2 (-556)))) (-4389 (*1 *1 *1 *1) (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) (-4 *4 (-848)) (-4 *2 (-556)))) (-2106 (*1 *1 *1 *1) (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) (-4 *4 (-848)) (-4 *2 (-556)))) (-2445 (*1 *2 *1 *1) (-12 (-4 *3 (-556)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-2 (|:| -2105 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1062 *3 *4 *5)))) (-1849 (*1 *2 *1 *1) (-12 (-4 *3 (-556)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-2 (|:| -2105 *1) (|:| |coef1| *1))) (-4 *1 (-1062 *3 *4 *5)))) (-1856 (*1 *2 *1 *1) (-12 (-4 *3 (-556)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-2 (|:| -2105 *1) (|:| |coef2| *1))) (-4 *1 (-1062 *3 *4 *5)))) (-3710 (*1 *1 *1 *1) (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) (-4 *4 (-848)) (-4 *2 (-556)))) (-2557 (*1 *2 *1 *1) (-12 (-4 *3 (-556)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-642 *1)) (-4 *1 (-1062 *3 *4 *5)))) (-2224 (*1 *1 *1 *1) (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) (-4 *4 (-848)) (-4 *2 (-556)))) (-4313 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-769)) (-4 *1 (-1062 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *3 (-556)))) (-3171 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-769)) (-4 *1 (-1062 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *3 (-556)))) (-2252 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) (-4 *4 (-848)) (-4 *2 (-556)))) (-2105 (*1 *2 *2 *1) (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) (-4 *4 (-848)) (-4 *2 (-452)))) (-1922 (*1 *1 *1) (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) (-4 *4 (-848)) (-4 *2 (-452)))) (-3377 (*1 *1 *1) (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) (-4 *4 (-848)) (-4 *2 (-452)))) (-1443 (*1 *1 *1) (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) (-4 *4 (-848)) (-4 *2 (-452)))) (-2447 (*1 *1 *1) (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) (-4 *4 (-848)) (-4 *2 (-452))))) -(-13 (-947 |t#1| |t#2| |t#3|) (-10 -8 (-15 -1715 (|t#3| $)) (-15 -3200 ((-769) $)) (-15 -3910 ($ $)) (-15 -3332 ($ $)) (-15 -3107 ($ $)) (-15 -1405 ($ $)) (-15 -3976 ((-642 $) $)) (-15 -4147 ($ $)) (-15 -2523 ($ $ |t#3|)) (-15 -3459 ($ $ |t#3|)) (-15 -3113 ((-112) $)) (-15 -1471 ((-112) $)) (-15 -3015 ($ $)) (-15 -3479 ($ $)) (-15 -3161 ((-642 $) $)) (-15 -2894 ((-642 $) $)) (-15 -3534 ((-3 (-112) "failed") $ $)) (-15 -3119 ((-112) $ $)) (-15 -3835 ((-112) $ $)) (-15 -3762 ((-112) $ $)) (-15 -3762 ((-112) $ (-642 $))) (-15 -4354 ((-112) $ $)) (-15 -4354 ((-112) $ (-642 $))) (-15 -3673 ((-112) $ $)) (-15 -3673 ((-112) $ (-642 $))) (-15 -3303 ((-112) $ $)) (-15 -3303 ((-112) $ (-642 $))) (-15 -3262 ($ $ $)) (-15 -2882 ($ $ $)) (-15 -3262 ($ $ $ |t#3|)) (-15 -2882 ($ $ $ |t#3|)) (-15 -2053 ($ $ $)) (-15 -4364 ($ $ $)) (-15 -2053 ($ $ $ |t#3|)) (-15 -4364 ($ $ $ |t#3|)) (-15 -3905 ((-2 (|:| -2968 $) (|:| |gap| (-769)) (|:| -1992 $)) $ $)) (-15 -3905 ((-2 (|:| -2968 $) (|:| |gap| (-769)) (|:| -1992 $)) $ $ |t#3|)) (-15 -2039 ((-2 (|:| -2968 $) (|:| |gap| (-769)) (|:| -4332 $) (|:| -1992 $)) $ $)) (-15 -2039 ((-2 (|:| -2968 $) (|:| |gap| (-769)) (|:| -4332 $) (|:| -1992 $)) $ $ |t#3|)) (-15 -1555 ((-2 (|:| -4332 $) (|:| -1992 $)) $ $)) (-15 -4146 ($ $ $)) (-15 -4102 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2604 (-769))) $ $)) (-15 -3750 ($ $ $)) (-15 -4090 ($ $ $)) (IF (|has| |t#3| (-612 (-1173))) (PROGN (-6 (-611 (-950 |t#1|))) (-6 (-612 (-950 |t#1|))) (IF (|has| |t#1| (-38 (-407 (-564)))) (PROGN (-15 -2849 ((-3 $ "failed") (-950 (-407 (-564))))) (-15 -1687 ($ (-950 (-407 (-564))))) (-15 -3003 ($ (-950 (-407 (-564))))) (-15 -2849 ((-3 $ "failed") (-950 (-564)))) (-15 -1687 ($ (-950 (-564)))) (-15 -3003 ($ (-950 (-564)))) (IF (|has| |t#1| (-990 (-564))) |%noBranch| (PROGN (-15 -2849 ((-3 $ "failed") (-950 |t#1|))) (-15 -1687 ($ (-950 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-564))) (IF (|has| |t#1| (-38 (-407 (-564)))) |%noBranch| (PROGN (-15 -2849 ((-3 $ "failed") (-950 (-564)))) (-15 -1687 ($ (-950 (-564)))) (-15 -3003 ($ (-950 (-564)))) (IF (|has| |t#1| (-545)) |%noBranch| (PROGN (-15 -2849 ((-3 $ "failed") (-950 |t#1|))) (-15 -1687 ($ (-950 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-564))) |%noBranch| (IF (|has| |t#1| (-38 (-407 (-564)))) |%noBranch| (PROGN (-15 -2849 ((-3 $ "failed") (-950 |t#1|))) (-15 -1687 ($ (-950 |t#1|)))))) (-15 -3003 ($ (-950 |t#1|))) (IF (|has| |t#1| (-1036 (-564))) (-6 (-612 (-1155))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-556)) (PROGN (-15 -1965 ($ $)) (-15 -2375 ($ $)) (-15 -2595 ($ $ |t#1|)) (-15 -4389 ($ $ |t#1|)) (-15 -2595 ($ $ $)) (-15 -4389 ($ $ $)) (-15 -2106 ($ $ $)) (-15 -2445 ((-2 (|:| -2105 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1849 ((-2 (|:| -2105 $) (|:| |coef1| $)) $ $)) (-15 -1856 ((-2 (|:| -2105 $) (|:| |coef2| $)) $ $)) (-15 -3710 ($ $ $)) (-15 -2557 ((-642 $) $ $)) (-15 -2224 ($ $ $)) (-15 -4313 ($ $ $ (-769))) (-15 -3171 ($ $ $ $ (-769))) (-15 -2252 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-452)) (PROGN (-15 -2105 (|t#1| |t#1| $)) (-15 -1922 ($ $)) (-15 -3377 ($ $)) (-15 -1443 ($ $)) (-15 -2447 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2682 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2682 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) -2682 (|has| |#1| (-1036 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-614 |#3|) . T) ((-614 $) -2682 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-611 (-860)) . T) ((-611 (-950 |#1|)) |has| |#3| (-612 (-1173))) ((-172) -2682 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-612 (-536)) -12 (|has| |#1| (-612 (-536))) (|has| |#3| (-612 (-536)))) ((-612 (-890 (-379))) -12 (|has| |#1| (-612 (-890 (-379)))) (|has| |#3| (-612 (-890 (-379))))) ((-612 (-890 (-564))) -12 (|has| |#1| (-612 (-890 (-564)))) (|has| |#3| (-612 (-890 (-564))))) ((-612 (-950 |#1|)) |has| |#3| (-612 (-1173))) ((-612 (-1155)) -12 (|has| |#1| (-1036 (-564))) (|has| |#3| (-612 (-1173)))) ((-290) -2682 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-309 $) . T) ((-326 |#1| |#2|) . T) ((-377 |#1|) . T) ((-411 |#1|) . T) ((-452) -2682 (|has| |#1| (-907)) (|has| |#1| (-452))) ((-514 |#3| |#1|) . T) ((-514 |#3| $) . T) ((-514 $ $) . T) ((-556) -2682 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-644 #0#) |has| |#1| (-38 (-407 (-564)))) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-646 #0#) |has| |#1| (-38 (-407 (-564)))) ((-646 |#1|) . T) ((-646 $) . T) ((-638 #0#) |has| |#1| (-38 (-407 (-564)))) ((-638 |#1|) |has| |#1| (-172)) ((-638 $) -2682 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-715 #0#) |has| |#1| (-38 (-407 (-564)))) ((-715 |#1|) |has| |#1| (-172)) ((-715 $) -2682 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-724) . T) ((-898 |#3|) . T) ((-884 (-379)) -12 (|has| |#1| (-884 (-379))) (|has| |#3| (-884 (-379)))) ((-884 (-564)) -12 (|has| |#1| (-884 (-564))) (|has| |#3| (-884 (-564)))) ((-947 |#1| |#2| |#3|) . T) ((-907) |has| |#1| (-907)) ((-1036 (-407 (-564))) |has| |#1| (-1036 (-407 (-564)))) ((-1036 (-564)) |has| |#1| (-1036 (-564))) ((-1036 |#1|) . T) ((-1036 |#3|) . T) ((-1049 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1049 |#1|) . T) ((-1049 $) -2682 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-1054 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1054 |#1|) . T) ((-1054 $) -2682 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T) ((-1216) |has| |#1| (-907))) -((-2856 (((-112) $ $) NIL)) (-1778 (((-1155) $) NIL)) (-1352 (((-642 (-1132)) $) 18)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) 27) (($ (-1178)) NIL) (((-1178) $) NIL)) (-2502 (((-1132) $) 20)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-1063) (-13 (-1080) (-10 -8 (-15 -1352 ((-642 (-1132)) $)) (-15 -2502 ((-1132) $))))) (T -1063)) -((-1352 (*1 *2 *1) (-12 (-5 *2 (-642 (-1132))) (-5 *1 (-1063)))) (-2502 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-1063))))) -(-13 (-1080) (-10 -8 (-15 -1352 ((-642 (-1132)) $)) (-15 -2502 ((-1132) $)))) -((-2950 (((-112) |#3| $) 15)) (-2619 (((-3 $ "failed") |#3| (-919)) 29)) (-2675 (((-3 |#3| "failed") |#3| $) 45)) (-3292 (((-112) |#3| $) 19)) (-2666 (((-112) |#3| $) 17))) -(((-1064 |#1| |#2| |#3|) (-10 -8 (-15 -2619 ((-3 |#1| "failed") |#3| (-919))) (-15 -2675 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3292 ((-112) |#3| |#1|)) (-15 -2666 ((-112) |#3| |#1|)) (-15 -2950 ((-112) |#3| |#1|))) (-1065 |#2| |#3|) (-13 (-846) (-363)) (-1238 |#2|)) (T -1064)) -NIL -(-10 -8 (-15 -2619 ((-3 |#1| "failed") |#3| (-919))) (-15 -2675 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3292 ((-112) |#3| |#1|)) (-15 -2666 ((-112) |#3| |#1|)) (-15 -2950 ((-112) |#3| |#1|))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) |#2| $) 22)) (-2221 (((-564) |#2| $) 23)) (-2619 (((-3 $ "failed") |#2| (-919)) 16)) (-3925 ((|#1| |#2| $ |#1|) 14)) (-2675 (((-3 |#2| "failed") |#2| $) 19)) (-3292 (((-112) |#2| $) 20)) (-2666 (((-112) |#2| $) 21)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-1361 ((|#2| $) 18)) (-2390 (((-860) $) 12)) (-1600 (((-112) $ $) 9)) (-3560 ((|#1| |#2| $ |#1|) 15)) (-3873 (((-642 $) |#2|) 17)) (-2821 (((-112) $ $) 6))) -(((-1065 |#1| |#2|) (-140) (-13 (-846) (-363)) (-1238 |t#1|)) (T -1065)) -((-2221 (*1 *2 *3 *1) (-12 (-4 *1 (-1065 *4 *3)) (-4 *4 (-13 (-846) (-363))) (-4 *3 (-1238 *4)) (-5 *2 (-564)))) (-2950 (*1 *2 *3 *1) (-12 (-4 *1 (-1065 *4 *3)) (-4 *4 (-13 (-846) (-363))) (-4 *3 (-1238 *4)) (-5 *2 (-112)))) (-2666 (*1 *2 *3 *1) (-12 (-4 *1 (-1065 *4 *3)) (-4 *4 (-13 (-846) (-363))) (-4 *3 (-1238 *4)) (-5 *2 (-112)))) (-3292 (*1 *2 *3 *1) (-12 (-4 *1 (-1065 *4 *3)) (-4 *4 (-13 (-846) (-363))) (-4 *3 (-1238 *4)) (-5 *2 (-112)))) (-2675 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1065 *3 *2)) (-4 *3 (-13 (-846) (-363))) (-4 *2 (-1238 *3)))) (-1361 (*1 *2 *1) (-12 (-4 *1 (-1065 *3 *2)) (-4 *3 (-13 (-846) (-363))) (-4 *2 (-1238 *3)))) (-3873 (*1 *2 *3) (-12 (-4 *4 (-13 (-846) (-363))) (-4 *3 (-1238 *4)) (-5 *2 (-642 *1)) (-4 *1 (-1065 *4 *3)))) (-2619 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-919)) (-4 *4 (-13 (-846) (-363))) (-4 *1 (-1065 *4 *2)) (-4 *2 (-1238 *4)))) (-3560 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1065 *2 *3)) (-4 *2 (-13 (-846) (-363))) (-4 *3 (-1238 *2)))) (-3925 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1065 *2 *3)) (-4 *2 (-13 (-846) (-363))) (-4 *3 (-1238 *2))))) -(-13 (-1097) (-10 -8 (-15 -2221 ((-564) |t#2| $)) (-15 -2950 ((-112) |t#2| $)) (-15 -2666 ((-112) |t#2| $)) (-15 -3292 ((-112) |t#2| $)) (-15 -2675 ((-3 |t#2| "failed") |t#2| $)) (-15 -1361 (|t#2| $)) (-15 -3873 ((-642 $) |t#2|)) (-15 -2619 ((-3 $ "failed") |t#2| (-919))) (-15 -3560 (|t#1| |t#2| $ |t#1|)) (-15 -3925 (|t#1| |t#2| $ |t#1|)))) -(((-102) . T) ((-611 (-860)) . T) ((-1097) . T)) -((-3675 (((-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))) (-642 |#4|) (-642 |#5|) (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))) (-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))))) (-769)) 115)) (-3195 (((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))))) |#4| |#5| (-769)) 63)) (-4388 (((-1267) (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))) (-769)) 100)) (-4368 (((-769) (-642 |#4|) (-642 |#5|)) 30)) (-3708 (((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))))) |#4| |#5|) 66) (((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))))) |#4| |#5| (-769)) 65) (((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))))) |#4| |#5| (-769) (-112)) 67)) (-3822 (((-642 |#5|) (-642 |#4|) (-642 |#5|) (-112) (-112) (-112) (-112) (-112)) 86) (((-642 |#5|) (-642 |#4|) (-642 |#5|) (-112) (-112)) 87)) (-3003 (((-1155) (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))) 92)) (-4305 (((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))))) |#4| |#5| (-112)) 62)) (-3701 (((-769) (-642 |#4|) (-642 |#5|)) 21))) -(((-1066 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3701 ((-769) (-642 |#4|) (-642 |#5|))) (-15 -4368 ((-769) (-642 |#4|) (-642 |#5|))) (-15 -4305 ((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))))) |#4| |#5| (-112))) (-15 -3195 ((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))))) |#4| |#5| (-769))) (-15 -3195 ((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))))) |#4| |#5|)) (-15 -3708 ((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))))) |#4| |#5| (-769) (-112))) (-15 -3708 ((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))))) |#4| |#5| (-769))) (-15 -3708 ((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))))) |#4| |#5|)) (-15 -3822 ((-642 |#5|) (-642 |#4|) (-642 |#5|) (-112) (-112))) (-15 -3822 ((-642 |#5|) (-642 |#4|) (-642 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3675 ((-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))) (-642 |#4|) (-642 |#5|) (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))) (-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))))) (-769))) (-15 -3003 ((-1155) (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|)))) (-15 -4388 ((-1267) (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))) (-769)))) (-452) (-791) (-848) (-1062 |#1| |#2| |#3|) (-1068 |#1| |#2| |#3| |#4|)) (T -1066)) -((-4388 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-2 (|:| |val| (-642 *8)) (|:| -2138 *9)))) (-5 *4 (-769)) (-4 *8 (-1062 *5 *6 *7)) (-4 *9 (-1068 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *2 (-1267)) (-5 *1 (-1066 *5 *6 *7 *8 *9)))) (-3003 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-642 *7)) (|:| -2138 *8))) (-4 *7 (-1062 *4 *5 *6)) (-4 *8 (-1068 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-1155)) (-5 *1 (-1066 *4 *5 *6 *7 *8)))) (-3675 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-642 *11)) (|:| |todo| (-642 (-2 (|:| |val| *3) (|:| -2138 *11)))))) (-5 *6 (-769)) (-5 *2 (-642 (-2 (|:| |val| (-642 *10)) (|:| -2138 *11)))) (-5 *3 (-642 *10)) (-5 *4 (-642 *11)) (-4 *10 (-1062 *7 *8 *9)) (-4 *11 (-1068 *7 *8 *9 *10)) (-4 *7 (-452)) (-4 *8 (-791)) (-4 *9 (-848)) (-5 *1 (-1066 *7 *8 *9 *10 *11)))) (-3822 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-642 *9)) (-5 *3 (-642 *8)) (-5 *4 (-112)) (-4 *8 (-1062 *5 *6 *7)) (-4 *9 (-1068 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *1 (-1066 *5 *6 *7 *8 *9)))) (-3822 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-642 *9)) (-5 *3 (-642 *8)) (-5 *4 (-112)) (-4 *8 (-1062 *5 *6 *7)) (-4 *9 (-1068 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *1 (-1066 *5 *6 *7 *8 *9)))) (-3708 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-642 *4)) (|:| |todo| (-642 (-2 (|:| |val| (-642 *3)) (|:| -2138 *4)))))) (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))) (-3708 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-769)) (-4 *6 (-452)) (-4 *7 (-791)) (-4 *8 (-848)) (-4 *3 (-1062 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-642 *4)) (|:| |todo| (-642 (-2 (|:| |val| (-642 *3)) (|:| -2138 *4)))))) (-5 *1 (-1066 *6 *7 *8 *3 *4)) (-4 *4 (-1068 *6 *7 *8 *3)))) (-3708 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-769)) (-5 *6 (-112)) (-4 *7 (-452)) (-4 *8 (-791)) (-4 *9 (-848)) (-4 *3 (-1062 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-642 *4)) (|:| |todo| (-642 (-2 (|:| |val| (-642 *3)) (|:| -2138 *4)))))) (-5 *1 (-1066 *7 *8 *9 *3 *4)) (-4 *4 (-1068 *7 *8 *9 *3)))) (-3195 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-642 *4)) (|:| |todo| (-642 (-2 (|:| |val| (-642 *3)) (|:| -2138 *4)))))) (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))) (-3195 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-769)) (-4 *6 (-452)) (-4 *7 (-791)) (-4 *8 (-848)) (-4 *3 (-1062 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-642 *4)) (|:| |todo| (-642 (-2 (|:| |val| (-642 *3)) (|:| -2138 *4)))))) (-5 *1 (-1066 *6 *7 *8 *3 *4)) (-4 *4 (-1068 *6 *7 *8 *3)))) (-4305 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-791)) (-4 *8 (-848)) (-4 *3 (-1062 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-642 *4)) (|:| |todo| (-642 (-2 (|:| |val| (-642 *3)) (|:| -2138 *4)))))) (-5 *1 (-1066 *6 *7 *8 *3 *4)) (-4 *4 (-1068 *6 *7 *8 *3)))) (-4368 (*1 *2 *3 *4) (-12 (-5 *3 (-642 *8)) (-5 *4 (-642 *9)) (-4 *8 (-1062 *5 *6 *7)) (-4 *9 (-1068 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *2 (-769)) (-5 *1 (-1066 *5 *6 *7 *8 *9)))) (-3701 (*1 *2 *3 *4) (-12 (-5 *3 (-642 *8)) (-5 *4 (-642 *9)) (-4 *8 (-1062 *5 *6 *7)) (-4 *9 (-1068 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *2 (-769)) (-5 *1 (-1066 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -3701 ((-769) (-642 |#4|) (-642 |#5|))) (-15 -4368 ((-769) (-642 |#4|) (-642 |#5|))) (-15 -4305 ((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))))) |#4| |#5| (-112))) (-15 -3195 ((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))))) |#4| |#5| (-769))) (-15 -3195 ((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))))) |#4| |#5|)) (-15 -3708 ((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))))) |#4| |#5| (-769) (-112))) (-15 -3708 ((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))))) |#4| |#5| (-769))) (-15 -3708 ((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))))) |#4| |#5|)) (-15 -3822 ((-642 |#5|) (-642 |#4|) (-642 |#5|) (-112) (-112))) (-15 -3822 ((-642 |#5|) (-642 |#4|) (-642 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3675 ((-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))) (-642 |#4|) (-642 |#5|) (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))) (-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))))) (-769))) (-15 -3003 ((-1155) (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|)))) (-15 -4388 ((-1267) (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))) (-769)))) -((-2104 (((-112) |#5| $) 26)) (-4141 (((-112) |#5| $) 29)) (-3188 (((-112) |#5| $) 18) (((-112) $) 52)) (-2338 (((-642 $) |#5| $) NIL) (((-642 $) (-642 |#5|) $) 94) (((-642 $) (-642 |#5|) (-642 $)) 92) (((-642 $) |#5| (-642 $)) 95)) (-2137 (($ $ |#5|) NIL) (((-642 $) |#5| $) NIL) (((-642 $) |#5| (-642 $)) 73) (((-642 $) (-642 |#5|) $) 75) (((-642 $) (-642 |#5|) (-642 $)) 77)) (-3204 (((-642 $) |#5| $) NIL) (((-642 $) |#5| (-642 $)) 64) (((-642 $) (-642 |#5|) $) 69) (((-642 $) (-642 |#5|) (-642 $)) 71)) (-1837 (((-112) |#5| $) 32))) -(((-1067 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2137 ((-642 |#1|) (-642 |#5|) (-642 |#1|))) (-15 -2137 ((-642 |#1|) (-642 |#5|) |#1|)) (-15 -2137 ((-642 |#1|) |#5| (-642 |#1|))) (-15 -2137 ((-642 |#1|) |#5| |#1|)) (-15 -3204 ((-642 |#1|) (-642 |#5|) (-642 |#1|))) (-15 -3204 ((-642 |#1|) (-642 |#5|) |#1|)) (-15 -3204 ((-642 |#1|) |#5| (-642 |#1|))) (-15 -3204 ((-642 |#1|) |#5| |#1|)) (-15 -2338 ((-642 |#1|) |#5| (-642 |#1|))) (-15 -2338 ((-642 |#1|) (-642 |#5|) (-642 |#1|))) (-15 -2338 ((-642 |#1|) (-642 |#5|) |#1|)) (-15 -2338 ((-642 |#1|) |#5| |#1|)) (-15 -4141 ((-112) |#5| |#1|)) (-15 -3188 ((-112) |#1|)) (-15 -1837 ((-112) |#5| |#1|)) (-15 -2104 ((-112) |#5| |#1|)) (-15 -3188 ((-112) |#5| |#1|)) (-15 -2137 (|#1| |#1| |#5|))) (-1068 |#2| |#3| |#4| |#5|) (-452) (-791) (-848) (-1062 |#2| |#3| |#4|)) (T -1067)) -NIL -(-10 -8 (-15 -2137 ((-642 |#1|) (-642 |#5|) (-642 |#1|))) (-15 -2137 ((-642 |#1|) (-642 |#5|) |#1|)) (-15 -2137 ((-642 |#1|) |#5| (-642 |#1|))) (-15 -2137 ((-642 |#1|) |#5| |#1|)) (-15 -3204 ((-642 |#1|) (-642 |#5|) (-642 |#1|))) (-15 -3204 ((-642 |#1|) (-642 |#5|) |#1|)) (-15 -3204 ((-642 |#1|) |#5| (-642 |#1|))) (-15 -3204 ((-642 |#1|) |#5| |#1|)) (-15 -2338 ((-642 |#1|) |#5| (-642 |#1|))) (-15 -2338 ((-642 |#1|) (-642 |#5|) (-642 |#1|))) (-15 -2338 ((-642 |#1|) (-642 |#5|) |#1|)) (-15 -2338 ((-642 |#1|) |#5| |#1|)) (-15 -4141 ((-112) |#5| |#1|)) (-15 -3188 ((-112) |#1|)) (-15 -1837 ((-112) |#5| |#1|)) (-15 -2104 ((-112) |#5| |#1|)) (-15 -3188 ((-112) |#5| |#1|)) (-15 -2137 (|#1| |#1| |#5|))) -((-2856 (((-112) $ $) 7)) (-1466 (((-642 (-2 (|:| -1616 $) (|:| -3406 (-642 |#4|)))) (-642 |#4|)) 86)) (-3076 (((-642 $) (-642 |#4|)) 87) (((-642 $) (-642 |#4|) (-112)) 112)) (-2397 (((-642 |#3|) $) 34)) (-3646 (((-112) $) 27)) (-4074 (((-112) $) 18 (|has| |#1| (-556)))) (-4334 (((-112) |#4| $) 102) (((-112) $) 98)) (-2937 ((|#4| |#4| $) 93)) (-1993 (((-642 (-2 (|:| |val| |#4|) (|:| -2138 $))) |#4| $) 127)) (-3191 (((-2 (|:| |under| $) (|:| -2795 $) (|:| |upper| $)) $ |#3|) 28)) (-3442 (((-112) $ (-769)) 45)) (-3437 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4410))) (((-3 |#4| "failed") $ |#3|) 80)) (-2822 (($) 46 T CONST)) (-3013 (((-112) $) 23 (|has| |#1| (-556)))) (-3936 (((-112) $ $) 25 (|has| |#1| (-556)))) (-2133 (((-112) $ $) 24 (|has| |#1| (-556)))) (-2967 (((-112) $) 26 (|has| |#1| (-556)))) (-3720 (((-642 |#4|) (-642 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2632 (((-642 |#4|) (-642 |#4|) $) 19 (|has| |#1| (-556)))) (-1419 (((-642 |#4|) (-642 |#4|) $) 20 (|has| |#1| (-556)))) (-2849 (((-3 $ "failed") (-642 |#4|)) 37)) (-1687 (($ (-642 |#4|)) 36)) (-4050 (((-3 $ "failed") $) 83)) (-2398 ((|#4| |#4| $) 90)) (-4067 (($ $) 69 (-12 (|has| |#4| (-1097)) (|has| $ (-6 -4410))))) (-2517 (($ |#4| $) 68 (-12 (|has| |#4| (-1097)) (|has| $ (-6 -4410)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4410)))) (-1992 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-556)))) (-3762 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3978 ((|#4| |#4| $) 88)) (-3741 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1097)) (|has| $ (-6 -4410)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4410))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4410))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1750 (((-2 (|:| -1616 (-642 |#4|)) (|:| -3406 (-642 |#4|))) $) 106)) (-2104 (((-112) |#4| $) 137)) (-4141 (((-112) |#4| $) 134)) (-3188 (((-112) |#4| $) 138) (((-112) $) 135)) (-2018 (((-642 |#4|) $) 53 (|has| $ (-6 -4410)))) (-3303 (((-112) |#4| $) 105) (((-112) $) 104)) (-1715 ((|#3| $) 35)) (-3769 (((-112) $ (-769)) 44)) (-3541 (((-642 |#4|) $) 54 (|has| $ (-6 -4410)))) (-2533 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1097)) (|has| $ (-6 -4410))))) (-1857 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#4| |#4|) $) 48)) (-1896 (((-642 |#3|) $) 33)) (-3935 (((-112) |#3| $) 32)) (-4145 (((-112) $ (-769)) 43)) (-1778 (((-1155) $) 10)) (-3843 (((-3 |#4| (-642 $)) |#4| |#4| $) 129)) (-2224 (((-642 (-2 (|:| |val| |#4|) (|:| -2138 $))) |#4| |#4| $) 128)) (-2534 (((-3 |#4| "failed") $) 84)) (-2163 (((-642 $) |#4| $) 130)) (-2328 (((-3 (-112) (-642 $)) |#4| $) 133)) (-4023 (((-642 (-2 (|:| |val| (-112)) (|:| -2138 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-2338 (((-642 $) |#4| $) 126) (((-642 $) (-642 |#4|) $) 125) (((-642 $) (-642 |#4|) (-642 $)) 124) (((-642 $) |#4| (-642 $)) 123)) (-2415 (($ |#4| $) 118) (($ (-642 |#4|) $) 117)) (-2206 (((-642 |#4|) $) 108)) (-3673 (((-112) |#4| $) 100) (((-112) $) 96)) (-4090 ((|#4| |#4| $) 91)) (-3119 (((-112) $ $) 111)) (-1699 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-556)))) (-4354 (((-112) |#4| $) 101) (((-112) $) 97)) (-3750 ((|#4| |#4| $) 92)) (-3999 (((-1117) $) 11)) (-4036 (((-3 |#4| "failed") $) 85)) (-3183 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2465 (((-3 $ "failed") $ |#4|) 79)) (-2137 (($ $ |#4|) 78) (((-642 $) |#4| $) 116) (((-642 $) |#4| (-642 $)) 115) (((-642 $) (-642 |#4|) $) 114) (((-642 $) (-642 |#4|) (-642 $)) 113)) (-4094 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 |#4|) (-642 |#4|)) 60 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ (-294 |#4|)) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ (-642 (-294 |#4|))) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097))))) (-2478 (((-112) $ $) 39)) (-4109 (((-112) $) 42)) (-2179 (($) 41)) (-3252 (((-769) $) 107)) (-4010 (((-769) |#4| $) 55 (-12 (|has| |#4| (-1097)) (|has| $ (-6 -4410)))) (((-769) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4410)))) (-3865 (($ $) 40)) (-3003 (((-536) $) 70 (|has| |#4| (-612 (-536))))) (-2401 (($ (-642 |#4|)) 61)) (-2942 (($ $ |#3|) 29)) (-1710 (($ $ |#3|) 31)) (-2204 (($ $) 89)) (-4283 (($ $ |#3|) 30)) (-2390 (((-860) $) 12) (((-642 |#4|) $) 38)) (-2621 (((-769) $) 77 (|has| |#3| (-368)))) (-1600 (((-112) $ $) 9)) (-4150 (((-3 (-2 (|:| |bas| $) (|:| -3844 (-642 |#4|))) "failed") (-642 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3844 (-642 |#4|))) "failed") (-642 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2205 (((-112) $ (-1 (-112) |#4| (-642 |#4|))) 99)) (-3204 (((-642 $) |#4| $) 122) (((-642 $) |#4| (-642 $)) 121) (((-642 $) (-642 |#4|) $) 120) (((-642 $) (-642 |#4|) (-642 $)) 119)) (-3295 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4410)))) (-1644 (((-642 |#3|) $) 82)) (-1837 (((-112) |#4| $) 136)) (-4127 (((-112) |#3| $) 81)) (-2821 (((-112) $ $) 6)) (-2158 (((-769) $) 47 (|has| $ (-6 -4410))))) -(((-1068 |#1| |#2| |#3| |#4|) (-140) (-452) (-791) (-848) (-1062 |t#1| |t#2| |t#3|)) (T -1068)) -((-3188 (*1 *2 *3 *1) (-12 (-4 *1 (-1068 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)) (-5 *2 (-112)))) (-2104 (*1 *2 *3 *1) (-12 (-4 *1 (-1068 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)) (-5 *2 (-112)))) (-1837 (*1 *2 *3 *1) (-12 (-4 *1 (-1068 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)) (-5 *2 (-112)))) (-3188 (*1 *2 *1) (-12 (-4 *1 (-1068 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-112)))) (-4141 (*1 *2 *3 *1) (-12 (-4 *1 (-1068 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)) (-5 *2 (-112)))) (-2328 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)) (-5 *2 (-3 (-112) (-642 *1))) (-4 *1 (-1068 *4 *5 *6 *3)))) (-4023 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)) (-5 *2 (-642 (-2 (|:| |val| (-112)) (|:| -2138 *1)))) (-4 *1 (-1068 *4 *5 *6 *3)))) (-4023 (*1 *2 *3 *1) (-12 (-4 *1 (-1068 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)) (-5 *2 (-112)))) (-2163 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)) (-5 *2 (-642 *1)) (-4 *1 (-1068 *4 *5 *6 *3)))) (-3843 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)) (-5 *2 (-3 *3 (-642 *1))) (-4 *1 (-1068 *4 *5 *6 *3)))) (-2224 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)) (-5 *2 (-642 (-2 (|:| |val| *3) (|:| -2138 *1)))) (-4 *1 (-1068 *4 *5 *6 *3)))) (-1993 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)) (-5 *2 (-642 (-2 (|:| |val| *3) (|:| -2138 *1)))) (-4 *1 (-1068 *4 *5 *6 *3)))) (-2338 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)) (-5 *2 (-642 *1)) (-4 *1 (-1068 *4 *5 *6 *3)))) (-2338 (*1 *2 *3 *1) (-12 (-5 *3 (-642 *7)) (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-642 *1)) (-4 *1 (-1068 *4 *5 *6 *7)))) (-2338 (*1 *2 *3 *2) (-12 (-5 *2 (-642 *1)) (-5 *3 (-642 *7)) (-4 *1 (-1068 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-1062 *4 *5 *6)))) (-2338 (*1 *2 *3 *2) (-12 (-5 *2 (-642 *1)) (-4 *1 (-1068 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)))) (-3204 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)) (-5 *2 (-642 *1)) (-4 *1 (-1068 *4 *5 *6 *3)))) (-3204 (*1 *2 *3 *2) (-12 (-5 *2 (-642 *1)) (-4 *1 (-1068 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)))) (-3204 (*1 *2 *3 *1) (-12 (-5 *3 (-642 *7)) (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-642 *1)) (-4 *1 (-1068 *4 *5 *6 *7)))) (-3204 (*1 *2 *3 *2) (-12 (-5 *2 (-642 *1)) (-5 *3 (-642 *7)) (-4 *1 (-1068 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-1062 *4 *5 *6)))) (-2415 (*1 *1 *2 *1) (-12 (-4 *1 (-1068 *3 *4 *5 *2)) (-4 *3 (-452)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *2 (-1062 *3 *4 *5)))) (-2415 (*1 *1 *2 *1) (-12 (-5 *2 (-642 *6)) (-4 *1 (-1068 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)))) (-2137 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)) (-5 *2 (-642 *1)) (-4 *1 (-1068 *4 *5 *6 *3)))) (-2137 (*1 *2 *3 *2) (-12 (-5 *2 (-642 *1)) (-4 *1 (-1068 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)))) (-2137 (*1 *2 *3 *1) (-12 (-5 *3 (-642 *7)) (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-642 *1)) (-4 *1 (-1068 *4 *5 *6 *7)))) (-2137 (*1 *2 *3 *2) (-12 (-5 *2 (-642 *1)) (-5 *3 (-642 *7)) (-4 *1 (-1068 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-1062 *4 *5 *6)))) (-3076 (*1 *2 *3 *4) (-12 (-5 *3 (-642 *8)) (-5 *4 (-112)) (-4 *8 (-1062 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *2 (-642 *1)) (-4 *1 (-1068 *5 *6 *7 *8))))) -(-13 (-1205 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3188 ((-112) |t#4| $)) (-15 -2104 ((-112) |t#4| $)) (-15 -1837 ((-112) |t#4| $)) (-15 -3188 ((-112) $)) (-15 -4141 ((-112) |t#4| $)) (-15 -2328 ((-3 (-112) (-642 $)) |t#4| $)) (-15 -4023 ((-642 (-2 (|:| |val| (-112)) (|:| -2138 $))) |t#4| $)) (-15 -4023 ((-112) |t#4| $)) (-15 -2163 ((-642 $) |t#4| $)) (-15 -3843 ((-3 |t#4| (-642 $)) |t#4| |t#4| $)) (-15 -2224 ((-642 (-2 (|:| |val| |t#4|) (|:| -2138 $))) |t#4| |t#4| $)) (-15 -1993 ((-642 (-2 (|:| |val| |t#4|) (|:| -2138 $))) |t#4| $)) (-15 -2338 ((-642 $) |t#4| $)) (-15 -2338 ((-642 $) (-642 |t#4|) $)) (-15 -2338 ((-642 $) (-642 |t#4|) (-642 $))) (-15 -2338 ((-642 $) |t#4| (-642 $))) (-15 -3204 ((-642 $) |t#4| $)) (-15 -3204 ((-642 $) |t#4| (-642 $))) (-15 -3204 ((-642 $) (-642 |t#4|) $)) (-15 -3204 ((-642 $) (-642 |t#4|) (-642 $))) (-15 -2415 ($ |t#4| $)) (-15 -2415 ($ (-642 |t#4|) $)) (-15 -2137 ((-642 $) |t#4| $)) (-15 -2137 ((-642 $) |t#4| (-642 $))) (-15 -2137 ((-642 $) (-642 |t#4|) $)) (-15 -2137 ((-642 $) (-642 |t#4|) (-642 $))) (-15 -3076 ((-642 $) (-642 |t#4|) (-112))))) -(((-34) . T) ((-102) . T) ((-611 (-642 |#4|)) . T) ((-611 (-860)) . T) ((-151 |#4|) . T) ((-612 (-536)) |has| |#4| (-612 (-536))) ((-309 |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097))) ((-489 |#4|) . T) ((-514 |#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097))) ((-974 |#1| |#2| |#3| |#4|) . T) ((-1097) . T) ((-1205 |#1| |#2| |#3| |#4|) . T) ((-1212) . T)) -((-1923 (((-642 (-2 (|:| |val| |#4|) (|:| -2138 |#5|))) |#4| |#5|) 87)) (-3424 (((-642 (-2 (|:| |val| |#4|) (|:| -2138 |#5|))) |#4| |#4| |#5|) 128)) (-1931 (((-642 |#5|) |#4| |#5|) 75)) (-3517 (((-642 (-2 (|:| |val| (-112)) (|:| -2138 |#5|))) |#4| |#5|) 48) (((-112) |#4| |#5|) 56)) (-1533 (((-1267)) 37)) (-2226 (((-1267)) 26)) (-4360 (((-1267) (-1155) (-1155) (-1155)) 33)) (-2616 (((-1267) (-1155) (-1155) (-1155)) 22)) (-2459 (((-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))) |#4| |#4| |#5|) 108)) (-3192 (((-642 (-2 (|:| |val| |#4|) (|:| -2138 |#5|))) (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))) |#3| (-112)) 119) (((-642 (-2 (|:| |val| |#4|) (|:| -2138 |#5|))) |#4| |#4| |#5| (-112) (-112)) 53)) (-2978 (((-642 (-2 (|:| |val| |#4|) (|:| -2138 |#5|))) |#4| |#4| |#5|) 114))) -(((-1069 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2616 ((-1267) (-1155) (-1155) (-1155))) (-15 -2226 ((-1267))) (-15 -4360 ((-1267) (-1155) (-1155) (-1155))) (-15 -1533 ((-1267))) (-15 -2459 ((-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))) |#4| |#4| |#5|)) (-15 -3192 ((-642 (-2 (|:| |val| |#4|) (|:| -2138 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3192 ((-642 (-2 (|:| |val| |#4|) (|:| -2138 |#5|))) (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))) |#3| (-112))) (-15 -2978 ((-642 (-2 (|:| |val| |#4|) (|:| -2138 |#5|))) |#4| |#4| |#5|)) (-15 -3424 ((-642 (-2 (|:| |val| |#4|) (|:| -2138 |#5|))) |#4| |#4| |#5|)) (-15 -3517 ((-112) |#4| |#5|)) (-15 -3517 ((-642 (-2 (|:| |val| (-112)) (|:| -2138 |#5|))) |#4| |#5|)) (-15 -1931 ((-642 |#5|) |#4| |#5|)) (-15 -1923 ((-642 (-2 (|:| |val| |#4|) (|:| -2138 |#5|))) |#4| |#5|))) (-452) (-791) (-848) (-1062 |#1| |#2| |#3|) (-1068 |#1| |#2| |#3| |#4|)) (T -1069)) -((-1923 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-642 (-2 (|:| |val| *3) (|:| -2138 *4)))) (-5 *1 (-1069 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))) (-1931 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-642 *4)) (-5 *1 (-1069 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))) (-3517 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-642 (-2 (|:| |val| (-112)) (|:| -2138 *4)))) (-5 *1 (-1069 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))) (-3517 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1069 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))) (-3424 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-642 (-2 (|:| |val| *3) (|:| -2138 *4)))) (-5 *1 (-1069 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))) (-2978 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-642 (-2 (|:| |val| *3) (|:| -2138 *4)))) (-5 *1 (-1069 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))) (-3192 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-642 (-2 (|:| |val| (-642 *8)) (|:| -2138 *9)))) (-5 *5 (-112)) (-4 *8 (-1062 *6 *7 *4)) (-4 *9 (-1068 *6 *7 *4 *8)) (-4 *6 (-452)) (-4 *7 (-791)) (-4 *4 (-848)) (-5 *2 (-642 (-2 (|:| |val| *8) (|:| -2138 *9)))) (-5 *1 (-1069 *6 *7 *4 *8 *9)))) (-3192 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-791)) (-4 *8 (-848)) (-4 *3 (-1062 *6 *7 *8)) (-5 *2 (-642 (-2 (|:| |val| *3) (|:| -2138 *4)))) (-5 *1 (-1069 *6 *7 *8 *3 *4)) (-4 *4 (-1068 *6 *7 *8 *3)))) (-2459 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-642 (-2 (|:| |val| (-642 *3)) (|:| -2138 *4)))) (-5 *1 (-1069 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))) (-1533 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-1267)) (-5 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *7 (-1068 *3 *4 *5 *6)))) (-4360 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1155)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-1267)) (-5 *1 (-1069 *4 *5 *6 *7 *8)) (-4 *8 (-1068 *4 *5 *6 *7)))) (-2226 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-1267)) (-5 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *7 (-1068 *3 *4 *5 *6)))) (-2616 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1155)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-1267)) (-5 *1 (-1069 *4 *5 *6 *7 *8)) (-4 *8 (-1068 *4 *5 *6 *7))))) -(-10 -7 (-15 -2616 ((-1267) (-1155) (-1155) (-1155))) (-15 -2226 ((-1267))) (-15 -4360 ((-1267) (-1155) (-1155) (-1155))) (-15 -1533 ((-1267))) (-15 -2459 ((-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))) |#4| |#4| |#5|)) (-15 -3192 ((-642 (-2 (|:| |val| |#4|) (|:| -2138 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3192 ((-642 (-2 (|:| |val| |#4|) (|:| -2138 |#5|))) (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))) |#3| (-112))) (-15 -2978 ((-642 (-2 (|:| |val| |#4|) (|:| -2138 |#5|))) |#4| |#4| |#5|)) (-15 -3424 ((-642 (-2 (|:| |val| |#4|) (|:| -2138 |#5|))) |#4| |#4| |#5|)) (-15 -3517 ((-112) |#4| |#5|)) (-15 -3517 ((-642 (-2 (|:| |val| (-112)) (|:| -2138 |#5|))) |#4| |#5|)) (-15 -1931 ((-642 |#5|) |#4| |#5|)) (-15 -1923 ((-642 (-2 (|:| |val| |#4|) (|:| -2138 |#5|))) |#4| |#5|))) -((-2856 (((-112) $ $) NIL)) (-3775 (((-1211) $) 13)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-1359 (((-1132) $) 10)) (-2390 (((-860) $) 20) (($ (-1178)) NIL) (((-1178) $) NIL)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-1070) (-13 (-1080) (-10 -8 (-15 -1359 ((-1132) $)) (-15 -3775 ((-1211) $))))) (T -1070)) -((-1359 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-1070)))) (-3775 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-1070))))) -(-13 (-1080) (-10 -8 (-15 -1359 ((-1132) $)) (-15 -3775 ((-1211) $)))) -((-3359 (((-112) $ $) 7))) -(((-1071) (-13 (-1212) (-10 -8 (-15 -3359 ((-112) $ $))))) (T -1071)) -((-3359 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1071))))) -(-13 (-1212) (-10 -8 (-15 -3359 ((-112) $ $)))) -((-2856 (((-112) $ $) NIL)) (-2493 (((-1173) $) 8)) (-1778 (((-1155) $) 17)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) 11)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) 14))) -(((-1072 |#1|) (-13 (-1097) (-10 -8 (-15 -2493 ((-1173) $)))) (-1173)) (T -1072)) -((-2493 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-1072 *3)) (-14 *3 *2)))) -(-13 (-1097) (-10 -8 (-15 -2493 ((-1173) $)))) -((-2856 (((-112) $ $) NIL)) (-2081 (($ $ (-642 (-1173)) (-1 (-112) (-642 |#3|))) 34)) (-1859 (($ |#3| |#3|) 23) (($ |#3| |#3| (-642 (-1173))) 21)) (-3199 ((|#3| $) 13)) (-2849 (((-3 (-294 |#3|) "failed") $) 60)) (-1687 (((-294 |#3|) $) NIL)) (-2738 (((-642 (-1173)) $) 16)) (-1649 (((-890 |#1|) $) 11)) (-3187 ((|#3| $) 12)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-4369 ((|#3| $ |#3|) 28) ((|#3| $ |#3| (-919)) 41)) (-2390 (((-860) $) 89) (($ (-294 |#3|)) 22)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) 38))) -(((-1073 |#1| |#2| |#3|) (-13 (-1097) (-286 |#3| |#3|) (-1036 (-294 |#3|)) (-10 -8 (-15 -1859 ($ |#3| |#3|)) (-15 -1859 ($ |#3| |#3| (-642 (-1173)))) (-15 -2081 ($ $ (-642 (-1173)) (-1 (-112) (-642 |#3|)))) (-15 -1649 ((-890 |#1|) $)) (-15 -3187 (|#3| $)) (-15 -3199 (|#3| $)) (-15 -4369 (|#3| $ |#3| (-919))) (-15 -2738 ((-642 (-1173)) $)))) (-1097) (-13 (-1047) (-884 |#1|) (-612 (-890 |#1|))) (-13 (-430 |#2|) (-884 |#1|) (-612 (-890 |#1|)))) (T -1073)) -((-1859 (*1 *1 *2 *2) (-12 (-4 *3 (-1097)) (-4 *4 (-13 (-1047) (-884 *3) (-612 (-890 *3)))) (-5 *1 (-1073 *3 *4 *2)) (-4 *2 (-13 (-430 *4) (-884 *3) (-612 (-890 *3)))))) (-1859 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-642 (-1173))) (-4 *4 (-1097)) (-4 *5 (-13 (-1047) (-884 *4) (-612 (-890 *4)))) (-5 *1 (-1073 *4 *5 *2)) (-4 *2 (-13 (-430 *5) (-884 *4) (-612 (-890 *4)))))) (-2081 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-642 (-1173))) (-5 *3 (-1 (-112) (-642 *6))) (-4 *6 (-13 (-430 *5) (-884 *4) (-612 (-890 *4)))) (-4 *4 (-1097)) (-4 *5 (-13 (-1047) (-884 *4) (-612 (-890 *4)))) (-5 *1 (-1073 *4 *5 *6)))) (-1649 (*1 *2 *1) (-12 (-4 *3 (-1097)) (-4 *4 (-13 (-1047) (-884 *3) (-612 *2))) (-5 *2 (-890 *3)) (-5 *1 (-1073 *3 *4 *5)) (-4 *5 (-13 (-430 *4) (-884 *3) (-612 *2))))) (-3187 (*1 *2 *1) (-12 (-4 *3 (-1097)) (-4 *2 (-13 (-430 *4) (-884 *3) (-612 (-890 *3)))) (-5 *1 (-1073 *3 *4 *2)) (-4 *4 (-13 (-1047) (-884 *3) (-612 (-890 *3)))))) (-3199 (*1 *2 *1) (-12 (-4 *3 (-1097)) (-4 *2 (-13 (-430 *4) (-884 *3) (-612 (-890 *3)))) (-5 *1 (-1073 *3 *4 *2)) (-4 *4 (-13 (-1047) (-884 *3) (-612 (-890 *3)))))) (-4369 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-919)) (-4 *4 (-1097)) (-4 *5 (-13 (-1047) (-884 *4) (-612 (-890 *4)))) (-5 *1 (-1073 *4 *5 *2)) (-4 *2 (-13 (-430 *5) (-884 *4) (-612 (-890 *4)))))) (-2738 (*1 *2 *1) (-12 (-4 *3 (-1097)) (-4 *4 (-13 (-1047) (-884 *3) (-612 (-890 *3)))) (-5 *2 (-642 (-1173))) (-5 *1 (-1073 *3 *4 *5)) (-4 *5 (-13 (-430 *4) (-884 *3) (-612 (-890 *3))))))) -(-13 (-1097) (-286 |#3| |#3|) (-1036 (-294 |#3|)) (-10 -8 (-15 -1859 ($ |#3| |#3|)) (-15 -1859 ($ |#3| |#3| (-642 (-1173)))) (-15 -2081 ($ $ (-642 (-1173)) (-1 (-112) (-642 |#3|)))) (-15 -1649 ((-890 |#1|) $)) (-15 -3187 (|#3| $)) (-15 -3199 (|#3| $)) (-15 -4369 (|#3| $ |#3| (-919))) (-15 -2738 ((-642 (-1173)) $)))) -((-2856 (((-112) $ $) NIL)) (-3241 (($ (-642 (-1073 |#1| |#2| |#3|))) 14)) (-3135 (((-642 (-1073 |#1| |#2| |#3|)) $) 21)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-4369 ((|#3| $ |#3|) 24) ((|#3| $ |#3| (-919)) 27)) (-2390 (((-860) $) 17)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) 20))) -(((-1074 |#1| |#2| |#3|) (-13 (-1097) (-286 |#3| |#3|) (-10 -8 (-15 -3241 ($ (-642 (-1073 |#1| |#2| |#3|)))) (-15 -3135 ((-642 (-1073 |#1| |#2| |#3|)) $)) (-15 -4369 (|#3| $ |#3| (-919))))) (-1097) (-13 (-1047) (-884 |#1|) (-612 (-890 |#1|))) (-13 (-430 |#2|) (-884 |#1|) (-612 (-890 |#1|)))) (T -1074)) -((-3241 (*1 *1 *2) (-12 (-5 *2 (-642 (-1073 *3 *4 *5))) (-4 *3 (-1097)) (-4 *4 (-13 (-1047) (-884 *3) (-612 (-890 *3)))) (-4 *5 (-13 (-430 *4) (-884 *3) (-612 (-890 *3)))) (-5 *1 (-1074 *3 *4 *5)))) (-3135 (*1 *2 *1) (-12 (-4 *3 (-1097)) (-4 *4 (-13 (-1047) (-884 *3) (-612 (-890 *3)))) (-5 *2 (-642 (-1073 *3 *4 *5))) (-5 *1 (-1074 *3 *4 *5)) (-4 *5 (-13 (-430 *4) (-884 *3) (-612 (-890 *3)))))) (-4369 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-919)) (-4 *4 (-1097)) (-4 *5 (-13 (-1047) (-884 *4) (-612 (-890 *4)))) (-5 *1 (-1074 *4 *5 *2)) (-4 *2 (-13 (-430 *5) (-884 *4) (-612 (-890 *4))))))) -(-13 (-1097) (-286 |#3| |#3|) (-10 -8 (-15 -3241 ($ (-642 (-1073 |#1| |#2| |#3|)))) (-15 -3135 ((-642 (-1073 |#1| |#2| |#3|)) $)) (-15 -4369 (|#3| $ |#3| (-919))))) -((-1738 (((-642 (-2 (|:| -2378 (-1169 |#1|)) (|:| -3719 (-642 (-950 |#1|))))) (-642 (-950 |#1|)) (-112) (-112)) 88) (((-642 (-2 (|:| -2378 (-1169 |#1|)) (|:| -3719 (-642 (-950 |#1|))))) (-642 (-950 |#1|))) 92) (((-642 (-2 (|:| -2378 (-1169 |#1|)) (|:| -3719 (-642 (-950 |#1|))))) (-642 (-950 |#1|)) (-112)) 90))) -(((-1075 |#1| |#2|) (-10 -7 (-15 -1738 ((-642 (-2 (|:| -2378 (-1169 |#1|)) (|:| -3719 (-642 (-950 |#1|))))) (-642 (-950 |#1|)) (-112))) (-15 -1738 ((-642 (-2 (|:| -2378 (-1169 |#1|)) (|:| -3719 (-642 (-950 |#1|))))) (-642 (-950 |#1|)))) (-15 -1738 ((-642 (-2 (|:| -2378 (-1169 |#1|)) (|:| -3719 (-642 (-950 |#1|))))) (-642 (-950 |#1|)) (-112) (-112)))) (-13 (-307) (-147)) (-642 (-1173))) (T -1075)) -((-1738 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-5 *2 (-642 (-2 (|:| -2378 (-1169 *5)) (|:| -3719 (-642 (-950 *5)))))) (-5 *1 (-1075 *5 *6)) (-5 *3 (-642 (-950 *5))) (-14 *6 (-642 (-1173))))) (-1738 (*1 *2 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-5 *2 (-642 (-2 (|:| -2378 (-1169 *4)) (|:| -3719 (-642 (-950 *4)))))) (-5 *1 (-1075 *4 *5)) (-5 *3 (-642 (-950 *4))) (-14 *5 (-642 (-1173))))) (-1738 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-5 *2 (-642 (-2 (|:| -2378 (-1169 *5)) (|:| -3719 (-642 (-950 *5)))))) (-5 *1 (-1075 *5 *6)) (-5 *3 (-642 (-950 *5))) (-14 *6 (-642 (-1173)))))) -(-10 -7 (-15 -1738 ((-642 (-2 (|:| -2378 (-1169 |#1|)) (|:| -3719 (-642 (-950 |#1|))))) (-642 (-950 |#1|)) (-112))) (-15 -1738 ((-642 (-2 (|:| -2378 (-1169 |#1|)) (|:| -3719 (-642 (-950 |#1|))))) (-642 (-950 |#1|)))) (-15 -1738 ((-642 (-2 (|:| -2378 (-1169 |#1|)) (|:| -3719 (-642 (-950 |#1|))))) (-642 (-950 |#1|)) (-112) (-112)))) -((-2254 (((-418 |#3|) |#3|) 18))) -(((-1076 |#1| |#2| |#3|) (-10 -7 (-15 -2254 ((-418 |#3|) |#3|))) (-1238 (-407 (-564))) (-13 (-363) (-147) (-722 (-407 (-564)) |#1|)) (-1238 |#2|)) (T -1076)) -((-2254 (*1 *2 *3) (-12 (-4 *4 (-1238 (-407 (-564)))) (-4 *5 (-13 (-363) (-147) (-722 (-407 (-564)) *4))) (-5 *2 (-418 *3)) (-5 *1 (-1076 *4 *5 *3)) (-4 *3 (-1238 *5))))) -(-10 -7 (-15 -2254 ((-418 |#3|) |#3|))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) 141)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (|has| |#1| (-363)))) (-4252 (($ $) NIL (|has| |#1| (-363)))) (-1722 (((-112) $) NIL (|has| |#1| (-363)))) (-1335 (((-687 |#1|) (-1262 $)) NIL) (((-687 |#1|)) 125)) (-3778 ((|#1| $) 130)) (-3651 (((-1185 (-919) (-769)) (-564)) NIL (|has| |#1| (-349)))) (-3085 (((-3 $ "failed") $ $) NIL)) (-1993 (($ $) NIL (|has| |#1| (-363)))) (-3282 (((-418 $) $) NIL (|has| |#1| (-363)))) (-2134 (((-112) $ $) NIL (|has| |#1| (-363)))) (-4003 (((-769)) 46 (|has| |#1| (-368)))) (-2822 (($) NIL T CONST)) (-2849 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1036 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1036 (-407 (-564))))) (((-3 |#1| "failed") $) NIL)) (-1687 (((-564) $) NIL (|has| |#1| (-1036 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1036 (-407 (-564))))) ((|#1| $) NIL)) (-4087 (($ (-1262 |#1|) (-1262 $)) NIL) (($ (-1262 |#1|)) 49)) (-2629 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-349)))) (-2796 (($ $ $) NIL (|has| |#1| (-363)))) (-2330 (((-687 |#1|) $ (-1262 $)) NIL) (((-687 |#1|) $) NIL)) (-3330 (((-687 (-564)) (-687 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -3544 (-687 |#1|)) (|:| |vec| (-1262 |#1|))) (-687 $) (-1262 $)) 115) (((-687 |#1|) (-687 $)) 110)) (-3741 (($ |#2|) 67) (((-3 $ "failed") (-407 |#2|)) NIL (|has| |#1| (-363)))) (-2675 (((-3 $ "failed") $) NIL)) (-3616 (((-919)) 84)) (-3235 (($) 50 (|has| |#1| (-368)))) (-2808 (($ $ $) NIL (|has| |#1| (-363)))) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) NIL (|has| |#1| (-363)))) (-1427 (($) NIL (|has| |#1| (-349)))) (-4153 (((-112) $) NIL (|has| |#1| (-349)))) (-1595 (($ $ (-769)) NIL (|has| |#1| (-349))) (($ $) NIL (|has| |#1| (-349)))) (-3552 (((-112) $) NIL (|has| |#1| (-363)))) (-2408 (((-919) $) NIL (|has| |#1| (-349))) (((-831 (-919)) $) NIL (|has| |#1| (-349)))) (-3163 (((-112) $) NIL)) (-2573 ((|#1| $) NIL)) (-4382 (((-3 $ "failed") $) NIL (|has| |#1| (-349)))) (-2709 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#1| (-363)))) (-2076 ((|#2| $) 91 (|has| |#1| (-363)))) (-2535 (((-919) $) 150 (|has| |#1| (-368)))) (-3730 ((|#2| $) 64)) (-2066 (($ (-642 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-1778 (((-1155) $) NIL)) (-2481 (($ $) NIL (|has| |#1| (-363)))) (-3910 (($) NIL (|has| |#1| (-349)) CONST)) (-2065 (($ (-919)) 140 (|has| |#1| (-368)))) (-3999 (((-1117) $) NIL)) (-4043 (($) 132)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) NIL (|has| |#1| (-363)))) (-2105 (($ (-642 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-4229 (((-642 (-2 (|:| -2254 (-564)) (|:| -2817 (-564))))) NIL (|has| |#1| (-349)))) (-2254 (((-418 $) $) NIL (|has| |#1| (-363)))) (-1877 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL (|has| |#1| (-363)))) (-2842 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-1483 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#1| (-363)))) (-4274 (((-769) $) NIL (|has| |#1| (-363)))) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL (|has| |#1| (-363)))) (-2790 ((|#1| (-1262 $)) NIL) ((|#1|) 119)) (-1354 (((-769) $) NIL (|has| |#1| (-349))) (((-3 (-769) "failed") $ $) NIL (|has| |#1| (-349)))) (-2199 (($ $) NIL (-2682 (-12 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-769)) NIL (-2682 (-12 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-1173)) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-898 (-1173))))) (($ $ (-642 (-1173))) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-898 (-1173))))) (($ $ (-1173) (-769)) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-898 (-1173))))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-898 (-1173))))) (($ $ (-1 |#1| |#1|) (-769)) NIL (|has| |#1| (-363))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-363)))) (-2418 (((-687 |#1|) (-1262 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-363)))) (-1361 ((|#2|) 80)) (-3553 (($) NIL (|has| |#1| (-349)))) (-3719 (((-1262 |#1|) $ (-1262 $)) 96) (((-687 |#1|) (-1262 $) (-1262 $)) NIL) (((-1262 |#1|) $) 77) (((-687 |#1|) (-1262 $)) 92)) (-3003 (((-1262 |#1|) $) NIL) (($ (-1262 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-3556 (((-3 (-1262 $) "failed") (-687 $)) NIL (|has| |#1| (-349)))) (-2390 (((-860) $) 63) (($ (-564)) 59) (($ |#1|) 60) (($ $) NIL (|has| |#1| (-363))) (($ (-407 (-564))) NIL (-2682 (|has| |#1| (-363)) (|has| |#1| (-1036 (-407 (-564))))))) (-3434 (($ $) NIL (|has| |#1| (-349))) (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1308 ((|#2| $) 89)) (-3348 (((-769)) 82 T CONST)) (-1600 (((-112) $ $) NIL)) (-2131 (((-1262 $)) 88)) (-1594 (((-112) $ $) NIL (|has| |#1| (-363)))) (-2361 (($) 32 T CONST)) (-2371 (($) 19 T CONST)) (-2711 (($ $) NIL (-2682 (-12 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-769)) NIL (-2682 (-12 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-1173)) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-898 (-1173))))) (($ $ (-642 (-1173))) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-898 (-1173))))) (($ $ (-1173) (-769)) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-898 (-1173))))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-898 (-1173))))) (($ $ (-1 |#1| |#1|) (-769)) NIL (|has| |#1| (-363))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-363)))) (-2821 (((-112) $ $) 69)) (-2943 (($ $ $) NIL (|has| |#1| (-363)))) (-2930 (($ $) 73) (($ $ $) NIL)) (-2917 (($ $ $) 71)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363)))) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 57) (($ $ $) 75) (($ $ |#1|) NIL) (($ |#1| $) 54) (($ (-407 (-564)) $) NIL (|has| |#1| (-363))) (($ $ (-407 (-564))) NIL (|has| |#1| (-363))))) -(((-1077 |#1| |#2| |#3|) (-722 |#1| |#2|) (-172) (-1238 |#1|) |#2|) (T -1077)) -NIL -(-722 |#1| |#2|) -((-2254 (((-418 |#3|) |#3|) 19))) -(((-1078 |#1| |#2| |#3|) (-10 -7 (-15 -2254 ((-418 |#3|) |#3|))) (-1238 (-407 (-950 (-564)))) (-13 (-363) (-147) (-722 (-407 (-950 (-564))) |#1|)) (-1238 |#2|)) (T -1078)) -((-2254 (*1 *2 *3) (-12 (-4 *4 (-1238 (-407 (-950 (-564))))) (-4 *5 (-13 (-363) (-147) (-722 (-407 (-950 (-564))) *4))) (-5 *2 (-418 *3)) (-5 *1 (-1078 *4 *5 *3)) (-4 *3 (-1238 *5))))) -(-10 -7 (-15 -2254 ((-418 |#3|) |#3|))) -((-2856 (((-112) $ $) NIL)) (-3225 (($ $ $) 16)) (-2903 (($ $ $) 17)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2335 (($) 6)) (-3003 (((-1173) $) 20)) (-2390 (((-860) $) 13)) (-1600 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL)) (-2857 (((-112) $ $) NIL)) (-2821 (((-112) $ $) 15)) (-2868 (((-112) $ $) NIL)) (-2844 (((-112) $ $) 9))) -(((-1079) (-13 (-848) (-612 (-1173)) (-10 -8 (-15 -2335 ($))))) (T -1079)) -((-2335 (*1 *1) (-5 *1 (-1079)))) -(-13 (-848) (-612 (-1173)) (-10 -8 (-15 -2335 ($)))) -((-2856 (((-112) $ $) 7)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2390 (((-860) $) 12) (($ (-1178)) 17) (((-1178) $) 16)) (-1600 (((-112) $ $) 9)) (-2821 (((-112) $ $) 6))) -(((-1080) (-140)) (T -1080)) +NIL +(-13 (-21) (-1111)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-1111) . T) ((-1099) . T)) +((-3175 (($ $) 17)) (-1505 (($ $) 25)) (-1542 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 55)) (-1398 (($ $) 27)) (-4305 (($ $) 12)) (-2001 (($ $) 43)) (-3136 (((-381) $) NIL) (((-225) $) NIL) (((-892 (-381)) $) 36)) (-2479 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) 31) (($ (-566)) NIL) (($ (-409 (-566))) 31)) (-1558 (((-771)) 9)) (-3908 (($ $) 45))) +(((-1058 |#1|) (-10 -8 (-15 -1505 (|#1| |#1|)) (-15 -3175 (|#1| |#1|)) (-15 -4305 (|#1| |#1|)) (-15 -2001 (|#1| |#1|)) (-15 -3908 (|#1| |#1|)) (-15 -1398 (|#1| |#1|)) (-15 -1542 ((-889 (-381) |#1|) |#1| (-892 (-381)) (-889 (-381) |#1|))) (-15 -3136 ((-892 (-381)) |#1|)) (-15 -2479 (|#1| (-409 (-566)))) (-15 -2479 (|#1| (-566))) (-15 -3136 ((-225) |#1|)) (-15 -3136 ((-381) |#1|)) (-15 -2479 (|#1| (-409 (-566)))) (-15 -2479 (|#1| |#1|)) (-15 -1558 ((-771))) (-15 -2479 (|#1| (-566))) (-15 -2479 ((-862) |#1|))) (-1059)) (T -1058)) +((-1558 (*1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-1058 *3)) (-4 *3 (-1059))))) +(-10 -8 (-15 -1505 (|#1| |#1|)) (-15 -3175 (|#1| |#1|)) (-15 -4305 (|#1| |#1|)) (-15 -2001 (|#1| |#1|)) (-15 -3908 (|#1| |#1|)) (-15 -1398 (|#1| |#1|)) (-15 -1542 ((-889 (-381) |#1|) |#1| (-892 (-381)) (-889 (-381) |#1|))) (-15 -3136 ((-892 (-381)) |#1|)) (-15 -2479 (|#1| (-409 (-566)))) (-15 -2479 (|#1| (-566))) (-15 -3136 ((-225) |#1|)) (-15 -3136 ((-381) |#1|)) (-15 -2479 (|#1| (-409 (-566)))) (-15 -2479 (|#1| |#1|)) (-15 -1558 ((-771))) (-15 -2479 (|#1| (-566))) (-15 -2479 ((-862) |#1|))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-2488 (((-566) $) 97)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) 47)) (-3087 (($ $) 46)) (-1716 (((-112) $) 44)) (-3175 (($ $) 95)) (-3174 (((-3 $ "failed") $ $) 20)) (-3980 (($ $) 81)) (-3348 (((-420 $) $) 80)) (-2338 (($ $) 105)) (-2761 (((-112) $ $) 65)) (-2920 (((-566) $) 122)) (-1811 (($) 18 T CONST)) (-1505 (($ $) 94)) (-2980 (((-3 (-566) "failed") $) 110) (((-3 (-409 (-566)) "failed") $) 107)) (-1709 (((-566) $) 111) (((-409 (-566)) $) 108)) (-2925 (($ $ $) 61)) (-3757 (((-3 $ "failed") $) 37)) (-2937 (($ $ $) 62)) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) 57)) (-4188 (((-112) $) 79)) (-2133 (((-112) $) 120)) (-1542 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 101)) (-2264 (((-112) $) 35)) (-3146 (($ $ (-566)) 104)) (-1398 (($ $) 100)) (-3420 (((-112) $) 121)) (-2495 (((-3 (-644 $) "failed") (-644 $) $) 58)) (-1920 (($ $ $) 119)) (-3038 (($ $ $) 118)) (-2120 (($ $ $) 52) (($ (-644 $)) 51)) (-3151 (((-1157) $) 10)) (-2577 (($ $) 78)) (-4059 (((-1119) $) 11)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-2162 (($ $ $) 54) (($ (-644 $)) 53)) (-4305 (($ $) 96)) (-2001 (($ $) 98)) (-2325 (((-420 $) $) 82)) (-2585 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2976 (((-3 $ "failed") $ $) 48)) (-2840 (((-3 (-644 $) "failed") (-644 $) $) 56)) (-1383 (((-771) $) 64)) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) 63)) (-3136 (((-381) $) 113) (((-225) $) 112) (((-892 (-381)) $) 102)) (-2479 (((-862) $) 12) (($ (-566)) 33) (($ $) 49) (($ (-409 (-566))) 74) (($ (-566)) 109) (($ (-409 (-566))) 106)) (-1558 (((-771)) 32 T CONST)) (-3908 (($ $) 99)) (-3900 (((-112) $ $) 9)) (-1333 (((-112) $ $) 45)) (-4298 (($ $) 123)) (-2446 (($) 19 T CONST)) (-2459 (($) 34 T CONST)) (-3019 (((-112) $ $) 116)) (-2990 (((-112) $ $) 115)) (-2952 (((-112) $ $) 6)) (-3004 (((-112) $ $) 117)) (-2977 (((-112) $ $) 114)) (-3077 (($ $ $) 73)) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 77) (($ $ (-409 (-566))) 103)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ (-409 (-566))) 76) (($ (-409 (-566)) $) 75))) +(((-1059) (-140)) (T -1059)) +((-4298 (*1 *1 *1) (-4 *1 (-1059))) (-1398 (*1 *1 *1) (-4 *1 (-1059))) (-3908 (*1 *1 *1) (-4 *1 (-1059))) (-2001 (*1 *1 *1) (-4 *1 (-1059))) (-2488 (*1 *2 *1) (-12 (-4 *1 (-1059)) (-5 *2 (-566)))) (-4305 (*1 *1 *1) (-4 *1 (-1059))) (-3175 (*1 *1 *1) (-4 *1 (-1059))) (-1505 (*1 *1 *1) (-4 *1 (-1059)))) +(-13 (-365) (-848) (-1022) (-1038 (-566)) (-1038 (-409 (-566))) (-1002) (-614 (-892 (-381))) (-886 (-381)) (-147) (-10 -8 (-15 -1398 ($ $)) (-15 -3908 ($ $)) (-15 -2001 ($ $)) (-15 -2488 ((-566) $)) (-15 -4305 ($ $)) (-15 -3175 ($ $)) (-15 -1505 ($ $)) (-15 -4298 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-409 (-566))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-616 #0#) . T) ((-616 (-566)) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-614 (-225)) . T) ((-614 (-381)) . T) ((-614 (-892 (-381))) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-454) . T) ((-558) . T) ((-646 #0#) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 #0#) . T) ((-648 $) . T) ((-640 #0#) . T) ((-640 $) . T) ((-717 #0#) . T) ((-717 $) . T) ((-726) . T) ((-791) . T) ((-792) . T) ((-794) . T) ((-795) . T) ((-848) . T) ((-850) . T) ((-886 (-381)) . T) ((-920) . T) ((-1002) . T) ((-1022) . T) ((-1038 (-409 (-566))) . T) ((-1038 (-566)) . T) ((-1051 #0#) . T) ((-1051 $) . T) ((-1056 #0#) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1218) . T)) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) |#2| $) 26)) (-4049 ((|#1| $) 10)) (-2920 (((-566) |#2| $) 116)) (-3388 (((-3 $ "failed") |#2| (-921)) 75)) (-4361 ((|#1| $) 31)) (-2168 ((|#1| |#2| $ |#1|) 40)) (-3991 (($ $) 28)) (-3757 (((-3 |#2| "failed") |#2| $) 111)) (-2133 (((-112) |#2| $) NIL)) (-3420 (((-112) |#2| $) NIL)) (-4337 (((-112) |#2| $) 27)) (-1927 ((|#1| $) 117)) (-4351 ((|#1| $) 30)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2301 ((|#2| $) 102)) (-2479 (((-862) $) 92)) (-3900 (((-112) $ $) NIL)) (-3649 ((|#1| |#2| $ |#1|) 41)) (-2081 (((-644 $) |#2|) 77)) (-2952 (((-112) $ $) 97))) +(((-1060 |#1| |#2|) (-13 (-1067 |#1| |#2|) (-10 -8 (-15 -4351 (|#1| $)) (-15 -4361 (|#1| $)) (-15 -4049 (|#1| $)) (-15 -1927 (|#1| $)) (-15 -3991 ($ $)) (-15 -4337 ((-112) |#2| $)) (-15 -2168 (|#1| |#2| $ |#1|)))) (-13 (-848) (-365)) (-1240 |#1|)) (T -1060)) +((-2168 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-848) (-365))) (-5 *1 (-1060 *2 *3)) (-4 *3 (-1240 *2)))) (-4351 (*1 *2 *1) (-12 (-4 *2 (-13 (-848) (-365))) (-5 *1 (-1060 *2 *3)) (-4 *3 (-1240 *2)))) (-4361 (*1 *2 *1) (-12 (-4 *2 (-13 (-848) (-365))) (-5 *1 (-1060 *2 *3)) (-4 *3 (-1240 *2)))) (-4049 (*1 *2 *1) (-12 (-4 *2 (-13 (-848) (-365))) (-5 *1 (-1060 *2 *3)) (-4 *3 (-1240 *2)))) (-1927 (*1 *2 *1) (-12 (-4 *2 (-13 (-848) (-365))) (-5 *1 (-1060 *2 *3)) (-4 *3 (-1240 *2)))) (-3991 (*1 *1 *1) (-12 (-4 *2 (-13 (-848) (-365))) (-5 *1 (-1060 *2 *3)) (-4 *3 (-1240 *2)))) (-4337 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-848) (-365))) (-5 *2 (-112)) (-5 *1 (-1060 *4 *3)) (-4 *3 (-1240 *4))))) +(-13 (-1067 |#1| |#2|) (-10 -8 (-15 -4351 (|#1| $)) (-15 -4361 (|#1| $)) (-15 -4049 (|#1| $)) (-15 -1927 (|#1| $)) (-15 -3991 ($ $)) (-15 -4337 ((-112) |#2| $)) (-15 -2168 (|#1| |#2| $ |#1|)))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-1716 (((-112) $) NIL)) (-2590 (($ $ $) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-1538 (($ $ $ $) NIL)) (-3980 (($ $) NIL)) (-3348 (((-420 $) $) NIL)) (-2761 (((-112) $ $) NIL)) (-2920 (((-566) $) NIL)) (-3099 (($ $ $) NIL)) (-1811 (($) NIL T CONST)) (-2782 (($ (-1175)) 10) (($ (-566)) 7)) (-2980 (((-3 (-566) "failed") $) NIL)) (-1709 (((-566) $) NIL)) (-2925 (($ $ $) NIL)) (-2275 (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL) (((-689 (-566)) (-689 $)) NIL)) (-3757 (((-3 $ "failed") $) NIL)) (-2515 (((-3 (-409 (-566)) "failed") $) NIL)) (-2024 (((-112) $) NIL)) (-3330 (((-409 (-566)) $) NIL)) (-1415 (($) NIL) (($ $) NIL)) (-2937 (($ $ $) NIL)) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) NIL)) (-4188 (((-112) $) NIL)) (-1328 (($ $ $ $) NIL)) (-1387 (($ $ $) NIL)) (-2133 (((-112) $) NIL)) (-1655 (($ $ $) NIL)) (-1542 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL)) (-2264 (((-112) $) NIL)) (-3400 (((-112) $) NIL)) (-4278 (((-3 $ "failed") $) NIL)) (-3420 (((-112) $) NIL)) (-2495 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2731 (($ $ $ $) NIL)) (-1920 (($ $ $) NIL)) (-3038 (($ $ $) NIL)) (-1546 (($ $) NIL)) (-4332 (($ $) NIL)) (-2120 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3151 (((-1157) $) NIL)) (-1432 (($ $ $) NIL)) (-3968 (($) NIL T CONST)) (-4282 (($ $) NIL)) (-4059 (((-1119) $) NIL)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2162 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2259 (($ $) NIL)) (-2325 (((-420 $) $) NIL)) (-2585 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL)) (-2976 (((-3 $ "failed") $ $) NIL)) (-2840 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2206 (((-112) $) NIL)) (-1383 (((-771) $) NIL)) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL)) (-3526 (($ $ (-771)) NIL) (($ $) NIL)) (-3166 (($ $) NIL)) (-3924 (($ $) NIL)) (-3136 (((-566) $) 16) (((-538) $) NIL) (((-892 (-566)) $) NIL) (((-381) $) NIL) (((-225) $) NIL) (($ (-1175)) 9)) (-2479 (((-862) $) 23) (($ (-566)) 6) (($ $) NIL) (($ (-566)) 6)) (-1558 (((-771)) NIL T CONST)) (-3556 (((-112) $ $) NIL)) (-1835 (($ $ $) NIL)) (-3900 (((-112) $ $) NIL)) (-3810 (($) NIL)) (-1333 (((-112) $ $) NIL)) (-3751 (($ $ $ $) NIL)) (-4298 (($ $) NIL)) (-2446 (($) NIL T CONST)) (-2459 (($) NIL T CONST)) (-2834 (($ $ (-771)) NIL) (($ $) NIL)) (-3019 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3004 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-3065 (($ $) 22) (($ $ $) NIL)) (-3052 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL))) +(((-1061) (-13 (-547) (-618 (-1175)) (-10 -8 (-6 -4404) (-6 -4409) (-6 -4405) (-15 -2782 ($ (-1175))) (-15 -2782 ($ (-566)))))) (T -1061)) +((-2782 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1061)))) (-2782 (*1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-1061))))) +(-13 (-547) (-618 (-1175)) (-10 -8 (-6 -4404) (-6 -4409) (-6 -4405) (-15 -2782 ($ (-1175))) (-15 -2782 ($ (-566))))) +((-2986 (((-112) $ $) NIL (-2809 (|has| (-52) (-1099)) (|has| (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-1099))))) (-4250 (($) NIL) (($ (-644 (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))))) NIL)) (-2462 (((-1269) $ (-1175) (-1175)) NIL (|has| $ (-6 -4418)))) (-1453 (((-112) $ (-771)) NIL)) (-2417 (($) 9)) (-3901 (((-52) $ (-1175) (-52)) NIL)) (-1988 (($ $) 32)) (-1639 (($ $) 30)) (-1873 (($ $) 29)) (-2808 (($ $) 31)) (-4100 (($ $) 35)) (-3793 (($ $) 36)) (-3555 (($ $) 28)) (-2718 (($ $) 33)) (-4364 (($ (-1 (-112) (-2 (|:| -1928 (-1175)) (|:| -2806 (-52)))) $) NIL (|has| $ (-6 -4417)))) (-3543 (($ (-1 (-112) (-2 (|:| -1928 (-1175)) (|:| -2806 (-52)))) $) 27 (|has| $ (-6 -4417)))) (-2377 (((-3 (-52) "failed") (-1175) $) 43)) (-1811 (($) NIL T CONST)) (-3503 (($) 7)) (-4111 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-1099))))) (-2295 (($ (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) $) 53 (|has| $ (-6 -4417))) (($ (-1 (-112) (-2 (|:| -1928 (-1175)) (|:| -2806 (-52)))) $) NIL (|has| $ (-6 -4417))) (((-3 (-52) "failed") (-1175) $) NIL)) (-2628 (($ (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-1099)))) (($ (-1 (-112) (-2 (|:| -1928 (-1175)) (|:| -2806 (-52)))) $) NIL (|has| $ (-6 -4417)))) (-1838 (((-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-1 (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-2 (|:| -1928 (-1175)) (|:| -2806 (-52)))) $ (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-2 (|:| -1928 (-1175)) (|:| -2806 (-52)))) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-1099)))) (((-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-1 (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-2 (|:| -1928 (-1175)) (|:| -2806 (-52)))) $ (-2 (|:| -1928 (-1175)) (|:| -2806 (-52)))) NIL (|has| $ (-6 -4417))) (((-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-1 (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-2 (|:| -1928 (-1175)) (|:| -2806 (-52)))) $) NIL (|has| $ (-6 -4417)))) (-2006 (((-3 (-1157) "failed") $ (-1157) (-566)) 74)) (-3719 (((-52) $ (-1175) (-52)) NIL (|has| $ (-6 -4418)))) (-3653 (((-52) $ (-1175)) NIL)) (-3872 (((-644 (-2 (|:| -1928 (-1175)) (|:| -2806 (-52)))) $) NIL (|has| $ (-6 -4417))) (((-644 (-52)) $) NIL (|has| $ (-6 -4417)))) (-2756 (((-112) $ (-771)) NIL)) (-2755 (((-1175) $) NIL (|has| (-1175) (-850)))) (-4227 (((-644 (-2 (|:| -1928 (-1175)) (|:| -2806 (-52)))) $) 38 (|has| $ (-6 -4417))) (((-644 (-52)) $) NIL (|has| $ (-6 -4417)))) (-1688 (((-112) (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-1099)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-52) (-1099))))) (-3831 (((-1175) $) NIL (|has| (-1175) (-850)))) (-3708 (($ (-1 (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-2 (|:| -1928 (-1175)) (|:| -2806 (-52)))) $) NIL (|has| $ (-6 -4418))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4418)))) (-3080 (($ (-1 (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-2 (|:| -1928 (-1175)) (|:| -2806 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-4106 (((-112) $ (-771)) NIL)) (-3151 (((-1157) $) NIL (-2809 (|has| (-52) (-1099)) (|has| (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-1099))))) (-1467 (((-644 (-1175)) $) NIL)) (-3983 (((-112) (-1175) $) NIL)) (-4255 (((-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) $) NIL)) (-4354 (($ (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) $) 46)) (-3780 (((-644 (-1175)) $) NIL)) (-1605 (((-112) (-1175) $) NIL)) (-4059 (((-1119) $) NIL (-2809 (|has| (-52) (-1099)) (|has| (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-1099))))) (-2351 (((-381) $ (-1175)) 52)) (-3256 (((-644 (-1157)) $ (-1157)) 76)) (-4080 (((-52) $) NIL (|has| (-1175) (-850)))) (-2688 (((-3 (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) "failed") (-1 (-112) (-2 (|:| -1928 (-1175)) (|:| -2806 (-52)))) $) NIL)) (-4079 (($ $ (-52)) NIL (|has| $ (-6 -4418)))) (-4097 (((-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) $) NIL)) (-3966 (((-112) (-1 (-112) (-2 (|:| -1928 (-1175)) (|:| -2806 (-52)))) $) NIL (|has| $ (-6 -4417))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 (-2 (|:| -1928 (-1175)) (|:| -2806 (-52)))))) NIL (-12 (|has| (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-310 (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))))) (|has| (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-1099)))) (($ $ (-295 (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))))) NIL (-12 (|has| (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-310 (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))))) (|has| (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-1099)))) (($ $ (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-2 (|:| -1928 (-1175)) (|:| -2806 (-52)))) NIL (-12 (|has| (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-310 (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))))) (|has| (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-1099)))) (($ $ (-644 (-2 (|:| -1928 (-1175)) (|:| -2806 (-52)))) (-644 (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))))) NIL (-12 (|has| (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-310 (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))))) (|has| (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-1099)))) (($ $ (-644 (-52)) (-644 (-52))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1099)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1099)))) (($ $ (-295 (-52))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1099)))) (($ $ (-644 (-295 (-52)))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1099))))) (-1844 (((-112) $ $) NIL)) (-2210 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-52) (-1099))))) (-4185 (((-644 (-52)) $) NIL)) (-2788 (((-112) $) NIL)) (-1737 (($) NIL)) (-4376 (((-52) $ (-1175)) NIL) (((-52) $ (-1175) (-52)) NIL)) (-1797 (($) NIL) (($ (-644 (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))))) NIL)) (-2871 (($ $ (-1175)) 54)) (-4068 (((-771) (-1 (-112) (-2 (|:| -1928 (-1175)) (|:| -2806 (-52)))) $) NIL (|has| $ (-6 -4417))) (((-771) (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-1099)))) (((-771) (-52) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-52) (-1099)))) (((-771) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4417)))) (-3924 (($ $) NIL)) (-3136 (((-538) $) NIL (|has| (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-614 (-538))))) (-2489 (($ (-644 (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))))) 40)) (-3716 (($ $ $) 41)) (-2479 (((-862) $) NIL (-2809 (|has| (-52) (-613 (-862))) (|has| (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-613 (-862)))))) (-2527 (($ $ (-1175) (-381)) 50)) (-1954 (($ $ (-1175) (-381)) 51)) (-3900 (((-112) $ $) NIL (-2809 (|has| (-52) (-1099)) (|has| (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-1099))))) (-2471 (($ (-644 (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))))) NIL)) (-3667 (((-112) (-1 (-112) (-2 (|:| -1928 (-1175)) (|:| -2806 (-52)))) $) NIL (|has| $ (-6 -4417))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4417)))) (-2952 (((-112) $ $) NIL (-2809 (|has| (-52) (-1099)) (|has| (-2 (|:| -1928 (-1175)) (|:| -2806 (-52))) (-1099))))) (-3002 (((-771) $) NIL (|has| $ (-6 -4417))))) +(((-1062) (-13 (-1190 (-1175) (-52)) (-10 -8 (-15 -3716 ($ $ $)) (-15 -3503 ($)) (-15 -3555 ($ $)) (-15 -1873 ($ $)) (-15 -1639 ($ $)) (-15 -2808 ($ $)) (-15 -2718 ($ $)) (-15 -1988 ($ $)) (-15 -4100 ($ $)) (-15 -3793 ($ $)) (-15 -2527 ($ $ (-1175) (-381))) (-15 -1954 ($ $ (-1175) (-381))) (-15 -2351 ((-381) $ (-1175))) (-15 -3256 ((-644 (-1157)) $ (-1157))) (-15 -2871 ($ $ (-1175))) (-15 -2417 ($)) (-15 -2006 ((-3 (-1157) "failed") $ (-1157) (-566))) (-6 -4417)))) (T -1062)) +((-3716 (*1 *1 *1 *1) (-5 *1 (-1062))) (-3503 (*1 *1) (-5 *1 (-1062))) (-3555 (*1 *1 *1) (-5 *1 (-1062))) (-1873 (*1 *1 *1) (-5 *1 (-1062))) (-1639 (*1 *1 *1) (-5 *1 (-1062))) (-2808 (*1 *1 *1) (-5 *1 (-1062))) (-2718 (*1 *1 *1) (-5 *1 (-1062))) (-1988 (*1 *1 *1) (-5 *1 (-1062))) (-4100 (*1 *1 *1) (-5 *1 (-1062))) (-3793 (*1 *1 *1) (-5 *1 (-1062))) (-2527 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-381)) (-5 *1 (-1062)))) (-1954 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-381)) (-5 *1 (-1062)))) (-2351 (*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-381)) (-5 *1 (-1062)))) (-3256 (*1 *2 *1 *3) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1062)) (-5 *3 (-1157)))) (-2871 (*1 *1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1062)))) (-2417 (*1 *1) (-5 *1 (-1062))) (-2006 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1157)) (-5 *3 (-566)) (-5 *1 (-1062))))) +(-13 (-1190 (-1175) (-52)) (-10 -8 (-15 -3716 ($ $ $)) (-15 -3503 ($)) (-15 -3555 ($ $)) (-15 -1873 ($ $)) (-15 -1639 ($ $)) (-15 -2808 ($ $)) (-15 -2718 ($ $)) (-15 -1988 ($ $)) (-15 -4100 ($ $)) (-15 -3793 ($ $)) (-15 -2527 ($ $ (-1175) (-381))) (-15 -1954 ($ $ (-1175) (-381))) (-15 -2351 ((-381) $ (-1175))) (-15 -3256 ((-644 (-1157)) $ (-1157))) (-15 -2871 ($ $ (-1175))) (-15 -2417 ($)) (-15 -2006 ((-3 (-1157) "failed") $ (-1157) (-566))) (-6 -4417))) +((-3238 (($ $) 46)) (-3559 (((-112) $ $) 82)) (-2980 (((-3 |#2| "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL) (((-3 (-566) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-952 (-409 (-566)))) 253) (((-3 $ "failed") (-952 (-566))) 252) (((-3 $ "failed") (-952 |#2|)) 255)) (-1709 ((|#2| $) NIL) (((-409 (-566)) $) NIL) (((-566) $) NIL) ((|#4| $) NIL) (($ (-952 (-409 (-566)))) 241) (($ (-952 (-566))) 237) (($ (-952 |#2|)) 257)) (-3565 (($ $) NIL) (($ $ |#4|) 44)) (-1995 (((-112) $ $) 131) (((-112) $ (-644 $)) 135)) (-1408 (((-112) $) 60)) (-3920 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) 125)) (-1447 (($ $) 160)) (-1567 (($ $) 156)) (-2890 (($ $) 155)) (-1457 (($ $ $) 87) (($ $ $ |#4|) 92)) (-4254 (($ $ $) 90) (($ $ $ |#4|) 94)) (-4297 (((-112) $ $) 143) (((-112) $ (-644 $)) 144)) (-4052 ((|#4| $) 32)) (-3914 (($ $ $) 128)) (-4090 (((-112) $) 59)) (-2578 (((-771) $) 35)) (-1683 (($ $) 174)) (-3460 (($ $) 171)) (-4145 (((-644 $) $) 72)) (-1892 (($ $) 62)) (-3679 (($ $) 167)) (-1332 (((-644 $) $) 69)) (-4303 (($ $) 64)) (-2622 ((|#2| $) NIL) (($ $ |#4|) 39)) (-2233 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3061 (-771))) $ $) 130)) (-2991 (((-2 (|:| -3103 $) (|:| |gap| (-771)) (|:| -3371 $) (|:| -3131 $)) $ $) 126) (((-2 (|:| -3103 $) (|:| |gap| (-771)) (|:| -3371 $) (|:| -3131 $)) $ $ |#4|) 127)) (-1891 (((-2 (|:| -3103 $) (|:| |gap| (-771)) (|:| -3131 $)) $ $) 121) (((-2 (|:| -3103 $) (|:| |gap| (-771)) (|:| -3131 $)) $ $ |#4|) 123)) (-1345 (($ $ $) 97) (($ $ $ |#4|) 106)) (-2478 (($ $ $) 98) (($ $ $ |#4|) 107)) (-2847 (((-644 $) $) 54)) (-4121 (((-112) $ $) 140) (((-112) $ (-644 $)) 141)) (-3317 (($ $ $) 116)) (-3968 (($ $) 37)) (-3730 (((-112) $ $) 80)) (-1695 (((-112) $ $) 136) (((-112) $ (-644 $)) 138)) (-3869 (($ $ $) 112)) (-2154 (($ $) 41)) (-2162 ((|#2| |#2| $) 164) (($ (-644 $)) NIL) (($ $ $) NIL)) (-2508 (($ $ |#2|) NIL) (($ $ $) 153)) (-1843 (($ $ |#2|) 148) (($ $ $) 151)) (-2938 (($ $) 49)) (-1926 (($ $) 55)) (-3136 (((-892 (-381)) $) NIL) (((-892 (-566)) $) NIL) (((-538) $) NIL) (($ (-952 (-409 (-566)))) 243) (($ (-952 (-566))) 239) (($ (-952 |#2|)) 254) (((-1157) $) 281) (((-952 |#2|) $) 184)) (-2479 (((-862) $) 29) (($ (-566)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-952 |#2|) $) 185) (($ (-409 (-566))) NIL) (($ $) NIL)) (-4313 (((-3 (-112) "failed") $ $) 79))) +(((-1063 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2479 (|#1| |#1|)) (-15 -2162 (|#1| |#1| |#1|)) (-15 -2162 (|#1| (-644 |#1|))) (-15 -2479 (|#1| (-409 (-566)))) (-15 -2479 ((-952 |#2|) |#1|)) (-15 -3136 ((-952 |#2|) |#1|)) (-15 -3136 ((-1157) |#1|)) (-15 -1683 (|#1| |#1|)) (-15 -3460 (|#1| |#1|)) (-15 -3679 (|#1| |#1|)) (-15 -1447 (|#1| |#1|)) (-15 -2162 (|#2| |#2| |#1|)) (-15 -2508 (|#1| |#1| |#1|)) (-15 -1843 (|#1| |#1| |#1|)) (-15 -2508 (|#1| |#1| |#2|)) (-15 -1843 (|#1| |#1| |#2|)) (-15 -1567 (|#1| |#1|)) (-15 -2890 (|#1| |#1|)) (-15 -3136 (|#1| (-952 |#2|))) (-15 -1709 (|#1| (-952 |#2|))) (-15 -2980 ((-3 |#1| "failed") (-952 |#2|))) (-15 -3136 (|#1| (-952 (-566)))) (-15 -1709 (|#1| (-952 (-566)))) (-15 -2980 ((-3 |#1| "failed") (-952 (-566)))) (-15 -3136 (|#1| (-952 (-409 (-566))))) (-15 -1709 (|#1| (-952 (-409 (-566))))) (-15 -2980 ((-3 |#1| "failed") (-952 (-409 (-566))))) (-15 -3317 (|#1| |#1| |#1|)) (-15 -3869 (|#1| |#1| |#1|)) (-15 -2233 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3061 (-771))) |#1| |#1|)) (-15 -3914 (|#1| |#1| |#1|)) (-15 -3920 ((-2 (|:| -3371 |#1|) (|:| -3131 |#1|)) |#1| |#1|)) (-15 -2991 ((-2 (|:| -3103 |#1|) (|:| |gap| (-771)) (|:| -3371 |#1|) (|:| -3131 |#1|)) |#1| |#1| |#4|)) (-15 -2991 ((-2 (|:| -3103 |#1|) (|:| |gap| (-771)) (|:| -3371 |#1|) (|:| -3131 |#1|)) |#1| |#1|)) (-15 -1891 ((-2 (|:| -3103 |#1|) (|:| |gap| (-771)) (|:| -3131 |#1|)) |#1| |#1| |#4|)) (-15 -1891 ((-2 (|:| -3103 |#1|) (|:| |gap| (-771)) (|:| -3131 |#1|)) |#1| |#1|)) (-15 -2478 (|#1| |#1| |#1| |#4|)) (-15 -1345 (|#1| |#1| |#1| |#4|)) (-15 -2478 (|#1| |#1| |#1|)) (-15 -1345 (|#1| |#1| |#1|)) (-15 -4254 (|#1| |#1| |#1| |#4|)) (-15 -1457 (|#1| |#1| |#1| |#4|)) (-15 -4254 (|#1| |#1| |#1|)) (-15 -1457 (|#1| |#1| |#1|)) (-15 -4297 ((-112) |#1| (-644 |#1|))) (-15 -4297 ((-112) |#1| |#1|)) (-15 -4121 ((-112) |#1| (-644 |#1|))) (-15 -4121 ((-112) |#1| |#1|)) (-15 -1695 ((-112) |#1| (-644 |#1|))) (-15 -1695 ((-112) |#1| |#1|)) (-15 -1995 ((-112) |#1| (-644 |#1|))) (-15 -1995 ((-112) |#1| |#1|)) (-15 -3559 ((-112) |#1| |#1|)) (-15 -3730 ((-112) |#1| |#1|)) (-15 -4313 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4145 ((-644 |#1|) |#1|)) (-15 -1332 ((-644 |#1|) |#1|)) (-15 -4303 (|#1| |#1|)) (-15 -1892 (|#1| |#1|)) (-15 -1408 ((-112) |#1|)) (-15 -4090 ((-112) |#1|)) (-15 -3565 (|#1| |#1| |#4|)) (-15 -2622 (|#1| |#1| |#4|)) (-15 -1926 (|#1| |#1|)) (-15 -2847 ((-644 |#1|) |#1|)) (-15 -2938 (|#1| |#1|)) (-15 -3238 (|#1| |#1|)) (-15 -2154 (|#1| |#1|)) (-15 -3968 (|#1| |#1|)) (-15 -2578 ((-771) |#1|)) (-15 -4052 (|#4| |#1|)) (-15 -3136 ((-538) |#1|)) (-15 -3136 ((-892 (-566)) |#1|)) (-15 -3136 ((-892 (-381)) |#1|)) (-15 -2479 (|#1| |#4|)) (-15 -2980 ((-3 |#4| "failed") |#1|)) (-15 -1709 (|#4| |#1|)) (-15 -2622 (|#2| |#1|)) (-15 -3565 (|#1| |#1|)) (-15 -2980 ((-3 (-566) "failed") |#1|)) (-15 -1709 ((-566) |#1|)) (-15 -2980 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -1709 ((-409 (-566)) |#1|)) (-15 -1709 (|#2| |#1|)) (-15 -2980 ((-3 |#2| "failed") |#1|)) (-15 -2479 (|#1| |#2|)) (-15 -2479 (|#1| (-566))) (-15 -2479 ((-862) |#1|))) (-1064 |#2| |#3| |#4|) (-1049) (-793) (-850)) (T -1063)) +NIL +(-10 -8 (-15 -2479 (|#1| |#1|)) (-15 -2162 (|#1| |#1| |#1|)) (-15 -2162 (|#1| (-644 |#1|))) (-15 -2479 (|#1| (-409 (-566)))) (-15 -2479 ((-952 |#2|) |#1|)) (-15 -3136 ((-952 |#2|) |#1|)) (-15 -3136 ((-1157) |#1|)) (-15 -1683 (|#1| |#1|)) (-15 -3460 (|#1| |#1|)) (-15 -3679 (|#1| |#1|)) (-15 -1447 (|#1| |#1|)) (-15 -2162 (|#2| |#2| |#1|)) (-15 -2508 (|#1| |#1| |#1|)) (-15 -1843 (|#1| |#1| |#1|)) (-15 -2508 (|#1| |#1| |#2|)) (-15 -1843 (|#1| |#1| |#2|)) (-15 -1567 (|#1| |#1|)) (-15 -2890 (|#1| |#1|)) (-15 -3136 (|#1| (-952 |#2|))) (-15 -1709 (|#1| (-952 |#2|))) (-15 -2980 ((-3 |#1| "failed") (-952 |#2|))) (-15 -3136 (|#1| (-952 (-566)))) (-15 -1709 (|#1| (-952 (-566)))) (-15 -2980 ((-3 |#1| "failed") (-952 (-566)))) (-15 -3136 (|#1| (-952 (-409 (-566))))) (-15 -1709 (|#1| (-952 (-409 (-566))))) (-15 -2980 ((-3 |#1| "failed") (-952 (-409 (-566))))) (-15 -3317 (|#1| |#1| |#1|)) (-15 -3869 (|#1| |#1| |#1|)) (-15 -2233 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3061 (-771))) |#1| |#1|)) (-15 -3914 (|#1| |#1| |#1|)) (-15 -3920 ((-2 (|:| -3371 |#1|) (|:| -3131 |#1|)) |#1| |#1|)) (-15 -2991 ((-2 (|:| -3103 |#1|) (|:| |gap| (-771)) (|:| -3371 |#1|) (|:| -3131 |#1|)) |#1| |#1| |#4|)) (-15 -2991 ((-2 (|:| -3103 |#1|) (|:| |gap| (-771)) (|:| -3371 |#1|) (|:| -3131 |#1|)) |#1| |#1|)) (-15 -1891 ((-2 (|:| -3103 |#1|) (|:| |gap| (-771)) (|:| -3131 |#1|)) |#1| |#1| |#4|)) (-15 -1891 ((-2 (|:| -3103 |#1|) (|:| |gap| (-771)) (|:| -3131 |#1|)) |#1| |#1|)) (-15 -2478 (|#1| |#1| |#1| |#4|)) (-15 -1345 (|#1| |#1| |#1| |#4|)) (-15 -2478 (|#1| |#1| |#1|)) (-15 -1345 (|#1| |#1| |#1|)) (-15 -4254 (|#1| |#1| |#1| |#4|)) (-15 -1457 (|#1| |#1| |#1| |#4|)) (-15 -4254 (|#1| |#1| |#1|)) (-15 -1457 (|#1| |#1| |#1|)) (-15 -4297 ((-112) |#1| (-644 |#1|))) (-15 -4297 ((-112) |#1| |#1|)) (-15 -4121 ((-112) |#1| (-644 |#1|))) (-15 -4121 ((-112) |#1| |#1|)) (-15 -1695 ((-112) |#1| (-644 |#1|))) (-15 -1695 ((-112) |#1| |#1|)) (-15 -1995 ((-112) |#1| (-644 |#1|))) (-15 -1995 ((-112) |#1| |#1|)) (-15 -3559 ((-112) |#1| |#1|)) (-15 -3730 ((-112) |#1| |#1|)) (-15 -4313 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4145 ((-644 |#1|) |#1|)) (-15 -1332 ((-644 |#1|) |#1|)) (-15 -4303 (|#1| |#1|)) (-15 -1892 (|#1| |#1|)) (-15 -1408 ((-112) |#1|)) (-15 -4090 ((-112) |#1|)) (-15 -3565 (|#1| |#1| |#4|)) (-15 -2622 (|#1| |#1| |#4|)) (-15 -1926 (|#1| |#1|)) (-15 -2847 ((-644 |#1|) |#1|)) (-15 -2938 (|#1| |#1|)) (-15 -3238 (|#1| |#1|)) (-15 -2154 (|#1| |#1|)) (-15 -3968 (|#1| |#1|)) (-15 -2578 ((-771) |#1|)) (-15 -4052 (|#4| |#1|)) (-15 -3136 ((-538) |#1|)) (-15 -3136 ((-892 (-566)) |#1|)) (-15 -3136 ((-892 (-381)) |#1|)) (-15 -2479 (|#1| |#4|)) (-15 -2980 ((-3 |#4| "failed") |#1|)) (-15 -1709 (|#4| |#1|)) (-15 -2622 (|#2| |#1|)) (-15 -3565 (|#1| |#1|)) (-15 -2980 ((-3 (-566) "failed") |#1|)) (-15 -1709 ((-566) |#1|)) (-15 -2980 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -1709 ((-409 (-566)) |#1|)) (-15 -1709 (|#2| |#1|)) (-15 -2980 ((-3 |#2| "failed") |#1|)) (-15 -2479 (|#1| |#2|)) (-15 -2479 (|#1| (-566))) (-15 -2479 ((-862) |#1|))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-2485 (((-644 |#3|) $) 112)) (-2285 (((-1171 $) $ |#3|) 127) (((-1171 |#1|) $) 126)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) 89 (|has| |#1| (-558)))) (-3087 (($ $) 90 (|has| |#1| (-558)))) (-1716 (((-112) $) 92 (|has| |#1| (-558)))) (-2917 (((-771) $) 114) (((-771) $ (-644 |#3|)) 113)) (-3238 (($ $) 273)) (-3559 (((-112) $ $) 259)) (-3174 (((-3 $ "failed") $ $) 20)) (-2113 (($ $ $) 218 (|has| |#1| (-558)))) (-4389 (((-644 $) $ $) 213 (|has| |#1| (-558)))) (-4058 (((-420 (-1171 $)) (-1171 $)) 102 (|has| |#1| (-909)))) (-3980 (($ $) 100 (|has| |#1| (-454)))) (-3348 (((-420 $) $) 99 (|has| |#1| (-454)))) (-4262 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) 105 (|has| |#1| (-909)))) (-1811 (($) 18 T CONST)) (-2980 (((-3 |#1| "failed") $) 166) (((-3 (-409 (-566)) "failed") $) 163 (|has| |#1| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) 161 (|has| |#1| (-1038 (-566)))) (((-3 |#3| "failed") $) 138) (((-3 $ "failed") (-952 (-409 (-566)))) 233 (-12 (|has| |#1| (-38 (-409 (-566)))) (|has| |#3| (-614 (-1175))))) (((-3 $ "failed") (-952 (-566))) 230 (-2809 (-12 (-2387 (|has| |#1| (-38 (-409 (-566))))) (|has| |#1| (-38 (-566))) (|has| |#3| (-614 (-1175)))) (-12 (|has| |#1| (-38 (-409 (-566)))) (|has| |#3| (-614 (-1175)))))) (((-3 $ "failed") (-952 |#1|)) 227 (-2809 (-12 (-2387 (|has| |#1| (-38 (-409 (-566))))) (-2387 (|has| |#1| (-38 (-566)))) (|has| |#3| (-614 (-1175)))) (-12 (-2387 (|has| |#1| (-547))) (-2387 (|has| |#1| (-38 (-409 (-566))))) (|has| |#1| (-38 (-566))) (|has| |#3| (-614 (-1175)))) (-12 (-2387 (|has| |#1| (-992 (-566)))) (|has| |#1| (-38 (-409 (-566)))) (|has| |#3| (-614 (-1175))))))) (-1709 ((|#1| $) 165) (((-409 (-566)) $) 164 (|has| |#1| (-1038 (-409 (-566))))) (((-566) $) 162 (|has| |#1| (-1038 (-566)))) ((|#3| $) 139) (($ (-952 (-409 (-566)))) 232 (-12 (|has| |#1| (-38 (-409 (-566)))) (|has| |#3| (-614 (-1175))))) (($ (-952 (-566))) 229 (-2809 (-12 (-2387 (|has| |#1| (-38 (-409 (-566))))) (|has| |#1| (-38 (-566))) (|has| |#3| (-614 (-1175)))) (-12 (|has| |#1| (-38 (-409 (-566)))) (|has| |#3| (-614 (-1175)))))) (($ (-952 |#1|)) 226 (-2809 (-12 (-2387 (|has| |#1| (-38 (-409 (-566))))) (-2387 (|has| |#1| (-38 (-566)))) (|has| |#3| (-614 (-1175)))) (-12 (-2387 (|has| |#1| (-547))) (-2387 (|has| |#1| (-38 (-409 (-566))))) (|has| |#1| (-38 (-566))) (|has| |#3| (-614 (-1175)))) (-12 (-2387 (|has| |#1| (-992 (-566)))) (|has| |#1| (-38 (-409 (-566)))) (|has| |#3| (-614 (-1175))))))) (-4343 (($ $ $ |#3|) 110 (|has| |#1| (-172))) (($ $ $) 214 (|has| |#1| (-558)))) (-3565 (($ $) 156) (($ $ |#3|) 268)) (-2275 (((-689 (-566)) (-689 $)) 136 (|has| |#1| (-639 (-566)))) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) 135 (|has| |#1| (-639 (-566)))) (((-2 (|:| -4196 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) 134) (((-689 |#1|) (-689 $)) 133)) (-1995 (((-112) $ $) 258) (((-112) $ (-644 $)) 257)) (-3757 (((-3 $ "failed") $) 37)) (-1408 (((-112) $) 266)) (-3920 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) 238)) (-1447 (($ $) 207 (|has| |#1| (-454)))) (-3530 (($ $) 178 (|has| |#1| (-454))) (($ $ |#3|) 107 (|has| |#1| (-454)))) (-3551 (((-644 $) $) 111)) (-4188 (((-112) $) 98 (|has| |#1| (-909)))) (-1567 (($ $) 223 (|has| |#1| (-558)))) (-2890 (($ $) 224 (|has| |#1| (-558)))) (-1457 (($ $ $) 250) (($ $ $ |#3|) 248)) (-4254 (($ $ $) 249) (($ $ $ |#3|) 247)) (-3995 (($ $ |#1| |#2| $) 174)) (-1542 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 86 (-12 (|has| |#3| (-886 (-381))) (|has| |#1| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 85 (-12 (|has| |#3| (-886 (-566))) (|has| |#1| (-886 (-566)))))) (-2264 (((-112) $) 35)) (-3486 (((-771) $) 171)) (-4297 (((-112) $ $) 252) (((-112) $ (-644 $)) 251)) (-2567 (($ $ $ $ $) 209 (|has| |#1| (-558)))) (-4052 ((|#3| $) 277)) (-2474 (($ (-1171 |#1|) |#3|) 119) (($ (-1171 $) |#3|) 118)) (-1545 (((-644 $) $) 128)) (-3989 (((-112) $) 154)) (-2463 (($ |#1| |#2|) 155) (($ $ |#3| (-771)) 121) (($ $ (-644 |#3|) (-644 (-771))) 120)) (-3914 (($ $ $) 237)) (-2235 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $ |#3|) 122)) (-4090 (((-112) $) 267)) (-2584 ((|#2| $) 172) (((-771) $ |#3|) 124) (((-644 (-771)) $ (-644 |#3|)) 123)) (-2578 (((-771) $) 276)) (-3327 (($ (-1 |#2| |#2|) $) 173)) (-3080 (($ (-1 |#1| |#1|) $) 153)) (-2673 (((-3 |#3| "failed") $) 125)) (-1683 (($ $) 204 (|has| |#1| (-454)))) (-3460 (($ $) 205 (|has| |#1| (-454)))) (-4145 (((-644 $) $) 262)) (-1892 (($ $) 265)) (-3679 (($ $) 206 (|has| |#1| (-454)))) (-1332 (((-644 $) $) 263)) (-4303 (($ $) 264)) (-2608 (($ $) 151)) (-2622 ((|#1| $) 150) (($ $ |#3|) 269)) (-2120 (($ (-644 $)) 96 (|has| |#1| (-454))) (($ $ $) 95 (|has| |#1| (-454)))) (-2233 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3061 (-771))) $ $) 236)) (-2991 (((-2 (|:| -3103 $) (|:| |gap| (-771)) (|:| -3371 $) (|:| -3131 $)) $ $) 240) (((-2 (|:| -3103 $) (|:| |gap| (-771)) (|:| -3371 $) (|:| -3131 $)) $ $ |#3|) 239)) (-1891 (((-2 (|:| -3103 $) (|:| |gap| (-771)) (|:| -3131 $)) $ $) 242) (((-2 (|:| -3103 $) (|:| |gap| (-771)) (|:| -3131 $)) $ $ |#3|) 241)) (-1345 (($ $ $) 246) (($ $ $ |#3|) 244)) (-2478 (($ $ $) 245) (($ $ $ |#3|) 243)) (-3151 (((-1157) $) 10)) (-3723 (($ $ $) 212 (|has| |#1| (-558)))) (-2847 (((-644 $) $) 271)) (-4075 (((-3 (-644 $) "failed") $) 116)) (-3380 (((-3 (-644 $) "failed") $) 117)) (-2414 (((-3 (-2 (|:| |var| |#3|) (|:| -3631 (-771))) "failed") $) 115)) (-4121 (((-112) $ $) 254) (((-112) $ (-644 $)) 253)) (-3317 (($ $ $) 234)) (-3968 (($ $) 275)) (-3730 (((-112) $ $) 260)) (-1695 (((-112) $ $) 256) (((-112) $ (-644 $)) 255)) (-3869 (($ $ $) 235)) (-2154 (($ $) 274)) (-4059 (((-1119) $) 11)) (-3616 (((-2 (|:| -2162 $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-558)))) (-3827 (((-2 (|:| -2162 $) (|:| |coef1| $)) $ $) 216 (|has| |#1| (-558)))) (-2587 (((-112) $) 168)) (-2597 ((|#1| $) 169)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) 97 (|has| |#1| (-454)))) (-2162 ((|#1| |#1| $) 208 (|has| |#1| (-454))) (($ (-644 $)) 94 (|has| |#1| (-454))) (($ $ $) 93 (|has| |#1| (-454)))) (-1500 (((-420 (-1171 $)) (-1171 $)) 104 (|has| |#1| (-909)))) (-3917 (((-420 (-1171 $)) (-1171 $)) 103 (|has| |#1| (-909)))) (-2325 (((-420 $) $) 101 (|has| |#1| (-909)))) (-2039 (((-2 (|:| -2162 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 217 (|has| |#1| (-558)))) (-2976 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-558))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-558)))) (-2508 (($ $ |#1|) 221 (|has| |#1| (-558))) (($ $ $) 219 (|has| |#1| (-558)))) (-1843 (($ $ |#1|) 222 (|has| |#1| (-558))) (($ $ $) 220 (|has| |#1| (-558)))) (-3297 (($ $ (-644 (-295 $))) 147) (($ $ (-295 $)) 146) (($ $ $ $) 145) (($ $ (-644 $) (-644 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-644 |#3|) (-644 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-644 |#3|) (-644 $)) 140)) (-3553 (($ $ |#3|) 109 (|has| |#1| (-172)))) (-3526 (($ $ |#3|) 46) (($ $ (-644 |#3|)) 45) (($ $ |#3| (-771)) 44) (($ $ (-644 |#3|) (-644 (-771))) 43)) (-1630 ((|#2| $) 152) (((-771) $ |#3|) 132) (((-644 (-771)) $ (-644 |#3|)) 131)) (-2938 (($ $) 272)) (-1926 (($ $) 270)) (-3136 (((-892 (-381)) $) 84 (-12 (|has| |#3| (-614 (-892 (-381)))) (|has| |#1| (-614 (-892 (-381)))))) (((-892 (-566)) $) 83 (-12 (|has| |#3| (-614 (-892 (-566)))) (|has| |#1| (-614 (-892 (-566)))))) (((-538) $) 82 (-12 (|has| |#3| (-614 (-538))) (|has| |#1| (-614 (-538))))) (($ (-952 (-409 (-566)))) 231 (-12 (|has| |#1| (-38 (-409 (-566)))) (|has| |#3| (-614 (-1175))))) (($ (-952 (-566))) 228 (-2809 (-12 (-2387 (|has| |#1| (-38 (-409 (-566))))) (|has| |#1| (-38 (-566))) (|has| |#3| (-614 (-1175)))) (-12 (|has| |#1| (-38 (-409 (-566)))) (|has| |#3| (-614 (-1175)))))) (($ (-952 |#1|)) 225 (|has| |#3| (-614 (-1175)))) (((-1157) $) 203 (-12 (|has| |#1| (-1038 (-566))) (|has| |#3| (-614 (-1175))))) (((-952 |#1|) $) 202 (|has| |#3| (-614 (-1175))))) (-2252 ((|#1| $) 177 (|has| |#1| (-454))) (($ $ |#3|) 108 (|has| |#1| (-454)))) (-3233 (((-3 (-1264 $) "failed") (-689 $)) 106 (-2402 (|has| $ (-145)) (|has| |#1| (-909))))) (-2479 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 167) (($ |#3|) 137) (((-952 |#1|) $) 201 (|has| |#3| (-614 (-1175)))) (($ (-409 (-566))) 80 (-2809 (|has| |#1| (-1038 (-409 (-566)))) (|has| |#1| (-38 (-409 (-566)))))) (($ $) 87 (|has| |#1| (-558)))) (-3866 (((-644 |#1|) $) 170)) (-3025 ((|#1| $ |#2|) 157) (($ $ |#3| (-771)) 130) (($ $ (-644 |#3|) (-644 (-771))) 129)) (-2645 (((-3 $ "failed") $) 81 (-2809 (-2402 (|has| $ (-145)) (|has| |#1| (-909))) (|has| |#1| (-145))))) (-1558 (((-771)) 32 T CONST)) (-2244 (($ $ $ (-771)) 175 (|has| |#1| (-172)))) (-3900 (((-112) $ $) 9)) (-1333 (((-112) $ $) 91 (|has| |#1| (-558)))) (-2446 (($) 19 T CONST)) (-4313 (((-3 (-112) "failed") $ $) 261)) (-2459 (($) 34 T CONST)) (-3284 (($ $ $ $ (-771)) 210 (|has| |#1| (-558)))) (-2898 (($ $ $ (-771)) 211 (|has| |#1| (-558)))) (-2834 (($ $ |#3|) 42) (($ $ (-644 |#3|)) 41) (($ $ |#3| (-771)) 40) (($ $ (-644 |#3|) (-644 (-771))) 39)) (-2952 (((-112) $ $) 6)) (-3077 (($ $ |#1|) 158 (|has| |#1| (-365)))) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ (-409 (-566))) 160 (|has| |#1| (-38 (-409 (-566))))) (($ (-409 (-566)) $) 159 (|has| |#1| (-38 (-409 (-566))))) (($ |#1| $) 149) (($ $ |#1|) 148))) +(((-1064 |#1| |#2| |#3|) (-140) (-1049) (-793) (-850)) (T -1064)) +((-4052 (*1 *2 *1) (-12 (-4 *1 (-1064 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *2 (-850)))) (-2578 (*1 *2 *1) (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-771)))) (-3968 (*1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)))) (-2154 (*1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)))) (-3238 (*1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)))) (-2938 (*1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)))) (-2847 (*1 *2 *1) (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-644 *1)) (-4 *1 (-1064 *3 *4 *5)))) (-1926 (*1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)))) (-2622 (*1 *1 *1 *2) (-12 (-4 *1 (-1064 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *2 (-850)))) (-3565 (*1 *1 *1 *2) (-12 (-4 *1 (-1064 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *2 (-850)))) (-4090 (*1 *2 *1) (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)))) (-1408 (*1 *2 *1) (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)))) (-1892 (*1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)))) (-4303 (*1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)))) (-1332 (*1 *2 *1) (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-644 *1)) (-4 *1 (-1064 *3 *4 *5)))) (-4145 (*1 *2 *1) (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-644 *1)) (-4 *1 (-1064 *3 *4 *5)))) (-4313 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)))) (-3730 (*1 *2 *1 *1) (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)))) (-3559 (*1 *2 *1 *1) (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)))) (-1995 (*1 *2 *1 *1) (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)))) (-1995 (*1 *2 *1 *3) (-12 (-5 *3 (-644 *1)) (-4 *1 (-1064 *4 *5 *6)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)))) (-1695 (*1 *2 *1 *1) (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)))) (-1695 (*1 *2 *1 *3) (-12 (-5 *3 (-644 *1)) (-4 *1 (-1064 *4 *5 *6)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)))) (-4121 (*1 *2 *1 *1) (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)))) (-4121 (*1 *2 *1 *3) (-12 (-5 *3 (-644 *1)) (-4 *1 (-1064 *4 *5 *6)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)))) (-4297 (*1 *2 *1 *1) (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)))) (-4297 (*1 *2 *1 *3) (-12 (-5 *3 (-644 *1)) (-4 *1 (-1064 *4 *5 *6)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)))) (-1457 (*1 *1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)))) (-4254 (*1 *1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)))) (-1457 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1064 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *2 (-850)))) (-4254 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1064 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *2 (-850)))) (-1345 (*1 *1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)))) (-2478 (*1 *1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)))) (-1345 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1064 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *2 (-850)))) (-2478 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1064 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *2 (-850)))) (-1891 (*1 *2 *1 *1) (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-2 (|:| -3103 *1) (|:| |gap| (-771)) (|:| -3131 *1))) (-4 *1 (-1064 *3 *4 *5)))) (-1891 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *3 (-850)) (-5 *2 (-2 (|:| -3103 *1) (|:| |gap| (-771)) (|:| -3131 *1))) (-4 *1 (-1064 *4 *5 *3)))) (-2991 (*1 *2 *1 *1) (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-2 (|:| -3103 *1) (|:| |gap| (-771)) (|:| -3371 *1) (|:| -3131 *1))) (-4 *1 (-1064 *3 *4 *5)))) (-2991 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *3 (-850)) (-5 *2 (-2 (|:| -3103 *1) (|:| |gap| (-771)) (|:| -3371 *1) (|:| -3131 *1))) (-4 *1 (-1064 *4 *5 *3)))) (-3920 (*1 *2 *1 *1) (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-2 (|:| -3371 *1) (|:| -3131 *1))) (-4 *1 (-1064 *3 *4 *5)))) (-3914 (*1 *1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)))) (-2233 (*1 *2 *1 *1) (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3061 (-771)))) (-4 *1 (-1064 *3 *4 *5)))) (-3869 (*1 *1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)))) (-3317 (*1 *1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)))) (-2980 (*1 *1 *2) (|partial| -12 (-5 *2 (-952 (-409 (-566)))) (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-38 (-409 (-566)))) (-4 *5 (-614 (-1175))) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)))) (-1709 (*1 *1 *2) (-12 (-5 *2 (-952 (-409 (-566)))) (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-38 (-409 (-566)))) (-4 *5 (-614 (-1175))) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)))) (-3136 (*1 *1 *2) (-12 (-5 *2 (-952 (-409 (-566)))) (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-38 (-409 (-566)))) (-4 *5 (-614 (-1175))) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)))) (-2980 (*1 *1 *2) (|partial| -2809 (-12 (-5 *2 (-952 (-566))) (-4 *1 (-1064 *3 *4 *5)) (-12 (-2387 (-4 *3 (-38 (-409 (-566))))) (-4 *3 (-38 (-566))) (-4 *5 (-614 (-1175)))) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850))) (-12 (-5 *2 (-952 (-566))) (-4 *1 (-1064 *3 *4 *5)) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *5 (-614 (-1175)))) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850))))) (-1709 (*1 *1 *2) (-2809 (-12 (-5 *2 (-952 (-566))) (-4 *1 (-1064 *3 *4 *5)) (-12 (-2387 (-4 *3 (-38 (-409 (-566))))) (-4 *3 (-38 (-566))) (-4 *5 (-614 (-1175)))) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850))) (-12 (-5 *2 (-952 (-566))) (-4 *1 (-1064 *3 *4 *5)) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *5 (-614 (-1175)))) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850))))) (-3136 (*1 *1 *2) (-2809 (-12 (-5 *2 (-952 (-566))) (-4 *1 (-1064 *3 *4 *5)) (-12 (-2387 (-4 *3 (-38 (-409 (-566))))) (-4 *3 (-38 (-566))) (-4 *5 (-614 (-1175)))) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850))) (-12 (-5 *2 (-952 (-566))) (-4 *1 (-1064 *3 *4 *5)) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *5 (-614 (-1175)))) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850))))) (-2980 (*1 *1 *2) (|partial| -2809 (-12 (-5 *2 (-952 *3)) (-12 (-2387 (-4 *3 (-38 (-409 (-566))))) (-2387 (-4 *3 (-38 (-566)))) (-4 *5 (-614 (-1175)))) (-4 *3 (-1049)) (-4 *1 (-1064 *3 *4 *5)) (-4 *4 (-793)) (-4 *5 (-850))) (-12 (-5 *2 (-952 *3)) (-12 (-2387 (-4 *3 (-547))) (-2387 (-4 *3 (-38 (-409 (-566))))) (-4 *3 (-38 (-566))) (-4 *5 (-614 (-1175)))) (-4 *3 (-1049)) (-4 *1 (-1064 *3 *4 *5)) (-4 *4 (-793)) (-4 *5 (-850))) (-12 (-5 *2 (-952 *3)) (-12 (-2387 (-4 *3 (-992 (-566)))) (-4 *3 (-38 (-409 (-566)))) (-4 *5 (-614 (-1175)))) (-4 *3 (-1049)) (-4 *1 (-1064 *3 *4 *5)) (-4 *4 (-793)) (-4 *5 (-850))))) (-1709 (*1 *1 *2) (-2809 (-12 (-5 *2 (-952 *3)) (-12 (-2387 (-4 *3 (-38 (-409 (-566))))) (-2387 (-4 *3 (-38 (-566)))) (-4 *5 (-614 (-1175)))) (-4 *3 (-1049)) (-4 *1 (-1064 *3 *4 *5)) (-4 *4 (-793)) (-4 *5 (-850))) (-12 (-5 *2 (-952 *3)) (-12 (-2387 (-4 *3 (-547))) (-2387 (-4 *3 (-38 (-409 (-566))))) (-4 *3 (-38 (-566))) (-4 *5 (-614 (-1175)))) (-4 *3 (-1049)) (-4 *1 (-1064 *3 *4 *5)) (-4 *4 (-793)) (-4 *5 (-850))) (-12 (-5 *2 (-952 *3)) (-12 (-2387 (-4 *3 (-992 (-566)))) (-4 *3 (-38 (-409 (-566)))) (-4 *5 (-614 (-1175)))) (-4 *3 (-1049)) (-4 *1 (-1064 *3 *4 *5)) (-4 *4 (-793)) (-4 *5 (-850))))) (-3136 (*1 *1 *2) (-12 (-5 *2 (-952 *3)) (-4 *3 (-1049)) (-4 *1 (-1064 *3 *4 *5)) (-4 *5 (-614 (-1175))) (-4 *4 (-793)) (-4 *5 (-850)))) (-2890 (*1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-558)))) (-1567 (*1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-558)))) (-1843 (*1 *1 *1 *2) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-558)))) (-2508 (*1 *1 *1 *2) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-558)))) (-1843 (*1 *1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-558)))) (-2508 (*1 *1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-558)))) (-2113 (*1 *1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-558)))) (-2039 (*1 *2 *1 *1) (-12 (-4 *3 (-558)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-2 (|:| -2162 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1064 *3 *4 *5)))) (-3827 (*1 *2 *1 *1) (-12 (-4 *3 (-558)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-2 (|:| -2162 *1) (|:| |coef1| *1))) (-4 *1 (-1064 *3 *4 *5)))) (-3616 (*1 *2 *1 *1) (-12 (-4 *3 (-558)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-2 (|:| -2162 *1) (|:| |coef2| *1))) (-4 *1 (-1064 *3 *4 *5)))) (-4343 (*1 *1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-558)))) (-4389 (*1 *2 *1 *1) (-12 (-4 *3 (-558)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-644 *1)) (-4 *1 (-1064 *3 *4 *5)))) (-3723 (*1 *1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-558)))) (-2898 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *3 (-558)))) (-3284 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *3 (-558)))) (-2567 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-558)))) (-2162 (*1 *2 *2 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-454)))) (-1447 (*1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-454)))) (-3679 (*1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-454)))) (-3460 (*1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-454)))) (-1683 (*1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-454))))) +(-13 (-949 |t#1| |t#2| |t#3|) (-10 -8 (-15 -4052 (|t#3| $)) (-15 -2578 ((-771) $)) (-15 -3968 ($ $)) (-15 -2154 ($ $)) (-15 -3238 ($ $)) (-15 -2938 ($ $)) (-15 -2847 ((-644 $) $)) (-15 -1926 ($ $)) (-15 -2622 ($ $ |t#3|)) (-15 -3565 ($ $ |t#3|)) (-15 -4090 ((-112) $)) (-15 -1408 ((-112) $)) (-15 -1892 ($ $)) (-15 -4303 ($ $)) (-15 -1332 ((-644 $) $)) (-15 -4145 ((-644 $) $)) (-15 -4313 ((-3 (-112) "failed") $ $)) (-15 -3730 ((-112) $ $)) (-15 -3559 ((-112) $ $)) (-15 -1995 ((-112) $ $)) (-15 -1995 ((-112) $ (-644 $))) (-15 -1695 ((-112) $ $)) (-15 -1695 ((-112) $ (-644 $))) (-15 -4121 ((-112) $ $)) (-15 -4121 ((-112) $ (-644 $))) (-15 -4297 ((-112) $ $)) (-15 -4297 ((-112) $ (-644 $))) (-15 -1457 ($ $ $)) (-15 -4254 ($ $ $)) (-15 -1457 ($ $ $ |t#3|)) (-15 -4254 ($ $ $ |t#3|)) (-15 -1345 ($ $ $)) (-15 -2478 ($ $ $)) (-15 -1345 ($ $ $ |t#3|)) (-15 -2478 ($ $ $ |t#3|)) (-15 -1891 ((-2 (|:| -3103 $) (|:| |gap| (-771)) (|:| -3131 $)) $ $)) (-15 -1891 ((-2 (|:| -3103 $) (|:| |gap| (-771)) (|:| -3131 $)) $ $ |t#3|)) (-15 -2991 ((-2 (|:| -3103 $) (|:| |gap| (-771)) (|:| -3371 $) (|:| -3131 $)) $ $)) (-15 -2991 ((-2 (|:| -3103 $) (|:| |gap| (-771)) (|:| -3371 $) (|:| -3131 $)) $ $ |t#3|)) (-15 -3920 ((-2 (|:| -3371 $) (|:| -3131 $)) $ $)) (-15 -3914 ($ $ $)) (-15 -2233 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3061 (-771))) $ $)) (-15 -3869 ($ $ $)) (-15 -3317 ($ $ $)) (IF (|has| |t#3| (-614 (-1175))) (PROGN (-6 (-613 (-952 |t#1|))) (-6 (-614 (-952 |t#1|))) (IF (|has| |t#1| (-38 (-409 (-566)))) (PROGN (-15 -2980 ((-3 $ "failed") (-952 (-409 (-566))))) (-15 -1709 ($ (-952 (-409 (-566))))) (-15 -3136 ($ (-952 (-409 (-566))))) (-15 -2980 ((-3 $ "failed") (-952 (-566)))) (-15 -1709 ($ (-952 (-566)))) (-15 -3136 ($ (-952 (-566)))) (IF (|has| |t#1| (-992 (-566))) |%noBranch| (PROGN (-15 -2980 ((-3 $ "failed") (-952 |t#1|))) (-15 -1709 ($ (-952 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-566))) (IF (|has| |t#1| (-38 (-409 (-566)))) |%noBranch| (PROGN (-15 -2980 ((-3 $ "failed") (-952 (-566)))) (-15 -1709 ($ (-952 (-566)))) (-15 -3136 ($ (-952 (-566)))) (IF (|has| |t#1| (-547)) |%noBranch| (PROGN (-15 -2980 ((-3 $ "failed") (-952 |t#1|))) (-15 -1709 ($ (-952 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-566))) |%noBranch| (IF (|has| |t#1| (-38 (-409 (-566)))) |%noBranch| (PROGN (-15 -2980 ((-3 $ "failed") (-952 |t#1|))) (-15 -1709 ($ (-952 |t#1|)))))) (-15 -3136 ($ (-952 |t#1|))) (IF (|has| |t#1| (-1038 (-566))) (-6 (-614 (-1157))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-558)) (PROGN (-15 -2890 ($ $)) (-15 -1567 ($ $)) (-15 -1843 ($ $ |t#1|)) (-15 -2508 ($ $ |t#1|)) (-15 -1843 ($ $ $)) (-15 -2508 ($ $ $)) (-15 -2113 ($ $ $)) (-15 -2039 ((-2 (|:| -2162 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3827 ((-2 (|:| -2162 $) (|:| |coef1| $)) $ $)) (-15 -3616 ((-2 (|:| -2162 $) (|:| |coef2| $)) $ $)) (-15 -4343 ($ $ $)) (-15 -4389 ((-644 $) $ $)) (-15 -3723 ($ $ $)) (-15 -2898 ($ $ $ (-771))) (-15 -3284 ($ $ $ $ (-771))) (-15 -2567 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-454)) (PROGN (-15 -2162 (|t#1| |t#1| $)) (-15 -1447 ($ $)) (-15 -3679 ($ $)) (-15 -3460 ($ $)) (-15 -1683 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-409 (-566)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #0#) -2809 (|has| |#1| (-1038 (-409 (-566)))) (|has| |#1| (-38 (-409 (-566))))) ((-616 (-566)) . T) ((-616 |#1|) . T) ((-616 |#3|) . T) ((-616 $) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-613 (-862)) . T) ((-613 (-952 |#1|)) |has| |#3| (-614 (-1175))) ((-172) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-172))) ((-614 (-538)) -12 (|has| |#1| (-614 (-538))) (|has| |#3| (-614 (-538)))) ((-614 (-892 (-381))) -12 (|has| |#1| (-614 (-892 (-381)))) (|has| |#3| (-614 (-892 (-381))))) ((-614 (-892 (-566))) -12 (|has| |#1| (-614 (-892 (-566)))) (|has| |#3| (-614 (-892 (-566))))) ((-614 (-952 |#1|)) |has| |#3| (-614 (-1175))) ((-614 (-1157)) -12 (|has| |#1| (-1038 (-566))) (|has| |#3| (-614 (-1175)))) ((-291) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-310 $) . T) ((-327 |#1| |#2|) . T) ((-379 |#1|) . T) ((-413 |#1|) . T) ((-454) -2809 (|has| |#1| (-909)) (|has| |#1| (-454))) ((-516 |#3| |#1|) . T) ((-516 |#3| $) . T) ((-516 $ $) . T) ((-558) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-646 #0#) |has| |#1| (-38 (-409 (-566)))) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #0#) |has| |#1| (-38 (-409 (-566)))) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #0#) |has| |#1| (-38 (-409 (-566)))) ((-640 |#1|) |has| |#1| (-172)) ((-640 $) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-639 (-566)) |has| |#1| (-639 (-566))) ((-639 |#1|) . T) ((-717 #0#) |has| |#1| (-38 (-409 (-566)))) ((-717 |#1|) |has| |#1| (-172)) ((-717 $) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-726) . T) ((-900 |#3|) . T) ((-886 (-381)) -12 (|has| |#1| (-886 (-381))) (|has| |#3| (-886 (-381)))) ((-886 (-566)) -12 (|has| |#1| (-886 (-566))) (|has| |#3| (-886 (-566)))) ((-949 |#1| |#2| |#3|) . T) ((-909) |has| |#1| (-909)) ((-1038 (-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) ((-1038 (-566)) |has| |#1| (-1038 (-566))) ((-1038 |#1|) . T) ((-1038 |#3|) . T) ((-1051 #0#) |has| |#1| (-38 (-409 (-566)))) ((-1051 |#1|) . T) ((-1051 $) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-172))) ((-1056 #0#) |has| |#1| (-38 (-409 (-566)))) ((-1056 |#1|) . T) ((-1056 $) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-172))) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1218) |has| |#1| (-909))) +((-2986 (((-112) $ $) NIL)) (-3151 (((-1157) $) NIL)) (-1348 (((-644 (-1134)) $) 18)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) 27) (($ (-1180)) NIL) (((-1180) $) NIL)) (-2610 (((-1134) $) 20)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-1065) (-13 (-1082) (-10 -8 (-15 -1348 ((-644 (-1134)) $)) (-15 -2610 ((-1134) $))))) (T -1065)) +((-1348 (*1 *2 *1) (-12 (-5 *2 (-644 (-1134))) (-5 *1 (-1065)))) (-2610 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1065))))) +(-13 (-1082) (-10 -8 (-15 -1348 ((-644 (-1134)) $)) (-15 -2610 ((-1134) $)))) +((-2845 (((-112) |#3| $) 15)) (-3388 (((-3 $ "failed") |#3| (-921)) 29)) (-3757 (((-3 |#3| "failed") |#3| $) 45)) (-2133 (((-112) |#3| $) 19)) (-3420 (((-112) |#3| $) 17))) +(((-1066 |#1| |#2| |#3|) (-10 -8 (-15 -3388 ((-3 |#1| "failed") |#3| (-921))) (-15 -3757 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2133 ((-112) |#3| |#1|)) (-15 -3420 ((-112) |#3| |#1|)) (-15 -2845 ((-112) |#3| |#1|))) (-1067 |#2| |#3|) (-13 (-848) (-365)) (-1240 |#2|)) (T -1066)) +NIL +(-10 -8 (-15 -3388 ((-3 |#1| "failed") |#3| (-921))) (-15 -3757 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2133 ((-112) |#3| |#1|)) (-15 -3420 ((-112) |#3| |#1|)) (-15 -2845 ((-112) |#3| |#1|))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) |#2| $) 22)) (-2920 (((-566) |#2| $) 23)) (-3388 (((-3 $ "failed") |#2| (-921)) 16)) (-2168 ((|#1| |#2| $ |#1|) 14)) (-3757 (((-3 |#2| "failed") |#2| $) 19)) (-2133 (((-112) |#2| $) 20)) (-3420 (((-112) |#2| $) 21)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-2301 ((|#2| $) 18)) (-2479 (((-862) $) 12)) (-3900 (((-112) $ $) 9)) (-3649 ((|#1| |#2| $ |#1|) 15)) (-2081 (((-644 $) |#2|) 17)) (-2952 (((-112) $ $) 6))) +(((-1067 |#1| |#2|) (-140) (-13 (-848) (-365)) (-1240 |t#1|)) (T -1067)) +((-2920 (*1 *2 *3 *1) (-12 (-4 *1 (-1067 *4 *3)) (-4 *4 (-13 (-848) (-365))) (-4 *3 (-1240 *4)) (-5 *2 (-566)))) (-2845 (*1 *2 *3 *1) (-12 (-4 *1 (-1067 *4 *3)) (-4 *4 (-13 (-848) (-365))) (-4 *3 (-1240 *4)) (-5 *2 (-112)))) (-3420 (*1 *2 *3 *1) (-12 (-4 *1 (-1067 *4 *3)) (-4 *4 (-13 (-848) (-365))) (-4 *3 (-1240 *4)) (-5 *2 (-112)))) (-2133 (*1 *2 *3 *1) (-12 (-4 *1 (-1067 *4 *3)) (-4 *4 (-13 (-848) (-365))) (-4 *3 (-1240 *4)) (-5 *2 (-112)))) (-3757 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1067 *3 *2)) (-4 *3 (-13 (-848) (-365))) (-4 *2 (-1240 *3)))) (-2301 (*1 *2 *1) (-12 (-4 *1 (-1067 *3 *2)) (-4 *3 (-13 (-848) (-365))) (-4 *2 (-1240 *3)))) (-2081 (*1 *2 *3) (-12 (-4 *4 (-13 (-848) (-365))) (-4 *3 (-1240 *4)) (-5 *2 (-644 *1)) (-4 *1 (-1067 *4 *3)))) (-3388 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-921)) (-4 *4 (-13 (-848) (-365))) (-4 *1 (-1067 *4 *2)) (-4 *2 (-1240 *4)))) (-3649 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1067 *2 *3)) (-4 *2 (-13 (-848) (-365))) (-4 *3 (-1240 *2)))) (-2168 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1067 *2 *3)) (-4 *2 (-13 (-848) (-365))) (-4 *3 (-1240 *2))))) +(-13 (-1099) (-10 -8 (-15 -2920 ((-566) |t#2| $)) (-15 -2845 ((-112) |t#2| $)) (-15 -3420 ((-112) |t#2| $)) (-15 -2133 ((-112) |t#2| $)) (-15 -3757 ((-3 |t#2| "failed") |t#2| $)) (-15 -2301 (|t#2| $)) (-15 -2081 ((-644 $) |t#2|)) (-15 -3388 ((-3 $ "failed") |t#2| (-921))) (-15 -3649 (|t#1| |t#2| $ |t#1|)) (-15 -2168 (|t#1| |t#2| $ |t#1|)))) +(((-102) . T) ((-613 (-862)) . T) ((-1099) . T)) +((-3186 (((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))) (-644 |#4|) (-644 |#5|) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))) (-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))))) (-771)) 115)) (-2656 (((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))))) |#4| |#5| (-771)) 63)) (-2528 (((-1269) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))) (-771)) 100)) (-1821 (((-771) (-644 |#4|) (-644 |#5|)) 30)) (-4187 (((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))))) |#4| |#5|) 66) (((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))))) |#4| |#5| (-771)) 65) (((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))))) |#4| |#5| (-771) (-112)) 67)) (-3849 (((-644 |#5|) (-644 |#4|) (-644 |#5|) (-112) (-112) (-112) (-112) (-112)) 86) (((-644 |#5|) (-644 |#4|) (-644 |#5|) (-112) (-112)) 87)) (-3136 (((-1157) (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))) 92)) (-1667 (((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))))) |#4| |#5| (-112)) 62)) (-1816 (((-771) (-644 |#4|) (-644 |#5|)) 21))) +(((-1068 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1816 ((-771) (-644 |#4|) (-644 |#5|))) (-15 -1821 ((-771) (-644 |#4|) (-644 |#5|))) (-15 -1667 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))))) |#4| |#5| (-112))) (-15 -2656 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))))) |#4| |#5| (-771))) (-15 -2656 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))))) |#4| |#5|)) (-15 -4187 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))))) |#4| |#5| (-771) (-112))) (-15 -4187 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))))) |#4| |#5| (-771))) (-15 -4187 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))))) |#4| |#5|)) (-15 -3849 ((-644 |#5|) (-644 |#4|) (-644 |#5|) (-112) (-112))) (-15 -3849 ((-644 |#5|) (-644 |#4|) (-644 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3186 ((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))) (-644 |#4|) (-644 |#5|) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))) (-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))))) (-771))) (-15 -3136 ((-1157) (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|)))) (-15 -2528 ((-1269) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))) (-771)))) (-454) (-793) (-850) (-1064 |#1| |#2| |#3|) (-1070 |#1| |#2| |#3| |#4|)) (T -1068)) +((-2528 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-2 (|:| |val| (-644 *8)) (|:| -2192 *9)))) (-5 *4 (-771)) (-4 *8 (-1064 *5 *6 *7)) (-4 *9 (-1070 *5 *6 *7 *8)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-1269)) (-5 *1 (-1068 *5 *6 *7 *8 *9)))) (-3136 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-644 *7)) (|:| -2192 *8))) (-4 *7 (-1064 *4 *5 *6)) (-4 *8 (-1070 *4 *5 *6 *7)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-1157)) (-5 *1 (-1068 *4 *5 *6 *7 *8)))) (-3186 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-644 *11)) (|:| |todo| (-644 (-2 (|:| |val| *3) (|:| -2192 *11)))))) (-5 *6 (-771)) (-5 *2 (-644 (-2 (|:| |val| (-644 *10)) (|:| -2192 *11)))) (-5 *3 (-644 *10)) (-5 *4 (-644 *11)) (-4 *10 (-1064 *7 *8 *9)) (-4 *11 (-1070 *7 *8 *9 *10)) (-4 *7 (-454)) (-4 *8 (-793)) (-4 *9 (-850)) (-5 *1 (-1068 *7 *8 *9 *10 *11)))) (-3849 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-644 *9)) (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7)) (-4 *9 (-1070 *5 *6 *7 *8)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *1 (-1068 *5 *6 *7 *8 *9)))) (-3849 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-644 *9)) (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7)) (-4 *9 (-1070 *5 *6 *7 *8)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *1 (-1068 *5 *6 *7 *8 *9)))) (-4187 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-644 *4)) (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -2192 *4)))))) (-5 *1 (-1068 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-4187 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-771)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) (-4 *3 (-1064 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-644 *4)) (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -2192 *4)))))) (-5 *1 (-1068 *6 *7 *8 *3 *4)) (-4 *4 (-1070 *6 *7 *8 *3)))) (-4187 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-771)) (-5 *6 (-112)) (-4 *7 (-454)) (-4 *8 (-793)) (-4 *9 (-850)) (-4 *3 (-1064 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-644 *4)) (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -2192 *4)))))) (-5 *1 (-1068 *7 *8 *9 *3 *4)) (-4 *4 (-1070 *7 *8 *9 *3)))) (-2656 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-644 *4)) (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -2192 *4)))))) (-5 *1 (-1068 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-2656 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-771)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) (-4 *3 (-1064 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-644 *4)) (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -2192 *4)))))) (-5 *1 (-1068 *6 *7 *8 *3 *4)) (-4 *4 (-1070 *6 *7 *8 *3)))) (-1667 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) (-4 *3 (-1064 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-644 *4)) (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -2192 *4)))))) (-5 *1 (-1068 *6 *7 *8 *3 *4)) (-4 *4 (-1070 *6 *7 *8 *3)))) (-1821 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 *9)) (-4 *8 (-1064 *5 *6 *7)) (-4 *9 (-1070 *5 *6 *7 *8)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-771)) (-5 *1 (-1068 *5 *6 *7 *8 *9)))) (-1816 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 *9)) (-4 *8 (-1064 *5 *6 *7)) (-4 *9 (-1070 *5 *6 *7 *8)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-771)) (-5 *1 (-1068 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -1816 ((-771) (-644 |#4|) (-644 |#5|))) (-15 -1821 ((-771) (-644 |#4|) (-644 |#5|))) (-15 -1667 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))))) |#4| |#5| (-112))) (-15 -2656 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))))) |#4| |#5| (-771))) (-15 -2656 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))))) |#4| |#5|)) (-15 -4187 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))))) |#4| |#5| (-771) (-112))) (-15 -4187 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))))) |#4| |#5| (-771))) (-15 -4187 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))))) |#4| |#5|)) (-15 -3849 ((-644 |#5|) (-644 |#4|) (-644 |#5|) (-112) (-112))) (-15 -3849 ((-644 |#5|) (-644 |#4|) (-644 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3186 ((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))) (-644 |#4|) (-644 |#5|) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))) (-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))))) (-771))) (-15 -3136 ((-1157) (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|)))) (-15 -2528 ((-1269) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))) (-771)))) +((-2281 (((-112) |#5| $) 26)) (-1646 (((-112) |#5| $) 29)) (-3433 (((-112) |#5| $) 18) (((-112) $) 52)) (-4022 (((-644 $) |#5| $) NIL) (((-644 $) (-644 |#5|) $) 94) (((-644 $) (-644 |#5|) (-644 $)) 92) (((-644 $) |#5| (-644 $)) 95)) (-2050 (($ $ |#5|) NIL) (((-644 $) |#5| $) NIL) (((-644 $) |#5| (-644 $)) 73) (((-644 $) (-644 |#5|) $) 75) (((-644 $) (-644 |#5|) (-644 $)) 77)) (-3437 (((-644 $) |#5| $) NIL) (((-644 $) |#5| (-644 $)) 64) (((-644 $) (-644 |#5|) $) 69) (((-644 $) (-644 |#5|) (-644 $)) 71)) (-3183 (((-112) |#5| $) 32))) +(((-1069 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2050 ((-644 |#1|) (-644 |#5|) (-644 |#1|))) (-15 -2050 ((-644 |#1|) (-644 |#5|) |#1|)) (-15 -2050 ((-644 |#1|) |#5| (-644 |#1|))) (-15 -2050 ((-644 |#1|) |#5| |#1|)) (-15 -3437 ((-644 |#1|) (-644 |#5|) (-644 |#1|))) (-15 -3437 ((-644 |#1|) (-644 |#5|) |#1|)) (-15 -3437 ((-644 |#1|) |#5| (-644 |#1|))) (-15 -3437 ((-644 |#1|) |#5| |#1|)) (-15 -4022 ((-644 |#1|) |#5| (-644 |#1|))) (-15 -4022 ((-644 |#1|) (-644 |#5|) (-644 |#1|))) (-15 -4022 ((-644 |#1|) (-644 |#5|) |#1|)) (-15 -4022 ((-644 |#1|) |#5| |#1|)) (-15 -1646 ((-112) |#5| |#1|)) (-15 -3433 ((-112) |#1|)) (-15 -3183 ((-112) |#5| |#1|)) (-15 -2281 ((-112) |#5| |#1|)) (-15 -3433 ((-112) |#5| |#1|)) (-15 -2050 (|#1| |#1| |#5|))) (-1070 |#2| |#3| |#4| |#5|) (-454) (-793) (-850) (-1064 |#2| |#3| |#4|)) (T -1069)) +NIL +(-10 -8 (-15 -2050 ((-644 |#1|) (-644 |#5|) (-644 |#1|))) (-15 -2050 ((-644 |#1|) (-644 |#5|) |#1|)) (-15 -2050 ((-644 |#1|) |#5| (-644 |#1|))) (-15 -2050 ((-644 |#1|) |#5| |#1|)) (-15 -3437 ((-644 |#1|) (-644 |#5|) (-644 |#1|))) (-15 -3437 ((-644 |#1|) (-644 |#5|) |#1|)) (-15 -3437 ((-644 |#1|) |#5| (-644 |#1|))) (-15 -3437 ((-644 |#1|) |#5| |#1|)) (-15 -4022 ((-644 |#1|) |#5| (-644 |#1|))) (-15 -4022 ((-644 |#1|) (-644 |#5|) (-644 |#1|))) (-15 -4022 ((-644 |#1|) (-644 |#5|) |#1|)) (-15 -4022 ((-644 |#1|) |#5| |#1|)) (-15 -1646 ((-112) |#5| |#1|)) (-15 -3433 ((-112) |#1|)) (-15 -3183 ((-112) |#5| |#1|)) (-15 -2281 ((-112) |#5| |#1|)) (-15 -3433 ((-112) |#5| |#1|)) (-15 -2050 (|#1| |#1| |#5|))) +((-2986 (((-112) $ $) 7)) (-1416 (((-644 (-2 (|:| -1637 $) (|:| -3516 (-644 |#4|)))) (-644 |#4|)) 86)) (-3295 (((-644 $) (-644 |#4|)) 87) (((-644 $) (-644 |#4|) (-112)) 112)) (-2485 (((-644 |#3|) $) 34)) (-1489 (((-112) $) 27)) (-3541 (((-112) $) 18 (|has| |#1| (-558)))) (-2219 (((-112) |#4| $) 102) (((-112) $) 98)) (-1922 ((|#4| |#4| $) 93)) (-3980 (((-644 (-2 (|:| |val| |#4|) (|:| -2192 $))) |#4| $) 127)) (-1374 (((-2 (|:| |under| $) (|:| -2001 $) (|:| |upper| $)) $ |#3|) 28)) (-1453 (((-112) $ (-771)) 45)) (-3543 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4417))) (((-3 |#4| "failed") $ |#3|) 80)) (-1811 (($) 46 T CONST)) (-4210 (((-112) $) 23 (|has| |#1| (-558)))) (-3050 (((-112) $ $) 25 (|has| |#1| (-558)))) (-1768 (((-112) $ $) 24 (|has| |#1| (-558)))) (-3261 (((-112) $) 26 (|has| |#1| (-558)))) (-3451 (((-644 |#4|) (-644 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2796 (((-644 |#4|) (-644 |#4|) $) 19 (|has| |#1| (-558)))) (-3829 (((-644 |#4|) (-644 |#4|) $) 20 (|has| |#1| (-558)))) (-2980 (((-3 $ "failed") (-644 |#4|)) 37)) (-1709 (($ (-644 |#4|)) 36)) (-4091 (((-3 $ "failed") $) 83)) (-3358 ((|#4| |#4| $) 90)) (-4111 (($ $) 69 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4417))))) (-2628 (($ |#4| $) 68 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4417)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4417)))) (-3131 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-558)))) (-1995 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3326 ((|#4| |#4| $) 88)) (-1838 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4417)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4417))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4417))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1877 (((-2 (|:| -1637 (-644 |#4|)) (|:| -3516 (-644 |#4|))) $) 106)) (-2281 (((-112) |#4| $) 137)) (-1646 (((-112) |#4| $) 134)) (-3433 (((-112) |#4| $) 138) (((-112) $) 135)) (-3872 (((-644 |#4|) $) 53 (|has| $ (-6 -4417)))) (-4297 (((-112) |#4| $) 105) (((-112) $) 104)) (-4052 ((|#3| $) 35)) (-2756 (((-112) $ (-771)) 44)) (-4227 (((-644 |#4|) $) 54 (|has| $ (-6 -4417)))) (-1688 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4417))))) (-3708 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#4| |#4|) $) 48)) (-3599 (((-644 |#3|) $) 33)) (-2884 (((-112) |#3| $) 32)) (-4106 (((-112) $ (-771)) 43)) (-3151 (((-1157) $) 10)) (-3421 (((-3 |#4| (-644 $)) |#4| |#4| $) 129)) (-3723 (((-644 (-2 (|:| |val| |#4|) (|:| -2192 $))) |#4| |#4| $) 128)) (-2651 (((-3 |#4| "failed") $) 84)) (-3391 (((-644 $) |#4| $) 130)) (-3680 (((-3 (-112) (-644 $)) |#4| $) 133)) (-3325 (((-644 (-2 (|:| |val| (-112)) (|:| -2192 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-4022 (((-644 $) |#4| $) 126) (((-644 $) (-644 |#4|) $) 125) (((-644 $) (-644 |#4|) (-644 $)) 124) (((-644 $) |#4| (-644 $)) 123)) (-2047 (($ |#4| $) 118) (($ (-644 |#4|) $) 117)) (-3707 (((-644 |#4|) $) 108)) (-4121 (((-112) |#4| $) 100) (((-112) $) 96)) (-3317 ((|#4| |#4| $) 91)) (-3730 (((-112) $ $) 111)) (-1719 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-558)))) (-1695 (((-112) |#4| $) 101) (((-112) $) 97)) (-3869 ((|#4| |#4| $) 92)) (-4059 (((-1119) $) 11)) (-4080 (((-3 |#4| "failed") $) 85)) (-2688 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2293 (((-3 $ "failed") $ |#4|) 79)) (-2050 (($ $ |#4|) 78) (((-644 $) |#4| $) 116) (((-644 $) |#4| (-644 $)) 115) (((-644 $) (-644 |#4|) $) 114) (((-644 $) (-644 |#4|) (-644 $)) 113)) (-3966 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 |#4|) (-644 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-295 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-644 (-295 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))))) (-1844 (((-112) $ $) 39)) (-2788 (((-112) $) 42)) (-1737 (($) 41)) (-1630 (((-771) $) 107)) (-4068 (((-771) |#4| $) 55 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4417)))) (((-771) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4417)))) (-3924 (($ $) 40)) (-3136 (((-538) $) 70 (|has| |#4| (-614 (-538))))) (-2489 (($ (-644 |#4|)) 61)) (-1706 (($ $ |#3|) 29)) (-4234 (($ $ |#3|) 31)) (-4024 (($ $) 89)) (-2378 (($ $ |#3|) 30)) (-2479 (((-862) $) 12) (((-644 |#4|) $) 38)) (-2780 (((-771) $) 77 (|has| |#3| (-370)))) (-3900 (((-112) $ $) 9)) (-2877 (((-3 (-2 (|:| |bas| $) (|:| -3903 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3903 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-4265 (((-112) $ (-1 (-112) |#4| (-644 |#4|))) 99)) (-3437 (((-644 $) |#4| $) 122) (((-644 $) |#4| (-644 $)) 121) (((-644 $) (-644 |#4|) $) 120) (((-644 $) (-644 |#4|) (-644 $)) 119)) (-3667 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4417)))) (-4067 (((-644 |#3|) $) 82)) (-3183 (((-112) |#4| $) 136)) (-3132 (((-112) |#3| $) 81)) (-2952 (((-112) $ $) 6)) (-3002 (((-771) $) 47 (|has| $ (-6 -4417))))) +(((-1070 |#1| |#2| |#3| |#4|) (-140) (-454) (-793) (-850) (-1064 |t#1| |t#2| |t#3|)) (T -1070)) +((-3433 (*1 *2 *3 *1) (-12 (-4 *1 (-1070 *4 *5 *6 *3)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112)))) (-2281 (*1 *2 *3 *1) (-12 (-4 *1 (-1070 *4 *5 *6 *3)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112)))) (-3183 (*1 *2 *3 *1) (-12 (-4 *1 (-1070 *4 *5 *6 *3)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112)))) (-3433 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *6)) (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-112)))) (-1646 (*1 *2 *3 *1) (-12 (-4 *1 (-1070 *4 *5 *6 *3)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112)))) (-3680 (*1 *2 *3 *1) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-3 (-112) (-644 *1))) (-4 *1 (-1070 *4 *5 *6 *3)))) (-3325 (*1 *2 *3 *1) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-644 (-2 (|:| |val| (-112)) (|:| -2192 *1)))) (-4 *1 (-1070 *4 *5 *6 *3)))) (-3325 (*1 *2 *3 *1) (-12 (-4 *1 (-1070 *4 *5 *6 *3)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112)))) (-3391 (*1 *2 *3 *1) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-644 *1)) (-4 *1 (-1070 *4 *5 *6 *3)))) (-3421 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-3 *3 (-644 *1))) (-4 *1 (-1070 *4 *5 *6 *3)))) (-3723 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -2192 *1)))) (-4 *1 (-1070 *4 *5 *6 *3)))) (-3980 (*1 *2 *3 *1) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -2192 *1)))) (-4 *1 (-1070 *4 *5 *6 *3)))) (-4022 (*1 *2 *3 *1) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-644 *1)) (-4 *1 (-1070 *4 *5 *6 *3)))) (-4022 (*1 *2 *3 *1) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 *1)) (-4 *1 (-1070 *4 *5 *6 *7)))) (-4022 (*1 *2 *3 *2) (-12 (-5 *2 (-644 *1)) (-5 *3 (-644 *7)) (-4 *1 (-1070 *4 *5 *6 *7)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)))) (-4022 (*1 *2 *3 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-1070 *4 *5 *6 *3)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)))) (-3437 (*1 *2 *3 *1) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-644 *1)) (-4 *1 (-1070 *4 *5 *6 *3)))) (-3437 (*1 *2 *3 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-1070 *4 *5 *6 *3)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)))) (-3437 (*1 *2 *3 *1) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 *1)) (-4 *1 (-1070 *4 *5 *6 *7)))) (-3437 (*1 *2 *3 *2) (-12 (-5 *2 (-644 *1)) (-5 *3 (-644 *7)) (-4 *1 (-1070 *4 *5 *6 *7)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)))) (-2047 (*1 *1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *2)) (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5)))) (-2047 (*1 *1 *2 *1) (-12 (-5 *2 (-644 *6)) (-4 *1 (-1070 *3 *4 *5 *6)) (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)))) (-2050 (*1 *2 *3 *1) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-644 *1)) (-4 *1 (-1070 *4 *5 *6 *3)))) (-2050 (*1 *2 *3 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-1070 *4 *5 *6 *3)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)))) (-2050 (*1 *2 *3 *1) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 *1)) (-4 *1 (-1070 *4 *5 *6 *7)))) (-2050 (*1 *2 *3 *2) (-12 (-5 *2 (-644 *1)) (-5 *3 (-644 *7)) (-4 *1 (-1070 *4 *5 *6 *7)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)))) (-3295 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-644 *1)) (-4 *1 (-1070 *5 *6 *7 *8))))) +(-13 (-1207 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3433 ((-112) |t#4| $)) (-15 -2281 ((-112) |t#4| $)) (-15 -3183 ((-112) |t#4| $)) (-15 -3433 ((-112) $)) (-15 -1646 ((-112) |t#4| $)) (-15 -3680 ((-3 (-112) (-644 $)) |t#4| $)) (-15 -3325 ((-644 (-2 (|:| |val| (-112)) (|:| -2192 $))) |t#4| $)) (-15 -3325 ((-112) |t#4| $)) (-15 -3391 ((-644 $) |t#4| $)) (-15 -3421 ((-3 |t#4| (-644 $)) |t#4| |t#4| $)) (-15 -3723 ((-644 (-2 (|:| |val| |t#4|) (|:| -2192 $))) |t#4| |t#4| $)) (-15 -3980 ((-644 (-2 (|:| |val| |t#4|) (|:| -2192 $))) |t#4| $)) (-15 -4022 ((-644 $) |t#4| $)) (-15 -4022 ((-644 $) (-644 |t#4|) $)) (-15 -4022 ((-644 $) (-644 |t#4|) (-644 $))) (-15 -4022 ((-644 $) |t#4| (-644 $))) (-15 -3437 ((-644 $) |t#4| $)) (-15 -3437 ((-644 $) |t#4| (-644 $))) (-15 -3437 ((-644 $) (-644 |t#4|) $)) (-15 -3437 ((-644 $) (-644 |t#4|) (-644 $))) (-15 -2047 ($ |t#4| $)) (-15 -2047 ($ (-644 |t#4|) $)) (-15 -2050 ((-644 $) |t#4| $)) (-15 -2050 ((-644 $) |t#4| (-644 $))) (-15 -2050 ((-644 $) (-644 |t#4|) $)) (-15 -2050 ((-644 $) (-644 |t#4|) (-644 $))) (-15 -3295 ((-644 $) (-644 |t#4|) (-112))))) +(((-34) . T) ((-102) . T) ((-613 (-644 |#4|)) . T) ((-613 (-862)) . T) ((-151 |#4|) . T) ((-614 (-538)) |has| |#4| (-614 (-538))) ((-310 |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))) ((-491 |#4|) . T) ((-516 |#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))) ((-976 |#1| |#2| |#3| |#4|) . T) ((-1099) . T) ((-1207 |#1| |#2| |#3| |#4|) . T) ((-1214) . T)) +((-2065 (((-644 (-2 (|:| |val| |#4|) (|:| -2192 |#5|))) |#4| |#5|) 87)) (-4150 (((-644 (-2 (|:| |val| |#4|) (|:| -2192 |#5|))) |#4| |#4| |#5|) 128)) (-2250 (((-644 |#5|) |#4| |#5|) 75)) (-1527 (((-644 (-2 (|:| |val| (-112)) (|:| -2192 |#5|))) |#4| |#5|) 48) (((-112) |#4| |#5|) 56)) (-1569 (((-1269)) 37)) (-2447 (((-1269)) 26)) (-3604 (((-1269) (-1157) (-1157) (-1157)) 33)) (-1606 (((-1269) (-1157) (-1157) (-1157)) 22)) (-1576 (((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))) |#4| |#4| |#5|) 108)) (-2743 (((-644 (-2 (|:| |val| |#4|) (|:| -2192 |#5|))) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))) |#3| (-112)) 119) (((-644 (-2 (|:| |val| |#4|) (|:| -2192 |#5|))) |#4| |#4| |#5| (-112) (-112)) 53)) (-2654 (((-644 (-2 (|:| |val| |#4|) (|:| -2192 |#5|))) |#4| |#4| |#5|) 114))) +(((-1071 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1606 ((-1269) (-1157) (-1157) (-1157))) (-15 -2447 ((-1269))) (-15 -3604 ((-1269) (-1157) (-1157) (-1157))) (-15 -1569 ((-1269))) (-15 -1576 ((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))) |#4| |#4| |#5|)) (-15 -2743 ((-644 (-2 (|:| |val| |#4|) (|:| -2192 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2743 ((-644 (-2 (|:| |val| |#4|) (|:| -2192 |#5|))) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))) |#3| (-112))) (-15 -2654 ((-644 (-2 (|:| |val| |#4|) (|:| -2192 |#5|))) |#4| |#4| |#5|)) (-15 -4150 ((-644 (-2 (|:| |val| |#4|) (|:| -2192 |#5|))) |#4| |#4| |#5|)) (-15 -1527 ((-112) |#4| |#5|)) (-15 -1527 ((-644 (-2 (|:| |val| (-112)) (|:| -2192 |#5|))) |#4| |#5|)) (-15 -2250 ((-644 |#5|) |#4| |#5|)) (-15 -2065 ((-644 (-2 (|:| |val| |#4|) (|:| -2192 |#5|))) |#4| |#5|))) (-454) (-793) (-850) (-1064 |#1| |#2| |#3|) (-1070 |#1| |#2| |#3| |#4|)) (T -1071)) +((-2065 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -2192 *4)))) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-2250 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 *4)) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-1527 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| (-112)) (|:| -2192 *4)))) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-1527 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-4150 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -2192 *4)))) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-2654 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -2192 *4)))) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-2743 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-644 (-2 (|:| |val| (-644 *8)) (|:| -2192 *9)))) (-5 *5 (-112)) (-4 *8 (-1064 *6 *7 *4)) (-4 *9 (-1070 *6 *7 *4 *8)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *4 (-850)) (-5 *2 (-644 (-2 (|:| |val| *8) (|:| -2192 *9)))) (-5 *1 (-1071 *6 *7 *4 *8 *9)))) (-2743 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) (-4 *3 (-1064 *6 *7 *8)) (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -2192 *4)))) (-5 *1 (-1071 *6 *7 *8 *3 *4)) (-4 *4 (-1070 *6 *7 *8 *3)))) (-1576 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| (-644 *3)) (|:| -2192 *4)))) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-1569 (*1 *2) (-12 (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-1269)) (-5 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *7 (-1070 *3 *4 *5 *6)))) (-3604 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1157)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-1269)) (-5 *1 (-1071 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))) (-2447 (*1 *2) (-12 (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-1269)) (-5 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *7 (-1070 *3 *4 *5 *6)))) (-1606 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1157)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-1269)) (-5 *1 (-1071 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7))))) +(-10 -7 (-15 -1606 ((-1269) (-1157) (-1157) (-1157))) (-15 -2447 ((-1269))) (-15 -3604 ((-1269) (-1157) (-1157) (-1157))) (-15 -1569 ((-1269))) (-15 -1576 ((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))) |#4| |#4| |#5|)) (-15 -2743 ((-644 (-2 (|:| |val| |#4|) (|:| -2192 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2743 ((-644 (-2 (|:| |val| |#4|) (|:| -2192 |#5|))) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))) |#3| (-112))) (-15 -2654 ((-644 (-2 (|:| |val| |#4|) (|:| -2192 |#5|))) |#4| |#4| |#5|)) (-15 -4150 ((-644 (-2 (|:| |val| |#4|) (|:| -2192 |#5|))) |#4| |#4| |#5|)) (-15 -1527 ((-112) |#4| |#5|)) (-15 -1527 ((-644 (-2 (|:| |val| (-112)) (|:| -2192 |#5|))) |#4| |#5|)) (-15 -2250 ((-644 |#5|) |#4| |#5|)) (-15 -2065 ((-644 (-2 (|:| |val| |#4|) (|:| -2192 |#5|))) |#4| |#5|))) +((-2986 (((-112) $ $) NIL)) (-3835 (((-1213) $) 13)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-1358 (((-1134) $) 10)) (-2479 (((-862) $) 20) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-1072) (-13 (-1082) (-10 -8 (-15 -1358 ((-1134) $)) (-15 -3835 ((-1213) $))))) (T -1072)) +((-1358 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1072)))) (-3835 (*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-1072))))) +(-13 (-1082) (-10 -8 (-15 -1358 ((-1134) $)) (-15 -3835 ((-1213) $)))) +((-3477 (((-112) $ $) 7))) +(((-1073) (-13 (-1214) (-10 -8 (-15 -3477 ((-112) $ $))))) (T -1073)) +((-3477 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1073))))) +(-13 (-1214) (-10 -8 (-15 -3477 ((-112) $ $)))) +((-2986 (((-112) $ $) NIL)) (-2598 (((-1175) $) 8)) (-3151 (((-1157) $) 17)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) 11)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 14))) +(((-1074 |#1|) (-13 (-1099) (-10 -8 (-15 -2598 ((-1175) $)))) (-1175)) (T -1074)) +((-2598 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1074 *3)) (-14 *3 *2)))) +(-13 (-1099) (-10 -8 (-15 -2598 ((-1175) $)))) +((-2986 (((-112) $ $) NIL)) (-2122 (($ $ (-644 (-1175)) (-1 (-112) (-644 |#3|))) 34)) (-1874 (($ |#3| |#3|) 23) (($ |#3| |#3| (-644 (-1175))) 21)) (-3331 ((|#3| $) 13)) (-2980 (((-3 (-295 |#3|) "failed") $) 60)) (-1709 (((-295 |#3|) $) NIL)) (-3278 (((-644 (-1175)) $) 16)) (-1669 (((-892 |#1|) $) 11)) (-3319 ((|#3| $) 12)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-4376 ((|#3| $ |#3|) 28) ((|#3| $ |#3| (-921)) 41)) (-2479 (((-862) $) 89) (($ (-295 |#3|)) 22)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 38))) +(((-1075 |#1| |#2| |#3|) (-13 (-1099) (-287 |#3| |#3|) (-1038 (-295 |#3|)) (-10 -8 (-15 -1874 ($ |#3| |#3|)) (-15 -1874 ($ |#3| |#3| (-644 (-1175)))) (-15 -2122 ($ $ (-644 (-1175)) (-1 (-112) (-644 |#3|)))) (-15 -1669 ((-892 |#1|) $)) (-15 -3319 (|#3| $)) (-15 -3331 (|#3| $)) (-15 -4376 (|#3| $ |#3| (-921))) (-15 -3278 ((-644 (-1175)) $)))) (-1099) (-13 (-1049) (-886 |#1|) (-614 (-892 |#1|))) (-13 (-432 |#2|) (-886 |#1|) (-614 (-892 |#1|)))) (T -1075)) +((-1874 (*1 *1 *2 *2) (-12 (-4 *3 (-1099)) (-4 *4 (-13 (-1049) (-886 *3) (-614 (-892 *3)))) (-5 *1 (-1075 *3 *4 *2)) (-4 *2 (-13 (-432 *4) (-886 *3) (-614 (-892 *3)))))) (-1874 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-644 (-1175))) (-4 *4 (-1099)) (-4 *5 (-13 (-1049) (-886 *4) (-614 (-892 *4)))) (-5 *1 (-1075 *4 *5 *2)) (-4 *2 (-13 (-432 *5) (-886 *4) (-614 (-892 *4)))))) (-2122 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-1175))) (-5 *3 (-1 (-112) (-644 *6))) (-4 *6 (-13 (-432 *5) (-886 *4) (-614 (-892 *4)))) (-4 *4 (-1099)) (-4 *5 (-13 (-1049) (-886 *4) (-614 (-892 *4)))) (-5 *1 (-1075 *4 *5 *6)))) (-1669 (*1 *2 *1) (-12 (-4 *3 (-1099)) (-4 *4 (-13 (-1049) (-886 *3) (-614 *2))) (-5 *2 (-892 *3)) (-5 *1 (-1075 *3 *4 *5)) (-4 *5 (-13 (-432 *4) (-886 *3) (-614 *2))))) (-3319 (*1 *2 *1) (-12 (-4 *3 (-1099)) (-4 *2 (-13 (-432 *4) (-886 *3) (-614 (-892 *3)))) (-5 *1 (-1075 *3 *4 *2)) (-4 *4 (-13 (-1049) (-886 *3) (-614 (-892 *3)))))) (-3331 (*1 *2 *1) (-12 (-4 *3 (-1099)) (-4 *2 (-13 (-432 *4) (-886 *3) (-614 (-892 *3)))) (-5 *1 (-1075 *3 *4 *2)) (-4 *4 (-13 (-1049) (-886 *3) (-614 (-892 *3)))))) (-4376 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-921)) (-4 *4 (-1099)) (-4 *5 (-13 (-1049) (-886 *4) (-614 (-892 *4)))) (-5 *1 (-1075 *4 *5 *2)) (-4 *2 (-13 (-432 *5) (-886 *4) (-614 (-892 *4)))))) (-3278 (*1 *2 *1) (-12 (-4 *3 (-1099)) (-4 *4 (-13 (-1049) (-886 *3) (-614 (-892 *3)))) (-5 *2 (-644 (-1175))) (-5 *1 (-1075 *3 *4 *5)) (-4 *5 (-13 (-432 *4) (-886 *3) (-614 (-892 *3))))))) +(-13 (-1099) (-287 |#3| |#3|) (-1038 (-295 |#3|)) (-10 -8 (-15 -1874 ($ |#3| |#3|)) (-15 -1874 ($ |#3| |#3| (-644 (-1175)))) (-15 -2122 ($ $ (-644 (-1175)) (-1 (-112) (-644 |#3|)))) (-15 -1669 ((-892 |#1|) $)) (-15 -3319 (|#3| $)) (-15 -3331 (|#3| $)) (-15 -4376 (|#3| $ |#3| (-921))) (-15 -3278 ((-644 (-1175)) $)))) +((-2986 (((-112) $ $) NIL)) (-3376 (($ (-644 (-1075 |#1| |#2| |#3|))) 14)) (-3264 (((-644 (-1075 |#1| |#2| |#3|)) $) 21)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-4376 ((|#3| $ |#3|) 24) ((|#3| $ |#3| (-921)) 27)) (-2479 (((-862) $) 17)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 20))) +(((-1076 |#1| |#2| |#3|) (-13 (-1099) (-287 |#3| |#3|) (-10 -8 (-15 -3376 ($ (-644 (-1075 |#1| |#2| |#3|)))) (-15 -3264 ((-644 (-1075 |#1| |#2| |#3|)) $)) (-15 -4376 (|#3| $ |#3| (-921))))) (-1099) (-13 (-1049) (-886 |#1|) (-614 (-892 |#1|))) (-13 (-432 |#2|) (-886 |#1|) (-614 (-892 |#1|)))) (T -1076)) +((-3376 (*1 *1 *2) (-12 (-5 *2 (-644 (-1075 *3 *4 *5))) (-4 *3 (-1099)) (-4 *4 (-13 (-1049) (-886 *3) (-614 (-892 *3)))) (-4 *5 (-13 (-432 *4) (-886 *3) (-614 (-892 *3)))) (-5 *1 (-1076 *3 *4 *5)))) (-3264 (*1 *2 *1) (-12 (-4 *3 (-1099)) (-4 *4 (-13 (-1049) (-886 *3) (-614 (-892 *3)))) (-5 *2 (-644 (-1075 *3 *4 *5))) (-5 *1 (-1076 *3 *4 *5)) (-4 *5 (-13 (-432 *4) (-886 *3) (-614 (-892 *3)))))) (-4376 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-921)) (-4 *4 (-1099)) (-4 *5 (-13 (-1049) (-886 *4) (-614 (-892 *4)))) (-5 *1 (-1076 *4 *5 *2)) (-4 *2 (-13 (-432 *5) (-886 *4) (-614 (-892 *4))))))) +(-13 (-1099) (-287 |#3| |#3|) (-10 -8 (-15 -3376 ($ (-644 (-1075 |#1| |#2| |#3|)))) (-15 -3264 ((-644 (-1075 |#1| |#2| |#3|)) $)) (-15 -4376 (|#3| $ |#3| (-921))))) +((-3737 (((-644 (-2 (|:| -4324 (-1171 |#1|)) (|:| -3747 (-644 (-952 |#1|))))) (-644 (-952 |#1|)) (-112) (-112)) 88) (((-644 (-2 (|:| -4324 (-1171 |#1|)) (|:| -3747 (-644 (-952 |#1|))))) (-644 (-952 |#1|))) 92) (((-644 (-2 (|:| -4324 (-1171 |#1|)) (|:| -3747 (-644 (-952 |#1|))))) (-644 (-952 |#1|)) (-112)) 90))) +(((-1077 |#1| |#2|) (-10 -7 (-15 -3737 ((-644 (-2 (|:| -4324 (-1171 |#1|)) (|:| -3747 (-644 (-952 |#1|))))) (-644 (-952 |#1|)) (-112))) (-15 -3737 ((-644 (-2 (|:| -4324 (-1171 |#1|)) (|:| -3747 (-644 (-952 |#1|))))) (-644 (-952 |#1|)))) (-15 -3737 ((-644 (-2 (|:| -4324 (-1171 |#1|)) (|:| -3747 (-644 (-952 |#1|))))) (-644 (-952 |#1|)) (-112) (-112)))) (-13 (-308) (-147)) (-644 (-1175))) (T -1077)) +((-3737 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-644 (-2 (|:| -4324 (-1171 *5)) (|:| -3747 (-644 (-952 *5)))))) (-5 *1 (-1077 *5 *6)) (-5 *3 (-644 (-952 *5))) (-14 *6 (-644 (-1175))))) (-3737 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-5 *2 (-644 (-2 (|:| -4324 (-1171 *4)) (|:| -3747 (-644 (-952 *4)))))) (-5 *1 (-1077 *4 *5)) (-5 *3 (-644 (-952 *4))) (-14 *5 (-644 (-1175))))) (-3737 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-644 (-2 (|:| -4324 (-1171 *5)) (|:| -3747 (-644 (-952 *5)))))) (-5 *1 (-1077 *5 *6)) (-5 *3 (-644 (-952 *5))) (-14 *6 (-644 (-1175)))))) +(-10 -7 (-15 -3737 ((-644 (-2 (|:| -4324 (-1171 |#1|)) (|:| -3747 (-644 (-952 |#1|))))) (-644 (-952 |#1|)) (-112))) (-15 -3737 ((-644 (-2 (|:| -4324 (-1171 |#1|)) (|:| -3747 (-644 (-952 |#1|))))) (-644 (-952 |#1|)))) (-15 -3737 ((-644 (-2 (|:| -4324 (-1171 |#1|)) (|:| -3747 (-644 (-952 |#1|))))) (-644 (-952 |#1|)) (-112) (-112)))) +((-2325 (((-420 |#3|) |#3|) 18))) +(((-1078 |#1| |#2| |#3|) (-10 -7 (-15 -2325 ((-420 |#3|) |#3|))) (-1240 (-409 (-566))) (-13 (-365) (-147) (-724 (-409 (-566)) |#1|)) (-1240 |#2|)) (T -1078)) +((-2325 (*1 *2 *3) (-12 (-4 *4 (-1240 (-409 (-566)))) (-4 *5 (-13 (-365) (-147) (-724 (-409 (-566)) *4))) (-5 *2 (-420 *3)) (-5 *1 (-1078 *4 *5 *3)) (-4 *3 (-1240 *5))))) +(-10 -7 (-15 -2325 ((-420 |#3|) |#3|))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) 141)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (|has| |#1| (-365)))) (-3087 (($ $) NIL (|has| |#1| (-365)))) (-1716 (((-112) $) NIL (|has| |#1| (-365)))) (-1321 (((-689 |#1|) (-1264 $)) NIL) (((-689 |#1|)) 125)) (-3837 ((|#1| $) 130)) (-2568 (((-1187 (-921) (-771)) (-566)) NIL (|has| |#1| (-351)))) (-3174 (((-3 $ "failed") $ $) NIL)) (-3980 (($ $) NIL (|has| |#1| (-365)))) (-3348 (((-420 $) $) NIL (|has| |#1| (-365)))) (-2761 (((-112) $ $) NIL (|has| |#1| (-365)))) (-4049 (((-771)) 46 (|has| |#1| (-370)))) (-1811 (($) NIL T CONST)) (-2980 (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) NIL)) (-1709 (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) NIL)) (-2422 (($ (-1264 |#1|) (-1264 $)) NIL) (($ (-1264 |#1|)) 49)) (-2713 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-351)))) (-2925 (($ $ $) NIL (|has| |#1| (-365)))) (-2087 (((-689 |#1|) $ (-1264 $)) NIL) (((-689 |#1|) $) NIL)) (-2275 (((-689 (-566)) (-689 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -4196 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) 115) (((-689 |#1|) (-689 $)) 110)) (-1838 (($ |#2|) 67) (((-3 $ "failed") (-409 |#2|)) NIL (|has| |#1| (-365)))) (-3757 (((-3 $ "failed") $) NIL)) (-2299 (((-921)) 84)) (-1415 (($) 50 (|has| |#1| (-370)))) (-2937 (($ $ $) NIL (|has| |#1| (-365)))) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) NIL (|has| |#1| (-365)))) (-2409 (($) NIL (|has| |#1| (-351)))) (-1450 (((-112) $) NIL (|has| |#1| (-351)))) (-4202 (($ $ (-771)) NIL (|has| |#1| (-351))) (($ $) NIL (|has| |#1| (-351)))) (-4188 (((-112) $) NIL (|has| |#1| (-365)))) (-1802 (((-921) $) NIL (|has| |#1| (-351))) (((-833 (-921)) $) NIL (|has| |#1| (-351)))) (-2264 (((-112) $) NIL)) (-1398 ((|#1| $) NIL)) (-4278 (((-3 $ "failed") $) NIL (|has| |#1| (-351)))) (-2495 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-1869 ((|#2| $) 91 (|has| |#1| (-365)))) (-4051 (((-921) $) 150 (|has| |#1| (-370)))) (-1829 ((|#2| $) 64)) (-2120 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3151 (((-1157) $) NIL)) (-2577 (($ $) NIL (|has| |#1| (-365)))) (-3968 (($) NIL (|has| |#1| (-351)) CONST)) (-2104 (($ (-921)) 140 (|has| |#1| (-370)))) (-4059 (((-1119) $) NIL)) (-4086 (($) 132)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-365)))) (-2162 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2816 (((-644 (-2 (|:| -2325 (-566)) (|:| -3631 (-566))))) NIL (|has| |#1| (-351)))) (-2325 (((-420 $) $) NIL (|has| |#1| (-365)))) (-2585 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL (|has| |#1| (-365)))) (-2976 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-2840 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-1383 (((-771) $) NIL (|has| |#1| (-365)))) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL (|has| |#1| (-365)))) (-3553 ((|#1| (-1264 $)) NIL) ((|#1|) 119)) (-4107 (((-771) $) NIL (|has| |#1| (-351))) (((-3 (-771) "failed") $ $) NIL (|has| |#1| (-351)))) (-3526 (($ $) NIL (-2809 (-12 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-771)) NIL (-2809 (-12 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-1175)) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-900 (-1175))))) (($ $ (-1 |#1| |#1|) (-771)) NIL (|has| |#1| (-365))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-365)))) (-3098 (((-689 |#1|) (-1264 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-365)))) (-2301 ((|#2|) 80)) (-3648 (($) NIL (|has| |#1| (-351)))) (-3747 (((-1264 |#1|) $ (-1264 $)) 96) (((-689 |#1|) (-1264 $) (-1264 $)) NIL) (((-1264 |#1|) $) 77) (((-689 |#1|) (-1264 $)) 92)) (-3136 (((-1264 |#1|) $) NIL) (($ (-1264 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-3233 (((-3 (-1264 $) "failed") (-689 $)) NIL (|has| |#1| (-351)))) (-2479 (((-862) $) 63) (($ (-566)) 59) (($ |#1|) 60) (($ $) NIL (|has| |#1| (-365))) (($ (-409 (-566))) NIL (-2809 (|has| |#1| (-365)) (|has| |#1| (-1038 (-409 (-566))))))) (-2645 (($ $) NIL (|has| |#1| (-351))) (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3728 ((|#2| $) 89)) (-1558 (((-771)) 82 T CONST)) (-3900 (((-112) $ $) NIL)) (-1419 (((-1264 $)) 88)) (-1333 (((-112) $ $) NIL (|has| |#1| (-365)))) (-2446 (($) 32 T CONST)) (-2459 (($) 19 T CONST)) (-2834 (($ $) NIL (-2809 (-12 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-771)) NIL (-2809 (-12 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-1175)) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-900 (-1175))))) (($ $ (-1 |#1| |#1|) (-771)) NIL (|has| |#1| (-365))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-365)))) (-2952 (((-112) $ $) 69)) (-3077 (($ $ $) NIL (|has| |#1| (-365)))) (-3065 (($ $) 73) (($ $ $) NIL)) (-3052 (($ $ $) 71)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL (|has| |#1| (-365)))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 57) (($ $ $) 75) (($ $ |#1|) NIL) (($ |#1| $) 54) (($ (-409 (-566)) $) NIL (|has| |#1| (-365))) (($ $ (-409 (-566))) NIL (|has| |#1| (-365))))) +(((-1079 |#1| |#2| |#3|) (-724 |#1| |#2|) (-172) (-1240 |#1|) |#2|) (T -1079)) +NIL +(-724 |#1| |#2|) +((-2325 (((-420 |#3|) |#3|) 19))) +(((-1080 |#1| |#2| |#3|) (-10 -7 (-15 -2325 ((-420 |#3|) |#3|))) (-1240 (-409 (-952 (-566)))) (-13 (-365) (-147) (-724 (-409 (-952 (-566))) |#1|)) (-1240 |#2|)) (T -1080)) +((-2325 (*1 *2 *3) (-12 (-4 *4 (-1240 (-409 (-952 (-566))))) (-4 *5 (-13 (-365) (-147) (-724 (-409 (-952 (-566))) *4))) (-5 *2 (-420 *3)) (-5 *1 (-1080 *4 *5 *3)) (-4 *3 (-1240 *5))))) +(-10 -7 (-15 -2325 ((-420 |#3|) |#3|))) +((-2986 (((-112) $ $) NIL)) (-1920 (($ $ $) 16)) (-3038 (($ $ $) 17)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-3360 (($) 6)) (-3136 (((-1175) $) 20)) (-2479 (((-862) $) 13)) (-3900 (((-112) $ $) NIL)) (-3019 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 15)) (-3004 (((-112) $ $) NIL)) (-2977 (((-112) $ $) 9))) +(((-1081) (-13 (-850) (-614 (-1175)) (-10 -8 (-15 -3360 ($))))) (T -1081)) +((-3360 (*1 *1) (-5 *1 (-1081)))) +(-13 (-850) (-614 (-1175)) (-10 -8 (-15 -3360 ($)))) +((-2986 (((-112) $ $) 7)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-2479 (((-862) $) 12) (($ (-1180)) 17) (((-1180) $) 16)) (-3900 (((-112) $ $) 9)) (-2952 (((-112) $ $) 6))) +(((-1082) (-140)) (T -1082)) NIL (-13 (-93)) -(((-93) . T) ((-102) . T) ((-614 #0=(-1178)) . T) ((-611 (-860)) . T) ((-611 #0#) . T) ((-490 #0#) . T) ((-1097) . T)) -((-2987 ((|#1| |#1| (-1 (-564) |#1| |#1|)) 43) ((|#1| |#1| (-1 (-112) |#1|)) 34)) (-4264 (((-1267)) 22)) (-2462 (((-642 |#1|)) 13))) -(((-1081 |#1|) (-10 -7 (-15 -4264 ((-1267))) (-15 -2462 ((-642 |#1|))) (-15 -2987 (|#1| |#1| (-1 (-112) |#1|))) (-15 -2987 (|#1| |#1| (-1 (-564) |#1| |#1|)))) (-132)) (T -1081)) -((-2987 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-564) *2 *2)) (-4 *2 (-132)) (-5 *1 (-1081 *2)))) (-2987 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-132)) (-5 *1 (-1081 *2)))) (-2462 (*1 *2) (-12 (-5 *2 (-642 *3)) (-5 *1 (-1081 *3)) (-4 *3 (-132)))) (-4264 (*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-1081 *3)) (-4 *3 (-132))))) -(-10 -7 (-15 -4264 ((-1267))) (-15 -2462 ((-642 |#1|))) (-15 -2987 (|#1| |#1| (-1 (-112) |#1|))) (-15 -2987 (|#1| |#1| (-1 (-564) |#1| |#1|)))) -((-1521 (($ (-109) $) 20)) (-2427 (((-689 (-109)) (-506) $) 19)) (-2179 (($) 7)) (-2964 (($) 21)) (-2763 (($) 22)) (-2497 (((-642 (-175)) $) 10)) (-2390 (((-860) $) 25))) -(((-1082) (-13 (-611 (-860)) (-10 -8 (-15 -2179 ($)) (-15 -2497 ((-642 (-175)) $)) (-15 -2427 ((-689 (-109)) (-506) $)) (-15 -1521 ($ (-109) $)) (-15 -2964 ($)) (-15 -2763 ($))))) (T -1082)) -((-2179 (*1 *1) (-5 *1 (-1082))) (-2497 (*1 *2 *1) (-12 (-5 *2 (-642 (-175))) (-5 *1 (-1082)))) (-2427 (*1 *2 *3 *1) (-12 (-5 *3 (-506)) (-5 *2 (-689 (-109))) (-5 *1 (-1082)))) (-1521 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1082)))) (-2964 (*1 *1) (-5 *1 (-1082))) (-2763 (*1 *1) (-5 *1 (-1082)))) -(-13 (-611 (-860)) (-10 -8 (-15 -2179 ($)) (-15 -2497 ((-642 (-175)) $)) (-15 -2427 ((-689 (-109)) (-506) $)) (-15 -1521 ($ (-109) $)) (-15 -2964 ($)) (-15 -2763 ($)))) -((-2816 (((-1262 (-687 |#1|)) (-642 (-687 |#1|))) 47) (((-1262 (-687 (-950 |#1|))) (-642 (-1173)) (-687 (-950 |#1|))) 75) (((-1262 (-687 (-407 (-950 |#1|)))) (-642 (-1173)) (-687 (-407 (-950 |#1|)))) 92)) (-3719 (((-1262 |#1|) (-687 |#1|) (-642 (-687 |#1|))) 41))) -(((-1083 |#1|) (-10 -7 (-15 -2816 ((-1262 (-687 (-407 (-950 |#1|)))) (-642 (-1173)) (-687 (-407 (-950 |#1|))))) (-15 -2816 ((-1262 (-687 (-950 |#1|))) (-642 (-1173)) (-687 (-950 |#1|)))) (-15 -2816 ((-1262 (-687 |#1|)) (-642 (-687 |#1|)))) (-15 -3719 ((-1262 |#1|) (-687 |#1|) (-642 (-687 |#1|))))) (-363)) (T -1083)) -((-3719 (*1 *2 *3 *4) (-12 (-5 *4 (-642 (-687 *5))) (-5 *3 (-687 *5)) (-4 *5 (-363)) (-5 *2 (-1262 *5)) (-5 *1 (-1083 *5)))) (-2816 (*1 *2 *3) (-12 (-5 *3 (-642 (-687 *4))) (-4 *4 (-363)) (-5 *2 (-1262 (-687 *4))) (-5 *1 (-1083 *4)))) (-2816 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-1173))) (-4 *5 (-363)) (-5 *2 (-1262 (-687 (-950 *5)))) (-5 *1 (-1083 *5)) (-5 *4 (-687 (-950 *5))))) (-2816 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-1173))) (-4 *5 (-363)) (-5 *2 (-1262 (-687 (-407 (-950 *5))))) (-5 *1 (-1083 *5)) (-5 *4 (-687 (-407 (-950 *5))))))) -(-10 -7 (-15 -2816 ((-1262 (-687 (-407 (-950 |#1|)))) (-642 (-1173)) (-687 (-407 (-950 |#1|))))) (-15 -2816 ((-1262 (-687 (-950 |#1|))) (-642 (-1173)) (-687 (-950 |#1|)))) (-15 -2816 ((-1262 (-687 |#1|)) (-642 (-687 |#1|)))) (-15 -3719 ((-1262 |#1|) (-687 |#1|) (-642 (-687 |#1|))))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-3728 (((-642 (-769)) $) NIL) (((-642 (-769)) $ (-1173)) NIL)) (-3059 (((-769) $) NIL) (((-769) $ (-1173)) NIL)) (-2397 (((-642 (-1085 (-1173))) $) NIL)) (-2223 (((-1169 $) $ (-1085 (-1173))) NIL) (((-1169 |#1|) $) NIL)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-4252 (($ $) NIL (|has| |#1| (-556)))) (-1722 (((-112) $) NIL (|has| |#1| (-556)))) (-4035 (((-769) $) NIL) (((-769) $ (-642 (-1085 (-1173)))) NIL)) (-3085 (((-3 $ "failed") $ $) NIL)) (-4297 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-1993 (($ $) NIL (|has| |#1| (-452)))) (-3282 (((-418 $) $) NIL (|has| |#1| (-452)))) (-3267 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-3365 (($ $) NIL)) (-2822 (($) NIL T CONST)) (-2849 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1036 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1036 (-564)))) (((-3 (-1085 (-1173)) "failed") $) NIL) (((-3 (-1173) "failed") $) NIL) (((-3 (-1122 |#1| (-1173)) "failed") $) NIL)) (-1687 ((|#1| $) NIL) (((-407 (-564)) $) NIL (|has| |#1| (-1036 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1036 (-564)))) (((-1085 (-1173)) $) NIL) (((-1173) $) NIL) (((-1122 |#1| (-1173)) $) NIL)) (-3710 (($ $ $ (-1085 (-1173))) NIL (|has| |#1| (-172)))) (-3459 (($ $) NIL)) (-3330 (((-687 (-564)) (-687 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -3544 (-687 |#1|)) (|:| |vec| (-1262 |#1|))) (-687 $) (-1262 $)) NIL) (((-687 |#1|) (-687 $)) NIL)) (-2675 (((-3 $ "failed") $) NIL)) (-2511 (($ $) NIL (|has| |#1| (-452))) (($ $ (-1085 (-1173))) NIL (|has| |#1| (-452)))) (-3446 (((-642 $) $) NIL)) (-3552 (((-112) $) NIL (|has| |#1| (-907)))) (-2315 (($ $ |#1| (-531 (-1085 (-1173))) $) NIL)) (-1381 (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) NIL (-12 (|has| (-1085 (-1173)) (-884 (-379))) (|has| |#1| (-884 (-379))))) (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) NIL (-12 (|has| (-1085 (-1173)) (-884 (-564))) (|has| |#1| (-884 (-564)))))) (-2408 (((-769) $ (-1173)) NIL) (((-769) $) NIL)) (-3163 (((-112) $) NIL)) (-1904 (((-769) $) NIL)) (-2387 (($ (-1169 |#1|) (-1085 (-1173))) NIL) (($ (-1169 $) (-1085 (-1173))) NIL)) (-1995 (((-642 $) $) NIL)) (-3471 (((-112) $) NIL)) (-2374 (($ |#1| (-531 (-1085 (-1173)))) NIL) (($ $ (-1085 (-1173)) (-769)) NIL) (($ $ (-642 (-1085 (-1173))) (-642 (-769))) NIL)) (-3312 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $ (-1085 (-1173))) NIL)) (-2887 (((-531 (-1085 (-1173))) $) NIL) (((-769) $ (-1085 (-1173))) NIL) (((-642 (-769)) $ (-642 (-1085 (-1173)))) NIL)) (-3879 (($ (-1 (-531 (-1085 (-1173))) (-531 (-1085 (-1173)))) $) NIL)) (-2947 (($ (-1 |#1| |#1|) $) NIL)) (-3657 (((-1 $ (-769)) (-1173)) NIL) (((-1 $ (-769)) $) NIL (|has| |#1| (-233)))) (-1557 (((-3 (-1085 (-1173)) "failed") $) NIL)) (-2510 (($ $) NIL)) (-2523 ((|#1| $) NIL)) (-3162 (((-1085 (-1173)) $) NIL)) (-2066 (($ (-642 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-1778 (((-1155) $) NIL)) (-4009 (((-112) $) NIL)) (-3664 (((-3 (-642 $) "failed") $) NIL)) (-4315 (((-3 (-642 $) "failed") $) NIL)) (-3177 (((-3 (-2 (|:| |var| (-1085 (-1173))) (|:| -2817 (-769))) "failed") $) NIL)) (-1808 (($ $) NIL)) (-3999 (((-1117) $) NIL)) (-2491 (((-112) $) NIL)) (-2500 ((|#1| $) NIL)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) NIL (|has| |#1| (-452)))) (-2105 (($ (-642 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3223 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-2236 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-2254 (((-418 $) $) NIL (|has| |#1| (-907)))) (-2842 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-3154 (($ $ (-642 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-642 $) (-642 $)) NIL) (($ $ (-1085 (-1173)) |#1|) NIL) (($ $ (-642 (-1085 (-1173))) (-642 |#1|)) NIL) (($ $ (-1085 (-1173)) $) NIL) (($ $ (-642 (-1085 (-1173))) (-642 $)) NIL) (($ $ (-1173) $) NIL (|has| |#1| (-233))) (($ $ (-642 (-1173)) (-642 $)) NIL (|has| |#1| (-233))) (($ $ (-1173) |#1|) NIL (|has| |#1| (-233))) (($ $ (-642 (-1173)) (-642 |#1|)) NIL (|has| |#1| (-233)))) (-2790 (($ $ (-1085 (-1173))) NIL (|has| |#1| (-172)))) (-2199 (($ $ (-1085 (-1173))) NIL) (($ $ (-642 (-1085 (-1173)))) NIL) (($ $ (-1085 (-1173)) (-769)) NIL) (($ $ (-642 (-1085 (-1173))) (-642 (-769))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-769)) NIL (|has| |#1| (-233))) (($ $ (-1173)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1 |#1| |#1|) (-769)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3189 (((-642 (-1173)) $) NIL)) (-3252 (((-531 (-1085 (-1173))) $) NIL) (((-769) $ (-1085 (-1173))) NIL) (((-642 (-769)) $ (-642 (-1085 (-1173)))) NIL) (((-769) $ (-1173)) NIL)) (-3003 (((-890 (-379)) $) NIL (-12 (|has| (-1085 (-1173)) (-612 (-890 (-379)))) (|has| |#1| (-612 (-890 (-379)))))) (((-890 (-564)) $) NIL (-12 (|has| (-1085 (-1173)) (-612 (-890 (-564)))) (|has| |#1| (-612 (-890 (-564)))))) (((-536) $) NIL (-12 (|has| (-1085 (-1173)) (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-4325 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ (-1085 (-1173))) NIL (|has| |#1| (-452)))) (-3556 (((-3 (-1262 $) "failed") (-687 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-907))))) (-2390 (((-860) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-1085 (-1173))) NIL) (($ (-1173)) NIL) (($ (-1122 |#1| (-1173))) NIL) (($ (-407 (-564))) NIL (-2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1036 (-407 (-564)))))) (($ $) NIL (|has| |#1| (-556)))) (-2839 (((-642 |#1|) $) NIL)) (-3005 ((|#1| $ (-531 (-1085 (-1173)))) NIL) (($ $ (-1085 (-1173)) (-769)) NIL) (($ $ (-642 (-1085 (-1173))) (-642 (-769))) NIL)) (-3434 (((-3 $ "failed") $) NIL (-2682 (-12 (|has| $ (-145)) (|has| |#1| (-907))) (|has| |#1| (-145))))) (-3348 (((-769)) NIL T CONST)) (-2645 (($ $ $ (-769)) NIL (|has| |#1| (-172)))) (-1600 (((-112) $ $) NIL)) (-1594 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2361 (($) NIL T CONST)) (-2371 (($) NIL T CONST)) (-2711 (($ $ (-1085 (-1173))) NIL) (($ $ (-642 (-1085 (-1173)))) NIL) (($ $ (-1085 (-1173)) (-769)) NIL) (($ $ (-642 (-1085 (-1173))) (-642 (-769))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-769)) NIL (|has| |#1| (-233))) (($ $ (-1173)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1 |#1| |#1|) (-769)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2821 (((-112) $ $) NIL)) (-2943 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-1084 |#1|) (-13 (-253 |#1| (-1173) (-1085 (-1173)) (-531 (-1085 (-1173)))) (-1036 (-1122 |#1| (-1173)))) (-1047)) (T -1084)) -NIL -(-13 (-253 |#1| (-1173) (-1085 (-1173)) (-531 (-1085 (-1173)))) (-1036 (-1122 |#1| (-1173)))) -((-2856 (((-112) $ $) NIL)) (-3059 (((-769) $) NIL)) (-1341 ((|#1| $) 10)) (-2849 (((-3 |#1| "failed") $) NIL)) (-1687 ((|#1| $) NIL)) (-2408 (((-769) $) 11)) (-3225 (($ $ $) NIL)) (-2903 (($ $ $) NIL)) (-3657 (($ |#1| (-769)) 9)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2199 (($ $) NIL) (($ $ (-769)) NIL)) (-2390 (((-860) $) NIL) (($ |#1|) NIL)) (-1600 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL)) (-2857 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL)) (-2868 (((-112) $ $) NIL)) (-2844 (((-112) $ $) 16))) -(((-1085 |#1|) (-266 |#1|) (-848)) (T -1085)) -NIL -(-266 |#1|) -((-2947 (((-642 |#2|) (-1 |#2| |#1|) (-1091 |#1|)) 29 (|has| |#1| (-846))) (((-1091 |#2|) (-1 |#2| |#1|) (-1091 |#1|)) 14))) -(((-1086 |#1| |#2|) (-10 -7 (-15 -2947 ((-1091 |#2|) (-1 |#2| |#1|) (-1091 |#1|))) (IF (|has| |#1| (-846)) (-15 -2947 ((-642 |#2|) (-1 |#2| |#1|) (-1091 |#1|))) |%noBranch|)) (-1212) (-1212)) (T -1086)) -((-2947 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1091 *5)) (-4 *5 (-846)) (-4 *5 (-1212)) (-4 *6 (-1212)) (-5 *2 (-642 *6)) (-5 *1 (-1086 *5 *6)))) (-2947 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1091 *5)) (-4 *5 (-1212)) (-4 *6 (-1212)) (-5 *2 (-1091 *6)) (-5 *1 (-1086 *5 *6))))) -(-10 -7 (-15 -2947 ((-1091 |#2|) (-1 |#2| |#1|) (-1091 |#1|))) (IF (|has| |#1| (-846)) (-15 -2947 ((-642 |#2|) (-1 |#2| |#1|) (-1091 |#1|))) |%noBranch|)) -((-2856 (((-112) $ $) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) 16) (($ (-1178)) NIL) (((-1178) $) NIL)) (-2253 (((-642 (-1132)) $) 10)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-1087) (-13 (-1080) (-10 -8 (-15 -2253 ((-642 (-1132)) $))))) (T -1087)) -((-2253 (*1 *2 *1) (-12 (-5 *2 (-642 (-1132))) (-5 *1 (-1087))))) -(-13 (-1080) (-10 -8 (-15 -2253 ((-642 (-1132)) $)))) -((-2947 (((-1089 |#2|) (-1 |#2| |#1|) (-1089 |#1|)) 19))) -(((-1088 |#1| |#2|) (-10 -7 (-15 -2947 ((-1089 |#2|) (-1 |#2| |#1|) (-1089 |#1|)))) (-1212) (-1212)) (T -1088)) -((-2947 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1089 *5)) (-4 *5 (-1212)) (-4 *6 (-1212)) (-5 *2 (-1089 *6)) (-5 *1 (-1088 *5 *6))))) -(-10 -7 (-15 -2947 ((-1089 |#2|) (-1 |#2| |#1|) (-1089 |#1|)))) -((-2856 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-1341 (((-1173) $) 11)) (-3419 (((-1091 |#1|) $) 12)) (-1778 (((-1155) $) NIL (|has| |#1| (-1097)))) (-3999 (((-1117) $) NIL (|has| |#1| (-1097)))) (-1977 (($ (-1173) (-1091 |#1|)) 10)) (-2390 (((-860) $) 22 (|has| |#1| (-1097)))) (-1600 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2821 (((-112) $ $) 17 (|has| |#1| (-1097))))) -(((-1089 |#1|) (-13 (-1212) (-10 -8 (-15 -1977 ($ (-1173) (-1091 |#1|))) (-15 -1341 ((-1173) $)) (-15 -3419 ((-1091 |#1|) $)) (IF (|has| |#1| (-1097)) (-6 (-1097)) |%noBranch|))) (-1212)) (T -1089)) -((-1977 (*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-1091 *4)) (-4 *4 (-1212)) (-5 *1 (-1089 *4)))) (-1341 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-1089 *3)) (-4 *3 (-1212)))) (-3419 (*1 *2 *1) (-12 (-5 *2 (-1091 *3)) (-5 *1 (-1089 *3)) (-4 *3 (-1212))))) -(-13 (-1212) (-10 -8 (-15 -1977 ($ (-1173) (-1091 |#1|))) (-15 -1341 ((-1173) $)) (-15 -3419 ((-1091 |#1|) $)) (IF (|has| |#1| (-1097)) (-6 (-1097)) |%noBranch|))) -((-3419 (($ |#1| |#1|) 8)) (-3612 ((|#1| $) 11)) (-3400 ((|#1| $) 13)) (-4212 (((-564) $) 9)) (-2608 ((|#1| $) 10)) (-4235 ((|#1| $) 12)) (-3003 (($ |#1|) 6)) (-3532 (($ |#1| |#1|) 15)) (-2605 (($ $ (-564)) 14))) -(((-1090 |#1|) (-140) (-1212)) (T -1090)) -((-3532 (*1 *1 *2 *2) (-12 (-4 *1 (-1090 *2)) (-4 *2 (-1212)))) (-2605 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-1090 *3)) (-4 *3 (-1212)))) (-3400 (*1 *2 *1) (-12 (-4 *1 (-1090 *2)) (-4 *2 (-1212)))) (-4235 (*1 *2 *1) (-12 (-4 *1 (-1090 *2)) (-4 *2 (-1212)))) (-3612 (*1 *2 *1) (-12 (-4 *1 (-1090 *2)) (-4 *2 (-1212)))) (-2608 (*1 *2 *1) (-12 (-4 *1 (-1090 *2)) (-4 *2 (-1212)))) (-4212 (*1 *2 *1) (-12 (-4 *1 (-1090 *3)) (-4 *3 (-1212)) (-5 *2 (-564)))) (-3419 (*1 *1 *2 *2) (-12 (-4 *1 (-1090 *2)) (-4 *2 (-1212))))) -(-13 (-616 |t#1|) (-10 -8 (-15 -3532 ($ |t#1| |t#1|)) (-15 -2605 ($ $ (-564))) (-15 -3400 (|t#1| $)) (-15 -4235 (|t#1| $)) (-15 -3612 (|t#1| $)) (-15 -2608 (|t#1| $)) (-15 -4212 ((-564) $)) (-15 -3419 ($ |t#1| |t#1|)))) -(((-616 |#1|) . T)) -((-2856 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-3419 (($ |#1| |#1|) 16)) (-2947 (((-642 |#1|) (-1 |#1| |#1|) $) 46 (|has| |#1| (-846)))) (-3612 ((|#1| $) 12)) (-3400 ((|#1| $) 11)) (-1778 (((-1155) $) NIL (|has| |#1| (-1097)))) (-4212 (((-564) $) 15)) (-2608 ((|#1| $) 14)) (-4235 ((|#1| $) 13)) (-3999 (((-1117) $) NIL (|has| |#1| (-1097)))) (-3398 (((-642 |#1|) $) 44 (|has| |#1| (-846))) (((-642 |#1|) (-642 $)) 43 (|has| |#1| (-846)))) (-3003 (($ |#1|) 29)) (-2390 (((-860) $) 28 (|has| |#1| (-1097)))) (-1600 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-3532 (($ |#1| |#1|) 10)) (-2605 (($ $ (-564)) 17)) (-2821 (((-112) $ $) 22 (|has| |#1| (-1097))))) -(((-1091 |#1|) (-13 (-1090 |#1|) (-10 -7 (IF (|has| |#1| (-1097)) (-6 (-1097)) |%noBranch|) (IF (|has| |#1| (-846)) (-6 (-1092 |#1| (-642 |#1|))) |%noBranch|))) (-1212)) (T -1091)) -NIL -(-13 (-1090 |#1|) (-10 -7 (IF (|has| |#1| (-1097)) (-6 (-1097)) |%noBranch|) (IF (|has| |#1| (-846)) (-6 (-1092 |#1| (-642 |#1|))) |%noBranch|))) -((-3419 (($ |#1| |#1|) 8)) (-2947 ((|#2| (-1 |#1| |#1|) $) 16)) (-3612 ((|#1| $) 11)) (-3400 ((|#1| $) 13)) (-4212 (((-564) $) 9)) (-2608 ((|#1| $) 10)) (-4235 ((|#1| $) 12)) (-3398 ((|#2| (-642 $)) 18) ((|#2| $) 17)) (-3003 (($ |#1|) 6)) (-3532 (($ |#1| |#1|) 15)) (-2605 (($ $ (-564)) 14))) -(((-1092 |#1| |#2|) (-140) (-846) (-1146 |t#1|)) (T -1092)) -((-3398 (*1 *2 *3) (-12 (-5 *3 (-642 *1)) (-4 *1 (-1092 *4 *2)) (-4 *4 (-846)) (-4 *2 (-1146 *4)))) (-3398 (*1 *2 *1) (-12 (-4 *1 (-1092 *3 *2)) (-4 *3 (-846)) (-4 *2 (-1146 *3)))) (-2947 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1092 *4 *2)) (-4 *4 (-846)) (-4 *2 (-1146 *4))))) -(-13 (-1090 |t#1|) (-10 -8 (-15 -3398 (|t#2| (-642 $))) (-15 -3398 (|t#2| $)) (-15 -2947 (|t#2| (-1 |t#1| |t#1|) $)))) -(((-616 |#1|) . T) ((-1090 |#1|) . T)) -((-2856 (((-112) $ $) NIL)) (-1778 (((-1155) $) NIL)) (-2534 (((-1132) $) 12)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) 18) (($ (-1178)) NIL) (((-1178) $) NIL)) (-2502 (((-642 (-1132)) $) 10)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-1093) (-13 (-1080) (-10 -8 (-15 -2502 ((-642 (-1132)) $)) (-15 -2534 ((-1132) $))))) (T -1093)) -((-2502 (*1 *2 *1) (-12 (-5 *2 (-642 (-1132))) (-5 *1 (-1093)))) (-2534 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-1093))))) -(-13 (-1080) (-10 -8 (-15 -2502 ((-642 (-1132)) $)) (-15 -2534 ((-1132) $)))) -((-1700 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-3011 (($ $ $) 10)) (-1411 (($ $ $) NIL) (($ $ |#2|) 15))) -(((-1094 |#1| |#2|) (-10 -8 (-15 -1700 (|#1| |#2| |#1|)) (-15 -1700 (|#1| |#1| |#2|)) (-15 -1700 (|#1| |#1| |#1|)) (-15 -3011 (|#1| |#1| |#1|)) (-15 -1411 (|#1| |#1| |#2|)) (-15 -1411 (|#1| |#1| |#1|))) (-1095 |#2|) (-1097)) (T -1094)) -NIL -(-10 -8 (-15 -1700 (|#1| |#2| |#1|)) (-15 -1700 (|#1| |#1| |#2|)) (-15 -1700 (|#1| |#1| |#1|)) (-15 -3011 (|#1| |#1| |#1|)) (-15 -1411 (|#1| |#1| |#2|)) (-15 -1411 (|#1| |#1| |#1|))) -((-2856 (((-112) $ $) 7)) (-1700 (($ $ $) 19) (($ $ |#1|) 18) (($ |#1| $) 17)) (-3011 (($ $ $) 21)) (-2460 (((-112) $ $) 20)) (-3442 (((-112) $ (-769)) 36)) (-1740 (($) 26) (($ (-642 |#1|)) 25)) (-3437 (($ (-1 (-112) |#1|) $) 57 (|has| $ (-6 -4410)))) (-2822 (($) 37 T CONST)) (-4067 (($ $) 60 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-2517 (($ |#1| $) 59 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410)))) (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4410)))) (-3741 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -4410)))) (-2018 (((-642 |#1|) $) 44 (|has| $ (-6 -4410)))) (-1309 (((-112) $ $) 29)) (-3769 (((-112) $ (-769)) 35)) (-3541 (((-642 |#1|) $) 45 (|has| $ (-6 -4410)))) (-2533 (((-112) |#1| $) 47 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-1857 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#1| |#1|) $) 39)) (-4145 (((-112) $ (-769)) 34)) (-1778 (((-1155) $) 10)) (-2338 (($ $ $) 24)) (-3999 (((-1117) $) 11)) (-3183 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 53)) (-4094 (((-112) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 |#1|) (-642 |#1|)) 51 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) 49 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 (-294 |#1|))) 48 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-2478 (((-112) $ $) 30)) (-4109 (((-112) $) 33)) (-2179 (($) 32)) (-1411 (($ $ $) 23) (($ $ |#1|) 22)) (-4010 (((-769) |#1| $) 46 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410)))) (((-769) (-1 (-112) |#1|) $) 43 (|has| $ (-6 -4410)))) (-3865 (($ $) 31)) (-3003 (((-536) $) 61 (|has| |#1| (-612 (-536))))) (-2401 (($ (-642 |#1|)) 52)) (-2390 (((-860) $) 12)) (-2321 (($) 28) (($ (-642 |#1|)) 27)) (-1600 (((-112) $ $) 9)) (-3295 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4410)))) (-2821 (((-112) $ $) 6)) (-2158 (((-769) $) 38 (|has| $ (-6 -4410))))) -(((-1095 |#1|) (-140) (-1097)) (T -1095)) -((-1309 (*1 *2 *1 *1) (-12 (-4 *1 (-1095 *3)) (-4 *3 (-1097)) (-5 *2 (-112)))) (-2321 (*1 *1) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1097)))) (-2321 (*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1097)) (-4 *1 (-1095 *3)))) (-1740 (*1 *1) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1097)))) (-1740 (*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1097)) (-4 *1 (-1095 *3)))) (-2338 (*1 *1 *1 *1) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1097)))) (-1411 (*1 *1 *1 *1) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1097)))) (-1411 (*1 *1 *1 *2) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1097)))) (-3011 (*1 *1 *1 *1) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1097)))) (-2460 (*1 *2 *1 *1) (-12 (-4 *1 (-1095 *3)) (-4 *3 (-1097)) (-5 *2 (-112)))) (-1700 (*1 *1 *1 *1) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1097)))) (-1700 (*1 *1 *1 *2) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1097)))) (-1700 (*1 *1 *2 *1) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1097))))) -(-13 (-1097) (-151 |t#1|) (-10 -8 (-6 -4400) (-15 -1309 ((-112) $ $)) (-15 -2321 ($)) (-15 -2321 ($ (-642 |t#1|))) (-15 -1740 ($)) (-15 -1740 ($ (-642 |t#1|))) (-15 -2338 ($ $ $)) (-15 -1411 ($ $ $)) (-15 -1411 ($ $ |t#1|)) (-15 -3011 ($ $ $)) (-15 -2460 ((-112) $ $)) (-15 -1700 ($ $ $)) (-15 -1700 ($ $ |t#1|)) (-15 -1700 ($ |t#1| $)))) -(((-34) . T) ((-102) . T) ((-611 (-860)) . T) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-1097) . T) ((-1212) . T)) -((-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 8)) (-1600 (((-112) $ $) 12))) -(((-1096 |#1|) (-10 -8 (-15 -1600 ((-112) |#1| |#1|)) (-15 -1778 ((-1155) |#1|)) (-15 -3999 ((-1117) |#1|))) (-1097)) (T -1096)) -NIL -(-10 -8 (-15 -1600 ((-112) |#1| |#1|)) (-15 -1778 ((-1155) |#1|)) (-15 -3999 ((-1117) |#1|))) -((-2856 (((-112) $ $) 7)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2390 (((-860) $) 12)) (-1600 (((-112) $ $) 9)) (-2821 (((-112) $ $) 6))) -(((-1097) (-140)) (T -1097)) -((-3999 (*1 *2 *1) (-12 (-4 *1 (-1097)) (-5 *2 (-1117)))) (-1778 (*1 *2 *1) (-12 (-4 *1 (-1097)) (-5 *2 (-1155)))) (-1600 (*1 *2 *1 *1) (-12 (-4 *1 (-1097)) (-5 *2 (-112))))) -(-13 (-102) (-611 (-860)) (-10 -8 (-15 -3999 ((-1117) $)) (-15 -1778 ((-1155) $)) (-15 -1600 ((-112) $ $)))) -(((-102) . T) ((-611 (-860)) . T)) -((-2856 (((-112) $ $) NIL)) (-4003 (((-769)) 36)) (-2382 (($ (-642 (-919))) 73)) (-2716 (((-3 $ "failed") $ (-919) (-919)) 84)) (-3235 (($) 40)) (-2533 (((-112) (-919) $) 44)) (-2535 (((-919) $) 66)) (-1778 (((-1155) $) NIL)) (-2065 (($ (-919)) 39)) (-2672 (((-3 $ "failed") $ (-919)) 80)) (-3999 (((-1117) $) NIL)) (-3354 (((-1262 $)) 49)) (-1726 (((-642 (-919)) $) 27)) (-1617 (((-769) $ (-919) (-919)) 81)) (-2390 (((-860) $) 32)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) 24))) -(((-1098 |#1| |#2|) (-13 (-368) (-10 -8 (-15 -2672 ((-3 $ "failed") $ (-919))) (-15 -2716 ((-3 $ "failed") $ (-919) (-919))) (-15 -1726 ((-642 (-919)) $)) (-15 -2382 ($ (-642 (-919)))) (-15 -3354 ((-1262 $))) (-15 -2533 ((-112) (-919) $)) (-15 -1617 ((-769) $ (-919) (-919))))) (-919) (-919)) (T -1098)) -((-2672 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-919)) (-5 *1 (-1098 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2716 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-919)) (-5 *1 (-1098 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-1726 (*1 *2 *1) (-12 (-5 *2 (-642 (-919))) (-5 *1 (-1098 *3 *4)) (-14 *3 (-919)) (-14 *4 (-919)))) (-2382 (*1 *1 *2) (-12 (-5 *2 (-642 (-919))) (-5 *1 (-1098 *3 *4)) (-14 *3 (-919)) (-14 *4 (-919)))) (-3354 (*1 *2) (-12 (-5 *2 (-1262 (-1098 *3 *4))) (-5 *1 (-1098 *3 *4)) (-14 *3 (-919)) (-14 *4 (-919)))) (-2533 (*1 *2 *3 *1) (-12 (-5 *3 (-919)) (-5 *2 (-112)) (-5 *1 (-1098 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-1617 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-919)) (-5 *2 (-769)) (-5 *1 (-1098 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-13 (-368) (-10 -8 (-15 -2672 ((-3 $ "failed") $ (-919))) (-15 -2716 ((-3 $ "failed") $ (-919) (-919))) (-15 -1726 ((-642 (-919)) $)) (-15 -2382 ($ (-642 (-919)))) (-15 -3354 ((-1262 $))) (-15 -2533 ((-112) (-919) $)) (-15 -1617 ((-769) $ (-919) (-919))))) -((-2856 (((-112) $ $) NIL)) (-2864 (($) NIL (|has| |#1| (-368)))) (-1700 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 83)) (-3011 (($ $ $) 81)) (-2460 (((-112) $ $) 82)) (-3442 (((-112) $ (-769)) NIL)) (-4003 (((-769)) NIL (|has| |#1| (-368)))) (-1740 (($ (-642 |#1|)) NIL) (($) 13)) (-2438 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3437 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2822 (($) NIL T CONST)) (-4067 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-1927 (($ |#1| $) 74 (|has| $ (-6 -4410))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2517 (($ |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3741 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4410)))) (-3235 (($) NIL (|has| |#1| (-368)))) (-2018 (((-642 |#1|) $) 19 (|has| $ (-6 -4410)))) (-1309 (((-112) $ $) NIL)) (-3769 (((-112) $ (-769)) NIL)) (-3225 ((|#1| $) 55 (|has| |#1| (-848)))) (-3541 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2533 (((-112) |#1| $) 73 (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2903 ((|#1| $) 53 (|has| |#1| (-848)))) (-1857 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#1| |#1|) $) 34)) (-2535 (((-919) $) NIL (|has| |#1| (-368)))) (-4145 (((-112) $ (-769)) NIL)) (-1778 (((-1155) $) NIL)) (-2338 (($ $ $) 79)) (-3220 ((|#1| $) 25)) (-1668 (($ |#1| $) 69)) (-2065 (($ (-919)) NIL (|has| |#1| (-368)))) (-3999 (((-1117) $) NIL)) (-3183 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-4314 ((|#1| $) 27)) (-4094 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-2478 (((-112) $ $) NIL)) (-4109 (((-112) $) 21)) (-2179 (($) 11)) (-1411 (($ $ |#1|) NIL) (($ $ $) 80)) (-2318 (($) NIL) (($ (-642 |#1|)) NIL)) (-4010 (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-769) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3865 (($ $) 16)) (-3003 (((-536) $) 50 (|has| |#1| (-612 (-536))))) (-2401 (($ (-642 |#1|)) 62)) (-3810 (($ $) NIL (|has| |#1| (-368)))) (-2390 (((-860) $) NIL)) (-1670 (((-769) $) NIL)) (-2321 (($ (-642 |#1|)) NIL) (($) 12)) (-1600 (((-112) $ $) NIL)) (-4160 (($ (-642 |#1|)) NIL)) (-3295 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2821 (((-112) $ $) 52)) (-2158 (((-769) $) 10 (|has| $ (-6 -4410))))) -(((-1099 |#1|) (-425 |#1|) (-1097)) (T -1099)) -NIL -(-425 |#1|) -((-2856 (((-112) $ $) 7)) (-2710 (((-112) $) 33)) (-1348 ((|#2| $) 28)) (-3049 (((-112) $) 34)) (-4301 ((|#1| $) 29)) (-3819 (((-112) $) 36)) (-3115 (((-112) $) 38)) (-1355 (((-112) $) 35)) (-1778 (((-1155) $) 10)) (-3068 (((-112) $) 32)) (-1369 ((|#3| $) 27)) (-3999 (((-1117) $) 11)) (-2250 (((-112) $) 31)) (-2823 ((|#4| $) 26)) (-1305 ((|#5| $) 25)) (-3359 (((-112) $ $) 39)) (-4369 (($ $ (-564)) 21) (($ $ (-642 (-564))) 20)) (-2332 (((-642 $) $) 30)) (-3003 (($ |#1|) 45) (($ |#2|) 44) (($ |#3|) 43) (($ |#4|) 42) (($ |#5|) 41) (($ (-642 $)) 40)) (-2390 (((-860) $) 12)) (-3924 (($ $) 23)) (-3915 (($ $) 24)) (-1600 (((-112) $ $) 9)) (-2805 (((-112) $) 37)) (-2821 (((-112) $ $) 6)) (-2158 (((-564) $) 22))) -(((-1100 |#1| |#2| |#3| |#4| |#5|) (-140) (-1097) (-1097) (-1097) (-1097) (-1097)) (T -1100)) -((-3359 (*1 *2 *1 *1) (-12 (-4 *1 (-1100 *3 *4 *5 *6 *7)) (-4 *3 (-1097)) (-4 *4 (-1097)) (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *7 (-1097)) (-5 *2 (-112)))) (-3115 (*1 *2 *1) (-12 (-4 *1 (-1100 *3 *4 *5 *6 *7)) (-4 *3 (-1097)) (-4 *4 (-1097)) (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *7 (-1097)) (-5 *2 (-112)))) (-2805 (*1 *2 *1) (-12 (-4 *1 (-1100 *3 *4 *5 *6 *7)) (-4 *3 (-1097)) (-4 *4 (-1097)) (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *7 (-1097)) (-5 *2 (-112)))) (-3819 (*1 *2 *1) (-12 (-4 *1 (-1100 *3 *4 *5 *6 *7)) (-4 *3 (-1097)) (-4 *4 (-1097)) (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *7 (-1097)) (-5 *2 (-112)))) (-1355 (*1 *2 *1) (-12 (-4 *1 (-1100 *3 *4 *5 *6 *7)) (-4 *3 (-1097)) (-4 *4 (-1097)) (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *7 (-1097)) (-5 *2 (-112)))) (-3049 (*1 *2 *1) (-12 (-4 *1 (-1100 *3 *4 *5 *6 *7)) (-4 *3 (-1097)) (-4 *4 (-1097)) (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *7 (-1097)) (-5 *2 (-112)))) (-2710 (*1 *2 *1) (-12 (-4 *1 (-1100 *3 *4 *5 *6 *7)) (-4 *3 (-1097)) (-4 *4 (-1097)) (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *7 (-1097)) (-5 *2 (-112)))) (-3068 (*1 *2 *1) (-12 (-4 *1 (-1100 *3 *4 *5 *6 *7)) (-4 *3 (-1097)) (-4 *4 (-1097)) (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *7 (-1097)) (-5 *2 (-112)))) (-2250 (*1 *2 *1) (-12 (-4 *1 (-1100 *3 *4 *5 *6 *7)) (-4 *3 (-1097)) (-4 *4 (-1097)) (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *7 (-1097)) (-5 *2 (-112)))) (-2332 (*1 *2 *1) (-12 (-4 *3 (-1097)) (-4 *4 (-1097)) (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *7 (-1097)) (-5 *2 (-642 *1)) (-4 *1 (-1100 *3 *4 *5 *6 *7)))) (-4301 (*1 *2 *1) (-12 (-4 *1 (-1100 *2 *3 *4 *5 *6)) (-4 *3 (-1097)) (-4 *4 (-1097)) (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *2 (-1097)))) (-1348 (*1 *2 *1) (-12 (-4 *1 (-1100 *3 *2 *4 *5 *6)) (-4 *3 (-1097)) (-4 *4 (-1097)) (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *2 (-1097)))) (-1369 (*1 *2 *1) (-12 (-4 *1 (-1100 *3 *4 *2 *5 *6)) (-4 *3 (-1097)) (-4 *4 (-1097)) (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *2 (-1097)))) (-2823 (*1 *2 *1) (-12 (-4 *1 (-1100 *3 *4 *5 *2 *6)) (-4 *3 (-1097)) (-4 *4 (-1097)) (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *2 (-1097)))) (-1305 (*1 *2 *1) (-12 (-4 *1 (-1100 *3 *4 *5 *6 *2)) (-4 *3 (-1097)) (-4 *4 (-1097)) (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *2 (-1097)))) (-3915 (*1 *1 *1) (-12 (-4 *1 (-1100 *2 *3 *4 *5 *6)) (-4 *2 (-1097)) (-4 *3 (-1097)) (-4 *4 (-1097)) (-4 *5 (-1097)) (-4 *6 (-1097)))) (-3924 (*1 *1 *1) (-12 (-4 *1 (-1100 *2 *3 *4 *5 *6)) (-4 *2 (-1097)) (-4 *3 (-1097)) (-4 *4 (-1097)) (-4 *5 (-1097)) (-4 *6 (-1097)))) (-2158 (*1 *2 *1) (-12 (-4 *1 (-1100 *3 *4 *5 *6 *7)) (-4 *3 (-1097)) (-4 *4 (-1097)) (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *7 (-1097)) (-5 *2 (-564)))) (-4369 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-1100 *3 *4 *5 *6 *7)) (-4 *3 (-1097)) (-4 *4 (-1097)) (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *7 (-1097)))) (-4369 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-564))) (-4 *1 (-1100 *3 *4 *5 *6 *7)) (-4 *3 (-1097)) (-4 *4 (-1097)) (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *7 (-1097))))) -(-13 (-1097) (-616 |t#1|) (-616 |t#2|) (-616 |t#3|) (-616 |t#4|) (-616 |t#4|) (-616 |t#5|) (-616 (-642 $)) (-10 -8 (-15 -3359 ((-112) $ $)) (-15 -3115 ((-112) $)) (-15 -2805 ((-112) $)) (-15 -3819 ((-112) $)) (-15 -1355 ((-112) $)) (-15 -3049 ((-112) $)) (-15 -2710 ((-112) $)) (-15 -3068 ((-112) $)) (-15 -2250 ((-112) $)) (-15 -2332 ((-642 $) $)) (-15 -4301 (|t#1| $)) (-15 -1348 (|t#2| $)) (-15 -1369 (|t#3| $)) (-15 -2823 (|t#4| $)) (-15 -1305 (|t#5| $)) (-15 -3915 ($ $)) (-15 -3924 ($ $)) (-15 -2158 ((-564) $)) (-15 -4369 ($ $ (-564))) (-15 -4369 ($ $ (-642 (-564)))))) -(((-102) . T) ((-611 (-860)) . T) ((-616 (-642 $)) . T) ((-616 |#1|) . T) ((-616 |#2|) . T) ((-616 |#3|) . T) ((-616 |#4|) . T) ((-616 |#5|) . T) ((-1097) . T)) -((-2856 (((-112) $ $) NIL)) (-2710 (((-112) $) NIL)) (-1348 (((-1173) $) NIL)) (-3049 (((-112) $) NIL)) (-4301 (((-1155) $) NIL)) (-3819 (((-112) $) NIL)) (-3115 (((-112) $) NIL)) (-1355 (((-112) $) NIL)) (-1778 (((-1155) $) NIL)) (-3068 (((-112) $) NIL)) (-1369 (((-564) $) NIL)) (-3999 (((-1117) $) NIL)) (-2250 (((-112) $) NIL)) (-2823 (((-225) $) NIL)) (-1305 (((-860) $) NIL)) (-3359 (((-112) $ $) NIL)) (-4369 (($ $ (-564)) NIL) (($ $ (-642 (-564))) NIL)) (-2332 (((-642 $) $) NIL)) (-3003 (($ (-1155)) NIL) (($ (-1173)) NIL) (($ (-564)) NIL) (($ (-225)) NIL) (($ (-860)) NIL) (($ (-642 $)) NIL)) (-2390 (((-860) $) NIL)) (-3924 (($ $) NIL)) (-3915 (($ $) NIL)) (-1600 (((-112) $ $) NIL)) (-2805 (((-112) $) NIL)) (-2821 (((-112) $ $) NIL)) (-2158 (((-564) $) NIL))) -(((-1101) (-1100 (-1155) (-1173) (-564) (-225) (-860))) (T -1101)) -NIL -(-1100 (-1155) (-1173) (-564) (-225) (-860)) -((-2856 (((-112) $ $) NIL)) (-2710 (((-112) $) 45)) (-1348 ((|#2| $) 48)) (-3049 (((-112) $) 20)) (-4301 ((|#1| $) 21)) (-3819 (((-112) $) 42)) (-3115 (((-112) $) 14)) (-1355 (((-112) $) 44)) (-1778 (((-1155) $) NIL)) (-3068 (((-112) $) 46)) (-1369 ((|#3| $) 50)) (-3999 (((-1117) $) NIL)) (-2250 (((-112) $) 47)) (-2823 ((|#4| $) 49)) (-1305 ((|#5| $) 51)) (-3359 (((-112) $ $) 41)) (-4369 (($ $ (-564)) 62) (($ $ (-642 (-564))) 64)) (-2332 (((-642 $) $) 27)) (-3003 (($ |#1|) 53) (($ |#2|) 54) (($ |#3|) 55) (($ |#4|) 56) (($ |#5|) 57) (($ (-642 $)) 52)) (-2390 (((-860) $) 28)) (-3924 (($ $) 26)) (-3915 (($ $) 58)) (-1600 (((-112) $ $) NIL)) (-2805 (((-112) $) 23)) (-2821 (((-112) $ $) 40)) (-2158 (((-564) $) 60))) -(((-1102 |#1| |#2| |#3| |#4| |#5|) (-1100 |#1| |#2| |#3| |#4| |#5|) (-1097) (-1097) (-1097) (-1097) (-1097)) (T -1102)) -NIL -(-1100 |#1| |#2| |#3| |#4| |#5|) -((-2056 (((-1267) $) 23)) (-4205 (($ (-1173) (-434) |#2|) 11)) (-2390 (((-860) $) 16))) -(((-1103 |#1| |#2|) (-13 (-395) (-10 -8 (-15 -4205 ($ (-1173) (-434) |#2|)))) (-1097) (-430 |#1|)) (T -1103)) -((-4205 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1173)) (-5 *3 (-434)) (-4 *5 (-1097)) (-5 *1 (-1103 *5 *4)) (-4 *4 (-430 *5))))) -(-13 (-395) (-10 -8 (-15 -4205 ($ (-1173) (-434) |#2|)))) -((-2578 (((-112) |#5| |#5|) 45)) (-4106 (((-112) |#5| |#5|) 60)) (-3291 (((-112) |#5| (-642 |#5|)) 83) (((-112) |#5| |#5|) 69)) (-2642 (((-112) (-642 |#4|) (-642 |#4|)) 66)) (-3046 (((-112) (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|)) (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))) 71)) (-1868 (((-1267)) 33)) (-2635 (((-1267) (-1155) (-1155) (-1155)) 29)) (-3363 (((-642 |#5|) (-642 |#5|)) 102)) (-2409 (((-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))) (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|)))) 94)) (-1953 (((-642 (-2 (|:| -3359 (-642 |#4|)) (|:| -2138 |#5|) (|:| |ineq| (-642 |#4|)))) (-642 |#4|) (-642 |#5|) (-112) (-112)) 124)) (-2559 (((-112) |#5| |#5|) 54)) (-4172 (((-3 (-112) "failed") |#5| |#5|) 79)) (-1688 (((-112) (-642 |#4|) (-642 |#4|)) 65)) (-3211 (((-112) (-642 |#4|) (-642 |#4|)) 67)) (-3119 (((-112) (-642 |#4|) (-642 |#4|)) 68)) (-3625 (((-3 (-2 (|:| -3359 (-642 |#4|)) (|:| -2138 |#5|) (|:| |ineq| (-642 |#4|))) "failed") (-642 |#4|) |#5| (-642 |#4|) (-112) (-112) (-112) (-112) (-112)) 119)) (-2543 (((-642 |#5|) (-642 |#5|)) 50))) -(((-1104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2635 ((-1267) (-1155) (-1155) (-1155))) (-15 -1868 ((-1267))) (-15 -2578 ((-112) |#5| |#5|)) (-15 -2543 ((-642 |#5|) (-642 |#5|))) (-15 -2559 ((-112) |#5| |#5|)) (-15 -4106 ((-112) |#5| |#5|)) (-15 -2642 ((-112) (-642 |#4|) (-642 |#4|))) (-15 -1688 ((-112) (-642 |#4|) (-642 |#4|))) (-15 -3211 ((-112) (-642 |#4|) (-642 |#4|))) (-15 -3119 ((-112) (-642 |#4|) (-642 |#4|))) (-15 -4172 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3291 ((-112) |#5| |#5|)) (-15 -3291 ((-112) |#5| (-642 |#5|))) (-15 -3363 ((-642 |#5|) (-642 |#5|))) (-15 -3046 ((-112) (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|)) (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|)))) (-15 -2409 ((-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))) (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))))) (-15 -1953 ((-642 (-2 (|:| -3359 (-642 |#4|)) (|:| -2138 |#5|) (|:| |ineq| (-642 |#4|)))) (-642 |#4|) (-642 |#5|) (-112) (-112))) (-15 -3625 ((-3 (-2 (|:| -3359 (-642 |#4|)) (|:| -2138 |#5|) (|:| |ineq| (-642 |#4|))) "failed") (-642 |#4|) |#5| (-642 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-452) (-791) (-848) (-1062 |#1| |#2| |#3|) (-1068 |#1| |#2| |#3| |#4|)) (T -1104)) -((-3625 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-791)) (-4 *8 (-848)) (-4 *9 (-1062 *6 *7 *8)) (-5 *2 (-2 (|:| -3359 (-642 *9)) (|:| -2138 *4) (|:| |ineq| (-642 *9)))) (-5 *1 (-1104 *6 *7 *8 *9 *4)) (-5 *3 (-642 *9)) (-4 *4 (-1068 *6 *7 *8 *9)))) (-1953 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-642 *10)) (-5 *5 (-112)) (-4 *10 (-1068 *6 *7 *8 *9)) (-4 *6 (-452)) (-4 *7 (-791)) (-4 *8 (-848)) (-4 *9 (-1062 *6 *7 *8)) (-5 *2 (-642 (-2 (|:| -3359 (-642 *9)) (|:| -2138 *10) (|:| |ineq| (-642 *9))))) (-5 *1 (-1104 *6 *7 *8 *9 *10)) (-5 *3 (-642 *9)))) (-2409 (*1 *2 *2) (-12 (-5 *2 (-642 (-2 (|:| |val| (-642 *6)) (|:| -2138 *7)))) (-4 *6 (-1062 *3 *4 *5)) (-4 *7 (-1068 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-1104 *3 *4 *5 *6 *7)))) (-3046 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-642 *7)) (|:| -2138 *8))) (-4 *7 (-1062 *4 *5 *6)) (-4 *8 (-1068 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112)) (-5 *1 (-1104 *4 *5 *6 *7 *8)))) (-3363 (*1 *2 *2) (-12 (-5 *2 (-642 *7)) (-4 *7 (-1068 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *1 (-1104 *3 *4 *5 *6 *7)))) (-3291 (*1 *2 *3 *4) (-12 (-5 *4 (-642 *3)) (-4 *3 (-1068 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *8 (-1062 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1104 *5 *6 *7 *8 *3)))) (-3291 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1104 *4 *5 *6 *7 *3)) (-4 *3 (-1068 *4 *5 *6 *7)))) (-4172 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1104 *4 *5 *6 *7 *3)) (-4 *3 (-1068 *4 *5 *6 *7)))) (-3119 (*1 *2 *3 *3) (-12 (-5 *3 (-642 *7)) (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112)) (-5 *1 (-1104 *4 *5 *6 *7 *8)) (-4 *8 (-1068 *4 *5 *6 *7)))) (-3211 (*1 *2 *3 *3) (-12 (-5 *3 (-642 *7)) (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112)) (-5 *1 (-1104 *4 *5 *6 *7 *8)) (-4 *8 (-1068 *4 *5 *6 *7)))) (-1688 (*1 *2 *3 *3) (-12 (-5 *3 (-642 *7)) (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112)) (-5 *1 (-1104 *4 *5 *6 *7 *8)) (-4 *8 (-1068 *4 *5 *6 *7)))) (-2642 (*1 *2 *3 *3) (-12 (-5 *3 (-642 *7)) (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112)) (-5 *1 (-1104 *4 *5 *6 *7 *8)) (-4 *8 (-1068 *4 *5 *6 *7)))) (-4106 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1104 *4 *5 *6 *7 *3)) (-4 *3 (-1068 *4 *5 *6 *7)))) (-2559 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1104 *4 *5 *6 *7 *3)) (-4 *3 (-1068 *4 *5 *6 *7)))) (-2543 (*1 *2 *2) (-12 (-5 *2 (-642 *7)) (-4 *7 (-1068 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *1 (-1104 *3 *4 *5 *6 *7)))) (-2578 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1104 *4 *5 *6 *7 *3)) (-4 *3 (-1068 *4 *5 *6 *7)))) (-1868 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-1267)) (-5 *1 (-1104 *3 *4 *5 *6 *7)) (-4 *7 (-1068 *3 *4 *5 *6)))) (-2635 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1155)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-1267)) (-5 *1 (-1104 *4 *5 *6 *7 *8)) (-4 *8 (-1068 *4 *5 *6 *7))))) -(-10 -7 (-15 -2635 ((-1267) (-1155) (-1155) (-1155))) (-15 -1868 ((-1267))) (-15 -2578 ((-112) |#5| |#5|)) (-15 -2543 ((-642 |#5|) (-642 |#5|))) (-15 -2559 ((-112) |#5| |#5|)) (-15 -4106 ((-112) |#5| |#5|)) (-15 -2642 ((-112) (-642 |#4|) (-642 |#4|))) (-15 -1688 ((-112) (-642 |#4|) (-642 |#4|))) (-15 -3211 ((-112) (-642 |#4|) (-642 |#4|))) (-15 -3119 ((-112) (-642 |#4|) (-642 |#4|))) (-15 -4172 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3291 ((-112) |#5| |#5|)) (-15 -3291 ((-112) |#5| (-642 |#5|))) (-15 -3363 ((-642 |#5|) (-642 |#5|))) (-15 -3046 ((-112) (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|)) (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|)))) (-15 -2409 ((-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))) (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))))) (-15 -1953 ((-642 (-2 (|:| -3359 (-642 |#4|)) (|:| -2138 |#5|) (|:| |ineq| (-642 |#4|)))) (-642 |#4|) (-642 |#5|) (-112) (-112))) (-15 -3625 ((-3 (-2 (|:| -3359 (-642 |#4|)) (|:| -2138 |#5|) (|:| |ineq| (-642 |#4|))) "failed") (-642 |#4|) |#5| (-642 |#4|) (-112) (-112) (-112) (-112) (-112)))) -((-2779 (((-642 (-2 (|:| |val| |#4|) (|:| -2138 |#5|))) |#4| |#5|) 109)) (-2212 (((-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))) |#4| |#4| |#5|) 81)) (-1813 (((-642 (-2 (|:| |val| |#4|) (|:| -2138 |#5|))) |#4| |#4| |#5|) 103)) (-3722 (((-642 |#5|) |#4| |#5|) 125)) (-4061 (((-642 |#5|) |#4| |#5|) 132)) (-3039 (((-642 |#5|) |#4| |#5|) 133)) (-1944 (((-642 (-2 (|:| |val| (-112)) (|:| -2138 |#5|))) |#4| |#5|) 110)) (-1489 (((-642 (-2 (|:| |val| (-112)) (|:| -2138 |#5|))) |#4| |#5|) 131)) (-4201 (((-642 (-2 (|:| |val| (-112)) (|:| -2138 |#5|))) |#4| |#5|) 48) (((-112) |#4| |#5|) 56)) (-3417 (((-642 (-2 (|:| |val| |#4|) (|:| -2138 |#5|))) (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))) |#3| (-112)) 93) (((-642 (-2 (|:| |val| |#4|) (|:| -2138 |#5|))) |#4| |#4| |#5| (-112) (-112)) 53)) (-2739 (((-642 (-2 (|:| |val| |#4|) (|:| -2138 |#5|))) |#4| |#4| |#5|) 88)) (-1533 (((-1267)) 37)) (-2226 (((-1267)) 26)) (-4360 (((-1267) (-1155) (-1155) (-1155)) 33)) (-2616 (((-1267) (-1155) (-1155) (-1155)) 22))) -(((-1105 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2616 ((-1267) (-1155) (-1155) (-1155))) (-15 -2226 ((-1267))) (-15 -4360 ((-1267) (-1155) (-1155) (-1155))) (-15 -1533 ((-1267))) (-15 -2212 ((-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))) |#4| |#4| |#5|)) (-15 -3417 ((-642 (-2 (|:| |val| |#4|) (|:| -2138 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3417 ((-642 (-2 (|:| |val| |#4|) (|:| -2138 |#5|))) (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))) |#3| (-112))) (-15 -2739 ((-642 (-2 (|:| |val| |#4|) (|:| -2138 |#5|))) |#4| |#4| |#5|)) (-15 -1813 ((-642 (-2 (|:| |val| |#4|) (|:| -2138 |#5|))) |#4| |#4| |#5|)) (-15 -4201 ((-112) |#4| |#5|)) (-15 -1944 ((-642 (-2 (|:| |val| (-112)) (|:| -2138 |#5|))) |#4| |#5|)) (-15 -3722 ((-642 |#5|) |#4| |#5|)) (-15 -1489 ((-642 (-2 (|:| |val| (-112)) (|:| -2138 |#5|))) |#4| |#5|)) (-15 -4061 ((-642 |#5|) |#4| |#5|)) (-15 -4201 ((-642 (-2 (|:| |val| (-112)) (|:| -2138 |#5|))) |#4| |#5|)) (-15 -3039 ((-642 |#5|) |#4| |#5|)) (-15 -2779 ((-642 (-2 (|:| |val| |#4|) (|:| -2138 |#5|))) |#4| |#5|))) (-452) (-791) (-848) (-1062 |#1| |#2| |#3|) (-1068 |#1| |#2| |#3| |#4|)) (T -1105)) -((-2779 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-642 (-2 (|:| |val| *3) (|:| -2138 *4)))) (-5 *1 (-1105 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))) (-3039 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-642 *4)) (-5 *1 (-1105 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))) (-4201 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-642 (-2 (|:| |val| (-112)) (|:| -2138 *4)))) (-5 *1 (-1105 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))) (-4061 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-642 *4)) (-5 *1 (-1105 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))) (-1489 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-642 (-2 (|:| |val| (-112)) (|:| -2138 *4)))) (-5 *1 (-1105 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))) (-3722 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-642 *4)) (-5 *1 (-1105 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))) (-1944 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-642 (-2 (|:| |val| (-112)) (|:| -2138 *4)))) (-5 *1 (-1105 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))) (-4201 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1105 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))) (-1813 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-642 (-2 (|:| |val| *3) (|:| -2138 *4)))) (-5 *1 (-1105 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))) (-2739 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-642 (-2 (|:| |val| *3) (|:| -2138 *4)))) (-5 *1 (-1105 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))) (-3417 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-642 (-2 (|:| |val| (-642 *8)) (|:| -2138 *9)))) (-5 *5 (-112)) (-4 *8 (-1062 *6 *7 *4)) (-4 *9 (-1068 *6 *7 *4 *8)) (-4 *6 (-452)) (-4 *7 (-791)) (-4 *4 (-848)) (-5 *2 (-642 (-2 (|:| |val| *8) (|:| -2138 *9)))) (-5 *1 (-1105 *6 *7 *4 *8 *9)))) (-3417 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-791)) (-4 *8 (-848)) (-4 *3 (-1062 *6 *7 *8)) (-5 *2 (-642 (-2 (|:| |val| *3) (|:| -2138 *4)))) (-5 *1 (-1105 *6 *7 *8 *3 *4)) (-4 *4 (-1068 *6 *7 *8 *3)))) (-2212 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-642 (-2 (|:| |val| (-642 *3)) (|:| -2138 *4)))) (-5 *1 (-1105 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))) (-1533 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-1267)) (-5 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *7 (-1068 *3 *4 *5 *6)))) (-4360 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1155)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-1267)) (-5 *1 (-1105 *4 *5 *6 *7 *8)) (-4 *8 (-1068 *4 *5 *6 *7)))) (-2226 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-1267)) (-5 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *7 (-1068 *3 *4 *5 *6)))) (-2616 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1155)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-1267)) (-5 *1 (-1105 *4 *5 *6 *7 *8)) (-4 *8 (-1068 *4 *5 *6 *7))))) -(-10 -7 (-15 -2616 ((-1267) (-1155) (-1155) (-1155))) (-15 -2226 ((-1267))) (-15 -4360 ((-1267) (-1155) (-1155) (-1155))) (-15 -1533 ((-1267))) (-15 -2212 ((-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))) |#4| |#4| |#5|)) (-15 -3417 ((-642 (-2 (|:| |val| |#4|) (|:| -2138 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3417 ((-642 (-2 (|:| |val| |#4|) (|:| -2138 |#5|))) (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))) |#3| (-112))) (-15 -2739 ((-642 (-2 (|:| |val| |#4|) (|:| -2138 |#5|))) |#4| |#4| |#5|)) (-15 -1813 ((-642 (-2 (|:| |val| |#4|) (|:| -2138 |#5|))) |#4| |#4| |#5|)) (-15 -4201 ((-112) |#4| |#5|)) (-15 -1944 ((-642 (-2 (|:| |val| (-112)) (|:| -2138 |#5|))) |#4| |#5|)) (-15 -3722 ((-642 |#5|) |#4| |#5|)) (-15 -1489 ((-642 (-2 (|:| |val| (-112)) (|:| -2138 |#5|))) |#4| |#5|)) (-15 -4061 ((-642 |#5|) |#4| |#5|)) (-15 -4201 ((-642 (-2 (|:| |val| (-112)) (|:| -2138 |#5|))) |#4| |#5|)) (-15 -3039 ((-642 |#5|) |#4| |#5|)) (-15 -2779 ((-642 (-2 (|:| |val| |#4|) (|:| -2138 |#5|))) |#4| |#5|))) -((-2856 (((-112) $ $) 7)) (-1466 (((-642 (-2 (|:| -1616 $) (|:| -3406 (-642 |#4|)))) (-642 |#4|)) 86)) (-3076 (((-642 $) (-642 |#4|)) 87) (((-642 $) (-642 |#4|) (-112)) 112)) (-2397 (((-642 |#3|) $) 34)) (-3646 (((-112) $) 27)) (-4074 (((-112) $) 18 (|has| |#1| (-556)))) (-4334 (((-112) |#4| $) 102) (((-112) $) 98)) (-2937 ((|#4| |#4| $) 93)) (-1993 (((-642 (-2 (|:| |val| |#4|) (|:| -2138 $))) |#4| $) 127)) (-3191 (((-2 (|:| |under| $) (|:| -2795 $) (|:| |upper| $)) $ |#3|) 28)) (-3442 (((-112) $ (-769)) 45)) (-3437 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4410))) (((-3 |#4| "failed") $ |#3|) 80)) (-2822 (($) 46 T CONST)) (-3013 (((-112) $) 23 (|has| |#1| (-556)))) (-3936 (((-112) $ $) 25 (|has| |#1| (-556)))) (-2133 (((-112) $ $) 24 (|has| |#1| (-556)))) (-2967 (((-112) $) 26 (|has| |#1| (-556)))) (-3720 (((-642 |#4|) (-642 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2632 (((-642 |#4|) (-642 |#4|) $) 19 (|has| |#1| (-556)))) (-1419 (((-642 |#4|) (-642 |#4|) $) 20 (|has| |#1| (-556)))) (-2849 (((-3 $ "failed") (-642 |#4|)) 37)) (-1687 (($ (-642 |#4|)) 36)) (-4050 (((-3 $ "failed") $) 83)) (-2398 ((|#4| |#4| $) 90)) (-4067 (($ $) 69 (-12 (|has| |#4| (-1097)) (|has| $ (-6 -4410))))) (-2517 (($ |#4| $) 68 (-12 (|has| |#4| (-1097)) (|has| $ (-6 -4410)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4410)))) (-1992 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-556)))) (-3762 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3978 ((|#4| |#4| $) 88)) (-3741 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1097)) (|has| $ (-6 -4410)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4410))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4410))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1750 (((-2 (|:| -1616 (-642 |#4|)) (|:| -3406 (-642 |#4|))) $) 106)) (-2104 (((-112) |#4| $) 137)) (-4141 (((-112) |#4| $) 134)) (-3188 (((-112) |#4| $) 138) (((-112) $) 135)) (-2018 (((-642 |#4|) $) 53 (|has| $ (-6 -4410)))) (-3303 (((-112) |#4| $) 105) (((-112) $) 104)) (-1715 ((|#3| $) 35)) (-3769 (((-112) $ (-769)) 44)) (-3541 (((-642 |#4|) $) 54 (|has| $ (-6 -4410)))) (-2533 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1097)) (|has| $ (-6 -4410))))) (-1857 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#4| |#4|) $) 48)) (-1896 (((-642 |#3|) $) 33)) (-3935 (((-112) |#3| $) 32)) (-4145 (((-112) $ (-769)) 43)) (-1778 (((-1155) $) 10)) (-3843 (((-3 |#4| (-642 $)) |#4| |#4| $) 129)) (-2224 (((-642 (-2 (|:| |val| |#4|) (|:| -2138 $))) |#4| |#4| $) 128)) (-2534 (((-3 |#4| "failed") $) 84)) (-2163 (((-642 $) |#4| $) 130)) (-2328 (((-3 (-112) (-642 $)) |#4| $) 133)) (-4023 (((-642 (-2 (|:| |val| (-112)) (|:| -2138 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-2338 (((-642 $) |#4| $) 126) (((-642 $) (-642 |#4|) $) 125) (((-642 $) (-642 |#4|) (-642 $)) 124) (((-642 $) |#4| (-642 $)) 123)) (-2415 (($ |#4| $) 118) (($ (-642 |#4|) $) 117)) (-2206 (((-642 |#4|) $) 108)) (-3673 (((-112) |#4| $) 100) (((-112) $) 96)) (-4090 ((|#4| |#4| $) 91)) (-3119 (((-112) $ $) 111)) (-1699 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-556)))) (-4354 (((-112) |#4| $) 101) (((-112) $) 97)) (-3750 ((|#4| |#4| $) 92)) (-3999 (((-1117) $) 11)) (-4036 (((-3 |#4| "failed") $) 85)) (-3183 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2465 (((-3 $ "failed") $ |#4|) 79)) (-2137 (($ $ |#4|) 78) (((-642 $) |#4| $) 116) (((-642 $) |#4| (-642 $)) 115) (((-642 $) (-642 |#4|) $) 114) (((-642 $) (-642 |#4|) (-642 $)) 113)) (-4094 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 |#4|) (-642 |#4|)) 60 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ (-294 |#4|)) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ (-642 (-294 |#4|))) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097))))) (-2478 (((-112) $ $) 39)) (-4109 (((-112) $) 42)) (-2179 (($) 41)) (-3252 (((-769) $) 107)) (-4010 (((-769) |#4| $) 55 (-12 (|has| |#4| (-1097)) (|has| $ (-6 -4410)))) (((-769) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4410)))) (-3865 (($ $) 40)) (-3003 (((-536) $) 70 (|has| |#4| (-612 (-536))))) (-2401 (($ (-642 |#4|)) 61)) (-2942 (($ $ |#3|) 29)) (-1710 (($ $ |#3|) 31)) (-2204 (($ $) 89)) (-4283 (($ $ |#3|) 30)) (-2390 (((-860) $) 12) (((-642 |#4|) $) 38)) (-2621 (((-769) $) 77 (|has| |#3| (-368)))) (-1600 (((-112) $ $) 9)) (-4150 (((-3 (-2 (|:| |bas| $) (|:| -3844 (-642 |#4|))) "failed") (-642 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3844 (-642 |#4|))) "failed") (-642 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2205 (((-112) $ (-1 (-112) |#4| (-642 |#4|))) 99)) (-3204 (((-642 $) |#4| $) 122) (((-642 $) |#4| (-642 $)) 121) (((-642 $) (-642 |#4|) $) 120) (((-642 $) (-642 |#4|) (-642 $)) 119)) (-3295 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4410)))) (-1644 (((-642 |#3|) $) 82)) (-1837 (((-112) |#4| $) 136)) (-4127 (((-112) |#3| $) 81)) (-2821 (((-112) $ $) 6)) (-2158 (((-769) $) 47 (|has| $ (-6 -4410))))) -(((-1106 |#1| |#2| |#3| |#4|) (-140) (-452) (-791) (-848) (-1062 |t#1| |t#2| |t#3|)) (T -1106)) -NIL -(-13 (-1068 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-102) . T) ((-611 (-642 |#4|)) . T) ((-611 (-860)) . T) ((-151 |#4|) . T) ((-612 (-536)) |has| |#4| (-612 (-536))) ((-309 |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097))) ((-489 |#4|) . T) ((-514 |#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097))) ((-974 |#1| |#2| |#3| |#4|) . T) ((-1068 |#1| |#2| |#3| |#4|) . T) ((-1097) . T) ((-1205 |#1| |#2| |#3| |#4|) . T) ((-1212) . T)) -((-3111 (((-642 (-564)) (-564) (-564) (-564)) 39)) (-3485 (((-642 (-564)) (-564) (-564) (-564)) 29)) (-2603 (((-642 (-564)) (-564) (-564) (-564)) 34)) (-1711 (((-564) (-564) (-564)) 23)) (-3503 (((-1262 (-564)) (-642 (-564)) (-1262 (-564)) (-564)) 75) (((-1262 (-564)) (-1262 (-564)) (-1262 (-564)) (-564)) 70)) (-3130 (((-642 (-564)) (-642 (-564)) (-642 (-564)) (-112)) 52)) (-1342 (((-687 (-564)) (-642 (-564)) (-642 (-564)) (-687 (-564))) 74)) (-2492 (((-687 (-564)) (-642 (-564)) (-642 (-564))) 58)) (-2714 (((-642 (-687 (-564))) (-642 (-564))) 63)) (-2770 (((-642 (-564)) (-642 (-564)) (-642 (-564)) (-687 (-564))) 78)) (-3995 (((-687 (-564)) (-642 (-564)) (-642 (-564)) (-642 (-564))) 88))) -(((-1107) (-10 -7 (-15 -3995 ((-687 (-564)) (-642 (-564)) (-642 (-564)) (-642 (-564)))) (-15 -2770 ((-642 (-564)) (-642 (-564)) (-642 (-564)) (-687 (-564)))) (-15 -2714 ((-642 (-687 (-564))) (-642 (-564)))) (-15 -2492 ((-687 (-564)) (-642 (-564)) (-642 (-564)))) (-15 -1342 ((-687 (-564)) (-642 (-564)) (-642 (-564)) (-687 (-564)))) (-15 -3130 ((-642 (-564)) (-642 (-564)) (-642 (-564)) (-112))) (-15 -3503 ((-1262 (-564)) (-1262 (-564)) (-1262 (-564)) (-564))) (-15 -3503 ((-1262 (-564)) (-642 (-564)) (-1262 (-564)) (-564))) (-15 -1711 ((-564) (-564) (-564))) (-15 -2603 ((-642 (-564)) (-564) (-564) (-564))) (-15 -3485 ((-642 (-564)) (-564) (-564) (-564))) (-15 -3111 ((-642 (-564)) (-564) (-564) (-564))))) (T -1107)) -((-3111 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-642 (-564))) (-5 *1 (-1107)) (-5 *3 (-564)))) (-3485 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-642 (-564))) (-5 *1 (-1107)) (-5 *3 (-564)))) (-2603 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-642 (-564))) (-5 *1 (-1107)) (-5 *3 (-564)))) (-1711 (*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1107)))) (-3503 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1262 (-564))) (-5 *3 (-642 (-564))) (-5 *4 (-564)) (-5 *1 (-1107)))) (-3503 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1262 (-564))) (-5 *3 (-564)) (-5 *1 (-1107)))) (-3130 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-642 (-564))) (-5 *3 (-112)) (-5 *1 (-1107)))) (-1342 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-687 (-564))) (-5 *3 (-642 (-564))) (-5 *1 (-1107)))) (-2492 (*1 *2 *3 *3) (-12 (-5 *3 (-642 (-564))) (-5 *2 (-687 (-564))) (-5 *1 (-1107)))) (-2714 (*1 *2 *3) (-12 (-5 *3 (-642 (-564))) (-5 *2 (-642 (-687 (-564)))) (-5 *1 (-1107)))) (-2770 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-642 (-564))) (-5 *3 (-687 (-564))) (-5 *1 (-1107)))) (-3995 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-642 (-564))) (-5 *2 (-687 (-564))) (-5 *1 (-1107))))) -(-10 -7 (-15 -3995 ((-687 (-564)) (-642 (-564)) (-642 (-564)) (-642 (-564)))) (-15 -2770 ((-642 (-564)) (-642 (-564)) (-642 (-564)) (-687 (-564)))) (-15 -2714 ((-642 (-687 (-564))) (-642 (-564)))) (-15 -2492 ((-687 (-564)) (-642 (-564)) (-642 (-564)))) (-15 -1342 ((-687 (-564)) (-642 (-564)) (-642 (-564)) (-687 (-564)))) (-15 -3130 ((-642 (-564)) (-642 (-564)) (-642 (-564)) (-112))) (-15 -3503 ((-1262 (-564)) (-1262 (-564)) (-1262 (-564)) (-564))) (-15 -3503 ((-1262 (-564)) (-642 (-564)) (-1262 (-564)) (-564))) (-15 -1711 ((-564) (-564) (-564))) (-15 -2603 ((-642 (-564)) (-564) (-564) (-564))) (-15 -3485 ((-642 (-564)) (-564) (-564) (-564))) (-15 -3111 ((-642 (-564)) (-564) (-564) (-564)))) -((** (($ $ (-919)) 10))) -(((-1108 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-919)))) (-1109)) (T -1108)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-919)))) -((-2856 (((-112) $ $) 7)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2390 (((-860) $) 12)) (-1600 (((-112) $ $) 9)) (-2821 (((-112) $ $) 6)) (** (($ $ (-919)) 14)) (* (($ $ $) 15))) -(((-1109) (-140)) (T -1109)) -((* (*1 *1 *1 *1) (-4 *1 (-1109))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1109)) (-5 *2 (-919))))) -(-13 (-1097) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-919))))) -(((-102) . T) ((-611 (-860)) . T) ((-1097) . T)) -((-2856 (((-112) $ $) NIL (|has| |#3| (-1097)))) (-2950 (((-112) $) NIL (|has| |#3| (-131)))) (-2072 (($ (-919)) NIL (|has| |#3| (-1047)))) (-3633 (((-1267) $ (-564) (-564)) NIL (|has| $ (-6 -4411)))) (-2247 (($ $ $) NIL (|has| |#3| (-791)))) (-3085 (((-3 $ "failed") $ $) NIL (|has| |#3| (-131)))) (-3442 (((-112) $ (-769)) NIL)) (-4003 (((-769)) NIL (|has| |#3| (-368)))) (-2221 (((-564) $) NIL (|has| |#3| (-846)))) (-3841 ((|#3| $ (-564) |#3|) NIL (|has| $ (-6 -4411)))) (-2822 (($) NIL T CONST)) (-2849 (((-3 (-564) "failed") $) NIL (-12 (|has| |#3| (-1036 (-564))) (|has| |#3| (-1097)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| |#3| (-1036 (-407 (-564)))) (|has| |#3| (-1097)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1097)))) (-1687 (((-564) $) NIL (-12 (|has| |#3| (-1036 (-564))) (|has| |#3| (-1097)))) (((-407 (-564)) $) NIL (-12 (|has| |#3| (-1036 (-407 (-564)))) (|has| |#3| (-1097)))) ((|#3| $) NIL (|has| |#3| (-1097)))) (-3330 (((-687 (-564)) (-687 $)) NIL (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1047)))) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1047)))) (((-2 (|:| -3544 (-687 |#3|)) (|:| |vec| (-1262 |#3|))) (-687 $) (-1262 $)) NIL (|has| |#3| (-1047))) (((-687 |#3|) (-687 $)) NIL (|has| |#3| (-1047)))) (-2675 (((-3 $ "failed") $) NIL (|has| |#3| (-724)))) (-3235 (($) NIL (|has| |#3| (-368)))) (-3105 ((|#3| $ (-564) |#3|) NIL (|has| $ (-6 -4411)))) (-1804 ((|#3| $ (-564)) 12)) (-3292 (((-112) $) NIL (|has| |#3| (-846)))) (-2018 (((-642 |#3|) $) NIL (|has| $ (-6 -4410)))) (-3163 (((-112) $) NIL (|has| |#3| (-724)))) (-2666 (((-112) $) NIL (|has| |#3| (-846)))) (-3769 (((-112) $ (-769)) NIL)) (-1802 (((-564) $) NIL (|has| (-564) (-848)))) (-3225 (($ $ $) NIL (-2682 (|has| |#3| (-791)) (|has| |#3| (-846))))) (-3541 (((-642 |#3|) $) NIL (|has| $ (-6 -4410)))) (-2533 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#3| (-1097))))) (-3624 (((-564) $) NIL (|has| (-564) (-848)))) (-2903 (($ $ $) NIL (-2682 (|has| |#3| (-791)) (|has| |#3| (-846))))) (-1857 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#3| |#3|) $) NIL)) (-2535 (((-919) $) NIL (|has| |#3| (-368)))) (-4145 (((-112) $ (-769)) NIL)) (-1778 (((-1155) $) NIL (|has| |#3| (-1097)))) (-4107 (((-642 (-564)) $) NIL)) (-4207 (((-112) (-564) $) NIL)) (-2065 (($ (-919)) NIL (|has| |#3| (-368)))) (-3999 (((-1117) $) NIL (|has| |#3| (-1097)))) (-4036 ((|#3| $) NIL (|has| (-564) (-848)))) (-3826 (($ $ |#3|) NIL (|has| $ (-6 -4411)))) (-4094 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#3|))) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1097)))) (($ $ (-294 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1097)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1097)))) (($ $ (-642 |#3|) (-642 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1097))))) (-2478 (((-112) $ $) NIL)) (-1643 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#3| (-1097))))) (-3522 (((-642 |#3|) $) NIL)) (-4109 (((-112) $) NIL)) (-2179 (($) NIL)) (-4369 ((|#3| $ (-564) |#3|) NIL) ((|#3| $ (-564)) NIL)) (-1976 ((|#3| $ $) NIL (|has| |#3| (-1047)))) (-2299 (($ (-1262 |#3|)) NIL)) (-3677 (((-134)) NIL (|has| |#3| (-363)))) (-2199 (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1047)))) (($ $ (-769)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1047)))) (($ $ (-1173)) NIL (-12 (|has| |#3| (-898 (-1173))) (|has| |#3| (-1047)))) (($ $ (-642 (-1173))) NIL (-12 (|has| |#3| (-898 (-1173))) (|has| |#3| (-1047)))) (($ $ (-1173) (-769)) NIL (-12 (|has| |#3| (-898 (-1173))) (|has| |#3| (-1047)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| |#3| (-898 (-1173))) (|has| |#3| (-1047)))) (($ $ (-1 |#3| |#3|) (-769)) NIL (|has| |#3| (-1047))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1047)))) (-4010 (((-769) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4410))) (((-769) |#3| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#3| (-1097))))) (-3865 (($ $) NIL)) (-2390 (((-1262 |#3|) $) NIL) (($ (-564)) NIL (-2682 (-12 (|has| |#3| (-1036 (-564))) (|has| |#3| (-1097))) (|has| |#3| (-1047)))) (($ (-407 (-564))) NIL (-12 (|has| |#3| (-1036 (-407 (-564)))) (|has| |#3| (-1097)))) (($ |#3|) NIL (|has| |#3| (-1097))) (((-860) $) NIL (|has| |#3| (-611 (-860))))) (-3348 (((-769)) NIL (|has| |#3| (-1047)) CONST)) (-1600 (((-112) $ $) NIL (|has| |#3| (-1097)))) (-3295 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4410)))) (-1630 (($ $) NIL (|has| |#3| (-846)))) (-2361 (($) NIL (|has| |#3| (-131)) CONST)) (-2371 (($) NIL (|has| |#3| (-724)) CONST)) (-2711 (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1047)))) (($ $ (-769)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1047)))) (($ $ (-1173)) NIL (-12 (|has| |#3| (-898 (-1173))) (|has| |#3| (-1047)))) (($ $ (-642 (-1173))) NIL (-12 (|has| |#3| (-898 (-1173))) (|has| |#3| (-1047)))) (($ $ (-1173) (-769)) NIL (-12 (|has| |#3| (-898 (-1173))) (|has| |#3| (-1047)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| |#3| (-898 (-1173))) (|has| |#3| (-1047)))) (($ $ (-1 |#3| |#3|) (-769)) NIL (|has| |#3| (-1047))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1047)))) (-2881 (((-112) $ $) NIL (-2682 (|has| |#3| (-791)) (|has| |#3| (-846))))) (-2857 (((-112) $ $) NIL (-2682 (|has| |#3| (-791)) (|has| |#3| (-846))))) (-2821 (((-112) $ $) NIL (|has| |#3| (-1097)))) (-2868 (((-112) $ $) NIL (-2682 (|has| |#3| (-791)) (|has| |#3| (-846))))) (-2844 (((-112) $ $) 24 (-2682 (|has| |#3| (-791)) (|has| |#3| (-846))))) (-2943 (($ $ |#3|) NIL (|has| |#3| (-363)))) (-2930 (($ $ $) NIL (|has| |#3| (-1047))) (($ $) NIL (|has| |#3| (-1047)))) (-2917 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-769)) NIL (|has| |#3| (-724))) (($ $ (-919)) NIL (|has| |#3| (-724)))) (* (($ (-564) $) NIL (|has| |#3| (-1047))) (($ $ $) NIL (|has| |#3| (-724))) (($ $ |#3|) NIL (|has| |#3| (-724))) (($ |#3| $) NIL (|has| |#3| (-724))) (($ (-769) $) NIL (|has| |#3| (-131))) (($ (-919) $) NIL (|has| |#3| (-25)))) (-2158 (((-769) $) NIL (|has| $ (-6 -4410))))) -(((-1110 |#1| |#2| |#3|) (-238 |#1| |#3|) (-769) (-769) (-791)) (T -1110)) +(((-93) . T) ((-102) . T) ((-616 #0=(-1180)) . T) ((-613 (-862)) . T) ((-613 #0#) . T) ((-492 #0#) . T) ((-1099) . T)) +((-1614 ((|#1| |#1| (-1 (-566) |#1| |#1|)) 43) ((|#1| |#1| (-1 (-112) |#1|)) 34)) (-4288 (((-1269)) 22)) (-2553 (((-644 |#1|)) 13))) +(((-1083 |#1|) (-10 -7 (-15 -4288 ((-1269))) (-15 -2553 ((-644 |#1|))) (-15 -1614 (|#1| |#1| (-1 (-112) |#1|))) (-15 -1614 (|#1| |#1| (-1 (-566) |#1| |#1|)))) (-132)) (T -1083)) +((-1614 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-566) *2 *2)) (-4 *2 (-132)) (-5 *1 (-1083 *2)))) (-1614 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-132)) (-5 *1 (-1083 *2)))) (-2553 (*1 *2) (-12 (-5 *2 (-644 *3)) (-5 *1 (-1083 *3)) (-4 *3 (-132)))) (-4288 (*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-1083 *3)) (-4 *3 (-132))))) +(-10 -7 (-15 -4288 ((-1269))) (-15 -2553 ((-644 |#1|))) (-15 -1614 (|#1| |#1| (-1 (-112) |#1|))) (-15 -1614 (|#1| |#1| (-1 (-566) |#1| |#1|)))) +((-2562 (($ (-109) $) 20)) (-2044 (((-691 (-109)) (-508) $) 19)) (-1737 (($) 7)) (-4117 (($) 21)) (-1366 (($) 22)) (-3726 (((-644 (-175)) $) 10)) (-2479 (((-862) $) 25))) +(((-1084) (-13 (-613 (-862)) (-10 -8 (-15 -1737 ($)) (-15 -3726 ((-644 (-175)) $)) (-15 -2044 ((-691 (-109)) (-508) $)) (-15 -2562 ($ (-109) $)) (-15 -4117 ($)) (-15 -1366 ($))))) (T -1084)) +((-1737 (*1 *1) (-5 *1 (-1084))) (-3726 (*1 *2 *1) (-12 (-5 *2 (-644 (-175))) (-5 *1 (-1084)))) (-2044 (*1 *2 *3 *1) (-12 (-5 *3 (-508)) (-5 *2 (-691 (-109))) (-5 *1 (-1084)))) (-2562 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1084)))) (-4117 (*1 *1) (-5 *1 (-1084))) (-1366 (*1 *1) (-5 *1 (-1084)))) +(-13 (-613 (-862)) (-10 -8 (-15 -1737 ($)) (-15 -3726 ((-644 (-175)) $)) (-15 -2044 ((-691 (-109)) (-508) $)) (-15 -2562 ($ (-109) $)) (-15 -4117 ($)) (-15 -1366 ($)))) +((-2603 (((-1264 (-689 |#1|)) (-644 (-689 |#1|))) 47) (((-1264 (-689 (-952 |#1|))) (-644 (-1175)) (-689 (-952 |#1|))) 75) (((-1264 (-689 (-409 (-952 |#1|)))) (-644 (-1175)) (-689 (-409 (-952 |#1|)))) 92)) (-3747 (((-1264 |#1|) (-689 |#1|) (-644 (-689 |#1|))) 41))) +(((-1085 |#1|) (-10 -7 (-15 -2603 ((-1264 (-689 (-409 (-952 |#1|)))) (-644 (-1175)) (-689 (-409 (-952 |#1|))))) (-15 -2603 ((-1264 (-689 (-952 |#1|))) (-644 (-1175)) (-689 (-952 |#1|)))) (-15 -2603 ((-1264 (-689 |#1|)) (-644 (-689 |#1|)))) (-15 -3747 ((-1264 |#1|) (-689 |#1|) (-644 (-689 |#1|))))) (-365)) (T -1085)) +((-3747 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-689 *5))) (-5 *3 (-689 *5)) (-4 *5 (-365)) (-5 *2 (-1264 *5)) (-5 *1 (-1085 *5)))) (-2603 (*1 *2 *3) (-12 (-5 *3 (-644 (-689 *4))) (-4 *4 (-365)) (-5 *2 (-1264 (-689 *4))) (-5 *1 (-1085 *4)))) (-2603 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-1175))) (-4 *5 (-365)) (-5 *2 (-1264 (-689 (-952 *5)))) (-5 *1 (-1085 *5)) (-5 *4 (-689 (-952 *5))))) (-2603 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-1175))) (-4 *5 (-365)) (-5 *2 (-1264 (-689 (-409 (-952 *5))))) (-5 *1 (-1085 *5)) (-5 *4 (-689 (-409 (-952 *5))))))) +(-10 -7 (-15 -2603 ((-1264 (-689 (-409 (-952 |#1|)))) (-644 (-1175)) (-689 (-409 (-952 |#1|))))) (-15 -2603 ((-1264 (-689 (-952 |#1|))) (-644 (-1175)) (-689 (-952 |#1|)))) (-15 -2603 ((-1264 (-689 |#1|)) (-644 (-689 |#1|)))) (-15 -3747 ((-1264 |#1|) (-689 |#1|) (-644 (-689 |#1|))))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-1787 (((-644 (-771)) $) NIL) (((-644 (-771)) $ (-1175)) NIL)) (-2639 (((-771) $) NIL) (((-771) $ (-1175)) NIL)) (-2485 (((-644 (-1087 (-1175))) $) NIL)) (-2285 (((-1171 $) $ (-1087 (-1175))) NIL) (((-1171 |#1|) $) NIL)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-3087 (($ $) NIL (|has| |#1| (-558)))) (-1716 (((-112) $) NIL (|has| |#1| (-558)))) (-2917 (((-771) $) NIL) (((-771) $ (-644 (-1087 (-1175)))) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-4058 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-3980 (($ $) NIL (|has| |#1| (-454)))) (-3348 (((-420 $) $) NIL (|has| |#1| (-454)))) (-4262 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-1364 (($ $) NIL)) (-1811 (($) NIL T CONST)) (-2980 (((-3 |#1| "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-1087 (-1175)) "failed") $) NIL) (((-3 (-1175) "failed") $) NIL) (((-3 (-1124 |#1| (-1175)) "failed") $) NIL)) (-1709 ((|#1| $) NIL) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-1087 (-1175)) $) NIL) (((-1175) $) NIL) (((-1124 |#1| (-1175)) $) NIL)) (-4343 (($ $ $ (-1087 (-1175))) NIL (|has| |#1| (-172)))) (-3565 (($ $) NIL)) (-2275 (((-689 (-566)) (-689 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -4196 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) NIL) (((-689 |#1|) (-689 $)) NIL)) (-3757 (((-3 $ "failed") $) NIL)) (-3530 (($ $) NIL (|has| |#1| (-454))) (($ $ (-1087 (-1175))) NIL (|has| |#1| (-454)))) (-3551 (((-644 $) $) NIL)) (-4188 (((-112) $) NIL (|has| |#1| (-909)))) (-3995 (($ $ |#1| (-533 (-1087 (-1175))) $) NIL)) (-1542 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| (-1087 (-1175)) (-886 (-381))) (|has| |#1| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| (-1087 (-1175)) (-886 (-566))) (|has| |#1| (-886 (-566)))))) (-1802 (((-771) $ (-1175)) NIL) (((-771) $) NIL)) (-2264 (((-112) $) NIL)) (-3486 (((-771) $) NIL)) (-2474 (($ (-1171 |#1|) (-1087 (-1175))) NIL) (($ (-1171 $) (-1087 (-1175))) NIL)) (-1545 (((-644 $) $) NIL)) (-3989 (((-112) $) NIL)) (-2463 (($ |#1| (-533 (-1087 (-1175)))) NIL) (($ $ (-1087 (-1175)) (-771)) NIL) (($ $ (-644 (-1087 (-1175))) (-644 (-771))) NIL)) (-2235 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $ (-1087 (-1175))) NIL)) (-2584 (((-533 (-1087 (-1175))) $) NIL) (((-771) $ (-1087 (-1175))) NIL) (((-644 (-771)) $ (-644 (-1087 (-1175)))) NIL)) (-3327 (($ (-1 (-533 (-1087 (-1175))) (-533 (-1087 (-1175)))) $) NIL)) (-3080 (($ (-1 |#1| |#1|) $) NIL)) (-1859 (((-1 $ (-771)) (-1175)) NIL) (((-1 $ (-771)) $) NIL (|has| |#1| (-233)))) (-2673 (((-3 (-1087 (-1175)) "failed") $) NIL)) (-2608 (($ $) NIL)) (-2622 ((|#1| $) NIL)) (-3292 (((-1087 (-1175)) $) NIL)) (-2120 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-3151 (((-1157) $) NIL)) (-4277 (((-112) $) NIL)) (-4075 (((-3 (-644 $) "failed") $) NIL)) (-3380 (((-3 (-644 $) "failed") $) NIL)) (-2414 (((-3 (-2 (|:| |var| (-1087 (-1175))) (|:| -3631 (-771))) "failed") $) NIL)) (-1823 (($ $) NIL)) (-4059 (((-1119) $) NIL)) (-2587 (((-112) $) NIL)) (-2597 ((|#1| $) NIL)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-454)))) (-2162 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-1500 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-3917 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-2325 (((-420 $) $) NIL (|has| |#1| (-909)))) (-2976 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-3297 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-1087 (-1175)) |#1|) NIL) (($ $ (-644 (-1087 (-1175))) (-644 |#1|)) NIL) (($ $ (-1087 (-1175)) $) NIL) (($ $ (-644 (-1087 (-1175))) (-644 $)) NIL) (($ $ (-1175) $) NIL (|has| |#1| (-233))) (($ $ (-644 (-1175)) (-644 $)) NIL (|has| |#1| (-233))) (($ $ (-1175) |#1|) NIL (|has| |#1| (-233))) (($ $ (-644 (-1175)) (-644 |#1|)) NIL (|has| |#1| (-233)))) (-3553 (($ $ (-1087 (-1175))) NIL (|has| |#1| (-172)))) (-3526 (($ $ (-1087 (-1175))) NIL) (($ $ (-644 (-1087 (-1175)))) NIL) (($ $ (-1087 (-1175)) (-771)) NIL) (($ $ (-644 (-1087 (-1175))) (-644 (-771))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-771)) NIL (|has| |#1| (-233))) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3007 (((-644 (-1175)) $) NIL)) (-1630 (((-533 (-1087 (-1175))) $) NIL) (((-771) $ (-1087 (-1175))) NIL) (((-644 (-771)) $ (-644 (-1087 (-1175)))) NIL) (((-771) $ (-1175)) NIL)) (-3136 (((-892 (-381)) $) NIL (-12 (|has| (-1087 (-1175)) (-614 (-892 (-381)))) (|has| |#1| (-614 (-892 (-381)))))) (((-892 (-566)) $) NIL (-12 (|has| (-1087 (-1175)) (-614 (-892 (-566)))) (|has| |#1| (-614 (-892 (-566)))))) (((-538) $) NIL (-12 (|has| (-1087 (-1175)) (-614 (-538))) (|has| |#1| (-614 (-538)))))) (-2252 ((|#1| $) NIL (|has| |#1| (-454))) (($ $ (-1087 (-1175))) NIL (|has| |#1| (-454)))) (-3233 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-909))))) (-2479 (((-862) $) NIL) (($ (-566)) NIL) (($ |#1|) NIL) (($ (-1087 (-1175))) NIL) (($ (-1175)) NIL) (($ (-1124 |#1| (-1175))) NIL) (($ (-409 (-566))) NIL (-2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566)))))) (($ $) NIL (|has| |#1| (-558)))) (-3866 (((-644 |#1|) $) NIL)) (-3025 ((|#1| $ (-533 (-1087 (-1175)))) NIL) (($ $ (-1087 (-1175)) (-771)) NIL) (($ $ (-644 (-1087 (-1175))) (-644 (-771))) NIL)) (-2645 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| $ (-145)) (|has| |#1| (-909))) (|has| |#1| (-145))))) (-1558 (((-771)) NIL T CONST)) (-2244 (($ $ $ (-771)) NIL (|has| |#1| (-172)))) (-3900 (((-112) $ $) NIL)) (-1333 (((-112) $ $) NIL (|has| |#1| (-558)))) (-2446 (($) NIL T CONST)) (-2459 (($) NIL T CONST)) (-2834 (($ $ (-1087 (-1175))) NIL) (($ $ (-644 (-1087 (-1175)))) NIL) (($ $ (-1087 (-1175)) (-771)) NIL) (($ $ (-644 (-1087 (-1175))) (-644 (-771))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-771)) NIL (|has| |#1| (-233))) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2952 (((-112) $ $) NIL)) (-3077 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1086 |#1|) (-13 (-254 |#1| (-1175) (-1087 (-1175)) (-533 (-1087 (-1175)))) (-1038 (-1124 |#1| (-1175)))) (-1049)) (T -1086)) +NIL +(-13 (-254 |#1| (-1175) (-1087 (-1175)) (-533 (-1087 (-1175)))) (-1038 (-1124 |#1| (-1175)))) +((-2986 (((-112) $ $) NIL)) (-2639 (((-771) $) NIL)) (-1338 ((|#1| $) 10)) (-2980 (((-3 |#1| "failed") $) NIL)) (-1709 ((|#1| $) NIL)) (-1802 (((-771) $) 11)) (-1920 (($ $ $) NIL)) (-3038 (($ $ $) NIL)) (-1859 (($ |#1| (-771)) 9)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-3526 (($ $) NIL) (($ $ (-771)) NIL)) (-2479 (((-862) $) NIL) (($ |#1|) NIL)) (-3900 (((-112) $ $) NIL)) (-3019 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3004 (((-112) $ $) NIL)) (-2977 (((-112) $ $) 16))) +(((-1087 |#1|) (-267 |#1|) (-850)) (T -1087)) +NIL +(-267 |#1|) +((-3080 (((-644 |#2|) (-1 |#2| |#1|) (-1093 |#1|)) 29 (|has| |#1| (-848))) (((-1093 |#2|) (-1 |#2| |#1|) (-1093 |#1|)) 14))) +(((-1088 |#1| |#2|) (-10 -7 (-15 -3080 ((-1093 |#2|) (-1 |#2| |#1|) (-1093 |#1|))) (IF (|has| |#1| (-848)) (-15 -3080 ((-644 |#2|) (-1 |#2| |#1|) (-1093 |#1|))) |%noBranch|)) (-1214) (-1214)) (T -1088)) +((-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1093 *5)) (-4 *5 (-848)) (-4 *5 (-1214)) (-4 *6 (-1214)) (-5 *2 (-644 *6)) (-5 *1 (-1088 *5 *6)))) (-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1093 *5)) (-4 *5 (-1214)) (-4 *6 (-1214)) (-5 *2 (-1093 *6)) (-5 *1 (-1088 *5 *6))))) +(-10 -7 (-15 -3080 ((-1093 |#2|) (-1 |#2| |#1|) (-1093 |#1|))) (IF (|has| |#1| (-848)) (-15 -3080 ((-644 |#2|) (-1 |#2| |#1|) (-1093 |#1|))) |%noBranch|)) +((-2986 (((-112) $ $) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) 16) (($ (-1180)) NIL) (((-1180) $) NIL)) (-2201 (((-644 (-1134)) $) 10)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-1089) (-13 (-1082) (-10 -8 (-15 -2201 ((-644 (-1134)) $))))) (T -1089)) +((-2201 (*1 *2 *1) (-12 (-5 *2 (-644 (-1134))) (-5 *1 (-1089))))) +(-13 (-1082) (-10 -8 (-15 -2201 ((-644 (-1134)) $)))) +((-3080 (((-1091 |#2|) (-1 |#2| |#1|) (-1091 |#1|)) 19))) +(((-1090 |#1| |#2|) (-10 -7 (-15 -3080 ((-1091 |#2|) (-1 |#2| |#1|) (-1091 |#1|)))) (-1214) (-1214)) (T -1090)) +((-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1091 *5)) (-4 *5 (-1214)) (-4 *6 (-1214)) (-5 *2 (-1091 *6)) (-5 *1 (-1090 *5 *6))))) +(-10 -7 (-15 -3080 ((-1091 |#2|) (-1 |#2| |#1|) (-1091 |#1|)))) +((-2986 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1338 (((-1175) $) 11)) (-3527 (((-1093 |#1|) $) 12)) (-3151 (((-1157) $) NIL (|has| |#1| (-1099)))) (-4059 (((-1119) $) NIL (|has| |#1| (-1099)))) (-2008 (($ (-1175) (-1093 |#1|)) 10)) (-2479 (((-862) $) 22 (|has| |#1| (-1099)))) (-3900 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2952 (((-112) $ $) 17 (|has| |#1| (-1099))))) +(((-1091 |#1|) (-13 (-1214) (-10 -8 (-15 -2008 ($ (-1175) (-1093 |#1|))) (-15 -1338 ((-1175) $)) (-15 -3527 ((-1093 |#1|) $)) (IF (|has| |#1| (-1099)) (-6 (-1099)) |%noBranch|))) (-1214)) (T -1091)) +((-2008 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1093 *4)) (-4 *4 (-1214)) (-5 *1 (-1091 *4)))) (-1338 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1091 *3)) (-4 *3 (-1214)))) (-3527 (*1 *2 *1) (-12 (-5 *2 (-1093 *3)) (-5 *1 (-1091 *3)) (-4 *3 (-1214))))) +(-13 (-1214) (-10 -8 (-15 -2008 ($ (-1175) (-1093 |#1|))) (-15 -1338 ((-1175) $)) (-15 -3527 ((-1093 |#1|) $)) (IF (|has| |#1| (-1099)) (-6 (-1099)) |%noBranch|))) +((-3527 (($ |#1| |#1|) 8)) (-3633 ((|#1| $) 11)) (-3510 ((|#1| $) 13)) (-4238 (((-566) $) 9)) (-4346 ((|#1| $) 10)) (-4263 ((|#1| $) 12)) (-3136 (($ |#1|) 6)) (-3626 (($ |#1| |#1|) 15)) (-2729 (($ $ (-566)) 14))) +(((-1092 |#1|) (-140) (-1214)) (T -1092)) +((-3626 (*1 *1 *2 *2) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1214)))) (-2729 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-1092 *3)) (-4 *3 (-1214)))) (-3510 (*1 *2 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1214)))) (-4263 (*1 *2 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1214)))) (-3633 (*1 *2 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1214)))) (-4346 (*1 *2 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1214)))) (-4238 (*1 *2 *1) (-12 (-4 *1 (-1092 *3)) (-4 *3 (-1214)) (-5 *2 (-566)))) (-3527 (*1 *1 *2 *2) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1214))))) +(-13 (-618 |t#1|) (-10 -8 (-15 -3626 ($ |t#1| |t#1|)) (-15 -2729 ($ $ (-566))) (-15 -3510 (|t#1| $)) (-15 -4263 (|t#1| $)) (-15 -3633 (|t#1| $)) (-15 -4346 (|t#1| $)) (-15 -4238 ((-566) $)) (-15 -3527 ($ |t#1| |t#1|)))) +(((-618 |#1|) . T)) +((-2986 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3527 (($ |#1| |#1|) 16)) (-3080 (((-644 |#1|) (-1 |#1| |#1|) $) 46 (|has| |#1| (-848)))) (-3633 ((|#1| $) 12)) (-3510 ((|#1| $) 11)) (-3151 (((-1157) $) NIL (|has| |#1| (-1099)))) (-4238 (((-566) $) 15)) (-4346 ((|#1| $) 14)) (-4263 ((|#1| $) 13)) (-4059 (((-1119) $) NIL (|has| |#1| (-1099)))) (-3507 (((-644 |#1|) $) 44 (|has| |#1| (-848))) (((-644 |#1|) (-644 $)) 43 (|has| |#1| (-848)))) (-3136 (($ |#1|) 29)) (-2479 (((-862) $) 28 (|has| |#1| (-1099)))) (-3900 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3626 (($ |#1| |#1|) 10)) (-2729 (($ $ (-566)) 17)) (-2952 (((-112) $ $) 22 (|has| |#1| (-1099))))) +(((-1093 |#1|) (-13 (-1092 |#1|) (-10 -7 (IF (|has| |#1| (-1099)) (-6 (-1099)) |%noBranch|) (IF (|has| |#1| (-848)) (-6 (-1094 |#1| (-644 |#1|))) |%noBranch|))) (-1214)) (T -1093)) +NIL +(-13 (-1092 |#1|) (-10 -7 (IF (|has| |#1| (-1099)) (-6 (-1099)) |%noBranch|) (IF (|has| |#1| (-848)) (-6 (-1094 |#1| (-644 |#1|))) |%noBranch|))) +((-3527 (($ |#1| |#1|) 8)) (-3080 ((|#2| (-1 |#1| |#1|) $) 16)) (-3633 ((|#1| $) 11)) (-3510 ((|#1| $) 13)) (-4238 (((-566) $) 9)) (-4346 ((|#1| $) 10)) (-4263 ((|#1| $) 12)) (-3507 ((|#2| (-644 $)) 18) ((|#2| $) 17)) (-3136 (($ |#1|) 6)) (-3626 (($ |#1| |#1|) 15)) (-2729 (($ $ (-566)) 14))) +(((-1094 |#1| |#2|) (-140) (-848) (-1148 |t#1|)) (T -1094)) +((-3507 (*1 *2 *3) (-12 (-5 *3 (-644 *1)) (-4 *1 (-1094 *4 *2)) (-4 *4 (-848)) (-4 *2 (-1148 *4)))) (-3507 (*1 *2 *1) (-12 (-4 *1 (-1094 *3 *2)) (-4 *3 (-848)) (-4 *2 (-1148 *3)))) (-3080 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1094 *4 *2)) (-4 *4 (-848)) (-4 *2 (-1148 *4))))) +(-13 (-1092 |t#1|) (-10 -8 (-15 -3507 (|t#2| (-644 $))) (-15 -3507 (|t#2| $)) (-15 -3080 (|t#2| (-1 |t#1| |t#1|) $)))) +(((-618 |#1|) . T) ((-1092 |#1|) . T)) +((-2986 (((-112) $ $) NIL)) (-3151 (((-1157) $) NIL)) (-2651 (((-1134) $) 12)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) 18) (($ (-1180)) NIL) (((-1180) $) NIL)) (-2610 (((-644 (-1134)) $) 10)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-1095) (-13 (-1082) (-10 -8 (-15 -2610 ((-644 (-1134)) $)) (-15 -2651 ((-1134) $))))) (T -1095)) +((-2610 (*1 *2 *1) (-12 (-5 *2 (-644 (-1134))) (-5 *1 (-1095)))) (-2651 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1095))))) +(-13 (-1082) (-10 -8 (-15 -2610 ((-644 (-1134)) $)) (-15 -2651 ((-1134) $)))) +((-1730 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-2591 (($ $ $) 10)) (-1369 (($ $ $) NIL) (($ $ |#2|) 15))) +(((-1096 |#1| |#2|) (-10 -8 (-15 -1730 (|#1| |#2| |#1|)) (-15 -1730 (|#1| |#1| |#2|)) (-15 -1730 (|#1| |#1| |#1|)) (-15 -2591 (|#1| |#1| |#1|)) (-15 -1369 (|#1| |#1| |#2|)) (-15 -1369 (|#1| |#1| |#1|))) (-1097 |#2|) (-1099)) (T -1096)) +NIL +(-10 -8 (-15 -1730 (|#1| |#2| |#1|)) (-15 -1730 (|#1| |#1| |#2|)) (-15 -1730 (|#1| |#1| |#1|)) (-15 -2591 (|#1| |#1| |#1|)) (-15 -1369 (|#1| |#1| |#2|)) (-15 -1369 (|#1| |#1| |#1|))) +((-2986 (((-112) $ $) 7)) (-1730 (($ $ $) 19) (($ $ |#1|) 18) (($ |#1| $) 17)) (-2591 (($ $ $) 21)) (-2025 (((-112) $ $) 20)) (-1453 (((-112) $ (-771)) 36)) (-1759 (($) 26) (($ (-644 |#1|)) 25)) (-3543 (($ (-1 (-112) |#1|) $) 57 (|has| $ (-6 -4417)))) (-1811 (($) 37 T CONST)) (-4111 (($ $) 60 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-2628 (($ |#1| $) 59 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417)))) (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4417)))) (-1838 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -4417)))) (-3872 (((-644 |#1|) $) 44 (|has| $ (-6 -4417)))) (-3963 (((-112) $ $) 29)) (-2756 (((-112) $ (-771)) 35)) (-4227 (((-644 |#1|) $) 45 (|has| $ (-6 -4417)))) (-1688 (((-112) |#1| $) 47 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-3708 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#1| |#1|) $) 39)) (-4106 (((-112) $ (-771)) 34)) (-3151 (((-1157) $) 10)) (-4022 (($ $ $) 24)) (-4059 (((-1119) $) 11)) (-2688 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 53)) (-3966 (((-112) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 |#1|) (-644 |#1|)) 51 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 49 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 (-295 |#1|))) 48 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1844 (((-112) $ $) 30)) (-2788 (((-112) $) 33)) (-1737 (($) 32)) (-1369 (($ $ $) 23) (($ $ |#1|) 22)) (-4068 (((-771) |#1| $) 46 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417)))) (((-771) (-1 (-112) |#1|) $) 43 (|has| $ (-6 -4417)))) (-3924 (($ $) 31)) (-3136 (((-538) $) 61 (|has| |#1| (-614 (-538))))) (-2489 (($ (-644 |#1|)) 52)) (-2479 (((-862) $) 12)) (-2405 (($) 28) (($ (-644 |#1|)) 27)) (-3900 (((-112) $ $) 9)) (-3667 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4417)))) (-2952 (((-112) $ $) 6)) (-3002 (((-771) $) 38 (|has| $ (-6 -4417))))) +(((-1097 |#1|) (-140) (-1099)) (T -1097)) +((-3963 (*1 *2 *1 *1) (-12 (-4 *1 (-1097 *3)) (-4 *3 (-1099)) (-5 *2 (-112)))) (-2405 (*1 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099)))) (-2405 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-4 *1 (-1097 *3)))) (-1759 (*1 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099)))) (-1759 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-4 *1 (-1097 *3)))) (-4022 (*1 *1 *1 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099)))) (-1369 (*1 *1 *1 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099)))) (-1369 (*1 *1 *1 *2) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099)))) (-2591 (*1 *1 *1 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099)))) (-2025 (*1 *2 *1 *1) (-12 (-4 *1 (-1097 *3)) (-4 *3 (-1099)) (-5 *2 (-112)))) (-1730 (*1 *1 *1 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099)))) (-1730 (*1 *1 *1 *2) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099)))) (-1730 (*1 *1 *2 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099))))) +(-13 (-1099) (-151 |t#1|) (-10 -8 (-6 -4407) (-15 -3963 ((-112) $ $)) (-15 -2405 ($)) (-15 -2405 ($ (-644 |t#1|))) (-15 -1759 ($)) (-15 -1759 ($ (-644 |t#1|))) (-15 -4022 ($ $ $)) (-15 -1369 ($ $ $)) (-15 -1369 ($ $ |t#1|)) (-15 -2591 ($ $ $)) (-15 -2025 ((-112) $ $)) (-15 -1730 ($ $ $)) (-15 -1730 ($ $ |t#1|)) (-15 -1730 ($ |t#1| $)))) +(((-34) . T) ((-102) . T) ((-613 (-862)) . T) ((-151 |#1|) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1099) . T) ((-1214) . T)) +((-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 8)) (-3900 (((-112) $ $) 12))) +(((-1098 |#1|) (-10 -8 (-15 -3900 ((-112) |#1| |#1|)) (-15 -3151 ((-1157) |#1|)) (-15 -4059 ((-1119) |#1|))) (-1099)) (T -1098)) +NIL +(-10 -8 (-15 -3900 ((-112) |#1| |#1|)) (-15 -3151 ((-1157) |#1|)) (-15 -4059 ((-1119) |#1|))) +((-2986 (((-112) $ $) 7)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-2479 (((-862) $) 12)) (-3900 (((-112) $ $) 9)) (-2952 (((-112) $ $) 6))) +(((-1099) (-140)) (T -1099)) +((-4059 (*1 *2 *1) (-12 (-4 *1 (-1099)) (-5 *2 (-1119)))) (-3151 (*1 *2 *1) (-12 (-4 *1 (-1099)) (-5 *2 (-1157)))) (-3900 (*1 *2 *1 *1) (-12 (-4 *1 (-1099)) (-5 *2 (-112))))) +(-13 (-102) (-613 (-862)) (-10 -8 (-15 -4059 ((-1119) $)) (-15 -3151 ((-1157) $)) (-15 -3900 ((-112) $ $)))) +(((-102) . T) ((-613 (-862)) . T)) +((-2986 (((-112) $ $) NIL)) (-4049 (((-771)) 36)) (-1624 (($ (-644 (-921))) 73)) (-3607 (((-3 $ "failed") $ (-921) (-921)) 84)) (-1415 (($) 40)) (-1688 (((-112) (-921) $) 44)) (-4051 (((-921) $) 66)) (-3151 (((-1157) $) NIL)) (-2104 (($ (-921)) 39)) (-1693 (((-3 $ "failed") $ (-921)) 80)) (-4059 (((-1119) $) NIL)) (-2929 (((-1264 $)) 49)) (-1721 (((-644 (-921)) $) 27)) (-3454 (((-771) $ (-921) (-921)) 81)) (-2479 (((-862) $) 32)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 24))) +(((-1100 |#1| |#2|) (-13 (-370) (-10 -8 (-15 -1693 ((-3 $ "failed") $ (-921))) (-15 -3607 ((-3 $ "failed") $ (-921) (-921))) (-15 -1721 ((-644 (-921)) $)) (-15 -1624 ($ (-644 (-921)))) (-15 -2929 ((-1264 $))) (-15 -1688 ((-112) (-921) $)) (-15 -3454 ((-771) $ (-921) (-921))))) (-921) (-921)) (T -1100)) +((-1693 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-921)) (-5 *1 (-1100 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3607 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-921)) (-5 *1 (-1100 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-1721 (*1 *2 *1) (-12 (-5 *2 (-644 (-921))) (-5 *1 (-1100 *3 *4)) (-14 *3 (-921)) (-14 *4 (-921)))) (-1624 (*1 *1 *2) (-12 (-5 *2 (-644 (-921))) (-5 *1 (-1100 *3 *4)) (-14 *3 (-921)) (-14 *4 (-921)))) (-2929 (*1 *2) (-12 (-5 *2 (-1264 (-1100 *3 *4))) (-5 *1 (-1100 *3 *4)) (-14 *3 (-921)) (-14 *4 (-921)))) (-1688 (*1 *2 *3 *1) (-12 (-5 *3 (-921)) (-5 *2 (-112)) (-5 *1 (-1100 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3454 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-921)) (-5 *2 (-771)) (-5 *1 (-1100 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-13 (-370) (-10 -8 (-15 -1693 ((-3 $ "failed") $ (-921))) (-15 -3607 ((-3 $ "failed") $ (-921) (-921))) (-15 -1721 ((-644 (-921)) $)) (-15 -1624 ($ (-644 (-921)))) (-15 -2929 ((-1264 $))) (-15 -1688 ((-112) (-921) $)) (-15 -3454 ((-771) $ (-921) (-921))))) +((-2986 (((-112) $ $) NIL)) (-2004 (($) NIL (|has| |#1| (-370)))) (-1730 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 83)) (-2591 (($ $ $) 81)) (-2025 (((-112) $ $) 82)) (-1453 (((-112) $ (-771)) NIL)) (-4049 (((-771)) NIL (|has| |#1| (-370)))) (-1759 (($ (-644 |#1|)) NIL) (($) 13)) (-4364 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-3543 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-1811 (($) NIL T CONST)) (-4111 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-2295 (($ |#1| $) 74 (|has| $ (-6 -4417))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2628 (($ |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-1838 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4417)))) (-1415 (($) NIL (|has| |#1| (-370)))) (-3872 (((-644 |#1|) $) 19 (|has| $ (-6 -4417)))) (-3963 (((-112) $ $) NIL)) (-2756 (((-112) $ (-771)) NIL)) (-1920 ((|#1| $) 55 (|has| |#1| (-850)))) (-4227 (((-644 |#1|) $) NIL (|has| $ (-6 -4417)))) (-1688 (((-112) |#1| $) 73 (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-3038 ((|#1| $) 53 (|has| |#1| (-850)))) (-3708 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#1| |#1|) $) 34)) (-4051 (((-921) $) NIL (|has| |#1| (-370)))) (-4106 (((-112) $ (-771)) NIL)) (-3151 (((-1157) $) NIL)) (-4022 (($ $ $) 79)) (-4255 ((|#1| $) 25)) (-4354 (($ |#1| $) 69)) (-2104 (($ (-921)) NIL (|has| |#1| (-370)))) (-4059 (((-1119) $) NIL)) (-2688 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-4097 ((|#1| $) 27)) (-3966 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1844 (((-112) $ $) NIL)) (-2788 (((-112) $) 21)) (-1737 (($) 11)) (-1369 (($ $ |#1|) NIL) (($ $ $) 80)) (-1797 (($) NIL) (($ (-644 |#1|)) NIL)) (-4068 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-3924 (($ $) 16)) (-3136 (((-538) $) 50 (|has| |#1| (-614 (-538))))) (-2489 (($ (-644 |#1|)) 62)) (-4153 (($ $) NIL (|has| |#1| (-370)))) (-2479 (((-862) $) NIL)) (-2374 (((-771) $) NIL)) (-2405 (($ (-644 |#1|)) NIL) (($) 12)) (-3900 (((-112) $ $) NIL)) (-2471 (($ (-644 |#1|)) NIL)) (-3667 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2952 (((-112) $ $) 52)) (-3002 (((-771) $) 10 (|has| $ (-6 -4417))))) +(((-1101 |#1|) (-427 |#1|) (-1099)) (T -1101)) +NIL +(-427 |#1|) +((-2986 (((-112) $ $) 7)) (-3830 (((-112) $) 33)) (-1347 ((|#2| $) 28)) (-1676 (((-112) $) 34)) (-4315 ((|#1| $) 29)) (-4273 (((-112) $) 36)) (-1842 (((-112) $) 38)) (-4363 (((-112) $) 35)) (-3151 (((-1157) $) 10)) (-4168 (((-112) $) 32)) (-1368 ((|#3| $) 27)) (-4059 (((-1119) $) 11)) (-3951 (((-112) $) 31)) (-2965 ((|#4| $) 26)) (-1304 ((|#5| $) 25)) (-3477 (((-112) $ $) 39)) (-4376 (($ $ (-566)) 21) (($ $ (-644 (-566))) 20)) (-2418 (((-644 $) $) 30)) (-3136 (($ |#1|) 45) (($ |#2|) 44) (($ |#3|) 43) (($ |#4|) 42) (($ |#5|) 41) (($ (-644 $)) 40)) (-2479 (((-862) $) 12)) (-3982 (($ $) 23)) (-3972 (($ $) 24)) (-3900 (((-112) $ $) 9)) (-3248 (((-112) $) 37)) (-2952 (((-112) $ $) 6)) (-3002 (((-566) $) 22))) +(((-1102 |#1| |#2| |#3| |#4| |#5|) (-140) (-1099) (-1099) (-1099) (-1099) (-1099)) (T -1102)) +((-3477 (*1 *2 *1 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112)))) (-1842 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112)))) (-3248 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112)))) (-4273 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112)))) (-4363 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112)))) (-1676 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112)))) (-3830 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112)))) (-4168 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112)))) (-3951 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112)))) (-2418 (*1 *2 *1) (-12 (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-644 *1)) (-4 *1 (-1102 *3 *4 *5 *6 *7)))) (-4315 (*1 *2 *1) (-12 (-4 *1 (-1102 *2 *3 *4 *5 *6)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *2 (-1099)))) (-1347 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *2 *4 *5 *6)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *2 (-1099)))) (-1368 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *2 *5 *6)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *2 (-1099)))) (-2965 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *2 *6)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *2 (-1099)))) (-1304 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6 *2)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *2 (-1099)))) (-3972 (*1 *1 *1) (-12 (-4 *1 (-1102 *2 *3 *4 *5 *6)) (-4 *2 (-1099)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)))) (-3982 (*1 *1 *1) (-12 (-4 *1 (-1102 *2 *3 *4 *5 *6)) (-4 *2 (-1099)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)))) (-3002 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-566)))) (-4376 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)))) (-4376 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-566))) (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099))))) +(-13 (-1099) (-618 |t#1|) (-618 |t#2|) (-618 |t#3|) (-618 |t#4|) (-618 |t#4|) (-618 |t#5|) (-618 (-644 $)) (-10 -8 (-15 -3477 ((-112) $ $)) (-15 -1842 ((-112) $)) (-15 -3248 ((-112) $)) (-15 -4273 ((-112) $)) (-15 -4363 ((-112) $)) (-15 -1676 ((-112) $)) (-15 -3830 ((-112) $)) (-15 -4168 ((-112) $)) (-15 -3951 ((-112) $)) (-15 -2418 ((-644 $) $)) (-15 -4315 (|t#1| $)) (-15 -1347 (|t#2| $)) (-15 -1368 (|t#3| $)) (-15 -2965 (|t#4| $)) (-15 -1304 (|t#5| $)) (-15 -3972 ($ $)) (-15 -3982 ($ $)) (-15 -3002 ((-566) $)) (-15 -4376 ($ $ (-566))) (-15 -4376 ($ $ (-644 (-566)))))) +(((-102) . T) ((-613 (-862)) . T) ((-618 (-644 $)) . T) ((-618 |#1|) . T) ((-618 |#2|) . T) ((-618 |#3|) . T) ((-618 |#4|) . T) ((-618 |#5|) . T) ((-1099) . T)) +((-2986 (((-112) $ $) NIL)) (-3830 (((-112) $) NIL)) (-1347 (((-1175) $) NIL)) (-1676 (((-112) $) NIL)) (-4315 (((-1157) $) NIL)) (-4273 (((-112) $) NIL)) (-1842 (((-112) $) NIL)) (-4363 (((-112) $) NIL)) (-3151 (((-1157) $) NIL)) (-4168 (((-112) $) NIL)) (-1368 (((-566) $) NIL)) (-4059 (((-1119) $) NIL)) (-3951 (((-112) $) NIL)) (-2965 (((-225) $) NIL)) (-1304 (((-862) $) NIL)) (-3477 (((-112) $ $) NIL)) (-4376 (($ $ (-566)) NIL) (($ $ (-644 (-566))) NIL)) (-2418 (((-644 $) $) NIL)) (-3136 (($ (-1157)) NIL) (($ (-1175)) NIL) (($ (-566)) NIL) (($ (-225)) NIL) (($ (-862)) NIL) (($ (-644 $)) NIL)) (-2479 (((-862) $) NIL)) (-3982 (($ $) NIL)) (-3972 (($ $) NIL)) (-3900 (((-112) $ $) NIL)) (-3248 (((-112) $) NIL)) (-2952 (((-112) $ $) NIL)) (-3002 (((-566) $) NIL))) +(((-1103) (-1102 (-1157) (-1175) (-566) (-225) (-862))) (T -1103)) +NIL +(-1102 (-1157) (-1175) (-566) (-225) (-862)) +((-2986 (((-112) $ $) NIL)) (-3830 (((-112) $) 45)) (-1347 ((|#2| $) 48)) (-1676 (((-112) $) 20)) (-4315 ((|#1| $) 21)) (-4273 (((-112) $) 42)) (-1842 (((-112) $) 14)) (-4363 (((-112) $) 44)) (-3151 (((-1157) $) NIL)) (-4168 (((-112) $) 46)) (-1368 ((|#3| $) 50)) (-4059 (((-1119) $) NIL)) (-3951 (((-112) $) 47)) (-2965 ((|#4| $) 49)) (-1304 ((|#5| $) 51)) (-3477 (((-112) $ $) 41)) (-4376 (($ $ (-566)) 62) (($ $ (-644 (-566))) 64)) (-2418 (((-644 $) $) 27)) (-3136 (($ |#1|) 53) (($ |#2|) 54) (($ |#3|) 55) (($ |#4|) 56) (($ |#5|) 57) (($ (-644 $)) 52)) (-2479 (((-862) $) 28)) (-3982 (($ $) 26)) (-3972 (($ $) 58)) (-3900 (((-112) $ $) NIL)) (-3248 (((-112) $) 23)) (-2952 (((-112) $ $) 40)) (-3002 (((-566) $) 60))) +(((-1104 |#1| |#2| |#3| |#4| |#5|) (-1102 |#1| |#2| |#3| |#4| |#5|) (-1099) (-1099) (-1099) (-1099) (-1099)) (T -1104)) +NIL +(-1102 |#1| |#2| |#3| |#4| |#5|) +((-3386 (((-1269) $) 23)) (-2327 (($ (-1175) (-436) |#2|) 11)) (-2479 (((-862) $) 16))) +(((-1105 |#1| |#2|) (-13 (-397) (-10 -8 (-15 -2327 ($ (-1175) (-436) |#2|)))) (-1099) (-432 |#1|)) (T -1105)) +((-2327 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1175)) (-5 *3 (-436)) (-4 *5 (-1099)) (-5 *1 (-1105 *5 *4)) (-4 *4 (-432 *5))))) +(-13 (-397) (-10 -8 (-15 -2327 ($ (-1175) (-436) |#2|)))) +((-2613 (((-112) |#5| |#5|) 45)) (-2046 (((-112) |#5| |#5|) 60)) (-1514 (((-112) |#5| (-644 |#5|)) 83) (((-112) |#5| |#5|) 69)) (-1997 (((-112) (-644 |#4|) (-644 |#4|)) 66)) (-1942 (((-112) (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|)) (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))) 71)) (-2537 (((-1269)) 33)) (-3419 (((-1269) (-1157) (-1157) (-1157)) 29)) (-2234 (((-644 |#5|) (-644 |#5|)) 102)) (-2514 (((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|)))) 94)) (-4208 (((-644 (-2 (|:| -3477 (-644 |#4|)) (|:| -2192 |#5|) (|:| |ineq| (-644 |#4|)))) (-644 |#4|) (-644 |#5|) (-112) (-112)) 124)) (-3767 (((-112) |#5| |#5|) 54)) (-2211 (((-3 (-112) "failed") |#5| |#5|) 79)) (-3752 (((-112) (-644 |#4|) (-644 |#4|)) 65)) (-3031 (((-112) (-644 |#4|) (-644 |#4|)) 67)) (-3730 (((-112) (-644 |#4|) (-644 |#4|)) 68)) (-2289 (((-3 (-2 (|:| -3477 (-644 |#4|)) (|:| -2192 |#5|) (|:| |ineq| (-644 |#4|))) "failed") (-644 |#4|) |#5| (-644 |#4|) (-112) (-112) (-112) (-112) (-112)) 119)) (-1949 (((-644 |#5|) (-644 |#5|)) 50))) +(((-1106 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3419 ((-1269) (-1157) (-1157) (-1157))) (-15 -2537 ((-1269))) (-15 -2613 ((-112) |#5| |#5|)) (-15 -1949 ((-644 |#5|) (-644 |#5|))) (-15 -3767 ((-112) |#5| |#5|)) (-15 -2046 ((-112) |#5| |#5|)) (-15 -1997 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -3752 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -3031 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -3730 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -2211 ((-3 (-112) "failed") |#5| |#5|)) (-15 -1514 ((-112) |#5| |#5|)) (-15 -1514 ((-112) |#5| (-644 |#5|))) (-15 -2234 ((-644 |#5|) (-644 |#5|))) (-15 -1942 ((-112) (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|)) (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|)))) (-15 -2514 ((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))))) (-15 -4208 ((-644 (-2 (|:| -3477 (-644 |#4|)) (|:| -2192 |#5|) (|:| |ineq| (-644 |#4|)))) (-644 |#4|) (-644 |#5|) (-112) (-112))) (-15 -2289 ((-3 (-2 (|:| -3477 (-644 |#4|)) (|:| -2192 |#5|) (|:| |ineq| (-644 |#4|))) "failed") (-644 |#4|) |#5| (-644 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-454) (-793) (-850) (-1064 |#1| |#2| |#3|) (-1070 |#1| |#2| |#3| |#4|)) (T -1106)) +((-2289 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) (-4 *9 (-1064 *6 *7 *8)) (-5 *2 (-2 (|:| -3477 (-644 *9)) (|:| -2192 *4) (|:| |ineq| (-644 *9)))) (-5 *1 (-1106 *6 *7 *8 *9 *4)) (-5 *3 (-644 *9)) (-4 *4 (-1070 *6 *7 *8 *9)))) (-4208 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-644 *10)) (-5 *5 (-112)) (-4 *10 (-1070 *6 *7 *8 *9)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) (-4 *9 (-1064 *6 *7 *8)) (-5 *2 (-644 (-2 (|:| -3477 (-644 *9)) (|:| -2192 *10) (|:| |ineq| (-644 *9))))) (-5 *1 (-1106 *6 *7 *8 *9 *10)) (-5 *3 (-644 *9)))) (-2514 (*1 *2 *2) (-12 (-5 *2 (-644 (-2 (|:| |val| (-644 *6)) (|:| -2192 *7)))) (-4 *6 (-1064 *3 *4 *5)) (-4 *7 (-1070 *3 *4 *5 *6)) (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-1106 *3 *4 *5 *6 *7)))) (-1942 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-644 *7)) (|:| -2192 *8))) (-4 *7 (-1064 *4 *5 *6)) (-4 *8 (-1070 *4 *5 *6 *7)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-1106 *4 *5 *6 *7 *8)))) (-2234 (*1 *2 *2) (-12 (-5 *2 (-644 *7)) (-4 *7 (-1070 *3 *4 *5 *6)) (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *1 (-1106 *3 *4 *5 *6 *7)))) (-1514 (*1 *2 *3 *4) (-12 (-5 *4 (-644 *3)) (-4 *3 (-1070 *5 *6 *7 *8)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *8 (-1064 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1106 *5 *6 *7 *8 *3)))) (-1514 (*1 *2 *3 *3) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1106 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7)))) (-2211 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1106 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7)))) (-3730 (*1 *2 *3 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-1106 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))) (-3031 (*1 *2 *3 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-1106 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))) (-3752 (*1 *2 *3 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-1106 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))) (-1997 (*1 *2 *3 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-1106 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))) (-2046 (*1 *2 *3 *3) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1106 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7)))) (-3767 (*1 *2 *3 *3) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1106 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7)))) (-1949 (*1 *2 *2) (-12 (-5 *2 (-644 *7)) (-4 *7 (-1070 *3 *4 *5 *6)) (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *1 (-1106 *3 *4 *5 *6 *7)))) (-2613 (*1 *2 *3 *3) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1106 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7)))) (-2537 (*1 *2) (-12 (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-1269)) (-5 *1 (-1106 *3 *4 *5 *6 *7)) (-4 *7 (-1070 *3 *4 *5 *6)))) (-3419 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1157)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-1269)) (-5 *1 (-1106 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7))))) +(-10 -7 (-15 -3419 ((-1269) (-1157) (-1157) (-1157))) (-15 -2537 ((-1269))) (-15 -2613 ((-112) |#5| |#5|)) (-15 -1949 ((-644 |#5|) (-644 |#5|))) (-15 -3767 ((-112) |#5| |#5|)) (-15 -2046 ((-112) |#5| |#5|)) (-15 -1997 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -3752 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -3031 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -3730 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -2211 ((-3 (-112) "failed") |#5| |#5|)) (-15 -1514 ((-112) |#5| |#5|)) (-15 -1514 ((-112) |#5| (-644 |#5|))) (-15 -2234 ((-644 |#5|) (-644 |#5|))) (-15 -1942 ((-112) (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|)) (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|)))) (-15 -2514 ((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))))) (-15 -4208 ((-644 (-2 (|:| -3477 (-644 |#4|)) (|:| -2192 |#5|) (|:| |ineq| (-644 |#4|)))) (-644 |#4|) (-644 |#5|) (-112) (-112))) (-15 -2289 ((-3 (-2 (|:| -3477 (-644 |#4|)) (|:| -2192 |#5|) (|:| |ineq| (-644 |#4|))) "failed") (-644 |#4|) |#5| (-644 |#4|) (-112) (-112) (-112) (-112) (-112)))) +((-3242 (((-644 (-2 (|:| |val| |#4|) (|:| -2192 |#5|))) |#4| |#5|) 109)) (-3718 (((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))) |#4| |#4| |#5|) 81)) (-3784 (((-644 (-2 (|:| |val| |#4|) (|:| -2192 |#5|))) |#4| |#4| |#5|) 103)) (-3609 (((-644 |#5|) |#4| |#5|) 125)) (-3839 (((-644 |#5|) |#4| |#5|) 132)) (-2196 (((-644 |#5|) |#4| |#5|) 133)) (-4154 (((-644 (-2 (|:| |val| (-112)) (|:| -2192 |#5|))) |#4| |#5|) 110)) (-2956 (((-644 (-2 (|:| |val| (-112)) (|:| -2192 |#5|))) |#4| |#5|) 131)) (-1744 (((-644 (-2 (|:| |val| (-112)) (|:| -2192 |#5|))) |#4| |#5|) 48) (((-112) |#4| |#5|) 56)) (-1672 (((-644 (-2 (|:| |val| |#4|) (|:| -2192 |#5|))) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))) |#3| (-112)) 93) (((-644 (-2 (|:| |val| |#4|) (|:| -2192 |#5|))) |#4| |#4| |#5| (-112) (-112)) 53)) (-3953 (((-644 (-2 (|:| |val| |#4|) (|:| -2192 |#5|))) |#4| |#4| |#5|) 88)) (-1569 (((-1269)) 37)) (-2447 (((-1269)) 26)) (-3604 (((-1269) (-1157) (-1157) (-1157)) 33)) (-1606 (((-1269) (-1157) (-1157) (-1157)) 22))) +(((-1107 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1606 ((-1269) (-1157) (-1157) (-1157))) (-15 -2447 ((-1269))) (-15 -3604 ((-1269) (-1157) (-1157) (-1157))) (-15 -1569 ((-1269))) (-15 -3718 ((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))) |#4| |#4| |#5|)) (-15 -1672 ((-644 (-2 (|:| |val| |#4|) (|:| -2192 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1672 ((-644 (-2 (|:| |val| |#4|) (|:| -2192 |#5|))) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))) |#3| (-112))) (-15 -3953 ((-644 (-2 (|:| |val| |#4|) (|:| -2192 |#5|))) |#4| |#4| |#5|)) (-15 -3784 ((-644 (-2 (|:| |val| |#4|) (|:| -2192 |#5|))) |#4| |#4| |#5|)) (-15 -1744 ((-112) |#4| |#5|)) (-15 -4154 ((-644 (-2 (|:| |val| (-112)) (|:| -2192 |#5|))) |#4| |#5|)) (-15 -3609 ((-644 |#5|) |#4| |#5|)) (-15 -2956 ((-644 (-2 (|:| |val| (-112)) (|:| -2192 |#5|))) |#4| |#5|)) (-15 -3839 ((-644 |#5|) |#4| |#5|)) (-15 -1744 ((-644 (-2 (|:| |val| (-112)) (|:| -2192 |#5|))) |#4| |#5|)) (-15 -2196 ((-644 |#5|) |#4| |#5|)) (-15 -3242 ((-644 (-2 (|:| |val| |#4|) (|:| -2192 |#5|))) |#4| |#5|))) (-454) (-793) (-850) (-1064 |#1| |#2| |#3|) (-1070 |#1| |#2| |#3| |#4|)) (T -1107)) +((-3242 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -2192 *4)))) (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-2196 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 *4)) (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-1744 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| (-112)) (|:| -2192 *4)))) (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-3839 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 *4)) (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-2956 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| (-112)) (|:| -2192 *4)))) (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-3609 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 *4)) (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-4154 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| (-112)) (|:| -2192 *4)))) (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-1744 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-3784 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -2192 *4)))) (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-3953 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -2192 *4)))) (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-1672 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-644 (-2 (|:| |val| (-644 *8)) (|:| -2192 *9)))) (-5 *5 (-112)) (-4 *8 (-1064 *6 *7 *4)) (-4 *9 (-1070 *6 *7 *4 *8)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *4 (-850)) (-5 *2 (-644 (-2 (|:| |val| *8) (|:| -2192 *9)))) (-5 *1 (-1107 *6 *7 *4 *8 *9)))) (-1672 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) (-4 *3 (-1064 *6 *7 *8)) (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -2192 *4)))) (-5 *1 (-1107 *6 *7 *8 *3 *4)) (-4 *4 (-1070 *6 *7 *8 *3)))) (-3718 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| (-644 *3)) (|:| -2192 *4)))) (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-1569 (*1 *2) (-12 (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-1269)) (-5 *1 (-1107 *3 *4 *5 *6 *7)) (-4 *7 (-1070 *3 *4 *5 *6)))) (-3604 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1157)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-1269)) (-5 *1 (-1107 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))) (-2447 (*1 *2) (-12 (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-1269)) (-5 *1 (-1107 *3 *4 *5 *6 *7)) (-4 *7 (-1070 *3 *4 *5 *6)))) (-1606 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1157)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-1269)) (-5 *1 (-1107 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7))))) +(-10 -7 (-15 -1606 ((-1269) (-1157) (-1157) (-1157))) (-15 -2447 ((-1269))) (-15 -3604 ((-1269) (-1157) (-1157) (-1157))) (-15 -1569 ((-1269))) (-15 -3718 ((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))) |#4| |#4| |#5|)) (-15 -1672 ((-644 (-2 (|:| |val| |#4|) (|:| -2192 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1672 ((-644 (-2 (|:| |val| |#4|) (|:| -2192 |#5|))) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))) |#3| (-112))) (-15 -3953 ((-644 (-2 (|:| |val| |#4|) (|:| -2192 |#5|))) |#4| |#4| |#5|)) (-15 -3784 ((-644 (-2 (|:| |val| |#4|) (|:| -2192 |#5|))) |#4| |#4| |#5|)) (-15 -1744 ((-112) |#4| |#5|)) (-15 -4154 ((-644 (-2 (|:| |val| (-112)) (|:| -2192 |#5|))) |#4| |#5|)) (-15 -3609 ((-644 |#5|) |#4| |#5|)) (-15 -2956 ((-644 (-2 (|:| |val| (-112)) (|:| -2192 |#5|))) |#4| |#5|)) (-15 -3839 ((-644 |#5|) |#4| |#5|)) (-15 -1744 ((-644 (-2 (|:| |val| (-112)) (|:| -2192 |#5|))) |#4| |#5|)) (-15 -2196 ((-644 |#5|) |#4| |#5|)) (-15 -3242 ((-644 (-2 (|:| |val| |#4|) (|:| -2192 |#5|))) |#4| |#5|))) +((-2986 (((-112) $ $) 7)) (-1416 (((-644 (-2 (|:| -1637 $) (|:| -3516 (-644 |#4|)))) (-644 |#4|)) 86)) (-3295 (((-644 $) (-644 |#4|)) 87) (((-644 $) (-644 |#4|) (-112)) 112)) (-2485 (((-644 |#3|) $) 34)) (-1489 (((-112) $) 27)) (-3541 (((-112) $) 18 (|has| |#1| (-558)))) (-2219 (((-112) |#4| $) 102) (((-112) $) 98)) (-1922 ((|#4| |#4| $) 93)) (-3980 (((-644 (-2 (|:| |val| |#4|) (|:| -2192 $))) |#4| $) 127)) (-1374 (((-2 (|:| |under| $) (|:| -2001 $) (|:| |upper| $)) $ |#3|) 28)) (-1453 (((-112) $ (-771)) 45)) (-3543 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4417))) (((-3 |#4| "failed") $ |#3|) 80)) (-1811 (($) 46 T CONST)) (-4210 (((-112) $) 23 (|has| |#1| (-558)))) (-3050 (((-112) $ $) 25 (|has| |#1| (-558)))) (-1768 (((-112) $ $) 24 (|has| |#1| (-558)))) (-3261 (((-112) $) 26 (|has| |#1| (-558)))) (-3451 (((-644 |#4|) (-644 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2796 (((-644 |#4|) (-644 |#4|) $) 19 (|has| |#1| (-558)))) (-3829 (((-644 |#4|) (-644 |#4|) $) 20 (|has| |#1| (-558)))) (-2980 (((-3 $ "failed") (-644 |#4|)) 37)) (-1709 (($ (-644 |#4|)) 36)) (-4091 (((-3 $ "failed") $) 83)) (-3358 ((|#4| |#4| $) 90)) (-4111 (($ $) 69 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4417))))) (-2628 (($ |#4| $) 68 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4417)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4417)))) (-3131 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-558)))) (-1995 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3326 ((|#4| |#4| $) 88)) (-1838 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4417)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4417))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4417))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1877 (((-2 (|:| -1637 (-644 |#4|)) (|:| -3516 (-644 |#4|))) $) 106)) (-2281 (((-112) |#4| $) 137)) (-1646 (((-112) |#4| $) 134)) (-3433 (((-112) |#4| $) 138) (((-112) $) 135)) (-3872 (((-644 |#4|) $) 53 (|has| $ (-6 -4417)))) (-4297 (((-112) |#4| $) 105) (((-112) $) 104)) (-4052 ((|#3| $) 35)) (-2756 (((-112) $ (-771)) 44)) (-4227 (((-644 |#4|) $) 54 (|has| $ (-6 -4417)))) (-1688 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4417))))) (-3708 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#4| |#4|) $) 48)) (-3599 (((-644 |#3|) $) 33)) (-2884 (((-112) |#3| $) 32)) (-4106 (((-112) $ (-771)) 43)) (-3151 (((-1157) $) 10)) (-3421 (((-3 |#4| (-644 $)) |#4| |#4| $) 129)) (-3723 (((-644 (-2 (|:| |val| |#4|) (|:| -2192 $))) |#4| |#4| $) 128)) (-2651 (((-3 |#4| "failed") $) 84)) (-3391 (((-644 $) |#4| $) 130)) (-3680 (((-3 (-112) (-644 $)) |#4| $) 133)) (-3325 (((-644 (-2 (|:| |val| (-112)) (|:| -2192 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-4022 (((-644 $) |#4| $) 126) (((-644 $) (-644 |#4|) $) 125) (((-644 $) (-644 |#4|) (-644 $)) 124) (((-644 $) |#4| (-644 $)) 123)) (-2047 (($ |#4| $) 118) (($ (-644 |#4|) $) 117)) (-3707 (((-644 |#4|) $) 108)) (-4121 (((-112) |#4| $) 100) (((-112) $) 96)) (-3317 ((|#4| |#4| $) 91)) (-3730 (((-112) $ $) 111)) (-1719 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-558)))) (-1695 (((-112) |#4| $) 101) (((-112) $) 97)) (-3869 ((|#4| |#4| $) 92)) (-4059 (((-1119) $) 11)) (-4080 (((-3 |#4| "failed") $) 85)) (-2688 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2293 (((-3 $ "failed") $ |#4|) 79)) (-2050 (($ $ |#4|) 78) (((-644 $) |#4| $) 116) (((-644 $) |#4| (-644 $)) 115) (((-644 $) (-644 |#4|) $) 114) (((-644 $) (-644 |#4|) (-644 $)) 113)) (-3966 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 |#4|) (-644 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-295 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-644 (-295 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))))) (-1844 (((-112) $ $) 39)) (-2788 (((-112) $) 42)) (-1737 (($) 41)) (-1630 (((-771) $) 107)) (-4068 (((-771) |#4| $) 55 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4417)))) (((-771) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4417)))) (-3924 (($ $) 40)) (-3136 (((-538) $) 70 (|has| |#4| (-614 (-538))))) (-2489 (($ (-644 |#4|)) 61)) (-1706 (($ $ |#3|) 29)) (-4234 (($ $ |#3|) 31)) (-4024 (($ $) 89)) (-2378 (($ $ |#3|) 30)) (-2479 (((-862) $) 12) (((-644 |#4|) $) 38)) (-2780 (((-771) $) 77 (|has| |#3| (-370)))) (-3900 (((-112) $ $) 9)) (-2877 (((-3 (-2 (|:| |bas| $) (|:| -3903 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3903 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-4265 (((-112) $ (-1 (-112) |#4| (-644 |#4|))) 99)) (-3437 (((-644 $) |#4| $) 122) (((-644 $) |#4| (-644 $)) 121) (((-644 $) (-644 |#4|) $) 120) (((-644 $) (-644 |#4|) (-644 $)) 119)) (-3667 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4417)))) (-4067 (((-644 |#3|) $) 82)) (-3183 (((-112) |#4| $) 136)) (-3132 (((-112) |#3| $) 81)) (-2952 (((-112) $ $) 6)) (-3002 (((-771) $) 47 (|has| $ (-6 -4417))))) +(((-1108 |#1| |#2| |#3| |#4|) (-140) (-454) (-793) (-850) (-1064 |t#1| |t#2| |t#3|)) (T -1108)) +NIL +(-13 (-1070 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-102) . T) ((-613 (-644 |#4|)) . T) ((-613 (-862)) . T) ((-151 |#4|) . T) ((-614 (-538)) |has| |#4| (-614 (-538))) ((-310 |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))) ((-491 |#4|) . T) ((-516 |#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))) ((-976 |#1| |#2| |#3| |#4|) . T) ((-1070 |#1| |#2| |#3| |#4|) . T) ((-1099) . T) ((-1207 |#1| |#2| |#3| |#4|) . T) ((-1214) . T)) +((-1814 (((-644 (-566)) (-566) (-566) (-566)) 39)) (-1940 (((-644 (-566)) (-566) (-566) (-566)) 29)) (-3350 (((-644 (-566)) (-566) (-566) (-566)) 34)) (-2908 (((-566) (-566) (-566)) 23)) (-1616 (((-1264 (-566)) (-644 (-566)) (-1264 (-566)) (-566)) 75) (((-1264 (-566)) (-1264 (-566)) (-1264 (-566)) (-566)) 70)) (-2922 (((-644 (-566)) (-644 (-566)) (-644 (-566)) (-112)) 52)) (-2519 (((-689 (-566)) (-644 (-566)) (-644 (-566)) (-689 (-566))) 74)) (-1524 (((-689 (-566)) (-644 (-566)) (-644 (-566))) 58)) (-3196 (((-644 (-689 (-566))) (-644 (-566))) 63)) (-3192 (((-644 (-566)) (-644 (-566)) (-644 (-566)) (-689 (-566))) 78)) (-3693 (((-689 (-566)) (-644 (-566)) (-644 (-566)) (-644 (-566))) 88))) +(((-1109) (-10 -7 (-15 -3693 ((-689 (-566)) (-644 (-566)) (-644 (-566)) (-644 (-566)))) (-15 -3192 ((-644 (-566)) (-644 (-566)) (-644 (-566)) (-689 (-566)))) (-15 -3196 ((-644 (-689 (-566))) (-644 (-566)))) (-15 -1524 ((-689 (-566)) (-644 (-566)) (-644 (-566)))) (-15 -2519 ((-689 (-566)) (-644 (-566)) (-644 (-566)) (-689 (-566)))) (-15 -2922 ((-644 (-566)) (-644 (-566)) (-644 (-566)) (-112))) (-15 -1616 ((-1264 (-566)) (-1264 (-566)) (-1264 (-566)) (-566))) (-15 -1616 ((-1264 (-566)) (-644 (-566)) (-1264 (-566)) (-566))) (-15 -2908 ((-566) (-566) (-566))) (-15 -3350 ((-644 (-566)) (-566) (-566) (-566))) (-15 -1940 ((-644 (-566)) (-566) (-566) (-566))) (-15 -1814 ((-644 (-566)) (-566) (-566) (-566))))) (T -1109)) +((-1814 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-1109)) (-5 *3 (-566)))) (-1940 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-1109)) (-5 *3 (-566)))) (-3350 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-1109)) (-5 *3 (-566)))) (-2908 (*1 *2 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-1109)))) (-1616 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1264 (-566))) (-5 *3 (-644 (-566))) (-5 *4 (-566)) (-5 *1 (-1109)))) (-1616 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1264 (-566))) (-5 *3 (-566)) (-5 *1 (-1109)))) (-2922 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-644 (-566))) (-5 *3 (-112)) (-5 *1 (-1109)))) (-2519 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-689 (-566))) (-5 *3 (-644 (-566))) (-5 *1 (-1109)))) (-1524 (*1 *2 *3 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-689 (-566))) (-5 *1 (-1109)))) (-3196 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-644 (-689 (-566)))) (-5 *1 (-1109)))) (-3192 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-644 (-566))) (-5 *3 (-689 (-566))) (-5 *1 (-1109)))) (-3693 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-689 (-566))) (-5 *1 (-1109))))) +(-10 -7 (-15 -3693 ((-689 (-566)) (-644 (-566)) (-644 (-566)) (-644 (-566)))) (-15 -3192 ((-644 (-566)) (-644 (-566)) (-644 (-566)) (-689 (-566)))) (-15 -3196 ((-644 (-689 (-566))) (-644 (-566)))) (-15 -1524 ((-689 (-566)) (-644 (-566)) (-644 (-566)))) (-15 -2519 ((-689 (-566)) (-644 (-566)) (-644 (-566)) (-689 (-566)))) (-15 -2922 ((-644 (-566)) (-644 (-566)) (-644 (-566)) (-112))) (-15 -1616 ((-1264 (-566)) (-1264 (-566)) (-1264 (-566)) (-566))) (-15 -1616 ((-1264 (-566)) (-644 (-566)) (-1264 (-566)) (-566))) (-15 -2908 ((-566) (-566) (-566))) (-15 -3350 ((-644 (-566)) (-566) (-566) (-566))) (-15 -1940 ((-644 (-566)) (-566) (-566) (-566))) (-15 -1814 ((-644 (-566)) (-566) (-566) (-566)))) +((** (($ $ (-921)) 10))) +(((-1110 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-921)))) (-1111)) (T -1110)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-921)))) +((-2986 (((-112) $ $) 7)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-2479 (((-862) $) 12)) (-3900 (((-112) $ $) 9)) (-2952 (((-112) $ $) 6)) (** (($ $ (-921)) 14)) (* (($ $ $) 15))) +(((-1111) (-140)) (T -1111)) +((* (*1 *1 *1 *1) (-4 *1 (-1111))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1111)) (-5 *2 (-921))))) +(-13 (-1099) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-921))))) +(((-102) . T) ((-613 (-862)) . T) ((-1099) . T)) +((-2986 (((-112) $ $) NIL (|has| |#3| (-1099)))) (-2845 (((-112) $) NIL (|has| |#3| (-131)))) (-2680 (($ (-921)) NIL (|has| |#3| (-1049)))) (-2462 (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4418)))) (-4047 (($ $ $) NIL (|has| |#3| (-793)))) (-3174 (((-3 $ "failed") $ $) NIL (|has| |#3| (-131)))) (-1453 (((-112) $ (-771)) NIL)) (-4049 (((-771)) NIL (|has| |#3| (-370)))) (-2920 (((-566) $) NIL (|has| |#3| (-848)))) (-3901 ((|#3| $ (-566) |#3|) NIL (|has| $ (-6 -4418)))) (-1811 (($) NIL T CONST)) (-2980 (((-3 (-566) "failed") $) NIL (-12 (|has| |#3| (-1038 (-566))) (|has| |#3| (-1099)))) (((-3 (-409 (-566)) "failed") $) NIL (-12 (|has| |#3| (-1038 (-409 (-566)))) (|has| |#3| (-1099)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1099)))) (-1709 (((-566) $) NIL (-12 (|has| |#3| (-1038 (-566))) (|has| |#3| (-1099)))) (((-409 (-566)) $) NIL (-12 (|has| |#3| (-1038 (-409 (-566)))) (|has| |#3| (-1099)))) ((|#3| $) NIL (|has| |#3| (-1099)))) (-2275 (((-689 (-566)) (-689 $)) NIL (-12 (|has| |#3| (-639 (-566))) (|has| |#3| (-1049)))) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (-12 (|has| |#3| (-639 (-566))) (|has| |#3| (-1049)))) (((-2 (|:| -4196 (-689 |#3|)) (|:| |vec| (-1264 |#3|))) (-689 $) (-1264 $)) NIL (|has| |#3| (-1049))) (((-689 |#3|) (-689 $)) NIL (|has| |#3| (-1049)))) (-3757 (((-3 $ "failed") $) NIL (|has| |#3| (-726)))) (-1415 (($) NIL (|has| |#3| (-370)))) (-3719 ((|#3| $ (-566) |#3|) NIL (|has| $ (-6 -4418)))) (-3653 ((|#3| $ (-566)) 12)) (-2133 (((-112) $) NIL (|has| |#3| (-848)))) (-3872 (((-644 |#3|) $) NIL (|has| $ (-6 -4417)))) (-2264 (((-112) $) NIL (|has| |#3| (-726)))) (-3420 (((-112) $) NIL (|has| |#3| (-848)))) (-2756 (((-112) $ (-771)) NIL)) (-2755 (((-566) $) NIL (|has| (-566) (-850)))) (-1920 (($ $ $) NIL (-2809 (|has| |#3| (-793)) (|has| |#3| (-848))))) (-4227 (((-644 |#3|) $) NIL (|has| $ (-6 -4417)))) (-1688 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#3| (-1099))))) (-3831 (((-566) $) NIL (|has| (-566) (-850)))) (-3038 (($ $ $) NIL (-2809 (|has| |#3| (-793)) (|has| |#3| (-848))))) (-3708 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#3| |#3|) $) NIL)) (-4051 (((-921) $) NIL (|has| |#3| (-370)))) (-4106 (((-112) $ (-771)) NIL)) (-3151 (((-1157) $) NIL (|has| |#3| (-1099)))) (-3780 (((-644 (-566)) $) NIL)) (-1605 (((-112) (-566) $) NIL)) (-2104 (($ (-921)) NIL (|has| |#3| (-370)))) (-4059 (((-1119) $) NIL (|has| |#3| (-1099)))) (-4080 ((|#3| $) NIL (|has| (-566) (-850)))) (-4079 (($ $ |#3|) NIL (|has| $ (-6 -4418)))) (-3966 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#3|))) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099)))) (($ $ (-295 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099)))) (($ $ (-644 |#3|) (-644 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099))))) (-1844 (((-112) $ $) NIL)) (-2210 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#3| (-1099))))) (-4185 (((-644 |#3|) $) NIL)) (-2788 (((-112) $) NIL)) (-1737 (($) NIL)) (-4376 ((|#3| $ (-566) |#3|) NIL) ((|#3| $ (-566)) NIL)) (-2555 ((|#3| $ $) NIL (|has| |#3| (-1049)))) (-2379 (($ (-1264 |#3|)) NIL)) (-3944 (((-134)) NIL (|has| |#3| (-365)))) (-3526 (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1049)))) (($ $ (-771)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1049)))) (($ $ (-1175)) NIL (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (($ $ (-1 |#3| |#3|) (-771)) NIL (|has| |#3| (-1049))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1049)))) (-4068 (((-771) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4417))) (((-771) |#3| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#3| (-1099))))) (-3924 (($ $) NIL)) (-2479 (((-1264 |#3|) $) NIL) (($ (-566)) NIL (-2809 (-12 (|has| |#3| (-1038 (-566))) (|has| |#3| (-1099))) (|has| |#3| (-1049)))) (($ (-409 (-566))) NIL (-12 (|has| |#3| (-1038 (-409 (-566)))) (|has| |#3| (-1099)))) (($ |#3|) NIL (|has| |#3| (-1099))) (((-862) $) NIL (|has| |#3| (-613 (-862))))) (-1558 (((-771)) NIL (|has| |#3| (-1049)) CONST)) (-3900 (((-112) $ $) NIL (|has| |#3| (-1099)))) (-3667 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4417)))) (-4298 (($ $) NIL (|has| |#3| (-848)))) (-2446 (($) NIL (|has| |#3| (-131)) CONST)) (-2459 (($) NIL (|has| |#3| (-726)) CONST)) (-2834 (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1049)))) (($ $ (-771)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1049)))) (($ $ (-1175)) NIL (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (($ $ (-1 |#3| |#3|) (-771)) NIL (|has| |#3| (-1049))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1049)))) (-3019 (((-112) $ $) NIL (-2809 (|has| |#3| (-793)) (|has| |#3| (-848))))) (-2990 (((-112) $ $) NIL (-2809 (|has| |#3| (-793)) (|has| |#3| (-848))))) (-2952 (((-112) $ $) NIL (|has| |#3| (-1099)))) (-3004 (((-112) $ $) NIL (-2809 (|has| |#3| (-793)) (|has| |#3| (-848))))) (-2977 (((-112) $ $) 24 (-2809 (|has| |#3| (-793)) (|has| |#3| (-848))))) (-3077 (($ $ |#3|) NIL (|has| |#3| (-365)))) (-3065 (($ $ $) NIL (|has| |#3| (-1049))) (($ $) NIL (|has| |#3| (-1049)))) (-3052 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-771)) NIL (|has| |#3| (-726))) (($ $ (-921)) NIL (|has| |#3| (-726)))) (* (($ (-566) $) NIL (|has| |#3| (-1049))) (($ $ $) NIL (|has| |#3| (-726))) (($ $ |#3|) NIL (|has| |#3| (-726))) (($ |#3| $) NIL (|has| |#3| (-726))) (($ (-771) $) NIL (|has| |#3| (-131))) (($ (-921) $) NIL (|has| |#3| (-25)))) (-3002 (((-771) $) NIL (|has| $ (-6 -4417))))) +(((-1112 |#1| |#2| |#3|) (-238 |#1| |#3|) (-771) (-771) (-793)) (T -1112)) NIL (-238 |#1| |#3|) -((-3329 (((-642 (-1235 |#2| |#1|)) (-1235 |#2| |#1|) (-1235 |#2| |#1|)) 53)) (-3460 (((-564) (-1235 |#2| |#1|)) 100 (|has| |#1| (-452)))) (-2551 (((-564) (-1235 |#2| |#1|)) 82)) (-1969 (((-642 (-1235 |#2| |#1|)) (-1235 |#2| |#1|) (-1235 |#2| |#1|)) 63)) (-3229 (((-564) (-1235 |#2| |#1|) (-1235 |#2| |#1|)) 99 (|has| |#1| (-452)))) (-3650 (((-642 |#1|) (-1235 |#2| |#1|) (-1235 |#2| |#1|)) 67)) (-4186 (((-564) (-1235 |#2| |#1|) (-1235 |#2| |#1|)) 81))) -(((-1111 |#1| |#2|) (-10 -7 (-15 -3329 ((-642 (-1235 |#2| |#1|)) (-1235 |#2| |#1|) (-1235 |#2| |#1|))) (-15 -1969 ((-642 (-1235 |#2| |#1|)) (-1235 |#2| |#1|) (-1235 |#2| |#1|))) (-15 -3650 ((-642 |#1|) (-1235 |#2| |#1|) (-1235 |#2| |#1|))) (-15 -4186 ((-564) (-1235 |#2| |#1|) (-1235 |#2| |#1|))) (-15 -2551 ((-564) (-1235 |#2| |#1|))) (IF (|has| |#1| (-452)) (PROGN (-15 -3229 ((-564) (-1235 |#2| |#1|) (-1235 |#2| |#1|))) (-15 -3460 ((-564) (-1235 |#2| |#1|)))) |%noBranch|)) (-818) (-1173)) (T -1111)) -((-3460 (*1 *2 *3) (-12 (-5 *3 (-1235 *5 *4)) (-4 *4 (-452)) (-4 *4 (-818)) (-14 *5 (-1173)) (-5 *2 (-564)) (-5 *1 (-1111 *4 *5)))) (-3229 (*1 *2 *3 *3) (-12 (-5 *3 (-1235 *5 *4)) (-4 *4 (-452)) (-4 *4 (-818)) (-14 *5 (-1173)) (-5 *2 (-564)) (-5 *1 (-1111 *4 *5)))) (-2551 (*1 *2 *3) (-12 (-5 *3 (-1235 *5 *4)) (-4 *4 (-818)) (-14 *5 (-1173)) (-5 *2 (-564)) (-5 *1 (-1111 *4 *5)))) (-4186 (*1 *2 *3 *3) (-12 (-5 *3 (-1235 *5 *4)) (-4 *4 (-818)) (-14 *5 (-1173)) (-5 *2 (-564)) (-5 *1 (-1111 *4 *5)))) (-3650 (*1 *2 *3 *3) (-12 (-5 *3 (-1235 *5 *4)) (-4 *4 (-818)) (-14 *5 (-1173)) (-5 *2 (-642 *4)) (-5 *1 (-1111 *4 *5)))) (-1969 (*1 *2 *3 *3) (-12 (-4 *4 (-818)) (-14 *5 (-1173)) (-5 *2 (-642 (-1235 *5 *4))) (-5 *1 (-1111 *4 *5)) (-5 *3 (-1235 *5 *4)))) (-3329 (*1 *2 *3 *3) (-12 (-4 *4 (-818)) (-14 *5 (-1173)) (-5 *2 (-642 (-1235 *5 *4))) (-5 *1 (-1111 *4 *5)) (-5 *3 (-1235 *5 *4))))) -(-10 -7 (-15 -3329 ((-642 (-1235 |#2| |#1|)) (-1235 |#2| |#1|) (-1235 |#2| |#1|))) (-15 -1969 ((-642 (-1235 |#2| |#1|)) (-1235 |#2| |#1|) (-1235 |#2| |#1|))) (-15 -3650 ((-642 |#1|) (-1235 |#2| |#1|) (-1235 |#2| |#1|))) (-15 -4186 ((-564) (-1235 |#2| |#1|) (-1235 |#2| |#1|))) (-15 -2551 ((-564) (-1235 |#2| |#1|))) (IF (|has| |#1| (-452)) (PROGN (-15 -3229 ((-564) (-1235 |#2| |#1|) (-1235 |#2| |#1|))) (-15 -3460 ((-564) (-1235 |#2| |#1|)))) |%noBranch|)) -((-2856 (((-112) $ $) NIL)) (-2539 (($ (-506) (-1115)) 13)) (-2880 (((-1115) $) 19)) (-2493 (((-506) $) 16)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) 26) (($ (-1178)) NIL) (((-1178) $) NIL)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-1112) (-13 (-1080) (-10 -8 (-15 -2539 ($ (-506) (-1115))) (-15 -2493 ((-506) $)) (-15 -2880 ((-1115) $))))) (T -1112)) -((-2539 (*1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-1115)) (-5 *1 (-1112)))) (-2493 (*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-1112)))) (-2880 (*1 *2 *1) (-12 (-5 *2 (-1115)) (-5 *1 (-1112))))) -(-13 (-1080) (-10 -8 (-15 -2539 ($ (-506) (-1115))) (-15 -2493 ((-506) $)) (-15 -2880 ((-1115) $)))) -((-2221 (((-3 (-564) "failed") |#2| (-1173) |#2| (-1155)) 19) (((-3 (-564) "failed") |#2| (-1173) (-841 |#2|)) 17) (((-3 (-564) "failed") |#2|) 60))) -(((-1113 |#1| |#2|) (-10 -7 (-15 -2221 ((-3 (-564) "failed") |#2|)) (-15 -2221 ((-3 (-564) "failed") |#2| (-1173) (-841 |#2|))) (-15 -2221 ((-3 (-564) "failed") |#2| (-1173) |#2| (-1155)))) (-13 (-556) (-1036 (-564)) (-637 (-564)) (-452)) (-13 (-27) (-1197) (-430 |#1|))) (T -1113)) -((-2221 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1173)) (-5 *5 (-1155)) (-4 *6 (-13 (-556) (-1036 *2) (-637 *2) (-452))) (-5 *2 (-564)) (-5 *1 (-1113 *6 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *6))))) (-2221 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1173)) (-5 *5 (-841 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *6))) (-4 *6 (-13 (-556) (-1036 *2) (-637 *2) (-452))) (-5 *2 (-564)) (-5 *1 (-1113 *6 *3)))) (-2221 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-556) (-1036 *2) (-637 *2) (-452))) (-5 *2 (-564)) (-5 *1 (-1113 *4 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *4)))))) -(-10 -7 (-15 -2221 ((-3 (-564) "failed") |#2|)) (-15 -2221 ((-3 (-564) "failed") |#2| (-1173) (-841 |#2|))) (-15 -2221 ((-3 (-564) "failed") |#2| (-1173) |#2| (-1155)))) -((-2221 (((-3 (-564) "failed") (-407 (-950 |#1|)) (-1173) (-407 (-950 |#1|)) (-1155)) 38) (((-3 (-564) "failed") (-407 (-950 |#1|)) (-1173) (-841 (-407 (-950 |#1|)))) 33) (((-3 (-564) "failed") (-407 (-950 |#1|))) 14))) -(((-1114 |#1|) (-10 -7 (-15 -2221 ((-3 (-564) "failed") (-407 (-950 |#1|)))) (-15 -2221 ((-3 (-564) "failed") (-407 (-950 |#1|)) (-1173) (-841 (-407 (-950 |#1|))))) (-15 -2221 ((-3 (-564) "failed") (-407 (-950 |#1|)) (-1173) (-407 (-950 |#1|)) (-1155)))) (-452)) (T -1114)) -((-2221 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-407 (-950 *6))) (-5 *4 (-1173)) (-5 *5 (-1155)) (-4 *6 (-452)) (-5 *2 (-564)) (-5 *1 (-1114 *6)))) (-2221 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1173)) (-5 *5 (-841 (-407 (-950 *6)))) (-5 *3 (-407 (-950 *6))) (-4 *6 (-452)) (-5 *2 (-564)) (-5 *1 (-1114 *6)))) (-2221 (*1 *2 *3) (|partial| -12 (-5 *3 (-407 (-950 *4))) (-4 *4 (-452)) (-5 *2 (-564)) (-5 *1 (-1114 *4))))) -(-10 -7 (-15 -2221 ((-3 (-564) "failed") (-407 (-950 |#1|)))) (-15 -2221 ((-3 (-564) "failed") (-407 (-950 |#1|)) (-1173) (-841 (-407 (-950 |#1|))))) (-15 -2221 ((-3 (-564) "failed") (-407 (-950 |#1|)) (-1173) (-407 (-950 |#1|)) (-1155)))) -((-2856 (((-112) $ $) NIL)) (-3775 (((-1178) $) 12)) (-3717 (((-642 (-1178)) $) 14)) (-2880 (($ (-642 (-1178)) (-1178)) 10)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) 29)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) 17))) -(((-1115) (-13 (-1097) (-10 -8 (-15 -2880 ($ (-642 (-1178)) (-1178))) (-15 -3775 ((-1178) $)) (-15 -3717 ((-642 (-1178)) $))))) (T -1115)) -((-2880 (*1 *1 *2 *3) (-12 (-5 *2 (-642 (-1178))) (-5 *3 (-1178)) (-5 *1 (-1115)))) (-3775 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1115)))) (-3717 (*1 *2 *1) (-12 (-5 *2 (-642 (-1178))) (-5 *1 (-1115))))) -(-13 (-1097) (-10 -8 (-15 -2880 ($ (-642 (-1178)) (-1178))) (-15 -3775 ((-1178) $)) (-15 -3717 ((-642 (-1178)) $)))) -((-3430 (((-316 (-564)) (-48)) 12))) -(((-1116) (-10 -7 (-15 -3430 ((-316 (-564)) (-48))))) (T -1116)) -((-3430 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-316 (-564))) (-5 *1 (-1116))))) -(-10 -7 (-15 -3430 ((-316 (-564)) (-48)))) -((-2856 (((-112) $ $) NIL)) (-2866 (($ $) 44)) (-2950 (((-112) $) 69)) (-2341 (($ $ $) 51)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) 97)) (-4252 (($ $) NIL)) (-1722 (((-112) $) NIL)) (-2290 (($ $ $) NIL)) (-3085 (((-3 $ "failed") $ $) NIL)) (-4062 (($ $ $ $) 80)) (-1993 (($ $) NIL)) (-3282 (((-418 $) $) NIL)) (-2134 (((-112) $ $) NIL)) (-4003 (((-769)) 82)) (-2221 (((-564) $) NIL)) (-2966 (($ $ $) 77)) (-2822 (($) NIL T CONST)) (-2849 (((-3 (-564) "failed") $) NIL)) (-1687 (((-564) $) NIL)) (-2796 (($ $ $) 63)) (-3330 (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) 91) (((-687 (-564)) (-687 $)) 32)) (-2675 (((-3 $ "failed") $) NIL)) (-3227 (((-3 (-407 (-564)) "failed") $) NIL)) (-2929 (((-112) $) NIL)) (-3536 (((-407 (-564)) $) NIL)) (-3235 (($) 94) (($ $) 95)) (-2808 (($ $ $) 62)) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) NIL)) (-3552 (((-112) $) NIL)) (-1454 (($ $ $ $) NIL)) (-2271 (($ $ $) 92)) (-3292 (((-112) $) NIL)) (-2641 (($ $ $) NIL)) (-1381 (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) NIL)) (-3163 (((-112) $) 71)) (-2829 (((-112) $) 68)) (-2307 (($ $) 45)) (-4382 (((-3 $ "failed") $) NIL)) (-2666 (((-112) $) 81)) (-2709 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-1957 (($ $ $ $) 78)) (-3225 (($ $ $) 73) (($) 42 T CONST)) (-2903 (($ $ $) 72) (($) 41 T CONST)) (-1526 (($ $) NIL)) (-2535 (((-919) $) 87)) (-2495 (($ $) 76)) (-2066 (($ $ $) NIL) (($ (-642 $)) NIL)) (-1778 (((-1155) $) NIL)) (-3010 (($ $ $) NIL)) (-3910 (($) NIL T CONST)) (-2065 (($ (-919)) 86)) (-4258 (($ $) 56)) (-3999 (((-1117) $) 75)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2105 (($ $ $) 66) (($ (-642 $)) NIL)) (-1420 (($ $) NIL)) (-2254 (((-418 $) $) NIL)) (-1877 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL)) (-2842 (((-3 $ "failed") $ $) NIL)) (-1483 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2211 (((-112) $) NIL)) (-4274 (((-769) $) NIL)) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) 65)) (-2199 (($ $ (-769)) NIL) (($ $) NIL)) (-1855 (($ $) 57)) (-3865 (($ $) NIL)) (-3003 (((-564) $) 17) (((-536) $) NIL) (((-890 (-564)) $) NIL) (((-379) $) NIL) (((-225) $) NIL)) (-2390 (((-860) $) 35) (($ (-564)) 93) (($ $) NIL) (($ (-564)) 93)) (-3348 (((-769)) NIL T CONST)) (-3029 (((-112) $ $) NIL)) (-4271 (($ $ $) NIL)) (-1600 (((-112) $ $) NIL)) (-1959 (($) 40)) (-1594 (((-112) $ $) NIL)) (-3234 (($ $ $ $) 79)) (-1630 (($ $) 67)) (-2915 (($ $ $) 47)) (-2361 (($) 7 T CONST)) (-2073 (($ $ $) 50)) (-2371 (($) 39 T CONST)) (-3816 (((-1155) $) 26) (((-1155) $ (-112)) 27) (((-1267) (-820) $) 28) (((-1267) (-820) $ (-112)) 29)) (-2087 (($ $) 48)) (-2711 (($ $ (-769)) NIL) (($ $) NIL)) (-2061 (($ $ $) 49)) (-2881 (((-112) $ $) 55)) (-2857 (((-112) $ $) 52)) (-2821 (((-112) $ $) 43)) (-2868 (((-112) $ $) 54)) (-2844 (((-112) $ $) 10)) (-2902 (($ $ $) 46)) (-2930 (($ $) 16) (($ $ $) 59)) (-2917 (($ $ $) 58)) (** (($ $ (-919)) NIL) (($ $ (-769)) 61)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 38) (($ $ $) 37))) -(((-1117) (-13 (-545) (-842) (-659) (-826) (-10 -8 (-6 -4397) (-6 -4402) (-6 -4398) (-15 -2307 ($ $)) (-15 -2341 ($ $ $)) (-15 -2087 ($ $)) (-15 -2061 ($ $ $)) (-15 -2073 ($ $ $))))) (T -1117)) -((-2307 (*1 *1 *1) (-5 *1 (-1117))) (-2341 (*1 *1 *1 *1) (-5 *1 (-1117))) (-2087 (*1 *1 *1) (-5 *1 (-1117))) (-2061 (*1 *1 *1 *1) (-5 *1 (-1117))) (-2073 (*1 *1 *1 *1) (-5 *1 (-1117)))) -(-13 (-545) (-842) (-659) (-826) (-10 -8 (-6 -4397) (-6 -4402) (-6 -4398) (-15 -2307 ($ $)) (-15 -2341 ($ $ $)) (-15 -2087 ($ $)) (-15 -2061 ($ $ $)) (-15 -2073 ($ $ $)))) +((-1865 (((-644 (-1237 |#2| |#1|)) (-1237 |#2| |#1|) (-1237 |#2| |#1|)) 53)) (-1967 (((-566) (-1237 |#2| |#1|)) 100 (|has| |#1| (-454)))) (-1880 (((-566) (-1237 |#2| |#1|)) 82)) (-2448 (((-644 (-1237 |#2| |#1|)) (-1237 |#2| |#1|) (-1237 |#2| |#1|)) 63)) (-3928 (((-566) (-1237 |#2| |#1|) (-1237 |#2| |#1|)) 99 (|has| |#1| (-454)))) (-2032 (((-644 |#1|) (-1237 |#2| |#1|) (-1237 |#2| |#1|)) 67)) (-3029 (((-566) (-1237 |#2| |#1|) (-1237 |#2| |#1|)) 81))) +(((-1113 |#1| |#2|) (-10 -7 (-15 -1865 ((-644 (-1237 |#2| |#1|)) (-1237 |#2| |#1|) (-1237 |#2| |#1|))) (-15 -2448 ((-644 (-1237 |#2| |#1|)) (-1237 |#2| |#1|) (-1237 |#2| |#1|))) (-15 -2032 ((-644 |#1|) (-1237 |#2| |#1|) (-1237 |#2| |#1|))) (-15 -3029 ((-566) (-1237 |#2| |#1|) (-1237 |#2| |#1|))) (-15 -1880 ((-566) (-1237 |#2| |#1|))) (IF (|has| |#1| (-454)) (PROGN (-15 -3928 ((-566) (-1237 |#2| |#1|) (-1237 |#2| |#1|))) (-15 -1967 ((-566) (-1237 |#2| |#1|)))) |%noBranch|)) (-820) (-1175)) (T -1113)) +((-1967 (*1 *2 *3) (-12 (-5 *3 (-1237 *5 *4)) (-4 *4 (-454)) (-4 *4 (-820)) (-14 *5 (-1175)) (-5 *2 (-566)) (-5 *1 (-1113 *4 *5)))) (-3928 (*1 *2 *3 *3) (-12 (-5 *3 (-1237 *5 *4)) (-4 *4 (-454)) (-4 *4 (-820)) (-14 *5 (-1175)) (-5 *2 (-566)) (-5 *1 (-1113 *4 *5)))) (-1880 (*1 *2 *3) (-12 (-5 *3 (-1237 *5 *4)) (-4 *4 (-820)) (-14 *5 (-1175)) (-5 *2 (-566)) (-5 *1 (-1113 *4 *5)))) (-3029 (*1 *2 *3 *3) (-12 (-5 *3 (-1237 *5 *4)) (-4 *4 (-820)) (-14 *5 (-1175)) (-5 *2 (-566)) (-5 *1 (-1113 *4 *5)))) (-2032 (*1 *2 *3 *3) (-12 (-5 *3 (-1237 *5 *4)) (-4 *4 (-820)) (-14 *5 (-1175)) (-5 *2 (-644 *4)) (-5 *1 (-1113 *4 *5)))) (-2448 (*1 *2 *3 *3) (-12 (-4 *4 (-820)) (-14 *5 (-1175)) (-5 *2 (-644 (-1237 *5 *4))) (-5 *1 (-1113 *4 *5)) (-5 *3 (-1237 *5 *4)))) (-1865 (*1 *2 *3 *3) (-12 (-4 *4 (-820)) (-14 *5 (-1175)) (-5 *2 (-644 (-1237 *5 *4))) (-5 *1 (-1113 *4 *5)) (-5 *3 (-1237 *5 *4))))) +(-10 -7 (-15 -1865 ((-644 (-1237 |#2| |#1|)) (-1237 |#2| |#1|) (-1237 |#2| |#1|))) (-15 -2448 ((-644 (-1237 |#2| |#1|)) (-1237 |#2| |#1|) (-1237 |#2| |#1|))) (-15 -2032 ((-644 |#1|) (-1237 |#2| |#1|) (-1237 |#2| |#1|))) (-15 -3029 ((-566) (-1237 |#2| |#1|) (-1237 |#2| |#1|))) (-15 -1880 ((-566) (-1237 |#2| |#1|))) (IF (|has| |#1| (-454)) (PROGN (-15 -3928 ((-566) (-1237 |#2| |#1|) (-1237 |#2| |#1|))) (-15 -1967 ((-566) (-1237 |#2| |#1|)))) |%noBranch|)) +((-2986 (((-112) $ $) NIL)) (-2740 (($ (-508) (-1117)) 13)) (-3015 (((-1117) $) 19)) (-2598 (((-508) $) 16)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) 26) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-1114) (-13 (-1082) (-10 -8 (-15 -2740 ($ (-508) (-1117))) (-15 -2598 ((-508) $)) (-15 -3015 ((-1117) $))))) (T -1114)) +((-2740 (*1 *1 *2 *3) (-12 (-5 *2 (-508)) (-5 *3 (-1117)) (-5 *1 (-1114)))) (-2598 (*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-1114)))) (-3015 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1114))))) +(-13 (-1082) (-10 -8 (-15 -2740 ($ (-508) (-1117))) (-15 -2598 ((-508) $)) (-15 -3015 ((-1117) $)))) +((-2920 (((-3 (-566) "failed") |#2| (-1175) |#2| (-1157)) 19) (((-3 (-566) "failed") |#2| (-1175) (-843 |#2|)) 17) (((-3 (-566) "failed") |#2|) 60))) +(((-1115 |#1| |#2|) (-10 -7 (-15 -2920 ((-3 (-566) "failed") |#2|)) (-15 -2920 ((-3 (-566) "failed") |#2| (-1175) (-843 |#2|))) (-15 -2920 ((-3 (-566) "failed") |#2| (-1175) |#2| (-1157)))) (-13 (-558) (-1038 (-566)) (-639 (-566)) (-454)) (-13 (-27) (-1199) (-432 |#1|))) (T -1115)) +((-2920 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1175)) (-5 *5 (-1157)) (-4 *6 (-13 (-558) (-1038 *2) (-639 *2) (-454))) (-5 *2 (-566)) (-5 *1 (-1115 *6 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *6))))) (-2920 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1175)) (-5 *5 (-843 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *6))) (-4 *6 (-13 (-558) (-1038 *2) (-639 *2) (-454))) (-5 *2 (-566)) (-5 *1 (-1115 *6 *3)))) (-2920 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-558) (-1038 *2) (-639 *2) (-454))) (-5 *2 (-566)) (-5 *1 (-1115 *4 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *4)))))) +(-10 -7 (-15 -2920 ((-3 (-566) "failed") |#2|)) (-15 -2920 ((-3 (-566) "failed") |#2| (-1175) (-843 |#2|))) (-15 -2920 ((-3 (-566) "failed") |#2| (-1175) |#2| (-1157)))) +((-2920 (((-3 (-566) "failed") (-409 (-952 |#1|)) (-1175) (-409 (-952 |#1|)) (-1157)) 38) (((-3 (-566) "failed") (-409 (-952 |#1|)) (-1175) (-843 (-409 (-952 |#1|)))) 33) (((-3 (-566) "failed") (-409 (-952 |#1|))) 14))) +(((-1116 |#1|) (-10 -7 (-15 -2920 ((-3 (-566) "failed") (-409 (-952 |#1|)))) (-15 -2920 ((-3 (-566) "failed") (-409 (-952 |#1|)) (-1175) (-843 (-409 (-952 |#1|))))) (-15 -2920 ((-3 (-566) "failed") (-409 (-952 |#1|)) (-1175) (-409 (-952 |#1|)) (-1157)))) (-454)) (T -1116)) +((-2920 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-409 (-952 *6))) (-5 *4 (-1175)) (-5 *5 (-1157)) (-4 *6 (-454)) (-5 *2 (-566)) (-5 *1 (-1116 *6)))) (-2920 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1175)) (-5 *5 (-843 (-409 (-952 *6)))) (-5 *3 (-409 (-952 *6))) (-4 *6 (-454)) (-5 *2 (-566)) (-5 *1 (-1116 *6)))) (-2920 (*1 *2 *3) (|partial| -12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-454)) (-5 *2 (-566)) (-5 *1 (-1116 *4))))) +(-10 -7 (-15 -2920 ((-3 (-566) "failed") (-409 (-952 |#1|)))) (-15 -2920 ((-3 (-566) "failed") (-409 (-952 |#1|)) (-1175) (-843 (-409 (-952 |#1|))))) (-15 -2920 ((-3 (-566) "failed") (-409 (-952 |#1|)) (-1175) (-409 (-952 |#1|)) (-1157)))) +((-2986 (((-112) $ $) NIL)) (-3835 (((-1180) $) 12)) (-3785 (((-644 (-1180)) $) 14)) (-3015 (($ (-644 (-1180)) (-1180)) 10)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) 29)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 17))) +(((-1117) (-13 (-1099) (-10 -8 (-15 -3015 ($ (-644 (-1180)) (-1180))) (-15 -3835 ((-1180) $)) (-15 -3785 ((-644 (-1180)) $))))) (T -1117)) +((-3015 (*1 *1 *2 *3) (-12 (-5 *2 (-644 (-1180))) (-5 *3 (-1180)) (-5 *1 (-1117)))) (-3835 (*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-1117)))) (-3785 (*1 *2 *1) (-12 (-5 *2 (-644 (-1180))) (-5 *1 (-1117))))) +(-13 (-1099) (-10 -8 (-15 -3015 ($ (-644 (-1180)) (-1180))) (-15 -3835 ((-1180) $)) (-15 -3785 ((-644 (-1180)) $)))) +((-3370 (((-317 (-566)) (-48)) 12))) +(((-1118) (-10 -7 (-15 -3370 ((-317 (-566)) (-48))))) (T -1118)) +((-3370 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-317 (-566))) (-5 *1 (-1118))))) +(-10 -7 (-15 -3370 ((-317 (-566)) (-48)))) +((-2986 (((-112) $ $) NIL)) (-3014 (($ $) 44)) (-2845 (((-112) $) 69)) (-2426 (($ $ $) 51)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) 97)) (-3087 (($ $) NIL)) (-1716 (((-112) $) NIL)) (-2590 (($ $ $) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-1538 (($ $ $ $) 80)) (-3980 (($ $) NIL)) (-3348 (((-420 $) $) NIL)) (-2761 (((-112) $ $) NIL)) (-4049 (((-771)) 82)) (-2920 (((-566) $) NIL)) (-3099 (($ $ $) 77)) (-1811 (($) NIL T CONST)) (-2980 (((-3 (-566) "failed") $) NIL)) (-1709 (((-566) $) NIL)) (-2925 (($ $ $) 63)) (-2275 (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) 91) (((-689 (-566)) (-689 $)) 32)) (-3757 (((-3 $ "failed") $) NIL)) (-2515 (((-3 (-409 (-566)) "failed") $) NIL)) (-2024 (((-112) $) NIL)) (-3330 (((-409 (-566)) $) NIL)) (-1415 (($) 94) (($ $) 95)) (-2937 (($ $ $) 62)) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) NIL)) (-4188 (((-112) $) NIL)) (-1328 (($ $ $ $) NIL)) (-1387 (($ $ $) 92)) (-2133 (((-112) $) NIL)) (-1655 (($ $ $) NIL)) (-1542 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL)) (-2264 (((-112) $) 71)) (-3400 (((-112) $) 68)) (-2387 (($ $) 45)) (-4278 (((-3 $ "failed") $) NIL)) (-3420 (((-112) $) 81)) (-2495 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2731 (($ $ $ $) 78)) (-1920 (($ $ $) 73) (($) 42 T CONST)) (-3038 (($ $ $) 72) (($) 41 T CONST)) (-1546 (($ $) NIL)) (-4051 (((-921) $) 87)) (-4332 (($ $) 76)) (-2120 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3151 (((-1157) $) NIL)) (-1432 (($ $ $) NIL)) (-3968 (($) NIL T CONST)) (-2104 (($ (-921)) 86)) (-4282 (($ $) 56)) (-4059 (((-1119) $) 75)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2162 (($ $ $) 66) (($ (-644 $)) NIL)) (-2259 (($ $) NIL)) (-2325 (((-420 $) $) NIL)) (-2585 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL)) (-2976 (((-3 $ "failed") $ $) NIL)) (-2840 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2206 (((-112) $) NIL)) (-1383 (((-771) $) NIL)) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) 65)) (-3526 (($ $ (-771)) NIL) (($ $) NIL)) (-3166 (($ $) 57)) (-3924 (($ $) NIL)) (-3136 (((-566) $) 17) (((-538) $) NIL) (((-892 (-566)) $) NIL) (((-381) $) NIL) (((-225) $) NIL)) (-2479 (((-862) $) 35) (($ (-566)) 93) (($ $) NIL) (($ (-566)) 93)) (-1558 (((-771)) NIL T CONST)) (-3556 (((-112) $ $) NIL)) (-1835 (($ $ $) NIL)) (-3900 (((-112) $ $) NIL)) (-3810 (($) 40)) (-1333 (((-112) $ $) NIL)) (-3751 (($ $ $ $) 79)) (-4298 (($ $) 67)) (-3062 (($ $ $) 47)) (-2446 (($) 7 T CONST)) (-2114 (($ $ $) 50)) (-2459 (($) 39 T CONST)) (-2835 (((-1157) $) 26) (((-1157) $ (-112)) 27) (((-1269) (-822) $) 28) (((-1269) (-822) $ (-112)) 29)) (-2128 (($ $) 48)) (-2834 (($ $ (-771)) NIL) (($ $) NIL)) (-2101 (($ $ $) 49)) (-3019 (((-112) $ $) 55)) (-2990 (((-112) $ $) 52)) (-2952 (((-112) $ $) 43)) (-3004 (((-112) $ $) 54)) (-2977 (((-112) $ $) 10)) (-3046 (($ $ $) 46)) (-3065 (($ $) 16) (($ $ $) 59)) (-3052 (($ $ $) 58)) (** (($ $ (-921)) NIL) (($ $ (-771)) 61)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 38) (($ $ $) 37))) +(((-1119) (-13 (-547) (-844) (-661) (-828) (-10 -8 (-6 -4404) (-6 -4409) (-6 -4405) (-15 -2387 ($ $)) (-15 -2426 ($ $ $)) (-15 -2128 ($ $)) (-15 -2101 ($ $ $)) (-15 -2114 ($ $ $))))) (T -1119)) +((-2387 (*1 *1 *1) (-5 *1 (-1119))) (-2426 (*1 *1 *1 *1) (-5 *1 (-1119))) (-2128 (*1 *1 *1) (-5 *1 (-1119))) (-2101 (*1 *1 *1 *1) (-5 *1 (-1119))) (-2114 (*1 *1 *1 *1) (-5 *1 (-1119)))) +(-13 (-547) (-844) (-661) (-828) (-10 -8 (-6 -4404) (-6 -4409) (-6 -4405) (-15 -2387 ($ $)) (-15 -2426 ($ $ $)) (-15 -2128 ($ $)) (-15 -2101 ($ $ $)) (-15 -2114 ($ $ $)))) ((|Integer|) (SMINTP |#1|)) -((-2856 (((-112) $ $) 19 (|has| |#1| (-1097)))) (-3844 ((|#1| $) 45)) (-3442 (((-112) $ (-769)) 8)) (-2822 (($) 7 T CONST)) (-1881 ((|#1| |#1| $) 47)) (-3949 ((|#1| $) 46)) (-2018 (((-642 |#1|) $) 31 (|has| $ (-6 -4410)))) (-3769 (((-112) $ (-769)) 9)) (-3541 (((-642 |#1|) $) 30 (|has| $ (-6 -4410)))) (-2533 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-1857 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#1| |#1|) $) 36)) (-4145 (((-112) $ (-769)) 10)) (-1778 (((-1155) $) 22 (|has| |#1| (-1097)))) (-3220 ((|#1| $) 40)) (-1668 (($ |#1| $) 41)) (-3999 (((-1117) $) 21 (|has| |#1| (-1097)))) (-4314 ((|#1| $) 42)) (-4094 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-2478 (((-112) $ $) 14)) (-4109 (((-112) $) 11)) (-2179 (($) 12)) (-2085 (((-769) $) 44)) (-4010 (((-769) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4410))) (((-769) |#1| $) 29 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3865 (($ $) 13)) (-2390 (((-860) $) 18 (|has| |#1| (-611 (-860))))) (-1600 (((-112) $ $) 23 (|has| |#1| (-1097)))) (-4160 (($ (-642 |#1|)) 43)) (-3295 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4410)))) (-2821 (((-112) $ $) 20 (|has| |#1| (-1097)))) (-2158 (((-769) $) 6 (|has| $ (-6 -4410))))) -(((-1118 |#1|) (-140) (-1212)) (T -1118)) -((-1881 (*1 *2 *2 *1) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1212)))) (-3949 (*1 *2 *1) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1212)))) (-3844 (*1 *2 *1) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1212)))) (-2085 (*1 *2 *1) (-12 (-4 *1 (-1118 *3)) (-4 *3 (-1212)) (-5 *2 (-769))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4410) (-15 -1881 (|t#1| |t#1| $)) (-15 -3949 (|t#1| $)) (-15 -3844 (|t#1| $)) (-15 -2085 ((-769) $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1097)) ((-611 (-860)) -2682 (|has| |#1| (-1097)) (|has| |#1| (-611 (-860)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-1097) |has| |#1| (-1097)) ((-1212) . T)) -((-3778 ((|#3| $) 87)) (-2849 (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 |#3| "failed") $) 50)) (-1687 (((-564) $) NIL) (((-407 (-564)) $) NIL) ((|#3| $) 47)) (-3330 (((-687 (-564)) (-687 $)) NIL) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL) (((-2 (|:| -3544 (-687 |#3|)) (|:| |vec| (-1262 |#3|))) (-687 $) (-1262 $)) 84) (((-687 |#3|) (-687 $)) 76)) (-2199 (($ $ (-1 |#3| |#3|)) 28) (($ $ (-1 |#3| |#3|) (-769)) NIL) (($ $ (-642 (-1173)) (-642 (-769))) NIL) (($ $ (-1173) (-769)) NIL) (($ $ (-642 (-1173))) NIL) (($ $ (-1173)) NIL) (($ $ (-769)) NIL) (($ $) NIL)) (-1490 ((|#3| $) 89)) (-3752 ((|#4| $) 43)) (-2390 (((-860) $) NIL) (($ (-564)) NIL) (($ (-407 (-564))) NIL) (($ |#3|) 25)) (** (($ $ (-919)) NIL) (($ $ (-769)) 24) (($ $ (-564)) 95))) -(((-1119 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-564))) (-15 -1490 (|#3| |#1|)) (-15 -3778 (|#3| |#1|)) (-15 -3752 (|#4| |#1|)) (-15 -3330 ((-687 |#3|) (-687 |#1|))) (-15 -3330 ((-2 (|:| -3544 (-687 |#3|)) (|:| |vec| (-1262 |#3|))) (-687 |#1|) (-1262 |#1|))) (-15 -3330 ((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 |#1|) (-1262 |#1|))) (-15 -3330 ((-687 (-564)) (-687 |#1|))) (-15 -2390 (|#1| |#3|)) (-15 -2849 ((-3 |#3| "failed") |#1|)) (-15 -1687 (|#3| |#1|)) (-15 -1687 ((-407 (-564)) |#1|)) (-15 -2849 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2390 (|#1| (-407 (-564)))) (-15 -1687 ((-564) |#1|)) (-15 -2849 ((-3 (-564) "failed") |#1|)) (-15 -2199 (|#1| |#1|)) (-15 -2199 (|#1| |#1| (-769))) (-15 -2199 (|#1| |#1| (-1173))) (-15 -2199 (|#1| |#1| (-642 (-1173)))) (-15 -2199 (|#1| |#1| (-1173) (-769))) (-15 -2199 (|#1| |#1| (-642 (-1173)) (-642 (-769)))) (-15 -2199 (|#1| |#1| (-1 |#3| |#3|) (-769))) (-15 -2199 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2390 (|#1| (-564))) (-15 ** (|#1| |#1| (-769))) (-15 ** (|#1| |#1| (-919))) (-15 -2390 ((-860) |#1|))) (-1120 |#2| |#3| |#4| |#5|) (-769) (-1047) (-238 |#2| |#3|) (-238 |#2| |#3|)) (T -1119)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-564))) (-15 -1490 (|#3| |#1|)) (-15 -3778 (|#3| |#1|)) (-15 -3752 (|#4| |#1|)) (-15 -3330 ((-687 |#3|) (-687 |#1|))) (-15 -3330 ((-2 (|:| -3544 (-687 |#3|)) (|:| |vec| (-1262 |#3|))) (-687 |#1|) (-1262 |#1|))) (-15 -3330 ((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 |#1|) (-1262 |#1|))) (-15 -3330 ((-687 (-564)) (-687 |#1|))) (-15 -2390 (|#1| |#3|)) (-15 -2849 ((-3 |#3| "failed") |#1|)) (-15 -1687 (|#3| |#1|)) (-15 -1687 ((-407 (-564)) |#1|)) (-15 -2849 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2390 (|#1| (-407 (-564)))) (-15 -1687 ((-564) |#1|)) (-15 -2849 ((-3 (-564) "failed") |#1|)) (-15 -2199 (|#1| |#1|)) (-15 -2199 (|#1| |#1| (-769))) (-15 -2199 (|#1| |#1| (-1173))) (-15 -2199 (|#1| |#1| (-642 (-1173)))) (-15 -2199 (|#1| |#1| (-1173) (-769))) (-15 -2199 (|#1| |#1| (-642 (-1173)) (-642 (-769)))) (-15 -2199 (|#1| |#1| (-1 |#3| |#3|) (-769))) (-15 -2199 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2390 (|#1| (-564))) (-15 ** (|#1| |#1| (-769))) (-15 ** (|#1| |#1| (-919))) (-15 -2390 ((-860) |#1|))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-3778 ((|#2| $) 77)) (-1382 (((-112) $) 117)) (-3085 (((-3 $ "failed") $ $) 20)) (-3382 (((-112) $) 115)) (-3442 (((-112) $ (-769)) 107)) (-3859 (($ |#2|) 80)) (-2822 (($) 18 T CONST)) (-2389 (($ $) 134 (|has| |#2| (-307)))) (-2794 ((|#3| $ (-564)) 129)) (-2849 (((-3 (-564) "failed") $) 92 (|has| |#2| (-1036 (-564)))) (((-3 (-407 (-564)) "failed") $) 89 (|has| |#2| (-1036 (-407 (-564))))) (((-3 |#2| "failed") $) 86)) (-1687 (((-564) $) 91 (|has| |#2| (-1036 (-564)))) (((-407 (-564)) $) 88 (|has| |#2| (-1036 (-407 (-564))))) ((|#2| $) 87)) (-3330 (((-687 (-564)) (-687 $)) 84 (|has| |#2| (-637 (-564)))) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) 83 (|has| |#2| (-637 (-564)))) (((-2 (|:| -3544 (-687 |#2|)) (|:| |vec| (-1262 |#2|))) (-687 $) (-1262 $)) 82) (((-687 |#2|) (-687 $)) 81)) (-2675 (((-3 $ "failed") $) 37)) (-3616 (((-769) $) 135 (|has| |#2| (-556)))) (-1804 ((|#2| $ (-564) (-564)) 127)) (-2018 (((-642 |#2|) $) 100 (|has| $ (-6 -4410)))) (-3163 (((-112) $) 35)) (-1974 (((-769) $) 136 (|has| |#2| (-556)))) (-2536 (((-642 |#4|) $) 137 (|has| |#2| (-556)))) (-3847 (((-769) $) 123)) (-3857 (((-769) $) 124)) (-3769 (((-112) $ (-769)) 108)) (-1446 ((|#2| $) 72 (|has| |#2| (-6 (-4412 "*"))))) (-2570 (((-564) $) 119)) (-2269 (((-564) $) 121)) (-3541 (((-642 |#2|) $) 99 (|has| $ (-6 -4410)))) (-2533 (((-112) |#2| $) 97 (-12 (|has| |#2| (-1097)) (|has| $ (-6 -4410))))) (-4164 (((-564) $) 120)) (-2720 (((-564) $) 122)) (-4117 (($ (-642 (-642 |#2|))) 114)) (-1857 (($ (-1 |#2| |#2|) $) 104 (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#2| |#2| |#2|) $ $) 131) (($ (-1 |#2| |#2|) $) 105)) (-3141 (((-642 (-642 |#2|)) $) 125)) (-4145 (((-112) $ (-769)) 109)) (-1778 (((-1155) $) 10)) (-2895 (((-3 $ "failed") $) 71 (|has| |#2| (-363)))) (-3999 (((-1117) $) 11)) (-2842 (((-3 $ "failed") $ |#2|) 132 (|has| |#2| (-556)))) (-4094 (((-112) (-1 (-112) |#2|) $) 102 (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#2|))) 96 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-294 |#2|)) 95 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ |#2| |#2|) 94 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-642 |#2|) (-642 |#2|)) 93 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))))) (-2478 (((-112) $ $) 113)) (-4109 (((-112) $) 110)) (-2179 (($) 111)) (-4369 ((|#2| $ (-564) (-564) |#2|) 128) ((|#2| $ (-564) (-564)) 126)) (-2199 (($ $ (-1 |#2| |#2|)) 56) (($ $ (-1 |#2| |#2|) (-769)) 55) (($ $ (-642 (-1173)) (-642 (-769))) 48 (|has| |#2| (-898 (-1173)))) (($ $ (-1173) (-769)) 47 (|has| |#2| (-898 (-1173)))) (($ $ (-642 (-1173))) 46 (|has| |#2| (-898 (-1173)))) (($ $ (-1173)) 45 (|has| |#2| (-898 (-1173)))) (($ $ (-769)) 43 (|has| |#2| (-233))) (($ $) 41 (|has| |#2| (-233)))) (-1490 ((|#2| $) 76)) (-4046 (($ (-642 |#2|)) 79)) (-1632 (((-112) $) 116)) (-3752 ((|#3| $) 78)) (-1559 ((|#2| $) 73 (|has| |#2| (-6 (-4412 "*"))))) (-4010 (((-769) (-1 (-112) |#2|) $) 101 (|has| $ (-6 -4410))) (((-769) |#2| $) 98 (-12 (|has| |#2| (-1097)) (|has| $ (-6 -4410))))) (-3865 (($ $) 112)) (-4342 ((|#4| $ (-564)) 130)) (-2390 (((-860) $) 12) (($ (-564)) 33) (($ (-407 (-564))) 90 (|has| |#2| (-1036 (-407 (-564))))) (($ |#2|) 85)) (-3348 (((-769)) 32 T CONST)) (-1600 (((-112) $ $) 9)) (-3295 (((-112) (-1 (-112) |#2|) $) 103 (|has| $ (-6 -4410)))) (-2630 (((-112) $) 118)) (-2361 (($) 19 T CONST)) (-2371 (($) 34 T CONST)) (-2711 (($ $ (-1 |#2| |#2|)) 54) (($ $ (-1 |#2| |#2|) (-769)) 53) (($ $ (-642 (-1173)) (-642 (-769))) 52 (|has| |#2| (-898 (-1173)))) (($ $ (-1173) (-769)) 51 (|has| |#2| (-898 (-1173)))) (($ $ (-642 (-1173))) 50 (|has| |#2| (-898 (-1173)))) (($ $ (-1173)) 49 (|has| |#2| (-898 (-1173)))) (($ $ (-769)) 44 (|has| |#2| (-233))) (($ $) 42 (|has| |#2| (-233)))) (-2821 (((-112) $ $) 6)) (-2943 (($ $ |#2|) 133 (|has| |#2| (-363)))) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36) (($ $ (-564)) 70 (|has| |#2| (-363)))) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ |#2|) 139) (($ |#2| $) 138) ((|#4| $ |#4|) 75) ((|#3| |#3| $) 74)) (-2158 (((-769) $) 106 (|has| $ (-6 -4410))))) -(((-1120 |#1| |#2| |#3| |#4|) (-140) (-769) (-1047) (-238 |t#1| |t#2|) (-238 |t#1| |t#2|)) (T -1120)) -((-3859 (*1 *1 *2) (-12 (-4 *2 (-1047)) (-4 *1 (-1120 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)))) (-4046 (*1 *1 *2) (-12 (-5 *2 (-642 *4)) (-4 *4 (-1047)) (-4 *1 (-1120 *3 *4 *5 *6)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)))) (-3752 (*1 *2 *1) (-12 (-4 *1 (-1120 *3 *4 *2 *5)) (-4 *4 (-1047)) (-4 *5 (-238 *3 *4)) (-4 *2 (-238 *3 *4)))) (-3778 (*1 *2 *1) (-12 (-4 *1 (-1120 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (-4 *2 (-1047)))) (-1490 (*1 *2 *1) (-12 (-4 *1 (-1120 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (-4 *2 (-1047)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1120 *3 *4 *5 *2)) (-4 *4 (-1047)) (-4 *5 (-238 *3 *4)) (-4 *2 (-238 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1120 *3 *4 *2 *5)) (-4 *4 (-1047)) (-4 *2 (-238 *3 *4)) (-4 *5 (-238 *3 *4)))) (-1559 (*1 *2 *1) (-12 (-4 *1 (-1120 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4412 "*"))) (-4 *2 (-1047)))) (-1446 (*1 *2 *1) (-12 (-4 *1 (-1120 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4412 "*"))) (-4 *2 (-1047)))) (-2895 (*1 *1 *1) (|partial| -12 (-4 *1 (-1120 *2 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-238 *2 *3)) (-4 *5 (-238 *2 *3)) (-4 *3 (-363)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-1120 *3 *4 *5 *6)) (-4 *4 (-1047)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)) (-4 *4 (-363))))) -(-13 (-231 |t#2|) (-111 |t#2| |t#2|) (-1051 |t#1| |t#1| |t#2| |t#3| |t#4|) (-411 |t#2|) (-377 |t#2|) (-10 -8 (IF (|has| |t#2| (-172)) (-6 (-715 |t#2|)) |%noBranch|) (-15 -3859 ($ |t#2|)) (-15 -4046 ($ (-642 |t#2|))) (-15 -3752 (|t#3| $)) (-15 -3778 (|t#2| $)) (-15 -1490 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4412 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -1559 (|t#2| $)) (-15 -1446 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-363)) (PROGN (-15 -2895 ((-3 $ "failed") $)) (-15 ** ($ $ (-564)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4412 "*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-614 #0=(-407 (-564))) |has| |#2| (-1036 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#2|) . T) ((-611 (-860)) . T) ((-231 |#2|) . T) ((-233) |has| |#2| (-233)) ((-309 |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))) ((-377 |#2|) . T) ((-411 |#2|) . T) ((-489 |#2|) . T) ((-514 |#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))) ((-644 (-564)) . T) ((-644 |#2|) . T) ((-644 $) . T) ((-646 |#2|) . T) ((-646 $) . T) ((-638 |#2|) -2682 (|has| |#2| (-172)) (|has| |#2| (-6 (-4412 "*")))) ((-637 (-564)) |has| |#2| (-637 (-564))) ((-637 |#2|) . T) ((-715 |#2|) -2682 (|has| |#2| (-172)) (|has| |#2| (-6 (-4412 "*")))) ((-724) . T) ((-898 (-1173)) |has| |#2| (-898 (-1173))) ((-1051 |#1| |#1| |#2| |#3| |#4|) . T) ((-1036 #0#) |has| |#2| (-1036 (-407 (-564)))) ((-1036 (-564)) |has| |#2| (-1036 (-564))) ((-1036 |#2|) . T) ((-1049 |#2|) . T) ((-1054 |#2|) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T) ((-1212) . T)) -((-2333 ((|#4| |#4|) 81)) (-3774 ((|#4| |#4|) 76)) (-3756 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2131 (-642 |#3|))) |#4| |#3|) 91)) (-2520 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80)) (-1753 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78))) -(((-1121 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3774 (|#4| |#4|)) (-15 -1753 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2333 (|#4| |#4|)) (-15 -2520 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3756 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2131 (-642 |#3|))) |#4| |#3|))) (-307) (-373 |#1|) (-373 |#1|) (-685 |#1| |#2| |#3|)) (T -1121)) -((-3756 (*1 *2 *3 *4) (-12 (-4 *5 (-307)) (-4 *6 (-373 *5)) (-4 *4 (-373 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2131 (-642 *4)))) (-5 *1 (-1121 *5 *6 *4 *3)) (-4 *3 (-685 *5 *6 *4)))) (-2520 (*1 *2 *3) (-12 (-4 *4 (-307)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1121 *4 *5 *6 *3)) (-4 *3 (-685 *4 *5 *6)))) (-2333 (*1 *2 *2) (-12 (-4 *3 (-307)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-1121 *3 *4 *5 *2)) (-4 *2 (-685 *3 *4 *5)))) (-1753 (*1 *2 *3) (-12 (-4 *4 (-307)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1121 *4 *5 *6 *3)) (-4 *3 (-685 *4 *5 *6)))) (-3774 (*1 *2 *2) (-12 (-4 *3 (-307)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-1121 *3 *4 *5 *2)) (-4 *2 (-685 *3 *4 *5))))) -(-10 -7 (-15 -3774 (|#4| |#4|)) (-15 -1753 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2333 (|#4| |#4|)) (-15 -2520 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3756 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2131 (-642 |#3|))) |#4| |#3|))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) 18)) (-2397 (((-642 |#2|) $) 178)) (-2223 (((-1169 $) $ |#2|) 63) (((-1169 |#1|) $) 52)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) 118 (|has| |#1| (-556)))) (-4252 (($ $) 120 (|has| |#1| (-556)))) (-1722 (((-112) $) 122 (|has| |#1| (-556)))) (-4035 (((-769) $) NIL) (((-769) $ (-642 |#2|)) 217)) (-3085 (((-3 $ "failed") $ $) NIL)) (-4297 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-1993 (($ $) NIL (|has| |#1| (-452)))) (-3282 (((-418 $) $) NIL (|has| |#1| (-452)))) (-3267 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-2822 (($) NIL T CONST)) (-2849 (((-3 |#1| "failed") $) 172) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1036 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1036 (-564)))) (((-3 |#2| "failed") $) NIL)) (-1687 ((|#1| $) 170) (((-407 (-564)) $) NIL (|has| |#1| (-1036 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1036 (-564)))) ((|#2| $) NIL)) (-3710 (($ $ $ |#2|) NIL (|has| |#1| (-172)))) (-3459 (($ $) 221)) (-3330 (((-687 (-564)) (-687 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -3544 (-687 |#1|)) (|:| |vec| (-1262 |#1|))) (-687 $) (-1262 $)) NIL) (((-687 |#1|) (-687 $)) NIL)) (-2675 (((-3 $ "failed") $) 92)) (-2511 (($ $) NIL (|has| |#1| (-452))) (($ $ |#2|) NIL (|has| |#1| (-452)))) (-3446 (((-642 $) $) NIL)) (-3552 (((-112) $) NIL (|has| |#1| (-907)))) (-2315 (($ $ |#1| (-531 |#2|) $) NIL)) (-1381 (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) NIL (-12 (|has| |#1| (-884 (-379))) (|has| |#2| (-884 (-379))))) (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) NIL (-12 (|has| |#1| (-884 (-564))) (|has| |#2| (-884 (-564)))))) (-3163 (((-112) $) 20)) (-1904 (((-769) $) 30)) (-2387 (($ (-1169 |#1|) |#2|) 57) (($ (-1169 $) |#2|) 74)) (-1995 (((-642 $) $) NIL)) (-3471 (((-112) $) 41)) (-2374 (($ |#1| (-531 |#2|)) 81) (($ $ |#2| (-769)) 61) (($ $ (-642 |#2|) (-642 (-769))) NIL)) (-3312 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $ |#2|) NIL)) (-2887 (((-531 |#2|) $) 209) (((-769) $ |#2|) 210) (((-642 (-769)) $ (-642 |#2|)) 211)) (-3879 (($ (-1 (-531 |#2|) (-531 |#2|)) $) NIL)) (-2947 (($ (-1 |#1| |#1|) $) 130)) (-1557 (((-3 |#2| "failed") $) 181)) (-2510 (($ $) 220)) (-2523 ((|#1| $) 46)) (-2066 (($ (-642 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-1778 (((-1155) $) NIL)) (-3664 (((-3 (-642 $) "failed") $) NIL)) (-4315 (((-3 (-642 $) "failed") $) NIL)) (-3177 (((-3 (-2 (|:| |var| |#2|) (|:| -2817 (-769))) "failed") $) NIL)) (-3999 (((-1117) $) NIL)) (-2491 (((-112) $) 42)) (-2500 ((|#1| $) NIL)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) 150 (|has| |#1| (-452)))) (-2105 (($ (-642 $)) 155 (|has| |#1| (-452))) (($ $ $) 140 (|has| |#1| (-452)))) (-3223 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-2236 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-2254 (((-418 $) $) NIL (|has| |#1| (-907)))) (-2842 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) 128 (|has| |#1| (-556)))) (-3154 (($ $ (-642 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-642 $) (-642 $)) NIL) (($ $ |#2| |#1|) 184) (($ $ (-642 |#2|) (-642 |#1|)) 199) (($ $ |#2| $) 183) (($ $ (-642 |#2|) (-642 $)) 198)) (-2790 (($ $ |#2|) NIL (|has| |#1| (-172)))) (-2199 (($ $ |#2|) 219) (($ $ (-642 |#2|)) NIL) (($ $ |#2| (-769)) NIL) (($ $ (-642 |#2|) (-642 (-769))) NIL)) (-3252 (((-531 |#2|) $) 205) (((-769) $ |#2|) 200) (((-642 (-769)) $ (-642 |#2|)) 203)) (-3003 (((-890 (-379)) $) NIL (-12 (|has| |#1| (-612 (-890 (-379)))) (|has| |#2| (-612 (-890 (-379)))))) (((-890 (-564)) $) NIL (-12 (|has| |#1| (-612 (-890 (-564)))) (|has| |#2| (-612 (-890 (-564)))))) (((-536) $) NIL (-12 (|has| |#1| (-612 (-536))) (|has| |#2| (-612 (-536)))))) (-4325 ((|#1| $) 136 (|has| |#1| (-452))) (($ $ |#2|) 139 (|has| |#1| (-452)))) (-3556 (((-3 (-1262 $) "failed") (-687 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-907))))) (-2390 (((-860) $) 161) (($ (-564)) 86) (($ |#1|) 87) (($ |#2|) 33) (($ $) NIL (|has| |#1| (-556))) (($ (-407 (-564))) NIL (-2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1036 (-407 (-564))))))) (-2839 (((-642 |#1|) $) 164)) (-3005 ((|#1| $ (-531 |#2|)) 83) (($ $ |#2| (-769)) NIL) (($ $ (-642 |#2|) (-642 (-769))) NIL)) (-3434 (((-3 $ "failed") $) NIL (-2682 (-12 (|has| $ (-145)) (|has| |#1| (-907))) (|has| |#1| (-145))))) (-3348 (((-769)) 89 T CONST)) (-2645 (($ $ $ (-769)) NIL (|has| |#1| (-172)))) (-1600 (((-112) $ $) NIL)) (-1594 (((-112) $ $) 125 (|has| |#1| (-556)))) (-2361 (($) 12 T CONST)) (-2371 (($) 14 T CONST)) (-2711 (($ $ |#2|) NIL) (($ $ (-642 |#2|)) NIL) (($ $ |#2| (-769)) NIL) (($ $ (-642 |#2|) (-642 (-769))) NIL)) (-2821 (((-112) $ $) 108)) (-2943 (($ $ |#1|) 134 (|has| |#1| (-363)))) (-2930 (($ $) 95) (($ $ $) 106)) (-2917 (($ $ $) 58)) (** (($ $ (-919)) 112) (($ $ (-769)) 111)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 98) (($ $ $) 75) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 101) (($ $ |#1|) NIL))) -(((-1122 |#1| |#2|) (-947 |#1| (-531 |#2|) |#2|) (-1047) (-848)) (T -1122)) -NIL -(-947 |#1| (-531 |#2|) |#2|) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-2397 (((-642 |#2|) $) NIL)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-4252 (($ $) NIL (|has| |#1| (-556)))) (-1722 (((-112) $) NIL (|has| |#1| (-556)))) (-3087 (($ $) 152 (|has| |#1| (-38 (-407 (-564)))))) (-2958 (($ $) 128 (|has| |#1| (-38 (-407 (-564)))))) (-3085 (((-3 $ "failed") $ $) NIL)) (-2264 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3067 (($ $) 148 (|has| |#1| (-38 (-407 (-564)))))) (-2933 (($ $) 124 (|has| |#1| (-38 (-407 (-564)))))) (-3110 (($ $) 156 (|has| |#1| (-38 (-407 (-564)))))) (-2981 (($ $) 132 (|has| |#1| (-38 (-407 (-564)))))) (-2822 (($) NIL T CONST)) (-3459 (($ $) NIL)) (-2675 (((-3 $ "failed") $) NIL)) (-2437 (((-950 |#1|) $ (-769)) NIL) (((-950 |#1|) $ (-769) (-769)) NIL)) (-2210 (((-112) $) NIL)) (-2833 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2408 (((-769) $ |#2|) NIL) (((-769) $ |#2| (-769)) NIL)) (-3163 (((-112) $) NIL)) (-2024 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3471 (((-112) $) NIL)) (-2374 (($ $ (-642 |#2|) (-642 (-531 |#2|))) NIL) (($ $ |#2| (-531 |#2|)) NIL) (($ |#1| (-531 |#2|)) NIL) (($ $ |#2| (-769)) 63) (($ $ (-642 |#2|) (-642 (-769))) NIL)) (-2947 (($ (-1 |#1| |#1|) $) NIL)) (-3576 (($ $) 122 (|has| |#1| (-38 (-407 (-564)))))) (-2510 (($ $) NIL)) (-2523 ((|#1| $) NIL)) (-1778 (((-1155) $) NIL)) (-3703 (($ $ |#2|) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ |#2| |#1|) 175 (|has| |#1| (-38 (-407 (-564)))))) (-3999 (((-1117) $) NIL)) (-3433 (($ (-1 $) |#2| |#1|) 174 (|has| |#1| (-38 (-407 (-564)))))) (-2137 (($ $ (-769)) 16)) (-2842 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-3466 (($ $) 120 (|has| |#1| (-38 (-407 (-564)))))) (-3154 (($ $ |#2| $) 106) (($ $ (-642 |#2|) (-642 $)) 99) (($ $ (-642 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-642 $) (-642 $)) NIL)) (-2199 (($ $ |#2|) 109) (($ $ (-642 |#2|)) NIL) (($ $ |#2| (-769)) NIL) (($ $ (-642 |#2|) (-642 (-769))) NIL)) (-3252 (((-531 |#2|) $) NIL)) (-3486 (((-1 (-1153 |#3|) |#3|) (-642 |#2|) (-642 (-1153 |#3|))) 87)) (-3120 (($ $) 158 (|has| |#1| (-38 (-407 (-564)))))) (-2992 (($ $) 134 (|has| |#1| (-38 (-407 (-564)))))) (-3098 (($ $) 154 (|has| |#1| (-38 (-407 (-564)))))) (-2971 (($ $) 130 (|has| |#1| (-38 (-407 (-564)))))) (-3077 (($ $) 150 (|has| |#1| (-38 (-407 (-564)))))) (-2946 (($ $) 126 (|has| |#1| (-38 (-407 (-564)))))) (-4189 (($ $) 18)) (-2390 (((-860) $) 199) (($ (-564)) NIL) (($ |#1|) 45 (|has| |#1| (-172))) (($ $) NIL (|has| |#1| (-556))) (($ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#2|) 70) (($ |#3|) 68)) (-3005 ((|#1| $ (-531 |#2|)) NIL) (($ $ |#2| (-769)) NIL) (($ $ (-642 |#2|) (-642 (-769))) NIL) ((|#3| $ (-769)) 43)) (-3434 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3348 (((-769)) NIL T CONST)) (-1600 (((-112) $ $) NIL)) (-3155 (($ $) 164 (|has| |#1| (-38 (-407 (-564)))))) (-3025 (($ $) 140 (|has| |#1| (-38 (-407 (-564)))))) (-1594 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3131 (($ $) 160 (|has| |#1| (-38 (-407 (-564)))))) (-3002 (($ $) 136 (|has| |#1| (-38 (-407 (-564)))))) (-3176 (($ $) 168 (|has| |#1| (-38 (-407 (-564)))))) (-3047 (($ $) 144 (|has| |#1| (-38 (-407 (-564)))))) (-3165 (($ $) 170 (|has| |#1| (-38 (-407 (-564)))))) (-3058 (($ $) 146 (|has| |#1| (-38 (-407 (-564)))))) (-3168 (($ $) 166 (|has| |#1| (-38 (-407 (-564)))))) (-3035 (($ $) 142 (|has| |#1| (-38 (-407 (-564)))))) (-3142 (($ $) 162 (|has| |#1| (-38 (-407 (-564)))))) (-3014 (($ $) 138 (|has| |#1| (-38 (-407 (-564)))))) (-2361 (($) 52 T CONST)) (-2371 (($) 62 T CONST)) (-2711 (($ $ |#2|) NIL) (($ $ (-642 |#2|)) NIL) (($ $ |#2| (-769)) NIL) (($ $ (-642 |#2|) (-642 (-769))) NIL)) (-2821 (((-112) $ $) NIL)) (-2943 (($ $ |#1|) 201 (|has| |#1| (-363)))) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) 66)) (** (($ $ (-919)) NIL) (($ $ (-769)) 77) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 112 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) 65) (($ $ (-407 (-564))) 117 (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) 115 (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 48) (($ $ |#1|) 49) (($ |#3| $) 47))) -(((-1123 |#1| |#2| |#3|) (-13 (-738 |#1| |#2|) (-10 -8 (-15 -3005 (|#3| $ (-769))) (-15 -2390 ($ |#2|)) (-15 -2390 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3486 ((-1 (-1153 |#3|) |#3|) (-642 |#2|) (-642 (-1153 |#3|)))) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -3703 ($ $ |#2| |#1|)) (-15 -3433 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1047) (-848) (-947 |#1| (-531 |#2|) |#2|)) (T -1123)) -((-3005 (*1 *2 *1 *3) (-12 (-5 *3 (-769)) (-4 *2 (-947 *4 (-531 *5) *5)) (-5 *1 (-1123 *4 *5 *2)) (-4 *4 (-1047)) (-4 *5 (-848)))) (-2390 (*1 *1 *2) (-12 (-4 *3 (-1047)) (-4 *2 (-848)) (-5 *1 (-1123 *3 *2 *4)) (-4 *4 (-947 *3 (-531 *2) *2)))) (-2390 (*1 *1 *2) (-12 (-4 *3 (-1047)) (-4 *4 (-848)) (-5 *1 (-1123 *3 *4 *2)) (-4 *2 (-947 *3 (-531 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1047)) (-4 *4 (-848)) (-5 *1 (-1123 *3 *4 *2)) (-4 *2 (-947 *3 (-531 *4) *4)))) (-3486 (*1 *2 *3 *4) (-12 (-5 *3 (-642 *6)) (-5 *4 (-642 (-1153 *7))) (-4 *6 (-848)) (-4 *7 (-947 *5 (-531 *6) *6)) (-4 *5 (-1047)) (-5 *2 (-1 (-1153 *7) *7)) (-5 *1 (-1123 *5 *6 *7)))) (-3703 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1047)) (-4 *2 (-848)) (-5 *1 (-1123 *3 *2 *4)) (-4 *4 (-947 *3 (-531 *2) *2)))) (-3433 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1123 *4 *3 *5))) (-4 *4 (-38 (-407 (-564)))) (-4 *4 (-1047)) (-4 *3 (-848)) (-5 *1 (-1123 *4 *3 *5)) (-4 *5 (-947 *4 (-531 *3) *3))))) -(-13 (-738 |#1| |#2|) (-10 -8 (-15 -3005 (|#3| $ (-769))) (-15 -2390 ($ |#2|)) (-15 -2390 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3486 ((-1 (-1153 |#3|) |#3|) (-642 |#2|) (-642 (-1153 |#3|)))) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -3703 ($ $ |#2| |#1|)) (-15 -3433 ($ (-1 $) |#2| |#1|))) |%noBranch|))) -((-2856 (((-112) $ $) 7)) (-1466 (((-642 (-2 (|:| -1616 $) (|:| -3406 (-642 |#4|)))) (-642 |#4|)) 86)) (-3076 (((-642 $) (-642 |#4|)) 87) (((-642 $) (-642 |#4|) (-112)) 112)) (-2397 (((-642 |#3|) $) 34)) (-3646 (((-112) $) 27)) (-4074 (((-112) $) 18 (|has| |#1| (-556)))) (-4334 (((-112) |#4| $) 102) (((-112) $) 98)) (-2937 ((|#4| |#4| $) 93)) (-1993 (((-642 (-2 (|:| |val| |#4|) (|:| -2138 $))) |#4| $) 127)) (-3191 (((-2 (|:| |under| $) (|:| -2795 $) (|:| |upper| $)) $ |#3|) 28)) (-3442 (((-112) $ (-769)) 45)) (-3437 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4410))) (((-3 |#4| "failed") $ |#3|) 80)) (-2822 (($) 46 T CONST)) (-3013 (((-112) $) 23 (|has| |#1| (-556)))) (-3936 (((-112) $ $) 25 (|has| |#1| (-556)))) (-2133 (((-112) $ $) 24 (|has| |#1| (-556)))) (-2967 (((-112) $) 26 (|has| |#1| (-556)))) (-3720 (((-642 |#4|) (-642 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2632 (((-642 |#4|) (-642 |#4|) $) 19 (|has| |#1| (-556)))) (-1419 (((-642 |#4|) (-642 |#4|) $) 20 (|has| |#1| (-556)))) (-2849 (((-3 $ "failed") (-642 |#4|)) 37)) (-1687 (($ (-642 |#4|)) 36)) (-4050 (((-3 $ "failed") $) 83)) (-2398 ((|#4| |#4| $) 90)) (-4067 (($ $) 69 (-12 (|has| |#4| (-1097)) (|has| $ (-6 -4410))))) (-2517 (($ |#4| $) 68 (-12 (|has| |#4| (-1097)) (|has| $ (-6 -4410)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4410)))) (-1992 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-556)))) (-3762 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3978 ((|#4| |#4| $) 88)) (-3741 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1097)) (|has| $ (-6 -4410)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4410))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4410))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1750 (((-2 (|:| -1616 (-642 |#4|)) (|:| -3406 (-642 |#4|))) $) 106)) (-2104 (((-112) |#4| $) 137)) (-4141 (((-112) |#4| $) 134)) (-3188 (((-112) |#4| $) 138) (((-112) $) 135)) (-2018 (((-642 |#4|) $) 53 (|has| $ (-6 -4410)))) (-3303 (((-112) |#4| $) 105) (((-112) $) 104)) (-1715 ((|#3| $) 35)) (-3769 (((-112) $ (-769)) 44)) (-3541 (((-642 |#4|) $) 54 (|has| $ (-6 -4410)))) (-2533 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1097)) (|has| $ (-6 -4410))))) (-1857 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#4| |#4|) $) 48)) (-1896 (((-642 |#3|) $) 33)) (-3935 (((-112) |#3| $) 32)) (-4145 (((-112) $ (-769)) 43)) (-1778 (((-1155) $) 10)) (-3843 (((-3 |#4| (-642 $)) |#4| |#4| $) 129)) (-2224 (((-642 (-2 (|:| |val| |#4|) (|:| -2138 $))) |#4| |#4| $) 128)) (-2534 (((-3 |#4| "failed") $) 84)) (-2163 (((-642 $) |#4| $) 130)) (-2328 (((-3 (-112) (-642 $)) |#4| $) 133)) (-4023 (((-642 (-2 (|:| |val| (-112)) (|:| -2138 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-2338 (((-642 $) |#4| $) 126) (((-642 $) (-642 |#4|) $) 125) (((-642 $) (-642 |#4|) (-642 $)) 124) (((-642 $) |#4| (-642 $)) 123)) (-2415 (($ |#4| $) 118) (($ (-642 |#4|) $) 117)) (-2206 (((-642 |#4|) $) 108)) (-3673 (((-112) |#4| $) 100) (((-112) $) 96)) (-4090 ((|#4| |#4| $) 91)) (-3119 (((-112) $ $) 111)) (-1699 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-556)))) (-4354 (((-112) |#4| $) 101) (((-112) $) 97)) (-3750 ((|#4| |#4| $) 92)) (-3999 (((-1117) $) 11)) (-4036 (((-3 |#4| "failed") $) 85)) (-3183 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2465 (((-3 $ "failed") $ |#4|) 79)) (-2137 (($ $ |#4|) 78) (((-642 $) |#4| $) 116) (((-642 $) |#4| (-642 $)) 115) (((-642 $) (-642 |#4|) $) 114) (((-642 $) (-642 |#4|) (-642 $)) 113)) (-4094 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 |#4|) (-642 |#4|)) 60 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ (-294 |#4|)) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ (-642 (-294 |#4|))) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097))))) (-2478 (((-112) $ $) 39)) (-4109 (((-112) $) 42)) (-2179 (($) 41)) (-3252 (((-769) $) 107)) (-4010 (((-769) |#4| $) 55 (-12 (|has| |#4| (-1097)) (|has| $ (-6 -4410)))) (((-769) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4410)))) (-3865 (($ $) 40)) (-3003 (((-536) $) 70 (|has| |#4| (-612 (-536))))) (-2401 (($ (-642 |#4|)) 61)) (-2942 (($ $ |#3|) 29)) (-1710 (($ $ |#3|) 31)) (-2204 (($ $) 89)) (-4283 (($ $ |#3|) 30)) (-2390 (((-860) $) 12) (((-642 |#4|) $) 38)) (-2621 (((-769) $) 77 (|has| |#3| (-368)))) (-1600 (((-112) $ $) 9)) (-4150 (((-3 (-2 (|:| |bas| $) (|:| -3844 (-642 |#4|))) "failed") (-642 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3844 (-642 |#4|))) "failed") (-642 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2205 (((-112) $ (-1 (-112) |#4| (-642 |#4|))) 99)) (-3204 (((-642 $) |#4| $) 122) (((-642 $) |#4| (-642 $)) 121) (((-642 $) (-642 |#4|) $) 120) (((-642 $) (-642 |#4|) (-642 $)) 119)) (-3295 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4410)))) (-1644 (((-642 |#3|) $) 82)) (-1837 (((-112) |#4| $) 136)) (-4127 (((-112) |#3| $) 81)) (-2821 (((-112) $ $) 6)) (-2158 (((-769) $) 47 (|has| $ (-6 -4410))))) -(((-1124 |#1| |#2| |#3| |#4|) (-140) (-452) (-791) (-848) (-1062 |t#1| |t#2| |t#3|)) (T -1124)) -NIL -(-13 (-1106 |t#1| |t#2| |t#3| |t#4|) (-782 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-102) . T) ((-611 (-642 |#4|)) . T) ((-611 (-860)) . T) ((-151 |#4|) . T) ((-612 (-536)) |has| |#4| (-612 (-536))) ((-309 |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097))) ((-489 |#4|) . T) ((-514 |#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097))) ((-782 |#1| |#2| |#3| |#4|) . T) ((-974 |#1| |#2| |#3| |#4|) . T) ((-1068 |#1| |#2| |#3| |#4|) . T) ((-1097) . T) ((-1106 |#1| |#2| |#3| |#4|) . T) ((-1205 |#1| |#2| |#3| |#4|) . T) ((-1212) . T)) -((-1577 (((-642 |#2|) |#1|) 15)) (-3080 (((-642 |#2|) |#2| |#2| |#2| |#2| |#2|) 47) (((-642 |#2|) |#1|) 63)) (-4180 (((-642 |#2|) |#2| |#2| |#2|) 45) (((-642 |#2|) |#1|) 61)) (-3339 ((|#2| |#1|) 56)) (-1988 (((-2 (|:| |solns| (-642 |#2|)) (|:| |maps| (-642 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20)) (-3671 (((-642 |#2|) |#2| |#2|) 42) (((-642 |#2|) |#1|) 60)) (-1603 (((-642 |#2|) |#2| |#2| |#2| |#2|) 46) (((-642 |#2|) |#1|) 62)) (-3336 ((|#2| |#2| |#2| |#2| |#2| |#2|) 55)) (-3981 ((|#2| |#2| |#2| |#2|) 53)) (-1674 ((|#2| |#2| |#2|) 52)) (-1998 ((|#2| |#2| |#2| |#2| |#2|) 54))) -(((-1125 |#1| |#2|) (-10 -7 (-15 -1577 ((-642 |#2|) |#1|)) (-15 -3339 (|#2| |#1|)) (-15 -1988 ((-2 (|:| |solns| (-642 |#2|)) (|:| |maps| (-642 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3671 ((-642 |#2|) |#1|)) (-15 -4180 ((-642 |#2|) |#1|)) (-15 -1603 ((-642 |#2|) |#1|)) (-15 -3080 ((-642 |#2|) |#1|)) (-15 -3671 ((-642 |#2|) |#2| |#2|)) (-15 -4180 ((-642 |#2|) |#2| |#2| |#2|)) (-15 -1603 ((-642 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3080 ((-642 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -1674 (|#2| |#2| |#2|)) (-15 -3981 (|#2| |#2| |#2| |#2|)) (-15 -1998 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3336 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1238 |#2|) (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (T -1125)) -((-3336 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *1 (-1125 *3 *2)) (-4 *3 (-1238 *2)))) (-1998 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *1 (-1125 *3 *2)) (-4 *3 (-1238 *2)))) (-3981 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *1 (-1125 *3 *2)) (-4 *3 (-1238 *2)))) (-1674 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *1 (-1125 *3 *2)) (-4 *3 (-1238 *2)))) (-3080 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-642 *3)) (-5 *1 (-1125 *4 *3)) (-4 *4 (-1238 *3)))) (-1603 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-642 *3)) (-5 *1 (-1125 *4 *3)) (-4 *4 (-1238 *3)))) (-4180 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-642 *3)) (-5 *1 (-1125 *4 *3)) (-4 *4 (-1238 *3)))) (-3671 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-642 *3)) (-5 *1 (-1125 *4 *3)) (-4 *4 (-1238 *3)))) (-3080 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-642 *4)) (-5 *1 (-1125 *3 *4)) (-4 *3 (-1238 *4)))) (-1603 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-642 *4)) (-5 *1 (-1125 *3 *4)) (-4 *3 (-1238 *4)))) (-4180 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-642 *4)) (-5 *1 (-1125 *3 *4)) (-4 *3 (-1238 *4)))) (-3671 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-642 *4)) (-5 *1 (-1125 *3 *4)) (-4 *3 (-1238 *4)))) (-1988 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-2 (|:| |solns| (-642 *5)) (|:| |maps| (-642 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1125 *3 *5)) (-4 *3 (-1238 *5)))) (-3339 (*1 *2 *3) (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *1 (-1125 *3 *2)) (-4 *3 (-1238 *2)))) (-1577 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-642 *4)) (-5 *1 (-1125 *3 *4)) (-4 *3 (-1238 *4))))) -(-10 -7 (-15 -1577 ((-642 |#2|) |#1|)) (-15 -3339 (|#2| |#1|)) (-15 -1988 ((-2 (|:| |solns| (-642 |#2|)) (|:| |maps| (-642 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3671 ((-642 |#2|) |#1|)) (-15 -4180 ((-642 |#2|) |#1|)) (-15 -1603 ((-642 |#2|) |#1|)) (-15 -3080 ((-642 |#2|) |#1|)) (-15 -3671 ((-642 |#2|) |#2| |#2|)) (-15 -4180 ((-642 |#2|) |#2| |#2| |#2|)) (-15 -1603 ((-642 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3080 ((-642 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -1674 (|#2| |#2| |#2|)) (-15 -3981 (|#2| |#2| |#2| |#2|)) (-15 -1998 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3336 (|#2| |#2| |#2| |#2| |#2| |#2|))) -((-1978 (((-642 (-642 (-294 (-316 |#1|)))) (-642 (-294 (-407 (-950 |#1|))))) 124) (((-642 (-642 (-294 (-316 |#1|)))) (-642 (-294 (-407 (-950 |#1|)))) (-642 (-1173))) 123) (((-642 (-642 (-294 (-316 |#1|)))) (-642 (-407 (-950 |#1|)))) 121) (((-642 (-642 (-294 (-316 |#1|)))) (-642 (-407 (-950 |#1|))) (-642 (-1173))) 119) (((-642 (-294 (-316 |#1|))) (-294 (-407 (-950 |#1|)))) 97) (((-642 (-294 (-316 |#1|))) (-294 (-407 (-950 |#1|))) (-1173)) 98) (((-642 (-294 (-316 |#1|))) (-407 (-950 |#1|))) 92) (((-642 (-294 (-316 |#1|))) (-407 (-950 |#1|)) (-1173)) 82)) (-3009 (((-642 (-642 (-316 |#1|))) (-642 (-407 (-950 |#1|))) (-642 (-1173))) 117) (((-642 (-316 |#1|)) (-407 (-950 |#1|)) (-1173)) 54)) (-2155 (((-1162 (-642 (-316 |#1|)) (-642 (-294 (-316 |#1|)))) (-407 (-950 |#1|)) (-1173)) 128) (((-1162 (-642 (-316 |#1|)) (-642 (-294 (-316 |#1|)))) (-294 (-407 (-950 |#1|))) (-1173)) 127))) -(((-1126 |#1|) (-10 -7 (-15 -1978 ((-642 (-294 (-316 |#1|))) (-407 (-950 |#1|)) (-1173))) (-15 -1978 ((-642 (-294 (-316 |#1|))) (-407 (-950 |#1|)))) (-15 -1978 ((-642 (-294 (-316 |#1|))) (-294 (-407 (-950 |#1|))) (-1173))) (-15 -1978 ((-642 (-294 (-316 |#1|))) (-294 (-407 (-950 |#1|))))) (-15 -1978 ((-642 (-642 (-294 (-316 |#1|)))) (-642 (-407 (-950 |#1|))) (-642 (-1173)))) (-15 -1978 ((-642 (-642 (-294 (-316 |#1|)))) (-642 (-407 (-950 |#1|))))) (-15 -1978 ((-642 (-642 (-294 (-316 |#1|)))) (-642 (-294 (-407 (-950 |#1|)))) (-642 (-1173)))) (-15 -1978 ((-642 (-642 (-294 (-316 |#1|)))) (-642 (-294 (-407 (-950 |#1|)))))) (-15 -3009 ((-642 (-316 |#1|)) (-407 (-950 |#1|)) (-1173))) (-15 -3009 ((-642 (-642 (-316 |#1|))) (-642 (-407 (-950 |#1|))) (-642 (-1173)))) (-15 -2155 ((-1162 (-642 (-316 |#1|)) (-642 (-294 (-316 |#1|)))) (-294 (-407 (-950 |#1|))) (-1173))) (-15 -2155 ((-1162 (-642 (-316 |#1|)) (-642 (-294 (-316 |#1|)))) (-407 (-950 |#1|)) (-1173)))) (-13 (-307) (-147))) (T -1126)) -((-2155 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-950 *5))) (-5 *4 (-1173)) (-4 *5 (-13 (-307) (-147))) (-5 *2 (-1162 (-642 (-316 *5)) (-642 (-294 (-316 *5))))) (-5 *1 (-1126 *5)))) (-2155 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-407 (-950 *5)))) (-5 *4 (-1173)) (-4 *5 (-13 (-307) (-147))) (-5 *2 (-1162 (-642 (-316 *5)) (-642 (-294 (-316 *5))))) (-5 *1 (-1126 *5)))) (-3009 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-407 (-950 *5)))) (-5 *4 (-642 (-1173))) (-4 *5 (-13 (-307) (-147))) (-5 *2 (-642 (-642 (-316 *5)))) (-5 *1 (-1126 *5)))) (-3009 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-950 *5))) (-5 *4 (-1173)) (-4 *5 (-13 (-307) (-147))) (-5 *2 (-642 (-316 *5))) (-5 *1 (-1126 *5)))) (-1978 (*1 *2 *3) (-12 (-5 *3 (-642 (-294 (-407 (-950 *4))))) (-4 *4 (-13 (-307) (-147))) (-5 *2 (-642 (-642 (-294 (-316 *4))))) (-5 *1 (-1126 *4)))) (-1978 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-294 (-407 (-950 *5))))) (-5 *4 (-642 (-1173))) (-4 *5 (-13 (-307) (-147))) (-5 *2 (-642 (-642 (-294 (-316 *5))))) (-5 *1 (-1126 *5)))) (-1978 (*1 *2 *3) (-12 (-5 *3 (-642 (-407 (-950 *4)))) (-4 *4 (-13 (-307) (-147))) (-5 *2 (-642 (-642 (-294 (-316 *4))))) (-5 *1 (-1126 *4)))) (-1978 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-407 (-950 *5)))) (-5 *4 (-642 (-1173))) (-4 *5 (-13 (-307) (-147))) (-5 *2 (-642 (-642 (-294 (-316 *5))))) (-5 *1 (-1126 *5)))) (-1978 (*1 *2 *3) (-12 (-5 *3 (-294 (-407 (-950 *4)))) (-4 *4 (-13 (-307) (-147))) (-5 *2 (-642 (-294 (-316 *4)))) (-5 *1 (-1126 *4)))) (-1978 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-407 (-950 *5)))) (-5 *4 (-1173)) (-4 *5 (-13 (-307) (-147))) (-5 *2 (-642 (-294 (-316 *5)))) (-5 *1 (-1126 *5)))) (-1978 (*1 *2 *3) (-12 (-5 *3 (-407 (-950 *4))) (-4 *4 (-13 (-307) (-147))) (-5 *2 (-642 (-294 (-316 *4)))) (-5 *1 (-1126 *4)))) (-1978 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-950 *5))) (-5 *4 (-1173)) (-4 *5 (-13 (-307) (-147))) (-5 *2 (-642 (-294 (-316 *5)))) (-5 *1 (-1126 *5))))) -(-10 -7 (-15 -1978 ((-642 (-294 (-316 |#1|))) (-407 (-950 |#1|)) (-1173))) (-15 -1978 ((-642 (-294 (-316 |#1|))) (-407 (-950 |#1|)))) (-15 -1978 ((-642 (-294 (-316 |#1|))) (-294 (-407 (-950 |#1|))) (-1173))) (-15 -1978 ((-642 (-294 (-316 |#1|))) (-294 (-407 (-950 |#1|))))) (-15 -1978 ((-642 (-642 (-294 (-316 |#1|)))) (-642 (-407 (-950 |#1|))) (-642 (-1173)))) (-15 -1978 ((-642 (-642 (-294 (-316 |#1|)))) (-642 (-407 (-950 |#1|))))) (-15 -1978 ((-642 (-642 (-294 (-316 |#1|)))) (-642 (-294 (-407 (-950 |#1|)))) (-642 (-1173)))) (-15 -1978 ((-642 (-642 (-294 (-316 |#1|)))) (-642 (-294 (-407 (-950 |#1|)))))) (-15 -3009 ((-642 (-316 |#1|)) (-407 (-950 |#1|)) (-1173))) (-15 -3009 ((-642 (-642 (-316 |#1|))) (-642 (-407 (-950 |#1|))) (-642 (-1173)))) (-15 -2155 ((-1162 (-642 (-316 |#1|)) (-642 (-294 (-316 |#1|)))) (-294 (-407 (-950 |#1|))) (-1173))) (-15 -2155 ((-1162 (-642 (-316 |#1|)) (-642 (-294 (-316 |#1|)))) (-407 (-950 |#1|)) (-1173)))) -((-4119 (((-407 (-1169 (-316 |#1|))) (-1262 (-316 |#1|)) (-407 (-1169 (-316 |#1|))) (-564)) 38)) (-2483 (((-407 (-1169 (-316 |#1|))) (-407 (-1169 (-316 |#1|))) (-407 (-1169 (-316 |#1|))) (-407 (-1169 (-316 |#1|)))) 49))) -(((-1127 |#1|) (-10 -7 (-15 -2483 ((-407 (-1169 (-316 |#1|))) (-407 (-1169 (-316 |#1|))) (-407 (-1169 (-316 |#1|))) (-407 (-1169 (-316 |#1|))))) (-15 -4119 ((-407 (-1169 (-316 |#1|))) (-1262 (-316 |#1|)) (-407 (-1169 (-316 |#1|))) (-564)))) (-556)) (T -1127)) -((-4119 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-407 (-1169 (-316 *5)))) (-5 *3 (-1262 (-316 *5))) (-5 *4 (-564)) (-4 *5 (-556)) (-5 *1 (-1127 *5)))) (-2483 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-407 (-1169 (-316 *3)))) (-4 *3 (-556)) (-5 *1 (-1127 *3))))) -(-10 -7 (-15 -2483 ((-407 (-1169 (-316 |#1|))) (-407 (-1169 (-316 |#1|))) (-407 (-1169 (-316 |#1|))) (-407 (-1169 (-316 |#1|))))) (-15 -4119 ((-407 (-1169 (-316 |#1|))) (-1262 (-316 |#1|)) (-407 (-1169 (-316 |#1|))) (-564)))) -((-1577 (((-642 (-642 (-294 (-316 |#1|)))) (-642 (-294 (-316 |#1|))) (-642 (-1173))) 248) (((-642 (-294 (-316 |#1|))) (-316 |#1|) (-1173)) 23) (((-642 (-294 (-316 |#1|))) (-294 (-316 |#1|)) (-1173)) 29) (((-642 (-294 (-316 |#1|))) (-294 (-316 |#1|))) 28) (((-642 (-294 (-316 |#1|))) (-316 |#1|)) 24))) -(((-1128 |#1|) (-10 -7 (-15 -1577 ((-642 (-294 (-316 |#1|))) (-316 |#1|))) (-15 -1577 ((-642 (-294 (-316 |#1|))) (-294 (-316 |#1|)))) (-15 -1577 ((-642 (-294 (-316 |#1|))) (-294 (-316 |#1|)) (-1173))) (-15 -1577 ((-642 (-294 (-316 |#1|))) (-316 |#1|) (-1173))) (-15 -1577 ((-642 (-642 (-294 (-316 |#1|)))) (-642 (-294 (-316 |#1|))) (-642 (-1173))))) (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147))) (T -1128)) -((-1577 (*1 *2 *3 *4) (-12 (-5 *4 (-642 (-1173))) (-4 *5 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147))) (-5 *2 (-642 (-642 (-294 (-316 *5))))) (-5 *1 (-1128 *5)) (-5 *3 (-642 (-294 (-316 *5)))))) (-1577 (*1 *2 *3 *4) (-12 (-5 *4 (-1173)) (-4 *5 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147))) (-5 *2 (-642 (-294 (-316 *5)))) (-5 *1 (-1128 *5)) (-5 *3 (-316 *5)))) (-1577 (*1 *2 *3 *4) (-12 (-5 *4 (-1173)) (-4 *5 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147))) (-5 *2 (-642 (-294 (-316 *5)))) (-5 *1 (-1128 *5)) (-5 *3 (-294 (-316 *5))))) (-1577 (*1 *2 *3) (-12 (-4 *4 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147))) (-5 *2 (-642 (-294 (-316 *4)))) (-5 *1 (-1128 *4)) (-5 *3 (-294 (-316 *4))))) (-1577 (*1 *2 *3) (-12 (-4 *4 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147))) (-5 *2 (-642 (-294 (-316 *4)))) (-5 *1 (-1128 *4)) (-5 *3 (-316 *4))))) -(-10 -7 (-15 -1577 ((-642 (-294 (-316 |#1|))) (-316 |#1|))) (-15 -1577 ((-642 (-294 (-316 |#1|))) (-294 (-316 |#1|)))) (-15 -1577 ((-642 (-294 (-316 |#1|))) (-294 (-316 |#1|)) (-1173))) (-15 -1577 ((-642 (-294 (-316 |#1|))) (-316 |#1|) (-1173))) (-15 -1577 ((-642 (-642 (-294 (-316 |#1|)))) (-642 (-294 (-316 |#1|))) (-642 (-1173))))) -((-2835 ((|#2| |#2|) 30 (|has| |#1| (-848))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 27)) (-2809 ((|#2| |#2|) 29 (|has| |#1| (-848))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 22))) -(((-1129 |#1| |#2|) (-10 -7 (-15 -2809 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -2835 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-848)) (PROGN (-15 -2809 (|#2| |#2|)) (-15 -2835 (|#2| |#2|))) |%noBranch|)) (-1212) (-13 (-602 (-564) |#1|) (-10 -7 (-6 -4410) (-6 -4411)))) (T -1129)) -((-2835 (*1 *2 *2) (-12 (-4 *3 (-848)) (-4 *3 (-1212)) (-5 *1 (-1129 *3 *2)) (-4 *2 (-13 (-602 (-564) *3) (-10 -7 (-6 -4410) (-6 -4411)))))) (-2809 (*1 *2 *2) (-12 (-4 *3 (-848)) (-4 *3 (-1212)) (-5 *1 (-1129 *3 *2)) (-4 *2 (-13 (-602 (-564) *3) (-10 -7 (-6 -4410) (-6 -4411)))))) (-2835 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1212)) (-5 *1 (-1129 *4 *2)) (-4 *2 (-13 (-602 (-564) *4) (-10 -7 (-6 -4410) (-6 -4411)))))) (-2809 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1212)) (-5 *1 (-1129 *4 *2)) (-4 *2 (-13 (-602 (-564) *4) (-10 -7 (-6 -4410) (-6 -4411))))))) -(-10 -7 (-15 -2809 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -2835 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-848)) (PROGN (-15 -2809 (|#2| |#2|)) (-15 -2835 (|#2| |#2|))) |%noBranch|)) -((-2856 (((-112) $ $) NIL)) (-3653 (((-1161 3 |#1|) $) 141)) (-4244 (((-112) $) 101)) (-3982 (($ $ (-642 (-941 |#1|))) 44) (($ $ (-642 (-642 |#1|))) 104) (($ (-642 (-941 |#1|))) 103) (((-642 (-941 |#1|)) $) 102)) (-2144 (((-112) $) 72)) (-3148 (($ $ (-941 |#1|)) 76) (($ $ (-642 |#1|)) 81) (($ $ (-769)) 83) (($ (-941 |#1|)) 77) (((-941 |#1|) $) 75)) (-1948 (((-2 (|:| -1565 (-769)) (|:| |curves| (-769)) (|:| |polygons| (-769)) (|:| |constructs| (-769))) $) 139)) (-2050 (((-769) $) 53)) (-2454 (((-769) $) 52)) (-3734 (($ $ (-769) (-941 |#1|)) 67)) (-1487 (((-112) $) 111)) (-2697 (($ $ (-642 (-642 (-941 |#1|))) (-642 (-171)) (-171)) 118) (($ $ (-642 (-642 (-642 |#1|))) (-642 (-171)) (-171)) 120) (($ $ (-642 (-642 (-941 |#1|))) (-112) (-112)) 115) (($ $ (-642 (-642 (-642 |#1|))) (-112) (-112)) 127) (($ (-642 (-642 (-941 |#1|)))) 116) (($ (-642 (-642 (-941 |#1|))) (-112) (-112)) 117) (((-642 (-642 (-941 |#1|))) $) 114)) (-2774 (($ (-642 $)) 56) (($ $ $) 57)) (-3927 (((-642 (-171)) $) 133)) (-3669 (((-642 (-941 |#1|)) $) 130)) (-4095 (((-642 (-642 (-171))) $) 132)) (-2587 (((-642 (-642 (-642 (-941 |#1|)))) $) NIL)) (-2049 (((-642 (-642 (-642 (-769)))) $) 131)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-4356 (((-769) $ (-642 (-941 |#1|))) 65)) (-3980 (((-112) $) 84)) (-2452 (($ $ (-642 (-941 |#1|))) 86) (($ $ (-642 (-642 |#1|))) 92) (($ (-642 (-941 |#1|))) 87) (((-642 (-941 |#1|)) $) 85)) (-1513 (($) 48) (($ (-1161 3 |#1|)) 49)) (-3865 (($ $) 63)) (-3620 (((-642 $) $) 62)) (-4281 (($ (-642 $)) 59)) (-2377 (((-642 $) $) 61)) (-2390 (((-860) $) 146)) (-3488 (((-112) $) 94)) (-2010 (($ $ (-642 (-941 |#1|))) 96) (($ $ (-642 (-642 |#1|))) 99) (($ (-642 (-941 |#1|))) 97) (((-642 (-941 |#1|)) $) 95)) (-2457 (($ $) 140)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-1130 |#1|) (-1131 |#1|) (-1047)) (T -1130)) -NIL -(-1131 |#1|) -((-2856 (((-112) $ $) 7)) (-3653 (((-1161 3 |#1|) $) 14)) (-4244 (((-112) $) 30)) (-3982 (($ $ (-642 (-941 |#1|))) 34) (($ $ (-642 (-642 |#1|))) 33) (($ (-642 (-941 |#1|))) 32) (((-642 (-941 |#1|)) $) 31)) (-2144 (((-112) $) 45)) (-3148 (($ $ (-941 |#1|)) 50) (($ $ (-642 |#1|)) 49) (($ $ (-769)) 48) (($ (-941 |#1|)) 47) (((-941 |#1|) $) 46)) (-1948 (((-2 (|:| -1565 (-769)) (|:| |curves| (-769)) (|:| |polygons| (-769)) (|:| |constructs| (-769))) $) 16)) (-2050 (((-769) $) 59)) (-2454 (((-769) $) 60)) (-3734 (($ $ (-769) (-941 |#1|)) 51)) (-1487 (((-112) $) 22)) (-2697 (($ $ (-642 (-642 (-941 |#1|))) (-642 (-171)) (-171)) 29) (($ $ (-642 (-642 (-642 |#1|))) (-642 (-171)) (-171)) 28) (($ $ (-642 (-642 (-941 |#1|))) (-112) (-112)) 27) (($ $ (-642 (-642 (-642 |#1|))) (-112) (-112)) 26) (($ (-642 (-642 (-941 |#1|)))) 25) (($ (-642 (-642 (-941 |#1|))) (-112) (-112)) 24) (((-642 (-642 (-941 |#1|))) $) 23)) (-2774 (($ (-642 $)) 58) (($ $ $) 57)) (-3927 (((-642 (-171)) $) 17)) (-3669 (((-642 (-941 |#1|)) $) 21)) (-4095 (((-642 (-642 (-171))) $) 18)) (-2587 (((-642 (-642 (-642 (-941 |#1|)))) $) 19)) (-2049 (((-642 (-642 (-642 (-769)))) $) 20)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-4356 (((-769) $ (-642 (-941 |#1|))) 52)) (-3980 (((-112) $) 40)) (-2452 (($ $ (-642 (-941 |#1|))) 44) (($ $ (-642 (-642 |#1|))) 43) (($ (-642 (-941 |#1|))) 42) (((-642 (-941 |#1|)) $) 41)) (-1513 (($) 62) (($ (-1161 3 |#1|)) 61)) (-3865 (($ $) 53)) (-3620 (((-642 $) $) 54)) (-4281 (($ (-642 $)) 56)) (-2377 (((-642 $) $) 55)) (-2390 (((-860) $) 12)) (-3488 (((-112) $) 35)) (-2010 (($ $ (-642 (-941 |#1|))) 39) (($ $ (-642 (-642 |#1|))) 38) (($ (-642 (-941 |#1|))) 37) (((-642 (-941 |#1|)) $) 36)) (-2457 (($ $) 15)) (-1600 (((-112) $ $) 9)) (-2821 (((-112) $ $) 6))) -(((-1131 |#1|) (-140) (-1047)) (T -1131)) -((-2390 (*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-860)))) (-1513 (*1 *1) (-12 (-4 *1 (-1131 *2)) (-4 *2 (-1047)))) (-1513 (*1 *1 *2) (-12 (-5 *2 (-1161 3 *3)) (-4 *3 (-1047)) (-4 *1 (-1131 *3)))) (-2454 (*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-769)))) (-2050 (*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-769)))) (-2774 (*1 *1 *2) (-12 (-5 *2 (-642 *1)) (-4 *1 (-1131 *3)) (-4 *3 (-1047)))) (-2774 (*1 *1 *1 *1) (-12 (-4 *1 (-1131 *2)) (-4 *2 (-1047)))) (-4281 (*1 *1 *2) (-12 (-5 *2 (-642 *1)) (-4 *1 (-1131 *3)) (-4 *3 (-1047)))) (-2377 (*1 *2 *1) (-12 (-4 *3 (-1047)) (-5 *2 (-642 *1)) (-4 *1 (-1131 *3)))) (-3620 (*1 *2 *1) (-12 (-4 *3 (-1047)) (-5 *2 (-642 *1)) (-4 *1 (-1131 *3)))) (-3865 (*1 *1 *1) (-12 (-4 *1 (-1131 *2)) (-4 *2 (-1047)))) (-4356 (*1 *2 *1 *3) (-12 (-5 *3 (-642 (-941 *4))) (-4 *1 (-1131 *4)) (-4 *4 (-1047)) (-5 *2 (-769)))) (-3734 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-769)) (-5 *3 (-941 *4)) (-4 *1 (-1131 *4)) (-4 *4 (-1047)))) (-3148 (*1 *1 *1 *2) (-12 (-5 *2 (-941 *3)) (-4 *1 (-1131 *3)) (-4 *3 (-1047)))) (-3148 (*1 *1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *1 (-1131 *3)) (-4 *3 (-1047)))) (-3148 (*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-4 *1 (-1131 *3)) (-4 *3 (-1047)))) (-3148 (*1 *1 *2) (-12 (-5 *2 (-941 *3)) (-4 *3 (-1047)) (-4 *1 (-1131 *3)))) (-3148 (*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-941 *3)))) (-2144 (*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-112)))) (-2452 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-941 *3))) (-4 *1 (-1131 *3)) (-4 *3 (-1047)))) (-2452 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-642 *3))) (-4 *1 (-1131 *3)) (-4 *3 (-1047)))) (-2452 (*1 *1 *2) (-12 (-5 *2 (-642 (-941 *3))) (-4 *3 (-1047)) (-4 *1 (-1131 *3)))) (-2452 (*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-642 (-941 *3))))) (-3980 (*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-112)))) (-2010 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-941 *3))) (-4 *1 (-1131 *3)) (-4 *3 (-1047)))) (-2010 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-642 *3))) (-4 *1 (-1131 *3)) (-4 *3 (-1047)))) (-2010 (*1 *1 *2) (-12 (-5 *2 (-642 (-941 *3))) (-4 *3 (-1047)) (-4 *1 (-1131 *3)))) (-2010 (*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-642 (-941 *3))))) (-3488 (*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-112)))) (-3982 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-941 *3))) (-4 *1 (-1131 *3)) (-4 *3 (-1047)))) (-3982 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-642 *3))) (-4 *1 (-1131 *3)) (-4 *3 (-1047)))) (-3982 (*1 *1 *2) (-12 (-5 *2 (-642 (-941 *3))) (-4 *3 (-1047)) (-4 *1 (-1131 *3)))) (-3982 (*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-642 (-941 *3))))) (-4244 (*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-112)))) (-2697 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-642 (-642 (-941 *5)))) (-5 *3 (-642 (-171))) (-5 *4 (-171)) (-4 *1 (-1131 *5)) (-4 *5 (-1047)))) (-2697 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-642 (-642 (-642 *5)))) (-5 *3 (-642 (-171))) (-5 *4 (-171)) (-4 *1 (-1131 *5)) (-4 *5 (-1047)))) (-2697 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-642 (-642 (-941 *4)))) (-5 *3 (-112)) (-4 *1 (-1131 *4)) (-4 *4 (-1047)))) (-2697 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-642 (-642 (-642 *4)))) (-5 *3 (-112)) (-4 *1 (-1131 *4)) (-4 *4 (-1047)))) (-2697 (*1 *1 *2) (-12 (-5 *2 (-642 (-642 (-941 *3)))) (-4 *3 (-1047)) (-4 *1 (-1131 *3)))) (-2697 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-642 (-642 (-941 *4)))) (-5 *3 (-112)) (-4 *4 (-1047)) (-4 *1 (-1131 *4)))) (-2697 (*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-642 (-642 (-941 *3)))))) (-1487 (*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-112)))) (-3669 (*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-642 (-941 *3))))) (-2049 (*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-642 (-642 (-642 (-769))))))) (-2587 (*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-642 (-642 (-642 (-941 *3))))))) (-4095 (*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-642 (-642 (-171)))))) (-3927 (*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-642 (-171))))) (-1948 (*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-2 (|:| -1565 (-769)) (|:| |curves| (-769)) (|:| |polygons| (-769)) (|:| |constructs| (-769)))))) (-2457 (*1 *1 *1) (-12 (-4 *1 (-1131 *2)) (-4 *2 (-1047)))) (-3653 (*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-1161 3 *3))))) -(-13 (-1097) (-10 -8 (-15 -1513 ($)) (-15 -1513 ($ (-1161 3 |t#1|))) (-15 -2454 ((-769) $)) (-15 -2050 ((-769) $)) (-15 -2774 ($ (-642 $))) (-15 -2774 ($ $ $)) (-15 -4281 ($ (-642 $))) (-15 -2377 ((-642 $) $)) (-15 -3620 ((-642 $) $)) (-15 -3865 ($ $)) (-15 -4356 ((-769) $ (-642 (-941 |t#1|)))) (-15 -3734 ($ $ (-769) (-941 |t#1|))) (-15 -3148 ($ $ (-941 |t#1|))) (-15 -3148 ($ $ (-642 |t#1|))) (-15 -3148 ($ $ (-769))) (-15 -3148 ($ (-941 |t#1|))) (-15 -3148 ((-941 |t#1|) $)) (-15 -2144 ((-112) $)) (-15 -2452 ($ $ (-642 (-941 |t#1|)))) (-15 -2452 ($ $ (-642 (-642 |t#1|)))) (-15 -2452 ($ (-642 (-941 |t#1|)))) (-15 -2452 ((-642 (-941 |t#1|)) $)) (-15 -3980 ((-112) $)) (-15 -2010 ($ $ (-642 (-941 |t#1|)))) (-15 -2010 ($ $ (-642 (-642 |t#1|)))) (-15 -2010 ($ (-642 (-941 |t#1|)))) (-15 -2010 ((-642 (-941 |t#1|)) $)) (-15 -3488 ((-112) $)) (-15 -3982 ($ $ (-642 (-941 |t#1|)))) (-15 -3982 ($ $ (-642 (-642 |t#1|)))) (-15 -3982 ($ (-642 (-941 |t#1|)))) (-15 -3982 ((-642 (-941 |t#1|)) $)) (-15 -4244 ((-112) $)) (-15 -2697 ($ $ (-642 (-642 (-941 |t#1|))) (-642 (-171)) (-171))) (-15 -2697 ($ $ (-642 (-642 (-642 |t#1|))) (-642 (-171)) (-171))) (-15 -2697 ($ $ (-642 (-642 (-941 |t#1|))) (-112) (-112))) (-15 -2697 ($ $ (-642 (-642 (-642 |t#1|))) (-112) (-112))) (-15 -2697 ($ (-642 (-642 (-941 |t#1|))))) (-15 -2697 ($ (-642 (-642 (-941 |t#1|))) (-112) (-112))) (-15 -2697 ((-642 (-642 (-941 |t#1|))) $)) (-15 -1487 ((-112) $)) (-15 -3669 ((-642 (-941 |t#1|)) $)) (-15 -2049 ((-642 (-642 (-642 (-769)))) $)) (-15 -2587 ((-642 (-642 (-642 (-941 |t#1|)))) $)) (-15 -4095 ((-642 (-642 (-171))) $)) (-15 -3927 ((-642 (-171)) $)) (-15 -1948 ((-2 (|:| -1565 (-769)) (|:| |curves| (-769)) (|:| |polygons| (-769)) (|:| |constructs| (-769))) $)) (-15 -2457 ($ $)) (-15 -3653 ((-1161 3 |t#1|) $)) (-15 -2390 ((-860) $)))) -(((-102) . T) ((-611 (-860)) . T) ((-1097) . T)) -((-2856 (((-112) $ $) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) 174) (($ (-1178)) NIL) (((-1178) $) 7)) (-2351 (((-112) $ (|[\|\|]| (-524))) 19) (((-112) $ (|[\|\|]| (-218))) 23) (((-112) $ (|[\|\|]| (-674))) 27) (((-112) $ (|[\|\|]| (-1272))) 31) (((-112) $ (|[\|\|]| (-138))) 35) (((-112) $ (|[\|\|]| (-133))) 39) (((-112) $ (|[\|\|]| (-1112))) 43) (((-112) $ (|[\|\|]| (-96))) 47) (((-112) $ (|[\|\|]| (-679))) 51) (((-112) $ (|[\|\|]| (-517))) 55) (((-112) $ (|[\|\|]| (-1063))) 59) (((-112) $ (|[\|\|]| (-1273))) 63) (((-112) $ (|[\|\|]| (-525))) 67) (((-112) $ (|[\|\|]| (-154))) 71) (((-112) $ (|[\|\|]| (-669))) 75) (((-112) $ (|[\|\|]| (-311))) 79) (((-112) $ (|[\|\|]| (-1034))) 83) (((-112) $ (|[\|\|]| (-180))) 87) (((-112) $ (|[\|\|]| (-968))) 91) (((-112) $ (|[\|\|]| (-1070))) 95) (((-112) $ (|[\|\|]| (-1087))) 99) (((-112) $ (|[\|\|]| (-1093))) 103) (((-112) $ (|[\|\|]| (-624))) 107) (((-112) $ (|[\|\|]| (-1163))) 111) (((-112) $ (|[\|\|]| (-156))) 115) (((-112) $ (|[\|\|]| (-137))) 119) (((-112) $ (|[\|\|]| (-478))) 123) (((-112) $ (|[\|\|]| (-591))) 127) (((-112) $ (|[\|\|]| (-506))) 131) (((-112) $ (|[\|\|]| (-1155))) 135) (((-112) $ (|[\|\|]| (-564))) 139)) (-1600 (((-112) $ $) NIL)) (-3899 (((-524) $) 20) (((-218) $) 24) (((-674) $) 28) (((-1272) $) 32) (((-138) $) 36) (((-133) $) 40) (((-1112) $) 44) (((-96) $) 48) (((-679) $) 52) (((-517) $) 56) (((-1063) $) 60) (((-1273) $) 64) (((-525) $) 68) (((-154) $) 72) (((-669) $) 76) (((-311) $) 80) (((-1034) $) 84) (((-180) $) 88) (((-968) $) 92) (((-1070) $) 96) (((-1087) $) 100) (((-1093) $) 104) (((-624) $) 108) (((-1163) $) 112) (((-156) $) 116) (((-137) $) 120) (((-478) $) 124) (((-591) $) 128) (((-506) $) 132) (((-1155) $) 136) (((-564) $) 140)) (-2821 (((-112) $ $) NIL))) -(((-1132) (-1134)) (T -1132)) -NIL -(-1134) -((-1951 (((-642 (-1178)) (-1155)) 9))) -(((-1133) (-10 -7 (-15 -1951 ((-642 (-1178)) (-1155))))) (T -1133)) -((-1951 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-642 (-1178))) (-5 *1 (-1133))))) -(-10 -7 (-15 -1951 ((-642 (-1178)) (-1155)))) -((-2856 (((-112) $ $) 7)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2390 (((-860) $) 12) (($ (-1178)) 17) (((-1178) $) 16)) (-2351 (((-112) $ (|[\|\|]| (-524))) 81) (((-112) $ (|[\|\|]| (-218))) 79) (((-112) $ (|[\|\|]| (-674))) 77) (((-112) $ (|[\|\|]| (-1272))) 75) (((-112) $ (|[\|\|]| (-138))) 73) (((-112) $ (|[\|\|]| (-133))) 71) (((-112) $ (|[\|\|]| (-1112))) 69) (((-112) $ (|[\|\|]| (-96))) 67) (((-112) $ (|[\|\|]| (-679))) 65) (((-112) $ (|[\|\|]| (-517))) 63) (((-112) $ (|[\|\|]| (-1063))) 61) (((-112) $ (|[\|\|]| (-1273))) 59) (((-112) $ (|[\|\|]| (-525))) 57) (((-112) $ (|[\|\|]| (-154))) 55) (((-112) $ (|[\|\|]| (-669))) 53) (((-112) $ (|[\|\|]| (-311))) 51) (((-112) $ (|[\|\|]| (-1034))) 49) (((-112) $ (|[\|\|]| (-180))) 47) (((-112) $ (|[\|\|]| (-968))) 45) (((-112) $ (|[\|\|]| (-1070))) 43) (((-112) $ (|[\|\|]| (-1087))) 41) (((-112) $ (|[\|\|]| (-1093))) 39) (((-112) $ (|[\|\|]| (-624))) 37) (((-112) $ (|[\|\|]| (-1163))) 35) (((-112) $ (|[\|\|]| (-156))) 33) (((-112) $ (|[\|\|]| (-137))) 31) (((-112) $ (|[\|\|]| (-478))) 29) (((-112) $ (|[\|\|]| (-591))) 27) (((-112) $ (|[\|\|]| (-506))) 25) (((-112) $ (|[\|\|]| (-1155))) 23) (((-112) $ (|[\|\|]| (-564))) 21)) (-1600 (((-112) $ $) 9)) (-3899 (((-524) $) 80) (((-218) $) 78) (((-674) $) 76) (((-1272) $) 74) (((-138) $) 72) (((-133) $) 70) (((-1112) $) 68) (((-96) $) 66) (((-679) $) 64) (((-517) $) 62) (((-1063) $) 60) (((-1273) $) 58) (((-525) $) 56) (((-154) $) 54) (((-669) $) 52) (((-311) $) 50) (((-1034) $) 48) (((-180) $) 46) (((-968) $) 44) (((-1070) $) 42) (((-1087) $) 40) (((-1093) $) 38) (((-624) $) 36) (((-1163) $) 34) (((-156) $) 32) (((-137) $) 30) (((-478) $) 28) (((-591) $) 26) (((-506) $) 24) (((-1155) $) 22) (((-564) $) 20)) (-2821 (((-112) $ $) 6))) -(((-1134) (-140)) (T -1134)) -((-2351 (*1 *2 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-524))) (-5 *2 (-112)))) (-3899 (*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-524)))) (-2351 (*1 *2 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-218))) (-5 *2 (-112)))) (-3899 (*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-218)))) (-2351 (*1 *2 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-674))) (-5 *2 (-112)))) (-3899 (*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-674)))) (-2351 (*1 *2 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-1272))) (-5 *2 (-112)))) (-3899 (*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-1272)))) (-2351 (*1 *2 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) (-3899 (*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-138)))) (-2351 (*1 *2 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-133))) (-5 *2 (-112)))) (-3899 (*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-133)))) (-2351 (*1 *2 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-1112))) (-5 *2 (-112)))) (-3899 (*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-1112)))) (-2351 (*1 *2 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-3899 (*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-96)))) (-2351 (*1 *2 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-679))) (-5 *2 (-112)))) (-3899 (*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-679)))) (-2351 (*1 *2 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-517))) (-5 *2 (-112)))) (-3899 (*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-517)))) (-2351 (*1 *2 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-1063))) (-5 *2 (-112)))) (-3899 (*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-1063)))) (-2351 (*1 *2 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-1273))) (-5 *2 (-112)))) (-3899 (*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-1273)))) (-2351 (*1 *2 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-525))) (-5 *2 (-112)))) (-3899 (*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-525)))) (-2351 (*1 *2 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) (-3899 (*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-154)))) (-2351 (*1 *2 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-669))) (-5 *2 (-112)))) (-3899 (*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-669)))) (-2351 (*1 *2 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-311))) (-5 *2 (-112)))) (-3899 (*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-311)))) (-2351 (*1 *2 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-1034))) (-5 *2 (-112)))) (-3899 (*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-1034)))) (-2351 (*1 *2 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-180))) (-5 *2 (-112)))) (-3899 (*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-180)))) (-2351 (*1 *2 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-968))) (-5 *2 (-112)))) (-3899 (*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-968)))) (-2351 (*1 *2 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-1070))) (-5 *2 (-112)))) (-3899 (*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-1070)))) (-2351 (*1 *2 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-1087))) (-5 *2 (-112)))) (-3899 (*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-1087)))) (-2351 (*1 *2 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-1093))) (-5 *2 (-112)))) (-3899 (*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-1093)))) (-2351 (*1 *2 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-624))) (-5 *2 (-112)))) (-3899 (*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-624)))) (-2351 (*1 *2 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-1163))) (-5 *2 (-112)))) (-3899 (*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-1163)))) (-2351 (*1 *2 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-112)))) (-3899 (*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-156)))) (-2351 (*1 *2 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) (-3899 (*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-137)))) (-2351 (*1 *2 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-478))) (-5 *2 (-112)))) (-3899 (*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-478)))) (-2351 (*1 *2 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-591))) (-5 *2 (-112)))) (-3899 (*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-591)))) (-2351 (*1 *2 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-506))) (-5 *2 (-112)))) (-3899 (*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-506)))) (-2351 (*1 *2 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-1155))) (-5 *2 (-112)))) (-3899 (*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-1155)))) (-2351 (*1 *2 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-564))) (-5 *2 (-112)))) (-3899 (*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-564))))) -(-13 (-1080) (-1257) (-10 -8 (-15 -2351 ((-112) $ (|[\|\|]| (-524)))) (-15 -3899 ((-524) $)) (-15 -2351 ((-112) $ (|[\|\|]| (-218)))) (-15 -3899 ((-218) $)) (-15 -2351 ((-112) $ (|[\|\|]| (-674)))) (-15 -3899 ((-674) $)) (-15 -2351 ((-112) $ (|[\|\|]| (-1272)))) (-15 -3899 ((-1272) $)) (-15 -2351 ((-112) $ (|[\|\|]| (-138)))) (-15 -3899 ((-138) $)) (-15 -2351 ((-112) $ (|[\|\|]| (-133)))) (-15 -3899 ((-133) $)) (-15 -2351 ((-112) $ (|[\|\|]| (-1112)))) (-15 -3899 ((-1112) $)) (-15 -2351 ((-112) $ (|[\|\|]| (-96)))) (-15 -3899 ((-96) $)) (-15 -2351 ((-112) $ (|[\|\|]| (-679)))) (-15 -3899 ((-679) $)) (-15 -2351 ((-112) $ (|[\|\|]| (-517)))) (-15 -3899 ((-517) $)) (-15 -2351 ((-112) $ (|[\|\|]| (-1063)))) (-15 -3899 ((-1063) $)) (-15 -2351 ((-112) $ (|[\|\|]| (-1273)))) (-15 -3899 ((-1273) $)) (-15 -2351 ((-112) $ (|[\|\|]| (-525)))) (-15 -3899 ((-525) $)) (-15 -2351 ((-112) $ (|[\|\|]| (-154)))) (-15 -3899 ((-154) $)) (-15 -2351 ((-112) $ (|[\|\|]| (-669)))) (-15 -3899 ((-669) $)) (-15 -2351 ((-112) $ (|[\|\|]| (-311)))) (-15 -3899 ((-311) $)) (-15 -2351 ((-112) $ (|[\|\|]| (-1034)))) (-15 -3899 ((-1034) $)) (-15 -2351 ((-112) $ (|[\|\|]| (-180)))) (-15 -3899 ((-180) $)) (-15 -2351 ((-112) $ (|[\|\|]| (-968)))) (-15 -3899 ((-968) $)) (-15 -2351 ((-112) $ (|[\|\|]| (-1070)))) (-15 -3899 ((-1070) $)) (-15 -2351 ((-112) $ (|[\|\|]| (-1087)))) (-15 -3899 ((-1087) $)) (-15 -2351 ((-112) $ (|[\|\|]| (-1093)))) (-15 -3899 ((-1093) $)) (-15 -2351 ((-112) $ (|[\|\|]| (-624)))) (-15 -3899 ((-624) $)) (-15 -2351 ((-112) $ (|[\|\|]| (-1163)))) (-15 -3899 ((-1163) $)) (-15 -2351 ((-112) $ (|[\|\|]| (-156)))) (-15 -3899 ((-156) $)) (-15 -2351 ((-112) $ (|[\|\|]| (-137)))) (-15 -3899 ((-137) $)) (-15 -2351 ((-112) $ (|[\|\|]| (-478)))) (-15 -3899 ((-478) $)) (-15 -2351 ((-112) $ (|[\|\|]| (-591)))) (-15 -3899 ((-591) $)) (-15 -2351 ((-112) $ (|[\|\|]| (-506)))) (-15 -3899 ((-506) $)) (-15 -2351 ((-112) $ (|[\|\|]| (-1155)))) (-15 -3899 ((-1155) $)) (-15 -2351 ((-112) $ (|[\|\|]| (-564)))) (-15 -3899 ((-564) $)))) -(((-93) . T) ((-102) . T) ((-614 #0=(-1178)) . T) ((-611 (-860)) . T) ((-611 #0#) . T) ((-490 #0#) . T) ((-1097) . T) ((-1080) . T) ((-1257) . T)) -((-3261 (((-1267) (-642 (-860))) 23) (((-1267) (-860)) 22)) (-2626 (((-1267) (-642 (-860))) 21) (((-1267) (-860)) 20)) (-2056 (((-1267) (-642 (-860))) 19) (((-1267) (-860)) 11) (((-1267) (-1155) (-860)) 17))) -(((-1135) (-10 -7 (-15 -2056 ((-1267) (-1155) (-860))) (-15 -2056 ((-1267) (-860))) (-15 -2626 ((-1267) (-860))) (-15 -3261 ((-1267) (-860))) (-15 -2056 ((-1267) (-642 (-860)))) (-15 -2626 ((-1267) (-642 (-860)))) (-15 -3261 ((-1267) (-642 (-860)))))) (T -1135)) -((-3261 (*1 *2 *3) (-12 (-5 *3 (-642 (-860))) (-5 *2 (-1267)) (-5 *1 (-1135)))) (-2626 (*1 *2 *3) (-12 (-5 *3 (-642 (-860))) (-5 *2 (-1267)) (-5 *1 (-1135)))) (-2056 (*1 *2 *3) (-12 (-5 *3 (-642 (-860))) (-5 *2 (-1267)) (-5 *1 (-1135)))) (-3261 (*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1267)) (-5 *1 (-1135)))) (-2626 (*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1267)) (-5 *1 (-1135)))) (-2056 (*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1267)) (-5 *1 (-1135)))) (-2056 (*1 *2 *3 *4) (-12 (-5 *3 (-1155)) (-5 *4 (-860)) (-5 *2 (-1267)) (-5 *1 (-1135))))) -(-10 -7 (-15 -2056 ((-1267) (-1155) (-860))) (-15 -2056 ((-1267) (-860))) (-15 -2626 ((-1267) (-860))) (-15 -3261 ((-1267) (-860))) (-15 -2056 ((-1267) (-642 (-860)))) (-15 -2626 ((-1267) (-642 (-860)))) (-15 -3261 ((-1267) (-642 (-860))))) -((-3042 (($ $ $) 10)) (-3745 (($ $) 9)) (-3679 (($ $ $) 13)) (-3144 (($ $ $) 15)) (-2088 (($ $ $) 12)) (-4048 (($ $ $) 14)) (-3512 (($ $) 17)) (-2123 (($ $) 16)) (-1630 (($ $) 6)) (-3375 (($ $ $) 11) (($ $) 7)) (-3197 (($ $ $) 8))) +((-2986 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-3903 ((|#1| $) 45)) (-1453 (((-112) $ (-771)) 8)) (-1811 (($) 7 T CONST)) (-1757 ((|#1| |#1| $) 47)) (-4356 ((|#1| $) 46)) (-3872 (((-644 |#1|) $) 31 (|has| $ (-6 -4417)))) (-2756 (((-112) $ (-771)) 9)) (-4227 (((-644 |#1|) $) 30 (|has| $ (-6 -4417)))) (-1688 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-3708 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#1| |#1|) $) 36)) (-4106 (((-112) $ (-771)) 10)) (-3151 (((-1157) $) 22 (|has| |#1| (-1099)))) (-4255 ((|#1| $) 40)) (-4354 (($ |#1| $) 41)) (-4059 (((-1119) $) 21 (|has| |#1| (-1099)))) (-4097 ((|#1| $) 42)) (-3966 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1844 (((-112) $ $) 14)) (-2788 (((-112) $) 11)) (-1737 (($) 12)) (-3410 (((-771) $) 44)) (-4068 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4417))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-3924 (($ $) 13)) (-2479 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-3900 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-2471 (($ (-644 |#1|)) 43)) (-3667 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4417)))) (-2952 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3002 (((-771) $) 6 (|has| $ (-6 -4417))))) +(((-1120 |#1|) (-140) (-1214)) (T -1120)) +((-1757 (*1 *2 *2 *1) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1214)))) (-4356 (*1 *2 *1) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1214)))) (-3903 (*1 *2 *1) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1214)))) (-3410 (*1 *2 *1) (-12 (-4 *1 (-1120 *3)) (-4 *3 (-1214)) (-5 *2 (-771))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4417) (-15 -1757 (|t#1| |t#1| $)) (-15 -4356 (|t#1| $)) (-15 -3903 (|t#1| $)) (-15 -3410 ((-771) $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2809 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1099) |has| |#1| (-1099)) ((-1214) . T)) +((-3837 ((|#3| $) 87)) (-2980 (((-3 (-566) "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL) (((-3 |#3| "failed") $) 50)) (-1709 (((-566) $) NIL) (((-409 (-566)) $) NIL) ((|#3| $) 47)) (-2275 (((-689 (-566)) (-689 $)) NIL) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL) (((-2 (|:| -4196 (-689 |#3|)) (|:| |vec| (-1264 |#3|))) (-689 $) (-1264 $)) 84) (((-689 |#3|) (-689 $)) 76)) (-3526 (($ $ (-1 |#3| |#3|)) 28) (($ $ (-1 |#3| |#3|) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175)) NIL) (($ $ (-771)) NIL) (($ $) NIL)) (-4110 ((|#3| $) 89)) (-2657 ((|#4| $) 43)) (-2479 (((-862) $) NIL) (($ (-566)) NIL) (($ (-409 (-566))) NIL) (($ |#3|) 25)) (** (($ $ (-921)) NIL) (($ $ (-771)) 24) (($ $ (-566)) 95))) +(((-1121 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-566))) (-15 -4110 (|#3| |#1|)) (-15 -3837 (|#3| |#1|)) (-15 -2657 (|#4| |#1|)) (-15 -2275 ((-689 |#3|) (-689 |#1|))) (-15 -2275 ((-2 (|:| -4196 (-689 |#3|)) (|:| |vec| (-1264 |#3|))) (-689 |#1|) (-1264 |#1|))) (-15 -2275 ((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 |#1|) (-1264 |#1|))) (-15 -2275 ((-689 (-566)) (-689 |#1|))) (-15 -2479 (|#1| |#3|)) (-15 -2980 ((-3 |#3| "failed") |#1|)) (-15 -1709 (|#3| |#1|)) (-15 -1709 ((-409 (-566)) |#1|)) (-15 -2980 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -2479 (|#1| (-409 (-566)))) (-15 -1709 ((-566) |#1|)) (-15 -2980 ((-3 (-566) "failed") |#1|)) (-15 -3526 (|#1| |#1|)) (-15 -3526 (|#1| |#1| (-771))) (-15 -3526 (|#1| |#1| (-1175))) (-15 -3526 (|#1| |#1| (-644 (-1175)))) (-15 -3526 (|#1| |#1| (-1175) (-771))) (-15 -3526 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -3526 (|#1| |#1| (-1 |#3| |#3|) (-771))) (-15 -3526 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2479 (|#1| (-566))) (-15 ** (|#1| |#1| (-771))) (-15 ** (|#1| |#1| (-921))) (-15 -2479 ((-862) |#1|))) (-1122 |#2| |#3| |#4| |#5|) (-771) (-1049) (-238 |#2| |#3|) (-238 |#2| |#3|)) (T -1121)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-566))) (-15 -4110 (|#3| |#1|)) (-15 -3837 (|#3| |#1|)) (-15 -2657 (|#4| |#1|)) (-15 -2275 ((-689 |#3|) (-689 |#1|))) (-15 -2275 ((-2 (|:| -4196 (-689 |#3|)) (|:| |vec| (-1264 |#3|))) (-689 |#1|) (-1264 |#1|))) (-15 -2275 ((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 |#1|) (-1264 |#1|))) (-15 -2275 ((-689 (-566)) (-689 |#1|))) (-15 -2479 (|#1| |#3|)) (-15 -2980 ((-3 |#3| "failed") |#1|)) (-15 -1709 (|#3| |#1|)) (-15 -1709 ((-409 (-566)) |#1|)) (-15 -2980 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -2479 (|#1| (-409 (-566)))) (-15 -1709 ((-566) |#1|)) (-15 -2980 ((-3 (-566) "failed") |#1|)) (-15 -3526 (|#1| |#1|)) (-15 -3526 (|#1| |#1| (-771))) (-15 -3526 (|#1| |#1| (-1175))) (-15 -3526 (|#1| |#1| (-644 (-1175)))) (-15 -3526 (|#1| |#1| (-1175) (-771))) (-15 -3526 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -3526 (|#1| |#1| (-1 |#3| |#3|) (-771))) (-15 -3526 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2479 (|#1| (-566))) (-15 ** (|#1| |#1| (-771))) (-15 ** (|#1| |#1| (-921))) (-15 -2479 ((-862) |#1|))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-3837 ((|#2| $) 77)) (-3349 (((-112) $) 117)) (-3174 (((-3 $ "failed") $ $) 20)) (-3834 (((-112) $) 115)) (-1453 (((-112) $ (-771)) 107)) (-3191 (($ |#2|) 80)) (-1811 (($) 18 T CONST)) (-3411 (($ $) 134 (|has| |#2| (-308)))) (-3395 ((|#3| $ (-566)) 129)) (-2980 (((-3 (-566) "failed") $) 92 (|has| |#2| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) 89 (|has| |#2| (-1038 (-409 (-566))))) (((-3 |#2| "failed") $) 86)) (-1709 (((-566) $) 91 (|has| |#2| (-1038 (-566)))) (((-409 (-566)) $) 88 (|has| |#2| (-1038 (-409 (-566))))) ((|#2| $) 87)) (-2275 (((-689 (-566)) (-689 $)) 84 (|has| |#2| (-639 (-566)))) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) 83 (|has| |#2| (-639 (-566)))) (((-2 (|:| -4196 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 $) (-1264 $)) 82) (((-689 |#2|) (-689 $)) 81)) (-3757 (((-3 $ "failed") $) 37)) (-2299 (((-771) $) 135 (|has| |#2| (-558)))) (-3653 ((|#2| $ (-566) (-566)) 127)) (-3872 (((-644 |#2|) $) 100 (|has| $ (-6 -4417)))) (-2264 (((-112) $) 35)) (-2630 (((-771) $) 136 (|has| |#2| (-558)))) (-1711 (((-644 |#4|) $) 137 (|has| |#2| (-558)))) (-2541 (((-771) $) 123)) (-2552 (((-771) $) 124)) (-2756 (((-112) $ (-771)) 108)) (-3561 ((|#2| $) 72 (|has| |#2| (-6 (-4419 "*"))))) (-3715 (((-566) $) 119)) (-1359 (((-566) $) 121)) (-4227 (((-644 |#2|) $) 99 (|has| $ (-6 -4417)))) (-1688 (((-112) |#2| $) 97 (-12 (|has| |#2| (-1099)) (|has| $ (-6 -4417))))) (-3113 (((-566) $) 120)) (-2701 (((-566) $) 122)) (-4155 (($ (-644 (-644 |#2|))) 114)) (-3708 (($ (-1 |#2| |#2|) $) 104 (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#2| |#2| |#2|) $ $) 131) (($ (-1 |#2| |#2|) $) 105)) (-2337 (((-644 (-644 |#2|)) $) 125)) (-4106 (((-112) $ (-771)) 109)) (-3151 (((-1157) $) 10)) (-1780 (((-3 $ "failed") $) 71 (|has| |#2| (-365)))) (-4059 (((-1119) $) 11)) (-2976 (((-3 $ "failed") $ |#2|) 132 (|has| |#2| (-558)))) (-3966 (((-112) (-1 (-112) |#2|) $) 102 (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#2|))) 96 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) 95 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) 94 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) 93 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))) (-1844 (((-112) $ $) 113)) (-2788 (((-112) $) 110)) (-1737 (($) 111)) (-4376 ((|#2| $ (-566) (-566) |#2|) 128) ((|#2| $ (-566) (-566)) 126)) (-3526 (($ $ (-1 |#2| |#2|)) 56) (($ $ (-1 |#2| |#2|) (-771)) 55) (($ $ (-644 (-1175)) (-644 (-771))) 48 (|has| |#2| (-900 (-1175)))) (($ $ (-1175) (-771)) 47 (|has| |#2| (-900 (-1175)))) (($ $ (-644 (-1175))) 46 (|has| |#2| (-900 (-1175)))) (($ $ (-1175)) 45 (|has| |#2| (-900 (-1175)))) (($ $ (-771)) 43 (|has| |#2| (-233))) (($ $) 41 (|has| |#2| (-233)))) (-4110 ((|#2| $) 76)) (-3628 (($ (-644 |#2|)) 79)) (-2754 (((-112) $) 116)) (-2657 ((|#3| $) 78)) (-1636 ((|#2| $) 73 (|has| |#2| (-6 (-4419 "*"))))) (-4068 (((-771) (-1 (-112) |#2|) $) 101 (|has| $ (-6 -4417))) (((-771) |#2| $) 98 (-12 (|has| |#2| (-1099)) (|has| $ (-6 -4417))))) (-3924 (($ $) 112)) (-4327 ((|#4| $ (-566)) 130)) (-2479 (((-862) $) 12) (($ (-566)) 33) (($ (-409 (-566))) 90 (|has| |#2| (-1038 (-409 (-566))))) (($ |#2|) 85)) (-1558 (((-771)) 32 T CONST)) (-3900 (((-112) $ $) 9)) (-3667 (((-112) (-1 (-112) |#2|) $) 103 (|has| $ (-6 -4417)))) (-2126 (((-112) $) 118)) (-2446 (($) 19 T CONST)) (-2459 (($) 34 T CONST)) (-2834 (($ $ (-1 |#2| |#2|)) 54) (($ $ (-1 |#2| |#2|) (-771)) 53) (($ $ (-644 (-1175)) (-644 (-771))) 52 (|has| |#2| (-900 (-1175)))) (($ $ (-1175) (-771)) 51 (|has| |#2| (-900 (-1175)))) (($ $ (-644 (-1175))) 50 (|has| |#2| (-900 (-1175)))) (($ $ (-1175)) 49 (|has| |#2| (-900 (-1175)))) (($ $ (-771)) 44 (|has| |#2| (-233))) (($ $) 42 (|has| |#2| (-233)))) (-2952 (((-112) $ $) 6)) (-3077 (($ $ |#2|) 133 (|has| |#2| (-365)))) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 70 (|has| |#2| (-365)))) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#2|) 139) (($ |#2| $) 138) ((|#4| $ |#4|) 75) ((|#3| |#3| $) 74)) (-3002 (((-771) $) 106 (|has| $ (-6 -4417))))) +(((-1122 |#1| |#2| |#3| |#4|) (-140) (-771) (-1049) (-238 |t#1| |t#2|) (-238 |t#1| |t#2|)) (T -1122)) +((-3191 (*1 *1 *2) (-12 (-4 *2 (-1049)) (-4 *1 (-1122 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)))) (-3628 (*1 *1 *2) (-12 (-5 *2 (-644 *4)) (-4 *4 (-1049)) (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)))) (-2657 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *2 *5)) (-4 *4 (-1049)) (-4 *5 (-238 *3 *4)) (-4 *2 (-238 *3 *4)))) (-3837 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (-4 *2 (-1049)))) (-4110 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (-4 *2 (-1049)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *4 (-1049)) (-4 *5 (-238 *3 *4)) (-4 *2 (-238 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *2 *5)) (-4 *4 (-1049)) (-4 *2 (-238 *3 *4)) (-4 *5 (-238 *3 *4)))) (-1636 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4419 "*"))) (-4 *2 (-1049)))) (-3561 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4419 "*"))) (-4 *2 (-1049)))) (-1780 (*1 *1 *1) (|partial| -12 (-4 *1 (-1122 *2 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-238 *2 *3)) (-4 *5 (-238 *2 *3)) (-4 *3 (-365)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *4 (-1049)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)) (-4 *4 (-365))))) +(-13 (-231 |t#2|) (-111 |t#2| |t#2|) (-1053 |t#1| |t#1| |t#2| |t#3| |t#4|) (-413 |t#2|) (-379 |t#2|) (-10 -8 (IF (|has| |t#2| (-172)) (-6 (-717 |t#2|)) |%noBranch|) (-15 -3191 ($ |t#2|)) (-15 -3628 ($ (-644 |t#2|))) (-15 -2657 (|t#3| $)) (-15 -3837 (|t#2| $)) (-15 -4110 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4419 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -1636 (|t#2| $)) (-15 -3561 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-365)) (PROGN (-15 -1780 ((-3 $ "failed") $)) (-15 ** ($ $ (-566)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4419 "*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-616 #0=(-409 (-566))) |has| |#2| (-1038 (-409 (-566)))) ((-616 (-566)) . T) ((-616 |#2|) . T) ((-613 (-862)) . T) ((-231 |#2|) . T) ((-233) |has| |#2| (-233)) ((-310 |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) ((-379 |#2|) . T) ((-413 |#2|) . T) ((-491 |#2|) . T) ((-516 |#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) ((-646 (-566)) . T) ((-646 |#2|) . T) ((-646 $) . T) ((-648 |#2|) . T) ((-648 $) . T) ((-640 |#2|) -2809 (|has| |#2| (-172)) (|has| |#2| (-6 (-4419 "*")))) ((-639 (-566)) |has| |#2| (-639 (-566))) ((-639 |#2|) . T) ((-717 |#2|) -2809 (|has| |#2| (-172)) (|has| |#2| (-6 (-4419 "*")))) ((-726) . T) ((-900 (-1175)) |has| |#2| (-900 (-1175))) ((-1053 |#1| |#1| |#2| |#3| |#4|) . T) ((-1038 #0#) |has| |#2| (-1038 (-409 (-566)))) ((-1038 (-566)) |has| |#2| (-1038 (-566))) ((-1038 |#2|) . T) ((-1051 |#2|) . T) ((-1056 |#2|) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1214) . T)) +((-2331 ((|#4| |#4|) 81)) (-2406 ((|#4| |#4|) 76)) (-1696 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1419 (-644 |#3|))) |#4| |#3|) 91)) (-3566 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80)) (-3322 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78))) +(((-1123 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2406 (|#4| |#4|)) (-15 -3322 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2331 (|#4| |#4|)) (-15 -3566 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -1696 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1419 (-644 |#3|))) |#4| |#3|))) (-308) (-375 |#1|) (-375 |#1|) (-687 |#1| |#2| |#3|)) (T -1123)) +((-1696 (*1 *2 *3 *4) (-12 (-4 *5 (-308)) (-4 *6 (-375 *5)) (-4 *4 (-375 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1419 (-644 *4)))) (-5 *1 (-1123 *5 *6 *4 *3)) (-4 *3 (-687 *5 *6 *4)))) (-3566 (*1 *2 *3) (-12 (-4 *4 (-308)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1123 *4 *5 *6 *3)) (-4 *3 (-687 *4 *5 *6)))) (-2331 (*1 *2 *2) (-12 (-4 *3 (-308)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-1123 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5)))) (-3322 (*1 *2 *3) (-12 (-4 *4 (-308)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1123 *4 *5 *6 *3)) (-4 *3 (-687 *4 *5 *6)))) (-2406 (*1 *2 *2) (-12 (-4 *3 (-308)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-1123 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5))))) +(-10 -7 (-15 -2406 (|#4| |#4|)) (-15 -3322 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2331 (|#4| |#4|)) (-15 -3566 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -1696 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1419 (-644 |#3|))) |#4| |#3|))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) 18)) (-2485 (((-644 |#2|) $) 178)) (-2285 (((-1171 $) $ |#2|) 63) (((-1171 |#1|) $) 52)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) 118 (|has| |#1| (-558)))) (-3087 (($ $) 120 (|has| |#1| (-558)))) (-1716 (((-112) $) 122 (|has| |#1| (-558)))) (-2917 (((-771) $) NIL) (((-771) $ (-644 |#2|)) 217)) (-3174 (((-3 $ "failed") $ $) NIL)) (-4058 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-3980 (($ $) NIL (|has| |#1| (-454)))) (-3348 (((-420 $) $) NIL (|has| |#1| (-454)))) (-4262 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-1811 (($) NIL T CONST)) (-2980 (((-3 |#1| "failed") $) 172) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 |#2| "failed") $) NIL)) (-1709 ((|#1| $) 170) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-566) $) NIL (|has| |#1| (-1038 (-566)))) ((|#2| $) NIL)) (-4343 (($ $ $ |#2|) NIL (|has| |#1| (-172)))) (-3565 (($ $) 221)) (-2275 (((-689 (-566)) (-689 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -4196 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) NIL) (((-689 |#1|) (-689 $)) NIL)) (-3757 (((-3 $ "failed") $) 92)) (-3530 (($ $) NIL (|has| |#1| (-454))) (($ $ |#2|) NIL (|has| |#1| (-454)))) (-3551 (((-644 $) $) NIL)) (-4188 (((-112) $) NIL (|has| |#1| (-909)))) (-3995 (($ $ |#1| (-533 |#2|) $) NIL)) (-1542 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| |#1| (-886 (-381))) (|has| |#2| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| |#1| (-886 (-566))) (|has| |#2| (-886 (-566)))))) (-2264 (((-112) $) 20)) (-3486 (((-771) $) 30)) (-2474 (($ (-1171 |#1|) |#2|) 57) (($ (-1171 $) |#2|) 74)) (-1545 (((-644 $) $) NIL)) (-3989 (((-112) $) 41)) (-2463 (($ |#1| (-533 |#2|)) 81) (($ $ |#2| (-771)) 61) (($ $ (-644 |#2|) (-644 (-771))) NIL)) (-2235 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $ |#2|) NIL)) (-2584 (((-533 |#2|) $) 209) (((-771) $ |#2|) 210) (((-644 (-771)) $ (-644 |#2|)) 211)) (-3327 (($ (-1 (-533 |#2|) (-533 |#2|)) $) NIL)) (-3080 (($ (-1 |#1| |#1|) $) 130)) (-2673 (((-3 |#2| "failed") $) 181)) (-2608 (($ $) 220)) (-2622 ((|#1| $) 46)) (-2120 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-3151 (((-1157) $) NIL)) (-4075 (((-3 (-644 $) "failed") $) NIL)) (-3380 (((-3 (-644 $) "failed") $) NIL)) (-2414 (((-3 (-2 (|:| |var| |#2|) (|:| -3631 (-771))) "failed") $) NIL)) (-4059 (((-1119) $) NIL)) (-2587 (((-112) $) 42)) (-2597 ((|#1| $) NIL)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) 150 (|has| |#1| (-454)))) (-2162 (($ (-644 $)) 155 (|has| |#1| (-454))) (($ $ $) 140 (|has| |#1| (-454)))) (-1500 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-3917 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-2325 (((-420 $) $) NIL (|has| |#1| (-909)))) (-2976 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558))) (((-3 $ "failed") $ $) 128 (|has| |#1| (-558)))) (-3297 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ |#2| |#1|) 184) (($ $ (-644 |#2|) (-644 |#1|)) 199) (($ $ |#2| $) 183) (($ $ (-644 |#2|) (-644 $)) 198)) (-3553 (($ $ |#2|) NIL (|has| |#1| (-172)))) (-3526 (($ $ |#2|) 219) (($ $ (-644 |#2|)) NIL) (($ $ |#2| (-771)) NIL) (($ $ (-644 |#2|) (-644 (-771))) NIL)) (-1630 (((-533 |#2|) $) 205) (((-771) $ |#2|) 200) (((-644 (-771)) $ (-644 |#2|)) 203)) (-3136 (((-892 (-381)) $) NIL (-12 (|has| |#1| (-614 (-892 (-381)))) (|has| |#2| (-614 (-892 (-381)))))) (((-892 (-566)) $) NIL (-12 (|has| |#1| (-614 (-892 (-566)))) (|has| |#2| (-614 (-892 (-566)))))) (((-538) $) NIL (-12 (|has| |#1| (-614 (-538))) (|has| |#2| (-614 (-538)))))) (-2252 ((|#1| $) 136 (|has| |#1| (-454))) (($ $ |#2|) 139 (|has| |#1| (-454)))) (-3233 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-909))))) (-2479 (((-862) $) 161) (($ (-566)) 86) (($ |#1|) 87) (($ |#2|) 33) (($ $) NIL (|has| |#1| (-558))) (($ (-409 (-566))) NIL (-2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566))))))) (-3866 (((-644 |#1|) $) 164)) (-3025 ((|#1| $ (-533 |#2|)) 83) (($ $ |#2| (-771)) NIL) (($ $ (-644 |#2|) (-644 (-771))) NIL)) (-2645 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| $ (-145)) (|has| |#1| (-909))) (|has| |#1| (-145))))) (-1558 (((-771)) 89 T CONST)) (-2244 (($ $ $ (-771)) NIL (|has| |#1| (-172)))) (-3900 (((-112) $ $) NIL)) (-1333 (((-112) $ $) 125 (|has| |#1| (-558)))) (-2446 (($) 12 T CONST)) (-2459 (($) 14 T CONST)) (-2834 (($ $ |#2|) NIL) (($ $ (-644 |#2|)) NIL) (($ $ |#2| (-771)) NIL) (($ $ (-644 |#2|) (-644 (-771))) NIL)) (-2952 (((-112) $ $) 108)) (-3077 (($ $ |#1|) 134 (|has| |#1| (-365)))) (-3065 (($ $) 95) (($ $ $) 106)) (-3052 (($ $ $) 58)) (** (($ $ (-921)) 112) (($ $ (-771)) 111)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 98) (($ $ $) 75) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ |#1| $) 101) (($ $ |#1|) NIL))) +(((-1124 |#1| |#2|) (-949 |#1| (-533 |#2|) |#2|) (-1049) (-850)) (T -1124)) +NIL +(-949 |#1| (-533 |#2|) |#2|) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-2485 (((-644 |#2|) $) NIL)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-3087 (($ $) NIL (|has| |#1| (-558)))) (-1716 (((-112) $) NIL (|has| |#1| (-558)))) (-3219 (($ $) 152 (|has| |#1| (-38 (-409 (-566)))))) (-3091 (($ $) 128 (|has| |#1| (-38 (-409 (-566)))))) (-3174 (((-3 $ "failed") $ $) NIL)) (-2338 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3197 (($ $) 148 (|has| |#1| (-38 (-409 (-566)))))) (-3067 (($ $) 124 (|has| |#1| (-38 (-409 (-566)))))) (-3240 (($ $) 156 (|has| |#1| (-38 (-409 (-566)))))) (-3115 (($ $) 132 (|has| |#1| (-38 (-409 (-566)))))) (-1811 (($) NIL T CONST)) (-3565 (($ $) NIL)) (-3757 (((-3 $ "failed") $) NIL)) (-2388 (((-952 |#1|) $ (-771)) NIL) (((-952 |#1|) $ (-771) (-771)) NIL)) (-3088 (((-112) $) NIL)) (-2964 (($) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1802 (((-771) $ |#2|) NIL) (((-771) $ |#2| (-771)) NIL)) (-2264 (((-112) $) NIL)) (-3146 (($ $ (-566)) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3989 (((-112) $) NIL)) (-2463 (($ $ (-644 |#2|) (-644 (-533 |#2|))) NIL) (($ $ |#2| (-533 |#2|)) NIL) (($ |#1| (-533 |#2|)) NIL) (($ $ |#2| (-771)) 63) (($ $ (-644 |#2|) (-644 (-771))) NIL)) (-3080 (($ (-1 |#1| |#1|) $) NIL)) (-3676 (($ $) 122 (|has| |#1| (-38 (-409 (-566)))))) (-2608 (($ $) NIL)) (-2622 ((|#1| $) NIL)) (-3151 (((-1157) $) NIL)) (-2390 (($ $ |#2|) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ |#2| |#1|) 175 (|has| |#1| (-38 (-409 (-566)))))) (-4059 (((-1119) $) NIL)) (-2668 (($ (-1 $) |#2| |#1|) 174 (|has| |#1| (-38 (-409 (-566)))))) (-2050 (($ $ (-771)) 16)) (-2976 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-3571 (($ $) 120 (|has| |#1| (-38 (-409 (-566)))))) (-3297 (($ $ |#2| $) 106) (($ $ (-644 |#2|) (-644 $)) 99) (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL)) (-3526 (($ $ |#2|) 109) (($ $ (-644 |#2|)) NIL) (($ $ |#2| (-771)) NIL) (($ $ (-644 |#2|) (-644 (-771))) NIL)) (-1630 (((-533 |#2|) $) NIL)) (-2160 (((-1 (-1155 |#3|) |#3|) (-644 |#2|) (-644 (-1155 |#3|))) 87)) (-3250 (($ $) 158 (|has| |#1| (-38 (-409 (-566)))))) (-3126 (($ $) 134 (|has| |#1| (-38 (-409 (-566)))))) (-3227 (($ $) 154 (|has| |#1| (-38 (-409 (-566)))))) (-3105 (($ $) 130 (|has| |#1| (-38 (-409 (-566)))))) (-3207 (($ $) 150 (|has| |#1| (-38 (-409 (-566)))))) (-3079 (($ $) 126 (|has| |#1| (-38 (-409 (-566)))))) (-4122 (($ $) 18)) (-2479 (((-862) $) 199) (($ (-566)) NIL) (($ |#1|) 45 (|has| |#1| (-172))) (($ $) NIL (|has| |#1| (-558))) (($ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ |#2|) 70) (($ |#3|) 68)) (-3025 ((|#1| $ (-533 |#2|)) NIL) (($ $ |#2| (-771)) NIL) (($ $ (-644 |#2|) (-644 (-771))) NIL) ((|#3| $ (-771)) 43)) (-2645 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1558 (((-771)) NIL T CONST)) (-3900 (((-112) $ $) NIL)) (-3285 (($ $) 164 (|has| |#1| (-38 (-409 (-566)))))) (-3157 (($ $) 140 (|has| |#1| (-38 (-409 (-566)))))) (-1333 (((-112) $ $) NIL (|has| |#1| (-558)))) (-3260 (($ $) 160 (|has| |#1| (-38 (-409 (-566)))))) (-3135 (($ $) 136 (|has| |#1| (-38 (-409 (-566)))))) (-3309 (($ $) 168 (|has| |#1| (-38 (-409 (-566)))))) (-3179 (($ $) 144 (|has| |#1| (-38 (-409 (-566)))))) (-1861 (($ $) 170 (|has| |#1| (-38 (-409 (-566)))))) (-3190 (($ $) 146 (|has| |#1| (-38 (-409 (-566)))))) (-3299 (($ $) 166 (|has| |#1| (-38 (-409 (-566)))))) (-3168 (($ $) 142 (|has| |#1| (-38 (-409 (-566)))))) (-3273 (($ $) 162 (|has| |#1| (-38 (-409 (-566)))))) (-3148 (($ $) 138 (|has| |#1| (-38 (-409 (-566)))))) (-2446 (($) 52 T CONST)) (-2459 (($) 62 T CONST)) (-2834 (($ $ |#2|) NIL) (($ $ (-644 |#2|)) NIL) (($ $ |#2| (-771)) NIL) (($ $ (-644 |#2|) (-644 (-771))) NIL)) (-2952 (((-112) $ $) NIL)) (-3077 (($ $ |#1|) 201 (|has| |#1| (-365)))) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) 66)) (** (($ $ (-921)) NIL) (($ $ (-771)) 77) (($ $ $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 112 (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 65) (($ $ (-409 (-566))) 117 (|has| |#1| (-38 (-409 (-566))))) (($ (-409 (-566)) $) 115 (|has| |#1| (-38 (-409 (-566))))) (($ |#1| $) 48) (($ $ |#1|) 49) (($ |#3| $) 47))) +(((-1125 |#1| |#2| |#3|) (-13 (-740 |#1| |#2|) (-10 -8 (-15 -3025 (|#3| $ (-771))) (-15 -2479 ($ |#2|)) (-15 -2479 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2160 ((-1 (-1155 |#3|) |#3|) (-644 |#2|) (-644 (-1155 |#3|)))) (IF (|has| |#1| (-38 (-409 (-566)))) (PROGN (-15 -2390 ($ $ |#2| |#1|)) (-15 -2668 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1049) (-850) (-949 |#1| (-533 |#2|) |#2|)) (T -1125)) +((-3025 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-4 *2 (-949 *4 (-533 *5) *5)) (-5 *1 (-1125 *4 *5 *2)) (-4 *4 (-1049)) (-4 *5 (-850)))) (-2479 (*1 *1 *2) (-12 (-4 *3 (-1049)) (-4 *2 (-850)) (-5 *1 (-1125 *3 *2 *4)) (-4 *4 (-949 *3 (-533 *2) *2)))) (-2479 (*1 *1 *2) (-12 (-4 *3 (-1049)) (-4 *4 (-850)) (-5 *1 (-1125 *3 *4 *2)) (-4 *2 (-949 *3 (-533 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1049)) (-4 *4 (-850)) (-5 *1 (-1125 *3 *4 *2)) (-4 *2 (-949 *3 (-533 *4) *4)))) (-2160 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *6)) (-5 *4 (-644 (-1155 *7))) (-4 *6 (-850)) (-4 *7 (-949 *5 (-533 *6) *6)) (-4 *5 (-1049)) (-5 *2 (-1 (-1155 *7) *7)) (-5 *1 (-1125 *5 *6 *7)))) (-2390 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-4 *2 (-850)) (-5 *1 (-1125 *3 *2 *4)) (-4 *4 (-949 *3 (-533 *2) *2)))) (-2668 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1125 *4 *3 *5))) (-4 *4 (-38 (-409 (-566)))) (-4 *4 (-1049)) (-4 *3 (-850)) (-5 *1 (-1125 *4 *3 *5)) (-4 *5 (-949 *4 (-533 *3) *3))))) +(-13 (-740 |#1| |#2|) (-10 -8 (-15 -3025 (|#3| $ (-771))) (-15 -2479 ($ |#2|)) (-15 -2479 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2160 ((-1 (-1155 |#3|) |#3|) (-644 |#2|) (-644 (-1155 |#3|)))) (IF (|has| |#1| (-38 (-409 (-566)))) (PROGN (-15 -2390 ($ $ |#2| |#1|)) (-15 -2668 ($ (-1 $) |#2| |#1|))) |%noBranch|))) +((-2986 (((-112) $ $) 7)) (-1416 (((-644 (-2 (|:| -1637 $) (|:| -3516 (-644 |#4|)))) (-644 |#4|)) 86)) (-3295 (((-644 $) (-644 |#4|)) 87) (((-644 $) (-644 |#4|) (-112)) 112)) (-2485 (((-644 |#3|) $) 34)) (-1489 (((-112) $) 27)) (-3541 (((-112) $) 18 (|has| |#1| (-558)))) (-2219 (((-112) |#4| $) 102) (((-112) $) 98)) (-1922 ((|#4| |#4| $) 93)) (-3980 (((-644 (-2 (|:| |val| |#4|) (|:| -2192 $))) |#4| $) 127)) (-1374 (((-2 (|:| |under| $) (|:| -2001 $) (|:| |upper| $)) $ |#3|) 28)) (-1453 (((-112) $ (-771)) 45)) (-3543 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4417))) (((-3 |#4| "failed") $ |#3|) 80)) (-1811 (($) 46 T CONST)) (-4210 (((-112) $) 23 (|has| |#1| (-558)))) (-3050 (((-112) $ $) 25 (|has| |#1| (-558)))) (-1768 (((-112) $ $) 24 (|has| |#1| (-558)))) (-3261 (((-112) $) 26 (|has| |#1| (-558)))) (-3451 (((-644 |#4|) (-644 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2796 (((-644 |#4|) (-644 |#4|) $) 19 (|has| |#1| (-558)))) (-3829 (((-644 |#4|) (-644 |#4|) $) 20 (|has| |#1| (-558)))) (-2980 (((-3 $ "failed") (-644 |#4|)) 37)) (-1709 (($ (-644 |#4|)) 36)) (-4091 (((-3 $ "failed") $) 83)) (-3358 ((|#4| |#4| $) 90)) (-4111 (($ $) 69 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4417))))) (-2628 (($ |#4| $) 68 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4417)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4417)))) (-3131 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-558)))) (-1995 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3326 ((|#4| |#4| $) 88)) (-1838 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4417)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4417))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4417))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1877 (((-2 (|:| -1637 (-644 |#4|)) (|:| -3516 (-644 |#4|))) $) 106)) (-2281 (((-112) |#4| $) 137)) (-1646 (((-112) |#4| $) 134)) (-3433 (((-112) |#4| $) 138) (((-112) $) 135)) (-3872 (((-644 |#4|) $) 53 (|has| $ (-6 -4417)))) (-4297 (((-112) |#4| $) 105) (((-112) $) 104)) (-4052 ((|#3| $) 35)) (-2756 (((-112) $ (-771)) 44)) (-4227 (((-644 |#4|) $) 54 (|has| $ (-6 -4417)))) (-1688 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4417))))) (-3708 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#4| |#4|) $) 48)) (-3599 (((-644 |#3|) $) 33)) (-2884 (((-112) |#3| $) 32)) (-4106 (((-112) $ (-771)) 43)) (-3151 (((-1157) $) 10)) (-3421 (((-3 |#4| (-644 $)) |#4| |#4| $) 129)) (-3723 (((-644 (-2 (|:| |val| |#4|) (|:| -2192 $))) |#4| |#4| $) 128)) (-2651 (((-3 |#4| "failed") $) 84)) (-3391 (((-644 $) |#4| $) 130)) (-3680 (((-3 (-112) (-644 $)) |#4| $) 133)) (-3325 (((-644 (-2 (|:| |val| (-112)) (|:| -2192 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-4022 (((-644 $) |#4| $) 126) (((-644 $) (-644 |#4|) $) 125) (((-644 $) (-644 |#4|) (-644 $)) 124) (((-644 $) |#4| (-644 $)) 123)) (-2047 (($ |#4| $) 118) (($ (-644 |#4|) $) 117)) (-3707 (((-644 |#4|) $) 108)) (-4121 (((-112) |#4| $) 100) (((-112) $) 96)) (-3317 ((|#4| |#4| $) 91)) (-3730 (((-112) $ $) 111)) (-1719 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-558)))) (-1695 (((-112) |#4| $) 101) (((-112) $) 97)) (-3869 ((|#4| |#4| $) 92)) (-4059 (((-1119) $) 11)) (-4080 (((-3 |#4| "failed") $) 85)) (-2688 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2293 (((-3 $ "failed") $ |#4|) 79)) (-2050 (($ $ |#4|) 78) (((-644 $) |#4| $) 116) (((-644 $) |#4| (-644 $)) 115) (((-644 $) (-644 |#4|) $) 114) (((-644 $) (-644 |#4|) (-644 $)) 113)) (-3966 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 |#4|) (-644 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-295 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-644 (-295 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))))) (-1844 (((-112) $ $) 39)) (-2788 (((-112) $) 42)) (-1737 (($) 41)) (-1630 (((-771) $) 107)) (-4068 (((-771) |#4| $) 55 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4417)))) (((-771) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4417)))) (-3924 (($ $) 40)) (-3136 (((-538) $) 70 (|has| |#4| (-614 (-538))))) (-2489 (($ (-644 |#4|)) 61)) (-1706 (($ $ |#3|) 29)) (-4234 (($ $ |#3|) 31)) (-4024 (($ $) 89)) (-2378 (($ $ |#3|) 30)) (-2479 (((-862) $) 12) (((-644 |#4|) $) 38)) (-2780 (((-771) $) 77 (|has| |#3| (-370)))) (-3900 (((-112) $ $) 9)) (-2877 (((-3 (-2 (|:| |bas| $) (|:| -3903 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3903 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-4265 (((-112) $ (-1 (-112) |#4| (-644 |#4|))) 99)) (-3437 (((-644 $) |#4| $) 122) (((-644 $) |#4| (-644 $)) 121) (((-644 $) (-644 |#4|) $) 120) (((-644 $) (-644 |#4|) (-644 $)) 119)) (-3667 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4417)))) (-4067 (((-644 |#3|) $) 82)) (-3183 (((-112) |#4| $) 136)) (-3132 (((-112) |#3| $) 81)) (-2952 (((-112) $ $) 6)) (-3002 (((-771) $) 47 (|has| $ (-6 -4417))))) +(((-1126 |#1| |#2| |#3| |#4|) (-140) (-454) (-793) (-850) (-1064 |t#1| |t#2| |t#3|)) (T -1126)) +NIL +(-13 (-1108 |t#1| |t#2| |t#3| |t#4|) (-784 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-102) . T) ((-613 (-644 |#4|)) . T) ((-613 (-862)) . T) ((-151 |#4|) . T) ((-614 (-538)) |has| |#4| (-614 (-538))) ((-310 |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))) ((-491 |#4|) . T) ((-516 |#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))) ((-784 |#1| |#2| |#3| |#4|) . T) ((-976 |#1| |#2| |#3| |#4|) . T) ((-1070 |#1| |#2| |#3| |#4|) . T) ((-1099) . T) ((-1108 |#1| |#2| |#3| |#4|) . T) ((-1207 |#1| |#2| |#3| |#4|) . T) ((-1214) . T)) +((-1916 (((-644 |#2|) |#1|) 15)) (-1632 (((-644 |#2|) |#2| |#2| |#2| |#2| |#2|) 47) (((-644 |#2|) |#1|) 63)) (-1707 (((-644 |#2|) |#2| |#2| |#2|) 45) (((-644 |#2|) |#1|) 61)) (-2708 ((|#2| |#1|) 56)) (-2891 (((-2 (|:| |solns| (-644 |#2|)) (|:| |maps| (-644 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20)) (-2360 (((-644 |#2|) |#2| |#2|) 42) (((-644 |#2|) |#1|) 60)) (-1406 (((-644 |#2|) |#2| |#2| |#2| |#2|) 46) (((-644 |#2|) |#1|) 62)) (-4060 ((|#2| |#2| |#2| |#2| |#2| |#2|) 55)) (-2626 ((|#2| |#2| |#2| |#2|) 53)) (-2700 ((|#2| |#2| |#2|) 52)) (-3748 ((|#2| |#2| |#2| |#2| |#2|) 54))) +(((-1127 |#1| |#2|) (-10 -7 (-15 -1916 ((-644 |#2|) |#1|)) (-15 -2708 (|#2| |#1|)) (-15 -2891 ((-2 (|:| |solns| (-644 |#2|)) (|:| |maps| (-644 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -2360 ((-644 |#2|) |#1|)) (-15 -1707 ((-644 |#2|) |#1|)) (-15 -1406 ((-644 |#2|) |#1|)) (-15 -1632 ((-644 |#2|) |#1|)) (-15 -2360 ((-644 |#2|) |#2| |#2|)) (-15 -1707 ((-644 |#2|) |#2| |#2| |#2|)) (-15 -1406 ((-644 |#2|) |#2| |#2| |#2| |#2|)) (-15 -1632 ((-644 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2700 (|#2| |#2| |#2|)) (-15 -2626 (|#2| |#2| |#2| |#2|)) (-15 -3748 (|#2| |#2| |#2| |#2| |#2|)) (-15 -4060 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1240 |#2|) (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) (T -1127)) +((-4060 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) (-5 *1 (-1127 *3 *2)) (-4 *3 (-1240 *2)))) (-3748 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) (-5 *1 (-1127 *3 *2)) (-4 *3 (-1240 *2)))) (-2626 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) (-5 *1 (-1127 *3 *2)) (-4 *3 (-1240 *2)))) (-2700 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) (-5 *1 (-1127 *3 *2)) (-4 *3 (-1240 *2)))) (-1632 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) (-5 *2 (-644 *3)) (-5 *1 (-1127 *4 *3)) (-4 *4 (-1240 *3)))) (-1406 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) (-5 *2 (-644 *3)) (-5 *1 (-1127 *4 *3)) (-4 *4 (-1240 *3)))) (-1707 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) (-5 *2 (-644 *3)) (-5 *1 (-1127 *4 *3)) (-4 *4 (-1240 *3)))) (-2360 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) (-5 *2 (-644 *3)) (-5 *1 (-1127 *4 *3)) (-4 *4 (-1240 *3)))) (-1632 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) (-5 *2 (-644 *4)) (-5 *1 (-1127 *3 *4)) (-4 *3 (-1240 *4)))) (-1406 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) (-5 *2 (-644 *4)) (-5 *1 (-1127 *3 *4)) (-4 *3 (-1240 *4)))) (-1707 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) (-5 *2 (-644 *4)) (-5 *1 (-1127 *3 *4)) (-4 *3 (-1240 *4)))) (-2360 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) (-5 *2 (-644 *4)) (-5 *1 (-1127 *3 *4)) (-4 *3 (-1240 *4)))) (-2891 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) (-5 *2 (-2 (|:| |solns| (-644 *5)) (|:| |maps| (-644 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1127 *3 *5)) (-4 *3 (-1240 *5)))) (-2708 (*1 *2 *3) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) (-5 *1 (-1127 *3 *2)) (-4 *3 (-1240 *2)))) (-1916 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) (-5 *2 (-644 *4)) (-5 *1 (-1127 *3 *4)) (-4 *3 (-1240 *4))))) +(-10 -7 (-15 -1916 ((-644 |#2|) |#1|)) (-15 -2708 (|#2| |#1|)) (-15 -2891 ((-2 (|:| |solns| (-644 |#2|)) (|:| |maps| (-644 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -2360 ((-644 |#2|) |#1|)) (-15 -1707 ((-644 |#2|) |#1|)) (-15 -1406 ((-644 |#2|) |#1|)) (-15 -1632 ((-644 |#2|) |#1|)) (-15 -2360 ((-644 |#2|) |#2| |#2|)) (-15 -1707 ((-644 |#2|) |#2| |#2| |#2|)) (-15 -1406 ((-644 |#2|) |#2| |#2| |#2| |#2|)) (-15 -1632 ((-644 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2700 (|#2| |#2| |#2|)) (-15 -2626 (|#2| |#2| |#2| |#2|)) (-15 -3748 (|#2| |#2| |#2| |#2| |#2|)) (-15 -4060 (|#2| |#2| |#2| |#2| |#2| |#2|))) +((-2854 (((-644 (-644 (-295 (-317 |#1|)))) (-644 (-295 (-409 (-952 |#1|))))) 124) (((-644 (-644 (-295 (-317 |#1|)))) (-644 (-295 (-409 (-952 |#1|)))) (-644 (-1175))) 123) (((-644 (-644 (-295 (-317 |#1|)))) (-644 (-409 (-952 |#1|)))) 121) (((-644 (-644 (-295 (-317 |#1|)))) (-644 (-409 (-952 |#1|))) (-644 (-1175))) 119) (((-644 (-295 (-317 |#1|))) (-295 (-409 (-952 |#1|)))) 97) (((-644 (-295 (-317 |#1|))) (-295 (-409 (-952 |#1|))) (-1175)) 98) (((-644 (-295 (-317 |#1|))) (-409 (-952 |#1|))) 92) (((-644 (-295 (-317 |#1|))) (-409 (-952 |#1|)) (-1175)) 82)) (-1935 (((-644 (-644 (-317 |#1|))) (-644 (-409 (-952 |#1|))) (-644 (-1175))) 117) (((-644 (-317 |#1|)) (-409 (-952 |#1|)) (-1175)) 54)) (-3985 (((-1164 (-644 (-317 |#1|)) (-644 (-295 (-317 |#1|)))) (-409 (-952 |#1|)) (-1175)) 128) (((-1164 (-644 (-317 |#1|)) (-644 (-295 (-317 |#1|)))) (-295 (-409 (-952 |#1|))) (-1175)) 127))) +(((-1128 |#1|) (-10 -7 (-15 -2854 ((-644 (-295 (-317 |#1|))) (-409 (-952 |#1|)) (-1175))) (-15 -2854 ((-644 (-295 (-317 |#1|))) (-409 (-952 |#1|)))) (-15 -2854 ((-644 (-295 (-317 |#1|))) (-295 (-409 (-952 |#1|))) (-1175))) (-15 -2854 ((-644 (-295 (-317 |#1|))) (-295 (-409 (-952 |#1|))))) (-15 -2854 ((-644 (-644 (-295 (-317 |#1|)))) (-644 (-409 (-952 |#1|))) (-644 (-1175)))) (-15 -2854 ((-644 (-644 (-295 (-317 |#1|)))) (-644 (-409 (-952 |#1|))))) (-15 -2854 ((-644 (-644 (-295 (-317 |#1|)))) (-644 (-295 (-409 (-952 |#1|)))) (-644 (-1175)))) (-15 -2854 ((-644 (-644 (-295 (-317 |#1|)))) (-644 (-295 (-409 (-952 |#1|)))))) (-15 -1935 ((-644 (-317 |#1|)) (-409 (-952 |#1|)) (-1175))) (-15 -1935 ((-644 (-644 (-317 |#1|))) (-644 (-409 (-952 |#1|))) (-644 (-1175)))) (-15 -3985 ((-1164 (-644 (-317 |#1|)) (-644 (-295 (-317 |#1|)))) (-295 (-409 (-952 |#1|))) (-1175))) (-15 -3985 ((-1164 (-644 (-317 |#1|)) (-644 (-295 (-317 |#1|)))) (-409 (-952 |#1|)) (-1175)))) (-13 (-308) (-147))) (T -1128)) +((-3985 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-1175)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-1164 (-644 (-317 *5)) (-644 (-295 (-317 *5))))) (-5 *1 (-1128 *5)))) (-3985 (*1 *2 *3 *4) (-12 (-5 *3 (-295 (-409 (-952 *5)))) (-5 *4 (-1175)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-1164 (-644 (-317 *5)) (-644 (-295 (-317 *5))))) (-5 *1 (-1128 *5)))) (-1935 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-409 (-952 *5)))) (-5 *4 (-644 (-1175))) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-644 (-644 (-317 *5)))) (-5 *1 (-1128 *5)))) (-1935 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-1175)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-644 (-317 *5))) (-5 *1 (-1128 *5)))) (-2854 (*1 *2 *3) (-12 (-5 *3 (-644 (-295 (-409 (-952 *4))))) (-4 *4 (-13 (-308) (-147))) (-5 *2 (-644 (-644 (-295 (-317 *4))))) (-5 *1 (-1128 *4)))) (-2854 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-295 (-409 (-952 *5))))) (-5 *4 (-644 (-1175))) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-644 (-644 (-295 (-317 *5))))) (-5 *1 (-1128 *5)))) (-2854 (*1 *2 *3) (-12 (-5 *3 (-644 (-409 (-952 *4)))) (-4 *4 (-13 (-308) (-147))) (-5 *2 (-644 (-644 (-295 (-317 *4))))) (-5 *1 (-1128 *4)))) (-2854 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-409 (-952 *5)))) (-5 *4 (-644 (-1175))) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-644 (-644 (-295 (-317 *5))))) (-5 *1 (-1128 *5)))) (-2854 (*1 *2 *3) (-12 (-5 *3 (-295 (-409 (-952 *4)))) (-4 *4 (-13 (-308) (-147))) (-5 *2 (-644 (-295 (-317 *4)))) (-5 *1 (-1128 *4)))) (-2854 (*1 *2 *3 *4) (-12 (-5 *3 (-295 (-409 (-952 *5)))) (-5 *4 (-1175)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-644 (-295 (-317 *5)))) (-5 *1 (-1128 *5)))) (-2854 (*1 *2 *3) (-12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-13 (-308) (-147))) (-5 *2 (-644 (-295 (-317 *4)))) (-5 *1 (-1128 *4)))) (-2854 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-1175)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-644 (-295 (-317 *5)))) (-5 *1 (-1128 *5))))) +(-10 -7 (-15 -2854 ((-644 (-295 (-317 |#1|))) (-409 (-952 |#1|)) (-1175))) (-15 -2854 ((-644 (-295 (-317 |#1|))) (-409 (-952 |#1|)))) (-15 -2854 ((-644 (-295 (-317 |#1|))) (-295 (-409 (-952 |#1|))) (-1175))) (-15 -2854 ((-644 (-295 (-317 |#1|))) (-295 (-409 (-952 |#1|))))) (-15 -2854 ((-644 (-644 (-295 (-317 |#1|)))) (-644 (-409 (-952 |#1|))) (-644 (-1175)))) (-15 -2854 ((-644 (-644 (-295 (-317 |#1|)))) (-644 (-409 (-952 |#1|))))) (-15 -2854 ((-644 (-644 (-295 (-317 |#1|)))) (-644 (-295 (-409 (-952 |#1|)))) (-644 (-1175)))) (-15 -2854 ((-644 (-644 (-295 (-317 |#1|)))) (-644 (-295 (-409 (-952 |#1|)))))) (-15 -1935 ((-644 (-317 |#1|)) (-409 (-952 |#1|)) (-1175))) (-15 -1935 ((-644 (-644 (-317 |#1|))) (-644 (-409 (-952 |#1|))) (-644 (-1175)))) (-15 -3985 ((-1164 (-644 (-317 |#1|)) (-644 (-295 (-317 |#1|)))) (-295 (-409 (-952 |#1|))) (-1175))) (-15 -3985 ((-1164 (-644 (-317 |#1|)) (-644 (-295 (-317 |#1|)))) (-409 (-952 |#1|)) (-1175)))) +((-3122 (((-409 (-1171 (-317 |#1|))) (-1264 (-317 |#1|)) (-409 (-1171 (-317 |#1|))) (-566)) 38)) (-4216 (((-409 (-1171 (-317 |#1|))) (-409 (-1171 (-317 |#1|))) (-409 (-1171 (-317 |#1|))) (-409 (-1171 (-317 |#1|)))) 49))) +(((-1129 |#1|) (-10 -7 (-15 -4216 ((-409 (-1171 (-317 |#1|))) (-409 (-1171 (-317 |#1|))) (-409 (-1171 (-317 |#1|))) (-409 (-1171 (-317 |#1|))))) (-15 -3122 ((-409 (-1171 (-317 |#1|))) (-1264 (-317 |#1|)) (-409 (-1171 (-317 |#1|))) (-566)))) (-558)) (T -1129)) +((-3122 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-409 (-1171 (-317 *5)))) (-5 *3 (-1264 (-317 *5))) (-5 *4 (-566)) (-4 *5 (-558)) (-5 *1 (-1129 *5)))) (-4216 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-409 (-1171 (-317 *3)))) (-4 *3 (-558)) (-5 *1 (-1129 *3))))) +(-10 -7 (-15 -4216 ((-409 (-1171 (-317 |#1|))) (-409 (-1171 (-317 |#1|))) (-409 (-1171 (-317 |#1|))) (-409 (-1171 (-317 |#1|))))) (-15 -3122 ((-409 (-1171 (-317 |#1|))) (-1264 (-317 |#1|)) (-409 (-1171 (-317 |#1|))) (-566)))) +((-1916 (((-644 (-644 (-295 (-317 |#1|)))) (-644 (-295 (-317 |#1|))) (-644 (-1175))) 248) (((-644 (-295 (-317 |#1|))) (-317 |#1|) (-1175)) 23) (((-644 (-295 (-317 |#1|))) (-295 (-317 |#1|)) (-1175)) 29) (((-644 (-295 (-317 |#1|))) (-295 (-317 |#1|))) 28) (((-644 (-295 (-317 |#1|))) (-317 |#1|)) 24))) +(((-1130 |#1|) (-10 -7 (-15 -1916 ((-644 (-295 (-317 |#1|))) (-317 |#1|))) (-15 -1916 ((-644 (-295 (-317 |#1|))) (-295 (-317 |#1|)))) (-15 -1916 ((-644 (-295 (-317 |#1|))) (-295 (-317 |#1|)) (-1175))) (-15 -1916 ((-644 (-295 (-317 |#1|))) (-317 |#1|) (-1175))) (-15 -1916 ((-644 (-644 (-295 (-317 |#1|)))) (-644 (-295 (-317 |#1|))) (-644 (-1175))))) (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (T -1130)) +((-1916 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-1175))) (-4 *5 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *2 (-644 (-644 (-295 (-317 *5))))) (-5 *1 (-1130 *5)) (-5 *3 (-644 (-295 (-317 *5)))))) (-1916 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-4 *5 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *2 (-644 (-295 (-317 *5)))) (-5 *1 (-1130 *5)) (-5 *3 (-317 *5)))) (-1916 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-4 *5 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *2 (-644 (-295 (-317 *5)))) (-5 *1 (-1130 *5)) (-5 *3 (-295 (-317 *5))))) (-1916 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *2 (-644 (-295 (-317 *4)))) (-5 *1 (-1130 *4)) (-5 *3 (-295 (-317 *4))))) (-1916 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *2 (-644 (-295 (-317 *4)))) (-5 *1 (-1130 *4)) (-5 *3 (-317 *4))))) +(-10 -7 (-15 -1916 ((-644 (-295 (-317 |#1|))) (-317 |#1|))) (-15 -1916 ((-644 (-295 (-317 |#1|))) (-295 (-317 |#1|)))) (-15 -1916 ((-644 (-295 (-317 |#1|))) (-295 (-317 |#1|)) (-1175))) (-15 -1916 ((-644 (-295 (-317 |#1|))) (-317 |#1|) (-1175))) (-15 -1916 ((-644 (-644 (-295 (-317 |#1|)))) (-644 (-295 (-317 |#1|))) (-644 (-1175))))) +((-2940 ((|#2| |#2|) 30 (|has| |#1| (-850))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 27)) (-2475 ((|#2| |#2|) 29 (|has| |#1| (-850))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 22))) +(((-1131 |#1| |#2|) (-10 -7 (-15 -2475 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -2940 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-850)) (PROGN (-15 -2475 (|#2| |#2|)) (-15 -2940 (|#2| |#2|))) |%noBranch|)) (-1214) (-13 (-604 (-566) |#1|) (-10 -7 (-6 -4417) (-6 -4418)))) (T -1131)) +((-2940 (*1 *2 *2) (-12 (-4 *3 (-850)) (-4 *3 (-1214)) (-5 *1 (-1131 *3 *2)) (-4 *2 (-13 (-604 (-566) *3) (-10 -7 (-6 -4417) (-6 -4418)))))) (-2475 (*1 *2 *2) (-12 (-4 *3 (-850)) (-4 *3 (-1214)) (-5 *1 (-1131 *3 *2)) (-4 *2 (-13 (-604 (-566) *3) (-10 -7 (-6 -4417) (-6 -4418)))))) (-2940 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1214)) (-5 *1 (-1131 *4 *2)) (-4 *2 (-13 (-604 (-566) *4) (-10 -7 (-6 -4417) (-6 -4418)))))) (-2475 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1214)) (-5 *1 (-1131 *4 *2)) (-4 *2 (-13 (-604 (-566) *4) (-10 -7 (-6 -4417) (-6 -4418))))))) +(-10 -7 (-15 -2475 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -2940 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-850)) (PROGN (-15 -2475 (|#2| |#2|)) (-15 -2940 (|#2| |#2|))) |%noBranch|)) +((-2986 (((-112) $ $) NIL)) (-3364 (((-1163 3 |#1|) $) 141)) (-2239 (((-112) $) 101)) (-3941 (($ $ (-644 (-943 |#1|))) 44) (($ $ (-644 (-644 |#1|))) 104) (($ (-644 (-943 |#1|))) 103) (((-644 (-943 |#1|)) $) 102)) (-3695 (((-112) $) 72)) (-1848 (($ $ (-943 |#1|)) 76) (($ $ (-644 |#1|)) 81) (($ $ (-771)) 83) (($ (-943 |#1|)) 77) (((-943 |#1|) $) 75)) (-3799 (((-2 (|:| -3828 (-771)) (|:| |curves| (-771)) (|:| |polygons| (-771)) (|:| |constructs| (-771))) $) 139)) (-3993 (((-771) $) 53)) (-4053 (((-771) $) 52)) (-3804 (($ $ (-771) (-943 |#1|)) 67)) (-1520 (((-112) $) 111)) (-1852 (($ $ (-644 (-644 (-943 |#1|))) (-644 (-171)) (-171)) 118) (($ $ (-644 (-644 (-644 |#1|))) (-644 (-171)) (-171)) 120) (($ $ (-644 (-644 (-943 |#1|))) (-112) (-112)) 115) (($ $ (-644 (-644 (-644 |#1|))) (-112) (-112)) 127) (($ (-644 (-644 (-943 |#1|)))) 116) (($ (-644 (-644 (-943 |#1|))) (-112) (-112)) 117) (((-644 (-644 (-943 |#1|))) $) 114)) (-1330 (($ (-644 $)) 56) (($ $ $) 57)) (-4217 (((-644 (-171)) $) 133)) (-3744 (((-644 (-943 |#1|)) $) 130)) (-1299 (((-644 (-644 (-171))) $) 132)) (-3074 (((-644 (-644 (-644 (-943 |#1|)))) $) NIL)) (-4219 (((-644 (-644 (-644 (-771)))) $) 131)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2600 (((-771) $ (-644 (-943 |#1|))) 65)) (-1654 (((-112) $) 84)) (-2269 (($ $ (-644 (-943 |#1|))) 86) (($ $ (-644 (-644 |#1|))) 92) (($ (-644 (-943 |#1|))) 87) (((-644 (-943 |#1|)) $) 85)) (-4054 (($) 48) (($ (-1163 3 |#1|)) 49)) (-3924 (($ $) 63)) (-1349 (((-644 $) $) 62)) (-3918 (($ (-644 $)) 59)) (-1764 (((-644 $) $) 61)) (-2479 (((-862) $) 146)) (-1691 (((-112) $) 94)) (-2547 (($ $ (-644 (-943 |#1|))) 96) (($ $ (-644 (-644 |#1|))) 99) (($ (-644 (-943 |#1|))) 97) (((-644 (-943 |#1|)) $) 95)) (-3069 (($ $) 140)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-1132 |#1|) (-1133 |#1|) (-1049)) (T -1132)) +NIL +(-1133 |#1|) +((-2986 (((-112) $ $) 7)) (-3364 (((-1163 3 |#1|) $) 14)) (-2239 (((-112) $) 30)) (-3941 (($ $ (-644 (-943 |#1|))) 34) (($ $ (-644 (-644 |#1|))) 33) (($ (-644 (-943 |#1|))) 32) (((-644 (-943 |#1|)) $) 31)) (-3695 (((-112) $) 45)) (-1848 (($ $ (-943 |#1|)) 50) (($ $ (-644 |#1|)) 49) (($ $ (-771)) 48) (($ (-943 |#1|)) 47) (((-943 |#1|) $) 46)) (-3799 (((-2 (|:| -3828 (-771)) (|:| |curves| (-771)) (|:| |polygons| (-771)) (|:| |constructs| (-771))) $) 16)) (-3993 (((-771) $) 59)) (-4053 (((-771) $) 60)) (-3804 (($ $ (-771) (-943 |#1|)) 51)) (-1520 (((-112) $) 22)) (-1852 (($ $ (-644 (-644 (-943 |#1|))) (-644 (-171)) (-171)) 29) (($ $ (-644 (-644 (-644 |#1|))) (-644 (-171)) (-171)) 28) (($ $ (-644 (-644 (-943 |#1|))) (-112) (-112)) 27) (($ $ (-644 (-644 (-644 |#1|))) (-112) (-112)) 26) (($ (-644 (-644 (-943 |#1|)))) 25) (($ (-644 (-644 (-943 |#1|))) (-112) (-112)) 24) (((-644 (-644 (-943 |#1|))) $) 23)) (-1330 (($ (-644 $)) 58) (($ $ $) 57)) (-4217 (((-644 (-171)) $) 17)) (-3744 (((-644 (-943 |#1|)) $) 21)) (-1299 (((-644 (-644 (-171))) $) 18)) (-3074 (((-644 (-644 (-644 (-943 |#1|)))) $) 19)) (-4219 (((-644 (-644 (-644 (-771)))) $) 20)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-2600 (((-771) $ (-644 (-943 |#1|))) 52)) (-1654 (((-112) $) 40)) (-2269 (($ $ (-644 (-943 |#1|))) 44) (($ $ (-644 (-644 |#1|))) 43) (($ (-644 (-943 |#1|))) 42) (((-644 (-943 |#1|)) $) 41)) (-4054 (($) 62) (($ (-1163 3 |#1|)) 61)) (-3924 (($ $) 53)) (-1349 (((-644 $) $) 54)) (-3918 (($ (-644 $)) 56)) (-1764 (((-644 $) $) 55)) (-2479 (((-862) $) 12)) (-1691 (((-112) $) 35)) (-2547 (($ $ (-644 (-943 |#1|))) 39) (($ $ (-644 (-644 |#1|))) 38) (($ (-644 (-943 |#1|))) 37) (((-644 (-943 |#1|)) $) 36)) (-3069 (($ $) 15)) (-3900 (((-112) $ $) 9)) (-2952 (((-112) $ $) 6))) +(((-1133 |#1|) (-140) (-1049)) (T -1133)) +((-2479 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-862)))) (-4054 (*1 *1) (-12 (-4 *1 (-1133 *2)) (-4 *2 (-1049)))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-1163 3 *3)) (-4 *3 (-1049)) (-4 *1 (-1133 *3)))) (-4053 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-771)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-771)))) (-1330 (*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) (-1330 (*1 *1 *1 *1) (-12 (-4 *1 (-1133 *2)) (-4 *2 (-1049)))) (-3918 (*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) (-1764 (*1 *2 *1) (-12 (-4 *3 (-1049)) (-5 *2 (-644 *1)) (-4 *1 (-1133 *3)))) (-1349 (*1 *2 *1) (-12 (-4 *3 (-1049)) (-5 *2 (-644 *1)) (-4 *1 (-1133 *3)))) (-3924 (*1 *1 *1) (-12 (-4 *1 (-1133 *2)) (-4 *2 (-1049)))) (-2600 (*1 *2 *1 *3) (-12 (-5 *3 (-644 (-943 *4))) (-4 *1 (-1133 *4)) (-4 *4 (-1049)) (-5 *2 (-771)))) (-3804 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-771)) (-5 *3 (-943 *4)) (-4 *1 (-1133 *4)) (-4 *4 (-1049)))) (-1848 (*1 *1 *1 *2) (-12 (-5 *2 (-943 *3)) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) (-1848 (*1 *1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) (-1848 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) (-1848 (*1 *1 *2) (-12 (-5 *2 (-943 *3)) (-4 *3 (-1049)) (-4 *1 (-1133 *3)))) (-1848 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-943 *3)))) (-3695 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-112)))) (-2269 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-943 *3))) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) (-2269 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-644 *3))) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-644 (-943 *3))) (-4 *3 (-1049)) (-4 *1 (-1133 *3)))) (-2269 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-644 (-943 *3))))) (-1654 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-112)))) (-2547 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-943 *3))) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) (-2547 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-644 *3))) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) (-2547 (*1 *1 *2) (-12 (-5 *2 (-644 (-943 *3))) (-4 *3 (-1049)) (-4 *1 (-1133 *3)))) (-2547 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-644 (-943 *3))))) (-1691 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-112)))) (-3941 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-943 *3))) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) (-3941 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-644 *3))) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) (-3941 (*1 *1 *2) (-12 (-5 *2 (-644 (-943 *3))) (-4 *3 (-1049)) (-4 *1 (-1133 *3)))) (-3941 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-644 (-943 *3))))) (-2239 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-112)))) (-1852 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-644 (-644 (-943 *5)))) (-5 *3 (-644 (-171))) (-5 *4 (-171)) (-4 *1 (-1133 *5)) (-4 *5 (-1049)))) (-1852 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-644 (-644 (-644 *5)))) (-5 *3 (-644 (-171))) (-5 *4 (-171)) (-4 *1 (-1133 *5)) (-4 *5 (-1049)))) (-1852 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-644 (-644 (-943 *4)))) (-5 *3 (-112)) (-4 *1 (-1133 *4)) (-4 *4 (-1049)))) (-1852 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-644 (-644 (-644 *4)))) (-5 *3 (-112)) (-4 *1 (-1133 *4)) (-4 *4 (-1049)))) (-1852 (*1 *1 *2) (-12 (-5 *2 (-644 (-644 (-943 *3)))) (-4 *3 (-1049)) (-4 *1 (-1133 *3)))) (-1852 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-644 (-644 (-943 *4)))) (-5 *3 (-112)) (-4 *4 (-1049)) (-4 *1 (-1133 *4)))) (-1852 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-644 (-644 (-943 *3)))))) (-1520 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-112)))) (-3744 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-644 (-943 *3))))) (-4219 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-644 (-644 (-644 (-771))))))) (-3074 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-644 (-644 (-644 (-943 *3))))))) (-1299 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-644 (-644 (-171)))))) (-4217 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-644 (-171))))) (-3799 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-2 (|:| -3828 (-771)) (|:| |curves| (-771)) (|:| |polygons| (-771)) (|:| |constructs| (-771)))))) (-3069 (*1 *1 *1) (-12 (-4 *1 (-1133 *2)) (-4 *2 (-1049)))) (-3364 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-1163 3 *3))))) +(-13 (-1099) (-10 -8 (-15 -4054 ($)) (-15 -4054 ($ (-1163 3 |t#1|))) (-15 -4053 ((-771) $)) (-15 -3993 ((-771) $)) (-15 -1330 ($ (-644 $))) (-15 -1330 ($ $ $)) (-15 -3918 ($ (-644 $))) (-15 -1764 ((-644 $) $)) (-15 -1349 ((-644 $) $)) (-15 -3924 ($ $)) (-15 -2600 ((-771) $ (-644 (-943 |t#1|)))) (-15 -3804 ($ $ (-771) (-943 |t#1|))) (-15 -1848 ($ $ (-943 |t#1|))) (-15 -1848 ($ $ (-644 |t#1|))) (-15 -1848 ($ $ (-771))) (-15 -1848 ($ (-943 |t#1|))) (-15 -1848 ((-943 |t#1|) $)) (-15 -3695 ((-112) $)) (-15 -2269 ($ $ (-644 (-943 |t#1|)))) (-15 -2269 ($ $ (-644 (-644 |t#1|)))) (-15 -2269 ($ (-644 (-943 |t#1|)))) (-15 -2269 ((-644 (-943 |t#1|)) $)) (-15 -1654 ((-112) $)) (-15 -2547 ($ $ (-644 (-943 |t#1|)))) (-15 -2547 ($ $ (-644 (-644 |t#1|)))) (-15 -2547 ($ (-644 (-943 |t#1|)))) (-15 -2547 ((-644 (-943 |t#1|)) $)) (-15 -1691 ((-112) $)) (-15 -3941 ($ $ (-644 (-943 |t#1|)))) (-15 -3941 ($ $ (-644 (-644 |t#1|)))) (-15 -3941 ($ (-644 (-943 |t#1|)))) (-15 -3941 ((-644 (-943 |t#1|)) $)) (-15 -2239 ((-112) $)) (-15 -1852 ($ $ (-644 (-644 (-943 |t#1|))) (-644 (-171)) (-171))) (-15 -1852 ($ $ (-644 (-644 (-644 |t#1|))) (-644 (-171)) (-171))) (-15 -1852 ($ $ (-644 (-644 (-943 |t#1|))) (-112) (-112))) (-15 -1852 ($ $ (-644 (-644 (-644 |t#1|))) (-112) (-112))) (-15 -1852 ($ (-644 (-644 (-943 |t#1|))))) (-15 -1852 ($ (-644 (-644 (-943 |t#1|))) (-112) (-112))) (-15 -1852 ((-644 (-644 (-943 |t#1|))) $)) (-15 -1520 ((-112) $)) (-15 -3744 ((-644 (-943 |t#1|)) $)) (-15 -4219 ((-644 (-644 (-644 (-771)))) $)) (-15 -3074 ((-644 (-644 (-644 (-943 |t#1|)))) $)) (-15 -1299 ((-644 (-644 (-171))) $)) (-15 -4217 ((-644 (-171)) $)) (-15 -3799 ((-2 (|:| -3828 (-771)) (|:| |curves| (-771)) (|:| |polygons| (-771)) (|:| |constructs| (-771))) $)) (-15 -3069 ($ $)) (-15 -3364 ((-1163 3 |t#1|) $)) (-15 -2479 ((-862) $)))) +(((-102) . T) ((-613 (-862)) . T) ((-1099) . T)) +((-2986 (((-112) $ $) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) 174) (($ (-1180)) NIL) (((-1180) $) 7)) (-2438 (((-112) $ (|[\|\|]| (-526))) 19) (((-112) $ (|[\|\|]| (-218))) 23) (((-112) $ (|[\|\|]| (-676))) 27) (((-112) $ (|[\|\|]| (-1274))) 31) (((-112) $ (|[\|\|]| (-138))) 35) (((-112) $ (|[\|\|]| (-133))) 39) (((-112) $ (|[\|\|]| (-1114))) 43) (((-112) $ (|[\|\|]| (-96))) 47) (((-112) $ (|[\|\|]| (-681))) 51) (((-112) $ (|[\|\|]| (-519))) 55) (((-112) $ (|[\|\|]| (-1065))) 59) (((-112) $ (|[\|\|]| (-1275))) 63) (((-112) $ (|[\|\|]| (-527))) 67) (((-112) $ (|[\|\|]| (-154))) 71) (((-112) $ (|[\|\|]| (-671))) 75) (((-112) $ (|[\|\|]| (-312))) 79) (((-112) $ (|[\|\|]| (-1036))) 83) (((-112) $ (|[\|\|]| (-180))) 87) (((-112) $ (|[\|\|]| (-970))) 91) (((-112) $ (|[\|\|]| (-1072))) 95) (((-112) $ (|[\|\|]| (-1089))) 99) (((-112) $ (|[\|\|]| (-1095))) 103) (((-112) $ (|[\|\|]| (-626))) 107) (((-112) $ (|[\|\|]| (-1165))) 111) (((-112) $ (|[\|\|]| (-156))) 115) (((-112) $ (|[\|\|]| (-137))) 119) (((-112) $ (|[\|\|]| (-480))) 123) (((-112) $ (|[\|\|]| (-593))) 127) (((-112) $ (|[\|\|]| (-508))) 131) (((-112) $ (|[\|\|]| (-1157))) 135) (((-112) $ (|[\|\|]| (-566))) 139)) (-3900 (((-112) $ $) NIL)) (-3955 (((-526) $) 20) (((-218) $) 24) (((-676) $) 28) (((-1274) $) 32) (((-138) $) 36) (((-133) $) 40) (((-1114) $) 44) (((-96) $) 48) (((-681) $) 52) (((-519) $) 56) (((-1065) $) 60) (((-1275) $) 64) (((-527) $) 68) (((-154) $) 72) (((-671) $) 76) (((-312) $) 80) (((-1036) $) 84) (((-180) $) 88) (((-970) $) 92) (((-1072) $) 96) (((-1089) $) 100) (((-1095) $) 104) (((-626) $) 108) (((-1165) $) 112) (((-156) $) 116) (((-137) $) 120) (((-480) $) 124) (((-593) $) 128) (((-508) $) 132) (((-1157) $) 136) (((-566) $) 140)) (-2952 (((-112) $ $) NIL))) +(((-1134) (-1136)) (T -1134)) +NIL +(-1136) +((-1972 (((-644 (-1180)) (-1157)) 9))) +(((-1135) (-10 -7 (-15 -1972 ((-644 (-1180)) (-1157))))) (T -1135)) +((-1972 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-644 (-1180))) (-5 *1 (-1135))))) +(-10 -7 (-15 -1972 ((-644 (-1180)) (-1157)))) +((-2986 (((-112) $ $) 7)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-2479 (((-862) $) 12) (($ (-1180)) 17) (((-1180) $) 16)) (-2438 (((-112) $ (|[\|\|]| (-526))) 81) (((-112) $ (|[\|\|]| (-218))) 79) (((-112) $ (|[\|\|]| (-676))) 77) (((-112) $ (|[\|\|]| (-1274))) 75) (((-112) $ (|[\|\|]| (-138))) 73) (((-112) $ (|[\|\|]| (-133))) 71) (((-112) $ (|[\|\|]| (-1114))) 69) (((-112) $ (|[\|\|]| (-96))) 67) (((-112) $ (|[\|\|]| (-681))) 65) (((-112) $ (|[\|\|]| (-519))) 63) (((-112) $ (|[\|\|]| (-1065))) 61) (((-112) $ (|[\|\|]| (-1275))) 59) (((-112) $ (|[\|\|]| (-527))) 57) (((-112) $ (|[\|\|]| (-154))) 55) (((-112) $ (|[\|\|]| (-671))) 53) (((-112) $ (|[\|\|]| (-312))) 51) (((-112) $ (|[\|\|]| (-1036))) 49) (((-112) $ (|[\|\|]| (-180))) 47) (((-112) $ (|[\|\|]| (-970))) 45) (((-112) $ (|[\|\|]| (-1072))) 43) (((-112) $ (|[\|\|]| (-1089))) 41) (((-112) $ (|[\|\|]| (-1095))) 39) (((-112) $ (|[\|\|]| (-626))) 37) (((-112) $ (|[\|\|]| (-1165))) 35) (((-112) $ (|[\|\|]| (-156))) 33) (((-112) $ (|[\|\|]| (-137))) 31) (((-112) $ (|[\|\|]| (-480))) 29) (((-112) $ (|[\|\|]| (-593))) 27) (((-112) $ (|[\|\|]| (-508))) 25) (((-112) $ (|[\|\|]| (-1157))) 23) (((-112) $ (|[\|\|]| (-566))) 21)) (-3900 (((-112) $ $) 9)) (-3955 (((-526) $) 80) (((-218) $) 78) (((-676) $) 76) (((-1274) $) 74) (((-138) $) 72) (((-133) $) 70) (((-1114) $) 68) (((-96) $) 66) (((-681) $) 64) (((-519) $) 62) (((-1065) $) 60) (((-1275) $) 58) (((-527) $) 56) (((-154) $) 54) (((-671) $) 52) (((-312) $) 50) (((-1036) $) 48) (((-180) $) 46) (((-970) $) 44) (((-1072) $) 42) (((-1089) $) 40) (((-1095) $) 38) (((-626) $) 36) (((-1165) $) 34) (((-156) $) 32) (((-137) $) 30) (((-480) $) 28) (((-593) $) 26) (((-508) $) 24) (((-1157) $) 22) (((-566) $) 20)) (-2952 (((-112) $ $) 6))) (((-1136) (-140)) (T -1136)) -((-3512 (*1 *1 *1) (-4 *1 (-1136))) (-2123 (*1 *1 *1) (-4 *1 (-1136))) (-3144 (*1 *1 *1 *1) (-4 *1 (-1136))) (-4048 (*1 *1 *1 *1) (-4 *1 (-1136))) (-3679 (*1 *1 *1 *1) (-4 *1 (-1136))) (-2088 (*1 *1 *1 *1) (-4 *1 (-1136))) (-3375 (*1 *1 *1 *1) (-4 *1 (-1136))) (-3042 (*1 *1 *1 *1) (-4 *1 (-1136))) (-3745 (*1 *1 *1) (-4 *1 (-1136))) (-3197 (*1 *1 *1 *1) (-4 *1 (-1136))) (-3375 (*1 *1 *1) (-4 *1 (-1136))) (-1630 (*1 *1 *1) (-4 *1 (-1136)))) -(-13 (-10 -8 (-15 -1630 ($ $)) (-15 -3375 ($ $)) (-15 -3197 ($ $ $)) (-15 -3745 ($ $)) (-15 -3042 ($ $ $)) (-15 -3375 ($ $ $)) (-15 -2088 ($ $ $)) (-15 -3679 ($ $ $)) (-15 -4048 ($ $ $)) (-15 -3144 ($ $ $)) (-15 -2123 ($ $)) (-15 -3512 ($ $)))) -((-2856 (((-112) $ $) 44)) (-2108 ((|#1| $) 17)) (-1979 (((-112) $ $ (-1 (-112) |#2| |#2|)) 39)) (-2277 (((-112) $) 19)) (-1438 (($ $ |#1|) 30)) (-4262 (($ $ (-112)) 32)) (-2858 (($ $) 33)) (-1413 (($ $ |#2|) 31)) (-1778 (((-1155) $) NIL)) (-3289 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 38)) (-3999 (((-1117) $) NIL)) (-4109 (((-112) $) 16)) (-2179 (($) 13)) (-3865 (($ $) 29)) (-2401 (($ |#1| |#2| (-112)) 20) (($ |#1| |#2|) 21) (($ (-2 (|:| |val| |#1|) (|:| -2138 |#2|))) 23) (((-642 $) (-642 (-2 (|:| |val| |#1|) (|:| -2138 |#2|)))) 26) (((-642 $) |#1| (-642 |#2|)) 28)) (-1539 ((|#2| $) 18)) (-2390 (((-860) $) 53)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) 42))) -(((-1137 |#1| |#2|) (-13 (-1097) (-10 -8 (-15 -2179 ($)) (-15 -4109 ((-112) $)) (-15 -2108 (|#1| $)) (-15 -1539 (|#2| $)) (-15 -2277 ((-112) $)) (-15 -2401 ($ |#1| |#2| (-112))) (-15 -2401 ($ |#1| |#2|)) (-15 -2401 ($ (-2 (|:| |val| |#1|) (|:| -2138 |#2|)))) (-15 -2401 ((-642 $) (-642 (-2 (|:| |val| |#1|) (|:| -2138 |#2|))))) (-15 -2401 ((-642 $) |#1| (-642 |#2|))) (-15 -3865 ($ $)) (-15 -1438 ($ $ |#1|)) (-15 -1413 ($ $ |#2|)) (-15 -4262 ($ $ (-112))) (-15 -2858 ($ $)) (-15 -3289 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -1979 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1097) (-34)) (-13 (-1097) (-34))) (T -1137)) -((-2179 (*1 *1) (-12 (-5 *1 (-1137 *2 *3)) (-4 *2 (-13 (-1097) (-34))) (-4 *3 (-13 (-1097) (-34))))) (-4109 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1137 *3 *4)) (-4 *3 (-13 (-1097) (-34))) (-4 *4 (-13 (-1097) (-34))))) (-2108 (*1 *2 *1) (-12 (-4 *2 (-13 (-1097) (-34))) (-5 *1 (-1137 *2 *3)) (-4 *3 (-13 (-1097) (-34))))) (-1539 (*1 *2 *1) (-12 (-4 *2 (-13 (-1097) (-34))) (-5 *1 (-1137 *3 *2)) (-4 *3 (-13 (-1097) (-34))))) (-2277 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1137 *3 *4)) (-4 *3 (-13 (-1097) (-34))) (-4 *4 (-13 (-1097) (-34))))) (-2401 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1137 *2 *3)) (-4 *2 (-13 (-1097) (-34))) (-4 *3 (-13 (-1097) (-34))))) (-2401 (*1 *1 *2 *3) (-12 (-5 *1 (-1137 *2 *3)) (-4 *2 (-13 (-1097) (-34))) (-4 *3 (-13 (-1097) (-34))))) (-2401 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -2138 *4))) (-4 *3 (-13 (-1097) (-34))) (-4 *4 (-13 (-1097) (-34))) (-5 *1 (-1137 *3 *4)))) (-2401 (*1 *2 *3) (-12 (-5 *3 (-642 (-2 (|:| |val| *4) (|:| -2138 *5)))) (-4 *4 (-13 (-1097) (-34))) (-4 *5 (-13 (-1097) (-34))) (-5 *2 (-642 (-1137 *4 *5))) (-5 *1 (-1137 *4 *5)))) (-2401 (*1 *2 *3 *4) (-12 (-5 *4 (-642 *5)) (-4 *5 (-13 (-1097) (-34))) (-5 *2 (-642 (-1137 *3 *5))) (-5 *1 (-1137 *3 *5)) (-4 *3 (-13 (-1097) (-34))))) (-3865 (*1 *1 *1) (-12 (-5 *1 (-1137 *2 *3)) (-4 *2 (-13 (-1097) (-34))) (-4 *3 (-13 (-1097) (-34))))) (-1438 (*1 *1 *1 *2) (-12 (-5 *1 (-1137 *2 *3)) (-4 *2 (-13 (-1097) (-34))) (-4 *3 (-13 (-1097) (-34))))) (-1413 (*1 *1 *1 *2) (-12 (-5 *1 (-1137 *3 *2)) (-4 *3 (-13 (-1097) (-34))) (-4 *2 (-13 (-1097) (-34))))) (-4262 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1137 *3 *4)) (-4 *3 (-13 (-1097) (-34))) (-4 *4 (-13 (-1097) (-34))))) (-2858 (*1 *1 *1) (-12 (-5 *1 (-1137 *2 *3)) (-4 *2 (-13 (-1097) (-34))) (-4 *3 (-13 (-1097) (-34))))) (-3289 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1097) (-34))) (-4 *6 (-13 (-1097) (-34))) (-5 *2 (-112)) (-5 *1 (-1137 *5 *6)))) (-1979 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1097) (-34))) (-5 *2 (-112)) (-5 *1 (-1137 *4 *5)) (-4 *4 (-13 (-1097) (-34)))))) -(-13 (-1097) (-10 -8 (-15 -2179 ($)) (-15 -4109 ((-112) $)) (-15 -2108 (|#1| $)) (-15 -1539 (|#2| $)) (-15 -2277 ((-112) $)) (-15 -2401 ($ |#1| |#2| (-112))) (-15 -2401 ($ |#1| |#2|)) (-15 -2401 ($ (-2 (|:| |val| |#1|) (|:| -2138 |#2|)))) (-15 -2401 ((-642 $) (-642 (-2 (|:| |val| |#1|) (|:| -2138 |#2|))))) (-15 -2401 ((-642 $) |#1| (-642 |#2|))) (-15 -3865 ($ $)) (-15 -1438 ($ $ |#1|)) (-15 -1413 ($ $ |#2|)) (-15 -4262 ($ $ (-112))) (-15 -2858 ($ $)) (-15 -3289 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -1979 ((-112) $ $ (-1 (-112) |#2| |#2|))))) -((-2856 (((-112) $ $) NIL (|has| (-1137 |#1| |#2|) (-1097)))) (-2108 (((-1137 |#1| |#2|) $) 27)) (-4054 (($ $) 91)) (-3777 (((-112) (-1137 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 100)) (-4072 (($ $ $ (-642 (-1137 |#1| |#2|))) 108) (($ $ $ (-642 (-1137 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 109)) (-3442 (((-112) $ (-769)) NIL)) (-1407 (((-1137 |#1| |#2|) $ (-1137 |#1| |#2|)) 46 (|has| $ (-6 -4411)))) (-3841 (((-1137 |#1| |#2|) $ "value" (-1137 |#1| |#2|)) NIL (|has| $ (-6 -4411)))) (-4041 (($ $ (-642 $)) 44 (|has| $ (-6 -4411)))) (-2822 (($) NIL T CONST)) (-3912 (((-642 (-2 (|:| |val| |#1|) (|:| -2138 |#2|))) $) 95)) (-1927 (($ (-1137 |#1| |#2|) $) 42)) (-2517 (($ (-1137 |#1| |#2|) $) 34)) (-2018 (((-642 (-1137 |#1| |#2|)) $) NIL (|has| $ (-6 -4410)))) (-1300 (((-642 $) $) 54)) (-1441 (((-112) (-1137 |#1| |#2|) $) 97)) (-2423 (((-112) $ $) NIL (|has| (-1137 |#1| |#2|) (-1097)))) (-3769 (((-112) $ (-769)) NIL)) (-3541 (((-642 (-1137 |#1| |#2|)) $) 58 (|has| $ (-6 -4410)))) (-2533 (((-112) (-1137 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-1137 |#1| |#2|) (-1097))))) (-1857 (($ (-1 (-1137 |#1| |#2|) (-1137 |#1| |#2|)) $) 50 (|has| $ (-6 -4411)))) (-2947 (($ (-1 (-1137 |#1| |#2|) (-1137 |#1| |#2|)) $) 49)) (-4145 (((-112) $ (-769)) NIL)) (-2334 (((-642 (-1137 |#1| |#2|)) $) 56)) (-1961 (((-112) $) 45)) (-1778 (((-1155) $) NIL (|has| (-1137 |#1| |#2|) (-1097)))) (-3999 (((-1117) $) NIL (|has| (-1137 |#1| |#2|) (-1097)))) (-3421 (((-3 $ "failed") $) 89)) (-4094 (((-112) (-1 (-112) (-1137 |#1| |#2|)) $) NIL (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 (-1137 |#1| |#2|)))) NIL (-12 (|has| (-1137 |#1| |#2|) (-309 (-1137 |#1| |#2|))) (|has| (-1137 |#1| |#2|) (-1097)))) (($ $ (-294 (-1137 |#1| |#2|))) NIL (-12 (|has| (-1137 |#1| |#2|) (-309 (-1137 |#1| |#2|))) (|has| (-1137 |#1| |#2|) (-1097)))) (($ $ (-1137 |#1| |#2|) (-1137 |#1| |#2|)) NIL (-12 (|has| (-1137 |#1| |#2|) (-309 (-1137 |#1| |#2|))) (|has| (-1137 |#1| |#2|) (-1097)))) (($ $ (-642 (-1137 |#1| |#2|)) (-642 (-1137 |#1| |#2|))) NIL (-12 (|has| (-1137 |#1| |#2|) (-309 (-1137 |#1| |#2|))) (|has| (-1137 |#1| |#2|) (-1097))))) (-2478 (((-112) $ $) 53)) (-4109 (((-112) $) 24)) (-2179 (($) 26)) (-4369 (((-1137 |#1| |#2|) $ "value") NIL)) (-1743 (((-564) $ $) NIL)) (-1311 (((-112) $) 47)) (-4010 (((-769) (-1 (-112) (-1137 |#1| |#2|)) $) NIL (|has| $ (-6 -4410))) (((-769) (-1137 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-1137 |#1| |#2|) (-1097))))) (-3865 (($ $) 52)) (-2401 (($ (-1137 |#1| |#2|)) 10) (($ |#1| |#2| (-642 $)) 13) (($ |#1| |#2| (-642 (-1137 |#1| |#2|))) 15) (($ |#1| |#2| |#1| (-642 |#2|)) 18)) (-3886 (((-642 |#2|) $) 96)) (-2390 (((-860) $) 87 (|has| (-1137 |#1| |#2|) (-611 (-860))))) (-4275 (((-642 $) $) 31)) (-1622 (((-112) $ $) NIL (|has| (-1137 |#1| |#2|) (-1097)))) (-1600 (((-112) $ $) NIL (|has| (-1137 |#1| |#2|) (-1097)))) (-3295 (((-112) (-1 (-112) (-1137 |#1| |#2|)) $) NIL (|has| $ (-6 -4410)))) (-2821 (((-112) $ $) 70 (|has| (-1137 |#1| |#2|) (-1097)))) (-2158 (((-769) $) 64 (|has| $ (-6 -4410))))) -(((-1138 |#1| |#2|) (-13 (-1008 (-1137 |#1| |#2|)) (-10 -8 (-6 -4411) (-6 -4410) (-15 -3421 ((-3 $ "failed") $)) (-15 -4054 ($ $)) (-15 -2401 ($ (-1137 |#1| |#2|))) (-15 -2401 ($ |#1| |#2| (-642 $))) (-15 -2401 ($ |#1| |#2| (-642 (-1137 |#1| |#2|)))) (-15 -2401 ($ |#1| |#2| |#1| (-642 |#2|))) (-15 -3886 ((-642 |#2|) $)) (-15 -3912 ((-642 (-2 (|:| |val| |#1|) (|:| -2138 |#2|))) $)) (-15 -1441 ((-112) (-1137 |#1| |#2|) $)) (-15 -3777 ((-112) (-1137 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -2517 ($ (-1137 |#1| |#2|) $)) (-15 -1927 ($ (-1137 |#1| |#2|) $)) (-15 -4072 ($ $ $ (-642 (-1137 |#1| |#2|)))) (-15 -4072 ($ $ $ (-642 (-1137 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1097) (-34)) (-13 (-1097) (-34))) (T -1138)) -((-3421 (*1 *1 *1) (|partial| -12 (-5 *1 (-1138 *2 *3)) (-4 *2 (-13 (-1097) (-34))) (-4 *3 (-13 (-1097) (-34))))) (-4054 (*1 *1 *1) (-12 (-5 *1 (-1138 *2 *3)) (-4 *2 (-13 (-1097) (-34))) (-4 *3 (-13 (-1097) (-34))))) (-2401 (*1 *1 *2) (-12 (-5 *2 (-1137 *3 *4)) (-4 *3 (-13 (-1097) (-34))) (-4 *4 (-13 (-1097) (-34))) (-5 *1 (-1138 *3 *4)))) (-2401 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-642 (-1138 *2 *3))) (-5 *1 (-1138 *2 *3)) (-4 *2 (-13 (-1097) (-34))) (-4 *3 (-13 (-1097) (-34))))) (-2401 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-642 (-1137 *2 *3))) (-4 *2 (-13 (-1097) (-34))) (-4 *3 (-13 (-1097) (-34))) (-5 *1 (-1138 *2 *3)))) (-2401 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-642 *3)) (-4 *3 (-13 (-1097) (-34))) (-5 *1 (-1138 *2 *3)) (-4 *2 (-13 (-1097) (-34))))) (-3886 (*1 *2 *1) (-12 (-5 *2 (-642 *4)) (-5 *1 (-1138 *3 *4)) (-4 *3 (-13 (-1097) (-34))) (-4 *4 (-13 (-1097) (-34))))) (-3912 (*1 *2 *1) (-12 (-5 *2 (-642 (-2 (|:| |val| *3) (|:| -2138 *4)))) (-5 *1 (-1138 *3 *4)) (-4 *3 (-13 (-1097) (-34))) (-4 *4 (-13 (-1097) (-34))))) (-1441 (*1 *2 *3 *1) (-12 (-5 *3 (-1137 *4 *5)) (-4 *4 (-13 (-1097) (-34))) (-4 *5 (-13 (-1097) (-34))) (-5 *2 (-112)) (-5 *1 (-1138 *4 *5)))) (-3777 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1137 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1097) (-34))) (-4 *6 (-13 (-1097) (-34))) (-5 *2 (-112)) (-5 *1 (-1138 *5 *6)))) (-2517 (*1 *1 *2 *1) (-12 (-5 *2 (-1137 *3 *4)) (-4 *3 (-13 (-1097) (-34))) (-4 *4 (-13 (-1097) (-34))) (-5 *1 (-1138 *3 *4)))) (-1927 (*1 *1 *2 *1) (-12 (-5 *2 (-1137 *3 *4)) (-4 *3 (-13 (-1097) (-34))) (-4 *4 (-13 (-1097) (-34))) (-5 *1 (-1138 *3 *4)))) (-4072 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-642 (-1137 *3 *4))) (-4 *3 (-13 (-1097) (-34))) (-4 *4 (-13 (-1097) (-34))) (-5 *1 (-1138 *3 *4)))) (-4072 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-642 (-1137 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1097) (-34))) (-4 *5 (-13 (-1097) (-34))) (-5 *1 (-1138 *4 *5))))) -(-13 (-1008 (-1137 |#1| |#2|)) (-10 -8 (-6 -4411) (-6 -4410) (-15 -3421 ((-3 $ "failed") $)) (-15 -4054 ($ $)) (-15 -2401 ($ (-1137 |#1| |#2|))) (-15 -2401 ($ |#1| |#2| (-642 $))) (-15 -2401 ($ |#1| |#2| (-642 (-1137 |#1| |#2|)))) (-15 -2401 ($ |#1| |#2| |#1| (-642 |#2|))) (-15 -3886 ((-642 |#2|) $)) (-15 -3912 ((-642 (-2 (|:| |val| |#1|) (|:| -2138 |#2|))) $)) (-15 -1441 ((-112) (-1137 |#1| |#2|) $)) (-15 -3777 ((-112) (-1137 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -2517 ($ (-1137 |#1| |#2|) $)) (-15 -1927 ($ (-1137 |#1| |#2|) $)) (-15 -4072 ($ $ $ (-642 (-1137 |#1| |#2|)))) (-15 -4072 ($ $ $ (-642 (-1137 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-2845 (($ $) NIL)) (-3778 ((|#2| $) NIL)) (-1382 (((-112) $) NIL)) (-3085 (((-3 $ "failed") $ $) NIL)) (-2229 (($ (-687 |#2|)) 56)) (-3382 (((-112) $) NIL)) (-3442 (((-112) $ (-769)) NIL)) (-3859 (($ |#2|) 14)) (-2822 (($) NIL T CONST)) (-2389 (($ $) 69 (|has| |#2| (-307)))) (-2794 (((-240 |#1| |#2|) $ (-564)) 42)) (-2849 (((-3 (-564) "failed") $) NIL (|has| |#2| (-1036 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1036 (-407 (-564))))) (((-3 |#2| "failed") $) NIL)) (-1687 (((-564) $) NIL (|has| |#2| (-1036 (-564)))) (((-407 (-564)) $) NIL (|has| |#2| (-1036 (-407 (-564))))) ((|#2| $) NIL)) (-3330 (((-687 (-564)) (-687 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -3544 (-687 |#2|)) (|:| |vec| (-1262 |#2|))) (-687 $) (-1262 $)) NIL) (((-687 |#2|) (-687 $)) NIL)) (-2675 (((-3 $ "failed") $) 83)) (-3616 (((-769) $) 71 (|has| |#2| (-556)))) (-1804 ((|#2| $ (-564) (-564)) NIL)) (-2018 (((-642 |#2|) $) NIL (|has| $ (-6 -4410)))) (-3163 (((-112) $) NIL)) (-1974 (((-769) $) 73 (|has| |#2| (-556)))) (-2536 (((-642 (-240 |#1| |#2|)) $) 77 (|has| |#2| (-556)))) (-3847 (((-769) $) NIL)) (-4233 (($ |#2|) 25)) (-3857 (((-769) $) NIL)) (-3769 (((-112) $ (-769)) NIL)) (-1446 ((|#2| $) 67 (|has| |#2| (-6 (-4412 "*"))))) (-2570 (((-564) $) NIL)) (-2269 (((-564) $) NIL)) (-3541 (((-642 |#2|) $) NIL (|has| $ (-6 -4410)))) (-2533 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097))))) (-4164 (((-564) $) NIL)) (-2720 (((-564) $) NIL)) (-4117 (($ (-642 (-642 |#2|))) 37)) (-1857 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3141 (((-642 (-642 |#2|)) $) NIL)) (-4145 (((-112) $ (-769)) NIL)) (-1778 (((-1155) $) NIL)) (-2895 (((-3 $ "failed") $) 80 (|has| |#2| (-363)))) (-3999 (((-1117) $) NIL)) (-2842 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556)))) (-4094 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-642 |#2|) (-642 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))))) (-2478 (((-112) $ $) NIL)) (-4109 (((-112) $) NIL)) (-2179 (($) NIL)) (-4369 ((|#2| $ (-564) (-564) |#2|) NIL) ((|#2| $ (-564) (-564)) NIL)) (-2199 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-769)) NIL) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-1173)) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-769)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-1490 ((|#2| $) NIL)) (-4046 (($ (-642 |#2|)) 50)) (-1632 (((-112) $) NIL)) (-3752 (((-240 |#1| |#2|) $) NIL)) (-1559 ((|#2| $) 65 (|has| |#2| (-6 (-4412 "*"))))) (-4010 (((-769) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410))) (((-769) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097))))) (-3865 (($ $) NIL)) (-3003 (((-536) $) 89 (|has| |#2| (-612 (-536))))) (-4342 (((-240 |#1| |#2|) $ (-564)) 44)) (-2390 (((-860) $) 47) (($ (-564)) NIL) (($ (-407 (-564))) NIL (|has| |#2| (-1036 (-407 (-564))))) (($ |#2|) NIL) (((-687 |#2|) $) 52)) (-3348 (((-769)) 23 T CONST)) (-1600 (((-112) $ $) NIL)) (-3295 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410)))) (-2630 (((-112) $) NIL)) (-2361 (($) 16 T CONST)) (-2371 (($) 21 T CONST)) (-2711 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-769)) NIL) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-1173)) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-769)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-2821 (((-112) $ $) NIL)) (-2943 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) 63) (($ $ (-564)) 82 (|has| |#2| (-363)))) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-240 |#1| |#2|) $ (-240 |#1| |#2|)) 59) (((-240 |#1| |#2|) (-240 |#1| |#2|) $) 61)) (-2158 (((-769) $) NIL (|has| $ (-6 -4410))))) -(((-1139 |#1| |#2|) (-13 (-1120 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-611 (-687 |#2|)) (-10 -8 (-15 -4233 ($ |#2|)) (-15 -2845 ($ $)) (-15 -2229 ($ (-687 |#2|))) (IF (|has| |#2| (-6 (-4412 "*"))) (-6 -4399) |%noBranch|) (IF (|has| |#2| (-6 (-4412 "*"))) (IF (|has| |#2| (-6 -4407)) (-6 -4407) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|))) (-769) (-1047)) (T -1139)) -((-4233 (*1 *1 *2) (-12 (-5 *1 (-1139 *3 *2)) (-14 *3 (-769)) (-4 *2 (-1047)))) (-2845 (*1 *1 *1) (-12 (-5 *1 (-1139 *2 *3)) (-14 *2 (-769)) (-4 *3 (-1047)))) (-2229 (*1 *1 *2) (-12 (-5 *2 (-687 *4)) (-4 *4 (-1047)) (-5 *1 (-1139 *3 *4)) (-14 *3 (-769))))) -(-13 (-1120 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-611 (-687 |#2|)) (-10 -8 (-15 -4233 ($ |#2|)) (-15 -2845 ($ $)) (-15 -2229 ($ (-687 |#2|))) (IF (|has| |#2| (-6 (-4412 "*"))) (-6 -4399) |%noBranch|) (IF (|has| |#2| (-6 (-4412 "*"))) (IF (|has| |#2| (-6 -4407)) (-6 -4407) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|))) -((-2000 (($ $) 19)) (-2624 (($ $ (-144)) 10) (($ $ (-141)) 14)) (-1456 (((-112) $ $) 24)) (-4086 (($ $) 17)) (-4369 (((-144) $ (-564) (-144)) NIL) (((-144) $ (-564)) NIL) (($ $ (-1229 (-564))) NIL) (($ $ $) 31)) (-2390 (($ (-144)) 29) (((-860) $) NIL))) -(((-1140 |#1|) (-10 -8 (-15 -2390 ((-860) |#1|)) (-15 -4369 (|#1| |#1| |#1|)) (-15 -2624 (|#1| |#1| (-141))) (-15 -2624 (|#1| |#1| (-144))) (-15 -2390 (|#1| (-144))) (-15 -1456 ((-112) |#1| |#1|)) (-15 -2000 (|#1| |#1|)) (-15 -4086 (|#1| |#1|)) (-15 -4369 (|#1| |#1| (-1229 (-564)))) (-15 -4369 ((-144) |#1| (-564))) (-15 -4369 ((-144) |#1| (-564) (-144)))) (-1141)) (T -1140)) -NIL -(-10 -8 (-15 -2390 ((-860) |#1|)) (-15 -4369 (|#1| |#1| |#1|)) (-15 -2624 (|#1| |#1| (-141))) (-15 -2624 (|#1| |#1| (-144))) (-15 -2390 (|#1| (-144))) (-15 -1456 ((-112) |#1| |#1|)) (-15 -2000 (|#1| |#1|)) (-15 -4086 (|#1| |#1|)) (-15 -4369 (|#1| |#1| (-1229 (-564)))) (-15 -4369 ((-144) |#1| (-564))) (-15 -4369 ((-144) |#1| (-564) (-144)))) -((-2856 (((-112) $ $) 19 (|has| (-144) (-1097)))) (-4121 (($ $) 121)) (-2000 (($ $) 122)) (-2624 (($ $ (-144)) 109) (($ $ (-141)) 108)) (-3633 (((-1267) $ (-564) (-564)) 41 (|has| $ (-6 -4411)))) (-3804 (((-112) $ $) 119)) (-3783 (((-112) $ $ (-564)) 118)) (-2246 (((-642 $) $ (-144)) 111) (((-642 $) $ (-141)) 110)) (-1824 (((-112) (-1 (-112) (-144) (-144)) $) 99) (((-112) $) 93 (|has| (-144) (-848)))) (-3659 (($ (-1 (-112) (-144) (-144)) $) 90 (|has| $ (-6 -4411))) (($ $) 89 (-12 (|has| (-144) (-848)) (|has| $ (-6 -4411))))) (-3191 (($ (-1 (-112) (-144) (-144)) $) 100) (($ $) 94 (|has| (-144) (-848)))) (-3442 (((-112) $ (-769)) 8)) (-3841 (((-144) $ (-564) (-144)) 53 (|has| $ (-6 -4411))) (((-144) $ (-1229 (-564)) (-144)) 59 (|has| $ (-6 -4411)))) (-3437 (($ (-1 (-112) (-144)) $) 76 (|has| $ (-6 -4410)))) (-2822 (($) 7 T CONST)) (-1553 (($ $ (-144)) 105) (($ $ (-141)) 104)) (-1540 (($ $) 91 (|has| $ (-6 -4411)))) (-3817 (($ $) 101)) (-3297 (($ $ (-1229 (-564)) $) 115)) (-4067 (($ $) 79 (-12 (|has| (-144) (-1097)) (|has| $ (-6 -4410))))) (-2517 (($ (-144) $) 78 (-12 (|has| (-144) (-1097)) (|has| $ (-6 -4410)))) (($ (-1 (-112) (-144)) $) 75 (|has| $ (-6 -4410)))) (-3741 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) 77 (-12 (|has| (-144) (-1097)) (|has| $ (-6 -4410)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) 74 (|has| $ (-6 -4410))) (((-144) (-1 (-144) (-144) (-144)) $) 73 (|has| $ (-6 -4410)))) (-3105 (((-144) $ (-564) (-144)) 54 (|has| $ (-6 -4411)))) (-1804 (((-144) $ (-564)) 52)) (-1456 (((-112) $ $) 120)) (-3942 (((-564) (-1 (-112) (-144)) $) 98) (((-564) (-144) $) 97 (|has| (-144) (-1097))) (((-564) (-144) $ (-564)) 96 (|has| (-144) (-1097))) (((-564) $ $ (-564)) 114) (((-564) (-141) $ (-564)) 113)) (-2018 (((-642 (-144)) $) 31 (|has| $ (-6 -4410)))) (-4233 (($ (-769) (-144)) 70)) (-3769 (((-112) $ (-769)) 9)) (-1802 (((-564) $) 44 (|has| (-564) (-848)))) (-3225 (($ $ $) 88 (|has| (-144) (-848)))) (-2774 (($ (-1 (-112) (-144) (-144)) $ $) 102) (($ $ $) 95 (|has| (-144) (-848)))) (-3541 (((-642 (-144)) $) 30 (|has| $ (-6 -4410)))) (-2533 (((-112) (-144) $) 28 (-12 (|has| (-144) (-1097)) (|has| $ (-6 -4410))))) (-3624 (((-564) $) 45 (|has| (-564) (-848)))) (-2903 (($ $ $) 87 (|has| (-144) (-848)))) (-3967 (((-112) $ $ (-144)) 116)) (-3897 (((-769) $ $ (-144)) 117)) (-1857 (($ (-1 (-144) (-144)) $) 35 (|has| $ (-6 -4411)))) (-2947 (($ (-1 (-144) (-144)) $) 36) (($ (-1 (-144) (-144) (-144)) $ $) 65)) (-3743 (($ $) 123)) (-4086 (($ $) 124)) (-4145 (((-112) $ (-769)) 10)) (-1563 (($ $ (-144)) 107) (($ $ (-141)) 106)) (-1778 (((-1155) $) 22 (|has| (-144) (-1097)))) (-4247 (($ (-144) $ (-564)) 61) (($ $ $ (-564)) 60)) (-4107 (((-642 (-564)) $) 47)) (-4207 (((-112) (-564) $) 48)) (-3999 (((-1117) $) 21 (|has| (-144) (-1097)))) (-4036 (((-144) $) 43 (|has| (-564) (-848)))) (-3183 (((-3 (-144) "failed") (-1 (-112) (-144)) $) 72)) (-3826 (($ $ (-144)) 42 (|has| $ (-6 -4411)))) (-4094 (((-112) (-1 (-112) (-144)) $) 33 (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 (-144)))) 27 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1097)))) (($ $ (-294 (-144))) 26 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1097)))) (($ $ (-144) (-144)) 25 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1097)))) (($ $ (-642 (-144)) (-642 (-144))) 24 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1097))))) (-2478 (((-112) $ $) 14)) (-1643 (((-112) (-144) $) 46 (-12 (|has| $ (-6 -4410)) (|has| (-144) (-1097))))) (-3522 (((-642 (-144)) $) 49)) (-4109 (((-112) $) 11)) (-2179 (($) 12)) (-4369 (((-144) $ (-564) (-144)) 51) (((-144) $ (-564)) 50) (($ $ (-1229 (-564))) 64) (($ $ $) 103)) (-2083 (($ $ (-564)) 63) (($ $ (-1229 (-564))) 62)) (-4010 (((-769) (-1 (-112) (-144)) $) 32 (|has| $ (-6 -4410))) (((-769) (-144) $) 29 (-12 (|has| (-144) (-1097)) (|has| $ (-6 -4410))))) (-3301 (($ $ $ (-564)) 92 (|has| $ (-6 -4411)))) (-3865 (($ $) 13)) (-3003 (((-536) $) 80 (|has| (-144) (-612 (-536))))) (-2401 (($ (-642 (-144))) 71)) (-3634 (($ $ (-144)) 69) (($ (-144) $) 68) (($ $ $) 67) (($ (-642 $)) 66)) (-2390 (($ (-144)) 112) (((-860) $) 18 (|has| (-144) (-611 (-860))))) (-1600 (((-112) $ $) 23 (|has| (-144) (-1097)))) (-3295 (((-112) (-1 (-112) (-144)) $) 34 (|has| $ (-6 -4410)))) (-2881 (((-112) $ $) 85 (|has| (-144) (-848)))) (-2857 (((-112) $ $) 84 (|has| (-144) (-848)))) (-2821 (((-112) $ $) 20 (|has| (-144) (-1097)))) (-2868 (((-112) $ $) 86 (|has| (-144) (-848)))) (-2844 (((-112) $ $) 83 (|has| (-144) (-848)))) (-2158 (((-769) $) 6 (|has| $ (-6 -4410))))) -(((-1141) (-140)) (T -1141)) -((-4086 (*1 *1 *1) (-4 *1 (-1141))) (-3743 (*1 *1 *1) (-4 *1 (-1141))) (-2000 (*1 *1 *1) (-4 *1 (-1141))) (-4121 (*1 *1 *1) (-4 *1 (-1141))) (-1456 (*1 *2 *1 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-112)))) (-3804 (*1 *2 *1 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-112)))) (-3783 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (-564)) (-5 *2 (-112)))) (-3897 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (-144)) (-5 *2 (-769)))) (-3967 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (-144)) (-5 *2 (-112)))) (-3297 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-1229 (-564))))) (-3942 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1141)) (-5 *2 (-564)))) (-3942 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1141)) (-5 *2 (-564)) (-5 *3 (-141)))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-144)) (-4 *1 (-1141)))) (-2246 (*1 *2 *1 *3) (-12 (-5 *3 (-144)) (-5 *2 (-642 *1)) (-4 *1 (-1141)))) (-2246 (*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-642 *1)) (-4 *1 (-1141)))) (-2624 (*1 *1 *1 *2) (-12 (-4 *1 (-1141)) (-5 *2 (-144)))) (-2624 (*1 *1 *1 *2) (-12 (-4 *1 (-1141)) (-5 *2 (-141)))) (-1563 (*1 *1 *1 *2) (-12 (-4 *1 (-1141)) (-5 *2 (-144)))) (-1563 (*1 *1 *1 *2) (-12 (-4 *1 (-1141)) (-5 *2 (-141)))) (-1553 (*1 *1 *1 *2) (-12 (-4 *1 (-1141)) (-5 *2 (-144)))) (-1553 (*1 *1 *1 *2) (-12 (-4 *1 (-1141)) (-5 *2 (-141)))) (-4369 (*1 *1 *1 *1) (-4 *1 (-1141)))) -(-13 (-19 (-144)) (-10 -8 (-15 -4086 ($ $)) (-15 -3743 ($ $)) (-15 -2000 ($ $)) (-15 -4121 ($ $)) (-15 -1456 ((-112) $ $)) (-15 -3804 ((-112) $ $)) (-15 -3783 ((-112) $ $ (-564))) (-15 -3897 ((-769) $ $ (-144))) (-15 -3967 ((-112) $ $ (-144))) (-15 -3297 ($ $ (-1229 (-564)) $)) (-15 -3942 ((-564) $ $ (-564))) (-15 -3942 ((-564) (-141) $ (-564))) (-15 -2390 ($ (-144))) (-15 -2246 ((-642 $) $ (-144))) (-15 -2246 ((-642 $) $ (-141))) (-15 -2624 ($ $ (-144))) (-15 -2624 ($ $ (-141))) (-15 -1563 ($ $ (-144))) (-15 -1563 ($ $ (-141))) (-15 -1553 ($ $ (-144))) (-15 -1553 ($ $ (-141))) (-15 -4369 ($ $ $)))) -(((-34) . T) ((-102) -2682 (|has| (-144) (-1097)) (|has| (-144) (-848))) ((-611 (-860)) -2682 (|has| (-144) (-1097)) (|has| (-144) (-848)) (|has| (-144) (-611 (-860)))) ((-151 #0=(-144)) . T) ((-612 (-536)) |has| (-144) (-612 (-536))) ((-286 #1=(-564) #0#) . T) ((-288 #1# #0#) . T) ((-309 #0#) -12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1097))) ((-373 #0#) . T) ((-489 #0#) . T) ((-602 #1# #0#) . T) ((-514 #0# #0#) -12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1097))) ((-649 #0#) . T) ((-19 #0#) . T) ((-848) |has| (-144) (-848)) ((-1097) -2682 (|has| (-144) (-1097)) (|has| (-144) (-848))) ((-1212) . T)) -((-3675 (((-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))) (-642 |#4|) (-642 |#5|) (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))) (-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))))) (-769)) 113)) (-3195 (((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))))) |#4| |#5|) 62) (((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))))) |#4| |#5| (-769)) 61)) (-4388 (((-1267) (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))) (-769)) 98)) (-4368 (((-769) (-642 |#4|) (-642 |#5|)) 30)) (-3708 (((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))))) |#4| |#5| (-769)) 63) (((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))))) |#4| |#5| (-769) (-112)) 65)) (-3822 (((-642 |#5|) (-642 |#4|) (-642 |#5|) (-112) (-112) (-112) (-112) (-112)) 84) (((-642 |#5|) (-642 |#4|) (-642 |#5|) (-112) (-112)) 85)) (-3003 (((-1155) (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))) 90)) (-4305 (((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))))) |#4| |#5|) 60)) (-3701 (((-769) (-642 |#4|) (-642 |#5|)) 21))) -(((-1142 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3701 ((-769) (-642 |#4|) (-642 |#5|))) (-15 -4368 ((-769) (-642 |#4|) (-642 |#5|))) (-15 -4305 ((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))))) |#4| |#5|)) (-15 -3195 ((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))))) |#4| |#5| (-769))) (-15 -3195 ((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))))) |#4| |#5|)) (-15 -3708 ((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))))) |#4| |#5| (-769) (-112))) (-15 -3708 ((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))))) |#4| |#5| (-769))) (-15 -3708 ((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))))) |#4| |#5|)) (-15 -3822 ((-642 |#5|) (-642 |#4|) (-642 |#5|) (-112) (-112))) (-15 -3822 ((-642 |#5|) (-642 |#4|) (-642 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3675 ((-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))) (-642 |#4|) (-642 |#5|) (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))) (-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))))) (-769))) (-15 -3003 ((-1155) (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|)))) (-15 -4388 ((-1267) (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))) (-769)))) (-452) (-791) (-848) (-1062 |#1| |#2| |#3|) (-1106 |#1| |#2| |#3| |#4|)) (T -1142)) -((-4388 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-2 (|:| |val| (-642 *8)) (|:| -2138 *9)))) (-5 *4 (-769)) (-4 *8 (-1062 *5 *6 *7)) (-4 *9 (-1106 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *2 (-1267)) (-5 *1 (-1142 *5 *6 *7 *8 *9)))) (-3003 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-642 *7)) (|:| -2138 *8))) (-4 *7 (-1062 *4 *5 *6)) (-4 *8 (-1106 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-1155)) (-5 *1 (-1142 *4 *5 *6 *7 *8)))) (-3675 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-642 *11)) (|:| |todo| (-642 (-2 (|:| |val| *3) (|:| -2138 *11)))))) (-5 *6 (-769)) (-5 *2 (-642 (-2 (|:| |val| (-642 *10)) (|:| -2138 *11)))) (-5 *3 (-642 *10)) (-5 *4 (-642 *11)) (-4 *10 (-1062 *7 *8 *9)) (-4 *11 (-1106 *7 *8 *9 *10)) (-4 *7 (-452)) (-4 *8 (-791)) (-4 *9 (-848)) (-5 *1 (-1142 *7 *8 *9 *10 *11)))) (-3822 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-642 *9)) (-5 *3 (-642 *8)) (-5 *4 (-112)) (-4 *8 (-1062 *5 *6 *7)) (-4 *9 (-1106 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *1 (-1142 *5 *6 *7 *8 *9)))) (-3822 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-642 *9)) (-5 *3 (-642 *8)) (-5 *4 (-112)) (-4 *8 (-1062 *5 *6 *7)) (-4 *9 (-1106 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *1 (-1142 *5 *6 *7 *8 *9)))) (-3708 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-642 *4)) (|:| |todo| (-642 (-2 (|:| |val| (-642 *3)) (|:| -2138 *4)))))) (-5 *1 (-1142 *5 *6 *7 *3 *4)) (-4 *4 (-1106 *5 *6 *7 *3)))) (-3708 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-769)) (-4 *6 (-452)) (-4 *7 (-791)) (-4 *8 (-848)) (-4 *3 (-1062 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-642 *4)) (|:| |todo| (-642 (-2 (|:| |val| (-642 *3)) (|:| -2138 *4)))))) (-5 *1 (-1142 *6 *7 *8 *3 *4)) (-4 *4 (-1106 *6 *7 *8 *3)))) (-3708 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-769)) (-5 *6 (-112)) (-4 *7 (-452)) (-4 *8 (-791)) (-4 *9 (-848)) (-4 *3 (-1062 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-642 *4)) (|:| |todo| (-642 (-2 (|:| |val| (-642 *3)) (|:| -2138 *4)))))) (-5 *1 (-1142 *7 *8 *9 *3 *4)) (-4 *4 (-1106 *7 *8 *9 *3)))) (-3195 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-642 *4)) (|:| |todo| (-642 (-2 (|:| |val| (-642 *3)) (|:| -2138 *4)))))) (-5 *1 (-1142 *5 *6 *7 *3 *4)) (-4 *4 (-1106 *5 *6 *7 *3)))) (-3195 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-769)) (-4 *6 (-452)) (-4 *7 (-791)) (-4 *8 (-848)) (-4 *3 (-1062 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-642 *4)) (|:| |todo| (-642 (-2 (|:| |val| (-642 *3)) (|:| -2138 *4)))))) (-5 *1 (-1142 *6 *7 *8 *3 *4)) (-4 *4 (-1106 *6 *7 *8 *3)))) (-4305 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-642 *4)) (|:| |todo| (-642 (-2 (|:| |val| (-642 *3)) (|:| -2138 *4)))))) (-5 *1 (-1142 *5 *6 *7 *3 *4)) (-4 *4 (-1106 *5 *6 *7 *3)))) (-4368 (*1 *2 *3 *4) (-12 (-5 *3 (-642 *8)) (-5 *4 (-642 *9)) (-4 *8 (-1062 *5 *6 *7)) (-4 *9 (-1106 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *2 (-769)) (-5 *1 (-1142 *5 *6 *7 *8 *9)))) (-3701 (*1 *2 *3 *4) (-12 (-5 *3 (-642 *8)) (-5 *4 (-642 *9)) (-4 *8 (-1062 *5 *6 *7)) (-4 *9 (-1106 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *2 (-769)) (-5 *1 (-1142 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -3701 ((-769) (-642 |#4|) (-642 |#5|))) (-15 -4368 ((-769) (-642 |#4|) (-642 |#5|))) (-15 -4305 ((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))))) |#4| |#5|)) (-15 -3195 ((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))))) |#4| |#5| (-769))) (-15 -3195 ((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))))) |#4| |#5|)) (-15 -3708 ((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))))) |#4| |#5| (-769) (-112))) (-15 -3708 ((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))))) |#4| |#5| (-769))) (-15 -3708 ((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))))) |#4| |#5|)) (-15 -3822 ((-642 |#5|) (-642 |#4|) (-642 |#5|) (-112) (-112))) (-15 -3822 ((-642 |#5|) (-642 |#4|) (-642 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3675 ((-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))) (-642 |#4|) (-642 |#5|) (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))) (-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))))) (-769))) (-15 -3003 ((-1155) (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|)))) (-15 -4388 ((-1267) (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -2138 |#5|))) (-769)))) -((-2856 (((-112) $ $) NIL)) (-1466 (((-642 (-2 (|:| -1616 $) (|:| -3406 (-642 |#4|)))) (-642 |#4|)) NIL)) (-3076 (((-642 $) (-642 |#4|)) 124) (((-642 $) (-642 |#4|) (-112)) 125) (((-642 $) (-642 |#4|) (-112) (-112)) 123) (((-642 $) (-642 |#4|) (-112) (-112) (-112) (-112)) 126)) (-2397 (((-642 |#3|) $) NIL)) (-3646 (((-112) $) NIL)) (-4074 (((-112) $) NIL (|has| |#1| (-556)))) (-4334 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2937 ((|#4| |#4| $) NIL)) (-1993 (((-642 (-2 (|:| |val| |#4|) (|:| -2138 $))) |#4| $) 97)) (-3191 (((-2 (|:| |under| $) (|:| -2795 $) (|:| |upper| $)) $ |#3|) NIL)) (-3442 (((-112) $ (-769)) NIL)) (-3437 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4410))) (((-3 |#4| "failed") $ |#3|) 75)) (-2822 (($) NIL T CONST)) (-3013 (((-112) $) 29 (|has| |#1| (-556)))) (-3936 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2133 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2967 (((-112) $) NIL (|has| |#1| (-556)))) (-3720 (((-642 |#4|) (-642 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2632 (((-642 |#4|) (-642 |#4|) $) NIL (|has| |#1| (-556)))) (-1419 (((-642 |#4|) (-642 |#4|) $) NIL (|has| |#1| (-556)))) (-2849 (((-3 $ "failed") (-642 |#4|)) NIL)) (-1687 (($ (-642 |#4|)) NIL)) (-4050 (((-3 $ "failed") $) 45)) (-2398 ((|#4| |#4| $) 78)) (-4067 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#4| (-1097))))) (-2517 (($ |#4| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#4| (-1097)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4410)))) (-1992 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 91 (|has| |#1| (-556)))) (-3762 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3978 ((|#4| |#4| $) NIL)) (-3741 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4410)) (|has| |#4| (-1097)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4410))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4410))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1750 (((-2 (|:| -1616 (-642 |#4|)) (|:| -3406 (-642 |#4|))) $) NIL)) (-2104 (((-112) |#4| $) NIL)) (-4141 (((-112) |#4| $) NIL)) (-3188 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1739 (((-2 (|:| |val| (-642 |#4|)) (|:| |towers| (-642 $))) (-642 |#4|) (-112) (-112)) 139)) (-2018 (((-642 |#4|) $) 18 (|has| $ (-6 -4410)))) (-3303 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1715 ((|#3| $) 38)) (-3769 (((-112) $ (-769)) NIL)) (-3541 (((-642 |#4|) $) 19 (|has| $ (-6 -4410)))) (-2533 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4410)) (|has| |#4| (-1097))))) (-1857 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#4| |#4|) $) 23)) (-1896 (((-642 |#3|) $) NIL)) (-3935 (((-112) |#3| $) NIL)) (-4145 (((-112) $ (-769)) NIL)) (-1778 (((-1155) $) NIL)) (-3843 (((-3 |#4| (-642 $)) |#4| |#4| $) NIL)) (-2224 (((-642 (-2 (|:| |val| |#4|) (|:| -2138 $))) |#4| |#4| $) 117)) (-2534 (((-3 |#4| "failed") $) 42)) (-2163 (((-642 $) |#4| $) 102)) (-2328 (((-3 (-112) (-642 $)) |#4| $) NIL)) (-4023 (((-642 (-2 (|:| |val| (-112)) (|:| -2138 $))) |#4| $) 112) (((-112) |#4| $) 65)) (-2338 (((-642 $) |#4| $) 121) (((-642 $) (-642 |#4|) $) NIL) (((-642 $) (-642 |#4|) (-642 $)) 122) (((-642 $) |#4| (-642 $)) NIL)) (-2636 (((-642 $) (-642 |#4|) (-112) (-112) (-112)) 134)) (-2415 (($ |#4| $) 88) (($ (-642 |#4|) $) 89) (((-642 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 87)) (-2206 (((-642 |#4|) $) NIL)) (-3673 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4090 ((|#4| |#4| $) NIL)) (-3119 (((-112) $ $) NIL)) (-1699 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-4354 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3750 ((|#4| |#4| $) NIL)) (-3999 (((-1117) $) NIL)) (-4036 (((-3 |#4| "failed") $) 40)) (-3183 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2465 (((-3 $ "failed") $ |#4|) 59)) (-2137 (($ $ |#4|) NIL) (((-642 $) |#4| $) 104) (((-642 $) |#4| (-642 $)) NIL) (((-642 $) (-642 |#4|) $) NIL) (((-642 $) (-642 |#4|) (-642 $)) 99)) (-4094 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 |#4|) (-642 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ (-642 (-294 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097))))) (-2478 (((-112) $ $) NIL)) (-4109 (((-112) $) 17)) (-2179 (($) 14)) (-3252 (((-769) $) NIL)) (-4010 (((-769) |#4| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#4| (-1097)))) (((-769) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4410)))) (-3865 (($ $) 13)) (-3003 (((-536) $) NIL (|has| |#4| (-612 (-536))))) (-2401 (($ (-642 |#4|)) 22)) (-2942 (($ $ |#3|) 52)) (-1710 (($ $ |#3|) 54)) (-2204 (($ $) NIL)) (-4283 (($ $ |#3|) NIL)) (-2390 (((-860) $) 35) (((-642 |#4|) $) 46)) (-2621 (((-769) $) NIL (|has| |#3| (-368)))) (-1600 (((-112) $ $) NIL)) (-4150 (((-3 (-2 (|:| |bas| $) (|:| -3844 (-642 |#4|))) "failed") (-642 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3844 (-642 |#4|))) "failed") (-642 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2205 (((-112) $ (-1 (-112) |#4| (-642 |#4|))) NIL)) (-3204 (((-642 $) |#4| $) 66) (((-642 $) |#4| (-642 $)) NIL) (((-642 $) (-642 |#4|) $) NIL) (((-642 $) (-642 |#4|) (-642 $)) NIL)) (-3295 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4410)))) (-1644 (((-642 |#3|) $) NIL)) (-1837 (((-112) |#4| $) NIL)) (-4127 (((-112) |#3| $) 74)) (-2821 (((-112) $ $) NIL)) (-2158 (((-769) $) NIL (|has| $ (-6 -4410))))) -(((-1143 |#1| |#2| |#3| |#4|) (-13 (-1106 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2415 ((-642 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3076 ((-642 $) (-642 |#4|) (-112) (-112))) (-15 -3076 ((-642 $) (-642 |#4|) (-112) (-112) (-112) (-112))) (-15 -2636 ((-642 $) (-642 |#4|) (-112) (-112) (-112))) (-15 -1739 ((-2 (|:| |val| (-642 |#4|)) (|:| |towers| (-642 $))) (-642 |#4|) (-112) (-112))))) (-452) (-791) (-848) (-1062 |#1| |#2| |#3|)) (T -1143)) -((-2415 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *2 (-642 (-1143 *5 *6 *7 *3))) (-5 *1 (-1143 *5 *6 *7 *3)) (-4 *3 (-1062 *5 *6 *7)))) (-3076 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-642 *8)) (-5 *4 (-112)) (-4 *8 (-1062 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *2 (-642 (-1143 *5 *6 *7 *8))) (-5 *1 (-1143 *5 *6 *7 *8)))) (-3076 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-642 *8)) (-5 *4 (-112)) (-4 *8 (-1062 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *2 (-642 (-1143 *5 *6 *7 *8))) (-5 *1 (-1143 *5 *6 *7 *8)))) (-2636 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-642 *8)) (-5 *4 (-112)) (-4 *8 (-1062 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *2 (-642 (-1143 *5 *6 *7 *8))) (-5 *1 (-1143 *5 *6 *7 *8)))) (-1739 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *8 (-1062 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-642 *8)) (|:| |towers| (-642 (-1143 *5 *6 *7 *8))))) (-5 *1 (-1143 *5 *6 *7 *8)) (-5 *3 (-642 *8))))) -(-13 (-1106 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2415 ((-642 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3076 ((-642 $) (-642 |#4|) (-112) (-112))) (-15 -3076 ((-642 $) (-642 |#4|) (-112) (-112) (-112) (-112))) (-15 -2636 ((-642 $) (-642 |#4|) (-112) (-112) (-112))) (-15 -1739 ((-2 (|:| |val| (-642 |#4|)) (|:| |towers| (-642 $))) (-642 |#4|) (-112) (-112))))) -((-2856 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-3844 ((|#1| $) 37)) (-2118 (($ (-642 |#1|)) 45)) (-3442 (((-112) $ (-769)) NIL)) (-2822 (($) NIL T CONST)) (-1881 ((|#1| |#1| $) 40)) (-3949 ((|#1| $) 35)) (-2018 (((-642 |#1|) $) 18 (|has| $ (-6 -4410)))) (-3769 (((-112) $ (-769)) NIL)) (-3541 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2533 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-1857 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#1| |#1|) $) 22)) (-4145 (((-112) $ (-769)) NIL)) (-1778 (((-1155) $) NIL (|has| |#1| (-1097)))) (-3220 ((|#1| $) 38)) (-1668 (($ |#1| $) 41)) (-3999 (((-1117) $) NIL (|has| |#1| (-1097)))) (-4314 ((|#1| $) 36)) (-4094 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-2478 (((-112) $ $) NIL)) (-4109 (((-112) $) 32)) (-2179 (($) 43)) (-2085 (((-769) $) 30)) (-4010 (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-769) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3865 (($ $) 27)) (-2390 (((-860) $) 14 (|has| |#1| (-611 (-860))))) (-1600 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-4160 (($ (-642 |#1|)) NIL)) (-3295 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2821 (((-112) $ $) 17 (|has| |#1| (-1097)))) (-2158 (((-769) $) 31 (|has| $ (-6 -4410))))) -(((-1144 |#1|) (-13 (-1118 |#1|) (-10 -8 (-15 -2118 ($ (-642 |#1|))))) (-1212)) (T -1144)) -((-2118 (*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1212)) (-5 *1 (-1144 *3))))) -(-13 (-1118 |#1|) (-10 -8 (-15 -2118 ($ (-642 |#1|))))) -((-3841 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1229 (-564)) |#2|) 55) ((|#2| $ (-564) |#2|) 52)) (-3385 (((-112) $) 12)) (-1857 (($ (-1 |#2| |#2|) $) 50)) (-4036 ((|#2| $) NIL) (($ $ (-769)) 20)) (-3826 (($ $ |#2|) 51)) (-3823 (((-112) $) 11)) (-4369 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1229 (-564))) 38) ((|#2| $ (-564)) 29) ((|#2| $ (-564) |#2|) NIL)) (-2766 (($ $ $) 58) (($ $ |#2|) NIL)) (-3634 (($ $ $) 40) (($ |#2| $) NIL) (($ (-642 $)) 47) (($ $ |#2|) NIL))) -(((-1145 |#1| |#2|) (-10 -8 (-15 -3385 ((-112) |#1|)) (-15 -3823 ((-112) |#1|)) (-15 -3841 (|#2| |#1| (-564) |#2|)) (-15 -4369 (|#2| |#1| (-564) |#2|)) (-15 -4369 (|#2| |#1| (-564))) (-15 -3826 (|#1| |#1| |#2|)) (-15 -3634 (|#1| |#1| |#2|)) (-15 -3634 (|#1| (-642 |#1|))) (-15 -4369 (|#1| |#1| (-1229 (-564)))) (-15 -3841 (|#2| |#1| (-1229 (-564)) |#2|)) (-15 -3841 (|#2| |#1| "last" |#2|)) (-15 -3841 (|#1| |#1| "rest" |#1|)) (-15 -3841 (|#2| |#1| "first" |#2|)) (-15 -2766 (|#1| |#1| |#2|)) (-15 -2766 (|#1| |#1| |#1|)) (-15 -4369 (|#2| |#1| "last")) (-15 -4369 (|#1| |#1| "rest")) (-15 -4036 (|#1| |#1| (-769))) (-15 -4369 (|#2| |#1| "first")) (-15 -4036 (|#2| |#1|)) (-15 -3634 (|#1| |#2| |#1|)) (-15 -3634 (|#1| |#1| |#1|)) (-15 -3841 (|#2| |#1| "value" |#2|)) (-15 -4369 (|#2| |#1| "value")) (-15 -1857 (|#1| (-1 |#2| |#2|) |#1|))) (-1146 |#2|) (-1212)) (T -1145)) -NIL -(-10 -8 (-15 -3385 ((-112) |#1|)) (-15 -3823 ((-112) |#1|)) (-15 -3841 (|#2| |#1| (-564) |#2|)) (-15 -4369 (|#2| |#1| (-564) |#2|)) (-15 -4369 (|#2| |#1| (-564))) (-15 -3826 (|#1| |#1| |#2|)) (-15 -3634 (|#1| |#1| |#2|)) (-15 -3634 (|#1| (-642 |#1|))) (-15 -4369 (|#1| |#1| (-1229 (-564)))) (-15 -3841 (|#2| |#1| (-1229 (-564)) |#2|)) (-15 -3841 (|#2| |#1| "last" |#2|)) (-15 -3841 (|#1| |#1| "rest" |#1|)) (-15 -3841 (|#2| |#1| "first" |#2|)) (-15 -2766 (|#1| |#1| |#2|)) (-15 -2766 (|#1| |#1| |#1|)) (-15 -4369 (|#2| |#1| "last")) (-15 -4369 (|#1| |#1| "rest")) (-15 -4036 (|#1| |#1| (-769))) (-15 -4369 (|#2| |#1| "first")) (-15 -4036 (|#2| |#1|)) (-15 -3634 (|#1| |#2| |#1|)) (-15 -3634 (|#1| |#1| |#1|)) (-15 -3841 (|#2| |#1| "value" |#2|)) (-15 -4369 (|#2| |#1| "value")) (-15 -1857 (|#1| (-1 |#2| |#2|) |#1|))) -((-2856 (((-112) $ $) 19 (|has| |#1| (-1097)))) (-2108 ((|#1| $) 49)) (-3585 ((|#1| $) 66)) (-3107 (($ $) 68)) (-3633 (((-1267) $ (-564) (-564)) 98 (|has| $ (-6 -4411)))) (-4083 (($ $ (-564)) 53 (|has| $ (-6 -4411)))) (-3442 (((-112) $ (-769)) 8)) (-1407 ((|#1| $ |#1|) 40 (|has| $ (-6 -4411)))) (-4277 (($ $ $) 57 (|has| $ (-6 -4411)))) (-4326 ((|#1| $ |#1|) 55 (|has| $ (-6 -4411)))) (-3186 ((|#1| $ |#1|) 59 (|has| $ (-6 -4411)))) (-3841 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4411))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4411))) (($ $ "rest" $) 56 (|has| $ (-6 -4411))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4411))) ((|#1| $ (-1229 (-564)) |#1|) 118 (|has| $ (-6 -4411))) ((|#1| $ (-564) |#1|) 87 (|has| $ (-6 -4411)))) (-4041 (($ $ (-642 $)) 42 (|has| $ (-6 -4411)))) (-3437 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4410)))) (-3573 ((|#1| $) 67)) (-2822 (($) 7 T CONST)) (-4050 (($ $) 74) (($ $ (-769)) 72)) (-4067 (($ $) 100 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-2517 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4410))) (($ |#1| $) 101 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3741 ((|#1| (-1 |#1| |#1| |#1|) $) 106 (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 105 (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 102 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3105 ((|#1| $ (-564) |#1|) 86 (|has| $ (-6 -4411)))) (-1804 ((|#1| $ (-564)) 88)) (-3385 (((-112) $) 84)) (-2018 (((-642 |#1|) $) 31 (|has| $ (-6 -4410)))) (-1300 (((-642 $) $) 51)) (-2423 (((-112) $ $) 43 (|has| |#1| (-1097)))) (-4233 (($ (-769) |#1|) 109)) (-3769 (((-112) $ (-769)) 9)) (-1802 (((-564) $) 96 (|has| (-564) (-848)))) (-3541 (((-642 |#1|) $) 30 (|has| $ (-6 -4410)))) (-2533 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3624 (((-564) $) 95 (|has| (-564) (-848)))) (-1857 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 112)) (-4145 (((-112) $ (-769)) 10)) (-2334 (((-642 |#1|) $) 46)) (-1961 (((-112) $) 50)) (-1778 (((-1155) $) 22 (|has| |#1| (-1097)))) (-2534 ((|#1| $) 71) (($ $ (-769)) 69)) (-4247 (($ $ $ (-564)) 117) (($ |#1| $ (-564)) 116)) (-4107 (((-642 (-564)) $) 93)) (-4207 (((-112) (-564) $) 92)) (-3999 (((-1117) $) 21 (|has| |#1| (-1097)))) (-4036 ((|#1| $) 77) (($ $ (-769)) 75)) (-3183 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 107)) (-3826 (($ $ |#1|) 97 (|has| $ (-6 -4411)))) (-3823 (((-112) $) 85)) (-4094 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-2478 (((-112) $ $) 14)) (-1643 (((-112) |#1| $) 94 (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3522 (((-642 |#1|) $) 91)) (-4109 (((-112) $) 11)) (-2179 (($) 12)) (-4369 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1229 (-564))) 113) ((|#1| $ (-564)) 90) ((|#1| $ (-564) |#1|) 89)) (-1743 (((-564) $ $) 45)) (-2083 (($ $ (-1229 (-564))) 115) (($ $ (-564)) 114)) (-1311 (((-112) $) 47)) (-1306 (($ $) 63)) (-4118 (($ $) 60 (|has| $ (-6 -4411)))) (-3941 (((-769) $) 64)) (-4376 (($ $) 65)) (-4010 (((-769) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4410))) (((-769) |#1| $) 29 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3865 (($ $) 13)) (-3003 (((-536) $) 99 (|has| |#1| (-612 (-536))))) (-2401 (($ (-642 |#1|)) 108)) (-2766 (($ $ $) 62 (|has| $ (-6 -4411))) (($ $ |#1|) 61 (|has| $ (-6 -4411)))) (-3634 (($ $ $) 79) (($ |#1| $) 78) (($ (-642 $)) 111) (($ $ |#1|) 110)) (-2390 (((-860) $) 18 (|has| |#1| (-611 (-860))))) (-4275 (((-642 $) $) 52)) (-1622 (((-112) $ $) 44 (|has| |#1| (-1097)))) (-1600 (((-112) $ $) 23 (|has| |#1| (-1097)))) (-3295 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4410)))) (-2821 (((-112) $ $) 20 (|has| |#1| (-1097)))) (-2158 (((-769) $) 6 (|has| $ (-6 -4410))))) -(((-1146 |#1|) (-140) (-1212)) (T -1146)) -((-3823 (*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1212)) (-5 *2 (-112)))) (-3385 (*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1212)) (-5 *2 (-112))))) -(-13 (-1250 |t#1|) (-649 |t#1|) (-10 -8 (-15 -3823 ((-112) $)) (-15 -3385 ((-112) $)))) -(((-34) . T) ((-102) |has| |#1| (-1097)) ((-611 (-860)) -2682 (|has| |#1| (-1097)) (|has| |#1| (-611 (-860)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-649 |#1|) . T) ((-1008 |#1|) . T) ((-1097) |has| |#1| (-1097)) ((-1212) . T) ((-1250 |#1|) . T)) -((-2856 (((-112) $ $) NIL (-2682 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-4222 (($) NIL) (($ (-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) NIL)) (-3633 (((-1267) $ |#1| |#1|) NIL (|has| $ (-6 -4411)))) (-3442 (((-112) $ (-769)) NIL)) (-3841 ((|#2| $ |#1| |#2|) NIL)) (-2438 (($ (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-3437 (($ (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-2295 (((-3 |#2| "failed") |#1| $) NIL)) (-2822 (($) NIL T CONST)) (-4067 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097))))) (-1927 (($ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) NIL (|has| $ (-6 -4410))) (($ (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-3 |#2| "failed") |#1| $) NIL)) (-2517 (($ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (($ (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-3741 (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) NIL (|has| $ (-6 -4410))) (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-3105 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4411)))) (-1804 ((|#2| $ |#1|) NIL)) (-2018 (((-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-642 |#2|) $) NIL (|has| $ (-6 -4410)))) (-3769 (((-112) $ (-769)) NIL)) (-1802 ((|#1| $) NIL (|has| |#1| (-848)))) (-3541 (((-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-642 |#2|) $) NIL (|has| $ (-6 -4410)))) (-2533 (((-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097))))) (-3624 ((|#1| $) NIL (|has| |#1| (-848)))) (-1857 (($ (-1 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4411))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4411)))) (-2947 (($ (-1 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4145 (((-112) $ (-769)) NIL)) (-1778 (((-1155) $) NIL (-2682 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-3287 (((-642 |#1|) $) NIL)) (-2145 (((-112) |#1| $) NIL)) (-3220 (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) NIL)) (-1668 (($ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) NIL)) (-4107 (((-642 |#1|) $) NIL)) (-4207 (((-112) |#1| $) NIL)) (-3999 (((-1117) $) NIL (-2682 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-4036 ((|#2| $) NIL (|has| |#1| (-848)))) (-3183 (((-3 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) "failed") (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL)) (-3826 (($ $ |#2|) NIL (|has| $ (-6 -4411)))) (-4314 (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) NIL)) (-4094 (((-112) (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))))) NIL (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (($ $ (-294 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) NIL (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (($ $ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) NIL (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (($ $ (-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) (-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) NIL (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (($ $ (-642 |#2|) (-642 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-642 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))))) (-2478 (((-112) $ $) NIL)) (-1643 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097))))) (-3522 (((-642 |#2|) $) NIL)) (-4109 (((-112) $) NIL)) (-2179 (($) NIL)) (-4369 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2318 (($) NIL) (($ (-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) NIL)) (-4010 (((-769) (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-769) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (((-769) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097)))) (((-769) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410)))) (-3865 (($ $) NIL)) (-3003 (((-536) $) NIL (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-612 (-536))))) (-2401 (($ (-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) NIL)) (-2390 (((-860) $) NIL (-2682 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-611 (-860))) (|has| |#2| (-611 (-860)))))) (-1600 (((-112) $ $) NIL (-2682 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-4160 (($ (-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) NIL)) (-3295 (((-112) (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410)))) (-2821 (((-112) $ $) NIL (-2682 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-2158 (((-769) $) NIL (|has| $ (-6 -4410))))) -(((-1147 |#1| |#2| |#3|) (-1188 |#1| |#2|) (-1097) (-1097) |#2|) (T -1147)) -NIL -(-1188 |#1| |#2|) -((-2856 (((-112) $ $) 7)) (-4382 (((-3 $ "failed") $) 14)) (-1778 (((-1155) $) 10)) (-3910 (($) 15 T CONST)) (-3999 (((-1117) $) 11)) (-2390 (((-860) $) 12)) (-1600 (((-112) $ $) 9)) (-2821 (((-112) $ $) 6))) -(((-1148) (-140)) (T -1148)) -((-3910 (*1 *1) (-4 *1 (-1148))) (-4382 (*1 *1 *1) (|partial| -4 *1 (-1148)))) -(-13 (-1097) (-10 -8 (-15 -3910 ($) -1551) (-15 -4382 ((-3 $ "failed") $)))) -(((-102) . T) ((-611 (-860)) . T) ((-1097) . T)) -((-3181 (((-1153 |#1|) (-1153 |#1|)) 17)) (-1655 (((-1153 |#1|) (-1153 |#1|)) 13)) (-2537 (((-1153 |#1|) (-1153 |#1|) (-564) (-564)) 20)) (-1399 (((-1153 |#1|) (-1153 |#1|)) 15))) -(((-1149 |#1|) (-10 -7 (-15 -1655 ((-1153 |#1|) (-1153 |#1|))) (-15 -1399 ((-1153 |#1|) (-1153 |#1|))) (-15 -3181 ((-1153 |#1|) (-1153 |#1|))) (-15 -2537 ((-1153 |#1|) (-1153 |#1|) (-564) (-564)))) (-13 (-556) (-147))) (T -1149)) -((-2537 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1153 *4)) (-5 *3 (-564)) (-4 *4 (-13 (-556) (-147))) (-5 *1 (-1149 *4)))) (-3181 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-13 (-556) (-147))) (-5 *1 (-1149 *3)))) (-1399 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-13 (-556) (-147))) (-5 *1 (-1149 *3)))) (-1655 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-13 (-556) (-147))) (-5 *1 (-1149 *3))))) -(-10 -7 (-15 -1655 ((-1153 |#1|) (-1153 |#1|))) (-15 -1399 ((-1153 |#1|) (-1153 |#1|))) (-15 -3181 ((-1153 |#1|) (-1153 |#1|))) (-15 -2537 ((-1153 |#1|) (-1153 |#1|) (-564) (-564)))) -((-3634 (((-1153 |#1|) (-1153 (-1153 |#1|))) 15))) -(((-1150 |#1|) (-10 -7 (-15 -3634 ((-1153 |#1|) (-1153 (-1153 |#1|))))) (-1212)) (T -1150)) -((-3634 (*1 *2 *3) (-12 (-5 *3 (-1153 (-1153 *4))) (-5 *2 (-1153 *4)) (-5 *1 (-1150 *4)) (-4 *4 (-1212))))) -(-10 -7 (-15 -3634 ((-1153 |#1|) (-1153 (-1153 |#1|))))) -((-2810 (((-1153 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1153 |#1|)) 25)) (-3741 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1153 |#1|)) 26)) (-2947 (((-1153 |#2|) (-1 |#2| |#1|) (-1153 |#1|)) 16))) -(((-1151 |#1| |#2|) (-10 -7 (-15 -2947 ((-1153 |#2|) (-1 |#2| |#1|) (-1153 |#1|))) (-15 -2810 ((-1153 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1153 |#1|))) (-15 -3741 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1153 |#1|)))) (-1212) (-1212)) (T -1151)) -((-3741 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1153 *5)) (-4 *5 (-1212)) (-4 *2 (-1212)) (-5 *1 (-1151 *5 *2)))) (-2810 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1153 *6)) (-4 *6 (-1212)) (-4 *3 (-1212)) (-5 *2 (-1153 *3)) (-5 *1 (-1151 *6 *3)))) (-2947 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1153 *5)) (-4 *5 (-1212)) (-4 *6 (-1212)) (-5 *2 (-1153 *6)) (-5 *1 (-1151 *5 *6))))) -(-10 -7 (-15 -2947 ((-1153 |#2|) (-1 |#2| |#1|) (-1153 |#1|))) (-15 -2810 ((-1153 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1153 |#1|))) (-15 -3741 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1153 |#1|)))) -((-2947 (((-1153 |#3|) (-1 |#3| |#1| |#2|) (-1153 |#1|) (-1153 |#2|)) 21))) -(((-1152 |#1| |#2| |#3|) (-10 -7 (-15 -2947 ((-1153 |#3|) (-1 |#3| |#1| |#2|) (-1153 |#1|) (-1153 |#2|)))) (-1212) (-1212) (-1212)) (T -1152)) -((-2947 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1153 *6)) (-5 *5 (-1153 *7)) (-4 *6 (-1212)) (-4 *7 (-1212)) (-4 *8 (-1212)) (-5 *2 (-1153 *8)) (-5 *1 (-1152 *6 *7 *8))))) -(-10 -7 (-15 -2947 ((-1153 |#3|) (-1 |#3| |#1| |#2|) (-1153 |#1|) (-1153 |#2|)))) -((-2856 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2108 ((|#1| $) NIL)) (-3585 ((|#1| $) NIL)) (-3107 (($ $) 67)) (-3633 (((-1267) $ (-564) (-564)) 99 (|has| $ (-6 -4411)))) (-4083 (($ $ (-564)) 129 (|has| $ (-6 -4411)))) (-3442 (((-112) $ (-769)) NIL)) (-2728 (((-860) $) 56 (|has| |#1| (-1097)))) (-4188 (((-112)) 55 (|has| |#1| (-1097)))) (-1407 ((|#1| $ |#1|) NIL (|has| $ (-6 -4411)))) (-4277 (($ $ $) 116 (|has| $ (-6 -4411))) (($ $ (-564) $) 142)) (-4326 ((|#1| $ |#1|) 126 (|has| $ (-6 -4411)))) (-3186 ((|#1| $ |#1|) 121 (|has| $ (-6 -4411)))) (-3841 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4411))) ((|#1| $ "first" |#1|) 123 (|has| $ (-6 -4411))) (($ $ "rest" $) 125 (|has| $ (-6 -4411))) ((|#1| $ "last" |#1|) 128 (|has| $ (-6 -4411))) ((|#1| $ (-1229 (-564)) |#1|) 113 (|has| $ (-6 -4411))) ((|#1| $ (-564) |#1|) 77 (|has| $ (-6 -4411)))) (-4041 (($ $ (-642 $)) NIL (|has| $ (-6 -4411)))) (-3437 (($ (-1 (-112) |#1|) $) 80)) (-3573 ((|#1| $) NIL)) (-2822 (($) NIL T CONST)) (-2326 (($ $) 14)) (-4050 (($ $) 42) (($ $ (-769)) 111)) (-4176 (((-112) (-642 |#1|) $) 135 (|has| |#1| (-1097)))) (-4373 (($ (-642 |#1|)) 131)) (-4067 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2517 (($ |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097)))) (($ (-1 (-112) |#1|) $) 79)) (-3741 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3105 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4411)))) (-1804 ((|#1| $ (-564)) NIL)) (-3385 (((-112) $) NIL)) (-2018 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-4390 (((-1267) (-564) $) 141 (|has| |#1| (-1097)))) (-1585 (((-769) $) 138)) (-1300 (((-642 $) $) NIL)) (-2423 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-4233 (($ (-769) |#1|) NIL)) (-3769 (((-112) $ (-769)) NIL)) (-1802 (((-564) $) NIL (|has| (-564) (-848)))) (-3541 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2533 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3624 (((-564) $) NIL (|has| (-564) (-848)))) (-1857 (($ (-1 |#1| |#1|) $) 95 (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#1| |#1|) $) 85) (($ (-1 |#1| |#1| |#1|) $ $) 89)) (-4145 (((-112) $ (-769)) NIL)) (-2334 (((-642 |#1|) $) NIL)) (-1961 (((-112) $) NIL)) (-2311 (($ $) 114)) (-4173 (((-112) $) 13)) (-1778 (((-1155) $) NIL (|has| |#1| (-1097)))) (-2534 ((|#1| $) NIL) (($ $ (-769)) NIL)) (-4247 (($ $ $ (-564)) NIL) (($ |#1| $ (-564)) NIL)) (-4107 (((-642 (-564)) $) NIL)) (-4207 (((-112) (-564) $) 96)) (-3999 (((-1117) $) NIL (|has| |#1| (-1097)))) (-3357 (($ (-1 |#1|)) 144) (($ (-1 |#1| |#1|) |#1|) 145)) (-3264 ((|#1| $) 10)) (-4036 ((|#1| $) 41) (($ $ (-769)) 65)) (-3259 (((-2 (|:| |cycle?| (-112)) (|:| -3376 (-769)) (|:| |period| (-769))) (-769) $) 36)) (-3183 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3412 (($ (-1 (-112) |#1|) $) 146)) (-3425 (($ (-1 (-112) |#1|) $) 147)) (-3826 (($ $ |#1|) 90 (|has| $ (-6 -4411)))) (-2137 (($ $ (-564)) 45)) (-3823 (((-112) $) 94)) (-1417 (((-112) $) 12)) (-3403 (((-112) $) 137)) (-4094 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-2478 (((-112) $ $) 30)) (-1643 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3522 (((-642 |#1|) $) NIL)) (-4109 (((-112) $) 20)) (-2179 (($) 60)) (-4369 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1229 (-564))) NIL) ((|#1| $ (-564)) 75) ((|#1| $ (-564) |#1|) NIL)) (-1743 (((-564) $ $) 64)) (-2083 (($ $ (-1229 (-564))) NIL) (($ $ (-564)) NIL)) (-3622 (($ (-1 $)) 63)) (-1311 (((-112) $) 91)) (-1306 (($ $) 92)) (-4118 (($ $) 117 (|has| $ (-6 -4411)))) (-3941 (((-769) $) NIL)) (-4376 (($ $) NIL)) (-4010 (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-769) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3865 (($ $) 59)) (-3003 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-2401 (($ (-642 |#1|)) 73)) (-1746 (($ |#1| $) 115)) (-2766 (($ $ $) 119 (|has| $ (-6 -4411))) (($ $ |#1|) 120 (|has| $ (-6 -4411)))) (-3634 (($ $ $) 101) (($ |#1| $) 61) (($ (-642 $)) 106) (($ $ |#1|) 100)) (-4189 (($ $) 66)) (-2390 (($ (-642 |#1|)) 130) (((-860) $) 57 (|has| |#1| (-611 (-860))))) (-4275 (((-642 $) $) NIL)) (-1622 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-1600 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-3295 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2821 (((-112) $ $) 133 (|has| |#1| (-1097)))) (-2158 (((-769) $) NIL (|has| $ (-6 -4410))))) -(((-1153 |#1|) (-13 (-672 |#1|) (-614 (-642 |#1|)) (-10 -8 (-6 -4411) (-15 -4373 ($ (-642 |#1|))) (IF (|has| |#1| (-1097)) (-15 -4176 ((-112) (-642 |#1|) $)) |%noBranch|) (-15 -3259 ((-2 (|:| |cycle?| (-112)) (|:| -3376 (-769)) (|:| |period| (-769))) (-769) $)) (-15 -3622 ($ (-1 $))) (-15 -1746 ($ |#1| $)) (IF (|has| |#1| (-1097)) (PROGN (-15 -4390 ((-1267) (-564) $)) (-15 -2728 ((-860) $)) (-15 -4188 ((-112)))) |%noBranch|) (-15 -4277 ($ $ (-564) $)) (-15 -3357 ($ (-1 |#1|))) (-15 -3357 ($ (-1 |#1| |#1|) |#1|)) (-15 -3412 ($ (-1 (-112) |#1|) $)) (-15 -3425 ($ (-1 (-112) |#1|) $)))) (-1212)) (T -1153)) -((-4373 (*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1212)) (-5 *1 (-1153 *3)))) (-4176 (*1 *2 *3 *1) (-12 (-5 *3 (-642 *4)) (-4 *4 (-1097)) (-4 *4 (-1212)) (-5 *2 (-112)) (-5 *1 (-1153 *4)))) (-3259 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -3376 (-769)) (|:| |period| (-769)))) (-5 *1 (-1153 *4)) (-4 *4 (-1212)) (-5 *3 (-769)))) (-3622 (*1 *1 *2) (-12 (-5 *2 (-1 (-1153 *3))) (-5 *1 (-1153 *3)) (-4 *3 (-1212)))) (-1746 (*1 *1 *2 *1) (-12 (-5 *1 (-1153 *2)) (-4 *2 (-1212)))) (-4390 (*1 *2 *3 *1) (-12 (-5 *3 (-564)) (-5 *2 (-1267)) (-5 *1 (-1153 *4)) (-4 *4 (-1097)) (-4 *4 (-1212)))) (-2728 (*1 *2 *1) (-12 (-5 *2 (-860)) (-5 *1 (-1153 *3)) (-4 *3 (-1097)) (-4 *3 (-1212)))) (-4188 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1153 *3)) (-4 *3 (-1097)) (-4 *3 (-1212)))) (-4277 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1153 *3)) (-4 *3 (-1212)))) (-3357 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1212)) (-5 *1 (-1153 *3)))) (-3357 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1212)) (-5 *1 (-1153 *3)))) (-3412 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1212)) (-5 *1 (-1153 *3)))) (-3425 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1212)) (-5 *1 (-1153 *3))))) -(-13 (-672 |#1|) (-614 (-642 |#1|)) (-10 -8 (-6 -4411) (-15 -4373 ($ (-642 |#1|))) (IF (|has| |#1| (-1097)) (-15 -4176 ((-112) (-642 |#1|) $)) |%noBranch|) (-15 -3259 ((-2 (|:| |cycle?| (-112)) (|:| -3376 (-769)) (|:| |period| (-769))) (-769) $)) (-15 -3622 ($ (-1 $))) (-15 -1746 ($ |#1| $)) (IF (|has| |#1| (-1097)) (PROGN (-15 -4390 ((-1267) (-564) $)) (-15 -2728 ((-860) $)) (-15 -4188 ((-112)))) |%noBranch|) (-15 -4277 ($ $ (-564) $)) (-15 -3357 ($ (-1 |#1|))) (-15 -3357 ($ (-1 |#1| |#1|) |#1|)) (-15 -3412 ($ (-1 (-112) |#1|) $)) (-15 -3425 ($ (-1 (-112) |#1|) $)))) -((-2856 (((-112) $ $) 19)) (-4121 (($ $) 121)) (-2000 (($ $) 122)) (-2624 (($ $ (-144)) 109) (($ $ (-141)) 108)) (-3633 (((-1267) $ (-564) (-564)) 41 (|has| $ (-6 -4411)))) (-3804 (((-112) $ $) 119)) (-3783 (((-112) $ $ (-564)) 118)) (-4301 (($ (-564)) 128)) (-2246 (((-642 $) $ (-144)) 111) (((-642 $) $ (-141)) 110)) (-1824 (((-112) (-1 (-112) (-144) (-144)) $) 99) (((-112) $) 93 (|has| (-144) (-848)))) (-3659 (($ (-1 (-112) (-144) (-144)) $) 90 (|has| $ (-6 -4411))) (($ $) 89 (-12 (|has| (-144) (-848)) (|has| $ (-6 -4411))))) (-3191 (($ (-1 (-112) (-144) (-144)) $) 100) (($ $) 94 (|has| (-144) (-848)))) (-3442 (((-112) $ (-769)) 8)) (-3841 (((-144) $ (-564) (-144)) 53 (|has| $ (-6 -4411))) (((-144) $ (-1229 (-564)) (-144)) 59 (|has| $ (-6 -4411)))) (-3437 (($ (-1 (-112) (-144)) $) 76 (|has| $ (-6 -4410)))) (-2822 (($) 7 T CONST)) (-1553 (($ $ (-144)) 105) (($ $ (-141)) 104)) (-1540 (($ $) 91 (|has| $ (-6 -4411)))) (-3817 (($ $) 101)) (-3297 (($ $ (-1229 (-564)) $) 115)) (-4067 (($ $) 79 (-12 (|has| (-144) (-1097)) (|has| $ (-6 -4410))))) (-2517 (($ (-144) $) 78 (-12 (|has| (-144) (-1097)) (|has| $ (-6 -4410)))) (($ (-1 (-112) (-144)) $) 75 (|has| $ (-6 -4410)))) (-3741 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) 77 (-12 (|has| (-144) (-1097)) (|has| $ (-6 -4410)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) 74 (|has| $ (-6 -4410))) (((-144) (-1 (-144) (-144) (-144)) $) 73 (|has| $ (-6 -4410)))) (-3105 (((-144) $ (-564) (-144)) 54 (|has| $ (-6 -4411)))) (-1804 (((-144) $ (-564)) 52)) (-1456 (((-112) $ $) 120)) (-3942 (((-564) (-1 (-112) (-144)) $) 98) (((-564) (-144) $) 97 (|has| (-144) (-1097))) (((-564) (-144) $ (-564)) 96 (|has| (-144) (-1097))) (((-564) $ $ (-564)) 114) (((-564) (-141) $ (-564)) 113)) (-2018 (((-642 (-144)) $) 31 (|has| $ (-6 -4410)))) (-4233 (($ (-769) (-144)) 70)) (-3769 (((-112) $ (-769)) 9)) (-1802 (((-564) $) 44 (|has| (-564) (-848)))) (-3225 (($ $ $) 88 (|has| (-144) (-848)))) (-2774 (($ (-1 (-112) (-144) (-144)) $ $) 102) (($ $ $) 95 (|has| (-144) (-848)))) (-3541 (((-642 (-144)) $) 30 (|has| $ (-6 -4410)))) (-2533 (((-112) (-144) $) 28 (-12 (|has| (-144) (-1097)) (|has| $ (-6 -4410))))) (-3624 (((-564) $) 45 (|has| (-564) (-848)))) (-2903 (($ $ $) 87 (|has| (-144) (-848)))) (-3967 (((-112) $ $ (-144)) 116)) (-3897 (((-769) $ $ (-144)) 117)) (-1857 (($ (-1 (-144) (-144)) $) 35 (|has| $ (-6 -4411)))) (-2947 (($ (-1 (-144) (-144)) $) 36) (($ (-1 (-144) (-144) (-144)) $ $) 65)) (-3743 (($ $) 123)) (-4086 (($ $) 124)) (-4145 (((-112) $ (-769)) 10)) (-1563 (($ $ (-144)) 107) (($ $ (-141)) 106)) (-1778 (((-1155) $) 22)) (-4247 (($ (-144) $ (-564)) 61) (($ $ $ (-564)) 60)) (-4107 (((-642 (-564)) $) 47)) (-4207 (((-112) (-564) $) 48)) (-3999 (((-1117) $) 21)) (-4036 (((-144) $) 43 (|has| (-564) (-848)))) (-3183 (((-3 (-144) "failed") (-1 (-112) (-144)) $) 72)) (-3826 (($ $ (-144)) 42 (|has| $ (-6 -4411)))) (-4094 (((-112) (-1 (-112) (-144)) $) 33 (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 (-144)))) 27 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1097)))) (($ $ (-294 (-144))) 26 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1097)))) (($ $ (-144) (-144)) 25 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1097)))) (($ $ (-642 (-144)) (-642 (-144))) 24 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1097))))) (-2478 (((-112) $ $) 14)) (-1643 (((-112) (-144) $) 46 (-12 (|has| $ (-6 -4410)) (|has| (-144) (-1097))))) (-3522 (((-642 (-144)) $) 49)) (-4109 (((-112) $) 11)) (-2179 (($) 12)) (-4369 (((-144) $ (-564) (-144)) 51) (((-144) $ (-564)) 50) (($ $ (-1229 (-564))) 64) (($ $ $) 103)) (-2083 (($ $ (-564)) 63) (($ $ (-1229 (-564))) 62)) (-4010 (((-769) (-1 (-112) (-144)) $) 32 (|has| $ (-6 -4410))) (((-769) (-144) $) 29 (-12 (|has| (-144) (-1097)) (|has| $ (-6 -4410))))) (-3301 (($ $ $ (-564)) 92 (|has| $ (-6 -4411)))) (-3865 (($ $) 13)) (-3003 (((-536) $) 80 (|has| (-144) (-612 (-536))))) (-2401 (($ (-642 (-144))) 71)) (-3634 (($ $ (-144)) 69) (($ (-144) $) 68) (($ $ $) 67) (($ (-642 $)) 66)) (-2390 (($ (-144)) 112) (((-860) $) 18)) (-1600 (((-112) $ $) 23)) (-3295 (((-112) (-1 (-112) (-144)) $) 34 (|has| $ (-6 -4410)))) (-3816 (((-1155) $) 132) (((-1155) $ (-112)) 131) (((-1267) (-820) $) 130) (((-1267) (-820) $ (-112)) 129)) (-2881 (((-112) $ $) 85 (|has| (-144) (-848)))) (-2857 (((-112) $ $) 84 (|has| (-144) (-848)))) (-2821 (((-112) $ $) 20)) (-2868 (((-112) $ $) 86 (|has| (-144) (-848)))) (-2844 (((-112) $ $) 83 (|has| (-144) (-848)))) (-2158 (((-769) $) 6 (|has| $ (-6 -4410))))) -(((-1154) (-140)) (T -1154)) -((-4301 (*1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-1154))))) -(-13 (-1141) (-1097) (-826) (-10 -8 (-15 -4301 ($ (-564))))) -(((-34) . T) ((-102) . T) ((-611 (-860)) . T) ((-151 #0=(-144)) . T) ((-612 (-536)) |has| (-144) (-612 (-536))) ((-286 #1=(-564) #0#) . T) ((-288 #1# #0#) . T) ((-309 #0#) -12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1097))) ((-373 #0#) . T) ((-489 #0#) . T) ((-602 #1# #0#) . T) ((-514 #0# #0#) -12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1097))) ((-649 #0#) . T) ((-19 #0#) . T) ((-826) . T) ((-848) |has| (-144) (-848)) ((-1097) . T) ((-1141) . T) ((-1212) . T)) -((-2856 (((-112) $ $) NIL)) (-4121 (($ $) NIL)) (-2000 (($ $) NIL)) (-2624 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-3633 (((-1267) $ (-564) (-564)) NIL (|has| $ (-6 -4411)))) (-3804 (((-112) $ $) NIL)) (-3783 (((-112) $ $ (-564)) NIL)) (-4301 (($ (-564)) 8)) (-2246 (((-642 $) $ (-144)) NIL) (((-642 $) $ (-141)) NIL)) (-1824 (((-112) (-1 (-112) (-144) (-144)) $) NIL) (((-112) $) NIL (|has| (-144) (-848)))) (-3659 (($ (-1 (-112) (-144) (-144)) $) NIL (|has| $ (-6 -4411))) (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-144) (-848))))) (-3191 (($ (-1 (-112) (-144) (-144)) $) NIL) (($ $) NIL (|has| (-144) (-848)))) (-3442 (((-112) $ (-769)) NIL)) (-3841 (((-144) $ (-564) (-144)) NIL (|has| $ (-6 -4411))) (((-144) $ (-1229 (-564)) (-144)) NIL (|has| $ (-6 -4411)))) (-3437 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4410)))) (-2822 (($) NIL T CONST)) (-1553 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-1540 (($ $) NIL (|has| $ (-6 -4411)))) (-3817 (($ $) NIL)) (-3297 (($ $ (-1229 (-564)) $) NIL)) (-4067 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-144) (-1097))))) (-2517 (($ (-144) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-144) (-1097)))) (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4410)))) (-3741 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4410)) (|has| (-144) (-1097)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4410))) (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4410)))) (-3105 (((-144) $ (-564) (-144)) NIL (|has| $ (-6 -4411)))) (-1804 (((-144) $ (-564)) NIL)) (-1456 (((-112) $ $) NIL)) (-3942 (((-564) (-1 (-112) (-144)) $) NIL) (((-564) (-144) $) NIL (|has| (-144) (-1097))) (((-564) (-144) $ (-564)) NIL (|has| (-144) (-1097))) (((-564) $ $ (-564)) NIL) (((-564) (-141) $ (-564)) NIL)) (-2018 (((-642 (-144)) $) NIL (|has| $ (-6 -4410)))) (-4233 (($ (-769) (-144)) NIL)) (-3769 (((-112) $ (-769)) NIL)) (-1802 (((-564) $) NIL (|has| (-564) (-848)))) (-3225 (($ $ $) NIL (|has| (-144) (-848)))) (-2774 (($ (-1 (-112) (-144) (-144)) $ $) NIL) (($ $ $) NIL (|has| (-144) (-848)))) (-3541 (((-642 (-144)) $) NIL (|has| $ (-6 -4410)))) (-2533 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-144) (-1097))))) (-3624 (((-564) $) NIL (|has| (-564) (-848)))) (-2903 (($ $ $) NIL (|has| (-144) (-848)))) (-3967 (((-112) $ $ (-144)) NIL)) (-3897 (((-769) $ $ (-144)) NIL)) (-1857 (($ (-1 (-144) (-144)) $) NIL (|has| $ (-6 -4411)))) (-2947 (($ (-1 (-144) (-144)) $) NIL) (($ (-1 (-144) (-144) (-144)) $ $) NIL)) (-3743 (($ $) NIL)) (-4086 (($ $) NIL)) (-4145 (((-112) $ (-769)) NIL)) (-1563 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-1778 (((-1155) $) NIL)) (-4247 (($ (-144) $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-4107 (((-642 (-564)) $) NIL)) (-4207 (((-112) (-564) $) NIL)) (-3999 (((-1117) $) NIL)) (-4036 (((-144) $) NIL (|has| (-564) (-848)))) (-3183 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-3826 (($ $ (-144)) NIL (|has| $ (-6 -4411)))) (-4094 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 (-144)))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1097)))) (($ $ (-294 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1097)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1097)))) (($ $ (-642 (-144)) (-642 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1097))))) (-2478 (((-112) $ $) NIL)) (-1643 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-144) (-1097))))) (-3522 (((-642 (-144)) $) NIL)) (-4109 (((-112) $) NIL)) (-2179 (($) NIL)) (-4369 (((-144) $ (-564) (-144)) NIL) (((-144) $ (-564)) NIL) (($ $ (-1229 (-564))) NIL) (($ $ $) NIL)) (-2083 (($ $ (-564)) NIL) (($ $ (-1229 (-564))) NIL)) (-4010 (((-769) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4410))) (((-769) (-144) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-144) (-1097))))) (-3301 (($ $ $ (-564)) NIL (|has| $ (-6 -4411)))) (-3865 (($ $) NIL)) (-3003 (((-536) $) NIL (|has| (-144) (-612 (-536))))) (-2401 (($ (-642 (-144))) NIL)) (-3634 (($ $ (-144)) NIL) (($ (-144) $) NIL) (($ $ $) NIL) (($ (-642 $)) NIL)) (-2390 (($ (-144)) NIL) (((-860) $) NIL)) (-1600 (((-112) $ $) NIL)) (-3295 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4410)))) (-3816 (((-1155) $) 19) (((-1155) $ (-112)) 21) (((-1267) (-820) $) 22) (((-1267) (-820) $ (-112)) 23)) (-2881 (((-112) $ $) NIL (|has| (-144) (-848)))) (-2857 (((-112) $ $) NIL (|has| (-144) (-848)))) (-2821 (((-112) $ $) NIL)) (-2868 (((-112) $ $) NIL (|has| (-144) (-848)))) (-2844 (((-112) $ $) NIL (|has| (-144) (-848)))) (-2158 (((-769) $) NIL (|has| $ (-6 -4410))))) -(((-1155) (-1154)) (T -1155)) -NIL -(-1154) -((-2856 (((-112) $ $) NIL (-2682 (|has| (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (-1097)) (|has| |#1| (-1097))))) (-4222 (($) NIL) (($ (-642 (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)))) NIL)) (-3633 (((-1267) $ (-1155) (-1155)) NIL (|has| $ (-6 -4411)))) (-3442 (((-112) $ (-769)) NIL)) (-3841 ((|#1| $ (-1155) |#1|) NIL)) (-2438 (($ (-1 (-112) (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|))) $) NIL (|has| $ (-6 -4410)))) (-3437 (($ (-1 (-112) (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|))) $) NIL (|has| $ (-6 -4410)))) (-2295 (((-3 |#1| "failed") (-1155) $) NIL)) (-2822 (($) NIL T CONST)) (-4067 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (-1097))))) (-1927 (($ (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) $) NIL (|has| $ (-6 -4410))) (($ (-1 (-112) (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|))) $) NIL (|has| $ (-6 -4410))) (((-3 |#1| "failed") (-1155) $) NIL)) (-2517 (($ (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (-1097)))) (($ (-1 (-112) (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|))) $) NIL (|has| $ (-6 -4410)))) (-3741 (((-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (-1 (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|))) $ (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|))) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (-1097)))) (((-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (-1 (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|))) $ (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|))) NIL (|has| $ (-6 -4410))) (((-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (-1 (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|))) $) NIL (|has| $ (-6 -4410)))) (-3105 ((|#1| $ (-1155) |#1|) NIL (|has| $ (-6 -4411)))) (-1804 ((|#1| $ (-1155)) NIL)) (-2018 (((-642 (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|))) $) NIL (|has| $ (-6 -4410))) (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-3769 (((-112) $ (-769)) NIL)) (-1802 (((-1155) $) NIL (|has| (-1155) (-848)))) (-3541 (((-642 (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|))) $) NIL (|has| $ (-6 -4410))) (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2533 (((-112) (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (-1097)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3624 (((-1155) $) NIL (|has| (-1155) (-848)))) (-1857 (($ (-1 (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|))) $) NIL (|has| $ (-6 -4411))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4411)))) (-2947 (($ (-1 (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4145 (((-112) $ (-769)) NIL)) (-1778 (((-1155) $) NIL (-2682 (|has| (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (-1097)) (|has| |#1| (-1097))))) (-3287 (((-642 (-1155)) $) NIL)) (-2145 (((-112) (-1155) $) NIL)) (-3220 (((-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) $) NIL)) (-1668 (($ (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) $) NIL)) (-4107 (((-642 (-1155)) $) NIL)) (-4207 (((-112) (-1155) $) NIL)) (-3999 (((-1117) $) NIL (-2682 (|has| (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (-1097)) (|has| |#1| (-1097))))) (-4036 ((|#1| $) NIL (|has| (-1155) (-848)))) (-3183 (((-3 (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) "failed") (-1 (-112) (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|))) $) NIL)) (-3826 (($ $ |#1|) NIL (|has| $ (-6 -4411)))) (-4314 (((-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) $) NIL)) (-4094 (((-112) (-1 (-112) (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|))) $) NIL (|has| $ (-6 -4410))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|))))) NIL (-12 (|has| (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (-309 (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)))) (|has| (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (-1097)))) (($ $ (-294 (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)))) NIL (-12 (|has| (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (-309 (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)))) (|has| (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (-1097)))) (($ $ (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|))) NIL (-12 (|has| (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (-309 (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)))) (|has| (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (-1097)))) (($ $ (-642 (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|))) (-642 (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)))) NIL (-12 (|has| (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (-309 (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)))) (|has| (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-2478 (((-112) $ $) NIL)) (-1643 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3522 (((-642 |#1|) $) NIL)) (-4109 (((-112) $) NIL)) (-2179 (($) NIL)) (-4369 ((|#1| $ (-1155)) NIL) ((|#1| $ (-1155) |#1|) NIL)) (-2318 (($) NIL) (($ (-642 (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)))) NIL)) (-4010 (((-769) (-1 (-112) (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|))) $) NIL (|has| $ (-6 -4410))) (((-769) (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (-1097)))) (((-769) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097)))) (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3865 (($ $) NIL)) (-3003 (((-536) $) NIL (|has| (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (-612 (-536))))) (-2401 (($ (-642 (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)))) NIL)) (-2390 (((-860) $) NIL (-2682 (|has| (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (-611 (-860))) (|has| |#1| (-611 (-860)))))) (-1600 (((-112) $ $) NIL (-2682 (|has| (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (-1097)) (|has| |#1| (-1097))))) (-4160 (($ (-642 (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)))) NIL)) (-3295 (((-112) (-1 (-112) (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|))) $) NIL (|has| $ (-6 -4410))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2821 (((-112) $ $) NIL (-2682 (|has| (-2 (|:| -1914 (-1155)) (|:| -2683 |#1|)) (-1097)) (|has| |#1| (-1097))))) (-2158 (((-769) $) NIL (|has| $ (-6 -4410))))) -(((-1156 |#1|) (-13 (-1188 (-1155) |#1|) (-10 -7 (-6 -4410))) (-1097)) (T -1156)) -NIL -(-13 (-1188 (-1155) |#1|) (-10 -7 (-6 -4410))) -((-1421 (((-1153 |#1|) (-1153 |#1|)) 85)) (-2675 (((-3 (-1153 |#1|) "failed") (-1153 |#1|)) 42)) (-4192 (((-1153 |#1|) (-407 (-564)) (-1153 |#1|)) 136 (|has| |#1| (-38 (-407 (-564)))))) (-2604 (((-1153 |#1|) |#1| (-1153 |#1|)) 142 (|has| |#1| (-363)))) (-1955 (((-1153 |#1|) (-1153 |#1|)) 100)) (-1626 (((-1153 (-564)) (-564)) 64)) (-3499 (((-1153 |#1|) (-1153 (-1153 |#1|))) 119 (|has| |#1| (-38 (-407 (-564)))))) (-3795 (((-1153 |#1|) (-564) (-564) (-1153 |#1|)) 105)) (-1846 (((-1153 |#1|) |#1| (-564)) 54)) (-2248 (((-1153 |#1|) (-1153 |#1|) (-1153 |#1|)) 67)) (-2531 (((-1153 |#1|) (-1153 |#1|) (-1153 |#1|)) 139 (|has| |#1| (-363)))) (-2848 (((-1153 |#1|) |#1| (-1 (-1153 |#1|))) 118 (|has| |#1| (-38 (-407 (-564)))))) (-3494 (((-1153 |#1|) (-1 |#1| (-564)) |#1| (-1 (-1153 |#1|))) 140 (|has| |#1| (-363)))) (-2289 (((-1153 |#1|) (-1153 |#1|)) 99)) (-2488 (((-1153 |#1|) (-1153 |#1|)) 83)) (-1508 (((-1153 |#1|) (-564) (-564) (-1153 |#1|)) 106)) (-3703 (((-1153 |#1|) |#1| (-1153 |#1|)) 115 (|has| |#1| (-38 (-407 (-564)))))) (-2756 (((-1153 (-564)) (-564)) 63)) (-3891 (((-1153 |#1|) |#1|) 66)) (-3298 (((-1153 |#1|) (-1153 |#1|) (-564) (-564)) 102)) (-2600 (((-1153 |#1|) (-1 |#1| (-564)) (-1153 |#1|)) 73)) (-2842 (((-3 (-1153 |#1|) "failed") (-1153 |#1|) (-1153 |#1|)) 40)) (-4237 (((-1153 |#1|) (-1153 |#1|)) 101)) (-3154 (((-1153 |#1|) (-1153 |#1|) |#1|) 78)) (-3495 (((-1153 |#1|) (-1153 |#1|)) 69)) (-2403 (((-1153 |#1|) (-1153 |#1|) (-1153 |#1|)) 79)) (-2390 (((-1153 |#1|) |#1|) 74)) (-1432 (((-1153 |#1|) (-1153 (-1153 |#1|))) 90)) (-2943 (((-1153 |#1|) (-1153 |#1|) (-1153 |#1|)) 41)) (-2930 (((-1153 |#1|) (-1153 |#1|)) 21) (((-1153 |#1|) (-1153 |#1|) (-1153 |#1|)) 23)) (-2917 (((-1153 |#1|) (-1153 |#1|) (-1153 |#1|)) 17)) (* (((-1153 |#1|) (-1153 |#1|) |#1|) 29) (((-1153 |#1|) |#1| (-1153 |#1|)) 26) (((-1153 |#1|) (-1153 |#1|) (-1153 |#1|)) 27))) -(((-1157 |#1|) (-10 -7 (-15 -2917 ((-1153 |#1|) (-1153 |#1|) (-1153 |#1|))) (-15 -2930 ((-1153 |#1|) (-1153 |#1|) (-1153 |#1|))) (-15 -2930 ((-1153 |#1|) (-1153 |#1|))) (-15 * ((-1153 |#1|) (-1153 |#1|) (-1153 |#1|))) (-15 * ((-1153 |#1|) |#1| (-1153 |#1|))) (-15 * ((-1153 |#1|) (-1153 |#1|) |#1|)) (-15 -2842 ((-3 (-1153 |#1|) "failed") (-1153 |#1|) (-1153 |#1|))) (-15 -2943 ((-1153 |#1|) (-1153 |#1|) (-1153 |#1|))) (-15 -2675 ((-3 (-1153 |#1|) "failed") (-1153 |#1|))) (-15 -1846 ((-1153 |#1|) |#1| (-564))) (-15 -2756 ((-1153 (-564)) (-564))) (-15 -1626 ((-1153 (-564)) (-564))) (-15 -3891 ((-1153 |#1|) |#1|)) (-15 -2248 ((-1153 |#1|) (-1153 |#1|) (-1153 |#1|))) (-15 -3495 ((-1153 |#1|) (-1153 |#1|))) (-15 -2600 ((-1153 |#1|) (-1 |#1| (-564)) (-1153 |#1|))) (-15 -2390 ((-1153 |#1|) |#1|)) (-15 -3154 ((-1153 |#1|) (-1153 |#1|) |#1|)) (-15 -2403 ((-1153 |#1|) (-1153 |#1|) (-1153 |#1|))) (-15 -2488 ((-1153 |#1|) (-1153 |#1|))) (-15 -1421 ((-1153 |#1|) (-1153 |#1|))) (-15 -1432 ((-1153 |#1|) (-1153 (-1153 |#1|)))) (-15 -2289 ((-1153 |#1|) (-1153 |#1|))) (-15 -1955 ((-1153 |#1|) (-1153 |#1|))) (-15 -4237 ((-1153 |#1|) (-1153 |#1|))) (-15 -3298 ((-1153 |#1|) (-1153 |#1|) (-564) (-564))) (-15 -3795 ((-1153 |#1|) (-564) (-564) (-1153 |#1|))) (-15 -1508 ((-1153 |#1|) (-564) (-564) (-1153 |#1|))) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -3703 ((-1153 |#1|) |#1| (-1153 |#1|))) (-15 -2848 ((-1153 |#1|) |#1| (-1 (-1153 |#1|)))) (-15 -3499 ((-1153 |#1|) (-1153 (-1153 |#1|)))) (-15 -4192 ((-1153 |#1|) (-407 (-564)) (-1153 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -2531 ((-1153 |#1|) (-1153 |#1|) (-1153 |#1|))) (-15 -3494 ((-1153 |#1|) (-1 |#1| (-564)) |#1| (-1 (-1153 |#1|)))) (-15 -2604 ((-1153 |#1|) |#1| (-1153 |#1|)))) |%noBranch|)) (-1047)) (T -1157)) -((-2604 (*1 *2 *3 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-363)) (-4 *3 (-1047)) (-5 *1 (-1157 *3)))) (-3494 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-564))) (-5 *5 (-1 (-1153 *4))) (-4 *4 (-363)) (-4 *4 (-1047)) (-5 *2 (-1153 *4)) (-5 *1 (-1157 *4)))) (-2531 (*1 *2 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-363)) (-4 *3 (-1047)) (-5 *1 (-1157 *3)))) (-4192 (*1 *2 *3 *2) (-12 (-5 *2 (-1153 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1047)) (-5 *3 (-407 (-564))) (-5 *1 (-1157 *4)))) (-3499 (*1 *2 *3) (-12 (-5 *3 (-1153 (-1153 *4))) (-5 *2 (-1153 *4)) (-5 *1 (-1157 *4)) (-4 *4 (-38 (-407 (-564)))) (-4 *4 (-1047)))) (-2848 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1153 *3))) (-5 *2 (-1153 *3)) (-5 *1 (-1157 *3)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1047)))) (-3703 (*1 *2 *3 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1047)) (-5 *1 (-1157 *3)))) (-1508 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1153 *4)) (-5 *3 (-564)) (-4 *4 (-1047)) (-5 *1 (-1157 *4)))) (-3795 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1153 *4)) (-5 *3 (-564)) (-4 *4 (-1047)) (-5 *1 (-1157 *4)))) (-3298 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1153 *4)) (-5 *3 (-564)) (-4 *4 (-1047)) (-5 *1 (-1157 *4)))) (-4237 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3)))) (-1955 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3)))) (-2289 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3)))) (-1432 (*1 *2 *3) (-12 (-5 *3 (-1153 (-1153 *4))) (-5 *2 (-1153 *4)) (-5 *1 (-1157 *4)) (-4 *4 (-1047)))) (-1421 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3)))) (-2488 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3)))) (-2403 (*1 *2 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3)))) (-3154 (*1 *2 *2 *3) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3)))) (-2390 (*1 *2 *3) (-12 (-5 *2 (-1153 *3)) (-5 *1 (-1157 *3)) (-4 *3 (-1047)))) (-2600 (*1 *2 *3 *2) (-12 (-5 *2 (-1153 *4)) (-5 *3 (-1 *4 (-564))) (-4 *4 (-1047)) (-5 *1 (-1157 *4)))) (-3495 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3)))) (-2248 (*1 *2 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3)))) (-3891 (*1 *2 *3) (-12 (-5 *2 (-1153 *3)) (-5 *1 (-1157 *3)) (-4 *3 (-1047)))) (-1626 (*1 *2 *3) (-12 (-5 *2 (-1153 (-564))) (-5 *1 (-1157 *4)) (-4 *4 (-1047)) (-5 *3 (-564)))) (-2756 (*1 *2 *3) (-12 (-5 *2 (-1153 (-564))) (-5 *1 (-1157 *4)) (-4 *4 (-1047)) (-5 *3 (-564)))) (-1846 (*1 *2 *3 *4) (-12 (-5 *4 (-564)) (-5 *2 (-1153 *3)) (-5 *1 (-1157 *3)) (-4 *3 (-1047)))) (-2675 (*1 *2 *2) (|partial| -12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3)))) (-2943 (*1 *2 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3)))) (-2842 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3)))) (-2930 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3)))) (-2930 (*1 *2 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3)))) (-2917 (*1 *2 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3))))) -(-10 -7 (-15 -2917 ((-1153 |#1|) (-1153 |#1|) (-1153 |#1|))) (-15 -2930 ((-1153 |#1|) (-1153 |#1|) (-1153 |#1|))) (-15 -2930 ((-1153 |#1|) (-1153 |#1|))) (-15 * ((-1153 |#1|) (-1153 |#1|) (-1153 |#1|))) (-15 * ((-1153 |#1|) |#1| (-1153 |#1|))) (-15 * ((-1153 |#1|) (-1153 |#1|) |#1|)) (-15 -2842 ((-3 (-1153 |#1|) "failed") (-1153 |#1|) (-1153 |#1|))) (-15 -2943 ((-1153 |#1|) (-1153 |#1|) (-1153 |#1|))) (-15 -2675 ((-3 (-1153 |#1|) "failed") (-1153 |#1|))) (-15 -1846 ((-1153 |#1|) |#1| (-564))) (-15 -2756 ((-1153 (-564)) (-564))) (-15 -1626 ((-1153 (-564)) (-564))) (-15 -3891 ((-1153 |#1|) |#1|)) (-15 -2248 ((-1153 |#1|) (-1153 |#1|) (-1153 |#1|))) (-15 -3495 ((-1153 |#1|) (-1153 |#1|))) (-15 -2600 ((-1153 |#1|) (-1 |#1| (-564)) (-1153 |#1|))) (-15 -2390 ((-1153 |#1|) |#1|)) (-15 -3154 ((-1153 |#1|) (-1153 |#1|) |#1|)) (-15 -2403 ((-1153 |#1|) (-1153 |#1|) (-1153 |#1|))) (-15 -2488 ((-1153 |#1|) (-1153 |#1|))) (-15 -1421 ((-1153 |#1|) (-1153 |#1|))) (-15 -1432 ((-1153 |#1|) (-1153 (-1153 |#1|)))) (-15 -2289 ((-1153 |#1|) (-1153 |#1|))) (-15 -1955 ((-1153 |#1|) (-1153 |#1|))) (-15 -4237 ((-1153 |#1|) (-1153 |#1|))) (-15 -3298 ((-1153 |#1|) (-1153 |#1|) (-564) (-564))) (-15 -3795 ((-1153 |#1|) (-564) (-564) (-1153 |#1|))) (-15 -1508 ((-1153 |#1|) (-564) (-564) (-1153 |#1|))) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -3703 ((-1153 |#1|) |#1| (-1153 |#1|))) (-15 -2848 ((-1153 |#1|) |#1| (-1 (-1153 |#1|)))) (-15 -3499 ((-1153 |#1|) (-1153 (-1153 |#1|)))) (-15 -4192 ((-1153 |#1|) (-407 (-564)) (-1153 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -2531 ((-1153 |#1|) (-1153 |#1|) (-1153 |#1|))) (-15 -3494 ((-1153 |#1|) (-1 |#1| (-564)) |#1| (-1 (-1153 |#1|)))) (-15 -2604 ((-1153 |#1|) |#1| (-1153 |#1|)))) |%noBranch|)) -((-3087 (((-1153 |#1|) (-1153 |#1|)) 60)) (-2958 (((-1153 |#1|) (-1153 |#1|)) 42)) (-3067 (((-1153 |#1|) (-1153 |#1|)) 56)) (-2933 (((-1153 |#1|) (-1153 |#1|)) 38)) (-3110 (((-1153 |#1|) (-1153 |#1|)) 63)) (-2981 (((-1153 |#1|) (-1153 |#1|)) 45)) (-3576 (((-1153 |#1|) (-1153 |#1|)) 34)) (-3466 (((-1153 |#1|) (-1153 |#1|)) 29)) (-3120 (((-1153 |#1|) (-1153 |#1|)) 64)) (-2992 (((-1153 |#1|) (-1153 |#1|)) 46)) (-3098 (((-1153 |#1|) (-1153 |#1|)) 61)) (-2971 (((-1153 |#1|) (-1153 |#1|)) 43)) (-3077 (((-1153 |#1|) (-1153 |#1|)) 58)) (-2946 (((-1153 |#1|) (-1153 |#1|)) 40)) (-3155 (((-1153 |#1|) (-1153 |#1|)) 68)) (-3025 (((-1153 |#1|) (-1153 |#1|)) 50)) (-3131 (((-1153 |#1|) (-1153 |#1|)) 66)) (-3002 (((-1153 |#1|) (-1153 |#1|)) 48)) (-3176 (((-1153 |#1|) (-1153 |#1|)) 71)) (-3047 (((-1153 |#1|) (-1153 |#1|)) 53)) (-3165 (((-1153 |#1|) (-1153 |#1|)) 72)) (-3058 (((-1153 |#1|) (-1153 |#1|)) 54)) (-3168 (((-1153 |#1|) (-1153 |#1|)) 70)) (-3035 (((-1153 |#1|) (-1153 |#1|)) 52)) (-3142 (((-1153 |#1|) (-1153 |#1|)) 69)) (-3014 (((-1153 |#1|) (-1153 |#1|)) 51)) (** (((-1153 |#1|) (-1153 |#1|) (-1153 |#1|)) 36))) -(((-1158 |#1|) (-10 -7 (-15 -3466 ((-1153 |#1|) (-1153 |#1|))) (-15 -3576 ((-1153 |#1|) (-1153 |#1|))) (-15 ** ((-1153 |#1|) (-1153 |#1|) (-1153 |#1|))) (-15 -2933 ((-1153 |#1|) (-1153 |#1|))) (-15 -2946 ((-1153 |#1|) (-1153 |#1|))) (-15 -2958 ((-1153 |#1|) (-1153 |#1|))) (-15 -2971 ((-1153 |#1|) (-1153 |#1|))) (-15 -2981 ((-1153 |#1|) (-1153 |#1|))) (-15 -2992 ((-1153 |#1|) (-1153 |#1|))) (-15 -3002 ((-1153 |#1|) (-1153 |#1|))) (-15 -3014 ((-1153 |#1|) (-1153 |#1|))) (-15 -3025 ((-1153 |#1|) (-1153 |#1|))) (-15 -3035 ((-1153 |#1|) (-1153 |#1|))) (-15 -3047 ((-1153 |#1|) (-1153 |#1|))) (-15 -3058 ((-1153 |#1|) (-1153 |#1|))) (-15 -3067 ((-1153 |#1|) (-1153 |#1|))) (-15 -3077 ((-1153 |#1|) (-1153 |#1|))) (-15 -3087 ((-1153 |#1|) (-1153 |#1|))) (-15 -3098 ((-1153 |#1|) (-1153 |#1|))) (-15 -3110 ((-1153 |#1|) (-1153 |#1|))) (-15 -3120 ((-1153 |#1|) (-1153 |#1|))) (-15 -3131 ((-1153 |#1|) (-1153 |#1|))) (-15 -3142 ((-1153 |#1|) (-1153 |#1|))) (-15 -3155 ((-1153 |#1|) (-1153 |#1|))) (-15 -3168 ((-1153 |#1|) (-1153 |#1|))) (-15 -3176 ((-1153 |#1|) (-1153 |#1|))) (-15 -3165 ((-1153 |#1|) (-1153 |#1|)))) (-38 (-407 (-564)))) (T -1158)) -((-3165 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1158 *3)))) (-3176 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1158 *3)))) (-3168 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1158 *3)))) (-3155 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1158 *3)))) (-3142 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1158 *3)))) (-3131 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1158 *3)))) (-3120 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1158 *3)))) (-3110 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1158 *3)))) (-3098 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1158 *3)))) (-3087 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1158 *3)))) (-3077 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1158 *3)))) (-3067 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1158 *3)))) (-3058 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1158 *3)))) (-3047 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1158 *3)))) (-3035 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1158 *3)))) (-3025 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1158 *3)))) (-3014 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1158 *3)))) (-3002 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1158 *3)))) (-2992 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1158 *3)))) (-2981 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1158 *3)))) (-2971 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1158 *3)))) (-2958 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1158 *3)))) (-2946 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1158 *3)))) (-2933 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1158 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1158 *3)))) (-3576 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1158 *3)))) (-3466 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1158 *3))))) -(-10 -7 (-15 -3466 ((-1153 |#1|) (-1153 |#1|))) (-15 -3576 ((-1153 |#1|) (-1153 |#1|))) (-15 ** ((-1153 |#1|) (-1153 |#1|) (-1153 |#1|))) (-15 -2933 ((-1153 |#1|) (-1153 |#1|))) (-15 -2946 ((-1153 |#1|) (-1153 |#1|))) (-15 -2958 ((-1153 |#1|) (-1153 |#1|))) (-15 -2971 ((-1153 |#1|) (-1153 |#1|))) (-15 -2981 ((-1153 |#1|) (-1153 |#1|))) (-15 -2992 ((-1153 |#1|) (-1153 |#1|))) (-15 -3002 ((-1153 |#1|) (-1153 |#1|))) (-15 -3014 ((-1153 |#1|) (-1153 |#1|))) (-15 -3025 ((-1153 |#1|) (-1153 |#1|))) (-15 -3035 ((-1153 |#1|) (-1153 |#1|))) (-15 -3047 ((-1153 |#1|) (-1153 |#1|))) (-15 -3058 ((-1153 |#1|) (-1153 |#1|))) (-15 -3067 ((-1153 |#1|) (-1153 |#1|))) (-15 -3077 ((-1153 |#1|) (-1153 |#1|))) (-15 -3087 ((-1153 |#1|) (-1153 |#1|))) (-15 -3098 ((-1153 |#1|) (-1153 |#1|))) (-15 -3110 ((-1153 |#1|) (-1153 |#1|))) (-15 -3120 ((-1153 |#1|) (-1153 |#1|))) (-15 -3131 ((-1153 |#1|) (-1153 |#1|))) (-15 -3142 ((-1153 |#1|) (-1153 |#1|))) (-15 -3155 ((-1153 |#1|) (-1153 |#1|))) (-15 -3168 ((-1153 |#1|) (-1153 |#1|))) (-15 -3176 ((-1153 |#1|) (-1153 |#1|))) (-15 -3165 ((-1153 |#1|) (-1153 |#1|)))) -((-3087 (((-1153 |#1|) (-1153 |#1|)) 108)) (-2958 (((-1153 |#1|) (-1153 |#1|)) 65)) (-2944 (((-2 (|:| -3067 (-1153 |#1|)) (|:| -3077 (-1153 |#1|))) (-1153 |#1|)) 104)) (-3067 (((-1153 |#1|) (-1153 |#1|)) 105)) (-4230 (((-2 (|:| -2933 (-1153 |#1|)) (|:| -2946 (-1153 |#1|))) (-1153 |#1|)) 54)) (-2933 (((-1153 |#1|) (-1153 |#1|)) 55)) (-3110 (((-1153 |#1|) (-1153 |#1|)) 110)) (-2981 (((-1153 |#1|) (-1153 |#1|)) 72)) (-3576 (((-1153 |#1|) (-1153 |#1|)) 40)) (-3466 (((-1153 |#1|) (-1153 |#1|)) 37)) (-3120 (((-1153 |#1|) (-1153 |#1|)) 111)) (-2992 (((-1153 |#1|) (-1153 |#1|)) 73)) (-3098 (((-1153 |#1|) (-1153 |#1|)) 109)) (-2971 (((-1153 |#1|) (-1153 |#1|)) 68)) (-3077 (((-1153 |#1|) (-1153 |#1|)) 106)) (-2946 (((-1153 |#1|) (-1153 |#1|)) 56)) (-3155 (((-1153 |#1|) (-1153 |#1|)) 119)) (-3025 (((-1153 |#1|) (-1153 |#1|)) 94)) (-3131 (((-1153 |#1|) (-1153 |#1|)) 113)) (-3002 (((-1153 |#1|) (-1153 |#1|)) 90)) (-3176 (((-1153 |#1|) (-1153 |#1|)) 123)) (-3047 (((-1153 |#1|) (-1153 |#1|)) 98)) (-3165 (((-1153 |#1|) (-1153 |#1|)) 125)) (-3058 (((-1153 |#1|) (-1153 |#1|)) 100)) (-3168 (((-1153 |#1|) (-1153 |#1|)) 121)) (-3035 (((-1153 |#1|) (-1153 |#1|)) 96)) (-3142 (((-1153 |#1|) (-1153 |#1|)) 115)) (-3014 (((-1153 |#1|) (-1153 |#1|)) 92)) (** (((-1153 |#1|) (-1153 |#1|) (-1153 |#1|)) 41))) -(((-1159 |#1|) (-10 -7 (-15 -3466 ((-1153 |#1|) (-1153 |#1|))) (-15 -3576 ((-1153 |#1|) (-1153 |#1|))) (-15 ** ((-1153 |#1|) (-1153 |#1|) (-1153 |#1|))) (-15 -4230 ((-2 (|:| -2933 (-1153 |#1|)) (|:| -2946 (-1153 |#1|))) (-1153 |#1|))) (-15 -2933 ((-1153 |#1|) (-1153 |#1|))) (-15 -2946 ((-1153 |#1|) (-1153 |#1|))) (-15 -2958 ((-1153 |#1|) (-1153 |#1|))) (-15 -2971 ((-1153 |#1|) (-1153 |#1|))) (-15 -2981 ((-1153 |#1|) (-1153 |#1|))) (-15 -2992 ((-1153 |#1|) (-1153 |#1|))) (-15 -3002 ((-1153 |#1|) (-1153 |#1|))) (-15 -3014 ((-1153 |#1|) (-1153 |#1|))) (-15 -3025 ((-1153 |#1|) (-1153 |#1|))) (-15 -3035 ((-1153 |#1|) (-1153 |#1|))) (-15 -3047 ((-1153 |#1|) (-1153 |#1|))) (-15 -3058 ((-1153 |#1|) (-1153 |#1|))) (-15 -2944 ((-2 (|:| -3067 (-1153 |#1|)) (|:| -3077 (-1153 |#1|))) (-1153 |#1|))) (-15 -3067 ((-1153 |#1|) (-1153 |#1|))) (-15 -3077 ((-1153 |#1|) (-1153 |#1|))) (-15 -3087 ((-1153 |#1|) (-1153 |#1|))) (-15 -3098 ((-1153 |#1|) (-1153 |#1|))) (-15 -3110 ((-1153 |#1|) (-1153 |#1|))) (-15 -3120 ((-1153 |#1|) (-1153 |#1|))) (-15 -3131 ((-1153 |#1|) (-1153 |#1|))) (-15 -3142 ((-1153 |#1|) (-1153 |#1|))) (-15 -3155 ((-1153 |#1|) (-1153 |#1|))) (-15 -3168 ((-1153 |#1|) (-1153 |#1|))) (-15 -3176 ((-1153 |#1|) (-1153 |#1|))) (-15 -3165 ((-1153 |#1|) (-1153 |#1|)))) (-38 (-407 (-564)))) (T -1159)) -((-3165 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1159 *3)))) (-3176 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1159 *3)))) (-3168 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1159 *3)))) (-3155 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1159 *3)))) (-3142 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1159 *3)))) (-3131 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1159 *3)))) (-3120 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1159 *3)))) (-3110 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1159 *3)))) (-3098 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1159 *3)))) (-3087 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1159 *3)))) (-3077 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1159 *3)))) (-3067 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1159 *3)))) (-2944 (*1 *2 *3) (-12 (-4 *4 (-38 (-407 (-564)))) (-5 *2 (-2 (|:| -3067 (-1153 *4)) (|:| -3077 (-1153 *4)))) (-5 *1 (-1159 *4)) (-5 *3 (-1153 *4)))) (-3058 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1159 *3)))) (-3047 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1159 *3)))) (-3035 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1159 *3)))) (-3025 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1159 *3)))) (-3014 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1159 *3)))) (-3002 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1159 *3)))) (-2992 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1159 *3)))) (-2981 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1159 *3)))) (-2971 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1159 *3)))) (-2958 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1159 *3)))) (-2946 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1159 *3)))) (-2933 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1159 *3)))) (-4230 (*1 *2 *3) (-12 (-4 *4 (-38 (-407 (-564)))) (-5 *2 (-2 (|:| -2933 (-1153 *4)) (|:| -2946 (-1153 *4)))) (-5 *1 (-1159 *4)) (-5 *3 (-1153 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1159 *3)))) (-3576 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1159 *3)))) (-3466 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1159 *3))))) -(-10 -7 (-15 -3466 ((-1153 |#1|) (-1153 |#1|))) (-15 -3576 ((-1153 |#1|) (-1153 |#1|))) (-15 ** ((-1153 |#1|) (-1153 |#1|) (-1153 |#1|))) (-15 -4230 ((-2 (|:| -2933 (-1153 |#1|)) (|:| -2946 (-1153 |#1|))) (-1153 |#1|))) (-15 -2933 ((-1153 |#1|) (-1153 |#1|))) (-15 -2946 ((-1153 |#1|) (-1153 |#1|))) (-15 -2958 ((-1153 |#1|) (-1153 |#1|))) (-15 -2971 ((-1153 |#1|) (-1153 |#1|))) (-15 -2981 ((-1153 |#1|) (-1153 |#1|))) (-15 -2992 ((-1153 |#1|) (-1153 |#1|))) (-15 -3002 ((-1153 |#1|) (-1153 |#1|))) (-15 -3014 ((-1153 |#1|) (-1153 |#1|))) (-15 -3025 ((-1153 |#1|) (-1153 |#1|))) (-15 -3035 ((-1153 |#1|) (-1153 |#1|))) (-15 -3047 ((-1153 |#1|) (-1153 |#1|))) (-15 -3058 ((-1153 |#1|) (-1153 |#1|))) (-15 -2944 ((-2 (|:| -3067 (-1153 |#1|)) (|:| -3077 (-1153 |#1|))) (-1153 |#1|))) (-15 -3067 ((-1153 |#1|) (-1153 |#1|))) (-15 -3077 ((-1153 |#1|) (-1153 |#1|))) (-15 -3087 ((-1153 |#1|) (-1153 |#1|))) (-15 -3098 ((-1153 |#1|) (-1153 |#1|))) (-15 -3110 ((-1153 |#1|) (-1153 |#1|))) (-15 -3120 ((-1153 |#1|) (-1153 |#1|))) (-15 -3131 ((-1153 |#1|) (-1153 |#1|))) (-15 -3142 ((-1153 |#1|) (-1153 |#1|))) (-15 -3155 ((-1153 |#1|) (-1153 |#1|))) (-15 -3168 ((-1153 |#1|) (-1153 |#1|))) (-15 -3176 ((-1153 |#1|) (-1153 |#1|))) (-15 -3165 ((-1153 |#1|) (-1153 |#1|)))) -((-3989 (((-956 |#2|) |#2| |#2|) 51)) (-2511 ((|#2| |#2| |#1|) 19 (|has| |#1| (-307))))) -(((-1160 |#1| |#2|) (-10 -7 (-15 -3989 ((-956 |#2|) |#2| |#2|)) (IF (|has| |#1| (-307)) (-15 -2511 (|#2| |#2| |#1|)) |%noBranch|)) (-556) (-1238 |#1|)) (T -1160)) -((-2511 (*1 *2 *2 *3) (-12 (-4 *3 (-307)) (-4 *3 (-556)) (-5 *1 (-1160 *3 *2)) (-4 *2 (-1238 *3)))) (-3989 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-956 *3)) (-5 *1 (-1160 *4 *3)) (-4 *3 (-1238 *4))))) -(-10 -7 (-15 -3989 ((-956 |#2|) |#2| |#2|)) (IF (|has| |#1| (-307)) (-15 -2511 (|#2| |#2| |#1|)) |%noBranch|)) -((-2856 (((-112) $ $) NIL)) (-1457 (($ $ (-642 (-769))) 81)) (-3653 (($) 33)) (-2086 (($ $) 51)) (-2161 (((-642 $) $) 60)) (-1445 (((-112) $) 19)) (-4080 (((-642 (-941 |#2|)) $) 88)) (-3729 (($ $) 82)) (-2216 (((-769) $) 47)) (-4233 (($) 32)) (-2027 (($ $ (-642 (-769)) (-941 |#2|)) 74) (($ $ (-642 (-769)) (-769)) 75) (($ $ (-769) (-941 |#2|)) 77)) (-2774 (($ $ $) 57) (($ (-642 $)) 59)) (-4073 (((-769) $) 89)) (-1961 (((-112) $) 15)) (-1778 (((-1155) $) NIL)) (-3493 (((-112) $) 22)) (-3999 (((-1117) $) NIL)) (-1659 (((-171) $) 87)) (-3355 (((-941 |#2|) $) 83)) (-2560 (((-769) $) 84)) (-3209 (((-112) $) 86)) (-2340 (($ $ (-642 (-769)) (-171)) 80)) (-3193 (($ $) 52)) (-2390 (((-860) $) 100)) (-1686 (($ $ (-642 (-769)) (-112)) 79)) (-4275 (((-642 $) $) 11)) (-3838 (($ $ (-769)) 46)) (-3070 (($ $) 43)) (-1600 (((-112) $ $) NIL)) (-3755 (($ $ $ (-941 |#2|) (-769)) 70)) (-2092 (($ $ (-941 |#2|)) 69)) (-3333 (($ $ (-642 (-769)) (-941 |#2|)) 66) (($ $ (-642 (-769)) (-769)) 72) (((-769) $ (-941 |#2|)) 73)) (-2821 (((-112) $ $) 94))) -(((-1161 |#1| |#2|) (-13 (-1097) (-10 -8 (-15 -1961 ((-112) $)) (-15 -1445 ((-112) $)) (-15 -3493 ((-112) $)) (-15 -4233 ($)) (-15 -3653 ($)) (-15 -3070 ($ $)) (-15 -3838 ($ $ (-769))) (-15 -4275 ((-642 $) $)) (-15 -2216 ((-769) $)) (-15 -2086 ($ $)) (-15 -3193 ($ $)) (-15 -2774 ($ $ $)) (-15 -2774 ($ (-642 $))) (-15 -2161 ((-642 $) $)) (-15 -3333 ($ $ (-642 (-769)) (-941 |#2|))) (-15 -2092 ($ $ (-941 |#2|))) (-15 -3755 ($ $ $ (-941 |#2|) (-769))) (-15 -2027 ($ $ (-642 (-769)) (-941 |#2|))) (-15 -3333 ($ $ (-642 (-769)) (-769))) (-15 -2027 ($ $ (-642 (-769)) (-769))) (-15 -3333 ((-769) $ (-941 |#2|))) (-15 -2027 ($ $ (-769) (-941 |#2|))) (-15 -1686 ($ $ (-642 (-769)) (-112))) (-15 -2340 ($ $ (-642 (-769)) (-171))) (-15 -1457 ($ $ (-642 (-769)))) (-15 -3355 ((-941 |#2|) $)) (-15 -2560 ((-769) $)) (-15 -3209 ((-112) $)) (-15 -1659 ((-171) $)) (-15 -4073 ((-769) $)) (-15 -3729 ($ $)) (-15 -4080 ((-642 (-941 |#2|)) $)))) (-919) (-1047)) (T -1161)) -((-1961 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1161 *3 *4)) (-14 *3 (-919)) (-4 *4 (-1047)))) (-1445 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1161 *3 *4)) (-14 *3 (-919)) (-4 *4 (-1047)))) (-3493 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1161 *3 *4)) (-14 *3 (-919)) (-4 *4 (-1047)))) (-4233 (*1 *1) (-12 (-5 *1 (-1161 *2 *3)) (-14 *2 (-919)) (-4 *3 (-1047)))) (-3653 (*1 *1) (-12 (-5 *1 (-1161 *2 *3)) (-14 *2 (-919)) (-4 *3 (-1047)))) (-3070 (*1 *1 *1) (-12 (-5 *1 (-1161 *2 *3)) (-14 *2 (-919)) (-4 *3 (-1047)))) (-3838 (*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-1161 *3 *4)) (-14 *3 (-919)) (-4 *4 (-1047)))) (-4275 (*1 *2 *1) (-12 (-5 *2 (-642 (-1161 *3 *4))) (-5 *1 (-1161 *3 *4)) (-14 *3 (-919)) (-4 *4 (-1047)))) (-2216 (*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-1161 *3 *4)) (-14 *3 (-919)) (-4 *4 (-1047)))) (-2086 (*1 *1 *1) (-12 (-5 *1 (-1161 *2 *3)) (-14 *2 (-919)) (-4 *3 (-1047)))) (-3193 (*1 *1 *1) (-12 (-5 *1 (-1161 *2 *3)) (-14 *2 (-919)) (-4 *3 (-1047)))) (-2774 (*1 *1 *1 *1) (-12 (-5 *1 (-1161 *2 *3)) (-14 *2 (-919)) (-4 *3 (-1047)))) (-2774 (*1 *1 *2) (-12 (-5 *2 (-642 (-1161 *3 *4))) (-5 *1 (-1161 *3 *4)) (-14 *3 (-919)) (-4 *4 (-1047)))) (-2161 (*1 *2 *1) (-12 (-5 *2 (-642 (-1161 *3 *4))) (-5 *1 (-1161 *3 *4)) (-14 *3 (-919)) (-4 *4 (-1047)))) (-3333 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-642 (-769))) (-5 *3 (-941 *5)) (-4 *5 (-1047)) (-5 *1 (-1161 *4 *5)) (-14 *4 (-919)))) (-2092 (*1 *1 *1 *2) (-12 (-5 *2 (-941 *4)) (-4 *4 (-1047)) (-5 *1 (-1161 *3 *4)) (-14 *3 (-919)))) (-3755 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-941 *5)) (-5 *3 (-769)) (-4 *5 (-1047)) (-5 *1 (-1161 *4 *5)) (-14 *4 (-919)))) (-2027 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-642 (-769))) (-5 *3 (-941 *5)) (-4 *5 (-1047)) (-5 *1 (-1161 *4 *5)) (-14 *4 (-919)))) (-3333 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-642 (-769))) (-5 *3 (-769)) (-5 *1 (-1161 *4 *5)) (-14 *4 (-919)) (-4 *5 (-1047)))) (-2027 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-642 (-769))) (-5 *3 (-769)) (-5 *1 (-1161 *4 *5)) (-14 *4 (-919)) (-4 *5 (-1047)))) (-3333 (*1 *2 *1 *3) (-12 (-5 *3 (-941 *5)) (-4 *5 (-1047)) (-5 *2 (-769)) (-5 *1 (-1161 *4 *5)) (-14 *4 (-919)))) (-2027 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-769)) (-5 *3 (-941 *5)) (-4 *5 (-1047)) (-5 *1 (-1161 *4 *5)) (-14 *4 (-919)))) (-1686 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-642 (-769))) (-5 *3 (-112)) (-5 *1 (-1161 *4 *5)) (-14 *4 (-919)) (-4 *5 (-1047)))) (-2340 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-642 (-769))) (-5 *3 (-171)) (-5 *1 (-1161 *4 *5)) (-14 *4 (-919)) (-4 *5 (-1047)))) (-1457 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-769))) (-5 *1 (-1161 *3 *4)) (-14 *3 (-919)) (-4 *4 (-1047)))) (-3355 (*1 *2 *1) (-12 (-5 *2 (-941 *4)) (-5 *1 (-1161 *3 *4)) (-14 *3 (-919)) (-4 *4 (-1047)))) (-2560 (*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-1161 *3 *4)) (-14 *3 (-919)) (-4 *4 (-1047)))) (-3209 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1161 *3 *4)) (-14 *3 (-919)) (-4 *4 (-1047)))) (-1659 (*1 *2 *1) (-12 (-5 *2 (-171)) (-5 *1 (-1161 *3 *4)) (-14 *3 (-919)) (-4 *4 (-1047)))) (-4073 (*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-1161 *3 *4)) (-14 *3 (-919)) (-4 *4 (-1047)))) (-3729 (*1 *1 *1) (-12 (-5 *1 (-1161 *2 *3)) (-14 *2 (-919)) (-4 *3 (-1047)))) (-4080 (*1 *2 *1) (-12 (-5 *2 (-642 (-941 *4))) (-5 *1 (-1161 *3 *4)) (-14 *3 (-919)) (-4 *4 (-1047))))) -(-13 (-1097) (-10 -8 (-15 -1961 ((-112) $)) (-15 -1445 ((-112) $)) (-15 -3493 ((-112) $)) (-15 -4233 ($)) (-15 -3653 ($)) (-15 -3070 ($ $)) (-15 -3838 ($ $ (-769))) (-15 -4275 ((-642 $) $)) (-15 -2216 ((-769) $)) (-15 -2086 ($ $)) (-15 -3193 ($ $)) (-15 -2774 ($ $ $)) (-15 -2774 ($ (-642 $))) (-15 -2161 ((-642 $) $)) (-15 -3333 ($ $ (-642 (-769)) (-941 |#2|))) (-15 -2092 ($ $ (-941 |#2|))) (-15 -3755 ($ $ $ (-941 |#2|) (-769))) (-15 -2027 ($ $ (-642 (-769)) (-941 |#2|))) (-15 -3333 ($ $ (-642 (-769)) (-769))) (-15 -2027 ($ $ (-642 (-769)) (-769))) (-15 -3333 ((-769) $ (-941 |#2|))) (-15 -2027 ($ $ (-769) (-941 |#2|))) (-15 -1686 ($ $ (-642 (-769)) (-112))) (-15 -2340 ($ $ (-642 (-769)) (-171))) (-15 -1457 ($ $ (-642 (-769)))) (-15 -3355 ((-941 |#2|) $)) (-15 -2560 ((-769) $)) (-15 -3209 ((-112) $)) (-15 -1659 ((-171) $)) (-15 -4073 ((-769) $)) (-15 -3729 ($ $)) (-15 -4080 ((-642 (-941 |#2|)) $)))) -((-2856 (((-112) $ $) NIL)) (-3199 ((|#2| $) 11)) (-3187 ((|#1| $) 10)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2401 (($ |#1| |#2|) 9)) (-2390 (((-860) $) 16)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-1162 |#1| |#2|) (-13 (-1097) (-10 -8 (-15 -2401 ($ |#1| |#2|)) (-15 -3187 (|#1| $)) (-15 -3199 (|#2| $)))) (-1097) (-1097)) (T -1162)) -((-2401 (*1 *1 *2 *3) (-12 (-5 *1 (-1162 *2 *3)) (-4 *2 (-1097)) (-4 *3 (-1097)))) (-3187 (*1 *2 *1) (-12 (-4 *2 (-1097)) (-5 *1 (-1162 *2 *3)) (-4 *3 (-1097)))) (-3199 (*1 *2 *1) (-12 (-4 *2 (-1097)) (-5 *1 (-1162 *3 *2)) (-4 *3 (-1097))))) -(-13 (-1097) (-10 -8 (-15 -2401 ($ |#1| |#2|)) (-15 -3187 (|#1| $)) (-15 -3199 (|#2| $)))) -((-2856 (((-112) $ $) NIL)) (-3371 (((-1132) $) 9)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) 15) (($ (-1178)) NIL) (((-1178) $) NIL)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-1163) (-13 (-1080) (-10 -8 (-15 -3371 ((-1132) $))))) (T -1163)) -((-3371 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-1163))))) -(-13 (-1080) (-10 -8 (-15 -3371 ((-1132) $)))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-2905 (((-1171 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-307)) (|has| |#1| (-363))))) (-2397 (((-642 (-1079)) $) NIL)) (-1341 (((-1173) $) 11)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (-2682 (-12 (|has| (-1171 |#1| |#2| |#3|) (-818)) (|has| |#1| (-363))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-907)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-4252 (($ $) NIL (-2682 (-12 (|has| (-1171 |#1| |#2| |#3|) (-818)) (|has| |#1| (-363))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-907)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-1722 (((-112) $) NIL (-2682 (-12 (|has| (-1171 |#1| |#2| |#3|) (-818)) (|has| |#1| (-363))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-907)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-2180 (($ $ (-564)) NIL) (($ $ (-564) (-564)) 75)) (-4077 (((-1153 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $) NIL)) (-2606 (((-1171 |#1| |#2| |#3|) $) 42)) (-3948 (((-3 (-1171 |#1| |#2| |#3|) "failed") $) 32)) (-2446 (((-1171 |#1| |#2| |#3|) $) 33)) (-3087 (($ $) 116 (|has| |#1| (-38 (-407 (-564)))))) (-2958 (($ $) 92 (|has| |#1| (-38 (-407 (-564)))))) (-3085 (((-3 $ "failed") $ $) NIL)) (-4297 (((-418 (-1169 $)) (-1169 $)) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-907)) (|has| |#1| (-363))))) (-1993 (($ $) NIL (|has| |#1| (-363)))) (-3282 (((-418 $) $) NIL (|has| |#1| (-363)))) (-2264 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3267 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-907)) (|has| |#1| (-363))))) (-2134 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3067 (($ $) 112 (|has| |#1| (-38 (-407 (-564)))))) (-2933 (($ $) 88 (|has| |#1| (-38 (-407 (-564)))))) (-2221 (((-564) $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-818)) (|has| |#1| (-363))))) (-3182 (($ (-1153 (-2 (|:| |k| (-564)) (|:| |c| |#1|)))) NIL)) (-3110 (($ $) 120 (|has| |#1| (-38 (-407 (-564)))))) (-2981 (($ $) 96 (|has| |#1| (-38 (-407 (-564)))))) (-2822 (($) NIL T CONST)) (-2849 (((-3 (-1171 |#1| |#2| |#3|) "failed") $) 34) (((-3 (-1173) "failed") $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-1036 (-1173))) (|has| |#1| (-363)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-1036 (-564))) (|has| |#1| (-363)))) (((-3 (-564) "failed") $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-1036 (-564))) (|has| |#1| (-363))))) (-1687 (((-1171 |#1| |#2| |#3|) $) 140) (((-1173) $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-1036 (-1173))) (|has| |#1| (-363)))) (((-407 (-564)) $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-1036 (-564))) (|has| |#1| (-363)))) (((-564) $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-1036 (-564))) (|has| |#1| (-363))))) (-1506 (($ $) 37) (($ (-564) $) 38)) (-2796 (($ $ $) NIL (|has| |#1| (-363)))) (-3459 (($ $) NIL)) (-3330 (((-687 (-1171 |#1| |#2| |#3|)) (-687 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -3544 (-687 (-1171 |#1| |#2| |#3|))) (|:| |vec| (-1262 (-1171 |#1| |#2| |#3|)))) (-687 $) (-1262 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-637 (-564))) (|has| |#1| (-363)))) (((-687 (-564)) (-687 $)) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-637 (-564))) (|has| |#1| (-363))))) (-2675 (((-3 $ "failed") $) 54)) (-1534 (((-407 (-950 |#1|)) $ (-564)) 74 (|has| |#1| (-556))) (((-407 (-950 |#1|)) $ (-564) (-564)) 76 (|has| |#1| (-556)))) (-3235 (($) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-2808 (($ $ $) NIL (|has| |#1| (-363)))) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) NIL (|has| |#1| (-363)))) (-3552 (((-112) $) NIL (|has| |#1| (-363)))) (-3292 (((-112) $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-818)) (|has| |#1| (-363))))) (-2210 (((-112) $) 28)) (-2833 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1381 (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-884 (-379))) (|has| |#1| (-363)))) (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-884 (-564))) (|has| |#1| (-363))))) (-2408 (((-564) $) NIL) (((-564) $ (-564)) 26)) (-3163 (((-112) $) NIL)) (-3408 (($ $) NIL (|has| |#1| (-363)))) (-4120 (((-1171 |#1| |#2| |#3|) $) 44 (|has| |#1| (-363)))) (-2024 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4382 (((-3 $ "failed") $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-1148)) (|has| |#1| (-363))))) (-2666 (((-112) $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-818)) (|has| |#1| (-363))))) (-2157 (($ $ (-919)) NIL)) (-2869 (($ (-1 |#1| (-564)) $) NIL)) (-2709 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#1| (-363)))) (-3471 (((-112) $) NIL)) (-2374 (($ |#1| (-564)) 19) (($ $ (-1079) (-564)) NIL) (($ $ (-642 (-1079)) (-642 (-564))) NIL)) (-3225 (($ $ $) NIL (-2682 (-12 (|has| (-1171 |#1| |#2| |#3|) (-818)) (|has| |#1| (-363))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-848)) (|has| |#1| (-363)))))) (-2903 (($ $ $) NIL (-2682 (-12 (|has| (-1171 |#1| |#2| |#3|) (-818)) (|has| |#1| (-363))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-848)) (|has| |#1| (-363)))))) (-2947 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1171 |#1| |#2| |#3|) (-1171 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-363)))) (-3576 (($ $) 81 (|has| |#1| (-38 (-407 (-564)))))) (-2510 (($ $) NIL)) (-2523 ((|#1| $) NIL)) (-2066 (($ (-642 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2456 (($ (-564) (-1171 |#1| |#2| |#3|)) 36)) (-1778 (((-1155) $) NIL)) (-2481 (($ $) NIL (|has| |#1| (-363)))) (-3703 (($ $) 79 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1173)) NIL (-2682 (-12 (|has| |#1| (-15 -3703 (|#1| |#1| (-1173)))) (|has| |#1| (-15 -2397 ((-642 (-1173)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-957)) (|has| |#1| (-1197))))) (($ $ (-1258 |#2|)) 80 (|has| |#1| (-38 (-407 (-564)))))) (-3910 (($) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-1148)) (|has| |#1| (-363))) CONST)) (-3999 (((-1117) $) NIL)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) NIL (|has| |#1| (-363)))) (-2105 (($ (-642 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-1830 (($ $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-307)) (|has| |#1| (-363))))) (-2795 (((-1171 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-3223 (((-418 (-1169 $)) (-1169 $)) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-907)) (|has| |#1| (-363))))) (-2236 (((-418 (-1169 $)) (-1169 $)) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-907)) (|has| |#1| (-363))))) (-2254 (((-418 $) $) NIL (|has| |#1| (-363)))) (-1877 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL (|has| |#1| (-363)))) (-2137 (($ $ (-564)) 158)) (-2842 (((-3 $ "failed") $ $) 55 (-2682 (-12 (|has| (-1171 |#1| |#2| |#3|) (-818)) (|has| |#1| (-363))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-907)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-1483 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#1| (-363)))) (-3466 (($ $) 82 (|has| |#1| (-38 (-407 (-564)))))) (-3154 (((-1153 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-564))))) (($ $ (-1173) (-1171 |#1| |#2| |#3|)) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-514 (-1173) (-1171 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-642 (-1173)) (-642 (-1171 |#1| |#2| |#3|))) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-514 (-1173) (-1171 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-642 (-294 (-1171 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-309 (-1171 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-294 (-1171 |#1| |#2| |#3|))) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-309 (-1171 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-1171 |#1| |#2| |#3|) (-1171 |#1| |#2| |#3|)) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-309 (-1171 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-642 (-1171 |#1| |#2| |#3|)) (-642 (-1171 |#1| |#2| |#3|))) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-309 (-1171 |#1| |#2| |#3|))) (|has| |#1| (-363))))) (-4274 (((-769) $) NIL (|has| |#1| (-363)))) (-4369 ((|#1| $ (-564)) NIL) (($ $ $) 61 (|has| (-564) (-1109))) (($ $ (-1171 |#1| |#2| |#3|)) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-286 (-1171 |#1| |#2| |#3|) (-1171 |#1| |#2| |#3|))) (|has| |#1| (-363))))) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL (|has| |#1| (-363)))) (-2199 (($ $ (-1 (-1171 |#1| |#2| |#3|) (-1171 |#1| |#2| |#3|))) NIL (|has| |#1| (-363))) (($ $ (-1 (-1171 |#1| |#2| |#3|) (-1171 |#1| |#2| |#3|)) (-769)) NIL (|has| |#1| (-363))) (($ $ (-1258 |#2|)) 57) (($ $ (-769)) NIL (-2682 (-12 (|has| (-1171 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $) 56 (-2682 (-12 (|has| (-1171 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (-2682 (-12 (|has| (-1171 |#1| |#2| |#3|) (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173)))))) (($ $ (-1173) (-769)) NIL (-2682 (-12 (|has| (-1171 |#1| |#2| |#3|) (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173)))))) (($ $ (-642 (-1173))) NIL (-2682 (-12 (|has| (-1171 |#1| |#2| |#3|) (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173)))))) (($ $ (-1173)) NIL (-2682 (-12 (|has| (-1171 |#1| |#2| |#3|) (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173))))))) (-3082 (($ $) NIL (|has| |#1| (-363)))) (-4131 (((-1171 |#1| |#2| |#3|) $) 46 (|has| |#1| (-363)))) (-3252 (((-564) $) 43)) (-3120 (($ $) 122 (|has| |#1| (-38 (-407 (-564)))))) (-2992 (($ $) 98 (|has| |#1| (-38 (-407 (-564)))))) (-3098 (($ $) 118 (|has| |#1| (-38 (-407 (-564)))))) (-2971 (($ $) 94 (|has| |#1| (-38 (-407 (-564)))))) (-3077 (($ $) 114 (|has| |#1| (-38 (-407 (-564)))))) (-2946 (($ $) 90 (|has| |#1| (-38 (-407 (-564)))))) (-3003 (((-536) $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-612 (-536))) (|has| |#1| (-363)))) (((-379) $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-1020)) (|has| |#1| (-363)))) (((-225) $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-1020)) (|has| |#1| (-363)))) (((-890 (-379)) $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-612 (-890 (-379)))) (|has| |#1| (-363)))) (((-890 (-564)) $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-612 (-890 (-564)))) (|has| |#1| (-363))))) (-3556 (((-3 (-1262 $) "failed") (-687 $)) NIL (-12 (|has| $ (-145)) (|has| (-1171 |#1| |#2| |#3|) (-907)) (|has| |#1| (-363))))) (-4189 (($ $) NIL)) (-2390 (((-860) $) 162) (($ (-564)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1171 |#1| |#2| |#3|)) 30) (($ (-1258 |#2|)) 25) (($ (-1173)) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-1036 (-1173))) (|has| |#1| (-363)))) (($ $) NIL (-2682 (-12 (|has| (-1171 |#1| |#2| |#3|) (-818)) (|has| |#1| (-363))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-907)) (|has| |#1| (-363))) (|has| |#1| (-556)))) (($ (-407 (-564))) NIL (-2682 (-12 (|has| (-1171 |#1| |#2| |#3|) (-1036 (-564))) (|has| |#1| (-363))) (|has| |#1| (-38 (-407 (-564))))))) (-3005 ((|#1| $ (-564)) 77)) (-3434 (((-3 $ "failed") $) NIL (-2682 (-12 (|has| $ (-145)) (|has| (-1171 |#1| |#2| |#3|) (-907)) (|has| |#1| (-363))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-145)) (|has| |#1| (-363))) (|has| |#1| (-145))))) (-3348 (((-769)) NIL T CONST)) (-2245 ((|#1| $) 12)) (-1378 (((-1171 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-1600 (((-112) $ $) NIL)) (-3155 (($ $) 128 (|has| |#1| (-38 (-407 (-564)))))) (-3025 (($ $) 104 (|has| |#1| (-38 (-407 (-564)))))) (-1594 (((-112) $ $) NIL (-2682 (-12 (|has| (-1171 |#1| |#2| |#3|) (-818)) (|has| |#1| (-363))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-907)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-3131 (($ $) 124 (|has| |#1| (-38 (-407 (-564)))))) (-3002 (($ $) 100 (|has| |#1| (-38 (-407 (-564)))))) (-3176 (($ $) 132 (|has| |#1| (-38 (-407 (-564)))))) (-3047 (($ $) 108 (|has| |#1| (-38 (-407 (-564)))))) (-3560 ((|#1| $ (-564)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-564)))) (|has| |#1| (-15 -2390 (|#1| (-1173))))))) (-3165 (($ $) 134 (|has| |#1| (-38 (-407 (-564)))))) (-3058 (($ $) 110 (|has| |#1| (-38 (-407 (-564)))))) (-3168 (($ $) 130 (|has| |#1| (-38 (-407 (-564)))))) (-3035 (($ $) 106 (|has| |#1| (-38 (-407 (-564)))))) (-3142 (($ $) 126 (|has| |#1| (-38 (-407 (-564)))))) (-3014 (($ $) 102 (|has| |#1| (-38 (-407 (-564)))))) (-1630 (($ $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-818)) (|has| |#1| (-363))))) (-2361 (($) 21 T CONST)) (-2371 (($) 16 T CONST)) (-2711 (($ $ (-1 (-1171 |#1| |#2| |#3|) (-1171 |#1| |#2| |#3|))) NIL (|has| |#1| (-363))) (($ $ (-1 (-1171 |#1| |#2| |#3|) (-1171 |#1| |#2| |#3|)) (-769)) NIL (|has| |#1| (-363))) (($ $ (-769)) NIL (-2682 (-12 (|has| (-1171 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $) NIL (-2682 (-12 (|has| (-1171 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (-2682 (-12 (|has| (-1171 |#1| |#2| |#3|) (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173)))))) (($ $ (-1173) (-769)) NIL (-2682 (-12 (|has| (-1171 |#1| |#2| |#3|) (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173)))))) (($ $ (-642 (-1173))) NIL (-2682 (-12 (|has| (-1171 |#1| |#2| |#3|) (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173)))))) (($ $ (-1173)) NIL (-2682 (-12 (|has| (-1171 |#1| |#2| |#3|) (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173))))))) (-2881 (((-112) $ $) NIL (-2682 (-12 (|has| (-1171 |#1| |#2| |#3|) (-818)) (|has| |#1| (-363))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-848)) (|has| |#1| (-363)))))) (-2857 (((-112) $ $) NIL (-2682 (-12 (|has| (-1171 |#1| |#2| |#3|) (-818)) (|has| |#1| (-363))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-848)) (|has| |#1| (-363)))))) (-2821 (((-112) $ $) NIL)) (-2868 (((-112) $ $) NIL (-2682 (-12 (|has| (-1171 |#1| |#2| |#3|) (-818)) (|has| |#1| (-363))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-848)) (|has| |#1| (-363)))))) (-2844 (((-112) $ $) NIL (-2682 (-12 (|has| (-1171 |#1| |#2| |#3|) (-818)) (|has| |#1| (-363))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-848)) (|has| |#1| (-363)))))) (-2943 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) 49 (|has| |#1| (-363))) (($ (-1171 |#1| |#2| |#3|) (-1171 |#1| |#2| |#3|)) 50 (|has| |#1| (-363)))) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) 23)) (** (($ $ (-919)) NIL) (($ $ (-769)) 60) (($ $ (-564)) NIL (|has| |#1| (-363))) (($ $ $) 83 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 137 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) 35) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1171 |#1| |#2| |#3|)) 48 (|has| |#1| (-363))) (($ (-1171 |#1| |#2| |#3|) $) 47 (|has| |#1| (-363))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))))) -(((-1164 |#1| |#2| |#3|) (-13 (-1224 |#1| (-1171 |#1| |#2| |#3|)) (-10 -8 (-15 -2390 ($ (-1258 |#2|))) (-15 -2199 ($ $ (-1258 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3703 ($ $ (-1258 |#2|))) |%noBranch|))) (-1047) (-1173) |#1|) (T -1164)) -((-2390 (*1 *1 *2) (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-1164 *3 *4 *5)) (-4 *3 (-1047)) (-14 *5 *3))) (-2199 (*1 *1 *1 *2) (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-1164 *3 *4 *5)) (-4 *3 (-1047)) (-14 *5 *3))) (-3703 (*1 *1 *1 *2) (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-1164 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1047)) (-14 *5 *3)))) -(-13 (-1224 |#1| (-1171 |#1| |#2| |#3|)) (-10 -8 (-15 -2390 ($ (-1258 |#2|))) (-15 -2199 ($ $ (-1258 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3703 ($ $ (-1258 |#2|))) |%noBranch|))) -((-3614 ((|#2| |#2| (-1089 |#2|)) 26) ((|#2| |#2| (-1173)) 28))) -(((-1165 |#1| |#2|) (-10 -7 (-15 -3614 (|#2| |#2| (-1173))) (-15 -3614 (|#2| |#2| (-1089 |#2|)))) (-13 (-556) (-1036 (-564)) (-637 (-564))) (-13 (-430 |#1|) (-160) (-27) (-1197))) (T -1165)) -((-3614 (*1 *2 *2 *3) (-12 (-5 *3 (-1089 *2)) (-4 *2 (-13 (-430 *4) (-160) (-27) (-1197))) (-4 *4 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *1 (-1165 *4 *2)))) (-3614 (*1 *2 *2 *3) (-12 (-5 *3 (-1173)) (-4 *4 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *1 (-1165 *4 *2)) (-4 *2 (-13 (-430 *4) (-160) (-27) (-1197)))))) -(-10 -7 (-15 -3614 (|#2| |#2| (-1173))) (-15 -3614 (|#2| |#2| (-1089 |#2|)))) -((-3614 (((-3 (-407 (-950 |#1|)) (-316 |#1|)) (-407 (-950 |#1|)) (-1089 (-407 (-950 |#1|)))) 31) (((-407 (-950 |#1|)) (-950 |#1|) (-1089 (-950 |#1|))) 44) (((-3 (-407 (-950 |#1|)) (-316 |#1|)) (-407 (-950 |#1|)) (-1173)) 33) (((-407 (-950 |#1|)) (-950 |#1|) (-1173)) 36))) -(((-1166 |#1|) (-10 -7 (-15 -3614 ((-407 (-950 |#1|)) (-950 |#1|) (-1173))) (-15 -3614 ((-3 (-407 (-950 |#1|)) (-316 |#1|)) (-407 (-950 |#1|)) (-1173))) (-15 -3614 ((-407 (-950 |#1|)) (-950 |#1|) (-1089 (-950 |#1|)))) (-15 -3614 ((-3 (-407 (-950 |#1|)) (-316 |#1|)) (-407 (-950 |#1|)) (-1089 (-407 (-950 |#1|)))))) (-13 (-556) (-1036 (-564)))) (T -1166)) -((-3614 (*1 *2 *3 *4) (-12 (-5 *4 (-1089 (-407 (-950 *5)))) (-5 *3 (-407 (-950 *5))) (-4 *5 (-13 (-556) (-1036 (-564)))) (-5 *2 (-3 *3 (-316 *5))) (-5 *1 (-1166 *5)))) (-3614 (*1 *2 *3 *4) (-12 (-5 *4 (-1089 (-950 *5))) (-5 *3 (-950 *5)) (-4 *5 (-13 (-556) (-1036 (-564)))) (-5 *2 (-407 *3)) (-5 *1 (-1166 *5)))) (-3614 (*1 *2 *3 *4) (-12 (-5 *4 (-1173)) (-4 *5 (-13 (-556) (-1036 (-564)))) (-5 *2 (-3 (-407 (-950 *5)) (-316 *5))) (-5 *1 (-1166 *5)) (-5 *3 (-407 (-950 *5))))) (-3614 (*1 *2 *3 *4) (-12 (-5 *4 (-1173)) (-4 *5 (-13 (-556) (-1036 (-564)))) (-5 *2 (-407 (-950 *5))) (-5 *1 (-1166 *5)) (-5 *3 (-950 *5))))) -(-10 -7 (-15 -3614 ((-407 (-950 |#1|)) (-950 |#1|) (-1173))) (-15 -3614 ((-3 (-407 (-950 |#1|)) (-316 |#1|)) (-407 (-950 |#1|)) (-1173))) (-15 -3614 ((-407 (-950 |#1|)) (-950 |#1|) (-1089 (-950 |#1|)))) (-15 -3614 ((-3 (-407 (-950 |#1|)) (-316 |#1|)) (-407 (-950 |#1|)) (-1089 (-407 (-950 |#1|)))))) -((-2947 (((-1169 |#2|) (-1 |#2| |#1|) (-1169 |#1|)) 13))) -(((-1167 |#1| |#2|) (-10 -7 (-15 -2947 ((-1169 |#2|) (-1 |#2| |#1|) (-1169 |#1|)))) (-1047) (-1047)) (T -1167)) -((-2947 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1169 *5)) (-4 *5 (-1047)) (-4 *6 (-1047)) (-5 *2 (-1169 *6)) (-5 *1 (-1167 *5 *6))))) -(-10 -7 (-15 -2947 ((-1169 |#2|) (-1 |#2| |#1|) (-1169 |#1|)))) -((-3282 (((-418 (-1169 (-407 |#4|))) (-1169 (-407 |#4|))) 51)) (-2254 (((-418 (-1169 (-407 |#4|))) (-1169 (-407 |#4|))) 52))) -(((-1168 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2254 ((-418 (-1169 (-407 |#4|))) (-1169 (-407 |#4|)))) (-15 -3282 ((-418 (-1169 (-407 |#4|))) (-1169 (-407 |#4|))))) (-791) (-848) (-452) (-947 |#3| |#1| |#2|)) (T -1168)) -((-3282 (*1 *2 *3) (-12 (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-452)) (-4 *7 (-947 *6 *4 *5)) (-5 *2 (-418 (-1169 (-407 *7)))) (-5 *1 (-1168 *4 *5 *6 *7)) (-5 *3 (-1169 (-407 *7))))) (-2254 (*1 *2 *3) (-12 (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-452)) (-4 *7 (-947 *6 *4 *5)) (-5 *2 (-418 (-1169 (-407 *7)))) (-5 *1 (-1168 *4 *5 *6 *7)) (-5 *3 (-1169 (-407 *7)))))) -(-10 -7 (-15 -2254 ((-418 (-1169 (-407 |#4|))) (-1169 (-407 |#4|)))) (-15 -3282 ((-418 (-1169 (-407 |#4|))) (-1169 (-407 |#4|))))) -((-2856 (((-112) $ $) 171)) (-2950 (((-112) $) 43)) (-4020 (((-1262 |#1|) $ (-769)) NIL)) (-2397 (((-642 (-1079)) $) NIL)) (-2865 (($ (-1169 |#1|)) NIL)) (-2223 (((-1169 $) $ (-1079)) 82) (((-1169 |#1|) $) 71)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-4252 (($ $) 164 (|has| |#1| (-556)))) (-1722 (((-112) $) NIL (|has| |#1| (-556)))) (-4035 (((-769) $) NIL) (((-769) $ (-642 (-1079))) NIL)) (-3085 (((-3 $ "failed") $ $) NIL)) (-2106 (($ $ $) 158 (|has| |#1| (-556)))) (-4297 (((-418 (-1169 $)) (-1169 $)) 95 (|has| |#1| (-907)))) (-1993 (($ $) NIL (|has| |#1| (-452)))) (-3282 (((-418 $) $) NIL (|has| |#1| (-452)))) (-3267 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) 115 (|has| |#1| (-907)))) (-2134 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3254 (($ $ (-769)) 61)) (-3457 (($ $ (-769)) 63)) (-2161 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-452)))) (-2822 (($) NIL T CONST)) (-2849 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1036 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1036 (-564)))) (((-3 (-1079) "failed") $) NIL)) (-1687 ((|#1| $) NIL) (((-407 (-564)) $) NIL (|has| |#1| (-1036 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1036 (-564)))) (((-1079) $) NIL)) (-3710 (($ $ $ (-1079)) NIL (|has| |#1| (-172))) ((|#1| $ $) 160 (|has| |#1| (-172)))) (-2796 (($ $ $) NIL (|has| |#1| (-363)))) (-3459 (($ $) 80)) (-3330 (((-687 (-564)) (-687 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -3544 (-687 |#1|)) (|:| |vec| (-1262 |#1|))) (-687 $) (-1262 $)) NIL) (((-687 |#1|) (-687 $)) NIL)) (-2675 (((-3 $ "failed") $) NIL)) (-2808 (($ $ $) NIL (|has| |#1| (-363)))) (-2888 (($ $ $) 131)) (-2553 (($ $ $) NIL (|has| |#1| (-556)))) (-1555 (((-2 (|:| -2968 |#1|) (|:| -4332 $) (|:| -1992 $)) $ $) NIL (|has| |#1| (-556)))) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) NIL (|has| |#1| (-363)))) (-2511 (($ $) 165 (|has| |#1| (-452))) (($ $ (-1079)) NIL (|has| |#1| (-452)))) (-3446 (((-642 $) $) NIL)) (-3552 (((-112) $) NIL (|has| |#1| (-907)))) (-2315 (($ $ |#1| (-769) $) 69)) (-1381 (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) NIL (-12 (|has| (-1079) (-884 (-379))) (|has| |#1| (-884 (-379))))) (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) NIL (-12 (|has| (-1079) (-884 (-564))) (|has| |#1| (-884 (-564)))))) (-2098 (((-860) $ (-860)) 148)) (-2408 (((-769) $ $) NIL (|has| |#1| (-556)))) (-3163 (((-112) $) 48)) (-1904 (((-769) $) NIL)) (-4382 (((-3 $ "failed") $) NIL (|has| |#1| (-1148)))) (-2387 (($ (-1169 |#1|) (-1079)) 73) (($ (-1169 $) (-1079)) 89)) (-2157 (($ $ (-769)) 51)) (-2709 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#1| (-363)))) (-1995 (((-642 $) $) NIL)) (-3471 (((-112) $) NIL)) (-2374 (($ |#1| (-769)) 87) (($ $ (-1079) (-769)) NIL) (($ $ (-642 (-1079)) (-642 (-769))) NIL)) (-3312 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $ (-1079)) NIL) (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) 153)) (-2887 (((-769) $) NIL) (((-769) $ (-1079)) NIL) (((-642 (-769)) $ (-642 (-1079))) NIL)) (-3879 (($ (-1 (-769) (-769)) $) NIL)) (-2947 (($ (-1 |#1| |#1|) $) NIL)) (-1864 (((-1169 |#1|) $) NIL)) (-1557 (((-3 (-1079) "failed") $) NIL)) (-2510 (($ $) NIL)) (-2523 ((|#1| $) 76)) (-2066 (($ (-642 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-1778 (((-1155) $) NIL)) (-1930 (((-2 (|:| -4332 $) (|:| -1992 $)) $ (-769)) 60)) (-3664 (((-3 (-642 $) "failed") $) NIL)) (-4315 (((-3 (-642 $) "failed") $) NIL)) (-3177 (((-3 (-2 (|:| |var| (-1079)) (|:| -2817 (-769))) "failed") $) NIL)) (-3703 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3910 (($) NIL (|has| |#1| (-1148)) CONST)) (-3999 (((-1117) $) NIL)) (-2491 (((-112) $) 50)) (-2500 ((|#1| $) NIL)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) 103 (|has| |#1| (-452)))) (-2105 (($ (-642 $)) NIL (|has| |#1| (-452))) (($ $ $) 167 (|has| |#1| (-452)))) (-3411 (($ $ (-769) |#1| $) 123)) (-3223 (((-418 (-1169 $)) (-1169 $)) 101 (|has| |#1| (-907)))) (-2236 (((-418 (-1169 $)) (-1169 $)) 100 (|has| |#1| (-907)))) (-2254 (((-418 $) $) 108 (|has| |#1| (-907)))) (-1877 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL (|has| |#1| (-363)))) (-2842 (((-3 $ "failed") $ |#1|) 163 (|has| |#1| (-556))) (((-3 $ "failed") $ $) 124 (|has| |#1| (-556)))) (-1483 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#1| (-363)))) (-3154 (($ $ (-642 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-642 $) (-642 $)) NIL) (($ $ (-1079) |#1|) NIL) (($ $ (-642 (-1079)) (-642 |#1|)) NIL) (($ $ (-1079) $) NIL) (($ $ (-642 (-1079)) (-642 $)) NIL)) (-4274 (((-769) $) NIL (|has| |#1| (-363)))) (-4369 ((|#1| $ |#1|) 150) (($ $ $) 151) (((-407 $) (-407 $) (-407 $)) NIL (|has| |#1| (-556))) ((|#1| (-407 $) |#1|) NIL (|has| |#1| (-363))) (((-407 $) $ (-407 $)) NIL (|has| |#1| (-556)))) (-3288 (((-3 $ "failed") $ (-769)) 54)) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) 172 (|has| |#1| (-363)))) (-2790 (($ $ (-1079)) NIL (|has| |#1| (-172))) ((|#1| $) 156 (|has| |#1| (-172)))) (-2199 (($ $ (-1079)) NIL) (($ $ (-642 (-1079))) NIL) (($ $ (-1079) (-769)) NIL) (($ $ (-642 (-1079)) (-642 (-769))) NIL) (($ $ (-769)) NIL) (($ $) NIL) (($ $ (-1173)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1 |#1| |#1|) (-769)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3252 (((-769) $) 78) (((-769) $ (-1079)) NIL) (((-642 (-769)) $ (-642 (-1079))) NIL)) (-3003 (((-890 (-379)) $) NIL (-12 (|has| (-1079) (-612 (-890 (-379)))) (|has| |#1| (-612 (-890 (-379)))))) (((-890 (-564)) $) NIL (-12 (|has| (-1079) (-612 (-890 (-564)))) (|has| |#1| (-612 (-890 (-564)))))) (((-536) $) NIL (-12 (|has| (-1079) (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-4325 ((|#1| $) 162 (|has| |#1| (-452))) (($ $ (-1079)) NIL (|has| |#1| (-452)))) (-3556 (((-3 (-1262 $) "failed") (-687 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-907))))) (-4281 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556))) (((-3 (-407 $) "failed") (-407 $) $) NIL (|has| |#1| (-556)))) (-2390 (((-860) $) 149) (($ (-564)) NIL) (($ |#1|) 77) (($ (-1079)) NIL) (($ (-407 (-564))) NIL (-2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1036 (-407 (-564)))))) (($ $) NIL (|has| |#1| (-556)))) (-2839 (((-642 |#1|) $) NIL)) (-3005 ((|#1| $ (-769)) NIL) (($ $ (-1079) (-769)) NIL) (($ $ (-642 (-1079)) (-642 (-769))) NIL)) (-3434 (((-3 $ "failed") $) NIL (-2682 (-12 (|has| $ (-145)) (|has| |#1| (-907))) (|has| |#1| (-145))))) (-3348 (((-769)) NIL T CONST)) (-2645 (($ $ $ (-769)) 41 (|has| |#1| (-172)))) (-1600 (((-112) $ $) NIL)) (-1594 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2361 (($) 17 T CONST)) (-2371 (($) 19 T CONST)) (-2711 (($ $ (-1079)) NIL) (($ $ (-642 (-1079))) NIL) (($ $ (-1079) (-769)) NIL) (($ $ (-642 (-1079)) (-642 (-769))) NIL) (($ $ (-769)) NIL) (($ $) NIL) (($ $ (-1173)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1 |#1| |#1|) (-769)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2821 (((-112) $ $) 120)) (-2943 (($ $ |#1|) 173 (|has| |#1| (-363)))) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) 90)) (** (($ $ (-919)) 14) (($ $ (-769)) 12)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) 39) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 129) (($ $ |#1|) NIL))) -(((-1169 |#1|) (-13 (-1238 |#1|) (-10 -8 (-15 -2098 ((-860) $ (-860))) (-15 -3411 ($ $ (-769) |#1| $)))) (-1047)) (T -1169)) -((-2098 (*1 *2 *1 *2) (-12 (-5 *2 (-860)) (-5 *1 (-1169 *3)) (-4 *3 (-1047)))) (-3411 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-769)) (-5 *1 (-1169 *3)) (-4 *3 (-1047))))) -(-13 (-1238 |#1|) (-10 -8 (-15 -2098 ((-860) $ (-860))) (-15 -3411 ($ $ (-769) |#1| $)))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-2397 (((-642 (-1079)) $) NIL)) (-1341 (((-1173) $) 11)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-4252 (($ $) NIL (|has| |#1| (-556)))) (-1722 (((-112) $) NIL (|has| |#1| (-556)))) (-2180 (($ $ (-407 (-564))) NIL) (($ $ (-407 (-564)) (-407 (-564))) NIL)) (-4077 (((-1153 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|))) $) NIL)) (-3087 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2958 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3085 (((-3 $ "failed") $ $) NIL)) (-1993 (($ $) NIL (|has| |#1| (-363)))) (-3282 (((-418 $) $) NIL (|has| |#1| (-363)))) (-2264 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2134 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3067 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2933 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3182 (($ (-769) (-1153 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|)))) NIL)) (-3110 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2981 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2822 (($) NIL T CONST)) (-2849 (((-3 (-1164 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1171 |#1| |#2| |#3|) "failed") $) 36)) (-1687 (((-1164 |#1| |#2| |#3|) $) NIL) (((-1171 |#1| |#2| |#3|) $) NIL)) (-2796 (($ $ $) NIL (|has| |#1| (-363)))) (-3459 (($ $) NIL)) (-2675 (((-3 $ "failed") $) NIL)) (-1811 (((-407 (-564)) $) 59)) (-2808 (($ $ $) NIL (|has| |#1| (-363)))) (-2466 (($ (-407 (-564)) (-1164 |#1| |#2| |#3|)) NIL)) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) NIL (|has| |#1| (-363)))) (-3552 (((-112) $) NIL (|has| |#1| (-363)))) (-2210 (((-112) $) NIL)) (-2833 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2408 (((-407 (-564)) $) NIL) (((-407 (-564)) $ (-407 (-564))) NIL)) (-3163 (((-112) $) NIL)) (-2024 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2157 (($ $ (-919)) NIL) (($ $ (-407 (-564))) NIL)) (-2709 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#1| (-363)))) (-3471 (((-112) $) NIL)) (-2374 (($ |#1| (-407 (-564))) 20) (($ $ (-1079) (-407 (-564))) NIL) (($ $ (-642 (-1079)) (-642 (-407 (-564)))) NIL)) (-2947 (($ (-1 |#1| |#1|) $) NIL)) (-3576 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2510 (($ $) NIL)) (-2523 ((|#1| $) NIL)) (-2066 (($ (-642 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-1985 (((-1164 |#1| |#2| |#3|) $) 41)) (-2477 (((-3 (-1164 |#1| |#2| |#3|) "failed") $) NIL)) (-2456 (((-1164 |#1| |#2| |#3|) $) NIL)) (-1778 (((-1155) $) NIL)) (-2481 (($ $) NIL (|has| |#1| (-363)))) (-3703 (($ $) 39 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1173)) NIL (-2682 (-12 (|has| |#1| (-15 -3703 (|#1| |#1| (-1173)))) (|has| |#1| (-15 -2397 ((-642 (-1173)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-957)) (|has| |#1| (-1197))))) (($ $ (-1258 |#2|)) 40 (|has| |#1| (-38 (-407 (-564)))))) (-3999 (((-1117) $) NIL)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) NIL (|has| |#1| (-363)))) (-2105 (($ (-642 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2254 (((-418 $) $) NIL (|has| |#1| (-363)))) (-1877 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL (|has| |#1| (-363)))) (-2137 (($ $ (-407 (-564))) NIL)) (-2842 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-1483 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#1| (-363)))) (-3466 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3154 (((-1153 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))))) (-4274 (((-769) $) NIL (|has| |#1| (-363)))) (-4369 ((|#1| $ (-407 (-564))) NIL) (($ $ $) NIL (|has| (-407 (-564)) (-1109)))) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL (|has| |#1| (-363)))) (-2199 (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-1173) (-769)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-642 (-1173))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-1173)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-769)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $ (-1258 |#2|)) 38)) (-3252 (((-407 (-564)) $) NIL)) (-3120 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2992 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3098 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2971 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3077 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2946 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4189 (($ $) NIL)) (-2390 (((-860) $) 62) (($ (-564)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1164 |#1| |#2| |#3|)) 30) (($ (-1171 |#1| |#2| |#3|)) 31) (($ (-1258 |#2|)) 26) (($ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556)))) (-3005 ((|#1| $ (-407 (-564))) NIL)) (-3434 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3348 (((-769)) NIL T CONST)) (-2245 ((|#1| $) 12)) (-1600 (((-112) $ $) NIL)) (-3155 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3025 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1594 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3131 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3002 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3176 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3047 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3560 ((|#1| $ (-407 (-564))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))) (|has| |#1| (-15 -2390 (|#1| (-1173))))))) (-3165 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3058 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3168 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3035 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3142 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3014 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2361 (($) 22 T CONST)) (-2371 (($) 16 T CONST)) (-2711 (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-1173) (-769)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-642 (-1173))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-1173)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-769)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-2821 (((-112) $ $) NIL)) (-2943 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) 24)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))))) -(((-1170 |#1| |#2| |#3|) (-13 (-1245 |#1| (-1164 |#1| |#2| |#3|)) (-1036 (-1171 |#1| |#2| |#3|)) (-614 (-1258 |#2|)) (-10 -8 (-15 -2199 ($ $ (-1258 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3703 ($ $ (-1258 |#2|))) |%noBranch|))) (-1047) (-1173) |#1|) (T -1170)) -((-2199 (*1 *1 *1 *2) (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-1170 *3 *4 *5)) (-4 *3 (-1047)) (-14 *5 *3))) (-3703 (*1 *1 *1 *2) (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-1170 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1047)) (-14 *5 *3)))) -(-13 (-1245 |#1| (-1164 |#1| |#2| |#3|)) (-1036 (-1171 |#1| |#2| |#3|)) (-614 (-1258 |#2|)) (-10 -8 (-15 -2199 ($ $ (-1258 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3703 ($ $ (-1258 |#2|))) |%noBranch|))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) 131)) (-2397 (((-642 (-1079)) $) NIL)) (-1341 (((-1173) $) 121)) (-2152 (((-1235 |#2| |#1|) $ (-769)) 69)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-4252 (($ $) NIL (|has| |#1| (-556)))) (-1722 (((-112) $) NIL (|has| |#1| (-556)))) (-2180 (($ $ (-769)) 85) (($ $ (-769) (-769)) 82)) (-4077 (((-1153 (-2 (|:| |k| (-769)) (|:| |c| |#1|))) $) 107)) (-3087 (($ $) 175 (|has| |#1| (-38 (-407 (-564)))))) (-2958 (($ $) 151 (|has| |#1| (-38 (-407 (-564)))))) (-3085 (((-3 $ "failed") $ $) NIL)) (-2264 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3067 (($ $) 171 (|has| |#1| (-38 (-407 (-564)))))) (-2933 (($ $) 147 (|has| |#1| (-38 (-407 (-564)))))) (-3182 (($ (-1153 (-2 (|:| |k| (-769)) (|:| |c| |#1|)))) 120) (($ (-1153 |#1|)) 115)) (-3110 (($ $) 179 (|has| |#1| (-38 (-407 (-564)))))) (-2981 (($ $) 155 (|has| |#1| (-38 (-407 (-564)))))) (-2822 (($) NIL T CONST)) (-3459 (($ $) NIL)) (-2675 (((-3 $ "failed") $) 25)) (-4361 (($ $) 28)) (-2437 (((-950 |#1|) $ (-769)) 81) (((-950 |#1|) $ (-769) (-769)) 83)) (-2210 (((-112) $) 126)) (-2833 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2408 (((-769) $) 128) (((-769) $ (-769)) 130)) (-3163 (((-112) $) NIL)) (-2024 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2157 (($ $ (-919)) NIL)) (-2869 (($ (-1 |#1| (-564)) $) NIL)) (-3471 (((-112) $) NIL)) (-2374 (($ |#1| (-769)) 13) (($ $ (-1079) (-769)) NIL) (($ $ (-642 (-1079)) (-642 (-769))) NIL)) (-2947 (($ (-1 |#1| |#1|) $) NIL)) (-3576 (($ $) 137 (|has| |#1| (-38 (-407 (-564)))))) (-2510 (($ $) NIL)) (-2523 ((|#1| $) NIL)) (-1778 (((-1155) $) NIL)) (-3703 (($ $) 135 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1173)) NIL (-2682 (-12 (|has| |#1| (-15 -3703 (|#1| |#1| (-1173)))) (|has| |#1| (-15 -2397 ((-642 (-1173)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-957)) (|has| |#1| (-1197))))) (($ $ (-1258 |#2|)) 136 (|has| |#1| (-38 (-407 (-564)))))) (-3999 (((-1117) $) NIL)) (-2137 (($ $ (-769)) 15)) (-2842 (((-3 $ "failed") $ $) 26 (|has| |#1| (-556)))) (-3466 (($ $) 139 (|has| |#1| (-38 (-407 (-564)))))) (-3154 (((-1153 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-769)))))) (-4369 ((|#1| $ (-769)) 124) (($ $ $) 134 (|has| (-769) (-1109)))) (-2199 (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| |#1| (-15 * (|#1| (-769) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-1173) (-769)) NIL (-12 (|has| |#1| (-15 * (|#1| (-769) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-642 (-1173))) NIL (-12 (|has| |#1| (-15 * (|#1| (-769) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-1173)) NIL (-12 (|has| |#1| (-15 * (|#1| (-769) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-769)) NIL (|has| |#1| (-15 * (|#1| (-769) |#1|)))) (($ $) 29 (|has| |#1| (-15 * (|#1| (-769) |#1|)))) (($ $ (-1258 |#2|)) 31)) (-3252 (((-769) $) NIL)) (-3120 (($ $) 181 (|has| |#1| (-38 (-407 (-564)))))) (-2992 (($ $) 157 (|has| |#1| (-38 (-407 (-564)))))) (-3098 (($ $) 177 (|has| |#1| (-38 (-407 (-564)))))) (-2971 (($ $) 153 (|has| |#1| (-38 (-407 (-564)))))) (-3077 (($ $) 173 (|has| |#1| (-38 (-407 (-564)))))) (-2946 (($ $) 149 (|has| |#1| (-38 (-407 (-564)))))) (-4189 (($ $) NIL)) (-2390 (((-860) $) 208) (($ (-564)) NIL) (($ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556))) (($ |#1|) 132 (|has| |#1| (-172))) (($ (-1235 |#2| |#1|)) 55) (($ (-1258 |#2|)) 36)) (-2839 (((-1153 |#1|) $) 103)) (-3005 ((|#1| $ (-769)) 123)) (-3434 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3348 (((-769)) NIL T CONST)) (-2245 ((|#1| $) 58)) (-1600 (((-112) $ $) NIL)) (-3155 (($ $) 187 (|has| |#1| (-38 (-407 (-564)))))) (-3025 (($ $) 163 (|has| |#1| (-38 (-407 (-564)))))) (-1594 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3131 (($ $) 183 (|has| |#1| (-38 (-407 (-564)))))) (-3002 (($ $) 159 (|has| |#1| (-38 (-407 (-564)))))) (-3176 (($ $) 191 (|has| |#1| (-38 (-407 (-564)))))) (-3047 (($ $) 167 (|has| |#1| (-38 (-407 (-564)))))) (-3560 ((|#1| $ (-769)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-769)))) (|has| |#1| (-15 -2390 (|#1| (-1173))))))) (-3165 (($ $) 193 (|has| |#1| (-38 (-407 (-564)))))) (-3058 (($ $) 169 (|has| |#1| (-38 (-407 (-564)))))) (-3168 (($ $) 189 (|has| |#1| (-38 (-407 (-564)))))) (-3035 (($ $) 165 (|has| |#1| (-38 (-407 (-564)))))) (-3142 (($ $) 185 (|has| |#1| (-38 (-407 (-564)))))) (-3014 (($ $) 161 (|has| |#1| (-38 (-407 (-564)))))) (-2361 (($) 17 T CONST)) (-2371 (($) 20 T CONST)) (-2711 (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| |#1| (-15 * (|#1| (-769) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-1173) (-769)) NIL (-12 (|has| |#1| (-15 * (|#1| (-769) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-642 (-1173))) NIL (-12 (|has| |#1| (-15 * (|#1| (-769) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-1173)) NIL (-12 (|has| |#1| (-15 * (|#1| (-769) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-769)) NIL (|has| |#1| (-15 * (|#1| (-769) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-769) |#1|))))) (-2821 (((-112) $ $) NIL)) (-2943 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-2930 (($ $) NIL) (($ $ $) 200)) (-2917 (($ $ $) 35)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ |#1|) 205 (|has| |#1| (-363))) (($ $ $) 140 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 143 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) 138) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))))) -(((-1171 |#1| |#2| |#3|) (-13 (-1253 |#1|) (-10 -8 (-15 -2390 ($ (-1235 |#2| |#1|))) (-15 -2152 ((-1235 |#2| |#1|) $ (-769))) (-15 -2390 ($ (-1258 |#2|))) (-15 -2199 ($ $ (-1258 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3703 ($ $ (-1258 |#2|))) |%noBranch|))) (-1047) (-1173) |#1|) (T -1171)) -((-2390 (*1 *1 *2) (-12 (-5 *2 (-1235 *4 *3)) (-4 *3 (-1047)) (-14 *4 (-1173)) (-14 *5 *3) (-5 *1 (-1171 *3 *4 *5)))) (-2152 (*1 *2 *1 *3) (-12 (-5 *3 (-769)) (-5 *2 (-1235 *5 *4)) (-5 *1 (-1171 *4 *5 *6)) (-4 *4 (-1047)) (-14 *5 (-1173)) (-14 *6 *4))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-1171 *3 *4 *5)) (-4 *3 (-1047)) (-14 *5 *3))) (-2199 (*1 *1 *1 *2) (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-1171 *3 *4 *5)) (-4 *3 (-1047)) (-14 *5 *3))) (-3703 (*1 *1 *1 *2) (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-1171 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1047)) (-14 *5 *3)))) -(-13 (-1253 |#1|) (-10 -8 (-15 -2390 ($ (-1235 |#2| |#1|))) (-15 -2152 ((-1235 |#2| |#1|) $ (-769))) (-15 -2390 ($ (-1258 |#2|))) (-15 -2199 ($ $ (-1258 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3703 ($ $ (-1258 |#2|))) |%noBranch|))) -((-2390 (((-860) $) 33) (($ (-1173)) 35)) (-2682 (($ (-3 (|:| I (-316 (-564))) (|:| -2266 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2266 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 46)) (-2670 (($ (-3 (|:| I (-316 (-564))) (|:| -2266 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 39) (($ $) 40)) (-2956 (($ (-3 (|:| I (-316 (-564))) (|:| -2266 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2266 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 41)) (-2945 (($ (-3 (|:| I (-316 (-564))) (|:| -2266 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2266 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 43)) (-2932 (($ (-3 (|:| I (-316 (-564))) (|:| -2266 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2266 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 42)) (-2919 (($ (-3 (|:| I (-316 (-564))) (|:| -2266 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2266 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 44)) (-2008 (($ (-3 (|:| I (-316 (-564))) (|:| -2266 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2266 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 47)) (-12 (($ (-3 (|:| I (-316 (-564))) (|:| -2266 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2266 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 45))) -(((-1172) (-13 (-611 (-860)) (-10 -8 (-15 -2390 ($ (-1173))) (-15 -2956 ($ (-3 (|:| I (-316 (-564))) (|:| -2266 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2266 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2932 ($ (-3 (|:| I (-316 (-564))) (|:| -2266 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2266 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2945 ($ (-3 (|:| I (-316 (-564))) (|:| -2266 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2266 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2919 ($ (-3 (|:| I (-316 (-564))) (|:| -2266 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2266 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2682 ($ (-3 (|:| I (-316 (-564))) (|:| -2266 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2266 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2008 ($ (-3 (|:| I (-316 (-564))) (|:| -2266 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2266 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-316 (-564))) (|:| -2266 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2266 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2670 ($ (-3 (|:| I (-316 (-564))) (|:| -2266 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2670 ($ $))))) (T -1172)) -((-2390 (*1 *1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-1172)))) (-2956 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-564))) (|:| -2266 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1172)))) (-5 *1 (-1172)))) (-2932 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-564))) (|:| -2266 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1172)))) (-5 *1 (-1172)))) (-2945 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-564))) (|:| -2266 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1172)))) (-5 *1 (-1172)))) (-2919 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-564))) (|:| -2266 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1172)))) (-5 *1 (-1172)))) (-2682 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-564))) (|:| -2266 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1172)))) (-5 *1 (-1172)))) (-2008 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-564))) (|:| -2266 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1172)))) (-5 *1 (-1172)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-564))) (|:| -2266 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1172)))) (-5 *1 (-1172)))) (-2670 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-564))) (|:| -2266 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1172)))) (-5 *1 (-1172)))) (-2670 (*1 *1 *1) (-5 *1 (-1172)))) -(-13 (-611 (-860)) (-10 -8 (-15 -2390 ($ (-1173))) (-15 -2956 ($ (-3 (|:| I (-316 (-564))) (|:| -2266 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2266 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2932 ($ (-3 (|:| I (-316 (-564))) (|:| -2266 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2266 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2945 ($ (-3 (|:| I (-316 (-564))) (|:| -2266 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2266 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2919 ($ (-3 (|:| I (-316 (-564))) (|:| -2266 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2266 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2682 ($ (-3 (|:| I (-316 (-564))) (|:| -2266 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2266 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2008 ($ (-3 (|:| I (-316 (-564))) (|:| -2266 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2266 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-316 (-564))) (|:| -2266 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2266 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2670 ($ (-3 (|:| I (-316 (-564))) (|:| -2266 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2670 ($ $)))) -((-2856 (((-112) $ $) NIL)) (-1966 (($ $ (-642 (-860))) 64)) (-2388 (($ $ (-642 (-860))) 62)) (-4301 (((-1155) $) 103)) (-2504 (((-2 (|:| -1949 (-642 (-860))) (|:| -2247 (-642 (-860))) (|:| |presup| (-642 (-860))) (|:| -3325 (-642 (-860))) (|:| |args| (-642 (-860)))) $) 110)) (-1647 (((-112) $) 23)) (-3753 (($ $ (-642 (-642 (-860)))) 61) (($ $ (-2 (|:| -1949 (-642 (-860))) (|:| -2247 (-642 (-860))) (|:| |presup| (-642 (-860))) (|:| -3325 (-642 (-860))) (|:| |args| (-642 (-860))))) 101)) (-2822 (($) 166 T CONST)) (-4197 (((-1267)) 138)) (-1381 (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) 71) (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) 78)) (-4233 (($) 124) (($ $) 133)) (-2493 (($ $) 102)) (-3225 (($ $ $) NIL)) (-2903 (($ $ $) NIL)) (-3902 (((-642 $) $) 139)) (-1778 (((-1155) $) 116)) (-3999 (((-1117) $) NIL)) (-4369 (($ $ (-642 (-860))) 63)) (-3003 (((-536) $) 48) (((-1173) $) 49) (((-890 (-564)) $) 82) (((-890 (-379)) $) 80)) (-2390 (((-860) $) 55) (($ (-1155)) 50)) (-1600 (((-112) $ $) NIL)) (-3392 (($ $ (-642 (-860))) 65)) (-3816 (((-1155) $) 34) (((-1155) $ (-112)) 35) (((-1267) (-820) $) 36) (((-1267) (-820) $ (-112)) 37)) (-2881 (((-112) $ $) NIL)) (-2857 (((-112) $ $) NIL)) (-2821 (((-112) $ $) 51)) (-2868 (((-112) $ $) NIL)) (-2844 (((-112) $ $) 52))) -(((-1173) (-13 (-848) (-612 (-536)) (-826) (-612 (-1173)) (-614 (-1155)) (-612 (-890 (-564))) (-612 (-890 (-379))) (-884 (-564)) (-884 (-379)) (-10 -8 (-15 -4233 ($)) (-15 -4233 ($ $)) (-15 -4197 ((-1267))) (-15 -2493 ($ $)) (-15 -1647 ((-112) $)) (-15 -2504 ((-2 (|:| -1949 (-642 (-860))) (|:| -2247 (-642 (-860))) (|:| |presup| (-642 (-860))) (|:| -3325 (-642 (-860))) (|:| |args| (-642 (-860)))) $)) (-15 -3753 ($ $ (-642 (-642 (-860))))) (-15 -3753 ($ $ (-2 (|:| -1949 (-642 (-860))) (|:| -2247 (-642 (-860))) (|:| |presup| (-642 (-860))) (|:| -3325 (-642 (-860))) (|:| |args| (-642 (-860)))))) (-15 -2388 ($ $ (-642 (-860)))) (-15 -1966 ($ $ (-642 (-860)))) (-15 -3392 ($ $ (-642 (-860)))) (-15 -4369 ($ $ (-642 (-860)))) (-15 -4301 ((-1155) $)) (-15 -3902 ((-642 $) $)) (-15 -2822 ($) -1551)))) (T -1173)) -((-4233 (*1 *1) (-5 *1 (-1173))) (-4233 (*1 *1 *1) (-5 *1 (-1173))) (-4197 (*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-1173)))) (-2493 (*1 *1 *1) (-5 *1 (-1173))) (-1647 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1173)))) (-2504 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1949 (-642 (-860))) (|:| -2247 (-642 (-860))) (|:| |presup| (-642 (-860))) (|:| -3325 (-642 (-860))) (|:| |args| (-642 (-860))))) (-5 *1 (-1173)))) (-3753 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-642 (-860)))) (-5 *1 (-1173)))) (-3753 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -1949 (-642 (-860))) (|:| -2247 (-642 (-860))) (|:| |presup| (-642 (-860))) (|:| -3325 (-642 (-860))) (|:| |args| (-642 (-860))))) (-5 *1 (-1173)))) (-2388 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-1173)))) (-1966 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-1173)))) (-3392 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-1173)))) (-4369 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-1173)))) (-4301 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1173)))) (-3902 (*1 *2 *1) (-12 (-5 *2 (-642 (-1173))) (-5 *1 (-1173)))) (-2822 (*1 *1) (-5 *1 (-1173)))) -(-13 (-848) (-612 (-536)) (-826) (-612 (-1173)) (-614 (-1155)) (-612 (-890 (-564))) (-612 (-890 (-379))) (-884 (-564)) (-884 (-379)) (-10 -8 (-15 -4233 ($)) (-15 -4233 ($ $)) (-15 -4197 ((-1267))) (-15 -2493 ($ $)) (-15 -1647 ((-112) $)) (-15 -2504 ((-2 (|:| -1949 (-642 (-860))) (|:| -2247 (-642 (-860))) (|:| |presup| (-642 (-860))) (|:| -3325 (-642 (-860))) (|:| |args| (-642 (-860)))) $)) (-15 -3753 ($ $ (-642 (-642 (-860))))) (-15 -3753 ($ $ (-2 (|:| -1949 (-642 (-860))) (|:| -2247 (-642 (-860))) (|:| |presup| (-642 (-860))) (|:| -3325 (-642 (-860))) (|:| |args| (-642 (-860)))))) (-15 -2388 ($ $ (-642 (-860)))) (-15 -1966 ($ $ (-642 (-860)))) (-15 -3392 ($ $ (-642 (-860)))) (-15 -4369 ($ $ (-642 (-860)))) (-15 -4301 ((-1155) $)) (-15 -3902 ((-642 $) $)) (-15 -2822 ($) -1551))) -((-3017 (((-1262 |#1|) |#1| (-919)) 18) (((-1262 |#1|) (-642 |#1|)) 25))) -(((-1174 |#1|) (-10 -7 (-15 -3017 ((-1262 |#1|) (-642 |#1|))) (-15 -3017 ((-1262 |#1|) |#1| (-919)))) (-1047)) (T -1174)) -((-3017 (*1 *2 *3 *4) (-12 (-5 *4 (-919)) (-5 *2 (-1262 *3)) (-5 *1 (-1174 *3)) (-4 *3 (-1047)))) (-3017 (*1 *2 *3) (-12 (-5 *3 (-642 *4)) (-4 *4 (-1047)) (-5 *2 (-1262 *4)) (-5 *1 (-1174 *4))))) -(-10 -7 (-15 -3017 ((-1262 |#1|) (-642 |#1|))) (-15 -3017 ((-1262 |#1|) |#1| (-919)))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-4252 (($ $) NIL (|has| |#1| (-556)))) (-1722 (((-112) $) NIL (|has| |#1| (-556)))) (-3085 (((-3 $ "failed") $ $) NIL)) (-2822 (($) NIL T CONST)) (-2849 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1036 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1036 (-407 (-564))))) (((-3 |#1| "failed") $) NIL)) (-1687 (((-564) $) NIL (|has| |#1| (-1036 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1036 (-407 (-564))))) ((|#1| $) NIL)) (-3459 (($ $) NIL)) (-2675 (((-3 $ "failed") $) NIL)) (-2511 (($ $) NIL (|has| |#1| (-452)))) (-2315 (($ $ |#1| (-969) $) NIL)) (-3163 (((-112) $) 17)) (-1904 (((-769) $) NIL)) (-3471 (((-112) $) NIL)) (-2374 (($ |#1| (-969)) NIL)) (-2887 (((-969) $) NIL)) (-3879 (($ (-1 (-969) (-969)) $) NIL)) (-2947 (($ (-1 |#1| |#1|) $) NIL)) (-2510 (($ $) NIL)) (-2523 ((|#1| $) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2491 (((-112) $) NIL)) (-2500 ((|#1| $) NIL)) (-3411 (($ $ (-969) |#1| $) NIL (-12 (|has| (-969) (-131)) (|has| |#1| (-556))))) (-2842 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556)))) (-3252 (((-969) $) NIL)) (-4325 ((|#1| $) NIL (|has| |#1| (-452)))) (-2390 (((-860) $) NIL) (($ (-564)) NIL) (($ $) NIL (|has| |#1| (-556))) (($ |#1|) NIL) (($ (-407 (-564))) NIL (-2682 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1036 (-407 (-564))))))) (-2839 (((-642 |#1|) $) NIL)) (-3005 ((|#1| $ (-969)) NIL)) (-3434 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3348 (((-769)) NIL T CONST)) (-2645 (($ $ $ (-769)) NIL (|has| |#1| (-172)))) (-1600 (((-112) $ $) NIL)) (-1594 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2361 (($) 11 T CONST)) (-2371 (($) NIL T CONST)) (-2821 (((-112) $ $) NIL)) (-2943 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) 21)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) 22) (($ $ |#1|) NIL) (($ |#1| $) 16) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))))) -(((-1175 |#1|) (-13 (-326 |#1| (-969)) (-10 -8 (IF (|has| |#1| (-556)) (IF (|has| (-969) (-131)) (-15 -3411 ($ $ (-969) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4408)) (-6 -4408) |%noBranch|))) (-1047)) (T -1175)) -((-3411 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-969)) (-4 *2 (-131)) (-5 *1 (-1175 *3)) (-4 *3 (-556)) (-4 *3 (-1047))))) -(-13 (-326 |#1| (-969)) (-10 -8 (IF (|has| |#1| (-556)) (IF (|has| (-969) (-131)) (-15 -3411 ($ $ (-969) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4408)) (-6 -4408) |%noBranch|))) -((-2777 (((-1177) (-1173) $) 25)) (-3954 (($) 29)) (-3263 (((-3 (|:| |fst| (-434)) (|:| -4287 "void")) (-1173) $) 22)) (-1815 (((-1267) (-1173) (-3 (|:| |fst| (-434)) (|:| -4287 "void")) $) 41) (((-1267) (-1173) (-3 (|:| |fst| (-434)) (|:| -4287 "void"))) 42) (((-1267) (-3 (|:| |fst| (-434)) (|:| -4287 "void"))) 43)) (-1721 (((-1267) (-1173)) 58)) (-3789 (((-1267) (-1173) $) 55) (((-1267) (-1173)) 56) (((-1267)) 57)) (-3239 (((-1267) (-1173)) 37)) (-1536 (((-1173)) 36)) (-2179 (($) 34)) (-3327 (((-437) (-1173) (-437) (-1173) $) 45) (((-437) (-642 (-1173)) (-437) (-1173) $) 49) (((-437) (-1173) (-437)) 46) (((-437) (-1173) (-437) (-1173)) 50)) (-2512 (((-1173)) 35)) (-2390 (((-860) $) 28)) (-1698 (((-1267)) 30) (((-1267) (-1173)) 33)) (-2581 (((-642 (-1173)) (-1173) $) 24)) (-3526 (((-1267) (-1173) (-642 (-1173)) $) 38) (((-1267) (-1173) (-642 (-1173))) 39) (((-1267) (-642 (-1173))) 40))) -(((-1176) (-13 (-611 (-860)) (-10 -8 (-15 -3954 ($)) (-15 -1698 ((-1267))) (-15 -1698 ((-1267) (-1173))) (-15 -3327 ((-437) (-1173) (-437) (-1173) $)) (-15 -3327 ((-437) (-642 (-1173)) (-437) (-1173) $)) (-15 -3327 ((-437) (-1173) (-437))) (-15 -3327 ((-437) (-1173) (-437) (-1173))) (-15 -3239 ((-1267) (-1173))) (-15 -2512 ((-1173))) (-15 -1536 ((-1173))) (-15 -3526 ((-1267) (-1173) (-642 (-1173)) $)) (-15 -3526 ((-1267) (-1173) (-642 (-1173)))) (-15 -3526 ((-1267) (-642 (-1173)))) (-15 -1815 ((-1267) (-1173) (-3 (|:| |fst| (-434)) (|:| -4287 "void")) $)) (-15 -1815 ((-1267) (-1173) (-3 (|:| |fst| (-434)) (|:| -4287 "void")))) (-15 -1815 ((-1267) (-3 (|:| |fst| (-434)) (|:| -4287 "void")))) (-15 -3789 ((-1267) (-1173) $)) (-15 -3789 ((-1267) (-1173))) (-15 -3789 ((-1267))) (-15 -1721 ((-1267) (-1173))) (-15 -2179 ($)) (-15 -3263 ((-3 (|:| |fst| (-434)) (|:| -4287 "void")) (-1173) $)) (-15 -2581 ((-642 (-1173)) (-1173) $)) (-15 -2777 ((-1177) (-1173) $))))) (T -1176)) -((-3954 (*1 *1) (-5 *1 (-1176))) (-1698 (*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-1176)))) (-1698 (*1 *2 *3) (-12 (-5 *3 (-1173)) (-5 *2 (-1267)) (-5 *1 (-1176)))) (-3327 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-437)) (-5 *3 (-1173)) (-5 *1 (-1176)))) (-3327 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-437)) (-5 *3 (-642 (-1173))) (-5 *4 (-1173)) (-5 *1 (-1176)))) (-3327 (*1 *2 *3 *2) (-12 (-5 *2 (-437)) (-5 *3 (-1173)) (-5 *1 (-1176)))) (-3327 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-437)) (-5 *3 (-1173)) (-5 *1 (-1176)))) (-3239 (*1 *2 *3) (-12 (-5 *3 (-1173)) (-5 *2 (-1267)) (-5 *1 (-1176)))) (-2512 (*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-1176)))) (-1536 (*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-1176)))) (-3526 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-642 (-1173))) (-5 *3 (-1173)) (-5 *2 (-1267)) (-5 *1 (-1176)))) (-3526 (*1 *2 *3 *4) (-12 (-5 *4 (-642 (-1173))) (-5 *3 (-1173)) (-5 *2 (-1267)) (-5 *1 (-1176)))) (-3526 (*1 *2 *3) (-12 (-5 *3 (-642 (-1173))) (-5 *2 (-1267)) (-5 *1 (-1176)))) (-1815 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1173)) (-5 *4 (-3 (|:| |fst| (-434)) (|:| -4287 "void"))) (-5 *2 (-1267)) (-5 *1 (-1176)))) (-1815 (*1 *2 *3 *4) (-12 (-5 *3 (-1173)) (-5 *4 (-3 (|:| |fst| (-434)) (|:| -4287 "void"))) (-5 *2 (-1267)) (-5 *1 (-1176)))) (-1815 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-434)) (|:| -4287 "void"))) (-5 *2 (-1267)) (-5 *1 (-1176)))) (-3789 (*1 *2 *3 *1) (-12 (-5 *3 (-1173)) (-5 *2 (-1267)) (-5 *1 (-1176)))) (-3789 (*1 *2 *3) (-12 (-5 *3 (-1173)) (-5 *2 (-1267)) (-5 *1 (-1176)))) (-3789 (*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-1176)))) (-1721 (*1 *2 *3) (-12 (-5 *3 (-1173)) (-5 *2 (-1267)) (-5 *1 (-1176)))) (-2179 (*1 *1) (-5 *1 (-1176))) (-3263 (*1 *2 *3 *1) (-12 (-5 *3 (-1173)) (-5 *2 (-3 (|:| |fst| (-434)) (|:| -4287 "void"))) (-5 *1 (-1176)))) (-2581 (*1 *2 *3 *1) (-12 (-5 *2 (-642 (-1173))) (-5 *1 (-1176)) (-5 *3 (-1173)))) (-2777 (*1 *2 *3 *1) (-12 (-5 *3 (-1173)) (-5 *2 (-1177)) (-5 *1 (-1176))))) -(-13 (-611 (-860)) (-10 -8 (-15 -3954 ($)) (-15 -1698 ((-1267))) (-15 -1698 ((-1267) (-1173))) (-15 -3327 ((-437) (-1173) (-437) (-1173) $)) (-15 -3327 ((-437) (-642 (-1173)) (-437) (-1173) $)) (-15 -3327 ((-437) (-1173) (-437))) (-15 -3327 ((-437) (-1173) (-437) (-1173))) (-15 -3239 ((-1267) (-1173))) (-15 -2512 ((-1173))) (-15 -1536 ((-1173))) (-15 -3526 ((-1267) (-1173) (-642 (-1173)) $)) (-15 -3526 ((-1267) (-1173) (-642 (-1173)))) (-15 -3526 ((-1267) (-642 (-1173)))) (-15 -1815 ((-1267) (-1173) (-3 (|:| |fst| (-434)) (|:| -4287 "void")) $)) (-15 -1815 ((-1267) (-1173) (-3 (|:| |fst| (-434)) (|:| -4287 "void")))) (-15 -1815 ((-1267) (-3 (|:| |fst| (-434)) (|:| -4287 "void")))) (-15 -3789 ((-1267) (-1173) $)) (-15 -3789 ((-1267) (-1173))) (-15 -3789 ((-1267))) (-15 -1721 ((-1267) (-1173))) (-15 -2179 ($)) (-15 -3263 ((-3 (|:| |fst| (-434)) (|:| -4287 "void")) (-1173) $)) (-15 -2581 ((-642 (-1173)) (-1173) $)) (-15 -2777 ((-1177) (-1173) $)))) -((-1450 (((-642 (-642 (-3 (|:| -2493 (-1173)) (|:| -2253 (-642 (-3 (|:| S (-1173)) (|:| P (-950 (-564))))))))) $) 66)) (-3454 (((-642 (-3 (|:| -2493 (-1173)) (|:| -2253 (-642 (-3 (|:| S (-1173)) (|:| P (-950 (-564)))))))) (-434) $) 47)) (-2012 (($ (-642 (-2 (|:| -1914 (-1173)) (|:| -2683 (-437))))) 17)) (-1721 (((-1267) $) 74)) (-2117 (((-642 (-1173)) $) 22)) (-3202 (((-1101) $) 60)) (-1844 (((-437) (-1173) $) 27)) (-2871 (((-642 (-1173)) $) 30)) (-2179 (($) 19)) (-3327 (((-437) (-642 (-1173)) (-437) $) 25) (((-437) (-1173) (-437) $) 24)) (-2390 (((-860) $) 9) (((-1185 (-1173) (-437)) $) 13))) -(((-1177) (-13 (-611 (-860)) (-10 -8 (-15 -2390 ((-1185 (-1173) (-437)) $)) (-15 -2179 ($)) (-15 -3327 ((-437) (-642 (-1173)) (-437) $)) (-15 -3327 ((-437) (-1173) (-437) $)) (-15 -1844 ((-437) (-1173) $)) (-15 -2117 ((-642 (-1173)) $)) (-15 -3454 ((-642 (-3 (|:| -2493 (-1173)) (|:| -2253 (-642 (-3 (|:| S (-1173)) (|:| P (-950 (-564)))))))) (-434) $)) (-15 -2871 ((-642 (-1173)) $)) (-15 -1450 ((-642 (-642 (-3 (|:| -2493 (-1173)) (|:| -2253 (-642 (-3 (|:| S (-1173)) (|:| P (-950 (-564))))))))) $)) (-15 -3202 ((-1101) $)) (-15 -1721 ((-1267) $)) (-15 -2012 ($ (-642 (-2 (|:| -1914 (-1173)) (|:| -2683 (-437))))))))) (T -1177)) -((-2390 (*1 *2 *1) (-12 (-5 *2 (-1185 (-1173) (-437))) (-5 *1 (-1177)))) (-2179 (*1 *1) (-5 *1 (-1177))) (-3327 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-437)) (-5 *3 (-642 (-1173))) (-5 *1 (-1177)))) (-3327 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-437)) (-5 *3 (-1173)) (-5 *1 (-1177)))) (-1844 (*1 *2 *3 *1) (-12 (-5 *3 (-1173)) (-5 *2 (-437)) (-5 *1 (-1177)))) (-2117 (*1 *2 *1) (-12 (-5 *2 (-642 (-1173))) (-5 *1 (-1177)))) (-3454 (*1 *2 *3 *1) (-12 (-5 *3 (-434)) (-5 *2 (-642 (-3 (|:| -2493 (-1173)) (|:| -2253 (-642 (-3 (|:| S (-1173)) (|:| P (-950 (-564))))))))) (-5 *1 (-1177)))) (-2871 (*1 *2 *1) (-12 (-5 *2 (-642 (-1173))) (-5 *1 (-1177)))) (-1450 (*1 *2 *1) (-12 (-5 *2 (-642 (-642 (-3 (|:| -2493 (-1173)) (|:| -2253 (-642 (-3 (|:| S (-1173)) (|:| P (-950 (-564)))))))))) (-5 *1 (-1177)))) (-3202 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-1177)))) (-1721 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-1177)))) (-2012 (*1 *1 *2) (-12 (-5 *2 (-642 (-2 (|:| -1914 (-1173)) (|:| -2683 (-437))))) (-5 *1 (-1177))))) -(-13 (-611 (-860)) (-10 -8 (-15 -2390 ((-1185 (-1173) (-437)) $)) (-15 -2179 ($)) (-15 -3327 ((-437) (-642 (-1173)) (-437) $)) (-15 -3327 ((-437) (-1173) (-437) $)) (-15 -1844 ((-437) (-1173) $)) (-15 -2117 ((-642 (-1173)) $)) (-15 -3454 ((-642 (-3 (|:| -2493 (-1173)) (|:| -2253 (-642 (-3 (|:| S (-1173)) (|:| P (-950 (-564)))))))) (-434) $)) (-15 -2871 ((-642 (-1173)) $)) (-15 -1450 ((-642 (-642 (-3 (|:| -2493 (-1173)) (|:| -2253 (-642 (-3 (|:| S (-1173)) (|:| P (-950 (-564))))))))) $)) (-15 -3202 ((-1101) $)) (-15 -1721 ((-1267) $)) (-15 -2012 ($ (-642 (-2 (|:| -1914 (-1173)) (|:| -2683 (-437)))))))) -((-2856 (((-112) $ $) NIL)) (-2849 (((-3 (-564) "failed") $) 29) (((-3 (-225) "failed") $) 35) (((-3 (-506) "failed") $) 43) (((-3 (-1155) "failed") $) 47)) (-1687 (((-564) $) 30) (((-225) $) 36) (((-506) $) 40) (((-1155) $) 48)) (-2741 (((-112) $) 53)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-3718 (((-3 (-564) (-225) (-506) (-1155) $) $) 55)) (-3681 (((-642 $) $) 57)) (-3003 (((-1101) $) 24) (($ (-1101)) 25)) (-2789 (((-112) $) 56)) (-2390 (((-860) $) 23) (($ (-564)) 26) (($ (-225)) 32) (($ (-506)) 38) (($ (-1155)) 44) (((-536) $) 59) (((-564) $) 31) (((-225) $) 37) (((-506) $) 41) (((-1155) $) 49)) (-2351 (((-112) $ (|[\|\|]| (-564))) 10) (((-112) $ (|[\|\|]| (-225))) 13) (((-112) $ (|[\|\|]| (-506))) 19) (((-112) $ (|[\|\|]| (-1155))) 16)) (-4133 (($ (-506) (-642 $)) 51) (($ $ (-642 $)) 52)) (-1600 (((-112) $ $) NIL)) (-3899 (((-564) $) 27) (((-225) $) 33) (((-506) $) 39) (((-1155) $) 45)) (-2821 (((-112) $ $) 7))) -(((-1178) (-13 (-1257) (-1097) (-1036 (-564)) (-1036 (-225)) (-1036 (-506)) (-1036 (-1155)) (-611 (-536)) (-10 -8 (-15 -3003 ((-1101) $)) (-15 -3003 ($ (-1101))) (-15 -2390 ((-564) $)) (-15 -3899 ((-564) $)) (-15 -2390 ((-225) $)) (-15 -3899 ((-225) $)) (-15 -2390 ((-506) $)) (-15 -3899 ((-506) $)) (-15 -2390 ((-1155) $)) (-15 -3899 ((-1155) $)) (-15 -4133 ($ (-506) (-642 $))) (-15 -4133 ($ $ (-642 $))) (-15 -2741 ((-112) $)) (-15 -3718 ((-3 (-564) (-225) (-506) (-1155) $) $)) (-15 -3681 ((-642 $) $)) (-15 -2789 ((-112) $)) (-15 -2351 ((-112) $ (|[\|\|]| (-564)))) (-15 -2351 ((-112) $ (|[\|\|]| (-225)))) (-15 -2351 ((-112) $ (|[\|\|]| (-506)))) (-15 -2351 ((-112) $ (|[\|\|]| (-1155))))))) (T -1178)) -((-3003 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-1178)))) (-3003 (*1 *1 *2) (-12 (-5 *2 (-1101)) (-5 *1 (-1178)))) (-2390 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1178)))) (-3899 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1178)))) (-2390 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1178)))) (-3899 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1178)))) (-2390 (*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-1178)))) (-3899 (*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-1178)))) (-2390 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1178)))) (-3899 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1178)))) (-4133 (*1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-642 (-1178))) (-5 *1 (-1178)))) (-4133 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-1178))) (-5 *1 (-1178)))) (-2741 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1178)))) (-3718 (*1 *2 *1) (-12 (-5 *2 (-3 (-564) (-225) (-506) (-1155) (-1178))) (-5 *1 (-1178)))) (-3681 (*1 *2 *1) (-12 (-5 *2 (-642 (-1178))) (-5 *1 (-1178)))) (-2789 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1178)))) (-2351 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-564))) (-5 *2 (-112)) (-5 *1 (-1178)))) (-2351 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-225))) (-5 *2 (-112)) (-5 *1 (-1178)))) (-2351 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-506))) (-5 *2 (-112)) (-5 *1 (-1178)))) (-2351 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1155))) (-5 *2 (-112)) (-5 *1 (-1178))))) -(-13 (-1257) (-1097) (-1036 (-564)) (-1036 (-225)) (-1036 (-506)) (-1036 (-1155)) (-611 (-536)) (-10 -8 (-15 -3003 ((-1101) $)) (-15 -3003 ($ (-1101))) (-15 -2390 ((-564) $)) (-15 -3899 ((-564) $)) (-15 -2390 ((-225) $)) (-15 -3899 ((-225) $)) (-15 -2390 ((-506) $)) (-15 -3899 ((-506) $)) (-15 -2390 ((-1155) $)) (-15 -3899 ((-1155) $)) (-15 -4133 ($ (-506) (-642 $))) (-15 -4133 ($ $ (-642 $))) (-15 -2741 ((-112) $)) (-15 -3718 ((-3 (-564) (-225) (-506) (-1155) $) $)) (-15 -3681 ((-642 $) $)) (-15 -2789 ((-112) $)) (-15 -2351 ((-112) $ (|[\|\|]| (-564)))) (-15 -2351 ((-112) $ (|[\|\|]| (-225)))) (-15 -2351 ((-112) $ (|[\|\|]| (-506)))) (-15 -2351 ((-112) $ (|[\|\|]| (-1155)))))) -((-2856 (((-112) $ $) NIL)) (-4003 (((-769)) 22)) (-2822 (($) 12 T CONST)) (-3235 (($) 27)) (-3225 (($ $ $) NIL) (($) 19 T CONST)) (-2903 (($ $ $) NIL) (($) 20 T CONST)) (-2535 (((-919) $) 24)) (-1778 (((-1155) $) NIL)) (-2065 (($ (-919)) 23)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) NIL)) (-1600 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL)) (-2857 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL)) (-2868 (((-112) $ $) NIL)) (-2844 (((-112) $ $) NIL))) -(((-1179 |#1|) (-13 (-842) (-10 -8 (-15 -2822 ($) -1551))) (-919)) (T -1179)) -((-2822 (*1 *1) (-12 (-5 *1 (-1179 *2)) (-14 *2 (-919))))) -(-13 (-842) (-10 -8 (-15 -2822 ($) -1551))) +((-2438 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-526))) (-5 *2 (-112)))) (-3955 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-526)))) (-2438 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-218))) (-5 *2 (-112)))) (-3955 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-218)))) (-2438 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-676))) (-5 *2 (-112)))) (-3955 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-676)))) (-2438 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1274))) (-5 *2 (-112)))) (-3955 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1274)))) (-2438 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) (-3955 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-138)))) (-2438 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-133))) (-5 *2 (-112)))) (-3955 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-133)))) (-2438 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1114))) (-5 *2 (-112)))) (-3955 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1114)))) (-2438 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-3955 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-96)))) (-2438 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-681))) (-5 *2 (-112)))) (-3955 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-681)))) (-2438 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-519))) (-5 *2 (-112)))) (-3955 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-519)))) (-2438 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1065))) (-5 *2 (-112)))) (-3955 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1065)))) (-2438 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1275))) (-5 *2 (-112)))) (-3955 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1275)))) (-2438 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-527))) (-5 *2 (-112)))) (-3955 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-527)))) (-2438 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) (-3955 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-154)))) (-2438 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-671))) (-5 *2 (-112)))) (-3955 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-671)))) (-2438 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-312))) (-5 *2 (-112)))) (-3955 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-312)))) (-2438 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1036))) (-5 *2 (-112)))) (-3955 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1036)))) (-2438 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-180))) (-5 *2 (-112)))) (-3955 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-180)))) (-2438 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-970))) (-5 *2 (-112)))) (-3955 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-970)))) (-2438 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1072))) (-5 *2 (-112)))) (-3955 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1072)))) (-2438 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1089))) (-5 *2 (-112)))) (-3955 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1089)))) (-2438 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1095))) (-5 *2 (-112)))) (-3955 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1095)))) (-2438 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-626))) (-5 *2 (-112)))) (-3955 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-626)))) (-2438 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1165))) (-5 *2 (-112)))) (-3955 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1165)))) (-2438 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-112)))) (-3955 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-156)))) (-2438 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) (-3955 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-137)))) (-2438 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-480))) (-5 *2 (-112)))) (-3955 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-480)))) (-2438 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-593))) (-5 *2 (-112)))) (-3955 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-593)))) (-2438 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-508))) (-5 *2 (-112)))) (-3955 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-508)))) (-2438 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1157))) (-5 *2 (-112)))) (-3955 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1157)))) (-2438 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-566))) (-5 *2 (-112)))) (-3955 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-566))))) +(-13 (-1082) (-1259) (-10 -8 (-15 -2438 ((-112) $ (|[\|\|]| (-526)))) (-15 -3955 ((-526) $)) (-15 -2438 ((-112) $ (|[\|\|]| (-218)))) (-15 -3955 ((-218) $)) (-15 -2438 ((-112) $ (|[\|\|]| (-676)))) (-15 -3955 ((-676) $)) (-15 -2438 ((-112) $ (|[\|\|]| (-1274)))) (-15 -3955 ((-1274) $)) (-15 -2438 ((-112) $ (|[\|\|]| (-138)))) (-15 -3955 ((-138) $)) (-15 -2438 ((-112) $ (|[\|\|]| (-133)))) (-15 -3955 ((-133) $)) (-15 -2438 ((-112) $ (|[\|\|]| (-1114)))) (-15 -3955 ((-1114) $)) (-15 -2438 ((-112) $ (|[\|\|]| (-96)))) (-15 -3955 ((-96) $)) (-15 -2438 ((-112) $ (|[\|\|]| (-681)))) (-15 -3955 ((-681) $)) (-15 -2438 ((-112) $ (|[\|\|]| (-519)))) (-15 -3955 ((-519) $)) (-15 -2438 ((-112) $ (|[\|\|]| (-1065)))) (-15 -3955 ((-1065) $)) (-15 -2438 ((-112) $ (|[\|\|]| (-1275)))) (-15 -3955 ((-1275) $)) (-15 -2438 ((-112) $ (|[\|\|]| (-527)))) (-15 -3955 ((-527) $)) (-15 -2438 ((-112) $ (|[\|\|]| (-154)))) (-15 -3955 ((-154) $)) (-15 -2438 ((-112) $ (|[\|\|]| (-671)))) (-15 -3955 ((-671) $)) (-15 -2438 ((-112) $ (|[\|\|]| (-312)))) (-15 -3955 ((-312) $)) (-15 -2438 ((-112) $ (|[\|\|]| (-1036)))) (-15 -3955 ((-1036) $)) (-15 -2438 ((-112) $ (|[\|\|]| (-180)))) (-15 -3955 ((-180) $)) (-15 -2438 ((-112) $ (|[\|\|]| (-970)))) (-15 -3955 ((-970) $)) (-15 -2438 ((-112) $ (|[\|\|]| (-1072)))) (-15 -3955 ((-1072) $)) (-15 -2438 ((-112) $ (|[\|\|]| (-1089)))) (-15 -3955 ((-1089) $)) (-15 -2438 ((-112) $ (|[\|\|]| (-1095)))) (-15 -3955 ((-1095) $)) (-15 -2438 ((-112) $ (|[\|\|]| (-626)))) (-15 -3955 ((-626) $)) (-15 -2438 ((-112) $ (|[\|\|]| (-1165)))) (-15 -3955 ((-1165) $)) (-15 -2438 ((-112) $ (|[\|\|]| (-156)))) (-15 -3955 ((-156) $)) (-15 -2438 ((-112) $ (|[\|\|]| (-137)))) (-15 -3955 ((-137) $)) (-15 -2438 ((-112) $ (|[\|\|]| (-480)))) (-15 -3955 ((-480) $)) (-15 -2438 ((-112) $ (|[\|\|]| (-593)))) (-15 -3955 ((-593) $)) (-15 -2438 ((-112) $ (|[\|\|]| (-508)))) (-15 -3955 ((-508) $)) (-15 -2438 ((-112) $ (|[\|\|]| (-1157)))) (-15 -3955 ((-1157) $)) (-15 -2438 ((-112) $ (|[\|\|]| (-566)))) (-15 -3955 ((-566) $)))) +(((-93) . T) ((-102) . T) ((-616 #0=(-1180)) . T) ((-613 (-862)) . T) ((-613 #0#) . T) ((-492 #0#) . T) ((-1099) . T) ((-1082) . T) ((-1259) . T)) +((-1607 (((-1269) (-644 (-862))) 23) (((-1269) (-862)) 22)) (-2253 (((-1269) (-644 (-862))) 21) (((-1269) (-862)) 20)) (-3386 (((-1269) (-644 (-862))) 19) (((-1269) (-862)) 11) (((-1269) (-1157) (-862)) 17))) +(((-1137) (-10 -7 (-15 -3386 ((-1269) (-1157) (-862))) (-15 -3386 ((-1269) (-862))) (-15 -2253 ((-1269) (-862))) (-15 -1607 ((-1269) (-862))) (-15 -3386 ((-1269) (-644 (-862)))) (-15 -2253 ((-1269) (-644 (-862)))) (-15 -1607 ((-1269) (-644 (-862)))))) (T -1137)) +((-1607 (*1 *2 *3) (-12 (-5 *3 (-644 (-862))) (-5 *2 (-1269)) (-5 *1 (-1137)))) (-2253 (*1 *2 *3) (-12 (-5 *3 (-644 (-862))) (-5 *2 (-1269)) (-5 *1 (-1137)))) (-3386 (*1 *2 *3) (-12 (-5 *3 (-644 (-862))) (-5 *2 (-1269)) (-5 *1 (-1137)))) (-1607 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1269)) (-5 *1 (-1137)))) (-2253 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1269)) (-5 *1 (-1137)))) (-3386 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1269)) (-5 *1 (-1137)))) (-3386 (*1 *2 *3 *4) (-12 (-5 *3 (-1157)) (-5 *4 (-862)) (-5 *2 (-1269)) (-5 *1 (-1137))))) +(-10 -7 (-15 -3386 ((-1269) (-1157) (-862))) (-15 -3386 ((-1269) (-862))) (-15 -2253 ((-1269) (-862))) (-15 -1607 ((-1269) (-862))) (-15 -3386 ((-1269) (-644 (-862)))) (-15 -2253 ((-1269) (-644 (-862)))) (-15 -1607 ((-1269) (-644 (-862))))) +((-2510 (($ $ $) 10)) (-2013 (($ $) 9)) (-4307 (($ $ $) 13)) (-3755 (($ $ $) 15)) (-3480 (($ $ $) 12)) (-1818 (($ $ $) 14)) (-1751 (($ $) 17)) (-2492 (($ $) 16)) (-4298 (($ $) 6)) (-1977 (($ $ $) 11) (($ $) 7)) (-1795 (($ $ $) 8))) +(((-1138) (-140)) (T -1138)) +((-1751 (*1 *1 *1) (-4 *1 (-1138))) (-2492 (*1 *1 *1) (-4 *1 (-1138))) (-3755 (*1 *1 *1 *1) (-4 *1 (-1138))) (-1818 (*1 *1 *1 *1) (-4 *1 (-1138))) (-4307 (*1 *1 *1 *1) (-4 *1 (-1138))) (-3480 (*1 *1 *1 *1) (-4 *1 (-1138))) (-1977 (*1 *1 *1 *1) (-4 *1 (-1138))) (-2510 (*1 *1 *1 *1) (-4 *1 (-1138))) (-2013 (*1 *1 *1) (-4 *1 (-1138))) (-1795 (*1 *1 *1 *1) (-4 *1 (-1138))) (-1977 (*1 *1 *1) (-4 *1 (-1138))) (-4298 (*1 *1 *1) (-4 *1 (-1138)))) +(-13 (-10 -8 (-15 -4298 ($ $)) (-15 -1977 ($ $)) (-15 -1795 ($ $ $)) (-15 -2013 ($ $)) (-15 -2510 ($ $ $)) (-15 -1977 ($ $ $)) (-15 -3480 ($ $ $)) (-15 -4307 ($ $ $)) (-15 -1818 ($ $ $)) (-15 -3755 ($ $ $)) (-15 -2492 ($ $)) (-15 -1751 ($ $)))) +((-2986 (((-112) $ $) 44)) (-2153 ((|#1| $) 17)) (-2381 (((-112) $ $ (-1 (-112) |#2| |#2|)) 39)) (-2354 (((-112) $) 19)) (-2138 (($ $ |#1|) 30)) (-2385 (($ $ (-112)) 32)) (-2002 (($ $) 33)) (-1943 (($ $ |#2|) 31)) (-3151 (((-1157) $) NIL)) (-4226 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 38)) (-4059 (((-1119) $) NIL)) (-2788 (((-112) $) 16)) (-1737 (($) 13)) (-3924 (($ $) 29)) (-2489 (($ |#1| |#2| (-112)) 20) (($ |#1| |#2|) 21) (($ (-2 (|:| |val| |#1|) (|:| -2192 |#2|))) 23) (((-644 $) (-644 (-2 (|:| |val| |#1|) (|:| -2192 |#2|)))) 26) (((-644 $) |#1| (-644 |#2|)) 28)) (-1562 ((|#2| $) 18)) (-2479 (((-862) $) 53)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 42))) +(((-1139 |#1| |#2|) (-13 (-1099) (-10 -8 (-15 -1737 ($)) (-15 -2788 ((-112) $)) (-15 -2153 (|#1| $)) (-15 -1562 (|#2| $)) (-15 -2354 ((-112) $)) (-15 -2489 ($ |#1| |#2| (-112))) (-15 -2489 ($ |#1| |#2|)) (-15 -2489 ($ (-2 (|:| |val| |#1|) (|:| -2192 |#2|)))) (-15 -2489 ((-644 $) (-644 (-2 (|:| |val| |#1|) (|:| -2192 |#2|))))) (-15 -2489 ((-644 $) |#1| (-644 |#2|))) (-15 -3924 ($ $)) (-15 -2138 ($ $ |#1|)) (-15 -1943 ($ $ |#2|)) (-15 -2385 ($ $ (-112))) (-15 -2002 ($ $)) (-15 -4226 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -2381 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1099) (-34)) (-13 (-1099) (-34))) (T -1139)) +((-1737 (*1 *1) (-12 (-5 *1 (-1139 *2 *3)) (-4 *2 (-13 (-1099) (-34))) (-4 *3 (-13 (-1099) (-34))))) (-2788 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1139 *3 *4)) (-4 *3 (-13 (-1099) (-34))) (-4 *4 (-13 (-1099) (-34))))) (-2153 (*1 *2 *1) (-12 (-4 *2 (-13 (-1099) (-34))) (-5 *1 (-1139 *2 *3)) (-4 *3 (-13 (-1099) (-34))))) (-1562 (*1 *2 *1) (-12 (-4 *2 (-13 (-1099) (-34))) (-5 *1 (-1139 *3 *2)) (-4 *3 (-13 (-1099) (-34))))) (-2354 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1139 *3 *4)) (-4 *3 (-13 (-1099) (-34))) (-4 *4 (-13 (-1099) (-34))))) (-2489 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1139 *2 *3)) (-4 *2 (-13 (-1099) (-34))) (-4 *3 (-13 (-1099) (-34))))) (-2489 (*1 *1 *2 *3) (-12 (-5 *1 (-1139 *2 *3)) (-4 *2 (-13 (-1099) (-34))) (-4 *3 (-13 (-1099) (-34))))) (-2489 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -2192 *4))) (-4 *3 (-13 (-1099) (-34))) (-4 *4 (-13 (-1099) (-34))) (-5 *1 (-1139 *3 *4)))) (-2489 (*1 *2 *3) (-12 (-5 *3 (-644 (-2 (|:| |val| *4) (|:| -2192 *5)))) (-4 *4 (-13 (-1099) (-34))) (-4 *5 (-13 (-1099) (-34))) (-5 *2 (-644 (-1139 *4 *5))) (-5 *1 (-1139 *4 *5)))) (-2489 (*1 *2 *3 *4) (-12 (-5 *4 (-644 *5)) (-4 *5 (-13 (-1099) (-34))) (-5 *2 (-644 (-1139 *3 *5))) (-5 *1 (-1139 *3 *5)) (-4 *3 (-13 (-1099) (-34))))) (-3924 (*1 *1 *1) (-12 (-5 *1 (-1139 *2 *3)) (-4 *2 (-13 (-1099) (-34))) (-4 *3 (-13 (-1099) (-34))))) (-2138 (*1 *1 *1 *2) (-12 (-5 *1 (-1139 *2 *3)) (-4 *2 (-13 (-1099) (-34))) (-4 *3 (-13 (-1099) (-34))))) (-1943 (*1 *1 *1 *2) (-12 (-5 *1 (-1139 *3 *2)) (-4 *3 (-13 (-1099) (-34))) (-4 *2 (-13 (-1099) (-34))))) (-2385 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1139 *3 *4)) (-4 *3 (-13 (-1099) (-34))) (-4 *4 (-13 (-1099) (-34))))) (-2002 (*1 *1 *1) (-12 (-5 *1 (-1139 *2 *3)) (-4 *2 (-13 (-1099) (-34))) (-4 *3 (-13 (-1099) (-34))))) (-4226 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1099) (-34))) (-4 *6 (-13 (-1099) (-34))) (-5 *2 (-112)) (-5 *1 (-1139 *5 *6)))) (-2381 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1099) (-34))) (-5 *2 (-112)) (-5 *1 (-1139 *4 *5)) (-4 *4 (-13 (-1099) (-34)))))) +(-13 (-1099) (-10 -8 (-15 -1737 ($)) (-15 -2788 ((-112) $)) (-15 -2153 (|#1| $)) (-15 -1562 (|#2| $)) (-15 -2354 ((-112) $)) (-15 -2489 ($ |#1| |#2| (-112))) (-15 -2489 ($ |#1| |#2|)) (-15 -2489 ($ (-2 (|:| |val| |#1|) (|:| -2192 |#2|)))) (-15 -2489 ((-644 $) (-644 (-2 (|:| |val| |#1|) (|:| -2192 |#2|))))) (-15 -2489 ((-644 $) |#1| (-644 |#2|))) (-15 -3924 ($ $)) (-15 -2138 ($ $ |#1|)) (-15 -1943 ($ $ |#2|)) (-15 -2385 ($ $ (-112))) (-15 -2002 ($ $)) (-15 -4226 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -2381 ((-112) $ $ (-1 (-112) |#2| |#2|))))) +((-2986 (((-112) $ $) NIL (|has| (-1139 |#1| |#2|) (-1099)))) (-2153 (((-1139 |#1| |#2|) $) 27)) (-3083 (($ $) 91)) (-1582 (((-112) (-1139 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 100)) (-3711 (($ $ $ (-644 (-1139 |#1| |#2|))) 108) (($ $ $ (-644 (-1139 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 109)) (-1453 (((-112) $ (-771)) NIL)) (-3684 (((-1139 |#1| |#2|) $ (-1139 |#1| |#2|)) 46 (|has| $ (-6 -4418)))) (-3901 (((-1139 |#1| |#2|) $ "value" (-1139 |#1| |#2|)) NIL (|has| $ (-6 -4418)))) (-3891 (($ $ (-644 $)) 44 (|has| $ (-6 -4418)))) (-1811 (($) NIL T CONST)) (-3969 (((-644 (-2 (|:| |val| |#1|) (|:| -2192 |#2|))) $) 95)) (-2295 (($ (-1139 |#1| |#2|) $) 42)) (-2628 (($ (-1139 |#1| |#2|) $) 34)) (-3872 (((-644 (-1139 |#1| |#2|)) $) NIL (|has| $ (-6 -4417)))) (-3578 (((-644 $) $) 54)) (-2097 (((-112) (-1139 |#1| |#2|) $) 97)) (-2778 (((-112) $ $) NIL (|has| (-1139 |#1| |#2|) (-1099)))) (-2756 (((-112) $ (-771)) NIL)) (-4227 (((-644 (-1139 |#1| |#2|)) $) 58 (|has| $ (-6 -4417)))) (-1688 (((-112) (-1139 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-1139 |#1| |#2|) (-1099))))) (-3708 (($ (-1 (-1139 |#1| |#2|) (-1139 |#1| |#2|)) $) 50 (|has| $ (-6 -4418)))) (-3080 (($ (-1 (-1139 |#1| |#2|) (-1139 |#1| |#2|)) $) 49)) (-4106 (((-112) $ (-771)) NIL)) (-3658 (((-644 (-1139 |#1| |#2|)) $) 56)) (-1587 (((-112) $) 45)) (-3151 (((-1157) $) NIL (|has| (-1139 |#1| |#2|) (-1099)))) (-4059 (((-1119) $) NIL (|has| (-1139 |#1| |#2|) (-1099)))) (-3746 (((-3 $ "failed") $) 89)) (-3966 (((-112) (-1 (-112) (-1139 |#1| |#2|)) $) NIL (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 (-1139 |#1| |#2|)))) NIL (-12 (|has| (-1139 |#1| |#2|) (-310 (-1139 |#1| |#2|))) (|has| (-1139 |#1| |#2|) (-1099)))) (($ $ (-295 (-1139 |#1| |#2|))) NIL (-12 (|has| (-1139 |#1| |#2|) (-310 (-1139 |#1| |#2|))) (|has| (-1139 |#1| |#2|) (-1099)))) (($ $ (-1139 |#1| |#2|) (-1139 |#1| |#2|)) NIL (-12 (|has| (-1139 |#1| |#2|) (-310 (-1139 |#1| |#2|))) (|has| (-1139 |#1| |#2|) (-1099)))) (($ $ (-644 (-1139 |#1| |#2|)) (-644 (-1139 |#1| |#2|))) NIL (-12 (|has| (-1139 |#1| |#2|) (-310 (-1139 |#1| |#2|))) (|has| (-1139 |#1| |#2|) (-1099))))) (-1844 (((-112) $ $) 53)) (-2788 (((-112) $) 24)) (-1737 (($) 26)) (-4376 (((-1139 |#1| |#2|) $ "value") NIL)) (-4098 (((-566) $ $) NIL)) (-2636 (((-112) $) 47)) (-4068 (((-771) (-1 (-112) (-1139 |#1| |#2|)) $) NIL (|has| $ (-6 -4417))) (((-771) (-1139 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-1139 |#1| |#2|) (-1099))))) (-3924 (($ $) 52)) (-2489 (($ (-1139 |#1| |#2|)) 10) (($ |#1| |#2| (-644 $)) 13) (($ |#1| |#2| (-644 (-1139 |#1| |#2|))) 15) (($ |#1| |#2| |#1| (-644 |#2|)) 18)) (-3945 (((-644 |#2|) $) 96)) (-2479 (((-862) $) 87 (|has| (-1139 |#1| |#2|) (-613 (-862))))) (-2156 (((-644 $) $) 31)) (-3922 (((-112) $ $) NIL (|has| (-1139 |#1| |#2|) (-1099)))) (-3900 (((-112) $ $) NIL (|has| (-1139 |#1| |#2|) (-1099)))) (-3667 (((-112) (-1 (-112) (-1139 |#1| |#2|)) $) NIL (|has| $ (-6 -4417)))) (-2952 (((-112) $ $) 70 (|has| (-1139 |#1| |#2|) (-1099)))) (-3002 (((-771) $) 64 (|has| $ (-6 -4417))))) +(((-1140 |#1| |#2|) (-13 (-1010 (-1139 |#1| |#2|)) (-10 -8 (-6 -4418) (-6 -4417) (-15 -3746 ((-3 $ "failed") $)) (-15 -3083 ($ $)) (-15 -2489 ($ (-1139 |#1| |#2|))) (-15 -2489 ($ |#1| |#2| (-644 $))) (-15 -2489 ($ |#1| |#2| (-644 (-1139 |#1| |#2|)))) (-15 -2489 ($ |#1| |#2| |#1| (-644 |#2|))) (-15 -3945 ((-644 |#2|) $)) (-15 -3969 ((-644 (-2 (|:| |val| |#1|) (|:| -2192 |#2|))) $)) (-15 -2097 ((-112) (-1139 |#1| |#2|) $)) (-15 -1582 ((-112) (-1139 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -2628 ($ (-1139 |#1| |#2|) $)) (-15 -2295 ($ (-1139 |#1| |#2|) $)) (-15 -3711 ($ $ $ (-644 (-1139 |#1| |#2|)))) (-15 -3711 ($ $ $ (-644 (-1139 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1099) (-34)) (-13 (-1099) (-34))) (T -1140)) +((-3746 (*1 *1 *1) (|partial| -12 (-5 *1 (-1140 *2 *3)) (-4 *2 (-13 (-1099) (-34))) (-4 *3 (-13 (-1099) (-34))))) (-3083 (*1 *1 *1) (-12 (-5 *1 (-1140 *2 *3)) (-4 *2 (-13 (-1099) (-34))) (-4 *3 (-13 (-1099) (-34))))) (-2489 (*1 *1 *2) (-12 (-5 *2 (-1139 *3 *4)) (-4 *3 (-13 (-1099) (-34))) (-4 *4 (-13 (-1099) (-34))) (-5 *1 (-1140 *3 *4)))) (-2489 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-644 (-1140 *2 *3))) (-5 *1 (-1140 *2 *3)) (-4 *2 (-13 (-1099) (-34))) (-4 *3 (-13 (-1099) (-34))))) (-2489 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-644 (-1139 *2 *3))) (-4 *2 (-13 (-1099) (-34))) (-4 *3 (-13 (-1099) (-34))) (-5 *1 (-1140 *2 *3)))) (-2489 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-644 *3)) (-4 *3 (-13 (-1099) (-34))) (-5 *1 (-1140 *2 *3)) (-4 *2 (-13 (-1099) (-34))))) (-3945 (*1 *2 *1) (-12 (-5 *2 (-644 *4)) (-5 *1 (-1140 *3 *4)) (-4 *3 (-13 (-1099) (-34))) (-4 *4 (-13 (-1099) (-34))))) (-3969 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -2192 *4)))) (-5 *1 (-1140 *3 *4)) (-4 *3 (-13 (-1099) (-34))) (-4 *4 (-13 (-1099) (-34))))) (-2097 (*1 *2 *3 *1) (-12 (-5 *3 (-1139 *4 *5)) (-4 *4 (-13 (-1099) (-34))) (-4 *5 (-13 (-1099) (-34))) (-5 *2 (-112)) (-5 *1 (-1140 *4 *5)))) (-1582 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1139 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1099) (-34))) (-4 *6 (-13 (-1099) (-34))) (-5 *2 (-112)) (-5 *1 (-1140 *5 *6)))) (-2628 (*1 *1 *2 *1) (-12 (-5 *2 (-1139 *3 *4)) (-4 *3 (-13 (-1099) (-34))) (-4 *4 (-13 (-1099) (-34))) (-5 *1 (-1140 *3 *4)))) (-2295 (*1 *1 *2 *1) (-12 (-5 *2 (-1139 *3 *4)) (-4 *3 (-13 (-1099) (-34))) (-4 *4 (-13 (-1099) (-34))) (-5 *1 (-1140 *3 *4)))) (-3711 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-644 (-1139 *3 *4))) (-4 *3 (-13 (-1099) (-34))) (-4 *4 (-13 (-1099) (-34))) (-5 *1 (-1140 *3 *4)))) (-3711 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-1139 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1099) (-34))) (-4 *5 (-13 (-1099) (-34))) (-5 *1 (-1140 *4 *5))))) +(-13 (-1010 (-1139 |#1| |#2|)) (-10 -8 (-6 -4418) (-6 -4417) (-15 -3746 ((-3 $ "failed") $)) (-15 -3083 ($ $)) (-15 -2489 ($ (-1139 |#1| |#2|))) (-15 -2489 ($ |#1| |#2| (-644 $))) (-15 -2489 ($ |#1| |#2| (-644 (-1139 |#1| |#2|)))) (-15 -2489 ($ |#1| |#2| |#1| (-644 |#2|))) (-15 -3945 ((-644 |#2|) $)) (-15 -3969 ((-644 (-2 (|:| |val| |#1|) (|:| -2192 |#2|))) $)) (-15 -2097 ((-112) (-1139 |#1| |#2|) $)) (-15 -1582 ((-112) (-1139 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -2628 ($ (-1139 |#1| |#2|) $)) (-15 -2295 ($ (-1139 |#1| |#2|) $)) (-15 -3711 ($ $ $ (-644 (-1139 |#1| |#2|)))) (-15 -3711 ($ $ $ (-644 (-1139 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-2076 (($ $) NIL)) (-3837 ((|#2| $) NIL)) (-3349 (((-112) $) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-3495 (($ (-689 |#2|)) 56)) (-3834 (((-112) $) NIL)) (-1453 (((-112) $ (-771)) NIL)) (-3191 (($ |#2|) 14)) (-1811 (($) NIL T CONST)) (-3411 (($ $) 69 (|has| |#2| (-308)))) (-3395 (((-240 |#1| |#2|) $ (-566)) 42)) (-2980 (((-3 (-566) "failed") $) NIL (|has| |#2| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#2| (-1038 (-409 (-566))))) (((-3 |#2| "failed") $) NIL)) (-1709 (((-566) $) NIL (|has| |#2| (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| |#2| (-1038 (-409 (-566))))) ((|#2| $) NIL)) (-2275 (((-689 (-566)) (-689 $)) NIL (|has| |#2| (-639 (-566)))) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| |#2| (-639 (-566)))) (((-2 (|:| -4196 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 $) (-1264 $)) NIL) (((-689 |#2|) (-689 $)) NIL)) (-3757 (((-3 $ "failed") $) 83)) (-2299 (((-771) $) 71 (|has| |#2| (-558)))) (-3653 ((|#2| $ (-566) (-566)) NIL)) (-3872 (((-644 |#2|) $) NIL (|has| $ (-6 -4417)))) (-2264 (((-112) $) NIL)) (-2630 (((-771) $) 73 (|has| |#2| (-558)))) (-1711 (((-644 (-240 |#1| |#2|)) $) 77 (|has| |#2| (-558)))) (-2541 (((-771) $) NIL)) (-4259 (($ |#2|) 25)) (-2552 (((-771) $) NIL)) (-2756 (((-112) $ (-771)) NIL)) (-3561 ((|#2| $) 67 (|has| |#2| (-6 (-4419 "*"))))) (-3715 (((-566) $) NIL)) (-1359 (((-566) $) NIL)) (-4227 (((-644 |#2|) $) NIL (|has| $ (-6 -4417)))) (-1688 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1099))))) (-3113 (((-566) $) NIL)) (-2701 (((-566) $) NIL)) (-4155 (($ (-644 (-644 |#2|))) 37)) (-3708 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2337 (((-644 (-644 |#2|)) $) NIL)) (-4106 (((-112) $ (-771)) NIL)) (-3151 (((-1157) $) NIL)) (-1780 (((-3 $ "failed") $) 80 (|has| |#2| (-365)))) (-4059 (((-1119) $) NIL)) (-2976 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-558)))) (-3966 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))) (-1844 (((-112) $ $) NIL)) (-2788 (((-112) $) NIL)) (-1737 (($) NIL)) (-4376 ((|#2| $ (-566) (-566) |#2|) NIL) ((|#2| $ (-566) (-566)) NIL)) (-3526 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1175)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-771)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-4110 ((|#2| $) NIL)) (-3628 (($ (-644 |#2|)) 50)) (-2754 (((-112) $) NIL)) (-2657 (((-240 |#1| |#2|) $) NIL)) (-1636 ((|#2| $) 65 (|has| |#2| (-6 (-4419 "*"))))) (-4068 (((-771) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417))) (((-771) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1099))))) (-3924 (($ $) NIL)) (-3136 (((-538) $) 89 (|has| |#2| (-614 (-538))))) (-4327 (((-240 |#1| |#2|) $ (-566)) 44)) (-2479 (((-862) $) 47) (($ (-566)) NIL) (($ (-409 (-566))) NIL (|has| |#2| (-1038 (-409 (-566))))) (($ |#2|) NIL) (((-689 |#2|) $) 52)) (-1558 (((-771)) 23 T CONST)) (-3900 (((-112) $ $) NIL)) (-3667 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417)))) (-2126 (((-112) $) NIL)) (-2446 (($) 16 T CONST)) (-2459 (($) 21 T CONST)) (-2834 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1175)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-771)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-2952 (((-112) $ $) NIL)) (-3077 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) 63) (($ $ (-566)) 82 (|has| |#2| (-365)))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-240 |#1| |#2|) $ (-240 |#1| |#2|)) 59) (((-240 |#1| |#2|) (-240 |#1| |#2|) $) 61)) (-3002 (((-771) $) NIL (|has| $ (-6 -4417))))) +(((-1141 |#1| |#2|) (-13 (-1122 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-613 (-689 |#2|)) (-10 -8 (-15 -4259 ($ |#2|)) (-15 -2076 ($ $)) (-15 -3495 ($ (-689 |#2|))) (IF (|has| |#2| (-6 (-4419 "*"))) (-6 -4406) |%noBranch|) (IF (|has| |#2| (-6 (-4419 "*"))) (IF (|has| |#2| (-6 -4414)) (-6 -4414) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-614 (-538))) (-6 (-614 (-538))) |%noBranch|))) (-771) (-1049)) (T -1141)) +((-4259 (*1 *1 *2) (-12 (-5 *1 (-1141 *3 *2)) (-14 *3 (-771)) (-4 *2 (-1049)))) (-2076 (*1 *1 *1) (-12 (-5 *1 (-1141 *2 *3)) (-14 *2 (-771)) (-4 *3 (-1049)))) (-3495 (*1 *1 *2) (-12 (-5 *2 (-689 *4)) (-4 *4 (-1049)) (-5 *1 (-1141 *3 *4)) (-14 *3 (-771))))) +(-13 (-1122 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-613 (-689 |#2|)) (-10 -8 (-15 -4259 ($ |#2|)) (-15 -2076 ($ $)) (-15 -3495 ($ (-689 |#2|))) (IF (|has| |#2| (-6 (-4419 "*"))) (-6 -4406) |%noBranch|) (IF (|has| |#2| (-6 (-4419 "*"))) (IF (|has| |#2| (-6 -4414)) (-6 -4414) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-614 (-538))) (-6 (-614 (-538))) |%noBranch|))) +((-3037 (($ $) 19)) (-2571 (($ $ (-144)) 10) (($ $ (-141)) 14)) (-1470 (((-112) $ $) 24)) (-4032 (($ $) 17)) (-4376 (((-144) $ (-566) (-144)) NIL) (((-144) $ (-566)) NIL) (($ $ (-1231 (-566))) NIL) (($ $ $) 31)) (-2479 (($ (-144)) 29) (((-862) $) NIL))) +(((-1142 |#1|) (-10 -8 (-15 -2479 ((-862) |#1|)) (-15 -4376 (|#1| |#1| |#1|)) (-15 -2571 (|#1| |#1| (-141))) (-15 -2571 (|#1| |#1| (-144))) (-15 -2479 (|#1| (-144))) (-15 -1470 ((-112) |#1| |#1|)) (-15 -3037 (|#1| |#1|)) (-15 -4032 (|#1| |#1|)) (-15 -4376 (|#1| |#1| (-1231 (-566)))) (-15 -4376 ((-144) |#1| (-566))) (-15 -4376 ((-144) |#1| (-566) (-144)))) (-1143)) (T -1142)) +NIL +(-10 -8 (-15 -2479 ((-862) |#1|)) (-15 -4376 (|#1| |#1| |#1|)) (-15 -2571 (|#1| |#1| (-141))) (-15 -2571 (|#1| |#1| (-144))) (-15 -2479 (|#1| (-144))) (-15 -1470 ((-112) |#1| |#1|)) (-15 -3037 (|#1| |#1|)) (-15 -4032 (|#1| |#1|)) (-15 -4376 (|#1| |#1| (-1231 (-566)))) (-15 -4376 ((-144) |#1| (-566))) (-15 -4376 ((-144) |#1| (-566) (-144)))) +((-2986 (((-112) $ $) 19 (|has| (-144) (-1099)))) (-4243 (($ $) 121)) (-3037 (($ $) 122)) (-2571 (($ $ (-144)) 109) (($ $ (-141)) 108)) (-2462 (((-1269) $ (-566) (-566)) 41 (|has| $ (-6 -4418)))) (-3861 (((-112) $ $) 119)) (-3841 (((-112) $ $ (-566)) 118)) (-4045 (((-644 $) $ (-144)) 111) (((-644 $) $ (-141)) 110)) (-4163 (((-112) (-1 (-112) (-144) (-144)) $) 99) (((-112) $) 93 (|has| (-144) (-850)))) (-2893 (($ (-1 (-112) (-144) (-144)) $) 90 (|has| $ (-6 -4418))) (($ $) 89 (-12 (|has| (-144) (-850)) (|has| $ (-6 -4418))))) (-1374 (($ (-1 (-112) (-144) (-144)) $) 100) (($ $) 94 (|has| (-144) (-850)))) (-1453 (((-112) $ (-771)) 8)) (-3901 (((-144) $ (-566) (-144)) 53 (|has| $ (-6 -4418))) (((-144) $ (-1231 (-566)) (-144)) 59 (|has| $ (-6 -4418)))) (-3543 (($ (-1 (-112) (-144)) $) 76 (|has| $ (-6 -4417)))) (-1811 (($) 7 T CONST)) (-1577 (($ $ (-144)) 105) (($ $ (-141)) 104)) (-2273 (($ $) 91 (|has| $ (-6 -4418)))) (-3877 (($ $) 101)) (-4334 (($ $ (-1231 (-566)) $) 115)) (-4111 (($ $) 79 (-12 (|has| (-144) (-1099)) (|has| $ (-6 -4417))))) (-2628 (($ (-144) $) 78 (-12 (|has| (-144) (-1099)) (|has| $ (-6 -4417)))) (($ (-1 (-112) (-144)) $) 75 (|has| $ (-6 -4417)))) (-1838 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) 77 (-12 (|has| (-144) (-1099)) (|has| $ (-6 -4417)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) 74 (|has| $ (-6 -4417))) (((-144) (-1 (-144) (-144) (-144)) $) 73 (|has| $ (-6 -4417)))) (-3719 (((-144) $ (-566) (-144)) 54 (|has| $ (-6 -4418)))) (-3653 (((-144) $ (-566)) 52)) (-1470 (((-112) $ $) 120)) (-4000 (((-566) (-1 (-112) (-144)) $) 98) (((-566) (-144) $) 97 (|has| (-144) (-1099))) (((-566) (-144) $ (-566)) 96 (|has| (-144) (-1099))) (((-566) $ $ (-566)) 114) (((-566) (-141) $ (-566)) 113)) (-3872 (((-644 (-144)) $) 31 (|has| $ (-6 -4417)))) (-4259 (($ (-771) (-144)) 70)) (-2756 (((-112) $ (-771)) 9)) (-2755 (((-566) $) 44 (|has| (-566) (-850)))) (-1920 (($ $ $) 88 (|has| (-144) (-850)))) (-1330 (($ (-1 (-112) (-144) (-144)) $ $) 102) (($ $ $) 95 (|has| (-144) (-850)))) (-4227 (((-644 (-144)) $) 30 (|has| $ (-6 -4417)))) (-1688 (((-112) (-144) $) 28 (-12 (|has| (-144) (-1099)) (|has| $ (-6 -4417))))) (-3831 (((-566) $) 45 (|has| (-566) (-850)))) (-3038 (($ $ $) 87 (|has| (-144) (-850)))) (-4020 (((-112) $ $ (-144)) 116)) (-3956 (((-771) $ $ (-144)) 117)) (-3708 (($ (-1 (-144) (-144)) $) 35 (|has| $ (-6 -4418)))) (-3080 (($ (-1 (-144) (-144)) $) 36) (($ (-1 (-144) (-144) (-144)) $ $) 65)) (-2687 (($ $) 123)) (-4032 (($ $) 124)) (-4106 (((-112) $ (-771)) 10)) (-1586 (($ $ (-144)) 107) (($ $ (-141)) 106)) (-3151 (((-1157) $) 22 (|has| (-144) (-1099)))) (-4271 (($ (-144) $ (-566)) 61) (($ $ $ (-566)) 60)) (-3780 (((-644 (-566)) $) 47)) (-1605 (((-112) (-566) $) 48)) (-4059 (((-1119) $) 21 (|has| (-144) (-1099)))) (-4080 (((-144) $) 43 (|has| (-566) (-850)))) (-2688 (((-3 (-144) "failed") (-1 (-112) (-144)) $) 72)) (-4079 (($ $ (-144)) 42 (|has| $ (-6 -4418)))) (-3966 (((-112) (-1 (-112) (-144)) $) 33 (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 (-144)))) 27 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099)))) (($ $ (-295 (-144))) 26 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099)))) (($ $ (-144) (-144)) 25 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099)))) (($ $ (-644 (-144)) (-644 (-144))) 24 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099))))) (-1844 (((-112) $ $) 14)) (-2210 (((-112) (-144) $) 46 (-12 (|has| $ (-6 -4417)) (|has| (-144) (-1099))))) (-4185 (((-644 (-144)) $) 49)) (-2788 (((-112) $) 11)) (-1737 (($) 12)) (-4376 (((-144) $ (-566) (-144)) 51) (((-144) $ (-566)) 50) (($ $ (-1231 (-566))) 64) (($ $ $) 103)) (-2139 (($ $ (-566)) 63) (($ $ (-1231 (-566))) 62)) (-4068 (((-771) (-1 (-112) (-144)) $) 32 (|has| $ (-6 -4417))) (((-771) (-144) $) 29 (-12 (|has| (-144) (-1099)) (|has| $ (-6 -4417))))) (-1438 (($ $ $ (-566)) 92 (|has| $ (-6 -4418)))) (-3924 (($ $) 13)) (-3136 (((-538) $) 80 (|has| (-144) (-614 (-538))))) (-2489 (($ (-644 (-144))) 71)) (-3716 (($ $ (-144)) 69) (($ (-144) $) 68) (($ $ $) 67) (($ (-644 $)) 66)) (-2479 (($ (-144)) 112) (((-862) $) 18 (|has| (-144) (-613 (-862))))) (-3900 (((-112) $ $) 23 (|has| (-144) (-1099)))) (-3667 (((-112) (-1 (-112) (-144)) $) 34 (|has| $ (-6 -4417)))) (-3019 (((-112) $ $) 85 (|has| (-144) (-850)))) (-2990 (((-112) $ $) 84 (|has| (-144) (-850)))) (-2952 (((-112) $ $) 20 (|has| (-144) (-1099)))) (-3004 (((-112) $ $) 86 (|has| (-144) (-850)))) (-2977 (((-112) $ $) 83 (|has| (-144) (-850)))) (-3002 (((-771) $) 6 (|has| $ (-6 -4417))))) +(((-1143) (-140)) (T -1143)) +((-4032 (*1 *1 *1) (-4 *1 (-1143))) (-2687 (*1 *1 *1) (-4 *1 (-1143))) (-3037 (*1 *1 *1) (-4 *1 (-1143))) (-4243 (*1 *1 *1) (-4 *1 (-1143))) (-1470 (*1 *2 *1 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-112)))) (-3861 (*1 *2 *1 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-112)))) (-3841 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (-566)) (-5 *2 (-112)))) (-3956 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (-144)) (-5 *2 (-771)))) (-4020 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (-144)) (-5 *2 (-112)))) (-4334 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1231 (-566))))) (-4000 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-566)))) (-4000 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-566)) (-5 *3 (-141)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-144)) (-4 *1 (-1143)))) (-4045 (*1 *2 *1 *3) (-12 (-5 *3 (-144)) (-5 *2 (-644 *1)) (-4 *1 (-1143)))) (-4045 (*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-644 *1)) (-4 *1 (-1143)))) (-2571 (*1 *1 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-144)))) (-2571 (*1 *1 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-141)))) (-1586 (*1 *1 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-144)))) (-1586 (*1 *1 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-141)))) (-1577 (*1 *1 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-144)))) (-1577 (*1 *1 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-141)))) (-4376 (*1 *1 *1 *1) (-4 *1 (-1143)))) +(-13 (-19 (-144)) (-10 -8 (-15 -4032 ($ $)) (-15 -2687 ($ $)) (-15 -3037 ($ $)) (-15 -4243 ($ $)) (-15 -1470 ((-112) $ $)) (-15 -3861 ((-112) $ $)) (-15 -3841 ((-112) $ $ (-566))) (-15 -3956 ((-771) $ $ (-144))) (-15 -4020 ((-112) $ $ (-144))) (-15 -4334 ($ $ (-1231 (-566)) $)) (-15 -4000 ((-566) $ $ (-566))) (-15 -4000 ((-566) (-141) $ (-566))) (-15 -2479 ($ (-144))) (-15 -4045 ((-644 $) $ (-144))) (-15 -4045 ((-644 $) $ (-141))) (-15 -2571 ($ $ (-144))) (-15 -2571 ($ $ (-141))) (-15 -1586 ($ $ (-144))) (-15 -1586 ($ $ (-141))) (-15 -1577 ($ $ (-144))) (-15 -1577 ($ $ (-141))) (-15 -4376 ($ $ $)))) +(((-34) . T) ((-102) -2809 (|has| (-144) (-1099)) (|has| (-144) (-850))) ((-613 (-862)) -2809 (|has| (-144) (-1099)) (|has| (-144) (-850)) (|has| (-144) (-613 (-862)))) ((-151 #0=(-144)) . T) ((-614 (-538)) |has| (-144) (-614 (-538))) ((-287 #1=(-566) #0#) . T) ((-289 #1# #0#) . T) ((-310 #0#) -12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099))) ((-375 #0#) . T) ((-491 #0#) . T) ((-604 #1# #0#) . T) ((-516 #0# #0#) -12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099))) ((-651 #0#) . T) ((-19 #0#) . T) ((-850) |has| (-144) (-850)) ((-1099) -2809 (|has| (-144) (-1099)) (|has| (-144) (-850))) ((-1214) . T)) +((-3186 (((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))) (-644 |#4|) (-644 |#5|) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))) (-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))))) (-771)) 113)) (-2656 (((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))))) |#4| |#5|) 62) (((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))))) |#4| |#5| (-771)) 61)) (-2528 (((-1269) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))) (-771)) 98)) (-1821 (((-771) (-644 |#4|) (-644 |#5|)) 30)) (-4187 (((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))))) |#4| |#5| (-771)) 63) (((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))))) |#4| |#5| (-771) (-112)) 65)) (-3849 (((-644 |#5|) (-644 |#4|) (-644 |#5|) (-112) (-112) (-112) (-112) (-112)) 84) (((-644 |#5|) (-644 |#4|) (-644 |#5|) (-112) (-112)) 85)) (-3136 (((-1157) (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))) 90)) (-1667 (((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))))) |#4| |#5|) 60)) (-1816 (((-771) (-644 |#4|) (-644 |#5|)) 21))) +(((-1144 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1816 ((-771) (-644 |#4|) (-644 |#5|))) (-15 -1821 ((-771) (-644 |#4|) (-644 |#5|))) (-15 -1667 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))))) |#4| |#5|)) (-15 -2656 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))))) |#4| |#5| (-771))) (-15 -2656 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))))) |#4| |#5|)) (-15 -4187 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))))) |#4| |#5| (-771) (-112))) (-15 -4187 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))))) |#4| |#5| (-771))) (-15 -4187 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))))) |#4| |#5|)) (-15 -3849 ((-644 |#5|) (-644 |#4|) (-644 |#5|) (-112) (-112))) (-15 -3849 ((-644 |#5|) (-644 |#4|) (-644 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3186 ((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))) (-644 |#4|) (-644 |#5|) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))) (-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))))) (-771))) (-15 -3136 ((-1157) (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|)))) (-15 -2528 ((-1269) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))) (-771)))) (-454) (-793) (-850) (-1064 |#1| |#2| |#3|) (-1108 |#1| |#2| |#3| |#4|)) (T -1144)) +((-2528 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-2 (|:| |val| (-644 *8)) (|:| -2192 *9)))) (-5 *4 (-771)) (-4 *8 (-1064 *5 *6 *7)) (-4 *9 (-1108 *5 *6 *7 *8)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-1269)) (-5 *1 (-1144 *5 *6 *7 *8 *9)))) (-3136 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-644 *7)) (|:| -2192 *8))) (-4 *7 (-1064 *4 *5 *6)) (-4 *8 (-1108 *4 *5 *6 *7)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-1157)) (-5 *1 (-1144 *4 *5 *6 *7 *8)))) (-3186 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-644 *11)) (|:| |todo| (-644 (-2 (|:| |val| *3) (|:| -2192 *11)))))) (-5 *6 (-771)) (-5 *2 (-644 (-2 (|:| |val| (-644 *10)) (|:| -2192 *11)))) (-5 *3 (-644 *10)) (-5 *4 (-644 *11)) (-4 *10 (-1064 *7 *8 *9)) (-4 *11 (-1108 *7 *8 *9 *10)) (-4 *7 (-454)) (-4 *8 (-793)) (-4 *9 (-850)) (-5 *1 (-1144 *7 *8 *9 *10 *11)))) (-3849 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-644 *9)) (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7)) (-4 *9 (-1108 *5 *6 *7 *8)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *1 (-1144 *5 *6 *7 *8 *9)))) (-3849 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-644 *9)) (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7)) (-4 *9 (-1108 *5 *6 *7 *8)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *1 (-1144 *5 *6 *7 *8 *9)))) (-4187 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-644 *4)) (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -2192 *4)))))) (-5 *1 (-1144 *5 *6 *7 *3 *4)) (-4 *4 (-1108 *5 *6 *7 *3)))) (-4187 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-771)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) (-4 *3 (-1064 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-644 *4)) (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -2192 *4)))))) (-5 *1 (-1144 *6 *7 *8 *3 *4)) (-4 *4 (-1108 *6 *7 *8 *3)))) (-4187 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-771)) (-5 *6 (-112)) (-4 *7 (-454)) (-4 *8 (-793)) (-4 *9 (-850)) (-4 *3 (-1064 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-644 *4)) (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -2192 *4)))))) (-5 *1 (-1144 *7 *8 *9 *3 *4)) (-4 *4 (-1108 *7 *8 *9 *3)))) (-2656 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-644 *4)) (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -2192 *4)))))) (-5 *1 (-1144 *5 *6 *7 *3 *4)) (-4 *4 (-1108 *5 *6 *7 *3)))) (-2656 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-771)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) (-4 *3 (-1064 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-644 *4)) (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -2192 *4)))))) (-5 *1 (-1144 *6 *7 *8 *3 *4)) (-4 *4 (-1108 *6 *7 *8 *3)))) (-1667 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-644 *4)) (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -2192 *4)))))) (-5 *1 (-1144 *5 *6 *7 *3 *4)) (-4 *4 (-1108 *5 *6 *7 *3)))) (-1821 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 *9)) (-4 *8 (-1064 *5 *6 *7)) (-4 *9 (-1108 *5 *6 *7 *8)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-771)) (-5 *1 (-1144 *5 *6 *7 *8 *9)))) (-1816 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 *9)) (-4 *8 (-1064 *5 *6 *7)) (-4 *9 (-1108 *5 *6 *7 *8)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-771)) (-5 *1 (-1144 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -1816 ((-771) (-644 |#4|) (-644 |#5|))) (-15 -1821 ((-771) (-644 |#4|) (-644 |#5|))) (-15 -1667 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))))) |#4| |#5|)) (-15 -2656 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))))) |#4| |#5| (-771))) (-15 -2656 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))))) |#4| |#5|)) (-15 -4187 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))))) |#4| |#5| (-771) (-112))) (-15 -4187 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))))) |#4| |#5| (-771))) (-15 -4187 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))))) |#4| |#5|)) (-15 -3849 ((-644 |#5|) (-644 |#4|) (-644 |#5|) (-112) (-112))) (-15 -3849 ((-644 |#5|) (-644 |#4|) (-644 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3186 ((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))) (-644 |#4|) (-644 |#5|) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))) (-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))))) (-771))) (-15 -3136 ((-1157) (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|)))) (-15 -2528 ((-1269) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -2192 |#5|))) (-771)))) +((-2986 (((-112) $ $) NIL)) (-1416 (((-644 (-2 (|:| -1637 $) (|:| -3516 (-644 |#4|)))) (-644 |#4|)) NIL)) (-3295 (((-644 $) (-644 |#4|)) 124) (((-644 $) (-644 |#4|) (-112)) 125) (((-644 $) (-644 |#4|) (-112) (-112)) 123) (((-644 $) (-644 |#4|) (-112) (-112) (-112) (-112)) 126)) (-2485 (((-644 |#3|) $) NIL)) (-1489 (((-112) $) NIL)) (-3541 (((-112) $) NIL (|has| |#1| (-558)))) (-2219 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1922 ((|#4| |#4| $) NIL)) (-3980 (((-644 (-2 (|:| |val| |#4|) (|:| -2192 $))) |#4| $) 97)) (-1374 (((-2 (|:| |under| $) (|:| -2001 $) (|:| |upper| $)) $ |#3|) NIL)) (-1453 (((-112) $ (-771)) NIL)) (-3543 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4417))) (((-3 |#4| "failed") $ |#3|) 75)) (-1811 (($) NIL T CONST)) (-4210 (((-112) $) 29 (|has| |#1| (-558)))) (-3050 (((-112) $ $) NIL (|has| |#1| (-558)))) (-1768 (((-112) $ $) NIL (|has| |#1| (-558)))) (-3261 (((-112) $) NIL (|has| |#1| (-558)))) (-3451 (((-644 |#4|) (-644 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2796 (((-644 |#4|) (-644 |#4|) $) NIL (|has| |#1| (-558)))) (-3829 (((-644 |#4|) (-644 |#4|) $) NIL (|has| |#1| (-558)))) (-2980 (((-3 $ "failed") (-644 |#4|)) NIL)) (-1709 (($ (-644 |#4|)) NIL)) (-4091 (((-3 $ "failed") $) 45)) (-3358 ((|#4| |#4| $) 78)) (-4111 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#4| (-1099))))) (-2628 (($ |#4| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#4| (-1099)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4417)))) (-3131 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 91 (|has| |#1| (-558)))) (-1995 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3326 ((|#4| |#4| $) NIL)) (-1838 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4417)) (|has| |#4| (-1099)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4417))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4417))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1877 (((-2 (|:| -1637 (-644 |#4|)) (|:| -3516 (-644 |#4|))) $) NIL)) (-2281 (((-112) |#4| $) NIL)) (-1646 (((-112) |#4| $) NIL)) (-3433 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3547 (((-2 (|:| |val| (-644 |#4|)) (|:| |towers| (-644 $))) (-644 |#4|) (-112) (-112)) 139)) (-3872 (((-644 |#4|) $) 18 (|has| $ (-6 -4417)))) (-4297 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4052 ((|#3| $) 38)) (-2756 (((-112) $ (-771)) NIL)) (-4227 (((-644 |#4|) $) 19 (|has| $ (-6 -4417)))) (-1688 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4417)) (|has| |#4| (-1099))))) (-3708 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#4| |#4|) $) 23)) (-3599 (((-644 |#3|) $) NIL)) (-2884 (((-112) |#3| $) NIL)) (-4106 (((-112) $ (-771)) NIL)) (-3151 (((-1157) $) NIL)) (-3421 (((-3 |#4| (-644 $)) |#4| |#4| $) NIL)) (-3723 (((-644 (-2 (|:| |val| |#4|) (|:| -2192 $))) |#4| |#4| $) 117)) (-2651 (((-3 |#4| "failed") $) 42)) (-3391 (((-644 $) |#4| $) 102)) (-3680 (((-3 (-112) (-644 $)) |#4| $) NIL)) (-3325 (((-644 (-2 (|:| |val| (-112)) (|:| -2192 $))) |#4| $) 112) (((-112) |#4| $) 65)) (-4022 (((-644 $) |#4| $) 121) (((-644 $) (-644 |#4|) $) NIL) (((-644 $) (-644 |#4|) (-644 $)) 122) (((-644 $) |#4| (-644 $)) NIL)) (-3268 (((-644 $) (-644 |#4|) (-112) (-112) (-112)) 134)) (-2047 (($ |#4| $) 88) (($ (-644 |#4|) $) 89) (((-644 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 87)) (-3707 (((-644 |#4|) $) NIL)) (-4121 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3317 ((|#4| |#4| $) NIL)) (-3730 (((-112) $ $) NIL)) (-1719 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-558)))) (-1695 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3869 ((|#4| |#4| $) NIL)) (-4059 (((-1119) $) NIL)) (-4080 (((-3 |#4| "failed") $) 40)) (-2688 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2293 (((-3 $ "failed") $ |#4|) 59)) (-2050 (($ $ |#4|) NIL) (((-644 $) |#4| $) 104) (((-644 $) |#4| (-644 $)) NIL) (((-644 $) (-644 |#4|) $) NIL) (((-644 $) (-644 |#4|) (-644 $)) 99)) (-3966 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 |#4|) (-644 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-295 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-644 (-295 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))))) (-1844 (((-112) $ $) NIL)) (-2788 (((-112) $) 17)) (-1737 (($) 14)) (-1630 (((-771) $) NIL)) (-4068 (((-771) |#4| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#4| (-1099)))) (((-771) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4417)))) (-3924 (($ $) 13)) (-3136 (((-538) $) NIL (|has| |#4| (-614 (-538))))) (-2489 (($ (-644 |#4|)) 22)) (-1706 (($ $ |#3|) 52)) (-4234 (($ $ |#3|) 54)) (-4024 (($ $) NIL)) (-2378 (($ $ |#3|) NIL)) (-2479 (((-862) $) 35) (((-644 |#4|) $) 46)) (-2780 (((-771) $) NIL (|has| |#3| (-370)))) (-3900 (((-112) $ $) NIL)) (-2877 (((-3 (-2 (|:| |bas| $) (|:| -3903 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3903 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4265 (((-112) $ (-1 (-112) |#4| (-644 |#4|))) NIL)) (-3437 (((-644 $) |#4| $) 66) (((-644 $) |#4| (-644 $)) NIL) (((-644 $) (-644 |#4|) $) NIL) (((-644 $) (-644 |#4|) (-644 $)) NIL)) (-3667 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4417)))) (-4067 (((-644 |#3|) $) NIL)) (-3183 (((-112) |#4| $) NIL)) (-3132 (((-112) |#3| $) 74)) (-2952 (((-112) $ $) NIL)) (-3002 (((-771) $) NIL (|has| $ (-6 -4417))))) +(((-1145 |#1| |#2| |#3| |#4|) (-13 (-1108 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2047 ((-644 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3295 ((-644 $) (-644 |#4|) (-112) (-112))) (-15 -3295 ((-644 $) (-644 |#4|) (-112) (-112) (-112) (-112))) (-15 -3268 ((-644 $) (-644 |#4|) (-112) (-112) (-112))) (-15 -3547 ((-2 (|:| |val| (-644 |#4|)) (|:| |towers| (-644 $))) (-644 |#4|) (-112) (-112))))) (-454) (-793) (-850) (-1064 |#1| |#2| |#3|)) (T -1145)) +((-2047 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-644 (-1145 *5 *6 *7 *3))) (-5 *1 (-1145 *5 *6 *7 *3)) (-4 *3 (-1064 *5 *6 *7)))) (-3295 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-644 (-1145 *5 *6 *7 *8))) (-5 *1 (-1145 *5 *6 *7 *8)))) (-3295 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-644 (-1145 *5 *6 *7 *8))) (-5 *1 (-1145 *5 *6 *7 *8)))) (-3268 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-644 (-1145 *5 *6 *7 *8))) (-5 *1 (-1145 *5 *6 *7 *8)))) (-3547 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *8 (-1064 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-644 *8)) (|:| |towers| (-644 (-1145 *5 *6 *7 *8))))) (-5 *1 (-1145 *5 *6 *7 *8)) (-5 *3 (-644 *8))))) +(-13 (-1108 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2047 ((-644 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3295 ((-644 $) (-644 |#4|) (-112) (-112))) (-15 -3295 ((-644 $) (-644 |#4|) (-112) (-112) (-112) (-112))) (-15 -3268 ((-644 $) (-644 |#4|) (-112) (-112) (-112))) (-15 -3547 ((-2 (|:| |val| (-644 |#4|)) (|:| |towers| (-644 $))) (-644 |#4|) (-112) (-112))))) +((-2986 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3903 ((|#1| $) 37)) (-2161 (($ (-644 |#1|)) 45)) (-1453 (((-112) $ (-771)) NIL)) (-1811 (($) NIL T CONST)) (-1757 ((|#1| |#1| $) 40)) (-4356 ((|#1| $) 35)) (-3872 (((-644 |#1|) $) 18 (|has| $ (-6 -4417)))) (-2756 (((-112) $ (-771)) NIL)) (-4227 (((-644 |#1|) $) NIL (|has| $ (-6 -4417)))) (-1688 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-3708 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#1| |#1|) $) 22)) (-4106 (((-112) $ (-771)) NIL)) (-3151 (((-1157) $) NIL (|has| |#1| (-1099)))) (-4255 ((|#1| $) 38)) (-4354 (($ |#1| $) 41)) (-4059 (((-1119) $) NIL (|has| |#1| (-1099)))) (-4097 ((|#1| $) 36)) (-3966 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1844 (((-112) $ $) NIL)) (-2788 (((-112) $) 32)) (-1737 (($) 43)) (-3410 (((-771) $) 30)) (-4068 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-3924 (($ $) 27)) (-2479 (((-862) $) 14 (|has| |#1| (-613 (-862))))) (-3900 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2471 (($ (-644 |#1|)) NIL)) (-3667 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2952 (((-112) $ $) 17 (|has| |#1| (-1099)))) (-3002 (((-771) $) 31 (|has| $ (-6 -4417))))) +(((-1146 |#1|) (-13 (-1120 |#1|) (-10 -8 (-15 -2161 ($ (-644 |#1|))))) (-1214)) (T -1146)) +((-2161 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1214)) (-5 *1 (-1146 *3))))) +(-13 (-1120 |#1|) (-10 -8 (-15 -2161 ($ (-644 |#1|))))) +((-3901 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1231 (-566)) |#2|) 55) ((|#2| $ (-566) |#2|) 52)) (-3258 (((-112) $) 12)) (-3708 (($ (-1 |#2| |#2|) $) 50)) (-4080 ((|#2| $) NIL) (($ $ (-771)) 20)) (-4079 (($ $ |#2|) 51)) (-3094 (((-112) $) 11)) (-4376 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1231 (-566))) 38) ((|#2| $ (-566)) 29) ((|#2| $ (-566) |#2|) NIL)) (-1323 (($ $ $) 58) (($ $ |#2|) NIL)) (-3716 (($ $ $) 40) (($ |#2| $) NIL) (($ (-644 $)) 47) (($ $ |#2|) NIL))) +(((-1147 |#1| |#2|) (-10 -8 (-15 -3258 ((-112) |#1|)) (-15 -3094 ((-112) |#1|)) (-15 -3901 (|#2| |#1| (-566) |#2|)) (-15 -4376 (|#2| |#1| (-566) |#2|)) (-15 -4376 (|#2| |#1| (-566))) (-15 -4079 (|#1| |#1| |#2|)) (-15 -3716 (|#1| |#1| |#2|)) (-15 -3716 (|#1| (-644 |#1|))) (-15 -4376 (|#1| |#1| (-1231 (-566)))) (-15 -3901 (|#2| |#1| (-1231 (-566)) |#2|)) (-15 -3901 (|#2| |#1| "last" |#2|)) (-15 -3901 (|#1| |#1| "rest" |#1|)) (-15 -3901 (|#2| |#1| "first" |#2|)) (-15 -1323 (|#1| |#1| |#2|)) (-15 -1323 (|#1| |#1| |#1|)) (-15 -4376 (|#2| |#1| "last")) (-15 -4376 (|#1| |#1| "rest")) (-15 -4080 (|#1| |#1| (-771))) (-15 -4376 (|#2| |#1| "first")) (-15 -4080 (|#2| |#1|)) (-15 -3716 (|#1| |#2| |#1|)) (-15 -3716 (|#1| |#1| |#1|)) (-15 -3901 (|#2| |#1| "value" |#2|)) (-15 -4376 (|#2| |#1| "value")) (-15 -3708 (|#1| (-1 |#2| |#2|) |#1|))) (-1148 |#2|) (-1214)) (T -1147)) +NIL +(-10 -8 (-15 -3258 ((-112) |#1|)) (-15 -3094 ((-112) |#1|)) (-15 -3901 (|#2| |#1| (-566) |#2|)) (-15 -4376 (|#2| |#1| (-566) |#2|)) (-15 -4376 (|#2| |#1| (-566))) (-15 -4079 (|#1| |#1| |#2|)) (-15 -3716 (|#1| |#1| |#2|)) (-15 -3716 (|#1| (-644 |#1|))) (-15 -4376 (|#1| |#1| (-1231 (-566)))) (-15 -3901 (|#2| |#1| (-1231 (-566)) |#2|)) (-15 -3901 (|#2| |#1| "last" |#2|)) (-15 -3901 (|#1| |#1| "rest" |#1|)) (-15 -3901 (|#2| |#1| "first" |#2|)) (-15 -1323 (|#1| |#1| |#2|)) (-15 -1323 (|#1| |#1| |#1|)) (-15 -4376 (|#2| |#1| "last")) (-15 -4376 (|#1| |#1| "rest")) (-15 -4080 (|#1| |#1| (-771))) (-15 -4376 (|#2| |#1| "first")) (-15 -4080 (|#2| |#1|)) (-15 -3716 (|#1| |#2| |#1|)) (-15 -3716 (|#1| |#1| |#1|)) (-15 -3901 (|#2| |#1| "value" |#2|)) (-15 -4376 (|#2| |#1| "value")) (-15 -3708 (|#1| (-1 |#2| |#2|) |#1|))) +((-2986 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2153 ((|#1| $) 49)) (-3673 ((|#1| $) 66)) (-3238 (($ $) 68)) (-2462 (((-1269) $ (-566) (-566)) 98 (|has| $ (-6 -4418)))) (-3427 (($ $ (-566)) 53 (|has| $ (-6 -4418)))) (-1453 (((-112) $ (-771)) 8)) (-3684 ((|#1| $ |#1|) 40 (|has| $ (-6 -4418)))) (-3494 (($ $ $) 57 (|has| $ (-6 -4418)))) (-2454 ((|#1| $ |#1|) 55 (|has| $ (-6 -4418)))) (-1306 ((|#1| $ |#1|) 59 (|has| $ (-6 -4418)))) (-3901 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4418))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4418))) (($ $ "rest" $) 56 (|has| $ (-6 -4418))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4418))) ((|#1| $ (-1231 (-566)) |#1|) 118 (|has| $ (-6 -4418))) ((|#1| $ (-566) |#1|) 87 (|has| $ (-6 -4418)))) (-3891 (($ $ (-644 $)) 42 (|has| $ (-6 -4418)))) (-3543 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4417)))) (-3663 ((|#1| $) 67)) (-1811 (($) 7 T CONST)) (-4091 (($ $) 74) (($ $ (-771)) 72)) (-4111 (($ $) 100 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-2628 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4417))) (($ |#1| $) 101 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-1838 ((|#1| (-1 |#1| |#1| |#1|) $) 106 (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 105 (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 102 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-3719 ((|#1| $ (-566) |#1|) 86 (|has| $ (-6 -4418)))) (-3653 ((|#1| $ (-566)) 88)) (-3258 (((-112) $) 84)) (-3872 (((-644 |#1|) $) 31 (|has| $ (-6 -4417)))) (-3578 (((-644 $) $) 51)) (-2778 (((-112) $ $) 43 (|has| |#1| (-1099)))) (-4259 (($ (-771) |#1|) 109)) (-2756 (((-112) $ (-771)) 9)) (-2755 (((-566) $) 96 (|has| (-566) (-850)))) (-4227 (((-644 |#1|) $) 30 (|has| $ (-6 -4417)))) (-1688 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-3831 (((-566) $) 95 (|has| (-566) (-850)))) (-3708 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 112)) (-4106 (((-112) $ (-771)) 10)) (-3658 (((-644 |#1|) $) 46)) (-1587 (((-112) $) 50)) (-3151 (((-1157) $) 22 (|has| |#1| (-1099)))) (-2651 ((|#1| $) 71) (($ $ (-771)) 69)) (-4271 (($ $ $ (-566)) 117) (($ |#1| $ (-566)) 116)) (-3780 (((-644 (-566)) $) 93)) (-1605 (((-112) (-566) $) 92)) (-4059 (((-1119) $) 21 (|has| |#1| (-1099)))) (-4080 ((|#1| $) 77) (($ $ (-771)) 75)) (-2688 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 107)) (-4079 (($ $ |#1|) 97 (|has| $ (-6 -4418)))) (-3094 (((-112) $) 85)) (-3966 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1844 (((-112) $ $) 14)) (-2210 (((-112) |#1| $) 94 (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-4185 (((-644 |#1|) $) 91)) (-2788 (((-112) $) 11)) (-1737 (($) 12)) (-4376 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1231 (-566))) 113) ((|#1| $ (-566)) 90) ((|#1| $ (-566) |#1|) 89)) (-4098 (((-566) $ $) 45)) (-2139 (($ $ (-1231 (-566))) 115) (($ $ (-566)) 114)) (-2636 (((-112) $) 47)) (-3513 (($ $) 63)) (-2018 (($ $) 60 (|has| $ (-6 -4418)))) (-2804 (((-771) $) 64)) (-2924 (($ $) 65)) (-4068 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4417))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-3924 (($ $) 13)) (-3136 (((-538) $) 99 (|has| |#1| (-614 (-538))))) (-2489 (($ (-644 |#1|)) 108)) (-1323 (($ $ $) 62 (|has| $ (-6 -4418))) (($ $ |#1|) 61 (|has| $ (-6 -4418)))) (-3716 (($ $ $) 79) (($ |#1| $) 78) (($ (-644 $)) 111) (($ $ |#1|) 110)) (-2479 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-2156 (((-644 $) $) 52)) (-3922 (((-112) $ $) 44 (|has| |#1| (-1099)))) (-3900 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-3667 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4417)))) (-2952 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3002 (((-771) $) 6 (|has| $ (-6 -4417))))) +(((-1148 |#1|) (-140) (-1214)) (T -1148)) +((-3094 (*1 *2 *1) (-12 (-4 *1 (-1148 *3)) (-4 *3 (-1214)) (-5 *2 (-112)))) (-3258 (*1 *2 *1) (-12 (-4 *1 (-1148 *3)) (-4 *3 (-1214)) (-5 *2 (-112))))) +(-13 (-1252 |t#1|) (-651 |t#1|) (-10 -8 (-15 -3094 ((-112) $)) (-15 -3258 ((-112) $)))) +(((-34) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2809 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-151 |#1|) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-287 #0=(-566) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-604 #0# |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-651 |#1|) . T) ((-1010 |#1|) . T) ((-1099) |has| |#1| (-1099)) ((-1214) . T) ((-1252 |#1|) . T)) +((-2986 (((-112) $ $) NIL (-2809 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-4250 (($) NIL) (($ (-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) NIL)) (-2462 (((-1269) $ |#1| |#1|) NIL (|has| $ (-6 -4418)))) (-1453 (((-112) $ (-771)) NIL)) (-3901 ((|#2| $ |#1| |#2|) NIL)) (-4364 (($ (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-3543 (($ (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-2377 (((-3 |#2| "failed") |#1| $) NIL)) (-1811 (($) NIL T CONST)) (-4111 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099))))) (-2295 (($ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) NIL (|has| $ (-6 -4417))) (($ (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-3 |#2| "failed") |#1| $) NIL)) (-2628 (($ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (($ (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-1838 (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) NIL (|has| $ (-6 -4417))) (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-3719 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4418)))) (-3653 ((|#2| $ |#1|) NIL)) (-3872 (((-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-644 |#2|) $) NIL (|has| $ (-6 -4417)))) (-2756 (((-112) $ (-771)) NIL)) (-2755 ((|#1| $) NIL (|has| |#1| (-850)))) (-4227 (((-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-644 |#2|) $) NIL (|has| $ (-6 -4417)))) (-1688 (((-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1099))))) (-3831 ((|#1| $) NIL (|has| |#1| (-850)))) (-3708 (($ (-1 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4418))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4418)))) (-3080 (($ (-1 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4106 (((-112) $ (-771)) NIL)) (-3151 (((-1157) $) NIL (-2809 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-1467 (((-644 |#1|) $) NIL)) (-3983 (((-112) |#1| $) NIL)) (-4255 (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) NIL)) (-4354 (($ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) NIL)) (-3780 (((-644 |#1|) $) NIL)) (-1605 (((-112) |#1| $) NIL)) (-4059 (((-1119) $) NIL (-2809 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-4080 ((|#2| $) NIL (|has| |#1| (-850)))) (-2688 (((-3 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) "failed") (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL)) (-4079 (($ $ |#2|) NIL (|has| $ (-6 -4418)))) (-4097 (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) NIL)) (-3966 (((-112) (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))))) NIL (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (($ $ (-295 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) NIL (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (($ $ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) NIL (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (($ $ (-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) (-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) NIL (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))) (-1844 (((-112) $ $) NIL)) (-2210 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1099))))) (-4185 (((-644 |#2|) $) NIL)) (-2788 (((-112) $) NIL)) (-1737 (($) NIL)) (-4376 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1797 (($) NIL) (($ (-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) NIL)) (-4068 (((-771) (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-771) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (((-771) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1099)))) (((-771) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417)))) (-3924 (($ $) NIL)) (-3136 (((-538) $) NIL (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-614 (-538))))) (-2489 (($ (-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) NIL)) (-2479 (((-862) $) NIL (-2809 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-613 (-862))) (|has| |#2| (-613 (-862)))))) (-3900 (((-112) $ $) NIL (-2809 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-2471 (($ (-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) NIL)) (-3667 (((-112) (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417)))) (-2952 (((-112) $ $) NIL (-2809 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-3002 (((-771) $) NIL (|has| $ (-6 -4417))))) +(((-1149 |#1| |#2| |#3|) (-1190 |#1| |#2|) (-1099) (-1099) |#2|) (T -1149)) +NIL +(-1190 |#1| |#2|) +((-2986 (((-112) $ $) 7)) (-4278 (((-3 $ "failed") $) 14)) (-3151 (((-1157) $) 10)) (-3968 (($) 15 T CONST)) (-4059 (((-1119) $) 11)) (-2479 (((-862) $) 12)) (-3900 (((-112) $ $) 9)) (-2952 (((-112) $ $) 6))) +(((-1150) (-140)) (T -1150)) +((-3968 (*1 *1) (-4 *1 (-1150))) (-4278 (*1 *1 *1) (|partial| -4 *1 (-1150)))) +(-13 (-1099) (-10 -8 (-15 -3968 ($) -1573) (-15 -4278 ((-3 $ "failed") $)))) +(((-102) . T) ((-613 (-862)) . T) ((-1099) . T)) +((-3537 (((-1155 |#1|) (-1155 |#1|)) 17)) (-1599 (((-1155 |#1|) (-1155 |#1|)) 13)) (-1497 (((-1155 |#1|) (-1155 |#1|) (-566) (-566)) 20)) (-2333 (((-1155 |#1|) (-1155 |#1|)) 15))) +(((-1151 |#1|) (-10 -7 (-15 -1599 ((-1155 |#1|) (-1155 |#1|))) (-15 -2333 ((-1155 |#1|) (-1155 |#1|))) (-15 -3537 ((-1155 |#1|) (-1155 |#1|))) (-15 -1497 ((-1155 |#1|) (-1155 |#1|) (-566) (-566)))) (-13 (-558) (-147))) (T -1151)) +((-1497 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1155 *4)) (-5 *3 (-566)) (-4 *4 (-13 (-558) (-147))) (-5 *1 (-1151 *4)))) (-3537 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-13 (-558) (-147))) (-5 *1 (-1151 *3)))) (-2333 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-13 (-558) (-147))) (-5 *1 (-1151 *3)))) (-1599 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-13 (-558) (-147))) (-5 *1 (-1151 *3))))) +(-10 -7 (-15 -1599 ((-1155 |#1|) (-1155 |#1|))) (-15 -2333 ((-1155 |#1|) (-1155 |#1|))) (-15 -3537 ((-1155 |#1|) (-1155 |#1|))) (-15 -1497 ((-1155 |#1|) (-1155 |#1|) (-566) (-566)))) +((-3716 (((-1155 |#1|) (-1155 (-1155 |#1|))) 15))) +(((-1152 |#1|) (-10 -7 (-15 -3716 ((-1155 |#1|) (-1155 (-1155 |#1|))))) (-1214)) (T -1152)) +((-3716 (*1 *2 *3) (-12 (-5 *3 (-1155 (-1155 *4))) (-5 *2 (-1155 *4)) (-5 *1 (-1152 *4)) (-4 *4 (-1214))))) +(-10 -7 (-15 -3716 ((-1155 |#1|) (-1155 (-1155 |#1|))))) +((-2531 (((-1155 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1155 |#1|)) 25)) (-1838 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1155 |#1|)) 26)) (-3080 (((-1155 |#2|) (-1 |#2| |#1|) (-1155 |#1|)) 16))) +(((-1153 |#1| |#2|) (-10 -7 (-15 -3080 ((-1155 |#2|) (-1 |#2| |#1|) (-1155 |#1|))) (-15 -2531 ((-1155 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1155 |#1|))) (-15 -1838 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1155 |#1|)))) (-1214) (-1214)) (T -1153)) +((-1838 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1155 *5)) (-4 *5 (-1214)) (-4 *2 (-1214)) (-5 *1 (-1153 *5 *2)))) (-2531 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1155 *6)) (-4 *6 (-1214)) (-4 *3 (-1214)) (-5 *2 (-1155 *3)) (-5 *1 (-1153 *6 *3)))) (-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1155 *5)) (-4 *5 (-1214)) (-4 *6 (-1214)) (-5 *2 (-1155 *6)) (-5 *1 (-1153 *5 *6))))) +(-10 -7 (-15 -3080 ((-1155 |#2|) (-1 |#2| |#1|) (-1155 |#1|))) (-15 -2531 ((-1155 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1155 |#1|))) (-15 -1838 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1155 |#1|)))) +((-3080 (((-1155 |#3|) (-1 |#3| |#1| |#2|) (-1155 |#1|) (-1155 |#2|)) 21))) +(((-1154 |#1| |#2| |#3|) (-10 -7 (-15 -3080 ((-1155 |#3|) (-1 |#3| |#1| |#2|) (-1155 |#1|) (-1155 |#2|)))) (-1214) (-1214) (-1214)) (T -1154)) +((-3080 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1155 *6)) (-5 *5 (-1155 *7)) (-4 *6 (-1214)) (-4 *7 (-1214)) (-4 *8 (-1214)) (-5 *2 (-1155 *8)) (-5 *1 (-1154 *6 *7 *8))))) +(-10 -7 (-15 -3080 ((-1155 |#3|) (-1 |#3| |#1| |#2|) (-1155 |#1|) (-1155 |#2|)))) +((-2986 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2153 ((|#1| $) NIL)) (-3673 ((|#1| $) NIL)) (-3238 (($ $) 67)) (-2462 (((-1269) $ (-566) (-566)) 99 (|has| $ (-6 -4418)))) (-3427 (($ $ (-566)) 129 (|has| $ (-6 -4418)))) (-1453 (((-112) $ (-771)) NIL)) (-3946 (((-862) $) 56 (|has| |#1| (-1099)))) (-1433 (((-112)) 55 (|has| |#1| (-1099)))) (-3684 ((|#1| $ |#1|) NIL (|has| $ (-6 -4418)))) (-3494 (($ $ $) 116 (|has| $ (-6 -4418))) (($ $ (-566) $) 142)) (-2454 ((|#1| $ |#1|) 126 (|has| $ (-6 -4418)))) (-1306 ((|#1| $ |#1|) 121 (|has| $ (-6 -4418)))) (-3901 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4418))) ((|#1| $ "first" |#1|) 123 (|has| $ (-6 -4418))) (($ $ "rest" $) 125 (|has| $ (-6 -4418))) ((|#1| $ "last" |#1|) 128 (|has| $ (-6 -4418))) ((|#1| $ (-1231 (-566)) |#1|) 113 (|has| $ (-6 -4418))) ((|#1| $ (-566) |#1|) 77 (|has| $ (-6 -4418)))) (-3891 (($ $ (-644 $)) NIL (|has| $ (-6 -4418)))) (-3543 (($ (-1 (-112) |#1|) $) 80)) (-3663 ((|#1| $) NIL)) (-1811 (($) NIL T CONST)) (-2783 (($ $) 14)) (-4091 (($ $) 42) (($ $ (-771)) 111)) (-1822 (((-112) (-644 |#1|) $) 135 (|has| |#1| (-1099)))) (-1735 (($ (-644 |#1|)) 131)) (-4111 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-2628 (($ |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099)))) (($ (-1 (-112) |#1|) $) 79)) (-1838 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-3719 ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4418)))) (-3653 ((|#1| $ (-566)) NIL)) (-3258 (((-112) $) NIL)) (-3872 (((-644 |#1|) $) NIL (|has| $ (-6 -4417)))) (-4397 (((-1269) (-566) $) 141 (|has| |#1| (-1099)))) (-1385 (((-771) $) 138)) (-3578 (((-644 $) $) NIL)) (-2778 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-4259 (($ (-771) |#1|) NIL)) (-2756 (((-112) $ (-771)) NIL)) (-2755 (((-566) $) NIL (|has| (-566) (-850)))) (-4227 (((-644 |#1|) $) NIL (|has| $ (-6 -4417)))) (-1688 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-3831 (((-566) $) NIL (|has| (-566) (-850)))) (-3708 (($ (-1 |#1| |#1|) $) 95 (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#1| |#1|) $) 85) (($ (-1 |#1| |#1| |#1|) $ $) 89)) (-4106 (((-112) $ (-771)) NIL)) (-3658 (((-644 |#1|) $) NIL)) (-1587 (((-112) $) NIL)) (-3345 (($ $) 114)) (-1522 (((-112) $) 13)) (-3151 (((-1157) $) NIL (|has| |#1| (-1099)))) (-2651 ((|#1| $) NIL) (($ $ (-771)) NIL)) (-4271 (($ $ $ (-566)) NIL) (($ |#1| $ (-566)) NIL)) (-3780 (((-644 (-566)) $) NIL)) (-1605 (((-112) (-566) $) 96)) (-4059 (((-1119) $) NIL (|has| |#1| (-1099)))) (-3473 (($ (-1 |#1|)) 144) (($ (-1 |#1| |#1|) |#1|) 145)) (-2477 ((|#1| $) 10)) (-4080 ((|#1| $) 41) (($ $ (-771)) 65)) (-1327 (((-2 (|:| |cycle?| (-112)) (|:| -3490 (-771)) (|:| |period| (-771))) (-771) $) 36)) (-2688 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3520 (($ (-1 (-112) |#1|) $) 146)) (-3532 (($ (-1 (-112) |#1|) $) 147)) (-4079 (($ $ |#1|) 90 (|has| $ (-6 -4418)))) (-2050 (($ $ (-566)) 45)) (-3094 (((-112) $) 94)) (-1361 (((-112) $) 12)) (-4030 (((-112) $) 137)) (-3966 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1844 (((-112) $ $) 30)) (-2210 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-4185 (((-644 |#1|) $) NIL)) (-2788 (((-112) $) 20)) (-1737 (($) 60)) (-4376 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1231 (-566))) NIL) ((|#1| $ (-566)) 75) ((|#1| $ (-566) |#1|) NIL)) (-4098 (((-566) $ $) 64)) (-2139 (($ $ (-1231 (-566))) NIL) (($ $ (-566)) NIL)) (-1746 (($ (-1 $)) 63)) (-2636 (((-112) $) 91)) (-3513 (($ $) 92)) (-2018 (($ $) 117 (|has| $ (-6 -4418)))) (-2804 (((-771) $) NIL)) (-2924 (($ $) NIL)) (-4068 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-3924 (($ $) 59)) (-3136 (((-538) $) NIL (|has| |#1| (-614 (-538))))) (-2489 (($ (-644 |#1|)) 73)) (-1765 (($ |#1| $) 115)) (-1323 (($ $ $) 119 (|has| $ (-6 -4418))) (($ $ |#1|) 120 (|has| $ (-6 -4418)))) (-3716 (($ $ $) 101) (($ |#1| $) 61) (($ (-644 $)) 106) (($ $ |#1|) 100)) (-4122 (($ $) 66)) (-2479 (($ (-644 |#1|)) 130) (((-862) $) 57 (|has| |#1| (-613 (-862))))) (-2156 (((-644 $) $) NIL)) (-3922 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3900 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3667 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2952 (((-112) $ $) 133 (|has| |#1| (-1099)))) (-3002 (((-771) $) NIL (|has| $ (-6 -4417))))) +(((-1155 |#1|) (-13 (-674 |#1|) (-616 (-644 |#1|)) (-10 -8 (-6 -4418) (-15 -1735 ($ (-644 |#1|))) (IF (|has| |#1| (-1099)) (-15 -1822 ((-112) (-644 |#1|) $)) |%noBranch|) (-15 -1327 ((-2 (|:| |cycle?| (-112)) (|:| -3490 (-771)) (|:| |period| (-771))) (-771) $)) (-15 -1746 ($ (-1 $))) (-15 -1765 ($ |#1| $)) (IF (|has| |#1| (-1099)) (PROGN (-15 -4397 ((-1269) (-566) $)) (-15 -3946 ((-862) $)) (-15 -1433 ((-112)))) |%noBranch|) (-15 -3494 ($ $ (-566) $)) (-15 -3473 ($ (-1 |#1|))) (-15 -3473 ($ (-1 |#1| |#1|) |#1|)) (-15 -3520 ($ (-1 (-112) |#1|) $)) (-15 -3532 ($ (-1 (-112) |#1|) $)))) (-1214)) (T -1155)) +((-1735 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1214)) (-5 *1 (-1155 *3)))) (-1822 (*1 *2 *3 *1) (-12 (-5 *3 (-644 *4)) (-4 *4 (-1099)) (-4 *4 (-1214)) (-5 *2 (-112)) (-5 *1 (-1155 *4)))) (-1327 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -3490 (-771)) (|:| |period| (-771)))) (-5 *1 (-1155 *4)) (-4 *4 (-1214)) (-5 *3 (-771)))) (-1746 (*1 *1 *2) (-12 (-5 *2 (-1 (-1155 *3))) (-5 *1 (-1155 *3)) (-4 *3 (-1214)))) (-1765 (*1 *1 *2 *1) (-12 (-5 *1 (-1155 *2)) (-4 *2 (-1214)))) (-4397 (*1 *2 *3 *1) (-12 (-5 *3 (-566)) (-5 *2 (-1269)) (-5 *1 (-1155 *4)) (-4 *4 (-1099)) (-4 *4 (-1214)))) (-3946 (*1 *2 *1) (-12 (-5 *2 (-862)) (-5 *1 (-1155 *3)) (-4 *3 (-1099)) (-4 *3 (-1214)))) (-1433 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1155 *3)) (-4 *3 (-1099)) (-4 *3 (-1214)))) (-3494 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-1155 *3)) (-4 *3 (-1214)))) (-3473 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1214)) (-5 *1 (-1155 *3)))) (-3473 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1214)) (-5 *1 (-1155 *3)))) (-3520 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1214)) (-5 *1 (-1155 *3)))) (-3532 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1214)) (-5 *1 (-1155 *3))))) +(-13 (-674 |#1|) (-616 (-644 |#1|)) (-10 -8 (-6 -4418) (-15 -1735 ($ (-644 |#1|))) (IF (|has| |#1| (-1099)) (-15 -1822 ((-112) (-644 |#1|) $)) |%noBranch|) (-15 -1327 ((-2 (|:| |cycle?| (-112)) (|:| -3490 (-771)) (|:| |period| (-771))) (-771) $)) (-15 -1746 ($ (-1 $))) (-15 -1765 ($ |#1| $)) (IF (|has| |#1| (-1099)) (PROGN (-15 -4397 ((-1269) (-566) $)) (-15 -3946 ((-862) $)) (-15 -1433 ((-112)))) |%noBranch|) (-15 -3494 ($ $ (-566) $)) (-15 -3473 ($ (-1 |#1|))) (-15 -3473 ($ (-1 |#1| |#1|) |#1|)) (-15 -3520 ($ (-1 (-112) |#1|) $)) (-15 -3532 ($ (-1 (-112) |#1|) $)))) +((-2986 (((-112) $ $) 19)) (-4243 (($ $) 121)) (-3037 (($ $) 122)) (-2571 (($ $ (-144)) 109) (($ $ (-141)) 108)) (-2462 (((-1269) $ (-566) (-566)) 41 (|has| $ (-6 -4418)))) (-3861 (((-112) $ $) 119)) (-3841 (((-112) $ $ (-566)) 118)) (-4315 (($ (-566)) 128)) (-4045 (((-644 $) $ (-144)) 111) (((-644 $) $ (-141)) 110)) (-4163 (((-112) (-1 (-112) (-144) (-144)) $) 99) (((-112) $) 93 (|has| (-144) (-850)))) (-2893 (($ (-1 (-112) (-144) (-144)) $) 90 (|has| $ (-6 -4418))) (($ $) 89 (-12 (|has| (-144) (-850)) (|has| $ (-6 -4418))))) (-1374 (($ (-1 (-112) (-144) (-144)) $) 100) (($ $) 94 (|has| (-144) (-850)))) (-1453 (((-112) $ (-771)) 8)) (-3901 (((-144) $ (-566) (-144)) 53 (|has| $ (-6 -4418))) (((-144) $ (-1231 (-566)) (-144)) 59 (|has| $ (-6 -4418)))) (-3543 (($ (-1 (-112) (-144)) $) 76 (|has| $ (-6 -4417)))) (-1811 (($) 7 T CONST)) (-1577 (($ $ (-144)) 105) (($ $ (-141)) 104)) (-2273 (($ $) 91 (|has| $ (-6 -4418)))) (-3877 (($ $) 101)) (-4334 (($ $ (-1231 (-566)) $) 115)) (-4111 (($ $) 79 (-12 (|has| (-144) (-1099)) (|has| $ (-6 -4417))))) (-2628 (($ (-144) $) 78 (-12 (|has| (-144) (-1099)) (|has| $ (-6 -4417)))) (($ (-1 (-112) (-144)) $) 75 (|has| $ (-6 -4417)))) (-1838 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) 77 (-12 (|has| (-144) (-1099)) (|has| $ (-6 -4417)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) 74 (|has| $ (-6 -4417))) (((-144) (-1 (-144) (-144) (-144)) $) 73 (|has| $ (-6 -4417)))) (-3719 (((-144) $ (-566) (-144)) 54 (|has| $ (-6 -4418)))) (-3653 (((-144) $ (-566)) 52)) (-1470 (((-112) $ $) 120)) (-4000 (((-566) (-1 (-112) (-144)) $) 98) (((-566) (-144) $) 97 (|has| (-144) (-1099))) (((-566) (-144) $ (-566)) 96 (|has| (-144) (-1099))) (((-566) $ $ (-566)) 114) (((-566) (-141) $ (-566)) 113)) (-3872 (((-644 (-144)) $) 31 (|has| $ (-6 -4417)))) (-4259 (($ (-771) (-144)) 70)) (-2756 (((-112) $ (-771)) 9)) (-2755 (((-566) $) 44 (|has| (-566) (-850)))) (-1920 (($ $ $) 88 (|has| (-144) (-850)))) (-1330 (($ (-1 (-112) (-144) (-144)) $ $) 102) (($ $ $) 95 (|has| (-144) (-850)))) (-4227 (((-644 (-144)) $) 30 (|has| $ (-6 -4417)))) (-1688 (((-112) (-144) $) 28 (-12 (|has| (-144) (-1099)) (|has| $ (-6 -4417))))) (-3831 (((-566) $) 45 (|has| (-566) (-850)))) (-3038 (($ $ $) 87 (|has| (-144) (-850)))) (-4020 (((-112) $ $ (-144)) 116)) (-3956 (((-771) $ $ (-144)) 117)) (-3708 (($ (-1 (-144) (-144)) $) 35 (|has| $ (-6 -4418)))) (-3080 (($ (-1 (-144) (-144)) $) 36) (($ (-1 (-144) (-144) (-144)) $ $) 65)) (-2687 (($ $) 123)) (-4032 (($ $) 124)) (-4106 (((-112) $ (-771)) 10)) (-1586 (($ $ (-144)) 107) (($ $ (-141)) 106)) (-3151 (((-1157) $) 22)) (-4271 (($ (-144) $ (-566)) 61) (($ $ $ (-566)) 60)) (-3780 (((-644 (-566)) $) 47)) (-1605 (((-112) (-566) $) 48)) (-4059 (((-1119) $) 21)) (-4080 (((-144) $) 43 (|has| (-566) (-850)))) (-2688 (((-3 (-144) "failed") (-1 (-112) (-144)) $) 72)) (-4079 (($ $ (-144)) 42 (|has| $ (-6 -4418)))) (-3966 (((-112) (-1 (-112) (-144)) $) 33 (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 (-144)))) 27 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099)))) (($ $ (-295 (-144))) 26 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099)))) (($ $ (-144) (-144)) 25 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099)))) (($ $ (-644 (-144)) (-644 (-144))) 24 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099))))) (-1844 (((-112) $ $) 14)) (-2210 (((-112) (-144) $) 46 (-12 (|has| $ (-6 -4417)) (|has| (-144) (-1099))))) (-4185 (((-644 (-144)) $) 49)) (-2788 (((-112) $) 11)) (-1737 (($) 12)) (-4376 (((-144) $ (-566) (-144)) 51) (((-144) $ (-566)) 50) (($ $ (-1231 (-566))) 64) (($ $ $) 103)) (-2139 (($ $ (-566)) 63) (($ $ (-1231 (-566))) 62)) (-4068 (((-771) (-1 (-112) (-144)) $) 32 (|has| $ (-6 -4417))) (((-771) (-144) $) 29 (-12 (|has| (-144) (-1099)) (|has| $ (-6 -4417))))) (-1438 (($ $ $ (-566)) 92 (|has| $ (-6 -4418)))) (-3924 (($ $) 13)) (-3136 (((-538) $) 80 (|has| (-144) (-614 (-538))))) (-2489 (($ (-644 (-144))) 71)) (-3716 (($ $ (-144)) 69) (($ (-144) $) 68) (($ $ $) 67) (($ (-644 $)) 66)) (-2479 (($ (-144)) 112) (((-862) $) 18)) (-3900 (((-112) $ $) 23)) (-3667 (((-112) (-1 (-112) (-144)) $) 34 (|has| $ (-6 -4417)))) (-2835 (((-1157) $) 132) (((-1157) $ (-112)) 131) (((-1269) (-822) $) 130) (((-1269) (-822) $ (-112)) 129)) (-3019 (((-112) $ $) 85 (|has| (-144) (-850)))) (-2990 (((-112) $ $) 84 (|has| (-144) (-850)))) (-2952 (((-112) $ $) 20)) (-3004 (((-112) $ $) 86 (|has| (-144) (-850)))) (-2977 (((-112) $ $) 83 (|has| (-144) (-850)))) (-3002 (((-771) $) 6 (|has| $ (-6 -4417))))) +(((-1156) (-140)) (T -1156)) +((-4315 (*1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-1156))))) +(-13 (-1143) (-1099) (-828) (-10 -8 (-15 -4315 ($ (-566))))) +(((-34) . T) ((-102) . T) ((-613 (-862)) . T) ((-151 #0=(-144)) . T) ((-614 (-538)) |has| (-144) (-614 (-538))) ((-287 #1=(-566) #0#) . T) ((-289 #1# #0#) . T) ((-310 #0#) -12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099))) ((-375 #0#) . T) ((-491 #0#) . T) ((-604 #1# #0#) . T) ((-516 #0# #0#) -12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099))) ((-651 #0#) . T) ((-19 #0#) . T) ((-828) . T) ((-850) |has| (-144) (-850)) ((-1099) . T) ((-1143) . T) ((-1214) . T)) +((-2986 (((-112) $ $) NIL)) (-4243 (($ $) NIL)) (-3037 (($ $) NIL)) (-2571 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-2462 (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4418)))) (-3861 (((-112) $ $) NIL)) (-3841 (((-112) $ $ (-566)) NIL)) (-4315 (($ (-566)) 8)) (-4045 (((-644 $) $ (-144)) NIL) (((-644 $) $ (-141)) NIL)) (-4163 (((-112) (-1 (-112) (-144) (-144)) $) NIL) (((-112) $) NIL (|has| (-144) (-850)))) (-2893 (($ (-1 (-112) (-144) (-144)) $) NIL (|has| $ (-6 -4418))) (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-144) (-850))))) (-1374 (($ (-1 (-112) (-144) (-144)) $) NIL) (($ $) NIL (|has| (-144) (-850)))) (-1453 (((-112) $ (-771)) NIL)) (-3901 (((-144) $ (-566) (-144)) NIL (|has| $ (-6 -4418))) (((-144) $ (-1231 (-566)) (-144)) NIL (|has| $ (-6 -4418)))) (-3543 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4417)))) (-1811 (($) NIL T CONST)) (-1577 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-2273 (($ $) NIL (|has| $ (-6 -4418)))) (-3877 (($ $) NIL)) (-4334 (($ $ (-1231 (-566)) $) NIL)) (-4111 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-144) (-1099))))) (-2628 (($ (-144) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-144) (-1099)))) (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4417)))) (-1838 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4417)) (|has| (-144) (-1099)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4417))) (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4417)))) (-3719 (((-144) $ (-566) (-144)) NIL (|has| $ (-6 -4418)))) (-3653 (((-144) $ (-566)) NIL)) (-1470 (((-112) $ $) NIL)) (-4000 (((-566) (-1 (-112) (-144)) $) NIL) (((-566) (-144) $) NIL (|has| (-144) (-1099))) (((-566) (-144) $ (-566)) NIL (|has| (-144) (-1099))) (((-566) $ $ (-566)) NIL) (((-566) (-141) $ (-566)) NIL)) (-3872 (((-644 (-144)) $) NIL (|has| $ (-6 -4417)))) (-4259 (($ (-771) (-144)) NIL)) (-2756 (((-112) $ (-771)) NIL)) (-2755 (((-566) $) NIL (|has| (-566) (-850)))) (-1920 (($ $ $) NIL (|has| (-144) (-850)))) (-1330 (($ (-1 (-112) (-144) (-144)) $ $) NIL) (($ $ $) NIL (|has| (-144) (-850)))) (-4227 (((-644 (-144)) $) NIL (|has| $ (-6 -4417)))) (-1688 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-144) (-1099))))) (-3831 (((-566) $) NIL (|has| (-566) (-850)))) (-3038 (($ $ $) NIL (|has| (-144) (-850)))) (-4020 (((-112) $ $ (-144)) NIL)) (-3956 (((-771) $ $ (-144)) NIL)) (-3708 (($ (-1 (-144) (-144)) $) NIL (|has| $ (-6 -4418)))) (-3080 (($ (-1 (-144) (-144)) $) NIL) (($ (-1 (-144) (-144) (-144)) $ $) NIL)) (-2687 (($ $) NIL)) (-4032 (($ $) NIL)) (-4106 (((-112) $ (-771)) NIL)) (-1586 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-3151 (((-1157) $) NIL)) (-4271 (($ (-144) $ (-566)) NIL) (($ $ $ (-566)) NIL)) (-3780 (((-644 (-566)) $) NIL)) (-1605 (((-112) (-566) $) NIL)) (-4059 (((-1119) $) NIL)) (-4080 (((-144) $) NIL (|has| (-566) (-850)))) (-2688 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-4079 (($ $ (-144)) NIL (|has| $ (-6 -4418)))) (-3966 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 (-144)))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099)))) (($ $ (-295 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099)))) (($ $ (-644 (-144)) (-644 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099))))) (-1844 (((-112) $ $) NIL)) (-2210 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-144) (-1099))))) (-4185 (((-644 (-144)) $) NIL)) (-2788 (((-112) $) NIL)) (-1737 (($) NIL)) (-4376 (((-144) $ (-566) (-144)) NIL) (((-144) $ (-566)) NIL) (($ $ (-1231 (-566))) NIL) (($ $ $) NIL)) (-2139 (($ $ (-566)) NIL) (($ $ (-1231 (-566))) NIL)) (-4068 (((-771) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4417))) (((-771) (-144) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-144) (-1099))))) (-1438 (($ $ $ (-566)) NIL (|has| $ (-6 -4418)))) (-3924 (($ $) NIL)) (-3136 (((-538) $) NIL (|has| (-144) (-614 (-538))))) (-2489 (($ (-644 (-144))) NIL)) (-3716 (($ $ (-144)) NIL) (($ (-144) $) NIL) (($ $ $) NIL) (($ (-644 $)) NIL)) (-2479 (($ (-144)) NIL) (((-862) $) NIL)) (-3900 (((-112) $ $) NIL)) (-3667 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4417)))) (-2835 (((-1157) $) 19) (((-1157) $ (-112)) 21) (((-1269) (-822) $) 22) (((-1269) (-822) $ (-112)) 23)) (-3019 (((-112) $ $) NIL (|has| (-144) (-850)))) (-2990 (((-112) $ $) NIL (|has| (-144) (-850)))) (-2952 (((-112) $ $) NIL)) (-3004 (((-112) $ $) NIL (|has| (-144) (-850)))) (-2977 (((-112) $ $) NIL (|has| (-144) (-850)))) (-3002 (((-771) $) NIL (|has| $ (-6 -4417))))) +(((-1157) (-1156)) (T -1157)) +NIL +(-1156) +((-2986 (((-112) $ $) NIL (-2809 (|has| (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (-1099)) (|has| |#1| (-1099))))) (-4250 (($) NIL) (($ (-644 (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)))) NIL)) (-2462 (((-1269) $ (-1157) (-1157)) NIL (|has| $ (-6 -4418)))) (-1453 (((-112) $ (-771)) NIL)) (-3901 ((|#1| $ (-1157) |#1|) NIL)) (-4364 (($ (-1 (-112) (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|))) $) NIL (|has| $ (-6 -4417)))) (-3543 (($ (-1 (-112) (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|))) $) NIL (|has| $ (-6 -4417)))) (-2377 (((-3 |#1| "failed") (-1157) $) NIL)) (-1811 (($) NIL T CONST)) (-4111 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (-1099))))) (-2295 (($ (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) $) NIL (|has| $ (-6 -4417))) (($ (-1 (-112) (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|))) $) NIL (|has| $ (-6 -4417))) (((-3 |#1| "failed") (-1157) $) NIL)) (-2628 (($ (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (-1099)))) (($ (-1 (-112) (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|))) $) NIL (|has| $ (-6 -4417)))) (-1838 (((-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (-1 (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|))) $ (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|))) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (-1099)))) (((-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (-1 (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|))) $ (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|))) NIL (|has| $ (-6 -4417))) (((-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (-1 (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|))) $) NIL (|has| $ (-6 -4417)))) (-3719 ((|#1| $ (-1157) |#1|) NIL (|has| $ (-6 -4418)))) (-3653 ((|#1| $ (-1157)) NIL)) (-3872 (((-644 (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|))) $) NIL (|has| $ (-6 -4417))) (((-644 |#1|) $) NIL (|has| $ (-6 -4417)))) (-2756 (((-112) $ (-771)) NIL)) (-2755 (((-1157) $) NIL (|has| (-1157) (-850)))) (-4227 (((-644 (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|))) $) NIL (|has| $ (-6 -4417))) (((-644 |#1|) $) NIL (|has| $ (-6 -4417)))) (-1688 (((-112) (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (-1099)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-3831 (((-1157) $) NIL (|has| (-1157) (-850)))) (-3708 (($ (-1 (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|))) $) NIL (|has| $ (-6 -4418))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4418)))) (-3080 (($ (-1 (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4106 (((-112) $ (-771)) NIL)) (-3151 (((-1157) $) NIL (-2809 (|has| (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (-1099)) (|has| |#1| (-1099))))) (-1467 (((-644 (-1157)) $) NIL)) (-3983 (((-112) (-1157) $) NIL)) (-4255 (((-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) $) NIL)) (-4354 (($ (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) $) NIL)) (-3780 (((-644 (-1157)) $) NIL)) (-1605 (((-112) (-1157) $) NIL)) (-4059 (((-1119) $) NIL (-2809 (|has| (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (-1099)) (|has| |#1| (-1099))))) (-4080 ((|#1| $) NIL (|has| (-1157) (-850)))) (-2688 (((-3 (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) "failed") (-1 (-112) (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|))) $) NIL)) (-4079 (($ $ |#1|) NIL (|has| $ (-6 -4418)))) (-4097 (((-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) $) NIL)) (-3966 (((-112) (-1 (-112) (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|))) $) NIL (|has| $ (-6 -4417))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|))))) NIL (-12 (|has| (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (-310 (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)))) (|has| (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (-1099)))) (($ $ (-295 (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)))) NIL (-12 (|has| (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (-310 (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)))) (|has| (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (-1099)))) (($ $ (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|))) NIL (-12 (|has| (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (-310 (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)))) (|has| (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (-1099)))) (($ $ (-644 (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|))) (-644 (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)))) NIL (-12 (|has| (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (-310 (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)))) (|has| (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1844 (((-112) $ $) NIL)) (-2210 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-4185 (((-644 |#1|) $) NIL)) (-2788 (((-112) $) NIL)) (-1737 (($) NIL)) (-4376 ((|#1| $ (-1157)) NIL) ((|#1| $ (-1157) |#1|) NIL)) (-1797 (($) NIL) (($ (-644 (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)))) NIL)) (-4068 (((-771) (-1 (-112) (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|))) $) NIL (|has| $ (-6 -4417))) (((-771) (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (-1099)))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099)))) (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-3924 (($ $) NIL)) (-3136 (((-538) $) NIL (|has| (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (-614 (-538))))) (-2489 (($ (-644 (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)))) NIL)) (-2479 (((-862) $) NIL (-2809 (|has| (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (-613 (-862))) (|has| |#1| (-613 (-862)))))) (-3900 (((-112) $ $) NIL (-2809 (|has| (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (-1099)) (|has| |#1| (-1099))))) (-2471 (($ (-644 (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)))) NIL)) (-3667 (((-112) (-1 (-112) (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|))) $) NIL (|has| $ (-6 -4417))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-2952 (((-112) $ $) NIL (-2809 (|has| (-2 (|:| -1928 (-1157)) (|:| -2806 |#1|)) (-1099)) (|has| |#1| (-1099))))) (-3002 (((-771) $) NIL (|has| $ (-6 -4417))))) +(((-1158 |#1|) (-13 (-1190 (-1157) |#1|) (-10 -7 (-6 -4417))) (-1099)) (T -1158)) +NIL +(-13 (-1190 (-1157) |#1|) (-10 -7 (-6 -4417))) +((-4235 (((-1155 |#1|) (-1155 |#1|)) 85)) (-3757 (((-3 (-1155 |#1|) "failed") (-1155 |#1|)) 42)) (-3582 (((-1155 |#1|) (-409 (-566)) (-1155 |#1|)) 136 (|has| |#1| (-38 (-409 (-566)))))) (-3061 (((-1155 |#1|) |#1| (-1155 |#1|)) 142 (|has| |#1| (-365)))) (-3114 (((-1155 |#1|) (-1155 |#1|)) 100)) (-3184 (((-1155 (-566)) (-566)) 64)) (-1511 (((-1155 |#1|) (-1155 (-1155 |#1|))) 119 (|has| |#1| (-38 (-409 (-566)))))) (-2290 (((-1155 |#1|) (-566) (-566) (-1155 |#1|)) 105)) (-1863 (((-1155 |#1|) |#1| (-566)) 54)) (-4161 (((-1155 |#1|) (-1155 |#1|) (-1155 |#1|)) 67)) (-2094 (((-1155 |#1|) (-1155 |#1|) (-1155 |#1|)) 139 (|has| |#1| (-365)))) (-2389 (((-1155 |#1|) |#1| (-1 (-1155 |#1|))) 118 (|has| |#1| (-38 (-409 (-566)))))) (-1481 (((-1155 |#1|) (-1 |#1| (-566)) |#1| (-1 (-1155 |#1|))) 140 (|has| |#1| (-365)))) (-3655 (((-1155 |#1|) (-1155 |#1|)) 99)) (-3597 (((-1155 |#1|) (-1155 |#1|)) 83)) (-2467 (((-1155 |#1|) (-566) (-566) (-1155 |#1|)) 106)) (-2390 (((-1155 |#1|) |#1| (-1155 |#1|)) 115 (|has| |#1| (-38 (-409 (-566)))))) (-1601 (((-1155 (-566)) (-566)) 63)) (-1989 (((-1155 |#1|) |#1|) 66)) (-3440 (((-1155 |#1|) (-1155 |#1|) (-566) (-566)) 102)) (-4311 (((-1155 |#1|) (-1 |#1| (-566)) (-1155 |#1|)) 73)) (-2976 (((-3 (-1155 |#1|) "failed") (-1155 |#1|) (-1155 |#1|)) 40)) (-4085 (((-1155 |#1|) (-1155 |#1|)) 101)) (-3297 (((-1155 |#1|) (-1155 |#1|) |#1|) 78)) (-1664 (((-1155 |#1|) (-1155 |#1|)) 69)) (-3521 (((-1155 |#1|) (-1155 |#1|) (-1155 |#1|)) 79)) (-2479 (((-1155 |#1|) |#1|) 74)) (-2644 (((-1155 |#1|) (-1155 (-1155 |#1|))) 90)) (-3077 (((-1155 |#1|) (-1155 |#1|) (-1155 |#1|)) 41)) (-3065 (((-1155 |#1|) (-1155 |#1|)) 21) (((-1155 |#1|) (-1155 |#1|) (-1155 |#1|)) 23)) (-3052 (((-1155 |#1|) (-1155 |#1|) (-1155 |#1|)) 17)) (* (((-1155 |#1|) (-1155 |#1|) |#1|) 29) (((-1155 |#1|) |#1| (-1155 |#1|)) 26) (((-1155 |#1|) (-1155 |#1|) (-1155 |#1|)) 27))) +(((-1159 |#1|) (-10 -7 (-15 -3052 ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 -3065 ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 -3065 ((-1155 |#1|) (-1155 |#1|))) (-15 * ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 * ((-1155 |#1|) |#1| (-1155 |#1|))) (-15 * ((-1155 |#1|) (-1155 |#1|) |#1|)) (-15 -2976 ((-3 (-1155 |#1|) "failed") (-1155 |#1|) (-1155 |#1|))) (-15 -3077 ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 -3757 ((-3 (-1155 |#1|) "failed") (-1155 |#1|))) (-15 -1863 ((-1155 |#1|) |#1| (-566))) (-15 -1601 ((-1155 (-566)) (-566))) (-15 -3184 ((-1155 (-566)) (-566))) (-15 -1989 ((-1155 |#1|) |#1|)) (-15 -4161 ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 -1664 ((-1155 |#1|) (-1155 |#1|))) (-15 -4311 ((-1155 |#1|) (-1 |#1| (-566)) (-1155 |#1|))) (-15 -2479 ((-1155 |#1|) |#1|)) (-15 -3297 ((-1155 |#1|) (-1155 |#1|) |#1|)) (-15 -3521 ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 -3597 ((-1155 |#1|) (-1155 |#1|))) (-15 -4235 ((-1155 |#1|) (-1155 |#1|))) (-15 -2644 ((-1155 |#1|) (-1155 (-1155 |#1|)))) (-15 -3655 ((-1155 |#1|) (-1155 |#1|))) (-15 -3114 ((-1155 |#1|) (-1155 |#1|))) (-15 -4085 ((-1155 |#1|) (-1155 |#1|))) (-15 -3440 ((-1155 |#1|) (-1155 |#1|) (-566) (-566))) (-15 -2290 ((-1155 |#1|) (-566) (-566) (-1155 |#1|))) (-15 -2467 ((-1155 |#1|) (-566) (-566) (-1155 |#1|))) (IF (|has| |#1| (-38 (-409 (-566)))) (PROGN (-15 -2390 ((-1155 |#1|) |#1| (-1155 |#1|))) (-15 -2389 ((-1155 |#1|) |#1| (-1 (-1155 |#1|)))) (-15 -1511 ((-1155 |#1|) (-1155 (-1155 |#1|)))) (-15 -3582 ((-1155 |#1|) (-409 (-566)) (-1155 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -2094 ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 -1481 ((-1155 |#1|) (-1 |#1| (-566)) |#1| (-1 (-1155 |#1|)))) (-15 -3061 ((-1155 |#1|) |#1| (-1155 |#1|)))) |%noBranch|)) (-1049)) (T -1159)) +((-3061 (*1 *2 *3 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-365)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-1481 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-566))) (-5 *5 (-1 (-1155 *4))) (-4 *4 (-365)) (-4 *4 (-1049)) (-5 *2 (-1155 *4)) (-5 *1 (-1159 *4)))) (-2094 (*1 *2 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-365)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-3582 (*1 *2 *3 *2) (-12 (-5 *2 (-1155 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1049)) (-5 *3 (-409 (-566))) (-5 *1 (-1159 *4)))) (-1511 (*1 *2 *3) (-12 (-5 *3 (-1155 (-1155 *4))) (-5 *2 (-1155 *4)) (-5 *1 (-1159 *4)) (-4 *4 (-38 (-409 (-566)))) (-4 *4 (-1049)))) (-2389 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1155 *3))) (-5 *2 (-1155 *3)) (-5 *1 (-1159 *3)) (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)))) (-2390 (*1 *2 *3 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-2467 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1155 *4)) (-5 *3 (-566)) (-4 *4 (-1049)) (-5 *1 (-1159 *4)))) (-2290 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1155 *4)) (-5 *3 (-566)) (-4 *4 (-1049)) (-5 *1 (-1159 *4)))) (-3440 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1155 *4)) (-5 *3 (-566)) (-4 *4 (-1049)) (-5 *1 (-1159 *4)))) (-4085 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-3114 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-3655 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-2644 (*1 *2 *3) (-12 (-5 *3 (-1155 (-1155 *4))) (-5 *2 (-1155 *4)) (-5 *1 (-1159 *4)) (-4 *4 (-1049)))) (-4235 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-3597 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-3521 (*1 *2 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-3297 (*1 *2 *2 *3) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-2479 (*1 *2 *3) (-12 (-5 *2 (-1155 *3)) (-5 *1 (-1159 *3)) (-4 *3 (-1049)))) (-4311 (*1 *2 *3 *2) (-12 (-5 *2 (-1155 *4)) (-5 *3 (-1 *4 (-566))) (-4 *4 (-1049)) (-5 *1 (-1159 *4)))) (-1664 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-4161 (*1 *2 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-1989 (*1 *2 *3) (-12 (-5 *2 (-1155 *3)) (-5 *1 (-1159 *3)) (-4 *3 (-1049)))) (-3184 (*1 *2 *3) (-12 (-5 *2 (-1155 (-566))) (-5 *1 (-1159 *4)) (-4 *4 (-1049)) (-5 *3 (-566)))) (-1601 (*1 *2 *3) (-12 (-5 *2 (-1155 (-566))) (-5 *1 (-1159 *4)) (-4 *4 (-1049)) (-5 *3 (-566)))) (-1863 (*1 *2 *3 *4) (-12 (-5 *4 (-566)) (-5 *2 (-1155 *3)) (-5 *1 (-1159 *3)) (-4 *3 (-1049)))) (-3757 (*1 *2 *2) (|partial| -12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-3077 (*1 *2 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-2976 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-3065 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-3065 (*1 *2 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-3052 (*1 *2 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3))))) +(-10 -7 (-15 -3052 ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 -3065 ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 -3065 ((-1155 |#1|) (-1155 |#1|))) (-15 * ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 * ((-1155 |#1|) |#1| (-1155 |#1|))) (-15 * ((-1155 |#1|) (-1155 |#1|) |#1|)) (-15 -2976 ((-3 (-1155 |#1|) "failed") (-1155 |#1|) (-1155 |#1|))) (-15 -3077 ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 -3757 ((-3 (-1155 |#1|) "failed") (-1155 |#1|))) (-15 -1863 ((-1155 |#1|) |#1| (-566))) (-15 -1601 ((-1155 (-566)) (-566))) (-15 -3184 ((-1155 (-566)) (-566))) (-15 -1989 ((-1155 |#1|) |#1|)) (-15 -4161 ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 -1664 ((-1155 |#1|) (-1155 |#1|))) (-15 -4311 ((-1155 |#1|) (-1 |#1| (-566)) (-1155 |#1|))) (-15 -2479 ((-1155 |#1|) |#1|)) (-15 -3297 ((-1155 |#1|) (-1155 |#1|) |#1|)) (-15 -3521 ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 -3597 ((-1155 |#1|) (-1155 |#1|))) (-15 -4235 ((-1155 |#1|) (-1155 |#1|))) (-15 -2644 ((-1155 |#1|) (-1155 (-1155 |#1|)))) (-15 -3655 ((-1155 |#1|) (-1155 |#1|))) (-15 -3114 ((-1155 |#1|) (-1155 |#1|))) (-15 -4085 ((-1155 |#1|) (-1155 |#1|))) (-15 -3440 ((-1155 |#1|) (-1155 |#1|) (-566) (-566))) (-15 -2290 ((-1155 |#1|) (-566) (-566) (-1155 |#1|))) (-15 -2467 ((-1155 |#1|) (-566) (-566) (-1155 |#1|))) (IF (|has| |#1| (-38 (-409 (-566)))) (PROGN (-15 -2390 ((-1155 |#1|) |#1| (-1155 |#1|))) (-15 -2389 ((-1155 |#1|) |#1| (-1 (-1155 |#1|)))) (-15 -1511 ((-1155 |#1|) (-1155 (-1155 |#1|)))) (-15 -3582 ((-1155 |#1|) (-409 (-566)) (-1155 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -2094 ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 -1481 ((-1155 |#1|) (-1 |#1| (-566)) |#1| (-1 (-1155 |#1|)))) (-15 -3061 ((-1155 |#1|) |#1| (-1155 |#1|)))) |%noBranch|)) +((-3219 (((-1155 |#1|) (-1155 |#1|)) 60)) (-3091 (((-1155 |#1|) (-1155 |#1|)) 42)) (-3197 (((-1155 |#1|) (-1155 |#1|)) 56)) (-3067 (((-1155 |#1|) (-1155 |#1|)) 38)) (-3240 (((-1155 |#1|) (-1155 |#1|)) 63)) (-3115 (((-1155 |#1|) (-1155 |#1|)) 45)) (-3676 (((-1155 |#1|) (-1155 |#1|)) 34)) (-3571 (((-1155 |#1|) (-1155 |#1|)) 29)) (-3250 (((-1155 |#1|) (-1155 |#1|)) 64)) (-3126 (((-1155 |#1|) (-1155 |#1|)) 46)) (-3227 (((-1155 |#1|) (-1155 |#1|)) 61)) (-3105 (((-1155 |#1|) (-1155 |#1|)) 43)) (-3207 (((-1155 |#1|) (-1155 |#1|)) 58)) (-3079 (((-1155 |#1|) (-1155 |#1|)) 40)) (-3285 (((-1155 |#1|) (-1155 |#1|)) 68)) (-3157 (((-1155 |#1|) (-1155 |#1|)) 50)) (-3260 (((-1155 |#1|) (-1155 |#1|)) 66)) (-3135 (((-1155 |#1|) (-1155 |#1|)) 48)) (-3309 (((-1155 |#1|) (-1155 |#1|)) 71)) (-3179 (((-1155 |#1|) (-1155 |#1|)) 53)) (-1861 (((-1155 |#1|) (-1155 |#1|)) 72)) (-3190 (((-1155 |#1|) (-1155 |#1|)) 54)) (-3299 (((-1155 |#1|) (-1155 |#1|)) 70)) (-3168 (((-1155 |#1|) (-1155 |#1|)) 52)) (-3273 (((-1155 |#1|) (-1155 |#1|)) 69)) (-3148 (((-1155 |#1|) (-1155 |#1|)) 51)) (** (((-1155 |#1|) (-1155 |#1|) (-1155 |#1|)) 36))) +(((-1160 |#1|) (-10 -7 (-15 -3571 ((-1155 |#1|) (-1155 |#1|))) (-15 -3676 ((-1155 |#1|) (-1155 |#1|))) (-15 ** ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 -3067 ((-1155 |#1|) (-1155 |#1|))) (-15 -3079 ((-1155 |#1|) (-1155 |#1|))) (-15 -3091 ((-1155 |#1|) (-1155 |#1|))) (-15 -3105 ((-1155 |#1|) (-1155 |#1|))) (-15 -3115 ((-1155 |#1|) (-1155 |#1|))) (-15 -3126 ((-1155 |#1|) (-1155 |#1|))) (-15 -3135 ((-1155 |#1|) (-1155 |#1|))) (-15 -3148 ((-1155 |#1|) (-1155 |#1|))) (-15 -3157 ((-1155 |#1|) (-1155 |#1|))) (-15 -3168 ((-1155 |#1|) (-1155 |#1|))) (-15 -3179 ((-1155 |#1|) (-1155 |#1|))) (-15 -3190 ((-1155 |#1|) (-1155 |#1|))) (-15 -3197 ((-1155 |#1|) (-1155 |#1|))) (-15 -3207 ((-1155 |#1|) (-1155 |#1|))) (-15 -3219 ((-1155 |#1|) (-1155 |#1|))) (-15 -3227 ((-1155 |#1|) (-1155 |#1|))) (-15 -3240 ((-1155 |#1|) (-1155 |#1|))) (-15 -3250 ((-1155 |#1|) (-1155 |#1|))) (-15 -3260 ((-1155 |#1|) (-1155 |#1|))) (-15 -3273 ((-1155 |#1|) (-1155 |#1|))) (-15 -3285 ((-1155 |#1|) (-1155 |#1|))) (-15 -3299 ((-1155 |#1|) (-1155 |#1|))) (-15 -3309 ((-1155 |#1|) (-1155 |#1|))) (-15 -1861 ((-1155 |#1|) (-1155 |#1|)))) (-38 (-409 (-566)))) (T -1160)) +((-1861 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3309 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3299 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3285 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3273 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3260 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3250 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3240 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3227 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3219 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3207 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3197 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3190 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3179 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3168 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3157 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3148 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3135 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3126 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3115 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3105 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3091 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3079 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3067 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3676 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3571 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3))))) +(-10 -7 (-15 -3571 ((-1155 |#1|) (-1155 |#1|))) (-15 -3676 ((-1155 |#1|) (-1155 |#1|))) (-15 ** ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 -3067 ((-1155 |#1|) (-1155 |#1|))) (-15 -3079 ((-1155 |#1|) (-1155 |#1|))) (-15 -3091 ((-1155 |#1|) (-1155 |#1|))) (-15 -3105 ((-1155 |#1|) (-1155 |#1|))) (-15 -3115 ((-1155 |#1|) (-1155 |#1|))) (-15 -3126 ((-1155 |#1|) (-1155 |#1|))) (-15 -3135 ((-1155 |#1|) (-1155 |#1|))) (-15 -3148 ((-1155 |#1|) (-1155 |#1|))) (-15 -3157 ((-1155 |#1|) (-1155 |#1|))) (-15 -3168 ((-1155 |#1|) (-1155 |#1|))) (-15 -3179 ((-1155 |#1|) (-1155 |#1|))) (-15 -3190 ((-1155 |#1|) (-1155 |#1|))) (-15 -3197 ((-1155 |#1|) (-1155 |#1|))) (-15 -3207 ((-1155 |#1|) (-1155 |#1|))) (-15 -3219 ((-1155 |#1|) (-1155 |#1|))) (-15 -3227 ((-1155 |#1|) (-1155 |#1|))) (-15 -3240 ((-1155 |#1|) (-1155 |#1|))) (-15 -3250 ((-1155 |#1|) (-1155 |#1|))) (-15 -3260 ((-1155 |#1|) (-1155 |#1|))) (-15 -3273 ((-1155 |#1|) (-1155 |#1|))) (-15 -3285 ((-1155 |#1|) (-1155 |#1|))) (-15 -3299 ((-1155 |#1|) (-1155 |#1|))) (-15 -3309 ((-1155 |#1|) (-1155 |#1|))) (-15 -1861 ((-1155 |#1|) (-1155 |#1|)))) +((-3219 (((-1155 |#1|) (-1155 |#1|)) 108)) (-3091 (((-1155 |#1|) (-1155 |#1|)) 65)) (-1673 (((-2 (|:| -3197 (-1155 |#1|)) (|:| -3207 (-1155 |#1|))) (-1155 |#1|)) 104)) (-3197 (((-1155 |#1|) (-1155 |#1|)) 105)) (-2110 (((-2 (|:| -3067 (-1155 |#1|)) (|:| -3079 (-1155 |#1|))) (-1155 |#1|)) 54)) (-3067 (((-1155 |#1|) (-1155 |#1|)) 55)) (-3240 (((-1155 |#1|) (-1155 |#1|)) 110)) (-3115 (((-1155 |#1|) (-1155 |#1|)) 72)) (-3676 (((-1155 |#1|) (-1155 |#1|)) 40)) (-3571 (((-1155 |#1|) (-1155 |#1|)) 37)) (-3250 (((-1155 |#1|) (-1155 |#1|)) 111)) (-3126 (((-1155 |#1|) (-1155 |#1|)) 73)) (-3227 (((-1155 |#1|) (-1155 |#1|)) 109)) (-3105 (((-1155 |#1|) (-1155 |#1|)) 68)) (-3207 (((-1155 |#1|) (-1155 |#1|)) 106)) (-3079 (((-1155 |#1|) (-1155 |#1|)) 56)) (-3285 (((-1155 |#1|) (-1155 |#1|)) 119)) (-3157 (((-1155 |#1|) (-1155 |#1|)) 94)) (-3260 (((-1155 |#1|) (-1155 |#1|)) 113)) (-3135 (((-1155 |#1|) (-1155 |#1|)) 90)) (-3309 (((-1155 |#1|) (-1155 |#1|)) 123)) (-3179 (((-1155 |#1|) (-1155 |#1|)) 98)) (-1861 (((-1155 |#1|) (-1155 |#1|)) 125)) (-3190 (((-1155 |#1|) (-1155 |#1|)) 100)) (-3299 (((-1155 |#1|) (-1155 |#1|)) 121)) (-3168 (((-1155 |#1|) (-1155 |#1|)) 96)) (-3273 (((-1155 |#1|) (-1155 |#1|)) 115)) (-3148 (((-1155 |#1|) (-1155 |#1|)) 92)) (** (((-1155 |#1|) (-1155 |#1|) (-1155 |#1|)) 41))) +(((-1161 |#1|) (-10 -7 (-15 -3571 ((-1155 |#1|) (-1155 |#1|))) (-15 -3676 ((-1155 |#1|) (-1155 |#1|))) (-15 ** ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 -2110 ((-2 (|:| -3067 (-1155 |#1|)) (|:| -3079 (-1155 |#1|))) (-1155 |#1|))) (-15 -3067 ((-1155 |#1|) (-1155 |#1|))) (-15 -3079 ((-1155 |#1|) (-1155 |#1|))) (-15 -3091 ((-1155 |#1|) (-1155 |#1|))) (-15 -3105 ((-1155 |#1|) (-1155 |#1|))) (-15 -3115 ((-1155 |#1|) (-1155 |#1|))) (-15 -3126 ((-1155 |#1|) (-1155 |#1|))) (-15 -3135 ((-1155 |#1|) (-1155 |#1|))) (-15 -3148 ((-1155 |#1|) (-1155 |#1|))) (-15 -3157 ((-1155 |#1|) (-1155 |#1|))) (-15 -3168 ((-1155 |#1|) (-1155 |#1|))) (-15 -3179 ((-1155 |#1|) (-1155 |#1|))) (-15 -3190 ((-1155 |#1|) (-1155 |#1|))) (-15 -1673 ((-2 (|:| -3197 (-1155 |#1|)) (|:| -3207 (-1155 |#1|))) (-1155 |#1|))) (-15 -3197 ((-1155 |#1|) (-1155 |#1|))) (-15 -3207 ((-1155 |#1|) (-1155 |#1|))) (-15 -3219 ((-1155 |#1|) (-1155 |#1|))) (-15 -3227 ((-1155 |#1|) (-1155 |#1|))) (-15 -3240 ((-1155 |#1|) (-1155 |#1|))) (-15 -3250 ((-1155 |#1|) (-1155 |#1|))) (-15 -3260 ((-1155 |#1|) (-1155 |#1|))) (-15 -3273 ((-1155 |#1|) (-1155 |#1|))) (-15 -3285 ((-1155 |#1|) (-1155 |#1|))) (-15 -3299 ((-1155 |#1|) (-1155 |#1|))) (-15 -3309 ((-1155 |#1|) (-1155 |#1|))) (-15 -1861 ((-1155 |#1|) (-1155 |#1|)))) (-38 (-409 (-566)))) (T -1161)) +((-1861 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3309 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3299 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3285 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3273 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3260 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3250 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3240 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3227 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3219 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3207 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3197 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-1673 (*1 *2 *3) (-12 (-4 *4 (-38 (-409 (-566)))) (-5 *2 (-2 (|:| -3197 (-1155 *4)) (|:| -3207 (-1155 *4)))) (-5 *1 (-1161 *4)) (-5 *3 (-1155 *4)))) (-3190 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3179 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3168 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3157 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3148 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3135 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3126 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3115 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3105 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3091 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3079 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3067 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-2110 (*1 *2 *3) (-12 (-4 *4 (-38 (-409 (-566)))) (-5 *2 (-2 (|:| -3067 (-1155 *4)) (|:| -3079 (-1155 *4)))) (-5 *1 (-1161 *4)) (-5 *3 (-1155 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3676 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3571 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3))))) +(-10 -7 (-15 -3571 ((-1155 |#1|) (-1155 |#1|))) (-15 -3676 ((-1155 |#1|) (-1155 |#1|))) (-15 ** ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 -2110 ((-2 (|:| -3067 (-1155 |#1|)) (|:| -3079 (-1155 |#1|))) (-1155 |#1|))) (-15 -3067 ((-1155 |#1|) (-1155 |#1|))) (-15 -3079 ((-1155 |#1|) (-1155 |#1|))) (-15 -3091 ((-1155 |#1|) (-1155 |#1|))) (-15 -3105 ((-1155 |#1|) (-1155 |#1|))) (-15 -3115 ((-1155 |#1|) (-1155 |#1|))) (-15 -3126 ((-1155 |#1|) (-1155 |#1|))) (-15 -3135 ((-1155 |#1|) (-1155 |#1|))) (-15 -3148 ((-1155 |#1|) (-1155 |#1|))) (-15 -3157 ((-1155 |#1|) (-1155 |#1|))) (-15 -3168 ((-1155 |#1|) (-1155 |#1|))) (-15 -3179 ((-1155 |#1|) (-1155 |#1|))) (-15 -3190 ((-1155 |#1|) (-1155 |#1|))) (-15 -1673 ((-2 (|:| -3197 (-1155 |#1|)) (|:| -3207 (-1155 |#1|))) (-1155 |#1|))) (-15 -3197 ((-1155 |#1|) (-1155 |#1|))) (-15 -3207 ((-1155 |#1|) (-1155 |#1|))) (-15 -3219 ((-1155 |#1|) (-1155 |#1|))) (-15 -3227 ((-1155 |#1|) (-1155 |#1|))) (-15 -3240 ((-1155 |#1|) (-1155 |#1|))) (-15 -3250 ((-1155 |#1|) (-1155 |#1|))) (-15 -3260 ((-1155 |#1|) (-1155 |#1|))) (-15 -3273 ((-1155 |#1|) (-1155 |#1|))) (-15 -3285 ((-1155 |#1|) (-1155 |#1|))) (-15 -3299 ((-1155 |#1|) (-1155 |#1|))) (-15 -3309 ((-1155 |#1|) (-1155 |#1|))) (-15 -1861 ((-1155 |#1|) (-1155 |#1|)))) +((-1969 (((-958 |#2|) |#2| |#2|) 51)) (-3530 ((|#2| |#2| |#1|) 19 (|has| |#1| (-308))))) +(((-1162 |#1| |#2|) (-10 -7 (-15 -1969 ((-958 |#2|) |#2| |#2|)) (IF (|has| |#1| (-308)) (-15 -3530 (|#2| |#2| |#1|)) |%noBranch|)) (-558) (-1240 |#1|)) (T -1162)) +((-3530 (*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-4 *3 (-558)) (-5 *1 (-1162 *3 *2)) (-4 *2 (-1240 *3)))) (-1969 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-958 *3)) (-5 *1 (-1162 *4 *3)) (-4 *3 (-1240 *4))))) +(-10 -7 (-15 -1969 ((-958 |#2|) |#2| |#2|)) (IF (|has| |#1| (-308)) (-15 -3530 (|#2| |#2| |#1|)) |%noBranch|)) +((-2986 (((-112) $ $) NIL)) (-3511 (($ $ (-644 (-771))) 81)) (-3364 (($) 33)) (-4233 (($ $) 51)) (-2020 (((-644 $) $) 60)) (-2503 (((-112) $) 19)) (-1779 (((-644 (-943 |#2|)) $) 88)) (-3351 (($ $) 82)) (-1674 (((-771) $) 47)) (-4259 (($) 32)) (-4186 (($ $ (-644 (-771)) (-943 |#2|)) 74) (($ $ (-644 (-771)) (-771)) 75) (($ $ (-771) (-943 |#2|)) 77)) (-1330 (($ $ $) 57) (($ (-644 $)) 59)) (-4112 (((-771) $) 89)) (-1587 (((-112) $) 15)) (-3151 (((-1157) $) NIL)) (-2822 (((-112) $) 22)) (-4059 (((-1119) $) NIL)) (-4322 (((-171) $) 87)) (-2107 (((-943 |#2|) $) 83)) (-1981 (((-771) $) 84)) (-3301 (((-112) $) 86)) (-3610 (($ $ (-644 (-771)) (-171)) 80)) (-4162 (($ $) 52)) (-2479 (((-862) $) 100)) (-2144 (($ $ (-644 (-771)) (-112)) 79)) (-2156 (((-644 $) $) 11)) (-2818 (($ $ (-771)) 46)) (-3172 (($ $) 43)) (-3900 (((-112) $ $) NIL)) (-1483 (($ $ $ (-943 |#2|) (-771)) 70)) (-2887 (($ $ (-943 |#2|)) 69)) (-3817 (($ $ (-644 (-771)) (-943 |#2|)) 66) (($ $ (-644 (-771)) (-771)) 72) (((-771) $ (-943 |#2|)) 73)) (-2952 (((-112) $ $) 94))) +(((-1163 |#1| |#2|) (-13 (-1099) (-10 -8 (-15 -1587 ((-112) $)) (-15 -2503 ((-112) $)) (-15 -2822 ((-112) $)) (-15 -4259 ($)) (-15 -3364 ($)) (-15 -3172 ($ $)) (-15 -2818 ($ $ (-771))) (-15 -2156 ((-644 $) $)) (-15 -1674 ((-771) $)) (-15 -4233 ($ $)) (-15 -4162 ($ $)) (-15 -1330 ($ $ $)) (-15 -1330 ($ (-644 $))) (-15 -2020 ((-644 $) $)) (-15 -3817 ($ $ (-644 (-771)) (-943 |#2|))) (-15 -2887 ($ $ (-943 |#2|))) (-15 -1483 ($ $ $ (-943 |#2|) (-771))) (-15 -4186 ($ $ (-644 (-771)) (-943 |#2|))) (-15 -3817 ($ $ (-644 (-771)) (-771))) (-15 -4186 ($ $ (-644 (-771)) (-771))) (-15 -3817 ((-771) $ (-943 |#2|))) (-15 -4186 ($ $ (-771) (-943 |#2|))) (-15 -2144 ($ $ (-644 (-771)) (-112))) (-15 -3610 ($ $ (-644 (-771)) (-171))) (-15 -3511 ($ $ (-644 (-771)))) (-15 -2107 ((-943 |#2|) $)) (-15 -1981 ((-771) $)) (-15 -3301 ((-112) $)) (-15 -4322 ((-171) $)) (-15 -4112 ((-771) $)) (-15 -3351 ($ $)) (-15 -1779 ((-644 (-943 |#2|)) $)))) (-921) (-1049)) (T -1163)) +((-1587 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) (-4 *4 (-1049)))) (-2503 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) (-4 *4 (-1049)))) (-2822 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) (-4 *4 (-1049)))) (-4259 (*1 *1) (-12 (-5 *1 (-1163 *2 *3)) (-14 *2 (-921)) (-4 *3 (-1049)))) (-3364 (*1 *1) (-12 (-5 *1 (-1163 *2 *3)) (-14 *2 (-921)) (-4 *3 (-1049)))) (-3172 (*1 *1 *1) (-12 (-5 *1 (-1163 *2 *3)) (-14 *2 (-921)) (-4 *3 (-1049)))) (-2818 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) (-4 *4 (-1049)))) (-2156 (*1 *2 *1) (-12 (-5 *2 (-644 (-1163 *3 *4))) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) (-4 *4 (-1049)))) (-1674 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) (-4 *4 (-1049)))) (-4233 (*1 *1 *1) (-12 (-5 *1 (-1163 *2 *3)) (-14 *2 (-921)) (-4 *3 (-1049)))) (-4162 (*1 *1 *1) (-12 (-5 *1 (-1163 *2 *3)) (-14 *2 (-921)) (-4 *3 (-1049)))) (-1330 (*1 *1 *1 *1) (-12 (-5 *1 (-1163 *2 *3)) (-14 *2 (-921)) (-4 *3 (-1049)))) (-1330 (*1 *1 *2) (-12 (-5 *2 (-644 (-1163 *3 *4))) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) (-4 *4 (-1049)))) (-2020 (*1 *2 *1) (-12 (-5 *2 (-644 (-1163 *3 *4))) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) (-4 *4 (-1049)))) (-3817 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-771))) (-5 *3 (-943 *5)) (-4 *5 (-1049)) (-5 *1 (-1163 *4 *5)) (-14 *4 (-921)))) (-2887 (*1 *1 *1 *2) (-12 (-5 *2 (-943 *4)) (-4 *4 (-1049)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)))) (-1483 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-943 *5)) (-5 *3 (-771)) (-4 *5 (-1049)) (-5 *1 (-1163 *4 *5)) (-14 *4 (-921)))) (-4186 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-771))) (-5 *3 (-943 *5)) (-4 *5 (-1049)) (-5 *1 (-1163 *4 *5)) (-14 *4 (-921)))) (-3817 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-771))) (-5 *3 (-771)) (-5 *1 (-1163 *4 *5)) (-14 *4 (-921)) (-4 *5 (-1049)))) (-4186 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-771))) (-5 *3 (-771)) (-5 *1 (-1163 *4 *5)) (-14 *4 (-921)) (-4 *5 (-1049)))) (-3817 (*1 *2 *1 *3) (-12 (-5 *3 (-943 *5)) (-4 *5 (-1049)) (-5 *2 (-771)) (-5 *1 (-1163 *4 *5)) (-14 *4 (-921)))) (-4186 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-771)) (-5 *3 (-943 *5)) (-4 *5 (-1049)) (-5 *1 (-1163 *4 *5)) (-14 *4 (-921)))) (-2144 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-771))) (-5 *3 (-112)) (-5 *1 (-1163 *4 *5)) (-14 *4 (-921)) (-4 *5 (-1049)))) (-3610 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-771))) (-5 *3 (-171)) (-5 *1 (-1163 *4 *5)) (-14 *4 (-921)) (-4 *5 (-1049)))) (-3511 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-771))) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) (-4 *4 (-1049)))) (-2107 (*1 *2 *1) (-12 (-5 *2 (-943 *4)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) (-4 *4 (-1049)))) (-1981 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) (-4 *4 (-1049)))) (-3301 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) (-4 *4 (-1049)))) (-4322 (*1 *2 *1) (-12 (-5 *2 (-171)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) (-4 *4 (-1049)))) (-4112 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) (-4 *4 (-1049)))) (-3351 (*1 *1 *1) (-12 (-5 *1 (-1163 *2 *3)) (-14 *2 (-921)) (-4 *3 (-1049)))) (-1779 (*1 *2 *1) (-12 (-5 *2 (-644 (-943 *4))) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) (-4 *4 (-1049))))) +(-13 (-1099) (-10 -8 (-15 -1587 ((-112) $)) (-15 -2503 ((-112) $)) (-15 -2822 ((-112) $)) (-15 -4259 ($)) (-15 -3364 ($)) (-15 -3172 ($ $)) (-15 -2818 ($ $ (-771))) (-15 -2156 ((-644 $) $)) (-15 -1674 ((-771) $)) (-15 -4233 ($ $)) (-15 -4162 ($ $)) (-15 -1330 ($ $ $)) (-15 -1330 ($ (-644 $))) (-15 -2020 ((-644 $) $)) (-15 -3817 ($ $ (-644 (-771)) (-943 |#2|))) (-15 -2887 ($ $ (-943 |#2|))) (-15 -1483 ($ $ $ (-943 |#2|) (-771))) (-15 -4186 ($ $ (-644 (-771)) (-943 |#2|))) (-15 -3817 ($ $ (-644 (-771)) (-771))) (-15 -4186 ($ $ (-644 (-771)) (-771))) (-15 -3817 ((-771) $ (-943 |#2|))) (-15 -4186 ($ $ (-771) (-943 |#2|))) (-15 -2144 ($ $ (-644 (-771)) (-112))) (-15 -3610 ($ $ (-644 (-771)) (-171))) (-15 -3511 ($ $ (-644 (-771)))) (-15 -2107 ((-943 |#2|) $)) (-15 -1981 ((-771) $)) (-15 -3301 ((-112) $)) (-15 -4322 ((-171) $)) (-15 -4112 ((-771) $)) (-15 -3351 ($ $)) (-15 -1779 ((-644 (-943 |#2|)) $)))) +((-2986 (((-112) $ $) NIL)) (-3331 ((|#2| $) 11)) (-3319 ((|#1| $) 10)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2489 (($ |#1| |#2|) 9)) (-2479 (((-862) $) 16)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-1164 |#1| |#2|) (-13 (-1099) (-10 -8 (-15 -2489 ($ |#1| |#2|)) (-15 -3319 (|#1| $)) (-15 -3331 (|#2| $)))) (-1099) (-1099)) (T -1164)) +((-2489 (*1 *1 *2 *3) (-12 (-5 *1 (-1164 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099)))) (-3319 (*1 *2 *1) (-12 (-4 *2 (-1099)) (-5 *1 (-1164 *2 *3)) (-4 *3 (-1099)))) (-3331 (*1 *2 *1) (-12 (-4 *2 (-1099)) (-5 *1 (-1164 *3 *2)) (-4 *3 (-1099))))) +(-13 (-1099) (-10 -8 (-15 -2489 ($ |#1| |#2|)) (-15 -3319 (|#1| $)) (-15 -3331 (|#2| $)))) +((-2986 (((-112) $ $) NIL)) (-1541 (((-1134) $) 9)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) 15) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-1165) (-13 (-1082) (-10 -8 (-15 -1541 ((-1134) $))))) (T -1165)) +((-1541 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1165))))) +(-13 (-1082) (-10 -8 (-15 -1541 ((-1134) $)))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-2488 (((-1173 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-308)) (|has| |#1| (-365))))) (-2485 (((-644 (-1081)) $) NIL)) (-1338 (((-1175) $) 11)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (-2809 (-12 (|has| (-1173 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))) (|has| |#1| (-558))))) (-3087 (($ $) NIL (-2809 (-12 (|has| (-1173 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))) (|has| |#1| (-558))))) (-1716 (((-112) $) NIL (-2809 (-12 (|has| (-1173 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))) (|has| |#1| (-558))))) (-3175 (($ $ (-566)) NIL) (($ $ (-566) (-566)) 75)) (-1723 (((-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|))) $) NIL)) (-2297 (((-1173 |#1| |#2| |#3|) $) 42)) (-4353 (((-3 (-1173 |#1| |#2| |#3|) "failed") $) 32)) (-2534 (((-1173 |#1| |#2| |#3|) $) 33)) (-3219 (($ $) 116 (|has| |#1| (-38 (-409 (-566)))))) (-3091 (($ $) 92 (|has| |#1| (-38 (-409 (-566)))))) (-3174 (((-3 $ "failed") $ $) NIL)) (-4058 (((-420 (-1171 $)) (-1171 $)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))))) (-3980 (($ $) NIL (|has| |#1| (-365)))) (-3348 (((-420 $) $) NIL (|has| |#1| (-365)))) (-2338 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4262 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))))) (-2761 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3197 (($ $) 112 (|has| |#1| (-38 (-409 (-566)))))) (-3067 (($ $) 88 (|has| |#1| (-38 (-409 (-566)))))) (-2920 (((-566) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))))) (-1882 (($ (-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|)))) NIL)) (-3240 (($ $) 120 (|has| |#1| (-38 (-409 (-566)))))) (-3115 (($ $) 96 (|has| |#1| (-38 (-409 (-566)))))) (-1811 (($) NIL T CONST)) (-2980 (((-3 (-1173 |#1| |#2| |#3|) "failed") $) 34) (((-3 (-1175) "failed") $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-1038 (-1175))) (|has| |#1| (-365)))) (((-3 (-409 (-566)) "failed") $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-1038 (-566))) (|has| |#1| (-365)))) (((-3 (-566) "failed") $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-1038 (-566))) (|has| |#1| (-365))))) (-1709 (((-1173 |#1| |#2| |#3|) $) 140) (((-1175) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-1038 (-1175))) (|has| |#1| (-365)))) (((-409 (-566)) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-1038 (-566))) (|has| |#1| (-365)))) (((-566) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-1038 (-566))) (|has| |#1| (-365))))) (-3967 (($ $) 37) (($ (-566) $) 38)) (-2925 (($ $ $) NIL (|has| |#1| (-365)))) (-3565 (($ $) NIL)) (-2275 (((-689 (-1173 |#1| |#2| |#3|)) (-689 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -4196 (-689 (-1173 |#1| |#2| |#3|))) (|:| |vec| (-1264 (-1173 |#1| |#2| |#3|)))) (-689 $) (-1264 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-639 (-566))) (|has| |#1| (-365)))) (((-689 (-566)) (-689 $)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-639 (-566))) (|has| |#1| (-365))))) (-3757 (((-3 $ "failed") $) 54)) (-3947 (((-409 (-952 |#1|)) $ (-566)) 74 (|has| |#1| (-558))) (((-409 (-952 |#1|)) $ (-566) (-566)) 76 (|has| |#1| (-558)))) (-1415 (($) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-547)) (|has| |#1| (-365))))) (-2937 (($ $ $) NIL (|has| |#1| (-365)))) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) NIL (|has| |#1| (-365)))) (-4188 (((-112) $) NIL (|has| |#1| (-365)))) (-2133 (((-112) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))))) (-3088 (((-112) $) 28)) (-2964 (($) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1542 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-886 (-381))) (|has| |#1| (-365)))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-886 (-566))) (|has| |#1| (-365))))) (-1802 (((-566) $) NIL) (((-566) $ (-566)) 26)) (-2264 (((-112) $) NIL)) (-1579 (($ $) NIL (|has| |#1| (-365)))) (-4157 (((-1173 |#1| |#2| |#3|) $) 44 (|has| |#1| (-365)))) (-3146 (($ $ (-566)) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4278 (((-3 $ "failed") $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-1150)) (|has| |#1| (-365))))) (-3420 (((-112) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))))) (-2383 (($ $ (-921)) NIL)) (-2278 (($ (-1 |#1| (-566)) $) NIL)) (-2495 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-3989 (((-112) $) NIL)) (-2463 (($ |#1| (-566)) 19) (($ $ (-1081) (-566)) NIL) (($ $ (-644 (-1081)) (-644 (-566))) NIL)) (-1920 (($ $ $) NIL (-2809 (-12 (|has| (-1173 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-850)) (|has| |#1| (-365)))))) (-3038 (($ $ $) NIL (-2809 (-12 (|has| (-1173 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-850)) (|has| |#1| (-365)))))) (-3080 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-365)))) (-3676 (($ $) 81 (|has| |#1| (-38 (-409 (-566)))))) (-2608 (($ $) NIL)) (-2622 ((|#1| $) NIL)) (-2120 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2546 (($ (-566) (-1173 |#1| |#2| |#3|)) 36)) (-3151 (((-1157) $) NIL)) (-2577 (($ $) NIL (|has| |#1| (-365)))) (-2390 (($ $) 79 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-1175)) NIL (-2809 (-12 (|has| |#1| (-15 -2390 (|#1| |#1| (-1175)))) (|has| |#1| (-15 -2485 ((-644 (-1175)) |#1|))) (|has| |#1| (-38 (-409 (-566))))) (-12 (|has| |#1| (-29 (-566))) (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-959)) (|has| |#1| (-1199))))) (($ $ (-1260 |#2|)) 80 (|has| |#1| (-38 (-409 (-566)))))) (-3968 (($) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-1150)) (|has| |#1| (-365))) CONST)) (-4059 (((-1119) $) NIL)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-365)))) (-2162 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-4305 (($ $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-308)) (|has| |#1| (-365))))) (-2001 (((-1173 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-547)) (|has| |#1| (-365))))) (-1500 (((-420 (-1171 $)) (-1171 $)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))))) (-3917 (((-420 (-1171 $)) (-1171 $)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))))) (-2325 (((-420 $) $) NIL (|has| |#1| (-365)))) (-2585 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL (|has| |#1| (-365)))) (-2050 (($ $ (-566)) 158)) (-2976 (((-3 $ "failed") $ $) 55 (-2809 (-12 (|has| (-1173 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))) (|has| |#1| (-558))))) (-2840 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-3571 (($ $) 82 (|has| |#1| (-38 (-409 (-566)))))) (-3297 (((-1155 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-566))))) (($ $ (-1175) (-1173 |#1| |#2| |#3|)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-516 (-1175) (-1173 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-644 (-1175)) (-644 (-1173 |#1| |#2| |#3|))) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-516 (-1175) (-1173 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-644 (-295 (-1173 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-310 (-1173 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-295 (-1173 |#1| |#2| |#3|))) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-310 (-1173 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-310 (-1173 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-644 (-1173 |#1| |#2| |#3|)) (-644 (-1173 |#1| |#2| |#3|))) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-310 (-1173 |#1| |#2| |#3|))) (|has| |#1| (-365))))) (-1383 (((-771) $) NIL (|has| |#1| (-365)))) (-4376 ((|#1| $ (-566)) NIL) (($ $ $) 61 (|has| (-566) (-1111))) (($ $ (-1173 |#1| |#2| |#3|)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-287 (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|))) (|has| |#1| (-365))))) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL (|has| |#1| (-365)))) (-3526 (($ $ (-1 (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|))) NIL (|has| |#1| (-365))) (($ $ (-1 (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|)) (-771)) NIL (|has| |#1| (-365))) (($ $ (-1260 |#2|)) 57) (($ $ (-771)) NIL (-2809 (-12 (|has| (-1173 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $) 56 (-2809 (-12 (|has| (-1173 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-2809 (-12 (|has| (-1173 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-1175) (-771)) NIL (-2809 (-12 (|has| (-1173 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-644 (-1175))) NIL (-2809 (-12 (|has| (-1173 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-1175)) NIL (-2809 (-12 (|has| (-1173 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175))))))) (-1375 (($ $) NIL (|has| |#1| (-365)))) (-4167 (((-1173 |#1| |#2| |#3|) $) 46 (|has| |#1| (-365)))) (-1630 (((-566) $) 43)) (-3250 (($ $) 122 (|has| |#1| (-38 (-409 (-566)))))) (-3126 (($ $) 98 (|has| |#1| (-38 (-409 (-566)))))) (-3227 (($ $) 118 (|has| |#1| (-38 (-409 (-566)))))) (-3105 (($ $) 94 (|has| |#1| (-38 (-409 (-566)))))) (-3207 (($ $) 114 (|has| |#1| (-38 (-409 (-566)))))) (-3079 (($ $) 90 (|has| |#1| (-38 (-409 (-566)))))) (-3136 (((-538) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-614 (-538))) (|has| |#1| (-365)))) (((-381) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-1022)) (|has| |#1| (-365)))) (((-225) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-1022)) (|has| |#1| (-365)))) (((-892 (-381)) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-614 (-892 (-381)))) (|has| |#1| (-365)))) (((-892 (-566)) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-614 (-892 (-566)))) (|has| |#1| (-365))))) (-3233 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| (-1173 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))))) (-4122 (($ $) NIL)) (-2479 (((-862) $) 162) (($ (-566)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1173 |#1| |#2| |#3|)) 30) (($ (-1260 |#2|)) 25) (($ (-1175)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-1038 (-1175))) (|has| |#1| (-365)))) (($ $) NIL (-2809 (-12 (|has| (-1173 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))) (|has| |#1| (-558)))) (($ (-409 (-566))) NIL (-2809 (-12 (|has| (-1173 |#1| |#2| |#3|) (-1038 (-566))) (|has| |#1| (-365))) (|has| |#1| (-38 (-409 (-566))))))) (-3025 ((|#1| $ (-566)) 77)) (-2645 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| $ (-145)) (|has| (-1173 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-145)) (|has| |#1| (-365))) (|has| |#1| (-145))))) (-1558 (((-771)) NIL T CONST)) (-2316 ((|#1| $) 12)) (-3908 (((-1173 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-547)) (|has| |#1| (-365))))) (-3900 (((-112) $ $) NIL)) (-3285 (($ $) 128 (|has| |#1| (-38 (-409 (-566)))))) (-3157 (($ $) 104 (|has| |#1| (-38 (-409 (-566)))))) (-1333 (((-112) $ $) NIL (-2809 (-12 (|has| (-1173 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))) (|has| |#1| (-558))))) (-3260 (($ $) 124 (|has| |#1| (-38 (-409 (-566)))))) (-3135 (($ $) 100 (|has| |#1| (-38 (-409 (-566)))))) (-3309 (($ $) 132 (|has| |#1| (-38 (-409 (-566)))))) (-3179 (($ $) 108 (|has| |#1| (-38 (-409 (-566)))))) (-3649 ((|#1| $ (-566)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-566)))) (|has| |#1| (-15 -2479 (|#1| (-1175))))))) (-1861 (($ $) 134 (|has| |#1| (-38 (-409 (-566)))))) (-3190 (($ $) 110 (|has| |#1| (-38 (-409 (-566)))))) (-3299 (($ $) 130 (|has| |#1| (-38 (-409 (-566)))))) (-3168 (($ $) 106 (|has| |#1| (-38 (-409 (-566)))))) (-3273 (($ $) 126 (|has| |#1| (-38 (-409 (-566)))))) (-3148 (($ $) 102 (|has| |#1| (-38 (-409 (-566)))))) (-4298 (($ $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))))) (-2446 (($) 21 T CONST)) (-2459 (($) 16 T CONST)) (-2834 (($ $ (-1 (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|))) NIL (|has| |#1| (-365))) (($ $ (-1 (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|)) (-771)) NIL (|has| |#1| (-365))) (($ $ (-771)) NIL (-2809 (-12 (|has| (-1173 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $) NIL (-2809 (-12 (|has| (-1173 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-2809 (-12 (|has| (-1173 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-1175) (-771)) NIL (-2809 (-12 (|has| (-1173 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-644 (-1175))) NIL (-2809 (-12 (|has| (-1173 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-1175)) NIL (-2809 (-12 (|has| (-1173 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175))))))) (-3019 (((-112) $ $) NIL (-2809 (-12 (|has| (-1173 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-850)) (|has| |#1| (-365)))))) (-2990 (((-112) $ $) NIL (-2809 (-12 (|has| (-1173 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-850)) (|has| |#1| (-365)))))) (-2952 (((-112) $ $) NIL)) (-3004 (((-112) $ $) NIL (-2809 (-12 (|has| (-1173 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-850)) (|has| |#1| (-365)))))) (-2977 (((-112) $ $) NIL (-2809 (-12 (|has| (-1173 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-850)) (|has| |#1| (-365)))))) (-3077 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) 49 (|has| |#1| (-365))) (($ (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|)) 50 (|has| |#1| (-365)))) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) 23)) (** (($ $ (-921)) NIL) (($ $ (-771)) 60) (($ $ (-566)) NIL (|has| |#1| (-365))) (($ $ $) 83 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 137 (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 35) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1173 |#1| |#2| |#3|)) 48 (|has| |#1| (-365))) (($ (-1173 |#1| |#2| |#3|) $) 47 (|has| |#1| (-365))) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))))) +(((-1166 |#1| |#2| |#3|) (-13 (-1226 |#1| (-1173 |#1| |#2| |#3|)) (-10 -8 (-15 -2479 ($ (-1260 |#2|))) (-15 -3526 ($ $ (-1260 |#2|))) (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -2390 ($ $ (-1260 |#2|))) |%noBranch|))) (-1049) (-1175) |#1|) (T -1166)) +((-2479 (*1 *1 *2) (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1166 *3 *4 *5)) (-4 *3 (-1049)) (-14 *5 *3))) (-3526 (*1 *1 *1 *2) (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1166 *3 *4 *5)) (-4 *3 (-1049)) (-14 *5 *3))) (-2390 (*1 *1 *1 *2) (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1166 *3 *4 *5)) (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-14 *5 *3)))) +(-13 (-1226 |#1| (-1173 |#1| |#2| |#3|)) (-10 -8 (-15 -2479 ($ (-1260 |#2|))) (-15 -3526 ($ $ (-1260 |#2|))) (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -2390 ($ $ (-1260 |#2|))) |%noBranch|))) +((-3696 ((|#2| |#2| (-1091 |#2|)) 26) ((|#2| |#2| (-1175)) 28))) +(((-1167 |#1| |#2|) (-10 -7 (-15 -3696 (|#2| |#2| (-1175))) (-15 -3696 (|#2| |#2| (-1091 |#2|)))) (-13 (-558) (-1038 (-566)) (-639 (-566))) (-13 (-432 |#1|) (-160) (-27) (-1199))) (T -1167)) +((-3696 (*1 *2 *2 *3) (-12 (-5 *3 (-1091 *2)) (-4 *2 (-13 (-432 *4) (-160) (-27) (-1199))) (-4 *4 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-1167 *4 *2)))) (-3696 (*1 *2 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-1167 *4 *2)) (-4 *2 (-13 (-432 *4) (-160) (-27) (-1199)))))) +(-10 -7 (-15 -3696 (|#2| |#2| (-1175))) (-15 -3696 (|#2| |#2| (-1091 |#2|)))) +((-3696 (((-3 (-409 (-952 |#1|)) (-317 |#1|)) (-409 (-952 |#1|)) (-1091 (-409 (-952 |#1|)))) 31) (((-409 (-952 |#1|)) (-952 |#1|) (-1091 (-952 |#1|))) 44) (((-3 (-409 (-952 |#1|)) (-317 |#1|)) (-409 (-952 |#1|)) (-1175)) 33) (((-409 (-952 |#1|)) (-952 |#1|) (-1175)) 36))) +(((-1168 |#1|) (-10 -7 (-15 -3696 ((-409 (-952 |#1|)) (-952 |#1|) (-1175))) (-15 -3696 ((-3 (-409 (-952 |#1|)) (-317 |#1|)) (-409 (-952 |#1|)) (-1175))) (-15 -3696 ((-409 (-952 |#1|)) (-952 |#1|) (-1091 (-952 |#1|)))) (-15 -3696 ((-3 (-409 (-952 |#1|)) (-317 |#1|)) (-409 (-952 |#1|)) (-1091 (-409 (-952 |#1|)))))) (-13 (-558) (-1038 (-566)))) (T -1168)) +((-3696 (*1 *2 *3 *4) (-12 (-5 *4 (-1091 (-409 (-952 *5)))) (-5 *3 (-409 (-952 *5))) (-4 *5 (-13 (-558) (-1038 (-566)))) (-5 *2 (-3 *3 (-317 *5))) (-5 *1 (-1168 *5)))) (-3696 (*1 *2 *3 *4) (-12 (-5 *4 (-1091 (-952 *5))) (-5 *3 (-952 *5)) (-4 *5 (-13 (-558) (-1038 (-566)))) (-5 *2 (-409 *3)) (-5 *1 (-1168 *5)))) (-3696 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-4 *5 (-13 (-558) (-1038 (-566)))) (-5 *2 (-3 (-409 (-952 *5)) (-317 *5))) (-5 *1 (-1168 *5)) (-5 *3 (-409 (-952 *5))))) (-3696 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-4 *5 (-13 (-558) (-1038 (-566)))) (-5 *2 (-409 (-952 *5))) (-5 *1 (-1168 *5)) (-5 *3 (-952 *5))))) +(-10 -7 (-15 -3696 ((-409 (-952 |#1|)) (-952 |#1|) (-1175))) (-15 -3696 ((-3 (-409 (-952 |#1|)) (-317 |#1|)) (-409 (-952 |#1|)) (-1175))) (-15 -3696 ((-409 (-952 |#1|)) (-952 |#1|) (-1091 (-952 |#1|)))) (-15 -3696 ((-3 (-409 (-952 |#1|)) (-317 |#1|)) (-409 (-952 |#1|)) (-1091 (-409 (-952 |#1|)))))) +((-3080 (((-1171 |#2|) (-1 |#2| |#1|) (-1171 |#1|)) 13))) +(((-1169 |#1| |#2|) (-10 -7 (-15 -3080 ((-1171 |#2|) (-1 |#2| |#1|) (-1171 |#1|)))) (-1049) (-1049)) (T -1169)) +((-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1171 *5)) (-4 *5 (-1049)) (-4 *6 (-1049)) (-5 *2 (-1171 *6)) (-5 *1 (-1169 *5 *6))))) +(-10 -7 (-15 -3080 ((-1171 |#2|) (-1 |#2| |#1|) (-1171 |#1|)))) +((-3348 (((-420 (-1171 (-409 |#4|))) (-1171 (-409 |#4|))) 51)) (-2325 (((-420 (-1171 (-409 |#4|))) (-1171 (-409 |#4|))) 52))) +(((-1170 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2325 ((-420 (-1171 (-409 |#4|))) (-1171 (-409 |#4|)))) (-15 -3348 ((-420 (-1171 (-409 |#4|))) (-1171 (-409 |#4|))))) (-793) (-850) (-454) (-949 |#3| |#1| |#2|)) (T -1170)) +((-3348 (*1 *2 *3) (-12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-454)) (-4 *7 (-949 *6 *4 *5)) (-5 *2 (-420 (-1171 (-409 *7)))) (-5 *1 (-1170 *4 *5 *6 *7)) (-5 *3 (-1171 (-409 *7))))) (-2325 (*1 *2 *3) (-12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-454)) (-4 *7 (-949 *6 *4 *5)) (-5 *2 (-420 (-1171 (-409 *7)))) (-5 *1 (-1170 *4 *5 *6 *7)) (-5 *3 (-1171 (-409 *7)))))) +(-10 -7 (-15 -2325 ((-420 (-1171 (-409 |#4|))) (-1171 (-409 |#4|)))) (-15 -3348 ((-420 (-1171 (-409 |#4|))) (-1171 (-409 |#4|))))) +((-2986 (((-112) $ $) 171)) (-2845 (((-112) $) 43)) (-1825 (((-1264 |#1|) $ (-771)) NIL)) (-2485 (((-644 (-1081)) $) NIL)) (-3778 (($ (-1171 |#1|)) NIL)) (-2285 (((-1171 $) $ (-1081)) 82) (((-1171 |#1|) $) 71)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-3087 (($ $) 164 (|has| |#1| (-558)))) (-1716 (((-112) $) NIL (|has| |#1| (-558)))) (-2917 (((-771) $) NIL) (((-771) $ (-644 (-1081))) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-2113 (($ $ $) 158 (|has| |#1| (-558)))) (-4058 (((-420 (-1171 $)) (-1171 $)) 95 (|has| |#1| (-909)))) (-3980 (($ $) NIL (|has| |#1| (-454)))) (-3348 (((-420 $) $) NIL (|has| |#1| (-454)))) (-4262 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) 115 (|has| |#1| (-909)))) (-2761 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3336 (($ $ (-771)) 61)) (-1634 (($ $ (-771)) 63)) (-2020 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-454)))) (-1811 (($) NIL T CONST)) (-2980 (((-3 |#1| "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-1081) "failed") $) NIL)) (-1709 ((|#1| $) NIL) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-1081) $) NIL)) (-4343 (($ $ $ (-1081)) NIL (|has| |#1| (-172))) ((|#1| $ $) 160 (|has| |#1| (-172)))) (-2925 (($ $ $) NIL (|has| |#1| (-365)))) (-3565 (($ $) 80)) (-2275 (((-689 (-566)) (-689 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -4196 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) NIL) (((-689 |#1|) (-689 $)) NIL)) (-3757 (((-3 $ "failed") $) NIL)) (-2937 (($ $ $) NIL (|has| |#1| (-365)))) (-1731 (($ $ $) 131)) (-2348 (($ $ $) NIL (|has| |#1| (-558)))) (-3920 (((-2 (|:| -3103 |#1|) (|:| -3371 $) (|:| -3131 $)) $ $) NIL (|has| |#1| (-558)))) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) NIL (|has| |#1| (-365)))) (-3530 (($ $) 165 (|has| |#1| (-454))) (($ $ (-1081)) NIL (|has| |#1| (-454)))) (-3551 (((-644 $) $) NIL)) (-4188 (((-112) $) NIL (|has| |#1| (-909)))) (-3995 (($ $ |#1| (-771) $) 69)) (-1542 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| (-1081) (-886 (-381))) (|has| |#1| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| (-1081) (-886 (-566))) (|has| |#1| (-886 (-566)))))) (-3089 (((-862) $ (-862)) 148)) (-1802 (((-771) $ $) NIL (|has| |#1| (-558)))) (-2264 (((-112) $) 48)) (-3486 (((-771) $) NIL)) (-4278 (((-3 $ "failed") $) NIL (|has| |#1| (-1150)))) (-2474 (($ (-1171 |#1|) (-1081)) 73) (($ (-1171 $) (-1081)) 89)) (-2383 (($ $ (-771)) 51)) (-2495 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-1545 (((-644 $) $) NIL)) (-3989 (((-112) $) NIL)) (-2463 (($ |#1| (-771)) 87) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL)) (-2235 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $ (-1081)) NIL) (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) 153)) (-2584 (((-771) $) NIL) (((-771) $ (-1081)) NIL) (((-644 (-771)) $ (-644 (-1081))) NIL)) (-3327 (($ (-1 (-771) (-771)) $) NIL)) (-3080 (($ (-1 |#1| |#1|) $) NIL)) (-2800 (((-1171 |#1|) $) NIL)) (-2673 (((-3 (-1081) "failed") $) NIL)) (-2608 (($ $) NIL)) (-2622 ((|#1| $) 76)) (-2120 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-3151 (((-1157) $) NIL)) (-3333 (((-2 (|:| -3371 $) (|:| -3131 $)) $ (-771)) 60)) (-4075 (((-3 (-644 $) "failed") $) NIL)) (-3380 (((-3 (-644 $) "failed") $) NIL)) (-2414 (((-3 (-2 (|:| |var| (-1081)) (|:| -3631 (-771))) "failed") $) NIL)) (-2390 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3968 (($) NIL (|has| |#1| (-1150)) CONST)) (-4059 (((-1119) $) NIL)) (-2587 (((-112) $) 50)) (-2597 ((|#1| $) NIL)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) 103 (|has| |#1| (-454)))) (-2162 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) 167 (|has| |#1| (-454)))) (-2790 (($ $ (-771) |#1| $) 123)) (-1500 (((-420 (-1171 $)) (-1171 $)) 101 (|has| |#1| (-909)))) (-3917 (((-420 (-1171 $)) (-1171 $)) 100 (|has| |#1| (-909)))) (-2325 (((-420 $) $) 108 (|has| |#1| (-909)))) (-2585 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL (|has| |#1| (-365)))) (-2976 (((-3 $ "failed") $ |#1|) 163 (|has| |#1| (-558))) (((-3 $ "failed") $ $) 124 (|has| |#1| (-558)))) (-2840 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-3297 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-1081) |#1|) NIL) (($ $ (-644 (-1081)) (-644 |#1|)) NIL) (($ $ (-1081) $) NIL) (($ $ (-644 (-1081)) (-644 $)) NIL)) (-1383 (((-771) $) NIL (|has| |#1| (-365)))) (-4376 ((|#1| $ |#1|) 150) (($ $ $) 151) (((-409 $) (-409 $) (-409 $)) NIL (|has| |#1| (-558))) ((|#1| (-409 $) |#1|) NIL (|has| |#1| (-365))) (((-409 $) $ (-409 $)) NIL (|has| |#1| (-558)))) (-3070 (((-3 $ "failed") $ (-771)) 54)) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) 172 (|has| |#1| (-365)))) (-3553 (($ $ (-1081)) NIL (|has| |#1| (-172))) ((|#1| $) 156 (|has| |#1| (-172)))) (-3526 (($ $ (-1081)) NIL) (($ $ (-644 (-1081))) NIL) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL) (($ $ (-771)) NIL) (($ $) NIL) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-1630 (((-771) $) 78) (((-771) $ (-1081)) NIL) (((-644 (-771)) $ (-644 (-1081))) NIL)) (-3136 (((-892 (-381)) $) NIL (-12 (|has| (-1081) (-614 (-892 (-381)))) (|has| |#1| (-614 (-892 (-381)))))) (((-892 (-566)) $) NIL (-12 (|has| (-1081) (-614 (-892 (-566)))) (|has| |#1| (-614 (-892 (-566)))))) (((-538) $) NIL (-12 (|has| (-1081) (-614 (-538))) (|has| |#1| (-614 (-538)))))) (-2252 ((|#1| $) 162 (|has| |#1| (-454))) (($ $ (-1081)) NIL (|has| |#1| (-454)))) (-3233 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-909))))) (-3918 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558))) (((-3 (-409 $) "failed") (-409 $) $) NIL (|has| |#1| (-558)))) (-2479 (((-862) $) 149) (($ (-566)) NIL) (($ |#1|) 77) (($ (-1081)) NIL) (($ (-409 (-566))) NIL (-2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566)))))) (($ $) NIL (|has| |#1| (-558)))) (-3866 (((-644 |#1|) $) NIL)) (-3025 ((|#1| $ (-771)) NIL) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL)) (-2645 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| $ (-145)) (|has| |#1| (-909))) (|has| |#1| (-145))))) (-1558 (((-771)) NIL T CONST)) (-2244 (($ $ $ (-771)) 41 (|has| |#1| (-172)))) (-3900 (((-112) $ $) NIL)) (-1333 (((-112) $ $) NIL (|has| |#1| (-558)))) (-2446 (($) 17 T CONST)) (-2459 (($) 19 T CONST)) (-2834 (($ $ (-1081)) NIL) (($ $ (-644 (-1081))) NIL) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL) (($ $ (-771)) NIL) (($ $) NIL) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2952 (((-112) $ $) 120)) (-3077 (($ $ |#1|) 173 (|has| |#1| (-365)))) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) 90)) (** (($ $ (-921)) 14) (($ $ (-771)) 12)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 39) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ |#1| $) 129) (($ $ |#1|) NIL))) +(((-1171 |#1|) (-13 (-1240 |#1|) (-10 -8 (-15 -3089 ((-862) $ (-862))) (-15 -2790 ($ $ (-771) |#1| $)))) (-1049)) (T -1171)) +((-3089 (*1 *2 *1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-1171 *3)) (-4 *3 (-1049)))) (-2790 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-771)) (-5 *1 (-1171 *3)) (-4 *3 (-1049))))) +(-13 (-1240 |#1|) (-10 -8 (-15 -3089 ((-862) $ (-862))) (-15 -2790 ($ $ (-771) |#1| $)))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-2485 (((-644 (-1081)) $) NIL)) (-1338 (((-1175) $) 11)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-3087 (($ $) NIL (|has| |#1| (-558)))) (-1716 (((-112) $) NIL (|has| |#1| (-558)))) (-3175 (($ $ (-409 (-566))) NIL) (($ $ (-409 (-566)) (-409 (-566))) NIL)) (-1723 (((-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#1|))) $) NIL)) (-3219 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3091 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3174 (((-3 $ "failed") $ $) NIL)) (-3980 (($ $) NIL (|has| |#1| (-365)))) (-3348 (((-420 $) $) NIL (|has| |#1| (-365)))) (-2338 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2761 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3197 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3067 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1882 (($ (-771) (-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#1|)))) NIL)) (-3240 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3115 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1811 (($) NIL T CONST)) (-2980 (((-3 (-1166 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1173 |#1| |#2| |#3|) "failed") $) 36)) (-1709 (((-1166 |#1| |#2| |#3|) $) NIL) (((-1173 |#1| |#2| |#3|) $) NIL)) (-2925 (($ $ $) NIL (|has| |#1| (-365)))) (-3565 (($ $) NIL)) (-3757 (((-3 $ "failed") $) NIL)) (-2710 (((-409 (-566)) $) 59)) (-2937 (($ $ $) NIL (|has| |#1| (-365)))) (-2557 (($ (-409 (-566)) (-1166 |#1| |#2| |#3|)) NIL)) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) NIL (|has| |#1| (-365)))) (-4188 (((-112) $) NIL (|has| |#1| (-365)))) (-3088 (((-112) $) NIL)) (-2964 (($) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1802 (((-409 (-566)) $) NIL) (((-409 (-566)) $ (-409 (-566))) NIL)) (-2264 (((-112) $) NIL)) (-3146 (($ $ (-566)) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2383 (($ $ (-921)) NIL) (($ $ (-409 (-566))) NIL)) (-2495 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-3989 (((-112) $) NIL)) (-2463 (($ |#1| (-409 (-566))) 20) (($ $ (-1081) (-409 (-566))) NIL) (($ $ (-644 (-1081)) (-644 (-409 (-566)))) NIL)) (-3080 (($ (-1 |#1| |#1|) $) NIL)) (-3676 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2608 (($ $) NIL)) (-2622 ((|#1| $) NIL)) (-2120 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2992 (((-1166 |#1| |#2| |#3|) $) 41)) (-3867 (((-3 (-1166 |#1| |#2| |#3|) "failed") $) NIL)) (-2546 (((-1166 |#1| |#2| |#3|) $) NIL)) (-3151 (((-1157) $) NIL)) (-2577 (($ $) NIL (|has| |#1| (-365)))) (-2390 (($ $) 39 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-1175)) NIL (-2809 (-12 (|has| |#1| (-15 -2390 (|#1| |#1| (-1175)))) (|has| |#1| (-15 -2485 ((-644 (-1175)) |#1|))) (|has| |#1| (-38 (-409 (-566))))) (-12 (|has| |#1| (-29 (-566))) (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-959)) (|has| |#1| (-1199))))) (($ $ (-1260 |#2|)) 40 (|has| |#1| (-38 (-409 (-566)))))) (-4059 (((-1119) $) NIL)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-365)))) (-2162 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2325 (((-420 $) $) NIL (|has| |#1| (-365)))) (-2585 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL (|has| |#1| (-365)))) (-2050 (($ $ (-409 (-566))) NIL)) (-2976 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-2840 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-3571 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3297 (((-1155 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-409 (-566))))))) (-1383 (((-771) $) NIL (|has| |#1| (-365)))) (-4376 ((|#1| $ (-409 (-566))) NIL) (($ $ $) NIL (|has| (-409 (-566)) (-1111)))) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL (|has| |#1| (-365)))) (-3526 (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-771)) NIL (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $ (-1260 |#2|)) 38)) (-1630 (((-409 (-566)) $) NIL)) (-3250 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3126 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3227 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3105 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3207 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3079 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4122 (($ $) NIL)) (-2479 (((-862) $) 62) (($ (-566)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1166 |#1| |#2| |#3|)) 30) (($ (-1173 |#1| |#2| |#3|)) 31) (($ (-1260 |#2|)) 26) (($ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $) NIL (|has| |#1| (-558)))) (-3025 ((|#1| $ (-409 (-566))) NIL)) (-2645 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1558 (((-771)) NIL T CONST)) (-2316 ((|#1| $) 12)) (-3900 (((-112) $ $) NIL)) (-3285 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3157 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1333 (((-112) $ $) NIL (|has| |#1| (-558)))) (-3260 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3135 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3309 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3179 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3649 ((|#1| $ (-409 (-566))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-409 (-566))))) (|has| |#1| (-15 -2479 (|#1| (-1175))))))) (-1861 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3190 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3299 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3168 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3273 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3148 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2446 (($) 22 T CONST)) (-2459 (($) 16 T CONST)) (-2834 (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-771)) NIL (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (-2952 (((-112) $ $) NIL)) (-3077 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) 24)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))))) +(((-1172 |#1| |#2| |#3|) (-13 (-1247 |#1| (-1166 |#1| |#2| |#3|)) (-1038 (-1173 |#1| |#2| |#3|)) (-616 (-1260 |#2|)) (-10 -8 (-15 -3526 ($ $ (-1260 |#2|))) (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -2390 ($ $ (-1260 |#2|))) |%noBranch|))) (-1049) (-1175) |#1|) (T -1172)) +((-3526 (*1 *1 *1 *2) (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1172 *3 *4 *5)) (-4 *3 (-1049)) (-14 *5 *3))) (-2390 (*1 *1 *1 *2) (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1172 *3 *4 *5)) (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-14 *5 *3)))) +(-13 (-1247 |#1| (-1166 |#1| |#2| |#3|)) (-1038 (-1173 |#1| |#2| |#3|)) (-616 (-1260 |#2|)) (-10 -8 (-15 -3526 ($ $ (-1260 |#2|))) (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -2390 ($ $ (-1260 |#2|))) |%noBranch|))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) 131)) (-2485 (((-644 (-1081)) $) NIL)) (-1338 (((-1175) $) 121)) (-3573 (((-1237 |#2| |#1|) $ (-771)) 69)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-3087 (($ $) NIL (|has| |#1| (-558)))) (-1716 (((-112) $) NIL (|has| |#1| (-558)))) (-3175 (($ $ (-771)) 85) (($ $ (-771) (-771)) 82)) (-1723 (((-1155 (-2 (|:| |k| (-771)) (|:| |c| |#1|))) $) 107)) (-3219 (($ $) 175 (|has| |#1| (-38 (-409 (-566)))))) (-3091 (($ $) 151 (|has| |#1| (-38 (-409 (-566)))))) (-3174 (((-3 $ "failed") $ $) NIL)) (-2338 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3197 (($ $) 171 (|has| |#1| (-38 (-409 (-566)))))) (-3067 (($ $) 147 (|has| |#1| (-38 (-409 (-566)))))) (-1882 (($ (-1155 (-2 (|:| |k| (-771)) (|:| |c| |#1|)))) 120) (($ (-1155 |#1|)) 115)) (-3240 (($ $) 179 (|has| |#1| (-38 (-409 (-566)))))) (-3115 (($ $) 155 (|has| |#1| (-38 (-409 (-566)))))) (-1811 (($) NIL T CONST)) (-3565 (($ $) NIL)) (-3757 (((-3 $ "failed") $) 25)) (-3439 (($ $) 28)) (-2388 (((-952 |#1|) $ (-771)) 81) (((-952 |#1|) $ (-771) (-771)) 83)) (-3088 (((-112) $) 126)) (-2964 (($) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1802 (((-771) $) 128) (((-771) $ (-771)) 130)) (-2264 (((-112) $) NIL)) (-3146 (($ $ (-566)) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2383 (($ $ (-921)) NIL)) (-2278 (($ (-1 |#1| (-566)) $) NIL)) (-3989 (((-112) $) NIL)) (-2463 (($ |#1| (-771)) 13) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL)) (-3080 (($ (-1 |#1| |#1|) $) NIL)) (-3676 (($ $) 137 (|has| |#1| (-38 (-409 (-566)))))) (-2608 (($ $) NIL)) (-2622 ((|#1| $) NIL)) (-3151 (((-1157) $) NIL)) (-2390 (($ $) 135 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-1175)) NIL (-2809 (-12 (|has| |#1| (-15 -2390 (|#1| |#1| (-1175)))) (|has| |#1| (-15 -2485 ((-644 (-1175)) |#1|))) (|has| |#1| (-38 (-409 (-566))))) (-12 (|has| |#1| (-29 (-566))) (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-959)) (|has| |#1| (-1199))))) (($ $ (-1260 |#2|)) 136 (|has| |#1| (-38 (-409 (-566)))))) (-4059 (((-1119) $) NIL)) (-2050 (($ $ (-771)) 15)) (-2976 (((-3 $ "failed") $ $) 26 (|has| |#1| (-558)))) (-3571 (($ $) 139 (|has| |#1| (-38 (-409 (-566)))))) (-3297 (((-1155 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-771)))))) (-4376 ((|#1| $ (-771)) 124) (($ $ $) 134 (|has| (-771) (-1111)))) (-3526 (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-771)) NIL (|has| |#1| (-15 * (|#1| (-771) |#1|)))) (($ $) 29 (|has| |#1| (-15 * (|#1| (-771) |#1|)))) (($ $ (-1260 |#2|)) 31)) (-1630 (((-771) $) NIL)) (-3250 (($ $) 181 (|has| |#1| (-38 (-409 (-566)))))) (-3126 (($ $) 157 (|has| |#1| (-38 (-409 (-566)))))) (-3227 (($ $) 177 (|has| |#1| (-38 (-409 (-566)))))) (-3105 (($ $) 153 (|has| |#1| (-38 (-409 (-566)))))) (-3207 (($ $) 173 (|has| |#1| (-38 (-409 (-566)))))) (-3079 (($ $) 149 (|has| |#1| (-38 (-409 (-566)))))) (-4122 (($ $) NIL)) (-2479 (((-862) $) 208) (($ (-566)) NIL) (($ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $) NIL (|has| |#1| (-558))) (($ |#1|) 132 (|has| |#1| (-172))) (($ (-1237 |#2| |#1|)) 55) (($ (-1260 |#2|)) 36)) (-3866 (((-1155 |#1|) $) 103)) (-3025 ((|#1| $ (-771)) 123)) (-2645 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1558 (((-771)) NIL T CONST)) (-2316 ((|#1| $) 58)) (-3900 (((-112) $ $) NIL)) (-3285 (($ $) 187 (|has| |#1| (-38 (-409 (-566)))))) (-3157 (($ $) 163 (|has| |#1| (-38 (-409 (-566)))))) (-1333 (((-112) $ $) NIL (|has| |#1| (-558)))) (-3260 (($ $) 183 (|has| |#1| (-38 (-409 (-566)))))) (-3135 (($ $) 159 (|has| |#1| (-38 (-409 (-566)))))) (-3309 (($ $) 191 (|has| |#1| (-38 (-409 (-566)))))) (-3179 (($ $) 167 (|has| |#1| (-38 (-409 (-566)))))) (-3649 ((|#1| $ (-771)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-771)))) (|has| |#1| (-15 -2479 (|#1| (-1175))))))) (-1861 (($ $) 193 (|has| |#1| (-38 (-409 (-566)))))) (-3190 (($ $) 169 (|has| |#1| (-38 (-409 (-566)))))) (-3299 (($ $) 189 (|has| |#1| (-38 (-409 (-566)))))) (-3168 (($ $) 165 (|has| |#1| (-38 (-409 (-566)))))) (-3273 (($ $) 185 (|has| |#1| (-38 (-409 (-566)))))) (-3148 (($ $) 161 (|has| |#1| (-38 (-409 (-566)))))) (-2446 (($) 17 T CONST)) (-2459 (($) 20 T CONST)) (-2834 (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-771)) NIL (|has| |#1| (-15 * (|#1| (-771) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-771) |#1|))))) (-2952 (((-112) $ $) NIL)) (-3077 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3065 (($ $) NIL) (($ $ $) 200)) (-3052 (($ $ $) 35)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ |#1|) 205 (|has| |#1| (-365))) (($ $ $) 140 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 143 (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 138) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))))) +(((-1173 |#1| |#2| |#3|) (-13 (-1255 |#1|) (-10 -8 (-15 -2479 ($ (-1237 |#2| |#1|))) (-15 -3573 ((-1237 |#2| |#1|) $ (-771))) (-15 -2479 ($ (-1260 |#2|))) (-15 -3526 ($ $ (-1260 |#2|))) (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -2390 ($ $ (-1260 |#2|))) |%noBranch|))) (-1049) (-1175) |#1|) (T -1173)) +((-2479 (*1 *1 *2) (-12 (-5 *2 (-1237 *4 *3)) (-4 *3 (-1049)) (-14 *4 (-1175)) (-14 *5 *3) (-5 *1 (-1173 *3 *4 *5)))) (-3573 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1237 *5 *4)) (-5 *1 (-1173 *4 *5 *6)) (-4 *4 (-1049)) (-14 *5 (-1175)) (-14 *6 *4))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1173 *3 *4 *5)) (-4 *3 (-1049)) (-14 *5 *3))) (-3526 (*1 *1 *1 *2) (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1173 *3 *4 *5)) (-4 *3 (-1049)) (-14 *5 *3))) (-2390 (*1 *1 *1 *2) (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1173 *3 *4 *5)) (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-14 *5 *3)))) +(-13 (-1255 |#1|) (-10 -8 (-15 -2479 ($ (-1237 |#2| |#1|))) (-15 -3573 ((-1237 |#2| |#1|) $ (-771))) (-15 -2479 ($ (-1260 |#2|))) (-15 -3526 ($ $ (-1260 |#2|))) (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -2390 ($ $ (-1260 |#2|))) |%noBranch|))) +((-2479 (((-862) $) 33) (($ (-1175)) 35)) (-2809 (($ (-3 (|:| I (-317 (-566))) (|:| -2341 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -2341 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 46)) (-2797 (($ (-3 (|:| I (-317 (-566))) (|:| -2341 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 39) (($ $) 40)) (-3104 (($ (-3 (|:| I (-317 (-566))) (|:| -2341 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -2341 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 41)) (-3090 (($ (-3 (|:| I (-317 (-566))) (|:| -2341 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -2341 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 43)) (-3078 (($ (-3 (|:| I (-317 (-566))) (|:| -2341 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -2341 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 42)) (-3066 (($ (-3 (|:| I (-317 (-566))) (|:| -2341 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -2341 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 44)) (-2045 (($ (-3 (|:| I (-317 (-566))) (|:| -2341 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -2341 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 47)) (-12 (($ (-3 (|:| I (-317 (-566))) (|:| -2341 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -2341 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 45))) +(((-1174) (-13 (-613 (-862)) (-10 -8 (-15 -2479 ($ (-1175))) (-15 -3104 ($ (-3 (|:| I (-317 (-566))) (|:| -2341 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -2341 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -3078 ($ (-3 (|:| I (-317 (-566))) (|:| -2341 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -2341 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -3090 ($ (-3 (|:| I (-317 (-566))) (|:| -2341 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -2341 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -3066 ($ (-3 (|:| I (-317 (-566))) (|:| -2341 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -2341 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2809 ($ (-3 (|:| I (-317 (-566))) (|:| -2341 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -2341 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2045 ($ (-3 (|:| I (-317 (-566))) (|:| -2341 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -2341 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-317 (-566))) (|:| -2341 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -2341 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2797 ($ (-3 (|:| I (-317 (-566))) (|:| -2341 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2797 ($ $))))) (T -1174)) +((-2479 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1174)))) (-3104 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-566))) (|:| -2341 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1174)))) (-5 *1 (-1174)))) (-3078 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-566))) (|:| -2341 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1174)))) (-5 *1 (-1174)))) (-3090 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-566))) (|:| -2341 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1174)))) (-5 *1 (-1174)))) (-3066 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-566))) (|:| -2341 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1174)))) (-5 *1 (-1174)))) (-2809 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-566))) (|:| -2341 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1174)))) (-5 *1 (-1174)))) (-2045 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-566))) (|:| -2341 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1174)))) (-5 *1 (-1174)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-566))) (|:| -2341 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1174)))) (-5 *1 (-1174)))) (-2797 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-566))) (|:| -2341 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1174)))) (-5 *1 (-1174)))) (-2797 (*1 *1 *1) (-5 *1 (-1174)))) +(-13 (-613 (-862)) (-10 -8 (-15 -2479 ($ (-1175))) (-15 -3104 ($ (-3 (|:| I (-317 (-566))) (|:| -2341 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -2341 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -3078 ($ (-3 (|:| I (-317 (-566))) (|:| -2341 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -2341 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -3090 ($ (-3 (|:| I (-317 (-566))) (|:| -2341 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -2341 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -3066 ($ (-3 (|:| I (-317 (-566))) (|:| -2341 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -2341 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2809 ($ (-3 (|:| I (-317 (-566))) (|:| -2341 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -2341 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2045 ($ (-3 (|:| I (-317 (-566))) (|:| -2341 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -2341 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-317 (-566))) (|:| -2341 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -2341 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2797 ($ (-3 (|:| I (-317 (-566))) (|:| -2341 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2797 ($ $)))) +((-2986 (((-112) $ $) NIL)) (-2900 (($ $ (-644 (-862))) 64)) (-1351 (($ $ (-644 (-862))) 62)) (-4315 (((-1157) $) 103)) (-4341 (((-2 (|:| -2245 (-644 (-862))) (|:| -4047 (-644 (-862))) (|:| |presup| (-644 (-862))) (|:| -1466 (-644 (-862))) (|:| |args| (-644 (-862)))) $) 110)) (-2443 (((-112) $) 23)) (-1850 (($ $ (-644 (-644 (-862)))) 61) (($ $ (-2 (|:| -2245 (-644 (-862))) (|:| -4047 (-644 (-862))) (|:| |presup| (-644 (-862))) (|:| -1466 (-644 (-862))) (|:| |args| (-644 (-862))))) 101)) (-1811 (($) 166 T CONST)) (-3913 (((-1269)) 138)) (-1542 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 71) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 78)) (-4259 (($) 124) (($ $) 133)) (-2598 (($ $) 102)) (-1920 (($ $ $) NIL)) (-3038 (($ $ $) NIL)) (-3960 (((-644 $) $) 139)) (-3151 (((-1157) $) 116)) (-4059 (((-1119) $) NIL)) (-4376 (($ $ (-644 (-862))) 63)) (-3136 (((-538) $) 48) (((-1175) $) 49) (((-892 (-566)) $) 82) (((-892 (-381)) $) 80)) (-2479 (((-862) $) 55) (($ (-1157)) 50)) (-3900 (((-112) $ $) NIL)) (-3177 (($ $ (-644 (-862))) 65)) (-2835 (((-1157) $) 34) (((-1157) $ (-112)) 35) (((-1269) (-822) $) 36) (((-1269) (-822) $ (-112)) 37)) (-3019 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 51)) (-3004 (((-112) $ $) NIL)) (-2977 (((-112) $ $) 52))) +(((-1175) (-13 (-850) (-614 (-538)) (-828) (-614 (-1175)) (-616 (-1157)) (-614 (-892 (-566))) (-614 (-892 (-381))) (-886 (-566)) (-886 (-381)) (-10 -8 (-15 -4259 ($)) (-15 -4259 ($ $)) (-15 -3913 ((-1269))) (-15 -2598 ($ $)) (-15 -2443 ((-112) $)) (-15 -4341 ((-2 (|:| -2245 (-644 (-862))) (|:| -4047 (-644 (-862))) (|:| |presup| (-644 (-862))) (|:| -1466 (-644 (-862))) (|:| |args| (-644 (-862)))) $)) (-15 -1850 ($ $ (-644 (-644 (-862))))) (-15 -1850 ($ $ (-2 (|:| -2245 (-644 (-862))) (|:| -4047 (-644 (-862))) (|:| |presup| (-644 (-862))) (|:| -1466 (-644 (-862))) (|:| |args| (-644 (-862)))))) (-15 -1351 ($ $ (-644 (-862)))) (-15 -2900 ($ $ (-644 (-862)))) (-15 -3177 ($ $ (-644 (-862)))) (-15 -4376 ($ $ (-644 (-862)))) (-15 -4315 ((-1157) $)) (-15 -3960 ((-644 $) $)) (-15 -1811 ($) -1573)))) (T -1175)) +((-4259 (*1 *1) (-5 *1 (-1175))) (-4259 (*1 *1 *1) (-5 *1 (-1175))) (-3913 (*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-1175)))) (-2598 (*1 *1 *1) (-5 *1 (-1175))) (-2443 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1175)))) (-4341 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2245 (-644 (-862))) (|:| -4047 (-644 (-862))) (|:| |presup| (-644 (-862))) (|:| -1466 (-644 (-862))) (|:| |args| (-644 (-862))))) (-5 *1 (-1175)))) (-1850 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-644 (-862)))) (-5 *1 (-1175)))) (-1850 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2245 (-644 (-862))) (|:| -4047 (-644 (-862))) (|:| |presup| (-644 (-862))) (|:| -1466 (-644 (-862))) (|:| |args| (-644 (-862))))) (-5 *1 (-1175)))) (-1351 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-1175)))) (-2900 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-1175)))) (-3177 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-1175)))) (-4376 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-1175)))) (-4315 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1175)))) (-3960 (*1 *2 *1) (-12 (-5 *2 (-644 (-1175))) (-5 *1 (-1175)))) (-1811 (*1 *1) (-5 *1 (-1175)))) +(-13 (-850) (-614 (-538)) (-828) (-614 (-1175)) (-616 (-1157)) (-614 (-892 (-566))) (-614 (-892 (-381))) (-886 (-566)) (-886 (-381)) (-10 -8 (-15 -4259 ($)) (-15 -4259 ($ $)) (-15 -3913 ((-1269))) (-15 -2598 ($ $)) (-15 -2443 ((-112) $)) (-15 -4341 ((-2 (|:| -2245 (-644 (-862))) (|:| -4047 (-644 (-862))) (|:| |presup| (-644 (-862))) (|:| -1466 (-644 (-862))) (|:| |args| (-644 (-862)))) $)) (-15 -1850 ($ $ (-644 (-644 (-862))))) (-15 -1850 ($ $ (-2 (|:| -2245 (-644 (-862))) (|:| -4047 (-644 (-862))) (|:| |presup| (-644 (-862))) (|:| -1466 (-644 (-862))) (|:| |args| (-644 (-862)))))) (-15 -1351 ($ $ (-644 (-862)))) (-15 -2900 ($ $ (-644 (-862)))) (-15 -3177 ($ $ (-644 (-862)))) (-15 -4376 ($ $ (-644 (-862)))) (-15 -4315 ((-1157) $)) (-15 -3960 ((-644 $) $)) (-15 -1811 ($) -1573))) +((-4203 (((-1264 |#1|) |#1| (-921)) 18) (((-1264 |#1|) (-644 |#1|)) 25))) +(((-1176 |#1|) (-10 -7 (-15 -4203 ((-1264 |#1|) (-644 |#1|))) (-15 -4203 ((-1264 |#1|) |#1| (-921)))) (-1049)) (T -1176)) +((-4203 (*1 *2 *3 *4) (-12 (-5 *4 (-921)) (-5 *2 (-1264 *3)) (-5 *1 (-1176 *3)) (-4 *3 (-1049)))) (-4203 (*1 *2 *3) (-12 (-5 *3 (-644 *4)) (-4 *4 (-1049)) (-5 *2 (-1264 *4)) (-5 *1 (-1176 *4))))) +(-10 -7 (-15 -4203 ((-1264 |#1|) (-644 |#1|))) (-15 -4203 ((-1264 |#1|) |#1| (-921)))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-3087 (($ $) NIL (|has| |#1| (-558)))) (-1716 (((-112) $) NIL (|has| |#1| (-558)))) (-3174 (((-3 $ "failed") $ $) NIL)) (-1811 (($) NIL T CONST)) (-2980 (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) NIL)) (-1709 (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) NIL)) (-3565 (($ $) NIL)) (-3757 (((-3 $ "failed") $) NIL)) (-3530 (($ $) NIL (|has| |#1| (-454)))) (-3995 (($ $ |#1| (-971) $) NIL)) (-2264 (((-112) $) 17)) (-3486 (((-771) $) NIL)) (-3989 (((-112) $) NIL)) (-2463 (($ |#1| (-971)) NIL)) (-2584 (((-971) $) NIL)) (-3327 (($ (-1 (-971) (-971)) $) NIL)) (-3080 (($ (-1 |#1| |#1|) $) NIL)) (-2608 (($ $) NIL)) (-2622 ((|#1| $) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2587 (((-112) $) NIL)) (-2597 ((|#1| $) NIL)) (-2790 (($ $ (-971) |#1| $) NIL (-12 (|has| (-971) (-131)) (|has| |#1| (-558))))) (-2976 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558)))) (-1630 (((-971) $) NIL)) (-2252 ((|#1| $) NIL (|has| |#1| (-454)))) (-2479 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL (|has| |#1| (-558))) (($ |#1|) NIL) (($ (-409 (-566))) NIL (-2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566))))))) (-3866 (((-644 |#1|) $) NIL)) (-3025 ((|#1| $ (-971)) NIL)) (-2645 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1558 (((-771)) NIL T CONST)) (-2244 (($ $ $ (-771)) NIL (|has| |#1| (-172)))) (-3900 (((-112) $ $) NIL)) (-1333 (((-112) $ $) NIL (|has| |#1| (-558)))) (-2446 (($) 11 T CONST)) (-2459 (($) NIL T CONST)) (-2952 (((-112) $ $) NIL)) (-3077 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) 21)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 22) (($ $ |#1|) NIL) (($ |#1| $) 16) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))))) +(((-1177 |#1|) (-13 (-327 |#1| (-971)) (-10 -8 (IF (|has| |#1| (-558)) (IF (|has| (-971) (-131)) (-15 -2790 ($ $ (-971) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4415)) (-6 -4415) |%noBranch|))) (-1049)) (T -1177)) +((-2790 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-971)) (-4 *2 (-131)) (-5 *1 (-1177 *3)) (-4 *3 (-558)) (-4 *3 (-1049))))) +(-13 (-327 |#1| (-971)) (-10 -8 (IF (|has| |#1| (-558)) (IF (|has| (-971) (-131)) (-15 -2790 ($ $ (-971) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4415)) (-6 -4415) |%noBranch|))) +((-1495 (((-1179) (-1175) $) 25)) (-3389 (($) 29)) (-1905 (((-3 (|:| |fst| (-436)) (|:| -4306 "void")) (-1175) $) 22)) (-2873 (((-1269) (-1175) (-3 (|:| |fst| (-436)) (|:| -4306 "void")) $) 41) (((-1269) (-1175) (-3 (|:| |fst| (-436)) (|:| -4306 "void"))) 42) (((-1269) (-3 (|:| |fst| (-436)) (|:| -4306 "void"))) 43)) (-3690 (((-1269) (-1175)) 58)) (-1530 (((-1269) (-1175) $) 55) (((-1269) (-1175)) 56) (((-1269)) 57)) (-1604 (((-1269) (-1175)) 37)) (-2666 (((-1175)) 36)) (-1737 (($) 34)) (-3449 (((-439) (-1175) (-439) (-1175) $) 45) (((-439) (-644 (-1175)) (-439) (-1175) $) 49) (((-439) (-1175) (-439)) 46) (((-439) (-1175) (-439) (-1175)) 50)) (-3885 (((-1175)) 35)) (-2479 (((-862) $) 28)) (-1983 (((-1269)) 30) (((-1269) (-1175)) 33)) (-3519 (((-644 (-1175)) (-1175) $) 24)) (-1297 (((-1269) (-1175) (-644 (-1175)) $) 38) (((-1269) (-1175) (-644 (-1175))) 39) (((-1269) (-644 (-1175))) 40))) +(((-1178) (-13 (-613 (-862)) (-10 -8 (-15 -3389 ($)) (-15 -1983 ((-1269))) (-15 -1983 ((-1269) (-1175))) (-15 -3449 ((-439) (-1175) (-439) (-1175) $)) (-15 -3449 ((-439) (-644 (-1175)) (-439) (-1175) $)) (-15 -3449 ((-439) (-1175) (-439))) (-15 -3449 ((-439) (-1175) (-439) (-1175))) (-15 -1604 ((-1269) (-1175))) (-15 -3885 ((-1175))) (-15 -2666 ((-1175))) (-15 -1297 ((-1269) (-1175) (-644 (-1175)) $)) (-15 -1297 ((-1269) (-1175) (-644 (-1175)))) (-15 -1297 ((-1269) (-644 (-1175)))) (-15 -2873 ((-1269) (-1175) (-3 (|:| |fst| (-436)) (|:| -4306 "void")) $)) (-15 -2873 ((-1269) (-1175) (-3 (|:| |fst| (-436)) (|:| -4306 "void")))) (-15 -2873 ((-1269) (-3 (|:| |fst| (-436)) (|:| -4306 "void")))) (-15 -1530 ((-1269) (-1175) $)) (-15 -1530 ((-1269) (-1175))) (-15 -1530 ((-1269))) (-15 -3690 ((-1269) (-1175))) (-15 -1737 ($)) (-15 -1905 ((-3 (|:| |fst| (-436)) (|:| -4306 "void")) (-1175) $)) (-15 -3519 ((-644 (-1175)) (-1175) $)) (-15 -1495 ((-1179) (-1175) $))))) (T -1178)) +((-3389 (*1 *1) (-5 *1 (-1178))) (-1983 (*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-1178)))) (-1983 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1269)) (-5 *1 (-1178)))) (-3449 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-439)) (-5 *3 (-1175)) (-5 *1 (-1178)))) (-3449 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-439)) (-5 *3 (-644 (-1175))) (-5 *4 (-1175)) (-5 *1 (-1178)))) (-3449 (*1 *2 *3 *2) (-12 (-5 *2 (-439)) (-5 *3 (-1175)) (-5 *1 (-1178)))) (-3449 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-439)) (-5 *3 (-1175)) (-5 *1 (-1178)))) (-1604 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1269)) (-5 *1 (-1178)))) (-3885 (*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1178)))) (-2666 (*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1178)))) (-1297 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-644 (-1175))) (-5 *3 (-1175)) (-5 *2 (-1269)) (-5 *1 (-1178)))) (-1297 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-1175))) (-5 *3 (-1175)) (-5 *2 (-1269)) (-5 *1 (-1178)))) (-1297 (*1 *2 *3) (-12 (-5 *3 (-644 (-1175))) (-5 *2 (-1269)) (-5 *1 (-1178)))) (-2873 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1175)) (-5 *4 (-3 (|:| |fst| (-436)) (|:| -4306 "void"))) (-5 *2 (-1269)) (-5 *1 (-1178)))) (-2873 (*1 *2 *3 *4) (-12 (-5 *3 (-1175)) (-5 *4 (-3 (|:| |fst| (-436)) (|:| -4306 "void"))) (-5 *2 (-1269)) (-5 *1 (-1178)))) (-2873 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-436)) (|:| -4306 "void"))) (-5 *2 (-1269)) (-5 *1 (-1178)))) (-1530 (*1 *2 *3 *1) (-12 (-5 *3 (-1175)) (-5 *2 (-1269)) (-5 *1 (-1178)))) (-1530 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1269)) (-5 *1 (-1178)))) (-1530 (*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-1178)))) (-3690 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1269)) (-5 *1 (-1178)))) (-1737 (*1 *1) (-5 *1 (-1178))) (-1905 (*1 *2 *3 *1) (-12 (-5 *3 (-1175)) (-5 *2 (-3 (|:| |fst| (-436)) (|:| -4306 "void"))) (-5 *1 (-1178)))) (-3519 (*1 *2 *3 *1) (-12 (-5 *2 (-644 (-1175))) (-5 *1 (-1178)) (-5 *3 (-1175)))) (-1495 (*1 *2 *3 *1) (-12 (-5 *3 (-1175)) (-5 *2 (-1179)) (-5 *1 (-1178))))) +(-13 (-613 (-862)) (-10 -8 (-15 -3389 ($)) (-15 -1983 ((-1269))) (-15 -1983 ((-1269) (-1175))) (-15 -3449 ((-439) (-1175) (-439) (-1175) $)) (-15 -3449 ((-439) (-644 (-1175)) (-439) (-1175) $)) (-15 -3449 ((-439) (-1175) (-439))) (-15 -3449 ((-439) (-1175) (-439) (-1175))) (-15 -1604 ((-1269) (-1175))) (-15 -3885 ((-1175))) (-15 -2666 ((-1175))) (-15 -1297 ((-1269) (-1175) (-644 (-1175)) $)) (-15 -1297 ((-1269) (-1175) (-644 (-1175)))) (-15 -1297 ((-1269) (-644 (-1175)))) (-15 -2873 ((-1269) (-1175) (-3 (|:| |fst| (-436)) (|:| -4306 "void")) $)) (-15 -2873 ((-1269) (-1175) (-3 (|:| |fst| (-436)) (|:| -4306 "void")))) (-15 -2873 ((-1269) (-3 (|:| |fst| (-436)) (|:| -4306 "void")))) (-15 -1530 ((-1269) (-1175) $)) (-15 -1530 ((-1269) (-1175))) (-15 -1530 ((-1269))) (-15 -3690 ((-1269) (-1175))) (-15 -1737 ($)) (-15 -1905 ((-3 (|:| |fst| (-436)) (|:| -4306 "void")) (-1175) $)) (-15 -3519 ((-644 (-1175)) (-1175) $)) (-15 -1495 ((-1179) (-1175) $)))) +((-2082 (((-644 (-644 (-3 (|:| -2598 (-1175)) (|:| -2201 (-644 (-3 (|:| S (-1175)) (|:| P (-952 (-566))))))))) $) 66)) (-4127 (((-644 (-3 (|:| -2598 (-1175)) (|:| -2201 (-644 (-3 (|:| S (-1175)) (|:| P (-952 (-566)))))))) (-436) $) 47)) (-3342 (($ (-644 (-2 (|:| -1928 (-1175)) (|:| -2806 (-439))))) 17)) (-3690 (((-1269) $) 74)) (-2916 (((-644 (-1175)) $) 22)) (-3423 (((-1103) $) 60)) (-1649 (((-439) (-1175) $) 27)) (-1462 (((-644 (-1175)) $) 30)) (-1737 (($) 19)) (-3449 (((-439) (-644 (-1175)) (-439) $) 25) (((-439) (-1175) (-439) $) 24)) (-2479 (((-862) $) 9) (((-1187 (-1175) (-439)) $) 13))) +(((-1179) (-13 (-613 (-862)) (-10 -8 (-15 -2479 ((-1187 (-1175) (-439)) $)) (-15 -1737 ($)) (-15 -3449 ((-439) (-644 (-1175)) (-439) $)) (-15 -3449 ((-439) (-1175) (-439) $)) (-15 -1649 ((-439) (-1175) $)) (-15 -2916 ((-644 (-1175)) $)) (-15 -4127 ((-644 (-3 (|:| -2598 (-1175)) (|:| -2201 (-644 (-3 (|:| S (-1175)) (|:| P (-952 (-566)))))))) (-436) $)) (-15 -1462 ((-644 (-1175)) $)) (-15 -2082 ((-644 (-644 (-3 (|:| -2598 (-1175)) (|:| -2201 (-644 (-3 (|:| S (-1175)) (|:| P (-952 (-566))))))))) $)) (-15 -3423 ((-1103) $)) (-15 -3690 ((-1269) $)) (-15 -3342 ($ (-644 (-2 (|:| -1928 (-1175)) (|:| -2806 (-439))))))))) (T -1179)) +((-2479 (*1 *2 *1) (-12 (-5 *2 (-1187 (-1175) (-439))) (-5 *1 (-1179)))) (-1737 (*1 *1) (-5 *1 (-1179))) (-3449 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-439)) (-5 *3 (-644 (-1175))) (-5 *1 (-1179)))) (-3449 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-439)) (-5 *3 (-1175)) (-5 *1 (-1179)))) (-1649 (*1 *2 *3 *1) (-12 (-5 *3 (-1175)) (-5 *2 (-439)) (-5 *1 (-1179)))) (-2916 (*1 *2 *1) (-12 (-5 *2 (-644 (-1175))) (-5 *1 (-1179)))) (-4127 (*1 *2 *3 *1) (-12 (-5 *3 (-436)) (-5 *2 (-644 (-3 (|:| -2598 (-1175)) (|:| -2201 (-644 (-3 (|:| S (-1175)) (|:| P (-952 (-566))))))))) (-5 *1 (-1179)))) (-1462 (*1 *2 *1) (-12 (-5 *2 (-644 (-1175))) (-5 *1 (-1179)))) (-2082 (*1 *2 *1) (-12 (-5 *2 (-644 (-644 (-3 (|:| -2598 (-1175)) (|:| -2201 (-644 (-3 (|:| S (-1175)) (|:| P (-952 (-566)))))))))) (-5 *1 (-1179)))) (-3423 (*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-1179)))) (-3690 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-1179)))) (-3342 (*1 *1 *2) (-12 (-5 *2 (-644 (-2 (|:| -1928 (-1175)) (|:| -2806 (-439))))) (-5 *1 (-1179))))) +(-13 (-613 (-862)) (-10 -8 (-15 -2479 ((-1187 (-1175) (-439)) $)) (-15 -1737 ($)) (-15 -3449 ((-439) (-644 (-1175)) (-439) $)) (-15 -3449 ((-439) (-1175) (-439) $)) (-15 -1649 ((-439) (-1175) $)) (-15 -2916 ((-644 (-1175)) $)) (-15 -4127 ((-644 (-3 (|:| -2598 (-1175)) (|:| -2201 (-644 (-3 (|:| S (-1175)) (|:| P (-952 (-566)))))))) (-436) $)) (-15 -1462 ((-644 (-1175)) $)) (-15 -2082 ((-644 (-644 (-3 (|:| -2598 (-1175)) (|:| -2201 (-644 (-3 (|:| S (-1175)) (|:| P (-952 (-566))))))))) $)) (-15 -3423 ((-1103) $)) (-15 -3690 ((-1269) $)) (-15 -3342 ($ (-644 (-2 (|:| -1928 (-1175)) (|:| -2806 (-439)))))))) +((-2986 (((-112) $ $) NIL)) (-2980 (((-3 (-566) "failed") $) 29) (((-3 (-225) "failed") $) 35) (((-3 (-508) "failed") $) 43) (((-3 (-1157) "failed") $) 47)) (-1709 (((-566) $) 30) (((-225) $) 36) (((-508) $) 40) (((-1157) $) 48)) (-2966 (((-112) $) 53)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2433 (((-3 (-566) (-225) (-508) (-1157) $) $) 55)) (-3842 (((-644 $) $) 57)) (-3136 (((-1103) $) 24) (($ (-1103)) 25)) (-1602 (((-112) $) 56)) (-2479 (((-862) $) 23) (($ (-566)) 26) (($ (-225)) 32) (($ (-508)) 38) (($ (-1157)) 44) (((-538) $) 59) (((-566) $) 31) (((-225) $) 37) (((-508) $) 41) (((-1157) $) 49)) (-2438 (((-112) $ (|[\|\|]| (-566))) 10) (((-112) $ (|[\|\|]| (-225))) 13) (((-112) $ (|[\|\|]| (-508))) 19) (((-112) $ (|[\|\|]| (-1157))) 16)) (-1651 (($ (-508) (-644 $)) 51) (($ $ (-644 $)) 52)) (-3900 (((-112) $ $) NIL)) (-3955 (((-566) $) 27) (((-225) $) 33) (((-508) $) 39) (((-1157) $) 45)) (-2952 (((-112) $ $) 7))) +(((-1180) (-13 (-1259) (-1099) (-1038 (-566)) (-1038 (-225)) (-1038 (-508)) (-1038 (-1157)) (-613 (-538)) (-10 -8 (-15 -3136 ((-1103) $)) (-15 -3136 ($ (-1103))) (-15 -2479 ((-566) $)) (-15 -3955 ((-566) $)) (-15 -2479 ((-225) $)) (-15 -3955 ((-225) $)) (-15 -2479 ((-508) $)) (-15 -3955 ((-508) $)) (-15 -2479 ((-1157) $)) (-15 -3955 ((-1157) $)) (-15 -1651 ($ (-508) (-644 $))) (-15 -1651 ($ $ (-644 $))) (-15 -2966 ((-112) $)) (-15 -2433 ((-3 (-566) (-225) (-508) (-1157) $) $)) (-15 -3842 ((-644 $) $)) (-15 -1602 ((-112) $)) (-15 -2438 ((-112) $ (|[\|\|]| (-566)))) (-15 -2438 ((-112) $ (|[\|\|]| (-225)))) (-15 -2438 ((-112) $ (|[\|\|]| (-508)))) (-15 -2438 ((-112) $ (|[\|\|]| (-1157))))))) (T -1180)) +((-3136 (*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-1180)))) (-3136 (*1 *1 *2) (-12 (-5 *2 (-1103)) (-5 *1 (-1180)))) (-2479 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-1180)))) (-3955 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-1180)))) (-2479 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1180)))) (-3955 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1180)))) (-2479 (*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-1180)))) (-3955 (*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-1180)))) (-2479 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1180)))) (-3955 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1180)))) (-1651 (*1 *1 *2 *3) (-12 (-5 *2 (-508)) (-5 *3 (-644 (-1180))) (-5 *1 (-1180)))) (-1651 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-1180))) (-5 *1 (-1180)))) (-2966 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1180)))) (-2433 (*1 *2 *1) (-12 (-5 *2 (-3 (-566) (-225) (-508) (-1157) (-1180))) (-5 *1 (-1180)))) (-3842 (*1 *2 *1) (-12 (-5 *2 (-644 (-1180))) (-5 *1 (-1180)))) (-1602 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1180)))) (-2438 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-566))) (-5 *2 (-112)) (-5 *1 (-1180)))) (-2438 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-225))) (-5 *2 (-112)) (-5 *1 (-1180)))) (-2438 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-508))) (-5 *2 (-112)) (-5 *1 (-1180)))) (-2438 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1157))) (-5 *2 (-112)) (-5 *1 (-1180))))) +(-13 (-1259) (-1099) (-1038 (-566)) (-1038 (-225)) (-1038 (-508)) (-1038 (-1157)) (-613 (-538)) (-10 -8 (-15 -3136 ((-1103) $)) (-15 -3136 ($ (-1103))) (-15 -2479 ((-566) $)) (-15 -3955 ((-566) $)) (-15 -2479 ((-225) $)) (-15 -3955 ((-225) $)) (-15 -2479 ((-508) $)) (-15 -3955 ((-508) $)) (-15 -2479 ((-1157) $)) (-15 -3955 ((-1157) $)) (-15 -1651 ($ (-508) (-644 $))) (-15 -1651 ($ $ (-644 $))) (-15 -2966 ((-112) $)) (-15 -2433 ((-3 (-566) (-225) (-508) (-1157) $) $)) (-15 -3842 ((-644 $) $)) (-15 -1602 ((-112) $)) (-15 -2438 ((-112) $ (|[\|\|]| (-566)))) (-15 -2438 ((-112) $ (|[\|\|]| (-225)))) (-15 -2438 ((-112) $ (|[\|\|]| (-508)))) (-15 -2438 ((-112) $ (|[\|\|]| (-1157)))))) +((-2986 (((-112) $ $) NIL)) (-4049 (((-771)) 22)) (-1811 (($) 12 T CONST)) (-1415 (($) 27)) (-1920 (($ $ $) NIL) (($) 19 T CONST)) (-3038 (($ $ $) NIL) (($) 20 T CONST)) (-4051 (((-921) $) 24)) (-3151 (((-1157) $) NIL)) (-2104 (($ (-921)) 23)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) NIL)) (-3900 (((-112) $ $) NIL)) (-3019 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3004 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL))) +(((-1181 |#1|) (-13 (-844) (-10 -8 (-15 -1811 ($) -1573))) (-921)) (T -1181)) +((-1811 (*1 *1) (-12 (-5 *1 (-1181 *2)) (-14 *2 (-921))))) +(-13 (-844) (-10 -8 (-15 -1811 ($) -1573))) ((|Integer|) (NOT (> (INTEGER-LENGTH |#1|) @1))) -((-2856 (((-112) $ $) NIL)) (-4003 (((-769)) NIL)) (-2822 (($) 19 T CONST)) (-3235 (($) NIL)) (-3225 (($ $ $) NIL) (($) 12 T CONST)) (-2903 (($ $ $) NIL) (($) 18 T CONST)) (-2535 (((-919) $) NIL)) (-1778 (((-1155) $) NIL)) (-2065 (($ (-919)) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) NIL)) (-2243 (($ $ $) 21)) (-2233 (($ $ $) 20)) (-1600 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL)) (-2857 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL)) (-2868 (((-112) $ $) NIL)) (-2844 (((-112) $ $) NIL))) -(((-1180 |#1|) (-13 (-842) (-10 -8 (-15 -2233 ($ $ $)) (-15 -2243 ($ $ $)) (-15 -2822 ($) -1551))) (-919)) (T -1180)) -((-2233 (*1 *1 *1 *1) (-12 (-5 *1 (-1180 *2)) (-14 *2 (-919)))) (-2243 (*1 *1 *1 *1) (-12 (-5 *1 (-1180 *2)) (-14 *2 (-919)))) (-2822 (*1 *1) (-12 (-5 *1 (-1180 *2)) (-14 *2 (-919))))) -(-13 (-842) (-10 -8 (-15 -2233 ($ $ $)) (-15 -2243 ($ $ $)) (-15 -2822 ($) -1551))) +((-2986 (((-112) $ $) NIL)) (-4049 (((-771)) NIL)) (-1811 (($) 19 T CONST)) (-1415 (($) NIL)) (-1920 (($ $ $) NIL) (($) 12 T CONST)) (-3038 (($ $ $) NIL) (($) 18 T CONST)) (-4051 (((-921) $) NIL)) (-3151 (((-1157) $) NIL)) (-2104 (($ (-921)) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) NIL)) (-2324 (($ $ $) 21)) (-2310 (($ $ $) 20)) (-3900 (((-112) $ $) NIL)) (-3019 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3004 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL))) +(((-1182 |#1|) (-13 (-844) (-10 -8 (-15 -2310 ($ $ $)) (-15 -2324 ($ $ $)) (-15 -1811 ($) -1573))) (-921)) (T -1182)) +((-2310 (*1 *1 *1 *1) (-12 (-5 *1 (-1182 *2)) (-14 *2 (-921)))) (-2324 (*1 *1 *1 *1) (-12 (-5 *1 (-1182 *2)) (-14 *2 (-921)))) (-1811 (*1 *1) (-12 (-5 *1 (-1182 *2)) (-14 *2 (-921))))) +(-13 (-844) (-10 -8 (-15 -2310 ($ $ $)) (-15 -2324 ($ $ $)) (-15 -1811 ($) -1573))) ((|NonNegativeInteger|) (NOT (> (INTEGER-LENGTH |#1|) @1))) -((-2405 (((-642 (-642 (-950 |#1|))) (-642 (-407 (-950 |#1|))) (-642 (-1173))) 67)) (-1577 (((-642 (-294 (-407 (-950 |#1|)))) (-294 (-407 (-950 |#1|)))) 78) (((-642 (-294 (-407 (-950 |#1|)))) (-407 (-950 |#1|))) 74) (((-642 (-294 (-407 (-950 |#1|)))) (-294 (-407 (-950 |#1|))) (-1173)) 79) (((-642 (-294 (-407 (-950 |#1|)))) (-407 (-950 |#1|)) (-1173)) 73) (((-642 (-642 (-294 (-407 (-950 |#1|))))) (-642 (-294 (-407 (-950 |#1|))))) 106) (((-642 (-642 (-294 (-407 (-950 |#1|))))) (-642 (-407 (-950 |#1|)))) 105) (((-642 (-642 (-294 (-407 (-950 |#1|))))) (-642 (-294 (-407 (-950 |#1|)))) (-642 (-1173))) 107) (((-642 (-642 (-294 (-407 (-950 |#1|))))) (-642 (-407 (-950 |#1|))) (-642 (-1173))) 104))) -(((-1181 |#1|) (-10 -7 (-15 -1577 ((-642 (-642 (-294 (-407 (-950 |#1|))))) (-642 (-407 (-950 |#1|))) (-642 (-1173)))) (-15 -1577 ((-642 (-642 (-294 (-407 (-950 |#1|))))) (-642 (-294 (-407 (-950 |#1|)))) (-642 (-1173)))) (-15 -1577 ((-642 (-642 (-294 (-407 (-950 |#1|))))) (-642 (-407 (-950 |#1|))))) (-15 -1577 ((-642 (-642 (-294 (-407 (-950 |#1|))))) (-642 (-294 (-407 (-950 |#1|)))))) (-15 -1577 ((-642 (-294 (-407 (-950 |#1|)))) (-407 (-950 |#1|)) (-1173))) (-15 -1577 ((-642 (-294 (-407 (-950 |#1|)))) (-294 (-407 (-950 |#1|))) (-1173))) (-15 -1577 ((-642 (-294 (-407 (-950 |#1|)))) (-407 (-950 |#1|)))) (-15 -1577 ((-642 (-294 (-407 (-950 |#1|)))) (-294 (-407 (-950 |#1|))))) (-15 -2405 ((-642 (-642 (-950 |#1|))) (-642 (-407 (-950 |#1|))) (-642 (-1173))))) (-556)) (T -1181)) -((-2405 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-407 (-950 *5)))) (-5 *4 (-642 (-1173))) (-4 *5 (-556)) (-5 *2 (-642 (-642 (-950 *5)))) (-5 *1 (-1181 *5)))) (-1577 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-642 (-294 (-407 (-950 *4))))) (-5 *1 (-1181 *4)) (-5 *3 (-294 (-407 (-950 *4)))))) (-1577 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-642 (-294 (-407 (-950 *4))))) (-5 *1 (-1181 *4)) (-5 *3 (-407 (-950 *4))))) (-1577 (*1 *2 *3 *4) (-12 (-5 *4 (-1173)) (-4 *5 (-556)) (-5 *2 (-642 (-294 (-407 (-950 *5))))) (-5 *1 (-1181 *5)) (-5 *3 (-294 (-407 (-950 *5)))))) (-1577 (*1 *2 *3 *4) (-12 (-5 *4 (-1173)) (-4 *5 (-556)) (-5 *2 (-642 (-294 (-407 (-950 *5))))) (-5 *1 (-1181 *5)) (-5 *3 (-407 (-950 *5))))) (-1577 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-642 (-642 (-294 (-407 (-950 *4)))))) (-5 *1 (-1181 *4)) (-5 *3 (-642 (-294 (-407 (-950 *4))))))) (-1577 (*1 *2 *3) (-12 (-5 *3 (-642 (-407 (-950 *4)))) (-4 *4 (-556)) (-5 *2 (-642 (-642 (-294 (-407 (-950 *4)))))) (-5 *1 (-1181 *4)))) (-1577 (*1 *2 *3 *4) (-12 (-5 *4 (-642 (-1173))) (-4 *5 (-556)) (-5 *2 (-642 (-642 (-294 (-407 (-950 *5)))))) (-5 *1 (-1181 *5)) (-5 *3 (-642 (-294 (-407 (-950 *5))))))) (-1577 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-407 (-950 *5)))) (-5 *4 (-642 (-1173))) (-4 *5 (-556)) (-5 *2 (-642 (-642 (-294 (-407 (-950 *5)))))) (-5 *1 (-1181 *5))))) -(-10 -7 (-15 -1577 ((-642 (-642 (-294 (-407 (-950 |#1|))))) (-642 (-407 (-950 |#1|))) (-642 (-1173)))) (-15 -1577 ((-642 (-642 (-294 (-407 (-950 |#1|))))) (-642 (-294 (-407 (-950 |#1|)))) (-642 (-1173)))) (-15 -1577 ((-642 (-642 (-294 (-407 (-950 |#1|))))) (-642 (-407 (-950 |#1|))))) (-15 -1577 ((-642 (-642 (-294 (-407 (-950 |#1|))))) (-642 (-294 (-407 (-950 |#1|)))))) (-15 -1577 ((-642 (-294 (-407 (-950 |#1|)))) (-407 (-950 |#1|)) (-1173))) (-15 -1577 ((-642 (-294 (-407 (-950 |#1|)))) (-294 (-407 (-950 |#1|))) (-1173))) (-15 -1577 ((-642 (-294 (-407 (-950 |#1|)))) (-407 (-950 |#1|)))) (-15 -1577 ((-642 (-294 (-407 (-950 |#1|)))) (-294 (-407 (-950 |#1|))))) (-15 -2405 ((-642 (-642 (-950 |#1|))) (-642 (-407 (-950 |#1|))) (-642 (-1173))))) -((-3757 (((-1155)) 7)) (-3881 (((-1155)) 11 T CONST)) (-4234 (((-1267) (-1155)) 13)) (-1439 (((-1155)) 8 T CONST)) (-2461 (((-130)) 10 T CONST))) -(((-1182) (-13 (-1212) (-10 -7 (-15 -3757 ((-1155))) (-15 -1439 ((-1155)) -1551) (-15 -2461 ((-130)) -1551) (-15 -3881 ((-1155)) -1551) (-15 -4234 ((-1267) (-1155)))))) (T -1182)) -((-3757 (*1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-1182)))) (-1439 (*1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-1182)))) (-2461 (*1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-1182)))) (-3881 (*1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-1182)))) (-4234 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1182))))) -(-13 (-1212) (-10 -7 (-15 -3757 ((-1155))) (-15 -1439 ((-1155)) -1551) (-15 -2461 ((-130)) -1551) (-15 -3881 ((-1155)) -1551) (-15 -4234 ((-1267) (-1155))))) -((-3833 (((-642 (-642 |#1|)) (-642 (-642 |#1|)) (-642 (-642 (-642 |#1|)))) 56)) (-4059 (((-642 (-642 (-642 |#1|))) (-642 (-642 |#1|))) 38)) (-4105 (((-1184 (-642 |#1|)) (-642 |#1|)) 49)) (-3248 (((-642 (-642 |#1|)) (-642 |#1|)) 45)) (-2001 (((-2 (|:| |f1| (-642 |#1|)) (|:| |f2| (-642 (-642 (-642 |#1|)))) (|:| |f3| (-642 (-642 |#1|))) (|:| |f4| (-642 (-642 (-642 |#1|))))) (-642 (-642 (-642 |#1|)))) 53)) (-4243 (((-2 (|:| |f1| (-642 |#1|)) (|:| |f2| (-642 (-642 (-642 |#1|)))) (|:| |f3| (-642 (-642 |#1|))) (|:| |f4| (-642 (-642 (-642 |#1|))))) (-642 |#1|) (-642 (-642 (-642 |#1|))) (-642 (-642 |#1|)) (-642 (-642 (-642 |#1|))) (-642 (-642 (-642 |#1|))) (-642 (-642 (-642 |#1|)))) 52)) (-2731 (((-642 (-642 |#1|)) (-642 (-642 |#1|))) 43)) (-2895 (((-642 |#1|) (-642 |#1|)) 46)) (-1764 (((-642 (-642 (-642 |#1|))) (-642 |#1|) (-642 (-642 (-642 |#1|)))) 32)) (-3603 (((-642 (-642 (-642 |#1|))) (-1 (-112) |#1| |#1|) (-642 |#1|) (-642 (-642 (-642 |#1|)))) 29)) (-4331 (((-2 (|:| |fs| (-112)) (|:| |sd| (-642 |#1|)) (|:| |td| (-642 (-642 |#1|)))) (-1 (-112) |#1| |#1|) (-642 |#1|) (-642 (-642 |#1|))) 24)) (-2383 (((-642 (-642 |#1|)) (-642 (-642 (-642 |#1|)))) 58)) (-1712 (((-642 (-642 |#1|)) (-1184 (-642 |#1|))) 60))) -(((-1183 |#1|) (-10 -7 (-15 -4331 ((-2 (|:| |fs| (-112)) (|:| |sd| (-642 |#1|)) (|:| |td| (-642 (-642 |#1|)))) (-1 (-112) |#1| |#1|) (-642 |#1|) (-642 (-642 |#1|)))) (-15 -3603 ((-642 (-642 (-642 |#1|))) (-1 (-112) |#1| |#1|) (-642 |#1|) (-642 (-642 (-642 |#1|))))) (-15 -1764 ((-642 (-642 (-642 |#1|))) (-642 |#1|) (-642 (-642 (-642 |#1|))))) (-15 -3833 ((-642 (-642 |#1|)) (-642 (-642 |#1|)) (-642 (-642 (-642 |#1|))))) (-15 -2383 ((-642 (-642 |#1|)) (-642 (-642 (-642 |#1|))))) (-15 -1712 ((-642 (-642 |#1|)) (-1184 (-642 |#1|)))) (-15 -4059 ((-642 (-642 (-642 |#1|))) (-642 (-642 |#1|)))) (-15 -4105 ((-1184 (-642 |#1|)) (-642 |#1|))) (-15 -2731 ((-642 (-642 |#1|)) (-642 (-642 |#1|)))) (-15 -3248 ((-642 (-642 |#1|)) (-642 |#1|))) (-15 -2895 ((-642 |#1|) (-642 |#1|))) (-15 -4243 ((-2 (|:| |f1| (-642 |#1|)) (|:| |f2| (-642 (-642 (-642 |#1|)))) (|:| |f3| (-642 (-642 |#1|))) (|:| |f4| (-642 (-642 (-642 |#1|))))) (-642 |#1|) (-642 (-642 (-642 |#1|))) (-642 (-642 |#1|)) (-642 (-642 (-642 |#1|))) (-642 (-642 (-642 |#1|))) (-642 (-642 (-642 |#1|))))) (-15 -2001 ((-2 (|:| |f1| (-642 |#1|)) (|:| |f2| (-642 (-642 (-642 |#1|)))) (|:| |f3| (-642 (-642 |#1|))) (|:| |f4| (-642 (-642 (-642 |#1|))))) (-642 (-642 (-642 |#1|)))))) (-848)) (T -1183)) -((-2001 (*1 *2 *3) (-12 (-4 *4 (-848)) (-5 *2 (-2 (|:| |f1| (-642 *4)) (|:| |f2| (-642 (-642 (-642 *4)))) (|:| |f3| (-642 (-642 *4))) (|:| |f4| (-642 (-642 (-642 *4)))))) (-5 *1 (-1183 *4)) (-5 *3 (-642 (-642 (-642 *4)))))) (-4243 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-848)) (-5 *3 (-642 *6)) (-5 *5 (-642 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-642 *5)) (|:| |f3| *5) (|:| |f4| (-642 *5)))) (-5 *1 (-1183 *6)) (-5 *4 (-642 *5)))) (-2895 (*1 *2 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-848)) (-5 *1 (-1183 *3)))) (-3248 (*1 *2 *3) (-12 (-4 *4 (-848)) (-5 *2 (-642 (-642 *4))) (-5 *1 (-1183 *4)) (-5 *3 (-642 *4)))) (-2731 (*1 *2 *2) (-12 (-5 *2 (-642 (-642 *3))) (-4 *3 (-848)) (-5 *1 (-1183 *3)))) (-4105 (*1 *2 *3) (-12 (-4 *4 (-848)) (-5 *2 (-1184 (-642 *4))) (-5 *1 (-1183 *4)) (-5 *3 (-642 *4)))) (-4059 (*1 *2 *3) (-12 (-4 *4 (-848)) (-5 *2 (-642 (-642 (-642 *4)))) (-5 *1 (-1183 *4)) (-5 *3 (-642 (-642 *4))))) (-1712 (*1 *2 *3) (-12 (-5 *3 (-1184 (-642 *4))) (-4 *4 (-848)) (-5 *2 (-642 (-642 *4))) (-5 *1 (-1183 *4)))) (-2383 (*1 *2 *3) (-12 (-5 *3 (-642 (-642 (-642 *4)))) (-5 *2 (-642 (-642 *4))) (-5 *1 (-1183 *4)) (-4 *4 (-848)))) (-3833 (*1 *2 *2 *3) (-12 (-5 *3 (-642 (-642 (-642 *4)))) (-5 *2 (-642 (-642 *4))) (-4 *4 (-848)) (-5 *1 (-1183 *4)))) (-1764 (*1 *2 *3 *2) (-12 (-5 *2 (-642 (-642 (-642 *4)))) (-5 *3 (-642 *4)) (-4 *4 (-848)) (-5 *1 (-1183 *4)))) (-3603 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-642 (-642 (-642 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-642 *5)) (-4 *5 (-848)) (-5 *1 (-1183 *5)))) (-4331 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-848)) (-5 *4 (-642 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-642 *4)))) (-5 *1 (-1183 *6)) (-5 *5 (-642 *4))))) -(-10 -7 (-15 -4331 ((-2 (|:| |fs| (-112)) (|:| |sd| (-642 |#1|)) (|:| |td| (-642 (-642 |#1|)))) (-1 (-112) |#1| |#1|) (-642 |#1|) (-642 (-642 |#1|)))) (-15 -3603 ((-642 (-642 (-642 |#1|))) (-1 (-112) |#1| |#1|) (-642 |#1|) (-642 (-642 (-642 |#1|))))) (-15 -1764 ((-642 (-642 (-642 |#1|))) (-642 |#1|) (-642 (-642 (-642 |#1|))))) (-15 -3833 ((-642 (-642 |#1|)) (-642 (-642 |#1|)) (-642 (-642 (-642 |#1|))))) (-15 -2383 ((-642 (-642 |#1|)) (-642 (-642 (-642 |#1|))))) (-15 -1712 ((-642 (-642 |#1|)) (-1184 (-642 |#1|)))) (-15 -4059 ((-642 (-642 (-642 |#1|))) (-642 (-642 |#1|)))) (-15 -4105 ((-1184 (-642 |#1|)) (-642 |#1|))) (-15 -2731 ((-642 (-642 |#1|)) (-642 (-642 |#1|)))) (-15 -3248 ((-642 (-642 |#1|)) (-642 |#1|))) (-15 -2895 ((-642 |#1|) (-642 |#1|))) (-15 -4243 ((-2 (|:| |f1| (-642 |#1|)) (|:| |f2| (-642 (-642 (-642 |#1|)))) (|:| |f3| (-642 (-642 |#1|))) (|:| |f4| (-642 (-642 (-642 |#1|))))) (-642 |#1|) (-642 (-642 (-642 |#1|))) (-642 (-642 |#1|)) (-642 (-642 (-642 |#1|))) (-642 (-642 (-642 |#1|))) (-642 (-642 (-642 |#1|))))) (-15 -2001 ((-2 (|:| |f1| (-642 |#1|)) (|:| |f2| (-642 (-642 (-642 |#1|)))) (|:| |f3| (-642 (-642 |#1|))) (|:| |f4| (-642 (-642 (-642 |#1|))))) (-642 (-642 (-642 |#1|)))))) -((-4266 (($ (-642 (-642 |#1|))) 10)) (-3141 (((-642 (-642 |#1|)) $) 11)) (-2390 (((-860) $) 38))) -(((-1184 |#1|) (-10 -8 (-15 -4266 ($ (-642 (-642 |#1|)))) (-15 -3141 ((-642 (-642 |#1|)) $)) (-15 -2390 ((-860) $))) (-1097)) (T -1184)) -((-2390 (*1 *2 *1) (-12 (-5 *2 (-860)) (-5 *1 (-1184 *3)) (-4 *3 (-1097)))) (-3141 (*1 *2 *1) (-12 (-5 *2 (-642 (-642 *3))) (-5 *1 (-1184 *3)) (-4 *3 (-1097)))) (-4266 (*1 *1 *2) (-12 (-5 *2 (-642 (-642 *3))) (-4 *3 (-1097)) (-5 *1 (-1184 *3))))) -(-10 -8 (-15 -4266 ($ (-642 (-642 |#1|)))) (-15 -3141 ((-642 (-642 |#1|)) $)) (-15 -2390 ((-860) $))) -((-2856 (((-112) $ $) NIL (-2682 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-4222 (($) NIL) (($ (-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) NIL)) (-3633 (((-1267) $ |#1| |#1|) NIL (|has| $ (-6 -4411)))) (-3442 (((-112) $ (-769)) NIL)) (-3841 ((|#2| $ |#1| |#2|) NIL)) (-2438 (($ (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-3437 (($ (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-2295 (((-3 |#2| "failed") |#1| $) NIL)) (-2822 (($) NIL T CONST)) (-4067 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097))))) (-1927 (($ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) NIL (|has| $ (-6 -4410))) (($ (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-3 |#2| "failed") |#1| $) NIL)) (-2517 (($ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (($ (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-3741 (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) NIL (|has| $ (-6 -4410))) (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-3105 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4411)))) (-1804 ((|#2| $ |#1|) NIL)) (-2018 (((-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-642 |#2|) $) NIL (|has| $ (-6 -4410)))) (-3769 (((-112) $ (-769)) NIL)) (-1802 ((|#1| $) NIL (|has| |#1| (-848)))) (-3541 (((-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-642 |#2|) $) NIL (|has| $ (-6 -4410)))) (-2533 (((-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097))))) (-3624 ((|#1| $) NIL (|has| |#1| (-848)))) (-1857 (($ (-1 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4411))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4411)))) (-2947 (($ (-1 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4145 (((-112) $ (-769)) NIL)) (-1778 (((-1155) $) NIL (-2682 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-3287 (((-642 |#1|) $) NIL)) (-2145 (((-112) |#1| $) NIL)) (-3220 (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) NIL)) (-1668 (($ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) NIL)) (-4107 (((-642 |#1|) $) NIL)) (-4207 (((-112) |#1| $) NIL)) (-3999 (((-1117) $) NIL (-2682 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-4036 ((|#2| $) NIL (|has| |#1| (-848)))) (-3183 (((-3 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) "failed") (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL)) (-3826 (($ $ |#2|) NIL (|has| $ (-6 -4411)))) (-4314 (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) NIL)) (-4094 (((-112) (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))))) NIL (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (($ $ (-294 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) NIL (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (($ $ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) NIL (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (($ $ (-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) (-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) NIL (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (($ $ (-642 |#2|) (-642 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-642 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))))) (-2478 (((-112) $ $) NIL)) (-1643 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097))))) (-3522 (((-642 |#2|) $) NIL)) (-4109 (((-112) $) NIL)) (-2179 (($) NIL)) (-4369 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2318 (($) NIL) (($ (-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) NIL)) (-4010 (((-769) (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-769) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (((-769) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097)))) (((-769) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410)))) (-3865 (($ $) NIL)) (-3003 (((-536) $) NIL (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-612 (-536))))) (-2401 (($ (-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) NIL)) (-2390 (((-860) $) NIL (-2682 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-611 (-860))) (|has| |#2| (-611 (-860)))))) (-1600 (((-112) $ $) NIL (-2682 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-4160 (($ (-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) NIL)) (-3295 (((-112) (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410)))) (-2821 (((-112) $ $) NIL (-2682 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-2158 (((-769) $) NIL (|has| $ (-6 -4410))))) -(((-1185 |#1| |#2|) (-13 (-1188 |#1| |#2|) (-10 -7 (-6 -4410))) (-1097) (-1097)) (T -1185)) -NIL -(-13 (-1188 |#1| |#2|) (-10 -7 (-6 -4410))) -((-2412 ((|#1| (-642 |#1|)) 49)) (-3527 ((|#1| |#1| (-564)) 24)) (-2852 (((-1169 |#1|) |#1| (-919)) 20))) -(((-1186 |#1|) (-10 -7 (-15 -2412 (|#1| (-642 |#1|))) (-15 -2852 ((-1169 |#1|) |#1| (-919))) (-15 -3527 (|#1| |#1| (-564)))) (-363)) (T -1186)) -((-3527 (*1 *2 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-1186 *2)) (-4 *2 (-363)))) (-2852 (*1 *2 *3 *4) (-12 (-5 *4 (-919)) (-5 *2 (-1169 *3)) (-5 *1 (-1186 *3)) (-4 *3 (-363)))) (-2412 (*1 *2 *3) (-12 (-5 *3 (-642 *2)) (-5 *1 (-1186 *2)) (-4 *2 (-363))))) -(-10 -7 (-15 -2412 (|#1| (-642 |#1|))) (-15 -2852 ((-1169 |#1|) |#1| (-919))) (-15 -3527 (|#1| |#1| (-564)))) -((-4222 (($) 10) (($ (-642 (-2 (|:| -1914 |#2|) (|:| -2683 |#3|)))) 14)) (-1927 (($ (-2 (|:| -1914 |#2|) (|:| -2683 |#3|)) $) 67) (($ (-1 (-112) (-2 (|:| -1914 |#2|) (|:| -2683 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-2018 (((-642 (-2 (|:| -1914 |#2|) (|:| -2683 |#3|))) $) 39) (((-642 |#3|) $) 41)) (-1857 (($ (-1 (-2 (|:| -1914 |#2|) (|:| -2683 |#3|)) (-2 (|:| -1914 |#2|) (|:| -2683 |#3|))) $) 57) (($ (-1 |#3| |#3|) $) 33)) (-2947 (($ (-1 (-2 (|:| -1914 |#2|) (|:| -2683 |#3|)) (-2 (|:| -1914 |#2|) (|:| -2683 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-3220 (((-2 (|:| -1914 |#2|) (|:| -2683 |#3|)) $) 60)) (-1668 (($ (-2 (|:| -1914 |#2|) (|:| -2683 |#3|)) $) 16)) (-4107 (((-642 |#2|) $) 19)) (-4207 (((-112) |#2| $) 65)) (-3183 (((-3 (-2 (|:| -1914 |#2|) (|:| -2683 |#3|)) "failed") (-1 (-112) (-2 (|:| -1914 |#2|) (|:| -2683 |#3|))) $) 64)) (-4314 (((-2 (|:| -1914 |#2|) (|:| -2683 |#3|)) $) 69)) (-4094 (((-112) (-1 (-112) (-2 (|:| -1914 |#2|) (|:| -2683 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 73)) (-3522 (((-642 |#3|) $) 43)) (-4369 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-4010 (((-769) (-1 (-112) (-2 (|:| -1914 |#2|) (|:| -2683 |#3|))) $) NIL) (((-769) (-2 (|:| -1914 |#2|) (|:| -2683 |#3|)) $) NIL) (((-769) |#3| $) NIL) (((-769) (-1 (-112) |#3|) $) 79)) (-2390 (((-860) $) 27)) (-3295 (((-112) (-1 (-112) (-2 (|:| -1914 |#2|) (|:| -2683 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 71)) (-2821 (((-112) $ $) 51))) -(((-1187 |#1| |#2| |#3|) (-10 -8 (-15 -2821 ((-112) |#1| |#1|)) (-15 -2390 ((-860) |#1|)) (-15 -2947 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4222 (|#1| (-642 (-2 (|:| -1914 |#2|) (|:| -2683 |#3|))))) (-15 -4222 (|#1|)) (-15 -2947 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1857 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3295 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -4094 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -4010 ((-769) (-1 (-112) |#3|) |#1|)) (-15 -2018 ((-642 |#3|) |#1|)) (-15 -4010 ((-769) |#3| |#1|)) (-15 -4369 (|#3| |#1| |#2| |#3|)) (-15 -4369 (|#3| |#1| |#2|)) (-15 -3522 ((-642 |#3|) |#1|)) (-15 -4207 ((-112) |#2| |#1|)) (-15 -4107 ((-642 |#2|) |#1|)) (-15 -1927 ((-3 |#3| "failed") |#2| |#1|)) (-15 -1927 (|#1| (-1 (-112) (-2 (|:| -1914 |#2|) (|:| -2683 |#3|))) |#1|)) (-15 -1927 (|#1| (-2 (|:| -1914 |#2|) (|:| -2683 |#3|)) |#1|)) (-15 -3183 ((-3 (-2 (|:| -1914 |#2|) (|:| -2683 |#3|)) "failed") (-1 (-112) (-2 (|:| -1914 |#2|) (|:| -2683 |#3|))) |#1|)) (-15 -3220 ((-2 (|:| -1914 |#2|) (|:| -2683 |#3|)) |#1|)) (-15 -1668 (|#1| (-2 (|:| -1914 |#2|) (|:| -2683 |#3|)) |#1|)) (-15 -4314 ((-2 (|:| -1914 |#2|) (|:| -2683 |#3|)) |#1|)) (-15 -4010 ((-769) (-2 (|:| -1914 |#2|) (|:| -2683 |#3|)) |#1|)) (-15 -2018 ((-642 (-2 (|:| -1914 |#2|) (|:| -2683 |#3|))) |#1|)) (-15 -4010 ((-769) (-1 (-112) (-2 (|:| -1914 |#2|) (|:| -2683 |#3|))) |#1|)) (-15 -4094 ((-112) (-1 (-112) (-2 (|:| -1914 |#2|) (|:| -2683 |#3|))) |#1|)) (-15 -3295 ((-112) (-1 (-112) (-2 (|:| -1914 |#2|) (|:| -2683 |#3|))) |#1|)) (-15 -1857 (|#1| (-1 (-2 (|:| -1914 |#2|) (|:| -2683 |#3|)) (-2 (|:| -1914 |#2|) (|:| -2683 |#3|))) |#1|)) (-15 -2947 (|#1| (-1 (-2 (|:| -1914 |#2|) (|:| -2683 |#3|)) (-2 (|:| -1914 |#2|) (|:| -2683 |#3|))) |#1|))) (-1188 |#2| |#3|) (-1097) (-1097)) (T -1187)) -NIL -(-10 -8 (-15 -2821 ((-112) |#1| |#1|)) (-15 -2390 ((-860) |#1|)) (-15 -2947 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4222 (|#1| (-642 (-2 (|:| -1914 |#2|) (|:| -2683 |#3|))))) (-15 -4222 (|#1|)) (-15 -2947 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1857 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3295 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -4094 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -4010 ((-769) (-1 (-112) |#3|) |#1|)) (-15 -2018 ((-642 |#3|) |#1|)) (-15 -4010 ((-769) |#3| |#1|)) (-15 -4369 (|#3| |#1| |#2| |#3|)) (-15 -4369 (|#3| |#1| |#2|)) (-15 -3522 ((-642 |#3|) |#1|)) (-15 -4207 ((-112) |#2| |#1|)) (-15 -4107 ((-642 |#2|) |#1|)) (-15 -1927 ((-3 |#3| "failed") |#2| |#1|)) (-15 -1927 (|#1| (-1 (-112) (-2 (|:| -1914 |#2|) (|:| -2683 |#3|))) |#1|)) (-15 -1927 (|#1| (-2 (|:| -1914 |#2|) (|:| -2683 |#3|)) |#1|)) (-15 -3183 ((-3 (-2 (|:| -1914 |#2|) (|:| -2683 |#3|)) "failed") (-1 (-112) (-2 (|:| -1914 |#2|) (|:| -2683 |#3|))) |#1|)) (-15 -3220 ((-2 (|:| -1914 |#2|) (|:| -2683 |#3|)) |#1|)) (-15 -1668 (|#1| (-2 (|:| -1914 |#2|) (|:| -2683 |#3|)) |#1|)) (-15 -4314 ((-2 (|:| -1914 |#2|) (|:| -2683 |#3|)) |#1|)) (-15 -4010 ((-769) (-2 (|:| -1914 |#2|) (|:| -2683 |#3|)) |#1|)) (-15 -2018 ((-642 (-2 (|:| -1914 |#2|) (|:| -2683 |#3|))) |#1|)) (-15 -4010 ((-769) (-1 (-112) (-2 (|:| -1914 |#2|) (|:| -2683 |#3|))) |#1|)) (-15 -4094 ((-112) (-1 (-112) (-2 (|:| -1914 |#2|) (|:| -2683 |#3|))) |#1|)) (-15 -3295 ((-112) (-1 (-112) (-2 (|:| -1914 |#2|) (|:| -2683 |#3|))) |#1|)) (-15 -1857 (|#1| (-1 (-2 (|:| -1914 |#2|) (|:| -2683 |#3|)) (-2 (|:| -1914 |#2|) (|:| -2683 |#3|))) |#1|)) (-15 -2947 (|#1| (-1 (-2 (|:| -1914 |#2|) (|:| -2683 |#3|)) (-2 (|:| -1914 |#2|) (|:| -2683 |#3|))) |#1|))) -((-2856 (((-112) $ $) 19 (-2682 (|has| |#2| (-1097)) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097))))) (-4222 (($) 73) (($ (-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) 72)) (-3633 (((-1267) $ |#1| |#1|) 100 (|has| $ (-6 -4411)))) (-3442 (((-112) $ (-769)) 8)) (-3841 ((|#2| $ |#1| |#2|) 74)) (-2438 (($ (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) 46 (|has| $ (-6 -4410)))) (-3437 (($ (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) 56 (|has| $ (-6 -4410)))) (-2295 (((-3 |#2| "failed") |#1| $) 62)) (-2822 (($) 7 T CONST)) (-4067 (($ $) 59 (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) (|has| $ (-6 -4410))))) (-1927 (($ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) 48 (|has| $ (-6 -4410))) (($ (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) 47 (|has| $ (-6 -4410))) (((-3 |#2| "failed") |#1| $) 63)) (-2517 (($ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) 58 (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) (|has| $ (-6 -4410)))) (($ (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) 55 (|has| $ (-6 -4410)))) (-3741 (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) 57 (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) (|has| $ (-6 -4410)))) (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) 54 (|has| $ (-6 -4410))) (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) 53 (|has| $ (-6 -4410)))) (-3105 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4411)))) (-1804 ((|#2| $ |#1|) 89)) (-2018 (((-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) 31 (|has| $ (-6 -4410))) (((-642 |#2|) $) 80 (|has| $ (-6 -4410)))) (-3769 (((-112) $ (-769)) 9)) (-1802 ((|#1| $) 97 (|has| |#1| (-848)))) (-3541 (((-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) 30 (|has| $ (-6 -4410))) (((-642 |#2|) $) 81 (|has| $ (-6 -4410)))) (-2533 (((-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) 28 (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) (|has| $ (-6 -4410)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1097)) (|has| $ (-6 -4410))))) (-3624 ((|#1| $) 96 (|has| |#1| (-848)))) (-1857 (($ (-1 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) 35 (|has| $ (-6 -4411))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4411)))) (-2947 (($ (-1 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71)) (-4145 (((-112) $ (-769)) 10)) (-1778 (((-1155) $) 22 (-2682 (|has| |#2| (-1097)) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097))))) (-3287 (((-642 |#1|) $) 64)) (-2145 (((-112) |#1| $) 65)) (-3220 (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) 40)) (-1668 (($ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) 41)) (-4107 (((-642 |#1|) $) 94)) (-4207 (((-112) |#1| $) 93)) (-3999 (((-1117) $) 21 (-2682 (|has| |#2| (-1097)) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097))))) (-4036 ((|#2| $) 98 (|has| |#1| (-848)))) (-3183 (((-3 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) "failed") (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) 52)) (-3826 (($ $ |#2|) 99 (|has| $ (-6 -4411)))) (-4314 (((-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) 42)) (-4094 (((-112) (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) 33 (|has| $ (-6 -4410))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))))) 27 (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (($ $ (-294 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) 26 (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (($ $ (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) 25 (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (($ $ (-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) (-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) 24 (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)))) (($ $ (-642 |#2|) (-642 |#2|)) 87 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-294 |#2|)) 85 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-642 (-294 |#2|))) 84 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))))) (-2478 (((-112) $ $) 14)) (-1643 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097))))) (-3522 (((-642 |#2|) $) 92)) (-4109 (((-112) $) 11)) (-2179 (($) 12)) (-4369 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90)) (-2318 (($) 50) (($ (-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) 49)) (-4010 (((-769) (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) 32 (|has| $ (-6 -4410))) (((-769) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) $) 29 (-12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) (|has| $ (-6 -4410)))) (((-769) |#2| $) 82 (-12 (|has| |#2| (-1097)) (|has| $ (-6 -4410)))) (((-769) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4410)))) (-3865 (($ $) 13)) (-3003 (((-536) $) 60 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-612 (-536))))) (-2401 (($ (-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) 51)) (-2390 (((-860) $) 18 (-2682 (|has| |#2| (-611 (-860))) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-611 (-860)))))) (-1600 (((-112) $ $) 23 (-2682 (|has| |#2| (-1097)) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097))))) (-4160 (($ (-642 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) 43)) (-3295 (((-112) (-1 (-112) (-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) $) 34 (|has| $ (-6 -4410))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4410)))) (-2821 (((-112) $ $) 20 (-2682 (|has| |#2| (-1097)) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097))))) (-2158 (((-769) $) 6 (|has| $ (-6 -4410))))) -(((-1188 |#1| |#2|) (-140) (-1097) (-1097)) (T -1188)) -((-3841 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1188 *3 *2)) (-4 *3 (-1097)) (-4 *2 (-1097)))) (-4222 (*1 *1) (-12 (-4 *1 (-1188 *2 *3)) (-4 *2 (-1097)) (-4 *3 (-1097)))) (-4222 (*1 *1 *2) (-12 (-5 *2 (-642 (-2 (|:| -1914 *3) (|:| -2683 *4)))) (-4 *3 (-1097)) (-4 *4 (-1097)) (-4 *1 (-1188 *3 *4)))) (-2947 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1188 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-1097))))) -(-13 (-608 |t#1| |t#2|) (-602 |t#1| |t#2|) (-10 -8 (-15 -3841 (|t#2| $ |t#1| |t#2|)) (-15 -4222 ($)) (-15 -4222 ($ (-642 (-2 (|:| -1914 |t#1|) (|:| -2683 |t#2|))))) (-15 -2947 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) -(((-34) . T) ((-107 #0=(-2 (|:| -1914 |#1|) (|:| -2683 |#2|))) . T) ((-102) -2682 (|has| |#2| (-1097)) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097))) ((-611 (-860)) -2682 (|has| |#2| (-1097)) (|has| |#2| (-611 (-860))) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097)) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-611 (-860)))) ((-151 #0#) . T) ((-612 (-536)) |has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-612 (-536))) ((-229 #0#) . T) ((-235 #0#) . T) ((-286 |#1| |#2|) . T) ((-288 |#1| |#2|) . T) ((-309 #0#) -12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097))) ((-309 |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))) ((-489 #0#) . T) ((-489 |#2|) . T) ((-602 |#1| |#2|) . T) ((-514 #0# #0#) -12 (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-309 (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)))) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097))) ((-514 |#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))) ((-608 |#1| |#2|) . T) ((-1097) -2682 (|has| |#2| (-1097)) (|has| (-2 (|:| -1914 |#1|) (|:| -2683 |#2|)) (-1097))) ((-1212) . T)) -((-4155 (((-112)) 29)) (-4261 (((-1267) (-1155)) 31)) (-1589 (((-112)) 41)) (-4089 (((-1267)) 39)) (-1548 (((-1267) (-1155) (-1155)) 30)) (-1510 (((-112)) 42)) (-1668 (((-1267) |#1| |#2|) 53)) (-1560 (((-1267)) 27)) (-2034 (((-3 |#2| "failed") |#1|) 51)) (-2757 (((-1267)) 40))) -(((-1189 |#1| |#2|) (-10 -7 (-15 -1560 ((-1267))) (-15 -1548 ((-1267) (-1155) (-1155))) (-15 -4261 ((-1267) (-1155))) (-15 -4089 ((-1267))) (-15 -2757 ((-1267))) (-15 -4155 ((-112))) (-15 -1589 ((-112))) (-15 -1510 ((-112))) (-15 -2034 ((-3 |#2| "failed") |#1|)) (-15 -1668 ((-1267) |#1| |#2|))) (-1097) (-1097)) (T -1189)) -((-1668 (*1 *2 *3 *4) (-12 (-5 *2 (-1267)) (-5 *1 (-1189 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-1097)))) (-2034 (*1 *2 *3) (|partial| -12 (-4 *2 (-1097)) (-5 *1 (-1189 *3 *2)) (-4 *3 (-1097)))) (-1510 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1189 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-1097)))) (-1589 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1189 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-1097)))) (-4155 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1189 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-1097)))) (-2757 (*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-1189 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-1097)))) (-4089 (*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-1189 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-1097)))) (-4261 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1189 *4 *5)) (-4 *4 (-1097)) (-4 *5 (-1097)))) (-1548 (*1 *2 *3 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1189 *4 *5)) (-4 *4 (-1097)) (-4 *5 (-1097)))) (-1560 (*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-1189 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-1097))))) -(-10 -7 (-15 -1560 ((-1267))) (-15 -1548 ((-1267) (-1155) (-1155))) (-15 -4261 ((-1267) (-1155))) (-15 -4089 ((-1267))) (-15 -2757 ((-1267))) (-15 -4155 ((-112))) (-15 -1589 ((-112))) (-15 -1510 ((-112))) (-15 -2034 ((-3 |#2| "failed") |#1|)) (-15 -1668 ((-1267) |#1| |#2|))) -((-1960 (((-1155) (-1155)) 22)) (-2650 (((-52) (-1155)) 25))) -(((-1190) (-10 -7 (-15 -2650 ((-52) (-1155))) (-15 -1960 ((-1155) (-1155))))) (T -1190)) -((-1960 (*1 *2 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-1190)))) (-2650 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-52)) (-5 *1 (-1190))))) -(-10 -7 (-15 -2650 ((-52) (-1155))) (-15 -1960 ((-1155) (-1155)))) -((-2390 (((-1192) |#1|) 11))) -(((-1191 |#1|) (-10 -7 (-15 -2390 ((-1192) |#1|))) (-1097)) (T -1191)) -((-2390 (*1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *1 (-1191 *3)) (-4 *3 (-1097))))) -(-10 -7 (-15 -2390 ((-1192) |#1|))) -((-2856 (((-112) $ $) NIL)) (-3786 (((-642 (-1155)) $) 39)) (-3404 (((-642 (-1155)) $ (-642 (-1155))) 42)) (-2980 (((-642 (-1155)) $ (-642 (-1155))) 41)) (-2680 (((-642 (-1155)) $ (-642 (-1155))) 43)) (-3361 (((-642 (-1155)) $) 38)) (-4233 (($) 26)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-3435 (((-642 (-1155)) $) 40)) (-1639 (((-1267) $ (-564)) 35) (((-1267) $) 36)) (-3003 (($ (-860) (-564)) 32) (($ (-860) (-564) (-860)) NIL)) (-2390 (((-860) $) 53) (($ (-860)) 31)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-1192) (-13 (-1097) (-614 (-860)) (-10 -8 (-15 -3003 ($ (-860) (-564))) (-15 -3003 ($ (-860) (-564) (-860))) (-15 -1639 ((-1267) $ (-564))) (-15 -1639 ((-1267) $)) (-15 -3435 ((-642 (-1155)) $)) (-15 -3786 ((-642 (-1155)) $)) (-15 -4233 ($)) (-15 -3361 ((-642 (-1155)) $)) (-15 -2680 ((-642 (-1155)) $ (-642 (-1155)))) (-15 -3404 ((-642 (-1155)) $ (-642 (-1155)))) (-15 -2980 ((-642 (-1155)) $ (-642 (-1155))))))) (T -1192)) -((-3003 (*1 *1 *2 *3) (-12 (-5 *2 (-860)) (-5 *3 (-564)) (-5 *1 (-1192)))) (-3003 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-860)) (-5 *3 (-564)) (-5 *1 (-1192)))) (-1639 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1267)) (-5 *1 (-1192)))) (-1639 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-1192)))) (-3435 (*1 *2 *1) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-1192)))) (-3786 (*1 *2 *1) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-1192)))) (-4233 (*1 *1) (-5 *1 (-1192))) (-3361 (*1 *2 *1) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-1192)))) (-2680 (*1 *2 *1 *2) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-1192)))) (-3404 (*1 *2 *1 *2) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-1192)))) (-2980 (*1 *2 *1 *2) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-1192))))) -(-13 (-1097) (-614 (-860)) (-10 -8 (-15 -3003 ($ (-860) (-564))) (-15 -3003 ($ (-860) (-564) (-860))) (-15 -1639 ((-1267) $ (-564))) (-15 -1639 ((-1267) $)) (-15 -3435 ((-642 (-1155)) $)) (-15 -3786 ((-642 (-1155)) $)) (-15 -4233 ($)) (-15 -3361 ((-642 (-1155)) $)) (-15 -2680 ((-642 (-1155)) $ (-642 (-1155)))) (-15 -3404 ((-642 (-1155)) $ (-642 (-1155)))) (-15 -2980 ((-642 (-1155)) $ (-642 (-1155)))))) -((-2856 (((-112) $ $) NIL)) (-2410 (((-1155) $ (-1155)) 17) (((-1155) $) 16)) (-1400 (((-1155) $ (-1155)) 15)) (-3343 (($ $ (-1155)) NIL)) (-1735 (((-3 (-1155) "failed") $) 11)) (-3957 (((-1155) $) 8)) (-2546 (((-3 (-1155) "failed") $) 12)) (-4125 (((-1155) $) 9)) (-3406 (($ (-388)) NIL) (($ (-388) (-1155)) NIL)) (-2493 (((-388) $) NIL)) (-1778 (((-1155) $) NIL)) (-2281 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-3550 (((-112) $) 21)) (-2390 (((-860) $) NIL)) (-2914 (($ $) NIL)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-1193) (-13 (-364 (-388) (-1155)) (-10 -8 (-15 -2410 ((-1155) $ (-1155))) (-15 -2410 ((-1155) $)) (-15 -3957 ((-1155) $)) (-15 -1735 ((-3 (-1155) "failed") $)) (-15 -2546 ((-3 (-1155) "failed") $)) (-15 -3550 ((-112) $))))) (T -1193)) -((-2410 (*1 *2 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-1193)))) (-2410 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1193)))) (-3957 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1193)))) (-1735 (*1 *2 *1) (|partial| -12 (-5 *2 (-1155)) (-5 *1 (-1193)))) (-2546 (*1 *2 *1) (|partial| -12 (-5 *2 (-1155)) (-5 *1 (-1193)))) (-3550 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1193))))) -(-13 (-364 (-388) (-1155)) (-10 -8 (-15 -2410 ((-1155) $ (-1155))) (-15 -2410 ((-1155) $)) (-15 -3957 ((-1155) $)) (-15 -1735 ((-3 (-1155) "failed") $)) (-15 -2546 ((-3 (-1155) "failed") $)) (-15 -3550 ((-112) $)))) -((-2221 (((-3 (-564) "failed") |#1|) 19)) (-2015 (((-3 (-564) "failed") |#1|) 14)) (-4085 (((-564) (-1155)) 33))) -(((-1194 |#1|) (-10 -7 (-15 -2221 ((-3 (-564) "failed") |#1|)) (-15 -2015 ((-3 (-564) "failed") |#1|)) (-15 -4085 ((-564) (-1155)))) (-1047)) (T -1194)) -((-4085 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-564)) (-5 *1 (-1194 *4)) (-4 *4 (-1047)))) (-2015 (*1 *2 *3) (|partial| -12 (-5 *2 (-564)) (-5 *1 (-1194 *3)) (-4 *3 (-1047)))) (-2221 (*1 *2 *3) (|partial| -12 (-5 *2 (-564)) (-5 *1 (-1194 *3)) (-4 *3 (-1047))))) -(-10 -7 (-15 -2221 ((-3 (-564) "failed") |#1|)) (-15 -2015 ((-3 (-564) "failed") |#1|)) (-15 -4085 ((-564) (-1155)))) -((-3480 (((-1130 (-225))) 9))) -(((-1195) (-10 -7 (-15 -3480 ((-1130 (-225)))))) (T -1195)) -((-3480 (*1 *2) (-12 (-5 *2 (-1130 (-225))) (-5 *1 (-1195))))) -(-10 -7 (-15 -3480 ((-1130 (-225))))) -((-2833 (($) 12)) (-3155 (($ $) 36)) (-3131 (($ $) 34)) (-3002 (($ $) 26)) (-3176 (($ $) 18)) (-3165 (($ $) 16)) (-3168 (($ $) 20)) (-3035 (($ $) 31)) (-3142 (($ $) 35)) (-3014 (($ $) 30))) -(((-1196 |#1|) (-10 -8 (-15 -2833 (|#1|)) (-15 -3155 (|#1| |#1|)) (-15 -3131 (|#1| |#1|)) (-15 -3176 (|#1| |#1|)) (-15 -3165 (|#1| |#1|)) (-15 -3168 (|#1| |#1|)) (-15 -3142 (|#1| |#1|)) (-15 -3002 (|#1| |#1|)) (-15 -3035 (|#1| |#1|)) (-15 -3014 (|#1| |#1|))) (-1197)) (T -1196)) -NIL -(-10 -8 (-15 -2833 (|#1|)) (-15 -3155 (|#1| |#1|)) (-15 -3131 (|#1| |#1|)) (-15 -3176 (|#1| |#1|)) (-15 -3165 (|#1| |#1|)) (-15 -3168 (|#1| |#1|)) (-15 -3142 (|#1| |#1|)) (-15 -3002 (|#1| |#1|)) (-15 -3035 (|#1| |#1|)) (-15 -3014 (|#1| |#1|))) -((-3087 (($ $) 26)) (-2958 (($ $) 11)) (-3067 (($ $) 27)) (-2933 (($ $) 10)) (-3110 (($ $) 28)) (-2981 (($ $) 9)) (-2833 (($) 16)) (-3576 (($ $) 19)) (-3466 (($ $) 18)) (-3120 (($ $) 29)) (-2992 (($ $) 8)) (-3098 (($ $) 30)) (-2971 (($ $) 7)) (-3077 (($ $) 31)) (-2946 (($ $) 6)) (-3155 (($ $) 20)) (-3025 (($ $) 32)) (-3131 (($ $) 21)) (-3002 (($ $) 33)) (-3176 (($ $) 22)) (-3047 (($ $) 34)) (-3165 (($ $) 23)) (-3058 (($ $) 35)) (-3168 (($ $) 24)) (-3035 (($ $) 36)) (-3142 (($ $) 25)) (-3014 (($ $) 37)) (** (($ $ $) 17))) -(((-1197) (-140)) (T -1197)) -((-2833 (*1 *1) (-4 *1 (-1197)))) -(-13 (-1200) (-95) (-493) (-35) (-284) (-10 -8 (-15 -2833 ($)))) -(((-35) . T) ((-95) . T) ((-284) . T) ((-493) . T) ((-1200) . T)) -((-2856 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2108 ((|#1| $) 19)) (-3972 (($ |#1| (-642 $)) 28) (($ (-642 |#1|)) 35) (($ |#1|) 30)) (-3442 (((-112) $ (-769)) 72)) (-1407 ((|#1| $ |#1|) 14 (|has| $ (-6 -4411)))) (-3841 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4411)))) (-4041 (($ $ (-642 $)) 13 (|has| $ (-6 -4411)))) (-2822 (($) NIL T CONST)) (-2018 (((-642 |#1|) $) 76 (|has| $ (-6 -4410)))) (-1300 (((-642 $) $) 64)) (-2423 (((-112) $ $) 49 (|has| |#1| (-1097)))) (-3769 (((-112) $ (-769)) 62)) (-3541 (((-642 |#1|) $) 77 (|has| $ (-6 -4410)))) (-2533 (((-112) |#1| $) 75 (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-1857 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#1| |#1|) $) 27)) (-4145 (((-112) $ (-769)) 60)) (-2334 (((-642 |#1|) $) 54)) (-1961 (((-112) $) 52)) (-1778 (((-1155) $) NIL (|has| |#1| (-1097)))) (-3999 (((-1117) $) NIL (|has| |#1| (-1097)))) (-4094 (((-112) (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-2478 (((-112) $ $) 107)) (-4109 (((-112) $) 9)) (-2179 (($) 10)) (-4369 ((|#1| $ "value") NIL)) (-1743 (((-564) $ $) 48)) (-3290 (((-642 $) $) 89)) (-1679 (((-112) $ $) 110)) (-4232 (((-642 $) $) 105)) (-2687 (($ $) 106)) (-1311 (((-112) $) 84)) (-4010 (((-769) (-1 (-112) |#1|) $) 25 (|has| $ (-6 -4410))) (((-769) |#1| $) 17 (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3865 (($ $) 88)) (-2390 (((-860) $) 91 (|has| |#1| (-611 (-860))))) (-4275 (((-642 $) $) 12)) (-1622 (((-112) $ $) 39 (|has| |#1| (-1097)))) (-1600 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-3295 (((-112) (-1 (-112) |#1|) $) 73 (|has| $ (-6 -4410)))) (-2821 (((-112) $ $) 37 (|has| |#1| (-1097)))) (-2158 (((-769) $) 58 (|has| $ (-6 -4410))))) -(((-1198 |#1|) (-13 (-1008 |#1|) (-10 -8 (-6 -4410) (-6 -4411) (-15 -3972 ($ |#1| (-642 $))) (-15 -3972 ($ (-642 |#1|))) (-15 -3972 ($ |#1|)) (-15 -1311 ((-112) $)) (-15 -2687 ($ $)) (-15 -4232 ((-642 $) $)) (-15 -1679 ((-112) $ $)) (-15 -3290 ((-642 $) $)))) (-1097)) (T -1198)) -((-1311 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1198 *3)) (-4 *3 (-1097)))) (-3972 (*1 *1 *2 *3) (-12 (-5 *3 (-642 (-1198 *2))) (-5 *1 (-1198 *2)) (-4 *2 (-1097)))) (-3972 (*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1097)) (-5 *1 (-1198 *3)))) (-3972 (*1 *1 *2) (-12 (-5 *1 (-1198 *2)) (-4 *2 (-1097)))) (-2687 (*1 *1 *1) (-12 (-5 *1 (-1198 *2)) (-4 *2 (-1097)))) (-4232 (*1 *2 *1) (-12 (-5 *2 (-642 (-1198 *3))) (-5 *1 (-1198 *3)) (-4 *3 (-1097)))) (-1679 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1198 *3)) (-4 *3 (-1097)))) (-3290 (*1 *2 *1) (-12 (-5 *2 (-642 (-1198 *3))) (-5 *1 (-1198 *3)) (-4 *3 (-1097))))) -(-13 (-1008 |#1|) (-10 -8 (-6 -4410) (-6 -4411) (-15 -3972 ($ |#1| (-642 $))) (-15 -3972 ($ (-642 |#1|))) (-15 -3972 ($ |#1|)) (-15 -1311 ((-112) $)) (-15 -2687 ($ $)) (-15 -4232 ((-642 $) $)) (-15 -1679 ((-112) $ $)) (-15 -3290 ((-642 $) $)))) -((-2958 (($ $) 15)) (-2981 (($ $) 12)) (-2992 (($ $) 10)) (-2971 (($ $) 17))) -(((-1199 |#1|) (-10 -8 (-15 -2971 (|#1| |#1|)) (-15 -2992 (|#1| |#1|)) (-15 -2981 (|#1| |#1|)) (-15 -2958 (|#1| |#1|))) (-1200)) (T -1199)) -NIL -(-10 -8 (-15 -2971 (|#1| |#1|)) (-15 -2992 (|#1| |#1|)) (-15 -2981 (|#1| |#1|)) (-15 -2958 (|#1| |#1|))) -((-2958 (($ $) 11)) (-2933 (($ $) 10)) (-2981 (($ $) 9)) (-2992 (($ $) 8)) (-2971 (($ $) 7)) (-2946 (($ $) 6))) -(((-1200) (-140)) (T -1200)) -((-2958 (*1 *1 *1) (-4 *1 (-1200))) (-2933 (*1 *1 *1) (-4 *1 (-1200))) (-2981 (*1 *1 *1) (-4 *1 (-1200))) (-2992 (*1 *1 *1) (-4 *1 (-1200))) (-2971 (*1 *1 *1) (-4 *1 (-1200))) (-2946 (*1 *1 *1) (-4 *1 (-1200)))) -(-13 (-10 -8 (-15 -2946 ($ $)) (-15 -2971 ($ $)) (-15 -2992 ($ $)) (-15 -2981 ($ $)) (-15 -2933 ($ $)) (-15 -2958 ($ $)))) -((-3409 ((|#2| |#2|) 98)) (-3055 (((-112) |#2|) 29)) (-2275 ((|#2| |#2|) 33)) (-2287 ((|#2| |#2|) 35)) (-1887 ((|#2| |#2| (-1173)) 92) ((|#2| |#2|) 93)) (-3024 (((-169 |#2|) |#2|) 31)) (-1612 ((|#2| |#2| (-1173)) 94) ((|#2| |#2|) 95))) -(((-1201 |#1| |#2|) (-10 -7 (-15 -1887 (|#2| |#2|)) (-15 -1887 (|#2| |#2| (-1173))) (-15 -1612 (|#2| |#2|)) (-15 -1612 (|#2| |#2| (-1173))) (-15 -3409 (|#2| |#2|)) (-15 -2275 (|#2| |#2|)) (-15 -2287 (|#2| |#2|)) (-15 -3055 ((-112) |#2|)) (-15 -3024 ((-169 |#2|) |#2|))) (-13 (-452) (-1036 (-564)) (-637 (-564))) (-13 (-27) (-1197) (-430 |#1|))) (T -1201)) -((-3024 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-169 *3)) (-5 *1 (-1201 *4 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *4))))) (-3055 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-112)) (-5 *1 (-1201 *4 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *4))))) (-2287 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *1 (-1201 *3 *2)) (-4 *2 (-13 (-27) (-1197) (-430 *3))))) (-2275 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *1 (-1201 *3 *2)) (-4 *2 (-13 (-27) (-1197) (-430 *3))))) (-3409 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *1 (-1201 *3 *2)) (-4 *2 (-13 (-27) (-1197) (-430 *3))))) (-1612 (*1 *2 *2 *3) (-12 (-5 *3 (-1173)) (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *1 (-1201 *4 *2)) (-4 *2 (-13 (-27) (-1197) (-430 *4))))) (-1612 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *1 (-1201 *3 *2)) (-4 *2 (-13 (-27) (-1197) (-430 *3))))) (-1887 (*1 *2 *2 *3) (-12 (-5 *3 (-1173)) (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *1 (-1201 *4 *2)) (-4 *2 (-13 (-27) (-1197) (-430 *4))))) (-1887 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *1 (-1201 *3 *2)) (-4 *2 (-13 (-27) (-1197) (-430 *3)))))) -(-10 -7 (-15 -1887 (|#2| |#2|)) (-15 -1887 (|#2| |#2| (-1173))) (-15 -1612 (|#2| |#2|)) (-15 -1612 (|#2| |#2| (-1173))) (-15 -3409 (|#2| |#2|)) (-15 -2275 (|#2| |#2|)) (-15 -2287 (|#2| |#2|)) (-15 -3055 ((-112) |#2|)) (-15 -3024 ((-169 |#2|) |#2|))) -((-1362 ((|#4| |#4| |#1|) 32)) (-2893 ((|#4| |#4| |#1|) 33))) -(((-1202 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1362 (|#4| |#4| |#1|)) (-15 -2893 (|#4| |#4| |#1|))) (-556) (-373 |#1|) (-373 |#1|) (-685 |#1| |#2| |#3|)) (T -1202)) -((-2893 (*1 *2 *2 *3) (-12 (-4 *3 (-556)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-1202 *3 *4 *5 *2)) (-4 *2 (-685 *3 *4 *5)))) (-1362 (*1 *2 *2 *3) (-12 (-4 *3 (-556)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-1202 *3 *4 *5 *2)) (-4 *2 (-685 *3 *4 *5))))) -(-10 -7 (-15 -1362 (|#4| |#4| |#1|)) (-15 -2893 (|#4| |#4| |#1|))) -((-3714 ((|#2| |#2|) 148)) (-4245 ((|#2| |#2|) 145)) (-3515 ((|#2| |#2|) 136)) (-2737 ((|#2| |#2|) 133)) (-3644 ((|#2| |#2|) 141)) (-1415 ((|#2| |#2|) 129)) (-2172 ((|#2| |#2|) 44)) (-1390 ((|#2| |#2|) 105)) (-3430 ((|#2| |#2|) 88)) (-2692 ((|#2| |#2|) 143)) (-4276 ((|#2| |#2|) 131)) (-3383 ((|#2| |#2|) 153)) (-2617 ((|#2| |#2|) 151)) (-3698 ((|#2| |#2|) 152)) (-3402 ((|#2| |#2|) 150)) (-1409 ((|#2| |#2|) 163)) (-1980 ((|#2| |#2|) 30 (-12 (|has| |#2| (-612 (-890 |#1|))) (|has| |#2| (-884 |#1|)) (|has| |#1| (-612 (-890 |#1|))) (|has| |#1| (-884 |#1|))))) (-2758 ((|#2| |#2|) 89)) (-2232 ((|#2| |#2|) 154)) (-3398 ((|#2| |#2|) 155)) (-2824 ((|#2| |#2|) 142)) (-1975 ((|#2| |#2|) 130)) (-1451 ((|#2| |#2|) 149)) (-2862 ((|#2| |#2|) 147)) (-2827 ((|#2| |#2|) 137)) (-3356 ((|#2| |#2|) 135)) (-4381 ((|#2| |#2|) 139)) (-1673 ((|#2| |#2|) 127))) -(((-1203 |#1| |#2|) (-10 -7 (-15 -3398 (|#2| |#2|)) (-15 -3430 (|#2| |#2|)) (-15 -1409 (|#2| |#2|)) (-15 -1390 (|#2| |#2|)) (-15 -2172 (|#2| |#2|)) (-15 -2758 (|#2| |#2|)) (-15 -2232 (|#2| |#2|)) (-15 -1673 (|#2| |#2|)) (-15 -4381 (|#2| |#2|)) (-15 -2827 (|#2| |#2|)) (-15 -1451 (|#2| |#2|)) (-15 -1975 (|#2| |#2|)) (-15 -2824 (|#2| |#2|)) (-15 -4276 (|#2| |#2|)) (-15 -2692 (|#2| |#2|)) (-15 -1415 (|#2| |#2|)) (-15 -3644 (|#2| |#2|)) (-15 -3515 (|#2| |#2|)) (-15 -3714 (|#2| |#2|)) (-15 -2737 (|#2| |#2|)) (-15 -4245 (|#2| |#2|)) (-15 -3356 (|#2| |#2|)) (-15 -2862 (|#2| |#2|)) (-15 -3402 (|#2| |#2|)) (-15 -2617 (|#2| |#2|)) (-15 -3698 (|#2| |#2|)) (-15 -3383 (|#2| |#2|)) (IF (|has| |#1| (-884 |#1|)) (IF (|has| |#1| (-612 (-890 |#1|))) (IF (|has| |#2| (-612 (-890 |#1|))) (IF (|has| |#2| (-884 |#1|)) (-15 -1980 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-452) (-13 (-430 |#1|) (-1197))) (T -1203)) -((-1980 (*1 *2 *2) (-12 (-4 *3 (-612 (-890 *3))) (-4 *3 (-884 *3)) (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) (-4 *2 (-612 (-890 *3))) (-4 *2 (-884 *3)) (-4 *2 (-13 (-430 *3) (-1197))))) (-3383 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-430 *3) (-1197))))) (-3698 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-430 *3) (-1197))))) (-2617 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-430 *3) (-1197))))) (-3402 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-430 *3) (-1197))))) (-2862 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-430 *3) (-1197))))) (-3356 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-430 *3) (-1197))))) (-4245 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-430 *3) (-1197))))) (-2737 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-430 *3) (-1197))))) (-3714 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-430 *3) (-1197))))) (-3515 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-430 *3) (-1197))))) (-3644 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-430 *3) (-1197))))) (-1415 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-430 *3) (-1197))))) (-2692 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-430 *3) (-1197))))) (-4276 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-430 *3) (-1197))))) (-2824 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-430 *3) (-1197))))) (-1975 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-430 *3) (-1197))))) (-1451 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-430 *3) (-1197))))) (-2827 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-430 *3) (-1197))))) (-4381 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-430 *3) (-1197))))) (-1673 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-430 *3) (-1197))))) (-2232 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-430 *3) (-1197))))) (-2758 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-430 *3) (-1197))))) (-2172 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-430 *3) (-1197))))) (-1390 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-430 *3) (-1197))))) (-1409 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-430 *3) (-1197))))) (-3430 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-430 *3) (-1197))))) (-3398 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-430 *3) (-1197)))))) -(-10 -7 (-15 -3398 (|#2| |#2|)) (-15 -3430 (|#2| |#2|)) (-15 -1409 (|#2| |#2|)) (-15 -1390 (|#2| |#2|)) (-15 -2172 (|#2| |#2|)) (-15 -2758 (|#2| |#2|)) (-15 -2232 (|#2| |#2|)) (-15 -1673 (|#2| |#2|)) (-15 -4381 (|#2| |#2|)) (-15 -2827 (|#2| |#2|)) (-15 -1451 (|#2| |#2|)) (-15 -1975 (|#2| |#2|)) (-15 -2824 (|#2| |#2|)) (-15 -4276 (|#2| |#2|)) (-15 -2692 (|#2| |#2|)) (-15 -1415 (|#2| |#2|)) (-15 -3644 (|#2| |#2|)) (-15 -3515 (|#2| |#2|)) (-15 -3714 (|#2| |#2|)) (-15 -2737 (|#2| |#2|)) (-15 -4245 (|#2| |#2|)) (-15 -3356 (|#2| |#2|)) (-15 -2862 (|#2| |#2|)) (-15 -3402 (|#2| |#2|)) (-15 -2617 (|#2| |#2|)) (-15 -3698 (|#2| |#2|)) (-15 -3383 (|#2| |#2|)) (IF (|has| |#1| (-884 |#1|)) (IF (|has| |#1| (-612 (-890 |#1|))) (IF (|has| |#2| (-612 (-890 |#1|))) (IF (|has| |#2| (-884 |#1|)) (-15 -1980 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) -((-4334 (((-112) |#5| $) 68) (((-112) $) 110)) (-2937 ((|#5| |#5| $) 83)) (-3437 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 127)) (-3720 (((-642 |#5|) (-642 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 81)) (-2849 (((-3 $ "failed") (-642 |#5|)) 135)) (-4050 (((-3 $ "failed") $) 120)) (-2398 ((|#5| |#5| $) 102)) (-3762 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 36)) (-3978 ((|#5| |#5| $) 106)) (-3741 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 77)) (-1750 (((-2 (|:| -1616 (-642 |#5|)) (|:| -3406 (-642 |#5|))) $) 63)) (-3303 (((-112) |#5| $) 66) (((-112) $) 111)) (-1715 ((|#4| $) 116)) (-2534 (((-3 |#5| "failed") $) 118)) (-2206 (((-642 |#5|) $) 55)) (-3673 (((-112) |#5| $) 75) (((-112) $) 115)) (-4090 ((|#5| |#5| $) 89)) (-3119 (((-112) $ $) 29)) (-4354 (((-112) |#5| $) 71) (((-112) $) 113)) (-3750 ((|#5| |#5| $) 86)) (-4036 (((-3 |#5| "failed") $) 117)) (-2137 (($ $ |#5|) 136)) (-3252 (((-769) $) 60)) (-2401 (($ (-642 |#5|)) 133)) (-2942 (($ $ |#4|) 131)) (-1710 (($ $ |#4|) 129)) (-2204 (($ $) 128)) (-2390 (((-860) $) NIL) (((-642 |#5|) $) 121)) (-2621 (((-769) $) 140)) (-4150 (((-3 (-2 (|:| |bas| $) (|:| -3844 (-642 |#5|))) "failed") (-642 |#5|) (-1 (-112) |#5| |#5|)) 49) (((-3 (-2 (|:| |bas| $) (|:| -3844 (-642 |#5|))) "failed") (-642 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 51)) (-2205 (((-112) $ (-1 (-112) |#5| (-642 |#5|))) 108)) (-1644 (((-642 |#4|) $) 123)) (-4127 (((-112) |#4| $) 126)) (-2821 (((-112) $ $) 20))) -(((-1204 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2621 ((-769) |#1|)) (-15 -2137 (|#1| |#1| |#5|)) (-15 -3437 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4127 ((-112) |#4| |#1|)) (-15 -1644 ((-642 |#4|) |#1|)) (-15 -4050 ((-3 |#1| "failed") |#1|)) (-15 -2534 ((-3 |#5| "failed") |#1|)) (-15 -4036 ((-3 |#5| "failed") |#1|)) (-15 -3978 (|#5| |#5| |#1|)) (-15 -2204 (|#1| |#1|)) (-15 -2398 (|#5| |#5| |#1|)) (-15 -4090 (|#5| |#5| |#1|)) (-15 -3750 (|#5| |#5| |#1|)) (-15 -2937 (|#5| |#5| |#1|)) (-15 -3720 ((-642 |#5|) (-642 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3741 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3673 ((-112) |#1|)) (-15 -4354 ((-112) |#1|)) (-15 -4334 ((-112) |#1|)) (-15 -2205 ((-112) |#1| (-1 (-112) |#5| (-642 |#5|)))) (-15 -3673 ((-112) |#5| |#1|)) (-15 -4354 ((-112) |#5| |#1|)) (-15 -4334 ((-112) |#5| |#1|)) (-15 -3762 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -3303 ((-112) |#1|)) (-15 -3303 ((-112) |#5| |#1|)) (-15 -1750 ((-2 (|:| -1616 (-642 |#5|)) (|:| -3406 (-642 |#5|))) |#1|)) (-15 -3252 ((-769) |#1|)) (-15 -2206 ((-642 |#5|) |#1|)) (-15 -4150 ((-3 (-2 (|:| |bas| |#1|) (|:| -3844 (-642 |#5|))) "failed") (-642 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -4150 ((-3 (-2 (|:| |bas| |#1|) (|:| -3844 (-642 |#5|))) "failed") (-642 |#5|) (-1 (-112) |#5| |#5|))) (-15 -3119 ((-112) |#1| |#1|)) (-15 -2942 (|#1| |#1| |#4|)) (-15 -1710 (|#1| |#1| |#4|)) (-15 -1715 (|#4| |#1|)) (-15 -2849 ((-3 |#1| "failed") (-642 |#5|))) (-15 -2390 ((-642 |#5|) |#1|)) (-15 -2401 (|#1| (-642 |#5|))) (-15 -3741 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3741 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3437 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -3741 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2390 ((-860) |#1|)) (-15 -2821 ((-112) |#1| |#1|))) (-1205 |#2| |#3| |#4| |#5|) (-556) (-791) (-848) (-1062 |#2| |#3| |#4|)) (T -1204)) -NIL -(-10 -8 (-15 -2621 ((-769) |#1|)) (-15 -2137 (|#1| |#1| |#5|)) (-15 -3437 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4127 ((-112) |#4| |#1|)) (-15 -1644 ((-642 |#4|) |#1|)) (-15 -4050 ((-3 |#1| "failed") |#1|)) (-15 -2534 ((-3 |#5| "failed") |#1|)) (-15 -4036 ((-3 |#5| "failed") |#1|)) (-15 -3978 (|#5| |#5| |#1|)) (-15 -2204 (|#1| |#1|)) (-15 -2398 (|#5| |#5| |#1|)) (-15 -4090 (|#5| |#5| |#1|)) (-15 -3750 (|#5| |#5| |#1|)) (-15 -2937 (|#5| |#5| |#1|)) (-15 -3720 ((-642 |#5|) (-642 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3741 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3673 ((-112) |#1|)) (-15 -4354 ((-112) |#1|)) (-15 -4334 ((-112) |#1|)) (-15 -2205 ((-112) |#1| (-1 (-112) |#5| (-642 |#5|)))) (-15 -3673 ((-112) |#5| |#1|)) (-15 -4354 ((-112) |#5| |#1|)) (-15 -4334 ((-112) |#5| |#1|)) (-15 -3762 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -3303 ((-112) |#1|)) (-15 -3303 ((-112) |#5| |#1|)) (-15 -1750 ((-2 (|:| -1616 (-642 |#5|)) (|:| -3406 (-642 |#5|))) |#1|)) (-15 -3252 ((-769) |#1|)) (-15 -2206 ((-642 |#5|) |#1|)) (-15 -4150 ((-3 (-2 (|:| |bas| |#1|) (|:| -3844 (-642 |#5|))) "failed") (-642 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -4150 ((-3 (-2 (|:| |bas| |#1|) (|:| -3844 (-642 |#5|))) "failed") (-642 |#5|) (-1 (-112) |#5| |#5|))) (-15 -3119 ((-112) |#1| |#1|)) (-15 -2942 (|#1| |#1| |#4|)) (-15 -1710 (|#1| |#1| |#4|)) (-15 -1715 (|#4| |#1|)) (-15 -2849 ((-3 |#1| "failed") (-642 |#5|))) (-15 -2390 ((-642 |#5|) |#1|)) (-15 -2401 (|#1| (-642 |#5|))) (-15 -3741 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3741 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3437 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -3741 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2390 ((-860) |#1|)) (-15 -2821 ((-112) |#1| |#1|))) -((-2856 (((-112) $ $) 7)) (-1466 (((-642 (-2 (|:| -1616 $) (|:| -3406 (-642 |#4|)))) (-642 |#4|)) 86)) (-3076 (((-642 $) (-642 |#4|)) 87)) (-2397 (((-642 |#3|) $) 34)) (-3646 (((-112) $) 27)) (-4074 (((-112) $) 18 (|has| |#1| (-556)))) (-4334 (((-112) |#4| $) 102) (((-112) $) 98)) (-2937 ((|#4| |#4| $) 93)) (-3191 (((-2 (|:| |under| $) (|:| -2795 $) (|:| |upper| $)) $ |#3|) 28)) (-3442 (((-112) $ (-769)) 45)) (-3437 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4410))) (((-3 |#4| "failed") $ |#3|) 80)) (-2822 (($) 46 T CONST)) (-3013 (((-112) $) 23 (|has| |#1| (-556)))) (-3936 (((-112) $ $) 25 (|has| |#1| (-556)))) (-2133 (((-112) $ $) 24 (|has| |#1| (-556)))) (-2967 (((-112) $) 26 (|has| |#1| (-556)))) (-3720 (((-642 |#4|) (-642 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2632 (((-642 |#4|) (-642 |#4|) $) 19 (|has| |#1| (-556)))) (-1419 (((-642 |#4|) (-642 |#4|) $) 20 (|has| |#1| (-556)))) (-2849 (((-3 $ "failed") (-642 |#4|)) 37)) (-1687 (($ (-642 |#4|)) 36)) (-4050 (((-3 $ "failed") $) 83)) (-2398 ((|#4| |#4| $) 90)) (-4067 (($ $) 69 (-12 (|has| |#4| (-1097)) (|has| $ (-6 -4410))))) (-2517 (($ |#4| $) 68 (-12 (|has| |#4| (-1097)) (|has| $ (-6 -4410)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4410)))) (-1992 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-556)))) (-3762 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3978 ((|#4| |#4| $) 88)) (-3741 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1097)) (|has| $ (-6 -4410)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4410))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4410))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1750 (((-2 (|:| -1616 (-642 |#4|)) (|:| -3406 (-642 |#4|))) $) 106)) (-2018 (((-642 |#4|) $) 53 (|has| $ (-6 -4410)))) (-3303 (((-112) |#4| $) 105) (((-112) $) 104)) (-1715 ((|#3| $) 35)) (-3769 (((-112) $ (-769)) 44)) (-3541 (((-642 |#4|) $) 54 (|has| $ (-6 -4410)))) (-2533 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1097)) (|has| $ (-6 -4410))))) (-1857 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#4| |#4|) $) 48)) (-1896 (((-642 |#3|) $) 33)) (-3935 (((-112) |#3| $) 32)) (-4145 (((-112) $ (-769)) 43)) (-1778 (((-1155) $) 10)) (-2534 (((-3 |#4| "failed") $) 84)) (-2206 (((-642 |#4|) $) 108)) (-3673 (((-112) |#4| $) 100) (((-112) $) 96)) (-4090 ((|#4| |#4| $) 91)) (-3119 (((-112) $ $) 111)) (-1699 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-556)))) (-4354 (((-112) |#4| $) 101) (((-112) $) 97)) (-3750 ((|#4| |#4| $) 92)) (-3999 (((-1117) $) 11)) (-4036 (((-3 |#4| "failed") $) 85)) (-3183 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2465 (((-3 $ "failed") $ |#4|) 79)) (-2137 (($ $ |#4|) 78)) (-4094 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 |#4|) (-642 |#4|)) 60 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ (-294 |#4|)) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ (-642 (-294 |#4|))) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097))))) (-2478 (((-112) $ $) 39)) (-4109 (((-112) $) 42)) (-2179 (($) 41)) (-3252 (((-769) $) 107)) (-4010 (((-769) |#4| $) 55 (-12 (|has| |#4| (-1097)) (|has| $ (-6 -4410)))) (((-769) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4410)))) (-3865 (($ $) 40)) (-3003 (((-536) $) 70 (|has| |#4| (-612 (-536))))) (-2401 (($ (-642 |#4|)) 61)) (-2942 (($ $ |#3|) 29)) (-1710 (($ $ |#3|) 31)) (-2204 (($ $) 89)) (-4283 (($ $ |#3|) 30)) (-2390 (((-860) $) 12) (((-642 |#4|) $) 38)) (-2621 (((-769) $) 77 (|has| |#3| (-368)))) (-1600 (((-112) $ $) 9)) (-4150 (((-3 (-2 (|:| |bas| $) (|:| -3844 (-642 |#4|))) "failed") (-642 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3844 (-642 |#4|))) "failed") (-642 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2205 (((-112) $ (-1 (-112) |#4| (-642 |#4|))) 99)) (-3295 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4410)))) (-1644 (((-642 |#3|) $) 82)) (-4127 (((-112) |#3| $) 81)) (-2821 (((-112) $ $) 6)) (-2158 (((-769) $) 47 (|has| $ (-6 -4410))))) -(((-1205 |#1| |#2| |#3| |#4|) (-140) (-556) (-791) (-848) (-1062 |t#1| |t#2| |t#3|)) (T -1205)) -((-3119 (*1 *2 *1 *1) (-12 (-4 *1 (-1205 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-112)))) (-4150 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1062 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3844 (-642 *8)))) (-5 *3 (-642 *8)) (-4 *1 (-1205 *5 *6 *7 *8)))) (-4150 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1062 *6 *7 *8)) (-4 *6 (-556)) (-4 *7 (-791)) (-4 *8 (-848)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3844 (-642 *9)))) (-5 *3 (-642 *9)) (-4 *1 (-1205 *6 *7 *8 *9)))) (-2206 (*1 *2 *1) (-12 (-4 *1 (-1205 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-642 *6)))) (-3252 (*1 *2 *1) (-12 (-4 *1 (-1205 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-769)))) (-1750 (*1 *2 *1) (-12 (-4 *1 (-1205 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-2 (|:| -1616 (-642 *6)) (|:| -3406 (-642 *6)))))) (-3303 (*1 *2 *3 *1) (-12 (-4 *1 (-1205 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)) (-5 *2 (-112)))) (-3303 (*1 *2 *1) (-12 (-4 *1 (-1205 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-112)))) (-3762 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1205 *5 *6 *7 *3)) (-4 *5 (-556)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-112)))) (-4334 (*1 *2 *3 *1) (-12 (-4 *1 (-1205 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)) (-5 *2 (-112)))) (-4354 (*1 *2 *3 *1) (-12 (-4 *1 (-1205 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)) (-5 *2 (-112)))) (-3673 (*1 *2 *3 *1) (-12 (-4 *1 (-1205 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)) (-5 *2 (-112)))) (-2205 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-642 *7))) (-4 *1 (-1205 *4 *5 *6 *7)) (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-112)))) (-4334 (*1 *2 *1) (-12 (-4 *1 (-1205 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-112)))) (-4354 (*1 *2 *1) (-12 (-4 *1 (-1205 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-112)))) (-3673 (*1 *2 *1) (-12 (-4 *1 (-1205 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-112)))) (-3741 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1205 *5 *6 *7 *2)) (-4 *5 (-556)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *2 (-1062 *5 *6 *7)))) (-3720 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-642 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1205 *5 *6 *7 *8)) (-4 *5 (-556)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *8 (-1062 *5 *6 *7)))) (-2937 (*1 *2 *2 *1) (-12 (-4 *1 (-1205 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *2 (-1062 *3 *4 *5)))) (-3750 (*1 *2 *2 *1) (-12 (-4 *1 (-1205 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *2 (-1062 *3 *4 *5)))) (-4090 (*1 *2 *2 *1) (-12 (-4 *1 (-1205 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *2 (-1062 *3 *4 *5)))) (-2398 (*1 *2 *2 *1) (-12 (-4 *1 (-1205 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *2 (-1062 *3 *4 *5)))) (-2204 (*1 *1 *1) (-12 (-4 *1 (-1205 *2 *3 *4 *5)) (-4 *2 (-556)) (-4 *3 (-791)) (-4 *4 (-848)) (-4 *5 (-1062 *2 *3 *4)))) (-3978 (*1 *2 *2 *1) (-12 (-4 *1 (-1205 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *2 (-1062 *3 *4 *5)))) (-3076 (*1 *2 *3) (-12 (-5 *3 (-642 *7)) (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-642 *1)) (-4 *1 (-1205 *4 *5 *6 *7)))) (-1466 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-642 (-2 (|:| -1616 *1) (|:| -3406 (-642 *7))))) (-5 *3 (-642 *7)) (-4 *1 (-1205 *4 *5 *6 *7)))) (-4036 (*1 *2 *1) (|partial| -12 (-4 *1 (-1205 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *2 (-1062 *3 *4 *5)))) (-2534 (*1 *2 *1) (|partial| -12 (-4 *1 (-1205 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *2 (-1062 *3 *4 *5)))) (-4050 (*1 *1 *1) (|partial| -12 (-4 *1 (-1205 *2 *3 *4 *5)) (-4 *2 (-556)) (-4 *3 (-791)) (-4 *4 (-848)) (-4 *5 (-1062 *2 *3 *4)))) (-1644 (*1 *2 *1) (-12 (-4 *1 (-1205 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-642 *5)))) (-4127 (*1 *2 *3 *1) (-12 (-4 *1 (-1205 *4 *5 *3 *6)) (-4 *4 (-556)) (-4 *5 (-791)) (-4 *3 (-848)) (-4 *6 (-1062 *4 *5 *3)) (-5 *2 (-112)))) (-3437 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1205 *4 *5 *3 *2)) (-4 *4 (-556)) (-4 *5 (-791)) (-4 *3 (-848)) (-4 *2 (-1062 *4 *5 *3)))) (-2465 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1205 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *2 (-1062 *3 *4 *5)))) (-2137 (*1 *1 *1 *2) (-12 (-4 *1 (-1205 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *2 (-1062 *3 *4 *5)))) (-2621 (*1 *2 *1) (-12 (-4 *1 (-1205 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-4 *5 (-368)) (-5 *2 (-769))))) -(-13 (-974 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4410) (-6 -4411) (-15 -3119 ((-112) $ $)) (-15 -4150 ((-3 (-2 (|:| |bas| $) (|:| -3844 (-642 |t#4|))) "failed") (-642 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4150 ((-3 (-2 (|:| |bas| $) (|:| -3844 (-642 |t#4|))) "failed") (-642 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2206 ((-642 |t#4|) $)) (-15 -3252 ((-769) $)) (-15 -1750 ((-2 (|:| -1616 (-642 |t#4|)) (|:| -3406 (-642 |t#4|))) $)) (-15 -3303 ((-112) |t#4| $)) (-15 -3303 ((-112) $)) (-15 -3762 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -4334 ((-112) |t#4| $)) (-15 -4354 ((-112) |t#4| $)) (-15 -3673 ((-112) |t#4| $)) (-15 -2205 ((-112) $ (-1 (-112) |t#4| (-642 |t#4|)))) (-15 -4334 ((-112) $)) (-15 -4354 ((-112) $)) (-15 -3673 ((-112) $)) (-15 -3741 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3720 ((-642 |t#4|) (-642 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2937 (|t#4| |t#4| $)) (-15 -3750 (|t#4| |t#4| $)) (-15 -4090 (|t#4| |t#4| $)) (-15 -2398 (|t#4| |t#4| $)) (-15 -2204 ($ $)) (-15 -3978 (|t#4| |t#4| $)) (-15 -3076 ((-642 $) (-642 |t#4|))) (-15 -1466 ((-642 (-2 (|:| -1616 $) (|:| -3406 (-642 |t#4|)))) (-642 |t#4|))) (-15 -4036 ((-3 |t#4| "failed") $)) (-15 -2534 ((-3 |t#4| "failed") $)) (-15 -4050 ((-3 $ "failed") $)) (-15 -1644 ((-642 |t#3|) $)) (-15 -4127 ((-112) |t#3| $)) (-15 -3437 ((-3 |t#4| "failed") $ |t#3|)) (-15 -2465 ((-3 $ "failed") $ |t#4|)) (-15 -2137 ($ $ |t#4|)) (IF (|has| |t#3| (-368)) (-15 -2621 ((-769) $)) |%noBranch|))) -(((-34) . T) ((-102) . T) ((-611 (-642 |#4|)) . T) ((-611 (-860)) . T) ((-151 |#4|) . T) ((-612 (-536)) |has| |#4| (-612 (-536))) ((-309 |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097))) ((-489 |#4|) . T) ((-514 |#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097))) ((-974 |#1| |#2| |#3| |#4|) . T) ((-1097) . T) ((-1212) . T)) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-2397 (((-642 (-1173)) $) NIL)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-4252 (($ $) NIL (|has| |#1| (-556)))) (-1722 (((-112) $) NIL (|has| |#1| (-556)))) (-3087 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2958 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3085 (((-3 $ "failed") $ $) NIL)) (-2264 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3067 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2933 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3110 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2981 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2822 (($) NIL T CONST)) (-3459 (($ $) NIL)) (-2675 (((-3 $ "failed") $) NIL)) (-2437 (((-950 |#1|) $ (-769)) 20) (((-950 |#1|) $ (-769) (-769)) NIL)) (-2210 (((-112) $) NIL)) (-2833 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2408 (((-769) $ (-1173)) NIL) (((-769) $ (-1173) (-769)) NIL)) (-3163 (((-112) $) NIL)) (-2024 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3471 (((-112) $) NIL)) (-2374 (($ $ (-642 (-1173)) (-642 (-531 (-1173)))) NIL) (($ $ (-1173) (-531 (-1173))) NIL) (($ |#1| (-531 (-1173))) NIL) (($ $ (-1173) (-769)) NIL) (($ $ (-642 (-1173)) (-642 (-769))) NIL)) (-2947 (($ (-1 |#1| |#1|) $) NIL)) (-3576 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2510 (($ $) NIL)) (-2523 ((|#1| $) NIL)) (-1778 (((-1155) $) NIL)) (-3703 (($ $ (-1173)) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1173) |#1|) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3999 (((-1117) $) NIL)) (-3433 (($ (-1 $) (-1173) |#1|) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2137 (($ $ (-769)) NIL)) (-2842 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-3466 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3154 (($ $ (-1173) $) NIL) (($ $ (-642 (-1173)) (-642 $)) NIL) (($ $ (-642 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-642 $) (-642 $)) NIL)) (-2199 (($ $ (-1173)) NIL) (($ $ (-642 (-1173))) NIL) (($ $ (-1173) (-769)) NIL) (($ $ (-642 (-1173)) (-642 (-769))) NIL)) (-3252 (((-531 (-1173)) $) NIL)) (-3120 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2992 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3098 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2971 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3077 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2946 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4189 (($ $) NIL)) (-2390 (((-860) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ $) NIL (|has| |#1| (-556))) (($ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-1173)) NIL) (($ (-950 |#1|)) NIL)) (-3005 ((|#1| $ (-531 (-1173))) NIL) (($ $ (-1173) (-769)) NIL) (($ $ (-642 (-1173)) (-642 (-769))) NIL) (((-950 |#1|) $ (-769)) NIL)) (-3434 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3348 (((-769)) NIL T CONST)) (-1600 (((-112) $ $) NIL)) (-3155 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3025 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1594 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3131 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3002 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3176 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3047 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3165 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3058 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3168 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3035 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3142 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3014 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2361 (($) NIL T CONST)) (-2371 (($) NIL T CONST)) (-2711 (($ $ (-1173)) NIL) (($ $ (-642 (-1173))) NIL) (($ $ (-1173) (-769)) NIL) (($ $ (-642 (-1173)) (-642 (-769))) NIL)) (-2821 (((-112) $ $) NIL)) (-2943 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-1206 |#1|) (-13 (-738 |#1| (-1173)) (-10 -8 (-15 -3005 ((-950 |#1|) $ (-769))) (-15 -2390 ($ (-1173))) (-15 -2390 ($ (-950 |#1|))) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -3703 ($ $ (-1173) |#1|)) (-15 -3433 ($ (-1 $) (-1173) |#1|))) |%noBranch|))) (-1047)) (T -1206)) -((-3005 (*1 *2 *1 *3) (-12 (-5 *3 (-769)) (-5 *2 (-950 *4)) (-5 *1 (-1206 *4)) (-4 *4 (-1047)))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-1206 *3)) (-4 *3 (-1047)))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-950 *3)) (-4 *3 (-1047)) (-5 *1 (-1206 *3)))) (-3703 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *1 (-1206 *3)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1047)))) (-3433 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1206 *4))) (-5 *3 (-1173)) (-5 *1 (-1206 *4)) (-4 *4 (-38 (-407 (-564)))) (-4 *4 (-1047))))) -(-13 (-738 |#1| (-1173)) (-10 -8 (-15 -3005 ((-950 |#1|) $ (-769))) (-15 -2390 ($ (-1173))) (-15 -2390 ($ (-950 |#1|))) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -3703 ($ $ (-1173) |#1|)) (-15 -3433 ($ (-1 $) (-1173) |#1|))) |%noBranch|))) -((-2612 (($ |#1| (-642 (-642 (-941 (-225)))) (-112)) 19)) (-1937 (((-112) $ (-112)) 18)) (-4311 (((-112) $) 17)) (-3590 (((-642 (-642 (-941 (-225)))) $) 13)) (-3831 ((|#1| $) 8)) (-3126 (((-112) $) 15))) -(((-1207 |#1|) (-10 -8 (-15 -3831 (|#1| $)) (-15 -3590 ((-642 (-642 (-941 (-225)))) $)) (-15 -3126 ((-112) $)) (-15 -4311 ((-112) $)) (-15 -1937 ((-112) $ (-112))) (-15 -2612 ($ |#1| (-642 (-642 (-941 (-225)))) (-112)))) (-972)) (T -1207)) -((-2612 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-642 (-642 (-941 (-225))))) (-5 *4 (-112)) (-5 *1 (-1207 *2)) (-4 *2 (-972)))) (-1937 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1207 *3)) (-4 *3 (-972)))) (-4311 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1207 *3)) (-4 *3 (-972)))) (-3126 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1207 *3)) (-4 *3 (-972)))) (-3590 (*1 *2 *1) (-12 (-5 *2 (-642 (-642 (-941 (-225))))) (-5 *1 (-1207 *3)) (-4 *3 (-972)))) (-3831 (*1 *2 *1) (-12 (-5 *1 (-1207 *2)) (-4 *2 (-972))))) -(-10 -8 (-15 -3831 (|#1| $)) (-15 -3590 ((-642 (-642 (-941 (-225)))) $)) (-15 -3126 ((-112) $)) (-15 -4311 ((-112) $)) (-15 -1937 ((-112) $ (-112))) (-15 -2612 ($ |#1| (-642 (-642 (-941 (-225)))) (-112)))) -((-2072 (((-941 (-225)) (-941 (-225))) 31)) (-3148 (((-941 (-225)) (-225) (-225) (-225) (-225)) 10)) (-2550 (((-642 (-941 (-225))) (-941 (-225)) (-941 (-225)) (-941 (-225)) (-225) (-642 (-642 (-225)))) 60)) (-1976 (((-225) (-941 (-225)) (-941 (-225))) 27)) (-4215 (((-941 (-225)) (-941 (-225)) (-941 (-225))) 28)) (-2435 (((-642 (-642 (-225))) (-564)) 48)) (-2930 (((-941 (-225)) (-941 (-225)) (-941 (-225))) 26)) (-2917 (((-941 (-225)) (-941 (-225)) (-941 (-225))) 24)) (* (((-941 (-225)) (-225) (-941 (-225))) 22))) -(((-1208) (-10 -7 (-15 -3148 ((-941 (-225)) (-225) (-225) (-225) (-225))) (-15 * ((-941 (-225)) (-225) (-941 (-225)))) (-15 -2917 ((-941 (-225)) (-941 (-225)) (-941 (-225)))) (-15 -2930 ((-941 (-225)) (-941 (-225)) (-941 (-225)))) (-15 -1976 ((-225) (-941 (-225)) (-941 (-225)))) (-15 -4215 ((-941 (-225)) (-941 (-225)) (-941 (-225)))) (-15 -2072 ((-941 (-225)) (-941 (-225)))) (-15 -2435 ((-642 (-642 (-225))) (-564))) (-15 -2550 ((-642 (-941 (-225))) (-941 (-225)) (-941 (-225)) (-941 (-225)) (-225) (-642 (-642 (-225))))))) (T -1208)) -((-2550 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-642 (-642 (-225)))) (-5 *4 (-225)) (-5 *2 (-642 (-941 *4))) (-5 *1 (-1208)) (-5 *3 (-941 *4)))) (-2435 (*1 *2 *3) (-12 (-5 *3 (-564)) (-5 *2 (-642 (-642 (-225)))) (-5 *1 (-1208)))) (-2072 (*1 *2 *2) (-12 (-5 *2 (-941 (-225))) (-5 *1 (-1208)))) (-4215 (*1 *2 *2 *2) (-12 (-5 *2 (-941 (-225))) (-5 *1 (-1208)))) (-1976 (*1 *2 *3 *3) (-12 (-5 *3 (-941 (-225))) (-5 *2 (-225)) (-5 *1 (-1208)))) (-2930 (*1 *2 *2 *2) (-12 (-5 *2 (-941 (-225))) (-5 *1 (-1208)))) (-2917 (*1 *2 *2 *2) (-12 (-5 *2 (-941 (-225))) (-5 *1 (-1208)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-941 (-225))) (-5 *3 (-225)) (-5 *1 (-1208)))) (-3148 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-941 (-225))) (-5 *1 (-1208)) (-5 *3 (-225))))) -(-10 -7 (-15 -3148 ((-941 (-225)) (-225) (-225) (-225) (-225))) (-15 * ((-941 (-225)) (-225) (-941 (-225)))) (-15 -2917 ((-941 (-225)) (-941 (-225)) (-941 (-225)))) (-15 -2930 ((-941 (-225)) (-941 (-225)) (-941 (-225)))) (-15 -1976 ((-225) (-941 (-225)) (-941 (-225)))) (-15 -4215 ((-941 (-225)) (-941 (-225)) (-941 (-225)))) (-15 -2072 ((-941 (-225)) (-941 (-225)))) (-15 -2435 ((-642 (-642 (-225))) (-564))) (-15 -2550 ((-642 (-941 (-225))) (-941 (-225)) (-941 (-225)) (-941 (-225)) (-225) (-642 (-642 (-225)))))) -((-2856 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-3437 ((|#1| $ (-769)) 18)) (-2495 (((-769) $) 13)) (-1778 (((-1155) $) NIL (|has| |#1| (-1097)))) (-3999 (((-1117) $) NIL (|has| |#1| (-1097)))) (-2390 (((-956 |#1|) $) 12) (($ (-956 |#1|)) 11) (((-860) $) 29 (|has| |#1| (-611 (-860))))) (-1600 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2821 (((-112) $ $) 22 (|has| |#1| (-1097))))) -(((-1209 |#1|) (-13 (-490 (-956 |#1|)) (-10 -8 (-15 -3437 (|#1| $ (-769))) (-15 -2495 ((-769) $)) (IF (|has| |#1| (-611 (-860))) (-6 (-611 (-860))) |%noBranch|) (IF (|has| |#1| (-1097)) (-6 (-1097)) |%noBranch|))) (-1212)) (T -1209)) -((-3437 (*1 *2 *1 *3) (-12 (-5 *3 (-769)) (-5 *1 (-1209 *2)) (-4 *2 (-1212)))) (-2495 (*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-1209 *3)) (-4 *3 (-1212))))) -(-13 (-490 (-956 |#1|)) (-10 -8 (-15 -3437 (|#1| $ (-769))) (-15 -2495 ((-769) $)) (IF (|has| |#1| (-611 (-860))) (-6 (-611 (-860))) |%noBranch|) (IF (|has| |#1| (-1097)) (-6 (-1097)) |%noBranch|))) -((-2041 (((-418 (-1169 (-1169 |#1|))) (-1169 (-1169 |#1|)) (-564)) 94)) (-4223 (((-418 (-1169 (-1169 |#1|))) (-1169 (-1169 |#1|))) 86)) (-3943 (((-418 (-1169 (-1169 |#1|))) (-1169 (-1169 |#1|))) 70))) -(((-1210 |#1|) (-10 -7 (-15 -4223 ((-418 (-1169 (-1169 |#1|))) (-1169 (-1169 |#1|)))) (-15 -3943 ((-418 (-1169 (-1169 |#1|))) (-1169 (-1169 |#1|)))) (-15 -2041 ((-418 (-1169 (-1169 |#1|))) (-1169 (-1169 |#1|)) (-564)))) (-349)) (T -1210)) -((-2041 (*1 *2 *3 *4) (-12 (-5 *4 (-564)) (-4 *5 (-349)) (-5 *2 (-418 (-1169 (-1169 *5)))) (-5 *1 (-1210 *5)) (-5 *3 (-1169 (-1169 *5))))) (-3943 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-418 (-1169 (-1169 *4)))) (-5 *1 (-1210 *4)) (-5 *3 (-1169 (-1169 *4))))) (-4223 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-418 (-1169 (-1169 *4)))) (-5 *1 (-1210 *4)) (-5 *3 (-1169 (-1169 *4)))))) -(-10 -7 (-15 -4223 ((-418 (-1169 (-1169 |#1|))) (-1169 (-1169 |#1|)))) (-15 -3943 ((-418 (-1169 (-1169 |#1|))) (-1169 (-1169 |#1|)))) (-15 -2041 ((-418 (-1169 (-1169 |#1|))) (-1169 (-1169 |#1|)) (-564)))) -((-2856 (((-112) $ $) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) 9) (($ (-1178)) NIL) (((-1178) $) NIL)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-1211) (-1080)) (T -1211)) -NIL -(-1080) -NIL -(((-1212) (-140)) (T -1212)) -NIL -(-13 (-10 -7 (-6 -3524))) -((-4198 (((-112)) 18)) (-4037 (((-1267) (-642 |#1|) (-642 |#1|)) 22) (((-1267) (-642 |#1|)) 23)) (-3769 (((-112) |#1| |#1|) 38 (|has| |#1| (-848)))) (-4145 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 30) (((-3 (-112) "failed") |#1| |#1|) 28)) (-2345 ((|#1| (-642 |#1|)) 39 (|has| |#1| (-848))) ((|#1| (-642 |#1|) (-1 (-112) |#1| |#1|)) 33)) (-1756 (((-2 (|:| -3612 (-642 |#1|)) (|:| -2608 (-642 |#1|)))) 20))) -(((-1213 |#1|) (-10 -7 (-15 -4037 ((-1267) (-642 |#1|))) (-15 -4037 ((-1267) (-642 |#1|) (-642 |#1|))) (-15 -1756 ((-2 (|:| -3612 (-642 |#1|)) (|:| -2608 (-642 |#1|))))) (-15 -4145 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4145 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -2345 (|#1| (-642 |#1|) (-1 (-112) |#1| |#1|))) (-15 -4198 ((-112))) (IF (|has| |#1| (-848)) (PROGN (-15 -2345 (|#1| (-642 |#1|))) (-15 -3769 ((-112) |#1| |#1|))) |%noBranch|)) (-1097)) (T -1213)) -((-3769 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1213 *3)) (-4 *3 (-848)) (-4 *3 (-1097)))) (-2345 (*1 *2 *3) (-12 (-5 *3 (-642 *2)) (-4 *2 (-1097)) (-4 *2 (-848)) (-5 *1 (-1213 *2)))) (-4198 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1213 *3)) (-4 *3 (-1097)))) (-2345 (*1 *2 *3 *4) (-12 (-5 *3 (-642 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1213 *2)) (-4 *2 (-1097)))) (-4145 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1097)) (-5 *2 (-112)) (-5 *1 (-1213 *3)))) (-4145 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1213 *3)) (-4 *3 (-1097)))) (-1756 (*1 *2) (-12 (-5 *2 (-2 (|:| -3612 (-642 *3)) (|:| -2608 (-642 *3)))) (-5 *1 (-1213 *3)) (-4 *3 (-1097)))) (-4037 (*1 *2 *3 *3) (-12 (-5 *3 (-642 *4)) (-4 *4 (-1097)) (-5 *2 (-1267)) (-5 *1 (-1213 *4)))) (-4037 (*1 *2 *3) (-12 (-5 *3 (-642 *4)) (-4 *4 (-1097)) (-5 *2 (-1267)) (-5 *1 (-1213 *4))))) -(-10 -7 (-15 -4037 ((-1267) (-642 |#1|))) (-15 -4037 ((-1267) (-642 |#1|) (-642 |#1|))) (-15 -1756 ((-2 (|:| -3612 (-642 |#1|)) (|:| -2608 (-642 |#1|))))) (-15 -4145 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4145 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -2345 (|#1| (-642 |#1|) (-1 (-112) |#1| |#1|))) (-15 -4198 ((-112))) (IF (|has| |#1| (-848)) (PROGN (-15 -2345 (|#1| (-642 |#1|))) (-15 -3769 ((-112) |#1| |#1|))) |%noBranch|)) -((-1444 (((-1267) (-642 (-1173)) (-642 (-1173))) 14) (((-1267) (-642 (-1173))) 12)) (-2242 (((-1267)) 16)) (-3939 (((-2 (|:| -2608 (-642 (-1173))) (|:| -3612 (-642 (-1173))))) 20))) -(((-1214) (-10 -7 (-15 -1444 ((-1267) (-642 (-1173)))) (-15 -1444 ((-1267) (-642 (-1173)) (-642 (-1173)))) (-15 -3939 ((-2 (|:| -2608 (-642 (-1173))) (|:| -3612 (-642 (-1173)))))) (-15 -2242 ((-1267))))) (T -1214)) -((-2242 (*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-1214)))) (-3939 (*1 *2) (-12 (-5 *2 (-2 (|:| -2608 (-642 (-1173))) (|:| -3612 (-642 (-1173))))) (-5 *1 (-1214)))) (-1444 (*1 *2 *3 *3) (-12 (-5 *3 (-642 (-1173))) (-5 *2 (-1267)) (-5 *1 (-1214)))) (-1444 (*1 *2 *3) (-12 (-5 *3 (-642 (-1173))) (-5 *2 (-1267)) (-5 *1 (-1214))))) -(-10 -7 (-15 -1444 ((-1267) (-642 (-1173)))) (-15 -1444 ((-1267) (-642 (-1173)) (-642 (-1173)))) (-15 -3939 ((-2 (|:| -2608 (-642 (-1173))) (|:| -3612 (-642 (-1173)))))) (-15 -2242 ((-1267)))) -((-1993 (($ $) 17)) (-3552 (((-112) $) 28))) -(((-1215 |#1|) (-10 -8 (-15 -1993 (|#1| |#1|)) (-15 -3552 ((-112) |#1|))) (-1216)) (T -1215)) -NIL -(-10 -8 (-15 -1993 (|#1| |#1|)) (-15 -3552 ((-112) |#1|))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) 47)) (-4252 (($ $) 46)) (-1722 (((-112) $) 44)) (-3085 (((-3 $ "failed") $ $) 20)) (-1993 (($ $) 57)) (-3282 (((-418 $) $) 58)) (-2822 (($) 18 T CONST)) (-2675 (((-3 $ "failed") $) 37)) (-3552 (((-112) $) 59)) (-3163 (((-112) $) 35)) (-2066 (($ $ $) 52) (($ (-642 $)) 51)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) 50)) (-2105 (($ $ $) 54) (($ (-642 $)) 53)) (-2254 (((-418 $) $) 56)) (-2842 (((-3 $ "failed") $ $) 48)) (-2390 (((-860) $) 12) (($ (-564)) 33) (($ $) 49)) (-3348 (((-769)) 32 T CONST)) (-1600 (((-112) $ $) 9)) (-1594 (((-112) $ $) 45)) (-2361 (($) 19 T CONST)) (-2371 (($) 34 T CONST)) (-2821 (((-112) $ $) 6)) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27))) -(((-1216) (-140)) (T -1216)) -((-3552 (*1 *2 *1) (-12 (-4 *1 (-1216)) (-5 *2 (-112)))) (-3282 (*1 *2 *1) (-12 (-5 *2 (-418 *1)) (-4 *1 (-1216)))) (-1993 (*1 *1 *1) (-4 *1 (-1216))) (-2254 (*1 *2 *1) (-12 (-5 *2 (-418 *1)) (-4 *1 (-1216))))) -(-13 (-452) (-10 -8 (-15 -3552 ((-112) $)) (-15 -3282 ((-418 $) $)) (-15 -1993 ($ $)) (-15 -2254 ((-418 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-860)) . T) ((-172) . T) ((-290) . T) ((-452) . T) ((-556) . T) ((-644 (-564)) . T) ((-644 $) . T) ((-646 $) . T) ((-638 $) . T) ((-715 $) . T) ((-724) . T) ((-1049 $) . T) ((-1054 $) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T)) -((-2856 (((-112) $ $) NIL)) (-4003 (((-769)) NIL)) (-2822 (($) NIL T CONST)) (-3235 (($) NIL)) (-3225 (($ $ $) NIL) (($) NIL T CONST)) (-2903 (($ $ $) NIL) (($) NIL T CONST)) (-2535 (((-919) $) NIL)) (-1778 (((-1155) $) NIL)) (-2065 (($ (-919)) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) NIL)) (-2243 (($ $ $) NIL)) (-2233 (($ $ $) NIL)) (-1600 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL)) (-2857 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL)) (-2868 (((-112) $ $) NIL)) (-2844 (((-112) $ $) NIL))) -(((-1217) (-13 (-842) (-10 -8 (-15 -2233 ($ $ $)) (-15 -2243 ($ $ $)) (-15 -2822 ($) -1551)))) (T -1217)) -((-2233 (*1 *1 *1 *1) (-5 *1 (-1217))) (-2243 (*1 *1 *1 *1) (-5 *1 (-1217))) (-2822 (*1 *1) (-5 *1 (-1217)))) -(-13 (-842) (-10 -8 (-15 -2233 ($ $ $)) (-15 -2243 ($ $ $)) (-15 -2822 ($) -1551))) -((|NonNegativeInteger|) (NOT (< 16 (INTEGER-LENGTH |#1|)))) -((-2856 (((-112) $ $) NIL)) (-4003 (((-769)) NIL)) (-2822 (($) NIL T CONST)) (-3235 (($) NIL)) (-3225 (($ $ $) NIL) (($) NIL T CONST)) (-2903 (($ $ $) NIL) (($) NIL T CONST)) (-2535 (((-919) $) NIL)) (-1778 (((-1155) $) NIL)) (-2065 (($ (-919)) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) NIL)) (-2243 (($ $ $) NIL)) (-2233 (($ $ $) NIL)) (-1600 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL)) (-2857 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL)) (-2868 (((-112) $ $) NIL)) (-2844 (((-112) $ $) NIL))) -(((-1218) (-13 (-842) (-10 -8 (-15 -2233 ($ $ $)) (-15 -2243 ($ $ $)) (-15 -2822 ($) -1551)))) (T -1218)) -((-2233 (*1 *1 *1 *1) (-5 *1 (-1218))) (-2243 (*1 *1 *1 *1) (-5 *1 (-1218))) (-2822 (*1 *1) (-5 *1 (-1218)))) -(-13 (-842) (-10 -8 (-15 -2233 ($ $ $)) (-15 -2243 ($ $ $)) (-15 -2822 ($) -1551))) -((|NonNegativeInteger|) (NOT (< 32 (INTEGER-LENGTH |#1|)))) -((-2856 (((-112) $ $) NIL)) (-4003 (((-769)) NIL)) (-2822 (($) NIL T CONST)) (-3235 (($) NIL)) (-3225 (($ $ $) NIL) (($) NIL T CONST)) (-2903 (($ $ $) NIL) (($) NIL T CONST)) (-2535 (((-919) $) NIL)) (-1778 (((-1155) $) NIL)) (-2065 (($ (-919)) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) NIL)) (-2243 (($ $ $) NIL)) (-2233 (($ $ $) NIL)) (-1600 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL)) (-2857 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL)) (-2868 (((-112) $ $) NIL)) (-2844 (((-112) $ $) NIL))) -(((-1219) (-13 (-842) (-10 -8 (-15 -2233 ($ $ $)) (-15 -2243 ($ $ $)) (-15 -2822 ($) -1551)))) (T -1219)) -((-2233 (*1 *1 *1 *1) (-5 *1 (-1219))) (-2243 (*1 *1 *1 *1) (-5 *1 (-1219))) (-2822 (*1 *1) (-5 *1 (-1219)))) -(-13 (-842) (-10 -8 (-15 -2233 ($ $ $)) (-15 -2243 ($ $ $)) (-15 -2822 ($) -1551))) -((|NonNegativeInteger|) (NOT (< 64 (INTEGER-LENGTH |#1|)))) -((-2856 (((-112) $ $) NIL)) (-4003 (((-769)) NIL)) (-2822 (($) NIL T CONST)) (-3235 (($) NIL)) (-3225 (($ $ $) NIL) (($) NIL T CONST)) (-2903 (($ $ $) NIL) (($) NIL T CONST)) (-2535 (((-919) $) NIL)) (-1778 (((-1155) $) NIL)) (-2065 (($ (-919)) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) NIL)) (-2243 (($ $ $) NIL)) (-2233 (($ $ $) NIL)) (-1600 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL)) (-2857 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL)) (-2868 (((-112) $ $) NIL)) (-2844 (((-112) $ $) NIL))) -(((-1220) (-13 (-842) (-10 -8 (-15 -2233 ($ $ $)) (-15 -2243 ($ $ $)) (-15 -2822 ($) -1551)))) (T -1220)) -((-2233 (*1 *1 *1 *1) (-5 *1 (-1220))) (-2243 (*1 *1 *1 *1) (-5 *1 (-1220))) (-2822 (*1 *1) (-5 *1 (-1220)))) -(-13 (-842) (-10 -8 (-15 -2233 ($ $ $)) (-15 -2243 ($ $ $)) (-15 -2822 ($) -1551))) -((|NonNegativeInteger|) (NOT (< 8 (INTEGER-LENGTH |#1|)))) -((-2947 (((-1226 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1226 |#1| |#3| |#5|)) 23))) -(((-1221 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2947 ((-1226 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1226 |#1| |#3| |#5|)))) (-1047) (-1047) (-1173) (-1173) |#1| |#2|) (T -1221)) -((-2947 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1226 *5 *7 *9)) (-4 *5 (-1047)) (-4 *6 (-1047)) (-14 *7 (-1173)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1226 *6 *8 *10)) (-5 *1 (-1221 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1173))))) -(-10 -7 (-15 -2947 ((-1226 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1226 |#1| |#3| |#5|)))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-2397 (((-642 (-1079)) $) 86)) (-1341 (((-1173) $) 115)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) 63 (|has| |#1| (-556)))) (-4252 (($ $) 64 (|has| |#1| (-556)))) (-1722 (((-112) $) 66 (|has| |#1| (-556)))) (-2180 (($ $ (-564)) 110) (($ $ (-564) (-564)) 109)) (-4077 (((-1153 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $) 117)) (-3087 (($ $) 147 (|has| |#1| (-38 (-407 (-564)))))) (-2958 (($ $) 130 (|has| |#1| (-38 (-407 (-564)))))) (-3085 (((-3 $ "failed") $ $) 20)) (-1993 (($ $) 174 (|has| |#1| (-363)))) (-3282 (((-418 $) $) 175 (|has| |#1| (-363)))) (-2264 (($ $) 129 (|has| |#1| (-38 (-407 (-564)))))) (-2134 (((-112) $ $) 165 (|has| |#1| (-363)))) (-3067 (($ $) 146 (|has| |#1| (-38 (-407 (-564)))))) (-2933 (($ $) 131 (|has| |#1| (-38 (-407 (-564)))))) (-3182 (($ (-1153 (-2 (|:| |k| (-564)) (|:| |c| |#1|)))) 185)) (-3110 (($ $) 145 (|has| |#1| (-38 (-407 (-564)))))) (-2981 (($ $) 132 (|has| |#1| (-38 (-407 (-564)))))) (-2822 (($) 18 T CONST)) (-2796 (($ $ $) 169 (|has| |#1| (-363)))) (-3459 (($ $) 72)) (-2675 (((-3 $ "failed") $) 37)) (-1534 (((-407 (-950 |#1|)) $ (-564)) 183 (|has| |#1| (-556))) (((-407 (-950 |#1|)) $ (-564) (-564)) 182 (|has| |#1| (-556)))) (-2808 (($ $ $) 168 (|has| |#1| (-363)))) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) 163 (|has| |#1| (-363)))) (-3552 (((-112) $) 176 (|has| |#1| (-363)))) (-2210 (((-112) $) 85)) (-2833 (($) 157 (|has| |#1| (-38 (-407 (-564)))))) (-2408 (((-564) $) 112) (((-564) $ (-564)) 111)) (-3163 (((-112) $) 35)) (-2024 (($ $ (-564)) 128 (|has| |#1| (-38 (-407 (-564)))))) (-2157 (($ $ (-919)) 113)) (-2869 (($ (-1 |#1| (-564)) $) 184)) (-2709 (((-3 (-642 $) "failed") (-642 $) $) 172 (|has| |#1| (-363)))) (-3471 (((-112) $) 74)) (-2374 (($ |#1| (-564)) 73) (($ $ (-1079) (-564)) 88) (($ $ (-642 (-1079)) (-642 (-564))) 87)) (-2947 (($ (-1 |#1| |#1|) $) 75)) (-3576 (($ $) 154 (|has| |#1| (-38 (-407 (-564)))))) (-2510 (($ $) 77)) (-2523 ((|#1| $) 78)) (-2066 (($ (-642 $)) 161 (|has| |#1| (-363))) (($ $ $) 160 (|has| |#1| (-363)))) (-1778 (((-1155) $) 10)) (-2481 (($ $) 177 (|has| |#1| (-363)))) (-3703 (($ $) 181 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1173)) 180 (-2682 (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-957)) (|has| |#1| (-1197)) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-15 -2397 ((-642 (-1173)) |#1|))) (|has| |#1| (-15 -3703 (|#1| |#1| (-1173)))) (|has| |#1| (-38 (-407 (-564)))))))) (-3999 (((-1117) $) 11)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) 162 (|has| |#1| (-363)))) (-2105 (($ (-642 $)) 159 (|has| |#1| (-363))) (($ $ $) 158 (|has| |#1| (-363)))) (-2254 (((-418 $) $) 173 (|has| |#1| (-363)))) (-1877 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) 170 (|has| |#1| (-363)))) (-2137 (($ $ (-564)) 107)) (-2842 (((-3 $ "failed") $ $) 62 (|has| |#1| (-556)))) (-1483 (((-3 (-642 $) "failed") (-642 $) $) 164 (|has| |#1| (-363)))) (-3466 (($ $) 155 (|has| |#1| (-38 (-407 (-564)))))) (-3154 (((-1153 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-564)))))) (-4274 (((-769) $) 166 (|has| |#1| (-363)))) (-4369 ((|#1| $ (-564)) 116) (($ $ $) 93 (|has| (-564) (-1109)))) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) 167 (|has| |#1| (-363)))) (-2199 (($ $ (-642 (-1173)) (-642 (-769))) 101 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-1173) (-769)) 100 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-642 (-1173))) 99 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-1173)) 98 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-769)) 96 (|has| |#1| (-15 * (|#1| (-564) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (-3252 (((-564) $) 76)) (-3120 (($ $) 144 (|has| |#1| (-38 (-407 (-564)))))) (-2992 (($ $) 133 (|has| |#1| (-38 (-407 (-564)))))) (-3098 (($ $) 143 (|has| |#1| (-38 (-407 (-564)))))) (-2971 (($ $) 134 (|has| |#1| (-38 (-407 (-564)))))) (-3077 (($ $) 142 (|has| |#1| (-38 (-407 (-564)))))) (-2946 (($ $) 135 (|has| |#1| (-38 (-407 (-564)))))) (-4189 (($ $) 84)) (-2390 (((-860) $) 12) (($ (-564)) 33) (($ |#1|) 59 (|has| |#1| (-172))) (($ (-407 (-564))) 69 (|has| |#1| (-38 (-407 (-564))))) (($ $) 61 (|has| |#1| (-556)))) (-3005 ((|#1| $ (-564)) 71)) (-3434 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-3348 (((-769)) 32 T CONST)) (-2245 ((|#1| $) 114)) (-1600 (((-112) $ $) 9)) (-3155 (($ $) 153 (|has| |#1| (-38 (-407 (-564)))))) (-3025 (($ $) 141 (|has| |#1| (-38 (-407 (-564)))))) (-1594 (((-112) $ $) 65 (|has| |#1| (-556)))) (-3131 (($ $) 152 (|has| |#1| (-38 (-407 (-564)))))) (-3002 (($ $) 140 (|has| |#1| (-38 (-407 (-564)))))) (-3176 (($ $) 151 (|has| |#1| (-38 (-407 (-564)))))) (-3047 (($ $) 139 (|has| |#1| (-38 (-407 (-564)))))) (-3560 ((|#1| $ (-564)) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-564)))) (|has| |#1| (-15 -2390 (|#1| (-1173))))))) (-3165 (($ $) 150 (|has| |#1| (-38 (-407 (-564)))))) (-3058 (($ $) 138 (|has| |#1| (-38 (-407 (-564)))))) (-3168 (($ $) 149 (|has| |#1| (-38 (-407 (-564)))))) (-3035 (($ $) 137 (|has| |#1| (-38 (-407 (-564)))))) (-3142 (($ $) 148 (|has| |#1| (-38 (-407 (-564)))))) (-3014 (($ $) 136 (|has| |#1| (-38 (-407 (-564)))))) (-2361 (($) 19 T CONST)) (-2371 (($) 34 T CONST)) (-2711 (($ $ (-642 (-1173)) (-642 (-769))) 105 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-1173) (-769)) 104 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-642 (-1173))) 103 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-1173)) 102 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-769)) 97 (|has| |#1| (-15 * (|#1| (-564) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (-2821 (((-112) $ $) 6)) (-2943 (($ $ |#1|) 70 (|has| |#1| (-363))) (($ $ $) 179 (|has| |#1| (-363)))) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36) (($ $ (-564)) 178 (|has| |#1| (-363))) (($ $ $) 156 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 127 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-407 (-564)) $) 68 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 67 (|has| |#1| (-38 (-407 (-564))))))) -(((-1222 |#1|) (-140) (-1047)) (T -1222)) -((-3182 (*1 *1 *2) (-12 (-5 *2 (-1153 (-2 (|:| |k| (-564)) (|:| |c| *3)))) (-4 *3 (-1047)) (-4 *1 (-1222 *3)))) (-2869 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-564))) (-4 *1 (-1222 *3)) (-4 *3 (-1047)))) (-1534 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-1222 *4)) (-4 *4 (-1047)) (-4 *4 (-556)) (-5 *2 (-407 (-950 *4))))) (-1534 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-564)) (-4 *1 (-1222 *4)) (-4 *4 (-1047)) (-4 *4 (-556)) (-5 *2 (-407 (-950 *4))))) (-3703 (*1 *1 *1) (-12 (-4 *1 (-1222 *2)) (-4 *2 (-1047)) (-4 *2 (-38 (-407 (-564)))))) (-3703 (*1 *1 *1 *2) (-2682 (-12 (-5 *2 (-1173)) (-4 *1 (-1222 *3)) (-4 *3 (-1047)) (-12 (-4 *3 (-29 (-564))) (-4 *3 (-957)) (-4 *3 (-1197)) (-4 *3 (-38 (-407 (-564)))))) (-12 (-5 *2 (-1173)) (-4 *1 (-1222 *3)) (-4 *3 (-1047)) (-12 (|has| *3 (-15 -2397 ((-642 *2) *3))) (|has| *3 (-15 -3703 (*3 *3 *2))) (-4 *3 (-38 (-407 (-564))))))))) -(-13 (-1240 |t#1| (-564)) (-10 -8 (-15 -3182 ($ (-1153 (-2 (|:| |k| (-564)) (|:| |c| |t#1|))))) (-15 -2869 ($ (-1 |t#1| (-564)) $)) (IF (|has| |t#1| (-556)) (PROGN (-15 -1534 ((-407 (-950 |t#1|)) $ (-564))) (-15 -1534 ((-407 (-950 |t#1|)) $ (-564) (-564)))) |%noBranch|) (IF (|has| |t#1| (-38 (-407 (-564)))) (PROGN (-15 -3703 ($ $)) (IF (|has| |t#1| (-15 -3703 (|t#1| |t#1| (-1173)))) (IF (|has| |t#1| (-15 -2397 ((-642 (-1173)) |t#1|))) (-15 -3703 ($ $ (-1173))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1197)) (IF (|has| |t#1| (-957)) (IF (|has| |t#1| (-29 (-564))) (-15 -3703 ($ $ (-1173))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1000)) (-6 (-1197))) |%noBranch|) (IF (|has| |t#1| (-363)) (-6 (-363)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-564)) . T) ((-25) . T) ((-38 #1=(-407 (-564))) -2682 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2682 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-35) |has| |#1| (-38 (-407 (-564)))) ((-95) |has| |#1| (-38 (-407 (-564)))) ((-102) . T) ((-111 #1# #1#) -2682 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2682 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #1#) -2682 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-614 $) -2682 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-611 (-860)) . T) ((-172) -2682 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-564) |#1|))) ((-243) |has| |#1| (-363)) ((-284) |has| |#1| (-38 (-407 (-564)))) ((-286 $ $) |has| (-564) (-1109)) ((-290) -2682 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-307) |has| |#1| (-363)) ((-363) |has| |#1| (-363)) ((-452) |has| |#1| (-363)) ((-493) |has| |#1| (-38 (-407 (-564)))) ((-556) -2682 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-644 #1#) -2682 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-646 #1#) -2682 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-646 |#1|) . T) ((-646 $) . T) ((-638 #1#) -2682 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-638 |#1|) |has| |#1| (-172)) ((-638 $) -2682 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-715 #1#) -2682 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-715 |#1|) |has| |#1| (-172)) ((-715 $) -2682 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-724) . T) ((-898 (-1173)) -12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173)))) ((-971 |#1| #0# (-1079)) . T) ((-918) |has| |#1| (-363)) ((-1000) |has| |#1| (-38 (-407 (-564)))) ((-1049 #1#) -2682 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-1049 |#1|) . T) ((-1049 $) -2682 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1054 #1#) -2682 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-1054 |#1|) . T) ((-1054 $) -2682 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T) ((-1197) |has| |#1| (-38 (-407 (-564)))) ((-1200) |has| |#1| (-38 (-407 (-564)))) ((-1216) |has| |#1| (-363)) ((-1240 |#1| #0#) . T)) -((-2950 (((-112) $) 12)) (-2849 (((-3 |#3| "failed") $) 17) (((-3 (-1173) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 (-564) "failed") $) NIL)) (-1687 ((|#3| $) 14) (((-1173) $) NIL) (((-407 (-564)) $) NIL) (((-564) $) NIL))) -(((-1223 |#1| |#2| |#3|) (-10 -8 (-15 -2849 ((-3 (-564) "failed") |#1|)) (-15 -1687 ((-564) |#1|)) (-15 -2849 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -1687 ((-407 (-564)) |#1|)) (-15 -2849 ((-3 (-1173) "failed") |#1|)) (-15 -1687 ((-1173) |#1|)) (-15 -2849 ((-3 |#3| "failed") |#1|)) (-15 -1687 (|#3| |#1|)) (-15 -2950 ((-112) |#1|))) (-1224 |#2| |#3|) (-1047) (-1253 |#2|)) (T -1223)) -NIL -(-10 -8 (-15 -2849 ((-3 (-564) "failed") |#1|)) (-15 -1687 ((-564) |#1|)) (-15 -2849 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -1687 ((-407 (-564)) |#1|)) (-15 -2849 ((-3 (-1173) "failed") |#1|)) (-15 -1687 ((-1173) |#1|)) (-15 -2849 ((-3 |#3| "failed") |#1|)) (-15 -1687 (|#3| |#1|)) (-15 -2950 ((-112) |#1|))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-2905 ((|#2| $) 242 (-2317 (|has| |#2| (-307)) (|has| |#1| (-363))))) (-2397 (((-642 (-1079)) $) 86)) (-1341 (((-1173) $) 115)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) 63 (|has| |#1| (-556)))) (-4252 (($ $) 64 (|has| |#1| (-556)))) (-1722 (((-112) $) 66 (|has| |#1| (-556)))) (-2180 (($ $ (-564)) 110) (($ $ (-564) (-564)) 109)) (-4077 (((-1153 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $) 117)) (-2606 ((|#2| $) 278)) (-3948 (((-3 |#2| "failed") $) 274)) (-2446 ((|#2| $) 275)) (-3087 (($ $) 147 (|has| |#1| (-38 (-407 (-564)))))) (-2958 (($ $) 130 (|has| |#1| (-38 (-407 (-564)))))) (-3085 (((-3 $ "failed") $ $) 20)) (-4297 (((-418 (-1169 $)) (-1169 $)) 251 (-2317 (|has| |#2| (-907)) (|has| |#1| (-363))))) (-1993 (($ $) 174 (|has| |#1| (-363)))) (-3282 (((-418 $) $) 175 (|has| |#1| (-363)))) (-2264 (($ $) 129 (|has| |#1| (-38 (-407 (-564)))))) (-3267 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) 248 (-2317 (|has| |#2| (-907)) (|has| |#1| (-363))))) (-2134 (((-112) $ $) 165 (|has| |#1| (-363)))) (-3067 (($ $) 146 (|has| |#1| (-38 (-407 (-564)))))) (-2933 (($ $) 131 (|has| |#1| (-38 (-407 (-564)))))) (-2221 (((-564) $) 260 (-2317 (|has| |#2| (-818)) (|has| |#1| (-363))))) (-3182 (($ (-1153 (-2 (|:| |k| (-564)) (|:| |c| |#1|)))) 185)) (-3110 (($ $) 145 (|has| |#1| (-38 (-407 (-564)))))) (-2981 (($ $) 132 (|has| |#1| (-38 (-407 (-564)))))) (-2822 (($) 18 T CONST)) (-2849 (((-3 |#2| "failed") $) 281) (((-3 (-564) "failed") $) 271 (-2317 (|has| |#2| (-1036 (-564))) (|has| |#1| (-363)))) (((-3 (-407 (-564)) "failed") $) 269 (-2317 (|has| |#2| (-1036 (-564))) (|has| |#1| (-363)))) (((-3 (-1173) "failed") $) 253 (-2317 (|has| |#2| (-1036 (-1173))) (|has| |#1| (-363))))) (-1687 ((|#2| $) 282) (((-564) $) 270 (-2317 (|has| |#2| (-1036 (-564))) (|has| |#1| (-363)))) (((-407 (-564)) $) 268 (-2317 (|has| |#2| (-1036 (-564))) (|has| |#1| (-363)))) (((-1173) $) 252 (-2317 (|has| |#2| (-1036 (-1173))) (|has| |#1| (-363))))) (-1506 (($ $) 277) (($ (-564) $) 276)) (-2796 (($ $ $) 169 (|has| |#1| (-363)))) (-3459 (($ $) 72)) (-3330 (((-687 |#2|) (-687 $)) 232 (|has| |#1| (-363))) (((-2 (|:| -3544 (-687 |#2|)) (|:| |vec| (-1262 |#2|))) (-687 $) (-1262 $)) 231 (|has| |#1| (-363))) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) 230 (-2317 (|has| |#2| (-637 (-564))) (|has| |#1| (-363)))) (((-687 (-564)) (-687 $)) 229 (-2317 (|has| |#2| (-637 (-564))) (|has| |#1| (-363))))) (-2675 (((-3 $ "failed") $) 37)) (-1534 (((-407 (-950 |#1|)) $ (-564)) 183 (|has| |#1| (-556))) (((-407 (-950 |#1|)) $ (-564) (-564)) 182 (|has| |#1| (-556)))) (-3235 (($) 244 (-2317 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-2808 (($ $ $) 168 (|has| |#1| (-363)))) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) 163 (|has| |#1| (-363)))) (-3552 (((-112) $) 176 (|has| |#1| (-363)))) (-3292 (((-112) $) 258 (-2317 (|has| |#2| (-818)) (|has| |#1| (-363))))) (-2210 (((-112) $) 85)) (-2833 (($) 157 (|has| |#1| (-38 (-407 (-564)))))) (-1381 (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) 236 (-2317 (|has| |#2| (-884 (-379))) (|has| |#1| (-363)))) (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) 235 (-2317 (|has| |#2| (-884 (-564))) (|has| |#1| (-363))))) (-2408 (((-564) $) 112) (((-564) $ (-564)) 111)) (-3163 (((-112) $) 35)) (-3408 (($ $) 240 (|has| |#1| (-363)))) (-4120 ((|#2| $) 238 (|has| |#1| (-363)))) (-2024 (($ $ (-564)) 128 (|has| |#1| (-38 (-407 (-564)))))) (-4382 (((-3 $ "failed") $) 272 (-2317 (|has| |#2| (-1148)) (|has| |#1| (-363))))) (-2666 (((-112) $) 259 (-2317 (|has| |#2| (-818)) (|has| |#1| (-363))))) (-2157 (($ $ (-919)) 113)) (-2869 (($ (-1 |#1| (-564)) $) 184)) (-2709 (((-3 (-642 $) "failed") (-642 $) $) 172 (|has| |#1| (-363)))) (-3471 (((-112) $) 74)) (-2374 (($ |#1| (-564)) 73) (($ $ (-1079) (-564)) 88) (($ $ (-642 (-1079)) (-642 (-564))) 87)) (-3225 (($ $ $) 262 (-2317 (|has| |#2| (-848)) (|has| |#1| (-363))))) (-2903 (($ $ $) 263 (-2317 (|has| |#2| (-848)) (|has| |#1| (-363))))) (-2947 (($ (-1 |#1| |#1|) $) 75) (($ (-1 |#2| |#2|) $) 224 (|has| |#1| (-363)))) (-3576 (($ $) 154 (|has| |#1| (-38 (-407 (-564)))))) (-2510 (($ $) 77)) (-2523 ((|#1| $) 78)) (-2066 (($ (-642 $)) 161 (|has| |#1| (-363))) (($ $ $) 160 (|has| |#1| (-363)))) (-2456 (($ (-564) |#2|) 279)) (-1778 (((-1155) $) 10)) (-2481 (($ $) 177 (|has| |#1| (-363)))) (-3703 (($ $) 181 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1173)) 180 (-2682 (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-957)) (|has| |#1| (-1197)) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-15 -2397 ((-642 (-1173)) |#1|))) (|has| |#1| (-15 -3703 (|#1| |#1| (-1173)))) (|has| |#1| (-38 (-407 (-564)))))))) (-3910 (($) 273 (-2317 (|has| |#2| (-1148)) (|has| |#1| (-363))) CONST)) (-3999 (((-1117) $) 11)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) 162 (|has| |#1| (-363)))) (-2105 (($ (-642 $)) 159 (|has| |#1| (-363))) (($ $ $) 158 (|has| |#1| (-363)))) (-1830 (($ $) 243 (-2317 (|has| |#2| (-307)) (|has| |#1| (-363))))) (-2795 ((|#2| $) 246 (-2317 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-3223 (((-418 (-1169 $)) (-1169 $)) 249 (-2317 (|has| |#2| (-907)) (|has| |#1| (-363))))) (-2236 (((-418 (-1169 $)) (-1169 $)) 250 (-2317 (|has| |#2| (-907)) (|has| |#1| (-363))))) (-2254 (((-418 $) $) 173 (|has| |#1| (-363)))) (-1877 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) 170 (|has| |#1| (-363)))) (-2137 (($ $ (-564)) 107)) (-2842 (((-3 $ "failed") $ $) 62 (|has| |#1| (-556)))) (-1483 (((-3 (-642 $) "failed") (-642 $) $) 164 (|has| |#1| (-363)))) (-3466 (($ $) 155 (|has| |#1| (-38 (-407 (-564)))))) (-3154 (((-1153 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-564))))) (($ $ (-1173) |#2|) 223 (-2317 (|has| |#2| (-514 (-1173) |#2|)) (|has| |#1| (-363)))) (($ $ (-642 (-1173)) (-642 |#2|)) 222 (-2317 (|has| |#2| (-514 (-1173) |#2|)) (|has| |#1| (-363)))) (($ $ (-642 (-294 |#2|))) 221 (-2317 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ (-294 |#2|)) 220 (-2317 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ |#2| |#2|) 219 (-2317 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ (-642 |#2|) (-642 |#2|)) 218 (-2317 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363))))) (-4274 (((-769) $) 166 (|has| |#1| (-363)))) (-4369 ((|#1| $ (-564)) 116) (($ $ $) 93 (|has| (-564) (-1109))) (($ $ |#2|) 217 (-2317 (|has| |#2| (-286 |#2| |#2|)) (|has| |#1| (-363))))) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) 167 (|has| |#1| (-363)))) (-2199 (($ $ (-1 |#2| |#2|)) 228 (|has| |#1| (-363))) (($ $ (-1 |#2| |#2|) (-769)) 227 (|has| |#1| (-363))) (($ $ (-769)) 96 (-2682 (-2317 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $) 94 (-2682 (-2317 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-642 (-1173)) (-642 (-769))) 101 (-2682 (-2317 (|has| |#2| (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-564) |#1|)))))) (($ $ (-1173) (-769)) 100 (-2682 (-2317 (|has| |#2| (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-564) |#1|)))))) (($ $ (-642 (-1173))) 99 (-2682 (-2317 (|has| |#2| (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-564) |#1|)))))) (($ $ (-1173)) 98 (-2682 (-2317 (|has| |#2| (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))))) (-3082 (($ $) 241 (|has| |#1| (-363)))) (-4131 ((|#2| $) 239 (|has| |#1| (-363)))) (-3252 (((-564) $) 76)) (-3120 (($ $) 144 (|has| |#1| (-38 (-407 (-564)))))) (-2992 (($ $) 133 (|has| |#1| (-38 (-407 (-564)))))) (-3098 (($ $) 143 (|has| |#1| (-38 (-407 (-564)))))) (-2971 (($ $) 134 (|has| |#1| (-38 (-407 (-564)))))) (-3077 (($ $) 142 (|has| |#1| (-38 (-407 (-564)))))) (-2946 (($ $) 135 (|has| |#1| (-38 (-407 (-564)))))) (-3003 (((-225) $) 257 (-2317 (|has| |#2| (-1020)) (|has| |#1| (-363)))) (((-379) $) 256 (-2317 (|has| |#2| (-1020)) (|has| |#1| (-363)))) (((-536) $) 255 (-2317 (|has| |#2| (-612 (-536))) (|has| |#1| (-363)))) (((-890 (-379)) $) 234 (-2317 (|has| |#2| (-612 (-890 (-379)))) (|has| |#1| (-363)))) (((-890 (-564)) $) 233 (-2317 (|has| |#2| (-612 (-890 (-564)))) (|has| |#1| (-363))))) (-3556 (((-3 (-1262 $) "failed") (-687 $)) 247 (-2317 (-2317 (|has| $ (-145)) (|has| |#2| (-907))) (|has| |#1| (-363))))) (-4189 (($ $) 84)) (-2390 (((-860) $) 12) (($ (-564)) 33) (($ |#1|) 59 (|has| |#1| (-172))) (($ |#2|) 280) (($ (-1173)) 254 (-2317 (|has| |#2| (-1036 (-1173))) (|has| |#1| (-363)))) (($ (-407 (-564))) 69 (|has| |#1| (-38 (-407 (-564))))) (($ $) 61 (|has| |#1| (-556)))) (-3005 ((|#1| $ (-564)) 71)) (-3434 (((-3 $ "failed") $) 60 (-2682 (-2317 (-2682 (|has| |#2| (-145)) (-2317 (|has| $ (-145)) (|has| |#2| (-907)))) (|has| |#1| (-363))) (|has| |#1| (-145))))) (-3348 (((-769)) 32 T CONST)) (-2245 ((|#1| $) 114)) (-1378 ((|#2| $) 245 (-2317 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-1600 (((-112) $ $) 9)) (-3155 (($ $) 153 (|has| |#1| (-38 (-407 (-564)))))) (-3025 (($ $) 141 (|has| |#1| (-38 (-407 (-564)))))) (-1594 (((-112) $ $) 65 (|has| |#1| (-556)))) (-3131 (($ $) 152 (|has| |#1| (-38 (-407 (-564)))))) (-3002 (($ $) 140 (|has| |#1| (-38 (-407 (-564)))))) (-3176 (($ $) 151 (|has| |#1| (-38 (-407 (-564)))))) (-3047 (($ $) 139 (|has| |#1| (-38 (-407 (-564)))))) (-3560 ((|#1| $ (-564)) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-564)))) (|has| |#1| (-15 -2390 (|#1| (-1173))))))) (-3165 (($ $) 150 (|has| |#1| (-38 (-407 (-564)))))) (-3058 (($ $) 138 (|has| |#1| (-38 (-407 (-564)))))) (-3168 (($ $) 149 (|has| |#1| (-38 (-407 (-564)))))) (-3035 (($ $) 137 (|has| |#1| (-38 (-407 (-564)))))) (-3142 (($ $) 148 (|has| |#1| (-38 (-407 (-564)))))) (-3014 (($ $) 136 (|has| |#1| (-38 (-407 (-564)))))) (-1630 (($ $) 261 (-2317 (|has| |#2| (-818)) (|has| |#1| (-363))))) (-2361 (($) 19 T CONST)) (-2371 (($) 34 T CONST)) (-2711 (($ $ (-1 |#2| |#2|)) 226 (|has| |#1| (-363))) (($ $ (-1 |#2| |#2|) (-769)) 225 (|has| |#1| (-363))) (($ $ (-769)) 97 (-2682 (-2317 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $) 95 (-2682 (-2317 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-642 (-1173)) (-642 (-769))) 105 (-2682 (-2317 (|has| |#2| (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-564) |#1|)))))) (($ $ (-1173) (-769)) 104 (-2682 (-2317 (|has| |#2| (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-564) |#1|)))))) (($ $ (-642 (-1173))) 103 (-2682 (-2317 (|has| |#2| (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-564) |#1|)))))) (($ $ (-1173)) 102 (-2682 (-2317 (|has| |#2| (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))))) (-2881 (((-112) $ $) 265 (-2317 (|has| |#2| (-848)) (|has| |#1| (-363))))) (-2857 (((-112) $ $) 266 (-2317 (|has| |#2| (-848)) (|has| |#1| (-363))))) (-2821 (((-112) $ $) 6)) (-2868 (((-112) $ $) 264 (-2317 (|has| |#2| (-848)) (|has| |#1| (-363))))) (-2844 (((-112) $ $) 267 (-2317 (|has| |#2| (-848)) (|has| |#1| (-363))))) (-2943 (($ $ |#1|) 70 (|has| |#1| (-363))) (($ $ $) 179 (|has| |#1| (-363))) (($ |#2| |#2|) 237 (|has| |#1| (-363)))) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36) (($ $ (-564)) 178 (|has| |#1| (-363))) (($ $ $) 156 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 127 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ $ |#2|) 216 (|has| |#1| (-363))) (($ |#2| $) 215 (|has| |#1| (-363))) (($ (-407 (-564)) $) 68 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 67 (|has| |#1| (-38 (-407 (-564))))))) -(((-1224 |#1| |#2|) (-140) (-1047) (-1253 |t#1|)) (T -1224)) -((-3252 (*1 *2 *1) (-12 (-4 *1 (-1224 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-1253 *3)) (-5 *2 (-564)))) (-2456 (*1 *1 *2 *3) (-12 (-5 *2 (-564)) (-4 *4 (-1047)) (-4 *1 (-1224 *4 *3)) (-4 *3 (-1253 *4)))) (-2606 (*1 *2 *1) (-12 (-4 *1 (-1224 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-1253 *3)))) (-1506 (*1 *1 *1) (-12 (-4 *1 (-1224 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-1253 *2)))) (-1506 (*1 *1 *2 *1) (-12 (-5 *2 (-564)) (-4 *1 (-1224 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-1253 *3)))) (-2446 (*1 *2 *1) (-12 (-4 *1 (-1224 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-1253 *3)))) (-3948 (*1 *2 *1) (|partial| -12 (-4 *1 (-1224 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-1253 *3))))) -(-13 (-1222 |t#1|) (-1036 |t#2|) (-614 |t#2|) (-10 -8 (-15 -2456 ($ (-564) |t#2|)) (-15 -3252 ((-564) $)) (-15 -2606 (|t#2| $)) (-15 -1506 ($ $)) (-15 -1506 ($ (-564) $)) (-15 -2446 (|t#2| $)) (-15 -3948 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-363)) (-6 (-990 |t#2|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-564)) . T) ((-25) . T) ((-38 #1=(-407 (-564))) -2682 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 |#2|) |has| |#1| (-363)) ((-38 $) -2682 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-35) |has| |#1| (-38 (-407 (-564)))) ((-95) |has| |#1| (-38 (-407 (-564)))) ((-102) . T) ((-111 #1# #1#) -2682 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-363)) ((-111 $ $) -2682 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-131) . T) ((-145) -2682 (-12 (|has| |#1| (-363)) (|has| |#2| (-145))) (|has| |#1| (-145))) ((-147) -2682 (-12 (|has| |#1| (-363)) (|has| |#2| (-147))) (|has| |#1| (-147))) ((-614 #1#) -2682 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 #2=(-1173)) -12 (|has| |#1| (-363)) (|has| |#2| (-1036 (-1173)))) ((-614 |#1|) |has| |#1| (-172)) ((-614 |#2|) . T) ((-614 $) -2682 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-611 (-860)) . T) ((-172) -2682 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-612 (-225)) -12 (|has| |#1| (-363)) (|has| |#2| (-1020))) ((-612 (-379)) -12 (|has| |#1| (-363)) (|has| |#2| (-1020))) ((-612 (-536)) -12 (|has| |#1| (-363)) (|has| |#2| (-612 (-536)))) ((-612 (-890 (-379))) -12 (|has| |#1| (-363)) (|has| |#2| (-612 (-890 (-379))))) ((-612 (-890 (-564))) -12 (|has| |#1| (-363)) (|has| |#2| (-612 (-890 (-564))))) ((-231 |#2|) |has| |#1| (-363)) ((-233) -2682 (-12 (|has| |#1| (-363)) (|has| |#2| (-233))) (|has| |#1| (-15 * (|#1| (-564) |#1|)))) ((-243) |has| |#1| (-363)) ((-284) |has| |#1| (-38 (-407 (-564)))) ((-286 |#2| $) -12 (|has| |#1| (-363)) (|has| |#2| (-286 |#2| |#2|))) ((-286 $ $) |has| (-564) (-1109)) ((-290) -2682 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-307) |has| |#1| (-363)) ((-309 |#2|) -12 (|has| |#1| (-363)) (|has| |#2| (-309 |#2|))) ((-363) |has| |#1| (-363)) ((-338 |#2|) |has| |#1| (-363)) ((-377 |#2|) |has| |#1| (-363)) ((-400 |#2|) |has| |#1| (-363)) ((-452) |has| |#1| (-363)) ((-493) |has| |#1| (-38 (-407 (-564)))) ((-514 (-1173) |#2|) -12 (|has| |#1| (-363)) (|has| |#2| (-514 (-1173) |#2|))) ((-514 |#2| |#2|) -12 (|has| |#1| (-363)) (|has| |#2| (-309 |#2|))) ((-556) -2682 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-644 #1#) -2682 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-644 |#2|) |has| |#1| (-363)) ((-644 $) . T) ((-646 #1#) -2682 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-646 |#1|) . T) ((-646 |#2|) |has| |#1| (-363)) ((-646 $) . T) ((-638 #1#) -2682 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-638 |#1|) |has| |#1| (-172)) ((-638 |#2|) |has| |#1| (-363)) ((-638 $) -2682 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-637 (-564)) -12 (|has| |#1| (-363)) (|has| |#2| (-637 (-564)))) ((-637 |#2|) |has| |#1| (-363)) ((-715 #1#) -2682 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-715 |#1|) |has| |#1| (-172)) ((-715 |#2|) |has| |#1| (-363)) ((-715 $) -2682 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-724) . T) ((-789) -12 (|has| |#1| (-363)) (|has| |#2| (-818))) ((-790) -12 (|has| |#1| (-363)) (|has| |#2| (-818))) ((-792) -12 (|has| |#1| (-363)) (|has| |#2| (-818))) ((-793) -12 (|has| |#1| (-363)) (|has| |#2| (-818))) ((-818) -12 (|has| |#1| (-363)) (|has| |#2| (-818))) ((-846) -12 (|has| |#1| (-363)) (|has| |#2| (-818))) ((-848) -2682 (-12 (|has| |#1| (-363)) (|has| |#2| (-848))) (-12 (|has| |#1| (-363)) (|has| |#2| (-818)))) ((-898 (-1173)) -2682 (-12 (|has| |#1| (-363)) (|has| |#2| (-898 (-1173)))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173))))) ((-884 (-379)) -12 (|has| |#1| (-363)) (|has| |#2| (-884 (-379)))) ((-884 (-564)) -12 (|has| |#1| (-363)) (|has| |#2| (-884 (-564)))) ((-882 |#2|) |has| |#1| (-363)) ((-907) -12 (|has| |#1| (-363)) (|has| |#2| (-907))) ((-971 |#1| #0# (-1079)) . T) ((-918) |has| |#1| (-363)) ((-990 |#2|) |has| |#1| (-363)) ((-1000) |has| |#1| (-38 (-407 (-564)))) ((-1020) -12 (|has| |#1| (-363)) (|has| |#2| (-1020))) ((-1036 (-407 (-564))) -12 (|has| |#1| (-363)) (|has| |#2| (-1036 (-564)))) ((-1036 (-564)) -12 (|has| |#1| (-363)) (|has| |#2| (-1036 (-564)))) ((-1036 #2#) -12 (|has| |#1| (-363)) (|has| |#2| (-1036 (-1173)))) ((-1036 |#2|) . T) ((-1049 #1#) -2682 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-1049 |#1|) . T) ((-1049 |#2|) |has| |#1| (-363)) ((-1049 $) -2682 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1054 #1#) -2682 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-1054 |#1|) . T) ((-1054 |#2|) |has| |#1| (-363)) ((-1054 $) -2682 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T) ((-1148) -12 (|has| |#1| (-363)) (|has| |#2| (-1148))) ((-1197) |has| |#1| (-38 (-407 (-564)))) ((-1200) |has| |#1| (-38 (-407 (-564)))) ((-1212) |has| |#1| (-363)) ((-1216) |has| |#1| (-363)) ((-1222 |#1|) . T) ((-1240 |#1| #0#) . T)) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) 81)) (-2905 ((|#2| $) NIL (-12 (|has| |#2| (-307)) (|has| |#1| (-363))))) (-2397 (((-642 (-1079)) $) NIL)) (-1341 (((-1173) $) 100)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-4252 (($ $) NIL (|has| |#1| (-556)))) (-1722 (((-112) $) NIL (|has| |#1| (-556)))) (-2180 (($ $ (-564)) 109) (($ $ (-564) (-564)) 111)) (-4077 (((-1153 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $) 51)) (-2606 ((|#2| $) 11)) (-3948 (((-3 |#2| "failed") $) 35)) (-2446 ((|#2| $) 36)) (-3087 (($ $) 206 (|has| |#1| (-38 (-407 (-564)))))) (-2958 (($ $) 182 (|has| |#1| (-38 (-407 (-564)))))) (-3085 (((-3 $ "failed") $ $) NIL)) (-4297 (((-418 (-1169 $)) (-1169 $)) NIL (-12 (|has| |#2| (-907)) (|has| |#1| (-363))))) (-1993 (($ $) NIL (|has| |#1| (-363)))) (-3282 (((-418 $) $) NIL (|has| |#1| (-363)))) (-2264 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3267 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) NIL (-12 (|has| |#2| (-907)) (|has| |#1| (-363))))) (-2134 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3067 (($ $) 202 (|has| |#1| (-38 (-407 (-564)))))) (-2933 (($ $) 178 (|has| |#1| (-38 (-407 (-564)))))) (-2221 (((-564) $) NIL (-12 (|has| |#2| (-818)) (|has| |#1| (-363))))) (-3182 (($ (-1153 (-2 (|:| |k| (-564)) (|:| |c| |#1|)))) 59)) (-3110 (($ $) 210 (|has| |#1| (-38 (-407 (-564)))))) (-2981 (($ $) 186 (|has| |#1| (-38 (-407 (-564)))))) (-2822 (($) NIL T CONST)) (-2849 (((-3 |#2| "failed") $) 157) (((-3 (-564) "failed") $) NIL (-12 (|has| |#2| (-1036 (-564))) (|has| |#1| (-363)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| |#2| (-1036 (-564))) (|has| |#1| (-363)))) (((-3 (-1173) "failed") $) NIL (-12 (|has| |#2| (-1036 (-1173))) (|has| |#1| (-363))))) (-1687 ((|#2| $) 156) (((-564) $) NIL (-12 (|has| |#2| (-1036 (-564))) (|has| |#1| (-363)))) (((-407 (-564)) $) NIL (-12 (|has| |#2| (-1036 (-564))) (|has| |#1| (-363)))) (((-1173) $) NIL (-12 (|has| |#2| (-1036 (-1173))) (|has| |#1| (-363))))) (-1506 (($ $) 65) (($ (-564) $) 28)) (-2796 (($ $ $) NIL (|has| |#1| (-363)))) (-3459 (($ $) NIL)) (-3330 (((-687 |#2|) (-687 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -3544 (-687 |#2|)) (|:| |vec| (-1262 |#2|))) (-687 $) (-1262 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (-12 (|has| |#2| (-637 (-564))) (|has| |#1| (-363)))) (((-687 (-564)) (-687 $)) NIL (-12 (|has| |#2| (-637 (-564))) (|has| |#1| (-363))))) (-2675 (((-3 $ "failed") $) 88)) (-1534 (((-407 (-950 |#1|)) $ (-564)) 124 (|has| |#1| (-556))) (((-407 (-950 |#1|)) $ (-564) (-564)) 126 (|has| |#1| (-556)))) (-3235 (($) NIL (-12 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-2808 (($ $ $) NIL (|has| |#1| (-363)))) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) NIL (|has| |#1| (-363)))) (-3552 (((-112) $) NIL (|has| |#1| (-363)))) (-3292 (((-112) $) NIL (-12 (|has| |#2| (-818)) (|has| |#1| (-363))))) (-2210 (((-112) $) 74)) (-2833 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1381 (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) NIL (-12 (|has| |#2| (-884 (-379))) (|has| |#1| (-363)))) (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) NIL (-12 (|has| |#2| (-884 (-564))) (|has| |#1| (-363))))) (-2408 (((-564) $) 105) (((-564) $ (-564)) 107)) (-3163 (((-112) $) NIL)) (-3408 (($ $) NIL (|has| |#1| (-363)))) (-4120 ((|#2| $) 165 (|has| |#1| (-363)))) (-2024 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4382 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1148)) (|has| |#1| (-363))))) (-2666 (((-112) $) NIL (-12 (|has| |#2| (-818)) (|has| |#1| (-363))))) (-2157 (($ $ (-919)) 148)) (-2869 (($ (-1 |#1| (-564)) $) 144)) (-2709 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#1| (-363)))) (-3471 (((-112) $) NIL)) (-2374 (($ |#1| (-564)) 20) (($ $ (-1079) (-564)) NIL) (($ $ (-642 (-1079)) (-642 (-564))) NIL)) (-3225 (($ $ $) NIL (-12 (|has| |#2| (-848)) (|has| |#1| (-363))))) (-2903 (($ $ $) NIL (-12 (|has| |#2| (-848)) (|has| |#1| (-363))))) (-2947 (($ (-1 |#1| |#1|) $) 141) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-363)))) (-3576 (($ $) 176 (|has| |#1| (-38 (-407 (-564)))))) (-2510 (($ $) NIL)) (-2523 ((|#1| $) NIL)) (-2066 (($ (-642 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2456 (($ (-564) |#2|) 10)) (-1778 (((-1155) $) NIL)) (-2481 (($ $) 159 (|has| |#1| (-363)))) (-3703 (($ $) 228 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1173)) 233 (-2682 (-12 (|has| |#1| (-15 -3703 (|#1| |#1| (-1173)))) (|has| |#1| (-15 -2397 ((-642 (-1173)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-957)) (|has| |#1| (-1197)))))) (-3910 (($) NIL (-12 (|has| |#2| (-1148)) (|has| |#1| (-363))) CONST)) (-3999 (((-1117) $) NIL)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) NIL (|has| |#1| (-363)))) (-2105 (($ (-642 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-1830 (($ $) NIL (-12 (|has| |#2| (-307)) (|has| |#1| (-363))))) (-2795 ((|#2| $) NIL (-12 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-3223 (((-418 (-1169 $)) (-1169 $)) NIL (-12 (|has| |#2| (-907)) (|has| |#1| (-363))))) (-2236 (((-418 (-1169 $)) (-1169 $)) NIL (-12 (|has| |#2| (-907)) (|has| |#1| (-363))))) (-2254 (((-418 $) $) NIL (|has| |#1| (-363)))) (-1877 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL (|has| |#1| (-363)))) (-2137 (($ $ (-564)) 138)) (-2842 (((-3 $ "failed") $ $) 128 (|has| |#1| (-556)))) (-1483 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#1| (-363)))) (-3466 (($ $) 174 (|has| |#1| (-38 (-407 (-564)))))) (-3154 (((-1153 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-564))))) (($ $ (-1173) |#2|) NIL (-12 (|has| |#2| (-514 (-1173) |#2|)) (|has| |#1| (-363)))) (($ $ (-642 (-1173)) (-642 |#2|)) NIL (-12 (|has| |#2| (-514 (-1173) |#2|)) (|has| |#1| (-363)))) (($ $ (-642 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ (-642 |#2|) (-642 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363))))) (-4274 (((-769) $) NIL (|has| |#1| (-363)))) (-4369 ((|#1| $ (-564)) 103) (($ $ $) 90 (|has| (-564) (-1109))) (($ $ |#2|) NIL (-12 (|has| |#2| (-286 |#2| |#2|)) (|has| |#1| (-363))))) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL (|has| |#1| (-363)))) (-2199 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-363))) (($ $ (-1 |#2| |#2|) (-769)) NIL (|has| |#1| (-363))) (($ $ (-769)) NIL (-2682 (-12 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $) 149 (-2682 (-12 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (-2682 (-12 (|has| |#2| (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173)))))) (($ $ (-1173) (-769)) NIL (-2682 (-12 (|has| |#2| (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173)))))) (($ $ (-642 (-1173))) NIL (-2682 (-12 (|has| |#2| (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173)))))) (($ $ (-1173)) 153 (-2682 (-12 (|has| |#2| (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173))))))) (-3082 (($ $) NIL (|has| |#1| (-363)))) (-4131 ((|#2| $) 166 (|has| |#1| (-363)))) (-3252 (((-564) $) 12)) (-3120 (($ $) 212 (|has| |#1| (-38 (-407 (-564)))))) (-2992 (($ $) 188 (|has| |#1| (-38 (-407 (-564)))))) (-3098 (($ $) 208 (|has| |#1| (-38 (-407 (-564)))))) (-2971 (($ $) 184 (|has| |#1| (-38 (-407 (-564)))))) (-3077 (($ $) 204 (|has| |#1| (-38 (-407 (-564)))))) (-2946 (($ $) 180 (|has| |#1| (-38 (-407 (-564)))))) (-3003 (((-225) $) NIL (-12 (|has| |#2| (-1020)) (|has| |#1| (-363)))) (((-379) $) NIL (-12 (|has| |#2| (-1020)) (|has| |#1| (-363)))) (((-536) $) NIL (-12 (|has| |#2| (-612 (-536))) (|has| |#1| (-363)))) (((-890 (-379)) $) NIL (-12 (|has| |#2| (-612 (-890 (-379)))) (|has| |#1| (-363)))) (((-890 (-564)) $) NIL (-12 (|has| |#2| (-612 (-890 (-564)))) (|has| |#1| (-363))))) (-3556 (((-3 (-1262 $) "failed") (-687 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-907)) (|has| |#1| (-363))))) (-4189 (($ $) 136)) (-2390 (((-860) $) 267) (($ (-564)) 24) (($ |#1|) 22 (|has| |#1| (-172))) (($ |#2|) 21) (($ (-1173)) NIL (-12 (|has| |#2| (-1036 (-1173))) (|has| |#1| (-363)))) (($ (-407 (-564))) 169 (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556)))) (-3005 ((|#1| $ (-564)) 85)) (-3434 (((-3 $ "failed") $) NIL (-2682 (-12 (|has| $ (-145)) (|has| |#2| (-907)) (|has| |#1| (-363))) (-12 (|has| |#2| (-145)) (|has| |#1| (-363))) (|has| |#1| (-145))))) (-3348 (((-769)) 155 T CONST)) (-2245 ((|#1| $) 102)) (-1378 ((|#2| $) NIL (-12 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-1600 (((-112) $ $) NIL)) (-3155 (($ $) 218 (|has| |#1| (-38 (-407 (-564)))))) (-3025 (($ $) 194 (|has| |#1| (-38 (-407 (-564)))))) (-1594 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3131 (($ $) 214 (|has| |#1| (-38 (-407 (-564)))))) (-3002 (($ $) 190 (|has| |#1| (-38 (-407 (-564)))))) (-3176 (($ $) 222 (|has| |#1| (-38 (-407 (-564)))))) (-3047 (($ $) 198 (|has| |#1| (-38 (-407 (-564)))))) (-3560 ((|#1| $ (-564)) 134 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-564)))) (|has| |#1| (-15 -2390 (|#1| (-1173))))))) (-3165 (($ $) 224 (|has| |#1| (-38 (-407 (-564)))))) (-3058 (($ $) 200 (|has| |#1| (-38 (-407 (-564)))))) (-3168 (($ $) 220 (|has| |#1| (-38 (-407 (-564)))))) (-3035 (($ $) 196 (|has| |#1| (-38 (-407 (-564)))))) (-3142 (($ $) 216 (|has| |#1| (-38 (-407 (-564)))))) (-3014 (($ $) 192 (|has| |#1| (-38 (-407 (-564)))))) (-1630 (($ $) NIL (-12 (|has| |#2| (-818)) (|has| |#1| (-363))))) (-2361 (($) 13 T CONST)) (-2371 (($) 18 T CONST)) (-2711 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-363))) (($ $ (-1 |#2| |#2|) (-769)) NIL (|has| |#1| (-363))) (($ $ (-769)) NIL (-2682 (-12 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $) NIL (-2682 (-12 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (-2682 (-12 (|has| |#2| (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173)))))) (($ $ (-1173) (-769)) NIL (-2682 (-12 (|has| |#2| (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173)))))) (($ $ (-642 (-1173))) NIL (-2682 (-12 (|has| |#2| (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173)))))) (($ $ (-1173)) NIL (-2682 (-12 (|has| |#2| (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173))))))) (-2881 (((-112) $ $) NIL (-12 (|has| |#2| (-848)) (|has| |#1| (-363))))) (-2857 (((-112) $ $) NIL (-12 (|has| |#2| (-848)) (|has| |#1| (-363))))) (-2821 (((-112) $ $) 72)) (-2868 (((-112) $ $) NIL (-12 (|has| |#2| (-848)) (|has| |#1| (-363))))) (-2844 (((-112) $ $) NIL (-12 (|has| |#2| (-848)) (|has| |#1| (-363))))) (-2943 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) 163 (|has| |#1| (-363))) (($ |#2| |#2|) 164 (|has| |#1| (-363)))) (-2930 (($ $) 227) (($ $ $) 78)) (-2917 (($ $ $) 76)) (** (($ $ (-919)) NIL) (($ $ (-769)) 84) (($ $ (-564)) 160 (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 172 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) 79) (($ $ |#1|) NIL) (($ |#1| $) 152) (($ $ |#2|) 162 (|has| |#1| (-363))) (($ |#2| $) 161 (|has| |#1| (-363))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))))) -(((-1225 |#1| |#2|) (-1224 |#1| |#2|) (-1047) (-1253 |#1|)) (T -1225)) -NIL -(-1224 |#1| |#2|) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-2905 (((-1254 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-307)) (|has| |#1| (-363))))) (-2397 (((-642 (-1079)) $) NIL)) (-1341 (((-1173) $) 10)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (-2682 (-12 (|has| (-1254 |#1| |#2| |#3|) (-818)) (|has| |#1| (-363))) (-12 (|has| (-1254 |#1| |#2| |#3|) (-907)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-4252 (($ $) NIL (-2682 (-12 (|has| (-1254 |#1| |#2| |#3|) (-818)) (|has| |#1| (-363))) (-12 (|has| (-1254 |#1| |#2| |#3|) (-907)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-1722 (((-112) $) NIL (-2682 (-12 (|has| (-1254 |#1| |#2| |#3|) (-818)) (|has| |#1| (-363))) (-12 (|has| (-1254 |#1| |#2| |#3|) (-907)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-2180 (($ $ (-564)) NIL) (($ $ (-564) (-564)) NIL)) (-4077 (((-1153 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $) NIL)) (-2606 (((-1254 |#1| |#2| |#3|) $) NIL)) (-3948 (((-3 (-1254 |#1| |#2| |#3|) "failed") $) NIL)) (-2446 (((-1254 |#1| |#2| |#3|) $) NIL)) (-3087 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2958 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3085 (((-3 $ "failed") $ $) NIL)) (-4297 (((-418 (-1169 $)) (-1169 $)) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-907)) (|has| |#1| (-363))))) (-1993 (($ $) NIL (|has| |#1| (-363)))) (-3282 (((-418 $) $) NIL (|has| |#1| (-363)))) (-2264 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3267 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-907)) (|has| |#1| (-363))))) (-2134 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3067 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2933 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2221 (((-564) $) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-818)) (|has| |#1| (-363))))) (-3182 (($ (-1153 (-2 (|:| |k| (-564)) (|:| |c| |#1|)))) NIL)) (-3110 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2981 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2822 (($) NIL T CONST)) (-2849 (((-3 (-1254 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1173) "failed") $) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-1036 (-1173))) (|has| |#1| (-363)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-1036 (-564))) (|has| |#1| (-363)))) (((-3 (-564) "failed") $) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-1036 (-564))) (|has| |#1| (-363))))) (-1687 (((-1254 |#1| |#2| |#3|) $) NIL) (((-1173) $) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-1036 (-1173))) (|has| |#1| (-363)))) (((-407 (-564)) $) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-1036 (-564))) (|has| |#1| (-363)))) (((-564) $) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-1036 (-564))) (|has| |#1| (-363))))) (-1506 (($ $) NIL) (($ (-564) $) NIL)) (-2796 (($ $ $) NIL (|has| |#1| (-363)))) (-3459 (($ $) NIL)) (-3330 (((-687 (-1254 |#1| |#2| |#3|)) (-687 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -3544 (-687 (-1254 |#1| |#2| |#3|))) (|:| |vec| (-1262 (-1254 |#1| |#2| |#3|)))) (-687 $) (-1262 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-637 (-564))) (|has| |#1| (-363)))) (((-687 (-564)) (-687 $)) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-637 (-564))) (|has| |#1| (-363))))) (-2675 (((-3 $ "failed") $) NIL)) (-1534 (((-407 (-950 |#1|)) $ (-564)) NIL (|has| |#1| (-556))) (((-407 (-950 |#1|)) $ (-564) (-564)) NIL (|has| |#1| (-556)))) (-3235 (($) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-2808 (($ $ $) NIL (|has| |#1| (-363)))) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) NIL (|has| |#1| (-363)))) (-3552 (((-112) $) NIL (|has| |#1| (-363)))) (-3292 (((-112) $) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-818)) (|has| |#1| (-363))))) (-2210 (((-112) $) NIL)) (-2833 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1381 (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-884 (-379))) (|has| |#1| (-363)))) (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-884 (-564))) (|has| |#1| (-363))))) (-2408 (((-564) $) NIL) (((-564) $ (-564)) NIL)) (-3163 (((-112) $) NIL)) (-3408 (($ $) NIL (|has| |#1| (-363)))) (-4120 (((-1254 |#1| |#2| |#3|) $) NIL (|has| |#1| (-363)))) (-2024 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4382 (((-3 $ "failed") $) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-1148)) (|has| |#1| (-363))))) (-2666 (((-112) $) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-818)) (|has| |#1| (-363))))) (-2157 (($ $ (-919)) NIL)) (-2869 (($ (-1 |#1| (-564)) $) NIL)) (-2709 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#1| (-363)))) (-3471 (((-112) $) NIL)) (-2374 (($ |#1| (-564)) 18) (($ $ (-1079) (-564)) NIL) (($ $ (-642 (-1079)) (-642 (-564))) NIL)) (-3225 (($ $ $) NIL (-2682 (-12 (|has| (-1254 |#1| |#2| |#3|) (-818)) (|has| |#1| (-363))) (-12 (|has| (-1254 |#1| |#2| |#3|) (-848)) (|has| |#1| (-363)))))) (-2903 (($ $ $) NIL (-2682 (-12 (|has| (-1254 |#1| |#2| |#3|) (-818)) (|has| |#1| (-363))) (-12 (|has| (-1254 |#1| |#2| |#3|) (-848)) (|has| |#1| (-363)))))) (-2947 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1254 |#1| |#2| |#3|) (-1254 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-363)))) (-3576 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2510 (($ $) NIL)) (-2523 ((|#1| $) NIL)) (-2066 (($ (-642 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2456 (($ (-564) (-1254 |#1| |#2| |#3|)) NIL)) (-1778 (((-1155) $) NIL)) (-2481 (($ $) NIL (|has| |#1| (-363)))) (-3703 (($ $) 27 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1173)) NIL (-2682 (-12 (|has| |#1| (-15 -3703 (|#1| |#1| (-1173)))) (|has| |#1| (-15 -2397 ((-642 (-1173)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-957)) (|has| |#1| (-1197))))) (($ $ (-1258 |#2|)) 28 (|has| |#1| (-38 (-407 (-564)))))) (-3910 (($) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-1148)) (|has| |#1| (-363))) CONST)) (-3999 (((-1117) $) NIL)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) NIL (|has| |#1| (-363)))) (-2105 (($ (-642 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-1830 (($ $) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-307)) (|has| |#1| (-363))))) (-2795 (((-1254 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-3223 (((-418 (-1169 $)) (-1169 $)) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-907)) (|has| |#1| (-363))))) (-2236 (((-418 (-1169 $)) (-1169 $)) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-907)) (|has| |#1| (-363))))) (-2254 (((-418 $) $) NIL (|has| |#1| (-363)))) (-1877 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL (|has| |#1| (-363)))) (-2137 (($ $ (-564)) NIL)) (-2842 (((-3 $ "failed") $ $) NIL (-2682 (-12 (|has| (-1254 |#1| |#2| |#3|) (-818)) (|has| |#1| (-363))) (-12 (|has| (-1254 |#1| |#2| |#3|) (-907)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-1483 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#1| (-363)))) (-3466 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3154 (((-1153 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-564))))) (($ $ (-1173) (-1254 |#1| |#2| |#3|)) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-514 (-1173) (-1254 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-642 (-1173)) (-642 (-1254 |#1| |#2| |#3|))) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-514 (-1173) (-1254 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-642 (-294 (-1254 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-309 (-1254 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-294 (-1254 |#1| |#2| |#3|))) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-309 (-1254 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-1254 |#1| |#2| |#3|) (-1254 |#1| |#2| |#3|)) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-309 (-1254 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-642 (-1254 |#1| |#2| |#3|)) (-642 (-1254 |#1| |#2| |#3|))) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-309 (-1254 |#1| |#2| |#3|))) (|has| |#1| (-363))))) (-4274 (((-769) $) NIL (|has| |#1| (-363)))) (-4369 ((|#1| $ (-564)) NIL) (($ $ $) NIL (|has| (-564) (-1109))) (($ $ (-1254 |#1| |#2| |#3|)) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-286 (-1254 |#1| |#2| |#3|) (-1254 |#1| |#2| |#3|))) (|has| |#1| (-363))))) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL (|has| |#1| (-363)))) (-2199 (($ $ (-1 (-1254 |#1| |#2| |#3|) (-1254 |#1| |#2| |#3|))) NIL (|has| |#1| (-363))) (($ $ (-1 (-1254 |#1| |#2| |#3|) (-1254 |#1| |#2| |#3|)) (-769)) NIL (|has| |#1| (-363))) (($ $ (-1258 |#2|)) 26) (($ $ (-769)) NIL (-2682 (-12 (|has| (-1254 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $) 25 (-2682 (-12 (|has| (-1254 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (-2682 (-12 (|has| (-1254 |#1| |#2| |#3|) (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173)))))) (($ $ (-1173) (-769)) NIL (-2682 (-12 (|has| (-1254 |#1| |#2| |#3|) (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173)))))) (($ $ (-642 (-1173))) NIL (-2682 (-12 (|has| (-1254 |#1| |#2| |#3|) (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173)))))) (($ $ (-1173)) NIL (-2682 (-12 (|has| (-1254 |#1| |#2| |#3|) (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173))))))) (-3082 (($ $) NIL (|has| |#1| (-363)))) (-4131 (((-1254 |#1| |#2| |#3|) $) NIL (|has| |#1| (-363)))) (-3252 (((-564) $) NIL)) (-3120 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2992 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3098 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2971 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3077 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2946 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3003 (((-536) $) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-612 (-536))) (|has| |#1| (-363)))) (((-379) $) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-1020)) (|has| |#1| (-363)))) (((-225) $) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-1020)) (|has| |#1| (-363)))) (((-890 (-379)) $) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-612 (-890 (-379)))) (|has| |#1| (-363)))) (((-890 (-564)) $) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-612 (-890 (-564)))) (|has| |#1| (-363))))) (-3556 (((-3 (-1262 $) "failed") (-687 $)) NIL (-12 (|has| $ (-145)) (|has| (-1254 |#1| |#2| |#3|) (-907)) (|has| |#1| (-363))))) (-4189 (($ $) NIL)) (-2390 (((-860) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1254 |#1| |#2| |#3|)) NIL) (($ (-1258 |#2|)) 24) (($ (-1173)) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-1036 (-1173))) (|has| |#1| (-363)))) (($ $) NIL (-2682 (-12 (|has| (-1254 |#1| |#2| |#3|) (-818)) (|has| |#1| (-363))) (-12 (|has| (-1254 |#1| |#2| |#3|) (-907)) (|has| |#1| (-363))) (|has| |#1| (-556)))) (($ (-407 (-564))) NIL (-2682 (-12 (|has| (-1254 |#1| |#2| |#3|) (-1036 (-564))) (|has| |#1| (-363))) (|has| |#1| (-38 (-407 (-564))))))) (-3005 ((|#1| $ (-564)) NIL)) (-3434 (((-3 $ "failed") $) NIL (-2682 (-12 (|has| $ (-145)) (|has| (-1254 |#1| |#2| |#3|) (-907)) (|has| |#1| (-363))) (-12 (|has| (-1254 |#1| |#2| |#3|) (-145)) (|has| |#1| (-363))) (|has| |#1| (-145))))) (-3348 (((-769)) NIL T CONST)) (-2245 ((|#1| $) 11)) (-1378 (((-1254 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-1600 (((-112) $ $) NIL)) (-3155 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3025 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1594 (((-112) $ $) NIL (-2682 (-12 (|has| (-1254 |#1| |#2| |#3|) (-818)) (|has| |#1| (-363))) (-12 (|has| (-1254 |#1| |#2| |#3|) (-907)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-3131 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3002 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3176 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3047 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3560 ((|#1| $ (-564)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-564)))) (|has| |#1| (-15 -2390 (|#1| (-1173))))))) (-3165 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3058 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3168 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3035 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3142 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3014 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1630 (($ $) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-818)) (|has| |#1| (-363))))) (-2361 (($) 20 T CONST)) (-2371 (($) 15 T CONST)) (-2711 (($ $ (-1 (-1254 |#1| |#2| |#3|) (-1254 |#1| |#2| |#3|))) NIL (|has| |#1| (-363))) (($ $ (-1 (-1254 |#1| |#2| |#3|) (-1254 |#1| |#2| |#3|)) (-769)) NIL (|has| |#1| (-363))) (($ $ (-769)) NIL (-2682 (-12 (|has| (-1254 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $) NIL (-2682 (-12 (|has| (-1254 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (-2682 (-12 (|has| (-1254 |#1| |#2| |#3|) (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173)))))) (($ $ (-1173) (-769)) NIL (-2682 (-12 (|has| (-1254 |#1| |#2| |#3|) (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173)))))) (($ $ (-642 (-1173))) NIL (-2682 (-12 (|has| (-1254 |#1| |#2| |#3|) (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173)))))) (($ $ (-1173)) NIL (-2682 (-12 (|has| (-1254 |#1| |#2| |#3|) (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173))))))) (-2881 (((-112) $ $) NIL (-2682 (-12 (|has| (-1254 |#1| |#2| |#3|) (-818)) (|has| |#1| (-363))) (-12 (|has| (-1254 |#1| |#2| |#3|) (-848)) (|has| |#1| (-363)))))) (-2857 (((-112) $ $) NIL (-2682 (-12 (|has| (-1254 |#1| |#2| |#3|) (-818)) (|has| |#1| (-363))) (-12 (|has| (-1254 |#1| |#2| |#3|) (-848)) (|has| |#1| (-363)))))) (-2821 (((-112) $ $) NIL)) (-2868 (((-112) $ $) NIL (-2682 (-12 (|has| (-1254 |#1| |#2| |#3|) (-818)) (|has| |#1| (-363))) (-12 (|has| (-1254 |#1| |#2| |#3|) (-848)) (|has| |#1| (-363)))))) (-2844 (((-112) $ $) NIL (-2682 (-12 (|has| (-1254 |#1| |#2| |#3|) (-818)) (|has| |#1| (-363))) (-12 (|has| (-1254 |#1| |#2| |#3|) (-848)) (|has| |#1| (-363)))))) (-2943 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363))) (($ (-1254 |#1| |#2| |#3|) (-1254 |#1| |#2| |#3|)) NIL (|has| |#1| (-363)))) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) 22)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1254 |#1| |#2| |#3|)) NIL (|has| |#1| (-363))) (($ (-1254 |#1| |#2| |#3|) $) NIL (|has| |#1| (-363))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))))) -(((-1226 |#1| |#2| |#3|) (-13 (-1224 |#1| (-1254 |#1| |#2| |#3|)) (-10 -8 (-15 -2390 ($ (-1258 |#2|))) (-15 -2199 ($ $ (-1258 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3703 ($ $ (-1258 |#2|))) |%noBranch|))) (-1047) (-1173) |#1|) (T -1226)) -((-2390 (*1 *1 *2) (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-1226 *3 *4 *5)) (-4 *3 (-1047)) (-14 *5 *3))) (-2199 (*1 *1 *1 *2) (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-1226 *3 *4 *5)) (-4 *3 (-1047)) (-14 *5 *3))) (-3703 (*1 *1 *1 *2) (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-1226 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1047)) (-14 *5 *3)))) -(-13 (-1224 |#1| (-1254 |#1| |#2| |#3|)) (-10 -8 (-15 -2390 ($ (-1258 |#2|))) (-15 -2199 ($ $ (-1258 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3703 ($ $ (-1258 |#2|))) |%noBranch|))) -((-1365 (((-2 (|:| |contp| (-564)) (|:| -1569 (-642 (-2 (|:| |irr| |#1|) (|:| -3660 (-564)))))) |#1| (-112)) 13)) (-1683 (((-418 |#1|) |#1|) 26)) (-2254 (((-418 |#1|) |#1|) 24))) -(((-1227 |#1|) (-10 -7 (-15 -2254 ((-418 |#1|) |#1|)) (-15 -1683 ((-418 |#1|) |#1|)) (-15 -1365 ((-2 (|:| |contp| (-564)) (|:| -1569 (-642 (-2 (|:| |irr| |#1|) (|:| -3660 (-564)))))) |#1| (-112)))) (-1238 (-564))) (T -1227)) -((-1365 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-564)) (|:| -1569 (-642 (-2 (|:| |irr| *3) (|:| -3660 (-564))))))) (-5 *1 (-1227 *3)) (-4 *3 (-1238 (-564))))) (-1683 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-1227 *3)) (-4 *3 (-1238 (-564))))) (-2254 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-1227 *3)) (-4 *3 (-1238 (-564)))))) -(-10 -7 (-15 -2254 ((-418 |#1|) |#1|)) (-15 -1683 ((-418 |#1|) |#1|)) (-15 -1365 ((-2 (|:| |contp| (-564)) (|:| -1569 (-642 (-2 (|:| |irr| |#1|) (|:| -3660 (-564)))))) |#1| (-112)))) -((-2947 (((-1153 |#2|) (-1 |#2| |#1|) (-1229 |#1|)) 23 (|has| |#1| (-846))) (((-1229 |#2|) (-1 |#2| |#1|) (-1229 |#1|)) 17))) -(((-1228 |#1| |#2|) (-10 -7 (-15 -2947 ((-1229 |#2|) (-1 |#2| |#1|) (-1229 |#1|))) (IF (|has| |#1| (-846)) (-15 -2947 ((-1153 |#2|) (-1 |#2| |#1|) (-1229 |#1|))) |%noBranch|)) (-1212) (-1212)) (T -1228)) -((-2947 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1229 *5)) (-4 *5 (-846)) (-4 *5 (-1212)) (-4 *6 (-1212)) (-5 *2 (-1153 *6)) (-5 *1 (-1228 *5 *6)))) (-2947 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1229 *5)) (-4 *5 (-1212)) (-4 *6 (-1212)) (-5 *2 (-1229 *6)) (-5 *1 (-1228 *5 *6))))) -(-10 -7 (-15 -2947 ((-1229 |#2|) (-1 |#2| |#1|) (-1229 |#1|))) (IF (|has| |#1| (-846)) (-15 -2947 ((-1153 |#2|) (-1 |#2| |#1|) (-1229 |#1|))) |%noBranch|)) -((-2856 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-3419 (($ |#1| |#1|) 11) (($ |#1|) 10)) (-2947 (((-1153 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-846)))) (-3612 ((|#1| $) 15)) (-3400 ((|#1| $) 12)) (-1778 (((-1155) $) NIL (|has| |#1| (-1097)))) (-4212 (((-564) $) 19)) (-2608 ((|#1| $) 18)) (-4235 ((|#1| $) 13)) (-3999 (((-1117) $) NIL (|has| |#1| (-1097)))) (-4256 (((-112) $) 17)) (-3398 (((-1153 |#1|) $) 41 (|has| |#1| (-846))) (((-1153 |#1|) (-642 $)) 40 (|has| |#1| (-846)))) (-3003 (($ |#1|) 26)) (-2390 (($ (-1091 |#1|)) 25) (((-860) $) 37 (|has| |#1| (-1097)))) (-1600 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-3532 (($ |#1| |#1|) 21) (($ |#1|) 20)) (-2605 (($ $ (-564)) 14)) (-2821 (((-112) $ $) 30 (|has| |#1| (-1097))))) -(((-1229 |#1|) (-13 (-1090 |#1|) (-10 -8 (-15 -3532 ($ |#1|)) (-15 -3419 ($ |#1|)) (-15 -2390 ($ (-1091 |#1|))) (-15 -4256 ((-112) $)) (IF (|has| |#1| (-1097)) (-6 (-1097)) |%noBranch|) (IF (|has| |#1| (-846)) (-6 (-1092 |#1| (-1153 |#1|))) |%noBranch|))) (-1212)) (T -1229)) -((-3532 (*1 *1 *2) (-12 (-5 *1 (-1229 *2)) (-4 *2 (-1212)))) (-3419 (*1 *1 *2) (-12 (-5 *1 (-1229 *2)) (-4 *2 (-1212)))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-1091 *3)) (-4 *3 (-1212)) (-5 *1 (-1229 *3)))) (-4256 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1229 *3)) (-4 *3 (-1212))))) -(-13 (-1090 |#1|) (-10 -8 (-15 -3532 ($ |#1|)) (-15 -3419 ($ |#1|)) (-15 -2390 ($ (-1091 |#1|))) (-15 -4256 ((-112) $)) (IF (|has| |#1| (-1097)) (-6 (-1097)) |%noBranch|) (IF (|has| |#1| (-846)) (-6 (-1092 |#1| (-1153 |#1|))) |%noBranch|))) -((-2947 (((-1235 |#3| |#4|) (-1 |#4| |#2|) (-1235 |#1| |#2|)) 15))) -(((-1230 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2947 ((-1235 |#3| |#4|) (-1 |#4| |#2|) (-1235 |#1| |#2|)))) (-1173) (-1047) (-1173) (-1047)) (T -1230)) -((-2947 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1235 *5 *6)) (-14 *5 (-1173)) (-4 *6 (-1047)) (-4 *8 (-1047)) (-5 *2 (-1235 *7 *8)) (-5 *1 (-1230 *5 *6 *7 *8)) (-14 *7 (-1173))))) -(-10 -7 (-15 -2947 ((-1235 |#3| |#4|) (-1 |#4| |#2|) (-1235 |#1| |#2|)))) -((-1788 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-3508 ((|#1| |#3|) 13)) (-1581 ((|#3| |#3|) 19))) -(((-1231 |#1| |#2| |#3|) (-10 -7 (-15 -3508 (|#1| |#3|)) (-15 -1581 (|#3| |#3|)) (-15 -1788 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-556) (-990 |#1|) (-1238 |#2|)) (T -1231)) -((-1788 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-990 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1231 *4 *5 *3)) (-4 *3 (-1238 *5)))) (-1581 (*1 *2 *2) (-12 (-4 *3 (-556)) (-4 *4 (-990 *3)) (-5 *1 (-1231 *3 *4 *2)) (-4 *2 (-1238 *4)))) (-3508 (*1 *2 *3) (-12 (-4 *4 (-990 *2)) (-4 *2 (-556)) (-5 *1 (-1231 *2 *4 *3)) (-4 *3 (-1238 *4))))) -(-10 -7 (-15 -3508 (|#1| |#3|)) (-15 -1581 (|#3| |#3|)) (-15 -1788 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-4344 (((-3 |#2| "failed") |#2| (-769) |#1|) 37)) (-1876 (((-3 |#2| "failed") |#2| (-769)) 38)) (-2957 (((-3 (-2 (|:| -4341 |#2|) (|:| -4351 |#2|)) "failed") |#2|) 52)) (-3074 (((-642 |#2|) |#2|) 54)) (-2540 (((-3 |#2| "failed") |#2| |#2|) 48))) -(((-1232 |#1| |#2|) (-10 -7 (-15 -1876 ((-3 |#2| "failed") |#2| (-769))) (-15 -4344 ((-3 |#2| "failed") |#2| (-769) |#1|)) (-15 -2540 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2957 ((-3 (-2 (|:| -4341 |#2|) (|:| -4351 |#2|)) "failed") |#2|)) (-15 -3074 ((-642 |#2|) |#2|))) (-13 (-556) (-147)) (-1238 |#1|)) (T -1232)) -((-3074 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-147))) (-5 *2 (-642 *3)) (-5 *1 (-1232 *4 *3)) (-4 *3 (-1238 *4)))) (-2957 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-556) (-147))) (-5 *2 (-2 (|:| -4341 *3) (|:| -4351 *3))) (-5 *1 (-1232 *4 *3)) (-4 *3 (-1238 *4)))) (-2540 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-1232 *3 *2)) (-4 *2 (-1238 *3)))) (-4344 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-769)) (-4 *4 (-13 (-556) (-147))) (-5 *1 (-1232 *4 *2)) (-4 *2 (-1238 *4)))) (-1876 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-769)) (-4 *4 (-13 (-556) (-147))) (-5 *1 (-1232 *4 *2)) (-4 *2 (-1238 *4))))) -(-10 -7 (-15 -1876 ((-3 |#2| "failed") |#2| (-769))) (-15 -4344 ((-3 |#2| "failed") |#2| (-769) |#1|)) (-15 -2540 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2957 ((-3 (-2 (|:| -4341 |#2|) (|:| -4351 |#2|)) "failed") |#2|)) (-15 -3074 ((-642 |#2|) |#2|))) -((-2203 (((-3 (-2 (|:| -4332 |#2|) (|:| -1992 |#2|)) "failed") |#2| |#2|) 30))) -(((-1233 |#1| |#2|) (-10 -7 (-15 -2203 ((-3 (-2 (|:| -4332 |#2|) (|:| -1992 |#2|)) "failed") |#2| |#2|))) (-556) (-1238 |#1|)) (T -1233)) -((-2203 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-556)) (-5 *2 (-2 (|:| -4332 *3) (|:| -1992 *3))) (-5 *1 (-1233 *4 *3)) (-4 *3 (-1238 *4))))) -(-10 -7 (-15 -2203 ((-3 (-2 (|:| -4332 |#2|) (|:| -1992 |#2|)) "failed") |#2| |#2|))) -((-2863 ((|#2| |#2| |#2|) 22)) (-2638 ((|#2| |#2| |#2|) 36)) (-2733 ((|#2| |#2| |#2| (-769) (-769)) 44))) -(((-1234 |#1| |#2|) (-10 -7 (-15 -2863 (|#2| |#2| |#2|)) (-15 -2638 (|#2| |#2| |#2|)) (-15 -2733 (|#2| |#2| |#2| (-769) (-769)))) (-1047) (-1238 |#1|)) (T -1234)) -((-2733 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-769)) (-4 *4 (-1047)) (-5 *1 (-1234 *4 *2)) (-4 *2 (-1238 *4)))) (-2638 (*1 *2 *2 *2) (-12 (-4 *3 (-1047)) (-5 *1 (-1234 *3 *2)) (-4 *2 (-1238 *3)))) (-2863 (*1 *2 *2 *2) (-12 (-4 *3 (-1047)) (-5 *1 (-1234 *3 *2)) (-4 *2 (-1238 *3))))) -(-10 -7 (-15 -2863 (|#2| |#2| |#2|)) (-15 -2638 (|#2| |#2| |#2|)) (-15 -2733 (|#2| |#2| |#2| (-769) (-769)))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-4020 (((-1262 |#2|) $ (-769)) NIL)) (-2397 (((-642 (-1079)) $) NIL)) (-2865 (($ (-1169 |#2|)) NIL)) (-2223 (((-1169 $) $ (-1079)) NIL) (((-1169 |#2|) $) NIL)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (|has| |#2| (-556)))) (-4252 (($ $) NIL (|has| |#2| (-556)))) (-1722 (((-112) $) NIL (|has| |#2| (-556)))) (-4035 (((-769) $) NIL) (((-769) $ (-642 (-1079))) NIL)) (-3085 (((-3 $ "failed") $ $) NIL)) (-2106 (($ $ $) NIL (|has| |#2| (-556)))) (-4297 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#2| (-907)))) (-1993 (($ $) NIL (|has| |#2| (-452)))) (-3282 (((-418 $) $) NIL (|has| |#2| (-452)))) (-3267 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) NIL (|has| |#2| (-907)))) (-2134 (((-112) $ $) NIL (|has| |#2| (-363)))) (-3254 (($ $ (-769)) NIL)) (-3457 (($ $ (-769)) NIL)) (-2161 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-452)))) (-2822 (($) NIL T CONST)) (-2849 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1036 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#2| (-1036 (-564)))) (((-3 (-1079) "failed") $) NIL)) (-1687 ((|#2| $) NIL) (((-407 (-564)) $) NIL (|has| |#2| (-1036 (-407 (-564))))) (((-564) $) NIL (|has| |#2| (-1036 (-564)))) (((-1079) $) NIL)) (-3710 (($ $ $ (-1079)) NIL (|has| |#2| (-172))) ((|#2| $ $) NIL (|has| |#2| (-172)))) (-2796 (($ $ $) NIL (|has| |#2| (-363)))) (-3459 (($ $) NIL)) (-3330 (((-687 (-564)) (-687 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -3544 (-687 |#2|)) (|:| |vec| (-1262 |#2|))) (-687 $) (-1262 $)) NIL) (((-687 |#2|) (-687 $)) NIL)) (-2675 (((-3 $ "failed") $) NIL)) (-2808 (($ $ $) NIL (|has| |#2| (-363)))) (-2888 (($ $ $) NIL)) (-2553 (($ $ $) NIL (|has| |#2| (-556)))) (-1555 (((-2 (|:| -2968 |#2|) (|:| -4332 $) (|:| -1992 $)) $ $) NIL (|has| |#2| (-556)))) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) NIL (|has| |#2| (-363)))) (-2511 (($ $) NIL (|has| |#2| (-452))) (($ $ (-1079)) NIL (|has| |#2| (-452)))) (-3446 (((-642 $) $) NIL)) (-3552 (((-112) $) NIL (|has| |#2| (-907)))) (-2315 (($ $ |#2| (-769) $) NIL)) (-1381 (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) NIL (-12 (|has| (-1079) (-884 (-379))) (|has| |#2| (-884 (-379))))) (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) NIL (-12 (|has| (-1079) (-884 (-564))) (|has| |#2| (-884 (-564)))))) (-2408 (((-769) $ $) NIL (|has| |#2| (-556)))) (-3163 (((-112) $) NIL)) (-1904 (((-769) $) NIL)) (-4382 (((-3 $ "failed") $) NIL (|has| |#2| (-1148)))) (-2387 (($ (-1169 |#2|) (-1079)) NIL) (($ (-1169 $) (-1079)) NIL)) (-2157 (($ $ (-769)) NIL)) (-2709 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#2| (-363)))) (-1995 (((-642 $) $) NIL)) (-3471 (((-112) $) NIL)) (-2374 (($ |#2| (-769)) 18) (($ $ (-1079) (-769)) NIL) (($ $ (-642 (-1079)) (-642 (-769))) NIL)) (-3312 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $ (-1079)) NIL) (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL)) (-2887 (((-769) $) NIL) (((-769) $ (-1079)) NIL) (((-642 (-769)) $ (-642 (-1079))) NIL)) (-3879 (($ (-1 (-769) (-769)) $) NIL)) (-2947 (($ (-1 |#2| |#2|) $) NIL)) (-1864 (((-1169 |#2|) $) NIL)) (-1557 (((-3 (-1079) "failed") $) NIL)) (-2510 (($ $) NIL)) (-2523 ((|#2| $) NIL)) (-2066 (($ (-642 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-1778 (((-1155) $) NIL)) (-1930 (((-2 (|:| -4332 $) (|:| -1992 $)) $ (-769)) NIL)) (-3664 (((-3 (-642 $) "failed") $) NIL)) (-4315 (((-3 (-642 $) "failed") $) NIL)) (-3177 (((-3 (-2 (|:| |var| (-1079)) (|:| -2817 (-769))) "failed") $) NIL)) (-3703 (($ $) NIL (|has| |#2| (-38 (-407 (-564)))))) (-3910 (($) NIL (|has| |#2| (-1148)) CONST)) (-3999 (((-1117) $) NIL)) (-2491 (((-112) $) NIL)) (-2500 ((|#2| $) NIL)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) NIL (|has| |#2| (-452)))) (-2105 (($ (-642 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-3411 (($ $ (-769) |#2| $) NIL)) (-3223 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#2| (-907)))) (-2236 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#2| (-907)))) (-2254 (((-418 $) $) NIL (|has| |#2| (-907)))) (-1877 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL (|has| |#2| (-363)))) (-2842 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-556)))) (-1483 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#2| (-363)))) (-3154 (($ $ (-642 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-642 $) (-642 $)) NIL) (($ $ (-1079) |#2|) NIL) (($ $ (-642 (-1079)) (-642 |#2|)) NIL) (($ $ (-1079) $) NIL) (($ $ (-642 (-1079)) (-642 $)) NIL)) (-4274 (((-769) $) NIL (|has| |#2| (-363)))) (-4369 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-407 $) (-407 $) (-407 $)) NIL (|has| |#2| (-556))) ((|#2| (-407 $) |#2|) NIL (|has| |#2| (-363))) (((-407 $) $ (-407 $)) NIL (|has| |#2| (-556)))) (-3288 (((-3 $ "failed") $ (-769)) NIL)) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL (|has| |#2| (-363)))) (-2790 (($ $ (-1079)) NIL (|has| |#2| (-172))) ((|#2| $) NIL (|has| |#2| (-172)))) (-2199 (($ $ (-1079)) NIL) (($ $ (-642 (-1079))) NIL) (($ $ (-1079) (-769)) NIL) (($ $ (-642 (-1079)) (-642 (-769))) NIL) (($ $ (-769)) NIL) (($ $) NIL) (($ $ (-1173)) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-1 |#2| |#2|) (-769)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-3252 (((-769) $) NIL) (((-769) $ (-1079)) NIL) (((-642 (-769)) $ (-642 (-1079))) NIL)) (-3003 (((-890 (-379)) $) NIL (-12 (|has| (-1079) (-612 (-890 (-379)))) (|has| |#2| (-612 (-890 (-379)))))) (((-890 (-564)) $) NIL (-12 (|has| (-1079) (-612 (-890 (-564)))) (|has| |#2| (-612 (-890 (-564)))))) (((-536) $) NIL (-12 (|has| (-1079) (-612 (-536))) (|has| |#2| (-612 (-536)))))) (-4325 ((|#2| $) NIL (|has| |#2| (-452))) (($ $ (-1079)) NIL (|has| |#2| (-452)))) (-3556 (((-3 (-1262 $) "failed") (-687 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-907))))) (-4281 (((-3 $ "failed") $ $) NIL (|has| |#2| (-556))) (((-3 (-407 $) "failed") (-407 $) $) NIL (|has| |#2| (-556)))) (-2390 (((-860) $) 13) (($ (-564)) NIL) (($ |#2|) NIL) (($ (-1079)) NIL) (($ (-1258 |#1|)) 20) (($ (-407 (-564))) NIL (-2682 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1036 (-407 (-564)))))) (($ $) NIL (|has| |#2| (-556)))) (-2839 (((-642 |#2|) $) NIL)) (-3005 ((|#2| $ (-769)) NIL) (($ $ (-1079) (-769)) NIL) (($ $ (-642 (-1079)) (-642 (-769))) NIL)) (-3434 (((-3 $ "failed") $) NIL (-2682 (-12 (|has| $ (-145)) (|has| |#2| (-907))) (|has| |#2| (-145))))) (-3348 (((-769)) NIL T CONST)) (-2645 (($ $ $ (-769)) NIL (|has| |#2| (-172)))) (-1600 (((-112) $ $) NIL)) (-1594 (((-112) $ $) NIL (|has| |#2| (-556)))) (-2361 (($) NIL T CONST)) (-2371 (($) 14 T CONST)) (-2711 (($ $ (-1079)) NIL) (($ $ (-642 (-1079))) NIL) (($ $ (-1079) (-769)) NIL) (($ $ (-642 (-1079)) (-642 (-769))) NIL) (($ $ (-769)) NIL) (($ $) NIL) (($ $ (-1173)) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-1 |#2| |#2|) (-769)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2821 (((-112) $ $) NIL)) (-2943 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#2| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#2| (-38 (-407 (-564))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-1235 |#1| |#2|) (-13 (-1238 |#2|) (-614 (-1258 |#1|)) (-10 -8 (-15 -3411 ($ $ (-769) |#2| $)))) (-1173) (-1047)) (T -1235)) -((-3411 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-769)) (-5 *1 (-1235 *4 *3)) (-14 *4 (-1173)) (-4 *3 (-1047))))) -(-13 (-1238 |#2|) (-614 (-1258 |#1|)) (-10 -8 (-15 -3411 ($ $ (-769) |#2| $)))) -((-2947 ((|#4| (-1 |#3| |#1|) |#2|) 22))) -(((-1236 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2947 (|#4| (-1 |#3| |#1|) |#2|))) (-1047) (-1238 |#1|) (-1047) (-1238 |#3|)) (T -1236)) -((-2947 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1047)) (-4 *6 (-1047)) (-4 *2 (-1238 *6)) (-5 *1 (-1236 *5 *4 *6 *2)) (-4 *4 (-1238 *5))))) -(-10 -7 (-15 -2947 (|#4| (-1 |#3| |#1|) |#2|))) -((-4020 (((-1262 |#2|) $ (-769)) 129)) (-2397 (((-642 (-1079)) $) 16)) (-2865 (($ (-1169 |#2|)) 80)) (-4035 (((-769) $) NIL) (((-769) $ (-642 (-1079))) 21)) (-4297 (((-418 (-1169 $)) (-1169 $)) 204)) (-1993 (($ $) 194)) (-3282 (((-418 $) $) 192)) (-3267 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) 95)) (-3254 (($ $ (-769)) 84)) (-3457 (($ $ (-769)) 86)) (-2161 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 145)) (-2849 (((-3 |#2| "failed") $) 132) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 (-564) "failed") $) NIL) (((-3 (-1079) "failed") $) NIL)) (-1687 ((|#2| $) 130) (((-407 (-564)) $) NIL) (((-564) $) NIL) (((-1079) $) NIL)) (-2553 (($ $ $) 170)) (-1555 (((-2 (|:| -2968 |#2|) (|:| -4332 $) (|:| -1992 $)) $ $) 172)) (-2408 (((-769) $ $) 189)) (-4382 (((-3 $ "failed") $) 138)) (-2374 (($ |#2| (-769)) NIL) (($ $ (-1079) (-769)) 59) (($ $ (-642 (-1079)) (-642 (-769))) NIL)) (-2887 (((-769) $) NIL) (((-769) $ (-1079)) 54) (((-642 (-769)) $ (-642 (-1079))) 55)) (-1864 (((-1169 |#2|) $) 72)) (-1557 (((-3 (-1079) "failed") $) 52)) (-1930 (((-2 (|:| -4332 $) (|:| -1992 $)) $ (-769)) 83)) (-3703 (($ $) 219)) (-3910 (($) 134)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) 201)) (-3223 (((-418 (-1169 $)) (-1169 $)) 101)) (-2236 (((-418 (-1169 $)) (-1169 $)) 99)) (-2254 (((-418 $) $) 120)) (-3154 (($ $ (-642 (-294 $))) 51) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-642 $) (-642 $)) NIL) (($ $ (-1079) |#2|) 39) (($ $ (-642 (-1079)) (-642 |#2|)) 36) (($ $ (-1079) $) 32) (($ $ (-642 (-1079)) (-642 $)) 30)) (-4274 (((-769) $) 207)) (-4369 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-407 $) (-407 $) (-407 $)) 164) ((|#2| (-407 $) |#2|) 206) (((-407 $) $ (-407 $)) 188)) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) 212)) (-2199 (($ $ (-1079)) 157) (($ $ (-642 (-1079))) NIL) (($ $ (-1079) (-769)) NIL) (($ $ (-642 (-1079)) (-642 (-769))) NIL) (($ $ (-769)) NIL) (($ $) 155) (($ $ (-1173)) NIL) (($ $ (-642 (-1173))) NIL) (($ $ (-1173) (-769)) NIL) (($ $ (-642 (-1173)) (-642 (-769))) NIL) (($ $ (-1 |#2| |#2|) (-769)) NIL) (($ $ (-1 |#2| |#2|)) 154) (($ $ (-1 |#2| |#2|) $) 149)) (-3252 (((-769) $) NIL) (((-769) $ (-1079)) 17) (((-642 (-769)) $ (-642 (-1079))) 23)) (-4325 ((|#2| $) NIL) (($ $ (-1079)) 140)) (-4281 (((-3 $ "failed") $ $) 180) (((-3 (-407 $) "failed") (-407 $) $) 176)) (-2390 (((-860) $) NIL) (($ (-564)) NIL) (($ |#2|) NIL) (($ (-1079)) 64) (($ (-407 (-564))) NIL) (($ $) NIL))) -(((-1237 |#1| |#2|) (-10 -8 (-15 -2390 (|#1| |#1|)) (-15 -3464 ((-1169 |#1|) (-1169 |#1|) (-1169 |#1|))) (-15 -3282 ((-418 |#1|) |#1|)) (-15 -1993 (|#1| |#1|)) (-15 -2390 (|#1| (-407 (-564)))) (-15 -3910 (|#1|)) (-15 -4382 ((-3 |#1| "failed") |#1|)) (-15 -4369 ((-407 |#1|) |#1| (-407 |#1|))) (-15 -4274 ((-769) |#1|)) (-15 -2999 ((-2 (|:| -4332 |#1|) (|:| -1992 |#1|)) |#1| |#1|)) (-15 -3703 (|#1| |#1|)) (-15 -4369 (|#2| (-407 |#1|) |#2|)) (-15 -2161 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -1555 ((-2 (|:| -2968 |#2|) (|:| -4332 |#1|) (|:| -1992 |#1|)) |#1| |#1|)) (-15 -2553 (|#1| |#1| |#1|)) (-15 -4281 ((-3 (-407 |#1|) "failed") (-407 |#1|) |#1|)) (-15 -4281 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2408 ((-769) |#1| |#1|)) (-15 -4369 ((-407 |#1|) (-407 |#1|) (-407 |#1|))) (-15 -2199 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3457 (|#1| |#1| (-769))) (-15 -3254 (|#1| |#1| (-769))) (-15 -1930 ((-2 (|:| -4332 |#1|) (|:| -1992 |#1|)) |#1| (-769))) (-15 -2865 (|#1| (-1169 |#2|))) (-15 -1864 ((-1169 |#2|) |#1|)) (-15 -4020 ((-1262 |#2|) |#1| (-769))) (-15 -2199 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2199 (|#1| |#1| (-1 |#2| |#2|) (-769))) (-15 -2199 (|#1| |#1| (-642 (-1173)) (-642 (-769)))) (-15 -2199 (|#1| |#1| (-1173) (-769))) (-15 -2199 (|#1| |#1| (-642 (-1173)))) (-15 -2199 (|#1| |#1| (-1173))) (-15 -2199 (|#1| |#1|)) (-15 -2199 (|#1| |#1| (-769))) (-15 -4369 (|#1| |#1| |#1|)) (-15 -4369 (|#2| |#1| |#2|)) (-15 -2254 ((-418 |#1|) |#1|)) (-15 -4297 ((-418 (-1169 |#1|)) (-1169 |#1|))) (-15 -2236 ((-418 (-1169 |#1|)) (-1169 |#1|))) (-15 -3223 ((-418 (-1169 |#1|)) (-1169 |#1|))) (-15 -3267 ((-3 (-642 (-1169 |#1|)) "failed") (-642 (-1169 |#1|)) (-1169 |#1|))) (-15 -4325 (|#1| |#1| (-1079))) (-15 -2397 ((-642 (-1079)) |#1|)) (-15 -4035 ((-769) |#1| (-642 (-1079)))) (-15 -4035 ((-769) |#1|)) (-15 -2374 (|#1| |#1| (-642 (-1079)) (-642 (-769)))) (-15 -2374 (|#1| |#1| (-1079) (-769))) (-15 -2887 ((-642 (-769)) |#1| (-642 (-1079)))) (-15 -2887 ((-769) |#1| (-1079))) (-15 -1557 ((-3 (-1079) "failed") |#1|)) (-15 -3252 ((-642 (-769)) |#1| (-642 (-1079)))) (-15 -3252 ((-769) |#1| (-1079))) (-15 -2390 (|#1| (-1079))) (-15 -2849 ((-3 (-1079) "failed") |#1|)) (-15 -1687 ((-1079) |#1|)) (-15 -3154 (|#1| |#1| (-642 (-1079)) (-642 |#1|))) (-15 -3154 (|#1| |#1| (-1079) |#1|)) (-15 -3154 (|#1| |#1| (-642 (-1079)) (-642 |#2|))) (-15 -3154 (|#1| |#1| (-1079) |#2|)) (-15 -3154 (|#1| |#1| (-642 |#1|) (-642 |#1|))) (-15 -3154 (|#1| |#1| |#1| |#1|)) (-15 -3154 (|#1| |#1| (-294 |#1|))) (-15 -3154 (|#1| |#1| (-642 (-294 |#1|)))) (-15 -3252 ((-769) |#1|)) (-15 -2374 (|#1| |#2| (-769))) (-15 -2849 ((-3 (-564) "failed") |#1|)) (-15 -1687 ((-564) |#1|)) (-15 -2849 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -1687 ((-407 (-564)) |#1|)) (-15 -1687 (|#2| |#1|)) (-15 -2849 ((-3 |#2| "failed") |#1|)) (-15 -2390 (|#1| |#2|)) (-15 -2887 ((-769) |#1|)) (-15 -4325 (|#2| |#1|)) (-15 -2199 (|#1| |#1| (-642 (-1079)) (-642 (-769)))) (-15 -2199 (|#1| |#1| (-1079) (-769))) (-15 -2199 (|#1| |#1| (-642 (-1079)))) (-15 -2199 (|#1| |#1| (-1079))) (-15 -2390 (|#1| (-564))) (-15 -2390 ((-860) |#1|))) (-1238 |#2|) (-1047)) (T -1237)) -NIL -(-10 -8 (-15 -2390 (|#1| |#1|)) (-15 -3464 ((-1169 |#1|) (-1169 |#1|) (-1169 |#1|))) (-15 -3282 ((-418 |#1|) |#1|)) (-15 -1993 (|#1| |#1|)) (-15 -2390 (|#1| (-407 (-564)))) (-15 -3910 (|#1|)) (-15 -4382 ((-3 |#1| "failed") |#1|)) (-15 -4369 ((-407 |#1|) |#1| (-407 |#1|))) (-15 -4274 ((-769) |#1|)) (-15 -2999 ((-2 (|:| -4332 |#1|) (|:| -1992 |#1|)) |#1| |#1|)) (-15 -3703 (|#1| |#1|)) (-15 -4369 (|#2| (-407 |#1|) |#2|)) (-15 -2161 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -1555 ((-2 (|:| -2968 |#2|) (|:| -4332 |#1|) (|:| -1992 |#1|)) |#1| |#1|)) (-15 -2553 (|#1| |#1| |#1|)) (-15 -4281 ((-3 (-407 |#1|) "failed") (-407 |#1|) |#1|)) (-15 -4281 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2408 ((-769) |#1| |#1|)) (-15 -4369 ((-407 |#1|) (-407 |#1|) (-407 |#1|))) (-15 -2199 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3457 (|#1| |#1| (-769))) (-15 -3254 (|#1| |#1| (-769))) (-15 -1930 ((-2 (|:| -4332 |#1|) (|:| -1992 |#1|)) |#1| (-769))) (-15 -2865 (|#1| (-1169 |#2|))) (-15 -1864 ((-1169 |#2|) |#1|)) (-15 -4020 ((-1262 |#2|) |#1| (-769))) (-15 -2199 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2199 (|#1| |#1| (-1 |#2| |#2|) (-769))) (-15 -2199 (|#1| |#1| (-642 (-1173)) (-642 (-769)))) (-15 -2199 (|#1| |#1| (-1173) (-769))) (-15 -2199 (|#1| |#1| (-642 (-1173)))) (-15 -2199 (|#1| |#1| (-1173))) (-15 -2199 (|#1| |#1|)) (-15 -2199 (|#1| |#1| (-769))) (-15 -4369 (|#1| |#1| |#1|)) (-15 -4369 (|#2| |#1| |#2|)) (-15 -2254 ((-418 |#1|) |#1|)) (-15 -4297 ((-418 (-1169 |#1|)) (-1169 |#1|))) (-15 -2236 ((-418 (-1169 |#1|)) (-1169 |#1|))) (-15 -3223 ((-418 (-1169 |#1|)) (-1169 |#1|))) (-15 -3267 ((-3 (-642 (-1169 |#1|)) "failed") (-642 (-1169 |#1|)) (-1169 |#1|))) (-15 -4325 (|#1| |#1| (-1079))) (-15 -2397 ((-642 (-1079)) |#1|)) (-15 -4035 ((-769) |#1| (-642 (-1079)))) (-15 -4035 ((-769) |#1|)) (-15 -2374 (|#1| |#1| (-642 (-1079)) (-642 (-769)))) (-15 -2374 (|#1| |#1| (-1079) (-769))) (-15 -2887 ((-642 (-769)) |#1| (-642 (-1079)))) (-15 -2887 ((-769) |#1| (-1079))) (-15 -1557 ((-3 (-1079) "failed") |#1|)) (-15 -3252 ((-642 (-769)) |#1| (-642 (-1079)))) (-15 -3252 ((-769) |#1| (-1079))) (-15 -2390 (|#1| (-1079))) (-15 -2849 ((-3 (-1079) "failed") |#1|)) (-15 -1687 ((-1079) |#1|)) (-15 -3154 (|#1| |#1| (-642 (-1079)) (-642 |#1|))) (-15 -3154 (|#1| |#1| (-1079) |#1|)) (-15 -3154 (|#1| |#1| (-642 (-1079)) (-642 |#2|))) (-15 -3154 (|#1| |#1| (-1079) |#2|)) (-15 -3154 (|#1| |#1| (-642 |#1|) (-642 |#1|))) (-15 -3154 (|#1| |#1| |#1| |#1|)) (-15 -3154 (|#1| |#1| (-294 |#1|))) (-15 -3154 (|#1| |#1| (-642 (-294 |#1|)))) (-15 -3252 ((-769) |#1|)) (-15 -2374 (|#1| |#2| (-769))) (-15 -2849 ((-3 (-564) "failed") |#1|)) (-15 -1687 ((-564) |#1|)) (-15 -2849 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -1687 ((-407 (-564)) |#1|)) (-15 -1687 (|#2| |#1|)) (-15 -2849 ((-3 |#2| "failed") |#1|)) (-15 -2390 (|#1| |#2|)) (-15 -2887 ((-769) |#1|)) (-15 -4325 (|#2| |#1|)) (-15 -2199 (|#1| |#1| (-642 (-1079)) (-642 (-769)))) (-15 -2199 (|#1| |#1| (-1079) (-769))) (-15 -2199 (|#1| |#1| (-642 (-1079)))) (-15 -2199 (|#1| |#1| (-1079))) (-15 -2390 (|#1| (-564))) (-15 -2390 ((-860) |#1|))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-4020 (((-1262 |#1|) $ (-769)) 240)) (-2397 (((-642 (-1079)) $) 112)) (-2865 (($ (-1169 |#1|)) 238)) (-2223 (((-1169 $) $ (-1079)) 127) (((-1169 |#1|) $) 126)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) 89 (|has| |#1| (-556)))) (-4252 (($ $) 90 (|has| |#1| (-556)))) (-1722 (((-112) $) 92 (|has| |#1| (-556)))) (-4035 (((-769) $) 114) (((-769) $ (-642 (-1079))) 113)) (-3085 (((-3 $ "failed") $ $) 20)) (-2106 (($ $ $) 225 (|has| |#1| (-556)))) (-4297 (((-418 (-1169 $)) (-1169 $)) 102 (|has| |#1| (-907)))) (-1993 (($ $) 100 (|has| |#1| (-452)))) (-3282 (((-418 $) $) 99 (|has| |#1| (-452)))) (-3267 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) 105 (|has| |#1| (-907)))) (-2134 (((-112) $ $) 210 (|has| |#1| (-363)))) (-3254 (($ $ (-769)) 233)) (-3457 (($ $ (-769)) 232)) (-2161 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 220 (|has| |#1| (-452)))) (-2822 (($) 18 T CONST)) (-2849 (((-3 |#1| "failed") $) 166) (((-3 (-407 (-564)) "failed") $) 163 (|has| |#1| (-1036 (-407 (-564))))) (((-3 (-564) "failed") $) 161 (|has| |#1| (-1036 (-564)))) (((-3 (-1079) "failed") $) 138)) (-1687 ((|#1| $) 165) (((-407 (-564)) $) 164 (|has| |#1| (-1036 (-407 (-564))))) (((-564) $) 162 (|has| |#1| (-1036 (-564)))) (((-1079) $) 139)) (-3710 (($ $ $ (-1079)) 110 (|has| |#1| (-172))) ((|#1| $ $) 228 (|has| |#1| (-172)))) (-2796 (($ $ $) 214 (|has| |#1| (-363)))) (-3459 (($ $) 156)) (-3330 (((-687 (-564)) (-687 $)) 136 (|has| |#1| (-637 (-564)))) (((-2 (|:| -3544 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) 135 (|has| |#1| (-637 (-564)))) (((-2 (|:| -3544 (-687 |#1|)) (|:| |vec| (-1262 |#1|))) (-687 $) (-1262 $)) 134) (((-687 |#1|) (-687 $)) 133)) (-2675 (((-3 $ "failed") $) 37)) (-2808 (($ $ $) 213 (|has| |#1| (-363)))) (-2888 (($ $ $) 231)) (-2553 (($ $ $) 222 (|has| |#1| (-556)))) (-1555 (((-2 (|:| -2968 |#1|) (|:| -4332 $) (|:| -1992 $)) $ $) 221 (|has| |#1| (-556)))) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) 208 (|has| |#1| (-363)))) (-2511 (($ $) 178 (|has| |#1| (-452))) (($ $ (-1079)) 107 (|has| |#1| (-452)))) (-3446 (((-642 $) $) 111)) (-3552 (((-112) $) 98 (|has| |#1| (-907)))) (-2315 (($ $ |#1| (-769) $) 174)) (-1381 (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) 86 (-12 (|has| (-1079) (-884 (-379))) (|has| |#1| (-884 (-379))))) (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) 85 (-12 (|has| (-1079) (-884 (-564))) (|has| |#1| (-884 (-564)))))) (-2408 (((-769) $ $) 226 (|has| |#1| (-556)))) (-3163 (((-112) $) 35)) (-1904 (((-769) $) 171)) (-4382 (((-3 $ "failed") $) 206 (|has| |#1| (-1148)))) (-2387 (($ (-1169 |#1|) (-1079)) 119) (($ (-1169 $) (-1079)) 118)) (-2157 (($ $ (-769)) 237)) (-2709 (((-3 (-642 $) "failed") (-642 $) $) 217 (|has| |#1| (-363)))) (-1995 (((-642 $) $) 128)) (-3471 (((-112) $) 154)) (-2374 (($ |#1| (-769)) 155) (($ $ (-1079) (-769)) 121) (($ $ (-642 (-1079)) (-642 (-769))) 120)) (-3312 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $ (-1079)) 122) (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) 235)) (-2887 (((-769) $) 172) (((-769) $ (-1079)) 124) (((-642 (-769)) $ (-642 (-1079))) 123)) (-3879 (($ (-1 (-769) (-769)) $) 173)) (-2947 (($ (-1 |#1| |#1|) $) 153)) (-1864 (((-1169 |#1|) $) 239)) (-1557 (((-3 (-1079) "failed") $) 125)) (-2510 (($ $) 151)) (-2523 ((|#1| $) 150)) (-2066 (($ (-642 $)) 96 (|has| |#1| (-452))) (($ $ $) 95 (|has| |#1| (-452)))) (-1778 (((-1155) $) 10)) (-1930 (((-2 (|:| -4332 $) (|:| -1992 $)) $ (-769)) 234)) (-3664 (((-3 (-642 $) "failed") $) 116)) (-4315 (((-3 (-642 $) "failed") $) 117)) (-3177 (((-3 (-2 (|:| |var| (-1079)) (|:| -2817 (-769))) "failed") $) 115)) (-3703 (($ $) 218 (|has| |#1| (-38 (-407 (-564)))))) (-3910 (($) 205 (|has| |#1| (-1148)) CONST)) (-3999 (((-1117) $) 11)) (-2491 (((-112) $) 168)) (-2500 ((|#1| $) 169)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) 97 (|has| |#1| (-452)))) (-2105 (($ (-642 $)) 94 (|has| |#1| (-452))) (($ $ $) 93 (|has| |#1| (-452)))) (-3223 (((-418 (-1169 $)) (-1169 $)) 104 (|has| |#1| (-907)))) (-2236 (((-418 (-1169 $)) (-1169 $)) 103 (|has| |#1| (-907)))) (-2254 (((-418 $) $) 101 (|has| |#1| (-907)))) (-1877 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 216 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) 215 (|has| |#1| (-363)))) (-2842 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-556))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-556)))) (-1483 (((-3 (-642 $) "failed") (-642 $) $) 209 (|has| |#1| (-363)))) (-3154 (($ $ (-642 (-294 $))) 147) (($ $ (-294 $)) 146) (($ $ $ $) 145) (($ $ (-642 $) (-642 $)) 144) (($ $ (-1079) |#1|) 143) (($ $ (-642 (-1079)) (-642 |#1|)) 142) (($ $ (-1079) $) 141) (($ $ (-642 (-1079)) (-642 $)) 140)) (-4274 (((-769) $) 211 (|has| |#1| (-363)))) (-4369 ((|#1| $ |#1|) 258) (($ $ $) 257) (((-407 $) (-407 $) (-407 $)) 227 (|has| |#1| (-556))) ((|#1| (-407 $) |#1|) 219 (|has| |#1| (-363))) (((-407 $) $ (-407 $)) 207 (|has| |#1| (-556)))) (-3288 (((-3 $ "failed") $ (-769)) 236)) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) 212 (|has| |#1| (-363)))) (-2790 (($ $ (-1079)) 109 (|has| |#1| (-172))) ((|#1| $) 229 (|has| |#1| (-172)))) (-2199 (($ $ (-1079)) 46) (($ $ (-642 (-1079))) 45) (($ $ (-1079) (-769)) 44) (($ $ (-642 (-1079)) (-642 (-769))) 43) (($ $ (-769)) 255) (($ $) 253) (($ $ (-1173)) 252 (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) 251 (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) 250 (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) 249 (|has| |#1| (-898 (-1173)))) (($ $ (-1 |#1| |#1|) (-769)) 242) (($ $ (-1 |#1| |#1|)) 241) (($ $ (-1 |#1| |#1|) $) 230)) (-3252 (((-769) $) 152) (((-769) $ (-1079)) 132) (((-642 (-769)) $ (-642 (-1079))) 131)) (-3003 (((-890 (-379)) $) 84 (-12 (|has| (-1079) (-612 (-890 (-379)))) (|has| |#1| (-612 (-890 (-379)))))) (((-890 (-564)) $) 83 (-12 (|has| (-1079) (-612 (-890 (-564)))) (|has| |#1| (-612 (-890 (-564)))))) (((-536) $) 82 (-12 (|has| (-1079) (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-4325 ((|#1| $) 177 (|has| |#1| (-452))) (($ $ (-1079)) 108 (|has| |#1| (-452)))) (-3556 (((-3 (-1262 $) "failed") (-687 $)) 106 (-2317 (|has| $ (-145)) (|has| |#1| (-907))))) (-4281 (((-3 $ "failed") $ $) 224 (|has| |#1| (-556))) (((-3 (-407 $) "failed") (-407 $) $) 223 (|has| |#1| (-556)))) (-2390 (((-860) $) 12) (($ (-564)) 33) (($ |#1|) 167) (($ (-1079)) 137) (($ (-407 (-564))) 80 (-2682 (|has| |#1| (-1036 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564)))))) (($ $) 87 (|has| |#1| (-556)))) (-2839 (((-642 |#1|) $) 170)) (-3005 ((|#1| $ (-769)) 157) (($ $ (-1079) (-769)) 130) (($ $ (-642 (-1079)) (-642 (-769))) 129)) (-3434 (((-3 $ "failed") $) 81 (-2682 (-2317 (|has| $ (-145)) (|has| |#1| (-907))) (|has| |#1| (-145))))) (-3348 (((-769)) 32 T CONST)) (-2645 (($ $ $ (-769)) 175 (|has| |#1| (-172)))) (-1600 (((-112) $ $) 9)) (-1594 (((-112) $ $) 91 (|has| |#1| (-556)))) (-2361 (($) 19 T CONST)) (-2371 (($) 34 T CONST)) (-2711 (($ $ (-1079)) 42) (($ $ (-642 (-1079))) 41) (($ $ (-1079) (-769)) 40) (($ $ (-642 (-1079)) (-642 (-769))) 39) (($ $ (-769)) 256) (($ $) 254) (($ $ (-1173)) 248 (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) 247 (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) 246 (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) 245 (|has| |#1| (-898 (-1173)))) (($ $ (-1 |#1| |#1|) (-769)) 244) (($ $ (-1 |#1| |#1|)) 243)) (-2821 (((-112) $ $) 6)) (-2943 (($ $ |#1|) 158 (|has| |#1| (-363)))) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ (-407 (-564))) 160 (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) 159 (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 149) (($ $ |#1|) 148))) -(((-1238 |#1|) (-140) (-1047)) (T -1238)) -((-4020 (*1 *2 *1 *3) (-12 (-5 *3 (-769)) (-4 *1 (-1238 *4)) (-4 *4 (-1047)) (-5 *2 (-1262 *4)))) (-1864 (*1 *2 *1) (-12 (-4 *1 (-1238 *3)) (-4 *3 (-1047)) (-5 *2 (-1169 *3)))) (-2865 (*1 *1 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1047)) (-4 *1 (-1238 *3)))) (-2157 (*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-4 *1 (-1238 *3)) (-4 *3 (-1047)))) (-3288 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-769)) (-4 *1 (-1238 *3)) (-4 *3 (-1047)))) (-3312 (*1 *2 *1 *1) (-12 (-4 *3 (-1047)) (-5 *2 (-2 (|:| -4332 *1) (|:| -1992 *1))) (-4 *1 (-1238 *3)))) (-1930 (*1 *2 *1 *3) (-12 (-5 *3 (-769)) (-4 *4 (-1047)) (-5 *2 (-2 (|:| -4332 *1) (|:| -1992 *1))) (-4 *1 (-1238 *4)))) (-3254 (*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-4 *1 (-1238 *3)) (-4 *3 (-1047)))) (-3457 (*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-4 *1 (-1238 *3)) (-4 *3 (-1047)))) (-2888 (*1 *1 *1 *1) (-12 (-4 *1 (-1238 *2)) (-4 *2 (-1047)))) (-2199 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1238 *3)) (-4 *3 (-1047)))) (-2790 (*1 *2 *1) (-12 (-4 *1 (-1238 *2)) (-4 *2 (-1047)) (-4 *2 (-172)))) (-3710 (*1 *2 *1 *1) (-12 (-4 *1 (-1238 *2)) (-4 *2 (-1047)) (-4 *2 (-172)))) (-4369 (*1 *2 *2 *2) (-12 (-5 *2 (-407 *1)) (-4 *1 (-1238 *3)) (-4 *3 (-1047)) (-4 *3 (-556)))) (-2408 (*1 *2 *1 *1) (-12 (-4 *1 (-1238 *3)) (-4 *3 (-1047)) (-4 *3 (-556)) (-5 *2 (-769)))) (-2106 (*1 *1 *1 *1) (-12 (-4 *1 (-1238 *2)) (-4 *2 (-1047)) (-4 *2 (-556)))) (-4281 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1238 *2)) (-4 *2 (-1047)) (-4 *2 (-556)))) (-4281 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-407 *1)) (-4 *1 (-1238 *3)) (-4 *3 (-1047)) (-4 *3 (-556)))) (-2553 (*1 *1 *1 *1) (-12 (-4 *1 (-1238 *2)) (-4 *2 (-1047)) (-4 *2 (-556)))) (-1555 (*1 *2 *1 *1) (-12 (-4 *3 (-556)) (-4 *3 (-1047)) (-5 *2 (-2 (|:| -2968 *3) (|:| -4332 *1) (|:| -1992 *1))) (-4 *1 (-1238 *3)))) (-2161 (*1 *2 *1 *1) (-12 (-4 *3 (-452)) (-4 *3 (-1047)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1238 *3)))) (-4369 (*1 *2 *3 *2) (-12 (-5 *3 (-407 *1)) (-4 *1 (-1238 *2)) (-4 *2 (-1047)) (-4 *2 (-363)))) (-3703 (*1 *1 *1) (-12 (-4 *1 (-1238 *2)) (-4 *2 (-1047)) (-4 *2 (-38 (-407 (-564))))))) -(-13 (-947 |t#1| (-769) (-1079)) (-286 |t#1| |t#1|) (-286 $ $) (-233) (-231 |t#1|) (-10 -8 (-15 -4020 ((-1262 |t#1|) $ (-769))) (-15 -1864 ((-1169 |t#1|) $)) (-15 -2865 ($ (-1169 |t#1|))) (-15 -2157 ($ $ (-769))) (-15 -3288 ((-3 $ "failed") $ (-769))) (-15 -3312 ((-2 (|:| -4332 $) (|:| -1992 $)) $ $)) (-15 -1930 ((-2 (|:| -4332 $) (|:| -1992 $)) $ (-769))) (-15 -3254 ($ $ (-769))) (-15 -3457 ($ $ (-769))) (-15 -2888 ($ $ $)) (-15 -2199 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1148)) (-6 (-1148)) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-15 -2790 (|t#1| $)) (-15 -3710 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-556)) (PROGN (-6 (-286 (-407 $) (-407 $))) (-15 -4369 ((-407 $) (-407 $) (-407 $))) (-15 -2408 ((-769) $ $)) (-15 -2106 ($ $ $)) (-15 -4281 ((-3 $ "failed") $ $)) (-15 -4281 ((-3 (-407 $) "failed") (-407 $) $)) (-15 -2553 ($ $ $)) (-15 -1555 ((-2 (|:| -2968 |t#1|) (|:| -4332 $) (|:| -1992 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-452)) (-15 -2161 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-363)) (PROGN (-6 (-307)) (-6 -4406) (-15 -4369 (|t#1| (-407 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-407 (-564)))) (-15 -3703 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-769)) . T) ((-25) . T) ((-38 #1=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2682 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2682 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #1#) -2682 (|has| |#1| (-1036 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 #2=(-1079)) . T) ((-614 |#1|) . T) ((-614 $) -2682 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-611 (-860)) . T) ((-172) -2682 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-612 (-536)) -12 (|has| (-1079) (-612 (-536))) (|has| |#1| (-612 (-536)))) ((-612 (-890 (-379))) -12 (|has| (-1079) (-612 (-890 (-379)))) (|has| |#1| (-612 (-890 (-379))))) ((-612 (-890 (-564))) -12 (|has| (-1079) (-612 (-890 (-564)))) (|has| |#1| (-612 (-890 (-564))))) ((-231 |#1|) . T) ((-233) . T) ((-286 (-407 $) (-407 $)) |has| |#1| (-556)) ((-286 |#1| |#1|) . T) ((-286 $ $) . T) ((-290) -2682 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-307) |has| |#1| (-363)) ((-309 $) . T) ((-326 |#1| #0#) . T) ((-377 |#1|) . T) ((-411 |#1|) . T) ((-452) -2682 (|has| |#1| (-907)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-514 #2# |#1|) . T) ((-514 #2# $) . T) ((-514 $ $) . T) ((-556) -2682 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-644 #1#) |has| |#1| (-38 (-407 (-564)))) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-646 #1#) |has| |#1| (-38 (-407 (-564)))) ((-646 |#1|) . T) ((-646 $) . T) ((-638 #1#) |has| |#1| (-38 (-407 (-564)))) ((-638 |#1|) |has| |#1| (-172)) ((-638 $) -2682 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-715 #1#) |has| |#1| (-38 (-407 (-564)))) ((-715 |#1|) |has| |#1| (-172)) ((-715 $) -2682 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-724) . T) ((-898 #2#) . T) ((-898 (-1173)) |has| |#1| (-898 (-1173))) ((-884 (-379)) -12 (|has| (-1079) (-884 (-379))) (|has| |#1| (-884 (-379)))) ((-884 (-564)) -12 (|has| (-1079) (-884 (-564))) (|has| |#1| (-884 (-564)))) ((-947 |#1| #0# #2#) . T) ((-907) |has| |#1| (-907)) ((-918) |has| |#1| (-363)) ((-1036 (-407 (-564))) |has| |#1| (-1036 (-407 (-564)))) ((-1036 (-564)) |has| |#1| (-1036 (-564))) ((-1036 #2#) . T) ((-1036 |#1|) . T) ((-1049 #1#) |has| |#1| (-38 (-407 (-564)))) ((-1049 |#1|) . T) ((-1049 $) -2682 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1054 #1#) |has| |#1| (-38 (-407 (-564)))) ((-1054 |#1|) . T) ((-1054 $) -2682 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T) ((-1148) |has| |#1| (-1148)) ((-1216) |has| |#1| (-907))) -((-2397 (((-642 (-1079)) $) 34)) (-3459 (($ $) 31)) (-2374 (($ |#2| |#3|) NIL) (($ $ (-1079) |#3|) 28) (($ $ (-642 (-1079)) (-642 |#3|)) 27)) (-2510 (($ $) 14)) (-2523 ((|#2| $) 12)) (-3252 ((|#3| $) 10))) -(((-1239 |#1| |#2| |#3|) (-10 -8 (-15 -2397 ((-642 (-1079)) |#1|)) (-15 -2374 (|#1| |#1| (-642 (-1079)) (-642 |#3|))) (-15 -2374 (|#1| |#1| (-1079) |#3|)) (-15 -3459 (|#1| |#1|)) (-15 -2374 (|#1| |#2| |#3|)) (-15 -3252 (|#3| |#1|)) (-15 -2510 (|#1| |#1|)) (-15 -2523 (|#2| |#1|))) (-1240 |#2| |#3|) (-1047) (-790)) (T -1239)) -NIL -(-10 -8 (-15 -2397 ((-642 (-1079)) |#1|)) (-15 -2374 (|#1| |#1| (-642 (-1079)) (-642 |#3|))) (-15 -2374 (|#1| |#1| (-1079) |#3|)) (-15 -3459 (|#1| |#1|)) (-15 -2374 (|#1| |#2| |#3|)) (-15 -3252 (|#3| |#1|)) (-15 -2510 (|#1| |#1|)) (-15 -2523 (|#2| |#1|))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-2397 (((-642 (-1079)) $) 86)) (-1341 (((-1173) $) 115)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) 63 (|has| |#1| (-556)))) (-4252 (($ $) 64 (|has| |#1| (-556)))) (-1722 (((-112) $) 66 (|has| |#1| (-556)))) (-2180 (($ $ |#2|) 110) (($ $ |#2| |#2|) 109)) (-4077 (((-1153 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 117)) (-3085 (((-3 $ "failed") $ $) 20)) (-2822 (($) 18 T CONST)) (-3459 (($ $) 72)) (-2675 (((-3 $ "failed") $) 37)) (-2210 (((-112) $) 85)) (-2408 ((|#2| $) 112) ((|#2| $ |#2|) 111)) (-3163 (((-112) $) 35)) (-2157 (($ $ (-919)) 113)) (-3471 (((-112) $) 74)) (-2374 (($ |#1| |#2|) 73) (($ $ (-1079) |#2|) 88) (($ $ (-642 (-1079)) (-642 |#2|)) 87)) (-2947 (($ (-1 |#1| |#1|) $) 75)) (-2510 (($ $) 77)) (-2523 ((|#1| $) 78)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2137 (($ $ |#2|) 107)) (-2842 (((-3 $ "failed") $ $) 62 (|has| |#1| (-556)))) (-3154 (((-1153 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-4369 ((|#1| $ |#2|) 116) (($ $ $) 93 (|has| |#2| (-1109)))) (-2199 (($ $ (-642 (-1173)) (-642 (-769))) 101 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1173) (-769)) 100 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-642 (-1173))) 99 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1173)) 98 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-769)) 96 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3252 ((|#2| $) 76)) (-4189 (($ $) 84)) (-2390 (((-860) $) 12) (($ (-564)) 33) (($ (-407 (-564))) 69 (|has| |#1| (-38 (-407 (-564))))) (($ $) 61 (|has| |#1| (-556))) (($ |#1|) 59 (|has| |#1| (-172)))) (-3005 ((|#1| $ |#2|) 71)) (-3434 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-3348 (((-769)) 32 T CONST)) (-2245 ((|#1| $) 114)) (-1600 (((-112) $ $) 9)) (-1594 (((-112) $ $) 65 (|has| |#1| (-556)))) (-3560 ((|#1| $ |#2|) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -2390 (|#1| (-1173))))))) (-2361 (($) 19 T CONST)) (-2371 (($) 34 T CONST)) (-2711 (($ $ (-642 (-1173)) (-642 (-769))) 105 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1173) (-769)) 104 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-642 (-1173))) 103 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1173)) 102 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-769)) 97 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2821 (((-112) $ $) 6)) (-2943 (($ $ |#1|) 70 (|has| |#1| (-363)))) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-407 (-564)) $) 68 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 67 (|has| |#1| (-38 (-407 (-564))))))) -(((-1240 |#1| |#2|) (-140) (-1047) (-790)) (T -1240)) -((-4077 (*1 *2 *1) (-12 (-4 *1 (-1240 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-790)) (-5 *2 (-1153 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-4369 (*1 *2 *1 *3) (-12 (-4 *1 (-1240 *2 *3)) (-4 *3 (-790)) (-4 *2 (-1047)))) (-1341 (*1 *2 *1) (-12 (-4 *1 (-1240 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-790)) (-5 *2 (-1173)))) (-2245 (*1 *2 *1) (-12 (-4 *1 (-1240 *2 *3)) (-4 *3 (-790)) (-4 *2 (-1047)))) (-2157 (*1 *1 *1 *2) (-12 (-5 *2 (-919)) (-4 *1 (-1240 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-790)))) (-2408 (*1 *2 *1) (-12 (-4 *1 (-1240 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-790)))) (-2408 (*1 *2 *1 *2) (-12 (-4 *1 (-1240 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-790)))) (-2180 (*1 *1 *1 *2) (-12 (-4 *1 (-1240 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-790)))) (-2180 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1240 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-790)))) (-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1240 *2 *3)) (-4 *3 (-790)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2390 (*2 (-1173)))) (-4 *2 (-1047)))) (-2137 (*1 *1 *1 *2) (-12 (-4 *1 (-1240 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-790)))) (-3154 (*1 *2 *1 *3) (-12 (-4 *1 (-1240 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-790)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1153 *3))))) -(-13 (-971 |t#1| |t#2| (-1079)) (-10 -8 (-15 -4077 ((-1153 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -4369 (|t#1| $ |t#2|)) (-15 -1341 ((-1173) $)) (-15 -2245 (|t#1| $)) (-15 -2157 ($ $ (-919))) (-15 -2408 (|t#2| $)) (-15 -2408 (|t#2| $ |t#2|)) (-15 -2180 ($ $ |t#2|)) (-15 -2180 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -2390 (|t#1| (-1173)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3560 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -2137 ($ $ |t#2|)) (IF (|has| |t#2| (-1109)) (-6 (-286 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-233)) (IF (|has| |t#1| (-898 (-1173))) (-6 (-898 (-1173))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3154 ((-1153 |t#1|) $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-556)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2682 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) |has| |#1| (-38 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-614 $) |has| |#1| (-556)) ((-611 (-860)) . T) ((-172) -2682 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-286 $ $) |has| |#2| (-1109)) ((-290) |has| |#1| (-556)) ((-556) |has| |#1| (-556)) ((-644 #0#) |has| |#1| (-38 (-407 (-564)))) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-646 #0#) |has| |#1| (-38 (-407 (-564)))) ((-646 |#1|) . T) ((-646 $) . T) ((-638 #0#) |has| |#1| (-38 (-407 (-564)))) ((-638 |#1|) |has| |#1| (-172)) ((-638 $) |has| |#1| (-556)) ((-715 #0#) |has| |#1| (-38 (-407 (-564)))) ((-715 |#1|) |has| |#1| (-172)) ((-715 $) |has| |#1| (-556)) ((-724) . T) ((-898 (-1173)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-898 (-1173)))) ((-971 |#1| |#2| (-1079)) . T) ((-1049 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1049 |#1|) . T) ((-1049 $) -2682 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-1054 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1054 |#1|) . T) ((-1054 $) -2682 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T)) -((-1993 ((|#2| |#2|) 12)) (-3282 (((-418 |#2|) |#2|) 14)) (-1889 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-564))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-564)))) 30))) -(((-1241 |#1| |#2|) (-10 -7 (-15 -3282 ((-418 |#2|) |#2|)) (-15 -1993 (|#2| |#2|)) (-15 -1889 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-564))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-564)))))) (-556) (-13 (-1238 |#1|) (-556) (-10 -8 (-15 -2105 ($ $ $))))) (T -1241)) -((-1889 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-564)))) (-4 *4 (-13 (-1238 *3) (-556) (-10 -8 (-15 -2105 ($ $ $))))) (-4 *3 (-556)) (-5 *1 (-1241 *3 *4)))) (-1993 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-1241 *3 *2)) (-4 *2 (-13 (-1238 *3) (-556) (-10 -8 (-15 -2105 ($ $ $))))))) (-3282 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-418 *3)) (-5 *1 (-1241 *4 *3)) (-4 *3 (-13 (-1238 *4) (-556) (-10 -8 (-15 -2105 ($ $ $)))))))) -(-10 -7 (-15 -3282 ((-418 |#2|) |#2|)) (-15 -1993 (|#2| |#2|)) (-15 -1889 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-564))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-564)))))) -((-2947 (((-1247 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1247 |#1| |#3| |#5|)) 24))) -(((-1242 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2947 ((-1247 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1247 |#1| |#3| |#5|)))) (-1047) (-1047) (-1173) (-1173) |#1| |#2|) (T -1242)) -((-2947 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1247 *5 *7 *9)) (-4 *5 (-1047)) (-4 *6 (-1047)) (-14 *7 (-1173)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1247 *6 *8 *10)) (-5 *1 (-1242 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1173))))) -(-10 -7 (-15 -2947 ((-1247 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1247 |#1| |#3| |#5|)))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-2397 (((-642 (-1079)) $) 86)) (-1341 (((-1173) $) 115)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) 63 (|has| |#1| (-556)))) (-4252 (($ $) 64 (|has| |#1| (-556)))) (-1722 (((-112) $) 66 (|has| |#1| (-556)))) (-2180 (($ $ (-407 (-564))) 110) (($ $ (-407 (-564)) (-407 (-564))) 109)) (-4077 (((-1153 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|))) $) 117)) (-3087 (($ $) 147 (|has| |#1| (-38 (-407 (-564)))))) (-2958 (($ $) 130 (|has| |#1| (-38 (-407 (-564)))))) (-3085 (((-3 $ "failed") $ $) 20)) (-1993 (($ $) 174 (|has| |#1| (-363)))) (-3282 (((-418 $) $) 175 (|has| |#1| (-363)))) (-2264 (($ $) 129 (|has| |#1| (-38 (-407 (-564)))))) (-2134 (((-112) $ $) 165 (|has| |#1| (-363)))) (-3067 (($ $) 146 (|has| |#1| (-38 (-407 (-564)))))) (-2933 (($ $) 131 (|has| |#1| (-38 (-407 (-564)))))) (-3182 (($ (-769) (-1153 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|)))) 183)) (-3110 (($ $) 145 (|has| |#1| (-38 (-407 (-564)))))) (-2981 (($ $) 132 (|has| |#1| (-38 (-407 (-564)))))) (-2822 (($) 18 T CONST)) (-2796 (($ $ $) 169 (|has| |#1| (-363)))) (-3459 (($ $) 72)) (-2675 (((-3 $ "failed") $) 37)) (-2808 (($ $ $) 168 (|has| |#1| (-363)))) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) 163 (|has| |#1| (-363)))) (-3552 (((-112) $) 176 (|has| |#1| (-363)))) (-2210 (((-112) $) 85)) (-2833 (($) 157 (|has| |#1| (-38 (-407 (-564)))))) (-2408 (((-407 (-564)) $) 112) (((-407 (-564)) $ (-407 (-564))) 111)) (-3163 (((-112) $) 35)) (-2024 (($ $ (-564)) 128 (|has| |#1| (-38 (-407 (-564)))))) (-2157 (($ $ (-919)) 113) (($ $ (-407 (-564))) 182)) (-2709 (((-3 (-642 $) "failed") (-642 $) $) 172 (|has| |#1| (-363)))) (-3471 (((-112) $) 74)) (-2374 (($ |#1| (-407 (-564))) 73) (($ $ (-1079) (-407 (-564))) 88) (($ $ (-642 (-1079)) (-642 (-407 (-564)))) 87)) (-2947 (($ (-1 |#1| |#1|) $) 75)) (-3576 (($ $) 154 (|has| |#1| (-38 (-407 (-564)))))) (-2510 (($ $) 77)) (-2523 ((|#1| $) 78)) (-2066 (($ (-642 $)) 161 (|has| |#1| (-363))) (($ $ $) 160 (|has| |#1| (-363)))) (-1778 (((-1155) $) 10)) (-2481 (($ $) 177 (|has| |#1| (-363)))) (-3703 (($ $) 181 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1173)) 180 (-2682 (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-957)) (|has| |#1| (-1197)) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-15 -2397 ((-642 (-1173)) |#1|))) (|has| |#1| (-15 -3703 (|#1| |#1| (-1173)))) (|has| |#1| (-38 (-407 (-564)))))))) (-3999 (((-1117) $) 11)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) 162 (|has| |#1| (-363)))) (-2105 (($ (-642 $)) 159 (|has| |#1| (-363))) (($ $ $) 158 (|has| |#1| (-363)))) (-2254 (((-418 $) $) 173 (|has| |#1| (-363)))) (-1877 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) 170 (|has| |#1| (-363)))) (-2137 (($ $ (-407 (-564))) 107)) (-2842 (((-3 $ "failed") $ $) 62 (|has| |#1| (-556)))) (-1483 (((-3 (-642 $) "failed") (-642 $) $) 164 (|has| |#1| (-363)))) (-3466 (($ $) 155 (|has| |#1| (-38 (-407 (-564)))))) (-3154 (((-1153 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))))) (-4274 (((-769) $) 166 (|has| |#1| (-363)))) (-4369 ((|#1| $ (-407 (-564))) 116) (($ $ $) 93 (|has| (-407 (-564)) (-1109)))) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) 167 (|has| |#1| (-363)))) (-2199 (($ $ (-642 (-1173)) (-642 (-769))) 101 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-1173) (-769)) 100 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-642 (-1173))) 99 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-1173)) 98 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-769)) 96 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-3252 (((-407 (-564)) $) 76)) (-3120 (($ $) 144 (|has| |#1| (-38 (-407 (-564)))))) (-2992 (($ $) 133 (|has| |#1| (-38 (-407 (-564)))))) (-3098 (($ $) 143 (|has| |#1| (-38 (-407 (-564)))))) (-2971 (($ $) 134 (|has| |#1| (-38 (-407 (-564)))))) (-3077 (($ $) 142 (|has| |#1| (-38 (-407 (-564)))))) (-2946 (($ $) 135 (|has| |#1| (-38 (-407 (-564)))))) (-4189 (($ $) 84)) (-2390 (((-860) $) 12) (($ (-564)) 33) (($ |#1|) 59 (|has| |#1| (-172))) (($ (-407 (-564))) 69 (|has| |#1| (-38 (-407 (-564))))) (($ $) 61 (|has| |#1| (-556)))) (-3005 ((|#1| $ (-407 (-564))) 71)) (-3434 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-3348 (((-769)) 32 T CONST)) (-2245 ((|#1| $) 114)) (-1600 (((-112) $ $) 9)) (-3155 (($ $) 153 (|has| |#1| (-38 (-407 (-564)))))) (-3025 (($ $) 141 (|has| |#1| (-38 (-407 (-564)))))) (-1594 (((-112) $ $) 65 (|has| |#1| (-556)))) (-3131 (($ $) 152 (|has| |#1| (-38 (-407 (-564)))))) (-3002 (($ $) 140 (|has| |#1| (-38 (-407 (-564)))))) (-3176 (($ $) 151 (|has| |#1| (-38 (-407 (-564)))))) (-3047 (($ $) 139 (|has| |#1| (-38 (-407 (-564)))))) (-3560 ((|#1| $ (-407 (-564))) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))) (|has| |#1| (-15 -2390 (|#1| (-1173))))))) (-3165 (($ $) 150 (|has| |#1| (-38 (-407 (-564)))))) (-3058 (($ $) 138 (|has| |#1| (-38 (-407 (-564)))))) (-3168 (($ $) 149 (|has| |#1| (-38 (-407 (-564)))))) (-3035 (($ $) 137 (|has| |#1| (-38 (-407 (-564)))))) (-3142 (($ $) 148 (|has| |#1| (-38 (-407 (-564)))))) (-3014 (($ $) 136 (|has| |#1| (-38 (-407 (-564)))))) (-2361 (($) 19 T CONST)) (-2371 (($) 34 T CONST)) (-2711 (($ $ (-642 (-1173)) (-642 (-769))) 105 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-1173) (-769)) 104 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-642 (-1173))) 103 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-1173)) 102 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-769)) 97 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-2821 (((-112) $ $) 6)) (-2943 (($ $ |#1|) 70 (|has| |#1| (-363))) (($ $ $) 179 (|has| |#1| (-363)))) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36) (($ $ (-564)) 178 (|has| |#1| (-363))) (($ $ $) 156 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 127 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-407 (-564)) $) 68 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 67 (|has| |#1| (-38 (-407 (-564))))))) -(((-1243 |#1|) (-140) (-1047)) (T -1243)) -((-3182 (*1 *1 *2 *3) (-12 (-5 *2 (-769)) (-5 *3 (-1153 (-2 (|:| |k| (-407 (-564))) (|:| |c| *4)))) (-4 *4 (-1047)) (-4 *1 (-1243 *4)))) (-2157 (*1 *1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-4 *1 (-1243 *3)) (-4 *3 (-1047)))) (-3703 (*1 *1 *1) (-12 (-4 *1 (-1243 *2)) (-4 *2 (-1047)) (-4 *2 (-38 (-407 (-564)))))) (-3703 (*1 *1 *1 *2) (-2682 (-12 (-5 *2 (-1173)) (-4 *1 (-1243 *3)) (-4 *3 (-1047)) (-12 (-4 *3 (-29 (-564))) (-4 *3 (-957)) (-4 *3 (-1197)) (-4 *3 (-38 (-407 (-564)))))) (-12 (-5 *2 (-1173)) (-4 *1 (-1243 *3)) (-4 *3 (-1047)) (-12 (|has| *3 (-15 -2397 ((-642 *2) *3))) (|has| *3 (-15 -3703 (*3 *3 *2))) (-4 *3 (-38 (-407 (-564))))))))) -(-13 (-1240 |t#1| (-407 (-564))) (-10 -8 (-15 -3182 ($ (-769) (-1153 (-2 (|:| |k| (-407 (-564))) (|:| |c| |t#1|))))) (-15 -2157 ($ $ (-407 (-564)))) (IF (|has| |t#1| (-38 (-407 (-564)))) (PROGN (-15 -3703 ($ $)) (IF (|has| |t#1| (-15 -3703 (|t#1| |t#1| (-1173)))) (IF (|has| |t#1| (-15 -2397 ((-642 (-1173)) |t#1|))) (-15 -3703 ($ $ (-1173))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1197)) (IF (|has| |t#1| (-957)) (IF (|has| |t#1| (-29 (-564))) (-15 -3703 ($ $ (-1173))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1000)) (-6 (-1197))) |%noBranch|) (IF (|has| |t#1| (-363)) (-6 (-363)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-407 (-564))) . T) ((-25) . T) ((-38 #1=(-407 (-564))) -2682 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2682 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-35) |has| |#1| (-38 (-407 (-564)))) ((-95) |has| |#1| (-38 (-407 (-564)))) ((-102) . T) ((-111 #1# #1#) -2682 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2682 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #1#) -2682 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-614 $) -2682 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-611 (-860)) . T) ((-172) -2682 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) ((-243) |has| |#1| (-363)) ((-284) |has| |#1| (-38 (-407 (-564)))) ((-286 $ $) |has| (-407 (-564)) (-1109)) ((-290) -2682 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-307) |has| |#1| (-363)) ((-363) |has| |#1| (-363)) ((-452) |has| |#1| (-363)) ((-493) |has| |#1| (-38 (-407 (-564)))) ((-556) -2682 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-644 #1#) -2682 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-646 #1#) -2682 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-646 |#1|) . T) ((-646 $) . T) ((-638 #1#) -2682 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-638 |#1|) |has| |#1| (-172)) ((-638 $) -2682 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-715 #1#) -2682 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-715 |#1|) |has| |#1| (-172)) ((-715 $) -2682 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-724) . T) ((-898 (-1173)) -12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173)))) ((-971 |#1| #0# (-1079)) . T) ((-918) |has| |#1| (-363)) ((-1000) |has| |#1| (-38 (-407 (-564)))) ((-1049 #1#) -2682 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-1049 |#1|) . T) ((-1049 $) -2682 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1054 #1#) -2682 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-1054 |#1|) . T) ((-1054 $) -2682 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T) ((-1197) |has| |#1| (-38 (-407 (-564)))) ((-1200) |has| |#1| (-38 (-407 (-564)))) ((-1216) |has| |#1| (-363)) ((-1240 |#1| #0#) . T)) -((-2950 (((-112) $) 12)) (-2849 (((-3 |#3| "failed") $) 17)) (-1687 ((|#3| $) 14))) -(((-1244 |#1| |#2| |#3|) (-10 -8 (-15 -2849 ((-3 |#3| "failed") |#1|)) (-15 -1687 (|#3| |#1|)) (-15 -2950 ((-112) |#1|))) (-1245 |#2| |#3|) (-1047) (-1222 |#2|)) (T -1244)) -NIL -(-10 -8 (-15 -2849 ((-3 |#3| "failed") |#1|)) (-15 -1687 (|#3| |#1|)) (-15 -2950 ((-112) |#1|))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-2397 (((-642 (-1079)) $) 86)) (-1341 (((-1173) $) 115)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) 63 (|has| |#1| (-556)))) (-4252 (($ $) 64 (|has| |#1| (-556)))) (-1722 (((-112) $) 66 (|has| |#1| (-556)))) (-2180 (($ $ (-407 (-564))) 110) (($ $ (-407 (-564)) (-407 (-564))) 109)) (-4077 (((-1153 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|))) $) 117)) (-3087 (($ $) 147 (|has| |#1| (-38 (-407 (-564)))))) (-2958 (($ $) 130 (|has| |#1| (-38 (-407 (-564)))))) (-3085 (((-3 $ "failed") $ $) 20)) (-1993 (($ $) 174 (|has| |#1| (-363)))) (-3282 (((-418 $) $) 175 (|has| |#1| (-363)))) (-2264 (($ $) 129 (|has| |#1| (-38 (-407 (-564)))))) (-2134 (((-112) $ $) 165 (|has| |#1| (-363)))) (-3067 (($ $) 146 (|has| |#1| (-38 (-407 (-564)))))) (-2933 (($ $) 131 (|has| |#1| (-38 (-407 (-564)))))) (-3182 (($ (-769) (-1153 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|)))) 183)) (-3110 (($ $) 145 (|has| |#1| (-38 (-407 (-564)))))) (-2981 (($ $) 132 (|has| |#1| (-38 (-407 (-564)))))) (-2822 (($) 18 T CONST)) (-2849 (((-3 |#2| "failed") $) 194)) (-1687 ((|#2| $) 195)) (-2796 (($ $ $) 169 (|has| |#1| (-363)))) (-3459 (($ $) 72)) (-2675 (((-3 $ "failed") $) 37)) (-1811 (((-407 (-564)) $) 191)) (-2808 (($ $ $) 168 (|has| |#1| (-363)))) (-2466 (($ (-407 (-564)) |#2|) 192)) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) 163 (|has| |#1| (-363)))) (-3552 (((-112) $) 176 (|has| |#1| (-363)))) (-2210 (((-112) $) 85)) (-2833 (($) 157 (|has| |#1| (-38 (-407 (-564)))))) (-2408 (((-407 (-564)) $) 112) (((-407 (-564)) $ (-407 (-564))) 111)) (-3163 (((-112) $) 35)) (-2024 (($ $ (-564)) 128 (|has| |#1| (-38 (-407 (-564)))))) (-2157 (($ $ (-919)) 113) (($ $ (-407 (-564))) 182)) (-2709 (((-3 (-642 $) "failed") (-642 $) $) 172 (|has| |#1| (-363)))) (-3471 (((-112) $) 74)) (-2374 (($ |#1| (-407 (-564))) 73) (($ $ (-1079) (-407 (-564))) 88) (($ $ (-642 (-1079)) (-642 (-407 (-564)))) 87)) (-2947 (($ (-1 |#1| |#1|) $) 75)) (-3576 (($ $) 154 (|has| |#1| (-38 (-407 (-564)))))) (-2510 (($ $) 77)) (-2523 ((|#1| $) 78)) (-2066 (($ (-642 $)) 161 (|has| |#1| (-363))) (($ $ $) 160 (|has| |#1| (-363)))) (-1985 ((|#2| $) 190)) (-2477 (((-3 |#2| "failed") $) 188)) (-2456 ((|#2| $) 189)) (-1778 (((-1155) $) 10)) (-2481 (($ $) 177 (|has| |#1| (-363)))) (-3703 (($ $) 181 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1173)) 180 (-2682 (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-957)) (|has| |#1| (-1197)) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-15 -2397 ((-642 (-1173)) |#1|))) (|has| |#1| (-15 -3703 (|#1| |#1| (-1173)))) (|has| |#1| (-38 (-407 (-564)))))))) (-3999 (((-1117) $) 11)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) 162 (|has| |#1| (-363)))) (-2105 (($ (-642 $)) 159 (|has| |#1| (-363))) (($ $ $) 158 (|has| |#1| (-363)))) (-2254 (((-418 $) $) 173 (|has| |#1| (-363)))) (-1877 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) 170 (|has| |#1| (-363)))) (-2137 (($ $ (-407 (-564))) 107)) (-2842 (((-3 $ "failed") $ $) 62 (|has| |#1| (-556)))) (-1483 (((-3 (-642 $) "failed") (-642 $) $) 164 (|has| |#1| (-363)))) (-3466 (($ $) 155 (|has| |#1| (-38 (-407 (-564)))))) (-3154 (((-1153 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))))) (-4274 (((-769) $) 166 (|has| |#1| (-363)))) (-4369 ((|#1| $ (-407 (-564))) 116) (($ $ $) 93 (|has| (-407 (-564)) (-1109)))) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) 167 (|has| |#1| (-363)))) (-2199 (($ $ (-642 (-1173)) (-642 (-769))) 101 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-1173) (-769)) 100 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-642 (-1173))) 99 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-1173)) 98 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-769)) 96 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-3252 (((-407 (-564)) $) 76)) (-3120 (($ $) 144 (|has| |#1| (-38 (-407 (-564)))))) (-2992 (($ $) 133 (|has| |#1| (-38 (-407 (-564)))))) (-3098 (($ $) 143 (|has| |#1| (-38 (-407 (-564)))))) (-2971 (($ $) 134 (|has| |#1| (-38 (-407 (-564)))))) (-3077 (($ $) 142 (|has| |#1| (-38 (-407 (-564)))))) (-2946 (($ $) 135 (|has| |#1| (-38 (-407 (-564)))))) (-4189 (($ $) 84)) (-2390 (((-860) $) 12) (($ (-564)) 33) (($ |#1|) 59 (|has| |#1| (-172))) (($ |#2|) 193) (($ (-407 (-564))) 69 (|has| |#1| (-38 (-407 (-564))))) (($ $) 61 (|has| |#1| (-556)))) (-3005 ((|#1| $ (-407 (-564))) 71)) (-3434 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-3348 (((-769)) 32 T CONST)) (-2245 ((|#1| $) 114)) (-1600 (((-112) $ $) 9)) (-3155 (($ $) 153 (|has| |#1| (-38 (-407 (-564)))))) (-3025 (($ $) 141 (|has| |#1| (-38 (-407 (-564)))))) (-1594 (((-112) $ $) 65 (|has| |#1| (-556)))) (-3131 (($ $) 152 (|has| |#1| (-38 (-407 (-564)))))) (-3002 (($ $) 140 (|has| |#1| (-38 (-407 (-564)))))) (-3176 (($ $) 151 (|has| |#1| (-38 (-407 (-564)))))) (-3047 (($ $) 139 (|has| |#1| (-38 (-407 (-564)))))) (-3560 ((|#1| $ (-407 (-564))) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))) (|has| |#1| (-15 -2390 (|#1| (-1173))))))) (-3165 (($ $) 150 (|has| |#1| (-38 (-407 (-564)))))) (-3058 (($ $) 138 (|has| |#1| (-38 (-407 (-564)))))) (-3168 (($ $) 149 (|has| |#1| (-38 (-407 (-564)))))) (-3035 (($ $) 137 (|has| |#1| (-38 (-407 (-564)))))) (-3142 (($ $) 148 (|has| |#1| (-38 (-407 (-564)))))) (-3014 (($ $) 136 (|has| |#1| (-38 (-407 (-564)))))) (-2361 (($) 19 T CONST)) (-2371 (($) 34 T CONST)) (-2711 (($ $ (-642 (-1173)) (-642 (-769))) 105 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-1173) (-769)) 104 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-642 (-1173))) 103 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-1173)) 102 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-769)) 97 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-2821 (((-112) $ $) 6)) (-2943 (($ $ |#1|) 70 (|has| |#1| (-363))) (($ $ $) 179 (|has| |#1| (-363)))) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36) (($ $ (-564)) 178 (|has| |#1| (-363))) (($ $ $) 156 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 127 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-407 (-564)) $) 68 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 67 (|has| |#1| (-38 (-407 (-564))))))) -(((-1245 |#1| |#2|) (-140) (-1047) (-1222 |t#1|)) (T -1245)) -((-3252 (*1 *2 *1) (-12 (-4 *1 (-1245 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-1222 *3)) (-5 *2 (-407 (-564))))) (-2466 (*1 *1 *2 *3) (-12 (-5 *2 (-407 (-564))) (-4 *4 (-1047)) (-4 *1 (-1245 *4 *3)) (-4 *3 (-1222 *4)))) (-1811 (*1 *2 *1) (-12 (-4 *1 (-1245 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-1222 *3)) (-5 *2 (-407 (-564))))) (-1985 (*1 *2 *1) (-12 (-4 *1 (-1245 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-1222 *3)))) (-2456 (*1 *2 *1) (-12 (-4 *1 (-1245 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-1222 *3)))) (-2477 (*1 *2 *1) (|partial| -12 (-4 *1 (-1245 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-1222 *3))))) -(-13 (-1243 |t#1|) (-1036 |t#2|) (-614 |t#2|) (-10 -8 (-15 -2466 ($ (-407 (-564)) |t#2|)) (-15 -1811 ((-407 (-564)) $)) (-15 -1985 (|t#2| $)) (-15 -3252 ((-407 (-564)) $)) (-15 -2456 (|t#2| $)) (-15 -2477 ((-3 |t#2| "failed") $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-407 (-564))) . T) ((-25) . T) ((-38 #1=(-407 (-564))) -2682 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2682 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-35) |has| |#1| (-38 (-407 (-564)))) ((-95) |has| |#1| (-38 (-407 (-564)))) ((-102) . T) ((-111 #1# #1#) -2682 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2682 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #1#) -2682 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-614 |#2|) . T) ((-614 $) -2682 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-611 (-860)) . T) ((-172) -2682 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) ((-243) |has| |#1| (-363)) ((-284) |has| |#1| (-38 (-407 (-564)))) ((-286 $ $) |has| (-407 (-564)) (-1109)) ((-290) -2682 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-307) |has| |#1| (-363)) ((-363) |has| |#1| (-363)) ((-452) |has| |#1| (-363)) ((-493) |has| |#1| (-38 (-407 (-564)))) ((-556) -2682 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-644 #1#) -2682 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-646 #1#) -2682 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-646 |#1|) . T) ((-646 $) . T) ((-638 #1#) -2682 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-638 |#1|) |has| |#1| (-172)) ((-638 $) -2682 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-715 #1#) -2682 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-715 |#1|) |has| |#1| (-172)) ((-715 $) -2682 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-724) . T) ((-898 (-1173)) -12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173)))) ((-971 |#1| #0# (-1079)) . T) ((-918) |has| |#1| (-363)) ((-1000) |has| |#1| (-38 (-407 (-564)))) ((-1036 |#2|) . T) ((-1049 #1#) -2682 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-1049 |#1|) . T) ((-1049 $) -2682 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1054 #1#) -2682 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-1054 |#1|) . T) ((-1054 $) -2682 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T) ((-1197) |has| |#1| (-38 (-407 (-564)))) ((-1200) |has| |#1| (-38 (-407 (-564)))) ((-1216) |has| |#1| (-363)) ((-1240 |#1| #0#) . T) ((-1243 |#1|) . T)) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-2397 (((-642 (-1079)) $) NIL)) (-1341 (((-1173) $) 104)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-4252 (($ $) NIL (|has| |#1| (-556)))) (-1722 (((-112) $) NIL (|has| |#1| (-556)))) (-2180 (($ $ (-407 (-564))) 116) (($ $ (-407 (-564)) (-407 (-564))) 118)) (-4077 (((-1153 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|))) $) 54)) (-3087 (($ $) 192 (|has| |#1| (-38 (-407 (-564)))))) (-2958 (($ $) 168 (|has| |#1| (-38 (-407 (-564)))))) (-3085 (((-3 $ "failed") $ $) NIL)) (-1993 (($ $) NIL (|has| |#1| (-363)))) (-3282 (((-418 $) $) NIL (|has| |#1| (-363)))) (-2264 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2134 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3067 (($ $) 188 (|has| |#1| (-38 (-407 (-564)))))) (-2933 (($ $) 164 (|has| |#1| (-38 (-407 (-564)))))) (-3182 (($ (-769) (-1153 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|)))) 65)) (-3110 (($ $) 196 (|has| |#1| (-38 (-407 (-564)))))) (-2981 (($ $) 172 (|has| |#1| (-38 (-407 (-564)))))) (-2822 (($) NIL T CONST)) (-2849 (((-3 |#2| "failed") $) NIL)) (-1687 ((|#2| $) NIL)) (-2796 (($ $ $) NIL (|has| |#1| (-363)))) (-3459 (($ $) NIL)) (-2675 (((-3 $ "failed") $) 85)) (-1811 (((-407 (-564)) $) 13)) (-2808 (($ $ $) NIL (|has| |#1| (-363)))) (-2466 (($ (-407 (-564)) |#2|) 11)) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) NIL (|has| |#1| (-363)))) (-3552 (((-112) $) NIL (|has| |#1| (-363)))) (-2210 (((-112) $) 74)) (-2833 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2408 (((-407 (-564)) $) 113) (((-407 (-564)) $ (-407 (-564))) 114)) (-3163 (((-112) $) NIL)) (-2024 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2157 (($ $ (-919)) 130) (($ $ (-407 (-564))) 128)) (-2709 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#1| (-363)))) (-3471 (((-112) $) NIL)) (-2374 (($ |#1| (-407 (-564))) 33) (($ $ (-1079) (-407 (-564))) NIL) (($ $ (-642 (-1079)) (-642 (-407 (-564)))) NIL)) (-2947 (($ (-1 |#1| |#1|) $) 125)) (-3576 (($ $) 162 (|has| |#1| (-38 (-407 (-564)))))) (-2510 (($ $) NIL)) (-2523 ((|#1| $) NIL)) (-2066 (($ (-642 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-1985 ((|#2| $) 12)) (-2477 (((-3 |#2| "failed") $) 44)) (-2456 ((|#2| $) 45)) (-1778 (((-1155) $) NIL)) (-2481 (($ $) 101 (|has| |#1| (-363)))) (-3703 (($ $) 146 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1173)) 151 (-2682 (-12 (|has| |#1| (-15 -3703 (|#1| |#1| (-1173)))) (|has| |#1| (-15 -2397 ((-642 (-1173)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-957)) (|has| |#1| (-1197)))))) (-3999 (((-1117) $) NIL)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) NIL (|has| |#1| (-363)))) (-2105 (($ (-642 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2254 (((-418 $) $) NIL (|has| |#1| (-363)))) (-1877 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL (|has| |#1| (-363)))) (-2137 (($ $ (-407 (-564))) 122)) (-2842 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-1483 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#1| (-363)))) (-3466 (($ $) 160 (|has| |#1| (-38 (-407 (-564)))))) (-3154 (((-1153 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))))) (-4274 (((-769) $) NIL (|has| |#1| (-363)))) (-4369 ((|#1| $ (-407 (-564))) 108) (($ $ $) 94 (|has| (-407 (-564)) (-1109)))) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL (|has| |#1| (-363)))) (-2199 (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-1173) (-769)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-642 (-1173))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-1173)) 138 (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-769)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) 134 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-3252 (((-407 (-564)) $) 16)) (-3120 (($ $) 198 (|has| |#1| (-38 (-407 (-564)))))) (-2992 (($ $) 174 (|has| |#1| (-38 (-407 (-564)))))) (-3098 (($ $) 194 (|has| |#1| (-38 (-407 (-564)))))) (-2971 (($ $) 170 (|has| |#1| (-38 (-407 (-564)))))) (-3077 (($ $) 190 (|has| |#1| (-38 (-407 (-564)))))) (-2946 (($ $) 166 (|has| |#1| (-38 (-407 (-564)))))) (-4189 (($ $) 120)) (-2390 (((-860) $) NIL) (($ (-564)) 37) (($ |#1|) 27 (|has| |#1| (-172))) (($ |#2|) 34) (($ (-407 (-564))) 139 (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556)))) (-3005 ((|#1| $ (-407 (-564))) 107)) (-3434 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3348 (((-769)) 127 T CONST)) (-2245 ((|#1| $) 106)) (-1600 (((-112) $ $) NIL)) (-3155 (($ $) 204 (|has| |#1| (-38 (-407 (-564)))))) (-3025 (($ $) 180 (|has| |#1| (-38 (-407 (-564)))))) (-1594 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3131 (($ $) 200 (|has| |#1| (-38 (-407 (-564)))))) (-3002 (($ $) 176 (|has| |#1| (-38 (-407 (-564)))))) (-3176 (($ $) 208 (|has| |#1| (-38 (-407 (-564)))))) (-3047 (($ $) 184 (|has| |#1| (-38 (-407 (-564)))))) (-3560 ((|#1| $ (-407 (-564))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))) (|has| |#1| (-15 -2390 (|#1| (-1173))))))) (-3165 (($ $) 210 (|has| |#1| (-38 (-407 (-564)))))) (-3058 (($ $) 186 (|has| |#1| (-38 (-407 (-564)))))) (-3168 (($ $) 206 (|has| |#1| (-38 (-407 (-564)))))) (-3035 (($ $) 182 (|has| |#1| (-38 (-407 (-564)))))) (-3142 (($ $) 202 (|has| |#1| (-38 (-407 (-564)))))) (-3014 (($ $) 178 (|has| |#1| (-38 (-407 (-564)))))) (-2361 (($) 21 T CONST)) (-2371 (($) 17 T CONST)) (-2711 (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-1173) (-769)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-642 (-1173))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-1173)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-769)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-2821 (((-112) $ $) 72)) (-2943 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) 100 (|has| |#1| (-363)))) (-2930 (($ $) 142) (($ $ $) 78)) (-2917 (($ $ $) 76)) (** (($ $ (-919)) NIL) (($ $ (-769)) 82) (($ $ (-564)) 157 (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 158 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) 137) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))))) -(((-1246 |#1| |#2|) (-1245 |#1| |#2|) (-1047) (-1222 |#1|)) (T -1246)) -NIL -(-1245 |#1| |#2|) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-2397 (((-642 (-1079)) $) NIL)) (-1341 (((-1173) $) 11)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-4252 (($ $) NIL (|has| |#1| (-556)))) (-1722 (((-112) $) NIL (|has| |#1| (-556)))) (-2180 (($ $ (-407 (-564))) NIL) (($ $ (-407 (-564)) (-407 (-564))) NIL)) (-4077 (((-1153 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|))) $) NIL)) (-3087 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2958 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3085 (((-3 $ "failed") $ $) NIL)) (-1993 (($ $) NIL (|has| |#1| (-363)))) (-3282 (((-418 $) $) NIL (|has| |#1| (-363)))) (-2264 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2134 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3067 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2933 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3182 (($ (-769) (-1153 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|)))) NIL)) (-3110 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2981 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2822 (($) NIL T CONST)) (-2849 (((-3 (-1226 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1254 |#1| |#2| |#3|) "failed") $) 22)) (-1687 (((-1226 |#1| |#2| |#3|) $) NIL) (((-1254 |#1| |#2| |#3|) $) NIL)) (-2796 (($ $ $) NIL (|has| |#1| (-363)))) (-3459 (($ $) NIL)) (-2675 (((-3 $ "failed") $) NIL)) (-1811 (((-407 (-564)) $) 69)) (-2808 (($ $ $) NIL (|has| |#1| (-363)))) (-2466 (($ (-407 (-564)) (-1226 |#1| |#2| |#3|)) NIL)) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) NIL (|has| |#1| (-363)))) (-3552 (((-112) $) NIL (|has| |#1| (-363)))) (-2210 (((-112) $) NIL)) (-2833 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2408 (((-407 (-564)) $) NIL) (((-407 (-564)) $ (-407 (-564))) NIL)) (-3163 (((-112) $) NIL)) (-2024 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2157 (($ $ (-919)) NIL) (($ $ (-407 (-564))) NIL)) (-2709 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#1| (-363)))) (-3471 (((-112) $) NIL)) (-2374 (($ |#1| (-407 (-564))) 30) (($ $ (-1079) (-407 (-564))) NIL) (($ $ (-642 (-1079)) (-642 (-407 (-564)))) NIL)) (-2947 (($ (-1 |#1| |#1|) $) NIL)) (-3576 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2510 (($ $) NIL)) (-2523 ((|#1| $) NIL)) (-2066 (($ (-642 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-1985 (((-1226 |#1| |#2| |#3|) $) 72)) (-2477 (((-3 (-1226 |#1| |#2| |#3|) "failed") $) NIL)) (-2456 (((-1226 |#1| |#2| |#3|) $) NIL)) (-1778 (((-1155) $) NIL)) (-2481 (($ $) NIL (|has| |#1| (-363)))) (-3703 (($ $) 39 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1173)) NIL (-2682 (-12 (|has| |#1| (-15 -3703 (|#1| |#1| (-1173)))) (|has| |#1| (-15 -2397 ((-642 (-1173)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-957)) (|has| |#1| (-1197))))) (($ $ (-1258 |#2|)) 40 (|has| |#1| (-38 (-407 (-564)))))) (-3999 (((-1117) $) NIL)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) NIL (|has| |#1| (-363)))) (-2105 (($ (-642 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2254 (((-418 $) $) NIL (|has| |#1| (-363)))) (-1877 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) NIL (|has| |#1| (-363)))) (-2137 (($ $ (-407 (-564))) NIL)) (-2842 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-1483 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#1| (-363)))) (-3466 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3154 (((-1153 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))))) (-4274 (((-769) $) NIL (|has| |#1| (-363)))) (-4369 ((|#1| $ (-407 (-564))) NIL) (($ $ $) NIL (|has| (-407 (-564)) (-1109)))) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) NIL (|has| |#1| (-363)))) (-2199 (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-1173) (-769)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-642 (-1173))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-1173)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-769)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $ (-1258 |#2|)) 38)) (-3252 (((-407 (-564)) $) NIL)) (-3120 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2992 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3098 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2971 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3077 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2946 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4189 (($ $) NIL)) (-2390 (((-860) $) 109) (($ (-564)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1226 |#1| |#2| |#3|)) 16) (($ (-1254 |#1| |#2| |#3|)) 17) (($ (-1258 |#2|)) 36) (($ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556)))) (-3005 ((|#1| $ (-407 (-564))) NIL)) (-3434 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3348 (((-769)) NIL T CONST)) (-2245 ((|#1| $) 12)) (-1600 (((-112) $ $) NIL)) (-3155 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3025 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1594 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3131 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3002 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3176 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3047 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3560 ((|#1| $ (-407 (-564))) 74 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))) (|has| |#1| (-15 -2390 (|#1| (-1173))))))) (-3165 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3058 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3168 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3035 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3142 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3014 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2361 (($) 32 T CONST)) (-2371 (($) 26 T CONST)) (-2711 (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-1173) (-769)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-642 (-1173))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-1173)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-769)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-2821 (((-112) $ $) NIL)) (-2943 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) 34)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))))) -(((-1247 |#1| |#2| |#3|) (-13 (-1245 |#1| (-1226 |#1| |#2| |#3|)) (-1036 (-1254 |#1| |#2| |#3|)) (-614 (-1258 |#2|)) (-10 -8 (-15 -2199 ($ $ (-1258 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3703 ($ $ (-1258 |#2|))) |%noBranch|))) (-1047) (-1173) |#1|) (T -1247)) -((-2199 (*1 *1 *1 *2) (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-1247 *3 *4 *5)) (-4 *3 (-1047)) (-14 *5 *3))) (-3703 (*1 *1 *1 *2) (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-1247 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1047)) (-14 *5 *3)))) -(-13 (-1245 |#1| (-1226 |#1| |#2| |#3|)) (-1036 (-1254 |#1| |#2| |#3|)) (-614 (-1258 |#2|)) (-10 -8 (-15 -2199 ($ $ (-1258 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3703 ($ $ (-1258 |#2|))) |%noBranch|))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) 37)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-4252 (($ $) NIL)) (-1722 (((-112) $) NIL)) (-3085 (((-3 $ "failed") $ $) NIL)) (-2822 (($) NIL T CONST)) (-2849 (((-3 (-564) "failed") $) NIL (|has| (-1247 |#2| |#3| |#4|) (-1036 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-1247 |#2| |#3| |#4|) (-1036 (-407 (-564))))) (((-3 (-1247 |#2| |#3| |#4|) "failed") $) 22)) (-1687 (((-564) $) NIL (|has| (-1247 |#2| |#3| |#4|) (-1036 (-564)))) (((-407 (-564)) $) NIL (|has| (-1247 |#2| |#3| |#4|) (-1036 (-407 (-564))))) (((-1247 |#2| |#3| |#4|) $) NIL)) (-3459 (($ $) 41)) (-2675 (((-3 $ "failed") $) 27)) (-2511 (($ $) NIL (|has| (-1247 |#2| |#3| |#4|) (-452)))) (-2315 (($ $ (-1247 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|) $) NIL)) (-3163 (((-112) $) NIL)) (-1904 (((-769) $) 11)) (-3471 (((-112) $) NIL)) (-2374 (($ (-1247 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) 25)) (-2887 (((-319 |#2| |#3| |#4|) $) NIL)) (-3879 (($ (-1 (-319 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) $) NIL)) (-2947 (($ (-1 (-1247 |#2| |#3| |#4|) (-1247 |#2| |#3| |#4|)) $) NIL)) (-1907 (((-3 (-841 |#2|) "failed") $) 90)) (-2510 (($ $) NIL)) (-2523 (((-1247 |#2| |#3| |#4|) $) 20)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2491 (((-112) $) NIL)) (-2500 (((-1247 |#2| |#3| |#4|) $) NIL)) (-2842 (((-3 $ "failed") $ (-1247 |#2| |#3| |#4|)) NIL (|has| (-1247 |#2| |#3| |#4|) (-556))) (((-3 $ "failed") $ $) NIL)) (-2227 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1247 |#2| |#3| |#4|)) (|:| |%expon| (-319 |#2| |#3| |#4|)) (|:| |%expTerms| (-642 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#2|)))))) (|:| |%type| (-1155))) "failed") $) 74)) (-3252 (((-319 |#2| |#3| |#4|) $) 17)) (-4325 (((-1247 |#2| |#3| |#4|) $) NIL (|has| (-1247 |#2| |#3| |#4|) (-452)))) (-2390 (((-860) $) NIL) (($ (-564)) NIL) (($ (-1247 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL (-2682 (|has| (-1247 |#2| |#3| |#4|) (-38 (-407 (-564)))) (|has| (-1247 |#2| |#3| |#4|) (-1036 (-407 (-564))))))) (-2839 (((-642 (-1247 |#2| |#3| |#4|)) $) NIL)) (-3005 (((-1247 |#2| |#3| |#4|) $ (-319 |#2| |#3| |#4|)) NIL)) (-3434 (((-3 $ "failed") $) NIL (|has| (-1247 |#2| |#3| |#4|) (-145)))) (-3348 (((-769)) NIL T CONST)) (-2645 (($ $ $ (-769)) NIL (|has| (-1247 |#2| |#3| |#4|) (-172)))) (-1600 (((-112) $ $) NIL)) (-1594 (((-112) $ $) NIL)) (-2361 (($) NIL T CONST)) (-2371 (($) NIL T CONST)) (-2821 (((-112) $ $) NIL)) (-2943 (($ $ (-1247 |#2| |#3| |#4|)) NIL (|has| (-1247 |#2| |#3| |#4|) (-363)))) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-1247 |#2| |#3| |#4|)) NIL) (($ (-1247 |#2| |#3| |#4|) $) NIL) (($ (-407 (-564)) $) NIL (|has| (-1247 |#2| |#3| |#4|) (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| (-1247 |#2| |#3| |#4|) (-38 (-407 (-564))))))) -(((-1248 |#1| |#2| |#3| |#4|) (-13 (-326 (-1247 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) (-556) (-10 -8 (-15 -1907 ((-3 (-841 |#2|) "failed") $)) (-15 -2227 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1247 |#2| |#3| |#4|)) (|:| |%expon| (-319 |#2| |#3| |#4|)) (|:| |%expTerms| (-642 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#2|)))))) (|:| |%type| (-1155))) "failed") $)))) (-13 (-1036 (-564)) (-637 (-564)) (-452)) (-13 (-27) (-1197) (-430 |#1|)) (-1173) |#2|) (T -1248)) -((-1907 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1036 (-564)) (-637 (-564)) (-452))) (-5 *2 (-841 *4)) (-5 *1 (-1248 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1197) (-430 *3))) (-14 *5 (-1173)) (-14 *6 *4))) (-2227 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1036 (-564)) (-637 (-564)) (-452))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1247 *4 *5 *6)) (|:| |%expon| (-319 *4 *5 *6)) (|:| |%expTerms| (-642 (-2 (|:| |k| (-407 (-564))) (|:| |c| *4)))))) (|:| |%type| (-1155)))) (-5 *1 (-1248 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1197) (-430 *3))) (-14 *5 (-1173)) (-14 *6 *4)))) -(-13 (-326 (-1247 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) (-556) (-10 -8 (-15 -1907 ((-3 (-841 |#2|) "failed") $)) (-15 -2227 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1247 |#2| |#3| |#4|)) (|:| |%expon| (-319 |#2| |#3| |#4|)) (|:| |%expTerms| (-642 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#2|)))))) (|:| |%type| (-1155))) "failed") $)))) -((-2108 ((|#2| $) 34)) (-3585 ((|#2| $) 18)) (-3107 (($ $) 52)) (-4083 (($ $ (-564)) 85)) (-3442 (((-112) $ (-769)) 46)) (-1407 ((|#2| $ |#2|) 82)) (-4326 ((|#2| $ |#2|) 78)) (-3841 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 71) (($ $ "rest" $) 75) ((|#2| $ "last" |#2|) 73)) (-4041 (($ $ (-642 $)) 81)) (-3573 ((|#2| $) 17)) (-4050 (($ $) NIL) (($ $ (-769)) 59)) (-1300 (((-642 $) $) 31)) (-2423 (((-112) $ $) 69)) (-3769 (((-112) $ (-769)) 45)) (-4145 (((-112) $ (-769)) 43)) (-1961 (((-112) $) 33)) (-2534 ((|#2| $) 25) (($ $ (-769)) 64)) (-4369 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-1311 (((-112) $) 23)) (-1306 (($ $) 55)) (-4118 (($ $) 86)) (-3941 (((-769) $) 58)) (-4376 (($ $) 57)) (-3634 (($ $ $) 77) (($ |#2| $) NIL)) (-4275 (((-642 $) $) 32)) (-2821 (((-112) $ $) 67)) (-2158 (((-769) $) 51))) -(((-1249 |#1| |#2|) (-10 -8 (-15 -4083 (|#1| |#1| (-564))) (-15 -3841 (|#2| |#1| "last" |#2|)) (-15 -4326 (|#2| |#1| |#2|)) (-15 -3841 (|#1| |#1| "rest" |#1|)) (-15 -3841 (|#2| |#1| "first" |#2|)) (-15 -4118 (|#1| |#1|)) (-15 -1306 (|#1| |#1|)) (-15 -3941 ((-769) |#1|)) (-15 -4376 (|#1| |#1|)) (-15 -3585 (|#2| |#1|)) (-15 -3573 (|#2| |#1|)) (-15 -3107 (|#1| |#1|)) (-15 -2534 (|#1| |#1| (-769))) (-15 -4369 (|#2| |#1| "last")) (-15 -2534 (|#2| |#1|)) (-15 -4050 (|#1| |#1| (-769))) (-15 -4369 (|#1| |#1| "rest")) (-15 -4050 (|#1| |#1|)) (-15 -4369 (|#2| |#1| "first")) (-15 -3634 (|#1| |#2| |#1|)) (-15 -3634 (|#1| |#1| |#1|)) (-15 -1407 (|#2| |#1| |#2|)) (-15 -3841 (|#2| |#1| "value" |#2|)) (-15 -4041 (|#1| |#1| (-642 |#1|))) (-15 -2423 ((-112) |#1| |#1|)) (-15 -1311 ((-112) |#1|)) (-15 -4369 (|#2| |#1| "value")) (-15 -2108 (|#2| |#1|)) (-15 -1961 ((-112) |#1|)) (-15 -1300 ((-642 |#1|) |#1|)) (-15 -4275 ((-642 |#1|) |#1|)) (-15 -2821 ((-112) |#1| |#1|)) (-15 -2158 ((-769) |#1|)) (-15 -3442 ((-112) |#1| (-769))) (-15 -3769 ((-112) |#1| (-769))) (-15 -4145 ((-112) |#1| (-769)))) (-1250 |#2|) (-1212)) (T -1249)) -NIL -(-10 -8 (-15 -4083 (|#1| |#1| (-564))) (-15 -3841 (|#2| |#1| "last" |#2|)) (-15 -4326 (|#2| |#1| |#2|)) (-15 -3841 (|#1| |#1| "rest" |#1|)) (-15 -3841 (|#2| |#1| "first" |#2|)) (-15 -4118 (|#1| |#1|)) (-15 -1306 (|#1| |#1|)) (-15 -3941 ((-769) |#1|)) (-15 -4376 (|#1| |#1|)) (-15 -3585 (|#2| |#1|)) (-15 -3573 (|#2| |#1|)) (-15 -3107 (|#1| |#1|)) (-15 -2534 (|#1| |#1| (-769))) (-15 -4369 (|#2| |#1| "last")) (-15 -2534 (|#2| |#1|)) (-15 -4050 (|#1| |#1| (-769))) (-15 -4369 (|#1| |#1| "rest")) (-15 -4050 (|#1| |#1|)) (-15 -4369 (|#2| |#1| "first")) (-15 -3634 (|#1| |#2| |#1|)) (-15 -3634 (|#1| |#1| |#1|)) (-15 -1407 (|#2| |#1| |#2|)) (-15 -3841 (|#2| |#1| "value" |#2|)) (-15 -4041 (|#1| |#1| (-642 |#1|))) (-15 -2423 ((-112) |#1| |#1|)) (-15 -1311 ((-112) |#1|)) (-15 -4369 (|#2| |#1| "value")) (-15 -2108 (|#2| |#1|)) (-15 -1961 ((-112) |#1|)) (-15 -1300 ((-642 |#1|) |#1|)) (-15 -4275 ((-642 |#1|) |#1|)) (-15 -2821 ((-112) |#1| |#1|)) (-15 -2158 ((-769) |#1|)) (-15 -3442 ((-112) |#1| (-769))) (-15 -3769 ((-112) |#1| (-769))) (-15 -4145 ((-112) |#1| (-769)))) -((-2856 (((-112) $ $) 19 (|has| |#1| (-1097)))) (-2108 ((|#1| $) 49)) (-3585 ((|#1| $) 66)) (-3107 (($ $) 68)) (-4083 (($ $ (-564)) 53 (|has| $ (-6 -4411)))) (-3442 (((-112) $ (-769)) 8)) (-1407 ((|#1| $ |#1|) 40 (|has| $ (-6 -4411)))) (-4277 (($ $ $) 57 (|has| $ (-6 -4411)))) (-4326 ((|#1| $ |#1|) 55 (|has| $ (-6 -4411)))) (-3186 ((|#1| $ |#1|) 59 (|has| $ (-6 -4411)))) (-3841 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4411))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4411))) (($ $ "rest" $) 56 (|has| $ (-6 -4411))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4411)))) (-4041 (($ $ (-642 $)) 42 (|has| $ (-6 -4411)))) (-3573 ((|#1| $) 67)) (-2822 (($) 7 T CONST)) (-4050 (($ $) 74) (($ $ (-769)) 72)) (-2018 (((-642 |#1|) $) 31 (|has| $ (-6 -4410)))) (-1300 (((-642 $) $) 51)) (-2423 (((-112) $ $) 43 (|has| |#1| (-1097)))) (-3769 (((-112) $ (-769)) 9)) (-3541 (((-642 |#1|) $) 30 (|has| $ (-6 -4410)))) (-2533 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-1857 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#1| |#1|) $) 36)) (-4145 (((-112) $ (-769)) 10)) (-2334 (((-642 |#1|) $) 46)) (-1961 (((-112) $) 50)) (-1778 (((-1155) $) 22 (|has| |#1| (-1097)))) (-2534 ((|#1| $) 71) (($ $ (-769)) 69)) (-3999 (((-1117) $) 21 (|has| |#1| (-1097)))) (-4036 ((|#1| $) 77) (($ $ (-769)) 75)) (-4094 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-2478 (((-112) $ $) 14)) (-4109 (((-112) $) 11)) (-2179 (($) 12)) (-4369 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70)) (-1743 (((-564) $ $) 45)) (-1311 (((-112) $) 47)) (-1306 (($ $) 63)) (-4118 (($ $) 60 (|has| $ (-6 -4411)))) (-3941 (((-769) $) 64)) (-4376 (($ $) 65)) (-4010 (((-769) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4410))) (((-769) |#1| $) 29 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3865 (($ $) 13)) (-2766 (($ $ $) 62 (|has| $ (-6 -4411))) (($ $ |#1|) 61 (|has| $ (-6 -4411)))) (-3634 (($ $ $) 79) (($ |#1| $) 78)) (-2390 (((-860) $) 18 (|has| |#1| (-611 (-860))))) (-4275 (((-642 $) $) 52)) (-1622 (((-112) $ $) 44 (|has| |#1| (-1097)))) (-1600 (((-112) $ $) 23 (|has| |#1| (-1097)))) (-3295 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4410)))) (-2821 (((-112) $ $) 20 (|has| |#1| (-1097)))) (-2158 (((-769) $) 6 (|has| $ (-6 -4410))))) -(((-1250 |#1|) (-140) (-1212)) (T -1250)) -((-3634 (*1 *1 *1 *1) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1212)))) (-3634 (*1 *1 *2 *1) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1212)))) (-4036 (*1 *2 *1) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1212)))) (-4369 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1250 *2)) (-4 *2 (-1212)))) (-4036 (*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-4 *1 (-1250 *3)) (-4 *3 (-1212)))) (-4050 (*1 *1 *1) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1212)))) (-4369 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1250 *3)) (-4 *3 (-1212)))) (-4050 (*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-4 *1 (-1250 *3)) (-4 *3 (-1212)))) (-2534 (*1 *2 *1) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1212)))) (-4369 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1250 *2)) (-4 *2 (-1212)))) (-2534 (*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-4 *1 (-1250 *3)) (-4 *3 (-1212)))) (-3107 (*1 *1 *1) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1212)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1212)))) (-3585 (*1 *2 *1) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1212)))) (-4376 (*1 *1 *1) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1212)))) (-3941 (*1 *2 *1) (-12 (-4 *1 (-1250 *3)) (-4 *3 (-1212)) (-5 *2 (-769)))) (-1306 (*1 *1 *1) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1212)))) (-2766 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4411)) (-4 *1 (-1250 *2)) (-4 *2 (-1212)))) (-2766 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4411)) (-4 *1 (-1250 *2)) (-4 *2 (-1212)))) (-4118 (*1 *1 *1) (-12 (|has| *1 (-6 -4411)) (-4 *1 (-1250 *2)) (-4 *2 (-1212)))) (-3186 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4411)) (-4 *1 (-1250 *2)) (-4 *2 (-1212)))) (-3841 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4411)) (-4 *1 (-1250 *2)) (-4 *2 (-1212)))) (-4277 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4411)) (-4 *1 (-1250 *2)) (-4 *2 (-1212)))) (-3841 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4411)) (-4 *1 (-1250 *3)) (-4 *3 (-1212)))) (-4326 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4411)) (-4 *1 (-1250 *2)) (-4 *2 (-1212)))) (-3841 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4411)) (-4 *1 (-1250 *2)) (-4 *2 (-1212)))) (-4083 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (|has| *1 (-6 -4411)) (-4 *1 (-1250 *3)) (-4 *3 (-1212))))) -(-13 (-1008 |t#1|) (-10 -8 (-15 -3634 ($ $ $)) (-15 -3634 ($ |t#1| $)) (-15 -4036 (|t#1| $)) (-15 -4369 (|t#1| $ "first")) (-15 -4036 ($ $ (-769))) (-15 -4050 ($ $)) (-15 -4369 ($ $ "rest")) (-15 -4050 ($ $ (-769))) (-15 -2534 (|t#1| $)) (-15 -4369 (|t#1| $ "last")) (-15 -2534 ($ $ (-769))) (-15 -3107 ($ $)) (-15 -3573 (|t#1| $)) (-15 -3585 (|t#1| $)) (-15 -4376 ($ $)) (-15 -3941 ((-769) $)) (-15 -1306 ($ $)) (IF (|has| $ (-6 -4411)) (PROGN (-15 -2766 ($ $ $)) (-15 -2766 ($ $ |t#1|)) (-15 -4118 ($ $)) (-15 -3186 (|t#1| $ |t#1|)) (-15 -3841 (|t#1| $ "first" |t#1|)) (-15 -4277 ($ $ $)) (-15 -3841 ($ $ "rest" $)) (-15 -4326 (|t#1| $ |t#1|)) (-15 -3841 (|t#1| $ "last" |t#1|)) (-15 -4083 ($ $ (-564)))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1097)) ((-611 (-860)) -2682 (|has| |#1| (-1097)) (|has| |#1| (-611 (-860)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-1008 |#1|) . T) ((-1097) |has| |#1| (-1097)) ((-1212) . T)) -((-2947 ((|#4| (-1 |#2| |#1|) |#3|) 17))) -(((-1251 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2947 (|#4| (-1 |#2| |#1|) |#3|))) (-1047) (-1047) (-1253 |#1|) (-1253 |#2|)) (T -1251)) -((-2947 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1047)) (-4 *6 (-1047)) (-4 *2 (-1253 *6)) (-5 *1 (-1251 *5 *6 *4 *2)) (-4 *4 (-1253 *5))))) -(-10 -7 (-15 -2947 (|#4| (-1 |#2| |#1|) |#3|))) -((-2950 (((-112) $) 17)) (-3087 (($ $) 106)) (-2958 (($ $) 82)) (-3067 (($ $) 102)) (-2933 (($ $) 78)) (-3110 (($ $) 110)) (-2981 (($ $) 86)) (-3576 (($ $) 76)) (-3466 (($ $) 74)) (-3120 (($ $) 112)) (-2992 (($ $) 88)) (-3098 (($ $) 108)) (-2971 (($ $) 84)) (-3077 (($ $) 104)) (-2946 (($ $) 80)) (-2390 (((-860) $) 62) (($ (-564)) NIL) (($ (-407 (-564))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-3155 (($ $) 118)) (-3025 (($ $) 94)) (-3131 (($ $) 114)) (-3002 (($ $) 90)) (-3176 (($ $) 122)) (-3047 (($ $) 98)) (-3165 (($ $) 124)) (-3058 (($ $) 100)) (-3168 (($ $) 120)) (-3035 (($ $) 96)) (-3142 (($ $) 116)) (-3014 (($ $) 92)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ |#2|) 66) (($ $ $) 69) (($ $ (-407 (-564))) 72))) -(((-1252 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-407 (-564)))) (-15 -2958 (|#1| |#1|)) (-15 -2933 (|#1| |#1|)) (-15 -2981 (|#1| |#1|)) (-15 -2992 (|#1| |#1|)) (-15 -2971 (|#1| |#1|)) (-15 -2946 (|#1| |#1|)) (-15 -3014 (|#1| |#1|)) (-15 -3035 (|#1| |#1|)) (-15 -3058 (|#1| |#1|)) (-15 -3047 (|#1| |#1|)) (-15 -3002 (|#1| |#1|)) (-15 -3025 (|#1| |#1|)) (-15 -3077 (|#1| |#1|)) (-15 -3098 (|#1| |#1|)) (-15 -3120 (|#1| |#1|)) (-15 -3110 (|#1| |#1|)) (-15 -3067 (|#1| |#1|)) (-15 -3087 (|#1| |#1|)) (-15 -3142 (|#1| |#1|)) (-15 -3168 (|#1| |#1|)) (-15 -3165 (|#1| |#1|)) (-15 -3176 (|#1| |#1|)) (-15 -3131 (|#1| |#1|)) (-15 -3155 (|#1| |#1|)) (-15 -3576 (|#1| |#1|)) (-15 -3466 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2390 (|#1| |#2|)) (-15 -2390 (|#1| |#1|)) (-15 -2390 (|#1| (-407 (-564)))) (-15 -2390 (|#1| (-564))) (-15 ** (|#1| |#1| (-769))) (-15 ** (|#1| |#1| (-919))) (-15 -2950 ((-112) |#1|)) (-15 -2390 ((-860) |#1|))) (-1253 |#2|) (-1047)) (T -1252)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-407 (-564)))) (-15 -2958 (|#1| |#1|)) (-15 -2933 (|#1| |#1|)) (-15 -2981 (|#1| |#1|)) (-15 -2992 (|#1| |#1|)) (-15 -2971 (|#1| |#1|)) (-15 -2946 (|#1| |#1|)) (-15 -3014 (|#1| |#1|)) (-15 -3035 (|#1| |#1|)) (-15 -3058 (|#1| |#1|)) (-15 -3047 (|#1| |#1|)) (-15 -3002 (|#1| |#1|)) (-15 -3025 (|#1| |#1|)) (-15 -3077 (|#1| |#1|)) (-15 -3098 (|#1| |#1|)) (-15 -3120 (|#1| |#1|)) (-15 -3110 (|#1| |#1|)) (-15 -3067 (|#1| |#1|)) (-15 -3087 (|#1| |#1|)) (-15 -3142 (|#1| |#1|)) (-15 -3168 (|#1| |#1|)) (-15 -3165 (|#1| |#1|)) (-15 -3176 (|#1| |#1|)) (-15 -3131 (|#1| |#1|)) (-15 -3155 (|#1| |#1|)) (-15 -3576 (|#1| |#1|)) (-15 -3466 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2390 (|#1| |#2|)) (-15 -2390 (|#1| |#1|)) (-15 -2390 (|#1| (-407 (-564)))) (-15 -2390 (|#1| (-564))) (-15 ** (|#1| |#1| (-769))) (-15 ** (|#1| |#1| (-919))) (-15 -2950 ((-112) |#1|)) (-15 -2390 ((-860) |#1|))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-2397 (((-642 (-1079)) $) 86)) (-1341 (((-1173) $) 115)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) 63 (|has| |#1| (-556)))) (-4252 (($ $) 64 (|has| |#1| (-556)))) (-1722 (((-112) $) 66 (|has| |#1| (-556)))) (-2180 (($ $ (-769)) 110) (($ $ (-769) (-769)) 109)) (-4077 (((-1153 (-2 (|:| |k| (-769)) (|:| |c| |#1|))) $) 117)) (-3087 (($ $) 147 (|has| |#1| (-38 (-407 (-564)))))) (-2958 (($ $) 130 (|has| |#1| (-38 (-407 (-564)))))) (-3085 (((-3 $ "failed") $ $) 20)) (-2264 (($ $) 129 (|has| |#1| (-38 (-407 (-564)))))) (-3067 (($ $) 146 (|has| |#1| (-38 (-407 (-564)))))) (-2933 (($ $) 131 (|has| |#1| (-38 (-407 (-564)))))) (-3182 (($ (-1153 (-2 (|:| |k| (-769)) (|:| |c| |#1|)))) 167) (($ (-1153 |#1|)) 165)) (-3110 (($ $) 145 (|has| |#1| (-38 (-407 (-564)))))) (-2981 (($ $) 132 (|has| |#1| (-38 (-407 (-564)))))) (-2822 (($) 18 T CONST)) (-3459 (($ $) 72)) (-2675 (((-3 $ "failed") $) 37)) (-4361 (($ $) 164)) (-2437 (((-950 |#1|) $ (-769)) 162) (((-950 |#1|) $ (-769) (-769)) 161)) (-2210 (((-112) $) 85)) (-2833 (($) 157 (|has| |#1| (-38 (-407 (-564)))))) (-2408 (((-769) $) 112) (((-769) $ (-769)) 111)) (-3163 (((-112) $) 35)) (-2024 (($ $ (-564)) 128 (|has| |#1| (-38 (-407 (-564)))))) (-2157 (($ $ (-919)) 113)) (-2869 (($ (-1 |#1| (-564)) $) 163)) (-3471 (((-112) $) 74)) (-2374 (($ |#1| (-769)) 73) (($ $ (-1079) (-769)) 88) (($ $ (-642 (-1079)) (-642 (-769))) 87)) (-2947 (($ (-1 |#1| |#1|) $) 75)) (-3576 (($ $) 154 (|has| |#1| (-38 (-407 (-564)))))) (-2510 (($ $) 77)) (-2523 ((|#1| $) 78)) (-1778 (((-1155) $) 10)) (-3703 (($ $) 159 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1173)) 158 (-2682 (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-957)) (|has| |#1| (-1197)) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-15 -2397 ((-642 (-1173)) |#1|))) (|has| |#1| (-15 -3703 (|#1| |#1| (-1173)))) (|has| |#1| (-38 (-407 (-564)))))))) (-3999 (((-1117) $) 11)) (-2137 (($ $ (-769)) 107)) (-2842 (((-3 $ "failed") $ $) 62 (|has| |#1| (-556)))) (-3466 (($ $) 155 (|has| |#1| (-38 (-407 (-564)))))) (-3154 (((-1153 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-769)))))) (-4369 ((|#1| $ (-769)) 116) (($ $ $) 93 (|has| (-769) (-1109)))) (-2199 (($ $ (-642 (-1173)) (-642 (-769))) 101 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-769) |#1|))))) (($ $ (-1173) (-769)) 100 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-769) |#1|))))) (($ $ (-642 (-1173))) 99 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-769) |#1|))))) (($ $ (-1173)) 98 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-769) |#1|))))) (($ $ (-769)) 96 (|has| |#1| (-15 * (|#1| (-769) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-769) |#1|))))) (-3252 (((-769) $) 76)) (-3120 (($ $) 144 (|has| |#1| (-38 (-407 (-564)))))) (-2992 (($ $) 133 (|has| |#1| (-38 (-407 (-564)))))) (-3098 (($ $) 143 (|has| |#1| (-38 (-407 (-564)))))) (-2971 (($ $) 134 (|has| |#1| (-38 (-407 (-564)))))) (-3077 (($ $) 142 (|has| |#1| (-38 (-407 (-564)))))) (-2946 (($ $) 135 (|has| |#1| (-38 (-407 (-564)))))) (-4189 (($ $) 84)) (-2390 (((-860) $) 12) (($ (-564)) 33) (($ (-407 (-564))) 69 (|has| |#1| (-38 (-407 (-564))))) (($ $) 61 (|has| |#1| (-556))) (($ |#1|) 59 (|has| |#1| (-172)))) (-2839 (((-1153 |#1|) $) 166)) (-3005 ((|#1| $ (-769)) 71)) (-3434 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-3348 (((-769)) 32 T CONST)) (-2245 ((|#1| $) 114)) (-1600 (((-112) $ $) 9)) (-3155 (($ $) 153 (|has| |#1| (-38 (-407 (-564)))))) (-3025 (($ $) 141 (|has| |#1| (-38 (-407 (-564)))))) (-1594 (((-112) $ $) 65 (|has| |#1| (-556)))) (-3131 (($ $) 152 (|has| |#1| (-38 (-407 (-564)))))) (-3002 (($ $) 140 (|has| |#1| (-38 (-407 (-564)))))) (-3176 (($ $) 151 (|has| |#1| (-38 (-407 (-564)))))) (-3047 (($ $) 139 (|has| |#1| (-38 (-407 (-564)))))) (-3560 ((|#1| $ (-769)) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-769)))) (|has| |#1| (-15 -2390 (|#1| (-1173))))))) (-3165 (($ $) 150 (|has| |#1| (-38 (-407 (-564)))))) (-3058 (($ $) 138 (|has| |#1| (-38 (-407 (-564)))))) (-3168 (($ $) 149 (|has| |#1| (-38 (-407 (-564)))))) (-3035 (($ $) 137 (|has| |#1| (-38 (-407 (-564)))))) (-3142 (($ $) 148 (|has| |#1| (-38 (-407 (-564)))))) (-3014 (($ $) 136 (|has| |#1| (-38 (-407 (-564)))))) (-2361 (($) 19 T CONST)) (-2371 (($) 34 T CONST)) (-2711 (($ $ (-642 (-1173)) (-642 (-769))) 105 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-769) |#1|))))) (($ $ (-1173) (-769)) 104 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-769) |#1|))))) (($ $ (-642 (-1173))) 103 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-769) |#1|))))) (($ $ (-1173)) 102 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-769) |#1|))))) (($ $ (-769)) 97 (|has| |#1| (-15 * (|#1| (-769) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-769) |#1|))))) (-2821 (((-112) $ $) 6)) (-2943 (($ $ |#1|) 70 (|has| |#1| (-363)))) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36) (($ $ |#1|) 160 (|has| |#1| (-363))) (($ $ $) 156 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 127 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-407 (-564)) $) 68 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 67 (|has| |#1| (-38 (-407 (-564))))))) -(((-1253 |#1|) (-140) (-1047)) (T -1253)) -((-3182 (*1 *1 *2) (-12 (-5 *2 (-1153 (-2 (|:| |k| (-769)) (|:| |c| *3)))) (-4 *3 (-1047)) (-4 *1 (-1253 *3)))) (-2839 (*1 *2 *1) (-12 (-4 *1 (-1253 *3)) (-4 *3 (-1047)) (-5 *2 (-1153 *3)))) (-3182 (*1 *1 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-4 *1 (-1253 *3)))) (-4361 (*1 *1 *1) (-12 (-4 *1 (-1253 *2)) (-4 *2 (-1047)))) (-2869 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-564))) (-4 *1 (-1253 *3)) (-4 *3 (-1047)))) (-2437 (*1 *2 *1 *3) (-12 (-5 *3 (-769)) (-4 *1 (-1253 *4)) (-4 *4 (-1047)) (-5 *2 (-950 *4)))) (-2437 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-769)) (-4 *1 (-1253 *4)) (-4 *4 (-1047)) (-5 *2 (-950 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1253 *2)) (-4 *2 (-1047)) (-4 *2 (-363)))) (-3703 (*1 *1 *1) (-12 (-4 *1 (-1253 *2)) (-4 *2 (-1047)) (-4 *2 (-38 (-407 (-564)))))) (-3703 (*1 *1 *1 *2) (-2682 (-12 (-5 *2 (-1173)) (-4 *1 (-1253 *3)) (-4 *3 (-1047)) (-12 (-4 *3 (-29 (-564))) (-4 *3 (-957)) (-4 *3 (-1197)) (-4 *3 (-38 (-407 (-564)))))) (-12 (-5 *2 (-1173)) (-4 *1 (-1253 *3)) (-4 *3 (-1047)) (-12 (|has| *3 (-15 -2397 ((-642 *2) *3))) (|has| *3 (-15 -3703 (*3 *3 *2))) (-4 *3 (-38 (-407 (-564))))))))) -(-13 (-1240 |t#1| (-769)) (-10 -8 (-15 -3182 ($ (-1153 (-2 (|:| |k| (-769)) (|:| |c| |t#1|))))) (-15 -2839 ((-1153 |t#1|) $)) (-15 -3182 ($ (-1153 |t#1|))) (-15 -4361 ($ $)) (-15 -2869 ($ (-1 |t#1| (-564)) $)) (-15 -2437 ((-950 |t#1|) $ (-769))) (-15 -2437 ((-950 |t#1|) $ (-769) (-769))) (IF (|has| |t#1| (-363)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-407 (-564)))) (PROGN (-15 -3703 ($ $)) (IF (|has| |t#1| (-15 -3703 (|t#1| |t#1| (-1173)))) (IF (|has| |t#1| (-15 -2397 ((-642 (-1173)) |t#1|))) (-15 -3703 ($ $ (-1173))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1197)) (IF (|has| |t#1| (-957)) (IF (|has| |t#1| (-29 (-564))) (-15 -3703 ($ $ (-1173))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1000)) (-6 (-1197))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-769)) . T) ((-25) . T) ((-38 #1=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-556)) ((-35) |has| |#1| (-38 (-407 (-564)))) ((-95) |has| |#1| (-38 (-407 (-564)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2682 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #1#) |has| |#1| (-38 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-614 $) |has| |#1| (-556)) ((-611 (-860)) . T) ((-172) -2682 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-769) |#1|))) ((-284) |has| |#1| (-38 (-407 (-564)))) ((-286 $ $) |has| (-769) (-1109)) ((-290) |has| |#1| (-556)) ((-493) |has| |#1| (-38 (-407 (-564)))) ((-556) |has| |#1| (-556)) ((-644 #1#) |has| |#1| (-38 (-407 (-564)))) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-646 #1#) |has| |#1| (-38 (-407 (-564)))) ((-646 |#1|) . T) ((-646 $) . T) ((-638 #1#) |has| |#1| (-38 (-407 (-564)))) ((-638 |#1|) |has| |#1| (-172)) ((-638 $) |has| |#1| (-556)) ((-715 #1#) |has| |#1| (-38 (-407 (-564)))) ((-715 |#1|) |has| |#1| (-172)) ((-715 $) |has| |#1| (-556)) ((-724) . T) ((-898 (-1173)) -12 (|has| |#1| (-15 * (|#1| (-769) |#1|))) (|has| |#1| (-898 (-1173)))) ((-971 |#1| #0# (-1079)) . T) ((-1000) |has| |#1| (-38 (-407 (-564)))) ((-1049 #1#) |has| |#1| (-38 (-407 (-564)))) ((-1049 |#1|) . T) ((-1049 $) -2682 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-1054 #1#) |has| |#1| (-38 (-407 (-564)))) ((-1054 |#1|) . T) ((-1054 $) -2682 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T) ((-1197) |has| |#1| (-38 (-407 (-564)))) ((-1200) |has| |#1| (-38 (-407 (-564)))) ((-1240 |#1| #0#) . T)) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-2397 (((-642 (-1079)) $) NIL)) (-1341 (((-1173) $) 93)) (-2152 (((-1235 |#2| |#1|) $ (-769)) 74)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-4252 (($ $) NIL (|has| |#1| (-556)))) (-1722 (((-112) $) 145 (|has| |#1| (-556)))) (-2180 (($ $ (-769)) 130) (($ $ (-769) (-769)) 133)) (-4077 (((-1153 (-2 (|:| |k| (-769)) (|:| |c| |#1|))) $) 43)) (-3087 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2958 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3085 (((-3 $ "failed") $ $) NIL)) (-2264 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3067 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2933 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3182 (($ (-1153 (-2 (|:| |k| (-769)) (|:| |c| |#1|)))) 53) (($ (-1153 |#1|)) NIL)) (-3110 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2981 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2822 (($) NIL T CONST)) (-1421 (($ $) 137)) (-3459 (($ $) NIL)) (-2675 (((-3 $ "failed") $) NIL)) (-4361 (($ $) 143)) (-2437 (((-950 |#1|) $ (-769)) 64) (((-950 |#1|) $ (-769) (-769)) 66)) (-2210 (((-112) $) NIL)) (-2833 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2408 (((-769) $) NIL) (((-769) $ (-769)) NIL)) (-3163 (((-112) $) NIL)) (-1955 (($ $) 120)) (-2024 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3795 (($ (-564) (-564) $) 139)) (-2157 (($ $ (-919)) 142)) (-2869 (($ (-1 |#1| (-564)) $) 114)) (-3471 (((-112) $) NIL)) (-2374 (($ |#1| (-769)) 16) (($ $ (-1079) (-769)) NIL) (($ $ (-642 (-1079)) (-642 (-769))) NIL)) (-2947 (($ (-1 |#1| |#1|) $) 101)) (-3576 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2510 (($ $) NIL)) (-2523 ((|#1| $) NIL)) (-1778 (((-1155) $) NIL)) (-2289 (($ $) 118)) (-2488 (($ $) 116)) (-1508 (($ (-564) (-564) $) 141)) (-3703 (($ $) 153 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1173)) 159 (-2682 (-12 (|has| |#1| (-15 -3703 (|#1| |#1| (-1173)))) (|has| |#1| (-15 -2397 ((-642 (-1173)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-957)) (|has| |#1| (-1197))))) (($ $ (-1258 |#2|)) 154 (|has| |#1| (-38 (-407 (-564)))))) (-3999 (((-1117) $) NIL)) (-3298 (($ $ (-564) (-564)) 124)) (-2137 (($ $ (-769)) 126)) (-2842 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-3466 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4237 (($ $) 122)) (-3154 (((-1153 |#1|) $ |#1|) 103 (|has| |#1| (-15 ** (|#1| |#1| (-769)))))) (-4369 ((|#1| $ (-769)) 98) (($ $ $) 135 (|has| (-769) (-1109)))) (-2199 (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| |#1| (-15 * (|#1| (-769) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-1173) (-769)) NIL (-12 (|has| |#1| (-15 * (|#1| (-769) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-642 (-1173))) NIL (-12 (|has| |#1| (-15 * (|#1| (-769) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-1173)) 111 (-12 (|has| |#1| (-15 * (|#1| (-769) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-769)) NIL (|has| |#1| (-15 * (|#1| (-769) |#1|)))) (($ $) 105 (|has| |#1| (-15 * (|#1| (-769) |#1|)))) (($ $ (-1258 |#2|)) 106)) (-3252 (((-769) $) NIL)) (-3120 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2992 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3098 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2971 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3077 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2946 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4189 (($ $) 128)) (-2390 (((-860) $) NIL) (($ (-564)) 26) (($ (-407 (-564))) 151 (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556))) (($ |#1|) 25 (|has| |#1| (-172))) (($ (-1235 |#2| |#1|)) 84) (($ (-1258 |#2|)) 22)) (-2839 (((-1153 |#1|) $) NIL)) (-3005 ((|#1| $ (-769)) 97)) (-3434 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3348 (((-769)) NIL T CONST)) (-2245 ((|#1| $) 94)) (-1600 (((-112) $ $) NIL)) (-3155 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3025 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1594 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3131 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3002 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3176 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3047 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3560 ((|#1| $ (-769)) 92 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-769)))) (|has| |#1| (-15 -2390 (|#1| (-1173))))))) (-3165 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3058 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3168 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3035 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3142 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3014 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2361 (($) 18 T CONST)) (-2371 (($) 13 T CONST)) (-2711 (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| |#1| (-15 * (|#1| (-769) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-1173) (-769)) NIL (-12 (|has| |#1| (-15 * (|#1| (-769) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-642 (-1173))) NIL (-12 (|has| |#1| (-15 * (|#1| (-769) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-1173)) NIL (-12 (|has| |#1| (-15 * (|#1| (-769) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-769)) NIL (|has| |#1| (-15 * (|#1| (-769) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-769) |#1|))))) (-2821 (((-112) $ $) NIL)) (-2943 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-2930 (($ $) NIL) (($ $ $) 110)) (-2917 (($ $ $) 20)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ |#1|) 148 (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 109) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))))) -(((-1254 |#1| |#2| |#3|) (-13 (-1253 |#1|) (-10 -8 (-15 -2390 ($ (-1235 |#2| |#1|))) (-15 -2152 ((-1235 |#2| |#1|) $ (-769))) (-15 -2390 ($ (-1258 |#2|))) (-15 -2199 ($ $ (-1258 |#2|))) (-15 -2488 ($ $)) (-15 -2289 ($ $)) (-15 -1955 ($ $)) (-15 -4237 ($ $)) (-15 -3298 ($ $ (-564) (-564))) (-15 -1421 ($ $)) (-15 -3795 ($ (-564) (-564) $)) (-15 -1508 ($ (-564) (-564) $)) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3703 ($ $ (-1258 |#2|))) |%noBranch|))) (-1047) (-1173) |#1|) (T -1254)) -((-2390 (*1 *1 *2) (-12 (-5 *2 (-1235 *4 *3)) (-4 *3 (-1047)) (-14 *4 (-1173)) (-14 *5 *3) (-5 *1 (-1254 *3 *4 *5)))) (-2152 (*1 *2 *1 *3) (-12 (-5 *3 (-769)) (-5 *2 (-1235 *5 *4)) (-5 *1 (-1254 *4 *5 *6)) (-4 *4 (-1047)) (-14 *5 (-1173)) (-14 *6 *4))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-1254 *3 *4 *5)) (-4 *3 (-1047)) (-14 *5 *3))) (-2199 (*1 *1 *1 *2) (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-1254 *3 *4 *5)) (-4 *3 (-1047)) (-14 *5 *3))) (-2488 (*1 *1 *1) (-12 (-5 *1 (-1254 *2 *3 *4)) (-4 *2 (-1047)) (-14 *3 (-1173)) (-14 *4 *2))) (-2289 (*1 *1 *1) (-12 (-5 *1 (-1254 *2 *3 *4)) (-4 *2 (-1047)) (-14 *3 (-1173)) (-14 *4 *2))) (-1955 (*1 *1 *1) (-12 (-5 *1 (-1254 *2 *3 *4)) (-4 *2 (-1047)) (-14 *3 (-1173)) (-14 *4 *2))) (-4237 (*1 *1 *1) (-12 (-5 *1 (-1254 *2 *3 *4)) (-4 *2 (-1047)) (-14 *3 (-1173)) (-14 *4 *2))) (-3298 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1254 *3 *4 *5)) (-4 *3 (-1047)) (-14 *4 (-1173)) (-14 *5 *3))) (-1421 (*1 *1 *1) (-12 (-5 *1 (-1254 *2 *3 *4)) (-4 *2 (-1047)) (-14 *3 (-1173)) (-14 *4 *2))) (-3795 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1254 *3 *4 *5)) (-4 *3 (-1047)) (-14 *4 (-1173)) (-14 *5 *3))) (-1508 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1254 *3 *4 *5)) (-4 *3 (-1047)) (-14 *4 (-1173)) (-14 *5 *3))) (-3703 (*1 *1 *1 *2) (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-1254 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1047)) (-14 *5 *3)))) -(-13 (-1253 |#1|) (-10 -8 (-15 -2390 ($ (-1235 |#2| |#1|))) (-15 -2152 ((-1235 |#2| |#1|) $ (-769))) (-15 -2390 ($ (-1258 |#2|))) (-15 -2199 ($ $ (-1258 |#2|))) (-15 -2488 ($ $)) (-15 -2289 ($ $)) (-15 -1955 ($ $)) (-15 -4237 ($ $)) (-15 -3298 ($ $ (-564) (-564))) (-15 -1421 ($ $)) (-15 -3795 ($ (-564) (-564) $)) (-15 -1508 ($ (-564) (-564) $)) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3703 ($ $ (-1258 |#2|))) |%noBranch|))) -((-2306 (((-1 (-1153 |#1|) (-642 (-1153 |#1|))) (-1 |#2| (-642 |#2|))) 24)) (-3693 (((-1 (-1153 |#1|) (-1153 |#1|) (-1153 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-3772 (((-1 (-1153 |#1|) (-1153 |#1|)) (-1 |#2| |#2|)) 13)) (-2767 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-4157 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-3450 ((|#2| (-1 |#2| (-642 |#2|)) (-642 |#1|)) 60)) (-2640 (((-642 |#2|) (-642 |#1|) (-642 (-1 |#2| (-642 |#2|)))) 66)) (-3145 ((|#2| |#2| |#2|) 43))) -(((-1255 |#1| |#2|) (-10 -7 (-15 -3772 ((-1 (-1153 |#1|) (-1153 |#1|)) (-1 |#2| |#2|))) (-15 -3693 ((-1 (-1153 |#1|) (-1153 |#1|) (-1153 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -2306 ((-1 (-1153 |#1|) (-642 (-1153 |#1|))) (-1 |#2| (-642 |#2|)))) (-15 -3145 (|#2| |#2| |#2|)) (-15 -4157 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2767 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3450 (|#2| (-1 |#2| (-642 |#2|)) (-642 |#1|))) (-15 -2640 ((-642 |#2|) (-642 |#1|) (-642 (-1 |#2| (-642 |#2|)))))) (-38 (-407 (-564))) (-1253 |#1|)) (T -1255)) -((-2640 (*1 *2 *3 *4) (-12 (-5 *3 (-642 *5)) (-5 *4 (-642 (-1 *6 (-642 *6)))) (-4 *5 (-38 (-407 (-564)))) (-4 *6 (-1253 *5)) (-5 *2 (-642 *6)) (-5 *1 (-1255 *5 *6)))) (-3450 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-642 *2))) (-5 *4 (-642 *5)) (-4 *5 (-38 (-407 (-564)))) (-4 *2 (-1253 *5)) (-5 *1 (-1255 *5 *2)))) (-2767 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1253 *4)) (-5 *1 (-1255 *4 *2)) (-4 *4 (-38 (-407 (-564)))))) (-4157 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1253 *4)) (-5 *1 (-1255 *4 *2)) (-4 *4 (-38 (-407 (-564)))))) (-3145 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1255 *3 *2)) (-4 *2 (-1253 *3)))) (-2306 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-642 *5))) (-4 *5 (-1253 *4)) (-4 *4 (-38 (-407 (-564)))) (-5 *2 (-1 (-1153 *4) (-642 (-1153 *4)))) (-5 *1 (-1255 *4 *5)))) (-3693 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1253 *4)) (-4 *4 (-38 (-407 (-564)))) (-5 *2 (-1 (-1153 *4) (-1153 *4) (-1153 *4))) (-5 *1 (-1255 *4 *5)))) (-3772 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1253 *4)) (-4 *4 (-38 (-407 (-564)))) (-5 *2 (-1 (-1153 *4) (-1153 *4))) (-5 *1 (-1255 *4 *5))))) -(-10 -7 (-15 -3772 ((-1 (-1153 |#1|) (-1153 |#1|)) (-1 |#2| |#2|))) (-15 -3693 ((-1 (-1153 |#1|) (-1153 |#1|) (-1153 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -2306 ((-1 (-1153 |#1|) (-642 (-1153 |#1|))) (-1 |#2| (-642 |#2|)))) (-15 -3145 (|#2| |#2| |#2|)) (-15 -4157 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2767 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3450 (|#2| (-1 |#2| (-642 |#2|)) (-642 |#1|))) (-15 -2640 ((-642 |#2|) (-642 |#1|) (-642 (-1 |#2| (-642 |#2|)))))) -((-3179 ((|#2| |#4| (-769)) 34)) (-4084 ((|#4| |#2|) 29)) (-2322 ((|#4| (-407 |#2|)) 53 (|has| |#1| (-556)))) (-4208 (((-1 |#4| (-642 |#4|)) |#3|) 46))) -(((-1256 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4084 (|#4| |#2|)) (-15 -3179 (|#2| |#4| (-769))) (-15 -4208 ((-1 |#4| (-642 |#4|)) |#3|)) (IF (|has| |#1| (-556)) (-15 -2322 (|#4| (-407 |#2|))) |%noBranch|)) (-1047) (-1238 |#1|) (-654 |#2|) (-1253 |#1|)) (T -1256)) -((-2322 (*1 *2 *3) (-12 (-5 *3 (-407 *5)) (-4 *5 (-1238 *4)) (-4 *4 (-556)) (-4 *4 (-1047)) (-4 *2 (-1253 *4)) (-5 *1 (-1256 *4 *5 *6 *2)) (-4 *6 (-654 *5)))) (-4208 (*1 *2 *3) (-12 (-4 *4 (-1047)) (-4 *5 (-1238 *4)) (-5 *2 (-1 *6 (-642 *6))) (-5 *1 (-1256 *4 *5 *3 *6)) (-4 *3 (-654 *5)) (-4 *6 (-1253 *4)))) (-3179 (*1 *2 *3 *4) (-12 (-5 *4 (-769)) (-4 *5 (-1047)) (-4 *2 (-1238 *5)) (-5 *1 (-1256 *5 *2 *6 *3)) (-4 *6 (-654 *2)) (-4 *3 (-1253 *5)))) (-4084 (*1 *2 *3) (-12 (-4 *4 (-1047)) (-4 *3 (-1238 *4)) (-4 *2 (-1253 *4)) (-5 *1 (-1256 *4 *3 *5 *2)) (-4 *5 (-654 *3))))) -(-10 -7 (-15 -4084 (|#4| |#2|)) (-15 -3179 (|#2| |#4| (-769))) (-15 -4208 ((-1 |#4| (-642 |#4|)) |#3|)) (IF (|has| |#1| (-556)) (-15 -2322 (|#4| (-407 |#2|))) |%noBranch|)) -NIL -(((-1257) (-140)) (T -1257)) -NIL -(-13 (-10 -7 (-6 -3524))) -((-2856 (((-112) $ $) NIL)) (-1341 (((-1173)) 12)) (-1778 (((-1155) $) 18)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) 11) (((-1173) $) 8)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) 15))) -(((-1258 |#1|) (-13 (-1097) (-611 (-1173)) (-10 -8 (-15 -2390 ((-1173) $)) (-15 -1341 ((-1173))))) (-1173)) (T -1258)) -((-2390 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-1258 *3)) (-14 *3 *2))) (-1341 (*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-1258 *3)) (-14 *3 *2)))) -(-13 (-1097) (-611 (-1173)) (-10 -8 (-15 -2390 ((-1173) $)) (-15 -1341 ((-1173))))) -((-2038 (($ (-769)) 19)) (-3500 (((-687 |#2|) $ $) 41)) (-1925 ((|#2| $) 51)) (-2495 ((|#2| $) 50)) (-1976 ((|#2| $ $) 36)) (-4215 (($ $ $) 47)) (-2930 (($ $) 23) (($ $ $) 29)) (-2917 (($ $ $) 15)) (* (($ (-564) $) 26) (($ |#2| $) 32) (($ $ |#2|) 31))) -(((-1259 |#1| |#2|) (-10 -8 (-15 -1925 (|#2| |#1|)) (-15 -2495 (|#2| |#1|)) (-15 -4215 (|#1| |#1| |#1|)) (-15 -3500 ((-687 |#2|) |#1| |#1|)) (-15 -1976 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 -2930 (|#1| |#1| |#1|)) (-15 -2930 (|#1| |#1|)) (-15 -2038 (|#1| (-769))) (-15 -2917 (|#1| |#1| |#1|))) (-1260 |#2|) (-1212)) (T -1259)) -NIL -(-10 -8 (-15 -1925 (|#2| |#1|)) (-15 -2495 (|#2| |#1|)) (-15 -4215 (|#1| |#1| |#1|)) (-15 -3500 ((-687 |#2|) |#1| |#1|)) (-15 -1976 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 -2930 (|#1| |#1| |#1|)) (-15 -2930 (|#1| |#1|)) (-15 -2038 (|#1| (-769))) (-15 -2917 (|#1| |#1| |#1|))) -((-2856 (((-112) $ $) 19 (|has| |#1| (-1097)))) (-2038 (($ (-769)) 113 (|has| |#1| (-23)))) (-3633 (((-1267) $ (-564) (-564)) 41 (|has| $ (-6 -4411)))) (-1824 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-848)))) (-3659 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4411))) (($ $) 89 (-12 (|has| |#1| (-848)) (|has| $ (-6 -4411))))) (-3191 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-848)))) (-3442 (((-112) $ (-769)) 8)) (-3841 ((|#1| $ (-564) |#1|) 53 (|has| $ (-6 -4411))) ((|#1| $ (-1229 (-564)) |#1|) 59 (|has| $ (-6 -4411)))) (-3437 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4410)))) (-2822 (($) 7 T CONST)) (-1540 (($ $) 91 (|has| $ (-6 -4411)))) (-3817 (($ $) 101)) (-4067 (($ $) 79 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-2517 (($ |#1| $) 78 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4410)))) (-3741 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4410)))) (-3105 ((|#1| $ (-564) |#1|) 54 (|has| $ (-6 -4411)))) (-1804 ((|#1| $ (-564)) 52)) (-3942 (((-564) (-1 (-112) |#1|) $) 98) (((-564) |#1| $) 97 (|has| |#1| (-1097))) (((-564) |#1| $ (-564)) 96 (|has| |#1| (-1097)))) (-2018 (((-642 |#1|) $) 31 (|has| $ (-6 -4410)))) (-3500 (((-687 |#1|) $ $) 106 (|has| |#1| (-1047)))) (-4233 (($ (-769) |#1|) 70)) (-3769 (((-112) $ (-769)) 9)) (-1802 (((-564) $) 44 (|has| (-564) (-848)))) (-3225 (($ $ $) 88 (|has| |#1| (-848)))) (-2774 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-848)))) (-3541 (((-642 |#1|) $) 30 (|has| $ (-6 -4410)))) (-2533 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3624 (((-564) $) 45 (|has| (-564) (-848)))) (-2903 (($ $ $) 87 (|has| |#1| (-848)))) (-1857 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1925 ((|#1| $) 103 (-12 (|has| |#1| (-1047)) (|has| |#1| (-1000))))) (-4145 (((-112) $ (-769)) 10)) (-2495 ((|#1| $) 104 (-12 (|has| |#1| (-1047)) (|has| |#1| (-1000))))) (-1778 (((-1155) $) 22 (|has| |#1| (-1097)))) (-4247 (($ |#1| $ (-564)) 61) (($ $ $ (-564)) 60)) (-4107 (((-642 (-564)) $) 47)) (-4207 (((-112) (-564) $) 48)) (-3999 (((-1117) $) 21 (|has| |#1| (-1097)))) (-4036 ((|#1| $) 43 (|has| (-564) (-848)))) (-3183 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-3826 (($ $ |#1|) 42 (|has| $ (-6 -4411)))) (-4094 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-2478 (((-112) $ $) 14)) (-1643 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3522 (((-642 |#1|) $) 49)) (-4109 (((-112) $) 11)) (-2179 (($) 12)) (-4369 ((|#1| $ (-564) |#1|) 51) ((|#1| $ (-564)) 50) (($ $ (-1229 (-564))) 64)) (-1976 ((|#1| $ $) 107 (|has| |#1| (-1047)))) (-2083 (($ $ (-564)) 63) (($ $ (-1229 (-564))) 62)) (-4215 (($ $ $) 105 (|has| |#1| (-1047)))) (-4010 (((-769) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4410))) (((-769) |#1| $) 29 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3301 (($ $ $ (-564)) 92 (|has| $ (-6 -4411)))) (-3865 (($ $) 13)) (-3003 (((-536) $) 80 (|has| |#1| (-612 (-536))))) (-2401 (($ (-642 |#1|)) 71)) (-3634 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-642 $)) 66)) (-2390 (((-860) $) 18 (|has| |#1| (-611 (-860))))) (-1600 (((-112) $ $) 23 (|has| |#1| (-1097)))) (-3295 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4410)))) (-2881 (((-112) $ $) 85 (|has| |#1| (-848)))) (-2857 (((-112) $ $) 84 (|has| |#1| (-848)))) (-2821 (((-112) $ $) 20 (|has| |#1| (-1097)))) (-2868 (((-112) $ $) 86 (|has| |#1| (-848)))) (-2844 (((-112) $ $) 83 (|has| |#1| (-848)))) (-2930 (($ $) 112 (|has| |#1| (-21))) (($ $ $) 111 (|has| |#1| (-21)))) (-2917 (($ $ $) 114 (|has| |#1| (-25)))) (* (($ (-564) $) 110 (|has| |#1| (-21))) (($ |#1| $) 109 (|has| |#1| (-724))) (($ $ |#1|) 108 (|has| |#1| (-724)))) (-2158 (((-769) $) 6 (|has| $ (-6 -4410))))) -(((-1260 |#1|) (-140) (-1212)) (T -1260)) -((-2917 (*1 *1 *1 *1) (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1212)) (-4 *2 (-25)))) (-2038 (*1 *1 *2) (-12 (-5 *2 (-769)) (-4 *1 (-1260 *3)) (-4 *3 (-23)) (-4 *3 (-1212)))) (-2930 (*1 *1 *1) (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1212)) (-4 *2 (-21)))) (-2930 (*1 *1 *1 *1) (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1212)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-564)) (-4 *1 (-1260 *3)) (-4 *3 (-1212)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1212)) (-4 *2 (-724)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1212)) (-4 *2 (-724)))) (-1976 (*1 *2 *1 *1) (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1212)) (-4 *2 (-1047)))) (-3500 (*1 *2 *1 *1) (-12 (-4 *1 (-1260 *3)) (-4 *3 (-1212)) (-4 *3 (-1047)) (-5 *2 (-687 *3)))) (-4215 (*1 *1 *1 *1) (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1212)) (-4 *2 (-1047)))) (-2495 (*1 *2 *1) (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1212)) (-4 *2 (-1000)) (-4 *2 (-1047)))) (-1925 (*1 *2 *1) (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1212)) (-4 *2 (-1000)) (-4 *2 (-1047))))) -(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -2917 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -2038 ($ (-769))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -2930 ($ $)) (-15 -2930 ($ $ $)) (-15 * ($ (-564) $))) |%noBranch|) (IF (|has| |t#1| (-724)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1047)) (PROGN (-15 -1976 (|t#1| $ $)) (-15 -3500 ((-687 |t#1|) $ $)) (-15 -4215 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-1000)) (IF (|has| |t#1| (-1047)) (PROGN (-15 -2495 (|t#1| $)) (-15 -1925 (|t#1| $))) |%noBranch|) |%noBranch|))) -(((-34) . T) ((-102) -2682 (|has| |#1| (-1097)) (|has| |#1| (-848))) ((-611 (-860)) -2682 (|has| |#1| (-1097)) (|has| |#1| (-848)) (|has| |#1| (-611 (-860)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-373 |#1|) . T) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-649 |#1|) . T) ((-19 |#1|) . T) ((-848) |has| |#1| (-848)) ((-1097) -2682 (|has| |#1| (-1097)) (|has| |#1| (-848))) ((-1212) . T)) -((-2810 (((-1262 |#2|) (-1 |#2| |#1| |#2|) (-1262 |#1|) |#2|) 13)) (-3741 ((|#2| (-1 |#2| |#1| |#2|) (-1262 |#1|) |#2|) 15)) (-2947 (((-3 (-1262 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1262 |#1|)) 30) (((-1262 |#2|) (-1 |#2| |#1|) (-1262 |#1|)) 18))) -(((-1261 |#1| |#2|) (-10 -7 (-15 -2810 ((-1262 |#2|) (-1 |#2| |#1| |#2|) (-1262 |#1|) |#2|)) (-15 -3741 (|#2| (-1 |#2| |#1| |#2|) (-1262 |#1|) |#2|)) (-15 -2947 ((-1262 |#2|) (-1 |#2| |#1|) (-1262 |#1|))) (-15 -2947 ((-3 (-1262 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1262 |#1|)))) (-1212) (-1212)) (T -1261)) -((-2947 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1262 *5)) (-4 *5 (-1212)) (-4 *6 (-1212)) (-5 *2 (-1262 *6)) (-5 *1 (-1261 *5 *6)))) (-2947 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1262 *5)) (-4 *5 (-1212)) (-4 *6 (-1212)) (-5 *2 (-1262 *6)) (-5 *1 (-1261 *5 *6)))) (-3741 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1262 *5)) (-4 *5 (-1212)) (-4 *2 (-1212)) (-5 *1 (-1261 *5 *2)))) (-2810 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1262 *6)) (-4 *6 (-1212)) (-4 *5 (-1212)) (-5 *2 (-1262 *5)) (-5 *1 (-1261 *6 *5))))) -(-10 -7 (-15 -2810 ((-1262 |#2|) (-1 |#2| |#1| |#2|) (-1262 |#1|) |#2|)) (-15 -3741 (|#2| (-1 |#2| |#1| |#2|) (-1262 |#1|) |#2|)) (-15 -2947 ((-1262 |#2|) (-1 |#2| |#1|) (-1262 |#1|))) (-15 -2947 ((-3 (-1262 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1262 |#1|)))) -((-2856 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2038 (($ (-769)) NIL (|has| |#1| (-23)))) (-2188 (($ (-642 |#1|)) 11)) (-3633 (((-1267) $ (-564) (-564)) NIL (|has| $ (-6 -4411)))) (-1824 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-848)))) (-3659 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4411))) (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-848))))) (-3191 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-848)))) (-3442 (((-112) $ (-769)) NIL)) (-3841 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4411))) ((|#1| $ (-1229 (-564)) |#1|) NIL (|has| $ (-6 -4411)))) (-3437 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2822 (($) NIL T CONST)) (-1540 (($ $) NIL (|has| $ (-6 -4411)))) (-3817 (($ $) NIL)) (-4067 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2517 (($ |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3741 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4410)))) (-3105 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4411)))) (-1804 ((|#1| $ (-564)) NIL)) (-3942 (((-564) (-1 (-112) |#1|) $) NIL) (((-564) |#1| $) NIL (|has| |#1| (-1097))) (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1097)))) (-2018 (((-642 |#1|) $) 15 (|has| $ (-6 -4410)))) (-3500 (((-687 |#1|) $ $) NIL (|has| |#1| (-1047)))) (-4233 (($ (-769) |#1|) NIL)) (-3769 (((-112) $ (-769)) NIL)) (-1802 (((-564) $) NIL (|has| (-564) (-848)))) (-3225 (($ $ $) NIL (|has| |#1| (-848)))) (-2774 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-848)))) (-3541 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2533 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3624 (((-564) $) NIL (|has| (-564) (-848)))) (-2903 (($ $ $) NIL (|has| |#1| (-848)))) (-1857 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1925 ((|#1| $) NIL (-12 (|has| |#1| (-1000)) (|has| |#1| (-1047))))) (-4145 (((-112) $ (-769)) NIL)) (-2495 ((|#1| $) NIL (-12 (|has| |#1| (-1000)) (|has| |#1| (-1047))))) (-1778 (((-1155) $) NIL (|has| |#1| (-1097)))) (-4247 (($ |#1| $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-4107 (((-642 (-564)) $) NIL)) (-4207 (((-112) (-564) $) NIL)) (-3999 (((-1117) $) NIL (|has| |#1| (-1097)))) (-4036 ((|#1| $) NIL (|has| (-564) (-848)))) (-3183 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3826 (($ $ |#1|) NIL (|has| $ (-6 -4411)))) (-4094 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-2478 (((-112) $ $) NIL)) (-1643 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3522 (((-642 |#1|) $) NIL)) (-4109 (((-112) $) NIL)) (-2179 (($) NIL)) (-4369 ((|#1| $ (-564) |#1|) NIL) ((|#1| $ (-564)) NIL) (($ $ (-1229 (-564))) NIL)) (-1976 ((|#1| $ $) NIL (|has| |#1| (-1047)))) (-2083 (($ $ (-564)) NIL) (($ $ (-1229 (-564))) NIL)) (-4215 (($ $ $) NIL (|has| |#1| (-1047)))) (-4010 (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-769) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3301 (($ $ $ (-564)) NIL (|has| $ (-6 -4411)))) (-3865 (($ $) NIL)) (-3003 (((-536) $) 19 (|has| |#1| (-612 (-536))))) (-2401 (($ (-642 |#1|)) 10)) (-3634 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-642 $)) NIL)) (-2390 (((-860) $) NIL (|has| |#1| (-611 (-860))))) (-1600 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-3295 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2881 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2857 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2821 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2868 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2844 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2930 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2917 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-564) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-724))) (($ $ |#1|) NIL (|has| |#1| (-724)))) (-2158 (((-769) $) NIL (|has| $ (-6 -4410))))) -(((-1262 |#1|) (-13 (-1260 |#1|) (-10 -8 (-15 -2188 ($ (-642 |#1|))))) (-1212)) (T -1262)) -((-2188 (*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1212)) (-5 *1 (-1262 *3))))) -(-13 (-1260 |#1|) (-10 -8 (-15 -2188 ($ (-642 |#1|))))) -((-2856 (((-112) $ $) NIL)) (-3963 (((-1155) $ (-1155)) 110) (((-1155) $ (-1155) (-1155)) 108) (((-1155) $ (-1155) (-642 (-1155))) 107)) (-2646 (($) 70)) (-3882 (((-1267) $ (-468) (-919)) 55)) (-3036 (((-1267) $ (-919) (-1155)) 92) (((-1267) $ (-919) (-872)) 93)) (-2022 (((-1267) $ (-919) (-379) (-379)) 58)) (-3212 (((-1267) $ (-1155)) 87)) (-3758 (((-1267) $ (-919) (-1155)) 97)) (-1531 (((-1267) $ (-919) (-379) (-379)) 59)) (-2788 (((-1267) $ (-919) (-919)) 56)) (-3937 (((-1267) $) 88)) (-2356 (((-1267) $ (-919) (-1155)) 96)) (-2156 (((-1267) $ (-468) (-919)) 41)) (-1565 (((-1267) $ (-919) (-1155)) 95)) (-4269 (((-642 (-263)) $) 29) (($ $ (-642 (-263))) 30)) (-2658 (((-1267) $ (-769) (-769)) 53)) (-3086 (($ $) 72) (($ (-468) (-642 (-263))) 73)) (-1778 (((-1155) $) NIL)) (-1914 (((-564) $) 48)) (-3999 (((-1117) $) NIL)) (-4236 (((-1262 (-3 (-468) "undefined")) $) 47)) (-1606 (((-1262 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -1565 (-564)) (|:| -1478 (-564)) (|:| |spline| (-564)) (|:| -3040 (-564)) (|:| |axesColor| (-872)) (|:| -3036 (-564)) (|:| |unitsColor| (-872)) (|:| |showing| (-564)))) $) 46)) (-1493 (((-1267) $ (-919) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-872) (-564) (-872) (-564)) 86)) (-4321 (((-642 (-941 (-225))) $) NIL)) (-1989 (((-468) $ (-919)) 43)) (-2124 (((-1267) $ (-769) (-769) (-919) (-919)) 51)) (-2373 (((-1267) $ (-1155)) 98)) (-1478 (((-1267) $ (-919) (-1155)) 94)) (-2390 (((-860) $) 105)) (-1616 (((-1267) $) 99)) (-1600 (((-112) $ $) NIL)) (-3040 (((-1267) $ (-919) (-1155)) 90) (((-1267) $ (-919) (-872)) 91)) (-2821 (((-112) $ $) NIL))) -(((-1263) (-13 (-1097) (-10 -8 (-15 -4321 ((-642 (-941 (-225))) $)) (-15 -2646 ($)) (-15 -3086 ($ $)) (-15 -4269 ((-642 (-263)) $)) (-15 -4269 ($ $ (-642 (-263)))) (-15 -3086 ($ (-468) (-642 (-263)))) (-15 -1493 ((-1267) $ (-919) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-872) (-564) (-872) (-564))) (-15 -1606 ((-1262 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -1565 (-564)) (|:| -1478 (-564)) (|:| |spline| (-564)) (|:| -3040 (-564)) (|:| |axesColor| (-872)) (|:| -3036 (-564)) (|:| |unitsColor| (-872)) (|:| |showing| (-564)))) $)) (-15 -4236 ((-1262 (-3 (-468) "undefined")) $)) (-15 -3212 ((-1267) $ (-1155))) (-15 -2156 ((-1267) $ (-468) (-919))) (-15 -1989 ((-468) $ (-919))) (-15 -3040 ((-1267) $ (-919) (-1155))) (-15 -3040 ((-1267) $ (-919) (-872))) (-15 -3036 ((-1267) $ (-919) (-1155))) (-15 -3036 ((-1267) $ (-919) (-872))) (-15 -1565 ((-1267) $ (-919) (-1155))) (-15 -2356 ((-1267) $ (-919) (-1155))) (-15 -1478 ((-1267) $ (-919) (-1155))) (-15 -2373 ((-1267) $ (-1155))) (-15 -1616 ((-1267) $)) (-15 -2124 ((-1267) $ (-769) (-769) (-919) (-919))) (-15 -1531 ((-1267) $ (-919) (-379) (-379))) (-15 -2022 ((-1267) $ (-919) (-379) (-379))) (-15 -3758 ((-1267) $ (-919) (-1155))) (-15 -2658 ((-1267) $ (-769) (-769))) (-15 -3882 ((-1267) $ (-468) (-919))) (-15 -2788 ((-1267) $ (-919) (-919))) (-15 -3963 ((-1155) $ (-1155))) (-15 -3963 ((-1155) $ (-1155) (-1155))) (-15 -3963 ((-1155) $ (-1155) (-642 (-1155)))) (-15 -3937 ((-1267) $)) (-15 -1914 ((-564) $)) (-15 -2390 ((-860) $))))) (T -1263)) -((-2390 (*1 *2 *1) (-12 (-5 *2 (-860)) (-5 *1 (-1263)))) (-4321 (*1 *2 *1) (-12 (-5 *2 (-642 (-941 (-225)))) (-5 *1 (-1263)))) (-2646 (*1 *1) (-5 *1 (-1263))) (-3086 (*1 *1 *1) (-5 *1 (-1263))) (-4269 (*1 *2 *1) (-12 (-5 *2 (-642 (-263))) (-5 *1 (-1263)))) (-4269 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-263))) (-5 *1 (-1263)))) (-3086 (*1 *1 *2 *3) (-12 (-5 *2 (-468)) (-5 *3 (-642 (-263))) (-5 *1 (-1263)))) (-1493 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-919)) (-5 *4 (-225)) (-5 *5 (-564)) (-5 *6 (-872)) (-5 *2 (-1267)) (-5 *1 (-1263)))) (-1606 (*1 *2 *1) (-12 (-5 *2 (-1262 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -1565 (-564)) (|:| -1478 (-564)) (|:| |spline| (-564)) (|:| -3040 (-564)) (|:| |axesColor| (-872)) (|:| -3036 (-564)) (|:| |unitsColor| (-872)) (|:| |showing| (-564))))) (-5 *1 (-1263)))) (-4236 (*1 *2 *1) (-12 (-5 *2 (-1262 (-3 (-468) "undefined"))) (-5 *1 (-1263)))) (-3212 (*1 *2 *1 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1263)))) (-2156 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-468)) (-5 *4 (-919)) (-5 *2 (-1267)) (-5 *1 (-1263)))) (-1989 (*1 *2 *1 *3) (-12 (-5 *3 (-919)) (-5 *2 (-468)) (-5 *1 (-1263)))) (-3040 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-919)) (-5 *4 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1263)))) (-3040 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-919)) (-5 *4 (-872)) (-5 *2 (-1267)) (-5 *1 (-1263)))) (-3036 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-919)) (-5 *4 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1263)))) (-3036 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-919)) (-5 *4 (-872)) (-5 *2 (-1267)) (-5 *1 (-1263)))) (-1565 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-919)) (-5 *4 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1263)))) (-2356 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-919)) (-5 *4 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1263)))) (-1478 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-919)) (-5 *4 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1263)))) (-2373 (*1 *2 *1 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1263)))) (-1616 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-1263)))) (-2124 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-769)) (-5 *4 (-919)) (-5 *2 (-1267)) (-5 *1 (-1263)))) (-1531 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-919)) (-5 *4 (-379)) (-5 *2 (-1267)) (-5 *1 (-1263)))) (-2022 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-919)) (-5 *4 (-379)) (-5 *2 (-1267)) (-5 *1 (-1263)))) (-3758 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-919)) (-5 *4 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1263)))) (-2658 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-769)) (-5 *2 (-1267)) (-5 *1 (-1263)))) (-3882 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-468)) (-5 *4 (-919)) (-5 *2 (-1267)) (-5 *1 (-1263)))) (-2788 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-919)) (-5 *2 (-1267)) (-5 *1 (-1263)))) (-3963 (*1 *2 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-1263)))) (-3963 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-1263)))) (-3963 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-642 (-1155))) (-5 *2 (-1155)) (-5 *1 (-1263)))) (-3937 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-1263)))) (-1914 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1263))))) -(-13 (-1097) (-10 -8 (-15 -4321 ((-642 (-941 (-225))) $)) (-15 -2646 ($)) (-15 -3086 ($ $)) (-15 -4269 ((-642 (-263)) $)) (-15 -4269 ($ $ (-642 (-263)))) (-15 -3086 ($ (-468) (-642 (-263)))) (-15 -1493 ((-1267) $ (-919) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-872) (-564) (-872) (-564))) (-15 -1606 ((-1262 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -1565 (-564)) (|:| -1478 (-564)) (|:| |spline| (-564)) (|:| -3040 (-564)) (|:| |axesColor| (-872)) (|:| -3036 (-564)) (|:| |unitsColor| (-872)) (|:| |showing| (-564)))) $)) (-15 -4236 ((-1262 (-3 (-468) "undefined")) $)) (-15 -3212 ((-1267) $ (-1155))) (-15 -2156 ((-1267) $ (-468) (-919))) (-15 -1989 ((-468) $ (-919))) (-15 -3040 ((-1267) $ (-919) (-1155))) (-15 -3040 ((-1267) $ (-919) (-872))) (-15 -3036 ((-1267) $ (-919) (-1155))) (-15 -3036 ((-1267) $ (-919) (-872))) (-15 -1565 ((-1267) $ (-919) (-1155))) (-15 -2356 ((-1267) $ (-919) (-1155))) (-15 -1478 ((-1267) $ (-919) (-1155))) (-15 -2373 ((-1267) $ (-1155))) (-15 -1616 ((-1267) $)) (-15 -2124 ((-1267) $ (-769) (-769) (-919) (-919))) (-15 -1531 ((-1267) $ (-919) (-379) (-379))) (-15 -2022 ((-1267) $ (-919) (-379) (-379))) (-15 -3758 ((-1267) $ (-919) (-1155))) (-15 -2658 ((-1267) $ (-769) (-769))) (-15 -3882 ((-1267) $ (-468) (-919))) (-15 -2788 ((-1267) $ (-919) (-919))) (-15 -3963 ((-1155) $ (-1155))) (-15 -3963 ((-1155) $ (-1155) (-1155))) (-15 -3963 ((-1155) $ (-1155) (-642 (-1155)))) (-15 -3937 ((-1267) $)) (-15 -1914 ((-564) $)) (-15 -2390 ((-860) $)))) -((-2856 (((-112) $ $) NIL)) (-1921 (((-1267) $ (-379)) 172) (((-1267) $ (-379) (-379) (-379)) 173)) (-3963 (((-1155) $ (-1155)) 182) (((-1155) $ (-1155) (-1155)) 180) (((-1155) $ (-1155) (-642 (-1155))) 179)) (-4110 (($) 67)) (-1452 (((-1267) $ (-379) (-379) (-379) (-379) (-379)) 144) (((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -1531 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $) 142) (((-1267) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -1531 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 143) (((-1267) $ (-564) (-564) (-379) (-379) (-379)) 147) (((-1267) $ (-379) (-379)) 148) (((-1267) $ (-379) (-379) (-379)) 155)) (-3814 (((-379)) 125) (((-379) (-379)) 126)) (-2425 (((-379)) 120) (((-379) (-379)) 122)) (-1353 (((-379)) 123) (((-379) (-379)) 124)) (-3078 (((-379)) 129) (((-379) (-379)) 130)) (-1467 (((-379)) 127) (((-379) (-379)) 128)) (-2022 (((-1267) $ (-379) (-379)) 174)) (-3212 (((-1267) $ (-1155)) 156)) (-3653 (((-1130 (-225)) $) 68) (($ $ (-1130 (-225))) 69)) (-4253 (((-1267) $ (-1155)) 190)) (-3092 (((-1267) $ (-1155)) 191)) (-1497 (((-1267) $ (-379) (-379)) 154) (((-1267) $ (-564) (-564)) 171)) (-2788 (((-1267) $ (-919) (-919)) 163)) (-3937 (((-1267) $) 140)) (-1920 (((-1267) $ (-1155)) 189)) (-3125 (((-1267) $ (-1155)) 137)) (-4269 (((-642 (-263)) $) 70) (($ $ (-642 (-263))) 71)) (-2658 (((-1267) $ (-769) (-769)) 162)) (-3734 (((-1267) $ (-769) (-941 (-225))) 196)) (-2989 (($ $) 73) (($ (-1130 (-225)) (-1155)) 74) (($ (-1130 (-225)) (-642 (-263))) 75)) (-3310 (((-1267) $ (-379) (-379) (-379)) 134)) (-1778 (((-1155) $) NIL)) (-1914 (((-564) $) 131)) (-1329 (((-1267) $ (-379)) 177)) (-3299 (((-1267) $ (-379)) 194)) (-3999 (((-1117) $) NIL)) (-2310 (((-1267) $ (-379)) 193)) (-3470 (((-1267) $ (-1155)) 139)) (-2124 (((-1267) $ (-769) (-769) (-919) (-919)) 161)) (-3342 (((-1267) $ (-1155)) 136)) (-2373 (((-1267) $ (-1155)) 138)) (-2177 (((-1267) $ (-157) (-157)) 160)) (-2390 (((-860) $) 169)) (-1616 (((-1267) $) 141)) (-2910 (((-1267) $ (-1155)) 192)) (-1600 (((-112) $ $) NIL)) (-3040 (((-1267) $ (-1155)) 135)) (-2821 (((-112) $ $) NIL))) -(((-1264) (-13 (-1097) (-10 -8 (-15 -2425 ((-379))) (-15 -2425 ((-379) (-379))) (-15 -1353 ((-379))) (-15 -1353 ((-379) (-379))) (-15 -3814 ((-379))) (-15 -3814 ((-379) (-379))) (-15 -1467 ((-379))) (-15 -1467 ((-379) (-379))) (-15 -3078 ((-379))) (-15 -3078 ((-379) (-379))) (-15 -4110 ($)) (-15 -2989 ($ $)) (-15 -2989 ($ (-1130 (-225)) (-1155))) (-15 -2989 ($ (-1130 (-225)) (-642 (-263)))) (-15 -3653 ((-1130 (-225)) $)) (-15 -3653 ($ $ (-1130 (-225)))) (-15 -3734 ((-1267) $ (-769) (-941 (-225)))) (-15 -4269 ((-642 (-263)) $)) (-15 -4269 ($ $ (-642 (-263)))) (-15 -2658 ((-1267) $ (-769) (-769))) (-15 -2788 ((-1267) $ (-919) (-919))) (-15 -3212 ((-1267) $ (-1155))) (-15 -2124 ((-1267) $ (-769) (-769) (-919) (-919))) (-15 -1452 ((-1267) $ (-379) (-379) (-379) (-379) (-379))) (-15 -1452 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -1531 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $)) (-15 -1452 ((-1267) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -1531 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -1452 ((-1267) $ (-564) (-564) (-379) (-379) (-379))) (-15 -1452 ((-1267) $ (-379) (-379))) (-15 -1452 ((-1267) $ (-379) (-379) (-379))) (-15 -2373 ((-1267) $ (-1155))) (-15 -3040 ((-1267) $ (-1155))) (-15 -3342 ((-1267) $ (-1155))) (-15 -3125 ((-1267) $ (-1155))) (-15 -3470 ((-1267) $ (-1155))) (-15 -1497 ((-1267) $ (-379) (-379))) (-15 -1497 ((-1267) $ (-564) (-564))) (-15 -1921 ((-1267) $ (-379))) (-15 -1921 ((-1267) $ (-379) (-379) (-379))) (-15 -2022 ((-1267) $ (-379) (-379))) (-15 -1920 ((-1267) $ (-1155))) (-15 -2310 ((-1267) $ (-379))) (-15 -3299 ((-1267) $ (-379))) (-15 -4253 ((-1267) $ (-1155))) (-15 -3092 ((-1267) $ (-1155))) (-15 -2910 ((-1267) $ (-1155))) (-15 -3310 ((-1267) $ (-379) (-379) (-379))) (-15 -1329 ((-1267) $ (-379))) (-15 -3937 ((-1267) $)) (-15 -2177 ((-1267) $ (-157) (-157))) (-15 -3963 ((-1155) $ (-1155))) (-15 -3963 ((-1155) $ (-1155) (-1155))) (-15 -3963 ((-1155) $ (-1155) (-642 (-1155)))) (-15 -1616 ((-1267) $)) (-15 -1914 ((-564) $))))) (T -1264)) -((-2425 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1264)))) (-2425 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1264)))) (-1353 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1264)))) (-1353 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1264)))) (-3814 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1264)))) (-3814 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1264)))) (-1467 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1264)))) (-1467 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1264)))) (-3078 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1264)))) (-3078 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1264)))) (-4110 (*1 *1) (-5 *1 (-1264))) (-2989 (*1 *1 *1) (-5 *1 (-1264))) (-2989 (*1 *1 *2 *3) (-12 (-5 *2 (-1130 (-225))) (-5 *3 (-1155)) (-5 *1 (-1264)))) (-2989 (*1 *1 *2 *3) (-12 (-5 *2 (-1130 (-225))) (-5 *3 (-642 (-263))) (-5 *1 (-1264)))) (-3653 (*1 *2 *1) (-12 (-5 *2 (-1130 (-225))) (-5 *1 (-1264)))) (-3653 (*1 *1 *1 *2) (-12 (-5 *2 (-1130 (-225))) (-5 *1 (-1264)))) (-3734 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-769)) (-5 *4 (-941 (-225))) (-5 *2 (-1267)) (-5 *1 (-1264)))) (-4269 (*1 *2 *1) (-12 (-5 *2 (-642 (-263))) (-5 *1 (-1264)))) (-4269 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-263))) (-5 *1 (-1264)))) (-2658 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-769)) (-5 *2 (-1267)) (-5 *1 (-1264)))) (-2788 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-919)) (-5 *2 (-1267)) (-5 *1 (-1264)))) (-3212 (*1 *2 *1 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1264)))) (-2124 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-769)) (-5 *4 (-919)) (-5 *2 (-1267)) (-5 *1 (-1264)))) (-1452 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1267)) (-5 *1 (-1264)))) (-1452 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -1531 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *1 (-1264)))) (-1452 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -1531 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *2 (-1267)) (-5 *1 (-1264)))) (-1452 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-564)) (-5 *4 (-379)) (-5 *2 (-1267)) (-5 *1 (-1264)))) (-1452 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1267)) (-5 *1 (-1264)))) (-1452 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1267)) (-5 *1 (-1264)))) (-2373 (*1 *2 *1 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1264)))) (-3040 (*1 *2 *1 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1264)))) (-3342 (*1 *2 *1 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1264)))) (-3125 (*1 *2 *1 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1264)))) (-3470 (*1 *2 *1 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1264)))) (-1497 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1267)) (-5 *1 (-1264)))) (-1497 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1267)) (-5 *1 (-1264)))) (-1921 (*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1267)) (-5 *1 (-1264)))) (-1921 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1267)) (-5 *1 (-1264)))) (-2022 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1267)) (-5 *1 (-1264)))) (-1920 (*1 *2 *1 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1264)))) (-2310 (*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1267)) (-5 *1 (-1264)))) (-3299 (*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1267)) (-5 *1 (-1264)))) (-4253 (*1 *2 *1 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1264)))) (-3092 (*1 *2 *1 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1264)))) (-2910 (*1 *2 *1 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1264)))) (-3310 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1267)) (-5 *1 (-1264)))) (-1329 (*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1267)) (-5 *1 (-1264)))) (-3937 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-1264)))) (-2177 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-157)) (-5 *2 (-1267)) (-5 *1 (-1264)))) (-3963 (*1 *2 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-1264)))) (-3963 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-1264)))) (-3963 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-642 (-1155))) (-5 *2 (-1155)) (-5 *1 (-1264)))) (-1616 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-1264)))) (-1914 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1264))))) -(-13 (-1097) (-10 -8 (-15 -2425 ((-379))) (-15 -2425 ((-379) (-379))) (-15 -1353 ((-379))) (-15 -1353 ((-379) (-379))) (-15 -3814 ((-379))) (-15 -3814 ((-379) (-379))) (-15 -1467 ((-379))) (-15 -1467 ((-379) (-379))) (-15 -3078 ((-379))) (-15 -3078 ((-379) (-379))) (-15 -4110 ($)) (-15 -2989 ($ $)) (-15 -2989 ($ (-1130 (-225)) (-1155))) (-15 -2989 ($ (-1130 (-225)) (-642 (-263)))) (-15 -3653 ((-1130 (-225)) $)) (-15 -3653 ($ $ (-1130 (-225)))) (-15 -3734 ((-1267) $ (-769) (-941 (-225)))) (-15 -4269 ((-642 (-263)) $)) (-15 -4269 ($ $ (-642 (-263)))) (-15 -2658 ((-1267) $ (-769) (-769))) (-15 -2788 ((-1267) $ (-919) (-919))) (-15 -3212 ((-1267) $ (-1155))) (-15 -2124 ((-1267) $ (-769) (-769) (-919) (-919))) (-15 -1452 ((-1267) $ (-379) (-379) (-379) (-379) (-379))) (-15 -1452 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -1531 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $)) (-15 -1452 ((-1267) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -1531 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -1452 ((-1267) $ (-564) (-564) (-379) (-379) (-379))) (-15 -1452 ((-1267) $ (-379) (-379))) (-15 -1452 ((-1267) $ (-379) (-379) (-379))) (-15 -2373 ((-1267) $ (-1155))) (-15 -3040 ((-1267) $ (-1155))) (-15 -3342 ((-1267) $ (-1155))) (-15 -3125 ((-1267) $ (-1155))) (-15 -3470 ((-1267) $ (-1155))) (-15 -1497 ((-1267) $ (-379) (-379))) (-15 -1497 ((-1267) $ (-564) (-564))) (-15 -1921 ((-1267) $ (-379))) (-15 -1921 ((-1267) $ (-379) (-379) (-379))) (-15 -2022 ((-1267) $ (-379) (-379))) (-15 -1920 ((-1267) $ (-1155))) (-15 -2310 ((-1267) $ (-379))) (-15 -3299 ((-1267) $ (-379))) (-15 -4253 ((-1267) $ (-1155))) (-15 -3092 ((-1267) $ (-1155))) (-15 -2910 ((-1267) $ (-1155))) (-15 -3310 ((-1267) $ (-379) (-379) (-379))) (-15 -1329 ((-1267) $ (-379))) (-15 -3937 ((-1267) $)) (-15 -2177 ((-1267) $ (-157) (-157))) (-15 -3963 ((-1155) $ (-1155))) (-15 -3963 ((-1155) $ (-1155) (-1155))) (-15 -3963 ((-1155) $ (-1155) (-642 (-1155)))) (-15 -1616 ((-1267) $)) (-15 -1914 ((-564) $)))) -((-3950 (((-642 (-1155)) (-642 (-1155))) 104) (((-642 (-1155))) 96)) (-1724 (((-642 (-1155))) 94)) (-1994 (((-642 (-919)) (-642 (-919))) 69) (((-642 (-919))) 64)) (-1602 (((-642 (-769)) (-642 (-769))) 61) (((-642 (-769))) 55)) (-3127 (((-1267)) 71)) (-2807 (((-919) (-919)) 87) (((-919)) 86)) (-3269 (((-919) (-919)) 85) (((-919)) 84)) (-4254 (((-872) (-872)) 81) (((-872)) 80)) (-4300 (((-225)) 91) (((-225) (-379)) 93)) (-2674 (((-919)) 88) (((-919) (-919)) 89)) (-1469 (((-919) (-919)) 83) (((-919)) 82)) (-3890 (((-872) (-872)) 75) (((-872)) 73)) (-1561 (((-872) (-872)) 77) (((-872)) 76)) (-2094 (((-872) (-872)) 79) (((-872)) 78))) -(((-1265) (-10 -7 (-15 -3890 ((-872))) (-15 -3890 ((-872) (-872))) (-15 -1561 ((-872))) (-15 -1561 ((-872) (-872))) (-15 -2094 ((-872))) (-15 -2094 ((-872) (-872))) (-15 -4254 ((-872))) (-15 -4254 ((-872) (-872))) (-15 -1469 ((-919))) (-15 -1469 ((-919) (-919))) (-15 -1602 ((-642 (-769)))) (-15 -1602 ((-642 (-769)) (-642 (-769)))) (-15 -1994 ((-642 (-919)))) (-15 -1994 ((-642 (-919)) (-642 (-919)))) (-15 -3127 ((-1267))) (-15 -3950 ((-642 (-1155)))) (-15 -3950 ((-642 (-1155)) (-642 (-1155)))) (-15 -1724 ((-642 (-1155)))) (-15 -3269 ((-919))) (-15 -2807 ((-919))) (-15 -3269 ((-919) (-919))) (-15 -2807 ((-919) (-919))) (-15 -2674 ((-919) (-919))) (-15 -2674 ((-919))) (-15 -4300 ((-225) (-379))) (-15 -4300 ((-225))))) (T -1265)) -((-4300 (*1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-1265)))) (-4300 (*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-225)) (-5 *1 (-1265)))) (-2674 (*1 *2) (-12 (-5 *2 (-919)) (-5 *1 (-1265)))) (-2674 (*1 *2 *2) (-12 (-5 *2 (-919)) (-5 *1 (-1265)))) (-2807 (*1 *2 *2) (-12 (-5 *2 (-919)) (-5 *1 (-1265)))) (-3269 (*1 *2 *2) (-12 (-5 *2 (-919)) (-5 *1 (-1265)))) (-2807 (*1 *2) (-12 (-5 *2 (-919)) (-5 *1 (-1265)))) (-3269 (*1 *2) (-12 (-5 *2 (-919)) (-5 *1 (-1265)))) (-1724 (*1 *2) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-1265)))) (-3950 (*1 *2 *2) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-1265)))) (-3950 (*1 *2) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-1265)))) (-3127 (*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-1265)))) (-1994 (*1 *2 *2) (-12 (-5 *2 (-642 (-919))) (-5 *1 (-1265)))) (-1994 (*1 *2) (-12 (-5 *2 (-642 (-919))) (-5 *1 (-1265)))) (-1602 (*1 *2 *2) (-12 (-5 *2 (-642 (-769))) (-5 *1 (-1265)))) (-1602 (*1 *2) (-12 (-5 *2 (-642 (-769))) (-5 *1 (-1265)))) (-1469 (*1 *2 *2) (-12 (-5 *2 (-919)) (-5 *1 (-1265)))) (-1469 (*1 *2) (-12 (-5 *2 (-919)) (-5 *1 (-1265)))) (-4254 (*1 *2 *2) (-12 (-5 *2 (-872)) (-5 *1 (-1265)))) (-4254 (*1 *2) (-12 (-5 *2 (-872)) (-5 *1 (-1265)))) (-2094 (*1 *2 *2) (-12 (-5 *2 (-872)) (-5 *1 (-1265)))) (-2094 (*1 *2) (-12 (-5 *2 (-872)) (-5 *1 (-1265)))) (-1561 (*1 *2 *2) (-12 (-5 *2 (-872)) (-5 *1 (-1265)))) (-1561 (*1 *2) (-12 (-5 *2 (-872)) (-5 *1 (-1265)))) (-3890 (*1 *2 *2) (-12 (-5 *2 (-872)) (-5 *1 (-1265)))) (-3890 (*1 *2) (-12 (-5 *2 (-872)) (-5 *1 (-1265))))) -(-10 -7 (-15 -3890 ((-872))) (-15 -3890 ((-872) (-872))) (-15 -1561 ((-872))) (-15 -1561 ((-872) (-872))) (-15 -2094 ((-872))) (-15 -2094 ((-872) (-872))) (-15 -4254 ((-872))) (-15 -4254 ((-872) (-872))) (-15 -1469 ((-919))) (-15 -1469 ((-919) (-919))) (-15 -1602 ((-642 (-769)))) (-15 -1602 ((-642 (-769)) (-642 (-769)))) (-15 -1994 ((-642 (-919)))) (-15 -1994 ((-642 (-919)) (-642 (-919)))) (-15 -3127 ((-1267))) (-15 -3950 ((-642 (-1155)))) (-15 -3950 ((-642 (-1155)) (-642 (-1155)))) (-15 -1724 ((-642 (-1155)))) (-15 -3269 ((-919))) (-15 -2807 ((-919))) (-15 -3269 ((-919) (-919))) (-15 -2807 ((-919) (-919))) (-15 -2674 ((-919) (-919))) (-15 -2674 ((-919))) (-15 -4300 ((-225) (-379))) (-15 -4300 ((-225)))) -((-2067 (((-468) (-642 (-642 (-941 (-225)))) (-642 (-263))) 22) (((-468) (-642 (-642 (-941 (-225))))) 21) (((-468) (-642 (-642 (-941 (-225)))) (-872) (-872) (-919) (-642 (-263))) 20)) (-4350 (((-1263) (-642 (-642 (-941 (-225)))) (-642 (-263))) 33) (((-1263) (-642 (-642 (-941 (-225)))) (-872) (-872) (-919) (-642 (-263))) 32)) (-2390 (((-1263) (-468)) 48))) -(((-1266) (-10 -7 (-15 -2067 ((-468) (-642 (-642 (-941 (-225)))) (-872) (-872) (-919) (-642 (-263)))) (-15 -2067 ((-468) (-642 (-642 (-941 (-225)))))) (-15 -2067 ((-468) (-642 (-642 (-941 (-225)))) (-642 (-263)))) (-15 -4350 ((-1263) (-642 (-642 (-941 (-225)))) (-872) (-872) (-919) (-642 (-263)))) (-15 -4350 ((-1263) (-642 (-642 (-941 (-225)))) (-642 (-263)))) (-15 -2390 ((-1263) (-468))))) (T -1266)) -((-2390 (*1 *2 *3) (-12 (-5 *3 (-468)) (-5 *2 (-1263)) (-5 *1 (-1266)))) (-4350 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-642 (-941 (-225))))) (-5 *4 (-642 (-263))) (-5 *2 (-1263)) (-5 *1 (-1266)))) (-4350 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-642 (-642 (-941 (-225))))) (-5 *4 (-872)) (-5 *5 (-919)) (-5 *6 (-642 (-263))) (-5 *2 (-1263)) (-5 *1 (-1266)))) (-2067 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-642 (-941 (-225))))) (-5 *4 (-642 (-263))) (-5 *2 (-468)) (-5 *1 (-1266)))) (-2067 (*1 *2 *3) (-12 (-5 *3 (-642 (-642 (-941 (-225))))) (-5 *2 (-468)) (-5 *1 (-1266)))) (-2067 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-642 (-642 (-941 (-225))))) (-5 *4 (-872)) (-5 *5 (-919)) (-5 *6 (-642 (-263))) (-5 *2 (-468)) (-5 *1 (-1266))))) -(-10 -7 (-15 -2067 ((-468) (-642 (-642 (-941 (-225)))) (-872) (-872) (-919) (-642 (-263)))) (-15 -2067 ((-468) (-642 (-642 (-941 (-225)))))) (-15 -2067 ((-468) (-642 (-642 (-941 (-225)))) (-642 (-263)))) (-15 -4350 ((-1263) (-642 (-642 (-941 (-225)))) (-872) (-872) (-919) (-642 (-263)))) (-15 -4350 ((-1263) (-642 (-642 (-941 (-225)))) (-642 (-263)))) (-15 -2390 ((-1263) (-468)))) -((-4287 (($) 7)) (-2390 (((-860) $) 10))) -(((-1267) (-13 (-611 (-860)) (-10 -8 (-15 -4287 ($))))) (T -1267)) -((-4287 (*1 *1) (-5 *1 (-1267)))) -(-13 (-611 (-860)) (-10 -8 (-15 -4287 ($)))) -((-2943 (($ $ |#2|) 10))) -(((-1268 |#1| |#2|) (-10 -8 (-15 -2943 (|#1| |#1| |#2|))) (-1269 |#2|) (-363)) (T -1268)) -NIL -(-10 -8 (-15 -2943 (|#1| |#1| |#2|))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-3085 (((-3 $ "failed") $ $) 20)) (-2822 (($) 18 T CONST)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-3677 (((-134)) 33)) (-2390 (((-860) $) 12)) (-1600 (((-112) $ $) 9)) (-2361 (($) 19 T CONST)) (-2821 (((-112) $ $) 6)) (-2943 (($ $ |#1|) 34)) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) -(((-1269 |#1|) (-140) (-363)) (T -1269)) -((-2943 (*1 *1 *1 *2) (-12 (-4 *1 (-1269 *2)) (-4 *2 (-363)))) (-3677 (*1 *2) (-12 (-4 *1 (-1269 *3)) (-4 *3 (-363)) (-5 *2 (-134))))) -(-13 (-715 |t#1|) (-10 -8 (-15 -2943 ($ $ |t#1|)) (-15 -3677 ((-134))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-611 (-860)) . T) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-646 |#1|) . T) ((-638 |#1|) . T) ((-715 |#1|) . T) ((-1049 |#1|) . T) ((-1054 |#1|) . T) ((-1097) . T)) -((-3588 (((-642 (-1206 |#1|)) (-1173) (-1206 |#1|)) 83)) (-1575 (((-1153 (-1153 (-950 |#1|))) (-1173) (-1153 (-950 |#1|))) 63)) (-2260 (((-1 (-1153 (-1206 |#1|)) (-1153 (-1206 |#1|))) (-769) (-1206 |#1|) (-1153 (-1206 |#1|))) 74)) (-1775 (((-1 (-1153 (-950 |#1|)) (-1153 (-950 |#1|))) (-769)) 65)) (-4358 (((-1 (-1169 (-950 |#1|)) (-950 |#1|)) (-1173)) 32)) (-1318 (((-1 (-1153 (-950 |#1|)) (-1153 (-950 |#1|))) (-769)) 64))) -(((-1270 |#1|) (-10 -7 (-15 -1775 ((-1 (-1153 (-950 |#1|)) (-1153 (-950 |#1|))) (-769))) (-15 -1318 ((-1 (-1153 (-950 |#1|)) (-1153 (-950 |#1|))) (-769))) (-15 -1575 ((-1153 (-1153 (-950 |#1|))) (-1173) (-1153 (-950 |#1|)))) (-15 -4358 ((-1 (-1169 (-950 |#1|)) (-950 |#1|)) (-1173))) (-15 -3588 ((-642 (-1206 |#1|)) (-1173) (-1206 |#1|))) (-15 -2260 ((-1 (-1153 (-1206 |#1|)) (-1153 (-1206 |#1|))) (-769) (-1206 |#1|) (-1153 (-1206 |#1|))))) (-363)) (T -1270)) -((-2260 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-769)) (-4 *6 (-363)) (-5 *4 (-1206 *6)) (-5 *2 (-1 (-1153 *4) (-1153 *4))) (-5 *1 (-1270 *6)) (-5 *5 (-1153 *4)))) (-3588 (*1 *2 *3 *4) (-12 (-5 *3 (-1173)) (-4 *5 (-363)) (-5 *2 (-642 (-1206 *5))) (-5 *1 (-1270 *5)) (-5 *4 (-1206 *5)))) (-4358 (*1 *2 *3) (-12 (-5 *3 (-1173)) (-5 *2 (-1 (-1169 (-950 *4)) (-950 *4))) (-5 *1 (-1270 *4)) (-4 *4 (-363)))) (-1575 (*1 *2 *3 *4) (-12 (-5 *3 (-1173)) (-4 *5 (-363)) (-5 *2 (-1153 (-1153 (-950 *5)))) (-5 *1 (-1270 *5)) (-5 *4 (-1153 (-950 *5))))) (-1318 (*1 *2 *3) (-12 (-5 *3 (-769)) (-5 *2 (-1 (-1153 (-950 *4)) (-1153 (-950 *4)))) (-5 *1 (-1270 *4)) (-4 *4 (-363)))) (-1775 (*1 *2 *3) (-12 (-5 *3 (-769)) (-5 *2 (-1 (-1153 (-950 *4)) (-1153 (-950 *4)))) (-5 *1 (-1270 *4)) (-4 *4 (-363))))) -(-10 -7 (-15 -1775 ((-1 (-1153 (-950 |#1|)) (-1153 (-950 |#1|))) (-769))) (-15 -1318 ((-1 (-1153 (-950 |#1|)) (-1153 (-950 |#1|))) (-769))) (-15 -1575 ((-1153 (-1153 (-950 |#1|))) (-1173) (-1153 (-950 |#1|)))) (-15 -4358 ((-1 (-1169 (-950 |#1|)) (-950 |#1|)) (-1173))) (-15 -3588 ((-642 (-1206 |#1|)) (-1173) (-1206 |#1|))) (-15 -2260 ((-1 (-1153 (-1206 |#1|)) (-1153 (-1206 |#1|))) (-769) (-1206 |#1|) (-1153 (-1206 |#1|))))) -((-1806 (((-2 (|:| -2131 (-687 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-687 |#2|))) |#2|) 82)) (-1315 (((-2 (|:| -2131 (-687 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-687 |#2|)))) 81))) -(((-1271 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1315 ((-2 (|:| -2131 (-687 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-687 |#2|))))) (-15 -1806 ((-2 (|:| -2131 (-687 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-687 |#2|))) |#2|))) (-349) (-1238 |#1|) (-1238 |#2|) (-409 |#2| |#3|)) (T -1271)) -((-1806 (*1 *2 *3) (-12 (-4 *4 (-349)) (-4 *3 (-1238 *4)) (-4 *5 (-1238 *3)) (-5 *2 (-2 (|:| -2131 (-687 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-687 *3)))) (-5 *1 (-1271 *4 *3 *5 *6)) (-4 *6 (-409 *3 *5)))) (-1315 (*1 *2) (-12 (-4 *3 (-349)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 *4)) (-5 *2 (-2 (|:| -2131 (-687 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-687 *4)))) (-5 *1 (-1271 *3 *4 *5 *6)) (-4 *6 (-409 *4 *5))))) -(-10 -7 (-15 -1315 ((-2 (|:| -2131 (-687 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-687 |#2|))))) (-15 -1806 ((-2 (|:| -2131 (-687 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-687 |#2|))) |#2|))) -((-2856 (((-112) $ $) NIL)) (-3799 (((-1132) $) 11)) (-1939 (((-1132) $) 9)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) 17) (($ (-1178)) NIL) (((-1178) $) NIL)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-1272) (-13 (-1080) (-10 -8 (-15 -1939 ((-1132) $)) (-15 -3799 ((-1132) $))))) (T -1272)) -((-1939 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-1272)))) (-3799 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-1272))))) -(-13 (-1080) (-10 -8 (-15 -1939 ((-1132) $)) (-15 -3799 ((-1132) $)))) -((-2856 (((-112) $ $) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-1539 (((-1132) $) 9)) (-2390 (((-860) $) 15) (($ (-1178)) NIL) (((-1178) $) NIL)) (-1600 (((-112) $ $) NIL)) (-2821 (((-112) $ $) NIL))) -(((-1273) (-13 (-1080) (-10 -8 (-15 -1539 ((-1132) $))))) (T -1273)) -((-1539 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-1273))))) -(-13 (-1080) (-10 -8 (-15 -1539 ((-1132) $)))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) 58)) (-3085 (((-3 $ "failed") $ $) NIL)) (-2822 (($) NIL T CONST)) (-2675 (((-3 $ "failed") $) NIL)) (-3163 (((-112) $) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2390 (((-860) $) 81) (($ (-564)) NIL) (($ |#4|) 65) ((|#4| $) 70) (($ |#1|) NIL (|has| |#1| (-172)))) (-3348 (((-769)) NIL T CONST)) (-3255 (((-1267) (-769)) 16)) (-1600 (((-112) $ $) NIL)) (-2361 (($) 37 T CONST)) (-2371 (($) 84 T CONST)) (-2821 (((-112) $ $) 87)) (-2943 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-2930 (($ $) 89) (($ $ $) NIL)) (-2917 (($ $ $) 63)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) 91) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))))) -(((-1274 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1047) (-490 |#4|) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -2943 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3255 ((-1267) (-769))))) (-1047) (-848) (-791) (-947 |#1| |#3| |#2|) (-642 |#2|) (-642 (-769)) (-769)) (T -1274)) -((-2943 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-363)) (-4 *2 (-1047)) (-4 *3 (-848)) (-4 *4 (-791)) (-14 *6 (-642 *3)) (-5 *1 (-1274 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-947 *2 *4 *3)) (-14 *7 (-642 (-769))) (-14 *8 (-769)))) (-3255 (*1 *2 *3) (-12 (-5 *3 (-769)) (-4 *4 (-1047)) (-4 *5 (-848)) (-4 *6 (-791)) (-14 *8 (-642 *5)) (-5 *2 (-1267)) (-5 *1 (-1274 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-947 *4 *6 *5)) (-14 *9 (-642 *3)) (-14 *10 *3)))) -(-13 (-1047) (-490 |#4|) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -2943 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3255 ((-1267) (-769))))) -((-2856 (((-112) $ $) NIL)) (-1466 (((-642 (-2 (|:| -1616 $) (|:| -3406 (-642 |#4|)))) (-642 |#4|)) NIL)) (-3076 (((-642 $) (-642 |#4|)) 96)) (-2397 (((-642 |#3|) $) NIL)) (-3646 (((-112) $) NIL)) (-4074 (((-112) $) NIL (|has| |#1| (-556)))) (-4334 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2937 ((|#4| |#4| $) NIL)) (-3191 (((-2 (|:| |under| $) (|:| -2795 $) (|:| |upper| $)) $ |#3|) NIL)) (-3442 (((-112) $ (-769)) NIL)) (-3437 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4410))) (((-3 |#4| "failed") $ |#3|) NIL)) (-2822 (($) NIL T CONST)) (-3013 (((-112) $) NIL (|has| |#1| (-556)))) (-3936 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2133 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2967 (((-112) $) NIL (|has| |#1| (-556)))) (-3720 (((-642 |#4|) (-642 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 31)) (-2632 (((-642 |#4|) (-642 |#4|) $) 28 (|has| |#1| (-556)))) (-1419 (((-642 |#4|) (-642 |#4|) $) NIL (|has| |#1| (-556)))) (-2849 (((-3 $ "failed") (-642 |#4|)) NIL)) (-1687 (($ (-642 |#4|)) NIL)) (-4050 (((-3 $ "failed") $) 78)) (-2398 ((|#4| |#4| $) 83)) (-4067 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#4| (-1097))))) (-2517 (($ |#4| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#4| (-1097)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4410)))) (-1992 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-3762 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3978 ((|#4| |#4| $) NIL)) (-3741 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4410)) (|has| |#4| (-1097)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4410))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4410))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1750 (((-2 (|:| -1616 (-642 |#4|)) (|:| -3406 (-642 |#4|))) $) NIL)) (-2018 (((-642 |#4|) $) NIL (|has| $ (-6 -4410)))) (-3303 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1715 ((|#3| $) 84)) (-3769 (((-112) $ (-769)) NIL)) (-3541 (((-642 |#4|) $) 32 (|has| $ (-6 -4410)))) (-2533 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#4| (-1097))))) (-3596 (((-3 $ "failed") (-642 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35) (((-3 $ "failed") (-642 |#4|)) 38)) (-1857 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4411)))) (-2947 (($ (-1 |#4| |#4|) $) NIL)) (-1896 (((-642 |#3|) $) NIL)) (-3935 (((-112) |#3| $) NIL)) (-4145 (((-112) $ (-769)) NIL)) (-1778 (((-1155) $) NIL)) (-2534 (((-3 |#4| "failed") $) NIL)) (-2206 (((-642 |#4|) $) 54)) (-3673 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4090 ((|#4| |#4| $) 82)) (-3119 (((-112) $ $) 93)) (-1699 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-4354 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3750 ((|#4| |#4| $) NIL)) (-3999 (((-1117) $) NIL)) (-4036 (((-3 |#4| "failed") $) 77)) (-3183 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2465 (((-3 $ "failed") $ |#4|) NIL)) (-2137 (($ $ |#4|) NIL)) (-4094 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4410)))) (-3154 (($ $ (-642 |#4|) (-642 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ (-642 (-294 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097))))) (-2478 (((-112) $ $) NIL)) (-4109 (((-112) $) 75)) (-2179 (($) 46)) (-3252 (((-769) $) NIL)) (-4010 (((-769) |#4| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#4| (-1097)))) (((-769) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4410)))) (-3865 (($ $) NIL)) (-3003 (((-536) $) NIL (|has| |#4| (-612 (-536))))) (-2401 (($ (-642 |#4|)) NIL)) (-2942 (($ $ |#3|) NIL)) (-1710 (($ $ |#3|) NIL)) (-2204 (($ $) NIL)) (-4283 (($ $ |#3|) NIL)) (-2390 (((-860) $) NIL) (((-642 |#4|) $) 63)) (-2621 (((-769) $) NIL (|has| |#3| (-368)))) (-3240 (((-3 $ "failed") (-642 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 44) (((-3 $ "failed") (-642 |#4|)) 45)) (-4068 (((-642 $) (-642 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 73) (((-642 $) (-642 |#4|)) 74)) (-1600 (((-112) $ $) NIL)) (-4150 (((-3 (-2 (|:| |bas| $) (|:| -3844 (-642 |#4|))) "failed") (-642 |#4|) (-1 (-112) |#4| |#4|)) 27) (((-3 (-2 (|:| |bas| $) (|:| -3844 (-642 |#4|))) "failed") (-642 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2205 (((-112) $ (-1 (-112) |#4| (-642 |#4|))) NIL)) (-3295 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4410)))) (-1644 (((-642 |#3|) $) NIL)) (-4127 (((-112) |#3| $) NIL)) (-2821 (((-112) $ $) NIL)) (-2158 (((-769) $) NIL (|has| $ (-6 -4410))))) -(((-1275 |#1| |#2| |#3| |#4|) (-13 (-1205 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3596 ((-3 $ "failed") (-642 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3596 ((-3 $ "failed") (-642 |#4|))) (-15 -3240 ((-3 $ "failed") (-642 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3240 ((-3 $ "failed") (-642 |#4|))) (-15 -4068 ((-642 $) (-642 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4068 ((-642 $) (-642 |#4|))))) (-556) (-791) (-848) (-1062 |#1| |#2| |#3|)) (T -1275)) -((-3596 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-642 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1062 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *1 (-1275 *5 *6 *7 *8)))) (-3596 (*1 *1 *2) (|partial| -12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-1275 *3 *4 *5 *6)))) (-3240 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-642 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1062 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *1 (-1275 *5 *6 *7 *8)))) (-3240 (*1 *1 *2) (|partial| -12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-1275 *3 *4 *5 *6)))) (-4068 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-642 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1062 *6 *7 *8)) (-4 *6 (-556)) (-4 *7 (-791)) (-4 *8 (-848)) (-5 *2 (-642 (-1275 *6 *7 *8 *9))) (-5 *1 (-1275 *6 *7 *8 *9)))) (-4068 (*1 *2 *3) (-12 (-5 *3 (-642 *7)) (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-642 (-1275 *4 *5 *6 *7))) (-5 *1 (-1275 *4 *5 *6 *7))))) -(-13 (-1205 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3596 ((-3 $ "failed") (-642 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3596 ((-3 $ "failed") (-642 |#4|))) (-15 -3240 ((-3 $ "failed") (-642 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3240 ((-3 $ "failed") (-642 |#4|))) (-15 -4068 ((-642 $) (-642 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4068 ((-642 $) (-642 |#4|))))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-3085 (((-3 $ "failed") $ $) 20)) (-2822 (($) 18 T CONST)) (-2675 (((-3 $ "failed") $) 37)) (-3163 (((-112) $) 35)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2390 (((-860) $) 12) (($ (-564)) 33) (($ |#1|) 45)) (-3348 (((-769)) 32 T CONST)) (-1600 (((-112) $ $) 9)) (-2361 (($) 19 T CONST)) (-2371 (($) 34 T CONST)) (-2821 (((-112) $ $) 6)) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ |#1|) 47) (($ |#1| $) 46))) -(((-1276 |#1|) (-140) (-1047)) (T -1276)) -NIL -(-13 (-1047) (-111 |t#1| |t#1|) (-614 |t#1|) (-10 -7 (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-611 (-860)) . T) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-638 |#1|) |has| |#1| (-172)) ((-715 |#1|) |has| |#1| (-172)) ((-724) . T) ((-1049 |#1|) . T) ((-1054 |#1|) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T)) -((-2856 (((-112) $ $) 67)) (-2950 (((-112) $) NIL)) (-1634 (((-642 |#1|) $) 52)) (-3562 (($ $ (-769)) 46)) (-3085 (((-3 $ "failed") $ $) NIL)) (-2623 (($ $ (-769)) 24 (|has| |#2| (-172))) (($ $ $) 25 (|has| |#2| (-172)))) (-2822 (($) NIL T CONST)) (-2938 (($ $ $) 70) (($ $ (-817 |#1|)) 56) (($ $ |#1|) 60)) (-2849 (((-3 (-817 |#1|) "failed") $) NIL)) (-1687 (((-817 |#1|) $) NIL)) (-3459 (($ $) 39)) (-2675 (((-3 $ "failed") $) NIL)) (-3623 (((-112) $) NIL)) (-2768 (($ $) NIL)) (-3163 (((-112) $) NIL)) (-1904 (((-769) $) NIL)) (-1995 (((-642 $) $) NIL)) (-3471 (((-112) $) NIL)) (-1846 (($ (-817 |#1|) |#2|) 38)) (-3137 (($ $) 40)) (-3779 (((-2 (|:| |k| (-817 |#1|)) (|:| |c| |#2|)) $) 12)) (-2960 (((-817 |#1|) $) NIL)) (-2742 (((-817 |#1|) $) 41)) (-2947 (($ (-1 |#2| |#2|) $) NIL)) (-1618 (($ $ $) 69) (($ $ (-817 |#1|)) 58) (($ $ |#1|) 62)) (-2300 (((-2 (|:| |k| (-817 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2510 (((-817 |#1|) $) 35)) (-2523 ((|#2| $) 37)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-3252 (((-769) $) 43)) (-2602 (((-112) $) 47)) (-1551 ((|#2| $) NIL)) (-2390 (((-860) $) NIL) (($ (-817 |#1|)) 30) (($ |#1|) 31) (($ |#2|) NIL) (($ (-564)) NIL)) (-2839 (((-642 |#2|) $) NIL)) (-3005 ((|#2| $ (-817 |#1|)) NIL)) (-2968 ((|#2| $ $) 76) ((|#2| $ (-817 |#1|)) NIL)) (-3348 (((-769)) NIL T CONST)) (-1600 (((-112) $ $) NIL)) (-2361 (($) 13 T CONST)) (-2371 (($) 19 T CONST)) (-1429 (((-642 (-2 (|:| |k| (-817 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2821 (((-112) $ $) 44)) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) 28)) (** (($ $ (-769)) NIL) (($ $ (-919)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ |#2| $) 27) (($ $ |#2|) 68) (($ |#2| (-817 |#1|)) NIL) (($ |#1| $) 33) (($ $ $) NIL))) -(((-1277 |#1| |#2|) (-13 (-382 |#2| (-817 |#1|)) (-1283 |#1| |#2|)) (-848) (-1047)) (T -1277)) -NIL -(-13 (-382 |#2| (-817 |#1|)) (-1283 |#1| |#2|)) -((-3576 ((|#3| |#3| (-769)) 30)) (-3466 ((|#3| |#3| (-769)) 36)) (-3605 ((|#3| |#3| |#3| (-769)) 37))) -(((-1278 |#1| |#2| |#3|) (-10 -7 (-15 -3466 (|#3| |#3| (-769))) (-15 -3576 (|#3| |#3| (-769))) (-15 -3605 (|#3| |#3| |#3| (-769)))) (-13 (-1047) (-715 (-407 (-564)))) (-848) (-1283 |#2| |#1|)) (T -1278)) -((-3605 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-769)) (-4 *4 (-13 (-1047) (-715 (-407 (-564))))) (-4 *5 (-848)) (-5 *1 (-1278 *4 *5 *2)) (-4 *2 (-1283 *5 *4)))) (-3576 (*1 *2 *2 *3) (-12 (-5 *3 (-769)) (-4 *4 (-13 (-1047) (-715 (-407 (-564))))) (-4 *5 (-848)) (-5 *1 (-1278 *4 *5 *2)) (-4 *2 (-1283 *5 *4)))) (-3466 (*1 *2 *2 *3) (-12 (-5 *3 (-769)) (-4 *4 (-13 (-1047) (-715 (-407 (-564))))) (-4 *5 (-848)) (-5 *1 (-1278 *4 *5 *2)) (-4 *2 (-1283 *5 *4))))) -(-10 -7 (-15 -3466 (|#3| |#3| (-769))) (-15 -3576 (|#3| |#3| (-769))) (-15 -3605 (|#3| |#3| |#3| (-769)))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-1634 (((-642 |#1|) $) 47)) (-3085 (((-3 $ "failed") $ $) 20)) (-2623 (($ $ $) 50 (|has| |#2| (-172))) (($ $ (-769)) 49 (|has| |#2| (-172)))) (-2822 (($) 18 T CONST)) (-2938 (($ $ |#1|) 61) (($ $ (-817 |#1|)) 60) (($ $ $) 59)) (-2849 (((-3 (-817 |#1|) "failed") $) 71)) (-1687 (((-817 |#1|) $) 72)) (-2675 (((-3 $ "failed") $) 37)) (-3623 (((-112) $) 52)) (-2768 (($ $) 51)) (-3163 (((-112) $) 35)) (-3471 (((-112) $) 57)) (-1846 (($ (-817 |#1|) |#2|) 58)) (-3137 (($ $) 56)) (-3779 (((-2 (|:| |k| (-817 |#1|)) (|:| |c| |#2|)) $) 67)) (-2960 (((-817 |#1|) $) 68)) (-2947 (($ (-1 |#2| |#2|) $) 48)) (-1618 (($ $ |#1|) 64) (($ $ (-817 |#1|)) 63) (($ $ $) 62)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-2602 (((-112) $) 54)) (-1551 ((|#2| $) 53)) (-2390 (((-860) $) 12) (($ (-564)) 33) (($ |#2|) 75) (($ (-817 |#1|)) 70) (($ |#1|) 55)) (-2968 ((|#2| $ (-817 |#1|)) 66) ((|#2| $ $) 65)) (-3348 (((-769)) 32 T CONST)) (-1600 (((-112) $ $) 9)) (-2361 (($) 19 T CONST)) (-2371 (($) 34 T CONST)) (-2821 (((-112) $ $) 6)) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69))) -(((-1279 |#1| |#2|) (-140) (-848) (-1047)) (T -1279)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1279 *3 *2)) (-4 *3 (-848)) (-4 *2 (-1047)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1279 *2 *3)) (-4 *2 (-848)) (-4 *3 (-1047)))) (-2960 (*1 *2 *1) (-12 (-4 *1 (-1279 *3 *4)) (-4 *3 (-848)) (-4 *4 (-1047)) (-5 *2 (-817 *3)))) (-3779 (*1 *2 *1) (-12 (-4 *1 (-1279 *3 *4)) (-4 *3 (-848)) (-4 *4 (-1047)) (-5 *2 (-2 (|:| |k| (-817 *3)) (|:| |c| *4))))) (-2968 (*1 *2 *1 *3) (-12 (-5 *3 (-817 *4)) (-4 *1 (-1279 *4 *2)) (-4 *4 (-848)) (-4 *2 (-1047)))) (-2968 (*1 *2 *1 *1) (-12 (-4 *1 (-1279 *3 *2)) (-4 *3 (-848)) (-4 *2 (-1047)))) (-1618 (*1 *1 *1 *2) (-12 (-4 *1 (-1279 *2 *3)) (-4 *2 (-848)) (-4 *3 (-1047)))) (-1618 (*1 *1 *1 *2) (-12 (-5 *2 (-817 *3)) (-4 *1 (-1279 *3 *4)) (-4 *3 (-848)) (-4 *4 (-1047)))) (-1618 (*1 *1 *1 *1) (-12 (-4 *1 (-1279 *2 *3)) (-4 *2 (-848)) (-4 *3 (-1047)))) (-2938 (*1 *1 *1 *2) (-12 (-4 *1 (-1279 *2 *3)) (-4 *2 (-848)) (-4 *3 (-1047)))) (-2938 (*1 *1 *1 *2) (-12 (-5 *2 (-817 *3)) (-4 *1 (-1279 *3 *4)) (-4 *3 (-848)) (-4 *4 (-1047)))) (-2938 (*1 *1 *1 *1) (-12 (-4 *1 (-1279 *2 *3)) (-4 *2 (-848)) (-4 *3 (-1047)))) (-1846 (*1 *1 *2 *3) (-12 (-5 *2 (-817 *4)) (-4 *4 (-848)) (-4 *1 (-1279 *4 *3)) (-4 *3 (-1047)))) (-3471 (*1 *2 *1) (-12 (-4 *1 (-1279 *3 *4)) (-4 *3 (-848)) (-4 *4 (-1047)) (-5 *2 (-112)))) (-3137 (*1 *1 *1) (-12 (-4 *1 (-1279 *2 *3)) (-4 *2 (-848)) (-4 *3 (-1047)))) (-2390 (*1 *1 *2) (-12 (-4 *1 (-1279 *2 *3)) (-4 *2 (-848)) (-4 *3 (-1047)))) (-2602 (*1 *2 *1) (-12 (-4 *1 (-1279 *3 *4)) (-4 *3 (-848)) (-4 *4 (-1047)) (-5 *2 (-112)))) (-1551 (*1 *2 *1) (-12 (-4 *1 (-1279 *3 *2)) (-4 *3 (-848)) (-4 *2 (-1047)))) (-3623 (*1 *2 *1) (-12 (-4 *1 (-1279 *3 *4)) (-4 *3 (-848)) (-4 *4 (-1047)) (-5 *2 (-112)))) (-2768 (*1 *1 *1) (-12 (-4 *1 (-1279 *2 *3)) (-4 *2 (-848)) (-4 *3 (-1047)))) (-2623 (*1 *1 *1 *1) (-12 (-4 *1 (-1279 *2 *3)) (-4 *2 (-848)) (-4 *3 (-1047)) (-4 *3 (-172)))) (-2623 (*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-4 *1 (-1279 *3 *4)) (-4 *3 (-848)) (-4 *4 (-1047)) (-4 *4 (-172)))) (-2947 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1279 *3 *4)) (-4 *3 (-848)) (-4 *4 (-1047)))) (-1634 (*1 *2 *1) (-12 (-4 *1 (-1279 *3 *4)) (-4 *3 (-848)) (-4 *4 (-1047)) (-5 *2 (-642 *3))))) -(-13 (-1047) (-1276 |t#2|) (-1036 (-817 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -2960 ((-817 |t#1|) $)) (-15 -3779 ((-2 (|:| |k| (-817 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -2968 (|t#2| $ (-817 |t#1|))) (-15 -2968 (|t#2| $ $)) (-15 -1618 ($ $ |t#1|)) (-15 -1618 ($ $ (-817 |t#1|))) (-15 -1618 ($ $ $)) (-15 -2938 ($ $ |t#1|)) (-15 -2938 ($ $ (-817 |t#1|))) (-15 -2938 ($ $ $)) (-15 -1846 ($ (-817 |t#1|) |t#2|)) (-15 -3471 ((-112) $)) (-15 -3137 ($ $)) (-15 -2390 ($ |t#1|)) (-15 -2602 ((-112) $)) (-15 -1551 (|t#2| $)) (-15 -3623 ((-112) $)) (-15 -2768 ($ $)) (IF (|has| |t#2| (-172)) (PROGN (-15 -2623 ($ $ $)) (-15 -2623 ($ $ (-769)))) |%noBranch|) (-15 -2947 ($ (-1 |t#2| |t#2|) $)) (-15 -1634 ((-642 |t#1|) $)) (IF (|has| |t#2| (-6 -4403)) (-6 -4403) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 #0=(-817 |#1|)) . T) ((-614 |#2|) . T) ((-611 (-860)) . T) ((-644 (-564)) . T) ((-644 |#2|) . T) ((-644 $) . T) ((-646 |#2|) . T) ((-646 $) . T) ((-638 |#2|) |has| |#2| (-172)) ((-715 |#2|) |has| |#2| (-172)) ((-724) . T) ((-1036 #0#) . T) ((-1049 |#2|) . T) ((-1054 |#2|) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T) ((-1276 |#2|) . T)) -((-1792 (((-112) $) 15)) (-4127 (((-112) $) 14)) (-1620 (($ $) 19) (($ $ (-769)) 21))) -(((-1280 |#1| |#2|) (-10 -8 (-15 -1620 (|#1| |#1| (-769))) (-15 -1620 (|#1| |#1|)) (-15 -1792 ((-112) |#1|)) (-15 -4127 ((-112) |#1|))) (-1281 |#2|) (-363)) (T -1280)) -NIL -(-10 -8 (-15 -1620 (|#1| |#1| (-769))) (-15 -1620 (|#1| |#1|)) (-15 -1792 ((-112) |#1|)) (-15 -4127 ((-112) |#1|))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-2838 (((-2 (|:| -2660 $) (|:| -4397 $) (|:| |associate| $)) $) 47)) (-4252 (($ $) 46)) (-1722 (((-112) $) 44)) (-1792 (((-112) $) 104)) (-1695 (((-769)) 100)) (-3085 (((-3 $ "failed") $ $) 20)) (-1993 (($ $) 81)) (-3282 (((-418 $) $) 80)) (-2134 (((-112) $ $) 65)) (-2822 (($) 18 T CONST)) (-2849 (((-3 |#1| "failed") $) 111)) (-1687 ((|#1| $) 112)) (-2796 (($ $ $) 61)) (-2675 (((-3 $ "failed") $) 37)) (-2808 (($ $ $) 62)) (-4159 (((-2 (|:| -2968 (-642 $)) (|:| -4043 $)) (-642 $)) 57)) (-1595 (($ $ (-769)) 97 (-2682 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) 96 (-2682 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3552 (((-112) $) 79)) (-2408 (((-831 (-919)) $) 94 (-2682 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3163 (((-112) $) 35)) (-2709 (((-3 (-642 $) "failed") (-642 $) $) 58)) (-2066 (($ $ $) 52) (($ (-642 $)) 51)) (-1778 (((-1155) $) 10)) (-2481 (($ $) 78)) (-1987 (((-112) $) 103)) (-3999 (((-1117) $) 11)) (-3464 (((-1169 $) (-1169 $) (-1169 $)) 50)) (-2105 (($ $ $) 54) (($ (-642 $)) 53)) (-2254 (((-418 $) $) 82)) (-1878 (((-831 (-919))) 101)) (-1877 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4043 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2842 (((-3 $ "failed") $ $) 48)) (-1483 (((-3 (-642 $) "failed") (-642 $) $) 56)) (-4274 (((-769) $) 64)) (-2999 (((-2 (|:| -4332 $) (|:| -1992 $)) $ $) 63)) (-1354 (((-3 (-769) "failed") $ $) 95 (-2682 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3677 (((-134)) 109)) (-3252 (((-831 (-919)) $) 102)) (-2390 (((-860) $) 12) (($ (-564)) 33) (($ $) 49) (($ (-407 (-564))) 74) (($ |#1|) 110)) (-3434 (((-3 $ "failed") $) 93 (-2682 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3348 (((-769)) 32 T CONST)) (-1600 (((-112) $ $) 9)) (-1594 (((-112) $ $) 45)) (-4127 (((-112) $) 105)) (-2361 (($) 19 T CONST)) (-2371 (($) 34 T CONST)) (-1620 (($ $) 99 (|has| |#1| (-368))) (($ $ (-769)) 98 (|has| |#1| (-368)))) (-2821 (((-112) $ $) 6)) (-2943 (($ $ $) 73) (($ $ |#1|) 108)) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36) (($ $ (-564)) 77)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ (-407 (-564))) 76) (($ (-407 (-564)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106))) -(((-1281 |#1|) (-140) (-363)) (T -1281)) -((-4127 (*1 *2 *1) (-12 (-4 *1 (-1281 *3)) (-4 *3 (-363)) (-5 *2 (-112)))) (-1792 (*1 *2 *1) (-12 (-4 *1 (-1281 *3)) (-4 *3 (-363)) (-5 *2 (-112)))) (-1987 (*1 *2 *1) (-12 (-4 *1 (-1281 *3)) (-4 *3 (-363)) (-5 *2 (-112)))) (-3252 (*1 *2 *1) (-12 (-4 *1 (-1281 *3)) (-4 *3 (-363)) (-5 *2 (-831 (-919))))) (-1878 (*1 *2) (-12 (-4 *1 (-1281 *3)) (-4 *3 (-363)) (-5 *2 (-831 (-919))))) (-1695 (*1 *2) (-12 (-4 *1 (-1281 *3)) (-4 *3 (-363)) (-5 *2 (-769)))) (-1620 (*1 *1 *1) (-12 (-4 *1 (-1281 *2)) (-4 *2 (-363)) (-4 *2 (-368)))) (-1620 (*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-4 *1 (-1281 *3)) (-4 *3 (-363)) (-4 *3 (-368))))) -(-13 (-363) (-1036 |t#1|) (-1269 |t#1|) (-10 -8 (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-402)) |%noBranch|) (-15 -4127 ((-112) $)) (-15 -1792 ((-112) $)) (-15 -1987 ((-112) $)) (-15 -3252 ((-831 (-919)) $)) (-15 -1878 ((-831 (-919)))) (-15 -1695 ((-769))) (IF (|has| |t#1| (-368)) (PROGN (-6 (-402)) (-15 -1620 ($ $)) (-15 -1620 ($ $ (-769)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2682 (|has| |#1| (-368)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-614 $) . T) ((-611 (-860)) . T) ((-172) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-402) -2682 (|has| |#1| (-368)) (|has| |#1| (-145))) ((-452) . T) ((-556) . T) ((-644 #0#) . T) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-646 #0#) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-638 #0#) . T) ((-638 |#1|) . T) ((-638 $) . T) ((-715 #0#) . T) ((-715 |#1|) . T) ((-715 $) . T) ((-724) . T) ((-918) . T) ((-1036 |#1|) . T) ((-1049 #0#) . T) ((-1049 |#1|) . T) ((-1049 $) . T) ((-1054 #0#) . T) ((-1054 |#1|) . T) ((-1054 $) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T) ((-1216) . T) ((-1269 |#1|) . T)) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-1634 (((-642 |#1|) $) 99)) (-3562 (($ $ (-769)) 103)) (-3085 (((-3 $ "failed") $ $) NIL)) (-2623 (($ $ $) NIL (|has| |#2| (-172))) (($ $ (-769)) NIL (|has| |#2| (-172)))) (-2822 (($) NIL T CONST)) (-2938 (($ $ |#1|) NIL) (($ $ (-817 |#1|)) NIL) (($ $ $) NIL)) (-2849 (((-3 (-817 |#1|) "failed") $) NIL) (((-3 (-891 |#1|) "failed") $) NIL)) (-1687 (((-817 |#1|) $) NIL) (((-891 |#1|) $) NIL)) (-3459 (($ $) 102)) (-2675 (((-3 $ "failed") $) NIL)) (-3623 (((-112) $) 91)) (-2768 (($ $) 94)) (-3506 (($ $ $ (-769)) 104)) (-3163 (((-112) $) NIL)) (-1904 (((-769) $) NIL)) (-1995 (((-642 $) $) NIL)) (-3471 (((-112) $) NIL)) (-1846 (($ (-817 |#1|) |#2|) NIL) (($ (-891 |#1|) |#2|) 29)) (-3137 (($ $) 121)) (-3779 (((-2 (|:| |k| (-817 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2960 (((-817 |#1|) $) NIL)) (-2742 (((-817 |#1|) $) NIL)) (-2947 (($ (-1 |#2| |#2|) $) NIL)) (-1618 (($ $ |#1|) NIL) (($ $ (-817 |#1|)) NIL) (($ $ $) NIL)) (-3576 (($ $ (-769)) 114 (|has| |#2| (-715 (-407 (-564)))))) (-2300 (((-2 (|:| |k| (-891 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2510 (((-891 |#1|) $) 84)) (-2523 ((|#2| $) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-3466 (($ $ (-769)) 111 (|has| |#2| (-715 (-407 (-564)))))) (-3252 (((-769) $) 100)) (-2602 (((-112) $) 85)) (-1551 ((|#2| $) 89)) (-2390 (((-860) $) 70) (($ (-564)) NIL) (($ |#2|) 60) (($ (-817 |#1|)) NIL) (($ |#1|) 72) (($ (-891 |#1|)) NIL) (($ (-662 |#1| |#2|)) 48) (((-1277 |#1| |#2|) $) 77) (((-1286 |#1| |#2|) $) 82)) (-2839 (((-642 |#2|) $) NIL)) (-3005 ((|#2| $ (-891 |#1|)) NIL)) (-2968 ((|#2| $ (-817 |#1|)) NIL) ((|#2| $ $) NIL)) (-3348 (((-769)) NIL T CONST)) (-1600 (((-112) $ $) NIL)) (-2361 (($) 21 T CONST)) (-2371 (($) 28 T CONST)) (-1429 (((-642 (-2 (|:| |k| (-891 |#1|)) (|:| |c| |#2|))) $) NIL)) (-4151 (((-3 (-662 |#1| |#2|) "failed") $) 120)) (-2821 (((-112) $ $) 78)) (-2930 (($ $) 113) (($ $ $) 112)) (-2917 (($ $ $) 20)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) 49) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-891 |#1|)) NIL))) -(((-1282 |#1| |#2|) (-13 (-1283 |#1| |#2|) (-382 |#2| (-891 |#1|)) (-10 -8 (-15 -2390 ($ (-662 |#1| |#2|))) (-15 -2390 ((-1277 |#1| |#2|) $)) (-15 -2390 ((-1286 |#1| |#2|) $)) (-15 -4151 ((-3 (-662 |#1| |#2|) "failed") $)) (-15 -3506 ($ $ $ (-769))) (IF (|has| |#2| (-715 (-407 (-564)))) (PROGN (-15 -3466 ($ $ (-769))) (-15 -3576 ($ $ (-769)))) |%noBranch|))) (-848) (-172)) (T -1282)) -((-2390 (*1 *1 *2) (-12 (-5 *2 (-662 *3 *4)) (-4 *3 (-848)) (-4 *4 (-172)) (-5 *1 (-1282 *3 *4)))) (-2390 (*1 *2 *1) (-12 (-5 *2 (-1277 *3 *4)) (-5 *1 (-1282 *3 *4)) (-4 *3 (-848)) (-4 *4 (-172)))) (-2390 (*1 *2 *1) (-12 (-5 *2 (-1286 *3 *4)) (-5 *1 (-1282 *3 *4)) (-4 *3 (-848)) (-4 *4 (-172)))) (-4151 (*1 *2 *1) (|partial| -12 (-5 *2 (-662 *3 *4)) (-5 *1 (-1282 *3 *4)) (-4 *3 (-848)) (-4 *4 (-172)))) (-3506 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-1282 *3 *4)) (-4 *3 (-848)) (-4 *4 (-172)))) (-3466 (*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-1282 *3 *4)) (-4 *4 (-715 (-407 (-564)))) (-4 *3 (-848)) (-4 *4 (-172)))) (-3576 (*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-1282 *3 *4)) (-4 *4 (-715 (-407 (-564)))) (-4 *3 (-848)) (-4 *4 (-172))))) -(-13 (-1283 |#1| |#2|) (-382 |#2| (-891 |#1|)) (-10 -8 (-15 -2390 ($ (-662 |#1| |#2|))) (-15 -2390 ((-1277 |#1| |#2|) $)) (-15 -2390 ((-1286 |#1| |#2|) $)) (-15 -4151 ((-3 (-662 |#1| |#2|) "failed") $)) (-15 -3506 ($ $ $ (-769))) (IF (|has| |#2| (-715 (-407 (-564)))) (PROGN (-15 -3466 ($ $ (-769))) (-15 -3576 ($ $ (-769)))) |%noBranch|))) -((-2856 (((-112) $ $) 7)) (-2950 (((-112) $) 17)) (-1634 (((-642 |#1|) $) 47)) (-3562 (($ $ (-769)) 80)) (-3085 (((-3 $ "failed") $ $) 20)) (-2623 (($ $ $) 50 (|has| |#2| (-172))) (($ $ (-769)) 49 (|has| |#2| (-172)))) (-2822 (($) 18 T CONST)) (-2938 (($ $ |#1|) 61) (($ $ (-817 |#1|)) 60) (($ $ $) 59)) (-2849 (((-3 (-817 |#1|) "failed") $) 71)) (-1687 (((-817 |#1|) $) 72)) (-2675 (((-3 $ "failed") $) 37)) (-3623 (((-112) $) 52)) (-2768 (($ $) 51)) (-3163 (((-112) $) 35)) (-3471 (((-112) $) 57)) (-1846 (($ (-817 |#1|) |#2|) 58)) (-3137 (($ $) 56)) (-3779 (((-2 (|:| |k| (-817 |#1|)) (|:| |c| |#2|)) $) 67)) (-2960 (((-817 |#1|) $) 68)) (-2742 (((-817 |#1|) $) 82)) (-2947 (($ (-1 |#2| |#2|) $) 48)) (-1618 (($ $ |#1|) 64) (($ $ (-817 |#1|)) 63) (($ $ $) 62)) (-1778 (((-1155) $) 10)) (-3999 (((-1117) $) 11)) (-3252 (((-769) $) 81)) (-2602 (((-112) $) 54)) (-1551 ((|#2| $) 53)) (-2390 (((-860) $) 12) (($ (-564)) 33) (($ |#2|) 75) (($ (-817 |#1|)) 70) (($ |#1|) 55)) (-2968 ((|#2| $ (-817 |#1|)) 66) ((|#2| $ $) 65)) (-3348 (((-769)) 32 T CONST)) (-1600 (((-112) $ $) 9)) (-2361 (($) 19 T CONST)) (-2371 (($) 34 T CONST)) (-2821 (((-112) $ $) 6)) (-2930 (($ $) 23) (($ $ $) 22)) (-2917 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69))) -(((-1283 |#1| |#2|) (-140) (-848) (-1047)) (T -1283)) -((-2742 (*1 *2 *1) (-12 (-4 *1 (-1283 *3 *4)) (-4 *3 (-848)) (-4 *4 (-1047)) (-5 *2 (-817 *3)))) (-3252 (*1 *2 *1) (-12 (-4 *1 (-1283 *3 *4)) (-4 *3 (-848)) (-4 *4 (-1047)) (-5 *2 (-769)))) (-3562 (*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-4 *1 (-1283 *3 *4)) (-4 *3 (-848)) (-4 *4 (-1047))))) -(-13 (-1279 |t#1| |t#2|) (-10 -8 (-15 -2742 ((-817 |t#1|) $)) (-15 -3252 ((-769) $)) (-15 -3562 ($ $ (-769))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 #0=(-817 |#1|)) . T) ((-614 |#2|) . T) ((-611 (-860)) . T) ((-644 (-564)) . T) ((-644 |#2|) . T) ((-644 $) . T) ((-646 |#2|) . T) ((-646 $) . T) ((-638 |#2|) |has| |#2| (-172)) ((-715 |#2|) |has| |#2| (-172)) ((-724) . T) ((-1036 #0#) . T) ((-1049 |#2|) . T) ((-1054 |#2|) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T) ((-1276 |#2|) . T) ((-1279 |#1| |#2|) . T)) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-1634 (((-642 (-1173)) $) NIL)) (-2175 (($ (-1277 (-1173) |#1|)) NIL)) (-3562 (($ $ (-769)) NIL)) (-3085 (((-3 $ "failed") $ $) NIL)) (-2623 (($ $ $) NIL (|has| |#1| (-172))) (($ $ (-769)) NIL (|has| |#1| (-172)))) (-2822 (($) NIL T CONST)) (-2938 (($ $ (-1173)) NIL) (($ $ (-817 (-1173))) NIL) (($ $ $) NIL)) (-2849 (((-3 (-817 (-1173)) "failed") $) NIL)) (-1687 (((-817 (-1173)) $) NIL)) (-2675 (((-3 $ "failed") $) NIL)) (-3623 (((-112) $) NIL)) (-2768 (($ $) NIL)) (-3163 (((-112) $) NIL)) (-3471 (((-112) $) NIL)) (-1846 (($ (-817 (-1173)) |#1|) NIL)) (-3137 (($ $) NIL)) (-3779 (((-2 (|:| |k| (-817 (-1173))) (|:| |c| |#1|)) $) NIL)) (-2960 (((-817 (-1173)) $) NIL)) (-2742 (((-817 (-1173)) $) NIL)) (-2947 (($ (-1 |#1| |#1|) $) NIL)) (-1618 (($ $ (-1173)) NIL) (($ $ (-817 (-1173))) NIL) (($ $ $) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-3398 (((-1277 (-1173) |#1|) $) NIL)) (-3252 (((-769) $) NIL)) (-2602 (((-112) $) NIL)) (-1551 ((|#1| $) NIL)) (-2390 (((-860) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-817 (-1173))) NIL) (($ (-1173)) NIL)) (-2968 ((|#1| $ (-817 (-1173))) NIL) ((|#1| $ $) NIL)) (-3348 (((-769)) NIL T CONST)) (-1600 (((-112) $ $) NIL)) (-2361 (($) NIL T CONST)) (-1519 (((-642 (-2 (|:| |k| (-1173)) (|:| |c| $))) $) NIL)) (-2371 (($) NIL T CONST)) (-2821 (((-112) $ $) NIL)) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1173) $) NIL))) -(((-1284 |#1|) (-13 (-1283 (-1173) |#1|) (-10 -8 (-15 -3398 ((-1277 (-1173) |#1|) $)) (-15 -2175 ($ (-1277 (-1173) |#1|))) (-15 -1519 ((-642 (-2 (|:| |k| (-1173)) (|:| |c| $))) $)))) (-1047)) (T -1284)) -((-3398 (*1 *2 *1) (-12 (-5 *2 (-1277 (-1173) *3)) (-5 *1 (-1284 *3)) (-4 *3 (-1047)))) (-2175 (*1 *1 *2) (-12 (-5 *2 (-1277 (-1173) *3)) (-4 *3 (-1047)) (-5 *1 (-1284 *3)))) (-1519 (*1 *2 *1) (-12 (-5 *2 (-642 (-2 (|:| |k| (-1173)) (|:| |c| (-1284 *3))))) (-5 *1 (-1284 *3)) (-4 *3 (-1047))))) -(-13 (-1283 (-1173) |#1|) (-10 -8 (-15 -3398 ((-1277 (-1173) |#1|) $)) (-15 -2175 ($ (-1277 (-1173) |#1|))) (-15 -1519 ((-642 (-2 (|:| |k| (-1173)) (|:| |c| $))) $)))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-3085 (((-3 $ "failed") $ $) NIL)) (-2822 (($) NIL T CONST)) (-2849 (((-3 |#2| "failed") $) NIL)) (-1687 ((|#2| $) NIL)) (-3459 (($ $) NIL)) (-2675 (((-3 $ "failed") $) 42)) (-3623 (((-112) $) 35)) (-2768 (($ $) 37)) (-3163 (((-112) $) NIL)) (-1904 (((-769) $) NIL)) (-1995 (((-642 $) $) NIL)) (-3471 (((-112) $) NIL)) (-1846 (($ |#2| |#1|) NIL)) (-2960 ((|#2| $) 24)) (-2742 ((|#2| $) 22)) (-2947 (($ (-1 |#1| |#1|) $) NIL)) (-2300 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-2510 ((|#2| $) NIL)) (-2523 ((|#1| $) NIL)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-2602 (((-112) $) 32)) (-1551 ((|#1| $) 33)) (-2390 (((-860) $) 65) (($ (-564)) 46) (($ |#1|) 41) (($ |#2|) NIL)) (-2839 (((-642 |#1|) $) NIL)) (-3005 ((|#1| $ |#2|) NIL)) (-2968 ((|#1| $ |#2|) 28)) (-3348 (((-769)) 14 T CONST)) (-1600 (((-112) $ $) NIL)) (-2361 (($) 29 T CONST)) (-2371 (($) 11 T CONST)) (-1429 (((-642 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-2821 (((-112) $ $) 30)) (-2943 (($ $ |#1|) 67 (|has| |#1| (-363)))) (-2930 (($ $) NIL) (($ $ $) NIL)) (-2917 (($ $ $) 50)) (** (($ $ (-919)) NIL) (($ $ (-769)) 52)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) 51) (($ |#1| $) 47) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-2158 (((-769) $) 16))) -(((-1285 |#1| |#2|) (-13 (-1047) (-1276 |#1|) (-382 |#1| |#2|) (-614 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2158 ((-769) $)) (-15 -2742 (|#2| $)) (-15 -2960 (|#2| $)) (-15 -3459 ($ $)) (-15 -2968 (|#1| $ |#2|)) (-15 -2602 ((-112) $)) (-15 -1551 (|#1| $)) (-15 -3623 ((-112) $)) (-15 -2768 ($ $)) (-15 -2947 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-363)) (-15 -2943 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4403)) (-6 -4403) |%noBranch|) (IF (|has| |#1| (-6 -4407)) (-6 -4407) |%noBranch|) (IF (|has| |#1| (-6 -4408)) (-6 -4408) |%noBranch|))) (-1047) (-844)) (T -1285)) -((* (*1 *1 *1 *2) (-12 (-5 *1 (-1285 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-844)))) (-3459 (*1 *1 *1) (-12 (-5 *1 (-1285 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-844)))) (-2947 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1047)) (-5 *1 (-1285 *3 *4)) (-4 *4 (-844)))) (-2158 (*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-1285 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-844)))) (-2742 (*1 *2 *1) (-12 (-4 *2 (-844)) (-5 *1 (-1285 *3 *2)) (-4 *3 (-1047)))) (-2960 (*1 *2 *1) (-12 (-4 *2 (-844)) (-5 *1 (-1285 *3 *2)) (-4 *3 (-1047)))) (-2968 (*1 *2 *1 *3) (-12 (-4 *2 (-1047)) (-5 *1 (-1285 *2 *3)) (-4 *3 (-844)))) (-2602 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1285 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-844)))) (-1551 (*1 *2 *1) (-12 (-4 *2 (-1047)) (-5 *1 (-1285 *2 *3)) (-4 *3 (-844)))) (-3623 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1285 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-844)))) (-2768 (*1 *1 *1) (-12 (-5 *1 (-1285 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-844)))) (-2943 (*1 *1 *1 *2) (-12 (-5 *1 (-1285 *2 *3)) (-4 *2 (-363)) (-4 *2 (-1047)) (-4 *3 (-844))))) -(-13 (-1047) (-1276 |#1|) (-382 |#1| |#2|) (-614 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2158 ((-769) $)) (-15 -2742 (|#2| $)) (-15 -2960 (|#2| $)) (-15 -3459 ($ $)) (-15 -2968 (|#1| $ |#2|)) (-15 -2602 ((-112) $)) (-15 -1551 (|#1| $)) (-15 -3623 ((-112) $)) (-15 -2768 ($ $)) (-15 -2947 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-363)) (-15 -2943 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4403)) (-6 -4403) |%noBranch|) (IF (|has| |#1| (-6 -4407)) (-6 -4407) |%noBranch|) (IF (|has| |#1| (-6 -4408)) (-6 -4408) |%noBranch|))) -((-2856 (((-112) $ $) 27)) (-2950 (((-112) $) NIL)) (-1634 (((-642 |#1|) $) 132)) (-2175 (($ (-1277 |#1| |#2|)) 50)) (-3562 (($ $ (-769)) 38)) (-3085 (((-3 $ "failed") $ $) NIL)) (-2623 (($ $ $) 54 (|has| |#2| (-172))) (($ $ (-769)) 52 (|has| |#2| (-172)))) (-2822 (($) NIL T CONST)) (-2938 (($ $ |#1|) 114) (($ $ (-817 |#1|)) 115) (($ $ $) 26)) (-2849 (((-3 (-817 |#1|) "failed") $) NIL)) (-1687 (((-817 |#1|) $) NIL)) (-2675 (((-3 $ "failed") $) 122)) (-3623 (((-112) $) 117)) (-2768 (($ $) 118)) (-3163 (((-112) $) NIL)) (-3471 (((-112) $) NIL)) (-1846 (($ (-817 |#1|) |#2|) 20)) (-3137 (($ $) NIL)) (-3779 (((-2 (|:| |k| (-817 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2960 (((-817 |#1|) $) 123)) (-2742 (((-817 |#1|) $) 126)) (-2947 (($ (-1 |#2| |#2|) $) 131)) (-1618 (($ $ |#1|) 112) (($ $ (-817 |#1|)) 113) (($ $ $) 62)) (-1778 (((-1155) $) NIL)) (-3999 (((-1117) $) NIL)) (-3398 (((-1277 |#1| |#2|) $) 94)) (-3252 (((-769) $) 129)) (-2602 (((-112) $) 81)) (-1551 ((|#2| $) 32)) (-2390 (((-860) $) 73) (($ (-564)) 87) (($ |#2|) 85) (($ (-817 |#1|)) 18) (($ |#1|) 84)) (-2968 ((|#2| $ (-817 |#1|)) 116) ((|#2| $ $) 28)) (-3348 (((-769)) 120 T CONST)) (-1600 (((-112) $ $) NIL)) (-2361 (($) 15 T CONST)) (-1519 (((-642 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59)) (-2371 (($) 33 T CONST)) (-2821 (((-112) $ $) 14)) (-2930 (($ $) 98) (($ $ $) 101)) (-2917 (($ $ $) 61)) (** (($ $ (-919)) NIL) (($ $ (-769)) 55)) (* (($ (-919) $) NIL) (($ (-769) $) 53) (($ (-564) $) 106) (($ $ $) 22) (($ |#2| $) 19) (($ $ |#2|) 21) (($ |#1| $) 92))) -(((-1286 |#1| |#2|) (-13 (-1283 |#1| |#2|) (-10 -8 (-15 -3398 ((-1277 |#1| |#2|) $)) (-15 -2175 ($ (-1277 |#1| |#2|))) (-15 -1519 ((-642 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-848) (-1047)) (T -1286)) -((-3398 (*1 *2 *1) (-12 (-5 *2 (-1277 *3 *4)) (-5 *1 (-1286 *3 *4)) (-4 *3 (-848)) (-4 *4 (-1047)))) (-2175 (*1 *1 *2) (-12 (-5 *2 (-1277 *3 *4)) (-4 *3 (-848)) (-4 *4 (-1047)) (-5 *1 (-1286 *3 *4)))) (-1519 (*1 *2 *1) (-12 (-5 *2 (-642 (-2 (|:| |k| *3) (|:| |c| (-1286 *3 *4))))) (-5 *1 (-1286 *3 *4)) (-4 *3 (-848)) (-4 *4 (-1047))))) -(-13 (-1283 |#1| |#2|) (-10 -8 (-15 -3398 ((-1277 |#1| |#2|) $)) (-15 -2175 ($ (-1277 |#1| |#2|))) (-15 -1519 ((-642 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) -((-2380 (((-642 (-1153 |#1|)) (-1 (-642 (-1153 |#1|)) (-642 (-1153 |#1|))) (-564)) 20) (((-1153 |#1|) (-1 (-1153 |#1|) (-1153 |#1|))) 13))) -(((-1287 |#1|) (-10 -7 (-15 -2380 ((-1153 |#1|) (-1 (-1153 |#1|) (-1153 |#1|)))) (-15 -2380 ((-642 (-1153 |#1|)) (-1 (-642 (-1153 |#1|)) (-642 (-1153 |#1|))) (-564)))) (-1212)) (T -1287)) -((-2380 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-642 (-1153 *5)) (-642 (-1153 *5)))) (-5 *4 (-564)) (-5 *2 (-642 (-1153 *5))) (-5 *1 (-1287 *5)) (-4 *5 (-1212)))) (-2380 (*1 *2 *3) (-12 (-5 *3 (-1 (-1153 *4) (-1153 *4))) (-5 *2 (-1153 *4)) (-5 *1 (-1287 *4)) (-4 *4 (-1212))))) -(-10 -7 (-15 -2380 ((-1153 |#1|) (-1 (-1153 |#1|) (-1153 |#1|)))) (-15 -2380 ((-642 (-1153 |#1|)) (-1 (-642 (-1153 |#1|)) (-642 (-1153 |#1|))) (-564)))) -((-2877 (((-642 (-2 (|:| -2378 (-1169 |#1|)) (|:| -3719 (-642 (-950 |#1|))))) (-642 (-950 |#1|))) 174) (((-642 (-2 (|:| -2378 (-1169 |#1|)) (|:| -3719 (-642 (-950 |#1|))))) (-642 (-950 |#1|)) (-112)) 173) (((-642 (-2 (|:| -2378 (-1169 |#1|)) (|:| -3719 (-642 (-950 |#1|))))) (-642 (-950 |#1|)) (-112) (-112)) 172) (((-642 (-2 (|:| -2378 (-1169 |#1|)) (|:| -3719 (-642 (-950 |#1|))))) (-642 (-950 |#1|)) (-112) (-112) (-112)) 171) (((-642 (-2 (|:| -2378 (-1169 |#1|)) (|:| -3719 (-642 (-950 |#1|))))) (-1044 |#1| |#2|)) 156)) (-3666 (((-642 (-1044 |#1| |#2|)) (-642 (-950 |#1|))) 85) (((-642 (-1044 |#1| |#2|)) (-642 (-950 |#1|)) (-112)) 84) (((-642 (-1044 |#1| |#2|)) (-642 (-950 |#1|)) (-112) (-112)) 83)) (-3282 (((-642 (-1143 |#1| (-531 (-862 |#3|)) (-862 |#3|) (-778 |#1| (-862 |#3|)))) (-1044 |#1| |#2|)) 73)) (-2396 (((-642 (-642 (-1022 (-407 |#1|)))) (-642 (-950 |#1|))) 140) (((-642 (-642 (-1022 (-407 |#1|)))) (-642 (-950 |#1|)) (-112)) 139) (((-642 (-642 (-1022 (-407 |#1|)))) (-642 (-950 |#1|)) (-112) (-112)) 138) (((-642 (-642 (-1022 (-407 |#1|)))) (-642 (-950 |#1|)) (-112) (-112) (-112)) 137) (((-642 (-642 (-1022 (-407 |#1|)))) (-1044 |#1| |#2|)) 132)) (-2078 (((-642 (-642 (-1022 (-407 |#1|)))) (-642 (-950 |#1|))) 145) (((-642 (-642 (-1022 (-407 |#1|)))) (-642 (-950 |#1|)) (-112)) 144) (((-642 (-642 (-1022 (-407 |#1|)))) (-642 (-950 |#1|)) (-112) (-112)) 143) (((-642 (-642 (-1022 (-407 |#1|)))) (-1044 |#1| |#2|)) 142)) (-3003 (((-642 (-778 |#1| (-862 |#3|))) (-1143 |#1| (-531 (-862 |#3|)) (-862 |#3|) (-778 |#1| (-862 |#3|)))) 111) (((-1169 (-1022 (-407 |#1|))) (-1169 |#1|)) 102) (((-950 (-1022 (-407 |#1|))) (-778 |#1| (-862 |#3|))) 109) (((-950 (-1022 (-407 |#1|))) (-950 |#1|)) 107) (((-778 |#1| (-862 |#3|)) (-778 |#1| (-862 |#2|))) 33))) -(((-1288 |#1| |#2| |#3|) (-10 -7 (-15 -3666 ((-642 (-1044 |#1| |#2|)) (-642 (-950 |#1|)) (-112) (-112))) (-15 -3666 ((-642 (-1044 |#1| |#2|)) (-642 (-950 |#1|)) (-112))) (-15 -3666 ((-642 (-1044 |#1| |#2|)) (-642 (-950 |#1|)))) (-15 -2877 ((-642 (-2 (|:| -2378 (-1169 |#1|)) (|:| -3719 (-642 (-950 |#1|))))) (-1044 |#1| |#2|))) (-15 -2877 ((-642 (-2 (|:| -2378 (-1169 |#1|)) (|:| -3719 (-642 (-950 |#1|))))) (-642 (-950 |#1|)) (-112) (-112) (-112))) (-15 -2877 ((-642 (-2 (|:| -2378 (-1169 |#1|)) (|:| -3719 (-642 (-950 |#1|))))) (-642 (-950 |#1|)) (-112) (-112))) (-15 -2877 ((-642 (-2 (|:| -2378 (-1169 |#1|)) (|:| -3719 (-642 (-950 |#1|))))) (-642 (-950 |#1|)) (-112))) (-15 -2877 ((-642 (-2 (|:| -2378 (-1169 |#1|)) (|:| -3719 (-642 (-950 |#1|))))) (-642 (-950 |#1|)))) (-15 -2396 ((-642 (-642 (-1022 (-407 |#1|)))) (-1044 |#1| |#2|))) (-15 -2396 ((-642 (-642 (-1022 (-407 |#1|)))) (-642 (-950 |#1|)) (-112) (-112) (-112))) (-15 -2396 ((-642 (-642 (-1022 (-407 |#1|)))) (-642 (-950 |#1|)) (-112) (-112))) (-15 -2396 ((-642 (-642 (-1022 (-407 |#1|)))) (-642 (-950 |#1|)) (-112))) (-15 -2396 ((-642 (-642 (-1022 (-407 |#1|)))) (-642 (-950 |#1|)))) (-15 -2078 ((-642 (-642 (-1022 (-407 |#1|)))) (-1044 |#1| |#2|))) (-15 -2078 ((-642 (-642 (-1022 (-407 |#1|)))) (-642 (-950 |#1|)) (-112) (-112))) (-15 -2078 ((-642 (-642 (-1022 (-407 |#1|)))) (-642 (-950 |#1|)) (-112))) (-15 -2078 ((-642 (-642 (-1022 (-407 |#1|)))) (-642 (-950 |#1|)))) (-15 -3282 ((-642 (-1143 |#1| (-531 (-862 |#3|)) (-862 |#3|) (-778 |#1| (-862 |#3|)))) (-1044 |#1| |#2|))) (-15 -3003 ((-778 |#1| (-862 |#3|)) (-778 |#1| (-862 |#2|)))) (-15 -3003 ((-950 (-1022 (-407 |#1|))) (-950 |#1|))) (-15 -3003 ((-950 (-1022 (-407 |#1|))) (-778 |#1| (-862 |#3|)))) (-15 -3003 ((-1169 (-1022 (-407 |#1|))) (-1169 |#1|))) (-15 -3003 ((-642 (-778 |#1| (-862 |#3|))) (-1143 |#1| (-531 (-862 |#3|)) (-862 |#3|) (-778 |#1| (-862 |#3|)))))) (-13 (-846) (-307) (-147) (-1020)) (-642 (-1173)) (-642 (-1173))) (T -1288)) -((-3003 (*1 *2 *3) (-12 (-5 *3 (-1143 *4 (-531 (-862 *6)) (-862 *6) (-778 *4 (-862 *6)))) (-4 *4 (-13 (-846) (-307) (-147) (-1020))) (-14 *6 (-642 (-1173))) (-5 *2 (-642 (-778 *4 (-862 *6)))) (-5 *1 (-1288 *4 *5 *6)) (-14 *5 (-642 (-1173))))) (-3003 (*1 *2 *3) (-12 (-5 *3 (-1169 *4)) (-4 *4 (-13 (-846) (-307) (-147) (-1020))) (-5 *2 (-1169 (-1022 (-407 *4)))) (-5 *1 (-1288 *4 *5 *6)) (-14 *5 (-642 (-1173))) (-14 *6 (-642 (-1173))))) (-3003 (*1 *2 *3) (-12 (-5 *3 (-778 *4 (-862 *6))) (-4 *4 (-13 (-846) (-307) (-147) (-1020))) (-14 *6 (-642 (-1173))) (-5 *2 (-950 (-1022 (-407 *4)))) (-5 *1 (-1288 *4 *5 *6)) (-14 *5 (-642 (-1173))))) (-3003 (*1 *2 *3) (-12 (-5 *3 (-950 *4)) (-4 *4 (-13 (-846) (-307) (-147) (-1020))) (-5 *2 (-950 (-1022 (-407 *4)))) (-5 *1 (-1288 *4 *5 *6)) (-14 *5 (-642 (-1173))) (-14 *6 (-642 (-1173))))) (-3003 (*1 *2 *3) (-12 (-5 *3 (-778 *4 (-862 *5))) (-4 *4 (-13 (-846) (-307) (-147) (-1020))) (-14 *5 (-642 (-1173))) (-5 *2 (-778 *4 (-862 *6))) (-5 *1 (-1288 *4 *5 *6)) (-14 *6 (-642 (-1173))))) (-3282 (*1 *2 *3) (-12 (-5 *3 (-1044 *4 *5)) (-4 *4 (-13 (-846) (-307) (-147) (-1020))) (-14 *5 (-642 (-1173))) (-5 *2 (-642 (-1143 *4 (-531 (-862 *6)) (-862 *6) (-778 *4 (-862 *6))))) (-5 *1 (-1288 *4 *5 *6)) (-14 *6 (-642 (-1173))))) (-2078 (*1 *2 *3) (-12 (-5 *3 (-642 (-950 *4))) (-4 *4 (-13 (-846) (-307) (-147) (-1020))) (-5 *2 (-642 (-642 (-1022 (-407 *4))))) (-5 *1 (-1288 *4 *5 *6)) (-14 *5 (-642 (-1173))) (-14 *6 (-642 (-1173))))) (-2078 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-950 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-846) (-307) (-147) (-1020))) (-5 *2 (-642 (-642 (-1022 (-407 *5))))) (-5 *1 (-1288 *5 *6 *7)) (-14 *6 (-642 (-1173))) (-14 *7 (-642 (-1173))))) (-2078 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-642 (-950 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-846) (-307) (-147) (-1020))) (-5 *2 (-642 (-642 (-1022 (-407 *5))))) (-5 *1 (-1288 *5 *6 *7)) (-14 *6 (-642 (-1173))) (-14 *7 (-642 (-1173))))) (-2078 (*1 *2 *3) (-12 (-5 *3 (-1044 *4 *5)) (-4 *4 (-13 (-846) (-307) (-147) (-1020))) (-14 *5 (-642 (-1173))) (-5 *2 (-642 (-642 (-1022 (-407 *4))))) (-5 *1 (-1288 *4 *5 *6)) (-14 *6 (-642 (-1173))))) (-2396 (*1 *2 *3) (-12 (-5 *3 (-642 (-950 *4))) (-4 *4 (-13 (-846) (-307) (-147) (-1020))) (-5 *2 (-642 (-642 (-1022 (-407 *4))))) (-5 *1 (-1288 *4 *5 *6)) (-14 *5 (-642 (-1173))) (-14 *6 (-642 (-1173))))) (-2396 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-950 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-846) (-307) (-147) (-1020))) (-5 *2 (-642 (-642 (-1022 (-407 *5))))) (-5 *1 (-1288 *5 *6 *7)) (-14 *6 (-642 (-1173))) (-14 *7 (-642 (-1173))))) (-2396 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-642 (-950 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-846) (-307) (-147) (-1020))) (-5 *2 (-642 (-642 (-1022 (-407 *5))))) (-5 *1 (-1288 *5 *6 *7)) (-14 *6 (-642 (-1173))) (-14 *7 (-642 (-1173))))) (-2396 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-642 (-950 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-846) (-307) (-147) (-1020))) (-5 *2 (-642 (-642 (-1022 (-407 *5))))) (-5 *1 (-1288 *5 *6 *7)) (-14 *6 (-642 (-1173))) (-14 *7 (-642 (-1173))))) (-2396 (*1 *2 *3) (-12 (-5 *3 (-1044 *4 *5)) (-4 *4 (-13 (-846) (-307) (-147) (-1020))) (-14 *5 (-642 (-1173))) (-5 *2 (-642 (-642 (-1022 (-407 *4))))) (-5 *1 (-1288 *4 *5 *6)) (-14 *6 (-642 (-1173))))) (-2877 (*1 *2 *3) (-12 (-4 *4 (-13 (-846) (-307) (-147) (-1020))) (-5 *2 (-642 (-2 (|:| -2378 (-1169 *4)) (|:| -3719 (-642 (-950 *4)))))) (-5 *1 (-1288 *4 *5 *6)) (-5 *3 (-642 (-950 *4))) (-14 *5 (-642 (-1173))) (-14 *6 (-642 (-1173))))) (-2877 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-846) (-307) (-147) (-1020))) (-5 *2 (-642 (-2 (|:| -2378 (-1169 *5)) (|:| -3719 (-642 (-950 *5)))))) (-5 *1 (-1288 *5 *6 *7)) (-5 *3 (-642 (-950 *5))) (-14 *6 (-642 (-1173))) (-14 *7 (-642 (-1173))))) (-2877 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-846) (-307) (-147) (-1020))) (-5 *2 (-642 (-2 (|:| -2378 (-1169 *5)) (|:| -3719 (-642 (-950 *5)))))) (-5 *1 (-1288 *5 *6 *7)) (-5 *3 (-642 (-950 *5))) (-14 *6 (-642 (-1173))) (-14 *7 (-642 (-1173))))) (-2877 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-846) (-307) (-147) (-1020))) (-5 *2 (-642 (-2 (|:| -2378 (-1169 *5)) (|:| -3719 (-642 (-950 *5)))))) (-5 *1 (-1288 *5 *6 *7)) (-5 *3 (-642 (-950 *5))) (-14 *6 (-642 (-1173))) (-14 *7 (-642 (-1173))))) (-2877 (*1 *2 *3) (-12 (-5 *3 (-1044 *4 *5)) (-4 *4 (-13 (-846) (-307) (-147) (-1020))) (-14 *5 (-642 (-1173))) (-5 *2 (-642 (-2 (|:| -2378 (-1169 *4)) (|:| -3719 (-642 (-950 *4)))))) (-5 *1 (-1288 *4 *5 *6)) (-14 *6 (-642 (-1173))))) (-3666 (*1 *2 *3) (-12 (-5 *3 (-642 (-950 *4))) (-4 *4 (-13 (-846) (-307) (-147) (-1020))) (-5 *2 (-642 (-1044 *4 *5))) (-5 *1 (-1288 *4 *5 *6)) (-14 *5 (-642 (-1173))) (-14 *6 (-642 (-1173))))) (-3666 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-950 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-846) (-307) (-147) (-1020))) (-5 *2 (-642 (-1044 *5 *6))) (-5 *1 (-1288 *5 *6 *7)) (-14 *6 (-642 (-1173))) (-14 *7 (-642 (-1173))))) (-3666 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-642 (-950 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-846) (-307) (-147) (-1020))) (-5 *2 (-642 (-1044 *5 *6))) (-5 *1 (-1288 *5 *6 *7)) (-14 *6 (-642 (-1173))) (-14 *7 (-642 (-1173)))))) -(-10 -7 (-15 -3666 ((-642 (-1044 |#1| |#2|)) (-642 (-950 |#1|)) (-112) (-112))) (-15 -3666 ((-642 (-1044 |#1| |#2|)) (-642 (-950 |#1|)) (-112))) (-15 -3666 ((-642 (-1044 |#1| |#2|)) (-642 (-950 |#1|)))) (-15 -2877 ((-642 (-2 (|:| -2378 (-1169 |#1|)) (|:| -3719 (-642 (-950 |#1|))))) (-1044 |#1| |#2|))) (-15 -2877 ((-642 (-2 (|:| -2378 (-1169 |#1|)) (|:| -3719 (-642 (-950 |#1|))))) (-642 (-950 |#1|)) (-112) (-112) (-112))) (-15 -2877 ((-642 (-2 (|:| -2378 (-1169 |#1|)) (|:| -3719 (-642 (-950 |#1|))))) (-642 (-950 |#1|)) (-112) (-112))) (-15 -2877 ((-642 (-2 (|:| -2378 (-1169 |#1|)) (|:| -3719 (-642 (-950 |#1|))))) (-642 (-950 |#1|)) (-112))) (-15 -2877 ((-642 (-2 (|:| -2378 (-1169 |#1|)) (|:| -3719 (-642 (-950 |#1|))))) (-642 (-950 |#1|)))) (-15 -2396 ((-642 (-642 (-1022 (-407 |#1|)))) (-1044 |#1| |#2|))) (-15 -2396 ((-642 (-642 (-1022 (-407 |#1|)))) (-642 (-950 |#1|)) (-112) (-112) (-112))) (-15 -2396 ((-642 (-642 (-1022 (-407 |#1|)))) (-642 (-950 |#1|)) (-112) (-112))) (-15 -2396 ((-642 (-642 (-1022 (-407 |#1|)))) (-642 (-950 |#1|)) (-112))) (-15 -2396 ((-642 (-642 (-1022 (-407 |#1|)))) (-642 (-950 |#1|)))) (-15 -2078 ((-642 (-642 (-1022 (-407 |#1|)))) (-1044 |#1| |#2|))) (-15 -2078 ((-642 (-642 (-1022 (-407 |#1|)))) (-642 (-950 |#1|)) (-112) (-112))) (-15 -2078 ((-642 (-642 (-1022 (-407 |#1|)))) (-642 (-950 |#1|)) (-112))) (-15 -2078 ((-642 (-642 (-1022 (-407 |#1|)))) (-642 (-950 |#1|)))) (-15 -3282 ((-642 (-1143 |#1| (-531 (-862 |#3|)) (-862 |#3|) (-778 |#1| (-862 |#3|)))) (-1044 |#1| |#2|))) (-15 -3003 ((-778 |#1| (-862 |#3|)) (-778 |#1| (-862 |#2|)))) (-15 -3003 ((-950 (-1022 (-407 |#1|))) (-950 |#1|))) (-15 -3003 ((-950 (-1022 (-407 |#1|))) (-778 |#1| (-862 |#3|)))) (-15 -3003 ((-1169 (-1022 (-407 |#1|))) (-1169 |#1|))) (-15 -3003 ((-642 (-778 |#1| (-862 |#3|))) (-1143 |#1| (-531 (-862 |#3|)) (-862 |#3|) (-778 |#1| (-862 |#3|)))))) -((-2381 (((-3 (-1262 (-407 (-564))) "failed") (-1262 |#1|) |#1|) 21)) (-2237 (((-112) (-1262 |#1|)) 12)) (-1696 (((-3 (-1262 (-564)) "failed") (-1262 |#1|)) 16))) -(((-1289 |#1|) (-10 -7 (-15 -2237 ((-112) (-1262 |#1|))) (-15 -1696 ((-3 (-1262 (-564)) "failed") (-1262 |#1|))) (-15 -2381 ((-3 (-1262 (-407 (-564))) "failed") (-1262 |#1|) |#1|))) (-637 (-564))) (T -1289)) -((-2381 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1262 *4)) (-4 *4 (-637 (-564))) (-5 *2 (-1262 (-407 (-564)))) (-5 *1 (-1289 *4)))) (-1696 (*1 *2 *3) (|partial| -12 (-5 *3 (-1262 *4)) (-4 *4 (-637 (-564))) (-5 *2 (-1262 (-564))) (-5 *1 (-1289 *4)))) (-2237 (*1 *2 *3) (-12 (-5 *3 (-1262 *4)) (-4 *4 (-637 (-564))) (-5 *2 (-112)) (-5 *1 (-1289 *4))))) -(-10 -7 (-15 -2237 ((-112) (-1262 |#1|))) (-15 -1696 ((-3 (-1262 (-564)) "failed") (-1262 |#1|))) (-15 -2381 ((-3 (-1262 (-407 (-564))) "failed") (-1262 |#1|) |#1|))) -((-2856 (((-112) $ $) NIL)) (-2950 (((-112) $) 11)) (-3085 (((-3 $ "failed") $ $) NIL)) (-4003 (((-769)) 8)) (-2822 (($) NIL T CONST)) (-2675 (((-3 $ "failed") $) 58)) (-3235 (($) 49)) (-3163 (((-112) $) 57)) (-4382 (((-3 $ "failed") $) 40)) (-2535 (((-919) $) 15)) (-1778 (((-1155) $) NIL)) (-3910 (($) 32 T CONST)) (-2065 (($ (-919)) 50)) (-3999 (((-1117) $) NIL)) (-3003 (((-564) $) 13)) (-2390 (((-860) $) 27) (($ (-564)) 24)) (-3348 (((-769)) 9 T CONST)) (-1600 (((-112) $ $) 60)) (-2361 (($) 29 T CONST)) (-2371 (($) 31 T CONST)) (-2821 (((-112) $ $) 38)) (-2930 (($ $) 52) (($ $ $) 47)) (-2917 (($ $ $) 35)) (** (($ $ (-919)) NIL) (($ $ (-769)) 54)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 44) (($ $ $) 43))) -(((-1290 |#1|) (-13 (-172) (-368) (-612 (-564)) (-1148)) (-919)) (T -1290)) -NIL -(-13 (-172) (-368) (-612 (-564)) (-1148)) -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -((-3 3219888 3219893 3219898 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3219873 3219878 3219883 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3219858 3219863 3219868 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3219843 3219848 3219853 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1290 3218986 3219718 3219795 "ZMOD" 3219800 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1289 3218096 3218260 3218469 "ZLINDEP" 3218818 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1288 3207396 3209164 3211136 "ZDSOLVE" 3216226 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1287 3206642 3206783 3206972 "YSTREAM" 3207242 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1286 3204416 3205943 3206147 "XRPOLY" 3206485 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1285 3200969 3202287 3202862 "XPR" 3203888 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1284 3198690 3200300 3200504 "XPOLY" 3200800 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1283 3196343 3197711 3197766 "XPOLYC" 3198054 NIL XPOLYC (NIL T T) -9 NIL 3198167 NIL) (-1282 3192718 3194860 3195248 "XPBWPOLY" 3196001 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1281 3188413 3190708 3190750 "XF" 3191371 NIL XF (NIL T) -9 NIL 3191771 NIL) (-1280 3188034 3188122 3188291 "XF-" 3188296 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1279 3183230 3184519 3184574 "XFALG" 3186746 NIL XFALG (NIL T T) -9 NIL 3187535 NIL) (-1278 3182363 3182467 3182672 "XEXPPKG" 3183122 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1277 3180472 3182213 3182309 "XDPOLY" 3182314 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1276 3179279 3179879 3179922 "XALG" 3179927 NIL XALG (NIL T) -9 NIL 3180038 NIL) (-1275 3172721 3177256 3177750 "WUTSET" 3178871 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1274 3170977 3171773 3172096 "WP" 3172532 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1273 3170579 3170799 3170869 "WHILEAST" 3170929 T WHILEAST (NIL) -8 NIL NIL NIL) (-1272 3170051 3170296 3170390 "WHEREAST" 3170507 T WHEREAST (NIL) -8 NIL NIL NIL) (-1271 3168937 3169135 3169430 "WFFINTBS" 3169848 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1270 3166841 3167268 3167730 "WEIER" 3168509 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1269 3165887 3166337 3166379 "VSPACE" 3166515 NIL VSPACE (NIL T) -9 NIL 3166589 NIL) (-1268 3165725 3165752 3165843 "VSPACE-" 3165848 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1267 3165533 3165576 3165644 "VOID" 3165679 T VOID (NIL) -8 NIL NIL NIL) (-1266 3163669 3164028 3164434 "VIEW" 3165149 T VIEW (NIL) -7 NIL NIL NIL) (-1265 3160093 3160732 3161469 "VIEWDEF" 3162954 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1264 3149397 3151641 3153814 "VIEW3D" 3157942 T VIEW3D (NIL) -8 NIL NIL NIL) (-1263 3141648 3143308 3144887 "VIEW2D" 3147840 T VIEW2D (NIL) -8 NIL NIL NIL) (-1262 3137000 3141418 3141510 "VECTOR" 3141591 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1261 3135577 3135836 3136154 "VECTOR2" 3136730 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1260 3129051 3133358 3133401 "VECTCAT" 3134396 NIL VECTCAT (NIL T) -9 NIL 3134983 NIL) (-1259 3128065 3128319 3128709 "VECTCAT-" 3128714 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1258 3127519 3127716 3127836 "VARIABLE" 3127980 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1257 3127452 3127457 3127487 "UTYPE" 3127492 T UTYPE (NIL) -9 NIL NIL NIL) (-1256 3126282 3126436 3126698 "UTSODETL" 3127278 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1255 3123722 3124182 3124706 "UTSODE" 3125823 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1254 3115559 3121348 3121837 "UTS" 3123291 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1253 3106433 3111800 3111843 "UTSCAT" 3112955 NIL UTSCAT (NIL T) -9 NIL 3113713 NIL) (-1252 3103780 3104503 3105492 "UTSCAT-" 3105497 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1251 3103407 3103450 3103583 "UTS2" 3103731 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1250 3097633 3100245 3100288 "URAGG" 3102358 NIL URAGG (NIL T) -9 NIL 3103081 NIL) (-1249 3094572 3095435 3096558 "URAGG-" 3096563 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1248 3090281 3093207 3093672 "UPXSSING" 3094236 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1247 3082347 3089528 3089801 "UPXS" 3090066 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1246 3075420 3082251 3082323 "UPXSCONS" 3082328 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1245 3065165 3071958 3072020 "UPXSCCA" 3072594 NIL UPXSCCA (NIL T T) -9 NIL 3072827 NIL) (-1244 3064803 3064888 3065062 "UPXSCCA-" 3065067 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1243 3054400 3060966 3061009 "UPXSCAT" 3061657 NIL UPXSCAT (NIL T) -9 NIL 3062266 NIL) (-1242 3053830 3053909 3054088 "UPXS2" 3054315 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1241 3052484 3052737 3053088 "UPSQFREE" 3053573 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1240 3045905 3048962 3049017 "UPSCAT" 3050178 NIL UPSCAT (NIL T T) -9 NIL 3050952 NIL) (-1239 3045109 3045316 3045643 "UPSCAT-" 3045648 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1238 3030764 3038532 3038575 "UPOLYC" 3040676 NIL UPOLYC (NIL T) -9 NIL 3041897 NIL) (-1237 3022092 3024518 3027665 "UPOLYC-" 3027670 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1236 3021719 3021762 3021895 "UPOLYC2" 3022043 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1235 3013530 3021402 3021531 "UP" 3021638 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1234 3012869 3012976 3013140 "UPMP" 3013419 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1233 3012422 3012503 3012642 "UPDIVP" 3012782 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1232 3010990 3011239 3011555 "UPDECOMP" 3012171 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1231 3010225 3010337 3010522 "UPCDEN" 3010874 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1230 3009744 3009813 3009962 "UP2" 3010150 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1229 3008211 3008948 3009225 "UNISEG" 3009502 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1228 3007426 3007553 3007758 "UNISEG2" 3008054 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1227 3006486 3006666 3006892 "UNIFACT" 3007242 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1226 2990418 3005663 3005914 "ULS" 3006293 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1225 2978416 2990322 2990394 "ULSCONS" 2990399 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1224 2960435 2972420 2972482 "ULSCCAT" 2973120 NIL ULSCCAT (NIL T T) -9 NIL 2973408 NIL) (-1223 2959485 2959730 2960118 "ULSCCAT-" 2960123 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1222 2948859 2955339 2955382 "ULSCAT" 2956245 NIL ULSCAT (NIL T) -9 NIL 2956976 NIL) (-1221 2948289 2948368 2948547 "ULS2" 2948774 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1220 2947416 2947926 2948033 "UINT8" 2948144 T UINT8 (NIL) -8 NIL NIL 2948229) (-1219 2946542 2947052 2947159 "UINT64" 2947270 T UINT64 (NIL) -8 NIL NIL 2947355) (-1218 2945668 2946178 2946285 "UINT32" 2946396 T UINT32 (NIL) -8 NIL NIL 2946481) (-1217 2944794 2945304 2945411 "UINT16" 2945522 T UINT16 (NIL) -8 NIL NIL 2945607) (-1216 2943097 2944054 2944084 "UFD" 2944296 T UFD (NIL) -9 NIL 2944410 NIL) (-1215 2942891 2942937 2943032 "UFD-" 2943037 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1214 2941973 2942156 2942372 "UDVO" 2942697 T UDVO (NIL) -7 NIL NIL NIL) (-1213 2939789 2940198 2940669 "UDPO" 2941537 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1212 2939722 2939727 2939757 "TYPE" 2939762 T TYPE (NIL) -9 NIL NIL NIL) (-1211 2939482 2939677 2939708 "TYPEAST" 2939713 T TYPEAST (NIL) -8 NIL NIL NIL) (-1210 2938453 2938655 2938895 "TWOFACT" 2939276 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1209 2937476 2937862 2938097 "TUPLE" 2938253 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1208 2935167 2935686 2936225 "TUBETOOL" 2936959 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1207 2934016 2934221 2934462 "TUBE" 2934960 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1206 2928745 2932988 2933271 "TS" 2933768 NIL TS (NIL T) -8 NIL NIL NIL) (-1205 2917385 2921504 2921601 "TSETCAT" 2926870 NIL TSETCAT (NIL T T T T) -9 NIL 2928401 NIL) (-1204 2912117 2913717 2915608 "TSETCAT-" 2915613 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1203 2906756 2907603 2908532 "TRMANIP" 2911253 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1202 2906197 2906260 2906423 "TRIMAT" 2906688 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1201 2904063 2904300 2904657 "TRIGMNIP" 2905946 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1200 2903583 2903696 2903726 "TRIGCAT" 2903939 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1199 2903252 2903331 2903472 "TRIGCAT-" 2903477 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1198 2900097 2902110 2902391 "TREE" 2903006 NIL TREE (NIL T) -8 NIL NIL NIL) (-1197 2899371 2899899 2899929 "TRANFUN" 2899964 T TRANFUN (NIL) -9 NIL 2900030 NIL) (-1196 2898650 2898841 2899121 "TRANFUN-" 2899126 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1195 2898454 2898486 2898547 "TOPSP" 2898611 T TOPSP (NIL) -7 NIL NIL NIL) (-1194 2897802 2897917 2898071 "TOOLSIGN" 2898335 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1193 2896436 2896979 2897218 "TEXTFILE" 2897585 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1192 2894348 2894889 2895318 "TEX" 2896029 T TEX (NIL) -8 NIL NIL NIL) (-1191 2894129 2894160 2894232 "TEX1" 2894311 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1190 2893777 2893840 2893930 "TEMUTL" 2894061 T TEMUTL (NIL) -7 NIL NIL NIL) (-1189 2891931 2892211 2892536 "TBCMPPK" 2893500 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1188 2883708 2890091 2890147 "TBAGG" 2890547 NIL TBAGG (NIL T T) -9 NIL 2890758 NIL) (-1187 2878778 2880266 2882020 "TBAGG-" 2882025 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1186 2878162 2878269 2878414 "TANEXP" 2878667 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1185 2871552 2878019 2878112 "TABLE" 2878117 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1184 2870964 2871063 2871201 "TABLEAU" 2871449 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1183 2865572 2866792 2868040 "TABLBUMP" 2869750 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1182 2864794 2864941 2865122 "SYSTEM" 2865413 T SYSTEM (NIL) -8 NIL NIL NIL) (-1181 2861253 2861952 2862735 "SYSSOLP" 2864045 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1180 2860297 2860802 2860921 "SYSNNI" 2861107 NIL SYSNNI (NIL NIL) -8 NIL NIL 2861192) (-1179 2859604 2860063 2860142 "SYSINT" 2860202 NIL SYSINT (NIL NIL) -8 NIL NIL 2860247) (-1178 2855936 2856882 2857592 "SYNTAX" 2858916 T SYNTAX (NIL) -8 NIL NIL NIL) (-1177 2853094 2853696 2854328 "SYMTAB" 2855326 T SYMTAB (NIL) -8 NIL NIL NIL) (-1176 2848343 2849245 2850228 "SYMS" 2852133 T SYMS (NIL) -8 NIL NIL NIL) (-1175 2845578 2847801 2848031 "SYMPOLY" 2848148 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1174 2845095 2845170 2845293 "SYMFUNC" 2845490 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1173 2841114 2842407 2843220 "SYMBOL" 2844304 T SYMBOL (NIL) -8 NIL NIL NIL) (-1172 2834653 2836342 2838062 "SWITCH" 2839416 T SWITCH (NIL) -8 NIL NIL NIL) (-1171 2827887 2833474 2833777 "SUTS" 2834408 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1170 2819953 2827134 2827407 "SUPXS" 2827672 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1169 2811712 2819571 2819697 "SUP" 2819862 NIL SUP (NIL T) -8 NIL NIL NIL) (-1168 2810871 2810998 2811215 "SUPFRACF" 2811580 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1167 2810492 2810551 2810664 "SUP2" 2810806 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1166 2808940 2809214 2809570 "SUMRF" 2810191 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1165 2808275 2808341 2808533 "SUMFS" 2808861 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1164 2792242 2807452 2807703 "SULS" 2808082 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1163 2791844 2792064 2792134 "SUCHTAST" 2792194 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1162 2791139 2791369 2791509 "SUCH" 2791752 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1161 2785005 2786045 2787004 "SUBSPACE" 2790227 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1160 2784435 2784525 2784689 "SUBRESP" 2784893 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1159 2777800 2779100 2780411 "STTF" 2783171 NIL STTF (NIL T) -7 NIL NIL NIL) (-1158 2771973 2773093 2774240 "STTFNC" 2776700 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1157 2763283 2765155 2766949 "STTAYLOR" 2770214 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1156 2756413 2763147 2763230 "STRTBL" 2763235 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1155 2751777 2756368 2756399 "STRING" 2756404 T STRING (NIL) -8 NIL NIL NIL) (-1154 2746638 2751150 2751180 "STRICAT" 2751239 T STRICAT (NIL) -9 NIL 2751301 NIL) (-1153 2739391 2744257 2744868 "STREAM" 2746062 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1152 2738901 2738978 2739122 "STREAM3" 2739308 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1151 2737883 2738066 2738301 "STREAM2" 2738714 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1150 2737571 2737623 2737716 "STREAM1" 2737825 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1149 2736587 2736768 2736999 "STINPROD" 2737387 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1148 2736139 2736349 2736379 "STEP" 2736459 T STEP (NIL) -9 NIL 2736537 NIL) (-1147 2729571 2736038 2736115 "STBL" 2736120 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1146 2724697 2728792 2728835 "STAGG" 2728988 NIL STAGG (NIL T) -9 NIL 2729077 NIL) (-1145 2722399 2723001 2723873 "STAGG-" 2723878 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1144 2720546 2722169 2722261 "STACK" 2722342 NIL STACK (NIL T) -8 NIL NIL NIL) (-1143 2713241 2718687 2719143 "SREGSET" 2720176 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1142 2705666 2707035 2708548 "SRDCMPK" 2711847 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1141 2698583 2703106 2703136 "SRAGG" 2704439 T SRAGG (NIL) -9 NIL 2705047 NIL) (-1140 2697600 2697855 2698234 "SRAGG-" 2698239 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1139 2692060 2696547 2696968 "SQMATRIX" 2697226 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1138 2685745 2688778 2689505 "SPLTREE" 2691405 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1137 2681708 2682401 2683047 "SPLNODE" 2685171 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1136 2680755 2680988 2681018 "SPFCAT" 2681462 T SPFCAT (NIL) -9 NIL NIL NIL) (-1135 2679492 2679702 2679966 "SPECOUT" 2680513 T SPECOUT (NIL) -7 NIL NIL NIL) (-1134 2671118 2672888 2672918 "SPADXPT" 2677310 T SPADXPT (NIL) -9 NIL 2679344 NIL) (-1133 2670879 2670919 2670988 "SPADPRSR" 2671071 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1132 2669034 2670834 2670865 "SPADAST" 2670870 T SPADAST (NIL) -8 NIL NIL NIL) (-1131 2660979 2662752 2662795 "SPACEC" 2667168 NIL SPACEC (NIL T) -9 NIL 2668984 NIL) (-1130 2659109 2660911 2660960 "SPACE3" 2660965 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1129 2657861 2658032 2658323 "SORTPAK" 2658914 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1128 2655953 2656256 2656668 "SOLVETRA" 2657525 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1127 2655003 2655225 2655486 "SOLVESER" 2655726 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1126 2650307 2651195 2652190 "SOLVERAD" 2654055 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1125 2646122 2646731 2647460 "SOLVEFOR" 2649674 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1124 2640392 2645471 2645568 "SNTSCAT" 2645573 NIL SNTSCAT (NIL T T T T) -9 NIL 2645643 NIL) (-1123 2634498 2638715 2639106 "SMTS" 2640082 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1122 2629182 2634386 2634463 "SMP" 2634468 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1121 2627341 2627642 2628040 "SMITH" 2628879 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1120 2620054 2624250 2624353 "SMATCAT" 2625704 NIL SMATCAT (NIL NIL T T T) -9 NIL 2626254 NIL) (-1119 2616994 2617817 2618995 "SMATCAT-" 2619000 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1118 2614660 2616230 2616273 "SKAGG" 2616534 NIL SKAGG (NIL T) -9 NIL 2616669 NIL) (-1117 2610971 2614076 2614271 "SINT" 2614458 T SINT (NIL) -8 NIL NIL 2614631) (-1116 2610743 2610781 2610847 "SIMPAN" 2610927 T SIMPAN (NIL) -7 NIL NIL NIL) (-1115 2610022 2610278 2610418 "SIG" 2610625 T SIG (NIL) -8 NIL NIL NIL) (-1114 2608860 2609081 2609356 "SIGNRF" 2609781 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1113 2607693 2607844 2608128 "SIGNEF" 2608689 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1112 2606999 2607276 2607400 "SIGAST" 2607591 T SIGAST (NIL) -8 NIL NIL NIL) (-1111 2604688 2605143 2605649 "SHP" 2606540 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1110 2598540 2604589 2604665 "SHDP" 2604670 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1109 2598113 2598305 2598335 "SGROUP" 2598428 T SGROUP (NIL) -9 NIL 2598490 NIL) (-1108 2597971 2597997 2598070 "SGROUP-" 2598075 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1107 2594806 2595504 2596227 "SGCF" 2597270 T SGCF (NIL) -7 NIL NIL NIL) (-1106 2589174 2594253 2594350 "SFRTCAT" 2594355 NIL SFRTCAT (NIL T T T T) -9 NIL 2594394 NIL) (-1105 2582595 2583613 2584749 "SFRGCD" 2588157 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1104 2575721 2576794 2577980 "SFQCMPK" 2581528 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1103 2575341 2575430 2575541 "SFORT" 2575662 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1102 2574459 2575181 2575302 "SEXOF" 2575307 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1101 2573566 2574340 2574408 "SEX" 2574413 T SEX (NIL) -8 NIL NIL NIL) (-1100 2569079 2569794 2569889 "SEXCAT" 2572826 NIL SEXCAT (NIL T T T T T) -9 NIL 2573404 NIL) (-1099 2566232 2569013 2569061 "SET" 2569066 NIL SET (NIL T) -8 NIL NIL NIL) (-1098 2564456 2564945 2565250 "SETMN" 2565973 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1097 2563952 2564104 2564134 "SETCAT" 2564310 T SETCAT (NIL) -9 NIL 2564420 NIL) (-1096 2563644 2563722 2563852 "SETCAT-" 2563857 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1095 2560005 2562105 2562148 "SETAGG" 2563018 NIL SETAGG (NIL T) -9 NIL 2563358 NIL) (-1094 2559463 2559579 2559816 "SETAGG-" 2559821 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1093 2558906 2559159 2559260 "SEQAST" 2559384 T SEQAST (NIL) -8 NIL NIL NIL) (-1092 2558105 2558399 2558460 "SEGXCAT" 2558746 NIL SEGXCAT (NIL T T) -9 NIL 2558866 NIL) (-1091 2557111 2557771 2557953 "SEG" 2557958 NIL SEG (NIL T) -8 NIL NIL NIL) (-1090 2556090 2556304 2556347 "SEGCAT" 2556869 NIL SEGCAT (NIL T) -9 NIL 2557090 NIL) (-1089 2555091 2555469 2555669 "SEGBIND" 2555925 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1088 2554712 2554771 2554884 "SEGBIND2" 2555026 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1087 2554285 2554513 2554590 "SEGAST" 2554657 T SEGAST (NIL) -8 NIL NIL NIL) (-1086 2553504 2553630 2553834 "SEG2" 2554129 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1085 2552914 2553439 2553486 "SDVAR" 2553491 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1084 2545441 2552684 2552814 "SDPOL" 2552819 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1083 2544034 2544300 2544619 "SCPKG" 2545156 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1082 2543198 2543370 2543562 "SCOPE" 2543864 T SCOPE (NIL) -8 NIL NIL NIL) (-1081 2542418 2542552 2542731 "SCACHE" 2543053 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1080 2542064 2542250 2542280 "SASTCAT" 2542285 T SASTCAT (NIL) -9 NIL 2542298 NIL) (-1079 2541551 2541899 2541975 "SAOS" 2542010 T SAOS (NIL) -8 NIL NIL NIL) (-1078 2541116 2541151 2541324 "SAERFFC" 2541510 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1077 2535055 2541013 2541093 "SAE" 2541098 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1076 2534648 2534683 2534842 "SAEFACT" 2535014 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1075 2532969 2533283 2533684 "RURPK" 2534314 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1074 2531606 2531912 2532217 "RULESET" 2532803 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1073 2528829 2529359 2529817 "RULE" 2531287 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1072 2528441 2528623 2528706 "RULECOLD" 2528781 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1071 2528231 2528259 2528330 "RTVALUE" 2528392 T RTVALUE (NIL) -8 NIL NIL NIL) (-1070 2527702 2527948 2528042 "RSTRCAST" 2528159 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1069 2522550 2523345 2524265 "RSETGCD" 2526901 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1068 2511780 2516859 2516956 "RSETCAT" 2521075 NIL RSETCAT (NIL T T T T) -9 NIL 2522172 NIL) (-1067 2509707 2510246 2511070 "RSETCAT-" 2511075 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1066 2502092 2503469 2504989 "RSDCMPK" 2508306 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1065 2500071 2500538 2500612 "RRCC" 2501698 NIL RRCC (NIL T T) -9 NIL 2502042 NIL) (-1064 2499422 2499596 2499875 "RRCC-" 2499880 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1063 2498865 2499118 2499219 "RPTAST" 2499343 T RPTAST (NIL) -8 NIL NIL NIL) (-1062 2472716 2482073 2482140 "RPOLCAT" 2492804 NIL RPOLCAT (NIL T T T) -9 NIL 2495963 NIL) (-1061 2464214 2466554 2469676 "RPOLCAT-" 2469681 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1060 2455145 2462425 2462907 "ROUTINE" 2463754 T ROUTINE (NIL) -8 NIL NIL NIL) (-1059 2451943 2454771 2454911 "ROMAN" 2455027 T ROMAN (NIL) -8 NIL NIL NIL) (-1058 2450187 2450803 2451063 "ROIRC" 2451748 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1057 2446419 2448703 2448733 "RNS" 2449037 T RNS (NIL) -9 NIL 2449311 NIL) (-1056 2444928 2445311 2445845 "RNS-" 2445920 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1055 2444331 2444739 2444769 "RNG" 2444774 T RNG (NIL) -9 NIL 2444795 NIL) (-1054 2443730 2444118 2444161 "RMODULE" 2444166 NIL RMODULE (NIL T) -9 NIL 2444193 NIL) (-1053 2442566 2442660 2442996 "RMCAT2" 2443631 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1052 2439416 2441912 2442209 "RMATRIX" 2442328 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1051 2432243 2434503 2434618 "RMATCAT" 2437977 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2438959 NIL) (-1050 2431618 2431765 2432072 "RMATCAT-" 2432077 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1049 2431019 2431240 2431283 "RLINSET" 2431477 NIL RLINSET (NIL T) -9 NIL 2431568 NIL) (-1048 2430586 2430661 2430789 "RINTERP" 2430938 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1047 2429644 2430198 2430228 "RING" 2430284 T RING (NIL) -9 NIL 2430376 NIL) (-1046 2429436 2429480 2429577 "RING-" 2429582 NIL RING- (NIL T) -8 NIL NIL NIL) (-1045 2428277 2428514 2428772 "RIDIST" 2429200 T RIDIST (NIL) -7 NIL NIL NIL) (-1044 2419566 2427745 2427951 "RGCHAIN" 2428125 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1043 2418916 2419322 2419363 "RGBCSPC" 2419421 NIL RGBCSPC (NIL T) -9 NIL 2419473 NIL) (-1042 2418074 2418455 2418496 "RGBCMDL" 2418728 NIL RGBCMDL (NIL T) -9 NIL 2418842 NIL) (-1041 2415068 2415682 2416352 "RF" 2417438 NIL RF (NIL T) -7 NIL NIL NIL) (-1040 2414714 2414777 2414880 "RFFACTOR" 2414999 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1039 2414439 2414474 2414571 "RFFACT" 2414673 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1038 2412556 2412920 2413302 "RFDIST" 2414079 T RFDIST (NIL) -7 NIL NIL NIL) (-1037 2412009 2412101 2412264 "RETSOL" 2412458 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1036 2411645 2411725 2411768 "RETRACT" 2411901 NIL RETRACT (NIL T) -9 NIL 2411988 NIL) (-1035 2411494 2411519 2411606 "RETRACT-" 2411611 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1034 2411096 2411316 2411386 "RETAST" 2411446 T RETAST (NIL) -8 NIL NIL NIL) (-1033 2403834 2410749 2410876 "RESULT" 2410991 T RESULT (NIL) -8 NIL NIL NIL) (-1032 2402425 2403103 2403302 "RESRING" 2403737 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1031 2402061 2402110 2402208 "RESLATC" 2402362 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1030 2401766 2401801 2401908 "REPSQ" 2402020 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1029 2399188 2399768 2400370 "REP" 2401186 T REP (NIL) -7 NIL NIL NIL) (-1028 2398885 2398920 2399031 "REPDB" 2399147 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1027 2392785 2394174 2395397 "REP2" 2397697 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1026 2389162 2389843 2390651 "REP1" 2392012 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1025 2381858 2387303 2387759 "REGSET" 2388792 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1024 2380623 2381006 2381256 "REF" 2381643 NIL REF (NIL T) -8 NIL NIL NIL) (-1023 2380000 2380103 2380270 "REDORDER" 2380507 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1022 2375968 2379213 2379440 "RECLOS" 2379828 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1021 2375020 2375201 2375416 "REALSOLV" 2375775 T REALSOLV (NIL) -7 NIL NIL NIL) (-1020 2374866 2374907 2374937 "REAL" 2374942 T REAL (NIL) -9 NIL 2374977 NIL) (-1019 2371349 2372151 2373035 "REAL0Q" 2374031 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1018 2366950 2367938 2368999 "REAL0" 2370330 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1017 2366421 2366667 2366761 "RDUCEAST" 2366878 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1016 2365826 2365898 2366105 "RDIV" 2366343 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1015 2364894 2365068 2365281 "RDIST" 2365648 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1014 2363491 2363778 2364150 "RDETRS" 2364602 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1013 2361303 2361757 2362295 "RDETR" 2363033 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1012 2359928 2360206 2360603 "RDEEFS" 2361019 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1011 2358437 2358743 2359168 "RDEEF" 2359616 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1010 2352498 2355418 2355448 "RCFIELD" 2356743 T RCFIELD (NIL) -9 NIL 2357474 NIL) (-1009 2350562 2351066 2351762 "RCFIELD-" 2351837 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1008 2346831 2348663 2348706 "RCAGG" 2349790 NIL RCAGG (NIL T) -9 NIL 2350255 NIL) (-1007 2346459 2346553 2346716 "RCAGG-" 2346721 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1006 2345794 2345906 2346071 "RATRET" 2346343 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1005 2345347 2345414 2345535 "RATFACT" 2345722 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1004 2344655 2344775 2344927 "RANDSRC" 2345217 T RANDSRC (NIL) -7 NIL NIL NIL) (-1003 2344389 2344433 2344506 "RADUTIL" 2344604 T RADUTIL (NIL) -7 NIL NIL NIL) (-1002 2337505 2343222 2343532 "RADIX" 2344113 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-1001 2329124 2337347 2337477 "RADFF" 2337482 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-1000 2328771 2328846 2328876 "RADCAT" 2329036 T RADCAT (NIL) -9 NIL NIL NIL) (-999 2328555 2328603 2328701 "RADCAT-" 2328706 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-998 2326658 2328330 2328419 "QUEUE" 2328499 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-997 2323199 2326595 2326640 "QUAT" 2326645 NIL QUAT (NIL T) -8 NIL NIL NIL) (-996 2322837 2322880 2323007 "QUATCT2" 2323150 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-995 2316299 2319644 2319684 "QUATCAT" 2320464 NIL QUATCAT (NIL T) -9 NIL 2321230 NIL) (-994 2312443 2313480 2314867 "QUATCAT-" 2314961 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-993 2309916 2311527 2311568 "QUAGG" 2311943 NIL QUAGG (NIL T) -9 NIL 2312118 NIL) (-992 2309521 2309741 2309809 "QQUTAST" 2309868 T QQUTAST (NIL) -8 NIL NIL NIL) (-991 2308419 2308919 2309091 "QFORM" 2309393 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-990 2299424 2304663 2304703 "QFCAT" 2305361 NIL QFCAT (NIL T) -9 NIL 2306362 NIL) (-989 2294996 2296197 2297788 "QFCAT-" 2297882 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-988 2294634 2294677 2294804 "QFCAT2" 2294947 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-987 2294094 2294204 2294334 "QEQUAT" 2294524 T QEQUAT (NIL) -8 NIL NIL NIL) (-986 2287240 2288313 2289497 "QCMPACK" 2293027 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-985 2284789 2285237 2285665 "QALGSET" 2286895 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-984 2284034 2284208 2284440 "QALGSET2" 2284609 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-983 2282724 2282948 2283265 "PWFFINTB" 2283807 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-982 2280906 2281074 2281428 "PUSHVAR" 2282538 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-981 2276824 2277878 2277919 "PTRANFN" 2279803 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-980 2275226 2275517 2275839 "PTPACK" 2276535 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-979 2274858 2274915 2275024 "PTFUNC2" 2275163 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-978 2269335 2273730 2273771 "PTCAT" 2274067 NIL PTCAT (NIL T) -9 NIL 2274220 NIL) (-977 2268993 2269028 2269152 "PSQFR" 2269294 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-976 2267588 2267886 2268220 "PSEUDLIN" 2268691 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-975 2254351 2256722 2259046 "PSETPK" 2265348 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-974 2247369 2250109 2250205 "PSETCAT" 2253226 NIL PSETCAT (NIL T T T T) -9 NIL 2254040 NIL) (-973 2245205 2245839 2246660 "PSETCAT-" 2246665 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-972 2244554 2244719 2244747 "PSCURVE" 2245015 T PSCURVE (NIL) -9 NIL 2245182 NIL) (-971 2240552 2242068 2242133 "PSCAT" 2242977 NIL PSCAT (NIL T T T) -9 NIL 2243217 NIL) (-970 2239615 2239831 2240231 "PSCAT-" 2240236 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-969 2238320 2238980 2239185 "PRTITION" 2239430 T PRTITION (NIL) -8 NIL NIL NIL) (-968 2237795 2238041 2238133 "PRTDAST" 2238248 T PRTDAST (NIL) -8 NIL NIL NIL) (-967 2226884 2229099 2231287 "PRS" 2235657 NIL PRS (NIL T T) -7 NIL NIL NIL) (-966 2224695 2226234 2226274 "PRQAGG" 2226457 NIL PRQAGG (NIL T) -9 NIL 2226559 NIL) (-965 2223899 2224204 2224232 "PROPLOG" 2224479 T PROPLOG (NIL) -9 NIL 2224645 NIL) (-964 2222329 2222850 2223107 "PROPFRML" 2223675 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-963 2221798 2221905 2222033 "PROPERTY" 2222221 T PROPERTY (NIL) -8 NIL NIL NIL) (-962 2215856 2219964 2220784 "PRODUCT" 2221024 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-961 2213134 2215314 2215548 "PR" 2215667 NIL PR (NIL T T) -8 NIL NIL NIL) (-960 2212930 2212962 2213021 "PRINT" 2213095 T PRINT (NIL) -7 NIL NIL NIL) (-959 2212270 2212387 2212539 "PRIMES" 2212810 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-958 2210335 2210736 2211202 "PRIMELT" 2211849 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-957 2210064 2210113 2210141 "PRIMCAT" 2210265 T PRIMCAT (NIL) -9 NIL NIL NIL) (-956 2206179 2210002 2210047 "PRIMARR" 2210052 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-955 2205186 2205364 2205592 "PRIMARR2" 2205997 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-954 2204829 2204885 2204996 "PREASSOC" 2205124 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-953 2204304 2204437 2204465 "PPCURVE" 2204670 T PPCURVE (NIL) -9 NIL 2204806 NIL) (-952 2203899 2204099 2204182 "PORTNUM" 2204241 T PORTNUM (NIL) -8 NIL NIL NIL) (-951 2201258 2201657 2202249 "POLYROOT" 2203480 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-950 2195440 2200862 2201022 "POLY" 2201131 NIL POLY (NIL T) -8 NIL NIL NIL) (-949 2194823 2194881 2195115 "POLYLIFT" 2195376 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-948 2191098 2191547 2192176 "POLYCATQ" 2194368 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-947 2177810 2182938 2183003 "POLYCAT" 2186517 NIL POLYCAT (NIL T T T) -9 NIL 2188395 NIL) (-946 2171259 2173121 2175505 "POLYCAT-" 2175510 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-945 2170846 2170914 2171034 "POLY2UP" 2171185 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-944 2170478 2170535 2170644 "POLY2" 2170783 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-943 2169163 2169402 2169678 "POLUTIL" 2170252 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-942 2167518 2167795 2168126 "POLTOPOL" 2168885 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-941 2162983 2167454 2167500 "POINT" 2167505 NIL POINT (NIL T) -8 NIL NIL NIL) (-940 2161170 2161527 2161902 "PNTHEORY" 2162628 T PNTHEORY (NIL) -7 NIL NIL NIL) (-939 2159628 2159925 2160324 "PMTOOLS" 2160868 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-938 2159221 2159299 2159416 "PMSYM" 2159544 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-937 2158731 2158800 2158974 "PMQFCAT" 2159146 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-936 2158086 2158196 2158352 "PMPRED" 2158608 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-935 2157479 2157565 2157727 "PMPREDFS" 2157987 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-934 2156143 2156351 2156729 "PMPLCAT" 2157241 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-933 2155675 2155754 2155906 "PMLSAGG" 2156058 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-932 2155148 2155224 2155406 "PMKERNEL" 2155593 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-931 2154765 2154840 2154953 "PMINS" 2155067 NIL PMINS (NIL T) -7 NIL NIL NIL) (-930 2154207 2154276 2154485 "PMFS" 2154690 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-929 2153435 2153553 2153758 "PMDOWN" 2154084 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-928 2152602 2152760 2152941 "PMASS" 2153274 T PMASS (NIL) -7 NIL NIL NIL) (-927 2151875 2151985 2152148 "PMASSFS" 2152489 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-926 2151530 2151598 2151692 "PLOTTOOL" 2151801 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-925 2146137 2147341 2148489 "PLOT" 2150402 T PLOT (NIL) -8 NIL NIL NIL) (-924 2141941 2142985 2143906 "PLOT3D" 2145236 T PLOT3D (NIL) -8 NIL NIL NIL) (-923 2140853 2141030 2141265 "PLOT1" 2141745 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-922 2116242 2120919 2125770 "PLEQN" 2136119 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-921 2115560 2115682 2115862 "PINTERP" 2116107 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-920 2115253 2115300 2115403 "PINTERPA" 2115507 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-919 2114474 2115022 2115109 "PI" 2115149 T PI (NIL) -8 NIL NIL 2115216) (-918 2112771 2113746 2113774 "PID" 2113956 T PID (NIL) -9 NIL 2114090 NIL) (-917 2112522 2112559 2112634 "PICOERCE" 2112728 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-916 2111842 2111981 2112157 "PGROEB" 2112378 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-915 2107429 2108243 2109148 "PGE" 2110957 T PGE (NIL) -7 NIL NIL NIL) (-914 2105552 2105799 2106165 "PGCD" 2107146 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-913 2104890 2104993 2105154 "PFRPAC" 2105436 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-912 2101530 2103438 2103791 "PFR" 2104569 NIL PFR (NIL T) -8 NIL NIL NIL) (-911 2099919 2100163 2100488 "PFOTOOLS" 2101277 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-910 2098452 2098691 2099042 "PFOQ" 2099676 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-909 2096953 2097165 2097521 "PFO" 2098236 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-908 2093506 2096842 2096911 "PF" 2096916 NIL PF (NIL NIL) -8 NIL NIL NIL) (-907 2090840 2092111 2092139 "PFECAT" 2092724 T PFECAT (NIL) -9 NIL 2093108 NIL) (-906 2090285 2090439 2090653 "PFECAT-" 2090658 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-905 2088888 2089140 2089441 "PFBRU" 2090034 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-904 2086754 2087106 2087538 "PFBR" 2088539 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-903 2082636 2084130 2084806 "PERM" 2086111 NIL PERM (NIL T) -8 NIL NIL NIL) (-902 2077870 2078843 2079713 "PERMGRP" 2081799 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-901 2075976 2076933 2076974 "PERMCAT" 2077420 NIL PERMCAT (NIL T) -9 NIL 2077725 NIL) (-900 2075629 2075670 2075794 "PERMAN" 2075929 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-899 2073117 2075294 2075416 "PENDTREE" 2075540 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-898 2071141 2071909 2071950 "PDRING" 2072607 NIL PDRING (NIL T) -9 NIL 2072893 NIL) (-897 2070244 2070462 2070824 "PDRING-" 2070829 NIL PDRING- (NIL T T) -8 NIL NIL NIL) (-896 2067459 2068237 2068905 "PDEPROB" 2069596 T PDEPROB (NIL) -8 NIL NIL NIL) (-895 2065004 2065508 2066063 "PDEPACK" 2066924 T PDEPACK (NIL) -7 NIL NIL NIL) (-894 2063916 2064106 2064357 "PDECOMP" 2064803 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-893 2061495 2062338 2062366 "PDECAT" 2063153 T PDECAT (NIL) -9 NIL 2063866 NIL) (-892 2061246 2061279 2061369 "PCOMP" 2061456 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-891 2059424 2060047 2060344 "PBWLB" 2060975 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-890 2051897 2053497 2054835 "PATTERN" 2058107 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-889 2051529 2051586 2051695 "PATTERN2" 2051834 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-888 2049286 2049674 2050131 "PATTERN1" 2051118 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-887 2046654 2047235 2047716 "PATRES" 2048851 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-886 2046218 2046285 2046417 "PATRES2" 2046581 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-885 2044101 2044506 2044913 "PATMATCH" 2045885 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-884 2043611 2043820 2043861 "PATMAB" 2043968 NIL PATMAB (NIL T) -9 NIL 2044051 NIL) (-883 2042129 2042465 2042723 "PATLRES" 2043416 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-882 2041675 2041798 2041839 "PATAB" 2041844 NIL PATAB (NIL T) -9 NIL 2042016 NIL) (-881 2039156 2039688 2040261 "PARTPERM" 2041122 T PARTPERM (NIL) -7 NIL NIL NIL) (-880 2038777 2038840 2038942 "PARSURF" 2039087 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-879 2038409 2038466 2038575 "PARSU2" 2038714 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-878 2038173 2038213 2038280 "PARSER" 2038362 T PARSER (NIL) -7 NIL NIL NIL) (-877 2037794 2037857 2037959 "PARSCURV" 2038104 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-876 2037426 2037483 2037592 "PARSC2" 2037731 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-875 2037065 2037123 2037220 "PARPCURV" 2037362 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-874 2036697 2036754 2036863 "PARPC2" 2037002 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-873 2036217 2036303 2036422 "PAN2EXPR" 2036598 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-872 2034994 2035338 2035566 "PALETTE" 2036009 T PALETTE (NIL) -8 NIL NIL NIL) (-871 2033387 2033999 2034359 "PAIR" 2034680 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-870 2027257 2032646 2032840 "PADICRC" 2033242 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-869 2020486 2026603 2026787 "PADICRAT" 2027105 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-868 2018801 2020423 2020468 "PADIC" 2020473 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-867 2015911 2017475 2017515 "PADICCT" 2018096 NIL PADICCT (NIL NIL) -9 NIL 2018378 NIL) (-866 2014868 2015068 2015336 "PADEPAC" 2015698 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-865 2014080 2014213 2014419 "PADE" 2014730 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-864 2012467 2013288 2013568 "OWP" 2013884 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-863 2011960 2012173 2012270 "OVERSET" 2012390 T OVERSET (NIL) -8 NIL NIL NIL) (-862 2011006 2011565 2011737 "OVAR" 2011828 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-861 2010270 2010391 2010552 "OUT" 2010865 T OUT (NIL) -7 NIL NIL NIL) (-860 1999142 2001379 2003579 "OUTFORM" 2008090 T OUTFORM (NIL) -8 NIL NIL NIL) (-859 1998478 1998739 1998866 "OUTBFILE" 1999035 T OUTBFILE (NIL) -8 NIL NIL NIL) (-858 1997785 1997950 1997978 "OUTBCON" 1998296 T OUTBCON (NIL) -9 NIL 1998462 NIL) (-857 1997386 1997498 1997655 "OUTBCON-" 1997660 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-856 1996766 1997115 1997204 "OSI" 1997317 T OSI (NIL) -8 NIL NIL NIL) (-855 1996296 1996634 1996662 "OSGROUP" 1996667 T OSGROUP (NIL) -9 NIL 1996689 NIL) (-854 1995041 1995268 1995553 "ORTHPOL" 1996043 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-853 1992592 1994876 1994997 "OREUP" 1995002 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-852 1989995 1992283 1992410 "ORESUP" 1992534 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-851 1987523 1988023 1988584 "OREPCTO" 1989484 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-850 1981209 1983410 1983451 "OREPCAT" 1985799 NIL OREPCAT (NIL T) -9 NIL 1986903 NIL) (-849 1978356 1979138 1980196 "OREPCAT-" 1980201 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-848 1977507 1977805 1977833 "ORDSET" 1978142 T ORDSET (NIL) -9 NIL 1978306 NIL) (-847 1976938 1977086 1977310 "ORDSET-" 1977315 NIL ORDSET- (NIL T) -8 NIL NIL NIL) (-846 1975503 1976294 1976322 "ORDRING" 1976524 T ORDRING (NIL) -9 NIL 1976649 NIL) (-845 1975148 1975242 1975386 "ORDRING-" 1975391 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-844 1974528 1974991 1975019 "ORDMON" 1975024 T ORDMON (NIL) -9 NIL 1975045 NIL) (-843 1973690 1973837 1974032 "ORDFUNS" 1974377 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-842 1973028 1973447 1973475 "ORDFIN" 1973540 T ORDFIN (NIL) -9 NIL 1973614 NIL) (-841 1969587 1971614 1972023 "ORDCOMP" 1972652 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-840 1968853 1968980 1969166 "ORDCOMP2" 1969447 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-839 1965434 1966344 1967158 "OPTPROB" 1968059 T OPTPROB (NIL) -8 NIL NIL NIL) (-838 1962236 1962875 1963579 "OPTPACK" 1964750 T OPTPACK (NIL) -7 NIL NIL NIL) (-837 1959923 1960689 1960717 "OPTCAT" 1961536 T OPTCAT (NIL) -9 NIL 1962186 NIL) (-836 1959307 1959600 1959705 "OPSIG" 1959838 T OPSIG (NIL) -8 NIL NIL NIL) (-835 1959075 1959114 1959180 "OPQUERY" 1959261 T OPQUERY (NIL) -7 NIL NIL NIL) (-834 1956206 1957386 1957890 "OP" 1958604 NIL OP (NIL T) -8 NIL NIL NIL) (-833 1955580 1955806 1955847 "OPERCAT" 1956059 NIL OPERCAT (NIL T) -9 NIL 1956156 NIL) (-832 1955335 1955391 1955508 "OPERCAT-" 1955513 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-831 1952148 1954132 1954501 "ONECOMP" 1954999 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-830 1951453 1951568 1951742 "ONECOMP2" 1952020 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-829 1950872 1950978 1951108 "OMSERVER" 1951343 T OMSERVER (NIL) -7 NIL NIL NIL) (-828 1947734 1950312 1950352 "OMSAGG" 1950413 NIL OMSAGG (NIL T) -9 NIL 1950477 NIL) (-827 1946357 1946620 1946902 "OMPKG" 1947472 T OMPKG (NIL) -7 NIL NIL NIL) (-826 1945787 1945890 1945918 "OM" 1946217 T OM (NIL) -9 NIL NIL NIL) (-825 1944334 1945336 1945505 "OMLO" 1945668 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-824 1943294 1943441 1943661 "OMEXPR" 1944160 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-823 1942585 1942840 1942976 "OMERR" 1943178 T OMERR (NIL) -8 NIL NIL NIL) (-822 1941736 1942006 1942166 "OMERRK" 1942445 T OMERRK (NIL) -8 NIL NIL NIL) (-821 1941187 1941413 1941521 "OMENC" 1941648 T OMENC (NIL) -8 NIL NIL NIL) (-820 1935082 1936267 1937438 "OMDEV" 1940036 T OMDEV (NIL) -8 NIL NIL NIL) (-819 1934151 1934322 1934516 "OMCONN" 1934908 T OMCONN (NIL) -8 NIL NIL NIL) (-818 1932672 1933648 1933676 "OINTDOM" 1933681 T OINTDOM (NIL) -9 NIL 1933702 NIL) (-817 1928451 1929662 1930378 "OFMONOID" 1931988 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-816 1927862 1928388 1928433 "ODVAR" 1928438 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-815 1925285 1927607 1927762 "ODR" 1927767 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-814 1917866 1925061 1925187 "ODPOL" 1925192 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-813 1911688 1917738 1917843 "ODP" 1917848 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-812 1910454 1910669 1910944 "ODETOOLS" 1911462 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-811 1907421 1908079 1908795 "ODESYS" 1909787 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-810 1902303 1903211 1904236 "ODERTRIC" 1906496 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-809 1901729 1901811 1902005 "ODERED" 1902215 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-808 1898617 1899165 1899842 "ODERAT" 1901152 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-807 1895574 1896041 1896638 "ODEPRRIC" 1898146 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-806 1893517 1894113 1894599 "ODEPROB" 1895108 T ODEPROB (NIL) -8 NIL NIL NIL) (-805 1890037 1890522 1891169 "ODEPRIM" 1892996 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-804 1889286 1889388 1889648 "ODEPAL" 1889929 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-803 1885448 1886239 1887103 "ODEPACK" 1888442 T ODEPACK (NIL) -7 NIL NIL NIL) (-802 1884509 1884616 1884838 "ODEINT" 1885337 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-801 1878610 1880035 1881482 "ODEIFTBL" 1883082 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-800 1874008 1874794 1875746 "ODEEF" 1877769 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-799 1873357 1873446 1873669 "ODECONST" 1873913 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-798 1871482 1872143 1872171 "ODECAT" 1872776 T ODECAT (NIL) -9 NIL 1873307 NIL) (-797 1868354 1871194 1871313 "OCT" 1871395 NIL OCT (NIL T) -8 NIL NIL NIL) (-796 1867992 1868035 1868162 "OCTCT2" 1868305 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-795 1862641 1865076 1865116 "OC" 1866213 NIL OC (NIL T) -9 NIL 1867071 NIL) (-794 1859868 1860616 1861606 "OC-" 1861700 NIL OC- (NIL T T) -8 NIL NIL NIL) (-793 1859220 1859688 1859716 "OCAMON" 1859721 T OCAMON (NIL) -9 NIL 1859742 NIL) (-792 1858751 1859092 1859120 "OASGP" 1859125 T OASGP (NIL) -9 NIL 1859145 NIL) (-791 1858012 1858501 1858529 "OAMONS" 1858569 T OAMONS (NIL) -9 NIL 1858612 NIL) (-790 1857426 1857859 1857887 "OAMON" 1857892 T OAMON (NIL) -9 NIL 1857912 NIL) (-789 1856684 1857202 1857230 "OAGROUP" 1857235 T OAGROUP (NIL) -9 NIL 1857255 NIL) (-788 1856374 1856424 1856512 "NUMTUBE" 1856628 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-787 1849947 1851465 1853001 "NUMQUAD" 1854858 T NUMQUAD (NIL) -7 NIL NIL NIL) (-786 1845703 1846691 1847716 "NUMODE" 1848942 T NUMODE (NIL) -7 NIL NIL NIL) (-785 1843058 1843938 1843966 "NUMINT" 1844889 T NUMINT (NIL) -9 NIL 1845653 NIL) (-784 1842006 1842203 1842421 "NUMFMT" 1842860 T NUMFMT (NIL) -7 NIL NIL NIL) (-783 1828365 1831310 1833842 "NUMERIC" 1839513 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-782 1822735 1827814 1827909 "NTSCAT" 1827914 NIL NTSCAT (NIL T T T T) -9 NIL 1827953 NIL) (-781 1821929 1822094 1822287 "NTPOLFN" 1822574 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-780 1810006 1818754 1819566 "NSUP" 1821150 NIL NSUP (NIL T) -8 NIL NIL NIL) (-779 1809638 1809695 1809804 "NSUP2" 1809943 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-778 1799866 1809412 1809545 "NSMP" 1809550 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-777 1798298 1798599 1798956 "NREP" 1799554 NIL NREP (NIL T) -7 NIL NIL NIL) (-776 1796889 1797141 1797499 "NPCOEF" 1798041 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-775 1795955 1796070 1796286 "NORMRETR" 1796770 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-774 1793996 1794286 1794695 "NORMPK" 1795663 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-773 1793681 1793709 1793833 "NORMMA" 1793962 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-772 1793481 1793638 1793667 "NONE" 1793672 T NONE (NIL) -8 NIL NIL NIL) (-771 1793270 1793299 1793368 "NONE1" 1793445 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-770 1792767 1792829 1793008 "NODE1" 1793202 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-769 1791052 1791903 1792158 "NNI" 1792505 T NNI (NIL) -8 NIL NIL 1792740) (-768 1789472 1789785 1790149 "NLINSOL" 1790720 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-767 1785713 1786708 1787607 "NIPROB" 1788593 T NIPROB (NIL) -8 NIL NIL NIL) (-766 1784470 1784704 1785006 "NFINTBAS" 1785475 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-765 1783644 1784120 1784161 "NETCLT" 1784333 NIL NETCLT (NIL T) -9 NIL 1784415 NIL) (-764 1782352 1782583 1782864 "NCODIV" 1783412 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-763 1782114 1782151 1782226 "NCNTFRAC" 1782309 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-762 1780294 1780658 1781078 "NCEP" 1781739 NIL NCEP (NIL T) -7 NIL NIL NIL) (-761 1779145 1779918 1779946 "NASRING" 1780056 T NASRING (NIL) -9 NIL 1780136 NIL) (-760 1778940 1778984 1779078 "NASRING-" 1779083 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-759 1778047 1778572 1778600 "NARNG" 1778717 T NARNG (NIL) -9 NIL 1778808 NIL) (-758 1777739 1777806 1777940 "NARNG-" 1777945 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-757 1776618 1776825 1777060 "NAGSP" 1777524 T NAGSP (NIL) -7 NIL NIL NIL) (-756 1767890 1769574 1771247 "NAGS" 1774965 T NAGS (NIL) -7 NIL NIL NIL) (-755 1766438 1766746 1767077 "NAGF07" 1767579 T NAGF07 (NIL) -7 NIL NIL NIL) (-754 1760976 1762267 1763574 "NAGF04" 1765151 T NAGF04 (NIL) -7 NIL NIL NIL) (-753 1753944 1755558 1757191 "NAGF02" 1759363 T NAGF02 (NIL) -7 NIL NIL NIL) (-752 1749168 1750268 1751385 "NAGF01" 1752847 T NAGF01 (NIL) -7 NIL NIL NIL) (-751 1742796 1744362 1745947 "NAGE04" 1747603 T NAGE04 (NIL) -7 NIL NIL NIL) (-750 1733965 1736086 1738216 "NAGE02" 1740686 T NAGE02 (NIL) -7 NIL NIL NIL) (-749 1729918 1730865 1731829 "NAGE01" 1733021 T NAGE01 (NIL) -7 NIL NIL NIL) (-748 1727713 1728247 1728805 "NAGD03" 1729380 T NAGD03 (NIL) -7 NIL NIL NIL) (-747 1719463 1721391 1723345 "NAGD02" 1725779 T NAGD02 (NIL) -7 NIL NIL NIL) (-746 1713274 1714699 1716139 "NAGD01" 1718043 T NAGD01 (NIL) -7 NIL NIL NIL) (-745 1709483 1710305 1711142 "NAGC06" 1712457 T NAGC06 (NIL) -7 NIL NIL NIL) (-744 1707948 1708280 1708636 "NAGC05" 1709147 T NAGC05 (NIL) -7 NIL NIL NIL) (-743 1707324 1707443 1707587 "NAGC02" 1707824 T NAGC02 (NIL) -7 NIL NIL NIL) (-742 1706283 1706866 1706906 "NAALG" 1706985 NIL NAALG (NIL T) -9 NIL 1707046 NIL) (-741 1706118 1706147 1706237 "NAALG-" 1706242 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-740 1700068 1701176 1702363 "MULTSQFR" 1705014 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-739 1699387 1699462 1699646 "MULTFACT" 1699980 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-738 1692111 1696024 1696077 "MTSCAT" 1697147 NIL MTSCAT (NIL T T) -9 NIL 1697662 NIL) (-737 1691823 1691877 1691969 "MTHING" 1692051 NIL MTHING (NIL T) -7 NIL NIL NIL) (-736 1691615 1691648 1691708 "MSYSCMD" 1691783 T MSYSCMD (NIL) -7 NIL NIL NIL) (-735 1687697 1690370 1690690 "MSET" 1691328 NIL MSET (NIL T) -8 NIL NIL NIL) (-734 1684766 1687258 1687299 "MSETAGG" 1687304 NIL MSETAGG (NIL T) -9 NIL 1687338 NIL) (-733 1680607 1682145 1682890 "MRING" 1684066 NIL MRING (NIL T T) -8 NIL NIL NIL) (-732 1680173 1680240 1680371 "MRF2" 1680534 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-731 1679791 1679826 1679970 "MRATFAC" 1680132 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-730 1677403 1677698 1678129 "MPRFF" 1679496 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-729 1671700 1677257 1677354 "MPOLY" 1677359 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-728 1671190 1671225 1671433 "MPCPF" 1671659 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-727 1670704 1670747 1670931 "MPC3" 1671141 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-726 1669899 1669980 1670201 "MPC2" 1670619 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-725 1668200 1668537 1668927 "MONOTOOL" 1669559 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-724 1667425 1667742 1667770 "MONOID" 1667989 T MONOID (NIL) -9 NIL 1668136 NIL) (-723 1666971 1667090 1667271 "MONOID-" 1667276 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-722 1657446 1663397 1663456 "MONOGEN" 1664130 NIL MONOGEN (NIL T T) -9 NIL 1664586 NIL) (-721 1654664 1655399 1656399 "MONOGEN-" 1656518 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-720 1653497 1653943 1653971 "MONADWU" 1654363 T MONADWU (NIL) -9 NIL 1654601 NIL) (-719 1652869 1653028 1653276 "MONADWU-" 1653281 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-718 1652228 1652472 1652500 "MONAD" 1652707 T MONAD (NIL) -9 NIL 1652819 NIL) (-717 1651913 1651991 1652123 "MONAD-" 1652128 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-716 1650202 1650826 1651105 "MOEBIUS" 1651666 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-715 1649480 1649884 1649924 "MODULE" 1649929 NIL MODULE (NIL T) -9 NIL 1649968 NIL) (-714 1649048 1649144 1649334 "MODULE-" 1649339 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-713 1646728 1647412 1647739 "MODRING" 1648872 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-712 1643672 1644833 1645354 "MODOP" 1646257 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-711 1642260 1642739 1643016 "MODMONOM" 1643535 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-710 1632301 1640551 1640965 "MODMON" 1641897 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-709 1629457 1631145 1631421 "MODFIELD" 1632176 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-708 1628434 1628738 1628928 "MMLFORM" 1629287 T MMLFORM (NIL) -8 NIL NIL NIL) (-707 1627960 1628003 1628182 "MMAP" 1628385 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-706 1626039 1626806 1626847 "MLO" 1627270 NIL MLO (NIL T) -9 NIL 1627512 NIL) (-705 1623405 1623921 1624523 "MLIFT" 1625520 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-704 1622796 1622880 1623034 "MKUCFUNC" 1623316 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-703 1622395 1622465 1622588 "MKRECORD" 1622719 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-702 1621442 1621604 1621832 "MKFUNC" 1622206 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-701 1620830 1620934 1621090 "MKFLCFN" 1621325 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-700 1620107 1620209 1620394 "MKBCFUNC" 1620723 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-699 1616814 1619661 1619797 "MINT" 1619991 T MINT (NIL) -8 NIL NIL NIL) (-698 1615626 1615869 1616146 "MHROWRED" 1616569 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-697 1611005 1614161 1614566 "MFLOAT" 1615241 T MFLOAT (NIL) -8 NIL NIL NIL) (-696 1610362 1610438 1610609 "MFINFACT" 1610917 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-695 1606677 1607525 1608409 "MESH" 1609498 T MESH (NIL) -7 NIL NIL NIL) (-694 1605067 1605379 1605732 "MDDFACT" 1606364 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-693 1601862 1604226 1604267 "MDAGG" 1604522 NIL MDAGG (NIL T) -9 NIL 1604665 NIL) (-692 1591602 1601155 1601362 "MCMPLX" 1601675 T MCMPLX (NIL) -8 NIL NIL NIL) (-691 1590743 1590889 1591089 "MCDEN" 1591451 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-690 1588633 1588903 1589283 "MCALCFN" 1590473 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-689 1587558 1587798 1588031 "MAYBE" 1588439 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-688 1585170 1585693 1586255 "MATSTOR" 1587029 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-687 1581127 1584542 1584790 "MATRIX" 1584955 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-686 1576891 1577600 1578336 "MATLIN" 1580484 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-685 1566997 1570183 1570260 "MATCAT" 1575140 NIL MATCAT (NIL T T T) -9 NIL 1576557 NIL) (-684 1563353 1564374 1565730 "MATCAT-" 1565735 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-683 1561947 1562100 1562433 "MATCAT2" 1563188 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-682 1560059 1560383 1560767 "MAPPKG3" 1561622 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-681 1559040 1559213 1559435 "MAPPKG2" 1559883 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-680 1557539 1557823 1558150 "MAPPKG1" 1558746 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-679 1556618 1556945 1557122 "MAPPAST" 1557382 T MAPPAST (NIL) -8 NIL NIL NIL) (-678 1556229 1556287 1556410 "MAPHACK3" 1556554 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-677 1555821 1555882 1555996 "MAPHACK2" 1556161 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-676 1555258 1555362 1555504 "MAPHACK1" 1555712 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-675 1553337 1553958 1554262 "MAGMA" 1554986 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-674 1552816 1553061 1553152 "MACROAST" 1553266 T MACROAST (NIL) -8 NIL NIL NIL) (-673 1549234 1551055 1551516 "M3D" 1552388 NIL M3D (NIL T) -8 NIL NIL NIL) (-672 1543340 1547603 1547644 "LZSTAGG" 1548426 NIL LZSTAGG (NIL T) -9 NIL 1548721 NIL) (-671 1539297 1540471 1541928 "LZSTAGG-" 1541933 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-670 1536384 1537188 1537675 "LWORD" 1538842 NIL LWORD (NIL T) -8 NIL NIL NIL) (-669 1535960 1536188 1536263 "LSTAST" 1536329 T LSTAST (NIL) -8 NIL NIL NIL) (-668 1529126 1535731 1535865 "LSQM" 1535870 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-667 1528350 1528489 1528717 "LSPP" 1528981 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-666 1526162 1526463 1526919 "LSMP" 1528039 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-665 1522941 1523615 1524345 "LSMP1" 1525464 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-664 1516818 1522108 1522149 "LSAGG" 1522211 NIL LSAGG (NIL T) -9 NIL 1522289 NIL) (-663 1513513 1514437 1515650 "LSAGG-" 1515655 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-662 1511112 1512657 1512906 "LPOLY" 1513308 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-661 1510694 1510779 1510902 "LPEFRAC" 1511021 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-660 1509015 1509788 1510041 "LO" 1510526 NIL LO (NIL T T T) -8 NIL NIL NIL) (-659 1508667 1508779 1508807 "LOGIC" 1508918 T LOGIC (NIL) -9 NIL 1508999 NIL) (-658 1508529 1508552 1508623 "LOGIC-" 1508628 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-657 1507722 1507862 1508055 "LODOOPS" 1508385 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-656 1505145 1507638 1507704 "LODO" 1507709 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-655 1503683 1503918 1504271 "LODOF" 1504892 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-654 1499901 1502332 1502373 "LODOCAT" 1502811 NIL LODOCAT (NIL T) -9 NIL 1503022 NIL) (-653 1499634 1499692 1499819 "LODOCAT-" 1499824 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-652 1496954 1499475 1499593 "LODO2" 1499598 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-651 1494389 1496891 1496936 "LODO1" 1496941 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-650 1493270 1493435 1493740 "LODEEF" 1494212 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-649 1488509 1491400 1491441 "LNAGG" 1492388 NIL LNAGG (NIL T) -9 NIL 1492832 NIL) (-648 1487656 1487870 1488212 "LNAGG-" 1488217 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-647 1483792 1484581 1485220 "LMOPS" 1487071 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-646 1483195 1483583 1483624 "LMODULE" 1483629 NIL LMODULE (NIL T) -9 NIL 1483655 NIL) (-645 1480393 1482840 1482963 "LMDICT" 1483105 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-644 1479799 1480020 1480061 "LLINSET" 1480252 NIL LLINSET (NIL T) -9 NIL 1480343 NIL) (-643 1479498 1479707 1479767 "LITERAL" 1479772 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-642 1472681 1478444 1478742 "LIST" 1479233 NIL LIST (NIL T) -8 NIL NIL NIL) (-641 1472206 1472280 1472419 "LIST3" 1472601 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-640 1471213 1471391 1471619 "LIST2" 1472024 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-639 1469347 1469659 1470058 "LIST2MAP" 1470860 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-638 1468943 1469180 1469221 "LINSET" 1469226 NIL LINSET (NIL T) -9 NIL 1469260 NIL) (-637 1467604 1468274 1468315 "LINEXP" 1468570 NIL LINEXP (NIL T) -9 NIL 1468719 NIL) (-636 1466251 1466511 1466808 "LINDEP" 1467356 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-635 1463018 1463737 1464514 "LIMITRF" 1465506 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-634 1461321 1461617 1462026 "LIMITPS" 1462713 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-633 1455749 1460832 1461060 "LIE" 1461142 NIL LIE (NIL T T) -8 NIL NIL NIL) (-632 1454697 1455166 1455206 "LIECAT" 1455346 NIL LIECAT (NIL T) -9 NIL 1455497 NIL) (-631 1454538 1454565 1454653 "LIECAT-" 1454658 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-630 1447034 1453987 1454152 "LIB" 1454393 T LIB (NIL) -8 NIL NIL NIL) (-629 1442669 1443552 1444487 "LGROBP" 1446151 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-628 1440667 1440941 1441291 "LF" 1442390 NIL LF (NIL T T) -7 NIL NIL NIL) (-627 1439507 1440199 1440227 "LFCAT" 1440434 T LFCAT (NIL) -9 NIL 1440573 NIL) (-626 1436409 1437039 1437727 "LEXTRIPK" 1438871 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-625 1433153 1433979 1434482 "LEXP" 1435989 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-624 1432629 1432874 1432966 "LETAST" 1433081 T LETAST (NIL) -8 NIL NIL NIL) (-623 1431027 1431340 1431741 "LEADCDET" 1432311 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-622 1430217 1430291 1430520 "LAZM3PK" 1430948 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-621 1425134 1428294 1428832 "LAUPOL" 1429729 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-620 1424713 1424757 1424918 "LAPLACE" 1425084 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-619 1422652 1423814 1424065 "LA" 1424546 NIL LA (NIL T T T) -8 NIL NIL NIL) (-618 1421646 1422230 1422271 "LALG" 1422333 NIL LALG (NIL T) -9 NIL 1422392 NIL) (-617 1421360 1421419 1421555 "LALG-" 1421560 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-616 1421195 1421219 1421260 "KVTFROM" 1421322 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-615 1420118 1420562 1420747 "KTVLOGIC" 1421030 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-614 1419953 1419977 1420018 "KRCFROM" 1420080 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-613 1418857 1419044 1419343 "KOVACIC" 1419753 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-612 1418692 1418716 1418757 "KONVERT" 1418819 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-611 1418527 1418551 1418592 "KOERCE" 1418654 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-610 1416209 1416997 1417398 "KERNEL" 1418159 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-609 1415705 1415786 1415918 "KERNEL2" 1416123 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-608 1409475 1414244 1414298 "KDAGG" 1414675 NIL KDAGG (NIL T T) -9 NIL 1414881 NIL) (-607 1409004 1409128 1409333 "KDAGG-" 1409338 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-606 1402152 1408665 1408820 "KAFILE" 1408882 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-605 1396580 1401663 1401891 "JORDAN" 1401973 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-604 1395959 1396229 1396350 "JOINAST" 1396479 T JOINAST (NIL) -8 NIL NIL NIL) (-603 1395805 1395864 1395919 "JAVACODE" 1395924 T JAVACODE (NIL) -8 NIL NIL NIL) (-602 1392057 1394010 1394064 "IXAGG" 1394993 NIL IXAGG (NIL T T) -9 NIL 1395452 NIL) (-601 1390976 1391282 1391701 "IXAGG-" 1391706 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-600 1386506 1390898 1390957 "IVECTOR" 1390962 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-599 1385272 1385509 1385775 "ITUPLE" 1386273 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-598 1383774 1383951 1384246 "ITRIGMNP" 1385094 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-597 1382519 1382723 1383006 "ITFUN3" 1383550 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-596 1382151 1382208 1382317 "ITFUN2" 1382456 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-595 1379953 1381013 1381312 "ITAYLOR" 1381885 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-594 1368898 1374090 1375253 "ISUPS" 1378823 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-593 1368002 1368142 1368378 "ISUMP" 1368745 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-592 1363216 1367803 1367882 "ISTRING" 1367955 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-591 1362692 1362937 1363029 "ISAST" 1363144 T ISAST (NIL) -8 NIL NIL NIL) (-590 1361901 1361983 1362199 "IRURPK" 1362606 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-589 1360837 1361038 1361278 "IRSN" 1361681 T IRSN (NIL) -7 NIL NIL NIL) (-588 1358908 1359263 1359692 "IRRF2F" 1360475 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-587 1358655 1358693 1358769 "IRREDFFX" 1358864 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-586 1357270 1357529 1357828 "IROOT" 1358388 NIL IROOT (NIL T) -7 NIL NIL NIL) (-585 1353874 1354954 1355646 "IR" 1356610 NIL IR (NIL T) -8 NIL NIL NIL) (-584 1351487 1351982 1352548 "IR2" 1353352 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-583 1350587 1350700 1350914 "IR2F" 1351370 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-582 1350378 1350412 1350472 "IPRNTPK" 1350547 T IPRNTPK (NIL) -7 NIL NIL NIL) (-581 1346957 1350267 1350336 "IPF" 1350341 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-580 1345284 1346882 1346939 "IPADIC" 1346944 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-579 1344596 1344844 1344974 "IP4ADDR" 1345174 T IP4ADDR (NIL) -8 NIL NIL NIL) (-578 1344069 1344300 1344410 "IOMODE" 1344506 T IOMODE (NIL) -8 NIL NIL NIL) (-577 1343142 1343666 1343793 "IOBFILE" 1343962 T IOBFILE (NIL) -8 NIL NIL NIL) (-576 1342630 1343046 1343074 "IOBCON" 1343079 T IOBCON (NIL) -9 NIL 1343100 NIL) (-575 1342141 1342199 1342382 "INVLAPLA" 1342566 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-574 1331789 1334143 1336529 "INTTR" 1339805 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-573 1328124 1328866 1329731 "INTTOOLS" 1330974 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-572 1327710 1327801 1327918 "INTSLPE" 1328027 T INTSLPE (NIL) -7 NIL NIL NIL) (-571 1325663 1327633 1327692 "INTRVL" 1327697 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-570 1323265 1323777 1324352 "INTRF" 1325148 NIL INTRF (NIL T) -7 NIL NIL NIL) (-569 1322676 1322773 1322915 "INTRET" 1323163 NIL INTRET (NIL T) -7 NIL NIL NIL) (-568 1320673 1321062 1321532 "INTRAT" 1322284 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-567 1317936 1318519 1319138 "INTPM" 1320158 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-566 1314681 1315280 1316018 "INTPAF" 1317322 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-565 1309860 1310822 1311873 "INTPACK" 1313650 T INTPACK (NIL) -7 NIL NIL NIL) (-564 1306740 1309589 1309716 "INT" 1309753 T INT (NIL) -8 NIL NIL NIL) (-563 1305992 1306144 1306352 "INTHERTR" 1306582 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-562 1305431 1305511 1305699 "INTHERAL" 1305906 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-561 1303277 1303720 1304177 "INTHEORY" 1304994 T INTHEORY (NIL) -7 NIL NIL NIL) (-560 1294683 1296304 1298076 "INTG0" 1301629 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-559 1275256 1280046 1284856 "INTFTBL" 1289893 T INTFTBL (NIL) -8 NIL NIL NIL) (-558 1274505 1274643 1274816 "INTFACT" 1275115 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-557 1271932 1272378 1272935 "INTEF" 1274059 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-556 1270299 1271038 1271066 "INTDOM" 1271367 T INTDOM (NIL) -9 NIL 1271574 NIL) (-555 1269668 1269842 1270084 "INTDOM-" 1270089 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-554 1266056 1267984 1268038 "INTCAT" 1268837 NIL INTCAT (NIL T) -9 NIL 1269158 NIL) (-553 1265528 1265631 1265759 "INTBIT" 1265948 T INTBIT (NIL) -7 NIL NIL NIL) (-552 1264227 1264381 1264688 "INTALG" 1265373 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-551 1263710 1263800 1263957 "INTAF" 1264131 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-550 1257053 1263520 1263660 "INTABL" 1263665 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-549 1256394 1256860 1256925 "INT8" 1256959 T INT8 (NIL) -8 NIL NIL 1257004) (-548 1255734 1256200 1256265 "INT64" 1256299 T INT64 (NIL) -8 NIL NIL 1256344) (-547 1255074 1255540 1255605 "INT32" 1255639 T INT32 (NIL) -8 NIL NIL 1255684) (-546 1254414 1254880 1254945 "INT16" 1254979 T INT16 (NIL) -8 NIL NIL 1255024) (-545 1249324 1252037 1252065 "INS" 1252999 T INS (NIL) -9 NIL 1253664 NIL) (-544 1246564 1247335 1248309 "INS-" 1248382 NIL INS- (NIL T) -8 NIL NIL NIL) (-543 1245339 1245566 1245864 "INPSIGN" 1246317 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-542 1244457 1244574 1244771 "INPRODPF" 1245219 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-541 1243351 1243468 1243705 "INPRODFF" 1244337 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-540 1242351 1242503 1242763 "INNMFACT" 1243187 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-539 1241548 1241645 1241833 "INMODGCD" 1242250 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-538 1240056 1240301 1240625 "INFSP" 1241293 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-537 1239240 1239357 1239540 "INFPROD0" 1239936 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-536 1236095 1237305 1237820 "INFORM" 1238733 T INFORM (NIL) -8 NIL NIL NIL) (-535 1235705 1235765 1235863 "INFORM1" 1236030 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-534 1235228 1235317 1235431 "INFINITY" 1235611 T INFINITY (NIL) -7 NIL NIL NIL) (-533 1234404 1234948 1235049 "INETCLTS" 1235147 T INETCLTS (NIL) -8 NIL NIL NIL) (-532 1233020 1233270 1233591 "INEP" 1234152 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-531 1232269 1232917 1232982 "INDE" 1232987 NIL INDE (NIL T) -8 NIL NIL NIL) (-530 1231833 1231901 1232018 "INCRMAPS" 1232196 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-529 1230651 1231102 1231308 "INBFILE" 1231647 T INBFILE (NIL) -8 NIL NIL NIL) (-528 1225950 1226887 1227831 "INBFF" 1229739 NIL INBFF (NIL T) -7 NIL NIL NIL) (-527 1224858 1225127 1225155 "INBCON" 1225668 T INBCON (NIL) -9 NIL 1225934 NIL) (-526 1224110 1224333 1224609 "INBCON-" 1224614 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-525 1223589 1223834 1223925 "INAST" 1224039 T INAST (NIL) -8 NIL NIL NIL) (-524 1223016 1223268 1223374 "IMPTAST" 1223503 T IMPTAST (NIL) -8 NIL NIL NIL) (-523 1219462 1222860 1222964 "IMATRIX" 1222969 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-522 1218174 1218297 1218612 "IMATQF" 1219318 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-521 1216394 1216621 1216958 "IMATLIN" 1217930 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-520 1210972 1216318 1216376 "ILIST" 1216381 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-519 1208877 1210832 1210945 "IIARRAY2" 1210950 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-518 1204275 1208788 1208852 "IFF" 1208857 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-517 1203622 1203892 1204008 "IFAST" 1204179 T IFAST (NIL) -8 NIL NIL NIL) (-516 1198617 1202914 1203102 "IFARRAY" 1203479 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-515 1197797 1198521 1198594 "IFAMON" 1198599 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-514 1197381 1197446 1197500 "IEVALAB" 1197707 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-513 1197056 1197124 1197284 "IEVALAB-" 1197289 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-512 1196687 1196970 1197033 "IDPO" 1197038 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-511 1195937 1196576 1196651 "IDPOAMS" 1196656 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-510 1195244 1195826 1195901 "IDPOAM" 1195906 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-509 1194303 1194579 1194632 "IDPC" 1195045 NIL IDPC (NIL T T) -9 NIL 1195194 NIL) (-508 1193772 1194195 1194268 "IDPAM" 1194273 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-507 1193148 1193664 1193737 "IDPAG" 1193742 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-506 1192793 1192984 1193059 "IDENT" 1193093 T IDENT (NIL) -8 NIL NIL NIL) (-505 1189048 1189896 1190791 "IDECOMP" 1191950 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-504 1181886 1182971 1184018 "IDEAL" 1188084 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-503 1181050 1181162 1181361 "ICDEN" 1181770 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-502 1180121 1180530 1180677 "ICARD" 1180923 T ICARD (NIL) -8 NIL NIL NIL) (-501 1178181 1178494 1178899 "IBPTOOLS" 1179798 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-500 1173788 1177801 1177914 "IBITS" 1178100 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-499 1170511 1171087 1171782 "IBATOOL" 1173205 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-498 1168290 1168752 1169285 "IBACHIN" 1170046 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-497 1166119 1168136 1168239 "IARRAY2" 1168244 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-496 1162225 1166045 1166102 "IARRAY1" 1166107 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-495 1156334 1160637 1161118 "IAN" 1161764 T IAN (NIL) -8 NIL NIL NIL) (-494 1155845 1155902 1156075 "IALGFACT" 1156271 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-493 1155373 1155486 1155514 "HYPCAT" 1155721 T HYPCAT (NIL) -9 NIL NIL NIL) (-492 1154911 1155028 1155214 "HYPCAT-" 1155219 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-491 1154506 1154706 1154789 "HOSTNAME" 1154848 T HOSTNAME (NIL) -8 NIL NIL NIL) (-490 1154351 1154388 1154429 "HOMOTOP" 1154434 NIL HOMOTOP (NIL T) -9 NIL 1154467 NIL) (-489 1150983 1152361 1152402 "HOAGG" 1153383 NIL HOAGG (NIL T) -9 NIL 1154062 NIL) (-488 1149577 1149976 1150502 "HOAGG-" 1150507 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-487 1143581 1149172 1149321 "HEXADEC" 1149448 T HEXADEC (NIL) -8 NIL NIL NIL) (-486 1142328 1142551 1142814 "HEUGCD" 1143358 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-485 1141404 1142165 1142295 "HELLFDIV" 1142300 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-484 1139583 1141181 1141269 "HEAP" 1141348 NIL HEAP (NIL T) -8 NIL NIL NIL) (-483 1138846 1139135 1139269 "HEADAST" 1139469 T HEADAST (NIL) -8 NIL NIL NIL) (-482 1132712 1138761 1138823 "HDP" 1138828 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-481 1126700 1132347 1132499 "HDMP" 1132613 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-480 1126024 1126164 1126328 "HB" 1126556 T HB (NIL) -7 NIL NIL NIL) (-479 1119410 1125870 1125974 "HASHTBL" 1125979 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-478 1118886 1119131 1119223 "HASAST" 1119338 T HASAST (NIL) -8 NIL NIL NIL) (-477 1116664 1118508 1118690 "HACKPI" 1118724 T HACKPI (NIL) -8 NIL NIL NIL) (-476 1112332 1116517 1116630 "GTSET" 1116635 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-475 1105747 1112210 1112308 "GSTBL" 1112313 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-474 1098025 1104778 1105043 "GSERIES" 1105538 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-473 1097166 1097583 1097611 "GROUP" 1097814 T GROUP (NIL) -9 NIL 1097948 NIL) (-472 1096532 1096691 1096942 "GROUP-" 1096947 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-471 1094899 1095220 1095607 "GROEBSOL" 1096209 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-470 1093813 1094101 1094152 "GRMOD" 1094681 NIL GRMOD (NIL T T) -9 NIL 1094849 NIL) (-469 1093581 1093617 1093745 "GRMOD-" 1093750 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-468 1088871 1089935 1090935 "GRIMAGE" 1092601 T GRIMAGE (NIL) -8 NIL NIL NIL) (-467 1087337 1087598 1087922 "GRDEF" 1088567 T GRDEF (NIL) -7 NIL NIL NIL) (-466 1086781 1086897 1087038 "GRAY" 1087216 T GRAY (NIL) -7 NIL NIL NIL) (-465 1085968 1086374 1086425 "GRALG" 1086578 NIL GRALG (NIL T T) -9 NIL 1086671 NIL) (-464 1085629 1085702 1085865 "GRALG-" 1085870 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-463 1082406 1085214 1085392 "GPOLSET" 1085536 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-462 1081760 1081817 1082075 "GOSPER" 1082343 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-461 1077492 1078198 1078724 "GMODPOL" 1081459 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-460 1076497 1076681 1076919 "GHENSEL" 1077304 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-459 1070653 1071496 1072516 "GENUPS" 1075581 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-458 1070350 1070401 1070490 "GENUFACT" 1070596 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-457 1069762 1069839 1070004 "GENPGCD" 1070268 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-456 1069236 1069271 1069484 "GENMFACT" 1069721 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-455 1067802 1068059 1068366 "GENEEZ" 1068979 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-454 1061948 1067413 1067575 "GDMP" 1067725 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-453 1051290 1055719 1056825 "GCNAALG" 1060931 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-452 1049617 1050479 1050507 "GCDDOM" 1050762 T GCDDOM (NIL) -9 NIL 1050919 NIL) (-451 1049087 1049214 1049429 "GCDDOM-" 1049434 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-450 1047759 1047944 1048248 "GB" 1048866 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-449 1036375 1038705 1041097 "GBINTERN" 1045450 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-448 1034212 1034504 1034925 "GBF" 1036050 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-447 1032993 1033158 1033425 "GBEUCLID" 1034028 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-446 1032342 1032467 1032616 "GAUSSFAC" 1032864 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-445 1030709 1031011 1031325 "GALUTIL" 1032061 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-444 1029017 1029291 1029615 "GALPOLYU" 1030436 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-443 1026382 1026672 1027079 "GALFACTU" 1028714 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-442 1018187 1019687 1021295 "GALFACT" 1024814 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-441 1015575 1016233 1016261 "FVFUN" 1017417 T FVFUN (NIL) -9 NIL 1018137 NIL) (-440 1014841 1015023 1015051 "FVC" 1015342 T FVC (NIL) -9 NIL 1015525 NIL) (-439 1014484 1014666 1014734 "FUNDESC" 1014793 T FUNDESC (NIL) -8 NIL NIL NIL) (-438 1014099 1014281 1014362 "FUNCTION" 1014436 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-437 1011843 1012421 1012887 "FT" 1013653 T FT (NIL) -8 NIL NIL NIL) (-436 1010634 1011144 1011347 "FTEM" 1011660 T FTEM (NIL) -8 NIL NIL NIL) (-435 1008925 1009214 1009611 "FSUPFACT" 1010325 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-434 1007322 1007611 1007943 "FST" 1008613 T FST (NIL) -8 NIL NIL NIL) (-433 1006521 1006627 1006815 "FSRED" 1007204 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-432 1005220 1005476 1005823 "FSPRMELT" 1006236 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-431 1002526 1002964 1003450 "FSPECF" 1004783 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-430 984164 992495 992536 "FS" 996420 NIL FS (NIL T) -9 NIL 998709 NIL) (-429 972807 975800 979857 "FS-" 980157 NIL FS- (NIL T T) -8 NIL NIL NIL) (-428 972335 972389 972559 "FSINT" 972748 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-427 970627 971328 971631 "FSERIES" 972114 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-426 969669 969785 970009 "FSCINT" 970507 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-425 965877 968613 968654 "FSAGG" 969024 NIL FSAGG (NIL T) -9 NIL 969283 NIL) (-424 963639 964240 965036 "FSAGG-" 965131 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-423 962681 962824 963051 "FSAGG2" 963492 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-422 960363 960643 961190 "FS2UPS" 962399 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-421 959997 960040 960169 "FS2" 960314 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-420 958875 959046 959348 "FS2EXPXP" 959822 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-419 958301 958416 958568 "FRUTIL" 958755 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-418 949714 953796 955154 "FR" 956975 NIL FR (NIL T) -8 NIL NIL NIL) (-417 944683 947357 947397 "FRNAALG" 948793 NIL FRNAALG (NIL T) -9 NIL 949400 NIL) (-416 940356 941432 942707 "FRNAALG-" 943457 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-415 939994 940037 940164 "FRNAAF2" 940307 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-414 938374 938848 939143 "FRMOD" 939806 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-413 936125 936757 937074 "FRIDEAL" 938165 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-412 935320 935407 935696 "FRIDEAL2" 936032 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-411 934453 934867 934908 "FRETRCT" 934913 NIL FRETRCT (NIL T) -9 NIL 935089 NIL) (-410 933565 933796 934147 "FRETRCT-" 934152 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-409 930653 931863 931922 "FRAMALG" 932804 NIL FRAMALG (NIL T T) -9 NIL 933096 NIL) (-408 928787 929242 929872 "FRAMALG-" 930095 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-407 922708 928262 928538 "FRAC" 928543 NIL FRAC (NIL T) -8 NIL NIL NIL) (-406 922344 922401 922508 "FRAC2" 922645 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-405 921980 922037 922144 "FR2" 922281 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-404 916493 919386 919414 "FPS" 920533 T FPS (NIL) -9 NIL 921090 NIL) (-403 915942 916051 916215 "FPS-" 916361 NIL FPS- (NIL T) -8 NIL NIL NIL) (-402 913244 914913 914941 "FPC" 915166 T FPC (NIL) -9 NIL 915308 NIL) (-401 913037 913077 913174 "FPC-" 913179 NIL FPC- (NIL T) -8 NIL NIL NIL) (-400 911827 912525 912566 "FPATMAB" 912571 NIL FPATMAB (NIL T) -9 NIL 912723 NIL) (-399 909500 910003 910429 "FPARFRAC" 911464 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-398 904893 905392 906074 "FORTRAN" 908932 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-397 902609 903109 903648 "FORT" 904374 T FORT (NIL) -7 NIL NIL NIL) (-396 900285 900847 900875 "FORTFN" 901935 T FORTFN (NIL) -9 NIL 902559 NIL) (-395 900049 900099 900127 "FORTCAT" 900186 T FORTCAT (NIL) -9 NIL 900248 NIL) (-394 898155 898665 899055 "FORMULA" 899679 T FORMULA (NIL) -8 NIL NIL NIL) (-393 897943 897973 898042 "FORMULA1" 898119 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-392 897466 897518 897691 "FORDER" 897885 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-391 896562 896726 896919 "FOP" 897293 T FOP (NIL) -7 NIL NIL NIL) (-390 895143 895842 896016 "FNLA" 896444 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-389 893872 894287 894315 "FNCAT" 894775 T FNCAT (NIL) -9 NIL 895035 NIL) (-388 893411 893831 893859 "FNAME" 893864 T FNAME (NIL) -8 NIL NIL NIL) (-387 891974 892937 892965 "FMTC" 892970 T FMTC (NIL) -9 NIL 893006 NIL) (-386 888307 889497 890126 "FMONOID" 891378 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-385 887499 888049 888198 "FM" 888203 NIL FM (NIL T T) -8 NIL NIL NIL) (-384 884923 885569 885597 "FMFUN" 886741 T FMFUN (NIL) -9 NIL 887449 NIL) (-383 884192 884373 884401 "FMC" 884691 T FMC (NIL) -9 NIL 884873 NIL) (-382 881271 882131 882185 "FMCAT" 883380 NIL FMCAT (NIL T T) -9 NIL 883875 NIL) (-381 880137 881037 881137 "FM1" 881216 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-380 877911 878327 878821 "FLOATRP" 879688 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-379 871486 875640 876261 "FLOAT" 877310 T FLOAT (NIL) -8 NIL NIL NIL) (-378 868924 869424 870002 "FLOATCP" 870953 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-377 867664 868502 868543 "FLINEXP" 868548 NIL FLINEXP (NIL T) -9 NIL 868641 NIL) (-376 866818 867053 867381 "FLINEXP-" 867386 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-375 865894 866038 866262 "FLASORT" 866670 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-374 863010 863878 863930 "FLALG" 865157 NIL FLALG (NIL T T) -9 NIL 865624 NIL) (-373 856746 860496 860537 "FLAGG" 861799 NIL FLAGG (NIL T) -9 NIL 862451 NIL) (-372 855472 855811 856301 "FLAGG-" 856306 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-371 854514 854657 854884 "FLAGG2" 855325 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-370 851365 852373 852432 "FINRALG" 853560 NIL FINRALG (NIL T T) -9 NIL 854068 NIL) (-369 850525 850754 851093 "FINRALG-" 851098 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-368 849905 850144 850172 "FINITE" 850368 T FINITE (NIL) -9 NIL 850475 NIL) (-367 842262 844449 844489 "FINAALG" 848156 NIL FINAALG (NIL T) -9 NIL 849609 NIL) (-366 837594 838644 839788 "FINAALG-" 841167 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-365 836962 837349 837452 "FILE" 837524 NIL FILE (NIL T) -8 NIL NIL NIL) (-364 835620 835958 836012 "FILECAT" 836696 NIL FILECAT (NIL T T) -9 NIL 836912 NIL) (-363 833336 834864 834892 "FIELD" 834932 T FIELD (NIL) -9 NIL 835012 NIL) (-362 831956 832341 832852 "FIELD-" 832857 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-361 829806 830591 830938 "FGROUP" 831642 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-360 828896 829060 829280 "FGLMICPK" 829638 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-359 824728 828821 828878 "FFX" 828883 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-358 824329 824390 824525 "FFSLPE" 824661 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-357 820318 821101 821897 "FFPOLY" 823565 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-356 819822 819858 820067 "FFPOLY2" 820276 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-355 815665 819741 819804 "FFP" 819809 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-354 811063 815576 815640 "FF" 815645 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-353 806189 810406 810596 "FFNBX" 810917 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-352 801118 805324 805582 "FFNBP" 806043 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-351 795751 800402 800613 "FFNB" 800951 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-350 794583 794781 795096 "FFINTBAS" 795548 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-349 790652 792872 792900 "FFIELDC" 793520 T FFIELDC (NIL) -9 NIL 793896 NIL) (-348 789314 789685 790182 "FFIELDC-" 790187 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-347 788883 788929 789053 "FFHOM" 789256 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-346 786578 787065 787582 "FFF" 788398 NIL FFF (NIL T) -7 NIL NIL NIL) (-345 782196 786320 786421 "FFCGX" 786521 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-344 777817 781928 782035 "FFCGP" 782139 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-343 773000 777544 777652 "FFCG" 777753 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-342 754396 763477 763563 "FFCAT" 768728 NIL FFCAT (NIL T T T) -9 NIL 770179 NIL) (-341 749594 750641 751955 "FFCAT-" 753185 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-340 749005 749048 749283 "FFCAT2" 749545 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-339 738326 741977 743197 "FEXPR" 747857 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-338 737326 737761 737802 "FEVALAB" 737886 NIL FEVALAB (NIL T) -9 NIL 738147 NIL) (-337 736485 736695 737033 "FEVALAB-" 737038 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-336 735051 735868 736071 "FDIV" 736384 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-335 732071 732812 732927 "FDIVCAT" 734495 NIL FDIVCAT (NIL T T T T) -9 NIL 734932 NIL) (-334 731833 731860 732030 "FDIVCAT-" 732035 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-333 731053 731140 731417 "FDIV2" 731740 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-332 729739 729998 730287 "FCPAK1" 730784 T FCPAK1 (NIL) -7 NIL NIL NIL) (-331 728838 729239 729380 "FCOMP" 729630 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-330 712540 715988 719526 "FC" 725320 T FC (NIL) -8 NIL NIL NIL) (-329 704903 708931 708971 "FAXF" 710773 NIL FAXF (NIL T) -9 NIL 711465 NIL) (-328 702179 702837 703662 "FAXF-" 704127 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-327 697231 701555 701731 "FARRAY" 702036 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-326 692125 694192 694245 "FAMR" 695268 NIL FAMR (NIL T T) -9 NIL 695728 NIL) (-325 691015 691317 691752 "FAMR-" 691757 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-324 690184 690937 690990 "FAMONOID" 690995 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-323 687970 688680 688733 "FAMONC" 689674 NIL FAMONC (NIL T T) -9 NIL 690060 NIL) (-322 686634 687724 687861 "FAGROUP" 687866 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-321 684429 684748 685151 "FACUTIL" 686315 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-320 683528 683713 683935 "FACTFUNC" 684239 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-319 675950 682831 683030 "EXPUPXS" 683384 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-318 673433 673973 674559 "EXPRTUBE" 675384 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-317 669704 670296 671026 "EXPRODE" 672772 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-316 655189 668353 668782 "EXPR" 669308 NIL EXPR (NIL T) -8 NIL NIL NIL) (-315 649743 650330 651136 "EXPR2UPS" 654487 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-314 649375 649432 649541 "EXPR2" 649680 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-313 640765 648528 648818 "EXPEXPAN" 649212 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-312 640565 640722 640751 "EXIT" 640756 T EXIT (NIL) -8 NIL NIL NIL) (-311 640045 640289 640380 "EXITAST" 640494 T EXITAST (NIL) -8 NIL NIL NIL) (-310 639672 639734 639847 "EVALCYC" 639977 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-309 639213 639331 639372 "EVALAB" 639542 NIL EVALAB (NIL T) -9 NIL 639646 NIL) (-308 638694 638816 639037 "EVALAB-" 639042 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-307 636062 637364 637392 "EUCDOM" 637947 T EUCDOM (NIL) -9 NIL 638297 NIL) (-306 634467 634909 635499 "EUCDOM-" 635504 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-305 622005 624765 627515 "ESTOOLS" 631737 T ESTOOLS (NIL) -7 NIL NIL NIL) (-304 621637 621694 621803 "ESTOOLS2" 621942 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-303 621388 621430 621510 "ESTOOLS1" 621589 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-302 615425 617033 617061 "ES" 619829 T ES (NIL) -9 NIL 621239 NIL) (-301 610372 611659 613476 "ES-" 613640 NIL ES- (NIL T) -8 NIL NIL NIL) (-300 606746 607507 608287 "ESCONT" 609612 T ESCONT (NIL) -7 NIL NIL NIL) (-299 606491 606523 606605 "ESCONT1" 606708 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-298 606166 606216 606316 "ES2" 606435 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-297 605796 605854 605963 "ES1" 606102 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-296 605012 605141 605317 "ERROR" 605640 T ERROR (NIL) -7 NIL NIL NIL) (-295 598404 604871 604962 "EQTBL" 604967 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-294 590907 593718 595167 "EQ" 596988 NIL -2008 (NIL T) -8 NIL NIL NIL) (-293 590539 590596 590705 "EQ2" 590844 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-292 585828 586877 587970 "EP" 589478 NIL EP (NIL T) -7 NIL NIL NIL) (-291 584428 584719 585025 "ENV" 585542 T ENV (NIL) -8 NIL NIL NIL) (-290 583522 584076 584104 "ENTIRER" 584109 T ENTIRER (NIL) -9 NIL 584155 NIL) (-289 579989 581477 581847 "EMR" 583321 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-288 579133 579318 579372 "ELTAGG" 579752 NIL ELTAGG (NIL T T) -9 NIL 579963 NIL) (-287 578852 578914 579055 "ELTAGG-" 579060 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-286 578641 578670 578724 "ELTAB" 578808 NIL ELTAB (NIL T T) -9 NIL NIL NIL) (-285 577767 577913 578112 "ELFUTS" 578492 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-284 577509 577565 577593 "ELEMFUN" 577698 T ELEMFUN (NIL) -9 NIL NIL NIL) (-283 577379 577400 577468 "ELEMFUN-" 577473 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-282 572223 575479 575520 "ELAGG" 576460 NIL ELAGG (NIL T) -9 NIL 576923 NIL) (-281 570508 570942 571605 "ELAGG-" 571610 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-280 569173 569451 569744 "ELABEXPR" 570235 T ELABEXPR (NIL) -8 NIL NIL NIL) (-279 562037 563840 564667 "EFUPXS" 568449 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-278 555487 557288 558098 "EFULS" 561313 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-277 552972 553330 553802 "EFSTRUC" 555119 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-276 542763 544329 545877 "EF" 551487 NIL EF (NIL T T) -7 NIL NIL NIL) (-275 541837 542248 542397 "EAB" 542634 T EAB (NIL) -8 NIL NIL NIL) (-274 541019 541796 541824 "E04UCFA" 541829 T E04UCFA (NIL) -8 NIL NIL NIL) (-273 540201 540978 541006 "E04NAFA" 541011 T E04NAFA (NIL) -8 NIL NIL NIL) (-272 539383 540160 540188 "E04MBFA" 540193 T E04MBFA (NIL) -8 NIL NIL NIL) (-271 538565 539342 539370 "E04JAFA" 539375 T E04JAFA (NIL) -8 NIL NIL NIL) (-270 537749 538524 538552 "E04GCFA" 538557 T E04GCFA (NIL) -8 NIL NIL NIL) (-269 536933 537708 537736 "E04FDFA" 537741 T E04FDFA (NIL) -8 NIL NIL NIL) (-268 536115 536892 536920 "E04DGFA" 536925 T E04DGFA (NIL) -8 NIL NIL NIL) (-267 530288 531640 533004 "E04AGNT" 534771 T E04AGNT (NIL) -7 NIL NIL NIL) (-266 528968 529474 529514 "DVARCAT" 529989 NIL DVARCAT (NIL T) -9 NIL 530188 NIL) (-265 528172 528384 528698 "DVARCAT-" 528703 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-264 521309 527971 528100 "DSMP" 528105 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-263 516090 517254 518322 "DROPT" 520261 T DROPT (NIL) -8 NIL NIL NIL) (-262 515755 515814 515912 "DROPT1" 516025 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-261 510870 511996 513133 "DROPT0" 514638 T DROPT0 (NIL) -7 NIL NIL NIL) (-260 509215 509540 509926 "DRAWPT" 510504 T DRAWPT (NIL) -7 NIL NIL NIL) (-259 503802 504725 505804 "DRAW" 508189 NIL DRAW (NIL T) -7 NIL NIL NIL) (-258 503435 503488 503606 "DRAWHACK" 503743 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-257 502166 502435 502726 "DRAWCX" 503164 T DRAWCX (NIL) -7 NIL NIL NIL) (-256 501681 501750 501901 "DRAWCURV" 502092 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-255 492149 494111 496226 "DRAWCFUN" 499586 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-254 488915 490844 490885 "DQAGG" 491514 NIL DQAGG (NIL T) -9 NIL 491787 NIL) (-253 477039 483508 483591 "DPOLCAT" 485443 NIL DPOLCAT (NIL T T T T) -9 NIL 485988 NIL) (-252 471875 473224 475182 "DPOLCAT-" 475187 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-251 464997 471736 471834 "DPMO" 471839 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-250 458022 464777 464944 "DPMM" 464949 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-249 457595 457941 457989 "DOMCTOR" 457994 T DOMCTOR (NIL) -8 NIL NIL NIL) (-248 456863 457117 457254 "DOMAIN" 457478 T DOMAIN (NIL) -8 NIL NIL NIL) (-247 450851 456498 456650 "DMP" 456764 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-246 450451 450507 450651 "DLP" 450789 NIL DLP (NIL T) -7 NIL NIL NIL) (-245 444273 449778 449968 "DLIST" 450293 NIL DLIST (NIL T) -8 NIL NIL NIL) (-244 441070 443126 443167 "DLAGG" 443717 NIL DLAGG (NIL T) -9 NIL 443947 NIL) (-243 439746 440410 440438 "DIVRING" 440530 T DIVRING (NIL) -9 NIL 440613 NIL) (-242 438983 439173 439473 "DIVRING-" 439478 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-241 437085 437442 437848 "DISPLAY" 438597 T DISPLAY (NIL) -7 NIL NIL NIL) (-240 430973 436999 437062 "DIRPROD" 437067 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-239 429821 430024 430289 "DIRPROD2" 430766 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-238 418596 424602 424655 "DIRPCAT" 425065 NIL DIRPCAT (NIL NIL T) -9 NIL 425905 NIL) (-237 415922 416564 417445 "DIRPCAT-" 417782 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-236 415209 415369 415555 "DIOSP" 415756 T DIOSP (NIL) -7 NIL NIL NIL) (-235 411864 414121 414162 "DIOPS" 414596 NIL DIOPS (NIL T) -9 NIL 414825 NIL) (-234 411413 411527 411718 "DIOPS-" 411723 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-233 410236 410864 410892 "DIFRING" 411079 T DIFRING (NIL) -9 NIL 411189 NIL) (-232 409882 409959 410111 "DIFRING-" 410116 NIL DIFRING- (NIL T) -8 NIL NIL NIL) (-231 407618 408890 408931 "DIFEXT" 409294 NIL DIFEXT (NIL T) -9 NIL 409588 NIL) (-230 405903 406331 406997 "DIFEXT-" 407002 NIL DIFEXT- (NIL T T) -8 NIL NIL NIL) (-229 403178 405435 405476 "DIAGG" 405481 NIL DIAGG (NIL T) -9 NIL 405501 NIL) (-228 402562 402719 402971 "DIAGG-" 402976 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-227 397979 401521 401798 "DHMATRIX" 402331 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-226 393591 394500 395510 "DFSFUN" 396989 T DFSFUN (NIL) -7 NIL NIL NIL) (-225 388669 392522 392834 "DFLOAT" 393299 T DFLOAT (NIL) -8 NIL NIL NIL) (-224 386932 387213 387602 "DFINTTLS" 388377 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-223 383961 384953 385353 "DERHAM" 386598 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-222 381762 383736 383825 "DEQUEUE" 383905 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-221 381016 381149 381332 "DEGRED" 381624 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-220 377446 378191 379037 "DEFINTRF" 380244 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-219 375001 375470 376062 "DEFINTEF" 376965 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-218 374351 374621 374736 "DEFAST" 374906 T DEFAST (NIL) -8 NIL NIL NIL) (-217 368355 373946 374095 "DECIMAL" 374222 T DECIMAL (NIL) -8 NIL NIL NIL) (-216 365867 366325 366831 "DDFACT" 367899 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-215 365463 365506 365657 "DBLRESP" 365818 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-214 363335 363696 364056 "DBASE" 365230 NIL DBASE (NIL T) -8 NIL NIL NIL) (-213 362577 362815 362961 "DATAARY" 363234 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-212 361683 362536 362564 "D03FAFA" 362569 T D03FAFA (NIL) -8 NIL NIL NIL) (-211 360790 361642 361670 "D03EEFA" 361675 T D03EEFA (NIL) -8 NIL NIL NIL) (-210 358740 359206 359695 "D03AGNT" 360321 T D03AGNT (NIL) -7 NIL NIL NIL) (-209 358029 358699 358727 "D02EJFA" 358732 T D02EJFA (NIL) -8 NIL NIL NIL) (-208 357318 357988 358016 "D02CJFA" 358021 T D02CJFA (NIL) -8 NIL NIL NIL) (-207 356607 357277 357305 "D02BHFA" 357310 T D02BHFA (NIL) -8 NIL NIL NIL) (-206 355896 356566 356594 "D02BBFA" 356599 T D02BBFA (NIL) -8 NIL NIL NIL) (-205 349093 350682 352288 "D02AGNT" 354310 T D02AGNT (NIL) -7 NIL NIL NIL) (-204 346861 347384 347930 "D01WGTS" 348567 T D01WGTS (NIL) -7 NIL NIL NIL) (-203 345928 346820 346848 "D01TRNS" 346853 T D01TRNS (NIL) -8 NIL NIL NIL) (-202 344996 345887 345915 "D01GBFA" 345920 T D01GBFA (NIL) -8 NIL NIL NIL) (-201 344064 344955 344983 "D01FCFA" 344988 T D01FCFA (NIL) -8 NIL NIL NIL) (-200 343132 344023 344051 "D01ASFA" 344056 T D01ASFA (NIL) -8 NIL NIL NIL) (-199 342200 343091 343119 "D01AQFA" 343124 T D01AQFA (NIL) -8 NIL NIL NIL) (-198 341268 342159 342187 "D01APFA" 342192 T D01APFA (NIL) -8 NIL NIL NIL) (-197 340336 341227 341255 "D01ANFA" 341260 T D01ANFA (NIL) -8 NIL NIL NIL) (-196 339404 340295 340323 "D01AMFA" 340328 T D01AMFA (NIL) -8 NIL NIL NIL) (-195 338472 339363 339391 "D01ALFA" 339396 T D01ALFA (NIL) -8 NIL NIL NIL) (-194 337540 338431 338459 "D01AKFA" 338464 T D01AKFA (NIL) -8 NIL NIL NIL) (-193 336608 337499 337527 "D01AJFA" 337532 T D01AJFA (NIL) -8 NIL NIL NIL) (-192 329903 331456 333017 "D01AGNT" 335067 T D01AGNT (NIL) -7 NIL NIL NIL) (-191 329240 329368 329520 "CYCLOTOM" 329771 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-190 325974 326688 327415 "CYCLES" 328533 T CYCLES (NIL) -7 NIL NIL NIL) (-189 325286 325420 325591 "CVMP" 325835 NIL CVMP (NIL T) -7 NIL NIL NIL) (-188 323127 323385 323754 "CTRIGMNP" 325014 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-187 322563 322921 322994 "CTOR" 323074 T CTOR (NIL) -8 NIL NIL NIL) (-186 322072 322294 322395 "CTORKIND" 322482 T CTORKIND (NIL) -8 NIL NIL NIL) (-185 321363 321679 321707 "CTORCAT" 321889 T CTORCAT (NIL) -9 NIL 322002 NIL) (-184 320961 321072 321231 "CTORCAT-" 321236 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-183 320450 320664 320762 "CTORCALL" 320883 T CTORCALL (NIL) -8 NIL NIL NIL) (-182 319824 319923 320076 "CSTTOOLS" 320347 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-181 315623 316280 317038 "CRFP" 319136 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-180 315098 315344 315436 "CRCEAST" 315551 T CRCEAST (NIL) -8 NIL NIL NIL) (-179 314145 314330 314558 "CRAPACK" 314902 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-178 313529 313630 313834 "CPMATCH" 314021 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-177 313254 313282 313388 "CPIMA" 313495 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-176 309602 310274 310993 "COORDSYS" 312589 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-175 309014 309135 309277 "CONTOUR" 309480 T CONTOUR (NIL) -8 NIL NIL NIL) (-174 304905 307017 307509 "CONTFRAC" 308554 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-173 304785 304806 304834 "CONDUIT" 304871 T CONDUIT (NIL) -9 NIL NIL NIL) (-172 303873 304427 304455 "COMRING" 304460 T COMRING (NIL) -9 NIL 304512 NIL) (-171 302927 303231 303415 "COMPPROP" 303709 T COMPPROP (NIL) -8 NIL NIL NIL) (-170 302588 302623 302751 "COMPLPAT" 302886 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-169 292879 302397 302506 "COMPLEX" 302511 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-168 292515 292572 292679 "COMPLEX2" 292816 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-167 292233 292268 292366 "COMPFACT" 292474 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-166 276313 286307 286347 "COMPCAT" 287351 NIL COMPCAT (NIL T) -9 NIL 288699 NIL) (-165 265825 268752 272379 "COMPCAT-" 272735 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-164 265554 265582 265685 "COMMUPC" 265791 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-163 265348 265382 265441 "COMMONOP" 265515 T COMMONOP (NIL) -7 NIL NIL NIL) (-162 264904 265099 265186 "COMM" 265281 T COMM (NIL) -8 NIL NIL NIL) (-161 264480 264708 264783 "COMMAAST" 264849 T COMMAAST (NIL) -8 NIL NIL NIL) (-160 263729 263923 263951 "COMBOPC" 264289 T COMBOPC (NIL) -9 NIL 264464 NIL) (-159 262625 262835 263077 "COMBINAT" 263519 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-158 259082 259656 260283 "COMBF" 262047 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-157 257840 258198 258433 "COLOR" 258867 T COLOR (NIL) -8 NIL NIL NIL) (-156 257316 257561 257653 "COLONAST" 257768 T COLONAST (NIL) -8 NIL NIL NIL) (-155 256956 257003 257128 "CMPLXRT" 257263 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-154 256404 256656 256755 "CLLCTAST" 256877 T CLLCTAST (NIL) -8 NIL NIL NIL) (-153 251902 252934 254014 "CLIP" 255344 T CLIP (NIL) -7 NIL NIL NIL) (-152 250248 251008 251247 "CLIF" 251729 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-151 246423 248394 248435 "CLAGG" 249364 NIL CLAGG (NIL T) -9 NIL 249900 NIL) (-150 244845 245302 245885 "CLAGG-" 245890 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-149 244389 244474 244614 "CINTSLPE" 244754 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-148 241890 242361 242909 "CHVAR" 243917 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-147 241064 241618 241646 "CHARZ" 241651 T CHARZ (NIL) -9 NIL 241666 NIL) (-146 240818 240858 240936 "CHARPOL" 241018 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-145 239876 240463 240491 "CHARNZ" 240538 T CHARNZ (NIL) -9 NIL 240594 NIL) (-144 237842 238566 238901 "CHAR" 239561 T CHAR (NIL) -8 NIL NIL NIL) (-143 237568 237629 237657 "CFCAT" 237768 T CFCAT (NIL) -9 NIL NIL NIL) (-142 236813 236924 237106 "CDEN" 237452 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-141 232778 235966 236246 "CCLASS" 236553 T CCLASS (NIL) -8 NIL NIL NIL) (-140 232085 232228 232391 "CATEGORY" 232635 T -10 (NIL) -8 NIL NIL NIL) (-139 231658 232004 232052 "CATCTOR" 232057 T CATCTOR (NIL) -8 NIL NIL NIL) (-138 231109 231361 231459 "CATAST" 231580 T CATAST (NIL) -8 NIL NIL NIL) (-137 230585 230830 230922 "CASEAST" 231037 T CASEAST (NIL) -8 NIL NIL NIL) (-136 225594 226614 227367 "CARTEN" 229888 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-135 224702 224850 225071 "CARTEN2" 225441 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-134 223018 223852 224109 "CARD" 224465 T CARD (NIL) -8 NIL NIL NIL) (-133 222594 222822 222897 "CAPSLAST" 222963 T CAPSLAST (NIL) -8 NIL NIL NIL) (-132 222098 222306 222334 "CACHSET" 222466 T CACHSET (NIL) -9 NIL 222544 NIL) (-131 221568 221890 221918 "CABMON" 221968 T CABMON (NIL) -9 NIL 222024 NIL) (-130 221041 221272 221382 "BYTEORD" 221478 T BYTEORD (NIL) -8 NIL NIL NIL) (-129 220020 220575 220717 "BYTE" 220880 T BYTE (NIL) -8 NIL NIL 221002) (-128 215370 219525 219697 "BYTEBUF" 219868 T BYTEBUF (NIL) -8 NIL NIL NIL) (-127 212879 215062 215169 "BTREE" 215296 NIL BTREE (NIL T) -8 NIL NIL NIL) (-126 210328 212527 212649 "BTOURN" 212789 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-125 207698 209798 209839 "BTCAT" 209907 NIL BTCAT (NIL T) -9 NIL 209984 NIL) (-124 207365 207445 207594 "BTCAT-" 207599 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-123 202630 206508 206536 "BTAGG" 206758 T BTAGG (NIL) -9 NIL 206919 NIL) (-122 202120 202245 202451 "BTAGG-" 202456 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-121 199115 201398 201613 "BSTREE" 201937 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-120 198253 198379 198563 "BRILL" 198971 NIL BRILL (NIL T) -7 NIL NIL NIL) (-119 194905 196979 197020 "BRAGG" 197669 NIL BRAGG (NIL T) -9 NIL 197927 NIL) (-118 193434 193840 194395 "BRAGG-" 194400 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-117 186663 192780 192964 "BPADICRT" 193282 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-116 184978 186600 186645 "BPADIC" 186650 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-115 184676 184706 184820 "BOUNDZRO" 184942 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-114 179904 181102 182014 "BOP" 183784 T BOP (NIL) -8 NIL NIL NIL) (-113 177685 178089 178564 "BOP1" 179462 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-112 176510 177259 177408 "BOOLEAN" 177556 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 175789 176193 176247 "BMODULE" 176252 NIL BMODULE (NIL T T) -9 NIL 176317 NIL) (-110 171590 175587 175660 "BITS" 175736 T BITS (NIL) -8 NIL NIL NIL) (-109 171011 171130 171270 "BINDING" 171470 T BINDING (NIL) -8 NIL NIL NIL) (-108 165018 170608 170756 "BINARY" 170883 T BINARY (NIL) -8 NIL NIL NIL) (-107 162798 164273 164314 "BGAGG" 164574 NIL BGAGG (NIL T) -9 NIL 164711 NIL) (-106 162629 162661 162752 "BGAGG-" 162757 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 161700 162013 162218 "BFUNCT" 162444 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 160390 160568 160856 "BEZOUT" 161524 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 156859 159242 159572 "BBTREE" 160093 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 156593 156646 156674 "BASTYPE" 156793 T BASTYPE (NIL) -9 NIL NIL NIL) (-101 156445 156474 156547 "BASTYPE-" 156552 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 155879 155955 156107 "BALFACT" 156356 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 154735 155294 155480 "AUTOMOR" 155724 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 154461 154466 154492 "ATTREG" 154497 T ATTREG (NIL) -9 NIL NIL NIL) (-97 152713 153158 153510 "ATTRBUT" 154127 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 152321 152541 152607 "ATTRAST" 152665 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 151857 151970 151996 "ATRIG" 152197 T ATRIG (NIL) -9 NIL NIL NIL) (-94 151666 151707 151794 "ATRIG-" 151799 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 151311 151497 151523 "ASTCAT" 151528 T ASTCAT (NIL) -9 NIL 151558 NIL) (-92 151038 151097 151216 "ASTCAT-" 151221 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 149187 150814 150902 "ASTACK" 150981 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 147692 147989 148354 "ASSOCEQ" 148869 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 146724 147351 147475 "ASP9" 147599 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 146487 146672 146711 "ASP8" 146716 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-87 145355 146092 146234 "ASP80" 146376 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-86 144253 144990 145122 "ASP7" 145254 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-85 143207 143930 144048 "ASP78" 144166 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-84 142176 142887 143004 "ASP77" 143121 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-83 141088 141814 141945 "ASP74" 142076 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-82 139988 140723 140855 "ASP73" 140987 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-81 139092 139814 139914 "ASP6" 139919 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 138036 138769 138887 "ASP55" 139005 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 136985 137710 137829 "ASP50" 137948 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 136073 136686 136796 "ASP4" 136906 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-77 135161 135774 135884 "ASP49" 135994 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-76 133945 134700 134868 "ASP42" 135050 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 132721 133478 133648 "ASP41" 133832 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-74 131671 132398 132516 "ASP35" 132634 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 131436 131619 131658 "ASP34" 131663 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 131173 131240 131316 "ASP33" 131391 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 130066 130808 130940 "ASP31" 131072 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 129831 130014 130053 "ASP30" 130058 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 129566 129635 129711 "ASP29" 129786 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 129331 129514 129553 "ASP28" 129558 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 129096 129279 129318 "ASP27" 129323 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 128180 128794 128905 "ASP24" 129016 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 127256 127982 128094 "ASP20" 128099 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 126344 126957 127067 "ASP1" 127177 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-63 125286 126018 126137 "ASP19" 126256 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-62 125023 125090 125166 "ASP12" 125241 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-61 123875 124622 124766 "ASP10" 124910 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-60 121726 123719 123810 "ARRAY2" 123815 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 117491 121374 121488 "ARRAY1" 121643 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-58 116523 116696 116917 "ARRAY12" 117314 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-57 110835 112753 112828 "ARR2CAT" 115458 NIL ARR2CAT (NIL T T T) -9 NIL 116216 NIL) (-56 108269 109013 109967 "ARR2CAT-" 109972 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 107586 107896 108021 "ARITY" 108162 T ARITY (NIL) -8 NIL NIL NIL) (-54 106362 106514 106813 "APPRULE" 107422 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 106013 106061 106180 "APPLYORE" 106308 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 104960 105278 105473 "ANY" 105836 T ANY (NIL) -8 NIL NIL NIL) (-51 104238 104361 104518 "ANY1" 104834 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-50 101768 102675 103002 "ANTISYM" 103962 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 101260 101475 101571 "ANON" 101690 T ANON (NIL) -8 NIL NIL NIL) (-48 95509 99799 100253 "AN" 100824 T AN (NIL) -8 NIL NIL NIL) (-47 91407 92795 92846 "AMR" 93594 NIL AMR (NIL T T) -9 NIL 94194 NIL) (-46 90519 90740 91103 "AMR-" 91108 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 74958 90436 90497 "ALIST" 90502 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 71760 74552 74721 "ALGSC" 74876 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 68315 68870 69477 "ALGPKG" 71200 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 67592 67693 67877 "ALGMFACT" 68201 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 63543 64150 64768 "ALGMANIP" 67152 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 54913 63169 63319 "ALGFF" 63476 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 54109 54240 54419 "ALGFACT" 54771 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 53050 53650 53688 "ALGEBRA" 53693 NIL ALGEBRA (NIL T) -9 NIL 53734 NIL) (-37 52768 52827 52959 "ALGEBRA-" 52964 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 34861 50770 50822 "ALAGG" 50958 NIL ALAGG (NIL T T) -9 NIL 51119 NIL) (-35 34397 34510 34536 "AHYP" 34737 T AHYP (NIL) -9 NIL NIL NIL) (-34 33328 33576 33602 "AGG" 34101 T AGG (NIL) -9 NIL 34380 NIL) (-33 32762 32924 33138 "AGG-" 33143 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 30568 30991 31396 "AF" 32404 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30048 30293 30383 "ADDAST" 30496 T ADDAST (NIL) -8 NIL NIL NIL) (-30 29316 29575 29731 "ACPLOT" 29910 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 18639 26443 26481 "ACFS" 27088 NIL ACFS (NIL T) -9 NIL 27327 NIL) (-28 16666 17156 17918 "ACFS-" 17923 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 12784 14713 14739 "ACF" 15618 T ACF (NIL) -9 NIL 16031 NIL) (-26 11488 11822 12315 "ACF-" 12320 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 11060 11255 11281 "ABELSG" 11373 T ABELSG (NIL) -9 NIL 11438 NIL) (-24 10927 10952 11018 "ABELSG-" 11023 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 10270 10557 10583 "ABELMON" 10753 T ABELMON (NIL) -9 NIL 10865 NIL) (-22 9934 10018 10156 "ABELMON-" 10161 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 9282 9654 9680 "ABELGRP" 9752 T ABELGRP (NIL) -9 NIL 9827 NIL) (-20 8745 8874 9090 "ABELGRP-" 9095 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4334 8084 8123 "A1AGG" 8128 NIL A1AGG (NIL T) -9 NIL 8168 NIL) (-18 30 1252 2814 "A1AGG-" 2819 NIL A1AGG- (NIL T T) -8 NIL NIL NIL))
\ No newline at end of file +((-1609 (((-644 (-644 (-952 |#1|))) (-644 (-409 (-952 |#1|))) (-644 (-1175))) 67)) (-1916 (((-644 (-295 (-409 (-952 |#1|)))) (-295 (-409 (-952 |#1|)))) 78) (((-644 (-295 (-409 (-952 |#1|)))) (-409 (-952 |#1|))) 74) (((-644 (-295 (-409 (-952 |#1|)))) (-295 (-409 (-952 |#1|))) (-1175)) 79) (((-644 (-295 (-409 (-952 |#1|)))) (-409 (-952 |#1|)) (-1175)) 73) (((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-295 (-409 (-952 |#1|))))) 106) (((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-409 (-952 |#1|)))) 105) (((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-295 (-409 (-952 |#1|)))) (-644 (-1175))) 107) (((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-409 (-952 |#1|))) (-644 (-1175))) 104))) +(((-1183 |#1|) (-10 -7 (-15 -1916 ((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-409 (-952 |#1|))) (-644 (-1175)))) (-15 -1916 ((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-295 (-409 (-952 |#1|)))) (-644 (-1175)))) (-15 -1916 ((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-409 (-952 |#1|))))) (-15 -1916 ((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-295 (-409 (-952 |#1|)))))) (-15 -1916 ((-644 (-295 (-409 (-952 |#1|)))) (-409 (-952 |#1|)) (-1175))) (-15 -1916 ((-644 (-295 (-409 (-952 |#1|)))) (-295 (-409 (-952 |#1|))) (-1175))) (-15 -1916 ((-644 (-295 (-409 (-952 |#1|)))) (-409 (-952 |#1|)))) (-15 -1916 ((-644 (-295 (-409 (-952 |#1|)))) (-295 (-409 (-952 |#1|))))) (-15 -1609 ((-644 (-644 (-952 |#1|))) (-644 (-409 (-952 |#1|))) (-644 (-1175))))) (-558)) (T -1183)) +((-1609 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-409 (-952 *5)))) (-5 *4 (-644 (-1175))) (-4 *5 (-558)) (-5 *2 (-644 (-644 (-952 *5)))) (-5 *1 (-1183 *5)))) (-1916 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-644 (-295 (-409 (-952 *4))))) (-5 *1 (-1183 *4)) (-5 *3 (-295 (-409 (-952 *4)))))) (-1916 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-644 (-295 (-409 (-952 *4))))) (-5 *1 (-1183 *4)) (-5 *3 (-409 (-952 *4))))) (-1916 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-4 *5 (-558)) (-5 *2 (-644 (-295 (-409 (-952 *5))))) (-5 *1 (-1183 *5)) (-5 *3 (-295 (-409 (-952 *5)))))) (-1916 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-4 *5 (-558)) (-5 *2 (-644 (-295 (-409 (-952 *5))))) (-5 *1 (-1183 *5)) (-5 *3 (-409 (-952 *5))))) (-1916 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-644 (-644 (-295 (-409 (-952 *4)))))) (-5 *1 (-1183 *4)) (-5 *3 (-644 (-295 (-409 (-952 *4))))))) (-1916 (*1 *2 *3) (-12 (-5 *3 (-644 (-409 (-952 *4)))) (-4 *4 (-558)) (-5 *2 (-644 (-644 (-295 (-409 (-952 *4)))))) (-5 *1 (-1183 *4)))) (-1916 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-1175))) (-4 *5 (-558)) (-5 *2 (-644 (-644 (-295 (-409 (-952 *5)))))) (-5 *1 (-1183 *5)) (-5 *3 (-644 (-295 (-409 (-952 *5))))))) (-1916 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-409 (-952 *5)))) (-5 *4 (-644 (-1175))) (-4 *5 (-558)) (-5 *2 (-644 (-644 (-295 (-409 (-952 *5)))))) (-5 *1 (-1183 *5))))) +(-10 -7 (-15 -1916 ((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-409 (-952 |#1|))) (-644 (-1175)))) (-15 -1916 ((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-295 (-409 (-952 |#1|)))) (-644 (-1175)))) (-15 -1916 ((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-409 (-952 |#1|))))) (-15 -1916 ((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-295 (-409 (-952 |#1|)))))) (-15 -1916 ((-644 (-295 (-409 (-952 |#1|)))) (-409 (-952 |#1|)) (-1175))) (-15 -1916 ((-644 (-295 (-409 (-952 |#1|)))) (-295 (-409 (-952 |#1|))) (-1175))) (-15 -1916 ((-644 (-295 (-409 (-952 |#1|)))) (-409 (-952 |#1|)))) (-15 -1916 ((-644 (-295 (-409 (-952 |#1|)))) (-295 (-409 (-952 |#1|))))) (-15 -1609 ((-644 (-644 (-952 |#1|))) (-644 (-409 (-952 |#1|))) (-644 (-1175))))) +((-2989 (((-1157)) 7)) (-3252 (((-1157)) 11 T CONST)) (-4260 (((-1269) (-1157)) 13)) (-2151 (((-1157)) 8 T CONST)) (-3645 (((-130)) 10 T CONST))) +(((-1184) (-13 (-1214) (-10 -7 (-15 -2989 ((-1157))) (-15 -2151 ((-1157)) -1573) (-15 -3645 ((-130)) -1573) (-15 -3252 ((-1157)) -1573) (-15 -4260 ((-1269) (-1157)))))) (T -1184)) +((-2989 (*1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1184)))) (-2151 (*1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1184)))) (-3645 (*1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-1184)))) (-3252 (*1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1184)))) (-4260 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1184))))) +(-13 (-1214) (-10 -7 (-15 -2989 ((-1157))) (-15 -2151 ((-1157)) -1573) (-15 -3645 ((-130)) -1573) (-15 -3252 ((-1157)) -1573) (-15 -4260 ((-1269) (-1157))))) +((-1503 (((-644 (-644 |#1|)) (-644 (-644 |#1|)) (-644 (-644 (-644 |#1|)))) 56)) (-1427 (((-644 (-644 (-644 |#1|))) (-644 (-644 |#1|))) 38)) (-2698 (((-1186 (-644 |#1|)) (-644 |#1|)) 49)) (-2786 (((-644 (-644 |#1|)) (-644 |#1|)) 45)) (-2037 (((-2 (|:| |f1| (-644 |#1|)) (|:| |f2| (-644 (-644 (-644 |#1|)))) (|:| |f3| (-644 (-644 |#1|))) (|:| |f4| (-644 (-644 (-644 |#1|))))) (-644 (-644 (-644 |#1|)))) 53)) (-3399 (((-2 (|:| |f1| (-644 |#1|)) (|:| |f2| (-644 (-644 (-644 |#1|)))) (|:| |f3| (-644 (-644 |#1|))) (|:| |f4| (-644 (-644 (-644 |#1|))))) (-644 |#1|) (-644 (-644 (-644 |#1|))) (-644 (-644 |#1|)) (-644 (-644 (-644 |#1|))) (-644 (-644 (-644 |#1|))) (-644 (-644 (-644 |#1|)))) 52)) (-3729 (((-644 (-644 |#1|)) (-644 (-644 |#1|))) 43)) (-1780 (((-644 |#1|) (-644 |#1|)) 46)) (-4160 (((-644 (-644 (-644 |#1|))) (-644 |#1|) (-644 (-644 (-644 |#1|)))) 32)) (-4140 (((-644 (-644 (-644 |#1|))) (-1 (-112) |#1| |#1|) (-644 |#1|) (-644 (-644 (-644 |#1|)))) 29)) (-1626 (((-2 (|:| |fs| (-112)) (|:| |sd| (-644 |#1|)) (|:| |td| (-644 (-644 |#1|)))) (-1 (-112) |#1| |#1|) (-644 |#1|) (-644 (-644 |#1|))) 24)) (-2957 (((-644 (-644 |#1|)) (-644 (-644 (-644 |#1|)))) 58)) (-3674 (((-644 (-644 |#1|)) (-1186 (-644 |#1|))) 60))) +(((-1185 |#1|) (-10 -7 (-15 -1626 ((-2 (|:| |fs| (-112)) (|:| |sd| (-644 |#1|)) (|:| |td| (-644 (-644 |#1|)))) (-1 (-112) |#1| |#1|) (-644 |#1|) (-644 (-644 |#1|)))) (-15 -4140 ((-644 (-644 (-644 |#1|))) (-1 (-112) |#1| |#1|) (-644 |#1|) (-644 (-644 (-644 |#1|))))) (-15 -4160 ((-644 (-644 (-644 |#1|))) (-644 |#1|) (-644 (-644 (-644 |#1|))))) (-15 -1503 ((-644 (-644 |#1|)) (-644 (-644 |#1|)) (-644 (-644 (-644 |#1|))))) (-15 -2957 ((-644 (-644 |#1|)) (-644 (-644 (-644 |#1|))))) (-15 -3674 ((-644 (-644 |#1|)) (-1186 (-644 |#1|)))) (-15 -1427 ((-644 (-644 (-644 |#1|))) (-644 (-644 |#1|)))) (-15 -2698 ((-1186 (-644 |#1|)) (-644 |#1|))) (-15 -3729 ((-644 (-644 |#1|)) (-644 (-644 |#1|)))) (-15 -2786 ((-644 (-644 |#1|)) (-644 |#1|))) (-15 -1780 ((-644 |#1|) (-644 |#1|))) (-15 -3399 ((-2 (|:| |f1| (-644 |#1|)) (|:| |f2| (-644 (-644 (-644 |#1|)))) (|:| |f3| (-644 (-644 |#1|))) (|:| |f4| (-644 (-644 (-644 |#1|))))) (-644 |#1|) (-644 (-644 (-644 |#1|))) (-644 (-644 |#1|)) (-644 (-644 (-644 |#1|))) (-644 (-644 (-644 |#1|))) (-644 (-644 (-644 |#1|))))) (-15 -2037 ((-2 (|:| |f1| (-644 |#1|)) (|:| |f2| (-644 (-644 (-644 |#1|)))) (|:| |f3| (-644 (-644 |#1|))) (|:| |f4| (-644 (-644 (-644 |#1|))))) (-644 (-644 (-644 |#1|)))))) (-850)) (T -1185)) +((-2037 (*1 *2 *3) (-12 (-4 *4 (-850)) (-5 *2 (-2 (|:| |f1| (-644 *4)) (|:| |f2| (-644 (-644 (-644 *4)))) (|:| |f3| (-644 (-644 *4))) (|:| |f4| (-644 (-644 (-644 *4)))))) (-5 *1 (-1185 *4)) (-5 *3 (-644 (-644 (-644 *4)))))) (-3399 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-850)) (-5 *3 (-644 *6)) (-5 *5 (-644 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-644 *5)) (|:| |f3| *5) (|:| |f4| (-644 *5)))) (-5 *1 (-1185 *6)) (-5 *4 (-644 *5)))) (-1780 (*1 *2 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-850)) (-5 *1 (-1185 *3)))) (-2786 (*1 *2 *3) (-12 (-4 *4 (-850)) (-5 *2 (-644 (-644 *4))) (-5 *1 (-1185 *4)) (-5 *3 (-644 *4)))) (-3729 (*1 *2 *2) (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-850)) (-5 *1 (-1185 *3)))) (-2698 (*1 *2 *3) (-12 (-4 *4 (-850)) (-5 *2 (-1186 (-644 *4))) (-5 *1 (-1185 *4)) (-5 *3 (-644 *4)))) (-1427 (*1 *2 *3) (-12 (-4 *4 (-850)) (-5 *2 (-644 (-644 (-644 *4)))) (-5 *1 (-1185 *4)) (-5 *3 (-644 (-644 *4))))) (-3674 (*1 *2 *3) (-12 (-5 *3 (-1186 (-644 *4))) (-4 *4 (-850)) (-5 *2 (-644 (-644 *4))) (-5 *1 (-1185 *4)))) (-2957 (*1 *2 *3) (-12 (-5 *3 (-644 (-644 (-644 *4)))) (-5 *2 (-644 (-644 *4))) (-5 *1 (-1185 *4)) (-4 *4 (-850)))) (-1503 (*1 *2 *2 *3) (-12 (-5 *3 (-644 (-644 (-644 *4)))) (-5 *2 (-644 (-644 *4))) (-4 *4 (-850)) (-5 *1 (-1185 *4)))) (-4160 (*1 *2 *3 *2) (-12 (-5 *2 (-644 (-644 (-644 *4)))) (-5 *3 (-644 *4)) (-4 *4 (-850)) (-5 *1 (-1185 *4)))) (-4140 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-644 (-644 (-644 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-644 *5)) (-4 *5 (-850)) (-5 *1 (-1185 *5)))) (-1626 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-850)) (-5 *4 (-644 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-644 *4)))) (-5 *1 (-1185 *6)) (-5 *5 (-644 *4))))) +(-10 -7 (-15 -1626 ((-2 (|:| |fs| (-112)) (|:| |sd| (-644 |#1|)) (|:| |td| (-644 (-644 |#1|)))) (-1 (-112) |#1| |#1|) (-644 |#1|) (-644 (-644 |#1|)))) (-15 -4140 ((-644 (-644 (-644 |#1|))) (-1 (-112) |#1| |#1|) (-644 |#1|) (-644 (-644 (-644 |#1|))))) (-15 -4160 ((-644 (-644 (-644 |#1|))) (-644 |#1|) (-644 (-644 (-644 |#1|))))) (-15 -1503 ((-644 (-644 |#1|)) (-644 (-644 |#1|)) (-644 (-644 (-644 |#1|))))) (-15 -2957 ((-644 (-644 |#1|)) (-644 (-644 (-644 |#1|))))) (-15 -3674 ((-644 (-644 |#1|)) (-1186 (-644 |#1|)))) (-15 -1427 ((-644 (-644 (-644 |#1|))) (-644 (-644 |#1|)))) (-15 -2698 ((-1186 (-644 |#1|)) (-644 |#1|))) (-15 -3729 ((-644 (-644 |#1|)) (-644 (-644 |#1|)))) (-15 -2786 ((-644 (-644 |#1|)) (-644 |#1|))) (-15 -1780 ((-644 |#1|) (-644 |#1|))) (-15 -3399 ((-2 (|:| |f1| (-644 |#1|)) (|:| |f2| (-644 (-644 (-644 |#1|)))) (|:| |f3| (-644 (-644 |#1|))) (|:| |f4| (-644 (-644 (-644 |#1|))))) (-644 |#1|) (-644 (-644 (-644 |#1|))) (-644 (-644 |#1|)) (-644 (-644 (-644 |#1|))) (-644 (-644 (-644 |#1|))) (-644 (-644 (-644 |#1|))))) (-15 -2037 ((-2 (|:| |f1| (-644 |#1|)) (|:| |f2| (-644 (-644 (-644 |#1|)))) (|:| |f3| (-644 (-644 |#1|))) (|:| |f4| (-644 (-644 (-644 |#1|))))) (-644 (-644 (-644 |#1|)))))) +((-2440 (($ (-644 (-644 |#1|))) 10)) (-2337 (((-644 (-644 |#1|)) $) 11)) (-2479 (((-862) $) 38))) +(((-1186 |#1|) (-10 -8 (-15 -2440 ($ (-644 (-644 |#1|)))) (-15 -2337 ((-644 (-644 |#1|)) $)) (-15 -2479 ((-862) $))) (-1099)) (T -1186)) +((-2479 (*1 *2 *1) (-12 (-5 *2 (-862)) (-5 *1 (-1186 *3)) (-4 *3 (-1099)))) (-2337 (*1 *2 *1) (-12 (-5 *2 (-644 (-644 *3))) (-5 *1 (-1186 *3)) (-4 *3 (-1099)))) (-2440 (*1 *1 *2) (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-1099)) (-5 *1 (-1186 *3))))) +(-10 -8 (-15 -2440 ($ (-644 (-644 |#1|)))) (-15 -2337 ((-644 (-644 |#1|)) $)) (-15 -2479 ((-862) $))) +((-2986 (((-112) $ $) NIL (-2809 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-4250 (($) NIL) (($ (-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) NIL)) (-2462 (((-1269) $ |#1| |#1|) NIL (|has| $ (-6 -4418)))) (-1453 (((-112) $ (-771)) NIL)) (-3901 ((|#2| $ |#1| |#2|) NIL)) (-4364 (($ (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-3543 (($ (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-2377 (((-3 |#2| "failed") |#1| $) NIL)) (-1811 (($) NIL T CONST)) (-4111 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099))))) (-2295 (($ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) NIL (|has| $ (-6 -4417))) (($ (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-3 |#2| "failed") |#1| $) NIL)) (-2628 (($ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (($ (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-1838 (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) NIL (|has| $ (-6 -4417))) (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-3719 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4418)))) (-3653 ((|#2| $ |#1|) NIL)) (-3872 (((-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-644 |#2|) $) NIL (|has| $ (-6 -4417)))) (-2756 (((-112) $ (-771)) NIL)) (-2755 ((|#1| $) NIL (|has| |#1| (-850)))) (-4227 (((-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-644 |#2|) $) NIL (|has| $ (-6 -4417)))) (-1688 (((-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1099))))) (-3831 ((|#1| $) NIL (|has| |#1| (-850)))) (-3708 (($ (-1 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4418))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4418)))) (-3080 (($ (-1 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4106 (((-112) $ (-771)) NIL)) (-3151 (((-1157) $) NIL (-2809 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-1467 (((-644 |#1|) $) NIL)) (-3983 (((-112) |#1| $) NIL)) (-4255 (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) NIL)) (-4354 (($ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) NIL)) (-3780 (((-644 |#1|) $) NIL)) (-1605 (((-112) |#1| $) NIL)) (-4059 (((-1119) $) NIL (-2809 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-4080 ((|#2| $) NIL (|has| |#1| (-850)))) (-2688 (((-3 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) "failed") (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL)) (-4079 (($ $ |#2|) NIL (|has| $ (-6 -4418)))) (-4097 (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) NIL)) (-3966 (((-112) (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))))) NIL (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (($ $ (-295 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) NIL (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (($ $ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) NIL (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (($ $ (-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) (-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) NIL (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))) (-1844 (((-112) $ $) NIL)) (-2210 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1099))))) (-4185 (((-644 |#2|) $) NIL)) (-2788 (((-112) $) NIL)) (-1737 (($) NIL)) (-4376 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1797 (($) NIL) (($ (-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) NIL)) (-4068 (((-771) (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-771) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (((-771) |#2| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1099)))) (((-771) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417)))) (-3924 (($ $) NIL)) (-3136 (((-538) $) NIL (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-614 (-538))))) (-2489 (($ (-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) NIL)) (-2479 (((-862) $) NIL (-2809 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-613 (-862))) (|has| |#2| (-613 (-862)))))) (-3900 (((-112) $ $) NIL (-2809 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-2471 (($ (-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) NIL)) (-3667 (((-112) (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) NIL (|has| $ (-6 -4417))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4417)))) (-2952 (((-112) $ $) NIL (-2809 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-3002 (((-771) $) NIL (|has| $ (-6 -4417))))) +(((-1187 |#1| |#2|) (-13 (-1190 |#1| |#2|) (-10 -7 (-6 -4417))) (-1099) (-1099)) (T -1187)) +NIL +(-13 (-1190 |#1| |#2|) (-10 -7 (-6 -4417))) +((-2994 ((|#1| (-644 |#1|)) 49)) (-4286 ((|#1| |#1| (-566)) 24)) (-1993 (((-1171 |#1|) |#1| (-921)) 20))) +(((-1188 |#1|) (-10 -7 (-15 -2994 (|#1| (-644 |#1|))) (-15 -1993 ((-1171 |#1|) |#1| (-921))) (-15 -4286 (|#1| |#1| (-566)))) (-365)) (T -1188)) +((-4286 (*1 *2 *2 *3) (-12 (-5 *3 (-566)) (-5 *1 (-1188 *2)) (-4 *2 (-365)))) (-1993 (*1 *2 *3 *4) (-12 (-5 *4 (-921)) (-5 *2 (-1171 *3)) (-5 *1 (-1188 *3)) (-4 *3 (-365)))) (-2994 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-5 *1 (-1188 *2)) (-4 *2 (-365))))) +(-10 -7 (-15 -2994 (|#1| (-644 |#1|))) (-15 -1993 ((-1171 |#1|) |#1| (-921))) (-15 -4286 (|#1| |#1| (-566)))) +((-4250 (($) 10) (($ (-644 (-2 (|:| -1928 |#2|) (|:| -2806 |#3|)))) 14)) (-2295 (($ (-2 (|:| -1928 |#2|) (|:| -2806 |#3|)) $) 67) (($ (-1 (-112) (-2 (|:| -1928 |#2|) (|:| -2806 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-3872 (((-644 (-2 (|:| -1928 |#2|) (|:| -2806 |#3|))) $) 39) (((-644 |#3|) $) 41)) (-3708 (($ (-1 (-2 (|:| -1928 |#2|) (|:| -2806 |#3|)) (-2 (|:| -1928 |#2|) (|:| -2806 |#3|))) $) 57) (($ (-1 |#3| |#3|) $) 33)) (-3080 (($ (-1 (-2 (|:| -1928 |#2|) (|:| -2806 |#3|)) (-2 (|:| -1928 |#2|) (|:| -2806 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-4255 (((-2 (|:| -1928 |#2|) (|:| -2806 |#3|)) $) 60)) (-4354 (($ (-2 (|:| -1928 |#2|) (|:| -2806 |#3|)) $) 16)) (-3780 (((-644 |#2|) $) 19)) (-1605 (((-112) |#2| $) 65)) (-2688 (((-3 (-2 (|:| -1928 |#2|) (|:| -2806 |#3|)) "failed") (-1 (-112) (-2 (|:| -1928 |#2|) (|:| -2806 |#3|))) $) 64)) (-4097 (((-2 (|:| -1928 |#2|) (|:| -2806 |#3|)) $) 69)) (-3966 (((-112) (-1 (-112) (-2 (|:| -1928 |#2|) (|:| -2806 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 73)) (-4185 (((-644 |#3|) $) 43)) (-4376 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-4068 (((-771) (-1 (-112) (-2 (|:| -1928 |#2|) (|:| -2806 |#3|))) $) NIL) (((-771) (-2 (|:| -1928 |#2|) (|:| -2806 |#3|)) $) NIL) (((-771) |#3| $) NIL) (((-771) (-1 (-112) |#3|) $) 79)) (-2479 (((-862) $) 27)) (-3667 (((-112) (-1 (-112) (-2 (|:| -1928 |#2|) (|:| -2806 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 71)) (-2952 (((-112) $ $) 51))) +(((-1189 |#1| |#2| |#3|) (-10 -8 (-15 -2952 ((-112) |#1| |#1|)) (-15 -2479 ((-862) |#1|)) (-15 -3080 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4250 (|#1| (-644 (-2 (|:| -1928 |#2|) (|:| -2806 |#3|))))) (-15 -4250 (|#1|)) (-15 -3080 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3708 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3667 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3966 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -4068 ((-771) (-1 (-112) |#3|) |#1|)) (-15 -3872 ((-644 |#3|) |#1|)) (-15 -4068 ((-771) |#3| |#1|)) (-15 -4376 (|#3| |#1| |#2| |#3|)) (-15 -4376 (|#3| |#1| |#2|)) (-15 -4185 ((-644 |#3|) |#1|)) (-15 -1605 ((-112) |#2| |#1|)) (-15 -3780 ((-644 |#2|) |#1|)) (-15 -2295 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2295 (|#1| (-1 (-112) (-2 (|:| -1928 |#2|) (|:| -2806 |#3|))) |#1|)) (-15 -2295 (|#1| (-2 (|:| -1928 |#2|) (|:| -2806 |#3|)) |#1|)) (-15 -2688 ((-3 (-2 (|:| -1928 |#2|) (|:| -2806 |#3|)) "failed") (-1 (-112) (-2 (|:| -1928 |#2|) (|:| -2806 |#3|))) |#1|)) (-15 -4255 ((-2 (|:| -1928 |#2|) (|:| -2806 |#3|)) |#1|)) (-15 -4354 (|#1| (-2 (|:| -1928 |#2|) (|:| -2806 |#3|)) |#1|)) (-15 -4097 ((-2 (|:| -1928 |#2|) (|:| -2806 |#3|)) |#1|)) (-15 -4068 ((-771) (-2 (|:| -1928 |#2|) (|:| -2806 |#3|)) |#1|)) (-15 -3872 ((-644 (-2 (|:| -1928 |#2|) (|:| -2806 |#3|))) |#1|)) (-15 -4068 ((-771) (-1 (-112) (-2 (|:| -1928 |#2|) (|:| -2806 |#3|))) |#1|)) (-15 -3966 ((-112) (-1 (-112) (-2 (|:| -1928 |#2|) (|:| -2806 |#3|))) |#1|)) (-15 -3667 ((-112) (-1 (-112) (-2 (|:| -1928 |#2|) (|:| -2806 |#3|))) |#1|)) (-15 -3708 (|#1| (-1 (-2 (|:| -1928 |#2|) (|:| -2806 |#3|)) (-2 (|:| -1928 |#2|) (|:| -2806 |#3|))) |#1|)) (-15 -3080 (|#1| (-1 (-2 (|:| -1928 |#2|) (|:| -2806 |#3|)) (-2 (|:| -1928 |#2|) (|:| -2806 |#3|))) |#1|))) (-1190 |#2| |#3|) (-1099) (-1099)) (T -1189)) +NIL +(-10 -8 (-15 -2952 ((-112) |#1| |#1|)) (-15 -2479 ((-862) |#1|)) (-15 -3080 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4250 (|#1| (-644 (-2 (|:| -1928 |#2|) (|:| -2806 |#3|))))) (-15 -4250 (|#1|)) (-15 -3080 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3708 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3667 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3966 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -4068 ((-771) (-1 (-112) |#3|) |#1|)) (-15 -3872 ((-644 |#3|) |#1|)) (-15 -4068 ((-771) |#3| |#1|)) (-15 -4376 (|#3| |#1| |#2| |#3|)) (-15 -4376 (|#3| |#1| |#2|)) (-15 -4185 ((-644 |#3|) |#1|)) (-15 -1605 ((-112) |#2| |#1|)) (-15 -3780 ((-644 |#2|) |#1|)) (-15 -2295 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2295 (|#1| (-1 (-112) (-2 (|:| -1928 |#2|) (|:| -2806 |#3|))) |#1|)) (-15 -2295 (|#1| (-2 (|:| -1928 |#2|) (|:| -2806 |#3|)) |#1|)) (-15 -2688 ((-3 (-2 (|:| -1928 |#2|) (|:| -2806 |#3|)) "failed") (-1 (-112) (-2 (|:| -1928 |#2|) (|:| -2806 |#3|))) |#1|)) (-15 -4255 ((-2 (|:| -1928 |#2|) (|:| -2806 |#3|)) |#1|)) (-15 -4354 (|#1| (-2 (|:| -1928 |#2|) (|:| -2806 |#3|)) |#1|)) (-15 -4097 ((-2 (|:| -1928 |#2|) (|:| -2806 |#3|)) |#1|)) (-15 -4068 ((-771) (-2 (|:| -1928 |#2|) (|:| -2806 |#3|)) |#1|)) (-15 -3872 ((-644 (-2 (|:| -1928 |#2|) (|:| -2806 |#3|))) |#1|)) (-15 -4068 ((-771) (-1 (-112) (-2 (|:| -1928 |#2|) (|:| -2806 |#3|))) |#1|)) (-15 -3966 ((-112) (-1 (-112) (-2 (|:| -1928 |#2|) (|:| -2806 |#3|))) |#1|)) (-15 -3667 ((-112) (-1 (-112) (-2 (|:| -1928 |#2|) (|:| -2806 |#3|))) |#1|)) (-15 -3708 (|#1| (-1 (-2 (|:| -1928 |#2|) (|:| -2806 |#3|)) (-2 (|:| -1928 |#2|) (|:| -2806 |#3|))) |#1|)) (-15 -3080 (|#1| (-1 (-2 (|:| -1928 |#2|) (|:| -2806 |#3|)) (-2 (|:| -1928 |#2|) (|:| -2806 |#3|))) |#1|))) +((-2986 (((-112) $ $) 19 (-2809 (|has| |#2| (-1099)) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099))))) (-4250 (($) 73) (($ (-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) 72)) (-2462 (((-1269) $ |#1| |#1|) 100 (|has| $ (-6 -4418)))) (-1453 (((-112) $ (-771)) 8)) (-3901 ((|#2| $ |#1| |#2|) 74)) (-4364 (($ (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) 46 (|has| $ (-6 -4417)))) (-3543 (($ (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) 56 (|has| $ (-6 -4417)))) (-2377 (((-3 |#2| "failed") |#1| $) 62)) (-1811 (($) 7 T CONST)) (-4111 (($ $) 59 (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) (|has| $ (-6 -4417))))) (-2295 (($ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) 48 (|has| $ (-6 -4417))) (($ (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) 47 (|has| $ (-6 -4417))) (((-3 |#2| "failed") |#1| $) 63)) (-2628 (($ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) 58 (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) (|has| $ (-6 -4417)))) (($ (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) 55 (|has| $ (-6 -4417)))) (-1838 (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) 57 (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) (|has| $ (-6 -4417)))) (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) 54 (|has| $ (-6 -4417))) (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) 53 (|has| $ (-6 -4417)))) (-3719 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4418)))) (-3653 ((|#2| $ |#1|) 89)) (-3872 (((-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) 31 (|has| $ (-6 -4417))) (((-644 |#2|) $) 80 (|has| $ (-6 -4417)))) (-2756 (((-112) $ (-771)) 9)) (-2755 ((|#1| $) 97 (|has| |#1| (-850)))) (-4227 (((-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) 30 (|has| $ (-6 -4417))) (((-644 |#2|) $) 81 (|has| $ (-6 -4417)))) (-1688 (((-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) 28 (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) (|has| $ (-6 -4417)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1099)) (|has| $ (-6 -4417))))) (-3831 ((|#1| $) 96 (|has| |#1| (-850)))) (-3708 (($ (-1 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) 35 (|has| $ (-6 -4418))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4418)))) (-3080 (($ (-1 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71)) (-4106 (((-112) $ (-771)) 10)) (-3151 (((-1157) $) 22 (-2809 (|has| |#2| (-1099)) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099))))) (-1467 (((-644 |#1|) $) 64)) (-3983 (((-112) |#1| $) 65)) (-4255 (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) 40)) (-4354 (($ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) 41)) (-3780 (((-644 |#1|) $) 94)) (-1605 (((-112) |#1| $) 93)) (-4059 (((-1119) $) 21 (-2809 (|has| |#2| (-1099)) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099))))) (-4080 ((|#2| $) 98 (|has| |#1| (-850)))) (-2688 (((-3 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) "failed") (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) 52)) (-4079 (($ $ |#2|) 99 (|has| $ (-6 -4418)))) (-4097 (((-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) 42)) (-3966 (((-112) (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) 33 (|has| $ (-6 -4417))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))))) 27 (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (($ $ (-295 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) 26 (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (($ $ (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) 25 (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (($ $ (-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) (-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) 24 (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) 87 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) 85 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 (-295 |#2|))) 84 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))) (-1844 (((-112) $ $) 14)) (-2210 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4417)) (|has| |#2| (-1099))))) (-4185 (((-644 |#2|) $) 92)) (-2788 (((-112) $) 11)) (-1737 (($) 12)) (-4376 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90)) (-1797 (($) 50) (($ (-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) 49)) (-4068 (((-771) (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) 32 (|has| $ (-6 -4417))) (((-771) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) $) 29 (-12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) (|has| $ (-6 -4417)))) (((-771) |#2| $) 82 (-12 (|has| |#2| (-1099)) (|has| $ (-6 -4417)))) (((-771) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4417)))) (-3924 (($ $) 13)) (-3136 (((-538) $) 60 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-614 (-538))))) (-2489 (($ (-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) 51)) (-2479 (((-862) $) 18 (-2809 (|has| |#2| (-613 (-862))) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-613 (-862)))))) (-3900 (((-112) $ $) 23 (-2809 (|has| |#2| (-1099)) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099))))) (-2471 (($ (-644 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) 43)) (-3667 (((-112) (-1 (-112) (-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) $) 34 (|has| $ (-6 -4417))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4417)))) (-2952 (((-112) $ $) 20 (-2809 (|has| |#2| (-1099)) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099))))) (-3002 (((-771) $) 6 (|has| $ (-6 -4417))))) +(((-1190 |#1| |#2|) (-140) (-1099) (-1099)) (T -1190)) +((-3901 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1190 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1099)))) (-4250 (*1 *1) (-12 (-4 *1 (-1190 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099)))) (-4250 (*1 *1 *2) (-12 (-5 *2 (-644 (-2 (|:| -1928 *3) (|:| -2806 *4)))) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *1 (-1190 *3 *4)))) (-3080 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1190 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099))))) +(-13 (-610 |t#1| |t#2|) (-604 |t#1| |t#2|) (-10 -8 (-15 -3901 (|t#2| $ |t#1| |t#2|)) (-15 -4250 ($)) (-15 -4250 ($ (-644 (-2 (|:| -1928 |t#1|) (|:| -2806 |t#2|))))) (-15 -3080 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) +(((-34) . T) ((-107 #0=(-2 (|:| -1928 |#1|) (|:| -2806 |#2|))) . T) ((-102) -2809 (|has| |#2| (-1099)) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099))) ((-613 (-862)) -2809 (|has| |#2| (-1099)) (|has| |#2| (-613 (-862))) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099)) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-613 (-862)))) ((-151 #0#) . T) ((-614 (-538)) |has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-614 (-538))) ((-229 #0#) . T) ((-235 #0#) . T) ((-287 |#1| |#2|) . T) ((-289 |#1| |#2|) . T) ((-310 #0#) -12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099))) ((-310 |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) ((-491 #0#) . T) ((-491 |#2|) . T) ((-604 |#1| |#2|) . T) ((-516 #0# #0#) -12 (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-310 (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)))) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099))) ((-516 |#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) ((-610 |#1| |#2|) . T) ((-1099) -2809 (|has| |#2| (-1099)) (|has| (-2 (|:| -1928 |#1|) (|:| -2806 |#2|)) (-1099))) ((-1214) . T)) +((-3279 (((-112)) 29)) (-2748 (((-1269) (-1157)) 31)) (-2926 (((-112)) 41)) (-2339 (((-1269)) 39)) (-3311 (((-1269) (-1157) (-1157)) 30)) (-3356 (((-112)) 42)) (-4354 (((-1269) |#1| |#2|) 53)) (-2839 (((-1269)) 27)) (-2241 (((-3 |#2| "failed") |#1|) 51)) (-4284 (((-1269)) 40))) +(((-1191 |#1| |#2|) (-10 -7 (-15 -2839 ((-1269))) (-15 -3311 ((-1269) (-1157) (-1157))) (-15 -2748 ((-1269) (-1157))) (-15 -2339 ((-1269))) (-15 -4284 ((-1269))) (-15 -3279 ((-112))) (-15 -2926 ((-112))) (-15 -3356 ((-112))) (-15 -2241 ((-3 |#2| "failed") |#1|)) (-15 -4354 ((-1269) |#1| |#2|))) (-1099) (-1099)) (T -1191)) +((-4354 (*1 *2 *3 *4) (-12 (-5 *2 (-1269)) (-5 *1 (-1191 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)))) (-2241 (*1 *2 *3) (|partial| -12 (-4 *2 (-1099)) (-5 *1 (-1191 *3 *2)) (-4 *3 (-1099)))) (-3356 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1191 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)))) (-2926 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1191 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)))) (-3279 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1191 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)))) (-4284 (*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-1191 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)))) (-2339 (*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-1191 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)))) (-2748 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1191 *4 *5)) (-4 *4 (-1099)) (-4 *5 (-1099)))) (-3311 (*1 *2 *3 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1191 *4 *5)) (-4 *4 (-1099)) (-4 *5 (-1099)))) (-2839 (*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-1191 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099))))) +(-10 -7 (-15 -2839 ((-1269))) (-15 -3311 ((-1269) (-1157) (-1157))) (-15 -2748 ((-1269) (-1157))) (-15 -2339 ((-1269))) (-15 -4284 ((-1269))) (-15 -3279 ((-112))) (-15 -2926 ((-112))) (-15 -3356 ((-112))) (-15 -2241 ((-3 |#2| "failed") |#1|)) (-15 -4354 ((-1269) |#1| |#2|))) +((-2165 (((-1157) (-1157)) 22)) (-1412 (((-52) (-1157)) 25))) +(((-1192) (-10 -7 (-15 -1412 ((-52) (-1157))) (-15 -2165 ((-1157) (-1157))))) (T -1192)) +((-2165 (*1 *2 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1192)))) (-1412 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-52)) (-5 *1 (-1192))))) +(-10 -7 (-15 -1412 ((-52) (-1157))) (-15 -2165 ((-1157) (-1157)))) +((-2479 (((-1194) |#1|) 11))) +(((-1193 |#1|) (-10 -7 (-15 -2479 ((-1194) |#1|))) (-1099)) (T -1193)) +((-2479 (*1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *1 (-1193 *3)) (-4 *3 (-1099))))) +(-10 -7 (-15 -2479 ((-1194) |#1|))) +((-2986 (((-112) $ $) NIL)) (-1884 (((-644 (-1157)) $) 39)) (-3635 (((-644 (-1157)) $ (-644 (-1157))) 42)) (-1827 (((-644 (-1157)) $ (-644 (-1157))) 41)) (-2633 (((-644 (-1157)) $ (-644 (-1157))) 43)) (-2271 (((-644 (-1157)) $) 38)) (-4259 (($) 26)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-3959 (((-644 (-1157)) $) 40)) (-1659 (((-1269) $ (-566)) 35) (((-1269) $) 36)) (-3136 (($ (-862) (-566)) 32) (($ (-862) (-566) (-862)) NIL)) (-2479 (((-862) $) 53) (($ (-862)) 31)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-1194) (-13 (-1099) (-616 (-862)) (-10 -8 (-15 -3136 ($ (-862) (-566))) (-15 -3136 ($ (-862) (-566) (-862))) (-15 -1659 ((-1269) $ (-566))) (-15 -1659 ((-1269) $)) (-15 -3959 ((-644 (-1157)) $)) (-15 -1884 ((-644 (-1157)) $)) (-15 -4259 ($)) (-15 -2271 ((-644 (-1157)) $)) (-15 -2633 ((-644 (-1157)) $ (-644 (-1157)))) (-15 -3635 ((-644 (-1157)) $ (-644 (-1157)))) (-15 -1827 ((-644 (-1157)) $ (-644 (-1157))))))) (T -1194)) +((-3136 (*1 *1 *2 *3) (-12 (-5 *2 (-862)) (-5 *3 (-566)) (-5 *1 (-1194)))) (-3136 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-862)) (-5 *3 (-566)) (-5 *1 (-1194)))) (-1659 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *2 (-1269)) (-5 *1 (-1194)))) (-1659 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-1194)))) (-3959 (*1 *2 *1) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1194)))) (-1884 (*1 *2 *1) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1194)))) (-4259 (*1 *1) (-5 *1 (-1194))) (-2271 (*1 *2 *1) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1194)))) (-2633 (*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1194)))) (-3635 (*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1194)))) (-1827 (*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1194))))) +(-13 (-1099) (-616 (-862)) (-10 -8 (-15 -3136 ($ (-862) (-566))) (-15 -3136 ($ (-862) (-566) (-862))) (-15 -1659 ((-1269) $ (-566))) (-15 -1659 ((-1269) $)) (-15 -3959 ((-644 (-1157)) $)) (-15 -1884 ((-644 (-1157)) $)) (-15 -4259 ($)) (-15 -2271 ((-644 (-1157)) $)) (-15 -2633 ((-644 (-1157)) $ (-644 (-1157)))) (-15 -3635 ((-644 (-1157)) $ (-644 (-1157)))) (-15 -1827 ((-644 (-1157)) $ (-644 (-1157)))))) +((-2986 (((-112) $ $) NIL)) (-3137 (((-1157) $ (-1157)) 17) (((-1157) $) 16)) (-2915 (((-1157) $ (-1157)) 15)) (-2517 (($ $ (-1157)) NIL)) (-2690 (((-3 (-1157) "failed") $) 11)) (-3781 (((-1157) $) 8)) (-1640 (((-3 (-1157) "failed") $) 12)) (-2052 (((-1157) $) 9)) (-3516 (($ (-390)) NIL) (($ (-390) (-1157)) NIL)) (-2598 (((-390) $) NIL)) (-3151 (((-1157) $) NIL)) (-3522 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-4099 (((-112) $) 21)) (-2479 (((-862) $) NIL)) (-2313 (($ $) NIL)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-1195) (-13 (-366 (-390) (-1157)) (-10 -8 (-15 -3137 ((-1157) $ (-1157))) (-15 -3137 ((-1157) $)) (-15 -3781 ((-1157) $)) (-15 -2690 ((-3 (-1157) "failed") $)) (-15 -1640 ((-3 (-1157) "failed") $)) (-15 -4099 ((-112) $))))) (T -1195)) +((-3137 (*1 *2 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1195)))) (-3137 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1195)))) (-3781 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1195)))) (-2690 (*1 *2 *1) (|partial| -12 (-5 *2 (-1157)) (-5 *1 (-1195)))) (-1640 (*1 *2 *1) (|partial| -12 (-5 *2 (-1157)) (-5 *1 (-1195)))) (-4099 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1195))))) +(-13 (-366 (-390) (-1157)) (-10 -8 (-15 -3137 ((-1157) $ (-1157))) (-15 -3137 ((-1157) $)) (-15 -3781 ((-1157) $)) (-15 -2690 ((-3 (-1157) "failed") $)) (-15 -1640 ((-3 (-1157) "failed") $)) (-15 -4099 ((-112) $)))) +((-2920 (((-3 (-566) "failed") |#1|) 19)) (-3051 (((-3 (-566) "failed") |#1|) 14)) (-3925 (((-566) (-1157)) 33))) +(((-1196 |#1|) (-10 -7 (-15 -2920 ((-3 (-566) "failed") |#1|)) (-15 -3051 ((-3 (-566) "failed") |#1|)) (-15 -3925 ((-566) (-1157)))) (-1049)) (T -1196)) +((-3925 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-566)) (-5 *1 (-1196 *4)) (-4 *4 (-1049)))) (-3051 (*1 *2 *3) (|partial| -12 (-5 *2 (-566)) (-5 *1 (-1196 *3)) (-4 *3 (-1049)))) (-2920 (*1 *2 *3) (|partial| -12 (-5 *2 (-566)) (-5 *1 (-1196 *3)) (-4 *3 (-1049))))) +(-10 -7 (-15 -2920 ((-3 (-566) "failed") |#1|)) (-15 -3051 ((-3 (-566) "failed") |#1|)) (-15 -3925 ((-566) (-1157)))) +((-1479 (((-1132 (-225))) 9))) +(((-1197) (-10 -7 (-15 -1479 ((-1132 (-225)))))) (T -1197)) +((-1479 (*1 *2) (-12 (-5 *2 (-1132 (-225))) (-5 *1 (-1197))))) +(-10 -7 (-15 -1479 ((-1132 (-225))))) +((-2964 (($) 12)) (-3285 (($ $) 36)) (-3260 (($ $) 34)) (-3135 (($ $) 26)) (-3309 (($ $) 18)) (-1861 (($ $) 16)) (-3299 (($ $) 20)) (-3168 (($ $) 31)) (-3273 (($ $) 35)) (-3148 (($ $) 30))) +(((-1198 |#1|) (-10 -8 (-15 -2964 (|#1|)) (-15 -3285 (|#1| |#1|)) (-15 -3260 (|#1| |#1|)) (-15 -3309 (|#1| |#1|)) (-15 -1861 (|#1| |#1|)) (-15 -3299 (|#1| |#1|)) (-15 -3273 (|#1| |#1|)) (-15 -3135 (|#1| |#1|)) (-15 -3168 (|#1| |#1|)) (-15 -3148 (|#1| |#1|))) (-1199)) (T -1198)) +NIL +(-10 -8 (-15 -2964 (|#1|)) (-15 -3285 (|#1| |#1|)) (-15 -3260 (|#1| |#1|)) (-15 -3309 (|#1| |#1|)) (-15 -1861 (|#1| |#1|)) (-15 -3299 (|#1| |#1|)) (-15 -3273 (|#1| |#1|)) (-15 -3135 (|#1| |#1|)) (-15 -3168 (|#1| |#1|)) (-15 -3148 (|#1| |#1|))) +((-3219 (($ $) 26)) (-3091 (($ $) 11)) (-3197 (($ $) 27)) (-3067 (($ $) 10)) (-3240 (($ $) 28)) (-3115 (($ $) 9)) (-2964 (($) 16)) (-3676 (($ $) 19)) (-3571 (($ $) 18)) (-3250 (($ $) 29)) (-3126 (($ $) 8)) (-3227 (($ $) 30)) (-3105 (($ $) 7)) (-3207 (($ $) 31)) (-3079 (($ $) 6)) (-3285 (($ $) 20)) (-3157 (($ $) 32)) (-3260 (($ $) 21)) (-3135 (($ $) 33)) (-3309 (($ $) 22)) (-3179 (($ $) 34)) (-1861 (($ $) 23)) (-3190 (($ $) 35)) (-3299 (($ $) 24)) (-3168 (($ $) 36)) (-3273 (($ $) 25)) (-3148 (($ $) 37)) (** (($ $ $) 17))) +(((-1199) (-140)) (T -1199)) +((-2964 (*1 *1) (-4 *1 (-1199)))) +(-13 (-1202) (-95) (-495) (-35) (-285) (-10 -8 (-15 -2964 ($)))) +(((-35) . T) ((-95) . T) ((-285) . T) ((-495) . T) ((-1202) . T)) +((-2986 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2153 ((|#1| $) 19)) (-4023 (($ |#1| (-644 $)) 28) (($ (-644 |#1|)) 35) (($ |#1|) 30)) (-1453 (((-112) $ (-771)) 72)) (-3684 ((|#1| $ |#1|) 14 (|has| $ (-6 -4418)))) (-3901 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4418)))) (-3891 (($ $ (-644 $)) 13 (|has| $ (-6 -4418)))) (-1811 (($) NIL T CONST)) (-3872 (((-644 |#1|) $) 76 (|has| $ (-6 -4417)))) (-3578 (((-644 $) $) 64)) (-2778 (((-112) $ $) 49 (|has| |#1| (-1099)))) (-2756 (((-112) $ (-771)) 62)) (-4227 (((-644 |#1|) $) 77 (|has| $ (-6 -4417)))) (-1688 (((-112) |#1| $) 75 (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-3708 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#1| |#1|) $) 27)) (-4106 (((-112) $ (-771)) 60)) (-3658 (((-644 |#1|) $) 54)) (-1587 (((-112) $) 52)) (-3151 (((-1157) $) NIL (|has| |#1| (-1099)))) (-4059 (((-1119) $) NIL (|has| |#1| (-1099)))) (-3966 (((-112) (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1844 (((-112) $ $) 107)) (-2788 (((-112) $) 9)) (-1737 (($) 10)) (-4376 ((|#1| $ "value") NIL)) (-4098 (((-566) $ $) 48)) (-1436 (((-644 $) $) 89)) (-2518 (((-112) $ $) 110)) (-1915 (((-644 $) $) 105)) (-4371 (($ $) 106)) (-2636 (((-112) $) 84)) (-4068 (((-771) (-1 (-112) |#1|) $) 25 (|has| $ (-6 -4417))) (((-771) |#1| $) 17 (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-3924 (($ $) 88)) (-2479 (((-862) $) 91 (|has| |#1| (-613 (-862))))) (-2156 (((-644 $) $) 12)) (-3922 (((-112) $ $) 39 (|has| |#1| (-1099)))) (-3900 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3667 (((-112) (-1 (-112) |#1|) $) 73 (|has| $ (-6 -4417)))) (-2952 (((-112) $ $) 37 (|has| |#1| (-1099)))) (-3002 (((-771) $) 58 (|has| $ (-6 -4417))))) +(((-1200 |#1|) (-13 (-1010 |#1|) (-10 -8 (-6 -4417) (-6 -4418) (-15 -4023 ($ |#1| (-644 $))) (-15 -4023 ($ (-644 |#1|))) (-15 -4023 ($ |#1|)) (-15 -2636 ((-112) $)) (-15 -4371 ($ $)) (-15 -1915 ((-644 $) $)) (-15 -2518 ((-112) $ $)) (-15 -1436 ((-644 $) $)))) (-1099)) (T -1200)) +((-2636 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1200 *3)) (-4 *3 (-1099)))) (-4023 (*1 *1 *2 *3) (-12 (-5 *3 (-644 (-1200 *2))) (-5 *1 (-1200 *2)) (-4 *2 (-1099)))) (-4023 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-5 *1 (-1200 *3)))) (-4023 (*1 *1 *2) (-12 (-5 *1 (-1200 *2)) (-4 *2 (-1099)))) (-4371 (*1 *1 *1) (-12 (-5 *1 (-1200 *2)) (-4 *2 (-1099)))) (-1915 (*1 *2 *1) (-12 (-5 *2 (-644 (-1200 *3))) (-5 *1 (-1200 *3)) (-4 *3 (-1099)))) (-2518 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1200 *3)) (-4 *3 (-1099)))) (-1436 (*1 *2 *1) (-12 (-5 *2 (-644 (-1200 *3))) (-5 *1 (-1200 *3)) (-4 *3 (-1099))))) +(-13 (-1010 |#1|) (-10 -8 (-6 -4417) (-6 -4418) (-15 -4023 ($ |#1| (-644 $))) (-15 -4023 ($ (-644 |#1|))) (-15 -4023 ($ |#1|)) (-15 -2636 ((-112) $)) (-15 -4371 ($ $)) (-15 -1915 ((-644 $) $)) (-15 -2518 ((-112) $ $)) (-15 -1436 ((-644 $) $)))) +((-3091 (($ $) 15)) (-3115 (($ $) 12)) (-3126 (($ $) 10)) (-3105 (($ $) 17))) +(((-1201 |#1|) (-10 -8 (-15 -3105 (|#1| |#1|)) (-15 -3126 (|#1| |#1|)) (-15 -3115 (|#1| |#1|)) (-15 -3091 (|#1| |#1|))) (-1202)) (T -1201)) +NIL +(-10 -8 (-15 -3105 (|#1| |#1|)) (-15 -3126 (|#1| |#1|)) (-15 -3115 (|#1| |#1|)) (-15 -3091 (|#1| |#1|))) +((-3091 (($ $) 11)) (-3067 (($ $) 10)) (-3115 (($ $) 9)) (-3126 (($ $) 8)) (-3105 (($ $) 7)) (-3079 (($ $) 6))) +(((-1202) (-140)) (T -1202)) +((-3091 (*1 *1 *1) (-4 *1 (-1202))) (-3067 (*1 *1 *1) (-4 *1 (-1202))) (-3115 (*1 *1 *1) (-4 *1 (-1202))) (-3126 (*1 *1 *1) (-4 *1 (-1202))) (-3105 (*1 *1 *1) (-4 *1 (-1202))) (-3079 (*1 *1 *1) (-4 *1 (-1202)))) +(-13 (-10 -8 (-15 -3079 ($ $)) (-15 -3105 ($ $)) (-15 -3126 ($ $)) (-15 -3115 ($ $)) (-15 -3067 ($ $)) (-15 -3091 ($ $)))) +((-2303 ((|#2| |#2|) 98)) (-2098 (((-112) |#2|) 29)) (-2352 ((|#2| |#2|) 33)) (-2365 ((|#2| |#2|) 35)) (-1455 ((|#2| |#2| (-1175)) 92) ((|#2| |#2|) 93)) (-1598 (((-169 |#2|) |#2|) 31)) (-1485 ((|#2| |#2| (-1175)) 94) ((|#2| |#2|) 95))) +(((-1203 |#1| |#2|) (-10 -7 (-15 -1455 (|#2| |#2|)) (-15 -1455 (|#2| |#2| (-1175))) (-15 -1485 (|#2| |#2|)) (-15 -1485 (|#2| |#2| (-1175))) (-15 -2303 (|#2| |#2|)) (-15 -2352 (|#2| |#2|)) (-15 -2365 (|#2| |#2|)) (-15 -2098 ((-112) |#2|)) (-15 -1598 ((-169 |#2|) |#2|))) (-13 (-454) (-1038 (-566)) (-639 (-566))) (-13 (-27) (-1199) (-432 |#1|))) (T -1203)) +((-1598 (*1 *2 *3) (-12 (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-169 *3)) (-5 *1 (-1203 *4 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *4))))) (-2098 (*1 *2 *3) (-12 (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-112)) (-5 *1 (-1203 *4 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *4))))) (-2365 (*1 *2 *2) (-12 (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *3))))) (-2352 (*1 *2 *2) (-12 (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *3))))) (-2303 (*1 *2 *2) (-12 (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *3))))) (-1485 (*1 *2 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-1203 *4 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *4))))) (-1485 (*1 *2 *2) (-12 (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *3))))) (-1455 (*1 *2 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-1203 *4 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *4))))) (-1455 (*1 *2 *2) (-12 (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *3)))))) +(-10 -7 (-15 -1455 (|#2| |#2|)) (-15 -1455 (|#2| |#2| (-1175))) (-15 -1485 (|#2| |#2|)) (-15 -1485 (|#2| |#2| (-1175))) (-15 -2303 (|#2| |#2|)) (-15 -2352 (|#2| |#2|)) (-15 -2365 (|#2| |#2|)) (-15 -2098 ((-112) |#2|)) (-15 -1598 ((-169 |#2|) |#2|))) +((-3429 ((|#4| |#4| |#1|) 32)) (-1456 ((|#4| |#4| |#1|) 33))) +(((-1204 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3429 (|#4| |#4| |#1|)) (-15 -1456 (|#4| |#4| |#1|))) (-558) (-375 |#1|) (-375 |#1|) (-687 |#1| |#2| |#3|)) (T -1204)) +((-1456 (*1 *2 *2 *3) (-12 (-4 *3 (-558)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-1204 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5)))) (-3429 (*1 *2 *2 *3) (-12 (-4 *3 (-558)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-1204 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5))))) +(-10 -7 (-15 -3429 (|#4| |#4| |#1|)) (-15 -1456 (|#4| |#4| |#1|))) +((-2077 ((|#2| |#2|) 148)) (-3498 ((|#2| |#2|) 145)) (-4193 ((|#2| |#2|) 136)) (-1697 ((|#2| |#2|) 133)) (-2601 ((|#2| |#2|) 141)) (-4261 ((|#2| |#2|) 129)) (-2820 ((|#2| |#2|) 44)) (-1742 ((|#2| |#2|) 105)) (-3370 ((|#2| |#2|) 88)) (-3194 ((|#2| |#2|) 143)) (-1543 ((|#2| |#2|) 131)) (-1784 ((|#2| |#2|) 153)) (-1665 ((|#2| |#2|) 151)) (-2218 ((|#2| |#2|) 152)) (-1386 ((|#2| |#2|) 150)) (-3102 ((|#2| |#2|) 163)) (-3656 ((|#2| |#2|) 30 (-12 (|has| |#2| (-614 (-892 |#1|))) (|has| |#2| (-886 |#1|)) (|has| |#1| (-614 (-892 |#1|))) (|has| |#1| (-886 |#1|))))) (-2258 ((|#2| |#2|) 89)) (-4336 ((|#2| |#2|) 154)) (-3507 ((|#2| |#2|) 155)) (-2746 ((|#2| |#2|) 142)) (-4109 ((|#2| |#2|) 130)) (-2699 ((|#2| |#2|) 149)) (-1800 ((|#2| |#2|) 147)) (-4221 ((|#2| |#2|) 137)) (-3525 ((|#2| |#2|) 135)) (-2803 ((|#2| |#2|) 139)) (-2742 ((|#2| |#2|) 127))) +(((-1205 |#1| |#2|) (-10 -7 (-15 -3507 (|#2| |#2|)) (-15 -3370 (|#2| |#2|)) (-15 -3102 (|#2| |#2|)) (-15 -1742 (|#2| |#2|)) (-15 -2820 (|#2| |#2|)) (-15 -2258 (|#2| |#2|)) (-15 -4336 (|#2| |#2|)) (-15 -2742 (|#2| |#2|)) (-15 -2803 (|#2| |#2|)) (-15 -4221 (|#2| |#2|)) (-15 -2699 (|#2| |#2|)) (-15 -4109 (|#2| |#2|)) (-15 -2746 (|#2| |#2|)) (-15 -1543 (|#2| |#2|)) (-15 -3194 (|#2| |#2|)) (-15 -4261 (|#2| |#2|)) (-15 -2601 (|#2| |#2|)) (-15 -4193 (|#2| |#2|)) (-15 -2077 (|#2| |#2|)) (-15 -1697 (|#2| |#2|)) (-15 -3498 (|#2| |#2|)) (-15 -3525 (|#2| |#2|)) (-15 -1800 (|#2| |#2|)) (-15 -1386 (|#2| |#2|)) (-15 -1665 (|#2| |#2|)) (-15 -2218 (|#2| |#2|)) (-15 -1784 (|#2| |#2|)) (IF (|has| |#1| (-886 |#1|)) (IF (|has| |#1| (-614 (-892 |#1|))) (IF (|has| |#2| (-614 (-892 |#1|))) (IF (|has| |#2| (-886 |#1|)) (-15 -3656 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-454) (-13 (-432 |#1|) (-1199))) (T -1205)) +((-3656 (*1 *2 *2) (-12 (-4 *3 (-614 (-892 *3))) (-4 *3 (-886 *3)) (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-614 (-892 *3))) (-4 *2 (-886 *3)) (-4 *2 (-13 (-432 *3) (-1199))))) (-1784 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-2218 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-1665 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-1386 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-1800 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-3525 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-3498 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-1697 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-2077 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-4193 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-2601 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-4261 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-3194 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-1543 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-2746 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-4109 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-2699 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-4221 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-2803 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-2742 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-4336 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-2258 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-2820 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-1742 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-3102 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-3370 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-3507 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199)))))) +(-10 -7 (-15 -3507 (|#2| |#2|)) (-15 -3370 (|#2| |#2|)) (-15 -3102 (|#2| |#2|)) (-15 -1742 (|#2| |#2|)) (-15 -2820 (|#2| |#2|)) (-15 -2258 (|#2| |#2|)) (-15 -4336 (|#2| |#2|)) (-15 -2742 (|#2| |#2|)) (-15 -2803 (|#2| |#2|)) (-15 -4221 (|#2| |#2|)) (-15 -2699 (|#2| |#2|)) (-15 -4109 (|#2| |#2|)) (-15 -2746 (|#2| |#2|)) (-15 -1543 (|#2| |#2|)) (-15 -3194 (|#2| |#2|)) (-15 -4261 (|#2| |#2|)) (-15 -2601 (|#2| |#2|)) (-15 -4193 (|#2| |#2|)) (-15 -2077 (|#2| |#2|)) (-15 -1697 (|#2| |#2|)) (-15 -3498 (|#2| |#2|)) (-15 -3525 (|#2| |#2|)) (-15 -1800 (|#2| |#2|)) (-15 -1386 (|#2| |#2|)) (-15 -1665 (|#2| |#2|)) (-15 -2218 (|#2| |#2|)) (-15 -1784 (|#2| |#2|)) (IF (|has| |#1| (-886 |#1|)) (IF (|has| |#1| (-614 (-892 |#1|))) (IF (|has| |#2| (-614 (-892 |#1|))) (IF (|has| |#2| (-886 |#1|)) (-15 -3656 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) +((-2219 (((-112) |#5| $) 68) (((-112) $) 110)) (-1922 ((|#5| |#5| $) 83)) (-3543 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 127)) (-3451 (((-644 |#5|) (-644 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 81)) (-2980 (((-3 $ "failed") (-644 |#5|)) 135)) (-4091 (((-3 $ "failed") $) 120)) (-3358 ((|#5| |#5| $) 102)) (-1995 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 36)) (-3326 ((|#5| |#5| $) 106)) (-1838 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 77)) (-1877 (((-2 (|:| -1637 (-644 |#5|)) (|:| -3516 (-644 |#5|))) $) 63)) (-4297 (((-112) |#5| $) 66) (((-112) $) 111)) (-4052 ((|#4| $) 116)) (-2651 (((-3 |#5| "failed") $) 118)) (-3707 (((-644 |#5|) $) 55)) (-4121 (((-112) |#5| $) 75) (((-112) $) 115)) (-3317 ((|#5| |#5| $) 89)) (-3730 (((-112) $ $) 29)) (-1695 (((-112) |#5| $) 71) (((-112) $) 113)) (-3869 ((|#5| |#5| $) 86)) (-4080 (((-3 |#5| "failed") $) 117)) (-2050 (($ $ |#5|) 136)) (-1630 (((-771) $) 60)) (-2489 (($ (-644 |#5|)) 133)) (-1706 (($ $ |#4|) 131)) (-4234 (($ $ |#4|) 129)) (-4024 (($ $) 128)) (-2479 (((-862) $) NIL) (((-644 |#5|) $) 121)) (-2780 (((-771) $) 140)) (-2877 (((-3 (-2 (|:| |bas| $) (|:| -3903 (-644 |#5|))) "failed") (-644 |#5|) (-1 (-112) |#5| |#5|)) 49) (((-3 (-2 (|:| |bas| $) (|:| -3903 (-644 |#5|))) "failed") (-644 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 51)) (-4265 (((-112) $ (-1 (-112) |#5| (-644 |#5|))) 108)) (-4067 (((-644 |#4|) $) 123)) (-3132 (((-112) |#4| $) 126)) (-2952 (((-112) $ $) 20))) +(((-1206 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2780 ((-771) |#1|)) (-15 -2050 (|#1| |#1| |#5|)) (-15 -3543 ((-3 |#5| "failed") |#1| |#4|)) (-15 -3132 ((-112) |#4| |#1|)) (-15 -4067 ((-644 |#4|) |#1|)) (-15 -4091 ((-3 |#1| "failed") |#1|)) (-15 -2651 ((-3 |#5| "failed") |#1|)) (-15 -4080 ((-3 |#5| "failed") |#1|)) (-15 -3326 (|#5| |#5| |#1|)) (-15 -4024 (|#1| |#1|)) (-15 -3358 (|#5| |#5| |#1|)) (-15 -3317 (|#5| |#5| |#1|)) (-15 -3869 (|#5| |#5| |#1|)) (-15 -1922 (|#5| |#5| |#1|)) (-15 -3451 ((-644 |#5|) (-644 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -1838 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -4121 ((-112) |#1|)) (-15 -1695 ((-112) |#1|)) (-15 -2219 ((-112) |#1|)) (-15 -4265 ((-112) |#1| (-1 (-112) |#5| (-644 |#5|)))) (-15 -4121 ((-112) |#5| |#1|)) (-15 -1695 ((-112) |#5| |#1|)) (-15 -2219 ((-112) |#5| |#1|)) (-15 -1995 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -4297 ((-112) |#1|)) (-15 -4297 ((-112) |#5| |#1|)) (-15 -1877 ((-2 (|:| -1637 (-644 |#5|)) (|:| -3516 (-644 |#5|))) |#1|)) (-15 -1630 ((-771) |#1|)) (-15 -3707 ((-644 |#5|) |#1|)) (-15 -2877 ((-3 (-2 (|:| |bas| |#1|) (|:| -3903 (-644 |#5|))) "failed") (-644 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -2877 ((-3 (-2 (|:| |bas| |#1|) (|:| -3903 (-644 |#5|))) "failed") (-644 |#5|) (-1 (-112) |#5| |#5|))) (-15 -3730 ((-112) |#1| |#1|)) (-15 -1706 (|#1| |#1| |#4|)) (-15 -4234 (|#1| |#1| |#4|)) (-15 -4052 (|#4| |#1|)) (-15 -2980 ((-3 |#1| "failed") (-644 |#5|))) (-15 -2479 ((-644 |#5|) |#1|)) (-15 -2489 (|#1| (-644 |#5|))) (-15 -1838 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -1838 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3543 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -1838 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2479 ((-862) |#1|)) (-15 -2952 ((-112) |#1| |#1|))) (-1207 |#2| |#3| |#4| |#5|) (-558) (-793) (-850) (-1064 |#2| |#3| |#4|)) (T -1206)) +NIL +(-10 -8 (-15 -2780 ((-771) |#1|)) (-15 -2050 (|#1| |#1| |#5|)) (-15 -3543 ((-3 |#5| "failed") |#1| |#4|)) (-15 -3132 ((-112) |#4| |#1|)) (-15 -4067 ((-644 |#4|) |#1|)) (-15 -4091 ((-3 |#1| "failed") |#1|)) (-15 -2651 ((-3 |#5| "failed") |#1|)) (-15 -4080 ((-3 |#5| "failed") |#1|)) (-15 -3326 (|#5| |#5| |#1|)) (-15 -4024 (|#1| |#1|)) (-15 -3358 (|#5| |#5| |#1|)) (-15 -3317 (|#5| |#5| |#1|)) (-15 -3869 (|#5| |#5| |#1|)) (-15 -1922 (|#5| |#5| |#1|)) (-15 -3451 ((-644 |#5|) (-644 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -1838 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -4121 ((-112) |#1|)) (-15 -1695 ((-112) |#1|)) (-15 -2219 ((-112) |#1|)) (-15 -4265 ((-112) |#1| (-1 (-112) |#5| (-644 |#5|)))) (-15 -4121 ((-112) |#5| |#1|)) (-15 -1695 ((-112) |#5| |#1|)) (-15 -2219 ((-112) |#5| |#1|)) (-15 -1995 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -4297 ((-112) |#1|)) (-15 -4297 ((-112) |#5| |#1|)) (-15 -1877 ((-2 (|:| -1637 (-644 |#5|)) (|:| -3516 (-644 |#5|))) |#1|)) (-15 -1630 ((-771) |#1|)) (-15 -3707 ((-644 |#5|) |#1|)) (-15 -2877 ((-3 (-2 (|:| |bas| |#1|) (|:| -3903 (-644 |#5|))) "failed") (-644 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -2877 ((-3 (-2 (|:| |bas| |#1|) (|:| -3903 (-644 |#5|))) "failed") (-644 |#5|) (-1 (-112) |#5| |#5|))) (-15 -3730 ((-112) |#1| |#1|)) (-15 -1706 (|#1| |#1| |#4|)) (-15 -4234 (|#1| |#1| |#4|)) (-15 -4052 (|#4| |#1|)) (-15 -2980 ((-3 |#1| "failed") (-644 |#5|))) (-15 -2479 ((-644 |#5|) |#1|)) (-15 -2489 (|#1| (-644 |#5|))) (-15 -1838 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -1838 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3543 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -1838 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2479 ((-862) |#1|)) (-15 -2952 ((-112) |#1| |#1|))) +((-2986 (((-112) $ $) 7)) (-1416 (((-644 (-2 (|:| -1637 $) (|:| -3516 (-644 |#4|)))) (-644 |#4|)) 86)) (-3295 (((-644 $) (-644 |#4|)) 87)) (-2485 (((-644 |#3|) $) 34)) (-1489 (((-112) $) 27)) (-3541 (((-112) $) 18 (|has| |#1| (-558)))) (-2219 (((-112) |#4| $) 102) (((-112) $) 98)) (-1922 ((|#4| |#4| $) 93)) (-1374 (((-2 (|:| |under| $) (|:| -2001 $) (|:| |upper| $)) $ |#3|) 28)) (-1453 (((-112) $ (-771)) 45)) (-3543 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4417))) (((-3 |#4| "failed") $ |#3|) 80)) (-1811 (($) 46 T CONST)) (-4210 (((-112) $) 23 (|has| |#1| (-558)))) (-3050 (((-112) $ $) 25 (|has| |#1| (-558)))) (-1768 (((-112) $ $) 24 (|has| |#1| (-558)))) (-3261 (((-112) $) 26 (|has| |#1| (-558)))) (-3451 (((-644 |#4|) (-644 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2796 (((-644 |#4|) (-644 |#4|) $) 19 (|has| |#1| (-558)))) (-3829 (((-644 |#4|) (-644 |#4|) $) 20 (|has| |#1| (-558)))) (-2980 (((-3 $ "failed") (-644 |#4|)) 37)) (-1709 (($ (-644 |#4|)) 36)) (-4091 (((-3 $ "failed") $) 83)) (-3358 ((|#4| |#4| $) 90)) (-4111 (($ $) 69 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4417))))) (-2628 (($ |#4| $) 68 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4417)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4417)))) (-3131 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-558)))) (-1995 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3326 ((|#4| |#4| $) 88)) (-1838 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4417)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4417))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4417))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1877 (((-2 (|:| -1637 (-644 |#4|)) (|:| -3516 (-644 |#4|))) $) 106)) (-3872 (((-644 |#4|) $) 53 (|has| $ (-6 -4417)))) (-4297 (((-112) |#4| $) 105) (((-112) $) 104)) (-4052 ((|#3| $) 35)) (-2756 (((-112) $ (-771)) 44)) (-4227 (((-644 |#4|) $) 54 (|has| $ (-6 -4417)))) (-1688 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4417))))) (-3708 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#4| |#4|) $) 48)) (-3599 (((-644 |#3|) $) 33)) (-2884 (((-112) |#3| $) 32)) (-4106 (((-112) $ (-771)) 43)) (-3151 (((-1157) $) 10)) (-2651 (((-3 |#4| "failed") $) 84)) (-3707 (((-644 |#4|) $) 108)) (-4121 (((-112) |#4| $) 100) (((-112) $) 96)) (-3317 ((|#4| |#4| $) 91)) (-3730 (((-112) $ $) 111)) (-1719 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-558)))) (-1695 (((-112) |#4| $) 101) (((-112) $) 97)) (-3869 ((|#4| |#4| $) 92)) (-4059 (((-1119) $) 11)) (-4080 (((-3 |#4| "failed") $) 85)) (-2688 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2293 (((-3 $ "failed") $ |#4|) 79)) (-2050 (($ $ |#4|) 78)) (-3966 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 |#4|) (-644 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-295 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-644 (-295 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))))) (-1844 (((-112) $ $) 39)) (-2788 (((-112) $) 42)) (-1737 (($) 41)) (-1630 (((-771) $) 107)) (-4068 (((-771) |#4| $) 55 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4417)))) (((-771) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4417)))) (-3924 (($ $) 40)) (-3136 (((-538) $) 70 (|has| |#4| (-614 (-538))))) (-2489 (($ (-644 |#4|)) 61)) (-1706 (($ $ |#3|) 29)) (-4234 (($ $ |#3|) 31)) (-4024 (($ $) 89)) (-2378 (($ $ |#3|) 30)) (-2479 (((-862) $) 12) (((-644 |#4|) $) 38)) (-2780 (((-771) $) 77 (|has| |#3| (-370)))) (-3900 (((-112) $ $) 9)) (-2877 (((-3 (-2 (|:| |bas| $) (|:| -3903 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3903 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-4265 (((-112) $ (-1 (-112) |#4| (-644 |#4|))) 99)) (-3667 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4417)))) (-4067 (((-644 |#3|) $) 82)) (-3132 (((-112) |#3| $) 81)) (-2952 (((-112) $ $) 6)) (-3002 (((-771) $) 47 (|has| $ (-6 -4417))))) +(((-1207 |#1| |#2| |#3| |#4|) (-140) (-558) (-793) (-850) (-1064 |t#1| |t#2| |t#3|)) (T -1207)) +((-3730 (*1 *2 *1 *1) (-12 (-4 *1 (-1207 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-112)))) (-2877 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-558)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3903 (-644 *8)))) (-5 *3 (-644 *8)) (-4 *1 (-1207 *5 *6 *7 *8)))) (-2877 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1064 *6 *7 *8)) (-4 *6 (-558)) (-4 *7 (-793)) (-4 *8 (-850)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3903 (-644 *9)))) (-5 *3 (-644 *9)) (-4 *1 (-1207 *6 *7 *8 *9)))) (-3707 (*1 *2 *1) (-12 (-4 *1 (-1207 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-644 *6)))) (-1630 (*1 *2 *1) (-12 (-4 *1 (-1207 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-771)))) (-1877 (*1 *2 *1) (-12 (-4 *1 (-1207 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-2 (|:| -1637 (-644 *6)) (|:| -3516 (-644 *6)))))) (-4297 (*1 *2 *3 *1) (-12 (-4 *1 (-1207 *4 *5 *6 *3)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112)))) (-4297 (*1 *2 *1) (-12 (-4 *1 (-1207 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-112)))) (-1995 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1207 *5 *6 *7 *3)) (-4 *5 (-558)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-112)))) (-2219 (*1 *2 *3 *1) (-12 (-4 *1 (-1207 *4 *5 *6 *3)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112)))) (-1695 (*1 *2 *3 *1) (-12 (-4 *1 (-1207 *4 *5 *6 *3)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112)))) (-4121 (*1 *2 *3 *1) (-12 (-4 *1 (-1207 *4 *5 *6 *3)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112)))) (-4265 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-644 *7))) (-4 *1 (-1207 *4 *5 *6 *7)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)))) (-2219 (*1 *2 *1) (-12 (-4 *1 (-1207 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-112)))) (-1695 (*1 *2 *1) (-12 (-4 *1 (-1207 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-112)))) (-4121 (*1 *2 *1) (-12 (-4 *1 (-1207 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-112)))) (-1838 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1207 *5 *6 *7 *2)) (-4 *5 (-558)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *2 (-1064 *5 *6 *7)))) (-3451 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-644 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1207 *5 *6 *7 *8)) (-4 *5 (-558)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *8 (-1064 *5 *6 *7)))) (-1922 (*1 *2 *2 *1) (-12 (-4 *1 (-1207 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5)))) (-3869 (*1 *2 *2 *1) (-12 (-4 *1 (-1207 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5)))) (-3317 (*1 *2 *2 *1) (-12 (-4 *1 (-1207 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5)))) (-3358 (*1 *2 *2 *1) (-12 (-4 *1 (-1207 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5)))) (-4024 (*1 *1 *1) (-12 (-4 *1 (-1207 *2 *3 *4 *5)) (-4 *2 (-558)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *5 (-1064 *2 *3 *4)))) (-3326 (*1 *2 *2 *1) (-12 (-4 *1 (-1207 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5)))) (-3295 (*1 *2 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 *1)) (-4 *1 (-1207 *4 *5 *6 *7)))) (-1416 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-644 (-2 (|:| -1637 *1) (|:| -3516 (-644 *7))))) (-5 *3 (-644 *7)) (-4 *1 (-1207 *4 *5 *6 *7)))) (-4080 (*1 *2 *1) (|partial| -12 (-4 *1 (-1207 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5)))) (-2651 (*1 *2 *1) (|partial| -12 (-4 *1 (-1207 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5)))) (-4091 (*1 *1 *1) (|partial| -12 (-4 *1 (-1207 *2 *3 *4 *5)) (-4 *2 (-558)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *5 (-1064 *2 *3 *4)))) (-4067 (*1 *2 *1) (-12 (-4 *1 (-1207 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-644 *5)))) (-3132 (*1 *2 *3 *1) (-12 (-4 *1 (-1207 *4 *5 *3 *6)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *3 (-850)) (-4 *6 (-1064 *4 *5 *3)) (-5 *2 (-112)))) (-3543 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1207 *4 *5 *3 *2)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *3 (-850)) (-4 *2 (-1064 *4 *5 *3)))) (-2293 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1207 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5)))) (-2050 (*1 *1 *1 *2) (-12 (-4 *1 (-1207 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5)))) (-2780 (*1 *2 *1) (-12 (-4 *1 (-1207 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-4 *5 (-370)) (-5 *2 (-771))))) +(-13 (-976 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4417) (-6 -4418) (-15 -3730 ((-112) $ $)) (-15 -2877 ((-3 (-2 (|:| |bas| $) (|:| -3903 (-644 |t#4|))) "failed") (-644 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2877 ((-3 (-2 (|:| |bas| $) (|:| -3903 (-644 |t#4|))) "failed") (-644 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3707 ((-644 |t#4|) $)) (-15 -1630 ((-771) $)) (-15 -1877 ((-2 (|:| -1637 (-644 |t#4|)) (|:| -3516 (-644 |t#4|))) $)) (-15 -4297 ((-112) |t#4| $)) (-15 -4297 ((-112) $)) (-15 -1995 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -2219 ((-112) |t#4| $)) (-15 -1695 ((-112) |t#4| $)) (-15 -4121 ((-112) |t#4| $)) (-15 -4265 ((-112) $ (-1 (-112) |t#4| (-644 |t#4|)))) (-15 -2219 ((-112) $)) (-15 -1695 ((-112) $)) (-15 -4121 ((-112) $)) (-15 -1838 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3451 ((-644 |t#4|) (-644 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -1922 (|t#4| |t#4| $)) (-15 -3869 (|t#4| |t#4| $)) (-15 -3317 (|t#4| |t#4| $)) (-15 -3358 (|t#4| |t#4| $)) (-15 -4024 ($ $)) (-15 -3326 (|t#4| |t#4| $)) (-15 -3295 ((-644 $) (-644 |t#4|))) (-15 -1416 ((-644 (-2 (|:| -1637 $) (|:| -3516 (-644 |t#4|)))) (-644 |t#4|))) (-15 -4080 ((-3 |t#4| "failed") $)) (-15 -2651 ((-3 |t#4| "failed") $)) (-15 -4091 ((-3 $ "failed") $)) (-15 -4067 ((-644 |t#3|) $)) (-15 -3132 ((-112) |t#3| $)) (-15 -3543 ((-3 |t#4| "failed") $ |t#3|)) (-15 -2293 ((-3 $ "failed") $ |t#4|)) (-15 -2050 ($ $ |t#4|)) (IF (|has| |t#3| (-370)) (-15 -2780 ((-771) $)) |%noBranch|))) +(((-34) . T) ((-102) . T) ((-613 (-644 |#4|)) . T) ((-613 (-862)) . T) ((-151 |#4|) . T) ((-614 (-538)) |has| |#4| (-614 (-538))) ((-310 |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))) ((-491 |#4|) . T) ((-516 |#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))) ((-976 |#1| |#2| |#3| |#4|) . T) ((-1099) . T) ((-1214) . T)) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-2485 (((-644 (-1175)) $) NIL)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-3087 (($ $) NIL (|has| |#1| (-558)))) (-1716 (((-112) $) NIL (|has| |#1| (-558)))) (-3219 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3091 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3174 (((-3 $ "failed") $ $) NIL)) (-2338 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3197 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3067 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3240 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3115 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1811 (($) NIL T CONST)) (-3565 (($ $) NIL)) (-3757 (((-3 $ "failed") $) NIL)) (-2388 (((-952 |#1|) $ (-771)) 20) (((-952 |#1|) $ (-771) (-771)) NIL)) (-3088 (((-112) $) NIL)) (-2964 (($) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1802 (((-771) $ (-1175)) NIL) (((-771) $ (-1175) (-771)) NIL)) (-2264 (((-112) $) NIL)) (-3146 (($ $ (-566)) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3989 (((-112) $) NIL)) (-2463 (($ $ (-644 (-1175)) (-644 (-533 (-1175)))) NIL) (($ $ (-1175) (-533 (-1175))) NIL) (($ |#1| (-533 (-1175))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL)) (-3080 (($ (-1 |#1| |#1|) $) NIL)) (-3676 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2608 (($ $) NIL)) (-2622 ((|#1| $) NIL)) (-3151 (((-1157) $) NIL)) (-2390 (($ $ (-1175)) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-1175) |#1|) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4059 (((-1119) $) NIL)) (-2668 (($ (-1 $) (-1175) |#1|) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2050 (($ $ (-771)) NIL)) (-2976 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-3571 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3297 (($ $ (-1175) $) NIL) (($ $ (-644 (-1175)) (-644 $)) NIL) (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL)) (-3526 (($ $ (-1175)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL)) (-1630 (((-533 (-1175)) $) NIL)) (-3250 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3126 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3227 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3105 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3207 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3079 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4122 (($ $) NIL)) (-2479 (((-862) $) NIL) (($ (-566)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ $) NIL (|has| |#1| (-558))) (($ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ (-1175)) NIL) (($ (-952 |#1|)) NIL)) (-3025 ((|#1| $ (-533 (-1175))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL) (((-952 |#1|) $ (-771)) NIL)) (-2645 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1558 (((-771)) NIL T CONST)) (-3900 (((-112) $ $) NIL)) (-3285 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3157 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1333 (((-112) $ $) NIL (|has| |#1| (-558)))) (-3260 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3135 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3309 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3179 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1861 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3190 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3299 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3168 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3273 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3148 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2446 (($) NIL T CONST)) (-2459 (($) NIL T CONST)) (-2834 (($ $ (-1175)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL)) (-2952 (((-112) $ $) NIL)) (-3077 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1208 |#1|) (-13 (-740 |#1| (-1175)) (-10 -8 (-15 -3025 ((-952 |#1|) $ (-771))) (-15 -2479 ($ (-1175))) (-15 -2479 ($ (-952 |#1|))) (IF (|has| |#1| (-38 (-409 (-566)))) (PROGN (-15 -2390 ($ $ (-1175) |#1|)) (-15 -2668 ($ (-1 $) (-1175) |#1|))) |%noBranch|))) (-1049)) (T -1208)) +((-3025 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-5 *2 (-952 *4)) (-5 *1 (-1208 *4)) (-4 *4 (-1049)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1208 *3)) (-4 *3 (-1049)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-952 *3)) (-4 *3 (-1049)) (-5 *1 (-1208 *3)))) (-2390 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *1 (-1208 *3)) (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)))) (-2668 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1208 *4))) (-5 *3 (-1175)) (-5 *1 (-1208 *4)) (-4 *4 (-38 (-409 (-566)))) (-4 *4 (-1049))))) +(-13 (-740 |#1| (-1175)) (-10 -8 (-15 -3025 ((-952 |#1|) $ (-771))) (-15 -2479 ($ (-1175))) (-15 -2479 ($ (-952 |#1|))) (IF (|has| |#1| (-38 (-409 (-566)))) (PROGN (-15 -2390 ($ $ (-1175) |#1|)) (-15 -2668 ($ (-1 $) (-1175) |#1|))) |%noBranch|))) +((-1722 (($ |#1| (-644 (-644 (-943 (-225)))) (-112)) 19)) (-2099 (((-112) $ (-112)) 18)) (-4156 (((-112) $) 17)) (-4182 (((-644 (-644 (-943 (-225)))) $) 13)) (-1501 ((|#1| $) 8)) (-3809 (((-112) $) 15))) +(((-1209 |#1|) (-10 -8 (-15 -1501 (|#1| $)) (-15 -4182 ((-644 (-644 (-943 (-225)))) $)) (-15 -3809 ((-112) $)) (-15 -4156 ((-112) $)) (-15 -2099 ((-112) $ (-112))) (-15 -1722 ($ |#1| (-644 (-644 (-943 (-225)))) (-112)))) (-974)) (T -1209)) +((-1722 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-644 (-644 (-943 (-225))))) (-5 *4 (-112)) (-5 *1 (-1209 *2)) (-4 *2 (-974)))) (-2099 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1209 *3)) (-4 *3 (-974)))) (-4156 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1209 *3)) (-4 *3 (-974)))) (-3809 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1209 *3)) (-4 *3 (-974)))) (-4182 (*1 *2 *1) (-12 (-5 *2 (-644 (-644 (-943 (-225))))) (-5 *1 (-1209 *3)) (-4 *3 (-974)))) (-1501 (*1 *2 *1) (-12 (-5 *1 (-1209 *2)) (-4 *2 (-974))))) +(-10 -8 (-15 -1501 (|#1| $)) (-15 -4182 ((-644 (-644 (-943 (-225)))) $)) (-15 -3809 ((-112) $)) (-15 -4156 ((-112) $)) (-15 -2099 ((-112) $ (-112))) (-15 -1722 ($ |#1| (-644 (-644 (-943 (-225)))) (-112)))) +((-2680 (((-943 (-225)) (-943 (-225))) 31)) (-1848 (((-943 (-225)) (-225) (-225) (-225) (-225)) 10)) (-3654 (((-644 (-943 (-225))) (-943 (-225)) (-943 (-225)) (-943 (-225)) (-225) (-644 (-644 (-225)))) 60)) (-2555 (((-225) (-943 (-225)) (-943 (-225))) 27)) (-2676 (((-943 (-225)) (-943 (-225)) (-943 (-225))) 28)) (-3163 (((-644 (-644 (-225))) (-566)) 48)) (-3065 (((-943 (-225)) (-943 (-225)) (-943 (-225))) 26)) (-3052 (((-943 (-225)) (-943 (-225)) (-943 (-225))) 24)) (* (((-943 (-225)) (-225) (-943 (-225))) 22))) +(((-1210) (-10 -7 (-15 -1848 ((-943 (-225)) (-225) (-225) (-225) (-225))) (-15 * ((-943 (-225)) (-225) (-943 (-225)))) (-15 -3052 ((-943 (-225)) (-943 (-225)) (-943 (-225)))) (-15 -3065 ((-943 (-225)) (-943 (-225)) (-943 (-225)))) (-15 -2555 ((-225) (-943 (-225)) (-943 (-225)))) (-15 -2676 ((-943 (-225)) (-943 (-225)) (-943 (-225)))) (-15 -2680 ((-943 (-225)) (-943 (-225)))) (-15 -3163 ((-644 (-644 (-225))) (-566))) (-15 -3654 ((-644 (-943 (-225))) (-943 (-225)) (-943 (-225)) (-943 (-225)) (-225) (-644 (-644 (-225))))))) (T -1210)) +((-3654 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-644 (-644 (-225)))) (-5 *4 (-225)) (-5 *2 (-644 (-943 *4))) (-5 *1 (-1210)) (-5 *3 (-943 *4)))) (-3163 (*1 *2 *3) (-12 (-5 *3 (-566)) (-5 *2 (-644 (-644 (-225)))) (-5 *1 (-1210)))) (-2680 (*1 *2 *2) (-12 (-5 *2 (-943 (-225))) (-5 *1 (-1210)))) (-2676 (*1 *2 *2 *2) (-12 (-5 *2 (-943 (-225))) (-5 *1 (-1210)))) (-2555 (*1 *2 *3 *3) (-12 (-5 *3 (-943 (-225))) (-5 *2 (-225)) (-5 *1 (-1210)))) (-3065 (*1 *2 *2 *2) (-12 (-5 *2 (-943 (-225))) (-5 *1 (-1210)))) (-3052 (*1 *2 *2 *2) (-12 (-5 *2 (-943 (-225))) (-5 *1 (-1210)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-943 (-225))) (-5 *3 (-225)) (-5 *1 (-1210)))) (-1848 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-943 (-225))) (-5 *1 (-1210)) (-5 *3 (-225))))) +(-10 -7 (-15 -1848 ((-943 (-225)) (-225) (-225) (-225) (-225))) (-15 * ((-943 (-225)) (-225) (-943 (-225)))) (-15 -3052 ((-943 (-225)) (-943 (-225)) (-943 (-225)))) (-15 -3065 ((-943 (-225)) (-943 (-225)) (-943 (-225)))) (-15 -2555 ((-225) (-943 (-225)) (-943 (-225)))) (-15 -2676 ((-943 (-225)) (-943 (-225)) (-943 (-225)))) (-15 -2680 ((-943 (-225)) (-943 (-225)))) (-15 -3163 ((-644 (-644 (-225))) (-566))) (-15 -3654 ((-644 (-943 (-225))) (-943 (-225)) (-943 (-225)) (-943 (-225)) (-225) (-644 (-644 (-225)))))) +((-2986 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3543 ((|#1| $ (-771)) 18)) (-4332 (((-771) $) 13)) (-3151 (((-1157) $) NIL (|has| |#1| (-1099)))) (-4059 (((-1119) $) NIL (|has| |#1| (-1099)))) (-2479 (((-958 |#1|) $) 12) (($ (-958 |#1|)) 11) (((-862) $) 29 (|has| |#1| (-613 (-862))))) (-3900 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2952 (((-112) $ $) 22 (|has| |#1| (-1099))))) +(((-1211 |#1|) (-13 (-492 (-958 |#1|)) (-10 -8 (-15 -3543 (|#1| $ (-771))) (-15 -4332 ((-771) $)) (IF (|has| |#1| (-613 (-862))) (-6 (-613 (-862))) |%noBranch|) (IF (|has| |#1| (-1099)) (-6 (-1099)) |%noBranch|))) (-1214)) (T -1211)) +((-3543 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-5 *1 (-1211 *2)) (-4 *2 (-1214)))) (-4332 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-1211 *3)) (-4 *3 (-1214))))) +(-13 (-492 (-958 |#1|)) (-10 -8 (-15 -3543 (|#1| $ (-771))) (-15 -4332 ((-771) $)) (IF (|has| |#1| (-613 (-862))) (-6 (-613 (-862))) |%noBranch|) (IF (|has| |#1| (-1099)) (-6 (-1099)) |%noBranch|))) +((-2049 (((-420 (-1171 (-1171 |#1|))) (-1171 (-1171 |#1|)) (-566)) 94)) (-1781 (((-420 (-1171 (-1171 |#1|))) (-1171 (-1171 |#1|))) 86)) (-2212 (((-420 (-1171 (-1171 |#1|))) (-1171 (-1171 |#1|))) 70))) +(((-1212 |#1|) (-10 -7 (-15 -1781 ((-420 (-1171 (-1171 |#1|))) (-1171 (-1171 |#1|)))) (-15 -2212 ((-420 (-1171 (-1171 |#1|))) (-1171 (-1171 |#1|)))) (-15 -2049 ((-420 (-1171 (-1171 |#1|))) (-1171 (-1171 |#1|)) (-566)))) (-351)) (T -1212)) +((-2049 (*1 *2 *3 *4) (-12 (-5 *4 (-566)) (-4 *5 (-351)) (-5 *2 (-420 (-1171 (-1171 *5)))) (-5 *1 (-1212 *5)) (-5 *3 (-1171 (-1171 *5))))) (-2212 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-420 (-1171 (-1171 *4)))) (-5 *1 (-1212 *4)) (-5 *3 (-1171 (-1171 *4))))) (-1781 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-420 (-1171 (-1171 *4)))) (-5 *1 (-1212 *4)) (-5 *3 (-1171 (-1171 *4)))))) +(-10 -7 (-15 -1781 ((-420 (-1171 (-1171 |#1|))) (-1171 (-1171 |#1|)))) (-15 -2212 ((-420 (-1171 (-1171 |#1|))) (-1171 (-1171 |#1|)))) (-15 -2049 ((-420 (-1171 (-1171 |#1|))) (-1171 (-1171 |#1|)) (-566)))) +((-2986 (((-112) $ $) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) 9) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-1213) (-1082)) (T -1213)) +NIL +(-1082) +NIL +(((-1214) (-140)) (T -1214)) +NIL +(-13 (-10 -7 (-6 -3620))) +((-4120 (((-112)) 18)) (-4373 (((-1269) (-644 |#1|) (-644 |#1|)) 22) (((-1269) (-644 |#1|)) 23)) (-2756 (((-112) |#1| |#1|) 38 (|has| |#1| (-850)))) (-4106 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 30) (((-3 (-112) "failed") |#1| |#1|) 28)) (-1642 ((|#1| (-644 |#1|)) 39 (|has| |#1| (-850))) ((|#1| (-644 |#1|) (-1 (-112) |#1| |#1|)) 33)) (-4028 (((-2 (|:| -3633 (-644 |#1|)) (|:| -4346 (-644 |#1|)))) 20))) +(((-1215 |#1|) (-10 -7 (-15 -4373 ((-1269) (-644 |#1|))) (-15 -4373 ((-1269) (-644 |#1|) (-644 |#1|))) (-15 -4028 ((-2 (|:| -3633 (-644 |#1|)) (|:| -4346 (-644 |#1|))))) (-15 -4106 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4106 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -1642 (|#1| (-644 |#1|) (-1 (-112) |#1| |#1|))) (-15 -4120 ((-112))) (IF (|has| |#1| (-850)) (PROGN (-15 -1642 (|#1| (-644 |#1|))) (-15 -2756 ((-112) |#1| |#1|))) |%noBranch|)) (-1099)) (T -1215)) +((-2756 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1215 *3)) (-4 *3 (-850)) (-4 *3 (-1099)))) (-1642 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-1099)) (-4 *2 (-850)) (-5 *1 (-1215 *2)))) (-4120 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1215 *3)) (-4 *3 (-1099)))) (-1642 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1215 *2)) (-4 *2 (-1099)))) (-4106 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1099)) (-5 *2 (-112)) (-5 *1 (-1215 *3)))) (-4106 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1215 *3)) (-4 *3 (-1099)))) (-4028 (*1 *2) (-12 (-5 *2 (-2 (|:| -3633 (-644 *3)) (|:| -4346 (-644 *3)))) (-5 *1 (-1215 *3)) (-4 *3 (-1099)))) (-4373 (*1 *2 *3 *3) (-12 (-5 *3 (-644 *4)) (-4 *4 (-1099)) (-5 *2 (-1269)) (-5 *1 (-1215 *4)))) (-4373 (*1 *2 *3) (-12 (-5 *3 (-644 *4)) (-4 *4 (-1099)) (-5 *2 (-1269)) (-5 *1 (-1215 *4))))) +(-10 -7 (-15 -4373 ((-1269) (-644 |#1|))) (-15 -4373 ((-1269) (-644 |#1|) (-644 |#1|))) (-15 -4028 ((-2 (|:| -3633 (-644 |#1|)) (|:| -4346 (-644 |#1|))))) (-15 -4106 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4106 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -1642 (|#1| (-644 |#1|) (-1 (-112) |#1| |#1|))) (-15 -4120 ((-112))) (IF (|has| |#1| (-850)) (PROGN (-15 -1642 (|#1| (-644 |#1|))) (-15 -2756 ((-112) |#1| |#1|))) |%noBranch|)) +((-2549 (((-1269) (-644 (-1175)) (-644 (-1175))) 14) (((-1269) (-644 (-1175))) 12)) (-4133 (((-1269)) 16)) (-1703 (((-2 (|:| -4346 (-644 (-1175))) (|:| -3633 (-644 (-1175))))) 20))) +(((-1216) (-10 -7 (-15 -2549 ((-1269) (-644 (-1175)))) (-15 -2549 ((-1269) (-644 (-1175)) (-644 (-1175)))) (-15 -1703 ((-2 (|:| -4346 (-644 (-1175))) (|:| -3633 (-644 (-1175)))))) (-15 -4133 ((-1269))))) (T -1216)) +((-4133 (*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-1216)))) (-1703 (*1 *2) (-12 (-5 *2 (-2 (|:| -4346 (-644 (-1175))) (|:| -3633 (-644 (-1175))))) (-5 *1 (-1216)))) (-2549 (*1 *2 *3 *3) (-12 (-5 *3 (-644 (-1175))) (-5 *2 (-1269)) (-5 *1 (-1216)))) (-2549 (*1 *2 *3) (-12 (-5 *3 (-644 (-1175))) (-5 *2 (-1269)) (-5 *1 (-1216))))) +(-10 -7 (-15 -2549 ((-1269) (-644 (-1175)))) (-15 -2549 ((-1269) (-644 (-1175)) (-644 (-1175)))) (-15 -1703 ((-2 (|:| -4346 (-644 (-1175))) (|:| -3633 (-644 (-1175)))))) (-15 -4133 ((-1269)))) +((-3980 (($ $) 17)) (-4188 (((-112) $) 28))) +(((-1217 |#1|) (-10 -8 (-15 -3980 (|#1| |#1|)) (-15 -4188 ((-112) |#1|))) (-1218)) (T -1217)) +NIL +(-10 -8 (-15 -3980 (|#1| |#1|)) (-15 -4188 ((-112) |#1|))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) 47)) (-3087 (($ $) 46)) (-1716 (((-112) $) 44)) (-3174 (((-3 $ "failed") $ $) 20)) (-3980 (($ $) 57)) (-3348 (((-420 $) $) 58)) (-1811 (($) 18 T CONST)) (-3757 (((-3 $ "failed") $) 37)) (-4188 (((-112) $) 59)) (-2264 (((-112) $) 35)) (-2120 (($ $ $) 52) (($ (-644 $)) 51)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-2162 (($ $ $) 54) (($ (-644 $)) 53)) (-2325 (((-420 $) $) 56)) (-2976 (((-3 $ "failed") $ $) 48)) (-2479 (((-862) $) 12) (($ (-566)) 33) (($ $) 49)) (-1558 (((-771)) 32 T CONST)) (-3900 (((-112) $ $) 9)) (-1333 (((-112) $ $) 45)) (-2446 (($) 19 T CONST)) (-2459 (($) 34 T CONST)) (-2952 (((-112) $ $) 6)) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27))) +(((-1218) (-140)) (T -1218)) +((-4188 (*1 *2 *1) (-12 (-4 *1 (-1218)) (-5 *2 (-112)))) (-3348 (*1 *2 *1) (-12 (-5 *2 (-420 *1)) (-4 *1 (-1218)))) (-3980 (*1 *1 *1) (-4 *1 (-1218))) (-2325 (*1 *2 *1) (-12 (-5 *2 (-420 *1)) (-4 *1 (-1218))))) +(-13 (-454) (-10 -8 (-15 -4188 ((-112) $)) (-15 -3348 ((-420 $) $)) (-15 -3980 ($ $)) (-15 -2325 ((-420 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-616 (-566)) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-291) . T) ((-454) . T) ((-558) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 $) . T) ((-640 $) . T) ((-717 $) . T) ((-726) . T) ((-1051 $) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) +((-2986 (((-112) $ $) NIL)) (-4049 (((-771)) NIL)) (-1811 (($) NIL T CONST)) (-1415 (($) NIL)) (-1920 (($ $ $) NIL) (($) NIL T CONST)) (-3038 (($ $ $) NIL) (($) NIL T CONST)) (-4051 (((-921) $) NIL)) (-3151 (((-1157) $) NIL)) (-2104 (($ (-921)) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) NIL)) (-2324 (($ $ $) NIL)) (-2310 (($ $ $) NIL)) (-3900 (((-112) $ $) NIL)) (-3019 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3004 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL))) +(((-1219) (-13 (-844) (-10 -8 (-15 -2310 ($ $ $)) (-15 -2324 ($ $ $)) (-15 -1811 ($) -1573)))) (T -1219)) +((-2310 (*1 *1 *1 *1) (-5 *1 (-1219))) (-2324 (*1 *1 *1 *1) (-5 *1 (-1219))) (-1811 (*1 *1) (-5 *1 (-1219)))) +(-13 (-844) (-10 -8 (-15 -2310 ($ $ $)) (-15 -2324 ($ $ $)) (-15 -1811 ($) -1573))) +((|NonNegativeInteger|) (NOT (> (INTEGER-LENGTH |#1|) 16))) +((-2986 (((-112) $ $) NIL)) (-4049 (((-771)) NIL)) (-1811 (($) NIL T CONST)) (-1415 (($) NIL)) (-1920 (($ $ $) NIL) (($) NIL T CONST)) (-3038 (($ $ $) NIL) (($) NIL T CONST)) (-4051 (((-921) $) NIL)) (-3151 (((-1157) $) NIL)) (-2104 (($ (-921)) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) NIL)) (-2324 (($ $ $) NIL)) (-2310 (($ $ $) NIL)) (-3900 (((-112) $ $) NIL)) (-3019 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3004 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL))) +(((-1220) (-13 (-844) (-10 -8 (-15 -2310 ($ $ $)) (-15 -2324 ($ $ $)) (-15 -1811 ($) -1573)))) (T -1220)) +((-2310 (*1 *1 *1 *1) (-5 *1 (-1220))) (-2324 (*1 *1 *1 *1) (-5 *1 (-1220))) (-1811 (*1 *1) (-5 *1 (-1220)))) +(-13 (-844) (-10 -8 (-15 -2310 ($ $ $)) (-15 -2324 ($ $ $)) (-15 -1811 ($) -1573))) +((|NonNegativeInteger|) (NOT (> (INTEGER-LENGTH |#1|) 32))) +((-2986 (((-112) $ $) NIL)) (-4049 (((-771)) NIL)) (-1811 (($) NIL T CONST)) (-1415 (($) NIL)) (-1920 (($ $ $) NIL) (($) NIL T CONST)) (-3038 (($ $ $) NIL) (($) NIL T CONST)) (-4051 (((-921) $) NIL)) (-3151 (((-1157) $) NIL)) (-2104 (($ (-921)) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) NIL)) (-2324 (($ $ $) NIL)) (-2310 (($ $ $) NIL)) (-3900 (((-112) $ $) NIL)) (-3019 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3004 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL))) +(((-1221) (-13 (-844) (-10 -8 (-15 -2310 ($ $ $)) (-15 -2324 ($ $ $)) (-15 -1811 ($) -1573)))) (T -1221)) +((-2310 (*1 *1 *1 *1) (-5 *1 (-1221))) (-2324 (*1 *1 *1 *1) (-5 *1 (-1221))) (-1811 (*1 *1) (-5 *1 (-1221)))) +(-13 (-844) (-10 -8 (-15 -2310 ($ $ $)) (-15 -2324 ($ $ $)) (-15 -1811 ($) -1573))) +((|NonNegativeInteger|) (NOT (> (INTEGER-LENGTH |#1|) 64))) +((-2986 (((-112) $ $) NIL)) (-4049 (((-771)) NIL)) (-1811 (($) NIL T CONST)) (-1415 (($) NIL)) (-1920 (($ $ $) NIL) (($) NIL T CONST)) (-3038 (($ $ $) NIL) (($) NIL T CONST)) (-4051 (((-921) $) NIL)) (-3151 (((-1157) $) NIL)) (-2104 (($ (-921)) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) NIL)) (-2324 (($ $ $) NIL)) (-2310 (($ $ $) NIL)) (-3900 (((-112) $ $) NIL)) (-3019 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL)) (-3004 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL))) +(((-1222) (-13 (-844) (-10 -8 (-15 -2310 ($ $ $)) (-15 -2324 ($ $ $)) (-15 -1811 ($) -1573)))) (T -1222)) +((-2310 (*1 *1 *1 *1) (-5 *1 (-1222))) (-2324 (*1 *1 *1 *1) (-5 *1 (-1222))) (-1811 (*1 *1) (-5 *1 (-1222)))) +(-13 (-844) (-10 -8 (-15 -2310 ($ $ $)) (-15 -2324 ($ $ $)) (-15 -1811 ($) -1573))) +((|NonNegativeInteger|) (NOT (> (INTEGER-LENGTH |#1|) 8))) +((-3080 (((-1228 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1228 |#1| |#3| |#5|)) 23))) +(((-1223 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3080 ((-1228 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1228 |#1| |#3| |#5|)))) (-1049) (-1049) (-1175) (-1175) |#1| |#2|) (T -1223)) +((-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1228 *5 *7 *9)) (-4 *5 (-1049)) (-4 *6 (-1049)) (-14 *7 (-1175)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1228 *6 *8 *10)) (-5 *1 (-1223 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1175))))) +(-10 -7 (-15 -3080 ((-1228 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1228 |#1| |#3| |#5|)))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-2485 (((-644 (-1081)) $) 86)) (-1338 (((-1175) $) 115)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) 63 (|has| |#1| (-558)))) (-3087 (($ $) 64 (|has| |#1| (-558)))) (-1716 (((-112) $) 66 (|has| |#1| (-558)))) (-3175 (($ $ (-566)) 110) (($ $ (-566) (-566)) 109)) (-1723 (((-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|))) $) 117)) (-3219 (($ $) 147 (|has| |#1| (-38 (-409 (-566)))))) (-3091 (($ $) 130 (|has| |#1| (-38 (-409 (-566)))))) (-3174 (((-3 $ "failed") $ $) 20)) (-3980 (($ $) 174 (|has| |#1| (-365)))) (-3348 (((-420 $) $) 175 (|has| |#1| (-365)))) (-2338 (($ $) 129 (|has| |#1| (-38 (-409 (-566)))))) (-2761 (((-112) $ $) 165 (|has| |#1| (-365)))) (-3197 (($ $) 146 (|has| |#1| (-38 (-409 (-566)))))) (-3067 (($ $) 131 (|has| |#1| (-38 (-409 (-566)))))) (-1882 (($ (-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|)))) 185)) (-3240 (($ $) 145 (|has| |#1| (-38 (-409 (-566)))))) (-3115 (($ $) 132 (|has| |#1| (-38 (-409 (-566)))))) (-1811 (($) 18 T CONST)) (-2925 (($ $ $) 169 (|has| |#1| (-365)))) (-3565 (($ $) 72)) (-3757 (((-3 $ "failed") $) 37)) (-3947 (((-409 (-952 |#1|)) $ (-566)) 183 (|has| |#1| (-558))) (((-409 (-952 |#1|)) $ (-566) (-566)) 182 (|has| |#1| (-558)))) (-2937 (($ $ $) 168 (|has| |#1| (-365)))) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) 163 (|has| |#1| (-365)))) (-4188 (((-112) $) 176 (|has| |#1| (-365)))) (-3088 (((-112) $) 85)) (-2964 (($) 157 (|has| |#1| (-38 (-409 (-566)))))) (-1802 (((-566) $) 112) (((-566) $ (-566)) 111)) (-2264 (((-112) $) 35)) (-3146 (($ $ (-566)) 128 (|has| |#1| (-38 (-409 (-566)))))) (-2383 (($ $ (-921)) 113)) (-2278 (($ (-1 |#1| (-566)) $) 184)) (-2495 (((-3 (-644 $) "failed") (-644 $) $) 172 (|has| |#1| (-365)))) (-3989 (((-112) $) 74)) (-2463 (($ |#1| (-566)) 73) (($ $ (-1081) (-566)) 88) (($ $ (-644 (-1081)) (-644 (-566))) 87)) (-3080 (($ (-1 |#1| |#1|) $) 75)) (-3676 (($ $) 154 (|has| |#1| (-38 (-409 (-566)))))) (-2608 (($ $) 77)) (-2622 ((|#1| $) 78)) (-2120 (($ (-644 $)) 161 (|has| |#1| (-365))) (($ $ $) 160 (|has| |#1| (-365)))) (-3151 (((-1157) $) 10)) (-2577 (($ $) 177 (|has| |#1| (-365)))) (-2390 (($ $) 181 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-1175)) 180 (-2809 (-12 (|has| |#1| (-29 (-566))) (|has| |#1| (-959)) (|has| |#1| (-1199)) (|has| |#1| (-38 (-409 (-566))))) (-12 (|has| |#1| (-15 -2485 ((-644 (-1175)) |#1|))) (|has| |#1| (-15 -2390 (|#1| |#1| (-1175)))) (|has| |#1| (-38 (-409 (-566)))))))) (-4059 (((-1119) $) 11)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) 162 (|has| |#1| (-365)))) (-2162 (($ (-644 $)) 159 (|has| |#1| (-365))) (($ $ $) 158 (|has| |#1| (-365)))) (-2325 (((-420 $) $) 173 (|has| |#1| (-365)))) (-2585 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) 170 (|has| |#1| (-365)))) (-2050 (($ $ (-566)) 107)) (-2976 (((-3 $ "failed") $ $) 62 (|has| |#1| (-558)))) (-2840 (((-3 (-644 $) "failed") (-644 $) $) 164 (|has| |#1| (-365)))) (-3571 (($ $) 155 (|has| |#1| (-38 (-409 (-566)))))) (-3297 (((-1155 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-566)))))) (-1383 (((-771) $) 166 (|has| |#1| (-365)))) (-4376 ((|#1| $ (-566)) 116) (($ $ $) 93 (|has| (-566) (-1111)))) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) 167 (|has| |#1| (-365)))) (-3526 (($ $ (-644 (-1175)) (-644 (-771))) 101 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $ (-1175) (-771)) 100 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $ (-644 (-1175))) 99 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $ (-1175)) 98 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $ (-771)) 96 (|has| |#1| (-15 * (|#1| (-566) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (-1630 (((-566) $) 76)) (-3250 (($ $) 144 (|has| |#1| (-38 (-409 (-566)))))) (-3126 (($ $) 133 (|has| |#1| (-38 (-409 (-566)))))) (-3227 (($ $) 143 (|has| |#1| (-38 (-409 (-566)))))) (-3105 (($ $) 134 (|has| |#1| (-38 (-409 (-566)))))) (-3207 (($ $) 142 (|has| |#1| (-38 (-409 (-566)))))) (-3079 (($ $) 135 (|has| |#1| (-38 (-409 (-566)))))) (-4122 (($ $) 84)) (-2479 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 59 (|has| |#1| (-172))) (($ (-409 (-566))) 69 (|has| |#1| (-38 (-409 (-566))))) (($ $) 61 (|has| |#1| (-558)))) (-3025 ((|#1| $ (-566)) 71)) (-2645 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-1558 (((-771)) 32 T CONST)) (-2316 ((|#1| $) 114)) (-3900 (((-112) $ $) 9)) (-3285 (($ $) 153 (|has| |#1| (-38 (-409 (-566)))))) (-3157 (($ $) 141 (|has| |#1| (-38 (-409 (-566)))))) (-1333 (((-112) $ $) 65 (|has| |#1| (-558)))) (-3260 (($ $) 152 (|has| |#1| (-38 (-409 (-566)))))) (-3135 (($ $) 140 (|has| |#1| (-38 (-409 (-566)))))) (-3309 (($ $) 151 (|has| |#1| (-38 (-409 (-566)))))) (-3179 (($ $) 139 (|has| |#1| (-38 (-409 (-566)))))) (-3649 ((|#1| $ (-566)) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-566)))) (|has| |#1| (-15 -2479 (|#1| (-1175))))))) (-1861 (($ $) 150 (|has| |#1| (-38 (-409 (-566)))))) (-3190 (($ $) 138 (|has| |#1| (-38 (-409 (-566)))))) (-3299 (($ $) 149 (|has| |#1| (-38 (-409 (-566)))))) (-3168 (($ $) 137 (|has| |#1| (-38 (-409 (-566)))))) (-3273 (($ $) 148 (|has| |#1| (-38 (-409 (-566)))))) (-3148 (($ $) 136 (|has| |#1| (-38 (-409 (-566)))))) (-2446 (($) 19 T CONST)) (-2459 (($) 34 T CONST)) (-2834 (($ $ (-644 (-1175)) (-644 (-771))) 105 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $ (-1175) (-771)) 104 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $ (-644 (-1175))) 103 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $ (-1175)) 102 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $ (-771)) 97 (|has| |#1| (-15 * (|#1| (-566) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (-2952 (((-112) $ $) 6)) (-3077 (($ $ |#1|) 70 (|has| |#1| (-365))) (($ $ $) 179 (|has| |#1| (-365)))) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 178 (|has| |#1| (-365))) (($ $ $) 156 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 127 (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-409 (-566)) $) 68 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 67 (|has| |#1| (-38 (-409 (-566))))))) +(((-1224 |#1|) (-140) (-1049)) (T -1224)) +((-1882 (*1 *1 *2) (-12 (-5 *2 (-1155 (-2 (|:| |k| (-566)) (|:| |c| *3)))) (-4 *3 (-1049)) (-4 *1 (-1224 *3)))) (-2278 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-566))) (-4 *1 (-1224 *3)) (-4 *3 (-1049)))) (-3947 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-4 *1 (-1224 *4)) (-4 *4 (-1049)) (-4 *4 (-558)) (-5 *2 (-409 (-952 *4))))) (-3947 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-566)) (-4 *1 (-1224 *4)) (-4 *4 (-1049)) (-4 *4 (-558)) (-5 *2 (-409 (-952 *4))))) (-2390 (*1 *1 *1) (-12 (-4 *1 (-1224 *2)) (-4 *2 (-1049)) (-4 *2 (-38 (-409 (-566)))))) (-2390 (*1 *1 *1 *2) (-2809 (-12 (-5 *2 (-1175)) (-4 *1 (-1224 *3)) (-4 *3 (-1049)) (-12 (-4 *3 (-29 (-566))) (-4 *3 (-959)) (-4 *3 (-1199)) (-4 *3 (-38 (-409 (-566)))))) (-12 (-5 *2 (-1175)) (-4 *1 (-1224 *3)) (-4 *3 (-1049)) (-12 (|has| *3 (-15 -2485 ((-644 *2) *3))) (|has| *3 (-15 -2390 (*3 *3 *2))) (-4 *3 (-38 (-409 (-566))))))))) +(-13 (-1242 |t#1| (-566)) (-10 -8 (-15 -1882 ($ (-1155 (-2 (|:| |k| (-566)) (|:| |c| |t#1|))))) (-15 -2278 ($ (-1 |t#1| (-566)) $)) (IF (|has| |t#1| (-558)) (PROGN (-15 -3947 ((-409 (-952 |t#1|)) $ (-566))) (-15 -3947 ((-409 (-952 |t#1|)) $ (-566) (-566)))) |%noBranch|) (IF (|has| |t#1| (-38 (-409 (-566)))) (PROGN (-15 -2390 ($ $)) (IF (|has| |t#1| (-15 -2390 (|t#1| |t#1| (-1175)))) (IF (|has| |t#1| (-15 -2485 ((-644 (-1175)) |t#1|))) (-15 -2390 ($ $ (-1175))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1199)) (IF (|has| |t#1| (-959)) (IF (|has| |t#1| (-29 (-566))) (-15 -2390 ($ $ (-1175))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1002)) (-6 (-1199))) |%noBranch|) (IF (|has| |t#1| (-365)) (-6 (-365)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-566)) . T) ((-25) . T) ((-38 #1=(-409 (-566))) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-35) |has| |#1| (-38 (-409 (-566)))) ((-95) |has| |#1| (-38 (-409 (-566)))) ((-102) . T) ((-111 #1# #1#) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2809 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #1#) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-616 (-566)) . T) ((-616 |#1|) |has| |#1| (-172)) ((-616 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-613 (-862)) . T) ((-172) -2809 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-566) |#1|))) ((-243) |has| |#1| (-365)) ((-285) |has| |#1| (-38 (-409 (-566)))) ((-287 $ $) |has| (-566) (-1111)) ((-291) -2809 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-308) |has| |#1| (-365)) ((-365) |has| |#1| (-365)) ((-454) |has| |#1| (-365)) ((-495) |has| |#1| (-38 (-409 (-566)))) ((-558) -2809 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-646 #1#) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #1#) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #1#) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-640 |#1|) |has| |#1| (-172)) ((-640 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-717 #1#) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-717 |#1|) |has| |#1| (-172)) ((-717 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-726) . T) ((-900 (-1175)) -12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))) ((-973 |#1| #0# (-1081)) . T) ((-920) |has| |#1| (-365)) ((-1002) |has| |#1| (-38 (-409 (-566)))) ((-1051 #1#) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-1051 |#1|) . T) ((-1051 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1056 #1#) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-1056 |#1|) . T) ((-1056 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1199) |has| |#1| (-38 (-409 (-566)))) ((-1202) |has| |#1| (-38 (-409 (-566)))) ((-1218) |has| |#1| (-365)) ((-1242 |#1| #0#) . T)) +((-2845 (((-112) $) 12)) (-2980 (((-3 |#3| "failed") $) 17) (((-3 (-1175) "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL) (((-3 (-566) "failed") $) NIL)) (-1709 ((|#3| $) 14) (((-1175) $) NIL) (((-409 (-566)) $) NIL) (((-566) $) NIL))) +(((-1225 |#1| |#2| |#3|) (-10 -8 (-15 -2980 ((-3 (-566) "failed") |#1|)) (-15 -1709 ((-566) |#1|)) (-15 -2980 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -1709 ((-409 (-566)) |#1|)) (-15 -2980 ((-3 (-1175) "failed") |#1|)) (-15 -1709 ((-1175) |#1|)) (-15 -2980 ((-3 |#3| "failed") |#1|)) (-15 -1709 (|#3| |#1|)) (-15 -2845 ((-112) |#1|))) (-1226 |#2| |#3|) (-1049) (-1255 |#2|)) (T -1225)) +NIL +(-10 -8 (-15 -2980 ((-3 (-566) "failed") |#1|)) (-15 -1709 ((-566) |#1|)) (-15 -2980 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -1709 ((-409 (-566)) |#1|)) (-15 -2980 ((-3 (-1175) "failed") |#1|)) (-15 -1709 ((-1175) |#1|)) (-15 -2980 ((-3 |#3| "failed") |#1|)) (-15 -1709 (|#3| |#1|)) (-15 -2845 ((-112) |#1|))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-2488 ((|#2| $) 242 (-2402 (|has| |#2| (-308)) (|has| |#1| (-365))))) (-2485 (((-644 (-1081)) $) 86)) (-1338 (((-1175) $) 115)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) 63 (|has| |#1| (-558)))) (-3087 (($ $) 64 (|has| |#1| (-558)))) (-1716 (((-112) $) 66 (|has| |#1| (-558)))) (-3175 (($ $ (-566)) 110) (($ $ (-566) (-566)) 109)) (-1723 (((-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|))) $) 117)) (-2297 ((|#2| $) 278)) (-4353 (((-3 |#2| "failed") $) 274)) (-2534 ((|#2| $) 275)) (-3219 (($ $) 147 (|has| |#1| (-38 (-409 (-566)))))) (-3091 (($ $) 130 (|has| |#1| (-38 (-409 (-566)))))) (-3174 (((-3 $ "failed") $ $) 20)) (-4058 (((-420 (-1171 $)) (-1171 $)) 251 (-2402 (|has| |#2| (-909)) (|has| |#1| (-365))))) (-3980 (($ $) 174 (|has| |#1| (-365)))) (-3348 (((-420 $) $) 175 (|has| |#1| (-365)))) (-2338 (($ $) 129 (|has| |#1| (-38 (-409 (-566)))))) (-4262 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) 248 (-2402 (|has| |#2| (-909)) (|has| |#1| (-365))))) (-2761 (((-112) $ $) 165 (|has| |#1| (-365)))) (-3197 (($ $) 146 (|has| |#1| (-38 (-409 (-566)))))) (-3067 (($ $) 131 (|has| |#1| (-38 (-409 (-566)))))) (-2920 (((-566) $) 260 (-2402 (|has| |#2| (-820)) (|has| |#1| (-365))))) (-1882 (($ (-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|)))) 185)) (-3240 (($ $) 145 (|has| |#1| (-38 (-409 (-566)))))) (-3115 (($ $) 132 (|has| |#1| (-38 (-409 (-566)))))) (-1811 (($) 18 T CONST)) (-2980 (((-3 |#2| "failed") $) 281) (((-3 (-566) "failed") $) 271 (-2402 (|has| |#2| (-1038 (-566))) (|has| |#1| (-365)))) (((-3 (-409 (-566)) "failed") $) 269 (-2402 (|has| |#2| (-1038 (-566))) (|has| |#1| (-365)))) (((-3 (-1175) "failed") $) 253 (-2402 (|has| |#2| (-1038 (-1175))) (|has| |#1| (-365))))) (-1709 ((|#2| $) 282) (((-566) $) 270 (-2402 (|has| |#2| (-1038 (-566))) (|has| |#1| (-365)))) (((-409 (-566)) $) 268 (-2402 (|has| |#2| (-1038 (-566))) (|has| |#1| (-365)))) (((-1175) $) 252 (-2402 (|has| |#2| (-1038 (-1175))) (|has| |#1| (-365))))) (-3967 (($ $) 277) (($ (-566) $) 276)) (-2925 (($ $ $) 169 (|has| |#1| (-365)))) (-3565 (($ $) 72)) (-2275 (((-689 |#2|) (-689 $)) 232 (|has| |#1| (-365))) (((-2 (|:| -4196 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 $) (-1264 $)) 231 (|has| |#1| (-365))) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) 230 (-2402 (|has| |#2| (-639 (-566))) (|has| |#1| (-365)))) (((-689 (-566)) (-689 $)) 229 (-2402 (|has| |#2| (-639 (-566))) (|has| |#1| (-365))))) (-3757 (((-3 $ "failed") $) 37)) (-3947 (((-409 (-952 |#1|)) $ (-566)) 183 (|has| |#1| (-558))) (((-409 (-952 |#1|)) $ (-566) (-566)) 182 (|has| |#1| (-558)))) (-1415 (($) 244 (-2402 (|has| |#2| (-547)) (|has| |#1| (-365))))) (-2937 (($ $ $) 168 (|has| |#1| (-365)))) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) 163 (|has| |#1| (-365)))) (-4188 (((-112) $) 176 (|has| |#1| (-365)))) (-2133 (((-112) $) 258 (-2402 (|has| |#2| (-820)) (|has| |#1| (-365))))) (-3088 (((-112) $) 85)) (-2964 (($) 157 (|has| |#1| (-38 (-409 (-566)))))) (-1542 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 236 (-2402 (|has| |#2| (-886 (-381))) (|has| |#1| (-365)))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 235 (-2402 (|has| |#2| (-886 (-566))) (|has| |#1| (-365))))) (-1802 (((-566) $) 112) (((-566) $ (-566)) 111)) (-2264 (((-112) $) 35)) (-1579 (($ $) 240 (|has| |#1| (-365)))) (-4157 ((|#2| $) 238 (|has| |#1| (-365)))) (-3146 (($ $ (-566)) 128 (|has| |#1| (-38 (-409 (-566)))))) (-4278 (((-3 $ "failed") $) 272 (-2402 (|has| |#2| (-1150)) (|has| |#1| (-365))))) (-3420 (((-112) $) 259 (-2402 (|has| |#2| (-820)) (|has| |#1| (-365))))) (-2383 (($ $ (-921)) 113)) (-2278 (($ (-1 |#1| (-566)) $) 184)) (-2495 (((-3 (-644 $) "failed") (-644 $) $) 172 (|has| |#1| (-365)))) (-3989 (((-112) $) 74)) (-2463 (($ |#1| (-566)) 73) (($ $ (-1081) (-566)) 88) (($ $ (-644 (-1081)) (-644 (-566))) 87)) (-1920 (($ $ $) 262 (-2402 (|has| |#2| (-850)) (|has| |#1| (-365))))) (-3038 (($ $ $) 263 (-2402 (|has| |#2| (-850)) (|has| |#1| (-365))))) (-3080 (($ (-1 |#1| |#1|) $) 75) (($ (-1 |#2| |#2|) $) 224 (|has| |#1| (-365)))) (-3676 (($ $) 154 (|has| |#1| (-38 (-409 (-566)))))) (-2608 (($ $) 77)) (-2622 ((|#1| $) 78)) (-2120 (($ (-644 $)) 161 (|has| |#1| (-365))) (($ $ $) 160 (|has| |#1| (-365)))) (-2546 (($ (-566) |#2|) 279)) (-3151 (((-1157) $) 10)) (-2577 (($ $) 177 (|has| |#1| (-365)))) (-2390 (($ $) 181 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-1175)) 180 (-2809 (-12 (|has| |#1| (-29 (-566))) (|has| |#1| (-959)) (|has| |#1| (-1199)) (|has| |#1| (-38 (-409 (-566))))) (-12 (|has| |#1| (-15 -2485 ((-644 (-1175)) |#1|))) (|has| |#1| (-15 -2390 (|#1| |#1| (-1175)))) (|has| |#1| (-38 (-409 (-566)))))))) (-3968 (($) 273 (-2402 (|has| |#2| (-1150)) (|has| |#1| (-365))) CONST)) (-4059 (((-1119) $) 11)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) 162 (|has| |#1| (-365)))) (-2162 (($ (-644 $)) 159 (|has| |#1| (-365))) (($ $ $) 158 (|has| |#1| (-365)))) (-4305 (($ $) 243 (-2402 (|has| |#2| (-308)) (|has| |#1| (-365))))) (-2001 ((|#2| $) 246 (-2402 (|has| |#2| (-547)) (|has| |#1| (-365))))) (-1500 (((-420 (-1171 $)) (-1171 $)) 249 (-2402 (|has| |#2| (-909)) (|has| |#1| (-365))))) (-3917 (((-420 (-1171 $)) (-1171 $)) 250 (-2402 (|has| |#2| (-909)) (|has| |#1| (-365))))) (-2325 (((-420 $) $) 173 (|has| |#1| (-365)))) (-2585 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) 170 (|has| |#1| (-365)))) (-2050 (($ $ (-566)) 107)) (-2976 (((-3 $ "failed") $ $) 62 (|has| |#1| (-558)))) (-2840 (((-3 (-644 $) "failed") (-644 $) $) 164 (|has| |#1| (-365)))) (-3571 (($ $) 155 (|has| |#1| (-38 (-409 (-566)))))) (-3297 (((-1155 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-566))))) (($ $ (-1175) |#2|) 223 (-2402 (|has| |#2| (-516 (-1175) |#2|)) (|has| |#1| (-365)))) (($ $ (-644 (-1175)) (-644 |#2|)) 222 (-2402 (|has| |#2| (-516 (-1175) |#2|)) (|has| |#1| (-365)))) (($ $ (-644 (-295 |#2|))) 221 (-2402 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365)))) (($ $ (-295 |#2|)) 220 (-2402 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365)))) (($ $ |#2| |#2|) 219 (-2402 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365)))) (($ $ (-644 |#2|) (-644 |#2|)) 218 (-2402 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365))))) (-1383 (((-771) $) 166 (|has| |#1| (-365)))) (-4376 ((|#1| $ (-566)) 116) (($ $ $) 93 (|has| (-566) (-1111))) (($ $ |#2|) 217 (-2402 (|has| |#2| (-287 |#2| |#2|)) (|has| |#1| (-365))))) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) 167 (|has| |#1| (-365)))) (-3526 (($ $ (-1 |#2| |#2|)) 228 (|has| |#1| (-365))) (($ $ (-1 |#2| |#2|) (-771)) 227 (|has| |#1| (-365))) (($ $ (-771)) 96 (-2809 (-2402 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $) 94 (-2809 (-2402 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $ (-644 (-1175)) (-644 (-771))) 101 (-2809 (-2402 (|has| |#2| (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-566) |#1|)))))) (($ $ (-1175) (-771)) 100 (-2809 (-2402 (|has| |#2| (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-566) |#1|)))))) (($ $ (-644 (-1175))) 99 (-2809 (-2402 (|has| |#2| (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-566) |#1|)))))) (($ $ (-1175)) 98 (-2809 (-2402 (|has| |#2| (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))))) (-1375 (($ $) 241 (|has| |#1| (-365)))) (-4167 ((|#2| $) 239 (|has| |#1| (-365)))) (-1630 (((-566) $) 76)) (-3250 (($ $) 144 (|has| |#1| (-38 (-409 (-566)))))) (-3126 (($ $) 133 (|has| |#1| (-38 (-409 (-566)))))) (-3227 (($ $) 143 (|has| |#1| (-38 (-409 (-566)))))) (-3105 (($ $) 134 (|has| |#1| (-38 (-409 (-566)))))) (-3207 (($ $) 142 (|has| |#1| (-38 (-409 (-566)))))) (-3079 (($ $) 135 (|has| |#1| (-38 (-409 (-566)))))) (-3136 (((-225) $) 257 (-2402 (|has| |#2| (-1022)) (|has| |#1| (-365)))) (((-381) $) 256 (-2402 (|has| |#2| (-1022)) (|has| |#1| (-365)))) (((-538) $) 255 (-2402 (|has| |#2| (-614 (-538))) (|has| |#1| (-365)))) (((-892 (-381)) $) 234 (-2402 (|has| |#2| (-614 (-892 (-381)))) (|has| |#1| (-365)))) (((-892 (-566)) $) 233 (-2402 (|has| |#2| (-614 (-892 (-566)))) (|has| |#1| (-365))))) (-3233 (((-3 (-1264 $) "failed") (-689 $)) 247 (-2402 (-2402 (|has| $ (-145)) (|has| |#2| (-909))) (|has| |#1| (-365))))) (-4122 (($ $) 84)) (-2479 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 59 (|has| |#1| (-172))) (($ |#2|) 280) (($ (-1175)) 254 (-2402 (|has| |#2| (-1038 (-1175))) (|has| |#1| (-365)))) (($ (-409 (-566))) 69 (|has| |#1| (-38 (-409 (-566))))) (($ $) 61 (|has| |#1| (-558)))) (-3025 ((|#1| $ (-566)) 71)) (-2645 (((-3 $ "failed") $) 60 (-2809 (-2402 (-2809 (|has| |#2| (-145)) (-2402 (|has| $ (-145)) (|has| |#2| (-909)))) (|has| |#1| (-365))) (|has| |#1| (-145))))) (-1558 (((-771)) 32 T CONST)) (-2316 ((|#1| $) 114)) (-3908 ((|#2| $) 245 (-2402 (|has| |#2| (-547)) (|has| |#1| (-365))))) (-3900 (((-112) $ $) 9)) (-3285 (($ $) 153 (|has| |#1| (-38 (-409 (-566)))))) (-3157 (($ $) 141 (|has| |#1| (-38 (-409 (-566)))))) (-1333 (((-112) $ $) 65 (|has| |#1| (-558)))) (-3260 (($ $) 152 (|has| |#1| (-38 (-409 (-566)))))) (-3135 (($ $) 140 (|has| |#1| (-38 (-409 (-566)))))) (-3309 (($ $) 151 (|has| |#1| (-38 (-409 (-566)))))) (-3179 (($ $) 139 (|has| |#1| (-38 (-409 (-566)))))) (-3649 ((|#1| $ (-566)) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-566)))) (|has| |#1| (-15 -2479 (|#1| (-1175))))))) (-1861 (($ $) 150 (|has| |#1| (-38 (-409 (-566)))))) (-3190 (($ $) 138 (|has| |#1| (-38 (-409 (-566)))))) (-3299 (($ $) 149 (|has| |#1| (-38 (-409 (-566)))))) (-3168 (($ $) 137 (|has| |#1| (-38 (-409 (-566)))))) (-3273 (($ $) 148 (|has| |#1| (-38 (-409 (-566)))))) (-3148 (($ $) 136 (|has| |#1| (-38 (-409 (-566)))))) (-4298 (($ $) 261 (-2402 (|has| |#2| (-820)) (|has| |#1| (-365))))) (-2446 (($) 19 T CONST)) (-2459 (($) 34 T CONST)) (-2834 (($ $ (-1 |#2| |#2|)) 226 (|has| |#1| (-365))) (($ $ (-1 |#2| |#2|) (-771)) 225 (|has| |#1| (-365))) (($ $ (-771)) 97 (-2809 (-2402 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $) 95 (-2809 (-2402 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $ (-644 (-1175)) (-644 (-771))) 105 (-2809 (-2402 (|has| |#2| (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-566) |#1|)))))) (($ $ (-1175) (-771)) 104 (-2809 (-2402 (|has| |#2| (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-566) |#1|)))))) (($ $ (-644 (-1175))) 103 (-2809 (-2402 (|has| |#2| (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-566) |#1|)))))) (($ $ (-1175)) 102 (-2809 (-2402 (|has| |#2| (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))))) (-3019 (((-112) $ $) 265 (-2402 (|has| |#2| (-850)) (|has| |#1| (-365))))) (-2990 (((-112) $ $) 266 (-2402 (|has| |#2| (-850)) (|has| |#1| (-365))))) (-2952 (((-112) $ $) 6)) (-3004 (((-112) $ $) 264 (-2402 (|has| |#2| (-850)) (|has| |#1| (-365))))) (-2977 (((-112) $ $) 267 (-2402 (|has| |#2| (-850)) (|has| |#1| (-365))))) (-3077 (($ $ |#1|) 70 (|has| |#1| (-365))) (($ $ $) 179 (|has| |#1| (-365))) (($ |#2| |#2|) 237 (|has| |#1| (-365)))) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 178 (|has| |#1| (-365))) (($ $ $) 156 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 127 (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ $ |#2|) 216 (|has| |#1| (-365))) (($ |#2| $) 215 (|has| |#1| (-365))) (($ (-409 (-566)) $) 68 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 67 (|has| |#1| (-38 (-409 (-566))))))) +(((-1226 |#1| |#2|) (-140) (-1049) (-1255 |t#1|)) (T -1226)) +((-1630 (*1 *2 *1) (-12 (-4 *1 (-1226 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1255 *3)) (-5 *2 (-566)))) (-2546 (*1 *1 *2 *3) (-12 (-5 *2 (-566)) (-4 *4 (-1049)) (-4 *1 (-1226 *4 *3)) (-4 *3 (-1255 *4)))) (-2297 (*1 *2 *1) (-12 (-4 *1 (-1226 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-1255 *3)))) (-3967 (*1 *1 *1) (-12 (-4 *1 (-1226 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-1255 *2)))) (-3967 (*1 *1 *2 *1) (-12 (-5 *2 (-566)) (-4 *1 (-1226 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1255 *3)))) (-2534 (*1 *2 *1) (-12 (-4 *1 (-1226 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-1255 *3)))) (-4353 (*1 *2 *1) (|partial| -12 (-4 *1 (-1226 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-1255 *3))))) +(-13 (-1224 |t#1|) (-1038 |t#2|) (-616 |t#2|) (-10 -8 (-15 -2546 ($ (-566) |t#2|)) (-15 -1630 ((-566) $)) (-15 -2297 (|t#2| $)) (-15 -3967 ($ $)) (-15 -3967 ($ (-566) $)) (-15 -2534 (|t#2| $)) (-15 -4353 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-365)) (-6 (-992 |t#2|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-566)) . T) ((-25) . T) ((-38 #1=(-409 (-566))) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 |#2|) |has| |#1| (-365)) ((-38 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-35) |has| |#1| (-38 (-409 (-566)))) ((-95) |has| |#1| (-38 (-409 (-566)))) ((-102) . T) ((-111 #1# #1#) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-365)) ((-111 $ $) -2809 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-131) . T) ((-145) -2809 (-12 (|has| |#1| (-365)) (|has| |#2| (-145))) (|has| |#1| (-145))) ((-147) -2809 (-12 (|has| |#1| (-365)) (|has| |#2| (-147))) (|has| |#1| (-147))) ((-616 #1#) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-616 (-566)) . T) ((-616 #2=(-1175)) -12 (|has| |#1| (-365)) (|has| |#2| (-1038 (-1175)))) ((-616 |#1|) |has| |#1| (-172)) ((-616 |#2|) . T) ((-616 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-613 (-862)) . T) ((-172) -2809 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-614 (-225)) -12 (|has| |#1| (-365)) (|has| |#2| (-1022))) ((-614 (-381)) -12 (|has| |#1| (-365)) (|has| |#2| (-1022))) ((-614 (-538)) -12 (|has| |#1| (-365)) (|has| |#2| (-614 (-538)))) ((-614 (-892 (-381))) -12 (|has| |#1| (-365)) (|has| |#2| (-614 (-892 (-381))))) ((-614 (-892 (-566))) -12 (|has| |#1| (-365)) (|has| |#2| (-614 (-892 (-566))))) ((-231 |#2|) |has| |#1| (-365)) ((-233) -2809 (-12 (|has| |#1| (-365)) (|has| |#2| (-233))) (|has| |#1| (-15 * (|#1| (-566) |#1|)))) ((-243) |has| |#1| (-365)) ((-285) |has| |#1| (-38 (-409 (-566)))) ((-287 |#2| $) -12 (|has| |#1| (-365)) (|has| |#2| (-287 |#2| |#2|))) ((-287 $ $) |has| (-566) (-1111)) ((-291) -2809 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-308) |has| |#1| (-365)) ((-310 |#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-310 |#2|))) ((-365) |has| |#1| (-365)) ((-340 |#2|) |has| |#1| (-365)) ((-379 |#2|) |has| |#1| (-365)) ((-402 |#2|) |has| |#1| (-365)) ((-454) |has| |#1| (-365)) ((-495) |has| |#1| (-38 (-409 (-566)))) ((-516 (-1175) |#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-516 (-1175) |#2|))) ((-516 |#2| |#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-310 |#2|))) ((-558) -2809 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-646 #1#) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 |#2|) |has| |#1| (-365)) ((-646 $) . T) ((-648 #1#) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-648 |#1|) . T) ((-648 |#2|) |has| |#1| (-365)) ((-648 $) . T) ((-640 #1#) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-640 |#1|) |has| |#1| (-172)) ((-640 |#2|) |has| |#1| (-365)) ((-640 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-639 (-566)) -12 (|has| |#1| (-365)) (|has| |#2| (-639 (-566)))) ((-639 |#2|) |has| |#1| (-365)) ((-717 #1#) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-717 |#1|) |has| |#1| (-172)) ((-717 |#2|) |has| |#1| (-365)) ((-717 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-726) . T) ((-791) -12 (|has| |#1| (-365)) (|has| |#2| (-820))) ((-792) -12 (|has| |#1| (-365)) (|has| |#2| (-820))) ((-794) -12 (|has| |#1| (-365)) (|has| |#2| (-820))) ((-795) -12 (|has| |#1| (-365)) (|has| |#2| (-820))) ((-820) -12 (|has| |#1| (-365)) (|has| |#2| (-820))) ((-848) -12 (|has| |#1| (-365)) (|has| |#2| (-820))) ((-850) -2809 (-12 (|has| |#1| (-365)) (|has| |#2| (-850))) (-12 (|has| |#1| (-365)) (|has| |#2| (-820)))) ((-900 (-1175)) -2809 (-12 (|has| |#1| (-365)) (|has| |#2| (-900 (-1175)))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175))))) ((-886 (-381)) -12 (|has| |#1| (-365)) (|has| |#2| (-886 (-381)))) ((-886 (-566)) -12 (|has| |#1| (-365)) (|has| |#2| (-886 (-566)))) ((-884 |#2|) |has| |#1| (-365)) ((-909) -12 (|has| |#1| (-365)) (|has| |#2| (-909))) ((-973 |#1| #0# (-1081)) . T) ((-920) |has| |#1| (-365)) ((-992 |#2|) |has| |#1| (-365)) ((-1002) |has| |#1| (-38 (-409 (-566)))) ((-1022) -12 (|has| |#1| (-365)) (|has| |#2| (-1022))) ((-1038 (-409 (-566))) -12 (|has| |#1| (-365)) (|has| |#2| (-1038 (-566)))) ((-1038 (-566)) -12 (|has| |#1| (-365)) (|has| |#2| (-1038 (-566)))) ((-1038 #2#) -12 (|has| |#1| (-365)) (|has| |#2| (-1038 (-1175)))) ((-1038 |#2|) . T) ((-1051 #1#) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-1051 |#1|) . T) ((-1051 |#2|) |has| |#1| (-365)) ((-1051 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1056 #1#) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-1056 |#1|) . T) ((-1056 |#2|) |has| |#1| (-365)) ((-1056 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1150) -12 (|has| |#1| (-365)) (|has| |#2| (-1150))) ((-1199) |has| |#1| (-38 (-409 (-566)))) ((-1202) |has| |#1| (-38 (-409 (-566)))) ((-1214) |has| |#1| (-365)) ((-1218) |has| |#1| (-365)) ((-1224 |#1|) . T) ((-1242 |#1| #0#) . T)) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) 81)) (-2488 ((|#2| $) NIL (-12 (|has| |#2| (-308)) (|has| |#1| (-365))))) (-2485 (((-644 (-1081)) $) NIL)) (-1338 (((-1175) $) 100)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-3087 (($ $) NIL (|has| |#1| (-558)))) (-1716 (((-112) $) NIL (|has| |#1| (-558)))) (-3175 (($ $ (-566)) 109) (($ $ (-566) (-566)) 111)) (-1723 (((-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|))) $) 51)) (-2297 ((|#2| $) 11)) (-4353 (((-3 |#2| "failed") $) 35)) (-2534 ((|#2| $) 36)) (-3219 (($ $) 206 (|has| |#1| (-38 (-409 (-566)))))) (-3091 (($ $) 182 (|has| |#1| (-38 (-409 (-566)))))) (-3174 (((-3 $ "failed") $ $) NIL)) (-4058 (((-420 (-1171 $)) (-1171 $)) NIL (-12 (|has| |#2| (-909)) (|has| |#1| (-365))))) (-3980 (($ $) NIL (|has| |#1| (-365)))) (-3348 (((-420 $) $) NIL (|has| |#1| (-365)))) (-2338 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4262 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (-12 (|has| |#2| (-909)) (|has| |#1| (-365))))) (-2761 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3197 (($ $) 202 (|has| |#1| (-38 (-409 (-566)))))) (-3067 (($ $) 178 (|has| |#1| (-38 (-409 (-566)))))) (-2920 (((-566) $) NIL (-12 (|has| |#2| (-820)) (|has| |#1| (-365))))) (-1882 (($ (-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|)))) 59)) (-3240 (($ $) 210 (|has| |#1| (-38 (-409 (-566)))))) (-3115 (($ $) 186 (|has| |#1| (-38 (-409 (-566)))))) (-1811 (($) NIL T CONST)) (-2980 (((-3 |#2| "failed") $) 157) (((-3 (-566) "failed") $) NIL (-12 (|has| |#2| (-1038 (-566))) (|has| |#1| (-365)))) (((-3 (-409 (-566)) "failed") $) NIL (-12 (|has| |#2| (-1038 (-566))) (|has| |#1| (-365)))) (((-3 (-1175) "failed") $) NIL (-12 (|has| |#2| (-1038 (-1175))) (|has| |#1| (-365))))) (-1709 ((|#2| $) 156) (((-566) $) NIL (-12 (|has| |#2| (-1038 (-566))) (|has| |#1| (-365)))) (((-409 (-566)) $) NIL (-12 (|has| |#2| (-1038 (-566))) (|has| |#1| (-365)))) (((-1175) $) NIL (-12 (|has| |#2| (-1038 (-1175))) (|has| |#1| (-365))))) (-3967 (($ $) 65) (($ (-566) $) 28)) (-2925 (($ $ $) NIL (|has| |#1| (-365)))) (-3565 (($ $) NIL)) (-2275 (((-689 |#2|) (-689 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -4196 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 $) (-1264 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (-12 (|has| |#2| (-639 (-566))) (|has| |#1| (-365)))) (((-689 (-566)) (-689 $)) NIL (-12 (|has| |#2| (-639 (-566))) (|has| |#1| (-365))))) (-3757 (((-3 $ "failed") $) 88)) (-3947 (((-409 (-952 |#1|)) $ (-566)) 124 (|has| |#1| (-558))) (((-409 (-952 |#1|)) $ (-566) (-566)) 126 (|has| |#1| (-558)))) (-1415 (($) NIL (-12 (|has| |#2| (-547)) (|has| |#1| (-365))))) (-2937 (($ $ $) NIL (|has| |#1| (-365)))) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) NIL (|has| |#1| (-365)))) (-4188 (((-112) $) NIL (|has| |#1| (-365)))) (-2133 (((-112) $) NIL (-12 (|has| |#2| (-820)) (|has| |#1| (-365))))) (-3088 (((-112) $) 74)) (-2964 (($) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1542 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| |#2| (-886 (-381))) (|has| |#1| (-365)))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| |#2| (-886 (-566))) (|has| |#1| (-365))))) (-1802 (((-566) $) 105) (((-566) $ (-566)) 107)) (-2264 (((-112) $) NIL)) (-1579 (($ $) NIL (|has| |#1| (-365)))) (-4157 ((|#2| $) 165 (|has| |#1| (-365)))) (-3146 (($ $ (-566)) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4278 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1150)) (|has| |#1| (-365))))) (-3420 (((-112) $) NIL (-12 (|has| |#2| (-820)) (|has| |#1| (-365))))) (-2383 (($ $ (-921)) 148)) (-2278 (($ (-1 |#1| (-566)) $) 144)) (-2495 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-3989 (((-112) $) NIL)) (-2463 (($ |#1| (-566)) 20) (($ $ (-1081) (-566)) NIL) (($ $ (-644 (-1081)) (-644 (-566))) NIL)) (-1920 (($ $ $) NIL (-12 (|has| |#2| (-850)) (|has| |#1| (-365))))) (-3038 (($ $ $) NIL (-12 (|has| |#2| (-850)) (|has| |#1| (-365))))) (-3080 (($ (-1 |#1| |#1|) $) 141) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-365)))) (-3676 (($ $) 176 (|has| |#1| (-38 (-409 (-566)))))) (-2608 (($ $) NIL)) (-2622 ((|#1| $) NIL)) (-2120 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2546 (($ (-566) |#2|) 10)) (-3151 (((-1157) $) NIL)) (-2577 (($ $) 159 (|has| |#1| (-365)))) (-2390 (($ $) 228 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-1175)) 233 (-2809 (-12 (|has| |#1| (-15 -2390 (|#1| |#1| (-1175)))) (|has| |#1| (-15 -2485 ((-644 (-1175)) |#1|))) (|has| |#1| (-38 (-409 (-566))))) (-12 (|has| |#1| (-29 (-566))) (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-959)) (|has| |#1| (-1199)))))) (-3968 (($) NIL (-12 (|has| |#2| (-1150)) (|has| |#1| (-365))) CONST)) (-4059 (((-1119) $) NIL)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-365)))) (-2162 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-4305 (($ $) NIL (-12 (|has| |#2| (-308)) (|has| |#1| (-365))))) (-2001 ((|#2| $) NIL (-12 (|has| |#2| (-547)) (|has| |#1| (-365))))) (-1500 (((-420 (-1171 $)) (-1171 $)) NIL (-12 (|has| |#2| (-909)) (|has| |#1| (-365))))) (-3917 (((-420 (-1171 $)) (-1171 $)) NIL (-12 (|has| |#2| (-909)) (|has| |#1| (-365))))) (-2325 (((-420 $) $) NIL (|has| |#1| (-365)))) (-2585 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL (|has| |#1| (-365)))) (-2050 (($ $ (-566)) 138)) (-2976 (((-3 $ "failed") $ $) 128 (|has| |#1| (-558)))) (-2840 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-3571 (($ $) 174 (|has| |#1| (-38 (-409 (-566)))))) (-3297 (((-1155 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-566))))) (($ $ (-1175) |#2|) NIL (-12 (|has| |#2| (-516 (-1175) |#2|)) (|has| |#1| (-365)))) (($ $ (-644 (-1175)) (-644 |#2|)) NIL (-12 (|has| |#2| (-516 (-1175) |#2|)) (|has| |#1| (-365)))) (($ $ (-644 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365)))) (($ $ (-644 |#2|) (-644 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365))))) (-1383 (((-771) $) NIL (|has| |#1| (-365)))) (-4376 ((|#1| $ (-566)) 103) (($ $ $) 90 (|has| (-566) (-1111))) (($ $ |#2|) NIL (-12 (|has| |#2| (-287 |#2| |#2|)) (|has| |#1| (-365))))) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL (|has| |#1| (-365)))) (-3526 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-365))) (($ $ (-1 |#2| |#2|) (-771)) NIL (|has| |#1| (-365))) (($ $ (-771)) NIL (-2809 (-12 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $) 149 (-2809 (-12 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-2809 (-12 (|has| |#2| (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-1175) (-771)) NIL (-2809 (-12 (|has| |#2| (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-644 (-1175))) NIL (-2809 (-12 (|has| |#2| (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-1175)) 153 (-2809 (-12 (|has| |#2| (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175))))))) (-1375 (($ $) NIL (|has| |#1| (-365)))) (-4167 ((|#2| $) 166 (|has| |#1| (-365)))) (-1630 (((-566) $) 12)) (-3250 (($ $) 212 (|has| |#1| (-38 (-409 (-566)))))) (-3126 (($ $) 188 (|has| |#1| (-38 (-409 (-566)))))) (-3227 (($ $) 208 (|has| |#1| (-38 (-409 (-566)))))) (-3105 (($ $) 184 (|has| |#1| (-38 (-409 (-566)))))) (-3207 (($ $) 204 (|has| |#1| (-38 (-409 (-566)))))) (-3079 (($ $) 180 (|has| |#1| (-38 (-409 (-566)))))) (-3136 (((-225) $) NIL (-12 (|has| |#2| (-1022)) (|has| |#1| (-365)))) (((-381) $) NIL (-12 (|has| |#2| (-1022)) (|has| |#1| (-365)))) (((-538) $) NIL (-12 (|has| |#2| (-614 (-538))) (|has| |#1| (-365)))) (((-892 (-381)) $) NIL (-12 (|has| |#2| (-614 (-892 (-381)))) (|has| |#1| (-365)))) (((-892 (-566)) $) NIL (-12 (|has| |#2| (-614 (-892 (-566)))) (|has| |#1| (-365))))) (-3233 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-909)) (|has| |#1| (-365))))) (-4122 (($ $) 136)) (-2479 (((-862) $) 267) (($ (-566)) 24) (($ |#1|) 22 (|has| |#1| (-172))) (($ |#2|) 21) (($ (-1175)) NIL (-12 (|has| |#2| (-1038 (-1175))) (|has| |#1| (-365)))) (($ (-409 (-566))) 169 (|has| |#1| (-38 (-409 (-566))))) (($ $) NIL (|has| |#1| (-558)))) (-3025 ((|#1| $ (-566)) 85)) (-2645 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| $ (-145)) (|has| |#2| (-909)) (|has| |#1| (-365))) (-12 (|has| |#2| (-145)) (|has| |#1| (-365))) (|has| |#1| (-145))))) (-1558 (((-771)) 155 T CONST)) (-2316 ((|#1| $) 102)) (-3908 ((|#2| $) NIL (-12 (|has| |#2| (-547)) (|has| |#1| (-365))))) (-3900 (((-112) $ $) NIL)) (-3285 (($ $) 218 (|has| |#1| (-38 (-409 (-566)))))) (-3157 (($ $) 194 (|has| |#1| (-38 (-409 (-566)))))) (-1333 (((-112) $ $) NIL (|has| |#1| (-558)))) (-3260 (($ $) 214 (|has| |#1| (-38 (-409 (-566)))))) (-3135 (($ $) 190 (|has| |#1| (-38 (-409 (-566)))))) (-3309 (($ $) 222 (|has| |#1| (-38 (-409 (-566)))))) (-3179 (($ $) 198 (|has| |#1| (-38 (-409 (-566)))))) (-3649 ((|#1| $ (-566)) 134 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-566)))) (|has| |#1| (-15 -2479 (|#1| (-1175))))))) (-1861 (($ $) 224 (|has| |#1| (-38 (-409 (-566)))))) (-3190 (($ $) 200 (|has| |#1| (-38 (-409 (-566)))))) (-3299 (($ $) 220 (|has| |#1| (-38 (-409 (-566)))))) (-3168 (($ $) 196 (|has| |#1| (-38 (-409 (-566)))))) (-3273 (($ $) 216 (|has| |#1| (-38 (-409 (-566)))))) (-3148 (($ $) 192 (|has| |#1| (-38 (-409 (-566)))))) (-4298 (($ $) NIL (-12 (|has| |#2| (-820)) (|has| |#1| (-365))))) (-2446 (($) 13 T CONST)) (-2459 (($) 18 T CONST)) (-2834 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-365))) (($ $ (-1 |#2| |#2|) (-771)) NIL (|has| |#1| (-365))) (($ $ (-771)) NIL (-2809 (-12 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $) NIL (-2809 (-12 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-2809 (-12 (|has| |#2| (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-1175) (-771)) NIL (-2809 (-12 (|has| |#2| (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-644 (-1175))) NIL (-2809 (-12 (|has| |#2| (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-1175)) NIL (-2809 (-12 (|has| |#2| (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175))))))) (-3019 (((-112) $ $) NIL (-12 (|has| |#2| (-850)) (|has| |#1| (-365))))) (-2990 (((-112) $ $) NIL (-12 (|has| |#2| (-850)) (|has| |#1| (-365))))) (-2952 (((-112) $ $) 72)) (-3004 (((-112) $ $) NIL (-12 (|has| |#2| (-850)) (|has| |#1| (-365))))) (-2977 (((-112) $ $) NIL (-12 (|has| |#2| (-850)) (|has| |#1| (-365))))) (-3077 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) 163 (|has| |#1| (-365))) (($ |#2| |#2|) 164 (|has| |#1| (-365)))) (-3065 (($ $) 227) (($ $ $) 78)) (-3052 (($ $ $) 76)) (** (($ $ (-921)) NIL) (($ $ (-771)) 84) (($ $ (-566)) 160 (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 172 (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 79) (($ $ |#1|) NIL) (($ |#1| $) 152) (($ $ |#2|) 162 (|has| |#1| (-365))) (($ |#2| $) 161 (|has| |#1| (-365))) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))))) +(((-1227 |#1| |#2|) (-1226 |#1| |#2|) (-1049) (-1255 |#1|)) (T -1227)) +NIL +(-1226 |#1| |#2|) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-2488 (((-1256 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-308)) (|has| |#1| (-365))))) (-2485 (((-644 (-1081)) $) NIL)) (-1338 (((-1175) $) 10)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (-2809 (-12 (|has| (-1256 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1256 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))) (|has| |#1| (-558))))) (-3087 (($ $) NIL (-2809 (-12 (|has| (-1256 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1256 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))) (|has| |#1| (-558))))) (-1716 (((-112) $) NIL (-2809 (-12 (|has| (-1256 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1256 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))) (|has| |#1| (-558))))) (-3175 (($ $ (-566)) NIL) (($ $ (-566) (-566)) NIL)) (-1723 (((-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|))) $) NIL)) (-2297 (((-1256 |#1| |#2| |#3|) $) NIL)) (-4353 (((-3 (-1256 |#1| |#2| |#3|) "failed") $) NIL)) (-2534 (((-1256 |#1| |#2| |#3|) $) NIL)) (-3219 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3091 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3174 (((-3 $ "failed") $ $) NIL)) (-4058 (((-420 (-1171 $)) (-1171 $)) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))))) (-3980 (($ $) NIL (|has| |#1| (-365)))) (-3348 (((-420 $) $) NIL (|has| |#1| (-365)))) (-2338 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4262 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))))) (-2761 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3197 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3067 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2920 (((-566) $) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))))) (-1882 (($ (-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|)))) NIL)) (-3240 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3115 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1811 (($) NIL T CONST)) (-2980 (((-3 (-1256 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1175) "failed") $) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-1038 (-1175))) (|has| |#1| (-365)))) (((-3 (-409 (-566)) "failed") $) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-1038 (-566))) (|has| |#1| (-365)))) (((-3 (-566) "failed") $) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-1038 (-566))) (|has| |#1| (-365))))) (-1709 (((-1256 |#1| |#2| |#3|) $) NIL) (((-1175) $) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-1038 (-1175))) (|has| |#1| (-365)))) (((-409 (-566)) $) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-1038 (-566))) (|has| |#1| (-365)))) (((-566) $) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-1038 (-566))) (|has| |#1| (-365))))) (-3967 (($ $) NIL) (($ (-566) $) NIL)) (-2925 (($ $ $) NIL (|has| |#1| (-365)))) (-3565 (($ $) NIL)) (-2275 (((-689 (-1256 |#1| |#2| |#3|)) (-689 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -4196 (-689 (-1256 |#1| |#2| |#3|))) (|:| |vec| (-1264 (-1256 |#1| |#2| |#3|)))) (-689 $) (-1264 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-639 (-566))) (|has| |#1| (-365)))) (((-689 (-566)) (-689 $)) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-639 (-566))) (|has| |#1| (-365))))) (-3757 (((-3 $ "failed") $) NIL)) (-3947 (((-409 (-952 |#1|)) $ (-566)) NIL (|has| |#1| (-558))) (((-409 (-952 |#1|)) $ (-566) (-566)) NIL (|has| |#1| (-558)))) (-1415 (($) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-547)) (|has| |#1| (-365))))) (-2937 (($ $ $) NIL (|has| |#1| (-365)))) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) NIL (|has| |#1| (-365)))) (-4188 (((-112) $) NIL (|has| |#1| (-365)))) (-2133 (((-112) $) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))))) (-3088 (((-112) $) NIL)) (-2964 (($) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1542 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-886 (-381))) (|has| |#1| (-365)))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-886 (-566))) (|has| |#1| (-365))))) (-1802 (((-566) $) NIL) (((-566) $ (-566)) NIL)) (-2264 (((-112) $) NIL)) (-1579 (($ $) NIL (|has| |#1| (-365)))) (-4157 (((-1256 |#1| |#2| |#3|) $) NIL (|has| |#1| (-365)))) (-3146 (($ $ (-566)) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4278 (((-3 $ "failed") $) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-1150)) (|has| |#1| (-365))))) (-3420 (((-112) $) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))))) (-2383 (($ $ (-921)) NIL)) (-2278 (($ (-1 |#1| (-566)) $) NIL)) (-2495 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-3989 (((-112) $) NIL)) (-2463 (($ |#1| (-566)) 18) (($ $ (-1081) (-566)) NIL) (($ $ (-644 (-1081)) (-644 (-566))) NIL)) (-1920 (($ $ $) NIL (-2809 (-12 (|has| (-1256 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1256 |#1| |#2| |#3|) (-850)) (|has| |#1| (-365)))))) (-3038 (($ $ $) NIL (-2809 (-12 (|has| (-1256 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1256 |#1| |#2| |#3|) (-850)) (|has| |#1| (-365)))))) (-3080 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1256 |#1| |#2| |#3|) (-1256 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-365)))) (-3676 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2608 (($ $) NIL)) (-2622 ((|#1| $) NIL)) (-2120 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2546 (($ (-566) (-1256 |#1| |#2| |#3|)) NIL)) (-3151 (((-1157) $) NIL)) (-2577 (($ $) NIL (|has| |#1| (-365)))) (-2390 (($ $) 27 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-1175)) NIL (-2809 (-12 (|has| |#1| (-15 -2390 (|#1| |#1| (-1175)))) (|has| |#1| (-15 -2485 ((-644 (-1175)) |#1|))) (|has| |#1| (-38 (-409 (-566))))) (-12 (|has| |#1| (-29 (-566))) (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-959)) (|has| |#1| (-1199))))) (($ $ (-1260 |#2|)) 28 (|has| |#1| (-38 (-409 (-566)))))) (-3968 (($) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-1150)) (|has| |#1| (-365))) CONST)) (-4059 (((-1119) $) NIL)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-365)))) (-2162 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-4305 (($ $) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-308)) (|has| |#1| (-365))))) (-2001 (((-1256 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-547)) (|has| |#1| (-365))))) (-1500 (((-420 (-1171 $)) (-1171 $)) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))))) (-3917 (((-420 (-1171 $)) (-1171 $)) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))))) (-2325 (((-420 $) $) NIL (|has| |#1| (-365)))) (-2585 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL (|has| |#1| (-365)))) (-2050 (($ $ (-566)) NIL)) (-2976 (((-3 $ "failed") $ $) NIL (-2809 (-12 (|has| (-1256 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1256 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))) (|has| |#1| (-558))))) (-2840 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-3571 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3297 (((-1155 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-566))))) (($ $ (-1175) (-1256 |#1| |#2| |#3|)) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-516 (-1175) (-1256 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-644 (-1175)) (-644 (-1256 |#1| |#2| |#3|))) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-516 (-1175) (-1256 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-644 (-295 (-1256 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-310 (-1256 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-295 (-1256 |#1| |#2| |#3|))) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-310 (-1256 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-1256 |#1| |#2| |#3|) (-1256 |#1| |#2| |#3|)) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-310 (-1256 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-644 (-1256 |#1| |#2| |#3|)) (-644 (-1256 |#1| |#2| |#3|))) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-310 (-1256 |#1| |#2| |#3|))) (|has| |#1| (-365))))) (-1383 (((-771) $) NIL (|has| |#1| (-365)))) (-4376 ((|#1| $ (-566)) NIL) (($ $ $) NIL (|has| (-566) (-1111))) (($ $ (-1256 |#1| |#2| |#3|)) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-287 (-1256 |#1| |#2| |#3|) (-1256 |#1| |#2| |#3|))) (|has| |#1| (-365))))) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL (|has| |#1| (-365)))) (-3526 (($ $ (-1 (-1256 |#1| |#2| |#3|) (-1256 |#1| |#2| |#3|))) NIL (|has| |#1| (-365))) (($ $ (-1 (-1256 |#1| |#2| |#3|) (-1256 |#1| |#2| |#3|)) (-771)) NIL (|has| |#1| (-365))) (($ $ (-1260 |#2|)) 26) (($ $ (-771)) NIL (-2809 (-12 (|has| (-1256 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $) 25 (-2809 (-12 (|has| (-1256 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-2809 (-12 (|has| (-1256 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-1175) (-771)) NIL (-2809 (-12 (|has| (-1256 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-644 (-1175))) NIL (-2809 (-12 (|has| (-1256 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-1175)) NIL (-2809 (-12 (|has| (-1256 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175))))))) (-1375 (($ $) NIL (|has| |#1| (-365)))) (-4167 (((-1256 |#1| |#2| |#3|) $) NIL (|has| |#1| (-365)))) (-1630 (((-566) $) NIL)) (-3250 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3126 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3227 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3105 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3207 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3079 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3136 (((-538) $) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-614 (-538))) (|has| |#1| (-365)))) (((-381) $) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-1022)) (|has| |#1| (-365)))) (((-225) $) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-1022)) (|has| |#1| (-365)))) (((-892 (-381)) $) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-614 (-892 (-381)))) (|has| |#1| (-365)))) (((-892 (-566)) $) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-614 (-892 (-566)))) (|has| |#1| (-365))))) (-3233 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| (-1256 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))))) (-4122 (($ $) NIL)) (-2479 (((-862) $) NIL) (($ (-566)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1256 |#1| |#2| |#3|)) NIL) (($ (-1260 |#2|)) 24) (($ (-1175)) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-1038 (-1175))) (|has| |#1| (-365)))) (($ $) NIL (-2809 (-12 (|has| (-1256 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1256 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))) (|has| |#1| (-558)))) (($ (-409 (-566))) NIL (-2809 (-12 (|has| (-1256 |#1| |#2| |#3|) (-1038 (-566))) (|has| |#1| (-365))) (|has| |#1| (-38 (-409 (-566))))))) (-3025 ((|#1| $ (-566)) NIL)) (-2645 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| $ (-145)) (|has| (-1256 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))) (-12 (|has| (-1256 |#1| |#2| |#3|) (-145)) (|has| |#1| (-365))) (|has| |#1| (-145))))) (-1558 (((-771)) NIL T CONST)) (-2316 ((|#1| $) 11)) (-3908 (((-1256 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-547)) (|has| |#1| (-365))))) (-3900 (((-112) $ $) NIL)) (-3285 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3157 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1333 (((-112) $ $) NIL (-2809 (-12 (|has| (-1256 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1256 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))) (|has| |#1| (-558))))) (-3260 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3135 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3309 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3179 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3649 ((|#1| $ (-566)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-566)))) (|has| |#1| (-15 -2479 (|#1| (-1175))))))) (-1861 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3190 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3299 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3168 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3273 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3148 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4298 (($ $) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))))) (-2446 (($) 20 T CONST)) (-2459 (($) 15 T CONST)) (-2834 (($ $ (-1 (-1256 |#1| |#2| |#3|) (-1256 |#1| |#2| |#3|))) NIL (|has| |#1| (-365))) (($ $ (-1 (-1256 |#1| |#2| |#3|) (-1256 |#1| |#2| |#3|)) (-771)) NIL (|has| |#1| (-365))) (($ $ (-771)) NIL (-2809 (-12 (|has| (-1256 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $) NIL (-2809 (-12 (|has| (-1256 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-2809 (-12 (|has| (-1256 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-1175) (-771)) NIL (-2809 (-12 (|has| (-1256 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-644 (-1175))) NIL (-2809 (-12 (|has| (-1256 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-1175)) NIL (-2809 (-12 (|has| (-1256 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175))))))) (-3019 (((-112) $ $) NIL (-2809 (-12 (|has| (-1256 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1256 |#1| |#2| |#3|) (-850)) (|has| |#1| (-365)))))) (-2990 (((-112) $ $) NIL (-2809 (-12 (|has| (-1256 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1256 |#1| |#2| |#3|) (-850)) (|has| |#1| (-365)))))) (-2952 (((-112) $ $) NIL)) (-3004 (((-112) $ $) NIL (-2809 (-12 (|has| (-1256 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1256 |#1| |#2| |#3|) (-850)) (|has| |#1| (-365)))))) (-2977 (((-112) $ $) NIL (-2809 (-12 (|has| (-1256 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1256 |#1| |#2| |#3|) (-850)) (|has| |#1| (-365)))))) (-3077 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365))) (($ (-1256 |#1| |#2| |#3|) (-1256 |#1| |#2| |#3|)) NIL (|has| |#1| (-365)))) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) 22)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1256 |#1| |#2| |#3|)) NIL (|has| |#1| (-365))) (($ (-1256 |#1| |#2| |#3|) $) NIL (|has| |#1| (-365))) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))))) +(((-1228 |#1| |#2| |#3|) (-13 (-1226 |#1| (-1256 |#1| |#2| |#3|)) (-10 -8 (-15 -2479 ($ (-1260 |#2|))) (-15 -3526 ($ $ (-1260 |#2|))) (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -2390 ($ $ (-1260 |#2|))) |%noBranch|))) (-1049) (-1175) |#1|) (T -1228)) +((-2479 (*1 *1 *2) (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1228 *3 *4 *5)) (-4 *3 (-1049)) (-14 *5 *3))) (-3526 (*1 *1 *1 *2) (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1228 *3 *4 *5)) (-4 *3 (-1049)) (-14 *5 *3))) (-2390 (*1 *1 *1 *2) (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1228 *3 *4 *5)) (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-14 *5 *3)))) +(-13 (-1226 |#1| (-1256 |#1| |#2| |#3|)) (-10 -8 (-15 -2479 ($ (-1260 |#2|))) (-15 -3526 ($ $ (-1260 |#2|))) (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -2390 ($ $ (-1260 |#2|))) |%noBranch|))) +((-1644 (((-2 (|:| |contp| (-566)) (|:| -3445 (-644 (-2 (|:| |irr| |#1|) (|:| -2677 (-566)))))) |#1| (-112)) 13)) (-3957 (((-420 |#1|) |#1|) 26)) (-2325 (((-420 |#1|) |#1|) 24))) +(((-1229 |#1|) (-10 -7 (-15 -2325 ((-420 |#1|) |#1|)) (-15 -3957 ((-420 |#1|) |#1|)) (-15 -1644 ((-2 (|:| |contp| (-566)) (|:| -3445 (-644 (-2 (|:| |irr| |#1|) (|:| -2677 (-566)))))) |#1| (-112)))) (-1240 (-566))) (T -1229)) +((-1644 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-566)) (|:| -3445 (-644 (-2 (|:| |irr| *3) (|:| -2677 (-566))))))) (-5 *1 (-1229 *3)) (-4 *3 (-1240 (-566))))) (-3957 (*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-1229 *3)) (-4 *3 (-1240 (-566))))) (-2325 (*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-1229 *3)) (-4 *3 (-1240 (-566)))))) +(-10 -7 (-15 -2325 ((-420 |#1|) |#1|)) (-15 -3957 ((-420 |#1|) |#1|)) (-15 -1644 ((-2 (|:| |contp| (-566)) (|:| -3445 (-644 (-2 (|:| |irr| |#1|) (|:| -2677 (-566)))))) |#1| (-112)))) +((-3080 (((-1155 |#2|) (-1 |#2| |#1|) (-1231 |#1|)) 23 (|has| |#1| (-848))) (((-1231 |#2|) (-1 |#2| |#1|) (-1231 |#1|)) 17))) +(((-1230 |#1| |#2|) (-10 -7 (-15 -3080 ((-1231 |#2|) (-1 |#2| |#1|) (-1231 |#1|))) (IF (|has| |#1| (-848)) (-15 -3080 ((-1155 |#2|) (-1 |#2| |#1|) (-1231 |#1|))) |%noBranch|)) (-1214) (-1214)) (T -1230)) +((-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1231 *5)) (-4 *5 (-848)) (-4 *5 (-1214)) (-4 *6 (-1214)) (-5 *2 (-1155 *6)) (-5 *1 (-1230 *5 *6)))) (-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1231 *5)) (-4 *5 (-1214)) (-4 *6 (-1214)) (-5 *2 (-1231 *6)) (-5 *1 (-1230 *5 *6))))) +(-10 -7 (-15 -3080 ((-1231 |#2|) (-1 |#2| |#1|) (-1231 |#1|))) (IF (|has| |#1| (-848)) (-15 -3080 ((-1155 |#2|) (-1 |#2| |#1|) (-1231 |#1|))) |%noBranch|)) +((-2986 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3527 (($ |#1| |#1|) 11) (($ |#1|) 10)) (-3080 (((-1155 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-848)))) (-3633 ((|#1| $) 15)) (-3510 ((|#1| $) 12)) (-3151 (((-1157) $) NIL (|has| |#1| (-1099)))) (-4238 (((-566) $) 19)) (-4346 ((|#1| $) 18)) (-4263 ((|#1| $) 13)) (-4059 (((-1119) $) NIL (|has| |#1| (-1099)))) (-3958 (((-112) $) 17)) (-3507 (((-1155 |#1|) $) 41 (|has| |#1| (-848))) (((-1155 |#1|) (-644 $)) 40 (|has| |#1| (-848)))) (-3136 (($ |#1|) 26)) (-2479 (($ (-1093 |#1|)) 25) (((-862) $) 37 (|has| |#1| (-1099)))) (-3900 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3626 (($ |#1| |#1|) 21) (($ |#1|) 20)) (-2729 (($ $ (-566)) 14)) (-2952 (((-112) $ $) 30 (|has| |#1| (-1099))))) +(((-1231 |#1|) (-13 (-1092 |#1|) (-10 -8 (-15 -3626 ($ |#1|)) (-15 -3527 ($ |#1|)) (-15 -2479 ($ (-1093 |#1|))) (-15 -3958 ((-112) $)) (IF (|has| |#1| (-1099)) (-6 (-1099)) |%noBranch|) (IF (|has| |#1| (-848)) (-6 (-1094 |#1| (-1155 |#1|))) |%noBranch|))) (-1214)) (T -1231)) +((-3626 (*1 *1 *2) (-12 (-5 *1 (-1231 *2)) (-4 *2 (-1214)))) (-3527 (*1 *1 *2) (-12 (-5 *1 (-1231 *2)) (-4 *2 (-1214)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-1093 *3)) (-4 *3 (-1214)) (-5 *1 (-1231 *3)))) (-3958 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1231 *3)) (-4 *3 (-1214))))) +(-13 (-1092 |#1|) (-10 -8 (-15 -3626 ($ |#1|)) (-15 -3527 ($ |#1|)) (-15 -2479 ($ (-1093 |#1|))) (-15 -3958 ((-112) $)) (IF (|has| |#1| (-1099)) (-6 (-1099)) |%noBranch|) (IF (|has| |#1| (-848)) (-6 (-1094 |#1| (-1155 |#1|))) |%noBranch|))) +((-3080 (((-1237 |#3| |#4|) (-1 |#4| |#2|) (-1237 |#1| |#2|)) 15))) +(((-1232 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3080 ((-1237 |#3| |#4|) (-1 |#4| |#2|) (-1237 |#1| |#2|)))) (-1175) (-1049) (-1175) (-1049)) (T -1232)) +((-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1237 *5 *6)) (-14 *5 (-1175)) (-4 *6 (-1049)) (-4 *8 (-1049)) (-5 *2 (-1237 *7 *8)) (-5 *1 (-1232 *5 *6 *7 *8)) (-14 *7 (-1175))))) +(-10 -7 (-15 -3080 ((-1237 |#3| |#4|) (-1 |#4| |#2|) (-1237 |#1| |#2|)))) +((-1402 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-4189 ((|#1| |#3|) 13)) (-3759 ((|#3| |#3|) 19))) +(((-1233 |#1| |#2| |#3|) (-10 -7 (-15 -4189 (|#1| |#3|)) (-15 -3759 (|#3| |#3|)) (-15 -1402 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-558) (-992 |#1|) (-1240 |#2|)) (T -1233)) +((-1402 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-992 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1233 *4 *5 *3)) (-4 *3 (-1240 *5)))) (-3759 (*1 *2 *2) (-12 (-4 *3 (-558)) (-4 *4 (-992 *3)) (-5 *1 (-1233 *3 *4 *2)) (-4 *2 (-1240 *4)))) (-4189 (*1 *2 *3) (-12 (-4 *4 (-992 *2)) (-4 *2 (-558)) (-5 *1 (-1233 *2 *4 *3)) (-4 *3 (-1240 *4))))) +(-10 -7 (-15 -4189 (|#1| |#3|)) (-15 -3759 (|#3| |#3|)) (-15 -1402 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-1777 (((-3 |#2| "failed") |#2| (-771) |#1|) 37)) (-1761 (((-3 |#2| "failed") |#2| (-771)) 38)) (-3208 (((-3 (-2 (|:| -4351 |#2|) (|:| -4361 |#2|)) "failed") |#2|) 52)) (-3286 (((-644 |#2|) |#2|) 54)) (-2345 (((-3 |#2| "failed") |#2| |#2|) 48))) +(((-1234 |#1| |#2|) (-10 -7 (-15 -1761 ((-3 |#2| "failed") |#2| (-771))) (-15 -1777 ((-3 |#2| "failed") |#2| (-771) |#1|)) (-15 -2345 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3208 ((-3 (-2 (|:| -4351 |#2|) (|:| -4361 |#2|)) "failed") |#2|)) (-15 -3286 ((-644 |#2|) |#2|))) (-13 (-558) (-147)) (-1240 |#1|)) (T -1234)) +((-3286 (*1 *2 *3) (-12 (-4 *4 (-13 (-558) (-147))) (-5 *2 (-644 *3)) (-5 *1 (-1234 *4 *3)) (-4 *3 (-1240 *4)))) (-3208 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-558) (-147))) (-5 *2 (-2 (|:| -4351 *3) (|:| -4361 *3))) (-5 *1 (-1234 *4 *3)) (-4 *3 (-1240 *4)))) (-2345 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-558) (-147))) (-5 *1 (-1234 *3 *2)) (-4 *2 (-1240 *3)))) (-1777 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-771)) (-4 *4 (-13 (-558) (-147))) (-5 *1 (-1234 *4 *2)) (-4 *2 (-1240 *4)))) (-1761 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-771)) (-4 *4 (-13 (-558) (-147))) (-5 *1 (-1234 *4 *2)) (-4 *2 (-1240 *4))))) +(-10 -7 (-15 -1761 ((-3 |#2| "failed") |#2| (-771))) (-15 -1777 ((-3 |#2| "failed") |#2| (-771) |#1|)) (-15 -2345 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3208 ((-3 (-2 (|:| -4351 |#2|) (|:| -4361 |#2|)) "failed") |#2|)) (-15 -3286 ((-644 |#2|) |#2|))) +((-2770 (((-3 (-2 (|:| -3371 |#2|) (|:| -3131 |#2|)) "failed") |#2| |#2|) 30))) +(((-1235 |#1| |#2|) (-10 -7 (-15 -2770 ((-3 (-2 (|:| -3371 |#2|) (|:| -3131 |#2|)) "failed") |#2| |#2|))) (-558) (-1240 |#1|)) (T -1235)) +((-2770 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-558)) (-5 *2 (-2 (|:| -3371 *3) (|:| -3131 *3))) (-5 *1 (-1235 *4 *3)) (-4 *3 (-1240 *4))))) +(-10 -7 (-15 -2770 ((-3 (-2 (|:| -3371 |#2|) (|:| -3131 |#2|)) "failed") |#2| |#2|))) +((-3672 ((|#2| |#2| |#2|) 22)) (-4378 ((|#2| |#2| |#2|) 36)) (-1417 ((|#2| |#2| |#2| (-771) (-771)) 44))) +(((-1236 |#1| |#2|) (-10 -7 (-15 -3672 (|#2| |#2| |#2|)) (-15 -4378 (|#2| |#2| |#2|)) (-15 -1417 (|#2| |#2| |#2| (-771) (-771)))) (-1049) (-1240 |#1|)) (T -1236)) +((-1417 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-771)) (-4 *4 (-1049)) (-5 *1 (-1236 *4 *2)) (-4 *2 (-1240 *4)))) (-4378 (*1 *2 *2 *2) (-12 (-4 *3 (-1049)) (-5 *1 (-1236 *3 *2)) (-4 *2 (-1240 *3)))) (-3672 (*1 *2 *2 *2) (-12 (-4 *3 (-1049)) (-5 *1 (-1236 *3 *2)) (-4 *2 (-1240 *3))))) +(-10 -7 (-15 -3672 (|#2| |#2| |#2|)) (-15 -4378 (|#2| |#2| |#2|)) (-15 -1417 (|#2| |#2| |#2| (-771) (-771)))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-1825 (((-1264 |#2|) $ (-771)) NIL)) (-2485 (((-644 (-1081)) $) NIL)) (-3778 (($ (-1171 |#2|)) NIL)) (-2285 (((-1171 $) $ (-1081)) NIL) (((-1171 |#2|) $) NIL)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (|has| |#2| (-558)))) (-3087 (($ $) NIL (|has| |#2| (-558)))) (-1716 (((-112) $) NIL (|has| |#2| (-558)))) (-2917 (((-771) $) NIL) (((-771) $ (-644 (-1081))) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-2113 (($ $ $) NIL (|has| |#2| (-558)))) (-4058 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-3980 (($ $) NIL (|has| |#2| (-454)))) (-3348 (((-420 $) $) NIL (|has| |#2| (-454)))) (-4262 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-2761 (((-112) $ $) NIL (|has| |#2| (-365)))) (-3336 (($ $ (-771)) NIL)) (-1634 (($ $ (-771)) NIL)) (-2020 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-454)))) (-1811 (($) NIL T CONST)) (-2980 (((-3 |#2| "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#2| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) NIL (|has| |#2| (-1038 (-566)))) (((-3 (-1081) "failed") $) NIL)) (-1709 ((|#2| $) NIL) (((-409 (-566)) $) NIL (|has| |#2| (-1038 (-409 (-566))))) (((-566) $) NIL (|has| |#2| (-1038 (-566)))) (((-1081) $) NIL)) (-4343 (($ $ $ (-1081)) NIL (|has| |#2| (-172))) ((|#2| $ $) NIL (|has| |#2| (-172)))) (-2925 (($ $ $) NIL (|has| |#2| (-365)))) (-3565 (($ $) NIL)) (-2275 (((-689 (-566)) (-689 $)) NIL (|has| |#2| (-639 (-566)))) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| |#2| (-639 (-566)))) (((-2 (|:| -4196 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 $) (-1264 $)) NIL) (((-689 |#2|) (-689 $)) NIL)) (-3757 (((-3 $ "failed") $) NIL)) (-2937 (($ $ $) NIL (|has| |#2| (-365)))) (-1731 (($ $ $) NIL)) (-2348 (($ $ $) NIL (|has| |#2| (-558)))) (-3920 (((-2 (|:| -3103 |#2|) (|:| -3371 $) (|:| -3131 $)) $ $) NIL (|has| |#2| (-558)))) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) NIL (|has| |#2| (-365)))) (-3530 (($ $) NIL (|has| |#2| (-454))) (($ $ (-1081)) NIL (|has| |#2| (-454)))) (-3551 (((-644 $) $) NIL)) (-4188 (((-112) $) NIL (|has| |#2| (-909)))) (-3995 (($ $ |#2| (-771) $) NIL)) (-1542 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| (-1081) (-886 (-381))) (|has| |#2| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| (-1081) (-886 (-566))) (|has| |#2| (-886 (-566)))))) (-1802 (((-771) $ $) NIL (|has| |#2| (-558)))) (-2264 (((-112) $) NIL)) (-3486 (((-771) $) NIL)) (-4278 (((-3 $ "failed") $) NIL (|has| |#2| (-1150)))) (-2474 (($ (-1171 |#2|) (-1081)) NIL) (($ (-1171 $) (-1081)) NIL)) (-2383 (($ $ (-771)) NIL)) (-2495 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#2| (-365)))) (-1545 (((-644 $) $) NIL)) (-3989 (((-112) $) NIL)) (-2463 (($ |#2| (-771)) 18) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL)) (-2235 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $ (-1081)) NIL) (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL)) (-2584 (((-771) $) NIL) (((-771) $ (-1081)) NIL) (((-644 (-771)) $ (-644 (-1081))) NIL)) (-3327 (($ (-1 (-771) (-771)) $) NIL)) (-3080 (($ (-1 |#2| |#2|) $) NIL)) (-2800 (((-1171 |#2|) $) NIL)) (-2673 (((-3 (-1081) "failed") $) NIL)) (-2608 (($ $) NIL)) (-2622 ((|#2| $) NIL)) (-2120 (($ (-644 $)) NIL (|has| |#2| (-454))) (($ $ $) NIL (|has| |#2| (-454)))) (-3151 (((-1157) $) NIL)) (-3333 (((-2 (|:| -3371 $) (|:| -3131 $)) $ (-771)) NIL)) (-4075 (((-3 (-644 $) "failed") $) NIL)) (-3380 (((-3 (-644 $) "failed") $) NIL)) (-2414 (((-3 (-2 (|:| |var| (-1081)) (|:| -3631 (-771))) "failed") $) NIL)) (-2390 (($ $) NIL (|has| |#2| (-38 (-409 (-566)))))) (-3968 (($) NIL (|has| |#2| (-1150)) CONST)) (-4059 (((-1119) $) NIL)) (-2587 (((-112) $) NIL)) (-2597 ((|#2| $) NIL)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#2| (-454)))) (-2162 (($ (-644 $)) NIL (|has| |#2| (-454))) (($ $ $) NIL (|has| |#2| (-454)))) (-2790 (($ $ (-771) |#2| $) NIL)) (-1500 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-3917 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-2325 (((-420 $) $) NIL (|has| |#2| (-909)))) (-2585 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL (|has| |#2| (-365)))) (-2976 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-558))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-558)))) (-2840 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#2| (-365)))) (-3297 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-1081) |#2|) NIL) (($ $ (-644 (-1081)) (-644 |#2|)) NIL) (($ $ (-1081) $) NIL) (($ $ (-644 (-1081)) (-644 $)) NIL)) (-1383 (((-771) $) NIL (|has| |#2| (-365)))) (-4376 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-409 $) (-409 $) (-409 $)) NIL (|has| |#2| (-558))) ((|#2| (-409 $) |#2|) NIL (|has| |#2| (-365))) (((-409 $) $ (-409 $)) NIL (|has| |#2| (-558)))) (-3070 (((-3 $ "failed") $ (-771)) NIL)) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL (|has| |#2| (-365)))) (-3553 (($ $ (-1081)) NIL (|has| |#2| (-172))) ((|#2| $) NIL (|has| |#2| (-172)))) (-3526 (($ $ (-1081)) NIL) (($ $ (-644 (-1081))) NIL) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL) (($ $ (-771)) NIL) (($ $) NIL) (($ $ (-1175)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1 |#2| |#2|) (-771)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-1630 (((-771) $) NIL) (((-771) $ (-1081)) NIL) (((-644 (-771)) $ (-644 (-1081))) NIL)) (-3136 (((-892 (-381)) $) NIL (-12 (|has| (-1081) (-614 (-892 (-381)))) (|has| |#2| (-614 (-892 (-381)))))) (((-892 (-566)) $) NIL (-12 (|has| (-1081) (-614 (-892 (-566)))) (|has| |#2| (-614 (-892 (-566)))))) (((-538) $) NIL (-12 (|has| (-1081) (-614 (-538))) (|has| |#2| (-614 (-538)))))) (-2252 ((|#2| $) NIL (|has| |#2| (-454))) (($ $ (-1081)) NIL (|has| |#2| (-454)))) (-3233 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-909))))) (-3918 (((-3 $ "failed") $ $) NIL (|has| |#2| (-558))) (((-3 (-409 $) "failed") (-409 $) $) NIL (|has| |#2| (-558)))) (-2479 (((-862) $) 13) (($ (-566)) NIL) (($ |#2|) NIL) (($ (-1081)) NIL) (($ (-1260 |#1|)) 20) (($ (-409 (-566))) NIL (-2809 (|has| |#2| (-38 (-409 (-566)))) (|has| |#2| (-1038 (-409 (-566)))))) (($ $) NIL (|has| |#2| (-558)))) (-3866 (((-644 |#2|) $) NIL)) (-3025 ((|#2| $ (-771)) NIL) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL)) (-2645 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| $ (-145)) (|has| |#2| (-909))) (|has| |#2| (-145))))) (-1558 (((-771)) NIL T CONST)) (-2244 (($ $ $ (-771)) NIL (|has| |#2| (-172)))) (-3900 (((-112) $ $) NIL)) (-1333 (((-112) $ $) NIL (|has| |#2| (-558)))) (-2446 (($) NIL T CONST)) (-2459 (($) 14 T CONST)) (-2834 (($ $ (-1081)) NIL) (($ $ (-644 (-1081))) NIL) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL) (($ $ (-771)) NIL) (($ $) NIL) (($ $ (-1175)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1 |#2| |#2|) (-771)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2952 (((-112) $ $) NIL)) (-3077 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL (|has| |#2| (-38 (-409 (-566))))) (($ (-409 (-566)) $) NIL (|has| |#2| (-38 (-409 (-566))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-1237 |#1| |#2|) (-13 (-1240 |#2|) (-616 (-1260 |#1|)) (-10 -8 (-15 -2790 ($ $ (-771) |#2| $)))) (-1175) (-1049)) (T -1237)) +((-2790 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-771)) (-5 *1 (-1237 *4 *3)) (-14 *4 (-1175)) (-4 *3 (-1049))))) +(-13 (-1240 |#2|) (-616 (-1260 |#1|)) (-10 -8 (-15 -2790 ($ $ (-771) |#2| $)))) +((-3080 ((|#4| (-1 |#3| |#1|) |#2|) 22))) +(((-1238 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3080 (|#4| (-1 |#3| |#1|) |#2|))) (-1049) (-1240 |#1|) (-1049) (-1240 |#3|)) (T -1238)) +((-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1049)) (-4 *6 (-1049)) (-4 *2 (-1240 *6)) (-5 *1 (-1238 *5 *4 *6 *2)) (-4 *4 (-1240 *5))))) +(-10 -7 (-15 -3080 (|#4| (-1 |#3| |#1|) |#2|))) +((-1825 (((-1264 |#2|) $ (-771)) 129)) (-2485 (((-644 (-1081)) $) 16)) (-3778 (($ (-1171 |#2|)) 80)) (-2917 (((-771) $) NIL) (((-771) $ (-644 (-1081))) 21)) (-4058 (((-420 (-1171 $)) (-1171 $)) 204)) (-3980 (($ $) 194)) (-3348 (((-420 $) $) 192)) (-4262 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) 95)) (-3336 (($ $ (-771)) 84)) (-1634 (($ $ (-771)) 86)) (-2020 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 145)) (-2980 (((-3 |#2| "failed") $) 132) (((-3 (-409 (-566)) "failed") $) NIL) (((-3 (-566) "failed") $) NIL) (((-3 (-1081) "failed") $) NIL)) (-1709 ((|#2| $) 130) (((-409 (-566)) $) NIL) (((-566) $) NIL) (((-1081) $) NIL)) (-2348 (($ $ $) 170)) (-3920 (((-2 (|:| -3103 |#2|) (|:| -3371 $) (|:| -3131 $)) $ $) 172)) (-1802 (((-771) $ $) 189)) (-4278 (((-3 $ "failed") $) 138)) (-2463 (($ |#2| (-771)) NIL) (($ $ (-1081) (-771)) 59) (($ $ (-644 (-1081)) (-644 (-771))) NIL)) (-2584 (((-771) $) NIL) (((-771) $ (-1081)) 54) (((-644 (-771)) $ (-644 (-1081))) 55)) (-2800 (((-1171 |#2|) $) 72)) (-2673 (((-3 (-1081) "failed") $) 52)) (-3333 (((-2 (|:| -3371 $) (|:| -3131 $)) $ (-771)) 83)) (-2390 (($ $) 219)) (-3968 (($) 134)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) 201)) (-1500 (((-420 (-1171 $)) (-1171 $)) 101)) (-3917 (((-420 (-1171 $)) (-1171 $)) 99)) (-2325 (((-420 $) $) 120)) (-3297 (($ $ (-644 (-295 $))) 51) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-1081) |#2|) 39) (($ $ (-644 (-1081)) (-644 |#2|)) 36) (($ $ (-1081) $) 32) (($ $ (-644 (-1081)) (-644 $)) 30)) (-1383 (((-771) $) 207)) (-4376 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-409 $) (-409 $) (-409 $)) 164) ((|#2| (-409 $) |#2|) 206) (((-409 $) $ (-409 $)) 188)) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) 212)) (-3526 (($ $ (-1081)) 157) (($ $ (-644 (-1081))) NIL) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL) (($ $ (-771)) NIL) (($ $) 155) (($ $ (-1175)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL) (($ $ (-1 |#2| |#2|) (-771)) NIL) (($ $ (-1 |#2| |#2|)) 154) (($ $ (-1 |#2| |#2|) $) 149)) (-1630 (((-771) $) NIL) (((-771) $ (-1081)) 17) (((-644 (-771)) $ (-644 (-1081))) 23)) (-2252 ((|#2| $) NIL) (($ $ (-1081)) 140)) (-3918 (((-3 $ "failed") $ $) 180) (((-3 (-409 $) "failed") (-409 $) $) 176)) (-2479 (((-862) $) NIL) (($ (-566)) NIL) (($ |#2|) NIL) (($ (-1081)) 64) (($ (-409 (-566))) NIL) (($ $) NIL))) +(((-1239 |#1| |#2|) (-10 -8 (-15 -2479 (|#1| |#1|)) (-15 -4004 ((-1171 |#1|) (-1171 |#1|) (-1171 |#1|))) (-15 -3348 ((-420 |#1|) |#1|)) (-15 -3980 (|#1| |#1|)) (-15 -2479 (|#1| (-409 (-566)))) (-15 -3968 (|#1|)) (-15 -4278 ((-3 |#1| "failed") |#1|)) (-15 -4376 ((-409 |#1|) |#1| (-409 |#1|))) (-15 -1383 ((-771) |#1|)) (-15 -1510 ((-2 (|:| -3371 |#1|) (|:| -3131 |#1|)) |#1| |#1|)) (-15 -2390 (|#1| |#1|)) (-15 -4376 (|#2| (-409 |#1|) |#2|)) (-15 -2020 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3920 ((-2 (|:| -3103 |#2|) (|:| -3371 |#1|) (|:| -3131 |#1|)) |#1| |#1|)) (-15 -2348 (|#1| |#1| |#1|)) (-15 -3918 ((-3 (-409 |#1|) "failed") (-409 |#1|) |#1|)) (-15 -3918 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1802 ((-771) |#1| |#1|)) (-15 -4376 ((-409 |#1|) (-409 |#1|) (-409 |#1|))) (-15 -3526 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -1634 (|#1| |#1| (-771))) (-15 -3336 (|#1| |#1| (-771))) (-15 -3333 ((-2 (|:| -3371 |#1|) (|:| -3131 |#1|)) |#1| (-771))) (-15 -3778 (|#1| (-1171 |#2|))) (-15 -2800 ((-1171 |#2|) |#1|)) (-15 -1825 ((-1264 |#2|) |#1| (-771))) (-15 -3526 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3526 (|#1| |#1| (-1 |#2| |#2|) (-771))) (-15 -3526 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -3526 (|#1| |#1| (-1175) (-771))) (-15 -3526 (|#1| |#1| (-644 (-1175)))) (-15 -3526 (|#1| |#1| (-1175))) (-15 -3526 (|#1| |#1|)) (-15 -3526 (|#1| |#1| (-771))) (-15 -4376 (|#1| |#1| |#1|)) (-15 -4376 (|#2| |#1| |#2|)) (-15 -2325 ((-420 |#1|) |#1|)) (-15 -4058 ((-420 (-1171 |#1|)) (-1171 |#1|))) (-15 -3917 ((-420 (-1171 |#1|)) (-1171 |#1|))) (-15 -1500 ((-420 (-1171 |#1|)) (-1171 |#1|))) (-15 -4262 ((-3 (-644 (-1171 |#1|)) "failed") (-644 (-1171 |#1|)) (-1171 |#1|))) (-15 -2252 (|#1| |#1| (-1081))) (-15 -2485 ((-644 (-1081)) |#1|)) (-15 -2917 ((-771) |#1| (-644 (-1081)))) (-15 -2917 ((-771) |#1|)) (-15 -2463 (|#1| |#1| (-644 (-1081)) (-644 (-771)))) (-15 -2463 (|#1| |#1| (-1081) (-771))) (-15 -2584 ((-644 (-771)) |#1| (-644 (-1081)))) (-15 -2584 ((-771) |#1| (-1081))) (-15 -2673 ((-3 (-1081) "failed") |#1|)) (-15 -1630 ((-644 (-771)) |#1| (-644 (-1081)))) (-15 -1630 ((-771) |#1| (-1081))) (-15 -2479 (|#1| (-1081))) (-15 -2980 ((-3 (-1081) "failed") |#1|)) (-15 -1709 ((-1081) |#1|)) (-15 -3297 (|#1| |#1| (-644 (-1081)) (-644 |#1|))) (-15 -3297 (|#1| |#1| (-1081) |#1|)) (-15 -3297 (|#1| |#1| (-644 (-1081)) (-644 |#2|))) (-15 -3297 (|#1| |#1| (-1081) |#2|)) (-15 -3297 (|#1| |#1| (-644 |#1|) (-644 |#1|))) (-15 -3297 (|#1| |#1| |#1| |#1|)) (-15 -3297 (|#1| |#1| (-295 |#1|))) (-15 -3297 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -1630 ((-771) |#1|)) (-15 -2463 (|#1| |#2| (-771))) (-15 -2980 ((-3 (-566) "failed") |#1|)) (-15 -1709 ((-566) |#1|)) (-15 -2980 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -1709 ((-409 (-566)) |#1|)) (-15 -1709 (|#2| |#1|)) (-15 -2980 ((-3 |#2| "failed") |#1|)) (-15 -2479 (|#1| |#2|)) (-15 -2584 ((-771) |#1|)) (-15 -2252 (|#2| |#1|)) (-15 -3526 (|#1| |#1| (-644 (-1081)) (-644 (-771)))) (-15 -3526 (|#1| |#1| (-1081) (-771))) (-15 -3526 (|#1| |#1| (-644 (-1081)))) (-15 -3526 (|#1| |#1| (-1081))) (-15 -2479 (|#1| (-566))) (-15 -2479 ((-862) |#1|))) (-1240 |#2|) (-1049)) (T -1239)) +NIL +(-10 -8 (-15 -2479 (|#1| |#1|)) (-15 -4004 ((-1171 |#1|) (-1171 |#1|) (-1171 |#1|))) (-15 -3348 ((-420 |#1|) |#1|)) (-15 -3980 (|#1| |#1|)) (-15 -2479 (|#1| (-409 (-566)))) (-15 -3968 (|#1|)) (-15 -4278 ((-3 |#1| "failed") |#1|)) (-15 -4376 ((-409 |#1|) |#1| (-409 |#1|))) (-15 -1383 ((-771) |#1|)) (-15 -1510 ((-2 (|:| -3371 |#1|) (|:| -3131 |#1|)) |#1| |#1|)) (-15 -2390 (|#1| |#1|)) (-15 -4376 (|#2| (-409 |#1|) |#2|)) (-15 -2020 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3920 ((-2 (|:| -3103 |#2|) (|:| -3371 |#1|) (|:| -3131 |#1|)) |#1| |#1|)) (-15 -2348 (|#1| |#1| |#1|)) (-15 -3918 ((-3 (-409 |#1|) "failed") (-409 |#1|) |#1|)) (-15 -3918 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1802 ((-771) |#1| |#1|)) (-15 -4376 ((-409 |#1|) (-409 |#1|) (-409 |#1|))) (-15 -3526 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -1634 (|#1| |#1| (-771))) (-15 -3336 (|#1| |#1| (-771))) (-15 -3333 ((-2 (|:| -3371 |#1|) (|:| -3131 |#1|)) |#1| (-771))) (-15 -3778 (|#1| (-1171 |#2|))) (-15 -2800 ((-1171 |#2|) |#1|)) (-15 -1825 ((-1264 |#2|) |#1| (-771))) (-15 -3526 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3526 (|#1| |#1| (-1 |#2| |#2|) (-771))) (-15 -3526 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -3526 (|#1| |#1| (-1175) (-771))) (-15 -3526 (|#1| |#1| (-644 (-1175)))) (-15 -3526 (|#1| |#1| (-1175))) (-15 -3526 (|#1| |#1|)) (-15 -3526 (|#1| |#1| (-771))) (-15 -4376 (|#1| |#1| |#1|)) (-15 -4376 (|#2| |#1| |#2|)) (-15 -2325 ((-420 |#1|) |#1|)) (-15 -4058 ((-420 (-1171 |#1|)) (-1171 |#1|))) (-15 -3917 ((-420 (-1171 |#1|)) (-1171 |#1|))) (-15 -1500 ((-420 (-1171 |#1|)) (-1171 |#1|))) (-15 -4262 ((-3 (-644 (-1171 |#1|)) "failed") (-644 (-1171 |#1|)) (-1171 |#1|))) (-15 -2252 (|#1| |#1| (-1081))) (-15 -2485 ((-644 (-1081)) |#1|)) (-15 -2917 ((-771) |#1| (-644 (-1081)))) (-15 -2917 ((-771) |#1|)) (-15 -2463 (|#1| |#1| (-644 (-1081)) (-644 (-771)))) (-15 -2463 (|#1| |#1| (-1081) (-771))) (-15 -2584 ((-644 (-771)) |#1| (-644 (-1081)))) (-15 -2584 ((-771) |#1| (-1081))) (-15 -2673 ((-3 (-1081) "failed") |#1|)) (-15 -1630 ((-644 (-771)) |#1| (-644 (-1081)))) (-15 -1630 ((-771) |#1| (-1081))) (-15 -2479 (|#1| (-1081))) (-15 -2980 ((-3 (-1081) "failed") |#1|)) (-15 -1709 ((-1081) |#1|)) (-15 -3297 (|#1| |#1| (-644 (-1081)) (-644 |#1|))) (-15 -3297 (|#1| |#1| (-1081) |#1|)) (-15 -3297 (|#1| |#1| (-644 (-1081)) (-644 |#2|))) (-15 -3297 (|#1| |#1| (-1081) |#2|)) (-15 -3297 (|#1| |#1| (-644 |#1|) (-644 |#1|))) (-15 -3297 (|#1| |#1| |#1| |#1|)) (-15 -3297 (|#1| |#1| (-295 |#1|))) (-15 -3297 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -1630 ((-771) |#1|)) (-15 -2463 (|#1| |#2| (-771))) (-15 -2980 ((-3 (-566) "failed") |#1|)) (-15 -1709 ((-566) |#1|)) (-15 -2980 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -1709 ((-409 (-566)) |#1|)) (-15 -1709 (|#2| |#1|)) (-15 -2980 ((-3 |#2| "failed") |#1|)) (-15 -2479 (|#1| |#2|)) (-15 -2584 ((-771) |#1|)) (-15 -2252 (|#2| |#1|)) (-15 -3526 (|#1| |#1| (-644 (-1081)) (-644 (-771)))) (-15 -3526 (|#1| |#1| (-1081) (-771))) (-15 -3526 (|#1| |#1| (-644 (-1081)))) (-15 -3526 (|#1| |#1| (-1081))) (-15 -2479 (|#1| (-566))) (-15 -2479 ((-862) |#1|))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-1825 (((-1264 |#1|) $ (-771)) 240)) (-2485 (((-644 (-1081)) $) 112)) (-3778 (($ (-1171 |#1|)) 238)) (-2285 (((-1171 $) $ (-1081)) 127) (((-1171 |#1|) $) 126)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) 89 (|has| |#1| (-558)))) (-3087 (($ $) 90 (|has| |#1| (-558)))) (-1716 (((-112) $) 92 (|has| |#1| (-558)))) (-2917 (((-771) $) 114) (((-771) $ (-644 (-1081))) 113)) (-3174 (((-3 $ "failed") $ $) 20)) (-2113 (($ $ $) 225 (|has| |#1| (-558)))) (-4058 (((-420 (-1171 $)) (-1171 $)) 102 (|has| |#1| (-909)))) (-3980 (($ $) 100 (|has| |#1| (-454)))) (-3348 (((-420 $) $) 99 (|has| |#1| (-454)))) (-4262 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) 105 (|has| |#1| (-909)))) (-2761 (((-112) $ $) 210 (|has| |#1| (-365)))) (-3336 (($ $ (-771)) 233)) (-1634 (($ $ (-771)) 232)) (-2020 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 220 (|has| |#1| (-454)))) (-1811 (($) 18 T CONST)) (-2980 (((-3 |#1| "failed") $) 166) (((-3 (-409 (-566)) "failed") $) 163 (|has| |#1| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) 161 (|has| |#1| (-1038 (-566)))) (((-3 (-1081) "failed") $) 138)) (-1709 ((|#1| $) 165) (((-409 (-566)) $) 164 (|has| |#1| (-1038 (-409 (-566))))) (((-566) $) 162 (|has| |#1| (-1038 (-566)))) (((-1081) $) 139)) (-4343 (($ $ $ (-1081)) 110 (|has| |#1| (-172))) ((|#1| $ $) 228 (|has| |#1| (-172)))) (-2925 (($ $ $) 214 (|has| |#1| (-365)))) (-3565 (($ $) 156)) (-2275 (((-689 (-566)) (-689 $)) 136 (|has| |#1| (-639 (-566)))) (((-2 (|:| -4196 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) 135 (|has| |#1| (-639 (-566)))) (((-2 (|:| -4196 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) 134) (((-689 |#1|) (-689 $)) 133)) (-3757 (((-3 $ "failed") $) 37)) (-2937 (($ $ $) 213 (|has| |#1| (-365)))) (-1731 (($ $ $) 231)) (-2348 (($ $ $) 222 (|has| |#1| (-558)))) (-3920 (((-2 (|:| -3103 |#1|) (|:| -3371 $) (|:| -3131 $)) $ $) 221 (|has| |#1| (-558)))) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) 208 (|has| |#1| (-365)))) (-3530 (($ $) 178 (|has| |#1| (-454))) (($ $ (-1081)) 107 (|has| |#1| (-454)))) (-3551 (((-644 $) $) 111)) (-4188 (((-112) $) 98 (|has| |#1| (-909)))) (-3995 (($ $ |#1| (-771) $) 174)) (-1542 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 86 (-12 (|has| (-1081) (-886 (-381))) (|has| |#1| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 85 (-12 (|has| (-1081) (-886 (-566))) (|has| |#1| (-886 (-566)))))) (-1802 (((-771) $ $) 226 (|has| |#1| (-558)))) (-2264 (((-112) $) 35)) (-3486 (((-771) $) 171)) (-4278 (((-3 $ "failed") $) 206 (|has| |#1| (-1150)))) (-2474 (($ (-1171 |#1|) (-1081)) 119) (($ (-1171 $) (-1081)) 118)) (-2383 (($ $ (-771)) 237)) (-2495 (((-3 (-644 $) "failed") (-644 $) $) 217 (|has| |#1| (-365)))) (-1545 (((-644 $) $) 128)) (-3989 (((-112) $) 154)) (-2463 (($ |#1| (-771)) 155) (($ $ (-1081) (-771)) 121) (($ $ (-644 (-1081)) (-644 (-771))) 120)) (-2235 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $ (-1081)) 122) (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) 235)) (-2584 (((-771) $) 172) (((-771) $ (-1081)) 124) (((-644 (-771)) $ (-644 (-1081))) 123)) (-3327 (($ (-1 (-771) (-771)) $) 173)) (-3080 (($ (-1 |#1| |#1|) $) 153)) (-2800 (((-1171 |#1|) $) 239)) (-2673 (((-3 (-1081) "failed") $) 125)) (-2608 (($ $) 151)) (-2622 ((|#1| $) 150)) (-2120 (($ (-644 $)) 96 (|has| |#1| (-454))) (($ $ $) 95 (|has| |#1| (-454)))) (-3151 (((-1157) $) 10)) (-3333 (((-2 (|:| -3371 $) (|:| -3131 $)) $ (-771)) 234)) (-4075 (((-3 (-644 $) "failed") $) 116)) (-3380 (((-3 (-644 $) "failed") $) 117)) (-2414 (((-3 (-2 (|:| |var| (-1081)) (|:| -3631 (-771))) "failed") $) 115)) (-2390 (($ $) 218 (|has| |#1| (-38 (-409 (-566)))))) (-3968 (($) 205 (|has| |#1| (-1150)) CONST)) (-4059 (((-1119) $) 11)) (-2587 (((-112) $) 168)) (-2597 ((|#1| $) 169)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) 97 (|has| |#1| (-454)))) (-2162 (($ (-644 $)) 94 (|has| |#1| (-454))) (($ $ $) 93 (|has| |#1| (-454)))) (-1500 (((-420 (-1171 $)) (-1171 $)) 104 (|has| |#1| (-909)))) (-3917 (((-420 (-1171 $)) (-1171 $)) 103 (|has| |#1| (-909)))) (-2325 (((-420 $) $) 101 (|has| |#1| (-909)))) (-2585 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 216 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) 215 (|has| |#1| (-365)))) (-2976 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-558))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-558)))) (-2840 (((-3 (-644 $) "failed") (-644 $) $) 209 (|has| |#1| (-365)))) (-3297 (($ $ (-644 (-295 $))) 147) (($ $ (-295 $)) 146) (($ $ $ $) 145) (($ $ (-644 $) (-644 $)) 144) (($ $ (-1081) |#1|) 143) (($ $ (-644 (-1081)) (-644 |#1|)) 142) (($ $ (-1081) $) 141) (($ $ (-644 (-1081)) (-644 $)) 140)) (-1383 (((-771) $) 211 (|has| |#1| (-365)))) (-4376 ((|#1| $ |#1|) 258) (($ $ $) 257) (((-409 $) (-409 $) (-409 $)) 227 (|has| |#1| (-558))) ((|#1| (-409 $) |#1|) 219 (|has| |#1| (-365))) (((-409 $) $ (-409 $)) 207 (|has| |#1| (-558)))) (-3070 (((-3 $ "failed") $ (-771)) 236)) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) 212 (|has| |#1| (-365)))) (-3553 (($ $ (-1081)) 109 (|has| |#1| (-172))) ((|#1| $) 229 (|has| |#1| (-172)))) (-3526 (($ $ (-1081)) 46) (($ $ (-644 (-1081))) 45) (($ $ (-1081) (-771)) 44) (($ $ (-644 (-1081)) (-644 (-771))) 43) (($ $ (-771)) 255) (($ $) 253) (($ $ (-1175)) 252 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) 251 (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) 250 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) 249 (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) 242) (($ $ (-1 |#1| |#1|)) 241) (($ $ (-1 |#1| |#1|) $) 230)) (-1630 (((-771) $) 152) (((-771) $ (-1081)) 132) (((-644 (-771)) $ (-644 (-1081))) 131)) (-3136 (((-892 (-381)) $) 84 (-12 (|has| (-1081) (-614 (-892 (-381)))) (|has| |#1| (-614 (-892 (-381)))))) (((-892 (-566)) $) 83 (-12 (|has| (-1081) (-614 (-892 (-566)))) (|has| |#1| (-614 (-892 (-566)))))) (((-538) $) 82 (-12 (|has| (-1081) (-614 (-538))) (|has| |#1| (-614 (-538)))))) (-2252 ((|#1| $) 177 (|has| |#1| (-454))) (($ $ (-1081)) 108 (|has| |#1| (-454)))) (-3233 (((-3 (-1264 $) "failed") (-689 $)) 106 (-2402 (|has| $ (-145)) (|has| |#1| (-909))))) (-3918 (((-3 $ "failed") $ $) 224 (|has| |#1| (-558))) (((-3 (-409 $) "failed") (-409 $) $) 223 (|has| |#1| (-558)))) (-2479 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 167) (($ (-1081)) 137) (($ (-409 (-566))) 80 (-2809 (|has| |#1| (-1038 (-409 (-566)))) (|has| |#1| (-38 (-409 (-566)))))) (($ $) 87 (|has| |#1| (-558)))) (-3866 (((-644 |#1|) $) 170)) (-3025 ((|#1| $ (-771)) 157) (($ $ (-1081) (-771)) 130) (($ $ (-644 (-1081)) (-644 (-771))) 129)) (-2645 (((-3 $ "failed") $) 81 (-2809 (-2402 (|has| $ (-145)) (|has| |#1| (-909))) (|has| |#1| (-145))))) (-1558 (((-771)) 32 T CONST)) (-2244 (($ $ $ (-771)) 175 (|has| |#1| (-172)))) (-3900 (((-112) $ $) 9)) (-1333 (((-112) $ $) 91 (|has| |#1| (-558)))) (-2446 (($) 19 T CONST)) (-2459 (($) 34 T CONST)) (-2834 (($ $ (-1081)) 42) (($ $ (-644 (-1081))) 41) (($ $ (-1081) (-771)) 40) (($ $ (-644 (-1081)) (-644 (-771))) 39) (($ $ (-771)) 256) (($ $) 254) (($ $ (-1175)) 248 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) 247 (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) 246 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) 245 (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) 244) (($ $ (-1 |#1| |#1|)) 243)) (-2952 (((-112) $ $) 6)) (-3077 (($ $ |#1|) 158 (|has| |#1| (-365)))) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ (-409 (-566))) 160 (|has| |#1| (-38 (-409 (-566))))) (($ (-409 (-566)) $) 159 (|has| |#1| (-38 (-409 (-566))))) (($ |#1| $) 149) (($ $ |#1|) 148))) +(((-1240 |#1|) (-140) (-1049)) (T -1240)) +((-1825 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-4 *1 (-1240 *4)) (-4 *4 (-1049)) (-5 *2 (-1264 *4)))) (-2800 (*1 *2 *1) (-12 (-4 *1 (-1240 *3)) (-4 *3 (-1049)) (-5 *2 (-1171 *3)))) (-3778 (*1 *1 *2) (-12 (-5 *2 (-1171 *3)) (-4 *3 (-1049)) (-4 *1 (-1240 *3)))) (-2383 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-1240 *3)) (-4 *3 (-1049)))) (-3070 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-771)) (-4 *1 (-1240 *3)) (-4 *3 (-1049)))) (-2235 (*1 *2 *1 *1) (-12 (-4 *3 (-1049)) (-5 *2 (-2 (|:| -3371 *1) (|:| -3131 *1))) (-4 *1 (-1240 *3)))) (-3333 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-4 *4 (-1049)) (-5 *2 (-2 (|:| -3371 *1) (|:| -3131 *1))) (-4 *1 (-1240 *4)))) (-3336 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-1240 *3)) (-4 *3 (-1049)))) (-1634 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-1240 *3)) (-4 *3 (-1049)))) (-1731 (*1 *1 *1 *1) (-12 (-4 *1 (-1240 *2)) (-4 *2 (-1049)))) (-3526 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1240 *3)) (-4 *3 (-1049)))) (-3553 (*1 *2 *1) (-12 (-4 *1 (-1240 *2)) (-4 *2 (-1049)) (-4 *2 (-172)))) (-4343 (*1 *2 *1 *1) (-12 (-4 *1 (-1240 *2)) (-4 *2 (-1049)) (-4 *2 (-172)))) (-4376 (*1 *2 *2 *2) (-12 (-5 *2 (-409 *1)) (-4 *1 (-1240 *3)) (-4 *3 (-1049)) (-4 *3 (-558)))) (-1802 (*1 *2 *1 *1) (-12 (-4 *1 (-1240 *3)) (-4 *3 (-1049)) (-4 *3 (-558)) (-5 *2 (-771)))) (-2113 (*1 *1 *1 *1) (-12 (-4 *1 (-1240 *2)) (-4 *2 (-1049)) (-4 *2 (-558)))) (-3918 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1240 *2)) (-4 *2 (-1049)) (-4 *2 (-558)))) (-3918 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-409 *1)) (-4 *1 (-1240 *3)) (-4 *3 (-1049)) (-4 *3 (-558)))) (-2348 (*1 *1 *1 *1) (-12 (-4 *1 (-1240 *2)) (-4 *2 (-1049)) (-4 *2 (-558)))) (-3920 (*1 *2 *1 *1) (-12 (-4 *3 (-558)) (-4 *3 (-1049)) (-5 *2 (-2 (|:| -3103 *3) (|:| -3371 *1) (|:| -3131 *1))) (-4 *1 (-1240 *3)))) (-2020 (*1 *2 *1 *1) (-12 (-4 *3 (-454)) (-4 *3 (-1049)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1240 *3)))) (-4376 (*1 *2 *3 *2) (-12 (-5 *3 (-409 *1)) (-4 *1 (-1240 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))) (-2390 (*1 *1 *1) (-12 (-4 *1 (-1240 *2)) (-4 *2 (-1049)) (-4 *2 (-38 (-409 (-566))))))) +(-13 (-949 |t#1| (-771) (-1081)) (-287 |t#1| |t#1|) (-287 $ $) (-233) (-231 |t#1|) (-10 -8 (-15 -1825 ((-1264 |t#1|) $ (-771))) (-15 -2800 ((-1171 |t#1|) $)) (-15 -3778 ($ (-1171 |t#1|))) (-15 -2383 ($ $ (-771))) (-15 -3070 ((-3 $ "failed") $ (-771))) (-15 -2235 ((-2 (|:| -3371 $) (|:| -3131 $)) $ $)) (-15 -3333 ((-2 (|:| -3371 $) (|:| -3131 $)) $ (-771))) (-15 -3336 ($ $ (-771))) (-15 -1634 ($ $ (-771))) (-15 -1731 ($ $ $)) (-15 -3526 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1150)) (-6 (-1150)) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-15 -3553 (|t#1| $)) (-15 -4343 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-558)) (PROGN (-6 (-287 (-409 $) (-409 $))) (-15 -4376 ((-409 $) (-409 $) (-409 $))) (-15 -1802 ((-771) $ $)) (-15 -2113 ($ $ $)) (-15 -3918 ((-3 $ "failed") $ $)) (-15 -3918 ((-3 (-409 $) "failed") (-409 $) $)) (-15 -2348 ($ $ $)) (-15 -3920 ((-2 (|:| -3103 |t#1|) (|:| -3371 $) (|:| -3131 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-454)) (-15 -2020 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-365)) (PROGN (-6 (-308)) (-6 -4413) (-15 -4376 (|t#1| (-409 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-409 (-566)))) (-15 -2390 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-771)) . T) ((-25) . T) ((-38 #1=(-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-365))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-409 (-566)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #1#) -2809 (|has| |#1| (-1038 (-409 (-566)))) (|has| |#1| (-38 (-409 (-566))))) ((-616 (-566)) . T) ((-616 #2=(-1081)) . T) ((-616 |#1|) . T) ((-616 $) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-365))) ((-613 (-862)) . T) ((-172) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-614 (-538)) -12 (|has| (-1081) (-614 (-538))) (|has| |#1| (-614 (-538)))) ((-614 (-892 (-381))) -12 (|has| (-1081) (-614 (-892 (-381)))) (|has| |#1| (-614 (-892 (-381))))) ((-614 (-892 (-566))) -12 (|has| (-1081) (-614 (-892 (-566)))) (|has| |#1| (-614 (-892 (-566))))) ((-231 |#1|) . T) ((-233) . T) ((-287 (-409 $) (-409 $)) |has| |#1| (-558)) ((-287 |#1| |#1|) . T) ((-287 $ $) . T) ((-291) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-365))) ((-308) |has| |#1| (-365)) ((-310 $) . T) ((-327 |#1| #0#) . T) ((-379 |#1|) . T) ((-413 |#1|) . T) ((-454) -2809 (|has| |#1| (-909)) (|has| |#1| (-454)) (|has| |#1| (-365))) ((-516 #2# |#1|) . T) ((-516 #2# $) . T) ((-516 $ $) . T) ((-558) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-365))) ((-646 #1#) |has| |#1| (-38 (-409 (-566)))) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #1#) |has| |#1| (-38 (-409 (-566)))) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #1#) |has| |#1| (-38 (-409 (-566)))) ((-640 |#1|) |has| |#1| (-172)) ((-640 $) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-365))) ((-639 (-566)) |has| |#1| (-639 (-566))) ((-639 |#1|) . T) ((-717 #1#) |has| |#1| (-38 (-409 (-566)))) ((-717 |#1|) |has| |#1| (-172)) ((-717 $) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-365))) ((-726) . T) ((-900 #2#) . T) ((-900 (-1175)) |has| |#1| (-900 (-1175))) ((-886 (-381)) -12 (|has| (-1081) (-886 (-381))) (|has| |#1| (-886 (-381)))) ((-886 (-566)) -12 (|has| (-1081) (-886 (-566))) (|has| |#1| (-886 (-566)))) ((-949 |#1| #0# #2#) . T) ((-909) |has| |#1| (-909)) ((-920) |has| |#1| (-365)) ((-1038 (-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) ((-1038 (-566)) |has| |#1| (-1038 (-566))) ((-1038 #2#) . T) ((-1038 |#1|) . T) ((-1051 #1#) |has| |#1| (-38 (-409 (-566)))) ((-1051 |#1|) . T) ((-1051 $) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1056 #1#) |has| |#1| (-38 (-409 (-566)))) ((-1056 |#1|) . T) ((-1056 $) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1150) |has| |#1| (-1150)) ((-1218) |has| |#1| (-909))) +((-2485 (((-644 (-1081)) $) 34)) (-3565 (($ $) 31)) (-2463 (($ |#2| |#3|) NIL) (($ $ (-1081) |#3|) 28) (($ $ (-644 (-1081)) (-644 |#3|)) 27)) (-2608 (($ $) 14)) (-2622 ((|#2| $) 12)) (-1630 ((|#3| $) 10))) +(((-1241 |#1| |#2| |#3|) (-10 -8 (-15 -2485 ((-644 (-1081)) |#1|)) (-15 -2463 (|#1| |#1| (-644 (-1081)) (-644 |#3|))) (-15 -2463 (|#1| |#1| (-1081) |#3|)) (-15 -3565 (|#1| |#1|)) (-15 -2463 (|#1| |#2| |#3|)) (-15 -1630 (|#3| |#1|)) (-15 -2608 (|#1| |#1|)) (-15 -2622 (|#2| |#1|))) (-1242 |#2| |#3|) (-1049) (-792)) (T -1241)) +NIL +(-10 -8 (-15 -2485 ((-644 (-1081)) |#1|)) (-15 -2463 (|#1| |#1| (-644 (-1081)) (-644 |#3|))) (-15 -2463 (|#1| |#1| (-1081) |#3|)) (-15 -3565 (|#1| |#1|)) (-15 -2463 (|#1| |#2| |#3|)) (-15 -1630 (|#3| |#1|)) (-15 -2608 (|#1| |#1|)) (-15 -2622 (|#2| |#1|))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-2485 (((-644 (-1081)) $) 86)) (-1338 (((-1175) $) 115)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) 63 (|has| |#1| (-558)))) (-3087 (($ $) 64 (|has| |#1| (-558)))) (-1716 (((-112) $) 66 (|has| |#1| (-558)))) (-3175 (($ $ |#2|) 110) (($ $ |#2| |#2|) 109)) (-1723 (((-1155 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 117)) (-3174 (((-3 $ "failed") $ $) 20)) (-1811 (($) 18 T CONST)) (-3565 (($ $) 72)) (-3757 (((-3 $ "failed") $) 37)) (-3088 (((-112) $) 85)) (-1802 ((|#2| $) 112) ((|#2| $ |#2|) 111)) (-2264 (((-112) $) 35)) (-2383 (($ $ (-921)) 113)) (-3989 (((-112) $) 74)) (-2463 (($ |#1| |#2|) 73) (($ $ (-1081) |#2|) 88) (($ $ (-644 (-1081)) (-644 |#2|)) 87)) (-3080 (($ (-1 |#1| |#1|) $) 75)) (-2608 (($ $) 77)) (-2622 ((|#1| $) 78)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-2050 (($ $ |#2|) 107)) (-2976 (((-3 $ "failed") $ $) 62 (|has| |#1| (-558)))) (-3297 (((-1155 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-4376 ((|#1| $ |#2|) 116) (($ $ $) 93 (|has| |#2| (-1111)))) (-3526 (($ $ (-644 (-1175)) (-644 (-771))) 101 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1175) (-771)) 100 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-644 (-1175))) 99 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1175)) 98 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-771)) 96 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-1630 ((|#2| $) 76)) (-4122 (($ $) 84)) (-2479 (((-862) $) 12) (($ (-566)) 33) (($ (-409 (-566))) 69 (|has| |#1| (-38 (-409 (-566))))) (($ $) 61 (|has| |#1| (-558))) (($ |#1|) 59 (|has| |#1| (-172)))) (-3025 ((|#1| $ |#2|) 71)) (-2645 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-1558 (((-771)) 32 T CONST)) (-2316 ((|#1| $) 114)) (-3900 (((-112) $ $) 9)) (-1333 (((-112) $ $) 65 (|has| |#1| (-558)))) (-3649 ((|#1| $ |#2|) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -2479 (|#1| (-1175))))))) (-2446 (($) 19 T CONST)) (-2459 (($) 34 T CONST)) (-2834 (($ $ (-644 (-1175)) (-644 (-771))) 105 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1175) (-771)) 104 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-644 (-1175))) 103 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1175)) 102 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-771)) 97 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2952 (((-112) $ $) 6)) (-3077 (($ $ |#1|) 70 (|has| |#1| (-365)))) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-409 (-566)) $) 68 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 67 (|has| |#1| (-38 (-409 (-566))))))) +(((-1242 |#1| |#2|) (-140) (-1049) (-792)) (T -1242)) +((-1723 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792)) (-5 *2 (-1155 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-4376 (*1 *2 *1 *3) (-12 (-4 *1 (-1242 *2 *3)) (-4 *3 (-792)) (-4 *2 (-1049)))) (-1338 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792)) (-5 *2 (-1175)))) (-2316 (*1 *2 *1) (-12 (-4 *1 (-1242 *2 *3)) (-4 *3 (-792)) (-4 *2 (-1049)))) (-2383 (*1 *1 *1 *2) (-12 (-5 *2 (-921)) (-4 *1 (-1242 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792)))) (-1802 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-792)))) (-1802 (*1 *2 *1 *2) (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-792)))) (-3175 (*1 *1 *1 *2) (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-792)))) (-3175 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-792)))) (-3649 (*1 *2 *1 *3) (-12 (-4 *1 (-1242 *2 *3)) (-4 *3 (-792)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2479 (*2 (-1175)))) (-4 *2 (-1049)))) (-2050 (*1 *1 *1 *2) (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-792)))) (-3297 (*1 *2 *1 *3) (-12 (-4 *1 (-1242 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1155 *3))))) +(-13 (-973 |t#1| |t#2| (-1081)) (-10 -8 (-15 -1723 ((-1155 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -4376 (|t#1| $ |t#2|)) (-15 -1338 ((-1175) $)) (-15 -2316 (|t#1| $)) (-15 -2383 ($ $ (-921))) (-15 -1802 (|t#2| $)) (-15 -1802 (|t#2| $ |t#2|)) (-15 -3175 ($ $ |t#2|)) (-15 -3175 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -2479 (|t#1| (-1175)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3649 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -2050 ($ $ |t#2|)) (IF (|has| |t#2| (-1111)) (-6 (-287 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-233)) (IF (|has| |t#1| (-900 (-1175))) (-6 (-900 (-1175))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3297 ((-1155 |t#1|) $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-558)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-409 (-566)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2809 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #0#) |has| |#1| (-38 (-409 (-566)))) ((-616 (-566)) . T) ((-616 |#1|) |has| |#1| (-172)) ((-616 $) |has| |#1| (-558)) ((-613 (-862)) . T) ((-172) -2809 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-287 $ $) |has| |#2| (-1111)) ((-291) |has| |#1| (-558)) ((-558) |has| |#1| (-558)) ((-646 #0#) |has| |#1| (-38 (-409 (-566)))) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #0#) |has| |#1| (-38 (-409 (-566)))) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #0#) |has| |#1| (-38 (-409 (-566)))) ((-640 |#1|) |has| |#1| (-172)) ((-640 $) |has| |#1| (-558)) ((-717 #0#) |has| |#1| (-38 (-409 (-566)))) ((-717 |#1|) |has| |#1| (-172)) ((-717 $) |has| |#1| (-558)) ((-726) . T) ((-900 (-1175)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-900 (-1175)))) ((-973 |#1| |#2| (-1081)) . T) ((-1051 #0#) |has| |#1| (-38 (-409 (-566)))) ((-1051 |#1|) . T) ((-1051 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-1056 #0#) |has| |#1| (-38 (-409 (-566)))) ((-1056 |#1|) . T) ((-1056 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) +((-3980 ((|#2| |#2|) 12)) (-3348 (((-420 |#2|) |#2|) 14)) (-2366 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-566))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-566)))) 30))) +(((-1243 |#1| |#2|) (-10 -7 (-15 -3348 ((-420 |#2|) |#2|)) (-15 -3980 (|#2| |#2|)) (-15 -2366 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-566))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-566)))))) (-558) (-13 (-1240 |#1|) (-558) (-10 -8 (-15 -2162 ($ $ $))))) (T -1243)) +((-2366 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-566)))) (-4 *4 (-13 (-1240 *3) (-558) (-10 -8 (-15 -2162 ($ $ $))))) (-4 *3 (-558)) (-5 *1 (-1243 *3 *4)))) (-3980 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-1243 *3 *2)) (-4 *2 (-13 (-1240 *3) (-558) (-10 -8 (-15 -2162 ($ $ $))))))) (-3348 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-420 *3)) (-5 *1 (-1243 *4 *3)) (-4 *3 (-13 (-1240 *4) (-558) (-10 -8 (-15 -2162 ($ $ $)))))))) +(-10 -7 (-15 -3348 ((-420 |#2|) |#2|)) (-15 -3980 (|#2| |#2|)) (-15 -2366 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-566))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-566)))))) +((-3080 (((-1249 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1249 |#1| |#3| |#5|)) 24))) +(((-1244 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3080 ((-1249 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1249 |#1| |#3| |#5|)))) (-1049) (-1049) (-1175) (-1175) |#1| |#2|) (T -1244)) +((-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1249 *5 *7 *9)) (-4 *5 (-1049)) (-4 *6 (-1049)) (-14 *7 (-1175)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1249 *6 *8 *10)) (-5 *1 (-1244 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1175))))) +(-10 -7 (-15 -3080 ((-1249 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1249 |#1| |#3| |#5|)))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-2485 (((-644 (-1081)) $) 86)) (-1338 (((-1175) $) 115)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) 63 (|has| |#1| (-558)))) (-3087 (($ $) 64 (|has| |#1| (-558)))) (-1716 (((-112) $) 66 (|has| |#1| (-558)))) (-3175 (($ $ (-409 (-566))) 110) (($ $ (-409 (-566)) (-409 (-566))) 109)) (-1723 (((-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#1|))) $) 117)) (-3219 (($ $) 147 (|has| |#1| (-38 (-409 (-566)))))) (-3091 (($ $) 130 (|has| |#1| (-38 (-409 (-566)))))) (-3174 (((-3 $ "failed") $ $) 20)) (-3980 (($ $) 174 (|has| |#1| (-365)))) (-3348 (((-420 $) $) 175 (|has| |#1| (-365)))) (-2338 (($ $) 129 (|has| |#1| (-38 (-409 (-566)))))) (-2761 (((-112) $ $) 165 (|has| |#1| (-365)))) (-3197 (($ $) 146 (|has| |#1| (-38 (-409 (-566)))))) (-3067 (($ $) 131 (|has| |#1| (-38 (-409 (-566)))))) (-1882 (($ (-771) (-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#1|)))) 183)) (-3240 (($ $) 145 (|has| |#1| (-38 (-409 (-566)))))) (-3115 (($ $) 132 (|has| |#1| (-38 (-409 (-566)))))) (-1811 (($) 18 T CONST)) (-2925 (($ $ $) 169 (|has| |#1| (-365)))) (-3565 (($ $) 72)) (-3757 (((-3 $ "failed") $) 37)) (-2937 (($ $ $) 168 (|has| |#1| (-365)))) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) 163 (|has| |#1| (-365)))) (-4188 (((-112) $) 176 (|has| |#1| (-365)))) (-3088 (((-112) $) 85)) (-2964 (($) 157 (|has| |#1| (-38 (-409 (-566)))))) (-1802 (((-409 (-566)) $) 112) (((-409 (-566)) $ (-409 (-566))) 111)) (-2264 (((-112) $) 35)) (-3146 (($ $ (-566)) 128 (|has| |#1| (-38 (-409 (-566)))))) (-2383 (($ $ (-921)) 113) (($ $ (-409 (-566))) 182)) (-2495 (((-3 (-644 $) "failed") (-644 $) $) 172 (|has| |#1| (-365)))) (-3989 (((-112) $) 74)) (-2463 (($ |#1| (-409 (-566))) 73) (($ $ (-1081) (-409 (-566))) 88) (($ $ (-644 (-1081)) (-644 (-409 (-566)))) 87)) (-3080 (($ (-1 |#1| |#1|) $) 75)) (-3676 (($ $) 154 (|has| |#1| (-38 (-409 (-566)))))) (-2608 (($ $) 77)) (-2622 ((|#1| $) 78)) (-2120 (($ (-644 $)) 161 (|has| |#1| (-365))) (($ $ $) 160 (|has| |#1| (-365)))) (-3151 (((-1157) $) 10)) (-2577 (($ $) 177 (|has| |#1| (-365)))) (-2390 (($ $) 181 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-1175)) 180 (-2809 (-12 (|has| |#1| (-29 (-566))) (|has| |#1| (-959)) (|has| |#1| (-1199)) (|has| |#1| (-38 (-409 (-566))))) (-12 (|has| |#1| (-15 -2485 ((-644 (-1175)) |#1|))) (|has| |#1| (-15 -2390 (|#1| |#1| (-1175)))) (|has| |#1| (-38 (-409 (-566)))))))) (-4059 (((-1119) $) 11)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) 162 (|has| |#1| (-365)))) (-2162 (($ (-644 $)) 159 (|has| |#1| (-365))) (($ $ $) 158 (|has| |#1| (-365)))) (-2325 (((-420 $) $) 173 (|has| |#1| (-365)))) (-2585 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) 170 (|has| |#1| (-365)))) (-2050 (($ $ (-409 (-566))) 107)) (-2976 (((-3 $ "failed") $ $) 62 (|has| |#1| (-558)))) (-2840 (((-3 (-644 $) "failed") (-644 $) $) 164 (|has| |#1| (-365)))) (-3571 (($ $) 155 (|has| |#1| (-38 (-409 (-566)))))) (-3297 (((-1155 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-409 (-566))))))) (-1383 (((-771) $) 166 (|has| |#1| (-365)))) (-4376 ((|#1| $ (-409 (-566))) 116) (($ $ $) 93 (|has| (-409 (-566)) (-1111)))) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) 167 (|has| |#1| (-365)))) (-3526 (($ $ (-644 (-1175)) (-644 (-771))) 101 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (($ $ (-1175) (-771)) 100 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (($ $ (-644 (-1175))) 99 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (($ $ (-1175)) 98 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (($ $ (-771)) 96 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (-1630 (((-409 (-566)) $) 76)) (-3250 (($ $) 144 (|has| |#1| (-38 (-409 (-566)))))) (-3126 (($ $) 133 (|has| |#1| (-38 (-409 (-566)))))) (-3227 (($ $) 143 (|has| |#1| (-38 (-409 (-566)))))) (-3105 (($ $) 134 (|has| |#1| (-38 (-409 (-566)))))) (-3207 (($ $) 142 (|has| |#1| (-38 (-409 (-566)))))) (-3079 (($ $) 135 (|has| |#1| (-38 (-409 (-566)))))) (-4122 (($ $) 84)) (-2479 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 59 (|has| |#1| (-172))) (($ (-409 (-566))) 69 (|has| |#1| (-38 (-409 (-566))))) (($ $) 61 (|has| |#1| (-558)))) (-3025 ((|#1| $ (-409 (-566))) 71)) (-2645 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-1558 (((-771)) 32 T CONST)) (-2316 ((|#1| $) 114)) (-3900 (((-112) $ $) 9)) (-3285 (($ $) 153 (|has| |#1| (-38 (-409 (-566)))))) (-3157 (($ $) 141 (|has| |#1| (-38 (-409 (-566)))))) (-1333 (((-112) $ $) 65 (|has| |#1| (-558)))) (-3260 (($ $) 152 (|has| |#1| (-38 (-409 (-566)))))) (-3135 (($ $) 140 (|has| |#1| (-38 (-409 (-566)))))) (-3309 (($ $) 151 (|has| |#1| (-38 (-409 (-566)))))) (-3179 (($ $) 139 (|has| |#1| (-38 (-409 (-566)))))) (-3649 ((|#1| $ (-409 (-566))) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-409 (-566))))) (|has| |#1| (-15 -2479 (|#1| (-1175))))))) (-1861 (($ $) 150 (|has| |#1| (-38 (-409 (-566)))))) (-3190 (($ $) 138 (|has| |#1| (-38 (-409 (-566)))))) (-3299 (($ $) 149 (|has| |#1| (-38 (-409 (-566)))))) (-3168 (($ $) 137 (|has| |#1| (-38 (-409 (-566)))))) (-3273 (($ $) 148 (|has| |#1| (-38 (-409 (-566)))))) (-3148 (($ $) 136 (|has| |#1| (-38 (-409 (-566)))))) (-2446 (($) 19 T CONST)) (-2459 (($) 34 T CONST)) (-2834 (($ $ (-644 (-1175)) (-644 (-771))) 105 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (($ $ (-1175) (-771)) 104 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (($ $ (-644 (-1175))) 103 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (($ $ (-1175)) 102 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (($ $ (-771)) 97 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (-2952 (((-112) $ $) 6)) (-3077 (($ $ |#1|) 70 (|has| |#1| (-365))) (($ $ $) 179 (|has| |#1| (-365)))) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 178 (|has| |#1| (-365))) (($ $ $) 156 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 127 (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-409 (-566)) $) 68 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 67 (|has| |#1| (-38 (-409 (-566))))))) +(((-1245 |#1|) (-140) (-1049)) (T -1245)) +((-1882 (*1 *1 *2 *3) (-12 (-5 *2 (-771)) (-5 *3 (-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| *4)))) (-4 *4 (-1049)) (-4 *1 (-1245 *4)))) (-2383 (*1 *1 *1 *2) (-12 (-5 *2 (-409 (-566))) (-4 *1 (-1245 *3)) (-4 *3 (-1049)))) (-2390 (*1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1049)) (-4 *2 (-38 (-409 (-566)))))) (-2390 (*1 *1 *1 *2) (-2809 (-12 (-5 *2 (-1175)) (-4 *1 (-1245 *3)) (-4 *3 (-1049)) (-12 (-4 *3 (-29 (-566))) (-4 *3 (-959)) (-4 *3 (-1199)) (-4 *3 (-38 (-409 (-566)))))) (-12 (-5 *2 (-1175)) (-4 *1 (-1245 *3)) (-4 *3 (-1049)) (-12 (|has| *3 (-15 -2485 ((-644 *2) *3))) (|has| *3 (-15 -2390 (*3 *3 *2))) (-4 *3 (-38 (-409 (-566))))))))) +(-13 (-1242 |t#1| (-409 (-566))) (-10 -8 (-15 -1882 ($ (-771) (-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| |t#1|))))) (-15 -2383 ($ $ (-409 (-566)))) (IF (|has| |t#1| (-38 (-409 (-566)))) (PROGN (-15 -2390 ($ $)) (IF (|has| |t#1| (-15 -2390 (|t#1| |t#1| (-1175)))) (IF (|has| |t#1| (-15 -2485 ((-644 (-1175)) |t#1|))) (-15 -2390 ($ $ (-1175))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1199)) (IF (|has| |t#1| (-959)) (IF (|has| |t#1| (-29 (-566))) (-15 -2390 ($ $ (-1175))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1002)) (-6 (-1199))) |%noBranch|) (IF (|has| |t#1| (-365)) (-6 (-365)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-409 (-566))) . T) ((-25) . T) ((-38 #1=(-409 (-566))) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-35) |has| |#1| (-38 (-409 (-566)))) ((-95) |has| |#1| (-38 (-409 (-566)))) ((-102) . T) ((-111 #1# #1#) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2809 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #1#) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-616 (-566)) . T) ((-616 |#1|) |has| |#1| (-172)) ((-616 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-613 (-862)) . T) ((-172) -2809 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) ((-243) |has| |#1| (-365)) ((-285) |has| |#1| (-38 (-409 (-566)))) ((-287 $ $) |has| (-409 (-566)) (-1111)) ((-291) -2809 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-308) |has| |#1| (-365)) ((-365) |has| |#1| (-365)) ((-454) |has| |#1| (-365)) ((-495) |has| |#1| (-38 (-409 (-566)))) ((-558) -2809 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-646 #1#) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #1#) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #1#) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-640 |#1|) |has| |#1| (-172)) ((-640 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-717 #1#) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-717 |#1|) |has| |#1| (-172)) ((-717 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-726) . T) ((-900 (-1175)) -12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175)))) ((-973 |#1| #0# (-1081)) . T) ((-920) |has| |#1| (-365)) ((-1002) |has| |#1| (-38 (-409 (-566)))) ((-1051 #1#) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-1051 |#1|) . T) ((-1051 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1056 #1#) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-1056 |#1|) . T) ((-1056 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1199) |has| |#1| (-38 (-409 (-566)))) ((-1202) |has| |#1| (-38 (-409 (-566)))) ((-1218) |has| |#1| (-365)) ((-1242 |#1| #0#) . T)) +((-2845 (((-112) $) 12)) (-2980 (((-3 |#3| "failed") $) 17)) (-1709 ((|#3| $) 14))) +(((-1246 |#1| |#2| |#3|) (-10 -8 (-15 -2980 ((-3 |#3| "failed") |#1|)) (-15 -1709 (|#3| |#1|)) (-15 -2845 ((-112) |#1|))) (-1247 |#2| |#3|) (-1049) (-1224 |#2|)) (T -1246)) +NIL +(-10 -8 (-15 -2980 ((-3 |#3| "failed") |#1|)) (-15 -1709 (|#3| |#1|)) (-15 -2845 ((-112) |#1|))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-2485 (((-644 (-1081)) $) 86)) (-1338 (((-1175) $) 115)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) 63 (|has| |#1| (-558)))) (-3087 (($ $) 64 (|has| |#1| (-558)))) (-1716 (((-112) $) 66 (|has| |#1| (-558)))) (-3175 (($ $ (-409 (-566))) 110) (($ $ (-409 (-566)) (-409 (-566))) 109)) (-1723 (((-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#1|))) $) 117)) (-3219 (($ $) 147 (|has| |#1| (-38 (-409 (-566)))))) (-3091 (($ $) 130 (|has| |#1| (-38 (-409 (-566)))))) (-3174 (((-3 $ "failed") $ $) 20)) (-3980 (($ $) 174 (|has| |#1| (-365)))) (-3348 (((-420 $) $) 175 (|has| |#1| (-365)))) (-2338 (($ $) 129 (|has| |#1| (-38 (-409 (-566)))))) (-2761 (((-112) $ $) 165 (|has| |#1| (-365)))) (-3197 (($ $) 146 (|has| |#1| (-38 (-409 (-566)))))) (-3067 (($ $) 131 (|has| |#1| (-38 (-409 (-566)))))) (-1882 (($ (-771) (-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#1|)))) 183)) (-3240 (($ $) 145 (|has| |#1| (-38 (-409 (-566)))))) (-3115 (($ $) 132 (|has| |#1| (-38 (-409 (-566)))))) (-1811 (($) 18 T CONST)) (-2980 (((-3 |#2| "failed") $) 194)) (-1709 ((|#2| $) 195)) (-2925 (($ $ $) 169 (|has| |#1| (-365)))) (-3565 (($ $) 72)) (-3757 (((-3 $ "failed") $) 37)) (-2710 (((-409 (-566)) $) 191)) (-2937 (($ $ $) 168 (|has| |#1| (-365)))) (-2557 (($ (-409 (-566)) |#2|) 192)) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) 163 (|has| |#1| (-365)))) (-4188 (((-112) $) 176 (|has| |#1| (-365)))) (-3088 (((-112) $) 85)) (-2964 (($) 157 (|has| |#1| (-38 (-409 (-566)))))) (-1802 (((-409 (-566)) $) 112) (((-409 (-566)) $ (-409 (-566))) 111)) (-2264 (((-112) $) 35)) (-3146 (($ $ (-566)) 128 (|has| |#1| (-38 (-409 (-566)))))) (-2383 (($ $ (-921)) 113) (($ $ (-409 (-566))) 182)) (-2495 (((-3 (-644 $) "failed") (-644 $) $) 172 (|has| |#1| (-365)))) (-3989 (((-112) $) 74)) (-2463 (($ |#1| (-409 (-566))) 73) (($ $ (-1081) (-409 (-566))) 88) (($ $ (-644 (-1081)) (-644 (-409 (-566)))) 87)) (-3080 (($ (-1 |#1| |#1|) $) 75)) (-3676 (($ $) 154 (|has| |#1| (-38 (-409 (-566)))))) (-2608 (($ $) 77)) (-2622 ((|#1| $) 78)) (-2120 (($ (-644 $)) 161 (|has| |#1| (-365))) (($ $ $) 160 (|has| |#1| (-365)))) (-2992 ((|#2| $) 190)) (-3867 (((-3 |#2| "failed") $) 188)) (-2546 ((|#2| $) 189)) (-3151 (((-1157) $) 10)) (-2577 (($ $) 177 (|has| |#1| (-365)))) (-2390 (($ $) 181 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-1175)) 180 (-2809 (-12 (|has| |#1| (-29 (-566))) (|has| |#1| (-959)) (|has| |#1| (-1199)) (|has| |#1| (-38 (-409 (-566))))) (-12 (|has| |#1| (-15 -2485 ((-644 (-1175)) |#1|))) (|has| |#1| (-15 -2390 (|#1| |#1| (-1175)))) (|has| |#1| (-38 (-409 (-566)))))))) (-4059 (((-1119) $) 11)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) 162 (|has| |#1| (-365)))) (-2162 (($ (-644 $)) 159 (|has| |#1| (-365))) (($ $ $) 158 (|has| |#1| (-365)))) (-2325 (((-420 $) $) 173 (|has| |#1| (-365)))) (-2585 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) 170 (|has| |#1| (-365)))) (-2050 (($ $ (-409 (-566))) 107)) (-2976 (((-3 $ "failed") $ $) 62 (|has| |#1| (-558)))) (-2840 (((-3 (-644 $) "failed") (-644 $) $) 164 (|has| |#1| (-365)))) (-3571 (($ $) 155 (|has| |#1| (-38 (-409 (-566)))))) (-3297 (((-1155 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-409 (-566))))))) (-1383 (((-771) $) 166 (|has| |#1| (-365)))) (-4376 ((|#1| $ (-409 (-566))) 116) (($ $ $) 93 (|has| (-409 (-566)) (-1111)))) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) 167 (|has| |#1| (-365)))) (-3526 (($ $ (-644 (-1175)) (-644 (-771))) 101 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (($ $ (-1175) (-771)) 100 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (($ $ (-644 (-1175))) 99 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (($ $ (-1175)) 98 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (($ $ (-771)) 96 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (-1630 (((-409 (-566)) $) 76)) (-3250 (($ $) 144 (|has| |#1| (-38 (-409 (-566)))))) (-3126 (($ $) 133 (|has| |#1| (-38 (-409 (-566)))))) (-3227 (($ $) 143 (|has| |#1| (-38 (-409 (-566)))))) (-3105 (($ $) 134 (|has| |#1| (-38 (-409 (-566)))))) (-3207 (($ $) 142 (|has| |#1| (-38 (-409 (-566)))))) (-3079 (($ $) 135 (|has| |#1| (-38 (-409 (-566)))))) (-4122 (($ $) 84)) (-2479 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 59 (|has| |#1| (-172))) (($ |#2|) 193) (($ (-409 (-566))) 69 (|has| |#1| (-38 (-409 (-566))))) (($ $) 61 (|has| |#1| (-558)))) (-3025 ((|#1| $ (-409 (-566))) 71)) (-2645 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-1558 (((-771)) 32 T CONST)) (-2316 ((|#1| $) 114)) (-3900 (((-112) $ $) 9)) (-3285 (($ $) 153 (|has| |#1| (-38 (-409 (-566)))))) (-3157 (($ $) 141 (|has| |#1| (-38 (-409 (-566)))))) (-1333 (((-112) $ $) 65 (|has| |#1| (-558)))) (-3260 (($ $) 152 (|has| |#1| (-38 (-409 (-566)))))) (-3135 (($ $) 140 (|has| |#1| (-38 (-409 (-566)))))) (-3309 (($ $) 151 (|has| |#1| (-38 (-409 (-566)))))) (-3179 (($ $) 139 (|has| |#1| (-38 (-409 (-566)))))) (-3649 ((|#1| $ (-409 (-566))) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-409 (-566))))) (|has| |#1| (-15 -2479 (|#1| (-1175))))))) (-1861 (($ $) 150 (|has| |#1| (-38 (-409 (-566)))))) (-3190 (($ $) 138 (|has| |#1| (-38 (-409 (-566)))))) (-3299 (($ $) 149 (|has| |#1| (-38 (-409 (-566)))))) (-3168 (($ $) 137 (|has| |#1| (-38 (-409 (-566)))))) (-3273 (($ $) 148 (|has| |#1| (-38 (-409 (-566)))))) (-3148 (($ $) 136 (|has| |#1| (-38 (-409 (-566)))))) (-2446 (($) 19 T CONST)) (-2459 (($) 34 T CONST)) (-2834 (($ $ (-644 (-1175)) (-644 (-771))) 105 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (($ $ (-1175) (-771)) 104 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (($ $ (-644 (-1175))) 103 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (($ $ (-1175)) 102 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (($ $ (-771)) 97 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (-2952 (((-112) $ $) 6)) (-3077 (($ $ |#1|) 70 (|has| |#1| (-365))) (($ $ $) 179 (|has| |#1| (-365)))) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 178 (|has| |#1| (-365))) (($ $ $) 156 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 127 (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-409 (-566)) $) 68 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 67 (|has| |#1| (-38 (-409 (-566))))))) +(((-1247 |#1| |#2|) (-140) (-1049) (-1224 |t#1|)) (T -1247)) +((-1630 (*1 *2 *1) (-12 (-4 *1 (-1247 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1224 *3)) (-5 *2 (-409 (-566))))) (-2557 (*1 *1 *2 *3) (-12 (-5 *2 (-409 (-566))) (-4 *4 (-1049)) (-4 *1 (-1247 *4 *3)) (-4 *3 (-1224 *4)))) (-2710 (*1 *2 *1) (-12 (-4 *1 (-1247 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1224 *3)) (-5 *2 (-409 (-566))))) (-2992 (*1 *2 *1) (-12 (-4 *1 (-1247 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-1224 *3)))) (-2546 (*1 *2 *1) (-12 (-4 *1 (-1247 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-1224 *3)))) (-3867 (*1 *2 *1) (|partial| -12 (-4 *1 (-1247 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-1224 *3))))) +(-13 (-1245 |t#1|) (-1038 |t#2|) (-616 |t#2|) (-10 -8 (-15 -2557 ($ (-409 (-566)) |t#2|)) (-15 -2710 ((-409 (-566)) $)) (-15 -2992 (|t#2| $)) (-15 -1630 ((-409 (-566)) $)) (-15 -2546 (|t#2| $)) (-15 -3867 ((-3 |t#2| "failed") $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-409 (-566))) . T) ((-25) . T) ((-38 #1=(-409 (-566))) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-35) |has| |#1| (-38 (-409 (-566)))) ((-95) |has| |#1| (-38 (-409 (-566)))) ((-102) . T) ((-111 #1# #1#) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2809 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #1#) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-616 (-566)) . T) ((-616 |#1|) |has| |#1| (-172)) ((-616 |#2|) . T) ((-616 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-613 (-862)) . T) ((-172) -2809 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) ((-243) |has| |#1| (-365)) ((-285) |has| |#1| (-38 (-409 (-566)))) ((-287 $ $) |has| (-409 (-566)) (-1111)) ((-291) -2809 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-308) |has| |#1| (-365)) ((-365) |has| |#1| (-365)) ((-454) |has| |#1| (-365)) ((-495) |has| |#1| (-38 (-409 (-566)))) ((-558) -2809 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-646 #1#) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #1#) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #1#) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-640 |#1|) |has| |#1| (-172)) ((-640 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-717 #1#) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-717 |#1|) |has| |#1| (-172)) ((-717 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-726) . T) ((-900 (-1175)) -12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175)))) ((-973 |#1| #0# (-1081)) . T) ((-920) |has| |#1| (-365)) ((-1002) |has| |#1| (-38 (-409 (-566)))) ((-1038 |#2|) . T) ((-1051 #1#) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-1051 |#1|) . T) ((-1051 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1056 #1#) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-1056 |#1|) . T) ((-1056 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1199) |has| |#1| (-38 (-409 (-566)))) ((-1202) |has| |#1| (-38 (-409 (-566)))) ((-1218) |has| |#1| (-365)) ((-1242 |#1| #0#) . T) ((-1245 |#1|) . T)) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-2485 (((-644 (-1081)) $) NIL)) (-1338 (((-1175) $) 104)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-3087 (($ $) NIL (|has| |#1| (-558)))) (-1716 (((-112) $) NIL (|has| |#1| (-558)))) (-3175 (($ $ (-409 (-566))) 116) (($ $ (-409 (-566)) (-409 (-566))) 118)) (-1723 (((-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#1|))) $) 54)) (-3219 (($ $) 192 (|has| |#1| (-38 (-409 (-566)))))) (-3091 (($ $) 168 (|has| |#1| (-38 (-409 (-566)))))) (-3174 (((-3 $ "failed") $ $) NIL)) (-3980 (($ $) NIL (|has| |#1| (-365)))) (-3348 (((-420 $) $) NIL (|has| |#1| (-365)))) (-2338 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2761 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3197 (($ $) 188 (|has| |#1| (-38 (-409 (-566)))))) (-3067 (($ $) 164 (|has| |#1| (-38 (-409 (-566)))))) (-1882 (($ (-771) (-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#1|)))) 65)) (-3240 (($ $) 196 (|has| |#1| (-38 (-409 (-566)))))) (-3115 (($ $) 172 (|has| |#1| (-38 (-409 (-566)))))) (-1811 (($) NIL T CONST)) (-2980 (((-3 |#2| "failed") $) NIL)) (-1709 ((|#2| $) NIL)) (-2925 (($ $ $) NIL (|has| |#1| (-365)))) (-3565 (($ $) NIL)) (-3757 (((-3 $ "failed") $) 85)) (-2710 (((-409 (-566)) $) 13)) (-2937 (($ $ $) NIL (|has| |#1| (-365)))) (-2557 (($ (-409 (-566)) |#2|) 11)) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) NIL (|has| |#1| (-365)))) (-4188 (((-112) $) NIL (|has| |#1| (-365)))) (-3088 (((-112) $) 74)) (-2964 (($) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1802 (((-409 (-566)) $) 113) (((-409 (-566)) $ (-409 (-566))) 114)) (-2264 (((-112) $) NIL)) (-3146 (($ $ (-566)) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2383 (($ $ (-921)) 130) (($ $ (-409 (-566))) 128)) (-2495 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-3989 (((-112) $) NIL)) (-2463 (($ |#1| (-409 (-566))) 33) (($ $ (-1081) (-409 (-566))) NIL) (($ $ (-644 (-1081)) (-644 (-409 (-566)))) NIL)) (-3080 (($ (-1 |#1| |#1|) $) 125)) (-3676 (($ $) 162 (|has| |#1| (-38 (-409 (-566)))))) (-2608 (($ $) NIL)) (-2622 ((|#1| $) NIL)) (-2120 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2992 ((|#2| $) 12)) (-3867 (((-3 |#2| "failed") $) 44)) (-2546 ((|#2| $) 45)) (-3151 (((-1157) $) NIL)) (-2577 (($ $) 101 (|has| |#1| (-365)))) (-2390 (($ $) 146 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-1175)) 151 (-2809 (-12 (|has| |#1| (-15 -2390 (|#1| |#1| (-1175)))) (|has| |#1| (-15 -2485 ((-644 (-1175)) |#1|))) (|has| |#1| (-38 (-409 (-566))))) (-12 (|has| |#1| (-29 (-566))) (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-959)) (|has| |#1| (-1199)))))) (-4059 (((-1119) $) NIL)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-365)))) (-2162 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2325 (((-420 $) $) NIL (|has| |#1| (-365)))) (-2585 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL (|has| |#1| (-365)))) (-2050 (($ $ (-409 (-566))) 122)) (-2976 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-2840 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-3571 (($ $) 160 (|has| |#1| (-38 (-409 (-566)))))) (-3297 (((-1155 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-409 (-566))))))) (-1383 (((-771) $) NIL (|has| |#1| (-365)))) (-4376 ((|#1| $ (-409 (-566))) 108) (($ $ $) 94 (|has| (-409 (-566)) (-1111)))) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL (|has| |#1| (-365)))) (-3526 (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175)) 138 (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-771)) NIL (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $) 134 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (-1630 (((-409 (-566)) $) 16)) (-3250 (($ $) 198 (|has| |#1| (-38 (-409 (-566)))))) (-3126 (($ $) 174 (|has| |#1| (-38 (-409 (-566)))))) (-3227 (($ $) 194 (|has| |#1| (-38 (-409 (-566)))))) (-3105 (($ $) 170 (|has| |#1| (-38 (-409 (-566)))))) (-3207 (($ $) 190 (|has| |#1| (-38 (-409 (-566)))))) (-3079 (($ $) 166 (|has| |#1| (-38 (-409 (-566)))))) (-4122 (($ $) 120)) (-2479 (((-862) $) NIL) (($ (-566)) 37) (($ |#1|) 27 (|has| |#1| (-172))) (($ |#2|) 34) (($ (-409 (-566))) 139 (|has| |#1| (-38 (-409 (-566))))) (($ $) NIL (|has| |#1| (-558)))) (-3025 ((|#1| $ (-409 (-566))) 107)) (-2645 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1558 (((-771)) 127 T CONST)) (-2316 ((|#1| $) 106)) (-3900 (((-112) $ $) NIL)) (-3285 (($ $) 204 (|has| |#1| (-38 (-409 (-566)))))) (-3157 (($ $) 180 (|has| |#1| (-38 (-409 (-566)))))) (-1333 (((-112) $ $) NIL (|has| |#1| (-558)))) (-3260 (($ $) 200 (|has| |#1| (-38 (-409 (-566)))))) (-3135 (($ $) 176 (|has| |#1| (-38 (-409 (-566)))))) (-3309 (($ $) 208 (|has| |#1| (-38 (-409 (-566)))))) (-3179 (($ $) 184 (|has| |#1| (-38 (-409 (-566)))))) (-3649 ((|#1| $ (-409 (-566))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-409 (-566))))) (|has| |#1| (-15 -2479 (|#1| (-1175))))))) (-1861 (($ $) 210 (|has| |#1| (-38 (-409 (-566)))))) (-3190 (($ $) 186 (|has| |#1| (-38 (-409 (-566)))))) (-3299 (($ $) 206 (|has| |#1| (-38 (-409 (-566)))))) (-3168 (($ $) 182 (|has| |#1| (-38 (-409 (-566)))))) (-3273 (($ $) 202 (|has| |#1| (-38 (-409 (-566)))))) (-3148 (($ $) 178 (|has| |#1| (-38 (-409 (-566)))))) (-2446 (($) 21 T CONST)) (-2459 (($) 17 T CONST)) (-2834 (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-771)) NIL (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (-2952 (((-112) $ $) 72)) (-3077 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) 100 (|has| |#1| (-365)))) (-3065 (($ $) 142) (($ $ $) 78)) (-3052 (($ $ $) 76)) (** (($ $ (-921)) NIL) (($ $ (-771)) 82) (($ $ (-566)) 157 (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 158 (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) 137) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))))) +(((-1248 |#1| |#2|) (-1247 |#1| |#2|) (-1049) (-1224 |#1|)) (T -1248)) +NIL +(-1247 |#1| |#2|) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-2485 (((-644 (-1081)) $) NIL)) (-1338 (((-1175) $) 11)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-3087 (($ $) NIL (|has| |#1| (-558)))) (-1716 (((-112) $) NIL (|has| |#1| (-558)))) (-3175 (($ $ (-409 (-566))) NIL) (($ $ (-409 (-566)) (-409 (-566))) NIL)) (-1723 (((-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#1|))) $) NIL)) (-3219 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3091 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3174 (((-3 $ "failed") $ $) NIL)) (-3980 (($ $) NIL (|has| |#1| (-365)))) (-3348 (((-420 $) $) NIL (|has| |#1| (-365)))) (-2338 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2761 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3197 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3067 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1882 (($ (-771) (-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#1|)))) NIL)) (-3240 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3115 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1811 (($) NIL T CONST)) (-2980 (((-3 (-1228 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1256 |#1| |#2| |#3|) "failed") $) 22)) (-1709 (((-1228 |#1| |#2| |#3|) $) NIL) (((-1256 |#1| |#2| |#3|) $) NIL)) (-2925 (($ $ $) NIL (|has| |#1| (-365)))) (-3565 (($ $) NIL)) (-3757 (((-3 $ "failed") $) NIL)) (-2710 (((-409 (-566)) $) 69)) (-2937 (($ $ $) NIL (|has| |#1| (-365)))) (-2557 (($ (-409 (-566)) (-1228 |#1| |#2| |#3|)) NIL)) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) NIL (|has| |#1| (-365)))) (-4188 (((-112) $) NIL (|has| |#1| (-365)))) (-3088 (((-112) $) NIL)) (-2964 (($) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1802 (((-409 (-566)) $) NIL) (((-409 (-566)) $ (-409 (-566))) NIL)) (-2264 (((-112) $) NIL)) (-3146 (($ $ (-566)) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2383 (($ $ (-921)) NIL) (($ $ (-409 (-566))) NIL)) (-2495 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-3989 (((-112) $) NIL)) (-2463 (($ |#1| (-409 (-566))) 30) (($ $ (-1081) (-409 (-566))) NIL) (($ $ (-644 (-1081)) (-644 (-409 (-566)))) NIL)) (-3080 (($ (-1 |#1| |#1|) $) NIL)) (-3676 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2608 (($ $) NIL)) (-2622 ((|#1| $) NIL)) (-2120 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2992 (((-1228 |#1| |#2| |#3|) $) 72)) (-3867 (((-3 (-1228 |#1| |#2| |#3|) "failed") $) NIL)) (-2546 (((-1228 |#1| |#2| |#3|) $) NIL)) (-3151 (((-1157) $) NIL)) (-2577 (($ $) NIL (|has| |#1| (-365)))) (-2390 (($ $) 39 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-1175)) NIL (-2809 (-12 (|has| |#1| (-15 -2390 (|#1| |#1| (-1175)))) (|has| |#1| (-15 -2485 ((-644 (-1175)) |#1|))) (|has| |#1| (-38 (-409 (-566))))) (-12 (|has| |#1| (-29 (-566))) (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-959)) (|has| |#1| (-1199))))) (($ $ (-1260 |#2|)) 40 (|has| |#1| (-38 (-409 (-566)))))) (-4059 (((-1119) $) NIL)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-365)))) (-2162 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2325 (((-420 $) $) NIL (|has| |#1| (-365)))) (-2585 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) NIL (|has| |#1| (-365)))) (-2050 (($ $ (-409 (-566))) NIL)) (-2976 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-2840 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-3571 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3297 (((-1155 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-409 (-566))))))) (-1383 (((-771) $) NIL (|has| |#1| (-365)))) (-4376 ((|#1| $ (-409 (-566))) NIL) (($ $ $) NIL (|has| (-409 (-566)) (-1111)))) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) NIL (|has| |#1| (-365)))) (-3526 (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-771)) NIL (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $ (-1260 |#2|)) 38)) (-1630 (((-409 (-566)) $) NIL)) (-3250 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3126 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3227 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3105 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3207 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3079 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4122 (($ $) NIL)) (-2479 (((-862) $) 109) (($ (-566)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1228 |#1| |#2| |#3|)) 16) (($ (-1256 |#1| |#2| |#3|)) 17) (($ (-1260 |#2|)) 36) (($ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $) NIL (|has| |#1| (-558)))) (-3025 ((|#1| $ (-409 (-566))) NIL)) (-2645 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1558 (((-771)) NIL T CONST)) (-2316 ((|#1| $) 12)) (-3900 (((-112) $ $) NIL)) (-3285 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3157 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1333 (((-112) $ $) NIL (|has| |#1| (-558)))) (-3260 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3135 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3309 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3179 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3649 ((|#1| $ (-409 (-566))) 74 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-409 (-566))))) (|has| |#1| (-15 -2479 (|#1| (-1175))))))) (-1861 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3190 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3299 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3168 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3273 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3148 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2446 (($) 32 T CONST)) (-2459 (($) 26 T CONST)) (-2834 (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-771)) NIL (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (-2952 (((-112) $ $) NIL)) (-3077 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) 34)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))))) +(((-1249 |#1| |#2| |#3|) (-13 (-1247 |#1| (-1228 |#1| |#2| |#3|)) (-1038 (-1256 |#1| |#2| |#3|)) (-616 (-1260 |#2|)) (-10 -8 (-15 -3526 ($ $ (-1260 |#2|))) (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -2390 ($ $ (-1260 |#2|))) |%noBranch|))) (-1049) (-1175) |#1|) (T -1249)) +((-3526 (*1 *1 *1 *2) (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1249 *3 *4 *5)) (-4 *3 (-1049)) (-14 *5 *3))) (-2390 (*1 *1 *1 *2) (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1249 *3 *4 *5)) (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-14 *5 *3)))) +(-13 (-1247 |#1| (-1228 |#1| |#2| |#3|)) (-1038 (-1256 |#1| |#2| |#3|)) (-616 (-1260 |#2|)) (-10 -8 (-15 -3526 ($ $ (-1260 |#2|))) (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -2390 ($ $ (-1260 |#2|))) |%noBranch|))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) 37)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-1716 (((-112) $) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-1811 (($) NIL T CONST)) (-2980 (((-3 (-566) "failed") $) NIL (|has| (-1249 |#2| |#3| |#4|) (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| (-1249 |#2| |#3| |#4|) (-1038 (-409 (-566))))) (((-3 (-1249 |#2| |#3| |#4|) "failed") $) 22)) (-1709 (((-566) $) NIL (|has| (-1249 |#2| |#3| |#4|) (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| (-1249 |#2| |#3| |#4|) (-1038 (-409 (-566))))) (((-1249 |#2| |#3| |#4|) $) NIL)) (-3565 (($ $) 41)) (-3757 (((-3 $ "failed") $) 27)) (-3530 (($ $) NIL (|has| (-1249 |#2| |#3| |#4|) (-454)))) (-3995 (($ $ (-1249 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|) $) NIL)) (-2264 (((-112) $) NIL)) (-3486 (((-771) $) 11)) (-3989 (((-112) $) NIL)) (-2463 (($ (-1249 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) 25)) (-2584 (((-320 |#2| |#3| |#4|) $) NIL)) (-3327 (($ (-1 (-320 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) $) NIL)) (-3080 (($ (-1 (-1249 |#2| |#3| |#4|) (-1249 |#2| |#3| |#4|)) $) NIL)) (-1554 (((-3 (-843 |#2|) "failed") $) 90)) (-2608 (($ $) NIL)) (-2622 (((-1249 |#2| |#3| |#4|) $) 20)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2587 (((-112) $) NIL)) (-2597 (((-1249 |#2| |#3| |#4|) $) NIL)) (-2976 (((-3 $ "failed") $ (-1249 |#2| |#3| |#4|)) NIL (|has| (-1249 |#2| |#3| |#4|) (-558))) (((-3 $ "failed") $ $) NIL)) (-3538 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1249 |#2| |#3| |#4|)) (|:| |%expon| (-320 |#2| |#3| |#4|)) (|:| |%expTerms| (-644 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#2|)))))) (|:| |%type| (-1157))) "failed") $) 74)) (-1630 (((-320 |#2| |#3| |#4|) $) 17)) (-2252 (((-1249 |#2| |#3| |#4|) $) NIL (|has| (-1249 |#2| |#3| |#4|) (-454)))) (-2479 (((-862) $) NIL) (($ (-566)) NIL) (($ (-1249 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL (-2809 (|has| (-1249 |#2| |#3| |#4|) (-38 (-409 (-566)))) (|has| (-1249 |#2| |#3| |#4|) (-1038 (-409 (-566))))))) (-3866 (((-644 (-1249 |#2| |#3| |#4|)) $) NIL)) (-3025 (((-1249 |#2| |#3| |#4|) $ (-320 |#2| |#3| |#4|)) NIL)) (-2645 (((-3 $ "failed") $) NIL (|has| (-1249 |#2| |#3| |#4|) (-145)))) (-1558 (((-771)) NIL T CONST)) (-2244 (($ $ $ (-771)) NIL (|has| (-1249 |#2| |#3| |#4|) (-172)))) (-3900 (((-112) $ $) NIL)) (-1333 (((-112) $ $) NIL)) (-2446 (($) NIL T CONST)) (-2459 (($) NIL T CONST)) (-2952 (((-112) $ $) NIL)) (-3077 (($ $ (-1249 |#2| |#3| |#4|)) NIL (|has| (-1249 |#2| |#3| |#4|) (-365)))) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-1249 |#2| |#3| |#4|)) NIL) (($ (-1249 |#2| |#3| |#4|) $) NIL) (($ (-409 (-566)) $) NIL (|has| (-1249 |#2| |#3| |#4|) (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| (-1249 |#2| |#3| |#4|) (-38 (-409 (-566))))))) +(((-1250 |#1| |#2| |#3| |#4|) (-13 (-327 (-1249 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) (-558) (-10 -8 (-15 -1554 ((-3 (-843 |#2|) "failed") $)) (-15 -3538 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1249 |#2| |#3| |#4|)) (|:| |%expon| (-320 |#2| |#3| |#4|)) (|:| |%expTerms| (-644 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#2|)))))) (|:| |%type| (-1157))) "failed") $)))) (-13 (-1038 (-566)) (-639 (-566)) (-454)) (-13 (-27) (-1199) (-432 |#1|)) (-1175) |#2|) (T -1250)) +((-1554 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1038 (-566)) (-639 (-566)) (-454))) (-5 *2 (-843 *4)) (-5 *1 (-1250 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1199) (-432 *3))) (-14 *5 (-1175)) (-14 *6 *4))) (-3538 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1038 (-566)) (-639 (-566)) (-454))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1249 *4 *5 *6)) (|:| |%expon| (-320 *4 *5 *6)) (|:| |%expTerms| (-644 (-2 (|:| |k| (-409 (-566))) (|:| |c| *4)))))) (|:| |%type| (-1157)))) (-5 *1 (-1250 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1199) (-432 *3))) (-14 *5 (-1175)) (-14 *6 *4)))) +(-13 (-327 (-1249 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) (-558) (-10 -8 (-15 -1554 ((-3 (-843 |#2|) "failed") $)) (-15 -3538 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1249 |#2| |#3| |#4|)) (|:| |%expon| (-320 |#2| |#3| |#4|)) (|:| |%expTerms| (-644 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#2|)))))) (|:| |%type| (-1157))) "failed") $)))) +((-2153 ((|#2| $) 34)) (-3673 ((|#2| $) 18)) (-3238 (($ $) 52)) (-3427 (($ $ (-566)) 85)) (-1453 (((-112) $ (-771)) 46)) (-3684 ((|#2| $ |#2|) 82)) (-2454 ((|#2| $ |#2|) 78)) (-3901 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 71) (($ $ "rest" $) 75) ((|#2| $ "last" |#2|) 73)) (-3891 (($ $ (-644 $)) 81)) (-3663 ((|#2| $) 17)) (-4091 (($ $) NIL) (($ $ (-771)) 59)) (-3578 (((-644 $) $) 31)) (-2778 (((-112) $ $) 69)) (-2756 (((-112) $ (-771)) 45)) (-4106 (((-112) $ (-771)) 43)) (-1587 (((-112) $) 33)) (-2651 ((|#2| $) 25) (($ $ (-771)) 64)) (-4376 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-2636 (((-112) $) 23)) (-3513 (($ $) 55)) (-2018 (($ $) 86)) (-2804 (((-771) $) 58)) (-2924 (($ $) 57)) (-3716 (($ $ $) 77) (($ |#2| $) NIL)) (-2156 (((-644 $) $) 32)) (-2952 (((-112) $ $) 67)) (-3002 (((-771) $) 51))) +(((-1251 |#1| |#2|) (-10 -8 (-15 -3427 (|#1| |#1| (-566))) (-15 -3901 (|#2| |#1| "last" |#2|)) (-15 -2454 (|#2| |#1| |#2|)) (-15 -3901 (|#1| |#1| "rest" |#1|)) (-15 -3901 (|#2| |#1| "first" |#2|)) (-15 -2018 (|#1| |#1|)) (-15 -3513 (|#1| |#1|)) (-15 -2804 ((-771) |#1|)) (-15 -2924 (|#1| |#1|)) (-15 -3673 (|#2| |#1|)) (-15 -3663 (|#2| |#1|)) (-15 -3238 (|#1| |#1|)) (-15 -2651 (|#1| |#1| (-771))) (-15 -4376 (|#2| |#1| "last")) (-15 -2651 (|#2| |#1|)) (-15 -4091 (|#1| |#1| (-771))) (-15 -4376 (|#1| |#1| "rest")) (-15 -4091 (|#1| |#1|)) (-15 -4376 (|#2| |#1| "first")) (-15 -3716 (|#1| |#2| |#1|)) (-15 -3716 (|#1| |#1| |#1|)) (-15 -3684 (|#2| |#1| |#2|)) (-15 -3901 (|#2| |#1| "value" |#2|)) (-15 -3891 (|#1| |#1| (-644 |#1|))) (-15 -2778 ((-112) |#1| |#1|)) (-15 -2636 ((-112) |#1|)) (-15 -4376 (|#2| |#1| "value")) (-15 -2153 (|#2| |#1|)) (-15 -1587 ((-112) |#1|)) (-15 -3578 ((-644 |#1|) |#1|)) (-15 -2156 ((-644 |#1|) |#1|)) (-15 -2952 ((-112) |#1| |#1|)) (-15 -3002 ((-771) |#1|)) (-15 -1453 ((-112) |#1| (-771))) (-15 -2756 ((-112) |#1| (-771))) (-15 -4106 ((-112) |#1| (-771)))) (-1252 |#2|) (-1214)) (T -1251)) +NIL +(-10 -8 (-15 -3427 (|#1| |#1| (-566))) (-15 -3901 (|#2| |#1| "last" |#2|)) (-15 -2454 (|#2| |#1| |#2|)) (-15 -3901 (|#1| |#1| "rest" |#1|)) (-15 -3901 (|#2| |#1| "first" |#2|)) (-15 -2018 (|#1| |#1|)) (-15 -3513 (|#1| |#1|)) (-15 -2804 ((-771) |#1|)) (-15 -2924 (|#1| |#1|)) (-15 -3673 (|#2| |#1|)) (-15 -3663 (|#2| |#1|)) (-15 -3238 (|#1| |#1|)) (-15 -2651 (|#1| |#1| (-771))) (-15 -4376 (|#2| |#1| "last")) (-15 -2651 (|#2| |#1|)) (-15 -4091 (|#1| |#1| (-771))) (-15 -4376 (|#1| |#1| "rest")) (-15 -4091 (|#1| |#1|)) (-15 -4376 (|#2| |#1| "first")) (-15 -3716 (|#1| |#2| |#1|)) (-15 -3716 (|#1| |#1| |#1|)) (-15 -3684 (|#2| |#1| |#2|)) (-15 -3901 (|#2| |#1| "value" |#2|)) (-15 -3891 (|#1| |#1| (-644 |#1|))) (-15 -2778 ((-112) |#1| |#1|)) (-15 -2636 ((-112) |#1|)) (-15 -4376 (|#2| |#1| "value")) (-15 -2153 (|#2| |#1|)) (-15 -1587 ((-112) |#1|)) (-15 -3578 ((-644 |#1|) |#1|)) (-15 -2156 ((-644 |#1|) |#1|)) (-15 -2952 ((-112) |#1| |#1|)) (-15 -3002 ((-771) |#1|)) (-15 -1453 ((-112) |#1| (-771))) (-15 -2756 ((-112) |#1| (-771))) (-15 -4106 ((-112) |#1| (-771)))) +((-2986 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2153 ((|#1| $) 49)) (-3673 ((|#1| $) 66)) (-3238 (($ $) 68)) (-3427 (($ $ (-566)) 53 (|has| $ (-6 -4418)))) (-1453 (((-112) $ (-771)) 8)) (-3684 ((|#1| $ |#1|) 40 (|has| $ (-6 -4418)))) (-3494 (($ $ $) 57 (|has| $ (-6 -4418)))) (-2454 ((|#1| $ |#1|) 55 (|has| $ (-6 -4418)))) (-1306 ((|#1| $ |#1|) 59 (|has| $ (-6 -4418)))) (-3901 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4418))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4418))) (($ $ "rest" $) 56 (|has| $ (-6 -4418))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4418)))) (-3891 (($ $ (-644 $)) 42 (|has| $ (-6 -4418)))) (-3663 ((|#1| $) 67)) (-1811 (($) 7 T CONST)) (-4091 (($ $) 74) (($ $ (-771)) 72)) (-3872 (((-644 |#1|) $) 31 (|has| $ (-6 -4417)))) (-3578 (((-644 $) $) 51)) (-2778 (((-112) $ $) 43 (|has| |#1| (-1099)))) (-2756 (((-112) $ (-771)) 9)) (-4227 (((-644 |#1|) $) 30 (|has| $ (-6 -4417)))) (-1688 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-3708 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#1| |#1|) $) 36)) (-4106 (((-112) $ (-771)) 10)) (-3658 (((-644 |#1|) $) 46)) (-1587 (((-112) $) 50)) (-3151 (((-1157) $) 22 (|has| |#1| (-1099)))) (-2651 ((|#1| $) 71) (($ $ (-771)) 69)) (-4059 (((-1119) $) 21 (|has| |#1| (-1099)))) (-4080 ((|#1| $) 77) (($ $ (-771)) 75)) (-3966 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1844 (((-112) $ $) 14)) (-2788 (((-112) $) 11)) (-1737 (($) 12)) (-4376 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70)) (-4098 (((-566) $ $) 45)) (-2636 (((-112) $) 47)) (-3513 (($ $) 63)) (-2018 (($ $) 60 (|has| $ (-6 -4418)))) (-2804 (((-771) $) 64)) (-2924 (($ $) 65)) (-4068 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4417))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-3924 (($ $) 13)) (-1323 (($ $ $) 62 (|has| $ (-6 -4418))) (($ $ |#1|) 61 (|has| $ (-6 -4418)))) (-3716 (($ $ $) 79) (($ |#1| $) 78)) (-2479 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-2156 (((-644 $) $) 52)) (-3922 (((-112) $ $) 44 (|has| |#1| (-1099)))) (-3900 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-3667 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4417)))) (-2952 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3002 (((-771) $) 6 (|has| $ (-6 -4417))))) +(((-1252 |#1|) (-140) (-1214)) (T -1252)) +((-3716 (*1 *1 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) (-3716 (*1 *1 *2 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) (-4080 (*1 *2 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) (-4376 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) (-4080 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-1252 *3)) (-4 *3 (-1214)))) (-4091 (*1 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) (-4376 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1252 *3)) (-4 *3 (-1214)))) (-4091 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-1252 *3)) (-4 *3 (-1214)))) (-2651 (*1 *2 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) (-4376 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) (-2651 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-1252 *3)) (-4 *3 (-1214)))) (-3238 (*1 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) (-3663 (*1 *2 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) (-3673 (*1 *2 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) (-2924 (*1 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) (-2804 (*1 *2 *1) (-12 (-4 *1 (-1252 *3)) (-4 *3 (-1214)) (-5 *2 (-771)))) (-3513 (*1 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) (-1323 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4418)) (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) (-1323 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4418)) (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) (-2018 (*1 *1 *1) (-12 (|has| *1 (-6 -4418)) (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) (-1306 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4418)) (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) (-3901 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4418)) (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) (-3494 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4418)) (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) (-3901 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4418)) (-4 *1 (-1252 *3)) (-4 *3 (-1214)))) (-2454 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4418)) (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) (-3901 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4418)) (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) (-3427 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (|has| *1 (-6 -4418)) (-4 *1 (-1252 *3)) (-4 *3 (-1214))))) +(-13 (-1010 |t#1|) (-10 -8 (-15 -3716 ($ $ $)) (-15 -3716 ($ |t#1| $)) (-15 -4080 (|t#1| $)) (-15 -4376 (|t#1| $ "first")) (-15 -4080 ($ $ (-771))) (-15 -4091 ($ $)) (-15 -4376 ($ $ "rest")) (-15 -4091 ($ $ (-771))) (-15 -2651 (|t#1| $)) (-15 -4376 (|t#1| $ "last")) (-15 -2651 ($ $ (-771))) (-15 -3238 ($ $)) (-15 -3663 (|t#1| $)) (-15 -3673 (|t#1| $)) (-15 -2924 ($ $)) (-15 -2804 ((-771) $)) (-15 -3513 ($ $)) (IF (|has| $ (-6 -4418)) (PROGN (-15 -1323 ($ $ $)) (-15 -1323 ($ $ |t#1|)) (-15 -2018 ($ $)) (-15 -1306 (|t#1| $ |t#1|)) (-15 -3901 (|t#1| $ "first" |t#1|)) (-15 -3494 ($ $ $)) (-15 -3901 ($ $ "rest" $)) (-15 -2454 (|t#1| $ |t#1|)) (-15 -3901 (|t#1| $ "last" |t#1|)) (-15 -3427 ($ $ (-566)))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2809 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1010 |#1|) . T) ((-1099) |has| |#1| (-1099)) ((-1214) . T)) +((-3080 ((|#4| (-1 |#2| |#1|) |#3|) 17))) +(((-1253 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3080 (|#4| (-1 |#2| |#1|) |#3|))) (-1049) (-1049) (-1255 |#1|) (-1255 |#2|)) (T -1253)) +((-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1049)) (-4 *6 (-1049)) (-4 *2 (-1255 *6)) (-5 *1 (-1253 *5 *6 *4 *2)) (-4 *4 (-1255 *5))))) +(-10 -7 (-15 -3080 (|#4| (-1 |#2| |#1|) |#3|))) +((-2845 (((-112) $) 17)) (-3219 (($ $) 106)) (-3091 (($ $) 82)) (-3197 (($ $) 102)) (-3067 (($ $) 78)) (-3240 (($ $) 110)) (-3115 (($ $) 86)) (-3676 (($ $) 76)) (-3571 (($ $) 74)) (-3250 (($ $) 112)) (-3126 (($ $) 88)) (-3227 (($ $) 108)) (-3105 (($ $) 84)) (-3207 (($ $) 104)) (-3079 (($ $) 80)) (-2479 (((-862) $) 62) (($ (-566)) NIL) (($ (-409 (-566))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-3285 (($ $) 118)) (-3157 (($ $) 94)) (-3260 (($ $) 114)) (-3135 (($ $) 90)) (-3309 (($ $) 122)) (-3179 (($ $) 98)) (-1861 (($ $) 124)) (-3190 (($ $) 100)) (-3299 (($ $) 120)) (-3168 (($ $) 96)) (-3273 (($ $) 116)) (-3148 (($ $) 92)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ |#2|) 66) (($ $ $) 69) (($ $ (-409 (-566))) 72))) +(((-1254 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-409 (-566)))) (-15 -3091 (|#1| |#1|)) (-15 -3067 (|#1| |#1|)) (-15 -3115 (|#1| |#1|)) (-15 -3126 (|#1| |#1|)) (-15 -3105 (|#1| |#1|)) (-15 -3079 (|#1| |#1|)) (-15 -3148 (|#1| |#1|)) (-15 -3168 (|#1| |#1|)) (-15 -3190 (|#1| |#1|)) (-15 -3179 (|#1| |#1|)) (-15 -3135 (|#1| |#1|)) (-15 -3157 (|#1| |#1|)) (-15 -3207 (|#1| |#1|)) (-15 -3227 (|#1| |#1|)) (-15 -3250 (|#1| |#1|)) (-15 -3240 (|#1| |#1|)) (-15 -3197 (|#1| |#1|)) (-15 -3219 (|#1| |#1|)) (-15 -3273 (|#1| |#1|)) (-15 -3299 (|#1| |#1|)) (-15 -1861 (|#1| |#1|)) (-15 -3309 (|#1| |#1|)) (-15 -3260 (|#1| |#1|)) (-15 -3285 (|#1| |#1|)) (-15 -3676 (|#1| |#1|)) (-15 -3571 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2479 (|#1| |#2|)) (-15 -2479 (|#1| |#1|)) (-15 -2479 (|#1| (-409 (-566)))) (-15 -2479 (|#1| (-566))) (-15 ** (|#1| |#1| (-771))) (-15 ** (|#1| |#1| (-921))) (-15 -2845 ((-112) |#1|)) (-15 -2479 ((-862) |#1|))) (-1255 |#2|) (-1049)) (T -1254)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-409 (-566)))) (-15 -3091 (|#1| |#1|)) (-15 -3067 (|#1| |#1|)) (-15 -3115 (|#1| |#1|)) (-15 -3126 (|#1| |#1|)) (-15 -3105 (|#1| |#1|)) (-15 -3079 (|#1| |#1|)) (-15 -3148 (|#1| |#1|)) (-15 -3168 (|#1| |#1|)) (-15 -3190 (|#1| |#1|)) (-15 -3179 (|#1| |#1|)) (-15 -3135 (|#1| |#1|)) (-15 -3157 (|#1| |#1|)) (-15 -3207 (|#1| |#1|)) (-15 -3227 (|#1| |#1|)) (-15 -3250 (|#1| |#1|)) (-15 -3240 (|#1| |#1|)) (-15 -3197 (|#1| |#1|)) (-15 -3219 (|#1| |#1|)) (-15 -3273 (|#1| |#1|)) (-15 -3299 (|#1| |#1|)) (-15 -1861 (|#1| |#1|)) (-15 -3309 (|#1| |#1|)) (-15 -3260 (|#1| |#1|)) (-15 -3285 (|#1| |#1|)) (-15 -3676 (|#1| |#1|)) (-15 -3571 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2479 (|#1| |#2|)) (-15 -2479 (|#1| |#1|)) (-15 -2479 (|#1| (-409 (-566)))) (-15 -2479 (|#1| (-566))) (-15 ** (|#1| |#1| (-771))) (-15 ** (|#1| |#1| (-921))) (-15 -2845 ((-112) |#1|)) (-15 -2479 ((-862) |#1|))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-2485 (((-644 (-1081)) $) 86)) (-1338 (((-1175) $) 115)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) 63 (|has| |#1| (-558)))) (-3087 (($ $) 64 (|has| |#1| (-558)))) (-1716 (((-112) $) 66 (|has| |#1| (-558)))) (-3175 (($ $ (-771)) 110) (($ $ (-771) (-771)) 109)) (-1723 (((-1155 (-2 (|:| |k| (-771)) (|:| |c| |#1|))) $) 117)) (-3219 (($ $) 147 (|has| |#1| (-38 (-409 (-566)))))) (-3091 (($ $) 130 (|has| |#1| (-38 (-409 (-566)))))) (-3174 (((-3 $ "failed") $ $) 20)) (-2338 (($ $) 129 (|has| |#1| (-38 (-409 (-566)))))) (-3197 (($ $) 146 (|has| |#1| (-38 (-409 (-566)))))) (-3067 (($ $) 131 (|has| |#1| (-38 (-409 (-566)))))) (-1882 (($ (-1155 (-2 (|:| |k| (-771)) (|:| |c| |#1|)))) 167) (($ (-1155 |#1|)) 165)) (-3240 (($ $) 145 (|has| |#1| (-38 (-409 (-566)))))) (-3115 (($ $) 132 (|has| |#1| (-38 (-409 (-566)))))) (-1811 (($) 18 T CONST)) (-3565 (($ $) 72)) (-3757 (((-3 $ "failed") $) 37)) (-3439 (($ $) 164)) (-2388 (((-952 |#1|) $ (-771)) 162) (((-952 |#1|) $ (-771) (-771)) 161)) (-3088 (((-112) $) 85)) (-2964 (($) 157 (|has| |#1| (-38 (-409 (-566)))))) (-1802 (((-771) $) 112) (((-771) $ (-771)) 111)) (-2264 (((-112) $) 35)) (-3146 (($ $ (-566)) 128 (|has| |#1| (-38 (-409 (-566)))))) (-2383 (($ $ (-921)) 113)) (-2278 (($ (-1 |#1| (-566)) $) 163)) (-3989 (((-112) $) 74)) (-2463 (($ |#1| (-771)) 73) (($ $ (-1081) (-771)) 88) (($ $ (-644 (-1081)) (-644 (-771))) 87)) (-3080 (($ (-1 |#1| |#1|) $) 75)) (-3676 (($ $) 154 (|has| |#1| (-38 (-409 (-566)))))) (-2608 (($ $) 77)) (-2622 ((|#1| $) 78)) (-3151 (((-1157) $) 10)) (-2390 (($ $) 159 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-1175)) 158 (-2809 (-12 (|has| |#1| (-29 (-566))) (|has| |#1| (-959)) (|has| |#1| (-1199)) (|has| |#1| (-38 (-409 (-566))))) (-12 (|has| |#1| (-15 -2485 ((-644 (-1175)) |#1|))) (|has| |#1| (-15 -2390 (|#1| |#1| (-1175)))) (|has| |#1| (-38 (-409 (-566)))))))) (-4059 (((-1119) $) 11)) (-2050 (($ $ (-771)) 107)) (-2976 (((-3 $ "failed") $ $) 62 (|has| |#1| (-558)))) (-3571 (($ $) 155 (|has| |#1| (-38 (-409 (-566)))))) (-3297 (((-1155 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-771)))))) (-4376 ((|#1| $ (-771)) 116) (($ $ $) 93 (|has| (-771) (-1111)))) (-3526 (($ $ (-644 (-1175)) (-644 (-771))) 101 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-771) |#1|))))) (($ $ (-1175) (-771)) 100 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-771) |#1|))))) (($ $ (-644 (-1175))) 99 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-771) |#1|))))) (($ $ (-1175)) 98 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-771) |#1|))))) (($ $ (-771)) 96 (|has| |#1| (-15 * (|#1| (-771) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-771) |#1|))))) (-1630 (((-771) $) 76)) (-3250 (($ $) 144 (|has| |#1| (-38 (-409 (-566)))))) (-3126 (($ $) 133 (|has| |#1| (-38 (-409 (-566)))))) (-3227 (($ $) 143 (|has| |#1| (-38 (-409 (-566)))))) (-3105 (($ $) 134 (|has| |#1| (-38 (-409 (-566)))))) (-3207 (($ $) 142 (|has| |#1| (-38 (-409 (-566)))))) (-3079 (($ $) 135 (|has| |#1| (-38 (-409 (-566)))))) (-4122 (($ $) 84)) (-2479 (((-862) $) 12) (($ (-566)) 33) (($ (-409 (-566))) 69 (|has| |#1| (-38 (-409 (-566))))) (($ $) 61 (|has| |#1| (-558))) (($ |#1|) 59 (|has| |#1| (-172)))) (-3866 (((-1155 |#1|) $) 166)) (-3025 ((|#1| $ (-771)) 71)) (-2645 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-1558 (((-771)) 32 T CONST)) (-2316 ((|#1| $) 114)) (-3900 (((-112) $ $) 9)) (-3285 (($ $) 153 (|has| |#1| (-38 (-409 (-566)))))) (-3157 (($ $) 141 (|has| |#1| (-38 (-409 (-566)))))) (-1333 (((-112) $ $) 65 (|has| |#1| (-558)))) (-3260 (($ $) 152 (|has| |#1| (-38 (-409 (-566)))))) (-3135 (($ $) 140 (|has| |#1| (-38 (-409 (-566)))))) (-3309 (($ $) 151 (|has| |#1| (-38 (-409 (-566)))))) (-3179 (($ $) 139 (|has| |#1| (-38 (-409 (-566)))))) (-3649 ((|#1| $ (-771)) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-771)))) (|has| |#1| (-15 -2479 (|#1| (-1175))))))) (-1861 (($ $) 150 (|has| |#1| (-38 (-409 (-566)))))) (-3190 (($ $) 138 (|has| |#1| (-38 (-409 (-566)))))) (-3299 (($ $) 149 (|has| |#1| (-38 (-409 (-566)))))) (-3168 (($ $) 137 (|has| |#1| (-38 (-409 (-566)))))) (-3273 (($ $) 148 (|has| |#1| (-38 (-409 (-566)))))) (-3148 (($ $) 136 (|has| |#1| (-38 (-409 (-566)))))) (-2446 (($) 19 T CONST)) (-2459 (($) 34 T CONST)) (-2834 (($ $ (-644 (-1175)) (-644 (-771))) 105 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-771) |#1|))))) (($ $ (-1175) (-771)) 104 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-771) |#1|))))) (($ $ (-644 (-1175))) 103 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-771) |#1|))))) (($ $ (-1175)) 102 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-771) |#1|))))) (($ $ (-771)) 97 (|has| |#1| (-15 * (|#1| (-771) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-771) |#1|))))) (-2952 (((-112) $ $) 6)) (-3077 (($ $ |#1|) 70 (|has| |#1| (-365)))) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ |#1|) 160 (|has| |#1| (-365))) (($ $ $) 156 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 127 (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-409 (-566)) $) 68 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 67 (|has| |#1| (-38 (-409 (-566))))))) +(((-1255 |#1|) (-140) (-1049)) (T -1255)) +((-1882 (*1 *1 *2) (-12 (-5 *2 (-1155 (-2 (|:| |k| (-771)) (|:| |c| *3)))) (-4 *3 (-1049)) (-4 *1 (-1255 *3)))) (-3866 (*1 *2 *1) (-12 (-4 *1 (-1255 *3)) (-4 *3 (-1049)) (-5 *2 (-1155 *3)))) (-1882 (*1 *1 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-4 *1 (-1255 *3)))) (-3439 (*1 *1 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1049)))) (-2278 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-566))) (-4 *1 (-1255 *3)) (-4 *3 (-1049)))) (-2388 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-4 *1 (-1255 *4)) (-4 *4 (-1049)) (-5 *2 (-952 *4)))) (-2388 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-771)) (-4 *1 (-1255 *4)) (-4 *4 (-1049)) (-5 *2 (-952 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))) (-2390 (*1 *1 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1049)) (-4 *2 (-38 (-409 (-566)))))) (-2390 (*1 *1 *1 *2) (-2809 (-12 (-5 *2 (-1175)) (-4 *1 (-1255 *3)) (-4 *3 (-1049)) (-12 (-4 *3 (-29 (-566))) (-4 *3 (-959)) (-4 *3 (-1199)) (-4 *3 (-38 (-409 (-566)))))) (-12 (-5 *2 (-1175)) (-4 *1 (-1255 *3)) (-4 *3 (-1049)) (-12 (|has| *3 (-15 -2485 ((-644 *2) *3))) (|has| *3 (-15 -2390 (*3 *3 *2))) (-4 *3 (-38 (-409 (-566))))))))) +(-13 (-1242 |t#1| (-771)) (-10 -8 (-15 -1882 ($ (-1155 (-2 (|:| |k| (-771)) (|:| |c| |t#1|))))) (-15 -3866 ((-1155 |t#1|) $)) (-15 -1882 ($ (-1155 |t#1|))) (-15 -3439 ($ $)) (-15 -2278 ($ (-1 |t#1| (-566)) $)) (-15 -2388 ((-952 |t#1|) $ (-771))) (-15 -2388 ((-952 |t#1|) $ (-771) (-771))) (IF (|has| |t#1| (-365)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-409 (-566)))) (PROGN (-15 -2390 ($ $)) (IF (|has| |t#1| (-15 -2390 (|t#1| |t#1| (-1175)))) (IF (|has| |t#1| (-15 -2485 ((-644 (-1175)) |t#1|))) (-15 -2390 ($ $ (-1175))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1199)) (IF (|has| |t#1| (-959)) (IF (|has| |t#1| (-29 (-566))) (-15 -2390 ($ $ (-1175))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1002)) (-6 (-1199))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-771)) . T) ((-25) . T) ((-38 #1=(-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-558)) ((-35) |has| |#1| (-38 (-409 (-566)))) ((-95) |has| |#1| (-38 (-409 (-566)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-409 (-566)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2809 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #1#) |has| |#1| (-38 (-409 (-566)))) ((-616 (-566)) . T) ((-616 |#1|) |has| |#1| (-172)) ((-616 $) |has| |#1| (-558)) ((-613 (-862)) . T) ((-172) -2809 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-771) |#1|))) ((-285) |has| |#1| (-38 (-409 (-566)))) ((-287 $ $) |has| (-771) (-1111)) ((-291) |has| |#1| (-558)) ((-495) |has| |#1| (-38 (-409 (-566)))) ((-558) |has| |#1| (-558)) ((-646 #1#) |has| |#1| (-38 (-409 (-566)))) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #1#) |has| |#1| (-38 (-409 (-566)))) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #1#) |has| |#1| (-38 (-409 (-566)))) ((-640 |#1|) |has| |#1| (-172)) ((-640 $) |has| |#1| (-558)) ((-717 #1#) |has| |#1| (-38 (-409 (-566)))) ((-717 |#1|) |has| |#1| (-172)) ((-717 $) |has| |#1| (-558)) ((-726) . T) ((-900 (-1175)) -12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175)))) ((-973 |#1| #0# (-1081)) . T) ((-1002) |has| |#1| (-38 (-409 (-566)))) ((-1051 #1#) |has| |#1| (-38 (-409 (-566)))) ((-1051 |#1|) . T) ((-1051 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-1056 #1#) |has| |#1| (-38 (-409 (-566)))) ((-1056 |#1|) . T) ((-1056 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1199) |has| |#1| (-38 (-409 (-566)))) ((-1202) |has| |#1| (-38 (-409 (-566)))) ((-1242 |#1| #0#) . T)) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-2485 (((-644 (-1081)) $) NIL)) (-1338 (((-1175) $) 93)) (-3573 (((-1237 |#2| |#1|) $ (-771)) 74)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-3087 (($ $) NIL (|has| |#1| (-558)))) (-1716 (((-112) $) 145 (|has| |#1| (-558)))) (-3175 (($ $ (-771)) 130) (($ $ (-771) (-771)) 133)) (-1723 (((-1155 (-2 (|:| |k| (-771)) (|:| |c| |#1|))) $) 43)) (-3219 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3091 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3174 (((-3 $ "failed") $ $) NIL)) (-2338 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3197 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3067 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1882 (($ (-1155 (-2 (|:| |k| (-771)) (|:| |c| |#1|)))) 53) (($ (-1155 |#1|)) NIL)) (-3240 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3115 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1811 (($) NIL T CONST)) (-4235 (($ $) 137)) (-3565 (($ $) NIL)) (-3757 (((-3 $ "failed") $) NIL)) (-3439 (($ $) 143)) (-2388 (((-952 |#1|) $ (-771)) 64) (((-952 |#1|) $ (-771) (-771)) 66)) (-3088 (((-112) $) NIL)) (-2964 (($) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1802 (((-771) $) NIL) (((-771) $ (-771)) NIL)) (-2264 (((-112) $) NIL)) (-3114 (($ $) 120)) (-3146 (($ $ (-566)) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2290 (($ (-566) (-566) $) 139)) (-2383 (($ $ (-921)) 142)) (-2278 (($ (-1 |#1| (-566)) $) 114)) (-3989 (((-112) $) NIL)) (-2463 (($ |#1| (-771)) 16) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL)) (-3080 (($ (-1 |#1| |#1|) $) 101)) (-3676 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2608 (($ $) NIL)) (-2622 ((|#1| $) NIL)) (-3151 (((-1157) $) NIL)) (-3655 (($ $) 118)) (-3597 (($ $) 116)) (-2467 (($ (-566) (-566) $) 141)) (-2390 (($ $) 153 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-1175)) 159 (-2809 (-12 (|has| |#1| (-15 -2390 (|#1| |#1| (-1175)))) (|has| |#1| (-15 -2485 ((-644 (-1175)) |#1|))) (|has| |#1| (-38 (-409 (-566))))) (-12 (|has| |#1| (-29 (-566))) (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-959)) (|has| |#1| (-1199))))) (($ $ (-1260 |#2|)) 154 (|has| |#1| (-38 (-409 (-566)))))) (-4059 (((-1119) $) NIL)) (-3440 (($ $ (-566) (-566)) 124)) (-2050 (($ $ (-771)) 126)) (-2976 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-3571 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4085 (($ $) 122)) (-3297 (((-1155 |#1|) $ |#1|) 103 (|has| |#1| (-15 ** (|#1| |#1| (-771)))))) (-4376 ((|#1| $ (-771)) 98) (($ $ $) 135 (|has| (-771) (-1111)))) (-3526 (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175)) 111 (-12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-771)) NIL (|has| |#1| (-15 * (|#1| (-771) |#1|)))) (($ $) 105 (|has| |#1| (-15 * (|#1| (-771) |#1|)))) (($ $ (-1260 |#2|)) 106)) (-1630 (((-771) $) NIL)) (-3250 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3126 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3227 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3105 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3207 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3079 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4122 (($ $) 128)) (-2479 (((-862) $) NIL) (($ (-566)) 26) (($ (-409 (-566))) 151 (|has| |#1| (-38 (-409 (-566))))) (($ $) NIL (|has| |#1| (-558))) (($ |#1|) 25 (|has| |#1| (-172))) (($ (-1237 |#2| |#1|)) 84) (($ (-1260 |#2|)) 22)) (-3866 (((-1155 |#1|) $) NIL)) (-3025 ((|#1| $ (-771)) 97)) (-2645 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1558 (((-771)) NIL T CONST)) (-2316 ((|#1| $) 94)) (-3900 (((-112) $ $) NIL)) (-3285 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3157 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1333 (((-112) $ $) NIL (|has| |#1| (-558)))) (-3260 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3135 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3309 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3179 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3649 ((|#1| $ (-771)) 92 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-771)))) (|has| |#1| (-15 -2479 (|#1| (-1175))))))) (-1861 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3190 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3299 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3168 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3273 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3148 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2446 (($) 18 T CONST)) (-2459 (($) 13 T CONST)) (-2834 (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-771)) NIL (|has| |#1| (-15 * (|#1| (-771) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-771) |#1|))))) (-2952 (((-112) $ $) NIL)) (-3077 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3065 (($ $) NIL) (($ $ $) 110)) (-3052 (($ $ $) 20)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ |#1|) 148 (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 109) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))))) +(((-1256 |#1| |#2| |#3|) (-13 (-1255 |#1|) (-10 -8 (-15 -2479 ($ (-1237 |#2| |#1|))) (-15 -3573 ((-1237 |#2| |#1|) $ (-771))) (-15 -2479 ($ (-1260 |#2|))) (-15 -3526 ($ $ (-1260 |#2|))) (-15 -3597 ($ $)) (-15 -3655 ($ $)) (-15 -3114 ($ $)) (-15 -4085 ($ $)) (-15 -3440 ($ $ (-566) (-566))) (-15 -4235 ($ $)) (-15 -2290 ($ (-566) (-566) $)) (-15 -2467 ($ (-566) (-566) $)) (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -2390 ($ $ (-1260 |#2|))) |%noBranch|))) (-1049) (-1175) |#1|) (T -1256)) +((-2479 (*1 *1 *2) (-12 (-5 *2 (-1237 *4 *3)) (-4 *3 (-1049)) (-14 *4 (-1175)) (-14 *5 *3) (-5 *1 (-1256 *3 *4 *5)))) (-3573 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1237 *5 *4)) (-5 *1 (-1256 *4 *5 *6)) (-4 *4 (-1049)) (-14 *5 (-1175)) (-14 *6 *4))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1256 *3 *4 *5)) (-4 *3 (-1049)) (-14 *5 *3))) (-3526 (*1 *1 *1 *2) (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1256 *3 *4 *5)) (-4 *3 (-1049)) (-14 *5 *3))) (-3597 (*1 *1 *1) (-12 (-5 *1 (-1256 *2 *3 *4)) (-4 *2 (-1049)) (-14 *3 (-1175)) (-14 *4 *2))) (-3655 (*1 *1 *1) (-12 (-5 *1 (-1256 *2 *3 *4)) (-4 *2 (-1049)) (-14 *3 (-1175)) (-14 *4 *2))) (-3114 (*1 *1 *1) (-12 (-5 *1 (-1256 *2 *3 *4)) (-4 *2 (-1049)) (-14 *3 (-1175)) (-14 *4 *2))) (-4085 (*1 *1 *1) (-12 (-5 *1 (-1256 *2 *3 *4)) (-4 *2 (-1049)) (-14 *3 (-1175)) (-14 *4 *2))) (-3440 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-1256 *3 *4 *5)) (-4 *3 (-1049)) (-14 *4 (-1175)) (-14 *5 *3))) (-4235 (*1 *1 *1) (-12 (-5 *1 (-1256 *2 *3 *4)) (-4 *2 (-1049)) (-14 *3 (-1175)) (-14 *4 *2))) (-2290 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-1256 *3 *4 *5)) (-4 *3 (-1049)) (-14 *4 (-1175)) (-14 *5 *3))) (-2467 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-1256 *3 *4 *5)) (-4 *3 (-1049)) (-14 *4 (-1175)) (-14 *5 *3))) (-2390 (*1 *1 *1 *2) (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1256 *3 *4 *5)) (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-14 *5 *3)))) +(-13 (-1255 |#1|) (-10 -8 (-15 -2479 ($ (-1237 |#2| |#1|))) (-15 -3573 ((-1237 |#2| |#1|) $ (-771))) (-15 -2479 ($ (-1260 |#2|))) (-15 -3526 ($ $ (-1260 |#2|))) (-15 -3597 ($ $)) (-15 -3655 ($ $)) (-15 -3114 ($ $)) (-15 -4085 ($ $)) (-15 -3440 ($ $ (-566) (-566))) (-15 -4235 ($ $)) (-15 -2290 ($ (-566) (-566) $)) (-15 -2467 ($ (-566) (-566) $)) (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -2390 ($ $ (-1260 |#2|))) |%noBranch|))) +((-4319 (((-1 (-1155 |#1|) (-644 (-1155 |#1|))) (-1 |#2| (-644 |#2|))) 24)) (-3312 (((-1 (-1155 |#1|) (-1155 |#1|) (-1155 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-2411 (((-1 (-1155 |#1|) (-1155 |#1|)) (-1 |#2| |#2|)) 13)) (-3936 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-4236 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-2521 ((|#2| (-1 |#2| (-644 |#2|)) (-644 |#1|)) 60)) (-1493 (((-644 |#2|) (-644 |#1|) (-644 (-1 |#2| (-644 |#2|)))) 66)) (-2864 ((|#2| |#2| |#2|) 43))) +(((-1257 |#1| |#2|) (-10 -7 (-15 -2411 ((-1 (-1155 |#1|) (-1155 |#1|)) (-1 |#2| |#2|))) (-15 -3312 ((-1 (-1155 |#1|) (-1155 |#1|) (-1155 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -4319 ((-1 (-1155 |#1|) (-644 (-1155 |#1|))) (-1 |#2| (-644 |#2|)))) (-15 -2864 (|#2| |#2| |#2|)) (-15 -4236 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3936 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2521 (|#2| (-1 |#2| (-644 |#2|)) (-644 |#1|))) (-15 -1493 ((-644 |#2|) (-644 |#1|) (-644 (-1 |#2| (-644 |#2|)))))) (-38 (-409 (-566))) (-1255 |#1|)) (T -1257)) +((-1493 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *5)) (-5 *4 (-644 (-1 *6 (-644 *6)))) (-4 *5 (-38 (-409 (-566)))) (-4 *6 (-1255 *5)) (-5 *2 (-644 *6)) (-5 *1 (-1257 *5 *6)))) (-2521 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-644 *2))) (-5 *4 (-644 *5)) (-4 *5 (-38 (-409 (-566)))) (-4 *2 (-1255 *5)) (-5 *1 (-1257 *5 *2)))) (-3936 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1255 *4)) (-5 *1 (-1257 *4 *2)) (-4 *4 (-38 (-409 (-566)))))) (-4236 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1255 *4)) (-5 *1 (-1257 *4 *2)) (-4 *4 (-38 (-409 (-566)))))) (-2864 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1257 *3 *2)) (-4 *2 (-1255 *3)))) (-4319 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-644 *5))) (-4 *5 (-1255 *4)) (-4 *4 (-38 (-409 (-566)))) (-5 *2 (-1 (-1155 *4) (-644 (-1155 *4)))) (-5 *1 (-1257 *4 *5)))) (-3312 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1255 *4)) (-4 *4 (-38 (-409 (-566)))) (-5 *2 (-1 (-1155 *4) (-1155 *4) (-1155 *4))) (-5 *1 (-1257 *4 *5)))) (-2411 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1255 *4)) (-4 *4 (-38 (-409 (-566)))) (-5 *2 (-1 (-1155 *4) (-1155 *4))) (-5 *1 (-1257 *4 *5))))) +(-10 -7 (-15 -2411 ((-1 (-1155 |#1|) (-1155 |#1|)) (-1 |#2| |#2|))) (-15 -3312 ((-1 (-1155 |#1|) (-1155 |#1|) (-1155 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -4319 ((-1 (-1155 |#1|) (-644 (-1155 |#1|))) (-1 |#2| (-644 |#2|)))) (-15 -2864 (|#2| |#2| |#2|)) (-15 -4236 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3936 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2521 (|#2| (-1 |#2| (-644 |#2|)) (-644 |#1|))) (-15 -1493 ((-644 |#2|) (-644 |#1|) (-644 (-1 |#2| (-644 |#2|)))))) +((-2180 ((|#2| |#4| (-771)) 34)) (-3049 ((|#4| |#2|) 29)) (-1846 ((|#4| (-409 |#2|)) 53 (|has| |#1| (-558)))) (-1898 (((-1 |#4| (-644 |#4|)) |#3|) 46))) +(((-1258 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3049 (|#4| |#2|)) (-15 -2180 (|#2| |#4| (-771))) (-15 -1898 ((-1 |#4| (-644 |#4|)) |#3|)) (IF (|has| |#1| (-558)) (-15 -1846 (|#4| (-409 |#2|))) |%noBranch|)) (-1049) (-1240 |#1|) (-656 |#2|) (-1255 |#1|)) (T -1258)) +((-1846 (*1 *2 *3) (-12 (-5 *3 (-409 *5)) (-4 *5 (-1240 *4)) (-4 *4 (-558)) (-4 *4 (-1049)) (-4 *2 (-1255 *4)) (-5 *1 (-1258 *4 *5 *6 *2)) (-4 *6 (-656 *5)))) (-1898 (*1 *2 *3) (-12 (-4 *4 (-1049)) (-4 *5 (-1240 *4)) (-5 *2 (-1 *6 (-644 *6))) (-5 *1 (-1258 *4 *5 *3 *6)) (-4 *3 (-656 *5)) (-4 *6 (-1255 *4)))) (-2180 (*1 *2 *3 *4) (-12 (-5 *4 (-771)) (-4 *5 (-1049)) (-4 *2 (-1240 *5)) (-5 *1 (-1258 *5 *2 *6 *3)) (-4 *6 (-656 *2)) (-4 *3 (-1255 *5)))) (-3049 (*1 *2 *3) (-12 (-4 *4 (-1049)) (-4 *3 (-1240 *4)) (-4 *2 (-1255 *4)) (-5 *1 (-1258 *4 *3 *5 *2)) (-4 *5 (-656 *3))))) +(-10 -7 (-15 -3049 (|#4| |#2|)) (-15 -2180 (|#2| |#4| (-771))) (-15 -1898 ((-1 |#4| (-644 |#4|)) |#3|)) (IF (|has| |#1| (-558)) (-15 -1846 (|#4| (-409 |#2|))) |%noBranch|)) +NIL +(((-1259) (-140)) (T -1259)) +NIL +(-13 (-10 -7 (-6 -3620))) +((-2986 (((-112) $ $) NIL)) (-1338 (((-1175)) 12)) (-3151 (((-1157) $) 18)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) 11) (((-1175) $) 8)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) 15))) +(((-1260 |#1|) (-13 (-1099) (-613 (-1175)) (-10 -8 (-15 -2479 ((-1175) $)) (-15 -1338 ((-1175))))) (-1175)) (T -1260)) +((-2479 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1260 *3)) (-14 *3 *2))) (-1338 (*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1260 *3)) (-14 *3 *2)))) +(-13 (-1099) (-613 (-1175)) (-10 -8 (-15 -2479 ((-1175) $)) (-15 -1338 ((-1175))))) +((-2078 (($ (-771)) 19)) (-3596 (((-689 |#2|) $ $) 41)) (-1600 ((|#2| $) 51)) (-4332 ((|#2| $) 50)) (-2555 ((|#2| $ $) 36)) (-2676 (($ $ $) 47)) (-3065 (($ $) 23) (($ $ $) 29)) (-3052 (($ $ $) 15)) (* (($ (-566) $) 26) (($ |#2| $) 32) (($ $ |#2|) 31))) +(((-1261 |#1| |#2|) (-10 -8 (-15 -1600 (|#2| |#1|)) (-15 -4332 (|#2| |#1|)) (-15 -2676 (|#1| |#1| |#1|)) (-15 -3596 ((-689 |#2|) |#1| |#1|)) (-15 -2555 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 -3065 (|#1| |#1| |#1|)) (-15 -3065 (|#1| |#1|)) (-15 -2078 (|#1| (-771))) (-15 -3052 (|#1| |#1| |#1|))) (-1262 |#2|) (-1214)) (T -1261)) +NIL +(-10 -8 (-15 -1600 (|#2| |#1|)) (-15 -4332 (|#2| |#1|)) (-15 -2676 (|#1| |#1| |#1|)) (-15 -3596 ((-689 |#2|) |#1| |#1|)) (-15 -2555 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 -3065 (|#1| |#1| |#1|)) (-15 -3065 (|#1| |#1|)) (-15 -2078 (|#1| (-771))) (-15 -3052 (|#1| |#1| |#1|))) +((-2986 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2078 (($ (-771)) 113 (|has| |#1| (-23)))) (-2462 (((-1269) $ (-566) (-566)) 41 (|has| $ (-6 -4418)))) (-4163 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-850)))) (-2893 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4418))) (($ $) 89 (-12 (|has| |#1| (-850)) (|has| $ (-6 -4418))))) (-1374 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-850)))) (-1453 (((-112) $ (-771)) 8)) (-3901 ((|#1| $ (-566) |#1|) 53 (|has| $ (-6 -4418))) ((|#1| $ (-1231 (-566)) |#1|) 59 (|has| $ (-6 -4418)))) (-3543 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4417)))) (-1811 (($) 7 T CONST)) (-2273 (($ $) 91 (|has| $ (-6 -4418)))) (-3877 (($ $) 101)) (-4111 (($ $) 79 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-2628 (($ |#1| $) 78 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4417)))) (-1838 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4417)))) (-3719 ((|#1| $ (-566) |#1|) 54 (|has| $ (-6 -4418)))) (-3653 ((|#1| $ (-566)) 52)) (-4000 (((-566) (-1 (-112) |#1|) $) 98) (((-566) |#1| $) 97 (|has| |#1| (-1099))) (((-566) |#1| $ (-566)) 96 (|has| |#1| (-1099)))) (-3872 (((-644 |#1|) $) 31 (|has| $ (-6 -4417)))) (-3596 (((-689 |#1|) $ $) 106 (|has| |#1| (-1049)))) (-4259 (($ (-771) |#1|) 70)) (-2756 (((-112) $ (-771)) 9)) (-2755 (((-566) $) 44 (|has| (-566) (-850)))) (-1920 (($ $ $) 88 (|has| |#1| (-850)))) (-1330 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-850)))) (-4227 (((-644 |#1|) $) 30 (|has| $ (-6 -4417)))) (-1688 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-3831 (((-566) $) 45 (|has| (-566) (-850)))) (-3038 (($ $ $) 87 (|has| |#1| (-850)))) (-3708 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1600 ((|#1| $) 103 (-12 (|has| |#1| (-1049)) (|has| |#1| (-1002))))) (-4106 (((-112) $ (-771)) 10)) (-4332 ((|#1| $) 104 (-12 (|has| |#1| (-1049)) (|has| |#1| (-1002))))) (-3151 (((-1157) $) 22 (|has| |#1| (-1099)))) (-4271 (($ |#1| $ (-566)) 61) (($ $ $ (-566)) 60)) (-3780 (((-644 (-566)) $) 47)) (-1605 (((-112) (-566) $) 48)) (-4059 (((-1119) $) 21 (|has| |#1| (-1099)))) (-4080 ((|#1| $) 43 (|has| (-566) (-850)))) (-2688 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-4079 (($ $ |#1|) 42 (|has| $ (-6 -4418)))) (-3966 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1844 (((-112) $ $) 14)) (-2210 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-4185 (((-644 |#1|) $) 49)) (-2788 (((-112) $) 11)) (-1737 (($) 12)) (-4376 ((|#1| $ (-566) |#1|) 51) ((|#1| $ (-566)) 50) (($ $ (-1231 (-566))) 64)) (-2555 ((|#1| $ $) 107 (|has| |#1| (-1049)))) (-2139 (($ $ (-566)) 63) (($ $ (-1231 (-566))) 62)) (-2676 (($ $ $) 105 (|has| |#1| (-1049)))) (-4068 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4417))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4417))))) (-1438 (($ $ $ (-566)) 92 (|has| $ (-6 -4418)))) (-3924 (($ $) 13)) (-3136 (((-538) $) 80 (|has| |#1| (-614 (-538))))) (-2489 (($ (-644 |#1|)) 71)) (-3716 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-644 $)) 66)) (-2479 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-3900 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-3667 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4417)))) (-3019 (((-112) $ $) 85 (|has| |#1| (-850)))) (-2990 (((-112) $ $) 84 (|has| |#1| (-850)))) (-2952 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3004 (((-112) $ $) 86 (|has| |#1| (-850)))) (-2977 (((-112) $ $) 83 (|has| |#1| (-850)))) (-3065 (($ $) 112 (|has| |#1| (-21))) (($ $ $) 111 (|has| |#1| (-21)))) (-3052 (($ $ $) 114 (|has| |#1| (-25)))) (* (($ (-566) $) 110 (|has| |#1| (-21))) (($ |#1| $) 109 (|has| |#1| (-726))) (($ $ |#1|) 108 (|has| |#1| (-726)))) (-3002 (((-771) $) 6 (|has| $ (-6 -4417))))) +(((-1262 |#1|) (-140) (-1214)) (T -1262)) +((-3052 (*1 *1 *1 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1214)) (-4 *2 (-25)))) (-2078 (*1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-1262 *3)) (-4 *3 (-23)) (-4 *3 (-1214)))) (-3065 (*1 *1 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1214)) (-4 *2 (-21)))) (-3065 (*1 *1 *1 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1214)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-566)) (-4 *1 (-1262 *3)) (-4 *3 (-1214)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1214)) (-4 *2 (-726)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1214)) (-4 *2 (-726)))) (-2555 (*1 *2 *1 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1214)) (-4 *2 (-1049)))) (-3596 (*1 *2 *1 *1) (-12 (-4 *1 (-1262 *3)) (-4 *3 (-1214)) (-4 *3 (-1049)) (-5 *2 (-689 *3)))) (-2676 (*1 *1 *1 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1214)) (-4 *2 (-1049)))) (-4332 (*1 *2 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1214)) (-4 *2 (-1002)) (-4 *2 (-1049)))) (-1600 (*1 *2 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1214)) (-4 *2 (-1002)) (-4 *2 (-1049))))) +(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -3052 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -2078 ($ (-771))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -3065 ($ $)) (-15 -3065 ($ $ $)) (-15 * ($ (-566) $))) |%noBranch|) (IF (|has| |t#1| (-726)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1049)) (PROGN (-15 -2555 (|t#1| $ $)) (-15 -3596 ((-689 |t#1|) $ $)) (-15 -2676 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-1002)) (IF (|has| |t#1| (-1049)) (PROGN (-15 -4332 (|t#1| $)) (-15 -1600 (|t#1| $))) |%noBranch|) |%noBranch|))) +(((-34) . T) ((-102) -2809 (|has| |#1| (-1099)) (|has| |#1| (-850))) ((-613 (-862)) -2809 (|has| |#1| (-1099)) (|has| |#1| (-850)) (|has| |#1| (-613 (-862)))) ((-151 |#1|) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-287 #0=(-566) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-375 |#1|) . T) ((-491 |#1|) . T) ((-604 #0# |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-651 |#1|) . T) ((-19 |#1|) . T) ((-850) |has| |#1| (-850)) ((-1099) -2809 (|has| |#1| (-1099)) (|has| |#1| (-850))) ((-1214) . T)) +((-2531 (((-1264 |#2|) (-1 |#2| |#1| |#2|) (-1264 |#1|) |#2|) 13)) (-1838 ((|#2| (-1 |#2| |#1| |#2|) (-1264 |#1|) |#2|) 15)) (-3080 (((-3 (-1264 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1264 |#1|)) 30) (((-1264 |#2|) (-1 |#2| |#1|) (-1264 |#1|)) 18))) +(((-1263 |#1| |#2|) (-10 -7 (-15 -2531 ((-1264 |#2|) (-1 |#2| |#1| |#2|) (-1264 |#1|) |#2|)) (-15 -1838 (|#2| (-1 |#2| |#1| |#2|) (-1264 |#1|) |#2|)) (-15 -3080 ((-1264 |#2|) (-1 |#2| |#1|) (-1264 |#1|))) (-15 -3080 ((-3 (-1264 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1264 |#1|)))) (-1214) (-1214)) (T -1263)) +((-3080 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1264 *5)) (-4 *5 (-1214)) (-4 *6 (-1214)) (-5 *2 (-1264 *6)) (-5 *1 (-1263 *5 *6)))) (-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1264 *5)) (-4 *5 (-1214)) (-4 *6 (-1214)) (-5 *2 (-1264 *6)) (-5 *1 (-1263 *5 *6)))) (-1838 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1264 *5)) (-4 *5 (-1214)) (-4 *2 (-1214)) (-5 *1 (-1263 *5 *2)))) (-2531 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1264 *6)) (-4 *6 (-1214)) (-4 *5 (-1214)) (-5 *2 (-1264 *5)) (-5 *1 (-1263 *6 *5))))) +(-10 -7 (-15 -2531 ((-1264 |#2|) (-1 |#2| |#1| |#2|) (-1264 |#1|) |#2|)) (-15 -1838 (|#2| (-1 |#2| |#1| |#2|) (-1264 |#1|) |#2|)) (-15 -3080 ((-1264 |#2|) (-1 |#2| |#1|) (-1264 |#1|))) (-15 -3080 ((-3 (-1264 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1264 |#1|)))) +((-2986 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2078 (($ (-771)) NIL (|has| |#1| (-23)))) (-3514 (($ (-644 |#1|)) 11)) (-2462 (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4418)))) (-4163 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-850)))) (-2893 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4418))) (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-850))))) (-1374 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-850)))) (-1453 (((-112) $ (-771)) NIL)) (-3901 ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4418))) ((|#1| $ (-1231 (-566)) |#1|) NIL (|has| $ (-6 -4418)))) (-3543 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-1811 (($) NIL T CONST)) (-2273 (($ $) NIL (|has| $ (-6 -4418)))) (-3877 (($ $) NIL)) (-4111 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-2628 (($ |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-1838 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4417))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4417)))) (-3719 ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4418)))) (-3653 ((|#1| $ (-566)) NIL)) (-4000 (((-566) (-1 (-112) |#1|) $) NIL) (((-566) |#1| $) NIL (|has| |#1| (-1099))) (((-566) |#1| $ (-566)) NIL (|has| |#1| (-1099)))) (-3872 (((-644 |#1|) $) 15 (|has| $ (-6 -4417)))) (-3596 (((-689 |#1|) $ $) NIL (|has| |#1| (-1049)))) (-4259 (($ (-771) |#1|) NIL)) (-2756 (((-112) $ (-771)) NIL)) (-2755 (((-566) $) NIL (|has| (-566) (-850)))) (-1920 (($ $ $) NIL (|has| |#1| (-850)))) (-1330 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-850)))) (-4227 (((-644 |#1|) $) NIL (|has| $ (-6 -4417)))) (-1688 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-3831 (((-566) $) NIL (|has| (-566) (-850)))) (-3038 (($ $ $) NIL (|has| |#1| (-850)))) (-3708 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1600 ((|#1| $) NIL (-12 (|has| |#1| (-1002)) (|has| |#1| (-1049))))) (-4106 (((-112) $ (-771)) NIL)) (-4332 ((|#1| $) NIL (-12 (|has| |#1| (-1002)) (|has| |#1| (-1049))))) (-3151 (((-1157) $) NIL (|has| |#1| (-1099)))) (-4271 (($ |#1| $ (-566)) NIL) (($ $ $ (-566)) NIL)) (-3780 (((-644 (-566)) $) NIL)) (-1605 (((-112) (-566) $) NIL)) (-4059 (((-1119) $) NIL (|has| |#1| (-1099)))) (-4080 ((|#1| $) NIL (|has| (-566) (-850)))) (-2688 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4079 (($ $ |#1|) NIL (|has| $ (-6 -4418)))) (-3966 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1844 (((-112) $ $) NIL)) (-2210 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-4185 (((-644 |#1|) $) NIL)) (-2788 (((-112) $) NIL)) (-1737 (($) NIL)) (-4376 ((|#1| $ (-566) |#1|) NIL) ((|#1| $ (-566)) NIL) (($ $ (-1231 (-566))) NIL)) (-2555 ((|#1| $ $) NIL (|has| |#1| (-1049)))) (-2139 (($ $ (-566)) NIL) (($ $ (-1231 (-566))) NIL)) (-2676 (($ $ $) NIL (|has| |#1| (-1049)))) (-4068 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-1099))))) (-1438 (($ $ $ (-566)) NIL (|has| $ (-6 -4418)))) (-3924 (($ $) NIL)) (-3136 (((-538) $) 19 (|has| |#1| (-614 (-538))))) (-2489 (($ (-644 |#1|)) 10)) (-3716 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-644 $)) NIL)) (-2479 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-3900 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3667 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4417)))) (-3019 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2990 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2952 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3004 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-850)))) (-3065 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3052 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-566) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-726))) (($ $ |#1|) NIL (|has| |#1| (-726)))) (-3002 (((-771) $) NIL (|has| $ (-6 -4417))))) +(((-1264 |#1|) (-13 (-1262 |#1|) (-10 -8 (-15 -3514 ($ (-644 |#1|))))) (-1214)) (T -1264)) +((-3514 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1214)) (-5 *1 (-1264 *3))))) +(-13 (-1262 |#1|) (-10 -8 (-15 -3514 ($ (-644 |#1|))))) +((-2986 (((-112) $ $) NIL)) (-4015 (((-1157) $ (-1157)) 110) (((-1157) $ (-1157) (-1157)) 108) (((-1157) $ (-1157) (-644 (-1157))) 107)) (-2105 (($) 70)) (-3943 (((-1269) $ (-470) (-921)) 55)) (-3169 (((-1269) $ (-921) (-1157)) 92) (((-1269) $ (-921) (-874)) 93)) (-2060 (((-1269) $ (-921) (-381) (-381)) 58)) (-3347 (((-1269) $ (-1157)) 87)) (-3819 (((-1269) $ (-921) (-1157)) 97)) (-2504 (((-1269) $ (-921) (-381) (-381)) 59)) (-2530 (((-1269) $ (-921) (-921)) 56)) (-3992 (((-1269) $) 88)) (-3230 (((-1269) $ (-921) (-1157)) 96)) (-2595 (((-1269) $ (-470) (-921)) 41)) (-3828 (((-1269) $ (-921) (-1157)) 95)) (-4290 (((-644 (-264)) $) 29) (($ $ (-644 (-264))) 30)) (-3353 (((-1269) $ (-771) (-771)) 53)) (-2823 (($ $) 72) (($ (-470) (-644 (-264))) 73)) (-3151 (((-1157) $) NIL)) (-1928 (((-566) $) 48)) (-4059 (((-1119) $) NIL)) (-3894 (((-1264 (-3 (-470) "undefined")) $) 47)) (-3741 (((-1264 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -3828 (-566)) (|:| -2266 (-566)) (|:| |spline| (-566)) (|:| -4240 (-566)) (|:| |axesColor| (-874)) (|:| -3169 (-566)) (|:| |unitsColor| (-874)) (|:| |showing| (-566)))) $) 46)) (-1773 (((-1269) $ (-921) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-566) (-874) (-566) (-874) (-566)) 86)) (-1701 (((-644 (-943 (-225))) $) NIL)) (-3822 (((-470) $ (-921)) 43)) (-3034 (((-1269) $ (-771) (-771) (-921) (-921)) 51)) (-1617 (((-1269) $ (-1157)) 98)) (-2266 (((-1269) $ (-921) (-1157)) 94)) (-2479 (((-862) $) 105)) (-1637 (((-1269) $) 99)) (-3900 (((-112) $ $) NIL)) (-4240 (((-1269) $ (-921) (-1157)) 90) (((-1269) $ (-921) (-874)) 91)) (-2952 (((-112) $ $) NIL))) +(((-1265) (-13 (-1099) (-10 -8 (-15 -1701 ((-644 (-943 (-225))) $)) (-15 -2105 ($)) (-15 -2823 ($ $)) (-15 -4290 ((-644 (-264)) $)) (-15 -4290 ($ $ (-644 (-264)))) (-15 -2823 ($ (-470) (-644 (-264)))) (-15 -1773 ((-1269) $ (-921) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-566) (-874) (-566) (-874) (-566))) (-15 -3741 ((-1264 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -3828 (-566)) (|:| -2266 (-566)) (|:| |spline| (-566)) (|:| -4240 (-566)) (|:| |axesColor| (-874)) (|:| -3169 (-566)) (|:| |unitsColor| (-874)) (|:| |showing| (-566)))) $)) (-15 -3894 ((-1264 (-3 (-470) "undefined")) $)) (-15 -3347 ((-1269) $ (-1157))) (-15 -2595 ((-1269) $ (-470) (-921))) (-15 -3822 ((-470) $ (-921))) (-15 -4240 ((-1269) $ (-921) (-1157))) (-15 -4240 ((-1269) $ (-921) (-874))) (-15 -3169 ((-1269) $ (-921) (-1157))) (-15 -3169 ((-1269) $ (-921) (-874))) (-15 -3828 ((-1269) $ (-921) (-1157))) (-15 -3230 ((-1269) $ (-921) (-1157))) (-15 -2266 ((-1269) $ (-921) (-1157))) (-15 -1617 ((-1269) $ (-1157))) (-15 -1637 ((-1269) $)) (-15 -3034 ((-1269) $ (-771) (-771) (-921) (-921))) (-15 -2504 ((-1269) $ (-921) (-381) (-381))) (-15 -2060 ((-1269) $ (-921) (-381) (-381))) (-15 -3819 ((-1269) $ (-921) (-1157))) (-15 -3353 ((-1269) $ (-771) (-771))) (-15 -3943 ((-1269) $ (-470) (-921))) (-15 -2530 ((-1269) $ (-921) (-921))) (-15 -4015 ((-1157) $ (-1157))) (-15 -4015 ((-1157) $ (-1157) (-1157))) (-15 -4015 ((-1157) $ (-1157) (-644 (-1157)))) (-15 -3992 ((-1269) $)) (-15 -1928 ((-566) $)) (-15 -2479 ((-862) $))))) (T -1265)) +((-2479 (*1 *2 *1) (-12 (-5 *2 (-862)) (-5 *1 (-1265)))) (-1701 (*1 *2 *1) (-12 (-5 *2 (-644 (-943 (-225)))) (-5 *1 (-1265)))) (-2105 (*1 *1) (-5 *1 (-1265))) (-2823 (*1 *1 *1) (-5 *1 (-1265))) (-4290 (*1 *2 *1) (-12 (-5 *2 (-644 (-264))) (-5 *1 (-1265)))) (-4290 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-264))) (-5 *1 (-1265)))) (-2823 (*1 *1 *2 *3) (-12 (-5 *2 (-470)) (-5 *3 (-644 (-264))) (-5 *1 (-1265)))) (-1773 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-921)) (-5 *4 (-225)) (-5 *5 (-566)) (-5 *6 (-874)) (-5 *2 (-1269)) (-5 *1 (-1265)))) (-3741 (*1 *2 *1) (-12 (-5 *2 (-1264 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -3828 (-566)) (|:| -2266 (-566)) (|:| |spline| (-566)) (|:| -4240 (-566)) (|:| |axesColor| (-874)) (|:| -3169 (-566)) (|:| |unitsColor| (-874)) (|:| |showing| (-566))))) (-5 *1 (-1265)))) (-3894 (*1 *2 *1) (-12 (-5 *2 (-1264 (-3 (-470) "undefined"))) (-5 *1 (-1265)))) (-3347 (*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1265)))) (-2595 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-470)) (-5 *4 (-921)) (-5 *2 (-1269)) (-5 *1 (-1265)))) (-3822 (*1 *2 *1 *3) (-12 (-5 *3 (-921)) (-5 *2 (-470)) (-5 *1 (-1265)))) (-4240 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-921)) (-5 *4 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1265)))) (-4240 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-921)) (-5 *4 (-874)) (-5 *2 (-1269)) (-5 *1 (-1265)))) (-3169 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-921)) (-5 *4 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1265)))) (-3169 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-921)) (-5 *4 (-874)) (-5 *2 (-1269)) (-5 *1 (-1265)))) (-3828 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-921)) (-5 *4 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1265)))) (-3230 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-921)) (-5 *4 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1265)))) (-2266 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-921)) (-5 *4 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1265)))) (-1617 (*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1265)))) (-1637 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-1265)))) (-3034 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-771)) (-5 *4 (-921)) (-5 *2 (-1269)) (-5 *1 (-1265)))) (-2504 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-921)) (-5 *4 (-381)) (-5 *2 (-1269)) (-5 *1 (-1265)))) (-2060 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-921)) (-5 *4 (-381)) (-5 *2 (-1269)) (-5 *1 (-1265)))) (-3819 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-921)) (-5 *4 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1265)))) (-3353 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1269)) (-5 *1 (-1265)))) (-3943 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-470)) (-5 *4 (-921)) (-5 *2 (-1269)) (-5 *1 (-1265)))) (-2530 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1269)) (-5 *1 (-1265)))) (-4015 (*1 *2 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1265)))) (-4015 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1265)))) (-4015 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-644 (-1157))) (-5 *2 (-1157)) (-5 *1 (-1265)))) (-3992 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-1265)))) (-1928 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-1265))))) +(-13 (-1099) (-10 -8 (-15 -1701 ((-644 (-943 (-225))) $)) (-15 -2105 ($)) (-15 -2823 ($ $)) (-15 -4290 ((-644 (-264)) $)) (-15 -4290 ($ $ (-644 (-264)))) (-15 -2823 ($ (-470) (-644 (-264)))) (-15 -1773 ((-1269) $ (-921) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-566) (-874) (-566) (-874) (-566))) (-15 -3741 ((-1264 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -3828 (-566)) (|:| -2266 (-566)) (|:| |spline| (-566)) (|:| -4240 (-566)) (|:| |axesColor| (-874)) (|:| -3169 (-566)) (|:| |unitsColor| (-874)) (|:| |showing| (-566)))) $)) (-15 -3894 ((-1264 (-3 (-470) "undefined")) $)) (-15 -3347 ((-1269) $ (-1157))) (-15 -2595 ((-1269) $ (-470) (-921))) (-15 -3822 ((-470) $ (-921))) (-15 -4240 ((-1269) $ (-921) (-1157))) (-15 -4240 ((-1269) $ (-921) (-874))) (-15 -3169 ((-1269) $ (-921) (-1157))) (-15 -3169 ((-1269) $ (-921) (-874))) (-15 -3828 ((-1269) $ (-921) (-1157))) (-15 -3230 ((-1269) $ (-921) (-1157))) (-15 -2266 ((-1269) $ (-921) (-1157))) (-15 -1617 ((-1269) $ (-1157))) (-15 -1637 ((-1269) $)) (-15 -3034 ((-1269) $ (-771) (-771) (-921) (-921))) (-15 -2504 ((-1269) $ (-921) (-381) (-381))) (-15 -2060 ((-1269) $ (-921) (-381) (-381))) (-15 -3819 ((-1269) $ (-921) (-1157))) (-15 -3353 ((-1269) $ (-771) (-771))) (-15 -3943 ((-1269) $ (-470) (-921))) (-15 -2530 ((-1269) $ (-921) (-921))) (-15 -4015 ((-1157) $ (-1157))) (-15 -4015 ((-1157) $ (-1157) (-1157))) (-15 -4015 ((-1157) $ (-1157) (-644 (-1157)))) (-15 -3992 ((-1269) $)) (-15 -1928 ((-566) $)) (-15 -2479 ((-862) $)))) +((-2986 (((-112) $ $) NIL)) (-2685 (((-1269) $ (-381)) 172) (((-1269) $ (-381) (-381) (-381)) 173)) (-4015 (((-1157) $ (-1157)) 182) (((-1157) $ (-1157) (-1157)) 180) (((-1157) $ (-1157) (-644 (-1157))) 179)) (-1766 (($) 67)) (-3372 (((-1269) $ (-381) (-381) (-381) (-381) (-381)) 144) (((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2504 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $) 142) (((-1269) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2504 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 143) (((-1269) $ (-566) (-566) (-381) (-381) (-381)) 147) (((-1269) $ (-381) (-381)) 148) (((-1269) $ (-381) (-381) (-381)) 155)) (-3458 (((-381)) 125) (((-381) (-381)) 126)) (-4331 (((-381)) 120) (((-381) (-381)) 122)) (-2988 (((-381)) 123) (((-381) (-381)) 124)) (-4197 (((-381)) 129) (((-381) (-381)) 130)) (-1638 (((-381)) 127) (((-381) (-381)) 128)) (-2060 (((-1269) $ (-381) (-381)) 174)) (-3347 (((-1269) $ (-1157)) 156)) (-3364 (((-1132 (-225)) $) 68) (($ $ (-1132 (-225))) 69)) (-2419 (((-1269) $ (-1157)) 190)) (-3949 (((-1269) $ (-1157)) 191)) (-2323 (((-1269) $ (-381) (-381)) 154) (((-1269) $ (-566) (-566)) 171)) (-2530 (((-1269) $ (-921) (-921)) 163)) (-3992 (((-1269) $) 140)) (-1910 (((-1269) $ (-1157)) 189)) (-2369 (((-1269) $ (-1157)) 137)) (-4290 (((-644 (-264)) $) 70) (($ $ (-644 (-264))) 71)) (-3353 (((-1269) $ (-771) (-771)) 162)) (-3804 (((-1269) $ (-771) (-943 (-225))) 196)) (-1686 (($ $) 73) (($ (-1132 (-225)) (-1157)) 74) (($ (-1132 (-225)) (-644 (-264))) 75)) (-3092 (((-1269) $ (-381) (-381) (-381)) 134)) (-3151 (((-1157) $) NIL)) (-1928 (((-566) $) 131)) (-3766 (((-1269) $ (-381)) 177)) (-3803 (((-1269) $ (-381)) 194)) (-4059 (((-1119) $) NIL)) (-2511 (((-1269) $ (-381)) 193)) (-2407 (((-1269) $ (-1157)) 139)) (-3034 (((-1269) $ (-771) (-771) (-921) (-921)) 161)) (-2427 (((-1269) $ (-1157)) 136)) (-1617 (((-1269) $ (-1157)) 138)) (-4050 (((-1269) $ (-157) (-157)) 160)) (-2479 (((-862) $) 169)) (-1637 (((-1269) $) 141)) (-2395 (((-1269) $ (-1157)) 192)) (-3900 (((-112) $ $) NIL)) (-4240 (((-1269) $ (-1157)) 135)) (-2952 (((-112) $ $) NIL))) +(((-1266) (-13 (-1099) (-10 -8 (-15 -4331 ((-381))) (-15 -4331 ((-381) (-381))) (-15 -2988 ((-381))) (-15 -2988 ((-381) (-381))) (-15 -3458 ((-381))) (-15 -3458 ((-381) (-381))) (-15 -1638 ((-381))) (-15 -1638 ((-381) (-381))) (-15 -4197 ((-381))) (-15 -4197 ((-381) (-381))) (-15 -1766 ($)) (-15 -1686 ($ $)) (-15 -1686 ($ (-1132 (-225)) (-1157))) (-15 -1686 ($ (-1132 (-225)) (-644 (-264)))) (-15 -3364 ((-1132 (-225)) $)) (-15 -3364 ($ $ (-1132 (-225)))) (-15 -3804 ((-1269) $ (-771) (-943 (-225)))) (-15 -4290 ((-644 (-264)) $)) (-15 -4290 ($ $ (-644 (-264)))) (-15 -3353 ((-1269) $ (-771) (-771))) (-15 -2530 ((-1269) $ (-921) (-921))) (-15 -3347 ((-1269) $ (-1157))) (-15 -3034 ((-1269) $ (-771) (-771) (-921) (-921))) (-15 -3372 ((-1269) $ (-381) (-381) (-381) (-381) (-381))) (-15 -3372 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2504 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $)) (-15 -3372 ((-1269) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2504 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3372 ((-1269) $ (-566) (-566) (-381) (-381) (-381))) (-15 -3372 ((-1269) $ (-381) (-381))) (-15 -3372 ((-1269) $ (-381) (-381) (-381))) (-15 -1617 ((-1269) $ (-1157))) (-15 -4240 ((-1269) $ (-1157))) (-15 -2427 ((-1269) $ (-1157))) (-15 -2369 ((-1269) $ (-1157))) (-15 -2407 ((-1269) $ (-1157))) (-15 -2323 ((-1269) $ (-381) (-381))) (-15 -2323 ((-1269) $ (-566) (-566))) (-15 -2685 ((-1269) $ (-381))) (-15 -2685 ((-1269) $ (-381) (-381) (-381))) (-15 -2060 ((-1269) $ (-381) (-381))) (-15 -1910 ((-1269) $ (-1157))) (-15 -2511 ((-1269) $ (-381))) (-15 -3803 ((-1269) $ (-381))) (-15 -2419 ((-1269) $ (-1157))) (-15 -3949 ((-1269) $ (-1157))) (-15 -2395 ((-1269) $ (-1157))) (-15 -3092 ((-1269) $ (-381) (-381) (-381))) (-15 -3766 ((-1269) $ (-381))) (-15 -3992 ((-1269) $)) (-15 -4050 ((-1269) $ (-157) (-157))) (-15 -4015 ((-1157) $ (-1157))) (-15 -4015 ((-1157) $ (-1157) (-1157))) (-15 -4015 ((-1157) $ (-1157) (-644 (-1157)))) (-15 -1637 ((-1269) $)) (-15 -1928 ((-566) $))))) (T -1266)) +((-4331 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1266)))) (-4331 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1266)))) (-2988 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1266)))) (-2988 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1266)))) (-3458 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1266)))) (-3458 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1266)))) (-1638 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1266)))) (-1638 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1266)))) (-4197 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1266)))) (-4197 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1266)))) (-1766 (*1 *1) (-5 *1 (-1266))) (-1686 (*1 *1 *1) (-5 *1 (-1266))) (-1686 (*1 *1 *2 *3) (-12 (-5 *2 (-1132 (-225))) (-5 *3 (-1157)) (-5 *1 (-1266)))) (-1686 (*1 *1 *2 *3) (-12 (-5 *2 (-1132 (-225))) (-5 *3 (-644 (-264))) (-5 *1 (-1266)))) (-3364 (*1 *2 *1) (-12 (-5 *2 (-1132 (-225))) (-5 *1 (-1266)))) (-3364 (*1 *1 *1 *2) (-12 (-5 *2 (-1132 (-225))) (-5 *1 (-1266)))) (-3804 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-771)) (-5 *4 (-943 (-225))) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-4290 (*1 *2 *1) (-12 (-5 *2 (-644 (-264))) (-5 *1 (-1266)))) (-4290 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-264))) (-5 *1 (-1266)))) (-3353 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-2530 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-3347 (*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-3034 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-771)) (-5 *4 (-921)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-3372 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-3372 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2504 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *1 (-1266)))) (-3372 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2504 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-3372 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-566)) (-5 *4 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-3372 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-3372 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-1617 (*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-4240 (*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-2427 (*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-2369 (*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-2407 (*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-2323 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-2323 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-566)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-2685 (*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-2685 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-2060 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-1910 (*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-2511 (*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-3803 (*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-2419 (*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-3949 (*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-2395 (*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-3092 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-3766 (*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-3992 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-1266)))) (-4050 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-157)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-4015 (*1 *2 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1266)))) (-4015 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1266)))) (-4015 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-644 (-1157))) (-5 *2 (-1157)) (-5 *1 (-1266)))) (-1637 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-1266)))) (-1928 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-1266))))) +(-13 (-1099) (-10 -8 (-15 -4331 ((-381))) (-15 -4331 ((-381) (-381))) (-15 -2988 ((-381))) (-15 -2988 ((-381) (-381))) (-15 -3458 ((-381))) (-15 -3458 ((-381) (-381))) (-15 -1638 ((-381))) (-15 -1638 ((-381) (-381))) (-15 -4197 ((-381))) (-15 -4197 ((-381) (-381))) (-15 -1766 ($)) (-15 -1686 ($ $)) (-15 -1686 ($ (-1132 (-225)) (-1157))) (-15 -1686 ($ (-1132 (-225)) (-644 (-264)))) (-15 -3364 ((-1132 (-225)) $)) (-15 -3364 ($ $ (-1132 (-225)))) (-15 -3804 ((-1269) $ (-771) (-943 (-225)))) (-15 -4290 ((-644 (-264)) $)) (-15 -4290 ($ $ (-644 (-264)))) (-15 -3353 ((-1269) $ (-771) (-771))) (-15 -2530 ((-1269) $ (-921) (-921))) (-15 -3347 ((-1269) $ (-1157))) (-15 -3034 ((-1269) $ (-771) (-771) (-921) (-921))) (-15 -3372 ((-1269) $ (-381) (-381) (-381) (-381) (-381))) (-15 -3372 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2504 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $)) (-15 -3372 ((-1269) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2504 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3372 ((-1269) $ (-566) (-566) (-381) (-381) (-381))) (-15 -3372 ((-1269) $ (-381) (-381))) (-15 -3372 ((-1269) $ (-381) (-381) (-381))) (-15 -1617 ((-1269) $ (-1157))) (-15 -4240 ((-1269) $ (-1157))) (-15 -2427 ((-1269) $ (-1157))) (-15 -2369 ((-1269) $ (-1157))) (-15 -2407 ((-1269) $ (-1157))) (-15 -2323 ((-1269) $ (-381) (-381))) (-15 -2323 ((-1269) $ (-566) (-566))) (-15 -2685 ((-1269) $ (-381))) (-15 -2685 ((-1269) $ (-381) (-381) (-381))) (-15 -2060 ((-1269) $ (-381) (-381))) (-15 -1910 ((-1269) $ (-1157))) (-15 -2511 ((-1269) $ (-381))) (-15 -3803 ((-1269) $ (-381))) (-15 -2419 ((-1269) $ (-1157))) (-15 -3949 ((-1269) $ (-1157))) (-15 -2395 ((-1269) $ (-1157))) (-15 -3092 ((-1269) $ (-381) (-381) (-381))) (-15 -3766 ((-1269) $ (-381))) (-15 -3992 ((-1269) $)) (-15 -4050 ((-1269) $ (-157) (-157))) (-15 -4015 ((-1157) $ (-1157))) (-15 -4015 ((-1157) $ (-1157) (-1157))) (-15 -4015 ((-1157) $ (-1157) (-644 (-1157)))) (-15 -1637 ((-1269) $)) (-15 -1928 ((-566) $)))) +((-2033 (((-644 (-1157)) (-644 (-1157))) 104) (((-644 (-1157))) 96)) (-2262 (((-644 (-1157))) 94)) (-3058 (((-644 (-921)) (-644 (-921))) 69) (((-644 (-921))) 64)) (-2083 (((-644 (-771)) (-644 (-771))) 61) (((-644 (-771))) 55)) (-3461 (((-1269)) 71)) (-2468 (((-921) (-921)) 87) (((-921)) 86)) (-2709 (((-921) (-921)) 85) (((-921)) 84)) (-3700 (((-874) (-874)) 81) (((-874)) 80)) (-2532 (((-225)) 91) (((-225) (-381)) 93)) (-1580 (((-921)) 88) (((-921) (-921)) 89)) (-3970 (((-921) (-921)) 83) (((-921)) 82)) (-3041 (((-874) (-874)) 75) (((-874)) 73)) (-4170 (((-874) (-874)) 77) (((-874)) 76)) (-4241 (((-874) (-874)) 79) (((-874)) 78))) +(((-1267) (-10 -7 (-15 -3041 ((-874))) (-15 -3041 ((-874) (-874))) (-15 -4170 ((-874))) (-15 -4170 ((-874) (-874))) (-15 -4241 ((-874))) (-15 -4241 ((-874) (-874))) (-15 -3700 ((-874))) (-15 -3700 ((-874) (-874))) (-15 -3970 ((-921))) (-15 -3970 ((-921) (-921))) (-15 -2083 ((-644 (-771)))) (-15 -2083 ((-644 (-771)) (-644 (-771)))) (-15 -3058 ((-644 (-921)))) (-15 -3058 ((-644 (-921)) (-644 (-921)))) (-15 -3461 ((-1269))) (-15 -2033 ((-644 (-1157)))) (-15 -2033 ((-644 (-1157)) (-644 (-1157)))) (-15 -2262 ((-644 (-1157)))) (-15 -2709 ((-921))) (-15 -2468 ((-921))) (-15 -2709 ((-921) (-921))) (-15 -2468 ((-921) (-921))) (-15 -1580 ((-921) (-921))) (-15 -1580 ((-921))) (-15 -2532 ((-225) (-381))) (-15 -2532 ((-225))))) (T -1267)) +((-2532 (*1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-1267)))) (-2532 (*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-225)) (-5 *1 (-1267)))) (-1580 (*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-1267)))) (-1580 (*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-1267)))) (-2468 (*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-1267)))) (-2709 (*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-1267)))) (-2468 (*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-1267)))) (-2709 (*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-1267)))) (-2262 (*1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1267)))) (-2033 (*1 *2 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1267)))) (-2033 (*1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1267)))) (-3461 (*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-1267)))) (-3058 (*1 *2 *2) (-12 (-5 *2 (-644 (-921))) (-5 *1 (-1267)))) (-3058 (*1 *2) (-12 (-5 *2 (-644 (-921))) (-5 *1 (-1267)))) (-2083 (*1 *2 *2) (-12 (-5 *2 (-644 (-771))) (-5 *1 (-1267)))) (-2083 (*1 *2) (-12 (-5 *2 (-644 (-771))) (-5 *1 (-1267)))) (-3970 (*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-1267)))) (-3970 (*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-1267)))) (-3700 (*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1267)))) (-3700 (*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1267)))) (-4241 (*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1267)))) (-4241 (*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1267)))) (-4170 (*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1267)))) (-4170 (*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1267)))) (-3041 (*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1267)))) (-3041 (*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1267))))) +(-10 -7 (-15 -3041 ((-874))) (-15 -3041 ((-874) (-874))) (-15 -4170 ((-874))) (-15 -4170 ((-874) (-874))) (-15 -4241 ((-874))) (-15 -4241 ((-874) (-874))) (-15 -3700 ((-874))) (-15 -3700 ((-874) (-874))) (-15 -3970 ((-921))) (-15 -3970 ((-921) (-921))) (-15 -2083 ((-644 (-771)))) (-15 -2083 ((-644 (-771)) (-644 (-771)))) (-15 -3058 ((-644 (-921)))) (-15 -3058 ((-644 (-921)) (-644 (-921)))) (-15 -3461 ((-1269))) (-15 -2033 ((-644 (-1157)))) (-15 -2033 ((-644 (-1157)) (-644 (-1157)))) (-15 -2262 ((-644 (-1157)))) (-15 -2709 ((-921))) (-15 -2468 ((-921))) (-15 -2709 ((-921) (-921))) (-15 -2468 ((-921) (-921))) (-15 -1580 ((-921) (-921))) (-15 -1580 ((-921))) (-15 -2532 ((-225) (-381))) (-15 -2532 ((-225)))) +((-2638 (((-470) (-644 (-644 (-943 (-225)))) (-644 (-264))) 22) (((-470) (-644 (-644 (-943 (-225))))) 21) (((-470) (-644 (-644 (-943 (-225)))) (-874) (-874) (-921) (-644 (-264))) 20)) (-2246 (((-1265) (-644 (-644 (-943 (-225)))) (-644 (-264))) 33) (((-1265) (-644 (-644 (-943 (-225)))) (-874) (-874) (-921) (-644 (-264))) 32)) (-2479 (((-1265) (-470)) 48))) +(((-1268) (-10 -7 (-15 -2638 ((-470) (-644 (-644 (-943 (-225)))) (-874) (-874) (-921) (-644 (-264)))) (-15 -2638 ((-470) (-644 (-644 (-943 (-225)))))) (-15 -2638 ((-470) (-644 (-644 (-943 (-225)))) (-644 (-264)))) (-15 -2246 ((-1265) (-644 (-644 (-943 (-225)))) (-874) (-874) (-921) (-644 (-264)))) (-15 -2246 ((-1265) (-644 (-644 (-943 (-225)))) (-644 (-264)))) (-15 -2479 ((-1265) (-470))))) (T -1268)) +((-2479 (*1 *2 *3) (-12 (-5 *3 (-470)) (-5 *2 (-1265)) (-5 *1 (-1268)))) (-2246 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-644 (-943 (-225))))) (-5 *4 (-644 (-264))) (-5 *2 (-1265)) (-5 *1 (-1268)))) (-2246 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-644 (-644 (-943 (-225))))) (-5 *4 (-874)) (-5 *5 (-921)) (-5 *6 (-644 (-264))) (-5 *2 (-1265)) (-5 *1 (-1268)))) (-2638 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-644 (-943 (-225))))) (-5 *4 (-644 (-264))) (-5 *2 (-470)) (-5 *1 (-1268)))) (-2638 (*1 *2 *3) (-12 (-5 *3 (-644 (-644 (-943 (-225))))) (-5 *2 (-470)) (-5 *1 (-1268)))) (-2638 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-644 (-644 (-943 (-225))))) (-5 *4 (-874)) (-5 *5 (-921)) (-5 *6 (-644 (-264))) (-5 *2 (-470)) (-5 *1 (-1268))))) +(-10 -7 (-15 -2638 ((-470) (-644 (-644 (-943 (-225)))) (-874) (-874) (-921) (-644 (-264)))) (-15 -2638 ((-470) (-644 (-644 (-943 (-225)))))) (-15 -2638 ((-470) (-644 (-644 (-943 (-225)))) (-644 (-264)))) (-15 -2246 ((-1265) (-644 (-644 (-943 (-225)))) (-874) (-874) (-921) (-644 (-264)))) (-15 -2246 ((-1265) (-644 (-644 (-943 (-225)))) (-644 (-264)))) (-15 -2479 ((-1265) (-470)))) +((-4306 (($) 7)) (-2479 (((-862) $) 10))) +(((-1269) (-13 (-613 (-862)) (-10 -8 (-15 -4306 ($))))) (T -1269)) +((-4306 (*1 *1) (-5 *1 (-1269)))) +(-13 (-613 (-862)) (-10 -8 (-15 -4306 ($)))) +((-3077 (($ $ |#2|) 10))) +(((-1270 |#1| |#2|) (-10 -8 (-15 -3077 (|#1| |#1| |#2|))) (-1271 |#2|) (-365)) (T -1270)) +NIL +(-10 -8 (-15 -3077 (|#1| |#1| |#2|))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-3174 (((-3 $ "failed") $ $) 20)) (-1811 (($) 18 T CONST)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-3944 (((-134)) 33)) (-2479 (((-862) $) 12)) (-3900 (((-112) $ $) 9)) (-2446 (($) 19 T CONST)) (-2952 (((-112) $ $) 6)) (-3077 (($ $ |#1|) 34)) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) +(((-1271 |#1|) (-140) (-365)) (T -1271)) +((-3077 (*1 *1 *1 *2) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-365)))) (-3944 (*1 *2) (-12 (-4 *1 (-1271 *3)) (-4 *3 (-365)) (-5 *2 (-134))))) +(-13 (-717 |t#1|) (-10 -8 (-15 -3077 ($ $ |t#1|)) (-15 -3944 ((-134))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-648 |#1|) . T) ((-640 |#1|) . T) ((-717 |#1|) . T) ((-1051 |#1|) . T) ((-1056 |#1|) . T) ((-1099) . T)) +((-2954 (((-644 (-1208 |#1|)) (-1175) (-1208 |#1|)) 83)) (-4275 (((-1155 (-1155 (-952 |#1|))) (-1175) (-1155 (-952 |#1|))) 63)) (-2000 (((-1 (-1155 (-1208 |#1|)) (-1155 (-1208 |#1|))) (-771) (-1208 |#1|) (-1155 (-1208 |#1|))) 74)) (-2522 (((-1 (-1155 (-952 |#1|)) (-1155 (-952 |#1|))) (-771)) 65)) (-3235 (((-1 (-1171 (-952 |#1|)) (-952 |#1|)) (-1175)) 32)) (-3505 (((-1 (-1155 (-952 |#1|)) (-1155 (-952 |#1|))) (-771)) 64))) +(((-1272 |#1|) (-10 -7 (-15 -2522 ((-1 (-1155 (-952 |#1|)) (-1155 (-952 |#1|))) (-771))) (-15 -3505 ((-1 (-1155 (-952 |#1|)) (-1155 (-952 |#1|))) (-771))) (-15 -4275 ((-1155 (-1155 (-952 |#1|))) (-1175) (-1155 (-952 |#1|)))) (-15 -3235 ((-1 (-1171 (-952 |#1|)) (-952 |#1|)) (-1175))) (-15 -2954 ((-644 (-1208 |#1|)) (-1175) (-1208 |#1|))) (-15 -2000 ((-1 (-1155 (-1208 |#1|)) (-1155 (-1208 |#1|))) (-771) (-1208 |#1|) (-1155 (-1208 |#1|))))) (-365)) (T -1272)) +((-2000 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-771)) (-4 *6 (-365)) (-5 *4 (-1208 *6)) (-5 *2 (-1 (-1155 *4) (-1155 *4))) (-5 *1 (-1272 *6)) (-5 *5 (-1155 *4)))) (-2954 (*1 *2 *3 *4) (-12 (-5 *3 (-1175)) (-4 *5 (-365)) (-5 *2 (-644 (-1208 *5))) (-5 *1 (-1272 *5)) (-5 *4 (-1208 *5)))) (-3235 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1 (-1171 (-952 *4)) (-952 *4))) (-5 *1 (-1272 *4)) (-4 *4 (-365)))) (-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1175)) (-4 *5 (-365)) (-5 *2 (-1155 (-1155 (-952 *5)))) (-5 *1 (-1272 *5)) (-5 *4 (-1155 (-952 *5))))) (-3505 (*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1 (-1155 (-952 *4)) (-1155 (-952 *4)))) (-5 *1 (-1272 *4)) (-4 *4 (-365)))) (-2522 (*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1 (-1155 (-952 *4)) (-1155 (-952 *4)))) (-5 *1 (-1272 *4)) (-4 *4 (-365))))) +(-10 -7 (-15 -2522 ((-1 (-1155 (-952 |#1|)) (-1155 (-952 |#1|))) (-771))) (-15 -3505 ((-1 (-1155 (-952 |#1|)) (-1155 (-952 |#1|))) (-771))) (-15 -4275 ((-1155 (-1155 (-952 |#1|))) (-1175) (-1155 (-952 |#1|)))) (-15 -3235 ((-1 (-1171 (-952 |#1|)) (-952 |#1|)) (-1175))) (-15 -2954 ((-644 (-1208 |#1|)) (-1175) (-1208 |#1|))) (-15 -2000 ((-1 (-1155 (-1208 |#1|)) (-1155 (-1208 |#1|))) (-771) (-1208 |#1|) (-1155 (-1208 |#1|))))) +((-3459 (((-2 (|:| -1419 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|))) |#2|) 82)) (-2500 (((-2 (|:| -1419 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|)))) 81))) +(((-1273 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2500 ((-2 (|:| -1419 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|))))) (-15 -3459 ((-2 (|:| -1419 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|))) |#2|))) (-351) (-1240 |#1|) (-1240 |#2|) (-411 |#2| |#3|)) (T -1273)) +((-3459 (*1 *2 *3) (-12 (-4 *4 (-351)) (-4 *3 (-1240 *4)) (-4 *5 (-1240 *3)) (-5 *2 (-2 (|:| -1419 (-689 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-689 *3)))) (-5 *1 (-1273 *4 *3 *5 *6)) (-4 *6 (-411 *3 *5)))) (-2500 (*1 *2) (-12 (-4 *3 (-351)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 *4)) (-5 *2 (-2 (|:| -1419 (-689 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-689 *4)))) (-5 *1 (-1273 *3 *4 *5 *6)) (-4 *6 (-411 *4 *5))))) +(-10 -7 (-15 -2500 ((-2 (|:| -1419 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|))))) (-15 -3459 ((-2 (|:| -1419 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|))) |#2|))) +((-2986 (((-112) $ $) NIL)) (-3549 (((-1134) $) 11)) (-3165 (((-1134) $) 9)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) 17) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-1274) (-13 (-1082) (-10 -8 (-15 -3165 ((-1134) $)) (-15 -3549 ((-1134) $))))) (T -1274)) +((-3165 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1274)))) (-3549 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1274))))) +(-13 (-1082) (-10 -8 (-15 -3165 ((-1134) $)) (-15 -3549 ((-1134) $)))) +((-2986 (((-112) $ $) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-1562 (((-1134) $) 9)) (-2479 (((-862) $) 15) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3900 (((-112) $ $) NIL)) (-2952 (((-112) $ $) NIL))) +(((-1275) (-13 (-1082) (-10 -8 (-15 -1562 ((-1134) $))))) (T -1275)) +((-1562 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1275))))) +(-13 (-1082) (-10 -8 (-15 -1562 ((-1134) $)))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) 58)) (-3174 (((-3 $ "failed") $ $) NIL)) (-1811 (($) NIL T CONST)) (-3757 (((-3 $ "failed") $) NIL)) (-2264 (((-112) $) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-2479 (((-862) $) 81) (($ (-566)) NIL) (($ |#4|) 65) ((|#4| $) 70) (($ |#1|) NIL (|has| |#1| (-172)))) (-1558 (((-771)) NIL T CONST)) (-2580 (((-1269) (-771)) 16)) (-3900 (((-112) $ $) NIL)) (-2446 (($) 37 T CONST)) (-2459 (($) 84 T CONST)) (-2952 (((-112) $ $) 87)) (-3077 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-3065 (($ $) 89) (($ $ $) NIL)) (-3052 (($ $ $) 63)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 91) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))))) +(((-1276 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1049) (-492 |#4|) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -3077 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2580 ((-1269) (-771))))) (-1049) (-850) (-793) (-949 |#1| |#3| |#2|) (-644 |#2|) (-644 (-771)) (-771)) (T -1276)) +((-3077 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-365)) (-4 *2 (-1049)) (-4 *3 (-850)) (-4 *4 (-793)) (-14 *6 (-644 *3)) (-5 *1 (-1276 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-949 *2 *4 *3)) (-14 *7 (-644 (-771))) (-14 *8 (-771)))) (-2580 (*1 *2 *3) (-12 (-5 *3 (-771)) (-4 *4 (-1049)) (-4 *5 (-850)) (-4 *6 (-793)) (-14 *8 (-644 *5)) (-5 *2 (-1269)) (-5 *1 (-1276 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-949 *4 *6 *5)) (-14 *9 (-644 *3)) (-14 *10 *3)))) +(-13 (-1049) (-492 |#4|) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -3077 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2580 ((-1269) (-771))))) +((-2986 (((-112) $ $) NIL)) (-1416 (((-644 (-2 (|:| -1637 $) (|:| -3516 (-644 |#4|)))) (-644 |#4|)) NIL)) (-3295 (((-644 $) (-644 |#4|)) 96)) (-2485 (((-644 |#3|) $) NIL)) (-1489 (((-112) $) NIL)) (-3541 (((-112) $) NIL (|has| |#1| (-558)))) (-2219 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1922 ((|#4| |#4| $) NIL)) (-1374 (((-2 (|:| |under| $) (|:| -2001 $) (|:| |upper| $)) $ |#3|) NIL)) (-1453 (((-112) $ (-771)) NIL)) (-3543 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4417))) (((-3 |#4| "failed") $ |#3|) NIL)) (-1811 (($) NIL T CONST)) (-4210 (((-112) $) NIL (|has| |#1| (-558)))) (-3050 (((-112) $ $) NIL (|has| |#1| (-558)))) (-1768 (((-112) $ $) NIL (|has| |#1| (-558)))) (-3261 (((-112) $) NIL (|has| |#1| (-558)))) (-3451 (((-644 |#4|) (-644 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 31)) (-2796 (((-644 |#4|) (-644 |#4|) $) 28 (|has| |#1| (-558)))) (-3829 (((-644 |#4|) (-644 |#4|) $) NIL (|has| |#1| (-558)))) (-2980 (((-3 $ "failed") (-644 |#4|)) NIL)) (-1709 (($ (-644 |#4|)) NIL)) (-4091 (((-3 $ "failed") $) 78)) (-3358 ((|#4| |#4| $) 83)) (-4111 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#4| (-1099))))) (-2628 (($ |#4| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#4| (-1099)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4417)))) (-3131 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-558)))) (-1995 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3326 ((|#4| |#4| $) NIL)) (-1838 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4417)) (|has| |#4| (-1099)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4417))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4417))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1877 (((-2 (|:| -1637 (-644 |#4|)) (|:| -3516 (-644 |#4|))) $) NIL)) (-3872 (((-644 |#4|) $) NIL (|has| $ (-6 -4417)))) (-4297 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4052 ((|#3| $) 84)) (-2756 (((-112) $ (-771)) NIL)) (-4227 (((-644 |#4|) $) 32 (|has| $ (-6 -4417)))) (-1688 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#4| (-1099))))) (-3243 (((-3 $ "failed") (-644 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35) (((-3 $ "failed") (-644 |#4|)) 38)) (-3708 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4418)))) (-3080 (($ (-1 |#4| |#4|) $) NIL)) (-3599 (((-644 |#3|) $) NIL)) (-2884 (((-112) |#3| $) NIL)) (-4106 (((-112) $ (-771)) NIL)) (-3151 (((-1157) $) NIL)) (-2651 (((-3 |#4| "failed") $) NIL)) (-3707 (((-644 |#4|) $) 54)) (-4121 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3317 ((|#4| |#4| $) 82)) (-3730 (((-112) $ $) 93)) (-1719 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-558)))) (-1695 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3869 ((|#4| |#4| $) NIL)) (-4059 (((-1119) $) NIL)) (-4080 (((-3 |#4| "failed") $) 77)) (-2688 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2293 (((-3 $ "failed") $ |#4|) NIL)) (-2050 (($ $ |#4|) NIL)) (-3966 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4417)))) (-3297 (($ $ (-644 |#4|) (-644 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-295 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-644 (-295 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))))) (-1844 (((-112) $ $) NIL)) (-2788 (((-112) $) 75)) (-1737 (($) 46)) (-1630 (((-771) $) NIL)) (-4068 (((-771) |#4| $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#4| (-1099)))) (((-771) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4417)))) (-3924 (($ $) NIL)) (-3136 (((-538) $) NIL (|has| |#4| (-614 (-538))))) (-2489 (($ (-644 |#4|)) NIL)) (-1706 (($ $ |#3|) NIL)) (-4234 (($ $ |#3|) NIL)) (-4024 (($ $) NIL)) (-2378 (($ $ |#3|) NIL)) (-2479 (((-862) $) NIL) (((-644 |#4|) $) 63)) (-2780 (((-771) $) NIL (|has| |#3| (-370)))) (-1805 (((-3 $ "failed") (-644 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 44) (((-3 $ "failed") (-644 |#4|)) 45)) (-2979 (((-644 $) (-644 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 73) (((-644 $) (-644 |#4|)) 74)) (-3900 (((-112) $ $) NIL)) (-2877 (((-3 (-2 (|:| |bas| $) (|:| -3903 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4| |#4|)) 27) (((-3 (-2 (|:| |bas| $) (|:| -3903 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4265 (((-112) $ (-1 (-112) |#4| (-644 |#4|))) NIL)) (-3667 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4417)))) (-4067 (((-644 |#3|) $) NIL)) (-3132 (((-112) |#3| $) NIL)) (-2952 (((-112) $ $) NIL)) (-3002 (((-771) $) NIL (|has| $ (-6 -4417))))) +(((-1277 |#1| |#2| |#3| |#4|) (-13 (-1207 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3243 ((-3 $ "failed") (-644 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3243 ((-3 $ "failed") (-644 |#4|))) (-15 -1805 ((-3 $ "failed") (-644 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1805 ((-3 $ "failed") (-644 |#4|))) (-15 -2979 ((-644 $) (-644 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2979 ((-644 $) (-644 |#4|))))) (-558) (-793) (-850) (-1064 |#1| |#2| |#3|)) (T -1277)) +((-3243 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-644 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-558)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *1 (-1277 *5 *6 *7 *8)))) (-3243 (*1 *1 *2) (|partial| -12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-1277 *3 *4 *5 *6)))) (-1805 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-644 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-558)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *1 (-1277 *5 *6 *7 *8)))) (-1805 (*1 *1 *2) (|partial| -12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-1277 *3 *4 *5 *6)))) (-2979 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-644 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1064 *6 *7 *8)) (-4 *6 (-558)) (-4 *7 (-793)) (-4 *8 (-850)) (-5 *2 (-644 (-1277 *6 *7 *8 *9))) (-5 *1 (-1277 *6 *7 *8 *9)))) (-2979 (*1 *2 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 (-1277 *4 *5 *6 *7))) (-5 *1 (-1277 *4 *5 *6 *7))))) +(-13 (-1207 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3243 ((-3 $ "failed") (-644 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3243 ((-3 $ "failed") (-644 |#4|))) (-15 -1805 ((-3 $ "failed") (-644 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1805 ((-3 $ "failed") (-644 |#4|))) (-15 -2979 ((-644 $) (-644 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2979 ((-644 $) (-644 |#4|))))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-3174 (((-3 $ "failed") $ $) 20)) (-1811 (($) 18 T CONST)) (-3757 (((-3 $ "failed") $) 37)) (-2264 (((-112) $) 35)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-2479 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 45)) (-1558 (((-771)) 32 T CONST)) (-3900 (((-112) $ $) 9)) (-2446 (($) 19 T CONST)) (-2459 (($) 34 T CONST)) (-2952 (((-112) $ $) 6)) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 47) (($ |#1| $) 46))) +(((-1278 |#1|) (-140) (-1049)) (T -1278)) +NIL +(-13 (-1049) (-111 |t#1| |t#1|) (-616 |t#1|) (-10 -7 (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-616 (-566)) . T) ((-616 |#1|) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-640 |#1|) |has| |#1| (-172)) ((-717 |#1|) |has| |#1| (-172)) ((-726) . T) ((-1051 |#1|) . T) ((-1056 |#1|) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) +((-2986 (((-112) $ $) 67)) (-2845 (((-112) $) NIL)) (-1656 (((-644 |#1|) $) 52)) (-3475 (($ $ (-771)) 46)) (-3174 (((-3 $ "failed") $ $) NIL)) (-1962 (($ $ (-771)) 24 (|has| |#2| (-172))) (($ $ $) 25 (|has| |#2| (-172)))) (-1811 (($) NIL T CONST)) (-3506 (($ $ $) 70) (($ $ (-819 |#1|)) 56) (($ $ |#1|) 60)) (-2980 (((-3 (-819 |#1|) "failed") $) NIL)) (-1709 (((-819 |#1|) $) NIL)) (-3565 (($ $) 39)) (-3757 (((-3 $ "failed") $) NIL)) (-3853 (((-112) $) NIL)) (-3056 (($ $) NIL)) (-2264 (((-112) $) NIL)) (-3486 (((-771) $) NIL)) (-1545 (((-644 $) $) NIL)) (-3989 (((-112) $) NIL)) (-1863 (($ (-819 |#1|) |#2|) 38)) (-3768 (($ $) 40)) (-1528 (((-2 (|:| |k| (-819 |#1|)) (|:| |c| |#2|)) $) 12)) (-3110 (((-819 |#1|) $) NIL)) (-2776 (((-819 |#1|) $) 41)) (-3080 (($ (-1 |#2| |#2|) $) NIL)) (-4087 (($ $ $) 69) (($ $ (-819 |#1|)) 58) (($ $ |#1|) 62)) (-4046 (((-2 (|:| |k| (-819 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2608 (((-819 |#1|) $) 35)) (-2622 ((|#2| $) 37)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-1630 (((-771) $) 43)) (-1878 (((-112) $) 47)) (-1573 ((|#2| $) NIL)) (-2479 (((-862) $) NIL) (($ (-819 |#1|)) 30) (($ |#1|) 31) (($ |#2|) NIL) (($ (-566)) NIL)) (-3866 (((-644 |#2|) $) NIL)) (-3025 ((|#2| $ (-819 |#1|)) NIL)) (-3103 ((|#2| $ $) 76) ((|#2| $ (-819 |#1|)) NIL)) (-1558 (((-771)) NIL T CONST)) (-3900 (((-112) $ $) NIL)) (-2446 (($) 13 T CONST)) (-2459 (($) 19 T CONST)) (-3585 (((-644 (-2 (|:| |k| (-819 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2952 (((-112) $ $) 44)) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) 28)) (** (($ $ (-771)) NIL) (($ $ (-921)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ |#2| $) 27) (($ $ |#2|) 68) (($ |#2| (-819 |#1|)) NIL) (($ |#1| $) 33) (($ $ $) NIL))) +(((-1279 |#1| |#2|) (-13 (-384 |#2| (-819 |#1|)) (-1285 |#1| |#2|)) (-850) (-1049)) (T -1279)) +NIL +(-13 (-384 |#2| (-819 |#1|)) (-1285 |#1| |#2|)) +((-3676 ((|#3| |#3| (-771)) 30)) (-3571 ((|#3| |#3| (-771)) 36)) (-2883 ((|#3| |#3| |#3| (-771)) 37))) +(((-1280 |#1| |#2| |#3|) (-10 -7 (-15 -3571 (|#3| |#3| (-771))) (-15 -3676 (|#3| |#3| (-771))) (-15 -2883 (|#3| |#3| |#3| (-771)))) (-13 (-1049) (-717 (-409 (-566)))) (-850) (-1285 |#2| |#1|)) (T -1280)) +((-2883 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-771)) (-4 *4 (-13 (-1049) (-717 (-409 (-566))))) (-4 *5 (-850)) (-5 *1 (-1280 *4 *5 *2)) (-4 *2 (-1285 *5 *4)))) (-3676 (*1 *2 *2 *3) (-12 (-5 *3 (-771)) (-4 *4 (-13 (-1049) (-717 (-409 (-566))))) (-4 *5 (-850)) (-5 *1 (-1280 *4 *5 *2)) (-4 *2 (-1285 *5 *4)))) (-3571 (*1 *2 *2 *3) (-12 (-5 *3 (-771)) (-4 *4 (-13 (-1049) (-717 (-409 (-566))))) (-4 *5 (-850)) (-5 *1 (-1280 *4 *5 *2)) (-4 *2 (-1285 *5 *4))))) +(-10 -7 (-15 -3571 (|#3| |#3| (-771))) (-15 -3676 (|#3| |#3| (-771))) (-15 -2883 (|#3| |#3| |#3| (-771)))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-1656 (((-644 |#1|) $) 47)) (-3174 (((-3 $ "failed") $ $) 20)) (-1962 (($ $ $) 50 (|has| |#2| (-172))) (($ $ (-771)) 49 (|has| |#2| (-172)))) (-1811 (($) 18 T CONST)) (-3506 (($ $ |#1|) 61) (($ $ (-819 |#1|)) 60) (($ $ $) 59)) (-2980 (((-3 (-819 |#1|) "failed") $) 71)) (-1709 (((-819 |#1|) $) 72)) (-3757 (((-3 $ "failed") $) 37)) (-3853 (((-112) $) 52)) (-3056 (($ $) 51)) (-2264 (((-112) $) 35)) (-3989 (((-112) $) 57)) (-1863 (($ (-819 |#1|) |#2|) 58)) (-3768 (($ $) 56)) (-1528 (((-2 (|:| |k| (-819 |#1|)) (|:| |c| |#2|)) $) 67)) (-3110 (((-819 |#1|) $) 68)) (-3080 (($ (-1 |#2| |#2|) $) 48)) (-4087 (($ $ |#1|) 64) (($ $ (-819 |#1|)) 63) (($ $ $) 62)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-1878 (((-112) $) 54)) (-1573 ((|#2| $) 53)) (-2479 (((-862) $) 12) (($ (-566)) 33) (($ |#2|) 75) (($ (-819 |#1|)) 70) (($ |#1|) 55)) (-3103 ((|#2| $ (-819 |#1|)) 66) ((|#2| $ $) 65)) (-1558 (((-771)) 32 T CONST)) (-3900 (((-112) $ $) 9)) (-2446 (($) 19 T CONST)) (-2459 (($) 34 T CONST)) (-2952 (((-112) $ $) 6)) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69))) +(((-1281 |#1| |#2|) (-140) (-850) (-1049)) (T -1281)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1281 *3 *2)) (-4 *3 (-850)) (-4 *2 (-1049)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1281 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049)))) (-3110 (*1 *2 *1) (-12 (-4 *1 (-1281 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)) (-5 *2 (-819 *3)))) (-1528 (*1 *2 *1) (-12 (-4 *1 (-1281 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)) (-5 *2 (-2 (|:| |k| (-819 *3)) (|:| |c| *4))))) (-3103 (*1 *2 *1 *3) (-12 (-5 *3 (-819 *4)) (-4 *1 (-1281 *4 *2)) (-4 *4 (-850)) (-4 *2 (-1049)))) (-3103 (*1 *2 *1 *1) (-12 (-4 *1 (-1281 *3 *2)) (-4 *3 (-850)) (-4 *2 (-1049)))) (-4087 (*1 *1 *1 *2) (-12 (-4 *1 (-1281 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049)))) (-4087 (*1 *1 *1 *2) (-12 (-5 *2 (-819 *3)) (-4 *1 (-1281 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)))) (-4087 (*1 *1 *1 *1) (-12 (-4 *1 (-1281 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049)))) (-3506 (*1 *1 *1 *2) (-12 (-4 *1 (-1281 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049)))) (-3506 (*1 *1 *1 *2) (-12 (-5 *2 (-819 *3)) (-4 *1 (-1281 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)))) (-3506 (*1 *1 *1 *1) (-12 (-4 *1 (-1281 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049)))) (-1863 (*1 *1 *2 *3) (-12 (-5 *2 (-819 *4)) (-4 *4 (-850)) (-4 *1 (-1281 *4 *3)) (-4 *3 (-1049)))) (-3989 (*1 *2 *1) (-12 (-4 *1 (-1281 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)) (-5 *2 (-112)))) (-3768 (*1 *1 *1) (-12 (-4 *1 (-1281 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049)))) (-2479 (*1 *1 *2) (-12 (-4 *1 (-1281 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049)))) (-1878 (*1 *2 *1) (-12 (-4 *1 (-1281 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)) (-5 *2 (-112)))) (-1573 (*1 *2 *1) (-12 (-4 *1 (-1281 *3 *2)) (-4 *3 (-850)) (-4 *2 (-1049)))) (-3853 (*1 *2 *1) (-12 (-4 *1 (-1281 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)) (-5 *2 (-112)))) (-3056 (*1 *1 *1) (-12 (-4 *1 (-1281 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049)))) (-1962 (*1 *1 *1 *1) (-12 (-4 *1 (-1281 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049)) (-4 *3 (-172)))) (-1962 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-1281 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)) (-4 *4 (-172)))) (-3080 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1281 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)))) (-1656 (*1 *2 *1) (-12 (-4 *1 (-1281 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)) (-5 *2 (-644 *3))))) +(-13 (-1049) (-1278 |t#2|) (-1038 (-819 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -3110 ((-819 |t#1|) $)) (-15 -1528 ((-2 (|:| |k| (-819 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -3103 (|t#2| $ (-819 |t#1|))) (-15 -3103 (|t#2| $ $)) (-15 -4087 ($ $ |t#1|)) (-15 -4087 ($ $ (-819 |t#1|))) (-15 -4087 ($ $ $)) (-15 -3506 ($ $ |t#1|)) (-15 -3506 ($ $ (-819 |t#1|))) (-15 -3506 ($ $ $)) (-15 -1863 ($ (-819 |t#1|) |t#2|)) (-15 -3989 ((-112) $)) (-15 -3768 ($ $)) (-15 -2479 ($ |t#1|)) (-15 -1878 ((-112) $)) (-15 -1573 (|t#2| $)) (-15 -3853 ((-112) $)) (-15 -3056 ($ $)) (IF (|has| |t#2| (-172)) (PROGN (-15 -1962 ($ $ $)) (-15 -1962 ($ $ (-771)))) |%noBranch|) (-15 -3080 ($ (-1 |t#2| |t#2|) $)) (-15 -1656 ((-644 |t#1|) $)) (IF (|has| |t#2| (-6 -4410)) (-6 -4410) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-616 (-566)) . T) ((-616 #0=(-819 |#1|)) . T) ((-616 |#2|) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 |#2|) . T) ((-646 $) . T) ((-648 |#2|) . T) ((-648 $) . T) ((-640 |#2|) |has| |#2| (-172)) ((-717 |#2|) |has| |#2| (-172)) ((-726) . T) ((-1038 #0#) . T) ((-1051 |#2|) . T) ((-1056 |#2|) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1278 |#2|) . T)) +((-3017 (((-112) $) 15)) (-3132 (((-112) $) 14)) (-3536 (($ $) 19) (($ $ (-771)) 21))) +(((-1282 |#1| |#2|) (-10 -8 (-15 -3536 (|#1| |#1| (-771))) (-15 -3536 (|#1| |#1|)) (-15 -3017 ((-112) |#1|)) (-15 -3132 ((-112) |#1|))) (-1283 |#2|) (-365)) (T -1282)) +NIL +(-10 -8 (-15 -3536 (|#1| |#1| (-771))) (-15 -3536 (|#1| |#1|)) (-15 -3017 ((-112) |#1|)) (-15 -3132 ((-112) |#1|))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-3832 (((-2 (|:| -1732 $) (|:| -4404 $) (|:| |associate| $)) $) 47)) (-3087 (($ $) 46)) (-1716 (((-112) $) 44)) (-3017 (((-112) $) 104)) (-4141 (((-771)) 100)) (-3174 (((-3 $ "failed") $ $) 20)) (-3980 (($ $) 81)) (-3348 (((-420 $) $) 80)) (-2761 (((-112) $ $) 65)) (-1811 (($) 18 T CONST)) (-2980 (((-3 |#1| "failed") $) 111)) (-1709 ((|#1| $) 112)) (-2925 (($ $ $) 61)) (-3757 (((-3 $ "failed") $) 37)) (-2937 (($ $ $) 62)) (-1793 (((-2 (|:| -3103 (-644 $)) (|:| -4086 $)) (-644 $)) 57)) (-4202 (($ $ (-771)) 97 (-2809 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) 96 (-2809 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4188 (((-112) $) 79)) (-1802 (((-833 (-921)) $) 94 (-2809 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2264 (((-112) $) 35)) (-2495 (((-3 (-644 $) "failed") (-644 $) $) 58)) (-2120 (($ $ $) 52) (($ (-644 $)) 51)) (-3151 (((-1157) $) 10)) (-2577 (($ $) 78)) (-1965 (((-112) $) 103)) (-4059 (((-1119) $) 11)) (-4004 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-2162 (($ $ $) 54) (($ (-644 $)) 53)) (-2325 (((-420 $) $) 82)) (-1903 (((-833 (-921))) 101)) (-2585 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4086 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2976 (((-3 $ "failed") $ $) 48)) (-2840 (((-3 (-644 $) "failed") (-644 $) $) 56)) (-1383 (((-771) $) 64)) (-1510 (((-2 (|:| -3371 $) (|:| -3131 $)) $ $) 63)) (-4107 (((-3 (-771) "failed") $ $) 95 (-2809 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3944 (((-134)) 109)) (-1630 (((-833 (-921)) $) 102)) (-2479 (((-862) $) 12) (($ (-566)) 33) (($ $) 49) (($ (-409 (-566))) 74) (($ |#1|) 110)) (-2645 (((-3 $ "failed") $) 93 (-2809 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1558 (((-771)) 32 T CONST)) (-3900 (((-112) $ $) 9)) (-1333 (((-112) $ $) 45)) (-3132 (((-112) $) 105)) (-2446 (($) 19 T CONST)) (-2459 (($) 34 T CONST)) (-3536 (($ $) 99 (|has| |#1| (-370))) (($ $ (-771)) 98 (|has| |#1| (-370)))) (-2952 (((-112) $ $) 6)) (-3077 (($ $ $) 73) (($ $ |#1|) 108)) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 77)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ (-409 (-566))) 76) (($ (-409 (-566)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106))) +(((-1283 |#1|) (-140) (-365)) (T -1283)) +((-3132 (*1 *2 *1) (-12 (-4 *1 (-1283 *3)) (-4 *3 (-365)) (-5 *2 (-112)))) (-3017 (*1 *2 *1) (-12 (-4 *1 (-1283 *3)) (-4 *3 (-365)) (-5 *2 (-112)))) (-1965 (*1 *2 *1) (-12 (-4 *1 (-1283 *3)) (-4 *3 (-365)) (-5 *2 (-112)))) (-1630 (*1 *2 *1) (-12 (-4 *1 (-1283 *3)) (-4 *3 (-365)) (-5 *2 (-833 (-921))))) (-1903 (*1 *2) (-12 (-4 *1 (-1283 *3)) (-4 *3 (-365)) (-5 *2 (-833 (-921))))) (-4141 (*1 *2) (-12 (-4 *1 (-1283 *3)) (-4 *3 (-365)) (-5 *2 (-771)))) (-3536 (*1 *1 *1) (-12 (-4 *1 (-1283 *2)) (-4 *2 (-365)) (-4 *2 (-370)))) (-3536 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-1283 *3)) (-4 *3 (-365)) (-4 *3 (-370))))) +(-13 (-365) (-1038 |t#1|) (-1271 |t#1|) (-10 -8 (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-404)) |%noBranch|) (-15 -3132 ((-112) $)) (-15 -3017 ((-112) $)) (-15 -1965 ((-112) $)) (-15 -1630 ((-833 (-921)) $)) (-15 -1903 ((-833 (-921)))) (-15 -4141 ((-771))) (IF (|has| |t#1| (-370)) (PROGN (-6 (-404)) (-15 -3536 ($ $)) (-15 -3536 ($ $ (-771)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-409 (-566))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2809 (|has| |#1| (-370)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-616 #0#) . T) ((-616 (-566)) . T) ((-616 |#1|) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-404) -2809 (|has| |#1| (-370)) (|has| |#1| (-145))) ((-454) . T) ((-558) . T) ((-646 #0#) . T) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #0#) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #0#) . T) ((-640 |#1|) . T) ((-640 $) . T) ((-717 #0#) . T) ((-717 |#1|) . T) ((-717 $) . T) ((-726) . T) ((-920) . T) ((-1038 |#1|) . T) ((-1051 #0#) . T) ((-1051 |#1|) . T) ((-1051 $) . T) ((-1056 #0#) . T) ((-1056 |#1|) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1218) . T) ((-1271 |#1|) . T)) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-1656 (((-644 |#1|) $) 99)) (-3475 (($ $ (-771)) 103)) (-3174 (((-3 $ "failed") $ $) NIL)) (-1962 (($ $ $) NIL (|has| |#2| (-172))) (($ $ (-771)) NIL (|has| |#2| (-172)))) (-1811 (($) NIL T CONST)) (-3506 (($ $ |#1|) NIL) (($ $ (-819 |#1|)) NIL) (($ $ $) NIL)) (-2980 (((-3 (-819 |#1|) "failed") $) NIL) (((-3 (-893 |#1|) "failed") $) NIL)) (-1709 (((-819 |#1|) $) NIL) (((-893 |#1|) $) NIL)) (-3565 (($ $) 102)) (-3757 (((-3 $ "failed") $) NIL)) (-3853 (((-112) $) 91)) (-3056 (($ $) 94)) (-1353 (($ $ $ (-771)) 104)) (-2264 (((-112) $) NIL)) (-3486 (((-771) $) NIL)) (-1545 (((-644 $) $) NIL)) (-3989 (((-112) $) NIL)) (-1863 (($ (-819 |#1|) |#2|) NIL) (($ (-893 |#1|) |#2|) 29)) (-3768 (($ $) 121)) (-1528 (((-2 (|:| |k| (-819 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3110 (((-819 |#1|) $) NIL)) (-2776 (((-819 |#1|) $) NIL)) (-3080 (($ (-1 |#2| |#2|) $) NIL)) (-4087 (($ $ |#1|) NIL) (($ $ (-819 |#1|)) NIL) (($ $ $) NIL)) (-3676 (($ $ (-771)) 114 (|has| |#2| (-717 (-409 (-566)))))) (-4046 (((-2 (|:| |k| (-893 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2608 (((-893 |#1|) $) 84)) (-2622 ((|#2| $) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-3571 (($ $ (-771)) 111 (|has| |#2| (-717 (-409 (-566)))))) (-1630 (((-771) $) 100)) (-1878 (((-112) $) 85)) (-1573 ((|#2| $) 89)) (-2479 (((-862) $) 70) (($ (-566)) NIL) (($ |#2|) 60) (($ (-819 |#1|)) NIL) (($ |#1|) 72) (($ (-893 |#1|)) NIL) (($ (-664 |#1| |#2|)) 48) (((-1279 |#1| |#2|) $) 77) (((-1288 |#1| |#2|) $) 82)) (-3866 (((-644 |#2|) $) NIL)) (-3025 ((|#2| $ (-893 |#1|)) NIL)) (-3103 ((|#2| $ (-819 |#1|)) NIL) ((|#2| $ $) NIL)) (-1558 (((-771)) NIL T CONST)) (-3900 (((-112) $ $) NIL)) (-2446 (($) 21 T CONST)) (-2459 (($) 28 T CONST)) (-3585 (((-644 (-2 (|:| |k| (-893 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1670 (((-3 (-664 |#1| |#2|) "failed") $) 120)) (-2952 (((-112) $ $) 78)) (-3065 (($ $) 113) (($ $ $) 112)) (-3052 (($ $ $) 20)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 49) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-893 |#1|)) NIL))) +(((-1284 |#1| |#2|) (-13 (-1285 |#1| |#2|) (-384 |#2| (-893 |#1|)) (-10 -8 (-15 -2479 ($ (-664 |#1| |#2|))) (-15 -2479 ((-1279 |#1| |#2|) $)) (-15 -2479 ((-1288 |#1| |#2|) $)) (-15 -1670 ((-3 (-664 |#1| |#2|) "failed") $)) (-15 -1353 ($ $ $ (-771))) (IF (|has| |#2| (-717 (-409 (-566)))) (PROGN (-15 -3571 ($ $ (-771))) (-15 -3676 ($ $ (-771)))) |%noBranch|))) (-850) (-172)) (T -1284)) +((-2479 (*1 *1 *2) (-12 (-5 *2 (-664 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)) (-5 *1 (-1284 *3 *4)))) (-2479 (*1 *2 *1) (-12 (-5 *2 (-1279 *3 *4)) (-5 *1 (-1284 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)))) (-2479 (*1 *2 *1) (-12 (-5 *2 (-1288 *3 *4)) (-5 *1 (-1284 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)))) (-1670 (*1 *2 *1) (|partial| -12 (-5 *2 (-664 *3 *4)) (-5 *1 (-1284 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)))) (-1353 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-1284 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)))) (-3571 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-1284 *3 *4)) (-4 *4 (-717 (-409 (-566)))) (-4 *3 (-850)) (-4 *4 (-172)))) (-3676 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-1284 *3 *4)) (-4 *4 (-717 (-409 (-566)))) (-4 *3 (-850)) (-4 *4 (-172))))) +(-13 (-1285 |#1| |#2|) (-384 |#2| (-893 |#1|)) (-10 -8 (-15 -2479 ($ (-664 |#1| |#2|))) (-15 -2479 ((-1279 |#1| |#2|) $)) (-15 -2479 ((-1288 |#1| |#2|) $)) (-15 -1670 ((-3 (-664 |#1| |#2|) "failed") $)) (-15 -1353 ($ $ $ (-771))) (IF (|has| |#2| (-717 (-409 (-566)))) (PROGN (-15 -3571 ($ $ (-771))) (-15 -3676 ($ $ (-771)))) |%noBranch|))) +((-2986 (((-112) $ $) 7)) (-2845 (((-112) $) 17)) (-1656 (((-644 |#1|) $) 47)) (-3475 (($ $ (-771)) 80)) (-3174 (((-3 $ "failed") $ $) 20)) (-1962 (($ $ $) 50 (|has| |#2| (-172))) (($ $ (-771)) 49 (|has| |#2| (-172)))) (-1811 (($) 18 T CONST)) (-3506 (($ $ |#1|) 61) (($ $ (-819 |#1|)) 60) (($ $ $) 59)) (-2980 (((-3 (-819 |#1|) "failed") $) 71)) (-1709 (((-819 |#1|) $) 72)) (-3757 (((-3 $ "failed") $) 37)) (-3853 (((-112) $) 52)) (-3056 (($ $) 51)) (-2264 (((-112) $) 35)) (-3989 (((-112) $) 57)) (-1863 (($ (-819 |#1|) |#2|) 58)) (-3768 (($ $) 56)) (-1528 (((-2 (|:| |k| (-819 |#1|)) (|:| |c| |#2|)) $) 67)) (-3110 (((-819 |#1|) $) 68)) (-2776 (((-819 |#1|) $) 82)) (-3080 (($ (-1 |#2| |#2|) $) 48)) (-4087 (($ $ |#1|) 64) (($ $ (-819 |#1|)) 63) (($ $ $) 62)) (-3151 (((-1157) $) 10)) (-4059 (((-1119) $) 11)) (-1630 (((-771) $) 81)) (-1878 (((-112) $) 54)) (-1573 ((|#2| $) 53)) (-2479 (((-862) $) 12) (($ (-566)) 33) (($ |#2|) 75) (($ (-819 |#1|)) 70) (($ |#1|) 55)) (-3103 ((|#2| $ (-819 |#1|)) 66) ((|#2| $ $) 65)) (-1558 (((-771)) 32 T CONST)) (-3900 (((-112) $ $) 9)) (-2446 (($) 19 T CONST)) (-2459 (($) 34 T CONST)) (-2952 (((-112) $ $) 6)) (-3065 (($ $) 23) (($ $ $) 22)) (-3052 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69))) +(((-1285 |#1| |#2|) (-140) (-850) (-1049)) (T -1285)) +((-2776 (*1 *2 *1) (-12 (-4 *1 (-1285 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)) (-5 *2 (-819 *3)))) (-1630 (*1 *2 *1) (-12 (-4 *1 (-1285 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)) (-5 *2 (-771)))) (-3475 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-1285 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049))))) +(-13 (-1281 |t#1| |t#2|) (-10 -8 (-15 -2776 ((-819 |t#1|) $)) (-15 -1630 ((-771) $)) (-15 -3475 ($ $ (-771))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-616 (-566)) . T) ((-616 #0=(-819 |#1|)) . T) ((-616 |#2|) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 |#2|) . T) ((-646 $) . T) ((-648 |#2|) . T) ((-648 $) . T) ((-640 |#2|) |has| |#2| (-172)) ((-717 |#2|) |has| |#2| (-172)) ((-726) . T) ((-1038 #0#) . T) ((-1051 |#2|) . T) ((-1056 |#2|) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1278 |#2|) . T) ((-1281 |#1| |#2|) . T)) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-1656 (((-644 (-1175)) $) NIL)) (-1955 (($ (-1279 (-1175) |#1|)) NIL)) (-3475 (($ $ (-771)) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-1962 (($ $ $) NIL (|has| |#1| (-172))) (($ $ (-771)) NIL (|has| |#1| (-172)))) (-1811 (($) NIL T CONST)) (-3506 (($ $ (-1175)) NIL) (($ $ (-819 (-1175))) NIL) (($ $ $) NIL)) (-2980 (((-3 (-819 (-1175)) "failed") $) NIL)) (-1709 (((-819 (-1175)) $) NIL)) (-3757 (((-3 $ "failed") $) NIL)) (-3853 (((-112) $) NIL)) (-3056 (($ $) NIL)) (-2264 (((-112) $) NIL)) (-3989 (((-112) $) NIL)) (-1863 (($ (-819 (-1175)) |#1|) NIL)) (-3768 (($ $) NIL)) (-1528 (((-2 (|:| |k| (-819 (-1175))) (|:| |c| |#1|)) $) NIL)) (-3110 (((-819 (-1175)) $) NIL)) (-2776 (((-819 (-1175)) $) NIL)) (-3080 (($ (-1 |#1| |#1|) $) NIL)) (-4087 (($ $ (-1175)) NIL) (($ $ (-819 (-1175))) NIL) (($ $ $) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-3507 (((-1279 (-1175) |#1|) $) NIL)) (-1630 (((-771) $) NIL)) (-1878 (((-112) $) NIL)) (-1573 ((|#1| $) NIL)) (-2479 (((-862) $) NIL) (($ (-566)) NIL) (($ |#1|) NIL) (($ (-819 (-1175))) NIL) (($ (-1175)) NIL)) (-3103 ((|#1| $ (-819 (-1175))) NIL) ((|#1| $ $) NIL)) (-1558 (((-771)) NIL T CONST)) (-3900 (((-112) $ $) NIL)) (-2446 (($) NIL T CONST)) (-2792 (((-644 (-2 (|:| |k| (-1175)) (|:| |c| $))) $) NIL)) (-2459 (($) NIL T CONST)) (-2952 (((-112) $ $) NIL)) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1175) $) NIL))) +(((-1286 |#1|) (-13 (-1285 (-1175) |#1|) (-10 -8 (-15 -3507 ((-1279 (-1175) |#1|) $)) (-15 -1955 ($ (-1279 (-1175) |#1|))) (-15 -2792 ((-644 (-2 (|:| |k| (-1175)) (|:| |c| $))) $)))) (-1049)) (T -1286)) +((-3507 (*1 *2 *1) (-12 (-5 *2 (-1279 (-1175) *3)) (-5 *1 (-1286 *3)) (-4 *3 (-1049)))) (-1955 (*1 *1 *2) (-12 (-5 *2 (-1279 (-1175) *3)) (-4 *3 (-1049)) (-5 *1 (-1286 *3)))) (-2792 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |k| (-1175)) (|:| |c| (-1286 *3))))) (-5 *1 (-1286 *3)) (-4 *3 (-1049))))) +(-13 (-1285 (-1175) |#1|) (-10 -8 (-15 -3507 ((-1279 (-1175) |#1|) $)) (-15 -1955 ($ (-1279 (-1175) |#1|))) (-15 -2792 ((-644 (-2 (|:| |k| (-1175)) (|:| |c| $))) $)))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-1811 (($) NIL T CONST)) (-2980 (((-3 |#2| "failed") $) NIL)) (-1709 ((|#2| $) NIL)) (-3565 (($ $) NIL)) (-3757 (((-3 $ "failed") $) 42)) (-3853 (((-112) $) 35)) (-3056 (($ $) 37)) (-2264 (((-112) $) NIL)) (-3486 (((-771) $) NIL)) (-1545 (((-644 $) $) NIL)) (-3989 (((-112) $) NIL)) (-1863 (($ |#2| |#1|) NIL)) (-3110 ((|#2| $) 24)) (-2776 ((|#2| $) 22)) (-3080 (($ (-1 |#1| |#1|) $) NIL)) (-4046 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-2608 ((|#2| $) NIL)) (-2622 ((|#1| $) NIL)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-1878 (((-112) $) 32)) (-1573 ((|#1| $) 33)) (-2479 (((-862) $) 65) (($ (-566)) 46) (($ |#1|) 41) (($ |#2|) NIL)) (-3866 (((-644 |#1|) $) NIL)) (-3025 ((|#1| $ |#2|) NIL)) (-3103 ((|#1| $ |#2|) 28)) (-1558 (((-771)) 14 T CONST)) (-3900 (((-112) $ $) NIL)) (-2446 (($) 29 T CONST)) (-2459 (($) 11 T CONST)) (-3585 (((-644 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-2952 (((-112) $ $) 30)) (-3077 (($ $ |#1|) 67 (|has| |#1| (-365)))) (-3065 (($ $) NIL) (($ $ $) NIL)) (-3052 (($ $ $) 50)) (** (($ $ (-921)) NIL) (($ $ (-771)) 52)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 51) (($ |#1| $) 47) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-3002 (((-771) $) 16))) +(((-1287 |#1| |#2|) (-13 (-1049) (-1278 |#1|) (-384 |#1| |#2|) (-616 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3002 ((-771) $)) (-15 -2776 (|#2| $)) (-15 -3110 (|#2| $)) (-15 -3565 ($ $)) (-15 -3103 (|#1| $ |#2|)) (-15 -1878 ((-112) $)) (-15 -1573 (|#1| $)) (-15 -3853 ((-112) $)) (-15 -3056 ($ $)) (-15 -3080 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-365)) (-15 -3077 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4410)) (-6 -4410) |%noBranch|) (IF (|has| |#1| (-6 -4414)) (-6 -4414) |%noBranch|) (IF (|has| |#1| (-6 -4415)) (-6 -4415) |%noBranch|))) (-1049) (-846)) (T -1287)) +((* (*1 *1 *1 *2) (-12 (-5 *1 (-1287 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-846)))) (-3565 (*1 *1 *1) (-12 (-5 *1 (-1287 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-846)))) (-3080 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1049)) (-5 *1 (-1287 *3 *4)) (-4 *4 (-846)))) (-3002 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-1287 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-846)))) (-2776 (*1 *2 *1) (-12 (-4 *2 (-846)) (-5 *1 (-1287 *3 *2)) (-4 *3 (-1049)))) (-3110 (*1 *2 *1) (-12 (-4 *2 (-846)) (-5 *1 (-1287 *3 *2)) (-4 *3 (-1049)))) (-3103 (*1 *2 *1 *3) (-12 (-4 *2 (-1049)) (-5 *1 (-1287 *2 *3)) (-4 *3 (-846)))) (-1878 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1287 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-846)))) (-1573 (*1 *2 *1) (-12 (-4 *2 (-1049)) (-5 *1 (-1287 *2 *3)) (-4 *3 (-846)))) (-3853 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1287 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-846)))) (-3056 (*1 *1 *1) (-12 (-5 *1 (-1287 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-846)))) (-3077 (*1 *1 *1 *2) (-12 (-5 *1 (-1287 *2 *3)) (-4 *2 (-365)) (-4 *2 (-1049)) (-4 *3 (-846))))) +(-13 (-1049) (-1278 |#1|) (-384 |#1| |#2|) (-616 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3002 ((-771) $)) (-15 -2776 (|#2| $)) (-15 -3110 (|#2| $)) (-15 -3565 ($ $)) (-15 -3103 (|#1| $ |#2|)) (-15 -1878 ((-112) $)) (-15 -1573 (|#1| $)) (-15 -3853 ((-112) $)) (-15 -3056 ($ $)) (-15 -3080 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-365)) (-15 -3077 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4410)) (-6 -4410) |%noBranch|) (IF (|has| |#1| (-6 -4414)) (-6 -4414) |%noBranch|) (IF (|has| |#1| (-6 -4415)) (-6 -4415) |%noBranch|))) +((-2986 (((-112) $ $) 27)) (-2845 (((-112) $) NIL)) (-1656 (((-644 |#1|) $) 132)) (-1955 (($ (-1279 |#1| |#2|)) 50)) (-3475 (($ $ (-771)) 38)) (-3174 (((-3 $ "failed") $ $) NIL)) (-1962 (($ $ $) 54 (|has| |#2| (-172))) (($ $ (-771)) 52 (|has| |#2| (-172)))) (-1811 (($) NIL T CONST)) (-3506 (($ $ |#1|) 114) (($ $ (-819 |#1|)) 115) (($ $ $) 26)) (-2980 (((-3 (-819 |#1|) "failed") $) NIL)) (-1709 (((-819 |#1|) $) NIL)) (-3757 (((-3 $ "failed") $) 122)) (-3853 (((-112) $) 117)) (-3056 (($ $) 118)) (-2264 (((-112) $) NIL)) (-3989 (((-112) $) NIL)) (-1863 (($ (-819 |#1|) |#2|) 20)) (-3768 (($ $) NIL)) (-1528 (((-2 (|:| |k| (-819 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3110 (((-819 |#1|) $) 123)) (-2776 (((-819 |#1|) $) 126)) (-3080 (($ (-1 |#2| |#2|) $) 131)) (-4087 (($ $ |#1|) 112) (($ $ (-819 |#1|)) 113) (($ $ $) 62)) (-3151 (((-1157) $) NIL)) (-4059 (((-1119) $) NIL)) (-3507 (((-1279 |#1| |#2|) $) 94)) (-1630 (((-771) $) 129)) (-1878 (((-112) $) 81)) (-1573 ((|#2| $) 32)) (-2479 (((-862) $) 73) (($ (-566)) 87) (($ |#2|) 85) (($ (-819 |#1|)) 18) (($ |#1|) 84)) (-3103 ((|#2| $ (-819 |#1|)) 116) ((|#2| $ $) 28)) (-1558 (((-771)) 120 T CONST)) (-3900 (((-112) $ $) NIL)) (-2446 (($) 15 T CONST)) (-2792 (((-644 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59)) (-2459 (($) 33 T CONST)) (-2952 (((-112) $ $) 14)) (-3065 (($ $) 98) (($ $ $) 101)) (-3052 (($ $ $) 61)) (** (($ $ (-921)) NIL) (($ $ (-771)) 55)) (* (($ (-921) $) NIL) (($ (-771) $) 53) (($ (-566) $) 106) (($ $ $) 22) (($ |#2| $) 19) (($ $ |#2|) 21) (($ |#1| $) 92))) +(((-1288 |#1| |#2|) (-13 (-1285 |#1| |#2|) (-10 -8 (-15 -3507 ((-1279 |#1| |#2|) $)) (-15 -1955 ($ (-1279 |#1| |#2|))) (-15 -2792 ((-644 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-850) (-1049)) (T -1288)) +((-3507 (*1 *2 *1) (-12 (-5 *2 (-1279 *3 *4)) (-5 *1 (-1288 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)))) (-1955 (*1 *1 *2) (-12 (-5 *2 (-1279 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)) (-5 *1 (-1288 *3 *4)))) (-2792 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |k| *3) (|:| |c| (-1288 *3 *4))))) (-5 *1 (-1288 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049))))) +(-13 (-1285 |#1| |#2|) (-10 -8 (-15 -3507 ((-1279 |#1| |#2|) $)) (-15 -1955 ($ (-1279 |#1| |#2|))) (-15 -2792 ((-644 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) +((-2481 (((-644 (-1155 |#1|)) (-1 (-644 (-1155 |#1|)) (-644 (-1155 |#1|))) (-566)) 20) (((-1155 |#1|) (-1 (-1155 |#1|) (-1155 |#1|))) 13))) +(((-1289 |#1|) (-10 -7 (-15 -2481 ((-1155 |#1|) (-1 (-1155 |#1|) (-1155 |#1|)))) (-15 -2481 ((-644 (-1155 |#1|)) (-1 (-644 (-1155 |#1|)) (-644 (-1155 |#1|))) (-566)))) (-1214)) (T -1289)) +((-2481 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-644 (-1155 *5)) (-644 (-1155 *5)))) (-5 *4 (-566)) (-5 *2 (-644 (-1155 *5))) (-5 *1 (-1289 *5)) (-4 *5 (-1214)))) (-2481 (*1 *2 *3) (-12 (-5 *3 (-1 (-1155 *4) (-1155 *4))) (-5 *2 (-1155 *4)) (-5 *1 (-1289 *4)) (-4 *4 (-1214))))) +(-10 -7 (-15 -2481 ((-1155 |#1|) (-1 (-1155 |#1|) (-1155 |#1|)))) (-15 -2481 ((-644 (-1155 |#1|)) (-1 (-644 (-1155 |#1|)) (-644 (-1155 |#1|))) (-566)))) +((-3528 (((-644 (-2 (|:| -4324 (-1171 |#1|)) (|:| -3747 (-644 (-952 |#1|))))) (-644 (-952 |#1|))) 174) (((-644 (-2 (|:| -4324 (-1171 |#1|)) (|:| -3747 (-644 (-952 |#1|))))) (-644 (-952 |#1|)) (-112)) 173) (((-644 (-2 (|:| -4324 (-1171 |#1|)) (|:| -3747 (-644 (-952 |#1|))))) (-644 (-952 |#1|)) (-112) (-112)) 172) (((-644 (-2 (|:| -4324 (-1171 |#1|)) (|:| -3747 (-644 (-952 |#1|))))) (-644 (-952 |#1|)) (-112) (-112) (-112)) 171) (((-644 (-2 (|:| -4324 (-1171 |#1|)) (|:| -3747 (-644 (-952 |#1|))))) (-1046 |#1| |#2|)) 156)) (-3576 (((-644 (-1046 |#1| |#2|)) (-644 (-952 |#1|))) 85) (((-644 (-1046 |#1| |#2|)) (-644 (-952 |#1|)) (-112)) 84) (((-644 (-1046 |#1| |#2|)) (-644 (-952 |#1|)) (-112) (-112)) 83)) (-3348 (((-644 (-1145 |#1| (-533 (-864 |#3|)) (-864 |#3|) (-780 |#1| (-864 |#3|)))) (-1046 |#1| |#2|)) 73)) (-3876 (((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|))) 140) (((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)) (-112)) 139) (((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)) (-112) (-112)) 138) (((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)) (-112) (-112) (-112)) 137) (((-644 (-644 (-1024 (-409 |#1|)))) (-1046 |#1| |#2|)) 132)) (-2616 (((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|))) 145) (((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)) (-112)) 144) (((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)) (-112) (-112)) 143) (((-644 (-644 (-1024 (-409 |#1|)))) (-1046 |#1| |#2|)) 142)) (-3136 (((-644 (-780 |#1| (-864 |#3|))) (-1145 |#1| (-533 (-864 |#3|)) (-864 |#3|) (-780 |#1| (-864 |#3|)))) 111) (((-1171 (-1024 (-409 |#1|))) (-1171 |#1|)) 102) (((-952 (-1024 (-409 |#1|))) (-780 |#1| (-864 |#3|))) 109) (((-952 (-1024 (-409 |#1|))) (-952 |#1|)) 107) (((-780 |#1| (-864 |#3|)) (-780 |#1| (-864 |#2|))) 33))) +(((-1290 |#1| |#2| |#3|) (-10 -7 (-15 -3576 ((-644 (-1046 |#1| |#2|)) (-644 (-952 |#1|)) (-112) (-112))) (-15 -3576 ((-644 (-1046 |#1| |#2|)) (-644 (-952 |#1|)) (-112))) (-15 -3576 ((-644 (-1046 |#1| |#2|)) (-644 (-952 |#1|)))) (-15 -3528 ((-644 (-2 (|:| -4324 (-1171 |#1|)) (|:| -3747 (-644 (-952 |#1|))))) (-1046 |#1| |#2|))) (-15 -3528 ((-644 (-2 (|:| -4324 (-1171 |#1|)) (|:| -3747 (-644 (-952 |#1|))))) (-644 (-952 |#1|)) (-112) (-112) (-112))) (-15 -3528 ((-644 (-2 (|:| -4324 (-1171 |#1|)) (|:| -3747 (-644 (-952 |#1|))))) (-644 (-952 |#1|)) (-112) (-112))) (-15 -3528 ((-644 (-2 (|:| -4324 (-1171 |#1|)) (|:| -3747 (-644 (-952 |#1|))))) (-644 (-952 |#1|)) (-112))) (-15 -3528 ((-644 (-2 (|:| -4324 (-1171 |#1|)) (|:| -3747 (-644 (-952 |#1|))))) (-644 (-952 |#1|)))) (-15 -3876 ((-644 (-644 (-1024 (-409 |#1|)))) (-1046 |#1| |#2|))) (-15 -3876 ((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)) (-112) (-112) (-112))) (-15 -3876 ((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)) (-112) (-112))) (-15 -3876 ((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)) (-112))) (-15 -3876 ((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)))) (-15 -2616 ((-644 (-644 (-1024 (-409 |#1|)))) (-1046 |#1| |#2|))) (-15 -2616 ((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)) (-112) (-112))) (-15 -2616 ((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)) (-112))) (-15 -2616 ((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)))) (-15 -3348 ((-644 (-1145 |#1| (-533 (-864 |#3|)) (-864 |#3|) (-780 |#1| (-864 |#3|)))) (-1046 |#1| |#2|))) (-15 -3136 ((-780 |#1| (-864 |#3|)) (-780 |#1| (-864 |#2|)))) (-15 -3136 ((-952 (-1024 (-409 |#1|))) (-952 |#1|))) (-15 -3136 ((-952 (-1024 (-409 |#1|))) (-780 |#1| (-864 |#3|)))) (-15 -3136 ((-1171 (-1024 (-409 |#1|))) (-1171 |#1|))) (-15 -3136 ((-644 (-780 |#1| (-864 |#3|))) (-1145 |#1| (-533 (-864 |#3|)) (-864 |#3|) (-780 |#1| (-864 |#3|)))))) (-13 (-848) (-308) (-147) (-1022)) (-644 (-1175)) (-644 (-1175))) (T -1290)) +((-3136 (*1 *2 *3) (-12 (-5 *3 (-1145 *4 (-533 (-864 *6)) (-864 *6) (-780 *4 (-864 *6)))) (-4 *4 (-13 (-848) (-308) (-147) (-1022))) (-14 *6 (-644 (-1175))) (-5 *2 (-644 (-780 *4 (-864 *6)))) (-5 *1 (-1290 *4 *5 *6)) (-14 *5 (-644 (-1175))))) (-3136 (*1 *2 *3) (-12 (-5 *3 (-1171 *4)) (-4 *4 (-13 (-848) (-308) (-147) (-1022))) (-5 *2 (-1171 (-1024 (-409 *4)))) (-5 *1 (-1290 *4 *5 *6)) (-14 *5 (-644 (-1175))) (-14 *6 (-644 (-1175))))) (-3136 (*1 *2 *3) (-12 (-5 *3 (-780 *4 (-864 *6))) (-4 *4 (-13 (-848) (-308) (-147) (-1022))) (-14 *6 (-644 (-1175))) (-5 *2 (-952 (-1024 (-409 *4)))) (-5 *1 (-1290 *4 *5 *6)) (-14 *5 (-644 (-1175))))) (-3136 (*1 *2 *3) (-12 (-5 *3 (-952 *4)) (-4 *4 (-13 (-848) (-308) (-147) (-1022))) (-5 *2 (-952 (-1024 (-409 *4)))) (-5 *1 (-1290 *4 *5 *6)) (-14 *5 (-644 (-1175))) (-14 *6 (-644 (-1175))))) (-3136 (*1 *2 *3) (-12 (-5 *3 (-780 *4 (-864 *5))) (-4 *4 (-13 (-848) (-308) (-147) (-1022))) (-14 *5 (-644 (-1175))) (-5 *2 (-780 *4 (-864 *6))) (-5 *1 (-1290 *4 *5 *6)) (-14 *6 (-644 (-1175))))) (-3348 (*1 *2 *3) (-12 (-5 *3 (-1046 *4 *5)) (-4 *4 (-13 (-848) (-308) (-147) (-1022))) (-14 *5 (-644 (-1175))) (-5 *2 (-644 (-1145 *4 (-533 (-864 *6)) (-864 *6) (-780 *4 (-864 *6))))) (-5 *1 (-1290 *4 *5 *6)) (-14 *6 (-644 (-1175))))) (-2616 (*1 *2 *3) (-12 (-5 *3 (-644 (-952 *4))) (-4 *4 (-13 (-848) (-308) (-147) (-1022))) (-5 *2 (-644 (-644 (-1024 (-409 *4))))) (-5 *1 (-1290 *4 *5 *6)) (-14 *5 (-644 (-1175))) (-14 *6 (-644 (-1175))))) (-2616 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-848) (-308) (-147) (-1022))) (-5 *2 (-644 (-644 (-1024 (-409 *5))))) (-5 *1 (-1290 *5 *6 *7)) (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175))))) (-2616 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-848) (-308) (-147) (-1022))) (-5 *2 (-644 (-644 (-1024 (-409 *5))))) (-5 *1 (-1290 *5 *6 *7)) (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175))))) (-2616 (*1 *2 *3) (-12 (-5 *3 (-1046 *4 *5)) (-4 *4 (-13 (-848) (-308) (-147) (-1022))) (-14 *5 (-644 (-1175))) (-5 *2 (-644 (-644 (-1024 (-409 *4))))) (-5 *1 (-1290 *4 *5 *6)) (-14 *6 (-644 (-1175))))) (-3876 (*1 *2 *3) (-12 (-5 *3 (-644 (-952 *4))) (-4 *4 (-13 (-848) (-308) (-147) (-1022))) (-5 *2 (-644 (-644 (-1024 (-409 *4))))) (-5 *1 (-1290 *4 *5 *6)) (-14 *5 (-644 (-1175))) (-14 *6 (-644 (-1175))))) (-3876 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-848) (-308) (-147) (-1022))) (-5 *2 (-644 (-644 (-1024 (-409 *5))))) (-5 *1 (-1290 *5 *6 *7)) (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175))))) (-3876 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-848) (-308) (-147) (-1022))) (-5 *2 (-644 (-644 (-1024 (-409 *5))))) (-5 *1 (-1290 *5 *6 *7)) (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175))))) (-3876 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-848) (-308) (-147) (-1022))) (-5 *2 (-644 (-644 (-1024 (-409 *5))))) (-5 *1 (-1290 *5 *6 *7)) (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175))))) (-3876 (*1 *2 *3) (-12 (-5 *3 (-1046 *4 *5)) (-4 *4 (-13 (-848) (-308) (-147) (-1022))) (-14 *5 (-644 (-1175))) (-5 *2 (-644 (-644 (-1024 (-409 *4))))) (-5 *1 (-1290 *4 *5 *6)) (-14 *6 (-644 (-1175))))) (-3528 (*1 *2 *3) (-12 (-4 *4 (-13 (-848) (-308) (-147) (-1022))) (-5 *2 (-644 (-2 (|:| -4324 (-1171 *4)) (|:| -3747 (-644 (-952 *4)))))) (-5 *1 (-1290 *4 *5 *6)) (-5 *3 (-644 (-952 *4))) (-14 *5 (-644 (-1175))) (-14 *6 (-644 (-1175))))) (-3528 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-848) (-308) (-147) (-1022))) (-5 *2 (-644 (-2 (|:| -4324 (-1171 *5)) (|:| -3747 (-644 (-952 *5)))))) (-5 *1 (-1290 *5 *6 *7)) (-5 *3 (-644 (-952 *5))) (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175))))) (-3528 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-848) (-308) (-147) (-1022))) (-5 *2 (-644 (-2 (|:| -4324 (-1171 *5)) (|:| -3747 (-644 (-952 *5)))))) (-5 *1 (-1290 *5 *6 *7)) (-5 *3 (-644 (-952 *5))) (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175))))) (-3528 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-848) (-308) (-147) (-1022))) (-5 *2 (-644 (-2 (|:| -4324 (-1171 *5)) (|:| -3747 (-644 (-952 *5)))))) (-5 *1 (-1290 *5 *6 *7)) (-5 *3 (-644 (-952 *5))) (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175))))) (-3528 (*1 *2 *3) (-12 (-5 *3 (-1046 *4 *5)) (-4 *4 (-13 (-848) (-308) (-147) (-1022))) (-14 *5 (-644 (-1175))) (-5 *2 (-644 (-2 (|:| -4324 (-1171 *4)) (|:| -3747 (-644 (-952 *4)))))) (-5 *1 (-1290 *4 *5 *6)) (-14 *6 (-644 (-1175))))) (-3576 (*1 *2 *3) (-12 (-5 *3 (-644 (-952 *4))) (-4 *4 (-13 (-848) (-308) (-147) (-1022))) (-5 *2 (-644 (-1046 *4 *5))) (-5 *1 (-1290 *4 *5 *6)) (-14 *5 (-644 (-1175))) (-14 *6 (-644 (-1175))))) (-3576 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-848) (-308) (-147) (-1022))) (-5 *2 (-644 (-1046 *5 *6))) (-5 *1 (-1290 *5 *6 *7)) (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175))))) (-3576 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-848) (-308) (-147) (-1022))) (-5 *2 (-644 (-1046 *5 *6))) (-5 *1 (-1290 *5 *6 *7)) (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175)))))) +(-10 -7 (-15 -3576 ((-644 (-1046 |#1| |#2|)) (-644 (-952 |#1|)) (-112) (-112))) (-15 -3576 ((-644 (-1046 |#1| |#2|)) (-644 (-952 |#1|)) (-112))) (-15 -3576 ((-644 (-1046 |#1| |#2|)) (-644 (-952 |#1|)))) (-15 -3528 ((-644 (-2 (|:| -4324 (-1171 |#1|)) (|:| -3747 (-644 (-952 |#1|))))) (-1046 |#1| |#2|))) (-15 -3528 ((-644 (-2 (|:| -4324 (-1171 |#1|)) (|:| -3747 (-644 (-952 |#1|))))) (-644 (-952 |#1|)) (-112) (-112) (-112))) (-15 -3528 ((-644 (-2 (|:| -4324 (-1171 |#1|)) (|:| -3747 (-644 (-952 |#1|))))) (-644 (-952 |#1|)) (-112) (-112))) (-15 -3528 ((-644 (-2 (|:| -4324 (-1171 |#1|)) (|:| -3747 (-644 (-952 |#1|))))) (-644 (-952 |#1|)) (-112))) (-15 -3528 ((-644 (-2 (|:| -4324 (-1171 |#1|)) (|:| -3747 (-644 (-952 |#1|))))) (-644 (-952 |#1|)))) (-15 -3876 ((-644 (-644 (-1024 (-409 |#1|)))) (-1046 |#1| |#2|))) (-15 -3876 ((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)) (-112) (-112) (-112))) (-15 -3876 ((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)) (-112) (-112))) (-15 -3876 ((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)) (-112))) (-15 -3876 ((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)))) (-15 -2616 ((-644 (-644 (-1024 (-409 |#1|)))) (-1046 |#1| |#2|))) (-15 -2616 ((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)) (-112) (-112))) (-15 -2616 ((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)) (-112))) (-15 -2616 ((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)))) (-15 -3348 ((-644 (-1145 |#1| (-533 (-864 |#3|)) (-864 |#3|) (-780 |#1| (-864 |#3|)))) (-1046 |#1| |#2|))) (-15 -3136 ((-780 |#1| (-864 |#3|)) (-780 |#1| (-864 |#2|)))) (-15 -3136 ((-952 (-1024 (-409 |#1|))) (-952 |#1|))) (-15 -3136 ((-952 (-1024 (-409 |#1|))) (-780 |#1| (-864 |#3|)))) (-15 -3136 ((-1171 (-1024 (-409 |#1|))) (-1171 |#1|))) (-15 -3136 ((-644 (-780 |#1| (-864 |#3|))) (-1145 |#1| (-533 (-864 |#3|)) (-864 |#3|) (-780 |#1| (-864 |#3|)))))) +((-1957 (((-3 (-1264 (-409 (-566))) "failed") (-1264 |#1|) |#1|) 21)) (-2728 (((-112) (-1264 |#1|)) 12)) (-3075 (((-3 (-1264 (-566)) "failed") (-1264 |#1|)) 16))) +(((-1291 |#1|) (-10 -7 (-15 -2728 ((-112) (-1264 |#1|))) (-15 -3075 ((-3 (-1264 (-566)) "failed") (-1264 |#1|))) (-15 -1957 ((-3 (-1264 (-409 (-566))) "failed") (-1264 |#1|) |#1|))) (-639 (-566))) (T -1291)) +((-1957 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1264 *4)) (-4 *4 (-639 (-566))) (-5 *2 (-1264 (-409 (-566)))) (-5 *1 (-1291 *4)))) (-3075 (*1 *2 *3) (|partial| -12 (-5 *3 (-1264 *4)) (-4 *4 (-639 (-566))) (-5 *2 (-1264 (-566))) (-5 *1 (-1291 *4)))) (-2728 (*1 *2 *3) (-12 (-5 *3 (-1264 *4)) (-4 *4 (-639 (-566))) (-5 *2 (-112)) (-5 *1 (-1291 *4))))) +(-10 -7 (-15 -2728 ((-112) (-1264 |#1|))) (-15 -3075 ((-3 (-1264 (-566)) "failed") (-1264 |#1|))) (-15 -1957 ((-3 (-1264 (-409 (-566))) "failed") (-1264 |#1|) |#1|))) +((-2986 (((-112) $ $) NIL)) (-2845 (((-112) $) 11)) (-3174 (((-3 $ "failed") $ $) NIL)) (-4049 (((-771)) 8)) (-1811 (($) NIL T CONST)) (-3757 (((-3 $ "failed") $) 58)) (-1415 (($) 49)) (-2264 (((-112) $) 57)) (-4278 (((-3 $ "failed") $) 40)) (-4051 (((-921) $) 15)) (-3151 (((-1157) $) NIL)) (-3968 (($) 32 T CONST)) (-2104 (($ (-921)) 50)) (-4059 (((-1119) $) NIL)) (-3136 (((-566) $) 13)) (-2479 (((-862) $) 27) (($ (-566)) 24)) (-1558 (((-771)) 9 T CONST)) (-3900 (((-112) $ $) 60)) (-2446 (($) 29 T CONST)) (-2459 (($) 31 T CONST)) (-2952 (((-112) $ $) 38)) (-3065 (($ $) 52) (($ $ $) 47)) (-3052 (($ $ $) 35)) (** (($ $ (-921)) NIL) (($ $ (-771)) 54)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 44) (($ $ $) 43))) +(((-1292 |#1|) (-13 (-172) (-370) (-614 (-566)) (-1150)) (-921)) (T -1292)) +NIL +(-13 (-172) (-370) (-614 (-566)) (-1150)) +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +((-3 3221553 3221558 3221563 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3221538 3221543 3221548 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3221523 3221528 3221533 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3221508 3221513 3221518 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1292 3220651 3221383 3221460 "ZMOD" 3221465 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1291 3219761 3219925 3220134 "ZLINDEP" 3220483 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1290 3209061 3210829 3212801 "ZDSOLVE" 3217891 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1289 3208307 3208448 3208637 "YSTREAM" 3208907 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1288 3206081 3207608 3207812 "XRPOLY" 3208150 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1287 3202634 3203952 3204527 "XPR" 3205553 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1286 3200355 3201965 3202169 "XPOLY" 3202465 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1285 3198008 3199376 3199431 "XPOLYC" 3199719 NIL XPOLYC (NIL T T) -9 NIL 3199832 NIL) (-1284 3194383 3196525 3196913 "XPBWPOLY" 3197666 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1283 3190078 3192373 3192415 "XF" 3193036 NIL XF (NIL T) -9 NIL 3193436 NIL) (-1282 3189699 3189787 3189956 "XF-" 3189961 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1281 3184895 3186184 3186239 "XFALG" 3188411 NIL XFALG (NIL T T) -9 NIL 3189200 NIL) (-1280 3184028 3184132 3184337 "XEXPPKG" 3184787 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1279 3182137 3183878 3183974 "XDPOLY" 3183979 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1278 3180944 3181544 3181587 "XALG" 3181592 NIL XALG (NIL T) -9 NIL 3181703 NIL) (-1277 3174386 3178921 3179415 "WUTSET" 3180536 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1276 3172642 3173438 3173761 "WP" 3174197 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1275 3172244 3172464 3172534 "WHILEAST" 3172594 T WHILEAST (NIL) -8 NIL NIL NIL) (-1274 3171716 3171961 3172055 "WHEREAST" 3172172 T WHEREAST (NIL) -8 NIL NIL NIL) (-1273 3170602 3170800 3171095 "WFFINTBS" 3171513 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1272 3168506 3168933 3169395 "WEIER" 3170174 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1271 3167552 3168002 3168044 "VSPACE" 3168180 NIL VSPACE (NIL T) -9 NIL 3168254 NIL) (-1270 3167390 3167417 3167508 "VSPACE-" 3167513 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1269 3167198 3167241 3167309 "VOID" 3167344 T VOID (NIL) -8 NIL NIL NIL) (-1268 3165334 3165693 3166099 "VIEW" 3166814 T VIEW (NIL) -7 NIL NIL NIL) (-1267 3161758 3162397 3163134 "VIEWDEF" 3164619 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1266 3151062 3153306 3155479 "VIEW3D" 3159607 T VIEW3D (NIL) -8 NIL NIL NIL) (-1265 3143313 3144973 3146552 "VIEW2D" 3149505 T VIEW2D (NIL) -8 NIL NIL NIL) (-1264 3138665 3143083 3143175 "VECTOR" 3143256 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1263 3137242 3137501 3137819 "VECTOR2" 3138395 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1262 3130716 3135023 3135066 "VECTCAT" 3136061 NIL VECTCAT (NIL T) -9 NIL 3136648 NIL) (-1261 3129730 3129984 3130374 "VECTCAT-" 3130379 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1260 3129184 3129381 3129501 "VARIABLE" 3129645 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1259 3129117 3129122 3129152 "UTYPE" 3129157 T UTYPE (NIL) -9 NIL NIL NIL) (-1258 3127947 3128101 3128363 "UTSODETL" 3128943 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1257 3125387 3125847 3126371 "UTSODE" 3127488 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1256 3117224 3123013 3123502 "UTS" 3124956 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1255 3108098 3113465 3113508 "UTSCAT" 3114620 NIL UTSCAT (NIL T) -9 NIL 3115378 NIL) (-1254 3105445 3106168 3107157 "UTSCAT-" 3107162 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1253 3105072 3105115 3105248 "UTS2" 3105396 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1252 3099298 3101910 3101953 "URAGG" 3104023 NIL URAGG (NIL T) -9 NIL 3104746 NIL) (-1251 3096237 3097100 3098223 "URAGG-" 3098228 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1250 3091946 3094872 3095337 "UPXSSING" 3095901 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1249 3084012 3091193 3091466 "UPXS" 3091731 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1248 3077085 3083916 3083988 "UPXSCONS" 3083993 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1247 3066830 3073623 3073685 "UPXSCCA" 3074259 NIL UPXSCCA (NIL T T) -9 NIL 3074492 NIL) (-1246 3066468 3066553 3066727 "UPXSCCA-" 3066732 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1245 3056065 3062631 3062674 "UPXSCAT" 3063322 NIL UPXSCAT (NIL T) -9 NIL 3063931 NIL) (-1244 3055495 3055574 3055753 "UPXS2" 3055980 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1243 3054149 3054402 3054753 "UPSQFREE" 3055238 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1242 3047570 3050627 3050682 "UPSCAT" 3051843 NIL UPSCAT (NIL T T) -9 NIL 3052617 NIL) (-1241 3046774 3046981 3047308 "UPSCAT-" 3047313 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1240 3032429 3040197 3040240 "UPOLYC" 3042341 NIL UPOLYC (NIL T) -9 NIL 3043562 NIL) (-1239 3023757 3026183 3029330 "UPOLYC-" 3029335 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1238 3023384 3023427 3023560 "UPOLYC2" 3023708 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1237 3015195 3023067 3023196 "UP" 3023303 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1236 3014534 3014641 3014805 "UPMP" 3015084 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1235 3014087 3014168 3014307 "UPDIVP" 3014447 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1234 3012655 3012904 3013220 "UPDECOMP" 3013836 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1233 3011890 3012002 3012187 "UPCDEN" 3012539 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1232 3011409 3011478 3011627 "UP2" 3011815 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1231 3009876 3010613 3010890 "UNISEG" 3011167 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1230 3009091 3009218 3009423 "UNISEG2" 3009719 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1229 3008151 3008331 3008557 "UNIFACT" 3008907 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1228 2992083 3007328 3007579 "ULS" 3007958 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1227 2980081 2991987 2992059 "ULSCONS" 2992064 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1226 2962100 2974085 2974147 "ULSCCAT" 2974785 NIL ULSCCAT (NIL T T) -9 NIL 2975073 NIL) (-1225 2961150 2961395 2961783 "ULSCCAT-" 2961788 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1224 2950524 2957004 2957047 "ULSCAT" 2957910 NIL ULSCAT (NIL T) -9 NIL 2958641 NIL) (-1223 2949954 2950033 2950212 "ULS2" 2950439 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1222 2949081 2949591 2949698 "UINT8" 2949809 T UINT8 (NIL) -8 NIL NIL 2949894) (-1221 2948207 2948717 2948824 "UINT64" 2948935 T UINT64 (NIL) -8 NIL NIL 2949020) (-1220 2947333 2947843 2947950 "UINT32" 2948061 T UINT32 (NIL) -8 NIL NIL 2948146) (-1219 2946459 2946969 2947076 "UINT16" 2947187 T UINT16 (NIL) -8 NIL NIL 2947272) (-1218 2944762 2945719 2945749 "UFD" 2945961 T UFD (NIL) -9 NIL 2946075 NIL) (-1217 2944556 2944602 2944697 "UFD-" 2944702 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1216 2943638 2943821 2944037 "UDVO" 2944362 T UDVO (NIL) -7 NIL NIL NIL) (-1215 2941454 2941863 2942334 "UDPO" 2943202 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1214 2941387 2941392 2941422 "TYPE" 2941427 T TYPE (NIL) -9 NIL NIL NIL) (-1213 2941147 2941342 2941373 "TYPEAST" 2941378 T TYPEAST (NIL) -8 NIL NIL NIL) (-1212 2940118 2940320 2940560 "TWOFACT" 2940941 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1211 2939141 2939527 2939762 "TUPLE" 2939918 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1210 2936832 2937351 2937890 "TUBETOOL" 2938624 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1209 2935681 2935886 2936127 "TUBE" 2936625 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1208 2930410 2934653 2934936 "TS" 2935433 NIL TS (NIL T) -8 NIL NIL NIL) (-1207 2919050 2923169 2923266 "TSETCAT" 2928535 NIL TSETCAT (NIL T T T T) -9 NIL 2930066 NIL) (-1206 2913782 2915382 2917273 "TSETCAT-" 2917278 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1205 2908421 2909268 2910197 "TRMANIP" 2912918 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1204 2907862 2907925 2908088 "TRIMAT" 2908353 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1203 2905728 2905965 2906322 "TRIGMNIP" 2907611 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1202 2905248 2905361 2905391 "TRIGCAT" 2905604 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1201 2904917 2904996 2905137 "TRIGCAT-" 2905142 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1200 2901762 2903775 2904056 "TREE" 2904671 NIL TREE (NIL T) -8 NIL NIL NIL) (-1199 2901036 2901564 2901594 "TRANFUN" 2901629 T TRANFUN (NIL) -9 NIL 2901695 NIL) (-1198 2900315 2900506 2900786 "TRANFUN-" 2900791 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1197 2900119 2900151 2900212 "TOPSP" 2900276 T TOPSP (NIL) -7 NIL NIL NIL) (-1196 2899467 2899582 2899736 "TOOLSIGN" 2900000 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1195 2898101 2898644 2898883 "TEXTFILE" 2899250 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1194 2896013 2896554 2896983 "TEX" 2897694 T TEX (NIL) -8 NIL NIL NIL) (-1193 2895794 2895825 2895897 "TEX1" 2895976 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1192 2895442 2895505 2895595 "TEMUTL" 2895726 T TEMUTL (NIL) -7 NIL NIL NIL) (-1191 2893596 2893876 2894201 "TBCMPPK" 2895165 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1190 2885373 2891756 2891812 "TBAGG" 2892212 NIL TBAGG (NIL T T) -9 NIL 2892423 NIL) (-1189 2880443 2881931 2883685 "TBAGG-" 2883690 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1188 2879827 2879934 2880079 "TANEXP" 2880332 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1187 2873217 2879684 2879777 "TABLE" 2879782 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1186 2872629 2872728 2872866 "TABLEAU" 2873114 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1185 2867237 2868457 2869705 "TABLBUMP" 2871415 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1184 2866459 2866606 2866787 "SYSTEM" 2867078 T SYSTEM (NIL) -8 NIL NIL NIL) (-1183 2862918 2863617 2864400 "SYSSOLP" 2865710 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1182 2861962 2862467 2862586 "SYSNNI" 2862772 NIL SYSNNI (NIL NIL) -8 NIL NIL 2862857) (-1181 2861269 2861728 2861807 "SYSINT" 2861867 NIL SYSINT (NIL NIL) -8 NIL NIL 2861912) (-1180 2857601 2858547 2859257 "SYNTAX" 2860581 T SYNTAX (NIL) -8 NIL NIL NIL) (-1179 2854759 2855361 2855993 "SYMTAB" 2856991 T SYMTAB (NIL) -8 NIL NIL NIL) (-1178 2850008 2850910 2851893 "SYMS" 2853798 T SYMS (NIL) -8 NIL NIL NIL) (-1177 2847243 2849466 2849696 "SYMPOLY" 2849813 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1176 2846760 2846835 2846958 "SYMFUNC" 2847155 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1175 2842779 2844072 2844885 "SYMBOL" 2845969 T SYMBOL (NIL) -8 NIL NIL NIL) (-1174 2836318 2838007 2839727 "SWITCH" 2841081 T SWITCH (NIL) -8 NIL NIL NIL) (-1173 2829552 2835139 2835442 "SUTS" 2836073 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1172 2821618 2828799 2829072 "SUPXS" 2829337 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1171 2813377 2821236 2821362 "SUP" 2821527 NIL SUP (NIL T) -8 NIL NIL NIL) (-1170 2812536 2812663 2812880 "SUPFRACF" 2813245 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1169 2812157 2812216 2812329 "SUP2" 2812471 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1168 2810605 2810879 2811235 "SUMRF" 2811856 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1167 2809940 2810006 2810198 "SUMFS" 2810526 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1166 2793907 2809117 2809368 "SULS" 2809747 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1165 2793509 2793729 2793799 "SUCHTAST" 2793859 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1164 2792804 2793034 2793174 "SUCH" 2793417 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1163 2786670 2787710 2788669 "SUBSPACE" 2791892 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1162 2786100 2786190 2786354 "SUBRESP" 2786558 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1161 2779465 2780765 2782076 "STTF" 2784836 NIL STTF (NIL T) -7 NIL NIL NIL) (-1160 2773638 2774758 2775905 "STTFNC" 2778365 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1159 2764948 2766820 2768614 "STTAYLOR" 2771879 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1158 2758078 2764812 2764895 "STRTBL" 2764900 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1157 2753442 2758033 2758064 "STRING" 2758069 T STRING (NIL) -8 NIL NIL NIL) (-1156 2748303 2752815 2752845 "STRICAT" 2752904 T STRICAT (NIL) -9 NIL 2752966 NIL) (-1155 2741056 2745922 2746533 "STREAM" 2747727 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1154 2740566 2740643 2740787 "STREAM3" 2740973 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1153 2739548 2739731 2739966 "STREAM2" 2740379 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1152 2739236 2739288 2739381 "STREAM1" 2739490 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1151 2738252 2738433 2738664 "STINPROD" 2739052 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1150 2737804 2738014 2738044 "STEP" 2738124 T STEP (NIL) -9 NIL 2738202 NIL) (-1149 2731236 2737703 2737780 "STBL" 2737785 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1148 2726362 2730457 2730500 "STAGG" 2730653 NIL STAGG (NIL T) -9 NIL 2730742 NIL) (-1147 2724064 2724666 2725538 "STAGG-" 2725543 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1146 2722211 2723834 2723926 "STACK" 2724007 NIL STACK (NIL T) -8 NIL NIL NIL) (-1145 2714906 2720352 2720808 "SREGSET" 2721841 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1144 2707331 2708700 2710213 "SRDCMPK" 2713512 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1143 2700248 2704771 2704801 "SRAGG" 2706104 T SRAGG (NIL) -9 NIL 2706712 NIL) (-1142 2699265 2699520 2699899 "SRAGG-" 2699904 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1141 2693725 2698212 2698633 "SQMATRIX" 2698891 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1140 2687410 2690443 2691170 "SPLTREE" 2693070 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1139 2683373 2684066 2684712 "SPLNODE" 2686836 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1138 2682420 2682653 2682683 "SPFCAT" 2683127 T SPFCAT (NIL) -9 NIL NIL NIL) (-1137 2681157 2681367 2681631 "SPECOUT" 2682178 T SPECOUT (NIL) -7 NIL NIL NIL) (-1136 2672783 2674553 2674583 "SPADXPT" 2678975 T SPADXPT (NIL) -9 NIL 2681009 NIL) (-1135 2672544 2672584 2672653 "SPADPRSR" 2672736 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1134 2670699 2672499 2672530 "SPADAST" 2672535 T SPADAST (NIL) -8 NIL NIL NIL) (-1133 2662644 2664417 2664460 "SPACEC" 2668833 NIL SPACEC (NIL T) -9 NIL 2670649 NIL) (-1132 2660774 2662576 2662625 "SPACE3" 2662630 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1131 2659526 2659697 2659988 "SORTPAK" 2660579 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1130 2657618 2657921 2658333 "SOLVETRA" 2659190 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1129 2656668 2656890 2657151 "SOLVESER" 2657391 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1128 2651972 2652860 2653855 "SOLVERAD" 2655720 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1127 2647787 2648396 2649125 "SOLVEFOR" 2651339 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1126 2642057 2647136 2647233 "SNTSCAT" 2647238 NIL SNTSCAT (NIL T T T T) -9 NIL 2647308 NIL) (-1125 2636163 2640380 2640771 "SMTS" 2641747 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1124 2630847 2636051 2636128 "SMP" 2636133 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1123 2629006 2629307 2629705 "SMITH" 2630544 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1122 2621719 2625915 2626018 "SMATCAT" 2627369 NIL SMATCAT (NIL NIL T T T) -9 NIL 2627919 NIL) (-1121 2618659 2619482 2620660 "SMATCAT-" 2620665 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1120 2616325 2617895 2617938 "SKAGG" 2618199 NIL SKAGG (NIL T) -9 NIL 2618334 NIL) (-1119 2612636 2615741 2615936 "SINT" 2616123 T SINT (NIL) -8 NIL NIL 2616296) (-1118 2612408 2612446 2612512 "SIMPAN" 2612592 T SIMPAN (NIL) -7 NIL NIL NIL) (-1117 2611687 2611943 2612083 "SIG" 2612290 T SIG (NIL) -8 NIL NIL NIL) (-1116 2610525 2610746 2611021 "SIGNRF" 2611446 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1115 2609358 2609509 2609793 "SIGNEF" 2610354 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1114 2608664 2608941 2609065 "SIGAST" 2609256 T SIGAST (NIL) -8 NIL NIL NIL) (-1113 2606353 2606808 2607314 "SHP" 2608205 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1112 2600205 2606254 2606330 "SHDP" 2606335 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1111 2599778 2599970 2600000 "SGROUP" 2600093 T SGROUP (NIL) -9 NIL 2600155 NIL) (-1110 2599636 2599662 2599735 "SGROUP-" 2599740 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1109 2596471 2597169 2597892 "SGCF" 2598935 T SGCF (NIL) -7 NIL NIL NIL) (-1108 2590839 2595918 2596015 "SFRTCAT" 2596020 NIL SFRTCAT (NIL T T T T) -9 NIL 2596059 NIL) (-1107 2584260 2585278 2586414 "SFRGCD" 2589822 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1106 2577386 2578459 2579645 "SFQCMPK" 2583193 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1105 2577006 2577095 2577206 "SFORT" 2577327 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1104 2576124 2576846 2576967 "SEXOF" 2576972 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1103 2575231 2576005 2576073 "SEX" 2576078 T SEX (NIL) -8 NIL NIL NIL) (-1102 2570744 2571459 2571554 "SEXCAT" 2574491 NIL SEXCAT (NIL T T T T T) -9 NIL 2575069 NIL) (-1101 2567897 2570678 2570726 "SET" 2570731 NIL SET (NIL T) -8 NIL NIL NIL) (-1100 2566121 2566610 2566915 "SETMN" 2567638 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1099 2565617 2565769 2565799 "SETCAT" 2565975 T SETCAT (NIL) -9 NIL 2566085 NIL) (-1098 2565309 2565387 2565517 "SETCAT-" 2565522 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1097 2561670 2563770 2563813 "SETAGG" 2564683 NIL SETAGG (NIL T) -9 NIL 2565023 NIL) (-1096 2561128 2561244 2561481 "SETAGG-" 2561486 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1095 2560571 2560824 2560925 "SEQAST" 2561049 T SEQAST (NIL) -8 NIL NIL NIL) (-1094 2559770 2560064 2560125 "SEGXCAT" 2560411 NIL SEGXCAT (NIL T T) -9 NIL 2560531 NIL) (-1093 2558776 2559436 2559618 "SEG" 2559623 NIL SEG (NIL T) -8 NIL NIL NIL) (-1092 2557755 2557969 2558012 "SEGCAT" 2558534 NIL SEGCAT (NIL T) -9 NIL 2558755 NIL) (-1091 2556756 2557134 2557334 "SEGBIND" 2557590 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1090 2556377 2556436 2556549 "SEGBIND2" 2556691 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1089 2555950 2556178 2556255 "SEGAST" 2556322 T SEGAST (NIL) -8 NIL NIL NIL) (-1088 2555169 2555295 2555499 "SEG2" 2555794 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1087 2554579 2555104 2555151 "SDVAR" 2555156 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1086 2547106 2554349 2554479 "SDPOL" 2554484 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1085 2545699 2545965 2546284 "SCPKG" 2546821 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1084 2544863 2545035 2545227 "SCOPE" 2545529 T SCOPE (NIL) -8 NIL NIL NIL) (-1083 2544083 2544217 2544396 "SCACHE" 2544718 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1082 2543729 2543915 2543945 "SASTCAT" 2543950 T SASTCAT (NIL) -9 NIL 2543963 NIL) (-1081 2543216 2543564 2543640 "SAOS" 2543675 T SAOS (NIL) -8 NIL NIL NIL) (-1080 2542781 2542816 2542989 "SAERFFC" 2543175 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1079 2536720 2542678 2542758 "SAE" 2542763 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1078 2536313 2536348 2536507 "SAEFACT" 2536679 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1077 2534634 2534948 2535349 "RURPK" 2535979 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1076 2533271 2533577 2533882 "RULESET" 2534468 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1075 2530494 2531024 2531482 "RULE" 2532952 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1074 2530106 2530288 2530371 "RULECOLD" 2530446 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1073 2529896 2529924 2529995 "RTVALUE" 2530057 T RTVALUE (NIL) -8 NIL NIL NIL) (-1072 2529367 2529613 2529707 "RSTRCAST" 2529824 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1071 2524215 2525010 2525930 "RSETGCD" 2528566 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1070 2513445 2518524 2518621 "RSETCAT" 2522740 NIL RSETCAT (NIL T T T T) -9 NIL 2523837 NIL) (-1069 2511372 2511911 2512735 "RSETCAT-" 2512740 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1068 2503757 2505134 2506654 "RSDCMPK" 2509971 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1067 2501736 2502203 2502277 "RRCC" 2503363 NIL RRCC (NIL T T) -9 NIL 2503707 NIL) (-1066 2501087 2501261 2501540 "RRCC-" 2501545 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1065 2500530 2500783 2500884 "RPTAST" 2501008 T RPTAST (NIL) -8 NIL NIL NIL) (-1064 2474381 2483738 2483805 "RPOLCAT" 2494469 NIL RPOLCAT (NIL T T T) -9 NIL 2497628 NIL) (-1063 2465879 2468219 2471341 "RPOLCAT-" 2471346 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1062 2456810 2464090 2464572 "ROUTINE" 2465419 T ROUTINE (NIL) -8 NIL NIL NIL) (-1061 2453608 2456436 2456576 "ROMAN" 2456692 T ROMAN (NIL) -8 NIL NIL NIL) (-1060 2451852 2452468 2452728 "ROIRC" 2453413 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1059 2448084 2450368 2450398 "RNS" 2450702 T RNS (NIL) -9 NIL 2450976 NIL) (-1058 2446593 2446976 2447510 "RNS-" 2447585 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1057 2445996 2446404 2446434 "RNG" 2446439 T RNG (NIL) -9 NIL 2446460 NIL) (-1056 2445395 2445783 2445826 "RMODULE" 2445831 NIL RMODULE (NIL T) -9 NIL 2445858 NIL) (-1055 2444231 2444325 2444661 "RMCAT2" 2445296 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1054 2441081 2443577 2443874 "RMATRIX" 2443993 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1053 2433908 2436168 2436283 "RMATCAT" 2439642 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2440624 NIL) (-1052 2433283 2433430 2433737 "RMATCAT-" 2433742 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1051 2432684 2432905 2432948 "RLINSET" 2433142 NIL RLINSET (NIL T) -9 NIL 2433233 NIL) (-1050 2432251 2432326 2432454 "RINTERP" 2432603 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1049 2431309 2431863 2431893 "RING" 2431949 T RING (NIL) -9 NIL 2432041 NIL) (-1048 2431101 2431145 2431242 "RING-" 2431247 NIL RING- (NIL T) -8 NIL NIL NIL) (-1047 2429942 2430179 2430437 "RIDIST" 2430865 T RIDIST (NIL) -7 NIL NIL NIL) (-1046 2421231 2429410 2429616 "RGCHAIN" 2429790 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1045 2420581 2420987 2421028 "RGBCSPC" 2421086 NIL RGBCSPC (NIL T) -9 NIL 2421138 NIL) (-1044 2419739 2420120 2420161 "RGBCMDL" 2420393 NIL RGBCMDL (NIL T) -9 NIL 2420507 NIL) (-1043 2416733 2417347 2418017 "RF" 2419103 NIL RF (NIL T) -7 NIL NIL NIL) (-1042 2416379 2416442 2416545 "RFFACTOR" 2416664 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1041 2416104 2416139 2416236 "RFFACT" 2416338 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1040 2414221 2414585 2414967 "RFDIST" 2415744 T RFDIST (NIL) -7 NIL NIL NIL) (-1039 2413674 2413766 2413929 "RETSOL" 2414123 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1038 2413310 2413390 2413433 "RETRACT" 2413566 NIL RETRACT (NIL T) -9 NIL 2413653 NIL) (-1037 2413159 2413184 2413271 "RETRACT-" 2413276 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1036 2412761 2412981 2413051 "RETAST" 2413111 T RETAST (NIL) -8 NIL NIL NIL) (-1035 2405499 2412414 2412541 "RESULT" 2412656 T RESULT (NIL) -8 NIL NIL NIL) (-1034 2404090 2404768 2404967 "RESRING" 2405402 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1033 2403726 2403775 2403873 "RESLATC" 2404027 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1032 2403431 2403466 2403573 "REPSQ" 2403685 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1031 2400853 2401433 2402035 "REP" 2402851 T REP (NIL) -7 NIL NIL NIL) (-1030 2400550 2400585 2400696 "REPDB" 2400812 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1029 2394450 2395839 2397062 "REP2" 2399362 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1028 2390827 2391508 2392316 "REP1" 2393677 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1027 2383523 2388968 2389424 "REGSET" 2390457 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1026 2382288 2382671 2382921 "REF" 2383308 NIL REF (NIL T) -8 NIL NIL NIL) (-1025 2381665 2381768 2381935 "REDORDER" 2382172 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1024 2377633 2380878 2381105 "RECLOS" 2381493 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1023 2376685 2376866 2377081 "REALSOLV" 2377440 T REALSOLV (NIL) -7 NIL NIL NIL) (-1022 2376531 2376572 2376602 "REAL" 2376607 T REAL (NIL) -9 NIL 2376642 NIL) (-1021 2373014 2373816 2374700 "REAL0Q" 2375696 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1020 2368615 2369603 2370664 "REAL0" 2371995 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1019 2368086 2368332 2368426 "RDUCEAST" 2368543 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1018 2367491 2367563 2367770 "RDIV" 2368008 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1017 2366559 2366733 2366946 "RDIST" 2367313 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1016 2365156 2365443 2365815 "RDETRS" 2366267 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1015 2362968 2363422 2363960 "RDETR" 2364698 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1014 2361593 2361871 2362268 "RDEEFS" 2362684 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1013 2360102 2360408 2360833 "RDEEF" 2361281 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1012 2354163 2357083 2357113 "RCFIELD" 2358408 T RCFIELD (NIL) -9 NIL 2359139 NIL) (-1011 2352227 2352731 2353427 "RCFIELD-" 2353502 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1010 2348496 2350328 2350371 "RCAGG" 2351455 NIL RCAGG (NIL T) -9 NIL 2351920 NIL) (-1009 2348124 2348218 2348381 "RCAGG-" 2348386 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1008 2347459 2347571 2347736 "RATRET" 2348008 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1007 2347012 2347079 2347200 "RATFACT" 2347387 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1006 2346320 2346440 2346592 "RANDSRC" 2346882 T RANDSRC (NIL) -7 NIL NIL NIL) (-1005 2346054 2346098 2346171 "RADUTIL" 2346269 T RADUTIL (NIL) -7 NIL NIL NIL) (-1004 2339170 2344887 2345197 "RADIX" 2345778 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-1003 2330789 2339012 2339142 "RADFF" 2339147 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-1002 2330436 2330511 2330541 "RADCAT" 2330701 T RADCAT (NIL) -9 NIL NIL NIL) (-1001 2330218 2330266 2330366 "RADCAT-" 2330371 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-1000 2328318 2329990 2330081 "QUEUE" 2330162 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-999 2324859 2328255 2328300 "QUAT" 2328305 NIL QUAT (NIL T) -8 NIL NIL NIL) (-998 2324497 2324540 2324667 "QUATCT2" 2324810 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-997 2317959 2321304 2321344 "QUATCAT" 2322124 NIL QUATCAT (NIL T) -9 NIL 2322890 NIL) (-996 2314103 2315140 2316527 "QUATCAT-" 2316621 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-995 2311576 2313187 2313228 "QUAGG" 2313603 NIL QUAGG (NIL T) -9 NIL 2313778 NIL) (-994 2311181 2311401 2311469 "QQUTAST" 2311528 T QQUTAST (NIL) -8 NIL NIL NIL) (-993 2310079 2310579 2310751 "QFORM" 2311053 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-992 2301084 2306323 2306363 "QFCAT" 2307021 NIL QFCAT (NIL T) -9 NIL 2308022 NIL) (-991 2296656 2297857 2299448 "QFCAT-" 2299542 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-990 2296294 2296337 2296464 "QFCAT2" 2296607 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-989 2295754 2295864 2295994 "QEQUAT" 2296184 T QEQUAT (NIL) -8 NIL NIL NIL) (-988 2288900 2289973 2291157 "QCMPACK" 2294687 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-987 2286449 2286897 2287325 "QALGSET" 2288555 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-986 2285694 2285868 2286100 "QALGSET2" 2286269 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-985 2284384 2284608 2284925 "PWFFINTB" 2285467 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-984 2282566 2282734 2283088 "PUSHVAR" 2284198 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-983 2278484 2279538 2279579 "PTRANFN" 2281463 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-982 2276886 2277177 2277499 "PTPACK" 2278195 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-981 2276518 2276575 2276684 "PTFUNC2" 2276823 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-980 2270995 2275390 2275431 "PTCAT" 2275727 NIL PTCAT (NIL T) -9 NIL 2275880 NIL) (-979 2270653 2270688 2270812 "PSQFR" 2270954 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-978 2269248 2269546 2269880 "PSEUDLIN" 2270351 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-977 2256011 2258382 2260706 "PSETPK" 2267008 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-976 2249029 2251769 2251865 "PSETCAT" 2254886 NIL PSETCAT (NIL T T T T) -9 NIL 2255700 NIL) (-975 2246865 2247499 2248320 "PSETCAT-" 2248325 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-974 2246214 2246379 2246407 "PSCURVE" 2246675 T PSCURVE (NIL) -9 NIL 2246842 NIL) (-973 2242212 2243728 2243793 "PSCAT" 2244637 NIL PSCAT (NIL T T T) -9 NIL 2244877 NIL) (-972 2241275 2241491 2241891 "PSCAT-" 2241896 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-971 2239980 2240640 2240845 "PRTITION" 2241090 T PRTITION (NIL) -8 NIL NIL NIL) (-970 2239455 2239701 2239793 "PRTDAST" 2239908 T PRTDAST (NIL) -8 NIL NIL NIL) (-969 2228544 2230759 2232947 "PRS" 2237317 NIL PRS (NIL T T) -7 NIL NIL NIL) (-968 2226355 2227894 2227934 "PRQAGG" 2228117 NIL PRQAGG (NIL T) -9 NIL 2228219 NIL) (-967 2225559 2225864 2225892 "PROPLOG" 2226139 T PROPLOG (NIL) -9 NIL 2226305 NIL) (-966 2223989 2224510 2224767 "PROPFRML" 2225335 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-965 2223458 2223565 2223693 "PROPERTY" 2223881 T PROPERTY (NIL) -8 NIL NIL NIL) (-964 2217516 2221624 2222444 "PRODUCT" 2222684 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-963 2214794 2216974 2217208 "PR" 2217327 NIL PR (NIL T T) -8 NIL NIL NIL) (-962 2214590 2214622 2214681 "PRINT" 2214755 T PRINT (NIL) -7 NIL NIL NIL) (-961 2213930 2214047 2214199 "PRIMES" 2214470 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-960 2211995 2212396 2212862 "PRIMELT" 2213509 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-959 2211724 2211773 2211801 "PRIMCAT" 2211925 T PRIMCAT (NIL) -9 NIL NIL NIL) (-958 2207839 2211662 2211707 "PRIMARR" 2211712 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-957 2206846 2207024 2207252 "PRIMARR2" 2207657 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-956 2206489 2206545 2206656 "PREASSOC" 2206784 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-955 2205964 2206097 2206125 "PPCURVE" 2206330 T PPCURVE (NIL) -9 NIL 2206466 NIL) (-954 2205559 2205759 2205842 "PORTNUM" 2205901 T PORTNUM (NIL) -8 NIL NIL NIL) (-953 2202918 2203317 2203909 "POLYROOT" 2205140 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-952 2197100 2202522 2202682 "POLY" 2202791 NIL POLY (NIL T) -8 NIL NIL NIL) (-951 2196483 2196541 2196775 "POLYLIFT" 2197036 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-950 2192758 2193207 2193836 "POLYCATQ" 2196028 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-949 2179470 2184598 2184663 "POLYCAT" 2188177 NIL POLYCAT (NIL T T T) -9 NIL 2190055 NIL) (-948 2172919 2174781 2177165 "POLYCAT-" 2177170 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-947 2172506 2172574 2172694 "POLY2UP" 2172845 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-946 2172138 2172195 2172304 "POLY2" 2172443 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-945 2170823 2171062 2171338 "POLUTIL" 2171912 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-944 2169178 2169455 2169786 "POLTOPOL" 2170545 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-943 2164643 2169114 2169160 "POINT" 2169165 NIL POINT (NIL T) -8 NIL NIL NIL) (-942 2162830 2163187 2163562 "PNTHEORY" 2164288 T PNTHEORY (NIL) -7 NIL NIL NIL) (-941 2161288 2161585 2161984 "PMTOOLS" 2162528 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-940 2160881 2160959 2161076 "PMSYM" 2161204 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-939 2160391 2160460 2160634 "PMQFCAT" 2160806 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-938 2159746 2159856 2160012 "PMPRED" 2160268 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-937 2159139 2159225 2159387 "PMPREDFS" 2159647 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-936 2157803 2158011 2158389 "PMPLCAT" 2158901 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-935 2157335 2157414 2157566 "PMLSAGG" 2157718 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-934 2156808 2156884 2157066 "PMKERNEL" 2157253 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-933 2156425 2156500 2156613 "PMINS" 2156727 NIL PMINS (NIL T) -7 NIL NIL NIL) (-932 2155867 2155936 2156145 "PMFS" 2156350 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-931 2155095 2155213 2155418 "PMDOWN" 2155744 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-930 2154262 2154420 2154601 "PMASS" 2154934 T PMASS (NIL) -7 NIL NIL NIL) (-929 2153535 2153645 2153808 "PMASSFS" 2154149 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-928 2153190 2153258 2153352 "PLOTTOOL" 2153461 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-927 2147797 2149001 2150149 "PLOT" 2152062 T PLOT (NIL) -8 NIL NIL NIL) (-926 2143601 2144645 2145566 "PLOT3D" 2146896 T PLOT3D (NIL) -8 NIL NIL NIL) (-925 2142513 2142690 2142925 "PLOT1" 2143405 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-924 2117902 2122579 2127430 "PLEQN" 2137779 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-923 2117220 2117342 2117522 "PINTERP" 2117767 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-922 2116913 2116960 2117063 "PINTERPA" 2117167 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-921 2116134 2116682 2116769 "PI" 2116809 T PI (NIL) -8 NIL NIL 2116876) (-920 2114431 2115406 2115434 "PID" 2115616 T PID (NIL) -9 NIL 2115750 NIL) (-919 2114182 2114219 2114294 "PICOERCE" 2114388 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-918 2113502 2113641 2113817 "PGROEB" 2114038 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-917 2109089 2109903 2110808 "PGE" 2112617 T PGE (NIL) -7 NIL NIL NIL) (-916 2107212 2107459 2107825 "PGCD" 2108806 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-915 2106550 2106653 2106814 "PFRPAC" 2107096 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-914 2103190 2105098 2105451 "PFR" 2106229 NIL PFR (NIL T) -8 NIL NIL NIL) (-913 2101579 2101823 2102148 "PFOTOOLS" 2102937 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-912 2100112 2100351 2100702 "PFOQ" 2101336 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-911 2098613 2098825 2099181 "PFO" 2099896 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-910 2095166 2098502 2098571 "PF" 2098576 NIL PF (NIL NIL) -8 NIL NIL NIL) (-909 2092500 2093771 2093799 "PFECAT" 2094384 T PFECAT (NIL) -9 NIL 2094768 NIL) (-908 2091945 2092099 2092313 "PFECAT-" 2092318 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-907 2090548 2090800 2091101 "PFBRU" 2091694 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-906 2088414 2088766 2089198 "PFBR" 2090199 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-905 2084296 2085790 2086466 "PERM" 2087771 NIL PERM (NIL T) -8 NIL NIL NIL) (-904 2079530 2080503 2081373 "PERMGRP" 2083459 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-903 2077636 2078593 2078634 "PERMCAT" 2079080 NIL PERMCAT (NIL T) -9 NIL 2079385 NIL) (-902 2077289 2077330 2077454 "PERMAN" 2077589 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-901 2074777 2076954 2077076 "PENDTREE" 2077200 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-900 2072801 2073569 2073610 "PDRING" 2074267 NIL PDRING (NIL T) -9 NIL 2074553 NIL) (-899 2071904 2072122 2072484 "PDRING-" 2072489 NIL PDRING- (NIL T T) -8 NIL NIL NIL) (-898 2069119 2069897 2070565 "PDEPROB" 2071256 T PDEPROB (NIL) -8 NIL NIL NIL) (-897 2066664 2067168 2067723 "PDEPACK" 2068584 T PDEPACK (NIL) -7 NIL NIL NIL) (-896 2065576 2065766 2066017 "PDECOMP" 2066463 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-895 2063155 2063998 2064026 "PDECAT" 2064813 T PDECAT (NIL) -9 NIL 2065526 NIL) (-894 2062906 2062939 2063029 "PCOMP" 2063116 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-893 2061084 2061707 2062004 "PBWLB" 2062635 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-892 2053557 2055157 2056495 "PATTERN" 2059767 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-891 2053189 2053246 2053355 "PATTERN2" 2053494 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-890 2050946 2051334 2051791 "PATTERN1" 2052778 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-889 2048314 2048895 2049376 "PATRES" 2050511 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-888 2047878 2047945 2048077 "PATRES2" 2048241 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-887 2045761 2046166 2046573 "PATMATCH" 2047545 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-886 2045271 2045480 2045521 "PATMAB" 2045628 NIL PATMAB (NIL T) -9 NIL 2045711 NIL) (-885 2043789 2044125 2044383 "PATLRES" 2045076 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-884 2043335 2043458 2043499 "PATAB" 2043504 NIL PATAB (NIL T) -9 NIL 2043676 NIL) (-883 2040816 2041348 2041921 "PARTPERM" 2042782 T PARTPERM (NIL) -7 NIL NIL NIL) (-882 2040437 2040500 2040602 "PARSURF" 2040747 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-881 2040069 2040126 2040235 "PARSU2" 2040374 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-880 2039833 2039873 2039940 "PARSER" 2040022 T PARSER (NIL) -7 NIL NIL NIL) (-879 2039454 2039517 2039619 "PARSCURV" 2039764 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-878 2039086 2039143 2039252 "PARSC2" 2039391 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-877 2038725 2038783 2038880 "PARPCURV" 2039022 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-876 2038357 2038414 2038523 "PARPC2" 2038662 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-875 2037877 2037963 2038082 "PAN2EXPR" 2038258 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-874 2036654 2036998 2037226 "PALETTE" 2037669 T PALETTE (NIL) -8 NIL NIL NIL) (-873 2035047 2035659 2036019 "PAIR" 2036340 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-872 2028917 2034306 2034500 "PADICRC" 2034902 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-871 2022146 2028263 2028447 "PADICRAT" 2028765 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-870 2020461 2022083 2022128 "PADIC" 2022133 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-869 2017571 2019135 2019175 "PADICCT" 2019756 NIL PADICCT (NIL NIL) -9 NIL 2020038 NIL) (-868 2016528 2016728 2016996 "PADEPAC" 2017358 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-867 2015740 2015873 2016079 "PADE" 2016390 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-866 2014127 2014948 2015228 "OWP" 2015544 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-865 2013620 2013833 2013930 "OVERSET" 2014050 T OVERSET (NIL) -8 NIL NIL NIL) (-864 2012666 2013225 2013397 "OVAR" 2013488 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-863 2011930 2012051 2012212 "OUT" 2012525 T OUT (NIL) -7 NIL NIL NIL) (-862 2000802 2003039 2005239 "OUTFORM" 2009750 T OUTFORM (NIL) -8 NIL NIL NIL) (-861 2000138 2000399 2000526 "OUTBFILE" 2000695 T OUTBFILE (NIL) -8 NIL NIL NIL) (-860 1999445 1999610 1999638 "OUTBCON" 1999956 T OUTBCON (NIL) -9 NIL 2000122 NIL) (-859 1999046 1999158 1999315 "OUTBCON-" 1999320 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-858 1998426 1998775 1998864 "OSI" 1998977 T OSI (NIL) -8 NIL NIL NIL) (-857 1997956 1998294 1998322 "OSGROUP" 1998327 T OSGROUP (NIL) -9 NIL 1998349 NIL) (-856 1996701 1996928 1997213 "ORTHPOL" 1997703 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-855 1994252 1996536 1996657 "OREUP" 1996662 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-854 1991655 1993943 1994070 "ORESUP" 1994194 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-853 1989183 1989683 1990244 "OREPCTO" 1991144 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-852 1982869 1985070 1985111 "OREPCAT" 1987459 NIL OREPCAT (NIL T) -9 NIL 1988563 NIL) (-851 1980016 1980798 1981856 "OREPCAT-" 1981861 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-850 1979167 1979465 1979493 "ORDSET" 1979802 T ORDSET (NIL) -9 NIL 1979966 NIL) (-849 1978598 1978746 1978970 "ORDSET-" 1978975 NIL ORDSET- (NIL T) -8 NIL NIL NIL) (-848 1977163 1977954 1977982 "ORDRING" 1978184 T ORDRING (NIL) -9 NIL 1978309 NIL) (-847 1976808 1976902 1977046 "ORDRING-" 1977051 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-846 1976188 1976651 1976679 "ORDMON" 1976684 T ORDMON (NIL) -9 NIL 1976705 NIL) (-845 1975350 1975497 1975692 "ORDFUNS" 1976037 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-844 1974688 1975107 1975135 "ORDFIN" 1975200 T ORDFIN (NIL) -9 NIL 1975274 NIL) (-843 1971247 1973274 1973683 "ORDCOMP" 1974312 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-842 1970513 1970640 1970826 "ORDCOMP2" 1971107 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-841 1967094 1968004 1968818 "OPTPROB" 1969719 T OPTPROB (NIL) -8 NIL NIL NIL) (-840 1963896 1964535 1965239 "OPTPACK" 1966410 T OPTPACK (NIL) -7 NIL NIL NIL) (-839 1961583 1962349 1962377 "OPTCAT" 1963196 T OPTCAT (NIL) -9 NIL 1963846 NIL) (-838 1960967 1961260 1961365 "OPSIG" 1961498 T OPSIG (NIL) -8 NIL NIL NIL) (-837 1960735 1960774 1960840 "OPQUERY" 1960921 T OPQUERY (NIL) -7 NIL NIL NIL) (-836 1957866 1959046 1959550 "OP" 1960264 NIL OP (NIL T) -8 NIL NIL NIL) (-835 1957240 1957466 1957507 "OPERCAT" 1957719 NIL OPERCAT (NIL T) -9 NIL 1957816 NIL) (-834 1956995 1957051 1957168 "OPERCAT-" 1957173 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-833 1953808 1955792 1956161 "ONECOMP" 1956659 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-832 1953113 1953228 1953402 "ONECOMP2" 1953680 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-831 1952532 1952638 1952768 "OMSERVER" 1953003 T OMSERVER (NIL) -7 NIL NIL NIL) (-830 1949394 1951972 1952012 "OMSAGG" 1952073 NIL OMSAGG (NIL T) -9 NIL 1952137 NIL) (-829 1948017 1948280 1948562 "OMPKG" 1949132 T OMPKG (NIL) -7 NIL NIL NIL) (-828 1947447 1947550 1947578 "OM" 1947877 T OM (NIL) -9 NIL NIL NIL) (-827 1945994 1946996 1947165 "OMLO" 1947328 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-826 1944954 1945101 1945321 "OMEXPR" 1945820 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-825 1944245 1944500 1944636 "OMERR" 1944838 T OMERR (NIL) -8 NIL NIL NIL) (-824 1943396 1943666 1943826 "OMERRK" 1944105 T OMERRK (NIL) -8 NIL NIL NIL) (-823 1942847 1943073 1943181 "OMENC" 1943308 T OMENC (NIL) -8 NIL NIL NIL) (-822 1936742 1937927 1939098 "OMDEV" 1941696 T OMDEV (NIL) -8 NIL NIL NIL) (-821 1935811 1935982 1936176 "OMCONN" 1936568 T OMCONN (NIL) -8 NIL NIL NIL) (-820 1934332 1935308 1935336 "OINTDOM" 1935341 T OINTDOM (NIL) -9 NIL 1935362 NIL) (-819 1930111 1931322 1932038 "OFMONOID" 1933648 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-818 1929522 1930048 1930093 "ODVAR" 1930098 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-817 1926945 1929267 1929422 "ODR" 1929427 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-816 1919526 1926721 1926847 "ODPOL" 1926852 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-815 1913348 1919398 1919503 "ODP" 1919508 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-814 1912114 1912329 1912604 "ODETOOLS" 1913122 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-813 1909081 1909739 1910455 "ODESYS" 1911447 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-812 1903963 1904871 1905896 "ODERTRIC" 1908156 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-811 1903389 1903471 1903665 "ODERED" 1903875 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-810 1900277 1900825 1901502 "ODERAT" 1902812 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-809 1897234 1897701 1898298 "ODEPRRIC" 1899806 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-808 1895177 1895773 1896259 "ODEPROB" 1896768 T ODEPROB (NIL) -8 NIL NIL NIL) (-807 1891697 1892182 1892829 "ODEPRIM" 1894656 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-806 1890946 1891048 1891308 "ODEPAL" 1891589 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-805 1887108 1887899 1888763 "ODEPACK" 1890102 T ODEPACK (NIL) -7 NIL NIL NIL) (-804 1886169 1886276 1886498 "ODEINT" 1886997 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-803 1880270 1881695 1883142 "ODEIFTBL" 1884742 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-802 1875668 1876454 1877406 "ODEEF" 1879429 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-801 1875017 1875106 1875329 "ODECONST" 1875573 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-800 1873142 1873803 1873831 "ODECAT" 1874436 T ODECAT (NIL) -9 NIL 1874967 NIL) (-799 1870014 1872854 1872973 "OCT" 1873055 NIL OCT (NIL T) -8 NIL NIL NIL) (-798 1869652 1869695 1869822 "OCTCT2" 1869965 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-797 1864301 1866736 1866776 "OC" 1867873 NIL OC (NIL T) -9 NIL 1868731 NIL) (-796 1861528 1862276 1863266 "OC-" 1863360 NIL OC- (NIL T T) -8 NIL NIL NIL) (-795 1860880 1861348 1861376 "OCAMON" 1861381 T OCAMON (NIL) -9 NIL 1861402 NIL) (-794 1860411 1860752 1860780 "OASGP" 1860785 T OASGP (NIL) -9 NIL 1860805 NIL) (-793 1859672 1860161 1860189 "OAMONS" 1860229 T OAMONS (NIL) -9 NIL 1860272 NIL) (-792 1859086 1859519 1859547 "OAMON" 1859552 T OAMON (NIL) -9 NIL 1859572 NIL) (-791 1858344 1858862 1858890 "OAGROUP" 1858895 T OAGROUP (NIL) -9 NIL 1858915 NIL) (-790 1858034 1858084 1858172 "NUMTUBE" 1858288 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-789 1851607 1853125 1854661 "NUMQUAD" 1856518 T NUMQUAD (NIL) -7 NIL NIL NIL) (-788 1847363 1848351 1849376 "NUMODE" 1850602 T NUMODE (NIL) -7 NIL NIL NIL) (-787 1844718 1845598 1845626 "NUMINT" 1846549 T NUMINT (NIL) -9 NIL 1847313 NIL) (-786 1843666 1843863 1844081 "NUMFMT" 1844520 T NUMFMT (NIL) -7 NIL NIL NIL) (-785 1830025 1832970 1835502 "NUMERIC" 1841173 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-784 1824395 1829474 1829569 "NTSCAT" 1829574 NIL NTSCAT (NIL T T T T) -9 NIL 1829613 NIL) (-783 1823589 1823754 1823947 "NTPOLFN" 1824234 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-782 1811666 1820414 1821226 "NSUP" 1822810 NIL NSUP (NIL T) -8 NIL NIL NIL) (-781 1811298 1811355 1811464 "NSUP2" 1811603 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-780 1801526 1811072 1811205 "NSMP" 1811210 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-779 1799958 1800259 1800616 "NREP" 1801214 NIL NREP (NIL T) -7 NIL NIL NIL) (-778 1798549 1798801 1799159 "NPCOEF" 1799701 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-777 1797615 1797730 1797946 "NORMRETR" 1798430 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-776 1795656 1795946 1796355 "NORMPK" 1797323 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-775 1795341 1795369 1795493 "NORMMA" 1795622 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-774 1795141 1795298 1795327 "NONE" 1795332 T NONE (NIL) -8 NIL NIL NIL) (-773 1794930 1794959 1795028 "NONE1" 1795105 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-772 1794427 1794489 1794668 "NODE1" 1794862 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-771 1792712 1793563 1793818 "NNI" 1794165 T NNI (NIL) -8 NIL NIL 1794400) (-770 1791132 1791445 1791809 "NLINSOL" 1792380 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-769 1787373 1788368 1789267 "NIPROB" 1790253 T NIPROB (NIL) -8 NIL NIL NIL) (-768 1786130 1786364 1786666 "NFINTBAS" 1787135 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-767 1785304 1785780 1785821 "NETCLT" 1785993 NIL NETCLT (NIL T) -9 NIL 1786075 NIL) (-766 1784012 1784243 1784524 "NCODIV" 1785072 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-765 1783774 1783811 1783886 "NCNTFRAC" 1783969 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-764 1781954 1782318 1782738 "NCEP" 1783399 NIL NCEP (NIL T) -7 NIL NIL NIL) (-763 1780805 1781578 1781606 "NASRING" 1781716 T NASRING (NIL) -9 NIL 1781796 NIL) (-762 1780600 1780644 1780738 "NASRING-" 1780743 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-761 1779707 1780232 1780260 "NARNG" 1780377 T NARNG (NIL) -9 NIL 1780468 NIL) (-760 1779399 1779466 1779600 "NARNG-" 1779605 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-759 1778278 1778485 1778720 "NAGSP" 1779184 T NAGSP (NIL) -7 NIL NIL NIL) (-758 1769550 1771234 1772907 "NAGS" 1776625 T NAGS (NIL) -7 NIL NIL NIL) (-757 1768098 1768406 1768737 "NAGF07" 1769239 T NAGF07 (NIL) -7 NIL NIL NIL) (-756 1762636 1763927 1765234 "NAGF04" 1766811 T NAGF04 (NIL) -7 NIL NIL NIL) (-755 1755604 1757218 1758851 "NAGF02" 1761023 T NAGF02 (NIL) -7 NIL NIL NIL) (-754 1750828 1751928 1753045 "NAGF01" 1754507 T NAGF01 (NIL) -7 NIL NIL NIL) (-753 1744456 1746022 1747607 "NAGE04" 1749263 T NAGE04 (NIL) -7 NIL NIL NIL) (-752 1735625 1737746 1739876 "NAGE02" 1742346 T NAGE02 (NIL) -7 NIL NIL NIL) (-751 1731578 1732525 1733489 "NAGE01" 1734681 T NAGE01 (NIL) -7 NIL NIL NIL) (-750 1729373 1729907 1730465 "NAGD03" 1731040 T NAGD03 (NIL) -7 NIL NIL NIL) (-749 1721123 1723051 1725005 "NAGD02" 1727439 T NAGD02 (NIL) -7 NIL NIL NIL) (-748 1714934 1716359 1717799 "NAGD01" 1719703 T NAGD01 (NIL) -7 NIL NIL NIL) (-747 1711143 1711965 1712802 "NAGC06" 1714117 T NAGC06 (NIL) -7 NIL NIL NIL) (-746 1709608 1709940 1710296 "NAGC05" 1710807 T NAGC05 (NIL) -7 NIL NIL NIL) (-745 1708984 1709103 1709247 "NAGC02" 1709484 T NAGC02 (NIL) -7 NIL NIL NIL) (-744 1707943 1708526 1708566 "NAALG" 1708645 NIL NAALG (NIL T) -9 NIL 1708706 NIL) (-743 1707778 1707807 1707897 "NAALG-" 1707902 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-742 1701728 1702836 1704023 "MULTSQFR" 1706674 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-741 1701047 1701122 1701306 "MULTFACT" 1701640 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-740 1693771 1697684 1697737 "MTSCAT" 1698807 NIL MTSCAT (NIL T T) -9 NIL 1699322 NIL) (-739 1693483 1693537 1693629 "MTHING" 1693711 NIL MTHING (NIL T) -7 NIL NIL NIL) (-738 1693275 1693308 1693368 "MSYSCMD" 1693443 T MSYSCMD (NIL) -7 NIL NIL NIL) (-737 1689357 1692030 1692350 "MSET" 1692988 NIL MSET (NIL T) -8 NIL NIL NIL) (-736 1686426 1688918 1688959 "MSETAGG" 1688964 NIL MSETAGG (NIL T) -9 NIL 1688998 NIL) (-735 1682267 1683805 1684550 "MRING" 1685726 NIL MRING (NIL T T) -8 NIL NIL NIL) (-734 1681833 1681900 1682031 "MRF2" 1682194 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-733 1681451 1681486 1681630 "MRATFAC" 1681792 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-732 1679063 1679358 1679789 "MPRFF" 1681156 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-731 1673360 1678917 1679014 "MPOLY" 1679019 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-730 1672850 1672885 1673093 "MPCPF" 1673319 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-729 1672364 1672407 1672591 "MPC3" 1672801 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-728 1671559 1671640 1671861 "MPC2" 1672279 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-727 1669860 1670197 1670587 "MONOTOOL" 1671219 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-726 1669085 1669402 1669430 "MONOID" 1669649 T MONOID (NIL) -9 NIL 1669796 NIL) (-725 1668631 1668750 1668931 "MONOID-" 1668936 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-724 1659106 1665057 1665116 "MONOGEN" 1665790 NIL MONOGEN (NIL T T) -9 NIL 1666246 NIL) (-723 1656324 1657059 1658059 "MONOGEN-" 1658178 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-722 1655157 1655603 1655631 "MONADWU" 1656023 T MONADWU (NIL) -9 NIL 1656261 NIL) (-721 1654529 1654688 1654936 "MONADWU-" 1654941 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-720 1653888 1654132 1654160 "MONAD" 1654367 T MONAD (NIL) -9 NIL 1654479 NIL) (-719 1653573 1653651 1653783 "MONAD-" 1653788 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-718 1651862 1652486 1652765 "MOEBIUS" 1653326 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-717 1651140 1651544 1651584 "MODULE" 1651589 NIL MODULE (NIL T) -9 NIL 1651628 NIL) (-716 1650708 1650804 1650994 "MODULE-" 1650999 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-715 1648388 1649072 1649399 "MODRING" 1650532 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-714 1645332 1646493 1647014 "MODOP" 1647917 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-713 1643920 1644399 1644676 "MODMONOM" 1645195 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-712 1633961 1642211 1642625 "MODMON" 1643557 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-711 1631117 1632805 1633081 "MODFIELD" 1633836 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-710 1630094 1630398 1630588 "MMLFORM" 1630947 T MMLFORM (NIL) -8 NIL NIL NIL) (-709 1629620 1629663 1629842 "MMAP" 1630045 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-708 1627699 1628466 1628507 "MLO" 1628930 NIL MLO (NIL T) -9 NIL 1629172 NIL) (-707 1625065 1625581 1626183 "MLIFT" 1627180 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-706 1624456 1624540 1624694 "MKUCFUNC" 1624976 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-705 1624055 1624125 1624248 "MKRECORD" 1624379 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-704 1623102 1623264 1623492 "MKFUNC" 1623866 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-703 1622490 1622594 1622750 "MKFLCFN" 1622985 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-702 1621767 1621869 1622054 "MKBCFUNC" 1622383 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-701 1618474 1621321 1621457 "MINT" 1621651 T MINT (NIL) -8 NIL NIL NIL) (-700 1617286 1617529 1617806 "MHROWRED" 1618229 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-699 1612665 1615821 1616226 "MFLOAT" 1616901 T MFLOAT (NIL) -8 NIL NIL NIL) (-698 1612022 1612098 1612269 "MFINFACT" 1612577 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-697 1608337 1609185 1610069 "MESH" 1611158 T MESH (NIL) -7 NIL NIL NIL) (-696 1606727 1607039 1607392 "MDDFACT" 1608024 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-695 1603522 1605886 1605927 "MDAGG" 1606182 NIL MDAGG (NIL T) -9 NIL 1606325 NIL) (-694 1593262 1602815 1603022 "MCMPLX" 1603335 T MCMPLX (NIL) -8 NIL NIL NIL) (-693 1592403 1592549 1592749 "MCDEN" 1593111 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-692 1590293 1590563 1590943 "MCALCFN" 1592133 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-691 1589218 1589458 1589691 "MAYBE" 1590099 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-690 1586830 1587353 1587915 "MATSTOR" 1588689 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-689 1582787 1586202 1586450 "MATRIX" 1586615 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-688 1578551 1579260 1579996 "MATLIN" 1582144 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-687 1568657 1571843 1571920 "MATCAT" 1576800 NIL MATCAT (NIL T T T) -9 NIL 1578217 NIL) (-686 1565013 1566034 1567390 "MATCAT-" 1567395 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-685 1563607 1563760 1564093 "MATCAT2" 1564848 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-684 1561719 1562043 1562427 "MAPPKG3" 1563282 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-683 1560700 1560873 1561095 "MAPPKG2" 1561543 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-682 1559199 1559483 1559810 "MAPPKG1" 1560406 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-681 1558278 1558605 1558782 "MAPPAST" 1559042 T MAPPAST (NIL) -8 NIL NIL NIL) (-680 1557889 1557947 1558070 "MAPHACK3" 1558214 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-679 1557481 1557542 1557656 "MAPHACK2" 1557821 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-678 1556918 1557022 1557164 "MAPHACK1" 1557372 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-677 1554997 1555618 1555922 "MAGMA" 1556646 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-676 1554476 1554721 1554812 "MACROAST" 1554926 T MACROAST (NIL) -8 NIL NIL NIL) (-675 1550894 1552715 1553176 "M3D" 1554048 NIL M3D (NIL T) -8 NIL NIL NIL) (-674 1545000 1549263 1549304 "LZSTAGG" 1550086 NIL LZSTAGG (NIL T) -9 NIL 1550381 NIL) (-673 1540957 1542131 1543588 "LZSTAGG-" 1543593 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-672 1538044 1538848 1539335 "LWORD" 1540502 NIL LWORD (NIL T) -8 NIL NIL NIL) (-671 1537620 1537848 1537923 "LSTAST" 1537989 T LSTAST (NIL) -8 NIL NIL NIL) (-670 1530786 1537391 1537525 "LSQM" 1537530 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-669 1530010 1530149 1530377 "LSPP" 1530641 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-668 1527822 1528123 1528579 "LSMP" 1529699 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-667 1524601 1525275 1526005 "LSMP1" 1527124 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-666 1518478 1523768 1523809 "LSAGG" 1523871 NIL LSAGG (NIL T) -9 NIL 1523949 NIL) (-665 1515173 1516097 1517310 "LSAGG-" 1517315 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-664 1512772 1514317 1514566 "LPOLY" 1514968 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-663 1512354 1512439 1512562 "LPEFRAC" 1512681 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-662 1510675 1511448 1511701 "LO" 1512186 NIL LO (NIL T T T) -8 NIL NIL NIL) (-661 1510327 1510439 1510467 "LOGIC" 1510578 T LOGIC (NIL) -9 NIL 1510659 NIL) (-660 1510189 1510212 1510283 "LOGIC-" 1510288 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-659 1509382 1509522 1509715 "LODOOPS" 1510045 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-658 1506805 1509298 1509364 "LODO" 1509369 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-657 1505343 1505578 1505931 "LODOF" 1506552 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-656 1501561 1503992 1504033 "LODOCAT" 1504471 NIL LODOCAT (NIL T) -9 NIL 1504682 NIL) (-655 1501294 1501352 1501479 "LODOCAT-" 1501484 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-654 1498614 1501135 1501253 "LODO2" 1501258 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-653 1496049 1498551 1498596 "LODO1" 1498601 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-652 1494930 1495095 1495400 "LODEEF" 1495872 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-651 1490169 1493060 1493101 "LNAGG" 1494048 NIL LNAGG (NIL T) -9 NIL 1494492 NIL) (-650 1489316 1489530 1489872 "LNAGG-" 1489877 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-649 1485452 1486241 1486880 "LMOPS" 1488731 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-648 1484855 1485243 1485284 "LMODULE" 1485289 NIL LMODULE (NIL T) -9 NIL 1485315 NIL) (-647 1482053 1484500 1484623 "LMDICT" 1484765 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-646 1481459 1481680 1481721 "LLINSET" 1481912 NIL LLINSET (NIL T) -9 NIL 1482003 NIL) (-645 1481158 1481367 1481427 "LITERAL" 1481432 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-644 1474341 1480104 1480402 "LIST" 1480893 NIL LIST (NIL T) -8 NIL NIL NIL) (-643 1473866 1473940 1474079 "LIST3" 1474261 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-642 1472873 1473051 1473279 "LIST2" 1473684 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-641 1471007 1471319 1471718 "LIST2MAP" 1472520 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-640 1470603 1470840 1470881 "LINSET" 1470886 NIL LINSET (NIL T) -9 NIL 1470920 NIL) (-639 1469264 1469934 1469975 "LINEXP" 1470230 NIL LINEXP (NIL T) -9 NIL 1470379 NIL) (-638 1467911 1468171 1468468 "LINDEP" 1469016 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-637 1464678 1465397 1466174 "LIMITRF" 1467166 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-636 1462981 1463277 1463686 "LIMITPS" 1464373 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-635 1457409 1462492 1462720 "LIE" 1462802 NIL LIE (NIL T T) -8 NIL NIL NIL) (-634 1456357 1456826 1456866 "LIECAT" 1457006 NIL LIECAT (NIL T) -9 NIL 1457157 NIL) (-633 1456198 1456225 1456313 "LIECAT-" 1456318 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-632 1448694 1455647 1455812 "LIB" 1456053 T LIB (NIL) -8 NIL NIL NIL) (-631 1444329 1445212 1446147 "LGROBP" 1447811 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-630 1442327 1442601 1442951 "LF" 1444050 NIL LF (NIL T T) -7 NIL NIL NIL) (-629 1441167 1441859 1441887 "LFCAT" 1442094 T LFCAT (NIL) -9 NIL 1442233 NIL) (-628 1438069 1438699 1439387 "LEXTRIPK" 1440531 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-627 1434813 1435639 1436142 "LEXP" 1437649 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-626 1434289 1434534 1434626 "LETAST" 1434741 T LETAST (NIL) -8 NIL NIL NIL) (-625 1432687 1433000 1433401 "LEADCDET" 1433971 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-624 1431877 1431951 1432180 "LAZM3PK" 1432608 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-623 1426794 1429954 1430492 "LAUPOL" 1431389 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-622 1426373 1426417 1426578 "LAPLACE" 1426744 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-621 1424312 1425474 1425725 "LA" 1426206 NIL LA (NIL T T T) -8 NIL NIL NIL) (-620 1423306 1423890 1423931 "LALG" 1423993 NIL LALG (NIL T) -9 NIL 1424052 NIL) (-619 1423020 1423079 1423215 "LALG-" 1423220 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-618 1422855 1422879 1422920 "KVTFROM" 1422982 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-617 1421778 1422222 1422407 "KTVLOGIC" 1422690 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-616 1421613 1421637 1421678 "KRCFROM" 1421740 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-615 1420517 1420704 1421003 "KOVACIC" 1421413 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-614 1420352 1420376 1420417 "KONVERT" 1420479 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-613 1420187 1420211 1420252 "KOERCE" 1420314 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-612 1417869 1418657 1419058 "KERNEL" 1419819 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-611 1417365 1417446 1417578 "KERNEL2" 1417783 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-610 1411135 1415904 1415958 "KDAGG" 1416335 NIL KDAGG (NIL T T) -9 NIL 1416541 NIL) (-609 1410664 1410788 1410993 "KDAGG-" 1410998 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-608 1403812 1410325 1410480 "KAFILE" 1410542 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-607 1398240 1403323 1403551 "JORDAN" 1403633 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-606 1397619 1397889 1398010 "JOINAST" 1398139 T JOINAST (NIL) -8 NIL NIL NIL) (-605 1397465 1397524 1397579 "JAVACODE" 1397584 T JAVACODE (NIL) -8 NIL NIL NIL) (-604 1393717 1395670 1395724 "IXAGG" 1396653 NIL IXAGG (NIL T T) -9 NIL 1397112 NIL) (-603 1392636 1392942 1393361 "IXAGG-" 1393366 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-602 1388166 1392558 1392617 "IVECTOR" 1392622 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-601 1386932 1387169 1387435 "ITUPLE" 1387933 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-600 1385434 1385611 1385906 "ITRIGMNP" 1386754 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-599 1384179 1384383 1384666 "ITFUN3" 1385210 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-598 1383811 1383868 1383977 "ITFUN2" 1384116 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-597 1381613 1382673 1382972 "ITAYLOR" 1383545 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-596 1370558 1375750 1376913 "ISUPS" 1380483 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-595 1369662 1369802 1370038 "ISUMP" 1370405 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-594 1364876 1369463 1369542 "ISTRING" 1369615 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-593 1364352 1364597 1364689 "ISAST" 1364804 T ISAST (NIL) -8 NIL NIL NIL) (-592 1363561 1363643 1363859 "IRURPK" 1364266 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-591 1362497 1362698 1362938 "IRSN" 1363341 T IRSN (NIL) -7 NIL NIL NIL) (-590 1360568 1360923 1361352 "IRRF2F" 1362135 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-589 1360315 1360353 1360429 "IRREDFFX" 1360524 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-588 1358930 1359189 1359488 "IROOT" 1360048 NIL IROOT (NIL T) -7 NIL NIL NIL) (-587 1355534 1356614 1357306 "IR" 1358270 NIL IR (NIL T) -8 NIL NIL NIL) (-586 1353147 1353642 1354208 "IR2" 1355012 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-585 1352247 1352360 1352574 "IR2F" 1353030 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-584 1352038 1352072 1352132 "IPRNTPK" 1352207 T IPRNTPK (NIL) -7 NIL NIL NIL) (-583 1348617 1351927 1351996 "IPF" 1352001 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-582 1346944 1348542 1348599 "IPADIC" 1348604 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-581 1346256 1346504 1346634 "IP4ADDR" 1346834 T IP4ADDR (NIL) -8 NIL NIL NIL) (-580 1345729 1345960 1346070 "IOMODE" 1346166 T IOMODE (NIL) -8 NIL NIL NIL) (-579 1344802 1345326 1345453 "IOBFILE" 1345622 T IOBFILE (NIL) -8 NIL NIL NIL) (-578 1344290 1344706 1344734 "IOBCON" 1344739 T IOBCON (NIL) -9 NIL 1344760 NIL) (-577 1343801 1343859 1344042 "INVLAPLA" 1344226 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-576 1333449 1335803 1338189 "INTTR" 1341465 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-575 1329784 1330526 1331391 "INTTOOLS" 1332634 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-574 1329370 1329461 1329578 "INTSLPE" 1329687 T INTSLPE (NIL) -7 NIL NIL NIL) (-573 1327323 1329293 1329352 "INTRVL" 1329357 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-572 1324925 1325437 1326012 "INTRF" 1326808 NIL INTRF (NIL T) -7 NIL NIL NIL) (-571 1324336 1324433 1324575 "INTRET" 1324823 NIL INTRET (NIL T) -7 NIL NIL NIL) (-570 1322333 1322722 1323192 "INTRAT" 1323944 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-569 1319596 1320179 1320798 "INTPM" 1321818 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-568 1316341 1316940 1317678 "INTPAF" 1318982 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-567 1311520 1312482 1313533 "INTPACK" 1315310 T INTPACK (NIL) -7 NIL NIL NIL) (-566 1308400 1311249 1311376 "INT" 1311413 T INT (NIL) -8 NIL NIL NIL) (-565 1307652 1307804 1308012 "INTHERTR" 1308242 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-564 1307091 1307171 1307359 "INTHERAL" 1307566 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-563 1304937 1305380 1305837 "INTHEORY" 1306654 T INTHEORY (NIL) -7 NIL NIL NIL) (-562 1296343 1297964 1299736 "INTG0" 1303289 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-561 1276916 1281706 1286516 "INTFTBL" 1291553 T INTFTBL (NIL) -8 NIL NIL NIL) (-560 1276165 1276303 1276476 "INTFACT" 1276775 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-559 1273592 1274038 1274595 "INTEF" 1275719 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-558 1271959 1272698 1272726 "INTDOM" 1273027 T INTDOM (NIL) -9 NIL 1273234 NIL) (-557 1271328 1271502 1271744 "INTDOM-" 1271749 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-556 1267716 1269644 1269698 "INTCAT" 1270497 NIL INTCAT (NIL T) -9 NIL 1270818 NIL) (-555 1267188 1267291 1267419 "INTBIT" 1267608 T INTBIT (NIL) -7 NIL NIL NIL) (-554 1265887 1266041 1266348 "INTALG" 1267033 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-553 1265370 1265460 1265617 "INTAF" 1265791 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-552 1258713 1265180 1265320 "INTABL" 1265325 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-551 1258054 1258520 1258585 "INT8" 1258619 T INT8 (NIL) -8 NIL NIL 1258664) (-550 1257394 1257860 1257925 "INT64" 1257959 T INT64 (NIL) -8 NIL NIL 1258004) (-549 1256734 1257200 1257265 "INT32" 1257299 T INT32 (NIL) -8 NIL NIL 1257344) (-548 1256074 1256540 1256605 "INT16" 1256639 T INT16 (NIL) -8 NIL NIL 1256684) (-547 1250984 1253697 1253725 "INS" 1254659 T INS (NIL) -9 NIL 1255324 NIL) (-546 1248224 1248995 1249969 "INS-" 1250042 NIL INS- (NIL T) -8 NIL NIL NIL) (-545 1246999 1247226 1247524 "INPSIGN" 1247977 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-544 1246117 1246234 1246431 "INPRODPF" 1246879 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-543 1245011 1245128 1245365 "INPRODFF" 1245997 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-542 1244011 1244163 1244423 "INNMFACT" 1244847 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-541 1243208 1243305 1243493 "INMODGCD" 1243910 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-540 1241716 1241961 1242285 "INFSP" 1242953 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-539 1240900 1241017 1241200 "INFPROD0" 1241596 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-538 1237755 1238965 1239480 "INFORM" 1240393 T INFORM (NIL) -8 NIL NIL NIL) (-537 1237365 1237425 1237523 "INFORM1" 1237690 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-536 1236888 1236977 1237091 "INFINITY" 1237271 T INFINITY (NIL) -7 NIL NIL NIL) (-535 1236064 1236608 1236709 "INETCLTS" 1236807 T INETCLTS (NIL) -8 NIL NIL NIL) (-534 1234680 1234930 1235251 "INEP" 1235812 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-533 1233929 1234577 1234642 "INDE" 1234647 NIL INDE (NIL T) -8 NIL NIL NIL) (-532 1233493 1233561 1233678 "INCRMAPS" 1233856 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-531 1232311 1232762 1232968 "INBFILE" 1233307 T INBFILE (NIL) -8 NIL NIL NIL) (-530 1227610 1228547 1229491 "INBFF" 1231399 NIL INBFF (NIL T) -7 NIL NIL NIL) (-529 1226518 1226787 1226815 "INBCON" 1227328 T INBCON (NIL) -9 NIL 1227594 NIL) (-528 1225770 1225993 1226269 "INBCON-" 1226274 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-527 1225249 1225494 1225585 "INAST" 1225699 T INAST (NIL) -8 NIL NIL NIL) (-526 1224676 1224928 1225034 "IMPTAST" 1225163 T IMPTAST (NIL) -8 NIL NIL NIL) (-525 1221122 1224520 1224624 "IMATRIX" 1224629 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-524 1219834 1219957 1220272 "IMATQF" 1220978 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-523 1218054 1218281 1218618 "IMATLIN" 1219590 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-522 1212632 1217978 1218036 "ILIST" 1218041 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-521 1210537 1212492 1212605 "IIARRAY2" 1212610 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-520 1205935 1210448 1210512 "IFF" 1210517 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-519 1205282 1205552 1205668 "IFAST" 1205839 T IFAST (NIL) -8 NIL NIL NIL) (-518 1200277 1204574 1204762 "IFARRAY" 1205139 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-517 1199457 1200181 1200254 "IFAMON" 1200259 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-516 1199041 1199106 1199160 "IEVALAB" 1199367 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-515 1198716 1198784 1198944 "IEVALAB-" 1198949 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-514 1198347 1198630 1198693 "IDPO" 1198698 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-513 1197597 1198236 1198311 "IDPOAMS" 1198316 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-512 1196904 1197486 1197561 "IDPOAM" 1197566 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-511 1195963 1196239 1196292 "IDPC" 1196705 NIL IDPC (NIL T T) -9 NIL 1196854 NIL) (-510 1195432 1195855 1195928 "IDPAM" 1195933 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-509 1194808 1195324 1195397 "IDPAG" 1195402 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-508 1194453 1194644 1194719 "IDENT" 1194753 T IDENT (NIL) -8 NIL NIL NIL) (-507 1190708 1191556 1192451 "IDECOMP" 1193610 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-506 1183546 1184631 1185678 "IDEAL" 1189744 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-505 1182710 1182822 1183021 "ICDEN" 1183430 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-504 1181781 1182190 1182337 "ICARD" 1182583 T ICARD (NIL) -8 NIL NIL NIL) (-503 1179841 1180154 1180559 "IBPTOOLS" 1181458 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-502 1175448 1179461 1179574 "IBITS" 1179760 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-501 1172171 1172747 1173442 "IBATOOL" 1174865 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-500 1169950 1170412 1170945 "IBACHIN" 1171706 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-499 1167779 1169796 1169899 "IARRAY2" 1169904 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-498 1163885 1167705 1167762 "IARRAY1" 1167767 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-497 1157994 1162297 1162778 "IAN" 1163424 T IAN (NIL) -8 NIL NIL NIL) (-496 1157505 1157562 1157735 "IALGFACT" 1157931 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-495 1157033 1157146 1157174 "HYPCAT" 1157381 T HYPCAT (NIL) -9 NIL NIL NIL) (-494 1156571 1156688 1156874 "HYPCAT-" 1156879 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-493 1156166 1156366 1156449 "HOSTNAME" 1156508 T HOSTNAME (NIL) -8 NIL NIL NIL) (-492 1156011 1156048 1156089 "HOMOTOP" 1156094 NIL HOMOTOP (NIL T) -9 NIL 1156127 NIL) (-491 1152643 1154021 1154062 "HOAGG" 1155043 NIL HOAGG (NIL T) -9 NIL 1155722 NIL) (-490 1151237 1151636 1152162 "HOAGG-" 1152167 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-489 1145241 1150832 1150981 "HEXADEC" 1151108 T HEXADEC (NIL) -8 NIL NIL NIL) (-488 1143988 1144211 1144474 "HEUGCD" 1145018 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-487 1143064 1143825 1143955 "HELLFDIV" 1143960 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-486 1141243 1142841 1142929 "HEAP" 1143008 NIL HEAP (NIL T) -8 NIL NIL NIL) (-485 1140506 1140795 1140929 "HEADAST" 1141129 T HEADAST (NIL) -8 NIL NIL NIL) (-484 1134372 1140421 1140483 "HDP" 1140488 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-483 1128360 1134007 1134159 "HDMP" 1134273 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-482 1127684 1127824 1127988 "HB" 1128216 T HB (NIL) -7 NIL NIL NIL) (-481 1121070 1127530 1127634 "HASHTBL" 1127639 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-480 1120546 1120791 1120883 "HASAST" 1120998 T HASAST (NIL) -8 NIL NIL NIL) (-479 1118324 1120168 1120350 "HACKPI" 1120384 T HACKPI (NIL) -8 NIL NIL NIL) (-478 1113992 1118177 1118290 "GTSET" 1118295 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-477 1107407 1113870 1113968 "GSTBL" 1113973 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-476 1099685 1106438 1106703 "GSERIES" 1107198 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-475 1098826 1099243 1099271 "GROUP" 1099474 T GROUP (NIL) -9 NIL 1099608 NIL) (-474 1098192 1098351 1098602 "GROUP-" 1098607 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-473 1096559 1096880 1097267 "GROEBSOL" 1097869 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-472 1095473 1095761 1095812 "GRMOD" 1096341 NIL GRMOD (NIL T T) -9 NIL 1096509 NIL) (-471 1095241 1095277 1095405 "GRMOD-" 1095410 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-470 1090531 1091595 1092595 "GRIMAGE" 1094261 T GRIMAGE (NIL) -8 NIL NIL NIL) (-469 1088997 1089258 1089582 "GRDEF" 1090227 T GRDEF (NIL) -7 NIL NIL NIL) (-468 1088441 1088557 1088698 "GRAY" 1088876 T GRAY (NIL) -7 NIL NIL NIL) (-467 1087628 1088034 1088085 "GRALG" 1088238 NIL GRALG (NIL T T) -9 NIL 1088331 NIL) (-466 1087289 1087362 1087525 "GRALG-" 1087530 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-465 1084066 1086874 1087052 "GPOLSET" 1087196 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-464 1083420 1083477 1083735 "GOSPER" 1084003 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-463 1079152 1079858 1080384 "GMODPOL" 1083119 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-462 1078157 1078341 1078579 "GHENSEL" 1078964 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-461 1072313 1073156 1074176 "GENUPS" 1077241 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-460 1072010 1072061 1072150 "GENUFACT" 1072256 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-459 1071422 1071499 1071664 "GENPGCD" 1071928 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-458 1070896 1070931 1071144 "GENMFACT" 1071381 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-457 1069462 1069719 1070026 "GENEEZ" 1070639 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-456 1063608 1069073 1069235 "GDMP" 1069385 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-455 1052950 1057379 1058485 "GCNAALG" 1062591 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-454 1051277 1052139 1052167 "GCDDOM" 1052422 T GCDDOM (NIL) -9 NIL 1052579 NIL) (-453 1050747 1050874 1051089 "GCDDOM-" 1051094 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-452 1049419 1049604 1049908 "GB" 1050526 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-451 1038035 1040365 1042757 "GBINTERN" 1047110 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-450 1035872 1036164 1036585 "GBF" 1037710 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-449 1034653 1034818 1035085 "GBEUCLID" 1035688 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-448 1034002 1034127 1034276 "GAUSSFAC" 1034524 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-447 1032369 1032671 1032985 "GALUTIL" 1033721 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-446 1030677 1030951 1031275 "GALPOLYU" 1032096 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-445 1028042 1028332 1028739 "GALFACTU" 1030374 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-444 1019847 1021347 1022955 "GALFACT" 1026474 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-443 1017235 1017893 1017921 "FVFUN" 1019077 T FVFUN (NIL) -9 NIL 1019797 NIL) (-442 1016501 1016683 1016711 "FVC" 1017002 T FVC (NIL) -9 NIL 1017185 NIL) (-441 1016144 1016326 1016394 "FUNDESC" 1016453 T FUNDESC (NIL) -8 NIL NIL NIL) (-440 1015759 1015941 1016022 "FUNCTION" 1016096 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-439 1013503 1014081 1014547 "FT" 1015313 T FT (NIL) -8 NIL NIL NIL) (-438 1012294 1012804 1013007 "FTEM" 1013320 T FTEM (NIL) -8 NIL NIL NIL) (-437 1010585 1010874 1011271 "FSUPFACT" 1011985 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-436 1008982 1009271 1009603 "FST" 1010273 T FST (NIL) -8 NIL NIL NIL) (-435 1008181 1008287 1008475 "FSRED" 1008864 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-434 1006880 1007136 1007483 "FSPRMELT" 1007896 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-433 1004186 1004624 1005110 "FSPECF" 1006443 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-432 985824 994155 994196 "FS" 998080 NIL FS (NIL T) -9 NIL 1000369 NIL) (-431 974467 977460 981517 "FS-" 981817 NIL FS- (NIL T T) -8 NIL NIL NIL) (-430 973995 974049 974219 "FSINT" 974408 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-429 972287 972988 973291 "FSERIES" 973774 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-428 971329 971445 971669 "FSCINT" 972167 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-427 967537 970273 970314 "FSAGG" 970684 NIL FSAGG (NIL T) -9 NIL 970943 NIL) (-426 965299 965900 966696 "FSAGG-" 966791 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-425 964341 964484 964711 "FSAGG2" 965152 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-424 962023 962303 962850 "FS2UPS" 964059 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-423 961657 961700 961829 "FS2" 961974 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-422 960535 960706 961008 "FS2EXPXP" 961482 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-421 959961 960076 960228 "FRUTIL" 960415 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-420 951374 955456 956814 "FR" 958635 NIL FR (NIL T) -8 NIL NIL NIL) (-419 946343 949017 949057 "FRNAALG" 950453 NIL FRNAALG (NIL T) -9 NIL 951060 NIL) (-418 942016 943092 944367 "FRNAALG-" 945117 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-417 941654 941697 941824 "FRNAAF2" 941967 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-416 940034 940508 940803 "FRMOD" 941466 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-415 937785 938417 938734 "FRIDEAL" 939825 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-414 936980 937067 937356 "FRIDEAL2" 937692 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-413 936113 936527 936568 "FRETRCT" 936573 NIL FRETRCT (NIL T) -9 NIL 936749 NIL) (-412 935225 935456 935807 "FRETRCT-" 935812 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-411 932313 933523 933582 "FRAMALG" 934464 NIL FRAMALG (NIL T T) -9 NIL 934756 NIL) (-410 930447 930902 931532 "FRAMALG-" 931755 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-409 924368 929922 930198 "FRAC" 930203 NIL FRAC (NIL T) -8 NIL NIL NIL) (-408 924004 924061 924168 "FRAC2" 924305 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-407 923640 923697 923804 "FR2" 923941 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-406 918153 921046 921074 "FPS" 922193 T FPS (NIL) -9 NIL 922750 NIL) (-405 917602 917711 917875 "FPS-" 918021 NIL FPS- (NIL T) -8 NIL NIL NIL) (-404 914904 916573 916601 "FPC" 916826 T FPC (NIL) -9 NIL 916968 NIL) (-403 914697 914737 914834 "FPC-" 914839 NIL FPC- (NIL T) -8 NIL NIL NIL) (-402 913487 914185 914226 "FPATMAB" 914231 NIL FPATMAB (NIL T) -9 NIL 914383 NIL) (-401 911160 911663 912089 "FPARFRAC" 913124 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-400 906553 907052 907734 "FORTRAN" 910592 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-399 904269 904769 905308 "FORT" 906034 T FORT (NIL) -7 NIL NIL NIL) (-398 901945 902507 902535 "FORTFN" 903595 T FORTFN (NIL) -9 NIL 904219 NIL) (-397 901709 901759 901787 "FORTCAT" 901846 T FORTCAT (NIL) -9 NIL 901908 NIL) (-396 899815 900325 900715 "FORMULA" 901339 T FORMULA (NIL) -8 NIL NIL NIL) (-395 899603 899633 899702 "FORMULA1" 899779 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-394 899126 899178 899351 "FORDER" 899545 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-393 898222 898386 898579 "FOP" 898953 T FOP (NIL) -7 NIL NIL NIL) (-392 896803 897502 897676 "FNLA" 898104 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-391 895532 895947 895975 "FNCAT" 896435 T FNCAT (NIL) -9 NIL 896695 NIL) (-390 895071 895491 895519 "FNAME" 895524 T FNAME (NIL) -8 NIL NIL NIL) (-389 893634 894597 894625 "FMTC" 894630 T FMTC (NIL) -9 NIL 894666 NIL) (-388 889967 891157 891786 "FMONOID" 893038 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-387 889159 889709 889858 "FM" 889863 NIL FM (NIL T T) -8 NIL NIL NIL) (-386 886583 887229 887257 "FMFUN" 888401 T FMFUN (NIL) -9 NIL 889109 NIL) (-385 885852 886033 886061 "FMC" 886351 T FMC (NIL) -9 NIL 886533 NIL) (-384 882931 883791 883845 "FMCAT" 885040 NIL FMCAT (NIL T T) -9 NIL 885535 NIL) (-383 881797 882697 882797 "FM1" 882876 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-382 879571 879987 880481 "FLOATRP" 881348 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-381 873146 877300 877921 "FLOAT" 878970 T FLOAT (NIL) -8 NIL NIL NIL) (-380 870584 871084 871662 "FLOATCP" 872613 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-379 869324 870162 870203 "FLINEXP" 870208 NIL FLINEXP (NIL T) -9 NIL 870301 NIL) (-378 868478 868713 869041 "FLINEXP-" 869046 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-377 867554 867698 867922 "FLASORT" 868330 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-376 864670 865538 865590 "FLALG" 866817 NIL FLALG (NIL T T) -9 NIL 867284 NIL) (-375 858406 862156 862197 "FLAGG" 863459 NIL FLAGG (NIL T) -9 NIL 864111 NIL) (-374 857132 857471 857961 "FLAGG-" 857966 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-373 856174 856317 856544 "FLAGG2" 856985 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-372 853025 854033 854092 "FINRALG" 855220 NIL FINRALG (NIL T T) -9 NIL 855728 NIL) (-371 852185 852414 852753 "FINRALG-" 852758 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-370 851565 851804 851832 "FINITE" 852028 T FINITE (NIL) -9 NIL 852135 NIL) (-369 843922 846109 846149 "FINAALG" 849816 NIL FINAALG (NIL T) -9 NIL 851269 NIL) (-368 839254 840304 841448 "FINAALG-" 842827 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-367 838622 839009 839112 "FILE" 839184 NIL FILE (NIL T) -8 NIL NIL NIL) (-366 837280 837618 837672 "FILECAT" 838356 NIL FILECAT (NIL T T) -9 NIL 838572 NIL) (-365 834996 836524 836552 "FIELD" 836592 T FIELD (NIL) -9 NIL 836672 NIL) (-364 833616 834001 834512 "FIELD-" 834517 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-363 831466 832251 832598 "FGROUP" 833302 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-362 830556 830720 830940 "FGLMICPK" 831298 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-361 826388 830481 830538 "FFX" 830543 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-360 825989 826050 826185 "FFSLPE" 826321 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-359 821978 822761 823557 "FFPOLY" 825225 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-358 821482 821518 821727 "FFPOLY2" 821936 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-357 817325 821401 821464 "FFP" 821469 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-356 812723 817236 817300 "FF" 817305 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-355 807849 812066 812256 "FFNBX" 812577 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-354 802778 806984 807242 "FFNBP" 807703 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-353 797411 802062 802273 "FFNB" 802611 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-352 796243 796441 796756 "FFINTBAS" 797208 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-351 792312 794532 794560 "FFIELDC" 795180 T FFIELDC (NIL) -9 NIL 795556 NIL) (-350 790974 791345 791842 "FFIELDC-" 791847 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-349 790543 790589 790713 "FFHOM" 790916 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-348 788238 788725 789242 "FFF" 790058 NIL FFF (NIL T) -7 NIL NIL NIL) (-347 783856 787980 788081 "FFCGX" 788181 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-346 779477 783588 783695 "FFCGP" 783799 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-345 774660 779204 779312 "FFCG" 779413 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-344 756056 765137 765223 "FFCAT" 770388 NIL FFCAT (NIL T T T) -9 NIL 771839 NIL) (-343 751254 752301 753615 "FFCAT-" 754845 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-342 750665 750708 750943 "FFCAT2" 751205 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-341 739986 743637 744857 "FEXPR" 749517 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-340 738986 739421 739462 "FEVALAB" 739546 NIL FEVALAB (NIL T) -9 NIL 739807 NIL) (-339 738145 738355 738693 "FEVALAB-" 738698 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-338 736711 737528 737731 "FDIV" 738044 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-337 733731 734472 734587 "FDIVCAT" 736155 NIL FDIVCAT (NIL T T T T) -9 NIL 736592 NIL) (-336 733493 733520 733690 "FDIVCAT-" 733695 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-335 732713 732800 733077 "FDIV2" 733400 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-334 731715 732029 732224 "FCTRDATA" 732538 T FCTRDATA (NIL) -8 NIL NIL NIL) (-333 730401 730660 730949 "FCPAK1" 731446 T FCPAK1 (NIL) -7 NIL NIL NIL) (-332 729500 729901 730042 "FCOMP" 730292 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-331 713202 716650 720188 "FC" 725982 T FC (NIL) -8 NIL NIL NIL) (-330 705565 709593 709633 "FAXF" 711435 NIL FAXF (NIL T) -9 NIL 712127 NIL) (-329 702841 703499 704324 "FAXF-" 704789 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-328 697893 702217 702393 "FARRAY" 702698 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-327 692787 694854 694907 "FAMR" 695930 NIL FAMR (NIL T T) -9 NIL 696390 NIL) (-326 691677 691979 692414 "FAMR-" 692419 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-325 690846 691599 691652 "FAMONOID" 691657 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-324 688632 689342 689395 "FAMONC" 690336 NIL FAMONC (NIL T T) -9 NIL 690722 NIL) (-323 687296 688386 688523 "FAGROUP" 688528 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-322 685091 685410 685813 "FACUTIL" 686977 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-321 684190 684375 684597 "FACTFUNC" 684901 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-320 676612 683493 683692 "EXPUPXS" 684046 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-319 674095 674635 675221 "EXPRTUBE" 676046 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-318 670366 670958 671688 "EXPRODE" 673434 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-317 655851 669015 669444 "EXPR" 669970 NIL EXPR (NIL T) -8 NIL NIL NIL) (-316 650405 650992 651798 "EXPR2UPS" 655149 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-315 650037 650094 650203 "EXPR2" 650342 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-314 641427 649190 649480 "EXPEXPAN" 649874 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-313 641227 641384 641413 "EXIT" 641418 T EXIT (NIL) -8 NIL NIL NIL) (-312 640707 640951 641042 "EXITAST" 641156 T EXITAST (NIL) -8 NIL NIL NIL) (-311 640334 640396 640509 "EVALCYC" 640639 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-310 639875 639993 640034 "EVALAB" 640204 NIL EVALAB (NIL T) -9 NIL 640308 NIL) (-309 639356 639478 639699 "EVALAB-" 639704 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-308 636724 638026 638054 "EUCDOM" 638609 T EUCDOM (NIL) -9 NIL 638959 NIL) (-307 635129 635571 636161 "EUCDOM-" 636166 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-306 622667 625427 628177 "ESTOOLS" 632399 T ESTOOLS (NIL) -7 NIL NIL NIL) (-305 622299 622356 622465 "ESTOOLS2" 622604 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-304 622050 622092 622172 "ESTOOLS1" 622251 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-303 616087 617695 617723 "ES" 620491 T ES (NIL) -9 NIL 621901 NIL) (-302 611034 612321 614138 "ES-" 614302 NIL ES- (NIL T) -8 NIL NIL NIL) (-301 607408 608169 608949 "ESCONT" 610274 T ESCONT (NIL) -7 NIL NIL NIL) (-300 607153 607185 607267 "ESCONT1" 607370 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-299 606828 606878 606978 "ES2" 607097 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-298 606458 606516 606625 "ES1" 606764 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-297 605674 605803 605979 "ERROR" 606302 T ERROR (NIL) -7 NIL NIL NIL) (-296 599066 605533 605624 "EQTBL" 605629 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-295 591569 594380 595829 "EQ" 597650 NIL -2045 (NIL T) -8 NIL NIL NIL) (-294 591201 591258 591367 "EQ2" 591506 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-293 586490 587539 588632 "EP" 590140 NIL EP (NIL T) -7 NIL NIL NIL) (-292 585090 585381 585687 "ENV" 586204 T ENV (NIL) -8 NIL NIL NIL) (-291 584184 584738 584766 "ENTIRER" 584771 T ENTIRER (NIL) -9 NIL 584817 NIL) (-290 580651 582139 582509 "EMR" 583983 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-289 579795 579980 580034 "ELTAGG" 580414 NIL ELTAGG (NIL T T) -9 NIL 580625 NIL) (-288 579514 579576 579717 "ELTAGG-" 579722 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-287 579303 579332 579386 "ELTAB" 579470 NIL ELTAB (NIL T T) -9 NIL NIL NIL) (-286 578429 578575 578774 "ELFUTS" 579154 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-285 578171 578227 578255 "ELEMFUN" 578360 T ELEMFUN (NIL) -9 NIL NIL NIL) (-284 578041 578062 578130 "ELEMFUN-" 578135 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-283 572885 576141 576182 "ELAGG" 577122 NIL ELAGG (NIL T) -9 NIL 577585 NIL) (-282 571170 571604 572267 "ELAGG-" 572272 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-281 569835 570113 570406 "ELABEXPR" 570897 T ELABEXPR (NIL) -8 NIL NIL NIL) (-280 562699 564502 565329 "EFUPXS" 569111 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-279 556149 557950 558760 "EFULS" 561975 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-278 553634 553992 554464 "EFSTRUC" 555781 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-277 543425 544991 546539 "EF" 552149 NIL EF (NIL T T) -7 NIL NIL NIL) (-276 542499 542910 543059 "EAB" 543296 T EAB (NIL) -8 NIL NIL NIL) (-275 541681 542458 542486 "E04UCFA" 542491 T E04UCFA (NIL) -8 NIL NIL NIL) (-274 540863 541640 541668 "E04NAFA" 541673 T E04NAFA (NIL) -8 NIL NIL NIL) (-273 540045 540822 540850 "E04MBFA" 540855 T E04MBFA (NIL) -8 NIL NIL NIL) (-272 539227 540004 540032 "E04JAFA" 540037 T E04JAFA (NIL) -8 NIL NIL NIL) (-271 538411 539186 539214 "E04GCFA" 539219 T E04GCFA (NIL) -8 NIL NIL NIL) (-270 537595 538370 538398 "E04FDFA" 538403 T E04FDFA (NIL) -8 NIL NIL NIL) (-269 536777 537554 537582 "E04DGFA" 537587 T E04DGFA (NIL) -8 NIL NIL NIL) (-268 530950 532302 533666 "E04AGNT" 535433 T E04AGNT (NIL) -7 NIL NIL NIL) (-267 529630 530136 530176 "DVARCAT" 530651 NIL DVARCAT (NIL T) -9 NIL 530850 NIL) (-266 528834 529046 529360 "DVARCAT-" 529365 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-265 521971 528633 528762 "DSMP" 528767 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-264 516752 517916 518984 "DROPT" 520923 T DROPT (NIL) -8 NIL NIL NIL) (-263 516417 516476 516574 "DROPT1" 516687 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-262 511532 512658 513795 "DROPT0" 515300 T DROPT0 (NIL) -7 NIL NIL NIL) (-261 509877 510202 510588 "DRAWPT" 511166 T DRAWPT (NIL) -7 NIL NIL NIL) (-260 504464 505387 506466 "DRAW" 508851 NIL DRAW (NIL T) -7 NIL NIL NIL) (-259 504097 504150 504268 "DRAWHACK" 504405 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-258 502828 503097 503388 "DRAWCX" 503826 T DRAWCX (NIL) -7 NIL NIL NIL) (-257 502343 502412 502563 "DRAWCURV" 502754 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-256 492811 494773 496888 "DRAWCFUN" 500248 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-255 489577 491506 491547 "DQAGG" 492176 NIL DQAGG (NIL T) -9 NIL 492449 NIL) (-254 477701 484170 484253 "DPOLCAT" 486105 NIL DPOLCAT (NIL T T T T) -9 NIL 486650 NIL) (-253 472537 473886 475844 "DPOLCAT-" 475849 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-252 465659 472398 472496 "DPMO" 472501 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-251 458684 465439 465606 "DPMM" 465611 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-250 458162 458376 458474 "DOMTMPLT" 458606 T DOMTMPLT (NIL) -8 NIL NIL NIL) (-249 457595 457964 458044 "DOMCTOR" 458102 T DOMCTOR (NIL) -8 NIL NIL NIL) (-248 456863 457117 457254 "DOMAIN" 457478 T DOMAIN (NIL) -8 NIL NIL NIL) (-247 450851 456498 456650 "DMP" 456764 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-246 450451 450507 450651 "DLP" 450789 NIL DLP (NIL T) -7 NIL NIL NIL) (-245 444273 449778 449968 "DLIST" 450293 NIL DLIST (NIL T) -8 NIL NIL NIL) (-244 441070 443126 443167 "DLAGG" 443717 NIL DLAGG (NIL T) -9 NIL 443947 NIL) (-243 439746 440410 440438 "DIVRING" 440530 T DIVRING (NIL) -9 NIL 440613 NIL) (-242 438983 439173 439473 "DIVRING-" 439478 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-241 437085 437442 437848 "DISPLAY" 438597 T DISPLAY (NIL) -7 NIL NIL NIL) (-240 430973 436999 437062 "DIRPROD" 437067 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-239 429821 430024 430289 "DIRPROD2" 430766 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-238 418596 424602 424655 "DIRPCAT" 425065 NIL DIRPCAT (NIL NIL T) -9 NIL 425905 NIL) (-237 415922 416564 417445 "DIRPCAT-" 417782 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-236 415209 415369 415555 "DIOSP" 415756 T DIOSP (NIL) -7 NIL NIL NIL) (-235 411864 414121 414162 "DIOPS" 414596 NIL DIOPS (NIL T) -9 NIL 414825 NIL) (-234 411413 411527 411718 "DIOPS-" 411723 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-233 410236 410864 410892 "DIFRING" 411079 T DIFRING (NIL) -9 NIL 411189 NIL) (-232 409882 409959 410111 "DIFRING-" 410116 NIL DIFRING- (NIL T) -8 NIL NIL NIL) (-231 407618 408890 408931 "DIFEXT" 409294 NIL DIFEXT (NIL T) -9 NIL 409588 NIL) (-230 405903 406331 406997 "DIFEXT-" 407002 NIL DIFEXT- (NIL T T) -8 NIL NIL NIL) (-229 403178 405435 405476 "DIAGG" 405481 NIL DIAGG (NIL T) -9 NIL 405501 NIL) (-228 402562 402719 402971 "DIAGG-" 402976 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-227 397979 401521 401798 "DHMATRIX" 402331 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-226 393591 394500 395510 "DFSFUN" 396989 T DFSFUN (NIL) -7 NIL NIL NIL) (-225 388669 392522 392834 "DFLOAT" 393299 T DFLOAT (NIL) -8 NIL NIL NIL) (-224 386932 387213 387602 "DFINTTLS" 388377 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-223 383961 384953 385353 "DERHAM" 386598 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-222 381762 383736 383825 "DEQUEUE" 383905 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-221 381016 381149 381332 "DEGRED" 381624 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-220 377446 378191 379037 "DEFINTRF" 380244 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-219 375001 375470 376062 "DEFINTEF" 376965 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-218 374351 374621 374736 "DEFAST" 374906 T DEFAST (NIL) -8 NIL NIL NIL) (-217 368355 373946 374095 "DECIMAL" 374222 T DECIMAL (NIL) -8 NIL NIL NIL) (-216 365867 366325 366831 "DDFACT" 367899 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-215 365463 365506 365657 "DBLRESP" 365818 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-214 363335 363696 364056 "DBASE" 365230 NIL DBASE (NIL T) -8 NIL NIL NIL) (-213 362577 362815 362961 "DATAARY" 363234 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-212 361683 362536 362564 "D03FAFA" 362569 T D03FAFA (NIL) -8 NIL NIL NIL) (-211 360790 361642 361670 "D03EEFA" 361675 T D03EEFA (NIL) -8 NIL NIL NIL) (-210 358740 359206 359695 "D03AGNT" 360321 T D03AGNT (NIL) -7 NIL NIL NIL) (-209 358029 358699 358727 "D02EJFA" 358732 T D02EJFA (NIL) -8 NIL NIL NIL) (-208 357318 357988 358016 "D02CJFA" 358021 T D02CJFA (NIL) -8 NIL NIL NIL) (-207 356607 357277 357305 "D02BHFA" 357310 T D02BHFA (NIL) -8 NIL NIL NIL) (-206 355896 356566 356594 "D02BBFA" 356599 T D02BBFA (NIL) -8 NIL NIL NIL) (-205 349093 350682 352288 "D02AGNT" 354310 T D02AGNT (NIL) -7 NIL NIL NIL) (-204 346861 347384 347930 "D01WGTS" 348567 T D01WGTS (NIL) -7 NIL NIL NIL) (-203 345928 346820 346848 "D01TRNS" 346853 T D01TRNS (NIL) -8 NIL NIL NIL) (-202 344996 345887 345915 "D01GBFA" 345920 T D01GBFA (NIL) -8 NIL NIL NIL) (-201 344064 344955 344983 "D01FCFA" 344988 T D01FCFA (NIL) -8 NIL NIL NIL) (-200 343132 344023 344051 "D01ASFA" 344056 T D01ASFA (NIL) -8 NIL NIL NIL) (-199 342200 343091 343119 "D01AQFA" 343124 T D01AQFA (NIL) -8 NIL NIL NIL) (-198 341268 342159 342187 "D01APFA" 342192 T D01APFA (NIL) -8 NIL NIL NIL) (-197 340336 341227 341255 "D01ANFA" 341260 T D01ANFA (NIL) -8 NIL NIL NIL) (-196 339404 340295 340323 "D01AMFA" 340328 T D01AMFA (NIL) -8 NIL NIL NIL) (-195 338472 339363 339391 "D01ALFA" 339396 T D01ALFA (NIL) -8 NIL NIL NIL) (-194 337540 338431 338459 "D01AKFA" 338464 T D01AKFA (NIL) -8 NIL NIL NIL) (-193 336608 337499 337527 "D01AJFA" 337532 T D01AJFA (NIL) -8 NIL NIL NIL) (-192 329903 331456 333017 "D01AGNT" 335067 T D01AGNT (NIL) -7 NIL NIL NIL) (-191 329240 329368 329520 "CYCLOTOM" 329771 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-190 325974 326688 327415 "CYCLES" 328533 T CYCLES (NIL) -7 NIL NIL NIL) (-189 325286 325420 325591 "CVMP" 325835 NIL CVMP (NIL T) -7 NIL NIL NIL) (-188 323127 323385 323754 "CTRIGMNP" 325014 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-187 322563 322921 322994 "CTOR" 323074 T CTOR (NIL) -8 NIL NIL NIL) (-186 322072 322294 322395 "CTORKIND" 322482 T CTORKIND (NIL) -8 NIL NIL NIL) (-185 321363 321679 321707 "CTORCAT" 321889 T CTORCAT (NIL) -9 NIL 322002 NIL) (-184 320961 321072 321231 "CTORCAT-" 321236 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-183 320450 320664 320762 "CTORCALL" 320883 T CTORCALL (NIL) -8 NIL NIL NIL) (-182 319824 319923 320076 "CSTTOOLS" 320347 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-181 315623 316280 317038 "CRFP" 319136 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-180 315098 315344 315436 "CRCEAST" 315551 T CRCEAST (NIL) -8 NIL NIL NIL) (-179 314145 314330 314558 "CRAPACK" 314902 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-178 313529 313630 313834 "CPMATCH" 314021 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-177 313254 313282 313388 "CPIMA" 313495 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-176 309602 310274 310993 "COORDSYS" 312589 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-175 309014 309135 309277 "CONTOUR" 309480 T CONTOUR (NIL) -8 NIL NIL NIL) (-174 304905 307017 307509 "CONTFRAC" 308554 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-173 304785 304806 304834 "CONDUIT" 304871 T CONDUIT (NIL) -9 NIL NIL NIL) (-172 303873 304427 304455 "COMRING" 304460 T COMRING (NIL) -9 NIL 304512 NIL) (-171 302927 303231 303415 "COMPPROP" 303709 T COMPPROP (NIL) -8 NIL NIL NIL) (-170 302588 302623 302751 "COMPLPAT" 302886 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-169 292879 302397 302506 "COMPLEX" 302511 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-168 292515 292572 292679 "COMPLEX2" 292816 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-167 292233 292268 292366 "COMPFACT" 292474 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-166 276313 286307 286347 "COMPCAT" 287351 NIL COMPCAT (NIL T) -9 NIL 288699 NIL) (-165 265825 268752 272379 "COMPCAT-" 272735 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-164 265554 265582 265685 "COMMUPC" 265791 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-163 265348 265382 265441 "COMMONOP" 265515 T COMMONOP (NIL) -7 NIL NIL NIL) (-162 264904 265099 265186 "COMM" 265281 T COMM (NIL) -8 NIL NIL NIL) (-161 264480 264708 264783 "COMMAAST" 264849 T COMMAAST (NIL) -8 NIL NIL NIL) (-160 263729 263923 263951 "COMBOPC" 264289 T COMBOPC (NIL) -9 NIL 264464 NIL) (-159 262625 262835 263077 "COMBINAT" 263519 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-158 259082 259656 260283 "COMBF" 262047 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-157 257840 258198 258433 "COLOR" 258867 T COLOR (NIL) -8 NIL NIL NIL) (-156 257316 257561 257653 "COLONAST" 257768 T COLONAST (NIL) -8 NIL NIL NIL) (-155 256956 257003 257128 "CMPLXRT" 257263 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-154 256404 256656 256755 "CLLCTAST" 256877 T CLLCTAST (NIL) -8 NIL NIL NIL) (-153 251902 252934 254014 "CLIP" 255344 T CLIP (NIL) -7 NIL NIL NIL) (-152 250248 251008 251247 "CLIF" 251729 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-151 246423 248394 248435 "CLAGG" 249364 NIL CLAGG (NIL T) -9 NIL 249900 NIL) (-150 244845 245302 245885 "CLAGG-" 245890 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-149 244389 244474 244614 "CINTSLPE" 244754 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-148 241890 242361 242909 "CHVAR" 243917 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-147 241064 241618 241646 "CHARZ" 241651 T CHARZ (NIL) -9 NIL 241666 NIL) (-146 240818 240858 240936 "CHARPOL" 241018 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-145 239876 240463 240491 "CHARNZ" 240538 T CHARNZ (NIL) -9 NIL 240594 NIL) (-144 237842 238566 238901 "CHAR" 239561 T CHAR (NIL) -8 NIL NIL NIL) (-143 237568 237629 237657 "CFCAT" 237768 T CFCAT (NIL) -9 NIL NIL NIL) (-142 236813 236924 237106 "CDEN" 237452 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-141 232778 235966 236246 "CCLASS" 236553 T CCLASS (NIL) -8 NIL NIL NIL) (-140 232085 232228 232391 "CATEGORY" 232635 T -10 (NIL) -8 NIL NIL NIL) (-139 231658 232004 232052 "CATCTOR" 232057 T CATCTOR (NIL) -8 NIL NIL NIL) (-138 231109 231361 231459 "CATAST" 231580 T CATAST (NIL) -8 NIL NIL NIL) (-137 230585 230830 230922 "CASEAST" 231037 T CASEAST (NIL) -8 NIL NIL NIL) (-136 225594 226614 227367 "CARTEN" 229888 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-135 224702 224850 225071 "CARTEN2" 225441 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-134 223018 223852 224109 "CARD" 224465 T CARD (NIL) -8 NIL NIL NIL) (-133 222594 222822 222897 "CAPSLAST" 222963 T CAPSLAST (NIL) -8 NIL NIL NIL) (-132 222098 222306 222334 "CACHSET" 222466 T CACHSET (NIL) -9 NIL 222544 NIL) (-131 221568 221890 221918 "CABMON" 221968 T CABMON (NIL) -9 NIL 222024 NIL) (-130 221041 221272 221382 "BYTEORD" 221478 T BYTEORD (NIL) -8 NIL NIL NIL) (-129 220020 220575 220717 "BYTE" 220880 T BYTE (NIL) -8 NIL NIL 221002) (-128 215370 219525 219697 "BYTEBUF" 219868 T BYTEBUF (NIL) -8 NIL NIL NIL) (-127 212879 215062 215169 "BTREE" 215296 NIL BTREE (NIL T) -8 NIL NIL NIL) (-126 210328 212527 212649 "BTOURN" 212789 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-125 207698 209798 209839 "BTCAT" 209907 NIL BTCAT (NIL T) -9 NIL 209984 NIL) (-124 207365 207445 207594 "BTCAT-" 207599 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-123 202630 206508 206536 "BTAGG" 206758 T BTAGG (NIL) -9 NIL 206919 NIL) (-122 202120 202245 202451 "BTAGG-" 202456 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-121 199115 201398 201613 "BSTREE" 201937 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-120 198253 198379 198563 "BRILL" 198971 NIL BRILL (NIL T) -7 NIL NIL NIL) (-119 194905 196979 197020 "BRAGG" 197669 NIL BRAGG (NIL T) -9 NIL 197927 NIL) (-118 193434 193840 194395 "BRAGG-" 194400 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-117 186663 192780 192964 "BPADICRT" 193282 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-116 184978 186600 186645 "BPADIC" 186650 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-115 184676 184706 184820 "BOUNDZRO" 184942 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-114 179904 181102 182014 "BOP" 183784 T BOP (NIL) -8 NIL NIL NIL) (-113 177685 178089 178564 "BOP1" 179462 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-112 176510 177259 177408 "BOOLEAN" 177556 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 175789 176193 176247 "BMODULE" 176252 NIL BMODULE (NIL T T) -9 NIL 176317 NIL) (-110 171590 175587 175660 "BITS" 175736 T BITS (NIL) -8 NIL NIL NIL) (-109 171011 171130 171270 "BINDING" 171470 T BINDING (NIL) -8 NIL NIL NIL) (-108 165018 170608 170756 "BINARY" 170883 T BINARY (NIL) -8 NIL NIL NIL) (-107 162798 164273 164314 "BGAGG" 164574 NIL BGAGG (NIL T) -9 NIL 164711 NIL) (-106 162629 162661 162752 "BGAGG-" 162757 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 161700 162013 162218 "BFUNCT" 162444 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 160390 160568 160856 "BEZOUT" 161524 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 156859 159242 159572 "BBTREE" 160093 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 156593 156646 156674 "BASTYPE" 156793 T BASTYPE (NIL) -9 NIL NIL NIL) (-101 156445 156474 156547 "BASTYPE-" 156552 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 155879 155955 156107 "BALFACT" 156356 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 154735 155294 155480 "AUTOMOR" 155724 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 154461 154466 154492 "ATTREG" 154497 T ATTREG (NIL) -9 NIL NIL NIL) (-97 152713 153158 153510 "ATTRBUT" 154127 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 152321 152541 152607 "ATTRAST" 152665 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 151857 151970 151996 "ATRIG" 152197 T ATRIG (NIL) -9 NIL NIL NIL) (-94 151666 151707 151794 "ATRIG-" 151799 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 151311 151497 151523 "ASTCAT" 151528 T ASTCAT (NIL) -9 NIL 151558 NIL) (-92 151038 151097 151216 "ASTCAT-" 151221 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 149187 150814 150902 "ASTACK" 150981 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 147692 147989 148354 "ASSOCEQ" 148869 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 146724 147351 147475 "ASP9" 147599 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 146487 146672 146711 "ASP8" 146716 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-87 145355 146092 146234 "ASP80" 146376 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-86 144253 144990 145122 "ASP7" 145254 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-85 143207 143930 144048 "ASP78" 144166 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-84 142176 142887 143004 "ASP77" 143121 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-83 141088 141814 141945 "ASP74" 142076 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-82 139988 140723 140855 "ASP73" 140987 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-81 139092 139814 139914 "ASP6" 139919 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 138036 138769 138887 "ASP55" 139005 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 136985 137710 137829 "ASP50" 137948 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 136073 136686 136796 "ASP4" 136906 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-77 135161 135774 135884 "ASP49" 135994 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-76 133945 134700 134868 "ASP42" 135050 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 132721 133478 133648 "ASP41" 133832 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-74 131671 132398 132516 "ASP35" 132634 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 131436 131619 131658 "ASP34" 131663 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 131173 131240 131316 "ASP33" 131391 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 130066 130808 130940 "ASP31" 131072 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 129831 130014 130053 "ASP30" 130058 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 129566 129635 129711 "ASP29" 129786 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 129331 129514 129553 "ASP28" 129558 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 129096 129279 129318 "ASP27" 129323 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 128180 128794 128905 "ASP24" 129016 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 127256 127982 128094 "ASP20" 128099 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 126344 126957 127067 "ASP1" 127177 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-63 125286 126018 126137 "ASP19" 126256 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-62 125023 125090 125166 "ASP12" 125241 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-61 123875 124622 124766 "ASP10" 124910 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-60 121726 123719 123810 "ARRAY2" 123815 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 117491 121374 121488 "ARRAY1" 121643 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-58 116523 116696 116917 "ARRAY12" 117314 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-57 110835 112753 112828 "ARR2CAT" 115458 NIL ARR2CAT (NIL T T T) -9 NIL 116216 NIL) (-56 108269 109013 109967 "ARR2CAT-" 109972 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 107586 107896 108021 "ARITY" 108162 T ARITY (NIL) -8 NIL NIL NIL) (-54 106362 106514 106813 "APPRULE" 107422 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 106013 106061 106180 "APPLYORE" 106308 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 104960 105278 105473 "ANY" 105836 T ANY (NIL) -8 NIL NIL NIL) (-51 104238 104361 104518 "ANY1" 104834 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-50 101768 102675 103002 "ANTISYM" 103962 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 101260 101475 101571 "ANON" 101690 T ANON (NIL) -8 NIL NIL NIL) (-48 95509 99799 100253 "AN" 100824 T AN (NIL) -8 NIL NIL NIL) (-47 91407 92795 92846 "AMR" 93594 NIL AMR (NIL T T) -9 NIL 94194 NIL) (-46 90519 90740 91103 "AMR-" 91108 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 74958 90436 90497 "ALIST" 90502 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 71760 74552 74721 "ALGSC" 74876 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 68315 68870 69477 "ALGPKG" 71200 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 67592 67693 67877 "ALGMFACT" 68201 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 63543 64150 64768 "ALGMANIP" 67152 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 54913 63169 63319 "ALGFF" 63476 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 54109 54240 54419 "ALGFACT" 54771 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 53050 53650 53688 "ALGEBRA" 53693 NIL ALGEBRA (NIL T) -9 NIL 53734 NIL) (-37 52768 52827 52959 "ALGEBRA-" 52964 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 34861 50770 50822 "ALAGG" 50958 NIL ALAGG (NIL T T) -9 NIL 51119 NIL) (-35 34397 34510 34536 "AHYP" 34737 T AHYP (NIL) -9 NIL NIL NIL) (-34 33328 33576 33602 "AGG" 34101 T AGG (NIL) -9 NIL 34380 NIL) (-33 32762 32924 33138 "AGG-" 33143 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 30568 30991 31396 "AF" 32404 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30048 30293 30383 "ADDAST" 30496 T ADDAST (NIL) -8 NIL NIL NIL) (-30 29316 29575 29731 "ACPLOT" 29910 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 18639 26443 26481 "ACFS" 27088 NIL ACFS (NIL T) -9 NIL 27327 NIL) (-28 16666 17156 17918 "ACFS-" 17923 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 12784 14713 14739 "ACF" 15618 T ACF (NIL) -9 NIL 16031 NIL) (-26 11488 11822 12315 "ACF-" 12320 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 11060 11255 11281 "ABELSG" 11373 T ABELSG (NIL) -9 NIL 11438 NIL) (-24 10927 10952 11018 "ABELSG-" 11023 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 10270 10557 10583 "ABELMON" 10753 T ABELMON (NIL) -9 NIL 10865 NIL) (-22 9934 10018 10156 "ABELMON-" 10161 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 9282 9654 9680 "ABELGRP" 9752 T ABELGRP (NIL) -9 NIL 9827 NIL) (-20 8745 8874 9090 "ABELGRP-" 9095 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4334 8084 8123 "A1AGG" 8128 NIL A1AGG (NIL T) -9 NIL 8168 NIL) (-18 30 1252 2814 "A1AGG-" 2819 NIL A1AGG- (NIL T T) -8 NIL NIL NIL))
\ No newline at end of file diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase index e6b302ec..f203a999 100644 --- a/src/share/algebra/operation.daase +++ b/src/share/algebra/operation.daase @@ -1,9770 +1,8801 @@ -(731999 . 3452830388) -(((*1 *1) (-5 *1 (-578))) - ((*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-861)))) - ((*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1267)) (-5 *1 (-861)))) +(732467 . 3453332751) +(((*1 *1) (-5 *1 (-580))) + ((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-863)))) + ((*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1269)) (-5 *1 (-863)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1155)) (-5 *4 (-860)) (-5 *2 (-1267)) (-5 *1 (-861)))) + (-12 (-5 *3 (-1157)) (-5 *4 (-862)) (-5 *2 (-1269)) (-5 *1 (-863)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-564)) (-5 *2 (-1267)) (-5 *1 (-1153 *4)) - (-4 *4 (-1097)) (-4 *4 (-1212))))) + (-12 (-5 *3 (-566)) (-5 *2 (-1269)) (-5 *1 (-1155 *4)) + (-4 *4 (-1099)) (-4 *4 (-1214))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) + (-5 *1 (-747))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) +(((*1 *1 *2) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-217))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1093 (-843 (-381)))) (-5 *2 (-1093 (-843 (-225)))) + (-5 *1 (-306))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1171 (-952 *6))) (-4 *6 (-558)) + (-4 *2 (-949 (-409 (-952 *6)) *5 *4)) (-5 *1 (-732 *5 *4 *6 *2)) + (-4 *5 (-793)) + (-4 *4 (-13 (-850) (-10 -8 (-15 -3136 ((-1175) $)))))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-566)) (-5 *1 (-696 *2)) (-4 *2 (-1240 *3))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-558)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) + (-5 *2 (-644 *1)) (-4 *1 (-1064 *3 *4 *5))))) +(((*1 *2 *3 *3) + (-12 (|has| *2 (-6 (-4419 "*"))) (-4 *5 (-375 *2)) (-4 *6 (-375 *2)) + (-4 *2 (-1049)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1240 *2)) + (-4 *4 (-687 *2 *5 *6))))) +(((*1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-393))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1171 *1)) (-5 *4 (-1175)) (-4 *1 (-27)) + (-5 *2 (-644 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1171 *1)) (-4 *1 (-27)) (-5 *2 (-644 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-952 *1)) (-4 *1 (-27)) (-5 *2 (-644 *1)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1175)) (-4 *4 (-558)) (-5 *2 (-644 *1)) + (-4 *1 (-29 *4)))) + ((*1 *2 *1) (-12 (-4 *3 (-558)) (-5 *2 (-644 *1)) (-4 *1 (-29 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) - (-4 *4 (-848)) (-4 *2 (-556)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) - (-4 *4 (-848)) (-4 *2 (-556))))) + (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) + (-4 *4 (-375 *2))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-862))) ((*1 *1 *1 *1) (-5 *1 (-862))) + ((*1 *1 *1) (-5 *1 (-862)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-642 (-2 (|:| |val| (-642 *8)) (|:| -2138 *9)))) - (-5 *4 (-769)) (-4 *8 (-1062 *5 *6 *7)) (-4 *9 (-1068 *5 *6 *7 *8)) - (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *2 (-1267)) - (-5 *1 (-1066 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-642 (-2 (|:| |val| (-642 *8)) (|:| -2138 *9)))) - (-5 *4 (-769)) (-4 *8 (-1062 *5 *6 *7)) (-4 *9 (-1106 *5 *6 *7 *8)) - (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *2 (-1267)) - (-5 *1 (-1142 *5 *6 *7 *8 *9))))) -(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-316 (-379))) (-5 *1 (-305))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197))))) -(((*1 *2 *3) - (-12 (-4 *4 (-349)) (-5 *2 (-956 (-1169 *4))) (-5 *1 (-357 *4)) - (-5 *3 (-1169 *4))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-941 *3) (-941 *3))) (-5 *1 (-176 *3)) - (-4 *3 (-13 (-363) (-1197) (-1000)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-645 *3)) (-4 *3 (-1097))))) -(((*1 *1 *1) (|partial| -4 *1 (-1148)))) + (-12 (-5 *3 (-644 (-689 *5))) (-4 *5 (-308)) (-4 *5 (-1049)) + (-5 *2 (-1264 (-1264 *5))) (-5 *1 (-1029 *5)) (-5 *4 (-1264 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1197)))))) -(((*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1212))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-822))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1173)) - (-4 *5 (-13 (-556) (-1036 (-564)) (-147))) - (-5 *2 - (-2 (|:| -3872 (-407 (-950 *5))) (|:| |coeff| (-407 (-950 *5))))) - (-5 *1 (-570 *5)) (-5 *3 (-407 (-950 *5)))))) -(((*1 *1 *1 *1) (-4 *1 (-302))) ((*1 *1 *1) (-4 *1 (-302)))) -(((*1 *1 *1) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1212))))) + (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) + (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 *3)) + (-5 *1 (-977 *4 *5 *6 *3)) (-4 *3 (-1064 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-644 *3)) (-4 *3 (-1064 *4 *5 *6)) (-4 *4 (-558)) + (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-977 *4 *5 *6 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) + (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 (-644 *7) (-644 *7))) (-5 *2 (-644 *7)) + (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-558)) (-4 *5 (-793)) + (-4 *6 (-850)) (-5 *1 (-977 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-556)) (-5 *2 (-112)) (-5 *1 (-276 *4 *3)) - (-4 *3 (-13 (-430 *4) (-1000)))))) + (-12 (-5 *3 (-689 *4)) (-4 *4 (-365)) (-5 *2 (-1171 *4)) + (-5 *1 (-534 *4 *5 *6)) (-4 *5 (-365)) (-4 *6 (-13 (-365) (-848)))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-365)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) + (-5 *1 (-506 *4 *5 *6 *3)) (-4 *3 (-949 *4 *5 *6))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1049)) (-5 *1 (-1236 *3 *2)) (-4 *2 (-1240 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-791)) (-4 *6 (-848)) - (-4 *7 (-947 *4 *5 *6)) (-5 *2 (-642 (-642 *7))) - (-5 *1 (-448 *4 *5 *6 *7)) (-5 *3 (-642 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-791)) - (-4 *7 (-848)) (-4 *8 (-947 *5 *6 *7)) (-5 *2 (-642 (-642 *8))) - (-5 *1 (-448 *5 *6 *7 *8)) (-5 *3 (-642 *8))))) -(((*1 *1 *2) - (-12 (-5 *2 (-642 *3)) (-4 *3 (-1212)) (-5 *1 (-1153 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1238 *3)) - (-4 *5 (-1238 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1153 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-564)) (-5 *4 (-418 *2)) (-4 *2 (-947 *7 *5 *6)) - (-5 *1 (-740 *5 *6 *7 *2)) (-4 *5 (-791)) (-4 *6 (-848)) - (-4 *7 (-307))))) + (-12 (-4 *1 (-839)) + (-5 *3 + (-2 (|:| |fn| (-317 (-225))) (|:| -3968 (-644 (-225))) + (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) + (|:| |ub| (-644 (-843 (-225)))))) + (-5 *2 (-1035)))) + ((*1 *2 *3) + (-12 (-4 *1 (-839)) + (-5 *3 + (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3968 (-644 (-225))))) + (-5 *2 (-1035))))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1212)) - (-4 *4 (-373 *2)) (-4 *5 (-373 *2)))) + (-12 (-5 *3 (-566)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1214)) + (-4 *4 (-375 *2)) (-4 *5 (-375 *2)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-373 *2)) - (-4 *5 (-373 *2)) (-4 *2 (-1212)))) + (-12 (-5 *3 (-566)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-375 *2)) + (-4 *5 (-375 *2)) (-4 *2 (-1214)))) ((*1 *1 *1 *2) - (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1212)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1212)))) + (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1214)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1214)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-642 (-564))) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) - (-14 *4 (-564)) (-14 *5 (-769)))) + (-12 (-5 *3 (-644 (-566))) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) + (-14 *4 (-566)) (-14 *5 (-771)))) ((*1 *2 *1 *3 *3 *3 *3) - (-12 (-5 *3 (-564)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-769)))) + (-12 (-5 *3 (-566)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-771)))) ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-564)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-769)))) + (-12 (-5 *3 (-566)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-771)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-564)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-769)))) + (-12 (-5 *3 (-566)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-771)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-564)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-769)))) + (-12 (-5 *3 (-566)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-771)))) ((*1 *2 *1) - (-12 (-4 *2 (-172)) (-5 *1 (-136 *3 *4 *2)) (-14 *3 (-564)) - (-14 *4 (-769)))) + (-12 (-4 *2 (-172)) (-5 *1 (-136 *3 *4 *2)) (-14 *3 (-566)) + (-14 *4 (-771)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1173)) (-5 *2 (-245 (-1155))) (-5 *1 (-214 *4)) + (-12 (-5 *3 (-1175)) (-5 *2 (-245 (-1157))) (-5 *1 (-214 *4)) (-4 *4 - (-13 (-848) - (-10 -8 (-15 -4369 ((-1155) $ *3)) (-15 -1639 ((-1267) $)) - (-15 -2973 ((-1267) $))))))) + (-13 (-850) + (-10 -8 (-15 -4376 ((-1157) $ *3)) (-15 -1659 ((-1269) $)) + (-15 -2559 ((-1269) $))))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-987)) (-5 *1 (-214 *3)) + (-12 (-5 *2 (-989)) (-5 *1 (-214 *3)) (-4 *3 - (-13 (-848) - (-10 -8 (-15 -4369 ((-1155) $ (-1173))) (-15 -1639 ((-1267) $)) - (-15 -2973 ((-1267) $))))))) + (-13 (-850) + (-10 -8 (-15 -4376 ((-1157) $ (-1175))) (-15 -1659 ((-1269) $)) + (-15 -2559 ((-1269) $))))))) ((*1 *2 *1 *3) - (-12 (-5 *3 "count") (-5 *2 (-769)) (-5 *1 (-245 *4)) (-4 *4 (-848)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-245 *3)) (-4 *3 (-848)))) + (-12 (-5 *3 "count") (-5 *2 (-771)) (-5 *1 (-245 *4)) (-4 *4 (-850)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-245 *3)) (-4 *3 (-850)))) ((*1 *1 *1 *2) - (-12 (-5 *2 "unique") (-5 *1 (-245 *3)) (-4 *3 (-848)))) + (-12 (-5 *2 "unique") (-5 *1 (-245 *3)) (-4 *3 (-850)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1180)) (-5 *1 (-250)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-286 *3 *2)) (-4 *3 (-1097)) (-4 *2 (-1212)))) + (-12 (-4 *1 (-287 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1214)))) ((*1 *2 *1 *3 *2) - (-12 (-4 *1 (-288 *3 *2)) (-4 *3 (-1097)) (-4 *2 (-1212)))) + (-12 (-4 *1 (-289 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1214)))) ((*1 *2 *1 *2) - (-12 (-4 *3 (-172)) (-5 *1 (-289 *3 *2 *4 *5 *6 *7)) - (-4 *2 (-1238 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) + (-12 (-4 *3 (-172)) (-5 *1 (-290 *3 *2 *4 *5 *6 *7)) + (-4 *2 (-1240 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-642 *1)) (-4 *1 (-302)))) - ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) - ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) - ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-644 *1)) (-4 *1 (-303)))) + ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) + ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) + ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) ((*1 *2 *1 *2 *2) - (-12 (-4 *1 (-342 *2 *3 *4)) (-4 *2 (-1216)) (-4 *3 (-1238 *2)) - (-4 *4 (-1238 (-407 *3))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-417 *2)) (-4 *2 (-172)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1173)) (-5 *2 (-1155)) (-5 *1 (-502)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1173)) (-5 *2 (-52)) (-5 *1 (-630)))) + (-12 (-4 *1 (-344 *2 *3 *4)) (-4 *2 (-1218)) (-4 *3 (-1240 *2)) + (-4 *4 (-1240 (-409 *3))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-4 *1 (-419 *2)) (-4 *2 (-172)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1157)) (-5 *1 (-504)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-52)) (-5 *1 (-632)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1229 (-564))) (-4 *1 (-649 *3)) (-4 *3 (-1212)))) + (-12 (-5 *2 (-1231 (-566))) (-4 *1 (-651 *3)) (-4 *3 (-1214)))) ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-769)) (-5 *1 (-673 *2)) (-4 *2 (-1097)))) + (-12 (-5 *3 (-771)) (-5 *1 (-675 *2)) (-4 *2 (-1099)))) ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-642 (-564))) (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047)) - (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-860)))) + (-12 (-5 *2 (-644 (-566))) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) + (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-642 (-890 *4))) (-5 *1 (-890 *4)) - (-4 *4 (-1097)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-901 *2)) (-4 *2 (-1097)))) + (-12 (-5 *2 (-114)) (-5 *3 (-644 (-892 *4))) (-5 *1 (-892 *4)) + (-4 *4 (-1099)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-903 *2)) (-4 *2 (-1099)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-769)) (-5 *2 (-903 *4)) (-5 *1 (-902 *4)) - (-4 *4 (-1097)))) + (-12 (-5 *3 (-771)) (-5 *2 (-905 *4)) (-5 *1 (-904 *4)) + (-4 *4 (-1099)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-240 *4 *2)) (-14 *4 (-919)) (-4 *2 (-363)) - (-5 *1 (-991 *4 *2)))) + (-12 (-5 *3 (-240 *4 *2)) (-14 *4 (-921)) (-4 *2 (-365)) + (-5 *1 (-993 *4 *2)))) ((*1 *2 *1 *3) - (-12 (-5 *3 "value") (-4 *1 (-1008 *2)) (-4 *2 (-1212)))) - ((*1 *2 *1) (-12 (-5 *1 (-1024 *2)) (-4 *2 (-1212)))) + (-12 (-5 *3 "value") (-4 *1 (-1010 *2)) (-4 *2 (-1214)))) + ((*1 *2 *1) (-12 (-5 *1 (-1026 *2)) (-4 *2 (-1214)))) ((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-564)) (-4 *1 (-1051 *4 *5 *2 *6 *7)) (-4 *2 (-1047)) + (-12 (-5 *3 (-566)) (-4 *1 (-1053 *4 *5 *2 *6 *7)) (-4 *2 (-1049)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-564)) (-4 *1 (-1051 *4 *5 *2 *6 *7)) - (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1047)))) + (-12 (-5 *3 (-566)) (-4 *1 (-1053 *4 *5 *2 *6 *7)) + (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1049)))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-919)) (-4 *4 (-1097)) - (-4 *5 (-13 (-1047) (-884 *4) (-612 (-890 *4)))) - (-5 *1 (-1073 *4 *5 *2)) - (-4 *2 (-13 (-430 *5) (-884 *4) (-612 (-890 *4)))))) + (-12 (-5 *3 (-921)) (-4 *4 (-1099)) + (-4 *5 (-13 (-1049) (-886 *4) (-614 (-892 *4)))) + (-5 *1 (-1075 *4 *5 *2)) + (-4 *2 (-13 (-432 *5) (-886 *4) (-614 (-892 *4)))))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-919)) (-4 *4 (-1097)) - (-4 *5 (-13 (-1047) (-884 *4) (-612 (-890 *4)))) - (-5 *1 (-1074 *4 *5 *2)) - (-4 *2 (-13 (-430 *5) (-884 *4) (-612 (-890 *4)))))) + (-12 (-5 *3 (-921)) (-4 *4 (-1099)) + (-4 *5 (-13 (-1049) (-886 *4) (-614 (-892 *4)))) + (-5 *1 (-1076 *4 *5 *2)) + (-4 *2 (-13 (-432 *5) (-886 *4) (-614 (-892 *4)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-642 (-564))) (-4 *1 (-1100 *3 *4 *5 *6 *7)) - (-4 *3 (-1097)) (-4 *4 (-1097)) (-4 *5 (-1097)) (-4 *6 (-1097)) - (-4 *7 (-1097)))) + (-12 (-5 *2 (-644 (-566))) (-4 *1 (-1102 *3 *4 *5 *6 *7)) + (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) + (-4 *7 (-1099)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-564)) (-4 *1 (-1100 *3 *4 *5 *6 *7)) (-4 *3 (-1097)) - (-4 *4 (-1097)) (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *7 (-1097)))) - ((*1 *1 *1 *1) (-4 *1 (-1141))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-1173)))) + (-12 (-5 *2 (-566)) (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) + (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)))) + ((*1 *1 *1 *1) (-4 *1 (-1143))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-1175)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-407 *1)) (-4 *1 (-1238 *2)) (-4 *2 (-1047)) - (-4 *2 (-363)))) + (-12 (-5 *3 (-409 *1)) (-4 *1 (-1240 *2)) (-4 *2 (-1049)) + (-4 *2 (-365)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-407 *1)) (-4 *1 (-1238 *3)) (-4 *3 (-1047)) - (-4 *3 (-556)))) + (-12 (-5 *2 (-409 *1)) (-4 *1 (-1240 *3)) (-4 *3 (-1049)) + (-4 *3 (-558)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1240 *2 *3)) (-4 *3 (-790)) (-4 *2 (-1047)))) + (-12 (-4 *1 (-1242 *2 *3)) (-4 *3 (-792)) (-4 *2 (-1049)))) ((*1 *2 *1 *3) - (-12 (-5 *3 "last") (-4 *1 (-1250 *2)) (-4 *2 (-1212)))) + (-12 (-5 *3 "last") (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) ((*1 *1 *1 *2) - (-12 (-5 *2 "rest") (-4 *1 (-1250 *3)) (-4 *3 (-1212)))) + (-12 (-5 *2 "rest") (-4 *1 (-1252 *3)) (-4 *3 (-1214)))) ((*1 *2 *1 *3) - (-12 (-5 *3 "first") (-4 *1 (-1250 *2)) (-4 *2 (-1212))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-642 *8)) (-5 *4 (-642 *9)) (-4 *8 (-1062 *5 *6 *7)) - (-4 *9 (-1068 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-791)) - (-4 *7 (-848)) (-5 *2 (-769)) (-5 *1 (-1066 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-642 *8)) (-5 *4 (-642 *9)) (-4 *8 (-1062 *5 *6 *7)) - (-4 *9 (-1106 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-791)) - (-4 *7 (-848)) (-5 *2 (-769)) (-5 *1 (-1142 *5 *6 *7 *8 *9))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1010)) (-5 *2 (-860))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) - (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) - (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-66 FUNCT1)))) - (-5 *2 (-1033)) (-5 *1 (-751))))) -(((*1 *2 *2) - (-12 (-4 *3 (-452)) (-4 *4 (-791)) (-4 *5 (-848)) - (-4 *6 (-1062 *3 *4 *5)) (-5 *1 (-622 *3 *4 *5 *6 *7 *2)) - (-4 *7 (-1068 *3 *4 *5 *6)) (-4 *2 (-1106 *3 *4 *5 *6))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1062 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-791)) - (-4 *2 (-848)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) - (-4 *4 (-848))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1235 *4 *5)) (-5 *3 (-642 *5)) (-14 *4 (-1173)) - (-4 *5 (-363)) (-5 *1 (-921 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-642 *5)) (-4 *5 (-363)) (-5 *2 (-1169 *5)) - (-5 *1 (-921 *4 *5)) (-14 *4 (-1173)))) - ((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-642 *6)) (-5 *4 (-769)) (-4 *6 (-363)) - (-5 *2 (-407 (-950 *6))) (-5 *1 (-1048 *5 *6)) (-14 *5 (-1173))))) -(((*1 *2 *1) (-12 (-5 *2 (-860)) (-5 *1 (-52))))) -(((*1 *1 *1) (-12 (-4 *1 (-1253 *2)) (-4 *2 (-1047))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1155)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) - (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-1267)) - (-5 *1 (-1069 *4 *5 *6 *7 *8)) (-4 *8 (-1068 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1155)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) - (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-1267)) - (-5 *1 (-1105 *4 *5 *6 *7 *8)) (-4 *8 (-1068 *4 *5 *6 *7))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-919)) (-4 *1 (-742 *3)) (-4 *3 (-172))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1173)) (-5 *2 (-1 (-1169 (-950 *4)) (-950 *4))) - (-5 *1 (-1270 *4)) (-4 *4 (-363))))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-687 (-225))) (-5 *4 (-564)) (-5 *5 (-112)) - (-5 *2 (-1033)) (-5 *1 (-743))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-642 (-941 *4))) (-4 *1 (-1131 *4)) (-4 *4 (-1047)) - (-5 *2 (-769))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) - (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-63 LSFUN2)))) - (-5 *2 (-1033)) (-5 *1 (-751))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-642 *1)) (-4 *1 (-1062 *4 *5 *6)) (-4 *4 (-1047)) - (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1062 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-791)) - (-4 *5 (-848)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1205 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-791)) - (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1205 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-791)) - (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *3 *2) - (-12 (-4 *1 (-785)) (-5 *2 (-1033)) - (-5 *3 - (-2 (|:| |fn| (-316 (-225))) - (|:| -4138 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))))) - ((*1 *2 *3 *2) - (-12 (-4 *1 (-785)) (-5 *2 (-1033)) - (-5 *3 - (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) - (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225))))))) -(((*1 *1 *2) (-12 (-5 *2 (-872)) (-5 *1 (-263)))) - ((*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-263))))) -(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1212)))) - ((*1 *1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-848)))) - ((*1 *1 *1) (-12 (-5 *1 (-675 *2)) (-4 *2 (-848)))) - ((*1 *1 *1) (-5 *1 (-860))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-860)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-846) (-363))) (-5 *1 (-1058 *2 *3)) - (-4 *3 (-1238 *2))))) -(((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-642 (-642 (-941 (-225))))) (-5 *4 (-872)) - (-5 *5 (-919)) (-5 *6 (-642 (-263))) (-5 *2 (-1263)) - (-5 *1 (-1266)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-642 (-642 (-941 (-225))))) (-5 *4 (-642 (-263))) - (-5 *2 (-1263)) (-5 *1 (-1266))))) -(((*1 *2 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-172))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-687 (-169 (-407 (-564))))) (-5 *2 (-642 (-169 *4))) - (-5 *1 (-762 *4)) (-4 *4 (-13 (-363) (-846)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-642 (-52))) (-5 *1 (-890 *3)) (-4 *3 (-1097))))) -(((*1 *2 *3 *2) - (|partial| -12 (-5 *3 (-919)) (-5 *1 (-442 *2)) - (-4 *2 (-1238 (-564))))) - ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-919)) (-5 *4 (-769)) (-5 *1 (-442 *2)) - (-4 *2 (-1238 (-564))))) - ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-919)) (-5 *4 (-642 (-769))) (-5 *1 (-442 *2)) - (-4 *2 (-1238 (-564))))) - ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *3 (-919)) (-5 *4 (-642 (-769))) (-5 *5 (-769)) - (-5 *1 (-442 *2)) (-4 *2 (-1238 (-564))))) - ((*1 *2 *3 *2 *4 *5 *6) - (|partial| -12 (-5 *3 (-919)) (-5 *4 (-642 (-769))) (-5 *5 (-769)) - (-5 *6 (-112)) (-5 *1 (-442 *2)) (-4 *2 (-1238 (-564))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-919)) (-5 *4 (-418 *2)) (-4 *2 (-1238 *5)) - (-5 *1 (-444 *5 *2)) (-4 *5 (-1047))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-769)) (-4 *4 (-13 (-556) (-147))) - (-5 *1 (-1232 *4 *2)) (-4 *2 (-1238 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-564)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1212)) - (-4 *5 (-373 *4)) (-4 *2 (-373 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-564)) (-4 *1 (-1051 *4 *5 *6 *7 *2)) (-4 *6 (-1047)) - (-4 *7 (-238 *5 *6)) (-4 *2 (-238 *4 *6))))) -(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1212)))) - ((*1 *1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-848)))) - ((*1 *1 *1) (-12 (-5 *1 (-675 *2)) (-4 *2 (-848)))) - ((*1 *1 *1) (-5 *1 (-860))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-860)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-846) (-363))) (-5 *1 (-1058 *2 *3)) - (-4 *3 (-1238 *2))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-556)) - (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-975 *3 *4 *5 *6)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-642 *7)) (-5 *3 (-112)) (-4 *7 (-1062 *4 *5 *6)) - (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) - (-5 *1 (-975 *4 *5 *6 *7))))) -(((*1 *2 *3 *2) - (-12 (-4 *2 (-13 (-363) (-846))) (-5 *1 (-181 *2 *3)) - (-4 *3 (-1238 (-169 *2))))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-363) (-846))) (-5 *1 (-181 *2 *3)) - (-4 *3 (-1238 (-169 *2)))))) -(((*1 *1) (-12 (-4 *1 (-1043 *2)) (-4 *2 (-23))))) -(((*1 *1) - (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-556)) (-4 *2 (-172))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) - (-12 (-5 *4 (-687 (-225))) (-5 *5 (-687 (-564))) (-5 *6 (-225)) - (-5 *3 (-564)) (-5 *2 (-1033)) (-5 *1 (-749))))) -(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-257))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1205 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-791)) - (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1205 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-791)) - (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820))))) -(((*1 *1 *1 *2) - (-12 (-4 *3 (-363)) (-4 *4 (-791)) (-4 *5 (-848)) - (-5 *1 (-504 *3 *4 *5 *2)) (-4 *2 (-947 *3 *4 *5)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-363)) (-4 *3 (-791)) (-4 *4 (-848)) - (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-947 *2 *3 *4))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-848)) (-5 *4 (-642 *6)) - (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-642 *4)))) - (-5 *1 (-1183 *6)) (-5 *5 (-642 *4))))) + (-12 (-5 *3 "first") (-4 *1 (-1252 *2)) (-4 *2 (-1214))))) +(((*1 *1 *1) + (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) +(((*1 *1 *1) + (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) (((*1 *2 *3) - (-12 (-5 *3 (-642 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) - (-4 *4 (-556))))) + (-12 (-5 *3 (-644 *4)) (-4 *4 (-1099)) (-5 *2 (-1269)) + (-5 *1 (-1215 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-644 *4)) (-4 *4 (-1099)) (-5 *2 (-1269)) + (-5 *1 (-1215 *4))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-429 *3 *2)) (-4 *3 (-13 (-172) (-38 (-409 (-566))))) + (-4 *2 (-13 (-850) (-21)))))) +(((*1 *1 *1) (-12 (-5 *1 (-1200 *2)) (-4 *2 (-1099))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-720)) (-5 *2 (-921)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-722)) (-5 *2 (-771))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-644 *5)) (-5 *4 (-566)) (-4 *5 (-848)) (-4 *5 (-365)) + (-5 *2 (-771)) (-5 *1 (-945 *5 *6)) (-4 *6 (-1240 *5))))) +(((*1 *1 *2 *3 *3 *3) + (-12 (-5 *2 (-1175)) (-5 *3 (-112)) (-5 *1 (-892 *4)) + (-4 *4 (-1099))))) +(((*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-531)))) + ((*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-531))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-316 (-225))) (-5 *4 (-1173)) - (-5 *5 (-1091 (-841 (-225)))) (-5 *2 (-642 (-225))) (-5 *1 (-192)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-316 (-225))) (-5 *4 (-1173)) - (-5 *5 (-1091 (-841 (-225)))) (-5 *2 (-642 (-225))) (-5 *1 (-300))))) -(((*1 *2 *3) - (-12 (-5 *3 (-642 *5)) (-4 *5 (-430 *4)) (-4 *4 (-556)) - (-5 *2 (-860)) (-5 *1 (-32 *4 *5))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) - (-12 (-5 *3 (-564)) (-5 *5 (-687 (-225))) - (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-70 APROD)))) (-5 *4 (-225)) - (-5 *2 (-1033)) (-5 *1 (-754))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4411)) (-4 *1 (-1250 *2)) (-4 *2 (-1212))))) + (-12 (-5 *3 (-2 (|:| |totdeg| (-771)) (|:| -2240 *4))) (-5 *5 (-771)) + (-4 *4 (-949 *6 *7 *8)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) + (-5 *2 + (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) + (|:| |polj| *4))) + (-5 *1 (-451 *6 *7 *8 *4))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4417)) (-4 *1 (-235 *3)) + (-4 *3 (-1099)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-283 *3)) (-4 *3 (-1214))))) (((*1 *2 *1) - (-12 (-4 *1 (-326 *2 *3)) (-4 *3 (-790)) (-4 *2 (-1047)) - (-4 *2 (-452)))) - ((*1 *2 *3) - (-12 (-5 *3 (-642 *4)) (-4 *4 (-1238 (-564))) (-5 *2 (-642 (-564))) - (-5 *1 (-486 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-850 *2)) (-4 *2 (-1047)) (-4 *2 (-452)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-947 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-791)) - (-4 *2 (-848)) (-4 *3 (-452))))) + (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) + (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-921)) + (-5 *2 (-1264 (-644 (-2 (|:| -2153 *4) (|:| -2104 (-1119)))))) + (-5 *1 (-348 *4)) (-4 *4 (-351))))) +(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1214)))) + ((*1 *1 *1) (-12 (-5 *1 (-672 *2)) (-4 *2 (-850)))) + ((*1 *1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-850)))) + ((*1 *1 *1) (-5 *1 (-862))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-848) (-365))) (-5 *1 (-1060 *2 *3)) + (-4 *3 (-1240 *2))))) (((*1 *2 *3) - (-12 (-5 *3 (-767)) - (-5 *2 - (-2 (|:| -4324 (-379)) (|:| -2493 (-1155)) - (|:| |explanations| (-642 (-1155))) (|:| |extra| (-1033)))) - (-5 *1 (-565)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-767)) (-5 *4 (-1060)) - (-5 *2 - (-2 (|:| -4324 (-379)) (|:| -2493 (-1155)) - (|:| |explanations| (-642 (-1155))) (|:| |extra| (-1033)))) - (-5 *1 (-565)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-785)) (-5 *3 (-1060)) - (-5 *4 - (-2 (|:| |fn| (-316 (-225))) - (|:| -4138 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *2 - (-2 (|:| -4324 (-379)) (|:| |explanations| (-1155)) - (|:| |extra| (-1033)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-785)) (-5 *3 (-1060)) - (-5 *4 - (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) - (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *2 - (-2 (|:| -4324 (-379)) (|:| |explanations| (-1155)) - (|:| |extra| (-1033)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-798)) (-5 *3 (-1060)) - (-5 *4 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) - (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *2 (-2 (|:| -4324 (-379)) (|:| |explanations| (-1155)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-806)) + (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *7 (-1064 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-644 *7)) (|:| |badPols| (-644 *7)))) + (-5 *1 (-977 *4 *5 *6 *7)) (-5 *3 (-644 *7))))) +(((*1 *2 *3) + (-12 (-5 *2 (-612 *4)) (-5 *1 (-611 *3 *4)) (-4 *3 (-1099)) + (-4 *4 (-1099))))) +(((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1240 *2)) (-4 *2 (-1218)) (-5 *1 (-148 *2 *4 *3)) + (-4 *3 (-1240 (-409 *4)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1214))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-850)) (-5 *1 (-126 *3))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1214)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-850)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-850)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-566)) (-4 *1 (-283 *3)) (-4 *3 (-1214)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-566)) (-4 *1 (-283 *2)) (-4 *2 (-1214)))) + ((*1 *1 *2) + (-12 (-5 *2 - (-2 (|:| -4324 (-379)) (|:| -2493 (-1155)) - (|:| |explanations| (-642 (-1155))))) - (-5 *1 (-803)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-806)) (-5 *4 (-1060)) + (-2 + (|:| -1928 + (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) + (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (|:| -2806 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1155 (-225))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -1680 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))))) + (-5 *1 (-561)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-771)) (-4 *1 (-695 *2)) (-4 *2 (-1099)))) + ((*1 *1 *2) + (-12 (-5 *2 - (-2 (|:| -4324 (-379)) (|:| -2493 (-1155)) - (|:| |explanations| (-642 (-1155))))) + (-2 + (|:| -1928 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) + (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) + (|:| -2806 + (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) + (|:| |expense| (-381)) (|:| |accuracy| (-381)) + (|:| |intermediateResults| (-381)))))) (-5 *1 (-803)))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-837)) (-5 *3 (-1060)) - (-5 *4 - (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3910 (-642 (-225))))) - (-5 *2 (-2 (|:| -4324 (-379)) (|:| |explanations| (-1155)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-837)) (-5 *3 (-1060)) - (-5 *4 - (-2 (|:| |fn| (-316 (-225))) (|:| -3910 (-642 (-225))) - (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) - (|:| |ub| (-642 (-841 (-225)))))) - (-5 *2 (-2 (|:| -4324 (-379)) (|:| |explanations| (-1155)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-839)) - (-5 *2 - (-2 (|:| -4324 (-379)) (|:| -2493 (-1155)) - (|:| |explanations| (-642 (-1155))))) - (-5 *1 (-838)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-839)) (-5 *4 (-1060)) - (-5 *2 - (-2 (|:| -4324 (-379)) (|:| -2493 (-1155)) - (|:| |explanations| (-642 (-1155))))) - (-5 *1 (-838)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-893)) (-5 *3 (-1060)) - (-5 *4 - (-2 (|:| |pde| (-642 (-316 (-225)))) - (|:| |constraints| - (-642 - (-2 (|:| |start| (-225)) (|:| |finish| (-225)) - (|:| |grid| (-769)) (|:| |boundaryType| (-564)) - (|:| |dStart| (-687 (-225))) (|:| |dFinish| (-687 (-225)))))) - (|:| |f| (-642 (-642 (-316 (-225))))) (|:| |st| (-1155)) - (|:| |tol| (-225)))) - (-5 *2 (-2 (|:| -4324 (-379)) (|:| |explanations| (-1155)))))) + (-12 (-5 *2 (-1269)) (-5 *1 (-1191 *3 *4)) (-4 *3 (-1099)) + (-4 *4 (-1099))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-1226 *3 *2)) (-4 *3 (-1049)) + (-4 *2 (-1255 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) +(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1214)))) + ((*1 *1 *1) (-12 (-5 *1 (-672 *2)) (-4 *2 (-850)))) + ((*1 *1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-850)))) + ((*1 *1 *1) (-5 *1 (-862))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-848) (-365))) (-5 *1 (-1060 *2 *3)) + (-4 *3 (-1240 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-644 (-1175))) (-4 *5 (-558)) + (-5 *2 (-644 (-644 (-295 (-409 (-952 *5)))))) (-5 *1 (-770 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-896)) - (-5 *2 - (-2 (|:| -4324 (-379)) (|:| -2493 (-1155)) - (|:| |explanations| (-642 (-1155))))) - (-5 *1 (-895)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-896)) (-5 *4 (-1060)) + (-12 (-5 *3 (-644 (-952 *4))) (-4 *4 (-558)) + (-5 *2 (-644 (-644 (-295 (-409 (-952 *4)))))) (-5 *1 (-770 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-689 *7)) + (-5 *5 + (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -1419 (-644 *6))) + *7 *6)) + (-4 *6 (-365)) (-4 *7 (-656 *6)) (-5 *2 - (-2 (|:| -4324 (-379)) (|:| -2493 (-1155)) - (|:| |explanations| (-642 (-1155))))) - (-5 *1 (-895))))) -(((*1 *2 *3) - (-12 (-4 *4 (-556)) (-5 *2 (-769)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-417 *4))))) -(((*1 *2 *2 *2) + (-2 (|:| |particular| (-3 (-1264 *6) "failed")) + (|:| -1419 (-644 (-1264 *6))))) + (-5 *1 (-813 *6 *7)) (-5 *4 (-1264 *6))))) +(((*1 *1) (-5 *1 (-439)))) +(((*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-644 (-112)))))) +(((*1 *1 *1) + (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-558)))) + ((*1 *1 *1) (|partial| -4 *1 (-722)))) +(((*1 *2 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1214))))) +(((*1 *1 *2) + (-12 (-5 *2 (-409 (-566))) (-4 *1 (-556 *3)) + (-4 *3 (-13 (-406) (-1199))))) + ((*1 *1 *2) (-12 (-4 *1 (-556 *2)) (-4 *2 (-13 (-406) (-1199))))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-556 *2)) (-4 *2 (-13 (-406) (-1199)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-558)) + (-4 *7 (-949 *3 *5 *6)) + (-5 *2 (-2 (|:| -3631 (-771)) (|:| -3103 *8) (|:| |radicand| *8))) + (-5 *1 (-953 *5 *6 *3 *7 *8)) (-5 *4 (-771)) + (-4 *8 + (-13 (-365) + (-10 -8 (-15 -2479 ($ *7)) (-15 -4157 (*7 $)) (-15 -4167 (*7 $)))))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-949 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *2 (-850)) (-4 *3 (-172)))) + ((*1 *2 *3 *3) + (-12 (-4 *2 (-558)) (-5 *1 (-969 *2 *3)) (-4 *3 (-1240 *2)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) + (-4 *4 (-850)) (-4 *2 (-558)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1240 *2)) (-4 *2 (-1049)) (-4 *2 (-172))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-566) (-566))) (-5 *1 (-363 *3)) (-4 *3 (-1099)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-771) (-771))) (-5 *1 (-388 *3)) (-4 *3 (-1099)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) + (-5 *1 (-649 *3 *4 *5)) (-4 *3 (-1099))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) + ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| -2131 (-687 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-687 *3)))) - (-4 *3 (-13 (-307) (-10 -8 (-15 -3282 ((-418 $) $))))) - (-4 *4 (-1238 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-642 (-941 (-225)))) (-5 *1 (-1263))))) + (-2 (|:| -2245 (-644 (-862))) (|:| -4047 (-644 (-862))) + (|:| |presup| (-644 (-862))) (|:| -1466 (-644 (-862))) + (|:| |args| (-644 (-862))))) + (-5 *1 (-1175))))) +(((*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-359 *3)) (-4 *3 (-351))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-919)) (-4 *5 (-556)) (-5 *2 (-687 *5)) - (-5 *1 (-954 *5 *3)) (-4 *3 (-654 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-642 (-1173))) (-4 *4 (-13 (-307) (-147))) - (-4 *5 (-13 (-848) (-612 (-1173)))) (-4 *6 (-791)) - (-5 *2 (-642 (-407 (-950 *4)))) (-5 *1 (-922 *4 *5 *6 *7)) - (-4 *7 (-947 *4 *6 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-114)) (-4 *4 (-556)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) - (-4 *5 (-430 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-114)) (-4 *4 (-556)) (-5 *2 (-112)) - (-5 *1 (-158 *4 *5)) (-4 *5 (-430 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-114)) (-4 *4 (-556)) (-5 *2 (-112)) - (-5 *1 (-276 *4 *5)) (-4 *5 (-13 (-430 *4) (-1000))))) - ((*1 *2 *3) - (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-301 *4)) (-4 *4 (-302)))) - ((*1 *2 *3) (-12 (-4 *1 (-302)) (-5 *3 (-114)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *3 (-114)) (-4 *5 (-1097)) (-5 *2 (-112)) - (-5 *1 (-429 *4 *5)) (-4 *4 (-430 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-114)) (-4 *4 (-556)) (-5 *2 (-112)) - (-5 *1 (-431 *4 *5)) (-4 *5 (-430 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-114)) (-4 *4 (-556)) (-5 *2 (-112)) - (-5 *1 (-628 *4 *5)) (-4 *5 (-13 (-430 *4) (-1000) (-1197)))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-427 *3 *2)) (-4 *3 (-13 (-172) (-38 (-407 (-564))))) - (-4 *2 (-13 (-848) (-21)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-687 (-407 (-950 (-564))))) + (-12 (-4 *5 (-365)) (-5 *2 - (-642 - (-2 (|:| |radval| (-316 (-564))) (|:| |radmult| (-564)) - (|:| |radvect| (-642 (-687 (-316 (-564)))))))) - (-5 *1 (-1029))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1097)) (-5 *2 (-642 *1)) - (-4 *1 (-430 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-642 (-890 *3))) (-5 *1 (-890 *3)) - (-4 *3 (-1097)))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) - (-5 *2 (-642 *1)) (-4 *1 (-947 *3 *4 *5)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1047)) - (-4 *7 (-947 *6 *4 *5)) (-5 *2 (-642 *3)) - (-5 *1 (-948 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-363) - (-10 -8 (-15 -2390 ($ *7)) (-15 -4120 (*7 $)) - (-15 -4131 (*7 $)))))))) -(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1212))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-769)) (-4 *1 (-1062 *3 *4 *5)) (-4 *3 (-1047)) - (-4 *4 (-791)) (-4 *5 (-848)) (-4 *3 (-556))))) + (-2 (|:| A (-689 *5)) + (|:| |eqs| + (-644 + (-2 (|:| C (-689 *5)) (|:| |g| (-1264 *5)) (|:| -3477 *6) + (|:| |rh| *5)))))) + (-5 *1 (-813 *5 *6)) (-5 *3 (-689 *5)) (-5 *4 (-1264 *5)) + (-4 *6 (-656 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-365)) (-4 *6 (-656 *5)) + (-5 *2 (-2 (|:| -4196 (-689 *6)) (|:| |vec| (-1264 *5)))) + (-5 *1 (-813 *5 *6)) (-5 *3 (-689 *6)) (-5 *4 (-1264 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-566)) (-4 *2 (-432 *3)) (-5 *1 (-32 *3 *2)) + (-4 *3 (-1038 *4)) (-4 *3 (-558))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-13 (-848) (-365))) (-5 *2 (-112)) (-5 *1 (-1060 *4 *3)) + (-4 *3 (-1240 *4))))) (((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-642 (-1173))) - (-14 *4 (-642 (-1173))) (-4 *5 (-387)))) - ((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-642 (-1173))) - (-14 *4 (-642 (-1173))) (-4 *5 (-387))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1207 *3)) (-4 *3 (-972))))) + (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1199)))))) (((*1 *2 *3) - (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1216)) (-4 *3 (-1238 *4)) - (-4 *5 (-1238 (-407 *3))) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) - (-4 *5 (-1238 (-407 *4))) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280))))) + (-12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-308)) + (-5 *2 (-409 (-420 (-952 *4)))) (-5 *1 (-1042 *4))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1231 (-566)))))) (((*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -3872 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-363)) (-4 *7 (-1238 *6)) - (-5 *2 - (-3 (-2 (|:| |answer| (-407 *7)) (|:| |a0| *6)) - (-2 (|:| -3872 (-407 *7)) (|:| |coeff| (-407 *7))) "failed")) - (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *5 (-112)) - (-5 *2 (-1033)) (-5 *1 (-751))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-791)) (-4 *8 (-848)) - (-4 *3 (-1062 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-642 *4)) - (|:| |todo| (-642 (-2 (|:| |val| (-642 *3)) (|:| -2138 *4)))))) - (-5 *1 (-1066 *6 *7 *8 *3 *4)) (-4 *4 (-1068 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) - (-4 *3 (-1062 *5 *6 *7)) + (-5 *5 + (-1 (-2 (|:| |ans| *6) (|:| -4361 *6) (|:| |sol?| (-112))) (-566) + *6)) + (-4 *6 (-365)) (-4 *7 (-1240 *6)) (-5 *2 - (-2 (|:| |done| (-642 *4)) - (|:| |todo| (-642 (-2 (|:| |val| (-642 *3)) (|:| -2138 *4)))))) - (-5 *1 (-1142 *5 *6 *7 *3 *4)) (-4 *4 (-1106 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *3 *5 *3) - (-12 (-5 *4 (-687 (-225))) (-5 *5 (-687 (-564))) (-5 *3 (-564)) - (-5 *2 (-1033)) (-5 *1 (-752))))) -(((*1 *2 *3 *4 *4 *3) - (|partial| -12 (-5 *4 (-610 *3)) - (-4 *3 (-13 (-430 *5) (-27) (-1197))) - (-4 *5 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564)))) - (-5 *2 (-2 (|:| -3872 *3) (|:| |coeff| *3))) - (-5 *1 (-566 *5 *3 *6)) (-4 *6 (-1097))))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-687 (-225))) (-5 *4 (-564)) (-5 *2 (-1033)) - (-5 *1 (-753))))) -(((*1 *1 *1) (-5 *1 (-860))) + (-3 (-2 (|:| |answer| (-409 *7)) (|:| |a0| *6)) + (-2 (|:| -4069 (-409 *7)) (|:| |coeff| (-409 *7))) "failed")) + (-5 *1 (-576 *6 *7)) (-5 *3 (-409 *7))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1049)) + (-4 *2 (-13 (-406) (-1038 *4) (-365) (-1199) (-285))) + (-5 *1 (-445 *4 *3 *2)) (-4 *3 (-1240 *4)))) + ((*1 *1 *1) (-4 *1 (-547))) + ((*1 *2 *1) (-12 (-5 *2 (-921)) (-5 *1 (-672 *3)) (-4 *3 (-850)))) + ((*1 *2 *1) (-12 (-5 *2 (-921)) (-5 *1 (-677 *3)) (-4 *3 (-850)))) + ((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-819 *3)) (-4 *3 (-850)))) + ((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-893 *3)) (-4 *3 (-850)))) + ((*1 *2 *1) (-12 (-4 *1 (-995 *3)) (-4 *3 (-1214)) (-5 *2 (-771)))) + ((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-1211 *3)) (-4 *3 (-1214)))) ((*1 *2 *1) - (-12 (-4 *1 (-1100 *2 *3 *4 *5 *6)) (-4 *3 (-1097)) (-4 *4 (-1097)) - (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *2 (-1097)))) - ((*1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-1154)))) - ((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1173))))) -(((*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-225)) (-5 *1 (-1265)))) - ((*1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-1265))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-564)) (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047)) - (-4 *4 (-373 *3)) (-4 *5 (-373 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-689 (-871 (-964 *3) (-964 *3)))) (-5 *1 (-964 *3)) - (-4 *3 (-1097))))) + (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1214)) (-4 *2 (-1002)) + (-4 *2 (-1049))))) +(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1266)))) + ((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1266))))) (((*1 *2 *3) - (-12 (-5 *2 (-418 (-1169 *1))) (-5 *1 (-316 *4)) (-5 *3 (-1169 *1)) - (-4 *4 (-452)) (-4 *4 (-556)) (-4 *4 (-1097)))) - ((*1 *2 *3) - (-12 (-4 *1 (-907)) (-5 *2 (-418 (-1169 *1))) (-5 *3 (-1169 *1))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1173)) (-5 *4 (-950 (-564))) (-5 *2 (-330)) - (-5 *1 (-332)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1173)) (-5 *4 (-1089 (-950 (-564)))) (-5 *2 (-330)) - (-5 *1 (-332)))) - ((*1 *1 *2 *2 *2) - (-12 (-5 *2 (-769)) (-5 *1 (-673 *3)) (-4 *3 (-1047)) - (-4 *3 (-1097))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1097)) (-5 *1 (-103 *3)))) + (-12 (-5 *3 (-644 *4)) (-4 *4 (-365)) (-5 *2 (-689 *4)) + (-5 *1 (-814 *4 *5)) (-4 *5 (-656 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-644 *5)) (-5 *4 (-771)) (-4 *5 (-365)) + (-5 *2 (-689 *5)) (-5 *1 (-814 *5 *6)) (-4 *6 (-656 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1264 (-317 (-225)))) (-5 *4 (-644 (-1175))) + (-5 *2 (-689 (-317 (-225)))) (-5 *1 (-205)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1099)) (-4 *6 (-900 *5)) (-5 *2 (-689 *6)) + (-5 *1 (-692 *5 *6 *3 *4)) (-4 *3 (-375 *6)) + (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4417))))))) +(((*1 *2 *3) + (-12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-308)) + (-5 *2 (-644 (-771))) (-5 *1 (-778 *3 *4 *5 *6 *7)) + (-4 *3 (-1240 *6)) (-4 *7 (-949 *6 *4 *5))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-566)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1214)) + (-4 *5 (-375 *4)) (-4 *2 (-375 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1097))))) -(((*1 *2 *1) - (-12 (-5 *2 (-642 (-564))) (-5 *1 (-1002 *3)) (-14 *3 (-564))))) + (-12 (-5 *3 (-566)) (-4 *1 (-1053 *4 *5 *6 *7 *2)) (-4 *6 (-1049)) + (-4 *7 (-238 *5 *6)) (-4 *2 (-238 *4 *6))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1264 *4)) (-5 *3 (-771)) (-4 *4 (-351)) + (-5 *1 (-530 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-689 (-317 (-566)))) (-5 *1 (-1031))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-409 (-952 (-169 (-566))))) (-5 *2 (-644 (-169 *4))) + (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-848))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-644 (-409 (-952 (-169 (-566)))))) + (-5 *4 (-644 (-1175))) (-5 *2 (-644 (-644 (-169 *5)))) + (-5 *1 (-380 *5)) (-4 *5 (-13 (-365) (-848)))))) +(((*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049))))) (((*1 *2 *1) - (-12 (-5 *2 (-1024 (-841 (-564)))) (-5 *1 (-594 *3)) (-4 *3 (-1047))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-642 (-316 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) - (-5 *1 (-210))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-872)) (-5 *3 (-642 (-263))) (-5 *1 (-261))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) - (-5 *1 (-750))))) + (-12 (-5 *2 (-171)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) + (-4 *4 (-1049))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-612 *3)) (-5 *5 (-1 (-1171 *3) (-1171 *3))) + (-4 *3 (-13 (-27) (-432 *6))) (-4 *6 (-558)) (-5 *2 (-587 *3)) + (-5 *1 (-553 *6 *3))))) +(((*1 *1) + (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-558)) (-4 *2 (-172))))) (((*1 *2 *3) - (-12 (-5 *3 (-1262 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) - (-5 *2 (-687 *4)))) - ((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-687 *4)) (-5 *1 (-416 *3 *4)) - (-4 *3 (-417 *4)))) - ((*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-687 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197))))) -(((*1 *1) (-5 *1 (-1267)))) + (-12 (-5 *3 (-1 *5 (-644 *5))) (-4 *5 (-1255 *4)) + (-4 *4 (-38 (-409 (-566)))) + (-5 *2 (-1 (-1155 *4) (-644 (-1155 *4)))) (-5 *1 (-1257 *4 *5))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-556)) (-5 *2 (-642 (-769))) (-5 *1 (-967 *4 *3)) - (-4 *3 (-1238 *4))))) + (-12 (-5 *2 (-644 *3)) (-5 *1 (-961 *3)) (-4 *3 (-547))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) + (-5 *1 (-755))))) +(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) + (-12 (-5 *3 (-1157)) (-5 *5 (-689 (-225))) (-5 *6 (-225)) + (-5 *7 (-689 (-566))) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-752))))) +(((*1 *1 *1) (-5 *1 (-862))) + ((*1 *2 *1) + (-12 (-4 *1 (-1102 *2 *3 *4 *5 *6)) (-4 *3 (-1099)) (-4 *4 (-1099)) + (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *2 (-1099)))) + ((*1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-1156)))) + ((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1175))))) +(((*1 *2 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) + (-5 *1 (-751))))) +(((*1 *2 *1 *1) + (|partial| -12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) + (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1153 (-225))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -4138 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *2 (-1033)) (-5 *1 (-305))))) + (-12 (-5 *3 (-644 *4)) (-4 *4 (-850)) (-5 *2 (-644 (-664 *4 *5))) + (-5 *1 (-627 *4 *5 *6)) (-4 *5 (-13 (-172) (-717 (-409 (-566))))) + (-14 *6 (-921))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1155 *4)) (-5 *3 (-1 *4 (-566))) (-4 *4 (-1049)) + (-5 *1 (-1159 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-919)) (-5 *2 (-1169 *4)) (-5 *1 (-357 *4)) - (-4 *4 (-349))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-974 *3 *4 *2 *5)) (-4 *3 (-1047)) (-4 *4 (-791)) - (-4 *2 (-848)) (-4 *5 (-1062 *3 *4 *2))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-363)) (-5 *1 (-764 *2 *3)) (-4 *2 (-706 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-850 *2)) (-4 *2 (-1047)) (-4 *2 (-363))))) -(((*1 *1 *2) - (-12 (-5 *2 (-642 *1)) (-4 *1 (-1131 *3)) (-4 *3 (-1047)))) - ((*1 *2 *2 *1) - (|partial| -12 (-5 *2 (-407 *1)) (-4 *1 (-1238 *3)) (-4 *3 (-1047)) - (-4 *3 (-556)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-1238 *2)) (-4 *2 (-1047)) (-4 *2 (-556))))) + (-12 (-5 *3 (-1171 *7)) (-4 *7 (-949 *6 *4 *5)) (-4 *4 (-793)) + (-4 *5 (-850)) (-4 *6 (-1049)) (-5 *2 (-1171 *6)) + (-5 *1 (-322 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) + (-5 *2 (-1035)) (-5 *1 (-751))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1 (-943 (-225)) (-225) (-225))) + (-5 *3 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-256))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1138)))) +(((*1 *1) (-5 *1 (-1269)))) +(((*1 *2 *1) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-108)))) + ((*1 *2 *1) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-217)))) + ((*1 *2 *1) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-489)))) + ((*1 *1 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558)) (-4 *2 (-308)))) + ((*1 *2 *1) + (-12 (-5 *2 (-409 (-566))) (-5 *1 (-1004 *3)) (-14 *3 (-566)))) + ((*1 *1 *1) (-4 *1 (-1059)))) +(((*1 *2) + (-12 (-4 *4 (-1218)) (-4 *5 (-1240 *4)) (-4 *6 (-1240 (-409 *5))) + (-5 *2 (-112)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) + (-4 *5 (-1240 (-409 *4))) (-5 *2 (-112))))) (((*1 *1 *1) - (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047))))) + (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) + (-4 *4 (-850))))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1049)) (-4 *2 (-687 *4 *5 *6)) + (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1240 *4)) (-4 *5 (-375 *4)) + (-4 *6 (-375 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-907)) (-4 *5 (-791)) (-4 *6 (-848)) - (-4 *7 (-947 *4 *5 *6)) (-5 *2 (-418 (-1169 *7))) - (-5 *1 (-904 *4 *5 *6 *7)) (-5 *3 (-1169 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-907)) (-4 *5 (-1238 *4)) (-5 *2 (-418 (-1169 *5))) - (-5 *1 (-905 *4 *5)) (-5 *3 (-1169 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-890 *3)) (-4 *3 (-1097))))) -(((*1 *1 *1 *2 *1) - (-12 (-5 *2 (-564)) (-5 *1 (-1153 *3)) (-4 *3 (-1212)))) - ((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4411)) (-4 *1 (-1250 *2)) (-4 *2 (-1212))))) -(((*1 *2 *2) - (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1197)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1212)) (-5 *2 (-642 *1)) (-4 *1 (-1008 *3)))) + (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-829)) (-5 *3 (-1157))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) + (-5 *1 (-751))))) +(((*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1059)))) + ((*1 *1 *1) + (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) + (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) + ((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)) (-4 *2 (-1059)))) + ((*1 *1 *1) (-4 *1 (-848))) + ((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172)) (-4 *2 (-1059)))) + ((*1 *1 *1) (-4 *1 (-1059))) ((*1 *1 *1) (-4 *1 (-1138)))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-644 *1)) (-4 *1 (-1064 *4 *5 *6)) (-4 *4 (-1049)) + (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *5 (-850)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-5 *2 (-642 (-1161 *3 *4))) (-5 *1 (-1161 *3 *4)) - (-14 *3 (-919)) (-4 *4 (-1047))))) -(((*1 *2 *1) (-12 (-4 *1 (-307)) (-5 *2 (-769))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434))))) -(((*1 *2 *3) - (-12 (-5 *3 (-919)) (-5 *2 (-1169 *4)) (-5 *1 (-357 *4)) - (-4 *4 (-349))))) -(((*1 *1 *1 *1) (-4 *1 (-143))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) - ((*1 *1 *1 *1) (-5 *1 (-860))) - ((*1 *2 *3 *4) - (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-564))) (-5 *1 (-1045)) - (-5 *3 (-564))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1238 (-407 (-564)))) (-5 *1 (-911 *3 *2)) - (-4 *2 (-1238 (-407 *3)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-642 (-263))) (-5 *1 (-1263)))) - ((*1 *2 *1) (-12 (-5 *2 (-642 (-263))) (-5 *1 (-1263)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-642 (-263))) (-5 *1 (-1264)))) - ((*1 *2 *1) (-12 (-5 *2 (-642 (-263))) (-5 *1 (-1264))))) -(((*1 *2 *3) - (-12 (-5 *3 (-687 *4)) (-4 *4 (-363)) (-5 *2 (-1169 *4)) - (-5 *1 (-532 *4 *5 *6)) (-4 *5 (-363)) (-4 *6 (-13 (-363) (-846)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1216)) (-4 *5 (-1238 *4)) - (-5 *2 (-2 (|:| -2968 (-407 *5)) (|:| |poly| *3))) - (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1238 (-407 *5)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-642 (-642 *3))) (-4 *3 (-1097)) (-5 *1 (-1184 *3))))) + (-12 (-4 *1 (-1207 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) + (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1207 *4 *5 *6 *3)) (-4 *4 (-558)) (-4 *5 (-793)) + (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112))))) (((*1 *2 *3) - (|partial| -12 (-5 *2 (-564)) (-5 *1 (-569 *3)) (-4 *3 (-1036 *2))))) -(((*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-1081 *3)) (-4 *3 (-132))))) -(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-925))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1137 *3 *4)) (-4 *3 (-13 (-1097) (-34))) - (-4 *4 (-13 (-1097) (-34)))))) + (|partial| -12 (-5 *2 (-566)) (-5 *1 (-571 *3)) (-4 *3 (-1038 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-644 (-864 *5))) (-14 *5 (-644 (-1175))) (-4 *6 (-454)) + (-5 *2 (-644 (-644 (-247 *5 *6)))) (-5 *1 (-473 *5 *6 *7)) + (-5 *3 (-644 (-247 *5 *6))) (-4 *7 (-454))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-555))))) (((*1 *2 *3) - (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1189 *4 *5)) - (-4 *4 (-1097)) (-4 *5 (-1097))))) + (-12 (-4 *4 (-558)) (-5 *2 (-112)) (-5 *1 (-277 *4 *3)) + (-4 *3 (-13 (-432 *4) (-1002)))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5) + (-12 (-5 *3 (-1157)) (-5 *4 (-566)) (-5 *5 (-689 (-225))) + (-5 *2 (-1035)) (-5 *1 (-757))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-644 (-508))) (-5 *2 (-508)) (-5 *1 (-485))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-264))) (-5 *1 (-1265)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 (-264))) (-5 *1 (-1265)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-264))) (-5 *1 (-1266)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 (-264))) (-5 *1 (-1266))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-13 (-365) (-147) (-1038 (-409 (-566))))) + (-4 *3 (-1240 *4)) (-5 *1 (-809 *4 *3 *2 *5)) (-4 *2 (-656 *3)) + (-4 *5 (-656 (-409 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-409 *5)) + (-4 *4 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *5 (-1240 *4)) + (-5 *1 (-809 *4 *5 *2 *6)) (-4 *2 (-656 *5)) (-4 *6 (-656 *3))))) +(((*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-1083 *3)) (-4 *3 (-132))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-612 *3)) (-4 *3 (-13 (-432 *5) (-27) (-1199))) + (-4 *5 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) + (-5 *2 (-587 *3)) (-5 *1 (-568 *5 *3 *6)) (-4 *6 (-1099))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-566)) (-5 *1 (-1188 *2)) (-4 *2 (-365))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1093 (-225))) + (-5 *2 (-1266)) (-5 *1 (-258))))) +(((*1 *2) + (-12 (-5 *2 (-1269)) (-5 *1 (-1191 *3 *4)) (-4 *3 (-1099)) + (-4 *4 (-1099))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1157)) (-5 *3 (-566)) (-5 *1 (-241))))) +(((*1 *1 *1) (-4 *1 (-547)))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-644 *6)) (-4 *6 (-850)) (-4 *4 (-365)) (-4 *5 (-793)) + (-5 *1 (-506 *4 *5 *6 *2)) (-4 *2 (-949 *4 *5 *6)))) + ((*1 *1 *1 *2) + (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) + (-5 *1 (-506 *3 *4 *5 *2)) (-4 *2 (-949 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1049)) + (-4 *2 (-13 (-406) (-1038 *4) (-365) (-1199) (-285))) + (-5 *1 (-445 *4 *3 *2)) (-4 *3 (-1240 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-112))))) +(((*1 *1 *1) (|partial| -4 *1 (-1150)))) +(((*1 *2 *1) + (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-850)) + (-4 *5 (-267 *4)) (-4 *6 (-793)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-958 (-771))) (-5 *1 (-334))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1175)) (-4 *5 (-365)) (-5 *2 (-1155 (-1155 (-952 *5)))) + (-5 *1 (-1272 *5)) (-5 *4 (-1155 (-952 *5)))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-365)) (-5 *1 (-766 *2 *3)) (-4 *2 (-708 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) + (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-452) (-1036 (-564)) (-637 (-564)))) - (-5 *1 (-420 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1197) (-430 *3))) - (-14 *4 (-1173)) (-14 *5 *2))) + (-12 (-5 *2 (-114)) (-4 *3 (-558)) (-5 *1 (-32 *3 *4)) + (-4 *4 (-432 *3)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-55)) (-5 *1 (-114)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-771)) (-5 *1 (-114)))) + ((*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-114)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-452) (-1036 (-564)) (-637 (-564)))) - (-4 *2 (-13 (-27) (-1197) (-430 *3) (-10 -8 (-15 -2390 ($ *4))))) - (-4 *4 (-846)) - (-4 *5 - (-13 (-1240 *2 *4) (-363) (-1197) - (-10 -8 (-15 -2199 ($ $)) (-15 -3703 ($ $))))) - (-5 *1 (-422 *3 *2 *4 *5 *6 *7)) (-4 *6 (-981 *5)) (-14 *7 (-1173))))) -(((*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1212))))) -(((*1 *1 *1) (-4 *1 (-545)))) -(((*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-525))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1229 *3)) (-4 *3 (-1212))))) -(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820))))) -(((*1 *2) (-12 (-5 *2 (-872)) (-5 *1 (-1265)))) - ((*1 *2 *2) (-12 (-5 *2 (-872)) (-5 *1 (-1265))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1264))))) -(((*1 *1 *1) (-4 *1 (-556)))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-901 *3)) (-4 *3 (-1097)) (-5 *2 (-1099 *3)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1097)) (-5 *2 (-1099 (-642 *4))) (-5 *1 (-902 *4)) - (-5 *3 (-642 *4)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1097)) (-5 *2 (-1099 (-1099 *4))) (-5 *1 (-902 *4)) - (-5 *3 (-1099 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *2 (-1099 *3)) (-5 *1 (-902 *3)) (-4 *3 (-1097))))) -(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) - (-12 (-5 *4 (-687 (-225))) (-5 *5 (-687 (-564))) (-5 *3 (-564)) - (-5 *2 (-1033)) (-5 *1 (-754))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-564) (-564))) (-5 *1 (-361 *3)) (-4 *3 (-1097)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-769) (-769))) (-5 *1 (-386 *3)) (-4 *3 (-1097)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) - (-5 *1 (-647 *3 *4 *5)) (-4 *3 (-1097))))) -(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820))))) + (-12 (-5 *2 (-114)) (-4 *3 (-558)) (-5 *1 (-158 *3 *4)) + (-4 *4 (-432 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-114)) (-5 *1 (-163)))) + ((*1 *2 *2) + (-12 (-5 *2 (-114)) (-4 *3 (-558)) (-5 *1 (-277 *3 *4)) + (-4 *4 (-13 (-432 *3) (-1002))))) + ((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-302 *3)) (-4 *3 (-303)))) + ((*1 *2 *2) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) + ((*1 *2 *2) + (-12 (-5 *2 (-114)) (-4 *4 (-1099)) (-5 *1 (-431 *3 *4)) + (-4 *3 (-432 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-114)) (-4 *3 (-558)) (-5 *1 (-433 *3 *4)) + (-4 *4 (-432 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-612 *3)) (-4 *3 (-1099)))) + ((*1 *2 *2) + (-12 (-5 *2 (-114)) (-4 *3 (-558)) (-5 *1 (-630 *3 *4)) + (-4 *4 (-13 (-432 *3) (-1002) (-1199))))) + ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1019))))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-564)) (-4 *1 (-649 *3)) (-4 *3 (-1212)))) + (-12 (-5 *2 (-566)) (-4 *1 (-651 *3)) (-4 *3 (-1214)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-564)) (-4 *1 (-649 *2)) (-4 *2 (-1212))))) -(((*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-1169 *3))))) + (-12 (-5 *3 (-566)) (-4 *1 (-651 *2)) (-4 *2 (-1214))))) +(((*1 *2 *1) + (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)) + (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1197)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *5 *4 *4 *4) - (-12 (-4 *6 (-848)) (-5 *3 (-642 *6)) (-5 *5 (-642 *3)) - (-5 *2 - (-2 (|:| |f1| *3) (|:| |f2| (-642 *5)) (|:| |f3| *5) - (|:| |f4| (-642 *5)))) - (-5 *1 (-1183 *6)) (-5 *4 (-642 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) - (-4 *7 (-1062 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-642 *7)) (|:| |badPols| (-642 *7)))) - (-5 *1 (-975 *4 *5 *6 *7)) (-5 *3 (-642 *7))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1047)) (-4 *2 (-685 *4 *5 *6)) - (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1238 *4)) (-4 *5 (-373 *4)) - (-4 *6 (-373 *4))))) + (-12 (-5 *2 (-644 (-952 *3))) (-4 *3 (-454)) (-5 *1 (-362 *3 *4)) + (-14 *4 (-644 (-1175))))) + ((*1 *2 *2) + (-12 (-5 *2 (-644 *6)) (-4 *6 (-949 *3 *4 *5)) (-4 *3 (-454)) + (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-452 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-644 *7)) (-5 *3 (-1157)) (-4 *7 (-949 *4 *5 *6)) + (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) + (-5 *1 (-452 *4 *5 *6 *7)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-644 *7)) (-5 *3 (-1157)) (-4 *7 (-949 *4 *5 *6)) + (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) + (-5 *1 (-452 *4 *5 *6 *7)))) + ((*1 *1 *1) + (-12 (-4 *2 (-365)) (-4 *3 (-793)) (-4 *4 (-850)) + (-5 *1 (-506 *2 *3 *4 *5)) (-4 *5 (-949 *2 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-644 (-780 *3 (-864 *4)))) (-4 *3 (-454)) + (-14 *4 (-644 (-1175))) (-5 *1 (-628 *3 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-843 *3)) (-4 *3 (-1099))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-642 (-1 (-112) *8))) (-4 *8 (-1062 *5 *6 *7)) - (-4 *5 (-556)) (-4 *6 (-791)) (-4 *7 (-848)) - (-5 *2 (-2 (|:| |goodPols| (-642 *8)) (|:| |badPols| (-642 *8)))) - (-5 *1 (-975 *5 *6 *7 *8)) (-5 *4 (-642 *8))))) -(((*1 *2 *3) - (-12 (-5 *3 (-564)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *2 (-1047)) - (-5 *1 (-321 *4 *5 *2 *6)) (-4 *6 (-947 *2 *4 *5))))) -(((*1 *1) (-5 *1 (-55)))) + (|partial| -12 (-5 *4 (-1175)) (-4 *5 (-614 (-892 (-566)))) + (-4 *5 (-886 (-566))) + (-4 *5 (-13 (-1038 (-566)) (-454) (-639 (-566)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) + (-5 *1 (-569 *5 *3)) (-4 *3 (-629)) + (-4 *3 (-13 (-27) (-1199) (-432 *5)))))) +(((*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1269)) (-5 *1 (-381)))) + ((*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-381))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1 (-112) *7 (-644 *7))) (-4 *1 (-1207 *4 *5 *6 *7)) + (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *1 *1) + (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) +(((*1 *2 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1214))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-644 (-1171 *5))) (-5 *3 (-1171 *5)) + (-4 *5 (-166 *4)) (-4 *4 (-547)) (-5 *1 (-149 *4 *5)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-644 *3)) (-4 *3 (-1240 *5)) + (-4 *5 (-1240 *4)) (-4 *4 (-351)) (-5 *1 (-360 *4 *5 *3)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-644 (-1171 (-566)))) (-5 *3 (-1171 (-566))) + (-5 *1 (-574)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-644 (-1171 *1))) (-5 *3 (-1171 *1)) + (-4 *1 (-909))))) (((*1 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1254 *2 *3 *4)) (-4 *2 (-1047)) (-14 *3 (-1173)) - (-14 *4 *2)))) -(((*1 *2 *3) - (-12 (-5 *2 (-1175 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1262 (-3 (-468) "undefined"))) (-5 *1 (-1263))))) -(((*1 *2 *1) (-12 (-4 *1 (-1090 *2)) (-4 *2 (-1212))))) -(((*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1182))))) + (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1199)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1184))))) (((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-769)) (-4 *3 (-1212)) (-4 *1 (-57 *3 *4 *5)) - (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) + (-12 (-5 *2 (-771)) (-4 *3 (-1214)) (-4 *1 (-57 *3 *4 *5)) + (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) ((*1 *1) (-5 *1 (-171))) - ((*1 *1) (-12 (-5 *1 (-213 *2 *3)) (-14 *2 (-919)) (-4 *3 (-1097)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1155)) (-4 *1 (-389)))) - ((*1 *1) (-5 *1 (-394))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-769)) (-4 *1 (-649 *3)) (-4 *3 (-1212)))) + ((*1 *1) (-12 (-5 *1 (-213 *2 *3)) (-14 *2 (-921)) (-4 *3 (-1099)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1157)) (-4 *1 (-391)))) + ((*1 *1) (-5 *1 (-396))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-771)) (-4 *1 (-651 *3)) (-4 *3 (-1214)))) ((*1 *1) - (-12 (-4 *3 (-1097)) (-5 *1 (-883 *2 *3 *4)) (-4 *2 (-1097)) - (-4 *4 (-664 *3)))) - ((*1 *1) (-12 (-5 *1 (-887 *2 *3)) (-4 *2 (-1097)) (-4 *3 (-1097)))) + (-12 (-4 *3 (-1099)) (-5 *1 (-885 *2 *3 *4)) (-4 *2 (-1099)) + (-4 *4 (-666 *3)))) + ((*1 *1) (-12 (-5 *1 (-889 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099)))) ((*1 *1 *2) - (-12 (-5 *1 (-1139 *3 *2)) (-14 *3 (-769)) (-4 *2 (-1047)))) - ((*1 *1) (-12 (-5 *1 (-1161 *2 *3)) (-14 *2 (-919)) (-4 *3 (-1047)))) - ((*1 *1 *1) (-5 *1 (-1173))) ((*1 *1) (-5 *1 (-1173))) - ((*1 *1) (-5 *1 (-1192)))) -(((*1 *2 *1) - (-12 (-5 *2 (-642 (-1198 *3))) (-5 *1 (-1198 *3)) (-4 *3 (-1097))))) -(((*1 *2 *3) - (-12 (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112)) - (-5 *1 (-975 *4 *5 *6 *3)) (-4 *3 (-1062 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-4 *4 (-38 (-407 (-564)))) - (-5 *2 (-2 (|:| -2933 (-1153 *4)) (|:| -2946 (-1153 *4)))) - (-5 *1 (-1159 *4)) (-5 *3 (-1153 *4))))) -(((*1 *2) - (-12 (-4 *1 (-349)) - (-5 *2 (-642 (-2 (|:| -2254 (-564)) (|:| -2817 (-564)))))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-556)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3710 *4))) - (-5 *1 (-967 *4 *3)) (-4 *3 (-1238 *4))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-407 (-950 *3))) (-5 *1 (-453 *3 *4 *5 *6)) - (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-919)) - (-14 *5 (-642 (-1173))) (-14 *6 (-1262 (-687 *3)))))) -(((*1 *1 *1 *1) (-5 *1 (-162))) - ((*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-162))))) + (-12 (-5 *1 (-1141 *3 *2)) (-14 *3 (-771)) (-4 *2 (-1049)))) + ((*1 *1) (-12 (-5 *1 (-1163 *2 *3)) (-14 *2 (-921)) (-4 *3 (-1049)))) + ((*1 *1 *1) (-5 *1 (-1175))) ((*1 *1) (-5 *1 (-1175))) + ((*1 *1) (-5 *1 (-1194)))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-531))))) (((*1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 (-564))) (-4 *3 (-1047)) (-5 *1 (-99 *3)))) + (-12 (-5 *2 (-1 *3 *3 (-566))) (-4 *3 (-1049)) (-5 *1 (-99 *3)))) ((*1 *1 *2 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1047)) (-5 *1 (-99 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1047)) (-5 *1 (-99 *3))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-316 (-225))) (-5 *1 (-267))))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1049)) (-5 *1 (-99 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1049)) (-5 *1 (-99 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-349)) (-5 *2 (-418 (-1169 (-1169 *4)))) - (-5 *1 (-1210 *4)) (-5 *3 (-1169 (-1169 *4)))))) + (-12 (-4 *4 (-27)) + (-4 *4 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) + (-4 *5 (-1240 *4)) (-5 *2 (-644 (-653 (-409 *5)))) + (-5 *1 (-657 *4 *5)) (-5 *3 (-653 (-409 *5)))))) +(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1214))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1064 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *2 (-850)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) + (-4 *4 (-850))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) + (-4 *6 (-793)) (-5 *2 (-644 (-644 (-566)))) + (-5 *1 (-924 *4 *5 *6 *7)) (-5 *3 (-566)) (-4 *7 (-949 *4 *6 *5))))) +(((*1 *1 *1) + (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-558)))) + ((*1 *1 *1) (|partial| -4 *1 (-722)))) +(((*1 *1 *2) (-12 (-5 *1 (-1026 *2)) (-4 *2 (-1214))))) (((*1 *1 *2) - (-12 (-5 *2 (-642 (-2 (|:| -1914 *3) (|:| -2683 *4)))) - (-4 *3 (-1097)) (-4 *4 (-1097)) (-4 *1 (-1188 *3 *4)))) - ((*1 *1) (-12 (-4 *1 (-1188 *2 *3)) (-4 *2 (-1097)) (-4 *3 (-1097))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-610 *3)) (-5 *5 (-1 (-1169 *3) (-1169 *3))) - (-4 *3 (-13 (-27) (-430 *6))) (-4 *6 (-556)) (-5 *2 (-585 *3)) - (-5 *1 (-551 *6 *3))))) + (-12 (-5 *2 (-644 (-2 (|:| -1928 *3) (|:| -2806 *4)))) + (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *1 (-1190 *3 *4)))) + ((*1 *1) (-12 (-4 *1 (-1190 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099))))) (((*1 *2 *3) - (-12 (-5 *2 (-564)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1047))))) -(((*1 *2 *3 *3) - (-12 (-4 *3 (-307)) (-4 *3 (-172)) (-4 *4 (-373 *3)) - (-4 *5 (-373 *3)) (-5 *2 (-2 (|:| -4332 *3) (|:| -1992 *3))) - (-5 *1 (-686 *3 *4 *5 *6)) (-4 *6 (-685 *3 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-2 (|:| -4332 *3) (|:| -1992 *3))) (-5 *1 (-698 *3)) - (-4 *3 (-307))))) -(((*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-564)) (-5 *1 (-241)))) - ((*1 *2 *3) - (-12 (-5 *3 (-642 (-1155))) (-5 *2 (-564)) (-5 *1 (-241))))) -(((*1 *2 *3 *4 *4 *4 *5 *5 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *5 (-225)) - (-5 *2 (-1033)) (-5 *1 (-749))))) + (-12 (-5 *3 (-1171 *6)) (-4 *6 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) + (-5 *2 (-1171 *7)) (-5 *1 (-322 *4 *5 *6 *7)) + (-4 *7 (-949 *6 *4 *5))))) +(((*1 *1 *2 *2 *3 *1) + (-12 (-5 *2 (-508)) (-5 *3 (-1103)) (-5 *1 (-292))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-1175)) + (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) + (-4 *4 (-13 (-29 *6) (-1199) (-959))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -1419 (-644 *4)))) + (-5 *1 (-801 *6 *4 *3)) (-4 *3 (-656 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-822))))) (((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) - (-4 *3 (-367 *4)))) - ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-978 *2)) (-4 *2 (-1047)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-941 (-225))) (-5 *1 (-1208)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1212)) (-4 *2 (-1047))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-263)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-263)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-263))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1047)) (-4 *2 (-685 *4 *5 *6)) - (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1238 *4)) (-4 *5 (-373 *4)) - (-4 *6 (-373 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1090 *3)) (-4 *3 (-1212)) (-5 *2 (-564))))) -(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) - (-12 (-5 *3 (-564)) (-5 *5 (-687 (-225))) - (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT)))) - (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-225)) - (-5 *2 (-1033)) (-5 *1 (-753)))) - ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) - (-12 (-5 *3 (-564)) (-5 *5 (-687 (-225))) - (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT)))) - (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-388)) - (-5 *4 (-225)) (-5 *2 (-1033)) (-5 *1 (-753))))) + (-12 (-4 *3 (-558)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-419 *3))))) +(((*1 *2) + (-12 (-4 *3 (-558)) (-5 *2 (-644 (-689 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-419 *3))))) +(((*1 *1 *1) (-4 *1 (-1143)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436))))) +(((*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1267)))) + ((*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1267))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-921)) (-5 *4 (-874)) (-5 *2 (-1269)) (-5 *1 (-1265)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-921)) (-5 *4 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1265)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1266))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) + (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-644 *7)) (-5 *3 (-112)) (-4 *7 (-1064 *4 *5 *6)) + (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) + (-5 *1 (-977 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-4 *1 (-1092 *3)) (-4 *3 (-1214)) (-5 *2 (-566))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1169 *5)) (-4 *5 (-363)) (-5 *2 (-642 *6)) - (-5 *1 (-532 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-846)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1047)) (-4 *5 (-1238 *4)) (-5 *2 (-1 *6 (-642 *6))) - (-5 *1 (-1256 *4 *5 *3 *6)) (-4 *3 (-654 *5)) (-4 *6 (-1253 *4))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-602 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-1212)) - (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1262 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) - (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4)))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1173)) (-5 *3 (-434)) (-4 *5 (-1097)) - (-5 *1 (-1103 *5 *4)) (-4 *4 (-430 *5))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-718)) (-5 *2 (-919)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-720)) (-5 *2 (-769))))) -(((*1 *2 *2) - (-12 (-5 *2 (-642 (-642 *6))) (-4 *6 (-947 *3 *5 *4)) - (-4 *3 (-13 (-307) (-147))) (-4 *4 (-13 (-848) (-612 (-1173)))) - (-4 *5 (-791)) (-5 *1 (-922 *3 *4 *5 *6))))) -(((*1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-241))))) + (-12 (-5 *4 (-644 *3)) (-4 *3 (-1240 *5)) (-4 *5 (-308)) + (-5 *2 (-771)) (-5 *1 (-457 *5 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) - (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-1105 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) - (-4 *3 (-1062 *5 *6 *7)) - (-5 *2 (-642 (-2 (|:| |val| (-112)) (|:| -2138 *4)))) - (-5 *1 (-1105 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3))))) -(((*1 *2 *2) (-12 (-5 *1 (-680 *2)) (-4 *2 (-1097))))) -(((*1 *1 *1) - (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1213 *3)) (-4 *3 (-1097))))) -(((*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-1173))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-642 (-1091 (-379)))) (-5 *3 (-642 (-263))) - (-5 *1 (-261)))) - ((*1 *1 *2) (-12 (-5 *2 (-642 (-1091 (-379)))) (-5 *1 (-263)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-642 (-1091 (-379)))) (-5 *1 (-468)))) - ((*1 *2 *1) (-12 (-5 *2 (-642 (-1091 (-379)))) (-5 *1 (-468))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1169 *9)) (-5 *4 (-642 *7)) (-5 *5 (-642 *8)) - (-4 *7 (-848)) (-4 *8 (-1047)) (-4 *9 (-947 *8 *6 *7)) - (-4 *6 (-791)) (-5 *2 (-1169 *8)) (-5 *1 (-321 *6 *7 *8 *9))))) + (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1255 *4)) (-5 *1 (-1257 *4 *2)) + (-4 *4 (-38 (-409 (-566))))))) (((*1 *2 *2) - (-12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-147)) - (-4 *3 (-307)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) - (-5 *1 (-975 *3 *4 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-817 *3)) (-4 *3 (-848)) (-5 *1 (-670 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1153 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1047)) - (-5 *3 (-407 (-564))) (-5 *1 (-1157 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1139 *4 *2)) (-14 *4 (-919)) - (-4 *2 (-13 (-1047) (-10 -7 (-6 (-4412 "*"))))) - (-5 *1 (-900 *4 *2))))) -(((*1 *2) (-12 (-5 *2 (-919)) (-5 *1 (-699)))) - ((*1 *2 *2) (-12 (-5 *2 (-919)) (-5 *1 (-699))))) -(((*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1175 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))) - ((*1 *1 *1) (-12 (-4 *1 (-672 *2)) (-4 *2 (-1212)))) - ((*1 *1 *1) (-4 *1 (-867 *2))) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) ((*1 *1 *1) - (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-790)) - (-4 *4 (-848))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1153 *3)) (-4 *3 (-1097)) - (-4 *3 (-1212))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-642 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-769)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *4 (-791)) (-4 *6 (-947 *3 *4 *5)) (-4 *3 (-452)) (-4 *5 (-848)) - (-5 *1 (-449 *3 *4 *5 *6))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1235 *5 *4)) (-4 *4 (-818)) (-14 *5 (-1173)) - (-5 *2 (-564)) (-5 *1 (-1111 *4 *5))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-363) (-846))) - (-5 *2 (-642 (-2 (|:| -1569 (-642 *3)) (|:| -1437 *5)))) - (-5 *1 (-181 *5 *3)) (-4 *3 (-1238 (-169 *5))))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-363) (-846))) - (-5 *2 (-642 (-2 (|:| -1569 (-642 *3)) (|:| -1437 *4)))) - (-5 *1 (-181 *4 *3)) (-4 *3 (-1238 (-169 *4)))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-564)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1212)) - (-4 *5 (-373 *4)) (-4 *3 (-373 *4))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-363)) (-5 *1 (-1023 *3 *2)) (-4 *2 (-654 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-363)) (-5 *2 (-2 (|:| -3359 *3) (|:| -1637 (-642 *5)))) - (-5 *1 (-1023 *5 *3)) (-5 *4 (-642 *5)) (-4 *3 (-654 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-941 *2)) (-5 *1 (-980 *2)) (-4 *2 (-1047))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1173)) (-5 *4 (-950 (-564))) (-5 *2 (-330)) - (-5 *1 (-332))))) + (-12 (-5 *1 (-1256 *2 *3 *4)) (-4 *2 (-1049)) (-14 *3 (-1175)) + (-14 *4 *2)))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-976 *3 *4 *2 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *2 (-850)) (-4 *5 (-1064 *3 *4 *2))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1163 *2 *3)) (-14 *2 (-921)) (-4 *3 (-1049))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) - (-5 *2 (-642 *4)) (-5 *1 (-1125 *3 *4)) (-4 *3 (-1238 *4)))) - ((*1 *2 *3 *3 *3) - (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) - (-5 *2 (-642 *3)) (-5 *1 (-1125 *4 *3)) (-4 *4 (-1238 *3))))) + (|partial| -12 (-5 *3 (-1157)) (-5 *2 (-381)) (-5 *1 (-786))))) +(((*1 *1 *2 *2) + (-12 (-5 *2 (-644 (-566))) (-5 *1 (-1004 *3)) (-14 *3 (-566))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) + (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) + (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) + (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-76 G JACOBG JACGEP)))) + (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-749))))) +(((*1 *2 *2) (-12 (-5 *1 (-682 *2)) (-4 *2 (-1099))))) +(((*1 *1 *1) + (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1049)) (-14 *3 (-644 (-1175))))) + ((*1 *1 *1) + (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1049) (-850))) + (-14 *3 (-644 (-1175)))))) (((*1 *2 *1) - (-12 (-5 *2 (-407 (-950 *3))) (-5 *1 (-453 *3 *4 *5 *6)) - (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-919)) - (-14 *5 (-642 (-1173))) (-14 *6 (-1262 (-687 *3)))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-780 *2)) (-4 *2 (-1047))))) + (-12 (|has| *1 (-6 -4417)) (-4 *1 (-491 *3)) (-4 *3 (-1214)) + (-5 *2 (-644 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-737 *3)) (-4 *3 (-1099)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 (-441))) (-5 *1 (-865))))) +(((*1 *2 *1 *1 *3 *4) + (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) + (-4 *5 (-13 (-1099) (-34))) (-4 *6 (-13 (-1099) (-34))) + (-5 *2 (-112)) (-5 *1 (-1139 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1097)) (-4 *6 (-1097)) - (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-682 *4 *5 *6)) (-4 *4 (-1097))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-642 *4)) (-4 *4 (-1097)) (-4 *4 (-1212)) (-5 *2 (-112)) - (-5 *1 (-1153 *4))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1024 (-841 (-564)))) - (-5 *3 (-1153 (-2 (|:| |k| (-564)) (|:| |c| *4)))) (-4 *4 (-1047)) - (-5 *1 (-594 *4))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467))))) -(((*1 *2 *1) (-12 (-4 *1 (-672 *3)) (-4 *3 (-1212)) (-5 *2 (-112))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) - (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-986 *4 *5 *6 *7 *3)) (-4 *3 (-1068 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) - (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1104 *4 *5 *6 *7 *3)) (-4 *3 (-1068 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *5 (-225)) - (-5 *2 (-1033)) (-5 *1 (-749))))) + (|partial| -12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *7 (-1064 *4 *5 *6)) + (-5 *2 (-2 (|:| |bas| (-478 *4 *5 *6 *7)) (|:| -3903 (-644 *7)))) + (-5 *1 (-977 *4 *5 *6 *7)) (-5 *3 (-644 *7))))) +(((*1 *1 *2) + (-12 (-5 *2 (-644 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) + (-14 *3 (-566)) (-14 *4 (-771))))) (((*1 *2 *3) - (-12 (-5 *3 (-642 (-225))) (-5 *2 (-642 (-1155))) (-5 *1 (-192)))) - ((*1 *2 *3) - (-12 (-5 *3 (-642 (-225))) (-5 *2 (-642 (-1155))) (-5 *1 (-300)))) - ((*1 *2 *3) - (-12 (-5 *3 (-642 (-225))) (-5 *2 (-642 (-1155))) (-5 *1 (-305))))) -(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) - (-5 *1 (-753))))) -(((*1 *2 *1) - (-12 (-4 *3 (-363)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-112)) - (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-947 *3 *4 *5)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-642 *6)) (-4 *6 (-848)) (-4 *4 (-363)) (-4 *5 (-791)) - (-5 *2 (-112)) (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-947 *4 *5 *6))))) + (-12 (-5 *3 (-1264 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) + (-5 *2 (-689 *4)))) + ((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-689 *4)) (-5 *1 (-418 *3 *4)) + (-4 *3 (-419 *4)))) + ((*1 *2) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-689 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-276))))) +(((*1 *2 *2) + (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1199)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-903 (-564))) (-5 *4 (-564)) (-5 *2 (-687 *4)) - (-5 *1 (-1026 *5)) (-4 *5 (-1047)))) - ((*1 *2 *3) - (-12 (-5 *3 (-642 (-564))) (-5 *2 (-687 (-564))) (-5 *1 (-1026 *4)) - (-4 *4 (-1047)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-642 (-903 (-564)))) (-5 *4 (-564)) - (-5 *2 (-642 (-687 *4))) (-5 *1 (-1026 *5)) (-4 *5 (-1047)))) - ((*1 *2 *3) - (-12 (-5 *3 (-642 (-642 (-564)))) (-5 *2 (-642 (-687 (-564)))) - (-5 *1 (-1026 *4)) (-4 *4 (-1047))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1262 *5)) (-4 *5 (-790)) (-5 *2 (-112)) - (-5 *1 (-843 *4 *5)) (-14 *4 (-769))))) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-373 *3)) - (-4 *5 (-373 *3)) (-5 *2 (-564)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-564))))) -(((*1 *2 *1) (-12 (-5 *2 (-642 (-1211))) (-5 *1 (-604))))) -(((*1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-860))))) -(((*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-848)) (-5 *1 (-121 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1212)) (-4 *1 (-107 *3))))) -(((*1 *2 *3) - (-12 (-4 *1 (-918)) (-5 *2 (-2 (|:| -2968 (-642 *1)) (|:| -4043 *1))) - (-5 *3 (-642 *1))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-452)) - (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) - (-5 *1 (-975 *3 *4 *5 *6))))) + (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) + (-5 *2 (-644 (-644 (-644 (-771)))))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-303)))) + ((*1 *1 *1) (-4 *1 (-303))) + ((*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) + ((*1 *1 *1) (-5 *1 (-862)))) +(((*1 *2 *1) + (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-644 (-171)))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-409 (-1171 (-317 *3)))) (-4 *3 (-558)) + (-5 *1 (-1129 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1253 *4)) (-5 *1 (-1255 *4 *2)) - (-4 *4 (-38 (-407 (-564))))))) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-1028 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-644 (-689 *3))) (-4 *3 (-1049)) (-5 *1 (-1028 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-1028 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-644 (-689 *3))) (-4 *3 (-1049)) (-5 *1 (-1028 *3))))) +(((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1240 (-566))))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1240 (-566)))))) +(((*1 *2 *3 *3 *4 *5 *3 *6) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) + (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1035)) + (-5 *1 (-746))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1173)) (-5 *5 (-642 *3)) - (-4 *3 (-13 (-27) (-1197) (-430 *6))) - (-4 *6 (-13 (-452) (-147) (-1036 (-564)) (-637 (-564)))) + (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-644 (-409 *7))) + (-4 *7 (-1240 *6)) (-5 *3 (-409 *7)) (-4 *6 (-365)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| - (-642 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-557 *6 *3))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1189 *3 *4)) (-4 *3 (-1097)) - (-4 *4 (-1097))))) + (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-576 *6 *7))))) +(((*1 *2 *1) + (-12 (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) + (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-689 (-169 (-409 (-566))))) (-5 *2 (-644 (-169 *4))) + (-5 *1 (-764 *4)) (-4 *4 (-13 (-365) (-848)))))) (((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-3 (-407 (-950 *6)) (-1162 (-1173) (-950 *6)))) - (-5 *5 (-769)) (-4 *6 (-452)) (-5 *2 (-642 (-687 (-407 (-950 *6))))) - (-5 *1 (-292 *6)) (-5 *4 (-687 (-407 (-950 *6)))))) - ((*1 *2 *3 *4) - (-12 - (-5 *3 - (-2 (|:| |eigval| (-3 (-407 (-950 *5)) (-1162 (-1173) (-950 *5)))) - (|:| |eigmult| (-769)) (|:| |eigvec| (-642 *4)))) - (-4 *5 (-452)) (-5 *2 (-642 (-687 (-407 (-950 *5))))) - (-5 *1 (-292 *5)) (-5 *4 (-687 (-407 (-950 *5))))))) -(((*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1169 *4)) (-4 *4 (-349)) (-5 *2 (-112)) - (-5 *1 (-357 *4))))) + (-12 (-5 *4 (-644 *10)) (-5 *5 (-112)) (-4 *10 (-1070 *6 *7 *8 *9)) + (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) + (-4 *9 (-1064 *6 *7 *8)) + (-5 *2 + (-644 + (-2 (|:| -3477 (-644 *9)) (|:| -2192 *10) (|:| |ineq| (-644 *9))))) + (-5 *1 (-988 *6 *7 *8 *9 *10)) (-5 *3 (-644 *9)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-644 *10)) (-5 *5 (-112)) (-4 *10 (-1070 *6 *7 *8 *9)) + (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) + (-4 *9 (-1064 *6 *7 *8)) + (-5 *2 + (-644 + (-2 (|:| -3477 (-644 *9)) (|:| -2192 *10) (|:| |ineq| (-644 *9))))) + (-5 *1 (-1106 *6 *7 *8 *9 *10)) (-5 *3 (-644 *9))))) +(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) + (-12 (-5 *4 (-689 (-225))) (-5 *5 (-689 (-566))) (-5 *3 (-566)) + (-5 *2 (-1035)) (-5 *1 (-756))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-791)) - (-4 *3 (-13 (-848) (-10 -8 (-15 -3003 ((-1173) $))))) (-4 *5 (-556)) - (-5 *1 (-730 *4 *3 *5 *2)) (-4 *2 (-947 (-407 (-950 *5)) *4 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *4 (-1047)) (-4 *5 (-791)) - (-4 *3 - (-13 (-848) - (-10 -8 (-15 -3003 ((-1173) $)) - (-15 -1341 ((-3 $ "failed") (-1173)))))) - (-5 *1 (-982 *4 *5 *3 *2)) (-4 *2 (-947 (-950 *4) *5 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-642 *6)) - (-4 *6 - (-13 (-848) - (-10 -8 (-15 -3003 ((-1173) $)) - (-15 -1341 ((-3 $ "failed") (-1173)))))) - (-4 *4 (-1047)) (-4 *5 (-791)) (-5 *1 (-982 *4 *5 *6 *2)) - (-4 *2 (-947 (-950 *4) *5 *6))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-1277 *3 *4)) (-4 *3 (-848)) (-4 *4 (-172)) - (-5 *1 (-662 *3 *4)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-662 *3 *4)) (-5 *1 (-1282 *3 *4)) - (-4 *3 (-848)) (-4 *4 (-172))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) - (-4 *9 (-1062 *6 *7 *8)) (-4 *6 (-556)) (-4 *7 (-791)) - (-4 *8 (-848)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3844 (-642 *9)))) - (-5 *3 (-642 *9)) (-4 *1 (-1205 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1062 *5 *6 *7)) - (-4 *5 (-556)) (-4 *6 (-791)) (-4 *7 (-848)) - (-5 *2 (-2 (|:| |bas| *1) (|:| -3844 (-642 *8)))) - (-5 *3 (-642 *8)) (-4 *1 (-1205 *5 *6 *7 *8))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1169 *7)) (-4 *7 (-947 *6 *4 *5)) (-4 *4 (-791)) - (-4 *5 (-848)) (-4 *6 (-1047)) (-5 *2 (-1169 *6)) - (-5 *1 (-321 *4 *5 *6 *7))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) - (-5 *1 (-745))))) + (-12 (-5 *2 (-644 (-612 *5))) (-5 *3 (-1175)) (-4 *5 (-432 *4)) + (-4 *4 (-1099)) (-5 *1 (-575 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-527))))) +(((*1 *2 *2) + (-12 (-4 *3 (-454)) (-4 *3 (-1038 (-566))) (-4 *3 (-558)) + (-5 *1 (-41 *3 *2)) (-4 *2 (-432 *3)) + (-4 *2 + (-13 (-365) (-303) + (-10 -8 (-15 -4157 ((-1124 *3 (-612 $)) $)) + (-15 -4167 ((-1124 *3 (-612 $)) $)) + (-15 -2479 ($ (-1124 *3 (-612 $)))))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 *4)) (-4 *4 (-1049)) (-5 *2 (-1264 *4)) + (-5 *1 (-1176 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-921)) (-5 *2 (-1264 *3)) (-5 *1 (-1176 *3)) + (-4 *3 (-1049))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-771)))) + ((*1 *1 *1) (-4 *1 (-404)))) +(((*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862))))) (((*1 *1 *1) - (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) - (-4 *4 (-848))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-780 *2)) (-4 *2 (-1047)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) - (-4 *4 (-848))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-769)) (-5 *2 (-112)))) - ((*1 *2 *3 *3) - (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1213 *3)) (-4 *3 (-1097)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1097)) (-5 *2 (-112)) - (-5 *1 (-1213 *3))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-1155)) (-5 *5 (-687 (-225))) - (-5 *2 (-1033)) (-5 *1 (-745))))) -(((*1 *1 *2) (-12 (-5 *2 (-316 (-169 (-379)))) (-5 *1 (-330)))) - ((*1 *1 *2) (-12 (-5 *2 (-316 (-564))) (-5 *1 (-330)))) - ((*1 *1 *2) (-12 (-5 *2 (-316 (-379))) (-5 *1 (-330)))) - ((*1 *1 *2) (-12 (-5 *2 (-316 (-692))) (-5 *1 (-330)))) - ((*1 *1 *2) (-12 (-5 *2 (-316 (-699))) (-5 *1 (-330)))) - ((*1 *1 *2) (-12 (-5 *2 (-316 (-697))) (-5 *1 (-330)))) - ((*1 *1) (-5 *1 (-330)))) -(((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1068 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-791)) - (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)) (-5 *2 (-112))))) + (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) +(((*1 *2 *1) (-12 (-5 *2 (-958 (-183))) (-5 *1 (-334)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 (-1213))) (-5 *1 (-606))))) +(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1266)))) + ((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1266))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-225))) (-5 *4 (-771)) (-5 *2 (-689 (-225))) + (-5 *1 (-306))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1171 *3)) (-5 *1 (-914 *3)) (-4 *3 (-308))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-644 *2)) (-4 *2 (-949 *4 *5 *6)) (-4 *4 (-308)) + (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-449 *4 *5 *6 *2))))) (((*1 *2 *2) - (-12 (-5 *2 (-1262 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) - (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4)))))) -(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924))))) -(((*1 *1 *2) (-12 (-5 *2 (-642 (-1091 (-407 (-564))))) (-5 *1 (-263)))) - ((*1 *1 *2) (-12 (-5 *2 (-642 (-1091 (-379)))) (-5 *1 (-263))))) -(((*1 *1 *2 *1) - (-12 (-5 *1 (-647 *2 *3 *4)) (-4 *2 (-1097)) (-4 *3 (-23)) - (-14 *4 *3)))) + (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1199)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-821)) (-5 *4 (-52)) (-5 *2 (-1269)) (-5 *1 (-831))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1214))))) +(((*1 *2 *1) + (-12 (-4 *4 (-1099)) (-5 *2 (-112)) (-5 *1 (-885 *3 *4 *5)) + (-4 *3 (-1099)) (-4 *5 (-666 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-889 *3 *4)) (-4 *3 (-1099)) + (-4 *4 (-1099))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-610 *4)) (-4 *4 (-1097)) (-4 *2 (-1097)) - (-5 *1 (-609 *2 *4))))) + (-12 (-4 *4 (-992 *2)) (-4 *2 (-558)) (-5 *1 (-142 *2 *4 *3)) + (-4 *3 (-375 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-992 *2)) (-4 *2 (-558)) (-5 *1 (-505 *2 *4 *5 *3)) + (-4 *5 (-375 *2)) (-4 *3 (-375 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-689 *4)) (-4 *4 (-992 *2)) (-4 *2 (-558)) + (-5 *1 (-693 *2 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-992 *2)) (-4 *2 (-558)) (-5 *1 (-1233 *2 *4 *3)) + (-4 *3 (-1240 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-169 (-566))) (-5 *2 (-112)) (-5 *1 (-448)))) + ((*1 *2 *3) + (-12 + (-5 *3 + (-506 (-409 (-566)) (-240 *5 (-771)) (-864 *4) + (-247 *4 (-409 (-566))))) + (-14 *4 (-644 (-1175))) (-14 *5 (-771)) (-5 *2 (-112)) + (-5 *1 (-507 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-961 *3)) (-4 *3 (-547)))) + ((*1 *2 *1) (-12 (-4 *1 (-1218)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-771)) (-5 *6 (-112)) (-4 *7 (-454)) (-4 *8 (-793)) + (-4 *9 (-850)) (-4 *3 (-1064 *7 *8 *9)) + (-5 *2 + (-2 (|:| |done| (-644 *4)) + (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -2192 *4)))))) + (-5 *1 (-1068 *7 *8 *9 *3 *4)) (-4 *4 (-1070 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-771)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) + (-4 *3 (-1064 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-644 *4)) + (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -2192 *4)))))) + (-5 *1 (-1068 *6 *7 *8 *3 *4)) (-4 *4 (-1070 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) + (-4 *3 (-1064 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-644 *4)) + (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -2192 *4)))))) + (-5 *1 (-1068 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-771)) (-5 *6 (-112)) (-4 *7 (-454)) (-4 *8 (-793)) + (-4 *9 (-850)) (-4 *3 (-1064 *7 *8 *9)) + (-5 *2 + (-2 (|:| |done| (-644 *4)) + (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -2192 *4)))))) + (-5 *1 (-1144 *7 *8 *9 *3 *4)) (-4 *4 (-1108 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-771)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) + (-4 *3 (-1064 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-644 *4)) + (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -2192 *4)))))) + (-5 *1 (-1144 *6 *7 *8 *3 *4)) (-4 *4 (-1108 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) + (-4 *3 (-1064 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-644 *4)) + (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -2192 *4)))))) + (-5 *1 (-1144 *5 *6 *7 *3 *4)) (-4 *4 (-1108 *5 *6 *7 *3))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-771)) (-5 *3 (-943 *5)) (-4 *5 (-1049)) + (-5 *1 (-1163 *4 *5)) (-14 *4 (-921)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-644 (-771))) (-5 *3 (-771)) (-5 *1 (-1163 *4 *5)) + (-14 *4 (-921)) (-4 *5 (-1049)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-644 (-771))) (-5 *3 (-943 *5)) (-4 *5 (-1049)) + (-5 *1 (-1163 *4 *5)) (-14 *4 (-921))))) (((*1 *2 *1) (-12 (-5 *2 - (-642 - (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1169 *3)) - (|:| |logand| (-1169 *3))))) - (-5 *1 (-585 *3)) (-4 *3 (-363))))) + (-644 + (-2 + (|:| -1928 + (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) + (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (|:| -2806 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1155 (-225))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -1680 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated")))))))) + (-5 *1 (-561)))) + ((*1 *2 *1) + (-12 (-4 *1 (-604 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1214)) + (-5 *2 (-644 *4))))) +(((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-926))))) +(((*1 *1 *1) + (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) +(((*1 *2 *1) + (-12 (-5 *2 (-644 (-644 (-943 (-225))))) (-5 *1 (-1209 *3)) + (-4 *3 (-974))))) (((*1 *2 *2) - (-12 (-5 *2 (-941 *3)) (-4 *3 (-13 (-363) (-1197) (-1000))) - (-5 *1 (-176 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-642 (-1178))) (-5 *1 (-1178)))) + (|partial| -12 (-5 *2 (-409 *4)) (-4 *4 (-1240 *3)) + (-4 *3 (-13 (-365) (-147) (-1038 (-566)))) (-5 *1 (-570 *3 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) +(((*1 *1 *2) (-12 (-5 *2 (-183)) (-5 *1 (-248))))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))) +(((*1 *2 *3) + (-12 (-5 *3 (-769)) + (-5 *2 + (-2 (|:| -4177 (-381)) (|:| -2598 (-1157)) + (|:| |explanations| (-644 (-1157))) (|:| |extra| (-1035)))) + (-5 *1 (-567)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-769)) (-5 *4 (-1062)) + (-5 *2 + (-2 (|:| -4177 (-381)) (|:| -2598 (-1157)) + (|:| |explanations| (-644 (-1157))) (|:| |extra| (-1035)))) + (-5 *1 (-567)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-787)) (-5 *3 (-1062)) + (-5 *4 + (-2 (|:| |fn| (-317 (-225))) + (|:| -1680 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 + (-2 (|:| -4177 (-381)) (|:| |explanations| (-1157)) + (|:| |extra| (-1035)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-787)) (-5 *3 (-1062)) + (-5 *4 + (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) + (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 + (-2 (|:| -4177 (-381)) (|:| |explanations| (-1157)) + (|:| |extra| (-1035)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-800)) (-5 *3 (-1062)) + (-5 *4 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) + (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) + (-5 *2 (-2 (|:| -4177 (-381)) (|:| |explanations| (-1157)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-808)) + (-5 *2 + (-2 (|:| -4177 (-381)) (|:| -2598 (-1157)) + (|:| |explanations| (-644 (-1157))))) + (-5 *1 (-805)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-808)) (-5 *4 (-1062)) + (-5 *2 + (-2 (|:| -4177 (-381)) (|:| -2598 (-1157)) + (|:| |explanations| (-644 (-1157))))) + (-5 *1 (-805)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-839)) (-5 *3 (-1062)) + (-5 *4 + (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3968 (-644 (-225))))) + (-5 *2 (-2 (|:| -4177 (-381)) (|:| |explanations| (-1157)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-839)) (-5 *3 (-1062)) + (-5 *4 + (-2 (|:| |fn| (-317 (-225))) (|:| -3968 (-644 (-225))) + (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) + (|:| |ub| (-644 (-843 (-225)))))) + (-5 *2 (-2 (|:| -4177 (-381)) (|:| |explanations| (-1157)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-841)) + (-5 *2 + (-2 (|:| -4177 (-381)) (|:| -2598 (-1157)) + (|:| |explanations| (-644 (-1157))))) + (-5 *1 (-840)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-841)) (-5 *4 (-1062)) + (-5 *2 + (-2 (|:| -4177 (-381)) (|:| -2598 (-1157)) + (|:| |explanations| (-644 (-1157))))) + (-5 *1 (-840)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-895)) (-5 *3 (-1062)) + (-5 *4 + (-2 (|:| |pde| (-644 (-317 (-225)))) + (|:| |constraints| + (-644 + (-2 (|:| |start| (-225)) (|:| |finish| (-225)) + (|:| |grid| (-771)) (|:| |boundaryType| (-566)) + (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) + (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) + (|:| |tol| (-225)))) + (-5 *2 (-2 (|:| -4177 (-381)) (|:| |explanations| (-1157)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-898)) + (-5 *2 + (-2 (|:| -4177 (-381)) (|:| -2598 (-1157)) + (|:| |explanations| (-644 (-1157))))) + (-5 *1 (-897)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-898)) (-5 *4 (-1062)) + (-5 *2 + (-2 (|:| -4177 (-381)) (|:| -2598 (-1157)) + (|:| |explanations| (-644 (-1157))))) + (-5 *1 (-897))))) +(((*1 *2 *3 *4 *5 *5 *4 *6) + (-12 (-5 *4 (-566)) (-5 *6 (-1 (-1269) (-1264 *5) (-1264 *5) (-381))) + (-5 *3 (-1264 (-381))) (-5 *5 (-381)) (-5 *2 (-1269)) + (-5 *1 (-788))))) +(((*1 *1 *1 *1) (-5 *1 (-862))) ((*1 *1 *1) (-5 *1 (-862))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-506)) (-5 *3 (-642 (-1178))) (-5 *1 (-1178))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) -(((*1 *2 *1) (-12 (-5 *2 (-1122 (-564) (-610 (-48)))) (-5 *1 (-48)))) + (-12 (-5 *2 (-1171 (-566))) (-5 *3 (-566)) (-4 *1 (-869 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862))))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1103)) (-5 *3 (-774)) (-5 *1 (-52))))) +(((*1 *2 *3 *4 *4 *3 *5) + (-12 (-5 *4 (-612 *3)) (-5 *5 (-1171 *3)) + (-4 *3 (-13 (-432 *6) (-27) (-1199))) + (-4 *6 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) + (-5 *2 (-587 *3)) (-5 *1 (-562 *6 *3 *7)) (-4 *7 (-1099)))) + ((*1 *2 *3 *4 *4 *4 *3 *5) + (-12 (-5 *4 (-612 *3)) (-5 *5 (-409 (-1171 *3))) + (-4 *3 (-13 (-432 *6) (-27) (-1199))) + (-4 *6 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) + (-5 *2 (-587 *3)) (-5 *1 (-562 *6 *3 *7)) (-4 *7 (-1099))))) +(((*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1267)))) + ((*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1267))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-566)) (-5 *4 (-420 *2)) (-4 *2 (-949 *7 *5 *6)) + (-5 *1 (-742 *5 *6 *7 *2)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *7 (-308))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436)))) + ((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-571 *3)) (-4 *3 (-1038 (-566))))) ((*1 *2 *1) - (-12 (-4 *3 (-990 *2)) (-4 *4 (-1238 *3)) (-4 *2 (-307)) - (-5 *1 (-413 *2 *3 *4 *5)) (-4 *5 (-13 (-409 *3 *4) (-1036 *3))))) + (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) + (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1124 (-566) (-612 (-48)))) (-5 *1 (-48)))) ((*1 *2 *1) - (-12 (-4 *3 (-556)) (-4 *3 (-1097)) (-5 *2 (-1122 *3 (-610 *1))) - (-4 *1 (-430 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1122 (-564) (-610 (-495)))) (-5 *1 (-495)))) + (-12 (-4 *3 (-992 *2)) (-4 *4 (-1240 *3)) (-4 *2 (-308)) + (-5 *1 (-415 *2 *3 *4 *5)) (-4 *5 (-13 (-411 *3 *4) (-1038 *3))))) ((*1 *2 *1) - (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-724) *4)) - (-5 *1 (-619 *3 *4 *2)) (-4 *3 (-38 *4)))) + (-12 (-4 *3 (-558)) (-4 *3 (-1099)) (-5 *2 (-1124 *3 (-612 *1))) + (-4 *1 (-432 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1124 (-566) (-612 (-497)))) (-5 *1 (-497)))) ((*1 *2 *1) - (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-724) *4)) - (-5 *1 (-660 *3 *4 *2)) (-4 *3 (-715 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-556))))) -(((*1 *2 *3 *3 *3 *4 *5 *6) - (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225))) - (-5 *5 (-1091 (-225))) (-5 *6 (-642 (-263))) (-5 *2 (-1130 (-225))) - (-5 *1 (-695))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-407 (-950 *3))) (-5 *1 (-453 *3 *4 *5 *6)) - (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-919)) - (-14 *5 (-642 (-1173))) (-14 *6 (-1262 (-687 *3)))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-1047)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1238 *3))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1205 *4 *5 *3 *6)) (-4 *4 (-556)) (-4 *5 (-791)) - (-4 *3 (-848)) (-4 *6 (-1062 *4 *5 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-1281 *3)) (-4 *3 (-363)) (-5 *2 (-112))))) -(((*1 *1) (-5 *1 (-437)))) + (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-726) *4)) + (-5 *1 (-621 *3 *4 *2)) (-4 *3 (-38 *4)))) + ((*1 *2 *1) + (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-726) *4)) + (-5 *1 (-662 *3 *4 *2)) (-4 *3 (-717 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558))))) +(((*1 *2 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-169 (-225)))) (-5 *2 (-1035)) + (-5 *1 (-754))))) +(((*1 *1 *1) + (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) +(((*1 *2 *3 *3 *3 *3) + (-12 (-5 *3 (-566)) (-5 *2 (-112)) (-5 *1 (-482))))) (((*1 *2 *1) - (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-1097)) (-4 *2 (-1097))))) -(((*1 *2 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) - (-5 *1 (-753))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1097)) (-4 *2 (-898 *5)) (-5 *1 (-690 *5 *2 *3 *4)) - (-4 *3 (-373 *2)) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4410))))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-822)) (-5 *3 (-642 (-1173))) (-5 *1 (-823))))) -(((*1 *1 *1) (-4 *1 (-1141)))) -(((*1 *2 *1) (-12 (-5 *2 (-1122 (-564) (-610 (-48)))) (-5 *1 (-48)))) + (-12 (-4 *1 (-375 *3)) (-4 *3 (-1214)) (-4 *3 (-850)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-375 *4)) (-4 *4 (-1214)) + (-5 *2 (-112))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1163 *2 *3)) (-14 *2 (-921)) (-4 *3 (-1049))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-644 (-644 (-644 *4)))) (-5 *3 (-644 *4)) (-4 *4 (-850)) + (-5 *1 (-1185 *4))))) +(((*1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-532 *3)) (-4 *3 (-13 (-726) (-25)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-1099)) (-5 *1 (-905 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1124 (-566) (-612 (-48)))) (-5 *1 (-48)))) ((*1 *2 *1) - (-12 (-4 *3 (-307)) (-4 *4 (-990 *3)) (-4 *5 (-1238 *4)) - (-5 *2 (-1262 *6)) (-5 *1 (-413 *3 *4 *5 *6)) - (-4 *6 (-13 (-409 *4 *5) (-1036 *4))))) + (-12 (-4 *3 (-308)) (-4 *4 (-992 *3)) (-4 *5 (-1240 *4)) + (-5 *2 (-1264 *6)) (-5 *1 (-415 *3 *4 *5 *6)) + (-4 *6 (-13 (-411 *4 *5) (-1038 *4))))) ((*1 *2 *1) - (-12 (-4 *3 (-1047)) (-4 *3 (-1097)) (-5 *2 (-1122 *3 (-610 *1))) - (-4 *1 (-430 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1122 (-564) (-610 (-495)))) (-5 *1 (-495)))) + (-12 (-4 *3 (-1049)) (-4 *3 (-1099)) (-5 *2 (-1124 *3 (-612 *1))) + (-4 *1 (-432 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1124 (-566) (-612 (-497)))) (-5 *1 (-497)))) ((*1 *2 *1) - (-12 (-4 *3 (-172)) (-4 *2 (-38 *3)) (-5 *1 (-619 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-724) *3)))) + (-12 (-4 *3 (-172)) (-4 *2 (-38 *3)) (-5 *1 (-621 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-726) *3)))) ((*1 *2 *1) - (-12 (-4 *3 (-172)) (-4 *2 (-715 *3)) (-5 *1 (-660 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-724) *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-556))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1262 *4)) (-4 *4 (-1047)) (-4 *2 (-1238 *4)) - (-5 *1 (-444 *4 *2)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-407 (-1169 (-316 *5)))) (-5 *3 (-1262 (-316 *5))) - (-5 *4 (-564)) (-4 *5 (-556)) (-5 *1 (-1127 *5))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4411)) (-4 *1 (-1250 *2)) (-4 *2 (-1212))))) + (-12 (-4 *3 (-172)) (-4 *2 (-717 *3)) (-5 *1 (-662 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-726) *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1209 *3)) (-4 *3 (-974))))) (((*1 *1 *2) - (-12 (-5 *2 (-642 (-642 *3))) (-4 *3 (-1047)) (-4 *1 (-685 *3 *4 *5)) - (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-642 (-642 (-860)))) (-5 *1 (-860)))) + (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-1049)) (-4 *1 (-687 *3 *4 *5)) + (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-644 (-644 (-862)))) (-5 *1 (-862)))) ((*1 *2 *1) - (-12 (-5 *2 (-1139 *3 *4)) (-5 *1 (-991 *3 *4)) (-14 *3 (-919)) - (-4 *4 (-363)))) + (-12 (-5 *2 (-1141 *3 *4)) (-5 *1 (-993 *3 *4)) (-14 *3 (-921)) + (-4 *4 (-365)))) ((*1 *1 *2) - (-12 (-5 *2 (-642 (-642 *5))) (-4 *5 (-1047)) - (-4 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *6 (-238 *4 *5)) + (-12 (-5 *2 (-644 (-644 *5))) (-4 *5 (-1049)) + (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5))))) -(((*1 *2 *1 *2) (-12 (-5 *1 (-1024 *2)) (-4 *2 (-1212))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-564)) (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047)) - (-4 *4 (-373 *3)) (-4 *5 (-373 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-642 (-564))) (-5 *2 (-902 (-564))) (-5 *1 (-915)))) - ((*1 *2) (-12 (-5 *2 (-902 (-564))) (-5 *1 (-915))))) -(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820))))) -(((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-890 *4)) (-4 *4 (-1097)) (-5 *2 (-112)) - (-5 *1 (-887 *4 *5)) (-4 *5 (-1097)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-890 *5)) (-4 *5 (-1097)) (-5 *2 (-112)) - (-5 *1 (-888 *5 *3)) (-4 *3 (-1212)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-642 *6)) (-5 *4 (-890 *5)) (-4 *5 (-1097)) - (-4 *6 (-1212)) (-5 *2 (-112)) (-5 *1 (-888 *5 *6))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-1262 *5)) (-5 *3 (-769)) (-5 *4 (-1117)) (-4 *5 (-349)) - (-5 *1 (-528 *5))))) -(((*1 *1) (-5 *1 (-1264)))) -(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *3 (-452)) (-4 *4 (-848)) (-4 *5 (-791)) (-5 *2 (-112)) - (-5 *1 (-985 *3 *4 *5 *6)) (-4 *6 (-947 *3 *5 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1137 *3 *4)) (-4 *3 (-13 (-1097) (-34))) - (-4 *4 (-13 (-1097) (-34)))))) -(((*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-1212))))) -(((*1 *2 *1) - (-12 (-4 *1 (-602 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-1212)) - (-5 *2 (-642 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) + (-4 *3 (-1064 *5 *6 *7)) + (-5 *2 (-644 (-2 (|:| |val| (-112)) (|:| -2192 *4)))) + (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-427 *2)) (-4 *2 (-1099)) (-4 *2 (-370))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-112)) (-5 *5 (-689 (-225))) + (-5 *2 (-1035)) (-5 *1 (-755))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-365) (-848))) (-5 *1 (-181 *3 *2)) + (-4 *2 (-1240 (-169 *3)))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) + (-4 *3 (-1064 *5 *6 *7)) + (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -2192 *4)))) + (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) - (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-986 *4 *5 *6 *7 *3)) (-4 *3 (-1068 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) - (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1104 *4 *5 *6 *7 *3)) (-4 *3 (-1068 *4 *5 *6 *7))))) + (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 *3)) + (-5 *1 (-977 *4 *5 *6 *3)) (-4 *3 (-1064 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-848)) (-5 *2 (-1184 (-642 *4))) (-5 *1 (-1183 *4)) - (-5 *3 (-642 *4))))) -(((*1 *2 *1) (|partial| -12 (-4 *1 (-1010)) (-5 *2 (-860))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| |polnum| (-780 *3)) (|:| |polden| *3) (|:| -2604 (-769)))) - (-5 *1 (-780 *3)) (-4 *3 (-1047)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) - (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -2604 (-769)))) - (-4 *1 (-1062 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820))))) -(((*1 *2 *1 *3) - (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-1060)) (-5 *3 (-1155))))) -(((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564)))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-924))))) + (-12 (-5 *3 (-566)) (|has| *1 (-6 -4408)) (-4 *1 (-406)) + (-5 *2 (-921))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1212)) (-4 *2 (-848)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-282 *3)) (-4 *3 (-1212)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-848))))) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) +(((*1 *1 *1) + (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) (((*1 *2 *1) - (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-642 (-642 (-171))))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4410)) (-4 *1 (-489 *4)) - (-4 *4 (-1212)) (-5 *2 (-112))))) + (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-644 *1)) + (-4 *1 (-1064 *3 *4 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-927))))) +(((*1 *2 *3 *3 *3) + (|partial| -12 + (-4 *4 (-13 (-147) (-27) (-1038 (-566)) (-1038 (-409 (-566))))) + (-4 *5 (-1240 *4)) (-5 *2 (-1171 (-409 *5))) (-5 *1 (-615 *4 *5)) + (-5 *3 (-409 *5)))) + ((*1 *2 *3 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 (-420 *6) *6)) (-4 *6 (-1240 *5)) + (-4 *5 (-13 (-147) (-27) (-1038 (-566)) (-1038 (-409 (-566))))) + (-5 *2 (-1171 (-409 *6))) (-5 *1 (-615 *5 *6)) (-5 *3 (-409 *6))))) +(((*1 *2 *3 *4 *2 *2 *5) + (|partial| -12 (-5 *2 (-843 *4)) (-5 *3 (-612 *4)) (-5 *5 (-112)) + (-4 *4 (-13 (-1199) (-29 *6))) + (-4 *6 (-13 (-454) (-1038 (-566)) (-639 (-566)))) + (-5 *1 (-224 *6 *4))))) (((*1 *2) - (-12 (-4 *3 (-556)) (-5 *2 (-642 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-417 *3))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-556)) (-4 *3 (-172)) (-4 *4 (-373 *3)) - (-4 *5 (-373 *3)) (-5 *1 (-686 *3 *4 *5 *2)) - (-4 *2 (-685 *3 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1238 *5)) (-4 *5 (-363)) - (-4 *7 (-1238 (-407 *6))) - (-5 *2 (-2 (|:| |answer| *3) (|:| -4135 *3))) - (-5 *1 (-562 *5 *6 *7 *3)) (-4 *3 (-342 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1238 *5)) (-4 *5 (-363)) - (-5 *2 - (-2 (|:| |answer| (-407 *6)) (|:| -4135 (-407 *6)) - (|:| |specpart| (-407 *6)) (|:| |polypart| *6))) - (-5 *1 (-563 *5 *6)) (-5 *3 (-407 *6))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) - (-4 *4 (-848)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1205 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-791)) - (-4 *5 (-848)) (-4 *2 (-1062 *3 *4 *5))))) + (-12 (-4 *4 (-365)) (-5 *2 (-771)) (-5 *1 (-329 *3 *4)) + (-4 *3 (-330 *4)))) + ((*1 *2) (-12 (-4 *1 (-1283 *3)) (-4 *3 (-365)) (-5 *2 (-771))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-644 (-644 (-644 *5)))) (-5 *3 (-1 (-112) *5 *5)) + (-5 *4 (-644 *5)) (-4 *5 (-850)) (-5 *1 (-1185 *5))))) (((*1 *2) - (-12 (-5 *2 (-1267)) (-5 *1 (-1189 *3 *4)) (-4 *3 (-1097)) - (-4 *4 (-1097))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1169 *2)) (-4 *2 (-947 (-407 (-950 *6)) *5 *4)) - (-5 *1 (-730 *5 *4 *6 *2)) (-4 *5 (-791)) - (-4 *4 (-13 (-848) (-10 -8 (-15 -3003 ((-1173) $))))) - (-4 *6 (-556))))) -(((*1 *1 *2) (-12 (-5 *2 (-1262 *3)) (-4 *3 (-363)) (-4 *1 (-329 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1262 *3)) (-4 *3 (-1238 *4)) (-4 *4 (-1216)) - (-4 *1 (-342 *4 *3 *5)) (-4 *5 (-1238 (-407 *3))))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1262 *4)) (-5 *3 (-1262 *1)) (-4 *4 (-172)) - (-4 *1 (-367 *4)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1262 *4)) (-5 *3 (-1262 *1)) (-4 *4 (-172)) - (-4 *1 (-370 *4 *5)) (-4 *5 (-1238 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1262 *3)) (-4 *3 (-172)) (-4 *1 (-409 *3 *4)) - (-4 *4 (-1238 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1262 *3)) (-4 *3 (-172)) (-4 *1 (-417 *3))))) -(((*1 *1) (-5 *1 (-141))) ((*1 *1 *1) (-5 *1 (-144))) - ((*1 *1 *1) (-4 *1 (-1141)))) + (-12 (-4 *4 (-172)) (-5 *2 (-1171 (-952 *4))) (-5 *1 (-418 *3 *4)) + (-4 *3 (-419 *4)))) + ((*1 *2) + (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-4 *3 (-365)) + (-5 *2 (-1171 (-952 *3))))) + ((*1 *2) + (-12 (-5 *2 (-1171 (-409 (-952 *3)))) (-5 *1 (-455 *3 *4 *5 *6)) + (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) + (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1155)) (-5 *2 (-564)) (-5 *1 (-1194 *4)) - (-4 *4 (-1047))))) + (-12 (-5 *3 (-566)) (-4 *4 (-1240 (-409 *3))) (-5 *2 (-921)) + (-5 *1 (-913 *4 *5)) (-4 *5 (-1240 (-409 *4)))))) (((*1 *2 *3) - (-12 (-4 *4 (-1047)) (-4 *3 (-1238 *4)) (-4 *2 (-1253 *4)) - (-5 *1 (-1256 *4 *3 *5 *2)) (-4 *5 (-654 *3))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-564)) (|has| *1 (-6 -4411)) (-4 *1 (-1250 *3)) - (-4 *3 (-1212))))) + (-12 (-5 *3 (-644 (-612 *5))) (-4 *4 (-1099)) (-5 *2 (-612 *5)) + (-5 *1 (-575 *4 *5)) (-4 *5 (-432 *4))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) + (-5 *1 (-755))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-112)) (-4 *4 (-13 (-365) (-848))) (-5 *2 (-420 *3)) + (-5 *1 (-181 *4 *3)) (-4 *3 (-1240 (-169 *4))))) + ((*1 *2 *3 *4) + (-12 (-4 *4 (-13 (-365) (-848))) (-5 *2 (-420 *3)) + (-5 *1 (-181 *4 *3)) (-4 *3 (-1240 (-169 *4)))))) +(((*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-1216))))) +(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-874))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-905 *4)) (-4 *4 (-1099)) (-5 *2 (-644 (-771))) + (-5 *1 (-904 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-407 (-950 *4))) (-4 *4 (-307)) - (-5 *2 (-407 (-418 (-950 *4)))) (-5 *1 (-1040 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-217))))) -(((*1 *2 *1) - (-12 (-5 *2 (-642 (-941 *4))) (-5 *1 (-1161 *3 *4)) (-14 *3 (-919)) - (-4 *4 (-1047))))) -(((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1155))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437))))) -(((*1 *2 *1) - (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-131)) - (-5 *2 (-642 (-2 (|:| |gen| *3) (|:| -3466 *4)))))) + (-12 (-5 *3 (-644 *2)) (-4 *2 (-432 *4)) (-5 *1 (-158 *4 *2)) + (-4 *4 (-558))))) +(((*1 *2 *2) (-12 (-5 *1 (-961 *2)) (-4 *2 (-547))))) +(((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-420 *3)) (-4 *3 (-558)))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 (-2 (|:| -2325 *4) (|:| -1630 (-566))))) + (-4 *4 (-1240 (-566))) (-5 *2 (-771)) (-5 *1 (-444 *4))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-436)) + (-5 *2 + (-644 + (-3 (|:| -2598 (-1175)) + (|:| -2201 (-644 (-3 (|:| S (-1175)) (|:| P (-952 (-566))))))))) + (-5 *1 (-1179))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-905 *4)) (-4 *4 (-1099)) (-5 *2 (-644 (-771))) + (-5 *1 (-904 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-566)) + (-5 *1 (-451 *4 *5 *6 *3)) (-4 *3 (-949 *4 *5 *6))))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) + (-12 (-5 *4 (-644 (-112))) (-5 *5 (-689 (-225))) + (-5 *6 (-689 (-566))) (-5 *7 (-225)) (-5 *3 (-566)) (-5 *2 (-1035)) + (-5 *1 (-754))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-331))))) +(((*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)) (-5 *3 (-566)))) + ((*1 *1 *1) (-12 (-4 *1 (-674 *2)) (-4 *2 (-1214)))) + ((*1 *1 *1) (-4 *1 (-869 *2))) + ((*1 *1 *1) + (-12 (-4 *1 (-973 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-792)) + (-4 *4 (-850))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-644 *1)) (-4 *1 (-1064 *4 *5 *6)) (-4 *4 (-1049)) + (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *5 (-850)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-5 *2 (-642 (-2 (|:| -2968 *3) (|:| -1846 *4)))) - (-5 *1 (-733 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-724)))) + (-12 (-4 *1 (-1207 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) + (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1207 *4 *5 *6 *3)) (-4 *4 (-558)) (-4 *5 (-793)) + (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1215 *3)) (-4 *3 (-1099))))) +(((*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-112)) (-5 *1 (-268))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1171 *7)) + (-4 *5 (-1049)) (-4 *7 (-1049)) (-4 *2 (-1240 *5)) + (-5 *1 (-503 *5 *2 *6 *7)) (-4 *6 (-1240 *2))))) +(((*1 *1) (-5 *1 (-1084)))) +(((*1 *1 *2 *3 *3 *4 *4) + (-12 (-5 *2 (-952 (-566))) (-5 *3 (-1175)) + (-5 *4 (-1093 (-409 (-566)))) (-5 *1 (-30))))) +(((*1 *1 *1 *2 *2 *2 *2) + (-12 (-5 *2 (-566)) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) + (-4 *4 (-375 *3)) (-4 *5 (-375 *3))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1255 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1171 (-409 (-566)))) (-5 *1 (-942)) (-5 *3 (-566))))) +(((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-312)))) ((*1 *2 *1) - (-12 (-4 *1 (-1240 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-790)) - (-5 *2 (-1153 (-2 (|:| |k| *4) (|:| |c| *3))))))) + (-12 (-5 *2 (-771)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) + (-4 *4 (-1049))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4417)) (-4 *1 (-151 *2)) (-4 *2 (-1214)) + (-4 *2 (-1099))))) (((*1 *2 *3) - (-12 (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) - (-4 *7 (-1062 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-642 *7)) (|:| |badPols| (-642 *7)))) - (-5 *1 (-975 *4 *5 *6 *7)) (-5 *3 (-642 *7))))) -(((*1 *2 *2) - (-12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-147)) - (-4 *3 (-307)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) - (-5 *1 (-975 *3 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *1 (-974 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-791)) - (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-556)) - (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-311)))) + (-12 (-5 *3 (-689 *2)) (-4 *4 (-1240 *2)) + (-4 *2 (-13 (-308) (-10 -8 (-15 -3348 ((-420 $) $))))) + (-5 *1 (-501 *2 *4 *5)) (-4 *5 (-411 *2 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-769)) (-5 *1 (-1161 *3 *4)) (-14 *3 (-919)) - (-4 *4 (-1047))))) -(((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-642 (-1137 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) - (-4 *4 (-13 (-1097) (-34))) (-4 *5 (-13 (-1097) (-34))) - (-5 *1 (-1138 *4 *5)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-642 (-1137 *3 *4))) (-4 *3 (-13 (-1097) (-34))) - (-4 *4 (-13 (-1097) (-34))) (-5 *1 (-1138 *3 *4))))) -(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) - ((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) - ((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-925))))) + (-12 (-4 *1 (-1122 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) + (-4 *5 (-238 *3 *2)) (-4 *2 (-1049))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-363) (-846))) (-5 *1 (-181 *3 *2)) - (-4 *2 (-1238 (-169 *3)))))) -(((*1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172))))) -(((*1 *2 *3) - (-12 (-5 *3 (-642 *7)) (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-556)) - (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-642 (-1275 *4 *5 *6 *7))) - (-5 *1 (-1275 *4 *5 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-642 *9)) (-5 *4 (-1 (-112) *9 *9)) - (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1062 *6 *7 *8)) (-4 *6 (-556)) - (-4 *7 (-791)) (-4 *8 (-848)) (-5 *2 (-642 (-1275 *6 *7 *8 *9))) - (-5 *1 (-1275 *6 *7 *8 *9))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4410)) (-4 *1 (-151 *2)) (-4 *2 (-1212)) - (-4 *2 (-1097))))) -(((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1038))))) -(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-157)))) - ((*1 *2 *1) (-12 (-5 *2 (-157)) (-5 *1 (-872)))) - ((*1 *2 *3) (-12 (-5 *3 (-941 *2)) (-5 *1 (-980 *2)) (-4 *2 (-1047))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1155) (-772))) (-5 *1 (-114))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-545)))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) - (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-642 *4)) - (-5 *1 (-1105 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3))))) -(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1097))))) -(((*1 *2 *3) - (-12 (-4 *4 (-848)) (-5 *2 (-642 (-642 (-642 *4)))) - (-5 *1 (-1183 *4)) (-5 *3 (-642 (-642 *4)))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-610 *3)) (-4 *3 (-13 (-430 *5) (-27) (-1197))) - (-4 *5 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564)))) - (-5 *2 (-585 *3)) (-5 *1 (-566 *5 *3 *6)) (-4 *6 (-1097))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-642 *3)) (-4 *3 (-1238 *5)) (-4 *5 (-307)) - (-5 *2 (-769)) (-5 *1 (-455 *5 *3))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-394))))) + (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1199)))))) +(((*1 *1) (-5 *1 (-439)))) +(((*1 *2 *1) (-12 (-4 *1 (-351)) (-5 *2 (-771)))) + ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-404)) (-5 *2 (-771))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-771)) (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1215 *3)) (-4 *3 (-1099)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1099)) (-5 *2 (-112)) + (-5 *1 (-1215 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-147)) + (-4 *3 (-308)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) + (-5 *1 (-977 *3 *4 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1138 *2 *3)) (-4 *2 (-13 (-1097) (-34))) - (-4 *3 (-13 (-1097) (-34)))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *6 (-1155)) - (-5 *3 (-225)) (-5 *2 (-1033)) (-5 *1 (-756))))) -(((*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-1212))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-769)) (-4 *5 (-556)) - (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-967 *5 *3)) (-4 *3 (-1238 *5))))) -(((*1 *1 *1) (-12 (-5 *1 (-675 *2)) (-4 *2 (-848)))) - ((*1 *1 *1) (-12 (-5 *1 (-817 *2)) (-4 *2 (-848)))) - ((*1 *1 *1) (-12 (-5 *1 (-891 *2)) (-4 *2 (-848)))) + (-12 (-4 *5 (-1099)) (-4 *6 (-886 *5)) (-5 *2 (-885 *5 *6 (-644 *6))) + (-5 *1 (-887 *5 *6 *4)) (-5 *3 (-644 *6)) (-4 *4 (-614 (-892 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1099)) (-5 *2 (-644 (-295 *3))) (-5 *1 (-887 *5 *3 *4)) + (-4 *3 (-1038 (-1175))) (-4 *3 (-886 *5)) (-4 *4 (-614 (-892 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1099)) (-5 *2 (-644 (-295 (-952 *3)))) + (-5 *1 (-887 *5 *3 *4)) (-4 *3 (-1049)) + (-2387 (-4 *3 (-1038 (-1175)))) (-4 *3 (-886 *5)) + (-4 *4 (-614 (-892 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1099)) (-5 *2 (-889 *5 *3)) (-5 *1 (-887 *5 *3 *4)) + (-2387 (-4 *3 (-1038 (-1175)))) (-2387 (-4 *3 (-1049))) + (-4 *3 (-886 *5)) (-4 *4 (-614 (-892 *5)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 *7)) (-4 *7 (-949 *4 *5 *6)) (-4 *6 (-614 (-1175))) + (-4 *4 (-365)) (-4 *5 (-793)) (-4 *6 (-850)) + (-5 *2 (-1164 (-644 (-952 *4)) (-644 (-295 (-952 *4))))) + (-5 *1 (-506 *4 *5 *6 *7))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1171 *1)) (-4 *1 (-1012))))) +(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-647 *2)) (-4 *2 (-1099))))) +(((*1 *1 *1) (-5 *1 (-1062)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1195))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1214)) (-5 *2 (-566))))) +(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1214))))) +(((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-258))))) +(((*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1214))))) +(((*1 *1) (-5 *1 (-292)))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-1049)) (-4 *3 (-1099)) + (-5 *2 (-2 (|:| |val| *1) (|:| -3631 (-566)))) (-4 *1 (-432 *3)))) + ((*1 *2 *1) + (|partial| -12 + (-5 *2 (-2 (|:| |val| (-892 *3)) (|:| -3631 (-892 *3)))) + (-5 *1 (-892 *3)) (-4 *3 (-1099)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1049)) + (-4 *7 (-949 *6 *4 *5)) + (-5 *2 (-2 (|:| |val| *3) (|:| -3631 (-566)))) + (-5 *1 (-950 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-365) + (-10 -8 (-15 -2479 ($ *7)) (-15 -4157 (*7 $)) + (-15 -4167 (*7 $)))))))) +(((*1 *1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-850)))) + ((*1 *1 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) + ((*1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-850)))) ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1205 *2 *3 *4 *5)) (-4 *2 (-556)) - (-4 *3 (-791)) (-4 *4 (-848)) (-4 *5 (-1062 *2 *3 *4)))) + (|partial| -12 (-4 *1 (-1207 *2 *3 *4 *5)) (-4 *2 (-558)) + (-4 *3 (-793)) (-4 *4 (-850)) (-4 *5 (-1064 *2 *3 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-769)) (-4 *1 (-1250 *3)) (-4 *3 (-1212)))) - ((*1 *1 *1) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1212))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1169 *9)) (-5 *4 (-642 *7)) (-5 *5 (-642 (-642 *8))) - (-4 *7 (-848)) (-4 *8 (-307)) (-4 *9 (-947 *8 *6 *7)) (-4 *6 (-791)) - (-5 *2 - (-2 (|:| |upol| (-1169 *8)) (|:| |Lval| (-642 *8)) - (|:| |Lfact| - (-642 (-2 (|:| -2254 (-1169 *8)) (|:| -2817 (-564))))) - (|:| |ctpol| *8))) - (-5 *1 (-740 *6 *7 *8 *9))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1136)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-687 *8)) (-4 *8 (-947 *5 *7 *6)) - (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-848) (-612 (-1173)))) - (-4 *7 (-791)) - (-5 *2 - (-642 - (-2 (|:| |eqzro| (-642 *8)) (|:| |neqzro| (-642 *8)) - (|:| |wcond| (-642 (-950 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1262 (-407 (-950 *5)))) - (|:| -2131 (-642 (-1262 (-407 (-950 *5)))))))))) - (-5 *1 (-922 *5 *6 *7 *8)) (-5 *4 (-642 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-687 *8)) (-5 *4 (-642 (-1173))) (-4 *8 (-947 *5 *7 *6)) - (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-848) (-612 (-1173)))) - (-4 *7 (-791)) - (-5 *2 - (-642 - (-2 (|:| |eqzro| (-642 *8)) (|:| |neqzro| (-642 *8)) - (|:| |wcond| (-642 (-950 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1262 (-407 (-950 *5)))) - (|:| -2131 (-642 (-1262 (-407 (-950 *5)))))))))) - (-5 *1 (-922 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-687 *7)) (-4 *7 (-947 *4 *6 *5)) - (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-848) (-612 (-1173)))) - (-4 *6 (-791)) - (-5 *2 - (-642 - (-2 (|:| |eqzro| (-642 *7)) (|:| |neqzro| (-642 *7)) - (|:| |wcond| (-642 (-950 *4))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1262 (-407 (-950 *4)))) - (|:| -2131 (-642 (-1262 (-407 (-950 *4)))))))))) - (-5 *1 (-922 *4 *5 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-687 *9)) (-5 *5 (-919)) (-4 *9 (-947 *6 *8 *7)) - (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-848) (-612 (-1173)))) - (-4 *8 (-791)) - (-5 *2 - (-642 - (-2 (|:| |eqzro| (-642 *9)) (|:| |neqzro| (-642 *9)) - (|:| |wcond| (-642 (-950 *6))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1262 (-407 (-950 *6)))) - (|:| -2131 (-642 (-1262 (-407 (-950 *6)))))))))) - (-5 *1 (-922 *6 *7 *8 *9)) (-5 *4 (-642 *9)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-687 *9)) (-5 *4 (-642 (-1173))) (-5 *5 (-919)) - (-4 *9 (-947 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) - (-4 *7 (-13 (-848) (-612 (-1173)))) (-4 *8 (-791)) + (-12 (-5 *2 (-771)) (-4 *1 (-1252 *3)) (-4 *3 (-1214)))) + ((*1 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1214))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1049)) (-5 *2 (-112)) (-5 *1 (-446 *4 *3)) + (-4 *3 (-1240 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *5 (-850)) (-5 *2 (-112))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 - (-642 - (-2 (|:| |eqzro| (-642 *9)) (|:| |neqzro| (-642 *9)) - (|:| |wcond| (-642 (-950 *6))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1262 (-407 (-950 *6)))) - (|:| -2131 (-642 (-1262 (-407 (-950 *6)))))))))) - (-5 *1 (-922 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-687 *8)) (-5 *4 (-919)) (-4 *8 (-947 *5 *7 *6)) - (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-848) (-612 (-1173)))) - (-4 *7 (-791)) + (-2 (|:| |lm| (-388 *3)) (|:| |mm| (-388 *3)) (|:| |rm| (-388 *3)))) + (-5 *1 (-388 *3)) (-4 *3 (-1099)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 - (-642 - (-2 (|:| |eqzro| (-642 *8)) (|:| |neqzro| (-642 *8)) - (|:| |wcond| (-642 (-950 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1262 (-407 (-950 *5)))) - (|:| -2131 (-642 (-1262 (-407 (-950 *5)))))))))) - (-5 *1 (-922 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-687 *9)) (-5 *4 (-642 *9)) (-5 *5 (-1155)) - (-4 *9 (-947 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) - (-4 *7 (-13 (-848) (-612 (-1173)))) (-4 *8 (-791)) (-5 *2 (-564)) - (-5 *1 (-922 *6 *7 *8 *9)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-687 *9)) (-5 *4 (-642 (-1173))) (-5 *5 (-1155)) - (-4 *9 (-947 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) - (-4 *7 (-13 (-848) (-612 (-1173)))) (-4 *8 (-791)) (-5 *2 (-564)) - (-5 *1 (-922 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-687 *8)) (-5 *4 (-1155)) (-4 *8 (-947 *5 *7 *6)) - (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-848) (-612 (-1173)))) - (-4 *7 (-791)) (-5 *2 (-564)) (-5 *1 (-922 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-687 *10)) (-5 *4 (-642 *10)) (-5 *5 (-919)) - (-5 *6 (-1155)) (-4 *10 (-947 *7 *9 *8)) (-4 *7 (-13 (-307) (-147))) - (-4 *8 (-13 (-848) (-612 (-1173)))) (-4 *9 (-791)) (-5 *2 (-564)) - (-5 *1 (-922 *7 *8 *9 *10)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-687 *10)) (-5 *4 (-642 (-1173))) (-5 *5 (-919)) - (-5 *6 (-1155)) (-4 *10 (-947 *7 *9 *8)) (-4 *7 (-13 (-307) (-147))) - (-4 *8 (-13 (-848) (-612 (-1173)))) (-4 *9 (-791)) (-5 *2 (-564)) - (-5 *1 (-922 *7 *8 *9 *10)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-687 *9)) (-5 *4 (-919)) (-5 *5 (-1155)) - (-4 *9 (-947 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) - (-4 *7 (-13 (-848) (-612 (-1173)))) (-4 *8 (-791)) (-5 *2 (-564)) - (-5 *1 (-922 *6 *7 *8 *9))))) -(((*1 *1 *2) - (-12 (-5 *2 (-642 *1)) (-4 *3 (-1047)) (-4 *1 (-685 *3 *4 *5)) - (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-642 *3)) (-4 *3 (-1047)) (-4 *1 (-685 *3 *4 *5)) - (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1262 *3)) (-4 *3 (-1047)) (-5 *1 (-687 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-642 *4)) (-4 *4 (-1047)) (-4 *1 (-1120 *3 *4 *5 *6)) - (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-1 (-225) (-225) (-225))) - (-5 *4 (-1 (-225) (-225) (-225) (-225))) - (-5 *2 (-1 (-941 (-225)) (-225) (-225))) (-5 *1 (-695))))) -(((*1 *2) (-12 (-5 *2 (-1144 (-1155))) (-5 *1 (-391))))) + (-2 (|:| |lm| (-819 *3)) (|:| |mm| (-819 *3)) (|:| |rm| (-819 *3)))) + (-5 *1 (-819 *3)) (-4 *3 (-850))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 + *7 *3 *8) + (-12 (-5 *5 (-689 (-225))) (-5 *6 (-112)) (-5 *7 (-689 (-566))) + (-5 *8 (-3 (|:| |fn| (-390)) (|:| |fp| (-65 QPHESS)))) + (-5 *3 (-566)) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-753))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-1288 *3 *4)) (-4 *1 (-376 *3 *4)) (-4 *3 (-850)) + (-4 *4 (-172)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-388 *2)) (-4 *2 (-1099)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1281 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-819 *3)) (-4 *1 (-1281 *3 *4)) (-4 *3 (-850)) + (-4 *4 (-1049)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1281 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049))))) (((*1 *1 *2) - (-12 (-5 *2 (-769)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1047)) - (-14 *4 (-642 (-1173))))) + (-12 (-5 *2 (-771)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1049)) + (-14 *4 (-644 (-1175))))) ((*1 *1 *2) - (-12 (-5 *2 (-769)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1047) (-848))) - (-14 *4 (-642 (-1173))))) - ((*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363)))) + (-12 (-5 *2 (-771)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1049) (-850))) + (-14 *4 (-644 (-1175))))) + ((*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-335 *3 *4 *5 *2)) (-4 *3 (-363)) - (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))) - (-4 *2 (-342 *3 *4 *5)))) + (|partial| -12 (-4 *1 (-337 *3 *4 *5 *2)) (-4 *3 (-365)) + (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) + (-4 *2 (-344 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-769)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-12 (-5 *2 (-771)) (-5 *1 (-392 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-172)))) - ((*1 *1) (-12 (-4 *2 (-172)) (-4 *1 (-722 *2 *3)) (-4 *3 (-1238 *2))))) -(((*1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-391))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-642 *1)) (|has| *1 (-6 -4411)) (-4 *1 (-1008 *3)) - (-4 *3 (-1212))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *3 (-642 (-263))) (-5 *1 (-261)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263)))) - ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467))))) -(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) - (-5 *1 (-749))))) + ((*1 *1) (-12 (-4 *2 (-172)) (-4 *1 (-724 *2 *3)) (-4 *3 (-1240 *2))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1256 *2 *3 *4)) (-4 *2 (-1049)) (-14 *3 (-1175)) + (-14 *4 *2)))) +(((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-1155 (-2 (|:| |k| (-566)) (|:| |c| *6)))) + (-5 *4 (-1026 (-843 (-566)))) (-5 *5 (-1175)) (-5 *7 (-409 (-566))) + (-4 *6 (-1049)) (-5 *2 (-862)) (-5 *1 (-596 *6))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1060 (-1024 *4) (-1171 (-1024 *4)))) (-5 *3 (-862)) + (-5 *1 (-1024 *4)) (-4 *4 (-13 (-848) (-365) (-1022)))))) (((*1 *2 *3) - (-12 (-5 *3 (-642 *4)) (-4 *4 (-1097)) (-5 *2 (-1267)) - (-5 *1 (-1213 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-642 *4)) (-4 *4 (-1097)) (-5 *2 (-1267)) - (-5 *1 (-1213 *4))))) + (-12 (-4 *4 (-558)) (-5 *2 (-771)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-419 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *7 (-1064 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-644 *7)) (|:| |badPols| (-644 *7)))) + (-5 *1 (-977 *4 *5 *6 *7)) (-5 *3 (-644 *7))))) (((*1 *2 *1) - (-12 (-4 *1 (-602 *3 *2)) (-4 *3 (-1097)) (-4 *3 (-848)) - (-4 *2 (-1212)))) - ((*1 *2 *1) (-12 (-5 *1 (-675 *2)) (-4 *2 (-848)))) - ((*1 *2 *1) (-12 (-5 *1 (-817 *2)) (-4 *2 (-848)))) + (-12 (-4 *1 (-604 *3 *2)) (-4 *3 (-1099)) (-4 *3 (-850)) + (-4 *2 (-1214)))) + ((*1 *2 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-850)))) + ((*1 *2 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) ((*1 *2 *1) - (-12 (-4 *2 (-1212)) (-5 *1 (-871 *2 *3)) (-4 *3 (-1212)))) - ((*1 *2 *1) (-12 (-5 *2 (-670 *3)) (-5 *1 (-891 *3)) (-4 *3 (-848)))) + (-12 (-4 *2 (-1214)) (-5 *1 (-873 *2 *3)) (-4 *3 (-1214)))) + ((*1 *2 *1) (-12 (-5 *2 (-672 *3)) (-5 *1 (-893 *3)) (-4 *3 (-850)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1205 *3 *4 *5 *2)) (-4 *3 (-556)) - (-4 *4 (-791)) (-4 *5 (-848)) (-4 *2 (-1062 *3 *4 *5)))) + (|partial| -12 (-4 *1 (-1207 *3 *4 *5 *2)) (-4 *3 (-558)) + (-4 *4 (-793)) (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-769)) (-4 *1 (-1250 *3)) (-4 *3 (-1212)))) - ((*1 *2 *1) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1212))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-642 *6)) (-4 *1 (-947 *4 *5 *6)) (-4 *4 (-1047)) - (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-769)))) - ((*1 *2 *1) - (-12 (-4 *1 (-947 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-791)) - (-4 *5 (-848)) (-5 *2 (-769))))) -(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1197)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -3872 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-363)) (-4 *7 (-1238 *6)) - (-5 *2 (-2 (|:| |answer| (-585 (-407 *7))) (|:| |a0| *6))) - (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7))))) -(((*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-491))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-1212)) (-5 *1 (-182 *3 *2)) - (-4 *2 (-672 *3))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) - (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2266)))) - (-5 *2 (-1033)) (-5 *1 (-746))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-642 (-687 *5))) (-4 *5 (-307)) (-4 *5 (-1047)) - (-5 *2 (-1262 (-1262 *5))) (-5 *1 (-1027 *5)) (-5 *4 (-1262 *5))))) + (-12 (-5 *2 (-771)) (-4 *1 (-1252 *3)) (-4 *3 (-1214)))) + ((*1 *2 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1214))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1214)) (-4 *3 (-375 *2)) + (-4 *4 (-375 *2)))) + ((*1 *1 *1 *2) + (-12 (|has| *1 (-6 -4418)) (-4 *1 (-604 *3 *2)) (-4 *3 (-1099)) + (-4 *2 (-1214))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) - (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *2 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))) - (-5 *1 (-192))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1097)) (-4 *5 (-1097)) - (-4 *6 (-1097)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-682 *4 *5 *6))))) + (-644 (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566)))))) + (-5 *2 (-644 (-225))) (-5 *1 (-306))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-791)) (-4 *6 (-848)) (-4 *3 (-556)) - (-4 *7 (-947 *3 *5 *6)) - (-5 *2 (-2 (|:| -2817 (-769)) (|:| -2968 *8) (|:| |radicand| *8))) - (-5 *1 (-951 *5 *6 *3 *7 *8)) (-5 *4 (-769)) - (-4 *8 - (-13 (-363) - (-10 -8 (-15 -2390 ($ *7)) (-15 -4120 (*7 $)) (-15 -4131 (*7 $)))))))) -(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1197)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *4 (-13 (-363) (-846))) (-5 *2 (-418 *3)) - (-5 *1 (-181 *4 *3)) (-4 *3 (-1238 (-169 *4))))) - ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-363) (-846))) (-5 *2 (-418 *3)) - (-5 *1 (-181 *4 *3)) (-4 *3 (-1238 (-169 *4)))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1068 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-791)) - (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) - (-4 *3 (-1062 *4 *5 *6)) - (-5 *2 (-642 (-2 (|:| |val| (-112)) (|:| -2138 *1)))) - (-4 *1 (-1068 *4 *5 *6 *3))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-427 *3 *2)) (-4 *3 (-13 (-172) (-38 (-407 (-564))))) - (-4 *2 (-13 (-848) (-21)))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-687 *3)) (-4 *3 (-1047)) (-5 *1 (-688 *3)))) - ((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-687 *3)) (-4 *3 (-1047)) (-5 *1 (-688 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-769)) (-4 *1 (-1238 *4)) (-4 *4 (-1047)) - (-5 *2 (-1262 *4))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1155)) (-5 *4 (-564)) (-5 *5 (-687 (-225))) - (-5 *2 (-1033)) (-5 *1 (-755))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1238 *4)) (-4 *4 (-1216)) - (-4 *6 (-1238 (-407 *5))) + (-12 (-5 *4 (-112)) (-4 *5 (-351)) (-5 *2 - (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) - (|:| |gd| *5))) - (-4 *1 (-342 *4 *5 *6))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-769)) (-4 *2 (-556)) (-5 *1 (-967 *2 *4)) - (-4 *4 (-1238 *2))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) - (-5 *1 (-750))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1169 *7)) (-4 *5 (-1047)) - (-4 *7 (-1047)) (-4 *2 (-1238 *5)) (-5 *1 (-501 *5 *2 *6 *7)) - (-4 *6 (-1238 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1047)) (-4 *7 (-1047)) - (-4 *4 (-1238 *5)) (-5 *2 (-1169 *7)) (-5 *1 (-501 *5 *4 *6 *7)) - (-4 *6 (-1238 *4))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-430 *3) (-1000))) (-5 *1 (-276 *3 *2)) - (-4 *3 (-556))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-642 (-950 *5))) (-5 *4 (-642 (-1173))) (-4 *5 (-556)) - (-5 *2 (-642 (-642 (-294 (-407 (-950 *5)))))) (-5 *1 (-768 *5)))) + (-2 (|:| |cont| *5) + (|:| -3445 (-644 (-2 (|:| |irr| *3) (|:| -2677 (-566))))))) + (-5 *1 (-216 *5 *3)) (-4 *3 (-1240 *5))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-644 (-782 *3))) (-5 *1 (-782 *3)) (-4 *3 (-558)) + (-4 *3 (-1049))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-1111)) (-4 *3 (-1099)) (-5 *2 (-644 *1)) + (-4 *1 (-432 *3)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-644 (-892 *3))) (-5 *1 (-892 *3)) + (-4 *3 (-1099)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) + (-5 *2 (-644 *1)) (-4 *1 (-949 *3 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-642 (-950 *4))) (-4 *4 (-556)) - (-5 *2 (-642 (-642 (-294 (-407 (-950 *4)))))) (-5 *1 (-768 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-687 *7)) - (-5 *5 - (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2131 (-642 *6))) - *7 *6)) - (-4 *6 (-363)) (-4 *7 (-654 *6)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1262 *6) "failed")) - (|:| -2131 (-642 (-1262 *6))))) - (-5 *1 (-811 *6 *7)) (-5 *4 (-1262 *6))))) + (|partial| -12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1049)) + (-4 *7 (-949 *6 *4 *5)) (-5 *2 (-644 *3)) + (-5 *1 (-950 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-365) + (-10 -8 (-15 -2479 ($ *7)) (-15 -4157 (*7 $)) + (-15 -4167 (*7 $)))))))) +(((*1 *1 *1) + (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-793)) (-4 *4 (-850)) (-4 *5 (-308)) + (-5 *1 (-916 *3 *4 *5 *2)) (-4 *2 (-949 *5 *3 *4)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1171 *6)) (-4 *6 (-949 *5 *3 *4)) (-4 *3 (-793)) + (-4 *4 (-850)) (-4 *5 (-308)) (-5 *1 (-916 *3 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 *2)) (-4 *2 (-949 *6 *4 *5)) + (-5 *1 (-916 *4 *5 *6 *2)) (-4 *4 (-793)) (-4 *5 (-850)) + (-4 *6 (-308))))) +(((*1 *2 *1) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) + (-4 *5 (-1240 (-409 *4))) + (-5 *2 (-2 (|:| |num| (-1264 *4)) (|:| |den| *4)))))) +(((*1 *2 *3) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-563)) (-5 *3 (-566)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1171 (-409 (-566)))) (-5 *1 (-942)) (-5 *3 (-566))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-925))))) + (-12 (-5 *4 (-1175)) + (-4 *5 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) + (-5 *2 (-587 *3)) (-5 *1 (-428 *5 *3)) + (-4 *3 (-13 (-1199) (-29 *5)))))) +(((*1 *2 *1) (-12 (-5 *1 (-587 *2)) (-4 *2 (-365))))) (((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4410)) (-4 *1 (-489 *3)) (-4 *3 (-1212)) - (-4 *3 (-1097)) (-5 *2 (-769)))) + (-12 (|has| *1 (-6 -4417)) (-4 *1 (-491 *3)) (-4 *3 (-1214)) + (-4 *3 (-1099)) (-5 *2 (-771)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4410)) (-4 *1 (-489 *4)) - (-4 *4 (-1212)) (-5 *2 (-769))))) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4417)) (-4 *1 (-491 *4)) + (-4 *4 (-1214)) (-5 *2 (-771))))) (((*1 *2 *1) - (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-848)) - (-4 *5 (-266 *4)) (-4 *6 (-791)) (-5 *2 (-112))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4411)) (-4 *1 (-119 *2)) (-4 *2 (-1212))))) + (-12 (-4 *1 (-1207 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) + (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-644 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-558)) + (-5 *2 (-1171 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-919)) (-5 *2 (-1169 *4)) (-5 *1 (-357 *4)) - (-4 *4 (-349))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-556)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3710 *4))) - (-5 *1 (-967 *4 *3)) (-4 *3 (-1238 *4))))) + (-12 (-5 *3 (-644 (-317 (-225)))) (-5 *2 (-112)) (-5 *1 (-268))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1218)) (-4 *5 (-1240 *4)) + (-5 *2 (-2 (|:| -3103 (-409 *5)) (|:| |poly| *3))) + (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1240 (-409 *5)))))) +(((*1 *2 *2 *3) + (|partial| -12 + (-5 *3 (-644 (-2 (|:| |func| *2) (|:| |pole| (-112))))) + (-4 *2 (-13 (-432 *4) (-1002))) (-4 *4 (-558)) + (-5 *1 (-277 *4 *2))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1157)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) + ((*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-264))))) +(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) + (-12 (-5 *3 (-1157)) (-5 *5 (-689 (-225))) (-5 *6 (-225)) + (-5 *7 (-689 (-566))) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-752))))) +(((*1 *2 *2 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) + (-5 *1 (-1127 *3 *2)) (-4 *3 (-1240 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-594 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-4 *1 (-1099)) (-5 *2 (-1119))))) +(((*1 *2 *3) + (-12 (-5 *2 (-420 (-1171 *1))) (-5 *1 (-317 *4)) (-5 *3 (-1171 *1)) + (-4 *4 (-454)) (-4 *4 (-558)) (-4 *4 (-1099)))) + ((*1 *2 *3) + (-12 (-4 *1 (-909)) (-5 *2 (-420 (-1171 *1))) (-5 *3 (-1171 *1))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-927))))) +(((*1 *2 *3) + (-12 (-5 *3 (-921)) (-5 *2 (-1171 *4)) (-5 *1 (-359 *4)) + (-4 *4 (-351))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-558) (-1038 (-566)) (-639 (-566)))) + (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1175)) + (-4 *4 (-13 (-558) (-1038 (-566)) (-639 (-566)))) + (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *4)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1163 3 *3)) (-4 *3 (-1049)) (-4 *1 (-1133 *3)))) + ((*1 *1) (-12 (-4 *1 (-1133 *2)) (-4 *2 (-1049))))) +(((*1 *2) + (-12 (-4 *4 (-1218)) (-4 *5 (-1240 *4)) (-4 *6 (-1240 (-409 *5))) + (-5 *2 (-771)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) + (-4 *5 (-1240 (-409 *4))) (-5 *2 (-771)))) + ((*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-771))))) +(((*1 *2 *1) + (-12 (-4 *1 (-976 *3 *4 *2 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *5 (-1064 *3 *4 *2)) (-4 *2 (-850)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1064 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *2 (-850))))) +(((*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-921)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1264 *4)) (-4 *4 (-351)) (-5 *2 (-921)) + (-5 *1 (-530 *4))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-157)) (-5 *2 (-1269)) (-5 *1 (-1266))))) (((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1212)) (-5 *2 (-769)) + (-12 (-14 *4 *2) (-4 *5 (-1214)) (-5 *2 (-771)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-131)) - (-5 *2 (-769)))) + (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-131)) + (-5 *2 (-771)))) ((*1 *2) - (-12 (-4 *4 (-363)) (-5 *2 (-769)) (-5 *1 (-328 *3 *4)) - (-4 *3 (-329 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-361 *3)) (-4 *3 (-1097)))) - ((*1 *2) (-12 (-4 *1 (-368)) (-5 *2 (-769)))) - ((*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-386 *3)) (-4 *3 (-1097)))) + (-12 (-4 *4 (-365)) (-5 *2 (-771)) (-5 *1 (-329 *3 *4)) + (-4 *3 (-330 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-363 *3)) (-4 *3 (-1099)))) + ((*1 *2) (-12 (-4 *1 (-370)) (-5 *2 (-771)))) + ((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-388 *3)) (-4 *3 (-1099)))) ((*1 *2) - (-12 (-4 *4 (-1097)) (-5 *2 (-769)) (-5 *1 (-424 *3 *4)) - (-4 *3 (-425 *4)))) + (-12 (-4 *4 (-1099)) (-5 *2 (-771)) (-5 *1 (-426 *3 *4)) + (-4 *3 (-427 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-769)) (-5 *1 (-647 *3 *4 *5)) (-4 *3 (-1097)) + (-12 (-5 *2 (-771)) (-5 *1 (-649 *3 *4 *5)) (-4 *3 (-1099)) (-4 *4 (-23)) (-14 *5 *4))) ((*1 *2) - (-12 (-4 *4 (-172)) (-4 *5 (-1238 *4)) (-5 *2 (-769)) - (-5 *1 (-721 *3 *4 *5)) (-4 *3 (-722 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-817 *3)) (-4 *3 (-848)))) - ((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1004)))) + (-12 (-4 *4 (-172)) (-4 *5 (-1240 *4)) (-5 *2 (-771)) + (-5 *1 (-723 *3 *4 *5)) (-4 *3 (-724 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-819 *3)) (-4 *3 (-850)))) + ((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-1006)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-846) (-363))) (-5 *1 (-1058 *2 *3)) - (-4 *3 (-1238 *2))))) -(((*1 *1 *1) - (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1262 *4)) (-5 *3 (-769)) (-4 *4 (-349)) - (-5 *1 (-528 *4))))) -(((*1 *1) (-5 *1 (-437)))) -(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-592 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-4 *1 (-1097)) (-5 *2 (-1117))))) -(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-689 (-1220)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-687 (-316 (-225)))) - (-5 *2 - (-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379)))) - (-5 *1 (-205))))) -(((*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-919)) (-5 *1 (-784))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-642 (-564))) (-5 *2 (-687 (-564))) (-5 *1 (-1107))))) -(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820))))) -(((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1000)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047))))) -(((*1 *1 *1 *1) (-5 *1 (-860)))) -(((*1 *2) - (-12 (-4 *3 (-556)) (-5 *2 (-642 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-417 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-556)) (-5 *2 (-956 *3)) (-5 *1 (-1160 *4 *3)) - (-4 *3 (-1238 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-919)) (-5 *2 (-902 (-564))) (-5 *1 (-915)))) - ((*1 *2 *3) - (-12 (-5 *3 (-642 (-564))) (-5 *2 (-902 (-564))) (-5 *1 (-915))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556))))) -(((*1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-642 (-114)))))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-687 (-225))) (-5 *4 (-564)) (-5 *5 (-112)) - (-5 *2 (-1033)) (-5 *1 (-743))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-642 (-780 *3))) (-5 *1 (-780 *3)) (-4 *3 (-556)) - (-4 *3 (-1047))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1169 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3))))) + (-12 (-4 *2 (-13 (-848) (-365))) (-5 *1 (-1060 *2 *3)) + (-4 *3 (-1240 *2))))) +(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1199)))))) +(((*1 *2 *1) (-12 (-4 *1 (-556 *2)) (-4 *2 (-13 (-406) (-1199))))) + ((*1 *1 *1 *1) (-4 *1 (-793)))) (((*1 *2 *1) - (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-642 (-941 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-642 (-941 *3))) (-4 *3 (-1047)) (-4 *1 (-1131 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-642 (-642 *3))) (-4 *1 (-1131 *3)) (-4 *3 (-1047)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-642 (-941 *3))) (-4 *1 (-1131 *3)) (-4 *3 (-1047))))) -(((*1 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) - (-5 *1 (-1125 *3 *2)) (-4 *3 (-1238 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-112))))) + (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1099)) + (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) (((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) - (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *2 - (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) - (|:| |expense| (-379)) (|:| |accuracy| (-379)) - (|:| |intermediateResults| (-379)))) - (-5 *1 (-801))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1205 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-791)) - (-4 *5 (-848)) (-4 *2 (-1062 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-418 *3)) (-5 *1 (-912 *3)) (-4 *3 (-307))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-642 *1)) - (-4 *1 (-1062 *3 *4 *5))))) + (-12 (-5 *2 (-420 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1240 (-48))))) + ((*1 *2 *3 *1) + (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) + (-5 *1 (-121 *3)) (-4 *3 (-850)))) + ((*1 *2 *2) + (-12 (-5 *2 (-587 *4)) (-4 *4 (-13 (-29 *3) (-1199))) + (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566)))) + (-5 *1 (-585 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-587 (-409 (-952 *3)))) + (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-590 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1240 *5)) (-4 *5 (-365)) + (-5 *2 (-2 (|:| -3764 *3) (|:| |special| *3))) (-5 *1 (-727 *5 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1264 *5)) (-4 *5 (-365)) (-4 *5 (-1049)) + (-5 *2 (-644 (-644 (-689 *5)))) (-5 *1 (-1029 *5)) + (-5 *3 (-644 (-689 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1264 (-1264 *5))) (-4 *5 (-365)) (-4 *5 (-1049)) + (-5 *2 (-644 (-644 (-689 *5)))) (-5 *1 (-1029 *5)) + (-5 *3 (-644 (-689 *5))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-644 *1)) (-4 *1 (-1143)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-144)) (-5 *2 (-644 *1)) (-4 *1 (-1143))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1099)) (-4 *3 (-900 *5)) (-5 *2 (-689 *3)) + (-5 *1 (-692 *5 *3 *6 *4)) (-4 *6 (-375 *3)) + (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4417))))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1175)) (-4 *5 (-614 (-892 (-566)))) + (-4 *5 (-886 (-566))) + (-4 *5 (-13 (-1038 (-566)) (-454) (-639 (-566)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) + (-5 *1 (-569 *5 *3)) (-4 *3 (-629)) + (-4 *3 (-13 (-27) (-1199) (-432 *5))))) + ((*1 *2 *2 *3 *4 *4) + (|partial| -12 (-5 *3 (-1175)) (-5 *4 (-843 *2)) (-4 *2 (-1138)) + (-4 *2 (-13 (-27) (-1199) (-432 *5))) + (-4 *5 (-614 (-892 (-566)))) (-4 *5 (-886 (-566))) + (-4 *5 (-13 (-1038 (-566)) (-454) (-639 (-566)))) + (-5 *1 (-569 *5 *2))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-927))))) +(((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1171 *2)) (-4 *2 (-949 (-409 (-952 *6)) *5 *4)) + (-5 *1 (-732 *5 *4 *6 *2)) (-4 *5 (-793)) + (-4 *4 (-13 (-850) (-10 -8 (-15 -3136 ((-1175) $))))) + (-4 *6 (-558))))) +(((*1 *2 *2) (-12 (-5 *2 (-921)) (|has| *1 (-6 -4408)) (-4 *1 (-406)))) + ((*1 *2) (-12 (-4 *1 (-406)) (-5 *2 (-921)))) + ((*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-699)))) + ((*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-699))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-644 (-247 *4 *5))) (-5 *2 (-247 *4 *5)) + (-14 *4 (-644 (-1175))) (-4 *5 (-454)) (-5 *1 (-631 *4 *5))))) +(((*1 *2 *3 *4 *4 *5 *3 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) + (-5 *2 (-1035)) (-5 *1 (-752))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-644 *3)) (-4 *3 (-308)) (-5 *1 (-179 *3))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-793)) + (-4 *3 (-13 (-850) (-10 -8 (-15 -3136 ((-1175) $))))) (-4 *5 (-558)) + (-5 *1 (-732 *4 *3 *5 *2)) (-4 *2 (-949 (-409 (-952 *5)) *4 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *4 (-1049)) (-4 *5 (-793)) + (-4 *3 + (-13 (-850) + (-10 -8 (-15 -3136 ((-1175) $)) + (-15 -1338 ((-3 $ "failed") (-1175)))))) + (-5 *1 (-984 *4 *5 *3 *2)) (-4 *2 (-949 (-952 *4) *5 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-644 *6)) + (-4 *6 + (-13 (-850) + (-10 -8 (-15 -3136 ((-1175) $)) + (-15 -1338 ((-3 $ "failed") (-1175)))))) + (-4 *4 (-1049)) (-4 *5 (-793)) (-5 *1 (-984 *4 *5 *6 *2)) + (-4 *2 (-949 (-952 *4) *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-566))) (-5 *1 (-1047))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171))))) +(((*1 *1) (-5 *1 (-141))) ((*1 *1 *1) (-5 *1 (-144))) + ((*1 *1 *1) (-4 *1 (-1143)))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 *2)) (-4 *2 (-432 *4)) (-5 *1 (-158 *4 *2)) + (-4 *4 (-558))))) +(((*1 *2 *1) (-12 (-4 *1 (-674 *3)) (-4 *3 (-1214)) (-5 *2 (-112))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-646 *5)) (-4 *5 (-1047)) - (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-850 *5)))) + (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-648 *5)) (-4 *5 (-1049)) + (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-852 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-687 *3)) (-4 *1 (-417 *3)) (-4 *3 (-172)))) - ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-850 *2)) (-4 *2 (-1047)))) + (-12 (-5 *2 (-689 *3)) (-4 *1 (-419 *3)) (-4 *3 (-172)))) + ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)))) ((*1 *2 *3 *2 *2 *4 *5) - (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1047)) - (-5 *1 (-851 *2 *3)) (-4 *3 (-850 *2))))) -(((*1 *2 *3) - (-12 (-5 *3 (-564)) (|has| *1 (-6 -4401)) (-4 *1 (-404)) - (-5 *2 (-919))))) -(((*1 *1) (-5 *1 (-330)))) -(((*1 *1 *2) (-12 (-5 *1 (-1198 *2)) (-4 *2 (-1097)))) + (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1049)) + (-5 *1 (-853 *2 *3)) (-4 *3 (-852 *2))))) +(((*1 *2) + (-12 (-5 *2 (-2 (|:| -3633 (-644 *3)) (|:| -4346 (-644 *3)))) + (-5 *1 (-1215 *3)) (-4 *3 (-1099))))) +(((*1 *1) (-5 *1 (-331)))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) +(((*1 *2 *3) + (-12 (-5 *3 (-587 *2)) (-4 *2 (-13 (-29 *4) (-1199))) + (-5 *1 (-585 *4 *2)) + (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-587 (-409 (-952 *4)))) + (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-317 *4)) + (-5 *1 (-590 *4))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1207 *2 *3 *4 *5)) (-4 *2 (-558)) (-4 *3 (-793)) + (-4 *4 (-850)) (-4 *5 (-1064 *2 *3 *4))))) +(((*1 *1 *2) (-12 (-5 *1 (-1200 *2)) (-4 *2 (-1099)))) ((*1 *1 *2) - (-12 (-5 *2 (-642 *3)) (-4 *3 (-1097)) (-5 *1 (-1198 *3)))) + (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-5 *1 (-1200 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-642 (-1198 *2))) (-5 *1 (-1198 *2)) (-4 *2 (-1097))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-919)) - (-5 *2 (-1262 (-642 (-2 (|:| -2108 *4) (|:| -2065 (-1117)))))) - (-5 *1 (-346 *4)) (-4 *4 (-349))))) + (-12 (-5 *3 (-644 (-1200 *2))) (-5 *1 (-1200 *2)) (-4 *2 (-1099))))) +(((*1 *1 *2) + (-12 (-5 *2 (-644 (-506 *3 *4 *5 *6))) (-4 *3 (-365)) (-4 *4 (-793)) + (-4 *5 (-850)) (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-365)) (-4 *3 (-793)) (-4 *4 (-850)) + (-5 *1 (-506 *2 *3 *4 *5)) (-4 *5 (-949 *2 *3 *4)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-644 *1)) (-4 *1 (-1070 *4 *5 *6 *3)) (-4 *4 (-454)) + (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-644 *1)) (-5 *3 (-644 *7)) (-4 *1 (-1070 *4 *5 *6 *7)) + (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *7 (-1064 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) + (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 *1)) + (-4 *1 (-1070 *4 *5 *6 *7)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-644 *1)) + (-4 *1 (-1070 *4 *5 *6 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 + (-1 (-2 (|:| |ans| *6) (|:| -4361 *6) (|:| |sol?| (-112))) (-566) + *6)) + (-4 *6 (-365)) (-4 *7 (-1240 *6)) + (-5 *2 (-2 (|:| |answer| (-587 (-409 *7))) (|:| |a0| *6))) + (-5 *1 (-576 *6 *7)) (-5 *3 (-409 *7))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (-144)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-642 - (-2 (|:| -3616 (-769)) - (|:| |eqns| - (-642 - (-2 (|:| |det| *7) (|:| |rows| (-642 (-564))) - (|:| |cols| (-642 (-564)))))) - (|:| |fgb| (-642 *7))))) - (-4 *7 (-947 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) - (-4 *5 (-13 (-848) (-612 (-1173)))) (-4 *6 (-791)) (-5 *2 (-769)) - (-5 *1 (-922 *4 *5 *6 *7))))) -(((*1 *1 *2 *3) - (-12 - (-5 *3 - (-642 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) - (|:| |xpnt| (-564))))) - (-4 *2 (-556)) (-5 *1 (-418 *2)))) - ((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |contp| (-564)) - (|:| -1569 (-642 (-2 (|:| |irr| *4) (|:| -3660 (-564))))))) - (-4 *4 (-1238 (-564))) (-5 *2 (-418 *4)) (-5 *1 (-442 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1097)) (-4 *5 (-1097)) - (-5 *2 (-1 *5 *4)) (-5 *1 (-681 *4 *5))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (-144)) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1097)) (-4 *1 (-901 *3))))) -(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) - (-12 (-4 *1 (-795 *2)) (-4 *2 (-172)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-997 *3)) (-4 *3 (-172)) (-5 *1 (-797 *3))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) - (-5 *1 (-753))))) + (-12 (-5 *3 (-644 (-1157))) (-5 *2 (-1157)) (-5 *1 (-192)))) + ((*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) + (-5 *1 (-751))))) +(((*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1157)) (-5 *1 (-306))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-644 *2)) (-4 *2 (-1099)) (-4 *2 (-1214))))) (((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-642 (-1155))) (-5 *2 (-1155)) (-5 *1 (-1263)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-1263)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-1263)))) + (-12 (-5 *3 (-644 (-1157))) (-5 *2 (-1157)) (-5 *1 (-1265)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1265)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1265)))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-642 (-1155))) (-5 *2 (-1155)) (-5 *1 (-1264)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-1264)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-1264))))) -(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1169 (-407 (-564)))) (-5 *1 (-940)) (-5 *3 (-564))))) + (-12 (-5 *3 (-644 (-1157))) (-5 *2 (-1157)) (-5 *1 (-1266)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1266)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1266))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-950 (-169 *4))) (-4 *4 (-172)) - (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-950 (-169 *5))) (-5 *4 (-919)) (-4 *5 (-172)) - (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-950 *4)) (-4 *4 (-1047)) - (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-950 *5)) (-5 *4 (-919)) (-4 *5 (-1047)) - (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-407 (-950 *4))) (-4 *4 (-556)) - (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-407 (-950 *5))) (-5 *4 (-919)) (-4 *5 (-556)) - (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-407 (-950 (-169 *4)))) (-4 *4 (-556)) - (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-407 (-950 (-169 *5)))) (-5 *4 (-919)) - (-4 *5 (-556)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) - (-5 *1 (-783 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-316 *4)) (-4 *4 (-556)) (-4 *4 (-848)) - (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-316 *5)) (-5 *4 (-919)) (-4 *5 (-556)) - (-4 *5 (-848)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) - (-5 *1 (-783 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-316 (-169 *4))) (-4 *4 (-556)) (-4 *4 (-848)) - (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-316 (-169 *5))) (-5 *4 (-919)) (-4 *5 (-556)) - (-4 *5 (-848)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) - (-5 *1 (-783 *5))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) - (-5 *1 (-750))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-642 *2)) (-4 *2 (-1097)) (-4 *2 (-1212))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) - (-4 *3 (-1062 *5 *6 *7)) - (-5 *2 (-642 (-2 (|:| |val| (-112)) (|:| -2138 *4)))) - (-5 *1 (-774 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1193))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-769)) (-5 *1 (-854 *2)) (-4 *2 (-172)))) - ((*1 *2 *3 *3 *2) - (-12 (-5 *3 (-769)) (-5 *1 (-854 *2)) (-4 *2 (-172))))) -(((*1 *2 *3 *4 *4 *3 *5) - (-12 (-5 *4 (-610 *3)) (-5 *5 (-1169 *3)) - (-4 *3 (-13 (-430 *6) (-27) (-1197))) - (-4 *6 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564)))) - (-5 *2 (-585 *3)) (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1097)))) - ((*1 *2 *3 *4 *4 *4 *3 *5) - (-12 (-5 *4 (-610 *3)) (-5 *5 (-407 (-1169 *3))) - (-4 *3 (-13 (-430 *6) (-27) (-1197))) - (-4 *6 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564)))) - (-5 *2 (-585 *3)) (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1097))))) -(((*1 *1) (-5 *1 (-1176)))) -(((*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1262 *1)) (-4 *1 (-367 *3))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-718)) (-5 *2 (-919)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-720)) (-5 *2 (-769))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-642 *2)) (-4 *2 (-1097)) (-4 *2 (-1212))))) -(((*1 *2) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-1265)))) - ((*1 *2 *2) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-1265))))) -(((*1 *2 *1) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1212))))) + (-12 + (-5 *3 + (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) + (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 (-381)) (-5 *1 (-192))))) +(((*1 *1 *1) + (-12 (-4 *2 (-365)) (-4 *3 (-793)) (-4 *4 (-850)) + (-5 *1 (-506 *2 *3 *4 *5)) (-4 *5 (-949 *2 *3 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436))))) +(((*1 *2 *3 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-748))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-833 *3)) (-4 *3 (-1099)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-843 *3)) (-4 *3 (-1099))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-644 *2)) (-4 *2 (-949 *4 *5 *6)) (-4 *4 (-454)) + (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-451 *4 *5 *6 *2))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-1224 *3 *2)) (-4 *3 (-1047)) - (-4 *2 (-1253 *3))))) -(((*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-436))))) + (-12 (-5 *2 (-644 (-905 *3))) (-5 *1 (-904 *3)) (-4 *3 (-1099))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1264 *3)) (-4 *3 (-1049)) (-5 *1 (-712 *3 *4)) + (-4 *4 (-1240 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-452)) (-4 *4 (-791)) (-4 *5 (-848)) - (-5 *1 (-449 *3 *4 *5 *2)) (-4 *2 (-947 *3 *4 *5))))) + (-12 (-5 *2 (-644 (-483 *3 *4))) (-14 *3 (-644 (-1175))) + (-4 *4 (-454)) (-5 *1 (-631 *3 *4))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-644 *2)) (-4 *2 (-1099)) (-4 *2 (-1214))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1171 *1)) (-4 *1 (-454)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1171 *6)) (-4 *6 (-949 *5 *3 *4)) (-4 *3 (-793)) + (-4 *4 (-850)) (-4 *5 (-909)) (-5 *1 (-459 *3 *4 *5 *6)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1171 *1)) (-4 *1 (-909))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1097)) (-4 *3 (-898 *5)) (-5 *2 (-687 *3)) - (-5 *1 (-690 *5 *3 *6 *4)) (-4 *6 (-373 *3)) - (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4410))))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-681 *4 *3)) (-4 *4 (-1097)) - (-4 *3 (-1097))))) -(((*1 *2 *3) - (-12 (-4 *4 (-349)) (-5 *2 (-418 (-1169 (-1169 *4)))) - (-5 *1 (-1210 *4)) (-5 *3 (-1169 (-1169 *4)))))) -(((*1 *2 *1) (-12 (-4 *1 (-132)) (-5 *2 (-769)))) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) +(((*1 *2) (-12 (-5 *2 (-1146 (-1157))) (-5 *1 (-393))))) +(((*1 *2) + (-12 (-5 *2 (-771)) (-5 *1 (-120 *3)) (-4 *3 (-1240 (-566))))) + ((*1 *2 *2) + (-12 (-5 *2 (-771)) (-5 *1 (-120 *3)) (-4 *3 (-1240 (-566)))))) +(((*1 *2 *1) (-12 (-4 *1 (-132)) (-5 *2 (-771)))) ((*1 *2 *3 *1 *2) - (-12 (-5 *2 (-564)) (-4 *1 (-373 *3)) (-4 *3 (-1212)) - (-4 *3 (-1097)))) + (-12 (-5 *2 (-566)) (-4 *1 (-375 *3)) (-4 *3 (-1214)) + (-4 *3 (-1099)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-373 *3)) (-4 *3 (-1212)) (-4 *3 (-1097)) - (-5 *2 (-564)))) + (-12 (-4 *1 (-375 *3)) (-4 *3 (-1214)) (-4 *3 (-1099)) + (-5 *2 (-566)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-373 *4)) (-4 *4 (-1212)) - (-5 *2 (-564)))) - ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-529)))) - ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1141)) (-5 *2 (-564)) (-5 *3 (-141)))) - ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1141)) (-5 *2 (-564))))) -(((*1 *2 *1) (-12 (-4 *1 (-1250 *3)) (-4 *3 (-1212)) (-5 *2 (-769))))) -(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-564)) (-5 *5 (-687 (-225))) - (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) - (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) - (-5 *3 (-225)) (-5 *2 (-1033)) (-5 *1 (-747))))) -(((*1 *2) - (-12 - (-5 *2 (-2 (|:| -2608 (-642 (-1173))) (|:| -3612 (-642 (-1173))))) - (-5 *1 (-1214))))) + (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-375 *4)) (-4 *4 (-1214)) + (-5 *2 (-566)))) + ((*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-531)))) + ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-566)) (-5 *3 (-141)))) + ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-566))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-689 *3)) (-4 *3 (-308)) (-5 *1 (-700 *3))))) +(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) + (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G)))) (-5 *2 (-1035)) + (-5 *1 (-748))))) +(((*1 *2 *2) + (-12 (-4 *3 (-365)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) + (-5 *1 (-523 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) +(((*1 *1 *1 *2 *3 *1) + (-12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-792))))) (((*1 *1 *1 *1) - (-12 (-5 *1 (-642 *2)) (-4 *2 (-1097)) (-4 *2 (-1212))))) -(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-1263)))) - ((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-1264))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-974 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-791)) - (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-556)) + (-12 (-5 *1 (-644 *2)) (-4 *2 (-1099)) (-4 *2 (-1214))))) +(((*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-771))))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-1265)))) + ((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-1266))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-30)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-420 *4) *4)) (-4 *4 (-558)) (-5 *2 (-420 *4)) + (-5 *1 (-421 *4)))) + ((*1 *1 *1) (-5 *1 (-926))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-926)))) + ((*1 *1 *1) (-5 *1 (-927))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-927)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566))))) + (-5 *4 (-409 (-566))) (-5 *1 (-1020 *3)) (-4 *3 (-1240 (-566))))) + ((*1 *2 *3 *2 *2) + (|partial| -12 + (-5 *2 (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566))))) + (-5 *1 (-1020 *3)) (-4 *3 (-1240 (-566))))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566))))) + (-5 *4 (-409 (-566))) (-5 *1 (-1021 *3)) (-4 *3 (-1240 *4)))) + ((*1 *2 *3 *2 *2) + (|partial| -12 + (-5 *2 (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566))))) + (-5 *1 (-1021 *3)) (-4 *3 (-1240 (-409 (-566)))))) + ((*1 *1 *1) + (-12 (-4 *2 (-13 (-848) (-365))) (-5 *1 (-1060 *2 *3)) + (-4 *3 (-1240 *2))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) + (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G)))) (-5 *2 (-1035)) + (-5 *1 (-748))))) +(((*1 *2 *1) + (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792)) + (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1099)) + (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-596 *3)) (-4 *3 (-1049)))) + ((*1 *2 *1) + (-12 (-4 *3 (-558)) (-5 *2 (-112)) (-5 *1 (-623 *3 *4)) + (-4 *4 (-1240 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-735 *3 *4)) (-4 *3 (-1049)) + (-4 *4 (-726)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1281 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)) (-5 *2 (-112))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-974 *4 *5 *3 *6)) (-4 *4 (-1047)) (-4 *5 (-791)) - (-4 *3 (-848)) (-4 *6 (-1062 *4 *5 *3)) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-848)) (-5 *1 (-245 *3))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) - (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *2 (-379)) (-5 *1 (-205))))) + (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) + (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))) + (-5 *1 (-192))))) +(((*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172))))) (((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-363) (-302) - (-10 -8 (-15 -4120 ((-1122 *3 (-610 $)) $)) - (-15 -4131 ((-1122 *3 (-610 $)) $)) - (-15 -2390 ($ (-1122 *3 (-610 $)))))))))) -(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1173)) (-4 *4 (-556)) (-4 *4 (-1097)) - (-5 *1 (-573 *4 *2)) (-4 *2 (-430 *4))))) + (-12 (-5 *2 (-644 *6)) (-4 *6 (-949 *3 *4 *5)) (-4 *3 (-308)) + (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-449 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-644 *7)) (-5 *3 (-1157)) (-4 *7 (-949 *4 *5 *6)) + (-4 *4 (-308)) (-4 *5 (-793)) (-4 *6 (-850)) + (-5 *1 (-449 *4 *5 *6 *7)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-644 *7)) (-5 *3 (-1157)) (-4 *7 (-949 *4 *5 *6)) + (-4 *4 (-308)) (-4 *5 (-793)) (-4 *6 (-850)) + (-5 *1 (-449 *4 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1175 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-642 (-171)))))) -(((*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1097)) (-5 *1 (-903 *3))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-407 (-564))) (-5 *1 (-1022 *3)) - (-4 *3 (-13 (-846) (-363) (-1020))))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *2 (-13 (-846) (-363))) (-5 *1 (-1058 *2 *3)) - (-4 *3 (-1238 *2)))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1065 *2 *3)) (-4 *2 (-13 (-846) (-363))) - (-4 *3 (-1238 *2))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1100 *2 *3 *4 *5 *6)) (-4 *2 (-1097)) (-4 *3 (-1097)) - (-4 *4 (-1097)) (-4 *5 (-1097)) (-4 *6 (-1097))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1153 (-564))) (-5 *1 (-1002 *3)) (-14 *3 (-564))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-642 *6) "failed") (-564) *6 *6)) (-4 *6 (-363)) - (-4 *7 (-1238 *6)) - (-5 *2 (-2 (|:| |answer| (-585 (-407 *7))) (|:| |a0| *6))) - (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7))))) -(((*1 *1 *2 *2) - (-12 (-5 *2 (-642 (-564))) (-5 *1 (-1002 *3)) (-14 *3 (-564))))) + (-12 (-5 *3 (-295 (-409 (-952 *5)))) (-5 *4 (-1175)) + (-4 *5 (-13 (-308) (-147))) + (-5 *2 (-1164 (-644 (-317 *5)) (-644 (-295 (-317 *5))))) + (-5 *1 (-1128 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-1175)) + (-4 *5 (-13 (-308) (-147))) + (-5 *2 (-1164 (-644 (-317 *5)) (-644 (-295 (-317 *5))))) + (-5 *1 (-1128 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-531))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-610 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)) + (-5 *2 (-112))))) (((*1 *1 *1) - (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047))))) -(((*1 *2) - (|partial| -12 (-4 *4 (-1216)) (-4 *5 (-1238 (-407 *2))) - (-4 *2 (-1238 *4)) (-5 *1 (-341 *3 *4 *2 *5)) - (-4 *3 (-342 *4 *2 *5)))) - ((*1 *2) - (|partial| -12 (-4 *1 (-342 *3 *2 *4)) (-4 *3 (-1216)) - (-4 *4 (-1238 (-407 *2))) (-4 *2 (-1238 *3))))) -(((*1 *1 *2 *3 *3 *4 *4) - (-12 (-5 *2 (-950 (-564))) (-5 *3 (-1173)) - (-5 *4 (-1091 (-407 (-564)))) (-5 *1 (-30))))) -(((*1 *2 *3) (-12 (-5 *2 (-642 (-564))) (-5 *1 (-446)) (-5 *3 (-564))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197))))) + (-12 (-4 *1 (-1102 *2 *3 *4 *5 *6)) (-4 *2 (-1099)) (-4 *3 (-1099)) + (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099))))) +(((*1 *2 *3) (-12 (-5 *3 (-841)) (-5 *2 (-1035)) (-5 *1 (-840)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-317 (-381)))) (-5 *4 (-644 (-381))) + (-5 *2 (-1035)) (-5 *1 (-840))))) (((*1 *1 *1) - (-12 (-4 *1 (-1100 *2 *3 *4 *5 *6)) (-4 *2 (-1097)) (-4 *3 (-1097)) - (-4 *4 (-1097)) (-4 *5 (-1097)) (-4 *6 (-1097))))) + (-12 (-4 *1 (-949 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) + (-4 *4 (-850)) (-4 *2 (-454)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *3 (-1064 *4 *5 *6)) + (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -2192 *1)))) + (-4 *1 (-1070 *4 *5 *6 *3)))) + ((*1 *1 *1) (-4 *1 (-1218))) + ((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-1243 *3 *2)) + (-4 *2 (-13 (-1240 *3) (-558) (-10 -8 (-15 -2162 ($ $ $)))))))) +(((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1040))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-2 (|:| -4069 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-365)) (-4 *7 (-1240 *6)) + (-5 *2 + (-3 (-2 (|:| |answer| (-409 *7)) (|:| |a0| *6)) + (-2 (|:| -4069 (-409 *7)) (|:| |coeff| (-409 *7))) "failed")) + (-5 *1 (-576 *6 *7)) (-5 *3 (-409 *7))))) +(((*1 *2 *3 *4 *5 *6 *7 *7 *8) + (-12 + (-5 *3 + (-2 (|:| |det| *12) (|:| |rows| (-644 (-566))) + (|:| |cols| (-644 (-566))))) + (-5 *4 (-689 *12)) (-5 *5 (-644 (-409 (-952 *9)))) + (-5 *6 (-644 (-644 *12))) (-5 *7 (-771)) (-5 *8 (-566)) + (-4 *9 (-13 (-308) (-147))) (-4 *12 (-949 *9 *11 *10)) + (-4 *10 (-13 (-850) (-614 (-1175)))) (-4 *11 (-793)) + (-5 *2 + (-2 (|:| |eqzro| (-644 *12)) (|:| |neqzro| (-644 *12)) + (|:| |wcond| (-644 (-952 *9))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1264 (-409 (-952 *9)))) + (|:| -1419 (-644 (-1264 (-409 (-952 *9))))))))) + (-5 *1 (-924 *9 *10 *11 *12))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-264))) (-5 *4 (-1175)) (-5 *2 (-112)) + (-5 *1 (-264))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1171 (-566))) (-5 *1 (-942)) (-5 *3 (-566))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-644 (-864 *5))) (-14 *5 (-644 (-1175))) (-4 *6 (-454)) + (-5 *2 + (-2 (|:| |dpolys| (-644 (-247 *5 *6))) + (|:| |coords| (-644 (-566))))) + (-5 *1 (-473 *5 *6 *7)) (-5 *3 (-644 (-247 *5 *6))) (-4 *7 (-454))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) + (-5 *4 (-689 (-1171 *8))) (-4 *5 (-1049)) (-4 *8 (-1049)) + (-4 *6 (-1240 *5)) (-5 *2 (-689 *6)) (-5 *1 (-503 *5 *6 *7 *8)) + (-4 *7 (-1240 *6))))) (((*1 *1 *1) - (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 - (-1 (-3 (-2 (|:| -3872 *7) (|:| |coeff| *7)) "failed") *7)) - (-5 *6 (-642 (-407 *8))) (-4 *7 (-363)) (-4 *8 (-1238 *7)) - (-5 *3 (-407 *8)) - (-5 *2 - (-2 - (|:| |answer| - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-642 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (|:| |a0| *7))) - (-5 *1 (-574 *7 *8))))) + (-12 (-4 *1 (-1102 *2 *3 *4 *5 *6)) (-4 *2 (-1099)) (-4 *3 (-1099)) + (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099))))) +(((*1 *1) (-5 *1 (-141)))) +(((*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-1267)))) + ((*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-1267))))) (((*1 *2 *1) - (-12 (-5 *2 (-642 (-2 (|:| |val| *3) (|:| -2138 *4)))) - (-5 *1 (-1138 *3 *4)) (-4 *3 (-13 (-1097) (-34))) - (-4 *4 (-13 (-1097) (-34)))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-361 *3)) (-4 *3 (-1097)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-564)) (-5 *2 (-769)) (-5 *1 (-386 *4)) (-4 *4 (-1097)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-564)) (-4 *2 (-23)) (-5 *1 (-647 *4 *2 *5)) - (-4 *4 (-1097)) (-14 *5 *2))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-564)) (-5 *2 (-769)) (-5 *1 (-817 *4)) (-4 *4 (-848))))) + (-12 (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -2192 *4)))) + (-5 *1 (-1140 *3 *4)) (-4 *3 (-13 (-1099) (-34))) + (-4 *4 (-13 (-1099) (-34)))))) (((*1 *1 *1) - (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) - (-4 *4 (-848)))) - ((*1 *1) (-4 *1 (-1148)))) -(((*1 *2 *1) - (-12 (-5 *2 (-407 (-950 *3))) (-5 *1 (-453 *3 *4 *5 *6)) - (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-919)) - (-14 *5 (-642 (-1173))) (-14 *6 (-1262 (-687 *3)))))) + (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) + (-4 *4 (-850)))) + ((*1 *1) (-4 *1 (-1150)))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-117 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-566)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-871 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-871 *2)) (-14 *2 (-566)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-566)) (-14 *3 *2) (-5 *1 (-872 *3 *4)) + (-4 *4 (-869 *3)))) + ((*1 *1 *1) + (-12 (-14 *2 (-566)) (-5 *1 (-872 *2 *3)) (-4 *3 (-869 *2)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-566)) (-4 *1 (-1226 *3 *4)) (-4 *3 (-1049)) + (-4 *4 (-1255 *3)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1226 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-1255 *2))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4417)) (-4 *1 (-491 *4)) + (-4 *4 (-1214)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-689 (-409 (-952 (-566))))) + (-5 *2 (-644 (-689 (-317 (-566))))) (-5 *1 (-1031)) + (-5 *3 (-317 (-566)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1099)) (-4 *5 (-1099)) + (-5 *2 (-1 *5)) (-5 *1 (-683 *4 *5))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1097 *3)) (-4 *3 (-1099)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1264 (-644 *3))) (-4 *4 (-308)) + (-5 *2 (-644 *3)) (-5 *1 (-457 *4 *3)) (-4 *3 (-1240 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-921)) (-5 *1 (-786))))) +(((*1 *1 *2) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1214)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 (-1175))) (-5 *1 (-1175))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-396)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1194))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1231 *3)) (-4 *3 (-1214))))) (((*1 *2 *3) - (-12 (-5 *3 (-642 (-316 (-225)))) (-5 *2 (-112)) (-5 *1 (-267))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-642 (-950 *3))) (-4 *3 (-452)) - (-5 *1 (-360 *3 *4)) (-14 *4 (-642 (-1173))))) - ((*1 *2 *2) - (|partial| -12 (-5 *2 (-642 (-778 *3 (-862 *4)))) (-4 *3 (-452)) - (-14 *4 (-642 (-1173))) (-5 *1 (-626 *3 *4))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-554 *3)) (-4 *3 (-13 (-404) (-1197))) (-5 *2 (-112))))) -(((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1047)) (-4 *5 (-791)) (-4 *3 (-848)) - (-5 *2 (-2 (|:| -2968 *1) (|:| |gap| (-769)) (|:| -1992 *1))) - (-4 *1 (-1062 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) - (-5 *2 (-2 (|:| -2968 *1) (|:| |gap| (-769)) (|:| -1992 *1))) - (-4 *1 (-1062 *3 *4 *5))))) -(((*1 *2 *3) - (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1216)) (-4 *3 (-1238 *4)) - (-4 *5 (-1238 (-407 *3))) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) - (-4 *5 (-1238 (-407 *4))) (-5 *2 (-112))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1173)) (-5 *2 (-1267)) (-5 *1 (-820))))) -(((*1 *1 *2) (-12 (-4 *1 (-664 *2)) (-4 *2 (-1212)))) - ((*1 *2 *1) (-12 (-5 *2 (-642 (-1173))) (-5 *1 (-1173))))) -(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1004))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-858)) (-5 *2 (-689 (-129))) (-5 *3 (-129))))) -(((*1 *2 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-611 (-860))))) - ((*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-564)))) - ((*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-1155)))) - ((*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-506)))) - ((*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-591)))) - ((*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-478)))) - ((*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-137)))) - ((*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-156)))) - ((*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-1163)))) - ((*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-624)))) - ((*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-1093)))) - ((*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-1087)))) - ((*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-1070)))) - ((*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-968)))) - ((*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-180)))) - ((*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-1034)))) - ((*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-311)))) - ((*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-669)))) - ((*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-154)))) - ((*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-525)))) - ((*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-1273)))) - ((*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-1063)))) - ((*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-517)))) - ((*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-679)))) - ((*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-96)))) - ((*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-1112)))) - ((*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-133)))) - ((*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-138)))) - ((*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-1272)))) - ((*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-674)))) - ((*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-218)))) - ((*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-524)))) - ((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1178)))) - ((*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-1178)))) - ((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1178)))) - ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1178))))) -(((*1 *2 *2) - (-12 (-5 *2 (-114)) (-4 *3 (-556)) (-5 *1 (-32 *3 *4)) - (-4 *4 (-430 *3)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-55)) (-5 *1 (-114)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-769)) (-5 *1 (-114)))) - ((*1 *1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-114)))) - ((*1 *2 *2) - (-12 (-5 *2 (-114)) (-4 *3 (-556)) (-5 *1 (-158 *3 *4)) - (-4 *4 (-430 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-1173)) (-5 *2 (-114)) (-5 *1 (-163)))) - ((*1 *2 *2) - (-12 (-5 *2 (-114)) (-4 *3 (-556)) (-5 *1 (-276 *3 *4)) - (-4 *4 (-13 (-430 *3) (-1000))))) - ((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-301 *3)) (-4 *3 (-302)))) - ((*1 *2 *2) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) - ((*1 *2 *2) - (-12 (-5 *2 (-114)) (-4 *4 (-1097)) (-5 *1 (-429 *3 *4)) - (-4 *3 (-430 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-114)) (-4 *3 (-556)) (-5 *1 (-431 *3 *4)) - (-4 *4 (-430 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-610 *3)) (-4 *3 (-1097)))) - ((*1 *2 *2) - (-12 (-5 *2 (-114)) (-4 *3 (-556)) (-5 *1 (-628 *3 *4)) - (-4 *4 (-13 (-430 *3) (-1000) (-1197))))) - ((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-1017))))) + (-12 (-4 *4 (-351)) (-5 *2 (-420 *3)) (-5 *1 (-216 *4 *3)) + (-4 *3 (-1240 *4)))) + ((*1 *2 *3) + (-12 (-5 *2 (-420 *3)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-771)) (-5 *2 (-420 *3)) (-5 *1 (-444 *3)) + (-4 *3 (-1240 (-566))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-644 (-771))) (-5 *2 (-420 *3)) (-5 *1 (-444 *3)) + (-4 *3 (-1240 (-566))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-644 (-771))) (-5 *5 (-771)) (-5 *2 (-420 *3)) + (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-771)) (-5 *2 (-420 *3)) (-5 *1 (-444 *3)) + (-4 *3 (-1240 (-566))))) + ((*1 *2 *3) + (-12 (-5 *2 (-420 *3)) (-5 *1 (-1007 *3)) + (-4 *3 (-1240 (-409 (-566)))))) + ((*1 *2 *3) + (-12 (-5 *2 (-420 *3)) (-5 *1 (-1229 *3)) (-4 *3 (-1240 (-566)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-642 *5)) (-5 *4 (-642 *6)) (-4 *5 (-1097)) - (-4 *6 (-1212)) (-5 *2 (-1 *6 *5)) (-5 *1 (-639 *5 *6)))) + (-12 (-5 *3 (-644 *5)) (-5 *4 (-644 *6)) (-4 *5 (-1099)) + (-4 *6 (-1214)) (-5 *2 (-1 *6 *5)) (-5 *1 (-641 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-642 *5)) (-5 *4 (-642 *2)) (-4 *5 (-1097)) - (-4 *2 (-1212)) (-5 *1 (-639 *5 *2)))) + (-12 (-5 *3 (-644 *5)) (-5 *4 (-644 *2)) (-4 *5 (-1099)) + (-4 *2 (-1214)) (-5 *1 (-641 *5 *2)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-642 *6)) (-5 *4 (-642 *5)) (-4 *6 (-1097)) - (-4 *5 (-1212)) (-5 *2 (-1 *5 *6)) (-5 *1 (-639 *6 *5)))) + (-12 (-5 *3 (-644 *6)) (-5 *4 (-644 *5)) (-4 *6 (-1099)) + (-4 *5 (-1214)) (-5 *2 (-1 *5 *6)) (-5 *1 (-641 *6 *5)))) ((*1 *2 *3 *4 *5 *2) - (-12 (-5 *3 (-642 *5)) (-5 *4 (-642 *2)) (-4 *5 (-1097)) - (-4 *2 (-1212)) (-5 *1 (-639 *5 *2)))) + (-12 (-5 *3 (-644 *5)) (-5 *4 (-644 *2)) (-4 *5 (-1099)) + (-4 *2 (-1214)) (-5 *1 (-641 *5 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-642 *5)) (-5 *4 (-642 *6)) - (-4 *5 (-1097)) (-4 *6 (-1212)) (-5 *1 (-639 *5 *6)))) + (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-644 *5)) (-5 *4 (-644 *6)) + (-4 *5 (-1099)) (-4 *6 (-1214)) (-5 *1 (-641 *5 *6)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-642 *5)) (-5 *4 (-642 *2)) (-5 *6 (-1 *2 *5)) - (-4 *5 (-1097)) (-4 *2 (-1212)) (-5 *1 (-639 *5 *2)))) - ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (-144)) (-5 *2 (-769))))) -(((*1 *2 *3 *4 *5 *6 *2 *7 *8) - (|partial| -12 (-5 *2 (-642 (-1169 *11))) (-5 *3 (-1169 *11)) - (-5 *4 (-642 *10)) (-5 *5 (-642 *8)) (-5 *6 (-642 (-769))) - (-5 *7 (-1262 (-642 (-1169 *8)))) (-4 *10 (-848)) - (-4 *8 (-307)) (-4 *11 (-947 *8 *9 *10)) (-4 *9 (-791)) - (-5 *1 (-705 *9 *10 *8 *11))))) + (-12 (-5 *3 (-644 *5)) (-5 *4 (-644 *2)) (-5 *6 (-1 *2 *5)) + (-4 *5 (-1099)) (-4 *2 (-1214)) (-5 *1 (-641 *5 *2)))) + ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (-144)) (-5 *2 (-771))))) +(((*1 *2 *1) (-12 (-5 *1 (-691 *2)) (-4 *2 (-613 (-862))))) + ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-566)))) + ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1157)))) + ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-508)))) + ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-593)))) + ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-480)))) + ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-137)))) + ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-156)))) + ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1165)))) + ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-626)))) + ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1095)))) + ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1089)))) + ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1072)))) + ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-970)))) + ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-180)))) + ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1036)))) + ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-312)))) + ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-671)))) + ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-154)))) + ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-527)))) + ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1275)))) + ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1065)))) + ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-519)))) + ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-681)))) + ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-96)))) + ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1114)))) + ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-133)))) + ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-138)))) + ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1274)))) + ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-676)))) + ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-218)))) + ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-526)))) + ((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1180)))) + ((*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-1180)))) + ((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1180)))) + ((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-1180))))) +(((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-892 *4)) (-4 *4 (-1099)) (-5 *2 (-112)) + (-5 *1 (-889 *4 *5)) (-4 *5 (-1099)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-892 *5)) (-4 *5 (-1099)) (-5 *2 (-112)) + (-5 *1 (-890 *5 *3)) (-4 *3 (-1214)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-644 *6)) (-5 *4 (-892 *5)) (-4 *5 (-1099)) + (-4 *6 (-1214)) (-5 *2 (-112)) (-5 *1 (-890 *5 *6))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) + (-4 *3 (-1064 *5 *6 *7)) + (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -2192 *4)))) + (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-566)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-420 *2)) (-4 *2 (-558))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) + (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-644 (-952 *6))) (-5 *4 (-644 (-1175))) (-4 *6 (-454)) + (-5 *2 (-644 (-644 *7))) (-5 *1 (-540 *6 *7 *5)) (-4 *7 (-365)) + (-4 *5 (-13 (-365) (-848)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1266))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4418)) (-4 *1 (-244 *2)) (-4 *2 (-1214))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-566)) (-4 *1 (-1224 *4)) (-4 *4 (-1049)) (-4 *4 (-558)) + (-5 *2 (-409 (-952 *4))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-566)) (-4 *1 (-1224 *4)) (-4 *4 (-1049)) (-4 *4 (-558)) + (-5 *2 (-409 (-952 *4)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-862)) (-5 *1 (-1155 *3)) (-4 *3 (-1099)) + (-4 *3 (-1214))))) +(((*1 *2 *1) + (-12 (-5 *2 (-644 *4)) (-5 *1 (-1140 *3 *4)) + (-4 *3 (-13 (-1099) (-34))) (-4 *4 (-13 (-1099) (-34)))))) +(((*1 *2) + (-12 (-14 *4 (-771)) (-4 *5 (-1214)) (-5 *2 (-134)) + (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) + ((*1 *2) + (-12 (-4 *4 (-365)) (-5 *2 (-134)) (-5 *1 (-329 *3 *4)) + (-4 *3 (-330 *4)))) + ((*1 *2) + (-12 (-5 *2 (-771)) (-5 *1 (-392 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-172)))) + ((*1 *2 *1) + (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-566)) + (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-644 *6)) (-4 *6 (-850)) (-4 *4 (-365)) (-4 *5 (-793)) + (-5 *2 (-566)) (-5 *1 (-506 *4 *5 *6 *7)) (-4 *7 (-949 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-980 *3)) (-4 *3 (-1049)) (-5 *2 (-921)))) + ((*1 *2) (-12 (-4 *1 (-1271 *3)) (-4 *3 (-365)) (-5 *2 (-134))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-470)) (-5 *4 (-921)) (-5 *2 (-1269)) (-5 *1 (-1265))))) +(((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-469)))) + ((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-469)))) + ((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-927))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-644 (-943 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-644 (-943 *3))) (-4 *3 (-1049)) (-4 *1 (-1133 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-644 (-644 *3))) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-644 (-943 *3))) (-4 *1 (-1133 *3)) (-4 *3 (-1049))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-566)) (-5 *2 (-644 (-2 (|:| -2325 *3) (|:| -1630 *4)))) + (-5 *1 (-696 *3)) (-4 *3 (-1240 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1049)) (-4 *7 (-1049)) + (-4 *6 (-1240 *5)) (-5 *2 (-1171 (-1171 *7))) + (-5 *1 (-503 *5 *6 *4 *7)) (-4 *4 (-1240 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-331))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1255 *4)) (-5 *1 (-1257 *4 *2)) + (-4 *4 (-38 (-409 (-566))))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-508)) (-5 *1 (-281))))) +(((*1 *2 *3) + (-12 (-5 *3 (-927)) + (-5 *2 + (-2 (|:| |brans| (-644 (-644 (-943 (-225))))) + (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225))))) + (-5 *1 (-153)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-927)) (-5 *4 (-409 (-566))) + (-5 *2 + (-2 (|:| |brans| (-644 (-644 (-943 (-225))))) + (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225))))) + (-5 *1 (-153)))) + ((*1 *2 *3) + (-12 + (-5 *2 + (-2 (|:| |brans| (-644 (-644 (-943 (-225))))) + (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225))))) + (-5 *1 (-153)) (-5 *3 (-644 (-943 (-225)))))) + ((*1 *2 *3) + (-12 + (-5 *2 + (-2 (|:| |brans| (-644 (-644 (-943 (-225))))) + (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225))))) + (-5 *1 (-153)) (-5 *3 (-644 (-644 (-943 (-225))))))) + ((*1 *1 *2) (-12 (-5 *2 (-644 (-1093 (-381)))) (-5 *1 (-264)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-264))))) +(((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-2 (|:| -4069 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-365)) (-4 *7 (-1240 *6)) + (-5 *2 (-2 (|:| |answer| (-587 (-409 *7))) (|:| |a0| *6))) + (-5 *1 (-576 *6 *7)) (-5 *3 (-409 *7))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1214)) (-5 *1 (-377 *4 *2)) + (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4418))))))) (((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3))))) + (-12 (-5 *2 (-644 *3)) (-4 *3 (-1240 (-566))) (-5 *1 (-488 *3))))) +(((*1 *2 *3) + (|partial| -12 (-4 *5 (-1038 (-48))) + (-4 *4 (-13 (-558) (-1038 (-566)))) (-4 *5 (-432 *4)) + (-5 *2 (-420 (-1171 (-48)))) (-5 *1 (-437 *4 *5 *3)) + (-4 *3 (-1240 *5))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1237 *5 *4)) (-4 *4 (-454)) (-4 *4 (-820)) + (-14 *5 (-1175)) (-5 *2 (-566)) (-5 *1 (-1113 *4 *5))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-919)) (-5 *3 (-642 (-263))) (-5 *1 (-261)))) - ((*1 *1 *2) (-12 (-5 *2 (-919)) (-5 *1 (-263))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134))))) + (-12 (-5 *2 (-644 (-1093 (-381)))) (-5 *3 (-644 (-264))) + (-5 *1 (-262)))) + ((*1 *1 *2) (-12 (-5 *2 (-644 (-1093 (-381)))) (-5 *1 (-264)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1093 (-381)))) (-5 *1 (-470)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 (-1093 (-381)))) (-5 *1 (-470))))) +(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1214))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1157)) (-5 *2 (-566)) (-5 *1 (-1196 *4)) + (-4 *4 (-1049))))) +(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-114))) + ((*1 *1 *1) (-5 *1 (-171))) ((*1 *1 *1) (-4 *1 (-547))) + ((*1 *1 *1) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1099)))) + ((*1 *1 *1) (-12 (-4 *1 (-1133 *2)) (-4 *2 (-1049)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1139 *2 *3)) (-4 *2 (-13 (-1099) (-34))) + (-4 *3 (-13 (-1099) (-34)))))) +(((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-926))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1214)) (-4 *3 (-1099)) + (-5 *2 (-112))))) +(((*1 *2 *3 *2) + (-12 (-5 *1 (-679 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1099))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-558)) + (-5 *2 (-2 (|:| -3103 *4) (|:| -3371 *3) (|:| -3131 *3))) + (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) + (-5 *2 (-2 (|:| -3371 *1) (|:| -3131 *1))) (-4 *1 (-1064 *3 *4 *5)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-558)) (-4 *3 (-1049)) + (-5 *2 (-2 (|:| -3103 *3) (|:| -3371 *1) (|:| -3131 *1))) + (-4 *1 (-1240 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1099)) + (-4 *6 (-1099)) (-4 *2 (-1099)) (-5 *1 (-680 *5 *6 *2))))) +(((*1 *1 *2) + (-12 (-5 *2 (-644 *1)) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) + ((*1 *2 *2 *1) + (|partial| -12 (-5 *2 (-409 *1)) (-4 *1 (-1240 *3)) (-4 *3 (-1049)) + (-4 *3 (-558)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-1240 *2)) (-4 *2 (-1049)) (-4 *2 (-558))))) (((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-564))) (-5 *1 (-1045))))) + (-12 (-5 *2 (-420 (-1171 *1))) (-5 *1 (-317 *4)) (-5 *3 (-1171 *1)) + (-4 *4 (-454)) (-4 *4 (-558)) (-4 *4 (-1099)))) + ((*1 *2 *3) + (-12 (-4 *1 (-909)) (-5 *2 (-420 (-1171 *1))) (-5 *3 (-1171 *1))))) +(((*1 *2 *3) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-563)) (-5 *3 (-566))))) +(((*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-1157))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-1049)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) + (-4 *4 (-850))))) +(((*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-1175))))) +(((*1 *2 *1) (-12 (-5 *2 (-1155 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1173)) - (-4 *4 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147))) - (-5 *1 (-802 *4 *2)) (-4 *2 (-13 (-29 *4) (-1197) (-957))))) - ((*1 *1 *1 *1 *1) (-5 *1 (-860))) ((*1 *1 *1 *1) (-5 *1 (-860))) - ((*1 *1 *1) (-5 *1 (-860))) - ((*1 *2 *3) - (-12 (-5 *2 (-1153 *3)) (-5 *1 (-1157 *3)) (-4 *3 (-1047))))) -(((*1 *2) (-12 (-5 *2 (-872)) (-5 *1 (-1265)))) - ((*1 *2 *2) (-12 (-5 *2 (-872)) (-5 *1 (-1265))))) -(((*1 *2 *3 *4 *4 *5) - (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-642 *3)) - (-4 *3 (-13 (-430 *6) (-27) (-1197))) - (-4 *6 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-642 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-566 *6 *3 *7)) (-4 *7 (-1097))))) + (-12 (-5 *1 (-679 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1171 *4)) (-4 *4 (-351)) + (-5 *2 (-1264 (-644 (-2 (|:| -2153 *4) (|:| -2104 (-1119)))))) + (-5 *1 (-348 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-644 (-114)))))) +(((*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558)) (-4 *2 (-547)))) + ((*1 *1 *1) (-4 *1 (-1059)))) +(((*1 *2) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) + (-4 *5 (-1240 (-409 *4))) (-5 *2 (-689 (-409 *4)))))) +(((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1171 (-409 (-566)))) (-5 *1 (-942)) (-5 *3 (-566))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-365)) (-4 *3 (-1049)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4086 *1))) + (-4 *1 (-852 *3))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1099)) (-5 *1 (-964 *2 *3)) (-4 *3 (-1099))))) +(((*1 *2 *1) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1214))))) +(((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566))))) + (-5 *2 (-409 (-566))) (-5 *1 (-1020 *4)) (-4 *4 (-1240 (-566)))))) +(((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-566)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1214)) + (-4 *4 (-375 *2)) (-4 *5 (-375 *2)))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 "right") (|has| *1 (-6 -4418)) (-4 *1 (-119 *3)) + (-4 *3 (-1214)))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 "left") (|has| *1 (-6 -4418)) (-4 *1 (-119 *3)) + (-4 *3 (-1214)))) + ((*1 *2 *1 *3 *2) + (-12 (|has| *1 (-6 -4418)) (-4 *1 (-289 *3 *2)) (-4 *3 (-1099)) + (-4 *2 (-1214)))) + ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1175)) (-5 *1 (-632)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 (-1231 (-566))) (|has| *1 (-6 -4418)) (-4 *1 (-651 *2)) + (-4 *2 (-1214)))) + ((*1 *1 *1 *2 *2 *1) + (-12 (-5 *2 (-644 (-566))) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) + (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 "value") (|has| *1 (-6 -4418)) (-4 *1 (-1010 *2)) + (-4 *2 (-1214)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-1026 *2)) (-4 *2 (-1214)))) + ((*1 *2 *1 *3 *2) + (-12 (-4 *1 (-1190 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1099)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 "last") (|has| *1 (-6 -4418)) (-4 *1 (-1252 *2)) + (-4 *2 (-1214)))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 "rest") (|has| *1 (-6 -4418)) (-4 *1 (-1252 *3)) + (-4 *3 (-1214)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 "first") (|has| *1 (-6 -4418)) (-4 *1 (-1252 *2)) + (-4 *2 (-1214))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1099)) (-5 *2 (-112))))) (((*1 *2 *3 *3) + (-12 (-5 *3 (-1264 *5)) (-4 *5 (-792)) (-5 *2 (-112)) + (-5 *1 (-845 *4 *5)) (-14 *4 (-771))))) +(((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-769)) (|:| |poli| *7) - (|:| |polj| *7))) - (-4 *5 (-791)) (-4 *7 (-947 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-848)) - (-5 *2 (-112)) (-5 *1 (-449 *4 *5 *6 *7))))) -(((*1 *1 *1) - (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047))))) -(((*1 *2 *1) - (-12 (-5 *2 (-642 *4)) (-5 *1 (-1138 *3 *4)) - (-4 *3 (-13 (-1097) (-34))) (-4 *4 (-13 (-1097) (-34)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1238 *5)) (-4 *5 (-363)) - (-5 *2 (-2 (|:| -3691 (-418 *3)) (|:| |special| (-418 *3)))) - (-5 *1 (-725 *5 *3))))) -(((*1 *1 *1 *1) (-4 *1 (-965)))) -(((*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1197)))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-468)) (-5 *4 (-919)) (-5 *2 (-1267)) (-5 *1 (-1263))))) -(((*1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-1182))))) + (-506 (-409 (-566)) (-240 *5 (-771)) (-864 *4) + (-247 *4 (-409 (-566))))) + (-14 *4 (-644 (-1175))) (-14 *5 (-771)) (-5 *2 (-112)) + (-5 *1 (-507 *4 *5))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-303)) (-5 *3 (-1175)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-112))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1173)) (-5 *5 (-1091 (-225))) (-5 *2 (-925)) - (-5 *1 (-923 *3)) (-4 *3 (-612 (-536))))) + (-12 (-5 *4 (-1175)) (-5 *5 (-1093 (-225))) (-5 *2 (-927)) + (-5 *1 (-925 *3)) (-4 *3 (-614 (-538))))) ((*1 *2 *3 *3 *4 *5) - (-12 (-5 *4 (-1173)) (-5 *5 (-1091 (-225))) (-5 *2 (-925)) - (-5 *1 (-923 *3)) (-4 *3 (-612 (-536))))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1091 (-225))) (-5 *1 (-924)))) + (-12 (-5 *4 (-1175)) (-5 *5 (-1093 (-225))) (-5 *2 (-927)) + (-5 *1 (-925 *3)) (-4 *3 (-614 (-538))))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-926)))) ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1091 (-225))) - (-5 *1 (-924)))) + (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1093 (-225))) + (-5 *1 (-926)))) ((*1 *1 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1091 (-225))) - (-5 *1 (-924)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1091 (-225))) (-5 *1 (-925)))) + (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1093 (-225))) + (-5 *1 (-926)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-927)))) ((*1 *1 *2 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1091 (-225))) - (-5 *1 (-925)))) + (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1093 (-225))) + (-5 *1 (-927)))) ((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1091 (-225))) - (-5 *1 (-925)))) + (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1093 (-225))) + (-5 *1 (-927)))) ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-642 (-1 (-225) (-225)))) (-5 *3 (-1091 (-225))) - (-5 *1 (-925)))) + (-12 (-5 *2 (-644 (-1 (-225) (-225)))) (-5 *3 (-1093 (-225))) + (-5 *1 (-927)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-642 (-1 (-225) (-225)))) (-5 *3 (-1091 (-225))) - (-5 *1 (-925)))) + (-12 (-5 *2 (-644 (-1 (-225) (-225)))) (-5 *3 (-1093 (-225))) + (-5 *1 (-927)))) ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1091 (-225))) - (-5 *1 (-925)))) + (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1093 (-225))) + (-5 *1 (-927)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1091 (-225))) - (-5 *1 (-925))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1047)) - (-4 *4 (-790))))) -(((*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1212))))) -(((*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-330))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1155)) (-5 *4 (-564)) (-5 *5 (-687 (-169 (-225)))) - (-5 *2 (-1033)) (-5 *1 (-752))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1262 *4)) (-5 *3 (-564)) (-4 *4 (-349)) - (-5 *1 (-528 *4))))) -(((*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-1097)))) - ((*1 *1 *1) (-5 *1 (-630)))) + (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1093 (-225))) + (-5 *1 (-927))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099))))) (((*1 *2 *3) - (-12 (-5 *3 (-950 (-564))) (-5 *2 (-642 *1)) (-4 *1 (-1010)))) - ((*1 *2 *3) - (-12 (-5 *3 (-950 (-407 (-564)))) (-5 *2 (-642 *1)) (-4 *1 (-1010)))) - ((*1 *2 *3) (-12 (-5 *3 (-950 *1)) (-4 *1 (-1010)) (-5 *2 (-642 *1)))) + (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)) (-5 *3 (-566)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1264 (-3 (-470) "undefined"))) (-5 *1 (-1265))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) + (-4 *3 (-369 *4)))) + ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-952 *4)) (-4 *4 (-1049)) (-4 *4 (-614 *2)) + (-5 *2 (-381)) (-5 *1 (-785 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-952 *5)) (-5 *4 (-921)) (-4 *5 (-1049)) + (-4 *5 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-1169 (-564))) (-5 *2 (-642 *1)) (-4 *1 (-1010)))) + (|partial| -12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-558)) + (-4 *4 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-921)) (-4 *5 (-558)) + (-4 *5 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-1169 (-407 (-564)))) (-5 *2 (-642 *1)) (-4 *1 (-1010)))) + (|partial| -12 (-5 *3 (-317 *4)) (-4 *4 (-558)) (-4 *4 (-850)) + (-4 *4 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-317 *5)) (-5 *4 (-921)) (-4 *5 (-558)) + (-4 *5 (-850)) (-4 *5 (-614 *2)) (-5 *2 (-381)) + (-5 *1 (-785 *5))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-644 *1)) (|has| *1 (-6 -4418)) (-4 *1 (-1010 *3)) + (-4 *3 (-1214))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-771)) (-4 *4 (-308)) (-4 *6 (-1240 *4)) + (-5 *2 (-1264 (-644 *6))) (-5 *1 (-457 *4 *6)) (-5 *5 (-644 *6))))) +(((*1 *2) + (-12 + (-5 *2 + (-1264 (-644 (-2 (|:| -2153 (-910 *3)) (|:| -2104 (-1119)))))) + (-5 *1 (-353 *3 *4)) (-14 *3 (-921)) (-14 *4 (-921)))) + ((*1 *2) + (-12 (-5 *2 (-1264 (-644 (-2 (|:| -2153 *3) (|:| -2104 (-1119)))))) + (-5 *1 (-354 *3 *4)) (-4 *3 (-351)) (-14 *4 (-3 (-1171 *3) *2)))) + ((*1 *2) + (-12 (-5 *2 (-1264 (-644 (-2 (|:| -2153 *3) (|:| -2104 (-1119)))))) + (-5 *1 (-355 *3 *4)) (-4 *3 (-351)) (-14 *4 (-921))))) +(((*1 *2 *3 *3) + (-12 (-4 *2 (-558)) (-4 *2 (-454)) (-5 *1 (-969 *2 *3)) + (-4 *3 (-1240 *2))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-771)) (-4 *4 (-558)) (-5 *1 (-969 *4 *2)) + (-4 *2 (-1240 *4))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) + (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G)))) (-5 *2 (-1035)) + (-5 *1 (-748))))) +(((*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1178))))) +(((*1 *2 *1) (-12 (-5 *2 (-420 *3)) (-5 *1 (-914 *3)) (-4 *3 (-308))))) +(((*1 *1 *1) (-12 (-5 *1 (-914 *2)) (-4 *2 (-308))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-644 *8)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-566)) + (-14 *6 (-771)) (-4 *7 (-172)) (-4 *8 (-172)) + (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-644 *9)) (-4 *9 (-1049)) (-4 *5 (-850)) (-4 *6 (-793)) + (-4 *8 (-1049)) (-4 *2 (-949 *9 *7 *5)) + (-5 *1 (-728 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-793)) + (-4 *4 (-949 *8 *6 *5))))) +(((*1 *2 *3 *3 *2) + (|partial| -12 (-5 *2 (-771)) + (-4 *3 (-13 (-726) (-370) (-10 -7 (-15 ** (*3 *3 (-566)))))) + (-5 *1 (-246 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 (-225))) (-5 *2 (-644 (-1157))) (-5 *1 (-192)))) ((*1 *2 *3) - (-12 (-5 *3 (-1169 *1)) (-4 *1 (-1010)) (-5 *2 (-642 *1)))) + (-12 (-5 *3 (-644 (-225))) (-5 *2 (-644 (-1157))) (-5 *1 (-301)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-846) (-363))) (-4 *3 (-1238 *4)) (-5 *2 (-642 *1)) - (-4 *1 (-1065 *4 *3))))) -(((*1 *2 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-363))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1175 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-407 *6)) (-4 *5 (-1216)) (-4 *6 (-1238 *5)) - (-5 *2 (-2 (|:| -2817 (-769)) (|:| -2968 *3) (|:| |radicand| *6))) - (-5 *1 (-148 *5 *6 *7)) (-5 *4 (-769)) (-4 *7 (-1238 *3))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-363)) (-5 *1 (-764 *2 *3)) (-4 *2 (-706 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-850 *2)) (-4 *2 (-1047)) (-4 *2 (-363))))) -(((*1 *1) (-5 *1 (-437)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-642 (-263))) (-5 *4 (-1173)) (-5 *2 (-112)) - (-5 *1 (-263))))) + (-12 (-5 *3 (-644 (-225))) (-5 *2 (-644 (-1157))) (-5 *1 (-306))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-921)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) + ((*1 *1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-264))))) (((*1 *2 *2) - (-12 (-5 *2 (-941 *3)) (-4 *3 (-13 (-363) (-1197) (-1000))) - (-5 *1 (-176 *3))))) -(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-114))) - ((*1 *1 *1) (-5 *1 (-171))) ((*1 *1 *1) (-4 *1 (-545))) - ((*1 *1 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-1097)))) - ((*1 *1 *1) (-12 (-4 *1 (-1131 *2)) (-4 *2 (-1047)))) + (|partial| -12 (-5 *2 (-1171 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1214)))) + ((*1 *2 *2) + (-12 (-4 *3 (-1049)) (-5 *1 (-446 *3 *2)) (-4 *2 (-1240 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1137 *2 *3)) (-4 *2 (-13 (-1097) (-34))) - (-4 *3 (-13 (-1097) (-34)))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-941 *3) (-941 *3))) (-5 *1 (-176 *3)) - (-4 *3 (-13 (-363) (-1197) (-1000)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820))))) -(((*1 *2 *3 *2) - (-12 (-5 *1 (-677 *3 *2)) (-4 *3 (-1097)) (-4 *2 (-1097))))) -(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-820))))) -(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-769)) (-4 *3 (-1047)) (-4 *1 (-685 *3 *4 *5)) - (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) - ((*1 *1 *2) - (-12 (-4 *2 (-1047)) (-4 *1 (-1120 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) - (-4 *5 (-238 *3 *2))))) + (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-1099)) (-4 *3 (-23)) + (-14 *4 *3)))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1097)) - (-4 *6 (-1097)) (-4 *2 (-1097)) (-5 *1 (-678 *5 *6 *2))))) + (-12 (-5 *3 (-644 (-952 (-566)))) (-5 *4 (-644 (-1175))) + (-5 *2 (-644 (-644 (-381)))) (-5 *1 (-1023)) (-5 *5 (-381)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1046 *4 *5)) (-4 *4 (-13 (-848) (-308) (-147) (-1022))) + (-14 *5 (-644 (-1175))) (-5 *2 (-644 (-644 (-1024 (-409 *4))))) + (-5 *1 (-1290 *4 *5 *6)) (-14 *6 (-644 (-1175))))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-848) (-308) (-147) (-1022))) + (-5 *2 (-644 (-644 (-1024 (-409 *5))))) (-5 *1 (-1290 *5 *6 *7)) + (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-848) (-308) (-147) (-1022))) + (-5 *2 (-644 (-644 (-1024 (-409 *5))))) (-5 *1 (-1290 *5 *6 *7)) + (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-848) (-308) (-147) (-1022))) + (-5 *2 (-644 (-644 (-1024 (-409 *5))))) (-5 *1 (-1290 *5 *6 *7)) + (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175))))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 (-952 *4))) + (-4 *4 (-13 (-848) (-308) (-147) (-1022))) + (-5 *2 (-644 (-644 (-1024 (-409 *4))))) (-5 *1 (-1290 *4 *5 *6)) + (-14 *5 (-644 (-1175))) (-14 *6 (-644 (-1175)))))) +(((*1 *2 *2 *2 *2 *3 *3 *4) + (|partial| -12 (-5 *3 (-612 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1175))) + (-4 *2 (-13 (-432 *5) (-27) (-1199))) + (-4 *5 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) + (-5 *1 (-568 *5 *2 *6)) (-4 *6 (-1099))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-644 *5)) (-4 *5 (-1240 *3)) (-4 *3 (-308)) + (-5 *2 (-112)) (-5 *1 (-457 *3 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-373 *3)) - (-4 *5 (-373 *3)) (-5 *2 (-769)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1214)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-5 *2 (-644 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-769))))) -(((*1 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-129))))) -(((*1 *1 *1) - (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-772)) (-5 *1 (-114)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1155)) (-5 *3 (-772)) (-5 *1 (-114))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-642 *3)) (-4 *3 (-947 *4 *6 *5)) (-4 *4 (-452)) - (-4 *5 (-848)) (-4 *6 (-791)) (-5 *1 (-985 *4 *5 *6 *3))))) -(((*1 *2 *3 *4 *5 *6 *7 *7 *8) - (-12 - (-5 *3 - (-2 (|:| |det| *12) (|:| |rows| (-642 (-564))) - (|:| |cols| (-642 (-564))))) - (-5 *4 (-687 *12)) (-5 *5 (-642 (-407 (-950 *9)))) - (-5 *6 (-642 (-642 *12))) (-5 *7 (-769)) (-5 *8 (-564)) - (-4 *9 (-13 (-307) (-147))) (-4 *12 (-947 *9 *11 *10)) - (-4 *10 (-13 (-848) (-612 (-1173)))) (-4 *11 (-791)) + (-12 (|has| *1 (-6 -4417)) (-4 *1 (-491 *3)) (-4 *3 (-1214)) + (-5 *2 (-644 *3))))) +(((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *4 (-225)) (-5 *2 - (-2 (|:| |eqzro| (-642 *12)) (|:| |neqzro| (-642 *12)) - (|:| |wcond| (-642 (-950 *9))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1262 (-407 (-950 *9)))) - (|:| -2131 (-642 (-1262 (-407 (-950 *9))))))))) - (-5 *1 (-922 *9 *10 *11 *12))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1097)) (-4 *4 (-1097)) - (-4 *6 (-1097)) (-5 *2 (-1 *6 *5)) (-5 *1 (-682 *5 *4 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-172))))) -(((*1 *2 *2 *3) - (-12 (-5 *1 (-677 *2 *3)) (-4 *2 (-1097)) (-4 *3 (-1097))))) -(((*1 *1 *1) - (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047))))) + (-2 (|:| |brans| (-644 (-644 (-943 *4)))) + (|:| |xValues| (-1093 *4)) (|:| |yValues| (-1093 *4)))) + (-5 *1 (-153)) (-5 *3 (-644 (-644 (-943 *4))))))) +(((*1 *2 *1) + (-12 (-5 *2 (-644 *5)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-566)) + (-14 *4 (-771)) (-4 *5 (-172))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) + (-4 *4 (-850)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1207 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-793)) + (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5))))) +(((*1 *2 *3 *4 *4 *4 *5 *6 *7) + (|partial| -12 (-5 *5 (-1175)) + (-5 *6 + (-1 + (-3 + (-2 (|:| |mainpart| *4) + (|:| |limitedlogs| + (-644 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + "failed") + *4 (-644 *4))) + (-5 *7 + (-1 (-3 (-2 (|:| -4069 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1199) (-27) (-432 *8))) + (-4 *8 (-13 (-454) (-147) (-1038 *3) (-639 *3))) (-5 *3 (-566)) + (-5 *2 (-644 *4)) (-5 *1 (-1014 *8 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-373 *3)) - (-4 *5 (-373 *3)) (-5 *2 (-769)))) + (|partial| -12 (-4 *1 (-1247 *3 *2)) (-4 *3 (-1049)) + (-4 *2 (-1224 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792)) + (-5 *2 (-644 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-769))))) -(((*1 *1 *1 *1) (-5 *1 (-860)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-759)))) -(((*1 *2 *1) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1212))))) -(((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) - (-4 *3 (-1062 *4 *5 *6)) (-5 *2 (-3 *3 (-642 *1))) - (-4 *1 (-1068 *4 *5 *6 *3))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-769)) (-5 *1 (-854 *2)) (-4 *2 (-172))))) -(((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1212)) - (-4 *4 (-373 *2)) (-4 *5 (-373 *2)))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "right") (|has| *1 (-6 -4411)) (-4 *1 (-119 *3)) - (-4 *3 (-1212)))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "left") (|has| *1 (-6 -4411)) (-4 *1 (-119 *3)) - (-4 *3 (-1212)))) - ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4411)) (-4 *1 (-288 *3 *2)) (-4 *3 (-1097)) - (-4 *2 (-1212)))) - ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1173)) (-5 *1 (-630)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-1229 (-564))) (|has| *1 (-6 -4411)) (-4 *1 (-649 *2)) - (-4 *2 (-1212)))) - ((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-642 (-564))) (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047)) - (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "value") (|has| *1 (-6 -4411)) (-4 *1 (-1008 *2)) - (-4 *2 (-1212)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-1024 *2)) (-4 *2 (-1212)))) - ((*1 *2 *1 *3 *2) - (-12 (-4 *1 (-1188 *3 *2)) (-4 *3 (-1097)) (-4 *2 (-1097)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "last") (|has| *1 (-6 -4411)) (-4 *1 (-1250 *2)) - (-4 *2 (-1212)))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "rest") (|has| *1 (-6 -4411)) (-4 *1 (-1250 *3)) - (-4 *3 (-1212)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "first") (|has| *1 (-6 -4411)) (-4 *1 (-1250 *2)) - (-4 *2 (-1212))))) + (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1099)) + (-5 *2 (-644 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1155 *3)) (-5 *1 (-597 *3)) (-4 *3 (-1049)))) + ((*1 *2 *1) + (-12 (-5 *2 (-644 *3)) (-5 *1 (-735 *3 *4)) (-4 *3 (-1049)) + (-4 *4 (-726)))) + ((*1 *2 *1) (-12 (-4 *1 (-852 *3)) (-4 *3 (-1049)) (-5 *2 (-644 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1255 *3)) (-4 *3 (-1049)) (-5 *2 (-1155 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-642 (-481 *4 *5))) (-14 *4 (-642 (-1173))) - (-4 *5 (-452)) (-5 *2 (-642 (-247 *4 *5))) (-5 *1 (-629 *4 *5))))) + (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)) (-5 *3 (-566))))) +(((*1 *2 *1) (-12 (-4 *1 (-835 *3)) (-4 *3 (-1099)) (-5 *2 (-55))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) + (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1035)) + (-5 *1 (-746))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1097)) (-4 *6 (-1097)) - (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-682 *4 *5 *6)) (-4 *5 (-1097))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-769)) (-5 *1 (-1161 *3 *4)) (-14 *3 (-919)) - (-4 *4 (-1047))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-642 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1062 *5 *6 *7)) (-4 *5 (-556)) - (-4 *6 (-791)) (-4 *7 (-848)) (-5 *1 (-975 *5 *6 *7 *8))))) -(((*1 *1) (-5 *1 (-1060)))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1062 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-791)) - (-4 *5 (-848)) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-819))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-642 (-642 (-642 *4)))) (-5 *2 (-642 (-642 *4))) - (-4 *4 (-848)) (-5 *1 (-1183 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-848) (-612 (-1173)))) - (-4 *6 (-791)) (-5 *2 (-407 (-950 *4))) (-5 *1 (-922 *4 *5 *6 *3)) - (-4 *3 (-947 *4 *6 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-687 *7)) (-4 *7 (-947 *4 *6 *5)) - (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-848) (-612 (-1173)))) - (-4 *6 (-791)) (-5 *2 (-687 (-407 (-950 *4)))) - (-5 *1 (-922 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-642 *7)) (-4 *7 (-947 *4 *6 *5)) - (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-848) (-612 (-1173)))) - (-4 *6 (-791)) (-5 *2 (-642 (-407 (-950 *4)))) - (-5 *1 (-922 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *1 (-1207 *2)) (-4 *2 (-972))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-642 (-247 *4 *5))) (-5 *2 (-247 *4 *5)) - (-14 *4 (-642 (-1173))) (-4 *5 (-452)) (-5 *1 (-629 *4 *5))))) -(((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-1153 (-2 (|:| |k| (-564)) (|:| |c| *6)))) - (-5 *4 (-1024 (-841 (-564)))) (-5 *5 (-1173)) (-5 *7 (-407 (-564))) - (-4 *6 (-1047)) (-5 *2 (-860)) (-5 *1 (-594 *6))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-642 *8)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-564)) - (-14 *6 (-769)) (-4 *7 (-172)) (-4 *8 (-172)) - (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-642 *9)) (-4 *9 (-1047)) (-4 *5 (-848)) (-4 *6 (-791)) - (-4 *8 (-1047)) (-4 *2 (-947 *9 *7 *5)) - (-5 *1 (-726 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-791)) - (-4 *4 (-947 *8 *6 *5))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1212)) (-4 *3 (-373 *2)) - (-4 *4 (-373 *2)))) - ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4411)) (-4 *1 (-602 *3 *2)) (-4 *3 (-1097)) - (-4 *2 (-1212))))) -(((*1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-757))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) - (-5 *4 (-687 (-1169 *8))) (-4 *5 (-1047)) (-4 *8 (-1047)) - (-4 *6 (-1238 *5)) (-5 *2 (-687 *6)) (-5 *1 (-501 *5 *6 *7 *8)) - (-4 *7 (-1238 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1212)) (-5 *2 (-112))))) + (-12 (-4 *2 (-365)) (-4 *2 (-848)) (-5 *1 (-945 *2 *3)) + (-4 *3 (-1240 *2))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *3 *4 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) + (-5 *1 (-756))))) +(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-1047))))) +(((*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-759))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) + (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *4 (-225)) + (-5 *2 (-1035)) (-5 *1 (-750))))) +(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1214))))) +(((*1 *2 *3) + (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3553 *4))) + (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *5 (-771)) (-4 *6 (-1099)) (-4 *7 (-900 *6)) + (-5 *2 (-689 *7)) (-5 *1 (-692 *6 *7 *3 *4)) (-4 *3 (-375 *7)) + (-4 *4 (-13 (-375 *6) (-10 -7 (-6 -4417))))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1281 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)) + (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1287 *3 *4)) (-4 *3 (-1049)) + (-4 *4 (-846))))) +(((*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 *7)) (-4 *7 (-949 *4 *6 *5)) + (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) + (-4 *6 (-793)) (-5 *2 (-112)) (-5 *1 (-924 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 (-952 *4))) (-4 *4 (-13 (-308) (-147))) + (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *2 (-112)) + (-5 *1 (-924 *4 *5 *6 *7)) (-4 *7 (-949 *4 *6 *5))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |preimage| (-644 *3)) (|:| |image| (-644 *3)))) + (-5 *1 (-905 *3)) (-4 *3 (-1099))))) (((*1 *2 *1) - (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1238 *3)) - (-4 *5 (-1238 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) + (-12 (-4 *1 (-337 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1240 *3)) + (-4 *5 (-1240 (-409 *4))) (-4 *6 (-344 *3 *4 *5)) (-5 *2 - (-2 (|:| -4200 (-413 *4 (-407 *4) *5 *6)) (|:| |principalPart| *6))))) + (-2 (|:| -4229 (-415 *4 (-409 *4) *5 *6)) (|:| |principalPart| *6))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1238 *5)) (-4 *5 (-363)) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1240 *5)) (-4 *5 (-365)) (-5 *2 - (-2 (|:| |poly| *6) (|:| -3691 (-407 *6)) - (|:| |special| (-407 *6)))) - (-5 *1 (-725 *5 *6)) (-5 *3 (-407 *6)))) + (-2 (|:| |poly| *6) (|:| -3764 (-409 *6)) + (|:| |special| (-409 *6)))) + (-5 *1 (-727 *5 *6)) (-5 *3 (-409 *6)))) ((*1 *2 *3) - (-12 (-4 *4 (-363)) (-5 *2 (-642 *3)) (-5 *1 (-894 *3 *4)) - (-4 *3 (-1238 *4)))) + (-12 (-4 *4 (-365)) (-5 *2 (-644 *3)) (-5 *1 (-896 *3 *4)) + (-4 *3 (-1240 *4)))) ((*1 *2 *3 *4 *4) - (|partial| -12 (-5 *4 (-769)) (-4 *5 (-363)) - (-5 *2 (-2 (|:| -4341 *3) (|:| -4351 *3))) (-5 *1 (-894 *3 *5)) - (-4 *3 (-1238 *5)))) + (|partial| -12 (-5 *4 (-771)) (-4 *5 (-365)) + (-5 *2 (-2 (|:| -4351 *3) (|:| -4361 *3))) (-5 *1 (-896 *3 *5)) + (-4 *3 (-1240 *5)))) ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-642 *9)) (-5 *3 (-642 *8)) (-5 *4 (-112)) - (-4 *8 (-1062 *5 *6 *7)) (-4 *9 (-1068 *5 *6 *7 *8)) (-4 *5 (-452)) - (-4 *6 (-791)) (-4 *7 (-848)) (-5 *1 (-1066 *5 *6 *7 *8 *9)))) + (-12 (-5 *2 (-644 *9)) (-5 *3 (-644 *8)) (-5 *4 (-112)) + (-4 *8 (-1064 *5 *6 *7)) (-4 *9 (-1070 *5 *6 *7 *8)) (-4 *5 (-454)) + (-4 *6 (-793)) (-4 *7 (-850)) (-5 *1 (-1068 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-642 *9)) (-5 *3 (-642 *8)) (-5 *4 (-112)) - (-4 *8 (-1062 *5 *6 *7)) (-4 *9 (-1068 *5 *6 *7 *8)) (-4 *5 (-452)) - (-4 *6 (-791)) (-4 *7 (-848)) (-5 *1 (-1066 *5 *6 *7 *8 *9)))) + (-12 (-5 *2 (-644 *9)) (-5 *3 (-644 *8)) (-5 *4 (-112)) + (-4 *8 (-1064 *5 *6 *7)) (-4 *9 (-1070 *5 *6 *7 *8)) (-4 *5 (-454)) + (-4 *6 (-793)) (-4 *7 (-850)) (-5 *1 (-1068 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-642 *9)) (-5 *3 (-642 *8)) (-5 *4 (-112)) - (-4 *8 (-1062 *5 *6 *7)) (-4 *9 (-1106 *5 *6 *7 *8)) (-4 *5 (-452)) - (-4 *6 (-791)) (-4 *7 (-848)) (-5 *1 (-1142 *5 *6 *7 *8 *9)))) + (-12 (-5 *2 (-644 *9)) (-5 *3 (-644 *8)) (-5 *4 (-112)) + (-4 *8 (-1064 *5 *6 *7)) (-4 *9 (-1108 *5 *6 *7 *8)) (-4 *5 (-454)) + (-4 *6 (-793)) (-4 *7 (-850)) (-5 *1 (-1144 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-642 *9)) (-5 *3 (-642 *8)) (-5 *4 (-112)) - (-4 *8 (-1062 *5 *6 *7)) (-4 *9 (-1106 *5 *6 *7 *8)) (-4 *5 (-452)) - (-4 *6 (-791)) (-4 *7 (-848)) (-5 *1 (-1142 *5 *6 *7 *8 *9))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1262 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) - (-5 *2 (-687 *4)))) + (-12 (-5 *2 (-644 *9)) (-5 *3 (-644 *8)) (-5 *4 (-112)) + (-4 *8 (-1064 *5 *6 *7)) (-4 *9 (-1108 *5 *6 *7 *8)) (-4 *5 (-454)) + (-4 *6 (-793)) (-4 *7 (-850)) (-5 *1 (-1144 *5 *6 *7 *8 *9))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-1264 *5))) (-5 *4 (-566)) (-5 *2 (-1264 *5)) + (-5 *1 (-1029 *5)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1049))))) +(((*1 *2) + (-12 (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-909)) + (-5 *1 (-459 *3 *4 *2 *5)) (-4 *5 (-949 *2 *3 *4)))) ((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-687 *4)) (-5 *1 (-416 *3 *4)) - (-4 *3 (-417 *4)))) - ((*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-687 *3))))) -(((*1 *2 *2 *3) - (|partial| -12 - (-5 *3 (-642 (-2 (|:| |func| *2) (|:| |pole| (-112))))) - (-4 *2 (-13 (-430 *4) (-1000))) (-4 *4 (-556)) - (-5 *1 (-276 *4 *2))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1100 *3 *4 *5 *6 *7)) (-4 *3 (-1097)) (-4 *4 (-1097)) - (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *7 (-1097)) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-157)))) - ((*1 *2 *3) (-12 (-5 *3 (-941 *2)) (-5 *1 (-980 *2)) (-4 *2 (-1047))))) -(((*1 *1 *1) (-12 (-4 *1 (-373 *2)) (-4 *2 (-1212)))) - ((*1 *2 *2) - (-12 (-4 *3 (-1047)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1238 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-647 *2 *3 *4)) (-4 *2 (-1097)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *3) - (-12 (-5 *3 (-316 *4)) (-4 *4 (-13 (-826) (-1047))) (-5 *2 (-1155)) - (-5 *1 (-824 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-316 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-826) (-1047))) - (-5 *2 (-1155)) (-5 *1 (-824 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-820)) (-5 *4 (-316 *5)) (-4 *5 (-13 (-826) (-1047))) - (-5 *2 (-1267)) (-5 *1 (-824 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-820)) (-5 *4 (-316 *6)) (-5 *5 (-112)) - (-4 *6 (-13 (-826) (-1047))) (-5 *2 (-1267)) (-5 *1 (-824 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-826)) (-5 *2 (-1155)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-826)) (-5 *3 (-112)) (-5 *2 (-1155)))) - ((*1 *2 *3 *1) (-12 (-4 *1 (-826)) (-5 *3 (-820)) (-5 *2 (-1267)))) - ((*1 *2 *3 *1 *4) - (-12 (-4 *1 (-826)) (-5 *3 (-820)) (-5 *4 (-112)) (-5 *2 (-1267))))) -(((*1 *2 *1) - (-12 (-5 *2 (-642 *5)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)) - (-14 *4 (-769)) (-4 *5 (-172))))) -(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1264)))) - ((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1264))))) -(((*1 *2 *3) - (-12 (-5 *3 (-316 (-225))) (-5 *2 (-316 (-379))) (-5 *1 (-305))))) -(((*1 *1 *2) (-12 (-5 *1 (-1024 *2)) (-4 *2 (-1212))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1212))))) -(((*1 *1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1097)) (-4 *2 (-368))))) -(((*1 *1) (-5 *1 (-291)))) -(((*1 *2 *1) - (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -4287 "void"))) - (-5 *1 (-437))))) -(((*1 *2 *1) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-394))))) + (-12 (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-909)) + (-5 *1 (-906 *2 *3 *4 *5)) (-4 *5 (-949 *2 *3 *4)))) + ((*1 *2) (-12 (-4 *2 (-909)) (-5 *1 (-907 *2 *3)) (-4 *3 (-1240 *2))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1173)) (-5 *4 (-950 (-564))) (-5 *2 (-330)) - (-5 *1 (-332))))) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) (((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1000)))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-112))))) -(((*1 *1 *2) - (-12 (-5 *2 (-642 (-642 *3))) (-4 *3 (-1097)) (-5 *1 (-903 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-791)) - (-4 *5 (-13 (-848) (-10 -8 (-15 -3003 ((-1173) $))))) (-4 *6 (-556)) - (-5 *2 (-2 (|:| -2247 (-950 *6)) (|:| -3883 (-950 *6)))) - (-5 *1 (-730 *4 *5 *6 *3)) (-4 *3 (-947 (-407 (-950 *6)) *4 *5))))) + (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) + ((*1 *2) (-12 (-5 *2 (-904 (-566))) (-5 *1 (-917))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-644 (-281))) (-5 *1 (-281)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 (-1180))) (-5 *1 (-1180))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (-566)) (-5 *2 (-112))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-651 (-407 *6))) (-5 *4 (-1 (-642 *5) *6)) - (-4 *5 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564))))) - (-4 *6 (-1238 *5)) (-5 *2 (-642 (-407 *6))) (-5 *1 (-810 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-651 (-407 *7))) (-5 *4 (-1 (-642 *6) *7)) - (-5 *5 (-1 (-418 *7) *7)) - (-4 *6 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564))))) - (-4 *7 (-1238 *6)) (-5 *2 (-642 (-407 *7))) (-5 *1 (-810 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-652 *6 (-407 *6))) (-5 *4 (-1 (-642 *5) *6)) - (-4 *5 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564))))) - (-4 *6 (-1238 *5)) (-5 *2 (-642 (-407 *6))) (-5 *1 (-810 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-652 *7 (-407 *7))) (-5 *4 (-1 (-642 *6) *7)) - (-5 *5 (-1 (-418 *7) *7)) - (-4 *6 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564))))) - (-4 *7 (-1238 *6)) (-5 *2 (-642 (-407 *7))) (-5 *1 (-810 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-651 (-407 *5))) (-4 *5 (-1238 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564))))) - (-5 *2 (-642 (-407 *5))) (-5 *1 (-810 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-651 (-407 *6))) (-5 *4 (-1 (-418 *6) *6)) - (-4 *6 (-1238 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564))))) - (-5 *2 (-642 (-407 *6))) (-5 *1 (-810 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-652 *5 (-407 *5))) (-4 *5 (-1238 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564))))) - (-5 *2 (-642 (-407 *5))) (-5 *1 (-810 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-652 *6 (-407 *6))) (-5 *4 (-1 (-418 *6) *6)) - (-4 *6 (-1238 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564))))) - (-5 *2 (-642 (-407 *6))) (-5 *1 (-810 *5 *6))))) -(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1212))))) -(((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-1272))))) -(((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1038))))) -(((*1 *1 *1 *1) (-5 *1 (-860)))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-13 (-363) (-147) (-1036 (-564)))) - (-4 *5 (-1238 *4)) - (-5 *2 (-2 (|:| -3872 (-407 *5)) (|:| |coeff| (-407 *5)))) - (-5 *1 (-568 *4 *5)) (-5 *3 (-407 *5))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1153 *4)) (-5 *3 (-564)) (-4 *4 (-1047)) - (-5 *1 (-1157 *4)))) - ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-564)) (-5 *1 (-1254 *3 *4 *5)) (-4 *3 (-1047)) - (-14 *4 (-1173)) (-14 *5 *3)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-331 *3)) (-4 *3 (-848))))) -(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820))))) -(((*1 *1 *2 *3 *1) - (-12 (-14 *4 (-642 (-1173))) (-4 *2 (-172)) - (-4 *3 (-238 (-2158 *4) (-769))) - (-14 *6 - (-1 (-112) (-2 (|:| -2065 *5) (|:| -2817 *3)) - (-2 (|:| -2065 *5) (|:| -2817 *3)))) - (-5 *1 (-461 *4 *2 *5 *3 *6 *7)) (-4 *5 (-848)) - (-4 *7 (-947 *2 *3 (-862 *4)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-642 (-564))) (-5 *1 (-1002 *3)) (-14 *3 (-564))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-848) (-612 (-1173)))) - (-4 *6 (-791)) (-5 *2 (-642 (-642 (-564)))) - (-5 *1 (-922 *4 *5 *6 *7)) (-5 *3 (-564)) (-4 *7 (-947 *4 *6 *5))))) -(((*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-1176)))) - ((*1 *2 *3) (-12 (-5 *3 (-1173)) (-5 *2 (-1267)) (-5 *1 (-1176)))) - ((*1 *2 *3 *1) (-12 (-5 *3 (-1173)) (-5 *2 (-1267)) (-5 *1 (-1176))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-924))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-564)) (-5 *1 (-316 *3)) (-4 *3 (-556)) (-4 *3 (-1097))))) -(((*1 *2 *1) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-1192))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-3 - (|:| |noa| - (-2 (|:| |fn| (-316 (-225))) (|:| -3910 (-642 (-225))) - (|:| |lb| (-642 (-841 (-225)))) - (|:| |cf| (-642 (-316 (-225)))) - (|:| |ub| (-642 (-841 (-225)))))) - (|:| |lsa| - (-2 (|:| |lfn| (-642 (-316 (-225)))) - (|:| -3910 (-642 (-225))))))) - (-5 *2 (-642 (-1155))) (-5 *1 (-267))))) -(((*1 *2 *3) - (-12 (-4 *4 (-349)) - (-5 *2 (-642 (-2 (|:| |deg| (-769)) (|:| -2918 *3)))) - (-5 *1 (-216 *4 *3)) (-4 *3 (-1238 *4))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (-564)) (-5 *2 (-112))))) -(((*1 *2 *3 *3) - (-12 (-4 *2 (-556)) (-4 *2 (-452)) (-5 *1 (-967 *2 *3)) - (-4 *3 (-1238 *2))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1153 *2)) (-4 *2 (-307)) (-5 *1 (-174 *2))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-769)) (-4 *4 (-556)) (-5 *1 (-967 *4 *2)) - (-4 *2 (-1238 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1279 *3 *4)) (-4 *3 (-848)) (-4 *4 (-1047)) - (-5 *2 (-2 (|:| |k| (-817 *3)) (|:| |c| *4)))))) + (-12 (-5 *3 (-644 (-952 *6))) (-5 *4 (-644 (-1175))) + (-4 *6 (-13 (-558) (-1038 *5))) (-4 *5 (-558)) + (-5 *2 (-644 (-644 (-295 (-409 (-952 *6)))))) (-5 *1 (-1039 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) + (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 *4)) + (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002)))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-919)) (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)))) - ((*1 *2 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-363)))) + (-12 (-5 *2 (-921)) (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)))) + ((*1 *2 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-365)))) ((*1 *2 *1) - (-12 (-4 *1 (-370 *2 *3)) (-4 *3 (-1238 *2)) (-4 *2 (-172)))) + (-12 (-4 *1 (-372 *2 *3)) (-4 *3 (-1240 *2)) (-4 *2 (-172)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1262 *4)) (-5 *3 (-919)) (-4 *4 (-349)) - (-5 *1 (-528 *4)))) + (-12 (-5 *2 (-1264 *4)) (-5 *3 (-921)) (-4 *4 (-351)) + (-5 *1 (-530 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1120 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) - (-4 *5 (-238 *3 *2)) (-4 *2 (-1047))))) -(((*1 *2 *3 *1 *4) - (-12 (-5 *3 (-1137 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) - (-4 *5 (-13 (-1097) (-34))) (-4 *6 (-13 (-1097) (-34))) - (-5 *2 (-112)) (-5 *1 (-1138 *5 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-363)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) - (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-685 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-180)))) - ((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-679)))) - ((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-968)))) - ((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-1070)))) - ((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1115))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1169 (-564))) (-5 *1 (-940)) (-5 *3 (-564)))) - ((*1 *2 *2) - (-12 (-4 *3 (-307)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) - (-5 *1 (-1121 *3 *4 *5 *2)) (-4 *2 (-685 *3 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-769)) (-5 *2 (-1 (-379))) (-5 *1 (-1038))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1253 *4)) - (-4 *4 (-38 (-407 (-564)))) (-5 *2 (-1 (-1153 *4) (-1153 *4))) - (-5 *1 (-1255 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-363)) (-4 *5 (-556)) - (-5 *2 - (-2 (|:| |minor| (-642 (-919))) (|:| -3359 *3) - (|:| |minors| (-642 (-642 (-919)))) (|:| |ops| (-642 *3)))) - (-5 *1 (-90 *5 *3)) (-5 *4 (-919)) (-4 *3 (-654 *5))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-112)) (-5 *5 (-687 (-169 (-225)))) - (-5 *2 (-1033)) (-5 *1 (-753))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-769)) (-5 *2 (-112)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-1213 *3)) (-4 *3 (-848)) - (-4 *3 (-1097))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-890 *4)) (-4 *4 (-1097)) (-5 *1 (-887 *4 *3)) - (-4 *3 (-1097))))) -(((*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1097)) (-5 *1 (-735 *3)))) - ((*1 *1 *2) (-12 (-5 *1 (-735 *2)) (-4 *2 (-1097)))) - ((*1 *1) (-12 (-5 *1 (-735 *2)) (-4 *2 (-1097))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) - (-5 *2 - (-2 (|:| -2108 *4) (|:| -1437 *4) (|:| |totalpts| (-564)) - (|:| |success| (-112)))) - (-5 *1 (-787)) (-5 *5 (-564))))) -(((*1 *2 *3) (-12 (-5 *3 (-769)) (-5 *2 (-1267)) (-5 *1 (-379)))) - ((*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-379))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1262 (-1173))) (-5 *3 (-1262 (-453 *4 *5 *6 *7))) - (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-919)) - (-14 *6 (-642 (-1173))) (-14 *7 (-1262 (-687 *4))))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1173)) (-5 *3 (-1262 (-453 *4 *5 *6 *7))) - (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-919)) - (-14 *6 (-642 *2)) (-14 *7 (-1262 (-687 *4))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1262 (-453 *3 *4 *5 *6))) (-5 *1 (-453 *3 *4 *5 *6)) - (-4 *3 (-172)) (-14 *4 (-919)) (-14 *5 (-642 (-1173))) - (-14 *6 (-1262 (-687 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1262 (-1173))) (-5 *1 (-453 *3 *4 *5 *6)) - (-4 *3 (-172)) (-14 *4 (-919)) (-14 *5 (-642 (-1173))) - (-14 *6 (-1262 (-687 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1173)) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) - (-14 *4 (-919)) (-14 *5 (-642 *2)) (-14 *6 (-1262 (-687 *3))))) - ((*1 *1) - (-12 (-5 *1 (-453 *2 *3 *4 *5)) (-4 *2 (-172)) (-14 *3 (-919)) - (-14 *4 (-642 (-1173))) (-14 *5 (-1262 (-687 *2)))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-642 *1)) (-4 *1 (-1062 *4 *5 *6)) (-4 *4 (-1047)) - (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1062 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-791)) - (-4 *5 (-848)) (-5 *2 (-112)))) - ((*1 *2 *3 *1 *4) - (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1205 *5 *6 *7 *3)) - (-4 *5 (-556)) (-4 *6 (-791)) (-4 *7 (-848)) - (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-5 *2 (-642 *3)) (-4 *3 (-1238 (-564))) (-5 *1 (-486 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1262 (-1262 *4))) (-4 *4 (-1047)) (-5 *2 (-687 *4)) - (-5 *1 (-1027 *4))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-919)) (-5 *4 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1263))))) -(((*1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-1182))))) + (-12 (-4 *1 (-1122 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) + (-4 *5 (-238 *3 *2)) (-4 *2 (-1049))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-307)) (-4 *6 (-373 *5)) (-4 *4 (-373 *5)) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2131 (-642 *4)))) - (-5 *1 (-1121 *5 *6 *4 *3)) (-4 *3 (-685 *5 *6 *4))))) -(((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-941 *5)) (-5 *3 (-769)) (-4 *5 (-1047)) - (-5 *1 (-1161 *4 *5)) (-14 *4 (-919))))) + (-12 (-5 *3 (-1175)) (-5 *4 (-952 (-566))) (-5 *2 (-331)) + (-5 *1 (-333))))) +(((*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-180)))) + ((*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-681)))) + ((*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-970)))) + ((*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-1072)))) + ((*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-1117))))) +(((*1 *2 *1) + (-12 (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-564)) (-5 *1 (-694 *2)) (-4 *2 (-1238 *3))))) -(((*1 *1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| -1949 (-642 (-860))) (|:| -2247 (-642 (-860))) - (|:| |presup| (-642 (-860))) (|:| -3325 (-642 (-860))) - (|:| |args| (-642 (-860))))) - (-5 *1 (-1173)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-642 (-642 (-860)))) (-5 *1 (-1173))))) + (-12 (-5 *2 (-892 *4)) (-4 *4 (-1099)) (-5 *1 (-890 *4 *3)) + (-4 *3 (-1214)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-892 *3)) (-4 *3 (-1099))))) (((*1 *2 *1) - (-12 (-4 *1 (-1120 *3 *4 *2 *5)) (-4 *4 (-1047)) (-4 *5 (-238 *3 *4)) - (-4 *2 (-238 *3 *4))))) + (-12 (-5 *2 (-2 (|:| -1732 *1) (|:| -4404 *1) (|:| |associate| *1))) + (-4 *1 (-558))))) (((*1 *2 *1) - (-12 (-5 *2 (-407 (-950 *3))) (-5 *1 (-453 *3 *4 *5 *6)) - (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-919)) - (-14 *5 (-642 (-1173))) (-14 *6 (-1262 (-687 *3)))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) - (-4 *4 (-848)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1205 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-791)) - (-4 *5 (-848)) (-4 *2 (-1062 *3 *4 *5))))) -(((*1 *1) (-5 *1 (-186)))) + (-12 (-4 *1 (-604 *2 *3)) (-4 *3 (-1214)) (-4 *2 (-1099)) + (-4 *2 (-850))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) + (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-644 *6)) (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) + (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) + (-4 *3 (-558))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-921)) (-5 *4 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1265))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2162 (-782 *3)) (|:| |coef1| (-782 *3)))) + (-5 *1 (-782 *3)) (-4 *3 (-558)) (-4 *3 (-1049)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-558)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) + (-5 *2 (-2 (|:| -2162 *1) (|:| |coef1| *1))) + (-4 *1 (-1064 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) + (-4 *6 (-793)) (-5 *2 (-409 (-952 *4))) (-5 *1 (-924 *4 *5 *6 *3)) + (-4 *3 (-949 *4 *6 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-689 *7)) (-4 *7 (-949 *4 *6 *5)) + (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) + (-4 *6 (-793)) (-5 *2 (-689 (-409 (-952 *4)))) + (-5 *1 (-924 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 *7)) (-4 *7 (-949 *4 *6 *5)) + (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) + (-4 *6 (-793)) (-5 *2 (-644 (-409 (-952 *4)))) + (-5 *1 (-924 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-344 *4 *5 *6)) (-4 *4 (-1218)) + (-4 *5 (-1240 *4)) (-4 *6 (-1240 (-409 *5))) + (-5 *2 (-2 (|:| |num| (-689 *5)) (|:| |den| *5)))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-644 *3)) (-4 *3 (-308)) (-5 *1 (-179 *3))))) +(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) + (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2341)))) + (-5 *2 (-1035)) (-5 *1 (-748))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-921)) (-5 *2 (-470)) (-5 *1 (-1265))))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) +(((*1 *2 *3) + (-12 (-4 *4 (-558)) (-5 *2 (-644 *3)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-419 *4))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-921)) (-5 *4 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1265))))) (((*1 *2 *2) - (-12 (-4 *3 (-452)) (-4 *3 (-1036 (-564))) (-4 *3 (-556)) - (-5 *1 (-41 *3 *2)) (-4 *2 (-430 *3)) + (-12 (-4 *3 (-558)) (-5 *1 (-41 *3 *2)) (-4 *2 - (-13 (-363) (-302) - (-10 -8 (-15 -4120 ((-1122 *3 (-610 $)) $)) - (-15 -4131 ((-1122 *3 (-610 $)) $)) - (-15 -2390 ($ (-1122 *3 (-610 $)))))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-687 (-407 (-564)))) (-5 *2 (-642 *4)) (-5 *1 (-777 *4)) - (-4 *4 (-13 (-363) (-846)))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-850 *2)) (-4 *2 (-1047)) (-4 *2 (-363))))) -(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) - ((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) - ((*1 *1 *1) (-4 *1 (-1136)))) -(((*1 *2) - (-12 (-4 *3 (-556)) (-5 *2 (-642 (-687 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-417 *3))))) -(((*1 *1 *1) (-4 *1 (-1141)))) -(((*1 *2 *3 *3 *3 *4 *5 *4 *6) - (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225))) - (-5 *5 (-1091 (-225))) (-5 *6 (-564)) (-5 *2 (-1207 (-924))) - (-5 *1 (-318)))) - ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225))) - (-5 *5 (-1091 (-225))) (-5 *6 (-564)) (-5 *7 (-1155)) - (-5 *2 (-1207 (-924))) (-5 *1 (-318)))) - ((*1 *2 *3 *3 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225))) - (-5 *5 (-1091 (-225))) (-5 *6 (-225)) (-5 *7 (-564)) - (-5 *2 (-1207 (-924))) (-5 *1 (-318)))) - ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) - (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225))) - (-5 *5 (-1091 (-225))) (-5 *6 (-225)) (-5 *7 (-564)) (-5 *8 (-1155)) - (-5 *2 (-1207 (-924))) (-5 *1 (-318))))) -(((*1 *1 *1) (-5 *1 (-48))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1212)) - (-4 *2 (-1212)) (-5 *1 (-58 *5 *2)))) - ((*1 *2 *3 *1 *2 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1097)) (|has| *1 (-6 -4410)) - (-4 *1 (-151 *2)) (-4 *2 (-1212)))) - ((*1 *2 *3 *1 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4410)) (-4 *1 (-151 *2)) - (-4 *2 (-1212)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4410)) (-4 *1 (-151 *2)) - (-4 *2 (-1212)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1047)) - (-5 *2 (-2 (|:| -2830 (-1169 *4)) (|:| |deg| (-919)))) - (-5 *1 (-221 *4 *5)) (-5 *3 (-1169 *4)) (-4 *5 (-556)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-240 *5 *6)) (-14 *5 (-769)) - (-4 *6 (-1212)) (-4 *2 (-1212)) (-5 *1 (-239 *5 *6 *2)))) - ((*1 *1 *2 *3) - (-12 (-4 *4 (-172)) (-5 *1 (-289 *4 *2 *3 *5 *6 *7)) - (-4 *2 (-1238 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3)) - (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-316 *2)) (-4 *2 (-556)) (-4 *2 (-1097)))) - ((*1 *1 *1) - (-12 (-4 *1 (-335 *2 *3 *4 *5)) (-4 *2 (-363)) (-4 *3 (-1238 *2)) - (-4 *4 (-1238 (-407 *3))) (-4 *5 (-342 *2 *3 *4)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1212)) (-4 *2 (-1212)) - (-5 *1 (-371 *5 *4 *2 *6)) (-4 *4 (-373 *5)) (-4 *6 (-373 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1097)) (-4 *2 (-1097)) - (-5 *1 (-423 *5 *4 *2 *6)) (-4 *4 (-425 *5)) (-4 *6 (-425 *2)))) - ((*1 *1 *1) (-5 *1 (-495))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-642 *5)) (-4 *5 (-1212)) - (-4 *2 (-1212)) (-5 *1 (-640 *5 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1047)) (-4 *2 (-1047)) - (-4 *6 (-373 *5)) (-4 *7 (-373 *5)) (-4 *8 (-373 *2)) - (-4 *9 (-373 *2)) (-5 *1 (-683 *5 *6 *7 *4 *2 *8 *9 *10)) - (-4 *4 (-685 *5 *6 *7)) (-4 *10 (-685 *2 *8 *9)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-709 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1047)) (-5 *1 (-710 *3 *2)) (-4 *2 (-1238 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-713 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-407 *4)) (-4 *4 (-1238 *3)) (-4 *3 (-363)) - (-4 *3 (-172)) (-4 *1 (-722 *3 *4)))) - ((*1 *1 *2) - (-12 (-4 *3 (-172)) (-4 *1 (-722 *3 *2)) (-4 *2 (-1238 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-956 *5)) (-4 *5 (-1212)) - (-4 *2 (-1212)) (-5 *1 (-955 *5 *2)))) - ((*1 *1 *2) - (-12 (-4 *3 (-363)) (-4 *4 (-791)) (-4 *5 (-848)) - (-5 *1 (-1032 *3 *4 *5 *2 *6)) (-4 *2 (-947 *3 *4 *5)) - (-14 *6 (-642 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1047)) (-4 *2 (-1047)) - (-14 *5 (-769)) (-14 *6 (-769)) (-4 *8 (-238 *6 *7)) - (-4 *9 (-238 *5 *7)) (-4 *10 (-238 *6 *2)) (-4 *11 (-238 *5 *2)) - (-5 *1 (-1053 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) - (-4 *4 (-1051 *5 *6 *7 *8 *9)) (-4 *12 (-1051 *5 *6 *2 *10 *11)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1153 *5)) (-4 *5 (-1212)) - (-4 *2 (-1212)) (-5 *1 (-1151 *5 *2)))) - ((*1 *2 *2 *1 *3 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) - (-4 *1 (-1205 *5 *6 *7 *2)) (-4 *5 (-556)) (-4 *6 (-791)) - (-4 *7 (-848)) (-4 *2 (-1062 *5 *6 *7)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1262 *5)) (-4 *5 (-1212)) - (-4 *2 (-1212)) (-5 *1 (-1261 *5 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-820))))) -(((*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1212))))) -(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) - (-12 (-5 *4 (-564)) (-5 *5 (-1155)) (-5 *6 (-687 (-225))) - (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G)))) - (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) - (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-71 PEDERV)))) - (-5 *10 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) - (-5 *3 (-225)) (-5 *2 (-1033)) (-5 *1 (-747))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1173)) (-5 *4 (-950 (-564))) (-5 *2 (-330)) - (-5 *1 (-332))))) + (-13 (-365) (-303) + (-10 -8 (-15 -4157 ((-1124 *3 (-612 $)) $)) + (-15 -4167 ((-1124 *3 (-612 $)) $)) + (-15 -2479 ($ (-1124 *3 (-612 $))))))))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-365) (-303) + (-10 -8 (-15 -4157 ((-1124 *3 (-612 $)) $)) + (-15 -4167 ((-1124 *3 (-612 $)) $)) + (-15 -2479 ($ (-1124 *3 (-612 $))))))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-644 *2)) + (-4 *2 + (-13 (-365) (-303) + (-10 -8 (-15 -4157 ((-1124 *4 (-612 $)) $)) + (-15 -4167 ((-1124 *4 (-612 $)) $)) + (-15 -2479 ($ (-1124 *4 (-612 $))))))) + (-4 *4 (-558)) (-5 *1 (-41 *4 *2)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-644 (-612 *2))) + (-4 *2 + (-13 (-365) (-303) + (-10 -8 (-15 -4157 ((-1124 *4 (-612 $)) $)) + (-15 -4167 ((-1124 *4 (-612 $)) $)) + (-15 -2479 ($ (-1124 *4 (-612 $))))))) + (-4 *4 (-558)) (-5 *1 (-41 *4 *2))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-943 *5)) (-4 *5 (-1049)) (-5 *2 (-771)) + (-5 *1 (-1163 *4 *5)) (-14 *4 (-921)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-644 (-771))) (-5 *3 (-771)) (-5 *1 (-1163 *4 *5)) + (-14 *4 (-921)) (-4 *5 (-1049)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-644 (-771))) (-5 *3 (-943 *5)) (-4 *5 (-1049)) + (-5 *1 (-1163 *4 *5)) (-14 *4 (-921))))) +(((*1 *2 *1) (-12 (-4 *1 (-767 *3)) (-4 *3 (-1099)) (-5 *2 (-112))))) +(((*1 *1 *1 *1) (-4 *1 (-475))) ((*1 *1 *1 *1) (-4 *1 (-761)))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-566)) (-5 *1 (-420 *2)) (-4 *2 (-558))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-644 (-612 *2))) (-5 *4 (-644 (-1175))) + (-4 *2 (-13 (-432 (-169 *5)) (-1002) (-1199))) (-4 *5 (-558)) + (-5 *1 (-600 *5 *6 *2)) (-4 *6 (-13 (-432 *5) (-1002) (-1199)))))) (((*1 *1) (-5 *1 (-186)))) +(((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-822))))) +(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-31)))) + ((*1 *2) (-12 (-4 *1 (-406)) (-5 *2 (-921)))) ((*1 *1) (-4 *1 (-547))) + ((*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-699)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-904 *3)) (-4 *3 (-1099))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1209 *3)) (-4 *3 (-974))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-687 *5)) (-5 *4 (-1262 *5)) (-4 *5 (-363)) - (-5 *2 (-112)) (-5 *1 (-665 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4411)))) - (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4411)))) (-5 *2 (-112)) - (-5 *1 (-666 *5 *6 *4 *3)) (-4 *3 (-685 *5 *6 *4))))) + (-12 (-5 *3 (-644 (-780 *5 (-864 *6)))) (-5 *4 (-112)) (-4 *5 (-454)) + (-14 *6 (-644 (-1175))) + (-5 *2 + (-644 (-1145 *5 (-533 (-864 *6)) (-864 *6) (-780 *5 (-864 *6))))) + (-5 *1 (-628 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172))))) +(((*1 *2 *3) + (-12 (-5 *3 (-317 (-225))) (-5 *2 (-317 (-409 (-566)))) + (-5 *1 (-306))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-644 (-566))) (-5 *2 (-1177 (-409 (-566)))) + (-5 *1 (-190))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-769)) (-5 *3 (-941 *4)) (-4 *1 (-1131 *4)) - (-4 *4 (-1047)))) + (-12 (-5 *2 (-771)) (-5 *3 (-943 *4)) (-4 *1 (-1133 *4)) + (-4 *4 (-1049)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-769)) (-5 *4 (-941 (-225))) (-5 *2 (-1267)) - (-5 *1 (-1264))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-687 *8)) (-5 *4 (-769)) (-4 *8 (-947 *5 *7 *6)) - (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-848) (-612 (-1173)))) - (-4 *7 (-791)) - (-5 *2 - (-642 - (-2 (|:| |det| *8) (|:| |rows| (-642 (-564))) - (|:| |cols| (-642 (-564)))))) - (-5 *1 (-922 *5 *6 *7 *8))))) -(((*1 *2 *3) - (-12 (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) - (-4 *7 (-1062 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-642 *7)) (|:| |badPols| (-642 *7)))) - (-5 *1 (-975 *4 *5 *6 *7)) (-5 *3 (-642 *7))))) + (-12 (-5 *3 (-771)) (-5 *4 (-943 (-225))) (-5 *2 (-1269)) + (-5 *1 (-1266))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266))))) +(((*1 *1) (-5 *1 (-186)))) +(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-381)) (-5 *3 (-1157)) (-5 *1 (-97)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-381)) (-5 *3 (-1157)) (-5 *1 (-97))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-319)) (-5 *3 (-225))))) (((*1 *2 *1) - (-12 (-5 *2 (-1153 (-407 *3))) (-5 *1 (-174 *3)) (-4 *3 (-307))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-610 *6)) (-4 *6 (-13 (-430 *5) (-27) (-1197))) - (-4 *5 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564)))) - (-5 *2 (-1169 (-407 (-1169 *6)))) (-5 *1 (-560 *5 *6 *7)) - (-5 *3 (-1169 *6)) (-4 *7 (-1097)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1238 *3)) (-5 *1 (-710 *3 *2)) (-4 *3 (-1047)))) - ((*1 *2 *1) - (-12 (-4 *1 (-722 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1238 *3)))) - ((*1 *2 *3 *4 *4 *5 *6 *7 *8) - (|partial| -12 (-5 *4 (-1169 *11)) (-5 *6 (-642 *10)) - (-5 *7 (-642 (-769))) (-5 *8 (-642 *11)) (-4 *10 (-848)) - (-4 *11 (-307)) (-4 *9 (-791)) (-4 *5 (-947 *11 *9 *10)) - (-5 *2 (-642 (-1169 *5))) (-5 *1 (-740 *9 *10 *11 *5)) - (-5 *3 (-1169 *5)))) - ((*1 *2 *1) - (-12 (-4 *2 (-947 *3 *4 *5)) (-5 *1 (-1032 *3 *4 *5 *2 *6)) - (-4 *3 (-363)) (-4 *4 (-791)) (-4 *5 (-848)) (-14 *6 (-642 *2))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1161 *2 *3)) (-14 *2 (-919)) (-4 *3 (-1047))))) + (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) + (-5 *2 + (-2 (|:| -3828 (-771)) (|:| |curves| (-771)) + (|:| |polygons| (-771)) (|:| |constructs| (-771))))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-365) (-147) (-1038 (-566)))) (-4 *5 (-1240 *4)) + (-5 *2 (-2 (|:| |ans| (-409 *5)) (|:| |nosol| (-112)))) + (-5 *1 (-1015 *4 *5)) (-5 *3 (-409 *5))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) + (-5 *1 (-752))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1047)) (-4 *3 (-848)) - (-4 *5 (-266 *3)) (-4 *6 (-791)) (-5 *2 (-642 (-769))))) + (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1218)) (-4 *3 (-1240 *4)) + (-4 *5 (-1240 (-409 *3))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) + (-4 *5 (-1240 (-409 *4))) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-848)) - (-4 *5 (-266 *4)) (-4 *6 (-791)) (-5 *2 (-642 (-769)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1047)) - (-4 *2 (-13 (-404) (-1036 *4) (-363) (-1197) (-284))) - (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1238 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-407 (-564))) (-5 *1 (-305))))) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) + (-4 *5 (-1240 (-409 *4))) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *3 (-13 (-558) (-1038 (-566)))) (-5 *2 (-1269)) + (-5 *1 (-435 *3 *4)) (-4 *4 (-432 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112)) - (-5 *1 (-975 *4 *5 *6 *3)) (-4 *3 (-1062 *4 *5 *6))))) -(((*1 *1) (-5 *1 (-186)))) -(((*1 *1 *2) (-12 - (-5 *2 - (-642 - (-2 - (|:| -1914 - (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) - (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (|:| -2683 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1153 (-225))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -4138 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-559))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) - (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-642 *4)) - (-5 *1 (-1105 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-687 *8)) (-4 *8 (-947 *5 *7 *6)) - (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-848) (-612 (-1173)))) - (-4 *7 (-791)) - (-5 *2 - (-642 - (-2 (|:| -3616 (-769)) - (|:| |eqns| - (-642 - (-2 (|:| |det| *8) (|:| |rows| (-642 (-564))) - (|:| |cols| (-642 (-564)))))) - (|:| |fgb| (-642 *8))))) - (-5 *1 (-922 *5 *6 *7 *8)) (-5 *4 (-769))))) -(((*1 *2 *2 *1 *3 *4) - (-12 (-5 *2 (-642 *8)) (-5 *3 (-1 *8 *8 *8)) - (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1205 *5 *6 *7 *8)) (-4 *5 (-556)) - (-4 *6 (-791)) (-4 *7 (-848)) (-4 *8 (-1062 *5 *6 *7))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-941 (-225)) (-941 (-225)))) (-5 *1 (-263)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1262 *1)) (-4 *1 (-329 *4)) (-4 *4 (-363)) - (-5 *2 (-687 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1262 *3)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-1262 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) - (-5 *2 (-687 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1262 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) - (-5 *2 (-1262 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-1262 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) - (-4 *5 (-1238 *4)) (-5 *2 (-687 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1262 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) - (-4 *5 (-1238 *4)) (-5 *2 (-1262 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1262 *1)) (-4 *1 (-409 *4 *5)) (-4 *4 (-172)) - (-4 *5 (-1238 *4)) (-5 *2 (-687 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1238 *3)) - (-5 *2 (-1262 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1262 *1)) (-4 *1 (-417 *4)) (-4 *4 (-172)) - (-5 *2 (-687 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-1262 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-642 (-687 *5))) (-5 *3 (-687 *5)) (-4 *5 (-363)) - (-5 *2 (-1262 *5)) (-5 *1 (-1083 *5))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-506)) (-5 *1 (-280)))) - ((*1 *2 *1) - (-12 (-5 *2 (-3 (-564) (-225) (-506) (-1155) (-1178))) - (-5 *1 (-1178))))) -(((*1 *2 *1) (-12 (-5 *2 (-642 (-1211))) (-5 *1 (-679)))) - ((*1 *2 *1) (-12 (-5 *2 (-642 (-1178))) (-5 *1 (-1115))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197))))) -(((*1 *2 *3 *4 *3 *3) - (-12 (-5 *3 (-294 *6)) (-5 *4 (-114)) (-4 *6 (-430 *5)) - (-4 *5 (-13 (-556) (-612 (-536)))) (-5 *2 (-52)) - (-5 *1 (-317 *5 *6)))) - ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-294 *7)) (-5 *4 (-114)) (-5 *5 (-642 *7)) - (-4 *7 (-430 *6)) (-4 *6 (-13 (-556) (-612 (-536)))) (-5 *2 (-52)) - (-5 *1 (-317 *6 *7)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-642 (-294 *7))) (-5 *4 (-642 (-114))) (-5 *5 (-294 *7)) - (-4 *7 (-430 *6)) (-4 *6 (-13 (-556) (-612 (-536)))) (-5 *2 (-52)) - (-5 *1 (-317 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-642 (-294 *8))) (-5 *4 (-642 (-114))) (-5 *5 (-294 *8)) - (-5 *6 (-642 *8)) (-4 *8 (-430 *7)) - (-4 *7 (-13 (-556) (-612 (-536)))) (-5 *2 (-52)) - (-5 *1 (-317 *7 *8)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-642 *7)) (-5 *4 (-642 (-114))) (-5 *5 (-294 *7)) - (-4 *7 (-430 *6)) (-4 *6 (-13 (-556) (-612 (-536)))) (-5 *2 (-52)) - (-5 *1 (-317 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-642 *8)) (-5 *4 (-642 (-114))) (-5 *6 (-642 (-294 *8))) - (-4 *8 (-430 *7)) (-5 *5 (-294 *8)) - (-4 *7 (-13 (-556) (-612 (-536)))) (-5 *2 (-52)) - (-5 *1 (-317 *7 *8)))) - ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-294 *5)) (-5 *4 (-114)) (-4 *5 (-430 *6)) - (-4 *6 (-13 (-556) (-612 (-536)))) (-5 *2 (-52)) - (-5 *1 (-317 *6 *5)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-114)) (-5 *5 (-294 *3)) (-4 *3 (-430 *6)) - (-4 *6 (-13 (-556) (-612 (-536)))) (-5 *2 (-52)) - (-5 *1 (-317 *6 *3)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-114)) (-5 *5 (-294 *3)) (-4 *3 (-430 *6)) - (-4 *6 (-13 (-556) (-612 (-536)))) (-5 *2 (-52)) - (-5 *1 (-317 *6 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-114)) (-5 *5 (-294 *3)) (-5 *6 (-642 *3)) - (-4 *3 (-430 *7)) (-4 *7 (-13 (-556) (-612 (-536)))) (-5 *2 (-52)) - (-5 *1 (-317 *7 *3))))) + (-5 *3 + (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) + (|:| |expense| (-381)) (|:| |accuracy| (-381)) + (|:| |intermediateResults| (-381)))) + (-5 *2 (-1035)) (-5 *1 (-306))))) +(((*1 *1 *1) (-5 *1 (-1062)))) +(((*1 *1) (-5 *1 (-186)))) +(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-112)) + (-5 *6 (-225)) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-68 APROD)))) + (-5 *8 (-3 (|:| |fn| (-390)) (|:| |fp| (-73 MSOLVE)))) + (-5 *2 (-1035)) (-5 *1 (-756))))) +(((*1 *1 *2 *3 *4) + (-12 (-14 *5 (-644 (-1175))) (-4 *2 (-172)) + (-4 *4 (-238 (-3002 *5) (-771))) + (-14 *6 + (-1 (-112) (-2 (|:| -2104 *3) (|:| -3631 *4)) + (-2 (|:| -2104 *3) (|:| -3631 *4)))) + (-5 *1 (-463 *5 *2 *3 *4 *6 *7)) (-4 *3 (-850)) + (-4 *7 (-949 *2 *4 (-864 *5)))))) (((*1 *2 *2) - (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1197)))))) + (-12 (-4 *3 (-558)) (-5 *1 (-158 *3 *2)) (-4 *2 (-432 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1175)) (-4 *4 (-558)) (-5 *1 (-158 *4 *2)) + (-4 *2 (-432 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1175)))) + ((*1 *1 *1) (-4 *1 (-160)))) (((*1 *2 *3) - (-12 (-5 *3 (-919)) (-5 *2 (-1169 *4)) (-5 *1 (-357 *4)) - (-4 *4 (-349))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3710 *3) (|:| |coef1| (-780 *3)))) - (-5 *1 (-780 *3)) (-4 *3 (-556)) (-4 *3 (-1047))))) -(((*1 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-275))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-947 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-791)) - (-4 *2 (-848)) (-4 *3 (-172)))) - ((*1 *2 *3 *3) - (-12 (-4 *2 (-556)) (-5 *1 (-967 *2 *3)) (-4 *3 (-1238 *2)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) - (-4 *4 (-848)) (-4 *2 (-556)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1238 *2)) (-4 *2 (-1047)) (-4 *2 (-172))))) -(((*1 *2 *2) - (-12 (-4 *2 (-172)) (-4 *2 (-1047)) (-5 *1 (-712 *2 *3)) - (-4 *3 (-646 *2)))) - ((*1 *2 *2) (-12 (-5 *1 (-834 *2)) (-4 *2 (-172)) (-4 *2 (-1047))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-769)) (-5 *6 (-112)) (-4 *7 (-452)) (-4 *8 (-791)) - (-4 *9 (-848)) (-4 *3 (-1062 *7 *8 *9)) - (-5 *2 - (-2 (|:| |done| (-642 *4)) - (|:| |todo| (-642 (-2 (|:| |val| (-642 *3)) (|:| -2138 *4)))))) - (-5 *1 (-1066 *7 *8 *9 *3 *4)) (-4 *4 (-1068 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-769)) (-4 *6 (-452)) (-4 *7 (-791)) (-4 *8 (-848)) - (-4 *3 (-1062 *6 *7 *8)) + (-12 (-4 *4 (-454)) (-5 *2 - (-2 (|:| |done| (-642 *4)) - (|:| |todo| (-642 (-2 (|:| |val| (-642 *3)) (|:| -2138 *4)))))) - (-5 *1 (-1066 *6 *7 *8 *3 *4)) (-4 *4 (-1068 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) - (-4 *3 (-1062 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-642 *4)) - (|:| |todo| (-642 (-2 (|:| |val| (-642 *3)) (|:| -2138 *4)))))) - (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-769)) (-5 *6 (-112)) (-4 *7 (-452)) (-4 *8 (-791)) - (-4 *9 (-848)) (-4 *3 (-1062 *7 *8 *9)) - (-5 *2 - (-2 (|:| |done| (-642 *4)) - (|:| |todo| (-642 (-2 (|:| |val| (-642 *3)) (|:| -2138 *4)))))) - (-5 *1 (-1142 *7 *8 *9 *3 *4)) (-4 *4 (-1106 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-769)) (-4 *6 (-452)) (-4 *7 (-791)) (-4 *8 (-848)) - (-4 *3 (-1062 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-642 *4)) - (|:| |todo| (-642 (-2 (|:| |val| (-642 *3)) (|:| -2138 *4)))))) - (-5 *1 (-1142 *6 *7 *8 *3 *4)) (-4 *4 (-1106 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) - (-4 *3 (-1062 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-642 *4)) - (|:| |todo| (-642 (-2 (|:| |val| (-642 *3)) (|:| -2138 *4)))))) - (-5 *1 (-1142 *5 *6 *7 *3 *4)) (-4 *4 (-1106 *5 *6 *7 *3))))) -(((*1 *2) (-12 (-5 *2 (-1144 (-1155))) (-5 *1 (-391))))) + (-644 + (-2 (|:| |eigval| (-3 (-409 (-952 *4)) (-1164 (-1175) (-952 *4)))) + (|:| |geneigvec| (-644 (-689 (-409 (-952 *4)))))))) + (-5 *1 (-293 *4)) (-5 *3 (-689 (-409 (-952 *4))))))) +(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-874))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1026 (-843 (-566)))) + (-5 *3 (-1155 (-2 (|:| |k| (-566)) (|:| |c| *4)))) (-4 *4 (-1049)) + (-5 *1 (-596 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-1213))) (-5 *1 (-681)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 (-1180))) (-5 *1 (-1117))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) + (-4 *3 (-1064 *5 *6 *7)) + (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -2192 *4)))) + (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-365)) (-5 *1 (-766 *2 *3)) (-4 *2 (-708 *3)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365))))) (((*1 *2 *3 *4 *5) - (-12 (-4 *6 (-1238 *9)) (-4 *7 (-791)) (-4 *8 (-848)) (-4 *9 (-307)) - (-4 *10 (-947 *9 *7 *8)) + (-12 (-4 *6 (-1240 *9)) (-4 *7 (-793)) (-4 *8 (-850)) (-4 *9 (-308)) + (-4 *10 (-949 *9 *7 *8)) (-5 *2 - (-2 (|:| |deter| (-642 (-1169 *10))) + (-2 (|:| |deter| (-644 (-1171 *10))) (|:| |dterm| - (-642 (-642 (-2 (|:| -3636 (-769)) (|:| |pcoef| *10))))) - (|:| |nfacts| (-642 *6)) (|:| |nlead| (-642 *10)))) - (-5 *1 (-776 *6 *7 *8 *9 *10)) (-5 *3 (-1169 *10)) (-5 *4 (-642 *6)) - (-5 *5 (-642 *10))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-642 *7)) (-4 *7 (-848)) (-4 *5 (-907)) (-4 *6 (-791)) - (-4 *8 (-947 *5 *6 *7)) (-5 *2 (-418 (-1169 *8))) - (-5 *1 (-904 *5 *6 *7 *8)) (-5 *4 (-1169 *8)))) - ((*1 *2 *3) - (-12 (-4 *4 (-907)) (-4 *5 (-1238 *4)) (-5 *2 (-418 (-1169 *5))) - (-5 *1 (-905 *4 *5)) (-5 *3 (-1169 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1175 (-407 (-564)))) (-5 *1 (-190))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1089 (-841 *3))) (-4 *3 (-13 (-1197) (-957) (-29 *5))) - (-4 *5 (-13 (-307) (-147) (-1036 (-564)) (-637 (-564)))) - (-5 *2 - (-3 (|:| |f1| (-841 *3)) (|:| |f2| (-642 (-841 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-219 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1089 (-841 *3))) (-5 *5 (-1155)) - (-4 *3 (-13 (-1197) (-957) (-29 *6))) - (-4 *6 (-13 (-307) (-147) (-1036 (-564)) (-637 (-564)))) - (-5 *2 - (-3 (|:| |f1| (-841 *3)) (|:| |f2| (-642 (-841 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-219 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-407 (-950 *5))) (-5 *4 (-1089 (-841 (-316 *5)))) - (-4 *5 (-13 (-307) (-147) (-1036 (-564)) (-637 (-564)))) - (-5 *2 - (-3 (|:| |f1| (-841 (-316 *5))) (|:| |f2| (-642 (-841 (-316 *5)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-220 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-407 (-950 *6))) (-5 *4 (-1089 (-841 (-316 *6)))) - (-5 *5 (-1155)) - (-4 *6 (-13 (-307) (-147) (-1036 (-564)) (-637 (-564)))) - (-5 *2 - (-3 (|:| |f1| (-841 (-316 *6))) (|:| |f2| (-642 (-841 (-316 *6)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-220 *6)))) + (-644 (-644 (-2 (|:| -1933 (-771)) (|:| |pcoef| *10))))) + (|:| |nfacts| (-644 *6)) (|:| |nlead| (-644 *10)))) + (-5 *1 (-778 *6 *7 *8 *9 *10)) (-5 *3 (-1171 *10)) (-5 *4 (-644 *6)) + (-5 *5 (-644 *10))))) +(((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1195))))) +(((*1 *2 *1) + (-12 (-4 *1 (-604 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1214)) + (-5 *2 (-644 *3))))) +(((*1 *2 *3 *2) + (|partial| -12 (-5 *3 (-921)) (-5 *1 (-444 *2)) + (-4 *2 (-1240 (-566))))) + ((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-921)) (-5 *4 (-771)) (-5 *1 (-444 *2)) + (-4 *2 (-1240 (-566))))) + ((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-921)) (-5 *4 (-644 (-771))) (-5 *1 (-444 *2)) + (-4 *2 (-1240 (-566))))) + ((*1 *2 *3 *2 *4 *5) + (|partial| -12 (-5 *3 (-921)) (-5 *4 (-644 (-771))) (-5 *5 (-771)) + (-5 *1 (-444 *2)) (-4 *2 (-1240 (-566))))) + ((*1 *2 *3 *2 *4 *5 *6) + (|partial| -12 (-5 *3 (-921)) (-5 *4 (-644 (-771))) (-5 *5 (-771)) + (-5 *6 (-112)) (-5 *1 (-444 *2)) (-4 *2 (-1240 (-566))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1089 (-841 (-407 (-950 *5))))) (-5 *3 (-407 (-950 *5))) - (-4 *5 (-13 (-307) (-147) (-1036 (-564)) (-637 (-564)))) - (-5 *2 - (-3 (|:| |f1| (-841 (-316 *5))) (|:| |f2| (-642 (-841 (-316 *5)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-220 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1089 (-841 (-407 (-950 *6))))) (-5 *5 (-1155)) - (-5 *3 (-407 (-950 *6))) - (-4 *6 (-13 (-307) (-147) (-1036 (-564)) (-637 (-564)))) + (-12 (-5 *3 (-921)) (-5 *4 (-420 *2)) (-4 *2 (-1240 *5)) + (-5 *1 (-446 *5 *2)) (-4 *5 (-1049))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1171 *3)) (-4 *3 (-1049)) (-4 *1 (-1240 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) +(((*1 *2 *2) + (-12 (-5 *2 (-943 *3)) (-4 *3 (-13 (-365) (-1199) (-1002))) + (-5 *1 (-176 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) + (-4 *6 (-793)) (-4 *7 (-949 *4 *6 *5)) (-5 *2 - (-3 (|:| |f1| (-841 (-316 *6))) (|:| |f2| (-642 (-841 (-316 *6)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-220 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1173)) - (-4 *5 (-13 (-307) (-147) (-1036 (-564)) (-637 (-564)))) - (-5 *2 (-3 *3 (-642 *3))) (-5 *1 (-428 *5 *3)) - (-4 *3 (-13 (-1197) (-957) (-29 *5))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-474 *3 *4 *5)) - (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1047)) (-14 *5 *3))) - ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1091 (-841 (-379)))) - (-5 *5 (-379)) (-5 *6 (-1060)) (-5 *2 (-1033)) (-5 *1 (-565)))) - ((*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1033)) (-5 *1 (-565)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1091 (-841 (-379)))) - (-5 *5 (-379)) (-5 *2 (-1033)) (-5 *1 (-565)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1091 (-841 (-379)))) - (-5 *5 (-379)) (-5 *2 (-1033)) (-5 *1 (-565)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1091 (-841 (-379)))) - (-5 *2 (-1033)) (-5 *1 (-565)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-316 (-379))) (-5 *4 (-642 (-1091 (-841 (-379))))) - (-5 *2 (-1033)) (-5 *1 (-565)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-316 (-379))) (-5 *4 (-642 (-1091 (-841 (-379))))) - (-5 *5 (-379)) (-5 *2 (-1033)) (-5 *1 (-565)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-316 (-379))) (-5 *4 (-642 (-1091 (-841 (-379))))) - (-5 *5 (-379)) (-5 *2 (-1033)) (-5 *1 (-565)))) - ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-316 (-379))) (-5 *4 (-642 (-1091 (-841 (-379))))) - (-5 *5 (-379)) (-5 *6 (-1060)) (-5 *2 (-1033)) (-5 *1 (-565)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-316 (-379))) (-5 *4 (-1089 (-841 (-379)))) - (-5 *5 (-1155)) (-5 *2 (-1033)) (-5 *1 (-565)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-316 (-379))) (-5 *4 (-1089 (-841 (-379)))) - (-5 *5 (-1173)) (-5 *2 (-1033)) (-5 *1 (-565)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-363) (-147) (-1036 (-564)))) (-4 *5 (-1238 *4)) - (-5 *2 (-585 (-407 *5))) (-5 *1 (-568 *4 *5)) (-5 *3 (-407 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-407 (-950 *5))) (-5 *4 (-1173)) (-4 *5 (-147)) - (-4 *5 (-13 (-452) (-1036 (-564)) (-637 (-564)))) - (-5 *2 (-3 (-316 *5) (-642 (-316 *5)))) (-5 *1 (-588 *5)))) - ((*1 *1 *1) - (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-738 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-848)) - (-4 *3 (-38 (-407 (-564)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1173)) (-5 *1 (-950 *3)) (-4 *3 (-38 (-407 (-564)))) - (-4 *3 (-1047)))) - ((*1 *1 *1 *2 *3) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1047)) (-4 *2 (-848)) - (-5 *1 (-1123 *3 *2 *4)) (-4 *4 (-947 *3 (-531 *2) *2)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1047)) - (-5 *1 (-1157 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-1164 *3 *4 *5)) - (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1047)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-1170 *3 *4 *5)) - (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1047)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-1171 *3 *4 *5)) - (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1047)) (-14 *5 *3))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1173)) (-5 *1 (-1206 *3)) (-4 *3 (-38 (-407 (-564)))) - (-4 *3 (-1047)))) - ((*1 *1 *1 *2) - (-2682 - (-12 (-5 *2 (-1173)) (-4 *1 (-1222 *3)) (-4 *3 (-1047)) - (-12 (-4 *3 (-29 (-564))) (-4 *3 (-957)) (-4 *3 (-1197)) - (-4 *3 (-38 (-407 (-564)))))) - (-12 (-5 *2 (-1173)) (-4 *1 (-1222 *3)) (-4 *3 (-1047)) - (-12 (|has| *3 (-15 -2397 ((-642 *2) *3))) - (|has| *3 (-15 -3703 (*3 *3 *2))) (-4 *3 (-38 (-407 (-564)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1222 *2)) (-4 *2 (-1047)) (-4 *2 (-38 (-407 (-564)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-1226 *3 *4 *5)) - (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1047)) (-14 *5 *3))) - ((*1 *1 *1) - (-12 (-4 *1 (-1238 *2)) (-4 *2 (-1047)) (-4 *2 (-38 (-407 (-564)))))) - ((*1 *1 *1 *2) - (-2682 - (-12 (-5 *2 (-1173)) (-4 *1 (-1243 *3)) (-4 *3 (-1047)) - (-12 (-4 *3 (-29 (-564))) (-4 *3 (-957)) (-4 *3 (-1197)) - (-4 *3 (-38 (-407 (-564)))))) - (-12 (-5 *2 (-1173)) (-4 *1 (-1243 *3)) (-4 *3 (-1047)) - (-12 (|has| *3 (-15 -2397 ((-642 *2) *3))) - (|has| *3 (-15 -3703 (*3 *3 *2))) (-4 *3 (-38 (-407 (-564)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1243 *2)) (-4 *2 (-1047)) (-4 *2 (-38 (-407 (-564)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-1247 *3 *4 *5)) - (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1047)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-2682 - (-12 (-5 *2 (-1173)) (-4 *1 (-1253 *3)) (-4 *3 (-1047)) - (-12 (-4 *3 (-29 (-564))) (-4 *3 (-957)) (-4 *3 (-1197)) - (-4 *3 (-38 (-407 (-564)))))) - (-12 (-5 *2 (-1173)) (-4 *1 (-1253 *3)) (-4 *3 (-1047)) - (-12 (|has| *3 (-15 -2397 ((-642 *2) *3))) - (|has| *3 (-15 -3703 (*3 *3 *2))) (-4 *3 (-38 (-407 (-564)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1253 *2)) (-4 *2 (-1047)) (-4 *2 (-38 (-407 (-564)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-1254 *3 *4 *5)) - (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1047)) (-14 *5 *3)))) -(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-925))))) + (-2 (|:| |sysok| (-112)) (|:| |z0| (-644 *7)) (|:| |n0| (-644 *7)))) + (-5 *1 (-924 *4 *5 *6 *7)) (-5 *3 (-644 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-642 *8)) (-5 *4 (-642 *9)) (-4 *8 (-1062 *5 *6 *7)) - (-4 *9 (-1068 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-791)) - (-4 *7 (-848)) (-5 *2 (-769)) (-5 *1 (-1066 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-642 *8)) (-5 *4 (-642 *9)) (-4 *8 (-1062 *5 *6 *7)) - (-4 *9 (-1106 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-791)) - (-4 *7 (-848)) (-5 *2 (-769)) (-5 *1 (-1142 *5 *6 *7 *8 *9))))) -(((*1 *2 *1) - (-12 (-4 *4 (-1097)) (-5 *2 (-887 *3 *5)) (-5 *1 (-883 *3 *4 *5)) - (-4 *3 (-1097)) (-4 *5 (-664 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-52)) (-5 *1 (-827))))) -(((*1 *2 *2) - (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1197)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-769)) (-5 *2 (-1169 *4)) (-5 *1 (-528 *4)) - (-4 *4 (-349))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1033))))) + (-12 (-5 *3 (-921)) (-5 *4 (-420 *6)) (-4 *6 (-1240 *5)) + (-4 *5 (-1049)) (-5 *2 (-644 *6)) (-5 *1 (-446 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-452)) + (-12 (-5 *3 (-689 (-409 (-952 (-566))))) (-5 *2 - (-642 - (-2 (|:| |eigval| (-3 (-407 (-950 *4)) (-1162 (-1173) (-950 *4)))) - (|:| |geneigvec| (-642 (-687 (-407 (-950 *4)))))))) - (-5 *1 (-292 *4)) (-5 *3 (-687 (-407 (-950 *4))))))) + (-644 + (-2 (|:| |radval| (-317 (-566))) (|:| |radmult| (-566)) + (|:| |radvect| (-644 (-689 (-317 (-566)))))))) + (-5 *1 (-1031))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-308)) (-5 *1 (-457 *3 *2)) (-4 *2 (-1240 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-308)) (-5 *1 (-462 *3 *2)) (-4 *2 (-1240 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-308)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-771))) + (-5 *1 (-541 *3 *2 *4 *5)) (-4 *2 (-1240 *3))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) +(((*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-97))))) (((*1 *2 *2) - (-12 (-5 *2 (-941 *3)) (-4 *3 (-13 (-363) (-1197) (-1000))) - (-5 *1 (-176 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1253 *4)) - (-4 *4 (-38 (-407 (-564)))) - (-5 *2 (-1 (-1153 *4) (-1153 *4) (-1153 *4))) (-5 *1 (-1255 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-379))) (-5 *1 (-1038)) (-5 *3 (-379))))) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *1 *1) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-850)) (-4 *3 (-172)))) + ((*1 *1 *1) + (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-850)) + (-4 *3 (-13 (-172) (-717 (-409 (-566))))) (-14 *4 (-921)))) + ((*1 *1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-850)))) + ((*1 *1 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1281 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-452)) (-4 *3 (-791)) (-4 *5 (-848)) (-5 *2 (-112)) - (-5 *1 (-449 *4 *3 *5 *6)) (-4 *6 (-947 *4 *3 *5))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1173)) - (-4 *4 (-13 (-307) (-147) (-1036 (-564)) (-637 (-564)))) - (-5 *1 (-426 *4 *2)) (-4 *2 (-13 (-1197) (-29 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-407 (-950 *5))) (-5 *4 (-1173)) (-4 *5 (-147)) - (-4 *5 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-316 *5)) - (-5 *1 (-588 *5))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-418 *3)) (-4 *3 (-556)) (-5 *1 (-419 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-693 *3)) (-4 *3 (-1097)) - (-5 *2 (-642 (-2 (|:| -2683 *3) (|:| -4010 (-769)))))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-642 (-687 *4))) (-5 *2 (-687 *4)) (-4 *4 (-1047)) - (-5 *1 (-1027 *4))))) + (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-988 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1106 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266))))) +(((*1 *2 *3) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) + (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 (-2 (|:| -1668 (-114)) (|:| |w| (-225)))) (-5 *1 (-204))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2105 *3))) - (-5 *1 (-967 *4 *3)) (-4 *3 (-1238 *4))))) -(((*1 *2 *2 *3 *4 *5) - (-12 (-5 *2 (-642 *9)) (-5 *3 (-1 (-112) *9)) - (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) - (-4 *9 (-1062 *6 *7 *8)) (-4 *6 (-556)) (-4 *7 (-791)) - (-4 *8 (-848)) (-5 *1 (-975 *6 *7 *8 *9))))) -(((*1 *2 *1) - (-12 (-5 *2 (-689 (-964 *3))) (-5 *1 (-964 *3)) (-4 *3 (-1097))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) - (-4 *3 (-367 *4)))) - ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-642 (-280))) (-5 *1 (-280)))) - ((*1 *2 *1) (-12 (-5 *2 (-642 (-1178))) (-5 *1 (-1178))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *5 (-225)) - (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1033)) - (-5 *1 (-744))))) + (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1040)) (-5 *3 (-381))))) +(((*1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-276))))) +(((*1 *2 *3 *4 *3 *4 *4 *4) + (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *2 (-1035)) + (-5 *1 (-756))))) +(((*1 *2 *3 *3 *4 *4) + (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *2 (-1035)) + (-5 *1 (-748))))) +(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) + (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) + (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-67 DOT)))) + (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-225)) + (-5 *2 (-1035)) (-5 *1 (-755)))) + ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) + (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) + (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-67 DOT)))) + (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-390)) + (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-755))))) +(((*1 *2 *2) + (-12 (-4 *3 (-558)) (-4 *4 (-992 *3)) (-5 *1 (-142 *3 *4 *2)) + (-4 *2 (-375 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-558)) (-4 *5 (-992 *4)) (-4 *2 (-375 *4)) + (-5 *1 (-505 *4 *5 *2 *3)) (-4 *3 (-375 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-689 *5)) (-4 *5 (-992 *4)) (-4 *4 (-558)) + (-5 *2 (-689 *4)) (-5 *1 (-693 *4 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-558)) (-4 *4 (-992 *3)) (-5 *1 (-1233 *3 *4 *2)) + (-4 *2 (-1240 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-558)) + (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) + (-5 *1 (-977 *4 *5 *6 *7))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-152 *2 *3 *4)) (-14 *2 (-921)) (-4 *3 (-365)) + (-14 *4 (-993 *2 *3)))) + ((*1 *1 *1) + (|partial| -12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1240 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-558)))) + ((*1 *1 *1) + (|partial| -12 (-5 *1 (-715 *2 *3 *4 *5 *6)) (-4 *2 (-172)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-718 *2)) (-4 *2 (-365)))) + ((*1 *1) (-12 (-5 *1 (-718 *2)) (-4 *2 (-365)))) + ((*1 *1 *1) (|partial| -4 *1 (-722))) + ((*1 *1 *1) (|partial| -4 *1 (-726))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) + (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) + (-5 *1 (-776 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) + ((*1 *2 *2 *1) + (|partial| -12 (-4 *1 (-1067 *3 *2)) (-4 *3 (-13 (-848) (-365))) + (-4 *2 (-1240 *3)))) + ((*1 *2 *2) + (|partial| -12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3))))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) + (-12 (-5 *6 (-644 (-112))) (-5 *7 (-689 (-225))) + (-5 *8 (-689 (-566))) (-5 *3 (-566)) (-5 *4 (-225)) (-5 *5 (-112)) + (-5 *2 (-1035)) (-5 *1 (-754))))) (((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1136)))) -(((*1 *2 *3) - (-12 (-5 *3 (-642 *7)) (-4 *7 (-947 *4 *6 *5)) - (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-848) (-612 (-1173)))) - (-4 *6 (-791)) (-5 *2 (-112)) (-5 *1 (-922 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-642 (-950 *4))) (-4 *4 (-13 (-307) (-147))) - (-4 *5 (-13 (-848) (-612 (-1173)))) (-4 *6 (-791)) (-5 *2 (-112)) - (-5 *1 (-922 *4 *5 *6 *7)) (-4 *7 (-947 *4 *6 *5))))) + (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1138)))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-644 *3)) (-4 *3 (-1108 *5 *6 *7 *8)) + (-4 *5 (-13 (-308) (-147))) (-4 *6 (-793)) (-4 *7 (-850)) + (-4 *8 (-1064 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-592 *5 *6 *7 *8 *3))))) (((*1 *2) - (-12 (-14 *4 (-769)) (-4 *5 (-1212)) (-5 *2 (-134)) - (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) - ((*1 *2) - (-12 (-4 *4 (-363)) (-5 *2 (-134)) (-5 *1 (-328 *3 *4)) - (-4 *3 (-329 *4)))) - ((*1 *2) - (-12 (-5 *2 (-769)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-172)))) - ((*1 *2 *1) - (-12 (-4 *3 (-363)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-564)) - (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-947 *3 *4 *5)))) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) + (-4 *3 (-369 *4)))) + ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) + (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) + (-5 *1 (-988 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) + (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) + (-5 *1 (-1106 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-547)))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-295 *2)) (-4 *2 (-726)) (-4 *2 (-1214))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-303)))) + ((*1 *1 *1) (-4 *1 (-303))) ((*1 *1 *1) (-5 *1 (-862)))) +(((*1 *2 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) + (-5 *1 (-1127 *3 *2)) (-4 *3 (-1240 *2))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-943 (-225)) (-943 (-225)))) (-5 *1 (-264)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1264 *1)) (-4 *1 (-330 *4)) (-4 *4 (-365)) + (-5 *2 (-689 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1264 *3)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-1264 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) + (-5 *2 (-689 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-642 *6)) (-4 *6 (-848)) (-4 *4 (-363)) (-4 *5 (-791)) - (-5 *2 (-564)) (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-947 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-978 *3)) (-4 *3 (-1047)) (-5 *2 (-919)))) - ((*1 *2) (-12 (-4 *1 (-1269 *3)) (-4 *3 (-363)) (-5 *2 (-134))))) -(((*1 *2 *1) (-12 (-5 *1 (-912 *2)) (-4 *2 (-307))))) -(((*1 *2 *3 *4 *2 *5 *6) - (-12 - (-5 *5 - (-2 (|:| |done| (-642 *11)) - (|:| |todo| (-642 (-2 (|:| |val| *3) (|:| -2138 *11)))))) - (-5 *6 (-769)) - (-5 *2 (-642 (-2 (|:| |val| (-642 *10)) (|:| -2138 *11)))) - (-5 *3 (-642 *10)) (-5 *4 (-642 *11)) (-4 *10 (-1062 *7 *8 *9)) - (-4 *11 (-1068 *7 *8 *9 *10)) (-4 *7 (-452)) (-4 *8 (-791)) - (-4 *9 (-848)) (-5 *1 (-1066 *7 *8 *9 *10 *11)))) - ((*1 *2 *3 *4 *2 *5 *6) - (-12 - (-5 *5 - (-2 (|:| |done| (-642 *11)) - (|:| |todo| (-642 (-2 (|:| |val| *3) (|:| -2138 *11)))))) - (-5 *6 (-769)) - (-5 *2 (-642 (-2 (|:| |val| (-642 *10)) (|:| -2138 *11)))) - (-5 *3 (-642 *10)) (-5 *4 (-642 *11)) (-4 *10 (-1062 *7 *8 *9)) - (-4 *11 (-1106 *7 *8 *9 *10)) (-4 *7 (-452)) (-4 *8 (-791)) - (-4 *9 (-848)) (-5 *1 (-1142 *7 *8 *9 *10 *11))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-642 (-1 (-112) *8))) (-4 *8 (-1062 *5 *6 *7)) - (-4 *5 (-556)) (-4 *6 (-791)) (-4 *7 (-848)) - (-5 *2 (-2 (|:| |goodPols| (-642 *8)) (|:| |badPols| (-642 *8)))) - (-5 *1 (-975 *5 *6 *7 *8)) (-5 *4 (-642 *8))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-642 *1)) (-4 *1 (-1062 *4 *5 *6)) (-4 *4 (-1047)) - (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1062 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-791)) - (-4 *5 (-848)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1205 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-791)) - (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1205 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-791)) - (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-112)) (-4 *6 (-13 (-452) (-1036 (-564)) (-637 (-564)))) - (-4 *3 (-13 (-27) (-1197) (-430 *6) (-10 -8 (-15 -2390 ($ *7))))) - (-4 *7 (-846)) - (-4 *8 - (-13 (-1240 *3 *7) (-363) (-1197) - (-10 -8 (-15 -2199 ($ $)) (-15 -3703 ($ $))))) - (-5 *2 - (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1155)) (|:| |prob| (-1155)))))) - (-5 *1 (-422 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1155)) (-4 *9 (-981 *8)) - (-14 *10 (-1173))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) - (-5 *2 (-642 *4)) (-5 *1 (-1125 *3 *4)) (-4 *3 (-1238 *4)))) + (-12 (-5 *3 (-1264 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) + (-5 *2 (-1264 *4)))) ((*1 *2 *3 *3) - (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) - (-5 *2 (-642 *3)) (-5 *1 (-1125 *4 *3)) (-4 *4 (-1238 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-112)) (-5 *1 (-267))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-642 (-941 *3)))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-687 (-407 (-950 (-564))))) - (-5 *2 (-687 (-316 (-564)))) (-5 *1 (-1029))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-363)) (-4 *7 (-1238 *5)) (-4 *4 (-722 *5 *7)) - (-5 *2 (-2 (|:| -3544 (-687 *6)) (|:| |vec| (-1262 *5)))) - (-5 *1 (-809 *5 *6 *7 *4 *3)) (-4 *6 (-654 *5)) (-4 *3 (-654 *4))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-642 (-950 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-846) (-307) (-147) (-1020))) - (-5 *2 (-642 (-1044 *5 *6))) (-5 *1 (-1288 *5 *6 *7)) - (-14 *6 (-642 (-1173))) (-14 *7 (-642 (-1173))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-642 (-950 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-846) (-307) (-147) (-1020))) - (-5 *2 (-642 (-1044 *5 *6))) (-5 *1 (-1288 *5 *6 *7)) - (-14 *6 (-642 (-1173))) (-14 *7 (-642 (-1173))))) - ((*1 *2 *3) - (-12 (-5 *3 (-642 (-950 *4))) - (-4 *4 (-13 (-846) (-307) (-147) (-1020))) - (-5 *2 (-642 (-1044 *4 *5))) (-5 *1 (-1288 *4 *5 *6)) - (-14 *5 (-642 (-1173))) (-14 *6 (-642 (-1173)))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-925))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-1109)) (-4 *3 (-1097)) (-5 *2 (-642 *1)) - (-4 *1 (-430 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-642 (-890 *3))) (-5 *1 (-890 *3)) - (-4 *3 (-1097)))) + (-12 (-5 *3 (-1264 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) + (-4 *5 (-1240 *4)) (-5 *2 (-689 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1264 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) + (-4 *5 (-1240 *4)) (-5 *2 (-1264 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1264 *1)) (-4 *1 (-411 *4 *5)) (-4 *4 (-172)) + (-4 *5 (-1240 *4)) (-5 *2 (-689 *4)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) - (-5 *2 (-642 *1)) (-4 *1 (-947 *3 *4 *5)))) + (-12 (-4 *1 (-411 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1240 *3)) + (-5 *2 (-1264 *3)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1047)) - (-4 *7 (-947 *6 *4 *5)) (-5 *2 (-642 *3)) - (-5 *1 (-948 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-363) - (-10 -8 (-15 -2390 ($ *7)) (-15 -4120 (*7 $)) - (-15 -4131 (*7 $)))))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) - (-5 *1 (-753))))) -(((*1 *1) (-5 *1 (-437)))) -(((*1 *2 *1) - (-12 (-5 *2 (-407 (-564))) (-5 *1 (-319 *3 *4 *5)) (-4 *3 (-363)) - (-14 *4 (-1173)) (-14 *5 *3)))) -(((*1 *2) - (-12 (-4 *3 (-1047)) (-5 *2 (-956 (-710 *3 *4))) (-5 *1 (-710 *3 *4)) - (-4 *4 (-1238 *3))))) + (-12 (-5 *3 (-1264 *1)) (-4 *1 (-419 *4)) (-4 *4 (-172)) + (-5 *2 (-689 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-1264 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-644 (-689 *5))) (-5 *3 (-689 *5)) (-4 *5 (-365)) + (-5 *2 (-1264 *5)) (-5 *1 (-1085 *5))))) (((*1 *1 *1) - (-12 (|has| *1 (-6 -4411)) (-4 *1 (-373 *2)) (-4 *2 (-1212)) - (-4 *2 (-848)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4411)) - (-4 *1 (-373 *3)) (-4 *3 (-1212))))) -(((*1 *2 *3) - (-12 (-5 *3 (-841 (-379))) (-5 *2 (-841 (-225))) (-5 *1 (-305))))) + (|partial| -12 (-5 *1 (-1140 *2 *3)) (-4 *2 (-13 (-1099) (-34))) + (-4 *3 (-13 (-1099) (-34)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-5 *1 (-877 *2)) (-4 *2 (-1214)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-5 *1 (-879 *2)) (-4 *2 (-1214)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-5 *1 (-882 *2)) (-4 *2 (-1214))))) (((*1 *2 *1) - (-12 (-4 *3 (-233)) (-4 *3 (-1047)) (-4 *4 (-848)) (-4 *5 (-266 *4)) - (-4 *6 (-791)) (-5 *2 (-1 *1 (-769))) (-4 *1 (-253 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1047)) (-4 *3 (-848)) (-4 *5 (-266 *3)) (-4 *6 (-791)) - (-5 *2 (-1 *1 (-769))) (-4 *1 (-253 *4 *3 *5 *6)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-769)) (-4 *1 (-266 *2)) (-4 *2 (-848))))) + (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-644 (-943 *3)))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-882 *2)) (-4 *2 (-1214))))) (((*1 *2 *3) - (-12 (-5 *3 (-925)) - (-5 *2 - (-2 (|:| |brans| (-642 (-642 (-941 (-225))))) - (|:| |xValues| (-1091 (-225))) (|:| |yValues| (-1091 (-225))))) - (-5 *1 (-153)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-925)) (-5 *4 (-407 (-564))) - (-5 *2 - (-2 (|:| |brans| (-642 (-642 (-941 (-225))))) - (|:| |xValues| (-1091 (-225))) (|:| |yValues| (-1091 (-225))))) - (-5 *1 (-153))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-769)) (-4 *4 (-556)) (-5 *1 (-967 *4 *2)) - (-4 *2 (-1238 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-736))))) + (-12 (-5 *2 (-1 (-943 *3) (-943 *3))) (-5 *1 (-176 *3)) + (-4 *3 (-13 (-365) (-1199) (-1002)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-1161 3 *3)))) - ((*1 *1) (-12 (-5 *1 (-1161 *2 *3)) (-14 *2 (-919)) (-4 *3 (-1047)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1130 (-225))) (-5 *1 (-1264)))) - ((*1 *2 *1) (-12 (-5 *2 (-1130 (-225))) (-5 *1 (-1264))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171))))) -(((*1 *2 *3) - (-12 (-4 *1 (-349)) (-5 *3 (-564)) (-5 *2 (-1185 (-919) (-769)))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1235 *5 *4)) (-4 *4 (-818)) (-14 *5 (-1173)) - (-5 *2 (-642 *4)) (-5 *1 (-1111 *4 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-860))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-769)) (-5 *1 (-781 *2)) (-4 *2 (-38 (-407 (-564)))) - (-4 *2 (-172))))) + (-12 + (-5 *2 + (-1264 + (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) + (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -3828 (-566)) + (|:| -2266 (-566)) (|:| |spline| (-566)) (|:| -4240 (-566)) + (|:| |axesColor| (-874)) (|:| -3169 (-566)) + (|:| |unitsColor| (-874)) (|:| |showing| (-566))))) + (-5 *1 (-1265))))) +(((*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-579)))) + ((*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-579))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-303)) (-4 *2 (-1214)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-644 (-612 *1))) (-5 *3 (-644 *1)) (-4 *1 (-303)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-295 *1))) (-4 *1 (-303)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-295 *1)) (-4 *1 (-303))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-294 (-841 *3))) (-4 *3 (-13 (-27) (-1197) (-430 *5))) - (-4 *5 (-13 (-452) (-1036 (-564)) (-637 (-564)))) + (-12 (-5 *3 (-689 *8)) (-5 *4 (-771)) (-4 *8 (-949 *5 *7 *6)) + (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-850) (-614 (-1175)))) + (-4 *7 (-793)) (-5 *2 - (-3 (-841 *3) - (-2 (|:| |leftHandLimit| (-3 (-841 *3) "failed")) - (|:| |rightHandLimit| (-3 (-841 *3) "failed"))) - "failed")) - (-5 *1 (-634 *5 *3)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-294 *3)) (-5 *5 (-1155)) - (-4 *3 (-13 (-27) (-1197) (-430 *6))) - (-4 *6 (-13 (-452) (-1036 (-564)) (-637 (-564)))) - (-5 *2 (-841 *3)) (-5 *1 (-634 *6 *3)))) + (-644 + (-2 (|:| |det| *8) (|:| |rows| (-644 (-566))) + (|:| |cols| (-644 (-566)))))) + (-5 *1 (-924 *5 *6 *7 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-793)) + (-4 *7 (-850)) (-4 *8 (-1064 *5 *6 *7)) (-5 *2 (-644 *3)) + (-5 *1 (-592 *5 *6 *7 *8 *3)) (-4 *3 (-1108 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-294 (-841 (-950 *5)))) (-4 *5 (-452)) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-5 *2 - (-3 (-841 (-407 (-950 *5))) - (-2 (|:| |leftHandLimit| (-3 (-841 (-407 (-950 *5))) "failed")) - (|:| |rightHandLimit| (-3 (-841 (-407 (-950 *5))) "failed"))) - "failed")) - (-5 *1 (-635 *5)) (-5 *3 (-407 (-950 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-294 (-407 (-950 *5)))) (-5 *3 (-407 (-950 *5))) - (-4 *5 (-452)) + (-644 (-2 (|:| -4324 (-1171 *5)) (|:| -3747 (-644 (-952 *5)))))) + (-5 *1 (-1077 *5 *6)) (-5 *3 (-644 (-952 *5))) + (-14 *6 (-644 (-1175))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-308) (-147))) (-5 *2 - (-3 (-841 *3) - (-2 (|:| |leftHandLimit| (-3 (-841 *3) "failed")) - (|:| |rightHandLimit| (-3 (-841 *3) "failed"))) - "failed")) - (-5 *1 (-635 *5)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-294 (-407 (-950 *6)))) (-5 *5 (-1155)) - (-5 *3 (-407 (-950 *6))) (-4 *6 (-452)) (-5 *2 (-841 *3)) - (-5 *1 (-635 *6))))) -(((*1 *2 *1) - (-12 (-4 *1 (-974 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-791)) - (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *3 (-1262 *1)) (-4 *1 (-367 *2)) (-4 *2 (-172)))) - ((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-416 *3 *2)) (-4 *3 (-417 *2)))) - ((*1 *2) (-12 (-4 *1 (-417 *2)) (-4 *2 (-172))))) -(((*1 *2 *2) - (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1197)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-919)) (-5 *1 (-784))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-687 *4)) (-5 *3 (-919)) (-4 *4 (-1047)) - (-5 *1 (-1026 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-642 (-687 *4))) (-5 *3 (-919)) (-4 *4 (-1047)) - (-5 *1 (-1026 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-642 (-407 *7))) - (-4 *7 (-1238 *6)) (-5 *3 (-407 *7)) (-4 *6 (-363)) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-642 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-574 *6 *7))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) + (-644 (-2 (|:| -4324 (-1171 *4)) (|:| -3747 (-644 (-952 *4)))))) + (-5 *1 (-1077 *4 *5)) (-5 *3 (-644 (-952 *4))) + (-14 *5 (-644 (-1175))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-5 *2 - (-2 (|:| -2108 *4) (|:| -1437 *4) (|:| |totalpts| (-564)) - (|:| |success| (-112)))) - (-5 *1 (-787)) (-5 *5 (-564))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-363)) (-4 *3 (-1047)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4043 *1))) - (-4 *1 (-850 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |cd| (-1155)) (|:| -2493 (-1155)))) - (-5 *1 (-820))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-919)) (-5 *1 (-1030 *2)) - (-4 *2 (-13 (-1097) (-10 -8 (-15 * ($ $ $)))))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1173)) (-5 *6 (-642 (-610 *3))) - (-5 *5 (-610 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *7))) - (-4 *7 (-13 (-452) (-147) (-1036 (-564)) (-637 (-564)))) - (-5 *2 (-2 (|:| -3872 *3) (|:| |coeff| *3))) - (-5 *1 (-557 *7 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1033)) (-5 *1 (-305)))) - ((*1 *2 *3) - (-12 (-5 *3 (-642 (-1033))) (-5 *2 (-1033)) (-5 *1 (-305)))) - ((*1 *1 *2) (-12 (-5 *2 (-642 *1)) (-4 *1 (-649 *3)) (-4 *3 (-1212)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-649 *2)) (-4 *2 (-1212)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-649 *2)) (-4 *2 (-1212)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-649 *2)) (-4 *2 (-1212)))) - ((*1 *1 *1 *1) (-5 *1 (-1060))) - ((*1 *2 *3) - (-12 (-5 *3 (-1153 (-1153 *4))) (-5 *2 (-1153 *4)) (-5 *1 (-1150 *4)) - (-4 *4 (-1212)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1212)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1212))))) -(((*1 *2 *1 *3 *3) - (-12 (|has| *1 (-6 -4411)) (-4 *1 (-602 *3 *4)) (-4 *3 (-1097)) - (-4 *4 (-1212)) (-5 *2 (-1267))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-553))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-564)) (-4 *1 (-323 *2 *4)) (-4 *4 (-131)) - (-4 *2 (-1097)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-361 *2)) (-4 *2 (-1097)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-386 *2)) (-4 *2 (-1097)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-564)) (-4 *2 (-1097)) (-5 *1 (-647 *2 *4 *5)) - (-4 *4 (-23)) (-14 *5 *4))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-817 *2)) (-4 *2 (-848))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) - (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *2 (-2 (|:| -1637 (-114)) (|:| |w| (-225)))) (-5 *1 (-204))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1047)) - (-14 *4 (-642 (-1173))))) + (-644 (-2 (|:| -4324 (-1171 *5)) (|:| -3747 (-644 (-952 *5)))))) + (-5 *1 (-1077 *5 *6)) (-5 *3 (-644 (-952 *5))) + (-14 *6 (-644 (-1175)))))) +(((*1 *2 *1) (|partial| -12 (-4 *1 (-1012)) (-5 *2 (-862))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *1 (-883)) + (-5 *3 (-644 (-566))))) + ((*1 *2 *3) + (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *1 (-883)) + (-5 *3 (-644 (-566)))))) +(((*1 *1) (-5 *1 (-292)))) +(((*1 *1) (-5 *1 (-439)))) +(((*1 *2 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-1157)) (-5 *5 (-689 (-225))) + (-5 *2 (-1035)) (-5 *1 (-747))))) +(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-738))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) + (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) + (-5 *1 (-988 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *5 (-850)) (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) + (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) + (-5 *1 (-1106 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1207 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) + (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-850)) (-5 *1 (-1185 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-689 *2)) (-4 *2 (-172)) (-5 *1 (-146 *2)))) + ((*1 *2 *3) + (-12 (-4 *4 (-172)) (-4 *2 (-1240 *4)) (-5 *1 (-177 *4 *2 *3)) + (-4 *3 (-724 *4 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-689 (-409 (-952 *5)))) (-5 *4 (-1175)) + (-5 *2 (-952 *5)) (-5 *1 (-293 *5)) (-4 *5 (-454)))) ((*1 *2 *3) - (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1212)))) + (-12 (-5 *3 (-689 (-409 (-952 *4)))) (-5 *2 (-952 *4)) + (-5 *1 (-293 *4)) (-4 *4 (-454)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1047) (-848))) - (-14 *4 (-642 (-1173))))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-670 *3)) (-4 *3 (-848)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-675 *3)) (-4 *3 (-848)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-891 *3)) (-4 *3 (-848))))) -(((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564)))))) -(((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-687 *11)) (-5 *4 (-642 (-407 (-950 *8)))) - (-5 *5 (-769)) (-5 *6 (-1155)) (-4 *8 (-13 (-307) (-147))) - (-4 *11 (-947 *8 *10 *9)) (-4 *9 (-13 (-848) (-612 (-1173)))) - (-4 *10 (-791)) - (-5 *2 - (-2 - (|:| |rgl| - (-642 - (-2 (|:| |eqzro| (-642 *11)) (|:| |neqzro| (-642 *11)) - (|:| |wcond| (-642 (-950 *8))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1262 (-407 (-950 *8)))) - (|:| -2131 (-642 (-1262 (-407 (-950 *8)))))))))) - (|:| |rgsz| (-564)))) - (-5 *1 (-922 *8 *9 *10 *11)) (-5 *7 (-564))))) -(((*1 *2 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *5 (-225)) - (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1033)) - (-5 *1 (-744))))) -(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-791)) - (-4 *8 (-848)) (-4 *9 (-1062 *6 *7 *8)) - (-5 *2 - (-2 (|:| -3359 (-642 *9)) (|:| -2138 *4) (|:| |ineq| (-642 *9)))) - (-5 *1 (-986 *6 *7 *8 *9 *4)) (-5 *3 (-642 *9)) - (-4 *4 (-1068 *6 *7 *8 *9)))) - ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-791)) - (-4 *8 (-848)) (-4 *9 (-1062 *6 *7 *8)) - (-5 *2 - (-2 (|:| -3359 (-642 *9)) (|:| -2138 *4) (|:| |ineq| (-642 *9)))) - (-5 *1 (-1104 *6 *7 *8 *9 *4)) (-5 *3 (-642 *9)) - (-4 *4 (-1068 *6 *7 *8 *9))))) + (-12 (-4 *1 (-372 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1240 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-689 (-169 (-409 (-566))))) + (-5 *2 (-952 (-169 (-409 (-566))))) (-5 *1 (-764 *4)) + (-4 *4 (-13 (-365) (-848))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-689 (-169 (-409 (-566))))) (-5 *4 (-1175)) + (-5 *2 (-952 (-169 (-409 (-566))))) (-5 *1 (-764 *5)) + (-4 *5 (-13 (-365) (-848))))) + ((*1 *2 *3) + (-12 (-5 *3 (-689 (-409 (-566)))) (-5 *2 (-952 (-409 (-566)))) + (-5 *1 (-779 *4)) (-4 *4 (-13 (-365) (-848))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-689 (-409 (-566)))) (-5 *4 (-1175)) + (-5 *2 (-952 (-409 (-566)))) (-5 *1 (-779 *5)) + (-4 *5 (-13 (-365) (-848)))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-365)) (-5 *1 (-659 *4 *2)) + (-4 *2 (-656 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-175))) (-5 *1 (-1084))))) +(((*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049))))) +(((*1 *2 *2) + (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) + (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-558)) (-4 *2 (-1049)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-969 *3 *2)) (-4 *2 (-1240 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) + (-4 *4 (-850)) (-4 *2 (-558)))) + ((*1 *2 *3 *3 *1) + (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *3 (-1064 *4 *5 *6)) + (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -2192 *1)))) + (-4 *1 (-1070 *4 *5 *6 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-602 *2 *3)) (-4 *3 (-1212)) (-4 *2 (-1097)) - (-4 *2 (-848))))) + (-12 (-5 *2 (-691 (-873 (-966 *3) (-966 *3)))) (-5 *1 (-966 *3)) + (-4 *3 (-1099))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-771)) (-5 *1 (-588 *2)) (-4 *2 (-547))))) +(((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-566)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1214)) + (-4 *4 (-375 *2)) (-4 *5 (-375 *2)))) + ((*1 *2 *1 *3 *2) + (-12 (|has| *1 (-6 -4418)) (-4 *1 (-289 *3 *2)) (-4 *3 (-1099)) + (-4 *2 (-1214))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) + (-4 *3 (-1064 *5 *6 *7)) + (-5 *2 (-644 (-2 (|:| |val| (-644 *3)) (|:| -2192 *4)))) + (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-1049))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1035)) (-5 *1 (-306)))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 (-1035))) (-5 *2 (-1035)) (-5 *1 (-306)))) + ((*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-651 *3)) (-4 *3 (-1214)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1214)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1214)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1214)))) + ((*1 *1 *1 *1) (-5 *1 (-1062))) + ((*1 *2 *3) + (-12 (-5 *3 (-1155 (-1155 *4))) (-5 *2 (-1155 *4)) (-5 *1 (-1152 *4)) + (-4 *4 (-1214)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1214))))) (((*1 *2 *1) - (-12 (-4 *1 (-1279 *3 *4)) (-4 *3 (-848)) (-4 *4 (-1047)) - (-5 *2 (-112)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1214)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-5 *2 (-566)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1285 *3 *4)) (-4 *3 (-1047)) - (-4 *4 (-844))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-1153 *3))) (-5 *1 (-1153 *3)) (-4 *3 (-1212))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1010)) (-5 *2 (-860))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1047)) (-5 *2 (-642 *1)) (-4 *1 (-1131 *3))))) -(((*1 *2 *1) - (-12 (-4 *2 (-706 *3)) (-5 *1 (-825 *2 *3)) (-4 *3 (-1047))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-642 (-778 *5 (-862 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) - (-14 *6 (-642 (-1173))) (-5 *2 (-642 (-1044 *5 *6))) - (-5 *1 (-626 *5 *6))))) + (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-566))))) +(((*1 *2 *2 *3 *3 *4) + (-12 (-5 *4 (-771)) (-4 *3 (-558)) (-5 *1 (-969 *3 *2)) + (-4 *2 (-1240 *3))))) +(((*1 *2) + (-12 (-4 *3 (-558)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-419 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171))))) +(((*1 *1 *1 *1 *2 *3) + (-12 (-5 *2 (-644 (-1139 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) + (-4 *4 (-13 (-1099) (-34))) (-4 *5 (-13 (-1099) (-34))) + (-5 *1 (-1140 *4 *5)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-644 (-1139 *3 *4))) (-4 *3 (-13 (-1099) (-34))) + (-4 *4 (-13 (-1099) (-34))) (-5 *1 (-1140 *3 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-294 (-950 (-564)))) - (-5 *2 - (-2 (|:| |varOrder| (-642 (-1173))) - (|:| |inhom| (-3 (-642 (-1262 (-769))) "failed")) - (|:| |hom| (-642 (-1262 (-769)))))) - (-5 *1 (-236))))) + (-12 (-4 *4 (-558)) (-5 *2 (-644 *3)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-419 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-365)) (-5 *2 (-2 (|:| -3371 *3) (|:| -3131 *3))) + (-5 *1 (-766 *3 *4)) (-4 *3 (-708 *4)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-365)) (-4 *3 (-1049)) + (-5 *2 (-2 (|:| -3371 *1) (|:| -3131 *1))) (-4 *1 (-852 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-365)) (-4 *5 (-1049)) + (-5 *2 (-2 (|:| -3371 *3) (|:| -3131 *3))) (-5 *1 (-853 *5 *3)) + (-4 *3 (-852 *5))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1214)) + (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4418)) (-4 *1 (-491 *3)) + (-4 *3 (-1214))))) (((*1 *2 *1) - (-12 (-5 *2 (-769)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)) - (-14 *4 *2) (-4 *5 (-172)))) - ((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-919)) (-5 *1 (-165 *3 *4)) - (-4 *3 (-166 *4)))) - ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-919)))) - ((*1 *2) - (-12 (-4 *1 (-370 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1238 *3)) - (-5 *2 (-919)))) - ((*1 *2 *3) - (-12 (-4 *4 (-363)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) - (-5 *2 (-769)) (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-685 *4 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-687 *5)) (-5 *4 (-1262 *5)) (-4 *5 (-363)) - (-5 *2 (-769)) (-5 *1 (-665 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4411)))) - (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4411)))) (-5 *2 (-769)) - (-5 *1 (-666 *5 *6 *4 *3)) (-4 *3 (-685 *5 *6 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-373 *3)) - (-4 *5 (-373 *3)) (-4 *3 (-556)) (-5 *2 (-769)))) - ((*1 *2 *3) - (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-373 *4)) - (-4 *6 (-373 *4)) (-5 *2 (-769)) (-5 *1 (-686 *4 *5 *6 *3)) - (-4 *3 (-685 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-556)) - (-5 *2 (-769))))) + (-12 (-4 *1 (-1207 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) + (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-644 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-581))))) +(((*1 *2 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-759))))) +(((*1 *1) (-5 *1 (-439)))) (((*1 *2 *3) - (-12 (-5 *3 (-687 (-407 (-950 *4)))) (-4 *4 (-452)) - (-5 *2 (-642 (-3 (-407 (-950 *4)) (-1162 (-1173) (-950 *4))))) - (-5 *1 (-292 *4))))) + (-12 (-4 *1 (-895)) + (-5 *3 + (-2 (|:| |pde| (-644 (-317 (-225)))) + (|:| |constraints| + (-644 + (-2 (|:| |start| (-225)) (|:| |finish| (-225)) + (|:| |grid| (-771)) (|:| |boundaryType| (-566)) + (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) + (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) + (|:| |tol| (-225)))) + (-5 *2 (-1035))))) +(((*1 *2 *3) + (-12 (-5 *3 (-952 *4)) (-4 *4 (-13 (-308) (-147))) + (-4 *2 (-949 *4 *6 *5)) (-5 *1 (-924 *4 *5 *6 *2)) + (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) +(((*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1267)))) + ((*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1267))))) +(((*1 *1) (-5 *1 (-157)))) +(((*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-1093 (-225)))))) +(((*1 *1) + (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-566)) (-14 *3 (-771)) + (-4 *4 (-172))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1091 *3)) (-4 *3 (-947 *7 *6 *4)) (-4 *6 (-791)) - (-4 *4 (-848)) (-4 *7 (-556)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-564)))) - (-5 *1 (-593 *6 *4 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-791)) (-4 *4 (-848)) (-4 *6 (-556)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-564)))) - (-5 *1 (-593 *5 *4 *6 *3)) (-4 *3 (-947 *6 *5 *4)))) - ((*1 *1 *1 *1 *1) (-5 *1 (-860))) ((*1 *1 *1 *1) (-5 *1 (-860))) - ((*1 *1 *1) (-5 *1 (-860))) + (-12 (-5 *5 (-1093 *3)) (-4 *3 (-949 *7 *6 *4)) (-4 *6 (-793)) + (-4 *4 (-850)) (-4 *7 (-558)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-566)))) + (-5 *1 (-595 *6 *4 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-793)) (-4 *4 (-850)) (-4 *6 (-558)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-566)))) + (-5 *1 (-595 *5 *4 *6 *3)) (-4 *3 (-949 *6 *5 *4)))) + ((*1 *1 *1 *1 *1) (-5 *1 (-862))) ((*1 *1 *1 *1) (-5 *1 (-862))) + ((*1 *1 *1) (-5 *1 (-862))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1173)) - (-4 *4 (-13 (-556) (-1036 (-564)) (-637 (-564)))) - (-5 *1 (-1165 *4 *2)) (-4 *2 (-13 (-430 *4) (-160) (-27) (-1197))))) + (-12 (-5 *3 (-1175)) + (-4 *4 (-13 (-558) (-1038 (-566)) (-639 (-566)))) + (-5 *1 (-1167 *4 *2)) (-4 *2 (-13 (-432 *4) (-160) (-27) (-1199))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1089 *2)) (-4 *2 (-13 (-430 *4) (-160) (-27) (-1197))) - (-4 *4 (-13 (-556) (-1036 (-564)) (-637 (-564)))) - (-5 *1 (-1165 *4 *2)))) + (-12 (-5 *3 (-1091 *2)) (-4 *2 (-13 (-432 *4) (-160) (-27) (-1199))) + (-4 *4 (-13 (-558) (-1038 (-566)) (-639 (-566)))) + (-5 *1 (-1167 *4 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1173)) (-4 *5 (-13 (-556) (-1036 (-564)))) - (-5 *2 (-407 (-950 *5))) (-5 *1 (-1166 *5)) (-5 *3 (-950 *5)))) + (-12 (-5 *4 (-1175)) (-4 *5 (-13 (-558) (-1038 (-566)))) + (-5 *2 (-409 (-952 *5))) (-5 *1 (-1168 *5)) (-5 *3 (-952 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1173)) (-4 *5 (-13 (-556) (-1036 (-564)))) - (-5 *2 (-3 (-407 (-950 *5)) (-316 *5))) (-5 *1 (-1166 *5)) - (-5 *3 (-407 (-950 *5))))) + (-12 (-5 *4 (-1175)) (-4 *5 (-13 (-558) (-1038 (-566)))) + (-5 *2 (-3 (-409 (-952 *5)) (-317 *5))) (-5 *1 (-1168 *5)) + (-5 *3 (-409 (-952 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1089 (-950 *5))) (-5 *3 (-950 *5)) - (-4 *5 (-13 (-556) (-1036 (-564)))) (-5 *2 (-407 *3)) - (-5 *1 (-1166 *5)))) + (-12 (-5 *4 (-1091 (-952 *5))) (-5 *3 (-952 *5)) + (-4 *5 (-13 (-558) (-1038 (-566)))) (-5 *2 (-409 *3)) + (-5 *1 (-1168 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1089 (-407 (-950 *5)))) (-5 *3 (-407 (-950 *5))) - (-4 *5 (-13 (-556) (-1036 (-564)))) (-5 *2 (-3 *3 (-316 *5))) - (-5 *1 (-1166 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-418 *3)) (-4 *3 (-556)))) - ((*1 *2 *3) - (-12 (-5 *3 (-642 (-2 (|:| -2254 *4) (|:| -3252 (-564))))) - (-4 *4 (-1238 (-564))) (-5 *2 (-769)) (-5 *1 (-442 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1090 *2)) (-4 *2 (-1212))))) -(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) - (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2266)))) - (-5 *2 (-1033)) (-5 *1 (-746))))) -(((*1 *2 *3) - (-12 (-5 *3 (-642 *2)) (-5 *1 (-486 *2)) (-4 *2 (-1238 (-564)))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-642 (-642 (-941 (-225))))) (-5 *3 (-642 (-872))) - (-5 *1 (-468))))) -(((*1 *2 *3 *2) + (-12 (-5 *4 (-1091 (-409 (-952 *5)))) (-5 *3 (-409 (-952 *5))) + (-4 *5 (-13 (-558) (-1038 (-566)))) (-5 *2 (-3 *3 (-317 *5))) + (-5 *1 (-1168 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-112))))) +(((*1 *2 *2) (-12 (-5 *2 - (-642 - (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-769)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *3 (-791)) (-4 *6 (-947 *4 *3 *5)) (-4 *4 (-452)) (-4 *5 (-848)) - (-5 *1 (-449 *4 *3 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) - (-5 *2 (-1169 *3))))) -(((*1 *1) - (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-769)) - (-4 *4 (-172))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-769)) (-4 *4 (-13 (-1047) (-715 (-407 (-564))))) - (-4 *5 (-848)) (-5 *1 (-1278 *4 *5 *2)) (-4 *2 (-1283 *5 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-941 *2)) (-5 *1 (-980 *2)) (-4 *2 (-1047))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-642 (-642 (-642 *5)))) (-5 *3 (-1 (-112) *5 *5)) - (-5 *4 (-642 *5)) (-4 *5 (-848)) (-5 *1 (-1183 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-642 (-862 *5))) (-14 *5 (-642 (-1173))) (-4 *6 (-452)) - (-5 *2 - (-2 (|:| |dpolys| (-642 (-247 *5 *6))) - (|:| |coords| (-642 (-564))))) - (-5 *1 (-471 *5 *6 *7)) (-5 *3 (-642 (-247 *5 *6))) (-4 *7 (-452))))) -(((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-820))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1197)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-452)) (-4 *4 (-848)) - (-4 *5 (-791)) (-5 *1 (-985 *3 *4 *5 *6)) (-4 *6 (-947 *3 *5 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-820))))) -(((*1 *2) - (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) - (-4 *5 (-1238 (-407 *4))) (-5 *2 (-112))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) - (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) - (-5 *1 (-1275 *3 *4 *5 *6)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-642 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1062 *5 *6 *7)) (-4 *5 (-556)) - (-4 *6 (-791)) (-4 *7 (-848)) (-5 *1 (-1275 *5 *6 *7 *8))))) -(((*1 *2) (-12 (-4 *1 (-1042 *2)) (-4 *2 (-23))))) -(((*1 *2 *3) - (-12 (-5 *3 (-642 *2)) (-4 *2 (-1238 *4)) (-5 *1 (-539 *4 *2 *5 *6)) - (-4 *4 (-307)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-769)))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) - (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *2 (-564)) (-5 *1 (-204))))) -(((*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1047))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1169 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-642 (-642 (-941 (-225))))) (-5 *1 (-1207 *3)) - (-4 *3 (-972))))) -(((*1 *2 *3) - (-12 (-5 *3 (-950 *5)) (-4 *5 (-1047)) (-5 *2 (-481 *4 *5)) - (-5 *1 (-942 *4 *5)) (-14 *4 (-642 (-1173)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1173)) (-4 *5 (-363)) (-5 *2 (-642 (-1206 *5))) - (-5 *1 (-1270 *5)) (-5 *4 (-1206 *5))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-769)) (-5 *1 (-854 *2)) (-4 *2 (-172)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1169 (-564))) (-5 *1 (-940)) (-5 *3 (-564))))) -(((*1 *2 *3) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-561)) (-5 *3 (-564)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1169 (-407 (-564)))) (-5 *1 (-940)) (-5 *3 (-564))))) -(((*1 *2 *1) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1212))))) + (-987 (-409 (-566)) (-864 *3) (-240 *4 (-771)) + (-247 *3 (-409 (-566))))) + (-14 *3 (-644 (-1175))) (-14 *4 (-771)) (-5 *1 (-986 *3 *4))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-644 (-566))) (-5 *2 (-689 (-566))) (-5 *1 (-1109))))) +(((*1 *2 *3 *3 *3 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) +(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) + (-12 (-5 *4 (-689 (-225))) (-5 *5 (-689 (-566))) (-5 *3 (-566)) + (-5 *2 (-1035)) (-5 *1 (-756))))) +(((*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1269)) (-5 *1 (-1178)))) + ((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-1179))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1171 *9)) (-5 *4 (-644 *7)) (-5 *5 (-644 *8)) + (-4 *7 (-850)) (-4 *8 (-1049)) (-4 *9 (-949 *8 *6 *7)) + (-4 *6 (-793)) (-5 *2 (-1171 *8)) (-5 *1 (-322 *6 *7 *8 *9))))) +(((*1 *2 *1) (-12 (-4 *1 (-955)) (-5 *2 (-1093 (-225))))) + ((*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-1093 (-225)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1262 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) - (-5 *2 (-642 (-950 *4))))) - ((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-642 (-950 *4))) (-5 *1 (-416 *3 *4)) - (-4 *3 (-417 *4)))) - ((*1 *2) - (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-642 (-950 *3))))) - ((*1 *2) - (-12 (-5 *2 (-642 (-950 *3))) (-5 *1 (-453 *3 *4 *5 *6)) - (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-919)) - (-14 *5 (-642 (-1173))) (-14 *6 (-1262 (-687 *3))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1262 (-453 *4 *5 *6 *7))) (-5 *2 (-642 (-950 *4))) - (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-556)) (-4 *4 (-172)) - (-14 *5 (-919)) (-14 *6 (-642 (-1173))) (-14 *7 (-1262 (-687 *4)))))) + (-12 (-4 *4 (-558)) (-5 *2 (-771)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-419 *4))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-114)) (-5 *1 (-113 *2)) (-4 *2 (-1097))))) -(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-564)) (-5 *5 (-687 (-225))) - (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G)))) - (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *3 (-225)) - (-5 *2 (-1033)) (-5 *1 (-747))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1173)) (-4 *4 (-556)) (-5 *1 (-158 *4 *2)) - (-4 *2 (-430 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1089 *2)) (-4 *2 (-430 *4)) (-4 *4 (-556)) - (-5 *1 (-158 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1089 *1)) (-4 *1 (-160)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1173))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-642 *3)) (-4 *3 (-1106 *5 *6 *7 *8)) - (-4 *5 (-13 (-307) (-147))) (-4 *6 (-791)) (-4 *7 (-848)) - (-4 *8 (-1062 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-590 *5 *6 *7 *8 *3))))) + (-12 (-5 *3 (-1157)) (-4 *4 (-13 (-308) (-147))) + (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) + (-5 *2 + (-644 + (-2 (|:| |eqzro| (-644 *7)) (|:| |neqzro| (-644 *7)) + (|:| |wcond| (-644 (-952 *4))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1264 (-409 (-952 *4)))) + (|:| -1419 (-644 (-1264 (-409 (-952 *4)))))))))) + (-5 *1 (-924 *4 *5 *6 *7)) (-4 *7 (-949 *4 *6 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1157)) (-5 *1 (-786))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4418)) (-4 *1 (-1010 *2)) (-4 *2 (-1214))))) +(((*1 *1 *1 *1) (-4 *1 (-303))) ((*1 *1 *1) (-4 *1 (-303)))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-169 (-225))) (-5 *5 (-566)) (-5 *6 (-1157)) + (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-758))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-720)) (-5 *2 (-921)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-722)) (-5 *2 (-771))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-3 (-112) (-644 *1))) + (-4 *1 (-1070 *4 *5 *6 *3))))) (((*1 *1 *1) - (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1047)) (-14 *3 (-642 (-1173))))) - ((*1 *1 *1) - (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1047) (-848))) - (-14 *3 (-642 (-1173)))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-858)) (-5 *2 (-689 (-549))) (-5 *3 (-549))))) -(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820))))) + (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) + (-4 *4 (-850)) (-4 *2 (-454))))) +(((*1 *2 *1) (-12 (-4 *1 (-955)) (-5 *2 (-1093 (-225))))) + ((*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-1093 (-225)))))) (((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1000))))) + (-12 (-4 *2 (-172)) (-4 *2 (-1049)) (-5 *1 (-714 *2 *3)) + (-4 *3 (-648 *2)))) + ((*1 *2 *2) (-12 (-5 *1 (-836 *2)) (-4 *2 (-172)) (-4 *2 (-1049))))) +(((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) - (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) - ((*1 *1 *1) (-4 *1 (-284))) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) + ((*1 *1 *1) (-4 *1 (-285))) ((*1 *2 *3) - (-12 (-5 *3 (-418 *4)) (-4 *4 (-556)) - (-5 *2 (-642 (-2 (|:| -2968 (-769)) (|:| |logand| *4)))) - (-5 *1 (-320 *4)))) + (-12 (-5 *3 (-420 *4)) (-4 *4 (-558)) + (-5 *2 (-644 (-2 (|:| -3103 (-771)) (|:| |logand| *4)))) + (-5 *1 (-321 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-642 (-1173))) - (-14 *3 (-642 (-1173))) (-4 *4 (-387)))) + (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) + (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) ((*1 *2 *1) - (-12 (-5 *2 (-662 *3 *4)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-848)) - (-4 *4 (-13 (-172) (-715 (-407 (-564))))) (-14 *5 (-919)))) + (-12 (-5 *2 (-664 *3 *4)) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-850)) + (-4 *4 (-13 (-172) (-717 (-409 (-566))))) (-14 *5 (-921)))) ((*1 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1158 *3)))) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1160 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1159 *3)))) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1161 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-769)) (-4 *4 (-13 (-1047) (-715 (-407 (-564))))) - (-4 *5 (-848)) (-5 *1 (-1278 *4 *5 *2)) (-4 *2 (-1283 *5 *4)))) + (-12 (-5 *3 (-771)) (-4 *4 (-13 (-1049) (-717 (-409 (-566))))) + (-4 *5 (-850)) (-5 *1 (-1280 *4 *5 *2)) (-4 *2 (-1285 *5 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-769)) (-5 *1 (-1282 *3 *4)) - (-4 *4 (-715 (-407 (-564)))) (-4 *3 (-848)) (-4 *4 (-172))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-925))))) -(((*1 *1 *1) (-12 (-5 *1 (-912 *2)) (-4 *2 (-307))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1212)) (-5 *1 (-871 *3 *2)) (-4 *3 (-1212)))) - ((*1 *2 *1) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1212))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1238 *6)) - (-4 *6 (-13 (-27) (-430 *5))) (-4 *5 (-13 (-556) (-1036 (-564)))) - (-4 *8 (-1238 (-407 *7))) (-5 *2 (-585 *3)) - (-5 *1 (-552 *5 *6 *7 *8 *3)) (-4 *3 (-342 *6 *7 *8))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172))))) -(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561))))) + (-12 (-5 *2 (-771)) (-5 *1 (-1284 *3 *4)) + (-4 *4 (-717 (-409 (-566)))) (-4 *3 (-850)) (-4 *4 (-172))))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) (((*1 *2 *3) - (-12 (-5 *2 (-418 (-1169 (-564)))) (-5 *1 (-191)) (-5 *3 (-564))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) - (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1033)) - (-5 *1 (-746))))) -(((*1 *2 *1) - (-12 (-14 *3 (-642 (-1173))) (-4 *4 (-172)) - (-14 *6 - (-1 (-112) (-2 (|:| -2065 *5) (|:| -2817 *2)) - (-2 (|:| -2065 *5) (|:| -2817 *2)))) - (-4 *2 (-238 (-2158 *3) (-769))) (-5 *1 (-461 *3 *4 *5 *2 *6 *7)) - (-4 *5 (-848)) (-4 *7 (-947 *4 *2 (-862 *3)))))) + (-12 (-5 *3 (-1186 (-644 *4))) (-4 *4 (-850)) + (-5 *2 (-644 (-644 *4))) (-5 *1 (-1185 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1214))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1049)) (-5 *1 (-1236 *3 *2)) (-4 *2 (-1240 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-644 *3)) (-4 *3 (-850)) (-5 *1 (-739 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *3 (-642 (-263))) (-5 *1 (-261)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263))))) + (-12 + (-5 *2 + (-644 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-771)) (|:| |poli| *3) + (|:| |polj| *3)))) + (-4 *5 (-793)) (-4 *3 (-949 *4 *5 *6)) (-4 *4 (-454)) (-4 *6 (-850)) + (-5 *1 (-451 *4 *5 *6 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1 (-943 (-225)) (-943 (-225)))) (-5 *3 (-644 (-264))) + (-5 *1 (-262)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1 (-943 (-225)) (-943 (-225)))) (-5 *1 (-264)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-644 (-483 *5 *6))) (-5 *3 (-483 *5 *6)) + (-14 *5 (-644 (-1175))) (-4 *6 (-454)) (-5 *2 (-1264 *6)) + (-5 *1 (-631 *5 *6))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4417)) (-4 *1 (-491 *4)) + (-4 *4 (-1214)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-952 (-566)))) (-5 *1 (-439)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1175)) (-5 *4 (-689 (-225))) (-5 *2 (-1103)) + (-5 *1 (-759)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1175)) (-5 *4 (-689 (-566))) (-5 *2 (-1103)) + (-5 *1 (-759))))) +(((*1 *2 *1 *3 *2) + (-12 (-5 *3 (-771)) (-5 *1 (-213 *4 *2)) (-14 *4 (-921)) + (-4 *2 (-1099))))) +(((*1 *1) (-5 *1 (-157))) + ((*1 *2 *1) (-12 (-4 *1 (-1044 *2)) (-4 *2 (-23))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1214)) (-5 *1 (-873 *3 *2)) (-4 *3 (-1214)))) + ((*1 *2 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1214))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-112)) (-5 *5 (-566)) (-4 *6 (-365)) (-4 *6 (-370)) + (-4 *6 (-1049)) (-5 *2 (-644 (-644 (-689 *6)))) (-5 *1 (-1029 *6)) + (-5 *3 (-644 (-689 *6))))) + ((*1 *2 *3) + (-12 (-4 *4 (-365)) (-4 *4 (-370)) (-4 *4 (-1049)) + (-5 *2 (-644 (-644 (-689 *4)))) (-5 *1 (-1029 *4)) + (-5 *3 (-644 (-689 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1049)) + (-5 *2 (-644 (-644 (-689 *5)))) (-5 *1 (-1029 *5)) + (-5 *3 (-644 (-689 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-921)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1049)) + (-5 *2 (-644 (-644 (-689 *5)))) (-5 *1 (-1029 *5)) + (-5 *3 (-644 (-689 *5)))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1157)) (-5 *4 (-566)) (-5 *5 (-689 (-169 (-225)))) + (-5 *2 (-1035)) (-5 *1 (-754))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-642 *5) *6)) - (-4 *5 (-13 (-363) (-147) (-1036 (-407 (-564))))) (-4 *6 (-1238 *5)) - (-5 *2 (-642 (-2 (|:| -1551 *5) (|:| -3359 *3)))) - (-5 *1 (-807 *5 *6 *3 *7)) (-4 *3 (-654 *6)) - (-4 *7 (-654 (-407 *6)))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1033))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-887 *4 *5)) (-5 *3 (-887 *4 *6)) (-4 *4 (-1097)) - (-4 *5 (-1097)) (-4 *6 (-664 *5)) (-5 *1 (-883 *4 *5 *6))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-769)) (-4 *1 (-374 *3 *4)) (-4 *3 (-848)) - (-4 *4 (-172)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-769)) (-4 *1 (-1283 *3 *4)) (-4 *3 (-848)) - (-4 *4 (-1047))))) -(((*1 *2 *3) - (-12 (-4 *4 (-363)) (-5 *2 (-642 *3)) (-5 *1 (-943 *4 *3)) - (-4 *3 (-1238 *4))))) + (|partial| -12 (-5 *3 (-1264 *4)) (-4 *4 (-639 *5)) (-4 *5 (-365)) + (-4 *5 (-558)) (-5 *2 (-1264 *5)) (-5 *1 (-638 *5 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1264 *4)) (-4 *4 (-639 *5)) + (-2387 (-4 *5 (-365))) (-4 *5 (-558)) (-5 *2 (-1264 (-409 *5))) + (-5 *1 (-638 *5 *4))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1175)) (-5 *6 (-644 (-612 *3))) + (-5 *5 (-612 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *7))) + (-4 *7 (-13 (-454) (-147) (-1038 (-566)) (-639 (-566)))) + (-5 *2 (-2 (|:| -4069 *3) (|:| |coeff| *3))) + (-5 *1 (-559 *7 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1214)) (-5 *2 (-644 *3))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172))))) +(((*1 *2 *2) + (-12 (-4 *3 (-614 (-892 *3))) (-4 *3 (-886 *3)) (-4 *3 (-454)) + (-5 *1 (-1205 *3 *2)) (-4 *2 (-614 (-892 *3))) (-4 *2 (-886 *3)) + (-4 *2 (-13 (-432 *3) (-1199)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1256 *2 *3 *4)) (-4 *2 (-1049)) (-14 *3 (-1175)) + (-14 *4 *2)))) +(((*1 *2 *3 *3 *3 *4 *5) + (-12 (-5 *5 (-644 (-644 (-225)))) (-5 *4 (-225)) + (-5 *2 (-644 (-943 *4))) (-5 *1 (-1210)) (-5 *3 (-943 *4))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-566)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-375 *2)) + (-4 *5 (-375 *2)) (-4 *2 (-1214)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-771)) (-4 *2 (-1099)) (-5 *1 (-213 *4 *2)) + (-14 *4 (-921)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-289 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1214)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-566)) (-4 *1 (-1053 *4 *5 *2 *6 *7)) + (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1049))))) +(((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-927))))) +(((*1 *2) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) + (-4 *5 (-1240 (-409 *4))) (-5 *2 (-112))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-771)) (-5 *1 (-59 *3)) (-4 *3 (-1214)))) + ((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1214)) (-5 *1 (-59 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *2 (-407 (-564))) (-5 *1 (-117 *4)) (-14 *4 *3) - (-5 *3 (-564)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-867 *3)) (-5 *2 (-564)))) + (-12 (-5 *2 (-409 (-566))) (-5 *1 (-117 *4)) (-14 *4 *3) + (-5 *3 (-566)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-869 *3)) (-5 *2 (-566)))) ((*1 *2 *1 *3) - (-12 (-5 *2 (-407 (-564))) (-5 *1 (-869 *4)) (-14 *4 *3) - (-5 *3 (-564)))) + (-12 (-5 *2 (-409 (-566))) (-5 *1 (-871 *4)) (-14 *4 *3) + (-5 *3 (-566)))) ((*1 *2 *1 *3) - (-12 (-14 *4 *3) (-5 *2 (-407 (-564))) (-5 *1 (-870 *4 *5)) - (-5 *3 (-564)) (-4 *5 (-867 *4)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1010)) (-5 *2 (-407 (-564))))) + (-12 (-14 *4 *3) (-5 *2 (-409 (-566))) (-5 *1 (-872 *4 *5)) + (-5 *3 (-566)) (-4 *5 (-869 *4)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1012)) (-5 *2 (-409 (-566))))) ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1065 *2 *3)) (-4 *2 (-13 (-846) (-363))) - (-4 *3 (-1238 *2)))) + (-12 (-4 *1 (-1067 *2 *3)) (-4 *2 (-13 (-848) (-365))) + (-4 *3 (-1240 *2)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1240 *2 *3)) (-4 *3 (-790)) - (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2390 (*2 (-1173)))) - (-4 *2 (-1047))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-1155)) (-5 *5 (-687 (-225))) - (-5 *2 (-1033)) (-5 *1 (-745))))) + (-12 (-4 *1 (-1242 *2 *3)) (-4 *3 (-792)) + (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2479 (*2 (-1175)))) + (-4 *2 (-1049))))) +(((*1 *1) (-4 *1 (-351)))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-566)) (-5 *2 (-1269)) (-5 *1 (-904 *4)) + (-4 *4 (-1099)))) + ((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-904 *3)) (-4 *3 (-1099))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-114)) (-5 *4 (-771)) (-4 *5 (-454)) + (-4 *5 (-1038 (-566))) (-4 *5 (-558)) (-5 *1 (-41 *5 *2)) + (-4 *2 (-432 *5)) + (-4 *2 + (-13 (-365) (-303) + (-10 -8 (-15 -4157 ((-1124 *5 (-612 $)) $)) + (-15 -4167 ((-1124 *5 (-612 $)) $)) + (-15 -2479 ($ (-1124 *5 (-612 $)))))))))) +(((*1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-1184))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-642 *7)) (-5 *5 (-642 (-642 *8))) (-4 *7 (-848)) - (-4 *8 (-307)) (-4 *6 (-791)) (-4 *9 (-947 *8 *6 *7)) - (-5 *2 - (-2 (|:| |unitPart| *9) - (|:| |suPart| - (-642 (-2 (|:| -2254 (-1169 *9)) (|:| -2817 (-564))))))) - (-5 *1 (-740 *6 *7 *8 *9)) (-5 *3 (-1169 *9))))) + (-12 (-5 *3 (-1171 *9)) (-5 *4 (-644 *7)) (-4 *7 (-850)) + (-4 *9 (-949 *8 *6 *7)) (-4 *6 (-793)) (-4 *8 (-308)) + (-5 *2 (-644 (-771))) (-5 *1 (-742 *6 *7 *8 *9)) (-5 *5 (-771))))) (((*1 *2 *2) - (-12 (-4 *3 (-556)) (-4 *3 (-172)) (-4 *4 (-373 *3)) - (-4 *5 (-373 *3)) (-5 *1 (-686 *3 *4 *5 *2)) - (-4 *2 (-685 *3 *4 *5))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-687 *1)) (-4 *1 (-349)) (-5 *2 (-1262 *1)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-687 *1)) (-4 *1 (-145)) (-4 *1 (-907)) - (-5 *2 (-1262 *1))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-529)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-577)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-859))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) - (-12 (-5 *4 (-687 (-564))) (-5 *5 (-112)) (-5 *7 (-687 (-225))) - (-5 *3 (-564)) (-5 *6 (-225)) (-5 *2 (-1033)) (-5 *1 (-752))))) -(((*1 *1) (-4 *1 (-349)))) -(((*1 *2 *3) (-12 (-5 *3 (-169 (-564))) (-5 *2 (-112)) (-5 *1 (-446)))) - ((*1 *2 *3) - (-12 - (-5 *3 - (-504 (-407 (-564)) (-240 *5 (-769)) (-862 *4) - (-247 *4 (-407 (-564))))) - (-14 *4 (-642 (-1173))) (-14 *5 (-769)) (-5 *2 (-112)) - (-5 *1 (-505 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-959 *3)) (-4 *3 (-545)))) - ((*1 *2 *1) (-12 (-4 *1 (-1216)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-687 (-316 (-225)))) (-5 *2 (-379)) (-5 *1 (-205))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1193))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-114)) (-5 *4 (-642 *2)) (-5 *1 (-113 *2)) - (-4 *2 (-1097)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-642 *4))) (-4 *4 (-1097)) - (-5 *1 (-113 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1097)) - (-5 *1 (-113 *4)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-642 *4))) - (-5 *1 (-113 *4)) (-4 *4 (-1097)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-646 *3)) (-4 *3 (-1047)) - (-5 *1 (-712 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1047)) (-5 *1 (-834 *3))))) -(((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-687 (-225))) (-5 *4 (-564)) (-5 *2 (-1033)) - (-5 *1 (-746))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-941 *3) (-941 *3))) (-5 *1 (-176 *3)) - (-4 *3 (-13 (-363) (-1197) (-1000)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171))))) + (|partial| -12 (-4 *3 (-558)) (-4 *3 (-172)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-5 *1 (-688 *3 *4 *5 *2)) + (-4 *2 (-687 *3 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-363)) - (-5 *2 - (-2 (|:| A (-687 *5)) - (|:| |eqs| - (-642 - (-2 (|:| C (-687 *5)) (|:| |g| (-1262 *5)) (|:| -3359 *6) - (|:| |rh| *5)))))) - (-5 *1 (-811 *5 *6)) (-5 *3 (-687 *5)) (-5 *4 (-1262 *5)) - (-4 *6 (-654 *5)))) + (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1171 *7)) (-4 *5 (-1049)) + (-4 *7 (-1049)) (-4 *2 (-1240 *5)) (-5 *1 (-503 *5 *2 *6 *7)) + (-4 *6 (-1240 *2)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-363)) (-4 *6 (-654 *5)) - (-5 *2 (-2 (|:| -3544 (-687 *6)) (|:| |vec| (-1262 *5)))) - (-5 *1 (-811 *5 *6)) (-5 *3 (-687 *6)) (-5 *4 (-1262 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-642 (-225))) (-5 *4 (-769)) (-5 *2 (-687 (-225))) - (-5 *1 (-305))))) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1049)) (-4 *7 (-1049)) + (-4 *4 (-1240 *5)) (-5 *2 (-1171 *7)) (-5 *1 (-503 *5 *4 *6 *7)) + (-4 *6 (-1240 *4))))) +(((*1 *2) + (-12 (-5 *2 (-689 (-910 *3))) (-5 *1 (-353 *3 *4)) (-14 *3 (-921)) + (-14 *4 (-921)))) + ((*1 *2) + (-12 (-5 *2 (-689 *3)) (-5 *1 (-354 *3 *4)) (-4 *3 (-351)) + (-14 *4 + (-3 (-1171 *3) + (-1264 (-644 (-2 (|:| -2153 *3) (|:| -2104 (-1119))))))))) + ((*1 *2) + (-12 (-5 *2 (-689 *3)) (-5 *1 (-355 *3 *4)) (-4 *3 (-351)) + (-14 *4 (-921))))) +(((*1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-771)) (-4 *5 (-351)) (-4 *6 (-1240 *5)) + (-5 *2 + (-644 + (-2 (|:| -1419 (-689 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-689 *6))))) + (-5 *1 (-500 *5 *6 *7)) + (-5 *3 + (-2 (|:| -1419 (-689 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-689 *6)))) + (-4 *7 (-1240 *6))))) +(((*1 *1 *1) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1099))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-644 (-52))) (-5 *1 (-892 *3)) (-4 *3 (-1099))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1194))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) +(((*1 *2 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1214))))) +(((*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-547)))) + ((*1 *1 *2) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-971))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1249 *3 *4 *5)) (-5 *1 (-320 *3 *4 *5)) (-4 *3 (-365)) + (-14 *4 (-1175)) (-14 *5 *3))) + ((*1 *2 *1) (-12 (-4 *1 (-406)) (-5 *2 (-566)))) + ((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-420 *3)) (-4 *3 (-558)))) + ((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-699)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1099)) (-5 *1 (-713 *3 *2 *4)) (-4 *3 (-850)) + (-14 *4 + (-1 (-112) (-2 (|:| -2104 *3) (|:| -3631 *2)) + (-2 (|:| -2104 *3) (|:| -3631 *2))))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-1097)) (-4 *2 (-898 *4)) (-5 *1 (-690 *4 *2 *5 *3)) - (-4 *5 (-373 *2)) (-4 *3 (-13 (-373 *4) (-10 -7 (-6 -4410))))))) + (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *2 (-1064 *4 *5 *6)) (-5 *1 (-776 *4 *5 *6 *2 *3)) + (-4 *3 (-1070 *4 *5 *6 *2))))) (((*1 *2 *3) - (-12 (-5 *3 (-817 *4)) (-4 *4 (-848)) (-5 *2 (-112)) - (-5 *1 (-670 *4))))) -(((*1 *2 *1) - (-12 (|has| *1 (-6 -4410)) (-4 *1 (-489 *3)) (-4 *3 (-1212)) - (-5 *2 (-642 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-642 *3)) (-5 *1 (-735 *3)) (-4 *3 (-1097)))) - ((*1 *2 *1) (-12 (-5 *2 (-642 (-439))) (-5 *1 (-863))))) -(((*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172))))) -(((*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1059)))) - ((*1 *1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-1059))))) -(((*1 *2 *3 *4 *5 *6 *5 *3 *7) - (-12 (-5 *4 (-564)) - (-5 *6 - (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -3800 (-379)))) - (-5 *7 (-1 (-1267) (-1262 *5) (-1262 *5) (-379))) - (-5 *3 (-1262 (-379))) (-5 *5 (-379)) (-5 *2 (-1267)) - (-5 *1 (-786)))) - ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) - (-12 (-5 *4 (-564)) + (-12 (-5 *2 (-566)) (-5 *1 (-447 *3)) (-4 *3 (-406)) (-4 *3 (-1049))))) +(((*1 *1 *2) + (-12 (-5 *2 (-644 *1)) (-4 *3 (-1049)) (-4 *1 (-687 *3 *4 *5)) + (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-644 *3)) (-4 *3 (-1049)) (-4 *1 (-687 *3 *4 *5)) + (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1264 *3)) (-4 *3 (-1049)) (-5 *1 (-689 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-644 *4)) (-4 *4 (-1049)) (-4 *1 (-1122 *3 *4 *5 *6)) + (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4))))) +(((*1 *1 *1 *1) (-5 *1 (-862)))) +(((*1 *1 *1) (-5 *1 (-862))) ((*1 *1 *1 *1) (-5 *1 (-862))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1214)))) + ((*1 *1 *2) (-12 (-5 *1 (-1231 *2)) (-4 *2 (-1214))))) +(((*1 *2 *3 *4 *4 *5 *6 *7) + (-12 (-5 *5 (-1175)) (-5 *6 - (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -3800 (-379)))) - (-5 *7 (-1 (-1267) (-1262 *5) (-1262 *5) (-379))) - (-5 *3 (-1262 (-379))) (-5 *5 (-379)) (-5 *2 (-1267)) - (-5 *1 (-786))))) + (-1 + (-3 + (-2 (|:| |mainpart| *4) + (|:| |limitedlogs| + (-644 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + "failed") + *4 (-644 *4))) + (-5 *7 + (-1 (-3 (-2 (|:| -4069 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1199) (-27) (-432 *8))) + (-4 *8 (-13 (-454) (-147) (-1038 *3) (-639 *3))) (-5 *3 (-566)) + (-5 *2 (-2 (|:| |ans| *4) (|:| -4361 *4) (|:| |sol?| (-112)))) + (-5 *1 (-1013 *8 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1199)))) + ((*1 *2 *1) (-12 (-5 *1 (-332 *2)) (-4 *2 (-850)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-612 *3)) (-4 *3 (-1099))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 *2)) (-4 *2 (-432 *4)) (-5 *1 (-158 *4 *2)) + (-4 *4 (-558))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1175)) + (-4 *4 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) + (-5 *1 (-428 *4 *2)) (-4 *2 (-13 (-1199) (-29 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-1175)) (-4 *5 (-147)) + (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-317 *5)) + (-5 *1 (-590 *5))))) +(((*1 *1) (-12 (-5 *1 (-644 *2)) (-4 *2 (-1214))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-429 *3 *2)) (-4 *3 (-13 (-172) (-38 (-409 (-566))))) + (-4 *2 (-13 (-850) (-21)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-926)))) + ((*1 *2 *1) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-927))))) +(((*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1214))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2162 (-782 *3)) (|:| |coef2| (-782 *3)))) + (-5 *1 (-782 *3)) (-4 *3 (-558)) (-4 *3 (-1049)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-558)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) + (-5 *2 (-2 (|:| -2162 *1) (|:| |coef2| *1))) + (-4 *1 (-1064 *3 *4 *5))))) +(((*1 *1 *2) + (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-5 *1 (-1000 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-822))))) +(((*1 *2 *2) + (-12 (-4 *3 (-454)) (-4 *3 (-1038 (-566))) (-4 *3 (-558)) + (-5 *1 (-41 *3 *2)) (-4 *2 (-432 *3)) + (-4 *2 + (-13 (-365) (-303) + (-10 -8 (-15 -4157 ((-1124 *3 (-612 $)) $)) + (-15 -4167 ((-1124 *3 (-612 $)) $)) + (-15 -2479 ($ (-1124 *3 (-612 $)))))))))) (((*1 *2 *3) - (-12 (-4 *4 (-556)) (-5 *2 (-1169 *3)) (-5 *1 (-41 *4 *3)) - (-4 *3 - (-13 (-363) (-302) - (-10 -8 (-15 -4120 ((-1122 *4 (-610 $)) $)) - (-15 -4131 ((-1122 *4 (-610 $)) $)) - (-15 -2390 ($ (-1122 *4 (-610 $)))))))))) -(((*1 *2 *1) - (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545)) - (-5 *2 (-407 (-564))))) - ((*1 *2 *1) - (-12 (-5 *2 (-407 (-564))) (-5 *1 (-418 *3)) (-4 *3 (-545)) - (-4 *3 (-556)))) - ((*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-407 (-564))))) - ((*1 *2 *1) - (-12 (-4 *1 (-795 *3)) (-4 *3 (-172)) (-4 *3 (-545)) - (-5 *2 (-407 (-564))))) - ((*1 *2 *1) - (-12 (-5 *2 (-407 (-564))) (-5 *1 (-831 *3)) (-4 *3 (-545)) - (-4 *3 (-1097)))) - ((*1 *2 *1) - (-12 (-5 *2 (-407 (-564))) (-5 *1 (-841 *3)) (-4 *3 (-545)) - (-4 *3 (-1097)))) - ((*1 *2 *1) - (-12 (-4 *1 (-995 *3)) (-4 *3 (-172)) (-4 *3 (-545)) - (-5 *2 (-407 (-564))))) + (-12 (-4 *4 (-909)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *7 (-949 *4 *5 *6)) (-5 *2 (-420 (-1171 *7))) + (-5 *1 (-906 *4 *5 *6 *7)) (-5 *3 (-1171 *7)))) ((*1 *2 *3) - (-12 (-5 *2 (-407 (-564))) (-5 *1 (-1006 *3)) (-4 *3 (-1036 *2))))) -(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) - (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1033)) - (-5 *1 (-746))))) + (-12 (-4 *4 (-909)) (-4 *5 (-1240 *4)) (-5 *2 (-420 (-1171 *5))) + (-5 *1 (-907 *4 *5)) (-5 *3 (-1171 *5))))) (((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-1062 *3 *4 *5)) (-4 *3 (-1047)) - (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-112))))) -(((*1 *1) (-5 *1 (-578)))) -(((*1 *1 *1) (-5 *1 (-860))) ((*1 *1 *1 *1) (-5 *1 (-860))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1090 *2)) (-4 *2 (-1212)))) - ((*1 *1 *2) (-12 (-5 *1 (-1229 *2)) (-4 *2 (-1212))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-379)) (-5 *1 (-97))))) -(((*1 *1) (-5 *1 (-144))) - ((*1 *2 *3) - (-12 (-5 *3 (-642 (-263))) (-5 *2 (-1130 (-225))) (-5 *1 (-261)))) - ((*1 *1 *2) (-12 (-5 *2 (-1130 (-225))) (-5 *1 (-263))))) + (-12 (-4 *3 (-365)) (-4 *3 (-1049)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4086 *1))) + (-4 *1 (-852 *3))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-644 (-771))) (-5 *3 (-171)) (-5 *1 (-1163 *4 *5)) + (-14 *4 (-921)) (-4 *5 (-1049))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756))))) -(((*1 *2) - (-12 (-5 *2 (-956 (-1117))) (-5 *1 (-343 *3 *4)) (-14 *3 (-919)) - (-14 *4 (-919)))) - ((*1 *2) - (-12 (-5 *2 (-956 (-1117))) (-5 *1 (-344 *3 *4)) (-4 *3 (-349)) - (-14 *4 (-1169 *3)))) - ((*1 *2) - (-12 (-5 *2 (-956 (-1117))) (-5 *1 (-345 *3 *4)) (-4 *3 (-349)) - (-14 *4 (-919))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-1186 *2)) (-4 *2 (-363))))) -(((*1 *2 *3) - (-12 (-5 *3 (-642 (-1173))) (-5 *2 (-1267)) (-5 *1 (-1176)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-642 (-1173))) (-5 *3 (-1173)) (-5 *2 (-1267)) - (-5 *1 (-1176)))) - ((*1 *2 *3 *4 *1) - (-12 (-5 *4 (-642 (-1173))) (-5 *3 (-1173)) (-5 *2 (-1267)) - (-5 *1 (-1176))))) -(((*1 *2 *1) (-12 (-5 *2 (-642 (-950 (-564)))) (-5 *1 (-437)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1173)) (-5 *4 (-687 (-225))) (-5 *2 (-1101)) - (-5 *1 (-757)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1173)) (-5 *4 (-687 (-564))) (-5 *2 (-1101)) - (-5 *1 (-757))))) -(((*1 *1) (-12 (-5 *1 (-642 *2)) (-4 *2 (-1212))))) -(((*1 *2 *3) - (-12 (-5 *3 (-642 *7)) (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-556)) - (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112)) - (-5 *1 (-975 *4 *5 *6 *7))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-642 - (-2 - (|:| -1914 - (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) - (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (|:| -2683 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1153 (-225))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -4138 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-559)))) - ((*1 *2 *1) - (-12 (-4 *1 (-602 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-1212)) - (-5 *2 (-642 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-1262 *1)) (-4 *1 (-367 *2)) (-4 *2 (-172)))) - ((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-416 *3 *2)) (-4 *3 (-417 *2)))) - ((*1 *2) (-12 (-4 *1 (-417 *2)) (-4 *2 (-172))))) -(((*1 *2 *3) - (-12 (-5 *3 (-564)) (|has| *1 (-6 -4401)) (-4 *1 (-404)) - (-5 *2 (-919))))) -(((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-564)) (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047)) - (-4 *4 (-373 *3)) (-4 *5 (-373 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))) + (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) + (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 *4)) + (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-771)) (-5 *1 (-856 *2)) (-4 *2 (-172))))) +(((*1 *1 *1 *2 *2) + (|partial| -12 (-5 *2 (-921)) (-5 *1 (-1100 *3 *4)) (-14 *3 *2) + (-14 *4 *2)))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) - (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-1069 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) - (-4 *3 (-1062 *5 *6 *7)) - (-5 *2 (-642 (-2 (|:| |val| (-112)) (|:| -2138 *4)))) - (-5 *1 (-1069 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3))))) + (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) + (-5 *1 (-705 *3 *4)) (-4 *3 (-1214)) (-4 *4 (-1214))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6)) + (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) + (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3)))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1157)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-1269)) + (-5 *1 (-1071 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1157)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-1269)) + (-5 *1 (-1107 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) + (-12 (-5 *4 (-566)) (-5 *5 (-1157)) (-5 *6 (-689 (-225))) + (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-89 G)))) + (-5 *8 (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN)))) + (-5 *9 (-3 (|:| |fn| (-390)) (|:| |fp| (-88 OUTPUT)))) + (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-749))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-644 (-52))) (-5 *1 (-892 *3)) (-4 *3 (-1099))))) +(((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-1157)) (-5 *4 (-169 (-225))) (-5 *5 (-566)) + (-5 *2 (-1035)) (-5 *1 (-758))))) (((*1 *2 *3) - (-12 (-5 *2 (-1169 (-564))) (-5 *1 (-191)) (-5 *3 (-564)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-769)) (-5 *1 (-781 *2)) (-4 *2 (-172)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1169 (-564))) (-5 *1 (-940)) (-5 *3 (-564))))) -(((*1 *2 *2) - (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1197)))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-769)) (-4 *5 (-349)) (-4 *6 (-1238 *5)) - (-5 *2 - (-642 - (-2 (|:| -2131 (-687 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-687 *6))))) - (-5 *1 (-498 *5 *6 *7)) - (-5 *3 - (-2 (|:| -2131 (-687 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-687 *6)))) - (-4 *7 (-1238 *6))))) -(((*1 *2 *2) (-12 + (-5 *3 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) + (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 - (-2 (|:| |fn| (-316 (-225))) (|:| -3910 (-642 (-225))) - (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) - (|:| |ub| (-642 (-841 (-225)))))) - (-5 *1 (-267))))) -(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) - ((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) - ((*1 *1 *1) (-4 *1 (-1136)))) -(((*1 *2 *3 *4) - (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) - (-5 *1 (-703 *3 *4)) (-4 *3 (-1212)) (-4 *4 (-1212))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-687 (-407 (-950 (-564))))) - (-5 *2 (-642 (-687 (-316 (-564))))) (-5 *1 (-1029)) - (-5 *3 (-316 (-564)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047))))) -(((*1 *2 *3) - (-12 (-4 *4 (-990 *2)) (-4 *2 (-556)) (-5 *1 (-142 *2 *4 *3)) - (-4 *3 (-373 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-990 *2)) (-4 *2 (-556)) (-5 *1 (-503 *2 *4 *5 *3)) - (-4 *5 (-373 *2)) (-4 *3 (-373 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-687 *4)) (-4 *4 (-990 *2)) (-4 *2 (-556)) - (-5 *1 (-691 *2 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-990 *2)) (-4 *2 (-556)) (-5 *1 (-1231 *2 *4 *3)) - (-4 *3 (-1238 *4))))) -(((*1 *2 *3 *3 *2 *4) - (-12 (-5 *3 (-687 *2)) (-5 *4 (-564)) - (-4 *2 (-13 (-307) (-10 -8 (-15 -3282 ((-418 $) $))))) - (-4 *5 (-1238 *2)) (-5 *1 (-499 *2 *5 *6)) (-4 *6 (-409 *2 *5))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-769)) - (-4 *4 (-172)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1173)) (-4 *4 (-556)) (-5 *1 (-158 *4 *2)) - (-4 *2 (-430 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1089 *2)) (-4 *2 (-430 *4)) (-4 *4 (-556)) - (-5 *1 (-158 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1089 *1)) (-4 *1 (-160)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1173)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-465 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-769)) (-5 *1 (-1282 *3 *4)) (-4 *3 (-848)) - (-4 *4 (-172))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-642 (-950 *4))) (-5 *3 (-642 (-1173))) (-4 *4 (-452)) - (-5 *1 (-916 *4))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-558 *2)) (-4 *2 (-545))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-1262 (-564))) (-5 *3 (-564)) (-5 *1 (-1107)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-1262 (-564))) (-5 *3 (-642 (-564))) (-5 *4 (-564)) - (-5 *1 (-1107))))) -(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-642 (-1169 *4))) (-5 *3 (-1169 *4)) - (-4 *4 (-907)) (-5 *1 (-661 *4))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1260 *3)) (-4 *3 (-1212)) (-4 *3 (-1047)) - (-5 *2 (-687 *3))))) + (-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381)))) + (-5 *1 (-205))))) +(((*1 *2 *1) + (-12 (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-644 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1153 (-1153 *4))) (-5 *2 (-1153 *4)) (-5 *1 (-1157 *4)) - (-4 *4 (-38 (-407 (-564)))) (-4 *4 (-1047))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) - (-4 *3 (-367 *4)))) - ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-872))))) -(((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-517))))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1099)) (-4 *6 (-1099)) + (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-684 *4 *5 *6)) (-4 *4 (-1099))))) (((*1 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *4 (-564))) (-5 *5 (-1 (-1153 *4))) (-4 *4 (-363)) - (-4 *4 (-1047)) (-5 *2 (-1153 *4)) (-5 *1 (-1157 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1161 *3 *4)) (-14 *3 (-919)) - (-4 *4 (-1047))))) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1256 *2 *3 *4)) (-4 *2 (-1049)) (-14 *3 (-1175)) + (-14 *4 *2)))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1262 *3)) (-4 *3 (-1214)) (-4 *3 (-1049)) + (-5 *2 (-689 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) +(((*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1157)) (-5 *1 (-710))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-420 *3)) (-4 *3 (-558))))) +(((*1 *1 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1214))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-365)) (-5 *1 (-766 *2 *3)) (-4 *2 (-708 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-409 (-566))) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *7 (-558)) (-4 *8 (-949 *7 *5 *6)) + (-5 *2 (-2 (|:| -3631 (-771)) (|:| -3103 *9) (|:| |radicand| *9))) + (-5 *1 (-953 *5 *6 *7 *8 *9)) (-5 *4 (-771)) + (-4 *9 + (-13 (-365) + (-10 -8 (-15 -2479 ($ *8)) (-15 -4157 (*8 $)) (-15 -4167 (*8 $)))))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) - (|:| |expense| (-379)) (|:| |accuracy| (-379)) - (|:| |intermediateResults| (-379)))) - (-5 *2 (-1033)) (-5 *1 (-305))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-1262 *5)) (-4 *5 (-637 *4)) (-4 *4 (-556)) - (-5 *2 (-1262 *4)) (-5 *1 (-636 *4 *5))))) -(((*1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-445 *3)) (-4 *3 (-1047))))) -(((*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-642 (-610 *5))) (-4 *4 (-1097)) (-5 *2 (-610 *5)) - (-5 *1 (-573 *4 *5)) (-4 *5 (-430 *4))))) + (-12 (-5 *3 (-1171 (-566))) (-5 *2 (-566)) (-5 *1 (-942))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-642 *6)) (-5 *4 (-642 (-1153 *7))) (-4 *6 (-848)) - (-4 *7 (-947 *5 (-531 *6) *6)) (-4 *5 (-1047)) - (-5 *2 (-1 (-1153 *7) *7)) (-5 *1 (-1123 *5 *6 *7))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-642 (-564))) (-5 *1 (-1107)) (-5 *3 (-564))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-769)) (-4 *5 (-556)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-967 *5 *3)) (-4 *3 (-1238 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-642 (-687 (-316 (-564))))) (-5 *1 (-1029))))) -(((*1 *2 *1) (-12 (-5 *2 (-820)) (-5 *1 (-819))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) -(((*1 *2) (-12 (-5 *2 (-1130 (-225))) (-5 *1 (-1195))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) - (-4 *4 (-848))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1267)) (-5 *1 (-820))))) -(((*1 *2 *1) (-12 (-5 *2 (-642 (-506))) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-642 (-506))) (-5 *1 (-483))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-452)) - (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) - (-5 *1 (-975 *3 *4 *5 *6))))) + (-12 (-5 *3 (-493)) (-5 *4 (-954)) (-5 *2 (-691 (-535))) + (-5 *1 (-535)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-954)) (-4 *3 (-1099)) (-5 *2 (-691 *1)) + (-4 *1 (-767 *3))))) (((*1 *2 *1) - (-12 (-4 *3 (-363)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-642 *6)) - (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-947 *3 *4 *5)))) - ((*1 *2 *1) - (-12 (-5 *2 (-642 (-903 *3))) (-5 *1 (-902 *3)) (-4 *3 (-1097))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-962 *2 *3)) (-4 *2 (-1097)) (-4 *3 (-1097))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-687 *3)) (-4 *3 (-1047)) (-5 *1 (-688 *3))))) -(((*1 *2 *2 *2 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-610 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1173))) - (-4 *2 (-13 (-430 *5) (-27) (-1197))) - (-4 *5 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564)))) - (-5 *1 (-566 *5 *2 *6)) (-4 *6 (-1097))))) + (-12 (-5 *2 (-112)) (-5 *1 (-317 *3)) (-4 *3 (-558)) (-4 *3 (-1099))))) (((*1 *2 *1) - (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-790)) - (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-1097)) - (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-594 *3)) (-4 *3 (-1047)))) - ((*1 *2 *1) - (-12 (-4 *3 (-556)) (-5 *2 (-112)) (-5 *1 (-621 *3 *4)) - (-4 *4 (-1238 *3)))) + (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1099)) + (-5 *2 (-644 (-2 (|:| |k| *4) (|:| |c| *3)))))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-733 *3 *4)) (-4 *3 (-1047)) - (-4 *4 (-724)))) + (-12 (-5 *2 (-644 (-2 (|:| |k| (-893 *3)) (|:| |c| *4)))) + (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-850)) + (-4 *4 (-13 (-172) (-717 (-409 (-566))))) (-14 *5 (-921)))) ((*1 *2 *1) - (-12 (-4 *1 (-1279 *3 *4)) (-4 *3 (-848)) (-4 *4 (-1047)) - (-5 *2 (-112))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1264))))) -(((*1 *2 *3 *3 *3 *3 *4 *5) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) - (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2266)))) - (-5 *2 (-1033)) (-5 *1 (-744))))) -(((*1 *2 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-172)))) - ((*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-172))))) -(((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1000)))))) + (-12 (-5 *2 (-644 (-672 *3))) (-5 *1 (-893 *3)) (-4 *3 (-850))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) +(((*1 *1 *1) + (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1155 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1049)) + (-5 *3 (-409 (-566))) (-5 *1 (-1159 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) +(((*1 *1 *2) + (-12 (-5 *2 (-689 *5)) (-4 *5 (-1049)) (-5 *1 (-1054 *3 *4 *5)) + (-14 *3 (-771)) (-14 *4 (-771))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-566))) (-5 *4 (-905 (-566))) + (-5 *2 (-689 (-566))) (-5 *1 (-591)))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 (-566))) (-5 *2 (-644 (-689 (-566)))) + (-5 *1 (-591)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-566))) (-5 *4 (-644 (-905 (-566)))) + (-5 *2 (-644 (-689 (-566)))) (-5 *1 (-591))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1214)) (-5 *2 (-644 *1)) (-4 *1 (-1010 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-848) (-308) (-147) (-1022))) + (-5 *2 (-644 (-1046 *5 *6))) (-5 *1 (-1290 *5 *6 *7)) + (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-848) (-308) (-147) (-1022))) + (-5 *2 (-644 (-1046 *5 *6))) (-5 *1 (-1290 *5 *6 *7)) + (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175))))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 (-952 *4))) + (-4 *4 (-13 (-848) (-308) (-147) (-1022))) + (-5 *2 (-644 (-1046 *4 *5))) (-5 *1 (-1290 *4 *5 *6)) + (-14 *5 (-644 (-1175))) (-14 *6 (-644 (-1175)))))) +(((*1 *2 *3 *4 *4 *2 *2 *2 *2) + (-12 (-5 *2 (-566)) + (-5 *3 + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-771)) (|:| |poli| *4) + (|:| |polj| *4))) + (-4 *6 (-793)) (-4 *4 (-949 *5 *6 *7)) (-4 *5 (-454)) (-4 *7 (-850)) + (-5 *1 (-451 *5 *6 *7 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-250)) (-5 *1 (-334))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-771)) (-5 *2 (-1237 *5 *4)) (-5 *1 (-1173 *4 *5 *6)) + (-4 *4 (-1049)) (-14 *5 (-1175)) (-14 *6 *4))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-771)) (-5 *2 (-1237 *5 *4)) (-5 *1 (-1256 *4 *5 *6)) + (-4 *4 (-1049)) (-14 *5 (-1175)) (-14 *6 *4)))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-644 (-566))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-566)) + (-14 *4 (-771)) (-4 *5 (-172))))) (((*1 *1 *2) - (-12 (-5 *2 (-642 (-564))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1047)) - (-14 *4 (-642 (-1173))))) + (-12 (-5 *2 (-644 (-566))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1049)) + (-14 *4 (-644 (-1175))))) ((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1000))))) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) - (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) - ((*1 *1 *1) (-4 *1 (-284))) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) + ((*1 *1 *1) (-4 *1 (-285))) ((*1 *1 *1) - (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-642 (-1173))) - (-14 *3 (-642 (-1173))) (-4 *4 (-387)))) + (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) + (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) ((*1 *1 *2) - (-12 (-5 *2 (-662 *3 *4)) (-4 *3 (-848)) - (-4 *4 (-13 (-172) (-715 (-407 (-564))))) (-5 *1 (-625 *3 *4 *5)) - (-14 *5 (-919)))) + (-12 (-5 *2 (-664 *3 *4)) (-4 *3 (-850)) + (-4 *4 (-13 (-172) (-717 (-409 (-566))))) (-5 *1 (-627 *3 *4 *5)) + (-14 *5 (-921)))) ((*1 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1158 *3)))) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1160 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1159 *3)))) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1161 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-769)) (-4 *4 (-13 (-1047) (-715 (-407 (-564))))) - (-4 *5 (-848)) (-5 *1 (-1278 *4 *5 *2)) (-4 *2 (-1283 *5 *4)))) + (-12 (-5 *3 (-771)) (-4 *4 (-13 (-1049) (-717 (-409 (-566))))) + (-4 *5 (-850)) (-5 *1 (-1280 *4 *5 *2)) (-4 *2 (-1285 *5 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-769)) (-5 *1 (-1282 *3 *4)) - (-4 *4 (-715 (-407 (-564)))) (-4 *3 (-848)) (-4 *4 (-172))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *3 (-642 (-263))) (-5 *1 (-261))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1169 *1)) (-4 *1 (-452)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1169 *6)) (-4 *6 (-947 *5 *3 *4)) (-4 *3 (-791)) - (-4 *4 (-848)) (-4 *5 (-907)) (-5 *1 (-457 *3 *4 *5 *6)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1169 *1)) (-4 *1 (-907))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1099 (-1099 *3))) (-5 *1 (-902 *3)) (-4 *3 (-1097))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1097)) (-4 *5 (-1097)) - (-4 *6 (-1097)) (-5 *2 (-1 *6 *5)) (-5 *1 (-682 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1155)) (-5 *1 (-52))))) + (-12 (-5 *2 (-771)) (-5 *1 (-1284 *3 *4)) + (-4 *4 (-717 (-409 (-566)))) (-4 *3 (-850)) (-4 *4 (-172))))) +(((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) +(((*1 *1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-264)))) + ((*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-264))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-892 *4)) (-4 *4 (-1099)) (-5 *1 (-889 *4 *3)) + (-4 *3 (-1099))))) (((*1 *2 *3) - (-12 (-5 *3 (-1235 *5 *4)) (-4 *4 (-452)) (-4 *4 (-818)) - (-14 *5 (-1173)) (-5 *2 (-564)) (-5 *1 (-1111 *4 *5))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-790)))) + (-12 (-4 *4 (-308)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) + (-5 *2 + (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) + (-5 *1 (-1123 *4 *5 *6 *3)) (-4 *3 (-687 *4 *5 *6))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-792)))) ((*1 *1 *1) - (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1047)) (-14 *3 (-642 (-1173))))) + (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1049)) (-14 *3 (-644 (-1175))))) ((*1 *1 *1) - (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1047) (-848))) - (-14 *3 (-642 (-1173))))) + (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1049) (-850))) + (-14 *3 (-644 (-1175))))) ((*1 *1 *1) - (-12 (-4 *1 (-382 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-1097)))) + (-12 (-4 *1 (-384 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-1099)))) ((*1 *1 *1) - (-12 (-14 *2 (-642 (-1173))) (-4 *3 (-172)) - (-4 *5 (-238 (-2158 *2) (-769))) + (-12 (-14 *2 (-644 (-1175))) (-4 *3 (-172)) + (-4 *5 (-238 (-3002 *2) (-771))) (-14 *6 - (-1 (-112) (-2 (|:| -2065 *4) (|:| -2817 *5)) - (-2 (|:| -2065 *4) (|:| -2817 *5)))) - (-5 *1 (-461 *2 *3 *4 *5 *6 *7)) (-4 *4 (-848)) - (-4 *7 (-947 *3 *5 (-862 *2))))) - ((*1 *1 *1) (-12 (-4 *1 (-509 *2 *3)) (-4 *2 (-1097)) (-4 *3 (-848)))) + (-1 (-112) (-2 (|:| -2104 *4) (|:| -3631 *5)) + (-2 (|:| -2104 *4) (|:| -3631 *5)))) + (-5 *1 (-463 *2 *3 *4 *5 *6 *7)) (-4 *4 (-850)) + (-4 *7 (-949 *3 *5 (-864 *2))))) + ((*1 *1 *1) (-12 (-4 *1 (-511 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-850)))) ((*1 *1 *1) - (-12 (-4 *2 (-556)) (-5 *1 (-621 *2 *3)) (-4 *3 (-1238 *2)))) - ((*1 *1 *1) (-12 (-4 *1 (-706 *2)) (-4 *2 (-1047)))) + (-12 (-4 *2 (-558)) (-5 *1 (-623 *2 *3)) (-4 *3 (-1240 *2)))) + ((*1 *1 *1) (-12 (-4 *1 (-708 *2)) (-4 *2 (-1049)))) ((*1 *1 *1) - (-12 (-5 *1 (-733 *2 *3)) (-4 *3 (-848)) (-4 *2 (-1047)) - (-4 *3 (-724)))) - ((*1 *1 *1) (-12 (-4 *1 (-850 *2)) (-4 *2 (-1047)))) + (-12 (-5 *1 (-735 *2 *3)) (-4 *3 (-850)) (-4 *2 (-1049)) + (-4 *3 (-726)))) + ((*1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1062 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-791)) - (-4 *2 (-848)))) + (-12 (-4 *1 (-1064 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *2 (-850)))) ((*1 *1 *1) - (-12 (-5 *1 (-1285 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-844))))) -(((*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-642 (-863)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-769)) (-4 *1 (-1238 *3)) (-4 *3 (-1047))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1153 (-642 (-564)))) (-5 *3 (-642 (-564))) - (-5 *1 (-881))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1262 (-769))) (-5 *1 (-673 *3)) (-4 *3 (-1097))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-434)) - (-5 *2 - (-642 - (-3 (|:| -2493 (-1173)) - (|:| -2253 (-642 (-3 (|:| S (-1173)) (|:| P (-950 (-564))))))))) - (-5 *1 (-1177))))) -(((*1 *2 *3) - (-12 (-5 *3 (-642 *4)) (-4 *4 (-363)) (-5 *2 (-687 *4)) - (-5 *1 (-812 *4 *5)) (-4 *5 (-654 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-642 *5)) (-5 *4 (-769)) (-4 *5 (-363)) - (-5 *2 (-687 *5)) (-5 *1 (-812 *5 *6)) (-4 *6 (-654 *5))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-307)) (-5 *1 (-455 *3 *2)) (-4 *2 (-1238 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-307)) (-5 *1 (-460 *3 *2)) (-4 *2 (-1238 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-307)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-769))) - (-5 *1 (-539 *3 *2 *4 *5)) (-4 *2 (-1238 *3))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-757))))) + (-12 (-5 *1 (-1287 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-846))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-642 *2))) (-5 *4 (-642 *5)) - (-4 *5 (-38 (-407 (-564)))) (-4 *2 (-1253 *5)) - (-5 *1 (-1255 *5 *2))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-769)) (-5 *1 (-875 *2)) (-4 *2 (-1212)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-769)) (-5 *1 (-877 *2)) (-4 *2 (-1212)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-769)) (-5 *1 (-880 *2)) (-4 *2 (-1212))))) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) + (-4 *4 (-375 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-644 (-865)))))) (((*1 *2 *1) - (-12 (-4 *2 (-947 *3 *5 *4)) (-5 *1 (-985 *3 *4 *5 *2)) - (-4 *3 (-452)) (-4 *4 (-848)) (-4 *5 (-791))))) + (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) + (|has| *2 (-6 (-4419 "*"))) (-4 *2 (-1049)))) + ((*1 *2 *3) + (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-172)) + (-5 *1 (-688 *2 *4 *5 *3)) (-4 *3 (-687 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1122 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) + (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4419 "*"))) (-4 *2 (-1049))))) +(((*1 *1 *2 *1) + (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-1099)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *5 (-850)) (-5 *2 (-112))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-508)) (-5 *3 (-644 (-965))) (-5 *1 (-109))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-759))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-547)) (-5 *2 (-112))))) +(((*1 *1 *1) (-5 *1 (-1062)))) (((*1 *1 *1) - (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047))))) + (-12 (-4 *2 (-351)) (-4 *2 (-1049)) (-5 *1 (-712 *2 *3)) + (-4 *3 (-1240 *2))))) +(((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-165 *3 *2)) (-4 *3 (-166 *2)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1264 *1)) (-4 *1 (-372 *2 *4)) (-4 *4 (-1240 *2)) + (-4 *2 (-172)))) + ((*1 *2) + (-12 (-4 *4 (-1240 *2)) (-4 *2 (-172)) (-5 *1 (-410 *3 *2 *4)) + (-4 *3 (-411 *2 *4)))) + ((*1 *2) (-12 (-4 *1 (-411 *2 *3)) (-4 *3 (-1240 *2)) (-4 *2 (-172)))) + ((*1 *2) + (-12 (-4 *3 (-1240 *2)) (-5 *2 (-566)) (-5 *1 (-768 *3 *4)) + (-4 *4 (-411 *2 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-949 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *2 (-850)) (-4 *3 (-172)))) + ((*1 *2 *3) + (-12 (-4 *2 (-558)) (-5 *1 (-969 *2 *3)) (-4 *3 (-1240 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1240 *2)) (-4 *2 (-1049)) (-4 *2 (-172))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) (((*1 *2 *1) - (-12 (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-642 *1)) - (-4 *1 (-947 *3 *4 *5))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1169 *7)) (-5 *3 (-564)) (-4 *7 (-947 *6 *4 *5)) - (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1047)) - (-5 *1 (-321 *4 *5 *6 *7))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) - (-5 *1 (-755))))) -(((*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-757))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-769)) (-5 *2 (-112))))) + (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-644 *1)) + (-4 *1 (-949 *3 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1099)) (-4 *5 (-1099)) + (-4 *6 (-1099)) (-5 *2 (-1 *6 *5)) (-5 *1 (-684 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1274))))) (((*1 *2 *2) - (-12 (-4 *3 (-1097)) (-5 *1 (-927 *3 *2)) (-4 *2 (-430 *3)))) + (-12 (-4 *3 (-1099)) (-5 *1 (-929 *3 *2)) (-4 *2 (-432 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1173)) (-5 *2 (-316 (-564))) (-5 *1 (-928))))) -(((*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1212)) (-5 *1 (-327 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-642 *3)) (-4 *3 (-1212)) (-5 *1 (-516 *3 *4)) - (-14 *4 (-564))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564)))))) -(((*1 *2 *2) (-12 (-5 *2 (-316 (-225))) (-5 *1 (-267))))) + (-12 (-5 *3 (-1175)) (-5 *2 (-317 (-566))) (-5 *1 (-930))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) + (-4 *8 (-1064 *5 *6 *7)) + (-5 *2 + (-2 (|:| |val| (-644 *8)) + (|:| |towers| (-644 (-1027 *5 *6 *7 *8))))) + (-5 *1 (-1027 *5 *6 *7 *8)) (-5 *3 (-644 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) + (-4 *8 (-1064 *5 *6 *7)) + (-5 *2 + (-2 (|:| |val| (-644 *8)) + (|:| |towers| (-644 (-1145 *5 *6 *7 *8))))) + (-5 *1 (-1145 *5 *6 *7 *8)) (-5 *3 (-644 *8))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-531)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-579)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861))))) +(((*1 *2 *3) + (-12 (-5 *3 (-317 (-225))) (-5 *2 (-317 (-381))) (-5 *1 (-306))))) +(((*1 *2 *2) + (-12 (-5 *2 (-943 *3)) (-4 *3 (-13 (-365) (-1199) (-1002))) + (-5 *1 (-176 *3))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4410)) (-4 *1 (-151 *3)) - (-4 *3 (-1212)))) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4417)) (-4 *1 (-151 *3)) + (-4 *3 (-1214)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1212)) (-5 *1 (-599 *3)))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1214)) (-5 *1 (-601 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-672 *3)) (-4 *3 (-1212)))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-674 *3)) (-4 *3 (-1214)))) ((*1 *2 *1 *3) - (|partial| -12 (-4 *1 (-1205 *4 *5 *3 *2)) (-4 *4 (-556)) - (-4 *5 (-791)) (-4 *3 (-848)) (-4 *2 (-1062 *4 *5 *3)))) + (|partial| -12 (-4 *1 (-1207 *4 *5 *3 *2)) (-4 *4 (-558)) + (-4 *5 (-793)) (-4 *3 (-850)) (-4 *2 (-1064 *4 *5 *3)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-769)) (-5 *1 (-1209 *2)) (-4 *2 (-1212))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-850 *2)) (-4 *2 (-1047)) (-4 *2 (-363))))) -(((*1 *2 *1) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-394)))) - ((*1 *2 *1) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-1192))))) -(((*1 *1 *1) (|partial| -4 *1 (-145))) ((*1 *1 *1) (-4 *1 (-349))) - ((*1 *1 *1) (|partial| -12 (-4 *1 (-145)) (-4 *1 (-907))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1123 *4 *3 *5))) (-4 *4 (-38 (-407 (-564)))) - (-4 *4 (-1047)) (-4 *3 (-848)) (-5 *1 (-1123 *4 *3 *5)) - (-4 *5 (-947 *4 (-531 *3) *3)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1206 *4))) (-5 *3 (-1173)) (-5 *1 (-1206 *4)) - (-4 *4 (-38 (-407 (-564)))) (-4 *4 (-1047))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1172)) (-5 *1 (-330))))) -(((*1 *1 *2) - (-12 (-5 *2 (-642 (-2 (|:| |gen| *3) (|:| -3466 *4)))) - (-4 *3 (-1097)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-647 *3 *4 *5))))) -(((*1 *1 *1) - (-12 (-4 *2 (-147)) (-4 *2 (-307)) (-4 *2 (-452)) (-4 *3 (-848)) - (-4 *4 (-791)) (-5 *1 (-985 *2 *3 *4 *5)) (-4 *5 (-947 *2 *4 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-316 (-564))) (-5 *1 (-1116)))) + (-12 (-5 *3 (-771)) (-5 *1 (-1211 *2)) (-4 *2 (-1214))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) + (-5 *1 (-755))))) +(((*1 *2 *1) + (-12 (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) + (-5 *2 (-112))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-644 (-952 *3))) (-4 *3 (-454)) + (-5 *1 (-362 *3 *4)) (-14 *4 (-644 (-1175))))) ((*1 *2 *2) - (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1197)))))) -(((*1 *2 *3 *3 *3 *3) - (-12 (-5 *3 (-564)) (-5 *2 (-112)) (-5 *1 (-480))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-687 *7)) (-5 *3 (-642 *7)) (-4 *7 (-947 *4 *6 *5)) - (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-848) (-612 (-1173)))) - (-4 *6 (-791)) (-5 *1 (-922 *4 *5 *6 *7))))) -(((*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-859)))) - ((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-859))))) -(((*1 *2 *3) - (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-642 (-1173))) (-4 *5 (-452)) - (-5 *2 (-481 *4 *5)) (-5 *1 (-629 *4 *5))))) + (|partial| -12 (-5 *2 (-644 (-780 *3 (-864 *4)))) (-4 *3 (-454)) + (-14 *4 (-644 (-1175))) (-5 *1 (-628 *3 *4))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) + (-5 *1 (-747))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-13 (-1038 (-566)) (-639 (-566)) (-454))) + (-5 *2 + (-2 + (|:| |%term| + (-2 (|:| |%coef| (-1249 *4 *5 *6)) + (|:| |%expon| (-320 *4 *5 *6)) + (|:| |%expTerms| + (-644 (-2 (|:| |k| (-409 (-566))) (|:| |c| *4)))))) + (|:| |%type| (-1157)))) + (-5 *1 (-1250 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1199) (-432 *3))) + (-14 *5 (-1175)) (-14 *6 *4)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-558) (-147))) (-5 *1 (-539 *3 *2)) + (-4 *2 (-1255 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-365) (-370) (-614 (-566)))) (-4 *4 (-1240 *3)) + (-4 *5 (-724 *3 *4)) (-5 *1 (-543 *3 *4 *5 *2)) (-4 *2 (-1255 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-365) (-370) (-614 (-566)))) (-5 *1 (-544 *3 *2)) + (-4 *2 (-1255 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-13 (-558) (-147))) + (-5 *1 (-1151 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-351)) (-4 *4 (-330 *3)) (-4 *5 (-1240 *4)) + (-5 *1 (-777 *3 *4 *5 *2 *6)) (-4 *2 (-1240 *5)) (-14 *6 (-921)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-771)) (-4 *1 (-1283 *3)) (-4 *3 (-365)) (-4 *3 (-370)))) + ((*1 *1 *1) (-12 (-4 *1 (-1283 *2)) (-4 *2 (-365)) (-4 *2 (-370))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-943 *3) (-943 *3))) (-5 *1 (-176 *3)) + (-4 *3 (-13 (-365) (-1199) (-1002))))) + ((*1 *2) + (|partial| -12 (-4 *4 (-1218)) (-4 *5 (-1240 (-409 *2))) + (-4 *2 (-1240 *4)) (-5 *1 (-343 *3 *4 *2 *5)) + (-4 *3 (-344 *4 *2 *5)))) + ((*1 *2) + (|partial| -12 (-4 *1 (-344 *3 *2 *4)) (-4 *3 (-1218)) + (-4 *4 (-1240 (-409 *2))) (-4 *2 (-1240 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1171 *5)) (-4 *5 (-454)) (-5 *2 (-644 *6)) + (-5 *1 (-540 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-848))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-952 *5)) (-4 *5 (-454)) (-5 *2 (-644 *6)) + (-5 *1 (-540 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-848)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-1175))) (-5 *1 (-538))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1212)) (-5 *1 (-599 *3)))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1214)) (-5 *1 (-601 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1212)) (-5 *1 (-1153 *3))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) - (-4 *3 (-1062 *5 *6 *7)) - (-5 *2 (-642 (-2 (|:| |val| *3) (|:| -2138 *4)))) - (-5 *1 (-1069 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1267)) (-5 *1 (-1004))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-1138 *2 *3)) (-4 *2 (-13 (-1097) (-34))) - (-4 *3 (-13 (-1097) (-34)))))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1214)) (-5 *1 (-1155 *3))))) +(((*1 *1) + (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-1099)) (-4 *3 (-23)) + (-14 *4 *3)))) (((*1 *1 *1) - (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-556)))) - ((*1 *1 *1) (|partial| -4 *1 (-720)))) -(((*1 *2 *1) - (-12 (-5 *2 (-1091 *3)) (-5 *1 (-1089 *3)) (-4 *3 (-1212)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1090 *2)) (-4 *2 (-1212)))) - ((*1 *1 *2) (-12 (-5 *1 (-1229 *2)) (-4 *2 (-1212))))) -(((*1 *2 *1) (-12 (-4 *1 (-867 *3)) (-5 *2 (-564))))) -(((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-791)) (-4 *8 (-848)) - (-4 *3 (-1062 *6 *7 *8)) - (-5 *2 (-642 (-2 (|:| |val| *3) (|:| -2138 *4)))) - (-5 *1 (-1105 *6 *7 *8 *3 *4)) (-4 *4 (-1068 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-642 (-2 (|:| |val| (-642 *8)) (|:| -2138 *9)))) - (-5 *5 (-112)) (-4 *8 (-1062 *6 *7 *4)) (-4 *9 (-1068 *6 *7 *4 *8)) - (-4 *6 (-452)) (-4 *7 (-791)) (-4 *4 (-848)) - (-5 *2 (-642 (-2 (|:| |val| *8) (|:| -2138 *9)))) - (-5 *1 (-1105 *6 *7 *4 *8 *9))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-564)) (-5 *2 (-112)) (-5 *1 (-553))))) -(((*1 *2 *3) - (-12 (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-307)) (-5 *2 (-418 *3)) - (-5 *1 (-740 *4 *5 *6 *3)) (-4 *3 (-947 *6 *4 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564))))) - (-4 *5 (-1238 *4)) (-5 *2 (-642 (-651 (-407 *5)))) - (-5 *1 (-655 *4 *5)) (-5 *3 (-651 (-407 *5)))))) + (-12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-792)) + (-4 *2 (-454)))) + ((*1 *1 *1) + (-12 (-4 *1 (-344 *2 *3 *4)) (-4 *2 (-1218)) (-4 *3 (-1240 *2)) + (-4 *4 (-1240 (-409 *3))))) + ((*1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-454)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-949 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *2 (-850)) (-4 *3 (-454)))) + ((*1 *1 *1) + (-12 (-4 *1 (-949 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) + (-4 *4 (-850)) (-4 *2 (-454)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-308)) (-4 *3 (-558)) (-5 *1 (-1162 *3 *2)) + (-4 *2 (-1240 *3))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) (((*1 *2 *3) - (-12 (-5 *3 (-919)) (-5 *2 (-1169 *4)) (-5 *1 (-357 *4)) - (-4 *4 (-349))))) + (-12 (-5 *3 (-1046 *4 *5)) (-4 *4 (-13 (-848) (-308) (-147) (-1022))) + (-14 *5 (-644 (-1175))) + (-5 *2 + (-644 (-2 (|:| -4324 (-1171 *4)) (|:| -3747 (-644 (-952 *4)))))) + (-5 *1 (-1290 *4 *5 *6)) (-14 *6 (-644 (-1175))))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-848) (-308) (-147) (-1022))) + (-5 *2 + (-644 (-2 (|:| -4324 (-1171 *5)) (|:| -3747 (-644 (-952 *5)))))) + (-5 *1 (-1290 *5 *6 *7)) (-5 *3 (-644 (-952 *5))) + (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-848) (-308) (-147) (-1022))) + (-5 *2 + (-644 (-2 (|:| -4324 (-1171 *5)) (|:| -3747 (-644 (-952 *5)))))) + (-5 *1 (-1290 *5 *6 *7)) (-5 *3 (-644 (-952 *5))) + (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-848) (-308) (-147) (-1022))) + (-5 *2 + (-644 (-2 (|:| -4324 (-1171 *5)) (|:| -3747 (-644 (-952 *5)))))) + (-5 *1 (-1290 *5 *6 *7)) (-5 *3 (-644 (-952 *5))) + (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-848) (-308) (-147) (-1022))) + (-5 *2 + (-644 (-2 (|:| -4324 (-1171 *4)) (|:| -3747 (-644 (-952 *4)))))) + (-5 *1 (-1290 *4 *5 *6)) (-5 *3 (-644 (-952 *4))) + (-14 *5 (-644 (-1175))) (-14 *6 (-644 (-1175)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1093 *3)) (-5 *1 (-1091 *3)) (-4 *3 (-1214)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1214)))) + ((*1 *1 *2) (-12 (-5 *1 (-1231 *2)) (-4 *2 (-1214))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-771)) (-4 *1 (-231 *4)) + (-4 *4 (-1049)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1049)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-771)))) + ((*1 *1 *1) (-4 *1 (-233))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-267 *3)) (-4 *3 (-850)))) + ((*1 *1 *1) (-12 (-4 *1 (-267 *2)) (-4 *2 (-850)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) + (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-771)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-401 *3 *4)) + (-4 *4 (-1240 *3)))) + ((*1 *1 *1) + (-12 (-4 *2 (-13 (-365) (-147))) (-5 *1 (-401 *2 *3)) + (-4 *3 (-1240 *2)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-476 *3 *4 *5)) + (-4 *3 (-1049)) (-14 *5 *3))) + ((*1 *2 *1 *3) + (-12 (-4 *2 (-365)) (-4 *2 (-900 *3)) (-5 *1 (-587 *2)) + (-5 *3 (-1175)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-587 *2)) (-4 *2 (-365)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-862)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-644 *4)) (-5 *3 (-644 (-771))) (-4 *1 (-900 *4)) + (-4 *4 (-1099)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-771)) (-4 *1 (-900 *2)) (-4 *2 (-1099)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-644 *3)) (-4 *1 (-900 *3)) (-4 *3 (-1099)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-900 *2)) (-4 *2 (-1099)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1166 *3 *4 *5)) + (-4 *3 (-1049)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1172 *3 *4 *5)) + (-4 *3 (-1049)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1173 *3 *4 *5)) + (-4 *3 (-1049)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1228 *3 *4 *5)) + (-4 *3 (-1049)) (-14 *5 *3))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1240 *3)) (-4 *3 (-1049)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1249 *3 *4 *5)) + (-4 *3 (-1049)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1256 *3 *4 *5)) + (-4 *3 (-1049)) (-14 *5 *3)))) +(((*1 *2 *2) + (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1199)))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1175)) (-5 *5 (-644 (-409 (-952 *6)))) + (-5 *3 (-409 (-952 *6))) + (-4 *6 (-13 (-558) (-1038 (-566)) (-147))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-572 *6))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-1157)) (-5 *5 (-689 (-225))) + (-5 *2 (-1035)) (-5 *1 (-747))))) +(((*1 *2 *1) + (-12 (-4 *1 (-366 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)) + (-5 *2 (-1157))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1049)) (-5 *1 (-894 *2 *3)) (-4 *2 (-1240 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1212)) (-5 *1 (-599 *3)))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1214)) (-5 *1 (-601 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1212)) (-5 *1 (-1153 *3))))) -(((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-769)) (-5 *1 (-780 *3)) (-4 *3 (-1047)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *1 (-961 *3 *2)) (-4 *2 (-131)) (-4 *3 (-556)) - (-4 *3 (-1047)) (-4 *2 (-790)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-769)) (-5 *1 (-1169 *3)) (-4 *3 (-1047)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-969)) (-4 *2 (-131)) (-5 *1 (-1175 *3)) (-4 *3 (-556)) - (-4 *3 (-1047)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-769)) (-5 *1 (-1235 *4 *3)) (-14 *4 (-1173)) - (-4 *3 (-1047))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-890 *3)) (-4 *3 (-1097))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-556) (-1036 (-564)))) (-5 *1 (-188 *3 *2)) - (-4 *2 (-13 (-27) (-1197) (-430 (-169 *3)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-452) (-1036 (-564)) (-637 (-564)))) - (-5 *1 (-1201 *3 *2)) (-4 *2 (-13 (-27) (-1197) (-430 *3)))))) -(((*1 *1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-1097)) (-4 *2 (-1047)))) - ((*1 *1 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-556))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-642 *7)) (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-556)) - (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112)) - (-5 *1 (-975 *4 *5 *6 *7))))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1214)) (-5 *1 (-1155 *3))))) +(((*1 *2 *3 *1) + (-12 (-5 *2 (-644 (-1175))) (-5 *1 (-1178)) (-5 *3 (-1175))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-1 (-225) (-225) (-225))) + (-5 *4 (-1 (-225) (-225) (-225) (-225))) + (-5 *2 (-1 (-943 (-225)) (-225) (-225))) (-5 *1 (-697))))) +(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-438))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-1155)) (-4 *1 (-364 *2 *4)) (-4 *2 (-1097)) - (-4 *4 (-1097)))) + (-12 (-5 *3 (-1157)) (-4 *1 (-366 *2 *4)) (-4 *2 (-1099)) + (-4 *4 (-1099)))) ((*1 *1 *2) - (-12 (-4 *1 (-364 *2 *3)) (-4 *2 (-1097)) (-4 *3 (-1097))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-642 (-2 (|:| |totdeg| (-769)) (|:| -2830 *3)))) - (-5 *4 (-769)) (-4 *3 (-947 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-791)) - (-4 *7 (-848)) (-5 *1 (-449 *5 *6 *7 *3))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-1192))))) -(((*1 *2 *1) (-12 (-4 *1 (-672 *3)) (-4 *3 (-1212)) (-5 *2 (-112))))) + (-12 (-4 *1 (-366 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099))))) (((*1 *2 *2) - (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1197)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-890 *4)) (-4 *4 (-1097)) (-5 *2 (-642 *5)) - (-5 *1 (-888 *4 *5)) (-4 *5 (-1212))))) -(((*1 *2 *1) (-12 (-4 *1 (-1090 *2)) (-4 *2 (-1212))))) + (-12 (-5 *2 (-943 *3)) (-4 *3 (-13 (-365) (-1199) (-1002))) + (-5 *1 (-176 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-644 *3)) (-4 *3 (-1214)) (-5 *1 (-1264 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1214))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-147)) + (-4 *3 (-308)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) + (-5 *1 (-977 *3 *4 *5 *6))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-644 (-771))) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) + (-4 *4 (-1049))))) +(((*1 *2 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1214))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-926))))) (((*1 *2 *3) - (-12 (-5 *3 (-642 (-2 (|:| -2254 *4) (|:| -3252 (-564))))) - (-4 *4 (-1238 (-564))) (-5 *2 (-735 (-769))) (-5 *1 (-442 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-418 *5)) (-4 *5 (-1238 *4)) (-4 *4 (-1047)) - (-5 *2 (-735 (-769))) (-5 *1 (-444 *4 *5))))) + (-12 (-5 *3 (-1175)) (-5 *2 (-1 *6 *5)) (-5 *1 (-706 *4 *5 *6)) + (-4 *4 (-614 (-538))) (-4 *5 (-1214)) (-4 *6 (-1214))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-919)) (-4 *6 (-556)) (-5 *2 (-642 (-316 *6))) - (-5 *1 (-221 *5 *6)) (-5 *3 (-316 *6)) (-4 *5 (-1047)))) - ((*1 *2 *1) (-12 (-5 *1 (-418 *2)) (-4 *2 (-556)))) + (-12 (-5 *4 (-921)) (-4 *6 (-558)) (-5 *2 (-644 (-317 *6))) + (-5 *1 (-221 *5 *6)) (-5 *3 (-317 *6)) (-4 *5 (-1049)))) + ((*1 *2 *1) (-12 (-5 *1 (-420 *2)) (-4 *2 (-558)))) ((*1 *2 *3) - (-12 (-5 *3 (-585 *5)) (-4 *5 (-13 (-29 *4) (-1197))) - (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-642 *5)) - (-5 *1 (-583 *4 *5)))) + (-12 (-5 *3 (-587 *5)) (-4 *5 (-13 (-29 *4) (-1199))) + (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-644 *5)) + (-5 *1 (-585 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-585 (-407 (-950 *4)))) - (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564)))) - (-5 *2 (-642 (-316 *4))) (-5 *1 (-588 *4)))) + (-12 (-5 *3 (-587 (-409 (-952 *4)))) + (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) + (-5 *2 (-644 (-317 *4))) (-5 *1 (-590 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1092 *3 *2)) (-4 *3 (-846)) (-4 *2 (-1146 *3)))) + (-12 (-4 *1 (-1094 *3 *2)) (-4 *3 (-848)) (-4 *2 (-1148 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-642 *1)) (-4 *1 (-1092 *4 *2)) (-4 *4 (-846)) - (-4 *2 (-1146 *4)))) + (-12 (-5 *3 (-644 *1)) (-4 *1 (-1094 *4 *2)) (-4 *4 (-848)) + (-4 *2 (-1148 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1197))))) + (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1199))))) ((*1 *2 *1) - (-12 (-5 *2 (-1277 (-1173) *3)) (-5 *1 (-1284 *3)) (-4 *3 (-1047)))) + (-12 (-5 *2 (-1279 (-1175) *3)) (-5 *1 (-1286 *3)) (-4 *3 (-1049)))) ((*1 *2 *1) - (-12 (-5 *2 (-1277 *3 *4)) (-5 *1 (-1286 *3 *4)) (-4 *3 (-848)) - (-4 *4 (-1047))))) -(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820))))) -(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) - (-12 (-5 *4 (-687 (-225))) (-5 *5 (-687 (-564))) (-5 *3 (-564)) - (-5 *2 (-1033)) (-5 *1 (-754))))) + (-12 (-5 *2 (-1279 *3 *4)) (-5 *1 (-1288 *3 *4)) (-4 *3 (-850)) + (-4 *4 (-1049))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-1288 *3 *4)) (-4 *1 (-376 *3 *4)) (-4 *3 (-850)) + (-4 *4 (-172)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-388 *2)) (-4 *2 (-1099)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1281 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-819 *3)) (-4 *1 (-1281 *3 *4)) (-4 *3 (-850)) + (-4 *4 (-1049)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1281 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049))))) +(((*1 *2 *3) + (-12 (-5 *3 (-771)) (-5 *2 (-1 (-1155 (-952 *4)) (-1155 (-952 *4)))) + (-5 *1 (-1272 *4)) (-4 *4 (-365))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-642 *5)) (-5 *4 (-919)) (-4 *5 (-848)) - (-5 *2 (-59 (-642 (-670 *5)))) (-5 *1 (-670 *5))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) - (-4 *3 (-367 *4)))) - ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) - (-4 *3 (-367 *4)))) - ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-1173))))) + (-12 (-5 *3 (-771)) (-5 *4 (-566)) (-5 *1 (-447 *2)) (-4 *2 (-1049))))) +(((*1 *1) (-5 *1 (-1062)))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-644 (-644 *8))) (-5 *3 (-644 *8)) + (-4 *8 (-949 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) + (-4 *6 (-13 (-850) (-614 (-1175)))) (-4 *7 (-793)) (-5 *2 (-112)) + (-5 *1 (-924 *5 *6 *7 *8))))) +(((*1 *2 *1) + (-12 (-4 *3 (-13 (-365) (-147))) + (-5 *2 (-644 (-2 (|:| -3631 (-771)) (|:| -2316 *4) (|:| |num| *4)))) + (-5 *1 (-401 *3 *4)) (-4 *4 (-1240 *3))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-644 (-689 *6))) (-5 *4 (-112)) (-5 *5 (-566)) + (-5 *2 (-689 *6)) (-5 *1 (-1029 *6)) (-4 *6 (-365)) (-4 *6 (-1049)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-644 (-689 *4))) (-5 *2 (-689 *4)) (-5 *1 (-1029 *4)) + (-4 *4 (-365)) (-4 *4 (-1049)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-644 (-689 *5))) (-5 *4 (-566)) (-5 *2 (-689 *5)) + (-5 *1 (-1029 *5)) (-4 *5 (-365)) (-4 *5 (-1049))))) +(((*1 *2 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-848)) (-5 *1 (-304 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1000)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1238 (-48)))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-642 (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564)))))) - (-5 *2 (-642 (-407 (-564)))) (-5 *1 (-1018 *4)) - (-4 *4 (-1238 (-564)))))) -(((*1 *1) (-5 *1 (-130)))) -(((*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-97))))) -(((*1 *1 *1) (-5 *1 (-536)))) -(((*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1212)) (-5 *2 (-112))))) + (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1199)))))) +(((*1 *1 *1) (-5 *1 (-538)))) (((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-530 *3)) (-4 *3 (-13 (-724) (-25)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1197)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-373 *3)) - (-4 *5 (-373 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112))))) -(((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1238 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-709 *2 *3 *4 *5 *6)) (-4 *2 (-172)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-532 *3)) (-4 *3 (-13 (-726) (-25)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-689 *4)) (-4 *4 (-1049)) (-5 *1 (-1141 *3 *4)) + (-14 *3 (-771))))) +(((*1 *1 *1 *2 *1) + (-12 (-5 *2 (-566)) (-5 *1 (-1155 *3)) (-4 *3 (-1214)))) ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-713 *2 *3 *4 *5 *6)) (-4 *2 (-172)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-316 (-225))) (-5 *1 (-210))))) -(((*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-330))))) -(((*1 *2) - (|partial| -12 (-4 *3 (-556)) (-4 *3 (-172)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -2131 (-642 *1)))) - (-4 *1 (-367 *3)))) - ((*1 *2) - (|partial| -12 - (-5 *2 - (-2 (|:| |particular| (-453 *3 *4 *5 *6)) - (|:| -2131 (-642 (-453 *3 *4 *5 *6))))) - (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-919)) - (-14 *5 (-642 (-1173))) (-14 *6 (-1262 (-687 *3)))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) - (-4 *4 (-848)) (-4 *2 (-452))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-860))))) -(((*1 *1 *1) (-5 *1 (-225))) - ((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) - ((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) - ((*1 *1 *1) (-4 *1 (-1136))) ((*1 *1 *1 *1) (-4 *1 (-1136)))) -(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) - ((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) - ((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-925))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-769)) (-4 *2 (-1097)) - (-5 *1 (-676 *2))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-452) (-147))) (-5 *2 (-418 *3)) - (-5 *1 (-100 *4 *3)) (-4 *3 (-1238 *4)))) + (-12 (|has| *1 (-6 -4418)) (-4 *1 (-1252 *2)) (-4 *2 (-1214))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-905 (-566))) (-5 *4 (-566)) (-5 *2 (-689 *4)) + (-5 *1 (-1028 *5)) (-4 *5 (-1049)))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 (-566))) (-5 *2 (-689 (-566))) (-5 *1 (-1028 *4)) + (-4 *4 (-1049)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-642 *3)) (-4 *3 (-1238 *5)) (-4 *5 (-13 (-452) (-147))) - (-5 *2 (-418 *3)) (-5 *1 (-100 *5 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-890 *4)) (-4 *4 (-1097)) (-5 *2 (-1 (-112) *5)) - (-5 *1 (-888 *4 *5)) (-4 *5 (-1212)))) - ((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-1163))))) -(((*1 *2 *3) - (-12 (-4 *4 (-556)) (-5 *2 (-642 *3)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-417 *4))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197))))) -(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-872))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1262 *5)) (-4 *5 (-790)) (-5 *2 (-112)) - (-5 *1 (-843 *4 *5)) (-14 *4 (-769))))) -(((*1 *2 *3) - (-12 (-5 *3 (-585 *2)) (-4 *2 (-13 (-29 *4) (-1197))) - (-5 *1 (-583 *4 *2)) - (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564)))))) + (-12 (-5 *3 (-644 (-905 (-566)))) (-5 *4 (-566)) + (-5 *2 (-644 (-689 *4))) (-5 *1 (-1028 *5)) (-4 *5 (-1049)))) ((*1 *2 *3) - (-12 (-5 *3 (-585 (-407 (-950 *4)))) - (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-316 *4)) - (-5 *1 (-588 *4))))) -(((*1 *1 *1) - (-12 (-4 *1 (-253 *2 *3 *4 *5)) (-4 *2 (-1047)) (-4 *3 (-848)) - (-4 *4 (-266 *3)) (-4 *5 (-791))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 - *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 - *9) - (-12 (-5 *4 (-687 (-225))) (-5 *5 (-112)) (-5 *6 (-225)) - (-5 *7 (-687 (-564))) - (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-80 CONFUN)))) - (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN)))) - (-5 *3 (-564)) (-5 *2 (-1033)) (-5 *1 (-751))))) -(((*1 *2 *2) - (-12 (-5 *2 (-642 *7)) (-4 *7 (-1068 *3 *4 *5 *6)) (-4 *3 (-452)) - (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) - (-5 *1 (-986 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-642 *7)) (-4 *7 (-1068 *3 *4 *5 *6)) (-4 *3 (-452)) - (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) - (-5 *1 (-1104 *3 *4 *5 *6 *7))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) - (-5 *1 (-753))))) -(((*1 *2 *1) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-394)))) - ((*1 *2 *1) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-1192))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) - (-12 (-5 *4 (-564)) (-5 *6 (-1 (-1267) (-1262 *5) (-1262 *5) (-379))) - (-5 *3 (-1262 (-379))) (-5 *5 (-379)) (-5 *2 (-1267)) - (-5 *1 (-786))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1071)))) + (-12 (-5 *3 (-644 (-644 (-566)))) (-5 *2 (-644 (-689 (-566)))) + (-5 *1 (-1028 *4)) (-4 *4 (-1049))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) + (-4 *3 (-369 *4)))) + ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-331))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862))))) +(((*1 *2 *1) + (-12 (-4 *3 (-454)) (-4 *4 (-850)) (-4 *5 (-793)) (-5 *2 (-644 *6)) + (-5 *1 (-987 *3 *4 *5 *6)) (-4 *6 (-949 *3 *5 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-331))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1157)) (-5 *4 (-566)) (-5 *5 (-689 (-225))) + (-5 *2 (-1035)) (-5 *1 (-757))))) +(((*1 *2 *1) + (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792)) + (-5 *2 (-771)))) + ((*1 *2 *1) + (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1099)) + (-5 *2 (-771)))) + ((*1 *2 *1) + (-12 (-5 *2 (-771)) (-5 *1 (-735 *3 *4)) (-4 *3 (-1049)) + (-4 *4 (-726))))) +(((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-862))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-771)) (-4 *2 (-1099)) + (-5 *1 (-678 *2))))) +(((*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-701)))) + ((*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-701))))) +(((*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049))))) +(((*1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-759))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1138)))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) + (-5 *1 (-755))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1073)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1100 *3 *4 *5 *6 *7)) (-4 *3 (-1097)) (-4 *4 (-1097)) - (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *7 (-1097)) (-5 *2 (-112))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1262 *3)) (-4 *3 (-1047)) (-5 *1 (-710 *3 *4)) - (-4 *4 (-1238 *3))))) + (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) + (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1099)) + (-5 *2 (-2 (|:| -3103 (-566)) (|:| |var| (-612 *1)))) + (-4 *1 (-432 *3))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-771)) (-4 *1 (-376 *3 *4)) (-4 *3 (-850)) + (-4 *4 (-172)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-771)) (-4 *1 (-1285 *3 *4)) (-4 *3 (-850)) + (-4 *4 (-1049))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1171 *4)) (-4 *4 (-351)) (-5 *2 (-958 (-1119))) + (-5 *1 (-348 *4))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-769)) (-5 *2 (-1262 (-642 (-564)))) (-5 *1 (-480)))) + (-12 (-5 *3 (-771)) (-5 *2 (-1264 (-644 (-566)))) (-5 *1 (-482)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1212)) (-5 *1 (-599 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1214)) (-5 *1 (-601 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1212)) (-5 *1 (-1153 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1212)) (-5 *1 (-1153 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1197)))))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1214)) (-5 *1 (-1155 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1214)) (-5 *1 (-1155 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-874)))) + ((*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049))))) (((*1 *2 *1) - (-12 (-5 *2 (-941 *4)) (-5 *1 (-1161 *3 *4)) (-14 *3 (-919)) - (-4 *4 (-1047))))) -(((*1 *2) - (-12 (-5 *2 (-1262 (-1098 *3 *4))) (-5 *1 (-1098 *3 *4)) - (-14 *3 (-919)) (-14 *4 (-919))))) -(((*1 *2 *3) - (-12 (-5 *2 (-610 *4)) (-5 *1 (-609 *3 *4)) (-4 *3 (-1097)) - (-4 *4 (-1097))))) -(((*1 *2 *2) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-397))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-564)) (-5 *5 (-687 (-225))) (-5 *4 (-225)) - (-5 *2 (-1033)) (-5 *1 (-750))))) -(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) - (-12 (-5 *3 (-1155)) (-5 *5 (-687 (-225))) (-5 *6 (-225)) - (-5 *7 (-687 (-564))) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-750))))) -(((*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-559))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-769)) (-5 *1 (-165 *3 *4)) - (-4 *3 (-166 *4)))) - ((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1212)) (-5 *2 (-769)) - (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) - ((*1 *2) - (-12 (-4 *4 (-1097)) (-5 *2 (-769)) (-5 *1 (-429 *3 *4)) - (-4 *3 (-430 *4)))) - ((*1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-544 *3)) (-4 *3 (-545)))) - ((*1 *2) (-12 (-4 *1 (-761)) (-5 *2 (-769)))) - ((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-769)) (-5 *1 (-794 *3 *4)) - (-4 *3 (-795 *4)))) - ((*1 *2) - (-12 (-4 *4 (-556)) (-5 *2 (-769)) (-5 *1 (-989 *3 *4)) - (-4 *3 (-990 *4)))) - ((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-769)) (-5 *1 (-994 *3 *4)) - (-4 *3 (-995 *4)))) - ((*1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-1009 *3)) (-4 *3 (-1010)))) - ((*1 *2) (-12 (-4 *1 (-1047)) (-5 *2 (-769)))) - ((*1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-1056 *3)) (-4 *3 (-1057))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197))))) -(((*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1197))))) - ((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-860)))) - ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-860))))) -(((*1 *2 *1) (-12 (-5 *2 (-1153 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1173)) - (-4 *6 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147))) - (-4 *4 (-13 (-29 *6) (-1197) (-957))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -2131 (-642 *4)))) - (-5 *1 (-799 *6 *4 *3)) (-4 *3 (-654 *4))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1155)) (-4 *1 (-364 *3 *4)) (-4 *3 (-1097)) - (-4 *4 (-1097))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1264))))) + (-12 (-14 *3 (-644 (-1175))) (-4 *4 (-172)) + (-4 *5 (-238 (-3002 *3) (-771))) + (-14 *6 + (-1 (-112) (-2 (|:| -2104 *2) (|:| -3631 *5)) + (-2 (|:| -2104 *2) (|:| -3631 *5)))) + (-4 *2 (-850)) (-5 *1 (-463 *3 *4 *2 *5 *6 *7)) + (-4 *7 (-949 *4 *5 (-864 *3)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281))))) +(((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002)))))) (((*1 *2 *1) - (-12 (-4 *4 (-1097)) (-5 *2 (-887 *3 *4)) (-5 *1 (-883 *3 *4 *5)) - (-4 *3 (-1097)) (-4 *5 (-664 *4))))) -(((*1 *1 *2 *3 *3 *3 *4) - (-12 (-4 *4 (-363)) (-4 *3 (-1238 *4)) (-4 *5 (-1238 (-407 *3))) - (-4 *1 (-335 *4 *3 *5 *2)) (-4 *2 (-342 *4 *3 *5)))) - ((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-564)) (-4 *2 (-363)) (-4 *4 (-1238 *2)) - (-4 *5 (-1238 (-407 *4))) (-4 *1 (-335 *2 *4 *5 *6)) - (-4 *6 (-342 *2 *4 *5)))) - ((*1 *1 *2 *2) - (-12 (-4 *2 (-363)) (-4 *3 (-1238 *2)) (-4 *4 (-1238 (-407 *3))) - (-4 *1 (-335 *2 *3 *4 *5)) (-4 *5 (-342 *2 *3 *4)))) - ((*1 *1 *2) - (-12 (-4 *3 (-363)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))) - (-4 *1 (-335 *3 *4 *5 *2)) (-4 *2 (-342 *3 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-413 *4 (-407 *4) *5 *6)) (-4 *4 (-1238 *3)) - (-4 *5 (-1238 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-4 *3 (-363)) - (-4 *1 (-335 *3 *4 *5 *6))))) + (-12 (-5 *2 (-691 (-873 (-966 *3) (-966 *3)))) (-5 *1 (-966 *3)) + (-4 *3 (-1099))))) +(((*1 *2 *1) (-12 (-4 *1 (-556 *2)) (-4 *2 (-13 (-406) (-1199))))) + ((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) + ((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-862))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-926))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-690 *3)))) + ((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-690 *3))))) (((*1 *2 *3 *2) - (|partial| -12 (-5 *2 (-1262 *4)) (-5 *3 (-687 *4)) (-4 *4 (-363)) - (-5 *1 (-665 *4)))) - ((*1 *2 *3 *2) - (|partial| -12 (-4 *4 (-363)) - (-4 *5 (-13 (-373 *4) (-10 -7 (-6 -4411)))) - (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4411)))) - (-5 *1 (-666 *4 *5 *2 *3)) (-4 *3 (-685 *4 *5 *2)))) - ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *4 (-642 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-363)) - (-5 *1 (-812 *2 *3)) (-4 *3 (-654 *2)))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) - (-5 *1 (-1125 *3 *2)) (-4 *3 (-1238 *2))))) -(((*1 *1) - (-12 (-5 *1 (-647 *2 *3 *4)) (-4 *2 (-1097)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *3) (-12 (-5 *3 (-506)) (-5 *2 (-689 (-187))) (-5 *1 (-187))))) -(((*1 *2 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) - (-5 *1 (-1125 *3 *2)) (-4 *3 (-1238 *2))))) + (-12 (-5 *3 (-771)) (-5 *1 (-783 *2)) (-4 *2 (-38 (-409 (-566)))) + (-4 *2 (-172))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-771)) (-4 *4 (-351)) (-5 *1 (-216 *4 *2)) + (-4 *2 (-1240 *4))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-1 (-587 *3) *3 (-1175))) + (-5 *6 + (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 + (-1175))) + (-4 *3 (-285)) (-4 *3 (-629)) (-4 *3 (-1038 *4)) (-4 *3 (-432 *7)) + (-5 *4 (-1175)) (-4 *7 (-614 (-892 (-566)))) (-4 *7 (-454)) + (-4 *7 (-886 (-566))) (-4 *7 (-1099)) (-5 *2 (-587 *3)) + (-5 *1 (-575 *7 *3))))) +(((*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-1267))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) + (-4 *4 (-850)) (-4 *2 (-454))))) (((*1 *2 *3) - (-12 (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) - (-4 *7 (-1062 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-642 *7)) (|:| |badPols| (-642 *7)))) - (-5 *1 (-975 *4 *5 *6 *7)) (-5 *3 (-642 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-831 *3)) (-4 *3 (-1097)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-841 *3)) (-4 *3 (-1097))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-941 *5)) (-4 *5 (-1047)) (-5 *2 (-769)) - (-5 *1 (-1161 *4 *5)) (-14 *4 (-919)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-642 (-769))) (-5 *3 (-769)) (-5 *1 (-1161 *4 *5)) - (-14 *4 (-919)) (-4 *5 (-1047)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-642 (-769))) (-5 *3 (-941 *5)) (-4 *5 (-1047)) - (-5 *1 (-1161 *4 *5)) (-14 *4 (-919))))) -(((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-218)))) - ((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1212)))) - ((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-674)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) - (-4 *4 (-848))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-791)) (-4 *4 (-848)) (-4 *6 (-307)) (-5 *2 (-418 *3)) - (-5 *1 (-740 *5 *4 *6 *3)) (-4 *3 (-947 *6 *5 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-687 *1)) (-5 *4 (-1262 *1)) (-4 *1 (-637 *5)) - (-4 *5 (-1047)) - (-5 *2 (-2 (|:| -3544 (-687 *5)) (|:| |vec| (-1262 *5)))))) + (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 -3348 ((-420 $) $))))) + (-4 *4 (-1240 *3)) + (-5 *2 + (-2 (|:| -1419 (-689 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-689 *3)))) + (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-411 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-687 *1)) (-4 *1 (-637 *4)) (-4 *4 (-1047)) - (-5 *2 (-687 *4))))) + (-12 (-5 *3 (-566)) (-4 *4 (-1240 *3)) + (-5 *2 + (-2 (|:| -1419 (-689 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-689 *3)))) + (-5 *1 (-768 *4 *5)) (-4 *5 (-411 *3 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-351)) (-4 *3 (-1240 *4)) (-4 *5 (-1240 *3)) + (-5 *2 + (-2 (|:| -1419 (-689 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-689 *3)))) + (-5 *1 (-985 *4 *3 *5 *6)) (-4 *6 (-724 *3 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-351)) (-4 *3 (-1240 *4)) (-4 *5 (-1240 *3)) + (-5 *2 + (-2 (|:| -1419 (-689 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-689 *3)))) + (-5 *1 (-1273 *4 *3 *5 *6)) (-4 *6 (-411 *3 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1266)))) + ((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1266))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |cd| (-1157)) (|:| -2598 (-1157)))) + (-5 *1 (-822))))) +(((*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-861)))) + ((*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-861))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 (-2 (|:| |deg| (-771)) (|:| -4383 *5)))) + (-4 *5 (-1240 *4)) (-4 *4 (-351)) (-5 *2 (-644 *5)) + (-5 *1 (-216 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-2 (|:| -2325 *5) (|:| -1630 (-566))))) + (-5 *4 (-566)) (-4 *5 (-1240 *4)) (-5 *2 (-644 *5)) + (-5 *1 (-696 *5))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-921)) (-5 *2 (-771)) (-5 *1 (-1100 *4 *5)) (-14 *4 *3) + (-14 *5 *3)))) +(((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-905 *3)) (-4 *3 (-1099))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-818)) (-14 *5 (-1173)) (-5 *2 (-642 (-1235 *5 *4))) - (-5 *1 (-1111 *4 *5)) (-5 *3 (-1235 *5 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-407 *4)) (-4 *4 (-1238 *3)) (-4 *3 (-13 (-363) (-147))) - (-5 *1 (-399 *3 *4))))) + (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *7 (-949 *4 *5 *6)) (-5 *2 (-644 (-644 *7))) + (-5 *1 (-450 *4 *5 *6 *7)) (-5 *3 (-644 *7)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-793)) + (-4 *7 (-850)) (-4 *8 (-949 *5 *6 *7)) (-5 *2 (-644 (-644 *8))) + (-5 *1 (-450 *5 *6 *7 *8)) (-5 *3 (-644 *8)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *7 (-949 *4 *5 *6)) (-5 *2 (-644 (-644 *7))) + (-5 *1 (-450 *4 *5 *6 *7)) (-5 *3 (-644 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-793)) + (-4 *7 (-850)) (-4 *8 (-949 *5 *6 *7)) (-5 *2 (-644 (-644 *8))) + (-5 *1 (-450 *5 *6 *7 *8)) (-5 *3 (-644 *8))))) +(((*1 *2 *2 *1 *3 *4) + (-12 (-5 *2 (-644 *8)) (-5 *3 (-1 *8 *8 *8)) + (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1207 *5 *6 *7 *8)) (-4 *5 (-558)) + (-4 *6 (-793)) (-4 *7 (-850)) (-4 *8 (-1064 *5 *6 *7))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-822))))) (((*1 *2 *3 *2 *3) - (-12 (-5 *2 (-437)) (-5 *3 (-1173)) (-5 *1 (-1176)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-437)) (-5 *3 (-1173)) (-5 *1 (-1176)))) + (-12 (-5 *2 (-439)) (-5 *3 (-1175)) (-5 *1 (-1178)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-439)) (-5 *3 (-1175)) (-5 *1 (-1178)))) ((*1 *2 *3 *2 *4 *1) - (-12 (-5 *2 (-437)) (-5 *3 (-642 (-1173))) (-5 *4 (-1173)) - (-5 *1 (-1176)))) + (-12 (-5 *2 (-439)) (-5 *3 (-644 (-1175))) (-5 *4 (-1175)) + (-5 *1 (-1178)))) ((*1 *2 *3 *2 *3 *1) - (-12 (-5 *2 (-437)) (-5 *3 (-1173)) (-5 *1 (-1176)))) + (-12 (-5 *2 (-439)) (-5 *3 (-1175)) (-5 *1 (-1178)))) ((*1 *2 *3 *2 *1) - (-12 (-5 *2 (-437)) (-5 *3 (-1173)) (-5 *1 (-1177)))) + (-12 (-5 *2 (-439)) (-5 *3 (-1175)) (-5 *1 (-1179)))) ((*1 *2 *3 *2 *1) - (-12 (-5 *2 (-437)) (-5 *3 (-642 (-1173))) (-5 *1 (-1177))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-363)) - (-5 *2 (-642 (-2 (|:| C (-687 *5)) (|:| |g| (-1262 *5))))) - (-5 *1 (-976 *5)) (-5 *3 (-687 *5)) (-5 *4 (-1262 *5))))) -(((*1 *1 *1 *1) (-5 *1 (-860)))) -(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-687 (-169 (-225)))) (-5 *2 (-1033)) - (-5 *1 (-754))))) -(((*1 *2 *2) - (-12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-556)) - (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-975 *3 *4 *5 *6)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-642 *3)) - (-5 *1 (-975 *4 *5 *6 *3)) (-4 *3 (-1062 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-642 *3)) (-4 *3 (-1062 *4 *5 *6)) (-4 *4 (-556)) - (-4 *5 (-791)) (-4 *6 (-848)) (-5 *1 (-975 *4 *5 *6 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-556)) - (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-975 *3 *4 *5 *6)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 (-642 *7) (-642 *7))) (-5 *2 (-642 *7)) - (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-791)) - (-4 *6 (-848)) (-5 *1 (-975 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *5 *3 *6 *3) - (-12 (-5 *3 (-564)) (-5 *5 (-169 (-225))) (-5 *6 (-1155)) - (-5 *4 (-225)) (-5 *2 (-1033)) (-5 *1 (-756))))) -(((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-642 (-481 *4 *5))) (-5 *3 (-862 *4)) - (-14 *4 (-642 (-1173))) (-4 *5 (-452)) (-5 *1 (-629 *4 *5))))) -(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) - (-12 (-5 *4 (-564)) (-5 *5 (-687 (-225))) - (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2266)))) (-5 *3 (-225)) - (-5 *2 (-1033)) (-5 *1 (-746))))) -(((*1 *2 *3 *4 *2 *2 *5) - (|partial| -12 (-5 *2 (-841 *4)) (-5 *3 (-610 *4)) (-5 *5 (-112)) - (-4 *4 (-13 (-1197) (-29 *6))) - (-4 *6 (-13 (-452) (-1036 (-564)) (-637 (-564)))) - (-5 *1 (-224 *6 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-831 *3)) (-4 *3 (-1097)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-841 *3)) (-4 *3 (-1097))))) -(((*1 *1 *1) (-5 *1 (-112)))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-556)) (-4 *3 (-1047)) - (-5 *2 (-2 (|:| -4332 *1) (|:| -1992 *1))) (-4 *1 (-850 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-556)) (-4 *5 (-1047)) - (-5 *2 (-2 (|:| -4332 *3) (|:| -1992 *3))) (-5 *1 (-851 *5 *3)) - (-4 *3 (-850 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-642 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) - (-4 *4 (-556))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 (-642 *2) *2 *2 *2)) (-4 *2 (-1097)) - (-5 *1 (-103 *2)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1097)) (-5 *1 (-103 *2))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-903 *4)) (-4 *4 (-1097)) (-5 *2 (-642 (-769))) - (-5 *1 (-902 *4))))) -(((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1047)) (-4 *5 (-791)) (-4 *3 (-848)) - (-5 *2 (-2 (|:| -4332 *1) (|:| -1992 *1))) (-4 *1 (-947 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1047)) (-5 *2 (-2 (|:| -4332 *1) (|:| -1992 *1))) - (-4 *1 (-1238 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-1212))))) -(((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-379)) (-5 *2 (-1267)) (-5 *1 (-1264))))) -(((*1 *2 *3) - (-12 (-5 *3 (-950 *5)) (-4 *5 (-1047)) (-5 *2 (-247 *4 *5)) - (-5 *1 (-942 *4 *5)) (-14 *4 (-642 (-1173)))))) -(((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *5 (-610 *4)) (-5 *6 (-1169 *4)) - (-4 *4 (-13 (-430 *7) (-27) (-1197))) - (-4 *7 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2131 (-642 *4)))) - (-5 *1 (-560 *7 *4 *3)) (-4 *3 (-654 *4)) (-4 *3 (-1097)))) - ((*1 *2 *3 *4 *5 *5 *5 *4 *6) - (-12 (-5 *5 (-610 *4)) (-5 *6 (-407 (-1169 *4))) - (-4 *4 (-13 (-430 *7) (-27) (-1197))) - (-4 *7 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2131 (-642 *4)))) - (-5 *1 (-560 *7 *4 *3)) (-4 *3 (-654 *4)) (-4 *3 (-1097))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-769)) (-5 *1 (-854 *2)) (-4 *2 (-38 (-407 (-564)))) - (-4 *2 (-172))))) -(((*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-558 *3)) (-4 *3 (-545))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-363) (-147) (-1036 (-564)))) (-4 *5 (-1238 *4)) - (-5 *2 (-2 (|:| |ans| (-407 *5)) (|:| |nosol| (-112)))) - (-5 *1 (-1013 *4 *5)) (-5 *3 (-407 *5))))) + (-12 (-5 *2 (-439)) (-5 *3 (-644 (-1175))) (-5 *1 (-1179))))) +(((*1 *2) + (-12 (-4 *3 (-558)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-419 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1173)) (-5 *2 (-1 (-225) (-225))) (-5 *1 (-701 *3)) - (-4 *3 (-612 (-536))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1173)) (-5 *2 (-1 (-225) (-225) (-225))) - (-5 *1 (-701 *3)) (-4 *3 (-612 (-536)))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-642 *1)) (-4 *1 (-1062 *4 *5 *6)) (-4 *4 (-1047)) - (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1062 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-791)) - (-4 *5 (-848)) (-5 *2 (-112)))) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1214))))) +(((*1 *2 *1) + (-12 (-5 *2 (-644 (-2 (|:| |gen| *3) (|:| -3571 (-566))))) + (-5 *1 (-363 *3)) (-4 *3 (-1099)))) ((*1 *2 *1) - (-12 (-4 *1 (-1205 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-791)) - (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1205 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-791)) - (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-1155)) (-5 *5 (-687 (-225))) - (-5 *2 (-1033)) (-5 *1 (-745))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-564)) (|has| *1 (-6 -4411)) (-4 *1 (-373 *3)) - (-4 *3 (-1212))))) + (-12 (-5 *2 (-644 (-2 (|:| |gen| *3) (|:| -3571 (-771))))) + (-5 *1 (-388 *3)) (-4 *3 (-1099)))) + ((*1 *2 *1) + (-12 (-5 *2 (-644 (-2 (|:| -2325 *3) (|:| -3631 (-566))))) + (-5 *1 (-420 *3)) (-4 *3 (-558)))) + ((*1 *2 *1) + (-12 (-5 *2 (-644 (-2 (|:| |gen| *3) (|:| -3571 (-771))))) + (-5 *1 (-819 *3)) (-4 *3 (-850))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) - (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *2 (-379)) (-5 *1 (-205))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1267)) (-5 *1 (-1264))))) + (-12 (-5 *2 (-644 (-1171 (-566)))) (-5 *1 (-191)) (-5 *3 (-566))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1171 *5)) (-4 *5 (-365)) (-5 *2 (-644 *6)) + (-5 *1 (-534 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-848)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-644 *6)) (-5 *4 (-1175)) (-4 *6 (-432 *5)) + (-4 *5 (-1099)) (-5 *2 (-644 (-612 *6))) (-5 *1 (-575 *5 *6))))) +(((*1 *1 *1) (-5 *1 (-112)))) (((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1153 *4)) (-5 *3 (-564)) (-4 *4 (-1047)) - (-5 *1 (-1157 *4)))) + (-12 (-5 *2 (-1155 *4)) (-5 *3 (-566)) (-4 *4 (-1049)) + (-5 *1 (-1159 *4)))) ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-564)) (-5 *1 (-1254 *3 *4 *5)) (-4 *3 (-1047)) - (-14 *4 (-1173)) (-14 *5 *3)))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-1229 (-564)))))) -(((*1 *1 *1 *1) (-5 *1 (-860)))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4410)) (-4 *1 (-489 *4)) - (-4 *4 (-1212)) (-5 *2 (-112))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-586 *2)) (-4 *2 (-545))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1155)) (-5 *3 (-642 (-263))) (-5 *1 (-261)))) - ((*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-263))))) + (-12 (-5 *2 (-566)) (-5 *1 (-1256 *3 *4 *5)) (-4 *3 (-1049)) + (-14 *4 (-1175)) (-14 *5 *3)))) +(((*1 *1 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1049))))) (((*1 *2 *1) - (-12 (-4 *1 (-554 *3)) (-4 *3 (-13 (-404) (-1197))) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-846)) (-5 *2 (-112)))) + (-12 (-4 *2 (-1240 *3)) (-5 *1 (-401 *3 *2)) + (-4 *3 (-13 (-365) (-147)))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-644 *1)) (-5 *3 (-644 *7)) (-4 *1 (-1070 *4 *5 *6 *7)) + (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *7 (-1064 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1065 *4 *3)) (-4 *4 (-13 (-846) (-363))) - (-4 *3 (-1238 *4)) (-5 *2 (-112))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) - (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-986 *4 *5 *6 *7 *3)) (-4 *3 (-1068 *4 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-642 *3)) (-4 *3 (-1068 *5 *6 *7 *8)) (-4 *5 (-452)) - (-4 *6 (-791)) (-4 *7 (-848)) (-4 *8 (-1062 *5 *6 *7)) - (-5 *2 (-112)) (-5 *1 (-986 *5 *6 *7 *8 *3)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) - (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1104 *4 *5 *6 *7 *3)) (-4 *3 (-1068 *4 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-642 *3)) (-4 *3 (-1068 *5 *6 *7 *8)) (-4 *5 (-452)) - (-4 *6 (-791)) (-4 *7 (-848)) (-4 *8 (-1062 *5 *6 *7)) - (-5 *2 (-112)) (-5 *1 (-1104 *5 *6 *7 *8 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-642 (-1198 *3))) (-5 *1 (-1198 *3)) (-4 *3 (-1097))))) -(((*1 *2 *1 *1 *3 *4) - (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) - (-4 *5 (-13 (-1097) (-34))) (-4 *6 (-13 (-1097) (-34))) - (-5 *2 (-112)) (-5 *1 (-1137 *5 *6))))) -(((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-769)) (-4 *1 (-1238 *3)) (-4 *3 (-1047))))) + (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) + (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 *1)) + (-4 *1 (-1070 *4 *5 *6 *7)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-644 *1)) (-4 *1 (-1070 *4 *5 *6 *3)) (-4 *4 (-454)) + (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-644 *1)) + (-4 *1 (-1070 *4 *5 *6 *3))))) +(((*1 *2) + (-12 (-4 *4 (-1218)) (-4 *5 (-1240 *4)) (-4 *6 (-1240 (-409 *5))) + (-5 *2 (-771)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) + (-4 *5 (-1240 (-409 *4))) (-5 *2 (-771))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) +(((*1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-447 *3)) (-4 *3 (-1049))))) (((*1 *2 *1) + (-12 (-4 *1 (-1070 *3 *4 *5 *6)) (-4 *3 (-454)) (-4 *4 (-793)) + (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1070 *4 *5 *6 *3)) (-4 *4 (-454)) (-4 *5 (-793)) + (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-359 *3)) (-4 *3 (-351))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-644 (-295 *4))) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-850)) + (-4 *4 (-13 (-172) (-717 (-409 (-566))))) (-14 *5 (-921))))) +(((*1 *1 *2 *3 *1) + (-12 (-14 *4 (-644 (-1175))) (-4 *2 (-172)) + (-4 *3 (-238 (-3002 *4) (-771))) + (-14 *6 + (-1 (-112) (-2 (|:| -2104 *5) (|:| -3631 *3)) + (-2 (|:| -2104 *5) (|:| -3631 *3)))) + (-5 *1 (-463 *4 *2 *5 *3 *6 *7)) (-4 *5 (-850)) + (-4 *7 (-949 *2 *3 (-864 *4)))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-558)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) + (-5 *1 (-1204 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5))))) +(((*1 *2 *2 *2) (-12 (-5 *2 - (-642 - (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) - (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225))))) - (-5 *1 (-559)))) - ((*1 *2 *1) - (-12 (-4 *1 (-608 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-1097)) - (-5 *2 (-642 *3)))) - ((*1 *2 *1) - (-12 - (-5 *2 - (-642 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) - (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225))))) - (-5 *1 (-801))))) + (-2 (|:| -1419 (-689 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-689 *3)))) + (-4 *3 (-13 (-308) (-10 -8 (-15 -3348 ((-420 $) $))))) + (-4 *4 (-1240 *3)) (-5 *1 (-501 *3 *4 *5)) (-4 *5 (-411 *3 *4))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-566)) (|has| *1 (-6 -4418)) (-4 *1 (-1252 *3)) + (-4 *3 (-1214))))) +(((*1 *2 *2) + (-12 (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) + (-4 *6 (-1064 *3 *4 *5)) (-5 *1 (-624 *3 *4 *5 *6 *7 *2)) + (-4 *7 (-1070 *3 *4 *5 *6)) (-4 *2 (-1108 *3 *4 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756))))) + (-12 (-5 *4 (-1175)) + (-4 *5 (-13 (-1038 (-566)) (-454) (-639 (-566)))) + (-5 *2 (-2 (|:| -1574 *3) (|:| |nconst| *3))) (-5 *1 (-569 *5 *3)) + (-4 *3 (-13 (-27) (-1199) (-432 *5)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1049)) (-4 *2 (-687 *4 *5 *6)) + (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1240 *4)) (-4 *5 (-375 *4)) + (-4 *6 (-375 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-1179))))) +(((*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-225)) (-5 *1 (-306))))) +(((*1 *2 *3 *3 *1) + (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-3 *3 (-644 *1))) + (-4 *1 (-1070 *4 *5 *6 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-556 *3)) (-4 *3 (-13 (-406) (-1199))) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-848)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1067 *4 *3)) (-4 *4 (-13 (-848) (-365))) + (-4 *3 (-1240 *4)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1157)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-1269)) + (-5 *1 (-988 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1157)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-1269)) + (-5 *1 (-1106 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) + (-4 *3 (-369 *4)))) + ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-1180))) (-5 *1 (-183))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) + (-12 (-5 *4 (-689 (-566))) (-5 *5 (-112)) (-5 *7 (-689 (-225))) + (-5 *3 (-566)) (-5 *6 (-225)) (-5 *2 (-1035)) (-5 *1 (-754))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1214)) (-5 *1 (-377 *4 *2)) + (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4418))))))) +(((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-538))))) +(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-381)) (-5 *1 (-97)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-381)) (-5 *1 (-97))))) (((*1 *2 *3) - (-12 (-5 *3 (-1091 (-841 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) + (-12 + (-5 *3 + (-2 (|:| -4177 (-381)) (|:| -2598 (-1157)) + (|:| |explanations| (-644 (-1157))))) + (-5 *2 (-1035)) (-5 *1 (-306)))) ((*1 *2 *3) - (-12 (-5 *3 (-1091 (-841 (-225)))) (-5 *2 (-225)) (-5 *1 (-300)))) + (-12 + (-5 *3 + (-2 (|:| -4177 (-381)) (|:| -2598 (-1157)) + (|:| |explanations| (-644 (-1157))) (|:| |extra| (-1035)))) + (-5 *2 (-1035)) (-5 *1 (-306))))) +(((*1 *2 *2) + (-12 (-4 *3 (-365)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) + (-5 *1 (-523 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-1091 (-841 (-225)))) (-5 *2 (-225)) (-5 *1 (-305))))) -(((*1 *2 *3) - (-12 (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-299 *4 *5)) (-14 *4 *3) - (-14 *5 *3))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1091 (-841 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) - (-5 *1 (-305)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-363)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-112)) - (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-947 *3 *4 *5))))) + (-12 (-4 *4 (-558)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) + (-4 *7 (-992 *4)) (-4 *2 (-687 *7 *8 *9)) + (-5 *1 (-524 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-687 *4 *5 *6)) + (-4 *8 (-375 *7)) (-4 *9 (-375 *7)))) + ((*1 *1 *1) + (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) + (-4 *4 (-375 *2)) (-4 *2 (-308)))) + ((*1 *2 *2) + (-12 (-4 *3 (-308)) (-4 *3 (-172)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-5 *1 (-688 *3 *4 *5 *2)) + (-4 *2 (-687 *3 *4 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-689 *3)) (-4 *3 (-308)) (-5 *1 (-700 *3)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1053 *2 *3 *4 *5 *6)) (-4 *4 (-1049)) + (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *2 *4)) (-4 *4 (-308))))) +(((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) + ((*1 *2 *1) (-12 (-4 *1 (-1120 *3)) (-4 *3 (-1214)) (-5 *2 (-771))))) +(((*1 *1) (-12 (-5 *1 (-691 *2)) (-4 *2 (-613 (-862)))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1214))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-331))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-644 (-317 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) + (-5 *1 (-210))))) (((*1 *2 *3) - (-12 (-5 *2 (-642 (-1169 (-564)))) (-5 *1 (-191)) (-5 *3 (-564))))) -(((*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-558 *3)) (-4 *3 (-545)))) - ((*1 *2 *3) - (-12 (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-307)) (-5 *2 (-418 *3)) - (-5 *1 (-740 *4 *5 *6 *3)) (-4 *3 (-947 *6 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-307)) - (-4 *7 (-947 *6 *4 *5)) (-5 *2 (-418 (-1169 *7))) - (-5 *1 (-740 *4 *5 *6 *7)) (-5 *3 (-1169 *7)))) - ((*1 *2 *1) - (-12 (-4 *3 (-452)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) - (-5 *2 (-418 *1)) (-4 *1 (-947 *3 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-848)) (-4 *5 (-791)) (-4 *6 (-452)) (-5 *2 (-418 *3)) - (-5 *1 (-977 *4 *5 *6 *3)) (-4 *3 (-947 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-452)) - (-4 *7 (-947 *6 *4 *5)) (-5 *2 (-418 (-1169 (-407 *7)))) - (-5 *1 (-1168 *4 *5 *6 *7)) (-5 *3 (-1169 (-407 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-418 *1)) (-4 *1 (-1216)))) - ((*1 *2 *3) - (-12 (-4 *4 (-556)) (-5 *2 (-418 *3)) (-5 *1 (-1241 *4 *3)) - (-4 *3 (-13 (-1238 *4) (-556) (-10 -8 (-15 -2105 ($ $ $))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1044 *4 *5)) (-4 *4 (-13 (-846) (-307) (-147) (-1020))) - (-14 *5 (-642 (-1173))) - (-5 *2 - (-642 (-1143 *4 (-531 (-862 *6)) (-862 *6) (-778 *4 (-862 *6))))) - (-5 *1 (-1288 *4 *5 *6)) (-14 *6 (-642 (-1173)))))) + (-12 (-5 *3 (-644 *2)) (-4 *2 (-1240 *4)) (-5 *1 (-541 *4 *2 *5 *6)) + (-4 *4 (-308)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-771)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-307) (-147))) (-4 *4 (-13 (-848) (-612 (-1173)))) - (-4 *5 (-791)) (-5 *1 (-922 *3 *4 *5 *2)) (-4 *2 (-947 *3 *5 *4))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-1155)) (-5 *2 (-379)) (-5 *1 (-784))))) -(((*1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-611 (-860)))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-621 *4 *5)) - (-5 *3 - (-1 (-2 (|:| |ans| *4) (|:| -4351 *4) (|:| |sol?| (-112))) - (-564) *4)) - (-4 *4 (-363)) (-4 *5 (-1238 *4)) (-5 *1 (-574 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-642 (-1155))) (-5 *2 (-1155)) (-5 *1 (-192)))) - ((*1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-860))))) -(((*1 *1 *1) (-5 *1 (-225))) ((*1 *1 *1) (-5 *1 (-379))) - ((*1 *1) (-5 *1 (-379)))) -(((*1 *2 *3) - (-12 (-5 *3 (-642 (-564))) (-5 *2 (-902 (-564))) (-5 *1 (-915)))) - ((*1 *2 *3) (-12 (-5 *3 (-969)) (-5 *2 (-902 (-564))) (-5 *1 (-915))))) -(((*1 *1 *1) - (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047))))) -(((*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-582))))) -(((*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1155)) (-5 *1 (-305))))) + (-12 (-5 *2 (-1264 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) + (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4)))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-1157)) (-5 *5 (-689 (-225))) + (-5 *2 (-1035)) (-5 *1 (-747))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439))))) +(((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002)))))) (((*1 *2 *1) - (-12 (-5 *2 (-1169 (-407 (-950 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) - (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-919)) - (-14 *5 (-642 (-1173))) (-14 *6 (-1262 (-687 *3)))))) -(((*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-225)) (-5 *1 (-305))))) -(((*1 *2) (-12 (-5 *2 (-919)) (-5 *1 (-1265)))) - ((*1 *2 *2) (-12 (-5 *2 (-919)) (-5 *1 (-1265))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-687 *3)) (-4 *3 (-1047)) (-5 *1 (-688 *3))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-642 (-1169 *5))) (-5 *3 (-1169 *5)) - (-4 *5 (-166 *4)) (-4 *4 (-545)) (-5 *1 (-149 *4 *5)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-642 *3)) (-4 *3 (-1238 *5)) - (-4 *5 (-1238 *4)) (-4 *4 (-349)) (-5 *1 (-358 *4 *5 *3)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-642 (-1169 (-564)))) (-5 *3 (-1169 (-564))) - (-5 *1 (-572)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-642 (-1169 *1))) (-5 *3 (-1169 *1)) - (-4 *1 (-907))))) -(((*1 *1) (-5 *1 (-157))) - ((*1 *2 *1) (-12 (-4 *1 (-1042 *2)) (-4 *2 (-23))))) + (-12 (-4 *1 (-1038 (-566))) (-4 *1 (-303)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-547)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1099))))) +(((*1 *2 *3 *4 *5 *4 *4 *4) + (-12 (-4 *6 (-850)) (-5 *3 (-644 *6)) (-5 *5 (-644 *3)) + (-5 *2 + (-2 (|:| |f1| *3) (|:| |f2| (-644 *5)) (|:| |f3| *5) + (|:| |f4| (-644 *5)))) + (-5 *1 (-1185 *6)) (-5 *4 (-644 *5))))) +(((*1 *1) (-5 *1 (-55)))) (((*1 *2 *3) - (-12 (-5 *3 (-687 (-407 (-950 (-564))))) - (-5 *2 (-642 (-687 (-316 (-564))))) (-5 *1 (-1029))))) -(((*1 *2 *1) (-12 (-4 *1 (-672 *2)) (-4 *2 (-1212))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1173)) - (-5 *2 (-3 (|:| |fst| (-434)) (|:| -4287 "void"))) (-5 *1 (-1176))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1062 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-791)) - (-4 *2 (-848)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) - (-4 *4 (-848))))) -(((*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1267)) (-5 *1 (-1135)))) + (-12 (-5 *3 (-1093 (-843 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) ((*1 *2 *3) - (-12 (-5 *3 (-642 (-860))) (-5 *2 (-1267)) (-5 *1 (-1135))))) -(((*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-144))))) -(((*1 *2 *3 *1) - (-12 - (-5 *2 - (-2 (|:| |cycle?| (-112)) (|:| -3376 (-769)) (|:| |period| (-769)))) - (-5 *1 (-1153 *4)) (-4 *4 (-1212)) (-5 *3 (-769))))) -(((*1 *2 *2) - (-12 (-4 *2 (-13 (-363) (-846))) (-5 *1 (-181 *2 *3)) - (-4 *3 (-1238 (-169 *2)))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-418 *2)) (-4 *2 (-307)) (-5 *1 (-912 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-407 (-950 *5))) (-5 *4 (-1173)) - (-4 *5 (-13 (-307) (-147))) (-5 *2 (-52)) (-5 *1 (-913 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-418 (-950 *6))) (-5 *5 (-1173)) (-5 *3 (-950 *6)) - (-4 *6 (-13 (-307) (-147))) (-5 *2 (-52)) (-5 *1 (-913 *6))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-1 (-585 *3) *3 (-1173))) - (-5 *6 - (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 - (-1173))) - (-4 *3 (-284)) (-4 *3 (-627)) (-4 *3 (-1036 *4)) (-4 *3 (-430 *7)) - (-5 *4 (-1173)) (-4 *7 (-612 (-890 (-564)))) (-4 *7 (-452)) - (-4 *7 (-884 (-564))) (-4 *7 (-1097)) (-5 *2 (-585 *3)) - (-5 *1 (-573 *7 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-769)) (-5 *2 (-1267)) (-5 *1 (-864 *4 *5 *6 *7)) - (-4 *4 (-1047)) (-14 *5 (-642 (-1173))) (-14 *6 (-642 *3)) - (-14 *7 *3))) + (-12 (-5 *3 (-1093 (-843 (-225)))) (-5 *2 (-225)) (-5 *1 (-301)))) ((*1 *2 *3) - (-12 (-5 *3 (-769)) (-4 *4 (-1047)) (-4 *5 (-848)) (-4 *6 (-791)) - (-14 *8 (-642 *5)) (-5 *2 (-1267)) - (-5 *1 (-1274 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-947 *4 *6 *5)) - (-14 *9 (-642 *3)) (-14 *10 *3)))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-769)) (-4 *1 (-1238 *3)) (-4 *3 (-1047))))) -(((*1 *1) (-4 *1 (-965)))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-790)))) - ((*1 *2 *1) - (-12 (-5 *2 (-769)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1047)) - (-14 *4 (-642 (-1173))))) - ((*1 *2 *1) - (-12 (-5 *2 (-564)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1047) (-848))) - (-14 *4 (-642 (-1173))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1047)) (-4 *3 (-848)) - (-4 *5 (-266 *3)) (-4 *6 (-791)) (-5 *2 (-769)))) - ((*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-275)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1169 *8)) (-5 *4 (-642 *6)) (-4 *6 (-848)) - (-4 *8 (-947 *7 *5 *6)) (-4 *5 (-791)) (-4 *7 (-1047)) - (-5 *2 (-642 (-769))) (-5 *1 (-321 *5 *6 *7 *8)))) - ((*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-919)))) - ((*1 *2 *1) - (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-848)) (-4 *4 (-172)) - (-5 *2 (-769)))) - ((*1 *2 *1) (-12 (-4 *1 (-470 *3 *2)) (-4 *3 (-172)) (-4 *2 (-23)))) - ((*1 *2 *1) - (-12 (-4 *3 (-556)) (-5 *2 (-564)) (-5 *1 (-621 *3 *4)) - (-4 *4 (-1238 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-706 *3)) (-4 *3 (-1047)) (-5 *2 (-769)))) - ((*1 *2 *1) (-12 (-4 *1 (-850 *3)) (-4 *3 (-1047)) (-5 *2 (-769)))) - ((*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-902 *3)) (-4 *3 (-1097)))) - ((*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-903 *3)) (-4 *3 (-1097)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-642 *6)) (-4 *1 (-947 *4 *5 *6)) (-4 *4 (-1047)) - (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-642 (-769))))) + (-12 (-5 *3 (-1093 (-843 (-225)))) (-5 *2 (-225)) (-5 *1 (-306))))) +(((*1 *1) (-4 *1 (-967)))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-566)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1214)) + (-4 *5 (-375 *4)) (-4 *2 (-375 *4)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-947 *4 *5 *3)) (-4 *4 (-1047)) (-4 *5 (-791)) - (-4 *3 (-848)) (-5 *2 (-769)))) - ((*1 *2 *1) - (-12 (-4 *1 (-971 *3 *2 *4)) (-4 *3 (-1047)) (-4 *4 (-848)) - (-4 *2 (-790)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1205 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-791)) - (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-769)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1224 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-1253 *3)) - (-5 *2 (-564)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1245 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-1222 *3)) - (-5 *2 (-407 (-564))))) + (-12 (-5 *3 (-566)) (-4 *1 (-1053 *4 *5 *6 *2 *7)) (-4 *6 (-1049)) + (-4 *7 (-238 *4 *6)) (-4 *2 (-238 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-529)) (-5 *2 (-691 (-551)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-862)))) + ((*1 *1 *1) (-5 *1 (-862)))) +(((*1 *2 *3 *4 *5 *6 *2 *7 *8) + (|partial| -12 (-5 *2 (-644 (-1171 *11))) (-5 *3 (-1171 *11)) + (-5 *4 (-644 *10)) (-5 *5 (-644 *8)) (-5 *6 (-644 (-771))) + (-5 *7 (-1264 (-644 (-1171 *8)))) (-4 *10 (-850)) + (-4 *8 (-308)) (-4 *11 (-949 *8 *9 *10)) (-4 *9 (-793)) + (-5 *1 (-707 *9 *10 *8 *11))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-644 *1)) + (-4 *1 (-1070 *4 *5 *6 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1101 *3)) (-5 *1 (-905 *3)) (-4 *3 (-370)) + (-4 *3 (-1099))))) +(((*1 *1) (-5 *1 (-1178)))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1171 *1)) (-5 *3 (-1175)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1171 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-952 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1175)) (-4 *1 (-29 *3)) (-4 *3 (-558)))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-558)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1171 *2)) (-5 *4 (-1175)) (-4 *2 (-432 *5)) + (-5 *1 (-32 *5 *2)) (-4 *5 (-558)))) + ((*1 *1 *2 *3) + (|partial| -12 (-5 *2 (-1171 *1)) (-5 *3 (-921)) (-4 *1 (-1012)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-1171 *1)) (-5 *3 (-921)) (-5 *4 (-862)) + (-4 *1 (-1012)))) + ((*1 *1 *2 *3) + (|partial| -12 (-5 *3 (-921)) (-4 *4 (-13 (-848) (-365))) + (-4 *1 (-1067 *4 *2)) (-4 *2 (-1240 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-824))))) +(((*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-62 *3)) (-14 *3 (-1175)))) + ((*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-69 *3)) (-14 *3 (-1175)))) + ((*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-72 *3)) (-14 *3 (-1175)))) + ((*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-1269)))) + ((*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1269)) (-5 *1 (-399)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1157)) (-5 *4 (-862)) (-5 *2 (-1269)) (-5 *1 (-1137)))) + ((*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1269)) (-5 *1 (-1137)))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 (-862))) (-5 *2 (-1269)) (-5 *1 (-1137))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-566)) (-5 *3 (-771)) (-5 *1 (-563))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-644 (-644 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-644 (-3 (|:| |array| (-644 *3)) (|:| |scalar| (-1175))))) + (-5 *6 (-644 (-1175))) (-5 *3 (-1175)) (-5 *2 (-1103)) + (-5 *1 (-399)))) + ((*1 *2 *3 *4 *5 *6 *3) + (-12 (-5 *5 (-644 (-644 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-644 (-3 (|:| |array| (-644 *3)) (|:| |scalar| (-1175))))) + (-5 *6 (-644 (-1175))) (-5 *3 (-1175)) (-5 *2 (-1103)) + (-5 *1 (-399)))) + ((*1 *2 *3 *4 *5 *4) + (-12 (-5 *4 (-644 (-1175))) (-5 *5 (-1178)) (-5 *3 (-1175)) + (-5 *2 (-1103)) (-5 *1 (-399))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-690 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) +(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-862))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1099)) (-5 *2 (-644 *1)) + (-4 *1 (-432 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-1281 *3)) (-4 *3 (-363)) (-5 *2 (-831 (-919))))) + (|partial| -12 (-5 *2 (-644 (-892 *3))) (-5 *1 (-892 *3)) + (-4 *3 (-1099)))) ((*1 *2 *1) - (-12 (-4 *1 (-1283 *3 *4)) (-4 *3 (-848)) (-4 *4 (-1047)) - (-5 *2 (-769))))) -(((*1 *2 *3 *3 *3) - (|partial| -12 (-4 *4 (-13 (-363) (-147) (-1036 (-564)))) - (-4 *5 (-1238 *4)) (-5 *2 (-642 (-407 *5))) (-5 *1 (-1014 *4 *5)) - (-5 *3 (-407 *5))))) -(((*1 *2 *2 *3) + (|partial| -12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) + (-5 *2 (-644 *1)) (-4 *1 (-949 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1049)) + (-4 *7 (-949 *6 *4 *5)) (-5 *2 (-644 *3)) + (-5 *1 (-950 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-365) + (-10 -8 (-15 -2479 ($ *7)) (-15 -4157 (*7 $)) + (-15 -4167 (*7 $)))))))) +(((*1 *2 *1) (-12 (-4 *1 (-955)) (-5 *2 (-644 (-644 (-943 (-225))))))) + ((*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-644 (-644 (-943 (-225)))))))) +(((*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-405 *3)) (-4 *3 (-406)))) + ((*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-405 *3)) (-4 *3 (-406)))) + ((*1 *2 *2) (-12 (-5 *2 (-921)) (|has| *1 (-6 -4408)) (-4 *1 (-406)))) + ((*1 *2) (-12 (-4 *1 (-406)) (-5 *2 (-921)))) + ((*1 *2 *1) (-12 (-4 *1 (-869 *3)) (-5 *2 (-1155 (-566)))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-921)) (-5 *1 (-1030 *2)) + (-4 *2 (-13 (-1099) (-10 -8 (-15 -3052 ($ $ $)))))))) +(((*1 *1 *2) + (-12 (-5 *2 (-644 (-1075 *3 *4 *5))) (-4 *3 (-1099)) + (-4 *4 (-13 (-1049) (-886 *3) (-614 (-892 *3)))) + (-4 *5 (-13 (-432 *4) (-886 *3) (-614 (-892 *3)))) + (-5 *1 (-1076 *3 *4 *5))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-644 *6) "failed") (-566) *6 *6)) (-4 *6 (-365)) + (-4 *7 (-1240 *6)) + (-5 *2 (-2 (|:| |answer| (-587 (-409 *7))) (|:| |a0| *6))) + (-5 *1 (-576 *6 *7)) (-5 *3 (-409 *7))))) +(((*1 *1 *2) + (-12 (-5 *2 (-921)) (-5 *1 (-152 *3 *4 *5)) (-14 *3 *2) + (-4 *4 (-365)) (-14 *5 (-993 *3 *4))))) +(((*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-393))))) +(((*1 *2 *3 *2) (-12 (-5 *2 - (-2 (|:| |partsol| (-1262 (-407 (-950 *4)))) - (|:| -2131 (-642 (-1262 (-407 (-950 *4))))))) - (-5 *3 (-642 *7)) (-4 *4 (-13 (-307) (-147))) - (-4 *7 (-947 *4 *6 *5)) (-4 *5 (-13 (-848) (-612 (-1173)))) - (-4 *6 (-791)) (-5 *1 (-922 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) - (-12 (-5 *3 (-687 (-225))) (-5 *4 (-564)) (-5 *5 (-225)) - (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL)))) - (-5 *2 (-1033)) (-5 *1 (-747)))) - ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) - (-12 (-5 *3 (-687 (-225))) (-5 *4 (-564)) (-5 *5 (-225)) - (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL)))) - (-5 *8 (-388)) (-5 *2 (-1033)) (-5 *1 (-747))))) -(((*1 *2 *3) - (-12 (-4 *4 (-848)) (-5 *2 (-642 (-642 *4))) (-5 *1 (-1183 *4)) - (-5 *3 (-642 *4))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-769)) (-5 *1 (-103 *3)) (-4 *3 (-1097))))) -(((*1 *2 *3) + (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2504 (-225)) + (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) + (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) + (-5 *3 (-644 (-264))) (-5 *1 (-262)))) + ((*1 *1 *2) (-12 - (-5 *3 - (-2 (|:| -3544 (-687 (-407 (-950 *4)))) - (|:| |vec| (-642 (-407 (-950 *4)))) (|:| -3616 (-769)) - (|:| |rows| (-642 (-564))) (|:| |cols| (-642 (-564))))) - (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-848) (-612 (-1173)))) - (-4 *6 (-791)) (-5 *2 - (-2 (|:| |partsol| (-1262 (-407 (-950 *4)))) - (|:| -2131 (-642 (-1262 (-407 (-950 *4))))))) - (-5 *1 (-922 *4 *5 *6 *7)) (-4 *7 (-947 *4 *6 *5))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-642 *6)) (-4 *6 (-848)) (-4 *4 (-363)) (-4 *5 (-791)) + (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2504 (-225)) + (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) + (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) + (-5 *1 (-264)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266)))) + ((*1 *2 *1 *3 *3 *4 *4 *4) + (-12 (-5 *3 (-566)) (-5 *4 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266)))) + ((*1 *2 *1 *3) + (-12 + (-5 *3 + (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2504 (-225)) + (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) + (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) + (-5 *2 (-1269)) (-5 *1 (-1266)))) + ((*1 *2 *1) + (-12 (-5 *2 - (-2 (|:| |mval| (-687 *4)) (|:| |invmval| (-687 *4)) - (|:| |genIdeal| (-504 *4 *5 *6 *7)))) - (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-947 *4 *5 *6))))) + (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2504 (-225)) + (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) + (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) + (-5 *1 (-1266)))) + ((*1 *2 *1 *3 *3 *3 *3 *3) + (-12 (-5 *3 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266))))) +(((*1 *1 *1 *2) + (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) + (-5 *1 (-506 *3 *4 *5 *2)) (-4 *2 (-949 *3 *4 *5)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-365)) (-4 *3 (-793)) (-4 *4 (-850)) + (-5 *1 (-506 *2 *3 *4 *5)) (-4 *5 (-949 *2 *3 *4))))) +(((*1 *1 *1) + (-12 (-4 *2 (-147)) (-4 *2 (-308)) (-4 *2 (-454)) (-4 *3 (-850)) + (-4 *4 (-793)) (-5 *1 (-987 *2 *3 *4 *5)) (-4 *5 (-949 *2 *4 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-317 (-566))) (-5 *1 (-1118)))) + ((*1 *2 *2) + (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1199)))))) (((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -2652 (-564)) (|:| -1569 (-642 *3)))) - (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-919)) (-5 *1 (-152 *3 *4 *5)) (-14 *3 *2) - (-4 *4 (-363)) (-14 *5 (-991 *3 *4))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-919)) (-5 *1 (-1028 *2)) - (-4 *2 (-13 (-1097) (-10 -8 (-15 -2917 ($ $ $)))))))) -(((*1 *1 *2) - (-12 (-5 *2 (-642 (-1073 *3 *4 *5))) (-4 *3 (-1097)) - (-4 *4 (-13 (-1047) (-884 *3) (-612 (-890 *3)))) - (-4 *5 (-13 (-430 *4) (-884 *3) (-612 (-890 *3)))) - (-5 *1 (-1074 *3 *4 *5))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) - (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) - (-5 *1 (-1275 *3 *4 *5 *6)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-642 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1062 *5 *6 *7)) (-4 *5 (-556)) - (-4 *6 (-791)) (-4 *7 (-848)) (-5 *1 (-1275 *5 *6 *7 *8))))) -(((*1 *2 *3) (-12 (-5 *3 (-1173)) (-5 *2 (-1267)) (-5 *1 (-1176))))) + (-12 (-5 *3 (-952 *5)) (-4 *5 (-1049)) (-5 *2 (-247 *4 *5)) + (-5 *1 (-944 *4 *5)) (-14 *4 (-644 (-1175)))))) +(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) + (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *4 (-225)) + (-5 *2 (-1035)) (-5 *1 (-755))))) (((*1 *1 *1 *2) - (-12 (-5 *1 (-647 *2 *3 *4)) (-4 *2 (-1097)) (-4 *3 (-23)) - (-14 *4 *3)))) + (-12 (-5 *2 (-566)) (-5 *1 (-317 *3)) (-4 *3 (-558)) (-4 *3 (-1099))))) +(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 + *4 *6 *4) + (-12 (-5 *4 (-566)) (-5 *5 (-689 (-225))) (-5 *6 (-675 (-225))) + (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-750))))) +(((*1 *2 *1) (-12 (-5 *2 (-862)) (-5 *1 (-52))))) (((*1 *2 *1) - (-12 (-5 *2 (-1153 (-2 (|:| |k| (-564)) (|:| |c| *3)))) - (-5 *1 (-594 *3)) (-4 *3 (-1047))))) -(((*1 *2 *3 *4 *4 *3 *3 *5) - (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-1169 *3)) - (-4 *3 (-13 (-430 *6) (-27) (-1197))) - (-4 *6 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564)))) - (-5 *2 (-2 (|:| -3872 *3) (|:| |coeff| *3))) - (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1097)))) - ((*1 *2 *3 *4 *4 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-407 (-1169 *3))) - (-4 *3 (-13 (-430 *6) (-27) (-1197))) - (-4 *6 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564)))) - (-5 *2 (-2 (|:| -3872 *3) (|:| |coeff| *3))) - (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1097))))) -(((*1 *2 *3) - (-12 (-5 *3 (-919)) (-5 *2 (-1169 *4)) (-5 *1 (-357 *4)) - (-4 *4 (-349)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-919)) (-5 *2 (-1169 *4)) (-5 *1 (-357 *4)) - (-4 *4 (-349)))) - ((*1 *1) (-4 *1 (-368))) - ((*1 *2 *3) - (-12 (-5 *3 (-919)) (-5 *2 (-1262 *4)) (-5 *1 (-528 *4)) - (-4 *4 (-349)))) - ((*1 *1 *1) (-4 *1 (-545))) ((*1 *1) (-4 *1 (-545))) - ((*1 *1 *1) (-5 *1 (-564))) ((*1 *1 *1) (-5 *1 (-769))) - ((*1 *2 *1) (-12 (-5 *2 (-903 *3)) (-5 *1 (-902 *3)) (-4 *3 (-1097)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-564)) (-5 *2 (-903 *4)) (-5 *1 (-902 *4)) - (-4 *4 (-1097)))) - ((*1 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-545)) (-4 *2 (-556))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-545)))) -(((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1238 (-564)))))) + (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-1163 3 *3)))) + ((*1 *1) (-12 (-5 *1 (-1163 *2 *3)) (-14 *2 (-921)) (-4 *3 (-1049)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1132 (-225))) (-5 *1 (-1266)))) + ((*1 *2 *1) (-12 (-5 *2 (-1132 (-225))) (-5 *1 (-1266))))) +(((*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1269)) (-5 *1 (-393)))) + ((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-393))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-454)) + (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) + (-5 *1 (-977 *3 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-452)) - (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) - (-5 *1 (-975 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-642 *7)) (-5 *3 (-112)) (-4 *7 (-1062 *4 *5 *6)) - (-4 *4 (-452)) (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) - (-5 *1 (-975 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-642 *5) *6)) - (-4 *5 (-13 (-363) (-147) (-1036 (-407 (-564))))) (-4 *6 (-1238 *5)) - (-5 *2 (-642 (-2 (|:| |poly| *6) (|:| -3359 *3)))) - (-5 *1 (-807 *5 *6 *3 *7)) (-4 *3 (-654 *6)) - (-4 *7 (-654 (-407 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-642 *5) *6)) - (-4 *5 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564))))) - (-4 *6 (-1238 *5)) - (-5 *2 (-642 (-2 (|:| |poly| *6) (|:| -3359 (-652 *6 (-407 *6)))))) - (-5 *1 (-810 *5 *6)) (-5 *3 (-652 *6 (-407 *6)))))) -(((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-941 (-225))) (-5 *4 (-872)) (-5 *5 (-919)) - (-5 *2 (-1267)) (-5 *1 (-468)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-941 (-225))) (-5 *2 (-1267)) (-5 *1 (-468)))) - ((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-642 (-941 (-225)))) (-5 *4 (-872)) (-5 *5 (-919)) - (-5 *2 (-1267)) (-5 *1 (-468))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1235 *5 *4)) (-4 *4 (-452)) (-4 *4 (-818)) - (-14 *5 (-1173)) (-5 *2 (-564)) (-5 *1 (-1111 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-585 *3)) (-4 *3 (-363))))) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *1) (-5 *1 (-1081)))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-644 (-1175))) (-4 *4 (-1099)) + (-4 *5 (-13 (-1049) (-886 *4) (-614 (-892 *4)))) + (-5 *1 (-54 *4 *5 *2)) + (-4 *2 (-13 (-432 *5) (-886 *4) (-614 (-892 *4))))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1207 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-793)) + (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-409 (-566))) (-5 *1 (-306))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1191 *3 *4)) (-4 *3 (-1099)) + (-4 *4 (-1099))))) +(((*1 *2 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-399))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-860)) (-5 *2 (-691 (-1222))) (-5 *3 (-1222))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-771)) (-5 *2 (-1269)) (-5 *1 (-1265)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-771)) (-5 *2 (-1269)) (-5 *1 (-1266))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1214)) (-5 *1 (-182 *3 *2)) (-4 *2 (-674 *3))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1163 *2 *3)) (-14 *2 (-921)) (-4 *3 (-1049))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-644 (-566))) (-5 *1 (-1109)) (-5 *3 (-566))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545)) - (-5 *2 (-407 (-564))))) + (-12 (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-5 *2 (-112)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-407 (-564))) (-5 *1 (-418 *3)) (-4 *3 (-545)) - (-4 *3 (-556)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-545)) (-5 *2 (-407 (-564))))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-795 *3)) (-4 *3 (-172)) (-4 *3 (-545)) - (-5 *2 (-407 (-564))))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-407 (-564))) (-5 *1 (-831 *3)) (-4 *3 (-545)) - (-4 *3 (-1097)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-407 (-564))) (-5 *1 (-841 *3)) (-4 *3 (-545)) - (-4 *3 (-1097)))) + (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-560 *3)) (-4 *3 (-547)))) + ((*1 *2 *3) + (-12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-308)) (-5 *2 (-420 *3)) + (-5 *1 (-742 *4 *5 *6 *3)) (-4 *3 (-949 *6 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-308)) + (-4 *7 (-949 *6 *4 *5)) (-5 *2 (-420 (-1171 *7))) + (-5 *1 (-742 *4 *5 *6 *7)) (-5 *3 (-1171 *7)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-995 *3)) (-4 *3 (-172)) (-4 *3 (-545)) - (-5 *2 (-407 (-564))))) + (-12 (-4 *3 (-454)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) + (-5 *2 (-420 *1)) (-4 *1 (-949 *3 *4 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *2 (-407 (-564))) (-5 *1 (-1006 *3)) - (-4 *3 (-1036 *2))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197))))) -(((*1 *1) - (-12 (-4 *1 (-404)) (-2307 (|has| *1 (-6 -4401))) - (-2307 (|has| *1 (-6 -4393))))) - ((*1 *2 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1097)) (-4 *2 (-848)))) - ((*1 *2 *1) (-12 (-4 *1 (-828 *2)) (-4 *2 (-848)))) - ((*1 *1) (-4 *1 (-842))) ((*1 *1 *1 *1) (-4 *1 (-848)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-642 (-316 (-225)))) (-5 *4 (-769)) - (-5 *2 (-687 (-225))) (-5 *1 (-267))))) -(((*1 *2 *3) - (-12 (-4 *1 (-907)) (-5 *2 (-418 (-1169 *1))) (-5 *3 (-1169 *1))))) -(((*1 *2 *2 *2 *3 *3 *4 *2 *5) - (|partial| -12 (-5 *3 (-610 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1173))) (-5 *5 (-1169 *2)) - (-4 *2 (-13 (-430 *6) (-27) (-1197))) - (-4 *6 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564)))) - (-5 *1 (-560 *6 *2 *7)) (-4 *7 (-1097)))) - ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) - (|partial| -12 (-5 *3 (-610 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1173))) - (-5 *5 (-407 (-1169 *2))) (-4 *2 (-13 (-430 *6) (-27) (-1197))) - (-4 *6 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564)))) - (-5 *1 (-560 *6 *2 *7)) (-4 *7 (-1097))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-1155)) (-5 *5 (-687 (-225))) - (-5 *2 (-1033)) (-5 *1 (-745))))) -(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1212))))) -(((*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-445 *3)) (-4 *3 (-1047))))) -(((*1 *2 *3) (-12 (-5 *3 (-642 (-564))) (-5 *2 (-769)) (-5 *1 (-589))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) - (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *2 (-379)) (-5 *1 (-205))))) -(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820))))) -(((*1 *2 *3 *4) - (-12 (-4 *4 (-363)) (-5 *2 (-642 (-1153 *4))) (-5 *1 (-285 *4 *5)) - (-5 *3 (-1153 *4)) (-4 *5 (-1253 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-642 (-52))) (-5 *1 (-890 *3)) (-4 *3 (-1097))))) -(((*1 *2 *3) (-12 (-5 *3 (-407 (-564))) (-5 *2 (-225)) (-5 *1 (-305))))) + (-12 (-4 *4 (-850)) (-4 *5 (-793)) (-4 *6 (-454)) (-5 *2 (-420 *3)) + (-5 *1 (-979 *4 *5 *6 *3)) (-4 *3 (-949 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-454)) + (-4 *7 (-949 *6 *4 *5)) (-5 *2 (-420 (-1171 (-409 *7)))) + (-5 *1 (-1170 *4 *5 *6 *7)) (-5 *3 (-1171 (-409 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-420 *1)) (-4 *1 (-1218)))) + ((*1 *2 *3) + (-12 (-4 *4 (-558)) (-5 *2 (-420 *3)) (-5 *1 (-1243 *4 *3)) + (-4 *3 (-13 (-1240 *4) (-558) (-10 -8 (-15 -2162 ($ $ $))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1046 *4 *5)) (-4 *4 (-13 (-848) (-308) (-147) (-1022))) + (-14 *5 (-644 (-1175))) + (-5 *2 + (-644 (-1145 *4 (-533 (-864 *6)) (-864 *6) (-780 *4 (-864 *6))))) + (-5 *1 (-1290 *4 *5 *6)) (-14 *6 (-644 (-1175)))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1155)) (-5 *3 (-642 (-263))) (-5 *1 (-261)))) - ((*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-263)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1263)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1264))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-642 *7)) (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-452)) - (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112)) - (-5 *1 (-986 *4 *5 *6 *7 *8)) (-4 *8 (-1068 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-642 *7)) (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-452)) - (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112)) - (-5 *1 (-1104 *4 *5 *6 *7 *8)) (-4 *8 (-1068 *4 *5 *6 *7))))) + (-12 (-5 *2 (-1157)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) + ((*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-264)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1265)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1266))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) +(((*1 *1 *1) (-12 (-4 *1 (-674 *2)) (-4 *2 (-1214))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1173)) (-5 *3 (-642 *1)) (-4 *1 (-430 *4)) - (-4 *4 (-1097)))) + (-12 (-5 *2 (-1175)) (-5 *3 (-644 *1)) (-4 *1 (-432 *4)) + (-4 *4 (-1099)))) ((*1 *1 *2 *1 *1 *1 *1) - (-12 (-5 *2 (-1173)) (-4 *1 (-430 *3)) (-4 *3 (-1097)))) + (-12 (-5 *2 (-1175)) (-4 *1 (-432 *3)) (-4 *3 (-1099)))) ((*1 *1 *2 *1 *1 *1) - (-12 (-5 *2 (-1173)) (-4 *1 (-430 *3)) (-4 *3 (-1097)))) + (-12 (-5 *2 (-1175)) (-4 *1 (-432 *3)) (-4 *3 (-1099)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1173)) (-4 *1 (-430 *3)) (-4 *3 (-1097)))) + (-12 (-5 *2 (-1175)) (-4 *1 (-432 *3)) (-4 *3 (-1099)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1173)) (-4 *1 (-430 *3)) (-4 *3 (-1097))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1161 *3 *4)) (-14 *3 (-919)) - (-4 *4 (-1047))))) -(((*1 *1 *1) (-4 *1 (-627))) + (-12 (-5 *2 (-1175)) (-4 *1 (-432 *3)) (-4 *3 (-1099))))) +(((*1 *2 *3) + (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1218)) (-4 *3 (-1240 *4)) + (-4 *5 (-1240 (-409 *3))) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) + (-4 *5 (-1240 (-409 *4))) (-5 *2 (-112))))) +(((*1 *1 *2) + (-12 (-5 *2 (-644 (-2 (|:| -1928 (-1175)) (|:| -2806 (-439))))) + (-5 *1 (-1179))))) +(((*1 *1 *1) (-4 *1 (-629))) ((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-628 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1000) (-1197)))))) -(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1004)))) - ((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1004))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-687 *3)) (-4 *3 (-307)) (-5 *1 (-698 *3))))) + (-12 (-4 *3 (-558)) (-5 *1 (-630 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002) (-1199)))))) +(((*1 *2 *3) (-12 (-5 *3 (-566)) (-5 *2 (-1269)) (-5 *1 (-1006))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1093 (-225))) + (-5 *5 (-112)) (-5 *2 (-1266)) (-5 *1 (-258))))) +(((*1 *2 *1) (-12 (-4 *1 (-529)) (-5 *2 (-691 (-548)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-331))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-771)) (-4 *1 (-1240 *3)) (-4 *3 (-1049))))) +(((*1 *2 *3 *2 *4 *5) + (-12 (-5 *2 (-644 *3)) (-5 *5 (-921)) (-4 *3 (-1240 *4)) + (-4 *4 (-308)) (-5 *1 (-462 *4 *3))))) (((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1238 (-564))))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1238 (-564)))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-642 *1)) (-5 *3 (-642 *7)) (-4 *1 (-1068 *4 *5 *6 *7)) - (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) - (-4 *7 (-1062 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-642 *7)) (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-452)) - (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-642 *1)) - (-4 *1 (-1068 *4 *5 *6 *7)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-642 *1)) (-4 *1 (-1068 *4 *5 *6 *3)) (-4 *4 (-452)) - (-4 *5 (-791)) (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) - (-4 *3 (-1062 *4 *5 *6)) (-5 *2 (-642 *1)) - (-4 *1 (-1068 *4 *5 *6 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047))))) -(((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-1177))))) -(((*1 *2 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-846)) (-5 *1 (-303 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1062 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-791)) - (-4 *5 (-848)) (-5 *2 (-769))))) -(((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-137)))) - ((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-156)))) - ((*1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1212)))) - ((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-478)))) - ((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-591)))) - ((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-624)))) + (-12 (-5 *3 (-1093 (-843 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1093 (-843 (-225)))) (-5 *2 (-225)) (-5 *1 (-301)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1093 (-843 (-225)))) (-5 *2 (-225)) (-5 *1 (-306))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-771)) (-4 *4 (-1049)) + (-5 *2 (-2 (|:| -3371 *1) (|:| -3131 *1))) (-4 *1 (-1240 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-771)) (-4 *5 (-1049)) (-5 *2 (-566)) + (-5 *1 (-445 *5 *3 *6)) (-4 *3 (-1240 *5)) + (-4 *6 (-13 (-406) (-1038 *5) (-365) (-1199) (-285))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1049)) (-5 *2 (-566)) (-5 *1 (-445 *4 *3 *5)) + (-4 *3 (-1240 *4)) + (-4 *5 (-13 (-406) (-1038 *4) (-365) (-1199) (-285)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-137)))) + ((*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-156)))) + ((*1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1214)))) + ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-480)))) + ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-593)))) + ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-626)))) ((*1 *2 *1) - (-12 (-4 *3 (-1097)) - (-4 *2 (-13 (-430 *4) (-884 *3) (-612 (-890 *3)))) - (-5 *1 (-1073 *3 *4 *2)) - (-4 *4 (-13 (-1047) (-884 *3) (-612 (-890 *3)))))) + (-12 (-4 *3 (-1099)) + (-4 *2 (-13 (-432 *4) (-886 *3) (-614 (-892 *3)))) + (-5 *1 (-1075 *3 *4 *2)) + (-4 *4 (-13 (-1049) (-886 *3) (-614 (-892 *3)))))) ((*1 *2 *1) - (-12 (-4 *2 (-1097)) (-5 *1 (-1162 *3 *2)) (-4 *3 (-1097))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1097)) (-5 *1 (-927 *3 *2)) (-4 *2 (-430 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1173)) (-5 *2 (-316 (-564))) (-5 *1 (-928))))) -(((*1 *1 *1 *1) (-5 *1 (-225))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-769)) (-5 *2 (-1 (-379))) (-5 *1 (-1038)))) - ((*1 *1 *1 *1) (-4 *1 (-1136)))) -(((*1 *1 *1) (-4 *1 (-867 *2)))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-769)) (-4 *6 (-452)) (-4 *7 (-791)) (-4 *8 (-848)) - (-4 *3 (-1062 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-642 *4)) - (|:| |todo| (-642 (-2 (|:| |val| (-642 *3)) (|:| -2138 *4)))))) - (-5 *1 (-1066 *6 *7 *8 *3 *4)) (-4 *4 (-1068 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) - (-4 *3 (-1062 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-642 *4)) - (|:| |todo| (-642 (-2 (|:| |val| (-642 *3)) (|:| -2138 *4)))))) - (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-769)) (-4 *6 (-452)) (-4 *7 (-791)) (-4 *8 (-848)) - (-4 *3 (-1062 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-642 *4)) - (|:| |todo| (-642 (-2 (|:| |val| (-642 *3)) (|:| -2138 *4)))))) - (-5 *1 (-1142 *6 *7 *8 *3 *4)) (-4 *4 (-1106 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) - (-4 *3 (-1062 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-642 *4)) - (|:| |todo| (-642 (-2 (|:| |val| (-642 *3)) (|:| -2138 *4)))))) - (-5 *1 (-1142 *5 *6 *7 *3 *4)) (-4 *4 (-1106 *5 *6 *7 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-941 *2)) (-5 *1 (-980 *2)) (-4 *2 (-1047))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1161 *2 *3)) (-14 *2 (-919)) (-4 *3 (-1047))))) -(((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-791)) (-4 *8 (-848)) - (-4 *3 (-1062 *6 *7 *8)) - (-5 *2 (-642 (-2 (|:| |val| *3) (|:| -2138 *4)))) - (-5 *1 (-1069 *6 *7 *8 *3 *4)) (-4 *4 (-1068 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-642 (-2 (|:| |val| (-642 *8)) (|:| -2138 *9)))) - (-5 *5 (-112)) (-4 *8 (-1062 *6 *7 *4)) (-4 *9 (-1068 *6 *7 *4 *8)) - (-4 *6 (-452)) (-4 *7 (-791)) (-4 *4 (-848)) - (-5 *2 (-642 (-2 (|:| |val| *8) (|:| -2138 *9)))) - (-5 *1 (-1069 *6 *7 *4 *8 *9))))) -(((*1 *1 *1) (-12 (-4 *1 (-373 *2)) (-4 *2 (-1212)) (-4 *2 (-848)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-373 *3)) (-4 *3 (-1212)))) - ((*1 *2 *2) - (-12 (-5 *2 (-642 (-903 *3))) (-5 *1 (-903 *3)) (-4 *3 (-1097)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1047)) (-4 *5 (-791)) (-4 *3 (-848)) - (-4 *6 (-1062 *4 *5 *3)) - (-5 *2 (-2 (|:| |under| *1) (|:| -2795 *1) (|:| |upper| *1))) - (-4 *1 (-974 *4 *5 *3 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-848)) (-5 *1 (-484 *3))))) + (-12 (-4 *2 (-1099)) (-5 *1 (-1164 *3 *2)) (-4 *3 (-1099))))) (((*1 *2 *1) - (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-848)) - (-4 *5 (-266 *4)) (-4 *6 (-791)) (-5 *2 (-642 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1068 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-791)) - (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1068 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-791)) - (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-137)))) - ((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-156)))) - ((*1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1212)))) - ((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-478)))) - ((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-591)))) - ((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-624)))) + (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-547)) + (-5 *2 (-409 (-566))))) ((*1 *2 *1) - (-12 (-4 *3 (-1097)) - (-4 *2 (-13 (-430 *4) (-884 *3) (-612 (-890 *3)))) - (-5 *1 (-1073 *3 *4 *2)) - (-4 *4 (-13 (-1047) (-884 *3) (-612 (-890 *3)))))) + (-12 (-5 *2 (-409 (-566))) (-5 *1 (-420 *3)) (-4 *3 (-547)) + (-4 *3 (-558)))) + ((*1 *2 *1) (-12 (-4 *1 (-547)) (-5 *2 (-409 (-566))))) ((*1 *2 *1) - (-12 (-4 *2 (-1097)) (-5 *1 (-1162 *2 *3)) (-4 *3 (-1097))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4411)) (-4 *1 (-1250 *2)) (-4 *2 (-1212))))) -(((*1 *2) - (-12 - (-5 *2 - (-1262 (-642 (-2 (|:| -2108 (-908 *3)) (|:| -2065 (-1117)))))) - (-5 *1 (-351 *3 *4)) (-14 *3 (-919)) (-14 *4 (-919)))) - ((*1 *2) - (-12 (-5 *2 (-1262 (-642 (-2 (|:| -2108 *3) (|:| -2065 (-1117)))))) - (-5 *1 (-352 *3 *4)) (-4 *3 (-349)) (-14 *4 (-3 (-1169 *3) *2)))) - ((*1 *2) - (-12 (-5 *2 (-1262 (-642 (-2 (|:| -2108 *3) (|:| -2065 (-1117)))))) - (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) (-14 *4 (-919))))) -(((*1 *2 *1) - (-12 (-5 *2 (-689 (-871 (-964 *3) (-964 *3)))) (-5 *1 (-964 *3)) - (-4 *3 (-1097))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-151 *2)) - (-4 *2 (-1212))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1173)) - (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) - (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1197) (-430 *4))))) + (-12 (-4 *1 (-797 *3)) (-4 *3 (-172)) (-4 *3 (-547)) + (-5 *2 (-409 (-566))))) + ((*1 *2 *1) + (-12 (-5 *2 (-409 (-566))) (-5 *1 (-833 *3)) (-4 *3 (-547)) + (-4 *3 (-1099)))) + ((*1 *2 *1) + (-12 (-5 *2 (-409 (-566))) (-5 *1 (-843 *3)) (-4 *3 (-547)) + (-4 *3 (-1099)))) + ((*1 *2 *1) + (-12 (-4 *1 (-997 *3)) (-4 *3 (-172)) (-4 *3 (-547)) + (-5 *2 (-409 (-566))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) - (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-407 (-564))) - (-4 *5 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) - (-5 *1 (-315 *5 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *5))) - (-4 *5 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) - (-5 *1 (-315 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-294 *3)) (-5 *5 (-407 (-564))) - (-4 *3 (-13 (-27) (-1197) (-430 *6))) - (-4 *6 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) - (-5 *1 (-315 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-564))) (-5 *4 (-294 *6)) - (-4 *6 (-13 (-27) (-1197) (-430 *5))) - (-4 *5 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) - (-5 *1 (-459 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1173)) (-5 *5 (-294 *3)) - (-4 *3 (-13 (-27) (-1197) (-430 *6))) - (-4 *6 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) - (-5 *1 (-459 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-564))) (-5 *4 (-294 *7)) (-5 *5 (-1229 (-564))) - (-4 *7 (-13 (-27) (-1197) (-430 *6))) - (-4 *6 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) - (-5 *1 (-459 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1173)) (-5 *5 (-294 *3)) (-5 *6 (-1229 (-564))) - (-4 *3 (-13 (-27) (-1197) (-430 *7))) - (-4 *7 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) - (-5 *1 (-459 *7 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-407 (-564)))) (-5 *4 (-294 *8)) - (-5 *5 (-1229 (-407 (-564)))) (-5 *6 (-407 (-564))) - (-4 *8 (-13 (-27) (-1197) (-430 *7))) - (-4 *7 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) - (-5 *1 (-459 *7 *8)))) - ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1173)) (-5 *5 (-294 *3)) (-5 *6 (-1229 (-407 (-564)))) - (-5 *7 (-407 (-564))) (-4 *3 (-13 (-27) (-1197) (-430 *8))) - (-4 *8 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) - (-5 *1 (-459 *8 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1153 (-2 (|:| |k| (-564)) (|:| |c| *3)))) - (-4 *3 (-1047)) (-5 *1 (-594 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-595 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1153 (-2 (|:| |k| (-564)) (|:| |c| *3)))) - (-4 *3 (-1047)) (-4 *1 (-1222 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-769)) - (-5 *3 (-1153 (-2 (|:| |k| (-407 (-564))) (|:| |c| *4)))) - (-4 *4 (-1047)) (-4 *1 (-1243 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-4 *1 (-1253 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1153 (-2 (|:| |k| (-769)) (|:| |c| *3)))) - (-4 *3 (-1047)) (-4 *1 (-1253 *3))))) + (-12 (-5 *2 (-409 (-566))) (-5 *1 (-1008 *3)) (-4 *3 (-1038 *2))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-537 *3 *2)) - (-4 *2 (-1253 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-4 *4 (-1238 *3)) - (-4 *5 (-722 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1253 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-5 *1 (-542 *3 *2)) - (-4 *2 (-1253 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-13 (-556) (-147))) - (-5 *1 (-1149 *3))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-716 *2)) (-4 *2 (-363))))) + (-12 (-4 *3 (-1099)) (-5 *1 (-929 *3 *2)) (-4 *2 (-432 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1175)) (-5 *2 (-317 (-566))) (-5 *1 (-930))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-769)) (-4 *5 (-1047)) (-4 *2 (-1238 *5)) - (-5 *1 (-1256 *5 *2 *6 *3)) (-4 *6 (-654 *2)) (-4 *3 (-1253 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-689 *3)) (-5 *1 (-964 *3)) (-4 *3 (-1097))))) -(((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1173)) (-4 *4 (-1047)) (-4 *4 (-1097)) - (-5 *2 (-2 (|:| |var| (-610 *1)) (|:| -2817 (-564)))) - (-4 *1 (-430 *4)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1047)) (-4 *4 (-1097)) - (-5 *2 (-2 (|:| |var| (-610 *1)) (|:| -2817 (-564)))) - (-4 *1 (-430 *4)))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1109)) (-4 *3 (-1097)) - (-5 *2 (-2 (|:| |var| (-610 *1)) (|:| -2817 (-564)))) - (-4 *1 (-430 *3)))) + (-12 (-5 *3 (-644 (-689 *5))) (-5 *4 (-566)) (-4 *5 (-365)) + (-4 *5 (-1049)) (-5 *2 (-112)) (-5 *1 (-1029 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 (-689 *4))) (-4 *4 (-365)) (-4 *4 (-1049)) + (-5 *2 (-112)) (-5 *1 (-1029 *4))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-327 *3 *4)) (-4 *3 (-1049)) + (-4 *4 (-792))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1207 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-793)) + (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1070 *4 *5 *6 *3)) (-4 *4 (-454)) (-4 *5 (-793)) + (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *3 (-1064 *4 *5 *6)) + (-5 *2 (-644 (-2 (|:| |val| (-112)) (|:| -2192 *1)))) + (-4 *1 (-1070 *4 *5 *6 *3))))) +(((*1 *1) (-5 *1 (-144))) ((*1 *1 *1) (-5 *1 (-862)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-3 (-409 (-952 *5)) (-1164 (-1175) (-952 *5)))) + (-4 *5 (-454)) (-5 *2 (-644 (-689 (-409 (-952 *5))))) + (-5 *1 (-293 *5)) (-5 *4 (-689 (-409 (-952 *5))))))) +(((*1 *2 *3) + (-12 (-4 *4 (-308)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) + (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) + (-5 *1 (-1123 *4 *5 *6 *3)) (-4 *3 (-687 *4 *5 *6))))) +(((*1 *2 *3 *3 *3) + (|partial| -12 (-4 *4 (-13 (-365) (-147) (-1038 (-566)))) + (-4 *5 (-1240 *4)) (-5 *2 (-644 (-409 *5))) (-5 *1 (-1016 *4 *5)) + (-5 *3 (-409 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *2 (-644 (-169 *4))) (-5 *1 (-155 *3 *4)) + (-4 *3 (-1240 (-169 (-566)))) (-4 *4 (-13 (-365) (-848))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-365) (-848))) (-5 *2 (-644 (-169 *4))) + (-5 *1 (-181 *4 *3)) (-4 *3 (-1240 (-169 *4))))) + ((*1 *2 *3 *4) + (-12 (-4 *4 (-13 (-365) (-848))) (-5 *2 (-644 (-169 *4))) + (-5 *1 (-181 *4 *3)) (-4 *3 (-1240 (-169 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-137)))) + ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-156)))) + ((*1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1214)))) + ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-480)))) + ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-593)))) + ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-626)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |val| (-890 *3)) (|:| -2817 (-769)))) - (-5 *1 (-890 *3)) (-4 *3 (-1097)))) + (-12 (-4 *3 (-1099)) + (-4 *2 (-13 (-432 *4) (-886 *3) (-614 (-892 *3)))) + (-5 *1 (-1075 *3 *4 *2)) + (-4 *4 (-13 (-1049) (-886 *3) (-614 (-892 *3)))))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-947 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-791)) - (-4 *5 (-848)) (-5 *2 (-2 (|:| |var| *5) (|:| -2817 (-769)))))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1047)) - (-4 *7 (-947 *6 *4 *5)) - (-5 *2 (-2 (|:| |var| *5) (|:| -2817 (-564)))) - (-5 *1 (-948 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-363) - (-10 -8 (-15 -2390 ($ *7)) (-15 -4120 (*7 $)) - (-15 -4131 (*7 $)))))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1000))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) - (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1158 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1159 *3))))) + (-12 (-4 *2 (-1099)) (-5 *1 (-1164 *2 *3)) (-4 *3 (-1099))))) (((*1 *2 *1) - (-12 (-5 *2 (-1099 *3)) (-5 *1 (-903 *3)) (-4 *3 (-368)) - (-4 *3 (-1097))))) -(((*1 *2 *1) (-12 (-5 *2 (-642 (-183))) (-5 *1 (-140))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) - (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *2 - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| "There are singularities at both end points") - (|:| |notEvaluated| "End point continuity not yet evaluated"))) - (-5 *1 (-192))))) -(((*1 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-134))))) -(((*1 *1 *1 *1 *1 *2) - (-12 (-5 *2 (-769)) (-4 *1 (-1062 *3 *4 *5)) (-4 *3 (-1047)) - (-4 *4 (-791)) (-4 *5 (-848)) (-4 *3 (-556))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1175 (-407 (-564)))) (-5 *2 (-407 (-564))) - (-5 *1 (-190))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-941 *3) (-941 *3))) (-5 *1 (-176 *3)) - (-4 *3 (-13 (-363) (-1197) (-1000))))) - ((*1 *2) - (|partial| -12 (-4 *4 (-1216)) (-4 *5 (-1238 (-407 *2))) - (-4 *2 (-1238 *4)) (-5 *1 (-341 *3 *4 *2 *5)) - (-4 *3 (-342 *4 *2 *5)))) - ((*1 *2) - (|partial| -12 (-4 *1 (-342 *3 *2 *4)) (-4 *3 (-1216)) - (-4 *4 (-1238 (-407 *2))) (-4 *2 (-1238 *3))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1000))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) - (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1158 *3)))) + (-12 (-5 *2 (-1101 (-1101 *3))) (-5 *1 (-904 *3)) (-4 *3 (-1099))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) + (-4 *4 (-850)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1207 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-793)) + (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5))))) +(((*1 *2 *1) + (-12 (-5 *2 (-409 (-566))) (-5 *1 (-320 *3 *4 *5)) (-4 *3 (-365)) + (-14 *4 (-1175)) (-14 *5 *3)))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-328 *3)) (-4 *3 (-1214)))) ((*1 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1159 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1155)) (-4 *4 (-13 (-307) (-147))) - (-4 *5 (-13 (-848) (-612 (-1173)))) (-4 *6 (-791)) - (-5 *2 - (-642 - (-2 (|:| |eqzro| (-642 *7)) (|:| |neqzro| (-642 *7)) - (|:| |wcond| (-642 (-950 *4))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1262 (-407 (-950 *4)))) - (|:| -2131 (-642 (-1262 (-407 (-950 *4)))))))))) - (-5 *1 (-922 *4 *5 *6 *7)) (-4 *7 (-947 *4 *6 *5))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1212)) (-5 *1 (-375 *4 *2)) - (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4411))))))) + (-12 (-5 *2 (-112)) (-5 *1 (-518 *3 *4)) (-4 *3 (-1214)) + (-14 *4 (-566))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-612 *1)) (-4 *1 (-303))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1171 *1)) (-4 *1 (-1012))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1255 *4)) + (-4 *4 (-38 (-409 (-566)))) + (-5 *2 (-1 (-1155 *4) (-1155 *4) (-1155 *4))) (-5 *1 (-1257 *4 *5))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1191 *4 *5)) + (-4 *4 (-1099)) (-4 *5 (-1099))))) +(((*1 *1 *1) + (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1000))))) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) - (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1158 *3)))) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1160 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1159 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-919)) (-5 *2 (-902 (-564))) (-5 *1 (-915)))) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1161 *3))))) +(((*1 *2) + (-12 (-4 *2 (-13 (-432 *3) (-1002))) (-5 *1 (-277 *3 *2)) + (-4 *3 (-558))))) +(((*1 *1) (-5 *1 (-144))) ((*1 *2 *3) - (-12 (-5 *3 (-642 (-564))) (-5 *2 (-902 (-564))) (-5 *1 (-915))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) - ((*1 *2 *1) - (-12 (-4 *3 (-363)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-112)) - (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-947 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-720)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-724)) (-5 *2 (-112))))) + (-12 (-5 *3 (-644 (-264))) (-5 *2 (-1132 (-225))) (-5 *1 (-262)))) + ((*1 *1 *2) (-12 (-5 *2 (-1132 (-225))) (-5 *1 (-264))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1264 (-689 *4))) (-4 *4 (-172)) + (-5 *2 (-1264 (-689 (-952 *4)))) (-5 *1 (-189 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-253 *3 *4 *2 *5)) (-4 *3 (-1047)) (-4 *4 (-848)) - (-4 *5 (-791)) (-4 *2 (-266 *4))))) + (-12 (-5 *2 (-644 (-566))) (-5 *1 (-1004 *3)) (-14 *3 (-566))))) +(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))) +(((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099))))) (((*1 *2 *1) - (-12 (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-642 *1)) - (-4 *1 (-1062 *3 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-642 (-778 *5 (-862 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) - (-14 *6 (-642 (-1173))) - (-5 *2 - (-642 (-1143 *5 (-531 (-862 *6)) (-862 *6) (-778 *5 (-862 *6))))) - (-5 *1 (-626 *5 *6))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197))))) -(((*1 *2 *3) - (-12 (|has| *2 (-6 (-4412 "*"))) (-4 *5 (-373 *2)) (-4 *6 (-373 *2)) - (-4 *2 (-1047)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1238 *2)) - (-4 *4 (-685 *2 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-689 (-549)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-52))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) + (-4 *4 (-1049))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-558) (-1038 (-566)))) (-4 *5 (-432 *4)) + (-5 *2 (-420 *3)) (-5 *1 (-437 *4 *5 *3)) (-4 *3 (-1240 *5))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1000))))) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) - (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1158 *3)))) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1160 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1159 *3))))) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1161 *3))))) +(((*1 *1) (-5 *1 (-130)))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-407 *5)) (-4 *4 (-1216)) (-4 *5 (-1238 *4)) - (-5 *1 (-148 *4 *5 *2)) (-4 *2 (-1238 *3)))) + (-12 (-5 *3 (-409 *5)) (-4 *4 (-1218)) (-4 *5 (-1240 *4)) + (-5 *1 (-148 *4 *5 *2)) (-4 *2 (-1240 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1175 (-407 (-564)))) (-5 *2 (-407 (-564))) + (-12 (-5 *3 (-1177 (-409 (-566)))) (-5 *2 (-409 (-566))) (-5 *1 (-190)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-687 (-316 (-225)))) (-5 *3 (-642 (-1173))) - (-5 *4 (-1262 (-316 (-225)))) (-5 *1 (-205)))) + (-12 (-5 *2 (-689 (-317 (-225)))) (-5 *3 (-644 (-1175))) + (-5 *4 (-1264 (-317 (-225)))) (-5 *1 (-205)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-642 (-294 *3))) (-4 *3 (-309 *3)) (-4 *3 (-1097)) - (-4 *3 (-1212)) (-5 *1 (-294 *3)))) + (-12 (-5 *2 (-644 (-295 *3))) (-4 *3 (-310 *3)) (-4 *3 (-1099)) + (-4 *3 (-1214)) (-5 *1 (-295 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-309 *2)) (-4 *2 (-1097)) (-4 *2 (-1212)) - (-5 *1 (-294 *2)))) + (-12 (-4 *2 (-310 *2)) (-4 *2 (-1099)) (-4 *2 (-1214)) + (-5 *1 (-295 *2)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-302)))) + (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-303)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-642 *1))) (-4 *1 (-302)))) + (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-644 *1))) (-4 *1 (-303)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-642 (-114))) (-5 *3 (-642 (-1 *1 (-642 *1)))) - (-4 *1 (-302)))) + (-12 (-5 *2 (-644 (-114))) (-5 *3 (-644 (-1 *1 (-644 *1)))) + (-4 *1 (-303)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-642 (-114))) (-5 *3 (-642 (-1 *1 *1))) (-4 *1 (-302)))) + (-12 (-5 *2 (-644 (-114))) (-5 *3 (-644 (-1 *1 *1))) (-4 *1 (-303)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1173)) (-5 *3 (-1 *1 *1)) (-4 *1 (-302)))) + (-12 (-5 *2 (-1175)) (-5 *3 (-1 *1 *1)) (-4 *1 (-303)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1173)) (-5 *3 (-1 *1 (-642 *1))) (-4 *1 (-302)))) + (-12 (-5 *2 (-1175)) (-5 *3 (-1 *1 (-644 *1))) (-4 *1 (-303)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-642 (-1173))) (-5 *3 (-642 (-1 *1 (-642 *1)))) - (-4 *1 (-302)))) + (-12 (-5 *2 (-644 (-1175))) (-5 *3 (-644 (-1 *1 (-644 *1)))) + (-4 *1 (-303)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-642 (-1173))) (-5 *3 (-642 (-1 *1 *1))) (-4 *1 (-302)))) + (-12 (-5 *2 (-644 (-1175))) (-5 *3 (-644 (-1 *1 *1))) (-4 *1 (-303)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-642 (-294 *3))) (-4 *1 (-309 *3)) (-4 *3 (-1097)))) + (-12 (-5 *2 (-644 (-295 *3))) (-4 *1 (-310 *3)) (-4 *3 (-1099)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-294 *3)) (-4 *1 (-309 *3)) (-4 *3 (-1097)))) + (-12 (-5 *2 (-295 *3)) (-4 *1 (-310 *3)) (-4 *3 (-1099)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-564))) (-5 *4 (-1175 (-407 (-564)))) - (-5 *1 (-310 *2)) (-4 *2 (-38 (-407 (-564)))))) + (-12 (-5 *3 (-1 *2 (-566))) (-5 *4 (-1177 (-409 (-566)))) + (-5 *1 (-311 *2)) (-4 *2 (-38 (-409 (-566)))))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-642 *4)) (-5 *3 (-642 *1)) (-4 *1 (-374 *4 *5)) - (-4 *4 (-848)) (-4 *5 (-172)))) + (-12 (-5 *2 (-644 *4)) (-5 *3 (-644 *1)) (-4 *1 (-376 *4 *5)) + (-4 *4 (-850)) (-4 *5 (-172)))) ((*1 *1 *1 *2 *1) - (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-848)) (-4 *3 (-172)))) + (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-850)) (-4 *3 (-172)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1173)) (-5 *3 (-769)) (-5 *4 (-1 *1 *1)) - (-4 *1 (-430 *5)) (-4 *5 (-1097)) (-4 *5 (-1047)))) + (-12 (-5 *2 (-1175)) (-5 *3 (-771)) (-5 *4 (-1 *1 *1)) + (-4 *1 (-432 *5)) (-4 *5 (-1099)) (-4 *5 (-1049)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1173)) (-5 *3 (-769)) (-5 *4 (-1 *1 (-642 *1))) - (-4 *1 (-430 *5)) (-4 *5 (-1097)) (-4 *5 (-1047)))) + (-12 (-5 *2 (-1175)) (-5 *3 (-771)) (-5 *4 (-1 *1 (-644 *1))) + (-4 *1 (-432 *5)) (-4 *5 (-1099)) (-4 *5 (-1049)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-642 (-1173))) (-5 *3 (-642 (-769))) - (-5 *4 (-642 (-1 *1 (-642 *1)))) (-4 *1 (-430 *5)) (-4 *5 (-1097)) - (-4 *5 (-1047)))) + (-12 (-5 *2 (-644 (-1175))) (-5 *3 (-644 (-771))) + (-5 *4 (-644 (-1 *1 (-644 *1)))) (-4 *1 (-432 *5)) (-4 *5 (-1099)) + (-4 *5 (-1049)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-642 (-1173))) (-5 *3 (-642 (-769))) - (-5 *4 (-642 (-1 *1 *1))) (-4 *1 (-430 *5)) (-4 *5 (-1097)) - (-4 *5 (-1047)))) + (-12 (-5 *2 (-644 (-1175))) (-5 *3 (-644 (-771))) + (-5 *4 (-644 (-1 *1 *1))) (-4 *1 (-432 *5)) (-4 *5 (-1099)) + (-4 *5 (-1049)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-642 (-114))) (-5 *3 (-642 *1)) (-5 *4 (-1173)) - (-4 *1 (-430 *5)) (-4 *5 (-1097)) (-4 *5 (-612 (-536))))) + (-12 (-5 *2 (-644 (-114))) (-5 *3 (-644 *1)) (-5 *4 (-1175)) + (-4 *1 (-432 *5)) (-4 *5 (-1099)) (-4 *5 (-614 (-538))))) ((*1 *1 *1 *2 *1 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-1173)) (-4 *1 (-430 *4)) (-4 *4 (-1097)) - (-4 *4 (-612 (-536))))) + (-12 (-5 *2 (-114)) (-5 *3 (-1175)) (-4 *1 (-432 *4)) (-4 *4 (-1099)) + (-4 *4 (-614 (-538))))) ((*1 *1 *1) - (-12 (-4 *1 (-430 *2)) (-4 *2 (-1097)) (-4 *2 (-612 (-536))))) + (-12 (-4 *1 (-432 *2)) (-4 *2 (-1099)) (-4 *2 (-614 (-538))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-642 (-1173))) (-4 *1 (-430 *3)) (-4 *3 (-1097)) - (-4 *3 (-612 (-536))))) + (-12 (-5 *2 (-644 (-1175))) (-4 *1 (-432 *3)) (-4 *3 (-1099)) + (-4 *3 (-614 (-538))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1173)) (-4 *1 (-430 *3)) (-4 *3 (-1097)) - (-4 *3 (-612 (-536))))) + (-12 (-5 *2 (-1175)) (-4 *1 (-432 *3)) (-4 *3 (-1099)) + (-4 *3 (-614 (-538))))) ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-514 *2 *3)) (-4 *2 (-1097)) (-4 *3 (-1212)))) + (-12 (-4 *1 (-516 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1214)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-642 *4)) (-5 *3 (-642 *5)) (-4 *1 (-514 *4 *5)) - (-4 *4 (-1097)) (-4 *5 (-1212)))) + (-12 (-5 *2 (-644 *4)) (-5 *3 (-644 *5)) (-4 *1 (-516 *4 *5)) + (-4 *4 (-1099)) (-4 *5 (-1214)))) ((*1 *2 *1 *2) - (-12 (-5 *2 (-831 *3)) (-4 *3 (-363)) (-5 *1 (-716 *3)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-716 *2)) (-4 *2 (-363)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-901 *2)) (-4 *2 (-1097)))) + (-12 (-5 *2 (-833 *3)) (-4 *3 (-365)) (-5 *1 (-718 *3)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-718 *2)) (-4 *2 (-365)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-903 *2)) (-4 *2 (-1099)))) ((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-407 (-950 *4))) (-5 *3 (-1173)) (-4 *4 (-556)) - (-5 *1 (-1041 *4)))) + (-12 (-5 *2 (-409 (-952 *4))) (-5 *3 (-1175)) (-4 *4 (-558)) + (-5 *1 (-1043 *4)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-642 (-1173))) (-5 *4 (-642 (-407 (-950 *5)))) - (-5 *2 (-407 (-950 *5))) (-4 *5 (-556)) (-5 *1 (-1041 *5)))) + (-12 (-5 *3 (-644 (-1175))) (-5 *4 (-644 (-409 (-952 *5)))) + (-5 *2 (-409 (-952 *5))) (-4 *5 (-558)) (-5 *1 (-1043 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-294 (-407 (-950 *4)))) (-5 *2 (-407 (-950 *4))) - (-4 *4 (-556)) (-5 *1 (-1041 *4)))) + (-12 (-5 *3 (-295 (-409 (-952 *4)))) (-5 *2 (-409 (-952 *4))) + (-4 *4 (-558)) (-5 *1 (-1043 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-642 (-294 (-407 (-950 *4))))) (-5 *2 (-407 (-950 *4))) - (-4 *4 (-556)) (-5 *1 (-1041 *4)))) + (-12 (-5 *3 (-644 (-295 (-409 (-952 *4))))) (-5 *2 (-409 (-952 *4))) + (-4 *4 (-558)) (-5 *1 (-1043 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3)))) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1240 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-790)) - (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1153 *3))))) -(((*1 *1) (-5 *1 (-157))) - ((*1 *2 *1) (-12 (-4 *1 (-1042 *2)) (-4 *2 (-23))))) -(((*1 *2 *2) (-12 (-5 *2 (-919)) (-5 *1 (-403 *3)) (-4 *3 (-404)))) - ((*1 *2) (-12 (-5 *2 (-919)) (-5 *1 (-403 *3)) (-4 *3 (-404)))) - ((*1 *2 *2) (-12 (-5 *2 (-919)) (|has| *1 (-6 -4401)) (-4 *1 (-404)))) - ((*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-919)))) - ((*1 *2 *1) (-12 (-4 *1 (-867 *3)) (-5 *2 (-1153 (-564)))))) -(((*1 *1) (-5 *1 (-615)))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197))))) -(((*1 *2 *3) - (-12 (-5 *3 (-481 *4 *5)) (-14 *4 (-642 (-1173))) (-4 *5 (-1047)) - (-5 *2 (-247 *4 *5)) (-5 *1 (-942 *4 *5))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-941 (-225))) (-5 *4 (-872)) (-5 *2 (-1267)) - (-5 *1 (-468)))) - ((*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1047)) (-4 *1 (-978 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-941 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-941 *3)) (-4 *3 (-1047)) (-4 *1 (-1131 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-769)) (-4 *1 (-1131 *3)) (-4 *3 (-1047)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-642 *3)) (-4 *1 (-1131 *3)) (-4 *3 (-1047)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-941 *3)) (-4 *1 (-1131 *3)) (-4 *3 (-1047)))) - ((*1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-941 (-225))) (-5 *1 (-1208)) (-5 *3 (-225))))) -(((*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-112)) (-5 *1 (-827))))) + (-12 (-4 *1 (-1242 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792)) + (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1155 *3))))) +(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1199)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7)) + (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-644 *10)) + (-5 *1 (-624 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1070 *5 *6 *7 *8)) + (-4 *10 (-1108 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-780 *5 (-864 *6)))) (-5 *4 (-112)) (-4 *5 (-454)) + (-14 *6 (-644 (-1175))) (-5 *2 (-644 (-1046 *5 *6))) + (-5 *1 (-628 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-780 *5 (-864 *6)))) (-5 *4 (-112)) (-4 *5 (-454)) + (-14 *6 (-644 (-1175))) + (-5 *2 + (-644 (-1145 *5 (-533 (-864 *6)) (-864 *6) (-780 *5 (-864 *6))))) + (-5 *1 (-628 *5 *6)))) + ((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7)) + (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) + (-5 *2 (-644 (-1027 *5 *6 *7 *8))) (-5 *1 (-1027 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7)) + (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) + (-5 *2 (-644 (-1027 *5 *6 *7 *8))) (-5 *1 (-1027 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-644 (-780 *5 (-864 *6)))) (-5 *4 (-112)) (-4 *5 (-454)) + (-14 *6 (-644 (-1175))) (-5 *2 (-644 (-1046 *5 *6))) + (-5 *1 (-1046 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7)) + (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-644 *1)) + (-4 *1 (-1070 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7)) + (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) + (-5 *2 (-644 (-1145 *5 *6 *7 *8))) (-5 *1 (-1145 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7)) + (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) + (-5 *2 (-644 (-1145 *5 *6 *7 *8))) (-5 *1 (-1145 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-558)) + (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 *1)) + (-4 *1 (-1207 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-943 *3) (-943 *3))) (-5 *1 (-176 *3)) + (-4 *3 (-13 (-365) (-1199) (-1002)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) (((*1 *2 *1) - (-12 (-5 *2 (-642 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) - (-5 *1 (-585 *3)) (-4 *3 (-363))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1255 *3 *2)) - (-4 *2 (-1253 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1136)))) -(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820))))) + (-12 (-4 *1 (-254 *3 *4 *2 *5)) (-4 *3 (-1049)) (-4 *4 (-850)) + (-4 *5 (-793)) (-4 *2 (-267 *4))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1049)) (-5 *2 (-1264 *3)) (-5 *1 (-712 *3 *4)) + (-4 *4 (-1240 *3))))) +(((*1 *1) (-5 *1 (-141)))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-644 (-1213))) (-5 *3 (-1213)) (-5 *1 (-681))))) +(((*1 *1) (-5 *1 (-580)))) +(((*1 *2 *2) + (-12 (-5 *2 (-771)) (-5 *1 (-447 *3)) (-4 *3 (-406)) (-4 *3 (-1049)))) + ((*1 *2) + (-12 (-5 *2 (-771)) (-5 *1 (-447 *3)) (-4 *3 (-406)) (-4 *3 (-1049))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-558) (-147))) (-5 *2 (-644 *3)) + (-5 *1 (-1234 *4 *3)) (-4 *3 (-1240 *4))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1000))))) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) - (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1158 *3)))) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1160 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1159 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-373 *3)) - (-4 *5 (-373 *3)) (-5 *2 (-642 (-642 *3))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-642 (-642 *5))))) - ((*1 *2 *1) - (-12 (-5 *2 (-642 (-642 *3))) (-5 *1 (-1184 *3)) (-4 *3 (-1097))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) - (-5 *1 (-749))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1169 *7)) - (-4 *5 (-1047)) (-4 *7 (-1047)) (-4 *2 (-1238 *5)) - (-5 *1 (-501 *5 *2 *6 *7)) (-4 *6 (-1238 *2))))) -(((*1 *2 *3) - (-12 (-5 *3 (-919)) (-5 *2 (-1262 (-1262 (-564)))) (-5 *1 (-466))))) -(((*1 *1 *1) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-848)) (-4 *3 (-172)))) - ((*1 *1 *1) - (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-848)) - (-4 *3 (-13 (-172) (-715 (-407 (-564))))) (-14 *4 (-919)))) - ((*1 *1 *1) (-12 (-5 *1 (-675 *2)) (-4 *2 (-848)))) - ((*1 *1 *1) (-12 (-5 *1 (-817 *2)) (-4 *2 (-848)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1279 *2 *3)) (-4 *2 (-848)) (-4 *3 (-1047))))) -(((*1 *1) - (-12 (-4 *3 (-1097)) (-5 *1 (-883 *2 *3 *4)) (-4 *2 (-1097)) - (-4 *4 (-664 *3)))) - ((*1 *1) (-12 (-5 *1 (-887 *2 *3)) (-4 *2 (-1097)) (-4 *3 (-1097))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1097)) (-4 *4 (-13 (-1047) (-884 *3) (-612 (-890 *3)))) - (-5 *2 (-642 (-1073 *3 *4 *5))) (-5 *1 (-1074 *3 *4 *5)) - (-4 *5 (-13 (-430 *4) (-884 *3) (-612 (-890 *3))))))) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1161 *3))))) +(((*1 *1 *1 *1 *1 *2) + (-12 (-5 *2 (-771)) (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) + (-4 *4 (-793)) (-4 *5 (-850)) (-4 *3 (-558))))) +(((*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-52))))) +(((*1 *1) (-5 *1 (-617)))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1237 *4 *5)) (-5 *3 (-644 *5)) (-14 *4 (-1175)) + (-4 *5 (-365)) (-5 *1 (-923 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-644 *5)) (-4 *5 (-365)) (-5 *2 (-1171 *5)) + (-5 *1 (-923 *4 *5)) (-14 *4 (-1175)))) + ((*1 *2 *3 *3 *4 *4) + (-12 (-5 *3 (-644 *6)) (-5 *4 (-771)) (-4 *6 (-365)) + (-5 *2 (-409 (-952 *6))) (-5 *1 (-1050 *5 *6)) (-14 *5 (-1175))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) + (-4 *3 (-369 *4)))) + ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1191 *3 *4)) (-4 *3 (-1099)) + (-4 *4 (-1099))))) (((*1 *2 *1) - (-12 (-5 *2 (-1153 (-407 *3))) (-5 *1 (-174 *3)) (-4 *3 (-307))))) -(((*1 *2 *3) (-12 (-5 *3 (-642 (-52))) (-5 *2 (-1267)) (-5 *1 (-861))))) -(((*1 *2 *3) (-12 (-5 *3 (-919)) (-5 *2 (-1155)) (-5 *1 (-784))))) + (-12 (-4 *3 (-1099)) (-4 *4 (-13 (-1049) (-886 *3) (-614 (-892 *3)))) + (-5 *2 (-644 (-1175))) (-5 *1 (-1075 *3 *4 *5)) + (-4 *5 (-13 (-432 *4) (-886 *3) (-614 (-892 *3))))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-819 *3)) (-4 *3 (-850)) (-5 *1 (-672 *3))))) +(((*1 *2 *3 *3 *1) + (-12 (-5 *3 (-508)) (-5 *2 (-691 (-1103))) (-5 *1 (-292))))) +(((*1 *1 *2) (-12 (-5 *1 (-691 *2)) (-4 *2 (-613 (-862)))))) +(((*1 *2) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) + (-4 *5 (-1240 (-409 *4))) (-5 *2 (-689 (-409 *4)))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1000))))) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) - (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1158 *3)))) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1160 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1159 *3))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-642 (-564))) (-5 *3 (-112)) (-5 *1 (-1107))))) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1161 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6)) + (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) + (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3)))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-642 (-1173))) (-5 *3 (-1173)) (-5 *1 (-536)))) + (-12 (-5 *2 (-644 (-1175))) (-5 *3 (-1175)) (-5 *1 (-538)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1173)) (-5 *1 (-702 *3)) (-4 *3 (-612 (-536))))) + (-12 (-5 *2 (-1175)) (-5 *1 (-704 *3)) (-4 *3 (-614 (-538))))) ((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-1173)) (-5 *1 (-702 *3)) (-4 *3 (-612 (-536))))) + (-12 (-5 *2 (-1175)) (-5 *1 (-704 *3)) (-4 *3 (-614 (-538))))) ((*1 *2 *3 *2 *2 *2) - (-12 (-5 *2 (-1173)) (-5 *1 (-702 *3)) (-4 *3 (-612 (-536))))) + (-12 (-5 *2 (-1175)) (-5 *1 (-704 *3)) (-4 *3 (-614 (-538))))) ((*1 *2 *3 *2 *4) - (-12 (-5 *4 (-642 (-1173))) (-5 *2 (-1173)) (-5 *1 (-702 *3)) - (-4 *3 (-612 (-536)))))) + (-12 (-5 *4 (-644 (-1175))) (-5 *2 (-1175)) (-5 *1 (-704 *3)) + (-4 *3 (-614 (-538)))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) + (-5 *1 (-752))))) +(((*1 *2 *3 *2 *2) + (-12 (-5 *2 (-644 (-483 *4 *5))) (-5 *3 (-864 *4)) + (-14 *4 (-644 (-1175))) (-4 *5 (-454)) (-5 *1 (-631 *4 *5))))) +(((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7)) + (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) + (-5 *2 (-644 (-1027 *5 *6 *7 *8))) (-5 *1 (-1027 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7)) + (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) + (-5 *2 (-644 (-1145 *5 *6 *7 *8))) (-5 *1 (-1145 *5 *6 *7 *8))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2162 *3))) + (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4))))) +(((*1 *1) + (-12 (-4 *3 (-1099)) (-5 *1 (-885 *2 *3 *4)) (-4 *2 (-1099)) + (-4 *4 (-666 *3)))) + ((*1 *1) (-12 (-5 *1 (-889 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099))))) +(((*1 *1) (-5 *1 (-823)))) (((*1 *2 *1) - (-12 (-5 *2 (-860)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 (-769)) - (-14 *4 (-769)) (-4 *5 (-172))))) -(((*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-1265))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1207 *3)) (-4 *3 (-972))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1264))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-132)) (-5 *3 (-769)) (-5 *2 (-1267))))) -(((*1 *1 *1) (-5 *1 (-1060)))) -(((*1 *2 *3) - (-12 (-5 *3 (-564)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) - (-5 *2 (-1267)) (-5 *1 (-449 *4 *5 *6 *7)) (-4 *7 (-947 *4 *5 *6))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-112)) (-5 *1 (-819))))) -(((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1000))))) + (-12 (-4 *3 (-1099)) (-4 *4 (-13 (-1049) (-886 *3) (-614 (-892 *3)))) + (-5 *2 (-644 (-1075 *3 *4 *5))) (-5 *1 (-1076 *3 *4 *5)) + (-4 *5 (-13 (-432 *4) (-886 *3) (-614 (-892 *3))))))) +(((*1 *2 *3) (-12 (-5 *3 (-644 (-52))) (-5 *2 (-1269)) (-5 *1 (-863))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) +(((*1 *2 *1) + (-12 (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) + (-5 *2 (-112))))) +(((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) - (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) - ((*1 *1 *1) (-4 *1 (-493))) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1158 *3)))) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1159 *3))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-642 *7)) (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-452)) - (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112)) - (-5 *1 (-986 *4 *5 *6 *7 *8)) (-4 *8 (-1068 *4 *5 *6 *7)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1062 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-791)) - (-4 *5 (-848)) (-5 *2 (-112)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-642 *7)) (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-452)) - (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112)) - (-5 *1 (-1104 *4 *5 *6 *7 *8)) (-4 *8 (-1068 *4 *5 *6 *7)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1205 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-791)) - (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-642 *6)) (-5 *4 (-642 (-1173))) (-4 *6 (-363)) - (-5 *2 (-642 (-294 (-950 *6)))) (-5 *1 (-538 *5 *6 *7)) - (-4 *5 (-452)) (-4 *7 (-13 (-363) (-846)))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-769)) (-5 *2 (-407 (-564))) (-5 *1 (-225)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-769)) (-5 *2 (-407 (-564))) (-5 *1 (-225)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-769)) (-5 *2 (-407 (-564))) (-5 *1 (-379)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-769)) (-5 *2 (-407 (-564))) (-5 *1 (-379))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1262 *3)) (-4 *3 (-1238 *4)) (-4 *4 (-1216)) - (-4 *1 (-342 *4 *3 *5)) (-4 *5 (-1238 (-407 *3)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1100 *3 *4 *5 *6 *7)) (-4 *3 (-1097)) (-4 *4 (-1097)) - (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *7 (-1097)) (-5 *2 (-112))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556))))) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1160 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1161 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-943 *3)) (-4 *3 (-13 (-365) (-1199) (-1002))) + (-5 *1 (-176 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1148 *3)) (-4 *3 (-1214)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1141 *4 *2)) (-14 *4 (-921)) + (-4 *2 (-13 (-1049) (-10 -7 (-6 (-4419 "*"))))) + (-5 *1 (-902 *4 *2))))) +(((*1 *2 *1 *3) + (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1062)) (-5 *3 (-1157))))) (((*1 *2 *3) - (-12 (-4 *4 (-1047)) (-5 *2 (-112)) (-5 *1 (-444 *4 *3)) - (-4 *3 (-1238 *4)))) + (-12 (-5 *3 (-921)) (-5 *2 (-1264 (-1264 (-566)))) (-5 *1 (-468))))) +(((*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365)))) + ((*1 *2 *3) + (-12 (-5 *3 (-921)) (-5 *2 (-1264 *4)) (-5 *1 (-530 *4)) + (-4 *4 (-351))))) +(((*1 *2 *1) + (-12 (-5 *2 (-174 (-409 (-566)))) (-5 *1 (-117 *3)) (-14 *3 (-566)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *3 (-1155 *2)) (-4 *2 (-308)) (-5 *1 (-174 *2)))) + ((*1 *1 *2) (-12 (-5 *2 (-409 *3)) (-4 *3 (-308)) (-5 *1 (-174 *3)))) + ((*1 *2 *3) + (-12 (-5 *2 (-174 (-566))) (-5 *1 (-765 *3)) (-4 *3 (-406)))) ((*1 *2 *1) - (-12 (-4 *1 (-1062 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-791)) - (-4 *5 (-848)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-953)) (-5 *2 (-642 (-642 (-941 (-225))))))) - ((*1 *2 *1) (-12 (-4 *1 (-972)) (-5 *2 (-642 (-642 (-941 (-225)))))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-642 (-564))) (-5 *1 (-1107)) (-5 *3 (-564))))) + (-12 (-5 *2 (-174 (-409 (-566)))) (-5 *1 (-871 *3)) (-14 *3 (-566)))) + ((*1 *2 *1) + (-12 (-14 *3 (-566)) (-5 *2 (-174 (-409 (-566)))) + (-5 *1 (-872 *3 *4)) (-4 *4 (-869 *3))))) +(((*1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1184))))) +(((*1 *2 *1) + (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-558)) + (-5 *2 (-1171 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1000))))) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) - (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) - ((*1 *1 *1) (-4 *1 (-493))) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) + ((*1 *1 *1) (-4 *1 (-495))) ((*1 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1158 *3)))) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1160 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1159 *3))))) -(((*1 *1 *1 *1) (-4 *1 (-965)))) -(((*1 *1) (-5 *1 (-291)))) -(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1212)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) - (-4 *4 (-848)))) - ((*1 *1 *1) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1212))))) -(((*1 *1 *1 *1) (-4 *1 (-759)))) -(((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1212)) - (-4 *4 (-373 *2)) (-4 *5 (-373 *2)))) - ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4411)) (-4 *1 (-288 *3 *2)) (-4 *3 (-1097)) - (-4 *2 (-1212))))) -(((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-890 *4)) (-4 *4 (-1097)) (-5 *1 (-887 *4 *3)) - (-4 *3 (-1097))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1155)) (-5 *4 (-564)) (-5 *5 (-687 (-225))) - (-5 *2 (-1033)) (-5 *1 (-752))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-363)) (-5 *1 (-764 *2 *3)) (-4 *2 (-706 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-850 *2)) (-4 *2 (-1047)) (-4 *2 (-363))))) -(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1197)))) - ((*1 *2 *1) (-12 (-5 *1 (-331 *2)) (-4 *2 (-848)))) - ((*1 *2 *1) (-12 (-5 *2 (-642 *3)) (-5 *1 (-610 *3)) (-4 *3 (-1097))))) -(((*1 *2 *3) - (-12 (-5 *3 (-642 (-642 (-941 (-225))))) (-5 *2 (-642 (-225))) - (-5 *1 (-468))))) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1161 *3))))) +(((*1 *1 *1) + (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) + (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1157)) (-5 *1 (-710))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 + *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 + *9) + (-12 (-5 *4 (-689 (-225))) (-5 *5 (-112)) (-5 *6 (-225)) + (-5 *7 (-689 (-566))) + (-5 *8 (-3 (|:| |fn| (-390)) (|:| |fp| (-80 CONFUN)))) + (-5 *9 (-3 (|:| |fn| (-390)) (|:| |fp| (-77 OBJFUN)))) + (-5 *3 (-566)) (-5 *2 (-1035)) (-5 *1 (-753))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-295 *2)) (-4 *2 (-726)) (-4 *2 (-1214))))) +(((*1 *2) + (-12 (-5 *2 (-958 (-1119))) (-5 *1 (-345 *3 *4)) (-14 *3 (-921)) + (-14 *4 (-921)))) + ((*1 *2) + (-12 (-5 *2 (-958 (-1119))) (-5 *1 (-346 *3 *4)) (-4 *3 (-351)) + (-14 *4 (-1171 *3)))) + ((*1 *2) + (-12 (-5 *2 (-958 (-1119))) (-5 *1 (-347 *3 *4)) (-4 *3 (-351)) + (-14 *4 (-921))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) + (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) + (-5 *1 (-1277 *3 *4 *5 *6)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-644 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-558)) + (-4 *6 (-793)) (-4 *7 (-850)) (-5 *1 (-1277 *5 *6 *7 *8))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) + (-4 *3 (-1064 *5 *6 *7)) + (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -2192 *4)))) + (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *2 (-1269)) (-5 *1 (-822))))) (((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1000))))) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) - (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) - ((*1 *1 *1) (-4 *1 (-493))) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) + ((*1 *1 *1) (-4 *1 (-495))) ((*1 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1158 *3)))) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1160 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1159 *3))))) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1161 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-642 (-1173))) (-4 *5 (-1047)) - (-5 *2 (-950 *5)) (-5 *1 (-942 *4 *5))))) + (-12 (-5 *3 (-644 (-952 *4))) (-4 *4 (-454)) (-5 *2 (-112)) + (-5 *1 (-362 *4 *5)) (-14 *5 (-644 (-1175))))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 (-780 *4 (-864 *5)))) (-4 *4 (-454)) + (-14 *5 (-644 (-1175))) (-5 *2 (-112)) (-5 *1 (-628 *4 *5))))) +(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1214)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) + (-4 *4 (-850)))) + ((*1 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1214))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-926))))) +(((*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1214))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1175)) (-5 *2 (-1 (-1171 (-952 *4)) (-952 *4))) + (-5 *1 (-1272 *4)) (-4 *4 (-365))))) +(((*1 *1 *1) + (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-689 *1)) (-4 *1 (-351)) (-5 *2 (-1264 *1)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-689 *1)) (-4 *1 (-145)) (-4 *1 (-909)) + (-5 *2 (-1264 *1))))) +(((*1 *2 *3) + (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-241)) (-5 *3 (-1157)))) + ((*1 *2 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-241)))) + ((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-874))))) +(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-97))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-921)) (-5 *4 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1265))))) +(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) + (-12 (-5 *5 (-689 (-225))) (-5 *6 (-689 (-566))) (-5 *3 (-566)) + (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-752))))) +(((*1 *1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1049)))) + ((*1 *2 *3) + (-12 (-4 *4 (-558)) (-4 *4 (-172)) (-4 *5 (-375 *4)) + (-4 *6 (-375 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) + (-5 *1 (-688 *4 *5 *6 *3)) (-4 *3 (-687 *4 *5 *6)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-172)) (-4 *2 (-1049)) (-5 *1 (-714 *2 *3)) + (-4 *3 (-648 *2)))) + ((*1 *1 *1) + (-12 (-4 *2 (-172)) (-4 *2 (-1049)) (-5 *1 (-714 *2 *3)) + (-4 *3 (-648 *2)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-172)) (-4 *2 (-1049)))) + ((*1 *1 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-172)) (-4 *2 (-1049))))) (((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1000)))))) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) + ((*1 *1 *1) (-4 *1 (-495))) + ((*1 *2 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1160 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1161 *3))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) + (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-63 LSFUN2)))) + (-5 *2 (-1035)) (-5 *1 (-753))))) (((*1 *2 *3) - (-12 (-5 *3 (-642 (-536))) (-5 *2 (-1173)) (-5 *1 (-536))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-112)) (-5 *5 (-564)) (-4 *6 (-363)) (-4 *6 (-368)) - (-4 *6 (-1047)) (-5 *2 (-642 (-642 (-687 *6)))) (-5 *1 (-1027 *6)) - (-5 *3 (-642 (-687 *6))))) - ((*1 *2 *3) - (-12 (-4 *4 (-363)) (-4 *4 (-368)) (-4 *4 (-1047)) - (-5 *2 (-642 (-642 (-687 *4)))) (-5 *1 (-1027 *4)) - (-5 *3 (-642 (-687 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1047)) - (-5 *2 (-642 (-642 (-687 *5)))) (-5 *1 (-1027 *5)) - (-5 *3 (-642 (-687 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-919)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1047)) - (-5 *2 (-642 (-642 (-687 *5)))) (-5 *1 (-1027 *5)) - (-5 *3 (-642 (-687 *5)))))) -(((*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-487))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1264))))) -(((*1 *2 *3) - (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-241)) (-5 *3 (-1155)))) - ((*1 *2 *2) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-241)))) - ((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-872))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-642 *5)) (-4 *5 (-1238 *3)) (-4 *3 (-307)) - (-5 *2 (-112)) (-5 *1 (-455 *3 *5))))) + (-12 (-5 *3 (-644 (-538))) (-5 *2 (-1175)) (-5 *1 (-538))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365))))) +(((*1 *2 *3) + (-12 (-5 *3 (-612 *5)) (-4 *5 (-432 *4)) (-4 *4 (-1038 (-566))) + (-4 *4 (-558)) (-5 *2 (-1171 *5)) (-5 *1 (-32 *4 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-612 *1)) (-4 *1 (-1049)) (-4 *1 (-303)) + (-5 *2 (-1171 *1))))) +(((*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) + (-12 (-5 *4 (-566)) (-5 *5 (-689 (-225))) + (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-84 FCNF)))) + (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-225)) + (-5 *2 (-1035)) (-5 *1 (-749))))) +(((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) + (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) + ((*1 *1 *1) (-4 *1 (-495))) + ((*1 *2 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1160 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1161 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-644 *2)) (-4 *2 (-949 *4 *5 *6)) (-4 *4 (-454)) + (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-451 *4 *5 *6 *2))))) (((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| - (-2 (|:| |var| (-1173)) - (|:| |arrayIndex| (-642 (-950 (-564)))) + (-2 (|:| |var| (-1175)) + (|:| |arrayIndex| (-644 (-952 (-566)))) (|:| |rand| - (-2 (|:| |ints2Floats?| (-112)) (|:| -1305 (-860)))))) + (-2 (|:| |ints2Floats?| (-112)) (|:| -1304 (-862)))))) (|:| |arrayAssignmentBranch| - (-2 (|:| |var| (-1173)) (|:| |rand| (-860)) + (-2 (|:| |var| (-1175)) (|:| |rand| (-862)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| - (-2 (|:| |switch| (-1172)) (|:| |thenClause| (-330)) - (|:| |elseClause| (-330)))) + (-2 (|:| |switch| (-1174)) (|:| |thenClause| (-331)) + (|:| |elseClause| (-331)))) (|:| |returnBranch| - (-2 (|:| -4109 (-112)) - (|:| -2108 - (-2 (|:| |ints2Floats?| (-112)) (|:| -1305 (-860)))))) - (|:| |blockBranch| (-642 (-330))) - (|:| |commentBranch| (-642 (-1155))) (|:| |callBranch| (-1155)) + (-2 (|:| -2788 (-112)) + (|:| -2153 + (-2 (|:| |ints2Floats?| (-112)) (|:| -1304 (-862)))))) + (|:| |blockBranch| (-644 (-331))) + (|:| |commentBranch| (-644 (-1157))) (|:| |callBranch| (-1157)) (|:| |forBranch| - (-2 (|:| -4138 (-1089 (-950 (-564)))) - (|:| |span| (-950 (-564))) (|:| -2502 (-330)))) - (|:| |labelBranch| (-1117)) - (|:| |loopBranch| (-2 (|:| |switch| (-1172)) (|:| -2502 (-330)))) + (-2 (|:| -1680 (-1091 (-952 (-566)))) + (|:| |span| (-952 (-566))) (|:| -2610 (-331)))) + (|:| |labelBranch| (-1119)) + (|:| |loopBranch| (-2 (|:| |switch| (-1174)) (|:| -2610 (-331)))) (|:| |commonBranch| - (-2 (|:| -2493 (-1173)) (|:| |contents| (-642 (-1173))))) - (|:| |printBranch| (-642 (-860))))) - (-5 *1 (-330))))) -(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-257))))) + (-2 (|:| -2598 (-1175)) (|:| |contents| (-644 (-1175))))) + (|:| |printBranch| (-644 (-862))))) + (-5 *1 (-331))))) +(((*1 *2 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) + (-5 *1 (-754))))) +(((*1 *1) (-5 *1 (-130)))) (((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1000))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) - (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-642 (-1173))) - (-14 *3 (-642 (-1173))) (-4 *4 (-387)))) - ((*1 *1 *1) (-4 *1 (-493))) - ((*1 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1158 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1159 *3))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-468)) (-5 *3 (-642 (-263))) (-5 *1 (-1263)))) - ((*1 *1 *1) (-5 *1 (-1263)))) -(((*1 *1 *1 *1) (|partial| -4 *1 (-131)))) -(((*1 *2 *3) (-12 (-5 *3 (-769)) (-5 *2 (-379)) (-5 *1 (-1038))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-685 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-373 *2)) - (-4 *4 (-373 *2))))) -(((*1 *1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-1097)) (-4 *2 (-556)))) - ((*1 *1 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-556))))) -(((*1 *1 *1 *1 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *1 (-594 *3)) (-4 *3 (-1047))))) + (|partial| -12 (-5 *2 (-644 (-892 *3))) (-5 *1 (-892 *3)) + (-4 *3 (-1099))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-690 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) - (-5 *2 (-642 *4)) (-5 *1 (-1125 *3 *4)) (-4 *3 (-1238 *4)))) - ((*1 *2 *3 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) - (-5 *2 (-642 *3)) (-5 *1 (-1125 *4 *3)) (-4 *4 (-1238 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820))))) -(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1264)))) - ((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1264))))) + (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) + ((*1 *2) (-12 (-5 *2 (-904 (-566))) (-5 *1 (-917))))) (((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1000))))) + (|partial| -12 (-5 *2 (-1171 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1157)) (-5 *3 (-823)) (-5 *1 (-822))))) +(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1099)))) + ((*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1099))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-558) (-147))) + (-5 *2 (-2 (|:| -4351 *3) (|:| -4361 *3))) (-5 *1 (-1234 *4 *3)) + (-4 *3 (-1240 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) - (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-642 (-1173))) - (-14 *3 (-642 (-1173))) (-4 *4 (-387)))) - ((*1 *1 *1) (-4 *1 (-493))) + (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) + (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) + ((*1 *1 *1) (-4 *1 (-495))) ((*1 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1158 *3)))) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1160 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1159 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-642 *8)) (-5 *4 (-112)) (-4 *8 (-1062 *5 *6 *7)) - (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *2 (-642 *10)) - (-5 *1 (-622 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1068 *5 *6 *7 *8)) - (-4 *10 (-1106 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-642 (-778 *5 (-862 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) - (-14 *6 (-642 (-1173))) (-5 *2 (-642 (-1044 *5 *6))) - (-5 *1 (-626 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-642 (-778 *5 (-862 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) - (-14 *6 (-642 (-1173))) - (-5 *2 - (-642 (-1143 *5 (-531 (-862 *6)) (-862 *6) (-778 *5 (-862 *6))))) - (-5 *1 (-626 *5 *6)))) - ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-642 *8)) (-5 *4 (-112)) (-4 *8 (-1062 *5 *6 *7)) - (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) - (-5 *2 (-642 (-1025 *5 *6 *7 *8))) (-5 *1 (-1025 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-642 *8)) (-5 *4 (-112)) (-4 *8 (-1062 *5 *6 *7)) - (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) - (-5 *2 (-642 (-1025 *5 *6 *7 *8))) (-5 *1 (-1025 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-642 (-778 *5 (-862 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) - (-14 *6 (-642 (-1173))) (-5 *2 (-642 (-1044 *5 *6))) - (-5 *1 (-1044 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-642 *8)) (-5 *4 (-112)) (-4 *8 (-1062 *5 *6 *7)) - (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *2 (-642 *1)) - (-4 *1 (-1068 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-642 *8)) (-5 *4 (-112)) (-4 *8 (-1062 *5 *6 *7)) - (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) - (-5 *2 (-642 (-1143 *5 *6 *7 *8))) (-5 *1 (-1143 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-642 *8)) (-5 *4 (-112)) (-4 *8 (-1062 *5 *6 *7)) - (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) - (-5 *2 (-642 (-1143 *5 *6 *7 *8))) (-5 *1 (-1143 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-642 *7)) (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-556)) - (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-642 *1)) - (-4 *1 (-1205 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1169 *4)) (-4 *4 (-349)) - (-4 *2 - (-13 (-402) - (-10 -7 (-15 -2390 (*2 *4)) (-15 -2535 ((-919) *2)) - (-15 -2131 ((-1262 *2) (-919))) (-15 -1620 (*2 *2))))) - (-5 *1 (-356 *2 *4))))) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1161 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-556) (-147))) (-5 *2 (-642 *3)) - (-5 *1 (-1232 *4 *3)) (-4 *3 (-1238 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756))))) + (-12 (-4 *4 (-1049)) + (-4 *2 (-13 (-406) (-1038 *4) (-365) (-1199) (-285))) + (-5 *1 (-445 *4 *3 *2)) (-4 *3 (-1240 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-921)) (-4 *5 (-1049)) + (-4 *2 (-13 (-406) (-1038 *5) (-365) (-1199) (-285))) + (-5 *1 (-445 *5 *3 *2)) (-4 *3 (-1240 *5))))) +(((*1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-241))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-264))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-1214)) (-5 *1 (-182 *3 *2)) + (-4 *2 (-674 *3))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-644 (-1171 *4))) (-5 *3 (-1171 *4)) + (-4 *4 (-909)) (-5 *1 (-663 *4))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1171 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1214)) (-4 *2 (-850)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-283 *3)) (-4 *3 (-1214)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-850))))) (((*1 *2 *3) - (|partial| -12 (-4 *5 (-1036 (-48))) - (-4 *4 (-13 (-556) (-1036 (-564)))) (-4 *5 (-430 *4)) - (-5 *2 (-418 (-1169 (-48)))) (-5 *1 (-435 *4 *5 *3)) - (-4 *3 (-1238 *5))))) -(((*1 *1 *2) - (-12 (-5 *2 (-670 *3)) (-4 *3 (-848)) (-4 *1 (-374 *3 *4)) - (-4 *4 (-172))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1161 *2 *3)) (-14 *2 (-919)) (-4 *3 (-1047))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-564)) (-5 *5 (-687 (-225))) (-5 *4 (-225)) - (-5 *2 (-1033)) (-5 *1 (-750))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) - ((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-569 *3)) (-4 *3 (-1036 (-564))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1100 *3 *4 *5 *6 *7)) (-4 *3 (-1097)) (-4 *4 (-1097)) - (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *7 (-1097)) (-5 *2 (-112))))) + (-12 (-5 *3 (-644 (-225))) (-5 *2 (-1264 (-699))) (-5 *1 (-306))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-363 *3)) (-4 *3 (-1099)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-566)) (-5 *2 (-771)) (-5 *1 (-388 *4)) (-4 *4 (-1099)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-566)) (-4 *2 (-23)) (-5 *1 (-649 *4 *2 *5)) + (-4 *4 (-1099)) (-14 *5 *2))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-566)) (-5 *2 (-771)) (-5 *1 (-819 *4)) (-4 *4 (-850))))) (((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1000))))) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) - (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-642 (-1173))) - (-14 *3 (-642 (-1173))) (-4 *4 (-387)))) - ((*1 *1 *1) (-4 *1 (-493))) + (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) + (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) + ((*1 *1 *1) (-4 *1 (-495))) ((*1 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1158 *3)))) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1160 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1159 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1047)) (-4 *7 (-1047)) - (-4 *6 (-1238 *5)) (-5 *2 (-1169 (-1169 *7))) - (-5 *1 (-501 *5 *6 *4 *7)) (-4 *4 (-1238 *6))))) -(((*1 *1) (-5 *1 (-468)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1155)) - (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-112)) - (-5 *1 (-224 *4 *5)) (-4 *5 (-13 (-1197) (-29 *4)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114))))) -(((*1 *2 *3) - (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2790 *4))) - (-5 *1 (-967 *4 *3)) (-4 *3 (-1238 *4))))) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1161 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-642 (-919))) (-5 *2 (-902 (-564))) (-5 *1 (-915))))) -(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-860))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-114)))) - ((*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-114)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1047)) (-4 *3 (-848)) - (-4 *5 (-266 *3)) (-4 *6 (-791)) (-5 *2 (-769)))) - ((*1 *2 *1) - (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-848)) - (-4 *5 (-266 *4)) (-4 *6 (-791)) (-5 *2 (-769)))) - ((*1 *2 *1) (-12 (-4 *1 (-266 *3)) (-4 *3 (-848)) (-5 *2 (-769))))) + (-12 (-5 *3 (-644 (-566))) (-5 *2 (-644 (-689 (-566)))) + (-5 *1 (-1109))))) +(((*1 *2 *1) + (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6)) + (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) + (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1199)))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-850))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-644 (-566))) (-5 *3 (-689 (-566))) (-5 *1 (-1109))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-771)) (-4 *3 (-1049)) (-4 *1 (-687 *3 *4 *5)) + (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) + ((*1 *1 *2) + (-12 (-4 *2 (-1049)) (-4 *1 (-1122 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) + (-4 *5 (-238 *3 *2))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1000))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) - (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1158 *3)))) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1159 *3))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) - (-5 *2 - (-2 (|:| -2108 *4) (|:| -1437 *4) (|:| |totalpts| (-564)) - (|:| |success| (-112)))) - (-5 *1 (-787)) (-5 *5 (-564))))) -(((*1 *2) - (-12 (-5 *2 (-769)) (-5 *1 (-120 *3)) (-4 *3 (-1238 (-564))))) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1160 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-769)) (-5 *1 (-120 *3)) (-4 *3 (-1238 (-564)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-556) (-1036 (-564)))) (-5 *2 (-112)) - (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1197) (-430 (-169 *4)))))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-112)) - (-5 *1 (-1201 *4 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *4)))))) -(((*1 *2 *2) (-12 (-5 *2 (-642 (-316 (-225)))) (-5 *1 (-267))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-860))))) -(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-586 *3)) (-4 *3 (-545))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1169 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1175 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1100 *3 *4 *5 *6 *7)) (-4 *3 (-1097)) (-4 *4 (-1097)) - (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *7 (-1097)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-642 (-481 *4 *5))) (-14 *4 (-642 (-1173))) - (-4 *5 (-452)) - (-5 *2 - (-2 (|:| |gblist| (-642 (-247 *4 *5))) - (|:| |gvlist| (-642 (-564))))) - (-5 *1 (-629 *4 *5))))) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1161 *3))))) +(((*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-560 *3)) (-4 *3 (-547))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-771)) (-4 *4 (-351)) (-5 *1 (-216 *4 *2)) + (-4 *2 (-1240 *4)))) + ((*1 *2 *2 *3 *2 *3) + (-12 (-5 *3 (-566)) (-5 *1 (-696 *2)) (-4 *2 (-1240 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))) +(((*1 *2 *3 *4 *2 *5 *6) + (-12 + (-5 *5 + (-2 (|:| |done| (-644 *11)) + (|:| |todo| (-644 (-2 (|:| |val| *3) (|:| -2192 *11)))))) + (-5 *6 (-771)) + (-5 *2 (-644 (-2 (|:| |val| (-644 *10)) (|:| -2192 *11)))) + (-5 *3 (-644 *10)) (-5 *4 (-644 *11)) (-4 *10 (-1064 *7 *8 *9)) + (-4 *11 (-1070 *7 *8 *9 *10)) (-4 *7 (-454)) (-4 *8 (-793)) + (-4 *9 (-850)) (-5 *1 (-1068 *7 *8 *9 *10 *11)))) + ((*1 *2 *3 *4 *2 *5 *6) + (-12 + (-5 *5 + (-2 (|:| |done| (-644 *11)) + (|:| |todo| (-644 (-2 (|:| |val| *3) (|:| -2192 *11)))))) + (-5 *6 (-771)) + (-5 *2 (-644 (-2 (|:| |val| (-644 *10)) (|:| -2192 *11)))) + (-5 *3 (-644 *10)) (-5 *4 (-644 *11)) (-4 *10 (-1064 *7 *8 *9)) + (-4 *11 (-1108 *7 *8 *9 *10)) (-4 *7 (-454)) (-4 *8 (-793)) + (-4 *9 (-850)) (-5 *1 (-1144 *7 *8 *9 *10 *11))))) +(((*1 *2 *1) (-12 (-4 *1 (-529)) (-5 *2 (-691 (-1220)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1155 (-566))) (-5 *1 (-1159 *4)) (-4 *4 (-1049)) + (-5 *3 (-566))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1070 *4 *5 *6 *3)) (-4 *4 (-454)) (-4 *5 (-793)) + (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *1 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-1 (-943 (-225)) (-225))) (-5 *3 (-1093 (-225))) + (-5 *1 (-926)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-943 (-225)) (-225))) (-5 *3 (-1093 (-225))) + (-5 *1 (-926)))) + ((*1 *1 *2 *3 *3 *3) + (-12 (-5 *2 (-1 (-943 (-225)) (-225))) (-5 *3 (-1093 (-225))) + (-5 *1 (-927)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-943 (-225)) (-225))) (-5 *3 (-1093 (-225))) + (-5 *1 (-927))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-644 (-952 *4))) (-5 *3 (-644 (-1175))) (-4 *4 (-454)) + (-5 *1 (-918 *4))))) +(((*1 *1 *2) + (-12 (-5 *2 (-672 *3)) (-4 *3 (-850)) (-4 *1 (-376 *3 *4)) + (-4 *4 (-172))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1000))))) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) - (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1158 *3)))) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1160 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1159 *3))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-642 *7)) (|:| -2138 *8))) - (-4 *7 (-1062 *4 *5 *6)) (-4 *8 (-1068 *4 *5 *6 *7)) (-4 *4 (-452)) - (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112)) - (-5 *1 (-986 *4 *5 *6 *7 *8)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-642 *7)) (|:| -2138 *8))) - (-4 *7 (-1062 *4 *5 *6)) (-4 *8 (-1068 *4 *5 *6 *7)) (-4 *4 (-452)) - (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112)) - (-5 *1 (-1104 *4 *5 *6 *7 *8))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1173)) (-4 *5 (-612 (-890 (-564)))) - (-4 *5 (-884 (-564))) - (-4 *5 (-13 (-1036 (-564)) (-452) (-637 (-564)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) - (-5 *1 (-567 *5 *3)) (-4 *3 (-627)) - (-4 *3 (-13 (-27) (-1197) (-430 *5))))) - ((*1 *2 *2 *3 *4 *4) - (|partial| -12 (-5 *3 (-1173)) (-5 *4 (-841 *2)) (-4 *2 (-1136)) - (-4 *2 (-13 (-27) (-1197) (-430 *5))) - (-4 *5 (-612 (-890 (-564)))) (-4 *5 (-884 (-564))) - (-4 *5 (-13 (-1036 (-564)) (-452) (-637 (-564)))) - (-5 *1 (-567 *5 *2))))) -(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) - (-12 (-5 *3 (-564)) (-5 *5 (-112)) (-5 *6 (-687 (-225))) - (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN)))) - (-5 *4 (-225)) (-5 *2 (-1033)) (-5 *1 (-751))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) - (-5 *1 (-745))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-225)) (-5 *3 (-769)) (-5 *1 (-226)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-169 (-225))) (-5 *3 (-769)) (-5 *1 (-226)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1136)))) -(((*1 *1) (-5 *1 (-821)))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-919)) (-5 *4 (-872)) (-5 *2 (-1267)) (-5 *1 (-1263)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-919)) (-5 *4 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1263)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1264))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) - (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-642 *4)) - (-5 *1 (-1105 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3))))) -(((*1 *2 *2) (-12 (-5 *1 (-959 *2)) (-4 *2 (-545))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-687 *6)) (-5 *5 (-1 (-418 (-1169 *6)) (-1169 *6))) - (-4 *6 (-363)) - (-5 *2 - (-642 - (-2 (|:| |outval| *7) (|:| |outmult| (-564)) - (|:| |outvect| (-642 (-687 *7)))))) - (-5 *1 (-532 *6 *7 *4)) (-4 *7 (-363)) (-4 *4 (-13 (-363) (-846)))))) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1161 *3))))) +(((*1 *2 *3) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-448)) (-5 *3 (-566))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-1175))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |var| (-644 (-1175))) (|:| |pred| (-52)))) + (-5 *1 (-892 *3)) (-4 *3 (-1099))))) +(((*1 *1 *1) (-4 *1 (-1059))) + ((*1 *1 *1 *2 *2) + (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-792)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-792))))) +(((*1 *1 *1 *1) (|partial| -4 *1 (-131)))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-264)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-264)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-264))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1163 *2 *3)) (-14 *2 (-921)) (-4 *3 (-1049))))) +(((*1 *2 *1) + (-12 (-4 *1 (-337 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1240 *3)) + (-4 *5 (-1240 (-409 *4))) (-4 *6 (-344 *3 *4 *5)) + (-5 *2 (-415 *4 (-409 *4) *5 *6)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1264 *6)) (-4 *6 (-13 (-411 *4 *5) (-1038 *4))) + (-4 *4 (-992 *3)) (-4 *5 (-1240 *4)) (-4 *3 (-308)) + (-5 *1 (-415 *3 *4 *5 *6)))) + ((*1 *1 *2) + (-12 (-5 *2 (-644 *6)) (-4 *6 (-949 *3 *4 *5)) (-4 *3 (-365)) + (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-506 *3 *4 *5 *6))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-644 (-1264 *4))) (-5 *1 (-368 *3 *4)) + (-4 *3 (-369 *4)))) + ((*1 *2) + (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-558)) + (-5 *2 (-644 (-1264 *3)))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-642 (-379))) (-5 *3 (-642 (-263))) (-5 *1 (-261)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-642 (-379))) (-5 *1 (-468)))) - ((*1 *2 *1) (-12 (-5 *2 (-642 (-379))) (-5 *1 (-468)))) + (-12 (-5 *2 (-644 (-381))) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-644 (-381))) (-5 *1 (-470)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 (-381))) (-5 *1 (-470)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-919)) (-5 *4 (-872)) (-5 *2 (-1267)) (-5 *1 (-1263)))) + (-12 (-5 *3 (-921)) (-5 *4 (-874)) (-5 *2 (-1269)) (-5 *1 (-1265)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-919)) (-5 *4 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1263))))) + (-12 (-5 *3 (-921)) (-5 *4 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1265))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1000))))) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) - (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1158 *3)))) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1160 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1159 *3))))) -(((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| -1637 (-114)) (|:| |arg| (-642 (-890 *3))))) - (-5 *1 (-890 *3)) (-4 *3 (-1097)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-114)) (-5 *2 (-642 (-890 *4))) - (-5 *1 (-890 *4)) (-4 *4 (-1097))))) -(((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1000)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756))))) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1161 *3))))) +(((*1 *2) + (-12 (-4 *3 (-558)) (-5 *2 (-644 (-689 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-419 *3))))) +(((*1 *1 *1) (-4 *1 (-547)))) +(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1274))))) +(((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-771)) (-4 *5 (-365)) (-5 *2 (-174 *6)) + (-5 *1 (-867 *5 *4 *6)) (-4 *4 (-1255 *5)) (-4 *6 (-1240 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-556) (-1036 (-564)))) (-4 *5 (-430 *4)) - (-5 *2 (-418 *3)) (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1238 *5))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-556)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-967 *4 *3)) (-4 *3 (-1238 *4))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112))))) -(((*1 *2) (-12 (-5 *2 (-902 (-564))) (-5 *1 (-915))))) -(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-1155)) (-4 *6 (-452)) (-4 *7 (-791)) (-4 *8 (-848)) - (-4 *4 (-1062 *6 *7 *8)) (-5 *2 (-1267)) - (-5 *1 (-774 *6 *7 *8 *4 *5)) (-4 *5 (-1068 *6 *7 *8 *4))))) + (-12 (-5 *3 (-566)) (-5 *2 (-644 (-644 (-225)))) (-5 *1 (-1210))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-860)) (-5 *2 (-691 (-551))) (-5 *3 (-551))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-943 *3) (-943 *3))) (-5 *1 (-176 *3)) + (-4 *3 (-13 (-365) (-1199) (-1002)))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-409 *2)) (-4 *2 (-1240 *5)) + (-5 *1 (-807 *5 *2 *3 *6)) + (-4 *5 (-13 (-365) (-147) (-1038 (-409 (-566))))) + (-4 *3 (-656 *2)) (-4 *6 (-656 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-644 (-409 *2))) (-4 *2 (-1240 *5)) + (-5 *1 (-807 *5 *2 *3 *6)) + (-4 *5 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *3 (-656 *2)) + (-4 *6 (-656 (-409 *2)))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) + (-5 *2 + (-2 (|:| -2153 *4) (|:| -1452 *4) (|:| |totalpts| (-566)) + (|:| |success| (-112)))) + (-5 *1 (-789)) (-5 *5 (-566))))) +(((*1 *2 *1) + (-12 (-4 *1 (-337 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1240 *3)) + (-4 *5 (-1240 (-409 *4))) (-4 *6 (-344 *3 *4 *5)) (-5 *2 (-112))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *1 *1 *1) (-5 *1 (-225))) ((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1000))))) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) - (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-642 (-1173))) - (-14 *3 (-642 (-1173))) (-4 *4 (-387)))) - ((*1 *1 *1 *1) (-5 *1 (-379))) + (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) + (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) + ((*1 *1 *1 *1) (-5 *1 (-381))) ((*1 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1158 *3)))) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1160 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1159 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-556) (-1036 (-564)))) (-5 *2 (-169 (-316 *4))) - (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1197) (-430 (-169 *4)))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564)))) - (-5 *2 (-169 *3)) (-5 *1 (-1201 *4 *3)) - (-4 *3 (-13 (-27) (-1197) (-430 *4)))))) -(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) - (-5 *1 (-745))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-817 *3)) (-4 *3 (-848)) (-5 *1 (-670 *3))))) -(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1172)) (-5 *1 (-330)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1172)) (-5 *1 (-330))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1097)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-817 *2)) (-4 *2 (-848))))) -(((*1 *2 *1) - (-12 (-4 *2 (-556)) (-5 *1 (-621 *2 *3)) (-4 *3 (-1238 *2))))) -(((*1 *2 *3) - (-12 (-5 *3 (-642 *4)) (-4 *4 (-1047)) (-5 *2 (-1262 *4)) - (-5 *1 (-1174 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-919)) (-5 *2 (-1262 *3)) (-5 *1 (-1174 *3)) - (-4 *3 (-1047))))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1155)) (-5 *4 (-169 (-225))) (-5 *5 (-564)) - (-5 *2 (-1033)) (-5 *1 (-756))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) - (-4 *4 (-848))))) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1161 *3))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) + (-4 *3 (-369 *4)))) + ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-1006)))) + ((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-1006))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1264 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) + (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4)))))) +(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-331)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-331))))) +(((*1 *2 *3 *3 *2 *4) + (-12 (-5 *3 (-689 *2)) (-5 *4 (-566)) + (-4 *2 (-13 (-308) (-10 -8 (-15 -3348 ((-420 $) $))))) + (-4 *5 (-1240 *2)) (-5 *1 (-501 *2 *5 *6)) (-4 *6 (-411 *2 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-1099)) (-5 *2 (-1157))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1175)) + (-4 *5 (-13 (-454) (-147) (-1038 (-566)) (-639 (-566)))) + (-5 *2 (-587 *3)) (-5 *1 (-559 *5 *3)) + (-4 *3 (-13 (-27) (-1199) (-432 *5)))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1000))))) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) - (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-642 (-1173))) - (-14 *3 (-642 (-1173))) (-4 *4 (-387)))) + (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) + (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) ((*1 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1158 *3)))) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1160 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1159 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-974 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-791)) - (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-556)) - (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-5 *2 (-642 (-2 (|:| |k| (-670 *3)) (|:| |c| *4)))) - (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-848)) - (-4 *4 (-13 (-172) (-715 (-407 (-564))))) (-14 *5 (-919))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1097))))) -(((*1 *1 *1 *1) (-4 *1 (-545)))) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1161 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-407 (-950 *5))) (-5 *4 (-1173)) - (-4 *5 (-13 (-307) (-147))) (-5 *2 (-642 (-316 *5))) - (-5 *1 (-1126 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-642 (-407 (-950 *5)))) (-5 *4 (-642 (-1173))) - (-4 *5 (-13 (-307) (-147))) (-5 *2 (-642 (-642 (-316 *5)))) - (-5 *1 (-1126 *5))))) + (-12 (-5 *3 (-420 *5)) (-4 *5 (-558)) + (-5 *2 + (-2 (|:| -3631 (-771)) (|:| -3103 *5) (|:| |radicand| (-644 *5)))) + (-5 *1 (-321 *5)) (-5 *4 (-771)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1002)) (-5 *2 (-566))))) +(((*1 *2 *3) + (-12 (-5 *3 (-566)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *2 (-1049)) + (-5 *1 (-322 *4 *5 *2 *6)) (-4 *6 (-949 *2 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1169 *1)) (-5 *4 (-1173)) (-4 *1 (-27)) - (-5 *2 (-642 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1169 *1)) (-4 *1 (-27)) (-5 *2 (-642 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-950 *1)) (-4 *1 (-27)) (-5 *2 (-642 *1)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1173)) (-4 *4 (-556)) (-5 *2 (-642 *1)) - (-4 *1 (-29 *4)))) - ((*1 *2 *1) (-12 (-4 *3 (-556)) (-5 *2 (-642 *1)) (-4 *1 (-29 *3))))) + (-12 (-4 *5 (-1099)) (-4 *2 (-900 *5)) (-5 *1 (-692 *5 *2 *3 *4)) + (-4 *3 (-375 *2)) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4417))))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-771)) (-5 *3 (-112)) (-5 *1 (-110)))) + ((*1 *2 *2) (-12 (-5 *2 (-921)) (|has| *1 (-6 -4408)) (-4 *1 (-406)))) + ((*1 *2) (-12 (-4 *1 (-406)) (-5 *2 (-921))))) (((*1 *2 *3) - (-12 (-5 *3 (-642 (-642 (-941 (-225))))) - (-5 *2 (-642 (-1091 (-225)))) (-5 *1 (-926))))) -(((*1 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-128))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-790)) (-4 *2 (-1047)))) - ((*1 *2 *1 *1) - (-12 (-4 *2 (-1047)) (-5 *1 (-50 *2 *3)) (-14 *3 (-642 (-1173))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-642 (-919))) (-4 *2 (-363)) (-5 *1 (-152 *4 *2 *5)) - (-14 *4 (-919)) (-14 *5 (-991 *4 *2)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-316 *3)) (-5 *1 (-223 *3 *4)) - (-4 *3 (-13 (-1047) (-848))) (-14 *4 (-642 (-1173))))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-323 *3 *2)) (-4 *3 (-1097)) (-4 *2 (-131)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-382 *2 *3)) (-4 *3 (-1097)) (-4 *2 (-1047)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-564)) (-4 *2 (-556)) (-5 *1 (-621 *2 *4)) - (-4 *4 (-1238 *2)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-769)) (-4 *1 (-706 *2)) (-4 *2 (-1047)))) - ((*1 *2 *1 *3) - (-12 (-4 *2 (-1047)) (-5 *1 (-733 *2 *3)) (-4 *3 (-724)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-642 *5)) (-5 *3 (-642 (-769))) (-4 *1 (-738 *4 *5)) - (-4 *4 (-1047)) (-4 *5 (-848)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-769)) (-4 *1 (-738 *4 *2)) (-4 *4 (-1047)) - (-4 *2 (-848)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-769)) (-4 *1 (-850 *2)) (-4 *2 (-1047)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-642 *6)) (-5 *3 (-642 (-769))) (-4 *1 (-947 *4 *5 *6)) - (-4 *4 (-1047)) (-4 *5 (-791)) (-4 *6 (-848)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-769)) (-4 *1 (-947 *4 *5 *2)) (-4 *4 (-1047)) - (-4 *5 (-791)) (-4 *2 (-848)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-769)) (-4 *2 (-947 *4 (-531 *5) *5)) - (-5 *1 (-1123 *4 *5 *2)) (-4 *4 (-1047)) (-4 *5 (-848)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-769)) (-5 *2 (-950 *4)) (-5 *1 (-1206 *4)) - (-4 *4 (-1047))))) + (-12 (-5 *3 (-1155 (-225))) (-5 *2 (-644 (-1157))) (-5 *1 (-192)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1155 (-225))) (-5 *2 (-644 (-1157))) (-5 *1 (-301)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1155 (-225))) (-5 *2 (-644 (-1157))) (-5 *1 (-306))))) +(((*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1157)) (-5 *1 (-786))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-921)) (-4 *5 (-558)) (-5 *2 (-689 *5)) + (-5 *1 (-956 *5 *3)) (-4 *3 (-656 *5))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1231 (-566))) (-4 *1 (-283 *3)) (-4 *3 (-1214)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-283 *3)) (-4 *3 (-1214))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-506)) (-5 *2 (-689 (-772))) (-5 *1 (-114)))) + (-12 (-5 *3 (-508)) (-5 *2 (-691 (-774))) (-5 *1 (-114)))) ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1155)) (-5 *2 (-772)) (-5 *1 (-114)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-1101)) (-5 *1 (-963))))) + (|partial| -12 (-5 *3 (-1157)) (-5 *2 (-774)) (-5 *1 (-114)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-508)) (-5 *3 (-1103)) (-5 *1 (-965))))) +(((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1195)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1195))))) (((*1 *2 *3) - (-12 (-4 *5 (-13 (-612 *2) (-172))) (-5 *2 (-890 *4)) - (-5 *1 (-170 *4 *5 *3)) (-4 *4 (-1097)) (-4 *3 (-166 *5)))) + (-12 (-4 *5 (-13 (-614 *2) (-172))) (-5 *2 (-892 *4)) + (-5 *1 (-170 *4 *5 *3)) (-4 *4 (-1099)) (-4 *3 (-166 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-642 (-1091 (-841 (-379))))) - (-5 *2 (-642 (-1091 (-841 (-225))))) (-5 *1 (-305)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-860)) (-5 *3 (-564)) (-5 *1 (-394)))) + (-12 (-5 *3 (-644 (-1093 (-843 (-381))))) + (-5 *2 (-644 (-1093 (-843 (-225))))) (-5 *1 (-306)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-862)) (-5 *3 (-566)) (-5 *1 (-396)))) ((*1 *1 *2) - (-12 (-5 *2 (-1262 *3)) (-4 *3 (-172)) (-4 *1 (-409 *3 *4)) - (-4 *4 (-1238 *3)))) + (-12 (-5 *2 (-1264 *3)) (-4 *3 (-172)) (-4 *1 (-411 *3 *4)) + (-4 *4 (-1240 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1238 *3)) - (-5 *2 (-1262 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1262 *3)) (-4 *3 (-172)) (-4 *1 (-417 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-1262 *3)))) + (-12 (-4 *1 (-411 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1240 *3)) + (-5 *2 (-1264 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1264 *3)) (-4 *3 (-172)) (-4 *1 (-419 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-1264 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-418 *1)) (-4 *1 (-430 *3)) (-4 *3 (-556)) - (-4 *3 (-1097)))) + (-12 (-5 *2 (-420 *1)) (-4 *1 (-432 *3)) (-4 *3 (-558)) + (-4 *3 (-1099)))) ((*1 *1 *2) - (-12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-1047)) - (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-463 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-1101)) (-5 *1 (-536)))) - ((*1 *2 *1) (-12 (-4 *1 (-612 *2)) (-4 *2 (-1212)))) - ((*1 *1 *2) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1212)))) + (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-1049)) + (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-465 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-1103)) (-5 *1 (-538)))) + ((*1 *2 *1) (-12 (-4 *1 (-614 *2)) (-4 *2 (-1214)))) + ((*1 *1 *2) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1214)))) ((*1 *1 *2) - (-12 (-4 *3 (-172)) (-4 *1 (-722 *3 *2)) (-4 *2 (-1238 *3)))) + (-12 (-4 *3 (-172)) (-4 *1 (-724 *3 *2)) (-4 *2 (-1240 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-642 (-890 *3))) (-5 *1 (-890 *3)) (-4 *3 (-1097)))) + (-12 (-5 *2 (-644 (-892 *3))) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) ((*1 *1 *2) - (-12 (-5 *2 (-950 *3)) (-4 *3 (-1047)) (-4 *1 (-1062 *3 *4 *5)) - (-4 *5 (-612 (-1173))) (-4 *4 (-791)) (-4 *5 (-848)))) + (-12 (-5 *2 (-952 *3)) (-4 *3 (-1049)) (-4 *1 (-1064 *3 *4 *5)) + (-4 *5 (-614 (-1175))) (-4 *4 (-793)) (-4 *5 (-850)))) ((*1 *1 *2) - (-2682 - (-12 (-5 *2 (-950 (-564))) (-4 *1 (-1062 *3 *4 *5)) - (-12 (-2307 (-4 *3 (-38 (-407 (-564))))) (-4 *3 (-38 (-564))) - (-4 *5 (-612 (-1173)))) - (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848))) - (-12 (-5 *2 (-950 (-564))) (-4 *1 (-1062 *3 *4 *5)) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1173)))) - (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848))))) + (-2809 + (-12 (-5 *2 (-952 (-566))) (-4 *1 (-1064 *3 *4 *5)) + (-12 (-2387 (-4 *3 (-38 (-409 (-566))))) (-4 *3 (-38 (-566))) + (-4 *5 (-614 (-1175)))) + (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850))) + (-12 (-5 *2 (-952 (-566))) (-4 *1 (-1064 *3 *4 *5)) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *5 (-614 (-1175)))) + (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850))))) ((*1 *1 *2) - (-12 (-5 *2 (-950 (-407 (-564)))) (-4 *1 (-1062 *3 *4 *5)) - (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1173))) (-4 *3 (-1047)) - (-4 *4 (-791)) (-4 *5 (-848)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-642 *7)) (|:| -2138 *8))) - (-4 *7 (-1062 *4 *5 *6)) (-4 *8 (-1068 *4 *5 *6 *7)) (-4 *4 (-452)) - (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-1155)) - (-5 *1 (-1066 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-642 *7)) (|:| -2138 *8))) - (-4 *7 (-1062 *4 *5 *6)) (-4 *8 (-1106 *4 *5 *6 *7)) (-4 *4 (-452)) - (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-1155)) - (-5 *1 (-1142 *4 *5 *6 *7 *8)))) - ((*1 *1 *2) (-12 (-5 *2 (-1101)) (-5 *1 (-1178)))) - ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-1178)))) - ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-860)) (-5 *3 (-564)) (-5 *1 (-1192)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-860)) (-5 *3 (-564)) (-5 *1 (-1192)))) - ((*1 *2 *3) - (-12 (-5 *3 (-778 *4 (-862 *5))) - (-4 *4 (-13 (-846) (-307) (-147) (-1020))) (-14 *5 (-642 (-1173))) - (-5 *2 (-778 *4 (-862 *6))) (-5 *1 (-1288 *4 *5 *6)) - (-14 *6 (-642 (-1173))))) - ((*1 *2 *3) - (-12 (-5 *3 (-950 *4)) (-4 *4 (-13 (-846) (-307) (-147) (-1020))) - (-5 *2 (-950 (-1022 (-407 *4)))) (-5 *1 (-1288 *4 *5 *6)) - (-14 *5 (-642 (-1173))) (-14 *6 (-642 (-1173))))) - ((*1 *2 *3) - (-12 (-5 *3 (-778 *4 (-862 *6))) - (-4 *4 (-13 (-846) (-307) (-147) (-1020))) (-14 *6 (-642 (-1173))) - (-5 *2 (-950 (-1022 (-407 *4)))) (-5 *1 (-1288 *4 *5 *6)) - (-14 *5 (-642 (-1173))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1169 *4)) (-4 *4 (-13 (-846) (-307) (-147) (-1020))) - (-5 *2 (-1169 (-1022 (-407 *4)))) (-5 *1 (-1288 *4 *5 *6)) - (-14 *5 (-642 (-1173))) (-14 *6 (-642 (-1173))))) + (-12 (-5 *2 (-952 (-409 (-566)))) (-4 *1 (-1064 *3 *4 *5)) + (-4 *3 (-38 (-409 (-566)))) (-4 *5 (-614 (-1175))) (-4 *3 (-1049)) + (-4 *4 (-793)) (-4 *5 (-850)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-644 *7)) (|:| -2192 *8))) + (-4 *7 (-1064 *4 *5 *6)) (-4 *8 (-1070 *4 *5 *6 *7)) (-4 *4 (-454)) + (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-1157)) + (-5 *1 (-1068 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-644 *7)) (|:| -2192 *8))) + (-4 *7 (-1064 *4 *5 *6)) (-4 *8 (-1108 *4 *5 *6 *7)) (-4 *4 (-454)) + (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-1157)) + (-5 *1 (-1144 *4 *5 *6 *7 *8)))) + ((*1 *1 *2) (-12 (-5 *2 (-1103)) (-5 *1 (-1180)))) + ((*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-1180)))) + ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-862)) (-5 *3 (-566)) (-5 *1 (-1194)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-862)) (-5 *3 (-566)) (-5 *1 (-1194)))) + ((*1 *2 *3) + (-12 (-5 *3 (-780 *4 (-864 *5))) + (-4 *4 (-13 (-848) (-308) (-147) (-1022))) (-14 *5 (-644 (-1175))) + (-5 *2 (-780 *4 (-864 *6))) (-5 *1 (-1290 *4 *5 *6)) + (-14 *6 (-644 (-1175))))) + ((*1 *2 *3) + (-12 (-5 *3 (-952 *4)) (-4 *4 (-13 (-848) (-308) (-147) (-1022))) + (-5 *2 (-952 (-1024 (-409 *4)))) (-5 *1 (-1290 *4 *5 *6)) + (-14 *5 (-644 (-1175))) (-14 *6 (-644 (-1175))))) + ((*1 *2 *3) + (-12 (-5 *3 (-780 *4 (-864 *6))) + (-4 *4 (-13 (-848) (-308) (-147) (-1022))) (-14 *6 (-644 (-1175))) + (-5 *2 (-952 (-1024 (-409 *4)))) (-5 *1 (-1290 *4 *5 *6)) + (-14 *5 (-644 (-1175))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1171 *4)) (-4 *4 (-13 (-848) (-308) (-147) (-1022))) + (-5 *2 (-1171 (-1024 (-409 *4)))) (-5 *1 (-1290 *4 *5 *6)) + (-14 *5 (-644 (-1175))) (-14 *6 (-644 (-1175))))) ((*1 *2 *3) (-12 - (-5 *3 (-1143 *4 (-531 (-862 *6)) (-862 *6) (-778 *4 (-862 *6)))) - (-4 *4 (-13 (-846) (-307) (-147) (-1020))) (-14 *6 (-642 (-1173))) - (-5 *2 (-642 (-778 *4 (-862 *6)))) (-5 *1 (-1288 *4 *5 *6)) - (-14 *5 (-642 (-1173)))))) + (-5 *3 (-1145 *4 (-533 (-864 *6)) (-864 *6) (-780 *4 (-864 *6)))) + (-4 *4 (-13 (-848) (-308) (-147) (-1022))) (-14 *6 (-644 (-1175))) + (-5 *2 (-644 (-780 *4 (-864 *6)))) (-5 *1 (-1290 *4 *5 *6)) + (-14 *5 (-644 (-1175)))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1000))))) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) - (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-642 (-1173))) - (-14 *3 (-642 (-1173))) (-4 *4 (-387)))) + (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) + (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) ((*1 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1158 *3)))) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1160 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1159 *3))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1097)) (-5 *1 (-962 *3 *2)) (-4 *3 (-1097))))) -(((*1 *2 *3) - (-12 (-5 *3 (-642 (-564))) (-5 *2 (-902 (-564))) (-5 *1 (-915)))) - ((*1 *2) (-12 (-5 *2 (-902 (-564))) (-5 *1 (-915))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -4332 *1) (|:| -1992 *1))) (-4 *1 (-307)))) - ((*1 *2 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |lm| (-386 *3)) (|:| |rm| (-386 *3)))) - (-5 *1 (-386 *3)) (-4 *3 (-1097)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -4332 (-769)) (|:| -1992 (-769)))) - (-5 *1 (-769)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| -4332 *3) (|:| -1992 *3))) - (-5 *1 (-967 *4 *3)) (-4 *3 (-1238 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-642 *1)) (-4 *1 (-302)))) - ((*1 *1 *1) (-4 *1 (-302))) - ((*1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-860)))) - ((*1 *1 *1) (-5 *1 (-860)))) -(((*1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-860)))) - ((*1 *1 *1 *1) (-5 *1 (-860)))) -(((*1 *2 *2) (-12 (-5 *2 (-919)) (-5 *1 (-357 *3)) (-4 *3 (-349))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1212)) (-5 *1 (-375 *4 *2)) - (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4411))))))) -(((*1 *2) - (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) - (-4 *5 (-1238 (-407 *4))) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-556)) - (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-975 *3 *4 *5 *6))))) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1161 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-862))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-718 *2)) (-4 *2 (-365))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1207 *4 *5 *3 *6)) (-4 *4 (-558)) (-4 *5 (-793)) + (-4 *3 (-850)) (-4 *6 (-1064 *4 *5 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-1283 *3)) (-4 *3 (-365)) (-5 *2 (-112))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-976 *4 *5 *6 *3)) (-4 *4 (-1049)) (-4 *5 (-793)) + (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-4 *4 (-558)) + (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-860)) (-5 *3 (-128)) (-5 *2 (-771))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-771)) (-5 *4 (-1264 *2)) (-4 *5 (-308)) + (-4 *6 (-992 *5)) (-4 *2 (-13 (-411 *6 *7) (-1038 *6))) + (-5 *1 (-415 *5 *6 *7 *2)) (-4 *7 (-1240 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1099)) (-5 *1 (-103 *3)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1099))))) (((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1000))))) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) - (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1158 *3)))) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1160 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1159 *3)))) - ((*1 *1 *1) (-4 *1 (-1200)))) -(((*1 *2 *1) - (-12 (-14 *3 (-642 (-1173))) (-4 *4 (-172)) - (-4 *5 (-238 (-2158 *3) (-769))) - (-14 *6 - (-1 (-112) (-2 (|:| -2065 *2) (|:| -2817 *5)) - (-2 (|:| -2065 *2) (|:| -2817 *5)))) - (-4 *2 (-848)) (-5 *1 (-461 *3 *4 *2 *5 *6 *7)) - (-4 *7 (-947 *4 *5 (-862 *3)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1173)) - (-4 *5 (-13 (-556) (-1036 (-564)) (-637 (-564)))) - (-5 *2 - (-2 (|:| |func| *3) (|:| |kers| (-642 (-610 *3))) - (|:| |vals| (-642 *3)))) - (-5 *1 (-277 *5 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *5)))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1130 (-225))) (-5 *3 (-642 (-263))) (-5 *1 (-1264)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1130 (-225))) (-5 *3 (-1155)) (-5 *1 (-1264)))) - ((*1 *1 *1) (-5 *1 (-1264)))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-780 *2)) (-4 *2 (-1047))))) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1161 *3)))) + ((*1 *1 *1) (-4 *1 (-1202)))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *6 (-921)) (-4 *5 (-308)) (-4 *3 (-1240 *5)) + (-5 *2 (-2 (|:| |plist| (-644 *3)) (|:| |modulo| *5))) + (-5 *1 (-462 *5 *3)) (-5 *4 (-644 *3))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-132)) (-5 *1 (-1081 *2)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-564) *2 *2)) (-4 *2 (-132)) (-5 *1 (-1081 *2))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) + (-12 (-5 *2 (-1171 *6)) (-5 *3 (-566)) (-4 *6 (-308)) (-4 *4 (-793)) + (-4 *5 (-850)) (-5 *1 (-742 *4 *5 *6 *7)) (-4 *7 (-949 *6 *4 *5))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 + (-5 *3 + (-1 (-3 (-2 (|:| -4069 *4) (|:| |coeff| *4)) "failed") *4)) + (-4 *4 (-365)) (-5 *1 (-576 *4 *2)) (-4 *2 (-1240 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1264 *4)) (-4 *4 (-1049)) (-4 *2 (-1240 *4)) + (-5 *1 (-446 *4 *2)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-409 (-1171 (-317 *5)))) (-5 *3 (-1264 (-317 *5))) + (-5 *4 (-566)) (-4 *5 (-558)) (-5 *1 (-1129 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) + ((*1 *1 *1 *1) (-5 *1 (-862)))) +(((*1 *2) + (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6)) + (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) + (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) + (-5 *2 (-1171 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-112)) (-5 *1 (-829))))) +(((*1 *2 *1) (-12 (-4 *1 (-255 *3)) (-4 *3 (-1214)) (-5 *2 (-771)))) + ((*1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-771)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1049)) + (-4 *2 (-13 (-406) (-1038 *4) (-365) (-1199) (-285))) + (-5 *1 (-445 *4 *3 *2)) (-4 *3 (-1240 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-612 *3)) (-4 *3 (-1099)))) + ((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) + ((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-862))))) +(((*1 *2 *3) + (-12 (-4 *4 (-454)) (-5 *2 - (-2 (|:| -2108 *4) (|:| -1437 *4) (|:| |totalpts| (-564)) - (|:| |success| (-112)))) - (-5 *1 (-787)) (-5 *5 (-564))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-1155)) (-5 *4 (-1117)) (-5 *2 (-112)) (-5 *1 (-819))))) + (-644 + (-2 (|:| |eigval| (-3 (-409 (-952 *4)) (-1164 (-1175) (-952 *4)))) + (|:| |eigmult| (-771)) + (|:| |eigvec| (-644 (-689 (-409 (-952 *4)))))))) + (-5 *1 (-293 *4)) (-5 *3 (-689 (-409 (-952 *4))))))) (((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1000)))))) -(((*1 *2 *1) (-12 (-4 *1 (-254 *3)) (-4 *3 (-1212)) (-5 *2 (-769)))) - ((*1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-769)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1047)) - (-4 *2 (-13 (-404) (-1036 *4) (-363) (-1197) (-284))) - (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1238 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-610 *3)) (-4 *3 (-1097)))) - ((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-860)))) - ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-860))))) -(((*1 *2 *2) - (-12 (-5 *2 (-642 *3)) (-4 *3 (-1238 (-564))) (-5 *1 (-486 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1000))))) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) - (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1158 *3)))) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1160 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1159 *3)))) - ((*1 *1 *1) (-4 *1 (-1200)))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-394)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-1192))))) -(((*1 *2 *3) (-12 (-5 *3 (-919)) (-5 *2 (-902 (-564))) (-5 *1 (-915)))) - ((*1 *2 *3) - (-12 (-5 *3 (-642 (-564))) (-5 *2 (-902 (-564))) (-5 *1 (-915))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) - (-4 *3 (-1062 *5 *6 *7)) - (-5 *2 (-642 (-2 (|:| |val| *3) (|:| -2138 *4)))) - (-5 *1 (-1069 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1173)) - (-4 *4 (-13 (-452) (-147) (-1036 (-564)) (-637 (-564)))) - (-5 *1 (-557 *4 *2)) (-4 *2 (-13 (-27) (-1197) (-430 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-687 (-407 (-564)))) - (-5 *2 - (-642 - (-2 (|:| |outval| *4) (|:| |outmult| (-564)) - (|:| |outvect| (-642 (-687 *4)))))) - (-5 *1 (-777 *4)) (-4 *4 (-13 (-363) (-846)))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-1169 (-950 *4))) (-5 *1 (-416 *3 *4)) - (-4 *3 (-417 *4)))) - ((*1 *2) - (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-4 *3 (-363)) - (-5 *2 (-1169 (-950 *3))))) - ((*1 *2) - (-12 (-5 *2 (-1169 (-407 (-950 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) - (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-919)) - (-14 *5 (-642 (-1173))) (-14 *6 (-1262 (-687 *3)))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-919)) (-5 *2 (-1267)) (-5 *1 (-214 *4)) - (-4 *4 - (-13 (-848) - (-10 -8 (-15 -4369 ((-1155) $ (-1173))) (-15 -1639 (*2 $)) - (-15 -2973 (*2 $))))))) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1161 *3)))) + ((*1 *1 *1) (-4 *1 (-1202)))) +(((*1 *2 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1256 *2 *3 *4)) (-4 *2 (-1049)) (-14 *3 (-1175)) + (-14 *4 *2)))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1214)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-5 *2 (-566)))) ((*1 *2 *1) - (-12 (-5 *2 (-1267)) (-5 *1 (-214 *3)) - (-4 *3 - (-13 (-848) - (-10 -8 (-15 -4369 ((-1155) $ (-1173))) (-15 -1639 (*2 $)) - (-15 -2973 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-502))))) + (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-566))))) (((*1 *2 *1) - (-12 (-5 *2 (-642 (-564))) (-5 *1 (-1002 *3)) (-14 *3 (-564))))) + (-12 (-4 *1 (-695 *3)) (-4 *3 (-1099)) + (-5 *2 (-644 (-2 (|:| -2806 *3) (|:| -4068 (-771)))))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) + (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 (-112)) (-5 *1 (-301))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1281 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)) + (-5 *2 (-819 *3)))) + ((*1 *2 *1) + (-12 (-4 *2 (-846)) (-5 *1 (-1287 *3 *2)) (-4 *3 (-1049))))) +(((*1 *2 *1) (-12 (-5 *2 (-1155 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-558)) (-4 *3 (-1049)) + (-5 *2 (-2 (|:| -3371 *1) (|:| -3131 *1))) (-4 *1 (-852 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-558)) (-4 *5 (-1049)) + (-5 *2 (-2 (|:| -3371 *3) (|:| -3131 *3))) (-5 *1 (-853 *5 *3)) + (-4 *3 (-852 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-558)) (-4 *3 (-172)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-5 *1 (-688 *3 *4 *5 *2)) + (-4 *2 (-687 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-328 *3)) (-4 *3 (-1214)))) + ((*1 *2 *1) + (-12 (-5 *2 (-771)) (-5 *1 (-518 *3 *4)) (-4 *3 (-1214)) + (-14 *4 (-566))))) (((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1000))))) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) - (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1158 *3)))) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1160 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1159 *3)))) - ((*1 *1 *1) (-4 *1 (-1200)))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| |lm| (-386 *3)) (|:| |mm| (-386 *3)) (|:| |rm| (-386 *3)))) - (-5 *1 (-386 *3)) (-4 *3 (-1097)))) - ((*1 *2 *1 *1) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1161 *3)))) + ((*1 *1 *1) (-4 *1 (-1202)))) +(((*1 *1 *2 *2) (-12 (-5 *2 - (-2 (|:| |lm| (-817 *3)) (|:| |mm| (-817 *3)) (|:| |rm| (-817 *3)))) - (-5 *1 (-817 *3)) (-4 *3 (-848))))) -(((*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-379)) (-5 *1 (-784))))) + (-3 (|:| I (-317 (-566))) (|:| -2341 (-317 (-381))) + (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1174)))) + (-5 *1 (-1174))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1286 *4 *2)) (-4 *1 (-374 *4 *2)) (-4 *4 (-848)) + (-12 (-5 *3 (-1288 *4 *2)) (-4 *1 (-376 *4 *2)) (-4 *4 (-850)) (-4 *2 (-172)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1279 *3 *2)) (-4 *3 (-848)) (-4 *2 (-1047)))) + (-12 (-4 *1 (-1281 *3 *2)) (-4 *3 (-850)) (-4 *2 (-1049)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-817 *4)) (-4 *1 (-1279 *4 *2)) (-4 *4 (-848)) - (-4 *2 (-1047)))) + (-12 (-5 *3 (-819 *4)) (-4 *1 (-1281 *4 *2)) (-4 *4 (-850)) + (-4 *2 (-1049)))) ((*1 *2 *1 *3) - (-12 (-4 *2 (-1047)) (-5 *1 (-1285 *2 *3)) (-4 *3 (-844))))) -(((*1 *2 *1) - (-12 (-4 *1 (-974 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-791)) - (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-556)) - (-5 *2 (-112))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-379)))) - ((*1 *1 *1 *1) (-4 *1 (-545))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-716 *2)) (-4 *2 (-363)))) - ((*1 *1 *2) (-12 (-5 *1 (-716 *2)) (-4 *2 (-363)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-769))))) -(((*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3))))) -(((*1 *1) (-5 *1 (-1082)))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1173)) (-5 *5 (-642 (-407 (-950 *6)))) - (-5 *3 (-407 (-950 *6))) - (-4 *6 (-13 (-556) (-1036 (-564)) (-147))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-642 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-570 *6))))) -(((*1 *1) (-5 *1 (-291)))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-610 *2)) (-4 *2 (-13 (-27) (-1197) (-430 *4))) - (-4 *4 (-13 (-556) (-1036 (-564)) (-637 (-564)))) - (-5 *1 (-277 *4 *2))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1279 *3 *4)) (-4 *3 (-848)) (-4 *4 (-1047)) - (-5 *2 (-817 *3)))) - ((*1 *2 *1) - (-12 (-4 *2 (-844)) (-5 *1 (-1285 *3 *2)) (-4 *3 (-1047))))) + (-12 (-4 *2 (-1049)) (-5 *1 (-1287 *2 *3)) (-4 *3 (-846))))) +(((*1 *2 *2) + (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1199)))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) - (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *2 - (-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379)))) - (-5 *1 (-205))))) + (-644 (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566)))))) + (-5 *2 (-644 (-409 (-566)))) (-5 *1 (-1020 *4)) + (-4 *4 (-1240 (-566)))))) +(((*1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-157)))) + ((*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-381)))) + ((*1 *1 *1 *1) (-4 *1 (-547))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-718 *2)) (-4 *2 (-365)))) + ((*1 *1 *2) (-12 (-5 *1 (-718 *2)) (-4 *2 (-365)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-771))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1264 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365)) + (-4 *1 (-724 *5 *6)) (-4 *5 (-172)) (-4 *6 (-1240 *5)) + (-5 *2 (-689 *5))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-365)) (-5 *1 (-659 *4 *2)) + (-4 *2 (-656 *4))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-365)) + (-5 *2 (-644 (-2 (|:| C (-689 *5)) (|:| |g| (-1264 *5))))) + (-5 *1 (-978 *5)) (-5 *3 (-689 *5)) (-5 *4 (-1264 *5))))) +(((*1 *1) (-5 *1 (-292)))) +(((*1 *2 *1) (-12 (-4 *1 (-1148 *3)) (-4 *3 (-1214)) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) + (-4 *3 (-369 *4)))) + ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266))))) (((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1000))))) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) - (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-642 (-1173))) - (-14 *3 (-642 (-1173))) (-4 *4 (-387)))) + (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) + (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) ((*1 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1158 *3)))) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1160 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1159 *3)))) - ((*1 *1 *1) (-4 *1 (-1200)))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-556) (-147))) - (-5 *2 (-2 (|:| -4341 *3) (|:| -4351 *3))) (-5 *1 (-1232 *4 *3)) - (-4 *3 (-1238 *4))))) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1161 *3)))) + ((*1 *1 *1) (-4 *1 (-1202)))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-316 (-564))) (|:| -2266 (-316 (-379))) - (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1172)))) - (-5 *1 (-1172))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-642 (-642 *8))) (-5 *3 (-642 *8)) - (-4 *8 (-1062 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-791)) - (-4 *7 (-848)) (-5 *2 (-112)) (-5 *1 (-975 *5 *6 *7 *8))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 - (-5 *3 - (-1 (-3 (-2 (|:| -3872 *4) (|:| |coeff| *4)) "failed") *4)) - (-4 *4 (-363)) (-5 *1 (-574 *4 *2)) (-4 *2 (-1238 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1155))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1169 *1)) (-4 *1 (-1010))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-564)) (-4 *2 (-430 *3)) (-5 *1 (-32 *3 *2)) - (-4 *3 (-1036 *4)) (-4 *3 (-556))))) -(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) + (-3 (|:| I (-317 (-566))) (|:| -2341 (-317 (-381))) + (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1174)))) + (-5 *1 (-1174))))) +(((*1 *2 *1 *3 *3 *4) + (-12 (-5 *3 (-1 (-862) (-862) (-862))) (-5 *4 (-566)) (-5 *2 (-862)) + (-5 *1 (-649 *5 *6 *7)) (-4 *5 (-1099)) (-4 *6 (-23)) (-14 *7 *6))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-862)) (-5 *1 (-854 *3 *4 *5)) (-4 *3 (-1049)) + (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-862)))) + ((*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-862)))) + ((*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-862)))) + ((*1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-862)) (-5 *1 (-1171 *3)) (-4 *3 (-1049))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-597 *3)) (-4 *3 (-1049)))) ((*1 *2 *1) - (-12 (-4 *3 (-363)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-112)) - (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-947 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-644 *3)) (-4 *3 (-1055)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-1055)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1065 *4 *3)) (-4 *4 (-13 (-846) (-363))) - (-4 *3 (-1238 *4)) (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *3 (-919)) (-5 *2 (-902 (-564))) (-5 *1 (-915)))) - ((*1 *2 *3) - (-12 (-5 *3 (-642 (-564))) (-5 *2 (-902 (-564))) (-5 *1 (-915))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1267)) (-5 *1 (-820))))) + (-12 (-4 *1 (-973 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-792)) + (-4 *5 (-850)) (-5 *2 (-112))))) +(((*1 *1 *1) (-4 *1 (-558)))) +(((*1 *2 *3 *3 *3 *3) + (-12 (-4 *4 (-454)) (-4 *3 (-793)) (-4 *5 (-850)) (-5 *2 (-112)) + (-5 *1 (-451 *4 *3 *5 *6)) (-4 *6 (-949 *4 *3 *5))))) +(((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1040))))) +(((*1 *2 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-1157)) (-5 *5 (-689 (-225))) + (-5 *2 (-1035)) (-5 *1 (-747))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1140 *2 *3)) (-4 *2 (-13 (-1099) (-34))) + (-4 *3 (-13 (-1099) (-34)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-943 *3) (-943 *3))) (-5 *1 (-176 *3)) + (-4 *3 (-13 (-365) (-1199) (-1002)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1047)) - (-4 *4 (-790)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1049)) + (-4 *4 (-792)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1047)) (-5 *1 (-50 *3 *4)) - (-14 *4 (-642 (-1173))))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1049)) (-5 *1 (-50 *3 *4)) + (-14 *4 (-644 (-1175))))) ((*1 *1 *2 *1 *1 *3) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1212)) - (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1214)) + (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1212)) - (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1214)) + (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1212)) - (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1214)) + (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1212)) - (-4 *6 (-1212)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1214)) + (-4 *6 (-1214)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-564)) - (-14 *6 (-769)) (-4 *7 (-172)) (-4 *8 (-172)) + (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-566)) + (-14 *6 (-771)) (-4 *7 (-172)) (-4 *8 (-172)) (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-169 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-5 *2 (-169 *6)) (-5 *1 (-168 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-316 *3) (-316 *3))) (-4 *3 (-13 (-1047) (-848))) - (-5 *1 (-223 *3 *4)) (-14 *4 (-642 (-1173))))) + (-12 (-5 *2 (-1 (-317 *3) (-317 *3))) (-4 *3 (-13 (-1049) (-850))) + (-5 *1 (-223 *3 *4)) (-14 *4 (-644 (-1175))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-240 *5 *6)) (-14 *5 (-769)) - (-4 *6 (-1212)) (-4 *7 (-1212)) (-5 *2 (-240 *5 *7)) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-240 *5 *6)) (-14 *5 (-771)) + (-4 *6 (-1214)) (-4 *7 (-1214)) (-5 *2 (-240 *5 *7)) (-5 *1 (-239 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-294 *5)) (-4 *5 (-1212)) - (-4 *6 (-1212)) (-5 *2 (-294 *6)) (-5 *1 (-293 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-295 *5)) (-4 *5 (-1214)) + (-4 *6 (-1214)) (-5 *2 (-295 *6)) (-5 *1 (-294 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1212)) (-5 *1 (-294 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1214)) (-5 *1 (-295 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1155)) (-5 *5 (-610 *6)) - (-4 *6 (-302)) (-4 *2 (-1212)) (-5 *1 (-297 *6 *2)))) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1157)) (-5 *5 (-612 *6)) + (-4 *6 (-303)) (-4 *2 (-1214)) (-5 *1 (-298 *6 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-610 *5)) (-4 *5 (-302)) - (-4 *2 (-302)) (-5 *1 (-298 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-612 *5)) (-4 *5 (-303)) + (-4 *2 (-303)) (-5 *1 (-299 *5 *2)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-610 *1)) (-4 *1 (-302)))) + (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-612 *1)) (-4 *1 (-303)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-687 *5)) (-4 *5 (-1047)) - (-4 *6 (-1047)) (-5 *2 (-687 *6)) (-5 *1 (-304 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-689 *5)) (-4 *5 (-1049)) + (-4 *6 (-1049)) (-5 *2 (-689 *6)) (-5 *1 (-305 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-316 *5)) (-4 *5 (-1097)) - (-4 *6 (-1097)) (-5 *2 (-316 *6)) (-5 *1 (-314 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-317 *5)) (-4 *5 (-1099)) + (-4 *6 (-1099)) (-5 *2 (-317 *6)) (-5 *1 (-315 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-336 *5 *6 *7 *8)) (-4 *5 (-363)) - (-4 *6 (-1238 *5)) (-4 *7 (-1238 (-407 *6))) (-4 *8 (-342 *5 *6 *7)) - (-4 *9 (-363)) (-4 *10 (-1238 *9)) (-4 *11 (-1238 (-407 *10))) - (-5 *2 (-336 *9 *10 *11 *12)) - (-5 *1 (-333 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-342 *9 *10 *11)))) + (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-338 *5 *6 *7 *8)) (-4 *5 (-365)) + (-4 *6 (-1240 *5)) (-4 *7 (-1240 (-409 *6))) (-4 *8 (-344 *5 *6 *7)) + (-4 *9 (-365)) (-4 *10 (-1240 *9)) (-4 *11 (-1240 (-409 *10))) + (-5 *2 (-338 *9 *10 *11 *12)) + (-5 *1 (-335 *5 *6 *7 *8 *9 *10 *11 *12)) + (-4 *12 (-344 *9 *10 *11)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-338 *3)) (-4 *3 (-1097)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-340 *3)) (-4 *3 (-1099)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1216)) (-4 *8 (-1216)) - (-4 *6 (-1238 *5)) (-4 *7 (-1238 (-407 *6))) (-4 *9 (-1238 *8)) - (-4 *2 (-342 *8 *9 *10)) (-5 *1 (-340 *5 *6 *7 *4 *8 *9 *10 *2)) - (-4 *4 (-342 *5 *6 *7)) (-4 *10 (-1238 (-407 *9))))) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1218)) (-4 *8 (-1218)) + (-4 *6 (-1240 *5)) (-4 *7 (-1240 (-409 *6))) (-4 *9 (-1240 *8)) + (-4 *2 (-344 *8 *9 *10)) (-5 *1 (-342 *5 *6 *7 *4 *8 *9 *10 *2)) + (-4 *4 (-344 *5 *6 *7)) (-4 *10 (-1240 (-409 *9))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1212)) (-4 *6 (-1212)) - (-4 *2 (-373 *6)) (-5 *1 (-371 *5 *4 *6 *2)) (-4 *4 (-373 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1214)) (-4 *6 (-1214)) + (-4 *2 (-375 *6)) (-5 *1 (-373 *5 *4 *6 *2)) (-4 *4 (-375 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-382 *3 *4)) (-4 *3 (-1047)) - (-4 *4 (-1097)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-384 *3 *4)) (-4 *3 (-1049)) + (-4 *4 (-1099)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-418 *5)) (-4 *5 (-556)) - (-4 *6 (-556)) (-5 *2 (-418 *6)) (-5 *1 (-405 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-420 *5)) (-4 *5 (-558)) + (-4 *6 (-558)) (-5 *2 (-420 *6)) (-5 *1 (-407 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-407 *5)) (-4 *5 (-556)) - (-4 *6 (-556)) (-5 *2 (-407 *6)) (-5 *1 (-406 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-409 *5)) (-4 *5 (-558)) + (-4 *6 (-558)) (-5 *2 (-409 *6)) (-5 *1 (-408 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-413 *5 *6 *7 *8)) (-4 *5 (-307)) - (-4 *6 (-990 *5)) (-4 *7 (-1238 *6)) - (-4 *8 (-13 (-409 *6 *7) (-1036 *6))) (-4 *9 (-307)) - (-4 *10 (-990 *9)) (-4 *11 (-1238 *10)) - (-5 *2 (-413 *9 *10 *11 *12)) - (-5 *1 (-412 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-13 (-409 *10 *11) (-1036 *10))))) + (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-415 *5 *6 *7 *8)) (-4 *5 (-308)) + (-4 *6 (-992 *5)) (-4 *7 (-1240 *6)) + (-4 *8 (-13 (-411 *6 *7) (-1038 *6))) (-4 *9 (-308)) + (-4 *10 (-992 *9)) (-4 *11 (-1240 *10)) + (-5 *2 (-415 *9 *10 *11 *12)) + (-5 *1 (-414 *5 *6 *7 *8 *9 *10 *11 *12)) + (-4 *12 (-13 (-411 *10 *11) (-1038 *10))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) - (-4 *2 (-417 *6)) (-5 *1 (-415 *4 *5 *2 *6)) (-4 *4 (-417 *5)))) + (-4 *2 (-419 *6)) (-5 *1 (-417 *4 *5 *2 *6)) (-4 *4 (-419 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-556)) (-5 *1 (-418 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-558)) (-5 *1 (-420 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1047)) (-4 *6 (-1047)) - (-4 *2 (-430 *6)) (-5 *1 (-421 *5 *4 *6 *2)) (-4 *4 (-430 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1049)) (-4 *6 (-1049)) + (-4 *2 (-432 *6)) (-5 *1 (-423 *5 *4 *6 *2)) (-4 *4 (-432 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1097)) (-4 *6 (-1097)) - (-4 *2 (-425 *6)) (-5 *1 (-423 *5 *4 *6 *2)) (-4 *4 (-425 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1099)) (-4 *6 (-1099)) + (-4 *2 (-427 *6)) (-5 *1 (-425 *5 *4 *6 *2)) (-4 *4 (-427 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-489 *3)) (-4 *3 (-1212)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-491 *3)) (-4 *3 (-1214)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-509 *3 *4)) (-4 *3 (-1097)) - (-4 *4 (-848)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-511 *3 *4)) (-4 *3 (-1099)) + (-4 *4 (-850)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-585 *5)) (-4 *5 (-363)) - (-4 *6 (-363)) (-5 *2 (-585 *6)) (-5 *1 (-584 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-587 *5)) (-4 *5 (-365)) + (-4 *6 (-365)) (-5 *2 (-587 *6)) (-5 *1 (-586 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) - (-5 *4 (-3 (-2 (|:| -3872 *5) (|:| |coeff| *5)) "failed")) - (-4 *5 (-363)) (-4 *6 (-363)) - (-5 *2 (-2 (|:| -3872 *6) (|:| |coeff| *6))) - (-5 *1 (-584 *5 *6)))) + (-5 *4 (-3 (-2 (|:| -4069 *5) (|:| |coeff| *5)) "failed")) + (-4 *5 (-365)) (-4 *6 (-365)) + (-5 *2 (-2 (|:| -4069 *6) (|:| |coeff| *6))) + (-5 *1 (-586 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) - (-4 *5 (-363)) (-4 *2 (-363)) (-5 *1 (-584 *5 *2)))) + (-4 *5 (-365)) (-4 *2 (-365)) (-5 *1 (-586 *5 *2)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| - (-642 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) + (-644 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) - (-4 *5 (-363)) (-4 *6 (-363)) + (-4 *5 (-365)) (-4 *6 (-365)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| - (-642 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) - (-5 *1 (-584 *5 *6)))) + (-644 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) + (-5 *1 (-586 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-599 *5)) (-4 *5 (-1212)) - (-4 *6 (-1212)) (-5 *2 (-599 *6)) (-5 *1 (-596 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-601 *5)) (-4 *5 (-1214)) + (-4 *6 (-1214)) (-5 *2 (-601 *6)) (-5 *1 (-598 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-599 *6)) (-5 *5 (-599 *7)) - (-4 *6 (-1212)) (-4 *7 (-1212)) (-4 *8 (-1212)) (-5 *2 (-599 *8)) - (-5 *1 (-597 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-601 *6)) (-5 *5 (-601 *7)) + (-4 *6 (-1214)) (-4 *7 (-1214)) (-4 *8 (-1214)) (-5 *2 (-601 *8)) + (-5 *1 (-599 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1153 *6)) (-5 *5 (-599 *7)) - (-4 *6 (-1212)) (-4 *7 (-1212)) (-4 *8 (-1212)) (-5 *2 (-1153 *8)) - (-5 *1 (-597 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1155 *6)) (-5 *5 (-601 *7)) + (-4 *6 (-1214)) (-4 *7 (-1214)) (-4 *8 (-1214)) (-5 *2 (-1155 *8)) + (-5 *1 (-599 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-599 *6)) (-5 *5 (-1153 *7)) - (-4 *6 (-1212)) (-4 *7 (-1212)) (-4 *8 (-1212)) (-5 *2 (-1153 *8)) - (-5 *1 (-597 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-601 *6)) (-5 *5 (-1155 *7)) + (-4 *6 (-1214)) (-4 *7 (-1214)) (-4 *8 (-1214)) (-5 *2 (-1155 *8)) + (-5 *1 (-599 *6 *7 *8)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1212)) (-5 *1 (-599 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1214)) (-5 *1 (-601 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-642 *5)) (-4 *5 (-1212)) - (-4 *6 (-1212)) (-5 *2 (-642 *6)) (-5 *1 (-640 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-644 *5)) (-4 *5 (-1214)) + (-4 *6 (-1214)) (-5 *2 (-644 *6)) (-5 *1 (-642 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-642 *6)) (-5 *5 (-642 *7)) - (-4 *6 (-1212)) (-4 *7 (-1212)) (-4 *8 (-1212)) (-5 *2 (-642 *8)) - (-5 *1 (-641 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-644 *6)) (-5 *5 (-644 *7)) + (-4 *6 (-1214)) (-4 *7 (-1214)) (-4 *8 (-1214)) (-5 *2 (-644 *8)) + (-5 *1 (-643 *6 *7 *8)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-649 *3)) (-4 *3 (-1212)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1047)) (-4 *8 (-1047)) - (-4 *6 (-373 *5)) (-4 *7 (-373 *5)) (-4 *2 (-685 *8 *9 *10)) - (-5 *1 (-683 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-685 *5 *6 *7)) - (-4 *9 (-373 *8)) (-4 *10 (-373 *8)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1047)) - (-4 *8 (-1047)) (-4 *6 (-373 *5)) (-4 *7 (-373 *5)) - (-4 *2 (-685 *8 *9 *10)) (-5 *1 (-683 *5 *6 *7 *4 *8 *9 *10 *2)) - (-4 *4 (-685 *5 *6 *7)) (-4 *9 (-373 *8)) (-4 *10 (-373 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-556)) (-4 *7 (-556)) - (-4 *6 (-1238 *5)) (-4 *2 (-1238 (-407 *8))) - (-5 *1 (-707 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1238 (-407 *6))) - (-4 *8 (-1238 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1047)) (-4 *9 (-1047)) - (-4 *5 (-848)) (-4 *6 (-791)) (-4 *2 (-947 *9 *7 *5)) - (-5 *1 (-726 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-791)) - (-4 *4 (-947 *8 *6 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-848)) (-4 *6 (-848)) (-4 *7 (-791)) - (-4 *9 (-1047)) (-4 *2 (-947 *9 *8 *6)) - (-5 *1 (-727 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-791)) - (-4 *4 (-947 *9 *7 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-733 *5 *7)) (-4 *5 (-1047)) - (-4 *6 (-1047)) (-4 *7 (-724)) (-5 *2 (-733 *6 *7)) - (-5 *1 (-732 *5 *6 *7)))) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-651 *3)) (-4 *3 (-1214)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1049)) (-4 *8 (-1049)) + (-4 *6 (-375 *5)) (-4 *7 (-375 *5)) (-4 *2 (-687 *8 *9 *10)) + (-5 *1 (-685 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-687 *5 *6 *7)) + (-4 *9 (-375 *8)) (-4 *10 (-375 *8)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1049)) + (-4 *8 (-1049)) (-4 *6 (-375 *5)) (-4 *7 (-375 *5)) + (-4 *2 (-687 *8 *9 *10)) (-5 *1 (-685 *5 *6 *7 *4 *8 *9 *10 *2)) + (-4 *4 (-687 *5 *6 *7)) (-4 *9 (-375 *8)) (-4 *10 (-375 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-558)) (-4 *7 (-558)) + (-4 *6 (-1240 *5)) (-4 *2 (-1240 (-409 *8))) + (-5 *1 (-709 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1240 (-409 *6))) + (-4 *8 (-1240 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1049)) (-4 *9 (-1049)) + (-4 *5 (-850)) (-4 *6 (-793)) (-4 *2 (-949 *9 *7 *5)) + (-5 *1 (-728 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-793)) + (-4 *4 (-949 *8 *6 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-850)) (-4 *6 (-850)) (-4 *7 (-793)) + (-4 *9 (-1049)) (-4 *2 (-949 *9 *8 *6)) + (-5 *1 (-729 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-793)) + (-4 *4 (-949 *9 *7 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-735 *5 *7)) (-4 *5 (-1049)) + (-4 *6 (-1049)) (-4 *7 (-726)) (-5 *2 (-735 *6 *7)) + (-5 *1 (-734 *5 *6 *7)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1047)) (-5 *1 (-733 *3 *4)) - (-4 *4 (-724)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1049)) (-5 *1 (-735 *3 *4)) + (-4 *4 (-726)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-780 *5)) (-4 *5 (-1047)) - (-4 *6 (-1047)) (-5 *2 (-780 *6)) (-5 *1 (-779 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-782 *5)) (-4 *5 (-1049)) + (-4 *6 (-1049)) (-5 *2 (-782 *6)) (-5 *1 (-781 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) - (-4 *2 (-795 *6)) (-5 *1 (-796 *4 *5 *2 *6)) (-4 *4 (-795 *5)))) + (-4 *2 (-797 *6)) (-5 *1 (-798 *4 *5 *2 *6)) (-4 *4 (-797 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-831 *5)) (-4 *5 (-1097)) - (-4 *6 (-1097)) (-5 *2 (-831 *6)) (-5 *1 (-830 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-833 *5)) (-4 *5 (-1099)) + (-4 *6 (-1099)) (-5 *2 (-833 *6)) (-5 *1 (-832 *5 *6)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-831 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-831 *5)) - (-4 *5 (-1097)) (-4 *6 (-1097)) (-5 *1 (-830 *5 *6)))) + (-12 (-5 *2 (-833 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-833 *5)) + (-4 *5 (-1099)) (-4 *6 (-1099)) (-5 *1 (-832 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-841 *5)) (-4 *5 (-1097)) - (-4 *6 (-1097)) (-5 *2 (-841 *6)) (-5 *1 (-840 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-843 *5)) (-4 *5 (-1099)) + (-4 *6 (-1099)) (-5 *2 (-843 *6)) (-5 *1 (-842 *5 *6)))) ((*1 *2 *3 *4 *2 *2) - (-12 (-5 *2 (-841 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-841 *5)) - (-4 *5 (-1097)) (-4 *6 (-1097)) (-5 *1 (-840 *5 *6)))) + (-12 (-5 *2 (-843 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-843 *5)) + (-4 *5 (-1099)) (-4 *6 (-1099)) (-5 *1 (-842 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-875 *5)) (-4 *5 (-1212)) - (-4 *6 (-1212)) (-5 *2 (-875 *6)) (-5 *1 (-874 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-877 *5)) (-4 *5 (-1214)) + (-4 *6 (-1214)) (-5 *2 (-877 *6)) (-5 *1 (-876 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-877 *5)) (-4 *5 (-1212)) - (-4 *6 (-1212)) (-5 *2 (-877 *6)) (-5 *1 (-876 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-879 *5)) (-4 *5 (-1214)) + (-4 *6 (-1214)) (-5 *2 (-879 *6)) (-5 *1 (-878 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-880 *5)) (-4 *5 (-1212)) - (-4 *6 (-1212)) (-5 *2 (-880 *6)) (-5 *1 (-879 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-882 *5)) (-4 *5 (-1214)) + (-4 *6 (-1214)) (-5 *2 (-882 *6)) (-5 *1 (-881 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-887 *5 *6)) (-4 *5 (-1097)) - (-4 *6 (-1097)) (-4 *7 (-1097)) (-5 *2 (-887 *5 *7)) - (-5 *1 (-886 *5 *6 *7)))) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-889 *5 *6)) (-4 *5 (-1099)) + (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-889 *5 *7)) + (-5 *1 (-888 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-890 *5)) (-4 *5 (-1097)) - (-4 *6 (-1097)) (-5 *2 (-890 *6)) (-5 *1 (-889 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-892 *5)) (-4 *5 (-1099)) + (-4 *6 (-1099)) (-5 *2 (-892 *6)) (-5 *1 (-891 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-950 *5)) (-4 *5 (-1047)) - (-4 *6 (-1047)) (-5 *2 (-950 *6)) (-5 *1 (-944 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-952 *5)) (-4 *5 (-1049)) + (-4 *6 (-1049)) (-5 *2 (-952 *6)) (-5 *1 (-946 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-848)) - (-4 *8 (-1047)) (-4 *6 (-791)) + (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-850)) + (-4 *8 (-1049)) (-4 *6 (-793)) (-4 *2 - (-13 (-1097) - (-10 -8 (-15 -2917 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-769)))))) - (-5 *1 (-949 *6 *7 *8 *5 *2)) (-4 *5 (-947 *8 *6 *7)))) + (-13 (-1099) + (-10 -8 (-15 -3052 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-771)))))) + (-5 *1 (-951 *6 *7 *8 *5 *2)) (-4 *5 (-949 *8 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-956 *5)) (-4 *5 (-1212)) - (-4 *6 (-1212)) (-5 *2 (-956 *6)) (-5 *1 (-955 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-958 *5)) (-4 *5 (-1214)) + (-4 *6 (-1214)) (-5 *2 (-958 *6)) (-5 *1 (-957 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-941 *5)) (-4 *5 (-1047)) - (-4 *6 (-1047)) (-5 *2 (-941 *6)) (-5 *1 (-979 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-943 *5)) (-4 *5 (-1049)) + (-4 *6 (-1049)) (-5 *2 (-943 *6)) (-5 *1 (-981 *5 *6)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-1 *2 (-950 *4))) (-4 *4 (-1047)) - (-4 *2 (-947 (-950 *4) *5 *6)) (-4 *5 (-791)) + (-12 (-5 *3 (-1 *2 (-952 *4))) (-4 *4 (-1049)) + (-4 *2 (-949 (-952 *4) *5 *6)) (-4 *5 (-793)) (-4 *6 - (-13 (-848) - (-10 -8 (-15 -3003 ((-1173) $)) - (-15 -1341 ((-3 $ "failed") (-1173)))))) - (-5 *1 (-982 *4 *5 *6 *2)))) + (-13 (-850) + (-10 -8 (-15 -3136 ((-1175) $)) + (-15 -1338 ((-3 $ "failed") (-1175)))))) + (-5 *1 (-984 *4 *5 *6 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-556)) (-4 *6 (-556)) - (-4 *2 (-990 *6)) (-5 *1 (-988 *5 *6 *4 *2)) (-4 *4 (-990 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-558)) (-4 *6 (-558)) + (-4 *2 (-992 *6)) (-5 *1 (-990 *5 *6 *4 *2)) (-4 *4 (-992 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) - (-4 *2 (-995 *6)) (-5 *1 (-996 *4 *5 *2 *6)) (-4 *4 (-995 *5)))) + (-4 *2 (-997 *6)) (-5 *1 (-998 *4 *5 *2 *6)) (-4 *4 (-997 *5)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1051 *3 *4 *5 *6 *7)) - (-4 *5 (-1047)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) + (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1053 *3 *4 *5 *6 *7)) + (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1051 *3 *4 *5 *6 *7)) - (-4 *5 (-1047)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1047)) (-4 *10 (-1047)) - (-14 *5 (-769)) (-14 *6 (-769)) (-4 *8 (-238 *6 *7)) - (-4 *9 (-238 *5 *7)) (-4 *2 (-1051 *5 *6 *10 *11 *12)) - (-5 *1 (-1053 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) - (-4 *4 (-1051 *5 *6 *7 *8 *9)) (-4 *11 (-238 *6 *10)) + (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1053 *3 *4 *5 *6 *7)) + (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1049)) (-4 *10 (-1049)) + (-14 *5 (-771)) (-14 *6 (-771)) (-4 *8 (-238 *6 *7)) + (-4 *9 (-238 *5 *7)) (-4 *2 (-1053 *5 *6 *10 *11 *12)) + (-5 *1 (-1055 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) + (-4 *4 (-1053 *5 *6 *7 *8 *9)) (-4 *11 (-238 *6 *10)) (-4 *12 (-238 *5 *10)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1091 *5)) (-4 *5 (-1212)) - (-4 *6 (-1212)) (-5 *2 (-1091 *6)) (-5 *1 (-1086 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1093 *5)) (-4 *5 (-1214)) + (-4 *6 (-1214)) (-5 *2 (-1093 *6)) (-5 *1 (-1088 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1091 *5)) (-4 *5 (-846)) - (-4 *5 (-1212)) (-4 *6 (-1212)) (-5 *2 (-642 *6)) - (-5 *1 (-1086 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1093 *5)) (-4 *5 (-848)) + (-4 *5 (-1214)) (-4 *6 (-1214)) (-5 *2 (-644 *6)) + (-5 *1 (-1088 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1089 *5)) (-4 *5 (-1212)) - (-4 *6 (-1212)) (-5 *2 (-1089 *6)) (-5 *1 (-1088 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1091 *5)) (-4 *5 (-1214)) + (-4 *6 (-1214)) (-5 *2 (-1091 *6)) (-5 *1 (-1090 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1092 *4 *2)) (-4 *4 (-846)) - (-4 *2 (-1146 *4)))) + (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1094 *4 *2)) (-4 *4 (-848)) + (-4 *2 (-1148 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1153 *5)) (-4 *5 (-1212)) - (-4 *6 (-1212)) (-5 *2 (-1153 *6)) (-5 *1 (-1151 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1155 *5)) (-4 *5 (-1214)) + (-4 *6 (-1214)) (-5 *2 (-1155 *6)) (-5 *1 (-1153 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1153 *6)) (-5 *5 (-1153 *7)) - (-4 *6 (-1212)) (-4 *7 (-1212)) (-4 *8 (-1212)) (-5 *2 (-1153 *8)) - (-5 *1 (-1152 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1155 *6)) (-5 *5 (-1155 *7)) + (-4 *6 (-1214)) (-4 *7 (-1214)) (-4 *8 (-1214)) (-5 *2 (-1155 *8)) + (-5 *1 (-1154 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1169 *5)) (-4 *5 (-1047)) - (-4 *6 (-1047)) (-5 *2 (-1169 *6)) (-5 *1 (-1167 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1171 *5)) (-4 *5 (-1049)) + (-4 *6 (-1049)) (-5 *2 (-1171 *6)) (-5 *1 (-1169 *5 *6)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1188 *3 *4)) (-4 *3 (-1097)) - (-4 *4 (-1097)))) + (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1190 *3 *4)) (-4 *3 (-1099)) + (-4 *4 (-1099)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1226 *5 *7 *9)) (-4 *5 (-1047)) - (-4 *6 (-1047)) (-14 *7 (-1173)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1226 *6 *8 *10)) (-5 *1 (-1221 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1173)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1228 *5 *7 *9)) (-4 *5 (-1049)) + (-4 *6 (-1049)) (-14 *7 (-1175)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1228 *6 *8 *10)) (-5 *1 (-1223 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1175)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1229 *5)) (-4 *5 (-1212)) - (-4 *6 (-1212)) (-5 *2 (-1229 *6)) (-5 *1 (-1228 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1231 *5)) (-4 *5 (-1214)) + (-4 *6 (-1214)) (-5 *2 (-1231 *6)) (-5 *1 (-1230 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1229 *5)) (-4 *5 (-846)) - (-4 *5 (-1212)) (-4 *6 (-1212)) (-5 *2 (-1153 *6)) - (-5 *1 (-1228 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1231 *5)) (-4 *5 (-848)) + (-4 *5 (-1214)) (-4 *6 (-1214)) (-5 *2 (-1155 *6)) + (-5 *1 (-1230 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1235 *5 *6)) (-14 *5 (-1173)) - (-4 *6 (-1047)) (-4 *8 (-1047)) (-5 *2 (-1235 *7 *8)) - (-5 *1 (-1230 *5 *6 *7 *8)) (-14 *7 (-1173)))) + (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1237 *5 *6)) (-14 *5 (-1175)) + (-4 *6 (-1049)) (-4 *8 (-1049)) (-5 *2 (-1237 *7 *8)) + (-5 *1 (-1232 *5 *6 *7 *8)) (-14 *7 (-1175)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1047)) (-4 *6 (-1047)) - (-4 *2 (-1238 *6)) (-5 *1 (-1236 *5 *4 *6 *2)) (-4 *4 (-1238 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1049)) (-4 *6 (-1049)) + (-4 *2 (-1240 *6)) (-5 *1 (-1238 *5 *4 *6 *2)) (-4 *4 (-1240 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1247 *5 *7 *9)) (-4 *5 (-1047)) - (-4 *6 (-1047)) (-14 *7 (-1173)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1247 *6 *8 *10)) (-5 *1 (-1242 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1173)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1249 *5 *7 *9)) (-4 *5 (-1049)) + (-4 *6 (-1049)) (-14 *7 (-1175)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1249 *6 *8 *10)) (-5 *1 (-1244 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1175)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1047)) (-4 *6 (-1047)) - (-4 *2 (-1253 *6)) (-5 *1 (-1251 *5 *6 *4 *2)) (-4 *4 (-1253 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1049)) (-4 *6 (-1049)) + (-4 *2 (-1255 *6)) (-5 *1 (-1253 *5 *6 *4 *2)) (-4 *4 (-1255 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1262 *5)) (-4 *5 (-1212)) - (-4 *6 (-1212)) (-5 *2 (-1262 *6)) (-5 *1 (-1261 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1264 *5)) (-4 *5 (-1214)) + (-4 *6 (-1214)) (-5 *2 (-1264 *6)) (-5 *1 (-1263 *5 *6)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1262 *5)) - (-4 *5 (-1212)) (-4 *6 (-1212)) (-5 *2 (-1262 *6)) - (-5 *1 (-1261 *5 *6)))) + (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1264 *5)) + (-4 *5 (-1214)) (-4 *6 (-1214)) (-5 *2 (-1264 *6)) + (-5 *1 (-1263 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1279 *3 *4)) (-4 *3 (-848)) - (-4 *4 (-1047)))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1281 *3 *4)) (-4 *3 (-850)) + (-4 *4 (-1049)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1047)) (-5 *1 (-1285 *3 *4)) - (-4 *4 (-844))))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1049)) (-5 *1 (-1287 *3 *4)) + (-4 *4 (-846))))) (((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1000))))) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) - (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-331 *2)) (-4 *2 (-848)))) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-332 *2)) (-4 *2 (-850)))) ((*1 *1 *1) - (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-642 (-1173))) - (-14 *3 (-642 (-1173))) (-4 *4 (-387)))) + (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) + (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) ((*1 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1158 *3)))) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1160 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1159 *3)))) - ((*1 *1 *1) (-4 *1 (-1200)))) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1161 *3)))) + ((*1 *1 *1) (-4 *1 (-1202)))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-316 (-564))) (|:| -2266 (-316 (-379))) - (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1172)))) - (-5 *1 (-1172))))) -(((*1 *2 *3) - (-12 (-4 *4 (-38 (-407 (-564)))) - (-5 *2 (-2 (|:| -3067 (-1153 *4)) (|:| -3077 (-1153 *4)))) - (-5 *1 (-1159 *4)) (-5 *3 (-1153 *4))))) + (-3 (|:| I (-317 (-566))) (|:| -2341 (-317 (-381))) + (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1174)))) + (-5 *1 (-1174))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-790)) - (-4 *2 (-363)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-225)))) + (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-792)) + (-4 *2 (-365)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-225)))) ((*1 *1 *1 *1) - (-2682 (-12 (-5 *1 (-294 *2)) (-4 *2 (-363)) (-4 *2 (-1212))) - (-12 (-5 *1 (-294 *2)) (-4 *2 (-473)) (-4 *2 (-1212))))) - ((*1 *1 *1 *1) (-4 *1 (-363))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-379)))) + (-2809 (-12 (-5 *1 (-295 *2)) (-4 *2 (-365)) (-4 *2 (-1214))) + (-12 (-5 *1 (-295 *2)) (-4 *2 (-475)) (-4 *2 (-1214))))) + ((*1 *1 *1 *1) (-4 *1 (-365))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-381)))) ((*1 *1 *2 *2) - (-12 (-5 *2 (-1122 *3 (-610 *1))) (-4 *3 (-556)) (-4 *3 (-1097)) - (-4 *1 (-430 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-473))) + (-12 (-5 *2 (-1124 *3 (-612 *1))) (-4 *3 (-558)) (-4 *3 (-1099)) + (-4 *1 (-432 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-475))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1262 *3)) (-4 *3 (-349)) (-5 *1 (-528 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-536))) + (-12 (-5 *2 (-1264 *3)) (-4 *3 (-351)) (-5 *1 (-530 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-538))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-172)) (-5 *1 (-619 *2 *4 *3)) (-4 *2 (-38 *4)) - (-4 *3 (|SubsetCategory| (-724) *4)))) + (-12 (-4 *4 (-172)) (-5 *1 (-621 *2 *4 *3)) (-4 *2 (-38 *4)) + (-4 *3 (|SubsetCategory| (-726) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *4 (-172)) (-5 *1 (-619 *3 *4 *2)) (-4 *3 (-38 *4)) - (-4 *2 (|SubsetCategory| (-724) *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-632 *2)) (-4 *2 (-172)) (-4 *2 (-363)))) + (-12 (-4 *4 (-172)) (-5 *1 (-621 *3 *4 *2)) (-4 *3 (-38 *4)) + (-4 *2 (|SubsetCategory| (-726) *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-634 *2)) (-4 *2 (-172)) (-4 *2 (-365)))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-172)) (-5 *1 (-660 *2 *4 *3)) (-4 *2 (-715 *4)) - (-4 *3 (|SubsetCategory| (-724) *4)))) + (-12 (-4 *4 (-172)) (-5 *1 (-662 *2 *4 *3)) (-4 *2 (-717 *4)) + (-4 *3 (|SubsetCategory| (-726) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *4 (-172)) (-5 *1 (-660 *3 *4 *2)) (-4 *3 (-715 *4)) - (-4 *2 (|SubsetCategory| (-724) *4)))) + (-12 (-4 *4 (-172)) (-5 *1 (-662 *3 *4 *2)) (-4 *3 (-717 *4)) + (-4 *2 (|SubsetCategory| (-726) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-685 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-373 *2)) - (-4 *4 (-373 *2)) (-4 *2 (-363)))) - ((*1 *1 *1 *1) (-5 *1 (-860))) + (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) + (-4 *4 (-375 *2)) (-4 *2 (-365)))) + ((*1 *1 *1 *1) (-5 *1 (-862))) ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-864 *2 *3 *4 *5)) (-4 *2 (-363)) - (-4 *2 (-1047)) (-14 *3 (-642 (-1173))) (-14 *4 (-642 (-769))) - (-14 *5 (-769)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-1097)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-990 *2)) (-4 *2 (-556)))) + (|partial| -12 (-5 *1 (-866 *2 *3 *4 *5)) (-4 *2 (-365)) + (-4 *2 (-1049)) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-771))) + (-14 *5 (-771)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1099)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1051 *3 *4 *2 *5 *6)) (-4 *2 (-1047)) - (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-363)))) + (-12 (-4 *1 (-1053 *3 *4 *2 *5 *6)) (-4 *2 (-1049)) + (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-365)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1269 *2)) (-4 *2 (-363)))) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-365)))) ((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-363)) (-4 *2 (-1047)) (-4 *3 (-848)) - (-4 *4 (-791)) (-14 *6 (-642 *3)) - (-5 *1 (-1274 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-947 *2 *4 *3)) - (-14 *7 (-642 (-769))) (-14 *8 (-769)))) + (|partial| -12 (-4 *2 (-365)) (-4 *2 (-1049)) (-4 *3 (-850)) + (-4 *4 (-793)) (-14 *6 (-644 *3)) + (-5 *1 (-1276 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-949 *2 *4 *3)) + (-14 *7 (-644 (-771))) (-14 *8 (-771)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-1285 *2 *3)) (-4 *2 (-363)) (-4 *2 (-1047)) - (-4 *3 (-844))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-974 *3 *4 *2 *5)) (-4 *3 (-1047)) (-4 *4 (-791)) - (-4 *2 (-848)) (-4 *5 (-1062 *3 *4 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1238 *6)) - (-4 *6 (-13 (-27) (-430 *5))) (-4 *5 (-13 (-556) (-1036 (-564)))) - (-4 *8 (-1238 (-407 *7))) (-5 *2 (-585 *3)) - (-5 *1 (-552 *5 *6 *7 *8 *3)) (-4 *3 (-342 *6 *7 *8))))) -(((*1 *2 *1) (-12 (-5 *2 (-642 (-564))) (-5 *1 (-275))))) + (-12 (-5 *1 (-1287 *2 *3)) (-4 *2 (-365)) (-4 *2 (-1049)) + (-4 *3 (-846))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 (-317 (-225)))) (-5 *2 (-112)) (-5 *1 (-268)))) + ((*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-112)) (-5 *1 (-268)))) + ((*1 *2 *3) + (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) + (-5 *1 (-977 *4 *5 *6 *3)) (-4 *3 (-1064 *4 *5 *6))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-1264 *4)) (-4 *4 (-639 (-566))) + (-5 *2 (-1264 (-566))) (-5 *1 (-1291 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) + (-5 *2 (-644 (-644 (-644 (-943 *3)))))))) +(((*1 *1 *1) + (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-877 (-1 (-225) (-225)))) (-5 *4 (-1091 (-379))) - (-5 *5 (-642 (-263))) (-5 *2 (-1130 (-225))) (-5 *1 (-255)))) + (-12 (-5 *3 (-879 (-1 (-225) (-225)))) (-5 *4 (-1093 (-381))) + (-5 *5 (-644 (-264))) (-5 *2 (-1132 (-225))) (-5 *1 (-256)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-877 (-1 (-225) (-225)))) (-5 *4 (-1091 (-379))) - (-5 *2 (-1130 (-225))) (-5 *1 (-255)))) + (-12 (-5 *3 (-879 (-1 (-225) (-225)))) (-5 *4 (-1093 (-381))) + (-5 *2 (-1132 (-225))) (-5 *1 (-256)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-941 (-225)) (-225))) (-5 *4 (-1091 (-379))) - (-5 *5 (-642 (-263))) (-5 *2 (-1130 (-225))) (-5 *1 (-255)))) + (-12 (-5 *3 (-1 (-943 (-225)) (-225))) (-5 *4 (-1093 (-381))) + (-5 *5 (-644 (-264))) (-5 *2 (-1132 (-225))) (-5 *1 (-256)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-941 (-225)) (-225))) (-5 *4 (-1091 (-379))) - (-5 *2 (-1130 (-225))) (-5 *1 (-255)))) + (-12 (-5 *3 (-1 (-943 (-225)) (-225))) (-5 *4 (-1093 (-381))) + (-5 *2 (-1132 (-225))) (-5 *1 (-256)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1091 (-379))) - (-5 *5 (-642 (-263))) (-5 *2 (-1130 (-225))) (-5 *1 (-255)))) + (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1093 (-381))) + (-5 *5 (-644 (-264))) (-5 *2 (-1132 (-225))) (-5 *1 (-256)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1091 (-379))) - (-5 *2 (-1130 (-225))) (-5 *1 (-255)))) + (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1093 (-381))) + (-5 *2 (-1132 (-225))) (-5 *1 (-256)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-941 (-225)) (-225) (-225))) (-5 *4 (-1091 (-379))) - (-5 *5 (-642 (-263))) (-5 *2 (-1130 (-225))) (-5 *1 (-255)))) + (-12 (-5 *3 (-1 (-943 (-225)) (-225) (-225))) (-5 *4 (-1093 (-381))) + (-5 *5 (-644 (-264))) (-5 *2 (-1132 (-225))) (-5 *1 (-256)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-941 (-225)) (-225) (-225))) (-5 *4 (-1091 (-379))) - (-5 *2 (-1130 (-225))) (-5 *1 (-255)))) + (-12 (-5 *3 (-1 (-943 (-225)) (-225) (-225))) (-5 *4 (-1093 (-381))) + (-5 *2 (-1132 (-225))) (-5 *1 (-256)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-880 (-1 (-225) (-225) (-225)))) (-5 *4 (-1091 (-379))) - (-5 *5 (-642 (-263))) (-5 *2 (-1130 (-225))) (-5 *1 (-255)))) + (-12 (-5 *3 (-882 (-1 (-225) (-225) (-225)))) (-5 *4 (-1093 (-381))) + (-5 *5 (-644 (-264))) (-5 *2 (-1132 (-225))) (-5 *1 (-256)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-880 (-1 (-225) (-225) (-225)))) (-5 *4 (-1091 (-379))) - (-5 *2 (-1130 (-225))) (-5 *1 (-255)))) + (-12 (-5 *3 (-882 (-1 (-225) (-225) (-225)))) (-5 *4 (-1093 (-381))) + (-5 *2 (-1132 (-225))) (-5 *1 (-256)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-877 *6)) (-5 *4 (-1089 (-379))) (-5 *5 (-642 (-263))) - (-4 *6 (-13 (-612 (-536)) (-1097))) (-5 *2 (-1130 (-225))) - (-5 *1 (-259 *6)))) + (-12 (-5 *3 (-879 *6)) (-5 *4 (-1091 (-381))) (-5 *5 (-644 (-264))) + (-4 *6 (-13 (-614 (-538)) (-1099))) (-5 *2 (-1132 (-225))) + (-5 *1 (-260 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-877 *5)) (-5 *4 (-1089 (-379))) - (-4 *5 (-13 (-612 (-536)) (-1097))) (-5 *2 (-1130 (-225))) - (-5 *1 (-259 *5)))) + (-12 (-5 *3 (-879 *5)) (-5 *4 (-1091 (-381))) + (-4 *5 (-13 (-614 (-538)) (-1099))) (-5 *2 (-1132 (-225))) + (-5 *1 (-260 *5)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1089 (-379))) (-5 *5 (-642 (-263))) - (-5 *2 (-1130 (-225))) (-5 *1 (-259 *3)) - (-4 *3 (-13 (-612 (-536)) (-1097))))) + (-12 (-5 *4 (-1091 (-381))) (-5 *5 (-644 (-264))) + (-5 *2 (-1132 (-225))) (-5 *1 (-260 *3)) + (-4 *3 (-13 (-614 (-538)) (-1099))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1089 (-379))) (-5 *2 (-1130 (-225))) (-5 *1 (-259 *3)) - (-4 *3 (-13 (-612 (-536)) (-1097))))) + (-12 (-5 *4 (-1091 (-381))) (-5 *2 (-1132 (-225))) (-5 *1 (-260 *3)) + (-4 *3 (-13 (-614 (-538)) (-1099))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-880 *6)) (-5 *4 (-1089 (-379))) (-5 *5 (-642 (-263))) - (-4 *6 (-13 (-612 (-536)) (-1097))) (-5 *2 (-1130 (-225))) - (-5 *1 (-259 *6)))) + (-12 (-5 *3 (-882 *6)) (-5 *4 (-1091 (-381))) (-5 *5 (-644 (-264))) + (-4 *6 (-13 (-614 (-538)) (-1099))) (-5 *2 (-1132 (-225))) + (-5 *1 (-260 *6)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-880 *5)) (-5 *4 (-1089 (-379))) - (-4 *5 (-13 (-612 (-536)) (-1097))) (-5 *2 (-1130 (-225))) - (-5 *1 (-259 *5))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-1286 *3 *4)) (-4 *1 (-374 *3 *4)) (-4 *3 (-848)) - (-4 *4 (-172)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-386 *2)) (-4 *2 (-1097)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-817 *2)) (-4 *2 (-848)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-817 *2)) (-4 *2 (-848)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1279 *2 *3)) (-4 *2 (-848)) (-4 *3 (-1047)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-817 *3)) (-4 *1 (-1279 *3 *4)) (-4 *3 (-848)) - (-4 *4 (-1047)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1279 *2 *3)) (-4 *2 (-848)) (-4 *3 (-1047))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1205 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-791)) - (-4 *5 (-848)) (-4 *2 (-1062 *3 *4 *5))))) + (-12 (-5 *3 (-882 *5)) (-5 *4 (-1091 (-381))) + (-4 *5 (-13 (-614 (-538)) (-1099))) (-5 *2 (-1132 (-225))) + (-5 *1 (-260 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-225)) (-5 *1 (-306))))) +(((*1 *1 *1 *2) + (|partial| -12 (-5 *2 (-771)) (-4 *1 (-1240 *3)) (-4 *3 (-1049))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3710 *4))) - (-5 *1 (-967 *4 *3)) (-4 *3 (-1238 *4))))) -(((*1 *2) - (-12 (-5 *2 (-687 (-908 *3))) (-5 *1 (-351 *3 *4)) (-14 *3 (-919)) - (-14 *4 (-919)))) - ((*1 *2) - (-12 (-5 *2 (-687 *3)) (-5 *1 (-352 *3 *4)) (-4 *3 (-349)) - (-14 *4 - (-3 (-1169 *3) - (-1262 (-642 (-2 (|:| -2108 *3) (|:| -2065 (-1117))))))))) - ((*1 *2) - (-12 (-5 *2 (-687 *3)) (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) - (-14 *4 (-919))))) -(((*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-860))))) + (-12 (-5 *3 (-644 (-2 (|:| -2325 (-1171 *6)) (|:| -3631 (-566))))) + (-4 *6 (-308)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)) + (-5 *1 (-742 *4 *5 *6 *7)) (-4 *7 (-949 *6 *4 *5)))) + ((*1 *1 *1) (-12 (-4 *1 (-1133 *2)) (-4 *2 (-1049))))) +(((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563))))) (((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1000))))) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) - (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-331 *2)) (-4 *2 (-848)))) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-332 *2)) (-4 *2 (-850)))) ((*1 *1 *1) - (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-642 (-1173))) - (-14 *3 (-642 (-1173))) (-4 *4 (-387)))) + (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) + (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) ((*1 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1158 *3)))) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1160 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1159 *3)))) - ((*1 *1 *1) (-4 *1 (-1200)))) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1161 *3)))) + ((*1 *1 *1) (-4 *1 (-1202)))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-316 (-564))) (|:| -2266 (-316 (-379))) - (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1172)))) - (-5 *1 (-1172))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-642 (-687 *6))) (-5 *4 (-112)) (-5 *5 (-564)) - (-5 *2 (-687 *6)) (-5 *1 (-1027 *6)) (-4 *6 (-363)) (-4 *6 (-1047)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-642 (-687 *4))) (-5 *2 (-687 *4)) (-5 *1 (-1027 *4)) - (-4 *4 (-363)) (-4 *4 (-1047)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-642 (-687 *5))) (-5 *4 (-564)) (-5 *2 (-687 *5)) - (-5 *1 (-1027 *5)) (-4 *5 (-363)) (-4 *5 (-1047))))) + (-3 (|:| I (-317 (-566))) (|:| -2341 (-317 (-381))) + (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1174)))) + (-5 *1 (-1174))))) (((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1 *1) (|partial| -5 *1 (-134))) ((*1 *1 *1 *1) (-12 (-5 *1 (-214 *2)) (-4 *2 - (-13 (-848) - (-10 -8 (-15 -4369 ((-1155) $ (-1173))) (-15 -1639 ((-1267) $)) - (-15 -2973 ((-1267) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1212)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1212)))) + (-13 (-850) + (-10 -8 (-15 -4376 ((-1157) $ (-1175))) (-15 -1659 ((-1269) $)) + (-15 -2559 ((-1269) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1214)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1214)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) - ((*1 *1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) + (-12 (-4 *1 (-472 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) + ((*1 *1 *1) (-12 (-4 *1 (-472 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) ((*1 *1 *1) - (-12 (-4 *1 (-685 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-373 *2)) - (-4 *4 (-373 *2)))) + (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) + (-4 *4 (-375 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-685 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-373 *2)) - (-4 *4 (-373 *2)))) - ((*1 *1 *1) (-5 *1 (-860))) ((*1 *1 *1 *1) (-5 *1 (-860))) + (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) + (-4 *4 (-375 *2)))) + ((*1 *1 *1) (-5 *1 (-862))) ((*1 *1 *1 *1) (-5 *1 (-862))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3)))) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-941 (-225))) (-5 *1 (-1208)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1212)) (-4 *2 (-21)))) - ((*1 *1 *1) (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1212)) (-4 *2 (-21))))) -(((*1 *2 *1) - (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-418 *3)) (-4 *3 (-545)) (-4 *3 (-556)))) - ((*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-795 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-831 *3)) (-4 *3 (-545)) (-4 *3 (-1097)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-841 *3)) (-4 *3 (-545)) (-4 *3 (-1097)))) - ((*1 *2 *1) - (-12 (-4 *1 (-995 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-1006 *3)) (-4 *3 (-1036 (-407 (-564))))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *5 (-610 *4)) (-5 *6 (-1173)) - (-4 *4 (-13 (-430 *7) (-27) (-1197))) - (-4 *7 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2131 (-642 *4)))) - (-5 *1 (-566 *7 *4 *3)) (-4 *3 (-654 *4)) (-4 *3 (-1097))))) -(((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1262 (-316 (-225)))) (-5 *4 (-642 (-1173))) - (-5 *2 (-687 (-316 (-225)))) (-5 *1 (-205)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1097)) (-4 *6 (-898 *5)) (-5 *2 (-687 *6)) - (-5 *1 (-690 *5 *6 *3 *4)) (-4 *3 (-373 *6)) - (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4410))))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1216)) (-4 *5 (-1238 *4)) - (-5 *2 - (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-407 *5)) - (|:| |c2| (-407 *5)) (|:| |deg| (-769)))) - (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1238 (-407 *5)))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-407 (-950 *4))) (-5 *3 (-1173)) - (-4 *4 (-13 (-556) (-1036 (-564)) (-147))) (-5 *1 (-570 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1153 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-316 (-225))) (-5 *1 (-305)))) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-943 (-225))) (-5 *1 (-1210)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1214)) (-4 *2 (-21)))) + ((*1 *1 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1214)) (-4 *2 (-21))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *5 (-1157)) + (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-82 PDEF)))) + (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1035)) + (-5 *1 (-750))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1157)) (-5 *3 (-823)) (-5 *1 (-822))))) +(((*1 *1 *1 *1) (-4 *1 (-661)))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-365)) (-4 *3 (-1049)) + (-5 *1 (-1159 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-317 (-169 (-381)))) (-5 *1 (-331)))) + ((*1 *1 *2) (-12 (-5 *2 (-317 (-566))) (-5 *1 (-331)))) + ((*1 *1 *2) (-12 (-5 *2 (-317 (-381))) (-5 *1 (-331)))) + ((*1 *1 *2) (-12 (-5 *2 (-317 (-694))) (-5 *1 (-331)))) + ((*1 *1 *2) (-12 (-5 *2 (-317 (-701))) (-5 *1 (-331)))) + ((*1 *1 *2) (-12 (-5 *2 (-317 (-699))) (-5 *1 (-331)))) + ((*1 *1) (-5 *1 (-331)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190))))) +(((*1 *2) (-12 (-5 *2 (-644 (-921))) (-5 *1 (-1267)))) + ((*1 *2 *2) (-12 (-5 *2 (-644 (-921))) (-5 *1 (-1267))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-317 (-225))) (-5 *1 (-306)))) ((*1 *2 *1) (|partial| -12 - (-5 *2 (-2 (|:| |num| (-890 *3)) (|:| |den| (-890 *3)))) - (-5 *1 (-890 *3)) (-4 *3 (-1097))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1173)) - (-4 *5 (-13 (-307) (-147) (-1036 (-564)) (-637 (-564)))) - (-5 *2 (-585 *3)) (-5 *1 (-426 *5 *3)) - (-4 *3 (-13 (-1197) (-29 *5)))))) -(((*1 *1 *1) (-4 *1 (-627))) + (-5 *2 (-2 (|:| |num| (-892 *3)) (|:| |den| (-892 *3)))) + (-5 *1 (-892 *3)) (-4 *3 (-1099))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1281 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1287 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-846))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-822))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 (-483 *4 *5))) (-14 *4 (-644 (-1175))) + (-4 *5 (-454)) (-5 *2 (-644 (-247 *4 *5))) (-5 *1 (-631 *4 *5))))) +(((*1 *1 *1) (-4 *1 (-629))) ((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-628 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1000) (-1197)))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-316 (-564))) (|:| -2266 (-316 (-379))) - (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1172)))) - (-5 *1 (-1172))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-860))) ((*1 *1 *1 *1) (-5 *1 (-860))) - ((*1 *1 *1) (-5 *1 (-860)))) + (-12 (-4 *3 (-558)) (-5 *1 (-630 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002) (-1199)))))) (((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-157))) ((*1 *1 *1 *1) (-12 (-5 *1 (-214 *2)) (-4 *2 - (-13 (-848) - (-10 -8 (-15 -4369 ((-1155) $ (-1173))) (-15 -1639 ((-1267) $)) - (-15 -2973 ((-1267) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-25)) (-4 *2 (-1212)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-25)) (-4 *2 (-1212)))) + (-13 (-850) + (-10 -8 (-15 -4376 ((-1157) $ (-1175))) (-15 -1659 ((-1269) $)) + (-15 -2559 ((-1269) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-25)) (-4 *2 (-1214)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-25)) (-4 *2 (-1214)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-1097)) (-4 *3 (-131)))) + (-12 (-4 *1 (-324 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-131)))) ((*1 *1 *2 *1) - (-12 (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *2)) - (-4 *2 (-1238 *3)))) + (-12 (-4 *3 (-13 (-365) (-147))) (-5 *1 (-401 *3 *2)) + (-4 *2 (-1240 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) + (-12 (-4 *1 (-472 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-363)) (-4 *3 (-791)) (-4 *4 (-848)) - (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-947 *2 *3 *4)))) - ((*1 *1 *1 *1) (-5 *1 (-536))) + (-12 (-4 *2 (-365)) (-4 *3 (-793)) (-4 *4 (-850)) + (-5 *1 (-506 *2 *3 *4 *5)) (-4 *5 (-949 *2 *3 *4)))) + ((*1 *1 *1 *1) (-5 *1 (-538))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-685 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-373 *2)) - (-4 *4 (-373 *2)))) - ((*1 *1 *1 *1) (-5 *1 (-860))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-1097)))) + (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) + (-4 *4 (-375 *2)))) + ((*1 *1 *1 *1) (-5 *1 (-862))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1099)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-941 (-225))) (-5 *1 (-1208)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1212)) (-4 *2 (-25))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-647 *2 *3 *4)) (-4 *2 (-1097)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *1 *1 *1) (-4 *1 (-659)))) -(((*1 *1 *1) (-4 *1 (-173))) - ((*1 *1 *1) - (-12 (-4 *1 (-364 *2 *3)) (-4 *2 (-1097)) (-4 *3 (-1097))))) -(((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1000)))))) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-943 (-225))) (-5 *1 (-1210)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1214)) (-4 *2 (-25))))) (((*1 *2 *3) - (-12 (-4 *4 (-1238 (-407 *2))) (-5 *2 (-564)) (-5 *1 (-911 *4 *3)) - (-4 *3 (-1238 (-407 *4)))))) -(((*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1264))))) -(((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-769)) (-4 *5 (-363)) (-5 *2 (-407 *6)) - (-5 *1 (-865 *5 *4 *6)) (-4 *4 (-1253 *5)) (-4 *6 (-1238 *5)))) - ((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-769)) (-5 *4 (-1254 *5 *6 *7)) (-4 *5 (-363)) - (-14 *6 (-1173)) (-14 *7 *5) (-5 *2 (-407 (-1235 *6 *5))) - (-5 *1 (-866 *5 *6 *7)))) - ((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-769)) (-5 *4 (-1254 *5 *6 *7)) (-4 *5 (-363)) - (-14 *6 (-1173)) (-14 *7 *5) (-5 *2 (-407 (-1235 *6 *5))) - (-5 *1 (-866 *5 *6 *7))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-302)) (-5 *3 (-1173)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-112))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-480))))) -(((*1 *2 *3) (-12 (-5 *3 (-950 (-225))) (-5 *2 (-225)) (-5 *1 (-305))))) -(((*1 *2 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307)))) - ((*1 *2 *1) (-12 (-5 *1 (-912 *2)) (-4 *2 (-307)))) - ((*1 *2 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-556)) (-4 *2 (-307)))) - ((*1 *2 *1) (-12 (-4 *1 (-1057)) (-5 *2 (-564))))) -(((*1 *2 *3) - (-12 (-4 *4 (-452)) (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) - (-5 *2 (-642 *3)) (-5 *1 (-975 *4 *5 *6 *3)) - (-4 *3 (-1062 *4 *5 *6))))) + (|partial| -12 (-5 *2 (-566)) (-5 *1 (-1196 *3)) (-4 *3 (-1049))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) + (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1049)) (-4 *3 (-1240 *4)) (-4 *2 (-1255 *4)) + (-5 *1 (-1258 *4 *3 *5 *2)) (-4 *5 (-656 *3))))) +(((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-927))))) +(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) + (-12 (-5 *4 (-566)) (-5 *5 (-689 (-225))) + (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2341)))) (-5 *3 (-225)) + (-5 *2 (-1035)) (-5 *1 (-748))))) +(((*1 *1 *1 *1) (-4 *1 (-661)))) +(((*1 *2 *3) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-566))) (-5 *1 (-1047))))) +(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-584))))) +(((*1 *2) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) + (-4 *5 (-1240 (-409 *4))) (-5 *2 (-112))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-644 (-1075 *4 *5 *2))) (-4 *4 (-1099)) + (-4 *5 (-13 (-1049) (-886 *4) (-614 (-892 *4)))) + (-4 *2 (-13 (-432 *5) (-886 *4) (-614 (-892 *4)))) + (-5 *1 (-54 *4 *5 *2)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-644 (-1075 *5 *6 *2))) (-5 *4 (-921)) (-4 *5 (-1099)) + (-4 *6 (-13 (-1049) (-886 *5) (-614 (-892 *5)))) + (-4 *2 (-13 (-432 *6) (-886 *5) (-614 (-892 *5)))) + (-5 *1 (-54 *5 *6 *2))))) +(((*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1267)))) + ((*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1267))))) +(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *4 (-225)) + (-5 *2 (-1035)) (-5 *1 (-756))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-558)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2162 *3))) + (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4))))) (((*1 *1) - (-12 (-4 *1 (-404)) (-2307 (|has| *1 (-6 -4401))) - (-2307 (|has| *1 (-6 -4393))))) - ((*1 *2 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1097)) (-4 *2 (-848)))) - ((*1 *1) (-4 *1 (-842))) ((*1 *1 *1 *1) (-4 *1 (-848))) - ((*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-848))))) -(((*1 *1 *1 *1) (-4 *1 (-659)))) -(((*1 *2 *3) - (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-827)) (-5 *3 (-1155))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5) - (-12 (-5 *3 (-1155)) (-5 *4 (-564)) (-5 *5 (-687 (-225))) - (-5 *2 (-1033)) (-5 *1 (-755))))) -(((*1 *1 *1) (-4 *1 (-627))) - ((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-628 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1000) (-1197)))))) + (-12 (-4 *1 (-406)) (-2387 (|has| *1 (-6 -4408))) + (-2387 (|has| *1 (-6 -4400))))) + ((*1 *2 *1) (-12 (-4 *1 (-427 *2)) (-4 *2 (-1099)) (-4 *2 (-850)))) + ((*1 *1) (-4 *1 (-844))) ((*1 *1 *1 *1) (-4 *1 (-850))) + ((*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-850))))) +(((*1 *1) (-5 *1 (-141))) ((*1 *1 *1) (-5 *1 (-144))) + ((*1 *1 *1) (-4 *1 (-1143)))) +(((*1 *2 *1) + (-12 (-14 *3 (-644 (-1175))) (-4 *4 (-172)) + (-14 *6 + (-1 (-112) (-2 (|:| -2104 *5) (|:| -3631 *2)) + (-2 (|:| -2104 *5) (|:| -3631 *2)))) + (-4 *2 (-238 (-3002 *3) (-771))) (-5 *1 (-463 *3 *4 *5 *2 *6 *7)) + (-4 *5 (-850)) (-4 *7 (-949 *4 *2 (-864 *3)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-653 (-409 *6))) (-5 *4 (-1 (-644 *5) *6)) + (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) + (-4 *6 (-1240 *5)) (-5 *2 (-644 (-409 *6))) (-5 *1 (-812 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-653 (-409 *7))) (-5 *4 (-1 (-644 *6) *7)) + (-5 *5 (-1 (-420 *7) *7)) + (-4 *6 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) + (-4 *7 (-1240 *6)) (-5 *2 (-644 (-409 *7))) (-5 *1 (-812 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-654 *6 (-409 *6))) (-5 *4 (-1 (-644 *5) *6)) + (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) + (-4 *6 (-1240 *5)) (-5 *2 (-644 (-409 *6))) (-5 *1 (-812 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-654 *7 (-409 *7))) (-5 *4 (-1 (-644 *6) *7)) + (-5 *5 (-1 (-420 *7) *7)) + (-4 *6 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) + (-4 *7 (-1240 *6)) (-5 *2 (-644 (-409 *7))) (-5 *1 (-812 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-653 (-409 *5))) (-4 *5 (-1240 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) + (-5 *2 (-644 (-409 *5))) (-5 *1 (-812 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-653 (-409 *6))) (-5 *4 (-1 (-420 *6) *6)) + (-4 *6 (-1240 *5)) (-4 *5 (-27)) + (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) + (-5 *2 (-644 (-409 *6))) (-5 *1 (-812 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-654 *5 (-409 *5))) (-4 *5 (-1240 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) + (-5 *2 (-644 (-409 *5))) (-5 *1 (-812 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-654 *6 (-409 *6))) (-5 *4 (-1 (-420 *6) *6)) + (-4 *6 (-1240 *5)) (-4 *5 (-27)) + (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) + (-5 *2 (-644 (-409 *6))) (-5 *1 (-812 *5 *6))))) +(((*1 *2 *1 *3 *3 *4 *4) + (-12 (-5 *3 (-771)) (-5 *4 (-921)) (-5 *2 (-1269)) (-5 *1 (-1265)))) + ((*1 *2 *1 *3 *3 *4 *4) + (-12 (-5 *3 (-771)) (-5 *4 (-921)) (-5 *2 (-1269)) (-5 *1 (-1266))))) (((*1 *2) - (-12 (-4 *3 (-556)) (-5 *2 (-642 (-687 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-417 *3))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-642 (-481 *5 *6))) (-5 *4 (-862 *5)) - (-14 *5 (-642 (-1173))) (-5 *2 (-481 *5 *6)) (-5 *1 (-629 *5 *6)) - (-4 *6 (-452)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-642 (-481 *5 *6))) (-5 *4 (-862 *5)) - (-14 *5 (-642 (-1173))) (-5 *2 (-481 *5 *6)) (-5 *1 (-629 *5 *6)) - (-4 *6 (-452))))) -(((*1 *2 *1) (-12 (-5 *2 (-642 (-183))) (-5 *1 (-140))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-363)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) - (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-685 *3 *4 *5)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-556)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) - (-4 *7 (-990 *4)) (-4 *2 (-685 *7 *8 *9)) - (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-685 *4 *5 *6)) - (-4 *8 (-373 *7)) (-4 *9 (-373 *7)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-685 *2 *3 *4)) (-4 *2 (-1047)) - (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (-4 *2 (-363)))) - ((*1 *2 *2) - (|partial| -12 (-4 *3 (-363)) (-4 *3 (-172)) (-4 *4 (-373 *3)) - (-4 *5 (-373 *3)) (-5 *1 (-686 *3 *4 *5 *2)) - (-4 *2 (-685 *3 *4 *5)))) - ((*1 *1 *1) - (|partial| -12 (-5 *1 (-687 *2)) (-4 *2 (-363)) (-4 *2 (-1047)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1120 *2 *3 *4 *5)) (-4 *3 (-1047)) - (-4 *4 (-238 *2 *3)) (-4 *5 (-238 *2 *3)) (-4 *3 (-363)))) - ((*1 *2 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-848)) (-5 *1 (-1183 *3))))) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) + (-4 *5 (-1240 (-409 *4))) (-5 *2 (-689 (-409 *4)))))) +(((*1 *2 *3) + (-12 (-4 *2 (-1240 *4)) (-5 *1 (-809 *4 *2 *3 *5)) + (-4 *4 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *3 (-656 *2)) + (-4 *5 (-656 (-409 *2)))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) + (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) + (-5 *1 (-988 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) + (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) + (-5 *1 (-1106 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1264 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) + (-5 *2 (-689 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-689 *3))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1237 *5 *4)) (-4 *4 (-820)) (-14 *5 (-1175)) + (-5 *2 (-566)) (-5 *1 (-1113 *4 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1240 (-409 *2))) (-5 *2 (-566)) (-5 *1 (-913 *4 *3)) + (-4 *3 (-1240 (-409 *4)))))) (((*1 *2 *1) - (-12 (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-642 *1)) - (-4 *1 (-1062 *3 *4 *5))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-556)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) - (-5 *1 (-1202 *3 *4 *5 *2)) (-4 *2 (-685 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820))))) + (-12 (-5 *2 (-644 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) + (-5 *1 (-587 *3)) (-4 *3 (-365))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1091 (-379))) - (-5 *5 (-642 (-263))) (-5 *2 (-1263)) (-5 *1 (-255)))) + (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1093 (-381))) + (-5 *5 (-644 (-264))) (-5 *2 (-1265)) (-5 *1 (-256)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1091 (-379))) - (-5 *2 (-1263)) (-5 *1 (-255)))) + (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1093 (-381))) + (-5 *2 (-1265)) (-5 *1 (-256)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-875 (-1 (-225) (-225)))) (-5 *4 (-1091 (-379))) - (-5 *5 (-642 (-263))) (-5 *2 (-1263)) (-5 *1 (-255)))) + (-12 (-5 *3 (-877 (-1 (-225) (-225)))) (-5 *4 (-1093 (-381))) + (-5 *5 (-644 (-264))) (-5 *2 (-1265)) (-5 *1 (-256)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-875 (-1 (-225) (-225)))) (-5 *4 (-1091 (-379))) - (-5 *2 (-1263)) (-5 *1 (-255)))) + (-12 (-5 *3 (-877 (-1 (-225) (-225)))) (-5 *4 (-1093 (-381))) + (-5 *2 (-1265)) (-5 *1 (-256)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-877 (-1 (-225) (-225)))) (-5 *4 (-1091 (-379))) - (-5 *5 (-642 (-263))) (-5 *2 (-1264)) (-5 *1 (-255)))) + (-12 (-5 *3 (-879 (-1 (-225) (-225)))) (-5 *4 (-1093 (-381))) + (-5 *5 (-644 (-264))) (-5 *2 (-1266)) (-5 *1 (-256)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-877 (-1 (-225) (-225)))) (-5 *4 (-1091 (-379))) - (-5 *2 (-1264)) (-5 *1 (-255)))) + (-12 (-5 *3 (-879 (-1 (-225) (-225)))) (-5 *4 (-1093 (-381))) + (-5 *2 (-1266)) (-5 *1 (-256)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-941 (-225)) (-225))) (-5 *4 (-1091 (-379))) - (-5 *5 (-642 (-263))) (-5 *2 (-1264)) (-5 *1 (-255)))) + (-12 (-5 *3 (-1 (-943 (-225)) (-225))) (-5 *4 (-1093 (-381))) + (-5 *5 (-644 (-264))) (-5 *2 (-1266)) (-5 *1 (-256)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-941 (-225)) (-225))) (-5 *4 (-1091 (-379))) - (-5 *2 (-1264)) (-5 *1 (-255)))) + (-12 (-5 *3 (-1 (-943 (-225)) (-225))) (-5 *4 (-1093 (-381))) + (-5 *2 (-1266)) (-5 *1 (-256)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1091 (-379))) - (-5 *5 (-642 (-263))) (-5 *2 (-1264)) (-5 *1 (-255)))) + (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1093 (-381))) + (-5 *5 (-644 (-264))) (-5 *2 (-1266)) (-5 *1 (-256)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1091 (-379))) - (-5 *2 (-1264)) (-5 *1 (-255)))) + (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1093 (-381))) + (-5 *2 (-1266)) (-5 *1 (-256)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-941 (-225)) (-225) (-225))) (-5 *4 (-1091 (-379))) - (-5 *5 (-642 (-263))) (-5 *2 (-1264)) (-5 *1 (-255)))) + (-12 (-5 *3 (-1 (-943 (-225)) (-225) (-225))) (-5 *4 (-1093 (-381))) + (-5 *5 (-644 (-264))) (-5 *2 (-1266)) (-5 *1 (-256)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-941 (-225)) (-225) (-225))) (-5 *4 (-1091 (-379))) - (-5 *2 (-1264)) (-5 *1 (-255)))) + (-12 (-5 *3 (-1 (-943 (-225)) (-225) (-225))) (-5 *4 (-1093 (-381))) + (-5 *2 (-1266)) (-5 *1 (-256)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-880 (-1 (-225) (-225) (-225)))) (-5 *4 (-1091 (-379))) - (-5 *5 (-642 (-263))) (-5 *2 (-1264)) (-5 *1 (-255)))) + (-12 (-5 *3 (-882 (-1 (-225) (-225) (-225)))) (-5 *4 (-1093 (-381))) + (-5 *5 (-644 (-264))) (-5 *2 (-1266)) (-5 *1 (-256)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-880 (-1 (-225) (-225) (-225)))) (-5 *4 (-1091 (-379))) - (-5 *2 (-1264)) (-5 *1 (-255)))) + (-12 (-5 *3 (-882 (-1 (-225) (-225) (-225)))) (-5 *4 (-1093 (-381))) + (-5 *2 (-1266)) (-5 *1 (-256)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-294 *7)) (-5 *4 (-1173)) (-5 *5 (-642 (-263))) - (-4 *7 (-430 *6)) (-4 *6 (-13 (-556) (-848) (-1036 (-564)))) - (-5 *2 (-1263)) (-5 *1 (-256 *6 *7)))) + (-12 (-5 *3 (-295 *7)) (-5 *4 (-1175)) (-5 *5 (-644 (-264))) + (-4 *7 (-432 *6)) (-4 *6 (-13 (-558) (-850) (-1038 (-566)))) + (-5 *2 (-1265)) (-5 *1 (-257 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1089 (-379))) (-5 *5 (-642 (-263))) (-5 *2 (-1263)) - (-5 *1 (-259 *3)) (-4 *3 (-13 (-612 (-536)) (-1097))))) + (-12 (-5 *4 (-1091 (-381))) (-5 *5 (-644 (-264))) (-5 *2 (-1265)) + (-5 *1 (-260 *3)) (-4 *3 (-13 (-614 (-538)) (-1099))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1089 (-379))) (-5 *2 (-1263)) (-5 *1 (-259 *3)) - (-4 *3 (-13 (-612 (-536)) (-1097))))) + (-12 (-5 *4 (-1091 (-381))) (-5 *2 (-1265)) (-5 *1 (-260 *3)) + (-4 *3 (-13 (-614 (-538)) (-1099))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-875 *6)) (-5 *4 (-1089 (-379))) (-5 *5 (-642 (-263))) - (-4 *6 (-13 (-612 (-536)) (-1097))) (-5 *2 (-1263)) - (-5 *1 (-259 *6)))) + (-12 (-5 *3 (-877 *6)) (-5 *4 (-1091 (-381))) (-5 *5 (-644 (-264))) + (-4 *6 (-13 (-614 (-538)) (-1099))) (-5 *2 (-1265)) + (-5 *1 (-260 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-875 *5)) (-5 *4 (-1089 (-379))) - (-4 *5 (-13 (-612 (-536)) (-1097))) (-5 *2 (-1263)) - (-5 *1 (-259 *5)))) + (-12 (-5 *3 (-877 *5)) (-5 *4 (-1091 (-381))) + (-4 *5 (-13 (-614 (-538)) (-1099))) (-5 *2 (-1265)) + (-5 *1 (-260 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-877 *6)) (-5 *4 (-1089 (-379))) (-5 *5 (-642 (-263))) - (-4 *6 (-13 (-612 (-536)) (-1097))) (-5 *2 (-1264)) - (-5 *1 (-259 *6)))) + (-12 (-5 *3 (-879 *6)) (-5 *4 (-1091 (-381))) (-5 *5 (-644 (-264))) + (-4 *6 (-13 (-614 (-538)) (-1099))) (-5 *2 (-1266)) + (-5 *1 (-260 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-877 *5)) (-5 *4 (-1089 (-379))) - (-4 *5 (-13 (-612 (-536)) (-1097))) (-5 *2 (-1264)) - (-5 *1 (-259 *5)))) + (-12 (-5 *3 (-879 *5)) (-5 *4 (-1091 (-381))) + (-4 *5 (-13 (-614 (-538)) (-1099))) (-5 *2 (-1266)) + (-5 *1 (-260 *5)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1089 (-379))) (-5 *5 (-642 (-263))) (-5 *2 (-1264)) - (-5 *1 (-259 *3)) (-4 *3 (-13 (-612 (-536)) (-1097))))) + (-12 (-5 *4 (-1091 (-381))) (-5 *5 (-644 (-264))) (-5 *2 (-1266)) + (-5 *1 (-260 *3)) (-4 *3 (-13 (-614 (-538)) (-1099))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1089 (-379))) (-5 *2 (-1264)) (-5 *1 (-259 *3)) - (-4 *3 (-13 (-612 (-536)) (-1097))))) + (-12 (-5 *4 (-1091 (-381))) (-5 *2 (-1266)) (-5 *1 (-260 *3)) + (-4 *3 (-13 (-614 (-538)) (-1099))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-880 *6)) (-5 *4 (-1089 (-379))) (-5 *5 (-642 (-263))) - (-4 *6 (-13 (-612 (-536)) (-1097))) (-5 *2 (-1264)) - (-5 *1 (-259 *6)))) + (-12 (-5 *3 (-882 *6)) (-5 *4 (-1091 (-381))) (-5 *5 (-644 (-264))) + (-4 *6 (-13 (-614 (-538)) (-1099))) (-5 *2 (-1266)) + (-5 *1 (-260 *6)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-880 *5)) (-5 *4 (-1089 (-379))) - (-4 *5 (-13 (-612 (-536)) (-1097))) (-5 *2 (-1264)) - (-5 *1 (-259 *5)))) + (-12 (-5 *3 (-882 *5)) (-5 *4 (-1091 (-381))) + (-4 *5 (-13 (-614 (-538)) (-1099))) (-5 *2 (-1266)) + (-5 *1 (-260 *5)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-642 (-225))) (-5 *2 (-1263)) (-5 *1 (-260)))) + (-12 (-5 *3 (-644 (-225))) (-5 *2 (-1265)) (-5 *1 (-261)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-642 (-225))) (-5 *4 (-642 (-263))) (-5 *2 (-1263)) - (-5 *1 (-260)))) + (-12 (-5 *3 (-644 (-225))) (-5 *4 (-644 (-264))) (-5 *2 (-1265)) + (-5 *1 (-261)))) ((*1 *2 *3) - (-12 (-5 *3 (-642 (-941 (-225)))) (-5 *2 (-1263)) (-5 *1 (-260)))) + (-12 (-5 *3 (-644 (-943 (-225)))) (-5 *2 (-1265)) (-5 *1 (-261)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-642 (-941 (-225)))) (-5 *4 (-642 (-263))) - (-5 *2 (-1263)) (-5 *1 (-260)))) + (-12 (-5 *3 (-644 (-943 (-225)))) (-5 *4 (-644 (-264))) + (-5 *2 (-1265)) (-5 *1 (-261)))) ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-642 (-225))) (-5 *2 (-1264)) (-5 *1 (-260)))) + (-12 (-5 *3 (-644 (-225))) (-5 *2 (-1266)) (-5 *1 (-261)))) ((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-642 (-225))) (-5 *4 (-642 (-263))) (-5 *2 (-1264)) - (-5 *1 (-260))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1169 *9)) (-5 *4 (-642 *7)) (-4 *7 (-848)) - (-4 *9 (-947 *8 *6 *7)) (-4 *6 (-791)) (-4 *8 (-307)) - (-5 *2 (-642 (-769))) (-5 *1 (-740 *6 *7 *8 *9)) (-5 *5 (-769))))) -(((*1 *1) (-5 *1 (-141)))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1238 *2)) (-4 *2 (-1047))))) -(((*1 *2 *1) (-12 (-4 *1 (-326 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-790)))) - ((*1 *2 *1) (-12 (-4 *1 (-706 *3)) (-4 *3 (-1047)) (-5 *2 (-769)))) - ((*1 *2 *1) (-12 (-4 *1 (-850 *3)) (-4 *3 (-1047)) (-5 *2 (-769)))) + (-12 (-5 *3 (-644 (-225))) (-5 *4 (-644 (-264))) (-5 *2 (-1266)) + (-5 *1 (-261))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-792)) (-4 *2 (-1049)))) + ((*1 *2 *1 *1) + (-12 (-4 *2 (-1049)) (-5 *1 (-50 *2 *3)) (-14 *3 (-644 (-1175))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-644 (-921))) (-4 *2 (-365)) (-5 *1 (-152 *4 *2 *5)) + (-14 *4 (-921)) (-14 *5 (-993 *4 *2)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-317 *3)) (-5 *1 (-223 *3 *4)) + (-4 *3 (-13 (-1049) (-850))) (-14 *4 (-644 (-1175))))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-324 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-131)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-642 *6)) (-4 *1 (-947 *4 *5 *6)) (-4 *4 (-1047)) - (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-642 (-769))))) + (-12 (-4 *1 (-384 *2 *3)) (-4 *3 (-1099)) (-4 *2 (-1049)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-947 *4 *5 *3)) (-4 *4 (-1047)) (-4 *5 (-791)) - (-4 *3 (-848)) (-5 *2 (-769))))) -(((*1 *2 *1) - (-12 (-4 *4 (-1097)) (-5 *2 (-112)) (-5 *1 (-883 *3 *4 *5)) - (-4 *3 (-1097)) (-4 *5 (-664 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-887 *3 *4)) (-4 *3 (-1097)) - (-4 *4 (-1097))))) -(((*1 *1 *1) (-4 *1 (-627))) + (-12 (-5 *3 (-566)) (-4 *2 (-558)) (-5 *1 (-623 *2 *4)) + (-4 *4 (-1240 *2)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-4 *1 (-708 *2)) (-4 *2 (-1049)))) + ((*1 *2 *1 *3) + (-12 (-4 *2 (-1049)) (-5 *1 (-735 *2 *3)) (-4 *3 (-726)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-644 *5)) (-5 *3 (-644 (-771))) (-4 *1 (-740 *4 *5)) + (-4 *4 (-1049)) (-4 *5 (-850)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-771)) (-4 *1 (-740 *4 *2)) (-4 *4 (-1049)) + (-4 *2 (-850)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-4 *1 (-852 *2)) (-4 *2 (-1049)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-644 *6)) (-5 *3 (-644 (-771))) (-4 *1 (-949 *4 *5 *6)) + (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *6 (-850)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-771)) (-4 *1 (-949 *4 *5 *2)) (-4 *4 (-1049)) + (-4 *5 (-793)) (-4 *2 (-850)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-771)) (-4 *2 (-949 *4 (-533 *5) *5)) + (-5 *1 (-1125 *4 *5 *2)) (-4 *4 (-1049)) (-4 *5 (-850)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-771)) (-5 *2 (-952 *4)) (-5 *1 (-1208 *4)) + (-4 *4 (-1049))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) +(((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *1) (-5 *1 (-803)))) +(((*1 *1 *1) (-4 *1 (-629))) ((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-628 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1000) (-1197)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-769)) (-4 *1 (-654 *3)) (-4 *3 (-1047)) (-4 *3 (-363)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-769)) (-5 *4 (-1 *5 *5)) (-4 *5 (-363)) - (-5 *1 (-657 *5 *2)) (-4 *2 (-654 *5))))) -(((*1 *2) - (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) - (-4 *5 (-1238 (-407 *4))) (-5 *2 (-112))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1062 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-791)) - (-4 *2 (-848)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) - (-4 *4 (-848))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-848)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-860)))) -(((*1 *2 *1) (-12 (-5 *2 (-1115)) (-5 *1 (-218)))) - ((*1 *2 *1) (-12 (-5 *2 (-1115)) (-5 *1 (-439)))) - ((*1 *2 *1) (-12 (-5 *2 (-1115)) (-5 *1 (-836)))) - ((*1 *2 *1) (-12 (-5 *2 (-1115)) (-5 *1 (-1112)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-642 (-1178))) (-5 *3 (-1178)) (-5 *1 (-1115))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-642 *1)) (-4 *1 (-302)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) - ((*1 *1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-610 *3)) (-4 *3 (-1097)))) + (-12 (-4 *3 (-558)) (-5 *1 (-630 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002) (-1199)))))) +(((*1 *1 *2) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-108)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-538))) (-5 *1 (-538))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-850)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-862)))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-644 *1)) (-4 *1 (-303)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) + ((*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-612 *3)) (-4 *3 (-1099)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-114)) (-5 *3 (-642 *5)) (-5 *4 (-769)) (-4 *5 (-1097)) - (-5 *1 (-610 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-108)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-642 (-536))) (-5 *1 (-536))))) + (-12 (-5 *2 (-114)) (-5 *3 (-644 *5)) (-5 *4 (-771)) (-4 *5 (-1099)) + (-5 *1 (-612 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-1283 *3)) (-4 *3 (-365)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1157)) (-5 *2 (-644 (-1180))) (-5 *1 (-880))))) +(((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-218)))) + ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-441)))) + ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-838)))) + ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1114)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-644 (-1180))) (-5 *3 (-1180)) (-5 *1 (-1117))))) +(((*1 *1 *1) (-4 *1 (-661)))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-901 *2)) (-4 *2 (-1099)))) + ((*1 *1 *2) (-12 (-5 *1 (-901 *2)) (-4 *2 (-1099))))) +(((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1264 (-644 (-2 (|:| -2153 *4) (|:| -2104 (-1119)))))) + (-4 *4 (-351)) (-5 *2 (-1269)) (-5 *1 (-530 *4))))) +(((*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1264 *1)) (-4 *1 (-369 *3))))) +(((*1 *2 *1 *2) (-12 (-5 *1 (-1026 *2)) (-4 *2 (-1214))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-566)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *8 (-308)) + (-4 *9 (-949 *8 *6 *7)) + (-5 *2 (-2 (|:| -2240 (-1171 *9)) (|:| |polval| (-1171 *8)))) + (-5 *1 (-742 *6 *7 *8 *9)) (-5 *3 (-1171 *9)) (-5 *4 (-1171 *8))))) +(((*1 *2 *1) + (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-850)) + (-4 *5 (-267 *4)) (-4 *6 (-793)) (-5 *2 (-644 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1044 *4 *5)) (-4 *4 (-13 (-846) (-307) (-147) (-1020))) - (-14 *5 (-642 (-1173))) - (-5 *2 - (-642 (-2 (|:| -2378 (-1169 *4)) (|:| -3719 (-642 (-950 *4)))))) - (-5 *1 (-1288 *4 *5 *6)) (-14 *6 (-642 (-1173))))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-846) (-307) (-147) (-1020))) - (-5 *2 - (-642 (-2 (|:| -2378 (-1169 *5)) (|:| -3719 (-642 (-950 *5)))))) - (-5 *1 (-1288 *5 *6 *7)) (-5 *3 (-642 (-950 *5))) - (-14 *6 (-642 (-1173))) (-14 *7 (-642 (-1173))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-846) (-307) (-147) (-1020))) - (-5 *2 - (-642 (-2 (|:| -2378 (-1169 *5)) (|:| -3719 (-642 (-950 *5)))))) - (-5 *1 (-1288 *5 *6 *7)) (-5 *3 (-642 (-950 *5))) - (-14 *6 (-642 (-1173))) (-14 *7 (-642 (-1173))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-846) (-307) (-147) (-1020))) + (-12 (-4 *4 (-13 (-365) (-848))) + (-5 *2 (-2 (|:| |start| *3) (|:| -3445 (-420 *3)))) + (-5 *1 (-181 *4 *3)) (-4 *3 (-1240 (-169 *4)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-644 (-1175))) + (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) + ((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-644 (-1175))) + (-14 *4 (-644 (-1175))) (-4 *5 (-389))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-850)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-862))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3)) (-4 *3 (-1099))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-644 (-612 *6))) (-5 *4 (-1175)) (-5 *2 (-612 *6)) + (-4 *6 (-432 *5)) (-4 *5 (-1099)) (-5 *1 (-575 *5 *6))))) +(((*1 *2 *1) (-12 (|has| *1 (-6 -4417)) (-4 *1 (-34)) (-5 *2 (-771)))) + ((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-250)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) + (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-566)))) + ((*1 *2 *1) + (-12 (-5 *2 (-771)) (-5 *1 (-1287 *3 *4)) (-4 *3 (-1049)) + (-4 *4 (-846))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4343 *4))) + (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-519))))) +(((*1 *2) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) + (-4 *5 (-1240 (-409 *4))) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *7 (-1064 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-644 *7)) (|:| |badPols| (-644 *7)))) + (-5 *1 (-977 *4 *5 *6 *7)) (-5 *3 (-644 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-822)) (-5 *1 (-821))))) +(((*1 *2 *3) + (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1218)) (-4 *3 (-1240 *4)) + (-4 *5 (-1240 (-409 *3))) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) + (-4 *5 (-1240 (-409 *4))) (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-5 *1 (-1188 *2)) (-4 *2 (-365))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-850)) (-5 *1 (-121 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1247 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-1224 *3))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 - (-642 (-2 (|:| -2378 (-1169 *5)) (|:| -3719 (-642 (-950 *5)))))) - (-5 *1 (-1288 *5 *6 *7)) (-5 *3 (-642 (-950 *5))) - (-14 *6 (-642 (-1173))) (-14 *7 (-642 (-1173))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-846) (-307) (-147) (-1020))) + (-2 (|:| -3103 *3) (|:| |gap| (-771)) (|:| -3371 (-782 *3)) + (|:| -3131 (-782 *3)))) + (-5 *1 (-782 *3)) (-4 *3 (-1049)))) + ((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *3 (-850)) (-5 *2 - (-642 (-2 (|:| -2378 (-1169 *4)) (|:| -3719 (-642 (-950 *4)))))) - (-5 *1 (-1288 *4 *5 *6)) (-5 *3 (-642 (-950 *4))) - (-14 *5 (-642 (-1173))) (-14 *6 (-642 (-1173)))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-1097)))) - ((*1 *1 *2) (-12 (-5 *1 (-899 *2)) (-4 *2 (-1097))))) -(((*1 *2 *3) - (-12 (-4 *2 (-1238 *4)) (-5 *1 (-807 *4 *2 *3 *5)) - (-4 *4 (-13 (-363) (-147) (-1036 (-407 (-564))))) (-4 *3 (-654 *2)) - (-4 *5 (-654 (-407 *2)))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-687 *3)) (-4 *3 (-1047)) (-5 *1 (-688 *3))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-363)) (-4 *3 (-1047)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4043 *1))) - (-4 *1 (-850 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-642 *2)) (-4 *2 (-947 *4 *5 *6)) (-4 *4 (-452)) - (-4 *5 (-791)) (-4 *6 (-848)) (-5 *1 (-449 *4 *5 *6 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-642 (-1173))) (-5 *1 (-1177))))) -(((*1 *2 *3) - (-12 (-5 *3 (-642 *7)) (-4 *7 (-947 *4 *5 *6)) (-4 *6 (-612 (-1173))) - (-4 *4 (-363)) (-4 *5 (-791)) (-4 *6 (-848)) - (-5 *2 (-1162 (-642 (-950 *4)) (-642 (-294 (-950 *4))))) - (-5 *1 (-504 *4 *5 *6 *7))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-564))) (-4 *3 (-1047)) (-5 *1 (-594 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-564))) (-4 *1 (-1222 *3)) (-4 *3 (-1047)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-564))) (-4 *1 (-1253 *3)) (-4 *3 (-1047))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-848)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-860))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3)) (-4 *3 (-1097))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-556) (-1036 (-564)) (-637 (-564)))) - (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-27) (-1197) (-430 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1173)) - (-4 *4 (-13 (-556) (-1036 (-564)) (-637 (-564)))) - (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1197) (-430 *4))))) - ((*1 *1 *1) (-5 *1 (-379))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) - (-4 *3 (-1062 *5 *6 *7)) - (-5 *2 (-642 (-2 (|:| |val| *3) (|:| -2138 *4)))) - (-5 *1 (-774 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3))))) -(((*1 *1 *1) (-4 *1 (-659)))) -(((*1 *1 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1047)) (-4 *1 (-1238 *3))))) -(((*1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-368)) (-4 *2 (-1097))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1047)) (-5 *1 (-1234 *3 *2)) (-4 *2 (-1238 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1197)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-316 (-225))) (-5 *2 (-316 (-407 (-564)))) - (-5 *1 (-305))))) -(((*1 *1 *2 *3 *4) - (-12 (-14 *5 (-642 (-1173))) (-4 *2 (-172)) - (-4 *4 (-238 (-2158 *5) (-769))) - (-14 *6 - (-1 (-112) (-2 (|:| -2065 *3) (|:| -2817 *4)) - (-2 (|:| -2065 *3) (|:| -2817 *4)))) - (-5 *1 (-461 *5 *2 *3 *4 *6 *7)) (-4 *3 (-848)) - (-4 *7 (-947 *2 *4 (-862 *5)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-452)) + (-2 (|:| -3103 *1) (|:| |gap| (-771)) (|:| -3371 *1) + (|:| -3131 *1))) + (-4 *1 (-1064 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 - (-642 - (-2 (|:| |eigval| (-3 (-407 (-950 *4)) (-1162 (-1173) (-950 *4)))) - (|:| |eigmult| (-769)) - (|:| |eigvec| (-642 (-687 (-407 (-950 *4)))))))) - (-5 *1 (-292 *4)) (-5 *3 (-687 (-407 (-950 *4))))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1137 *2 *3)) (-4 *2 (-13 (-1097) (-34))) - (-4 *3 (-13 (-1097) (-34)))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-848)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-860)))) + (-2 (|:| -3103 *1) (|:| |gap| (-771)) (|:| -3371 *1) + (|:| -3131 *1))) + (-4 *1 (-1064 *3 *4 *5))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-850)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-862)))) +(((*1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1184))))) +(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1266)))) + ((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1266))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-5 *1 (-905 *3))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-860)))) -(((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1000)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1169 *5)) (-4 *5 (-452)) (-5 *2 (-642 *6)) - (-5 *1 (-538 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-846))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-950 *5)) (-4 *5 (-452)) (-5 *2 (-642 *6)) - (-5 *1 (-538 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-846)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1000)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-919)) (-5 *2 (-1169 *3)) (-5 *1 (-1186 *3)) - (-4 *3 (-363))))) -(((*1 *1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-941 (-225)) (-225))) (-5 *3 (-1091 (-225))) - (-5 *1 (-924)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-941 (-225)) (-225))) (-5 *3 (-1091 (-225))) - (-5 *1 (-924)))) - ((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-941 (-225)) (-225))) (-5 *3 (-1091 (-225))) - (-5 *1 (-925)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-941 (-225)) (-225))) (-5 *3 (-1091 (-225))) - (-5 *1 (-925))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) - (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1033)) - (-5 *1 (-746))))) + ((*1 *1 *1 *1) (-5 *1 (-862)))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1175)) (-5 *4 (-952 (-566))) (-5 *2 (-331)) + (-5 *1 (-333)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1175)) (-5 *4 (-1091 (-952 (-566)))) (-5 *2 (-331)) + (-5 *1 (-333)))) + ((*1 *1 *2 *2 *2) + (-12 (-5 *2 (-771)) (-5 *1 (-675 *3)) (-4 *3 (-1049)) + (-4 *3 (-1099))))) +(((*1 *2 *1) (-12 (-5 *2 (-183)) (-5 *1 (-281))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-943 (-225))) (-5 *2 (-1269)) (-5 *1 (-470))))) +(((*1 *1 *2 *3) + (-12 + (-5 *3 + (-644 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) + (|:| |xpnt| (-566))))) + (-4 *2 (-558)) (-5 *1 (-420 *2)))) + ((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |contp| (-566)) + (|:| -3445 (-644 (-2 (|:| |irr| *4) (|:| -2677 (-566))))))) + (-4 *4 (-1240 (-566))) (-5 *2 (-420 *4)) (-5 *1 (-444 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-927))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1212)))) + (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1214)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-950 (-379))) (-5 *1 (-339 *3 *4 *5)) - (-4 *5 (-1036 (-379))) (-14 *3 (-642 (-1173))) - (-14 *4 (-642 (-1173))) (-4 *5 (-387)))) + (|partial| -12 (-5 *2 (-952 (-381))) (-5 *1 (-341 *3 *4 *5)) + (-4 *5 (-1038 (-381))) (-14 *3 (-644 (-1175))) + (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-407 (-950 (-379)))) (-5 *1 (-339 *3 *4 *5)) - (-4 *5 (-1036 (-379))) (-14 *3 (-642 (-1173))) - (-14 *4 (-642 (-1173))) (-4 *5 (-387)))) + (|partial| -12 (-5 *2 (-409 (-952 (-381)))) (-5 *1 (-341 *3 *4 *5)) + (-4 *5 (-1038 (-381))) (-14 *3 (-644 (-1175))) + (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-316 (-379))) (-5 *1 (-339 *3 *4 *5)) - (-4 *5 (-1036 (-379))) (-14 *3 (-642 (-1173))) - (-14 *4 (-642 (-1173))) (-4 *5 (-387)))) + (|partial| -12 (-5 *2 (-317 (-381))) (-5 *1 (-341 *3 *4 *5)) + (-4 *5 (-1038 (-381))) (-14 *3 (-644 (-1175))) + (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-950 (-564))) (-5 *1 (-339 *3 *4 *5)) - (-4 *5 (-1036 (-564))) (-14 *3 (-642 (-1173))) - (-14 *4 (-642 (-1173))) (-4 *5 (-387)))) + (|partial| -12 (-5 *2 (-952 (-566))) (-5 *1 (-341 *3 *4 *5)) + (-4 *5 (-1038 (-566))) (-14 *3 (-644 (-1175))) + (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-407 (-950 (-564)))) (-5 *1 (-339 *3 *4 *5)) - (-4 *5 (-1036 (-564))) (-14 *3 (-642 (-1173))) - (-14 *4 (-642 (-1173))) (-4 *5 (-387)))) + (|partial| -12 (-5 *2 (-409 (-952 (-566)))) (-5 *1 (-341 *3 *4 *5)) + (-4 *5 (-1038 (-566))) (-14 *3 (-644 (-1175))) + (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-316 (-564))) (-5 *1 (-339 *3 *4 *5)) - (-4 *5 (-1036 (-564))) (-14 *3 (-642 (-1173))) - (-14 *4 (-642 (-1173))) (-4 *5 (-387)))) + (|partial| -12 (-5 *2 (-317 (-566))) (-5 *1 (-341 *3 *4 *5)) + (-4 *5 (-1038 (-566))) (-14 *3 (-644 (-1175))) + (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1173)) (-5 *1 (-339 *3 *4 *5)) - (-14 *3 (-642 *2)) (-14 *4 (-642 *2)) (-4 *5 (-387)))) + (|partial| -12 (-5 *2 (-1175)) (-5 *1 (-341 *3 *4 *5)) + (-14 *3 (-644 *2)) (-14 *4 (-644 *2)) (-4 *5 (-389)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-316 *5)) (-4 *5 (-387)) - (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-642 (-1173))) - (-14 *4 (-642 (-1173))))) + (|partial| -12 (-5 *2 (-317 *5)) (-4 *5 (-389)) + (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-644 (-1175))) + (-14 *4 (-644 (-1175))))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-687 (-407 (-950 (-564))))) (-4 *1 (-384)))) + (|partial| -12 (-5 *2 (-689 (-409 (-952 (-566))))) (-4 *1 (-386)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-687 (-407 (-950 (-379))))) (-4 *1 (-384)))) + (|partial| -12 (-5 *2 (-689 (-409 (-952 (-381))))) (-4 *1 (-386)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-687 (-950 (-564)))) (-4 *1 (-384)))) + (|partial| -12 (-5 *2 (-689 (-952 (-566)))) (-4 *1 (-386)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-687 (-950 (-379)))) (-4 *1 (-384)))) + (|partial| -12 (-5 *2 (-689 (-952 (-381)))) (-4 *1 (-386)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-687 (-316 (-564)))) (-4 *1 (-384)))) + (|partial| -12 (-5 *2 (-689 (-317 (-566)))) (-4 *1 (-386)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-687 (-316 (-379)))) (-4 *1 (-384)))) + (|partial| -12 (-5 *2 (-689 (-317 (-381)))) (-4 *1 (-386)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-407 (-950 (-564)))) (-4 *1 (-396)))) + (|partial| -12 (-5 *2 (-409 (-952 (-566)))) (-4 *1 (-398)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-407 (-950 (-379)))) (-4 *1 (-396)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-950 (-564))) (-4 *1 (-396)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-950 (-379))) (-4 *1 (-396)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-316 (-564))) (-4 *1 (-396)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-316 (-379))) (-4 *1 (-396)))) + (|partial| -12 (-5 *2 (-409 (-952 (-381)))) (-4 *1 (-398)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-952 (-566))) (-4 *1 (-398)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-952 (-381))) (-4 *1 (-398)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-317 (-566))) (-4 *1 (-398)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-317 (-381))) (-4 *1 (-398)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1262 (-407 (-950 (-564))))) (-4 *1 (-441)))) + (|partial| -12 (-5 *2 (-1264 (-409 (-952 (-566))))) (-4 *1 (-443)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1262 (-407 (-950 (-379))))) (-4 *1 (-441)))) + (|partial| -12 (-5 *2 (-1264 (-409 (-952 (-381))))) (-4 *1 (-443)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1262 (-950 (-564)))) (-4 *1 (-441)))) + (|partial| -12 (-5 *2 (-1264 (-952 (-566)))) (-4 *1 (-443)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1262 (-950 (-379)))) (-4 *1 (-441)))) + (|partial| -12 (-5 *2 (-1264 (-952 (-381)))) (-4 *1 (-443)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1262 (-316 (-564)))) (-4 *1 (-441)))) + (|partial| -12 (-5 *2 (-1264 (-317 (-566)))) (-4 *1 (-443)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1262 (-316 (-379)))) (-4 *1 (-441)))) + (|partial| -12 (-5 *2 (-1264 (-317 (-381)))) (-4 *1 (-443)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-349)) (-4 *5 (-329 *4)) (-4 *6 (-1238 *5)) - (-5 *2 (-1169 (-1169 *4))) (-5 *1 (-775 *4 *5 *6 *3 *7)) - (-4 *3 (-1238 *6)) (-14 *7 (-919)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) - (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) - (-4 *1 (-974 *3 *4 *5 *6)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-1036 *2)) (-4 *2 (-1212)))) + (|partial| -12 (-4 *4 (-351)) (-4 *5 (-330 *4)) (-4 *6 (-1240 *5)) + (-5 *2 (-1171 (-1171 *4))) (-5 *1 (-777 *4 *5 *6 *3 *7)) + (-4 *3 (-1240 *6)) (-14 *7 (-921)))) ((*1 *1 *2) - (|partial| -2682 - (-12 (-5 *2 (-950 *3)) - (-12 (-2307 (-4 *3 (-38 (-407 (-564))))) - (-2307 (-4 *3 (-38 (-564)))) (-4 *5 (-612 (-1173)))) - (-4 *3 (-1047)) (-4 *1 (-1062 *3 *4 *5)) (-4 *4 (-791)) - (-4 *5 (-848))) - (-12 (-5 *2 (-950 *3)) - (-12 (-2307 (-4 *3 (-545))) (-2307 (-4 *3 (-38 (-407 (-564))))) - (-4 *3 (-38 (-564))) (-4 *5 (-612 (-1173)))) - (-4 *3 (-1047)) (-4 *1 (-1062 *3 *4 *5)) (-4 *4 (-791)) - (-4 *5 (-848))) - (-12 (-5 *2 (-950 *3)) - (-12 (-2307 (-4 *3 (-990 (-564)))) (-4 *3 (-38 (-407 (-564)))) - (-4 *5 (-612 (-1173)))) - (-4 *3 (-1047)) (-4 *1 (-1062 *3 *4 *5)) (-4 *4 (-791)) - (-4 *5 (-848))))) + (|partial| -12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) + (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) + (-4 *1 (-976 *3 *4 *5 *6)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-1038 *2)) (-4 *2 (-1214)))) ((*1 *1 *2) - (|partial| -2682 - (-12 (-5 *2 (-950 (-564))) (-4 *1 (-1062 *3 *4 *5)) - (-12 (-2307 (-4 *3 (-38 (-407 (-564))))) (-4 *3 (-38 (-564))) - (-4 *5 (-612 (-1173)))) - (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848))) - (-12 (-5 *2 (-950 (-564))) (-4 *1 (-1062 *3 *4 *5)) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1173)))) - (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848))))) + (|partial| -2809 + (-12 (-5 *2 (-952 *3)) + (-12 (-2387 (-4 *3 (-38 (-409 (-566))))) + (-2387 (-4 *3 (-38 (-566)))) (-4 *5 (-614 (-1175)))) + (-4 *3 (-1049)) (-4 *1 (-1064 *3 *4 *5)) (-4 *4 (-793)) + (-4 *5 (-850))) + (-12 (-5 *2 (-952 *3)) + (-12 (-2387 (-4 *3 (-547))) (-2387 (-4 *3 (-38 (-409 (-566))))) + (-4 *3 (-38 (-566))) (-4 *5 (-614 (-1175)))) + (-4 *3 (-1049)) (-4 *1 (-1064 *3 *4 *5)) (-4 *4 (-793)) + (-4 *5 (-850))) + (-12 (-5 *2 (-952 *3)) + (-12 (-2387 (-4 *3 (-992 (-566)))) (-4 *3 (-38 (-409 (-566)))) + (-4 *5 (-614 (-1175)))) + (-4 *3 (-1049)) (-4 *1 (-1064 *3 *4 *5)) (-4 *4 (-793)) + (-4 *5 (-850))))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-950 (-407 (-564)))) (-4 *1 (-1062 *3 *4 *5)) - (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1173))) - (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-1153 *3))) (-5 *2 (-1153 *3)) (-5 *1 (-1157 *3)) - (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1047))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-769)) (-4 *6 (-1097)) (-4 *3 (-898 *6)) - (-5 *2 (-687 *3)) (-5 *1 (-690 *6 *3 *7 *4)) (-4 *7 (-373 *3)) - (-4 *4 (-13 (-373 *6) (-10 -7 (-6 -4410))))))) -(((*1 *2) (-12 (-5 *2 (-831 (-564))) (-5 *1 (-534)))) - ((*1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-1097))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-564)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-769)) (-4 *5 (-172)))) - ((*1 *1 *1) - (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-769)) - (-4 *4 (-172)))) - ((*1 *1 *1) - (-12 (-4 *1 (-685 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-373 *2)) - (-4 *4 (-373 *2)))) + (|partial| -2809 + (-12 (-5 *2 (-952 (-566))) (-4 *1 (-1064 *3 *4 *5)) + (-12 (-2387 (-4 *3 (-38 (-409 (-566))))) (-4 *3 (-38 (-566))) + (-4 *5 (-614 (-1175)))) + (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850))) + (-12 (-5 *2 (-952 (-566))) (-4 *1 (-1064 *3 *4 *5)) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *5 (-614 (-1175)))) + (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850))))) ((*1 *1 *2) - (-12 (-4 *3 (-1047)) (-4 *1 (-685 *3 *2 *4)) (-4 *2 (-373 *3)) - (-4 *4 (-373 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1139 *2 *3)) (-14 *2 (-769)) (-4 *3 (-1047))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-848)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-860))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-901 *3)) (-4 *3 (-1097)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3)) (-4 *3 (-1097))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-1153 (-642 (-564)))) (-5 *1 (-881)) (-5 *3 (-564)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1153 (-642 (-564)))) (-5 *1 (-881)) (-5 *3 (-564)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-1153 (-642 (-564)))) (-5 *1 (-881)) (-5 *3 (-564))))) + (|partial| -12 (-5 *2 (-952 (-409 (-566)))) (-4 *1 (-1064 *3 *4 *5)) + (-4 *3 (-38 (-409 (-566)))) (-4 *5 (-614 (-1175))) + (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-558)) + (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 (-1277 *4 *5 *6 *7))) + (-5 *1 (-1277 *4 *5 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-644 *9)) (-5 *4 (-1 (-112) *9 *9)) + (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1064 *6 *7 *8)) (-4 *6 (-558)) + (-4 *7 (-793)) (-4 *8 (-850)) (-5 *2 (-644 (-1277 *6 *7 *8 *9))) + (-5 *1 (-1277 *6 *7 *8 *9))))) +(((*1 *2) (-12 (-5 *2 (-833 (-566))) (-5 *1 (-536)))) + ((*1 *1) (-12 (-5 *1 (-833 *2)) (-4 *2 (-1099))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-850)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-862))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-903 *3)) (-4 *3 (-1099)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3)) (-4 *3 (-1099))))) (((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-556)))) + (|partial| -12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-558)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-790)) - (-4 *2 (-556)))) - ((*1 *1 *1 *1) (|partial| -4 *1 (-556))) + (|partial| -12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-792)) + (-4 *2 (-558)))) + ((*1 *1 *1 *1) (|partial| -4 *1 (-558))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-685 *2 *3 *4)) (-4 *2 (-1047)) - (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (-4 *2 (-556)))) - ((*1 *1 *1 *1) (|partial| -5 *1 (-769))) + (|partial| -12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) + (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-558)))) + ((*1 *1 *1 *1) (|partial| -5 *1 (-771))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-850 *2)) (-4 *2 (-1047)) (-4 *2 (-556)))) - ((*1 *1 *1 *1) (-5 *1 (-860))) + (|partial| -12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-558)))) + ((*1 *1 *1 *1) (-5 *1 (-862))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1262 *4)) (-4 *4 (-1238 *3)) (-4 *3 (-556)) - (-5 *1 (-967 *3 *4)))) + (-12 (-5 *2 (-1264 *4)) (-4 *4 (-1240 *3)) (-4 *3 (-558)) + (-5 *1 (-969 *3 *4)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1051 *3 *4 *2 *5 *6)) (-4 *2 (-1047)) - (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-556)))) + (|partial| -12 (-4 *1 (-1053 *3 *4 *2 *5 *6)) (-4 *2 (-1049)) + (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-558)))) ((*1 *2 *2 *2) - (|partial| -12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-642 *5)) (-5 *4 (-564)) (-4 *5 (-846)) (-4 *5 (-363)) - (-5 *2 (-769)) (-5 *1 (-943 *5 *6)) (-4 *6 (-1238 *5))))) -(((*1 *1) (-5 *1 (-437)))) -(((*1 *2 *1) - (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-790)) - (-5 *2 (-642 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-1097)) - (-5 *2 (-642 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1153 *3)) (-5 *1 (-595 *3)) (-4 *3 (-1047)))) - ((*1 *2 *1) - (-12 (-5 *2 (-642 *3)) (-5 *1 (-733 *3 *4)) (-4 *3 (-1047)) - (-4 *4 (-724)))) - ((*1 *2 *1) (-12 (-4 *1 (-850 *3)) (-4 *3 (-1047)) (-5 *2 (-642 *3)))) + (|partial| -12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 (-2 (|:| |den| (-566)) (|:| |gcdnum| (-566))))) + (-4 *4 (-1240 (-409 *2))) (-5 *2 (-566)) (-5 *1 (-913 *4 *5)) + (-4 *5 (-1240 (-409 *4)))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-644 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-558)) + (-4 *6 (-793)) (-4 *7 (-850)) (-5 *1 (-977 *5 *6 *7 *8))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-112)) (-5 *1 (-821))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-644 (-566))) (-5 *1 (-247 *3 *4)) + (-14 *3 (-644 (-1175))) (-4 *4 (-1049)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-644 (-566))) (-14 *3 (-644 (-1175))) + (-5 *1 (-456 *3 *4 *5)) (-4 *4 (-1049)) + (-4 *5 (-238 (-3002 *3) (-771))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-644 (-566))) (-5 *1 (-483 *3 *4)) + (-14 *3 (-644 (-1175))) (-4 *4 (-1049))))) +(((*1 *1 *1) + (-12 (-4 *2 (-308)) (-4 *3 (-992 *2)) (-4 *4 (-1240 *3)) + (-5 *1 (-415 *2 *3 *4 *5)) (-4 *5 (-13 (-411 *3 *4) (-1038 *3)))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-381)) (-5 *1 (-97))))) +(((*1 *2 *3) + (-12 (-5 *3 (-689 (-409 (-952 (-566))))) + (-5 *2 (-644 (-689 (-317 (-566))))) (-5 *1 (-1031))))) +(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) + (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-999 *3)) (-4 *3 (-172)) (-5 *1 (-799 *3))))) +(((*1 *1 *1) + (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1180))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-566)) (-5 *3 (-921)) (-4 *1 (-406)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-566)) (-4 *1 (-406)))) ((*1 *2 *1) - (-12 (-4 *1 (-1253 *3)) (-4 *3 (-1047)) (-5 *2 (-1153 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| -2660 *1) (|:| -4397 *1) (|:| |associate| *1))) - (-4 *1 (-556))))) -(((*1 *2 *3 *3 *3) - (|partial| -12 - (-4 *4 (-13 (-147) (-27) (-1036 (-564)) (-1036 (-407 (-564))))) - (-4 *5 (-1238 *4)) (-5 *2 (-1169 (-407 *5))) (-5 *1 (-613 *4 *5)) - (-5 *3 (-407 *5)))) - ((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1238 *5)) - (-4 *5 (-13 (-147) (-27) (-1036 (-564)) (-1036 (-407 (-564))))) - (-5 *2 (-1169 (-407 *6))) (-5 *1 (-613 *5 *6)) (-5 *3 (-407 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-183)) (-5 *1 (-280))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1212)) (-5 *1 (-1129 *4 *2)) - (-4 *2 (-13 (-602 (-564) *4) (-10 -7 (-6 -4410) (-6 -4411)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-848)) (-4 *3 (-1212)) (-5 *1 (-1129 *3 *2)) - (-4 *2 (-13 (-602 (-564) *3) (-10 -7 (-6 -4410) (-6 -4411))))))) -(((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564)))))) + (-12 (-4 *1 (-1102 *3 *4 *5 *2 *6)) (-4 *3 (-1099)) (-4 *4 (-1099)) + (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *2 (-1099))))) (((*1 *2) - (-12 (-4 *2 (-13 (-430 *3) (-1000))) (-5 *1 (-276 *3 *2)) - (-4 *3 (-556)))) + (-12 (-4 *2 (-13 (-432 *3) (-1002))) (-5 *1 (-277 *3 *2)) + (-4 *3 (-558)))) ((*1 *1) - (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-642 (-1173))) - (-14 *3 (-642 (-1173))) (-4 *4 (-387)))) - ((*1 *1) (-5 *1 (-477))) ((*1 *1) (-4 *1 (-1197)))) -(((*1 *2 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-757))))) + (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) + (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) + ((*1 *1) (-5 *1 (-479))) ((*1 *1) (-4 *1 (-1199)))) +(((*1 *2 *2 *3 *3) + (|partial| -12 (-5 *3 (-1175)) + (-4 *4 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) + (-5 *1 (-577 *4 *2)) + (-4 *2 (-13 (-1199) (-959) (-1138) (-29 *4)))))) (((*1 *2 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |lm| (-817 *3)) (|:| |rm| (-817 *3)))) - (-5 *1 (-817 *3)) (-4 *3 (-848)))) - ((*1 *1 *1 *1) (-5 *1 (-860)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1262 *4)) (-4 *4 (-349)) (-5 *2 (-1169 *4)) - (-5 *1 (-528 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1036 (-564))) (-4 *1 (-302)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1097))))) -(((*1 *2 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-330))))) -(((*1 *2 *2) - (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1197)))))) -(((*1 *1 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-1097))))) + (|partial| -12 (-5 *2 (-2 (|:| |lm| (-819 *3)) (|:| |rm| (-819 *3)))) + (-5 *1 (-819 *3)) (-4 *3 (-850)))) + ((*1 *1 *1 *1) (-5 *1 (-862)))) +(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-519))))) +(((*1 *2 *2 *2 *2 *2 *3) + (-12 (-5 *2 (-689 *4)) (-5 *3 (-771)) (-4 *4 (-1049)) + (-5 *1 (-690 *4))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-112)) (-5 *5 (-1101 (-771))) (-5 *6 (-771)) + (-5 *2 + (-2 (|:| |contp| (-566)) + (|:| -3445 (-644 (-2 (|:| |irr| *3) (|:| -2677 (-566))))))) + (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566)))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1175)) (-4 *4 (-558)) (-5 *1 (-158 *4 *2)) + (-4 *2 (-432 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1091 *2)) (-4 *2 (-432 *4)) (-4 *4 (-558)) + (-5 *1 (-158 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1091 *1)) (-4 *1 (-160)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1175))))) (((*1 *2 *3) - (-12 (-4 *4 (-556)) (-5 *2 (-769)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-417 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1197)))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-564)) (-5 *3 (-919)) (-4 *1 (-404)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-564)) (-4 *1 (-404)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1100 *3 *4 *5 *2 *6)) (-4 *3 (-1097)) (-4 *4 (-1097)) - (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *2 (-1097))))) -(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) - ((*1 *1) (-5 *1 (-129))) - ((*1 *1) - (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-769)) - (-4 *4 (-172)))) - ((*1 *1) (-5 *1 (-546))) ((*1 *1) (-5 *1 (-547))) - ((*1 *1) (-5 *1 (-548))) ((*1 *1) (-5 *1 (-549))) - ((*1 *1) (-4 *1 (-724))) ((*1 *1) (-5 *1 (-1173))) - ((*1 *1) (-12 (-5 *1 (-1179 *2)) (-14 *2 (-919)))) - ((*1 *1) (-12 (-5 *1 (-1180 *2)) (-14 *2 (-919)))) - ((*1 *1) (-5 *1 (-1217))) ((*1 *1) (-5 *1 (-1218))) - ((*1 *1) (-5 *1 (-1219))) ((*1 *1) (-5 *1 (-1220)))) + (-12 (-5 *3 (-644 (-644 (-644 *4)))) (-5 *2 (-644 (-644 *4))) + (-5 *1 (-1185 *4)) (-4 *4 (-850))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) + (-4 *3 (-1064 *5 *6 *7)) + (-5 *2 (-644 (-2 (|:| |val| (-112)) (|:| -2192 *4)))) + (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-780 *5 (-864 *6)))) (-5 *4 (-112)) (-4 *5 (-454)) + (-14 *6 (-644 (-1175))) (-5 *2 (-644 (-1046 *5 *6))) + (-5 *1 (-628 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1175)) (-4 *5 (-365)) (-5 *2 (-644 (-1208 *5))) + (-5 *1 (-1272 *5)) (-5 *4 (-1208 *5))))) +(((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-926))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1212)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) - ((*1 *1 *1 *1) (-5 *1 (-860))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1214)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436)))) + ((*1 *1 *1 *1) (-5 *1 (-862))) ((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1024 *3)) (-4 *3 (-1212))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-642 (-610 *6))) (-5 *4 (-1173)) (-5 *2 (-610 *6)) - (-4 *6 (-430 *5)) (-4 *5 (-1097)) (-5 *1 (-573 *5 *6))))) -(((*1 *2) - (-12 (-5 *2 (-919)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564))))) - ((*1 *2 *2) - (-12 (-5 *2 (-919)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564)))))) -(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-912 *3)) (-4 *3 (-307))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1247 *3 *4 *5)) (-5 *1 (-319 *3 *4 *5)) (-4 *3 (-363)) - (-14 *4 (-1173)) (-14 *5 *3))) - ((*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-564)))) - ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-418 *3)) (-4 *3 (-556)))) - ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-697)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1097)) (-5 *1 (-711 *3 *2 *4)) (-4 *3 (-848)) - (-14 *4 - (-1 (-112) (-2 (|:| -2065 *3) (|:| -2817 *2)) - (-2 (|:| -2065 *3) (|:| -2817 *2))))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1026 *3)) (-4 *3 (-1214))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-1049))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-558)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4343 *4))) + (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4))))) +(((*1 *1 *2) + (-12 (-5 *2 (-317 *3)) (-4 *3 (-13 (-1049) (-850))) + (-5 *1 (-223 *3 *4)) (-14 *4 (-644 (-1175)))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1214)) (-5 *1 (-377 *4 *2)) + (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4418))))))) (((*1 *2 *3) - (-12 (-5 *3 (-1262 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) - (-5 *2 (-1262 (-687 *4))))) - ((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-1262 (-687 *4))) (-5 *1 (-416 *3 *4)) - (-4 *3 (-417 *4)))) - ((*1 *2) - (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-1262 (-687 *3))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-642 (-1173))) (-4 *5 (-363)) - (-5 *2 (-1262 (-687 (-407 (-950 *5))))) (-5 *1 (-1083 *5)) - (-5 *4 (-687 (-407 (-950 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-642 (-1173))) (-4 *5 (-363)) - (-5 *2 (-1262 (-687 (-950 *5)))) (-5 *1 (-1083 *5)) - (-5 *4 (-687 (-950 *5))))) + (-12 (-5 *3 (-1175)) + (-5 *2 + (-2 (|:| |zeros| (-1155 (-225))) (|:| |ones| (-1155 (-225))) + (|:| |singularities| (-1155 (-225))))) + (-5 *1 (-105))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-644 *7)) (-4 *7 (-850)) (-4 *5 (-909)) (-4 *6 (-793)) + (-4 *8 (-949 *5 *6 *7)) (-5 *2 (-420 (-1171 *8))) + (-5 *1 (-906 *5 *6 *7 *8)) (-5 *4 (-1171 *8)))) ((*1 *2 *3) - (-12 (-5 *3 (-642 (-687 *4))) (-4 *4 (-363)) - (-5 *2 (-1262 (-687 *4))) (-5 *1 (-1083 *4))))) + (-12 (-4 *4 (-909)) (-4 *5 (-1240 *4)) (-5 *2 (-420 (-1171 *5))) + (-5 *1 (-907 *4 *5)) (-5 *3 (-1171 *5))))) +(((*1 *2 *3 *4) + (-12 (-4 *6 (-558)) (-4 *2 (-949 *3 *5 *4)) + (-5 *1 (-732 *5 *4 *6 *2)) (-5 *3 (-409 (-952 *6))) (-4 *5 (-793)) + (-4 *4 (-13 (-850) (-10 -8 (-15 -3136 ((-1175) $)))))))) +(((*1 *1 *1) (-4 *1 (-629))) + ((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-630 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002) (-1199)))))) +(((*1 *2 *3) (-12 (-5 *3 (-493)) (-5 *2 (-691 (-581))) (-5 *1 (-581))))) (((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |var| (-642 (-1173))) (|:| |pred| (-52)))) - (-5 *1 (-890 *3)) (-4 *3 (-1097))))) -(((*1 *2 *3) - (-12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-430 *4)) (-4 *6 (-1238 *5)) - (-4 *7 (-1238 (-407 *6))) (-4 *8 (-342 *5 *6 *7)) - (-4 *4 (-13 (-556) (-1036 (-564)))) (-5 *2 (-112)) - (-5 *1 (-909 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-336 (-407 (-564)) *4 *5 *6)) - (-4 *4 (-1238 (-407 (-564)))) (-4 *5 (-1238 (-407 *4))) - (-4 *6 (-342 (-407 (-564)) *4 *5)) (-5 *2 (-112)) - (-5 *1 (-910 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-491)) (-5 *2 (-689 (-579))) (-5 *1 (-579))))) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) + (-4 *5 (-1240 (-409 *4))) + (-5 *2 (-2 (|:| |num| (-1264 *4)) (|:| |den| *4)))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-649 *3 *4 *5)) (-4 *3 (-1099)) + (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1214)) (-5 *1 (-1131 *4 *2)) + (-4 *2 (-13 (-604 (-566) *4) (-10 -7 (-6 -4417) (-6 -4418)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-850)) (-4 *3 (-1214)) (-5 *1 (-1131 *3 *2)) + (-4 *2 (-13 (-604 (-566) *3) (-10 -7 (-6 -4417) (-6 -4418))))))) +(((*1 *2 *3 *3) + (-12 (-4 *2 (-558)) (-5 *1 (-969 *2 *3)) (-4 *3 (-1240 *2))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) + (-4 *4 (-850))))) +(((*1 *1 *1 *1) (-4 *1 (-308))) ((*1 *1 *1 *1) (-5 *1 (-771))) + ((*1 *1 *1 *1) (-5 *1 (-862)))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) + (-12 (-5 *3 (-1157)) (-5 *4 (-566)) (-5 *5 (-689 (-225))) + (-5 *6 (-225)) (-5 *2 (-1035)) (-5 *1 (-752))))) +(((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172))))) +(((*1 *1 *1 *1) (-4 *1 (-967)))) (((*1 *2 *3) (-12 + (-5 *3 + (-2 (|:| -4196 (-689 (-409 (-952 *4)))) + (|:| |vec| (-644 (-409 (-952 *4)))) (|:| -2299 (-771)) + (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566))))) + (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) + (-4 *6 (-793)) (-5 *2 - (-642 (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564)))))) - (-5 *1 (-1018 *3)) (-4 *3 (-1238 (-564))))) - ((*1 *2 *3 *4) - (-12 - (-5 *2 - (-642 (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564)))))) - (-5 *1 (-1018 *3)) (-4 *3 (-1238 (-564))) - (-5 *4 (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564))))))) - ((*1 *2 *3 *4) - (-12 - (-5 *2 - (-642 (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564)))))) - (-5 *1 (-1018 *3)) (-4 *3 (-1238 (-564))) (-5 *4 (-407 (-564))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-407 (-564))) - (-5 *2 (-642 (-2 (|:| -4341 *5) (|:| -4351 *5)))) (-5 *1 (-1018 *3)) - (-4 *3 (-1238 (-564))) (-5 *4 (-2 (|:| -4341 *5) (|:| -4351 *5))))) + (-2 (|:| |partsol| (-1264 (-409 (-952 *4)))) + (|:| -1419 (-644 (-1264 (-409 (-952 *4))))))) + (-5 *1 (-924 *4 *5 *6 *7)) (-4 *7 (-949 *4 *6 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-587 *3)) (-4 *3 (-365))))) +(((*1 *2 *2) + (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-147)) + (-4 *3 (-308)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) + (-5 *1 (-977 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-862)))) + ((*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1269)) (-5 *1 (-962))))) +(((*1 *2) + (-12 (-5 *2 (-1264 (-1100 *3 *4))) (-5 *1 (-1100 *3 *4)) + (-14 *3 (-921)) (-14 *4 (-921))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-317 (-225))) (-5 *1 (-268))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1191 *3 *4)) (-4 *3 (-1099)) + (-4 *4 (-1099))))) +(((*1 *1 *1 *1) (-4 *1 (-308))) ((*1 *1 *1 *1) (-5 *1 (-771))) + ((*1 *1 *1 *1) (-5 *1 (-862)))) +(((*1 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1214))))) +(((*1 *2 *3 *3) + (-12 (-4 *3 (-308)) (-4 *3 (-172)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-5 *2 (-2 (|:| -3371 *3) (|:| -3131 *3))) + (-5 *1 (-688 *3 *4 *5 *6)) (-4 *6 (-687 *3 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-2 (|:| -3371 *3) (|:| -3131 *3))) (-5 *1 (-700 *3)) + (-4 *3 (-308))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-644 (-566))) (-5 *3 (-112)) (-5 *1 (-1109))))) +(((*1 *2) (-12 (-5 *2 (-843 (-566))) (-5 *1 (-536)))) + ((*1 *1) (-12 (-5 *1 (-843 *2)) (-4 *2 (-1099))))) +(((*1 *2 *1) (-12 (-4 *1 (-848)) (-5 *2 (-566)))) + ((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-905 *3)) (-4 *3 (-1099)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1067 *4 *3)) (-4 *4 (-13 (-848) (-365))) + (-4 *3 (-1240 *4)) (-5 *2 (-566)))) ((*1 *2 *3) - (-12 - (-5 *2 - (-642 (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564)))))) - (-5 *1 (-1019 *3)) (-4 *3 (-1238 (-407 (-564)))))) - ((*1 *2 *3 *4) - (-12 - (-5 *2 - (-642 (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564)))))) - (-5 *1 (-1019 *3)) (-4 *3 (-1238 (-407 (-564)))) - (-5 *4 (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564))))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-407 (-564))) - (-5 *2 (-642 (-2 (|:| -4341 *4) (|:| -4351 *4)))) (-5 *1 (-1019 *3)) - (-4 *3 (-1238 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-407 (-564))) - (-5 *2 (-642 (-2 (|:| -4341 *5) (|:| -4351 *5)))) (-5 *1 (-1019 *3)) - (-4 *3 (-1238 *5)) (-5 *4 (-2 (|:| -4341 *5) (|:| -4351 *5)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-363) (-1036 (-407 *2)))) (-5 *2 (-564)) - (-5 *1 (-115 *4 *3)) (-4 *3 (-1238 *4))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1212)) - (-4 *5 (-1212)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-240 *6 *7)) (-14 *6 (-769)) - (-4 *7 (-1212)) (-4 *5 (-1212)) (-5 *2 (-240 *6 *5)) - (-5 *1 (-239 *6 *7 *5)))) + (|partial| -12 (-4 *4 (-13 (-558) (-1038 *2) (-639 *2) (-454))) + (-5 *2 (-566)) (-5 *1 (-1115 *4 *3)) + (-4 *3 (-13 (-27) (-1199) (-432 *4))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1212)) (-4 *5 (-1212)) - (-4 *2 (-373 *5)) (-5 *1 (-371 *6 *4 *5 *2)) (-4 *4 (-373 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1097)) (-4 *5 (-1097)) - (-4 *2 (-425 *5)) (-5 *1 (-423 *6 *4 *5 *2)) (-4 *4 (-425 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-642 *6)) (-4 *6 (-1212)) - (-4 *5 (-1212)) (-5 *2 (-642 *5)) (-5 *1 (-640 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-956 *6)) (-4 *6 (-1212)) - (-4 *5 (-1212)) (-5 *2 (-956 *5)) (-5 *1 (-955 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1153 *6)) (-4 *6 (-1212)) - (-4 *3 (-1212)) (-5 *2 (-1153 *3)) (-5 *1 (-1151 *6 *3)))) + (|partial| -12 (-5 *4 (-1175)) (-5 *5 (-843 *3)) + (-4 *3 (-13 (-27) (-1199) (-432 *6))) + (-4 *6 (-13 (-558) (-1038 *2) (-639 *2) (-454))) (-5 *2 (-566)) + (-5 *1 (-1115 *6 *3)))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *4 (-1175)) (-5 *5 (-1157)) + (-4 *6 (-13 (-558) (-1038 *2) (-639 *2) (-454))) (-5 *2 (-566)) + (-5 *1 (-1115 *6 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *6))))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-454)) (-5 *2 (-566)) + (-5 *1 (-1116 *4)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1262 *6)) (-4 *6 (-1212)) - (-4 *5 (-1212)) (-5 *2 (-1262 *5)) (-5 *1 (-1261 *6 *5))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1212)) (-5 *1 (-1129 *4 *2)) - (-4 *2 (-13 (-602 (-564) *4) (-10 -7 (-6 -4410) (-6 -4411)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-848)) (-4 *3 (-1212)) (-5 *1 (-1129 *3 *2)) - (-4 *2 (-13 (-602 (-564) *3) (-10 -7 (-6 -4410) (-6 -4411))))))) -(((*1 *1 *1 *1) (-4 *1 (-307))) ((*1 *1 *1 *1) (-5 *1 (-769))) - ((*1 *1 *1 *1) (-5 *1 (-860)))) -(((*1 *2) (-12 (-5 *2 (-919)) (-5 *1 (-1265)))) - ((*1 *2 *2) (-12 (-5 *2 (-919)) (-5 *1 (-1265))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1047)) (-5 *2 (-1262 *3)) (-5 *1 (-710 *3 *4)) - (-4 *4 (-1238 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1100 *3 *4 *5 *6 *7)) (-4 *3 (-1097)) (-4 *4 (-1097)) - (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *7 (-1097)) (-5 *2 (-112))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1139 *3 *4)) (-14 *3 (-919)) (-4 *4 (-363)) - (-5 *1 (-991 *3 *4))))) -(((*1 *1 *1) (-12 (-5 *1 (-418 *2)) (-4 *2 (-556))))) + (|partial| -12 (-5 *4 (-1175)) (-5 *5 (-843 (-409 (-952 *6)))) + (-5 *3 (-409 (-952 *6))) (-4 *6 (-454)) (-5 *2 (-566)) + (-5 *1 (-1116 *6)))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *3 (-409 (-952 *6))) (-5 *4 (-1175)) + (-5 *5 (-1157)) (-4 *6 (-454)) (-5 *2 (-566)) (-5 *1 (-1116 *6)))) + ((*1 *2 *3) + (|partial| -12 (-5 *2 (-566)) (-5 *1 (-1196 *3)) (-4 *3 (-1049))))) (((*1 *2 *1) - (-12 - (-5 *2 - (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") - (|:| |Conditional| "conditional") (|:| |Return| "return") - (|:| |Block| "block") (|:| |Comment| "comment") - (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") - (|:| |Repeat| "repeat") (|:| |Goto| "goto") - (|:| |Continue| "continue") - (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") - (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) - (-5 *1 (-330))))) -(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-860)))) - ((*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1267)) (-5 *1 (-960))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-924))))) -(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-257))))) -(((*1 *2 *3) - (-12 (-5 *3 (-642 (-564))) (-5 *2 (-564)) (-5 *1 (-486 *4)) - (-4 *4 (-1238 *2))))) -(((*1 *2 *3 *4 *4 *2 *2 *2) - (-12 (-5 *2 (-564)) - (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-769)) (|:| |poli| *4) - (|:| |polj| *4))) - (-4 *6 (-791)) (-4 *4 (-947 *5 *6 *7)) (-4 *5 (-452)) (-4 *7 (-848)) - (-5 *1 (-449 *5 *6 *7 *4))))) -(((*1 *1 *1 *1) (-4 *1 (-307))) ((*1 *1 *1 *1) (-5 *1 (-769))) - ((*1 *1 *1 *1) (-5 *1 (-860)))) -(((*1 *2 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-556)) (-4 *2 (-545)))) - ((*1 *1 *1) (-4 *1 (-1057)))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-564)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1212)) - (-4 *5 (-373 *4)) (-4 *2 (-373 *4)))) + (|partial| -12 + (-5 *2 (-2 (|:| -1668 (-114)) (|:| |arg| (-644 (-892 *3))))) + (-5 *1 (-892 *3)) (-4 *3 (-1099)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-564)) (-4 *1 (-1051 *4 *5 *6 *2 *7)) (-4 *6 (-1047)) - (-4 *7 (-238 *4 *6)) (-4 *2 (-238 *5 *6))))) -(((*1 *2 *3) - (-12 (-4 *3 (-1238 (-407 (-564)))) - (-5 *2 (-2 (|:| |den| (-564)) (|:| |gcdnum| (-564)))) - (-5 *1 (-911 *3 *4)) (-4 *4 (-1238 (-407 *3))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1238 (-407 *2))) (-5 *2 (-564)) (-5 *1 (-911 *4 *3)) - (-4 *3 (-1238 (-407 *4)))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) - (-4 *3 (-367 *4)))) - ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1000)))))) -(((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-165 *3 *2)) (-4 *3 (-166 *2)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1262 *1)) (-4 *1 (-370 *2 *4)) (-4 *4 (-1238 *2)) - (-4 *2 (-172)))) - ((*1 *2) - (-12 (-4 *4 (-1238 *2)) (-4 *2 (-172)) (-5 *1 (-408 *3 *2 *4)) - (-4 *3 (-409 *2 *4)))) - ((*1 *2) (-12 (-4 *1 (-409 *2 *3)) (-4 *3 (-1238 *2)) (-4 *2 (-172)))) - ((*1 *2) - (-12 (-4 *3 (-1238 *2)) (-5 *2 (-564)) (-5 *1 (-766 *3 *4)) - (-4 *4 (-409 *2 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-947 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-791)) - (-4 *2 (-848)) (-4 *3 (-172)))) - ((*1 *2 *3) - (-12 (-4 *2 (-556)) (-5 *1 (-967 *2 *3)) (-4 *3 (-1238 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1238 *2)) (-4 *2 (-1047)) (-4 *2 (-172))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1178))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-919)) (-5 *2 (-1267)) (-5 *1 (-1263)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-919)) (-5 *2 (-1267)) (-5 *1 (-1264))))) -(((*1 *1 *2) - (-12 (-5 *2 (-642 (-642 *3))) (-4 *3 (-1097)) (-4 *1 (-901 *3))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-769)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-919)))) + (|partial| -12 (-5 *3 (-114)) (-5 *2 (-644 (-892 *4))) + (-5 *1 (-892 *4)) (-4 *4 (-1099))))) +(((*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-334))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-644 *6)) (-4 *1 (-949 *4 *5 *6)) (-4 *4 (-1049)) + (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-771)))) + ((*1 *2 *1) + (-12 (-4 *1 (-949 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *5 (-850)) (-5 *2 (-771))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-1175))) (-5 *1 (-1179))))) +(((*1 *2 *1 *2) + (-12 (-4 *1 (-366 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1099))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-771)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-921)))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-769)) + (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-566)) (-14 *3 (-771)) (-4 *4 (-172)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-157)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-919)) (-5 *1 (-157)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-921)) (-5 *1 (-157)))) ((*1 *2 *1 *2) - (-12 (-5 *2 (-941 *3)) (-4 *3 (-13 (-363) (-1197))) + (-12 (-5 *2 (-943 *3)) (-4 *3 (-13 (-365) (-1199))) (-5 *1 (-227 *3)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1212)) (-4 *2 (-724)))) + (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1214)) (-4 *2 (-726)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1212)) (-4 *2 (-724)))) + (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1214)) (-4 *2 (-726)))) ((*1 *1 *2 *1) - (-12 (-5 *1 (-294 *2)) (-4 *2 (-1109)) (-4 *2 (-1212)))) + (-12 (-5 *1 (-295 *2)) (-4 *2 (-1111)) (-4 *2 (-1214)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-294 *2)) (-4 *2 (-1109)) (-4 *2 (-1212)))) + (-12 (-5 *1 (-295 *2)) (-4 *2 (-1111)) (-4 *2 (-1214)))) ((*1 *1 *2 *3) - (-12 (-4 *1 (-323 *3 *2)) (-4 *3 (-1097)) (-4 *2 (-131)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-361 *2)) (-4 *2 (-1097)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-361 *2)) (-4 *2 (-1097)))) + (-12 (-4 *1 (-324 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-131)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-363 *2)) (-4 *2 (-1099)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-363 *2)) (-4 *2 (-1099)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-381 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-848)))) + (-12 (-5 *1 (-383 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-850)))) ((*1 *1 *2 *3) - (-12 (-4 *1 (-382 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-1097)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1097)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1097)))) + (-12 (-4 *1 (-384 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-1099)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-388 *2)) (-4 *2 (-1099)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-1099)))) ((*1 *1 *2 *1) - (-12 (-14 *3 (-642 (-1173))) (-4 *4 (-172)) - (-4 *6 (-238 (-2158 *3) (-769))) + (-12 (-14 *3 (-644 (-1175))) (-4 *4 (-172)) + (-4 *6 (-238 (-3002 *3) (-771))) (-14 *7 - (-1 (-112) (-2 (|:| -2065 *5) (|:| -2817 *6)) - (-2 (|:| -2065 *5) (|:| -2817 *6)))) - (-5 *1 (-461 *3 *4 *5 *6 *7 *2)) (-4 *5 (-848)) - (-4 *2 (-947 *4 *6 (-862 *3))))) + (-1 (-112) (-2 (|:| -2104 *5) (|:| -3631 *6)) + (-2 (|:| -2104 *5) (|:| -3631 *6)))) + (-5 *1 (-463 *3 *4 *5 *6 *7 *2)) (-4 *5 (-850)) + (-4 *2 (-949 *4 *6 (-864 *3))))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) + (-12 (-4 *1 (-472 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) + (-12 (-4 *1 (-472 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-363)) (-4 *3 (-791)) (-4 *4 (-848)) - (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-947 *2 *3 *4)))) + (-12 (-4 *2 (-365)) (-4 *3 (-793)) (-4 *4 (-850)) + (-5 *1 (-506 *2 *3 *4 *5)) (-4 *5 (-949 *2 *3 *4)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1262 *3)) (-4 *3 (-349)) (-5 *1 (-528 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-536))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-595 *3)) (-4 *3 (-1047)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-595 *2)) (-4 *2 (-1047)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-595 *2)) (-4 *2 (-1047)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-644 *2)) (-4 *2 (-1055)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-675 *2)) (-4 *2 (-848)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1097)) - (-4 *6 (-1097)) (-4 *7 (-1097)) (-5 *2 (-1 *7 *5)) - (-5 *1 (-682 *5 *6 *7)))) + (-12 (-5 *2 (-1264 *3)) (-4 *3 (-351)) (-5 *1 (-530 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-538))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-597 *3)) (-4 *3 (-1049)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-597 *2)) (-4 *2 (-1049)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-1049)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1057)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-850)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1099)) + (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-1 *7 *5)) + (-5 *1 (-684 *5 *6 *7)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-685 *3 *2 *4)) (-4 *3 (-1047)) (-4 *2 (-373 *3)) - (-4 *4 (-373 *3)))) + (-12 (-4 *1 (-687 *3 *2 *4)) (-4 *3 (-1049)) (-4 *2 (-375 *3)) + (-4 *4 (-375 *3)))) ((*1 *2 *1 *2) - (-12 (-4 *1 (-685 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-373 *3)) - (-4 *2 (-373 *3)))) + (-12 (-4 *1 (-687 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) + (-4 *2 (-375 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-564)) (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047)) - (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) + (-12 (-5 *2 (-566)) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) + (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-685 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-373 *2)) - (-4 *4 (-373 *2)))) + (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) + (-4 *4 (-375 *2)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-685 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-373 *2)) - (-4 *4 (-373 *2)))) + (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) + (-4 *4 (-375 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-685 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-373 *2)) - (-4 *4 (-373 *2)))) - ((*1 *1 *1 *1) (-4 *1 (-718))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-817 *2)) (-4 *2 (-848)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-817 *2)) (-4 *2 (-848)))) - ((*1 *1 *1 *1) (-5 *1 (-860))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-1097)))) + (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) + (-4 *4 (-375 *2)))) + ((*1 *1 *1 *1) (-4 *1 (-720))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) + ((*1 *1 *1 *1) (-5 *1 (-862))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1099)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1262 *4)) (-4 *4 (-1238 *3)) (-4 *3 (-556)) - (-5 *1 (-967 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1049 *2)) (-4 *2 (-1055)))) - ((*1 *1 *1 *1) (-4 *1 (-1109))) + (-12 (-5 *2 (-1264 *4)) (-4 *4 (-1240 *3)) (-4 *3 (-558)) + (-5 *1 (-969 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1051 *2)) (-4 *2 (-1057)))) + ((*1 *1 *1 *1) (-4 *1 (-1111))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1120 *3 *4 *2 *5)) (-4 *4 (-1047)) (-4 *2 (-238 *3 *4)) + (-12 (-4 *1 (-1122 *3 *4 *2 *5)) (-4 *4 (-1049)) (-4 *2 (-238 *3 *4)) (-4 *5 (-238 *3 *4)))) ((*1 *2 *1 *2) - (-12 (-4 *1 (-1120 *3 *4 *5 *2)) (-4 *4 (-1047)) (-4 *5 (-238 *3 *4)) + (-12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *4 (-1049)) (-4 *5 (-238 *3 *4)) (-4 *2 (-238 *3 *4)))) ((*1 *1 *2 *1) - (-12 (-4 *3 (-1047)) (-4 *4 (-848)) (-5 *1 (-1123 *3 *4 *2)) - (-4 *2 (-947 *3 (-531 *4) *4)))) + (-12 (-4 *3 (-1049)) (-4 *4 (-850)) (-5 *1 (-1125 *3 *4 *2)) + (-4 *2 (-949 *3 (-533 *4) *4)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3)))) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3)))) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3)))) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-941 (-225))) (-5 *3 (-225)) (-5 *1 (-1208)))) + (-12 (-5 *2 (-943 (-225))) (-5 *3 (-225)) (-5 *1 (-1210)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1212)) (-4 *2 (-724)))) + (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1214)) (-4 *2 (-726)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1212)) (-4 *2 (-724)))) + (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1214)) (-4 *2 (-726)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-564)) (-4 *1 (-1260 *3)) (-4 *3 (-1212)) (-4 *3 (-21)))) + (-12 (-5 *2 (-566)) (-4 *1 (-1262 *3)) (-4 *3 (-1214)) (-4 *3 (-21)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-1279 *2 *3)) (-4 *2 (-848)) (-4 *3 (-1047)))) + (-12 (-4 *1 (-1281 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1279 *3 *2)) (-4 *3 (-848)) (-4 *2 (-1047)))) - ((*1 *1 *1 *2) - (-12 (-5 *1 (-1285 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-844))))) -(((*1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-860)))) - ((*1 *1 *1 *1) (-5 *1 (-860)))) -(((*1 *2 *3) - (-12 (-5 *3 (-642 *4)) (-4 *4 (-848)) (-5 *2 (-642 (-662 *4 *5))) - (-5 *1 (-625 *4 *5 *6)) (-4 *5 (-13 (-172) (-715 (-407 (-564))))) - (-14 *6 (-919))))) -(((*1 *2) (-12 (-5 *2 (-841 (-564))) (-5 *1 (-534)))) - ((*1 *1) (-12 (-5 *1 (-841 *2)) (-4 *2 (-1097))))) -(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820))))) -(((*1 *2 *1) - (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) - (-4 *5 (-1238 (-407 *4))) (-5 *2 (-112))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) - (-4 *3 (-1062 *5 *6 *7)) - (-5 *2 (-642 (-2 (|:| |val| *3) (|:| -2138 *4)))) - (-5 *1 (-1105 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-527)) (-5 *3 (-128)) (-5 *2 (-769))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1173)) (-5 *2 (-1177)) (-5 *1 (-1176))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1153 (-642 (-564)))) (-5 *1 (-881)) - (-5 *3 (-642 (-564))))) - ((*1 *2 *3) - (-12 (-5 *2 (-1153 (-642 (-564)))) (-5 *1 (-881)) - (-5 *3 (-642 (-564)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-769)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1047)))) - ((*1 *2) - (-12 (-5 *2 (-769)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1047))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-373 *2)) (-4 *2 (-1212)) (-4 *2 (-848)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-373 *3)) (-4 *3 (-1212)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-848)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1131 *2)) (-4 *2 (-1047)))) - ((*1 *1 *2) - (-12 (-5 *2 (-642 *1)) (-4 *1 (-1131 *3)) (-4 *3 (-1047)))) - ((*1 *1 *2) - (-12 (-5 *2 (-642 (-1161 *3 *4))) (-5 *1 (-1161 *3 *4)) - (-14 *3 (-919)) (-4 *4 (-1047)))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-1161 *2 *3)) (-14 *2 (-919)) (-4 *3 (-1047))))) -(((*1 *2 *1) - (-12 (-5 *2 (-642 (-2 (|:| |gen| *3) (|:| -3466 *4)))) - (-5 *1 (-647 *3 *4 *5)) (-4 *3 (-1097)) (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2) (-12 (-5 *2 (-841 (-564))) (-5 *1 (-534)))) - ((*1 *1) (-12 (-5 *1 (-841 *2)) (-4 *2 (-1097))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) - (-5 *1 (-745))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-642 (-564))) (-5 *3 (-687 (-564))) (-5 *1 (-1107))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-294 *2)) (-4 *2 (-724)) (-4 *2 (-1212))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1279 *2 *3)) (-4 *2 (-848)) (-4 *3 (-1047)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1285 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-844))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1253 *4)) (-5 *1 (-1255 *4 *2)) - (-4 *4 (-38 (-407 (-564))))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4411)) (-4 *1 (-244 *2)) (-4 *2 (-1212)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1212)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1212)))) + (-12 (-4 *1 (-1281 *3 *2)) (-4 *3 (-850)) (-4 *2 (-1049)))) ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4411)) (-4 *1 (-1250 *2)) (-4 *2 (-1212)))) - ((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4411)) (-4 *1 (-1250 *2)) (-4 *2 (-1212))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-363)) (-5 *2 (-2 (|:| -4332 *3) (|:| -1992 *3))) - (-5 *1 (-764 *3 *4)) (-4 *3 (-706 *4)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-363)) (-4 *3 (-1047)) - (-5 *2 (-2 (|:| -4332 *1) (|:| -1992 *1))) (-4 *1 (-850 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-363)) (-4 *5 (-1047)) - (-5 *2 (-2 (|:| -4332 *3) (|:| -1992 *3))) (-5 *1 (-851 *5 *3)) - (-4 *3 (-850 *5))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-363)) (-5 *1 (-764 *2 *3)) (-4 *2 (-706 *3)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-850 *2)) (-4 *2 (-1047)) (-4 *2 (-363))))) -(((*1 *1) (-5 *1 (-1082)))) -(((*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-529)))) - ((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-529))))) -(((*1 *2 *3 *3 *2) - (|partial| -12 (-5 *2 (-769)) - (-4 *3 (-13 (-724) (-368) (-10 -7 (-15 ** (*3 *3 (-564)))))) - (-5 *1 (-246 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-363) (-846))) (-5 *1 (-181 *3 *2)) - (-4 *2 (-1238 (-169 *3)))))) + (-12 (-5 *1 (-1287 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-846))))) +(((*1 *2 *3 *4 *5 *6 *7 *8 *9) + (|partial| -12 (-5 *4 (-644 *11)) (-5 *5 (-644 (-1171 *9))) + (-5 *6 (-644 *9)) (-5 *7 (-644 *12)) (-5 *8 (-644 (-771))) + (-4 *11 (-850)) (-4 *9 (-308)) (-4 *12 (-949 *9 *10 *11)) + (-4 *10 (-793)) (-5 *2 (-644 (-1171 *12))) + (-5 *1 (-707 *10 *11 *9 *12)) (-5 *3 (-1171 *12))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) +(((*1 *1 *2) + (-12 (-5 *2 (-644 (-2 (|:| |gen| *3) (|:| -3571 *4)))) + (-4 *3 (-1099)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-649 *3 *4 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-644 (-689 (-317 (-566))))) (-5 *1 (-1031))))) +(((*1 *2) (-12 (-5 *2 (-843 (-566))) (-5 *1 (-536)))) + ((*1 *1) (-12 (-5 *1 (-843 *2)) (-4 *2 (-1099))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-1109))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-769)) (-4 *4 (-307)) (-4 *6 (-1238 *4)) - (-5 *2 (-1262 (-642 *6))) (-5 *1 (-455 *4 *6)) (-5 *5 (-642 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1197)))))) + (-12 (-5 *3 (-952 (-409 (-566)))) (-5 *4 (-1175)) + (-5 *5 (-1093 (-843 (-225)))) (-5 *2 (-644 (-225))) (-5 *1 (-301))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4418)) (-4 *1 (-119 *2)) (-4 *2 (-1214))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-689 *7)) (-5 *3 (-644 *7)) (-4 *7 (-949 *4 *6 *5)) + (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) + (-4 *6 (-793)) (-5 *1 (-924 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1175)) (-4 *5 (-1218)) (-4 *6 (-1240 *5)) + (-4 *7 (-1240 (-409 *6))) (-5 *2 (-644 (-952 *5))) + (-5 *1 (-343 *4 *5 *6 *7)) (-4 *4 (-344 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1175)) (-4 *1 (-344 *4 *5 *6)) (-4 *4 (-1218)) + (-4 *5 (-1240 *4)) (-4 *6 (-1240 (-409 *5))) (-4 *4 (-365)) + (-5 *2 (-644 (-952 *4)))))) +(((*1 *1) (-5 *1 (-141)))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) + (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *4 (-225)) + (-5 *2 (-1035)) (-5 *1 (-752))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-921)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) + ((*1 *1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-264))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-1175))))) +(((*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-1171 *3))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-771)) (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) + (-4 *4 (-793)) (-4 *5 (-850)) (-4 *3 (-558))))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) + (-5 *2 (-1035)) (-5 *1 (-752))))) (((*1 *2) - (-12 (-5 *2 (-1267)) (-5 *1 (-1189 *3 *4)) (-4 *3 (-1097)) - (-4 *4 (-1097))))) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) + (-4 *3 (-369 *4)))) + ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-144)))) + ((*1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-144))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4418)) (-4 *1 (-375 *2)) (-4 *2 (-1214)) + (-4 *2 (-850)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4418)) + (-4 *1 (-375 *3)) (-4 *3 (-1214))))) (((*1 *2 *3) - (-12 (-5 *2 (-1153 (-564))) (-5 *1 (-1157 *4)) (-4 *4 (-1047)) - (-5 *3 (-564))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-1173)) (-5 *1 (-610 *3)) (-4 *3 (-1097))))) -(((*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-144)))) - ((*1 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-144))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-769)) (-5 *1 (-586 *2)) (-4 *2 (-545)))) + (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1218)) (-4 *3 (-1240 *4)) + (-4 *5 (-1240 (-409 *3))) (-5 *2 (-112)))) ((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -1959 *3) (|:| -2817 (-769)))) (-5 *1 (-586 *3)) - (-4 *3 (-545))))) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) + (-4 *5 (-1240 (-409 *4))) (-5 *2 (-112))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1262 (-642 (-2 (|:| -2108 *4) (|:| -2065 (-1117)))))) - (-4 *4 (-349)) (-5 *2 (-1267)) (-5 *1 (-528 *4))))) -(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) - (-12 (-5 *3 (-1155)) (-5 *5 (-687 (-225))) (-5 *6 (-687 (-564))) - (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-755))))) -(((*1 *2 *2) - (-12 (-4 *3 (-452)) (-4 *3 (-1036 (-564))) (-4 *3 (-556)) - (-5 *1 (-41 *3 *2)) (-4 *2 (-430 *3)) - (-4 *2 - (-13 (-363) (-302) - (-10 -8 (-15 -4120 ((-1122 *3 (-610 $)) $)) - (-15 -4131 ((-1122 *3 (-610 $)) $)) - (-15 -2390 ($ (-1122 *3 (-610 $)))))))))) -(((*1 *2 *2) (-12 (-5 *1 (-586 *2)) (-4 *2 (-545))))) -(((*1 *2 *3) - (-12 (-5 *3 (-564)) (-4 *4 (-1238 (-407 *3))) (-5 *2 (-919)) - (-5 *1 (-911 *4 *5)) (-4 *5 (-1238 (-407 *4)))))) -(((*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1155)) (-5 *1 (-305))))) -(((*1 *1 *1) (-5 *1 (-1060)))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1173)) (-5 *2 (-379)) (-5 *1 (-1060))))) -(((*1 *2 *3) - (-12 (-5 *3 (-610 *5)) (-4 *5 (-430 *4)) (-4 *4 (-1036 (-564))) - (-4 *4 (-556)) (-5 *2 (-1169 *5)) (-5 *1 (-32 *4 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-610 *1)) (-4 *1 (-1047)) (-4 *1 (-302)) - (-5 *2 (-1169 *1))))) -(((*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-128))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1283 *3 *4)) (-4 *3 (-848)) (-4 *4 (-1047)) - (-5 *2 (-817 *3)))) - ((*1 *2 *1) - (-12 (-4 *2 (-844)) (-5 *1 (-1285 *3 *2)) (-4 *3 (-1047))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1178))))) + (-12 (-5 *4 (-1 *5 *5)) + (-4 *5 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) + (-5 *2 + (-2 (|:| |solns| (-644 *5)) + (|:| |maps| (-644 (-2 (|:| |arg| *5) (|:| |res| *5)))))) + (-5 *1 (-1127 *3 *5)) (-4 *3 (-1240 *5))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) + (-4 *4 (-850)) (-4 *2 (-558))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-952 (-169 *4))) (-4 *4 (-172)) + (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-952 (-169 *5))) (-5 *4 (-921)) (-4 *5 (-172)) + (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-952 *4)) (-4 *4 (-1049)) + (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-952 *5)) (-5 *4 (-921)) (-4 *5 (-1049)) + (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-558)) + (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-921)) (-4 *5 (-558)) + (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-409 (-952 (-169 *4)))) (-4 *4 (-558)) + (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-409 (-952 (-169 *5)))) (-5 *4 (-921)) + (-4 *5 (-558)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) + (-5 *1 (-785 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-317 *4)) (-4 *4 (-558)) (-4 *4 (-850)) + (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-317 *5)) (-5 *4 (-921)) (-4 *5 (-558)) + (-4 *5 (-850)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) + (-5 *1 (-785 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-317 (-169 *4))) (-4 *4 (-558)) (-4 *4 (-850)) + (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-317 (-169 *5))) (-5 *4 (-921)) (-4 *5 (-558)) + (-4 *5 (-850)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) + (-5 *1 (-785 *5))))) (((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1091 (-225))) - (-5 *5 (-112)) (-5 *2 (-1264)) (-5 *1 (-257))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) - (-4 *3 (-1062 *5 *6 *7)) - (-5 *2 (-642 (-2 (|:| |val| *3) (|:| -2138 *4)))) - (-5 *1 (-1105 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3))))) + (|partial| -12 (-5 *4 (-612 *3)) (-5 *5 (-644 *3)) + (-4 *3 (-13 (-432 *6) (-27) (-1199))) + (-4 *6 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-568 *6 *3 *7)) (-4 *7 (-1099))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-943 *4)) (-4 *4 (-1049)) (-5 *1 (-1163 *3 *4)) + (-14 *3 (-921))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-4 *1 (-903 *3))))) (((*1 *2 *1) - (-12 (-4 *3 (-1097)) (-4 *4 (-13 (-1047) (-884 *3) (-612 (-890 *3)))) - (-5 *2 (-642 (-1173))) (-5 *1 (-1073 *3 *4 *5)) - (-4 *5 (-13 (-430 *4) (-884 *3) (-612 (-890 *3))))))) -(((*1 *2 *2) - (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1197)))))) + (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-1059)) (-4 *3 (-1199)) + (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-976 *4 *5 *3 *6)) (-4 *4 (-1049)) (-4 *5 (-793)) + (-4 *3 (-850)) (-4 *6 (-1064 *4 *5 *3)) (-5 *2 (-112))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-771)) (-4 *4 (-13 (-1049) (-717 (-409 (-566))))) + (-4 *5 (-850)) (-5 *1 (-1280 *4 *5 *2)) (-4 *2 (-1285 *5 *4))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-396))))) +(((*1 *2 *1) + (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)) + (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-644 *6)) (-4 *6 (-850)) (-4 *4 (-365)) (-4 *5 (-793)) + (-5 *2 (-112)) (-5 *1 (-506 *4 *5 *6 *7)) (-4 *7 (-949 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1153 (-225))) (-5 *2 (-642 (-1155))) (-5 *1 (-192)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1153 (-225))) (-5 *2 (-642 (-1155))) (-5 *1 (-300)))) + (-12 (-5 *3 (-1264 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) + (-5 *2 (-644 (-952 *4))))) + ((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-644 (-952 *4))) (-5 *1 (-418 *3 *4)) + (-4 *3 (-419 *4)))) + ((*1 *2) + (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-644 (-952 *3))))) + ((*1 *2) + (-12 (-5 *2 (-644 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6)) + (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) + (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3))))) ((*1 *2 *3) - (-12 (-5 *3 (-1153 (-225))) (-5 *2 (-642 (-1155))) (-5 *1 (-305))))) -(((*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-903 *3)) (-4 *3 (-1097))))) + (-12 (-5 *3 (-1264 (-455 *4 *5 *6 *7))) (-5 *2 (-644 (-952 *4))) + (-5 *1 (-455 *4 *5 *6 *7)) (-4 *4 (-558)) (-4 *4 (-172)) + (-14 *5 (-921)) (-14 *6 (-644 (-1175))) (-14 *7 (-1264 (-689 *4)))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-407 *2)) (-4 *2 (-1238 *5)) - (-5 *1 (-805 *5 *2 *3 *6)) - (-4 *5 (-13 (-363) (-147) (-1036 (-407 (-564))))) - (-4 *3 (-654 *2)) (-4 *6 (-654 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-642 (-407 *2))) (-4 *2 (-1238 *5)) - (-5 *1 (-805 *5 *2 *3 *6)) - (-4 *5 (-13 (-363) (-147) (-1036 (-407 (-564))))) (-4 *3 (-654 *2)) - (-4 *6 (-654 (-407 *2)))))) -(((*1 *2 *2 *2 *3 *3) - (-12 (-5 *3 (-769)) (-4 *4 (-1047)) (-5 *1 (-1234 *4 *2)) - (-4 *2 (-1238 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924))))) -(((*1 *2 *2) - (-12 (-5 *2 (-642 (-642 *3))) (-4 *3 (-848)) (-5 *1 (-1183 *3))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) - (-5 *2 - (-2 (|:| -2108 *4) (|:| -1437 *4) (|:| |totalpts| (-564)) - (|:| |success| (-112)))) - (-5 *1 (-787)) (-5 *5 (-564))))) + (-12 (-5 *4 (-1 (-644 *5) *6)) + (-4 *5 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *6 (-1240 *5)) + (-5 *2 (-644 (-2 (|:| |poly| *6) (|:| -3477 *3)))) + (-5 *1 (-809 *5 *6 *3 *7)) (-4 *3 (-656 *6)) + (-4 *7 (-656 (-409 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-644 *5) *6)) + (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) + (-4 *6 (-1240 *5)) + (-5 *2 (-644 (-2 (|:| |poly| *6) (|:| -3477 (-654 *6 (-409 *6)))))) + (-5 *1 (-812 *5 *6)) (-5 *3 (-654 *6 (-409 *6)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 *2)) (-4 *2 (-432 *4)) (-5 *1 (-158 *4 *2)) + (-4 *4 (-558))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-950 (-407 (-564)))) (-5 *4 (-1173)) - (-5 *5 (-1091 (-841 (-225)))) (-5 *2 (-642 (-225))) (-5 *1 (-300))))) -(((*1 *2 *1) - (-12 (-5 *2 (-860)) (-5 *1 (-1153 *3)) (-4 *3 (-1097)) - (-4 *3 (-1212))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1173)) (-5 *3 (-379)) (-5 *1 (-1060))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-890 *3)) (-4 *3 (-1097))))) + (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) + (-4 *9 (-1064 *6 *7 *8)) (-4 *6 (-558)) (-4 *7 (-793)) + (-4 *8 (-850)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3903 (-644 *9)))) + (-5 *3 (-644 *9)) (-4 *1 (-1207 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1064 *5 *6 *7)) + (-4 *5 (-558)) (-4 *6 (-793)) (-4 *7 (-850)) + (-5 *2 (-2 (|:| |bas| *1) (|:| -3903 (-644 *8)))) + (-5 *3 (-644 *8)) (-4 *1 (-1207 *5 *6 *7 *8))))) +(((*1 *2 *3) + (-12 (-4 *4 (-558)) (-5 *2 (-169 *5)) (-5 *1 (-600 *4 *5 *3)) + (-4 *5 (-13 (-432 *4) (-1002) (-1199))) + (-4 *3 (-13 (-432 (-169 *4)) (-1002) (-1199)))))) +(((*1 *2 *3 *3 *3 *3 *4 *5) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) + (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2341)))) + (-5 *2 (-1035)) (-5 *1 (-746))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-941 *3) (-941 *3))) (-5 *1 (-176 *3)) - (-4 *3 (-13 (-363) (-1197) (-1000)))))) -(((*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-801))))) -(((*1 *2) - (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) - (-4 *5 (-1238 (-407 *4))) (-5 *2 (-687 (-407 *4)))))) + (-12 (-5 *3 (-644 (-566))) (-5 *2 (-1177 (-409 (-566)))) + (-5 *1 (-190))))) +(((*1 *2 *3) + (-12 (-5 *3 (-3 (|:| |fst| (-436)) (|:| -4306 "void"))) + (-5 *2 (-1269)) (-5 *1 (-1178)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1175)) + (-5 *4 (-3 (|:| |fst| (-436)) (|:| -4306 "void"))) (-5 *2 (-1269)) + (-5 *1 (-1178)))) + ((*1 *2 *3 *4 *1) + (-12 (-5 *3 (-1175)) + (-5 *4 (-3 (|:| |fst| (-436)) (|:| -4306 "void"))) (-5 *2 (-1269)) + (-5 *1 (-1178))))) +(((*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-771)) (-5 *1 (-591))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1062))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1099) (-1038 *5))) + (-4 *5 (-886 *4)) (-4 *4 (-1099)) (-5 *2 (-1 (-112) *5)) + (-5 *1 (-931 *4 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-644 *6)) (-5 *4 (-644 (-1175))) (-4 *6 (-365)) + (-5 *2 (-644 (-295 (-952 *6)))) (-5 *1 (-540 *5 *6 *7)) + (-4 *5 (-454)) (-4 *7 (-13 (-365) (-848)))))) +(((*1 *2 *1) (-12 (-5 *1 (-914 *2)) (-4 *2 (-308))))) +(((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-699)))) + ((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-699))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-689 *3)) + (-4 *3 (-13 (-308) (-10 -8 (-15 -3348 ((-420 $) $))))) + (-4 *4 (-1240 *3)) (-5 *1 (-501 *3 *4 *5)) (-4 *5 (-411 *3 *4)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-689 *3)) + (-4 *3 (-13 (-308) (-10 -8 (-15 -3348 ((-420 $) $))))) + (-4 *4 (-1240 *3)) (-5 *1 (-501 *3 *4 *5)) (-4 *5 (-411 *3 *4))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-644 (-409 *6))) (-5 *3 (-409 *6)) + (-4 *6 (-1240 *5)) (-4 *5 (-13 (-365) (-147) (-1038 (-566)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-570 *5 *6))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1257 *3 *2)) + (-4 *2 (-1255 *3))))) +(((*1 *2 *3 *4 *4 *3) + (|partial| -12 (-5 *4 (-612 *3)) + (-4 *3 (-13 (-432 *5) (-27) (-1199))) + (-4 *5 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) + (-5 *2 (-2 (|:| -4069 *3) (|:| |coeff| *3))) + (-5 *1 (-568 *5 *3 *6)) (-4 *6 (-1099))))) +(((*1 *1 *1) (-5 *1 (-225))) ((*1 *1 *1) (-5 *1 (-381))) + ((*1 *1) (-5 *1 (-381)))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-672 *3)) (-4 *3 (-850)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-677 *3)) (-4 *3 (-850)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-819 *3)) (-4 *3 (-850))))) +(((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563))))) +(((*1 *1 *2) (-12 (-5 *2 (-819 *3)) (-4 *3 (-850)) (-5 *1 (-672 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-338 *5 *6 *7 *8)) (-4 *5 (-432 *4)) (-4 *6 (-1240 *5)) + (-4 *7 (-1240 (-409 *6))) (-4 *8 (-344 *5 *6 *7)) + (-4 *4 (-13 (-558) (-1038 (-566)))) (-5 *2 (-112)) + (-5 *1 (-911 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-338 (-409 (-566)) *4 *5 *6)) + (-4 *4 (-1240 (-409 (-566)))) (-4 *5 (-1240 (-409 *4))) + (-4 *6 (-344 (-409 (-566)) *4 *5)) (-5 *2 (-112)) + (-5 *1 (-912 *4 *5 *6))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1012)) (-5 *2 (-862))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-566)) (-5 *1 (-420 *2)) (-4 *2 (-558))))) (((*1 *2 *1) - (-12 (-5 *2 (-1099 *3)) (-5 *1 (-902 *3)) (-4 *3 (-1097)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1099 *3)) (-5 *1 (-903 *3)) (-4 *3 (-1097))))) -(((*1 *2 *2) (-12 (-5 *2 (-687 (-316 (-564)))) (-5 *1 (-1029))))) + (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6)) + (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) + (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-1175)) + (-4 *5 (-13 (-308) (-147))) (-5 *2 (-644 (-295 (-317 *5)))) + (-5 *1 (-1128 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-13 (-308) (-147))) + (-5 *2 (-644 (-295 (-317 *4)))) (-5 *1 (-1128 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-295 (-409 (-952 *5)))) (-5 *4 (-1175)) + (-4 *5 (-13 (-308) (-147))) (-5 *2 (-644 (-295 (-317 *5)))) + (-5 *1 (-1128 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-295 (-409 (-952 *4)))) (-4 *4 (-13 (-308) (-147))) + (-5 *2 (-644 (-295 (-317 *4)))) (-5 *1 (-1128 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-409 (-952 *5)))) (-5 *4 (-644 (-1175))) + (-4 *5 (-13 (-308) (-147))) (-5 *2 (-644 (-644 (-295 (-317 *5))))) + (-5 *1 (-1128 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 (-409 (-952 *4)))) (-4 *4 (-13 (-308) (-147))) + (-5 *2 (-644 (-644 (-295 (-317 *4))))) (-5 *1 (-1128 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-295 (-409 (-952 *5))))) (-5 *4 (-644 (-1175))) + (-4 *5 (-13 (-308) (-147))) (-5 *2 (-644 (-644 (-295 (-317 *5))))) + (-5 *1 (-1128 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 (-295 (-409 (-952 *4))))) + (-4 *4 (-13 (-308) (-147))) (-5 *2 (-644 (-644 (-295 (-317 *4))))) + (-5 *1 (-1128 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-555))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-1213))) (-5 *1 (-526))))) +(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) + (-12 (-5 *3 (-566)) (-5 *5 (-112)) (-5 *6 (-689 (-225))) + (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-77 OBJFUN)))) + (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-753))))) +(((*1 *2 *3) (-12 (-5 *3 (-952 (-225))) (-5 *2 (-225)) (-5 *1 (-306))))) +(((*1 *1) (-5 *1 (-508)))) +(((*1 *2 *2 *3 *4 *4) + (-12 (-5 *4 (-566)) (-4 *3 (-172)) (-4 *5 (-375 *3)) + (-4 *6 (-375 *3)) (-5 *1 (-688 *3 *5 *6 *2)) + (-4 *2 (-687 *3 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-373 *3)) - (-4 *5 (-373 *3)) (-5 *2 (-564)))) + (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-644 *1)) + (-4 *1 (-1064 *3 *4 *5))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-175))))) +(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) ((*1 *2 *1) - (-12 (-4 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-564))))) + (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)) + (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-646 *3)) (-4 *3 (-1057)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-1057)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1067 *4 *3)) (-4 *4 (-13 (-848) (-365))) + (-4 *3 (-1240 *4)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *1 (-1026 *2)) (-4 *2 (-1214))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-771)) (-4 *5 (-558)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-969 *5 *3)) (-4 *3 (-1240 *5))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-454)) (-4 *3 (-793)) (-4 *5 (-850)) (-5 *2 (-112)) + (-5 *1 (-451 *4 *3 *5 *6)) (-4 *6 (-949 *4 *3 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-556)) (-5 *2 (-769)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-417 *4))))) -(((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-850 *2)) (-4 *2 (-1047)) (-4 *2 (-363))))) -(((*1 *2 *1) (-12 (-5 *2 (-183)) (-5 *1 (-248))))) -(((*1 *1 *1 *2 *2) - (|partial| -12 (-5 *2 (-919)) (-5 *1 (-1098 *3 *4)) (-14 *3 *2) - (-14 *4 *2)))) + (-12 (-5 *2 (-644 (-644 (-566)))) (-5 *1 (-971)) + (-5 *3 (-644 (-566)))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-644 *1)) (-4 *1 (-920))))) (((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) - (-4 *3 (-367 *4)))) - ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-642 (-564))) (-5 *2 (-642 (-687 (-564)))) - (-5 *1 (-1107))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))) + (-12 (-5 *2 (-1269)) (-5 *1 (-1191 *3 *4)) (-4 *3 (-1099)) + (-4 *4 (-1099))))) +(((*1 *1 *2) + (-12 (-5 *2 (-771)) (-5 *1 (-675 *3)) (-4 *3 (-1049)) + (-4 *3 (-1099))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1099)) (-4 *3 (-900 *5)) (-5 *2 (-1264 *3)) + (-5 *1 (-692 *5 *3 *6 *4)) (-4 *6 (-375 *3)) + (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4417))))))) +(((*1 *2 *1) (-12 (-4 *1 (-529)) (-5 *2 (-691 (-549)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-317 *4)) (-4 *4 (-13 (-828) (-1049))) (-5 *2 (-1157)) + (-5 *1 (-826 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-317 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-828) (-1049))) + (-5 *2 (-1157)) (-5 *1 (-826 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-822)) (-5 *4 (-317 *5)) (-4 *5 (-13 (-828) (-1049))) + (-5 *2 (-1269)) (-5 *1 (-826 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-822)) (-5 *4 (-317 *6)) (-5 *5 (-112)) + (-4 *6 (-13 (-828) (-1049))) (-5 *2 (-1269)) (-5 *1 (-826 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-828)) (-5 *2 (-1157)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-828)) (-5 *3 (-112)) (-5 *2 (-1157)))) + ((*1 *2 *3 *1) (-12 (-4 *1 (-828)) (-5 *3 (-822)) (-5 *2 (-1269)))) + ((*1 *2 *3 *1 *4) + (-12 (-4 *1 (-828)) (-5 *3 (-822)) (-5 *4 (-112)) (-5 *2 (-1269))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-769)) (-4 *1 (-231 *4)) - (-4 *4 (-1047)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-771)) (-4 *1 (-231 *4)) + (-4 *4 (-1049)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1047)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-769)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1049)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-771)))) ((*1 *1 *1) (-4 *1 (-233))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-769)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4)) - (-4 *4 (-1238 *3)))) + (-12 (-5 *2 (-771)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-401 *3 *4)) + (-4 *4 (-1240 *3)))) ((*1 *1 *1) - (-12 (-4 *2 (-13 (-363) (-147))) (-5 *1 (-399 *2 *3)) - (-4 *3 (-1238 *2)))) - ((*1 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-1047)))) + (-12 (-4 *2 (-13 (-365) (-147))) (-5 *1 (-401 *2 *3)) + (-4 *3 (-1240 *2)))) + ((*1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1049)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-642 *4)) (-5 *3 (-642 (-769))) (-4 *1 (-898 *4)) - (-4 *4 (-1097)))) + (-12 (-5 *2 (-644 *4)) (-5 *3 (-644 (-771))) (-4 *1 (-900 *4)) + (-4 *4 (-1099)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-769)) (-4 *1 (-898 *2)) (-4 *2 (-1097)))) + (-12 (-5 *3 (-771)) (-4 *1 (-900 *2)) (-4 *2 (-1099)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-642 *3)) (-4 *1 (-898 *3)) (-4 *3 (-1097)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-898 *2)) (-4 *2 (-1097))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-890 *3)) (-4 *3 (-1097)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1100 *3 *4 *5 *6 *7)) (-4 *3 (-1097)) (-4 *4 (-1097)) - (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *7 (-1097)) (-5 *2 (-112))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-642 *1)) (-4 *1 (-307))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-685 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-373 *2)) - (-4 *4 (-373 *2))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1175 (-407 (-564)))) (-5 *1 (-190))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |preimage| (-642 *3)) (|:| |image| (-642 *3)))) - (-5 *1 (-903 *3)) (-4 *3 (-1097))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-323 *3 *4)) (-4 *3 (-1097)) - (-4 *4 (-131))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-890 *4)) (-4 *4 (-1097)) (-5 *1 (-888 *4 *3)) - (-4 *3 (-1212)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-890 *3)) (-4 *3 (-1097))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) - (-5 *1 (-749))))) + (-12 (-5 *2 (-644 *3)) (-4 *1 (-900 *3)) (-4 *3 (-1099)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-900 *2)) (-4 *2 (-1099))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-547))))) +(((*1 *1 *2) + (-12 (-5 *2 (-644 (-905 *3))) (-4 *3 (-1099)) (-5 *1 (-904 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1099 *4)) (-4 *4 (-1097)) (-5 *2 (-1 *4)) - (-5 *1 (-1015 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-379))) (-5 *1 (-1038)) (-5 *3 (-379)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1091 (-564))) (-5 *2 (-1 (-564))) (-5 *1 (-1045))))) + (|partial| -12 (-4 *4 (-13 (-558) (-1038 (-566)))) (-4 *5 (-432 *4)) + (-5 *2 (-420 (-1171 (-409 (-566))))) (-5 *1 (-437 *4 *5 *3)) + (-4 *3 (-1240 *5))))) +(((*1 *2 *1) + (-12 (-5 *2 (-644 (-52))) (-5 *1 (-892 *3)) (-4 *3 (-1099))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-332 *3)) (-4 *3 (-850))))) (((*1 *2 *3 *4) - (-12 (-5 *2 (-642 (-169 *4))) (-5 *1 (-155 *3 *4)) - (-4 *3 (-1238 (-169 (-564)))) (-4 *4 (-13 (-363) (-846))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-363) (-846))) (-5 *2 (-642 (-169 *4))) - (-5 *1 (-181 *4 *3)) (-4 *3 (-1238 (-169 *4))))) - ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-363) (-846))) (-5 *2 (-642 (-169 *4))) - (-5 *1 (-181 *4 *3)) (-4 *3 (-1238 (-169 *4)))))) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) (((*1 *2 *3) - (-12 (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-216 *4 *3)) - (-4 *3 (-1238 *4))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-363)) (-5 *1 (-894 *2 *3)) - (-4 *2 (-1238 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-689 (-546)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) - (-5 *2 (-642 (-642 (-941 *3)))))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-642 (-642 (-941 *4)))) (-5 *3 (-112)) (-4 *4 (-1047)) - (-4 *1 (-1131 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-642 (-642 (-941 *3)))) (-4 *3 (-1047)) - (-4 *1 (-1131 *3)))) - ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-642 (-642 (-642 *4)))) (-5 *3 (-112)) - (-4 *1 (-1131 *4)) (-4 *4 (-1047)))) - ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-642 (-642 (-941 *4)))) (-5 *3 (-112)) - (-4 *1 (-1131 *4)) (-4 *4 (-1047)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-642 (-642 (-642 *5)))) (-5 *3 (-642 (-171))) - (-5 *4 (-171)) (-4 *1 (-1131 *5)) (-4 *5 (-1047)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-642 (-642 (-941 *5)))) (-5 *3 (-642 (-171))) - (-5 *4 (-171)) (-4 *1 (-1131 *5)) (-4 *5 (-1047))))) + (-12 (-4 *4 (-558)) (-4 *2 (-13 (-432 (-169 *4)) (-1002) (-1199))) + (-5 *1 (-600 *4 *3 *2)) (-4 *3 (-13 (-432 *4) (-1002) (-1199)))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-566)) (-5 *1 (-420 *2)) (-4 *2 (-558))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-324 *3 *4)) (-4 *3 (-1099)) + (-4 *4 (-131))))) +(((*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-527))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-1173)) (-5 *1 (-585 *2)) (-4 *2 (-1036 *3)) - (-4 *2 (-363)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-585 *2)) (-4 *2 (-363)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1173)) (-4 *4 (-556)) (-5 *1 (-628 *4 *2)) - (-4 *2 (-13 (-430 *4) (-1000) (-1197))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1089 *2)) (-4 *2 (-13 (-430 *4) (-1000) (-1197))) - (-4 *4 (-556)) (-5 *1 (-628 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-957)) (-5 *2 (-1173)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1089 *1)) (-4 *1 (-957))))) -(((*1 *2 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-172)))) - ((*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-172))))) -(((*1 *2) - (-12 (-4 *3 (-791)) (-4 *4 (-848)) (-4 *2 (-907)) - (-5 *1 (-457 *3 *4 *2 *5)) (-4 *5 (-947 *2 *3 *4)))) - ((*1 *2) - (-12 (-4 *3 (-791)) (-4 *4 (-848)) (-4 *2 (-907)) - (-5 *1 (-904 *2 *3 *4 *5)) (-4 *5 (-947 *2 *3 *4)))) - ((*1 *2) (-12 (-4 *2 (-907)) (-5 *1 (-905 *2 *3)) (-4 *3 (-1238 *2))))) + (-12 (-5 *2 (-470)) (-5 *3 (-644 (-264))) (-5 *1 (-1265)))) + ((*1 *1 *1) (-5 *1 (-1265)))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) + (-4 *4 (-1049))))) +(((*1 *2 *3 *4) + (-12 (-4 *7 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-558)) + (-4 *8 (-949 *7 *5 *6)) + (-5 *2 (-2 (|:| -3631 (-771)) (|:| -3103 *3) (|:| |radicand| *3))) + (-5 *1 (-953 *5 *6 *7 *8 *3)) (-5 *4 (-771)) + (-4 *3 + (-13 (-365) + (-10 -8 (-15 -2479 ($ *8)) (-15 -4157 (*8 $)) (-15 -4167 (*8 $)))))))) +(((*1 *2 *2) + (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1199)))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-316 (-564))) (|:| -2266 (-316 (-379))) - (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1172)))) - (-5 *1 (-1172))))) -(((*1 *2 *2) - (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1197)))))) -(((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1238 *6)) - (-4 *6 (-13 (-363) (-147) (-1036 *4))) (-5 *4 (-564)) - (-5 *2 - (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) - (|:| -3359 - (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) - (|:| |beta| *3))))) - (-5 *1 (-1013 *6 *3))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-850 *2)) (-4 *2 (-1047)) (-4 *2 (-363))))) + (-3 (|:| I (-317 (-566))) (|:| -2341 (-317 (-381))) + (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1174)))) + (-5 *1 (-1174))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-771)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) + (-4 *4 (-1049))))) +(((*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308))))) (((*1 *2) - (-12 (-4 *3 (-556)) (-5 *2 (-642 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-417 *3))))) -(((*1 *1) (-5 *1 (-141)))) -(((*1 *1 *1) (-12 (-5 *1 (-1198 *2)) (-4 *2 (-1097))))) + (-12 (-4 *1 (-351)) + (-5 *2 (-644 (-2 (|:| -2325 (-566)) (|:| -3631 (-566)))))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) + (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *4 (-225)) + (-5 *2 (-1035)) (-5 *1 (-752))))) (((*1 *2 *3) - (-12 (-5 *3 (-1155)) (-5 *2 (-214 (-502))) (-5 *1 (-835))))) -(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1155)) (-5 *1 (-192)))) - ((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1155)) (-5 *1 (-300)))) - ((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1155)) (-5 *1 (-305))))) -(((*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) - ((*1 *1 *2) (-12 (-5 *2 (-642 (-564))) (-5 *1 (-969))))) + (-12 (-5 *3 (-689 (-409 (-952 *4)))) (-4 *4 (-454)) + (-5 *2 (-644 (-3 (-409 (-952 *4)) (-1164 (-1175) (-952 *4))))) + (-5 *1 (-293 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *5 (-112)) + (-5 *2 (-1035)) (-5 *1 (-745))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-862))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862))))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-1 (-225) (-225) (-225))) + (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) + (-5 *5 (-1093 (-225))) (-5 *6 (-644 (-264))) (-5 *2 (-1132 (-225))) + (-5 *1 (-697)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-943 (-225)) (-225) (-225))) (-5 *4 (-1093 (-225))) + (-5 *5 (-644 (-264))) (-5 *2 (-1132 (-225))) (-5 *1 (-697)))) + ((*1 *2 *2 *3 *4 *4 *5) + (-12 (-5 *2 (-1132 (-225))) (-5 *3 (-1 (-943 (-225)) (-225) (-225))) + (-5 *4 (-1093 (-225))) (-5 *5 (-644 (-264))) (-5 *1 (-697))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-317 (-566))) (|:| -2341 (-317 (-381))) + (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1174)))) + (-5 *1 (-1174))))) +(((*1 *1 *1) (-5 *1 (-1062)))) +(((*1 *2 *3 *2) + (-12 (-4 *1 (-787)) (-5 *2 (-1035)) + (-5 *3 + (-2 (|:| |fn| (-317 (-225))) + (|:| -1680 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))))) + ((*1 *2 *3 *2) + (-12 (-4 *1 (-787)) (-5 *2 (-1035)) + (-5 *3 + (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) + (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225))))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) - (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) + (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) + (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 @@ -9779,1104 +8810,1315 @@ (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1153 (-225))) + (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -4138 + (|:| -1680 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *1 (-559))))) -(((*1 *1 *2 *2) - (-12 + (-5 *1 (-561))))) +(((*1 *2 *3) + (-12 (-5 *3 (-921)) (-5 *2 (-1171 *4)) (-5 *1 (-359 *4)) + (-4 *4 (-351))))) +(((*1 *2 *1) (-12 (-4 *1 (-1252 *3)) (-4 *3 (-1214)) (-5 *2 (-771))))) +(((*1 *2 *2) + (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1199)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 (-483 *4 *5))) (-14 *4 (-644 (-1175))) + (-4 *5 (-454)) (-5 *2 - (-3 (|:| I (-316 (-564))) (|:| -2266 (-316 (-379))) - (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1172)))) - (-5 *1 (-1172))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-294 *2)) (-4 *2 (-724)) (-4 *2 (-1212))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-394)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-1192))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-769)) (-5 *1 (-586 *2)) (-4 *2 (-545))))) + (-2 (|:| |gblist| (-644 (-247 *4 *5))) + (|:| |gvlist| (-644 (-566))))) + (-5 *1 (-631 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-317 (-225)))) (-5 *4 (-771)) + (-5 *2 (-689 (-225))) (-5 *1 (-268))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1240 *3)) (-4 *3 (-1049)) (-5 *2 (-1171 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-651 *4)) (-4 *4 (-342 *5 *6 *7)) - (-4 *5 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564))))) - (-4 *6 (-1238 *5)) (-4 *7 (-1238 (-407 *6))) + (-12 (-5 *3 (-689 *8)) (-4 *8 (-949 *5 *7 *6)) + (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-850) (-614 (-1175)))) + (-4 *7 (-793)) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2131 (-642 *4)))) - (-5 *1 (-804 *5 *6 *7 *4))))) -(((*1 *1 *1) - (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047))))) -(((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1000)))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-152 *2 *3 *4)) (-14 *2 (-919)) (-4 *3 (-363)) - (-14 *4 (-991 *2 *3)))) - ((*1 *1 *1) - (|partial| -12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1238 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-556)))) - ((*1 *1 *1) - (|partial| -12 (-5 *1 (-713 *2 *3 *4 *5 *6)) (-4 *2 (-172)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-716 *2)) (-4 *2 (-363)))) - ((*1 *1) (-12 (-5 *1 (-716 *2)) (-4 *2 (-363)))) - ((*1 *1 *1) (|partial| -4 *1 (-720))) - ((*1 *1 *1) (|partial| -4 *1 (-724))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) - (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) - (-5 *1 (-774 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))) - ((*1 *2 *2 *1) - (|partial| -12 (-4 *1 (-1065 *3 *2)) (-4 *3 (-13 (-846) (-363))) - (-4 *2 (-1238 *3)))) - ((*1 *2 *2) - (|partial| -12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-919)) (-5 *1 (-1265)))) - ((*1 *2) (-12 (-5 *2 (-919)) (-5 *1 (-1265))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1253 *3))))) -(((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-919)) (-5 *1 (-1098 *3 *4)) (-14 *3 *2) - (-14 *4 *2)))) -(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-995 *2)) (-4 *2 (-172))))) -(((*1 *1 *1) (-5 *1 (-1172))) + (-644 + (-2 (|:| -2299 (-771)) + (|:| |eqns| + (-644 + (-2 (|:| |det| *8) (|:| |rows| (-644 (-566))) + (|:| |cols| (-644 (-566)))))) + (|:| |fgb| (-644 *8))))) + (-5 *1 (-924 *5 *6 *7 *8)) (-5 *4 (-771))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1175)) + (-4 *5 (-13 (-558) (-1038 (-566)) (-639 (-566)))) + (-5 *2 + (-2 (|:| |func| *3) (|:| |kers| (-644 (-612 *3))) + (|:| |vals| (-644 *3)))) + (-5 *1 (-278 *5 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *5)))))) +(((*1 *1 *1) (-5 *1 (-1174))) ((*1 *1 *2) (-12 (-5 *2 - (-3 (|:| I (-316 (-564))) (|:| -2266 (-316 (-379))) - (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1172)))) - (-5 *1 (-1172))))) -(((*1 *2 *1) - (-12 (-4 *2 (-13 (-846) (-363))) (-5 *1 (-1058 *2 *3)) - (-4 *3 (-1238 *2))))) -(((*1 *2 *1) - (-12 (-5 *2 (-642 (-903 *3))) (-5 *1 (-902 *3)) (-4 *3 (-1097))))) -(((*1 *2 *2) - (-12 (-5 *2 (-941 *3)) (-4 *3 (-13 (-363) (-1197) (-1000))) - (-5 *1 (-176 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-554 *3)) (-4 *3 (-13 (-404) (-1197))) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-846)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1065 *4 *3)) (-4 *4 (-13 (-846) (-363))) - (-4 *3 (-1238 *4)) (-5 *2 (-112))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-687 *3)) (-4 *3 (-1047)) (-5 *1 (-688 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1155)) (-5 *3 (-821)) (-5 *1 (-820))))) -(((*1 *2 *3) - (-12 (-4 *3 (-1238 *2)) (-4 *2 (-1238 *4)) (-5 *1 (-983 *4 *2 *3 *5)) - (-4 *4 (-349)) (-4 *5 (-722 *2 *3))))) + (-3 (|:| I (-317 (-566))) (|:| -2341 (-317 (-381))) + (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1174)))) + (-5 *1 (-1174))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-644 *6)) (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) + (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) + (-4 *3 (-558))))) +(((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-771)) (-4 *5 (-365)) (-5 *2 (-409 *6)) + (-5 *1 (-867 *5 *4 *6)) (-4 *4 (-1255 *5)) (-4 *6 (-1240 *5)))) + ((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-771)) (-5 *4 (-1256 *5 *6 *7)) (-4 *5 (-365)) + (-14 *6 (-1175)) (-14 *7 *5) (-5 *2 (-409 (-1237 *6 *5))) + (-5 *1 (-868 *5 *6 *7)))) + ((*1 *2 *3 *3 *4) + (|partial| -12 (-5 *3 (-771)) (-5 *4 (-1256 *5 *6 *7)) (-4 *5 (-365)) + (-14 *6 (-1175)) (-14 *7 *5) (-5 *2 (-409 (-1237 *6 *5))) + (-5 *1 (-868 *5 *6 *7))))) +(((*1 *2 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) + (-5 *1 (-747))))) (((*1 *2 *3) - (-12 (-5 *3 (-169 *5)) (-4 *5 (-13 (-430 *4) (-1000) (-1197))) - (-4 *4 (-556)) (-4 *2 (-13 (-430 (-169 *4)) (-1000) (-1197))) - (-5 *1 (-598 *4 *5 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1153 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307))))) -(((*1 *1 *2) (-12 (-5 *2 (-642 (-379))) (-5 *1 (-263)))) - ((*1 *1) - (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-556)) (-4 *2 (-172)))) - ((*1 *2 *1) (-12 (-5 *1 (-418 *2)) (-4 *2 (-556))))) + (-12 (-4 *4 (-1049)) + (-4 *2 (-13 (-406) (-1038 *4) (-365) (-1199) (-285))) + (-5 *1 (-445 *4 *3 *2)) (-4 *3 (-1240 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-644 (-2 (|:| |k| (-1175)) (|:| |c| (-1286 *3))))) + (-5 *1 (-1286 *3)) (-4 *3 (-1049)))) + ((*1 *2 *1) + (-12 (-5 *2 (-644 (-2 (|:| |k| *3) (|:| |c| (-1288 *3 *4))))) + (-5 *1 (-1288 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) + (-5 *1 (-747))))) +(((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-771)) (-5 *1 (-782 *3)) (-4 *3 (-1049)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *1 (-963 *3 *2)) (-4 *2 (-131)) (-4 *3 (-558)) + (-4 *3 (-1049)) (-4 *2 (-792)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-771)) (-5 *1 (-1171 *3)) (-4 *3 (-1049)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-971)) (-4 *2 (-131)) (-5 *1 (-1177 *3)) (-4 *3 (-558)) + (-4 *3 (-1049)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-771)) (-5 *1 (-1237 *4 *3)) (-14 *4 (-1175)) + (-4 *3 (-1049))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-824))))) +(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *3 (-454)) (-4 *4 (-850)) (-4 *5 (-793)) (-5 *2 (-112)) + (-5 *1 (-987 *3 *4 *5 *6)) (-4 *6 (-949 *3 *5 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1139 *3 *4)) (-4 *3 (-13 (-1099) (-34))) + (-4 *4 (-13 (-1099) (-34)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1169 *1)) (-5 *4 (-1173)) (-4 *1 (-27)) - (-5 *2 (-642 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1169 *1)) (-4 *1 (-27)) (-5 *2 (-642 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-950 *1)) (-4 *1 (-27)) (-5 *2 (-642 *1)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1173)) (-4 *4 (-556)) (-5 *2 (-642 *1)) - (-4 *1 (-29 *4)))) - ((*1 *2 *1) (-12 (-4 *3 (-556)) (-5 *2 (-642 *1)) (-4 *1 (-29 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-316 (-225))) (-5 *4 (-642 (-1173))) - (-5 *5 (-1091 (-841 (-225)))) (-5 *2 (-1153 (-225))) (-5 *1 (-300))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-769)) (-5 *2 (-1267)) (-5 *1 (-1263)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-769)) (-5 *2 (-1267)) (-5 *1 (-1264))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-1216)) (-4 *5 (-1238 *4)) - (-5 *2 (-2 (|:| |radicand| (-407 *5)) (|:| |deg| (-769)))) - (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1238 (-407 *5)))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4411)) (-4 *1 (-244 *2)) (-4 *2 (-1212))))) -(((*1 *2 *3) - (-12 (-5 *3 (-642 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) - (-4 *4 (-556))))) -(((*1 *2 *3) - (-12 (-5 *3 (-642 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) - (-4 *4 (-556))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-687 *3)) - (-4 *3 (-13 (-307) (-10 -8 (-15 -3282 ((-418 $) $))))) - (-4 *4 (-1238 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-687 *3)) - (-4 *3 (-13 (-307) (-10 -8 (-15 -3282 ((-418 $) $))))) - (-4 *4 (-1238 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-860)))) - ((*1 *1 *1) (-5 *1 (-860)))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1 (-941 (-225)) (-941 (-225)))) (-5 *3 (-642 (-263))) - (-5 *1 (-261)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1 (-941 (-225)) (-941 (-225)))) (-5 *1 (-263)))) + (-12 (-5 *4 (-1175)) + (-4 *5 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) + (-5 *2 (-587 *3)) (-5 *1 (-428 *5 *3)) + (-4 *3 (-13 (-1199) (-29 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-642 (-481 *5 *6))) (-5 *3 (-481 *5 *6)) - (-14 *5 (-642 (-1173))) (-4 *6 (-452)) (-5 *2 (-1262 *6)) - (-5 *1 (-629 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-52)) (-5 *1 (-1190))))) + (-12 (-5 *4 (-1175)) (-4 *5 (-13 (-558) (-1038 (-566)) (-147))) + (-5 *2 (-587 (-409 (-952 *5)))) (-5 *1 (-572 *5)) + (-5 *3 (-409 (-952 *5)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-850)) (-5 *2 (-644 (-644 *4))) (-5 *1 (-1185 *4)) + (-5 *3 (-644 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1173)) - (-4 *4 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147))) - (-5 *1 (-802 *4 *2)) (-4 *2 (-13 (-29 *4) (-1197) (-957)))))) + (-12 (-4 *3 (-1049)) (-5 *1 (-446 *3 *2)) (-4 *2 (-1240 *3))))) +(((*1 *2) + (|partial| -12 (-4 *3 (-558)) (-4 *3 (-172)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -1419 (-644 *1)))) + (-4 *1 (-369 *3)))) + ((*1 *2) + (|partial| -12 + (-5 *2 + (-2 (|:| |particular| (-455 *3 *4 *5 *6)) + (|:| -1419 (-644 (-455 *3 *4 *5 *6))))) + (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-921)) + (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3)))))) +(((*1 *1 *1) (-12 (-4 *1 (-674 *2)) (-4 *2 (-1214))))) +(((*1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-1061)))) + ((*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1061))))) +(((*1 *2 *2 *2 *2 *3) + (-12 (-4 *3 (-558)) (-5 *1 (-969 *3 *2)) (-4 *2 (-1240 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1207 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) + (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-4 *5 (-370)) + (-5 *2 (-771))))) (((*1 *2 *3) - (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-1267)) - (-5 *1 (-449 *4 *5 *6 *3)) (-4 *3 (-947 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) -(((*1 *1) (-5 *1 (-1263)))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-769)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1047)) - (-4 *4 (-790)) (-4 *3 (-172))))) + (-12 (-5 *3 (-771)) (-5 *2 (-689 (-952 *4))) (-5 *1 (-1028 *4)) + (-4 *4 (-1049))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1214)) (-4 *3 (-1099)) + (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002)))))) (((*1 *2 *1) - (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-556)) - (-5 *2 (-1169 *3))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-642 *7)) (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-452)) - (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112)) - (-5 *1 (-986 *4 *5 *6 *7 *8)) (-4 *8 (-1068 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-642 *7)) (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-452)) - (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112)) - (-5 *1 (-1104 *4 *5 *6 *7 *8)) (-4 *8 (-1068 *4 *5 *6 *7))))) -(((*1 *1 *1 *1) (-4 *1 (-143))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545))))) + (-12 (-4 *1 (-1285 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)) + (-5 *2 (-819 *3)))) + ((*1 *2 *1) + (-12 (-4 *2 (-846)) (-5 *1 (-1287 *3 *2)) (-4 *3 (-1049))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-642 *5)) (-5 *4 (-642 (-1 *6 (-642 *6)))) - (-4 *5 (-38 (-407 (-564)))) (-4 *6 (-1253 *5)) (-5 *2 (-642 *6)) - (-5 *1 (-1255 *5 *6))))) -(((*1 *1 *2) - (-12 (-5 *2 (-642 (-642 *3))) (-4 *3 (-1097)) (-5 *1 (-903 *3))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1047)) (-5 *1 (-1234 *3 *2)) (-4 *2 (-1238 *3))))) + (-12 (-5 *3 (-689 (-169 (-409 (-566))))) + (-5 *2 + (-644 + (-2 (|:| |outval| (-169 *4)) (|:| |outmult| (-566)) + (|:| |outvect| (-644 (-689 (-169 *4))))))) + (-5 *1 (-764 *4)) (-4 *4 (-13 (-365) (-848)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-941 *3) (-941 *3))) (-5 *1 (-176 *3)) - (-4 *3 (-13 (-363) (-1197) (-1000)))))) -(((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-642 *8)) (-5 *4 (-112)) (-4 *8 (-1062 *5 *6 *7)) - (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) - (-5 *2 (-642 (-1025 *5 *6 *7 *8))) (-5 *1 (-1025 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-642 *8)) (-5 *4 (-112)) (-4 *8 (-1062 *5 *6 *7)) - (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) - (-5 *2 (-642 (-1143 *5 *6 *7 *8))) (-5 *1 (-1143 *5 *6 *7 *8))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1155)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) - (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-1267)) - (-5 *1 (-986 *4 *5 *6 *7 *8)) (-4 *8 (-1068 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1155)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) - (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-1267)) - (-5 *1 (-1104 *4 *5 *6 *7 *8)) (-4 *8 (-1068 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-4 *1 (-833 *3)) (-4 *3 (-1097)) (-5 *2 (-55))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1216)) (-4 *3 (-1238 *4)) - (-4 *5 (-1238 (-407 *3))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) - (-4 *5 (-1238 (-407 *4))) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) - (-4 *5 (-1238 (-407 *4))) (-5 *2 (-112))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-642 *6)) (-4 *1 (-974 *3 *4 *5 *6)) (-4 *3 (-1047)) - (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) - (-4 *3 (-556))))) + (-12 (-5 *3 (-644 (-2 (|:| -2325 (-1171 *6)) (|:| -3631 (-566))))) + (-4 *6 (-308)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-566)) + (-5 *1 (-742 *4 *5 *6 *7)) (-4 *7 (-949 *6 *4 *5))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-771)) (-5 *1 (-856 *2)) (-4 *2 (-172)))) + ((*1 *2 *3 *3 *2) + (-12 (-5 *3 (-771)) (-5 *1 (-856 *2)) (-4 *2 (-172))))) +(((*1 *2 *1) (-12 (-4 *1 (-529)) (-5 *2 (-691 (-1222)))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-558)) + (-5 *2 (-2 (|:| -3371 *3) (|:| -3131 *3))) (-5 *1 (-1235 *4 *3)) + (-4 *3 (-1240 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-365) (-303) + (-10 -8 (-15 -4157 ((-1124 *3 (-612 $)) $)) + (-15 -4167 ((-1124 *3 (-612 $)) $)) + (-15 -2479 ($ (-1124 *3 (-612 $)))))))))) +(((*1 *2 *3) + (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *7 (-1064 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-644 *7)) (|:| |badPols| (-644 *7)))) + (-5 *1 (-977 *4 *5 *6 *7)) (-5 *3 (-644 *7))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-506 (-409 (-566)) (-240 *5 (-771)) (-864 *4) + (-247 *4 (-409 (-566))))) + (-14 *4 (-644 (-1175))) (-14 *5 (-771)) (-5 *2 (-112)) + (-5 *1 (-507 *4 *5))))) +(((*1 *2 *2) + (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) + (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) + (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-66 FUNCT1)))) + (-5 *2 (-1035)) (-5 *1 (-753))))) (((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) - (-4 *3 (-367 *4)))) - ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) + (-12 (-5 *2 (-112)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1049) (-850))) + (-14 *3 (-644 (-1175)))))) +(((*1 *2 *3 *4 *5 *6 *5 *3 *7) + (-12 (-5 *4 (-566)) + (-5 *6 + (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3856 (-381)))) + (-5 *7 (-1 (-1269) (-1264 *5) (-1264 *5) (-381))) + (-5 *3 (-1264 (-381))) (-5 *5 (-381)) (-5 *2 (-1269)) + (-5 *1 (-788)))) + ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) + (-12 (-5 *4 (-566)) + (-5 *6 + (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3856 (-381)))) + (-5 *7 (-1 (-1269) (-1264 *5) (-1264 *5) (-381))) + (-5 *3 (-1264 (-381))) (-5 *5 (-381)) (-5 *2 (-1269)) + (-5 *1 (-788))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-308)) (-5 *2 (-112))))) +(((*1 *1) (-5 *1 (-470)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1101 *4)) (-4 *4 (-1099)) (-5 *2 (-1 *4)) + (-5 *1 (-1017 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1040)) (-5 *3 (-381)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1093 (-566))) (-5 *2 (-1 (-566))) (-5 *1 (-1047))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-1269)) (-5 *1 (-831))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-508)) (-5 *1 (-114)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-114))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-771)) (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-1215 *3)) (-4 *3 (-850)) + (-4 *3 (-1099))))) +(((*1 *2 *1) + (-12 (-4 *1 (-604 *2 *3)) (-4 *3 (-1214)) (-4 *2 (-1099)) + (-4 *2 (-850))))) (((*1 *2 *1) - (-12 (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-373 *3)) - (-4 *5 (-373 *3)) (-5 *2 (-112)))) + (-12 (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) + (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-363 (-114))) (-4 *2 (-1049)) (-5 *1 (-714 *2 *4)) + (-4 *4 (-648 *2)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-363 (-114))) (-5 *1 (-836 *2)) (-4 *2 (-1049))))) +(((*1 *1 *1 *1) (-5 *1 (-862)))) (((*1 *2) - (-12 (-4 *1 (-349)) - (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(((*1 *2 *3 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-746))))) -(((*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-379)) (-5 *1 (-97)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-379)) (-5 *1 (-97))))) -(((*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1267)) (-5 *1 (-1135)))) - ((*1 *2 *3) - (-12 (-5 *3 (-642 (-860))) (-5 *2 (-1267)) (-5 *1 (-1135))))) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) + (-4 *3 (-369 *4)))) + ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-454)) (-4 *4 (-558)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3888 *4))) + (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4))))) +(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-588 *3)) (-4 *3 (-547))))) (((*1 *2 *3) - (-12 (-5 *3 (-642 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) - (-4 *4 (-556))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1141)) (-5 *2 (-141)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1141)) (-5 *2 (-144))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-769)) (-4 *1 (-1279 *3 *4)) (-4 *3 (-848)) - (-4 *4 (-1047)) (-4 *4 (-172)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1279 *2 *3)) (-4 *2 (-848)) (-4 *3 (-1047)) - (-4 *3 (-172))))) -(((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-536))))) + (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1191 *4 *5)) + (-4 *4 (-1099)) (-4 *5 (-1099))))) (((*1 *2 *1) - (-12 (-4 *1 (-1205 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-791)) - (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-4 *5 (-368)) - (-5 *2 (-769))))) -(((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-564)) (-4 *3 (-172)) (-4 *5 (-373 *3)) - (-4 *6 (-373 *3)) (-5 *1 (-686 *3 *5 *6 *2)) - (-4 *2 (-685 *3 *5 *6))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1169 *1)) (-5 *3 (-1173)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1169 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-950 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1173)) (-4 *1 (-29 *3)) (-4 *3 (-556)))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-556)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1169 *2)) (-5 *4 (-1173)) (-4 *2 (-430 *5)) - (-5 *1 (-32 *5 *2)) (-4 *5 (-556)))) - ((*1 *1 *2 *3) - (|partial| -12 (-5 *2 (-1169 *1)) (-5 *3 (-919)) (-4 *1 (-1010)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-1169 *1)) (-5 *3 (-919)) (-5 *4 (-860)) - (-4 *1 (-1010)))) - ((*1 *1 *2 *3) - (|partial| -12 (-5 *3 (-919)) (-4 *4 (-13 (-846) (-363))) - (-4 *1 (-1065 *4 *2)) (-4 *2 (-1238 *4))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-363)) (-4 *3 (-1047)) - (-5 *2 (-2 (|:| -4332 *1) (|:| -1992 *1))) (-4 *1 (-850 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-363)) (-4 *5 (-1047)) - (-5 *2 (-2 (|:| -4332 *3) (|:| -1992 *3))) (-5 *1 (-851 *5 *3)) - (-4 *3 (-850 *5))))) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) + (-4 *5 (-1240 (-409 *4))) (-5 *2 (-112))))) (((*1 *2 *2) - (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1197)))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1155)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) - (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-1267)) - (-5 *1 (-1069 *4 *5 *6 *7 *8)) (-4 *8 (-1068 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1155)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) - (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-1267)) - (-5 *1 (-1105 *4 *5 *6 *7 *8)) (-4 *8 (-1068 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *5 *6 *7 *6) - (|partial| -12 - (-5 *5 - (-2 (|:| |contp| *3) - (|:| -1569 (-642 (-2 (|:| |irr| *10) (|:| -3660 (-564))))))) - (-5 *6 (-642 *3)) (-5 *7 (-642 *8)) (-4 *8 (-848)) (-4 *3 (-307)) - (-4 *10 (-947 *3 *9 *8)) (-4 *9 (-791)) - (-5 *2 - (-2 (|:| |polfac| (-642 *10)) (|:| |correct| *3) - (|:| |corrfact| (-642 (-1169 *3))))) - (-5 *1 (-623 *8 *9 *3 *10)) (-5 *4 (-642 (-1169 *3)))))) -(((*1 *2 *3 *4 *4 *5 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *5 (-225)) - (-5 *2 (-1033)) (-5 *1 (-750))))) -(((*1 *2 *1) (-12 (-5 *2 (-860)) (-5 *1 (-52))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-225)) (-5 *5 (-564)) (-5 *2 (-1207 *3)) - (-5 *1 (-788 *3)) (-4 *3 (-972)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-642 (-642 (-941 (-225))))) (-5 *4 (-112)) - (-5 *1 (-1207 *2)) (-4 *2 (-972))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1101)) (-5 *1 (-280))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-850 *2)) (-4 *2 (-1047)) (-4 *2 (-363))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) - (-4 *3 (-367 *4)))) - ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-1090 *2)) (-4 *2 (-1212))))) -(((*1 *2 *2) (-12 (-5 *2 (-919)) (-5 *1 (-357 *3)) (-4 *3 (-349))))) + (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1199)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1224 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-1253 *3))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-564)) (-4 *1 (-1090 *3)) (-4 *3 (-1212))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-363)) (-4 *3 (-1047)) - (-5 *1 (-1157 *3))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-642 (-564))) (-5 *1 (-1107)) (-5 *3 (-564))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-890 *3)) (-4 *3 (-1097)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1279 *3 *4)) (-4 *3 (-848)) (-4 *4 (-1047)) - (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1285 *3 *4)) (-4 *3 (-1047)) - (-4 *4 (-844))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-646 *3)) (-4 *3 (-1047)) - (-5 *1 (-712 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1047)) (-5 *1 (-834 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1153 *4)) (-5 *3 (-1 *4 (-564))) (-4 *4 (-1047)) - (-5 *1 (-1157 *4))))) + (-12 (-4 *4 (-1099)) (-5 *2 (-889 *3 *4)) (-5 *1 (-885 *3 *4 *5)) + (-4 *3 (-1099)) (-4 *5 (-666 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-642 (-564))) (-5 *2 (-1175 (-407 (-564)))) - (-5 *1 (-190))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) - (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *5 (-225)) - (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN)))) - (-5 *2 (-1033)) (-5 *1 (-746))))) -(((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1000)))))) -(((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-642 (-610 *2))) (-5 *4 (-1173)) - (-4 *2 (-13 (-27) (-1197) (-430 *5))) - (-4 *5 (-13 (-556) (-1036 (-564)) (-637 (-564)))) - (-5 *1 (-277 *5 *2))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) - (-4 *4 (-848)) (-4 *2 (-556)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) - (-4 *4 (-848)) (-4 *2 (-556))))) -(((*1 *1 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-1047)))) - ((*1 *2 *3) - (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-373 *4)) - (-4 *6 (-373 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) - (-5 *1 (-686 *4 *5 *6 *3)) (-4 *3 (-685 *4 *5 *6)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-172)) (-4 *2 (-1047)) (-5 *1 (-712 *2 *3)) - (-4 *3 (-646 *2)))) - ((*1 *1 *1) - (-12 (-4 *2 (-172)) (-4 *2 (-1047)) (-5 *1 (-712 *2 *3)) - (-4 *3 (-646 *2)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-834 *2)) (-4 *2 (-172)) (-4 *2 (-1047)))) - ((*1 *1 *1) (-12 (-5 *1 (-834 *2)) (-4 *2 (-172)) (-4 *2 (-1047))))) -(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) - (-5 *2 - (-2 (|:| -2108 *4) (|:| -1437 *4) (|:| |totalpts| (-564)) - (|:| |success| (-112)))) - (-5 *1 (-787)) (-5 *5 (-564))))) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) + (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) + (-5 *2 (-381)) (-5 *1 (-205))))) +(((*1 *2 *3 *3 *4 *5 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) + (-4 *3 (-1064 *6 *7 *8)) + (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -2192 *4)))) + (-5 *1 (-1071 *6 *7 *8 *3 *4)) (-4 *4 (-1070 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-644 (-2 (|:| |val| (-644 *8)) (|:| -2192 *9)))) + (-5 *5 (-112)) (-4 *8 (-1064 *6 *7 *4)) (-4 *9 (-1070 *6 *7 *4 *8)) + (-4 *6 (-454)) (-4 *7 (-793)) (-4 *4 (-850)) + (-5 *2 (-644 (-2 (|:| |val| *8) (|:| -2192 *9)))) + (-5 *1 (-1071 *6 *7 *4 *8 *9))))) (((*1 *2 *2) + (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1199)))))) +(((*1 *2 *3) (-12 + (-5 *3 + (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) + (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) (-5 *2 - (-504 (-407 (-564)) (-240 *4 (-769)) (-862 *3) - (-247 *3 (-407 (-564))))) - (-14 *3 (-642 (-1173))) (-14 *4 (-769)) (-5 *1 (-505 *3 *4))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) - (-12 (-5 *4 (-564)) (-5 *5 (-1155)) (-5 *6 (-687 (-225))) - (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G)))) - (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) - (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) - (-5 *3 (-225)) (-5 *2 (-1033)) (-5 *1 (-747))))) -(((*1 *2 *3) - (-12 (-5 *3 (-642 (-2 (|:| -2254 (-1169 *6)) (|:| -2817 (-564))))) - (-4 *6 (-307)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-564)) - (-5 *1 (-740 *4 *5 *6 *7)) (-4 *7 (-947 *6 *4 *5))))) -(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) - (-12 (-5 *5 (-687 (-225))) (-5 *6 (-687 (-564))) (-5 *3 (-564)) - (-5 *4 (-225)) (-5 *2 (-1033)) (-5 *1 (-750))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) - (-5 *2 (-642 (-642 (-642 (-941 *3)))))))) + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| "There are singularities at both end points") + (|:| |notEvaluated| "End point continuity not yet evaluated"))) + (-5 *1 (-192))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-508)) (-5 *3 (-1117)) (-5 *1 (-1114))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-771)) (-4 *5 (-558)) + (-5 *2 + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-969 *5 *3)) (-4 *3 (-1240 *5))))) +(((*1 *2) + (|partial| -12 (-4 *3 (-558)) (-4 *3 (-172)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -1419 (-644 *1)))) + (-4 *1 (-369 *3)))) + ((*1 *2) + (|partial| -12 + (-5 *2 + (-2 (|:| |particular| (-455 *3 *4 *5 *6)) + (|:| -1419 (-644 (-455 *3 *4 *5 *6))))) + (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-921)) + (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1091 (-841 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1091 (-841 (-225)))) (-5 *2 (-225)) (-5 *1 (-300)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1091 (-841 (-225)))) (-5 *2 (-225)) (-5 *1 (-305))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 (-769) *2)) (-5 *4 (-769)) (-4 *2 (-1097)) - (-5 *1 (-676 *2)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1 *3 (-769) *3)) (-4 *3 (-1097)) (-5 *1 (-680 *3))))) -(((*1 *2 *3) (-12 (-5 *2 (-379)) (-5 *1 (-783 *3)) (-4 *3 (-612 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-919)) (-5 *2 (-379)) (-5 *1 (-783 *3)) - (-4 *3 (-612 *2)))) - ((*1 *2 *3) - (-12 (-5 *3 (-950 *4)) (-4 *4 (-1047)) (-4 *4 (-612 *2)) - (-5 *2 (-379)) (-5 *1 (-783 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-950 *5)) (-5 *4 (-919)) (-4 *5 (-1047)) - (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-783 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-407 (-950 *4))) (-4 *4 (-556)) (-4 *4 (-612 *2)) - (-5 *2 (-379)) (-5 *1 (-783 *4)))) + (-12 (-5 *3 (-1264 (-317 (-225)))) (-5 *2 (-1264 (-317 (-381)))) + (-5 *1 (-306))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-169 (-225))) (-5 *5 (-566)) (-5 *6 (-1157)) + (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-758))))) +(((*1 *2 *3 *4 *3 *4 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) + (-5 *1 (-756))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-454) (-147))) (-5 *2 (-420 *3)) + (-5 *1 (-100 *4 *3)) (-4 *3 (-1240 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-407 (-950 *5))) (-5 *4 (-919)) (-4 *5 (-556)) - (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-783 *5)))) + (-12 (-5 *4 (-644 *3)) (-4 *3 (-1240 *5)) (-4 *5 (-13 (-454) (-147))) + (-5 *2 (-420 *3)) (-5 *1 (-100 *5 *3))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-1060 (-1024 *3) (-1171 (-1024 *3)))) + (-5 *1 (-1024 *3)) (-4 *3 (-13 (-848) (-365) (-1022)))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-547)))) +(((*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))) + ((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-566)) (-4 *1 (-1092 *3)) (-4 *3 (-1214))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1264 *4)) (-4 *4 (-639 (-566))) (-5 *2 (-112)) + (-5 *1 (-1291 *4))))) +(((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1040))))) +(((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) ((*1 *2 *3) - (-12 (-5 *3 (-316 *4)) (-4 *4 (-556)) (-4 *4 (-848)) - (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-783 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-316 *5)) (-5 *4 (-919)) (-4 *5 (-556)) (-4 *5 (-848)) - (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-783 *5))))) + (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-769)) (-5 *2 (-112)) (-5 *1 (-586 *3)) (-4 *3 (-545))))) -(((*1 *2 *3 *1) - (-12 (-5 *2 (-642 (-1173))) (-5 *1 (-1176)) (-5 *3 (-1173))))) -(((*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1155)) (-5 *1 (-708))))) + (-12 (-4 *5 (-558)) + (-5 *2 (-2 (|:| -4196 (-689 *5)) (|:| |vec| (-1264 (-644 (-921)))))) + (-5 *1 (-90 *5 *3)) (-5 *4 (-921)) (-4 *3 (-656 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) + ((*1 *2) (-12 (-5 *2 (-904 (-566))) (-5 *1 (-917))))) +(((*1 *2 *3 *3) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-771)) (|:| |poli| *7) + (|:| |polj| *7))) + (-4 *5 (-793)) (-4 *7 (-949 *4 *5 *6)) (-4 *4 (-454)) (-4 *6 (-850)) + (-5 *2 (-112)) (-5 *1 (-451 *4 *5 *6 *7))))) +(((*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-538))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-642 (-862 *5))) (-14 *5 (-642 (-1173))) (-4 *6 (-452)) - (-5 *2 (-642 (-642 (-247 *5 *6)))) (-5 *1 (-471 *5 *6 *7)) - (-5 *3 (-642 (-247 *5 *6))) (-4 *7 (-452))))) + (-12 (-5 *3 (-169 (-225))) (-5 *4 (-566)) (-5 *2 (-1035)) + (-5 *1 (-758))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-644 (-1 *4 (-644 *4)))) (-4 *4 (-1099)) + (-5 *1 (-113 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1099)) + (-5 *1 (-113 *4)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-114)) (-5 *2 (-644 (-1 *4 (-644 *4)))) + (-5 *1 (-113 *4)) (-4 *4 (-1099))))) +(((*1 *1 *1) (-5 *1 (-1062)))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) - (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-986 *4 *5 *6 *7 *3)) (-4 *3 (-1068 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) - (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1104 *4 *5 *6 *7 *3)) (-4 *3 (-1068 *4 *5 *6 *7))))) + (-12 (-4 *4 (-558)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4343 *4))) + (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-558)) (-4 *3 (-1049)) + (-5 *2 (-2 (|:| -3371 *1) (|:| -3131 *1))) (-4 *1 (-852 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-558)) (-4 *5 (-1049)) + (-5 *2 (-2 (|:| -3371 *3) (|:| -3131 *3))) (-5 *1 (-853 *5 *3)) + (-4 *3 (-852 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-642 *3)) (-4 *3 (-947 *5 *6 *7)) (-4 *5 (-452)) - (-4 *6 (-791)) (-4 *7 (-848)) - (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) - (-5 *1 (-449 *5 *6 *7 *3))))) -(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1033)) (-5 *3 (-1173)) (-5 *1 (-267))))) + (-12 (-5 *4 (-1 (-644 *5) *6)) + (-4 *5 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *6 (-1240 *5)) + (-5 *2 (-644 (-2 (|:| -1573 *5) (|:| -3477 *3)))) + (-5 *1 (-809 *5 *6 *3 *7)) (-4 *3 (-656 *6)) + (-4 *7 (-656 (-409 *6)))))) +(((*1 *2) (-12 (-4 *1 (-1044 *2)) (-4 *2 (-23))))) +(((*1 *2) + (-12 (-4 *1 (-351)) + (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-653 (-409 *6))) (-5 *4 (-409 *6)) (-4 *6 (-1240 *5)) + (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1419 (-644 *4)))) + (-5 *1 (-810 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-653 (-409 *6))) (-4 *6 (-1240 *5)) + (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) + (-5 *2 (-2 (|:| -1419 (-644 (-409 *6))) (|:| -4196 (-689 *5)))) + (-5 *1 (-810 *5 *6)) (-5 *4 (-644 (-409 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-654 *6 (-409 *6))) (-5 *4 (-409 *6)) (-4 *6 (-1240 *5)) + (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1419 (-644 *4)))) + (-5 *1 (-810 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-654 *6 (-409 *6))) (-4 *6 (-1240 *5)) + (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) + (-5 *2 (-2 (|:| -1419 (-644 (-409 *6))) (|:| -4196 (-689 *5)))) + (-5 *1 (-810 *5 *6)) (-5 *4 (-644 (-409 *6)))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-547))))) (((*1 *2 *1) - (-12 (-4 *2 (-1097)) (-5 *1 (-962 *2 *3)) (-4 *3 (-1097))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-642 (-610 (-48)))) (-5 *1 (-48)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-610 (-48))) (-5 *1 (-48)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1169 (-48))) (-5 *3 (-642 (-610 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1169 (-48))) (-5 *3 (-610 (-48))) (-5 *1 (-48)))) - ((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) + (-12 (-4 *1 (-1247 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1224 *3)) + (-5 *2 (-409 (-566)))))) +(((*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-1267)))) + ((*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-1267))))) +(((*1 *2 *3 *2) + (|partial| -12 (-5 *2 (-1264 *4)) (-5 *3 (-689 *4)) (-4 *4 (-365)) + (-5 *1 (-667 *4)))) + ((*1 *2 *3 *2) + (|partial| -12 (-4 *4 (-365)) + (-4 *5 (-13 (-375 *4) (-10 -7 (-6 -4418)))) + (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4418)))) + (-5 *1 (-668 *4 *5 *2 *3)) (-4 *3 (-687 *4 *5 *2)))) + ((*1 *2 *3 *2 *4 *5) + (|partial| -12 (-5 *4 (-644 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-365)) + (-5 *1 (-814 *2 *3)) (-4 *3 (-656 *2)))) ((*1 *2 *3) - (-12 (-4 *2 (-13 (-363) (-846))) (-5 *1 (-181 *2 *3)) - (-4 *3 (-1238 (-169 *2))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-919)) (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)))) - ((*1 *2 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-363)))) - ((*1 *2 *1) - (-12 (-4 *1 (-370 *2 *3)) (-4 *3 (-1238 *2)) (-4 *2 (-172)))) - ((*1 *2 *1) - (-12 (-4 *4 (-1238 *2)) (-4 *2 (-990 *3)) (-5 *1 (-413 *3 *2 *4 *5)) - (-4 *3 (-307)) (-4 *5 (-13 (-409 *2 *4) (-1036 *2))))) - ((*1 *2 *1) - (-12 (-4 *4 (-1238 *2)) (-4 *2 (-990 *3)) - (-5 *1 (-414 *3 *2 *4 *5 *6)) (-4 *3 (-307)) (-4 *5 (-409 *2 *4)) - (-14 *6 (-1262 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-919)) (-4 *5 (-1047)) - (-4 *2 (-13 (-404) (-1036 *5) (-363) (-1197) (-284))) - (-5 *1 (-443 *5 *3 *2)) (-4 *3 (-1238 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-642 (-610 (-495)))) (-5 *1 (-495)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-610 (-495))) (-5 *1 (-495)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1169 (-495))) (-5 *3 (-642 (-610 (-495)))) - (-5 *1 (-495)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1169 (-495))) (-5 *3 (-610 (-495))) (-5 *1 (-495)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1262 *4)) (-5 *3 (-919)) (-4 *4 (-349)) - (-5 *1 (-528 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-452)) (-4 *5 (-722 *4 *2)) (-4 *2 (-1238 *4)) - (-5 *1 (-773 *4 *2 *5 *3)) (-4 *3 (-1238 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-172)))) - ((*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-172)))) - ((*1 *1 *1) (-4 *1 (-1057)))) + (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) + (-5 *1 (-1127 *3 *2)) (-4 *3 (-1240 *2))))) +(((*1 *1 *1) (-4 *1 (-869 *2)))) +(((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -4343 *3) (|:| |coef2| (-782 *3)))) + (-5 *1 (-782 *3)) (-4 *3 (-558)) (-4 *3 (-1049))))) (((*1 *2 *1) - (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) - (-4 *5 (-1238 (-407 *4))) - (-5 *2 (-2 (|:| |num| (-1262 *4)) (|:| |den| *4)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-642 *2)) (-4 *2 (-947 *4 *5 *6)) (-4 *4 (-363)) - (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) - (-5 *1 (-450 *4 *5 *6 *2)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-363)) - (-5 *2 - (-2 (|:| R (-687 *6)) (|:| A (-687 *6)) (|:| |Ainv| (-687 *6)))) - (-5 *1 (-976 *6)) (-5 *3 (-687 *6))))) + (-12 (-4 *2 (-558)) (-5 *1 (-623 *2 *3)) (-4 *3 (-1240 *2))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) +(((*1 *1 *1 *1) (-5 *1 (-862)))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-373 *3)) - (-4 *5 (-373 *3)) (-5 *2 (-564)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1214)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-5 *2 (-566)))) ((*1 *2 *1) - (-12 (-4 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-564))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-642 (-564))) (-5 *4 (-903 (-564))) - (-5 *2 (-687 (-564))) (-5 *1 (-589)))) - ((*1 *2 *3) - (-12 (-5 *3 (-642 (-564))) (-5 *2 (-642 (-687 (-564)))) - (-5 *1 (-589)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-642 (-564))) (-5 *4 (-642 (-903 (-564)))) - (-5 *2 (-642 (-687 (-564)))) (-5 *1 (-589))))) + (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-566))))) +(((*1 *2 *2 *2) + (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) + (-5 *1 (-1127 *3 *2)) (-4 *3 (-1240 *2))))) +(((*1 *2 *2) + (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1199)))))) (((*1 *2 *3) - (-12 (-5 *3 (-687 (-407 (-950 (-564))))) (-5 *2 (-642 (-316 (-564)))) - (-5 *1 (-1029))))) -(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-697)) (-5 *1 (-305))))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-564)) (-5 *5 (-687 (-225))) (-5 *4 (-225)) - (-5 *2 (-1033)) (-5 *1 (-750))))) -(((*1 *2 *2 *3 *3 *4) - (-12 (-5 *4 (-769)) (-4 *3 (-556)) (-5 *1 (-967 *3 *2)) - (-4 *2 (-1238 *3))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-821)) (-5 *2 (-1267)) (-5 *1 (-820))))) -(((*1 *2 *2 *2 *2 *3) - (-12 (-4 *3 (-556)) (-5 *1 (-967 *3 *2)) (-4 *2 (-1238 *3))))) -(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1197)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114))))) -(((*1 *2 *1) - (-12 (-5 *2 (-769)) (-5 *1 (-1161 *3 *4)) (-14 *3 (-919)) - (-4 *4 (-1047))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) - (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-986 *4 *5 *6 *7 *3)) (-4 *3 (-1068 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) - (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1104 *4 *5 *6 *7 *3)) (-4 *3 (-1068 *4 *5 *6 *7))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-556)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) - (-5 *2 (-642 *1)) (-4 *1 (-1062 *3 *4 *5))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1212)) (-5 *1 (-375 *4 *2)) - (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4411))))))) + (-12 (-4 *4 (-850)) (-5 *2 (-1186 (-644 *4))) (-5 *1 (-1185 *4)) + (-5 *3 (-644 *4))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-508)) (-5 *2 (-112)) (-5 *1 (-114))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-3 (-407 (-950 *5)) (-1162 (-1173) (-950 *5)))) - (-4 *5 (-452)) (-5 *2 (-642 (-687 (-407 (-950 *5))))) - (-5 *1 (-292 *5)) (-5 *4 (-687 (-407 (-950 *5))))))) + (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) + (-4 *3 (-1064 *5 *6 *7)) + (-5 *2 (-644 (-2 (|:| |val| (-112)) (|:| -2192 *4)))) + (-5 *1 (-776 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3))))) +(((*1 *1 *1) + (-12 (-4 *2 (-454)) (-4 *3 (-850)) (-4 *4 (-793)) + (-5 *1 (-987 *2 *3 *4 *5)) (-4 *5 (-949 *2 *4 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1000)))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1238 *2)) (-4 *2 (-1047)) (-4 *2 (-556))))) -(((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *4 (-1 (-3 (-564) "failed") *5)) (-4 *5 (-1047)) - (-5 *2 (-564)) (-5 *1 (-543 *5 *3)) (-4 *3 (-1238 *5)))) - ((*1 *2 *3 *4 *2 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-564) "failed") *4)) (-4 *4 (-1047)) - (-5 *2 (-564)) (-5 *1 (-543 *4 *3)) (-4 *3 (-1238 *4)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-564) "failed") *4)) (-4 *4 (-1047)) - (-5 *2 (-564)) (-5 *1 (-543 *4 *3)) (-4 *3 (-1238 *4))))) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *1 *1) (-12 (-5 *1 (-420 *2)) (-4 *2 (-558))))) +(((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-759))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1157)) (-5 *1 (-1195))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-1099)) (-4 *2 (-900 *4)) (-5 *1 (-692 *4 *2 *5 *3)) + (-4 *5 (-375 *2)) (-4 *3 (-13 (-375 *4) (-10 -7 (-6 -4417))))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-151 *2)) + (-4 *2 (-1214))))) +(((*1 *1 *1) (-4 *1 (-1143)))) +(((*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-1099))))) +(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-926)))) + ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-927)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-927)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266))))) (((*1 *2 *3) - (-12 (-5 *3 (-1235 *5 *4)) (-4 *4 (-818)) (-14 *5 (-1173)) - (-5 *2 (-564)) (-5 *1 (-1111 *4 *5))))) -(((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-642 (-642 (-225)))) (-5 *4 (-225)) - (-5 *2 (-642 (-941 *4))) (-5 *1 (-1208)) (-5 *3 (-941 *4))))) + (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *7 (-949 *4 *5 *6)) (-5 *2 (-644 (-644 *7))) + (-5 *1 (-450 *4 *5 *6 *7)) (-5 *3 (-644 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-793)) + (-4 *7 (-850)) (-4 *8 (-949 *5 *6 *7)) (-5 *2 (-644 (-644 *8))) + (-5 *1 (-450 *5 *6 *7 *8)) (-5 *3 (-644 *8))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756))))) -(((*1 *2 *3) - (-12 (-14 *4 (-642 (-1173))) (-14 *5 (-769)) + (-12 (-5 *3 (-689 *8)) (-4 *8 (-949 *5 *7 *6)) + (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-850) (-614 (-1175)))) + (-4 *7 (-793)) (-5 *2 - (-642 - (-504 (-407 (-564)) (-240 *5 (-769)) (-862 *4) - (-247 *4 (-407 (-564)))))) - (-5 *1 (-505 *4 *5)) - (-5 *3 - (-504 (-407 (-564)) (-240 *5 (-769)) (-862 *4) - (-247 *4 (-407 (-564)))))))) -(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-97))))) -(((*1 *2 *1) (|partial| -12 (-5 *1 (-365 *2)) (-4 *2 (-1097)))) - ((*1 *2 *1) (|partial| -12 (-5 *2 (-1155)) (-5 *1 (-1193))))) -(((*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-241)))) - ((*1 *2 *3) - (-12 (-5 *3 (-642 (-1155))) (-5 *2 (-1267)) (-5 *1 (-241))))) -(((*1 *2) (-12 (-5 *2 (-642 (-1173))) (-5 *1 (-105))))) -(((*1 *2 *2) - (-12 (-5 *2 (-642 *7)) (-4 *7 (-1068 *3 *4 *5 *6)) (-4 *3 (-452)) - (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) - (-5 *1 (-986 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-642 *7)) (-4 *7 (-1068 *3 *4 *5 *6)) (-4 *3 (-452)) - (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) - (-5 *1 (-1104 *3 *4 *5 *6 *7))))) + (-644 + (-2 (|:| |eqzro| (-644 *8)) (|:| |neqzro| (-644 *8)) + (|:| |wcond| (-644 (-952 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1264 (-409 (-952 *5)))) + (|:| -1419 (-644 (-1264 (-409 (-952 *5)))))))))) + (-5 *1 (-924 *5 *6 *7 *8)) (-5 *4 (-644 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-689 *8)) (-5 *4 (-644 (-1175))) (-4 *8 (-949 *5 *7 *6)) + (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-850) (-614 (-1175)))) + (-4 *7 (-793)) + (-5 *2 + (-644 + (-2 (|:| |eqzro| (-644 *8)) (|:| |neqzro| (-644 *8)) + (|:| |wcond| (-644 (-952 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1264 (-409 (-952 *5)))) + (|:| -1419 (-644 (-1264 (-409 (-952 *5)))))))))) + (-5 *1 (-924 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-689 *7)) (-4 *7 (-949 *4 *6 *5)) + (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) + (-4 *6 (-793)) + (-5 *2 + (-644 + (-2 (|:| |eqzro| (-644 *7)) (|:| |neqzro| (-644 *7)) + (|:| |wcond| (-644 (-952 *4))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1264 (-409 (-952 *4)))) + (|:| -1419 (-644 (-1264 (-409 (-952 *4)))))))))) + (-5 *1 (-924 *4 *5 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-689 *9)) (-5 *5 (-921)) (-4 *9 (-949 *6 *8 *7)) + (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-850) (-614 (-1175)))) + (-4 *8 (-793)) + (-5 *2 + (-644 + (-2 (|:| |eqzro| (-644 *9)) (|:| |neqzro| (-644 *9)) + (|:| |wcond| (-644 (-952 *6))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1264 (-409 (-952 *6)))) + (|:| -1419 (-644 (-1264 (-409 (-952 *6)))))))))) + (-5 *1 (-924 *6 *7 *8 *9)) (-5 *4 (-644 *9)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-689 *9)) (-5 *4 (-644 (-1175))) (-5 *5 (-921)) + (-4 *9 (-949 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) + (-4 *7 (-13 (-850) (-614 (-1175)))) (-4 *8 (-793)) + (-5 *2 + (-644 + (-2 (|:| |eqzro| (-644 *9)) (|:| |neqzro| (-644 *9)) + (|:| |wcond| (-644 (-952 *6))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1264 (-409 (-952 *6)))) + (|:| -1419 (-644 (-1264 (-409 (-952 *6)))))))))) + (-5 *1 (-924 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-689 *8)) (-5 *4 (-921)) (-4 *8 (-949 *5 *7 *6)) + (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-850) (-614 (-1175)))) + (-4 *7 (-793)) + (-5 *2 + (-644 + (-2 (|:| |eqzro| (-644 *8)) (|:| |neqzro| (-644 *8)) + (|:| |wcond| (-644 (-952 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1264 (-409 (-952 *5)))) + (|:| -1419 (-644 (-1264 (-409 (-952 *5)))))))))) + (-5 *1 (-924 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-689 *9)) (-5 *4 (-644 *9)) (-5 *5 (-1157)) + (-4 *9 (-949 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) + (-4 *7 (-13 (-850) (-614 (-1175)))) (-4 *8 (-793)) (-5 *2 (-566)) + (-5 *1 (-924 *6 *7 *8 *9)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-689 *9)) (-5 *4 (-644 (-1175))) (-5 *5 (-1157)) + (-4 *9 (-949 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) + (-4 *7 (-13 (-850) (-614 (-1175)))) (-4 *8 (-793)) (-5 *2 (-566)) + (-5 *1 (-924 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-689 *8)) (-5 *4 (-1157)) (-4 *8 (-949 *5 *7 *6)) + (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-850) (-614 (-1175)))) + (-4 *7 (-793)) (-5 *2 (-566)) (-5 *1 (-924 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-689 *10)) (-5 *4 (-644 *10)) (-5 *5 (-921)) + (-5 *6 (-1157)) (-4 *10 (-949 *7 *9 *8)) (-4 *7 (-13 (-308) (-147))) + (-4 *8 (-13 (-850) (-614 (-1175)))) (-4 *9 (-793)) (-5 *2 (-566)) + (-5 *1 (-924 *7 *8 *9 *10)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-689 *10)) (-5 *4 (-644 (-1175))) (-5 *5 (-921)) + (-5 *6 (-1157)) (-4 *10 (-949 *7 *9 *8)) (-4 *7 (-13 (-308) (-147))) + (-4 *8 (-13 (-850) (-614 (-1175)))) (-4 *9 (-793)) (-5 *2 (-566)) + (-5 *1 (-924 *7 *8 *9 *10)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-689 *9)) (-5 *4 (-921)) (-5 *5 (-1157)) + (-4 *9 (-949 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) + (-4 *7 (-13 (-850) (-614 (-1175)))) (-4 *8 (-793)) (-5 *2 (-566)) + (-5 *1 (-924 *6 *7 *8 *9))))) +(((*1 *2 *1) + (-12 (-5 *2 (-644 (-52))) (-5 *1 (-892 *3)) (-4 *3 (-1099))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) + (-5 *1 (-755))))) +(((*1 *1 *2) + (-12 (-5 *2 (-921)) (-4 *1 (-238 *3 *4)) (-4 *4 (-1049)) + (-4 *4 (-1214)))) + ((*1 *1 *2) + (-12 (-14 *3 (-644 (-1175))) (-4 *4 (-172)) + (-4 *5 (-238 (-3002 *3) (-771))) + (-14 *6 + (-1 (-112) (-2 (|:| -2104 *2) (|:| -3631 *5)) + (-2 (|:| -2104 *2) (|:| -3631 *5)))) + (-5 *1 (-463 *3 *4 *2 *5 *6 *7)) (-4 *2 (-850)) + (-4 *7 (-949 *4 *5 (-864 *3))))) + ((*1 *2 *2) (-12 (-5 *2 (-943 (-225))) (-5 *1 (-1210))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365))))) +(((*1 *2 *3) + (-12 (-4 *4 (-558)) (-5 *2 (-1264 (-689 *4))) (-5 *1 (-90 *4 *5)) + (-5 *3 (-689 *4)) (-4 *5 (-656 *4))))) +(((*1 *2) + (-12 (-4 *3 (-1049)) (-5 *2 (-958 (-712 *3 *4))) (-5 *1 (-712 *3 *4)) + (-4 *4 (-1240 *3))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-980 *2)) (-4 *2 (-1049)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-943 (-225))) (-5 *1 (-1210)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1214)) (-4 *2 (-1049))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) + (-5 *1 (-752))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-264)))) + ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-469)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-469))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-949 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *2 (-850)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-793)) (-4 *5 (-1049)) (-4 *6 (-949 *5 *4 *2)) + (-4 *2 (-850)) (-5 *1 (-950 *4 *2 *5 *6 *3)) + (-4 *3 + (-13 (-365) + (-10 -8 (-15 -2479 ($ *6)) (-15 -4157 (*6 $)) + (-15 -4167 (*6 $))))))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-558)) + (-5 *2 (-1175)) (-5 *1 (-1043 *4))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1049)) (-5 *2 (-1264 *3)) (-5 *1 (-712 *3 *4)) + (-4 *4 (-1240 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756))))) + (-12 (-5 *4 (-1175)) (-5 *2 (-1 (-225) (-225))) (-5 *1 (-703 *3)) + (-4 *3 (-614 (-538))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1175)) (-5 *2 (-1 (-225) (-225) (-225))) + (-5 *1 (-703 *3)) (-4 *3 (-614 (-538)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 (-644 (-943 (-225))))) (-5 *2 (-644 (-225))) + (-5 *1 (-470))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-771)) (-4 *2 (-558)) (-5 *1 (-969 *2 *4)) + (-4 *4 (-1240 *2))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1 (-1125 *4 *3 *5))) (-4 *4 (-38 (-409 (-566)))) + (-4 *4 (-1049)) (-4 *3 (-850)) (-5 *1 (-1125 *4 *3 *5)) + (-4 *5 (-949 *4 (-533 *3) *3)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1 (-1208 *4))) (-5 *3 (-1175)) (-5 *1 (-1208 *4)) + (-4 *4 (-38 (-409 (-566)))) (-4 *4 (-1049))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-838))) (-5 *1 (-140))))) +(((*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1178))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099))))) +(((*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) + ((*1 *1 *1 *1) (-4 *1 (-475))) + ((*1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))) + ((*1 *2 *2) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-883)))) + ((*1 *1 *1) (-5 *1 (-971))) + ((*1 *1 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-771)) (-4 *4 (-558)) (-5 *1 (-969 *4 *2)) + (-4 *2 (-1240 *4))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-1099)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-850))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) + (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *4 (-225)) + (-5 *2 (-1035)) (-5 *1 (-752))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2162 *3))) + (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-1264 *1)) (-4 *1 (-369 *2)) (-4 *2 (-172)))) + ((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-418 *3 *2)) (-4 *3 (-419 *2)))) + ((*1 *2) (-12 (-4 *1 (-419 *2)) (-4 *2 (-172))))) (((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-1097)) - (-5 *2 (-2 (|:| -1914 *3) (|:| -2683 *4)))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-1232 *3 *2)) - (-4 *2 (-1238 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-1115)) (-5 *1 (-1112))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-642 *2)) (-4 *2 (-545)) (-5 *1 (-159 *2))))) + (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)) + (-5 *2 (-2 (|:| -1928 *3) (|:| -2806 *4)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1122 *3 *4 *2 *5)) (-4 *4 (-1049)) (-4 *5 (-238 *3 *4)) + (-4 *2 (-238 *3 *4))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-771)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) + (-4 *3 (-1064 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-644 *4)) + (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -2192 *4)))))) + (-5 *1 (-1068 *6 *7 *8 *3 *4)) (-4 *4 (-1070 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) + (-4 *3 (-1064 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-644 *4)) + (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -2192 *4)))))) + (-5 *1 (-1068 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-771)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) + (-4 *3 (-1064 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-644 *4)) + (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -2192 *4)))))) + (-5 *1 (-1144 *6 *7 *8 *3 *4)) (-4 *4 (-1108 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) + (-4 *3 (-1064 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-644 *4)) + (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -2192 *4)))))) + (-5 *1 (-1144 *5 *6 *7 *3 *4)) (-4 *4 (-1108 *5 *6 *7 *3))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-564)) (-4 *4 (-13 (-556) (-147))) (-5 *1 (-537 *4 *2)) - (-4 *2 (-1253 *4)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-564)) (-4 *4 (-13 (-363) (-368) (-612 *3))) - (-4 *5 (-1238 *4)) (-4 *6 (-722 *4 *5)) (-5 *1 (-541 *4 *5 *6 *2)) - (-4 *2 (-1253 *6)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-564)) (-4 *4 (-13 (-363) (-368) (-612 *3))) - (-5 *1 (-542 *4 *2)) (-4 *2 (-1253 *4)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1153 *4)) (-5 *3 (-564)) (-4 *4 (-13 (-556) (-147))) - (-5 *1 (-1149 *4))))) -(((*1 *2 *3) - (-12 (|has| *6 (-6 -4411)) (-4 *4 (-363)) (-4 *5 (-373 *4)) - (-4 *6 (-373 *4)) (-5 *2 (-642 *6)) (-5 *1 (-521 *4 *5 *6 *3)) - (-4 *3 (-685 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (|has| *9 (-6 -4411)) (-4 *4 (-556)) (-4 *5 (-373 *4)) - (-4 *6 (-373 *4)) (-4 *7 (-990 *4)) (-4 *8 (-373 *7)) - (-4 *9 (-373 *7)) (-5 *2 (-642 *6)) - (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-685 *4 *5 *6)) - (-4 *10 (-685 *7 *8 *9)))) - ((*1 *2 *1) - (-12 (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-373 *3)) - (-4 *5 (-373 *3)) (-4 *3 (-556)) (-5 *2 (-642 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-373 *4)) - (-4 *6 (-373 *4)) (-5 *2 (-642 *6)) (-5 *1 (-686 *4 *5 *6 *3)) - (-4 *3 (-685 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-556)) - (-5 *2 (-642 *7))))) -(((*1 *2 *1) (-12 (-4 *1 (-368)) (-5 *2 (-919)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1262 *4)) (-4 *4 (-349)) (-5 *2 (-919)) - (-5 *1 (-528 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1212)))) - ((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-1093)))) + (-12 (-5 *3 (-566)) (-4 *4 (-172)) (-4 *5 (-375 *4)) + (-4 *6 (-375 *4)) (-5 *1 (-688 *4 *5 *6 *2)) + (-4 *2 (-687 *4 *5 *6))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) + (-4 *3 (-1064 *5 *6 *7)) + (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -2192 *4)))) + (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) +(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-241)))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 (-1157))) (-5 *2 (-1269)) (-5 *1 (-241))))) +(((*1 *2 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1214)))) + ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1095)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1205 *3 *4 *5 *2)) (-4 *3 (-556)) - (-4 *4 (-791)) (-4 *5 (-848)) (-4 *2 (-1062 *3 *4 *5)))) + (|partial| -12 (-4 *1 (-1207 *3 *4 *5 *2)) (-4 *3 (-558)) + (-4 *4 (-793)) (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-769)) (-4 *1 (-1250 *3)) (-4 *3 (-1212)))) - ((*1 *2 *1) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1212))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4410)) (-4 *1 (-489 *3)) (-4 *3 (-1212)) - (-4 *3 (-1097)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-903 *4)) (-4 *4 (-1097)) (-5 *2 (-112)) - (-5 *1 (-902 *4)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-919)) (-5 *2 (-112)) (-5 *1 (-1098 *4 *5)) (-14 *4 *3) - (-14 *5 *3)))) -(((*1 *1 *1) - (-12 (-4 *2 (-349)) (-4 *2 (-1047)) (-5 *1 (-710 *2 *3)) - (-4 *3 (-1238 *2))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-363)) (-4 *3 (-1047)) - (-5 *1 (-1157 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1173)) (-5 *5 (-1091 (-225))) (-5 *2 (-925)) - (-5 *1 (-923 *3)) (-4 *3 (-612 (-536))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1173)) (-5 *2 (-925)) (-5 *1 (-923 *3)) - (-4 *3 (-612 (-536))))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-925)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1091 (-225))) - (-5 *1 (-925))))) + (-12 (-5 *2 (-771)) (-4 *1 (-1252 *3)) (-4 *3 (-1214)))) + ((*1 *2 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1214))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-689 *4)) (-5 *3 (-921)) (|has| *4 (-6 (-4419 "*"))) + (-4 *4 (-1049)) (-5 *1 (-1028 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-644 (-689 *4))) (-5 *3 (-921)) + (|has| *4 (-6 (-4419 "*"))) (-4 *4 (-1049)) (-5 *1 (-1028 *4))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-769)) (|:| |poli| *7) - (|:| |polj| *7))) - (-4 *5 (-791)) (-4 *7 (-947 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-848)) - (-5 *2 (-112)) (-5 *1 (-449 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-642 (-642 (-225)))) (-5 *1 (-924))))) -(((*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1155)) (-5 *1 (-708))))) + (-12 (-5 *3 (-483 *4 *5)) (-14 *4 (-644 (-1175))) (-4 *5 (-1049)) + (-5 *2 (-952 *5)) (-5 *1 (-944 *4 *5))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) + (-5 *1 (-747))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-771)) (-5 *2 (-409 (-566))) (-5 *1 (-225)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-771)) (-5 *2 (-409 (-566))) (-5 *1 (-225)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-771)) (-5 *2 (-409 (-566))) (-5 *1 (-381)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-771)) (-5 *2 (-409 (-566))) (-5 *1 (-381))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-114)) (-5 *1 (-113 *2)) (-4 *2 (-1099))))) +(((*1 *1 *1) (|partial| -4 *1 (-145))) ((*1 *1 *1) (-4 *1 (-351))) + ((*1 *1 *1) (|partial| -12 (-4 *1 (-145)) (-4 *1 (-909))))) (((*1 *2 *3) - (-12 (-4 *4 (-556)) (-5 *2 (-769)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-417 *4))))) + (-12 (-5 *3 (-1155 (-1155 *4))) (-5 *2 (-1155 *4)) (-5 *1 (-1159 *4)) + (-4 *4 (-1049))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-791)) (-4 *6 (-848)) - (-4 *7 (-947 *4 *5 *6)) (-5 *2 (-642 (-642 *7))) - (-5 *1 (-448 *4 *5 *6 *7)) (-5 *3 (-642 *7)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-791)) - (-4 *7 (-848)) (-4 *8 (-947 *5 *6 *7)) (-5 *2 (-642 (-642 *8))) - (-5 *1 (-448 *5 *6 *7 *8)) (-5 *3 (-642 *8)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-791)) (-4 *6 (-848)) - (-4 *7 (-947 *4 *5 *6)) (-5 *2 (-642 (-642 *7))) - (-5 *1 (-448 *4 *5 *6 *7)) (-5 *3 (-642 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-791)) - (-4 *7 (-848)) (-4 *8 (-947 *5 *6 *7)) (-5 *2 (-642 (-642 *8))) - (-5 *1 (-448 *5 *6 *7 *8)) (-5 *3 (-642 *8))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-790)) (-4 *2 (-1047)))) + (-12 (-4 *4 (-1218)) (-4 *5 (-1240 *4)) + (-5 *2 + (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-409 *5)) + (|:| |c2| (-409 *5)) (|:| |deg| (-771)))) + (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1240 (-409 *5)))))) +(((*1 *1 *1 *1) (-5 *1 (-862)))) +(((*1 *1) (-5 *1 (-157))) + ((*1 *2 *1) (-12 (-4 *1 (-1044 *2)) (-4 *2 (-23))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1171 (-409 (-952 *3)))) (-5 *1 (-455 *3 *4 *5 *6)) + (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) + (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-114)))) + ((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-114)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1049)) (-4 *3 (-850)) + (-4 *5 (-267 *3)) (-4 *6 (-793)) (-5 *2 (-771)))) + ((*1 *2 *1) + (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-850)) + (-4 *5 (-267 *4)) (-4 *6 (-793)) (-5 *2 (-771)))) + ((*1 *2 *1) (-12 (-4 *1 (-267 *3)) (-4 *3 (-850)) (-5 *2 (-771))))) +(((*1 *2 *3 *4 *4 *5 *6) + (-12 (-5 *3 (-644 (-644 (-943 (-225))))) (-5 *4 (-874)) + (-5 *5 (-921)) (-5 *6 (-644 (-264))) (-5 *2 (-470)) (-5 *1 (-1268)))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 (-644 (-943 (-225))))) (-5 *2 (-470)) + (-5 *1 (-1268)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-644 (-943 (-225))))) (-5 *4 (-644 (-264))) + (-5 *2 (-470)) (-5 *1 (-1268))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) + (-5 *1 (-752))))) +(((*1 *2 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1214)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1200 *3)) (-4 *3 (-1099))))) +(((*1 *1 *1 *1) (-5 *1 (-862)))) +(((*1 *2 *3) + (-12 (|has| *2 (-6 (-4419 "*"))) (-4 *5 (-375 *2)) (-4 *6 (-375 *2)) + (-4 *2 (-1049)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1240 *2)) + (-4 *4 (-687 *2 *5 *6))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-396)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1194))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) + (-5 *2 + (-2 (|:| -2153 *4) (|:| -1452 *4) (|:| |totalpts| (-566)) + (|:| |success| (-112)))) + (-5 *1 (-789)) (-5 *5 (-566))))) +(((*1 *2 *3 *4 *5 *5 *4 *6) + (-12 (-5 *5 (-612 *4)) (-5 *6 (-1171 *4)) + (-4 *4 (-13 (-432 *7) (-27) (-1199))) + (-4 *7 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1419 (-644 *4)))) + (-5 *1 (-562 *7 *4 *3)) (-4 *3 (-656 *4)) (-4 *3 (-1099)))) + ((*1 *2 *3 *4 *5 *5 *5 *4 *6) + (-12 (-5 *5 (-612 *4)) (-5 *6 (-409 (-1171 *4))) + (-4 *4 (-13 (-432 *7) (-27) (-1199))) + (-4 *7 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1419 (-644 *4)))) + (-5 *1 (-562 *7 *4 *3)) (-4 *3 (-656 *4)) (-4 *3 (-1099))))) +(((*1 *2 *3) + (-12 (-4 *4 (-365)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) + (-5 *2 (-771)) (-5 *1 (-523 *4 *5 *6 *3)) (-4 *3 (-687 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-4 *3 (-558)) (-5 *2 (-771)))) + ((*1 *2 *3) + (-12 (-4 *4 (-558)) (-4 *4 (-172)) (-4 *5 (-375 *4)) + (-4 *6 (-375 *4)) (-5 *2 (-771)) (-5 *1 (-688 *4 *5 *6 *3)) + (-4 *3 (-687 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-558)) + (-5 *2 (-771))))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) +(((*1 *1 *2 *1) + (-12 (|has| *1 (-6 -4417)) (-4 *1 (-151 *2)) (-4 *2 (-1214)) + (-4 *2 (-1099)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4417)) (-4 *1 (-151 *3)) + (-4 *3 (-1214)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-674 *3)) (-4 *3 (-1214)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-566)) (-4 *4 (-1099)) + (-5 *1 (-737 *4)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-566)) (-5 *1 (-737 *2)) (-4 *2 (-1099)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1139 *3 *4)) (-4 *3 (-13 (-1099) (-34))) + (-4 *4 (-13 (-1099) (-34))) (-5 *1 (-1140 *3 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-644 *2)) (-4 *2 (-949 *4 *5 *6)) (-4 *4 (-365)) + (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) + (-5 *1 (-452 *4 *5 *6 *2)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-365)) + (-5 *2 + (-2 (|:| R (-689 *6)) (|:| A (-689 *6)) (|:| |Ainv| (-689 *6)))) + (-5 *1 (-978 *6)) (-5 *3 (-689 *6))))) +(((*1 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) + (-5 *1 (-1127 *3 *2)) (-4 *3 (-1240 *2))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1175)) + (-4 *4 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) + (-5 *1 (-804 *4 *2)) (-4 *2 (-13 (-29 *4) (-1199) (-959)))))) +(((*1 *2 *3 *4 *4 *5 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) + (-5 *2 (-1035)) (-5 *1 (-752))))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) + (-5 *1 (-751))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-792)) (-4 *2 (-1049)))) ((*1 *2 *1) - (-12 (-4 *2 (-1047)) (-5 *1 (-50 *2 *3)) (-14 *3 (-642 (-1173))))) + (-12 (-4 *2 (-1049)) (-5 *1 (-50 *2 *3)) (-14 *3 (-644 (-1175))))) ((*1 *2 *1) - (-12 (-5 *2 (-316 *3)) (-5 *1 (-223 *3 *4)) - (-4 *3 (-13 (-1047) (-848))) (-14 *4 (-642 (-1173))))) + (-12 (-5 *2 (-317 *3)) (-5 *1 (-223 *3 *4)) + (-4 *3 (-13 (-1049) (-850))) (-14 *4 (-644 (-1175))))) ((*1 *2 *1) - (-12 (-4 *1 (-382 *2 *3)) (-4 *3 (-1097)) (-4 *2 (-1047)))) + (-12 (-4 *1 (-384 *2 *3)) (-4 *3 (-1099)) (-4 *2 (-1049)))) ((*1 *2 *1) - (-12 (-14 *3 (-642 (-1173))) (-4 *5 (-238 (-2158 *3) (-769))) + (-12 (-14 *3 (-644 (-1175))) (-4 *5 (-238 (-3002 *3) (-771))) (-14 *6 - (-1 (-112) (-2 (|:| -2065 *4) (|:| -2817 *5)) - (-2 (|:| -2065 *4) (|:| -2817 *5)))) - (-4 *2 (-172)) (-5 *1 (-461 *3 *2 *4 *5 *6 *7)) (-4 *4 (-848)) - (-4 *7 (-947 *2 *5 (-862 *3))))) - ((*1 *2 *1) (-12 (-4 *1 (-509 *2 *3)) (-4 *3 (-848)) (-4 *2 (-1097)))) + (-1 (-112) (-2 (|:| -2104 *4) (|:| -3631 *5)) + (-2 (|:| -2104 *4) (|:| -3631 *5)))) + (-4 *2 (-172)) (-5 *1 (-463 *3 *2 *4 *5 *6 *7)) (-4 *4 (-850)) + (-4 *7 (-949 *2 *5 (-864 *3))))) + ((*1 *2 *1) (-12 (-4 *1 (-511 *2 *3)) (-4 *3 (-850)) (-4 *2 (-1099)))) ((*1 *2 *1) - (-12 (-4 *2 (-556)) (-5 *1 (-621 *2 *3)) (-4 *3 (-1238 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-706 *2)) (-4 *2 (-1047)))) + (-12 (-4 *2 (-558)) (-5 *1 (-623 *2 *3)) (-4 *3 (-1240 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-708 *2)) (-4 *2 (-1049)))) ((*1 *2 *1) - (-12 (-4 *2 (-1047)) (-5 *1 (-733 *2 *3)) (-4 *3 (-848)) - (-4 *3 (-724)))) - ((*1 *2 *1) (-12 (-4 *1 (-850 *2)) (-4 *2 (-1047)))) + (-12 (-4 *2 (-1049)) (-5 *1 (-735 *2 *3)) (-4 *3 (-850)) + (-4 *3 (-726)))) + ((*1 *2 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)))) ((*1 *2 *1) - (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *3 (-790)) (-4 *4 (-848)) - (-4 *2 (-1047)))) + (-12 (-4 *1 (-973 *2 *3 *4)) (-4 *3 (-792)) (-4 *4 (-850)) + (-4 *2 (-1049)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1062 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-791)) - (-4 *2 (-848))))) -(((*1 *2 *1) - (-12 (-4 *3 (-452)) (-4 *4 (-848)) (-4 *5 (-791)) (-5 *2 (-642 *6)) - (-5 *1 (-985 *3 *4 *5 *6)) (-4 *6 (-947 *3 *5 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-642 (-642 (-941 (-225))))) (-5 *1 (-468))))) + (-12 (-4 *1 (-1064 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *2 (-850))))) +(((*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1269)) (-5 *1 (-381)))) + ((*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-381))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-850)) (-5 *1 (-245 *3))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-824)) (-5 *3 (-644 (-1175))) (-5 *1 (-825))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-365) (-147) (-1038 (-409 (-566))))) + (-4 *5 (-1240 *4)) (-5 *2 (-644 (-2 (|:| -2316 *5) (|:| -2008 *5)))) + (-5 *1 (-807 *4 *5 *3 *6)) (-4 *3 (-656 *5)) + (-4 *6 (-656 (-409 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-365) (-147) (-1038 (-409 (-566))))) + (-4 *4 (-1240 *5)) (-5 *2 (-644 (-2 (|:| -2316 *4) (|:| -2008 *4)))) + (-5 *1 (-807 *5 *4 *3 *6)) (-4 *3 (-656 *4)) + (-4 *6 (-656 (-409 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-365) (-147) (-1038 (-409 (-566))))) + (-4 *5 (-1240 *4)) (-5 *2 (-644 (-2 (|:| -2316 *5) (|:| -2008 *5)))) + (-5 *1 (-807 *4 *5 *6 *3)) (-4 *6 (-656 *5)) + (-4 *3 (-656 (-409 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-365) (-147) (-1038 (-409 (-566))))) + (-4 *4 (-1240 *5)) (-5 *2 (-644 (-2 (|:| -2316 *4) (|:| -2008 *4)))) + (-5 *1 (-807 *5 *4 *6 *3)) (-4 *6 (-656 *4)) + (-4 *3 (-656 (-409 *4)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002)))))) (((*1 *2 *3) - (-12 (-4 *4 (-307)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) - (-5 *2 - (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) - (-5 *1 (-1121 *4 *5 *6 *3)) (-4 *3 (-685 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-1212))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-112)) (-5 *1 (-827))))) -(((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4410)) (-4 *1 (-151 *2)) (-4 *2 (-1212)) - (-4 *2 (-1097)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4410)) (-4 *1 (-151 *3)) - (-4 *3 (-1212)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-672 *3)) (-4 *3 (-1212)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-564)) (-4 *4 (-1097)) - (-5 *1 (-735 *4)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-564)) (-5 *1 (-735 *2)) (-4 *2 (-1097)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1137 *3 *4)) (-4 *3 (-13 (-1097) (-34))) - (-4 *4 (-13 (-1097) (-34))) (-5 *1 (-1138 *3 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564)))))) + (-12 (-5 *3 (-1046 *4 *5)) (-4 *4 (-13 (-848) (-308) (-147) (-1022))) + (-14 *5 (-644 (-1175))) (-5 *2 (-644 (-644 (-1024 (-409 *4))))) + (-5 *1 (-1290 *4 *5 *6)) (-14 *6 (-644 (-1175))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-848) (-308) (-147) (-1022))) + (-5 *2 (-644 (-644 (-1024 (-409 *5))))) (-5 *1 (-1290 *5 *6 *7)) + (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-848) (-308) (-147) (-1022))) + (-5 *2 (-644 (-644 (-1024 (-409 *5))))) (-5 *1 (-1290 *5 *6 *7)) + (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175))))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 (-952 *4))) + (-4 *4 (-13 (-848) (-308) (-147) (-1022))) + (-5 *2 (-644 (-644 (-1024 (-409 *4))))) (-5 *1 (-1290 *4 *5 *6)) + (-14 *5 (-644 (-1175))) (-14 *6 (-644 (-1175)))))) +(((*1 *2) (-12 (-5 *2 (-1146 (-1157))) (-5 *1 (-393))))) (((*1 *2 *1) - (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-556)) - (-5 *2 (-1169 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820))))) -(((*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-1176))))) -(((*1 *1 *1) - (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-790)) - (-4 *2 (-452)))) - ((*1 *1 *1) - (-12 (-4 *1 (-342 *2 *3 *4)) (-4 *2 (-1216)) (-4 *3 (-1238 *2)) - (-4 *4 (-1238 (-407 *3))))) - ((*1 *1 *1) (-12 (-4 *1 (-850 *2)) (-4 *2 (-1047)) (-4 *2 (-452)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-947 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-791)) - (-4 *2 (-848)) (-4 *3 (-452)))) - ((*1 *1 *1) - (-12 (-4 *1 (-947 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) - (-4 *4 (-848)) (-4 *2 (-452)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-307)) (-4 *3 (-556)) (-5 *1 (-1160 *3 *2)) - (-4 *2 (-1238 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-790)))) + (-12 (-5 *2 (-1155 (-409 *3))) (-5 *1 (-174 *3)) (-4 *3 (-308))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-988 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1106 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1171 (-409 (-952 *3)))) (-5 *1 (-455 *3 *4 *5 *6)) + (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) + (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3)))))) +(((*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-1099)))) + ((*1 *1 *1) (-5 *1 (-632)))) +(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-31)))) + ((*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 (-1134))) (-5 *1 (-133)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 (-1134))) (-5 *1 (-138)))) + ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-154)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 (-1134))) (-5 *1 (-161)))) + ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-218)))) + ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-676)))) + ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1019)))) + ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1065)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 (-1134))) (-5 *1 (-1095))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-365)) (-5 *1 (-1025 *3 *2)) (-4 *2 (-656 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-365)) (-5 *2 (-2 (|:| -3477 *3) (|:| -1668 (-644 *5)))) + (-5 *1 (-1025 *5 *3)) (-5 *4 (-644 *5)) (-4 *3 (-656 *5))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-792)))) ((*1 *2 *1) - (-12 (-4 *1 (-382 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-1097)))) + (-12 (-4 *1 (-384 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-1099)))) ((*1 *2 *1) - (-12 (-14 *3 (-642 (-1173))) (-4 *4 (-172)) - (-4 *6 (-238 (-2158 *3) (-769))) + (-12 (-14 *3 (-644 (-1175))) (-4 *4 (-172)) + (-4 *6 (-238 (-3002 *3) (-771))) (-14 *7 - (-1 (-112) (-2 (|:| -2065 *5) (|:| -2817 *6)) - (-2 (|:| -2065 *5) (|:| -2817 *6)))) - (-5 *2 (-711 *5 *6 *7)) (-5 *1 (-461 *3 *4 *5 *6 *7 *8)) - (-4 *5 (-848)) (-4 *8 (-947 *4 *6 (-862 *3))))) + (-1 (-112) (-2 (|:| -2104 *5) (|:| -3631 *6)) + (-2 (|:| -2104 *5) (|:| -3631 *6)))) + (-5 *2 (-713 *5 *6 *7)) (-5 *1 (-463 *3 *4 *5 *6 *7 *8)) + (-4 *5 (-850)) (-4 *8 (-949 *4 *6 (-864 *3))))) ((*1 *2 *1) - (-12 (-4 *2 (-724)) (-4 *2 (-848)) (-5 *1 (-733 *3 *2)) - (-4 *3 (-1047)))) + (-12 (-4 *2 (-726)) (-4 *2 (-850)) (-5 *1 (-735 *3 *2)) + (-4 *3 (-1049)))) ((*1 *1 *1) - (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-790)) - (-4 *4 (-848))))) -(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-925))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-642 (-1169 *7))) (-5 *3 (-1169 *7)) - (-4 *7 (-947 *4 *5 *6)) (-4 *4 (-907)) (-4 *5 (-791)) - (-4 *6 (-848)) (-5 *1 (-904 *4 *5 *6 *7)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-642 (-1169 *5))) (-5 *3 (-1169 *5)) - (-4 *5 (-1238 *4)) (-4 *4 (-907)) (-5 *1 (-905 *4 *5))))) -(((*1 *1 *1 *1) (-5 *1 (-860)))) + (-12 (-4 *1 (-973 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-792)) + (-4 *4 (-850))))) +(((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-699)))) + ((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-699))))) +(((*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-493))))) +(((*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1157)) (-5 *1 (-710))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-644 (-892 *3))) (-5 *1 (-892 *3)) + (-4 *3 (-1099))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1264 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) + (-5 *2 (-1264 (-689 *4))))) + ((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-1264 (-689 *4))) (-5 *1 (-418 *3 *4)) + (-4 *3 (-419 *4)))) + ((*1 *2) + (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-1264 (-689 *3))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-1175))) (-4 *5 (-365)) + (-5 *2 (-1264 (-689 (-409 (-952 *5))))) (-5 *1 (-1085 *5)) + (-5 *4 (-689 (-409 (-952 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-1175))) (-4 *5 (-365)) + (-5 *2 (-1264 (-689 (-952 *5)))) (-5 *1 (-1085 *5)) + (-5 *4 (-689 (-952 *5))))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 (-689 *4))) (-4 *4 (-365)) + (-5 *2 (-1264 (-689 *4))) (-5 *1 (-1085 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1171 *4)) (-4 *4 (-351)) + (-4 *2 + (-13 (-404) + (-10 -7 (-15 -2479 (*2 *4)) (-15 -4051 ((-921) *2)) + (-15 -1419 ((-1264 *2) (-921))) (-15 -3536 (*2 *2))))) + (-5 *1 (-358 *2 *4))))) (((*1 *2 *2) - (-12 - (-5 *2 - (-985 (-407 (-564)) (-862 *3) (-240 *4 (-769)) - (-247 *3 (-407 (-564))))) - (-14 *3 (-642 (-1173))) (-14 *4 (-769)) (-5 *1 (-984 *3 *4))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-858)) (-5 *3 (-128)) (-5 *2 (-769))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-860)))) - ((*1 *2 *1) - (-12 - (-5 *2 - (-2 (|:| -1949 (-642 (-860))) (|:| -2247 (-642 (-860))) - (|:| |presup| (-642 (-860))) (|:| -3325 (-642 (-860))) - (|:| |args| (-642 (-860))))) - (-5 *1 (-1173))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4411)) (-4 *1 (-119 *2)) (-4 *2 (-1212))))) -(((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-31)))) - ((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-642 (-1132))) (-5 *1 (-133)))) - ((*1 *2 *1) (-12 (-5 *2 (-642 (-1132))) (-5 *1 (-138)))) - ((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-154)))) - ((*1 *2 *1) (-12 (-5 *2 (-642 (-1132))) (-5 *1 (-161)))) - ((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-218)))) - ((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-674)))) - ((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-1017)))) - ((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-1063)))) - ((*1 *2 *1) (-12 (-5 *2 (-642 (-1132))) (-5 *1 (-1093))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-642 (-610 *2))) (-5 *4 (-642 (-1173))) - (-4 *2 (-13 (-430 (-169 *5)) (-1000) (-1197))) (-4 *5 (-556)) - (-5 *1 (-598 *5 *6 *2)) (-4 *6 (-13 (-430 *5) (-1000) (-1197)))))) -(((*1 *2 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *3 (-790)) (-4 *2 (-1047)))) - ((*1 *2 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-1097))))) -(((*1 *2 *3) - (-12 (-5 *3 (-642 (-225))) (-5 *2 (-1262 (-697))) (-5 *1 (-305))))) -(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820))))) -(((*1 *2 *1) (-12 (-5 *2 (-642 (-175))) (-5 *1 (-1082))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1173)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-700 *3 *5 *6 *7)) - (-4 *3 (-612 (-536))) (-4 *5 (-1212)) (-4 *6 (-1212)) - (-4 *7 (-1212)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1173)) (-5 *2 (-1 *6 *5)) (-5 *1 (-704 *3 *5 *6)) - (-4 *3 (-612 (-536))) (-4 *5 (-1212)) (-4 *6 (-1212))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1047)) - (-4 *2 (-13 (-404) (-1036 *4) (-363) (-1197) (-284))) - (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1238 *4)))) - ((*1 *1 *1) (-4 *1 (-545))) - ((*1 *2 *1) (-12 (-5 *2 (-919)) (-5 *1 (-670 *3)) (-4 *3 (-848)))) - ((*1 *2 *1) (-12 (-5 *2 (-919)) (-5 *1 (-675 *3)) (-4 *3 (-848)))) - ((*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-817 *3)) (-4 *3 (-848)))) - ((*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-891 *3)) (-4 *3 (-848)))) - ((*1 *2 *1) (-12 (-4 *1 (-993 *3)) (-4 *3 (-1212)) (-5 *2 (-769)))) - ((*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-1209 *3)) (-4 *3 (-1212)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1212)) (-4 *2 (-1000)) - (-4 *2 (-1047))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-556)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2105 *3))) - (-5 *1 (-967 *4 *3)) (-4 *3 (-1238 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-96)))) - ((*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-109)))) + (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1199)))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-644 (-943 *4))) (-4 *1 (-1133 *4)) (-4 *4 (-1049)) + (-5 *2 (-771))))) +(((*1 *1 *2) + (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-1099)) (-5 *1 (-905 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-96)))) + ((*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-109)))) ((*1 *2 *1) - (-12 (-4 *1 (-364 *2 *3)) (-4 *3 (-1097)) (-4 *2 (-1097)))) - ((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1155)))) - ((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-438 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-483)))) - ((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-610 *3)) (-4 *3 (-1097)))) - ((*1 *2 *1) (-12 (-4 *1 (-833 *2)) (-4 *2 (-1097)))) - ((*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-863)))) - ((*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-963)))) - ((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-1072 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-1112)))) - ((*1 *1 *1) (-5 *1 (-1173)))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-642 (-564))) (-5 *2 (-687 (-564))) (-5 *1 (-1107))))) + (-12 (-4 *1 (-366 *2 *3)) (-4 *3 (-1099)) (-4 *2 (-1099)))) + ((*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-1157)))) + ((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-440 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-485)))) + ((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-612 *3)) (-4 *3 (-1099)))) + ((*1 *2 *1) (-12 (-4 *1 (-835 *2)) (-4 *2 (-1099)))) + ((*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-865)))) + ((*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-965)))) + ((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1074 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-1114)))) + ((*1 *1 *1) (-5 *1 (-1175)))) +(((*1 *2 *1) (-12 (-4 *1 (-327 *2 *3)) (-4 *3 (-792)) (-4 *2 (-1049)))) + ((*1 *2 *1) (-12 (-4 *1 (-432 *2)) (-4 *2 (-1099))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)) (-5 *3 (-566))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-470)) (-5 *4 (-921)) (-5 *2 (-1269)) (-5 *1 (-1265))))) +(((*1 *1) (-5 *1 (-823)))) +(((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *4 (-1 (-3 (-566) "failed") *5)) (-4 *5 (-1049)) + (-5 *2 (-566)) (-5 *1 (-545 *5 *3)) (-4 *3 (-1240 *5)))) + ((*1 *2 *3 *4 *2 *5) + (|partial| -12 (-5 *5 (-1 (-3 (-566) "failed") *4)) (-4 *4 (-1049)) + (-5 *2 (-566)) (-5 *1 (-545 *4 *3)) (-4 *3 (-1240 *4)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1 (-3 (-566) "failed") *4)) (-4 *4 (-1049)) + (-5 *2 (-566)) (-5 *1 (-545 *4 *3)) (-4 *3 (-1240 *4))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-381)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) + ((*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-264))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099))))) +(((*1 *1 *1 *1) (-4 *1 (-547)))) +(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1199)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) (((*1 *2 *1) - (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-790)) + (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-1097)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-318)) (-5 *3 (-225))))) -(((*1 *2 *1) (-12 (-5 *1 (-1024 *2)) (-4 *2 (-1212))))) + ((*1 *2 *1) (-12 (-4 *1 (-432 *3)) (-4 *3 (-1099)) (-5 *2 (-112))))) (((*1 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1254 *2 *3 *4)) (-4 *2 (-1047)) (-14 *3 (-1173)) - (-14 *4 *2)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1169 (-950 *6))) (-4 *6 (-556)) - (-4 *2 (-947 (-407 (-950 *6)) *5 *4)) (-5 *1 (-730 *5 *4 *6 *2)) - (-4 *5 (-791)) - (-4 *4 (-13 (-848) (-10 -8 (-15 -3003 ((-1173) $)))))))) + (-12 (-4 *3 (-1240 (-409 (-566)))) (-5 *1 (-913 *3 *2)) + (-4 *2 (-1240 (-409 *3)))))) +(((*1 *2 *1 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-308)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4086 *1))) + (-4 *1 (-308))))) +(((*1 *2 *1) (-12 (-4 *1 (-327 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-792)))) + ((*1 *2 *1) (-12 (-4 *1 (-708 *3)) (-4 *3 (-1049)) (-5 *2 (-771)))) + ((*1 *2 *1) (-12 (-4 *1 (-852 *3)) (-4 *3 (-1049)) (-5 *2 (-771)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-644 *6)) (-4 *1 (-949 *4 *5 *6)) (-4 *4 (-1049)) + (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 (-771))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-949 *4 *5 *3)) (-4 *4 (-1049)) (-4 *5 (-793)) + (-4 *3 (-850)) (-5 *2 (-771))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) + (-12 (-5 *3 (-1157)) (-5 *4 (-566)) (-5 *5 (-689 (-225))) + (-5 *2 (-1035)) (-5 *1 (-754))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) - (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *2 (-112)) (-5 *1 (-300))))) -(((*1 *1 *2 *2 *3 *1) - (-12 (-5 *2 (-506)) (-5 *3 (-1101)) (-5 *1 (-291))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-651 (-407 *6))) (-5 *4 (-407 *6)) (-4 *6 (-1238 *5)) - (-4 *5 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564))))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2131 (-642 *4)))) - (-5 *1 (-808 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-651 (-407 *6))) (-4 *6 (-1238 *5)) - (-4 *5 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564))))) - (-5 *2 (-2 (|:| -2131 (-642 (-407 *6))) (|:| -3544 (-687 *5)))) - (-5 *1 (-808 *5 *6)) (-5 *4 (-642 (-407 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-652 *6 (-407 *6))) (-5 *4 (-407 *6)) (-4 *6 (-1238 *5)) - (-4 *5 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564))))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2131 (-642 *4)))) - (-5 *1 (-808 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-652 *6 (-407 *6))) (-4 *6 (-1238 *5)) - (-4 *5 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564))))) - (-5 *2 (-2 (|:| -2131 (-642 (-407 *6))) (|:| -3544 (-687 *5)))) - (-5 *1 (-808 *5 *6)) (-5 *4 (-642 (-407 *6)))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-407 (-1169 (-316 *3)))) (-4 *3 (-556)) - (-5 *1 (-1127 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-642 (-564))) (-5 *2 (-902 (-564))) (-5 *1 (-915)))) - ((*1 *2) (-12 (-5 *2 (-902 (-564))) (-5 *1 (-915))))) + (-644 + (-2 (|:| -2299 (-771)) + (|:| |eqns| + (-644 + (-2 (|:| |det| *7) (|:| |rows| (-644 (-566))) + (|:| |cols| (-644 (-566)))))) + (|:| |fgb| (-644 *7))))) + (-4 *7 (-949 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) + (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *2 (-771)) + (-5 *1 (-924 *4 *5 *6 *7))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1157) (-774))) (-5 *1 (-114))))) +(((*1 *2 *3) + (-12 (-5 *3 (-771)) (-5 *2 (-1269)) (-5 *1 (-866 *4 *5 *6 *7)) + (-4 *4 (-1049)) (-14 *5 (-644 (-1175))) (-14 *6 (-644 *3)) + (-14 *7 *3))) + ((*1 *2 *3) + (-12 (-5 *3 (-771)) (-4 *4 (-1049)) (-4 *5 (-850)) (-4 *6 (-793)) + (-14 *8 (-644 *5)) (-5 *2 (-1269)) + (-5 *1 (-1276 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-949 *4 *6 *5)) + (-14 *9 (-644 *3)) (-14 *10 *3)))) +(((*1 *2 *1) + (-12 (-4 *3 (-172)) (-4 *2 (-23)) (-5 *1 (-290 *3 *4 *2 *5 *6 *7)) + (-4 *4 (-1240 *3)) (-14 *5 (-1 *4 *4 *2)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2)) + (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) + ((*1 *2 *1) + (-12 (-4 *2 (-23)) (-5 *1 (-711 *3 *2 *4 *5 *6)) (-4 *3 (-172)) + (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) + ((*1 *2) + (-12 (-4 *2 (-1240 *3)) (-5 *1 (-712 *3 *2)) (-4 *3 (-1049)))) + ((*1 *2 *1) + (-12 (-4 *2 (-23)) (-5 *1 (-715 *3 *2 *4 *5 *6)) (-4 *3 (-172)) + (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) + ((*1 *2) (-12 (-4 *1 (-869 *3)) (-5 *2 (-566))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *5 (-850)) (-5 *2 (-771))))) (((*1 *1 *1) (-4 *1 (-243))) ((*1 *1 *1) - (-12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1238 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1240 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1) - (-2682 (-12 (-5 *1 (-294 *2)) (-4 *2 (-363)) (-4 *2 (-1212))) - (-12 (-5 *1 (-294 *2)) (-4 *2 (-473)) (-4 *2 (-1212))))) - ((*1 *1 *1) (-4 *1 (-473))) - ((*1 *2 *2) (-12 (-5 *2 (-1262 *3)) (-4 *3 (-349)) (-5 *1 (-528 *3)))) + (-2809 (-12 (-5 *1 (-295 *2)) (-4 *2 (-365)) (-4 *2 (-1214))) + (-12 (-5 *1 (-295 *2)) (-4 *2 (-475)) (-4 *2 (-1214))))) + ((*1 *1 *1) (-4 *1 (-475))) + ((*1 *2 *2) (-12 (-5 *2 (-1264 *3)) (-4 *3 (-351)) (-5 *1 (-530 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-713 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) + (-12 (-5 *1 (-715 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-172)) (-4 *2 (-363))))) -(((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) - (-5 *2 (-1169 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) - (-5 *2 (-1169 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-1245 *3 *2)) (-4 *3 (-1047)) - (-4 *2 (-1222 *3))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-506)) (-5 *2 (-642 (-963))) (-5 *1 (-291))))) + ((*1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)) (-4 *2 (-365))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-109))) (-5 *1 (-175))))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1047)) - (-14 *4 (-642 (-1173))))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1047) (-848))) - (-14 *4 (-642 (-1173)))))) -(((*1 *2) - (-12 (-4 *3 (-1216)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))) - (-5 *2 (-1262 *1)) (-4 *1 (-342 *3 *4 *5))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-642 (-1 *4 (-642 *4)))) (-4 *4 (-1097)) - (-5 *1 (-113 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1097)) - (-5 *1 (-113 *4)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-114)) (-5 *2 (-642 (-1 *4 (-642 *4)))) - (-5 *1 (-113 *4)) (-4 *4 (-1097))))) -(((*1 *2 *3) - (-12 (-4 *4 (-556)) (-5 *2 (-769)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-417 *4))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -4351 *6) (|:| |sol?| (-112))) (-564) - *6)) - (-4 *6 (-363)) (-4 *7 (-1238 *6)) - (-5 *2 (-2 (|:| |answer| (-585 (-407 *7))) (|:| |a0| *6))) - (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-1097)) (-4 *3 (-131)) - (-4 *3 (-790))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-890 *4)) (-4 *4 (-1097)) (-4 *2 (-1097)) - (-5 *1 (-887 *4 *2))))) + (-12 (-5 *2 (-691 (-966 *3))) (-5 *1 (-966 *3)) (-4 *3 (-1099))))) +(((*1 *1) (-5 *1 (-141)))) +(((*1 *1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1049)) (-4 *2 (-365))))) +(((*1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-128))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-141)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-144))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1171 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3))))) +(((*1 *1) (-5 *1 (-439)))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-556) (-1036 (-564)))) (-4 *5 (-430 *4)) - (-5 *2 - (-3 (|:| |overq| (-1169 (-407 (-564)))) - (|:| |overan| (-1169 (-48))) (|:| -3136 (-112)))) - (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1238 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134))))) + (-12 (-4 *1 (-351)) (-5 *3 (-566)) (-5 *2 (-1187 (-921) (-771)))))) +(((*1 *1 *1 *1 *1 *1) + (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) + (-4 *4 (-850)) (-4 *2 (-558))))) +(((*1 *2 *1) (-12 (-5 *2 (-824)) (-5 *1 (-825))))) (((*1 *2 *3) - (-12 (-5 *3 (-1173)) - (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) - (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1197) (-430 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) - (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-407 (-564))) - (-4 *5 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) - (-5 *1 (-315 *5 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *5))))) + (-12 (-5 *3 (-1175)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-702 *4 *5 *6 *7)) + (-4 *4 (-614 (-538))) (-4 *5 (-1214)) (-4 *6 (-1214)) + (-4 *7 (-1214))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-3 (-409 (-952 *6)) (-1164 (-1175) (-952 *6)))) + (-5 *5 (-771)) (-4 *6 (-454)) (-5 *2 (-644 (-689 (-409 (-952 *6))))) + (-5 *1 (-293 *6)) (-5 *4 (-689 (-409 (-952 *6)))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *5))) - (-4 *5 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) - (-5 *1 (-315 *5 *3)))) + (-12 + (-5 *3 + (-2 (|:| |eigval| (-3 (-409 (-952 *5)) (-1164 (-1175) (-952 *5)))) + (|:| |eigmult| (-771)) (|:| |eigvec| (-644 *4)))) + (-4 *5 (-454)) (-5 *2 (-644 (-689 (-409 (-952 *5))))) + (-5 *1 (-293 *5)) (-5 *4 (-689 (-409 (-952 *5))))))) +(((*1 *2 *3) + (-12 (-4 *4 (-558)) (-5 *2 (-771)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-419 *4))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1084))))) +(((*1 *2 *2) + (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) + (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-1157)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) + (-4 *4 (-1064 *6 *7 *8)) (-5 *2 (-1269)) + (-5 *1 (-776 *6 *7 *8 *4 *5)) (-4 *5 (-1070 *6 *7 *8 *4))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-921)) (-5 *2 (-1269)) (-5 *1 (-214 *4)) + (-4 *4 + (-13 (-850) + (-10 -8 (-15 -4376 ((-1157) $ (-1175))) (-15 -1659 (*2 $)) + (-15 -2559 (*2 $))))))) + ((*1 *2 *1) + (-12 (-5 *2 (-1269)) (-5 *1 (-214 *3)) + (-4 *3 + (-13 (-850) + (-10 -8 (-15 -4376 ((-1157) $ (-1175))) (-15 -1659 (*2 $)) + (-15 -2559 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-504))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-1049))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1175)) + (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) + (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1199) (-432 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) + (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-409 (-566))) + (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) + (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *5))) + (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) + (-5 *1 (-316 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-294 *3)) (-5 *5 (-407 (-564))) - (-4 *3 (-13 (-27) (-1197) (-430 *6))) - (-4 *6 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) - (-5 *1 (-315 *6 *3)))) + (-12 (-5 *4 (-295 *3)) (-5 *5 (-409 (-566))) + (-4 *3 (-13 (-27) (-1199) (-432 *6))) + (-4 *6 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) + (-5 *1 (-316 *6 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-407 (-564)))) (-5 *4 (-294 *8)) - (-5 *5 (-1229 (-407 (-564)))) (-5 *6 (-407 (-564))) - (-4 *8 (-13 (-27) (-1197) (-430 *7))) - (-4 *7 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) - (-5 *1 (-459 *7 *8)))) + (-12 (-5 *3 (-1 *8 (-409 (-566)))) (-5 *4 (-295 *8)) + (-5 *5 (-1231 (-409 (-566)))) (-5 *6 (-409 (-566))) + (-4 *8 (-13 (-27) (-1199) (-432 *7))) + (-4 *7 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) + (-5 *1 (-461 *7 *8)))) ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1173)) (-5 *5 (-294 *3)) (-5 *6 (-1229 (-407 (-564)))) - (-5 *7 (-407 (-564))) (-4 *3 (-13 (-27) (-1197) (-430 *8))) - (-4 *8 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) - (-5 *1 (-459 *8 *3)))) + (-12 (-5 *4 (-1175)) (-5 *5 (-295 *3)) (-5 *6 (-1231 (-409 (-566)))) + (-5 *7 (-409 (-566))) (-4 *3 (-13 (-27) (-1199) (-432 *8))) + (-4 *8 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) + (-5 *1 (-461 *8 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-407 (-564))) (-4 *4 (-1047)) (-4 *1 (-1245 *4 *3)) - (-4 *3 (-1222 *4))))) -(((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1205 *3 *4 *5 *2)) (-4 *3 (-556)) - (-4 *4 (-791)) (-4 *5 (-848)) (-4 *2 (-1062 *3 *4 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-556)) (-5 *2 (-169 *5)) (-5 *1 (-598 *4 *5 *3)) - (-4 *5 (-13 (-430 *4) (-1000) (-1197))) - (-4 *3 (-13 (-430 (-169 *4)) (-1000) (-1197)))))) + (-12 (-5 *2 (-409 (-566))) (-4 *4 (-1049)) (-4 *1 (-1247 *4 *3)) + (-4 *3 (-1224 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) + (-5 *1 (-451 *3 *4 *5 *2)) (-4 *2 (-949 *3 *4 *5))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1214)) (-4 *2 (-1049)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-862)))) + ((*1 *1 *1) (-5 *1 (-862))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-943 (-225))) (-5 *2 (-225)) (-5 *1 (-1210)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1214)) (-4 *2 (-1049))))) (((*1 *2 *3) (|partial| -12 (-5 *3 - (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) - (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) + (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) + (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 @@ -10891,7413 +10133,8181 @@ (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1153 (-225))) + (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -4138 + (|:| -1680 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *1 (-559))))) -(((*1 *2) (-12 (-5 *2 (-642 *3)) (-5 *1 (-1081 *3)) (-4 *3 (-132))))) -(((*1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-1182))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1095 *3)) (-4 *3 (-1097)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) - (-4 *3 (-1062 *5 *6 *7)) - (-5 *2 (-642 (-2 (|:| |val| (-642 *3)) (|:| -2138 *4)))) - (-5 *1 (-1069 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) - (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *5 (-225)) - (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN)))) - (-5 *2 (-1033)) (-5 *1 (-746))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-642 (-2 (|:| -2254 (-1169 *6)) (|:| -2817 (-564))))) - (-4 *6 (-307)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-112)) - (-5 *1 (-740 *4 *5 *6 *7)) (-4 *7 (-947 *6 *4 *5)))) - ((*1 *1 *1) (-12 (-4 *1 (-1131 *2)) (-4 *2 (-1047))))) + (-5 *1 (-561))))) +(((*1 *2) (-12 (-5 *2 (-644 *3)) (-5 *1 (-1083 *3)) (-4 *3 (-132))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1214)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-5 *2 (-771)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-771))))) +(((*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1155 (-225))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -1680 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))) + (-5 *2 (-1035)) (-5 *1 (-306))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 (-1175))) (-5 *2 (-1269)) (-5 *1 (-1216)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-644 (-1175))) (-5 *2 (-1269)) (-5 *1 (-1216))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-771)) (-4 *1 (-656 *3)) (-4 *3 (-1049)) (-4 *3 (-365)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-771)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365)) + (-5 *1 (-659 *5 *2)) (-4 *2 (-656 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-644 (-943 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-644 (-943 *3))) (-4 *3 (-1049)) (-4 *1 (-1133 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-644 (-644 *3))) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-644 (-943 *3))) (-4 *1 (-1133 *3)) (-4 *3 (-1049))))) (((*1 *2 *3) - (-12 (-5 *3 (-1173)) - (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) - (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1197) (-430 *4))))) + (-12 (-5 *3 (-1175)) + (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) + (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1199) (-432 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) - (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *4))))) + (-12 (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) + (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-564)) (-4 *5 (-13 (-452) (-1036 *4) (-637 *4))) - (-5 *2 (-52)) (-5 *1 (-315 *5 *3)) - (-4 *3 (-13 (-27) (-1197) (-430 *5))))) + (-12 (-5 *4 (-566)) (-4 *5 (-13 (-454) (-1038 *4) (-639 *4))) + (-5 *2 (-52)) (-5 *1 (-316 *5 *3)) + (-4 *3 (-13 (-27) (-1199) (-432 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *5))) - (-4 *5 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) - (-5 *1 (-315 *5 *3)))) + (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *5))) + (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) + (-5 *1 (-316 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *6))) - (-4 *6 (-13 (-452) (-1036 *5) (-637 *5))) (-5 *5 (-564)) - (-5 *2 (-52)) (-5 *1 (-315 *6 *3)))) + (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *6))) + (-4 *6 (-13 (-454) (-1038 *5) (-639 *5))) (-5 *5 (-566)) + (-5 *2 (-52)) (-5 *1 (-316 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-564))) (-5 *4 (-294 *7)) (-5 *5 (-1229 (-564))) - (-4 *7 (-13 (-27) (-1197) (-430 *6))) - (-4 *6 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) - (-5 *1 (-459 *6 *7)))) + (-12 (-5 *3 (-1 *7 (-566))) (-5 *4 (-295 *7)) (-5 *5 (-1231 (-566))) + (-4 *7 (-13 (-27) (-1199) (-432 *6))) + (-4 *6 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) + (-5 *1 (-461 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1173)) (-5 *5 (-294 *3)) (-5 *6 (-1229 (-564))) - (-4 *3 (-13 (-27) (-1197) (-430 *7))) - (-4 *7 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) - (-5 *1 (-459 *7 *3)))) + (-12 (-5 *4 (-1175)) (-5 *5 (-295 *3)) (-5 *6 (-1231 (-566))) + (-4 *3 (-13 (-27) (-1199) (-432 *7))) + (-4 *7 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) + (-5 *1 (-461 *7 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-564)) (-4 *4 (-1047)) (-4 *1 (-1224 *4 *3)) - (-4 *3 (-1253 *4)))) + (-12 (-5 *2 (-566)) (-4 *4 (-1049)) (-4 *1 (-1226 *4 *3)) + (-4 *3 (-1255 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1245 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-1222 *3))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1262 *5)) (-4 *5 (-790)) (-5 *2 (-112)) - (-5 *1 (-843 *4 *5)) (-14 *4 (-769))))) + (-12 (-4 *1 (-1247 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-1224 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1155 (-409 *3))) (-5 *1 (-174 *3)) (-4 *3 (-308))))) +(((*1 *2 *3) + (-12 (-4 *1 (-800)) + (-5 *3 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) + (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) + (-5 *2 (-1035))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-5 *1 (-103 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1155 (-566))) (-5 *1 (-1004 *3)) (-14 *3 (-566))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1214)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-5 *2 (-771)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-771))))) +(((*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-52))))) +(((*1 *2 *3) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-563)) (-5 *3 (-566))))) +(((*1 *2 *3 *2) + (-12 + (-5 *2 + (-644 + (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-771)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *3 (-793)) (-4 *6 (-949 *4 *3 *5)) (-4 *4 (-454)) (-4 *5 (-850)) + (-5 *1 (-451 *4 *3 *5 *6))))) (((*1 *2) - (-12 (-4 *4 (-1216)) (-4 *5 (-1238 *4)) (-4 *6 (-1238 (-407 *5))) - (-5 *2 (-769)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6)))) + (-12 (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) + (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-1269)) + (-5 *1 (-988 *3 *4 *5 *6 *7)) (-4 *7 (-1070 *3 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) - (-4 *5 (-1238 (-407 *4))) (-5 *2 (-769)))) - ((*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-769))))) -(((*1 *2 *3 *3) - (-12 (-4 *3 (-1216)) (-4 *5 (-1238 *3)) (-4 *6 (-1238 (-407 *5))) - (-5 *2 (-112)) (-5 *1 (-341 *4 *3 *5 *6)) (-4 *4 (-342 *3 *5 *6)))) - ((*1 *2 *3 *3) - (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) - (-4 *5 (-1238 (-407 *4))) (-5 *2 (-112))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-875 *2)) (-4 *2 (-1212)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1212)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-642 (-941 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-642 (-941 *3))) (-4 *3 (-1047)) (-4 *1 (-1131 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-642 (-642 *3))) (-4 *1 (-1131 *3)) (-4 *3 (-1047)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-642 (-941 *3))) (-4 *1 (-1131 *3)) (-4 *3 (-1047))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-642 (-1173))) (-4 *4 (-1097)) - (-4 *5 (-13 (-1047) (-884 *4) (-612 (-890 *4)))) - (-5 *1 (-54 *4 *5 *2)) - (-4 *2 (-13 (-430 *5) (-884 *4) (-612 (-890 *4))))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1169 (-564))) (-5 *1 (-940)) (-5 *3 (-564))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-880 *2)) (-4 *2 (-1212))))) -(((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-52))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) - (-4 *4 (-848)) (-4 *2 (-452))))) + (-12 (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) + (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-1269)) + (-5 *1 (-1106 *3 *4 *5 *6 *7)) (-4 *7 (-1070 *3 *4 *5 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-359 *3)) (-4 *3 (-351))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-850)) (-4 *5 (-793)) + (-4 *6 (-558)) (-4 *7 (-949 *6 *5 *3)) + (-5 *1 (-464 *5 *3 *6 *7 *2)) + (-4 *2 + (-13 (-1038 (-409 (-566))) (-365) + (-10 -8 (-15 -2479 ($ *7)) (-15 -4157 (*7 $)) + (-15 -4167 (*7 $)))))))) (((*1 *2 *3) - (-12 (-5 *3 (-1173)) - (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) - (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1197) (-430 *4))))) + (-12 (-5 *3 (-1175)) + (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) + (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1199) (-432 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) - (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *4))))) + (-12 (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) + (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-769)) (-4 *5 (-13 (-452) (-1036 (-564)) (-637 (-564)))) - (-5 *2 (-52)) (-5 *1 (-315 *5 *3)) - (-4 *3 (-13 (-27) (-1197) (-430 *5))))) + (-12 (-5 *4 (-771)) (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) + (-5 *2 (-52)) (-5 *1 (-316 *5 *3)) + (-4 *3 (-13 (-27) (-1199) (-432 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *5))) - (-4 *5 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) - (-5 *1 (-315 *5 *3)))) + (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *5))) + (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) + (-5 *1 (-316 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-294 *3)) (-5 *5 (-769)) - (-4 *3 (-13 (-27) (-1197) (-430 *6))) - (-4 *6 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) - (-5 *1 (-315 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-564))) (-5 *4 (-294 *6)) - (-4 *6 (-13 (-27) (-1197) (-430 *5))) - (-4 *5 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) - (-5 *1 (-459 *5 *6)))) + (-12 (-5 *4 (-295 *3)) (-5 *5 (-771)) + (-4 *3 (-13 (-27) (-1199) (-432 *6))) + (-4 *6 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) + (-5 *1 (-316 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 (-566))) (-5 *4 (-295 *6)) + (-4 *6 (-13 (-27) (-1199) (-432 *5))) + (-4 *5 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) + (-5 *1 (-461 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1173)) (-5 *5 (-294 *3)) - (-4 *3 (-13 (-27) (-1197) (-430 *6))) - (-4 *6 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) - (-5 *1 (-459 *6 *3)))) + (-12 (-5 *4 (-1175)) (-5 *5 (-295 *3)) + (-4 *3 (-13 (-27) (-1199) (-432 *6))) + (-4 *6 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) + (-5 *1 (-461 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-564))) (-5 *4 (-294 *7)) (-5 *5 (-1229 (-769))) - (-4 *7 (-13 (-27) (-1197) (-430 *6))) - (-4 *6 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) - (-5 *1 (-459 *6 *7)))) + (-12 (-5 *3 (-1 *7 (-566))) (-5 *4 (-295 *7)) (-5 *5 (-1231 (-771))) + (-4 *7 (-13 (-27) (-1199) (-432 *6))) + (-4 *6 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) + (-5 *1 (-461 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1173)) (-5 *5 (-294 *3)) (-5 *6 (-1229 (-769))) - (-4 *3 (-13 (-27) (-1197) (-430 *7))) - (-4 *7 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) - (-5 *1 (-459 *7 *3)))) + (-12 (-5 *4 (-1175)) (-5 *5 (-295 *3)) (-5 *6 (-1231 (-771))) + (-4 *3 (-13 (-27) (-1199) (-432 *7))) + (-4 *7 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) + (-5 *1 (-461 *7 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-1224 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-1253 *3))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| -2105 (-780 *3)) (|:| |coef1| (-780 *3)) - (|:| |coef2| (-780 *3)))) - (-5 *1 (-780 *3)) (-4 *3 (-556)) (-4 *3 (-1047)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-556)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) - (-5 *2 (-2 (|:| -2105 *1) (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-1062 *3 *4 *5))))) -(((*1 *1 *1) - (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-687 *2)) (-5 *4 (-769)) - (-4 *2 (-13 (-307) (-10 -8 (-15 -3282 ((-418 $) $))))) - (-4 *5 (-1238 *2)) (-5 *1 (-499 *2 *5 *6)) (-4 *6 (-409 *2 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-248))))) -(((*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-436))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1169 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-642 (-903 *3))) (-4 *3 (-1097)) (-5 *1 (-902 *3))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4410)) (-4 *1 (-235 *3)) - (-4 *3 (-1097)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-282 *3)) (-4 *3 (-1212))))) + (-12 (-4 *1 (-1226 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-1255 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-862)) (-5 *1 (-392 *3 *4 *5)) (-14 *3 (-771)) + (-14 *4 (-771)) (-4 *5 (-172))))) +(((*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-225)) (-5 *1 (-1267)))) + ((*1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-1267))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1214)) + (-4 *5 (-1214)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-240 *6 *7)) (-14 *6 (-771)) + (-4 *7 (-1214)) (-4 *5 (-1214)) (-5 *2 (-240 *6 *5)) + (-5 *1 (-239 *6 *7 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1214)) (-4 *5 (-1214)) + (-4 *2 (-375 *5)) (-5 *1 (-373 *6 *4 *5 *2)) (-4 *4 (-375 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1099)) (-4 *5 (-1099)) + (-4 *2 (-427 *5)) (-5 *1 (-425 *6 *4 *5 *2)) (-4 *4 (-427 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-644 *6)) (-4 *6 (-1214)) + (-4 *5 (-1214)) (-5 *2 (-644 *5)) (-5 *1 (-642 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-958 *6)) (-4 *6 (-1214)) + (-4 *5 (-1214)) (-5 *2 (-958 *5)) (-5 *1 (-957 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1155 *6)) (-4 *6 (-1214)) + (-4 *3 (-1214)) (-5 *2 (-1155 *3)) (-5 *1 (-1153 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1264 *6)) (-4 *6 (-1214)) + (-4 *5 (-1214)) (-5 *2 (-1264 *5)) (-5 *1 (-1263 *6 *5))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-769)) (-4 *1 (-738 *4 *5)) (-4 *4 (-1047)) - (-4 *5 (-848)) (-5 *2 (-950 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-769)) (-4 *1 (-738 *4 *5)) (-4 *4 (-1047)) - (-4 *5 (-848)) (-5 *2 (-950 *4)))) + (-12 (-5 *3 (-921)) (-5 *2 (-1269)) (-5 *1 (-1265)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-769)) (-4 *1 (-1253 *4)) (-4 *4 (-1047)) - (-5 *2 (-950 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-769)) (-4 *1 (-1253 *4)) (-4 *4 (-1047)) - (-5 *2 (-950 *4))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197))))) -(((*1 *2 *3) - (-12 (-5 *3 (-564)) (-5 *2 (-642 (-642 (-225)))) (-5 *1 (-1208))))) + (-12 (-5 *3 (-921)) (-5 *2 (-1269)) (-5 *1 (-1266))))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-248))))) (((*1 *2 *3 *4) - (-12 (-4 *6 (-556)) (-4 *2 (-947 *3 *5 *4)) - (-5 *1 (-730 *5 *4 *6 *2)) (-5 *3 (-407 (-950 *6))) (-4 *5 (-791)) - (-4 *4 (-13 (-848) (-10 -8 (-15 -3003 ((-1173) $)))))))) -(((*1 *2 *1) - (-12 (-5 *2 (-642 (-52))) (-5 *1 (-890 *3)) (-4 *3 (-1097))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-1060))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-1173)) (-5 *6 (-112)) - (-4 *7 (-13 (-307) (-147) (-1036 (-564)) (-637 (-564)))) - (-4 *3 (-13 (-1197) (-957) (-29 *7))) - (-5 *2 - (-3 (|:| |f1| (-841 *3)) (|:| |f2| (-642 (-841 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-219 *7 *3)) (-5 *5 (-841 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1155)) (-5 *2 (-642 (-1178))) (-5 *1 (-878))))) + (-12 (-5 *3 (-644 (-2 (|:| |val| (-644 *8)) (|:| -2192 *9)))) + (-5 *4 (-771)) (-4 *8 (-1064 *5 *6 *7)) (-4 *9 (-1070 *5 *6 *7 *8)) + (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-1269)) + (-5 *1 (-1068 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-2 (|:| |val| (-644 *8)) (|:| -2192 *9)))) + (-5 *4 (-771)) (-4 *8 (-1064 *5 *6 *7)) (-4 *9 (-1108 *5 *6 *7 *8)) + (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-1269)) + (-5 *1 (-1144 *5 *6 *7 *8 *9))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1175)) (-5 *3 (-381)) (-5 *1 (-1062))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) + (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-78 FUNCTN)))) + (-5 *2 (-1035)) (-5 *1 (-748))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-644 *3)) (-4 *3 (-949 *4 *6 *5)) (-4 *4 (-454)) + (-4 *5 (-850)) (-4 *6 (-793)) (-5 *1 (-987 *4 *5 *6 *3))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1049)) (-5 *1 (-712 *3 *2)) (-4 *2 (-1240 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-1047)) - (-4 *2 (-13 (-404) (-1036 *4) (-363) (-1197) (-284))) - (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1238 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-919)) (-4 *5 (-1047)) - (-4 *2 (-13 (-404) (-1036 *5) (-363) (-1197) (-284))) - (-5 *1 (-443 *5 *3 *2)) (-4 *3 (-1238 *5))))) -(((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) - (-5 *1 (-754))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-506)) (-5 *2 (-689 (-109))) (-5 *1 (-175)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-506)) (-5 *2 (-689 (-109))) (-5 *1 (-1082))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-1155)) - (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-82 PDEF)))) - (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1033)) - (-5 *1 (-748))))) -(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1264)))) - ((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1264))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1253 *3))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1008 *3)) (-4 *3 (-1212)) (-4 *3 (-1097)) - (-5 *2 (-112))))) + (-12 (-5 *3 (-771)) (-5 *2 (-1 (-1155 (-952 *4)) (-1155 (-952 *4)))) + (-5 *1 (-1272 *4)) (-4 *4 (-365))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-769)) (-4 *5 (-1047)) (-5 *2 (-564)) - (-5 *1 (-443 *5 *3 *6)) (-4 *3 (-1238 *5)) - (-4 *6 (-13 (-404) (-1036 *5) (-363) (-1197) (-284))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1047)) (-5 *2 (-564)) (-5 *1 (-443 *4 *3 *5)) - (-4 *3 (-1238 *4)) - (-4 *5 (-13 (-404) (-1036 *4) (-363) (-1197) (-284)))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-564)) (-5 *2 (-1267)) (-5 *1 (-902 *4)) - (-4 *4 (-1097)))) - ((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-902 *3)) (-4 *3 (-1097))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-769)) (-5 *1 (-59 *3)) (-4 *3 (-1212)))) - ((*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1212)) (-5 *1 (-59 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-907)) (-4 *5 (-791)) (-4 *6 (-848)) - (-4 *7 (-947 *4 *5 *6)) (-5 *2 (-418 (-1169 *7))) - (-5 *1 (-904 *4 *5 *6 *7)) (-5 *3 (-1169 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-907)) (-4 *5 (-1238 *4)) (-5 *2 (-418 (-1169 *5))) - (-5 *1 (-905 *4 *5)) (-5 *3 (-1169 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1262 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-363)) - (-4 *1 (-722 *5 *6)) (-4 *5 (-172)) (-4 *6 (-1238 *5)) - (-5 *2 (-687 *5))))) -(((*1 *2 *3) (-12 (-5 *2 (-642 (-564))) (-5 *1 (-561)) (-5 *3 (-564))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434))))) -(((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) - (-5 *2 (-642 (-1025 *5 *6 *7 *3))) (-5 *1 (-1025 *5 *6 *7 *3)) - (-4 *3 (-1062 *5 *6 *7)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-642 *6)) (-4 *1 (-1068 *3 *4 *5 *6)) (-4 *3 (-452)) - (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-1068 *3 *4 *5 *2)) (-4 *3 (-452)) (-4 *4 (-791)) - (-4 *5 (-848)) (-4 *2 (-1062 *3 *4 *5)))) - ((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) - (-5 *2 (-642 (-1143 *5 *6 *7 *3))) (-5 *1 (-1143 *5 *6 *7 *3)) - (-4 *3 (-1062 *5 *6 *7))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -4324 (-379)) (|:| -2493 (-1155)) - (|:| |explanations| (-642 (-1155))))) - (-5 *2 (-1033)) (-5 *1 (-305)))) + (-12 (-5 *3 (-1 *2 (-644 *2))) (-5 *4 (-644 *5)) + (-4 *5 (-38 (-409 (-566)))) (-4 *2 (-1255 *5)) + (-5 *1 (-1257 *5 *2))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-560 *2)) (-4 *2 (-547))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-689 (-566))) (-5 *3 (-644 (-566))) (-5 *1 (-1109))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1200 *3)) (-4 *3 (-1099))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1157)) (-4 *1 (-366 *3 *4)) (-4 *3 (-1099)) + (-4 *4 (-1099))))) +(((*1 *2 *1) + (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-644 *6)) + (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5)))) + ((*1 *2 *1) + (-12 (-5 *2 (-644 (-905 *3))) (-5 *1 (-904 *3)) (-4 *3 (-1099))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-547)) + (-5 *2 (-409 (-566))))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-409 (-566))) (-5 *1 (-420 *3)) (-4 *3 (-547)) + (-4 *3 (-558)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-547)) (-5 *2 (-409 (-566))))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-797 *3)) (-4 *3 (-172)) (-4 *3 (-547)) + (-5 *2 (-409 (-566))))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-409 (-566))) (-5 *1 (-833 *3)) (-4 *3 (-547)) + (-4 *3 (-1099)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-409 (-566))) (-5 *1 (-843 *3)) (-4 *3 (-547)) + (-4 *3 (-1099)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-997 *3)) (-4 *3 (-172)) (-4 *3 (-547)) + (-5 *2 (-409 (-566))))) ((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -4324 (-379)) (|:| -2493 (-1155)) - (|:| |explanations| (-642 (-1155))) (|:| |extra| (-1033)))) - (-5 *2 (-1033)) (-5 *1 (-305))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-430 *3) (-1000))) (-5 *1 (-276 *3 *2)) - (-4 *3 (-556))))) -(((*1 *2 *3) (-12 (-5 *3 (-642 *2)) (-5 *1 (-1186 *2)) (-4 *2 (-363))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1091 (-841 (-379)))) (-5 *2 (-1091 (-841 (-225)))) - (-5 *1 (-305))))) -(((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1193)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-1193))))) + (|partial| -12 (-5 *2 (-409 (-566))) (-5 *1 (-1008 *3)) + (-4 *3 (-1038 *2))))) (((*1 *2 *2) - (-12 (-5 *2 (-642 (-2 (|:| |val| (-642 *6)) (|:| -2138 *7)))) - (-4 *6 (-1062 *3 *4 *5)) (-4 *7 (-1068 *3 *4 *5 *6)) (-4 *3 (-452)) - (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-986 *3 *4 *5 *6 *7)))) + (-12 (-5 *2 (-644 (-2 (|:| |val| (-644 *6)) (|:| -2192 *7)))) + (-4 *6 (-1064 *3 *4 *5)) (-4 *7 (-1070 *3 *4 *5 *6)) (-4 *3 (-454)) + (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-988 *3 *4 *5 *6 *7)))) ((*1 *2 *2) - (-12 (-5 *2 (-642 (-2 (|:| |val| (-642 *6)) (|:| -2138 *7)))) - (-4 *6 (-1062 *3 *4 *5)) (-4 *7 (-1068 *3 *4 *5 *6)) (-4 *3 (-452)) - (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-1104 *3 *4 *5 *6 *7))))) + (-12 (-5 *2 (-644 (-2 (|:| |val| (-644 *6)) (|:| -2192 *7)))) + (-4 *6 (-1064 *3 *4 *5)) (-4 *7 (-1070 *3 *4 *5 *6)) (-4 *3 (-454)) + (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-1106 *3 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))) + ((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1255 *3))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-225)) (-5 *3 (-771)) (-5 *1 (-226)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-169 (-225))) (-5 *3 (-771)) (-5 *1 (-226)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1138)))) +(((*1 *1 *2) + (-12 (-5 *2 (-415 *3 *4 *5 *6)) (-4 *6 (-1038 *4)) (-4 *3 (-308)) + (-4 *4 (-992 *3)) (-4 *5 (-1240 *4)) (-4 *6 (-411 *4 *5)) + (-14 *7 (-1264 *6)) (-5 *1 (-416 *3 *4 *5 *6 *7)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1264 *6)) (-4 *6 (-411 *4 *5)) (-4 *4 (-992 *3)) + (-4 *5 (-1240 *4)) (-4 *3 (-308)) (-5 *1 (-416 *3 *4 *5 *6 *7)) + (-14 *7 *2)))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) + (-4 *4 (-850)) (-4 *2 (-558)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) + (-4 *4 (-850)) (-4 *2 (-558))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-365) (-147) (-1038 (-409 (-566))))) + (-4 *5 (-1240 *4)) + (-5 *2 (-644 (-2 (|:| |deg| (-771)) (|:| -3477 *5)))) + (-5 *1 (-809 *4 *5 *3 *6)) (-4 *3 (-656 *5)) + (-4 *6 (-656 (-409 *5)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) +(((*1 *1 *2 *2 *2) + (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1199))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-718 *2)) (-4 *2 (-365)))) + ((*1 *1 *2) (-12 (-5 *1 (-718 *2)) (-4 *2 (-365)))) + ((*1 *2 *1 *3 *4 *4) + (-12 (-5 *3 (-921)) (-5 *4 (-381)) (-5 *2 (-1269)) (-5 *1 (-1265))))) (((*1 *2 *1) - (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-848)) - (-4 *5 (-266 *4)) (-4 *6 (-791)) (-5 *2 (-769)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1047)) (-4 *3 (-848)) - (-4 *5 (-266 *3)) (-4 *6 (-791)) (-5 *2 (-769)))) - ((*1 *2 *1) (-12 (-4 *1 (-266 *3)) (-4 *3 (-848)) (-5 *2 (-769)))) - ((*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-919)))) - ((*1 *2 *3) - (-12 (-5 *3 (-336 *4 *5 *6 *7)) (-4 *4 (-13 (-368) (-363))) - (-4 *5 (-1238 *4)) (-4 *6 (-1238 (-407 *5))) (-4 *7 (-342 *4 *5 *6)) - (-5 *2 (-769)) (-5 *1 (-392 *4 *5 *6 *7)))) - ((*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-831 (-919))))) - ((*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-564)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-595 *3)) (-4 *3 (-1047)))) - ((*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-595 *3)) (-4 *3 (-1047)))) - ((*1 *2 *1) - (-12 (-4 *3 (-556)) (-5 *2 (-564)) (-5 *1 (-621 *3 *4)) - (-4 *4 (-1238 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-769)) (-4 *1 (-738 *4 *3)) (-4 *4 (-1047)) - (-4 *3 (-848)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-738 *4 *3)) (-4 *4 (-1047)) (-4 *3 (-848)) - (-5 *2 (-769)))) - ((*1 *2 *1) (-12 (-4 *1 (-867 *3)) (-5 *2 (-769)))) - ((*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-902 *3)) (-4 *3 (-1097)))) - ((*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-903 *3)) (-4 *3 (-1097)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-430 *4)) - (-4 *6 (-1238 *5)) (-4 *7 (-1238 (-407 *6))) - (-4 *8 (-342 *5 *6 *7)) (-4 *4 (-13 (-556) (-1036 (-564)))) - (-5 *2 (-769)) (-5 *1 (-909 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-336 (-407 (-564)) *4 *5 *6)) - (-4 *4 (-1238 (-407 (-564)))) (-4 *5 (-1238 (-407 *4))) - (-4 *6 (-342 (-407 (-564)) *4 *5)) (-5 *2 (-769)) - (-5 *1 (-910 *4 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-336 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-363)) - (-4 *7 (-1238 *6)) (-4 *4 (-1238 (-407 *7))) (-4 *8 (-342 *6 *7 *4)) - (-4 *9 (-13 (-368) (-363))) (-5 *2 (-769)) - (-5 *1 (-1016 *6 *7 *4 *8 *9)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1238 *3)) (-4 *3 (-1047)) (-4 *3 (-556)) - (-5 *2 (-769)))) - ((*1 *2 *1 *2) - (-12 (-4 *1 (-1240 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-790)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1240 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-790))))) -(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *5 (-225)) - (-5 *2 (-1033)) (-5 *1 (-749))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) + (-4 *4 (-1049))))) +(((*1 *2) + (-12 (-4 *4 (-1218)) (-4 *5 (-1240 *4)) (-4 *6 (-1240 (-409 *5))) + (-5 *2 (-644 (-644 *4))) (-5 *1 (-343 *3 *4 *5 *6)) + (-4 *3 (-344 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) + (-4 *5 (-1240 (-409 *4))) (-4 *3 (-370)) (-5 *2 (-644 (-644 *3)))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-396))))) +(((*1 *2) + (-12 (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) + (-5 *2 (-1264 *1)) (-4 *1 (-344 *3 *4 *5)))) + ((*1 *2) + (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 -3348 ((-420 $) $))))) + (-4 *4 (-1240 *3)) + (-5 *2 + (-2 (|:| -1419 (-689 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-689 *3)))) + (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-411 *3 *4)))) + ((*1 *2) + (-12 (-4 *3 (-1240 (-566))) + (-5 *2 + (-2 (|:| -1419 (-689 (-566))) (|:| |basisDen| (-566)) + (|:| |basisInv| (-689 (-566))))) + (-5 *1 (-768 *3 *4)) (-4 *4 (-411 (-566) *3)))) + ((*1 *2) + (-12 (-4 *3 (-351)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 *4)) + (-5 *2 + (-2 (|:| -1419 (-689 *4)) (|:| |basisDen| *4) + (|:| |basisInv| (-689 *4)))) + (-5 *1 (-985 *3 *4 *5 *6)) (-4 *6 (-724 *4 *5)))) + ((*1 *2) + (-12 (-4 *3 (-351)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 *4)) + (-5 *2 + (-2 (|:| -1419 (-689 *4)) (|:| |basisDen| *4) + (|:| |basisInv| (-689 *4)))) + (-5 *1 (-1273 *3 *4 *5 *6)) (-4 *6 (-411 *4 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-793)) + (-4 *5 (-13 (-850) (-10 -8 (-15 -3136 ((-1175) $))))) (-4 *6 (-558)) + (-5 *2 (-2 (|:| -4047 (-952 *6)) (|:| -1379 (-952 *6)))) + (-5 *1 (-732 *4 *5 *6 *3)) (-4 *3 (-949 (-409 (-952 *6)) *4 *5))))) (((*1 *2 *1) - (-12 (-5 *2 (-642 (-294 *3))) (-5 *1 (-294 *3)) (-4 *3 (-556)) - (-4 *3 (-1212))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-642 (-407 (-950 *5)))) (-5 *4 (-642 (-1173))) - (-4 *5 (-556)) (-5 *2 (-642 (-642 (-950 *5)))) (-5 *1 (-1181 *5))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-642 (-407 *6))) (-5 *3 (-407 *6)) - (-4 *6 (-1238 *5)) (-4 *5 (-13 (-363) (-147) (-1036 (-564)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-642 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-568 *5 *6))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1047)) (-5 *1 (-892 *2 *3)) (-4 *2 (-1238 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3))))) -(((*1 *1 *1 *1) (-4 *1 (-473))) ((*1 *1 *1 *1) (-4 *1 (-759)))) -(((*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1212)) (-4 *1 (-151 *3)))) + (-12 (-5 *2 (-691 (-873 (-966 *3) (-966 *3)))) (-5 *1 (-966 *3)) + (-4 *3 (-1099))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-588 *2)) (-4 *2 (-547))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-771)) (-4 *6 (-1099)) (-4 *3 (-900 *6)) + (-5 *2 (-689 *3)) (-5 *1 (-692 *6 *3 *7 *4)) (-4 *7 (-375 *3)) + (-4 *4 (-13 (-375 *6) (-10 -7 (-6 -4417))))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-644 *1)) (-4 *1 (-308))))) +(((*1 *2 *1) + (-12 (-5 *2 (-691 (-873 (-966 *3) (-966 *3)))) (-5 *1 (-966 *3)) + (-4 *3 (-1099))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-365) (-1038 (-409 *2)))) (-5 *2 (-566)) + (-5 *1 (-115 *4 *3)) (-4 *3 (-1240 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) + ((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) + ((*1 *1 *1) (-4 *1 (-1138)))) +(((*1 *2 *3) + (-12 (-4 *4 (-558)) (-4 *2 (-13 (-432 *4) (-1002) (-1199))) + (-5 *1 (-600 *4 *2 *3)) + (-4 *3 (-13 (-432 (-169 *4)) (-1002) (-1199)))))) +(((*1 *2) + (-12 (-4 *2 (-13 (-432 *3) (-1002))) (-5 *1 (-277 *3 *2)) + (-4 *3 (-558))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1214)) (-4 *1 (-151 *3)))) ((*1 *1 *2) (-12 - (-5 *2 (-642 (-2 (|:| -2817 (-769)) (|:| -2245 *4) (|:| |num| *4)))) - (-4 *4 (-1238 *3)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4)))) + (-5 *2 (-644 (-2 (|:| -3631 (-771)) (|:| -2316 *4) (|:| |num| *4)))) + (-4 *4 (-1240 *3)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-401 *3 *4)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -4287 "void"))) - (-5 *3 (-642 (-950 (-564)))) (-5 *4 (-112)) (-5 *1 (-437)))) + (-12 (-5 *2 (-3 (|:| |fst| (-436)) (|:| -4306 "void"))) + (-5 *3 (-644 (-952 (-566)))) (-5 *4 (-112)) (-5 *1 (-439)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -4287 "void"))) - (-5 *3 (-642 (-1173))) (-5 *4 (-112)) (-5 *1 (-437)))) + (-12 (-5 *2 (-3 (|:| |fst| (-436)) (|:| -4306 "void"))) + (-5 *3 (-644 (-1175))) (-5 *4 (-112)) (-5 *1 (-439)))) ((*1 *2 *1) - (-12 (-5 *2 (-1153 *3)) (-5 *1 (-599 *3)) (-4 *3 (-1212)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-172)))) + (-12 (-5 *2 (-1155 *3)) (-5 *1 (-601 *3)) (-4 *3 (-1214)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-172)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-670 *3)) (-4 *3 (-848)) (-5 *1 (-662 *3 *4)) + (-12 (-5 *2 (-672 *3)) (-4 *3 (-850)) (-5 *1 (-664 *3 *4)) (-4 *4 (-172)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-670 *3)) (-4 *3 (-848)) (-5 *1 (-662 *3 *4)) + (-12 (-5 *2 (-672 *3)) (-4 *3 (-850)) (-5 *1 (-664 *3 *4)) (-4 *4 (-172)))) ((*1 *1 *2 *2) - (-12 (-5 *2 (-670 *3)) (-4 *3 (-848)) (-5 *1 (-662 *3 *4)) + (-12 (-5 *2 (-672 *3)) (-4 *3 (-850)) (-5 *1 (-664 *3 *4)) (-4 *4 (-172)))) ((*1 *1 *2) - (-12 (-5 *2 (-642 (-642 (-642 *3)))) (-4 *3 (-1097)) - (-5 *1 (-673 *3)))) + (-12 (-5 *2 (-644 (-644 (-644 *3)))) (-4 *3 (-1099)) + (-5 *1 (-675 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-711 *2 *3 *4)) (-4 *2 (-848)) (-4 *3 (-1097)) + (-12 (-5 *1 (-713 *2 *3 *4)) (-4 *2 (-850)) (-4 *3 (-1099)) (-14 *4 - (-1 (-112) (-2 (|:| -2065 *2) (|:| -2817 *3)) - (-2 (|:| -2065 *2) (|:| -2817 *3)))))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-1115)) (-5 *1 (-836)))) + (-1 (-112) (-2 (|:| -2104 *2) (|:| -3631 *3)) + (-2 (|:| -2104 *2) (|:| -3631 *3)))))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-508)) (-5 *3 (-1117)) (-5 *1 (-838)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-871 *2 *3)) (-4 *2 (-1212)) (-4 *3 (-1212)))) + (-12 (-5 *1 (-873 *2 *3)) (-4 *2 (-1214)) (-4 *3 (-1214)))) ((*1 *1 *2) - (-12 (-5 *2 (-642 (-2 (|:| -1914 (-1173)) (|:| -2683 *4)))) - (-4 *4 (-1097)) (-5 *1 (-887 *3 *4)) (-4 *3 (-1097)))) + (-12 (-5 *2 (-644 (-2 (|:| -1928 (-1175)) (|:| -2806 *4)))) + (-4 *4 (-1099)) (-5 *1 (-889 *3 *4)) (-4 *3 (-1099)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-642 *5)) (-4 *5 (-13 (-1097) (-34))) - (-5 *2 (-642 (-1137 *3 *5))) (-5 *1 (-1137 *3 *5)) - (-4 *3 (-13 (-1097) (-34))))) + (-12 (-5 *4 (-644 *5)) (-4 *5 (-13 (-1099) (-34))) + (-5 *2 (-644 (-1139 *3 *5))) (-5 *1 (-1139 *3 *5)) + (-4 *3 (-13 (-1099) (-34))))) ((*1 *2 *3) - (-12 (-5 *3 (-642 (-2 (|:| |val| *4) (|:| -2138 *5)))) - (-4 *4 (-13 (-1097) (-34))) (-4 *5 (-13 (-1097) (-34))) - (-5 *2 (-642 (-1137 *4 *5))) (-5 *1 (-1137 *4 *5)))) + (-12 (-5 *3 (-644 (-2 (|:| |val| *4) (|:| -2192 *5)))) + (-4 *4 (-13 (-1099) (-34))) (-4 *5 (-13 (-1099) (-34))) + (-5 *2 (-644 (-1139 *4 *5))) (-5 *1 (-1139 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -2138 *4))) - (-4 *3 (-13 (-1097) (-34))) (-4 *4 (-13 (-1097) (-34))) - (-5 *1 (-1137 *3 *4)))) + (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -2192 *4))) + (-4 *3 (-13 (-1099) (-34))) (-4 *4 (-13 (-1099) (-34))) + (-5 *1 (-1139 *3 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-1137 *2 *3)) (-4 *2 (-13 (-1097) (-34))) - (-4 *3 (-13 (-1097) (-34))))) + (-12 (-5 *1 (-1139 *2 *3)) (-4 *2 (-13 (-1099) (-34))) + (-4 *3 (-13 (-1099) (-34))))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-5 *1 (-1137 *2 *3)) (-4 *2 (-13 (-1097) (-34))) - (-4 *3 (-13 (-1097) (-34))))) + (-12 (-5 *4 (-112)) (-5 *1 (-1139 *2 *3)) (-4 *2 (-13 (-1099) (-34))) + (-4 *3 (-13 (-1099) (-34))))) ((*1 *1 *2 *3 *2 *4) - (-12 (-5 *4 (-642 *3)) (-4 *3 (-13 (-1097) (-34))) - (-5 *1 (-1138 *2 *3)) (-4 *2 (-13 (-1097) (-34))))) + (-12 (-5 *4 (-644 *3)) (-4 *3 (-13 (-1099) (-34))) + (-5 *1 (-1140 *2 *3)) (-4 *2 (-13 (-1099) (-34))))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-642 (-1137 *2 *3))) (-4 *2 (-13 (-1097) (-34))) - (-4 *3 (-13 (-1097) (-34))) (-5 *1 (-1138 *2 *3)))) + (-12 (-5 *4 (-644 (-1139 *2 *3))) (-4 *2 (-13 (-1099) (-34))) + (-4 *3 (-13 (-1099) (-34))) (-5 *1 (-1140 *2 *3)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-642 (-1138 *2 *3))) (-5 *1 (-1138 *2 *3)) - (-4 *2 (-13 (-1097) (-34))) (-4 *3 (-13 (-1097) (-34))))) + (-12 (-5 *4 (-644 (-1140 *2 *3))) (-5 *1 (-1140 *2 *3)) + (-4 *2 (-13 (-1099) (-34))) (-4 *3 (-13 (-1099) (-34))))) ((*1 *1 *2) - (-12 (-5 *2 (-1137 *3 *4)) (-4 *3 (-13 (-1097) (-34))) - (-4 *4 (-13 (-1097) (-34))) (-5 *1 (-1138 *3 *4)))) + (-12 (-5 *2 (-1139 *3 *4)) (-4 *3 (-13 (-1099) (-34))) + (-4 *4 (-13 (-1099) (-34))) (-5 *1 (-1140 *3 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-1162 *2 *3)) (-4 *2 (-1097)) (-4 *3 (-1097))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| -3710 *3) (|:| |coef1| (-780 *3)) (|:| |coef2| (-780 *3)))) - (-5 *1 (-780 *3)) (-4 *3 (-556)) (-4 *3 (-1047))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) - (-4 *3 (-367 *4)))) - ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1205 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-791)) - (-4 *5 (-848)) (-4 *2 (-1062 *3 *4 *5))))) + (-12 (-5 *1 (-1164 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099))))) +(((*1 *2 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308)))) + ((*1 *2 *1) (-12 (-5 *1 (-914 *2)) (-4 *2 (-308)))) + ((*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558)) (-4 *2 (-308)))) + ((*1 *2 *1) (-12 (-4 *1 (-1059)) (-5 *2 (-566))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-365)) (-5 *2 (-644 *3)) (-5 *1 (-945 *4 *3)) + (-4 *3 (-1240 *4))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)) (-5 *3 (-566))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3910 (-642 (-225))))) - (-5 *2 (-642 (-1173))) (-5 *1 (-267)))) + (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3968 (-644 (-225))))) + (-5 *2 (-644 (-1175))) (-5 *1 (-268)))) ((*1 *2 *3) - (-12 (-5 *3 (-1169 *7)) (-4 *7 (-947 *6 *4 *5)) (-4 *4 (-791)) - (-4 *5 (-848)) (-4 *6 (-1047)) (-5 *2 (-642 *5)) - (-5 *1 (-321 *4 *5 *6 *7)))) + (-12 (-5 *3 (-1171 *7)) (-4 *7 (-949 *6 *4 *5)) (-4 *4 (-793)) + (-4 *5 (-850)) (-4 *6 (-1049)) (-5 *2 (-644 *5)) + (-5 *1 (-322 *4 *5 *6 *7)))) ((*1 *2 *1) - (-12 (-5 *2 (-642 (-1173))) (-5 *1 (-339 *3 *4 *5)) (-14 *3 *2) - (-14 *4 *2) (-4 *5 (-387)))) + (-12 (-5 *2 (-644 (-1175))) (-5 *1 (-341 *3 *4 *5)) (-14 *3 *2) + (-14 *4 *2) (-4 *5 (-389)))) ((*1 *2 *1) - (-12 (-4 *1 (-430 *3)) (-4 *3 (-1097)) (-5 *2 (-642 (-1173))))) + (-12 (-4 *1 (-432 *3)) (-4 *3 (-1099)) (-5 *2 (-644 (-1175))))) ((*1 *2 *1) - (-12 (-5 *2 (-642 (-890 *3))) (-5 *1 (-890 *3)) (-4 *3 (-1097)))) + (-12 (-5 *2 (-644 (-892 *3))) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) ((*1 *2 *1) - (-12 (-4 *1 (-947 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-791)) - (-4 *5 (-848)) (-5 *2 (-642 *5)))) + (-12 (-4 *1 (-949 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *5 (-850)) (-5 *2 (-644 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1047)) - (-4 *7 (-947 *6 *4 *5)) (-5 *2 (-642 *5)) - (-5 *1 (-948 *4 *5 *6 *7 *3)) + (-12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1049)) + (-4 *7 (-949 *6 *4 *5)) (-5 *2 (-644 *5)) + (-5 *1 (-950 *4 *5 *6 *7 *3)) (-4 *3 - (-13 (-363) - (-10 -8 (-15 -2390 ($ *7)) (-15 -4120 (*7 $)) (-15 -4131 (*7 $))))))) + (-13 (-365) + (-10 -8 (-15 -2479 ($ *7)) (-15 -4157 (*7 $)) (-15 -4167 (*7 $))))))) ((*1 *2 *1) - (-12 (-4 *1 (-971 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-790)) - (-4 *5 (-848)) (-5 *2 (-642 *5)))) + (-12 (-4 *1 (-973 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-792)) + (-4 *5 (-850)) (-5 *2 (-644 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-974 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-791)) - (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-642 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-407 (-950 *4))) (-4 *4 (-556)) (-5 *2 (-642 (-1173))) - (-5 *1 (-1041 *4))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-642 (-950 (-564)))) (-5 *4 (-642 (-1173))) - (-5 *2 (-642 (-642 (-379)))) (-5 *1 (-1021)) (-5 *5 (-379)))) + (-12 (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-644 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-1044 *4 *5)) (-4 *4 (-13 (-846) (-307) (-147) (-1020))) - (-14 *5 (-642 (-1173))) (-5 *2 (-642 (-642 (-1022 (-407 *4))))) - (-5 *1 (-1288 *4 *5 *6)) (-14 *6 (-642 (-1173))))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-642 (-950 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-846) (-307) (-147) (-1020))) - (-5 *2 (-642 (-642 (-1022 (-407 *5))))) (-5 *1 (-1288 *5 *6 *7)) - (-14 *6 (-642 (-1173))) (-14 *7 (-642 (-1173))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-642 (-950 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-846) (-307) (-147) (-1020))) - (-5 *2 (-642 (-642 (-1022 (-407 *5))))) (-5 *1 (-1288 *5 *6 *7)) - (-14 *6 (-642 (-1173))) (-14 *7 (-642 (-1173))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-642 (-950 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-846) (-307) (-147) (-1020))) - (-5 *2 (-642 (-642 (-1022 (-407 *5))))) (-5 *1 (-1288 *5 *6 *7)) - (-14 *6 (-642 (-1173))) (-14 *7 (-642 (-1173))))) - ((*1 *2 *3) - (-12 (-5 *3 (-642 (-950 *4))) - (-4 *4 (-13 (-846) (-307) (-147) (-1020))) - (-5 *2 (-642 (-642 (-1022 (-407 *4))))) (-5 *1 (-1288 *4 *5 *6)) - (-14 *5 (-642 (-1173))) (-14 *6 (-642 (-1173)))))) + (-12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-558)) (-5 *2 (-644 (-1175))) + (-5 *1 (-1043 *4))))) +(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) + (-12 (-5 *4 (-566)) (-5 *5 (-689 (-225))) + (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN)))) + (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-88 OUTPUT)))) + (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-749))))) (((*1 *2 *1) - (-12 - (-5 *2 - (-642 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) - (|:| |xpnt| (-564))))) - (-5 *1 (-418 *3)) (-4 *3 (-556)))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-769)) (-4 *3 (-349)) (-4 *5 (-1238 *3)) - (-5 *2 (-642 (-1169 *3))) (-5 *1 (-498 *3 *5 *6)) - (-4 *6 (-1238 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-822)) (-5 *1 (-823))))) + (-12 (-5 *2 (-644 (-2 (|:| |k| (-672 *3)) (|:| |c| *4)))) + (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-850)) + (-4 *4 (-13 (-172) (-717 (-409 (-566))))) (-14 *5 (-921))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-556)) - (-5 *2 (-2 (|:| -3544 (-687 *5)) (|:| |vec| (-1262 (-642 (-919)))))) - (-5 *1 (-90 *5 *3)) (-5 *4 (-919)) (-4 *3 (-654 *5))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *6 (-1155)) - (-5 *3 (-225)) (-5 *2 (-1033)) (-5 *1 (-756))))) -(((*1 *1 *2) (-12 (-5 *1 (-689 *2)) (-4 *2 (-611 (-860)))))) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1240 *5)) (-4 *5 (-365)) + (-5 *2 + (-2 (|:| |ir| (-587 (-409 *6))) (|:| |specpart| (-409 *6)) + (|:| |polypart| *6))) + (-5 *1 (-576 *5 *6)) (-5 *3 (-409 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 (-1155 *4) (-1155 *4))) (-5 *2 (-1155 *4)) + (-5 *1 (-1289 *4)) (-4 *4 (-1214)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-644 (-1155 *5)) (-644 (-1155 *5)))) (-5 *4 (-566)) + (-5 *2 (-644 (-1155 *5))) (-5 *1 (-1289 *5)) (-4 *5 (-1214))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-566)) (-4 *1 (-324 *4 *2)) (-4 *4 (-1099)) + (-4 *2 (-131))))) (((*1 *1 *2) - (-12 (-5 *2 (-1262 *3)) (-4 *3 (-363)) (-14 *6 (-1262 (-687 *3))) - (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-919)) (-14 *5 (-642 (-1173))))) - ((*1 *1 *2) (-12 (-5 *2 (-1122 (-564) (-610 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1212)))) + (-12 (-5 *2 (-1264 *3)) (-4 *3 (-365)) (-14 *6 (-1264 (-689 *3))) + (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))))) + ((*1 *1 *2) (-12 (-5 *2 (-1124 (-566) (-612 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1214)))) ((*1 *1 *2) - (-12 (-5 *2 (-1262 (-339 (-2401 'JINT 'X 'ELAM) (-2401) (-697)))) - (-5 *1 (-61 *3)) (-14 *3 (-1173)))) + (-12 (-5 *2 (-1264 (-341 (-2489 'JINT 'X 'ELAM) (-2489) (-699)))) + (-5 *1 (-61 *3)) (-14 *3 (-1175)))) ((*1 *1 *2) - (-12 (-5 *2 (-1262 (-339 (-2401) (-2401 'XC) (-697)))) - (-5 *1 (-63 *3)) (-14 *3 (-1173)))) + (-12 (-5 *2 (-1264 (-341 (-2489) (-2489 'XC) (-699)))) + (-5 *1 (-63 *3)) (-14 *3 (-1175)))) ((*1 *1 *2) - (-12 (-5 *2 (-339 (-2401 'X) (-2401) (-697))) (-5 *1 (-64 *3)) - (-14 *3 (-1173)))) + (-12 (-5 *2 (-341 (-2489 'X) (-2489) (-699))) (-5 *1 (-64 *3)) + (-14 *3 (-1175)))) ((*1 *1 *2) - (-12 (-5 *2 (-339 (-2401) (-2401 'XC) (-697))) (-5 *1 (-66 *3)) - (-14 *3 (-1173)))) + (-12 (-5 *2 (-341 (-2489) (-2489 'XC) (-699))) (-5 *1 (-66 *3)) + (-14 *3 (-1175)))) ((*1 *1 *2) - (-12 (-5 *2 (-1262 (-339 (-2401 'X) (-2401 '-2380) (-697)))) - (-5 *1 (-71 *3)) (-14 *3 (-1173)))) + (-12 (-5 *2 (-1264 (-341 (-2489 'X) (-2489 '-2481) (-699)))) + (-5 *1 (-71 *3)) (-14 *3 (-1175)))) ((*1 *1 *2) - (-12 (-5 *2 (-1262 (-339 (-2401) (-2401 'X) (-697)))) - (-5 *1 (-74 *3)) (-14 *3 (-1173)))) + (-12 (-5 *2 (-1264 (-341 (-2489) (-2489 'X) (-699)))) + (-5 *1 (-74 *3)) (-14 *3 (-1175)))) ((*1 *1 *2) - (-12 (-5 *2 (-1262 (-339 (-2401 'X 'EPS) (-2401 '-2380) (-697)))) - (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1173)) (-14 *4 (-1173)) - (-14 *5 (-1173)))) + (-12 (-5 *2 (-1264 (-341 (-2489 'X 'EPS) (-2489 '-2481) (-699)))) + (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1175)) (-14 *4 (-1175)) + (-14 *5 (-1175)))) ((*1 *1 *2) - (-12 (-5 *2 (-1262 (-339 (-2401 'EPS) (-2401 'YA 'YB) (-697)))) - (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1173)) (-14 *4 (-1173)) - (-14 *5 (-1173)))) + (-12 (-5 *2 (-1264 (-341 (-2489 'EPS) (-2489 'YA 'YB) (-699)))) + (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1175)) (-14 *4 (-1175)) + (-14 *5 (-1175)))) ((*1 *1 *2) - (-12 (-5 *2 (-339 (-2401) (-2401 'X) (-697))) (-5 *1 (-77 *3)) - (-14 *3 (-1173)))) + (-12 (-5 *2 (-341 (-2489) (-2489 'X) (-699))) (-5 *1 (-77 *3)) + (-14 *3 (-1175)))) ((*1 *1 *2) - (-12 (-5 *2 (-339 (-2401) (-2401 'X) (-697))) (-5 *1 (-78 *3)) - (-14 *3 (-1173)))) + (-12 (-5 *2 (-341 (-2489) (-2489 'X) (-699))) (-5 *1 (-78 *3)) + (-14 *3 (-1175)))) ((*1 *1 *2) - (-12 (-5 *2 (-1262 (-339 (-2401) (-2401 'XC) (-697)))) - (-5 *1 (-79 *3)) (-14 *3 (-1173)))) + (-12 (-5 *2 (-1264 (-341 (-2489) (-2489 'XC) (-699)))) + (-5 *1 (-79 *3)) (-14 *3 (-1175)))) ((*1 *1 *2) - (-12 (-5 *2 (-1262 (-339 (-2401) (-2401 'X) (-697)))) - (-5 *1 (-80 *3)) (-14 *3 (-1173)))) + (-12 (-5 *2 (-1264 (-341 (-2489) (-2489 'X) (-699)))) + (-5 *1 (-80 *3)) (-14 *3 (-1175)))) ((*1 *1 *2) - (-12 (-5 *2 (-1262 (-339 (-2401 'X '-2380) (-2401) (-697)))) - (-5 *1 (-82 *3)) (-14 *3 (-1173)))) + (-12 (-5 *2 (-1264 (-341 (-2489 'X '-2481) (-2489) (-699)))) + (-5 *1 (-82 *3)) (-14 *3 (-1175)))) ((*1 *1 *2) - (-12 (-5 *2 (-687 (-339 (-2401 'X '-2380) (-2401) (-697)))) - (-5 *1 (-83 *3)) (-14 *3 (-1173)))) + (-12 (-5 *2 (-689 (-341 (-2489 'X '-2481) (-2489) (-699)))) + (-5 *1 (-83 *3)) (-14 *3 (-1175)))) ((*1 *1 *2) - (-12 (-5 *2 (-687 (-339 (-2401 'X) (-2401) (-697)))) (-5 *1 (-84 *3)) - (-14 *3 (-1173)))) + (-12 (-5 *2 (-689 (-341 (-2489 'X) (-2489) (-699)))) (-5 *1 (-84 *3)) + (-14 *3 (-1175)))) ((*1 *1 *2) - (-12 (-5 *2 (-1262 (-339 (-2401 'X) (-2401) (-697)))) - (-5 *1 (-85 *3)) (-14 *3 (-1173)))) + (-12 (-5 *2 (-1264 (-341 (-2489 'X) (-2489) (-699)))) + (-5 *1 (-85 *3)) (-14 *3 (-1175)))) ((*1 *1 *2) - (-12 (-5 *2 (-1262 (-339 (-2401 'X) (-2401 '-2380) (-697)))) - (-5 *1 (-86 *3)) (-14 *3 (-1173)))) + (-12 (-5 *2 (-1264 (-341 (-2489 'X) (-2489 '-2481) (-699)))) + (-5 *1 (-86 *3)) (-14 *3 (-1175)))) ((*1 *1 *2) - (-12 (-5 *2 (-687 (-339 (-2401 'XL 'XR 'ELAM) (-2401) (-697)))) - (-5 *1 (-87 *3)) (-14 *3 (-1173)))) + (-12 (-5 *2 (-689 (-341 (-2489 'XL 'XR 'ELAM) (-2489) (-699)))) + (-5 *1 (-87 *3)) (-14 *3 (-1175)))) ((*1 *1 *2) - (-12 (-5 *2 (-339 (-2401 'X) (-2401 '-2380) (-697))) (-5 *1 (-89 *3)) - (-14 *3 (-1173)))) + (-12 (-5 *2 (-341 (-2489 'X) (-2489 '-2481) (-699))) (-5 *1 (-89 *3)) + (-14 *3 (-1175)))) ((*1 *1 *2) - (-12 (-5 *2 (-642 (-136 *3 *4 *5))) (-5 *1 (-136 *3 *4 *5)) - (-14 *3 (-564)) (-14 *4 (-769)) (-4 *5 (-172)))) + (-12 (-5 *2 (-644 (-136 *3 *4 *5))) (-5 *1 (-136 *3 *4 *5)) + (-14 *3 (-566)) (-14 *4 (-771)) (-4 *5 (-172)))) ((*1 *1 *2) - (-12 (-5 *2 (-642 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) - (-14 *3 (-564)) (-14 *4 (-769)))) + (-12 (-5 *2 (-644 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) + (-14 *3 (-566)) (-14 *4 (-771)))) ((*1 *1 *2) - (-12 (-5 *2 (-1139 *4 *5)) (-14 *4 (-769)) (-4 *5 (-172)) - (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)))) + (-12 (-5 *2 (-1141 *4 *5)) (-14 *4 (-771)) (-4 *5 (-172)) + (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-566)))) ((*1 *1 *2) - (-12 (-5 *2 (-240 *4 *5)) (-14 *4 (-769)) (-4 *5 (-172)) - (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)))) + (-12 (-5 *2 (-240 *4 *5)) (-14 *4 (-771)) (-4 *5 (-172)) + (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-566)))) ((*1 *2 *3) - (-12 (-5 *3 (-1262 (-687 *4))) (-4 *4 (-172)) - (-5 *2 (-1262 (-687 (-407 (-950 *4))))) (-5 *1 (-189 *4)))) + (-12 (-5 *3 (-1264 (-689 *4))) (-4 *4 (-172)) + (-5 *2 (-1264 (-689 (-409 (-952 *4))))) (-5 *1 (-189 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1089 (-316 *4))) - (-4 *4 (-13 (-848) (-556) (-612 (-379)))) (-5 *2 (-1089 (-379))) - (-5 *1 (-258 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-266 *2)) (-4 *2 (-848)))) - ((*1 *1 *2) (-12 (-5 *2 (-642 (-564))) (-5 *1 (-275)))) + (-12 (-5 *3 (-1091 (-317 *4))) + (-4 *4 (-13 (-850) (-558) (-614 (-381)))) (-5 *2 (-1091 (-381))) + (-5 *1 (-259 *4)))) + ((*1 *1 *2) (-12 (-4 *1 (-267 *2)) (-4 *2 (-850)))) + ((*1 *1 *2) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-276)))) ((*1 *2 *1) - (-12 (-4 *2 (-1238 *3)) (-5 *1 (-289 *3 *2 *4 *5 *6 *7)) + (-12 (-4 *2 (-1240 *3)) (-5 *1 (-290 *3 *2 *4 *5 *6 *7)) (-4 *3 (-172)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-1247 *4 *5 *6)) (-4 *4 (-13 (-27) (-1197) (-430 *3))) - (-14 *5 (-1173)) (-14 *6 *4) - (-4 *3 (-13 (-1036 (-564)) (-637 (-564)) (-452))) - (-5 *1 (-313 *3 *4 *5 *6)))) + (-12 (-5 *2 (-1249 *4 *5 *6)) (-4 *4 (-13 (-27) (-1199) (-432 *3))) + (-14 *5 (-1175)) (-14 *6 *4) + (-4 *3 (-13 (-1038 (-566)) (-639 (-566)) (-454))) + (-5 *1 (-314 *3 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-5 *2 (-316 *5)) (-5 *1 (-339 *3 *4 *5)) - (-14 *3 (-642 (-1173))) (-14 *4 (-642 (-1173))) (-4 *5 (-387)))) + (-12 (-5 *2 (-317 *5)) (-5 *1 (-341 *3 *4 *5)) + (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) ((*1 *2 *3) - (-12 (-4 *4 (-349)) (-4 *2 (-329 *4)) (-5 *1 (-347 *3 *4 *2)) - (-4 *3 (-329 *4)))) + (-12 (-4 *4 (-351)) (-4 *2 (-330 *4)) (-5 *1 (-349 *3 *4 *2)) + (-4 *3 (-330 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-349)) (-4 *2 (-329 *4)) (-5 *1 (-347 *2 *4 *3)) - (-4 *3 (-329 *4)))) + (-12 (-4 *4 (-351)) (-4 *2 (-330 *4)) (-5 *1 (-349 *2 *4 *3)) + (-4 *3 (-330 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-848)) (-4 *4 (-172)) - (-5 *2 (-1286 *3 *4)))) + (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)) + (-5 *2 (-1288 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-848)) (-4 *4 (-172)) - (-5 *2 (-1277 *3 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-848)) (-4 *3 (-172)))) + (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)) + (-5 *2 (-1279 *3 *4)))) + ((*1 *1 *2) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-850)) (-4 *3 (-172)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1177)) (|:| -3089 (-642 (-330))))) - (-4 *1 (-383)))) - ((*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-383)))) - ((*1 *1 *2) (-12 (-5 *2 (-642 (-330))) (-4 *1 (-383)))) - ((*1 *1 *2) (-12 (-5 *2 (-687 (-697))) (-4 *1 (-383)))) + (-5 *2 (-2 (|:| |localSymbols| (-1179)) (|:| -3217 (-644 (-331))))) + (-4 *1 (-385)))) + ((*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-385)))) + ((*1 *1 *2) (-12 (-5 *2 (-644 (-331))) (-4 *1 (-385)))) + ((*1 *1 *2) (-12 (-5 *2 (-689 (-699))) (-4 *1 (-385)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1177)) (|:| -3089 (-642 (-330))))) - (-4 *1 (-384)))) - ((*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-384)))) - ((*1 *1 *2) (-12 (-5 *2 (-642 (-330))) (-4 *1 (-384)))) - ((*1 *2 *3) (-12 (-5 *2 (-394)) (-5 *1 (-393 *3)) (-4 *3 (-1097)))) + (-5 *2 (-2 (|:| |localSymbols| (-1179)) (|:| -3217 (-644 (-331))))) + (-4 *1 (-386)))) + ((*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-386)))) + ((*1 *1 *2) (-12 (-5 *2 (-644 (-331))) (-4 *1 (-386)))) + ((*1 *2 *3) (-12 (-5 *2 (-396)) (-5 *1 (-395 *3)) (-4 *3 (-1099)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1177)) (|:| -3089 (-642 (-330))))) - (-4 *1 (-396)))) - ((*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-396)))) - ((*1 *1 *2) (-12 (-5 *2 (-642 (-330))) (-4 *1 (-396)))) + (-5 *2 (-2 (|:| |localSymbols| (-1179)) (|:| -3217 (-644 (-331))))) + (-4 *1 (-398)))) + ((*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-398)))) + ((*1 *1 *2) (-12 (-5 *2 (-644 (-331))) (-4 *1 (-398)))) ((*1 *1 *2) - (-12 (-5 *2 (-294 (-316 (-169 (-379))))) (-5 *1 (-398 *3 *4 *5 *6)) - (-14 *3 (-1173)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -4287 "void"))) - (-14 *5 (-642 (-1173))) (-14 *6 (-1177)))) + (-12 (-5 *2 (-295 (-317 (-169 (-381))))) (-5 *1 (-400 *3 *4 *5 *6)) + (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -4306 "void"))) + (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) ((*1 *1 *2) - (-12 (-5 *2 (-294 (-316 (-379)))) (-5 *1 (-398 *3 *4 *5 *6)) - (-14 *3 (-1173)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -4287 "void"))) - (-14 *5 (-642 (-1173))) (-14 *6 (-1177)))) + (-12 (-5 *2 (-295 (-317 (-381)))) (-5 *1 (-400 *3 *4 *5 *6)) + (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -4306 "void"))) + (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) ((*1 *1 *2) - (-12 (-5 *2 (-294 (-316 (-564)))) (-5 *1 (-398 *3 *4 *5 *6)) - (-14 *3 (-1173)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -4287 "void"))) - (-14 *5 (-642 (-1173))) (-14 *6 (-1177)))) + (-12 (-5 *2 (-295 (-317 (-566)))) (-5 *1 (-400 *3 *4 *5 *6)) + (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -4306 "void"))) + (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) ((*1 *1 *2) - (-12 (-5 *2 (-316 (-169 (-379)))) (-5 *1 (-398 *3 *4 *5 *6)) - (-14 *3 (-1173)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -4287 "void"))) - (-14 *5 (-642 (-1173))) (-14 *6 (-1177)))) + (-12 (-5 *2 (-317 (-169 (-381)))) (-5 *1 (-400 *3 *4 *5 *6)) + (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -4306 "void"))) + (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) ((*1 *1 *2) - (-12 (-5 *2 (-316 (-379))) (-5 *1 (-398 *3 *4 *5 *6)) - (-14 *3 (-1173)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -4287 "void"))) - (-14 *5 (-642 (-1173))) (-14 *6 (-1177)))) + (-12 (-5 *2 (-317 (-381))) (-5 *1 (-400 *3 *4 *5 *6)) + (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -4306 "void"))) + (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) ((*1 *1 *2) - (-12 (-5 *2 (-316 (-564))) (-5 *1 (-398 *3 *4 *5 *6)) - (-14 *3 (-1173)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -4287 "void"))) - (-14 *5 (-642 (-1173))) (-14 *6 (-1177)))) + (-12 (-5 *2 (-317 (-566))) (-5 *1 (-400 *3 *4 *5 *6)) + (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -4306 "void"))) + (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) ((*1 *1 *2) - (-12 (-5 *2 (-294 (-316 (-692)))) (-5 *1 (-398 *3 *4 *5 *6)) - (-14 *3 (-1173)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -4287 "void"))) - (-14 *5 (-642 (-1173))) (-14 *6 (-1177)))) + (-12 (-5 *2 (-295 (-317 (-694)))) (-5 *1 (-400 *3 *4 *5 *6)) + (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -4306 "void"))) + (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) ((*1 *1 *2) - (-12 (-5 *2 (-294 (-316 (-697)))) (-5 *1 (-398 *3 *4 *5 *6)) - (-14 *3 (-1173)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -4287 "void"))) - (-14 *5 (-642 (-1173))) (-14 *6 (-1177)))) + (-12 (-5 *2 (-295 (-317 (-699)))) (-5 *1 (-400 *3 *4 *5 *6)) + (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -4306 "void"))) + (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) ((*1 *1 *2) - (-12 (-5 *2 (-294 (-316 (-699)))) (-5 *1 (-398 *3 *4 *5 *6)) - (-14 *3 (-1173)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -4287 "void"))) - (-14 *5 (-642 (-1173))) (-14 *6 (-1177)))) + (-12 (-5 *2 (-295 (-317 (-701)))) (-5 *1 (-400 *3 *4 *5 *6)) + (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -4306 "void"))) + (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) ((*1 *1 *2) - (-12 (-5 *2 (-316 (-692))) (-5 *1 (-398 *3 *4 *5 *6)) - (-14 *3 (-1173)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -4287 "void"))) - (-14 *5 (-642 (-1173))) (-14 *6 (-1177)))) + (-12 (-5 *2 (-317 (-694))) (-5 *1 (-400 *3 *4 *5 *6)) + (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -4306 "void"))) + (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) ((*1 *1 *2) - (-12 (-5 *2 (-316 (-697))) (-5 *1 (-398 *3 *4 *5 *6)) - (-14 *3 (-1173)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -4287 "void"))) - (-14 *5 (-642 (-1173))) (-14 *6 (-1177)))) + (-12 (-5 *2 (-317 (-699))) (-5 *1 (-400 *3 *4 *5 *6)) + (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -4306 "void"))) + (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) ((*1 *1 *2) - (-12 (-5 *2 (-316 (-699))) (-5 *1 (-398 *3 *4 *5 *6)) - (-14 *3 (-1173)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -4287 "void"))) - (-14 *5 (-642 (-1173))) (-14 *6 (-1177)))) + (-12 (-5 *2 (-317 (-701))) (-5 *1 (-400 *3 *4 *5 *6)) + (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -4306 "void"))) + (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1177)) (|:| -3089 (-642 (-330))))) - (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1173)) - (-14 *4 (-3 (|:| |fst| (-434)) (|:| -4287 "void"))) - (-14 *5 (-642 (-1173))) (-14 *6 (-1177)))) + (-5 *2 (-2 (|:| |localSymbols| (-1179)) (|:| -3217 (-644 (-331))))) + (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1175)) + (-14 *4 (-3 (|:| |fst| (-436)) (|:| -4306 "void"))) + (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) ((*1 *1 *2) - (-12 (-5 *2 (-642 (-330))) (-5 *1 (-398 *3 *4 *5 *6)) - (-14 *3 (-1173)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -4287 "void"))) - (-14 *5 (-642 (-1173))) (-14 *6 (-1177)))) + (-12 (-5 *2 (-644 (-331))) (-5 *1 (-400 *3 *4 *5 *6)) + (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -4306 "void"))) + (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) ((*1 *1 *2) - (-12 (-5 *2 (-330)) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1173)) - (-14 *4 (-3 (|:| |fst| (-434)) (|:| -4287 "void"))) - (-14 *5 (-642 (-1173))) (-14 *6 (-1177)))) + (-12 (-5 *2 (-331)) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1175)) + (-14 *4 (-3 (|:| |fst| (-436)) (|:| -4306 "void"))) + (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) ((*1 *1 *2) - (-12 (-5 *2 (-331 *4)) (-4 *4 (-13 (-848) (-21))) - (-5 *1 (-427 *3 *4)) (-4 *3 (-13 (-172) (-38 (-407 (-564))))))) + (-12 (-5 *2 (-332 *4)) (-4 *4 (-13 (-850) (-21))) + (-5 *1 (-429 *3 *4)) (-4 *3 (-13 (-172) (-38 (-409 (-566))))))) ((*1 *1 *2) - (-12 (-5 *1 (-427 *2 *3)) (-4 *2 (-13 (-172) (-38 (-407 (-564))))) - (-4 *3 (-13 (-848) (-21))))) + (-12 (-5 *1 (-429 *2 *3)) (-4 *2 (-13 (-172) (-38 (-409 (-566))))) + (-4 *3 (-13 (-850) (-21))))) ((*1 *1 *2) - (-12 (-5 *2 (-407 (-950 (-407 *3)))) (-4 *3 (-556)) (-4 *3 (-1097)) - (-4 *1 (-430 *3)))) + (-12 (-5 *2 (-409 (-952 (-409 *3)))) (-4 *3 (-558)) (-4 *3 (-1099)) + (-4 *1 (-432 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-950 (-407 *3))) (-4 *3 (-556)) (-4 *3 (-1097)) - (-4 *1 (-430 *3)))) + (-12 (-5 *2 (-952 (-409 *3))) (-4 *3 (-558)) (-4 *3 (-1099)) + (-4 *1 (-432 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-407 *3)) (-4 *3 (-556)) (-4 *3 (-1097)) - (-4 *1 (-430 *3)))) + (-12 (-5 *2 (-409 *3)) (-4 *3 (-558)) (-4 *3 (-1099)) + (-4 *1 (-432 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1122 *3 (-610 *1))) (-4 *3 (-1047)) (-4 *3 (-1097)) - (-4 *1 (-430 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-434)))) - ((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-434)))) - ((*1 *1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-434)))) - ((*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-434)))) - ((*1 *1 *2) (-12 (-5 *2 (-434)) (-5 *1 (-437)))) + (-12 (-5 *2 (-1124 *3 (-612 *1))) (-4 *3 (-1049)) (-4 *3 (-1099)) + (-4 *1 (-432 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-436)))) + ((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-436)))) + ((*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-436)))) + ((*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-436)))) + ((*1 *1 *2) (-12 (-5 *2 (-436)) (-5 *1 (-439)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1177)) (|:| -3089 (-642 (-330))))) - (-4 *1 (-440)))) - ((*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-440)))) - ((*1 *1 *2) (-12 (-5 *2 (-642 (-330))) (-4 *1 (-440)))) - ((*1 *1 *2) (-12 (-5 *2 (-1262 (-697))) (-4 *1 (-440)))) + (-5 *2 (-2 (|:| |localSymbols| (-1179)) (|:| -3217 (-644 (-331))))) + (-4 *1 (-442)))) + ((*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-442)))) + ((*1 *1 *2) (-12 (-5 *2 (-644 (-331))) (-4 *1 (-442)))) + ((*1 *1 *2) (-12 (-5 *2 (-1264 (-699))) (-4 *1 (-442)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1177)) (|:| -3089 (-642 (-330))))) - (-4 *1 (-441)))) - ((*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-441)))) - ((*1 *1 *2) (-12 (-5 *2 (-642 (-330))) (-4 *1 (-441)))) + (-5 *2 (-2 (|:| |localSymbols| (-1179)) (|:| -3217 (-644 (-331))))) + (-4 *1 (-443)))) + ((*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-443)))) + ((*1 *1 *2) (-12 (-5 *2 (-644 (-331))) (-4 *1 (-443)))) ((*1 *1 *2) - (-12 (-5 *2 (-1262 (-407 (-950 *3)))) (-4 *3 (-172)) - (-14 *6 (-1262 (-687 *3))) (-5 *1 (-453 *3 *4 *5 *6)) - (-14 *4 (-919)) (-14 *5 (-642 (-1173))))) - ((*1 *1 *2) (-12 (-5 *2 (-642 (-642 (-941 (-225))))) (-5 *1 (-468)))) - ((*1 *2 *1) (-12 (-5 *2 (-860)) (-5 *1 (-468)))) + (-12 (-5 *2 (-1264 (-409 (-952 *3)))) (-4 *3 (-172)) + (-14 *6 (-1264 (-689 *3))) (-5 *1 (-455 *3 *4 *5 *6)) + (-14 *4 (-921)) (-14 *5 (-644 (-1175))))) + ((*1 *1 *2) (-12 (-5 *2 (-644 (-644 (-943 (-225))))) (-5 *1 (-470)))) + ((*1 *2 *1) (-12 (-5 *2 (-862)) (-5 *1 (-470)))) ((*1 *1 *2) - (-12 (-5 *2 (-1247 *3 *4 *5)) (-4 *3 (-1047)) (-14 *4 (-1173)) - (-14 *5 *3) (-5 *1 (-474 *3 *4 *5)))) + (-12 (-5 *2 (-1249 *3 *4 *5)) (-4 *3 (-1049)) (-14 *4 (-1175)) + (-14 *5 *3) (-5 *1 (-476 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-474 *3 *4 *5)) - (-4 *3 (-1047)) (-14 *5 *3))) - ((*1 *1 *2) (-12 (-5 *2 (-1122 (-564) (-610 (-495)))) (-5 *1 (-495)))) - ((*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-502)))) + (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-476 *3 *4 *5)) + (-4 *3 (-1049)) (-14 *5 *3))) + ((*1 *1 *2) (-12 (-5 *2 (-1124 (-566) (-612 (-497)))) (-5 *1 (-497)))) + ((*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-504)))) ((*1 *1 *2) - (-12 (-5 *2 (-642 *6)) (-4 *6 (-947 *3 *4 *5)) (-4 *3 (-363)) - (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-504 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-642 (-1211))) (-5 *1 (-524)))) - ((*1 *1 *2) (-12 (-5 *2 (-642 (-1211))) (-5 *1 (-604)))) + (-12 (-5 *2 (-644 *6)) (-4 *6 (-949 *3 *4 *5)) (-4 *3 (-365)) + (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-506 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-644 (-1213))) (-5 *1 (-526)))) + ((*1 *1 *2) (-12 (-5 *2 (-644 (-1213))) (-5 *1 (-606)))) ((*1 *1 *2) - (-12 (-4 *3 (-172)) (-5 *1 (-605 *3 *2)) (-4 *2 (-742 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-611 *2)) (-4 *2 (-1212)))) - ((*1 *1 *2) (-12 (-4 *1 (-614 *2)) (-4 *2 (-1212)))) - ((*1 *1 *2) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1047)))) + (-12 (-4 *3 (-172)) (-5 *1 (-607 *3 *2)) (-4 *2 (-744 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-613 *2)) (-4 *2 (-1214)))) + ((*1 *1 *2) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1214)))) + ((*1 *1 *2) (-12 (-4 *1 (-620 *2)) (-4 *2 (-1049)))) ((*1 *2 *1) - (-12 (-5 *2 (-1282 *3 *4)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-848)) - (-4 *4 (-13 (-172) (-715 (-407 (-564))))) (-14 *5 (-919)))) + (-12 (-5 *2 (-1284 *3 *4)) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-850)) + (-4 *4 (-13 (-172) (-717 (-409 (-566))))) (-14 *5 (-921)))) ((*1 *2 *1) - (-12 (-5 *2 (-1277 *3 *4)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-848)) - (-4 *4 (-13 (-172) (-715 (-407 (-564))))) (-14 *5 (-919)))) + (-12 (-5 *2 (-1279 *3 *4)) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-850)) + (-4 *4 (-13 (-172) (-717 (-409 (-566))))) (-14 *5 (-921)))) ((*1 *1 *2) - (-12 (-4 *3 (-172)) (-5 *1 (-633 *3 *2)) (-4 *2 (-742 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-675 *3)) (-5 *1 (-670 *3)) (-4 *3 (-848)))) - ((*1 *2 *1) (-12 (-5 *2 (-817 *3)) (-5 *1 (-670 *3)) (-4 *3 (-848)))) + (-12 (-4 *3 (-172)) (-5 *1 (-635 *3 *2)) (-4 *2 (-744 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-677 *3)) (-5 *1 (-672 *3)) (-4 *3 (-850)))) + ((*1 *2 *1) (-12 (-5 *2 (-819 *3)) (-5 *1 (-672 *3)) (-4 *3 (-850)))) ((*1 *2 *1) - (-12 (-5 *2 (-956 (-956 (-956 *3)))) (-5 *1 (-673 *3)) - (-4 *3 (-1097)))) + (-12 (-5 *2 (-958 (-958 (-958 *3)))) (-5 *1 (-675 *3)) + (-4 *3 (-1099)))) ((*1 *1 *2) - (-12 (-5 *2 (-956 (-956 (-956 *3)))) (-4 *3 (-1097)) - (-5 *1 (-673 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-817 *3)) (-5 *1 (-675 *3)) (-4 *3 (-848)))) - ((*1 *1 *2) (-12 (-5 *2 (-1115)) (-5 *1 (-679)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-680 *3)) (-4 *3 (-1097)))) + (-12 (-5 *2 (-958 (-958 (-958 *3)))) (-4 *3 (-1099)) + (-5 *1 (-675 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-819 *3)) (-5 *1 (-677 *3)) (-4 *3 (-850)))) + ((*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-681)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-682 *3)) (-4 *3 (-1099)))) ((*1 *1 *2) - (-12 (-4 *3 (-1047)) (-4 *1 (-685 *3 *4 *2)) (-4 *4 (-373 *3)) - (-4 *2 (-373 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-169 (-379))) (-5 *1 (-692)))) - ((*1 *1 *2) (-12 (-5 *2 (-169 (-699))) (-5 *1 (-692)))) - ((*1 *1 *2) (-12 (-5 *2 (-169 (-697))) (-5 *1 (-692)))) - ((*1 *1 *2) (-12 (-5 *2 (-169 (-564))) (-5 *1 (-692)))) - ((*1 *1 *2) (-12 (-5 *2 (-169 (-379))) (-5 *1 (-692)))) - ((*1 *1 *2) (-12 (-5 *2 (-699)) (-5 *1 (-697)))) - ((*1 *2 *1) (-12 (-5 *2 (-379)) (-5 *1 (-697)))) - ((*1 *2 *3) - (-12 (-5 *3 (-316 (-564))) (-5 *2 (-316 (-699))) (-5 *1 (-699)))) - ((*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1155)) (-5 *1 (-708)))) + (-12 (-4 *3 (-1049)) (-4 *1 (-687 *3 *4 *2)) (-4 *4 (-375 *3)) + (-4 *2 (-375 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-169 (-381))) (-5 *1 (-694)))) + ((*1 *1 *2) (-12 (-5 *2 (-169 (-701))) (-5 *1 (-694)))) + ((*1 *1 *2) (-12 (-5 *2 (-169 (-699))) (-5 *1 (-694)))) + ((*1 *1 *2) (-12 (-5 *2 (-169 (-566))) (-5 *1 (-694)))) + ((*1 *1 *2) (-12 (-5 *2 (-169 (-381))) (-5 *1 (-694)))) + ((*1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-699)))) + ((*1 *2 *1) (-12 (-5 *2 (-381)) (-5 *1 (-699)))) + ((*1 *2 *3) + (-12 (-5 *3 (-317 (-566))) (-5 *2 (-317 (-701))) (-5 *1 (-701)))) + ((*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1157)) (-5 *1 (-710)))) ((*1 *2 *1) - (-12 (-4 *2 (-172)) (-5 *1 (-709 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-12 (-4 *2 (-172)) (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *2 *1) - (-12 (-4 *2 (-172)) (-5 *1 (-713 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-12 (-4 *2 (-172)) (-5 *1 (-715 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-642 (-2 (|:| -2968 *3) (|:| -1846 *4)))) - (-4 *3 (-1047)) (-4 *4 (-724)) (-5 *1 (-733 *3 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-761)))) + (-12 (-5 *2 (-644 (-2 (|:| -3103 *3) (|:| -1863 *4)))) + (-4 *3 (-1049)) (-4 *4 (-726)) (-5 *1 (-735 *3 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-763)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| - (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) - (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) + (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) + (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| - (-2 (|:| |fn| (-316 (-225))) - (|:| -4138 (-642 (-1091 (-841 (-225))))) + (-2 (|:| |fn| (-317 (-225))) + (|:| -1680 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) - (-5 *1 (-767)))) + (-5 *1 (-769)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |fn| (-316 (-225))) - (|:| -4138 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) + (-2 (|:| |fn| (-317 (-225))) + (|:| -1680 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *1 (-767)))) + (-5 *1 (-769)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) - (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) + (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) + (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *1 (-767)))) - ((*1 *2 *3) (-12 (-5 *2 (-772)) (-5 *1 (-771 *3)) (-4 *3 (-1212)))) + (-5 *1 (-769)))) + ((*1 *2 *3) (-12 (-5 *2 (-774)) (-5 *1 (-773 *3)) (-4 *3 (-1214)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) - (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) + (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) + (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *1 (-806)))) - ((*1 *1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-822)))) + (-5 *1 (-808)))) + ((*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-824)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| - (-2 (|:| |fn| (-316 (-225))) (|:| -3910 (-642 (-225))) - (|:| |lb| (-642 (-841 (-225)))) - (|:| |cf| (-642 (-316 (-225)))) - (|:| |ub| (-642 (-841 (-225)))))) + (-2 (|:| |fn| (-317 (-225))) (|:| -3968 (-644 (-225))) + (|:| |lb| (-644 (-843 (-225)))) + (|:| |cf| (-644 (-317 (-225)))) + (|:| |ub| (-644 (-843 (-225)))))) (|:| |lsa| - (-2 (|:| |lfn| (-642 (-316 (-225)))) - (|:| -3910 (-642 (-225))))))) - (-5 *1 (-839)))) + (-2 (|:| |lfn| (-644 (-317 (-225)))) + (|:| -3968 (-644 (-225))))))) + (-5 *1 (-841)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3910 (-642 (-225))))) - (-5 *1 (-839)))) + (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3968 (-644 (-225))))) + (-5 *1 (-841)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |fn| (-316 (-225))) (|:| -3910 (-642 (-225))) - (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) - (|:| |ub| (-642 (-841 (-225)))))) - (-5 *1 (-839)))) - ((*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-856)))) - ((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-872)))) - ((*1 *2 *3) - (-12 (-5 *3 (-950 (-48))) (-5 *2 (-316 (-564))) (-5 *1 (-873)))) - ((*1 *2 *3) - (-12 (-5 *3 (-407 (-950 (-48)))) (-5 *2 (-316 (-564))) - (-5 *1 (-873)))) - ((*1 *1 *2) (-12 (-5 *1 (-891 *2)) (-4 *2 (-848)))) - ((*1 *2 *1) (-12 (-5 *2 (-817 *3)) (-5 *1 (-891 *3)) (-4 *3 (-848)))) + (-2 (|:| |fn| (-317 (-225))) (|:| -3968 (-644 (-225))) + (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) + (|:| |ub| (-644 (-843 (-225)))))) + (-5 *1 (-841)))) + ((*1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-858)))) + ((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-874)))) + ((*1 *2 *3) + (-12 (-5 *3 (-952 (-48))) (-5 *2 (-317 (-566))) (-5 *1 (-875)))) + ((*1 *2 *3) + (-12 (-5 *3 (-409 (-952 (-48)))) (-5 *2 (-317 (-566))) + (-5 *1 (-875)))) + ((*1 *1 *2) (-12 (-5 *1 (-893 *2)) (-4 *2 (-850)))) + ((*1 *2 *1) (-12 (-5 *2 (-819 *3)) (-5 *1 (-893 *3)) (-4 *3 (-850)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |pde| (-642 (-316 (-225)))) + (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| - (-642 + (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) - (|:| |grid| (-769)) (|:| |boundaryType| (-564)) - (|:| |dStart| (-687 (-225))) (|:| |dFinish| (-687 (-225)))))) - (|:| |f| (-642 (-642 (-316 (-225))))) (|:| |st| (-1155)) + (|:| |grid| (-771)) (|:| |boundaryType| (-566)) + (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) + (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225)))) - (-5 *1 (-896)))) + (-5 *1 (-898)))) ((*1 *1 *2) - (-12 (-5 *2 (-642 (-903 *3))) (-4 *3 (-1097)) (-5 *1 (-902 *3)))) + (-12 (-5 *2 (-644 (-905 *3))) (-4 *3 (-1099)) (-5 *1 (-904 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-642 (-903 *3))) (-5 *1 (-902 *3)) (-4 *3 (-1097)))) - ((*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1097)) (-5 *1 (-903 *3)))) + (-12 (-5 *2 (-644 (-905 *3))) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) + ((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-5 *1 (-905 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-642 (-642 *3))) (-4 *3 (-1097)) (-5 *1 (-903 *3)))) + (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-1099)) (-5 *1 (-905 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-407 (-418 *3))) (-4 *3 (-307)) (-5 *1 (-912 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-407 *3)) (-5 *1 (-912 *3)) (-4 *3 (-307)))) + (-12 (-5 *2 (-409 (-420 *3))) (-4 *3 (-308)) (-5 *1 (-914 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-409 *3)) (-5 *1 (-914 *3)) (-4 *3 (-308)))) ((*1 *2 *3) - (-12 (-5 *3 (-477)) (-5 *2 (-316 *4)) (-5 *1 (-917 *4)) - (-4 *4 (-556)))) - ((*1 *2 *3) (-12 (-5 *2 (-1267)) (-5 *1 (-1031 *3)) (-4 *3 (-1212)))) - ((*1 *2 *3) (-12 (-5 *3 (-312)) (-5 *1 (-1031 *2)) (-4 *2 (-1212)))) + (-12 (-5 *3 (-479)) (-5 *2 (-317 *4)) (-5 *1 (-919 *4)) + (-4 *4 (-558)))) + ((*1 *2 *3) (-12 (-5 *2 (-1269)) (-5 *1 (-1033 *3)) (-4 *3 (-1214)))) + ((*1 *2 *3) (-12 (-5 *3 (-313)) (-5 *1 (-1033 *2)) (-4 *2 (-1214)))) ((*1 *1 *2) - (-12 (-4 *3 (-363)) (-4 *4 (-791)) (-4 *5 (-848)) - (-5 *1 (-1032 *3 *4 *5 *2 *6)) (-4 *2 (-947 *3 *4 *5)) - (-14 *6 (-642 *2)))) + (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) + (-5 *1 (-1034 *3 *4 *5 *2 *6)) (-4 *2 (-949 *3 *4 *5)) + (-14 *6 (-644 *2)))) ((*1 *2 *3) - (-12 (-5 *2 (-407 (-950 *3))) (-5 *1 (-1041 *3)) (-4 *3 (-556)))) + (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-1043 *3)) (-4 *3 (-558)))) ((*1 *1 *2) - (-12 (-4 *3 (-1047)) (-4 *4 (-848)) (-5 *1 (-1123 *3 *4 *2)) - (-4 *2 (-947 *3 (-531 *4) *4)))) + (-12 (-4 *3 (-1049)) (-4 *4 (-850)) (-5 *1 (-1125 *3 *4 *2)) + (-4 *2 (-949 *3 (-533 *4) *4)))) ((*1 *1 *2) - (-12 (-4 *3 (-1047)) (-4 *2 (-848)) (-5 *1 (-1123 *3 *2 *4)) - (-4 *4 (-947 *3 (-531 *2) *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-860)))) - ((*1 *1 *2) (-12 (-5 *2 (-144)) (-4 *1 (-1141)))) + (-12 (-4 *3 (-1049)) (-4 *2 (-850)) (-5 *1 (-1125 *3 *2 *4)) + (-4 *4 (-949 *3 (-533 *2) *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-862)))) + ((*1 *1 *2) (-12 (-5 *2 (-144)) (-4 *1 (-1143)))) ((*1 *2 *3) - (-12 (-5 *2 (-1153 *3)) (-5 *1 (-1157 *3)) (-4 *3 (-1047)))) + (-12 (-5 *2 (-1155 *3)) (-5 *1 (-1159 *3)) (-4 *3 (-1049)))) ((*1 *1 *2) - (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-1164 *3 *4 *5)) - (-4 *3 (-1047)) (-14 *5 *3))) + (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1166 *3 *4 *5)) + (-4 *3 (-1049)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-1171 *3 *4 *5)) - (-4 *3 (-1047)) (-14 *5 *3))) + (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1173 *3 *4 *5)) + (-4 *3 (-1049)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1235 *4 *3)) (-4 *3 (-1047)) (-14 *4 (-1173)) - (-14 *5 *3) (-5 *1 (-1171 *3 *4 *5)))) - ((*1 *1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-1172)))) - ((*1 *2 *1) (-12 (-5 *2 (-1185 (-1173) (-437))) (-5 *1 (-1177)))) - ((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1178)))) - ((*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-1178)))) - ((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1178)))) - ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1178)))) - ((*1 *2 *1) (-12 (-5 *2 (-860)) (-5 *1 (-1184 *3)) (-4 *3 (-1097)))) - ((*1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *1 (-1191 *3)) (-4 *3 (-1097)))) + (-12 (-5 *2 (-1237 *4 *3)) (-4 *3 (-1049)) (-14 *4 (-1175)) + (-14 *5 *3) (-5 *1 (-1173 *3 *4 *5)))) + ((*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1174)))) + ((*1 *2 *1) (-12 (-5 *2 (-1187 (-1175) (-439))) (-5 *1 (-1179)))) + ((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1180)))) + ((*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-1180)))) + ((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1180)))) + ((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-1180)))) + ((*1 *2 *1) (-12 (-5 *2 (-862)) (-5 *1 (-1186 *3)) (-4 *3 (-1099)))) + ((*1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *1 (-1193 *3)) (-4 *3 (-1099)))) ((*1 *1 *2) - (-12 (-5 *2 (-950 *3)) (-4 *3 (-1047)) (-5 *1 (-1206 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-1206 *3)) (-4 *3 (-1047)))) + (-12 (-5 *2 (-952 *3)) (-4 *3 (-1049)) (-5 *1 (-1208 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1208 *3)) (-4 *3 (-1049)))) ((*1 *1 *2) - (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-1226 *3 *4 *5)) - (-4 *3 (-1047)) (-14 *5 *3))) + (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1228 *3 *4 *5)) + (-4 *3 (-1049)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1091 *3)) (-4 *3 (-1212)) (-5 *1 (-1229 *3)))) + (-12 (-5 *2 (-1093 *3)) (-4 *3 (-1214)) (-5 *1 (-1231 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-1254 *3 *4 *5)) - (-4 *3 (-1047)) (-14 *5 *3))) + (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1256 *3 *4 *5)) + (-4 *3 (-1049)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1235 *4 *3)) (-4 *3 (-1047)) (-14 *4 (-1173)) - (-14 *5 *3) (-5 *1 (-1254 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-1258 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-860)) (-5 *1 (-1263)))) - ((*1 *2 *3) (-12 (-5 *3 (-468)) (-5 *2 (-1263)) (-5 *1 (-1266)))) + (-12 (-5 *2 (-1237 *4 *3)) (-4 *3 (-1049)) (-14 *4 (-1175)) + (-14 *5 *3) (-5 *1 (-1256 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1260 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-862)) (-5 *1 (-1265)))) + ((*1 *2 *3) (-12 (-5 *3 (-470)) (-5 *2 (-1265)) (-5 *1 (-1268)))) ((*1 *1 *2) - (-12 (-4 *1 (-1279 *2 *3)) (-4 *2 (-848)) (-4 *3 (-1047)))) + (-12 (-4 *1 (-1281 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049)))) ((*1 *2 *1) - (-12 (-5 *2 (-1286 *3 *4)) (-5 *1 (-1282 *3 *4)) (-4 *3 (-848)) + (-12 (-5 *2 (-1288 *3 *4)) (-5 *1 (-1284 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)))) ((*1 *2 *1) - (-12 (-5 *2 (-1277 *3 *4)) (-5 *1 (-1282 *3 *4)) (-4 *3 (-848)) + (-12 (-5 *2 (-1279 *3 *4)) (-5 *1 (-1284 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)))) ((*1 *1 *2) - (-12 (-5 *2 (-662 *3 *4)) (-4 *3 (-848)) (-4 *4 (-172)) - (-5 *1 (-1282 *3 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-363)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) - (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-685 *3 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-556)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) - (-4 *7 (-990 *4)) (-4 *2 (-685 *7 *8 *9)) - (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-685 *4 *5 *6)) - (-4 *8 (-373 *7)) (-4 *9 (-373 *7)))) - ((*1 *1 *1) - (-12 (-4 *1 (-685 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-373 *2)) - (-4 *4 (-373 *2)) (-4 *2 (-307)))) + (-12 (-5 *2 (-664 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)) + (-5 *1 (-1284 *3 *4))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1064 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *2 (-850)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) + (-4 *4 (-850))))) +(((*1 *2 *1) (-12 (-4 *1 (-674 *2)) (-4 *2 (-1214))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1214)) (-5 *1 (-1131 *4 *2)) + (-4 *2 (-13 (-604 (-566) *4) (-10 -7 (-6 -4417) (-6 -4418)))))) ((*1 *2 *2) - (-12 (-4 *3 (-307)) (-4 *3 (-172)) (-4 *4 (-373 *3)) - (-4 *5 (-373 *3)) (-5 *1 (-686 *3 *4 *5 *2)) - (-4 *2 (-685 *3 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-687 *3)) (-4 *3 (-307)) (-5 *1 (-698 *3)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1051 *2 *3 *4 *5 *6)) (-4 *4 (-1047)) - (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *2 *4)) (-4 *4 (-307))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-1173))))) + (-12 (-4 *3 (-850)) (-4 *3 (-1214)) (-5 *1 (-1131 *3 *2)) + (-4 *2 (-13 (-604 (-566) *3) (-10 -7 (-6 -4417) (-6 -4418))))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1169 (-407 (-1169 *2)))) (-5 *4 (-610 *2)) - (-4 *2 (-13 (-430 *5) (-27) (-1197))) - (-4 *5 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564)))) - (-5 *1 (-560 *5 *2 *6)) (-4 *6 (-1097)))) + (-12 (-5 *3 (-1171 (-409 (-1171 *2)))) (-5 *4 (-612 *2)) + (-4 *2 (-13 (-432 *5) (-27) (-1199))) + (-4 *5 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) + (-5 *1 (-562 *5 *2 *6)) (-4 *6 (-1099)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1169 *1)) (-4 *1 (-947 *4 *5 *3)) (-4 *4 (-1047)) - (-4 *5 (-791)) (-4 *3 (-848)))) + (-12 (-5 *2 (-1171 *1)) (-4 *1 (-949 *4 *5 *3)) (-4 *4 (-1049)) + (-4 *5 (-793)) (-4 *3 (-850)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1169 *4)) (-4 *4 (-1047)) (-4 *1 (-947 *4 *5 *3)) - (-4 *5 (-791)) (-4 *3 (-848)))) + (-12 (-5 *2 (-1171 *4)) (-4 *4 (-1049)) (-4 *1 (-949 *4 *5 *3)) + (-4 *5 (-793)) (-4 *3 (-850)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-407 (-1169 *2))) (-4 *5 (-791)) (-4 *4 (-848)) - (-4 *6 (-1047)) + (-12 (-5 *3 (-409 (-1171 *2))) (-4 *5 (-793)) (-4 *4 (-850)) + (-4 *6 (-1049)) (-4 *2 - (-13 (-363) - (-10 -8 (-15 -2390 ($ *7)) (-15 -4120 (*7 $)) (-15 -4131 (*7 $))))) - (-5 *1 (-948 *5 *4 *6 *7 *2)) (-4 *7 (-947 *6 *5 *4)))) + (-13 (-365) + (-10 -8 (-15 -2479 ($ *7)) (-15 -4157 (*7 $)) (-15 -4167 (*7 $))))) + (-5 *1 (-950 *5 *4 *6 *7 *2)) (-4 *7 (-949 *6 *5 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-407 (-1169 (-407 (-950 *5))))) (-5 *4 (-1173)) - (-5 *2 (-407 (-950 *5))) (-5 *1 (-1041 *5)) (-4 *5 (-556))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-13 (-846) (-363))) (-5 *2 (-112)) (-5 *1 (-1058 *4 *3)) - (-4 *3 (-1238 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-769)) (-5 *1 (-445 *3)) (-4 *3 (-1047)))) - ((*1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-445 *3)) (-4 *3 (-1047))))) + (-12 (-5 *3 (-409 (-1171 (-409 (-952 *5))))) (-5 *4 (-1175)) + (-5 *2 (-409 (-952 *5))) (-5 *1 (-1043 *5)) (-4 *5 (-558))))) (((*1 *2 *3) - (-12 (-5 *3 (-642 (-642 (-642 *4)))) (-5 *2 (-642 (-642 *4))) - (-5 *1 (-1183 *4)) (-4 *4 (-848))))) -(((*1 *1 *2) - (-12 (-5 *2 (-642 (-919))) (-5 *1 (-1098 *3 *4)) (-14 *3 (-919)) - (-14 *4 (-919))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1262 *4)) (-4 *4 (-637 (-564))) - (-5 *2 (-1262 (-407 (-564)))) (-5 *1 (-1289 *4))))) + (|partial| -12 + (-5 *3 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) + (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) + (-5 *2 + (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) + (|:| |expense| (-381)) (|:| |accuracy| (-381)) + (|:| |intermediateResults| (-381)))) + (-5 *1 (-803))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) + (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) + (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-70 APROD)))) (-5 *4 (-225)) + (-5 *2 (-1035)) (-5 *1 (-756))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1214)) (-4 *1 (-107 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-952 *5)) (-4 *5 (-1049)) (-5 *2 (-483 *4 *5)) + (-5 *1 (-944 *4 *5)) (-14 *4 (-644 (-1175)))))) +(((*1 *1) (-5 *1 (-439)))) +(((*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-1267)))) + ((*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-1267))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1155 *4)) (-5 *3 (-566)) (-4 *4 (-1049)) + (-5 *1 (-1159 *4)))) + ((*1 *1 *2 *2 *1) + (-12 (-5 *2 (-566)) (-5 *1 (-1256 *3 *4 *5)) (-4 *3 (-1049)) + (-14 *4 (-1175)) (-14 *5 *3)))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) + (-5 *2 + (-2 (|:| -2153 *4) (|:| -1452 *4) (|:| |totalpts| (-566)) + (|:| |success| (-112)))) + (-5 *1 (-789)) (-5 *5 (-566))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 (-1153 *4) (-1153 *4))) (-5 *2 (-1153 *4)) - (-5 *1 (-1287 *4)) (-4 *4 (-1212)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-642 (-1153 *5)) (-642 (-1153 *5)))) (-5 *4 (-564)) - (-5 *2 (-642 (-1153 *5))) (-5 *1 (-1287 *5)) (-4 *5 (-1212))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-822))))) + (-12 (-14 *4 (-644 (-1175))) (-14 *5 (-771)) + (-5 *2 + (-644 + (-506 (-409 (-566)) (-240 *5 (-771)) (-864 *4) + (-247 *4 (-409 (-566)))))) + (-5 *1 (-507 *4 *5)) + (-5 *3 + (-506 (-409 (-566)) (-240 *5 (-771)) (-864 *4) + (-247 *4 (-409 (-566)))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-407 (-950 (-169 (-564))))) (-5 *2 (-642 (-169 *4))) - (-5 *1 (-378 *4)) (-4 *4 (-13 (-363) (-846))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-642 (-407 (-950 (-169 (-564)))))) - (-5 *4 (-642 (-1173))) (-5 *2 (-642 (-642 (-169 *5)))) - (-5 *1 (-378 *5)) (-4 *5 (-13 (-363) (-846)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1047)) (-5 *2 (-642 *1)) (-4 *1 (-1131 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1173)) (-5 *2 (-1 *6 *5)) (-5 *1 (-704 *4 *5 *6)) - (-4 *4 (-612 (-536))) (-4 *5 (-1212)) (-4 *6 (-1212))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) - (-4 *4 (-848)) (-4 *2 (-556))))) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1240 *5)) (-4 *5 (-365)) + (-5 *2 (-2 (|:| -3764 (-420 *3)) (|:| |special| (-420 *3)))) + (-5 *1 (-727 *5 *3))))) (((*1 *1 *2 *3) - (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-790)))) + (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-792)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-642 (-919))) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-919)) - (-4 *2 (-363)) (-14 *5 (-991 *4 *2)))) + (-12 (-5 *3 (-644 (-921))) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-921)) + (-4 *2 (-365)) (-14 *5 (-993 *4 *2)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-711 *5 *6 *7)) (-4 *5 (-848)) - (-4 *6 (-238 (-2158 *4) (-769))) + (-12 (-5 *3 (-713 *5 *6 *7)) (-4 *5 (-850)) + (-4 *6 (-238 (-3002 *4) (-771))) (-14 *7 - (-1 (-112) (-2 (|:| -2065 *5) (|:| -2817 *6)) - (-2 (|:| -2065 *5) (|:| -2817 *6)))) - (-14 *4 (-642 (-1173))) (-4 *2 (-172)) - (-5 *1 (-461 *4 *2 *5 *6 *7 *8)) (-4 *8 (-947 *2 *6 (-862 *4))))) + (-1 (-112) (-2 (|:| -2104 *5) (|:| -3631 *6)) + (-2 (|:| -2104 *5) (|:| -3631 *6)))) + (-14 *4 (-644 (-1175))) (-4 *2 (-172)) + (-5 *1 (-463 *4 *2 *5 *6 *7 *8)) (-4 *8 (-949 *2 *6 (-864 *4))))) ((*1 *1 *2 *3) - (-12 (-4 *1 (-509 *2 *3)) (-4 *2 (-1097)) (-4 *3 (-848)))) + (-12 (-4 *1 (-511 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-850)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-564)) (-4 *2 (-556)) (-5 *1 (-621 *2 *4)) - (-4 *4 (-1238 *2)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-769)) (-4 *1 (-706 *2)) (-4 *2 (-1047)))) + (-12 (-5 *3 (-566)) (-4 *2 (-558)) (-5 *1 (-623 *2 *4)) + (-4 *4 (-1240 *2)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-771)) (-4 *1 (-708 *2)) (-4 *2 (-1049)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-733 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-724)))) + (-12 (-5 *1 (-735 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-726)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-642 *5)) (-5 *3 (-642 (-769))) (-4 *1 (-738 *4 *5)) - (-4 *4 (-1047)) (-4 *5 (-848)))) + (-12 (-5 *2 (-644 *5)) (-5 *3 (-644 (-771))) (-4 *1 (-740 *4 *5)) + (-4 *4 (-1049)) (-4 *5 (-850)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-769)) (-4 *1 (-738 *4 *2)) (-4 *4 (-1047)) - (-4 *2 (-848)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-769)) (-4 *1 (-850 *2)) (-4 *2 (-1047)))) + (-12 (-5 *3 (-771)) (-4 *1 (-740 *4 *2)) (-4 *4 (-1049)) + (-4 *2 (-850)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-771)) (-4 *1 (-852 *2)) (-4 *2 (-1049)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-642 *6)) (-5 *3 (-642 (-769))) (-4 *1 (-947 *4 *5 *6)) - (-4 *4 (-1047)) (-4 *5 (-791)) (-4 *6 (-848)))) + (-12 (-5 *2 (-644 *6)) (-5 *3 (-644 (-771))) (-4 *1 (-949 *4 *5 *6)) + (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *6 (-850)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-769)) (-4 *1 (-947 *4 *5 *2)) (-4 *4 (-1047)) - (-4 *5 (-791)) (-4 *2 (-848)))) + (-12 (-5 *3 (-771)) (-4 *1 (-949 *4 *5 *2)) (-4 *4 (-1049)) + (-4 *5 (-793)) (-4 *2 (-850)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-642 *6)) (-5 *3 (-642 *5)) (-4 *1 (-971 *4 *5 *6)) - (-4 *4 (-1047)) (-4 *5 (-790)) (-4 *6 (-848)))) + (-12 (-5 *2 (-644 *6)) (-5 *3 (-644 *5)) (-4 *1 (-973 *4 *5 *6)) + (-4 *4 (-1049)) (-4 *5 (-792)) (-4 *6 (-850)))) ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-971 *4 *3 *2)) (-4 *4 (-1047)) (-4 *3 (-790)) - (-4 *2 (-848))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1263)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1264))))) -(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-330))))) -(((*1 *1) (-12 (-4 *1 (-465 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-536))) ((*1 *1) (-4 *1 (-720))) - ((*1 *1) (-4 *1 (-724))) - ((*1 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-1097)))) - ((*1 *1) (-12 (-5 *1 (-891 *2)) (-4 *2 (-848))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1173)) (-5 *3 (-642 (-950 (-564)))) - (-5 *4 (-316 (-169 (-379)))) (-5 *1 (-330)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1173)) (-5 *3 (-642 (-950 (-564)))) - (-5 *4 (-316 (-379))) (-5 *1 (-330)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1173)) (-5 *3 (-642 (-950 (-564)))) - (-5 *4 (-316 (-564))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1173)) (-5 *3 (-1262 (-316 (-169 (-379))))) - (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1173)) (-5 *3 (-1262 (-316 (-379)))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1173)) (-5 *3 (-1262 (-316 (-564)))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1173)) (-5 *3 (-687 (-316 (-169 (-379))))) - (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1173)) (-5 *3 (-687 (-316 (-379)))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1173)) (-5 *3 (-687 (-316 (-564)))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1173)) (-5 *3 (-316 (-169 (-379)))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1173)) (-5 *3 (-316 (-379))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1173)) (-5 *3 (-316 (-564))) (-5 *1 (-330)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1173)) (-5 *3 (-642 (-950 (-564)))) - (-5 *4 (-316 (-692))) (-5 *1 (-330)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1173)) (-5 *3 (-642 (-950 (-564)))) - (-5 *4 (-316 (-697))) (-5 *1 (-330)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1173)) (-5 *3 (-642 (-950 (-564)))) - (-5 *4 (-316 (-699))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1173)) (-5 *3 (-1262 (-316 (-692)))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1173)) (-5 *3 (-1262 (-316 (-697)))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1173)) (-5 *3 (-1262 (-316 (-699)))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1173)) (-5 *3 (-687 (-316 (-692)))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1173)) (-5 *3 (-687 (-316 (-697)))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1173)) (-5 *3 (-687 (-316 (-699)))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1173)) (-5 *3 (-1262 (-692))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1173)) (-5 *3 (-1262 (-697))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1173)) (-5 *3 (-1262 (-699))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1173)) (-5 *3 (-687 (-692))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1173)) (-5 *3 (-687 (-697))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1173)) (-5 *3 (-687 (-699))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1173)) (-5 *3 (-316 (-692))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1173)) (-5 *3 (-316 (-697))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1173)) (-5 *3 (-316 (-699))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-1155)) (-5 *1 (-330)))) - ((*1 *1 *1 *1) (-5 *1 (-860)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1262 (-642 (-2 (|:| -2108 *4) (|:| -2065 (-1117)))))) - (-4 *4 (-349)) (-5 *2 (-769)) (-5 *1 (-346 *4)))) - ((*1 *2) - (-12 (-5 *2 (-769)) (-5 *1 (-351 *3 *4)) (-14 *3 (-919)) - (-14 *4 (-919)))) - ((*1 *2) - (-12 (-5 *2 (-769)) (-5 *1 (-352 *3 *4)) (-4 *3 (-349)) - (-14 *4 - (-3 (-1169 *3) - (-1262 (-642 (-2 (|:| -2108 *3) (|:| -2065 (-1117))))))))) - ((*1 *2) - (-12 (-5 *2 (-769)) (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) - (-14 *4 (-919))))) -(((*1 *1 *1) - (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047))))) + (-12 (-4 *1 (-973 *4 *3 *2)) (-4 *4 (-1049)) (-4 *3 (-792)) + (-4 *2 (-850))))) +(((*1 *2 *1 *3 *3) + (-12 (|has| *1 (-6 -4418)) (-4 *1 (-604 *3 *4)) (-4 *3 (-1099)) + (-4 *4 (-1214)) (-5 *2 (-1269))))) +(((*1 *2 *3) + (-12 (-4 *4 (-909)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *7 (-949 *4 *5 *6)) (-5 *2 (-420 (-1171 *7))) + (-5 *1 (-906 *4 *5 *6 *7)) (-5 *3 (-1171 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-909)) (-4 *5 (-1240 *4)) (-5 *2 (-420 (-1171 *5))) + (-5 *1 (-907 *4 *5)) (-5 *3 (-1171 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-331))))) +(((*1 *1) (-12 (-4 *1 (-467 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-538))) ((*1 *1) (-4 *1 (-722))) + ((*1 *1) (-4 *1 (-726))) + ((*1 *1) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1099)))) + ((*1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-850))))) +(((*1 *1 *1 *1) (-5 *1 (-862)))) +(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-438))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1099)) (-4 *6 (-1099)) + (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-684 *4 *5 *6)) (-4 *5 (-1099))))) +(((*1 *2 *2) (-12 (-5 *2 (-644 (-317 (-225)))) (-5 *1 (-268))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4418)) (-4 *1 (-1252 *2)) (-4 *2 (-1214))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1171 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3))))) +(((*1 *2 *3 *3 *3 *4 *5) + (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1240 *6)) + (-4 *6 (-13 (-365) (-147) (-1038 *4))) (-5 *4 (-566)) + (-5 *2 + (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) + (|:| -3477 + (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) + (|:| |beta| *3))))) + (-5 *1 (-1015 *6 *3))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-941 *3) (-941 *3))) (-5 *1 (-176 *3)) - (-4 *3 (-13 (-363) (-1197) (-1000)))))) + (-12 (-5 *3 (-921)) (-5 *2 (-1171 *4)) (-5 *1 (-359 *4)) + (-4 *4 (-351))))) (((*1 *2 *3) - (-12 (-5 *3 (-925)) - (-5 *2 - (-2 (|:| |brans| (-642 (-642 (-941 (-225))))) - (|:| |xValues| (-1091 (-225))) (|:| |yValues| (-1091 (-225))))) - (-5 *1 (-153)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-925)) (-5 *4 (-407 (-564))) - (-5 *2 - (-2 (|:| |brans| (-642 (-642 (-941 (-225))))) - (|:| |xValues| (-1091 (-225))) (|:| |yValues| (-1091 (-225))))) - (-5 *1 (-153)))) - ((*1 *2 *3) (-12 - (-5 *2 - (-2 (|:| |brans| (-642 (-642 (-941 (-225))))) - (|:| |xValues| (-1091 (-225))) (|:| |yValues| (-1091 (-225))))) - (-5 *1 (-153)) (-5 *3 (-642 (-941 (-225)))))) - ((*1 *2 *3) - (-12 - (-5 *2 - (-2 (|:| |brans| (-642 (-642 (-941 (-225))))) - (|:| |xValues| (-1091 (-225))) (|:| |yValues| (-1091 (-225))))) - (-5 *1 (-153)) (-5 *3 (-642 (-642 (-941 (-225))))))) - ((*1 *1 *2) (-12 (-5 *2 (-642 (-1091 (-379)))) (-5 *1 (-263)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263))))) -(((*1 *1) (-5 *1 (-821)))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1238 *5)) (-4 *5 (-363)) - (-5 *2 (-2 (|:| -3872 (-407 *6)) (|:| |coeff| (-407 *6)))) - (-5 *1 (-574 *5 *6)) (-5 *3 (-407 *6))))) -(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-1155)) (-5 *1 (-97)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-1155)) (-5 *1 (-97))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-642 *3)) (-4 *3 (-307)) (-5 *1 (-179 *3))))) + (-5 *3 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) + (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) + (-5 *2 (-381)) (-5 *1 (-205))))) +(((*1 *2 *1) (-12 (-5 *2 (-1155 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-820)) (-14 *5 (-1175)) (-5 *2 (-644 (-1237 *5 *4))) + (-5 *1 (-1113 *4 *5)) (-5 *3 (-1237 *5 *4))))) +(((*1 *2) + (-12 (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) + (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-1269)) + (-5 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *7 (-1070 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) + (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-1269)) + (-5 *1 (-1107 *3 *4 *5 *6 *7)) (-4 *7 (-1070 *3 *4 *5 *6))))) (((*1 *1) (-4 *1 (-23))) - ((*1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-536))) - ((*1 *1) (-12 (-4 *1 (-644 *2)) (-4 *2 (-1055)))) - ((*1 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-1097)))) - ((*1 *1) (-12 (-4 *1 (-1049 *2)) (-4 *2 (-1055))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1262 (-1262 (-564)))) (-5 *3 (-919)) (-5 *1 (-466))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434))))) + ((*1 *1) (-12 (-4 *1 (-472 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-538))) + ((*1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1057)))) + ((*1 *1) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1099)))) + ((*1 *1) (-12 (-4 *1 (-1051 *2)) (-4 *2 (-1057))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) + (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 - (-2 (|:| -2108 *4) (|:| -1437 *4) (|:| |totalpts| (-564)) + (-2 (|:| -2153 *4) (|:| -1452 *4) (|:| |totalpts| (-566)) (|:| |success| (-112)))) - (-5 *1 (-787)) (-5 *5 (-564))))) -(((*1 *2 *1) (-12 (-4 *1 (-509 *3 *2)) (-4 *3 (-1097)) (-4 *2 (-848))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-919)) (-5 *4 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1263))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-890 *3)) (-4 *3 (-1097))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-30)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-418 *4) *4)) (-4 *4 (-556)) (-5 *2 (-418 *4)) - (-5 *1 (-419 *4)))) - ((*1 *1 *1) (-5 *1 (-924))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1091 (-225))) (-5 *1 (-924)))) - ((*1 *1 *1) (-5 *1 (-925))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1091 (-225))) (-5 *1 (-925)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564))))) - (-5 *4 (-407 (-564))) (-5 *1 (-1018 *3)) (-4 *3 (-1238 (-564))))) - ((*1 *2 *3 *2 *2) - (|partial| -12 - (-5 *2 (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564))))) - (-5 *1 (-1018 *3)) (-4 *3 (-1238 (-564))))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564))))) - (-5 *4 (-407 (-564))) (-5 *1 (-1019 *3)) (-4 *3 (-1238 *4)))) - ((*1 *2 *3 *2 *2) - (|partial| -12 - (-5 *2 (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564))))) - (-5 *1 (-1019 *3)) (-4 *3 (-1238 (-407 (-564)))))) - ((*1 *1 *1) - (-12 (-4 *2 (-13 (-846) (-363))) (-5 *1 (-1058 *2 *3)) - (-4 *3 (-1238 *2))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-769)) (-4 *4 (-349)) (-5 *1 (-216 *4 *2)) - (-4 *2 (-1238 *4))))) -(((*1 *2) - (-12 (-5 *2 (-919)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564))))) - ((*1 *2 *2) - (-12 (-5 *2 (-919)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564)))))) + (-5 *1 (-789)) (-5 *5 (-566))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-874)) (-5 *3 (-644 (-264))) (-5 *1 (-262))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1175))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-644 (-409 (-952 (-566))))) (-5 *4 (-644 (-1175))) + (-5 *2 (-644 (-644 *5))) (-5 *1 (-382 *5)) + (-4 *5 (-13 (-848) (-365))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-409 (-952 (-566)))) (-5 *2 (-644 *4)) (-5 *1 (-382 *4)) + (-4 *4 (-13 (-848) (-365)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) + (-4 *6 (-793)) (-5 *2 (-644 *3)) (-5 *1 (-924 *4 *5 *6 *3)) + (-4 *3 (-949 *4 *6 *5))))) +(((*1 *1 *2) + (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-1099)) (-5 *1 (-1186 *3))))) +(((*1 *1) (-5 *1 (-225))) ((*1 *1) (-5 *1 (-381)))) (((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -3253)) (-5 *2 (-112)) (-5 *1 (-615)))) + (-12 (-5 *3 (|[\|\|]| -3396)) (-5 *2 (-112)) (-5 *1 (-617)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -3151)) (-5 *2 (-112)) (-5 *1 (-615)))) + (-12 (-5 *3 (|[\|\|]| -3282)) (-5 *2 (-112)) (-5 *1 (-617)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -2119)) (-5 *2 (-112)) (-5 *1 (-615)))) + (-12 (-5 *3 (|[\|\|]| -2174)) (-5 *2 (-112)) (-5 *1 (-617)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -3279)) (-5 *2 (-112)) (-5 *1 (-689 *4)) - (-4 *4 (-611 (-860))))) + (-12 (-5 *3 (|[\|\|]| -3409)) (-5 *2 (-112)) (-5 *1 (-691 *4)) + (-4 *4 (-613 (-862))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-611 (-860))) (-5 *2 (-112)) - (-5 *1 (-689 *4)))) + (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-613 (-862))) (-5 *2 (-112)) + (-5 *1 (-691 *4)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-564))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-566))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-1155))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1157))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-506))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-508))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-591))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-593))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-478))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-480))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-1163))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1165))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-624))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-626))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-1093))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1095))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-1087))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1089))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-1070))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1072))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-968))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-970))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-180))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-180))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-1034))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1036))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-311))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-312))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-669))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-671))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-525))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-527))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-1273))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1275))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-1063))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1065))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-517))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-519))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-679))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-681))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-1112))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1114))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-133))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-133))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-1272))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1274))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-674))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-676))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-218))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-218))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-524))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-526))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-1155))) (-5 *2 (-112)) (-5 *1 (-1178)))) + (-12 (-5 *3 (|[\|\|]| (-1157))) (-5 *2 (-112)) (-5 *1 (-1180)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-506))) (-5 *2 (-112)) (-5 *1 (-1178)))) + (-12 (-5 *3 (|[\|\|]| (-508))) (-5 *2 (-112)) (-5 *1 (-1180)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-225))) (-5 *2 (-112)) (-5 *1 (-1178)))) + (-12 (-5 *3 (|[\|\|]| (-225))) (-5 *2 (-112)) (-5 *1 (-1180)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-564))) (-5 *2 (-112)) (-5 *1 (-1178))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-564)) (-5 *1 (-379))))) -(((*1 *1 *2) (-12 (-5 *2 (-183)) (-5 *1 (-248))))) -(((*1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-860)))) - ((*1 *1 *1) (-5 *1 (-860)))) -(((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1000)))))) -(((*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-860))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-642 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1213 *2)) - (-4 *2 (-1097)))) - ((*1 *2 *3) - (-12 (-5 *3 (-642 *2)) (-4 *2 (-1097)) (-4 *2 (-848)) - (-5 *1 (-1213 *2))))) + (-12 (-5 *3 (|[\|\|]| (-566))) (-5 *2 (-112)) (-5 *1 (-1180))))) +(((*1 *1 *2) + (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-1099)) (-4 *1 (-903 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1169 *6)) (-4 *6 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) - (-5 *2 (-1169 *7)) (-5 *1 (-321 *4 *5 *6 *7)) - (-4 *7 (-947 *6 *4 *5))))) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1099)) (-4 *5 (-1099)) + (-4 *6 (-1099)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-684 *4 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1214)) (-5 *1 (-328 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-644 *3)) (-4 *3 (-1214)) (-5 *1 (-518 *3 *4)) + (-14 *4 (-566))))) (((*1 *2 *3) - (-12 (-5 *3 (-1173)) + (-12 (-4 *4 (-13 (-558) (-1038 (-566)))) (-4 *5 (-432 *4)) (-5 *2 - (-2 (|:| |zeros| (-1153 (-225))) (|:| |ones| (-1153 (-225))) - (|:| |singularities| (-1153 (-225))))) - (-5 *1 (-105))))) -(((*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-642 (-112)))))) + (-3 (|:| |overq| (-1171 (-409 (-566)))) + (|:| |overan| (-1171 (-48))) (|:| -3266 (-112)))) + (-5 *1 (-437 *4 *5 *3)) (-4 *3 (-1240 *5))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-508)) (-5 *1 (-281)))) + ((*1 *2 *1) + (-12 (-5 *2 (-3 (-566) (-225) (-508) (-1157) (-1180))) + (-5 *1 (-1180))))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-821))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-892 *4)) (-4 *4 (-1099)) (-4 *2 (-1099)) + (-5 *1 (-889 *4 *2))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) + (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2341)))) + (-5 *2 (-1035)) (-5 *1 (-748))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-690 *3))))) +(((*1 *1) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1199)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1266))))) (((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))) - ((*1 *1 *1 *1) (-5 *1 (-1117)))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-642 (-769))) (-5 *3 (-171)) (-5 *1 (-1161 *4 *5)) - (-14 *4 (-919)) (-4 *5 (-1047))))) + ((*1 *1 *1 *1) (-5 *1 (-1119)))) +(((*1 *2 *2 *3 *4 *5) + (-12 (-5 *2 (-644 *9)) (-5 *3 (-1 (-112) *9)) + (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) + (-4 *9 (-1064 *6 *7 *8)) (-4 *6 (-558)) (-4 *7 (-793)) + (-4 *8 (-850)) (-5 *1 (-977 *6 *7 *8 *9))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-566)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-771)) (-4 *5 (-172)))) + ((*1 *1 *1 *2 *1 *2) + (-12 (-5 *2 (-566)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-771)) (-4 *5 (-172)))) + ((*1 *2 *2 *3) + (-12 + (-5 *2 + (-506 (-409 (-566)) (-240 *5 (-771)) (-864 *4) + (-247 *4 (-409 (-566))))) + (-5 *3 (-644 (-864 *4))) (-14 *4 (-644 (-1175))) (-14 *5 (-771)) + (-5 *1 (-507 *4 *5))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-644 *6)) (-4 *6 (-850)) (-4 *4 (-365)) (-4 *5 (-793)) + (-5 *2 + (-2 (|:| |mval| (-689 *4)) (|:| |invmval| (-689 *4)) + (|:| |genIdeal| (-506 *4 *5 *6 *7)))) + (-5 *1 (-506 *4 *5 *6 *7)) (-4 *7 (-949 *4 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-1264 *3)) (-4 *3 (-365)) (-4 *1 (-330 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1264 *3)) (-4 *3 (-1240 *4)) (-4 *4 (-1218)) + (-4 *1 (-344 *4 *3 *5)) (-4 *5 (-1240 (-409 *3))))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1264 *4)) (-5 *3 (-1264 *1)) (-4 *4 (-172)) + (-4 *1 (-369 *4)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1264 *4)) (-5 *3 (-1264 *1)) (-4 *4 (-172)) + (-4 *1 (-372 *4 *5)) (-4 *5 (-1240 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1264 *3)) (-4 *3 (-172)) (-4 *1 (-411 *3 *4)) + (-4 *4 (-1240 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1264 *3)) (-4 *3 (-172)) (-4 *1 (-419 *3))))) (((*1 *2 *3) - (-12 (-4 *1 (-798)) - (-5 *3 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) - (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *2 (-1033))))) -(((*1 *1 *2) - (-12 (-5 *2 (-642 (-504 *3 *4 *5 *6))) (-4 *3 (-363)) (-4 *4 (-791)) - (-4 *5 (-848)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-947 *3 *4 *5)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-363)) (-4 *3 (-791)) (-4 *4 (-848)) - (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-947 *2 *3 *4)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-642 *1)) (-4 *1 (-1068 *4 *5 *6 *3)) (-4 *4 (-452)) - (-4 *5 (-791)) (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-642 *1)) (-5 *3 (-642 *7)) (-4 *1 (-1068 *4 *5 *6 *7)) - (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) - (-4 *7 (-1062 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-642 *7)) (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-452)) - (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-642 *1)) - (-4 *1 (-1068 *4 *5 *6 *7)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) - (-4 *3 (-1062 *4 *5 *6)) (-5 *2 (-642 *1)) - (-4 *1 (-1068 *4 *5 *6 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1097))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1169 *3)) (-5 *1 (-912 *3)) (-4 *3 (-307))))) -(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) - (-12 (-5 *3 (-1155)) (-5 *5 (-687 (-225))) (-5 *6 (-225)) - (-5 *7 (-687 (-564))) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-750))))) -(((*1 *1) (-5 *1 (-1079)))) + (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)) (-5 *3 (-566))))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1266))))) (((*1 *2 *1) - (-12 (-4 *1 (-1008 *3)) (-4 *3 (-1212)) (-5 *2 (-642 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-307)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) - (-5 *1 (-1121 *3 *4 *5 *2)) (-4 *2 (-685 *3 *4 *5))))) -(((*1 *2 *1) - (-12 (-5 *2 (-642 (-2 (|:| -1914 (-1173)) (|:| -2683 *4)))) - (-5 *1 (-887 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-1097)))) + (-12 (-5 *2 (-644 (-2 (|:| -1928 (-1175)) (|:| -2806 *4)))) + (-5 *1 (-889 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)))) ((*1 *2 *1) - (-12 (-4 *3 (-1097)) (-4 *4 (-1097)) (-4 *5 (-1097)) (-4 *6 (-1097)) - (-4 *7 (-1097)) (-5 *2 (-642 *1)) (-4 *1 (-1100 *3 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-564)) (-5 *2 (-642 (-2 (|:| -2254 *3) (|:| -3252 *4)))) - (-5 *1 (-694 *3)) (-4 *3 (-1238 *4))))) + (-12 (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) + (-4 *7 (-1099)) (-5 *2 (-644 *1)) (-4 *1 (-1102 *3 *4 *5 *6 *7))))) +(((*1 *1) (-5 *1 (-1062)))) +(((*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1214))))) +(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-862))) + ((*1 *1 *1 *1) (-4 *1 (-967)))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1262 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) - (-4 *5 (-1238 *4)) (-5 *2 (-687 *4)))) + (|partial| -12 (-5 *3 (-1175)) (-4 *4 (-1049)) (-4 *4 (-1099)) + (-5 *2 (-2 (|:| |var| (-612 *1)) (|:| -3631 (-566)))) + (-4 *1 (-432 *4)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1049)) (-4 *4 (-1099)) + (-5 *2 (-2 (|:| |var| (-612 *1)) (|:| -3631 (-566)))) + (-4 *1 (-432 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1238 *3)) - (-5 *2 (-687 *3))))) -(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-860))) - ((*1 *1 *1 *1) (-4 *1 (-965)))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) - (-4 *3 (-1062 *4 *5 *6)) (-5 *2 (-3 (-112) (-642 *1))) - (-4 *1 (-1068 *4 *5 *6 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-213 4 (-129))) (-5 *1 (-579))))) -(((*1 *1 *1) (-12 (-4 *1 (-672 *2)) (-4 *2 (-1212))))) -(((*1 *2 *2) - (-12 (-5 *2 (-642 *6)) (-4 *6 (-947 *3 *4 *5)) (-4 *3 (-452)) - (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-449 *3 *4 *5 *6))))) -(((*1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1212)) (-4 *2 (-1097)))) - ((*1 *1 *1) (-12 (-4 *1 (-693 *2)) (-4 *2 (-1097))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1101)) (-5 *3 (-772)) (-5 *1 (-52))))) -(((*1 *2 *3) - (-12 (-5 *3 (-407 *5)) (-4 *5 (-1238 *4)) (-4 *4 (-556)) - (-4 *4 (-1047)) (-4 *2 (-1253 *4)) (-5 *1 (-1256 *4 *5 *6 *2)) - (-4 *6 (-654 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-860)))) - ((*1 *1 *1) (-5 *1 (-860))) - ((*1 *1 *2) - (-12 (-5 *2 (-642 *3)) (-4 *3 (-1097)) (-4 *1 (-1095 *3)))) - ((*1 *1) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1097))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-642 *2)) (-5 *1 (-179 *2)) (-4 *2 (-307)))) - ((*1 *2 *3 *2) - (-12 (-5 *3 (-642 (-642 *4))) (-5 *2 (-642 *4)) (-4 *4 (-307)) - (-5 *1 (-179 *4)))) + (|partial| -12 (-4 *3 (-1111)) (-4 *3 (-1099)) + (-5 *2 (-2 (|:| |var| (-612 *1)) (|:| -3631 (-566)))) + (-4 *1 (-432 *3)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-2 (|:| |val| (-892 *3)) (|:| -3631 (-771)))) + (-5 *1 (-892 *3)) (-4 *3 (-1099)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-949 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *5 (-850)) (-5 *2 (-2 (|:| |var| *5) (|:| -3631 (-771)))))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1049)) + (-4 *7 (-949 *6 *4 *5)) + (-5 *2 (-2 (|:| |var| *5) (|:| -3631 (-566)))) + (-5 *1 (-950 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-365) + (-10 -8 (-15 -2479 ($ *7)) (-15 -4157 (*7 $)) + (-15 -4167 (*7 $)))))))) +(((*1 *1) (-5 *1 (-130)))) +(((*1 *2 *1) + (-12 (-4 *3 (-365)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) + (-5 *2 (-1264 *6)) (-5 *1 (-338 *3 *4 *5 *6)) + (-4 *6 (-344 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1255 *4)) + (-4 *4 (-38 (-409 (-566)))) (-5 *2 (-1 (-1155 *4) (-1155 *4))) + (-5 *1 (-1257 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-381)) (-5 *1 (-786))))) +(((*1 *1) (-4 *1 (-351))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 *5)) (-4 *5 (-432 *4)) (-4 *4 (-13 (-558) (-147))) + (-5 *2 + (-2 (|:| |primelt| *5) (|:| |poly| (-644 (-1171 *5))) + (|:| |prim| (-1171 *5)))) + (-5 *1 (-434 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-558) (-147))) + (-5 *2 + (-2 (|:| |primelt| *3) (|:| |pol1| (-1171 *3)) + (|:| |pol2| (-1171 *3)) (|:| |prim| (-1171 *3)))) + (-5 *1 (-434 *4 *3)) (-4 *3 (-27)) (-4 *3 (-432 *4)))) + ((*1 *2 *3 *4 *3 *4) + (-12 (-5 *3 (-952 *5)) (-5 *4 (-1175)) (-4 *5 (-13 (-365) (-147))) + (-5 *2 + (-2 (|:| |coef1| (-566)) (|:| |coef2| (-566)) + (|:| |prim| (-1171 *5)))) + (-5 *1 (-960 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-644 (-1175))) + (-4 *5 (-13 (-365) (-147))) + (-5 *2 + (-2 (|:| -3103 (-644 (-566))) (|:| |poly| (-644 (-1171 *5))) + (|:| |prim| (-1171 *5)))) + (-5 *1 (-960 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-642 *8)) - (-5 *4 - (-642 - (-2 (|:| -2131 (-687 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-687 *7))))) - (-5 *5 (-769)) (-4 *8 (-1238 *7)) (-4 *7 (-1238 *6)) (-4 *6 (-349)) + (-12 (-5 *3 (-644 (-952 *6))) (-5 *4 (-644 (-1175))) (-5 *5 (-1175)) + (-4 *6 (-13 (-365) (-147))) (-5 *2 - (-2 (|:| -2131 (-687 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-687 *7)))) - (-5 *1 (-498 *6 *7 *8)))) - ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561))))) -(((*1 *2 *1) - (-12 (-4 *3 (-363)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))) - (-5 *2 (-1262 *6)) (-5 *1 (-336 *3 *4 *5 *6)) - (-4 *6 (-342 *3 *4 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1097)) (-4 *1 (-235 *3)))) - ((*1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1097))))) -(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-860))) - ((*1 *1 *1 *1) (-4 *1 (-965)))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-363)) (-5 *1 (-764 *2 *3)) (-4 *2 (-706 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-850 *2)) (-4 *2 (-1047)) (-4 *2 (-363))))) -(((*1 *1 *1 *2 *3 *1) - (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-790))))) -(((*1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-860))))) + (-2 (|:| -3103 (-644 (-566))) (|:| |poly| (-644 (-1171 *6))) + (|:| |prim| (-1171 *6)))) + (-5 *1 (-960 *6))))) +(((*1 *2 *3 *2) + (-12 (-4 *2 (-13 (-365) (-848))) (-5 *1 (-181 *2 *3)) + (-4 *3 (-1240 (-169 *2))))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-365) (-848))) (-5 *1 (-181 *2 *3)) + (-4 *3 (-1240 (-169 *2)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1266))))) (((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) - (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *2 (-642 (-225))) (-5 *1 (-204))))) + (-12 (-5 *2 (-1171 (-566))) (-5 *1 (-942)) (-5 *3 (-566)))) + ((*1 *2 *2) + (-12 (-4 *3 (-308)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) + (-5 *1 (-1123 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) + ((*1 *1 *1) (-5 *1 (-862))) + ((*1 *1 *2) + (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-4 *1 (-1097 *3)))) + ((*1 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-892 *4)) (-4 *4 (-1099)) (-5 *1 (-889 *4 *3)) + (-4 *3 (-1099))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-566)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-420 *4)) (-4 *4 (-558))))) +(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-862))) + ((*1 *1 *1 *1) (-4 *1 (-967)))) (((*1 *2 *3) - (-12 (-5 *3 (-1169 (-564))) (-5 *2 (-564)) (-5 *1 (-940))))) -(((*1 *1 *1) (-12 (-4 *1 (-672 *2)) (-4 *2 (-1212))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1267)) (-5 *1 (-1264))))) -(((*1 *2 *3) (-12 (-5 *3 (-941 *2)) (-5 *1 (-980 *2)) (-4 *2 (-1047))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-769)) (-4 *1 (-981 *2)) (-4 *2 (-1197))))) -(((*1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1) (-5 *1 (-860))) - ((*1 *1 *1) (-4 *1 (-965))) ((*1 *1 *1) (-5 *1 (-1117)))) + (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *1 (-883)) (-5 *3 (-566))))) +(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-52)) (-5 *1 (-829))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) +(((*1 *2 *1) (-12 (-5 *2 (-213 4 (-129))) (-5 *1 (-581))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-558)) (-5 *2 (-644 (-771))) (-5 *1 (-969 *4 *3)) + (-4 *3 (-1240 *4))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4418)) (-4 *1 (-244 *2)) (-4 *2 (-1214))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1266))))) +(((*1 *2 *1) + (-12 (-4 *4 (-1099)) (-5 *2 (-889 *3 *5)) (-5 *1 (-885 *3 *4 *5)) + (-4 *3 (-1099)) (-4 *5 (-666 *4))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-365)) (-5 *1 (-896 *2 *3)) + (-4 *2 (-1240 *3))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-169 (-225))) (-5 *5 (-566)) (-5 *6 (-1157)) + (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-758))))) +(((*1 *1 *2 *3 *3 *4 *5) + (-12 (-5 *2 (-644 (-644 (-943 (-225))))) (-5 *3 (-644 (-874))) + (-5 *4 (-644 (-921))) (-5 *5 (-644 (-264))) (-5 *1 (-470)))) + ((*1 *1 *2 *3 *3 *4) + (-12 (-5 *2 (-644 (-644 (-943 (-225))))) (-5 *3 (-644 (-874))) + (-5 *4 (-644 (-921))) (-5 *1 (-470)))) + ((*1 *1 *2) (-12 (-5 *2 (-644 (-644 (-943 (-225))))) (-5 *1 (-470)))) + ((*1 *1 *1) (-5 *1 (-470)))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1091 (-843 *3))) (-4 *3 (-13 (-1199) (-959) (-29 *5))) + (-4 *5 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) + (-5 *2 + (-3 (|:| |f1| (-843 *3)) (|:| |f2| (-644 (-843 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-219 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1091 (-843 *3))) (-5 *5 (-1157)) + (-4 *3 (-13 (-1199) (-959) (-29 *6))) + (-4 *6 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) + (-5 *2 + (-3 (|:| |f1| (-843 *3)) (|:| |f2| (-644 (-843 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-219 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-1091 (-843 (-317 *5)))) + (-4 *5 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) + (-5 *2 + (-3 (|:| |f1| (-843 (-317 *5))) (|:| |f2| (-644 (-843 (-317 *5)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-220 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-409 (-952 *6))) (-5 *4 (-1091 (-843 (-317 *6)))) + (-5 *5 (-1157)) + (-4 *6 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) + (-5 *2 + (-3 (|:| |f1| (-843 (-317 *6))) (|:| |f2| (-644 (-843 (-317 *6)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-220 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1091 (-843 (-409 (-952 *5))))) (-5 *3 (-409 (-952 *5))) + (-4 *5 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) + (-5 *2 + (-3 (|:| |f1| (-843 (-317 *5))) (|:| |f2| (-644 (-843 (-317 *5)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-220 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1091 (-843 (-409 (-952 *6))))) (-5 *5 (-1157)) + (-5 *3 (-409 (-952 *6))) + (-4 *6 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) + (-5 *2 + (-3 (|:| |f1| (-843 (-317 *6))) (|:| |f2| (-644 (-843 (-317 *6)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-220 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1175)) + (-4 *5 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) + (-5 *2 (-3 *3 (-644 *3))) (-5 *1 (-430 *5 *3)) + (-4 *3 (-13 (-1199) (-959) (-29 *5))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-476 *3 *4 *5)) + (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-14 *5 *3))) + ((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1093 (-843 (-381)))) + (-5 *5 (-381)) (-5 *6 (-1062)) (-5 *2 (-1035)) (-5 *1 (-567)))) + ((*1 *2 *3) (-12 (-5 *3 (-769)) (-5 *2 (-1035)) (-5 *1 (-567)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1093 (-843 (-381)))) + (-5 *5 (-381)) (-5 *2 (-1035)) (-5 *1 (-567)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1093 (-843 (-381)))) + (-5 *5 (-381)) (-5 *2 (-1035)) (-5 *1 (-567)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1093 (-843 (-381)))) + (-5 *2 (-1035)) (-5 *1 (-567)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-317 (-381))) (-5 *4 (-644 (-1093 (-843 (-381))))) + (-5 *2 (-1035)) (-5 *1 (-567)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-317 (-381))) (-5 *4 (-644 (-1093 (-843 (-381))))) + (-5 *5 (-381)) (-5 *2 (-1035)) (-5 *1 (-567)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-317 (-381))) (-5 *4 (-644 (-1093 (-843 (-381))))) + (-5 *5 (-381)) (-5 *2 (-1035)) (-5 *1 (-567)))) + ((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-317 (-381))) (-5 *4 (-644 (-1093 (-843 (-381))))) + (-5 *5 (-381)) (-5 *6 (-1062)) (-5 *2 (-1035)) (-5 *1 (-567)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-317 (-381))) (-5 *4 (-1091 (-843 (-381)))) + (-5 *5 (-1157)) (-5 *2 (-1035)) (-5 *1 (-567)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-317 (-381))) (-5 *4 (-1091 (-843 (-381)))) + (-5 *5 (-1175)) (-5 *2 (-1035)) (-5 *1 (-567)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-365) (-147) (-1038 (-566)))) (-4 *5 (-1240 *4)) + (-5 *2 (-587 (-409 *5))) (-5 *1 (-570 *4 *5)) (-5 *3 (-409 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-1175)) (-4 *5 (-147)) + (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) + (-5 *2 (-3 (-317 *5) (-644 (-317 *5)))) (-5 *1 (-590 *5)))) + ((*1 *1 *1) + (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-740 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-850)) + (-4 *3 (-38 (-409 (-566)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1175)) (-5 *1 (-952 *3)) (-4 *3 (-38 (-409 (-566)))) + (-4 *3 (-1049)))) + ((*1 *1 *1 *2 *3) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-4 *2 (-850)) + (-5 *1 (-1125 *3 *2 *4)) (-4 *4 (-949 *3 (-533 *2) *2)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) + (-5 *1 (-1159 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1166 *3 *4 *5)) + (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1172 *3 *4 *5)) + (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1173 *3 *4 *5)) + (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-14 *5 *3))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1175)) (-5 *1 (-1208 *3)) (-4 *3 (-38 (-409 (-566)))) + (-4 *3 (-1049)))) + ((*1 *1 *1 *2) + (-2809 + (-12 (-5 *2 (-1175)) (-4 *1 (-1224 *3)) (-4 *3 (-1049)) + (-12 (-4 *3 (-29 (-566))) (-4 *3 (-959)) (-4 *3 (-1199)) + (-4 *3 (-38 (-409 (-566)))))) + (-12 (-5 *2 (-1175)) (-4 *1 (-1224 *3)) (-4 *3 (-1049)) + (-12 (|has| *3 (-15 -2485 ((-644 *2) *3))) + (|has| *3 (-15 -2390 (*3 *3 *2))) (-4 *3 (-38 (-409 (-566)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1224 *2)) (-4 *2 (-1049)) (-4 *2 (-38 (-409 (-566)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1228 *3 *4 *5)) + (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-14 *5 *3))) + ((*1 *1 *1) + (-12 (-4 *1 (-1240 *2)) (-4 *2 (-1049)) (-4 *2 (-38 (-409 (-566)))))) + ((*1 *1 *1 *2) + (-2809 + (-12 (-5 *2 (-1175)) (-4 *1 (-1245 *3)) (-4 *3 (-1049)) + (-12 (-4 *3 (-29 (-566))) (-4 *3 (-959)) (-4 *3 (-1199)) + (-4 *3 (-38 (-409 (-566)))))) + (-12 (-5 *2 (-1175)) (-4 *1 (-1245 *3)) (-4 *3 (-1049)) + (-12 (|has| *3 (-15 -2485 ((-644 *2) *3))) + (|has| *3 (-15 -2390 (*3 *3 *2))) (-4 *3 (-38 (-409 (-566)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1049)) (-4 *2 (-38 (-409 (-566)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1249 *3 *4 *5)) + (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-2809 + (-12 (-5 *2 (-1175)) (-4 *1 (-1255 *3)) (-4 *3 (-1049)) + (-12 (-4 *3 (-29 (-566))) (-4 *3 (-959)) (-4 *3 (-1199)) + (-4 *3 (-38 (-409 (-566)))))) + (-12 (-5 *2 (-1175)) (-4 *1 (-1255 *3)) (-4 *3 (-1049)) + (-12 (|has| *3 (-15 -2485 ((-644 *2) *3))) + (|has| *3 (-15 -2390 (*3 *3 *2))) (-4 *3 (-38 (-409 (-566)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1049)) (-4 *2 (-38 (-409 (-566)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1256 *3 *4 *5)) + (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-14 *5 *3)))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-1155 *3))) (-5 *2 (-1155 *3)) (-5 *1 (-1159 *3)) + (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-771)) (-4 *1 (-740 *4 *5)) (-4 *4 (-1049)) + (-4 *5 (-850)) (-5 *2 (-952 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-771)) (-4 *1 (-740 *4 *5)) (-4 *4 (-1049)) + (-4 *5 (-850)) (-5 *2 (-952 *4)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-771)) (-4 *1 (-1255 *4)) (-4 *4 (-1049)) + (-5 *2 (-952 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-771)) (-4 *1 (-1255 *4)) (-4 *4 (-1049)) + (-5 *2 (-952 *4))))) +(((*1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1) (-5 *1 (-862))) + ((*1 *1 *1) (-4 *1 (-967))) ((*1 *1 *1) (-5 *1 (-1119)))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 (-642 *5))) (-4 *5 (-1253 *4)) - (-4 *4 (-38 (-407 (-564)))) - (-5 *2 (-1 (-1153 *4) (-642 (-1153 *4)))) (-5 *1 (-1255 *4 *5))))) -(((*1 *1) (-5 *1 (-157)))) -(((*1 *1) (-5 *1 (-144))) ((*1 *1 *1) (-5 *1 (-860)))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-647 *3 *4 *5)) (-4 *3 (-1097)) - (-4 *4 (-23)) (-14 *5 *4)))) + (-12 (-5 *3 (-644 (-644 (-943 (-225))))) + (-5 *2 (-644 (-1093 (-225)))) (-5 *1 (-928))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1139 *3 *4)) (-4 *3 (-13 (-1099) (-34))) + (-4 *4 (-13 (-1099) (-34)))))) +(((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-926))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-771)) (-4 *1 (-1240 *3)) (-4 *3 (-1049)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-921)) (-4 *1 (-1242 *3 *4)) (-4 *3 (-1049)) + (-4 *4 (-792)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-409 (-566))) (-4 *1 (-1245 *3)) (-4 *3 (-1049))))) (((*1 *2 *3) - (-12 (-5 *2 (-1175 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-919)) (-5 *3 (-642 (-263))) (-5 *1 (-261)))) - ((*1 *1 *2) (-12 (-5 *2 (-919)) (-5 *1 (-263))))) -(((*1 *2 *1) - (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-1097)) - (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) + (-12 + (-5 *3 + (-644 + (-2 (|:| -2299 (-771)) + (|:| |eqns| + (-644 + (-2 (|:| |det| *7) (|:| |rows| (-644 (-566))) + (|:| |cols| (-644 (-566)))))) + (|:| |fgb| (-644 *7))))) + (-4 *7 (-949 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) + (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *2 (-771)) + (-5 *1 (-924 *4 *5 *6 *7))))) +(((*1 *2 *1 *1 *3) + (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1099) (-34))) + (-5 *2 (-112)) (-5 *1 (-1139 *4 *5)) (-4 *4 (-13 (-1099) (-34)))))) +(((*1 *2 *1) (-12 (-4 *1 (-529)) (-5 *2 (-691 (-129)))))) (((*1 *1 *2) - (-12 (-5 *2 (-1262 *4)) (-4 *4 (-1212)) (-4 *1 (-238 *3 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-642 *2)) (-4 *2 (-1062 *4 *5 *6)) (-4 *4 (-556)) - (-4 *5 (-791)) (-4 *6 (-848)) (-5 *1 (-975 *4 *5 *6 *2))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) - (-12 (-5 *4 (-687 (-225))) (-5 *5 (-687 (-564))) (-5 *6 (-225)) - (-5 *3 (-564)) (-5 *2 (-1033)) (-5 *1 (-750))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-642 *3)) (-4 *3 (-1212))))) -(((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-608 *3 *2)) (-4 *3 (-1097)) (-4 *2 (-1097))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114))))) -(((*1 *1 *1) (-4 *1 (-1057)))) + (-12 (-5 *2 (-1264 *4)) (-4 *4 (-1214)) (-4 *1 (-238 *3 *4))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-368)) (-4 *1 (-329 *3)) - (-4 *3 (-363))))) -(((*1 *2 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-687 *4)) (-5 *3 (-769)) (-4 *4 (-1047)) - (-5 *1 (-688 *4))))) -(((*1 *1 *1 *1) (-4 *1 (-545)))) + (-12 (-4 *1 (-976 *3 *4 *2 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *2 (-850)) (-4 *5 (-1064 *3 *4 *2))))) +(((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-610 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1099))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) + (-5 *1 (-757))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-644 *3)) (-4 *3 (-1214))))) +(((*1 *2 *1) (-12 (-4 *1 (-427 *3)) (-4 *3 (-1099)) (-5 *2 (-771))))) +(((*1 *2 *3 *4 *3 *3) + (-12 (-5 *3 (-295 *6)) (-5 *4 (-114)) (-4 *6 (-432 *5)) + (-4 *5 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) + (-5 *1 (-318 *5 *6)))) + ((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-295 *7)) (-5 *4 (-114)) (-5 *5 (-644 *7)) + (-4 *7 (-432 *6)) (-4 *6 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) + (-5 *1 (-318 *6 *7)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-644 (-295 *7))) (-5 *4 (-644 (-114))) (-5 *5 (-295 *7)) + (-4 *7 (-432 *6)) (-4 *6 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) + (-5 *1 (-318 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-644 (-295 *8))) (-5 *4 (-644 (-114))) (-5 *5 (-295 *8)) + (-5 *6 (-644 *8)) (-4 *8 (-432 *7)) + (-4 *7 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) + (-5 *1 (-318 *7 *8)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-644 *7)) (-5 *4 (-644 (-114))) (-5 *5 (-295 *7)) + (-4 *7 (-432 *6)) (-4 *6 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) + (-5 *1 (-318 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 (-114))) (-5 *6 (-644 (-295 *8))) + (-4 *8 (-432 *7)) (-5 *5 (-295 *8)) + (-4 *7 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) + (-5 *1 (-318 *7 *8)))) + ((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-295 *5)) (-5 *4 (-114)) (-4 *5 (-432 *6)) + (-4 *6 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) + (-5 *1 (-318 *6 *5)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-114)) (-5 *5 (-295 *3)) (-4 *3 (-432 *6)) + (-4 *6 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) + (-5 *1 (-318 *6 *3)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-114)) (-5 *5 (-295 *3)) (-4 *3 (-432 *6)) + (-4 *6 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) + (-5 *1 (-318 *6 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-114)) (-5 *5 (-295 *3)) (-5 *6 (-644 *3)) + (-4 *3 (-432 *7)) (-4 *7 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) + (-5 *1 (-318 *7 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-566)) (-5 *1 (-241)))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 (-1157))) (-5 *2 (-566)) (-5 *1 (-241))))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))) +(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-381)) (-5 *1 (-97)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-381)) (-5 *1 (-97))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1266))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-365)) (-5 *1 (-766 *2 *3)) (-4 *2 (-708 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365))))) (((*1 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1254 *2 *3 *4)) (-4 *2 (-1047)) (-14 *3 (-1173)) - (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561))))) + (-12 + (-5 *2 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) + (|:| |xpnt| (-566)))) + (-4 *4 (-13 (-1240 *3) (-558) (-10 -8 (-15 -2162 ($ $ $))))) + (-4 *3 (-558)) (-5 *1 (-1243 *3 *4))))) (((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-556) (-1036 (-564)))) (-5 *2 (-316 *4)) - (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1197) (-430 (-169 *4)))))) + (-12 (-4 *4 (-13 (-558) (-1038 (-566)))) (-5 *2 (-317 *4)) + (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1199) (-432 (-169 *4)))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-452) (-1036 (-564)) (-637 (-564)))) - (-5 *1 (-1201 *3 *2)) (-4 *2 (-13 (-27) (-1197) (-430 *3)))))) + (-12 (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566)))) + (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *3)))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) + (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *4 (-225)) + (-5 *2 (-1035)) (-5 *1 (-753))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-409 (-952 (-169 (-566)))))) + (-5 *2 (-644 (-644 (-295 (-952 (-169 *4)))))) (-5 *1 (-380 *4)) + (-4 *4 (-13 (-365) (-848))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-295 (-409 (-952 (-169 (-566))))))) + (-5 *2 (-644 (-644 (-295 (-952 (-169 *4)))))) (-5 *1 (-380 *4)) + (-4 *4 (-13 (-365) (-848))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-409 (-952 (-169 (-566))))) + (-5 *2 (-644 (-295 (-952 (-169 *4))))) (-5 *1 (-380 *4)) + (-4 *4 (-13 (-365) (-848))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-295 (-409 (-952 (-169 (-566)))))) + (-5 *2 (-644 (-295 (-952 (-169 *4))))) (-5 *1 (-380 *4)) + (-4 *4 (-13 (-365) (-848)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099))))) +(((*1 *2 *2) + (-12 (-5 *2 (-943 *3)) (-4 *3 (-13 (-365) (-1199) (-1002))) + (-5 *1 (-176 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1169 *4)) (-4 *4 (-349)) - (-5 *2 (-1262 (-642 (-2 (|:| -2108 *4) (|:| -2065 (-1117)))))) - (-5 *1 (-346 *4))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) - (-5 *1 (-754))))) -(((*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-579))))) -(((*1 *2) - (-12 (-4 *3 (-556)) (-5 *2 (-642 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-417 *3))))) -(((*1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-757))))) + (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) + (-5 *2 (-644 *4)) (-5 *1 (-1127 *3 *4)) (-4 *3 (-1240 *4)))) + ((*1 *2 *3 *3) + (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) + (-5 *2 (-644 *3)) (-5 *1 (-1127 *4 *3)) (-4 *4 (-1240 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-558)) (-5 *2 (-771)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-419 *4))))) +(((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-1006))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *1 (-883)) + (-5 *3 (-644 (-566)))))) (((*1 *2 *1) - (-12 (-4 *1 (-364 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-1097)) - (-5 *2 (-1155))))) -(((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *4 (-564)) (-5 *6 (-1 (-1267) (-1262 *5) (-1262 *5) (-379))) - (-5 *3 (-1262 (-379))) (-5 *5 (-379)) (-5 *2 (-1267)) - (-5 *1 (-786))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-564)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1212)) - (-4 *3 (-373 *4)) (-4 *5 (-373 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1000)))))) + (-12 (-5 *2 (-644 (-566))) (-5 *1 (-1004 *3)) (-14 *3 (-566))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-112)) (-5 *5 (-689 (-169 (-225)))) + (-5 *2 (-1035)) (-5 *1 (-755))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-452)) (-4 *4 (-848)) (-4 *5 (-791)) - (-5 *2 (-112)) (-5 *1 (-985 *3 *4 *5 *6)) - (-4 *6 (-947 *3 *5 *4)))) + (|partial| -12 (-4 *3 (-454)) (-4 *4 (-850)) (-4 *5 (-793)) + (-5 *2 (-112)) (-5 *1 (-987 *3 *4 *5 *6)) + (-4 *6 (-949 *3 *5 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1137 *3 *4)) (-4 *3 (-13 (-1097) (-34))) - (-4 *4 (-13 (-1097) (-34)))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-642 *7)) (-5 *3 (-564)) (-4 *7 (-947 *4 *5 *6)) - (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) - (-5 *1 (-449 *4 *5 *6 *7))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1139 *3 *4)) (-4 *3 (-13 (-1099) (-34))) + (-4 *4 (-13 (-1099) (-34)))))) +(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) + (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *2 (-1035)) + (-5 *1 (-755))))) (((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-556) (-1036 (-564)))) (-5 *2 (-316 *4)) - (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1197) (-430 (-169 *4)))))) - ((*1 *2 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-172)))) - ((*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-172)))) + (-12 (-4 *4 (-13 (-558) (-1038 (-566)))) (-5 *2 (-317 *4)) + (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1199) (-432 (-169 *4)))))) + ((*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))) + ((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-452) (-1036 (-564)) (-637 (-564)))) - (-5 *1 (-1201 *3 *2)) (-4 *2 (-13 (-27) (-1197) (-430 *3)))))) -(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-848)) (-4 *5 (-791)) - (-4 *6 (-556)) (-4 *7 (-947 *6 *5 *3)) - (-5 *1 (-462 *5 *3 *6 *7 *2)) - (-4 *2 - (-13 (-1036 (-407 (-564))) (-363) - (-10 -8 (-15 -2390 ($ *7)) (-15 -4120 (*7 $)) - (-15 -4131 (*7 $)))))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-848))))) -(((*1 *1 *1 *1) (-4 *1 (-545)))) + (-12 (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566)))) + (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *3)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-381)) (-5 *1 (-1062))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) + (-5 *2 + (-2 (|:| -2153 *4) (|:| -1452 *4) (|:| |totalpts| (-566)) + (|:| |success| (-112)))) + (-5 *1 (-789)) (-5 *5 (-566))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-324 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-131)) + (-4 *3 (-792))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1240 *2)) (-4 *2 (-1049)) (-4 *2 (-558))))) (((*1 *2 *3) - (-12 (-5 *2 (-1175 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-373 *3)) - (-4 *5 (-373 *3)) (-5 *2 (-564)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-564))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1091 (-225))) - (-5 *2 (-1264)) (-5 *1 (-257))))) + (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-682 *2)) (-4 *2 (-1099)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-644 *5) (-644 *5))) (-5 *4 (-566)) + (-5 *2 (-644 *5)) (-5 *1 (-682 *5)) (-4 *5 (-1099))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 (-331))) (-5 *1 (-331))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-13 (-558) (-147))) (-5 *1 (-1234 *3 *2)) + (-4 *2 (-1240 *3))))) (((*1 *1 *1) - (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047))))) + (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) +(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1157)) (-5 *1 (-192)))) + ((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1157)) (-5 *1 (-301)))) + ((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1157)) (-5 *1 (-306))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-769)) (-5 *2 (-1 (-379))) (-5 *1 (-1038))))) -(((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1238 *5)) - (-4 *5 (-13 (-363) (-147) (-1036 (-564)))) - (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-407 *6)) (|:| |h| *6) - (|:| |c1| (-407 *6)) (|:| |c2| (-407 *6)) (|:| -1425 *6))) - (-5 *1 (-1014 *5 *6)) (-5 *3 (-407 *6))))) -(((*1 *1 *1) - (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-642 (-1173))) - (-14 *3 (-642 (-1173))) (-4 *4 (-387)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-867 *3)) (-5 *2 (-564)))) - ((*1 *1 *1) (-4 *1 (-1000))) - ((*1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-1010)))) - ((*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-4 *1 (-1010)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1010)) (-5 *2 (-919)))) - ((*1 *1 *1) (-4 *1 (-1010)))) + (-12 (-5 *3 (-771)) (-5 *2 (-1 (-381))) (-5 *1 (-1040))))) +(((*1 *2 *3) + (-12 (-14 *4 (-644 (-1175))) (-4 *5 (-454)) + (-5 *2 + (-2 (|:| |glbase| (-644 (-247 *4 *5))) (|:| |glval| (-644 (-566))))) + (-5 *1 (-631 *4 *5)) (-5 *3 (-644 (-247 *4 *5)))))) (((*1 *2) - (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) - (-4 *5 (-1238 (-407 *4))) (-5 *2 (-687 (-407 *4)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1000)))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-769)) (-4 *4 (-349)) (-5 *1 (-216 *4 *2)) - (-4 *2 (-1238 *4))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-769)) (-4 *6 (-363)) (-5 *4 (-1206 *6)) - (-5 *2 (-1 (-1153 *4) (-1153 *4))) (-5 *1 (-1270 *6)) - (-5 *5 (-1153 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1000)))))) -(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-872)))) - ((*1 *2 *3) (-12 (-5 *3 (-941 *2)) (-5 *1 (-980 *2)) (-4 *2 (-1047))))) + (-12 (-5 *2 (-1269)) (-5 *1 (-1191 *3 *4)) (-4 *3 (-1099)) + (-4 *4 (-1099))))) +(((*1 *1 *1) + (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) + (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-869 *3)) (-5 *2 (-566)))) + ((*1 *1 *1) (-4 *1 (-1002))) + ((*1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-1012)))) + ((*1 *1 *2) (-12 (-5 *2 (-409 (-566))) (-4 *1 (-1012)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1012)) (-5 *2 (-921)))) + ((*1 *1 *1) (-4 *1 (-1012)))) +(((*1 *2 *1) + (-12 (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-5 *2 (-644 (-644 *3))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-644 (-644 *5))))) + ((*1 *2 *1) + (-12 (-5 *2 (-644 (-644 *3))) (-5 *1 (-1186 *3)) (-4 *3 (-1099))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1103)) (-5 *1 (-281))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1175)) (-5 *3 (-644 (-952 (-566)))) + (-5 *4 (-317 (-169 (-381)))) (-5 *1 (-331)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1175)) (-5 *3 (-644 (-952 (-566)))) + (-5 *4 (-317 (-381))) (-5 *1 (-331)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1175)) (-5 *3 (-644 (-952 (-566)))) + (-5 *4 (-317 (-566))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1175)) (-5 *3 (-1264 (-317 (-169 (-381))))) + (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1175)) (-5 *3 (-1264 (-317 (-381)))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1175)) (-5 *3 (-1264 (-317 (-566)))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-317 (-169 (-381))))) + (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-317 (-381)))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-317 (-566)))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1175)) (-5 *3 (-317 (-169 (-381)))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1175)) (-5 *3 (-317 (-381))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1175)) (-5 *3 (-317 (-566))) (-5 *1 (-331)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1175)) (-5 *3 (-644 (-952 (-566)))) + (-5 *4 (-317 (-694))) (-5 *1 (-331)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1175)) (-5 *3 (-644 (-952 (-566)))) + (-5 *4 (-317 (-699))) (-5 *1 (-331)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1175)) (-5 *3 (-644 (-952 (-566)))) + (-5 *4 (-317 (-701))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1175)) (-5 *3 (-1264 (-317 (-694)))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1175)) (-5 *3 (-1264 (-317 (-699)))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1175)) (-5 *3 (-1264 (-317 (-701)))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-317 (-694)))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-317 (-699)))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-317 (-701)))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1175)) (-5 *3 (-1264 (-694))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1175)) (-5 *3 (-1264 (-699))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1175)) (-5 *3 (-1264 (-701))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-694))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-699))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-701))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1175)) (-5 *3 (-317 (-694))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1175)) (-5 *3 (-317 (-699))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1175)) (-5 *3 (-317 (-701))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1157)) (-5 *1 (-331)))) + ((*1 *1 *1 *1) (-5 *1 (-862)))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-556)) - (-4 *3 (-947 *7 *5 *6)) - (-5 *2 - (-2 (|:| -2817 (-769)) (|:| -2968 *3) (|:| |radicand| (-642 *3)))) - (-5 *1 (-951 *5 *6 *7 *3 *8)) (-5 *4 (-769)) - (-4 *8 - (-13 (-363) - (-10 -8 (-15 -2390 ($ *3)) (-15 -4120 (*3 $)) (-15 -4131 (*3 $)))))))) -(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1045))))) + (-12 (-5 *3 (-689 *5)) (-5 *4 (-1264 *5)) (-4 *5 (-365)) + (-5 *2 (-112)) (-5 *1 (-667 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4418)))) + (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4418)))) (-5 *2 (-112)) + (-5 *1 (-668 *5 *6 *4 *3)) (-4 *3 (-687 *5 *6 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-558) (-147))) (-5 *1 (-539 *3 *2)) + (-4 *2 (-1255 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-365) (-370) (-614 (-566)))) (-4 *4 (-1240 *3)) + (-4 *5 (-724 *3 *4)) (-5 *1 (-543 *3 *4 *5 *2)) (-4 *2 (-1255 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-365) (-370) (-614 (-566)))) (-5 *1 (-544 *3 *2)) + (-4 *2 (-1255 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-13 (-558) (-147))) + (-5 *1 (-1151 *3))))) (((*1 *2 *3) - (-12 (-5 *2 (-169 *4)) (-5 *1 (-181 *4 *3)) - (-4 *4 (-13 (-363) (-846))) (-4 *3 (-1238 *2))))) + (-12 + (-5 *3 + (-2 (|:| |pde| (-644 (-317 (-225)))) + (|:| |constraints| + (-644 + (-2 (|:| |start| (-225)) (|:| |finish| (-225)) + (|:| |grid| (-771)) (|:| |boundaryType| (-566)) + (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) + (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) + (|:| |tol| (-225)))) + (-5 *2 (-112)) (-5 *1 (-210))))) +(((*1 *2 *2) + (-12 (-4 *3 (-308)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) + (-5 *1 (-1123 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) +(((*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-381)) (-5 *1 (-1040))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-128))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1175)) (-5 *3 (-436)) (-4 *5 (-1099)) + (-5 *1 (-1105 *5 *4)) (-4 *4 (-432 *5))))) +(((*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-803))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-642 (-48))) (-5 *2 (-418 *3)) (-5 *1 (-39 *3)) - (-4 *3 (-1238 (-48))))) + (-12 (-5 *4 (-644 (-48))) (-5 *2 (-420 *3)) (-5 *1 (-39 *3)) + (-4 *3 (-1240 (-48))))) ((*1 *2 *3) - (-12 (-5 *2 (-418 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1238 (-48))))) + (-12 (-5 *2 (-420 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1240 (-48))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-642 (-48))) (-4 *5 (-848)) (-4 *6 (-791)) - (-5 *2 (-418 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-947 (-48) *6 *5)))) + (-12 (-5 *4 (-644 (-48))) (-4 *5 (-850)) (-4 *6 (-793)) + (-5 *2 (-420 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-949 (-48) *6 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-642 (-48))) (-4 *5 (-848)) (-4 *6 (-791)) - (-4 *7 (-947 (-48) *6 *5)) (-5 *2 (-418 (-1169 *7))) - (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1169 *7)))) + (-12 (-5 *4 (-644 (-48))) (-4 *5 (-850)) (-4 *6 (-793)) + (-4 *7 (-949 (-48) *6 *5)) (-5 *2 (-420 (-1171 *7))) + (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1171 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-167 *4 *3)) - (-4 *3 (-1238 (-169 *4))))) + (-12 (-4 *4 (-308)) (-5 *2 (-420 *3)) (-5 *1 (-167 *4 *3)) + (-4 *3 (-1240 (-169 *4))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *4 (-13 (-363) (-846))) (-5 *2 (-418 *3)) - (-5 *1 (-181 *4 *3)) (-4 *3 (-1238 (-169 *4))))) + (-12 (-5 *5 (-112)) (-4 *4 (-13 (-365) (-848))) (-5 *2 (-420 *3)) + (-5 *1 (-181 *4 *3)) (-4 *3 (-1240 (-169 *4))))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-363) (-846))) (-5 *2 (-418 *3)) - (-5 *1 (-181 *4 *3)) (-4 *3 (-1238 (-169 *4))))) + (-12 (-4 *4 (-13 (-365) (-848))) (-5 *2 (-420 *3)) + (-5 *1 (-181 *4 *3)) (-4 *3 (-1240 (-169 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-363) (-846))) (-5 *2 (-418 *3)) - (-5 *1 (-181 *4 *3)) (-4 *3 (-1238 (-169 *4))))) + (-12 (-4 *4 (-13 (-365) (-848))) (-5 *2 (-420 *3)) + (-5 *1 (-181 *4 *3)) (-4 *3 (-1240 (-169 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-349)) (-5 *2 (-418 *3)) (-5 *1 (-216 *4 *3)) - (-4 *3 (-1238 *4)))) + (-12 (-4 *4 (-351)) (-5 *2 (-420 *3)) (-5 *1 (-216 *4 *3)) + (-4 *3 (-1240 *4)))) ((*1 *2 *3) - (-12 (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564))))) + (-12 (-5 *2 (-420 *3)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-769)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) - (-4 *3 (-1238 (-564))))) + (-12 (-5 *4 (-771)) (-5 *2 (-420 *3)) (-5 *1 (-444 *3)) + (-4 *3 (-1240 (-566))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-642 (-769))) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) - (-4 *3 (-1238 (-564))))) + (-12 (-5 *4 (-644 (-771))) (-5 *2 (-420 *3)) (-5 *1 (-444 *3)) + (-4 *3 (-1240 (-566))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-642 (-769))) (-5 *5 (-769)) (-5 *2 (-418 *3)) - (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564))))) + (-12 (-5 *4 (-644 (-771))) (-5 *5 (-771)) (-5 *2 (-420 *3)) + (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-769)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) - (-4 *3 (-1238 (-564))))) + (-12 (-5 *4 (-771)) (-5 *2 (-420 *3)) (-5 *1 (-444 *3)) + (-4 *3 (-1240 (-566))))) ((*1 *2 *3) - (-12 (-5 *2 (-418 (-169 (-564)))) (-5 *1 (-446)) - (-5 *3 (-169 (-564))))) + (-12 (-5 *2 (-420 (-169 (-566)))) (-5 *1 (-448)) + (-5 *3 (-169 (-566))))) ((*1 *2 *3) (-12 (-4 *4 - (-13 (-848) - (-10 -8 (-15 -3003 ((-1173) $)) - (-15 -1341 ((-3 $ "failed") (-1173)))))) - (-4 *5 (-791)) (-4 *7 (-556)) (-5 *2 (-418 *3)) - (-5 *1 (-456 *4 *5 *6 *7 *3)) (-4 *6 (-556)) - (-4 *3 (-947 *7 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-307)) (-5 *2 (-418 (-1169 *4))) (-5 *1 (-458 *4)) - (-5 *3 (-1169 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1238 *5)) (-4 *5 (-363)) - (-4 *7 (-13 (-363) (-147) (-722 *5 *6))) (-5 *2 (-418 *3)) - (-5 *1 (-494 *5 *6 *7 *3)) (-4 *3 (-1238 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-418 (-1169 *7)) (-1169 *7))) - (-4 *7 (-13 (-307) (-147))) (-4 *5 (-848)) (-4 *6 (-791)) - (-5 *2 (-418 *3)) (-5 *1 (-540 *5 *6 *7 *3)) - (-4 *3 (-947 *7 *6 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-418 (-1169 *7)) (-1169 *7))) - (-4 *7 (-13 (-307) (-147))) (-4 *5 (-848)) (-4 *6 (-791)) - (-4 *8 (-947 *7 *6 *5)) (-5 *2 (-418 (-1169 *8))) - (-5 *1 (-540 *5 *6 *7 *8)) (-5 *3 (-1169 *8)))) - ((*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-558 *3)) (-4 *3 (-545)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-642 *5) *6)) - (-4 *5 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564))))) - (-4 *6 (-1238 *5)) (-5 *2 (-642 (-651 (-407 *6)))) - (-5 *1 (-655 *5 *6)) (-5 *3 (-651 (-407 *6))))) + (-13 (-850) + (-10 -8 (-15 -3136 ((-1175) $)) + (-15 -1338 ((-3 $ "failed") (-1175)))))) + (-4 *5 (-793)) (-4 *7 (-558)) (-5 *2 (-420 *3)) + (-5 *1 (-458 *4 *5 *6 *7 *3)) (-4 *6 (-558)) + (-4 *3 (-949 *7 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-308)) (-5 *2 (-420 (-1171 *4))) (-5 *1 (-460 *4)) + (-5 *3 (-1171 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-420 *6) *6)) (-4 *6 (-1240 *5)) (-4 *5 (-365)) + (-4 *7 (-13 (-365) (-147) (-724 *5 *6))) (-5 *2 (-420 *3)) + (-5 *1 (-496 *5 *6 *7 *3)) (-4 *3 (-1240 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-420 (-1171 *7)) (-1171 *7))) + (-4 *7 (-13 (-308) (-147))) (-4 *5 (-850)) (-4 *6 (-793)) + (-5 *2 (-420 *3)) (-5 *1 (-542 *5 *6 *7 *3)) + (-4 *3 (-949 *7 *6 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-420 (-1171 *7)) (-1171 *7))) + (-4 *7 (-13 (-308) (-147))) (-4 *5 (-850)) (-4 *6 (-793)) + (-4 *8 (-949 *7 *6 *5)) (-5 *2 (-420 (-1171 *8))) + (-5 *1 (-542 *5 *6 *7 *8)) (-5 *3 (-1171 *8)))) + ((*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-560 *3)) (-4 *3 (-547)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-644 *5) *6)) + (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) + (-4 *6 (-1240 *5)) (-5 *2 (-644 (-653 (-409 *6)))) + (-5 *1 (-657 *5 *6)) (-5 *3 (-653 (-409 *6))))) ((*1 *2 *3) (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564))))) - (-4 *5 (-1238 *4)) (-5 *2 (-642 (-651 (-407 *5)))) - (-5 *1 (-655 *4 *5)) (-5 *3 (-651 (-407 *5))))) + (-4 *4 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) + (-4 *5 (-1240 *4)) (-5 *2 (-644 (-653 (-409 *5)))) + (-5 *1 (-657 *4 *5)) (-5 *3 (-653 (-409 *5))))) ((*1 *2 *3) - (-12 (-5 *3 (-817 *4)) (-4 *4 (-848)) (-5 *2 (-642 (-670 *4))) - (-5 *1 (-670 *4)))) + (-12 (-5 *3 (-819 *4)) (-4 *4 (-850)) (-5 *2 (-644 (-672 *4))) + (-5 *1 (-672 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-564)) (-5 *2 (-642 *3)) (-5 *1 (-694 *3)) - (-4 *3 (-1238 *4)))) + (-12 (-5 *4 (-566)) (-5 *2 (-644 *3)) (-5 *1 (-696 *3)) + (-4 *3 (-1240 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-848)) (-4 *5 (-791)) (-4 *6 (-349)) (-5 *2 (-418 *3)) - (-5 *1 (-696 *4 *5 *6 *3)) (-4 *3 (-947 *6 *5 *4)))) + (-12 (-4 *4 (-850)) (-4 *5 (-793)) (-4 *6 (-351)) (-5 *2 (-420 *3)) + (-5 *1 (-698 *4 *5 *6 *3)) (-4 *3 (-949 *6 *5 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-848)) (-4 *5 (-791)) (-4 *6 (-349)) - (-4 *7 (-947 *6 *5 *4)) (-5 *2 (-418 (-1169 *7))) - (-5 *1 (-696 *4 *5 *6 *7)) (-5 *3 (-1169 *7)))) + (-12 (-4 *4 (-850)) (-4 *5 (-793)) (-4 *6 (-351)) + (-4 *7 (-949 *6 *5 *4)) (-5 *2 (-420 (-1171 *7))) + (-5 *1 (-698 *4 *5 *6 *7)) (-5 *3 (-1171 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-791)) + (-12 (-4 *4 (-793)) (-4 *5 - (-13 (-848) - (-10 -8 (-15 -3003 ((-1173) $)) - (-15 -1341 ((-3 $ "failed") (-1173)))))) - (-4 *6 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-728 *4 *5 *6 *3)) - (-4 *3 (-947 (-950 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-791)) - (-4 *5 (-13 (-848) (-10 -8 (-15 -3003 ((-1173) $))))) (-4 *6 (-556)) - (-5 *2 (-418 *3)) (-5 *1 (-730 *4 *5 *6 *3)) - (-4 *3 (-947 (-407 (-950 *6)) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-13 (-307) (-147))) - (-5 *2 (-418 *3)) (-5 *1 (-731 *4 *5 *6 *3)) - (-4 *3 (-947 (-407 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-848)) (-4 *5 (-791)) (-4 *6 (-13 (-307) (-147))) - (-5 *2 (-418 *3)) (-5 *1 (-739 *4 *5 *6 *3)) - (-4 *3 (-947 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-848)) (-4 *5 (-791)) (-4 *6 (-13 (-307) (-147))) - (-4 *7 (-947 *6 *5 *4)) (-5 *2 (-418 (-1169 *7))) - (-5 *1 (-739 *4 *5 *6 *7)) (-5 *3 (-1169 *7)))) - ((*1 *2 *3) - (-12 (-5 *2 (-418 *3)) (-5 *1 (-1005 *3)) - (-4 *3 (-1238 (-407 (-564)))))) - ((*1 *2 *3) - (-12 (-5 *2 (-418 *3)) (-5 *1 (-1039 *3)) - (-4 *3 (-1238 (-407 (-950 (-564))))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1238 (-407 (-564)))) - (-4 *5 (-13 (-363) (-147) (-722 (-407 (-564)) *4))) - (-5 *2 (-418 *3)) (-5 *1 (-1076 *4 *5 *3)) (-4 *3 (-1238 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1238 (-407 (-950 (-564))))) - (-4 *5 (-13 (-363) (-147) (-722 (-407 (-950 (-564))) *4))) - (-5 *2 (-418 *3)) (-5 *1 (-1078 *4 *5 *3)) (-4 *3 (-1238 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-452)) - (-4 *7 (-947 *6 *4 *5)) (-5 *2 (-418 (-1169 (-407 *7)))) - (-5 *1 (-1168 *4 *5 *6 *7)) (-5 *3 (-1169 (-407 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-418 *1)) (-4 *1 (-1216)))) - ((*1 *2 *3) - (-12 (-5 *2 (-418 *3)) (-5 *1 (-1227 *3)) (-4 *3 (-1238 (-564)))))) -(((*1 *2 *1) (-12 (-5 *2 (-642 (-1132))) (-5 *1 (-1087))))) -(((*1 *1 *1 *1 *1 *1) - (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) - (-4 *4 (-848)) (-4 *2 (-556))))) -(((*1 *2 *1) (-12 (-5 *2 (-1153 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1100 *3 *4 *5 *6 *7)) (-4 *3 (-1097)) (-4 *4 (-1097)) - (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *7 (-1097)) (-5 *2 (-112))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-642 (-506))) (-5 *2 (-506)) (-5 *1 (-483))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1197))))) - ((*1 *1 *1 *1) (-4 *1 (-791)))) + (-13 (-850) + (-10 -8 (-15 -3136 ((-1175) $)) + (-15 -1338 ((-3 $ "failed") (-1175)))))) + (-4 *6 (-308)) (-5 *2 (-420 *3)) (-5 *1 (-730 *4 *5 *6 *3)) + (-4 *3 (-949 (-952 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-793)) + (-4 *5 (-13 (-850) (-10 -8 (-15 -3136 ((-1175) $))))) (-4 *6 (-558)) + (-5 *2 (-420 *3)) (-5 *1 (-732 *4 *5 *6 *3)) + (-4 *3 (-949 (-409 (-952 *6)) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-13 (-308) (-147))) + (-5 *2 (-420 *3)) (-5 *1 (-733 *4 *5 *6 *3)) + (-4 *3 (-949 (-409 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-850)) (-4 *5 (-793)) (-4 *6 (-13 (-308) (-147))) + (-5 *2 (-420 *3)) (-5 *1 (-741 *4 *5 *6 *3)) + (-4 *3 (-949 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-850)) (-4 *5 (-793)) (-4 *6 (-13 (-308) (-147))) + (-4 *7 (-949 *6 *5 *4)) (-5 *2 (-420 (-1171 *7))) + (-5 *1 (-741 *4 *5 *6 *7)) (-5 *3 (-1171 *7)))) + ((*1 *2 *3) + (-12 (-5 *2 (-420 *3)) (-5 *1 (-1007 *3)) + (-4 *3 (-1240 (-409 (-566)))))) + ((*1 *2 *3) + (-12 (-5 *2 (-420 *3)) (-5 *1 (-1041 *3)) + (-4 *3 (-1240 (-409 (-952 (-566))))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1240 (-409 (-566)))) + (-4 *5 (-13 (-365) (-147) (-724 (-409 (-566)) *4))) + (-5 *2 (-420 *3)) (-5 *1 (-1078 *4 *5 *3)) (-4 *3 (-1240 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1240 (-409 (-952 (-566))))) + (-4 *5 (-13 (-365) (-147) (-724 (-409 (-952 (-566))) *4))) + (-5 *2 (-420 *3)) (-5 *1 (-1080 *4 *5 *3)) (-4 *3 (-1240 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-454)) + (-4 *7 (-949 *6 *4 *5)) (-5 *2 (-420 (-1171 (-409 *7)))) + (-5 *1 (-1170 *4 *5 *6 *7)) (-5 *3 (-1171 (-409 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-420 *1)) (-4 *1 (-1218)))) + ((*1 *2 *3) + (-12 (-5 *2 (-420 *3)) (-5 *1 (-1229 *3)) (-4 *3 (-1240 (-566)))))) +(((*1 *1 *1 *1) (-5 *1 (-129))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1182 *2)) (-14 *2 (-921)))) + ((*1 *1 *1 *1) (-5 *1 (-1219))) ((*1 *1 *1 *1) (-5 *1 (-1220))) + ((*1 *1 *1 *1) (-5 *1 (-1221))) ((*1 *1 *1 *1) (-5 *1 (-1222)))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-566)) (-5 *2 (-1269)) (-5 *1 (-1266)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266))))) (((*1 *2 *3) - (-12 (-5 *2 (-418 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1238 (-48))))) - ((*1 *2 *3 *1) - (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) - (-5 *1 (-121 *3)) (-4 *3 (-848)))) - ((*1 *2 *2) - (-12 (-5 *2 (-585 *4)) (-4 *4 (-13 (-29 *3) (-1197))) - (-4 *3 (-13 (-452) (-1036 (-564)) (-637 (-564)))) - (-5 *1 (-583 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-585 (-407 (-950 *3)))) - (-4 *3 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *1 (-588 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1238 *5)) (-4 *5 (-363)) - (-5 *2 (-2 (|:| -3691 *3) (|:| |special| *3))) (-5 *1 (-725 *5 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1262 *5)) (-4 *5 (-363)) (-4 *5 (-1047)) - (-5 *2 (-642 (-642 (-687 *5)))) (-5 *1 (-1027 *5)) - (-5 *3 (-642 (-687 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1262 (-1262 *5))) (-4 *5 (-363)) (-4 *5 (-1047)) - (-5 *2 (-642 (-642 (-687 *5)))) (-5 *1 (-1027 *5)) - (-5 *3 (-642 (-687 *5))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-642 *1)) (-4 *1 (-1141)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-144)) (-5 *2 (-642 *1)) (-4 *1 (-1141))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1155)) (-5 *3 (-564)) (-5 *1 (-241)))) + (-12 (-4 *4 (-558)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3553 *4))) + (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-1175)) (-5 *1 (-612 *3)) (-4 *3 (-1099))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1175)) + (-4 *5 (-13 (-558) (-1038 (-566)) (-147))) + (-5 *2 + (-2 (|:| -4069 (-409 (-952 *5))) (|:| |coeff| (-409 (-952 *5))))) + (-5 *1 (-572 *5)) (-5 *3 (-409 (-952 *5)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) +(((*1 *1 *2) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-489))))) +(((*1 *2 *3 *3) + (-12 (-4 *3 (-1218)) (-4 *5 (-1240 *3)) (-4 *6 (-1240 (-409 *5))) + (-5 *2 (-112)) (-5 *1 (-343 *4 *3 *5 *6)) (-4 *4 (-344 *3 *5 *6)))) + ((*1 *2 *3 *3) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) + (-4 *5 (-1240 (-409 *4))) (-5 *2 (-112))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1157)) (-5 *3 (-566)) (-5 *1 (-241)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-642 (-1155))) (-5 *3 (-564)) (-5 *4 (-1155)) + (-12 (-5 *2 (-644 (-1157))) (-5 *3 (-566)) (-5 *4 (-1157)) (-5 *1 (-241)))) - ((*1 *1 *1) (-5 *1 (-860))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-860)))) + ((*1 *1 *1) (-5 *1 (-862))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) ((*1 *2 *1) - (-12 (-4 *1 (-1240 *2 *3)) (-4 *3 (-790)) (-4 *2 (-1047))))) -(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) - (-12 (-5 *3 (-564)) (-5 *5 (-687 (-225))) (-5 *4 (-225)) - (-5 *2 (-1033)) (-5 *1 (-753))))) + (-12 (-4 *1 (-1242 *2 *3)) (-4 *3 (-792)) (-4 *2 (-1049))))) +(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) + (-5 *1 (-752))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) +(((*1 *1 *1) (-4 *1 (-173))) + ((*1 *1 *1) + (-12 (-4 *1 (-366 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) +(((*1 *2 *1) (-12 (-5 *2 (-1155 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308))))) (((*1 *1 *1 *1) (-5 *1 (-129))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1180 *2)) (-14 *2 (-919)))) - ((*1 *1 *1 *1) (-5 *1 (-1217))) ((*1 *1 *1 *1) (-5 *1 (-1218))) - ((*1 *1 *1 *1) (-5 *1 (-1219))) ((*1 *1 *1 *1) (-5 *1 (-1220)))) -(((*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-1214))))) -(((*1 *1 *1) (-5 *1 (-1060)))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-2 (|:| |totdeg| (-769)) (|:| -2830 *4))) (-5 *5 (-769)) - (-4 *4 (-947 *6 *7 *8)) (-4 *6 (-452)) (-4 *7 (-791)) (-4 *8 (-848)) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1182 *2)) (-14 *2 (-921)))) + ((*1 *1 *1 *1) (-5 *1 (-1219))) ((*1 *1 *1 *1) (-5 *1 (-1220))) + ((*1 *1 *1 *1) (-5 *1 (-1221))) ((*1 *1 *1 *1) (-5 *1 (-1222)))) +(((*1 *2 *2) + (-12 (-5 *2 - (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) - (|:| |polj| *4))) - (-5 *1 (-449 *6 *7 *8 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-556) (-1036 (-564)))) (-5 *2 (-407 (-564))) - (-5 *1 (-433 *4 *3)) (-4 *3 (-430 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-610 *3)) (-4 *3 (-430 *5)) - (-4 *5 (-13 (-556) (-1036 (-564)))) (-5 *2 (-1169 (-407 (-564)))) - (-5 *1 (-433 *5 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1262 *4)) (-4 *4 (-637 (-564))) (-5 *2 (-112)) - (-5 *1 (-1289 *4))))) + (-2 (|:| |fn| (-317 (-225))) (|:| -3968 (-644 (-225))) + (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) + (|:| |ub| (-644 (-843 (-225)))))) + (-5 *1 (-268))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) + (-12 (-5 *4 (-689 (-225))) (-5 *5 (-689 (-566))) (-5 *6 (-225)) + (-5 *3 (-566)) (-5 *2 (-1035)) (-5 *1 (-751))))) +(((*1 *2 *2) + (-12 (-5 *2 (-943 *3)) (-4 *3 (-13 (-365) (-1199) (-1002))) + (-5 *1 (-176 *3))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *5 (-612 *4)) (-5 *6 (-1175)) + (-4 *4 (-13 (-432 *7) (-27) (-1199))) + (-4 *7 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1419 (-644 *4)))) + (-5 *1 (-568 *7 *4 *3)) (-4 *3 (-656 *4)) (-4 *3 (-1099))))) +(((*1 *2 *3 *4 *4 *3 *3 *5) + (|partial| -12 (-5 *4 (-612 *3)) (-5 *5 (-1171 *3)) + (-4 *3 (-13 (-432 *6) (-27) (-1199))) + (-4 *6 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) + (-5 *2 (-2 (|:| -4069 *3) (|:| |coeff| *3))) + (-5 *1 (-562 *6 *3 *7)) (-4 *7 (-1099)))) + ((*1 *2 *3 *4 *4 *3 *4 *3 *5) + (|partial| -12 (-5 *4 (-612 *3)) (-5 *5 (-409 (-1171 *3))) + (-4 *3 (-13 (-432 *6) (-27) (-1199))) + (-4 *6 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) + (-5 *2 (-2 (|:| -4069 *3) (|:| |coeff| *3))) + (-5 *1 (-562 *6 *3 *7)) (-4 *7 (-1099))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-850)) (-5 *1 (-486 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-558) (-1038 (-566)))) (-5 *1 (-188 *3 *2)) + (-4 *2 (-13 (-27) (-1199) (-432 (-169 *3)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566)))) + (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *3)))))) (((*1 *2 *3) - (-12 (-5 *2 (-418 (-1169 *1))) (-5 *1 (-316 *4)) (-5 *3 (-1169 *1)) - (-4 *4 (-452)) (-4 *4 (-556)) (-4 *4 (-1097)))) + (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-644 (-1175))) (-4 *5 (-1049)) + (-5 *2 (-483 *4 *5)) (-5 *1 (-944 *4 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1038 (-566))) (-4 *3 (-558)) (-5 *1 (-32 *3 *2)) + (-4 *2 (-432 *3)))) + ((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-1171 *4)) (-5 *1 (-165 *3 *4)) + (-4 *3 (-166 *4)))) + ((*1 *1 *1) (-12 (-4 *1 (-1049)) (-4 *1 (-303)))) + ((*1 *2) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1171 *3)))) + ((*1 *2) (-12 (-4 *1 (-724 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1240 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1067 *3 *2)) (-4 *3 (-13 (-848) (-365))) + (-4 *2 (-1240 *3))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-409 (-566))) (-5 *1 (-596 *3)) (-4 *3 (-38 *2)) + (-4 *3 (-1049))))) +(((*1 *2 *1) + (-12 (-5 *2 (-771)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-566)) + (-14 *4 *2) (-4 *5 (-172)))) + ((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-921)) (-5 *1 (-165 *3 *4)) + (-4 *3 (-166 *4)))) + ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-921)))) + ((*1 *2) + (-12 (-4 *1 (-372 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1240 *3)) + (-5 *2 (-921)))) ((*1 *2 *3) - (-12 (-4 *1 (-907)) (-5 *2 (-418 (-1169 *1))) (-5 *3 (-1169 *1))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-687 (-169 (-407 (-564))))) - (-5 *2 - (-642 - (-2 (|:| |outval| (-169 *4)) (|:| |outmult| (-564)) - (|:| |outvect| (-642 (-687 (-169 *4))))))) - (-5 *1 (-762 *4)) (-4 *4 (-13 (-363) (-846)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-642 (-407 (-950 (-564))))) (-5 *4 (-642 (-1173))) - (-5 *2 (-642 (-642 *5))) (-5 *1 (-380 *5)) - (-4 *5 (-13 (-846) (-363))))) + (-12 (-4 *4 (-365)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) + (-5 *2 (-771)) (-5 *1 (-523 *4 *5 *6 *3)) (-4 *3 (-687 *4 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-407 (-950 (-564)))) (-5 *2 (-642 *4)) (-5 *1 (-380 *4)) - (-4 *4 (-13 (-846) (-363)))))) -(((*1 *1 *1 *1) (-5 *1 (-129))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1180 *2)) (-14 *2 (-919)))) - ((*1 *1 *1 *1) (-5 *1 (-1217))) ((*1 *1 *1 *1) (-5 *1 (-1218))) - ((*1 *1 *1 *1) (-5 *1 (-1219))) ((*1 *1 *1 *1) (-5 *1 (-1220)))) -(((*1 *2 *2) - (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1197)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-769)) (-5 *4 (-1262 *2)) (-4 *5 (-307)) - (-4 *6 (-990 *5)) (-4 *2 (-13 (-409 *6 *7) (-1036 *6))) - (-5 *1 (-413 *5 *6 *7 *2)) (-4 *7 (-1238 *6))))) -(((*1 *1 *2) - (-12 (-5 *2 (-687 *4)) (-4 *4 (-1047)) (-5 *1 (-1139 *3 *4)) - (-14 *3 (-769))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-687 *4)) (-5 *3 (-919)) (|has| *4 (-6 (-4412 "*"))) - (-4 *4 (-1047)) (-5 *1 (-1026 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-642 (-687 *4))) (-5 *3 (-919)) - (|has| *4 (-6 (-4412 "*"))) (-4 *4 (-1047)) (-5 *1 (-1026 *4))))) + (-12 (-5 *3 (-689 *5)) (-5 *4 (-1264 *5)) (-4 *5 (-365)) + (-5 *2 (-771)) (-5 *1 (-667 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4418)))) + (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4418)))) (-5 *2 (-771)) + (-5 *1 (-668 *5 *6 *4 *3)) (-4 *3 (-687 *5 *6 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-4 *3 (-558)) (-5 *2 (-771)))) + ((*1 *2 *3) + (-12 (-4 *4 (-558)) (-4 *4 (-172)) (-4 *5 (-375 *4)) + (-4 *6 (-375 *4)) (-5 *2 (-771)) (-5 *1 (-688 *4 *5 *6 *3)) + (-4 *3 (-687 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-558)) + (-5 *2 (-771))))) +(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) + (-12 (-5 *3 (-1157)) (-5 *5 (-689 (-225))) (-5 *6 (-689 (-566))) + (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-757))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-1036 (-564)) (-637 (-564)) (-452))) + (-12 (-4 *1 (-1226 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-1255 *3))))) +(((*1 *1 *1) (-5 *1 (-225))) + ((*1 *1 *1) + (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) + (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) + ((*1 *1 *1) (-5 *1 (-381))) ((*1 *1) (-5 *1 (-381)))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4417)) (-4 *1 (-235 *3)) + (-4 *3 (-1099)))) + ((*1 *1 *2 *1) + (-12 (|has| *1 (-6 -4417)) (-4 *1 (-235 *2)) (-4 *2 (-1099)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-283 *2)) (-4 *2 (-1214)) (-4 *2 (-1099)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-283 *3)) (-4 *3 (-1214)))) + ((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-610 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1099)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-566)) (-4 *4 (-1099)) + (-5 *1 (-737 *4)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-566)) (-5 *1 (-737 *2)) (-4 *2 (-1099)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1139 *3 *4)) (-4 *3 (-13 (-1099) (-34))) + (-4 *4 (-13 (-1099) (-34))) (-5 *1 (-1140 *3 *4))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-566)) (-4 *1 (-324 *2 *4)) (-4 *4 (-131)) + (-4 *2 (-1099)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *1 (-363 *2)) (-4 *2 (-1099)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *1 (-388 *2)) (-4 *2 (-1099)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *1 (-420 *2)) (-4 *2 (-558)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-566)) (-4 *2 (-1099)) (-5 *1 (-649 *2 *4 *5)) + (-4 *4 (-23)) (-14 *5 *4))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *1 (-819 *2)) (-4 *2 (-850))))) +(((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-1207 *3 *4 *5 *2)) (-4 *3 (-558)) + (-4 *4 (-793)) (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-331))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1155 *4)) (-5 *3 (-566)) (-4 *4 (-1049)) + (-5 *1 (-1159 *4)))) + ((*1 *1 *2 *2 *1) + (-12 (-5 *2 (-566)) (-5 *1 (-1256 *3 *4 *5)) (-4 *3 (-1049)) + (-14 *4 (-1175)) (-14 *5 *3)))) +(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) + (|partial| -12 (-5 *5 (-112)) (-4 *6 (-454)) (-4 *7 (-793)) + (-4 *8 (-850)) (-4 *9 (-1064 *6 *7 *8)) (-5 *2 - (-2 - (|:| |%term| - (-2 (|:| |%coef| (-1247 *4 *5 *6)) - (|:| |%expon| (-319 *4 *5 *6)) - (|:| |%expTerms| - (-642 (-2 (|:| |k| (-407 (-564))) (|:| |c| *4)))))) - (|:| |%type| (-1155)))) - (-5 *1 (-1248 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1197) (-430 *3))) - (-14 *5 (-1173)) (-14 *6 *4)))) + (-2 (|:| -3477 (-644 *9)) (|:| -2192 *4) (|:| |ineq| (-644 *9)))) + (-5 *1 (-988 *6 *7 *8 *9 *4)) (-5 *3 (-644 *9)) + (-4 *4 (-1070 *6 *7 *8 *9)))) + ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) + (|partial| -12 (-5 *5 (-112)) (-4 *6 (-454)) (-4 *7 (-793)) + (-4 *8 (-850)) (-4 *9 (-1064 *6 *7 *8)) + (-5 *2 + (-2 (|:| -3477 (-644 *9)) (|:| -2192 *4) (|:| |ineq| (-644 *9)))) + (-5 *1 (-1106 *6 *7 *8 *9 *4)) (-5 *3 (-644 *9)) + (-4 *4 (-1070 *6 *7 *8 *9))))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *4 (-225)) + (-5 *2 (-1035)) (-5 *1 (-752))))) (((*1 *2) - (-12 (-4 *3 (-452)) (-4 *4 (-791)) (-4 *5 (-848)) - (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-1267)) - (-5 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *7 (-1068 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-452)) (-4 *4 (-791)) (-4 *5 (-848)) - (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-1267)) - (-5 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *7 (-1068 *3 *4 *5 *6))))) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) + (-4 *3 (-369 *4)))) + ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-349)) + (-12 (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-558)) + (-4 *3 (-949 *7 *5 *6)) (-5 *2 - (-2 (|:| |cont| *5) - (|:| -1569 (-642 (-2 (|:| |irr| *3) (|:| -3660 (-564))))))) - (-5 *1 (-216 *5 *3)) (-4 *3 (-1238 *5))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-780 *2)) (-4 *2 (-556)) (-4 *2 (-1047)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-967 *3 *2)) (-4 *2 (-1238 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) - (-4 *4 (-848)) (-4 *2 (-556)))) - ((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) - (-4 *3 (-1062 *4 *5 *6)) - (-5 *2 (-642 (-2 (|:| |val| *3) (|:| -2138 *1)))) - (-4 *1 (-1068 *4 *5 *6 *3))))) + (-2 (|:| -3631 (-771)) (|:| -3103 *3) (|:| |radicand| (-644 *3)))) + (-5 *1 (-953 *5 *6 *7 *3 *8)) (-5 *4 (-771)) + (-4 *8 + (-13 (-365) + (-10 -8 (-15 -2479 ($ *3)) (-15 -4157 (*3 $)) (-15 -4167 (*3 $)))))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-610 *1)) (-4 *1 (-430 *4)) (-4 *4 (-1097)) - (-4 *4 (-556)) (-5 *2 (-407 (-1169 *1))))) + (-12 (-5 *3 (-612 *1)) (-4 *1 (-432 *4)) (-4 *4 (-1099)) + (-4 *4 (-558)) (-5 *2 (-409 (-1171 *1))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-610 *3)) (-4 *3 (-13 (-430 *6) (-27) (-1197))) - (-4 *6 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564)))) - (-5 *2 (-1169 (-407 (-1169 *3)))) (-5 *1 (-560 *6 *3 *7)) - (-5 *5 (-1169 *3)) (-4 *7 (-1097)))) + (-12 (-5 *4 (-612 *3)) (-4 *3 (-13 (-432 *6) (-27) (-1199))) + (-4 *6 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) + (-5 *2 (-1171 (-409 (-1171 *3)))) (-5 *1 (-562 *6 *3 *7)) + (-5 *5 (-1171 *3)) (-4 *7 (-1099)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1258 *5)) (-14 *5 (-1173)) (-4 *6 (-1047)) - (-5 *2 (-1235 *5 (-950 *6))) (-5 *1 (-945 *5 *6)) (-5 *3 (-950 *6)))) + (-12 (-5 *4 (-1260 *5)) (-14 *5 (-1175)) (-4 *6 (-1049)) + (-5 *2 (-1237 *5 (-952 *6))) (-5 *1 (-947 *5 *6)) (-5 *3 (-952 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-947 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-791)) - (-4 *5 (-848)) (-5 *2 (-1169 *3)))) + (-12 (-4 *1 (-949 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *5 (-850)) (-5 *2 (-1171 *3)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-1047)) (-4 *5 (-791)) (-4 *3 (-848)) (-5 *2 (-1169 *1)) - (-4 *1 (-947 *4 *5 *3)))) + (-12 (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *3 (-850)) (-5 *2 (-1171 *1)) + (-4 *1 (-949 *4 *5 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-791)) (-4 *4 (-848)) (-4 *6 (-1047)) - (-4 *7 (-947 *6 *5 *4)) (-5 *2 (-407 (-1169 *3))) - (-5 *1 (-948 *5 *4 *6 *7 *3)) + (-12 (-4 *5 (-793)) (-4 *4 (-850)) (-4 *6 (-1049)) + (-4 *7 (-949 *6 *5 *4)) (-5 *2 (-409 (-1171 *3))) + (-5 *1 (-950 *5 *4 *6 *7 *3)) (-4 *3 - (-13 (-363) - (-10 -8 (-15 -2390 ($ *7)) (-15 -4120 (*7 $)) (-15 -4131 (*7 $))))))) + (-13 (-365) + (-10 -8 (-15 -2479 ($ *7)) (-15 -4157 (*7 $)) (-15 -4167 (*7 $))))))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1169 *3)) + (-12 (-5 *2 (-1171 *3)) (-4 *3 - (-13 (-363) - (-10 -8 (-15 -2390 ($ *7)) (-15 -4120 (*7 $)) (-15 -4131 (*7 $))))) - (-4 *7 (-947 *6 *5 *4)) (-4 *5 (-791)) (-4 *4 (-848)) - (-4 *6 (-1047)) (-5 *1 (-948 *5 *4 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1173)) (-4 *5 (-556)) - (-5 *2 (-407 (-1169 (-407 (-950 *5))))) (-5 *1 (-1041 *5)) - (-5 *3 (-407 (-950 *5)))))) -(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-689 (-1218)))))) -(((*1 *2 *1) (-12 (-4 *1 (-846)) (-5 *2 (-564)))) - ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-903 *3)) (-4 *3 (-1097)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1065 *4 *3)) (-4 *4 (-13 (-846) (-363))) - (-4 *3 (-1238 *4)) (-5 *2 (-564)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-556) (-1036 *2) (-637 *2) (-452))) - (-5 *2 (-564)) (-5 *1 (-1113 *4 *3)) - (-4 *3 (-13 (-27) (-1197) (-430 *4))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1173)) (-5 *5 (-841 *3)) - (-4 *3 (-13 (-27) (-1197) (-430 *6))) - (-4 *6 (-13 (-556) (-1036 *2) (-637 *2) (-452))) (-5 *2 (-564)) - (-5 *1 (-1113 *6 *3)))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-1173)) (-5 *5 (-1155)) - (-4 *6 (-13 (-556) (-1036 *2) (-637 *2) (-452))) (-5 *2 (-564)) - (-5 *1 (-1113 *6 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *6))))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-407 (-950 *4))) (-4 *4 (-452)) (-5 *2 (-564)) - (-5 *1 (-1114 *4)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1173)) (-5 *5 (-841 (-407 (-950 *6)))) - (-5 *3 (-407 (-950 *6))) (-4 *6 (-452)) (-5 *2 (-564)) - (-5 *1 (-1114 *6)))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-407 (-950 *6))) (-5 *4 (-1173)) - (-5 *5 (-1155)) (-4 *6 (-452)) (-5 *2 (-564)) (-5 *1 (-1114 *6)))) - ((*1 *2 *3) - (|partial| -12 (-5 *2 (-564)) (-5 *1 (-1194 *3)) (-4 *3 (-1047))))) + (-13 (-365) + (-10 -8 (-15 -2479 ($ *7)) (-15 -4157 (*7 $)) (-15 -4167 (*7 $))))) + (-4 *7 (-949 *6 *5 *4)) (-4 *5 (-793)) (-4 *4 (-850)) + (-4 *6 (-1049)) (-5 *1 (-950 *5 *4 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1175)) (-4 *5 (-558)) + (-5 *2 (-409 (-1171 (-409 (-952 *5))))) (-5 *1 (-1043 *5)) + (-5 *3 (-409 (-952 *5)))))) +(((*1 *2 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1240 *5)) + (-4 *5 (-13 (-365) (-147) (-1038 (-566)))) + (-5 *2 + (-2 (|:| |a| *6) (|:| |b| (-409 *6)) (|:| |c| (-409 *6)) + (|:| -1445 *6))) + (-5 *1 (-1015 *5 *6)) (-5 *3 (-409 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) (((*1 *2 *3) - (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-564)) - (-5 *1 (-449 *4 *5 *6 *3)) (-4 *3 (-947 *4 *5 *6))))) -(((*1 *1 *1) (-5 *1 (-225))) + (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1240 (-566)))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1070 *4 *5 *6 *3)) (-4 *4 (-454)) (-4 *5 (-793)) + (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1264 *6)) (-5 *4 (-1264 (-566))) (-5 *5 (-566)) + (-4 *6 (-1099)) (-5 *2 (-1 *6)) (-5 *1 (-1017 *6))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) + (-5 *2 + (-2 (|:| -2153 *4) (|:| -1452 *4) (|:| |totalpts| (-566)) + (|:| |success| (-112)))) + (-5 *1 (-789)) (-5 *5 (-566))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-566))) (-4 *3 (-1049)) (-5 *1 (-596 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-566))) (-4 *1 (-1224 *3)) (-4 *3 (-1049)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-566))) (-4 *1 (-1255 *3)) (-4 *3 (-1049))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-612 *4)) (-4 *4 (-1099)) (-4 *2 (-1099)) + (-5 *1 (-611 *2 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-921)) (-5 *1 (-786))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-689 *1)) (-5 *4 (-1264 *1)) (-4 *1 (-639 *5)) + (-4 *5 (-1049)) + (-5 *2 (-2 (|:| -4196 (-689 *5)) (|:| |vec| (-1264 *5)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-689 *1)) (-4 *1 (-639 *4)) (-4 *4 (-1049)) + (-5 *2 (-689 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 (-144))) (-5 *1 (-141)))) + ((*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-141))))) +(((*1 *1 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1214)))) ((*1 *1 *1) - (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-642 (-1173))) - (-14 *3 (-642 (-1173))) (-4 *4 (-387)))) - ((*1 *1 *1) (-5 *1 (-379))) ((*1 *1) (-5 *1 (-379)))) -(((*1 *2 *3) - (-12 (-5 *3 (-950 *4)) (-4 *4 (-13 (-307) (-147))) - (-4 *2 (-947 *4 *6 *5)) (-5 *1 (-922 *4 *5 *6 *2)) - (-4 *5 (-13 (-848) (-612 (-1173)))) (-4 *6 (-791))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-1047)) (-4 *2 (-363)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-363)) (-5 *1 (-657 *4 *2)) - (-4 *2 (-654 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-769)) (-5 *1 (-1161 *3 *4)) (-14 *3 (-919)) - (-4 *4 (-1047))))) -(((*1 *2 *3) (-12 (-5 *3 (-769)) (-5 *2 (-1267)) (-5 *1 (-379)))) - ((*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-379))))) -(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-872))))) + (-12 (|has| *1 (-6 -4418)) (-4 *1 (-375 *2)) (-4 *2 (-1214)))) + ((*1 *1 *1) + (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-1099)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-612 *1))) (-4 *1 (-303))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-396)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1194))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-294 (-831 *3))) - (-4 *5 (-13 (-452) (-1036 (-564)) (-637 (-564)))) - (-5 *2 (-831 *3)) (-5 *1 (-634 *5 *3)) - (-4 *3 (-13 (-27) (-1197) (-430 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-294 (-831 (-950 *5)))) (-4 *5 (-452)) - (-5 *2 (-831 (-407 (-950 *5)))) (-5 *1 (-635 *5)) - (-5 *3 (-407 (-950 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-294 (-407 (-950 *5)))) (-5 *3 (-407 (-950 *5))) - (-4 *5 (-452)) (-5 *2 (-831 *3)) (-5 *1 (-635 *5))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) - (-4 *3 (-1062 *5 *6 *7)) - (-5 *2 (-642 (-2 (|:| |val| (-642 *3)) (|:| -2138 *4)))) - (-5 *1 (-1105 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1036 (-564))) (-4 *1 (-302)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1097))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-595 *3)) (-4 *3 (-1047)))) - ((*1 *2 *1) - (-12 (-4 *1 (-971 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-790)) - (-4 *5 (-848)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-642 (-610 *1))) (-4 *1 (-302))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-642 *3)) (-4 *3 (-848)) (-5 *1 (-737 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1047))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1205 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-791)) - (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-642 *6))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1 (-112) *7 (-642 *7))) (-4 *1 (-1205 *4 *5 *6 *7)) - (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) - (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1205 *2 *3 *4 *5)) (-4 *2 (-556)) (-4 *3 (-791)) - (-4 *4 (-848)) (-4 *5 (-1062 *2 *3 *4))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-556)) - (-5 *2 (-2 (|:| -4332 *3) (|:| -1992 *3))) (-5 *1 (-1233 *4 *3)) - (-4 *3 (-1238 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-174 (-407 (-564)))) (-5 *1 (-117 *3)) (-14 *3 (-564)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *3 (-1153 *2)) (-4 *2 (-307)) (-5 *1 (-174 *2)))) - ((*1 *1 *2) (-12 (-5 *2 (-407 *3)) (-4 *3 (-307)) (-5 *1 (-174 *3)))) - ((*1 *2 *3) - (-12 (-5 *2 (-174 (-564))) (-5 *1 (-763 *3)) (-4 *3 (-404)))) - ((*1 *2 *1) - (-12 (-5 *2 (-174 (-407 (-564)))) (-5 *1 (-869 *3)) (-14 *3 (-564)))) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1214)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-879 *2)) (-4 *2 (-1214)))) ((*1 *2 *1) - (-12 (-14 *3 (-564)) (-5 *2 (-174 (-407 (-564)))) - (-5 *1 (-870 *3 *4)) (-4 *4 (-867 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1 (-941 (-225)) (-225) (-225))) - (-5 *3 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-255))))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) - (-12 (-5 *6 (-642 (-112))) (-5 *7 (-687 (-225))) - (-5 *8 (-687 (-564))) (-5 *3 (-564)) (-5 *4 (-225)) (-5 *5 (-112)) - (-5 *2 (-1033)) (-5 *1 (-752))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-769)) (-4 *1 (-231 *4)) - (-4 *4 (-1047)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1047)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-769)))) - ((*1 *1 *1) (-4 *1 (-233))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-4 *1 (-266 *3)) (-4 *3 (-848)))) - ((*1 *1 *1) (-12 (-4 *1 (-266 *2)) (-4 *2 (-848)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) - (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-769)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4)) - (-4 *4 (-1238 *3)))) - ((*1 *1 *1) - (-12 (-4 *2 (-13 (-363) (-147))) (-5 *1 (-399 *2 *3)) - (-4 *3 (-1238 *2)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-474 *3 *4 *5)) - (-4 *3 (-1047)) (-14 *5 *3))) - ((*1 *2 *1 *3) - (-12 (-4 *2 (-363)) (-4 *2 (-898 *3)) (-5 *1 (-585 *2)) - (-5 *3 (-1173)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-585 *2)) (-4 *2 (-363)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-860)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-642 *4)) (-5 *3 (-642 (-769))) (-4 *1 (-898 *4)) - (-4 *4 (-1097)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-769)) (-4 *1 (-898 *2)) (-4 *2 (-1097)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-642 *3)) (-4 *1 (-898 *3)) (-4 *3 (-1097)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-898 *2)) (-4 *2 (-1097)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-1164 *3 *4 *5)) - (-4 *3 (-1047)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-1170 *3 *4 *5)) - (-4 *3 (-1047)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-1171 *3 *4 *5)) - (-4 *3 (-1047)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-1226 *3 *4 *5)) - (-4 *3 (-1047)) (-14 *5 *3))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1238 *3)) (-4 *3 (-1047)))) + (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-644 (-943 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-644 (-943 *3))) (-4 *3 (-1049)) (-4 *1 (-1133 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-1247 *3 *4 *5)) - (-4 *3 (-1047)) (-14 *5 *3))) + (-12 (-5 *2 (-644 (-644 *3))) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-1254 *3 *4 *5)) - (-4 *3 (-1047)) (-14 *5 *3)))) -(((*1 *2 *1) - (-12 (-5 *2 (-642 (-642 (-769)))) (-5 *1 (-902 *3)) (-4 *3 (-1097))))) -(((*1 *2 *3) - (-12 (-5 *3 (-769)) (-5 *2 (-687 (-950 *4))) (-5 *1 (-1026 *4)) - (-4 *4 (-1047))))) -(((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-564)) (-4 *3 (-172)) (-4 *5 (-373 *3)) - (-4 *6 (-373 *3)) (-5 *1 (-686 *3 *5 *6 *2)) - (-4 *2 (-685 *3 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-860))))) + (-12 (-5 *2 (-644 (-943 *3))) (-4 *1 (-1133 *3)) (-4 *3 (-1049))))) +(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-169 (-225)))) (-5 *2 (-1035)) + (-5 *1 (-756))))) (((*1 *2 *3) - (-12 (-5 *3 (-919)) (-5 *2 (-1169 *4)) (-5 *1 (-587 *4)) - (-4 *4 (-349))))) + (-12 (-5 *3 (-921)) + (-5 *2 + (-3 (-1171 *4) + (-1264 (-644 (-2 (|:| -2153 *4) (|:| -2104 (-1119))))))) + (-5 *1 (-348 *4)) (-4 *4 (-351))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-921)) (-5 *4 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1265))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-689 *2)) (-5 *4 (-771)) + (-4 *2 (-13 (-308) (-10 -8 (-15 -3348 ((-420 $) $))))) + (-4 *5 (-1240 *2)) (-5 *1 (-501 *2 *5 *6)) (-4 *6 (-411 *2 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) + ((*1 *2 *1) + (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)) + (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-722)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-726)) (-5 *2 (-112))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-644 (-644 (-943 (-225))))) (-5 *3 (-644 (-874))) + (-5 *1 (-470))))) +(((*1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1267))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) + (-5 *1 (-755))))) +(((*1 *1 *1) (-4 *1 (-143))) + ((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-158 *3 *2)) (-4 *2 (-432 *3)))) + ((*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-547))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-407 *4)) (-4 *4 (-1238 *3)) - (-4 *3 (-13 (-363) (-147) (-1036 (-564)))) (-5 *1 (-568 *3 *4))))) + (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1199)))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566)))))) +(((*1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-134))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-771)) (-4 *5 (-558)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-969 *5 *3)) (-4 *3 (-1240 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1269)) (-5 *1 (-1137)))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 (-862))) (-5 *2 (-1269)) (-5 *1 (-1137))))) +(((*1 *2 *1) + (-12 (-4 *1 (-327 *2 *3)) (-4 *3 (-792)) (-4 *2 (-1049)) + (-4 *2 (-454)))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 *4)) (-4 *4 (-1240 (-566))) (-5 *2 (-644 (-566))) + (-5 *1 (-488 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-454)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-949 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *2 (-850)) (-4 *3 (-454))))) (((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-564))) (-5 *1 (-1045))))) + (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) + ((*1 *2) (-12 (-5 *2 (-904 (-566))) (-5 *1 (-917))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) + (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 *4)) + (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3))))) (((*1 *2 *3) - (-12 (-5 *2 (-169 (-379))) (-5 *1 (-783 *3)) (-4 *3 (-612 (-379))))) + (-12 (-5 *2 (-169 (-381))) (-5 *1 (-785 *3)) (-4 *3 (-614 (-381))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-919)) (-5 *2 (-169 (-379))) (-5 *1 (-783 *3)) - (-4 *3 (-612 (-379))))) + (-12 (-5 *4 (-921)) (-5 *2 (-169 (-381))) (-5 *1 (-785 *3)) + (-4 *3 (-614 (-381))))) ((*1 *2 *3) - (-12 (-5 *3 (-169 *4)) (-4 *4 (-172)) (-4 *4 (-612 (-379))) - (-5 *2 (-169 (-379))) (-5 *1 (-783 *4)))) + (-12 (-5 *3 (-169 *4)) (-4 *4 (-172)) (-4 *4 (-614 (-381))) + (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-169 *5)) (-5 *4 (-919)) (-4 *5 (-172)) - (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *5)))) + (-12 (-5 *3 (-169 *5)) (-5 *4 (-921)) (-4 *5 (-172)) + (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-950 (-169 *4))) (-4 *4 (-172)) (-4 *4 (-612 (-379))) - (-5 *2 (-169 (-379))) (-5 *1 (-783 *4)))) + (-12 (-5 *3 (-952 (-169 *4))) (-4 *4 (-172)) (-4 *4 (-614 (-381))) + (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-950 (-169 *5))) (-5 *4 (-919)) (-4 *5 (-172)) - (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *5)))) + (-12 (-5 *3 (-952 (-169 *5))) (-5 *4 (-921)) (-4 *5 (-172)) + (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-950 *4)) (-4 *4 (-1047)) (-4 *4 (-612 (-379))) - (-5 *2 (-169 (-379))) (-5 *1 (-783 *4)))) + (-12 (-5 *3 (-952 *4)) (-4 *4 (-1049)) (-4 *4 (-614 (-381))) + (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-950 *5)) (-5 *4 (-919)) (-4 *5 (-1047)) - (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *5)))) + (-12 (-5 *3 (-952 *5)) (-5 *4 (-921)) (-4 *5 (-1049)) + (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-407 (-950 *4))) (-4 *4 (-556)) (-4 *4 (-612 (-379))) - (-5 *2 (-169 (-379))) (-5 *1 (-783 *4)))) + (-12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-558)) (-4 *4 (-614 (-381))) + (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-407 (-950 *5))) (-5 *4 (-919)) (-4 *5 (-556)) - (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *5)))) + (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-921)) (-4 *5 (-558)) + (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-407 (-950 (-169 *4)))) (-4 *4 (-556)) - (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *4)))) + (-12 (-5 *3 (-409 (-952 (-169 *4)))) (-4 *4 (-558)) + (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-407 (-950 (-169 *5)))) (-5 *4 (-919)) (-4 *5 (-556)) - (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *5)))) + (-12 (-5 *3 (-409 (-952 (-169 *5)))) (-5 *4 (-921)) (-4 *5 (-558)) + (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-316 *4)) (-4 *4 (-556)) (-4 *4 (-848)) - (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *4)))) + (-12 (-5 *3 (-317 *4)) (-4 *4 (-558)) (-4 *4 (-850)) + (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-316 *5)) (-5 *4 (-919)) (-4 *5 (-556)) (-4 *5 (-848)) - (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *5)))) + (-12 (-5 *3 (-317 *5)) (-5 *4 (-921)) (-4 *5 (-558)) (-4 *5 (-850)) + (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-316 (-169 *4))) (-4 *4 (-556)) (-4 *4 (-848)) - (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *4)))) + (-12 (-5 *3 (-317 (-169 *4))) (-4 *4 (-558)) (-4 *4 (-850)) + (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-316 (-169 *5))) (-5 *4 (-919)) (-4 *5 (-556)) - (-4 *5 (-848)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) - (-5 *1 (-783 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-642 (-1211))) (-5 *1 (-524))))) + (-12 (-5 *3 (-317 (-169 *5))) (-5 *4 (-921)) (-4 *5 (-558)) + (-4 *5 (-850)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) + (-5 *1 (-785 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1169 *4)) (-4 *4 (-349)) (-5 *2 (-956 (-1117))) - (-5 *1 (-346 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-642 *3)) (-4 *3 (-1212)) (-5 *1 (-1262 *3))))) + (-12 (-4 *4 (-351)) (-4 *5 (-330 *4)) (-4 *6 (-1240 *5)) + (-5 *2 (-644 *3)) (-5 *1 (-777 *4 *5 *6 *3 *7)) (-4 *3 (-1240 *6)) + (-14 *7 (-921))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) + (-5 *2 (-1035)) (-5 *1 (-751))))) +(((*1 *2 *3 *4 *4 *5 *6) + (-12 (-5 *3 (-644 (-644 (-943 (-225))))) (-5 *4 (-874)) + (-5 *5 (-921)) (-5 *6 (-644 (-264))) (-5 *2 (-1265)) + (-5 *1 (-1268)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-644 (-943 (-225))))) (-5 *4 (-644 (-264))) + (-5 *2 (-1265)) (-5 *1 (-1268))))) +(((*1 *1 *1 *1) (-5 *1 (-862)))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-771)) (-4 *1 (-327 *3 *4)) (-4 *3 (-1049)) + (-4 *4 (-792)) (-4 *3 (-172))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-407 (-564))) (-5 *4 (-564)) (-5 *2 (-52)) - (-5 *1 (-1003))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-642 *4)) (-4 *4 (-363)) (-5 *2 (-1262 *4)) - (-5 *1 (-812 *4 *3)) (-4 *3 (-654 *4))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-791)) (-4 *4 (-848)) (-4 *5 (-307)) - (-5 *1 (-914 *3 *4 *5 *2)) (-4 *2 (-947 *5 *3 *4)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1169 *6)) (-4 *6 (-947 *5 *3 *4)) (-4 *3 (-791)) - (-4 *4 (-848)) (-4 *5 (-307)) (-5 *1 (-914 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-642 *2)) (-4 *2 (-947 *6 *4 *5)) - (-5 *1 (-914 *4 *5 *6 *2)) (-4 *4 (-791)) (-4 *5 (-848)) - (-4 *6 (-307))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *5 (-225)) - (-5 *2 (-1033)) (-5 *1 (-750))))) -(((*1 *2 *3) - (-12 (-5 *3 (-642 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) - (-4 *4 (-556))))) -(((*1 *2 *2) (-12 (-5 *2 (-919)) (|has| *1 (-6 -4401)) (-4 *1 (-404)))) - ((*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-919)))) - ((*1 *2 *2) (-12 (-5 *2 (-919)) (-5 *1 (-697)))) - ((*1 *2) (-12 (-5 *2 (-919)) (-5 *1 (-697))))) -(((*1 *1 *1) - (-12 (-4 *2 (-307)) (-4 *3 (-990 *2)) (-4 *4 (-1238 *3)) - (-5 *1 (-413 *2 *3 *4 *5)) (-4 *5 (-13 (-409 *3 *4) (-1036 *3)))))) -(((*1 *1 *1) (-4 *1 (-1057))) - ((*1 *1 *1 *2 *2) - (-12 (-4 *1 (-1240 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-790)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1240 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-790))))) -(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-291))) - ((*1 *1) (-5 *1 (-860))) - ((*1 *1) - (-12 (-4 *2 (-452)) (-4 *3 (-848)) (-4 *4 (-791)) - (-5 *1 (-985 *2 *3 *4 *5)) (-4 *5 (-947 *2 *4 *3)))) - ((*1 *1) (-5 *1 (-1082))) - ((*1 *1) - (-12 (-5 *1 (-1137 *2 *3)) (-4 *2 (-13 (-1097) (-34))) - (-4 *3 (-13 (-1097) (-34))))) - ((*1 *1) (-5 *1 (-1176))) ((*1 *1) (-5 *1 (-1177)))) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-644 *7)) (-5 *3 (-566)) (-4 *7 (-949 *4 *5 *6)) + (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) + (-5 *1 (-451 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-5 *3 (-481 *4 *5)) (-14 *4 (-642 (-1173))) (-4 *5 (-1047)) - (-5 *2 (-950 *5)) (-5 *1 (-942 *4 *5))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-157)) (-5 *2 (-1267)) (-5 *1 (-1264))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-112)) (-5 *5 (-1099 (-769))) (-5 *6 (-769)) - (-5 *2 - (-2 (|:| |contp| (-564)) - (|:| -1569 (-642 (-2 (|:| |irr| *3) (|:| -3660 (-564))))))) - (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1277 (-1173) *3)) (-4 *3 (-1047)) (-5 *1 (-1284 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1277 *3 *4)) (-4 *3 (-848)) (-4 *4 (-1047)) - (-5 *1 (-1286 *3 *4))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1169 *1)) (-4 *1 (-1010))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-407 (-564))) (-5 *1 (-594 *3)) (-4 *3 (-38 *2)) - (-4 *3 (-1047))))) -(((*1 *2 *2) - (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1197)))))) -(((*1 *1 *1 *1) (-5 *1 (-860))) ((*1 *1 *1) (-5 *1 (-860))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1169 (-564))) (-5 *3 (-564)) (-4 *1 (-867 *4))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) - (-12 (-5 *3 (-564)) (-5 *5 (-687 (-225))) (-5 *4 (-225)) - (-5 *2 (-1033)) (-5 *1 (-748))))) -(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820))))) -(((*1 *1 *1) (-5 *1 (-1060)))) -(((*1 *1 *1) - (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-363)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112)) - (-5 *1 (-504 *4 *5 *6 *3)) (-4 *3 (-947 *4 *5 *6))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) - (-4 *3 (-367 *4)))) - ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) + (|partial| -12 (-4 *2 (-1099)) (-5 *1 (-1191 *3 *2)) (-4 *3 (-1099))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1264 *4)) (-4 *4 (-351)) (-5 *2 (-1171 *4)) + (-5 *1 (-530 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1157)) + (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-112)) + (-5 *1 (-224 *4 *5)) (-4 *5 (-13 (-1199) (-29 *4)))))) +(((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563))))) (((*1 *2) - (-12 (-4 *3 (-556)) (-5 *2 (-642 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-417 *3))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) - (-4 *3 (-1062 *4 *5 *6)) (-5 *2 (-642 *1)) - (-4 *1 (-1068 *4 *5 *6 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-872))))) -(((*1 *2 *3) - (-12 (-4 *4 (-363)) (-4 *4 (-556)) (-4 *5 (-1238 *4)) - (-5 *2 (-2 (|:| -2120 (-621 *4 *5)) (|:| -1297 (-407 *5)))) - (-5 *1 (-621 *4 *5)) (-5 *3 (-407 *5)))) - ((*1 *2 *1) - (-12 (-5 *2 (-642 (-1161 *3 *4))) (-5 *1 (-1161 *3 *4)) - (-14 *3 (-919)) (-4 *4 (-1047)))) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) + (-4 *5 (-1240 (-409 *4))) (-5 *2 (-689 (-409 *4)))))) +(((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *3 (-850)) + (-5 *2 (-2 (|:| -3371 *1) (|:| -3131 *1))) (-4 *1 (-949 *4 *5 *3)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-452)) (-4 *3 (-1047)) - (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) - (-4 *1 (-1238 *3))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-687 *3)) (-4 *3 (-1047)) (-5 *1 (-1026 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-642 (-687 *3))) (-4 *3 (-1047)) (-5 *1 (-1026 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-687 *3)) (-4 *3 (-1047)) (-5 *1 (-1026 *3)))) + (-12 (-4 *3 (-1049)) (-5 *2 (-2 (|:| -3371 *1) (|:| -3131 *1))) + (-4 *1 (-1240 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-644 *7)) (-4 *7 (-1070 *3 *4 *5 *6)) (-4 *3 (-454)) + (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) + (-5 *1 (-988 *3 *4 *5 *6 *7)))) ((*1 *2 *2) - (-12 (-5 *2 (-642 (-687 *3))) (-4 *3 (-1047)) (-5 *1 (-1026 *3))))) -(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))) -(((*1 *2 *1) (-12 (|has| *1 (-6 -4410)) (-4 *1 (-34)) (-5 *2 (-769)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1100 *3 *4 *5 *6 *7)) (-4 *3 (-1097)) (-4 *4 (-1097)) - (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *7 (-1097)) (-5 *2 (-564)))) - ((*1 *2 *1) - (-12 (-5 *2 (-769)) (-5 *1 (-1285 *3 *4)) (-4 *3 (-1047)) - (-4 *4 (-844))))) + (-12 (-5 *2 (-644 *7)) (-4 *7 (-1070 *3 *4 *5 *6)) (-4 *3 (-454)) + (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) + (-5 *1 (-1106 *3 *4 *5 *6 *7))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| |polnum| (-782 *3)) (|:| |polden| *3) (|:| -3061 (-771)))) + (-5 *1 (-782 *3)) (-4 *3 (-1049)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) + (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3061 (-771)))) + (-4 *1 (-1064 *3 *4 *5))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1 *8 *8)) + (-5 *5 + (-1 (-2 (|:| |ans| *7) (|:| -4361 *7) (|:| |sol?| (-112))) + (-566) *7)) + (-5 *6 (-644 (-409 *8))) (-4 *7 (-365)) (-4 *8 (-1240 *7)) + (-5 *3 (-409 *8)) + (-5 *2 + (-2 + (|:| |answer| + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |a0| *7))) + (-5 *1 (-576 *7 *8))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-943 *3) (-943 *3))) (-5 *1 (-176 *3)) + (-4 *3 (-13 (-365) (-1199) (-1002)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-769)) (-4 *1 (-1238 *3)) (-4 *3 (-1047)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-919)) (-4 *1 (-1240 *3 *4)) (-4 *3 (-1047)) - (-4 *4 (-790)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-407 (-564))) (-4 *1 (-1243 *3)) (-4 *3 (-1047))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-468)) (-5 *4 (-919)) (-5 *2 (-1267)) (-5 *1 (-1263))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-294 (-407 (-950 *5)))) (-5 *4 (-1173)) - (-4 *5 (-13 (-307) (-147))) - (-5 *2 (-1162 (-642 (-316 *5)) (-642 (-294 (-316 *5))))) - (-5 *1 (-1126 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-407 (-950 *5))) (-5 *4 (-1173)) - (-4 *5 (-13 (-307) (-147))) - (-5 *2 (-1162 (-642 (-316 *5)) (-642 (-294 (-316 *5))))) - (-5 *1 (-1126 *5))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1238 *5)) - (-4 *5 (-13 (-27) (-430 *4))) (-4 *4 (-13 (-556) (-1036 (-564)))) - (-4 *7 (-1238 (-407 *6))) (-5 *1 (-552 *4 *5 *6 *7 *2)) - (-4 *2 (-342 *5 *6 *7))))) -(((*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-330))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-769)) (-5 *2 (-1235 *5 *4)) (-5 *1 (-1171 *4 *5 *6)) - (-4 *4 (-1047)) (-14 *5 (-1173)) (-14 *6 *4))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-769)) (-5 *2 (-1235 *5 *4)) (-5 *1 (-1254 *4 *5 *6)) - (-4 *4 (-1047)) (-14 *5 (-1173)) (-14 *6 *4)))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-114)) (-4 *4 (-1047)) (-5 *1 (-712 *4 *2)) - (-4 *2 (-646 *4)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-834 *2)) (-4 *2 (-1047))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-687 *3)) (-4 *3 (-307)) (-5 *1 (-698 *3))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) - (-12 (-5 *3 (-1155)) (-5 *4 (-564)) (-5 *5 (-687 (-225))) - (-5 *6 (-225)) (-5 *2 (-1033)) (-5 *1 (-750))))) -(((*1 *2 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-860))))) -(((*1 *1 *1) - (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-608 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-1097)) - (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-112))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-670 *3)) (-4 *3 (-848)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-675 *3)) (-4 *3 (-848)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-817 *3)) (-4 *3 (-848))))) -(((*1 *2 *1) - (-12 (-5 *2 (-860)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 (-769)) - (-14 *4 (-769)) (-4 *5 (-172))))) + (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-1099)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-682 *3)) (-4 *3 (-1099))))) +(((*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))) + ((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1264 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) + (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4)))))) (((*1 *2 *3) - (-12 (-4 *4 (-556)) (-4 *2 (-13 (-430 *4) (-1000) (-1197))) - (-5 *1 (-598 *4 *2 *3)) - (-4 *3 (-13 (-430 (-169 *4)) (-1000) (-1197)))))) -(((*1 *2 *2 *3 *3) - (|partial| -12 (-5 *3 (-1173)) - (-4 *4 (-13 (-307) (-147) (-1036 (-564)) (-637 (-564)))) - (-5 *1 (-575 *4 *2)) - (-4 *2 (-13 (-1197) (-957) (-1136) (-29 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-769)) (-5 *4 (-564)) (-5 *1 (-445 *2)) (-4 *2 (-1047))))) -(((*1 *2 *1) (-12 (-5 *2 (-642 (-610 *1))) (-4 *1 (-302))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-672 *3)) (-4 *3 (-1212)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-769)) (-4 *1 (-738 *3 *4)) (-4 *3 (-1047)) - (-4 *4 (-848)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-867 *3)) (-5 *2 (-564)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-642 *3)) (-4 *1 (-978 *3)) (-4 *3 (-1047)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-642 *1)) (-5 *3 (-642 *7)) (-4 *1 (-1068 *4 *5 *6 *7)) - (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) - (-4 *7 (-1062 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-642 *7)) (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-452)) - (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-642 *1)) - (-4 *1 (-1068 *4 *5 *6 *7)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-642 *1)) (-4 *1 (-1068 *4 *5 *6 *3)) (-4 *4 (-452)) - (-4 *5 (-791)) (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)))) + (-12 (-5 *2 (-1171 (-566))) (-5 *1 (-191)) (-5 *3 (-566)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-771)) (-5 *1 (-783 *2)) (-4 *2 (-172)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1171 (-566))) (-5 *1 (-942)) (-5 *3 (-566))))) +(((*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-561))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-420 *3)) (-4 *3 (-558)) (-5 *1 (-421 *3))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) + (-5 *1 (-747))))) +(((*1 *2 *2) + (-12 (-5 *2 (-943 *3)) (-4 *3 (-13 (-365) (-1199) (-1002))) + (-5 *1 (-176 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1207 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) + (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-112)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) - (-4 *3 (-1062 *4 *5 *6)) (-5 *2 (-642 *1)) - (-4 *1 (-1068 *4 *5 *6 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1205 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-791)) - (-4 *5 (-848)) (-4 *2 (-1062 *3 *4 *5)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1240 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-790))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-903 *4)) (-4 *4 (-1097)) (-5 *2 (-642 (-769))) - (-5 *1 (-902 *4))))) -(((*1 *2 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) - (-5 *1 (-745))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-307)) (-5 *2 (-112))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-974 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-791)) - (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-556)) - (-5 *2 (-112))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-642 *3)) (-5 *1 (-959 *3)) (-4 *3 (-545))))) + (-12 (-4 *1 (-1207 *4 *5 *6 *3)) (-4 *4 (-558)) (-4 *5 (-793)) + (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112))))) (((*1 *2 *2) - (-12 (-5 *2 (-1262 *4)) (-4 *4 (-417 *3)) (-4 *3 (-307)) - (-4 *3 (-556)) (-5 *1 (-43 *3 *4)))) + (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1199)))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1175)) + (-4 *5 (-13 (-454) (-147) (-1038 (-566)) (-639 (-566)))) + (-5 *2 (-2 (|:| -4069 *3) (|:| |coeff| *3))) (-5 *1 (-559 *5 *3)) + (-4 *3 (-13 (-27) (-1199) (-432 *5)))))) +(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-874))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1175)) + (-4 *4 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) + (-5 *2 (-1 *5 *5)) (-5 *1 (-804 *4 *5)) + (-4 *5 (-13 (-29 *4) (-1199) (-959)))))) +(((*1 *2 *1) (-12 (-5 *2 (-971)) (-5 *1 (-905 *3)) (-4 *3 (-1099))))) +(((*1 *2 *1) (-12 (-5 *2 (-183)) (-5 *1 (-248))))) +(((*1 *2 *3) + (-12 (-4 *4 (-351)) (-5 *2 (-420 (-1171 (-1171 *4)))) + (-5 *1 (-1212 *4)) (-5 *3 (-1171 (-1171 *4)))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-988 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1106 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4417)) (-4 *1 (-604 *4 *3)) (-4 *4 (-1099)) + (-4 *3 (-1214)) (-4 *3 (-1099)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) + ((*1 *2) (-12 (-5 *2 (-904 (-566))) (-5 *1 (-917))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-295 (-843 *3))) (-4 *3 (-13 (-27) (-1199) (-432 *5))) + (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) + (-5 *2 + (-3 (-843 *3) + (-2 (|:| |leftHandLimit| (-3 (-843 *3) "failed")) + (|:| |rightHandLimit| (-3 (-843 *3) "failed"))) + "failed")) + (-5 *1 (-636 *5 *3)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-295 *3)) (-5 *5 (-1157)) + (-4 *3 (-13 (-27) (-1199) (-432 *6))) + (-4 *6 (-13 (-454) (-1038 (-566)) (-639 (-566)))) + (-5 *2 (-843 *3)) (-5 *1 (-636 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-295 (-843 (-952 *5)))) (-4 *5 (-454)) + (-5 *2 + (-3 (-843 (-409 (-952 *5))) + (-2 (|:| |leftHandLimit| (-3 (-843 (-409 (-952 *5))) "failed")) + (|:| |rightHandLimit| (-3 (-843 (-409 (-952 *5))) "failed"))) + "failed")) + (-5 *1 (-637 *5)) (-5 *3 (-409 (-952 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-295 (-409 (-952 *5)))) (-5 *3 (-409 (-952 *5))) + (-4 *5 (-454)) + (-5 *2 + (-3 (-843 *3) + (-2 (|:| |leftHandLimit| (-3 (-843 *3) "failed")) + (|:| |rightHandLimit| (-3 (-843 *3) "failed"))) + "failed")) + (-5 *1 (-637 *5)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-295 (-409 (-952 *6)))) (-5 *5 (-1157)) + (-5 *3 (-409 (-952 *6))) (-4 *6 (-454)) (-5 *2 (-843 *3)) + (-5 *1 (-637 *6))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1249 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-1175)) + (-14 *5 *3) (-5 *1 (-320 *3 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1040)) (-5 *3 (-381))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1038 (-566))) (-4 *1 (-303)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-547)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1099))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1049)) + (-14 *4 (-644 (-1175))))) ((*1 *2 *3) - (-12 (-5 *3 (-919)) (-4 *4 (-363)) (-5 *2 (-1262 *1)) - (-4 *1 (-329 *4)))) - ((*1 *2) (-12 (-4 *3 (-363)) (-5 *2 (-1262 *1)) (-4 *1 (-329 *3)))) - ((*1 *2) - (-12 (-4 *3 (-172)) (-4 *4 (-1238 *3)) (-5 *2 (-1262 *1)) - (-4 *1 (-409 *3 *4)))) - ((*1 *2 *1) - (-12 (-4 *3 (-307)) (-4 *4 (-990 *3)) (-4 *5 (-1238 *4)) - (-5 *2 (-1262 *6)) (-5 *1 (-413 *3 *4 *5 *6)) - (-4 *6 (-13 (-409 *4 *5) (-1036 *4))))) + (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1214)))) ((*1 *2 *1) - (-12 (-4 *3 (-307)) (-4 *4 (-990 *3)) (-4 *5 (-1238 *4)) - (-5 *2 (-1262 *6)) (-5 *1 (-414 *3 *4 *5 *6 *7)) - (-4 *6 (-409 *4 *5)) (-14 *7 *2))) - ((*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1262 *1)) (-4 *1 (-417 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-919)) (-5 *2 (-1262 (-1262 *4))) (-5 *1 (-528 *4)) - (-4 *4 (-349))))) -(((*1 *1 *1) - (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1047) (-848))) - (-14 *3 (-642 (-1173)))))) -(((*1 *1) (-5 *1 (-225))) ((*1 *1) (-5 *1 (-379)))) -(((*1 *1 *1) (-4 *1 (-627))) - ((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-628 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1000) (-1197)))))) + (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1049) (-850))) + (-14 *4 (-644 (-1175))))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-672 *3)) (-4 *3 (-850)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-677 *3)) (-4 *3 (-850)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-850))))) +(((*1 *1 *1 *1) + (|partial| -12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1240 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *2 (-172)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-715 *2 *3 *4 *5 *6)) (-4 *2 (-172)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(((*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-447 *3)) (-4 *3 (-1049))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-342 *4 *5 *6)) (-4 *4 (-1216)) - (-4 *5 (-1238 *4)) (-4 *6 (-1238 (-407 *5))) - (-5 *2 (-2 (|:| |num| (-687 *5)) (|:| |den| *5)))))) -(((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1038))))) + (-12 + (-5 *3 + (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) + (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 (-1155 (-225))) (-5 *1 (-192)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-317 (-225))) (-5 *4 (-644 (-1175))) + (-5 *5 (-1093 (-843 (-225)))) (-5 *2 (-1155 (-225))) (-5 *1 (-301)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1264 (-317 (-225)))) (-5 *4 (-644 (-1175))) + (-5 *5 (-1093 (-843 (-225)))) (-5 *2 (-1155 (-225))) (-5 *1 (-301))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-1134))) (-5 *1 (-1089))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756))))) -(((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-769)) (-5 *4 (-919)) (-5 *2 (-1267)) (-5 *1 (-1263)))) - ((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-769)) (-5 *4 (-919)) (-5 *2 (-1267)) (-5 *1 (-1264))))) -(((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) - ((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) - ((*1 *1 *1) (-4 *1 (-1136)))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1169 *6)) (-5 *3 (-564)) (-4 *6 (-307)) (-4 *4 (-791)) - (-4 *5 (-848)) (-5 *1 (-740 *4 *5 *6 *7)) (-4 *7 (-947 *6 *4 *5))))) + (-12 (-5 *3 (-409 (-566))) (-5 *4 (-566)) (-5 *2 (-52)) + (-5 *1 (-1005))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1049)) (-4 *4 (-1240 *3)) (-5 *1 (-164 *3 *4 *2)) + (-4 *2 (-1240 *4)))) + ((*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1214))))) +(((*1 *2 *3) + (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-771)) + (-5 *1 (-451 *4 *5 *6 *3)) (-4 *3 (-949 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1269)) (-5 *1 (-381)))) + ((*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-381))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) + (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 *4)) + (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1262 (-687 *4))) (-4 *4 (-172)) - (-5 *2 (-1262 (-687 (-950 *4)))) (-5 *1 (-189 *4))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1238 *3)) (-5 *1 (-399 *3 *2)) - (-4 *3 (-13 (-363) (-147)))))) -(((*1 *1) (-4 *1 (-965)))) + (-12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-308)) (-5 *2 (-420 *3)) + (-5 *1 (-742 *4 *5 *6 *3)) (-4 *3 (-949 *6 *4 *5))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-1157)) (-5 *4 (-1119)) (-5 *2 (-112)) (-5 *1 (-821))))) (((*1 *1 *2) - (-12 (-5 *2 (-642 *3)) (-4 *3 (-1212)) (-5 *1 (-1144 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-642 (-1173))) (-5 *1 (-1177))))) -(((*1 *1 *1) - (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-822))))) + (-12 (-5 *2 (-644 (-566))) (-5 *1 (-1004 *3)) (-14 *3 (-566))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-612 *1))) (-4 *1 (-303))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-1175)) + (-4 *4 (-13 (-454) (-147) (-1038 (-566)) (-639 (-566)))) + (-5 *1 (-559 *4 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *4)))))) +(((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1175)) (-5 *5 (-1093 (-225))) (-5 *2 (-927)) + (-5 *1 (-925 *3)) (-4 *3 (-614 (-538))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1175)) (-5 *2 (-927)) (-5 *1 (-925 *3)) + (-4 *3 (-614 (-538))))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-927)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1093 (-225))) + (-5 *1 (-927))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-644 (-952 *4))) (-5 *3 (-644 (-1175))) (-4 *4 (-454)) + (-5 *1 (-918 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-862))))) +(((*1 *1 *1) (-12 (-5 *1 (-914 *2)) (-4 *2 (-308))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) + (-4 *3 (-369 *4)))) + ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1173)) - (-4 *5 (-13 (-307) (-147) (-1036 (-564)) (-637 (-564)))) - (-5 *2 (-585 *3)) (-5 *1 (-426 *5 *3)) - (-4 *3 (-13 (-1197) (-29 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1173)) (-4 *5 (-13 (-556) (-1036 (-564)) (-147))) - (-5 *2 (-585 (-407 (-950 *5)))) (-5 *1 (-570 *5)) - (-5 *3 (-407 (-950 *5)))))) -(((*1 *2 *3) (-12 (-5 *3 (-536)) (-5 *1 (-535 *2)) (-4 *2 (-1212)))) - ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-536))))) -(((*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1212))))) -(((*1 *1) (-5 *1 (-801)))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1155)) (-5 *3 (-821)) (-5 *1 (-820))))) -(((*1 *1 *1) - (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047))))) -(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-856)))) - ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-963)))) - ((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-987)))) - ((*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1212)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1097) (-34))) (-5 *1 (-1137 *2 *3)) - (-4 *3 (-13 (-1097) (-34)))))) + (-12 (-5 *3 (-644 (-1 (-112) *8))) (-4 *8 (-1064 *5 *6 *7)) + (-4 *5 (-558)) (-4 *6 (-793)) (-4 *7 (-850)) + (-5 *2 (-2 (|:| |goodPols| (-644 *8)) (|:| |badPols| (-644 *8)))) + (-5 *1 (-977 *5 *6 *7 *8)) (-5 *4 (-644 *8))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-824))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-644 *7)) (-5 *5 (-644 (-644 *8))) (-4 *7 (-850)) + (-4 *8 (-308)) (-4 *6 (-793)) (-4 *9 (-949 *8 *6 *7)) + (-5 *2 + (-2 (|:| |unitPart| *9) + (|:| |suPart| + (-644 (-2 (|:| -2325 (-1171 *9)) (|:| -3631 (-566))))))) + (-5 *1 (-742 *6 *7 *8 *9)) (-5 *3 (-1171 *9))))) +(((*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-1157))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-771)) (-4 *5 (-1049)) (-4 *2 (-1240 *5)) + (-5 *1 (-1258 *5 *2 *6 *3)) (-4 *6 (-656 *2)) (-4 *3 (-1255 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-653 (-409 *2))) (-4 *2 (-1240 *4)) (-5 *1 (-810 *4 *2)) + (-4 *4 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-654 *2 (-409 *2))) (-4 *2 (-1240 *4)) + (-5 *1 (-810 *4 *2)) + (-4 *4 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566)))))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-921)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) + ((*1 *1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-264))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 (-644 *7) *7 (-1171 *7))) (-5 *5 (-1 (-420 *7) *7)) + (-4 *7 (-1240 *6)) (-4 *6 (-13 (-365) (-147) (-1038 (-409 (-566))))) + (-5 *2 (-644 (-2 (|:| |frac| (-409 *7)) (|:| -3477 *3)))) + (-5 *1 (-809 *6 *7 *3 *8)) (-4 *3 (-656 *7)) + (-4 *8 (-656 (-409 *7))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-420 *6) *6)) (-4 *6 (-1240 *5)) + (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) + (-5 *2 + (-644 (-2 (|:| |frac| (-409 *6)) (|:| -3477 (-654 *6 (-409 *6)))))) + (-5 *1 (-812 *5 *6)) (-5 *3 (-654 *6 (-409 *6)))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -4343 *3) (|:| |coef1| (-782 *3)))) + (-5 *1 (-782 *3)) (-4 *3 (-558)) (-4 *3 (-1049))))) +(((*1 *2 *3 *3 *3 *4 *5 *4 *6) + (-12 (-5 *3 (-317 (-566))) (-5 *4 (-1 (-225) (-225))) + (-5 *5 (-1093 (-225))) (-5 *6 (-566)) (-5 *2 (-1209 (-926))) + (-5 *1 (-319)))) + ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) + (-12 (-5 *3 (-317 (-566))) (-5 *4 (-1 (-225) (-225))) + (-5 *5 (-1093 (-225))) (-5 *6 (-566)) (-5 *7 (-1157)) + (-5 *2 (-1209 (-926))) (-5 *1 (-319)))) + ((*1 *2 *3 *3 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-317 (-566))) (-5 *4 (-1 (-225) (-225))) + (-5 *5 (-1093 (-225))) (-5 *6 (-225)) (-5 *7 (-566)) + (-5 *2 (-1209 (-926))) (-5 *1 (-319)))) + ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) + (-12 (-5 *3 (-317 (-566))) (-5 *4 (-1 (-225) (-225))) + (-5 *5 (-1093 (-225))) (-5 *6 (-225)) (-5 *7 (-566)) (-5 *8 (-1157)) + (-5 *2 (-1209 (-926))) (-5 *1 (-319))))) +(((*1 *1) (-4 *1 (-967)))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-771)) (-4 *4 (-365)) (-5 *1 (-896 *2 *4)) + (-4 *2 (-1240 *4))))) (((*1 *2 *2) - (-12 (-5 *2 (-941 *3)) (-4 *3 (-13 (-363) (-1197) (-1000))) - (-5 *1 (-176 *3))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-967 *3 *2)) (-4 *2 (-1238 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) - (-4 *4 (-848)) (-4 *2 (-556)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1238 *2)) (-4 *2 (-1047)) (-4 *2 (-556))))) -(((*1 *1 *2) (-12 (-5 *2 (-642 *1)) (-4 *1 (-452)))) - ((*1 *1 *1 *1) (-4 *1 (-452))) + (-12 (-4 *3 (-13 (-558) (-1038 (-566)) (-639 (-566)))) + (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1175)) + (-4 *4 (-13 (-558) (-1038 (-566)) (-639 (-566)))) + (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *4))))) + ((*1 *1 *1) (-5 *1 (-381))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) + (-4 *3 (-1064 *5 *6 *7)) + (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -2192 *4)))) + (-5 *1 (-776 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-689 *3)) (-4 *3 (-308)) (-5 *1 (-700 *3))))) +(((*1 *1) (-5 *1 (-561)))) +(((*1 *2 *3) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) + (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 (-644 (-225))) (-5 *1 (-204))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-409 (-566))) (-5 *1 (-1024 *3)) + (-4 *3 (-13 (-848) (-365) (-1022))))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *2 (-13 (-848) (-365))) (-5 *1 (-1060 *2 *3)) + (-4 *3 (-1240 *2)))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *1 (-1067 *2 *3)) (-4 *2 (-13 (-848) (-365))) + (-4 *3 (-1240 *2))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-771)) (-5 *5 (-644 *3)) (-4 *3 (-308)) (-4 *6 (-850)) + (-4 *7 (-793)) (-5 *2 (-112)) (-5 *1 (-625 *6 *7 *3 *8)) + (-4 *8 (-949 *3 *7 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-300 *4 *5)) (-14 *4 *3) + (-14 *5 *3))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1093 (-843 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) + (-5 *1 (-306)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)) + (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1192))))) +(((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-926))))) +(((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-454)))) + ((*1 *1 *1 *1) (-4 *1 (-454))) ((*1 *2 *3) - (-12 (-5 *3 (-642 *2)) (-5 *1 (-486 *2)) (-4 *2 (-1238 (-564))))) + (-12 (-5 *3 (-644 *2)) (-5 *1 (-488 *2)) (-4 *2 (-1240 (-566))))) ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-564)) (-5 *1 (-694 *2)) (-4 *2 (-1238 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-769))) + (-12 (-5 *3 (-566)) (-5 *1 (-696 *2)) (-4 *2 (-1240 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-771))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-791)) (-4 *4 (-848)) (-4 *5 (-307)) - (-5 *1 (-914 *3 *4 *5 *2)) (-4 *2 (-947 *5 *3 *4)))) + (-12 (-4 *3 (-793)) (-4 *4 (-850)) (-4 *5 (-308)) + (-5 *1 (-916 *3 *4 *5 *2)) (-4 *2 (-949 *5 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-642 *2)) (-4 *2 (-947 *6 *4 *5)) - (-5 *1 (-914 *4 *5 *6 *2)) (-4 *4 (-791)) (-4 *5 (-848)) - (-4 *6 (-307)))) + (-12 (-5 *3 (-644 *2)) (-4 *2 (-949 *6 *4 *5)) + (-5 *1 (-916 *4 *5 *6 *2)) (-4 *4 (-793)) (-4 *5 (-850)) + (-4 *6 (-308)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1169 *6)) (-4 *6 (-947 *5 *3 *4)) (-4 *3 (-791)) - (-4 *4 (-848)) (-4 *5 (-307)) (-5 *1 (-914 *3 *4 *5 *6)))) + (-12 (-5 *2 (-1171 *6)) (-4 *6 (-949 *5 *3 *4)) (-4 *3 (-793)) + (-4 *4 (-850)) (-4 *5 (-308)) (-5 *1 (-916 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-5 *3 (-642 (-1169 *7))) (-4 *4 (-791)) (-4 *5 (-848)) - (-4 *6 (-307)) (-5 *2 (-1169 *7)) (-5 *1 (-914 *4 *5 *6 *7)) - (-4 *7 (-947 *6 *4 *5)))) - ((*1 *1 *1 *1) (-5 *1 (-919))) + (-12 (-5 *3 (-644 (-1171 *7))) (-4 *4 (-793)) (-4 *5 (-850)) + (-4 *6 (-308)) (-5 *2 (-1171 *7)) (-5 *1 (-916 *4 *5 *6 *7)) + (-4 *7 (-949 *6 *4 *5)))) + ((*1 *1 *1 *1) (-5 *1 (-921))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-452)) (-4 *3 (-556)) (-5 *1 (-967 *3 *2)) - (-4 *2 (-1238 *3)))) + (-12 (-4 *3 (-454)) (-4 *3 (-558)) (-5 *1 (-969 *3 *2)) + (-4 *2 (-1240 *3)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) - (-4 *4 (-848)) (-4 *2 (-452))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1068 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-791)) - (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-890 *3)) (-4 *3 (-1097))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-642 - (-2 (|:| -3616 (-769)) - (|:| |eqns| - (-642 - (-2 (|:| |det| *7) (|:| |rows| (-642 (-564))) - (|:| |cols| (-642 (-564)))))) - (|:| |fgb| (-642 *7))))) - (-4 *7 (-947 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) - (-4 *5 (-13 (-848) (-612 (-1173)))) (-4 *6 (-791)) (-5 *2 (-769)) - (-5 *1 (-922 *4 *5 *6 *7))))) + (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) + (-4 *4 (-850)) (-4 *2 (-454))))) +(((*1 *1 *2) + (-12 (-5 *2 (-644 *3)) (-4 *3 (-1214)) (-5 *1 (-1146 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-644 *6)) (-5 *4 (-644 (-1155 *7))) (-4 *6 (-850)) + (-4 *7 (-949 *5 (-533 *6) *6)) (-4 *5 (-1049)) + (-5 *2 (-1 (-1155 *7) *7)) (-5 *1 (-1125 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-4 *3 (-1240 (-409 (-566)))) + (-5 *2 (-2 (|:| |den| (-566)) (|:| |gcdnum| (-566)))) + (-5 *1 (-913 *3 *4)) (-4 *4 (-1240 (-409 *3))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1240 (-409 *2))) (-5 *2 (-566)) (-5 *1 (-913 *4 *3)) + (-4 *3 (-1240 (-409 *4)))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-338 *5 *6 *7 *8)) (-4 *5 (-432 *4)) + (-4 *6 (-1240 *5)) (-4 *7 (-1240 (-409 *6))) + (-4 *8 (-344 *5 *6 *7)) (-4 *4 (-13 (-558) (-1038 (-566)))) + (-5 *2 (-2 (|:| -1802 (-771)) (|:| -3271 *8))) + (-5 *1 (-911 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-338 (-409 (-566)) *4 *5 *6)) + (-4 *4 (-1240 (-409 (-566)))) (-4 *5 (-1240 (-409 *4))) + (-4 *6 (-344 (-409 (-566)) *4 *5)) + (-5 *2 (-2 (|:| -1802 (-771)) (|:| -3271 *6))) + (-5 *1 (-912 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-538)) (-5 *1 (-537 *2)) (-4 *2 (-1214)))) + ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-538))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1214)) (-5 *2 (-644 *1)) (-4 *1 (-1010 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-644 (-1163 *3 *4))) (-5 *1 (-1163 *3 *4)) + (-14 *3 (-921)) (-4 *4 (-1049))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-1091 (-952 (-566)))) (-5 *3 (-952 (-566))) + (-5 *1 (-331)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1091 (-952 (-566)))) (-5 *1 (-331))))) +(((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-218)))) + ((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1214)))) + ((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-676)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) + (-4 *4 (-850))))) +(((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-858)))) + ((*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-965)))) + ((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-989)))) + ((*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1214)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-1099) (-34))) (-5 *1 (-1139 *2 *3)) + (-4 *3 (-13 (-1099) (-34)))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1264 *4)) (-5 *3 (-566)) (-4 *4 (-351)) + (-5 *1 (-530 *4))))) +(((*1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1184))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1101 *3)) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1101 *3)) (-5 *1 (-905 *3)) (-4 *3 (-1099))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) + (-12 (-5 *4 (-689 (-225))) (-5 *5 (-689 (-566))) (-5 *6 (-225)) + (-5 *3 (-566)) (-5 *2 (-1035)) (-5 *1 (-752))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-689 *3)) + (-4 *3 (-13 (-308) (-10 -8 (-15 -3348 ((-420 $) $))))) + (-4 *4 (-1240 *3)) (-5 *1 (-501 *3 *4 *5)) (-4 *5 (-411 *3 *4))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-644 *2)) (-4 *2 (-1214))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-771)) (-5 *1 (-856 *2)) (-4 *2 (-172)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1171 (-566))) (-5 *1 (-942)) (-5 *3 (-566))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-566)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1214)) + (-4 *5 (-375 *4)) (-4 *3 (-375 *4))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-644 (-771))) (-5 *3 (-112)) (-5 *1 (-1163 *4 *5)) + (-14 *4 (-921)) (-4 *5 (-1049))))) (((*1 *1 *2 *3) - (-12 (-5 *1 (-871 *2 *3)) (-4 *2 (-1212)) (-4 *3 (-1212))))) -(((*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-225)) (-5 *1 (-305))))) -(((*1 *2 *3) - (-12 (-5 *3 (-950 (-225))) (-5 *2 (-316 (-379))) (-5 *1 (-305))))) -(((*1 *2 *1 *3 *3 *4) - (-12 (-5 *3 (-1 (-860) (-860) (-860))) (-5 *4 (-564)) (-5 *2 (-860)) - (-5 *1 (-647 *5 *6 *7)) (-4 *5 (-1097)) (-4 *6 (-23)) (-14 *7 *6))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-860)) (-5 *1 (-852 *3 *4 *5)) (-4 *3 (-1047)) - (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-860)))) - ((*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-860)))) - ((*1 *1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-860)))) - ((*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-860)))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-860)) (-5 *1 (-1169 *3)) (-4 *3 (-1047))))) -(((*1 *1 *2) (-12 (-5 *2 (-642 (-144))) (-5 *1 (-141)))) - ((*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-141))))) -(((*1 *2 *3) (-12 (-5 *3 (-941 *2)) (-5 *1 (-980 *2)) (-4 *2 (-1047))))) -(((*1 *2 *1) (-12 (-5 *2 (-642 (-1178))) (-5 *1 (-183))))) -(((*1 *2) (-12 (-5 *2 (-872)) (-5 *1 (-1265)))) - ((*1 *2 *2) (-12 (-5 *2 (-872)) (-5 *1 (-1265))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-642 *2)) (-4 *2 (-1212))))) + (-12 (-5 *1 (-873 *2 *3)) (-4 *2 (-1214)) (-4 *3 (-1214))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-1099)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *3 *4 *5 *6 *7 *6) + (|partial| -12 + (-5 *5 + (-2 (|:| |contp| *3) + (|:| -3445 (-644 (-2 (|:| |irr| *10) (|:| -2677 (-566))))))) + (-5 *6 (-644 *3)) (-5 *7 (-644 *8)) (-4 *8 (-850)) (-4 *3 (-308)) + (-4 *10 (-949 *3 *9 *8)) (-4 *9 (-793)) + (-5 *2 + (-2 (|:| |polfac| (-644 *10)) (|:| |correct| *3) + (|:| |corrfact| (-644 (-1171 *3))))) + (-5 *1 (-625 *8 *9 *3 *10)) (-5 *4 (-644 (-1171 *3)))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-114)) (-4 *4 (-1049)) (-5 *1 (-714 *4 *2)) + (-4 *2 (-648 *4)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-836 *2)) (-4 *2 (-1049))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-941 *4)) (-4 *4 (-1047)) (-5 *1 (-1161 *3 *4)) - (-14 *3 (-919))))) -(((*1 *2 *3 *3 *3 *3) - (-12 (-4 *4 (-452)) (-4 *3 (-791)) (-4 *5 (-848)) (-5 *2 (-112)) - (-5 *1 (-449 *4 *3 *5 *6)) (-4 *6 (-947 *4 *3 *5))))) + (-12 (-5 *2 (-1231 (-566))) (-4 *1 (-651 *3)) (-4 *3 (-1214)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-651 *3)) (-4 *3 (-1214))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-1139 *2 *3)) (-4 *2 (-13 (-1099) (-34))) + (-4 *3 (-13 (-1099) (-34)))))) (((*1 *2 *2) - (-12 (-4 *3 (-1047)) (-4 *4 (-1238 *3)) (-5 *1 (-164 *3 *4 *2)) - (-4 *2 (-1238 *4)))) - ((*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1212))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1136)))) -(((*1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-564)))) - ((*1 *1 *1) (-5 *1 (-1117)))) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002)))))) (((*1 *1 *1) - (-12 (-5 *1 (-1161 *2 *3)) (-14 *2 (-919)) (-4 *3 (-1047))))) -(((*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-890 *3)) (-4 *3 (-1097)))) - ((*1 *2 *1) (-12 (-4 *1 (-1118 *3)) (-4 *3 (-1212)) (-5 *2 (-769))))) -(((*1 *2 *2) - (-12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-556)) - (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-975 *3 *4 *5 *6))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1229 (-564))) (-4 *1 (-649 *3)) (-4 *3 (-1212)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-649 *3)) (-4 *3 (-1212))))) -(((*1 *2 *3 *2) + (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-1049)) (-5 *1 (-446 *3 *2)) (-4 *2 (-1240 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-144))))) +(((*1 *2 *1) + (-12 (-4 *1 (-556 *3)) (-4 *3 (-13 (-406) (-1199))) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-848)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1067 *4 *3)) (-4 *4 (-13 (-848) (-365))) + (-4 *3 (-1240 *4)) (-5 *2 (-112))))) +(((*1 *2 *2) (-12 (-5 *2 (-689 *3)) (-4 *3 (-308)) (-5 *1 (-700 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049))))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-365)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) + (-5 *1 (-506 *4 *5 *6 *3)) (-4 *3 (-949 *4 *5 *6))))) +(((*1 *1 *1) (-12 (-5 *1 (-502 *2)) (-14 *2 (-566)))) + ((*1 *1 *1) (-5 *1 (-1119)))) +(((*1 *2 *3) (-12 - (-5 *2 - (-642 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-769)) (|:| |poli| *3) - (|:| |polj| *3)))) - (-4 *5 (-791)) (-4 *3 (-947 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-848)) - (-5 *1 (-449 *4 *5 *6 *3))))) + (-5 *3 + (-3 + (|:| |noa| + (-2 (|:| |fn| (-317 (-225))) (|:| -3968 (-644 (-225))) + (|:| |lb| (-644 (-843 (-225)))) + (|:| |cf| (-644 (-317 (-225)))) + (|:| |ub| (-644 (-843 (-225)))))) + (|:| |lsa| + (-2 (|:| |lfn| (-644 (-317 (-225)))) + (|:| -3968 (-644 (-225))))))) + (-5 *2 (-644 (-1157))) (-5 *1 (-268))))) +(((*1 *2 *1) + (-12 (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112))))) +(((*1 *1 *2 *3 *3 *3 *4) + (-12 (-4 *4 (-365)) (-4 *3 (-1240 *4)) (-4 *5 (-1240 (-409 *3))) + (-4 *1 (-337 *4 *3 *5 *2)) (-4 *2 (-344 *4 *3 *5)))) + ((*1 *1 *2 *2 *3) + (-12 (-5 *3 (-566)) (-4 *2 (-365)) (-4 *4 (-1240 *2)) + (-4 *5 (-1240 (-409 *4))) (-4 *1 (-337 *2 *4 *5 *6)) + (-4 *6 (-344 *2 *4 *5)))) + ((*1 *1 *2 *2) + (-12 (-4 *2 (-365)) (-4 *3 (-1240 *2)) (-4 *4 (-1240 (-409 *3))) + (-4 *1 (-337 *2 *3 *4 *5)) (-4 *5 (-344 *2 *3 *4)))) + ((*1 *1 *2) + (-12 (-4 *3 (-365)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) + (-4 *1 (-337 *3 *4 *5 *2)) (-4 *2 (-344 *3 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-415 *4 (-409 *4) *5 *6)) (-4 *4 (-1240 *3)) + (-4 *5 (-1240 (-409 *4))) (-4 *6 (-344 *3 *4 *5)) (-4 *3 (-365)) + (-4 *1 (-337 *3 *4 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-689 *5))) (-5 *4 (-1264 *5)) (-4 *5 (-308)) + (-4 *5 (-1049)) (-5 *2 (-689 *5)) (-5 *1 (-1029 *5))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1155 *2)) (-4 *2 (-308)) (-5 *1 (-174 *2))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-890 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1097)) - (-4 *5 (-1212)) (-5 *1 (-888 *4 *5)))) + (-12 (-5 *2 (-892 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1099)) + (-4 *5 (-1214)) (-5 *1 (-890 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-890 *4)) (-5 *3 (-642 (-1 (-112) *5))) (-4 *4 (-1097)) - (-4 *5 (-1212)) (-5 *1 (-888 *4 *5)))) + (-12 (-5 *2 (-892 *4)) (-5 *3 (-644 (-1 (-112) *5))) (-4 *4 (-1099)) + (-4 *5 (-1214)) (-5 *1 (-890 *4 *5)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-890 *5)) (-5 *3 (-642 (-1173))) - (-5 *4 (-1 (-112) (-642 *6))) (-4 *5 (-1097)) (-4 *6 (-1212)) - (-5 *1 (-888 *5 *6)))) + (-12 (-5 *2 (-892 *5)) (-5 *3 (-644 (-1175))) + (-5 *4 (-1 (-112) (-644 *6))) (-4 *5 (-1099)) (-4 *6 (-1214)) + (-5 *1 (-890 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1212)) (-4 *4 (-1097)) - (-5 *1 (-935 *4 *2 *5)) (-4 *2 (-430 *4)))) + (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1214)) (-4 *4 (-1099)) + (-5 *1 (-937 *4 *2 *5)) (-4 *2 (-432 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-642 (-1 (-112) *5))) (-4 *5 (-1212)) (-4 *4 (-1097)) - (-5 *1 (-935 *4 *2 *5)) (-4 *2 (-430 *4)))) + (-12 (-5 *3 (-644 (-1 (-112) *5))) (-4 *5 (-1214)) (-4 *4 (-1099)) + (-5 *1 (-937 *4 *2 *5)) (-4 *2 (-432 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1173)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1212)) - (-5 *2 (-316 (-564))) (-5 *1 (-936 *5)))) + (-12 (-5 *3 (-1175)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1214)) + (-5 *2 (-317 (-566))) (-5 *1 (-938 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1173)) (-5 *4 (-642 (-1 (-112) *5))) (-4 *5 (-1212)) - (-5 *2 (-316 (-564))) (-5 *1 (-936 *5)))) + (-12 (-5 *3 (-1175)) (-5 *4 (-644 (-1 (-112) *5))) (-4 *5 (-1214)) + (-5 *2 (-317 (-566))) (-5 *1 (-938 *5)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-642 (-1173))) (-5 *3 (-1 (-112) (-642 *6))) - (-4 *6 (-13 (-430 *5) (-884 *4) (-612 (-890 *4)))) (-4 *4 (-1097)) - (-4 *5 (-13 (-1047) (-884 *4) (-612 (-890 *4)))) - (-5 *1 (-1073 *4 *5 *6))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-1212))))) -(((*1 *2 *2) - (-12 (-5 *2 (-642 (-950 *3))) (-4 *3 (-452)) (-5 *1 (-360 *3 *4)) - (-14 *4 (-642 (-1173))))) - ((*1 *2 *2) - (-12 (-5 *2 (-642 *6)) (-4 *6 (-947 *3 *4 *5)) (-4 *3 (-452)) - (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-450 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-642 *7)) (-5 *3 (-1155)) (-4 *7 (-947 *4 *5 *6)) - (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) - (-5 *1 (-450 *4 *5 *6 *7)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-642 *7)) (-5 *3 (-1155)) (-4 *7 (-947 *4 *5 *6)) - (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) - (-5 *1 (-450 *4 *5 *6 *7)))) - ((*1 *1 *1) - (-12 (-4 *2 (-363)) (-4 *3 (-791)) (-4 *4 (-848)) - (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-947 *2 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-642 (-778 *3 (-862 *4)))) (-4 *3 (-452)) - (-14 *4 (-642 (-1173))) (-5 *1 (-626 *3 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1044 *4 *5)) (-4 *4 (-13 (-846) (-307) (-147) (-1020))) - (-14 *5 (-642 (-1173))) (-5 *2 (-642 (-642 (-1022 (-407 *4))))) - (-5 *1 (-1288 *4 *5 *6)) (-14 *6 (-642 (-1173))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-642 (-950 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-846) (-307) (-147) (-1020))) - (-5 *2 (-642 (-642 (-1022 (-407 *5))))) (-5 *1 (-1288 *5 *6 *7)) - (-14 *6 (-642 (-1173))) (-14 *7 (-642 (-1173))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-642 (-950 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-846) (-307) (-147) (-1020))) - (-5 *2 (-642 (-642 (-1022 (-407 *5))))) (-5 *1 (-1288 *5 *6 *7)) - (-14 *6 (-642 (-1173))) (-14 *7 (-642 (-1173))))) - ((*1 *2 *3) - (-12 (-5 *3 (-642 (-950 *4))) - (-4 *4 (-13 (-846) (-307) (-147) (-1020))) - (-5 *2 (-642 (-642 (-1022 (-407 *4))))) (-5 *1 (-1288 *4 *5 *6)) - (-14 *5 (-642 (-1173))) (-14 *6 (-642 (-1173)))))) + (-12 (-5 *2 (-644 (-1175))) (-5 *3 (-1 (-112) (-644 *6))) + (-4 *6 (-13 (-432 *5) (-886 *4) (-614 (-892 *4)))) (-4 *4 (-1099)) + (-4 *5 (-13 (-1049) (-886 *4) (-614 (-892 *4)))) + (-5 *1 (-1075 *4 *5 *6))))) +(((*1 *1) (-5 *1 (-144)))) +(((*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-454)))) + ((*1 *1 *1 *1) (-4 *1 (-454)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-914 *3)) (-4 *3 (-308))))) +(((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-822))))) +(((*1 *2 *3) + (-12 (-5 *2 (-2 (|:| -3393 (-566)) (|:| -3445 (-644 *3)))) + (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566)))))) +(((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *3 (-644 (-264))) (-5 *1 (-262))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-502 *2)) (-14 *2 (-566)))) + ((*1 *1 *1 *1) (-5 *1 (-1119)))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-147)) - (-4 *3 (-307)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) - (-5 *1 (-975 *3 *4 *5 *6))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-919)) (-4 *4 (-368)) (-4 *4 (-363)) (-5 *2 (-1169 *1)) - (-4 *1 (-329 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1169 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-370 *3 *2)) (-4 *3 (-172)) (-4 *3 (-363)) - (-4 *2 (-1238 *3)))) + (-12 (-4 *3 (-558)) (-5 *1 (-969 *3 *2)) (-4 *2 (-1240 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) + (-4 *4 (-850)) (-4 *2 (-558)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1240 *2)) (-4 *2 (-1049)) (-4 *2 (-558))))) +(((*1 *2 *3 *4) + (-12 (-4 *2 (-1240 *4)) (-5 *1 (-807 *4 *2 *3 *5)) + (-4 *4 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *3 (-656 *2)) + (-4 *5 (-656 (-409 *2))))) + ((*1 *2 *3 *4) + (-12 (-4 *2 (-1240 *4)) (-5 *1 (-807 *4 *2 *5 *3)) + (-4 *4 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *5 (-656 *2)) + (-4 *3 (-656 (-409 *2)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-112)))) ((*1 *2 *3) - (-12 (-5 *3 (-1262 *4)) (-4 *4 (-349)) (-5 *2 (-1169 *4)) - (-5 *1 (-528 *4))))) + (-12 (-5 *3 (-1171 *4)) (-4 *4 (-351)) (-5 *2 (-112)) + (-5 *1 (-359 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1264 *4)) (-4 *4 (-351)) (-5 *2 (-112)) + (-5 *1 (-530 *4))))) (((*1 *2 *3) - (-12 (-5 *2 (-1153 (-642 (-564)))) (-5 *1 (-881)) (-5 *3 (-564))))) -(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1212))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-564)))) - ((*1 *1 *1 *1) (-5 *1 (-1117)))) -(((*1 *1 *2) - (-12 (-5 *2 (-919)) (-4 *1 (-238 *3 *4)) (-4 *4 (-1047)) - (-4 *4 (-1212)))) - ((*1 *1 *2) - (-12 (-14 *3 (-642 (-1173))) (-4 *4 (-172)) - (-4 *5 (-238 (-2158 *3) (-769))) - (-14 *6 - (-1 (-112) (-2 (|:| -2065 *2) (|:| -2817 *5)) - (-2 (|:| -2065 *2) (|:| -2817 *5)))) - (-5 *1 (-461 *3 *4 *2 *5 *6 *7)) (-4 *2 (-848)) - (-4 *7 (-947 *4 *5 (-862 *3))))) - ((*1 *2 *2) (-12 (-5 *2 (-941 (-225))) (-5 *1 (-1208))))) -(((*1 *1) (-5 *1 (-157))) - ((*1 *2 *1) (-12 (-4 *1 (-1042 *2)) (-4 *2 (-23))))) + (-12 (-4 *4 (-38 (-409 (-566)))) + (-5 *2 (-2 (|:| -3067 (-1155 *4)) (|:| -3079 (-1155 *4)))) + (-5 *1 (-1161 *4)) (-5 *3 (-1155 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1238 *5)) (-4 *5 (-363)) - (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) - (-5 *1 (-574 *5 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-969))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-769)) (-4 *5 (-556)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-967 *5 *3)) (-4 *3 (-1238 *5))))) -(((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-642 (-642 (-941 (-225))))) (-5 *4 (-872)) - (-5 *5 (-919)) (-5 *6 (-642 (-263))) (-5 *2 (-468)) (-5 *1 (-1266)))) - ((*1 *2 *3) - (-12 (-5 *3 (-642 (-642 (-941 (-225))))) (-5 *2 (-468)) - (-5 *1 (-1266)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-642 (-642 (-941 (-225))))) (-5 *4 (-642 (-263))) - (-5 *2 (-468)) (-5 *1 (-1266))))) -(((*1 *1 *2) (-12 (-5 *2 (-642 *1)) (-4 *1 (-452)))) - ((*1 *1 *1 *1) (-4 *1 (-452)))) -(((*1 *1 *2) (-12 (-5 *2 (-919)) (-4 *1 (-368)))) + (-12 (-5 *3 (-689 (-409 (-566)))) (-5 *2 (-644 *4)) (-5 *1 (-779 *4)) + (-4 *4 (-13 (-365) (-848)))))) +(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-317 (-381))) (-5 *1 (-306))))) +(((*1 *2 *1) + (-12 (-5 *2 (-943 *4)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) + (-4 *4 (-1049))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1049)) (-5 *2 (-566)) (-5 *1 (-445 *4 *3 *5)) + (-4 *3 (-1240 *4)) + (-4 *5 (-13 (-406) (-1038 *4) (-365) (-1199) (-285)))))) +(((*1 *1) (-5 *1 (-1265)))) +(((*1 *1 *2) (-12 (-5 *2 (-921)) (-4 *1 (-370)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-919)) (-5 *2 (-1262 *4)) (-5 *1 (-528 *4)) - (-4 *4 (-349)))) + (-12 (-5 *3 (-921)) (-5 *2 (-1264 *4)) (-5 *1 (-530 *4)) + (-4 *4 (-351)))) ((*1 *2 *1) - (-12 (-4 *2 (-848)) (-5 *1 (-711 *2 *3 *4)) (-4 *3 (-1097)) + (-12 (-4 *2 (-850)) (-5 *1 (-713 *2 *3 *4)) (-4 *3 (-1099)) (-14 *4 - (-1 (-112) (-2 (|:| -2065 *2) (|:| -2817 *3)) - (-2 (|:| -2065 *2) (|:| -2817 *3))))))) -(((*1 *1 *2) + (-1 (-112) (-2 (|:| -2104 *2) (|:| -3631 *3)) + (-2 (|:| -2104 *2) (|:| -3631 *3))))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6)) + (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) + (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3)))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-132)) (-5 *3 (-771)) (-5 *2 (-1269))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-502 *2)) (-14 *2 (-566)))) + ((*1 *1 *1 *1) (-5 *1 (-1119)))) +(((*1 *2 *2) + (-12 (-4 *3 (-454)) (-4 *3 (-1038 (-566))) (-4 *3 (-558)) + (-5 *1 (-41 *3 *2)) (-4 *2 (-432 *3)) + (-4 *2 + (-13 (-365) (-303) + (-10 -8 (-15 -4157 ((-1124 *3 (-612 $)) $)) + (-15 -4167 ((-1124 *3 (-612 $)) $)) + (-15 -2479 ($ (-1124 *3 (-612 $)))))))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1209 *3)) (-4 *3 (-974))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-558) (-1038 (-566)))) (-5 *2 (-112)) + (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1199) (-432 (-169 *4)))))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-112)) + (-5 *1 (-1203 *4 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *4)))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1139 *4 *5)) (-4 *4 (-13 (-1099) (-34))) + (-4 *5 (-13 (-1099) (-34))) (-5 *2 (-112)) (-5 *1 (-1140 *4 *5))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1157)) (-5 *4 (-566)) (-5 *5 (-689 (-225))) + (-5 *2 (-1035)) (-5 *1 (-754))))) +(((*1 *2 *3) + (-12 (-4 *4 (-351)) + (-5 *2 (-644 (-2 (|:| |deg| (-771)) (|:| -4383 *3)))) + (-5 *1 (-216 *4 *3)) (-4 *3 (-1240 *4))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-365)) (-4 *3 (-1049)) + (-5 *1 (-1159 *3))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-927))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-205)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-644 (-381))) (-5 *2 (-381)) (-5 *1 (-205))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-566)) (-5 *3 (-921)) (-5 *1 (-699)))) + ((*1 *2 *2 *2 *3 *4) + (-12 (-5 *2 (-689 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) + (-4 *5 (-365)) (-5 *1 (-978 *5))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) + (-5 *1 (-756))))) +(((*1 *2 *3) (-12 (-5 *2 - (-2 (|:| |mval| (-687 *3)) (|:| |invmval| (-687 *3)) - (|:| |genIdeal| (-504 *3 *4 *5 *6)))) - (-4 *3 (-363)) (-4 *4 (-791)) (-4 *5 (-848)) - (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-947 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-642 (-836))) (-5 *1 (-140))))) -(((*1 *2 *3) (-12 (-5 *3 (-819)) (-5 *2 (-52)) (-5 *1 (-829))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-564)))) - ((*1 *1 *1 *1) (-5 *1 (-1117)))) -(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) - (-5 *1 (-745))))) -(((*1 *2) - (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) - (-4 *5 (-1238 (-407 *4))) (-5 *2 (-687 (-407 *4)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1000)))))) -(((*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-62 *3)) (-14 *3 (-1173)))) - ((*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-69 *3)) (-14 *3 (-1173)))) - ((*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-72 *3)) (-14 *3 (-1173)))) - ((*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-1267)))) - ((*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1267)) (-5 *1 (-397)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1155)) (-5 *4 (-860)) (-5 *2 (-1267)) (-5 *1 (-1135)))) - ((*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1267)) (-5 *1 (-1135)))) - ((*1 *2 *3) - (-12 (-5 *3 (-642 (-860))) (-5 *2 (-1267)) (-5 *1 (-1135))))) -(((*1 *1 *2) - (-12 (-5 *2 (-642 (-564))) (-5 *1 (-1002 *3)) (-14 *3 (-564))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-361 (-114))) (-4 *2 (-1047)) (-5 *1 (-712 *2 *4)) - (-4 *4 (-646 *2)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-361 (-114))) (-5 *1 (-834 *2)) (-4 *2 (-1047))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1062 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-791)) - (-4 *2 (-848)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) - (-4 *4 (-848))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-529))))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *4 (-225)) + (-644 (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566)))))) + (-5 *1 (-1020 *3)) (-4 *3 (-1240 (-566))))) + ((*1 *2 *3 *4) + (-12 (-5 *2 - (-2 (|:| |brans| (-642 (-642 (-941 *4)))) - (|:| |xValues| (-1091 *4)) (|:| |yValues| (-1091 *4)))) - (-5 *1 (-153)) (-5 *3 (-642 (-642 (-941 *4))))))) -(((*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-769))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) - (-5 *2 (-642 (-642 (-642 (-769)))))))) -(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) - ((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) - ((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-925))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1169 (-407 (-564)))) (-5 *1 (-940)) (-5 *3 (-564))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1097)) (-4 *3 (-898 *5)) (-5 *2 (-1262 *3)) - (-5 *1 (-690 *5 *3 *6 *4)) (-4 *6 (-373 *3)) - (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4410))))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1173)) - (-4 *5 (-13 (-452) (-147) (-1036 (-564)) (-637 (-564)))) - (-5 *2 (-2 (|:| -3872 *3) (|:| |coeff| *3))) (-5 *1 (-557 *5 *3)) - (-4 *3 (-13 (-27) (-1197) (-430 *5)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1047)) (-5 *2 (-564)) (-5 *1 (-443 *4 *3 *5)) - (-4 *3 (-1238 *4)) - (-4 *5 (-13 (-404) (-1036 *4) (-363) (-1197) (-284)))))) -(((*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363)))) - ((*1 *2 *3) - (-12 (-5 *3 (-919)) (-5 *2 (-1262 *4)) (-5 *1 (-528 *4)) - (-4 *4 (-349))))) -(((*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-391))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-564)) (-4 *5 (-349)) (-5 *2 (-418 (-1169 (-1169 *5)))) - (-5 *1 (-1210 *5)) (-5 *3 (-1169 (-1169 *5)))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) - (-4 *3 (-367 *4)))) - ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *2 *1 *1) + (-644 (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566)))))) + (-5 *1 (-1020 *3)) (-4 *3 (-1240 (-566))) + (-5 *4 (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566))))))) + ((*1 *2 *3 *4) (-12 (-5 *2 - (-2 (|:| -2968 *3) (|:| |gap| (-769)) (|:| -4332 (-780 *3)) - (|:| -1992 (-780 *3)))) - (-5 *1 (-780 *3)) (-4 *3 (-1047)))) - ((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1047)) (-4 *5 (-791)) (-4 *3 (-848)) + (-644 (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566)))))) + (-5 *1 (-1020 *3)) (-4 *3 (-1240 (-566))) (-5 *4 (-409 (-566))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-409 (-566))) + (-5 *2 (-644 (-2 (|:| -4351 *5) (|:| -4361 *5)))) (-5 *1 (-1020 *3)) + (-4 *3 (-1240 (-566))) (-5 *4 (-2 (|:| -4351 *5) (|:| -4361 *5))))) + ((*1 *2 *3) + (-12 (-5 *2 - (-2 (|:| -2968 *1) (|:| |gap| (-769)) (|:| -4332 *1) - (|:| -1992 *1))) - (-4 *1 (-1062 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) + (-644 (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566)))))) + (-5 *1 (-1021 *3)) (-4 *3 (-1240 (-409 (-566)))))) + ((*1 *2 *3 *4) + (-12 + (-5 *2 + (-644 (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566)))))) + (-5 *1 (-1021 *3)) (-4 *3 (-1240 (-409 (-566)))) + (-5 *4 (-2 (|:| -4351 (-409 (-566))) (|:| -4361 (-409 (-566))))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-409 (-566))) + (-5 *2 (-644 (-2 (|:| -4351 *4) (|:| -4361 *4)))) (-5 *1 (-1021 *3)) + (-4 *3 (-1240 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-409 (-566))) + (-5 *2 (-644 (-2 (|:| -4351 *5) (|:| -4361 *5)))) (-5 *1 (-1021 *3)) + (-4 *3 (-1240 *5)) (-5 *4 (-2 (|:| -4351 *5) (|:| -4361 *5)))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1264 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) + (-4 *5 (-1240 *4)) (-5 *2 (-689 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-411 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1240 *3)) + (-5 *2 (-689 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-927))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-644 *5)) (-5 *4 (-921)) (-4 *5 (-850)) + (-5 *2 (-59 (-644 (-672 *5)))) (-5 *1 (-672 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 *7)) (-4 *7 (-850)) + (-4 *8 (-949 *5 *6 *7)) (-4 *5 (-558)) (-4 *6 (-793)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1264 (-409 *8)) "failed")) + (|:| -1419 (-644 (-1264 (-409 *8)))))) + (-5 *1 (-669 *5 *6 *7 *8))))) +(((*1 *2) (-12 (-5 *2 (-644 (-771))) (-5 *1 (-1267)))) + ((*1 *2 *2) (-12 (-5 *2 (-644 (-771))) (-5 *1 (-1267))))) +(((*1 *2 *1) + (-12 (-5 *2 - (-2 (|:| -2968 *1) (|:| |gap| (-769)) (|:| -4332 *1) - (|:| -1992 *1))) - (-4 *1 (-1062 *3 *4 *5))))) + (-644 + (-644 + (-3 (|:| -2598 (-1175)) + (|:| -2201 (-644 (-3 (|:| S (-1175)) (|:| P (-952 (-566)))))))))) + (-5 *1 (-1179))))) +(((*1 *2 *3) + (-12 (-5 *3 (-952 (-566))) (-5 *2 (-644 *1)) (-4 *1 (-1012)))) + ((*1 *2 *3) + (-12 (-5 *3 (-952 (-409 (-566)))) (-5 *2 (-644 *1)) (-4 *1 (-1012)))) + ((*1 *2 *3) (-12 (-5 *3 (-952 *1)) (-4 *1 (-1012)) (-5 *2 (-644 *1)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1171 (-566))) (-5 *2 (-644 *1)) (-4 *1 (-1012)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1171 (-409 (-566)))) (-5 *2 (-644 *1)) (-4 *1 (-1012)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1171 *1)) (-4 *1 (-1012)) (-5 *2 (-644 *1)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-848) (-365))) (-4 *3 (-1240 *4)) (-5 *2 (-644 *1)) + (-4 *1 (-1067 *4 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1264 (-644 (-2 (|:| -2153 *4) (|:| -2104 (-1119)))))) + (-4 *4 (-351)) (-5 *2 (-689 *4)) (-5 *1 (-348 *4))))) (((*1 *1 *2 *2) - (-12 (-5 *2 (-769)) (-4 *3 (-1047)) (-4 *1 (-685 *3 *4 *5)) - (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) + (-12 (-5 *2 (-771)) (-4 *3 (-1049)) (-4 *1 (-687 *3 *4 *5)) + (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-769)) (-4 *1 (-1260 *3)) (-4 *3 (-23)) (-4 *3 (-1212))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3710 *3) (|:| |coef2| (-780 *3)))) - (-5 *1 (-780 *3)) (-4 *3 (-556)) (-4 *3 (-1047))))) + (-12 (-5 *2 (-771)) (-4 *1 (-1262 *3)) (-4 *3 (-23)) (-4 *3 (-1214))))) (((*1 *2 *2) - (-12 (-4 *3 (-1047)) (-5 *1 (-710 *3 *2)) (-4 *2 (-1238 *3))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-642 *6)) (-5 *4 (-642 (-247 *5 *6))) (-4 *6 (-452)) - (-5 *2 (-247 *5 *6)) (-14 *5 (-642 (-1173))) (-5 *1 (-629 *5 *6))))) + (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1199)))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-566)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-771)) (-4 *5 (-172)))) + ((*1 *1 *1) + (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-566)) (-14 *3 (-771)) + (-4 *4 (-172)))) + ((*1 *1 *1) + (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) + (-4 *4 (-375 *2)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1049)) (-4 *1 (-687 *3 *2 *4)) (-4 *2 (-375 *3)) + (-4 *4 (-375 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1141 *2 *3)) (-14 *2 (-771)) (-4 *3 (-1049))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) (((*1 *2 *3) - (|partial| -12 (-4 *2 (-1097)) (-5 *1 (-1189 *3 *2)) (-4 *3 (-1097))))) -(((*1 *1 *2 *3 *1 *3) - (-12 (-5 *2 (-890 *4)) (-4 *4 (-1097)) (-5 *1 (-887 *4 *3)) - (-4 *3 (-1097))))) + (-12 (-5 *3 (-644 (-1175))) (-4 *4 (-13 (-308) (-147))) + (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) + (-5 *2 (-644 (-409 (-952 *4)))) (-5 *1 (-924 *4 *5 *6 *7)) + (-4 *7 (-949 *4 *6 *5))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *4 (-566)) (-5 *6 (-1 (-1269) (-1264 *5) (-1264 *5) (-381))) + (-5 *3 (-1264 (-381))) (-5 *5 (-381)) (-5 *2 (-1269)) + (-5 *1 (-788)))) + ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) + (-12 (-5 *4 (-566)) (-5 *6 (-1 (-1269) (-1264 *5) (-1264 *5) (-381))) + (-5 *3 (-1264 (-381))) (-5 *5 (-381)) (-5 *2 (-1269)) + (-5 *1 (-788))))) +(((*1 *1 *1 *1) (-5 *1 (-162))) + ((*1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-162))))) +(((*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1214))))) +(((*1 *2 *1) + (-12 (-5 *2 (-644 (-644 (-771)))) (-5 *1 (-904 *3)) (-4 *3 (-1099))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-365)) (-5 *1 (-766 *2 *3)) (-4 *2 (-708 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) + (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) + (-5 *2 (-381)) (-5 *1 (-205))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-644 *4)) (-4 *4 (-365)) (-5 *2 (-1264 *4)) + (-5 *1 (-814 *4 *3)) (-4 *3 (-656 *4))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-943 *3) (-943 *3))) (-5 *1 (-176 *3)) + (-4 *3 (-13 (-365) (-1199) (-1002)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) - (-5 *1 (-753))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-452)) (-4 *4 (-556)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| -3782 *4))) (-5 *1 (-967 *4 *3)) - (-4 *3 (-1238 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1267)) (-5 *1 (-391)))) - ((*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-391))))) -(((*1 *1 *2) - (-12 (-5 *2 (-687 *5)) (-4 *5 (-1047)) (-5 *1 (-1052 *3 *4 *5)) - (-14 *3 (-769)) (-14 *4 (-769))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-769)) (-5 *3 (-941 *5)) (-4 *5 (-1047)) - (-5 *1 (-1161 *4 *5)) (-14 *4 (-919)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-642 (-769))) (-5 *3 (-769)) (-5 *1 (-1161 *4 *5)) - (-14 *4 (-919)) (-4 *5 (-1047)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-642 (-769))) (-5 *3 (-941 *5)) (-4 *5 (-1047)) - (-5 *1 (-1161 *4 *5)) (-14 *4 (-919))))) + (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) + (-4 *3 (-1064 *5 *6 *7)) + (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -2192 *4)))) + (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1173)) (-4 *5 (-612 (-890 (-564)))) - (-4 *5 (-884 (-564))) - (-4 *5 (-13 (-1036 (-564)) (-452) (-637 (-564)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) - (-5 *1 (-567 *5 *3)) (-4 *3 (-627)) - (-4 *3 (-13 (-27) (-1197) (-430 *5)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197))))) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1240 *6)) + (-4 *6 (-13 (-27) (-432 *5))) (-4 *5 (-13 (-558) (-1038 (-566)))) + (-4 *8 (-1240 (-409 *7))) (-5 *2 (-587 *3)) + (-5 *1 (-554 *5 *6 *7 *8 *3)) (-4 *3 (-344 *6 *7 *8))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-418 *5)) (-4 *5 (-556)) + (-12 (-5 *3 (-689 (-409 (-566)))) (-5 *2 - (-2 (|:| -2817 (-769)) (|:| -2968 *5) (|:| |radicand| (-642 *5)))) - (-5 *1 (-320 *5)) (-5 *4 (-769)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1000)) (-5 *2 (-564))))) -(((*1 *2) - (-12 (-5 *2 (-407 (-950 *3))) (-5 *1 (-453 *3 *4 *5 *6)) - (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-919)) - (-14 *5 (-642 (-1173))) (-14 *6 (-1262 (-687 *3)))))) + (-644 + (-2 (|:| |outval| *4) (|:| |outmult| (-566)) + (|:| |outvect| (-644 (-689 *4)))))) + (-5 *1 (-779 *4)) (-4 *4 (-13 (-365) (-848)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1240 *5)) (-4 *5 (-365)) + (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) + (-5 *1 (-576 *5 *3))))) (((*1 *1 *2 *2 *2) - (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1197))))) + (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1199))))) ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-919)) (-5 *4 (-379)) (-5 *2 (-1267)) (-5 *1 (-1263)))) + (-12 (-5 *3 (-921)) (-5 *4 (-381)) (-5 *2 (-1269)) (-5 *1 (-1265)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-379)) (-5 *2 (-1267)) (-5 *1 (-1264))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1262 *4)) (-5 *3 (-1117)) (-4 *4 (-349)) - (-5 *1 (-528 *4))))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) - (-5 *1 (-752))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-504 (-407 (-564)) (-240 *5 (-769)) (-862 *4) - (-247 *4 (-407 (-564))))) - (-14 *4 (-642 (-1173))) (-14 *5 (-769)) (-5 *2 (-112)) - (-5 *1 (-505 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-373 *3)) - (-4 *5 (-373 *3)) (-5 *2 (-642 *3)))) - ((*1 *2 *1) - (-12 (|has| *1 (-6 -4410)) (-4 *1 (-489 *3)) (-4 *3 (-1212)) - (-5 *2 (-642 *3))))) -(((*1 *1) (-5 *1 (-330)))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-1169 (-950 *4))) (-5 *1 (-416 *3 *4)) - (-4 *3 (-417 *4)))) - ((*1 *2) - (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-4 *3 (-363)) - (-5 *2 (-1169 (-950 *3))))) - ((*1 *2) - (-12 (-5 *2 (-1169 (-407 (-950 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) - (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-919)) - (-14 *5 (-642 (-1173))) (-14 *6 (-1262 (-687 *3)))))) -(((*1 *2 *3) - (|partial| -12 (-5 *2 (-564)) (-5 *1 (-1194 *3)) (-4 *3 (-1047))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-769)) (-4 *4 (-363)) (-5 *1 (-894 *2 *4)) - (-4 *2 (-1238 *4))))) -(((*1 *2 *3) - (-12 (-4 *1 (-893)) - (-5 *3 - (-2 (|:| |pde| (-642 (-316 (-225)))) - (|:| |constraints| - (-642 - (-2 (|:| |start| (-225)) (|:| |finish| (-225)) - (|:| |grid| (-769)) (|:| |boundaryType| (-564)) - (|:| |dStart| (-687 (-225))) (|:| |dFinish| (-687 (-225)))))) - (|:| |f| (-642 (-642 (-316 (-225))))) (|:| |st| (-1155)) - (|:| |tol| (-225)))) - (-5 *2 (-1033))))) -(((*1 *1 *2) - (-12 (-5 *2 (-642 (-2 (|:| -1914 (-1173)) (|:| -2683 (-437))))) - (-5 *1 (-1177))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-680 *3)) (-4 *3 (-1097))))) + (-12 (-5 *3 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266))))) +(((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-157)))) + ((*1 *2 *1) (-12 (-5 *2 (-157)) (-5 *1 (-874)))) + ((*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049))))) +(((*1 *2 *3) + (-12 (-5 *3 (-771)) (-5 *2 (-1171 *4)) (-5 *1 (-530 *4)) + (-4 *4 (-351))))) +(((*1 *1) (-5 *1 (-331)))) +(((*1 *2 *1 *3 *4 *4 *5) + (-12 (-5 *3 (-943 (-225))) (-5 *4 (-874)) (-5 *5 (-921)) + (-5 *2 (-1269)) (-5 *1 (-470)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-943 (-225))) (-5 *2 (-1269)) (-5 *1 (-470)))) + ((*1 *2 *1 *3 *4 *4 *5) + (-12 (-5 *3 (-644 (-943 (-225)))) (-5 *4 (-874)) (-5 *5 (-921)) + (-5 *2 (-1269)) (-5 *1 (-470))))) +(((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-644 (-612 *2))) (-5 *4 (-1175)) + (-4 *2 (-13 (-27) (-1199) (-432 *5))) + (-4 *5 (-13 (-558) (-1038 (-566)) (-639 (-566)))) + (-5 *1 (-278 *5 *2))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 *2)) (-4 *2 (-432 *4)) (-5 *1 (-158 *4 *2)) + (-4 *4 (-558))))) +(((*1 *2 *2) (-12 (-5 *1 (-588 *2)) (-4 *2 (-547))))) (((*1 *2 *1) - (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-642 (-941 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-642 (-941 *3))) (-4 *3 (-1047)) (-4 *1 (-1131 *3)))) + (-12 (-4 *1 (-366 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1099))))) +(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-699)) (-5 *1 (-306))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-674 *3)) (-4 *3 (-1214)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-642 (-642 *3))) (-4 *1 (-1131 *3)) (-4 *3 (-1047)))) + (-12 (-5 *2 (-771)) (-4 *1 (-740 *3 *4)) (-4 *3 (-1049)) + (-4 *4 (-850)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-869 *3)) (-5 *2 (-566)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-642 (-941 *3))) (-4 *1 (-1131 *3)) (-4 *3 (-1047))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197))))) + (-12 (-5 *2 (-644 *3)) (-4 *1 (-980 *3)) (-4 *3 (-1049)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-644 *1)) (-5 *3 (-644 *7)) (-4 *1 (-1070 *4 *5 *6 *7)) + (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *7 (-1064 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) + (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 *1)) + (-4 *1 (-1070 *4 *5 *6 *7)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-644 *1)) (-4 *1 (-1070 *4 *5 *6 *3)) (-4 *4 (-454)) + (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-644 *1)) + (-4 *1 (-1070 *4 *5 *6 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1207 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-793)) + (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-792))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-566)) (-4 *5 (-351)) (-5 *2 (-420 (-1171 (-1171 *5)))) + (-5 *1 (-1212 *5)) (-5 *3 (-1171 (-1171 *5)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1155 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308))))) +(((*1 *2 *3 *1 *4 *4 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) + (-5 *2 (-644 (-1027 *5 *6 *7 *3))) (-5 *1 (-1027 *5 *6 *7 *3)) + (-4 *3 (-1064 *5 *6 *7)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-644 *6)) (-4 *1 (-1070 *3 *4 *5 *6)) (-4 *3 (-454)) + (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-1070 *3 *4 *5 *2)) (-4 *3 (-454)) (-4 *4 (-793)) + (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5)))) + ((*1 *2 *3 *1 *4 *4 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) + (-5 *2 (-644 (-1145 *5 *6 *7 *3))) (-5 *1 (-1145 *5 *6 *7 *3)) + (-4 *3 (-1064 *5 *6 *7))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-988 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1106 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-316 (-564))) (|:| -2266 (-316 (-379))) - (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1172)))) - (-5 *1 (-1172))))) -(((*1 *2 *3) - (-12 (-5 *3 (-642 (-316 (-225)))) (-5 *2 (-112)) (-5 *1 (-267)))) - ((*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-112)) (-5 *1 (-267)))) - ((*1 *2 *3) - (-12 (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112)) - (-5 *1 (-975 *4 *5 *6 *3)) (-4 *3 (-1062 *4 *5 *6))))) + (-3 (|:| I (-317 (-566))) (|:| -2341 (-317 (-381))) + (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1174)))) + (-5 *1 (-1174))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-508)) (-5 *2 (-691 (-109))) (-5 *1 (-175)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-508)) (-5 *2 (-691 (-109))) (-5 *1 (-1084))))) +(((*1 *1) (-5 *1 (-157))) + ((*1 *2 *1) (-12 (-4 *1 (-1044 *2)) (-4 *2 (-23))))) (((*1 *2 *3) + (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)) (-5 *3 (-566))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-965))) (-5 *1 (-109)))) + ((*1 *2 *1) (-12 (-5 *2 (-45 (-1157) (-774))) (-5 *1 (-114))))) +(((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-914 *3)) (-4 *3 (-308))))) +(((*1 *2 *1 *1) (-12 - (-5 *3 - (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) - (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *2 (-1153 (-225))) (-5 *1 (-192)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-316 (-225))) (-5 *4 (-642 (-1173))) - (-5 *5 (-1091 (-841 (-225)))) (-5 *2 (-1153 (-225))) (-5 *1 (-300)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1262 (-316 (-225)))) (-5 *4 (-642 (-1173))) - (-5 *5 (-1091 (-841 (-225)))) (-5 *2 (-1153 (-225))) (-5 *1 (-300))))) -(((*1 *2 *1) (-12 (-5 *2 (-642 (-963))) (-5 *1 (-109)))) - ((*1 *2 *1) (-12 (-5 *2 (-45 (-1155) (-772))) (-5 *1 (-114))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *6 (-1155)) - (-5 *3 (-225)) (-5 *2 (-1033)) (-5 *1 (-756))))) -(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) - (-12 (-5 *3 (-687 (-225))) (-5 *4 (-564)) (-5 *2 (-1033)) - (-5 *1 (-753))))) -(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))) + (-5 *2 + (-2 (|:| -2162 (-782 *3)) (|:| |coef1| (-782 *3)) + (|:| |coef2| (-782 *3)))) + (-5 *1 (-782 *3)) (-4 *3 (-558)) (-4 *3 (-1049)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-558)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) + (-5 *2 (-2 (|:| -2162 *1) (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-1064 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-848)) + (-12 (-5 *3 (-295 (-952 (-566)))) (-5 *2 - (-2 (|:| |f1| (-642 *4)) (|:| |f2| (-642 (-642 (-642 *4)))) - (|:| |f3| (-642 (-642 *4))) (|:| |f4| (-642 (-642 (-642 *4)))))) - (-5 *1 (-1183 *4)) (-5 *3 (-642 (-642 (-642 *4))))))) -(((*1 *1) (-5 *1 (-141))) ((*1 *1 *1) (-5 *1 (-144))) - ((*1 *1 *1) (-4 *1 (-1141)))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-1047)) (-4 *2 (-363)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-363)) (-5 *1 (-657 *4 *2)) - (-4 *2 (-654 *4))))) -(((*1 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) - (-5 *1 (-1125 *3 *2)) (-4 *3 (-1238 *2))))) + (-2 (|:| |varOrder| (-644 (-1175))) + (|:| |inhom| (-3 (-644 (-1264 (-771))) "failed")) + (|:| |hom| (-644 (-1264 (-771)))))) + (-5 *1 (-236))))) (((*1 *2 *3) - (-12 (-5 *3 (-642 (-2 (|:| -2108 *4) (|:| -3059 (-564))))) - (-4 *4 (-1097)) (-5 *2 (-1 *4)) (-5 *1 (-1015 *4))))) + (-12 (-4 *4 (-850)) + (-5 *2 + (-2 (|:| |f1| (-644 *4)) (|:| |f2| (-644 (-644 (-644 *4)))) + (|:| |f3| (-644 (-644 *4))) (|:| |f4| (-644 (-644 (-644 *4)))))) + (-5 *1 (-1185 *4)) (-5 *3 (-644 (-644 (-644 *4))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1047)) (-4 *4 (-1097)) (-5 *2 (-642 *1)) - (-4 *1 (-382 *3 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-642 (-733 *3 *4))) (-5 *1 (-733 *3 *4)) (-4 *3 (-1047)) - (-4 *4 (-724)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-642 *1)) - (-4 *1 (-947 *3 *4 *5))))) -(((*1 *2) (-12 (-5 *2 (-642 (-919))) (-5 *1 (-1265)))) - ((*1 *2 *2) (-12 (-5 *2 (-642 (-919))) (-5 *1 (-1265))))) -(((*1 *1 *1) - (-12 (-4 *1 (-947 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) - (-4 *4 (-848)) (-4 *2 (-452)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) - (-4 *3 (-1062 *4 *5 *6)) - (-5 *2 (-642 (-2 (|:| |val| *3) (|:| -2138 *1)))) - (-4 *1 (-1068 *4 *5 *6 *3)))) - ((*1 *1 *1) (-4 *1 (-1216))) - ((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-1241 *3 *2)) - (-4 *2 (-13 (-1238 *3) (-556) (-10 -8 (-15 -2105 ($ $ $)))))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-974 *4 *5 *6 *3)) (-4 *4 (-1047)) (-4 *5 (-791)) - (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)) (-4 *4 (-556)) - (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-769)) (-5 *3 (-112)) (-5 *1 (-110)))) - ((*1 *2 *2) (-12 (-5 *2 (-919)) (|has| *1 (-6 -4401)) (-4 *1 (-404)))) - ((*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-919))))) -(((*1 *2 *1) - (-12 (-4 *3 (-363)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))) - (-5 *2 (-1262 *6)) (-5 *1 (-336 *3 *4 *5 *6)) - (-4 *6 (-342 *3 *4 *5))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-919)) (-5 *2 (-468)) (-5 *1 (-1263))))) + (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-558)) + (-4 *6 (-793)) (-4 *7 (-850)) + (-5 *2 (-2 (|:| |goodPols| (-644 *8)) (|:| |badPols| (-644 *8)))) + (-5 *1 (-977 *5 *6 *7 *8)) (-5 *4 (-644 *8))))) +(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-52)) (-5 *1 (-829))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *5 *5)) - (-4 *5 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) - (-5 *2 - (-2 (|:| |solns| (-642 *5)) - (|:| |maps| (-642 (-2 (|:| |arg| *5) (|:| |res| *5)))))) - (-5 *1 (-1125 *3 *5)) (-4 *3 (-1238 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-1281 *3)) (-4 *3 (-363)) (-5 *2 (-112))))) + (-12 (-5 *3 (-644 (-843 (-225)))) (-5 *4 (-225)) (-5 *2 (-644 *4)) + (-5 *1 (-268))))) +(((*1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1267)))) + ((*1 *2 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1267))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1237 *5 *4)) (-4 *4 (-820)) (-14 *5 (-1175)) + (-5 *2 (-644 *4)) (-5 *1 (-1113 *4 *5))))) +(((*1 *2 *3 *4 *2 *5) + (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 (-892 *6))) + (-5 *5 (-1 (-889 *6 *8) *8 (-892 *6) (-889 *6 *8))) (-4 *6 (-1099)) + (-4 *8 (-13 (-1049) (-614 (-892 *6)) (-1038 *7))) + (-5 *2 (-889 *6 *8)) (-4 *7 (-1049)) (-5 *1 (-941 *6 *7 *8))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-558) (-1038 (-566)))) (-5 *2 (-409 (-566))) + (-5 *1 (-435 *4 *3)) (-4 *3 (-432 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-612 *3)) (-4 *3 (-432 *5)) + (-4 *5 (-13 (-558) (-1038 (-566)))) (-5 *2 (-1171 (-409 (-566)))) + (-5 *1 (-435 *5 *3))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-769)) - (-4 *3 (-13 (-307) (-10 -8 (-15 -3282 ((-418 $) $))))) - (-4 *4 (-1238 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4))))) + (-12 + (-5 *2 + (-644 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-771)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *4 (-793)) (-4 *6 (-949 *3 *4 *5)) (-4 *3 (-454)) (-4 *5 (-850)) + (-5 *1 (-451 *3 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-1245 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-1222 *3))))) -(((*1 *2 *3 *3 *1) - (-12 (-5 *3 (-506)) (-5 *2 (-689 (-1101))) (-5 *1 (-291))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-642 (-890 *3))) (-5 *1 (-890 *3)) - (-4 *3 (-1097))))) + (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1049)) + (-14 *4 (-644 (-1175))))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1049) (-850))) + (-14 *4 (-644 (-1175)))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-13 (-363) (-147) (-1036 (-407 (-564))))) - (-4 *3 (-1238 *4)) (-5 *1 (-807 *4 *3 *2 *5)) (-4 *2 (-654 *3)) - (-4 *5 (-654 (-407 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-407 *5)) - (-4 *4 (-13 (-363) (-147) (-1036 (-407 (-564))))) (-4 *5 (-1238 *4)) - (-5 *1 (-807 *4 *5 *2 *6)) (-4 *2 (-654 *5)) (-4 *6 (-654 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-848)) (-5 *1 (-126 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-612 (-890 *3))) (-4 *3 (-884 *3)) (-4 *3 (-452)) - (-5 *1 (-1203 *3 *2)) (-4 *2 (-612 (-890 *3))) (-4 *2 (-884 *3)) - (-4 *2 (-13 (-430 *3) (-1197)))))) -(((*1 *2 *1 *1 *3) - (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1097) (-34))) - (-5 *2 (-112)) (-5 *1 (-1137 *4 *5)) (-4 *4 (-13 (-1097) (-34)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-407 (-950 *5))) (-5 *4 (-1173)) - (-4 *5 (-13 (-307) (-147))) (-5 *2 (-642 (-294 (-316 *5)))) - (-5 *1 (-1126 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-407 (-950 *4))) (-4 *4 (-13 (-307) (-147))) - (-5 *2 (-642 (-294 (-316 *4)))) (-5 *1 (-1126 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-294 (-407 (-950 *5)))) (-5 *4 (-1173)) - (-4 *5 (-13 (-307) (-147))) (-5 *2 (-642 (-294 (-316 *5)))) - (-5 *1 (-1126 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-294 (-407 (-950 *4)))) (-4 *4 (-13 (-307) (-147))) - (-5 *2 (-642 (-294 (-316 *4)))) (-5 *1 (-1126 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-642 (-407 (-950 *5)))) (-5 *4 (-642 (-1173))) - (-4 *5 (-13 (-307) (-147))) (-5 *2 (-642 (-642 (-294 (-316 *5))))) - (-5 *1 (-1126 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-642 (-407 (-950 *4)))) (-4 *4 (-13 (-307) (-147))) - (-5 *2 (-642 (-642 (-294 (-316 *4))))) (-5 *1 (-1126 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-642 (-294 (-407 (-950 *5))))) (-5 *4 (-642 (-1173))) - (-4 *5 (-13 (-307) (-147))) (-5 *2 (-642 (-642 (-294 (-316 *5))))) - (-5 *1 (-1126 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-642 (-294 (-407 (-950 *4))))) - (-4 *4 (-13 (-307) (-147))) (-5 *2 (-642 (-642 (-294 (-316 *4))))) - (-5 *1 (-1126 *4))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1212)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-1155)) (-5 *1 (-987)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1173)) (-5 *3 (-1091 *4)) (-4 *4 (-1212)) - (-5 *1 (-1089 *4))))) + (|partial| -12 (-5 *2 (-644 (-483 *4 *5))) (-5 *3 (-644 (-864 *4))) + (-14 *4 (-644 (-1175))) (-4 *5 (-454)) (-5 *1 (-473 *4 *5 *6)) + (-4 *6 (-454))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-943 *3) (-943 *3))) (-5 *1 (-176 *3)) + (-4 *3 (-13 (-365) (-1199) (-1002)))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1212)) (-4 *2 (-1047)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-860)))) - ((*1 *1 *1) (-5 *1 (-860))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-941 (-225))) (-5 *2 (-225)) (-5 *1 (-1208)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1212)) (-4 *2 (-1047))))) + (-12 (-4 *1 (-1097 *3)) (-4 *3 (-1099)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-547)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-420 *3)) (-4 *3 (-547)) (-4 *3 (-558)))) + ((*1 *2 *1) (-12 (-4 *1 (-547)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-797 *3)) (-4 *3 (-172)) (-4 *3 (-547)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-833 *3)) (-4 *3 (-547)) (-4 *3 (-1099)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-843 *3)) (-4 *3 (-547)) (-4 *3 (-1099)))) + ((*1 *2 *1) + (-12 (-4 *1 (-997 *3)) (-4 *3 (-172)) (-4 *3 (-547)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-1008 *3)) (-4 *3 (-1038 (-409 (-566))))))) +(((*1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172))))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) (((*1 *2 *2) - (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1197)))))) + (-12 (-5 *2 (-112)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566)))))) (((*1 *2 *3) - (-12 (-4 *4 (-363)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) - (-5 *2 (-769)) (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-685 *4 *5 *6)))) + (-12 (-4 *4 (-365)) (-4 *4 (-558)) (-4 *5 (-1240 *4)) + (-5 *2 (-2 (|:| -3438 (-623 *4 *5)) (|:| -3501 (-409 *5)))) + (-5 *1 (-623 *4 *5)) (-5 *3 (-409 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-373 *3)) - (-4 *5 (-373 *3)) (-4 *3 (-556)) (-5 *2 (-769)))) + (-12 (-5 *2 (-644 (-1163 *3 *4))) (-5 *1 (-1163 *3 *4)) + (-14 *3 (-921)) (-4 *4 (-1049)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-454)) (-4 *3 (-1049)) + (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) + (-4 *1 (-1240 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 (-2 (|:| -2325 *4) (|:| -1630 (-566))))) + (-4 *4 (-1240 (-566))) (-5 *2 (-737 (-771))) (-5 *1 (-444 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-373 *4)) - (-4 *6 (-373 *4)) (-5 *2 (-769)) (-5 *1 (-686 *4 *5 *6 *3)) - (-4 *3 (-685 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-556)) - (-5 *2 (-769))))) -(((*1 *1) (-5 *1 (-821)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-407 (-564))) (-4 *5 (-791)) (-4 *6 (-848)) - (-4 *7 (-556)) (-4 *8 (-947 *7 *5 *6)) - (-5 *2 (-2 (|:| -2817 (-769)) (|:| -2968 *9) (|:| |radicand| *9))) - (-5 *1 (-951 *5 *6 *7 *8 *9)) (-5 *4 (-769)) - (-4 *9 - (-13 (-363) - (-10 -8 (-15 -2390 ($ *8)) (-15 -4120 (*8 $)) (-15 -4131 (*8 $)))))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1238 *5)) (-4 *5 (-363)) - (-5 *2 - (-2 (|:| |ir| (-585 (-407 *6))) (|:| |specpart| (-407 *6)) - (|:| |polypart| *6))) - (-5 *1 (-574 *5 *6)) (-5 *3 (-407 *6))))) + (-12 (-5 *3 (-420 *5)) (-4 *5 (-1240 *4)) (-4 *4 (-1049)) + (-5 *2 (-737 (-771))) (-5 *1 (-446 *4 *5))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4418)) (-4 *1 (-1252 *2)) (-4 *2 (-1214))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) + (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-79 LSFUN1)))) + (-5 *2 (-1035)) (-5 *1 (-753))))) +(((*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) + (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-78 FUNCTN)))) + (-5 *2 (-1035)) (-5 *1 (-748))))) +(((*1 *2 *3 *4 *4 *5 *3 *6) + (|partial| -12 (-5 *4 (-612 *3)) (-5 *5 (-644 *3)) (-5 *6 (-1171 *3)) + (-4 *3 (-13 (-432 *7) (-27) (-1199))) + (-4 *7 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-562 *7 *3 *8)) (-4 *8 (-1099)))) + ((*1 *2 *3 *4 *4 *5 *4 *3 *6) + (|partial| -12 (-5 *4 (-612 *3)) (-5 *5 (-644 *3)) + (-5 *6 (-409 (-1171 *3))) (-4 *3 (-13 (-432 *7) (-27) (-1199))) + (-4 *7 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-562 *7 *3 *8)) (-4 *8 (-1099))))) +(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) + ((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) + ((*1 *1 *1) (-4 *1 (-1138)))) +(((*1 *2 *1) (-12 (-5 *2 (-334)) (-5 *1 (-249))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134))))) (((*1 *2) - (-12 (-4 *3 (-556)) (-5 *2 (-642 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-417 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-818)) (-14 *5 (-1173)) (-5 *2 (-642 (-1235 *5 *4))) - (-5 *1 (-1111 *4 *5)) (-5 *3 (-1235 *5 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-642 *4)) (-4 *4 (-846)) (-4 *4 (-363)) (-5 *2 (-769)) - (-5 *1 (-943 *4 *5)) (-4 *5 (-1238 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-820))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-1173))))) + (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6)) + (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) + (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-566)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) + (-5 *2 (-1269)) (-5 *1 (-451 *4 *5 *6 *7)) (-4 *7 (-949 *4 *5 *6))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1214)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1157)) (-5 *1 (-989)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1175)) (-5 *3 (-1093 *4)) (-4 *4 (-1214)) + (-5 *1 (-1091 *4))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1175)) (-5 *5 (-644 *3)) + (-4 *3 (-13 (-27) (-1199) (-432 *6))) + (-4 *6 (-13 (-454) (-147) (-1038 (-566)) (-639 (-566)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-559 *6 *3))))) +(((*1 *2 *1 *2 *3) + (|partial| -12 (-5 *2 (-1157)) (-5 *3 (-566)) (-5 *1 (-1062))))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) +(((*1 *1) (-12 (-4 *1 (-427 *2)) (-4 *2 (-370)) (-4 *2 (-1099))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-566)) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) + (-4 *4 (-375 *3)) (-4 *5 (-375 *3))))) (((*1 *1 *1) - (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) - (-4 *4 (-848)) (-4 *2 (-556))))) -(((*1 *2 *1) - (-12 (-5 *2 (-689 (-871 (-964 *3) (-964 *3)))) (-5 *1 (-964 *3)) - (-4 *3 (-1097))))) -(((*1 *2 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) - (-5 *1 (-749))))) -(((*1 *2 *3) (-12 (-5 *3 (-769)) (-5 *2 (-1267)) (-5 *1 (-379)))) - ((*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-379))))) -(((*1 *2 *1) (-12 (-4 *1 (-1008 *3)) (-4 *3 (-1212)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1161 *3 *4)) (-14 *3 (-919)) - (-4 *4 (-1047))))) -(((*1 *2 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-1190))))) -(((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-31)))) - ((*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-919)))) ((*1 *1) (-4 *1 (-545))) - ((*1 *2 *2) (-12 (-5 *2 (-919)) (-5 *1 (-697)))) - ((*1 *2 *1) (-12 (-5 *2 (-642 *3)) (-5 *1 (-902 *3)) (-4 *3 (-1097))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-642 *5)) (-5 *4 (-919)) (-4 *5 (-848)) - (-5 *2 (-642 (-670 *5))) (-5 *1 (-670 *5))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-545)))) + (-12 (-5 *1 (-1139 *2 *3)) (-4 *2 (-13 (-1099) (-34))) + (-4 *3 (-13 (-1099) (-34)))))) +(((*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558)) (-4 *2 (-547)))) + ((*1 *1 *1) (-4 *1 (-1059)))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-771)) (-4 *6 (-365)) (-5 *4 (-1208 *6)) + (-5 *2 (-1 (-1155 *4) (-1155 *4))) (-5 *1 (-1272 *6)) + (-5 *5 (-1155 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-349)) (-4 *5 (-329 *4)) (-4 *6 (-1238 *5)) - (-5 *2 (-642 *3)) (-5 *1 (-775 *4 *5 *6 *3 *7)) (-4 *3 (-1238 *6)) - (-14 *7 (-919))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1254 *2 *3 *4)) (-4 *2 (-1047)) (-14 *3 (-1173)) - (-14 *4 *2)))) -(((*1 *2) - (-12 (-4 *4 (-1216)) (-4 *5 (-1238 *4)) (-4 *6 (-1238 (-407 *5))) - (-5 *2 (-642 (-642 *4))) (-5 *1 (-341 *3 *4 *5 *6)) - (-4 *3 (-342 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) - (-4 *5 (-1238 (-407 *4))) (-4 *3 (-368)) (-5 *2 (-642 (-642 *3)))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-642 *10)) (-5 *5 (-112)) (-4 *10 (-1068 *6 *7 *8 *9)) - (-4 *6 (-452)) (-4 *7 (-791)) (-4 *8 (-848)) - (-4 *9 (-1062 *6 *7 *8)) - (-5 *2 - (-642 - (-2 (|:| -3359 (-642 *9)) (|:| -2138 *10) (|:| |ineq| (-642 *9))))) - (-5 *1 (-986 *6 *7 *8 *9 *10)) (-5 *3 (-642 *9)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-642 *10)) (-5 *5 (-112)) (-4 *10 (-1068 *6 *7 *8 *9)) - (-4 *6 (-452)) (-4 *7 (-791)) (-4 *8 (-848)) - (-4 *9 (-1062 *6 *7 *8)) - (-5 *2 - (-642 - (-2 (|:| -3359 (-642 *9)) (|:| -2138 *10) (|:| |ineq| (-642 *9))))) - (-5 *1 (-1104 *6 *7 *8 *9 *10)) (-5 *3 (-642 *9))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-912 *3)) (-4 *3 (-307))))) + (-12 (-5 *3 (-566)) (|has| *1 (-6 -4408)) (-4 *1 (-406)) + (-5 *2 (-921))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-409 (-566))) + (-4 *4 (-13 (-558) (-1038 (-566)) (-639 (-566)))) + (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *4)))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) + (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) + (-5 *1 (-988 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) + (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) + (-5 *1 (-1106 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-771)) (-4 *4 (-351)) (-5 *1 (-216 *4 *2)) + (-4 *2 (-1240 *4))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-644 *1)) (-4 *1 (-1064 *4 *5 *6)) (-4 *4 (-1049)) + (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *5 (-850)) (-5 *2 (-112)))) + ((*1 *2 *3 *1 *4) + (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1207 *5 *6 *7 *3)) + (-4 *5 (-558)) (-4 *6 (-793)) (-4 *7 (-850)) + (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *3 (-1155)) (-5 *2 (-642 (-1178))) (-5 *1 (-1133))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) - (-5 *1 (-745))))) -(((*1 *1 *1 *1) (-5 *1 (-860)))) -(((*1 *2 *1) - (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) - (-5 *2 - (-2 (|:| -1565 (-769)) (|:| |curves| (-769)) - (|:| |polygons| (-769)) (|:| |constructs| (-769))))))) -(((*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1097)) (-5 *1 (-998 *3))))) -(((*1 *2 *3 *4 *5 *6 *7 *8 *9) - (|partial| -12 (-5 *4 (-642 *11)) (-5 *5 (-642 (-1169 *9))) - (-5 *6 (-642 *9)) (-5 *7 (-642 *12)) (-5 *8 (-642 (-769))) - (-4 *11 (-848)) (-4 *9 (-307)) (-4 *12 (-947 *9 *10 *11)) - (-4 *10 (-791)) (-5 *2 (-642 (-1169 *12))) - (-5 *1 (-705 *10 *11 *9 *12)) (-5 *3 (-1169 *12))))) -(((*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-536))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) - (-4 *3 (-1062 *5 *6 *7)) - (-5 *2 (-642 (-2 (|:| |val| (-112)) (|:| -2138 *4)))) - (-5 *1 (-1105 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3))))) -(((*1 *1 *1) (-5 *1 (-860)))) + (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-644 (-1175))) (-4 *5 (-454)) + (-5 *2 (-483 *4 *5)) (-5 *1 (-631 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1062 *5 *6 *7)) (-4 *5 (-556)) - (-4 *6 (-791)) (-4 *7 (-848)) - (-5 *2 (-2 (|:| |goodPols| (-642 *8)) (|:| |badPols| (-642 *8)))) - (-5 *1 (-975 *5 *6 *7 *8)) (-5 *4 (-642 *8))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-112)) (-4 *6 (-13 (-452) (-1036 (-564)) (-637 (-564)))) - (-4 *3 (-13 (-27) (-1197) (-430 *6) (-10 -8 (-15 -2390 ($ *7))))) - (-4 *7 (-846)) - (-4 *8 - (-13 (-1240 *3 *7) (-363) (-1197) - (-10 -8 (-15 -2199 ($ $)) (-15 -3703 ($ $))))) + (-12 (-5 *4 (-921)) (-5 *2 (-1171 *3)) (-5 *1 (-1188 *3)) + (-4 *3 (-365))))) +(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) + (-12 (-5 *4 (-689 (-225))) (-5 *5 (-689 (-566))) (-5 *3 (-566)) + (-5 *2 (-1035)) (-5 *1 (-756))))) +(((*1 *1 *1 *1) (-4 *1 (-967)))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 - (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1155)) (|:| |prob| (-1155)))))) - (-5 *1 (-422 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1155)) (-4 *9 (-981 *8)) - (-14 *10 (-1173))))) -(((*1 *2 *2) (-12 (-5 *2 (-642 (-316 (-225)))) (-5 *1 (-267))))) -(((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-1272))))) -(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1097)))) - ((*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1097))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1207 *3)) (-4 *3 (-972))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-642 (-841 (-225)))) (-5 *4 (-225)) (-5 *2 (-642 *4)) - (-5 *1 (-267))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-642 (-1211))) (-5 *3 (-1211)) (-5 *1 (-679))))) -(((*1 *1) - (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-556)) (-4 *2 (-172))))) -(((*1 *2 *3 *4) - (-12 - (-5 *3 - (-642 - (-2 (|:| |eqzro| (-642 *8)) (|:| |neqzro| (-642 *8)) - (|:| |wcond| (-642 (-950 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1262 (-407 (-950 *5)))) - (|:| -2131 (-642 (-1262 (-407 (-950 *5)))))))))) - (-5 *4 (-1155)) (-4 *5 (-13 (-307) (-147))) (-4 *8 (-947 *5 *7 *6)) - (-4 *6 (-13 (-848) (-612 (-1173)))) (-4 *7 (-791)) (-5 *2 (-564)) - (-5 *1 (-922 *5 *6 *7 *8))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1155)) (-4 *1 (-389))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) - (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-642 *4)) - (-5 *1 (-1069 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-769)) (-4 *4 (-1047)) - (-5 *2 (-2 (|:| -4332 *1) (|:| -1992 *1))) (-4 *1 (-1238 *4))))) -(((*1 *1) (-5 *1 (-141)))) + (-2 (|:| -2153 *4) (|:| -1452 *4) (|:| |totalpts| (-566)) + (|:| |success| (-112)))) + (-5 *1 (-789)) (-5 *5 (-566))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1175)) + (-4 *4 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) + (-5 *1 (-804 *4 *2)) (-4 *2 (-13 (-29 *4) (-1199) (-959))))) + ((*1 *1 *1 *1 *1) (-5 *1 (-862))) ((*1 *1 *1 *1) (-5 *1 (-862))) + ((*1 *1 *1) (-5 *1 (-862))) + ((*1 *2 *3) + (-12 (-5 *2 (-1155 *3)) (-5 *1 (-1159 *3)) (-4 *3 (-1049))))) +(((*1 *1 *1) (-5 *1 (-1062)))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-558)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4))))) +(((*1 *2) (-12 (-5 *2 (-644 (-1175))) (-5 *1 (-105))))) +(((*1 *2) + (-12 (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) + (-5 *2 (-1264 *1)) (-4 *1 (-344 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-556)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2790 *4))) - (-5 *1 (-967 *4 *3)) (-4 *3 (-1238 *4))))) + (-12 (-5 *3 (-771)) (-4 *4 (-365)) (-4 *5 (-1240 *4)) (-5 *2 (-1269)) + (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1240 (-409 *5))) (-14 *7 *6)))) +(((*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1269)) (-5 *1 (-1178)))) + ((*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-1178))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4343 *4))) + (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-771)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) + (-4 *4 (-1049))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4410)) (-4 *1 (-235 *3)) - (-4 *3 (-1097)))) - ((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4410)) (-4 *1 (-235 *2)) (-4 *2 (-1097)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-324 *3 *4)) (-4 *3 (-1099)) + (-4 *4 (-131)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-282 *2)) (-4 *2 (-1212)) (-4 *2 (-1097)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1099)) (-5 *1 (-363 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-282 *3)) (-4 *3 (-1212)))) - ((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-608 *3 *2)) (-4 *3 (-1097)) (-4 *2 (-1097)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-564)) (-4 *4 (-1097)) - (-5 *1 (-735 *4)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-564)) (-5 *1 (-735 *2)) (-4 *2 (-1097)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1099)) (-5 *1 (-388 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1137 *3 *4)) (-4 *3 (-13 (-1097) (-34))) - (-4 *4 (-13 (-1097) (-34))) (-5 *1 (-1138 *3 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1000)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1212)) (-4 *2 (-1000)) - (-4 *2 (-1047))))) -(((*1 *1 *1) - (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047))))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1099)) (-5 *1 (-649 *3 *4 *5)) + (-4 *4 (-23)) (-14 *5 *4)))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) - (-4 *3 (-1062 *5 *6 *7)) - (-5 *2 (-642 (-2 (|:| |val| *3) (|:| -2138 *4)))) - (-5 *1 (-1069 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3))))) + (-12 (-4 *5 (-793)) (-4 *4 (-850)) (-4 *6 (-308)) (-5 *2 (-420 *3)) + (-5 *1 (-742 *5 *4 *6 *3)) (-4 *3 (-949 *6 *5 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172))))) +(((*1 *1 *1) (-5 *1 (-225))) + ((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) + ((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) + ((*1 *1 *1) (-4 *1 (-1138))) ((*1 *1 *1 *1) (-4 *1 (-1138)))) +(((*1 *2 *3) + (-12 (-4 *4 (-365)) (-5 *2 (-644 *3)) (-5 *1 (-945 *4 *3)) + (-4 *3 (-1240 *4))))) (((*1 *1 *1) - (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) - (-4 *4 (-848)) (-4 *2 (-452))))) -(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1091 (-225))) (-5 *1 (-924)))) - ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1091 (-225))) (-5 *1 (-925)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1091 (-225))) (-5 *1 (-925)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-379)) (-5 *2 (-1267)) (-5 *1 (-1264)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1267)) (-5 *1 (-1264))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1264))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) - (-5 *1 (-749))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756))))) -(((*1 *2 *2) - (-12 (-4 *3 (-452)) (-4 *3 (-1036 (-564))) (-4 *3 (-556)) - (-5 *1 (-41 *3 *2)) (-4 *2 (-430 *3)) - (-4 *2 - (-13 (-363) (-302) - (-10 -8 (-15 -4120 ((-1122 *3 (-610 $)) $)) - (-15 -4131 ((-1122 *3 (-610 $)) $)) - (-15 -2390 ($ (-1122 *3 (-610 $)))))))))) + (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2105 *3))) - (-5 *1 (-967 *4 *3)) (-4 *3 (-1238 *4))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-769)) (-4 *4 (-349)) (-5 *1 (-216 *4 *2)) - (-4 *2 (-1238 *4)))) - ((*1 *2 *2 *3 *2 *3) - (-12 (-5 *3 (-564)) (-5 *1 (-694 *2)) (-4 *2 (-1238 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-468)))) - ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1263)))) - ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1264))))) -(((*1 *2) - (-12 (-4 *4 (-1216)) (-4 *5 (-1238 *4)) (-4 *6 (-1238 (-407 *5))) - (-5 *2 (-769)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) - (-4 *5 (-1238 (-407 *4))) (-5 *2 (-769))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-452)) (-4 *4 (-556)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3782 *4))) - (-5 *1 (-967 *4 *3)) (-4 *3 (-1238 *4))))) -(((*1 *1) (-5 *1 (-141)))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-430 *4)) - (-4 *6 (-1238 *5)) (-4 *7 (-1238 (-407 *6))) - (-4 *8 (-342 *5 *6 *7)) (-4 *4 (-13 (-556) (-1036 (-564)))) - (-5 *2 (-2 (|:| -2408 (-769)) (|:| -3129 *8))) - (-5 *1 (-909 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-336 (-407 (-564)) *4 *5 *6)) - (-4 *4 (-1238 (-407 (-564)))) (-4 *5 (-1238 (-407 *4))) - (-4 *6 (-342 (-407 (-564)) *4 *5)) - (-5 *2 (-2 (|:| -2408 (-769)) (|:| -3129 *6))) - (-5 *1 (-910 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-327 *3)) (-4 *3 (-1212)))) - ((*1 *2 *1) - (-12 (-5 *2 (-769)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1212)) - (-14 *4 (-564))))) -(((*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-1097))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-1036 (-564)) (-637 (-564)) (-452))) - (-5 *2 (-841 *4)) (-5 *1 (-313 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1197) (-430 *3))) (-14 *5 (-1173)) - (-14 *6 *4))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-1036 (-564)) (-637 (-564)) (-452))) - (-5 *2 (-841 *4)) (-5 *1 (-1248 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1197) (-430 *3))) (-14 *5 (-1173)) - (-14 *6 *4)))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-225) (-225) (-225))) - (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) - (-5 *5 (-1091 (-225))) (-5 *6 (-642 (-263))) (-5 *2 (-1130 (-225))) - (-5 *1 (-695))))) + (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-558)) + (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) + (-5 *1 (-977 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-1171 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-642 (-2 (|:| |den| (-564)) (|:| |gcdnum| (-564))))) - (-4 *4 (-1238 (-407 *2))) (-5 *2 (-564)) (-5 *1 (-911 *4 *5)) - (-4 *5 (-1238 (-407 *4)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-790)) - (-5 *2 (-769)))) - ((*1 *2 *1) - (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-1097)) - (-5 *2 (-769)))) - ((*1 *2 *1) - (-12 (-5 *2 (-769)) (-5 *1 (-733 *3 *4)) (-4 *3 (-1047)) - (-4 *4 (-724))))) -(((*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1155)) (-5 *1 (-708))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-642 (-950 *6))) (-5 *4 (-642 (-1173))) - (-4 *6 (-13 (-556) (-1036 *5))) (-4 *5 (-556)) - (-5 *2 (-642 (-642 (-294 (-407 (-950 *6)))))) (-5 *1 (-1037 *5 *6))))) + (-12 (-5 *3 (-1157)) (-5 *2 (-644 (-1180))) (-5 *1 (-1135))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-903 *3)) (-4 *3 (-1099)) (-5 *2 (-1101 *3)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1099)) (-5 *2 (-1101 (-644 *4))) (-5 *1 (-904 *4)) + (-5 *3 (-644 *4)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1099)) (-5 *2 (-1101 (-1101 *4))) (-5 *1 (-904 *4)) + (-5 *3 (-1101 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *2 (-1101 *3)) (-5 *1 (-904 *3)) (-4 *3 (-1099))))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-558)) (-5 *2 (-958 *3)) (-5 *1 (-1162 *4 *3)) + (-4 *3 (-1240 *4))))) (((*1 *1 *2) - (-12 (-5 *2 (-316 *3)) (-4 *3 (-13 (-1047) (-848))) - (-5 *1 (-223 *3 *4)) (-14 *4 (-642 (-1173)))))) -(((*1 *2 *1) (-12 (-5 *2 (-969)) (-5 *1 (-903 *3)) (-4 *3 (-1097))))) -(((*1 *1 *2) (-12 (-5 *2 (-642 *1)) (-4 *1 (-302)))) - ((*1 *1 *1) (-4 *1 (-302))) ((*1 *1 *1) (-5 *1 (-860)))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) - (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-79 LSFUN1)))) - (-5 *2 (-1033)) (-5 *1 (-751))))) -(((*1 *2 *1) - (-12 (-5 *2 (-407 (-950 *3))) (-5 *1 (-453 *3 *4 *5 *6)) - (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-919)) - (-14 *5 (-642 (-1173))) (-14 *6 (-1262 (-687 *3)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-974 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-791)) - (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-642 *5))))) -(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) - (-5 *1 (-750))))) -(((*1 *2 *1) (-12 (-5 *2 (-1091 (-225))) (-5 *1 (-924)))) - ((*1 *2 *1) (-12 (-5 *2 (-1091 (-225))) (-5 *1 (-925))))) + (-12 (-5 *2 (-409 *4)) (-4 *4 (-1240 *3)) (-4 *3 (-13 (-365) (-147))) + (-5 *1 (-401 *3 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-642 (-564))) (-5 *2 (-902 (-564))) (-5 *1 (-915)))) - ((*1 *2) (-12 (-5 *2 (-902 (-564))) (-5 *1 (-915))))) -(((*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-1169 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-302)) (-4 *2 (-1212)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-642 (-610 *1))) (-5 *3 (-642 *1)) (-4 *1 (-302)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-642 (-294 *1))) (-4 *1 (-302)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-294 *1)) (-4 *1 (-302))))) + (-12 (-5 *3 (-1237 *5 *4)) (-4 *4 (-454)) (-4 *4 (-820)) + (-14 *5 (-1175)) (-5 *2 (-566)) (-5 *1 (-1113 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) +(((*1 *2 *1) (-12 (-4 *1 (-1283 *3)) (-4 *3 (-365)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |pde| (-642 (-316 (-225)))) - (|:| |constraints| - (-642 - (-2 (|:| |start| (-225)) (|:| |finish| (-225)) - (|:| |grid| (-769)) (|:| |boundaryType| (-564)) - (|:| |dStart| (-687 (-225))) (|:| |dFinish| (-687 (-225)))))) - (|:| |f| (-642 (-642 (-316 (-225))))) (|:| |st| (-1155)) - (|:| |tol| (-225)))) - (-5 *2 (-112)) (-5 *1 (-210))))) + (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) + ((*1 *2) (-12 (-5 *2 (-904 (-566))) (-5 *1 (-917))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1171 *3)) (-4 *3 (-370)) (-4 *1 (-330 *3)) + (-4 *3 (-365))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-771)) (-4 *1 (-1281 *3 *4)) (-4 *3 (-850)) + (-4 *4 (-1049)) (-4 *4 (-172)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1281 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049)) + (-4 *3 (-172))))) +(((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-926))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) + (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G)))) (-5 *2 (-1035)) + (-5 *1 (-748))))) (((*1 *2 *2) (-12 (-5 *2 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) - (|:| |xpnt| (-564)))) - (-4 *4 (-13 (-1238 *3) (-556) (-10 -8 (-15 -2105 ($ $ $))))) - (-4 *3 (-556)) (-5 *1 (-1241 *3 *4))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) - (-4 *3 (-367 *4)))) - ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) + (-644 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-771)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *4 (-793)) (-4 *6 (-949 *3 *4 *5)) (-4 *3 (-454)) (-4 *5 (-850)) + (-5 *1 (-451 *3 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) + (-5 *1 (-977 *4 *5 *6 *3)) (-4 *3 (-1064 *4 *5 *6))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1264 *4)) (-4 *4 (-639 (-566))) + (-5 *2 (-1264 (-409 (-566)))) (-5 *1 (-1291 *4))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-644 *4)) (-4 *4 (-365)) (-4 *2 (-1240 *4)) + (-5 *1 (-922 *4 *2))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1279 (-1175) *3)) (-4 *3 (-1049)) (-5 *1 (-1286 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1279 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)) + (-5 *1 (-1288 *3 *4))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1175)) (-5 *3 (-381)) (-5 *1 (-1062))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-556 *2)) (-4 *2 (-13 (-406) (-1199)))))) +(((*1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-129))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1269)) (-5 *1 (-822))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1264 *4)) (-5 *3 (-1119)) (-4 *4 (-351)) + (-5 *1 (-530 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-556) (-1036 (-564)))) (-5 *1 (-188 *3 *2)) - (-4 *2 (-13 (-27) (-1197) (-430 (-169 *3)))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1173)) (-4 *4 (-13 (-556) (-1036 (-564)))) - (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1197) (-430 (-169 *4)))))) + (-12 (-5 *2 (-644 *7)) (-4 *7 (-1070 *3 *4 *5 *6)) (-4 *3 (-454)) + (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) + (-5 *1 (-988 *3 *4 *5 *6 *7)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-452) (-1036 (-564)) (-637 (-564)))) - (-5 *1 (-1201 *3 *2)) (-4 *2 (-13 (-27) (-1197) (-430 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1173)) - (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564)))) - (-5 *1 (-1201 *4 *2)) (-4 *2 (-13 (-27) (-1197) (-430 *4)))))) + (-12 (-5 *2 (-644 *7)) (-4 *7 (-1070 *3 *4 *5 *6)) (-4 *3 (-454)) + (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) + (-5 *1 (-1106 *3 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1264 *5)) (-4 *5 (-639 *4)) (-4 *4 (-558)) + (-5 *2 (-112)) (-5 *1 (-638 *4 *5))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-860)) (-5 *2 (-691 (-129))) (-5 *3 (-129))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1157)) (-4 *1 (-391))))) +(((*1 *2 *3) + (-12 (-5 *3 (-892 *4)) (-4 *4 (-1099)) (-5 *2 (-644 *5)) + (-5 *1 (-890 *4 *5)) (-4 *5 (-1214))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 *2)) (-4 *2 (-1240 *4)) (-5 *1 (-541 *4 *2 *5 *6)) + (-4 *4 (-308)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-771)))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-1139 *3 *2)) (-4 *3 (-13 (-1099) (-34))) + (-4 *2 (-13 (-1099) (-34)))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-2 (|:| |val| (-644 *7)) (|:| -2192 *8))) + (-4 *7 (-1064 *4 *5 *6)) (-4 *8 (-1070 *4 *5 *6 *7)) (-4 *4 (-454)) + (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) + (-5 *1 (-988 *4 *5 *6 *7 *8)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-2 (|:| |val| (-644 *7)) (|:| -2192 *8))) + (-4 *7 (-1064 *4 *5 *6)) (-4 *8 (-1070 *4 *5 *6 *7)) (-4 *4 (-454)) + (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) + (-5 *1 (-1106 *4 *5 *6 *7 *8))))) +(((*1 *2 *3) + (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) + (-5 *1 (-977 *4 *5 *6 *3)) (-4 *3 (-1064 *4 *5 *6))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-644 (-566))) (-5 *1 (-1109)) (-5 *3 (-566))))) +(((*1 *2 *3) + (-12 (-5 *3 (-317 (-225))) (-5 *2 (-409 (-566))) (-5 *1 (-306))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-313)) (-5 *1 (-829))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) + (-12 (-5 *3 (-566)) (-5 *5 (-112)) (-5 *6 (-689 (-225))) + (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-755))))) +(((*1 *2 *3) (-12 (-5 *3 (-821)) (-5 *2 (-52)) (-5 *1 (-831))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-1175)) + (-4 *5 (-13 (-308) (-147))) (-5 *2 (-644 (-317 *5))) + (-5 *1 (-1128 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-409 (-952 *5)))) (-5 *4 (-644 (-1175))) + (-4 *5 (-13 (-308) (-147))) (-5 *2 (-644 (-644 (-317 *5)))) + (-5 *1 (-1128 *5))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-771)) (-5 *1 (-856 *2)) (-4 *2 (-38 (-409 (-566)))) + (-4 *2 (-172))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-921)) (-5 *1 (-1032 *2)) + (-4 *2 (-13 (-1099) (-10 -8 (-15 * ($ $ $)))))))) +(((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-1157)) (-5 *4 (-169 (-225))) (-5 *5 (-566)) + (-5 *2 (-1035)) (-5 *1 (-758))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-644 (-2 (|:| |totdeg| (-771)) (|:| -2240 *3)))) + (-5 *4 (-771)) (-4 *3 (-949 *5 *6 *7)) (-4 *5 (-454)) (-4 *6 (-793)) + (-4 *7 (-850)) (-5 *1 (-451 *5 *6 *7 *3))))) +(((*1 *2 *2 *3) + (-12 + (-5 *2 + (-2 (|:| |partsol| (-1264 (-409 (-952 *4)))) + (|:| -1419 (-644 (-1264 (-409 (-952 *4))))))) + (-5 *3 (-644 *7)) (-4 *4 (-13 (-308) (-147))) + (-4 *7 (-949 *4 *6 *5)) (-4 *5 (-13 (-850) (-614 (-1175)))) + (-4 *6 (-793)) (-5 *1 (-924 *4 *5 *6 *7))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) + ((*1 *1 *1 *1) (-5 *1 (-862)))) +(((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-470)))) + ((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-1265)))) + ((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-1266))))) +(((*1 *2 *1) + (-12 (-4 *2 (-13 (-848) (-365))) (-5 *1 (-1060 *2 *3)) + (-4 *3 (-1240 *2))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) + (-4 *4 (-850))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114))))) +(((*1 *2 *1) + (-12 (-5 *2 (-644 (-295 *3))) (-5 *1 (-295 *3)) (-4 *3 (-558)) + (-4 *3 (-1214))))) +(((*1 *1) + (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-566)) (-14 *3 (-771)) + (-4 *4 (-172))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1207 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-793)) + (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1214))))) +(((*1 *1) + (-12 (-4 *1 (-406)) (-2387 (|has| *1 (-6 -4408))) + (-2387 (|has| *1 (-6 -4400))))) + ((*1 *2 *1) (-12 (-4 *1 (-427 *2)) (-4 *2 (-1099)) (-4 *2 (-850)))) + ((*1 *2 *1) (-12 (-4 *1 (-830 *2)) (-4 *2 (-850)))) + ((*1 *1) (-4 *1 (-844))) ((*1 *1 *1 *1) (-4 *1 (-850)))) +(((*1 *2 *1) (-12 (-4 *1 (-511 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-850))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-508)) (-5 *2 (-644 (-965))) (-5 *1 (-292))))) +(((*1 *2 *2) (-12 (-5 *2 (-644 (-317 (-225)))) (-5 *1 (-268))))) (((*1 *2 *3 *4) - (-12 (-4 *2 (-1238 *4)) (-5 *1 (-805 *4 *2 *3 *5)) - (-4 *4 (-13 (-363) (-147) (-1036 (-407 (-564))))) (-4 *3 (-654 *2)) - (-4 *5 (-654 (-407 *2))))) + (-12 (-5 *3 (-644 (-409 (-952 (-566))))) + (-5 *2 (-644 (-644 (-295 (-952 *4))))) (-5 *1 (-382 *4)) + (-4 *4 (-13 (-848) (-365))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-295 (-409 (-952 (-566)))))) + (-5 *2 (-644 (-644 (-295 (-952 *4))))) (-5 *1 (-382 *4)) + (-4 *4 (-13 (-848) (-365))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-409 (-952 (-566)))) (-5 *2 (-644 (-295 (-952 *4)))) + (-5 *1 (-382 *4)) (-4 *4 (-13 (-848) (-365))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-295 (-409 (-952 (-566))))) + (-5 *2 (-644 (-295 (-952 *4)))) (-5 *1 (-382 *4)) + (-4 *4 (-13 (-848) (-365))))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1175)) + (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) + (-4 *4 (-13 (-29 *6) (-1199) (-959))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -1419 (-644 *4)))) + (-5 *1 (-652 *6 *4 *3)) (-4 *3 (-656 *4)))) + ((*1 *2 *3 *2 *4 *2 *5) + (|partial| -12 (-5 *4 (-1175)) (-5 *5 (-644 *2)) + (-4 *2 (-13 (-29 *6) (-1199) (-959))) + (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) + (-5 *1 (-652 *6 *2 *3)) (-4 *3 (-656 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-689 *5)) (-4 *5 (-365)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1264 *5) "failed")) + (|:| -1419 (-644 (-1264 *5))))) + (-5 *1 (-667 *5)) (-5 *4 (-1264 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-644 *5))) (-4 *5 (-365)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1264 *5) "failed")) + (|:| -1419 (-644 (-1264 *5))))) + (-5 *1 (-667 *5)) (-5 *4 (-1264 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-689 *5)) (-4 *5 (-365)) + (-5 *2 + (-644 + (-2 (|:| |particular| (-3 (-1264 *5) "failed")) + (|:| -1419 (-644 (-1264 *5)))))) + (-5 *1 (-667 *5)) (-5 *4 (-644 (-1264 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-644 *5))) (-4 *5 (-365)) + (-5 *2 + (-644 + (-2 (|:| |particular| (-3 (-1264 *5) "failed")) + (|:| -1419 (-644 (-1264 *5)))))) + (-5 *1 (-667 *5)) (-5 *4 (-644 (-1264 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4418)))) + (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4418)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1419 (-644 *4)))) + (-5 *1 (-668 *5 *6 *4 *3)) (-4 *3 (-687 *5 *6 *4)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4418)))) + (-4 *7 (-13 (-375 *5) (-10 -7 (-6 -4418)))) + (-5 *2 + (-644 + (-2 (|:| |particular| (-3 *7 "failed")) (|:| -1419 (-644 *7))))) + (-5 *1 (-668 *5 *6 *7 *3)) (-5 *4 (-644 *7)) + (-4 *3 (-687 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-644 (-1175))) (-4 *5 (-558)) + (-5 *2 (-644 (-644 (-295 (-409 (-952 *5)))))) (-5 *1 (-770 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 (-952 *4))) (-4 *4 (-558)) + (-5 *2 (-644 (-644 (-295 (-409 (-952 *4)))))) (-5 *1 (-770 *4)))) + ((*1 *2 *2 *2 *3 *4) + (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1175)) + (-4 *5 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) + (-5 *1 (-772 *5 *2)) (-4 *2 (-13 (-29 *5) (-1199) (-959))))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-689 *7)) (-5 *5 (-1175)) + (-4 *7 (-13 (-29 *6) (-1199) (-959))) + (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) + (-5 *2 + (-2 (|:| |particular| (-1264 *7)) (|:| -1419 (-644 (-1264 *7))))) + (-5 *1 (-802 *6 *7)) (-5 *4 (-1264 *7)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-689 *6)) (-5 *4 (-1175)) + (-4 *6 (-13 (-29 *5) (-1199) (-959))) + (-4 *5 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) + (-5 *2 (-644 (-1264 *6))) (-5 *1 (-802 *5 *6)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-644 (-295 *7))) (-5 *4 (-644 (-114))) + (-5 *5 (-1175)) (-4 *7 (-13 (-29 *6) (-1199) (-959))) + (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) + (-5 *2 + (-2 (|:| |particular| (-1264 *7)) (|:| -1419 (-644 (-1264 *7))))) + (-5 *1 (-802 *6 *7)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-644 *7)) (-5 *4 (-644 (-114))) + (-5 *5 (-1175)) (-4 *7 (-13 (-29 *6) (-1199) (-959))) + (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) + (-5 *2 + (-2 (|:| |particular| (-1264 *7)) (|:| -1419 (-644 (-1264 *7))))) + (-5 *1 (-802 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-295 *7)) (-5 *4 (-114)) (-5 *5 (-1175)) + (-4 *7 (-13 (-29 *6) (-1199) (-959))) + (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) + (-5 *2 + (-3 (-2 (|:| |particular| *7) (|:| -1419 (-644 *7))) *7 "failed")) + (-5 *1 (-802 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-114)) (-5 *5 (-1175)) + (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) + (-5 *2 + (-3 (-2 (|:| |particular| *3) (|:| -1419 (-644 *3))) *3 "failed")) + (-5 *1 (-802 *6 *3)) (-4 *3 (-13 (-29 *6) (-1199) (-959))))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *3 (-295 *2)) (-5 *4 (-114)) (-5 *5 (-644 *2)) + (-4 *2 (-13 (-29 *6) (-1199) (-959))) (-5 *1 (-802 *6 *2)) + (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))))) + ((*1 *2 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-114)) (-5 *4 (-295 *2)) (-5 *5 (-644 *2)) + (-4 *2 (-13 (-29 *6) (-1199) (-959))) + (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) + (-5 *1 (-802 *6 *2)))) + ((*1 *2 *3) (-12 (-5 *3 (-808)) (-5 *2 (-1035)) (-5 *1 (-805)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-808)) (-5 *4 (-1062)) (-5 *2 (-1035)) (-5 *1 (-805)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1264 (-317 (-381)))) (-5 *4 (-381)) (-5 *5 (-644 *4)) + (-5 *2 (-1035)) (-5 *1 (-805)))) + ((*1 *2 *3 *4 *4 *5 *4) + (-12 (-5 *3 (-1264 (-317 (-381)))) (-5 *4 (-381)) (-5 *5 (-644 *4)) + (-5 *2 (-1035)) (-5 *1 (-805)))) + ((*1 *2 *3 *4 *4 *5 *6 *4) + (-12 (-5 *3 (-1264 (-317 *4))) (-5 *5 (-644 (-381))) + (-5 *6 (-317 (-381))) (-5 *4 (-381)) (-5 *2 (-1035)) (-5 *1 (-805)))) + ((*1 *2 *3 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1264 (-317 (-381)))) (-5 *4 (-381)) (-5 *5 (-644 *4)) + (-5 *2 (-1035)) (-5 *1 (-805)))) + ((*1 *2 *3 *4 *4 *5 *6 *5 *4) + (-12 (-5 *3 (-1264 (-317 *4))) (-5 *5 (-644 (-381))) + (-5 *6 (-317 (-381))) (-5 *4 (-381)) (-5 *2 (-1035)) (-5 *1 (-805)))) + ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) + (-12 (-5 *3 (-1264 (-317 *4))) (-5 *5 (-644 (-381))) + (-5 *6 (-317 (-381))) (-5 *4 (-381)) (-5 *2 (-1035)) (-5 *1 (-805)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 + (-5 *5 + (-1 + (-3 (-2 (|:| |particular| *6) (|:| -1419 (-644 *6))) "failed") + *7 *6)) + (-4 *6 (-365)) (-4 *7 (-656 *6)) + (-5 *2 (-2 (|:| |particular| (-1264 *6)) (|:| -1419 (-689 *6)))) + (-5 *1 (-813 *6 *7)) (-5 *3 (-689 *6)) (-5 *4 (-1264 *6)))) + ((*1 *2 *3) (-12 (-5 *3 (-898)) (-5 *2 (-1035)) (-5 *1 (-897)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-898)) (-5 *4 (-1062)) (-5 *2 (-1035)) (-5 *1 (-897)))) + ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) + (-12 (-5 *4 (-771)) (-5 *6 (-644 (-644 (-317 *3)))) (-5 *7 (-1157)) + (-5 *8 (-225)) (-5 *5 (-644 (-317 (-381)))) (-5 *3 (-381)) + (-5 *2 (-1035)) (-5 *1 (-897)))) + ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) + (-12 (-5 *4 (-771)) (-5 *6 (-644 (-644 (-317 *3)))) (-5 *7 (-1157)) + (-5 *5 (-644 (-317 (-381)))) (-5 *3 (-381)) (-5 *2 (-1035)) + (-5 *1 (-897)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-952 (-409 (-566)))) (-5 *2 (-644 (-381))) + (-5 *1 (-1023)) (-5 *4 (-381)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-952 (-566))) (-5 *2 (-644 (-381))) (-5 *1 (-1023)) + (-5 *4 (-381)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) + (-5 *2 (-644 *4)) (-5 *1 (-1127 *3 *4)) (-4 *3 (-1240 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) + (-5 *2 (-644 (-295 (-317 *4)))) (-5 *1 (-1130 *4)) + (-5 *3 (-317 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) + (-5 *2 (-644 (-295 (-317 *4)))) (-5 *1 (-1130 *4)) + (-5 *3 (-295 (-317 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1175)) + (-4 *5 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) + (-5 *2 (-644 (-295 (-317 *5)))) (-5 *1 (-1130 *5)) + (-5 *3 (-295 (-317 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1175)) + (-4 *5 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) + (-5 *2 (-644 (-295 (-317 *5)))) (-5 *1 (-1130 *5)) + (-5 *3 (-317 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-644 (-1175))) + (-4 *5 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) + (-5 *2 (-644 (-644 (-295 (-317 *5))))) (-5 *1 (-1130 *5)) + (-5 *3 (-644 (-295 (-317 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-409 (-952 *5)))) (-5 *4 (-644 (-1175))) + (-4 *5 (-558)) (-5 *2 (-644 (-644 (-295 (-409 (-952 *5)))))) + (-5 *1 (-1183 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-644 (-1175))) (-4 *5 (-558)) + (-5 *2 (-644 (-644 (-295 (-409 (-952 *5)))))) (-5 *1 (-1183 *5)) + (-5 *3 (-644 (-295 (-409 (-952 *5))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 (-409 (-952 *4)))) (-4 *4 (-558)) + (-5 *2 (-644 (-644 (-295 (-409 (-952 *4)))))) (-5 *1 (-1183 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-558)) (-5 *2 (-644 (-644 (-295 (-409 (-952 *4)))))) + (-5 *1 (-1183 *4)) (-5 *3 (-644 (-295 (-409 (-952 *4))))))) ((*1 *2 *3 *4) - (-12 (-4 *2 (-1238 *4)) (-5 *1 (-805 *4 *2 *5 *3)) - (-4 *4 (-13 (-363) (-147) (-1036 (-407 (-564))))) (-4 *5 (-654 *2)) - (-4 *3 (-654 (-407 *2)))))) + (-12 (-5 *4 (-1175)) (-4 *5 (-558)) + (-5 *2 (-644 (-295 (-409 (-952 *5))))) (-5 *1 (-1183 *5)) + (-5 *3 (-409 (-952 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1175)) (-4 *5 (-558)) + (-5 *2 (-644 (-295 (-409 (-952 *5))))) (-5 *1 (-1183 *5)) + (-5 *3 (-295 (-409 (-952 *5)))))) + ((*1 *2 *3) + (-12 (-4 *4 (-558)) (-5 *2 (-644 (-295 (-409 (-952 *4))))) + (-5 *1 (-1183 *4)) (-5 *3 (-409 (-952 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-558)) (-5 *2 (-644 (-295 (-409 (-952 *4))))) + (-5 *1 (-1183 *4)) (-5 *3 (-295 (-409 (-952 *4))))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-642 (-890 *3))) (-5 *1 (-890 *3)) - (-4 *3 (-1097))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1097)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-817 *2)) (-4 *2 (-848))))) + (-12 (-5 *2 (-644 (-1200 *3))) (-5 *1 (-1200 *3)) (-4 *3 (-1099))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-644 (-483 *5 *6))) (-5 *4 (-864 *5)) + (-14 *5 (-644 (-1175))) (-5 *2 (-483 *5 *6)) (-5 *1 (-631 *5 *6)) + (-4 *6 (-454)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-483 *5 *6))) (-5 *4 (-864 *5)) + (-14 *5 (-644 (-1175))) (-5 *2 (-483 *5 *6)) (-5 *1 (-631 *5 *6)) + (-4 *6 (-454))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1262 (-642 *3))) (-4 *4 (-307)) - (-5 *2 (-642 *3)) (-5 *1 (-455 *4 *3)) (-4 *3 (-1238 *4))))) -(((*1 *2 *3 *2 *4 *5) - (-12 (-5 *2 (-642 *3)) (-5 *5 (-919)) (-4 *3 (-1238 *4)) - (-4 *4 (-307)) (-5 *1 (-460 *4 *3))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1212))))) -(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-564)) (-5 *5 (-687 (-225))) (-5 *4 (-225)) - (-5 *2 (-1033)) (-5 *1 (-754))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-642 (-1173))) (-5 *2 (-1173)) (-5 *1 (-330))))) + (-12 (-5 *3 (-689 *6)) (-5 *5 (-1 (-420 (-1171 *6)) (-1171 *6))) + (-4 *6 (-365)) + (-5 *2 + (-644 + (-2 (|:| |outval| *7) (|:| |outmult| (-566)) + (|:| |outvect| (-644 (-689 *7)))))) + (-5 *1 (-534 *6 *7 *4)) (-4 *7 (-365)) (-4 *4 (-13 (-365) (-848)))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-469)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-469))))) +(((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1266))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1171 *2)) (-4 *2 (-432 *4)) (-4 *4 (-558)) + (-5 *1 (-32 *4 *2))))) +(((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566)))))) +(((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-258))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-644 (-1175))) (-5 *3 (-52)) (-5 *1 (-892 *4)) + (-4 *4 (-1099))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1175)) + (-5 *2 (-3 (|:| |fst| (-436)) (|:| -4306 "void"))) (-5 *1 (-1178))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 (-2 (|:| -2153 *4) (|:| -2639 (-566))))) + (-4 *4 (-1099)) (-5 *2 (-1 *4)) (-5 *1 (-1017 *4))))) (((*1 *2) - (-12 (-4 *4 (-363)) (-5 *2 (-919)) (-5 *1 (-328 *3 *4)) - (-4 *3 (-329 *4)))) + (-12 (-4 *4 (-365)) (-5 *2 (-921)) (-5 *1 (-329 *3 *4)) + (-4 *3 (-330 *4)))) ((*1 *2) - (-12 (-4 *4 (-363)) (-5 *2 (-831 (-919))) (-5 *1 (-328 *3 *4)) - (-4 *3 (-329 *4)))) - ((*1 *2) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-919)))) + (-12 (-4 *4 (-365)) (-5 *2 (-833 (-921))) (-5 *1 (-329 *3 *4)) + (-4 *3 (-330 *4)))) + ((*1 *2) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-921)))) ((*1 *2) - (-12 (-4 *1 (-1281 *3)) (-4 *3 (-363)) (-5 *2 (-831 (-919)))))) -(((*1 *2 *1 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-307)))) + (-12 (-4 *1 (-1283 *3)) (-4 *3 (-365)) (-5 *2 (-833 (-921)))))) +(((*1 *2 *1 *1) + (|partial| -12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) + (-5 *2 (-1171 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) + (-5 *2 (-1171 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-771)) (-5 *1 (-103 *3)) (-4 *3 (-1099))))) +(((*1 *2 *2) + (-12 (-5 *2 (-644 (-644 *6))) (-4 *6 (-949 *3 *5 *4)) + (-4 *3 (-13 (-308) (-147))) (-4 *4 (-13 (-850) (-614 (-1175)))) + (-4 *5 (-793)) (-5 *1 (-924 *3 *4 *5 *6))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-169 (-225))) (-5 *5 (-566)) (-5 *6 (-1157)) + (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-758))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1049)) (-4 *5 (-1240 *4)) (-5 *2 (-1 *6 (-644 *6))) + (-5 *1 (-1258 *4 *5 *3 *6)) (-4 *3 (-656 *5)) (-4 *6 (-1255 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-689 (-409 (-952 (-566))))) (-5 *2 (-644 (-317 (-566)))) + (-5 *1 (-1031))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-303)) (-5 *3 (-1175)) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-303)) (-5 *3 (-114)) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1175)) (-5 *2 (-112)) (-5 *1 (-612 *4)) + (-4 *4 (-1099)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-612 *4)) (-4 *4 (-1099)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-835 *3)) (-4 *3 (-1099)) (-5 *2 (-112)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1099)) (-5 *2 (-112)) (-5 *1 (-887 *5 *3 *4)) + (-4 *3 (-886 *5)) (-4 *4 (-614 (-892 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-644 *6)) (-4 *6 (-886 *5)) (-4 *5 (-1099)) + (-5 *2 (-112)) (-5 *1 (-887 *5 *6 *4)) (-4 *4 (-614 (-892 *5)))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-644 (-1175))) (-5 *2 (-1175)) (-5 *1 (-331))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-644 *6)) (-5 *4 (-644 (-247 *5 *6))) (-4 *6 (-454)) + (-5 *2 (-247 *5 *6)) (-14 *5 (-644 (-1175))) (-5 *1 (-631 *5 *6))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-409 (-952 *4))) (-5 *3 (-1175)) + (-4 *4 (-13 (-558) (-1038 (-566)) (-147))) (-5 *1 (-572 *4))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) + (-4 *4 (-850))))) +(((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *3 (-850)) + (-5 *2 (-2 (|:| -3103 *1) (|:| |gap| (-771)) (|:| -3131 *1))) + (-4 *1 (-1064 *4 *5 *3)))) ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4043 *1))) - (-4 *1 (-307))))) + (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) + (-5 *2 (-2 (|:| -3103 *1) (|:| |gap| (-771)) (|:| -3131 *1))) + (-4 *1 (-1064 *3 *4 *5))))) +(((*1 *1 *2) + (-12 (-5 *2 (-644 *6)) (-4 *6 (-949 *3 *4 *5)) (-4 *3 (-365)) + (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-506 *3 *4 *5 *6))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1012)) (-5 *2 (-862))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-769)) (-4 *4 (-13 (-556) (-147))) - (-5 *1 (-1232 *4 *2)) (-4 *2 (-1238 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-642 *2)) (-4 *2 (-1238 *4)) (-5 *1 (-539 *4 *2 *5 *6)) - (-4 *4 (-307)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-769)))))) -(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) - (-12 (-5 *4 (-687 (-225))) (-5 *5 (-687 (-564))) (-5 *3 (-564)) - (-5 *2 (-1033)) (-5 *1 (-754))))) -(((*1 *2 *1) - (-12 (-4 *3 (-363)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-112)) - (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-947 *3 *4 *5))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-564)) (-5 *3 (-919)) (-5 *1 (-697)))) - ((*1 *2 *2 *2 *3 *4) - (-12 (-5 *2 (-687 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) - (-4 *5 (-363)) (-5 *1 (-976 *5))))) -(((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1238 *5)) - (-4 *5 (-13 (-363) (-147) (-1036 (-564)))) + (-12 (-5 *3 (-644 *2)) (-4 *2 (-1064 *4 *5 *6)) (-4 *4 (-558)) + (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-977 *4 *5 *6 *2))))) +(((*1 *2 *3 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1240 *5)) + (-4 *5 (-13 (-365) (-147) (-1038 (-566)))) (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-407 *6)) (|:| |c| (-407 *6)) - (|:| -1425 *6))) - (-5 *1 (-1013 *5 *6)) (-5 *3 (-407 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-642 (-1173))) (-4 *5 (-1047)) - (-5 *2 (-481 *4 *5)) (-5 *1 (-942 *4 *5))))) + (-2 (|:| |a| *6) (|:| |b| (-409 *6)) (|:| |h| *6) + (|:| |c1| (-409 *6)) (|:| |c2| (-409 *6)) (|:| -1445 *6))) + (-5 *1 (-1016 *5 *6)) (-5 *3 (-409 *6))))) +(((*1 *2 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) + (-5 *1 (-755))))) (((*1 *2 *3) - (-12 (-5 *3 (-651 (-407 *2))) (-4 *2 (-1238 *4)) (-5 *1 (-808 *4 *2)) - (-4 *4 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-652 *2 (-407 *2))) (-4 *2 (-1238 *4)) - (-5 *1 (-808 *4 *2)) - (-4 *4 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564)))))))) -(((*1 *2) - (-12 (-4 *3 (-452)) (-4 *4 (-791)) (-4 *5 (-848)) - (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-1267)) - (-5 *1 (-986 *3 *4 *5 *6 *7)) (-4 *7 (-1068 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-452)) (-4 *4 (-791)) (-4 *5 (-848)) - (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-1267)) - (-5 *1 (-1104 *3 *4 *5 *6 *7)) (-4 *7 (-1068 *3 *4 *5 *6))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1172)) (-5 *1 (-330))))) -(((*1 *2 *3) (-12 (-5 *3 (-941 *2)) (-5 *1 (-980 *2)) (-4 *2 (-1047))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1153 (-642 (-564)))) (-5 *1 (-881)) - (-5 *3 (-642 (-564)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1238 *3)) (-4 *3 (-1047)) (-5 *2 (-1169 *3))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1097))))) + (-12 (-5 *3 (-1264 (-1264 *4))) (-4 *4 (-1049)) (-5 *2 (-689 *4)) + (-5 *1 (-1029 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1194))))) +(((*1 *1 *2 *3 *1 *3) + (-12 (-5 *2 (-892 *4)) (-4 *4 (-1099)) (-5 *1 (-889 *4 *3)) + (-4 *3 (-1099))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-950 *4)) (-4 *4 (-1047)) (-4 *4 (-612 *2)) - (-5 *2 (-379)) (-5 *1 (-783 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-950 *5)) (-5 *4 (-919)) (-4 *5 (-1047)) - (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-783 *5)))) + (-12 (-5 *3 (-1175)) + (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) + (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1199) (-432 *4))))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-407 (-950 *4))) (-4 *4 (-556)) - (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-783 *4)))) + (-12 (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) + (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *4))))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-407 (-950 *5))) (-5 *4 (-919)) (-4 *5 (-556)) - (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-783 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-316 *4)) (-4 *4 (-556)) (-4 *4 (-848)) - (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-783 *4)))) + (-12 (-5 *4 (-409 (-566))) + (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) + (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *5))))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-316 *5)) (-5 *4 (-919)) (-4 *5 (-556)) - (-4 *5 (-848)) (-4 *5 (-612 *2)) (-5 *2 (-379)) - (-5 *1 (-783 *5))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 (-642 *7) *7 (-1169 *7))) (-5 *5 (-1 (-418 *7) *7)) - (-4 *7 (-1238 *6)) (-4 *6 (-13 (-363) (-147) (-1036 (-407 (-564))))) - (-5 *2 (-642 (-2 (|:| |frac| (-407 *7)) (|:| -3359 *3)))) - (-5 *1 (-807 *6 *7 *3 *8)) (-4 *3 (-654 *7)) - (-4 *8 (-654 (-407 *7))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1238 *5)) - (-4 *5 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564))))) + (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *5))) + (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) + (-5 *1 (-316 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-295 *3)) (-5 *5 (-409 (-566))) + (-4 *3 (-13 (-27) (-1199) (-432 *6))) + (-4 *6 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) + (-5 *1 (-316 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 (-566))) (-5 *4 (-295 *6)) + (-4 *6 (-13 (-27) (-1199) (-432 *5))) + (-4 *5 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) + (-5 *1 (-461 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1175)) (-5 *5 (-295 *3)) + (-4 *3 (-13 (-27) (-1199) (-432 *6))) + (-4 *6 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) + (-5 *1 (-461 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *7 (-566))) (-5 *4 (-295 *7)) (-5 *5 (-1231 (-566))) + (-4 *7 (-13 (-27) (-1199) (-432 *6))) + (-4 *6 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) + (-5 *1 (-461 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-1175)) (-5 *5 (-295 *3)) (-5 *6 (-1231 (-566))) + (-4 *3 (-13 (-27) (-1199) (-432 *7))) + (-4 *7 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) + (-5 *1 (-461 *7 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-1 *8 (-409 (-566)))) (-5 *4 (-295 *8)) + (-5 *5 (-1231 (-409 (-566)))) (-5 *6 (-409 (-566))) + (-4 *8 (-13 (-27) (-1199) (-432 *7))) + (-4 *7 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) + (-5 *1 (-461 *7 *8)))) + ((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *4 (-1175)) (-5 *5 (-295 *3)) (-5 *6 (-1231 (-409 (-566)))) + (-5 *7 (-409 (-566))) (-4 *3 (-13 (-27) (-1199) (-432 *8))) + (-4 *8 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) + (-5 *1 (-461 *8 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1155 (-2 (|:| |k| (-566)) (|:| |c| *3)))) + (-4 *3 (-1049)) (-5 *1 (-596 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-597 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1155 (-2 (|:| |k| (-566)) (|:| |c| *3)))) + (-4 *3 (-1049)) (-4 *1 (-1224 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-771)) + (-5 *3 (-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| *4)))) + (-4 *4 (-1049)) (-4 *1 (-1245 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-4 *1 (-1255 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1155 (-2 (|:| |k| (-771)) (|:| |c| *3)))) + (-4 *3 (-1049)) (-4 *1 (-1255 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1237 *5 *4)) (-4 *4 (-820)) (-14 *5 (-1175)) + (-5 *2 (-566)) (-5 *1 (-1113 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-689 (-317 (-225)))) (-5 *2 - (-642 (-2 (|:| |frac| (-407 *6)) (|:| -3359 (-652 *6 (-407 *6)))))) - (-5 *1 (-810 *5 *6)) (-5 *3 (-652 *6 (-407 *6)))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-323 *3 *4)) (-4 *3 (-1097)) - (-4 *4 (-131)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1097)) (-5 *1 (-361 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1097)) (-5 *1 (-386 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1097)) (-5 *1 (-647 *3 *4 *5)) - (-4 *4 (-23)) (-14 *5 *4)))) + (-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381)))) + (-5 *1 (-205))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1281 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)) + (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1287 *3 *4)) (-4 *3 (-1049)) + (-4 *4 (-846))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1207 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) + (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) + (-5 *2 (-2 (|:| -1637 (-644 *6)) (|:| -3516 (-644 *6))))))) +(((*1 *2 *2) (-12 (-5 *1 (-961 *2)) (-4 *2 (-547))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1099))))) (((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-642 (-1173))) (-4 *4 (-1097)) - (-4 *5 (-13 (-1047) (-884 *4) (-612 (-890 *4)))) - (-5 *1 (-1073 *4 *5 *2)) - (-4 *2 (-13 (-430 *5) (-884 *4) (-612 (-890 *4)))))) + (-12 (-5 *3 (-644 (-1175))) (-4 *4 (-1099)) + (-4 *5 (-13 (-1049) (-886 *4) (-614 (-892 *4)))) + (-5 *1 (-1075 *4 *5 *2)) + (-4 *2 (-13 (-432 *5) (-886 *4) (-614 (-892 *4)))))) ((*1 *1 *2 *2) - (-12 (-4 *3 (-1097)) (-4 *4 (-13 (-1047) (-884 *3) (-612 (-890 *3)))) - (-5 *1 (-1073 *3 *4 *2)) - (-4 *2 (-13 (-430 *4) (-884 *3) (-612 (-890 *3))))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1247 *3 *4 *5)) (-4 *3 (-363)) (-14 *4 (-1173)) - (-14 *5 *3) (-5 *1 (-319 *3 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 (-379))) (-5 *1 (-1038)) (-5 *3 (-379))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1212)) - (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4411)) (-4 *1 (-489 *3)) - (-4 *3 (-1212))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2105 (-780 *3)) (|:| |coef2| (-780 *3)))) - (-5 *1 (-780 *3)) (-4 *3 (-556)) (-4 *3 (-1047)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-556)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) - (-5 *2 (-2 (|:| -2105 *1) (|:| |coef2| *1))) - (-4 *1 (-1062 *3 *4 *5))))) -(((*1 *1 *1) (-4 *1 (-545)))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1155)) (-5 *4 (-169 (-225))) (-5 *5 (-564)) - (-5 *2 (-1033)) (-5 *1 (-756))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-687 *3)) - (-4 *3 (-13 (-307) (-10 -8 (-15 -3282 ((-418 $) $))))) - (-4 *4 (-1238 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-1091 (-841 (-225)))) (-5 *1 (-305))))) + (-12 (-4 *3 (-1099)) (-4 *4 (-13 (-1049) (-886 *3) (-614 (-892 *3)))) + (-5 *1 (-1075 *3 *4 *2)) + (-4 *2 (-13 (-432 *4) (-886 *3) (-614 (-892 *3))))))) +(((*1 *1 *1) (-5 *1 (-1062)))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-112)) (-4 *6 (-13 (-454) (-1038 (-566)) (-639 (-566)))) + (-4 *3 (-13 (-27) (-1199) (-432 *6) (-10 -8 (-15 -2479 ($ *7))))) + (-4 *7 (-848)) + (-4 *8 + (-13 (-1242 *3 *7) (-365) (-1199) + (-10 -8 (-15 -3526 ($ $)) (-15 -2390 ($ $))))) + (-5 *2 + (-3 (|:| |%series| *8) + (|:| |%problem| (-2 (|:| |func| (-1157)) (|:| |prob| (-1157)))))) + (-5 *1 (-424 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1157)) (-4 *9 (-983 *8)) + (-14 *10 (-1175))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-689 (-409 (-952 (-566))))) + (-5 *2 (-689 (-317 (-566)))) (-5 *1 (-1031))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-644 (-644 *8))) (-5 *3 (-644 *8)) + (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-558)) (-4 *6 (-793)) + (-4 *7 (-850)) (-5 *2 (-112)) (-5 *1 (-977 *5 *6 *7 *8))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-921)) (-4 *4 (-370)) (-4 *4 (-365)) (-5 *2 (-1171 *1)) + (-4 *1 (-330 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1171 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-372 *3 *2)) (-4 *3 (-172)) (-4 *3 (-365)) + (-4 *2 (-1240 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1264 *4)) (-4 *4 (-351)) (-5 *2 (-1171 *4)) + (-5 *1 (-530 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-771)) (-5 *1 (-856 *2)) (-4 *2 (-172)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1171 (-566))) (-5 *1 (-942)) (-5 *3 (-566))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-644 *3)) (-4 *3 (-949 *5 *6 *7)) (-4 *5 (-454)) + (-4 *6 (-793)) (-4 *7 (-850)) + (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) + (-5 *1 (-451 *5 *6 *7 *3))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-642 *4)) (-4 *4 (-363)) (-4 *2 (-1238 *4)) - (-5 *1 (-920 *4 *2))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) - (-12 (-5 *3 (-564)) (-5 *5 (-687 (-225))) (-5 *4 (-225)) - (-5 *2 (-1033)) (-5 *1 (-750))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2105 (-780 *3)) (|:| |coef1| (-780 *3)))) - (-5 *1 (-780 *3)) (-4 *3 (-556)) (-4 *3 (-1047)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-556)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) - (-5 *2 (-2 (|:| -2105 *1) (|:| |coef1| *1))) - (-4 *1 (-1062 *3 *4 *5))))) -(((*1 *1 *1) - (-12 (-4 *2 (-363)) (-4 *3 (-791)) (-4 *4 (-848)) - (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-947 *2 *3 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-972)) (-5 *2 (-1091 (-225)))))) + (-12 (-4 *4 (-820)) (-14 *5 (-1175)) (-5 *2 (-644 (-1237 *5 *4))) + (-5 *1 (-1113 *4 *5)) (-5 *3 (-1237 *5 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-833 *3)) (-4 *3 (-1099)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-843 *3)) (-4 *3 (-1099))))) (((*1 *1 *2 *3) - (-12 (-4 *1 (-382 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-1097)))) + (-12 (-4 *1 (-384 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-1099)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-564)) (-5 *2 (-1153 *3)) (-5 *1 (-1157 *3)) - (-4 *3 (-1047)))) + (-12 (-5 *4 (-566)) (-5 *2 (-1155 *3)) (-5 *1 (-1159 *3)) + (-4 *3 (-1049)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-817 *4)) (-4 *4 (-848)) (-4 *1 (-1279 *4 *3)) - (-4 *3 (-1047))))) + (-12 (-5 *2 (-819 *4)) (-4 *4 (-850)) (-4 *1 (-1281 *4 *3)) + (-4 *3 (-1049))))) (((*1 *2 *3) - (-12 (-5 *3 (-1262 (-316 (-225)))) - (-5 *2 - (-2 (|:| |additions| (-564)) (|:| |multiplications| (-564)) - (|:| |exponentiations| (-564)) (|:| |functionCalls| (-564)))) - (-5 *1 (-305))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1173)) (-5 *2 (-437)) (-5 *1 (-1177))))) -(((*1 *1) (-5 *1 (-437)))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197))))) -(((*1 *2 *3) (-12 (-5 *3 (-919)) (-5 *2 (-1155)) (-5 *1 (-784))))) -(((*1 *2 *3) (-12 (-5 *3 (-769)) (-5 *2 (-1267)) (-5 *1 (-379))))) + (-12 (-4 *4 (-351)) (-5 *2 (-958 (-1171 *4))) (-5 *1 (-359 *4)) + (-5 *3 (-1171 *4))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1160 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1161 *3))))) +(((*1 *2) + (-12 (-5 *2 (-921)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) + ((*1 *2 *2) + (-12 (-5 *2 (-921)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-233)) (-4 *3 (-1049)) (-4 *4 (-850)) (-4 *5 (-267 *4)) + (-4 *6 (-793)) (-5 *2 (-1 *1 (-771))) (-4 *1 (-254 *3 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1049)) (-4 *3 (-850)) (-4 *5 (-267 *3)) (-4 *6 (-793)) + (-5 *2 (-1 *1 (-771))) (-4 *1 (-254 *4 *3 *5 *6)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-771)) (-4 *1 (-267 *2)) (-4 *2 (-850))))) +(((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114))))) +(((*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1175)) (-5 *4 (-952 (-566))) (-5 *2 (-331)) + (-5 *1 (-333))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-839)) (-5 *4 (-1060)) (-5 *2 (-1033)) (-5 *1 (-838)))) - ((*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1033)) (-5 *1 (-838)))) + (-12 (-5 *3 (-841)) (-5 *4 (-1062)) (-5 *2 (-1035)) (-5 *1 (-840)))) + ((*1 *2 *3) (-12 (-5 *3 (-841)) (-5 *2 (-1035)) (-5 *1 (-840)))) ((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-642 (-379))) (-5 *5 (-642 (-841 (-379)))) - (-5 *6 (-642 (-316 (-379)))) (-5 *3 (-316 (-379))) (-5 *2 (-1033)) - (-5 *1 (-838)))) + (-12 (-5 *4 (-644 (-381))) (-5 *5 (-644 (-843 (-381)))) + (-5 *6 (-644 (-317 (-381)))) (-5 *3 (-317 (-381))) (-5 *2 (-1035)) + (-5 *1 (-840)))) ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-316 (-379))) (-5 *4 (-642 (-379))) - (-5 *5 (-642 (-841 (-379)))) (-5 *2 (-1033)) (-5 *1 (-838)))) + (-12 (-5 *3 (-317 (-381))) (-5 *4 (-644 (-381))) + (-5 *5 (-644 (-843 (-381)))) (-5 *2 (-1035)) (-5 *1 (-840)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-316 (-379))) (-5 *4 (-642 (-379))) (-5 *2 (-1033)) - (-5 *1 (-838)))) + (-12 (-5 *3 (-317 (-381))) (-5 *4 (-644 (-381))) (-5 *2 (-1035)) + (-5 *1 (-840)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-642 (-316 (-379)))) (-5 *4 (-642 (-379))) - (-5 *2 (-1033)) (-5 *1 (-838))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) - (-12 (-5 *3 (-564)) (-5 *5 (-687 (-225))) - (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) - (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-76 G JACOBG JACGEP)))) - (-5 *4 (-225)) (-5 *2 (-1033)) (-5 *1 (-747))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1068 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-791)) - (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-827))))) -(((*1 *2 *1) (-12 (-4 *1 (-953)) (-5 *2 (-1091 (-225))))) - ((*1 *2 *1) (-12 (-4 *1 (-972)) (-5 *2 (-1091 (-225)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-642 (-564))) (-5 *2 (-902 (-564))) (-5 *1 (-915)))) - ((*1 *2) (-12 (-5 *2 (-902 (-564))) (-5 *1 (-915))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) -(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-689 (-1217)))))) -(((*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307))))) -(((*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-108)))) - ((*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-217)))) - ((*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-487)))) - ((*1 *1 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-556)) (-4 *2 (-307)))) - ((*1 *2 *1) - (-12 (-5 *2 (-407 (-564))) (-5 *1 (-1002 *3)) (-14 *3 (-564)))) - ((*1 *1 *1) (-4 *1 (-1057)))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-858)) (-5 *2 (-689 (-1220))) (-5 *3 (-1220))))) + (-12 (-5 *3 (-644 (-317 (-381)))) (-5 *4 (-644 (-381))) + (-5 *2 (-1035)) (-5 *1 (-840))))) +(((*1 *1) (-5 *1 (-439)))) (((*1 *2 *1) - (-12 (-4 *3 (-1047)) (-5 *2 (-1262 *3)) (-5 *1 (-710 *3 *4)) - (-4 *4 (-1238 *3))))) -(((*1 *1 *1) (-5 *1 (-1060)))) + (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) + (-5 *2 (-644 (-644 (-943 *3)))))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-644 (-644 (-943 *4)))) (-5 *3 (-112)) (-4 *4 (-1049)) + (-4 *1 (-1133 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-644 (-644 (-943 *3)))) (-4 *3 (-1049)) + (-4 *1 (-1133 *3)))) + ((*1 *1 *1 *2 *3 *3) + (-12 (-5 *2 (-644 (-644 (-644 *4)))) (-5 *3 (-112)) + (-4 *1 (-1133 *4)) (-4 *4 (-1049)))) + ((*1 *1 *1 *2 *3 *3) + (-12 (-5 *2 (-644 (-644 (-943 *4)))) (-5 *3 (-112)) + (-4 *1 (-1133 *4)) (-4 *4 (-1049)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-644 (-644 (-644 *5)))) (-5 *3 (-644 (-171))) + (-5 *4 (-171)) (-4 *1 (-1133 *5)) (-4 *5 (-1049)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-644 (-644 (-943 *5)))) (-5 *3 (-644 (-171))) + (-5 *4 (-171)) (-4 *1 (-1133 *5)) (-4 *5 (-1049))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-642 (-642 *8))) (-5 *3 (-642 *8)) - (-4 *8 (-947 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) - (-4 *6 (-13 (-848) (-612 (-1173)))) (-4 *7 (-791)) (-5 *2 (-112)) - (-5 *1 (-922 *5 *6 *7 *8))))) -(((*1 *2 *1) (-12 (-4 *1 (-953)) (-5 *2 (-1091 (-225))))) - ((*1 *2 *1) (-12 (-4 *1 (-972)) (-5 *2 (-1091 (-225)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-373 *3)) (-4 *3 (-1212)) (-4 *3 (-848)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-373 *4)) (-4 *4 (-1212)) - (-5 *2 (-112))))) -(((*1 *1 *1) (-5 *1 (-1060)))) -(((*1 *2 *3 *3 *3 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756))))) -(((*1 *2 *3 *3) - (-12 (-4 *2 (-556)) (-5 *1 (-967 *2 *3)) (-4 *3 (-1238 *2))))) -(((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) +(((*1 *1 *1 *2) (-12 - (-5 *3 - (-642 - (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1169 *2)) - (|:| |logand| (-1169 *2))))) - (-5 *4 (-642 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) - (-4 *2 (-363)) (-5 *1 (-585 *2))))) -(((*1 *2 *3) - (-12 (-4 *2 (-363)) (-4 *2 (-846)) (-5 *1 (-943 *2 *3)) - (-4 *3 (-1238 *2))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-363) (-846))) - (-5 *2 (-2 (|:| |start| *3) (|:| -1569 (-418 *3)))) - (-5 *1 (-181 *4 *3)) (-4 *3 (-1238 (-169 *4)))))) -(((*1 *2 *3) - (-12 (-14 *4 (-642 (-1173))) (-4 *5 (-452)) (-5 *2 - (-2 (|:| |glbase| (-642 (-247 *4 *5))) (|:| |glval| (-642 (-564))))) - (-5 *1 (-629 *4 *5)) (-5 *3 (-642 (-247 *4 *5)))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-642 *3)) (-4 *3 (-307)) (-5 *1 (-179 *3))))) + (-2 (|:| -2245 (-644 (-862))) (|:| -4047 (-644 (-862))) + (|:| |presup| (-644 (-862))) (|:| -1466 (-644 (-862))) + (|:| |args| (-644 (-862))))) + (-5 *1 (-1175)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-644 (-862)))) (-5 *1 (-1175))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4343 *4))) + (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-943 (-225))) (-5 *4 (-874)) (-5 *2 (-1269)) + (-5 *1 (-470)))) + ((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1049)) (-4 *1 (-980 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-943 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-943 *3)) (-4 *3 (-1049)) (-4 *1 (-1133 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-771)) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-644 *3)) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-943 *3)) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) + ((*1 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-943 (-225))) (-5 *1 (-1210)) (-5 *3 (-225))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *4 (-1175)) (-5 *6 (-112)) + (-4 *7 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) + (-4 *3 (-13 (-1199) (-959) (-29 *7))) + (-5 *2 + (-3 (|:| |f1| (-843 *3)) (|:| |f2| (-644 (-843 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-219 *7 *3)) (-5 *5 (-843 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-3 (|:| |fst| (-434)) (|:| -4287 "void"))) - (-5 *2 (-1267)) (-5 *1 (-1176)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1173)) - (-5 *4 (-3 (|:| |fst| (-434)) (|:| -4287 "void"))) (-5 *2 (-1267)) - (-5 *1 (-1176)))) - ((*1 *2 *3 *4 *1) - (-12 (-5 *3 (-1173)) - (-5 *4 (-3 (|:| |fst| (-434)) (|:| -4287 "void"))) (-5 *2 (-1267)) - (-5 *1 (-1176))))) -(((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-769)) (-5 *1 (-213 *4 *2)) (-14 *4 (-919)) - (-4 *2 (-1097))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) - (-4 *3 (-1062 *5 *6 *7)) - (-5 *2 (-642 (-2 (|:| |val| *3) (|:| -2138 *4)))) - (-5 *1 (-1105 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-642 (-1262 *5))) (-5 *4 (-564)) (-5 *2 (-1262 *5)) - (-5 *1 (-1027 *5)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1047))))) + (-12 (-5 *3 (-409 *5)) (-4 *5 (-1240 *4)) (-4 *4 (-558)) + (-4 *4 (-1049)) (-4 *2 (-1255 *4)) (-5 *1 (-1258 *4 *5 *6 *2)) + (-4 *6 (-656 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) + (-4 *4 (-850)) (-4 *2 (-558)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) + (-4 *4 (-850)) (-4 *2 (-558))))) (((*1 *2 *1) - (-12 (-4 *1 (-1245 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-1222 *3)) - (-5 *2 (-407 (-564)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-769)) (-5 *5 (-642 *3)) (-4 *3 (-307)) (-4 *6 (-848)) - (-4 *7 (-791)) (-5 *2 (-112)) (-5 *1 (-623 *6 *7 *3 *8)) - (-4 *8 (-947 *3 *7 *6))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-564)) (-4 *4 (-172)) (-4 *5 (-373 *4)) - (-4 *6 (-373 *4)) (-5 *1 (-686 *4 *5 *6 *2)) - (-4 *2 (-685 *4 *5 *6))))) -(((*1 *1 *1) - (-12 (-4 *1 (-253 *2 *3 *4 *5)) (-4 *2 (-1047)) (-4 *3 (-848)) - (-4 *4 (-266 *3)) (-4 *5 (-791))))) -(((*1 *2 *3) - (-12 (-4 *4 (-556)) (-5 *2 (-1262 (-687 *4))) (-5 *1 (-90 *4 *5)) - (-5 *3 (-687 *4)) (-4 *5 (-654 *4))))) -(((*1 *2 *3) - (-12 (-4 *3 (-13 (-307) (-10 -8 (-15 -3282 ((-418 $) $))))) - (-4 *4 (-1238 *3)) - (-5 *2 - (-2 (|:| -2131 (-687 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-687 *3)))) - (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-564)) (-4 *4 (-1238 *3)) - (-5 *2 - (-2 (|:| -2131 (-687 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-687 *3)))) - (-5 *1 (-766 *4 *5)) (-4 *5 (-409 *3 *4)))) + (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) + (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1264 (-1264 (-566)))) (-5 *3 (-921)) (-5 *1 (-468))))) +(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-874))))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) +(((*1 *1 *1) (-5 *1 (-48))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1214)) + (-4 *2 (-1214)) (-5 *1 (-58 *5 *2)))) + ((*1 *2 *3 *1 *2 *2) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1099)) (|has| *1 (-6 -4417)) + (-4 *1 (-151 *2)) (-4 *2 (-1214)))) + ((*1 *2 *3 *1 *2) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4417)) (-4 *1 (-151 *2)) + (-4 *2 (-1214)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4417)) (-4 *1 (-151 *2)) + (-4 *2 (-1214)))) ((*1 *2 *3) - (-12 (-4 *4 (-349)) (-4 *3 (-1238 *4)) (-4 *5 (-1238 *3)) + (-12 (-4 *4 (-1049)) + (-5 *2 (-2 (|:| -2240 (-1171 *4)) (|:| |deg| (-921)))) + (-5 *1 (-221 *4 *5)) (-5 *3 (-1171 *4)) (-4 *5 (-558)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-240 *5 *6)) (-14 *5 (-771)) + (-4 *6 (-1214)) (-4 *2 (-1214)) (-5 *1 (-239 *5 *6 *2)))) + ((*1 *1 *2 *3) + (-12 (-4 *4 (-172)) (-5 *1 (-290 *4 *2 *3 *5 *6 *7)) + (-4 *2 (-1240 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3)) + (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-317 *2)) (-4 *2 (-558)) (-4 *2 (-1099)))) + ((*1 *1 *1) + (-12 (-4 *1 (-337 *2 *3 *4 *5)) (-4 *2 (-365)) (-4 *3 (-1240 *2)) + (-4 *4 (-1240 (-409 *3))) (-4 *5 (-344 *2 *3 *4)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1214)) (-4 *2 (-1214)) + (-5 *1 (-373 *5 *4 *2 *6)) (-4 *4 (-375 *5)) (-4 *6 (-375 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1099)) (-4 *2 (-1099)) + (-5 *1 (-425 *5 *4 *2 *6)) (-4 *4 (-427 *5)) (-4 *6 (-427 *2)))) + ((*1 *1 *1) (-5 *1 (-497))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-644 *5)) (-4 *5 (-1214)) + (-4 *2 (-1214)) (-5 *1 (-642 *5 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1049)) (-4 *2 (-1049)) + (-4 *6 (-375 *5)) (-4 *7 (-375 *5)) (-4 *8 (-375 *2)) + (-4 *9 (-375 *2)) (-5 *1 (-685 *5 *6 *7 *4 *2 *8 *9 *10)) + (-4 *4 (-687 *5 *6 *7)) (-4 *10 (-687 *2 *8 *9)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1049)) (-5 *1 (-712 *3 *2)) (-4 *2 (-1240 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-715 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-409 *4)) (-4 *4 (-1240 *3)) (-4 *3 (-365)) + (-4 *3 (-172)) (-4 *1 (-724 *3 *4)))) + ((*1 *1 *2) + (-12 (-4 *3 (-172)) (-4 *1 (-724 *3 *2)) (-4 *2 (-1240 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-958 *5)) (-4 *5 (-1214)) + (-4 *2 (-1214)) (-5 *1 (-957 *5 *2)))) + ((*1 *1 *2) + (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) + (-5 *1 (-1034 *3 *4 *5 *2 *6)) (-4 *2 (-949 *3 *4 *5)) + (-14 *6 (-644 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1049)) (-4 *2 (-1049)) + (-14 *5 (-771)) (-14 *6 (-771)) (-4 *8 (-238 *6 *7)) + (-4 *9 (-238 *5 *7)) (-4 *10 (-238 *6 *2)) (-4 *11 (-238 *5 *2)) + (-5 *1 (-1055 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) + (-4 *4 (-1053 *5 *6 *7 *8 *9)) (-4 *12 (-1053 *5 *6 *2 *10 *11)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1155 *5)) (-4 *5 (-1214)) + (-4 *2 (-1214)) (-5 *1 (-1153 *5 *2)))) + ((*1 *2 *2 *1 *3 *4) + (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) + (-4 *1 (-1207 *5 *6 *7 *2)) (-4 *5 (-558)) (-4 *6 (-793)) + (-4 *7 (-850)) (-4 *2 (-1064 *5 *6 *7)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1264 *5)) (-4 *5 (-1214)) + (-4 *2 (-1214)) (-5 *1 (-1263 *5 *2))))) +(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) + (-12 (-5 *4 (-566)) (-5 *5 (-1157)) (-5 *6 (-689 (-225))) + (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-89 G)))) + (-5 *8 (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN)))) + (-5 *9 (-3 (|:| |fn| (-390)) (|:| |fp| (-71 PEDERV)))) + (-5 *10 (-3 (|:| |fn| (-390)) (|:| |fp| (-88 OUTPUT)))) + (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-749))))) +(((*1 *2 *1) (-12 (-4 *1 (-529)) (-5 *2 (-691 (-1219)))))) +(((*1 *1 *1 *1) (-4 *1 (-143))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-158 *3 *2)) (-4 *2 (-432 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-547)))) + ((*1 *1 *1 *1) (-5 *1 (-862))) + ((*1 *2 *3 *4) + (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-566))) (-5 *1 (-1047)) + (-5 *3 (-566))))) +(((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *2 *1) + (-12 (-5 *2 - (-2 (|:| -2131 (-687 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-687 *3)))) - (-5 *1 (-983 *4 *3 *5 *6)) (-4 *6 (-722 *3 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-349)) (-4 *3 (-1238 *4)) (-4 *5 (-1238 *3)) + (-644 + (-2 (|:| |scalar| (-409 (-566))) (|:| |coeff| (-1171 *3)) + (|:| |logand| (-1171 *3))))) + (-5 *1 (-587 *3)) (-4 *3 (-365))))) +(((*1 *1 *1) (-4 *1 (-629))) + ((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-630 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002) (-1199)))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1035)) (-5 *3 (-1175)) (-5 *1 (-192))))) +(((*1 *2 *1) (-12 (-5 *2 (-691 *3)) (-5 *1 (-966 *3)) (-4 *3 (-1099))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-612 *6)) (-4 *6 (-13 (-432 *5) (-27) (-1199))) + (-4 *5 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) + (-5 *2 (-1171 (-409 (-1171 *6)))) (-5 *1 (-562 *5 *6 *7)) + (-5 *3 (-1171 *6)) (-4 *7 (-1099)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1240 *3)) (-5 *1 (-712 *3 *2)) (-4 *3 (-1049)))) + ((*1 *2 *1) + (-12 (-4 *1 (-724 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1240 *3)))) + ((*1 *2 *3 *4 *4 *5 *6 *7 *8) + (|partial| -12 (-5 *4 (-1171 *11)) (-5 *6 (-644 *10)) + (-5 *7 (-644 (-771))) (-5 *8 (-644 *11)) (-4 *10 (-850)) + (-4 *11 (-308)) (-4 *9 (-793)) (-4 *5 (-949 *11 *9 *10)) + (-5 *2 (-644 (-1171 *5))) (-5 *1 (-742 *9 *10 *11 *5)) + (-5 *3 (-1171 *5)))) + ((*1 *2 *1) + (-12 (-4 *2 (-949 *3 *4 *5)) (-5 *1 (-1034 *3 *4 *5 *2 *6)) + (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-14 *6 (-644 *2))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-365) (-848))) + (-5 *2 (-644 (-2 (|:| -3445 (-644 *3)) (|:| -1452 *5)))) + (-5 *1 (-181 *5 *3)) (-4 *3 (-1240 (-169 *5))))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-365) (-848))) + (-5 *2 (-644 (-2 (|:| -3445 (-644 *3)) (|:| -1452 *4)))) + (-5 *1 (-181 *4 *3)) (-4 *3 (-1240 (-169 *4)))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-396)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1194))))) +(((*1 *1 *2) + (-12 (-5 *2 - (-2 (|:| -2131 (-687 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-687 *3)))) - (-5 *1 (-1271 *4 *3 *5 *6)) (-4 *6 (-409 *3 *5))))) + (-644 + (-2 + (|:| -1928 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1264 (-317 (-225)))) + (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) + (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (|:| -2806 + (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) + (|:| |expense| (-381)) (|:| |accuracy| (-381)) + (|:| |intermediateResults| (-381))))))) + (-5 *1 (-803))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-771)) (-4 *1 (-1240 *4)) (-4 *4 (-1049)) + (-5 *2 (-1264 *4))))) +(((*1 *2) + (|partial| -12 (-4 *4 (-1218)) (-4 *5 (-1240 (-409 *2))) + (-4 *2 (-1240 *4)) (-5 *1 (-343 *3 *4 *2 *5)) + (-4 *3 (-344 *4 *2 *5)))) + ((*1 *2) + (|partial| -12 (-4 *1 (-344 *3 *2 *4)) (-4 *3 (-1218)) + (-4 *4 (-1240 (-409 *2))) (-4 *2 (-1240 *3))))) (((*1 *1 *1) - (-12 (-4 *2 (-452)) (-4 *3 (-848)) (-4 *4 (-791)) - (-5 *1 (-985 *2 *3 *4 *5)) (-4 *5 (-947 *2 *4 *3))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-373 *2)) - (-4 *5 (-373 *2)) (-4 *2 (-1212)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-769)) (-4 *2 (-1097)) (-5 *1 (-213 *4 *2)) - (-14 *4 (-919)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-288 *3 *2)) (-4 *3 (-1097)) (-4 *2 (-1212)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-564)) (-4 *1 (-1051 *4 *5 *2 *6 *7)) - (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1047))))) + (-12 (-4 *1 (-254 *2 *3 *4 *5)) (-4 *2 (-1049)) (-4 *3 (-850)) + (-4 *4 (-267 *3)) (-4 *5 (-793))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-644 *4)) (-4 *4 (-1099)) (-4 *4 (-1214)) (-5 *2 (-112)) + (-5 *1 (-1155 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 *9)) (-4 *8 (-1064 *5 *6 *7)) + (-4 *9 (-1070 *5 *6 *7 *8)) (-4 *5 (-454)) (-4 *6 (-793)) + (-4 *7 (-850)) (-5 *2 (-771)) (-5 *1 (-1068 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 *9)) (-4 *8 (-1064 *5 *6 *7)) + (-4 *9 (-1108 *5 *6 *7 *8)) (-4 *5 (-454)) (-4 *6 (-793)) + (-4 *7 (-850)) (-5 *2 (-771)) (-5 *1 (-1144 *5 *6 *7 *8 *9))))) (((*1 *2 *2 *2 *3 *4) - (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1047)) - (-5 *1 (-851 *5 *2)) (-4 *2 (-850 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-602 *2 *3)) (-4 *3 (-1212)) (-4 *2 (-1097)) - (-4 *2 (-848))))) + (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1049)) + (-5 *1 (-853 *5 *2)) (-4 *2 (-852 *5))))) +(((*1 *2 *2 *2 *3 *3 *4 *2 *5) + (|partial| -12 (-5 *3 (-612 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1175))) (-5 *5 (-1171 *2)) + (-4 *2 (-13 (-432 *6) (-27) (-1199))) + (-4 *6 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) + (-5 *1 (-562 *6 *2 *7)) (-4 *7 (-1099)))) + ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) + (|partial| -12 (-5 *3 (-612 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1175))) + (-5 *5 (-409 (-1171 *2))) (-4 *2 (-13 (-432 *6) (-27) (-1199))) + (-4 *6 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) + (-5 *1 (-562 *6 *2 *7)) (-4 *7 (-1099))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1138)))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *3 (-644 (-566))) + (-5 *1 (-883))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-819)) (-5 *4 (-52)) (-5 *2 (-1267)) (-5 *1 (-829))))) + (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 *9)) (-4 *8 (-1064 *5 *6 *7)) + (-4 *9 (-1070 *5 *6 *7 *8)) (-4 *5 (-454)) (-4 *6 (-793)) + (-4 *7 (-850)) (-5 *2 (-771)) (-5 *1 (-1068 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 *9)) (-4 *8 (-1064 *5 *6 *7)) + (-4 *9 (-1108 *5 *6 *7 *8)) (-4 *5 (-454)) (-4 *6 (-793)) + (-4 *7 (-850)) (-5 *2 (-771)) (-5 *1 (-1144 *5 *6 *7 *8 *9))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 (-771) *2)) (-5 *4 (-771)) (-4 *2 (-1099)) + (-5 *1 (-678 *2)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1 *3 (-771) *3)) (-4 *3 (-1099)) (-5 *1 (-682 *3))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-644 (-566))) (-5 *1 (-1109)) (-5 *3 (-566))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566)))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-566)) (-5 *2 (-112)) (-5 *1 (-555))))) +(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) + ((*1 *1) (-5 *1 (-129))) + ((*1 *1) + (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-566)) (-14 *3 (-771)) + (-4 *4 (-172)))) + ((*1 *1) (-5 *1 (-548))) ((*1 *1) (-5 *1 (-549))) + ((*1 *1) (-5 *1 (-550))) ((*1 *1) (-5 *1 (-551))) + ((*1 *1) (-4 *1 (-726))) ((*1 *1) (-5 *1 (-1175))) + ((*1 *1) (-12 (-5 *1 (-1181 *2)) (-14 *2 (-921)))) + ((*1 *1) (-12 (-5 *1 (-1182 *2)) (-14 *2 (-921)))) + ((*1 *1) (-5 *1 (-1219))) ((*1 *1) (-5 *1 (-1220))) + ((*1 *1) (-5 *1 (-1221))) ((*1 *1) (-5 *1 (-1222)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-642 *8)) (-5 *4 (-642 *7)) (-4 *7 (-848)) - (-4 *8 (-947 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-791)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1262 (-407 *8)) "failed")) - (|:| -2131 (-642 (-1262 (-407 *8)))))) - (-5 *1 (-667 *5 *6 *7 *8))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-556)) (-5 *2 (-642 *3)) (-5 *1 (-967 *4 *3)) - (-4 *3 (-1238 *4))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1212))))) -(((*1 *2 *2) (-12 (-5 *1 (-959 *2)) (-4 *2 (-545))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-680 *2)) (-4 *2 (-1097)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-642 *5) (-642 *5))) (-5 *4 (-564)) - (-5 *2 (-642 *5)) (-5 *1 (-680 *5)) (-4 *5 (-1097))))) -(((*1 *2 *3) - (-12 (-4 *4 (-556)) (-4 *2 (-13 (-430 (-169 *4)) (-1000) (-1197))) - (-5 *1 (-598 *4 *3 *2)) (-4 *3 (-13 (-430 *4) (-1000) (-1197)))))) -(((*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-436)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-436))))) -(((*1 *1) (-5 *1 (-1060)))) -(((*1 *2 *1) (-12 (-4 *1 (-1281 *3)) (-4 *3 (-363)) (-5 *2 (-112))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1169 *1)) (-5 *3 (-1173)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1169 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-950 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1173)) (-4 *1 (-29 *3)) (-4 *3 (-556)))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-556))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-769)) (-4 *5 (-556)) - (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-967 *5 *3)) (-4 *3 (-1238 *5))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) - (-12 (-5 *3 (-564)) (-5 *5 (-687 (-225))) (-5 *4 (-225)) - (-5 *2 (-1033)) (-5 *1 (-751))))) + (-12 (-5 *3 (-1175)) (-5 *4 (-952 (-566))) (-5 *2 (-331)) + (-5 *1 (-333))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-454)) (-4 *4 (-850)) + (-4 *5 (-793)) (-5 *1 (-987 *3 *4 *5 *6)) (-4 *6 (-949 *3 *5 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-822)) (-5 *2 (-52)) (-5 *1 (-829))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1035))))) (((*1 *2 *3) - (-12 (-4 *4 (-556)) (-4 *5 (-990 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-142 *4 *5 *3)) - (-4 *3 (-373 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-556)) (-4 *5 (-990 *4)) - (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) - (-5 *1 (-503 *4 *5 *6 *3)) (-4 *6 (-373 *4)) (-4 *3 (-373 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-687 *5)) (-4 *5 (-990 *4)) (-4 *4 (-556)) - (-5 *2 (-2 (|:| |num| (-687 *4)) (|:| |den| *4))) - (-5 *1 (-691 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-363) (-147) (-1036 (-407 (-564))))) - (-4 *6 (-1238 *5)) - (-5 *2 (-2 (|:| -3359 *7) (|:| |rh| (-642 (-407 *6))))) - (-5 *1 (-805 *5 *6 *7 *3)) (-5 *4 (-642 (-407 *6))) - (-4 *7 (-654 *6)) (-4 *3 (-654 (-407 *6))))) - ((*1 *2 *3) - (-12 (-4 *4 (-556)) (-4 *5 (-990 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1231 *4 *5 *3)) - (-4 *3 (-1238 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-642 (-330))) (-5 *1 (-330))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197))))) + (|partial| -12 (-5 *3 (-1264 *5)) (-4 *5 (-639 *4)) (-4 *4 (-558)) + (-5 *2 (-1264 *4)) (-5 *1 (-638 *4 *5))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) + (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) + (-5 *1 (-1277 *3 *4 *5 *6)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-644 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-558)) + (-4 *6 (-793)) (-4 *7 (-850)) (-5 *1 (-1277 *5 *6 *7 *8))))) +(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) + (-12 (-5 *4 (-566)) (-5 *5 (-689 (-225))) + (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-89 G)))) + (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN)))) (-5 *3 (-225)) + (-5 *2 (-1035)) (-5 *1 (-749))))) +(((*1 *2 *3) + (-12 (-4 *4 (-558)) (-5 *2 (-771)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-419 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-689 (-871 (-964 *3) (-964 *3)))) (-5 *1 (-964 *3)) - (-4 *3 (-1097))))) -(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-925))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-872)) (-5 *3 (-642 (-263))) (-5 *1 (-261))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-919)) (-5 *4 (-418 *6)) (-4 *6 (-1238 *5)) - (-4 *5 (-1047)) (-5 *2 (-642 *6)) (-5 *1 (-444 *5 *6))))) + (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-850)) + (-4 *5 (-267 *4)) (-4 *6 (-793)) (-5 *2 (-771)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1049)) (-4 *3 (-850)) + (-4 *5 (-267 *3)) (-4 *6 (-793)) (-5 *2 (-771)))) + ((*1 *2 *1) (-12 (-4 *1 (-267 *3)) (-4 *3 (-850)) (-5 *2 (-771)))) + ((*1 *2 *1) (-12 (-4 *1 (-351)) (-5 *2 (-921)))) + ((*1 *2 *3) + (-12 (-5 *3 (-338 *4 *5 *6 *7)) (-4 *4 (-13 (-370) (-365))) + (-4 *5 (-1240 *4)) (-4 *6 (-1240 (-409 *5))) (-4 *7 (-344 *4 *5 *6)) + (-5 *2 (-771)) (-5 *1 (-394 *4 *5 *6 *7)))) + ((*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-833 (-921))))) + ((*1 *2 *1) (-12 (-4 *1 (-406)) (-5 *2 (-566)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-597 *3)) (-4 *3 (-1049)))) + ((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-597 *3)) (-4 *3 (-1049)))) + ((*1 *2 *1) + (-12 (-4 *3 (-558)) (-5 *2 (-566)) (-5 *1 (-623 *3 *4)) + (-4 *4 (-1240 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *2 (-771)) (-4 *1 (-740 *4 *3)) (-4 *4 (-1049)) + (-4 *3 (-850)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-740 *4 *3)) (-4 *4 (-1049)) (-4 *3 (-850)) + (-5 *2 (-771)))) + ((*1 *2 *1) (-12 (-4 *1 (-869 *3)) (-5 *2 (-771)))) + ((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) + ((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-905 *3)) (-4 *3 (-1099)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-338 *5 *6 *7 *8)) (-4 *5 (-432 *4)) + (-4 *6 (-1240 *5)) (-4 *7 (-1240 (-409 *6))) + (-4 *8 (-344 *5 *6 *7)) (-4 *4 (-13 (-558) (-1038 (-566)))) + (-5 *2 (-771)) (-5 *1 (-911 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-338 (-409 (-566)) *4 *5 *6)) + (-4 *4 (-1240 (-409 (-566)))) (-4 *5 (-1240 (-409 *4))) + (-4 *6 (-344 (-409 (-566)) *4 *5)) (-5 *2 (-771)) + (-5 *1 (-912 *4 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-338 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-365)) + (-4 *7 (-1240 *6)) (-4 *4 (-1240 (-409 *7))) (-4 *8 (-344 *6 *7 *4)) + (-4 *9 (-13 (-370) (-365))) (-5 *2 (-771)) + (-5 *1 (-1018 *6 *7 *4 *8 *9)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1240 *3)) (-4 *3 (-1049)) (-4 *3 (-558)) + (-5 *2 (-771)))) + ((*1 *2 *1 *2) + (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-792)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-792))))) +(((*1 *2 *3) + (-12 (-5 *2 (-420 (-1171 (-566)))) (-5 *1 (-191)) (-5 *3 (-566))))) (((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1000)))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) - (-5 *1 (-750))))) -(((*1 *2 *1) (-12 (-4 *1 (-1097)) (-5 *2 (-1155))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-642 *3)) - (-5 *1 (-975 *4 *5 *6 *3)) (-4 *3 (-1062 *4 *5 *6))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) - (-5 *2 - (-2 (|:| -2108 *4) (|:| -1437 *4) (|:| |totalpts| (-564)) - (|:| |success| (-112)))) - (-5 *1 (-787)) (-5 *5 (-564))))) + (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1199)))))) +(((*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1214))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-469)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-469))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-4 *1 (-235 *3)))) + ((*1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1099))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-454)) + (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) + (-5 *1 (-977 *3 *4 *5 *6))))) +(((*1 *1 *1 *1) (-5 *1 (-225))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-771)) (-5 *2 (-1 (-381))) (-5 *1 (-1040)))) + ((*1 *1 *1 *1) (-4 *1 (-1138)))) +(((*1 *2 *3 *4 *5 *3 *6 *3) + (-12 (-5 *3 (-566)) (-5 *5 (-169 (-225))) (-5 *6 (-1157)) + (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-758))))) +(((*1 *2 *3) + (-12 (-4 *1 (-920)) (-5 *2 (-2 (|:| -3103 (-644 *1)) (|:| -4086 *1))) + (-5 *3 (-644 *1))))) +(((*1 *2 *3) (-12 (-5 *3 (-1264 *1)) (-4 *1 (-369 *2)) (-4 *2 (-172)))) + ((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-418 *3 *2)) (-4 *3 (-419 *2)))) + ((*1 *2) (-12 (-4 *1 (-419 *2)) (-4 *2 (-172))))) +(((*1 *2 *1) + (-12 (-4 *2 (-949 *3 *5 *4)) (-5 *1 (-987 *3 *4 *5 *2)) + (-4 *3 (-454)) (-4 *4 (-850)) (-4 *5 (-793))))) +(((*1 *2 *2) (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *1 (-883))))) +(((*1 *1 *1 *2 *2 *1) + (-12 (-5 *2 (-566)) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) + (-4 *4 (-375 *3)) (-4 *5 (-375 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-769)) (-5 *2 (-1 (-1153 (-950 *4)) (-1153 (-950 *4)))) - (-5 *1 (-1270 *4)) (-4 *4 (-363))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 - *7 *3 *8) - (-12 (-5 *5 (-687 (-225))) (-5 *6 (-112)) (-5 *7 (-687 (-564))) - (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-65 QPHESS)))) - (-5 *3 (-564)) (-5 *4 (-225)) (-5 *2 (-1033)) (-5 *1 (-751))))) -(((*1 *1 *1) - (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-769)) (-5 *1 (-781 *2)) (-4 *2 (-38 (-407 (-564)))) - (-4 *2 (-172))))) + (|partial| -12 (-4 *4 (-1218)) (-4 *5 (-1240 *4)) + (-5 *2 (-2 (|:| |radicand| (-409 *5)) (|:| |deg| (-771)))) + (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1240 (-409 *5)))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1262 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) - (-5 *2 (-687 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-687 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1097)) (-4 *6 (-884 *5)) (-5 *2 (-883 *5 *6 (-642 *6))) - (-5 *1 (-885 *5 *6 *4)) (-5 *3 (-642 *6)) (-4 *4 (-612 (-890 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1097)) (-5 *2 (-642 (-294 *3))) (-5 *1 (-885 *5 *3 *4)) - (-4 *3 (-1036 (-1173))) (-4 *3 (-884 *5)) (-4 *4 (-612 (-890 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1097)) (-5 *2 (-642 (-294 (-950 *3)))) - (-5 *1 (-885 *5 *3 *4)) (-4 *3 (-1047)) - (-2307 (-4 *3 (-1036 (-1173)))) (-4 *3 (-884 *5)) - (-4 *4 (-612 (-890 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1097)) (-5 *2 (-887 *5 *3)) (-5 *1 (-885 *5 *3 *4)) - (-2307 (-4 *3 (-1036 (-1173)))) (-2307 (-4 *3 (-1047))) - (-4 *3 (-884 *5)) (-4 *4 (-612 (-890 *5)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-841 *3)) (-4 *3 (-1097))))) + (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1049)) (-4 *3 (-850)) + (-4 *5 (-267 *3)) (-4 *6 (-793)) (-5 *2 (-644 (-771))))) + ((*1 *2 *1) + (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-850)) + (-4 *5 (-267 *4)) (-4 *6 (-793)) (-5 *2 (-644 (-771)))))) (((*1 *2 *3) - (-12 (-5 *3 (-642 (-950 *4))) (-4 *4 (-452)) (-5 *2 (-112)) - (-5 *1 (-360 *4 *5)) (-14 *5 (-642 (-1173))))) - ((*1 *2 *3) - (-12 (-5 *3 (-642 (-778 *4 (-862 *5)))) (-4 *4 (-452)) - (-14 *5 (-642 (-1173))) (-5 *2 (-112)) (-5 *1 (-626 *4 *5))))) -(((*1 *1 *1) - (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) - (-5 *2 - (-2 (|:| -2108 *4) (|:| -1437 *4) (|:| |totalpts| (-564)) - (|:| |success| (-112)))) - (-5 *1 (-787)) (-5 *5 (-564))))) + (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) + ((*1 *2 *3) (-12 (-5 *3 (-971)) (-5 *2 (-904 (-566))) (-5 *1 (-917))))) (((*1 *1 *1 *1) - (-12 (-5 *1 (-647 *2 *3 *4)) (-4 *2 (-1097)) (-4 *3 (-23)) + (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-1099)) (-4 *3 (-23)) (-14 *4 *3))) ((*1 *1 *2 *3 *1) - (-12 (-5 *1 (-647 *2 *3 *4)) (-4 *2 (-1097)) (-4 *3 (-23)) + (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-1099)) (-4 *3 (-23)) (-14 *4 *3))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-673 *2)) (-4 *2 (-1047)) (-4 *2 (-1097))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-642 (-642 (-642 *4)))) (-5 *3 (-642 *4)) (-4 *4 (-848)) - (-5 *1 (-1183 *4))))) -(((*1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-530 *3)) (-4 *3 (-13 (-724) (-25)))))) -(((*1 *2 *2) (-12 (-5 *2 (-687 *3)) (-4 *3 (-307)) (-5 *1 (-698 *3))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-506)) (-5 *3 (-642 (-963))) (-5 *1 (-291))))) -(((*1 *1) (-5 *1 (-437)))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-848) (-612 (-1173)))) - (-4 *6 (-791)) (-5 *2 (-642 *3)) (-5 *1 (-922 *4 *5 *6 *3)) - (-4 *3 (-947 *4 *6 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820))))) -(((*1 *2) - (-12 (-5 *2 (-2 (|:| -3612 (-642 *3)) (|:| -2608 (-642 *3)))) - (-5 *1 (-1213 *3)) (-4 *3 (-1097))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-642 (-687 *5))) (-5 *4 (-1262 *5)) (-4 *5 (-307)) - (-4 *5 (-1047)) (-5 *2 (-687 *5)) (-5 *1 (-1027 *5))))) -(((*1 *2 *3 *4) - (-12 (-4 *7 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-556)) - (-4 *8 (-947 *7 *5 *6)) - (-5 *2 (-2 (|:| -2817 (-769)) (|:| -2968 *3) (|:| |radicand| *3))) - (-5 *1 (-951 *5 *6 *7 *8 *3)) (-5 *4 (-769)) - (-4 *3 - (-13 (-363) - (-10 -8 (-15 -2390 ($ *8)) (-15 -4120 (*8 $)) (-15 -4131 (*8 $)))))))) -(((*1 *2 *3) - (-12 (-4 *4 (-307)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) - (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) - (-5 *1 (-1121 *4 *5 *6 *3)) (-4 *3 (-685 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-822))))) + (-12 (-5 *1 (-675 *2)) (-4 *2 (-1049)) (-4 *2 (-1099))))) (((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1000)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1205 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-791)) - (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) - (-5 *2 (-2 (|:| -1616 (-642 *6)) (|:| -3406 (-642 *6))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-642 (-564))) (-5 *2 (-902 (-564))) (-5 *1 (-915)))) - ((*1 *2) (-12 (-5 *2 (-902 (-564))) (-5 *1 (-915))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-642 (-564))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)) - (-14 *4 (-769)) (-4 *5 (-172))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-642 (-564))) (-5 *1 (-247 *3 *4)) - (-14 *3 (-642 (-1173))) (-4 *4 (-1047)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-642 (-564))) (-14 *3 (-642 (-1173))) - (-5 *1 (-454 *3 *4 *5)) (-4 *4 (-1047)) - (-4 *5 (-238 (-2158 *3) (-769))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-642 (-564))) (-5 *1 (-481 *3 *4)) - (-14 *3 (-642 (-1173))) (-4 *4 (-1047))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-642 *2)) (-4 *2 (-1212)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-1153 *2)) (-4 *2 (-1212))))) -(((*1 *2 *1 *2 *3) - (|partial| -12 (-5 *2 (-1155)) (-5 *3 (-564)) (-5 *1 (-1060))))) -(((*1 *2 *3 *4 *4 *2 *2 *2 *2) - (-12 (-5 *2 (-564)) - (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-769)) (|:| |poli| *4) - (|:| |polj| *4))) - (-4 *6 (-791)) (-4 *4 (-947 *5 *6 *7)) (-4 *5 (-452)) (-4 *7 (-848)) - (-5 *1 (-449 *5 *6 *7 *4))))) + (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1199)))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-1008 *3)) (-4 *3 (-1212)) (-5 *2 (-564))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-642 *2)) (-4 *2 (-947 *4 *5 *6)) (-4 *4 (-307)) - (-4 *5 (-791)) (-4 *6 (-848)) (-5 *1 (-447 *4 *5 *6 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-379)) (-5 *1 (-97)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-379)) (-5 *1 (-97))))) -(((*1 *1 *2) - (-12 (-5 *2 (-642 *3)) (-4 *3 (-1097)) (-4 *1 (-1095 *3)))) - ((*1 *1) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1097))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) - (-4 *8 (-1062 *5 *6 *7)) - (-5 *2 - (-2 (|:| |val| (-642 *8)) - (|:| |towers| (-642 (-1025 *5 *6 *7 *8))))) - (-5 *1 (-1025 *5 *6 *7 *8)) (-5 *3 (-642 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) - (-4 *8 (-1062 *5 *6 *7)) - (-5 *2 - (-2 (|:| |val| (-642 *8)) - (|:| |towers| (-642 (-1143 *5 *6 *7 *8))))) - (-5 *1 (-1143 *5 *6 *7 *8)) (-5 *3 (-642 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-791)) - (-4 *7 (-848)) (-4 *8 (-1062 *5 *6 *7)) (-5 *2 (-642 *3)) - (-5 *1 (-590 *5 *6 *7 *8 *3)) (-4 *3 (-1106 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) - (-5 *2 - (-642 (-2 (|:| -2378 (-1169 *5)) (|:| -3719 (-642 (-950 *5)))))) - (-5 *1 (-1075 *5 *6)) (-5 *3 (-642 (-950 *5))) - (-14 *6 (-642 (-1173))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-307) (-147))) - (-5 *2 - (-642 (-2 (|:| -2378 (-1169 *4)) (|:| -3719 (-642 (-950 *4)))))) - (-5 *1 (-1075 *4 *5)) (-5 *3 (-642 (-950 *4))) - (-14 *5 (-642 (-1173))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) + (-12 (-5 *2 - (-642 (-2 (|:| -2378 (-1169 *5)) (|:| -3719 (-642 (-950 *5)))))) - (-5 *1 (-1075 *5 *6)) (-5 *3 (-642 (-950 *5))) - (-14 *6 (-642 (-1173)))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) - (-5 *1 (-745))))) -(((*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) - ((*1 *1 *1 *1) (-4 *1 (-473))) - ((*1 *1 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-172)))) - ((*1 *2 *2) (-12 (-5 *2 (-642 (-564))) (-5 *1 (-881)))) - ((*1 *1 *1) (-5 *1 (-969))) - ((*1 *1 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-172))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1155)) (-5 *1 (-1193))))) -(((*1 *2 *3 *4 *4 *5 *6 *7) - (-12 (-5 *5 (-1173)) - (-5 *6 - (-1 - (-3 - (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| - (-642 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) - "failed") - *4 (-642 *4))) - (-5 *7 - (-1 (-3 (-2 (|:| -3872 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1197) (-27) (-430 *8))) - (-4 *8 (-13 (-452) (-147) (-1036 *3) (-637 *3))) (-5 *3 (-564)) - (-5 *2 (-2 (|:| |ans| *4) (|:| -4351 *4) (|:| |sol?| (-112)))) - (-5 *1 (-1011 *8 *4))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-687 *3)) (-4 *3 (-1047)) (-5 *1 (-688 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172))))) + (-2 (|:| -4343 *3) (|:| |coef1| (-782 *3)) (|:| |coef2| (-782 *3)))) + (-5 *1 (-782 *3)) (-4 *3 (-558)) (-4 *3 (-1049))))) +(((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172))))) +(((*1 *2 *3) + (-12 (-4 *4 (-351)) (-5 *2 (-420 (-1171 (-1171 *4)))) + (-5 *1 (-1212 *4)) (-5 *3 (-1171 (-1171 *4)))))) (((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-363) (-302) - (-10 -8 (-15 -4120 ((-1122 *3 (-610 $)) $)) - (-15 -4131 ((-1122 *3 (-610 $)) $)) - (-15 -2390 ($ (-1122 *3 (-610 $))))))))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-363) (-302) - (-10 -8 (-15 -4120 ((-1122 *3 (-610 $)) $)) - (-15 -4131 ((-1122 *3 (-610 $)) $)) - (-15 -2390 ($ (-1122 *3 (-610 $))))))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-642 *2)) - (-4 *2 - (-13 (-363) (-302) - (-10 -8 (-15 -4120 ((-1122 *4 (-610 $)) $)) - (-15 -4131 ((-1122 *4 (-610 $)) $)) - (-15 -2390 ($ (-1122 *4 (-610 $))))))) - (-4 *4 (-556)) (-5 *1 (-41 *4 *2)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-642 (-610 *2))) - (-4 *2 - (-13 (-363) (-302) - (-10 -8 (-15 -4120 ((-1122 *4 (-610 $)) $)) - (-15 -4131 ((-1122 *4 (-610 $)) $)) - (-15 -2390 ($ (-1122 *4 (-610 $))))))) - (-4 *4 (-556)) (-5 *1 (-41 *4 *2))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-556) (-1036 (-564)))) (-4 *5 (-430 *4)) - (-5 *2 (-418 (-1169 (-407 (-564))))) (-5 *1 (-435 *4 *5 *3)) - (-4 *3 (-1238 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) (-5 *2 (-112)))) + (|partial| -12 (-4 *3 (-365)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) + (-5 *1 (-523 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-1169 *4)) (-4 *4 (-349)) (-5 *2 (-112)) - (-5 *1 (-357 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1262 *4)) (-4 *4 (-349)) (-5 *2 (-112)) - (-5 *1 (-528 *4))))) + (|partial| -12 (-4 *4 (-558)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) + (-4 *7 (-992 *4)) (-4 *2 (-687 *7 *8 *9)) + (-5 *1 (-524 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-687 *4 *5 *6)) + (-4 *8 (-375 *7)) (-4 *9 (-375 *7)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) + (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-365)))) + ((*1 *2 *2) + (|partial| -12 (-4 *3 (-365)) (-4 *3 (-172)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-5 *1 (-688 *3 *4 *5 *2)) + (-4 *2 (-687 *3 *4 *5)))) + ((*1 *1 *1) + (|partial| -12 (-5 *1 (-689 *2)) (-4 *2 (-365)) (-4 *2 (-1049)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-1122 *2 *3 *4 *5)) (-4 *3 (-1049)) + (-4 *4 (-238 *2 *3)) (-4 *5 (-238 *2 *3)) (-4 *3 (-365)))) + ((*1 *2 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-850)) (-5 *1 (-1185 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-644 (-943 *4))) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) + (-4 *4 (-1049))))) +(((*1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-829))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *3 (-771)) (-4 *4 (-13 (-558) (-147))) + (-5 *1 (-1234 *4 *2)) (-4 *2 (-1240 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1 (-381))) (-5 *1 (-1040))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-566)) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) + (-4 *4 (-375 *3)) (-4 *5 (-375 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-941 *3)) (-4 *3 (-13 (-363) (-1197) (-1000))) - (-5 *1 (-176 *3))))) + (-12 (-5 *2 (-644 *6)) (-4 *6 (-949 *3 *4 *5)) (-4 *3 (-454)) + (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-451 *3 *4 *5 *6))))) +(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) + (-12 (-5 *3 (-921)) (-5 *4 (-225)) (-5 *5 (-566)) (-5 *6 (-874)) + (-5 *2 (-1269)) (-5 *1 (-1265))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *2 (-644 (-1171 *7))) (-5 *3 (-1171 *7)) + (-4 *7 (-949 *5 *6 *4)) (-4 *5 (-909)) (-4 *6 (-793)) + (-4 *4 (-850)) (-5 *1 (-906 *5 *6 *4 *7))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-558)) + (-5 *2 + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3910 (-642 (-225))))) - (-5 *2 (-379)) (-5 *1 (-267)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1262 (-316 (-225)))) (-5 *2 (-379)) (-5 *1 (-305))))) -(((*1 *2 *1) (-12 (-5 *2 (-642 (-1132))) (-5 *1 (-669)))) - ((*1 *2 *1) - (-12 (-5 *2 (-642 (-919))) (-5 *1 (-1098 *3 *4)) (-14 *3 (-919)) - (-14 *4 (-919))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *5 (-769)) (-4 *6 (-1097)) (-4 *7 (-898 *6)) - (-5 *2 (-687 *7)) (-5 *1 (-690 *6 *7 *3 *4)) (-4 *3 (-373 *7)) - (-4 *4 (-13 (-373 *6) (-10 -7 (-6 -4410))))))) -(((*1 *2) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-1265))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-642 *6)) (-4 *6 (-848)) (-4 *4 (-363)) (-4 *5 (-791)) - (-5 *1 (-504 *4 *5 *6 *2)) (-4 *2 (-947 *4 *5 *6)))) - ((*1 *1 *1 *2) - (-12 (-4 *3 (-363)) (-4 *4 (-791)) (-4 *5 (-848)) - (-5 *1 (-504 *3 *4 *5 *2)) (-4 *2 (-947 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-556)) (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *3 (-1173)) (-5 *2 (-1267)) (-5 *1 (-1176)))) - ((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-1177))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-860))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-860))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-506)) (-5 *1 (-280))))) -(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-553))))) -(((*1 *2 *3 *4 *3 *4 *4 *4) - (-12 (-5 *3 (-687 (-225))) (-5 *4 (-564)) (-5 *2 (-1033)) - (-5 *1 (-754))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-941 (-225))) (-5 *2 (-1267)) (-5 *1 (-468))))) + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-771)) (|:| |poli| *2) + (|:| |polj| *2))) + (-4 *5 (-793)) (-4 *2 (-949 *4 *5 *6)) (-5 *1 (-451 *4 *5 *6 *2)) + (-4 *4 (-454)) (-4 *6 (-850))))) +(((*1 *1 *2) + (-12 + (-5 *2 + (-644 + (-2 + (|:| -1928 + (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) + (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (|:| -2806 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1155 (-225))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -1680 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated")))))))) + (-5 *1 (-561))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) + (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *3 (-558)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-419 *3))))) +(((*1 *1) (-5 *1 (-1266)))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-644 *2)) (-4 *2 (-1214)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-1155 *2)) (-4 *2 (-1214))))) (((*1 *2 *1) - (-12 (-4 *1 (-974 *3 *4 *2 *5)) (-4 *3 (-1047)) (-4 *4 (-791)) - (-4 *5 (-1062 *3 *4 *2)) (-4 *2 (-848)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1062 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-791)) - (-4 *2 (-848))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) - (-12 (-5 *4 (-564)) (-5 *5 (-687 (-225))) - (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-84 FCNF)))) - (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-225)) - (-5 *2 (-1033)) (-5 *1 (-747))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1184 (-642 *4))) (-4 *4 (-848)) - (-5 *2 (-642 (-642 *4))) (-5 *1 (-1183 *4))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1107))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-974 *3 *4 *2 *5)) (-4 *3 (-1047)) (-4 *4 (-791)) - (-4 *2 (-848)) (-4 *5 (-1062 *3 *4 *2))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134))))) + (-12 (-4 *3 (-1049)) (-5 *2 (-644 *1)) (-4 *1 (-1133 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-1 (-112) *8))) (-4 *8 (-1064 *5 *6 *7)) + (-4 *5 (-558)) (-4 *6 (-793)) (-4 *7 (-850)) + (-5 *2 (-2 (|:| |goodPols| (-644 *8)) (|:| |badPols| (-644 *8)))) + (-5 *1 (-977 *5 *6 *7 *8)) (-5 *4 (-644 *8))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-454)) (-4 *4 (-558)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| -3888 *4))) (-5 *1 (-969 *4 *3)) + (-4 *3 (-1240 *4))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-771)) (-4 *4 (-13 (-558) (-147))) + (-5 *1 (-1234 *4 *2)) (-4 *2 (-1240 *4))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1035)) (-5 *3 (-1175)) (-5 *1 (-268))))) +(((*1 *1 *2) + (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-4 *1 (-1097 *3)))) + ((*1 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099))))) (((*1 *2 *3) - (-12 (-5 *3 (-919)) + (-12 (-5 *2 (-169 *4)) (-5 *1 (-181 *4 *3)) + (-4 *4 (-13 (-365) (-848))) (-4 *3 (-1240 *2))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1214))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1240 *4)) (-4 *4 (-1218)) + (-4 *6 (-1240 (-409 *5))) (-5 *2 - (-3 (-1169 *4) - (-1262 (-642 (-2 (|:| -2108 *4) (|:| -2065 (-1117))))))) - (-5 *1 (-346 *4)) (-4 *4 (-349))))) -(((*1 *2 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-172)))) - ((*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-172))))) + (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) + (|:| |gd| *5))) + (-4 *1 (-344 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-647 *3)) (-4 *3 (-1099))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-564)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-418 *4)) (-4 *4 (-556))))) + (-12 (-4 *1 (-556 *3)) (-4 *3 (-13 (-406) (-1199))) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-183))) (-5 *1 (-140))))) +(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) + ((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) + ((*1 *1 *1) (-4 *1 (-1138)))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-365)) (-4 *6 (-1240 (-409 *2))) + (-4 *2 (-1240 *5)) (-5 *1 (-215 *5 *2 *6 *3)) + (-4 *3 (-344 *5 *2 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-971))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-112)) (-5 *1 (-829))))) +(((*1 *1 *1) + (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-1155 *3))) (-5 *1 (-1155 *3)) (-4 *3 (-1214))))) (((*1 *2 *3) - (-12 (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-307)) - (-5 *2 (-642 (-769))) (-5 *1 (-776 *3 *4 *5 *6 *7)) - (-4 *3 (-1238 *6)) (-4 *7 (-947 *6 *4 *5))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) - (-5 *1 (-753))))) -(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) - (|partial| -12 (-5 *2 (-642 (-1169 *13))) (-5 *3 (-1169 *13)) - (-5 *4 (-642 *12)) (-5 *5 (-642 *10)) (-5 *6 (-642 *13)) - (-5 *7 (-642 (-642 (-2 (|:| -3636 (-769)) (|:| |pcoef| *13))))) - (-5 *8 (-642 (-769))) (-5 *9 (-1262 (-642 (-1169 *10)))) - (-4 *12 (-848)) (-4 *10 (-307)) (-4 *13 (-947 *10 *11 *12)) - (-4 *11 (-791)) (-5 *1 (-705 *11 *12 *10 *13))))) -(((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-630))))) -(((*1 *2 *3 *4 *2 *5) - (-12 (-5 *3 (-642 *8)) (-5 *4 (-642 (-890 *6))) - (-5 *5 (-1 (-887 *6 *8) *8 (-890 *6) (-887 *6 *8))) (-4 *6 (-1097)) - (-4 *8 (-13 (-1047) (-612 (-890 *6)) (-1036 *7))) - (-5 *2 (-887 *6 *8)) (-4 *7 (-1047)) (-5 *1 (-939 *6 *7 *8))))) + (-12 (-5 *3 (-644 *2)) (-5 *1 (-488 *2)) (-4 *2 (-1240 (-566)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) + (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) + (-4 *3 (-1064 *5 *6 *7)) + (-5 *2 (-644 (-2 (|:| |val| (-112)) (|:| -2192 *4)))) + (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3))))) +(((*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365))))) +(((*1 *2 *2) + (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1199)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) +(((*1 *2 *1) + (-12 (-4 *2 (-708 *3)) (-5 *1 (-827 *2 *3)) (-4 *3 (-1049))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-612 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *4))) + (-4 *4 (-13 (-558) (-1038 (-566)) (-639 (-566)))) + (-5 *1 (-278 *4 *2))))) +(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-292))) + ((*1 *1) (-5 *1 (-862))) + ((*1 *1) + (-12 (-4 *2 (-454)) (-4 *3 (-850)) (-4 *4 (-793)) + (-5 *1 (-987 *2 *3 *4 *5)) (-4 *5 (-949 *2 *4 *3)))) + ((*1 *1) (-5 *1 (-1084))) + ((*1 *1) + (-12 (-5 *1 (-1139 *2 *3)) (-4 *2 (-13 (-1099) (-34))) + (-4 *3 (-13 (-1099) (-34))))) + ((*1 *1) (-5 *1 (-1178))) ((*1 *1) (-5 *1 (-1179)))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) +(((*1 *1 *2) + (-12 (-5 *2 (-644 *3)) (-4 *3 (-1214)) (-5 *1 (-1155 *3))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-964 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-529)) (-5 *3 (-128)) (-5 *2 (-771))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 (-381))) (-5 *1 (-264)))) + ((*1 *1) + (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-558)) (-4 *2 (-172)))) + ((*1 *2 *1) (-12 (-5 *1 (-420 *2)) (-4 *2 (-558))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1240 *2)) (-4 *2 (-1049))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-642 (-610 *4))) (-4 *4 (-430 *3)) (-4 *3 (-1097)) - (-5 *1 (-573 *3 *4)))) + (-12 (-5 *2 (-644 (-612 *4))) (-4 *4 (-432 *3)) (-4 *3 (-1099)) + (-5 *1 (-575 *3 *4)))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-887 *2 *3)) (-4 *2 (-1097)) (-4 *3 (-1097)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1097)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1097)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1097))))) + (-12 (-5 *1 (-889 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) + (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *5 (-225)) + (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-61 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-87 BDYVAL)))) + (-5 *2 (-1035)) (-5 *1 (-749)))) + ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) + (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *5 (-225)) + (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-61 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-87 BDYVAL)))) + (-5 *8 (-390)) (-5 *2 (-1035)) (-5 *1 (-749))))) +(((*1 *1 *1) + (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) +(((*1 *2 *3) + (-12 (-5 *3 (-921)) (-5 *2 (-1171 *4)) (-5 *1 (-359 *4)) + (-4 *4 (-351))))) +(((*1 *2 *2) (-12 (-5 *2 (-1093 (-843 (-225)))) (-5 *1 (-306))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-874)) (-5 *3 (-644 (-264))) (-5 *1 (-262))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1214)) (-5 *2 (-771)) (-5 *1 (-182 *4 *3)) + (-4 *3 (-674 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-131)) + (-5 *2 (-644 (-2 (|:| |gen| *3) (|:| -3571 *4)))))) + ((*1 *2 *1) + (-12 (-5 *2 (-644 (-2 (|:| -3103 *3) (|:| -1863 *4)))) + (-5 *1 (-735 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-726)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1242 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792)) + (-5 *2 (-1155 (-2 (|:| |k| *4) (|:| |c| *3))))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-225)) (-5 *5 (-566)) (-5 *2 (-1209 *3)) + (-5 *1 (-790 *3)) (-4 *3 (-974)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-644 (-644 (-943 (-225))))) (-5 *4 (-112)) + (-5 *1 (-1209 *2)) (-4 *2 (-974))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-1134))) (-5 *1 (-671)))) + ((*1 *2 *1) + (-12 (-5 *2 (-644 (-921))) (-5 *1 (-1100 *3 *4)) (-14 *3 (-921)) + (-14 *4 (-921))))) +(((*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-632))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-974 *4 *5 *6 *3)) (-4 *4 (-1047)) (-4 *5 (-791)) - (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)) (-4 *4 (-556)) + (-12 (-4 *1 (-976 *4 *5 *6 *3)) (-4 *4 (-1049)) (-4 *5 (-793)) + (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-4 *4 (-558)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1173)) (-5 *2 (-1267)) (-5 *1 (-1176)))) - ((*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-1176))))) -(((*1 *2) (-12 (-5 *2 (-919)) (-5 *1 (-157))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-623 *4 *5)) + (-5 *3 + (-1 (-2 (|:| |ans| *4) (|:| -4361 *4) (|:| |sol?| (-112))) + (-566) *4)) + (-4 *4 (-365)) (-4 *5 (-1240 *4)) (-5 *1 (-576 *4 *5))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) + (-5 *2 + (-2 (|:| -2153 *4) (|:| -1452 *4) (|:| |totalpts| (-566)) + (|:| |success| (-112)))) + (-5 *1 (-789)) (-5 *5 (-566))))) +(((*1 *2 *1) (-12 (-4 *1 (-558)) (-5 *2 (-112))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-771)) (-4 *1 (-983 *2)) (-4 *2 (-1199))))) +(((*1 *2 *1) (-12 (-5 *2 (-822)) (-5 *1 (-821))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-1262 *4)) (-4 *4 (-637 (-564))) - (-5 *2 (-1262 (-564))) (-5 *1 (-1289 *4))))) -(((*1 *2) - (-12 (-4 *4 (-363)) (-5 *2 (-769)) (-5 *1 (-328 *3 *4)) - (-4 *3 (-329 *4)))) - ((*1 *2) (-12 (-4 *1 (-1281 *3)) (-4 *3 (-363)) (-5 *2 (-769))))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) - (-12 (-5 *4 (-642 (-112))) (-5 *5 (-687 (-225))) - (-5 *6 (-687 (-564))) (-5 *7 (-225)) (-5 *3 (-564)) (-5 *2 (-1033)) - (-5 *1 (-752))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) - (-4 *3 (-367 *4)))) - ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-642 (-1173))) (-5 *1 (-536))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-564)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-418 *2)) (-4 *2 (-556))))) -(((*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-860))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-1 (-536) (-642 (-536)))) (-5 *1 (-114)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-536) (-642 (-536)))) (-5 *1 (-114)))) - ((*1 *1) (-5 *1 (-578)))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-642 *7)) (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-452)) - (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112)) - (-5 *1 (-986 *4 *5 *6 *7 *8)) (-4 *8 (-1068 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-642 *7)) (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-452)) - (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112)) - (-5 *1 (-1104 *4 *5 *6 *7 *8)) (-4 *8 (-1068 *4 *5 *6 *7))))) -(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1212)))) + (-12 (-5 *3 (-169 *5)) (-4 *5 (-13 (-432 *4) (-1002) (-1199))) + (-4 *4 (-558)) (-4 *2 (-13 (-432 (-169 *4)) (-1002) (-1199))) + (-5 *1 (-600 *4 *5 *2))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-1 (-644 *2) *2 *2 *2)) (-4 *2 (-1099)) + (-5 *1 (-103 *2)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1099)) (-5 *1 (-103 *2))))) +(((*1 *2 *3) + (-12 (|has| *6 (-6 -4418)) (-4 *4 (-365)) (-4 *5 (-375 *4)) + (-4 *6 (-375 *4)) (-5 *2 (-644 *6)) (-5 *1 (-523 *4 *5 *6 *3)) + (-4 *3 (-687 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (|has| *9 (-6 -4418)) (-4 *4 (-558)) (-4 *5 (-375 *4)) + (-4 *6 (-375 *4)) (-4 *7 (-992 *4)) (-4 *8 (-375 *7)) + (-4 *9 (-375 *7)) (-5 *2 (-644 *6)) + (-5 *1 (-524 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-687 *4 *5 *6)) + (-4 *10 (-687 *7 *8 *9)))) + ((*1 *2 *1) + (-12 (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-4 *3 (-558)) (-5 *2 (-644 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-558)) (-4 *4 (-172)) (-4 *5 (-375 *4)) + (-4 *6 (-375 *4)) (-5 *2 (-644 *6)) (-5 *1 (-688 *4 *5 *6 *3)) + (-4 *3 (-687 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-558)) + (-5 *2 (-644 *7))))) +(((*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-862))))) +(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1214)))) ((*1 *1 *2) - (-12 (-5 *2 (-950 (-379))) (-5 *1 (-339 *3 *4 *5)) - (-4 *5 (-1036 (-379))) (-14 *3 (-642 (-1173))) - (-14 *4 (-642 (-1173))) (-4 *5 (-387)))) + (-12 (-5 *2 (-952 (-381))) (-5 *1 (-341 *3 *4 *5)) + (-4 *5 (-1038 (-381))) (-14 *3 (-644 (-1175))) + (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) ((*1 *1 *2) - (-12 (-5 *2 (-407 (-950 (-379)))) (-5 *1 (-339 *3 *4 *5)) - (-4 *5 (-1036 (-379))) (-14 *3 (-642 (-1173))) - (-14 *4 (-642 (-1173))) (-4 *5 (-387)))) + (-12 (-5 *2 (-409 (-952 (-381)))) (-5 *1 (-341 *3 *4 *5)) + (-4 *5 (-1038 (-381))) (-14 *3 (-644 (-1175))) + (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) ((*1 *1 *2) - (-12 (-5 *2 (-316 (-379))) (-5 *1 (-339 *3 *4 *5)) - (-4 *5 (-1036 (-379))) (-14 *3 (-642 (-1173))) - (-14 *4 (-642 (-1173))) (-4 *5 (-387)))) + (-12 (-5 *2 (-317 (-381))) (-5 *1 (-341 *3 *4 *5)) + (-4 *5 (-1038 (-381))) (-14 *3 (-644 (-1175))) + (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) ((*1 *1 *2) - (-12 (-5 *2 (-950 (-564))) (-5 *1 (-339 *3 *4 *5)) - (-4 *5 (-1036 (-564))) (-14 *3 (-642 (-1173))) - (-14 *4 (-642 (-1173))) (-4 *5 (-387)))) + (-12 (-5 *2 (-952 (-566))) (-5 *1 (-341 *3 *4 *5)) + (-4 *5 (-1038 (-566))) (-14 *3 (-644 (-1175))) + (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) ((*1 *1 *2) - (-12 (-5 *2 (-407 (-950 (-564)))) (-5 *1 (-339 *3 *4 *5)) - (-4 *5 (-1036 (-564))) (-14 *3 (-642 (-1173))) - (-14 *4 (-642 (-1173))) (-4 *5 (-387)))) + (-12 (-5 *2 (-409 (-952 (-566)))) (-5 *1 (-341 *3 *4 *5)) + (-4 *5 (-1038 (-566))) (-14 *3 (-644 (-1175))) + (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) ((*1 *1 *2) - (-12 (-5 *2 (-316 (-564))) (-5 *1 (-339 *3 *4 *5)) - (-4 *5 (-1036 (-564))) (-14 *3 (-642 (-1173))) - (-14 *4 (-642 (-1173))) (-4 *5 (-387)))) + (-12 (-5 *2 (-317 (-566))) (-5 *1 (-341 *3 *4 *5)) + (-4 *5 (-1038 (-566))) (-14 *3 (-644 (-1175))) + (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) ((*1 *1 *2) - (-12 (-5 *2 (-1173)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-642 *2)) - (-14 *4 (-642 *2)) (-4 *5 (-387)))) + (-12 (-5 *2 (-1175)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-644 *2)) + (-14 *4 (-644 *2)) (-4 *5 (-389)))) ((*1 *1 *2) - (-12 (-5 *2 (-316 *5)) (-4 *5 (-387)) (-5 *1 (-339 *3 *4 *5)) - (-14 *3 (-642 (-1173))) (-14 *4 (-642 (-1173))))) - ((*1 *1 *2) (-12 (-5 *2 (-687 (-407 (-950 (-564))))) (-4 *1 (-384)))) - ((*1 *1 *2) (-12 (-5 *2 (-687 (-407 (-950 (-379))))) (-4 *1 (-384)))) - ((*1 *1 *2) (-12 (-5 *2 (-687 (-950 (-564)))) (-4 *1 (-384)))) - ((*1 *1 *2) (-12 (-5 *2 (-687 (-950 (-379)))) (-4 *1 (-384)))) - ((*1 *1 *2) (-12 (-5 *2 (-687 (-316 (-564)))) (-4 *1 (-384)))) - ((*1 *1 *2) (-12 (-5 *2 (-687 (-316 (-379)))) (-4 *1 (-384)))) - ((*1 *1 *2) (-12 (-5 *2 (-407 (-950 (-564)))) (-4 *1 (-396)))) - ((*1 *1 *2) (-12 (-5 *2 (-407 (-950 (-379)))) (-4 *1 (-396)))) - ((*1 *1 *2) (-12 (-5 *2 (-950 (-564))) (-4 *1 (-396)))) - ((*1 *1 *2) (-12 (-5 *2 (-950 (-379))) (-4 *1 (-396)))) - ((*1 *1 *2) (-12 (-5 *2 (-316 (-564))) (-4 *1 (-396)))) - ((*1 *1 *2) (-12 (-5 *2 (-316 (-379))) (-4 *1 (-396)))) - ((*1 *1 *2) (-12 (-5 *2 (-1262 (-407 (-950 (-564))))) (-4 *1 (-441)))) - ((*1 *1 *2) (-12 (-5 *2 (-1262 (-407 (-950 (-379))))) (-4 *1 (-441)))) - ((*1 *1 *2) (-12 (-5 *2 (-1262 (-950 (-564)))) (-4 *1 (-441)))) - ((*1 *1 *2) (-12 (-5 *2 (-1262 (-950 (-379)))) (-4 *1 (-441)))) - ((*1 *1 *2) (-12 (-5 *2 (-1262 (-316 (-564)))) (-4 *1 (-441)))) - ((*1 *1 *2) (-12 (-5 *2 (-1262 (-316 (-379)))) (-4 *1 (-441)))) + (-12 (-5 *2 (-317 *5)) (-4 *5 (-389)) (-5 *1 (-341 *3 *4 *5)) + (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))))) + ((*1 *1 *2) (-12 (-5 *2 (-689 (-409 (-952 (-566))))) (-4 *1 (-386)))) + ((*1 *1 *2) (-12 (-5 *2 (-689 (-409 (-952 (-381))))) (-4 *1 (-386)))) + ((*1 *1 *2) (-12 (-5 *2 (-689 (-952 (-566)))) (-4 *1 (-386)))) + ((*1 *1 *2) (-12 (-5 *2 (-689 (-952 (-381)))) (-4 *1 (-386)))) + ((*1 *1 *2) (-12 (-5 *2 (-689 (-317 (-566)))) (-4 *1 (-386)))) + ((*1 *1 *2) (-12 (-5 *2 (-689 (-317 (-381)))) (-4 *1 (-386)))) + ((*1 *1 *2) (-12 (-5 *2 (-409 (-952 (-566)))) (-4 *1 (-398)))) + ((*1 *1 *2) (-12 (-5 *2 (-409 (-952 (-381)))) (-4 *1 (-398)))) + ((*1 *1 *2) (-12 (-5 *2 (-952 (-566))) (-4 *1 (-398)))) + ((*1 *1 *2) (-12 (-5 *2 (-952 (-381))) (-4 *1 (-398)))) + ((*1 *1 *2) (-12 (-5 *2 (-317 (-566))) (-4 *1 (-398)))) + ((*1 *1 *2) (-12 (-5 *2 (-317 (-381))) (-4 *1 (-398)))) + ((*1 *1 *2) (-12 (-5 *2 (-1264 (-409 (-952 (-566))))) (-4 *1 (-443)))) + ((*1 *1 *2) (-12 (-5 *2 (-1264 (-409 (-952 (-381))))) (-4 *1 (-443)))) + ((*1 *1 *2) (-12 (-5 *2 (-1264 (-952 (-566)))) (-4 *1 (-443)))) + ((*1 *1 *2) (-12 (-5 *2 (-1264 (-952 (-381)))) (-4 *1 (-443)))) + ((*1 *1 *2) (-12 (-5 *2 (-1264 (-317 (-566)))) (-4 *1 (-443)))) + ((*1 *1 *2) (-12 (-5 *2 (-1264 (-317 (-381)))) (-4 *1 (-443)))) ((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| - (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) - (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) + (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) + (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| - (-2 (|:| |fn| (-316 (-225))) - (|:| -4138 (-642 (-1091 (-841 (-225))))) + (-2 (|:| |fn| (-317 (-225))) + (|:| -1680 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) - (-5 *1 (-767)))) + (-5 *1 (-769)))) ((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) - (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) + (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) + (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *1 (-806)))) + (-5 *1 (-808)))) ((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| - (-2 (|:| |fn| (-316 (-225))) (|:| -3910 (-642 (-225))) - (|:| |lb| (-642 (-841 (-225)))) - (|:| |cf| (-642 (-316 (-225)))) - (|:| |ub| (-642 (-841 (-225)))))) + (-2 (|:| |fn| (-317 (-225))) (|:| -3968 (-644 (-225))) + (|:| |lb| (-644 (-843 (-225)))) + (|:| |cf| (-644 (-317 (-225)))) + (|:| |ub| (-644 (-843 (-225)))))) (|:| |lsa| - (-2 (|:| |lfn| (-642 (-316 (-225)))) - (|:| -3910 (-642 (-225))))))) - (-5 *1 (-839)))) + (-2 (|:| |lfn| (-644 (-317 (-225)))) + (|:| -3968 (-644 (-225))))))) + (-5 *1 (-841)))) ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| |pde| (-642 (-316 (-225)))) + (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| - (-642 + (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) - (|:| |grid| (-769)) (|:| |boundaryType| (-564)) - (|:| |dStart| (-687 (-225))) (|:| |dFinish| (-687 (-225)))))) - (|:| |f| (-642 (-642 (-316 (-225))))) (|:| |st| (-1155)) + (|:| |grid| (-771)) (|:| |boundaryType| (-566)) + (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) + (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225)))) - (-5 *1 (-896)))) + (-5 *1 (-898)))) ((*1 *1 *2) - (-12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-1047)) - (-4 *4 (-791)) (-4 *5 (-848)) (-4 *1 (-974 *3 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-1036 *2)) (-4 *2 (-1212)))) + (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-1049)) + (-4 *4 (-793)) (-4 *5 (-850)) (-4 *1 (-976 *3 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-1038 *2)) (-4 *2 (-1214)))) ((*1 *1 *2) - (-2682 - (-12 (-5 *2 (-950 *3)) - (-12 (-2307 (-4 *3 (-38 (-407 (-564))))) - (-2307 (-4 *3 (-38 (-564)))) (-4 *5 (-612 (-1173)))) - (-4 *3 (-1047)) (-4 *1 (-1062 *3 *4 *5)) (-4 *4 (-791)) - (-4 *5 (-848))) - (-12 (-5 *2 (-950 *3)) - (-12 (-2307 (-4 *3 (-545))) (-2307 (-4 *3 (-38 (-407 (-564))))) - (-4 *3 (-38 (-564))) (-4 *5 (-612 (-1173)))) - (-4 *3 (-1047)) (-4 *1 (-1062 *3 *4 *5)) (-4 *4 (-791)) - (-4 *5 (-848))) - (-12 (-5 *2 (-950 *3)) - (-12 (-2307 (-4 *3 (-990 (-564)))) (-4 *3 (-38 (-407 (-564)))) - (-4 *5 (-612 (-1173)))) - (-4 *3 (-1047)) (-4 *1 (-1062 *3 *4 *5)) (-4 *4 (-791)) - (-4 *5 (-848))))) + (-2809 + (-12 (-5 *2 (-952 *3)) + (-12 (-2387 (-4 *3 (-38 (-409 (-566))))) + (-2387 (-4 *3 (-38 (-566)))) (-4 *5 (-614 (-1175)))) + (-4 *3 (-1049)) (-4 *1 (-1064 *3 *4 *5)) (-4 *4 (-793)) + (-4 *5 (-850))) + (-12 (-5 *2 (-952 *3)) + (-12 (-2387 (-4 *3 (-547))) (-2387 (-4 *3 (-38 (-409 (-566))))) + (-4 *3 (-38 (-566))) (-4 *5 (-614 (-1175)))) + (-4 *3 (-1049)) (-4 *1 (-1064 *3 *4 *5)) (-4 *4 (-793)) + (-4 *5 (-850))) + (-12 (-5 *2 (-952 *3)) + (-12 (-2387 (-4 *3 (-992 (-566)))) (-4 *3 (-38 (-409 (-566)))) + (-4 *5 (-614 (-1175)))) + (-4 *3 (-1049)) (-4 *1 (-1064 *3 *4 *5)) (-4 *4 (-793)) + (-4 *5 (-850))))) ((*1 *1 *2) - (-2682 - (-12 (-5 *2 (-950 (-564))) (-4 *1 (-1062 *3 *4 *5)) - (-12 (-2307 (-4 *3 (-38 (-407 (-564))))) (-4 *3 (-38 (-564))) - (-4 *5 (-612 (-1173)))) - (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848))) - (-12 (-5 *2 (-950 (-564))) (-4 *1 (-1062 *3 *4 *5)) - (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1173)))) - (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848))))) + (-2809 + (-12 (-5 *2 (-952 (-566))) (-4 *1 (-1064 *3 *4 *5)) + (-12 (-2387 (-4 *3 (-38 (-409 (-566))))) (-4 *3 (-38 (-566))) + (-4 *5 (-614 (-1175)))) + (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850))) + (-12 (-5 *2 (-952 (-566))) (-4 *1 (-1064 *3 *4 *5)) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *5 (-614 (-1175)))) + (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850))))) ((*1 *1 *2) - (-12 (-5 *2 (-950 (-407 (-564)))) (-4 *1 (-1062 *3 *4 *5)) - (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1173))) (-4 *3 (-1047)) - (-4 *4 (-791)) (-4 *5 (-848))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-642 (-769))) (-5 *3 (-112)) (-5 *1 (-1161 *4 *5)) - (-14 *4 (-919)) (-4 *5 (-1047))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-418 *3)) (-4 *3 (-556))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-642 *6)) (-5 *4 (-1173)) (-4 *6 (-430 *5)) - (-4 *5 (-1097)) (-5 *2 (-642 (-610 *6))) (-5 *1 (-573 *5 *6))))) -(((*1 *2 *3) - (-12 (-4 *4 (-349)) (-5 *2 (-418 *3)) (-5 *1 (-216 *4 *3)) - (-4 *3 (-1238 *4)))) - ((*1 *2 *3) - (-12 (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-769)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) - (-4 *3 (-1238 (-564))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-642 (-769))) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) - (-4 *3 (-1238 (-564))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-642 (-769))) (-5 *5 (-769)) (-5 *2 (-418 *3)) - (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-769)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) - (-4 *3 (-1238 (-564))))) - ((*1 *2 *3) - (-12 (-5 *2 (-418 *3)) (-5 *1 (-1005 *3)) - (-4 *3 (-1238 (-407 (-564)))))) - ((*1 *2 *3) - (-12 (-5 *2 (-418 *3)) (-5 *1 (-1227 *3)) (-4 *3 (-1238 (-564)))))) + (-12 (-5 *2 (-952 (-409 (-566)))) (-4 *1 (-1064 *3 *4 *5)) + (-4 *3 (-38 (-409 (-566)))) (-4 *5 (-614 (-1175))) (-4 *3 (-1049)) + (-4 *4 (-793)) (-4 *5 (-850))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-1 (-538) (-644 (-538)))) (-5 *1 (-114)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-538) (-644 (-538)))) (-5 *1 (-114)))) + ((*1 *1) (-5 *1 (-580)))) (((*1 *2 *3) - (-12 (-5 *3 (-316 (-379))) (-5 *2 (-316 (-225))) (-5 *1 (-305))))) -(((*1 *2 *1) (-12 (-5 *2 (-642 (-1173))) (-5 *1 (-823))))) + (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) + (-5 *2 (-644 *4)) (-5 *1 (-1127 *3 *4)) (-4 *3 (-1240 *4)))) + ((*1 *2 *3 *3 *3) + (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) + (-5 *2 (-644 *3)) (-5 *1 (-1127 *4 *3)) (-4 *4 (-1240 *3))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-976 *3 *4 *2 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *2 (-850)) (-4 *5 (-1064 *3 *4 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) + (-5 *2 + (-3 (|:| |%expansion| (-314 *5 *3 *6 *7)) + (|:| |%problem| (-2 (|:| |func| (-1157)) (|:| |prob| (-1157)))))) + (-5 *1 (-422 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1199) (-432 *5))) + (-14 *6 (-1175)) (-14 *7 *3)))) +(((*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1157)) (-5 *1 (-306))))) +(((*1 *2) + (-12 + (-5 *2 (-2 (|:| -4346 (-644 (-1175))) (|:| -3633 (-644 (-1175))))) + (-5 *1 (-1216))))) +(((*1 *2 *1) + (-12 (-5 *2 (-644 (-2 (|:| |gen| *3) (|:| -3571 *4)))) + (-5 *1 (-649 *3 *4 *5)) (-4 *3 (-1099)) (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-943 (-225)))) (-5 *1 (-1265))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1173)) (-5 *3 (-642 (-536))) (-5 *1 (-536))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1198 *3)) (-4 *3 (-1097))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-407 (-564))) - (-4 *4 (-13 (-556) (-1036 (-564)) (-637 (-564)))) - (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1197) (-430 *4)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1238 *2)) (-4 *2 (-1216)) (-5 *1 (-148 *2 *4 *3)) - (-4 *3 (-1238 (-407 *4)))))) + (-12 (-5 *2 (-1175)) (-5 *3 (-644 (-538))) (-5 *1 (-538))))) (((*1 *2 *3) - (-12 (-5 *3 (-316 (-225))) (-5 *2 (-407 (-564))) (-5 *1 (-305))))) -(((*1 *1) (-5 *1 (-144)))) -(((*1 *2 *2 *2) - (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) - (-5 *1 (-1125 *3 *2)) (-4 *3 (-1238 *2))))) + (-12 (-5 *3 (-644 *7)) (-4 *7 (-949 *4 *5 *6)) (-4 *4 (-454)) + (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-1269)) + (-5 *1 (-451 *4 *5 *6 *7))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) + (-4 *3 (-369 *4)))) + ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) (((*1 *2 *2) - (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1197)))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1262 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) - (-5 *2 (-687 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-687 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3710 *4))) - (-5 *1 (-967 *4 *3)) (-4 *3 (-1238 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-425 *3)) (-4 *3 (-1097)) (-5 *2 (-769))))) -(((*1 *1) (-5 *1 (-130)))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1212)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-848)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-848)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-564)) (-4 *1 (-282 *3)) (-4 *3 (-1212)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-564)) (-4 *1 (-282 *2)) (-4 *2 (-1212)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 - (|:| -1914 - (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) - (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (|:| -2683 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1153 (-225))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -4138 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))))) - (-5 *1 (-559)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-769)) (-4 *1 (-693 *2)) (-4 *2 (-1097)))) - ((*1 *1 *2) - (-12 + (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1199)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-308)) (-4 *6 (-375 *5)) (-4 *4 (-375 *5)) (-5 *2 - (-2 - (|:| -1914 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) - (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (|:| -2683 - (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) - (|:| |expense| (-379)) (|:| |accuracy| (-379)) - (|:| |intermediateResults| (-379)))))) - (-5 *1 (-801)))) - ((*1 *2 *3 *4) - (-12 (-5 *2 (-1267)) (-5 *1 (-1189 *3 *4)) (-4 *3 (-1097)) - (-4 *4 (-1097))))) -(((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1173)) (-5 *3 (-112)) (-5 *1 (-890 *4)) - (-4 *4 (-1097))))) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1419 (-644 *4)))) + (-5 *1 (-1123 *5 *6 *4 *3)) (-4 *3 (-687 *5 *6 *4))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-644 *1)) (-4 *1 (-1064 *4 *5 *6)) (-4 *4 (-1049)) + (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *5 (-850)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1207 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) + (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1207 *4 *5 *6 *3)) (-4 *4 (-558)) (-4 *5 (-793)) + (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *3 (-642 *7)) (-4 *7 (-947 *4 *5 *6)) (-4 *4 (-452)) - (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-1267)) - (-5 *1 (-449 *4 *5 *6 *7))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) - (-5 *1 (-750))))) -(((*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-564)))) - ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-697))))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-225) (-225) (-225))) - (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) - (-5 *5 (-1091 (-225))) (-5 *6 (-642 (-263))) (-5 *2 (-1130 (-225))) - (-5 *1 (-695)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-941 (-225)) (-225) (-225))) (-5 *4 (-1091 (-225))) - (-5 *5 (-642 (-263))) (-5 *2 (-1130 (-225))) (-5 *1 (-695)))) - ((*1 *2 *2 *3 *4 *4 *5) - (-12 (-5 *2 (-1130 (-225))) (-5 *3 (-1 (-941 (-225)) (-225) (-225))) - (-5 *4 (-1091 (-225))) (-5 *5 (-642 (-263))) (-5 *1 (-695))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-379)) (-5 *3 (-642 (-263))) (-5 *1 (-261)))) - ((*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-263))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) - (-5 *1 (-753))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) + (-12 (-5 *3 (-317 (-381))) (-5 *2 (-317 (-225))) (-5 *1 (-306))))) +(((*1 *1 *1 *2) + (|partial| -12 (-5 *2 (-921)) (-5 *1 (-1100 *3 *4)) (-14 *3 *2) + (-14 *4 *2)))) (((*1 *2 *1) - (-12 (-5 *2 (-171)) (-5 *1 (-1161 *3 *4)) (-14 *3 (-919)) - (-4 *4 (-1047))))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-687 (-169 (-225)))) (-5 *2 (-1033)) - (-5 *1 (-752))))) + (-12 (-5 *2 (-1264 (-771))) (-5 *1 (-675 *3)) (-4 *3 (-1099))))) +(((*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-112))))) +(((*1 *1) + (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-558)) (-4 *2 (-172))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4417)) (-4 *1 (-491 *3)) (-4 *3 (-1214)) + (-4 *3 (-1099)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-905 *4)) (-4 *4 (-1099)) (-5 *2 (-112)) + (-5 *1 (-904 *4)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-921)) (-5 *2 (-112)) (-5 *1 (-1100 *4 *5)) (-14 *4 *3) + (-14 *5 *3)))) +(((*1 *2 *1) (-12 (-4 *1 (-406)) (-5 *2 (-566)))) + ((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-699))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1132 (-225))) (-5 *3 (-644 (-264))) (-5 *1 (-1266)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1132 (-225))) (-5 *3 (-1157)) (-5 *1 (-1266)))) + ((*1 *1 *1) (-5 *1 (-1266)))) +(((*1 *2 *3 *3 *3 *4 *5 *6) + (-12 (-5 *3 (-317 (-566))) (-5 *4 (-1 (-225) (-225))) + (-5 *5 (-1093 (-225))) (-5 *6 (-644 (-264))) (-5 *2 (-1132 (-225))) + (-5 *1 (-697))))) (((*1 *2 *3) - (-12 (-4 *1 (-837)) - (-5 *3 - (-2 (|:| |fn| (-316 (-225))) (|:| -3910 (-642 (-225))) - (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) - (|:| |ub| (-642 (-841 (-225)))))) - (-5 *2 (-1033)))) - ((*1 *2 *3) - (-12 (-4 *1 (-837)) - (-5 *3 - (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3910 (-642 (-225))))) - (-5 *2 (-1033))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-919)) (-5 *3 (-642 (-263))) (-5 *1 (-261)))) - ((*1 *1 *2) (-12 (-5 *2 (-919)) (-5 *1 (-263))))) + (-12 (-5 *3 (-644 *5)) (-4 *5 (-432 *4)) (-4 *4 (-558)) + (-5 *2 (-862)) (-5 *1 (-32 *4 *5))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) + (-4 *4 (-850)) (-4 *2 (-454))))) +(((*1 *2 *3 *4 *3 *5 *3) + (-12 (-5 *4 (-689 (-225))) (-5 *5 (-689 (-566))) (-5 *3 (-566)) + (-5 *2 (-1035)) (-5 *1 (-754))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-644 (-225)))) (-5 *1 (-926))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 (-1093 (-409 (-566))))) (-5 *1 (-264)))) + ((*1 *1 *2) (-12 (-5 *2 (-644 (-1093 (-381)))) (-5 *1 (-264))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-566)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1214)) + (-4 *3 (-375 *4)) (-4 *5 (-375 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-537 *3 *2)) - (-4 *2 (-1253 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-4 *4 (-1238 *3)) - (-4 *5 (-722 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1253 *5)))) + (-12 (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566)))) + (-5 *1 (-422 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1199) (-432 *3))) + (-14 *4 (-1175)) (-14 *5 *2))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-5 *1 (-542 *3 *2)) - (-4 *2 (-1253 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-13 (-556) (-147))) - (-5 *1 (-1149 *3))))) -(((*1 *2) - (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) - (-4 *5 (-1238 (-407 *4))) (-5 *2 (-687 (-407 *4)))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1212)) (-5 *1 (-182 *3 *2)) (-4 *2 (-672 *3))))) -(((*1 *1 *1) (-5 *1 (-1060)))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1262 *4)) (-4 *4 (-637 *5)) (-4 *5 (-363)) - (-4 *5 (-556)) (-5 *2 (-1262 *5)) (-5 *1 (-636 *5 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1262 *4)) (-4 *4 (-637 *5)) - (-2307 (-4 *5 (-363))) (-4 *5 (-556)) (-5 *2 (-1262 (-407 *5))) - (-5 *1 (-636 *5 *4))))) + (-12 (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566)))) + (-4 *2 (-13 (-27) (-1199) (-432 *3) (-10 -8 (-15 -2479 ($ *4))))) + (-4 *4 (-848)) + (-4 *5 + (-13 (-1242 *2 *4) (-365) (-1199) + (-10 -8 (-15 -3526 ($ $)) (-15 -2390 ($ $))))) + (-5 *1 (-424 *3 *2 *4 *5 *6 *7)) (-4 *6 (-983 *5)) (-14 *7 (-1175))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1058 (-1022 *4) (-1169 (-1022 *4)))) (-5 *3 (-860)) - (-5 *1 (-1022 *4)) (-4 *4 (-13 (-846) (-363) (-1020)))))) + (-12 (-5 *2 (-1264 *3)) (-4 *3 (-1240 *4)) (-4 *4 (-1218)) + (-4 *1 (-344 *4 *3 *5)) (-4 *5 (-1240 (-409 *3)))))) (((*1 *2 *1) - (-12 (-4 *3 (-1097)) (-4 *4 (-13 (-1047) (-884 *3) (-612 *2))) - (-5 *2 (-890 *3)) (-5 *1 (-1073 *3 *4 *5)) - (-4 *5 (-13 (-430 *4) (-884 *3) (-612 *2)))))) -(((*1 *1 *2) - (-12 - (-5 *2 - (-642 - (-2 - (|:| -1914 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1262 (-316 (-225)))) - (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) - (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (|:| -2683 - (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) - (|:| |expense| (-379)) (|:| |accuracy| (-379)) - (|:| |intermediateResults| (-379))))))) - (-5 *1 (-801))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1173))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -4351 *6) (|:| |sol?| (-112))) (-564) - *6)) - (-4 *6 (-363)) (-4 *7 (-1238 *6)) - (-5 *2 - (-3 (-2 (|:| |answer| (-407 *7)) (|:| |a0| *6)) - (-2 (|:| -3872 (-407 *7)) (|:| |coeff| (-407 *7))) "failed")) - (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-642 (-950 *6))) (-5 *4 (-642 (-1173))) (-4 *6 (-452)) - (-5 *2 (-642 (-642 *7))) (-5 *1 (-538 *6 *7 *5)) (-4 *7 (-363)) - (-4 *5 (-13 (-363) (-846)))))) + (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) + (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1255 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-1205 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-791)) - (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-642 *5))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4410)) (-4 *1 (-602 *4 *3)) (-4 *4 (-1097)) - (-4 *3 (-1212)) (-4 *3 (-1097)) (-5 *2 (-112))))) + (-12 (-5 *2 (-771)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) + (-4 *4 (-1049))))) (((*1 *2 *3) - (-12 (-5 *3 (-1262 *5)) (-4 *5 (-637 *4)) (-4 *4 (-556)) - (-5 *2 (-112)) (-5 *1 (-636 *4 *5))))) -(((*1 *1) (-5 *1 (-559)))) -(((*1 *2 *2) - (-12 (-5 *2 (-642 *6)) (-4 *6 (-947 *3 *4 *5)) (-4 *3 (-307)) - (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-447 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-642 *7)) (-5 *3 (-1155)) (-4 *7 (-947 *4 *5 *6)) - (-4 *4 (-307)) (-4 *5 (-791)) (-4 *6 (-848)) - (-5 *1 (-447 *4 *5 *6 *7)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-642 *7)) (-5 *3 (-1155)) (-4 *7 (-947 *4 *5 *6)) - (-4 *4 (-307)) (-4 *5 (-791)) (-4 *6 (-848)) - (-5 *1 (-447 *4 *5 *6 *7))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-860) (-860))) (-5 *1 (-114)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-860) (-642 (-860)))) (-5 *1 (-114)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-1 (-860) (-642 (-860)))) (-5 *1 (-114)))) + (-12 (-4 *4 (-38 (-409 (-566)))) + (-5 *2 (-2 (|:| -3197 (-1155 *4)) (|:| -3207 (-1155 *4)))) + (-5 *1 (-1161 *4)) (-5 *3 (-1155 *4))))) +(((*1 *2 *3 *3 *4 *5 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) + (-4 *3 (-1064 *6 *7 *8)) + (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -2192 *4)))) + (-5 *1 (-1107 *6 *7 *8 *3 *4)) (-4 *4 (-1070 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-644 (-2 (|:| |val| (-644 *8)) (|:| -2192 *9)))) + (-5 *5 (-112)) (-4 *8 (-1064 *6 *7 *4)) (-4 *9 (-1070 *6 *7 *4 *8)) + (-4 *6 (-454)) (-4 *7 (-793)) (-4 *4 (-850)) + (-5 *2 (-644 (-2 (|:| |val| *8) (|:| -2192 *9)))) + (-5 *1 (-1107 *6 *7 *4 *8 *9))))) +(((*1 *1 *1) + (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-1279 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)) + (-5 *1 (-664 *3 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-1267)) (-5 *1 (-214 *3)) - (-4 *3 - (-13 (-848) - (-10 -8 (-15 -4369 ((-1155) $ (-1173))) (-15 -1639 (*2 $)) - (-15 -2973 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-394)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1267)) (-5 *1 (-394)))) - ((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-502)))) - ((*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-708)))) - ((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-1192)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1267)) (-5 *1 (-1192))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1047)) (-5 *2 (-564)) (-5 *1 (-443 *4 *3 *5)) - (-4 *3 (-1238 *4)) - (-4 *5 (-13 (-404) (-1036 *4) (-363) (-1197) (-284)))))) + (|partial| -12 (-5 *2 (-664 *3 *4)) (-5 *1 (-1284 *3 *4)) + (-4 *3 (-850)) (-4 *4 (-172))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1099)) (-4 *4 (-13 (-1049) (-886 *3) (-614 *2))) + (-5 *2 (-892 *3)) (-5 *1 (-1075 *3 *4 *5)) + (-4 *5 (-13 (-432 *4) (-886 *3) (-614 *2)))))) (((*1 *1 *2) - (-12 (-4 *3 (-1047)) (-5 *1 (-825 *2 *3)) (-4 *2 (-706 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-642 (-2 (|:| |deg| (-769)) (|:| -2918 *5)))) - (-4 *5 (-1238 *4)) (-4 *4 (-349)) (-5 *2 (-642 *5)) - (-5 *1 (-216 *4 *5)))) + (-12 (-4 *3 (-1049)) (-5 *1 (-827 *2 *3)) (-4 *2 (-708 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) + (-4 *3 (-1064 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-644 *4)) + (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -2192 *4)))))) + (-5 *1 (-1068 *6 *7 *8 *3 *4)) (-4 *4 (-1070 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-642 (-2 (|:| -2254 *5) (|:| -3252 (-564))))) - (-5 *4 (-564)) (-4 *5 (-1238 *4)) (-5 *2 (-642 *5)) - (-5 *1 (-694 *5))))) -(((*1 *1) (-5 *1 (-821)))) + (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) + (-4 *3 (-1064 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-644 *4)) + (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -2192 *4)))))) + (-5 *1 (-1144 *5 *6 *7 *3 *4)) (-4 *4 (-1108 *5 *6 *7 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1175)) (-4 *4 (-454)) (-4 *4 (-1099)) + (-5 *1 (-575 *4 *2)) (-4 *2 (-285)) (-4 *2 (-432 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1199)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3))))) +(((*1 *1 *1 *1) (-5 *1 (-862)))) +(((*1 *2) + (-12 (-4 *3 (-1049)) (-5 *2 (-958 (-712 *3 *4))) (-5 *1 (-712 *3 *4)) + (-4 *4 (-1240 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-769)) (-5 *2 (-642 (-1173))) (-5 *1 (-210)) - (-5 *3 (-1173)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-316 (-225))) (-5 *4 (-769)) (-5 *2 (-642 (-1173))) - (-5 *1 (-267)))) - ((*1 *2 *1) - (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-848)) (-4 *4 (-172)) - (-5 *2 (-642 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-642 *3)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-848)) - (-4 *4 (-13 (-172) (-715 (-407 (-564))))) (-14 *5 (-919)))) - ((*1 *2 *1) (-12 (-5 *2 (-642 *3)) (-5 *1 (-670 *3)) (-4 *3 (-848)))) - ((*1 *2 *1) (-12 (-5 *2 (-642 *3)) (-5 *1 (-675 *3)) (-4 *3 (-848)))) - ((*1 *2 *1) (-12 (-5 *2 (-642 *3)) (-5 *1 (-817 *3)) (-4 *3 (-848)))) - ((*1 *2 *1) (-12 (-5 *2 (-642 *3)) (-5 *1 (-891 *3)) (-4 *3 (-848)))) + (|partial| -12 (-5 *4 (-295 (-833 *3))) + (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) + (-5 *2 (-833 *3)) (-5 *1 (-636 *5 *3)) + (-4 *3 (-13 (-27) (-1199) (-432 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-295 (-833 (-952 *5)))) (-4 *5 (-454)) + (-5 *2 (-833 (-409 (-952 *5)))) (-5 *1 (-637 *5)) + (-5 *3 (-409 (-952 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-295 (-409 (-952 *5)))) (-5 *3 (-409 (-952 *5))) + (-4 *5 (-454)) (-5 *2 (-833 *3)) (-5 *1 (-637 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 *2)) (-4 *2 (-432 *4)) (-5 *1 (-158 *4 *2)) + (-4 *4 (-558))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-862) (-862))) (-5 *1 (-114)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-862) (-644 (-862)))) (-5 *1 (-114)))) ((*1 *2 *1) - (-12 (-4 *1 (-1279 *3 *4)) (-4 *3 (-848)) (-4 *4 (-1047)) - (-5 *2 (-642 *3))))) -(((*1 *1 *1) (-4 *1 (-627))) - ((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-628 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1000) (-1197)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-373 *3)) - (-4 *5 (-373 *3)) (-5 *2 (-112)))) + (|partial| -12 (-5 *2 (-1 (-862) (-644 (-862)))) (-5 *1 (-114)))) ((*1 *2 *1) - (-12 (-4 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-769)) (-5 *1 (-854 *2)) (-4 *2 (-172)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1169 (-564))) (-5 *1 (-940)) (-5 *3 (-564))))) -(((*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1057)))) - ((*1 *1 *1) - (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-642 (-1173))) - (-14 *3 (-642 (-1173))) (-4 *4 (-387)))) - ((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-172)) (-4 *2 (-1057)))) - ((*1 *1 *1) (-4 *1 (-846))) - ((*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-172)) (-4 *2 (-1057)))) - ((*1 *1 *1) (-4 *1 (-1057))) ((*1 *1 *1) (-4 *1 (-1136)))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-941 *3) (-941 *3))) (-5 *1 (-176 *3)) - (-4 *3 (-13 (-363) (-1197) (-1000)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-642 *3)) (-4 *3 (-1097)) (-5 *1 (-103 *3))))) -(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 - *4 *6 *4) - (-12 (-5 *4 (-564)) (-5 *5 (-687 (-225))) (-5 *6 (-673 (-225))) - (-5 *3 (-225)) (-5 *2 (-1033)) (-5 *1 (-748))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1153 (-564))) (-5 *1 (-1157 *4)) (-4 *4 (-1047)) - (-5 *3 (-564))))) -(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-860))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-327 *3)) (-4 *3 (-1212)))) - ((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1212)) - (-14 *4 (-564))))) -(((*1 *2 *1) (-12 (-5 *2 (-186)) (-5 *1 (-138)))) - ((*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-186))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1008 *3)) (-4 *3 (-1212)) (-4 *3 (-1097)) - (-5 *2 (-112))))) -(((*1 *1 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-1047)) (-4 *2 (-363))))) -(((*1 *2 *2) - (-12 (-4 *3 (-349)) (-4 *4 (-329 *3)) (-4 *5 (-1238 *4)) - (-5 *1 (-775 *3 *4 *5 *2 *6)) (-4 *2 (-1238 *5)) (-14 *6 (-919)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-769)) (-4 *1 (-1281 *3)) (-4 *3 (-363)) (-4 *3 (-368)))) - ((*1 *1 *1) (-12 (-4 *1 (-1281 *2)) (-4 *2 (-363)) (-4 *2 (-368))))) -(((*1 *1 *1 *2 *2 *2 *2) - (-12 (-5 *2 (-564)) (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047)) - (-4 *4 (-373 *3)) (-4 *5 (-373 *3))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-1286 *3 *4)) (-4 *1 (-374 *3 *4)) (-4 *3 (-848)) - (-4 *4 (-172)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-386 *2)) (-4 *2 (-1097)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-817 *2)) (-4 *2 (-848)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-817 *2)) (-4 *2 (-848)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1279 *2 *3)) (-4 *2 (-848)) (-4 *3 (-1047)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-817 *3)) (-4 *1 (-1279 *3 *4)) (-4 *3 (-848)) - (-4 *4 (-1047)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1279 *2 *3)) (-4 *2 (-848)) (-4 *3 (-1047))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-919)) (-5 *2 (-769)) (-5 *1 (-1098 *4 *5)) (-14 *4 *3) - (-14 *5 *3)))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) - ((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-1263)))) - ((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-1264))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-1089 (-950 (-564)))) (-5 *3 (-950 (-564))) - (-5 *1 (-330)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1089 (-950 (-564)))) (-5 *1 (-330))))) + (-12 (-5 *2 (-1269)) (-5 *1 (-214 *3)) + (-4 *3 + (-13 (-850) + (-10 -8 (-15 -4376 ((-1157) $ (-1175))) (-15 -1659 (*2 $)) + (-15 -2559 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-396)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *2 (-1269)) (-5 *1 (-396)))) + ((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-504)))) + ((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-710)))) + ((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-1194)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *2 (-1269)) (-5 *1 (-1194))))) (((*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 - (-1 (-2 (|:| |ans| *7) (|:| -4351 *7) (|:| |sol?| (-112))) - (-564) *7)) - (-5 *6 (-642 (-407 *8))) (-4 *7 (-363)) (-4 *8 (-1238 *7)) - (-5 *3 (-407 *8)) + (-1 (-3 (-2 (|:| -4069 *7) (|:| |coeff| *7)) "failed") *7)) + (-5 *6 (-644 (-409 *8))) (-4 *7 (-365)) (-4 *8 (-1240 *7)) + (-5 *3 (-409 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| - (-642 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) - (-5 *1 (-574 *7 *8))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-564)) (-5 *3 (-769)) (-5 *1 (-561))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-556) (-1036 (-564)))) (-5 *1 (-188 *3 *2)) - (-4 *2 (-13 (-27) (-1197) (-430 (-169 *3)))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1173)) (-4 *4 (-13 (-556) (-1036 (-564)))) - (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1197) (-430 (-169 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-452) (-1036 (-564)) (-637 (-564)))) - (-5 *1 (-1201 *3 *2)) (-4 *2 (-13 (-27) (-1197) (-430 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1173)) - (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564)))) - (-5 *1 (-1201 *4 *2)) (-4 *2 (-13 (-27) (-1197) (-430 *4)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1173)) - (-4 *4 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147))) - (-5 *2 (-1 *5 *5)) (-5 *1 (-802 *4 *5)) - (-4 *5 (-13 (-29 *4) (-1197) (-957)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3710 *4))) - (-5 *1 (-967 *4 *3)) (-4 *3 (-1238 *4))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-1173)) - (-4 *4 (-13 (-307) (-147) (-1036 (-564)) (-637 (-564)))) - (-5 *1 (-620 *4 *2)) (-4 *2 (-13 (-1197) (-957) (-29 *4)))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-1262 - (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) - (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -1565 (-564)) - (|:| -1478 (-564)) (|:| |spline| (-564)) (|:| -3040 (-564)) - (|:| |axesColor| (-872)) (|:| -3036 (-564)) - (|:| |unitsColor| (-872)) (|:| |showing| (-564))))) - (-5 *1 (-1263))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-925))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) - (-5 *2 (-642 *4)) (-5 *1 (-1125 *3 *4)) (-4 *3 (-1238 *4)))) - ((*1 *2 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) - (-5 *2 (-642 *3)) (-5 *1 (-1125 *4 *3)) (-4 *4 (-1238 *3))))) -(((*1 *2) (-12 (-5 *2 (-642 (-769))) (-5 *1 (-1265)))) - ((*1 *2 *2) (-12 (-5 *2 (-642 (-769))) (-5 *1 (-1265))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-642 (-687 *5))) (-5 *4 (-564)) (-4 *5 (-363)) - (-4 *5 (-1047)) (-5 *2 (-112)) (-5 *1 (-1027 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-642 (-687 *4))) (-4 *4 (-363)) (-4 *4 (-1047)) - (-5 *2 (-112)) (-5 *1 (-1027 *4))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1097)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-5 *2 (-407 (-950 *3))) (-5 *1 (-453 *3 *4 *5 *6)) - (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-919)) - (-14 *5 (-642 (-1173))) (-14 *6 (-1262 (-687 *3)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1169 (-407 (-950 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) - (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-919)) - (-14 *5 (-642 (-1173))) (-14 *6 (-1262 (-687 *3)))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-112)) (-5 *5 (-687 (-225))) - (-5 *2 (-1033)) (-5 *1 (-753))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-402)) (-5 *2 (-769)))) - ((*1 *1 *1) (-4 *1 (-402)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-556)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *5 *5 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *3 (-950 *6)) (-5 *4 (-1173)) - (-5 *5 (-841 *7)) - (-4 *6 (-13 (-452) (-1036 (-564)) (-637 (-564)))) - (-4 *7 (-13 (-1197) (-29 *6))) (-5 *1 (-224 *6 *7)))) - ((*1 *2 *3 *4 *4 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1169 *6)) (-5 *4 (-841 *6)) - (-4 *6 (-13 (-1197) (-29 *5))) - (-4 *5 (-13 (-452) (-1036 (-564)) (-637 (-564)))) - (-5 *1 (-224 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-330)))) - ((*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-330))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-407 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1238 *5)) - (-5 *1 (-725 *5 *2)) (-4 *5 (-363))))) -(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-697)))) - ((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-697))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1189 *3 *4)) (-4 *3 (-1097)) - (-4 *4 (-1097))))) -(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820))))) -(((*1 *1 *1) (-5 *1 (-1060)))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545))))) -(((*1 *2 *1) (-12 (-4 *1 (-672 *3)) (-4 *3 (-1212)) (-5 *2 (-769))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4411)) (-4 *1 (-244 *2)) (-4 *2 (-1212))))) -(((*1 *2 *1) - (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-1057)) (-4 *3 (-1197)) - (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) -(((*1 *1) - (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-769)) - (-4 *4 (-172))))) -(((*1 *2 *2) - (-12 (-4 *3 (-556)) (-4 *4 (-990 *3)) (-5 *1 (-142 *3 *4 *2)) - (-4 *2 (-373 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-556)) (-4 *5 (-990 *4)) (-4 *2 (-373 *4)) - (-5 *1 (-503 *4 *5 *2 *3)) (-4 *3 (-373 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-687 *5)) (-4 *5 (-990 *4)) (-4 *4 (-556)) - (-5 *2 (-687 *4)) (-5 *1 (-691 *4 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-556)) (-4 *4 (-990 *3)) (-5 *1 (-1231 *3 *4 *2)) - (-4 *2 (-1238 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-890 *3)) (-4 *3 (-1097))))) -(((*1 *1 *1) - (-12 (-4 *1 (-685 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-373 *2)) - (-4 *4 (-373 *2))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-642 *2)) (-4 *2 (-947 *4 *5 *6)) (-4 *4 (-452)) - (-4 *5 (-791)) (-4 *6 (-848)) (-5 *1 (-449 *4 *5 *6 *2))))) + (-5 *1 (-576 *7 *8))))) +(((*1 *2 *1) (-12 (-5 *2 (-186)) (-5 *1 (-138)))) + ((*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-186))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-642 (-407 (-950 (-564))))) - (-5 *2 (-642 (-642 (-294 (-950 *4))))) (-5 *1 (-380 *4)) - (-4 *4 (-13 (-846) (-363))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-642 (-294 (-407 (-950 (-564)))))) - (-5 *2 (-642 (-642 (-294 (-950 *4))))) (-5 *1 (-380 *4)) - (-4 *4 (-13 (-846) (-363))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-407 (-950 (-564)))) (-5 *2 (-642 (-294 (-950 *4)))) - (-5 *1 (-380 *4)) (-4 *4 (-13 (-846) (-363))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-294 (-407 (-950 (-564))))) - (-5 *2 (-642 (-294 (-950 *4)))) (-5 *1 (-380 *4)) - (-4 *4 (-13 (-846) (-363))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1173)) - (-4 *6 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147))) - (-4 *4 (-13 (-29 *6) (-1197) (-957))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -2131 (-642 *4)))) - (-5 *1 (-650 *6 *4 *3)) (-4 *3 (-654 *4)))) - ((*1 *2 *3 *2 *4 *2 *5) - (|partial| -12 (-5 *4 (-1173)) (-5 *5 (-642 *2)) - (-4 *2 (-13 (-29 *6) (-1197) (-957))) - (-4 *6 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147))) - (-5 *1 (-650 *6 *2 *3)) (-4 *3 (-654 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-687 *5)) (-4 *5 (-363)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1262 *5) "failed")) - (|:| -2131 (-642 (-1262 *5))))) - (-5 *1 (-665 *5)) (-5 *4 (-1262 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-642 (-642 *5))) (-4 *5 (-363)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1262 *5) "failed")) - (|:| -2131 (-642 (-1262 *5))))) - (-5 *1 (-665 *5)) (-5 *4 (-1262 *5)))) + (-12 (-5 *4 (-771)) (-5 *2 (-644 (-1175))) (-5 *1 (-210)) + (-5 *3 (-1175)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-687 *5)) (-4 *5 (-363)) - (-5 *2 - (-642 - (-2 (|:| |particular| (-3 (-1262 *5) "failed")) - (|:| -2131 (-642 (-1262 *5)))))) - (-5 *1 (-665 *5)) (-5 *4 (-642 (-1262 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-642 (-642 *5))) (-4 *5 (-363)) - (-5 *2 - (-642 - (-2 (|:| |particular| (-3 (-1262 *5) "failed")) - (|:| -2131 (-642 (-1262 *5)))))) - (-5 *1 (-665 *5)) (-5 *4 (-642 (-1262 *5))))) + (-12 (-5 *3 (-317 (-225))) (-5 *4 (-771)) (-5 *2 (-644 (-1175))) + (-5 *1 (-268)))) + ((*1 *2 *1) + (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)) + (-5 *2 (-644 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-644 *3)) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-850)) + (-4 *4 (-13 (-172) (-717 (-409 (-566))))) (-14 *5 (-921)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-672 *3)) (-4 *3 (-850)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-677 *3)) (-4 *3 (-850)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-819 *3)) (-4 *3 (-850)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-893 *3)) (-4 *3 (-850)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1281 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)) + (-5 *2 (-644 *3))))) +(((*1 *1 *1 *1) (-4 *1 (-143))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-158 *3 *2)) (-4 *2 (-432 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-547))))) +(((*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) + (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) + (-5 *2 (-381)) (-5 *1 (-205))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-5 *1 (-91 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-1180))) (-5 *1 (-1180)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-508)) (-5 *3 (-644 (-1180))) (-5 *1 (-1180))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1240 *5)) (-4 *5 (-365)) + (-4 *7 (-1240 (-409 *6))) + (-5 *2 (-2 (|:| |answer| *3) (|:| -1833 *3))) + (-5 *1 (-564 *5 *6 *7 *3)) (-4 *3 (-344 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4411)))) - (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4411)))) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1240 *5)) (-4 *5 (-365)) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2131 (-642 *4)))) - (-5 *1 (-666 *5 *6 *4 *3)) (-4 *3 (-685 *5 *6 *4)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4411)))) - (-4 *7 (-13 (-373 *5) (-10 -7 (-6 -4411)))) + (-2 (|:| |answer| (-409 *6)) (|:| -1833 (-409 *6)) + (|:| |specpart| (-409 *6)) (|:| |polypart| *6))) + (-5 *1 (-565 *5 *6)) (-5 *3 (-409 *6))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1175)) (-5 *2 (-439)) (-5 *1 (-1179))))) +(((*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-112))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-566)) (-5 *1 (-420 *2)) (-4 *2 (-558))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1070 *4 *5 *6 *3)) (-4 *4 (-454)) (-4 *5 (-793)) + (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-365)) (-4 *7 (-1240 *5)) (-4 *4 (-724 *5 *7)) + (-5 *2 (-2 (|:| -4196 (-689 *6)) (|:| |vec| (-1264 *5)))) + (-5 *1 (-811 *5 *6 *7 *4 *3)) (-4 *6 (-656 *5)) (-4 *3 (-656 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-5 *2 - (-642 - (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2131 (-642 *7))))) - (-5 *1 (-666 *5 *6 *7 *3)) (-5 *4 (-642 *7)) - (-4 *3 (-685 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-642 (-950 *5))) (-5 *4 (-642 (-1173))) (-4 *5 (-556)) - (-5 *2 (-642 (-642 (-294 (-407 (-950 *5)))))) (-5 *1 (-768 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-642 (-950 *4))) (-4 *4 (-556)) - (-5 *2 (-642 (-642 (-294 (-407 (-950 *4)))))) (-5 *1 (-768 *4)))) - ((*1 *2 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1173)) - (-4 *5 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147))) - (-5 *1 (-770 *5 *2)) (-4 *2 (-13 (-29 *5) (-1197) (-957))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-687 *7)) (-5 *5 (-1173)) - (-4 *7 (-13 (-29 *6) (-1197) (-957))) - (-4 *6 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147))) - (-5 *2 - (-2 (|:| |particular| (-1262 *7)) (|:| -2131 (-642 (-1262 *7))))) - (-5 *1 (-800 *6 *7)) (-5 *4 (-1262 *7)))) + (-2 (|:| |contp| (-566)) + (|:| -3445 (-644 (-2 (|:| |irr| *3) (|:| -2677 (-566))))))) + (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-687 *6)) (-5 *4 (-1173)) - (-4 *6 (-13 (-29 *5) (-1197) (-957))) - (-4 *5 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147))) - (-5 *2 (-642 (-1262 *6))) (-5 *1 (-800 *5 *6)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-642 (-294 *7))) (-5 *4 (-642 (-114))) - (-5 *5 (-1173)) (-4 *7 (-13 (-29 *6) (-1197) (-957))) - (-4 *6 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147))) - (-5 *2 - (-2 (|:| |particular| (-1262 *7)) (|:| -2131 (-642 (-1262 *7))))) - (-5 *1 (-800 *6 *7)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-642 *7)) (-5 *4 (-642 (-114))) - (-5 *5 (-1173)) (-4 *7 (-13 (-29 *6) (-1197) (-957))) - (-4 *6 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147))) - (-5 *2 - (-2 (|:| |particular| (-1262 *7)) (|:| -2131 (-642 (-1262 *7))))) - (-5 *1 (-800 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-294 *7)) (-5 *4 (-114)) (-5 *5 (-1173)) - (-4 *7 (-13 (-29 *6) (-1197) (-957))) - (-4 *6 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147))) - (-5 *2 - (-3 (-2 (|:| |particular| *7) (|:| -2131 (-642 *7))) *7 "failed")) - (-5 *1 (-800 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-114)) (-5 *5 (-1173)) - (-4 *6 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147))) + (-12 (-5 *4 (-112)) (-5 *2 - (-3 (-2 (|:| |particular| *3) (|:| -2131 (-642 *3))) *3 "failed")) - (-5 *1 (-800 *6 *3)) (-4 *3 (-13 (-29 *6) (-1197) (-957))))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-294 *2)) (-5 *4 (-114)) (-5 *5 (-642 *2)) - (-4 *2 (-13 (-29 *6) (-1197) (-957))) (-5 *1 (-800 *6 *2)) - (-4 *6 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147))))) - ((*1 *2 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-114)) (-5 *4 (-294 *2)) (-5 *5 (-642 *2)) - (-4 *2 (-13 (-29 *6) (-1197) (-957))) - (-4 *6 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147))) - (-5 *1 (-800 *6 *2)))) - ((*1 *2 *3) (-12 (-5 *3 (-806)) (-5 *2 (-1033)) (-5 *1 (-803)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-806)) (-5 *4 (-1060)) (-5 *2 (-1033)) (-5 *1 (-803)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1262 (-316 (-379)))) (-5 *4 (-379)) (-5 *5 (-642 *4)) - (-5 *2 (-1033)) (-5 *1 (-803)))) - ((*1 *2 *3 *4 *4 *5 *4) - (-12 (-5 *3 (-1262 (-316 (-379)))) (-5 *4 (-379)) (-5 *5 (-642 *4)) - (-5 *2 (-1033)) (-5 *1 (-803)))) - ((*1 *2 *3 *4 *4 *5 *6 *4) - (-12 (-5 *3 (-1262 (-316 *4))) (-5 *5 (-642 (-379))) - (-5 *6 (-316 (-379))) (-5 *4 (-379)) (-5 *2 (-1033)) (-5 *1 (-803)))) - ((*1 *2 *3 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1262 (-316 (-379)))) (-5 *4 (-379)) (-5 *5 (-642 *4)) - (-5 *2 (-1033)) (-5 *1 (-803)))) - ((*1 *2 *3 *4 *4 *5 *6 *5 *4) - (-12 (-5 *3 (-1262 (-316 *4))) (-5 *5 (-642 (-379))) - (-5 *6 (-316 (-379))) (-5 *4 (-379)) (-5 *2 (-1033)) (-5 *1 (-803)))) - ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) - (-12 (-5 *3 (-1262 (-316 *4))) (-5 *5 (-642 (-379))) - (-5 *6 (-316 (-379))) (-5 *4 (-379)) (-5 *2 (-1033)) (-5 *1 (-803)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 - (-5 *5 - (-1 - (-3 (-2 (|:| |particular| *6) (|:| -2131 (-642 *6))) "failed") - *7 *6)) - (-4 *6 (-363)) (-4 *7 (-654 *6)) - (-5 *2 (-2 (|:| |particular| (-1262 *6)) (|:| -2131 (-687 *6)))) - (-5 *1 (-811 *6 *7)) (-5 *3 (-687 *6)) (-5 *4 (-1262 *6)))) - ((*1 *2 *3) (-12 (-5 *3 (-896)) (-5 *2 (-1033)) (-5 *1 (-895)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-896)) (-5 *4 (-1060)) (-5 *2 (-1033)) (-5 *1 (-895)))) - ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) - (-12 (-5 *4 (-769)) (-5 *6 (-642 (-642 (-316 *3)))) (-5 *7 (-1155)) - (-5 *8 (-225)) (-5 *5 (-642 (-316 (-379)))) (-5 *3 (-379)) - (-5 *2 (-1033)) (-5 *1 (-895)))) - ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) - (-12 (-5 *4 (-769)) (-5 *6 (-642 (-642 (-316 *3)))) (-5 *7 (-1155)) - (-5 *5 (-642 (-316 (-379)))) (-5 *3 (-379)) (-5 *2 (-1033)) - (-5 *1 (-895)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-950 (-407 (-564)))) (-5 *2 (-642 (-379))) - (-5 *1 (-1021)) (-5 *4 (-379)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-950 (-564))) (-5 *2 (-642 (-379))) (-5 *1 (-1021)) - (-5 *4 (-379)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) - (-5 *2 (-642 *4)) (-5 *1 (-1125 *3 *4)) (-4 *3 (-1238 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147))) - (-5 *2 (-642 (-294 (-316 *4)))) (-5 *1 (-1128 *4)) - (-5 *3 (-316 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147))) - (-5 *2 (-642 (-294 (-316 *4)))) (-5 *1 (-1128 *4)) - (-5 *3 (-294 (-316 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1173)) - (-4 *5 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147))) - (-5 *2 (-642 (-294 (-316 *5)))) (-5 *1 (-1128 *5)) - (-5 *3 (-294 (-316 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1173)) - (-4 *5 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147))) - (-5 *2 (-642 (-294 (-316 *5)))) (-5 *1 (-1128 *5)) - (-5 *3 (-316 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-642 (-1173))) - (-4 *5 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147))) - (-5 *2 (-642 (-642 (-294 (-316 *5))))) (-5 *1 (-1128 *5)) - (-5 *3 (-642 (-294 (-316 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-642 (-407 (-950 *5)))) (-5 *4 (-642 (-1173))) - (-4 *5 (-556)) (-5 *2 (-642 (-642 (-294 (-407 (-950 *5)))))) - (-5 *1 (-1181 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-642 (-1173))) (-4 *5 (-556)) - (-5 *2 (-642 (-642 (-294 (-407 (-950 *5)))))) (-5 *1 (-1181 *5)) - (-5 *3 (-642 (-294 (-407 (-950 *5))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-642 (-407 (-950 *4)))) (-4 *4 (-556)) - (-5 *2 (-642 (-642 (-294 (-407 (-950 *4)))))) (-5 *1 (-1181 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-556)) (-5 *2 (-642 (-642 (-294 (-407 (-950 *4)))))) - (-5 *1 (-1181 *4)) (-5 *3 (-642 (-294 (-407 (-950 *4))))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1173)) (-4 *5 (-556)) - (-5 *2 (-642 (-294 (-407 (-950 *5))))) (-5 *1 (-1181 *5)) - (-5 *3 (-407 (-950 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1173)) (-4 *5 (-556)) - (-5 *2 (-642 (-294 (-407 (-950 *5))))) (-5 *1 (-1181 *5)) - (-5 *3 (-294 (-407 (-950 *5)))))) - ((*1 *2 *3) - (-12 (-4 *4 (-556)) (-5 *2 (-642 (-294 (-407 (-950 *4))))) - (-5 *1 (-1181 *4)) (-5 *3 (-407 (-950 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-556)) (-5 *2 (-642 (-294 (-407 (-950 *4))))) - (-5 *1 (-1181 *4)) (-5 *3 (-294 (-407 (-950 *4))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1173)) (-4 *5 (-363)) (-5 *2 (-1153 (-1153 (-950 *5)))) - (-5 *1 (-1270 *5)) (-5 *4 (-1153 (-950 *5)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1238 *3)) - (-4 *5 (-1238 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) - (-5 *2 (-413 *4 (-407 *4) *5 *6)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1262 *6)) (-4 *6 (-13 (-409 *4 *5) (-1036 *4))) - (-4 *4 (-990 *3)) (-4 *5 (-1238 *4)) (-4 *3 (-307)) - (-5 *1 (-413 *3 *4 *5 *6)))) - ((*1 *1 *2) - (-12 (-5 *2 (-642 *6)) (-4 *6 (-947 *3 *4 *5)) (-4 *3 (-363)) - (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-504 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172))))) -(((*1 *2 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) + (-2 (|:| |contp| (-566)) + (|:| -3445 (-644 (-2 (|:| |irr| *3) (|:| -2677 (-566))))))) + (-5 *1 (-1229 *3)) (-4 *3 (-1240 (-566)))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) + (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *5 (-225)) + (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1035)) (-5 *1 (-749))))) -(((*1 *1 *1) - (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047))))) -(((*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-577)))) - ((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-577))))) -(((*1 *2 *1) - (-12 (-5 *2 (-642 (-2 (|:| |gen| *3) (|:| -3466 (-564))))) - (-5 *1 (-361 *3)) (-4 *3 (-1097)))) - ((*1 *2 *1) - (-12 (-5 *2 (-642 (-2 (|:| |gen| *3) (|:| -3466 (-769))))) - (-5 *1 (-386 *3)) (-4 *3 (-1097)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-644 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1215 *2)) + (-4 *2 (-1099)))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 *2)) (-4 *2 (-1099)) (-4 *2 (-850)) + (-5 *1 (-1215 *2))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-1099)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-850))))) +(((*1 *2 *1) (|partial| -12 (-5 *1 (-367 *2)) (-4 *2 (-1099)))) + ((*1 *2 *1) (|partial| -12 (-5 *2 (-1157)) (-5 *1 (-1195))))) +(((*1 *1 *1) (-5 *1 (-1062)))) +(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1266)))) + ((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1266))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) + ((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-1265)))) + ((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-1266))))) +(((*1 *2 *3) + (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-365)) + (-5 *1 (-523 *2 *4 *5 *3)) (-4 *3 (-687 *2 *4 *5)))) ((*1 *2 *1) - (-12 (-5 *2 (-642 (-2 (|:| -2254 *3) (|:| -2817 (-564))))) - (-5 *1 (-418 *3)) (-4 *3 (-556)))) + (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) + (|has| *2 (-6 (-4419 "*"))) (-4 *2 (-1049)))) + ((*1 *2 *3) + (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-172)) + (-5 *1 (-688 *2 *4 *5 *3)) (-4 *3 (-687 *2 *4 *5)))) ((*1 *2 *1) - (-12 (-5 *2 (-642 (-2 (|:| |gen| *3) (|:| -3466 (-769))))) - (-5 *1 (-817 *3)) (-4 *3 (-848))))) -(((*1 *2) - (-12 (-4 *3 (-556)) (-5 *2 (-642 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-417 *3))))) -(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-697)))) - ((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-697))))) -(((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-330))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-919)) (-5 *4 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1263))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-506)) (-5 *1 (-114)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-114))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1141)) (-5 *2 (-141)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1141)) (-5 *2 (-144))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-820))))) -(((*1 *2) (-12 (-5 *2 (-872)) (-5 *1 (-1265)))) - ((*1 *2 *2) (-12 (-5 *2 (-872)) (-5 *1 (-1265))))) -(((*1 *2) - (-12 (-5 *2 (-1267)) (-5 *1 (-1189 *3 *4)) (-4 *3 (-1097)) - (-4 *4 (-1097))))) + (-12 (-4 *1 (-1122 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) + (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4419 "*"))) (-4 *2 (-1049))))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-771)) (-4 *1 (-1240 *3)) (-4 *3 (-1049))))) +(((*1 *2 *2) + (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-454)) + (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) + (-5 *1 (-977 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-644 *7)) (-5 *3 (-112)) (-4 *7 (-1064 *4 *5 *6)) + (-4 *4 (-454)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) + (-5 *1 (-977 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-363)) - (-5 *1 (-521 *2 *4 *5 *3)) (-4 *3 (-685 *2 *4 *5)))) + (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) + (-5 *2 (-644 *4)) (-5 *1 (-1127 *3 *4)) (-4 *3 (-1240 *4)))) + ((*1 *2 *3 *3 *3 *3 *3) + (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) + (-5 *2 (-644 *3)) (-5 *1 (-1127 *4 *3)) (-4 *4 (-1240 *3))))) +(((*1 *2 *1 *3 *3 *3 *2) + (-12 (-5 *3 (-771)) (-5 *1 (-675 *2)) (-4 *2 (-1099))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-792)))) ((*1 *2 *1) - (-12 (-4 *1 (-685 *2 *3 *4)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) - (|has| *2 (-6 (-4412 "*"))) (-4 *2 (-1047)))) - ((*1 *2 *3) - (-12 (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-172)) - (-5 *1 (-686 *2 *4 *5 *3)) (-4 *3 (-685 *2 *4 *5)))) + (-12 (-5 *2 (-771)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1049)) + (-14 *4 (-644 (-1175))))) ((*1 *2 *1) - (-12 (-4 *1 (-1120 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) - (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4412 "*"))) (-4 *2 (-1047))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1097)) - (-5 *2 (-2 (|:| -2968 (-564)) (|:| |var| (-610 *1)))) - (-4 *1 (-430 *3))))) + (-12 (-5 *2 (-566)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1049) (-850))) + (-14 *4 (-644 (-1175))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1049)) (-4 *3 (-850)) + (-4 *5 (-267 *3)) (-4 *6 (-793)) (-5 *2 (-771)))) + ((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-276)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1171 *8)) (-5 *4 (-644 *6)) (-4 *6 (-850)) + (-4 *8 (-949 *7 *5 *6)) (-4 *5 (-793)) (-4 *7 (-1049)) + (-5 *2 (-644 (-771))) (-5 *1 (-322 *5 *6 *7 *8)))) + ((*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-921)))) + ((*1 *2 *1) + (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)) + (-5 *2 (-771)))) + ((*1 *2 *1) (-12 (-4 *1 (-472 *3 *2)) (-4 *3 (-172)) (-4 *2 (-23)))) + ((*1 *2 *1) + (-12 (-4 *3 (-558)) (-5 *2 (-566)) (-5 *1 (-623 *3 *4)) + (-4 *4 (-1240 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-708 *3)) (-4 *3 (-1049)) (-5 *2 (-771)))) + ((*1 *2 *1) (-12 (-4 *1 (-852 *3)) (-4 *3 (-1049)) (-5 *2 (-771)))) + ((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) + ((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-905 *3)) (-4 *3 (-1099)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-644 *6)) (-4 *1 (-949 *4 *5 *6)) (-4 *4 (-1049)) + (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 (-771))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-949 *4 *5 *3)) (-4 *4 (-1049)) (-4 *5 (-793)) + (-4 *3 (-850)) (-5 *2 (-771)))) + ((*1 *2 *1) + (-12 (-4 *1 (-973 *3 *2 *4)) (-4 *3 (-1049)) (-4 *4 (-850)) + (-4 *2 (-792)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1207 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) + (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-771)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1226 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1255 *3)) + (-5 *2 (-566)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1247 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1224 *3)) + (-5 *2 (-409 (-566))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1283 *3)) (-4 *3 (-365)) (-5 *2 (-833 (-921))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1285 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)) + (-5 *2 (-771))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-365)) (-4 *3 (-1049)) + (-5 *2 (-2 (|:| -3371 *1) (|:| -3131 *1))) (-4 *1 (-852 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-365)) (-4 *5 (-1049)) + (-5 *2 (-2 (|:| -3371 *3) (|:| -3131 *3))) (-5 *1 (-853 *5 *3)) + (-4 *3 (-852 *5))))) +(((*1 *1 *1 *1) (-5 *1 (-862)))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-183))) (-5 *1 (-140))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-850)) (-5 *4 (-644 *6)) + (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-644 *4)))) + (-5 *1 (-1185 *6)) (-5 *5 (-644 *4))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1171 *1)) (-5 *3 (-1175)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1171 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-952 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1175)) (-4 *1 (-29 *3)) (-4 *3 (-558)))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-558))))) +(((*1 *1 *2) + (-12 (-5 *2 (-644 (-921))) (-5 *1 (-1100 *3 *4)) (-14 *3 (-921)) + (-14 *4 (-921))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 (-566))) (-5 *2 (-566)) (-5 *1 (-488 *4)) + (-4 *4 (-1240 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-508))) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 (-508))) (-5 *1 (-485))))) +(((*1 *1 *1) (-5 *1 (-862)))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-1084))) (-5 *1 (-292))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-690 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *4 (-365)) (-5 *2 (-644 (-1155 *4))) (-5 *1 (-286 *4 *5)) + (-5 *3 (-1155 *4)) (-4 *5 (-1255 *4))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1265)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1266))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-1264 (-566))) (-5 *3 (-566)) (-5 *1 (-1109)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-1264 (-566))) (-5 *3 (-644 (-566))) (-5 *4 (-566)) + (-5 *1 (-1109))))) +(((*1 *1 *1) + (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-132)) (-5 *1 (-1083 *2)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-566) *2 *2)) (-4 *2 (-132)) (-5 *1 (-1083 *2))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-771)) (|:| |poli| *7) + (|:| |polj| *7))) + (-4 *5 (-793)) (-4 *7 (-949 *4 *5 *6)) (-4 *4 (-454)) (-4 *6 (-850)) + (-5 *2 (-112)) (-5 *1 (-451 *4 *5 *6 *7))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-331)))) + ((*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-331))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-947 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-791)) - (-4 *2 (-848)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-791)) (-4 *5 (-1047)) (-4 *6 (-947 *5 *4 *2)) - (-4 *2 (-848)) (-5 *1 (-948 *4 *2 *5 *6 *3)) - (-4 *3 - (-13 (-363) - (-10 -8 (-15 -2390 ($ *6)) (-15 -4120 (*6 $)) - (-15 -4131 (*6 $))))))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-407 (-950 *4))) (-4 *4 (-556)) - (-5 *2 (-1173)) (-5 *1 (-1041 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-52)) (-5 *1 (-827))))) + (-12 (-4 *3 (-365)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) + (-5 *2 (-1264 *6)) (-5 *1 (-338 *3 *4 *5 *6)) + (-4 *6 (-344 *3 *4 *5))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-556)) - (-5 *2 (-2 (|:| -2968 *4) (|:| -4332 *3) (|:| -1992 *3))) - (-5 *1 (-967 *4 *3)) (-4 *3 (-1238 *4)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) - (-5 *2 (-2 (|:| -4332 *1) (|:| -1992 *1))) (-4 *1 (-1062 *3 *4 *5)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-556)) (-4 *3 (-1047)) - (-5 *2 (-2 (|:| -2968 *3) (|:| -4332 *1) (|:| -1992 *1))) - (-4 *1 (-1238 *3))))) + (-12 (-5 *3 (-1177 (-409 (-566)))) (-5 *2 (-409 (-566))) + (-5 *1 (-190))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1141)) (-5 *2 (-141)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1141)) (-5 *2 (-144))))) -(((*1 *1 *1) - (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047))))) + (-12 (-5 *3 (-644 (-409 (-952 *5)))) (-5 *4 (-644 (-1175))) + (-4 *5 (-558)) (-5 *2 (-644 (-644 (-952 *5)))) (-5 *1 (-1183 *5))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) + (-5 *1 (-752))))) +(((*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1269)) (-5 *1 (-1137)))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 (-862))) (-5 *2 (-1269)) (-5 *1 (-1137))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1157)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-1269)) + (-5 *1 (-1071 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1157)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-1269)) + (-5 *1 (-1107 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-604 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1214)) + (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1269)) (-5 *1 (-1178))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1180))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1155 (-566))) (-5 *1 (-1159 *4)) (-4 *4 (-1049)) + (-5 *3 (-566))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1214)) (-4 *2 (-1002)) + (-4 *2 (-1049))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-558) (-147))) (-5 *1 (-539 *3 *2)) + (-4 *2 (-1255 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-365) (-370) (-614 (-566)))) (-4 *4 (-1240 *3)) + (-4 *5 (-724 *3 *4)) (-5 *1 (-543 *3 *4 *5 *2)) (-4 *2 (-1255 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-365) (-370) (-614 (-566)))) (-5 *1 (-544 *3 *2)) + (-4 *2 (-1255 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-13 (-558) (-147))) + (-5 *1 (-1151 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-558) (-1038 (-566)))) (-5 *2 (-169 (-317 *4))) + (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1199) (-432 (-169 *4)))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) + (-5 *2 (-169 *3)) (-5 *1 (-1203 *4 *3)) + (-4 *3 (-13 (-27) (-1199) (-432 *4)))))) +(((*1 *2 *2) (-12 (-5 *2 (-1171 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3))))) +(((*1 *1 *1 *1) (-4 *1 (-761)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-921)) (-4 *1 (-744 *3)) (-4 *3 (-172))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-566)) (-5 *1 (-381))))) +(((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1240 (-48)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-824))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-365)) (-4 *5 (-558)) + (-5 *2 + (-2 (|:| |minor| (-644 (-921))) (|:| -3477 *3) + (|:| |minors| (-644 (-644 (-921)))) (|:| |ops| (-644 *3)))) + (-5 *1 (-90 *5 *3)) (-5 *4 (-921)) (-4 *3 (-656 *5))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-644 (-689 *4))) (-5 *2 (-689 *4)) (-4 *4 (-1049)) + (-5 *1 (-1029 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-5 *1 (-222 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1214)) (-4 *1 (-255 *3)))) + ((*1 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1214))))) +(((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563))))) +(((*1 *2 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1214)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) + (-4 *4 (-1049))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-141)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-144))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862))))) +(((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365))))) +(((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-128))))) +(((*1 *2 *3 *1 *4) + (-12 (-5 *3 (-1139 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) + (-4 *5 (-13 (-1099) (-34))) (-4 *6 (-13 (-1099) (-34))) + (-5 *2 (-112)) (-5 *1 (-1140 *5 *6))))) +(((*1 *2 *3 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) + (-5 *1 (-751))))) +(((*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-1267)))) + ((*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-1267))))) +(((*1 *1 *1) (-12 (-4 *1 (-432 *2)) (-4 *2 (-1099)) (-4 *2 (-1049)))) + ((*1 *1 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558))))) +(((*1 *2) + (-12 (-4 *3 (-558)) (-5 *2 (-644 (-689 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-419 *3))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-141)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-144))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) + (-4 *3 (-1064 *5 *6 *7)) + (-5 *2 (-644 (-2 (|:| |val| (-644 *3)) (|:| -2192 *4)))) + (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1099)) (-4 *5 (-1099)) + (-5 *2 (-1 *5 *4)) (-5 *1 (-683 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5)) (-4 *5 (-1097)) (-5 *2 (-1 *5 *4)) - (-5 *1 (-681 *4 *5)) (-4 *4 (-1097)))) + (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-683 *4 *3)) (-4 *4 (-1099)) + (-4 *3 (-1099))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5)) (-4 *5 (-1099)) (-5 *2 (-1 *5 *4)) + (-5 *1 (-683 *4 *5)) (-4 *4 (-1099)))) ((*1 *2 *2) - (-12 (-4 *3 (-1097)) (-5 *1 (-927 *3 *2)) (-4 *2 (-430 *3)))) + (-12 (-4 *3 (-1099)) (-5 *1 (-929 *3 *2)) (-4 *2 (-432 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1173)) (-5 *2 (-316 (-564))) (-5 *1 (-928)))) + (-12 (-5 *3 (-1175)) (-5 *2 (-317 (-566))) (-5 *1 (-930)))) ((*1 *2 *1) - (-12 (-4 *1 (-1279 *3 *2)) (-4 *3 (-848)) (-4 *2 (-1047)))) + (-12 (-4 *1 (-1281 *3 *2)) (-4 *3 (-850)) (-4 *2 (-1049)))) ((*1 *2 *1) - (-12 (-4 *2 (-1047)) (-5 *1 (-1285 *2 *3)) (-4 *3 (-844))))) -(((*1 *2 *3 *4 *4 *4 *5 *6 *7) - (|partial| -12 (-5 *5 (-1173)) - (-5 *6 - (-1 - (-3 - (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| - (-642 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) - "failed") - *4 (-642 *4))) - (-5 *7 - (-1 (-3 (-2 (|:| -3872 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1197) (-27) (-430 *8))) - (-4 *8 (-13 (-452) (-147) (-1036 *3) (-637 *3))) (-5 *3 (-564)) - (-5 *2 (-642 *4)) (-5 *1 (-1012 *8 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-436))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1189 *4 *5)) - (-4 *4 (-1097)) (-4 *5 (-1097))))) -(((*1 *2 *2) - (-12 (-5 *2 (-941 *3)) (-4 *3 (-13 (-363) (-1197) (-1000))) - (-5 *1 (-176 *3))))) + (-12 (-4 *2 (-1049)) (-5 *1 (-1287 *2 *3)) (-4 *3 (-846))))) +(((*1 *2) + (-12 (-4 *3 (-558)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-419 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-1269)) + (-5 *1 (-451 *4 *5 *6 *3)) (-4 *3 (-949 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-508)) (-5 *2 (-691 (-187))) (-5 *1 (-187))))) (((*1 *2) - (|partial| -12 (-4 *3 (-556)) (-4 *3 (-172)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -2131 (-642 *1)))) - (-4 *1 (-367 *3)))) + (-12 (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) + (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-1269)) + (-5 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *7 (-1070 *3 *4 *5 *6)))) ((*1 *2) - (|partial| -12 - (-5 *2 - (-2 (|:| |particular| (-453 *3 *4 *5 *6)) - (|:| -2131 (-642 (-453 *3 *4 *5 *6))))) - (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-919)) - (-14 *5 (-642 (-1173))) (-14 *6 (-1262 (-687 *3)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) - (-4 *5 (-1238 (-407 *4))) - (-5 *2 (-2 (|:| |num| (-1262 *4)) (|:| |den| *4)))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-564)) (-5 *6 (-1 (-1267) (-1262 *5) (-1262 *5) (-379))) - (-5 *3 (-1262 (-379))) (-5 *5 (-379)) (-5 *2 (-1267)) - (-5 *1 (-786)))) - ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) - (-12 (-5 *4 (-564)) (-5 *6 (-1 (-1267) (-1262 *5) (-1262 *5) (-379))) - (-5 *3 (-1262 (-379))) (-5 *5 (-379)) (-5 *2 (-1267)) - (-5 *1 (-786))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-610 *1)) (-4 *1 (-302))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-564)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-769)) (-4 *5 (-172)))) - ((*1 *1 *1 *2 *1 *2) - (-12 (-5 *2 (-564)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-769)) (-4 *5 (-172)))) - ((*1 *2 *2 *3) - (-12 - (-5 *2 - (-504 (-407 (-564)) (-240 *5 (-769)) (-862 *4) - (-247 *4 (-407 (-564))))) - (-5 *3 (-642 (-862 *4))) (-14 *4 (-642 (-1173))) (-14 *5 (-769)) - (-5 *1 (-505 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-172))))) -(((*1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1212)))) - ((*1 *1 *1) - (-12 (|has| *1 (-6 -4411)) (-4 *1 (-373 *2)) (-4 *2 (-1212)))) - ((*1 *1 *1) - (-12 (-5 *1 (-647 *2 *3 *4)) (-4 *2 (-1097)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-517)))) + (-12 (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) + (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-1269)) + (-5 *1 (-1107 *3 *4 *5 *6 *7)) (-4 *7 (-1070 *3 *4 *5 *6))))) +(((*1 *2 *3 *4 *4 *4 *5 *5 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) + (-5 *2 (-1035)) (-5 *1 (-751))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) + (-4 *4 (-850)) (-4 *2 (-558))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-1264 *5)) (-5 *3 (-771)) (-5 *4 (-1119)) (-4 *5 (-351)) + (-5 *1 (-530 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-862)) (-5 *1 (-52))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) + (-5 *1 (-747))))) +(((*1 *2 *3) + (-12 (-5 *3 (-952 (-225))) (-5 *2 (-317 (-381))) (-5 *1 (-306))))) +(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-519)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1097) (-34))) (-5 *1 (-1137 *3 *2)) - (-4 *3 (-13 (-1097) (-34))))) - ((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-1273))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-860))))) -(((*1 *2 *3) (-12 (-5 *3 (-820)) (-5 *2 (-52)) (-5 *1 (-827))))) -(((*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-1176))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-642 (-1073 *4 *5 *2))) (-4 *4 (-1097)) - (-4 *5 (-13 (-1047) (-884 *4) (-612 (-890 *4)))) - (-4 *2 (-13 (-430 *5) (-884 *4) (-612 (-890 *4)))) - (-5 *1 (-54 *4 *5 *2)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-642 (-1073 *5 *6 *2))) (-5 *4 (-919)) (-4 *5 (-1097)) - (-4 *6 (-13 (-1047) (-884 *5) (-612 (-890 *5)))) - (-4 *2 (-13 (-430 *6) (-884 *5) (-612 (-890 *5)))) - (-5 *1 (-54 *5 *6 *2))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-564)) (-4 *1 (-1222 *4)) (-4 *4 (-1047)) (-4 *4 (-556)) - (-5 *2 (-407 (-950 *4))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-564)) (-4 *1 (-1222 *4)) (-4 *4 (-1047)) (-4 *4 (-556)) - (-5 *2 (-407 (-950 *4)))))) + (-12 (-4 *2 (-13 (-1099) (-34))) (-5 *1 (-1139 *3 *2)) + (-4 *3 (-13 (-1099) (-34))))) + ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1275))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-5 *1 (-737 *3)))) + ((*1 *1 *2) (-12 (-5 *1 (-737 *2)) (-4 *2 (-1099)))) + ((*1 *1) (-12 (-5 *1 (-737 *2)) (-4 *2 (-1099))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-328 *3)) (-4 *3 (-1214)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-566)) (-5 *1 (-518 *3 *4)) (-4 *3 (-1214)) (-14 *4 *2)))) (((*1 *2) - (-12 (-4 *3 (-452)) (-4 *4 (-791)) (-4 *5 (-848)) - (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-1267)) - (-5 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *7 (-1068 *3 *4 *5 *6)))) + (-12 (-4 *4 (-172)) (-5 *2 (-771)) (-5 *1 (-165 *3 *4)) + (-4 *3 (-166 *4)))) ((*1 *2) - (-12 (-4 *3 (-452)) (-4 *4 (-791)) (-4 *5 (-848)) - (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-1267)) - (-5 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *7 (-1068 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820))))) -(((*1 *1 *2 *2 *2) - (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1197))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-716 *2)) (-4 *2 (-363)))) - ((*1 *1 *2) (-12 (-5 *1 (-716 *2)) (-4 *2 (-363)))) - ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-919)) (-5 *4 (-379)) (-5 *2 (-1267)) (-5 *1 (-1263))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-128))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1097)) (-4 *5 (-1097)) - (-5 *2 (-1 *5)) (-5 *1 (-681 *4 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1047)) - (-4 *2 (-13 (-404) (-1036 *4) (-363) (-1197) (-284))) - (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1238 *4))))) + (-12 (-14 *4 *2) (-4 *5 (-1214)) (-5 *2 (-771)) + (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) + ((*1 *2) + (-12 (-4 *4 (-1099)) (-5 *2 (-771)) (-5 *1 (-431 *3 *4)) + (-4 *3 (-432 *4)))) + ((*1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-546 *3)) (-4 *3 (-547)))) + ((*1 *2) (-12 (-4 *1 (-763)) (-5 *2 (-771)))) + ((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-771)) (-5 *1 (-796 *3 *4)) + (-4 *3 (-797 *4)))) + ((*1 *2) + (-12 (-4 *4 (-558)) (-5 *2 (-771)) (-5 *1 (-991 *3 *4)) + (-4 *3 (-992 *4)))) + ((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-771)) (-5 *1 (-996 *3 *4)) + (-4 *3 (-997 *4)))) + ((*1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-1011 *3)) (-4 *3 (-1012)))) + ((*1 *2) (-12 (-4 *1 (-1049)) (-5 *2 (-771)))) + ((*1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-1058 *3)) (-4 *3 (-1059))))) (((*1 *2 *3) - (-12 (-4 *4 (-1212)) (-5 *2 (-769)) (-5 *1 (-182 *4 *3)) - (-4 *3 (-672 *4))))) -(((*1 *1 *1) (-4 *1 (-545)))) -(((*1 *1) (-5 *1 (-130)))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197))))) + (-12 (-5 *2 (-112)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566)))))) (((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1000)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-769)) (-4 *4 (-363)) (-4 *5 (-1238 *4)) (-5 *2 (-1267)) - (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1238 (-407 *5))) (-14 *7 *6)))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1082))))) + (-12 (-4 *3 (-13 (-308) (-147))) (-4 *4 (-13 (-850) (-614 (-1175)))) + (-4 *5 (-793)) (-5 *1 (-924 *3 *4 *5 *2)) (-4 *2 (-949 *3 *5 *4))))) (((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564)))))) + (-12 (-4 *3 (-558)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-419 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-642 (-2 (|:| |k| (-1173)) (|:| |c| (-1284 *3))))) - (-5 *1 (-1284 *3)) (-4 *3 (-1047)))) + (|partial| -12 (-4 *3 (-13 (-1038 (-566)) (-639 (-566)) (-454))) + (-5 *2 (-843 *4)) (-5 *1 (-314 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1199) (-432 *3))) (-14 *5 (-1175)) + (-14 *6 *4))) ((*1 *2 *1) - (-12 (-5 *2 (-642 (-2 (|:| |k| *3) (|:| |c| (-1286 *3 *4))))) - (-5 *1 (-1286 *3 *4)) (-4 *3 (-848)) (-4 *4 (-1047))))) + (|partial| -12 (-4 *3 (-13 (-1038 (-566)) (-639 (-566)) (-454))) + (-5 *2 (-843 *4)) (-5 *1 (-1250 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1199) (-432 *3))) (-14 *5 (-1175)) + (-14 *6 *4)))) +(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-258))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-771)) (-5 *1 (-588 *2)) (-4 *2 (-547)))) + ((*1 *2 *3) + (-12 (-5 *2 (-2 (|:| -3810 *3) (|:| -3631 (-771)))) (-5 *1 (-588 *3)) + (-4 *3 (-547))))) +(((*1 *2 *2) + (-12 (-4 *2 (-13 (-365) (-848))) (-5 *1 (-181 *2 *3)) + (-4 *3 (-1240 (-169 *2)))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1099)) (-5 *1 (-964 *3 *2)) (-4 *3 (-1099))))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *5 (-112)) + (-5 *2 (-1035)) (-5 *1 (-745))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *1 (-883)) (-5 *3 (-566)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *1 (-883)) (-5 *3 (-566)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *1 (-883)) (-5 *3 (-566))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-1058 (-1022 *3) (-1169 (-1022 *3)))) - (-5 *1 (-1022 *3)) (-4 *3 (-13 (-846) (-363) (-1020)))))) -(((*1 *2 *3) (-12 - (-5 *3 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) - (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *2 (-379)) (-5 *1 (-205))))) + (-5 *2 + (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") + (|:| |Conditional| "conditional") (|:| |Return| "return") + (|:| |Block| "block") (|:| |Comment| "comment") + (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") + (|:| |Repeat| "repeat") (|:| |Goto| "goto") + (|:| |Continue| "continue") + (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") + (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) + (-5 *1 (-331))))) +(((*1 *1 *1) (-4 *1 (-547)))) +(((*1 *2 *1) + (-12 (-4 *3 (-1049)) (-4 *4 (-1099)) (-5 *2 (-644 *1)) + (-4 *1 (-384 *3 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-644 (-735 *3 *4))) (-5 *1 (-735 *3 *4)) (-4 *3 (-1049)) + (-4 *4 (-726)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-644 *1)) + (-4 *1 (-949 *3 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-653 *4)) (-4 *4 (-344 *5 *6 *7)) + (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) + (-4 *6 (-1240 *5)) (-4 *7 (-1240 (-409 *6))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1419 (-644 *4)))) + (-5 *1 (-806 *5 *6 *7 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1199)))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-889 *5 *3)) (-5 *4 (-892 *5)) (-4 *5 (-1099)) + (-4 *3 (-166 *6)) (-4 (-952 *6) (-886 *5)) + (-4 *6 (-13 (-886 *5) (-172))) (-5 *1 (-178 *5 *6 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *2 (-889 *4 *1)) (-5 *3 (-892 *4)) (-4 *1 (-886 *4)) + (-4 *4 (-1099)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-889 *5 *6)) (-5 *4 (-892 *5)) (-4 *5 (-1099)) + (-4 *6 (-13 (-1099) (-1038 *3))) (-4 *3 (-886 *5)) + (-5 *1 (-931 *5 *3 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-889 *5 *3)) (-4 *5 (-1099)) + (-4 *3 (-13 (-432 *6) (-614 *4) (-886 *5) (-1038 (-612 $)))) + (-5 *4 (-892 *5)) (-4 *6 (-13 (-558) (-886 *5))) + (-5 *1 (-932 *5 *6 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-889 (-566) *3)) (-5 *4 (-892 (-566))) (-4 *3 (-547)) + (-5 *1 (-933 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-889 *5 *6)) (-5 *3 (-612 *6)) (-4 *5 (-1099)) + (-4 *6 (-13 (-1099) (-1038 (-612 $)) (-614 *4) (-886 *5))) + (-5 *4 (-892 *5)) (-5 *1 (-934 *5 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-885 *5 *6 *3)) (-5 *4 (-892 *5)) (-4 *5 (-1099)) + (-4 *6 (-886 *5)) (-4 *3 (-666 *6)) (-5 *1 (-935 *5 *6 *3)))) + ((*1 *2 *3 *4 *2 *5) + (-12 (-5 *5 (-1 (-889 *6 *3) *8 (-892 *6) (-889 *6 *3))) + (-4 *8 (-850)) (-5 *2 (-889 *6 *3)) (-5 *4 (-892 *6)) + (-4 *6 (-1099)) (-4 *3 (-13 (-949 *9 *7 *8) (-614 *4))) + (-4 *7 (-793)) (-4 *9 (-13 (-1049) (-886 *6))) + (-5 *1 (-936 *6 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-889 *5 *3)) (-4 *5 (-1099)) + (-4 *3 (-13 (-949 *8 *6 *7) (-614 *4))) (-5 *4 (-892 *5)) + (-4 *7 (-886 *5)) (-4 *6 (-793)) (-4 *7 (-850)) + (-4 *8 (-13 (-1049) (-886 *5))) (-5 *1 (-936 *5 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-889 *5 *3)) (-4 *5 (-1099)) (-4 *3 (-992 *6)) + (-4 *6 (-13 (-558) (-886 *5) (-614 *4))) (-5 *4 (-892 *5)) + (-5 *1 (-939 *5 *6 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-889 *5 (-1175))) (-5 *3 (-1175)) (-5 *4 (-892 *5)) + (-4 *5 (-1099)) (-5 *1 (-940 *5)))) + ((*1 *2 *3 *4 *5 *2 *6) + (-12 (-5 *4 (-644 (-892 *7))) (-5 *5 (-1 *9 (-644 *9))) + (-5 *6 (-1 (-889 *7 *9) *9 (-892 *7) (-889 *7 *9))) (-4 *7 (-1099)) + (-4 *9 (-13 (-1049) (-614 (-892 *7)) (-1038 *8))) + (-5 *2 (-889 *7 *9)) (-5 *3 (-644 *9)) (-4 *8 (-1049)) + (-5 *1 (-941 *7 *8 *9))))) +(((*1 *2 *3) + (-12 (-5 *3 (-892 *4)) (-4 *4 (-1099)) (-5 *2 (-1 (-112) *5)) + (-5 *1 (-890 *4 *5)) (-4 *5 (-1214)))) + ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1165))))) +(((*1 *2 *3) + (-12 (-5 *3 (-114)) (-4 *4 (-558)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) + (-4 *5 (-432 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-114)) (-4 *4 (-558)) (-5 *2 (-112)) + (-5 *1 (-158 *4 *5)) (-4 *5 (-432 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-114)) (-4 *4 (-558)) (-5 *2 (-112)) + (-5 *1 (-277 *4 *5)) (-4 *5 (-13 (-432 *4) (-1002))))) + ((*1 *2 *3) + (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-302 *4)) (-4 *4 (-303)))) + ((*1 *2 *3) (-12 (-4 *1 (-303)) (-5 *3 (-114)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *3 (-114)) (-4 *5 (-1099)) (-5 *2 (-112)) + (-5 *1 (-431 *4 *5)) (-4 *4 (-432 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-114)) (-4 *4 (-558)) (-5 *2 (-112)) + (-5 *1 (-433 *4 *5)) (-4 *5 (-432 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-114)) (-4 *4 (-558)) (-5 *2 (-112)) + (-5 *1 (-630 *4 *5)) (-4 *5 (-13 (-432 *4) (-1002) (-1199)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-158 *3 *2)) (-4 *2 (-432 *3))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-547)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1175)) (-5 *2 (-538)) (-5 *1 (-537 *4)) + (-4 *4 (-1214))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-642 (-263))) (-5 *4 (-1173)) - (-5 *1 (-262 *2)) (-4 *2 (-1212)))) + (|partial| -12 (-5 *3 (-644 (-264))) (-5 *4 (-1175)) + (-5 *1 (-263 *2)) (-4 *2 (-1214)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-642 (-263))) (-5 *4 (-1173)) (-5 *2 (-52)) - (-5 *1 (-263))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-860))))) -(((*1 *1 *2 *3 *3 *4 *5) - (-12 (-5 *2 (-642 (-642 (-941 (-225))))) (-5 *3 (-642 (-872))) - (-5 *4 (-642 (-919))) (-5 *5 (-642 (-263))) (-5 *1 (-468)))) - ((*1 *1 *2 *3 *3 *4) - (-12 (-5 *2 (-642 (-642 (-941 (-225))))) (-5 *3 (-642 (-872))) - (-5 *4 (-642 (-919))) (-5 *1 (-468)))) - ((*1 *1 *2) (-12 (-5 *2 (-642 (-642 (-941 (-225))))) (-5 *1 (-468)))) - ((*1 *1 *1) (-5 *1 (-468)))) -(((*1 *1 *2) - (-12 (-5 *2 (-1161 3 *3)) (-4 *3 (-1047)) (-4 *1 (-1131 *3)))) - ((*1 *1) (-12 (-4 *1 (-1131 *2)) (-4 *2 (-1047))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-556)) (-4 *3 (-1047)) - (-5 *2 (-2 (|:| -4332 *1) (|:| -1992 *1))) (-4 *1 (-850 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-556)) (-4 *5 (-1047)) - (-5 *2 (-2 (|:| -4332 *3) (|:| -1992 *3))) (-5 *1 (-851 *5 *3)) - (-4 *3 (-850 *5))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) - (-12 (-5 *3 (-687 (-225))) (-5 *4 (-564)) (-5 *5 (-225)) - (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1033)) - (-5 *1 (-747))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1189 *3 *4)) (-4 *3 (-1097)) - (-4 *4 (-1097))))) -(((*1 *2 *3 *4 *4 *5 *3 *6) - (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-642 *3)) (-5 *6 (-1169 *3)) - (-4 *3 (-13 (-430 *7) (-27) (-1197))) - (-4 *7 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-642 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-560 *7 *3 *8)) (-4 *8 (-1097)))) - ((*1 *2 *3 *4 *4 *5 *4 *3 *6) - (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-642 *3)) - (-5 *6 (-407 (-1169 *3))) (-4 *3 (-13 (-430 *7) (-27) (-1197))) - (-4 *7 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-642 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-560 *7 *3 *8)) (-4 *8 (-1097))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1153 *4)) (-5 *3 (-564)) (-4 *4 (-1047)) - (-5 *1 (-1157 *4)))) - ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-564)) (-5 *1 (-1254 *3 *4 *5)) (-4 *3 (-1047)) - (-14 *4 (-1173)) (-14 *5 *3)))) + (|partial| -12 (-5 *3 (-644 (-264))) (-5 *4 (-1175)) (-5 *2 (-52)) + (-5 *1 (-264))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-862))))) +(((*1 *2 *1) (-12 (-4 *1 (-869 *3)) (-5 *2 (-566))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-644 (-1171 *7))) (-5 *3 (-1171 *7)) + (-4 *7 (-949 *4 *5 *6)) (-4 *4 (-909)) (-4 *5 (-793)) + (-4 *6 (-850)) (-5 *1 (-906 *4 *5 *6 *7)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-644 (-1171 *5))) (-5 *3 (-1171 *5)) + (-4 *5 (-1240 *4)) (-4 *4 (-909)) (-5 *1 (-907 *4 *5))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1155 (-2 (|:| |k| (-566)) (|:| |c| *3)))) + (-5 *1 (-596 *3)) (-4 *3 (-1049))))) +(((*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-1178)))) + ((*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1269)) (-5 *1 (-1178)))) + ((*1 *2 *3 *1) (-12 (-5 *3 (-1175)) (-5 *2 (-1269)) (-5 *1 (-1178))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) + ((*1 *1 *1) (-5 *1 (-862)))) +(((*1 *2 *1) + (-12 (-4 *1 (-1281 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)) + (-5 *2 (-2 (|:| |k| (-819 *3)) (|:| |c| *4)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) + (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) + (-4 *3 (-1064 *5 *6 *7)) + (-5 *2 (-644 (-2 (|:| |val| (-112)) (|:| -2192 *4)))) + (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3))))) +(((*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-438))))) +(((*1 *2 *3) + (-12 (-5 *3 (-921)) (-5 *2 (-1171 *4)) (-5 *1 (-359 *4)) + (-4 *4 (-351))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-644 (-566))) (-5 *2 (-689 (-566))) (-5 *1 (-1109))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1171 *9)) (-5 *4 (-644 *7)) (-5 *5 (-644 (-644 *8))) + (-4 *7 (-850)) (-4 *8 (-308)) (-4 *9 (-949 *8 *6 *7)) (-4 *6 (-793)) + (-5 *2 + (-2 (|:| |upol| (-1171 *8)) (|:| |Lval| (-644 *8)) + (|:| |Lfact| + (-644 (-2 (|:| -2325 (-1171 *8)) (|:| -3631 (-566))))) + (|:| |ctpol| *8))) + (-5 *1 (-742 *6 *7 *8 *9))))) +(((*1 *2 *1) (-12 (-4 *1 (-674 *3)) (-4 *3 (-1214)) (-5 *2 (-112))))) (((*1 *2) - (-12 (-4 *3 (-13 (-556) (-1036 (-564)))) (-5 *2 (-1267)) - (-5 *1 (-433 *3 *4)) (-4 *4 (-430 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-117 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-564)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-869 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-869 *2)) (-14 *2 (-564)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-564)) (-14 *3 *2) (-5 *1 (-870 *3 *4)) - (-4 *4 (-867 *3)))) - ((*1 *1 *1) - (-12 (-14 *2 (-564)) (-5 *1 (-870 *2 *3)) (-4 *3 (-867 *2)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-564)) (-4 *1 (-1224 *3 *4)) (-4 *3 (-1047)) - (-4 *4 (-1253 *3)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1224 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-1253 *2))))) -(((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-642 (-109))) (-5 *1 (-175))))) -(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-363) (-147) (-1036 (-407 (-564))))) - (-4 *5 (-1238 *4)) (-5 *2 (-642 (-2 (|:| -2245 *5) (|:| -1977 *5)))) - (-5 *1 (-805 *4 *5 *3 *6)) (-4 *3 (-654 *5)) - (-4 *6 (-654 (-407 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-363) (-147) (-1036 (-407 (-564))))) - (-4 *4 (-1238 *5)) (-5 *2 (-642 (-2 (|:| -2245 *4) (|:| -1977 *4)))) - (-5 *1 (-805 *5 *4 *3 *6)) (-4 *3 (-654 *4)) - (-4 *6 (-654 (-407 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-363) (-147) (-1036 (-407 (-564))))) - (-4 *5 (-1238 *4)) (-5 *2 (-642 (-2 (|:| -2245 *5) (|:| -1977 *5)))) - (-5 *1 (-805 *4 *5 *6 *3)) (-4 *6 (-654 *5)) - (-4 *3 (-654 (-407 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-363) (-147) (-1036 (-407 (-564))))) - (-4 *4 (-1238 *5)) (-5 *2 (-642 (-2 (|:| -2245 *4) (|:| -1977 *4)))) - (-5 *1 (-805 *5 *4 *6 *3)) (-4 *6 (-654 *4)) - (-4 *3 (-654 (-407 *4)))))) -(((*1 *2 *2) (-12 (-5 *2 (-919)) (-5 *1 (-357 *3)) (-4 *3 (-349))))) + (-12 (-4 *3 (-558)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-419 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) + (-5 *1 (-747))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-409 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1240 *5)) + (-5 *1 (-727 *5 *2)) (-4 *5 (-365))))) (((*1 *2 *1) (-12 (-5 *2 (-139)) (-5 *1 (-140)))) ((*1 *2 *1) (-12 (-5 *2 (-187)) (-5 *1 (-183)))) ((*1 *2 *1) (-12 (-5 *2 (-249)) (-5 *1 (-248))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-363)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112)) - (-5 *1 (-504 *4 *5 *6 *3)) (-4 *3 (-947 *4 *5 *6))))) -(((*1 *2 *3) +(((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *2 (-1035)) + (-5 *1 (-755))))) +(((*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1214))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-988 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-644 *3)) (-4 *3 (-1070 *5 *6 *7 *8)) (-4 *5 (-454)) + (-4 *6 (-793)) (-4 *7 (-850)) (-4 *8 (-1064 *5 *6 *7)) + (-5 *2 (-112)) (-5 *1 (-988 *5 *6 *7 *8 *3)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1106 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-644 *3)) (-4 *3 (-1070 *5 *6 *7 *8)) (-4 *5 (-454)) + (-4 *6 (-793)) (-4 *7 (-850)) (-4 *8 (-1064 *5 *6 *7)) + (-5 *2 (-112)) (-5 *1 (-1106 *5 *6 *7 *8 *3))))) +(((*1 *1) (-5 *1 (-823)))) +(((*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-157))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1155 (-1155 *4))) (-5 *2 (-1155 *4)) (-5 *1 (-1159 *4)) + (-4 *4 (-38 (-409 (-566)))) (-4 *4 (-1049))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3371 *1) (|:| -3131 *1))) (-4 *1 (-308)))) + ((*1 *2 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |lm| (-388 *3)) (|:| |rm| (-388 *3)))) + (-5 *1 (-388 *3)) (-4 *3 (-1099)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3371 (-771)) (|:| -3131 (-771)))) + (-5 *1 (-771)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| -3371 *3) (|:| -3131 *3))) + (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-1171 (-952 *4))) (-5 *1 (-418 *3 *4)) + (-4 *3 (-419 *4)))) + ((*1 *2) + (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-4 *3 (-365)) + (-5 *2 (-1171 (-952 *3))))) + ((*1 *2) + (-12 (-5 *2 (-1171 (-409 (-952 *3)))) (-5 *1 (-455 *3 *4 *5 *6)) + (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) + (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3)))))) +(((*1 *2 *3 *4) (-12 (-5 *3 - (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) - (|:| -4138 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *2 (-379)) (-5 *1 (-192))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-564)) (-5 *2 (-1267)) (-5 *1 (-1264)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-379)) (-5 *2 (-1267)) (-5 *1 (-1264))))) -(((*1 *2 *1) (-12 (-5 *2 (-820)) (-5 *1 (-819))))) -(((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-769)) (-4 *5 (-363)) (-5 *2 (-174 *6)) - (-5 *1 (-865 *5 *4 *6)) (-4 *4 (-1253 *5)) (-4 *6 (-1238 *5))))) -(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) - (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *5 (-112)) - (-5 *6 (-225)) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 APROD)))) - (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-73 MSOLVE)))) - (-5 *2 (-1033)) (-5 *1 (-754))))) -(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) - (-12 (-5 *3 (-919)) (-5 *4 (-225)) (-5 *5 (-564)) (-5 *6 (-872)) - (-5 *2 (-1267)) (-5 *1 (-1263))))) + (-644 + (-2 (|:| |eqzro| (-644 *8)) (|:| |neqzro| (-644 *8)) + (|:| |wcond| (-644 (-952 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1264 (-409 (-952 *5)))) + (|:| -1419 (-644 (-1264 (-409 (-952 *5)))))))))) + (-5 *4 (-1157)) (-4 *5 (-13 (-308) (-147))) (-4 *8 (-949 *5 *7 *6)) + (-4 *6 (-13 (-850) (-614 (-1175)))) (-4 *7 (-793)) (-5 *2 (-566)) + (-5 *1 (-924 *5 *6 *7 *8))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1240 *5)) (-4 *5 (-365)) + (-5 *2 (-2 (|:| -4069 (-409 *6)) (|:| |coeff| (-409 *6)))) + (-5 *1 (-576 *5 *6)) (-5 *3 (-409 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1269)) (-5 *1 (-381))))) +(((*1 *1 *1) (-4 *1 (-1059)))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-454)) + (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) + (-5 *1 (-977 *3 *4 *5 *6))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-642 (-481 *4 *5))) (-5 *3 (-642 (-862 *4))) - (-14 *4 (-642 (-1173))) (-4 *5 (-452)) (-5 *1 (-471 *4 *5 *6)) - (-4 *6 (-452))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-642 (-1262 *4))) (-5 *1 (-366 *3 *4)) - (-4 *3 (-367 *4)))) - ((*1 *2) - (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-556)) - (-5 *2 (-642 (-1262 *3)))))) + (-12 (-5 *3 (-644 (-644 (-644 *4)))) (-5 *2 (-644 (-644 *4))) + (-4 *4 (-850)) (-5 *1 (-1185 *4))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1264 *5)) (-4 *5 (-792)) (-5 *2 (-112)) + (-5 *1 (-845 *4 *5)) (-14 *4 (-771))))) +(((*1 *2 *1) (-12 (-5 *1 (-1209 *2)) (-4 *2 (-974))))) (((*1 *2 *3) - (-12 (-5 *3 (-687 *2)) (-4 *4 (-1238 *2)) - (-4 *2 (-13 (-307) (-10 -8 (-15 -3282 ((-418 $) $))))) - (-5 *1 (-499 *2 *4 *5)) (-4 *5 (-409 *2 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1120 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) - (-4 *5 (-238 *3 *2)) (-4 *2 (-1047))))) + (-12 (-4 *1 (-909)) (-5 *2 (-420 (-1171 *1))) (-5 *3 (-1171 *1))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1175)) (-5 *1 (-587 *2)) (-4 *2 (-1038 *3)) + (-4 *2 (-365)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-587 *2)) (-4 *2 (-365)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1175)) (-4 *4 (-558)) (-5 *1 (-630 *4 *2)) + (-4 *2 (-13 (-432 *4) (-1002) (-1199))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1091 *2)) (-4 *2 (-13 (-432 *4) (-1002) (-1199))) + (-4 *4 (-558)) (-5 *1 (-630 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-959)) (-5 *2 (-1175)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1091 *1)) (-4 *1 (-959))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) - (-4 *3 (-1062 *5 *6 *7)) - (-5 *2 (-642 (-2 (|:| |val| (-112)) (|:| -2138 *4)))) - (-5 *1 (-1105 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1155)) (-5 *4 (-564)) (-5 *5 (-687 (-169 (-225)))) - (-5 *2 (-1033)) (-5 *1 (-752))))) -(((*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172))))) -(((*1 *1 *2) - (-12 (-5 *2 (-413 *3 *4 *5 *6)) (-4 *6 (-1036 *4)) (-4 *3 (-307)) - (-4 *4 (-990 *3)) (-4 *5 (-1238 *4)) (-4 *6 (-409 *4 *5)) - (-14 *7 (-1262 *6)) (-5 *1 (-414 *3 *4 *5 *6 *7)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1262 *6)) (-4 *6 (-409 *4 *5)) (-4 *4 (-990 *3)) - (-4 *5 (-1238 *4)) (-4 *3 (-307)) (-5 *1 (-414 *3 *4 *5 *6 *7)) - (-14 *7 *2)))) + (-12 (-5 *3 (-1171 *1)) (-5 *4 (-1175)) (-4 *1 (-27)) + (-5 *2 (-644 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1171 *1)) (-4 *1 (-27)) (-5 *2 (-644 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-952 *1)) (-4 *1 (-27)) (-5 *2 (-644 *1)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1175)) (-4 *4 (-558)) (-5 *2 (-644 *1)) + (-4 *1 (-29 *4)))) + ((*1 *2 *1) (-12 (-4 *3 (-558)) (-5 *2 (-644 *1)) (-4 *1 (-29 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-317 (-225))) (-5 *4 (-644 (-1175))) + (-5 *5 (-1093 (-843 (-225)))) (-5 *2 (-1155 (-225))) (-5 *1 (-301))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-566)) (-4 *4 (-13 (-558) (-147))) (-5 *1 (-539 *4 *2)) + (-4 *2 (-1255 *4)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-566)) (-4 *4 (-13 (-365) (-370) (-614 *3))) + (-4 *5 (-1240 *4)) (-4 *6 (-724 *4 *5)) (-5 *1 (-543 *4 *5 *6 *2)) + (-4 *2 (-1255 *6)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-566)) (-4 *4 (-13 (-365) (-370) (-614 *3))) + (-5 *1 (-544 *4 *2)) (-4 *2 (-1255 *4)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1155 *4)) (-5 *3 (-566)) (-4 *4 (-13 (-558) (-147))) + (-5 *1 (-1151 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-558)) (-5 *2 (-644 *3)) (-5 *1 (-969 *4 *3)) + (-4 *3 (-1240 *4))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1175)) (-5 *2 (-1179)) (-5 *1 (-1178))))) (((*1 *2 *3) - (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-769)) - (-5 *1 (-449 *4 *5 *6 *3)) (-4 *3 (-947 *4 *5 *6))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-642 *1)) (-4 *1 (-918))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-506)) (-5 *3 (-642 (-963))) (-5 *1 (-109))))) -(((*1 *1 *2) - (-12 (-5 *2 (-407 (-564))) (-4 *1 (-554 *3)) - (-4 *3 (-13 (-404) (-1197))))) - ((*1 *1 *2) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1197))))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1197)))))) + (-12 (-4 *4 (-1049)) (-5 *2 (-566)) (-5 *1 (-445 *4 *3 *5)) + (-4 *3 (-1240 *4)) + (-4 *5 (-13 (-406) (-1038 *4) (-365) (-1199) (-285)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-644 *5)) (-5 *4 (-644 (-1 *6 (-644 *6)))) + (-4 *5 (-38 (-409 (-566)))) (-4 *6 (-1255 *5)) (-5 *2 (-644 *6)) + (-5 *1 (-1257 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-409 *6)) (-4 *5 (-1218)) (-4 *6 (-1240 *5)) + (-5 *2 (-2 (|:| -3631 (-771)) (|:| -3103 *3) (|:| |radicand| *6))) + (-5 *1 (-148 *5 *6 *7)) (-5 *4 (-771)) (-4 *7 (-1240 *3))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1269)) (-5 *1 (-822))))) +(((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1175)) (-5 *1 (-675 *3)) (-4 *3 (-1099))))) +(((*1 *2 *1) + (-12 (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *3 (-1173)) (-5 *2 (-536)) (-5 *1 (-535 *4)) - (-4 *4 (-1212))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1169 *2)) (-4 *2 (-430 *4)) (-4 *4 (-556)) - (-5 *1 (-32 *4 *2))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-919)) (-5 *4 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1263))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197))))) + (-12 (-5 *3 (-483 *4 *5)) (-14 *4 (-644 (-1175))) (-4 *5 (-1049)) + (-5 *2 (-247 *4 *5)) (-5 *1 (-944 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-1175))) (-5 *1 (-825))))) +(((*1 *2 *3) + (-12 (-5 *3 (-921)) (-5 *2 (-1171 *4)) (-5 *1 (-589 *4)) + (-4 *4 (-351))))) (((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1000)))))) -(((*1 *2 *1) (-12 (-5 *2 (-642 (-1082))) (-5 *1 (-291))))) + (-12 (-4 *3 (-13 (-558) (-1038 (-566)))) (-5 *1 (-188 *3 *2)) + (-4 *2 (-13 (-27) (-1199) (-432 (-169 *3)))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-558) (-1038 (-566)))) + (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1199) (-432 (-169 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566)))) + (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1175)) + (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) + (-5 *1 (-1203 *4 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436))))) +(((*1 *1 *1 *1 *2 *3) + (-12 (-5 *2 (-943 *5)) (-5 *3 (-771)) (-4 *5 (-1049)) + (-5 *1 (-1163 *4 *5)) (-14 *4 (-921))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *4 (-566))) (-5 *5 (-1 (-1155 *4))) (-4 *4 (-365)) + (-4 *4 (-1049)) (-5 *2 (-1155 *4)) (-5 *1 (-1159 *4))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) +(((*1 *2) (-12 (-5 *2 (-1132 (-225))) (-5 *1 (-1197))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) + (-4 *3 (-369 *4)))) + ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-791)) - (-4 *3 (-13 (-848) (-10 -8 (-15 -3003 ((-1173) $))))) (-4 *5 (-556)) - (-5 *1 (-730 *4 *3 *5 *2)) (-4 *2 (-947 (-407 (-950 *5)) *4 *3)))) + (-12 (-4 *4 (-793)) + (-4 *3 (-13 (-850) (-10 -8 (-15 -3136 ((-1175) $))))) (-4 *5 (-558)) + (-5 *1 (-732 *4 *3 *5 *2)) (-4 *2 (-949 (-409 (-952 *5)) *4 *3)))) ((*1 *2 *2 *3) - (-12 (-4 *4 (-1047)) (-4 *5 (-791)) + (-12 (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *3 - (-13 (-848) - (-10 -8 (-15 -3003 ((-1173) $)) - (-15 -1341 ((-3 $ "failed") (-1173)))))) - (-5 *1 (-982 *4 *5 *3 *2)) (-4 *2 (-947 (-950 *4) *5 *3)))) + (-13 (-850) + (-10 -8 (-15 -3136 ((-1175) $)) + (-15 -1338 ((-3 $ "failed") (-1175)))))) + (-5 *1 (-984 *4 *5 *3 *2)) (-4 *2 (-949 (-952 *4) *5 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-642 *6)) + (-12 (-5 *3 (-644 *6)) (-4 *6 - (-13 (-848) - (-10 -8 (-15 -3003 ((-1173) $)) - (-15 -1341 ((-3 $ "failed") (-1173)))))) - (-4 *4 (-1047)) (-4 *5 (-791)) (-5 *1 (-982 *4 *5 *6 *2)) - (-4 *2 (-947 (-950 *4) *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1033)) (-5 *1 (-838)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-642 (-316 (-379)))) (-5 *4 (-642 (-379))) - (-5 *2 (-1033)) (-5 *1 (-838))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-564)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *8 (-307)) - (-4 *9 (-947 *8 *6 *7)) - (-5 *2 (-2 (|:| -2830 (-1169 *9)) (|:| |polval| (-1169 *8)))) - (-5 *1 (-740 *6 *7 *8 *9)) (-5 *3 (-1169 *9)) (-5 *4 (-1169 *8))))) + (-13 (-850) + (-10 -8 (-15 -3136 ((-1175) $)) + (-15 -1338 ((-3 $ "failed") (-1175)))))) + (-4 *4 (-1049)) (-4 *5 (-793)) (-5 *1 (-984 *4 *5 *6 *2)) + (-4 *2 (-949 (-952 *4) *5 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-771)) (-5 *1 (-447 *3)) (-4 *3 (-1049)))) + ((*1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-447 *3)) (-4 *3 (-1049))))) (((*1 *2 *1) - (-12 (-4 *1 (-1062 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-791)) - (-4 *5 (-848)) (-5 *2 (-112))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-363)) (-5 *2 (-642 *3)) (-5 *1 (-943 *4 *3)) - (-4 *3 (-1238 *4))))) -(((*1 *2) (-12 (-5 *2 (-919)) (-5 *1 (-1265)))) - ((*1 *2 *2) (-12 (-5 *2 (-919)) (-5 *1 (-1265))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-642 (-610 *5))) (-5 *3 (-1173)) (-4 *5 (-430 *4)) - (-4 *4 (-1097)) (-5 *1 (-573 *4 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1264)))) - ((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1264))))) -(((*1 *2 *3) - (-12 (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) - (-4 *7 (-1062 *4 *5 *6)) - (-5 *2 (-642 (-2 (|:| -1616 *1) (|:| -3406 (-642 *7))))) - (-5 *3 (-642 *7)) (-4 *1 (-1205 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1173)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-700 *4 *5 *6 *7)) - (-4 *4 (-612 (-536))) (-4 *5 (-1212)) (-4 *6 (-1212)) - (-4 *7 (-1212))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-564)) (-4 *1 (-323 *4 *2)) (-4 *4 (-1097)) - (-4 *2 (-131))))) -(((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) - (-5 *1 (-754))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-302)) (-5 *3 (-1173)) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-302)) (-5 *3 (-114)) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1173)) (-5 *2 (-112)) (-5 *1 (-610 *4)) - (-4 *4 (-1097)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-610 *4)) (-4 *4 (-1097)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-833 *3)) (-4 *3 (-1097)) (-5 *2 (-112)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1097)) (-5 *2 (-112)) (-5 *1 (-885 *5 *3 *4)) - (-4 *3 (-884 *5)) (-4 *4 (-612 (-890 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-642 *6)) (-4 *6 (-884 *5)) (-4 *5 (-1097)) - (-5 *2 (-112)) (-5 *1 (-885 *5 *6 *4)) (-4 *4 (-612 (-890 *5)))))) -(((*1 *2 *3 *4 *4 *5 *3 *3) - (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *5 (-225)) - (-5 *2 (-1033)) (-5 *1 (-750))))) -(((*1 *1) (-5 *1 (-506)))) + (-12 (-5 *2 (-644 (-566))) (-5 *1 (-1004 *3)) (-14 *3 (-566))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-317 (-225))) (-5 *4 (-1175)) + (-5 *5 (-1093 (-843 (-225)))) (-5 *2 (-644 (-225))) (-5 *1 (-192)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-317 (-225))) (-5 *4 (-1175)) + (-5 *5 (-1093 (-843 (-225)))) (-5 *2 (-644 (-225))) (-5 *1 (-301))))) +(((*1 *1 *1) + (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-508)) (-5 *3 (-774)) (-5 *1 (-114)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1157)) (-5 *3 (-774)) (-5 *1 (-114))))) +(((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-926))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-112))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-761)))) +(((*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-1047)) (-4 *3 (-1097)) - (-5 *2 (-2 (|:| |val| *1) (|:| -2817 (-564)))) (-4 *1 (-430 *3)))) - ((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| |val| (-890 *3)) (|:| -2817 (-890 *3)))) - (-5 *1 (-890 *3)) (-4 *3 (-1097)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1047)) - (-4 *7 (-947 *6 *4 *5)) - (-5 *2 (-2 (|:| |val| *3) (|:| -2817 (-564)))) - (-5 *1 (-948 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-363) - (-10 -8 (-15 -2390 ($ *7)) (-15 -4120 (*7 $)) - (-15 -4131 (*7 $)))))))) -(((*1 *1) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1197)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-642 (-769))) (-5 *1 (-1161 *3 *4)) (-14 *3 (-919)) - (-4 *4 (-1047))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-112))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-312)) (-5 *1 (-827))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-545)))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-642 (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564)))))) - (-5 *2 (-642 (-225))) (-5 *1 (-305))))) -(((*1 *2 *3 *2) - (-12 - (-5 *2 - (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -1531 (-225)) - (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) - (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) - (-5 *3 (-642 (-263))) (-5 *1 (-261)))) - ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -1531 (-225)) - (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) - (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) - (-5 *1 (-263)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-379)) (-5 *2 (-1267)) (-5 *1 (-1264)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-379)) (-5 *2 (-1267)) (-5 *1 (-1264)))) - ((*1 *2 *1 *3 *3 *4 *4 *4) - (-12 (-5 *3 (-564)) (-5 *4 (-379)) (-5 *2 (-1267)) (-5 *1 (-1264)))) - ((*1 *2 *1 *3) - (-12 - (-5 *3 - (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -1531 (-225)) - (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) - (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) - (-5 *2 (-1267)) (-5 *1 (-1264)))) + (-644 + (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) + (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225))))) + (-5 *1 (-561)))) + ((*1 *2 *1) + (-12 (-4 *1 (-610 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)) + (-5 *2 (-644 *3)))) ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -1531 (-225)) - (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) - (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) - (-5 *1 (-1264)))) - ((*1 *2 *1 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-379)) (-5 *2 (-1267)) (-5 *1 (-1264))))) -(((*1 *2 *2) - (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1197)))))) -(((*1 *2 *1) + (-644 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) + (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225))))) + (-5 *1 (-803))))) +(((*1 *1 *1 *1) (-5 *1 (-862)))) +(((*1 *2 *2 *3 *4 *4) + (-12 (-5 *4 (-566)) (-4 *3 (-172)) (-4 *5 (-375 *3)) + (-4 *6 (-375 *3)) (-5 *1 (-688 *3 *5 *6 *2)) + (-4 *2 (-687 *3 *5 *6))))) +(((*1 *2 *3) (-12 - (-5 *2 - (-642 - (-642 - (-3 (|:| -2493 (-1173)) - (|:| -2253 (-642 (-3 (|:| S (-1173)) (|:| P (-950 (-564)))))))))) - (-5 *1 (-1177))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) - (-4 *7 (-1062 *4 *5 *6)) - (-5 *2 (-2 (|:| |bas| (-476 *4 *5 *6 *7)) (|:| -3844 (-642 *7)))) - (-5 *1 (-975 *4 *5 *6 *7)) (-5 *3 (-642 *7))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-820))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-506)) (-5 *1 (-114)))) + (-5 *3 + (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) + (|:| -1680 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 (-566)) (-5 *1 (-204))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-508)) (-5 *1 (-114)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-506)) (-4 *4 (-1097)) (-5 *1 (-927 *4 *2)) - (-4 *2 (-430 *4)))) + (-12 (-5 *3 (-508)) (-4 *4 (-1099)) (-5 *1 (-929 *4 *2)) + (-4 *2 (-432 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1173)) (-5 *4 (-506)) (-5 *2 (-316 (-564))) - (-5 *1 (-928))))) -(((*1 *2 *1) - (-12 (-4 *1 (-685 *2 *3 *4)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) - (|has| *2 (-6 (-4412 "*"))) (-4 *2 (-1047)))) - ((*1 *2 *3) - (-12 (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-172)) - (-5 *1 (-686 *2 *4 *5 *3)) (-4 *3 (-685 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1120 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) - (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4412 "*"))) (-4 *2 (-1047))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1161 *3 *4)) (-14 *3 (-919)) - (-4 *4 (-1047))))) + (-12 (-5 *3 (-1175)) (-5 *4 (-508)) (-5 *2 (-317 (-566))) + (-5 *1 (-930))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-1175))) (-5 *1 (-1179))))) (((*1 *2 *3) - (-12 (-5 *3 (-642 (-1173))) (-5 *2 (-1267)) (-5 *1 (-1214)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-642 (-1173))) (-5 *2 (-1267)) (-5 *1 (-1214))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) - (-4 *4 (-848)) (-4 *2 (-452))))) + (-12 (-4 *3 (-1240 *2)) (-4 *2 (-1240 *4)) (-5 *1 (-985 *4 *2 *3 *5)) + (-4 *4 (-351)) (-4 *5 (-724 *2 *3))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1240 *5)) + (-4 *5 (-13 (-27) (-432 *4))) (-4 *4 (-13 (-558) (-1038 (-566)))) + (-4 *7 (-1240 (-409 *6))) (-5 *1 (-554 *4 *5 *6 *7 *2)) + (-4 *2 (-344 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1240 *6)) + (-4 *6 (-13 (-27) (-432 *5))) (-4 *5 (-13 (-558) (-1038 (-566)))) + (-4 *8 (-1240 (-409 *7))) (-5 *2 (-587 *3)) + (-5 *1 (-554 *5 *6 *7 *8 *3)) (-4 *3 (-344 *6 *7 *8))))) +(((*1 *2) (-12 (-5 *2 (-904 (-566))) (-5 *1 (-917))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1064 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *2 (-850)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) + (-4 *4 (-850))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-558)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) + (-5 *1 (-1204 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-556) (-1036 (-564)) (-637 (-564)))) - (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-27) (-1197) (-430 *3))))) + (-12 (-4 *3 (-13 (-558) (-1038 (-566)))) (-5 *1 (-188 *3 *2)) + (-4 *2 (-13 (-27) (-1199) (-432 (-169 *3)))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1173)) - (-4 *4 (-13 (-556) (-1036 (-564)) (-637 (-564)))) - (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1197) (-430 *4)))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1137 *4 *5)) (-4 *4 (-13 (-1097) (-34))) - (-4 *5 (-13 (-1097) (-34))) (-5 *2 (-112)) (-5 *1 (-1138 *4 *5))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1173)) (-4 *4 (-452)) (-4 *4 (-1097)) - (-5 *1 (-573 *4 *2)) (-4 *2 (-284)) (-4 *2 (-430 *4))))) -(((*1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-1182))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-1137 *2 *3)) (-4 *2 (-13 (-1097) (-34))) - (-4 *3 (-13 (-1097) (-34)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-312)) (-5 *1 (-296)))) + (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-558) (-1038 (-566)))) + (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1199) (-432 (-169 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566)))) + (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1175)) + (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) + (-5 *1 (-1203 *4 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *4)))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) + (-5 *2 + (-2 (|:| -2153 *4) (|:| -1452 *4) (|:| |totalpts| (-566)) + (|:| |success| (-112)))) + (-5 *1 (-789)) (-5 *5 (-566))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-771)) (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-313)) (-5 *1 (-297)))) ((*1 *2 *3) - (-12 (-5 *3 (-642 (-1155))) (-5 *2 (-312)) (-5 *1 (-296)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-312)) (-5 *1 (-296)))) + (-12 (-5 *3 (-644 (-1157))) (-5 *2 (-313)) (-5 *1 (-297)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-313)) (-5 *1 (-297)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-642 (-1155))) (-5 *3 (-1155)) (-5 *2 (-312)) - (-5 *1 (-296))))) -(((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1000)))))) -(((*1 *1 *1 *1) (-5 *1 (-860)))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1155)) (-5 *4 (-564)) (-5 *5 (-687 (-225))) - (-5 *2 (-1033)) (-5 *1 (-752))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-642 (-642 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-642 (-3 (|:| |array| (-642 *3)) (|:| |scalar| (-1173))))) - (-5 *6 (-642 (-1173))) (-5 *3 (-1173)) (-5 *2 (-1101)) - (-5 *1 (-397)))) - ((*1 *2 *3 *4 *5 *6 *3) - (-12 (-5 *5 (-642 (-642 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-642 (-3 (|:| |array| (-642 *3)) (|:| |scalar| (-1173))))) - (-5 *6 (-642 (-1173))) (-5 *3 (-1173)) (-5 *2 (-1101)) - (-5 *1 (-397)))) - ((*1 *2 *3 *4 *5 *4) - (-12 (-5 *4 (-642 (-1173))) (-5 *5 (-1176)) (-5 *3 (-1173)) - (-5 *2 (-1101)) (-5 *1 (-397))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1153 (-1153 *4))) (-5 *2 (-1153 *4)) (-5 *1 (-1157 *4)) - (-4 *4 (-1047))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1262 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) - (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4)))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1155)) (-5 *3 (-564)) (-5 *1 (-241))))) -(((*1 *2 *1) - (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-1097)) - (-5 *2 (-642 (-2 (|:| |k| *4) (|:| |c| *3)))))) - ((*1 *2 *1) - (-12 (-5 *2 (-642 (-2 (|:| |k| (-891 *3)) (|:| |c| *4)))) - (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-848)) - (-4 *4 (-13 (-172) (-715 (-407 (-564))))) (-14 *5 (-919)))) - ((*1 *2 *1) - (-12 (-5 *2 (-642 (-670 *3))) (-5 *1 (-891 *3)) (-4 *3 (-848))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-642 (-294 *4))) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-848)) - (-4 *4 (-13 (-172) (-715 (-407 (-564))))) (-14 *5 (-919))))) -(((*1 *1) (-4 *1 (-349))) + (-12 (-5 *4 (-644 (-1157))) (-5 *3 (-1157)) (-5 *2 (-313)) + (-5 *1 (-297))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) + (-12 (-5 *3 (-1157)) (-5 *4 (-566)) (-5 *5 (-689 (-169 (-225)))) + (-5 *2 (-1035)) (-5 *1 (-754))))) +(((*1 *2 *1) (-12 (-4 *1 (-351)) (-5 *2 (-112)))) ((*1 *2 *3) - (-12 (-5 *3 (-642 *5)) (-4 *5 (-430 *4)) (-4 *4 (-13 (-556) (-147))) - (-5 *2 - (-2 (|:| |primelt| *5) (|:| |poly| (-642 (-1169 *5))) - (|:| |prim| (-1169 *5)))) - (-5 *1 (-432 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-556) (-147))) - (-5 *2 - (-2 (|:| |primelt| *3) (|:| |pol1| (-1169 *3)) - (|:| |pol2| (-1169 *3)) (|:| |prim| (-1169 *3)))) - (-5 *1 (-432 *4 *3)) (-4 *3 (-27)) (-4 *3 (-430 *4)))) - ((*1 *2 *3 *4 *3 *4) - (-12 (-5 *3 (-950 *5)) (-5 *4 (-1173)) (-4 *5 (-13 (-363) (-147))) + (-12 (-5 *3 (-1171 *4)) (-4 *4 (-351)) (-5 *2 (-112)) + (-5 *1 (-359 *4))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172))))) +(((*1 *2 *1) + (-12 (-5 *2 - (-2 (|:| |coef1| (-564)) (|:| |coef2| (-564)) - (|:| |prim| (-1169 *5)))) - (-5 *1 (-958 *5)))) + (-644 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) + (|:| |xpnt| (-566))))) + (-5 *1 (-420 *3)) (-4 *3 (-558)))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *4 (-771)) (-4 *3 (-351)) (-4 *5 (-1240 *3)) + (-5 *2 (-644 (-1171 *3))) (-5 *1 (-500 *3 *5 *6)) + (-4 *6 (-1240 *5))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) + (-4 *4 (-850)) (-4 *2 (-454))))) +(((*1 *1 *1 *1) (-5 *1 (-862)))) +(((*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1 (-381))) (-5 *1 (-1040))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1141 *3 *4)) (-14 *3 (-921)) (-4 *4 (-365)) + (-5 *1 (-993 *3 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-819 *4)) (-4 *4 (-850)) (-5 *2 (-112)) + (-5 *1 (-672 *4))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-497))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-1 (-225) (-225) (-225))) + (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) + (-5 *5 (-1093 (-225))) (-5 *6 (-644 (-264))) (-5 *2 (-1132 (-225))) + (-5 *1 (-697))))) +(((*1 *1 *1) + (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) +(((*1 *1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-264)))) + ((*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-264))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-566)) (|has| *1 (-6 -4418)) (-4 *1 (-375 *3)) + (-4 *3 (-1214))))) +(((*1 *2 *3) + (-12 (-4 *4 (-558)) (-5 *2 (-1171 *3)) (-5 *1 (-41 *4 *3)) + (-4 *3 + (-13 (-365) (-303) + (-10 -8 (-15 -4157 ((-1124 *4 (-612 $)) $)) + (-15 -4167 ((-1124 *4 (-612 $)) $)) + (-15 -2479 ($ (-1124 *4 (-612 $)))))))))) +(((*1 *2 *1) + (-12 (-5 *2 (-644 (-1200 *3))) (-5 *1 (-1200 *3)) (-4 *3 (-1099))))) +(((*1 *1) (-12 (-4 *1 (-1045 *2)) (-4 *2 (-23))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1264 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) + (-5 *2 (-689 *4)))) + ((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-689 *4)) (-5 *1 (-418 *3 *4)) + (-4 *3 (-419 *4)))) + ((*1 *2) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-689 *3))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1155 *3)) (-4 *3 (-1099)) + (-4 *3 (-1214))))) +(((*1 *1 *1 *1) (-4 *1 (-547)))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1175)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-702 *3 *5 *6 *7)) + (-4 *3 (-614 (-538))) (-4 *5 (-1214)) (-4 *6 (-1214)) + (-4 *7 (-1214)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-642 (-950 *5))) (-5 *4 (-642 (-1173))) - (-4 *5 (-13 (-363) (-147))) - (-5 *2 - (-2 (|:| -2968 (-642 (-564))) (|:| |poly| (-642 (-1169 *5))) - (|:| |prim| (-1169 *5)))) - (-5 *1 (-958 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-642 (-950 *6))) (-5 *4 (-642 (-1173))) (-5 *5 (-1173)) - (-4 *6 (-13 (-363) (-147))) - (-5 *2 - (-2 (|:| -2968 (-642 (-564))) (|:| |poly| (-642 (-1169 *6))) - (|:| |prim| (-1169 *6)))) - (-5 *1 (-958 *6))))) + (-12 (-5 *4 (-1175)) (-5 *2 (-1 *6 *5)) (-5 *1 (-706 *3 *5 *6)) + (-4 *3 (-614 (-538))) (-4 *5 (-1214)) (-4 *6 (-1214))))) +(((*1 *2 *3) + (-12 (-4 *4 (-351)) (-5 *2 (-112)) (-5 *1 (-216 *4 *3)) + (-4 *3 (-1240 *4))))) (((*1 *2) - (-12 (-4 *4 (-1216)) (-4 *5 (-1238 *4)) (-4 *6 (-1238 (-407 *5))) - (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) - (-4 *5 (-1238 (-407 *4))) (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *3 (-769)) (-5 *2 (-1 (-379))) (-5 *1 (-1038))))) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) + (-4 *3 (-369 *4)))) + ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *2 (-642 (-642 (-564)))) (-5 *1 (-969)) - (-5 *3 (-642 (-564)))))) -(((*1 *2 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-172))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-169 (-225))) (-5 *4 (-564)) (-5 *2 (-1033)) - (-5 *1 (-756))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1254 *2 *3 *4)) (-4 *2 (-1047)) (-14 *3 (-1173)) - (-14 *4 *2)))) -(((*1 *1 *1) (-4 *1 (-143))) - ((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) - ((*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-642 *6)) (-4 *1 (-974 *3 *4 *5 *6)) (-4 *3 (-1047)) - (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) - (-4 *3 (-556))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-452) (-1036 (-564)) (-637 (-564)))) + (-12 (-5 *3 (-1264 (-317 (-225)))) (-5 *2 - (-3 (|:| |%expansion| (-313 *5 *3 *6 *7)) - (|:| |%problem| (-2 (|:| |func| (-1155)) (|:| |prob| (-1155)))))) - (-5 *1 (-420 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1197) (-430 *5))) - (-14 *6 (-1173)) (-14 *7 *3)))) -(((*1 *2 *1) (-12 (-4 *1 (-672 *3)) (-4 *3 (-1212)) (-5 *2 (-112))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197))))) + (-2 (|:| |additions| (-566)) (|:| |multiplications| (-566)) + (|:| |exponentiations| (-566)) (|:| |functionCalls| (-566)))) + (-5 *1 (-306))))) +(((*1 *2 *3) + (-12 (-4 *4 (-850)) (-5 *2 (-644 (-644 (-644 *4)))) + (-5 *1 (-1185 *4)) (-5 *3 (-644 (-644 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-644 (-943 (-225))))) (-5 *1 (-470))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-114)) (-5 *4 (-644 *2)) (-5 *1 (-113 *2)) + (-4 *2 (-1099)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-644 *4))) (-4 *4 (-1099)) + (-5 *1 (-113 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1099)) + (-5 *1 (-113 *4)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-644 *4))) + (-5 *1 (-113 *4)) (-4 *4 (-1099)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-648 *3)) (-4 *3 (-1049)) + (-5 *1 (-714 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1049)) (-5 *1 (-836 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1157)) (-5 *1 (-52))))) +(((*1 *1 *2 *3 *4) + (-12 + (-5 *3 + (-644 + (-2 (|:| |scalar| (-409 (-566))) (|:| |coeff| (-1171 *2)) + (|:| |logand| (-1171 *2))))) + (-5 *4 (-644 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) + (-4 *2 (-365)) (-5 *1 (-587 *2))))) +(((*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-954))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-644 *2)) (-4 *2 (-547)) (-5 *1 (-159 *2))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 (-921))) (-5 *2 (-904 (-566))) (-5 *1 (-917))))) (((*1 *2 *2) - (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1197)))))) -(((*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1097)) (-5 *1 (-222 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1212)) (-4 *1 (-254 *3)))) - ((*1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1212))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-1137 *3 *2)) (-4 *3 (-13 (-1097) (-34))) - (-4 *2 (-13 (-1097) (-34)))))) + (-12 (-5 *2 (-1264 *4)) (-4 *4 (-419 *3)) (-4 *3 (-308)) + (-4 *3 (-558)) (-5 *1 (-43 *3 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-921)) (-4 *4 (-365)) (-5 *2 (-1264 *1)) + (-4 *1 (-330 *4)))) + ((*1 *2) (-12 (-4 *3 (-365)) (-5 *2 (-1264 *1)) (-4 *1 (-330 *3)))) + ((*1 *2) + (-12 (-4 *3 (-172)) (-4 *4 (-1240 *3)) (-5 *2 (-1264 *1)) + (-4 *1 (-411 *3 *4)))) + ((*1 *2 *1) + (-12 (-4 *3 (-308)) (-4 *4 (-992 *3)) (-4 *5 (-1240 *4)) + (-5 *2 (-1264 *6)) (-5 *1 (-415 *3 *4 *5 *6)) + (-4 *6 (-13 (-411 *4 *5) (-1038 *4))))) + ((*1 *2 *1) + (-12 (-4 *3 (-308)) (-4 *4 (-992 *3)) (-4 *5 (-1240 *4)) + (-5 *2 (-1264 *6)) (-5 *1 (-416 *3 *4 *5 *6 *7)) + (-4 *6 (-411 *4 *5)) (-14 *7 *2))) + ((*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1264 *1)) (-4 *1 (-419 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-921)) (-5 *2 (-1264 (-1264 *4))) (-5 *1 (-530 *4)) + (-4 *4 (-351))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-407 (-564))) (-4 *4 (-1036 (-564))) (-4 *4 (-556)) - (-5 *1 (-32 *4 *2)) (-4 *2 (-430 *4)))) + (-12 (-5 *3 (-409 (-566))) (-4 *4 (-1038 (-566))) (-4 *4 (-558)) + (-5 *1 (-32 *4 *2)) (-4 *2 (-432 *4)))) ((*1 *1 *1 *1) (-5 *1 (-134))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) + (-12 (-4 *3 (-558)) (-5 *1 (-158 *3 *2)) (-4 *2 (-432 *3)))) ((*1 *1 *1 *1) (-5 *1 (-225))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-243)) (-5 *2 (-564)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-243)) (-5 *2 (-566)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-407 (-564))) (-4 *4 (-363)) (-4 *4 (-38 *3)) - (-4 *5 (-1253 *4)) (-5 *1 (-278 *4 *5 *2)) (-4 *2 (-1224 *4 *5)))) + (-12 (-5 *3 (-409 (-566))) (-4 *4 (-365)) (-4 *4 (-38 *3)) + (-4 *5 (-1255 *4)) (-5 *1 (-279 *4 *5 *2)) (-4 *2 (-1226 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-407 (-564))) (-4 *4 (-363)) (-4 *4 (-38 *3)) - (-4 *5 (-1222 *4)) (-5 *1 (-279 *4 *5 *2 *6)) (-4 *2 (-1245 *4 *5)) - (-4 *6 (-981 *5)))) - ((*1 *1 *1 *1) (-4 *1 (-284))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-361 *2)) (-4 *2 (-1097)))) - ((*1 *1 *1 *1) (-5 *1 (-379))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-769)) (-5 *1 (-386 *2)) (-4 *2 (-1097)))) + (-12 (-5 *3 (-409 (-566))) (-4 *4 (-365)) (-4 *4 (-38 *3)) + (-4 *5 (-1224 *4)) (-5 *1 (-280 *4 *5 *2 *6)) (-4 *2 (-1247 *4 *5)) + (-4 *6 (-983 *5)))) + ((*1 *1 *1 *1) (-4 *1 (-285))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-566)) (-5 *1 (-363 *2)) (-4 *2 (-1099)))) + ((*1 *1 *1 *1) (-5 *1 (-381))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-771)) (-5 *1 (-388 *2)) (-4 *2 (-1099)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-769)) (-4 *1 (-430 *3)) (-4 *3 (-1097)) - (-4 *3 (-1109)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-473)) (-5 *2 (-564)))) + (-12 (-5 *2 (-771)) (-4 *1 (-432 *3)) (-4 *3 (-1099)) + (-4 *3 (-1111)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-475)) (-5 *2 (-566)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-769)) (-4 *3 (-363)) (-4 *4 (-791)) (-4 *5 (-848)) - (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-947 *3 *4 *5)))) + (-12 (-5 *2 (-771)) (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) + (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1262 *4)) (-5 *3 (-564)) (-4 *4 (-349)) - (-5 *1 (-528 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-536)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-536)))) + (-12 (-5 *2 (-1264 *4)) (-5 *3 (-566)) (-4 *4 (-351)) + (-5 *1 (-530 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-538)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-538)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-769)) (-4 *4 (-1097)) - (-5 *1 (-680 *4)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-771)) (-4 *4 (-1099)) + (-5 *1 (-682 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-564)) (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047)) - (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-4 *3 (-363)))) + (-12 (-5 *2 (-566)) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) + (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-4 *3 (-365)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-769)) (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047)) - (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) + (-12 (-5 *2 (-771)) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) + (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-687 *4)) (-5 *3 (-769)) (-4 *4 (-1047)) - (-5 *1 (-688 *4)))) + (-12 (-5 *2 (-689 *4)) (-5 *3 (-771)) (-4 *4 (-1049)) + (-5 *1 (-690 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-564)) (-4 *3 (-1047)) (-5 *1 (-712 *3 *4)) - (-4 *4 (-646 *3)))) + (-12 (-5 *2 (-566)) (-4 *3 (-1049)) (-5 *1 (-714 *3 *4)) + (-4 *4 (-648 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-564)) (-4 *4 (-1047)) - (-5 *1 (-712 *4 *5)) (-4 *5 (-646 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-718)) (-5 *2 (-919)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-720)) (-5 *2 (-769)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-724)) (-5 *2 (-769)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-769)) (-5 *1 (-817 *2)) (-4 *2 (-848)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-834 *3)) (-4 *3 (-1047)))) + (-12 (-5 *2 (-114)) (-5 *3 (-566)) (-4 *4 (-1049)) + (-5 *1 (-714 *4 *5)) (-4 *5 (-648 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-720)) (-5 *2 (-921)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-722)) (-5 *2 (-771)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-726)) (-5 *2 (-771)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-771)) (-5 *1 (-819 *2)) (-4 *2 (-850)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-836 *3)) (-4 *3 (-1049)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-564)) (-5 *1 (-834 *4)) (-4 *4 (-1047)))) - ((*1 *1 *1 *1) (-5 *1 (-860))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-1097)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-890 *3)) (-4 *3 (-1097)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1000)) (-5 *2 (-407 (-564))))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1109)) (-5 *2 (-919)))) + (-12 (-5 *2 (-114)) (-5 *3 (-566)) (-5 *1 (-836 *4)) (-4 *4 (-1049)))) + ((*1 *1 *1 *1) (-5 *1 (-862))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1099)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1002)) (-5 *2 (-409 (-566))))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1111)) (-5 *2 (-921)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-564)) (-4 *1 (-1120 *3 *4 *5 *6)) (-4 *4 (-1047)) - (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)) (-4 *4 (-363)))) + (-12 (-5 *2 (-566)) (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *4 (-1049)) + (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)) (-4 *4 (-365)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1158 *3)))) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1160 *3)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) - (-5 *1 (-1159 *3)))) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1161 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1253 *2)) (-4 *2 (-1047)) (-4 *2 (-363))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1097)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1097))))) -(((*1 *1 *2) - (-12 (-5 *2 (-642 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) - (-14 *3 (-564)) (-14 *4 (-769))))) -(((*1 *2 *2) - (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1197)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-556)) - (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-975 *3 *4 *5 *6))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4411)) (-4 *1 (-1008 *2)) (-4 *2 (-1212))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1229 (-564))) (-4 *1 (-282 *3)) (-4 *3 (-1212)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-282 *3)) (-4 *3 (-1212))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) - (-4 *4 (-848))))) -(((*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-952))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1262 (-642 (-2 (|:| -2108 *4) (|:| -2065 (-1117)))))) - (-4 *4 (-349)) (-5 *2 (-687 *4)) (-5 *1 (-346 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-330))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-495))))) -(((*1 *2 *1 *2) - (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-1097)) (-4 *2 (-1097))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-537 *3 *2)) - (-4 *2 (-1253 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-4 *4 (-1238 *3)) - (-4 *5 (-722 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1253 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-5 *1 (-542 *3 *2)) - (-4 *2 (-1253 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1153 *3)) (-4 *3 (-13 (-556) (-147))) - (-5 *1 (-1149 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-525))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *2 (-642 (-1169 *7))) (-5 *3 (-1169 *7)) - (-4 *7 (-947 *5 *6 *4)) (-4 *5 (-907)) (-4 *6 (-791)) - (-4 *4 (-848)) (-5 *1 (-904 *5 *6 *4 *7))))) -(((*1 *1 *1 *1) (-5 *1 (-860)))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-452)) - (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) - (-5 *1 (-975 *3 *4 *5 *6))))) -(((*1 *1 *2) - (-12 (-5 *2 (-642 *6)) (-4 *6 (-947 *3 *4 *5)) (-4 *3 (-363)) - (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-504 *3 *4 *5 *6))))) + (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1049)) (-4 *2 (-365))))) +(((*1 *2 *2 *2 *3 *3) + (-12 (-5 *3 (-771)) (-4 *4 (-1049)) (-5 *1 (-1236 *4 *2)) + (-4 *2 (-1240 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-556)) (-5 *2 (-642 *3)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-417 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-642 (-950 *4))) (-5 *3 (-642 (-1173))) (-4 *4 (-452)) - (-5 *1 (-916 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-765 *3)) (-4 *3 (-1097)) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1197)))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *6 (-919)) (-4 *5 (-307)) (-4 *3 (-1238 *5)) - (-5 *2 (-2 (|:| |plist| (-642 *3)) (|:| |modulo| *5))) - (-5 *1 (-460 *5 *3)) (-5 *4 (-642 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-556)) + (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *7 (-1064 *4 *5 *6)) + (-5 *2 (-644 (-2 (|:| -1637 *1) (|:| -3516 (-644 *7))))) + (-5 *3 (-644 *7)) (-4 *1 (-1207 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-921)) (-5 *2 (-1171 *4)) (-5 *1 (-359 *4)) + (-4 *4 (-351)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-921)) (-5 *2 (-1171 *4)) (-5 *1 (-359 *4)) + (-4 *4 (-351)))) + ((*1 *1) (-4 *1 (-370))) + ((*1 *2 *3) + (-12 (-5 *3 (-921)) (-5 *2 (-1264 *4)) (-5 *1 (-530 *4)) + (-4 *4 (-351)))) + ((*1 *1 *1) (-4 *1 (-547))) ((*1 *1) (-4 *1 (-547))) + ((*1 *1 *1) (-5 *1 (-566))) ((*1 *1 *1) (-5 *1 (-771))) + ((*1 *2 *1) (-12 (-5 *2 (-905 *3)) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-566)) (-5 *2 (-905 *4)) (-5 *1 (-904 *4)) + (-4 *4 (-1099)))) + ((*1 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-547)) (-4 *2 (-558))))) +(((*1 *1 *2) + (-12 (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-967 *4 *3)) (-4 *3 (-1238 *4))))) -(((*1 *1 *1 *1) (-5 *1 (-860)))) -(((*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1212))))) -(((*1 *1 *1 *1) (-5 *1 (-860)))) + (-2 (|:| |mval| (-689 *3)) (|:| |invmval| (-689 *3)) + (|:| |genIdeal| (-506 *3 *4 *5 *6)))) + (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) + (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-365) (-848))) (-5 *1 (-181 *3 *2)) + (-4 *2 (-1240 (-169 *3)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-52)) (-5 *1 (-1192))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1173)) - (-4 *5 (-13 (-452) (-147) (-1036 (-564)) (-637 (-564)))) - (-5 *2 (-585 *3)) (-5 *1 (-557 *5 *3)) - (-4 *3 (-13 (-27) (-1197) (-430 *5)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-316 *3)) (-4 *3 (-556)) (-4 *3 (-1097))))) + (-12 (-5 *3 (-644 *5)) (-5 *4 (-921)) (-4 *5 (-850)) + (-5 *2 (-644 (-672 *5))) (-5 *1 (-672 *5))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-112)) + (-5 *2 (-1035)) (-5 *1 (-753))))) +(((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-689 *11)) (-5 *4 (-644 (-409 (-952 *8)))) + (-5 *5 (-771)) (-5 *6 (-1157)) (-4 *8 (-13 (-308) (-147))) + (-4 *11 (-949 *8 *10 *9)) (-4 *9 (-13 (-850) (-614 (-1175)))) + (-4 *10 (-793)) + (-5 *2 + (-2 + (|:| |rgl| + (-644 + (-2 (|:| |eqzro| (-644 *11)) (|:| |neqzro| (-644 *11)) + (|:| |wcond| (-644 (-952 *8))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1264 (-409 (-952 *8)))) + (|:| -1419 (-644 (-1264 (-409 (-952 *8)))))))))) + (|:| |rgsz| (-566)))) + (-5 *1 (-924 *8 *9 *10 *11)) (-5 *7 (-566))))) (((*1 *2 *1) - (-12 (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-373 *3)) - (-4 *5 (-373 *3)) (-5 *2 (-112)))) + (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *5 (-850)) (-5 *2 (-112))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-1175)) + (-4 *4 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) + (-5 *1 (-622 *4 *2)) (-4 *2 (-13 (-1199) (-959) (-29 *4)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) + (-5 *2 (-644 *4)) (-5 *1 (-1127 *3 *4)) (-4 *3 (-1240 *4)))) + ((*1 *2 *3 *3 *3 *3) + (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) + (-5 *2 (-644 *3)) (-5 *1 (-1127 *4 *3)) (-4 *4 (-1240 *3))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1264 *5)) (-4 *5 (-792)) (-5 *2 (-112)) + (-5 *1 (-845 *4 *5)) (-14 *4 (-771))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-482))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1264 (-1175))) (-5 *3 (-1264 (-455 *4 *5 *6 *7))) + (-5 *1 (-455 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-921)) + (-14 *6 (-644 (-1175))) (-14 *7 (-1264 (-689 *4))))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1175)) (-5 *3 (-1264 (-455 *4 *5 *6 *7))) + (-5 *1 (-455 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-921)) + (-14 *6 (-644 *2)) (-14 *7 (-1264 (-689 *4))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1264 (-455 *3 *4 *5 *6))) (-5 *1 (-455 *3 *4 *5 *6)) + (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) + (-14 *6 (-1264 (-689 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1264 (-1175))) (-5 *1 (-455 *3 *4 *5 *6)) + (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) + (-14 *6 (-1264 (-689 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1175)) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-172)) + (-14 *4 (-921)) (-14 *5 (-644 *2)) (-14 *6 (-1264 (-689 *3))))) + ((*1 *1) + (-12 (-5 *1 (-455 *2 *3 *4 *5)) (-4 *2 (-172)) (-14 *3 (-921)) + (-14 *4 (-644 (-1175))) (-14 *5 (-1264 (-689 *2)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-558)) (-4 *5 (-992 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-142 *4 *5 *3)) + (-4 *3 (-375 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-558)) (-4 *5 (-992 *4)) + (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) + (-5 *1 (-505 *4 *5 *6 *3)) (-4 *6 (-375 *4)) (-4 *3 (-375 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-689 *5)) (-4 *5 (-992 *4)) (-4 *4 (-558)) + (-5 *2 (-2 (|:| |num| (-689 *4)) (|:| |den| *4))) + (-5 *1 (-693 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-365) (-147) (-1038 (-409 (-566))))) + (-4 *6 (-1240 *5)) + (-5 *2 (-2 (|:| -3477 *7) (|:| |rh| (-644 (-409 *6))))) + (-5 *1 (-807 *5 *6 *7 *3)) (-5 *4 (-644 (-409 *6))) + (-4 *7 (-656 *6)) (-4 *3 (-656 (-409 *6))))) + ((*1 *2 *3) + (-12 (-4 *4 (-558)) (-4 *5 (-992 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1233 *4 *5 *3)) + (-4 *3 (-1240 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1157)) (-5 *2 (-214 (-504))) (-5 *1 (-837))))) +(((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1171 *7)) (-5 *3 (-566)) (-4 *7 (-949 *6 *4 *5)) + (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1049)) + (-5 *1 (-322 *4 *5 *6 *7))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-612 (-48)))) (-5 *1 (-48)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-612 (-48))) (-5 *1 (-48)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1171 (-48))) (-5 *3 (-644 (-612 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1171 (-48))) (-5 *3 (-612 (-48))) (-5 *1 (-48)))) + ((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-365) (-848))) (-5 *1 (-181 *2 *3)) + (-4 *3 (-1240 (-169 *2))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-921)) (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)))) + ((*1 *2 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-365)))) ((*1 *2 *1) - (-12 (-4 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-887 *5 *3)) (-5 *4 (-890 *5)) (-4 *5 (-1097)) - (-4 *3 (-166 *6)) (-4 (-950 *6) (-884 *5)) - (-4 *6 (-13 (-884 *5) (-172))) (-5 *1 (-178 *5 *6 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-887 *4 *1)) (-5 *3 (-890 *4)) (-4 *1 (-884 *4)) - (-4 *4 (-1097)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-887 *5 *6)) (-5 *4 (-890 *5)) (-4 *5 (-1097)) - (-4 *6 (-13 (-1097) (-1036 *3))) (-4 *3 (-884 *5)) - (-5 *1 (-929 *5 *3 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-887 *5 *3)) (-4 *5 (-1097)) - (-4 *3 (-13 (-430 *6) (-612 *4) (-884 *5) (-1036 (-610 $)))) - (-5 *4 (-890 *5)) (-4 *6 (-13 (-556) (-884 *5))) - (-5 *1 (-930 *5 *6 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-887 (-564) *3)) (-5 *4 (-890 (-564))) (-4 *3 (-545)) - (-5 *1 (-931 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-887 *5 *6)) (-5 *3 (-610 *6)) (-4 *5 (-1097)) - (-4 *6 (-13 (-1097) (-1036 (-610 $)) (-612 *4) (-884 *5))) - (-5 *4 (-890 *5)) (-5 *1 (-932 *5 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-883 *5 *6 *3)) (-5 *4 (-890 *5)) (-4 *5 (-1097)) - (-4 *6 (-884 *5)) (-4 *3 (-664 *6)) (-5 *1 (-933 *5 *6 *3)))) - ((*1 *2 *3 *4 *2 *5) - (-12 (-5 *5 (-1 (-887 *6 *3) *8 (-890 *6) (-887 *6 *3))) - (-4 *8 (-848)) (-5 *2 (-887 *6 *3)) (-5 *4 (-890 *6)) - (-4 *6 (-1097)) (-4 *3 (-13 (-947 *9 *7 *8) (-612 *4))) - (-4 *7 (-791)) (-4 *9 (-13 (-1047) (-884 *6))) - (-5 *1 (-934 *6 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-887 *5 *3)) (-4 *5 (-1097)) - (-4 *3 (-13 (-947 *8 *6 *7) (-612 *4))) (-5 *4 (-890 *5)) - (-4 *7 (-884 *5)) (-4 *6 (-791)) (-4 *7 (-848)) - (-4 *8 (-13 (-1047) (-884 *5))) (-5 *1 (-934 *5 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-887 *5 *3)) (-4 *5 (-1097)) (-4 *3 (-990 *6)) - (-4 *6 (-13 (-556) (-884 *5) (-612 *4))) (-5 *4 (-890 *5)) - (-5 *1 (-937 *5 *6 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-887 *5 (-1173))) (-5 *3 (-1173)) (-5 *4 (-890 *5)) - (-4 *5 (-1097)) (-5 *1 (-938 *5)))) - ((*1 *2 *3 *4 *5 *2 *6) - (-12 (-5 *4 (-642 (-890 *7))) (-5 *5 (-1 *9 (-642 *9))) - (-5 *6 (-1 (-887 *7 *9) *9 (-890 *7) (-887 *7 *9))) (-4 *7 (-1097)) - (-4 *9 (-13 (-1047) (-612 (-890 *7)) (-1036 *8))) - (-5 *2 (-887 *7 *9)) (-5 *3 (-642 *9)) (-4 *8 (-1047)) - (-5 *1 (-939 *7 *8 *9))))) -(((*1 *2 *1) - (-12 (-4 *3 (-172)) (-4 *2 (-23)) (-5 *1 (-289 *3 *4 *2 *5 *6 *7)) - (-4 *4 (-1238 *3)) (-14 *5 (-1 *4 *4 *2)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2)) - (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) + (-12 (-4 *1 (-372 *2 *3)) (-4 *3 (-1240 *2)) (-4 *2 (-172)))) ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-709 *3 *2 *4 *5 *6)) (-4 *3 (-172)) - (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) - (-12 (-4 *2 (-1238 *3)) (-5 *1 (-710 *3 *2)) (-4 *3 (-1047)))) + (-12 (-4 *4 (-1240 *2)) (-4 *2 (-992 *3)) (-5 *1 (-415 *3 *2 *4 *5)) + (-4 *3 (-308)) (-4 *5 (-13 (-411 *2 *4) (-1038 *2))))) ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-713 *3 *2 *4 *5 *6)) (-4 *3 (-172)) - (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *1 (-867 *3)) (-5 *2 (-564))))) -(((*1 *2 *3) - (-12 + (-12 (-4 *4 (-1240 *2)) (-4 *2 (-992 *3)) + (-5 *1 (-416 *3 *2 *4 *5 *6)) (-4 *3 (-308)) (-4 *5 (-411 *2 *4)) + (-14 *6 (-1264 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-921)) (-4 *5 (-1049)) + (-4 *2 (-13 (-406) (-1038 *5) (-365) (-1199) (-285))) + (-5 *1 (-445 *5 *3 *2)) (-4 *3 (-1240 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-612 (-497)))) (-5 *1 (-497)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-612 (-497))) (-5 *1 (-497)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1171 (-497))) (-5 *3 (-644 (-612 (-497)))) + (-5 *1 (-497)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1171 (-497))) (-5 *3 (-612 (-497))) (-5 *1 (-497)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1264 *4)) (-5 *3 (-921)) (-4 *4 (-351)) + (-5 *1 (-530 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-454)) (-4 *5 (-724 *4 *2)) (-4 *2 (-1240 *4)) + (-5 *1 (-775 *4 *2 *5 *3)) (-4 *3 (-1240 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))) + ((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172)))) + ((*1 *1 *1) (-4 *1 (-1059)))) +(((*1 *2 *2) (-12 (-5 *2 (-317 (-225))) (-5 *1 (-210))))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) + (-12 (-5 *4 (-566)) (-5 *6 (-1 (-1269) (-1264 *5) (-1264 *5) (-381))) + (-5 *3 (-1264 (-381))) (-5 *5 (-381)) (-5 *2 (-1269)) + (-5 *1 (-788))))) +(((*1 *2 *3 *4 *4 *2 *2 *2) + (-12 (-5 *2 (-566)) (-5 *3 - (-504 (-407 (-564)) (-240 *5 (-769)) (-862 *4) - (-247 *4 (-407 (-564))))) - (-14 *4 (-642 (-1173))) (-14 *5 (-769)) (-5 *2 (-112)) - (-5 *1 (-505 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-556)) (-4 *2 (-545)))) - ((*1 *1 *1) (-4 *1 (-1057)))) -(((*1 *1 *2) (-12 (-5 *2 (-872)) (-5 *1 (-263)))) - ((*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-263))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1173)) (-5 *3 (-379)) (-5 *1 (-1060))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-642 (-52))) (-5 *1 (-890 *3)) (-4 *3 (-1097))))) -(((*1 *2 *3) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-561)) (-5 *3 (-564))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-642 (-1173))) (-5 *3 (-52)) (-5 *1 (-890 *4)) - (-4 *4 (-1097))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) - (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1033)) - (-5 *1 (-746))))) -(((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| -4341 (-407 (-564))) (|:| -4351 (-407 (-564))))) - (-5 *2 (-407 (-564))) (-5 *1 (-1018 *4)) (-4 *4 (-1238 (-564)))))) -(((*1 *2 *3 *3) - (-12 (|has| *2 (-6 (-4412 "*"))) (-4 *5 (-373 *2)) (-4 *6 (-373 *2)) - (-4 *2 (-1047)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1238 *2)) - (-4 *4 (-685 *2 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *2 (-564)) (-5 *1 (-569 *3)) (-4 *3 (-1036 *2)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1100 *3 *4 *2 *5 *6)) (-4 *3 (-1097)) (-4 *4 (-1097)) - (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *2 (-1097))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1033)) (-5 *3 (-1173)) (-5 *1 (-192))))) -(((*1 *1 *1) (-12 (-5 *1 (-912 *2)) (-4 *2 (-307))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-506)) (-5 *2 (-112)) (-5 *1 (-114))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-771)) (|:| |poli| *4) + (|:| |polj| *4))) + (-4 *6 (-793)) (-4 *4 (-949 *5 *6 *7)) (-4 *5 (-454)) (-4 *7 (-850)) + (-5 *1 (-451 *5 *6 *7 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) +(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) + (|partial| -12 (-5 *2 (-644 (-1171 *13))) (-5 *3 (-1171 *13)) + (-5 *4 (-644 *12)) (-5 *5 (-644 *10)) (-5 *6 (-644 *13)) + (-5 *7 (-644 (-644 (-2 (|:| -1933 (-771)) (|:| |pcoef| *13))))) + (-5 *8 (-644 (-771))) (-5 *9 (-1264 (-644 (-1171 *10)))) + (-4 *12 (-850)) (-4 *10 (-308)) (-4 *13 (-949 *10 *11 *12)) + (-4 *11 (-793)) (-5 *1 (-707 *11 *12 *10 *13))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1026 (-843 (-566)))) (-5 *1 (-596 *3)) (-4 *3 (-1049))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-873 (-1180) (-771)))) (-5 *1 (-334))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1264 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) + (-5 *2 (-689 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-689 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-771)) (-5 *1 (-783 *2)) (-4 *2 (-38 (-409 (-566)))) + (-4 *2 (-172))))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) + (-5 *1 (-751))))) +(((*1 *1 *1 *1) (-4 *1 (-547)))) +(((*1 *2 *2) + (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1199)))))) +(((*1 *2 *1) (-12 (-4 *1 (-674 *3)) (-4 *3 (-1214)) (-5 *2 (-771))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1035))))) +(((*1 *2 *1) (-12 (-4 *1 (-308)) (-5 *2 (-771))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-771)) (-4 *5 (-558)) (-5 *2 - (-2 (|:| |contp| (-564)) - (|:| -1569 (-642 (-2 (|:| |irr| *3) (|:| -3660 (-564))))))) - (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564))))) + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-969 *5 *3)) (-4 *3 (-1240 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-438)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-438))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-508)) (-5 *3 (-644 (-965))) (-5 *1 (-292))))) +(((*1 *2 *1) (-12 (-4 *1 (-556 *2)) (-4 *2 (-13 (-406) (-1199)))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) + (-5 *1 (-755))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-690 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-689 *4)) (-5 *3 (-921)) (-4 *4 (-1049)) + (-5 *1 (-1028 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-644 (-689 *4))) (-5 *3 (-921)) (-4 *4 (-1049)) + (-5 *1 (-1028 *4))))) +(((*1 *1 *1) (-12 (-4 *1 (-432 *2)) (-4 *2 (-1099)) (-4 *2 (-558)))) + ((*1 *1 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558))))) +(((*1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1214)) (-4 *2 (-850)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-375 *3)) (-4 *3 (-1214)))) + ((*1 *2 *2) + (-12 (-5 *2 (-644 (-905 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1099)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *3 (-850)) + (-4 *6 (-1064 *4 *5 *3)) + (-5 *2 (-2 (|:| |under| *1) (|:| -2001 *1) (|:| |upper| *1))) + (-4 *1 (-976 *4 *5 *3 *6))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-420 *2)) (-4 *2 (-308)) (-5 *1 (-914 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) - (-5 *2 - (-2 (|:| |contp| (-564)) - (|:| -1569 (-642 (-2 (|:| |irr| *3) (|:| -3660 (-564))))))) - (-5 *1 (-1227 *3)) (-4 *3 (-1238 (-564)))))) + (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-1175)) + (-4 *5 (-13 (-308) (-147))) (-5 *2 (-52)) (-5 *1 (-915 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-420 (-952 *6))) (-5 *5 (-1175)) (-5 *3 (-952 *6)) + (-4 *6 (-13 (-308) (-147))) (-5 *2 (-52)) (-5 *1 (-915 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-363)) (-4 *6 (-1238 (-407 *2))) - (-4 *2 (-1238 *5)) (-5 *1 (-215 *5 *2 *6 *3)) - (-4 *3 (-342 *5 *2 *6))))) -(((*1 *2 *2) - (-12 (-5 *2 (-642 (-481 *3 *4))) (-14 *3 (-642 (-1173))) - (-4 *4 (-452)) (-5 *1 (-629 *3 *4))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-556)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) - (-5 *1 (-1202 *3 *4 *5 *2)) (-4 *2 (-685 *3 *4 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1036 (-564))) (-4 *3 (-556)) (-5 *1 (-32 *3 *2)) - (-4 *2 (-430 *3)))) - ((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-1169 *4)) (-5 *1 (-165 *3 *4)) - (-4 *3 (-166 *4)))) - ((*1 *1 *1) (-12 (-4 *1 (-1047)) (-4 *1 (-302)))) - ((*1 *2) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1169 *3)))) - ((*1 *2) (-12 (-4 *1 (-722 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1238 *3)))) + (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1099)) (-4 *4 (-1099)) + (-4 *6 (-1099)) (-5 *2 (-1 *6 *5)) (-5 *1 (-684 *5 *4 *6))))) +(((*1 *1) (-5 *1 (-823)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099))))) +(((*1 *2 *3) (-12 (-5 *2 (-566)) (-5 *1 (-571 *3)) (-4 *3 (-1038 *2)))) ((*1 *2 *1) - (-12 (-4 *1 (-1065 *3 *2)) (-4 *3 (-13 (-846) (-363))) - (-4 *2 (-1238 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1173)) - (-4 *5 (-13 (-1036 (-564)) (-452) (-637 (-564)))) - (-5 *2 (-2 (|:| -3944 *3) (|:| |nconst| *3))) (-5 *1 (-567 *5 *3)) - (-4 *3 (-13 (-27) (-1197) (-430 *5)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-180)))) - ((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-311)))) - ((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-968)))) - ((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-992)))) - ((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-1034)))) - ((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-1070))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-848) (-612 (-1173)))) - (-4 *6 (-791)) (-4 *7 (-947 *4 *6 *5)) - (-5 *2 - (-2 (|:| |sysok| (-112)) (|:| |z0| (-642 *7)) (|:| |n0| (-642 *7)))) - (-5 *1 (-922 *4 *5 *6 *7)) (-5 *3 (-642 *7))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *6 (-1155)) - (-5 *3 (-225)) (-5 *2 (-1033)) (-5 *1 (-756))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-225)) (-5 *4 (-564)) - (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2266)))) - (-5 *2 (-1033)) (-5 *1 (-746))))) + (-12 (-4 *1 (-1102 *3 *4 *2 *5 *6)) (-4 *3 (-1099)) (-4 *4 (-1099)) + (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *2 (-1099))))) +(((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-469)))) + ((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-469)))) + ((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-927))))) +(((*1 *1) (-5 *1 (-1084)))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) +(((*1 *1 *1) + (-12 (-4 *1 (-254 *2 *3 *4 *5)) (-4 *2 (-1049)) (-4 *3 (-850)) + (-4 *4 (-267 *3)) (-4 *5 (-793))))) (((*1 *2 *1) - (-12 (-4 *1 (-1100 *3 *4 *5 *6 *7)) (-4 *3 (-1097)) (-4 *4 (-1097)) - (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *7 (-1097)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-769)))) - ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-402)) (-5 *2 (-769))))) -(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1264)))) - ((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1264))))) -(((*1 *2 *1) (-12 (-5 *2 (-642 (-1132))) (-5 *1 (-154)))) - ((*1 *2 *1) (-12 (-5 *2 (-642 (-1132))) (-5 *1 (-1063))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1097) (-1036 *5))) - (-4 *5 (-884 *4)) (-4 *4 (-1097)) (-5 *2 (-1 (-112) *5)) - (-5 *1 (-929 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-689 (-129)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-642 (-407 (-950 (-169 (-564)))))) - (-5 *2 (-642 (-642 (-294 (-950 (-169 *4)))))) (-5 *1 (-378 *4)) - (-4 *4 (-13 (-363) (-846))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-642 (-294 (-407 (-950 (-169 (-564))))))) - (-5 *2 (-642 (-642 (-294 (-950 (-169 *4)))))) (-5 *1 (-378 *4)) - (-4 *4 (-13 (-363) (-846))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-407 (-950 (-169 (-564))))) - (-5 *2 (-642 (-294 (-950 (-169 *4))))) (-5 *1 (-378 *4)) - (-4 *4 (-13 (-363) (-846))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-294 (-407 (-950 (-169 (-564)))))) - (-5 *2 (-642 (-294 (-950 (-169 *4))))) (-5 *1 (-378 *4)) - (-4 *4 (-13 (-363) (-846)))))) + (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6)) + (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) + (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114))))) +(((*1 *2 *1) (-12 (-4 *1 (-674 *3)) (-4 *3 (-1214)) (-5 *2 (-112))))) +(((*1 *2 *2) (-12 (-5 *2 (-317 (-225))) (-5 *1 (-268))))) (((*1 *2 *1) - (-12 (-4 *1 (-1100 *3 *2 *4 *5 *6)) (-4 *3 (-1097)) (-4 *4 (-1097)) - (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *2 (-1097))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-890 *3)) (-4 *3 (-1097))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-529))))) -(((*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1097)) (-5 *1 (-91 *3))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-1267)) (-5 *1 (-829))))) -(((*1 *2) - (-12 (-4 *3 (-556)) (-5 *2 (-642 (-687 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-417 *3))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-687 (-564))) (-5 *3 (-642 (-564))) (-5 *1 (-1107))))) -(((*1 *2 *1) (-12 (-4 *1 (-266 *2)) (-4 *2 (-848)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1173)) (-5 *1 (-862 *3)) (-14 *3 (-642 *2)))) - ((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-987)))) - ((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-1089 *3)) (-4 *3 (-1212)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1214)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-5 *2 (-566)))) ((*1 *2 *1) - (-12 (-4 *1 (-1240 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-790)) - (-5 *2 (-1173)))) - ((*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-1258 *3)) (-14 *3 *2)))) -(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-689 (-547)))))) + (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-566))))) +(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-180)))) + ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-312)))) + ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-970)))) + ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-994)))) + ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1036)))) + ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1072))))) +(((*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-1049))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) + (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2341)))) + (-5 *2 (-1035)) (-5 *1 (-748))))) +(((*1 *2) + (-12 (-5 *2 (-921)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) + ((*1 *2 *2) + (-12 (-5 *2 (-921)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-862)) (-5 *1 (-392 *3 *4 *5)) (-14 *3 (-771)) + (-14 *4 (-771)) (-4 *5 (-172))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-566)) (-14 *3 (-771)) + (-4 *4 (-172)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1175)) (-4 *4 (-558)) (-5 *1 (-158 *4 *2)) + (-4 *2 (-432 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1091 *2)) (-4 *2 (-432 *4)) (-4 *4 (-558)) + (-5 *1 (-158 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1091 *1)) (-4 *1 (-160)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1175)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-467 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-771)) (-5 *1 (-1284 *3 *4)) (-4 *3 (-850)) + (-4 *4 (-172))))) +(((*1 *2 *3) (-12 (-5 *3 (-409 (-566))) (-5 *2 (-225)) (-5 *1 (-306))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-1175))))) (((*1 *1 *1) - (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-556)))) - ((*1 *1 *1) (|partial| -4 *1 (-720)))) -(((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1000)))))) + (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) + (-4 *4 (-375 *2))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1049)) (-5 *2 (-644 *1)) (-4 *1 (-1133 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-1134))) (-5 *1 (-154)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 (-1134))) (-5 *1 (-1065))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1102 *3 *2 *4 *5 *6)) (-4 *3 (-1099)) (-4 *4 (-1099)) + (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *2 (-1099))))) +(((*1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1214)) (-4 *2 (-1099)))) + ((*1 *1 *1) (-12 (-4 *1 (-695 *2)) (-4 *2 (-1099))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1064 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *2 (-850)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) + (-4 *4 (-850))))) +(((*1 *1 *1) (-4 *1 (-629))) + ((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-630 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002) (-1199)))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4418)) (-4 *1 (-119 *2)) (-4 *2 (-1214))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) - (-4 *2 (-1062 *4 *5 *6)) (-5 *1 (-774 *4 *5 *6 *2 *3)) - (-4 *3 (-1068 *4 *5 *6 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-491)) (-5 *4 (-952)) (-5 *2 (-689 (-533))) - (-5 *1 (-533)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-952)) (-4 *3 (-1097)) (-5 *2 (-689 *1)) - (-4 *1 (-765 *3))))) + (-12 (-5 *3 (-1175)) (-4 *4 (-558)) (-4 *4 (-1099)) + (-5 *1 (-575 *4 *2)) (-4 *2 (-432 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-331))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-889 *4 *5)) (-5 *3 (-889 *4 *6)) (-4 *4 (-1099)) + (-4 *5 (-1099)) (-4 *6 (-666 *5)) (-5 *1 (-885 *4 *5 *6))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-648 *3)) (-4 *3 (-1049)) + (-5 *1 (-714 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1049)) (-5 *1 (-836 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-267 *2)) (-4 *2 (-850)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1175)) (-5 *1 (-864 *3)) (-14 *3 (-644 *2)))) + ((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-989)))) + ((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1091 *3)) (-4 *3 (-1214)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1242 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792)) + (-5 *2 (-1175)))) + ((*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1260 *3)) (-14 *3 *2)))) +(((*1 *1 *1 *1 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *1 (-596 *3)) (-4 *3 (-1049))))) +(((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-822))))) (((*1 *2 *3) - (-12 (-5 *3 (-1262 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) - (-4 *5 (-1238 *4)) (-5 *2 (-687 *4)))) + (-12 (-5 *3 (-1264 (-644 (-2 (|:| -2153 *4) (|:| -2104 (-1119)))))) + (-4 *4 (-351)) (-5 *2 (-771)) (-5 *1 (-348 *4)))) ((*1 *2) - (-12 (-4 *4 (-172)) (-4 *5 (-1238 *4)) (-5 *2 (-687 *4)) - (-5 *1 (-408 *3 *4 *5)) (-4 *3 (-409 *4 *5)))) + (-12 (-5 *2 (-771)) (-5 *1 (-353 *3 *4)) (-14 *3 (-921)) + (-14 *4 (-921)))) ((*1 *2) - (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1238 *3)) - (-5 *2 (-687 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1253 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-1153 (-642 (-564)))) (-5 *1 (-881))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561))))) -(((*1 *1 *2) - (-12 (-5 *2 (-769)) (-5 *1 (-673 *3)) (-4 *3 (-1047)) - (-4 *3 (-1097))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1267)) (-5 *1 (-1264))))) -(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-819))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) - (-12 (-5 *3 (-564)) (-5 *5 (-112)) (-5 *6 (-687 (-225))) - (-5 *4 (-225)) (-5 *2 (-1033)) (-5 *1 (-753))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434))))) -(((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-517))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-205)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-642 (-379))) (-5 *2 (-379)) (-5 *1 (-205))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1262 *6)) (-5 *4 (-1262 (-564))) (-5 *5 (-564)) - (-4 *6 (-1097)) (-5 *2 (-1 *6)) (-5 *1 (-1015 *6))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1169 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-327 *3)) (-4 *3 (-1212)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-564)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1212)) (-14 *4 *2)))) + (-12 (-5 *2 (-771)) (-5 *1 (-354 *3 *4)) (-4 *3 (-351)) + (-14 *4 + (-3 (-1171 *3) + (-1264 (-644 (-2 (|:| -2153 *3) (|:| -2104 (-1119))))))))) + ((*1 *2) + (-12 (-5 *2 (-771)) (-5 *1 (-355 *3 *4)) (-4 *3 (-351)) + (-14 *4 (-921))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-558)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-644 *1)) + (-4 *1 (-1064 *3 *4 *5))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-769)) (|:| |poli| *2) - (|:| |polj| *2))) - (-4 *5 (-791)) (-4 *2 (-947 *4 *5 *6)) (-5 *1 (-449 *4 *5 *6 *2)) - (-4 *4 (-452)) (-4 *6 (-848))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1173)) (-4 *5 (-1216)) (-4 *6 (-1238 *5)) - (-4 *7 (-1238 (-407 *6))) (-5 *2 (-642 (-950 *5))) - (-5 *1 (-341 *4 *5 *6 *7)) (-4 *4 (-342 *5 *6 *7)))) + (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3968 (-644 (-225))))) + (-5 *2 (-381)) (-5 *1 (-268)))) ((*1 *2 *3) - (-12 (-5 *3 (-1173)) (-4 *1 (-342 *4 *5 *6)) (-4 *4 (-1216)) - (-4 *5 (-1238 *4)) (-4 *6 (-1238 (-407 *5))) (-4 *4 (-363)) - (-5 *2 (-642 (-950 *4)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-769)) (-5 *2 (-1 (-1153 (-950 *4)) (-1153 (-950 *4)))) - (-5 *1 (-1270 *4)) (-4 *4 (-363))))) -(((*1 *2 *2) - (-12 (-4 *3 (-556)) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1173)) (-4 *4 (-556)) (-5 *1 (-158 *4 *2)) - (-4 *2 (-430 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1173)))) - ((*1 *1 *1) (-4 *1 (-160)))) -(((*1 *2 *2 *2) + (-12 (-5 *3 (-1264 (-317 (-225)))) (-5 *2 (-381)) (-5 *1 (-306))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1214)) (-4 *2 (-850)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-375 *3)) (-4 *3 (-1214)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-850)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1133 *2)) (-4 *2 (-1049)))) + ((*1 *1 *2) + (-12 (-5 *2 (-644 *1)) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) + ((*1 *1 *2) + (-12 (-5 *2 (-644 (-1163 *3 *4))) (-5 *1 (-1163 *3 *4)) + (-14 *3 (-921)) (-4 *4 (-1049)))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-1163 *2 *3)) (-14 *2 (-921)) (-4 *3 (-1049))))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-547)))) +(((*1 *2 *3 *1) (-12 (-5 *2 - (-642 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-769)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *4 (-791)) (-4 *6 (-947 *3 *4 *5)) (-4 *3 (-452)) (-4 *5 (-848)) - (-5 *1 (-449 *3 *4 *5 *6))))) -(((*1 *2) - (-12 (-4 *3 (-1216)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))) - (-5 *2 (-1262 *1)) (-4 *1 (-342 *3 *4 *5)))) - ((*1 *2) - (-12 (-4 *3 (-13 (-307) (-10 -8 (-15 -3282 ((-418 $) $))))) - (-4 *4 (-1238 *3)) - (-5 *2 - (-2 (|:| -2131 (-687 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-687 *3)))) - (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) - ((*1 *2) - (-12 (-4 *3 (-1238 (-564))) + (-2 (|:| |cycle?| (-112)) (|:| -3490 (-771)) (|:| |period| (-771)))) + (-5 *1 (-1155 *4)) (-4 *4 (-1214)) (-5 *3 (-771))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-771)) + (-4 *3 (-13 (-308) (-10 -8 (-15 -3348 ((-420 $) $))))) + (-4 *4 (-1240 *3)) (-5 *1 (-501 *3 *4 *5)) (-4 *5 (-411 *3 *4))))) +(((*1 *2 *2) + (-12 (-5 *2 - (-2 (|:| -2131 (-687 (-564))) (|:| |basisDen| (-564)) - (|:| |basisInv| (-687 (-564))))) - (-5 *1 (-766 *3 *4)) (-4 *4 (-409 (-564) *3)))) + (-506 (-409 (-566)) (-240 *4 (-771)) (-864 *3) + (-247 *3 (-409 (-566))))) + (-14 *3 (-644 (-1175))) (-14 *4 (-771)) (-5 *1 (-507 *3 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-454)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) + (-5 *2 (-644 *3)) (-5 *1 (-977 *4 *5 *6 *3)) + (-4 *3 (-1064 *4 *5 *6))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4418)) (-4 *1 (-244 *2)) (-4 *2 (-1214)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1214)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1214)))) + ((*1 *1 *1 *2) + (-12 (|has| *1 (-6 -4418)) (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) + ((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4418)) (-4 *1 (-1252 *2)) (-4 *2 (-1214))))) +(((*1 *2 *3) + (-12 (-5 *3 (-843 (-381))) (-5 *2 (-843 (-225))) (-5 *1 (-306))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1264 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) + (-4 *5 (-1240 *4)) (-5 *2 (-689 *4)))) ((*1 *2) - (-12 (-4 *3 (-349)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 *4)) - (-5 *2 - (-2 (|:| -2131 (-687 *4)) (|:| |basisDen| *4) - (|:| |basisInv| (-687 *4)))) - (-5 *1 (-983 *3 *4 *5 *6)) (-4 *6 (-722 *4 *5)))) + (-12 (-4 *4 (-172)) (-4 *5 (-1240 *4)) (-5 *2 (-689 *4)) + (-5 *1 (-410 *3 *4 *5)) (-4 *3 (-411 *4 *5)))) ((*1 *2) - (-12 (-4 *3 (-349)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 *4)) - (-5 *2 - (-2 (|:| -2131 (-687 *4)) (|:| |basisDen| *4) - (|:| |basisInv| (-687 *4)))) - (-5 *1 (-1271 *3 *4 *5 *6)) (-4 *6 (-409 *4 *5))))) + (-12 (-4 *1 (-411 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1240 *3)) + (-5 *2 (-689 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-644 *3)) (-4 *3 (-1240 (-566))) (-5 *1 (-488 *3))))) +(((*1 *2 *3 *4 *5 *5 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *3 (-952 *6)) (-5 *4 (-1175)) + (-5 *5 (-843 *7)) + (-4 *6 (-13 (-454) (-1038 (-566)) (-639 (-566)))) + (-4 *7 (-13 (-1199) (-29 *6))) (-5 *1 (-224 *6 *7)))) + ((*1 *2 *3 *4 *4 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1171 *6)) (-5 *4 (-843 *6)) + (-4 *6 (-13 (-1199) (-29 *5))) + (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) + (-5 *1 (-224 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1216)) (-4 *3 (-1238 *4)) - (-4 *5 (-1238 (-407 *3))) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) - (-4 *5 (-1238 (-407 *4))) (-5 *2 (-112))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-642 (-564))) (-5 *2 (-1175 (-407 (-564)))) - (-5 *1 (-190))))) + (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-644 (-1175))) (-4 *5 (-1049)) + (-5 *2 (-952 *5)) (-5 *1 (-944 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1262 (-316 (-225)))) (-5 *2 (-1262 (-316 (-379)))) - (-5 *1 (-305))))) -(((*1 *2 *1) (-12 (-4 *1 (-1008 *3)) (-4 *3 (-1212)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1198 *3)) (-4 *3 (-1097))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-175))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1095 *3)) (-4 *3 (-1097)) (-5 *2 (-112))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-687 *2)) (-4 *2 (-172)) (-5 *1 (-146 *2)))) - ((*1 *2 *3) - (-12 (-4 *4 (-172)) (-4 *2 (-1238 *4)) (-5 *1 (-177 *4 *2 *3)) - (-4 *3 (-722 *4 *2)))) + (-12 (-5 *3 (-689 (-317 (-225)))) (-5 *2 (-381)) (-5 *1 (-205))))) +(((*1 *2 *3) (-12 (-5 *2 (-381)) (-5 *1 (-785 *3)) (-4 *3 (-614 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-687 (-407 (-950 *5)))) (-5 *4 (-1173)) - (-5 *2 (-950 *5)) (-5 *1 (-292 *5)) (-4 *5 (-452)))) + (-12 (-5 *4 (-921)) (-5 *2 (-381)) (-5 *1 (-785 *3)) + (-4 *3 (-614 *2)))) ((*1 *2 *3) - (-12 (-5 *3 (-687 (-407 (-950 *4)))) (-5 *2 (-950 *4)) - (-5 *1 (-292 *4)) (-4 *4 (-452)))) - ((*1 *2 *1) - (-12 (-4 *1 (-370 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1238 *3)))) + (-12 (-5 *3 (-952 *4)) (-4 *4 (-1049)) (-4 *4 (-614 *2)) + (-5 *2 (-381)) (-5 *1 (-785 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-952 *5)) (-5 *4 (-921)) (-4 *5 (-1049)) + (-4 *5 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-687 (-169 (-407 (-564))))) - (-5 *2 (-950 (-169 (-407 (-564))))) (-5 *1 (-762 *4)) - (-4 *4 (-13 (-363) (-846))))) + (-12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-558)) (-4 *4 (-614 *2)) + (-5 *2 (-381)) (-5 *1 (-785 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-687 (-169 (-407 (-564))))) (-5 *4 (-1173)) - (-5 *2 (-950 (-169 (-407 (-564))))) (-5 *1 (-762 *5)) - (-4 *5 (-13 (-363) (-846))))) + (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-921)) (-4 *5 (-558)) + (-4 *5 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-687 (-407 (-564)))) (-5 *2 (-950 (-407 (-564)))) - (-5 *1 (-777 *4)) (-4 *4 (-13 (-363) (-846))))) + (-12 (-5 *3 (-317 *4)) (-4 *4 (-558)) (-4 *4 (-850)) + (-4 *4 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-687 (-407 (-564)))) (-5 *4 (-1173)) - (-5 *2 (-950 (-407 (-564)))) (-5 *1 (-777 *5)) - (-4 *5 (-13 (-363) (-846)))))) -(((*1 *2) - (-12 (-4 *3 (-1047)) (-5 *2 (-956 (-710 *3 *4))) (-5 *1 (-710 *3 *4)) - (-4 *4 (-1238 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1212))))) + (-12 (-5 *3 (-317 *5)) (-5 *4 (-921)) (-4 *5 (-558)) (-4 *5 (-850)) + (-4 *5 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *5))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-13 (-365) (-147) (-1038 (-566)))) + (-4 *5 (-1240 *4)) + (-5 *2 (-2 (|:| -4069 (-409 *5)) (|:| |coeff| (-409 *5)))) + (-5 *1 (-570 *4 *5)) (-5 *3 (-409 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-821))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-112)) (-4 *6 (-13 (-454) (-1038 (-566)) (-639 (-566)))) + (-4 *3 (-13 (-27) (-1199) (-432 *6) (-10 -8 (-15 -2479 ($ *7))))) + (-4 *7 (-848)) + (-4 *8 + (-13 (-1242 *3 *7) (-365) (-1199) + (-10 -8 (-15 -3526 ($ $)) (-15 -2390 ($ $))))) + (-5 *2 + (-3 (|:| |%series| *8) + (|:| |%problem| (-2 (|:| |func| (-1157)) (|:| |prob| (-1157)))))) + (-5 *1 (-424 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1157)) (-4 *9 (-983 *8)) + (-14 *10 (-1175))))) +(((*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1214))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) (((*1 *2 *1) - (-12 (-4 *1 (-1100 *3 *4 *5 *6 *2)) (-4 *3 (-1097)) (-4 *4 (-1097)) - (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *2 (-1097))))) -(((*1 *2 *1 *3 *3 *3 *2) - (-12 (-5 *3 (-769)) (-5 *1 (-673 *2)) (-4 *2 (-1097))))) -(((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1173)) (-5 *1 (-673 *3)) (-4 *3 (-1097))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-1047)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1238 *3))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-114)) (-5 *4 (-769)) (-4 *5 (-452)) - (-4 *5 (-1036 (-564))) (-4 *5 (-556)) (-5 *1 (-41 *5 *2)) - (-4 *2 (-430 *5)) - (-4 *2 - (-13 (-363) (-302) - (-10 -8 (-15 -4120 ((-1122 *5 (-610 $)) $)) - (-15 -4131 ((-1122 *5 (-610 $)) $)) - (-15 -2390 ($ (-1122 *5 (-610 $)))))))))) + (-12 (-5 *2 (-3 (|:| |fst| (-436)) (|:| -4306 "void"))) + (-5 *1 (-439))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 *4)) (-4 *4 (-848)) (-4 *4 (-365)) (-5 *2 (-771)) + (-5 *1 (-945 *4 *5)) (-4 *5 (-1240 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-927)) + (-5 *2 + (-2 (|:| |brans| (-644 (-644 (-943 (-225))))) + (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225))))) + (-5 *1 (-153)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-927)) (-5 *4 (-409 (-566))) + (-5 *2 + (-2 (|:| |brans| (-644 (-644 (-943 (-225))))) + (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225))))) + (-5 *1 (-153))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4418)) (-4 *1 (-1252 *2)) (-4 *2 (-1214))))) +(((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-469)))) + ((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-469)))) + ((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-927))))) (((*1 *2 *1) - (-12 (-4 *3 (-1212)) (-5 *2 (-642 *1)) (-4 *1 (-1008 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-363) (-147) (-1036 (-407 (-564))))) - (-4 *5 (-1238 *4)) - (-5 *2 (-642 (-2 (|:| |deg| (-769)) (|:| -3359 *5)))) - (-5 *1 (-807 *4 *5 *3 *6)) (-4 *3 (-654 *5)) - (-4 *6 (-654 (-407 *5)))))) + (-12 (-4 *1 (-1102 *3 *4 *5 *6 *2)) (-4 *3 (-1099)) (-4 *4 (-1099)) + (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *2 (-1099))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-771)) (-5 *2 (-112)) (-5 *1 (-588 *3)) (-4 *3 (-547))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1269)) (-5 *1 (-822))))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-644 *2)) (-5 *1 (-179 *2)) (-4 *2 (-308)))) + ((*1 *2 *3 *2) + (-12 (-5 *3 (-644 (-644 *4))) (-5 *2 (-644 *4)) (-4 *4 (-308)) + (-5 *1 (-179 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-644 *8)) + (-5 *4 + (-644 + (-2 (|:| -1419 (-689 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-689 *7))))) + (-5 *5 (-771)) (-4 *8 (-1240 *7)) (-4 *7 (-1240 *6)) (-4 *6 (-351)) + (-5 *2 + (-2 (|:| -1419 (-689 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-689 *7)))) + (-5 *1 (-500 *6 *7 *8)))) + ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563))))) (((*1 *2 *1) - (-12 (-4 *3 (-13 (-363) (-147))) - (-5 *2 (-642 (-2 (|:| -2817 (-769)) (|:| -2245 *4) (|:| |num| *4)))) - (-5 *1 (-399 *3 *4)) (-4 *4 (-1238 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197))))) -(((*1 *2 *3) - (-12 (-5 *2 (-564)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1047))))) -((-1295 . 731911) (-1296 . 731845) (-1297 . 731678) (-1298 . 731449) - (-1299 . 731383) (-1300 . 731306) (-1301 . 730980) (-1302 . 730897) - (-1303 . 730817) (-1304 . 730732) (-1305 . 730594) (-1306 . 730537) - (-1307 . 730429) (-1308 . 729344) (-1309 . 729267) (-1310 . 729212) - (-1311 . 729070) (-1312 . 728968) (-1313 . 728871) (-1314 . 728619) - (-1315 . 727621) (-1316 . 727382) (-1317 . 727123) (-1318 . 726998) - (-1319 . 726646) (-1320 . 726423) (-1321 . 726260) (-1322 . 726174) - (-1323 . 726033) (-1324 . 725901) (-1325 . 725848) (-1326 . 725796) - (-1327 . 725647) (-1328 . 725594) (-1329 . 725522) (-1330 . 725430) - (-1331 . 725375) (-1332 . 725308) (-1333 . 725226) (-1334 . 725173) - (-1335 . 724840) (-1336 . 724648) (-1337 . 724487) (-1338 . 724392) - (-1339 . 724271) (-1340 . 724212) (-1341 . 723792) (-1342 . 723702) - (-1343 . 723600) (-1344 . 723528) (-1345 . 723455) (-1346 . 723399) - (-1347 . 723328) (-1348 . 723190) (-1349 . 722538) (-1350 . 722479) - (-1351 . 722312) (-1352 . 722193) (-1353 . 722092) (-1354 . 721977) - (-1355 . 721824) (-1356 . 721658) (-1357 . 721520) (-1358 . 721256) - (-1359 . 720946) (-1360 . 720739) (-1361 . 720255) (-1362 . 720122) - (-1363 . 720007) (-1364 . 719844) (-1365 . 719465) (-1366 . 719395) - (-1367 . 719340) (-1368 . 719263) (-1369 . 719053) (-1370 . 718867) - (-1371 . 718711) (-1372 . 718540) (-1373 . 718436) (-1374 . 718362) - (-1375 . 718280) (-1376 . 718203) (-1377 . 718101) (-1378 . 718001) - (-1379 . 717803) (-1380 . 717090) (-1381 . 714863) (-1382 . 714616) - (-1383 . 714528) (-1384 . 714342) (-1385 . 714308) (-1386 . 714252) - (-1387 . 714218) (-1388 . 714055) (-1389 . 713873) (-1390 . 713777) - (-1391 . 713706) (-1392 . 713595) (-1393 . 713497) (-1394 . 713356) - (-1395 . 713193) (-1396 . 713159) (-1397 . 712966) (-1398 . 712913) - (-1399 . 712467) (-1400 . 712387) (-1401 . 712332) (-1402 . 712273) - (-1403 . 712132) (-1404 . 712079) (-1405 . 711981) (-1406 . 711825) - (-1407 . 711741) (-1408 . 711599) (-1409 . 711503) (-1410 . 711387) - (-1411 . 711269) (** . 708204) (-1413 . 708096) (-1414 . 707899) - (-1415 . 707803) (-1416 . 707737) (-1417 . 707666) (-1418 . 707347) - (-1419 . 707183) (-1420 . 707023) (-1421 . 706850) (-1422 . 706752) - (-1423 . 706697) (-1424 . 706604) (-1425 . 706531) (-1426 . 706258) - (-1427 . 705110) (-1428 . 704958) (-1429 . 704574) (-1430 . 704503) - (-1431 . 704372) (-1432 . 704264) (-1433 . 703661) (-1434 . 703529) - (-1435 . 703495) (-1436 . 703400) (-1437 . 703091) (-1438 . 702983) - (-1439 . 702932) (-1440 . 702801) (-1441 . 702656) (-1442 . 702364) - (-1443 . 702251) (-1444 . 702092) (-1445 . 701996) (-1446 . 701599) - (-1447 . 701350) (-1448 . 701278) (-1449 . 701045) (-1450 . 700868) - (-1451 . 700772) (-1452 . 699432) (-1453 . 699289) (-1454 . 699252) - (-1455 . 699181) (-1456 . 699125) (-1457 . 699019) (-1458 . 698953) - (-1459 . 698367) (-1460 . 698339) (-1461 . 698214) (-1462 . 697551) - (-1463 . 697444) (-1464 . 697347) (-1465 . 697182) (-1466 . 696976) - (-1467 . 696875) (-1468 . 696749) (-1469 . 696648) (-1470 . 696545) - (-1471 . 696432) (-1472 . 696182) (-1473 . 696004) (-1474 . 695347) - (-1475 . 695287) (-1476 . 695192) (-1477 . 695126) (-1478 . 695033) - (-1479 . 694931) (-1480 . 694839) (-1481 . 694606) (-1482 . 694527) - (-1483 . 694459) (-1484 . 694321) (-1485 . 693960) (-1486 . 693905) - (-1487 . 693833) (-1488 . 693685) (-1489 . 693466) (-1490 . 693188) - (-1491 . 692988) (-1492 . 692808) (-1493 . 692650) (-1494 . 692377) - (-1495 . 692218) (-1496 . 692166) (-1497 . 692014) (-1498 . 691804) - (-1499 . 691663) (-1500 . 691511) (-1501 . 691441) (-1502 . 690553) - (-1503 . 690500) (-1504 . 690441) (-1505 . 690363) (-1506 . 689767) - (-1507 . 689652) (-1508 . 689434) (-1509 . 688644) (-1510 . 688551) - (-1511 . 688350) (-1512 . 688064) (-1513 . 687932) (-1514 . 687547) - (-1515 . 687495) (-1516 . 687272) (-1517 . 686980) (-1518 . 686839) - (-1519 . 686583) (-1520 . 686506) (-1521 . 686450) (-1522 . 686294) - (-1523 . 686199) (-1524 . 686133) (-1525 . 686105) (-1526 . 686074) - (-1527 . 685977) (-1528 . 685834) (-1529 . 685716) (-1530 . 685661) - (-1531 . 685382) (-1532 . 685329) (-1533 . 684987) (-1534 . 684746) - (-1535 . 684316) (-1536 . 684265) (-1537 . 684199) (-1538 . 684137) - (-1539 . 683929) (-1540 . 683704) (-1541 . 683649) (-1542 . 683209) - (-1543 . 683144) (-1544 . 682782) (-1545 . 682616) (-1546 . 682208) - (-1547 . 682108) (-1548 . 681992) (-1549 . 681923) (-1550 . 681408) - (-1551 . 680991) (-1552 . 680905) (-1553 . 680795) (-1554 . 680707) - (-1555 . 680280) (-1556 . 680213) (-1557 . 679735) (-1558 . 679587) - (-1559 . 679063) (-1560 . 678969) (-1561 . 678868) (-1562 . 678791) - (-1563 . 678681) (-1564 . 678572) (-1565 . 678479) (-1566 . 678426) - (-1567 . 678327) (-1568 . 678232) (-1569 . 677780) (-1570 . 677677) - (-1571 . 677591) (-1572 . 677484) (-1573 . 677429) (-1574 . 676951) - (-1575 . 676811) (-1576 . 676723) (-1577 . 667273) (-1578 . 667129) - (-1579 . 667026) (-1580 . 666955) (-1581 . 666515) (-1582 . 666420) - (-1583 . 666287) (-1584 . 666204) (-1585 . 666133) (-1586 . 666075) - (-1587 . 666043) (-1588 . 665990) (-1589 . 665897) (-1590 . 665798) - (-1591 . 665676) (-1592 . 665565) (-1593 . 665119) (-1594 . 665064) - (-1595 . 664980) (-1596 . 664837) (-1597 . 664650) (-1598 . 664474) - (-1599 . 664422) (-1600 . 664366) (-1601 . 664116) (-1602 . 664001) - (-1603 . 663704) (-1604 . 663652) (-1605 . 663586) (-1606 . 663226) - (-1607 . 663058) (-1608 . 662964) (-1609 . 662834) (-1610 . 662782) - (-1611 . 662598) (-1612 . 662031) (-1613 . 661961) (-1614 . 661475) - (-1615 . 661307) (-1616 . 661148) (-1617 . 661039) (-1618 . 660482) - (-1619 . 660352) (-1620 . 660050) (-1621 . 659979) (-1622 . 659883) - (-1623 . 659781) (-1624 . 659617) (-1625 . 659565) (-1626 . 659465) - (-1627 . 659258) (-1628 . 659179) (-1629 . 659064) (-1630 . 658579) - (-1631 . 658431) (-1632 . 658184) (-1633 . 658052) (-1634 . 657236) - (-1635 . 657208) (-1636 . 656896) (-1637 . 656817) (-1638 . 656659) - (-1639 . 655905) (-1640 . 655439) (-1641 . 655411) (-1642 . 655296) - (-1643 . 655160) (-1644 . 655017) (-1645 . 654823) (-1646 . 654473) - (-1647 . 654420) (-1648 . 653874) (-1649 . 653699) (-1650 . 653553) - (-1651 . 653234) (-1652 . 653202) (-1653 . 653120) (-1654 . 652986) - (-1655 . 652540) (-1656 . 652411) (-1657 . 652041) (-1658 . 651927) - (-1659 . 651831) (-1660 . 651779) (-1661 . 651666) (-1662 . 651537) - (-1663 . 650992) (-1664 . 650890) (-1665 . 650777) (-1666 . 650617) - (-1667 . 650516) (-1668 . 648101) (-1669 . 648073) (-1670 . 648002) - (-1671 . 647872) (-1672 . 647701) (-1673 . 647605) (-1674 . 647475) - (-1675 . 647447) (-1676 . 647364) (-1677 . 647249) (-1678 . 647085) - (-1679 . 647008) (-1680 . 646928) (-1681 . 646868) (-1682 . 646785) - (-1683 . 645987) (-1684 . 645843) (-1685 . 645770) (-1686 . 645646) - (-1687 . 640308) (-1688 . 639921) (-1689 . 639740) (-1690 . 639687) - (-1691 . 639564) (-1692 . 639501) (-1693 . 639343) (-1694 . 639156) - (-1695 . 638997) (-1696 . 638874) (-1697 . 638825) (-1698 . 638706) - (-1699 . 638517) (-1700 . 638155) (-1701 . 637891) (-1702 . 637839) - (-1703 . 637418) (-1704 . 637314) (-1705 . 637144) (-1706 . 637024) - (-1707 . 636916) (-1708 . 636750) (-1709 . 636701) (-1710 . 636573) - (-1711 . 636517) (-1712 . 636405) (-1713 . 636141) (-1714 . 636089) - (-1715 . 635868) (-1716 . 635788) (-1717 . 635678) (-1718 . 635626) - (-1719 . 635564) (-1720 . 635467) (-1721 . 635345) (-1722 . 635293) - (-1723 . 635022) (-1724 . 634964) (-1725 . 634769) (-1726 . 634608) - (-1727 . 634390) (-1728 . 634290) (-1729 . 634019) (-1730 . 633839) - (-1731 . 632875) (-1732 . 632820) (-1733 . 632738) (-1734 . 632227) - (-1735 . 632163) (-1736 . 631884) (-1737 . 631783) (-1738 . 630919) - (-1739 . 630409) (-1740 . 630280) (-1741 . 630145) (-1742 . 630001) - (-1743 . 629924) (-1744 . 629668) (-1745 . 629581) (-1746 . 629464) - (-1747 . 629090) (-1748 . 628967) (-1749 . 628830) (-1750 . 628645) - (-1751 . 628550) (-1752 . 628498) (-1753 . 628316) (-1754 . 627985) - (-1755 . 627843) (-1756 . 627727) (-1757 . 627674) (-1758 . 627496) - (-1759 . 627430) (-1760 . 627402) (-1761 . 627320) (-1762 . 627247) - (-1763 . 627162) (-1764 . 627048) (-1765 . 626780) (-1766 . 626561) - (-1767 . 626475) (-1768 . 626213) (-1769 . 626141) (-1770 . 625431) - (-1771 . 625260) (-1772 . 625154) (-1773 . 625068) (-1774 . 624788) - (-1775 . 624663) (-1776 . 624444) (-1777 . 624299) (-1778 . 624245) - (-1779 . 624132) (-1780 . 624037) (-1781 . 623900) (-1782 . 623821) - (-1783 . 623733) (-1784 . 623681) (-1785 . 623578) (-1786 . 623512) - (-1787 . 623453) (-1788 . 622583) (-1789 . 622452) (-1790 . 622271) - (-1791 . 621969) (-1792 . 621898) (-1793 . 621869) (-1794 . 621764) - (-1795 . 621611) (-1796 . 621406) (-1797 . 621351) (-1798 . 621292) - (-1799 . 621189) (-1800 . 620911) (-1801 . 620824) (-1802 . 620729) - (-1803 . 620602) (-1804 . 620170) (-1805 . 620047) (-1806 . 619168) - (-1807 . 619044) (-1808 . 618926) (-1809 . 618773) (-1810 . 618593) - (-1811 . 618487) (-1812 . 618332) (-1813 . 618114) (-1814 . 618013) - (-1815 . 617640) (-1816 . 617562) (-1817 . 617364) (-1818 . 617207) - (-1819 . 617110) (-1820 . 616864) (-1821 . 616782) (-1822 . 616685) - (-1823 . 616653) (-1824 . 616462) (-1825 . 616344) (-1826 . 616120) - (-1827 . 616088) (-1828 . 615986) (-1829 . 615905) (-1830 . 615555) - (-1831 . 615500) (-1832 . 615440) (-1833 . 615388) (-1834 . 615251) - (-1835 . 615133) (-1836 . 615076) (-1837 . 614933) (-1838 . 614639) - (-1839 . 613960) (-1840 . 613892) (-1841 . 613824) (-1842 . 613758) - (-1843 . 613730) (-1844 . 613658) (-1845 . 613445) (-1846 . 613169) - (-1847 . 613109) (-1848 . 612986) (-1849 . 612686) (-1850 . 612549) - (-1851 . 612446) (-1852 . 612379) (-1853 . 612209) (-1854 . 612089) - (-1855 . 612058) (-1856 . 611758) (-1857 . 611531) (-1858 . 611340) - (-1859 . 610965) (-1860 . 610595) (-1861 . 610021) (-1862 . 609181) - (-1863 . 609119) (-1864 . 609041) (-1865 . 608944) (-1866 . 608870) - (-1867 . 608814) (-1868 . 608473) (-1869 . 608155) (-1870 . 608025) - (-1871 . 607750) (-1872 . 607556) (-1873 . 607418) (-1874 . 607262) - (-1875 . 607117) (-1876 . 606990) (-1877 . 606777) (-1878 . 606446) - (-1879 . 606365) (-1880 . 606234) (-1881 . 606174) (-1882 . 606050) - (-1883 . 605905) (-1884 . 605790) (-1885 . 605691) (-1886 . 605349) - (-1887 . 604782) (-1888 . 604624) (-1889 . 604389) (-1890 . 603961) - (-1891 . 603682) (-1892 . 603608) (-1893 . 603471) (-1894 . 603353) - (-1895 . 603231) (-1896 . 603088) (-1897 . 602909) (-1898 . 602738) - (-1899 . 602626) (-1900 . 602555) (-1901 . 602436) (-1902 . 602240) - (-1903 . 602172) (-1904 . 601893) (-1905 . 601714) (-1906 . 601494) - (-1907 . 601067) (-1908 . 600996) (-1909 . 600832) (-1910 . 600291) - (-1911 . 600263) (-1912 . 600098) (-1913 . 599825) (-1914 . 599671) - (-1915 . 599485) (-1916 . 599355) (-1917 . 599068) (-1918 . 598980) - (-1919 . 598870) (-1920 . 598797) (-1921 . 598455) (-1922 . 598342) - (-1923 . 598127) (-1924 . 598041) (-1925 . 597947) (-1926 . 597852) - (-1927 . 597109) (-1928 . 596962) (-1929 . 596934) (-1930 . 596811) - (-1931 . 596631) (-1932 . 596572) (-1933 . 596124) (-1934 . 596045) - (-1935 . 595964) (-1936 . 595857) (-1937 . 595783) (-1938 . 595667) - (-1939 . 595613) (-1940 . 595547) (-1941 . 595065) (-1942 . 594825) - (-1943 . 594794) (-1944 . 594575) (-1945 . 594522) (-1946 . 594191) - (-1947 . 594117) (-1948 . 593942) (-1949 . 593908) (-1950 . 593804) - (-1951 . 593725) (-1952 . 593652) (-1953 . 593019) (-1954 . 592708) - (-1955 . 592535) (-1956 . 592370) (-1957 . 592333) (-1958 . 592212) - (-1959 . 591966) (-1960 . 591912) (-1961 . 591746) (-1962 . 591630) - (-1963 . 591520) (-1964 . 591417) (-1965 . 591304) (-1966 . 591241) - (-1967 . 591188) (-1968 . 591058) (-1969 . 590923) (-1970 . 590828) - (-1971 . 590606) (-1972 . 590268) (-1973 . 590240) (-1974 . 589658) - (-1975 . 589562) (-1976 . 589246) (-1977 . 589019) (-1978 . 587796) - (-1979 . 587644) (-1980 . 587459) (-1981 . 587386) (-1982 . 587033) - (-1983 . 586934) (-1984 . 586851) (-1985 . 586770) (-1986 . 586603) - (-1987 . 586532) (-1988 . 586276) (-1989 . 586205) (-1990 . 586045) - (-1991 . 585856) (-1992 . 585648) (-1993 . 585201) (-1994 . 585086) - (-1995 . 584770) (-1996 . 584682) (-1997 . 584550) (-1998 . 584414) - (-1999 . 584236) (-2000 . 584150) (-2001 . 583913) (-2002 . 583848) - (-2003 . 583732) (-2004 . 583594) (-2005 . 583471) (-2006 . 582957) - (-2007 . 582665) (-2008 . 582493) (-2009 . 582427) (-2010 . 582091) - (-2011 . 582019) (-2012 . 581917) (-2013 . 581488) (-2014 . 581388) - (-2015 . 581304) (-2016 . 580922) (-2017 . 580894) (-2018 . 580675) - (-2019 . 580477) (-2020 . 580370) (-2021 . 580269) (-2022 . 580024) - (-2023 . 579848) (-2024 . 579617) (-2025 . 579551) (-2026 . 579240) - (-2027 . 578873) (-2028 . 578755) (-2029 . 578620) (-2030 . 578472) - (-2031 . 578362) (-2032 . 578274) (-2033 . 578167) (-2034 . 578079) - (-2035 . 577919) (-2036 . 577839) (-2037 . 577708) (-2038 . 577501) - (-2039 . 576955) (-2040 . 576797) (-2041 . 576657) (-2042 . 576607) - (-2043 . 576448) (-2044 . 576290) (-2045 . 576055) (-2046 . 575880) - (-2047 . 575743) (-2048 . 575597) (-2049 . 575499) (-2050 . 575427) - (-2051 . 575209) (-2052 . 575157) (-2053 . 574954) (-2054 . 574766) - (-2055 . 574685) (-2056 . 574134) (-2057 . 574039) (-2058 . 573905) - (-2059 . 573801) (-2060 . 573748) (-2061 . 573656) (-2062 . 573590) - (-2063 . 573531) (-2064 . 573295) (-2065 . 572968) (-2066 . 572881) - (-2067 . 572514) (-2068 . 572354) (-2069 . 572302) (-2070 . 572144) - (-2071 . 572063) (-2072 . 571625) (-2073 . 571533) (-2074 . 571477) - (-2075 . 571393) (-2076 . 571018) (-2077 . 570840) (-2078 . 569957) - (-2079 . 569140) (-2080 . 569081) (-2081 . 567929) (-2082 . 567690) - (-2083 . 567534) (-2084 . 567392) (-2085 . 567251) (-2086 . 567173) - (-2087 . 567087) (-2088 . 566860) (-2089 . 566802) (-2090 . 566643) - (-2091 . 566496) (-2092 . 566394) (-2093 . 566335) (-2094 . 566234) - (-2095 . 566174) (-2096 . 566100) (-2097 . 565990) (-2098 . 565426) - (-2099 . 565343) (-2100 . 565276) (-2101 . 565196) (-2102 . 564803) - (-2103 . 564732) (-2104 . 564589) (-2105 . 563487) (-2106 . 563216) - (-2107 . 563116) (-2108 . 562804) (-2109 . 562718) (-2110 . 562644) - (-2111 . 562616) (-2112 . 562546) (-2113 . 562426) (-2114 . 562082) - (-2115 . 562030) (-2116 . 561944) (-2117 . 561883) (-2118 . 561806) - (-2119 . 561778) (-2120 . 561683) (-2121 . 561564) (-2122 . 561404) - (-2123 . 561189) (-2124 . 560995) (-2125 . 560907) (-2126 . 560857) - (-2127 . 560673) (-2128 . 560541) (-2129 . 560488) (-2130 . 560387) - (-2131 . 559521) (-2132 . 559443) (-2133 . 559282) (-2134 . 559227) - (-2135 . 559120) (-2136 . 559016) (-2137 . 557818) (-2138 . 557756) - (-2139 . 557665) (-2140 . 557467) (-2141 . 557311) (-2142 . 557198) - (-2143 . 556983) (-2144 . 556911) (-2145 . 556813) (-2146 . 556725) - (-2147 . 556639) (-2148 . 556586) (-2149 . 556412) (-2150 . 556331) - (-2151 . 556159) (-2152 . 555887) (-2153 . 555834) (-2154 . 555595) - (-2155 . 555228) (-2156 . 555136) (-2157 . 554881) (-2158 . 554564) - (-2159 . 554499) (-2160 . 554177) (-2161 . 553754) (-2162 . 553702) - (-2163 . 553553) (-2164 . 553458) (-2165 . 553300) (-2166 . 553159) - (-2167 . 553073) (-2168 . 553041) (-2169 . 552988) (-2170 . 552851) - (-2171 . 552708) (-2172 . 552612) (-2173 . 552509) (-2174 . 552442) - (-2175 . 552256) (-2176 . 552022) (-2177 . 551945) (-2178 . 551818) - (-2179 . 551442) (-2180 . 551251) (-2181 . 551107) (-2182 . 550889) - (-2183 . 550790) (-2184 . 550671) (-2185 . 550260) (-2186 . 550123) - (-2187 . 550026) (-2188 . 549949) (-2189 . 549847) (-2190 . 549787) - (-2191 . 547655) (-2192 . 547570) (-2193 . 547429) (-2194 . 547335) - (-2195 . 547266) (-2196 . 547110) (-2197 . 547008) (-2198 . 546921) - (-2199 . 544759) (-2200 . 544554) (-2201 . 544427) (-2202 . 543918) - (-2203 . 543770) (-2204 . 543645) (-2205 . 543466) (-2206 . 543323) - (-2207 . 543264) (-2208 . 543186) (-2209 . 543124) (-2210 . 542943) - (-2211 . 542747) (-2212 . 542522) (-2213 . 542026) (-2214 . 541974) - (-2215 . 541858) (-2216 . 541762) (-2217 . 541584) (-2218 . 541406) - (-2219 . 541209) (-2220 . 541071) (-2221 . 539728) (-2222 . 539668) - (-2223 . 538266) (-2224 . 537813) (-2225 . 537614) (-2226 . 537272) - (-2227 . 536809) (-2228 . 536552) (-2229 . 536453) (-2230 . 536269) - (-2231 . 536181) (-2232 . 536085) (-2233 . 535863) (-2234 . 535576) - (-2235 . 535338) (-2236 . 535120) (-2237 . 535018) (-2238 . 534740) - (-2239 . 534450) (-2240 . 534356) (-2241 . 534324) (-2242 . 534273) - (-2243 . 534051) (-2244 . 533920) (-2245 . 533589) (-2246 . 532497) - (-2247 . 532396) (-2248 . 532315) (-2249 . 532236) (-2250 . 532083) - (-2251 . 532009) (-2252 . 531887) (-2253 . 531826) (-2254 . 526312) - (-2255 . 526199) (-2256 . 526137) (-2257 . 525810) (-2258 . 525686) - (-2259 . 525591) (-2260 . 525433) (-2261 . 525330) (-2262 . 525235) - (-2263 . 525101) (-2264 . 524708) (-2265 . 524395) (-2266 . 524317) - (-2267 . 524231) (-2268 . 524103) (-2269 . 523857) (-2270 . 523773) - (-2271 . 523739) (-2272 . 523681) (-2273 . 523375) (-2274 . 523326) - (-2275 . 522885) (-2276 . 522720) (-2277 . 522445) (-2278 . 522350) - (-2279 . 522227) (-2280 . 522048) (-2281 . 521952) (-2282 . 521902) - (-2283 . 521807) (-2284 . 521754) (-2285 . 521644) (-2286 . 521499) - (-2287 . 521164) (-2288 . 521112) (-2289 . 520939) (-2290 . 520905) - (-2291 . 520799) (-2292 . 520702) (-2293 . 520670) (-2294 . 520618) - (-2295 . 520528) (-2296 . 520457) (-2297 . 520283) (-2298 . 520138) - (-2299 . 520058) (-2300 . 519939) (-2301 . 519810) (-2302 . 519726) - (-2303 . 519615) (-2304 . 519559) (-2305 . 519531) (-2306 . 519364) - (-2307 . 519247) (-2308 . 519161) (-2309 . 519087) (-2310 . 519015) - (-2311 . 518959) (-2312 . 518882) (-2313 . 518640) (-2314 . 518581) - (-2315 . 518496) (-2316 . 518343) (-2317 . 518246) (-2318 . 518121) - (-2319 . 517961) (-2320 . 517375) (-2321 . 517160) (-2322 . 516997) - (-2323 . 516927) (-2324 . 516801) (-2325 . 516660) (-2326 . 516604) - (-2327 . 516543) (-2328 . 516382) (-2329 . 516285) (-2330 . 516065) - (-2331 . 515933) (-2332 . 515644) (-2333 . 515514) (-2334 . 515437) - (-2335 . 515408) (-2336 . 515209) (-2337 . 515130) (-2338 . 514170) - (-2339 . 513877) (-2340 . 513753) (-2341 . 513655) (-2342 . 513596) - (-2343 . 513419) (-2344 . 513254) (-2345 . 513052) (-2346 . 513000) - (-2347 . 512905) (-2348 . 512817) (-2349 . 512765) (-2350 . 512710) - (-2351 . 509375) (-2352 . 509220) (-2353 . 509117) (-2354 . 508047) - (-2355 . 507976) (-2356 . 507883) (-2357 . 507809) (-2358 . 507587) - (-2359 . 507535) (-2360 . 507447) (-2361 . 507173) (-2362 . 507095) - (-2363 . 506954) (-2364 . 506751) (-2365 . 506723) (-2366 . 505807) - (-2367 . 505692) (-2368 . 505606) (-2369 . 505127) (-2370 . 502346) - (-2371 . 502099) (-2372 . 502046) (-2373 . 501902) (-2374 . 500273) - (-2375 . 500160) (-2376 . 500020) (-2377 . 499943) (-2378 . 499628) - (-2379 . 499576) (-2380 . 499307) (-2381 . 499174) (-2382 . 499071) - (-2383 . 498953) (-2384 . 498816) (-2385 . 498702) (-2386 . 498614) - (-2387 . 497755) (-2388 . 497692) (-2389 . 496874) (-2390 . 478299) - (-2391 . 478237) (-2392 . 478099) (-2393 . 477929) (-2394 . 477877) - (-2395 . 477542) (-2396 . 476280) (-2397 . 474984) (-2398 . 474856) - (-2399 . 474698) (-2400 . 474536) (-2401 . 471715) (-2402 . 471650) - (-2403 . 471488) (-2404 . 471179) (-2405 . 471028) (-2406 . 470927) - (-2407 . 470793) (-2408 . 468537) (-2409 . 468108) (-2410 . 467999) - (-2411 . 467897) (-2412 . 467823) (-2413 . 467731) (-2414 . 467395) - (-2415 . 466735) (-2416 . 466683) (-2417 . 466609) (-2418 . 466450) - (-2419 . 466154) (-2420 . 466010) (-2421 . 465842) (-2422 . 465510) - (-2423 . 465414) (-2424 . 465332) (-2425 . 465231) (-2426 . 464985) - (-2427 . 464828) (-2428 . 464721) (-2429 . 464419) (-2430 . 464341) - (-2431 . 464006) (-2432 . 463949) (-2433 . 463870) (-2434 . 463677) - (-2435 . 463593) (-2436 . 463527) (-2437 . 463101) (-2438 . 462910) - (-2439 . 462827) (-2440 . 462741) (-2441 . 462672) (-2442 . 462619) - (-2443 . 462431) (-2444 . 462345) (-2445 . 461992) (-2446 . 460226) - (-2447 . 460113) (-2448 . 460062) (-2449 . 460000) (-2450 . 459923) - (-2451 . 459725) (-2452 . 459272) (-2453 . 458987) (-2454 . 458644) - (-2455 . 458528) (-2456 . 457073) (-2457 . 456812) (-2458 . 456617) - (-2459 . 456392) (-2460 . 456315) (-2461 . 456265) (-2462 . 456194) - (-2463 . 454898) (-2464 . 454724) (-2465 . 454583) (-2466 . 453093) - (-2467 . 453041) (-2468 . 452808) (-2469 . 452694) (-2470 . 452597) - (-2471 . 452317) (-2472 . 452222) (-2473 . 451894) (-2474 . 451766) - (-2475 . 451550) (-2476 . 451471) (-2477 . 451374) (-2478 . 451320) - (-2479 . 451232) (-2480 . 451030) (-2481 . 450294) (-2482 . 450157) - (-2483 . 450057) (-2484 . 449029) (-2485 . 448950) (-2486 . 448740) - (-2487 . 448529) (-2488 . 448356) (-2489 . 448299) (-2490 . 448218) - (-2491 . 448055) (-2492 . 447968) (-2493 . 447252) (-2494 . 447102) - (-2495 . 446427) (-2496 . 446115) (-2497 . 446055) (-2498 . 446002) - (-2499 . 445918) (-2500 . 445790) (-2501 . 445580) (-2502 . 444988) - (-2503 . 444905) (-2504 . 444638) (-2505 . 444568) (-2506 . 444388) - (-2507 . 444354) (-2508 . 444023) (-2509 . 443974) (-2510 . 443330) - (-2511 . 442735) (-2512 . 442684) (-2513 . 442631) (-2514 . 442537) - (-2515 . 442460) (-2516 . 442407) (-2517 . 441808) (-2518 . 441737) - (-2519 . 441681) (-2520 . 441471) (-2521 . 441398) (-2522 . 441257) - (-2523 . 440085) (-2524 . 439321) (-2525 . 439226) (-2526 . 439158) - (-2527 . 439092) (-2528 . 438854) (-2529 . 438473) (-2530 . 438407) - (-2531 . 438308) (-2532 . 438210) (-2533 . 437894) (-2534 . 437520) - (-2535 . 437376) (-2536 . 436489) (-2537 . 435964) (-2538 . 435886) - (-2539 . 435814) (-2540 . 435702) (-2541 . 435564) (-2542 . 435476) - (-2543 . 435125) (-2544 . 435068) (-2545 . 434923) (-2546 . 434795) - (-2547 . 434744) (-2548 . 434459) (-2549 . 434371) (-2550 . 434229) - (-2551 . 434111) (-2552 . 433650) (-2553 . 433573) (-2554 . 433478) - (-2555 . 433285) (-2556 . 433148) (-2557 . 433014) (-2558 . 432948) - (-2559 . 432597) (-2560 . 432501) (-2561 . 432449) (-2562 . 432380) - (-2563 . 432292) (-2564 . 432221) (-2565 . 432115) (-2566 . 431987) - (-2567 . 431920) (-2568 . 431812) (-2569 . 431487) (-2570 . 431241) - (-2571 . 430882) (-2572 . 430716) (-2573 . 428933) (-2574 . 428856) - (-2575 . 428784) (-2576 . 428735) (-2577 . 428540) (-2578 . 428189) - (-2579 . 427990) (-2580 . 427922) (-2581 . 427840) (-2582 . 427750) - (-2583 . 426829) (-2584 . 426639) (-2585 . 426551) (-2586 . 426303) - (-2587 . 426202) (-2588 . 426025) (-2589 . 425822) (-2590 . 425500) - (-2591 . 425320) (-2592 . 425098) (-2593 . 425049) (-2594 . 424465) - (-2595 . 424235) (-2596 . 424027) (-2597 . 423932) (-2598 . 423740) - (-2599 . 423646) (-2600 . 423539) (-2601 . 423357) (-2602 . 423050) - (-2603 . 422967) (-2604 . 422868) (-2605 . 422791) (-2606 . 422710) - (-2607 . 422640) (-2608 . 422583) (-2609 . 422425) (-2610 . 422351) - (-2611 . 422288) (-2612 . 422057) (-2613 . 422006) (-2614 . 421884) - (-2615 . 421433) (-2616 . 421041) (-2617 . 420945) (-2618 . 420659) - (-2619 . 419922) (-2620 . 419766) (-2621 . 419608) (-2622 . 419555) - (-2623 . 419346) (-2624 . 419236) (-2625 . 419137) (-2626 . 418992) - (-2627 . 418857) (-2628 . 418757) (-2629 . 418666) (-2630 . 418419) - (-2631 . 418261) (-2632 . 418097) (-2633 . 417714) (-2634 . 417644) - (-2635 . 417253) (-2636 . 416845) (-2637 . 416730) (-2638 . 416646) - (-2639 . 416563) (-2640 . 416392) (-2641 . 416223) (-2642 . 415836) - (-2643 . 415745) (-2644 . 415651) (-2645 . 415536) (-2646 . 415507) - (-2647 . 415455) (-2648 . 415316) (-2649 . 415151) (-2650 . 415083) - (-2651 . 414738) (-2652 . 414654) (-2653 . 414313) (-2654 . 414214) - (-2655 . 414115) (-2656 . 414032) (-2657 . 413842) (-2658 . 413690) - (-2659 . 413144) (-2660 . 412955) (-2661 . 412881) (-2662 . 412707) - (-2663 . 412579) (-2664 . 412508) (-2665 . 412429) (-2666 . 412181) - (-2667 . 412081) (-2668 . 411998) (-2669 . 411902) (-2670 . 411703) - (-2671 . 411639) (-2672 . 411535) (-2673 . 411453) (-2674 . 411352) - (-2675 . 410136) (-2676 . 410041) (-2677 . 409955) (-2678 . 409662) - (-2679 . 409589) (-2680 . 409464) (-2681 . 409381) (-2682 . 409209) - (-2683 . 408007) (-2684 . 407895) (-2685 . 407695) (-2686 . 407618) - (-2687 . 407561) (-2688 . 407533) (-2689 . 407438) (-2690 . 407364) - (-2691 . 407020) (-2692 . 406924) (-12 . 406752) (-2694 . 406442) - (-2695 . 406334) (-2696 . 405826) (-2697 . 405019) (-2698 . 404960) - (-2699 . 404862) (-2700 . 404765) (-2701 . 404378) (-2702 . 404124) - (-2703 . 404011) (-2704 . 403839) (-2705 . 403738) (-2706 . 403613) - (-2707 . 403543) (-2708 . 403437) (-2709 . 403369) (-2710 . 403147) - (-2711 . 402315) (-2712 . 402200) (-2713 . 402101) (-2714 . 402007) - (-2715 . 401849) (-2716 . 401742) (-2717 . 401690) (-2718 . 401604) - (-2719 . 401509) (-2720 . 401263) (-2721 . 401196) (-2722 . 401044) - (-2723 . 400910) (-2724 . 400860) (-2725 . 400745) (-2726 . 400674) - (-2727 . 400597) (-2728 . 400504) (-2729 . 400359) (-2730 . 400140) - (-2731 . 400057) (-2732 . 400005) (-2733 . 399897) (-2734 . 399494) - (-2735 . 399423) (-2736 . 399172) (-2737 . 399076) (-2738 . 398882) - (-2739 . 398664) (-2740 . 398518) (-2741 . 398465) (-2742 . 398292) - (-2743 . 398240) (-2744 . 398007) (-2745 . 397935) (-2746 . 397903) - (-2747 . 397835) (-2748 . 397705) (-2749 . 397650) (-2750 . 397363) - (-2751 . 397209) (-2752 . 397067) (-2753 . 396877) (-2754 . 396774) - (-2755 . 396690) (-2756 . 396590) (-2757 . 396496) (-2758 . 396400) - (-2759 . 396240) (-2760 . 396138) (-2761 . 395992) (-2762 . 395889) - (-2763 . 395860) (-2764 . 395685) (-2765 . 395274) (-2766 . 394913) - (-2767 . 394789) (-2768 . 394637) (-2769 . 394554) (-2770 . 394464) - (-2771 . 394363) (-2772 . 394256) (-2773 . 394113) (-2774 . 393575) - (-2775 . 393404) (-2776 . 393215) (-2777 . 393142) (-2778 . 393072) - (-2779 . 392857) (-2780 . 392783) (-2781 . 392656) (-2782 . 392603) - (-2783 . 392496) (-2784 . 392323) (-2785 . 392232) (* . 387738) - (-2787 . 387655) (-2788 . 387503) (-2789 . 387450) (-2790 . 386747) - (-2791 . 386652) (-2792 . 386494) (-2793 . 386220) (-2794 . 385968) - (-2795 . 385868) (-2796 . 385771) (-2797 . 385518) (-2798 . 385417) - (-2799 . 385365) (-2800 . 385313) (-2801 . 385194) (-2802 . 384679) - (-2803 . 384624) (-2804 . 384523) (-2805 . 384370) (-2806 . 384268) - (-2807 . 384167) (-2808 . 384070) (-2809 . 383774) (-2810 . 382593) - (-2811 . 382472) (-2812 . 381040) (-2813 . 380966) (-2814 . 380539) - (-2815 . 380419) (-2816 . 379718) (-2817 . 379250) (-2818 . 379180) - (-2819 . 379025) (-2820 . 378878) (-2821 . 378606) (-2822 . 378072) - (-2823 . 377810) (-2824 . 377714) (-2825 . 377619) (-2826 . 377563) - (-2827 . 377467) (-2828 . 377414) (-2829 . 377218) (-2830 . 377120) - (-2831 . 376957) (-2832 . 376904) (-2833 . 376651) (-2834 . 376571) - (-2835 . 376275) (-2836 . 376223) (-2837 . 375790) (-2838 . 375684) - (-2839 . 375173) (-2840 . 375145) (-2841 . 374994) (-2842 . 374133) - (-2843 . 373876) (-2844 . 373645) (-2845 . 373156) (-2846 . 373049) - (-2847 . 372857) (-2848 . 372721) (-2849 . 368179) (-2850 . 368014) - (-2851 . 367597) (-2852 . 367499) (-2853 . 367404) (-2854 . 367109) - (-2855 . 367014) (-2856 . 366927) (-2857 . 366840) (-2858 . 366735) - (-2859 . 366467) (-2860 . 366174) (-2861 . 366081) (-2862 . 365985) - (-2863 . 365901) (-2864 . 365833) (-2865 . 365755) (-2866 . 365724) - (-2867 . 365191) (-2868 . 365032) (-2869 . 364782) (-2870 . 364555) - (-2871 . 364494) (-2872 . 364350) (-2873 . 364206) (-2874 . 364124) - (-2875 . 363955) (-2876 . 363842) (-2877 . 362540) (-2878 . 362421) - (-2879 . 362112) (-2880 . 361825) (-2881 . 361738) (-2882 . 361535) - (-2883 . 361411) (-2884 . 361201) (-2885 . 361069) (-2886 . 360860) - (-2887 . 360397) (-2888 . 360337) (-2889 . 360309) (-2890 . 360103) - (-2891 . 356040) (-2892 . 355987) (-2893 . 355854) (-2894 . 355738) - (-2895 . 354772) (-2896 . 354713) (-2897 . 354392) (-2898 . 354290) - (-2899 . 354158) (-2900 . 354029) (-2901 . 353951) (-2902 . 353917) - (-2903 . 353639) (-2904 . 353479) (-2905 . 353252) (-2906 . 353178) - (-2907 . 353123) (-2908 . 352999) (-2909 . 352463) (-2910 . 352390) - (-2911 . 352323) (-2912 . 352208) (-2913 . 352113) (-2914 . 352007) - (-2915 . 351973) (-2916 . 351877) (-2917 . 350691) (-2918 . 350594) - (-2919 . 350422) (-2920 . 350290) (-2921 . 350111) (-2922 . 349907) - (-2923 . 349833) (-2924 . 349688) (-2925 . 349455) (-2926 . 349156) - (-2927 . 349089) (-2928 . 348779) (-2929 . 348129) (-2930 . 346947) - (-2931 . 346528) (-2932 . 346356) (-2933 . 345627) (-2934 . 345575) - (-2935 . 345216) (-2936 . 345086) (-2937 . 344958) (-2938 . 344401) - (-2939 . 342056) (-2940 . 341997) (-2941 . 341759) (-2942 . 341631) - (-2943 . 339424) (-2944 . 339269) (-2945 . 339097) (-2946 . 338368) - (-2947 . 324281) (-2948 . 324210) (-2949 . 324055) (-2950 . 323568) - (-2951 . 323451) (-2952 . 323384) (-2953 . 323331) (-2954 . 323150) - (-2955 . 322962) (-2956 . 322790) (-2957 . 322632) (-2958 . 321956) - (-2959 . 321597) (-2960 . 321424) (-2961 . 321264) (-2962 . 321236) - (-2963 . 320910) (-2964 . 320881) (-2965 . 320807) (-2966 . 320558) - (-2967 . 320400) (-2968 . 320042) (-2969 . 319974) (-2970 . 319683) - (-2971 . 319119) (-2972 . 319038) (-2973 . 318616) (-2974 . 318522) - (-2975 . 318140) (-2976 . 317923) (-2977 . 317742) (-2978 . 317524) - (-2979 . 317369) (-2980 . 317244) (-2981 . 316680) (-2982 . 316597) - (-2983 . 316169) (-2984 . 316074) (-2985 . 315982) (-2986 . 315763) - (-2987 . 315594) (-2988 . 315535) (-2989 . 315337) (-2990 . 315085) - (-2991 . 314798) (-2992 . 314234) (-2993 . 314092) (-2994 . 313968) - (-2995 . 313831) (-2996 . 313761) (-2997 . 313670) (-2998 . 313500) - (-2999 . 313065) (-3000 . 312928) (-3001 . 312851) (-3002 . 312177) - (-3003 . 308510) (-3004 . 308281) (-3005 . 306693) (-3006 . 306641) - (-3007 . 306533) (-3008 . 306131) (-3009 . 305820) (-3010 . 305786) - (-3011 . 305726) (-3012 . 305546) (-3013 . 305388) (-3014 . 304714) - (-3015 . 304616) (-3016 . 304496) (-3017 . 304300) (-3018 . 304221) - (-3019 . 304106) (-3020 . 303993) (-3021 . 303908) (-3022 . 303807) - (-3023 . 303755) (-3024 . 303445) (-3025 . 302708) (-3026 . 302509) - (-3027 . 302457) (-3028 . 302401) (-3029 . 302346) (-3030 . 302204) - (-3031 . 302062) (-3032 . 301974) (-3033 . 301879) (-3034 . 301623) - (-3035 . 301061) (-3036 . 300677) (-3037 . 300387) (-3038 . 300332) - (-3039 . 300152) (-3040 . 299898) (-3041 . 299870) (-3042 . 299611) - (-3043 . 299510) (-3044 . 299285) (-3045 . 298699) (-3046 . 298242) - (-3047 . 297680) (-3048 . 297473) (-3049 . 297320) (-3050 . 297236) - (-3051 . 297150) (-3052 . 297080) (-3053 . 297025) (-3054 . 296959) - (-3055 . 296615) (-3056 . 296460) (-3057 . 296241) (-3058 . 295679) - (-3059 . 295241) (-3060 . 295189) (-3061 . 295106) (-3062 . 294979) - (-3063 . 294905) (-3064 . 294742) (-3065 . 294714) (-3066 . 294538) - (-3067 . 293863) (-3068 . 293582) (-3069 . 293448) (-3070 . 293370) - (-3071 . 293274) (-3072 . 293074) (-3073 . 292986) (-3074 . 292872) - (-3075 . 292646) (-3076 . 290678) (-3077 . 290003) (-3078 . 289902) - (-3079 . 289849) (-3080 . 289549) (-3081 . 289460) (-3082 . 289336) - (-3083 . 289230) (-3084 . 289162) (-3085 . 289118) (-3086 . 289008) - (-3087 . 288333) (-3088 . 288281) (-3089 . 287100) (-3090 . 286982) - (-3091 . 286796) (-3092 . 286723) (-3093 . 286664) (-3094 . 285987) - (-3095 . 285910) (-3096 . 285815) (-3097 . 285688) (-3098 . 285125) - (-3099 . 285025) (-3100 . 284829) (-3101 . 284676) (-3102 . 284535) - (-3103 . 284431) (-3104 . 284353) (-3105 . 284121) (-3106 . 284087) - (-3107 . 283880) (-3108 . 283852) (-3109 . 283818) (-3110 . 283255) - (-3111 . 283172) (-3112 . 283028) (-3113 . 282819) (-3114 . 282746) - (-3115 . 282593) (-3116 . 282459) (-3117 . 282143) (-3118 . 281955) - (-3119 . 281313) (-3120 . 280750) (-3121 . 280679) (-3122 . 280525) - (-3123 . 280493) (-3124 . 280422) (-3125 . 280349) (-3126 . 280228) - (-3127 . 280177) (-3128 . 280064) (-3129 . 279618) (-3130 . 279535) - (-3131 . 278973) (-3132 . 278905) (-3133 . 278831) (-3134 . 278748) - (-3135 . 278545) (-3136 . 278377) (-3137 . 278001) (-3138 . 277916) - (-3139 . 277718) (-3140 . 277605) (-3141 . 277256) (-3142 . 276694) - (-3143 . 276641) (-3144 . 276414) (-3145 . 276315) (-3146 . 276196) - (-3147 . 276128) (-3148 . 275490) (-3149 . 275360) (-3150 . 275294) - (-3151 . 275266) (-3152 . 274951) (-3153 . 274870) (-3154 . 270863) - (-3155 . 270301) (-3156 . 270249) (-3157 . 270190) (-3158 . 270007) - (-3159 . 269941) (-3160 . 269718) (-3161 . 269602) (-3162 . 269484) - (-3163 . 269197) (-3164 . 269042) (-3165 . 268480) (-3166 . 268343) - (-3167 . 267916) (-3168 . 267354) (-3169 . 266966) (-3170 . 266869) - (-3171 . 266732) (-3172 . 266680) (-3173 . 266107) (-3174 . 266048) - (-3175 . 265953) (-3176 . 265391) (-3177 . 264313) (-3178 . 264239) - (-3179 . 264094) (-3180 . 264030) (-3181 . 263584) (-3182 . 260743) - (-3183 . 260643) (-3184 . 260540) (-3185 . 260100) (-3186 . 260016) - (-3187 . 259457) (-3188 . 259176) (-3189 . 259040) (-3190 . 258967) - (-3191 . 258536) (-3192 . 258006) (-3193 . 257928) (-3194 . 257854) - (-3195 . 256736) (-3196 . 256702) (-3197 . 256367) (-3198 . 256213) - (-3199 . 255654) (-3200 . 255541) (-3201 . 255468) (-3202 . 255414) - (-3203 . 255328) (-3204 . 254705) (-3205 . 254544) (-3206 . 254466) - (-3207 . 254365) (-3208 . 254233) (-3209 . 254137) (-3210 . 253721) - (-3211 . 253334) (-3212 . 253061) (-3213 . 252987) (-3214 . 252908) - (-3215 . 252778) (-3216 . 252725) (-3217 . 252433) (-3218 . 252359) - (-3219 . 252290) (-3220 . 252234) (-3221 . 252108) (-3222 . 251516) - (-3223 . 251432) (-3224 . 251321) (-3225 . 251043) (-3226 . 250977) - (-3227 . 250160) (-3228 . 250090) (-3229 . 249954) (-3230 . 249627) - (-3231 . 249108) (-3232 . 248772) (-3233 . 248692) (-3234 . 248655) - (-3235 . 248005) (-3236 . 247417) (-3237 . 247305) (-3238 . 247209) - (-3239 . 247139) (-3240 . 246763) (-3241 . 246557) (-3242 . 246442) - (-3243 . 246327) (-3244 . 246205) (-3245 . 245951) (-3246 . 245503) - (-3247 . 245429) (-3248 . 245325) (-3249 . 244782) (-3250 . 244488) - (-3251 . 244309) (-3252 . 242195) (-3253 . 242167) (-3254 . 242090) - (-3255 . 241710) (-3256 . 241332) (-3257 . 240975) (-3258 . 240873) - (-3259 . 240710) (-3260 . 240658) (-3261 . 240513) (-3262 . 240310) - (-3263 . 240197) (-3264 . 240141) (-3265 . 240026) (-3266 . 239945) - (-3267 . 239457) (-3268 . 239375) (-3269 . 239274) (-3270 . 239200) - (-3271 . 239013) (-3272 . 238945) (-3273 . 238876) (-3274 . 238790) - (-3275 . 238635) (-3276 . 238550) (-3277 . 238415) (-3278 . 238197) - (-3279 . 238138) (-3280 . 238058) (-3281 . 237901) (-3282 . 236628) - (-3283 . 236544) (-3284 . 236200) (-3285 . 235952) (-3286 . 235864) - (-3287 . 235269) (-3288 . 235182) (-3289 . 234998) (-3290 . 234913) - (-3291 . 234177) (-3292 . 233929) (-3293 . 233798) (-3294 . 233733) - (-3295 . 233609) (-3296 . 233575) (-3297 . 233508) (-3298 . 233290) - (-3299 . 233218) (-3300 . 232926) (-3301 . 232822) (-3302 . 232693) - (-3303 . 232166) (-3304 . 231932) (-3305 . 231741) (-3306 . 231668) - (-3307 . 231562) (-3308 . 230922) (-3309 . 230795) (-3310 . 230715) - (-3311 . 230659) (-3312 . 230407) (-3313 . 230303) (-3314 . 230120) - (-3315 . 230021) (-3316 . 229735) (-3317 . 229704) (-3318 . 229564) - (-3319 . 229347) (-3320 . 229153) (-3321 . 229014) (-3322 . 228873) - (-3323 . 228120) (-3324 . 227997) (-3325 . 227963) (-3326 . 227801) - (-3327 . 227315) (-3328 . 227202) (-3329 . 227067) (-3330 . 226810) - (-3331 . 226666) (-3332 . 226414) (-3333 . 226050) (-3334 . 225860) - (-3335 . 225646) (-3336 . 225507) (-3337 . 225433) (-3338 . 225343) - (-3339 . 224760) (-3340 . 224002) (-3341 . 223880) (-3342 . 223807) - (-3343 . 223708) (-3344 . 223456) (-3345 . 223382) (-3346 . 223216) - (-3347 . 223150) (-3348 . 222288) (-3349 . 222238) (-3350 . 222054) - (-3351 . 221923) (-3352 . 221863) (-3353 . 221765) (-3354 . 221657) - (-3355 . 221558) (-3356 . 221462) (-3357 . 221147) (-3358 . 221045) - (-3359 . 220835) (-3360 . 220650) (-3361 . 220531) (-3362 . 220415) - (-3363 . 220064) (-3364 . 219660) (-3365 . 219542) (-3366 . 219246) - (-3367 . 219130) (-3368 . 219078) (-3369 . 219012) (-3370 . 218914) - (-3371 . 218741) (-3372 . 218493) (-3373 . 218392) (-3374 . 218246) - (-3375 . 217891) (-3376 . 217829) (-3377 . 217716) (-3378 . 217308) - (-3379 . 217255) (-3380 . 217196) (-3381 . 216536) (-3382 . 216289) - (-3383 . 216193) (-3384 . 216105) (-3385 . 216033) (-3386 . 216002) - (-3387 . 215953) (-3388 . 215925) (-3389 . 215745) (-3390 . 215667) - (-3391 . 215572) (-3392 . 215509) (-3393 . 215351) (-3394 . 215193) - (-3395 . 215066) (-3396 . 214919) (-3397 . 214866) (-3398 . 213899) - (-3399 . 213634) (-3400 . 213577) (-3401 . 213461) (-3402 . 213365) - (-3403 . 213294) (-3404 . 213230) (-3405 . 213026) (-3406 . 212852) - (-3407 . 212689) (-3408 . 212564) (-3409 . 212300) (-3410 . 212229) - (-3411 . 211732) (-3412 . 211565) (-3413 . 211471) (-3414 . 211262) - (-3415 . 211121) (-3416 . 211051) (-3417 . 210521) (-3418 . 210466) - (-3419 . 210275) (-3420 . 210154) (-3421 . 210036) (-3422 . 209948) - (-3423 . 209879) (-3424 . 209661) (-3425 . 209494) (-3426 . 209365) - (-3427 . 209262) (-3428 . 209063) (-3429 . 208985) (-3430 . 208666) - (-3431 . 208523) (-3432 . 208467) (-3433 . 208152) (-3434 . 208023) - (-3435 . 207904) (-3436 . 207830) (-3437 . 207343) (-3438 . 207284) - (-3439 . 207207) (-3440 . 207037) (-3441 . 206883) (-3442 . 206814) - (-3443 . 206764) (-3444 . 206660) (-3445 . 206496) (-3446 . 206381) - (-3447 . 206295) (-3448 . 206172) (-3449 . 205954) (-3450 . 205808) - (-3451 . 205759) (-3452 . 205469) (-3453 . 205219) (-3454 . 205038) - (-3455 . 204957) (-3456 . 204860) (-3457 . 204783) (-3458 . 204724) - (-3459 . 203587) (-3460 . 203454) (-3461 . 203387) (-3462 . 203244) - (-3463 . 203159) (-3464 . 202900) (-3465 . 202821) (-3466 . 201621) - (-3467 . 201526) (-3468 . 201418) (-3469 . 201258) (-3470 . 201185) - (-3471 . 200650) (-3472 . 200380) (-3473 . 200298) (-3474 . 200218) - (-3475 . 199996) (-3476 . 199833) (-3477 . 199718) (-3478 . 199647) - (-3479 . 199549) (-3480 . 199491) (-3481 . 199439) (-3482 . 199387) - (-3483 . 199313) (-3484 . 199153) (-3485 . 199070) (-3486 . 198879) - (-3487 . 198754) (-3488 . 198682) (-3489 . 198614) (-3490 . 198482) - (-3491 . 198416) (-3492 . 198196) (-3493 . 198100) (-3494 . 197951) - (-3495 . 197873) (-3496 . 197820) (-3497 . 197768) (-3498 . 197610) - (-3499 . 197474) (-3500 . 197375) (-3501 . 197254) (-3502 . 197205) - (-3503 . 197014) (-3504 . 196949) (-3505 . 196838) (-3506 . 196254) - (-3507 . 196063) (-3508 . 195641) (-3509 . 195555) (-3510 . 195412) - (-3511 . 195282) (-3512 . 195067) (-3513 . 194848) (-3514 . 194519) - (-3515 . 194423) (-3516 . 194200) (-3517 . 193806) (-3518 . 193697) - (-3519 . 193570) (-3520 . 193476) (-3521 . 193281) (-3522 . 191739) - (-3523 . 191579) (-3524 . 191526) (-3525 . 191266) (-3526 . 190986) - (-3527 . 190912) (-3528 . 190614) (-3529 . 190526) (-3530 . 190358) - (-3531 . 190288) (-3532 . 190113) (-3533 . 190085) (-3534 . 189956) - (-3535 . 189788) (-3536 . 189075) (-3537 . 188828) (-3538 . 188285) - (-3539 . 188180) (-3540 . 188125) (-3541 . 187895) (-3542 . 187802) - (-3543 . 187649) (-3544 . 187545) (-3545 . 187073) (-3546 . 187021) - (-3547 . 186906) (-3548 . 186802) (-3549 . 186200) (-3550 . 186147) - (-3551 . 186064) (-3552 . 185675) (-3553 . 185647) (-3554 . 185464) - (-3555 . 185312) (-3556 . 185121) (-3557 . 184974) (-3558 . 184656) - (-3559 . 184530) (-3560 . 183854) (-3561 . 183754) (-3562 . 183562) - (-3563 . 183416) (-3564 . 183363) (-3565 . 183109) (-3566 . 182980) - (-3567 . 182696) (-3568 . 182531) (-3569 . 182447) (-3570 . 182395) - (-3571 . 182337) (-3572 . 182099) (-3573 . 181967) (-3574 . 181912) - (-3575 . 181860) (-3576 . 180634) (-3577 . 180581) (-3578 . 180502) - (-3579 . 180319) (-3580 . 180109) (-3581 . 179797) (-3582 . 179552) - (-3583 . 179469) (-3584 . 178801) (-3585 . 178744) (-3586 . 178588) - (-3587 . 178440) (-3588 . 178315) (-3589 . 178188) (-3590 . 178091) - (-3591 . 178005) (-3592 . 177949) (-3593 . 177739) (-3594 . 177594) - (-3595 . 177542) (-3596 . 177166) (-3597 . 177042) (-3598 . 176990) - (-3599 . 176835) (-3600 . 176763) (-3601 . 176711) (-3602 . 176461) - (-3603 . 176318) (-3604 . 176244) (-3605 . 176091) (-3606 . 175996) - (-3607 . 175902) (-3608 . 175663) (-3609 . 175560) (-3610 . 175477) - (-3611 . 175311) (-3612 . 175254) (-3613 . 175049) (-3614 . 173621) - (-3615 . 173463) (-3616 . 172213) (-3617 . 171996) (-3618 . 171824) - (-3619 . 171745) (-3620 . 171668) (-3621 . 171612) (-3622 . 171529) - (-3623 . 171341) (-3624 . 171246) (-3625 . 170607) (-3626 . 170427) - (-3627 . 169807) (-3628 . 169727) (-3629 . 169223) (-3630 . 168954) - (-3631 . 168462) (-3632 . 168407) (-3633 . 168283) (-3634 . 167653) - (-3635 . 167366) (-3636 . 167255) (-3637 . 167161) (-3638 . 167017) - (-3639 . 166798) (-3640 . 166495) (-3641 . 166442) (-3642 . 166241) - (-3643 . 166173) (-3644 . 166077) (-3645 . 165882) (-3646 . 165742) - (-3647 . 164444) (-3648 . 164338) (-3649 . 164279) (-3650 . 164155) - (-3651 . 164071) (-3652 . 164016) (-3653 . 163744) (-3654 . 163675) - (-3655 . 163572) (-3656 . 163174) (-3657 . 162808) (-3658 . 162725) - (-3659 . 162517) (-3660 . 162409) (-3661 . 162292) (-3662 . 162264) - (-3663 . 162154) (-3664 . 161544) (-3665 . 161495) (-3666 . 160851) - (-3667 . 160639) (-3668 . 160518) (-3669 . 160434) (-3670 . 160360) - (-3671 . 160069) (-3672 . 159587) (-3673 . 159060) (-3674 . 158813) - (-3675 . 158011) (-3676 . 157956) (-3677 . 157221) (-3678 . 156830) - (-3679 . 156603) (-3680 . 156420) (-3681 . 156292) (-3682 . 156134) - (-3683 . 156051) (-3684 . 155823) (-3685 . 155693) (-3686 . 155585) - (-3687 . 155470) (-3688 . 155392) (-3689 . 155061) (-3690 . 154920) - (-3691 . 154842) (-3692 . 154790) (-3693 . 154623) (-3694 . 154523) - (-3695 . 154281) (-3696 . 154228) (-3697 . 154134) (-3698 . 154038) - (-3699 . 153971) (-3700 . 153849) (-3701 . 153425) (-3702 . 153373) - (-3703 . 146430) (-3704 . 146360) (-3705 . 146043) (-3706 . 145634) - (-3707 . 145576) (-3708 . 143846) (-3709 . 143680) (-3710 . 143293) - (-3711 . 143241) (-3712 . 143110) (-3713 . 143016) (-3714 . 142920) - (-3715 . 141139) (-3716 . 141073) (-3717 . 140954) (-3718 . 140801) - (-3719 . 139609) (-3720 . 139406) (-3721 . 138992) (-3722 . 138812) - (-3723 . 137366) (-9 . 137338) (-3725 . 137199) (-3726 . 137125) - (-3727 . 136982) (-3728 . 136701) (-3729 . 136623) (-3730 . 135781) - (-3731 . 135698) (-3732 . 135484) (-3733 . 135178) (-3734 . 134977) - (-3735 . 134662) (-8 . 134634) (-3737 . 134536) (-3738 . 134148) - (-3739 . 134092) (-3740 . 134039) (-3741 . 130430) (-3742 . 129676) - (-3743 . 129644) (-3744 . 129542) (-3745 . 129327) (-3746 . 129253) - (-3747 . 129130) (-3748 . 128843) (-7 . 128815) (-3750 . 128588) - (-3751 . 128409) (-3752 . 128296) (-3753 . 128018) (-3754 . 127939) - (-3755 . 127816) (-3756 . 127605) (-3757 . 127554) (-3758 . 127461) - (-3759 . 127354) (-3760 . 127274) (-3761 . 127191) (-3762 . 126770) - (-3763 . 125774) (-3764 . 125708) (-3765 . 125592) (-3766 . 125370) - (-3767 . 125191) (-3768 . 125087) (-3769 . 124925) (-3770 . 124775) - (-3771 . 124536) (-3772 . 124383) (-3773 . 124310) (-3774 . 124105) - (-3775 . 123846) (-3776 . 123717) (-3777 . 123540) (-3778 . 123114) - (-3779 . 122988) (-3780 . 122885) (-3781 . 122806) (-3782 . 122706) - (-3783 . 122632) (-3784 . 122493) (-3785 . 122094) (-3786 . 122033) - (-3787 . 121942) (-3788 . 121890) (-3789 . 121700) (-3790 . 121493) - (-3791 . 121412) (-3792 . 121119) (-3793 . 121066) (-3794 . 120996) - (-3795 . 120778) (-3796 . 120563) (-3797 . 120529) (-3798 . 120479) - (-3799 . 120425) (-3800 . 120369) (-3801 . 118591) (-3802 . 118352) - (-3803 . 118269) (-3804 . 118213) (-3805 . 118118) (-3806 . 118020) - (-3807 . 117960) (-3808 . 117867) (-3809 . 117839) (-3810 . 117768) - (-3811 . 117709) (-3812 . 117652) (-3813 . 117569) (-3814 . 117468) - (-3815 . 117352) (-3816 . 116576) (-3817 . 116351) (-3818 . 116227) - (-3819 . 116074) (-3820 . 115895) (-3821 . 115636) (-3822 . 114059) - (-3823 . 113987) (-3824 . 113758) (-3825 . 113708) (-3826 . 113500) - (-3827 . 113099) (-3828 . 113026) (-3829 . 112816) (-3830 . 112677) - (-3831 . 112621) (-3832 . 112014) (-3833 . 111893) (-3834 . 111840) - (-3835 . 111724) (-3836 . 111695) (-3837 . 111496) (-3838 . 111397) - (-3839 . 111257) (-3840 . 111114) (-3841 . 109810) (-3842 . 109737) - (-3843 . 109577) (-3844 . 109520) (-3845 . 109483) (-3846 . 109449) - (-3847 . 109203) (-3848 . 109117) (-3849 . 109037) (-3850 . 108982) - (-3851 . 108839) (-3852 . 108205) (-3853 . 108061) (-3854 . 107916) - (-3855 . 107830) (-3856 . 107778) (-3857 . 107532) (-3858 . 107389) - (-3859 . 107157) (-3860 . 107105) (-3861 . 107052) (-3862 . 106972) - (-3863 . 106919) (-3864 . 106801) (-3865 . 106474) (-3866 . 106374) - (-3867 . 106276) (-3868 . 106248) (-3869 . 106095) (-3870 . 105884) - (-3871 . 105800) (-3872 . 105745) (-3873 . 105156) (-3874 . 105071) - (-3875 . 104974) (-3876 . 104835) (-3877 . 104782) (-3878 . 104712) - (-3879 . 104611) (-3880 . 103431) (-3881 . 103380) (-3882 . 103288) - (-3883 . 103219) (-3884 . 103185) (-3885 . 103017) (-3886 . 102894) - (-3887 . 102808) (-3888 . 102567) (-3889 . 102201) (-3890 . 102100) - (-3891 . 101764) (-3892 . 101679) (-3893 . 101627) (-3894 . 101498) - (-3895 . 101420) (-3896 . 101075) (-3897 . 100202) (-3898 . 99107) - (-3899 . 97250) (-3900 . 97171) (-3901 . 97121) (-3902 . 97006) - (-3903 . 96934) (-3904 . 96682) (-3905 . 96349) (-3906 . 96260) - (-3907 . 96002) (-3908 . 95919) (-3909 . 95740) (-3910 . 95615) - (-3911 . 95255) (-3912 . 95097) (-3913 . 94630) (-3914 . 94544) - (-3915 . 94406) (-3916 . 94340) (-3917 . 94266) (-3918 . 94145) - (-3919 . 93870) (-3920 . 93784) (-3921 . 93700) (-3922 . 93457) - (-3923 . 93375) (-3924 . 93237) (-3925 . 92930) (-3926 . 92856) - (-3927 . 92775) (-3928 . 92691) (-3929 . 92603) (-3930 . 92487) - (-3931 . 92434) (-3932 . 92206) (-3933 . 91914) (-3934 . 91841) - (-3935 . 91698) (-3936 . 91537) (-3937 . 91431) (-3938 . 91354) - (-3939 . 91244) (-3940 . 90994) (-3941 . 90922) (-3942 . 90401) - (-3943 . 90279) (-3944 . 90180) (-3945 . 90006) (-3946 . 89883) - (-3947 . 89833) (-3948 . 89736) (-3949 . 89679) (-3950 . 89562) - (-3951 . 89485) (-3952 . 89377) (-3953 . 89306) (-3954 . 89277) - (-3955 . 88799) (-3956 . 88650) (-3957 . 88596) (-3958 . 88378) - (-3959 . 88301) (-3960 . 88197) (-3961 . 86341) (-3962 . 86207) - (-3963 . 85813) (-3964 . 85703) (-3965 . 85549) (-3966 . 85475) - (-3967 . 85401) (-3968 . 85280) (-3969 . 84909) (-3970 . 84516) - (-3971 . 84359) (-3972 . 84141) (-3973 . 84113) (-3974 . 84019) - (-3975 . 83628) (-3976 . 83512) (-3977 . 83439) (-3978 . 83311) - (-3979 . 82832) (-3980 . 82760) (-3981 . 82627) (-3982 . 82291) - (-3983 . 82205) (-3984 . 82101) (-3985 . 81982) (-3986 . 81923) - (-3987 . 81850) (-3988 . 81695) (-3989 . 81591) (-3990 . 81496) - (-3991 . 81462) (-3992 . 81376) (-3993 . 81281) (-3994 . 81228) - (-3995 . 81138) (-3996 . 81070) (-3997 . 80917) (-3998 . 80857) - (-3999 . 80738) (-4000 . 80710) (-4001 . 80613) (-4002 . 80527) - (-4003 . 79523) (-4004 . 79373) (-4005 . 79279) (-4006 . 79196) - (-4007 . 79130) (-4008 . 79057) (-4009 . 78924) (-4010 . 78685) - (-4011 . 78633) (-4012 . 78545) (-4013 . 77941) (-4014 . 77849) - (-4015 . 77515) (-4016 . 77387) (-4017 . 77284) (-4018 . 77058) - (-4019 . 76938) (-4020 . 76839) (-4021 . 76680) (-4022 . 76561) - (-4023 . 76232) (-4024 . 75970) (-4025 . 75901) (-4026 . 75585) - (-4027 . 75442) (-4028 . 74951) (-4029 . 74800) (-4030 . 74634) - (-4031 . 74539) (-4032 . 74486) (-4033 . 74226) (-4034 . 74157) - (-4035 . 73914) (-4036 . 73301) (-4037 . 73108) (-4038 . 73004) - (-4039 . 72951) (-4040 . 72725) (-4041 . 72620) (-4042 . 72570) - (-4043 . 71959) (-4044 . 71901) (-4045 . 71731) (-4046 . 71287) - (-4047 . 67127) (-4048 . 66900) (-4049 . 66534) (-4050 . 66107) - (-4051 . 65926) (-4052 . 65870) (-4053 . 65732) (-4054 . 65627) - (-4055 . 65539) (-4056 . 65476) (-4057 . 65358) (-4058 . 65151) - (-4059 . 65033) (-4060 . 64971) (-4061 . 64791) (-4062 . 64754) - (-4063 . 64666) (-4064 . 64597) (-4065 . 64423) (-4066 . 64373) - (-4067 . 64274) (-4068 . 63857) (-4069 . 63805) (-4070 . 63703) - (-4071 . 63557) (-4072 . 63247) (-4073 . 63101) (-4074 . 62943) - (-4075 . 62768) (-4076 . 62554) (-4077 . 62173) (-4078 . 62121) - (-4079 . 62068) (-4080 . 61962) (-4081 . 61903) (-4082 . 61785) - (-4083 . 61683) (-4084 . 61556) (-4085 . 61463) (-4086 . 61377) - (-4087 . 60780) (-4088 . 60576) (-4089 . 60482) (-4090 . 60255) - (-4091 . 59804) (-4092 . 59641) (-4093 . 59546) (-4094 . 59422) - (-4095 . 59334) (-4096 . 59116) (-4097 . 59028) (-4098 . 58979) - (-4099 . 58899) (-4100 . 58817) (-4101 . 58764) (-4102 . 58448) - (-4103 . 58359) (-4104 . 58296) (-4105 . 58191) (-4106 . 57840) - (-4107 . 57742) (-4108 . 57686) (-4109 . 57381) (-4110 . 57352) - (-4111 . 57236) (-4112 . 56861) (-4113 . 56808) (-4114 . 56671) - (-4115 . 56547) (-4116 . 56487) (-4117 . 56054) (-4118 . 55973) - (-4119 . 55732) (-4120 . 55030) (-4121 . 54998) (-4122 . 54918) - (-4123 . 54765) (-4124 . 54655) (-4125 . 54578) (-4126 . 54550) - (-4127 . 54338) (-4128 . 54255) (-4129 . 54073) (-4130 . 53896) - (-4131 . 53217) (-4132 . 53165) (-4133 . 53022) (-4134 . 52922) - (-4135 . 52744) (-4136 . 52633) (-4137 . 52537) (-4138 . 52398) - (-4139 . 52346) (-4140 . 52215) (-4141 . 52072) (-4142 . 52020) - (-4143 . 51643) (-4144 . 51511) (-4145 . 51250) (-4146 . 51092) - (-4147 . 50994) (-4148 . 50890) (-4149 . 50725) (-4150 . 50207) - (-4151 . 49983) (-4152 . 49326) (-4153 . 49182) (-4154 . 48697) - (-4155 . 48604) (-4156 . 48262) (-4157 . 48144) (-4158 . 47981) - (-4159 . 47871) (-4160 . 47797) (-4161 . 47724) (-4162 . 47665) - (-4163 . 47605) (-4164 . 47359) (-4165 . 47243) (-4166 . 46769) - (-4167 . 46474) (-4168 . 46370) (-4169 . 46317) (-4170 . 46069) - (-4171 . 45935) (-4172 . 45552) (-4173 . 45481) (-4174 . 45382) - (-4175 . 45234) (-4176 . 45120) (-4177 . 44980) (-4178 . 44921) - (-4179 . 44742) (-4180 . 44448) (-4181 . 44350) (-4182 . 44276) - (-4183 . 44043) (-4184 . 43920) (-4185 . 43574) (-4186 . 43453) - (-4187 . 43217) (-4188 . 43127) (-4189 . 42809) (-4190 . 42710) - (-4191 . 42573) (-4192 . 42450) (-4193 . 42377) (-4194 . 42202) - (-4195 . 41995) (-4196 . 41700) (-4197 . 41649) (-4198 . 41580) - (-4199 . 41494) (-4200 . 41438) (-4201 . 41044) (-4202 . 40994) - (-4203 . 40809) (-4204 . 40701) (-4205 . 40581) (-4206 . 40450) - (-4207 . 40352) (-4208 . 40199) (-4209 . 40147) (-4210 . 39998) - (-4211 . 39460) (-4212 . 39388) (-4213 . 39230) (-4214 . 39019) - (-4215 . 38823) (-4216 . 38665) (-4217 . 38537) (-4218 . 38394) - (-4219 . 38097) (-4220 . 38009) (-4221 . 37833) (-4222 . 37631) - (-4223 . 37509) (-4224 . 37440) (-4225 . 37208) (-4226 . 37124) - (-4227 . 36942) (-4228 . 36792) (-4229 . 36695) (-4230 . 36540) - (-4231 . 36401) (-4232 . 36316) (-4233 . 35546) (-4234 . 35476) - (-4235 . 35419) (-4236 . 35257) (-4237 . 35084) (-4238 . 35057) - (-4239 . 34918) (-4240 . 34671) (-4241 . 34513) (-4242 . 34299) - (-4243 . 34074) (-4244 . 34002) (-4245 . 33906) (-4246 . 33832) - (-4247 . 33676) (-4248 . 33623) (-4249 . 33336) (-4250 . 33198) - (-4251 . 32826) (-4252 . 32795) (-4253 . 32722) (-4254 . 32621) - (-4255 . 32568) (-4256 . 32496) (-4257 . 32444) (-4258 . 32413) - (-4259 . 32357) (-4260 . 31853) (-4261 . 31740) (-4262 . 31617) - (-4263 . 31565) (-4264 . 31496) (-4265 . 31410) (-4266 . 31326) - (-4267 . 31160) (-4268 . 31014) (-4269 . 30774) (-4270 . 30670) - (-4271 . 30365) (-4272 . 30271) (-4273 . 30219) (-4274 . 30167) - (-4275 . 29982) (-4276 . 29886) (-4277 . 29724) (-4278 . 29653) - (-4279 . 29357) (-4280 . 29271) (-4281 . 29000) (-4282 . 28847) - (-4283 . 28719) (-4284 . 28625) (-4285 . 27560) (-4286 . 27453) - (-4287 . 27424) (-4288 . 27358) (-4289 . 27099) (-4290 . 26980) - (-4291 . 26901) (-4292 . 26794) (-4293 . 26706) (-4294 . 26625) - (-4295 . 26452) (-4296 . 26148) (-4297 . 25930) (-4298 . 25827) - (-4299 . 25703) (-4300 . 25587) (-4301 . 25317) (-4302 . 25210) - (-4303 . 24945) (-4304 . 24816) (-4305 . 24256) (-4306 . 24104) - (-4307 . 23774) (-4308 . 23722) (-4309 . 23670) (-4310 . 23418) - (-4311 . 23347) (-4312 . 23094) (-4313 . 22960) (-4314 . 22904) - (-4315 . 22296) (-4316 . 22083) (-4317 . 21964) (-4318 . 21122) - (-4319 . 20904) (-4320 . 20774) (-4321 . 20707) (-4322 . 20461) - (-4323 . 20366) (-4324 . 17067) (-4325 . 16685) (-4326 . 16601) - (-4327 . 16398) (-4328 . 16285) (-4329 . 16011) (-4330 . 15912) - (-4331 . 15714) (-4332 . 15464) (-4333 . 15411) (-4334 . 15130) - (-4335 . 15078) (-4336 . 14922) (-4337 . 14843) (-4338 . 14791) - (-4339 . 14586) (-4340 . 14277) (-4341 . 13939) (-4342 . 13687) - (-4343 . 13635) (-4344 . 13505) (-4345 . 12754) (-4346 . 12672) - (-4347 . 12584) (-4348 . 12447) (-4349 . 12392) (-4350 . 12112) - (-4351 . 11774) (-4352 . 11672) (-4353 . 11265) (-4354 . 10738) - (-4355 . 10567) (-4356 . 10462) (-4357 . 10343) (-4358 . 10225) - (-4359 . 10152) (-4360 . 9760) (-4361 . 9703) (-4362 . 9652) - (-4363 . 9262) (-4364 . 9059) (-4365 . 8870) (-4366 . 8693) - (-4367 . 8637) (-4368 . 8213) (-4369 . 3114) (-4370 . 2952) - (-4371 . 2878) (-4372 . 2725) (-4373 . 2648) (-4374 . 2268) - (-4375 . 2158) (-4376 . 2101) (-4377 . 2039) (-4378 . 1799) - (-4379 . 1747) (-4380 . 1691) (-4381 . 1595) (-4382 . 1553) - (-4383 . 1482) (-4384 . 1367) (-4385 . 1262) (-4386 . 1196) - (-4387 . 1122) (-4388 . 618) (-4389 . 388) (-4390 . 30))
\ No newline at end of file + (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-644 (-644 (-171))))))) +(((*1 *2 *3) + (-12 (-5 *2 (-566)) (-5 *1 (-447 *3)) (-4 *3 (-406)) (-4 *3 (-1049))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 (-1175))) (-5 *2 (-1269)) (-5 *1 (-1178)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-644 (-1175))) (-5 *3 (-1175)) (-5 *2 (-1269)) + (-5 *1 (-1178)))) + ((*1 *2 *3 *4 *1) + (-12 (-5 *4 (-644 (-1175))) (-5 *3 (-1175)) (-5 *2 (-1269)) + (-5 *1 (-1178))))) +((-1297 . 732187) (-1298 . 732099) (-1299 . 732011) (-1300 . 731425) + (-1301 . 731372) (-1302 . 731301) (-1303 . 731211) (-1304 . 731073) + (-1305 . 730927) (-1306 . 730843) (-1307 . 730788) (-1308 . 730390) + (-1309 . 730260) (-1310 . 730167) (-1311 . 730073) (-1312 . 730017) + (-1313 . 729535) (-1314 . 729482) (-1315 . 729267) (-1316 . 728346) + (-1317 . 728263) (-1318 . 728136) (-1319 . 727690) (-1320 . 727607) + (-1321 . 727274) (-1322 . 727191) (-1323 . 726830) (-1324 . 726670) + (-1325 . 726490) (-1326 . 726323) (-1327 . 726160) (-1328 . 726123) + (-1329 . 726070) (-1330 . 725532) (-1331 . 725314) (-1332 . 725198) + (-1333 . 725143) (-1334 . 725055) (-1335 . 724576) (-1336 . 724524) + (-1337 . 724435) (-1338 . 724015) (-1339 . 723833) (-1340 . 723687) + (-1341 . 723634) (-1342 . 723518) (-1343 . 723435) (-1344 . 723303) + (-1345 . 723100) (-1346 . 722974) (-1347 . 722836) (-1348 . 722717) + (-1349 . 722640) (-1350 . 722537) (-1351 . 722474) (-1352 . 722400) + (-1353 . 721816) (-1354 . 721703) (-1355 . 721548) (-1356 . 721382) + (-1357 . 721326) (-1358 . 721016) (-1359 . 720770) (-1360 . 720711) + (-1361 . 720640) (-1362 . 720566) (-1363 . 720387) (-1364 . 720269) + (-1365 . 720216) (-1366 . 720187) (-1367 . 720041) (-1368 . 719831) + (-1369 . 719713) (-1370 . 719661) (-1371 . 719633) (-1372 . 719490) + (-1373 . 719133) (-1374 . 718702) (-1375 . 718578) (-1376 . 718377) + (-1377 . 718295) (-1378 . 718185) (-1379 . 718116) (-1380 . 718034) + (-1381 . 717929) (-1382 . 717748) (-1383 . 717696) (-1384 . 717643) + (-1385 . 717572) (-1386 . 717476) (-1387 . 717442) (-1388 . 717329) + (-1389 . 717223) (-1390 . 717052) (-1391 . 716978) (-1392 . 716890) + (-1393 . 716469) (-1394 . 716416) (-1395 . 716163) (-1396 . 715978) + (-1397 . 715919) (-1398 . 714136) (-1399 . 713972) (-1400 . 713894) + (-1401 . 713817) (-1402 . 712947) (-1403 . 711951) (-1404 . 711896) + (-1405 . 711780) (-1406 . 711483) (-1407 . 711315) (-1408 . 711202) + (-1409 . 710582) (-1410 . 710430) (-1411 . 710309) (-1412 . 710241) + (-1413 . 710139) (-1414 . 709903) (-1415 . 709253) (-1416 . 709047) + (-1417 . 708939) (** . 705874) (-1419 . 705008) (-1420 . 704925) + (-1421 . 704847) (-1422 . 704794) (-1423 . 704548) (-1424 . 704481) + (-1425 . 703879) (-1426 . 703806) (-1427 . 703688) (-1428 . 703475) + (-1429 . 703317) (-1430 . 703220) (-1431 . 702908) (-1432 . 702874) + (-1433 . 702784) (-1434 . 702525) (-1435 . 702473) (-1436 . 702388) + (-1437 . 702141) (-1438 . 702037) (-1439 . 701935) (-1440 . 701849) + (-1441 . 701629) (-1442 . 701574) (-1443 . 701481) (-1444 . 701380) + (-1445 . 701307) (-1446 . 701273) (-1447 . 701160) (-1448 . 700825) + (-1449 . 700761) (-1450 . 700617) (-1451 . 700469) (-1452 . 700160) + (-1453 . 700091) (-1454 . 699872) (-1455 . 699305) (-1456 . 699172) + (-1457 . 698969) (-1458 . 698913) (-1459 . 698675) (-1460 . 698436) + (-1461 . 698308) (-1462 . 698247) (-1463 . 697998) (-1464 . 697788) + (-1465 . 697632) (-1466 . 697598) (-1467 . 697003) (-1468 . 696848) + (-1469 . 696811) (-1470 . 696755) (-1471 . 696703) (-1472 . 696558) + (-1473 . 696472) (-1474 . 696198) (-1475 . 696117) (-1476 . 695980) + (-1477 . 695323) (-1478 . 695165) (-1479 . 695107) (-1480 . 695041) + (-1481 . 694892) (-1482 . 694818) (-1483 . 694695) (-1484 . 694643) + (-1485 . 694076) (-1486 . 693982) (-1487 . 693922) (-1488 . 693792) + (-1489 . 693652) (-1490 . 693572) (-1491 . 693500) (-1492 . 693289) + (-1493 . 693118) (-1494 . 692960) (-1495 . 692887) (-1496 . 692784) + (-1497 . 692259) (-1498 . 691713) (-1499 . 691205) (-1500 . 691121) + (-1501 . 691065) (-1502 . 690949) (-1503 . 690828) (-1504 . 690665) + (-1505 . 690633) (-1506 . 690565) (-1507 . 690362) (-1508 . 689914) + (-1509 . 689532) (-1510 . 689097) (-1511 . 688961) (-1512 . 688912) + (-1513 . 688884) (-1514 . 688148) (-1515 . 688092) (-1516 . 687985) + (-1517 . 687833) (-1518 . 687711) (-1519 . 687610) (-1520 . 687538) + (-1521 . 687443) (-1522 . 687372) (-1523 . 687006) (-1524 . 686919) + (-1525 . 686825) (-1526 . 686775) (-1527 . 686381) (-1528 . 686255) + (-1529 . 686167) (-1530 . 685977) (-1531 . 685865) (-1532 . 685534) + (-1533 . 685479) (-1534 . 685427) (-1535 . 685204) (-1536 . 685112) + (-1537 . 685060) (-1538 . 685023) (-1539 . 684945) (-1540 . 684103) + (-1541 . 683930) (-1542 . 681703) (-1543 . 681607) (-1544 . 681314) + (-1545 . 680998) (-1546 . 680967) (-1547 . 680452) (-1548 . 680195) + (-1549 . 680076) (-1550 . 679999) (-1551 . 679897) (-1552 . 679707) + (-1553 . 679655) (-1554 . 679228) (-1555 . 679133) (-1556 . 678976) + (-1557 . 678896) (-1558 . 678034) (-1559 . 677871) (-1560 . 677777) + (-1561 . 677598) (-1562 . 677390) (-1563 . 677307) (-1564 . 677206) + (-1565 . 677155) (-1566 . 677039) (-1567 . 676926) (-1568 . 676798) + (-1569 . 676456) (-1570 . 676382) (-1571 . 676243) (-1572 . 676148) + (-1573 . 675731) (-1574 . 675632) (-1575 . 675511) (-1576 . 675286) + (-1577 . 675176) (-1578 . 675074) (-1579 . 674949) (-1580 . 674848) + (-1581 . 674738) (-1582 . 674561) (-1583 . 674509) (-1584 . 674423) + (-1585 . 674364) (-1586 . 674254) (-1587 . 674088) (-1588 . 674036) + (-1589 . 673839) (-1590 . 673731) (-1591 . 673492) (-1592 . 673440) + (-1593 . 673362) (-1594 . 673307) (-1595 . 673234) (-1596 . 673200) + (-1597 . 673126) (-1598 . 672816) (-1599 . 672370) (-1600 . 672276) + (-1601 . 672176) (-1602 . 672123) (-1603 . 672071) (-1604 . 672001) + (-1605 . 671903) (-1606 . 671511) (-1607 . 671366) (-1608 . 671247) + (-1609 . 671096) (-1610 . 670999) (-1611 . 670839) (-1612 . 670728) + (-1613 . 670490) (-1614 . 670321) (-1615 . 670235) (-1616 . 670044) + (-1617 . 669900) (-1618 . 669770) (-1619 . 669688) (-1620 . 669628) + (-1621 . 669597) (-1622 . 669482) (-1623 . 669381) (-1624 . 669278) + (-1625 . 668976) (-1626 . 668778) (-1627 . 668719) (-1628 . 668685) + (-1629 . 668399) (-1630 . 666285) (-1631 . 666200) (-1632 . 665900) + (-1633 . 665564) (-1634 . 665487) (-1635 . 665434) (-1636 . 664910) + (-1637 . 664751) (-1638 . 664650) (-1639 . 664618) (-1640 . 664490) + (-1641 . 664375) (-1642 . 664173) (-1643 . 663972) (-1644 . 663593) + (-1645 . 663381) (-1646 . 663238) (-1647 . 663165) (-1648 . 663113) + (-1649 . 663041) (-1650 . 662590) (-1651 . 662447) (-1652 . 662374) + (-1653 . 662082) (-1654 . 662010) (-1655 . 661841) (-1656 . 661025) + (-1657 . 660923) (-1658 . 660456) (-1659 . 659702) (-1660 . 659603) + (-1661 . 659107) (-1662 . 658999) (-1663 . 658965) (-1664 . 658887) + (-1665 . 658791) (-1666 . 658660) (-1667 . 658100) (-1668 . 658021) + (-1669 . 657846) (-1670 . 657622) (-1671 . 657536) (-1672 . 657006) + (-1673 . 656851) (-1674 . 656755) (-1675 . 656673) (-1676 . 656520) + (-1677 . 656386) (-1678 . 655882) (-1679 . 655759) (-1680 . 655620) + (-1681 . 655554) (-1682 . 655425) (-1683 . 655312) (-1684 . 655199) + (-1685 . 655022) (-1686 . 654824) (-1687 . 654722) (-1688 . 654406) + (-1689 . 654340) (-1690 . 654261) (-1691 . 654189) (-1692 . 654108) + (-1693 . 654004) (-1694 . 653921) (-1695 . 653394) (-1696 . 653183) + (-1697 . 653087) (-1698 . 652929) (-1699 . 652769) (-1700 . 652689) + (-1701 . 652622) (-1702 . 652479) (-1703 . 652369) (-1704 . 652301) + (-1705 . 651982) (-1706 . 651854) (-1707 . 651560) (-1708 . 651379) + (-1709 . 646041) (-1710 . 645988) (-1711 . 645101) (-1712 . 644918) + (-1713 . 644744) (-1714 . 644692) (-1715 . 644606) (-1716 . 644554) + (-1717 . 644335) (-1718 . 644117) (-1719 . 643928) (-1720 . 643876) + (-1721 . 643715) (-1722 . 643484) (-1723 . 643103) (-1724 . 643006) + (-1725 . 642927) (-1726 . 642860) (-1727 . 642766) (-1728 . 642680) + (-1729 . 642137) (-1730 . 641775) (-1731 . 641715) (-1732 . 641526) + (-1733 . 641456) (-1734 . 641376) (-1735 . 641299) (-1736 . 641233) + (-1737 . 640857) (-1738 . 640697) (-1739 . 640618) (-1740 . 640565) + (-1741 . 640513) (-1742 . 640417) (-1743 . 640350) (-1744 . 639956) + (-1745 . 639873) (-1746 . 639790) (-1747 . 639704) (-1748 . 639633) + (-1749 . 639581) (-1750 . 639418) (-1751 . 639203) (-1752 . 639144) + (-1753 . 639091) (-1754 . 639002) (-1755 . 638931) (-1756 . 638705) + (-1757 . 638645) (-1758 . 638532) (-1759 . 638403) (-1760 . 638331) + (-1761 . 638204) (-1762 . 638056) (-1763 . 637809) (-1764 . 637732) + (-1765 . 637615) (-1766 . 637586) (-1767 . 637491) (-1768 . 637330) + (-1769 . 635884) (-1770 . 635661) (-1771 . 635498) (-1772 . 635305) + (-1773 . 635147) (-1774 . 635006) (-1775 . 634882) (-1776 . 634809) + (-1777 . 634679) (-1778 . 634622) (-1779 . 634516) (-1780 . 633550) + (-1781 . 633428) (-1782 . 633373) (-1783 . 633211) (-1784 . 633115) + (-1785 . 632847) (-1786 . 632692) (-1787 . 632411) (-1788 . 632221) + (-1789 . 632094) (-1790 . 632027) (-1791 . 631904) (-1792 . 631709) + (-1793 . 631599) (-1794 . 631458) (-1795 . 631123) (-1796 . 630960) + (-1797 . 630835) (-1798 . 630736) (-1799 . 630680) (-1800 . 630584) + (-1801 . 630500) (-1802 . 628244) (-1803 . 628149) (-1804 . 627904) + (-1805 . 627528) (-1806 . 627396) (-1807 . 627343) (-1808 . 627277) + (-1809 . 627122) (-1810 . 627024) (-1811 . 626490) (-1812 . 626420) + (-1813 . 626343) (-1814 . 626260) (-1815 . 626070) (-1816 . 625646) + (-1817 . 625549) (-1818 . 625322) (-1819 . 624730) (-1820 . 624603) + (-1821 . 624179) (-1822 . 624065) (-1823 . 623947) (-1824 . 623672) + (-1825 . 623573) (-1826 . 623027) (-1827 . 622902) (-1828 . 622556) + (-1829 . 621714) (-1830 . 621640) (-1831 . 621563) (-1832 . 621431) + (-1833 . 621253) (-1834 . 621158) (-1835 . 620853) (-1836 . 620793) + (-1837 . 620405) (-1838 . 616796) (-1839 . 616743) (-1840 . 616691) + (-1841 . 616603) (-1842 . 616450) (-1843 . 616220) (-1844 . 616166) + (-1845 . 616114) (-1846 . 615951) (-1847 . 615616) (-1848 . 614978) + (-1849 . 614848) (-1850 . 614570) (-1851 . 614482) (-1852 . 613675) + (-1853 . 613647) (-1854 . 612968) (-1855 . 612870) (-1856 . 612715) + (-1857 . 612663) (-1858 . 612568) (-1859 . 612202) (-1860 . 612047) + (-1861 . 611485) (-1862 . 611380) (-1863 . 611104) (-1864 . 610914) + (-1865 . 610779) (-1866 . 610584) (-1867 . 610436) (-1868 . 610341) + (-1869 . 609966) (-1870 . 609778) (-1871 . 609657) (-1872 . 609175) + (-1873 . 609143) (-1874 . 608768) (-1875 . 608706) (-1876 . 608651) + (-1877 . 608466) (-1878 . 608159) (-1879 . 608006) (-1880 . 607888) + (-1881 . 607800) (-1882 . 604959) (-1883 . 604852) (-1884 . 604791) + (-1885 . 604684) (-1886 . 604574) (-1887 . 604261) (-1888 . 604116) + (-1889 . 604060) (-1890 . 603919) (-1891 . 603586) (-1892 . 603488) + (-1893 . 603343) (-1894 . 603183) (-1895 . 603102) (-1896 . 602439) + (-1897 . 602331) (-1898 . 602178) (-1899 . 602040) (-1900 . 601855) + (-1901 . 601781) (-1902 . 601579) (-1903 . 601248) (-1904 . 601116) + (-1905 . 601003) (-1906 . 600899) (-1907 . 600847) (-1908 . 600767) + (-1909 . 600665) (-1910 . 600592) (-1911 . 600497) (-1912 . 600398) + (-1913 . 600108) (-1914 . 599787) (-1915 . 599702) (-1916 . 590252) + (-1917 . 590186) (-1918 . 590107) (-1919 . 590033) (-1920 . 589755) + (-1921 . 589699) (-1922 . 589571) (-1923 . 589476) (-1924 . 589375) + (-1925 . 589323) (-1926 . 589225) (-1927 . 589129) (-1928 . 588975) + (-1929 . 588884) (-1930 . 588590) (-1931 . 588386) (-1932 . 588266) + (-1933 . 588155) (-1934 . 588049) (-1935 . 587738) (-1936 . 587672) + (-1937 . 587523) (-1938 . 587452) (-1939 . 587369) (-1940 . 587286) + (-1941 . 587147) (-1942 . 586690) (-1943 . 586582) (-1944 . 586437) + (-1945 . 586321) (-1946 . 586262) (-1947 . 586183) (-1948 . 586068) + (-1949 . 585717) (-1950 . 585616) (-1951 . 585545) (-1952 . 585493) + (-1953 . 585421) (-1954 . 585344) (-1955 . 585158) (-1956 . 585055) + (-1957 . 584922) (-1958 . 584783) (-1959 . 584547) (-1960 . 584382) + (-1961 . 584330) (-1962 . 584121) (-1963 . 584024) (-1964 . 583887) + (-1965 . 583816) (-1966 . 583763) (-1967 . 583630) (-1968 . 583517) + (-1969 . 583413) (-1970 . 583360) (-1971 . 582988) (-1972 . 582909) + (-1973 . 582835) (-1974 . 582672) (-1975 . 582586) (-1976 . 582486) + (-1977 . 582131) (-1978 . 582076) (-1979 . 581932) (-1980 . 581562) + (-1981 . 581466) (-1982 . 581336) (-1983 . 581217) (-1984 . 581061) + (-1985 . 580933) (-1986 . 580876) (-1987 . 580734) (-1988 . 580702) + (-1989 . 580366) (-1990 . 580147) (-1991 . 580113) (-1992 . 579957) + (-1993 . 579859) (-1994 . 579730) (-1995 . 579309) (-1996 . 579206) + (-1997 . 578819) (-1998 . 578655) (-1999 . 578561) (-2000 . 578403) + (-2001 . 578303) (-2002 . 578198) (-2003 . 578074) (-2004 . 578006) + (-2005 . 577953) (-2006 . 577866) (-2007 . 577524) (-2008 . 577297) + (-2009 . 577143) (-2010 . 576967) (-2011 . 576918) (-2012 . 576866) + (-2013 . 576651) (-2014 . 575861) (-2015 . 575669) (-2016 . 575614) + (-2017 . 575443) (-2018 . 575362) (-2019 . 575097) (-2020 . 574674) + (-2021 . 574594) (-2022 . 574541) (-2023 . 574489) (-2024 . 573839) + (-2025 . 573762) (-2026 . 573647) (-2027 . 573467) (-2028 . 573251) + (-2029 . 573012) (-2030 . 572734) (-2031 . 572470) (-2032 . 572346) + (-2033 . 572229) (-2034 . 572122) (-2035 . 572055) (-2036 . 571815) + (-2037 . 571578) (-2038 . 571361) (-2039 . 571008) (-2040 . 570938) + (-2041 . 570815) (-2042 . 570731) (-2043 . 570650) (-2044 . 570493) + (-2045 . 570321) (-2046 . 569970) (-2047 . 569310) (-2048 . 569236) + (-2049 . 569096) (-2050 . 567898) (-2051 . 567831) (-2052 . 567754) + (-2053 . 567699) (-2054 . 567600) (-2055 . 567392) (-2056 . 567065) + (-2057 . 567037) (-2058 . 566943) (-2059 . 566769) (-2060 . 566524) + (-2061 . 566366) (-2062 . 566149) (-2063 . 566083) (-2064 . 565845) + (-2065 . 565630) (-2066 . 565515) (-2067 . 565378) (-2068 . 565086) + (-2069 . 564933) (-2070 . 564846) (-2071 . 564790) (-2072 . 564706) + (-2073 . 564344) (-2074 . 564126) (-2075 . 564038) (-2076 . 563549) + (-2077 . 563453) (-2078 . 563246) (-2079 . 563105) (-2080 . 563046) + (-2081 . 562457) (-2082 . 562280) (-2083 . 562165) (-2084 . 561887) + (-2085 . 561760) (-2086 . 561708) (-2087 . 561488) (-2088 . 560056) + (-2089 . 559946) (-2090 . 559752) (-2091 . 559620) (-2092 . 559532) + (-2093 . 559483) (-2094 . 559384) (-2095 . 559245) (-2096 . 559113) + (-2097 . 558968) (-2098 . 558624) (-2099 . 558550) (-2100 . 558263) + (-2101 . 558171) (-2102 . 558100) (-2103 . 557918) (-2104 . 557591) + (-2105 . 557562) (-2106 . 557404) (-2107 . 557305) (-2108 . 557231) + (-2109 . 557108) (-2110 . 556953) (-2111 . 556682) (-2112 . 556340) + (-2113 . 556069) (-2114 . 555977) (-2115 . 555898) (-2116 . 555831) + (-2117 . 555709) (-2118 . 555657) (-2119 . 555584) (-2120 . 555497) + (-2121 . 555469) (-2122 . 554317) (-2123 . 554238) (-2124 . 554096) + (-2125 . 553338) (-2126 . 553091) (-2127 . 552692) (-2128 . 552606) + (-2129 . 552465) (-2130 . 552412) (-2131 . 552338) (-2132 . 552265) + (-2133 . 552017) (-2134 . 551965) (-2135 . 551882) (-2136 . 551796) + (-2137 . 551701) (-2138 . 551593) (-2139 . 551437) (-2140 . 551265) + (-2141 . 550814) (-2142 . 550718) (-2143 . 550638) (-2144 . 550514) + (-2145 . 550391) (-2146 . 550243) (-2147 . 550184) (-2148 . 550014) + (-2149 . 549840) (-2150 . 549688) (-2151 . 549637) (-2152 . 549540) + (-2153 . 549228) (-2154 . 548976) (-2155 . 548808) (-2156 . 548623) + (-2157 . 548503) (-2158 . 547962) (-2159 . 547688) (-2160 . 547497) + (-2161 . 547420) (-2162 . 546318) (-2163 . 546223) (-2164 . 546174) + (-2165 . 546120) (-2166 . 545776) (-2167 . 545596) (-2168 . 545289) + (-2169 . 545047) (-2170 . 545019) (-2171 . 544938) (-2172 . 544405) + (-2173 . 544305) (-2174 . 544277) (-2175 . 543523) (-2176 . 543392) + (-2177 . 542818) (-2178 . 542689) (-2179 . 542371) (-2180 . 542226) + (-2181 . 542173) (-2182 . 541855) (-2183 . 541803) (-2184 . 541556) + (-2185 . 541398) (-2186 . 541343) (-2187 . 541291) (-2188 . 541180) + (-2189 . 540799) (-2190 . 540744) (-2191 . 540563) (-2192 . 540501) + (-2193 . 540420) (-2194 . 540328) (-2195 . 540187) (-2196 . 540007) + (-2197 . 539891) (-2198 . 539753) (-2199 . 539594) (-2200 . 539497) + (-2201 . 539436) (-2202 . 538922) (-2203 . 538853) (-2204 . 538193) + (-2205 . 537689) (-2206 . 537493) (-2207 . 537302) (-2208 . 536004) + (-2209 . 535867) (-2210 . 535731) (-2211 . 535348) (-2212 . 535226) + (-2213 . 535174) (-2214 . 535103) (-2215 . 534919) (-2216 . 534867) + (-2217 . 534632) (-2218 . 534536) (-2219 . 534255) (-2220 . 534155) + (-2221 . 534054) (-2222 . 533976) (-2223 . 533926) (-2224 . 533703) + (-2225 . 533572) (-2226 . 533464) (-2227 . 533392) (-2228 . 533337) + (-2229 . 533241) (-2230 . 533188) (-2231 . 533070) (-2232 . 532584) + (-2233 . 532268) (-2234 . 531917) (-2235 . 531665) (-2236 . 531531) + (-2237 . 531479) (-2238 . 531316) (-2239 . 531244) (-2240 . 531146) + (-2241 . 531058) (-2242 . 530893) (-2243 . 530805) (-2244 . 530690) + (-2245 . 530656) (-2246 . 530376) (-2247 . 530242) (-2248 . 530077) + (-2249 . 527945) (-2250 . 527765) (-2251 . 527628) (-2252 . 527246) + (-2253 . 527101) (-2254 . 526941) (-2255 . 526875) (-2256 . 526823) + (-2257 . 526746) (-2258 . 526650) (-2259 . 526490) (-2260 . 526380) + (-2261 . 526314) (-2262 . 526256) (-2263 . 526153) (-2264 . 525866) + (-2265 . 525678) (-2266 . 525585) (-2267 . 525419) (-2268 . 525296) + (-2269 . 524843) (-2270 . 524755) (-2271 . 524636) (-2272 . 524574) + (-2273 . 524349) (-2274 . 524239) (-2275 . 523982) (-2276 . 523914) + (-2277 . 523803) (-2278 . 523553) (-2279 . 523331) (-2280 . 523190) + (-2281 . 523047) (-2282 . 522967) (-2283 . 522915) (-2284 . 522640) + (-2285 . 521238) (-2286 . 520911) (-2287 . 520753) (-2288 . 520625) + (-2289 . 519986) (-2290 . 519768) (-2291 . 519698) (-2292 . 519639) + (-2293 . 519498) (-2294 . 519006) (-2295 . 518263) (-2296 . 518066) + (-2297 . 517985) (-2298 . 517831) (-2299 . 516581) (-2300 . 516478) + (-2301 . 515994) (-2302 . 515864) (-2303 . 515600) (-2304 . 515527) + (-2305 . 514939) (-2306 . 514629) (-2307 . 514529) (-2308 . 514373) + (-2309 . 514154) (-2310 . 513932) (-2311 . 513858) (-2312 . 513792) + (-2313 . 513686) (-2314 . 513620) (-2315 . 513498) (-2316 . 513167) + (-2317 . 512882) (-2318 . 512823) (-2319 . 512757) (-2320 . 512517) + (-2321 . 512433) (-2322 . 512286) (-2323 . 512134) (-2324 . 511912) + (-2325 . 506398) (-2326 . 506348) (-2327 . 506228) (-2328 . 506173) + (-2329 . 506105) (-2330 . 506052) (-2331 . 505922) (-2332 . 505494) + (-2333 . 505048) (-2334 . 504733) (-2335 . 501952) (-2336 . 501889) + (-2337 . 501540) (-2338 . 501147) (-2339 . 501053) (-2340 . 500855) + (-2341 . 500777) (-2342 . 500725) (-2343 . 500525) (-2344 . 500439) + (-2345 . 500327) (-2346 . 500268) (-2347 . 500063) (-2348 . 499986) + (-2349 . 499889) (-2350 . 499670) (-2351 . 499598) (-2352 . 499157) + (-2353 . 499041) (-2354 . 498766) (-2355 . 498616) (-2356 . 498535) + (-2357 . 498438) (-2358 . 498388) (-2359 . 498293) (-2360 . 498002) + (-2361 . 497902) (-2362 . 497831) (-2363 . 497179) (-2364 . 497048) + (-2365 . 496713) (-2366 . 496478) (-2367 . 496325) (-2368 . 496254) + (-2369 . 496181) (-2370 . 496046) (-2371 . 495981) (-2372 . 495838) + (-2373 . 494057) (-2374 . 493986) (-2375 . 493915) (-2376 . 493811) + (-2377 . 493721) (-2378 . 493593) (-2379 . 493513) (-2380 . 493454) + (-2381 . 493302) (-2382 . 492909) (-2383 . 492654) (-2384 . 492605) + (-2385 . 492482) (-2386 . 492374) (-2387 . 492257) (-2388 . 491831) + (-2389 . 491695) (-2390 . 484752) (-2391 . 484367) (-2392 . 484229) + (-2393 . 484131) (-2394 . 484009) (-2395 . 483936) (-2396 . 483853) + (-2397 . 483746) (-2398 . 483685) (-2399 . 483597) (-2400 . 483530) + (-2401 . 483446) (-2402 . 483349) (-2403 . 483229) (-2404 . 483125) + (-2405 . 482910) (-2406 . 482705) (-2407 . 482632) (-2408 . 482427) + (-2409 . 481279) (-2410 . 481211) (-2411 . 481058) (-2412 . 480898) + (-2413 . 480870) (-2414 . 479792) (-2415 . 479695) (-2416 . 479639) + (-2417 . 479610) (-2418 . 479321) (-2419 . 479248) (-2420 . 479195) + (-2421 . 479111) (-2422 . 478514) (-2423 . 478260) (-2424 . 477820) + (-2425 . 477592) (-2426 . 477494) (-2427 . 477421) (-2428 . 477355) + (-2429 . 477273) (-2430 . 477107) (-2431 . 476993) (-2432 . 476940) + (-2433 . 476787) (-2434 . 476554) (-2435 . 476384) (-2436 . 476241) + (-2437 . 476158) (-2438 . 472823) (-2439 . 472770) (-2440 . 472686) + (-2441 . 472508) (-2442 . 472221) (-2443 . 472168) (-2444 . 472089) + (-2445 . 471867) (-2446 . 471593) (-2447 . 471251) (-2448 . 471116) + (-2449 . 471042) (-2450 . 470750) (-2451 . 470656) (-2452 . 470312) + (-2453 . 470226) (-2454 . 470142) (-2455 . 470076) (-2456 . 469936) + (-2457 . 469867) (-2458 . 469833) (-2459 . 469586) (-2460 . 469533) + (-2461 . 469237) (-2462 . 469113) (-2463 . 467484) (-2464 . 467316) + (-2465 . 467031) (-2466 . 466812) (-2467 . 466594) (-2468 . 466493) + (-2469 . 466465) (-2470 . 466338) (-2471 . 466264) (-2472 . 466061) + (-2473 . 465582) (-2474 . 464723) (-2475 . 464427) (-2476 . 464375) + (-2477 . 464319) (-2478 . 464116) (-2479 . 445541) (-2480 . 445444) + (-2481 . 445175) (-2482 . 444953) (-2483 . 444773) (-2484 . 444523) + (-2485 . 443227) (-2486 . 443143) (-2487 . 443040) (-2488 . 442813) + (-2489 . 439992) (-2490 . 439900) (-2491 . 439744) (-2492 . 439529) + (-2493 . 439408) (-2494 . 439305) (-2495 . 439237) (-2496 . 439045) + (-2497 . 438980) (-2498 . 438877) (-2499 . 438638) (-2500 . 437640) + (-2501 . 437580) (-2502 . 437269) (-2503 . 437173) (-2504 . 436894) + (-2505 . 436841) (-2506 . 436755) (-2507 . 436526) (-2508 . 436296) + (-2509 . 435935) (-2510 . 435676) (-2511 . 435604) (-2512 . 435522) + (-2513 . 435414) (-2514 . 434985) (-2515 . 434168) (-2516 . 433946) + (-2517 . 433847) (-2518 . 433770) (-2519 . 433680) (-2520 . 433615) + (-2521 . 433469) (-2522 . 433344) (-2523 . 433264) (-2524 . 433209) + (-2525 . 433065) (-2526 . 432870) (-2527 . 432793) (-2528 . 432289) + (-2529 . 432236) (-2530 . 432084) (-2531 . 430903) (-2532 . 430787) + (-2533 . 430674) (-2534 . 428908) (-2535 . 428602) (-2536 . 428532) + (-2537 . 428191) (-2538 . 427952) (-2539 . 427878) (-2540 . 427827) + (-2541 . 427581) (-2542 . 427499) (-2543 . 427420) (-2544 . 427127) + (-2545 . 427044) (-2546 . 425589) (-2547 . 425253) (-2548 . 425043) + (-2549 . 424884) (-2550 . 423819) (-2551 . 423767) (-2552 . 423521) + (-2553 . 423450) (-2554 . 422154) (-2555 . 421838) (-2556 . 421715) + (-2557 . 420225) (-2558 . 420166) (-2559 . 419744) (-2560 . 419545) + (-2561 . 419403) (-2562 . 419347) (-2563 . 419252) (-2564 . 418767) + (-2565 . 418602) (-2566 . 418550) (-2567 . 418428) (-2568 . 418344) + (-2569 . 418316) (-2570 . 418230) (-2571 . 418120) (-2572 . 418068) + (-2573 . 417997) (-2574 . 417969) (-2575 . 417886) (-2576 . 417827) + (-2577 . 417091) (-2578 . 416978) (-2579 . 416265) (-2580 . 415885) + (-2581 . 415816) (-2582 . 415423) (-2583 . 415282) (-2584 . 414819) + (-2585 . 414606) (-2586 . 414502) (-2587 . 414339) (-2588 . 414251) + (-2589 . 414182) (-2590 . 414148) (-2591 . 414088) (-2592 . 413959) + (-2593 . 413498) (-2594 . 413470) (-2595 . 413378) (-2596 . 413294) + (-2597 . 413166) (-2598 . 412450) (-2599 . 412367) (-2600 . 412262) + (-2601 . 412166) (-2602 . 411940) (-2603 . 411239) (-2604 . 411140) + (-2605 . 411072) (-2606 . 411019) (-2607 . 410920) (-2608 . 410276) + (-2609 . 410043) (-2610 . 409451) (-2611 . 409366) (-2612 . 409179) + (-2613 . 408828) (-2614 . 408745) (-2615 . 408687) (-2616 . 407804) + (-2617 . 407709) (-2618 . 406821) (-2619 . 406741) (-2620 . 406668) + (-2621 . 406552) (-2622 . 405380) (-2623 . 405267) (-2624 . 405145) + (-2625 . 404980) (-2626 . 404847) (-2627 . 404488) (-2628 . 403889) + (-2629 . 403836) (-2630 . 403254) (-2631 . 402614) (-2632 . 402392) + (-2633 . 402267) (-2634 . 402084) (-2635 . 402050) (-2636 . 401908) + (-2637 . 401804) (-2638 . 401437) (-2639 . 400999) (-2640 . 400812) + (-2641 . 400731) (-2642 . 400697) (-2643 . 400464) (-2644 . 400356) + (-2645 . 400227) (-2646 . 400144) (-2647 . 399828) (-2648 . 399727) + (-2649 . 399600) (-2650 . 399343) (-2651 . 398969) (-2652 . 398824) + (-2653 . 398758) (-2654 . 398540) (-2655 . 398387) (-2656 . 397269) + (-2657 . 397156) (-2658 . 397018) (-2659 . 396823) (-2660 . 396693) + (-2661 . 396556) (-2662 . 396441) (-2663 . 396338) (-2664 . 396059) + (-2665 . 395988) (-2666 . 395937) (-2667 . 395878) (-2668 . 395563) + (-2669 . 395460) (-2670 . 395360) (-2671 . 395126) (-2672 . 395024) + (-2673 . 394546) (-2674 . 394320) (-2675 . 394207) (-2676 . 394011) + (-2677 . 393903) (-2678 . 393779) (-2679 . 393705) (-2680 . 393267) + (-2681 . 393157) (-2682 . 393078) (-2683 . 388918) (-2684 . 388538) + (-2685 . 388196) (-2686 . 388125) (-2687 . 388093) (-2688 . 387993) + (-2689 . 387840) (-2690 . 387776) (-2691 . 387726) (-2692 . 387631) + (-2693 . 387576) (-2694 . 387481) (-2695 . 387358) (-2696 . 387140) + (-2697 . 387070) (-2698 . 386965) (-2699 . 386869) (-2700 . 386739) + (-2701 . 386493) (-2702 . 386459) (-2703 . 386393) (-2704 . 386314) + (-2705 . 386183) (-2706 . 386088) (-2707 . 386054) (-2708 . 385471) + (-2709 . 385370) (-2710 . 385264) (-2711 . 385206) (-2712 . 384178) + (-2713 . 384087) (-2714 . 384035) (-2715 . 383781) (-2716 . 383495) + (-2717 . 383345) (-2718 . 383313) (-2719 . 382985) (-2720 . 382887) + (-2721 . 382834) (-2722 . 382593) (-2723 . 382456) (-2724 . 382286) + (-2725 . 382131) (-2726 . 382036) (-2727 . 381986) (-2728 . 381884) + (-2729 . 381807) (-2730 . 381699) (-2731 . 381662) (-2732 . 381521) + (-2733 . 381455) (-2734 . 381207) (-2735 . 381100) (-2736 . 380962) + (-2737 . 380860) (-2738 . 380452) (-2739 . 380271) (-2740 . 380199) + (-2741 . 379626) (-2742 . 379530) (-2743 . 379000) (-2744 . 378708) + (-2745 . 378586) (-2746 . 378490) (-2747 . 378363) (-2748 . 378250) + (-2749 . 378180) (-2750 . 378015) (-2751 . 377857) (-2752 . 377823) + (-2753 . 377635) (-2754 . 377388) (-2755 . 377293) (-2756 . 377131) + (-2757 . 377022) (-2758 . 376950) (-2759 . 376696) (-2760 . 376668) + (-2761 . 376613) (-2762 . 376070) (-2763 . 375969) (-2764 . 375892) + (-2765 . 375715) (-2766 . 375573) (-2767 . 375375) (-2768 . 375161) + (-2769 . 374933) (-2770 . 374785) (-2771 . 374725) (-2772 . 374576) + (-2773 . 374373) (-2774 . 374278) (-2775 . 374040) (-2776 . 373867) + (-2777 . 373772) (-2778 . 373676) (-2779 . 373574) (-2780 . 373416) + (-2781 . 373328) (-2782 . 373223) (-2783 . 373167) (-2784 . 372759) + (-2785 . 372676) (-2786 . 372572) (-2787 . 372228) (-2788 . 371923) + (-2789 . 371871) (-2790 . 371374) (-2791 . 371270) (-2792 . 371014) + (-2793 . 370871) (-2794 . 370764) (-2795 . 370228) (-2796 . 370064) + (-2797 . 369865) (-2798 . 369613) (-2799 . 369199) (-2800 . 369121) + (-2801 . 369010) (-2802 . 368803) (-2803 . 368707) (-2804 . 368635) + (-2805 . 368541) (-2806 . 367339) (-2807 . 366932) (-2808 . 366900) + (-2809 . 366728) (-2810 . 366183) (-2811 . 366086) (-2812 . 365967) + (-2813 . 365872) (-2814 . 365714) (-2815 . 365583) (-2816 . 365486) + (-2817 . 365431) (-2818 . 365332) (-12 . 365160) (-2820 . 365064) + (-2821 . 364733) (-2822 . 364637) (-2823 . 364527) (-2824 . 364475) + (-2825 . 364374) (-2826 . 364301) (-2827 . 364148) (-2828 . 364060) + (-2829 . 363990) (-2830 . 363911) (-2831 . 363731) (-2832 . 363648) + (-2833 . 363590) (-2834 . 362758) (-2835 . 361982) (-2836 . 361923) + (-2837 . 361748) (-2838 . 361656) (-2839 . 361562) (-2840 . 361494) + (-2841 . 361401) (-2842 . 361260) (-2843 . 361100) (-2844 . 361043) + (-2845 . 360556) (-2846 . 360501) (-2847 . 360385) (-2848 . 360229) + (-2849 . 360201) (-2850 . 360127) (-2851 . 359902) (-2852 . 359842) + (-2853 . 359790) (-2854 . 358567) (-2855 . 358388) (-2856 . 358315) + (-2857 . 358259) (-2858 . 357832) (-2859 . 357759) (-2860 . 357707) + (-2861 . 357492) (-2862 . 357407) (-2863 . 357142) (-2864 . 357043) + (-2865 . 356734) (-2866 . 356393) (-2867 . 356294) (-2868 . 356239) + (-2869 . 356051) (-2870 . 355884) (-2871 . 355827) (-2872 . 355753) + (-2873 . 355380) (-2874 . 355286) (-2875 . 355126) (-2876 . 354952) + (-2877 . 354434) (-2878 . 354335) (-2879 . 353816) (-2880 . 353148) + (-2881 . 352853) (-2882 . 352790) (-2883 . 352637) (-2884 . 352494) + (-2885 . 352361) (-2886 . 352287) (-2887 . 352185) (-2888 . 351819) + (-2889 . 349963) (-2890 . 349850) (-2891 . 349594) (-2892 . 349342) + (-2893 . 349134) (-2894 . 349031) (-2895 . 348873) (-2896 . 348754) + (-2897 . 348701) (-2898 . 348567) (-2899 . 348493) (-2900 . 348430) + (-2901 . 348301) (-2902 . 348167) (-2903 . 348139) (-2904 . 347787) + (-2905 . 347588) (-2906 . 347505) (-2907 . 347360) (-2908 . 347304) + (-2909 . 347197) (-2910 . 347123) (-2911 . 346980) (-2912 . 346914) + (-2913 . 346583) (* . 342089) (-2915 . 342009) (-2916 . 341948) + (-2917 . 341705) (-2918 . 341653) (-2919 . 341397) (-2920 . 340054) + (-2921 . 339947) (-2922 . 339864) (-2923 . 339567) (-2924 . 339510) + (-2925 . 339413) (-2926 . 339320) (-2927 . 339251) (-2928 . 339163) + (-2929 . 339055) (-2930 . 338936) (-2931 . 338761) (-2932 . 338691) + (-2933 . 338243) (-2934 . 338209) (-2935 . 338154) (-2936 . 337980) + (-2937 . 337883) (-2938 . 337785) (-2939 . 337703) (-2940 . 337407) + (-2941 . 337296) (-2942 . 337130) (-2943 . 337056) (-2944 . 336924) + (-2945 . 336731) (-2946 . 336414) (-2947 . 336237) (-2948 . 336100) + (-2949 . 335981) (-2950 . 335831) (-2951 . 335772) (-2952 . 335500) + (-2953 . 335451) (-2954 . 335326) (-2955 . 335154) (-2956 . 334935) + (-2957 . 334817) (-2958 . 334505) (-2959 . 334271) (-2960 . 334165) + (-2961 . 334112) (-2962 . 333949) (-2963 . 333751) (-2964 . 333498) + (-2965 . 333236) (-2966 . 333183) (-2967 . 333097) (-2968 . 332943) + (-2969 . 332828) (-2970 . 332758) (-2971 . 332614) (-2972 . 332240) + (-2973 . 332169) (-2974 . 331970) (-2975 . 331791) (-2976 . 330930) + (-2977 . 330699) (-2978 . 330592) (-2979 . 330175) (-2980 . 325633) + (-2981 . 325581) (-2982 . 325210) (-2983 . 325130) (-2984 . 325078) + (-2985 . 324774) (-2986 . 324687) (-2987 . 324613) (-2988 . 324512) + (-2989 . 324461) (-2990 . 324374) (-2991 . 323828) (-2992 . 323747) + (-2993 . 323674) (-2994 . 323600) (-2995 . 323348) (-2996 . 323296) + (-2997 . 323082) (-2998 . 322958) (-2999 . 322905) (-3000 . 322775) + (-3001 . 322709) (-3002 . 322342) (-3003 . 322195) (-3004 . 322036) + (-3005 . 321783) (-3006 . 321626) (-3007 . 321490) (-3008 . 321240) + (-3009 . 321180) (-3010 . 321109) (-3011 . 320967) (-3012 . 320915) + (-3013 . 320802) (-3014 . 320771) (-3015 . 320484) (-3016 . 320406) + (-3017 . 320335) (-3018 . 320026) (-3019 . 319939) (-3020 . 319820) + (-3021 . 319688) (-3022 . 319660) (-3023 . 319565) (-3024 . 319477) + (-3025 . 317889) (-3026 . 313826) (-3027 . 313707) (-3028 . 313592) + (-3029 . 313471) (-3030 . 313300) (-3031 . 312913) (-3032 . 312744) + (-3033 . 312610) (-3034 . 312416) (-3035 . 310638) (-3036 . 310354) + (-3037 . 310268) (-3038 . 309990) (-3039 . 309840) (-3040 . 309709) + (-3041 . 309608) (-3042 . 309178) (-3043 . 309054) (-3044 . 308985) + (-3045 . 308900) (-3046 . 308866) (-3047 . 308672) (-3048 . 308623) + (-3049 . 308496) (-3050 . 308335) (-3051 . 308251) (-3052 . 307065) + (-3053 . 306933) (-3054 . 306790) (-3055 . 306718) (-3056 . 306566) + (-3057 . 306362) (-3058 . 306247) (-3059 . 306177) (-3060 . 305800) + (-3061 . 305701) (-3062 . 305667) (-3063 . 305593) (-3064 . 305347) + (-3065 . 304165) (-3066 . 303993) (-3067 . 303264) (-3068 . 303212) + (-3069 . 302951) (-3070 . 302864) (-3071 . 302790) (-3072 . 300445) + (-3073 . 300359) (-3074 . 300258) (-3075 . 300135) (-3076 . 299843) + (-3077 . 297636) (-3078 . 297464) (-3079 . 296735) (-3080 . 282648) + (-3081 . 282595) (-3082 . 282480) (-3083 . 282375) (-3084 . 282249) + (-3085 . 282199) (-3086 . 282052) (-3087 . 282021) (-3088 . 281840) + (-3089 . 281276) (-3090 . 281104) (-3091 . 280428) (-3092 . 280348) + (-3093 . 280190) (-3094 . 280118) (-3095 . 280090) (-3096 . 279928) + (-3097 . 279750) (-3098 . 279591) (-3099 . 279342) (-3100 . 279218) + (-3101 . 279038) (-3102 . 278942) (-3103 . 278584) (-3104 . 278412) + (-3105 . 277848) (-3106 . 277684) (-3107 . 277537) (-3108 . 277251) + (-3109 . 277177) (-3110 . 277004) (-3111 . 276794) (-3112 . 276679) + (-3113 . 276433) (-3114 . 276260) (-3115 . 275696) (-3116 . 275428) + (-3117 . 275000) (-3118 . 274932) (-3119 . 274838) (-3120 . 274662) + (-3121 . 274571) (-3122 . 274330) (-3123 . 274149) (-3124 . 273989) + (-3125 . 273807) (-3126 . 273243) (-3127 . 273070) (-3128 . 272982) + (-3129 . 272798) (-3130 . 272728) (-3131 . 272520) (-3132 . 272308) + (-3133 . 272244) (-3134 . 272191) (-3135 . 271517) (-3136 . 267850) + (-3137 . 267741) (-3138 . 267512) (-3139 . 267356) (-3140 . 267226) + (-3141 . 267158) (-3142 . 266907) (-3143 . 266718) (-3144 . 266565) + (-3145 . 266426) (-3146 . 266195) (-3147 . 266121) (-3148 . 265447) + (-3149 . 265261) (-3150 . 265167) (-3151 . 265113) (-3152 . 264922) + (-3153 . 264809) (-3154 . 264678) (-3155 . 264577) (-3156 . 264419) + (-3157 . 263682) (-3158 . 263529) (-3159 . 263310) (-3160 . 262907) + (-3161 . 262792) (-3162 . 262713) (-3163 . 262629) (-3164 . 262470) + (-3165 . 262416) (-3166 . 262385) (-3167 . 262283) (-3168 . 261721) + (-3169 . 261337) (-3170 . 261137) (-3171 . 260659) (-3172 . 260581) + (-3173 . 260370) (-3174 . 260326) (-3175 . 260135) (-3176 . 260015) + (-3177 . 259952) (-3178 . 259878) (-3179 . 259316) (-3180 . 259220) + (-3181 . 259109) (-3182 . 258692) (-3183 . 258549) (-3184 . 258449) + (-3185 . 258389) (-3186 . 257587) (-3187 . 257472) (-3188 . 257286) + (-3189 . 257213) (-3190 . 256651) (-3191 . 256419) (-3192 . 256329) + (-3193 . 256271) (-3194 . 256175) (-3195 . 255996) (-3196 . 255902) + (-3197 . 255227) (-3198 . 254867) (-3199 . 254783) (-3200 . 254565) + (-3201 . 254479) (-3202 . 254358) (-3203 . 254263) (-3204 . 254134) + (-3205 . 254084) (-3206 . 253782) (-3207 . 253107) (-3208 . 252949) + (-3209 . 252833) (-3210 . 252762) (-3211 . 252676) (-3212 . 252539) + (-3213 . 252457) (-3214 . 252358) (-3215 . 252330) (-3216 . 252223) + (-3217 . 251042) (-3218 . 250898) (-3219 . 250223) (-3220 . 249959) + (-3221 . 249893) (-3222 . 249738) (-3223 . 249505) (-3224 . 249431) + (-3225 . 249354) (-3226 . 249183) (-3227 . 248620) (-3228 . 248036) + (-3229 . 247859) (-3230 . 247766) (-3231 . 247715) (-3232 . 247529) + (-3233 . 247338) (-3234 . 247252) (-3235 . 247134) (-3236 . 247078) + (-3237 . 247026) (-3238 . 246819) (-3239 . 246557) (-3240 . 245994) + (-3241 . 245923) (-3242 . 245708) (-3243 . 245332) (-3244 . 245034) + (-3245 . 244951) (-3246 . 244547) (-3247 . 244479) (-3248 . 244326) + (-3249 . 244240) (-3250 . 243677) (-3251 . 243583) (-3252 . 243532) + (-3253 . 243023) (-3254 . 242864) (-3255 . 242779) (-3256 . 242697) + (-3257 . 242560) (-3258 . 242488) (-3259 . 242388) (-3260 . 241826) + (-3261 . 241668) (-3262 . 241580) (-3263 . 241506) (-3264 . 241303) + (-3265 . 241275) (-3266 . 241107) (-3267 . 240977) (-3268 . 240569) + (-3269 . 240430) (-3270 . 240302) (-3271 . 239856) (-3272 . 239677) + (-3273 . 239115) (-3274 . 238981) (-3275 . 238919) (-3276 . 238836) + (-3277 . 238751) (-3278 . 238557) (-3279 . 238464) (-3280 . 238306) + (-3281 . 237916) (-3282 . 237888) (-3283 . 237836) (-3284 . 237699) + (-3285 . 237137) (-3286 . 237023) (-3287 . 236852) (-3288 . 236824) + (-3289 . 236743) (-3290 . 236715) (-3291 . 236613) (-3292 . 236495) + (-3293 . 236409) (-3294 . 236294) (-3295 . 234326) (-3296 . 234257) + (-3297 . 230250) (-3298 . 230222) (-3299 . 229660) (-3300 . 229518) + (-3301 . 229422) (-3302 . 229351) (-3303 . 229256) (-3304 . 229147) + (-3305 . 229066) (-3306 . 228947) (-3307 . 228779) (-3308 . 228687) + (-3309 . 228125) (-3310 . 228039) (-3311 . 227923) (-3312 . 227756) + (-3313 . 227689) (-3314 . 227624) (-3315 . 227460) (-3316 . 227343) + (-3317 . 227116) (-3318 . 227031) (-3319 . 226472) (-3320 . 226085) + (-3321 . 225906) (-3322 . 225724) (-3323 . 225531) (-3324 . 225475) + (-3325 . 225146) (-3326 . 225018) (-3327 . 224917) (-3328 . 224667) + (-3329 . 224513) (-3330 . 223800) (-3331 . 223241) (-3332 . 222909) + (-3333 . 222786) (-3334 . 222538) (-3335 . 222414) (-3336 . 222337) + (-3337 . 222284) (-3338 . 222225) (-3339 . 222079) (-3340 . 222010) + (-3341 . 221878) (-3342 . 221776) (-3343 . 221524) (-3344 . 221108) + (-3345 . 221052) (-3346 . 220986) (-3347 . 220713) (-3348 . 219440) + (-3349 . 219193) (-3350 . 219110) (-3351 . 219032) (-3352 . 218950) + (-3353 . 218798) (-3354 . 218717) (-3355 . 218657) (-3356 . 218564) + (-3357 . 218490) (-3358 . 218362) (-3359 . 218164) (-3360 . 218135) + (-3361 . 218040) (-3362 . 217877) (-3363 . 217742) (-3364 . 217470) + (-3365 . 217419) (-3366 . 217212) (-3367 . 217121) (-3368 . 216990) + (-3369 . 216863) (-3370 . 216544) (-3371 . 216294) (-3372 . 214954) + (-3373 . 214904) (-3374 . 214789) (-3375 . 214546) (-3376 . 214340) + (-3377 . 214225) (-3378 . 213910) (-3379 . 213766) (-3380 . 213158) + (-3381 . 213089) (-3382 . 213037) (-3383 . 212958) (-3384 . 212355) + (-3385 . 212285) (-3386 . 211734) (-3387 . 211682) (-3388 . 210945) + (-3389 . 210916) (-3390 . 210821) (-3391 . 210672) (-3392 . 210327) + (-3393 . 210243) (-3394 . 210184) (-3395 . 209932) (-3396 . 209904) + (-3397 . 209656) (-3398 . 209629) (-3399 . 209404) (-3400 . 209208) + (-3401 . 209113) (-3402 . 209061) (-3403 . 208929) (-3404 . 208798) + (-3405 . 208653) (-3406 . 208546) (-3407 . 208490) (-3408 . 208431) + (-3409 . 208372) (-3410 . 208231) (-3411 . 207413) (-3412 . 207077) + (-3413 . 206942) (-3414 . 206889) (-3415 . 206752) (-3416 . 206569) + (-3417 . 206509) (-3418 . 206351) (-3419 . 205960) (-3420 . 205712) + (-3421 . 205552) (-3422 . 205485) (-3423 . 205431) (-3424 . 205273) + (-3425 . 205066) (-3426 . 204877) (-3427 . 204775) (-3428 . 204529) + (-3429 . 204396) (-3430 . 204103) (-3431 . 203951) (-3432 . 203881) + (-3433 . 203600) (-3434 . 203532) (-3435 . 203444) (-3436 . 203171) + (-3437 . 202548) (-3438 . 202453) (-3439 . 202396) (-3440 . 202178) + (-3441 . 202147) (-3442 . 202003) (-3443 . 201854) (-3444 . 201770) + (-3445 . 201318) (-3446 . 201259) (-3447 . 201171) (-3448 . 201076) + (-3449 . 200590) (-3450 . 200513) (-3451 . 200310) (-3452 . 199546) + (-3453 . 199475) (-3454 . 199366) (-3455 . 199054) (-3456 . 198951) + (-3457 . 198857) (-3458 . 198756) (-3459 . 197877) (-3460 . 197764) + (-3461 . 197713) (-3462 . 197335) (-3463 . 197232) (-3464 . 197126) + (-3465 . 196967) (-3466 . 196918) (-3467 . 196752) (-3468 . 196649) + (-3469 . 196554) (-3470 . 196502) (-3471 . 196215) (-3472 . 196091) + (-3473 . 195776) (-3474 . 195674) (-3475 . 195482) (-3476 . 195334) + (-3477 . 195124) (-3478 . 195020) (-3479 . 194954) (-3480 . 194727) + (-3481 . 194677) (-3482 . 194603) (-3483 . 194504) (-3484 . 194403) + (-3485 . 194351) (-3486 . 194072) (-3487 . 193952) (-3488 . 193899) + (-3489 . 193758) (-3490 . 193696) (-3491 . 193643) (-3492 . 193485) + (-3493 . 193011) (-3494 . 192849) (-3495 . 192750) (-3496 . 192662) + (-3497 . 192631) (-3498 . 192535) (-3499 . 192462) (-3500 . 192043) + (-3501 . 191876) (-3502 . 191652) (-3503 . 191623) (-3504 . 191532) + (-3505 . 191407) (-3506 . 190850) (-3507 . 189883) (-3508 . 189743) + (-3509 . 189691) (-3510 . 189634) (-3511 . 189528) (-3512 . 189350) + (-3513 . 189293) (-3514 . 189216) (-3515 . 189116) (-3516 . 188942) + (-3517 . 188873) (-3518 . 188703) (-3519 . 188621) (-3520 . 188454) + (-3521 . 188292) (-3522 . 188196) (-3523 . 188067) (-3524 . 187741) + (-3525 . 187645) (-3526 . 185483) (-3527 . 185292) (-3528 . 183990) + (-3529 . 183901) (-3530 . 183306) (-3531 . 183216) (-3532 . 183049) + (-3533 . 182986) (-3534 . 182691) (-3535 . 182303) (-3536 . 182001) + (-3537 . 181555) (-3538 . 181092) (-3539 . 180988) (-3540 . 180730) + (-3541 . 180572) (-3542 . 180459) (-3543 . 179972) (-3544 . 179872) + (-3545 . 179789) (-3546 . 179637) (-3547 . 179127) (-3548 . 178973) + (-3549 . 178919) (-3550 . 178776) (-3551 . 178661) (-3552 . 178595) + (-3553 . 177892) (-3554 . 177794) (-3555 . 177762) (-3556 . 177707) + (-3557 . 177658) (-3558 . 177579) (-3559 . 177463) (-3560 . 177367) + (-3561 . 176970) (-3562 . 176911) (-3563 . 176805) (-3564 . 176717) + (-3565 . 175580) (-3566 . 175370) (-3567 . 175266) (-3568 . 175164) + (-3569 . 175078) (-3570 . 174998) (-3571 . 173798) (-3572 . 173675) + (-3573 . 173403) (-3574 . 173351) (-3575 . 173095) (-3576 . 172451) + (-3577 . 172399) (-3578 . 172322) (-3579 . 171997) (-3580 . 171879) + (-3581 . 171826) (-3582 . 171703) (-3583 . 171617) (-3584 . 171529) + (-3585 . 171145) (-3586 . 171057) (-3587 . 170865) (-3588 . 170788) + (-3589 . 170450) (-3590 . 170297) (-3591 . 170241) (-3592 . 170168) + (-3593 . 170100) (-3594 . 170034) (-3595 . 169972) (-3596 . 169873) + (-3597 . 169700) (-3598 . 169560) (-3599 . 169417) (-3600 . 169058) + (-3601 . 168938) (-3602 . 168856) (-3603 . 168534) (-3604 . 168142) + (-3605 . 167960) (-3606 . 167830) (-3607 . 167723) (-3608 . 167650) + (-3609 . 167470) (-3610 . 167346) (-3611 . 167202) (-3612 . 166906) + (-3613 . 166619) (-3614 . 166566) (-3615 . 166489) (-3616 . 166189) + (-3617 . 166119) (-3618 . 166001) (-3619 . 165882) (-3620 . 165829) + (-3621 . 165498) (-3622 . 165432) (-3623 . 165333) (-3624 . 165137) + (-3625 . 164626) (-3626 . 164451) (-3627 . 164417) (-3628 . 163973) + (-3629 . 163885) (-3630 . 163724) (-3631 . 163256) (-3632 . 163144) + (-3633 . 163087) (-3634 . 162996) (-3635 . 162932) (-3636 . 162850) + (-3637 . 162794) (-3638 . 162465) (-3639 . 162413) (-3640 . 162054) + (-3641 . 161720) (-3642 . 161557) (-3643 . 161351) (-3644 . 161277) + (-3645 . 161227) (-3646 . 160901) (-3647 . 160733) (-3648 . 160705) + (-3649 . 160029) (-3650 . 159885) (-3651 . 159761) (-3652 . 159709) + (-3653 . 159277) (-3654 . 159135) (-3655 . 158962) (-3656 . 158777) + (-3657 . 158719) (-3658 . 158642) (-3659 . 158355) (-3660 . 158036) + (-3661 . 157897) (-3662 . 157220) (-3663 . 157088) (-3664 . 157007) + (-3665 . 156906) (-3666 . 156646) (-3667 . 156522) (-3668 . 156177) + (-3669 . 155938) (-3670 . 155860) (-3671 . 155772) (-3672 . 155688) + (-3673 . 155631) (-3674 . 155519) (-3675 . 155466) (-3676 . 154240) + (-3677 . 154074) (-3678 . 153956) (-3679 . 153843) (-3680 . 153682) + (-3681 . 153574) (-3682 . 153436) (-3683 . 153374) (-3684 . 153290) + (-3685 . 153222) (-3686 . 152795) (-3687 . 152700) (-3688 . 152582) + (-3689 . 152375) (-3690 . 152253) (-3691 . 152106) (-3692 . 152009) + (-3693 . 151919) (-3694 . 151739) (-3695 . 151667) (-3696 . 150239) + (-3697 . 150144) (-3698 . 150084) (-3699 . 150056) (-3700 . 149955) + (-3701 . 149889) (-3702 . 149711) (-3703 . 149282) (-3704 . 149254) + (-3705 . 149201) (-3706 . 149148) (-3707 . 149005) (-3708 . 148778) + (-3709 . 148367) (-3710 . 148269) (-3711 . 147959) (-3712 . 147907) + (-3713 . 147812) (-3714 . 147706) (-3715 . 147460) (-3716 . 146830) + (-3717 . 146771) (-3718 . 146546) (-3719 . 146314) (-3720 . 146241) + (-3721 . 146189) (-3722 . 146086) (-3723 . 145633) (-3724 . 145491) + (-3725 . 145417) (-3726 . 145357) (-3727 . 145179) (-3728 . 144094) + (-3729 . 144011) (-3730 . 143369) (-3731 . 143300) (-3732 . 143174) + (-3733 . 143146) (-3734 . 143118) (-3735 . 142929) (-3736 . 142866) + (-3737 . 142002) (-3738 . 141696) (-3739 . 141417) (-3740 . 141314) + (-3741 . 140954) (-3742 . 140839) (-3743 . 140777) (-3744 . 140693) + (-3745 . 140475) (-3746 . 140357) (-3747 . 139165) (-3748 . 139029) + (-3749 . 138917) (-3750 . 138834) (-3751 . 138797) (-3752 . 138410) + (-3753 . 138252) (-3754 . 138042) (-3755 . 137815) (-3756 . 137610) + (-3757 . 136394) (-3758 . 136234) (-3759 . 135794) (-3760 . 135256) + (-3761 . 135152) (-3762 . 135042) (-3763 . 134990) (-3764 . 134912) + (-3765 . 134643) (-3766 . 134571) (-3767 . 134220) (-3768 . 133844) + (-3769 . 133749) (-3770 . 133700) (-3771 . 133634) (-3772 . 133344) + (-3773 . 133131) (-3774 . 132994) (-3775 . 132730) (-3776 . 132630) + (-3777 . 132577) (-3778 . 132499) (-3779 . 131748) (-3780 . 131650) + (-3781 . 131596) (-3782 . 131187) (-3783 . 131012) (-3784 . 130794) + (-3785 . 130675) (-3786 . 130527) (-3787 . 130475) (-3788 . 130233) + (-3789 . 129974) (-3790 . 129681) (-3791 . 129408) (-9 . 129380) + (-3793 . 129348) (-3794 . 129128) (-3795 . 129013) (-3796 . 128630) + (-3797 . 128517) (-3798 . 128326) (-3799 . 128151) (-3800 . 128070) + (-3801 . 127929) (-8 . 127901) (-3803 . 127829) (-3804 . 127628) + (-3805 . 127531) (-3806 . 127438) (-3807 . 127383) (-3808 . 127160) + (-3809 . 127039) (-3810 . 126793) (-3811 . 126740) (-7 . 126712) + (-3813 . 126502) (-3814 . 126429) (-3815 . 126364) (-3816 . 126293) + (-3817 . 125929) (-3818 . 124965) (-3819 . 124872) (-3820 . 124774) + (-3821 . 124721) (-3822 . 124650) (-3823 . 124484) (-3824 . 124406) + (-3825 . 124222) (-3826 . 123615) (-3827 . 123315) (-3828 . 123222) + (-3829 . 123058) (-3830 . 122836) (-3831 . 122741) (-3832 . 122635) + (-3833 . 122463) (-3834 . 122216) (-3835 . 121957) (-3836 . 121859) + (-3837 . 121433) (-3838 . 121338) (-3839 . 121158) (-3840 . 120962) + (-3841 . 120888) (-3842 . 120760) (-3843 . 120708) (-3844 . 120571) + (-3845 . 120493) (-3846 . 120405) (-3847 . 120095) (-3848 . 119940) + (-3849 . 118363) (-3850 . 118238) (-3851 . 117847) (-3852 . 117773) + (-3853 . 117585) (-3854 . 117390) (-3855 . 117263) (-3856 . 117207) + (-3857 . 117070) (-3858 . 117020) (-3859 . 116958) (-3860 . 116851) + (-3861 . 116795) (-3862 . 116698) (-3863 . 116515) (-3864 . 116445) + (-3865 . 116361) (-3866 . 115850) (-3867 . 115753) (-3868 . 115238) + (-3869 . 115011) (-3870 . 114895) (-3871 . 114677) (-3872 . 114458) + (-3873 . 114340) (-3874 . 114274) (-3875 . 114004) (-3876 . 112742) + (-3877 . 112517) (-3878 . 112431) (-3879 . 112302) (-3880 . 112054) + (-3881 . 111908) (-3882 . 111507) (-3883 . 111452) (-3884 . 111379) + (-3885 . 111328) (-3886 . 111163) (-3887 . 111060) (-3888 . 110960) + (-3889 . 110520) (-3890 . 110360) (-3891 . 110255) (-3892 . 109415) + (-3893 . 109257) (-3894 . 109095) (-3895 . 109024) (-3896 . 107844) + (-3897 . 107720) (-3898 . 107522) (-3899 . 107406) (-3900 . 107350) + (-3901 . 106046) (-3902 . 105890) (-3903 . 105833) (-3904 . 105756) + (-3905 . 105612) (-3906 . 105478) (-3907 . 105344) (-3908 . 105244) + (-3909 . 105185) (-3910 . 105040) (-3911 . 104960) (-3912 . 104886) + (-3913 . 104835) (-3914 . 104677) (-3915 . 104624) (-3916 . 104550) + (-3917 . 104332) (-3918 . 104061) (-3919 . 103918) (-3920 . 103491) + (-3921 . 103411) (-3922 . 103315) (-3923 . 103263) (-3924 . 102936) + (-3925 . 102843) (-3926 . 102787) (-3927 . 102492) (-3928 . 102356) + (-3929 . 102156) (-3930 . 102073) (-3931 . 101936) (-3932 . 101676) + (-3933 . 101581) (-3934 . 100665) (-3935 . 100603) (-3936 . 100479) + (-3937 . 100426) (-3938 . 100250) (-3939 . 100179) (-3940 . 100047) + (-3941 . 99711) (-3942 . 99565) (-3943 . 99473) (-3944 . 98738) + (-3945 . 98615) (-3946 . 98522) (-3947 . 98281) (-3948 . 98198) + (-3949 . 98125) (-3950 . 97931) (-3951 . 97778) (-3952 . 97655) + (-3953 . 97437) (-3954 . 97062) (-3955 . 95205) (-3956 . 94332) + (-3957 . 93534) (-3958 . 93462) (-3959 . 93343) (-3960 . 93228) + (-3961 . 93160) (-3962 . 93015) (-3963 . 92938) (-3964 . 92820) + (-3965 . 92677) (-3966 . 92553) (-3967 . 91957) (-3968 . 91832) + (-3969 . 91674) (-3970 . 91573) (-3971 . 91545) (-3972 . 91407) + (-3973 . 91178) (-3974 . 90928) (-3975 . 90851) (-3976 . 90753) + (-3977 . 90119) (-3978 . 89789) (-3979 . 89739) (-3980 . 89292) + (-3981 . 89114) (-3982 . 88976) (-3983 . 88878) (-3984 . 88826) + (-3985 . 88459) (-3986 . 87993) (-3987 . 87938) (-3988 . 87447) + (-3989 . 86912) (-3990 . 86741) (-3991 . 85671) (-3992 . 85565) + (-3993 . 85493) (-3994 . 85416) (-3995 . 85331) (-3996 . 85243) + (-3997 . 85114) (-3998 . 84946) (-3999 . 84868) (-4000 . 84347) + (-4001 . 84192) (-4002 . 84134) (-4003 . 84046) (-4004 . 83787) + (-4005 . 83710) (-4006 . 83595) (-4007 . 83493) (-4008 . 83410) + (-4009 . 83266) (-4010 . 83126) (-4011 . 83026) (-4012 . 82974) + (-4013 . 82851) (-4014 . 82641) (-4015 . 82247) (-4016 . 82170) + (-4017 . 82102) (-4018 . 81998) (-4019 . 81863) (-4020 . 81789) + (-4021 . 81509) (-4022 . 80549) (-4023 . 80331) (-4024 . 80206) + (-4025 . 79910) (-4026 . 79857) (-4027 . 79829) (-4028 . 79713) + (-4029 . 79322) (-4030 . 79251) (-4031 . 79152) (-4032 . 79066) + (-4033 . 79011) (-4034 . 78926) (-4035 . 78269) (-4036 . 78191) + (-4037 . 78066) (-4038 . 77927) (-4039 . 77709) (-4040 . 77505) + (-4041 . 77410) (-4042 . 77358) (-4043 . 76772) (-4044 . 76598) + (-4045 . 75506) (-4046 . 75387) (-4047 . 75286) (-4048 . 75217) + (-4049 . 74213) (-4050 . 74136) (-4051 . 73992) (-4052 . 73771) + (-4053 . 73428) (-4054 . 73296) (-4055 . 73004) (-4056 . 72910) + (-4057 . 72858) (-4058 . 72640) (-4059 . 72521) (-4060 . 72382) + (-4061 . 72198) (-4062 . 72067) (-4063 . 71888) (-4064 . 71722) + (-4065 . 71639) (-4066 . 71545) (-4067 . 71402) (-4068 . 71163) + (-4069 . 71108) (-4070 . 70929) (-4071 . 70773) (-4072 . 70607) + (-4073 . 70196) (-4074 . 70110) (-4075 . 69500) (-4076 . 69396) + (-4077 . 69197) (-4078 . 69054) (-4079 . 68846) (-4080 . 68233) + (-4081 . 68019) (-4082 . 67924) (-4083 . 67778) (-4084 . 67568) + (-4085 . 67395) (-4086 . 66784) (-4087 . 66227) (-4088 . 65947) + (-4089 . 65656) (-4090 . 65447) (-4091 . 65020) (-4092 . 64434) + (-4093 . 64406) (-4094 . 64336) (-4095 . 64284) (-4096 . 64189) + (-4097 . 64133) (-4098 . 64056) (-4099 . 64003) (-4100 . 63971) + (-4101 . 63909) (-4102 . 63842) (-4103 . 63615) (-4104 . 62905) + (-4105 . 62730) (-4106 . 62469) (-4107 . 62354) (-4108 . 62326) + (-4109 . 62230) (-4110 . 61952) (-4111 . 61853) (-4112 . 61707) + (-4113 . 61570) (-4114 . 61488) (-4115 . 61358) (-4116 . 61237) + (-4117 . 61208) (-4118 . 61010) (-4119 . 60936) (-4120 . 60867) + (-4121 . 60340) (-4122 . 60022) (-4123 . 59966) (-4124 . 59779) + (-4125 . 59641) (-4126 . 59537) (-4127 . 59356) (-4128 . 59151) + (-4129 . 59096) (-4130 . 58997) (-4131 . 58893) (-4132 . 58841) + (-4133 . 58790) (-4134 . 58528) (-4135 . 58412) (-4136 . 58287) + (-4137 . 58157) (-4138 . 58062) (-4139 . 57680) (-4140 . 57537) + (-4141 . 57378) (-4142 . 57161) (-4143 . 56728) (-4144 . 56676) + (-4145 . 56560) (-4146 . 56474) (-4147 . 56386) (-4148 . 56292) + (-4149 . 56147) (-4150 . 55929) (-4151 . 55827) (-4152 . 55684) + (-4153 . 55613) (-4154 . 55394) (-4155 . 54961) (-4156 . 54890) + (-4157 . 54188) (-4158 . 54105) (-4159 . 54020) (-4160 . 53906) + (-4161 . 53825) (-4162 . 53747) (-4163 . 53556) (-4164 . 53478) + (-4165 . 53392) (-4166 . 53278) (-4167 . 52599) (-4168 . 52318) + (-4169 . 52156) (-4170 . 52055) (-4171 . 51577) (-4172 . 51507) + (-4173 . 51454) (-4174 . 51402) (-4175 . 51259) (-4176 . 51080) + (-4177 . 47781) (-4178 . 47716) (-4179 . 47664) (-4180 . 47611) + (-4181 . 47470) (-4182 . 47373) (-4183 . 47287) (-4184 . 47238) + (-4185 . 45696) (-4186 . 45329) (-4187 . 43599) (-4188 . 43210) + (-4189 . 42788) (-4190 . 42579) (-4191 . 42520) (-4192 . 42433) + (-4193 . 42337) (-4194 . 42193) (-4195 . 42114) (-4196 . 42010) + (-4197 . 41909) (-4198 . 41792) (-4199 . 41726) (-4200 . 41640) + (-4201 . 41581) (-4202 . 41497) (-4203 . 41301) (-4204 . 41014) + (-4205 . 40961) (-4206 . 40835) (-4207 . 40697) (-4208 . 40064) + (-4209 . 39927) (-4210 . 39769) (-4211 . 39466) (-4212 . 39286) + (-4213 . 39125) (-4214 . 38803) (-4215 . 38715) (-4216 . 38615) + (-4217 . 38534) (-4218 . 38364) (-4219 . 38266) (-4220 . 38178) + (-4221 . 38082) (-4222 . 38023) (-4223 . 37764) (-4224 . 37648) + (-4225 . 37415) (-4226 . 37231) (-4227 . 37001) (-4228 . 36818) + (-4229 . 36762) (-4230 . 36468) (-4231 . 36384) (-4232 . 36304) + (-4233 . 36226) (-4234 . 36098) (-4235 . 35925) (-4236 . 35807) + (-4237 . 35689) (-4238 . 35617) (-4239 . 35308) (-4240 . 35054) + (-4241 . 34953) (-4242 . 34901) (-4243 . 34869) (-4244 . 34767) + (-4245 . 34672) (-4246 . 34619) (-4247 . 34367) (-4248 . 34288) + (-4249 . 34123) (-4250 . 33921) (-4251 . 33864) (-4252 . 33743) + (-4253 . 33536) (-4254 . 33333) (-4255 . 33277) (-4256 . 33068) + (-4257 . 32836) (-4258 . 32780) (-4259 . 32010) (-4260 . 31940) + (-4261 . 31844) (-4262 . 31356) (-4263 . 31299) (-4264 . 31213) + (-4265 . 31034) (-4266 . 30918) (-4267 . 30607) (-4268 . 30535) + (-4269 . 29718) (-4270 . 29580) (-4271 . 29424) (-4272 . 28329) + (-4273 . 28176) (-4274 . 28023) (-4275 . 27883) (-4276 . 27824) + (-4277 . 27691) (-4278 . 27649) (-4279 . 27597) (-4280 . 27454) + (-4281 . 27183) (-4282 . 27152) (-4283 . 27081) (-4284 . 26987) + (-4285 . 26859) (-4286 . 26785) (-4287 . 26578) (-4288 . 26509) + (-4289 . 26156) (-4290 . 25916) (-4291 . 25837) (-4292 . 25708) + (-4293 . 25598) (-4294 . 25543) (-4295 . 25344) (-4296 . 25258) + (-4297 . 24731) (-4298 . 24246) (-4299 . 24136) (-4300 . 24058) + (-4301 . 23900) (-4302 . 23847) (-4303 . 23749) (-4304 . 23476) + (-4305 . 23126) (-4306 . 23097) (-4307 . 22870) (-4308 . 22743) + (-4309 . 22609) (-4310 . 22444) (-4311 . 22337) (-4312 . 22164) + (-4313 . 22035) (-4314 . 21928) (-4315 . 21658) (-4316 . 21459) + (-4317 . 21355) (-4318 . 21277) (-4319 . 21110) (-4320 . 21031) + (-4321 . 20855) (-4322 . 20759) (-4323 . 20685) (-4324 . 20370) + (-4325 . 20303) (-4326 . 20206) (-4327 . 19954) (-4328 . 19784) + (-4329 . 19485) (-4330 . 19235) (-4331 . 19134) (-4332 . 18459) + (-4333 . 18109) (-4334 . 18042) (-4335 . 17924) (-4336 . 17828) + (-4337 . 17714) (-4338 . 17597) (-4339 . 17125) (-4340 . 17055) + (-4341 . 16788) (-4342 . 16501) (-4343 . 16114) (-4344 . 15798) + (-4345 . 15565) (-4346 . 15508) (-4347 . 15387) (-4348 . 15328) + (-4349 . 15300) (-4350 . 14696) (-4351 . 14358) (-4352 . 14305) + (-4353 . 14208) (-4354 . 11793) (-4355 . 11720) (-4356 . 11663) + (-4357 . 11548) (-4358 . 11453) (-4359 . 11355) (-4360 . 11141) + (-4361 . 10803) (-4362 . 10646) (-4363 . 10493) (-4364 . 10302) + (-4365 . 10012) (-4366 . 9946) (-4367 . 9843) (-4368 . 9742) + (-4369 . 9591) (-4370 . 9483) (-4371 . 9426) (-4372 . 9307) + (-4373 . 9114) (-4374 . 9028) (-4375 . 8942) (-4376 . 3774) + (-4377 . 3404) (-4378 . 3320) (-4379 . 3179) (-4380 . 3033) + (-4381 . 2280) (-4382 . 2129) (-4383 . 2032) (-4384 . 1926) + (-4385 . 1852) (-4386 . 1450) (-4387 . 1400) (-4388 . 1214) + (-4389 . 1080) (-4390 . 1001) (-4391 . 790) (-4392 . 688) + (-4393 . 629) (-4394 . 563) (-4395 . 459) (-4396 . 388) (-4397 . 30))
\ No newline at end of file |